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FOREWORD

The present book is meant as a basic text for a one-year course in algebra,
at the graduate level.

A perspective on algebra

As I see it, the graduate course in algebra must primarily prepare students

to handle the algebra which they will meet in all of mathematics: topology,

partial differential equations, differential geometry, algebraic geometry, analysis,
and representation theory, not to speak of algebra itself and algebraic number

theory with all its ramifications. Hence I have inserted throughout references to

papers and books which have appeared during the last decades, to indicate some

of the directions in which the algebraic foundations provided by this book are

used; I have accompanied these references with some motivating comments, to

explain how the topics of the present book fit into the mathematics that is to

come subsequently in various fields; and I have also mentioned some unsolved

problems of mathematics in algebra and number theory. The abc conjecture is

perhaps the most spectacular of these.

Often when such comments and examples occur out of the logical order,

especially with examples from other branches of mathematics, of necessity some

terms may not be defined, or may be defined only later in the book. I have tried

to help the reader not only by making cross-references within the book, but also

by referring to other books or papers which I mention explicitly.
I have also added a number of exercises. On the whole, I have tried to make

the exercises complement the examples, and to give them aesthetic appeal. I

have tried to use the exercises also to drive readers toward variations and appli-
cations of the main text, as well as toward working out special cases, and as

openings toward applications beyond this book.

Organization

Unfortunately, a book must be projected in a totally ordered way on the page

axis, but that's not the way mathematics "is", so readers have to make choices

how to reset certain topics in parallel for themselves, rather than in succession.

v



vi FOREWORD

I have inserted cross-references to help them do this, but different people will

make different choices at different times depending on different circumstances.

The book splits naturally into several parts. The first part introduces the basic

notions of algebra. After these basic notions, the book splits in two major
directions: the direction of algebraic equations including the Galois theory in

Part II; and the direction of linear and multilinear algebra in Parts III and IV.

There is some sporadic feedback between them, but their unification takes place
at the next level of mathematics, which is suggested, for instance, in 15 of

Chapter VI. Indeed, the study of algebraic extensions of the rationals can be

carried out from two points of view which are complementary and interrelated:

representing the Galois group of the algebraic closure in groups of matrices (the

linear approach), and giving an explicit determination of the irrationalities gen-

erating algebraic extensions (the equations approach). At the moment, repre-

sentations in GL2 are at the center of attention from various quarters, and readers

will see GL2 appear several times throughout the book. For instance, I have

found it appropriate to add a section describing all irreducible characters of

GL2(F) when F is a finite field. Ultimately, GL2 will appear as the simplest but

typical case of groups of Lie types, occurring both in a differential context and

over finite fields or more general arithmetic rings for arithmetic applications.
After almost a decade since the second edition, I find that the basic topics

of algebra have become stable, with one exception. I have added two sections

on elimination theory, complementing the existing section on the resultant.

Algebraic geometry having progressed in many ways, it is now sometimes return-

ing to older and harder problems, such as searching for the effective construction

of polynomials vanishing on certain algebraic sets, and the older elimination

procedures of last century serve as an introduction to those problems.

Except for this addition, the main topics of the book are unchanged from the

second edition, but I have tried to improve the book in several ways.

First, some topics have been reordered. I was informed by readers and review-

ers of the tension existing between having a textbook usable for relatively inex-

perienced students, and a reference book where results could easily be found in

a systematic arrangement. I have tried to reduce this tension by moving all the

homological algebra to a fourth part, and by integrating the commutative algebra
with the chapter on algebraic sets and elimination theory, thus giving an intro-

duction to different points of view leading toward algebraic geometry.

The book as a text and a reference

In teaching the course, one might wish to push into the study of algebraic

equations through Part II, or one may choose to go first into the linear algebra
of Parts III and IV. One semester could be devoted to each, for instance. The

chapters have been so written as to allow maximal flexibility in this respect, and

I have frequently committed the crime of lese-Bourbaki by repeating short argu-

ments or definitions to make certain sections or chapters logically independent
of each other.
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Granting the material which under no circumstances can be omitted from a

basic course, there exist several options for leading the course in various direc-

tions. It is impossible to treat all of them with the same degree of thoroughness.
The precise point at which one is willing to stop in any given direction will

depend on time, place, and mood. However, any book with the aims of the

present one must include a choice of topics, pushing ahead in deeper waters,

while stopping short of full involvement.

There can be no universal agreement on these matters, not even between the

author and himself. Thus the concrete decisions as to what to include and what

not to include are finally taken on grounds of general coherence and aesthetic

balance. Anyone teaching the course will want,to impress their own personality
on the material, and may push certain topics with more vigor than I have, at the

expense of others. Nothing in the present book is meant to inhibit this.

Unfortunately, the goal to present a fairly comprehensive perspective on

algebra required a substantial increase in size from the first to the second edition,

and a moderate increase in this third edition. These increases require some

decisions as to what to omit in a given course.

Many shortcuts can be taken in the presentation of the topics, which

admits many variations. For instance, one can proceed into field theory and

Galois theory immediately after giving the basic definitions for groups, rings,

fields, polynomials in one variable, an vector spaces. Since the Galois theory

gives very quickly an impression of dpth, this is very satisfactory in many

respects.

It is appropriate here to recall my original indebtedness to Artin, who first

taught me algebra. The treatment of the basics of Galois theory is much

influenced by the presentation in his own monograph.

Audience and background

As I already stated in the forewords of previous editions, the present book

is meant for the graduate level, and I expect most of those coming to it to have

had suitable exposure to some algebra in an undergraduate course, or to have

appropriate mathematical maturity. I expect students taking a graduate course

to have had some exposure to vector spaces, linear maps, matrices, and they
will no doubt have seen polynomials at the very least in calculus courses.

My books Undergraduate Algebra and Linear Algebra provide more than

enough background for a graduate course. Such elementary texts bring out in

parallel the two basic aspects of algebra, and are organized differently from the

present book, where both aspects are deepened. Of course, some aspects of the

linear algebra in Part III of the present book are more "elementary" than some

aspects of Part II, which deals with Galois theory and the theory of polynomial

equations in several variables. Because Part II has gone deeper into the study
of algebraic equations, of necessity the parallel linear algebra occurs only later

in the total ordering of the book. Readers should view both parts as running

simultaneously.
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Unfortunately, the amount of algebra which one should ideally absorb during
this first year in order to have a proper background (irrespective of the subject
in which one eventually specializes) exceeds the amount which can be covered

physically by a lecturer during a one-year course. Hence more material must be

included than can actually be handled in class. I find it essential to bring this

material to the attention of graduate students.

I hope that the various additions and changes make the book easier to use as

a text. By these additions, I have tried to expand the general mathematical

perspective of the reader, insofar as algebra relates to other parts of mathematics.
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Logical Prerequisites

We assume that the reader is familiar with sets, and with the symbols n, U,

::>, C, E. If A, B are sets, we use the symbol A C B to mean that A is contained

in B but may be equal to B. Similarly for A ::> B.

If f: A B is a mapping of one set into another, we write

x f(x)

to denote the effect of f on an element x of A. We distinguish between the

arrows and. We denote by f(A) the set of all elementsf(x), with x E A.

Let f: A B be a mapping (also called a map). We say that f is injective
if x =F y implies f(x) =F f(y). We say f is surjective if given b E B there exists

a E A such that f(a) = b. We say that f is bijective if it is both surjective and

injective.
.

A subset A of a set B is said to be proper if A =F B.

Let f: A B be a map, and A' a subset of A. The restriction of f to A' is

a map of A' into B denoted by f I A'.

If f: A Band g : B -+ C are maps, then we have a composite map g 0 f
such that (g 0 f)(x) = g(f(x)) for all x E A.

Letf: A B be a map, and B' a subset of B. Byf
-

l(B') we mean the subset

of A consisting of all x E A such that f(x) E B'. We call it the inverse image of

B'. We call f(A) the image of f.
A diagram

A f) B

\)
C

is said to be commutative if 9
0 f = h. Similarly, a diagram

A f) B

] ]g
C ) D

'"

ix
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is said to be commutative if g
0 f = t/J 0

qJ. We deal sometimes with more

complicated diagrams, consisting of arrows between various objects. Such

diagrams are called commutative if, whenever it is possible to go from one

object to another by means of two sequences of arrows, say

II
A

12 In-I
A

I
)

2
) ... ) An

and

Al ) ...

9m-1
) Bm

=

An'
91

B)
2

92

then

In-I 0 · · · 0 II =

9m-1
0 · · · 0

91'

in other words, the composite maps are equal. Most of our diagrams are

composed of triangles or squares as above, and to verify that a diagram con-

sisting of triangles or squares is commutative, it suffices to verify that each

triangle and square in it is commutative.

We assume that the reader is acquainted with the integers and rational

numbers, denoted respectively by Z and Q. For many of our examples, we also

assume that the reader knows the real and complex numbers, denoted. by R

and C.

Let A and I be two sets. By a family of elements of A, indexed by I, one

means a map f: I -. A. Thus for each i E I we are given an element f(i) E A.

Although a family does not differ from a map, we think of it as determining a

collection of objects from A, and write it often as

{f(i)}iel

or

{aJ i e I'

writing ai instead of f(i). We call I the indexing set.

We assume that the reader knows what an equivalence relation is. Let A

be a set with an equivalence relation, let E be an equivalence class of elements

of A. We sometimes try to define a map of the equivalence classes into some

set B. To define such a map f on the class E, we sometimes first give its value

on an element x E E (called a representative of E), and then show that it is

independent of the choice of representative x E E. In that case we say that f
is well defined.

We have products of sets, say finite products A x B, or At x ... x An' and

products of families of sets.

We shall use Zorn's lemma, which we describe in Appendix 2.

We let #(S) denote the number of elements of a set S, also called the

cardinality of S. The notation is usually employed when S is finite. We also

write #(S) = card(S).
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Part One

THE BASIC

OBJECTS OF

ALGEBRA

This part introduces the basic notions of algebra, and the main difficulty
for the beginner is to absorb a reasonable vocabulary in a short time. None

of the concepts is difficult, but there is an accumulation of new concepts which

may sometimes seem heavy.
To understand the next parts of the book, the reader needs to know

essentially only the basic definitions of this first part. Of course, a theorem

may be used later for some specific and isolated applications, but on the

whole, we have avoided making long logical chains of interdependence.





CHAPTER I

G rou ps

1. MONOIDS

Let S be a set. A mapping

SxS.:....S

is sometimes called a law of composition (of S into itself). If x, yare elements of

S, the image of the pair (x, y) under this mapping is also called their product
under the law of composition, and will be denoted by xy. (Sometimes, we also

write x .

y, and in many cases it is also convenient to use an additive notation,
and thus to write x + y. In that case, we call this element the sum of x and y.

It is customary to use the notation x + y only when the relation x + y
=

y + x holds.)
Let S be a set with a law of composition. If x, y, z are elements of S, then we

may form their product in two ways: (xy)z and x(yz). If (xy)z = x(yz) for all

x" y" z in S then we say that the law of composition is associative.

An element e of S such that ex = x = xe for all XES is called a unit

element. (When the law of composition is written additively, the unit element

is denoted by 0, and is called a zero element.) A unit element is unique, for if

e' is another unit element, we have

e = ee' = e'

by assumption. In most cases, the unit element is written simply 1 (instead of e).
For most of this chapter, however, we shall write e so as to avoid confusion in

proving the most basic properties.
A monoid is a set G, with a law of composition which is associative, and

having a unit element (so that in particular, G is not empty).

3



4 GROUPS I, 1

Let G be a monoid, and Xb. . .

,
X

n
elements of G (where n is an integer> 1).

We define their product inductively:

n

n Xv
=

Xl.
. . X

n
= (x 1

. . . X
n
- 1 )Xn.

v= 1

We then have the following rule:

m n m+ n

nXJl' nXm+v= nxv,
Jl=l v=l v=l

which essentially asserts that we can insert parentheses in any manner in our

product without changing its value. The proof is easy by induction, and we shall

leave it as an exercise.

One also writes

m+n

n Xv instead of

m+l

n

n X
m + v

v=l

and we define

o

n Xv
= e.

v=l

As a matter of convention, we agree also that the empty product is equal
to the unit element.

It would be possible to define more general laws of composition, i.e. maps

S 1
X S2

-+ S 3 using arbitrary sets. One can then express associativity and

commutativity in any setting for which they make sense. For instance, for

commutativity we need a law of composition

f:S x S -+ T

where the two sets of departure are the same. Commutativity then means

f(x, y) = f(y, x), or xy
=

yx if we omit the mappingffrom the notation. For

associativity, we leave it to the reader to formulate the most general combination

of sets under which it will work. We shall meet special cases later, for instance

arising from maps

S x S -+ Sand S x T -+ T.

Then a product (xy)z makes sense with XES, YES, and z E T. The product

x(yz) also makes sense for such elements x, Y, z and thus it makes sense to say

that our law of composition is associative, namely to say that for all x, y, z as

above we have (xy)z = x(yz).
If the law of composition of G is commutative, we also say that G is com-

mutative (or abelian).
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Let G be a commutative monoid, and Xl' . . .

,
X

n
elements of G. Let .p be a

bijection of the set of integers (1, . . .
, n) onto itself. Then

n n

n x.;(v)
= n XV'

v=1 v=1

We prove this by induction, it being obvious for n = 1. We assume it for

n
- 1. Let k be an integer such that .p(k) = n. Then

n k- 1 n-k

n X.;(v)
= n X.;(v)

.

X.;(k)' n Xt/1(k + v)

111

k- 1 n-k

= nX.;(v)' n X"'(k + v)
.

X.;(k).
1 1

Define a map qJ of (1, . . .

,
n
- 1) into itself by the rule

qJ(v) = .p(v)

qJ(v) = .p(v + 1)

if v < k,

if v
:> k.

Then

n k-l n-k

n x.;(v)
= n xtp(V)'n Xtp(k - 1 + v)

. X
n

1 1) 1

n-l

= n Xtp(v)
. X

n ,

1

which, by induction, is equal to Xl
· · · X

n ,
as desired.

Let G be a commutative monoid, let I be a set, and let f: I G be a

mapping such that f(i) = e for almost all i E I. (Here and thereafter, almost

all will mean all but a finite number.) Let 10 be the subset of I consisting of

those i such thatf(i) =F e. By

n f(i)
iel

we shall mean the product

n f(i)
ielo

taken in any order (the value does not depend on the order, according to the

preceding remark). It is understood that the empty product is equal to e.

When G is written additively, then instead of a product sign, we write the

sum sign .

There are a number of formal rules for dealing with products which it would

be tedious to list completely. We give one example. Let I, J be two sets, and
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I: I x J -+ G a mapping into a commutative monoid which takes the value e

for almost all pairs (i, j). Then

n
r
n !(i,j)] = 0 [O/(i,j)] .

iel LeJ jeJ iel

We leave the proof as an exercise.

As a matter of notation, we sometimes write O/(i), omitting the signs
i E I, if the reference to the indexing set is clear.

Let x be an element of a monoid G. For every integer n > 0 we define x
n

to be
n

Ox,
1

so that in particular we have X
O

= e, Xl = x, x
2

= xx, . . .. We obviously have

x(n+m) = xnx
m

and (xn)m = x
nm

. Furthermore, from our preceding rules of

associativity and commutativity, if x, yare elements of G such that xy
=

yx,

then (xy)n = xnyn. We leave the formal proof as an exercise.

If S, S' are two subsets of a monoid G, then we define SS' to be the subset

consisting of all elements xy, with XES and YES'. Inductively, we can define

the product of a finite number of subsets, and we have associativity. For in-

stance, if S, S', S" are subsets of G, then (SS')S" = S(S'S"). Observe that GG = G

(because G has a unit element). If x E G, then we define xS to be {x }S, where

{x} is the set consisting of the single element x. Thus xS consists of all elements

xy, with YES.

By a submonoid of G, we shall mean a subset H of G containing the unit

element e, and such that, if x, y E H then xy E H (we say that H is closed under

the law of composition). It is then clear that H is itself a monoid, under the law

of composition induced by that of G.

If x is an element of a monoid G, then the subset of powers x
n

(n = 0, 1, . . .)
is a submonoid of G.

The set of integers > 0 under addition is a monoid.

Later we shall define rings. If R is a commutative ring, we shall deal with

multiplicative subsets S, that is subsets containing the unit element, and such

that if x, YES then xy E S. Such subsets are monoids.

A routine example. Let N be the natural numbers, Le. the integers
> o.

Then N is an additive monoid. In some applications, it is useful to deal with a

multiplicative version. See the definition of polynomials in Chapter II, 3, where

a higher-dimensional version is also used for polynomials in several variables.

An interesting example. We assume that the reader is familiar with the

terminology of elementary topology. Let M be the set of homeomorphism
classes of compact (connected) surfaces. We shall define an addition in M.

Let S, S' be compact surfaces. Let D be a small disc in S, and D' a small disc in

S'. Let C, C' be the circles which form the boundaries of D and D' respectively.
Let Do, D be the interiors of D and D' respectively, and glue S-Do to s' -D'o by

identifying C with C'. It can be shown that the resulting surface is independent,
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up to homeomorphism, of the various choices made in the preceding construc-

tion. If (1, (1' denote the homeomorphism classes of Sand S' respectively, we

define (1 + (1' to be the class of the surface obtained by the preceding gluing

process. It can be shown that this addition defines a monoid structure on M,

whose unit element is the class of the ordinary 2-sphere. Furthermore, if !

denotes the class of the torus, and 1t denotes the class of the projective plane,
then every element (1 of M has a unique expression of the form

(1 = n! + m1t

where n is an integer > 0 and m = 0, 1, or 2. We have 31t = ! + 1t.

(The reasons for inserting the preceding example are twofold: First to

relieve the essential dullness of the section. Second to show the reader that

monoids exist in nature. Needless to say, the example will not be used in any

way throughout the rest of the book.)

Still other examples. At the end of Chapter III, 4, we shall remark that

isomorphism classes of modules over a ring form a monoid under the direct sum.

In Chapter XV, 1, we shall consider a monoid consisting of equivalence classes

of quadratic forms.

2. GROUPS

A group G is a monoid, such that for every element x E G there exists an

element Y E G such that xy
=

yx
= e. Such an element y is called an inverse for

x. Such an inverse is unique, because if y' is also an inverse for x, then

y' = y'e = y'(xy) = (y'x)y =

ey
=

y.

We denote this inverse by x-
1

(or by -x when the law of composition is

written additively).
For any positive integer n, we let x-

n
= (x- 1)n. Then the usual rules for

exponentiation hold for all integers, not only for integers > 0 (as we pointed out

for monoids in 1). The trivial proofs are left to the reader.

In the definItions of unit elements and inverses, we could also define left

units and left inverses (in the obvious way). One can easily prove that these

are also units and inverses respectively under suitable conditions. Namely:

Let G be a set with an associative law of composition, let e be a left unit for
that law, and assume that every element has a left inverse. Then e is a unit,

and each left inverse is a/so an inverse. In particular, G is a group.

To prove this, let a E G and let bEG be such that ba = e. Then

bab = eb = b.

Multiplying on the left by a left inverse for b yields

ab = e,

or in other words, b is also a right inverse for a. One sees also that a is a left
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inverse for b. Furthermore,

ae = aba = ea = a,

whence e is a right unit.

Example. Let G be a group and S a nQnempty set. The set of maps M(S, G)
is itself a group; namely for two maps f, g of S into G we define fg to be the

map such that

(fg)(x) = f(x)g(x),

and we define f
- 1

to be the map such that f
-

1(X) = f(x)
-

1. It is then trivial

to verify that M(S, G) is a group. If G is commutative, so is M(S, G), and when

the law of composition in G is written additively, so is the law of composition
in M(S, G), so that we would write f + g instead of fg, and -f instead off

-

1.

Example. Let S be a non-empty set. Let G be the set of bijective mappings
of S onto itself. Then G is a group, the law of composition being ordinary com-

position of mappings. The unit element of G is the identity map of S, and the

other group properties are trivially verified. The elements of G are called

permutations of S. We also denote G by Perm(S). For more information on

Perm(S) when S is finite, see 5 below.

Example. Let us assume here the basic notions of linear algebra. Let k be

a field and V a vector space over k. Let GL(V) denote the set of invertible k-

linear maps of V onto itself. Then GL(V) is a group under composition of

mappings. Similarly, let k be a field and let GL(n, k) be the set of invertible

n X n matrices with components in k. Then GL(n, k) is a group under the

multiplication of matrices. For n
>

2, this group is not commutative.

Example. The group of automorphisms. We recommend that the reader

now refer immediately to 11, where the notion of a category is defined, and

where several examples are given. For any object A in a category, its auto-

morphisms form a group denoted by Aut(A). Permutations of a set and the linear

automorphisms of a vector space are merely examples of this more general
structure.

Example. The set of rational numbers forms a group under addition. The

set of non-zero rational numbers forms a group under multiplication. Similar

statements hold for the real and complex numbers.

Example. Cyclic groups. The integers Z form an additive group. A group

is defined to be cyclic if there exists an element a E G such that every element

of G (written multiplicatively) is of the form an for some integer n. If G is written

additively, then every element of a cyclic group is of the form na. One calls a

a cyclic generator. Thus Z is an additive cyclic group with generator 1, and

also with generator -1. There are no other generators. Given a positive integer
n, the n-th roots of unity in the complex numbers form a cyclic group of order

n. In terms of the usual notation, e
2 'T1'i/n is a generator for this group. So is e

2 'T1'ir/n
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with r E Z and r prime to n. A generator for this group is called a primitive
n-th root of unity.

Example. The direct product. Let G I , G2 be groups. Let G I
x G2 be

the direct product as sets, so G I
x G2 is the set of all pairs (XI' X2) with

Xi E Gi . We define the product componentwise by

(XI' x2)(YI, Y2)
=

(xI YI, x2Y2).

Then G 1
x G2 is a group, whose unit element is (el, e2) (where ei is the unit

element of Gi). Similarly, for n groups we define G I
x... x G

n
to be the set

of n-tuples with Xi E Gi (i = 1, . .. , n), and componentwise multiplication.
Even more generally, let I be a set, and for each i E I, let Gi be a group. Let

G = fI G
i

be the set-theoretic product of the sets Gi . Then G is the set of all

families (Xi )iEI with Xi E Gi . We can define a group structure on G by compo-

nentwise multiplication, namely, if (Xi )iEI and (Yi )iEI are two elements of G, we

define their product to be (XiYi )iE/. We define the inverse of (xi )iEI to be (xi
1
)iE/.

It is then obvious that G is a group called the direct product of the family.

Let G be a group. A subgroup H of G is a subset of G containing the unit

element, and such that H is closed under the law of composition and inverse

(i.e. it is a submonoid, such that if x E H then x-
I

E H). A subgroup is called

trivial if it consists of the unit element lone. The intersection of an arbitrary

non-empty family of subgroups is a subgroup (trivial verification).

Let G be a group and S a subset of G. We shall say that S generates G,
or that S is a set of generators for G, if every element of G can be expressed as a

product of elements of S or inverses of elements of S, i.e. as a product Xl
. . . X

n

where each Xi or Xi

- 1
is in S. It is clear that the set of all such products is a

subgroup of G (the empty product is the unit element), and is the smallest sub-

group of G containing S. Thus S generates G if and only if the smallest subgroup
of G containing S is G itself. If G is generated by S, then we write G = (S). By

definition, a cyclic group is a group which has one generator. Given elements

XI' ...
,
x

n
E G, these elements generate a subgroup (X., ...

, x
n), namely the

set of all elements of G of the form

Xl
· · ·

x: with k 1 ,..., krE Z.

A single element X E G generates a cyclic subgroup.

Example. There are two non-abelian groups of order 8. One is the group

of symmetries of the square, generated by two elements u, T such that

u
4

=
T

2
= e and TUT-

I
= u

3
.

The other is the quaternion group, generated by two elements, i
, j such that

if we put k =

ij and m = i
2

,
then

i
4

= j4 = k
4

=

e, i
2

= j2 = k
2

=

m, ij
=

mji.

After you know enough facts about groups, you can easily do Exercise 35.
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Let G, G' be monoids. A monoid-homomorphism (or simply homomorphism)
of G into G' is a mappingf: G G' such thatf(xy) = f(x)f(y) for all x, y E G,

and mapping the unit element of G into that of G'. If G, G' are groups, a group-

homomorphism of G into G' is simply a monoid-homomorphism.
We sometimes say: "Letf:G G' be a group-homomorphism" to mean:

"Let G, G' be groups, and let fbe a homomorphism from G into G'."

Letf: G G' be a group-homomorphism. Then

f(x-
1

) = f(X)-1

because if e, e' are the unit elements of G, G' respectively, then

e' = f(e) = f(xx- 1) = f(x)J'(x-
1

).

Furthermore, if G, G' are groups andf: G -+ G' is a map such that

f(xy) = f(x)f(y)

for all x, y in G, then f(e) = e' because f(ee) = f(e) and also = f(e)f(e).

Multiplying by the inverse off(e) shows thatf(e) = e'.

Let G, G' be monoids. A homomorphismf: G -+ G' is called an isomorphism
if there exists a homomorphism g: G

'

G such that fog and g
0 f are the

identity mappings (in G
'

and G respectively). It is trivially verified that f is

an isomorphism if and only if f is bijective. The existence of an isomorphism
between two groups G and G

'

is sometimes denoted by G G'. If G = G
'

,

we say that isomorphism is an automorphism. A homomorphism of G into

itself is also called an endomorphism.

Example. Let G be a monoid and x an element of G. Let N denote the

(additive) monoid of integers > O. Then the mapf: N -+ G such thatf(n) = x
n

is a homomorphism. If G is a group, we can extendfto a homomorphism of Z

into G (x
n

is defined for all nEZ, as pointed out previously). The trivial proofs
are left to the reader.

Let n be a fixed integer and let G be a commutative group. Then one verifies

easily that the map

X 1---+ x
n

from G into itself is a homomorphism. So is the map x 1---+ x

-

1. The map

x 1---+ x
n

is called the n-th power map.

Example. Let I = {i} be an indexing set, and let {Gj } be a family of groups.

Let G = fI Gj be their direct product. Let

Pj: G Gj

be the projection on the i-th factor. Then pj is a homomorphism.

Let G be a group, S a set of generators for G, and G' another group. Let

f: S -+ G' be a map. If there exists a homomorphism I of G into G' whose

restriction to S is f, then there is only one.
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In other words, f has at most one extension to a homomorphism of G

into G'. This is obvious, but will be used many times in the sequel.
Let f: G G' and g: G' -. G" be two group-homomorphisms. Then the

composite map g
0f is a group-homomorphism. Iff, g are isomorphisms then

so is g of. Furthermore f
- 1

: G' -. G is also an isomorphism. In particular,
the set of all automorphisms of G is itself a group, denoted by Aut(G).

Let f: G -+ G' be a group-homomorphism. Let e, e' be the respective unit

elements of G, G'. We define the kernel off to be the subset of G consisting
of all x such that f(x) = e'. From the definitions, it follows at once that the

kernel H off is a subgroup of G. (Let us prove for instance that H is closed

under the inverse mapping. Let x E H. Then

f(x-
1

)f(x) = f(e) = e'.

Since f(x) = e', we have f(x-
1

) = e', whence x-
1

E H. We leave the other

verifications to the reader.)
Let f: G -. G' be a group-homomorphism again. Let H' be the image off.

Then H' is a subgroup ofG', because it contains e', and iff(x),f(Y)EH', then

f(xy) = f(x)f(y) lies also in H'. Furthermore,f(x-
1

) = f(X)-l is in H', and

hence H' is a subgroup of G'.

The kernel and image off are sometimes denoted by Kerf and Imf.
A hOlnomorphism f: G -. G' which establishes an isomorphism between

G and its image in G' will also be called an embedding.

A homomorphism whose kernel is trivial is injective.

To prove this, suppose that the kernel off is trivial, and letf(x) = f(y) for

some x, y E G. Multiplying byf(y- 1) we obtain

f(xy- 1) = f(x)f(y- 1) = e'.

Hence xy
- 1

lies in the kernel, hence xy
- 1

= e, and x =

y. If in particularf is

also surjective, then f is an isomorphism. Thus a surjective homomorphism
whose kernel is trivial must be an isomorphism. We note that an injective

homomorphism is an embedding.
An injective homomorphism is often denoted by a special arrow, such as

f:GG'.

There is a useful criterion for a group to be a direct product of subgroups:

Proposition 2.1. Let G be a group and let H, K be two subgroups such that

H n K =

e, HK = G, and such that xy
= yxfor all XEH and YEK. Then

the map

HxK-.G

such that (x, y) t---+ xy is an isomorphism.

Proof. It is obviously a homomorphism, which is surjective since HK = G.
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If (x, y) is in its kernel, then x = Y- I, whence x lies in both Hand K, and x = e,

so that Y
= e also, and our map is an isomorphism.

We observe that Proposition 2. 1 generalizes by induction to a finite number

of subgroups Hb . . .
, Hn whose elements commute with each other, such that

H I
. . . H = G

n ,

and such that

Hi + I n (H I
. . . HJ = e.

In that case, G is isomorphic to the direct product

HI X ... x Hn.

Let G be a group and H a subgroup. A left coset of H in G is a subset of

G of type aH" for some element a of G. An element of aH is called a coset

representative of aH. The map x ax induces a bijection of H onto aH.

Hence any two left cosets have the same cardinality.
Observe that if a, b are elements of G and aH, bH are cosets having one

element in common, then they are equal. Indeed, let ax = by with x, y E H.

Then a = byx-
I

. But yx- IE H, Hence aH = b(yx-I)H = bH, because for

any Z E H we have zH = H.

We conclude that G is the disjoint union of the left cosets of H. A similar

remark applies to right cosets (i.e. subsets of G of type Ha). The number of left

cosets of H in G is denoted by (G : H), and is called the (left) index of H in G.

The index of the trivial subgroup is called the order of G and is written (G : 1).
From the above conclusion, we get:

Proposition 2.2. Let G be a group and H a subgroup. Then

(G : H)(H : 1) = (G : 1),

in the sense that if two oj' these indices are finite, so is the third and equality
holds as stated. If (G : 1) is finite, the order of H divides the order of G.

More generally, let H, K be subgroups ofG and let H ::J K. Let {Xi} be a

set of (left) coset representatives of K in H and let {yj} be a set ofcoset repre-

sentatives ofH in G. Then we contend that {YjXi} is a set ofcoset representa-
tives of K in G.

Proof. Note that

H = U xiK
i

(disjoint),

G = U yjH
j

(disjoint).

Hence

G = U yjxi K.

i, j

We must show that this union is disjoint, i.e. that the yjXi represent distinct

cosets. Suppose
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Y .x.K =

Y .,x.,K
J I J I

for a pair of indices (j, i) and (j', i'). Multiplying by H on the right, and noting
that Xi' Xi' are in H, we get

Y .H =

Y .,H
J J'

whence Yj
=

Yr. From this it follows that XiK = xi,K and therefore that

Xi
=

Xi" as was to be shown.

The formula of Proposition 2.2 may therefore be generalized by writing

(G : K) = (G : H)(H : K),

with the understanding that if two of the three indices appearing in this formula

are finite, then so is the third and the formula holds.

The above results are concerned systematically with left cosets. For the right
cosets, see Exercise 10.

Example. A group of prime order is cyclic. Indeed, let G have order p and

let a E G, a =1= e. Let H be the subgroup generated by a. Then #(H) divides p

and is =1= 1, so #(H) =

p and so H = G, which is therefore cyclic.

Example. Let 1
n

= {I, . ..
, n}. Let Sn be the group of permutations of

In. We define a transposition to be a permutation T such that there exist

two elements r =1= S in In for which T(r) =

S, T(S) =

r, and T(k) = k for all

k =1= r, s. Note that the transpositions generate Sn. Indeed, say 0" is a permutation,
O"(n) = k =1= n. Let T be the transposition interchanging k, n. Then TO" leaves n

fixed, and by induction, we can write TO" as a product of transpositions in

Perm(ln - 1), thus proving that transpositions generate S
n.

Next we note that #(Sn)
= n!. Indeed, let H be the subgroup of Sn consisting

of those elements which leave n fixed. Then H may be identified with Sn-l. If

O"i (i = 1, . . .
, n) is an element of Sn such that O"i(n)

= i , then it is immediately
verified that 0"1' . . . , O"n are coset representatives of H. Hence by induction

(Sn : 1) = n(H : 1) = n!.

Observe that for O"i we could have taken the transposition Ti' which interchanges
i and n (except for i =

n, where we could take O"n to be the identity).

3. NORMAL SUBGROUPS

We have already observed that the kernel of a group-homomorphism is a

subgroup. We now wish to characterize such subgroups.

Letf: G -. G' be a group-homomorphism, and let H be its kernel. If X is an

element of G, then xH = Hx, because both are equal to f-l(f(x)). We can

also rewrite this relation as xHX

- 1
= H.
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Conversely, let G be a group, and let H be a subgroup. Assume that for all

elements x of G we have xH c Hx (or equivalently, xHx-t c H). If we

write X-I instead of x, we get H c xHx-
t

,
whence xHx-t = H. Thus our

condition is equivalent to the condition XHX-l = H for all x E G. A subgroup
H satisfying this condition will be called normal. We shall now see that a normal

subgroup is the kernel of a homomorphism.
Let G' be the set of cosets of H. (By assumption, a left coset is equal to a right

coset, so we need not distinguish between them.) If xH and yH are cosets, then

their product (xH)(yH) is also a coset, because

xHyH = xyHH = xyH.

By means of this product, we have therefore defined a law of composition on G'

which is associative. It is clear that the coset H itself is a unit element for this

law of composition, and that x

-

tHis an inverse for the coset xH. Hence G' is a

group.

Let f: G -. G' be the mapping such that f(x) is the coset xH. Then f is

clearly a homomorphism, and (the subgroup) H is contained in its kernel. If

f(x) = H, then xH = H. Since H contains the unit element, it follows that

x E H. Thus H is equal to the kernel, and we have obtained our desired homo-

morphism.
The group of cosets of a normal subgroup H is denoted by G/H (which we

read G modulo H, or G mod H). The mapfof G onto G/H constructed above

is called the canonical map, and G/H is called the factor group of G by H.

Remarks

1. Let {Hi}iel be a family of normal subgroups of G. Then the subgroup

H= nH.
I

i e I

is a normal subgroup. Indeed, if y E H, and x E G, then xyx-
t

lies in each Hj,
whence in H.

2. Let S be a subset of G and let N = Ns be the set of all elements x E G

such that xSx-
t

= S. Then N is obviously a subgroup of G, called the

normalizer of S. If S consists of one element Q, then N is also called the

centralizer of a. More generally, let Zs be the set of all elements x E G such that

xyx-
t

=

y for all YES. Then Zs is called the centralizer of S. The centralizer

of G itself is called the center of G. It is the subgroup of G consisting of all

elements of G commuting with all other elements, and is obviously a normal

subgroup of G.

Examples. We shall give more examples of normal subgroups later when

we have more theorems to prove the normality. Here we give only two examples.
First, from linear algebra, note that the determinant is a homomorphism from

the multiplicative group of square matrices into the multiplicative group of a

field. The kernel is called the special linear group, and is normal.
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Second, let G be the set of all maps Ta,b: R R such that

Ta,b(X)
= ax + b, with a =t= 0 and b arbitrary. Then G is a group under composition

of mappings. Let A be the multiplicative group of maps of the form Ta,o (iso-

morphic to R*
, the non-zero elements of R), and let N be the group of translations

Tt,b with b E R. Then the reader will verify at once that Ta,b .-..+ a is a homo-

morphism of G onto the multiplicative group, whose kernel is the group of

translations, which is therefore normal. Furthermore, we have G = AN = NA,

and N n A = {id}. In the terminology of Exercise 12, G is the semidirect

product of A and N.

Let H be a subgroup of G. Then H is obviously a normal subgroup of its

normalizer N
H. We leave the following statements as exercises:

If K is any subgroup of G containing H and such that H is normal in K, then

K c NH .

IfK is a subgroup of NH , then KH is a group and H is normal in KH.

The normalizer of H is the largest subgroup of G in which H is normal.

Let G be a group and H a normal subgroup. Let x, y E G. We shall write

x = y (mod H)

if x and y lie in the same coset of H, or equivalently if xy-1 (or y- 1X) lie in H.

We read this relation" x and y are congruent modulo H."

When G is an additive group, then

x = 0 (mod H)

means that x lies in H, and

x = y (mod H)

means that x
-

y (or y
- x) lies in H. This notation of congruence is used

mostly for additive groups.

Let

G' G !!. G"

be a sequence of homomorphisms. We shall say that this sequence is exact if

1m f = Ker g. For example, if H is a normal subgroup of G then the sequence

H..!.. G G/H

is exact (where j = inclusion and qJ
= canonical map). A sequence of homo-

morphisms having more than one term, like

G
II

G
12

G
In- 1

G1
-+

2
-+

3
-+ . . . --+

n,

is called exact if it is exact at each joint, i.e. if.

1m}; = Kerh+1

for each i = 1,..., n
- 2. For example to say that

o -+ G' G !!. G" -+ 0
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is exact means that f is injective, that 1mf = Ker g, and that g is surjective. If

H = Ker g then this sequence is essentially the same as the exact sequence

o -. H -. G -. GIH -+ O.

More precisely, there exists a commutative diagram

0 ) G'
f

) G
9

) G" ) 0

j j j
0 ) H ) G ) GIH ) 0

in which the vertical maps are isomorphisms, and the rows are exact.

Next we describe some homomorphisms, all of which are called canonical.

(i) Let G, G' be groups and f: G -. G' a homomorphism whose kernel

is H. Let cp: G -. GIH be the canonical map. Then there exists a unique

homomorphismf* : GIH -. G' such thatf = f* 0 cp, andf* is injective.
To define f*, let xH be a coset of H. Since f(xy) = f(x) for all y E H, we

define f*(xH) to be f(x). This value is independent of the choice of coset

representative x, and it is then trivially verified that f* is a homomorphism, is

injective, and is the unique homomorphism satisfying our requirements. We

shall say that f* is induced byf
Our homomorphismf* induces an isolI1orphism

A.: GIH -. Imf

of GIH onto the image off, and thusfcan be factored into the following succes-

sion of homomorphisms:

G GIH Imf G'.

Here, j is the inclusion of Imfin G'.

(ii) Let G be a group and H a subgroup. Let N be the intersection of all

normal subgroups containing H. Then N is normal, and hence is the smallest

normal subgroup of G containing H. Let!: G -. G' be a homomorphism whose

kernel contains H. Then the kernel off contains N, and there exists a unique

homomorphismf*: GIN -. G', said to be induced by f, making the following

diagram commutative:

G f) G'

\1
GIN

As before, cp is the canonical map.

We can define f* as in (1) by the rule

f*(xN) = f(x).

This is well defined, and is trivially verified to satisfy all our requirements.
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(iii) Let G be group and H ::> K two normal subgroups of G. Then K is normal

in H, and we can define a map of G/K onto G/H by associating with each coset

xK the coset xH. It is immediately verified that this map is a homomorphism,
and that its kernel consists of all cosets xK such that x E H. Thus we have a

canonical isomorphism

I (G/K)/(H/K) G/H. I
One could also describe this isomorphism using (i) and (ii). We leave it to the

reader to show that we have a commutative diagram

· G

j can

) G/K

) 0o ) H

j can

) H/K

) G/H

j id

) G/H ) 0o

where the rows are exact.

(iv) Let G be a group and let H, K be two subgroups. Assume that H

is contained in the normalizer of K. Then H n K is obviously a normal

subgroup of H, and equally obviously HK = KH is a subgroup of G. There

is a surjective homomorphism

H -. HK/K

associating with each x E H the coset xK of K in the group HK. The reader

will verify at once that the kernel of this homomorphism is exactly H n K.

Thus we have a canonical isomorphism

I H/(H n K) HK/K. I
(v) Let f: G -. G' be a group homomorphism, let H' be a normal sub-

group of G', and let H = f-l(H').

G · G'

I I
f-

1

(H') · H'

Thenf
-

l(H') is normal in G. [Proof: Ifx E G, thenf(xHx- 1) = f(x)f(H)f(x)-
1

is contained in H', so XHX-l C H.] We then obtain a homomorphism

G -. G' -. G'/H'

composing f with the canonical map of G' onto G'IH', and the kernel of this

composite is H. Hence we get an injective homomorphism

J:GIH -. G'IB'
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again called canonical, giving rise to the commutative diagram

o ) H

)
) G/H

)1
) G'/H' ) o.

) G

[f
) 0

o ) H' ) G'

Iff is surjective, then J is an isomorphism.
We shall now describe some applications of our homomorphism statements.

Let G be a group. A sequence of subgroups

G = Go ::J G 1
::J G 2

::J . . . ::J G
m

is called a tower of subgroups. The tower is said to be normal if each Gi + 1 is

normal in Gi (i = 0,. . .

,
m

- 1). It is said to be abelian (resp. cyclic) if it is

normal and if each factor group Gi/Gi + 1 is abelian (resp. cyclic).

Letf: G -+ G' be a homomorphism and let

G' = Go ::J G'l ::J . . . ::J G

be a normal tower in G'. Let G i
= f-l(GD. Then the Gi (i = 0, . . .

, m) form a

normal tower. If the G form an abelian tower (resp. cyclic tower) then the Gi

form an abelian tower (resp. cyclic tower), because we have an injective homo-

morphism

Gi/Gi + 1
-+ G/G + 1

for each i, and because a subgroup of an abelian group (resp. a cyclic group) is

abelian (resp. cyclic),
A refinement of a tower

G = Go ::J G 1
::J . . . ::J G

m

is a tower which can be obtained by inserting a finite number of subgroups in

the given tower. A group is said to be solvable if it has an abelian tower, whose

last element is the trivial subgroup (i.e. G
m

= {e} in the above notation).

Proposition 3.1. Let G be a finite group. An abelian tower of G admits a

cyclic refinement. Let G be a finite solvable group. Then G admits a cyclic

tower, whose last element is {e}.

Proof The second assertion is an immediate consequence of the first, and

it clearly suffices to prove that if G is finite, abelian, then G admits a cyclic tower.

We use induction on the order of G. Let x be an element of G. We may assume

that x =F e. Let X be the cyclic group generated by x. Let G' = G/X. By
induction, we can find a cyclic tower in G', and its inverse image is a cyclic tower

in G whose last element is X. If we refine this tower by inserting {e} at the end,
we obtain the desired cyclic tower.

Example. In Theorem 6.4 it will be proved that a group whose order is a

prime power is solvable.
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Example. One of the major results of group theory is the Feit-Thompson
theorem that all finite groups of odd order are solvable. Cf. [Go 68].

Example. Solvable groups will occur in field theory as the Galois groups

of solvable extensions. See Chapter VI, Theorem 7.2.

Example. We assume the reader knows the basic notions of linear algebra.
Let k be a field. Let G = GL(n, k) be the group of invertible n x n matrices in

k. Let T = T(n, k) be the upper triangular group; that is, the subgroup of matrices

which are 0 below the diagonal. Let D be the diagonal group of diagonal matrices

with non-zero components on the diagonal. Let N be the additive group of matrices

which are 0 on and below the diagonal, and let V = I + N, where I is the unit

n x n matrix. Then V is a subgroup of G. (Note that N consists of nilpotent

matrices, i.e. matrices A such that Am = 0 for some positive integer m. Then

(I
-

A)-I = I + A + A
2

+ . . . + Am-I is computed using the geometric series.)

Given a matrix A E T, let diag(A) be the diagonal matrix which has the same

diagonal components as A. Then the reader will verify that we get a surjective

homomorphism
T D given by A.-+ diag(A).

The kernel of this homomorphism is precisely V. More generally, observe that

for r
>

2, the set Nr-I consists of all matrices of the form

0 0 0 aIr
.....

a In

0 0 0 0 a2,r+ 1 a2n

M -

0 0 ................ a
n
-

r + l,n

0 0 ................ 0

0 0 ................ 0

Let V
r

= I + N
r

. Then VI U and V
r

:J Vr + I. Furthermore, Vr + I is normal

in Vn
and the factor group is isomorphic to the additive group (!) k

l1
-

r, under the

the mapping which sends I + M to the n
-

r-tuple (alr+l, . . .
, an-r,n) E k

n
-

r
.

This n
-

r-tuple could be called the r-th upper diagonal. Thus we obtain an

abelian tower

T :J V =

VI ::> V2
:J . . . :J V

n

= {I}.

Theorem 3.2. Let G be a group and H a normal subgroup. Then G is solvable

if and only ifHand G/H are solvable.

Proof. We prove that G solvable implies that H is solvable. Let

G =

Go :J G I
:J . . . :J G

r

= {e} be a tower of groups with Gi + 1 normal in Gi

and such that Gi/Gi + I is abelian. Let Hi
= H n Gi

. Then H
i + I is normal in Hi'

and we have an embedding Hi/Hi+l Gi/Gi + l , whence Hi/Hi+l is abelian,

whence proving that H is solvable. We leave the proofs of the other statements

to the reader.



20 GROUPS I, 3

Let G be a group. A commutator in G is a group element of the form xyx-
l
y-l

with x, y E G. Let GC be the subgroup of G generated by the commutators. We

call GC the commutator subgroup of G. As an exercise, prove that GC is normal

in G, and that every homomorphismf: G G' into a commutative group G'

contains GC in its kernel, and consequently factors through the factor commutator

group G/GC. Observe that G/GC itself is commutative. Indeed, if i denotes the

image of x in G/Gc, then by definition we have iyi-1y-1 = e, so i

and y commute. In light of the definition of solvability, it is clear that the

commutator group is at the heart of solvability and non-solvability problems.
A group G is said to be simple if it is non-trivial, and has no normal subgroups

other than {e} and G itself.

Examples. An abelian group is simple if and only if it is cyclic of prime
order. Indeed, suppose A abelian and non-trivial. Let a E A, a =t= e. If a generates

an infinite cyclic group, then a
2

generates a proper subgroup and so A is not

simple. If a has finite period, and A is simple, then A = (a). Let n be th period
and suppose n not prime. Write n = rs with r, s > 1. Then a

r

=1= e and a
r

generates a proper subgroup, contradicting the simplicity of A, so a has prime

period and A is cyclic of order p.

Examples. Using commutators, we shall give examples of simple groups

in Theorem 5.5 (the alternating group), and in Theorem 9.2 of Chapter XIII

(PSLn(F), a group of matrices to be defined in that chapter). Since a non-cyclic

simple group is not solvable, we get thereby examples of non-solvable groups.

A major program of finite group theory is the classification of all finite

simple groups. Essentially most of them (if not all) have natural representa-

tions as subgroups of linear maps of suitable vector spaces over suitable fields,

in a suitably natural way. See [Go 82], [Go 86], [Sol 01] for surveys. Gaps in

purported proofs have been found. As of 200 I, these are still incomplete.

Next we are concerned with towers of subgroups such that the factor groups

Gi/Gi + 1
are simple. The next lemma is for use in the proof of the Jordan-Holder

and Schreier theorems.

Lemma 3.3. (Butterfly Lemma.) (Zassenhaus) Let U, V be subgroups

of a group. Let u, v be normal subgroups of U and V, respectively. Then

u(U n v) is normal in u(U n V),

(u n V)v is normal in (U (\ V)v,

and the factor groups are isomorphic, i.e.

u(U n V)/u(U n v) (U n V)v/(u n V)v.

Proof The combination of groups and factor groups becomes clear if

one visualizes the following diagram of subgroups (which gives its name to the

lemma):
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u v

u( u n V)

u v

un V un v

In this diagram, we are given U, u, V, v. All the other points in the diagram

correspond to certain groups which can be determined as follows. The inter-

section of two line segments going downwards represents the intersection of

groups. Two lines going upwards meet in a point which represents the product
of two subgroups (i.e. the smallest subgroup containing both of them).

We consider the two parallelograms representing the wings of the butterfly,
and we shall give isomoft'hisms of the factor groups as follows:

u(u n V)
___

u n V

u(u n v) (u n V)(U n v)

(U n V)v
=

(u n V)v
.

In fact, the vertical side common to both parallelograms has U n V as its

top end point, and (u n V)(U n v) as its bottom end point. We have an iso-

morphism

(U n V)/(u n V)(U (\ v) u(U n V)/u(U n v).

This is obtained from the isomorphism theorem

H/(H n N) HN/N

by setting H = U n V and N = u(U n v). This gives us the isomorphism on

the left. By symmetry we obtain the corresponding isomorphism on the right,
which proves the Butterfly lemma.

Let G be a group, and let

G = G 1
::J G 2

::J . . . ::J G
r

= {e},

G = H 1
::J H 2

::J ...::J Hs = {e}

be normal towers of subgroups, ending with the trivial group. We shall say

that these towers are equivalent if r = s and if there exists a permutation of the
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indices i = 1,..., r
- 1, written i i', such that

Gi/Gi + 1 Hi,/Hi
,

+ 1.

In other words, the sequences of factor groups in our two towers are the same,

up to isomorphisms, and a permutation of the indices.

Theorem 3.4. (Schreier) Let G be a group. Two normal towers ofsubgroups

ending with the trivial group have equivalent refinements.

Proof Let the two towers be as above. For each i = 1, ...,
r
- 1 and

j = 1,..., s we define

Goo = G. + l(H, (\ G.)IJ I J I
.

Then Gis = Gi + 1, and we have a refinement of the first tower:

G = G 11
::J G 12

::J ... ::J G 1 ,S-1
:::> G 2

= G 21
::J G22

::J ...::J G
r -l,l:::> ...::J G

r -l,s- l
::J {e}.

Similarly, we define

H.. = H .

+ l(G. (\ H ,)Jl J I J '

for j = 1, . . .
,

s
- 1 and i = 1, . . .

,
r. This yields a refinement of the second

tower. By the butterfly lemma, for i = 1, . . .
,

r - 1 and j = 1, . . .
,

s
- 1 we

have isomorphisms

Gij/Gi,j+ 1 Hji/Hj,i+ 1.

We view each one of our refined towers as having (r
- 1)(s - 1) + 1 elements,

namely Gij (i = 1,..., r
- l;j = 1,..., s - 1) and {e} in the first case, H

ji
and

{e} in the second case. The preceding isomorphism for each pair of indices

(i, j) shows that our refined towers are equivalent, as was to be proved.

A group G is said to be simple if it is non-trivial, and has no normal sub-

groups other than {e} and G itself.

Theorem 3.5. (Jordan-Holder) Let G be a group, and let

G = G 1
:::> G 2

::J ... :::> G
r

= {e}

be a normal tower such that each group Gi/Gi + 1 is simple, and Gi #= Gi + 1

for i = 1,..., r
- 1. Then any other normal tower ofG having the same prop-

erties is equivalent to this one.

Proof Given any refinement {Gij} as before for our tower, we observe

that for each i, there exists precisely one indexj such that Gi/Gi + 1
= Gij/Gi,j+ 1.

Thus the sequence of non-trivial factors for the original tower, or the refined

tower, is the same. This proves our theorem.
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4. CYCLIC GROUPS

The integers Z form an additive group. We shall determine its subgroups.
Let H be a subgroup of Z. If H is not trivial, let a be the smallest positive integer
in H. We contend that H consists of all elements na, with n E Z. To prove this,
let Y E H. There exist integers n, r with 0 < r < a such that

Y
= na + r.

Since H is a subgroup and r =

y
-

na, we have r E H, whence r = 0, and our

assertion follows.

Let G be a group. We shall say that G is cyclic if there exists an element

a of G such that every element x of G can be written in the form an for some

n E Z (in other words, if the map f: Z -. G such that f(n) = an is surjective).
Such an element a of G is then called a generator of G.

Let G be a group and a E G. The subset of all elements an (n E Z) is

obviously a subgroup of G, which is cyclic. If m is an integer such that am = e

and m > 0 then we shall call m an exponent of a. We shall say that m > 0 is

an exponent of G if xn = e for all x E G.

Let G be a group and a E G. Let/: Z -. G be the homomorphism such that

f(n) = an and let H be the kernel off Two cases arise:

1. The kernel is trivial. Thenfis an isomorphism of Z onto the cyclic subgroup
of G generated by a, and this subgroup is infinite cyclic. If a generates G, then

G is cyclic . We also say that a has infinite period.

2. The kernel is not trivial. Let d be the smallest positive integer in the

kernel. Then d is called the period of a. If m is an integer such that am =
e then

m = ds for some integer s . We observe that the elements e, a, . . . , a
d- 1

are
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distinct. Indeed, if a
r

= as with 0 <:
r, s

c:::: d -

1, and say r
c::::

s, then a
s
-

r
=

e. Since 0 <:
s
-

r < d we must have s
-

r = O. The cyclic subgroup generated

by a has order d. Hence by Proposition 2.2:

Proposition 4.1. Let G be a finite group of order n > 1. Let a be an element

of G, a =t= e. Then the period ofa divides n. If the order of G is a prime number

p, then G is cyclic and the period of any generator is equal to p.

Furthermore:

Proposition 4.2. Let G be a cyclic group. Then every subgroup ofG is cyclic.

Iff is a homomorphism of G, then the image off is cyclic.

Proof. If G is infinite cyclic, it is isomorphic to Z, and we determined above

all subgroups of Z, finding that they are all cyclic. If f: G G' is a homo-

morphism, and a is a generator of G, thenf(a) is obviously a generator off(G),
which is therefore cyclic, so the image off is cyclic. Next let H be a subgroup
of G. We want to show H cyclic. Let a be a generator of G. Then we have a

surjective homomorphism f: Z G such that f(n) = an. The inverse image

f-I(H) is a subgroup of Z, and therefore equal to mZ for some positive integer
m. Since f is surjective, we also have a surjective homomorphism mZ H.

Since mZ is cyclic (generated additively by m), it follows that H is cyclic, thus

proving the proposition.

We observe that two cyclic groups of the same order m are isomorphic.

Indeed, if G is cyclic of order m with generator a, then we have a surjective

homomorphism f: Z G such that f(n) = an, and if kZ is the kernel,

with k positive, then we have an isomorphism Z/kZ = G, so k =
m.

If u: G I Z/mZ and v: G2 Z/mZ are isomorphisms of two cyclic groups

with Z/mZ, then V-Iou: G 1 G2 is an isomorphism.

Proposition 4.3.

(i) An infinite cyclic group has exactly two generators (ifa is a generator, then

a-
1

is the only other generator).

(ii) Let G be afinite cyclic group oforder n, and let x be a generator. The set

ofgenerators ofG consists of those powers XV ofx such that v is relatively

prime to n.

(iii) Let G be a cyclic group, and let a, b be two generators. Then there exists

an automorphism of G mapping a onto b. Conversely, any automorphism

of G maps a on some generator of G.

(iv) Let G be a cyclic group of order n. Let d be a positive integer dividing n.

Then there exists a unique subgroup of G of order d.

(v) Let G 1 , G2 be cyclic of orders m, n respectively. If m, n are relatively

prime then G 1
X G2 is cyclic.
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(vi) Let G be a finite abeUan group. JfG is not cyclic, then there exists a prime

p and a subgroup of G isomorphic to C xC, where C is cyclic of order

p.

Proof. We leave the first three statements to the reader, and prove the others.

(iv) Let dl n. Let m = n/d. Let f: Z G be a surjective homomorphism.

Thenf(mZ) is a subgroup of G, and from the isomorphism Z/mZ = G/f(mZ)
we conclude that f(mZ) has index m in G, whencef(mZ) has order d. Conversely,
let H be a subgroup of order d. Then f-l(H) = mZ for some positive integer

m, so H = f(mZ), Z/mZ = G/H, so n = md, m
= n/d and H is uniquely

determined.

(v) Let A = (a) and B = (b) be cyclic groups of orders m, n, relatively prime.
Consider the homomorphism Z A x B such that k (a

k
, b

k
). An element

in its kernel must be divisible both by m and n, hence by their product since m,

n are relatively prime. Conversely, it is clear that mnZ is contained in the kernel,

so the kernel is mnZ. The image of Z A x B is surjective by the Chinese

remainder theorem. This proves (v). (A reader who does not know the Chinese

remainder theorem can see a proof in the more general context of Chapter II,

Theorem 2.2.)

(vi) This characterization of cyclic groups is an immediate consequence of

the structure theorem which will be proved in 8, because if G is not cyclic,
then by Theorem 8.1 and (v) we are reduced to the case when G is a p-group,

and by Theorem 8.2 there are at least two factors in the direct product (or sum)

decomposition, and each contains a cyclic subgroup of orderp, whence G contains

their direct product (or sum). Statement (vi) is, of course, easier to prove than

the full structure theorem, and it is a good exercise for the reader to formulate

the simpler arguments which yield (vi) directly.

Note. For the group of automorphisms of a cyclic group, see the end of

Chapter II, 2.

5. OPERATIONS OF A GROUP ON A SET

Let G be a group and let S be a set. An operation or an action of G on S

is a homomorphism

7T : G Perm(S)

of G into the group of permutations of S. We then call SaG-set. We denote

the permutation associated with an element x E G by 7Tx. Thus the homomorphism
is denoted by x .-..+ 7Tx. Given s E S, the image of s under the permutation 7Tx is

7T
x(S). From such an operation we obtain a mapping

G x S S,
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which to each pair (x, s) with x E G and s E S associates the element 7T
x(S). We

often abbreviate the notation and write simply xs instead of 7T
x(S). With the

simpler notation, we have the two properties:

For all x, y E G and S E S, we have x(ys) = (xy)s.

If e is the unit element of G, then es
=

s for all s E S.

Conversely, if we are given a mapping G x S S, denoted by (x, s) xs,

satisfying these two properties, then for each x E G the map s xs is permutation
of S, which we then denote by 7T

x(S). Then x 7Tx is a homomorphism of G

into Perm(S). So an operation of G on S could also be defined as a mapping
G x S S satisfying the above two properties. The most important examples
of representations of G as a group of permutations are the following.

1. Conjugation. For each x E G, let Cx : G G be the map such that

cx(y) = xyx-
1

. Then it is immediately verified that the association x 1---+ Cx is a

homomorphism G Aut( G), and so this map gives an operation of G on itself,

called conjugation. The kernel of the homomorphism x 1---+ Cx is a normal sub-

group of G, which consists of all x E G such that xyx-
1

=

y for all y E G, i.e. all

x E G which commute with every element of G. This kernel is called the center

of G. Automorphisms of G of the form Cx are called inner.

To avoid confusion about the operation on the left, we don't write xy for

cx(y). Sometimes, one writes

Cx-I (y) == x-1yx == yX,

Le. one uses an exponential notation, so that we have the rules

y(xz) =

(yX)Z and ye
=

y

for all x, y, Z E G. Similarly, Xy
=

xyx-
l

and Z(Xy)
=

zX

y .

We note that G also operates by conjugation on the set of subsets of G.

Indeed, let S be the set of subsets of G, and let A E S be a subset of G. Then

xAx-
1

is also a subset of G which may be denoted by cx(A), and one verifies

trivially that the map

(x, A) 1---+ xAx
- 1

of G x S -+ S is an operation of G on S. We note in addition that if A is a sub-

group of G then xAx-
1

is also a subgroup, so that G operates on the set of

subgroups by conjugation.
If A, B are two subsets of G, we say that they are conjugate if there exists

xEG such that B = xAx-
1

.

2. Translation. For each x E G we define the translation Tx: G G by

Tx(Y)
=

xy. Then the map

(x, y) 1---+ xy
= (y)

defines an operation of G on itself. Warning: Tx is not a group-homomorphism!

Only a permutation of G.
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Similarly, G operates by translation on the set of subsets, for if A is a

subset of G, then xA = (A) is also a subset. If H is a subgroup of G, then

Tx(H) = xH is in general not a subgroup but a coset of H, and hence we see

that G operates by translation on the set of cosets of H. We denote the set of

left cosets of H by GIH. Thus even though H need not be normal, GIH is a

G-set. It has become customary to denote the set of right cosets by H\G.

The above two representations of G as a group of permutations will be used

frequently in the sequel. In particular, the representation by conjugation will be

used throughout the next section, in the proof of the Sylow theorems.

3. Example from linear algebra. We assume the reader knows basic

notions of linear algebra. Let k be a field and let V be a vector space over k. Let

G = GL(V) be the group of linear automorphisms of V. For A E G and

v E V, the map (A, v) Av defines an operation of G on V. Of course, G is

a subgroup of the group of permutations Perm(V). Similarly, let V = k
n

be the

vector space of (vertical) n-tuples of elements of k, and let G be the group of

invertible n x n matrices with components in k. Then G operates on k
n

by

(A, X) AX for A E G and X E k
n

.

Let S, S' be two G-sets, andf: S S' a map. We say thatfis a morphism
of G-sets, or a G-map, if

f(xs) = xf(s)

for all x E G and s E S. (We shall soon define categories, and see that G-sets form

a category.)

We now return to the general situation, and consider a group operating on

a set S. Let s E S. The set of elements x E G such that xs = s is obviously a sub-

group of G, called the isotropy group of s in G, and denoted by G
s

.

When G operates on itself by conjugation, then the isotropy group of an

element is none other than the normalizer of this element. Similarly, when G

operates on the set of subgroups by conjugation, the isotropy group of a sub-

group is again its normalizer.

Let G operate on a set S. Let s, S' be elements of S, and y an element of G

such that ys
= S'. Then

G
s

' = yGsY-
1

Indeed, one sees at once that yGsy-1 leaves s' fixed. Conversely, if

x's' = s' then x'ys
=

ys, so y-Ix'y E G
s

and x' E yGsy-I. Thus the isotropy

gro,ups of sand s' are conjugate.
Let K be the kernel of the representation G Perm(S). Then directly from

the definitions, we obtain that

K = n G
s

= intersection of all isotropy groups.
SES
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An action or operation of G is said to be faithful if K = {e}; that is, the kernel

of G Perm(S) is trivial. A fixed point of G is an element S E S such that

xs
= s for all x E G or in other words, G = G

s
.

Let G operate on a set S. Let s E S. The subset of S consisting of all elements

xs (with x E G) is denoted by Gs, and is called the orbit of sunder G. If x and y

are in the same coset of the subgroup H = G
s ,

then xs =

ys, and conversely

(obvious). In this manner, we get a mapping

f:G/H-.S

given by f(xH) = xs, and it is clear that this map is a morphism of G-sets. In

fact, one sees at once that it induces a bijection of G/H onto the orbit Gs.

Consequently:

Proposition 5.1. JfG is a group operating on a set S, and s E S, then the order

of the orbit Gs is equal to the index (G : Gs).

In particular, when G operates by conjugation on the set of subgroups, and

H is a subgroup, then:

Proposition 5.2. The number of conjugate subgroups to H is equal to the

index of the normalizer of H.

Example. Let G be a group and H a subgroup of index 2. Then H is normal

in G.

Proof Note that H is contained in its normalizer NH, so the index of NH

in G is 1 or 2. If it is 1, then we are done. Suppose it is 2. Let G operate by con-

jugation on the set of subgroups. The orbit of H has 2 elements, and G operates
on this orbit. In this way we get a homomorphism of G into the group of

permutations of 2 elements. Since there is one conjugate of H unequal to H,

then the kernel of our homomorphism is normal, of index 2, hence equal to H,

which is normal, a contradiction which concludes the proof.

For a generalization and other examples, see Lemma 6.7.

In general, an operation of G on S is said to be transitive if there is only
one orbit.

Examples. The symmetric group Sn operates transitively on {I, 2, . . .

, n}.
In Proposition 2.1 of Chapter VII, we shall see a non-trivial example of transitive

action of a Galois group operating on the primes lying above a given prime in

the ground ring. In topology, suppose we have a universal covering space

p: X' X, where X is connected. Given x E X, the fundamental group 7Tl(X)

operates transitively on the inverse image p-l(X).



I, 5 OPERATIONS OF A GROUP ON A SET 29

Example. Let Sj be the upper half-plane; that is, the set of complex numbers

z
=

x + iy such that y > O. Let G = SL2(R) (2 x 2 matrices with determinant

1). For

(
a b

)
az + b

a
=

c d
E G, we let az

=

cz + d
.

Readers will verify by brute force that this defines an operation of G on Sj. The

isotropy group of i is the group of matrices

(
cos (J sin (J

) with (J real.
-sin (J cos (J

This group is usually denoted by K. The group G operates transitively . You can

verify all these statements as easy exercises.

Let G operate on a set S. Then two orbits of G are either disjoint or are

equal. Indeed, if GS 1
and GS 2 are two orbits with an element s in common,

then s = XS 1
for some x E G, and hence Gs = Gxs 1

= Gs 1. Similarly, Gs = Gs2 .

Hence S is the disjoint union of the distinct orbits, and we can write

S = U GSi

i E I

(disjoint), also denoted S = U Gsi ,

iEI

where I is some indexing set, and the Si are elements of distinct orbits. If S is

finite, this gives a decomposition of the order of S as a sum of orders of orbits,

which we call the orbit decomposition formula, namely

card(S) = L (G : G
s).

i e I

Let x, y be elements of a group (or monoid) G. They are said to commute

if xy
=

yx. If G is a group, the set of all elements x E G which commute with all

elements of G is a subgroup of G which we called the center of G. Let G act on

itself by conjugation. Then x is in the center if and only if the orbit of x is x

itself, and thus has one element. In general, the order of the orbit of x is equal
to the index of the normalizer of x. Thus when G is a finite group, the above

formula reads

(G : 1) = L (G : Gx)
xeC

where C is a set of representatives for the distinct conjugacy classes, and the

sum is taken over all x E C. This formula is also called the class formula.
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The class formula and the orbit decomposition formula will be used systematically
in the next section on Sylow groups, which may be viewed as providing examples
for these formulas.

Readers interested in Sylow groups mayjump immediately to the next section.

The rest of this section deals with special properties of the symmetric group,

which may serve as examples of the general notions we have developed.

The symmetric group. Let Sn be the group of permutations of a set

with n elements. This set may be taken to be the set of integers

In
= {I, 2, . . .

, n}. Given any U E Sn, and any integer i, I < i <
n, we may

form the orbit of i under the cyclic group generated by u. Such an orbit is called

a cycle for u, and may be written

[iliz
· . . i

r], so u(i l ) = i z ,..., u(i r
- l ) = i

r , u(i r) =

il.

Then {I ,
. . .

, n} may be decomposed into a disjoint union of orbits for the cyclic

group generated by u, and therefore into disjoint cycles. Thus the effect of u

on {I, . . .
, n} is represented by a product of disjoint cycles.

Example. The cycle [132] represents the permutation u such that

a(l) = 3, a(3) = 2, and a(2) = I.

We have a
2

(1) = 2, a
3

(1) = 1. Thus {1, 3, 2} is the orbit of I under the cyclic

group generated by a.

Example. In Exercise 38, one will see how to generate Sn by special types

of generators. Perhaps the most important part of that exercise is that if n is

prime, u is an n-cycle and T is a transposition, then u, T generate Sn. As an

application in Galois theory, if one tries to prove that a Galois group is all

of Sn (as a group of permutations of the roots), it suffices to prove that the

Galois group contains an n-cycle and a transposition. See Example 6 of

Chapter VI, 2.

We want to associate a sign + I to each permutation. We do this in the

standard way. Let f be a function of n variables, say f: Z
n

Z, so we can

evaluate f(Xl, . . .
, x

n ). Let u be a permutation of In. We define the function

7T( u)f by

7T(u)f(Xl'. . .
, x

n ) =

f(xu(l)'. . .

, xu(n».

Then for u, T E Sn we have 7T(UT) = 7T(U)7T( T). Indeed, we use the definition

applied to the function g
=

7T( T)f to get

1'(u) 1'( T)f(x), . . .
,
x

n) = (1'(T)f) (xU(l ),
. . .

,
XU(I1»)

=

f(x(TT(l)' . . .

, XUT(n»

=

7T(UT)f(Xl'. .., x
n ).
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Since the identity in S
n operates as the identity on functions, it follows that we

have obtained an operation of Sn on the set of functions. We shall write more

simply at instead of 7T( u)f. It is immediately verified that for two functions f,

9 we have

u(f + g) = uf + ug and u(fg) =

(uf)(ug).

If c is constant, then u(cf) = cu(f).

Proposition 5.3. There exists a unique homomorphism e: Sn { + I} such

that for every transposition T we have e( T) = - 1.

Proof. Let d be the function

d(x}, . . .
, x

n ) = D
<

. (Xj
-

Xi),
I }

the product being taken for all pairs of integers i, j satisfying 1 <: i < j
<:

n.

Let T be a transposition, interchanging the two integers rand s. Say r < s . We

wish to determine

Td (xI' . . .
, Xn)

= D
<

.

(xTV)
-

XT(i») .

I }

For one factor involving j
=

s, i =

r, we see that T changes the factor

(xs

-

x
r) to -(xs

-

x
r). All other factors can be considered in pairs as follows:

(xk
-

Xs)(xk
-

x
r) if k > s,

(xs

-

Xk)(Xk
-

x
r) if r < k < s,

(xs

-

Xk)(Xr

-

xk) if k < r.

Each one of these pairs remains unchanged when we apply T. Hence we see that

Td = -d.

Let e( u) be the sign 1 or
- 1 such that ud =

e( u)d for a permutation u.

Since 7T(UT) = 7T(U)7T( T), it follows at once that e is a homomorphism, and the

proposition is proved.
In particular, if u =

T}
...

T
m

is a product of transpositions, then

e( u) = (- l)m. As a matter of terminology, we call u even if e( u) = 1, and odd

if e( u) = - 1. The even permutations constitute the kernel of e, which is called

the alternating group An.

Theorem 5.4. If n
> 5 then Sn is not solvable.

Proof. We shall first prove that if H, N are two subgroups of Sn such that

N CHand N is normal in H, if H contains every 3-cycle, and if H/N is abelian,

then N contains every 3-cycle. To see this, let i
, j, k, r, s be five distinct integers

in in' and let u = [ijk] and T
= [krs]. Then a direct computation gives their

commutator

UTU-
I
T-

1
= [rki].
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Since the choice of i, j, k, r, s was arbitrary, we see that the cycles [rki] all lie

in N for all choices of distinct r, k, i, thereby proving what we wanted.

Now suppose that we have a tower of subgroups

Sn
=

Ho :J HI :J H2
:J · . . :J Hm

= {e}

such that Hv is normal in HV-I for v
= 1, . . .

, m, and Hv/HV-l is abelian. Since

Sn contains every 3-cycle, we conclude that HI contains every 3-cycle. By

induction, we conclude that Hm = {e} contains every 3-cycle, which is impossible,
thus proving the theorem.

Remark concerning the sign e( u). A priori, we defined the sign for a

given n, so we should write En(U). However, suppose n < m. Then the restriction

of Em to S
n (viewed as a permutation of J

n leaving the elements of J
m

not in J
n

fixed) gives a homomorphism satisfying the conditions of Proposition 5.3, so

this restriction is equal to En' Thus Am n Sn = An.
Next we prove some properties of the alternating group.

(a) An is generated by the 3-cycles. Proof. Consider the product of two trans-

positions [ij][rs]. If they have an element in common, the product is either the

identity or a 3-cycle. If they have no element in common, then

[ij][rs]
= [ijr]Urs],

so the product of two transpositions is also a product of 3-cycles. Since an even

permutation is a product of an even number of transpositions, we are done.

(b) If n
::>

5, all 3-cycles are conjugate in An. Proof: If l' is a permutation,
then for a cycle [i 1 . . . i

m] we have

1'[ i 1 . . . im] Y
- 1

= [1'< i 1) . . . 1'< i m) ] .

Given 3-cycles [ijk] and [i'j' k'] there is a permutation l' such that ')'(i)
= i',

')'(j)
= j' , and l'(k) = k'. Thus two 3-cycles are conjugate in S

n by some element

y. If ')' is even, we are done. Otherwise, by assumption n
::> 5 there exist r, s

not equal to anyone of the three elements i, j, k. Then [rs] commutes with [ijk],
and we replace y by l'[rs] to prove (b).

Theorem 5.5. If n
::> 5 then the alternating group An is simple.

Proof. Let N be a non-trivial normal subgroup of An. We prove that N

contains some 3-cycle, whence the theorem follows by (b). Let U EN, u =f=. i d,

be an element which has the maximal number of fixed points; that is, integers
i such that u(i) = i. It will suffice to prove that u is a 3-cycle or the identity.

Decompose I
n

into disjoint orbits of (u).Then some orbits have more than one

element. Suppose all orbits have 2 elements (except for the fixed points). Since

U is even, there are at least two such orbits. On their union, U is represented as
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a product of two transpositions [ij][rs]. Let k ¥- i, j, r, s. Let T = [rsk]. Let

u' = TUT-
I
U- J. Then u' is a product of a conjugate of U and U- J, so u' E N.

But u' leaves i, j fixed, and any element t E J
m

t ¥- i, j, r, s, k left fixed by u

is also fixed by u', so u' has more fixed points than u, contradicting our

hypothesis.
So we are reduced to the case when at least one orbit of (u) has ::> 3 elements,

say i, j, k, . . . . If u is not the 3-cycle [ijk], then u must move at least two other

elements of I
n ,

otherwise u is an odd permutation [ijkr] for some r E I
n ,

which

is impossible. Then let u move r, s other than i, j, k, and let T = [krs]. Let u'

be the commutator as before. Then u' E Nand u' (i) = i, and all fixed points
of u are also fixed points of u' whence u' has more fixed points than u, a

contradiction which proves the theorem.

Example. For n
= 4, the group A4 is not simple. As an exercise, show

that A4 contains a unique subgroup of order 4, which is not cyclic, and which

is normal. This subgroup is also normal in S4. Write down explicitly its elements

as products of transpositions.

6. SYLOW SUBGROUPS

Let p be a prime number. By a p-group, we mean a finite group whose

order is a power ofp (i.e. pn for some integer n > 0). Let G be a finite group

and H a subgroup. We call Hap-subgroup of G if H is a p-group. We call H

a p-Sylow subgroup if the order of H is pn and if pn is the highest power of p

dividing the order of G. We shall prove below that such subgroups always
exist. For this we need a lemma.

Lemma 6.1. Let G be a finite abelian group of order m, let p be a prime
number dividing m. Then G has a subgroup of order p.

Proof. We first prove by induction that if G has exponent n then the

order of G divides some power of n. Let bEG, b =F 1, and let H be the cyclic

subgroup generated by b. Then the order of H divides n since b
n

= 1, and n

is an exponent for G/H. Hence the order of G/H divides a power of n by
induction, and consequently so does the order of G because

(G : 1) = (G: H)(H : 1).

Let G have order divisible by p. By what we have just seen, there exists an

element x in G whose period is divisible by p. Let this period be ps for some

integer s. Then X
S

=F 1 and obviously X
S

has period p, and generates a subgroup
of order p, as was to be shown.
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Theorem 6.2. Let G be a finite group and p a prime number dividing the

order of G. Then there exists a p-Sylow subgroup of G.

Proof. By induction on the order of G. If the order of G is prime, our

assertion is obvious. We now assume given a finite group G, and assume the

theorem proved for all groups of order smaller than that of G. If there exists a

proper subgroup H of G whose index is prime to p, then a p-Sylow subgroup of

H will also be one ofG, and our assertion follows by induction. We may therefore

assume that every proper subgroup has an index divisible by p. We now let G

act on itself by conjugation. From the class formula we obtain

(G : 1) = (Z : 1) + L (G : Gx).

Here, Z is the center of G, and the term (Z : 1) corresponds to the orbits having
one element, namely the elements of Z. The sum on the right is taken over the

other orbits, and each index (G : G
x) is then> 1, hence divisible by p. Since p

divides the order of G, it follows that p divides the order of Z, hence in particular
that G has a non-trivial center.

Let a be an element of order p in Z, and let H be the cyclic group generated

bya. Since H is contained in Z, it is normal. Letf: G -. G/H be the canonical

map. Let pn be the highest power of p dividing (G : 1). Then pn-
1

divides the

order of GIH. Let K' be a p-Sylow subgroup of G/H (by induction) and let

K = f
-

l(K'). Then K ::J Hand f maps K onto K'. Hence we have an iso-

morphism K/H K'. Hence K has order pn-
1

p
= pn, as desired.

For the rest of the theorems, we systematically use the notion of a fixed point.
Let G be a group operating on a set S. Recall that a fixed point s of G in S is

an element s of S such that xs
=

s for all x E G.

Lemma 6.3. Let H be a p-group acting on a finite set S. Then:

(a) The number offixed points ofH is == #(S) mod p.

(b) IfH has exactly one fixed point, then #(S) = 1 mod p.

(c) IfP I #(S), then the number offixed points of H is = 0 mod p.

Proof. We repeatedly use the orbit formula

#(S) = L (H : Hs.).
I

For each fixed point Si we have Hs;
= H. For Si not fixed, the index

(H : Hs) is divisible by p, so (a) follows at once. Parts (b) and (c) are special
cases of (a), thus proving the lemma.

Remark. In Lemma 6.3(c), if H has one fixed point, then H has at least p

fixed points.

Theorem 6.4. Let G be a finite group.

(i) IfH is a p-subgroup ofG, then H is contained in some p-Sylow subgroup.
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(ii) All p-Sylow subgroups are conjugate.

(iii) The number ofp-Sylow subgroups of G is = 1 mod p.

Proof. Let P be a p-Sylow subgroup of G. Suppose first that H is contained

in the normalizer of P. We prove that H C P. Indeed, HP is then a subgroup
of the normalizer, and P is normal in HP. But

(HP : P) = (H : H n P),

so if HP =t= P, then HP has order a power ofp, and the order is larger than #(P),

contradicting the hypothesis that P is a Sylow group. Hence HP = P and

He P.

Next, let S be the set of all conjugates of P in G. Then G operates on S by

conjugation. Since the normalizer of P contains P, and has therefore index prime
to p, it follows that #(S) is not divisible by p. Now let H be any p-subgroup.
Then H also acts on S by conjugation. By Lemma 6.3(a), we know that H cannot

have 0 fixed points. Let Q be a fixed point. By definition this means that H is

contained in the normalizer of Q, and hence by the first part of the proof, that

H C Q, which proves the first part of the theorem. The second part follows

immediately by taking H to be a p-Sylow group, so #(H) = #(Q), whence

H = Q. In particular, when H is a p-Sylow group, we see that H has only one

fixed point, so that (iii) follows from Lemma 6. 3(b). This proves the theorem.

Theorem 6.5. Let G be a finite p-group. Then G is solvable. If its order is

> 1, then G has a non-trivial center.

Proof The first assertion follows from the second, since if G has center

Z, and we have an abelian tower for GIZ by induction, we can lift this abelian

tower to G to show that G is solvable. To prove the second assertion, we use

the class equation

(G: 1) = card(Z) + L (G : G
x)'

the sum being taken over certain x for which (G: G
x) =F 1. Then p divides

(G : 1) and also divides every term in the sum, so that p divides the order of the

center, as was to be shown.

Corollary 6.6. Let G be a p-group which is not of order 1. Then there

exists a sequence of subgroups

{e} = Go c G 1
C G 2

C . . . c G
n

= G

such that Gi is normal in G and Gi + I/Gi is cyclic oforder p.

Proof Since G has a non-trivial center, there exists an element a =F e in

the center of G, and such that a has order p. Let H be the cyclic group generated

by a. By induction, if G =F H, we can find a sequence of subgroups as stated

above in the factor group GIH. Taking the inverse image of this tower in G

gives us the desired sequence in G.
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We now give some examples to show how to put some of the group theory

together.

Lemma 6.7. Let G be afinite group and let p be the smallest prime dividing

the order of G. Let H be a subgroup of index p. Then H is normal.

Proof. Let N(H) = N be the normalizer of H. Then N = G or N = H. If

N = G we are done. Suppose N = H. Then the orbit of H under conjugation
has p

= (G : H) elements, and the representation of G on this orbit gives a

homomorphism of G into the symmetric group on p elements, whose order is

p!. Let K be the kernel. Then K is the intersection of the isotropy groups, and

the isotropy group of H is H by assumption, so K C H. If K =f=. H, then from

(G : K) = (G : H)(H : K)
=

p(H : K),

and the fact that only the first power of p divides p!, we conclude that some

prime dividing (p
-

I)! also divides (H : K), which contradicts the assumption
that p is the smallest prime dividing the order of G, and proves the lemma.

Proposition 6.8. Let p, q be distinct primes and let G be a group of order

pq. Then G is solvable.

Proof. Say p < q. Let Q be a Sylow subgroup of order q. Then Q has index

p, so by the lemma, Q is normal and the factor group has order p. But a group

of prime order is cyclic, whence the proposition follows.

Example. Let G be a group of order 35. We claim that G is cyclic.

Proof. Let H7 be the Sylow subgroup of order 7. Then H7 is normal by
Lemma 6.7. Let H5 be a 5-Sylow subgroup, which is of order 5. Then H5

operates by conjugation on H7 ,
so we get a homomorphism H5 Aut(H7). But

Aut(H7 ) is cyclic of order 6, so H5 Aut(H7) is trivial, so every element of

H5 commutes with elements ofH7. LetH5
= (x) and H7

= (y). Then x, y commute

with each other and with themselves, so G is abelian, and so G is cyclic by

Proposition 4.3(v).

Example. The techniques which have been developed are sufficient to treat

many cases of the above types. For instance every group of order < 60 is solvable,

as you will prove in Exercise 27.

7. DIRECT SUMS AND FREE ABELIAN GROUPS

Let {AihEI be a family of abelian groups. We define their direct sum

A = EB Ai
iEI

to be the subset of the direct product fl Ai consisting of all families (xi )iEI with
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Xi E Ai such that xi
= 0 for all but a finite number of indices i. Then it is clear

that A is a subgroup of the product. For each index j E I, we map

Aj : A
j

A

by letting Aj(X) be the element whose j-th component is x, and having all other

components equal to O. Then Ai is an injective homomorphism.

Proposition 7.1. Let {f;: Ai B} be a family of homomorphisms into an

abeUan group B. Let A = EB Ai. There exists a unique homomorphism

f: A B
,

such that f 0

Aj
=

h for all j.

Proof. We can define a map f: A B by the rule

f«Xi)iel) = L !i(Xi).
iel

The sum on the right is actually finite since all but a finite number of terms are O.

It is immediately verified that our map f is a homomorphism. Furthermore,
we clearly have f 0 Aj(X) = Jj(x) for each j and each x E Aj. Thus f has the

desired commutativity property. It is also clear that the map f is uniquely

determined, as was to be shown.

The property expressed in Proposition 7. 1 is called the universal property
of the direct sum. Cf. 11 .

Example. Let A be an abelian group, and let {AihEI be a family of sub-

groups. Then we get a homomorphism

EB Ai A such that (Xi) 2: Xi.
iEI

Theorem 8. 1 will provide an important specific application.

Let A be an abelian group and B, C subgroups. If B + C

B n C = {OJ then the map

A and

BxCA

given by (x, y) 1---+ X + y is an isomorphism (as we already noted in the non-

commutative case). Instead of writing A = B x C we shall write

A=BffiC

and say that A is the direct sum of Band C. We use a similar notation for the

direct sum of a finite number of subgroups B l' . . .
, Bn such that

B 1 + . . . + Bn = A

and

Bi+l n (B 1 + ... + Bi) = O.
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In that case we write

A = Bl ffi . . . ffi Bn.

Let A be an abelian group. Let {ei} (i E I) be a family of elements of A. We

say that this family is a basis for A if the family is not empty, and if every

element of A has a unique expression as a linear combination

x
= LXiei

with Xi E Z and almost all Xi
= O. Thus the sum is actually a finite sum. An

abelian group is said to be free if it has a basis. If that is the case, it is immediate

that if we let Zi
= Z for all i, then A is isomorphic to the direct sum

A = EBZi.
lEI

Next let S be a set. We shall define the free abelian group generated by S as

follows. Let Z(S) be the set of all maps cp : S Z such that cp(x)
= 0 for almost

all XES. Then Z(S) is an abelian group (addition being the usual addition of

maps). If k is an integer and x is an element of S, we denote by k 0

x the map

cp such that cp(x)
= k and cp(y)

= 0 if y =t= x. Then it is obvious that every element

cp of Z(S) can be written in the form

qJ
= k 1 0X l + ... + kn.xn

for some integers ki and elements Xi E S (i = 1, . . .

, n), all the Xi being distinct.

Furthermore, qJ admits a unique such expression, because if we have

qJ
= L kx . x = L k . x

xeS xeS

then

o = L (kx

- k) .

x,

xeS

whence k = kx for all XES.

We map S into Z(S) by the map Is = I such that I(x) = lox. It is

then clear that I is injective, and that I(S) generates Z(S). If g : S -. B is a

mapping of S into some abelian group B, then we can define a map

g. : Z(S) -. B

such that

g. ( L kx . X) = L kxg(x).
xeS xeS

This map is a homomorphism (trivial) and we have g*
0 f =

9 (also trivial). It

is the only homomorphism which has this property, for any such homomorphism

g* must be such that g*(1
0

x) = g(x).
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It is customary to identify S in Z(S), and we sometimes omit the dot when

we write kxx or a sum L kxx.

IfA : S -. S' is a mapping ofsets, there is a unique homomorphism 1 making the

following diagram commutative:

S
Is

Z(S)

Aj jI
S'

Is'
Z(S/)

In fact, 1 is none other than (fs' 0 A)., with the notation of the preceding para-

graph. The proof of this statement is left as a trivial exercise.

We shall denote Z(S) also by Fab(S), and call Fab(S) the free abeUan group

generated by S. We call elements of S its free generators.

As an exercise, show that every abelian group A is a factor group of a free

abelian group F. If A is finitely generated, show that one can select F to be

finitely generated also.

If the set S above consists of n elements, then we say that the free abelian

group Fab(S) is the free abelian group on n generators. If S is the set of n

letters Xl'...' x
n , we say that Fab(S) is the free abelian group with free

generators Xl' . · .

,
x

n
.

An abelian group is free if and only if it is isomorphic to a free abelian group

Fab(S) for some set S. Let A be an abelian group, and let S be a basis for A.

Then it is clear that A is isomorphic to the free abelian group Fab(S).
As a matter of notation, if A is an abelian group and T a subset of elements

of A, we denote by (T) the subgroup generated by the elements of T, i. e., the

smallest subgroup of A containing T.

Example. The Grothendieck group. Let M be a commutative monoid,
written additively. There exists a commutative group K(M) and a monoid-

homomorphism

y : M -. K(M)

having the following universal property. Iff: M A is a homomorphism into

an abelian group A, then there exists a unique homomorphism f.: K(M) A

making the following diagram commutative:

M
'Y

K(M)

Af
Proof Let Fab(M) be the free abelian group generated by M. We denote

the generator of Fab(M) corresponding to an element X E M by [x]. Let B be

the subgroup generated by all elements of type

[x + y] - [x] - [y]
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where x, y EM. We let K(M) = Fab(M)jB, and let

y : M -. K(M)

be the map obtained by composing the injection of Minto Fab(M) given by
x [x], and the canonical map

Fab(M) -. Fab(M)jB.

It is then clear that y is a homomorphism, and satisfies the desired universal

property.

The universal group K(M) is called the Grothendieck group.

We shall say that the cancellation law holds in M if, whenever x, y, Z E M,

and x + Z =

Y + z, we have x =

y.

We then have an important criterion when the universal map y above is

injective:

If the cancellation law holds in M, then the canonical map y of M into its

Grothendieck group is injective.

Proof. This is essentially the same proof as when one constructs the nega-

tive integers from the natural numbers. We consider pairs (x, y) with x, y EM

and say that (x, y) is equivalent to (x', y') if y + x' = x + y'. We define addition

of pairs componentwise. Then the equivalence classes of pairs form a group,

whose 0 element is the class of (0, 0) [or the class of (x, x) for any x EM]. The

negative of an element (x, y) is (y, x). We have a homomorphism

x 1---+ class of (0, x)

which is injective, as one sees immediately by applying the cancellation law.

Thus we have constructed a homomorphism of M into a group, which is

injective. It follows that the universal homomorphism must also be injective.

Examples. See the example of projective modules in Chapter III, 4. For

a relatively fancy context, see: K. KATO, Logarithmic structures of Fontaine-

Illusie, Algebraic Geometry, Analysis and Number Theory, Proc. JAMl Confer-

ence, J. Igusa (Ed.), Johns Hopkins Press (1989) pp. 195-224.

Given an abelian group A and a subgroup B, it is sometimes desirable to

find a subgroup C such that A = B Et> C. The next lemma gives us a condition

under which this is true.

Lemma 7.2. Let A 1. A' be a surjective homomorphism of abelian groups,

and assume that A' is free. Let B be the kernel of f. Then there exists a

subgroup C of A such that the restriction off to C induces an isomorphism

ofC with A', and such that A = B Et> c.

Proof Let {Xaiel be a basis of A', and for each i E I, let Xi be an element of

A such thatf(xi) = x. Let C be the subgroup of A generated by all elements

Xi' i E I. If we have a relation

"
n.x. = 0

i.J I I

i e I
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with integers ni, almost all of which are equal to 0, then applyingfyields

o = L nif(xi) = L nix,
iel iel

whence all ni
= O. Hence our family {Xi}iel is a basis of C. Similarly, one sees

that if Z E C and f(z) = 0 then z = O. Hence B n C = O. Let x E A. Since

f(x) E A' there exist integers nb i E I, such that

f(x) = L nix.
i e 1

Applying f to x - L ni Xi' we find that this element lies in the kernel of f,
i E I

say

x
- Lnixi

= bEB.

iel

From this we see that x E B + C, and hence finally that A = B Et> C is a direct

sum, as contended.

Theorem 7.3. Let A be a free abelian group, and let B be a subgroup. Then

B is also a free abelian group, and the cardinality of a basis of B is < the

cardinality ofa basis for A. Any two bases ofB have the same cardinality.

Proof We shall give the proof only when A is finitely generated, say by a

basis {x b . . .

, xn} (n > 1), and give the proof by induction on n. We have an

expression of A as direct sum:

A = Zx lEt>. . . Et> Zx
n

.

Letf: A -. ZX l be the projection, i.e. the homomorphism such that

f(mlx l + ... + mnxn) =

mlx l

whenever mi E Z. Let Bl be the kernel offl B. Then Bl is contained in the free

subgroup (X2, . . .
,
x

n ). By induction, B 1 is free and has a basis with < n
- 1

elements. By the lemma, there exists a subgroup C 1 isomorphic to a subgroup
of ZXl (namely the image offlB) such that

B = Bl Et> C
1.

Since f(B) is either 0 or infinite cyclic, i.e. free on one generator, this proves

that B is free.

(When A is not finitely generated, one can use a similar transfinite argument.
See Appendix 2, 2, the example after Zorn's Lemma.)

We also observe that our proof shows that there exists at least one basis

of B whose cardinality is < n. We shall therefore be finished when we prove

the last statement, that any two bases of B have the same cardinality. Let S

be one basis, with a finite number of elements m. Let T be another basis, and

suppose that T has at least r elements. It will suffice to prove that r < m (one
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can then use symmetry). Let p be a prime number. Then B/pB is a direct

sum of cyclic groups of order p, with m terms in the sum. Hence its order

is pm. Using the basis T instead of S, we conclude that B/pB contains an r-fold

product of cyclic groups of order p, whence pr < pm, and r < m, as was to

be shown. (Note that we did not assume a priori that T was finite.)

The number of elements in a basis of a free abelian group A will be called

the rank of A.

8. FINITELY GENERATED ABELIAN GROUPS

The groups referred to in the title of this section occur so frequently that it is

worth while to state a theorem which describes their structure completely.

Throughout this section we write our abelian groups additively.
Let A be an abelian group. An element a E A is said to be a torsion element

if it has finite period. The subset of all torsion elements of A is a subgroup of A

called the torsion subgroup of A. (If a has period m and b has period n then,

writing the group law additively, we see that a + b has a period dividing mn.)
The torsion subgroup of A is denoted by Aton or simply At. An abelian

group is called a torsion group if A = Ator, that is all elements of A are of finite

order.

A finitely generated torsion abelian group is obviously finite. We shall begin

by studying torsion abelian groups. IfA is an abelian group and p a prime number,

we denote by A(p) the subgroup of all elements x E A whose period is a power

of p. Then A(p) is a torsion group, and is a p-group if it is finite.

Theorem 8.1 Let A be a torsion abeUan group. Then A is the direct sum of
its subgroups A(p) for all primes p such that A(p) =t= o.

Proof. There is a homomorphism

EB A(p) A

p

which to each element (xp) in the direct sum associates the element L x
p

in A.

We prove that this homomorphism is both surjective and injective. Suppose x

is in the kernel, so L x
p

= O. Let q be a prime. Then

x
q

= 2:: (- x
p).

p=l=q

Let m be the least common multiple of the periods of elements x
p

on the right-
hand side, with x

q
=t= 0 and p =t= q. Then mX

q

= O. But also qrXq
= 0 for some

positive integer r. If d is the greatest common divisor of m, qr then dX
q

= 0,

but d = 1, so x
q

= O. Hence the kernel is trivial, and the homomorphism is

injective.
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As for the surjectivity, for each positive integer m, denote by Am the kernel

of multiplication by m, Le. the subgroup of x E A such that mx = O. We prove:

If m =
rs with r, s positive relative prime integers, then Am

= Ar + AS"

Indeed, there exist integers u, v such that ur + vs = I. Then x
=

urx + vsx,

and urx E As while vsx E An and our assertion is proved. Repeating this process

inductively, we conclude:

If m
= IT pe(p) then Am

= L Ape(p).
plm plm

Hence the map EB A(p) A is surjective, and the theorem is proved.

Example. Let A = Q/Z. Then Q/Z is a torsion abelian group, isomorphic
to the direct sum of its subgroups (Q/Z)(p). Each (Q/Z)(p) consists of those

elements which can be represented by a rational number a/pk with a E Z and k

some positive integer, i.e. a rational number having only a p-power in the

denominator. See also Chapter IV, Theorem 5. I.

In what follows we shall deal with finite abelian groups, so only a finite

number of primes (dividing the order of the group) will come into play. In this

case, the direct sum is "the same as" the direct product.

Our next task is to describe the structure of finite abelian p-groups. Let

r
1, . . .

, rs be integers > 1. A finite p-group A is said to be of type (prt, . . . ,prs)
if A is isomorphic to the product of cyclic groups of orders pri (i = 1,.. .

, s).

We shall need the following remark.

Remark. Let A be a finite abelian p-group. Let b be an element of

A, b =t= O. Let k be an integer
> 0 such that pkb =t= 0, and let pm be the period

of pkb. Then b has period pk+m. [Proof. We certainly have pk+mb = 0, and if

pnb
= 0 then first n

>
k, and second n

> k +m, otherwise the period of pkb
would be smaller than pm.]

Theorem 8.2. Every finite abelian p-group is isomorphic to a product of

cyclic p-groups. If it is of type (prl, . . . , prs) with

r
>

r
>...>

r
> 1

1=2= =s='

then the sequence of integers (r I' . . .
,

rs) is uniquely determined.

Proof. We shall prove the existence of the desired product by induction.

Let al E A be an element of maximal period. We may assume without loss of

generality that A is not cyclic. Let A
1 be the cyclic subgroup generated by aI'

say of period prl. We need a lemma.

Lemma 8.3. Let b be an element ofA/AI' ofperiod pro Then there exists a

representative a of b in A which also has period pro
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Proof. Let b be any representative of 5 in A. Then prb lies in A b say

prb = na
1
with some integer n > o. We note that the period of 5 is < the period

of b. If n = 0 we are done. Otherwise write n = pkJ.L where J.L is prime to p.

Then J.Ul1 is also a generator of A I' and hence has period prl. We may assume

k <

rl. Then pkJ.Ul} has period prl-k. By our previous remarks, the element b

has period
pr

+ r 1
- k

whence by hypothesis, r + r 1
- k < r 1

and r < k. This proves that there exists

an element C E A 1 such that prb = prc. Let a = b -

c. Then a is a representative
for 5 in A and pra = o. Since period (a) < pr we conclude that a has period

equal to pro

We return to the main proof. By induction, the factor group AIA1 has a

product expression

AIA 1
= A2

X ... x As

into cyclic subgroups of orders pr
2

,
. . .

, prs respectively, and we may assume

r2
> . . . >

rs. Let ai be a generator for Ai (i = 2, . . .

, s) and let ai be a

representative in A of the same period as ai. Let Ai be the cyclic subgroup

generated byai . We contend that A is the direct sum of AI' . . . , AS"

Given x E A, let .x denote its residue class in AIA 1. There exist integers
mi

> 0 (i = 2, . . .
, s) such that

.x =

m2 Q2 + . . · + msQs.

Hence x
-

m2a2
- ... -

msas
lies in Ab and there exists an integer m1

> 0

such that

x =

m1a1 + m2a2 + ... + msas
.

Hence A
1 + . . . + As = A.

Conversely, suppose that m b
. . .

, ms are integers > 0 such that

o = m 1 a 1 + . . . + ms as.

Since ai has period pr
i

(i = 1, . . .
, s), we may suppose that mi < pri. Putting

a bar on this equation yields

o =

m2 a2 + . . . + ms lis.

Since AIA 1 is a direct product of A2, . . .

, As we conclude that each mi
= 0 for

i = 2, . . .

,
s. But then m1

= 0 also, and hence all mi
= 0 (i = 1, . . .

, s). From

this it follows at once that

(A 1 + . . . + Ai) n A i + 1
= 0

for each i > 1, and hence that A is the direct product of A
1, . . .

, As, as desired.

We prove uniqueness, by induction. Suppose that A is written in two ways

as a direct sum of cyclic groups, say of type

(p
rl rs

) and (
ml mk

),...,p p ,...,p
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with rl
> ... >

rs
> 1 and ml

> ... >
mk

> 1. Then pA is also a p-group,

of order strictly less than the order of A, and is of type

(prl
-

1, . . .

, prs
-

1) and (pml
-

1, . . .

, pm
k
-

1),

it being understood that if some exponent ri or mj is equal to 1, then the factor

corresponding to

pr i-lor pm
j
- 1

in pA is simply the trivial group o. By induction, the subsequence of

(r 1
- 1,..., rs

- 1)

consisting of those integers > 1 is uniquely determined, and is the same as

the corresponding subsequence of

(m 1
- 1,..., mk

- 1).

In other words, we have ri
- 1 =

mi
- 1 for all those integers i such that

ri
- 1 or mi

- 1 > 1. Hence ri
=

mi for all these integers i, and the two se-

quences

(
rl rs

) d (
ml mk

)p ,..., p an p, . . .

, p

can differ only in their last components which can be equal to p. These cor-

respond to factors of type (p, . . .
, p) occurring say v times in the first sequences

and /1 times in the second sequence. Thus for some integer n, A is of type

(prl, , . .

, pr
n

, p, . . .

, p) and
'-v-'

" times

(pr I, . . .

, prn, p, . . .
, p).

'-v--I

J1 times

Thus the order of A is equal to

pr
l +,

+rnp" = prl
+. +r

np
J1

,

whence v =

/1, and our theorem is proved.

A group G is said to be torsion free, or without torsion, if whenever an

element x of G has finite period, then x is the unit element.

Theorem 8.4. Let A be a finitely generated torsion-free abeUan group. Then

A is free.

Proof Assume A =F O. Let S be a finite set of generators, and let XI' . . .
,

X
n

be a maximal subset of S having the property that whenever v., . .

.,
V

n
are

integers such that

VI XI + . . . + VnXn
= 0,

then Vj
= 0 for all j. (Note that n > 1 since A =F 0). Let B be the subgroup

generated by XI' ..., Xn. Then B is free. Given YEA there exist integers

ml, . . .
, m

n , m not all zero such that

my + m 1 x 1 + ... + mnXn
= 0,
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by the assumption of maximality on Xl' . . .
, Xn. Furthermore, m =F 0; other-

wise all m
j

= o. Hence my lies in B. This is true for everyone of a finite set of

generators y of A, whence there exists an integer m =F 0 such that mA c B.

The map

X 1---+ mx

of A into itself is a homomorphism, having trivial kernel since A is torsIon free.

Hence it is an isomorphism of A onto a subgroup of B. By Theorem 7.3 of the

preceding section, we conclude that mA is free, whence A is free.

Theorem 8.5. Let A be a finitely generated abelian group, and let Ator be

the subgroup consisting of all elements of A having finite period. Then Ator is

finite, and AIAtor is free. There exists a free subgroup B ofA such that A is the

direct sum ofAtor and B.

Proof We recall that a finitely generated torsion abelian group is obviously
finite. Let A be finitely generated by n elements, and let F be the free abelian

group on n generators. By the universal property, there exists a surjective

homomorphism
FA

of F onto A. The subgroup cp-I(A tor) of F is finitely generated by Theorem 7.3.

Hence Ator itself is finitely generated, hence finite.

Next, we prove that AIAtor has no torsion. Let i be an element of AIAtor
such that mi = 0 for some integer m =t= o. Then for any representative of x of

i in A, we have mx E Atop whence qmx
= 0 for some integer q =t= o. Then

x E Atop so i = 0, and AIAtor is torsion free. By Theorem 8.4, AIAtor is free.

We now use the lemma of Theorem 7.3 to conclude the proof.

The rank of AIAtor is also called the rank of A.

For other contexts concerning Theorem 8.5, see the structure theorem for

modules over principal rings in Chapter III, 7, and Exercises 5, 6, and 7 of

Chapter III.

9. THE DUAL GROUP

Let A be an abelian group of exponent m
> 1. This means that for each

element x E A we have mx = o. Let Zm be a cyclic group of order m. We denote

by A A, or Hom(A, Zm) the group of homomorphisms of A into Zm, and call it

the dual of A.

Letf: A B be a homomorphism of abelian groups, and assume both have

exponent m. Then f induces a homomorphism

fA:BAAA.
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Namely, for each t/1 E B" we define f"( t/1) =

t/1 0 f. It is trivially verified thatf"
is a homomorphism. The properties

id" = id and (f 0 g)" = g" 0 f"

are trivially verified.

Theorem 9.1. If A is a finite abeUan group, expressed as a product
A = B x C, then A" is isomorphic to B" X C" (under the mapping described

below). A finite abeUan group is isomorphic to its own dual.

Proof Consider the two projections

BxC

/"'\
B C

of B x C on its two components. We get homomorphisms

(B x C)"

7
B" C"

and we contend that these homomorphisms induce an isomorphism of B" x C"

onto (B x C)".
In fact, let t/1I' t/12 be in Hom(B, Zm) and Hom(C, Zm) respectively. Then

(t/1I' t/12) E B" XC", and we have a corresponding element of (B XC)" by

defining

( t/1l' t/12 ) (x, Y)
=

t/1 1 (x) + t/12 ( Y) ,

for (x, y) E B x C. In this way we get a homomorphism

B" x C" (B X C)".

Conversely, let t/1 E (8 X C)". Then

t/1(x, y)
= t/1(x,O) + t/1(0, y).

The function t/11 on B such that t/11 (x) =

t/1(x, 0) is in B", and similarly the

function t/12 on C such that t/12(Y)
= t/1(0, y) is in C". Thus we get a homomorphism

(B x C)" B" X C",

which is obviously inverse to the one we defined previously. Hence we obtain

an isomorphism, thereby proving the first assertion in our theorem.

We can write any finite abelian group as a product of cyclic groups. Thus

to prove the second assertion, it will suffice to deal with a cyclic group.

Let A be cyclic, generated by one element x of period n. Then n I m, and Zm
has precisely one subgroup of order n, Zn, which is cyclic (Proposition 4.3(iv)).
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If t/I : A Zm is a homomorphism, and x is a generator for A, then the period

of x is an exponent for t/I(x), so that t/I(x), and hence t/I(A), is contained in Zn.

Let y be a generator for Zn. We have an isomorphism

t/1 1 : A -+ Zn

such that t/11(X) =

y. For each integer k with 0 < k < n we have the homo-

morphism kt/1 1 such that

(kt/11XX) = k. t/11(X) = t/11(kx).

In this way we get a cyclic subgroup of A" consisting of the n elements kt/ll

(0
< k < n). Conversely, any element t/I of A" is uniquely determined by its

effect on the generator x, and must map x on one of the n elements

kx (0
< k < n) of Zn' Hence t/I is equal to one of the maps kt/ll' These maps

constitute the full group A", which is therefore cyclic of order n, generated by

t/ll. This proves our theorem.

In considering the dual group, we take various cyclic groups Zm' There are

many applications where such groups occur, for instance the group of m-th roots

of unity in the complex numbers, the subgroup of order m of Q/Z, etc.

Let A, A' be two abelian groups. A bilinear map of A x A' into an abelian

group C is a map

A x A' -+ C

denoted by

(x, x') 1---+ (x, x')

having the following property. For each x E A the function x' 1---+ (x, x')
is a homomorphism, and similarly for each x' E A' the function x 1---+ (x, x') is a

homomorphism.
As a special case of a bilinear map, we have the one given by

A x Hom(A, C) -+ C

which to each pair (x,f) with x E A and fE Hom(A, C) associates the element

f(x) in C.

A bilinear map is also called a pairing.
An element x E A is said to be orthogonal (or perpendicular) to a subset S'

of A' if (x, x') = 0 for all x' E S'. It is clear that the set of x E A orthogonal to S'

is a subgroup of A. We make similar definitions for elements of A', orthogonal
to subsets of A.

The kernel of our bilinear map on the left is the subgroup of A which is

orthogonal to all of A'. We define its kernel on the right similarly.
Given a bilinear map A x A' -+ C, let B, B

'

be the respective kernels of our

bilinear map on the left and right. An element x' of A' gives rise to an element of

Hom(A, C) given by x 1---+ (x, x'), which we shall denote by t/1x'. Since t/1x'

vanishes on B we see that t/1x' is in fact a homomorphism of AIB into C.
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Furthermore, t/1x' = t/1y' if x', y' are elements of A' such that

x' = y' (mod B
'

).

Hence t/1 is in fact a homomorphism

o -+ A'iB' -+ Hom(AIB, C),

which is injective since we defined B
'

to be the group orthogonal to A.

Similarly, we get an injective homomorphism

o -+ AIB -+ Hom(A'IB
'

, C).

Assume that C is cyclic of order m. Then for any x' E A' we have

mt/1x'
= t/1 mx'

= 0,

whence A'iB' has exponent m. Similarly, AIB has exponent m.

Theorem 9.2. Let A x A' C be a bilinear map of two abeUan groups into

a cyclic group C of order m. Let B, B' be its respective kernels on the left and

right. Assume that A' /B' is finite. Then A/B is finite, and A' /B' is isomorphic

to the dual group ofA/B (under our map t/J).

Proof The injection of AIB into Hom(A'IB
'

, C) shows that AIB is finite.

Furthermore, we get the inequalities

ord A/B
< ord(A' /B')A = ord A' /B'

and

ord A' /B'
< ord(A/B)A = ord A/B.

From this it follows that our map t/J is bijective, hence an isomorphism.

Corollary 9.3. Let A be a finite abelian group, B a subgroup, A
A the dual

group, and B.l the set of cp E A
A such that cp(B)

= O. Then we have a natural

isomorphism of A
A
/B.l with B

A
.

Proof. This is a special case of Theorem 9.2.

10. INVERSE LIMIT AND COMPLETION

Consider a sequence of groups {Gn } (n = 0, 1, 2, . . .), and suppose given
for all n

::> 1 homomorphisms

fn:GnGn-l.

Suppose first that these homomorphisms are surjective. We form infinite

sequences

x
=

(xo, XI' X2'...) such that Xn-I
= fn(xn ).
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By the assumption of surjectivity, given x
n

E G
n

we can always lift x
n

to G
n+ 1

via In+ I' so such infinite sequences exist, projecting to any given xo. We can

define multiplication of such sequences componentwise, and it is then imme-

diately verified that the set of sequences is a group, called the inverse limit

of the family {(Gn , In)}' We denote the inverse limit by lim (Gn , In), or simply
lim G

n
if the reference to In is clear.

Example. Let A be an additive abelian group. Let p be a prime number.

Let pA
: A A denote multiplication by p. We say that A is p-divisible if PAis

surjective . We may then form the inverse limit by taking An
= A for all n, and

In
=

PA for all n. The inverse limit is denoted by Vp(A). We let Tp(A) be the

subset of Vp(A) consisting of those infinite sequences as above such that

Xo
= O. Let A[pn] be the kernel of p. Then

Tp(A)
= lim A[pn+ 1].

The group Tp(A) is called the Tate group associated with the p-divisible group

A. It arose in fairly sophisticated contexts of algebraic geometry due to Deuring
and Weil, in the theory of elliptic curves and abelian varieties developed in the

1940s, which are far afield from this book. Interested readers can consult books

on those subjects.
The most common p-divisible groups are obtained as follows. First, let A be

the subgroup of Q/Z consisting of those rational numbers (mod Z) which can

be expressed in the form a/pk with some positive integer k, and a E Z. Then A

is p-divisible.

Second, let fJ.[pn] be the group ofpn-th roots of unity in the complex numbers.

Let fJ.[pOC] be the union of all JL[pn] for all n. Then J.1[pOC] is p-divisible, and

isomorphic to the group A of the preceding paragraph. Thus

Tp(fJ.)
= lim fJ.[pn].

These groups are quite important in number theory and algebraic geometry. We

shall make further comments about them in Chapter III, 10, in a broader context.

Example. Suppose given a group G. Let {Hn} be a sequence of normal

subgroups such that Hn :J Hn+l for all n. Let

In: G/Hn G/Hn-l

be the canonical homomorphisms. Then we may form the inverse limit lim G/Hn.
Observe that G has a natural homomorphism

g: G lim G/Hn,

which sends an element x to the sequence (. . .

,
X

n ,
. . .), where X

n

= image of

x in G/Hn.

Example. Let G
n

= Z/pn+lZ for each n
::> O. Let

In: Z/pn+lz Z/pnz

be the canonical homomorphism. Then In is surjective, and the limit is called
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the group of p-adic integers, denoted by Zp. We return to this in Chapter III,

10, where we shall see that Zp is also a ring.
After these examples, we want to consider the more general situation when

one deals not with a sequence but with a more general type of family of groups,

which may not be commutative. We therefore define inverse limits of groups in

general.

Let I be a set of indices. Suppose given a relation of partial ordering in I,

namely for some pairs (i, j) we have a relation i < j satisfying the conditions:

For all i, j, k in I, we have i < i; if i < j and j < k then i < k; if i < j and j < i

then i = j. We say that I is directed if given i, j E I, there exists k such that

i -< k and j
-< k. Assume that I is directed. By an (inversely) directed family

of groups, we mean a family {GihEl and for each pair i -<

j a homomorphism

fl.. G . G .

I
.

J I

such that, whenever k -< i -<

j we have

f 0 f{ = f{ and f = ide

Let G = f1 Gi be the product of the family. Let r be the subset of G consisting
of all elements (Xi) with Xi E G

i such that for all i and j
:> i we have

f1(xj)
=

Xi.

Then r contains the unit element, and is immediately verified to be a subgroup
of G . We call r the inverse limit of the family, and write

r =

lim Gi .

Example. Let G be a group. Let be the family of normal subgroups of

finite index. If H, K are normal of finite index, then so is H n K, so is a

directed family. We may then form the inverse limit lim. G/H with H E . There

is a variation on this theme. Instead of , let p be a prime number, and let
p

be the family of normal subgroups of finite index equal to a power of p. Then

the inverse limit with respect to subgroups H E
p

can also be taken. (Verify
that if H, K are normal of finite p-power index, so is their intersection.)

A group which is an inverse limit of finite groups is called profinite.

Example from applications. Such inverse limits arise in Galois theory.
Let k be a field and let A be an infinite Galois extension. For example, k = Q
and A is an algebraic closure of Q. Let G be the Galois group; that is, the group

of automorphisms of A over k. Then G is the inverse limit of the factor groups

G/H, where H ranges over the Galois groups of A over K, with K ranging over

all finite extensions of k contained in A. See the Shafarevich conjecture in the

chapter on Galois theory, Conjecture 14.2 of Chapter VI.

Similarly, consider a compact Riemann surface X of genus
:> 2. Let

p : X' -+ X be the universal covering space. Let C(X) == F and C(X') == F' be

the function fields. Then there is an embedding n} (X) Gal(F'/F). It is

shown in complex analysis that nl (X) is a free group with one commutator
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relation. The full Galois group of F' /F is the inverse limit with respect to the

subgroups of finite index, as in the above general situation.

Completion of a group

Suppose now that we are given a group G, and first, for simplicity, suppose

given a sequence of normal subgroups {Hr} with Hr :J Hr+ 1 for all n, and such

that these subgroups have finite index. A sequence {xn} in G will be called a

Cauchy sequence if given Hr there exists N such that for all m, n
> N we have

xnx;;;
I

E Hr- We say that {xn} is a null sequence if given r there exists N such

that for all n
> N we have X

n
E Hr- As an exercise, prove that the Cauchy

sequences form a group under termwise product, and that the null sequences

form a normal subgroup. The factor group is called the completion of G (with

respect to the sequence of normal subgroups).
Observe that there is a natural homomorphism of G into its completion;

namely, an element x E G maps to the sequence (x, X, X, . . .) modulo null

sequences. The kernel of this homomorphism is the intersection nH
n

so if this

intersection is the unit element of G, then the map of G into its completion is

an embedding.

Theorem 10.1. The completion and the inverse limit lim G/Hr
are isomorphic

under natural mappings.

Proof. We give the maps. Let x
= {xn} be a Cauchy sequence. Given r,

for all n sufficiently large, by the definition of Cauchy sequence, the class of X
n

mod Hr is independent of n. Let this class be x(r). Then the sequence

(x(l), x(2), . . .) defines an element of the inverse limit. Conversely, given an

element (ib i2 ,
. . .) in the inverse limit, with in E G/Hn, let X

n
be a representa-

tive in G. Then the sequence {xn} is Cauchy . We leave to the reader to verify
that the Cauchy sequence {xn} is well-defined modulo null sequences, and that

the maps we have defined are inverse isomorphisms between the completion and

the direct limit.

We used sequences and denumerability to make the an':llogy with the con-

struction of the real numbers clearer. In general, given the family ff=, one considers

families {XH}HE of elements XH E G. Then the condition for a Cauchy family
reads: given HoE ff= there exists HIE ft such that if K, K' are contained in HI'
then XKXK,l E Ho. In practice, one can work with sequences, because groups that

arise naturally are such that the set of subgroups of finite index is denumerable.

This occurs when the group G is countably generated.
More generally, a family {Hi} of normal subgroups of finite index is called

cofinal if given HEft there exists i such that Hi C H. Suppose that there exists

such a family which is denumerable; that is, i = 1, 2, . . . ranges over the positive

integers. Then it is an exercise to show that there is an isomorphism

!ill G/Hi = !ill G/H,
i HE
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or equivalently, that the completion of G with respect to the sequence {Hi} is

uthe same" as the completion with respect to the full family . We leave this

verification to the reader.

The process of completion is frequent in mathematics. For instance, we shall

mention completions of rings in Chapter III, 10; and in Chapter XII we shall

deal with completions of fields.

11. CATEGORIES AND FUNCTORS

Before proceeding further, it will now be convenient to introduce some new

terminology. We have met already several kinds of objects: sets, monoids,

groups. We shall meet many more, and for each such kind of objects we define

special kinds of maps between them (e.g. homomorphisms). Some formal

behavior will be common to all of these, namely the existence of identity maps

of an object onto itself, and the associativity of maps when such maps occur in

succession. We introduce the notion of category to give a general setting for all

of these.

A category CI consists of a collection of objects Ob(Ci); and for two objects

A, BE Ob(CI) a set Mor(A, B) called the set of morphisms of A into B; and for

three objects A, B, C E Ob(Ci) a law of composition (i.e. a map)

Mor(B, C) x Mor(A, B) -+ Mor(A, C)

satisfying the following axioms:

CAT 1. Two sets Mor(A, B) and Mor(A', B') are disjoint unless A = A'

and B = B', in which case they are equal.

CAT 2. For each object A of CI there is a morphism idA
E Mor(A, A)

which acts as left and right identity for the elements of Mor(A, B) and

Mor(B, A) respectively, for all objects BE Ob(Ci).

CAT 3. The law of composition is associative (when defined), i.e. given

IE Mor(A, B), g E Mor(B, C) and hE Mor(C, D) then

(h 0 g) 0I = h 0 (g of),

for all objects A, B, C, D of CI.

Here we write the composition of an element g in Mor(B, C) and an element

fin Mor(A, B) as g
0 f, to suggest composition of mappings. In practice, in this

book we shall see that most of our morphisms are actually mappings, or closely
related to mappings.

The collection of all morphisms in a category Ci will be denoted by Ar(CI)

("arrows of Ci"). We shall sometimes use the symbols "IE Ar(CI)" to mean
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that f is a morphism of (1, i.e. an element of some set Mor(A, B) for some

A, BE Ob(Ci).

By abuse of language, we sometimes refer to the collection of objects as the

category itself, if it is clear what the morphisms are meant to be.

An elementfE Mor(A, B) is also writtenf: A -. B or

f
A -. B.

A morphism f is called an isomorphism if there exists a morphism g : B -+ A

such that g
0f and fog are the identities in Mor(A, A) and Mor(B, B) respec-

tively. If A = B, then we also say that the isomorphism is an automorphism.
A morphism of an object A into itself is called an endomorphism. The set of

endomorph isms of A is denoted by End(A). It follows at once from our axioms

that End(A) is a monoid.

Let A be an object of a category Ci. We denote by Aut(A) the set of auto-

morphisms of A. This set is in fact a group, because all of our definitions are

so adjusted so as to see immediately that the group axioms are satisfied (associa-

tivity, unit element, and existence of inverse). Thus we now begin to see some

feedback between abstract categories and more concrete ones.

Examples. Let S be the category whose objects are sets, and whose

morphisms are maps between sets. We say simply that S is the category of sets.

The three axioms CAT 1, 2, 3 are trivially satisfied.

Let Grp be the category of groups, i.e. the category whose objects are groups

and whose morphisms are group-homomorphisms. Here again the three axioms

are trivially satisfied. Similarly, we have a category of monoids, denoted by
Mon.

Later, when we define rings and modules, it will be clear that rings form a

category, and so do modules over a ring.
It is important to emphasize here that there are categories for which the set

of morphisms is not an abelian group. Some of the most important examples
are:

The category eO, whose objects are open sets in R
n

and whose morphisms
are continuous maps.

The category ex with the same objects, but whose morphisms are the Coo

maps.

The category 801, whose objects are open sets in en, and whose morphisms
are holomorphic maps. In each case the axioms of a category are verified, because

for instance for 801, the composite of holomorphic maps is holomorphic, and

similarly for the other types of maps. Thus a CD-isomorphism is a continuous

map!: u V which has a continuous inverse g: V U. Note that a map may

be a CD-isomorphism but not a Coo-isomorphism. For instance, x x
3

is a C
o
-

automorphism of R, but its inverse is not differentiable.

In mathematics one studies manifolds in anyone of the above categories.
The determination of the group of automorphisms in each category is one of the

basic problems of the area of mathematics concerned with that category. In
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complex analysis, one determines early the group ofholomorphic automorphisms
of the unit disc as the group of all maps

. c
-

z

z e
'B

_

1 -

cz

with () real and c E C, I c I < 1.

Next we consider the notion of operation in categories. First, observe that

if G is a group, then the G-sets form a category, whose morphisms are the maps

f: S S' such thatf(xs) = xf(s) for x E G and s E S.

More generally, we can now define the notion of an operation of a group G

on an object in any category. Indeed, let CI be a category and A E Ob(CI).

By an operation of G on A we shall mean a homomorphism of G into the group

Aut(A). In practice, an object A is a set with elements, and an automorphism
in Aut(A) operates on A as a set, i.e. induces a permutation of A. Thus, if we

have a homomorphism

p : G Aut(A),

then for each x E G we have an automorphism p(x) of A which is a permutation
of A.

An operation of a group G on an object A is also called a representation of

G on A, and one then says that G is represented as a group of automorphisms
of A.

Examples. One meets representations in many contexts. In this book, we

shall encounter representations of a group on finite-dimensional vector spaces,

with the theory pushed to some depth in Chapter XVIII. We shall also deal with

representations of a group on modules over a ring. In topology and differential

geometry, one represents groups as acting on various topological spaces, for

instance spheres. Thus if X is a differential manifold, or a topological manifold,

and G is a group, one considers all possible homomorphims of G into Aut(X),

where Aut refers to whatever category is being dealt with. Thus G may be

represented in the group of CO-automorphims, or Coo-automorphisms, or analytic

automorphisms. Such topological theories are not independent of the algebraic

theories, because by functoriality, an action of G on the manifold induces an

action on various algebraic functors (homology, K-functor, whatever), so that

topological or differential problems are to some extent analyzable by the functorial

action on the associated groups, vector spaces, or modules.

Let A, B be objects of a category Cl. Let Iso(A, B) be the set of isomorphisms
of'A with B. Then the group Aut(B) operates on Iso(A, B) by composition;

namely, if u E Iso(A, B) and v E Aut(B), then (v, u) v 0 u gives the operation.
If Uo is one element of Iso(A, B), then the orbit of Uo is all of Iso(A, B), so

v v 0

Uo is a bijection Aut(B) Iso(A, B). The inverse mapping is given by
u .-+ Uo Uo 1. This trivial formalism is very basic, and is applied constantly to

each one of the classical categories mentioned above. Of course, we also have
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a similar bijection on the other side, but the group Aut(A) operates on the right

of Iso(A, B) by composition. Furthermore, if u: A B is an isomorphism, then

Aut(A) and Aut(B) are isomorphic under conjugation, namely

w uwu-
l

is an isomorphism Aut(A) Aut(B).

Two such isomorphisms differ by an inner automorphism. One may visualize

this system via the following commutative diagram.

u

B

!
uwu-

I

B
U

A

w!
A

Let p : G Aut(A) and p': G Aut(A') be representations of a group G

on two objects A and A' in the same category. A morphism of pinto p' is a

morphism h: A A' such that the following diagram is commutative for all

x E G:

h

A'

!P' (x)

A'

A

P(x)!
A

h

It is then clear that representations of a group G in the objects of a category C1

themselves form a category. An isomorphism of representations is then an

isomorphism h : A --+ A' making the above diagram commutative. An isomor-

phism of representations is often called an equivalence, but I don't like to tamper

with the general system of categorical terminology. Note that if h is an isomor-

phism of representations, then instead of the above commutative diagram, we

let [h] be conjugation by h, and we may use the equivalent diagram

Y
Aut(A)

G

P

! [h J

Aut(A ')

Consider next the case where C1 is the category of abelian groups, which we

may denote by Ab. Let A be an abelian group and G a group. Given an operation
of G on the abelian group A, Le. a homomorphism

p : G Aut(A),

let us denote by x
·

a the element Px(a). Then we see that for all x, y E G, a,

b E A, we have:
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e . a = a,

x.(a + b) = x.a + x.b,

x . 0 = O.

x . (y . a) = (xy) .

a,

We observe that when a group G operates on itself by conjugation, then not

only does G operate on itself as a set but also operates on itself as an object in the

category of groups, i.e. the permutations induced by the operation are actually

group-automorphisms.

Similarly, we shall introduce later other categories (rings, modules, fields)
and we have given a general definition of what it means for a group to operate
on an object in anyone of these categories.

Let CI be a category. We may take as objects of a new category e the

morphisms of CI. If f: A -. Band f': A' -. B
'

are two morphisms in CI (and
thus objects of e), then we define a morphism f -. f' (in e) to be a pair of

morphisms (qJ, 1/1) in CI making the following diagram commutative:

A
f

B

j j
A

I

B
'

f'

In that way, it is clear that e is a category. Strictly speaking, as with maps of

sets, we should index (qJ, 1/1) by f and f' (otherwise CAT 1 is not necessarily

satisfied), but such indexing is omitted in practice.
There are many variations on this example. For instance, we could restrict

our attention to morphisms in CI which have a fixed object of departure, or those

which have a fixed object of arrival.

Thus let A be an object of CI, and let CIA be the category whose objects are

morphisms

f: X -. A

in CI, having A as object of arrival. A morphism in CIA from f: X -. A to

g : Y -. A is simply a morphism

h:X-.Y

in CI such that the diagram is commutative:

X h) Y

\}
A

Universal objects

Let e be a category. An 0bject P of e is called universally attracting if there

exists a unique morphism of each object of e into P, and is called universally

repelling if for every object of e there exists a unique morphism of P into this

object.
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When the context makes our meaning clear, we shall call objects P as above

universal. Since a universal object P admits the identity morphism into itself,

it is clear that if P, P' are two universal objects in e, then there exists a unique

isomorphism between them.

Examples. Note that the trivial group consisting only of one element is

universal (repelling and attracting) in the category of groups. Similarly, in

Chapter lIon rings, you will see that the integers Z are universal in the category

of rings (universally repelling).
Next let S be a set. Let e be the category whose objects are mapsf:S A

of S into abelian groups, and whose morphisms are the obvious ones: If

f : S A and f' : S A' are two maps into abelian groups, then a morphism
of f into f' is a (group) homomorphism g : A A' such that the usual dia-

gram is commutative, namely 9
0 f = f'. Then the free abelian group generated

by S is universal in this category. This is a reformulation of the properties we

have proved about this group.

Let M be a commutative monoid and let y: M K(M) be the canonical

homomorphism of M into its Grothendieck group. Then y is universal in the

category of homomorphisms of Minto abelian groups.

Throughout this book in numerous situtaions, we define universal objects.
Aside from products and coproducts which come immediately after these exam-

ples, we have direct and inverse limits; the tensor. product in Chapter XVI, 1;

the alternating product in Chapter XIX, 1; Clifford algebras in Chapter XIX,

4; ad lib.

We now turn to the notion of product in an arbitrary category.

Products and coproducts

Let C1 be a category and let A, B be objects of C1. By a product of A, B in C1

one means a triple (P,f, g) consisting of an object P in C1 and two morphisms

P

/
A B

satisfying the following condition: Given two morphisms

qJ : C A and t/J : C -+ B

in Ci, there exists a unique morphism h: C P which makes the following

diagram commutative:
c

qJ/ h\",

Ik"f
p

A B

In other words, qJ
= f0 hand t/J =

g
0 h.



I, 11 CATEGORIES AND FUNCTORS 59

More generally, given a family of objects {AJiel in C1, a product for this

family consists of (P, {};}iel)' where P is an object in C1 and {};}iel is a

family of morphisms

Ii : P -+ Ah

satisfying the following condition: Given a family of morphisms

gi : C -+ Ah

there exists a unique morphism h : C -+ P such that Ii 0 h =

gi for all i.

Example. Let Ci be the category of sets, and let {AihEI be a family of sets.

Let A = OAi be their cartesian product, and let Pi: A Ai be the projection
;EI

on the i-th factor. Then (A, {Pi}) clearly satisfies the requirements of a product
in the category of sets.

As a matter of notation, we shall usually write A x B for the product of two

objects in a category, and n Ai for the product of an arbitrary family in a

i e I

category, following the same notation as in the category of sets.

Example. Let {GihEI be afamily of groups, and let G = 0 Gi be their direct

product. Let Pi: G Gi be the projection homomorphism. Then these constitute

a product of the family in the category of- groups.

Indeed, if {gi : G' -+ Gi}iel is a family' of homomorphisms, there is a unique

homomorphism g : G' -+ n Gi which makes the required diagram commutative.

It is the homomorphism such that g(X')i = gi(X') for x' E G' and each i E I.

Let A, B be objects of a category Ci. We note that the product of A, B is

universal in the category whose objects consist of pairs of morphisms

f: C A and g: C B in Ci, and whose morphisms are described as follows.

Let f' : C' A and g': C' B be another pair. Then a morphism from the

first pair to the second is a morphism h: C C' in C1, making the following
diagram commutative:

C

/l
A B

The situation is similar for the product of a family {AihE/.
We shall also meet the dual notion: Let {Adiel be a family of objects in a

category (t. By their coproduct one means a pair (S, {hLeI) consisting of an

object S and a family of morphisms

{Ii: Ai -+ S},

satisfying the following property. Given a family of morphisms {gi: Ai -+ C},
there exists a unique morphism h : S -+ C such that h o/; =

gi for all i.
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In the product and coproduct, the morphism h will be said to be the

morphism induced by the family {gi}.

Examples. Let S be the category of sets. Then coproducts exist. For

instance, let S, S' be sets. Let T be a set having the same cardinality as S' and

disjoint from S. Let fl : S -. S be the identity, and f2 : S' -. T be a bijection.
Let U be the union of Sand T. Then (U,fl,f2) is a coproduct for S, S', viewing

fbf2 as maps into U.

Let So be the category of pointed sets. Its objects consist of pairs (S, x)

where S is a set and x is an element of S. A morphism of (S, x) into (S', x') in this

category is a map g : S -. S' such that g(x) = x'. Then the coproduct of (S, x)

and (S', x') exists in this category, and can be constructed as follows. Let T be

a set whose cardinality is the same as that of S', and such that T n S = {x}.
Let V = S U T, and let

il : (S, x) -. (U, x)

be the map which induces the identity on S. Let

f2 : (S', x') -. (U, x)

be a map sending x' to x and inducing a bijection of S' -

{x'} on T -

{x}.
Then the triple «V, x),f},f2) is a coproduct for (S, x) and (S', x') in the category

of pointed sets.

Similar constructions can be made for the coproduct of arbitrary families

of sets or pointed sets. The category of pointed sets is especially important in

homotopy theory.

Coproducts are universal objects. Indeed, let C1 be a category, and let {Ai}
be a family of objects in d. We now define e . We let objects of e be the families

of morphisms {/;: Ai BhEI and given two such families,

{h : Ai -. B} and {f : Ai -. B'},

we define a morphism from the first into the second to be a morphism qJ : B -. B'

in C1 such that qJ
0 h = f for all i. Then a coproduct of {Ai} is simply a universal

object in e.

The coproduct of {Ai} will be denoted by

U Ai.
iel

The coproduct of two objects A, B will also be denoted by A II B.

By the general uniqueness statement, we see that it is uniquely determined, up

to a unique isomorphism.

Example. Let R be the category of commutative rings. Given two such

rings A, B one may form the tensor product, and there are natural ring-homo-

morphisms A A 0 Band B A 0 B such that

a a 0 1 and b 1 0 b for a E A and b E B.

Then the tensor product is a coproduct in the category of commutative rings.
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Fiber products and coproducts
Pull-backs and push-outs

Let e be a category. Let Z be an object of e. Then we have a new category,
that of objects over Z, denoted by e

z. The objects of e
z are morphisms:

f : X Z in e

A morphism from f to g : Y Z in e z is merely a morphism h : X Y in e

which makes the following diagram commutative.

X h) Y

\1
Z

A product in e z
is called the fiber product of f and g in e and is denoted

by X x
z

Y, together with its natural morphisms on X, Y over Z, which are

sometimes not denoted by anything, but which we denote by PI' P2'

X Xz Y

y
X Y

Z

fibered products and coproducts exist in' the category ofabelian groups

The fibered product of two homomorphisms f : X Z and g: Y Z is the

subgroup of X x Y consisting of all pairs (x, y) such that

f{x) = g{y).

The coproduct of two homomorphisms f: Z X and g: Z Y is the

factor group (X ffi Y)/W where W is the subgroup of X (f) Y consisting of all

elements (f{z), -g{z)) with z E Z.

We leave the simple verification to the reader (see Exercises 50-56).

In the fiber product diagram, one also calls PI the pull-back of g by f, and

P2 the pull-back of f by g. The fiber product satisfies the following universal

mapping property:

Given any object T in e and morphisms making the following diagram
commutative:

/T
X Y

Z
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there exists a unique morphism T X x
z Y making the following diagram

commutative:

)1\
X +-

- T
------. Y

Dually, we have the notion of coproduct in the category ofmorphismsf: Z -+ X

with a fixed object Z as the object of departure of the morphisms. This category

could be denoted by e
z

. We reverse the arrows in the preceding discussion.

Given two objects f and g: Z -+ Y in this category, we have the notion of their

coproduct. It is denoted by X Uz Y, with morphisms q l' Q2, as in the following
commutative diagram:

X 11 Y

y
X Y

/
z

satisfying the dual universal property of the fiber product. We call it the fibered

coproduct. We call ql the push-out of g by f, and q2 the push-out off by g.

Example. Let S be the category of sets. Given two maps f, g as above,

their product is the set of all pairs (x, y) E X X Y such that f(x)
=

g(y).

Functors

Let C1, CB be categories. A covariant functor F of C1 into CB is a rule which

to each object A in C1 associates an object F{A) in CB, and to each morphism
f: A -+ B associates a morphism F{f): F{A) -+ F{B) such that:

FUN 1. For all A in C1 we have F{idA) = idF(A).

FUN 2. Iff: A -+ Band g : B -+ C are two morphisms of C1 then

F{g 0f) = F{g) 0 F{f).

Example. If to each group G we associate its set (stripped of the group

structure) we obtain a functor from the category of groups into the category of

sets, provided that we associate with each group-homomorphism itself, viewed

only as a set-theoretic map. Such a functor is called a stripping functor or

forgetful functor.

We observe that a functor transforms isomorphisms into isomorphisms,
because fog = id implies F{f) 0 F(g) = id also.

We can define the notion of a contravariant functor from C1 into CB by using
essentially the same definition, but reversing all arrows F(f), i.e. to each morph-
ism f: A -+ B the contravariant functor associates a morphism
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F{f) : F{B) -+ F{A)

(going in the opposite direction), such that, if

f: A -+ Band g: B -+ C

are morphisms in (1, then

F{g 0f) = F{f) 0 F{g).

Sometimes a functor is denoted by writing f* instead of F{f) in the case

of a covariant functor, and by writing f* in the case of a contravariant

functor.

Example. The association S Fab(S) is a covariant functor from the

category of sets to the category of abelian groups.

Example. The association which to each group associates its completion
with respect to the family of subgroups of finite index is a functor from the

category of groups to the category of groups.

Example. Let p be a prime number. Let e be the category of p-divisible
abelian groups. The association A Tp(A) is a covariant functor of e into

abelian groups (actually Zp-modules).

Example. Exercise 49 will show you an example of the group of auto-

morphisms of a forgetful functor.

Example. Let Man be the category of compact manifolds. Then the homol-

ogy is a covariant functor from Man into graded abelian groups. The cohomology
is a contravariant functor into the category of graded algebras (over the ring of

coefficients). The product is the cup product. If the cohomology is taken with

coefficients in a field of characteristic 0 (for simplicity), then the cohomology
commutes with products. Since cohomology is contravariant, this means that the

cohomology of a product is the coproduct of the cohomology of the factors. It

turns out that the coproduct is the tensor product, with the graded product, which

also gives an example of the use of tensor products. See M. GREENBERG and

J. HARPER, Algebraic Topology (Benjamin-Addison-Wesley), 1981, Chapter 29.

Example. Let e be the category of pointed topological spaces (satisfying
some mild conditions), Le. pairs (X, xo) consisting of a space X and a point Xo.

In topology one defines the connected sum of such spaces (X, xo) and (Y, Yo),

glueing X, Y together at the selected point. This connected sum is a coproduct
in the category of such pairs, where the morphisms are the continuous maps

f: X Y such that f(xo)
=

Yo. Let 7Tl denote the fundamental group. Then

(X, xo) 7Tl (X, xo) is a covariant functor from e into the category of groups,

commuting with coproducts. (The existence of coproducts in the category of

groups will be proved in 12.)
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Example. Suppose we have a morphism I: X Y in a category e. By a

section of I, one means a morphism g: Y X such that 9
0 f = ide Suppose

there exists a covariant functor H from this category to groups such that

H(Y) = {e} and H(X) =f=. {e}. Then there is no section of I. This is immediate

from the formula H(g 0 I) = id, and H(/) = trivial homomorphism. In topology
one uses the homology functor to show, for instance, that the unit circle X is

not a retract of the closed unit disc with respect to the inclusion mapping I.

(Topologists use the word "retract" instead of "section".)

Example. Let C1 be a category and A a fixed object in C1. Then we obtain a

covariant functor

MA :C1-+S

by letting MA(X) = Mor(A, X) for any object X of C1. If lfJ : X -+ X' is a mor-

phism, we let

MA(lfJ): Mor(A, X) -+ Mor(A, X')

be the map given by the rule

glfJog

for any g E Mor(A, X),

A X X'.

The axioms FUN 1 and FUN 2 are trivially verified.

Similarly, for each object B of C1, we have a contravariant functor

M
B

: C1 -+ S

such that M
B

( Y) = Mor( Y, B). If t/J : Y' -+ Y is a morphism, then

MB(t/J): Mor(Y, B) -+ Mor(Y', B)

is the map given by the rule

ff°t/J

for any IE Mor(Y, B),

Y' y 1. B.

The preceding two functors are called the representation functors.

Example. Let C1 be the category of abelian groups. Fix an abelian group

A. The association X Hom(A, X) is a covariant functor from a into itself.

The association X Hom(X, A) is a contravariant functor of C1 into itself.

Example. We assume you know about the tensor product. Let A be a

commutative ring. Let M be an A-module. The association X M 0 X is a

covariant functor from the category of A-modules into itself.

Observe that products and coproducts were defined in a way compatible with

the representation functor into the category of sets. Indeed, given a product P
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of two objects A and B, then for every object X the set Mor(X, P) is a product
of the sets Mor(X, A) and Mor(X, B) in the category of sets. This is merely a

reformulation of the defining property of products in arbitrary categories. The

system really works.

Let ct, <B be two categories. The functors of C1 into <B (say covariant, and

in one variable) can be viewed as the objects of a category, whose morphisms
are defined as follows. Let L, M be two such functors. A morphism H: L M

(also called a natural transformation) is a rule which to each object X of ct

associates a morphism

Hx: L(X) M(X)

such that for any morphism f: X Y the following diagram is commutative:

L(X)

L(f)

!
L(Y)

Hx
) M(X)

!
M(f)

) M( Y)
Hy

We can therefore speak of isomorphisms of functors. A functor is representable
if it is isomorphic to a representation functor as above.

As Grothendieck pointed out, one can use the representation functor to

transport the notions of certain structures on sets to arbitrary categories. For

instance, let C1 be a category and G an object of C1. We say that G is a group

object in C1 if for each object X of C1 we are given a group structure on the set

Mor(X, G) in such a way that the association

X Mor(X, G)

is functorial (i.e. is a functor from C1 into the category of groups). One some-

times denotes the set Mor(X, G) by G(X), and thinks of it as the set of poits of

G in X. To justify this terminology, the reader is referred to Chapter IX, 2.

Example. Let Var be the category of projective non-singular varieties over

the complex numbers. To each object X in Var one can associate various groups,

e.g. Pic(X) (the group of divisor classes for rational equivalence), which is a

contravariant functor into the category of abelian groups. Let Pico(X) be the

subgroup of classes algebraically equivalent to O. Then Pico is representable.

In the fifties and sixties Grothendieck was the one who emphasized the

importance of the representation functors, and the possibility of transposing to

any category notions from more standard categories by means of the representation
functors. He himself proved that a number of important functors in algebraic

geometry are representable.
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12. FREE GROUPS

We now turn to the coproduct in the category of groups. First a remark. Let

G = n Gi be a direct product of groups.

We observe that each G
j

admits an injective homomorphism into the

product, on the j-th component, namely the map Aj: G
j
-. n Gi

such that

i

for x in G
j , the i-th component of Aj(X) is the unit element of Gi

if i =F j, and

is equal to x itself if i =

j. This embedding will be called the canonical one.

But we still don't have a coproduct of the family, because the factors commute

with each other. To get a coproduct one has to work somewhat harder.

Let G be a group and S a subset of G. We recall that G is generated by S

if every element of G can be written as a finite product of elements of S and their

inverses (the empty product being always taken as the unit element of G).
Elements of S are then called generators. If there exists a finite set of generators

for G we call G finitely generated. If S is a set and qJ: S -. G is a map, we say

that qJ generates G if its image generates G.

Let S be a set, and/: S -. F a map into a group. Let g: S -. G be another

map. Iff(S) (or as we also say,f) generates F, then it is obvious that there exists

at most one homomorphism t/J of F into G which makes the following diagram
commutative:

S
f

) F

\)
G

We now consider the category e whose objects are the maps of S into

groups. Iff: S -. G and f' : S -. G' are two objects in this category, we define

a morphism fromftof' to be a homomorphism qJ : G -. G
'

such that qJ
0f = f',

i.e. the diagram is commutative:

G

js
'"

G'

By a free group determined by S, we shall mean a universal element in this

category.

Proposition 12.1. Let S be a set. Then there exists a free group (F, f)
determined by S. Furthermore, f is injective, and F is generated by the image

off.

Proof (I owe this proof to J. Tits.) We begin with a lemma.
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Lemma 12.2. There exists a set I and a family of groups {G;hEI such that,

if g: S G is a map of S into a group G, and 9 generates G, then G is

isomorphic to some G;.

Proof This is a simple exercise in cardinalities, which we carry out. If S

is finite, then G is finite or denumerable. If S is infinite, then the cardinality of G

is < the cardinality of S because G consists of finite products of elements ofg(S).
Let T be a set which is infinite denumerable if S is finite, and has the same cardin-

ality as S if S is infinite. For each non-empty subset H of T, let rH be the set of

group structures on H. For each y E rH, let Hy be the set H, together with the

group structure y. Then the family {Hy} for y E rHand H ranging over subsets

of T is the desired family.

We return to the proof of the proposition. For each i E I we let Mi be the

set of mappings of S into Gi . For each map ({J E Mi , we let Gi , qJ
be the set-

theoretic product of G; and the set with one element {qJ}, so that G;, qJ
is the

"same" group as G; indexed by qJ. We let

Fo= n n G;,qJ
iel qJeMi

be the Cartesian product of the groups Gi,qJ. We define a map

10 : S -+ F0

by sending S on the factor Gi , qJ by means of qJ itself. We contend that given a

map g: S G of S into a group G, there exists a homomorphism t/!*: F
0 G

making the usual diagram commutative:

Fo

j*
G

That is, t/!. 0 fo
=

g. To prove this, we may assume that 9 generates G, simply

by restricting our attention to the subgroup of G generated by the image of g.

By the lemma, there exists an isomorphism A.: G -+ G; for some i, and A. 0
g

is an element t/J of Mi. We let ni, '"
be the projection on the (i, t/J) factor, and we

let t/J. = A.
- 1

0

n;, ",.
Then the map t/1. makes the following diagram com-

mutative.

gI)1:;.
G A

)

G;,,,,

We let F be the subgroup of Fo generated by the image of/o ,
and we let I

simply be equal to 10' viewed as a map of S into F. We let g. be the restriction

of t/J. to F. In this way, we see at once that the map g. is the unique one making
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our diagram commutative, and thus that (F,f) is the required free group.

Furthermore, it is clear that f is injective.
For each set S we select one free group determined by S, and denote it

by (F(s),ls) or briefly by F(S). It is generated by the image of fs. One may

view S as contained in F(S), and the elements of S are called free generators

of F(S). If g: S G is a map, we denote by g.: F(S) G the homomorphism

realizing the universality of our free group F(S).
If A: S S' is a map of one set into another, we let F(A) : F(S) F(S') be

the map (fs' 0 A)..

S
Is

) F(S)

Al IA.
= F(A)

S' ) F'(S' )
Is'

Then we may regard F as a functor from the category of sets to the category of

groups (the functorial properties are trivially verified, and will be left to the

reader).

If A. is surjective, then F(A.) is also surjective.

We again leave the proof to the reader.

If two sets S, S' have the same cardinality, then they are isomorphic in the

category of sets (an isomorphism being in this case a bijection !), and hence

F(S) is isomorphic to F(S'). If S has n elements, we call F(S) the free group

on n generators.

Let G be a group, and let S be the same set as G (i.e. G viewed as a set, without

group structure). We have the identity map g : S G, and hence a surjective

homomorphism

g. : F(S) G

which will be called canonical. Thus every group is a factor group of a free

group.

One can also construct groups by what is called generators and relations. Let

S be a set, and F(S) the free group. We assume that f: S F(S) is an in-

clusion. Let R be a set of elements of F(S). Each element of R can be written

as a finite product
n

UXv
v= 1

where each Xv is an element of S or an inverse of an element of S. Let N be the

smallest normal subgroup of F(S) containing R, i.e. the intersection of all normal

subgroups of F(S) containing R. Then F(S)/N will be called the group deter-

mined by the generators S and the relations R.
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Example. One shows easily that the group determined by one generator

a, and the relation {a
2

}, has order 2.

The canonical homomorphism cp: F(S) F(S)/N satisfies the universal map-

ping property for homomorphisms t/J of F(S) into groups G such that t/J(x)
=

e

for all x E R. In view of this, one sometimes calls the group F(S)/N the group

determined by the generators S, and the relations x
=

e (for all x E R). For

instance, the group in the preceding example would be called the group determined

by the generator a, and the relation a
2 =

e.

Let G be a group generated by a finite number of elements, and satisfying
the relation x

2
=

e for all x E G. What does G look like? It is easy to show that

G is commutative. Then one can view G as a vector space over Z/2Z, so G is

determined by its cardinality, up to isomorphism.
In Exercises 34 and 35, you will prove that there exist certain groups satisfying

certain relations and with a given order, so that the group presented with these

generators and relations can be completely determined. A priori, it is not even

clear if a group given by generators and relations is finite. Even if it is finite,

one does not know its order a priori. To show that a group of certain order

exists, one has to use various means, a common means being to represent the

group as a group of automorphisms of some object, for instance the symmetries
of a geometric object. This will be the method suggested for the groups in Exercises

34 and 35, mentioned above.

Example. Let G be a group. For x, y E G define [x, y]
= xyx-1y-1 (the

commutator) and Xy
=

xyx-
l

(the conjugate). Then one has the cocycle relation

[x, yz]
= [x, y]Y[x, z].

Furthermore, suppose x, y, Z E G and

[x, y]
=

y, [y, z] =

Z, [z, x] =
x.

Then x
=

y
=

z
=

e. It is an exercise to prove these assertions, but one sees

that certain relations imply that a group generated by x, y, z subject to those

relations is necessarily trivial.

Next we give a somewhat more sophisticated example. We assume that the

reader knows the basic terminology of fields and matrices as in Chapter XIII,

but applied only to 2 x 2 matrices. Thus SL2(F) denotes the group of 2 x 2

matrices with components in a field F and determinant equal to 1.

Example. SL2(F). Let F be a field. For b E F and a E F, a =t= 0, we let

u(b) = ( ), s(a) = ( _} and w = (_ ).
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Then it is immediately verified that:

SL O. s(a) = wu(a-l)wu(a)wu(a-
l
).

SL 1. u is an additive homomorphism.

SL 2. s is a multiplicative homomorphism.

SL 3. w
2

=
S (
-

1).

SL 4. s(a)u(b)s(a-
l
) = u(ba

2
).

Now, conversely, suppose that G is an arbitrary group with generators u(b)

(b E F) and w, such that if we define s(a) for a =t= 0 by SL 0, then the relations

SL 1 through SL 4 are satisfied. Then SL 3 and SL 4 show that s (
-

1) is in the

center, and w
4

=
e. In addition, one verifies that:

SL 5. ws(a) = s(a-l)w.

Furthermore, one has the theorem:

Let G be the free group with generators u(b), wand relations SL 1 through
SL 4, defining s(a) as in SL O. Then the natural homomorphism

G SL2(F)

is an isomorphism.

Proofs of all the above statements will be found in my SL2(R), Springer Verlag,

reprint of Addison-Wesley, 1975, Chapter XI, 2. It takes about a page to carry

out the proof.

If F =

Qp is the field of p-adic numbers, then Ihara [Ih 66] proved that every

discrete torsion free subgroup of SL2(Qp) is free. Serre put this theorem in the

context of a general theory concerning groups acting on trees [Se 80].

[lh 66] Y, IHARA, On discrete subgroups of the two by two projective linear group over

p-adic fields, J. Math. Soc. Japan 18 (1966) pp. 219-235

[Se 80] J.-P. SERRE, Trees, Springer Verlag 1980

Further examples. For further examples of free group constructions, see

Exercises 54 and 56. For examples of free groups occurring (possibly conjec-

turally) in Galois theory, see Chapter VI, 2, Example 9, and the end of

Chapter VI, 14.

Proposition 12.3. Coproducts exist in the category of groups.

Proof Let {Gi}iel be a family of groups. We let e be the category whose

objects are families of group-homomorphisms

{gi: G i G}iel
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and whose morphisms are the obvious ones. We must find a universal element

in this category. For each index i, we let Si be the same set as Gi if G i is infinite,

and we let Si be denumerable if G i is finite. We let S be a set having the same

cardinality as the set-theoretic disjoint union of the sets Si (i.e. their coproduct
in the category of sets). We let r be the set of group structures on S, and for

each Y E r, we let <l>y be the set of all families of homomorphisms

qJ
= {qJi: Gi

-. Sy}.

Each pair (Sy, qJ), where qJ E <l>y, is then a group, using qJ merely as an index.

We let

Fo = n n (Sy, qJ),
y E r qJ E cD

y

and for each i, we define a homomorphism /;: Gi
-. F0 by prescribing the

component of /; on each factor (Sy, qJ) to be the same as that of qJi.

Let now g
= {gi: Gi

-. G} be a family of homomorphisms. Replacing G

if necessary by the subgroup generated by the images of the gb we see that

card(G) < card(S), because each element of G is a finite product of elements

in these images. Embedding G as a factor in a product G x Sy for some ')', we

may assume that card(G) = card(S). There exists a homomorphism g.: Fo -+ G

such that

g.
0 h =

gi

for all i. Indeed, we may assume without loss of generality that G = Sy for some

Y and that g
= t/J for some t/J E <l>y. We let g. be the projection of F0 on the

factor (SY' t/J).
Let F be the subgroup of F

0 generated by the union of the images of

the maps /; for all i. The restriction of g. to F is the unique homomorphism

satisfying /; 0

g.
=

gi for all i, and we have thus constructed our universal

object.

Example. Let G2 be a cyclic group of order 2 and let G 3 be a cyclic group

of order 3. What is the coproduct? The answer is neat. It can be shown that

G2 U G 3 is the group generated by two elements S, T with relations S2 = 1,

(ST)3 = 1. The groups G2 and G 3 are embedded in G2
U G 3 by sending G2 on

the cyclic group generated by S and sending G3 on the cyclic group generated

by ST. This is done by representing the group as follows. Let

G=SL2(Z)/ + I.
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As we have seen in an example of 5, the group G operates on the upper half-

plane Sj. Let S, T be the maps given by

S(z) = -1/z and T(z)=z+ 1.

Thus Sand T are represented by the matrices

s = ( -) and T = ( ),
and satisfy the relations SZ = 1, (ST)3 = 1. Readers will find a proof of several

properties of S, T in Serre' s Course in Arithmetic (Springer Verlag, 1973, Chapter

VII, 1), including the fact that S, T generate G. It is an exercise from there to

show that G is the coproduct of Gz and G3 as asserted.

Observe that these procedures go directly from the universal definition and

construction in the proofs of Proposition 12. 1 and Proposition 12.3 to the more

explicit representation of the free group or the coproduct as the case may be.

One relies on the following proposition.

Proposition 12.4. Let G be a group and {GihEI a family of subgroups.
Assume:

(a) The family generates G.

(b) If

x
=

Xi,
· · .

Xi
n

with Xi£l E G
i£l' xi£l =t= e and i

v
=t= i v+ 1 for all v,

then x =1= e.

Then the natural homomorphism of the coproduct of the family into G sending
Gi on itself by the identity mapping is an isomorphism. In other words, simply

put, G is the coproduct of the family of subgroups.

Proof. The homomorphism from the coproduct into G is surjective by the

assumption that the family generates G. Suppose an element is in the kernel.

Then such an element has a representation

X.
...

X.
'I 'n

as in (b), mapping to the identity in G, so all Xi£l
= e and the element itself is

equal to e, whence the homomorphism from the coproduct into G is injective,

thereby proving the proposition.

Exercises 54 and 56 mentioned above give one illustration of the way Prop-

osition 12.4 can be usd. We now show another way, which we carry out for

two subgroups. I am indebted to Eilenberg for the neat arrangement of the proof
of the next proposition.
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Proposition 12.5. Let A, B be two groups whose set-theoretic intersection is

{ 1 }. There exists a group A 0 B containing A, B as subgroups, such that

A n B = {I}, and having the following property. Every element =t= 1 ofA 0 B

has a unique expression as a product

a
1

. . .

an (n > 1, ai =F 1 all i)

with ai E A or ai E B, and such that if ai E A then ai + 1
E B and if ai E B then

ai+l EA .

Proof Let A 0 B be the set of sequences

a = (a l'
. . .

, an) (n > 0)

such that either n = 0, and the sequence is empty or n > 1, and then elements

in the sequence belong to A or B, are =F 1, and two consecutive elements of the

sequence do not belong both to A or both to B. If b = (b 1 ,
. . .

,
b

m), we define

the product ab to be the sequence

(a b
. . .

, an, b b . . .
,

bm)

if an E A, b 1 E B or an E B, b 1
E A,

(a b
. . .

, an b l'
. . .

,
b

m)

If an, b
1

E A or an, b
1 E B, and a

n
b 1 =F 1,

(a 1, . . .

,
a

n
- 1)(b 2 ,

. . .

,
b

m) by induction,

if an, b 1 E A or an, b 1
E B and an b 1

= 1.

The case when n = 0 or m = 0 is included in the first case, and the empty

sequence is the unit element of A 0 B. Clearly,

(a 1'..., an)(a; 1,..., all) = unit element,

so only associativity need be proved. Let c = (c b . . .
, c

r).
First consider the case m = 0, i.e. b is empty. Then clearly (ab)c = a(bc)

and similarly if n = 0 or r = O. Next consider the case m = 1. Let b = (x)
with x E A, x =F 1. We then verify in each possible case that (ab)c = a(bc).
These cases are as follows:

(ai' . . .

, an, x, c 1 ,
. . .

, c
r) if an E Band c 1 E B,

if anEA,anx=F I,C 1 EB,

if an E B, c 1 E A, xc 1 =F 1,

if an
= X-I and c 1

E B,

(a l'
. . .

, an X, C b . . .

, c
r)

(ai' . . .

, an, XCI' . . .
, C

r)

(ai' . . .

, an - 1)(c l' . . .

,
Cr)
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(a l'
. . .

,
a

n){c2, . . .

,
Cr) if an E Band

-1

Cl
= X

,

(a l'
. . .

, an - h an XC b C2' . . .
, c

r) if a
n ,c 1 EA,an

xc l =F 1,

if an, Cl E A and an xc 1
= 1.(a b . . .

, an - 1){c2,
. . .

,
Cr)

If m > 1, then we proceed by induction. Write b = b'b" with b' and b"

shorter. Then

{ab)c = {a{b'b"))c = ({ab')b")c = (ab'){b"c),

a{bc) = a{{b'b")c) = a{b'{b"c)) = (ab'){b"c)

as was to be shown.

We have obvious injections of A and B into A 0 B, and identifying A, B

with their images in A 0 B we obtain a proof of our proposition.

We can prove the similar result for several factors. In particular, we get the

following corollary for the free group.

Corollary 12.6. Let F(S) be the free group on a set S, and let x., . . .
, X

n
be

distinct elements of S. Let vI'. .
.,

V
r

be integers =t= 0 and let iI' . . .
,

i
r

be

integers,

1 <
. .

<
= 'b. . .

, lr =
n

such that i
j =F i

j + 1 for j = 1,..., r - 1. Then

VI Vr -J.. 1Xi 1

...

Xir -r- .

Proof Let G b . . .
, G

n
be the cyclic groups generated by X b . . .

, Xn. Let

G = G 1
0 . . . 0 G

n
. Let

F{S) -+ G

be the homomorphism sending each Xi on Xi' and all other elements of S on the

unit element of G. Our assertion follows at once.

Corollary 12.7. Let S be a set with n elements x., . . .
, X

n ,
n

> 1. Let G I ,

. . . , G
n

be the infinite cyclic groups generated by these elements. Then the map

F{S) -+ G 1
0...0 G

n

sending each Xi on itself is an isomorphism.

Proof It is obviously surjective and injective.

Corollary 12.8. Let G., . ..
, G

n
be groups with G; n G

j
= {I} if i =t= j.

The homomorphism

G 1 11...11G
n

-+ G 1 o...oG
n

of their coproduct into G 1
0 . . . 0 G

n
induced by the natural inclusion

Gi
-+ G 1

0 . . . 0 G
n

is an isomorphism.

Proof Again, it is obviously injective and surjective.
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EXERCISES

1, Show that every group of order < 5 is abehan.

2. Show that there are two non-isomorphic groups of order 4, namely the cyclic one,

and the product of two cyclic groups of order 2.

3. Let G be a group. A commutator in G is an element of the form aba-1b- 1
with a,

bEG. Let GC be the subgroup generated by the commutators. Then GC is called the

commutator subgroup. Show that GC is normal. Show that any homomorphism of

G into an abelian group factors through G/GC .

4. Let H, K be subgroups of a finite group G with KeN
H. Show that

# (H)# (K)
#(HK) =

#(H n K).

5. Goursat's Lemma. Let G, G' be groups, and let H be a subgroup ofG x G' such that the

two projections Pt : H G and P2 : H G' are surjective. Let N be the kernel of P2

and N' be the kernel of P t. One can identify N as a normal subgroup of G, and N' as a

normal subgroup of G'. Show that the image of H in GIN x G'IN' is the graph of an

isomorphism
GIN G'IN',

6. Prove that the group of inner automorphisms of a group G is normal in Aut(G).

7, Let G be a group such that Aut(G) is cyclic. Prove that G is abelian.

8, Let G be a group and let H, H' be subgroups. By a double coset of H, H' one means

a subset of G of the form HxH' .

(a) Show that G is a disjoint union of double cosets.

(b) Let {c} be a family of representatives for the double cosets . For each

a E G denote by [a]H' the conjugate aH'a-I of H'. For each c we have a

decomposition into ordinary cosets

H = U xc(H n [c]H'),
C

where {xc} is a family of elements of H, depending on c. Show that the

elements {xcc} form a family of left coset representatives for H' in G; that

IS,

G = U U xccH',
Xc Xc

and the union is disjoint, (Double cosets will not emerge further until Chapter
XVIII. )

9. (a) Let G be a group and H a subgroup of finite index. Show that there exists a

normal subgroup N of G contained in H and also of finite index. [Hint: If

(G : H) =

n, find a homomorphism of G into Sn whose kernel is contained in

H.]

(b) Let G be a group and let HI' H2 be subgroups of finite index. Prove that

HI n H2 has finite index.

10. Let G be a group and let H be a subgroup of finite index. Prove that there is only a

finite number of right cosets of H, and that the number of right cosets is equal to the

number of left cosets.
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11, Let G be a group, and A a normal abelian subgroup, Show that GIA operates on A

by conjugation, and in this manner.get a homomorphism of GIA into Aut(A).

Semidirect product

12. Let G be a group and let H, N be subgroups with N normal. Let 'Yx be conjugation

by an element x E G.

(a) Show that x 'Yx induces a homomorphismf: H Aut(N).

(b) If H n N = {e}, show that the map H x N HN given by (x, y) xy is

a bijection, and that this map is an isomorphism if and only if f is trivial,

Le. f(x) = idN for all x E H.

We define G to be the semidirect product of Hand N if G = NH and H n N = {e}.

(c) Conversely, let N, H be groups, and let .p: H Aut(N) be a given homo-

morphism. Construct a semidirect product as follows. Let G be the set of

pairs (x, h) with x E Nand h E H. Define the composition law

(xI' hi )(X2, )
= (x 1

cf1(h .)x2, hi h2) .

Show that this is a group law, and yields a semidirect product of Nand H,

identifying N with the set of elements (x, 1) and H with the set of elements

(1, h),

13. (a) Let H, N be normal subgroups of a finite group G. Assume that the orders of H,

N are relatively prime. Prove that xy
=

yx for all x E Hand yEN, and that

H x N = HN,

(b) Let HI' , . .
,

H
r

be normal subgroups of G such that the order of Hi is relatively

prime to the order of Hj for i =1= j. Prove that

HI x
,.,

x Hr = HI
.. .

Hr'

Example. If the Sylow subgroups of a finite group are normal, then G is the

direct product of its Sylow subgroups.

14, Let G be a finite group and let N be a normal subgroup such that Nand GIN have

relatively prime orders.

(a) Let H be a subgroup of G having the same order as GIN, Prove that

G = HN,

(b) Let 9 be an automorphism of G, Prove that g(N) = N,

Some operations

15. Let G be a finite group operating on a finite set S with #(S)
> 2, Assume that there

is only one orbit. Prove that there exists an element x E G which has no fixed point,
i.e. xs =1= s for all s E S.

16. Let H be a proper subgroup of a finite group G, Show that G is not the union of all

the conjugates of H, (But see Exercise 23 of Chapter XIII.)

17, Let X, Y be finite sets and let C be a subset of X x Y. For x E X let cp(x)
= number

of elements y E Y such that (x, y) E C. Verify that

#(C) = L cp(x).
../ XEX
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Remark. A subset C as in the above exercise is often called a correspondence, and

cp(x) is the number of elements in Y which correspond to a given element x E X.

18. Let S, T be finite sets. Show that #Map(S, T) = (#T)#(S).

19. Let G be a finite group operating on a finite set S.

(a) For each s E S show that

2:
I

= 1
lEGs #(Gt)

.

(b) For each x E G define f(x) = number of elements s E S such that xs =
s.

Prove that the number of orbits of G in S is equal to

#(IG) x/(X).
Throughout, p is a prime number.

..

20, Let P be a p-group, Let A be a normal subgroup of order p. Prove that A is contained

in the center of P,

21, Let G be a finite group and H a subgroup. Let PH be a p-Sylow subgroup of H. Prove

that there exists a p-Sylow subgroup P of G such that PH
= P n H.

22. Let H be a normal subgroup of a finite group G and assume that #(H) =

p. Prove

that H is contained in every p-Sylow subgroup of G.

23, Let P, P' be p-Sylow subgroups of a finite group G,

(a) If P' C N(P) (normalizer of P), then P' = P.

(b) If N(P') = N(P), then P' = P.

(c) We have N(N(P» = N(P).

Explicit determination of groups

24, Let p be a prime number. Show that a group of order p2 is abelian, and that there are

only two such groups up to isomorphism.

25, Let G be a group of order p3, where p IS prime, and G is not abelian. Let Z be ItS center.

Let C be a cychc group of order p.

(a) Show that Z C and G/Z C x c.

(b) Every subgroup of G of order p2 contaJns Z and is normal.

(c) Suppose x
P

= 1 for all x E G, Show that G contains a normal subgroup
H C x c.

26. (a) Let G be a group of order pq, where p, q are primes and p < q. Assume that

q =1= 1 mod p. Prove that G is cyclic,

(b) Show that every group of order 15 is cyclic.

27. Show that every group of order < 60 is solvable.

28. Let p, q be distinct primes, Prove that a group of order p2q is solvable, and that one

of its Sylow subgroups is normal.

29, Let p, q be odd primes. Prove that a group of order 2pq is solvable.
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30. (a) Prove that one of the Sylow subgroups of a group of order 40 is normal.

(b) Prove that one of the Sylow subgroups of a group of order 12 is normal.

31, Determine all groups of order -< 1 ° up to isomorphism. In particular, show that a

non-abelian group of order 6 is isomorphic to S3'

32, Let 5n be the permutation group on n elements, Determine the p-Sylow subgroups of

53' 54' 55 for p
= 2 and p

= 3.

33. Let 0' be a permutation of a finite set I having n elements, Define e( 0') to be (- I)m

where

m = n
- number of orbits of (J.

If 11' . . .

,
I

r
are the orbits of (J, then m is also equal to the sum

r

m = L [card(lJ - 1].
\'=1

If T is a transposition, show that e( O'T) = -

e( 0') be considering the two cases when

i, j lie in the same orbit of 0', or lie in different orbits. In the first case, O'T has one

more orbit and in the second case one less orbit than 0'. In particular, the sign of a

transposition is - 1. Prove that e( 0') = E (0') is the sign of the permutation,

34. (a) Let n be an even positive integer, Show that there exists a group of order 2n,

generated by two elements 0', T such that O'n = e =
T

2
,

and O'T == TO'n-l. (Draw

a picture of a regular n-gon, number the vertices, and use the picture as an

inspiration to get 0', T,) This group is called the dihedral group.

(b) Let n be an odd positive integer. Let D4n be the group generated by the matrices

(
°

1

_

0

1

) (
y

and (I)
where C is a primitive n-th root of unity. Show that D

4n
has order 4n, and give

the commutation relations between the above generators.

35. Show that there are exactly two non-isomorphic non-abelian groups of order 8. (One
of them is given by generators (J, ! with the relations

(J4 = 1
,

!2 = 1
,

!(J! = (J3,

The other is the quaternion group.)

36. Let 0'
== [123

.. .

n] in Sn. Show that the conjugacy class of 0' has (n
-

I)! elements.

Show that the centralizer of 0' is the cyclic group generated by 0',

37. (a) Let 0'
== [i I

... i
m] be a cycle, Let l' E Sn. Show that 1'0'1'-1 is the cycle

[1'(i I)
. . .

1'(im)]'

(b) Suppose that a permutation (J in 5n can be written as a product of r disjoint

cycles, and let d h
. , .

,
d

r
be the number of elements in each cycle, in increasing

order. Let ! be another permutation which can be written as a product of

disjoint cycles, whose cardinalities are d'l'...' d; in increasing order. Prove

that (J is conjugate to ! in Sn if and only if r = sand di
= d for all i = 1, . . .

,
r.

38. (a) Show that Sn is generated by the transpositions [12], [13],. , ,
, [In].

(b) Show thatS
n

is generated by the transpositions [12], [23], [34],..., [n
-

1, n],
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(c) Show that Sn is generated by the cycles [12] and [123 ... n].

(d) Assume that n is prime. Let u = [123 . . . n] and let T
= [rs] be any transposition.

Show that u, T generate Sn.

Let G be a finite group operating on a set S. Then G operates in a natural way on

the Cartesian product s(n) for each positive integer n . We define the operation on S

to be n-transitive if given n distinct elements (Sb ' . .
, sn) and n distinct elements

(s;" . .
, s) of S, there exists u E G such that us,

= sj for all i = 1,.. .

, n.

39. Show that the action of the alternating group An on {I, . , .
, n} is (n

-

2)-transitive.

40. Let An be the alternating group of even permutations of {I ,
. , .

, n}, For j
= 1, . . .

, n

let Hj be the subgroup of An fixing j, so Hj
= An-I' and (An: H

j)
=

n for n
> 3,

Let n
> 3 and let H be a subgroup of index n in An.

(a) Show that the action of An on cosets of H by left translation gives an iso-

morphism An with the alternating group of permutations of AniH.

(b) Show that there exists an automorphism of An mapping H
I on H, and that

such an automorphism is induced by an inner automorphism of S
n
if and only

if H =

Hi for some i.

41. Let H be a simple group of order 60.

(a) Show that the action of H by conjugation on the set of its Sylow subgroups

gives an imbedding H A6.

(b) Using the preceding exercise, show that H =

As.

(c) Show that A6 has an automorphism which is not induced by an inner auto-

morphism of S6.

Abelian groups

42. Viewing Z, Q as additive groups, show that Q/Z IS a torsion group, which has one and

only one subgroup of order n for each integer n > 1, and that this subgroup is cyclic.

43. Let H be a subgroup of a finite abelian group G. Show that G has a subgroup that is

isomorphic to G/H,

44. Let f: A A' be a homomorphism of abelian groups. Let B be a subgroup of A.

Denote by AI and A
I

the image and kernel off in A respectively, and similarly for BI

and B
I.

Show that (A : B) = (AI: BI)(AI: BI)' in the sense that if two of these three

indices are finite, so is the third, and the stated equality holds.

45, Let G be a finite cyclic group of order n, generated by an element (1. Assume that G

operates on an abelian group A, and let,h g : A A be the endomorphisms of A given by

f(x) = (1X
-

x and g(x) = x + (1X + ... + (1n-
1
X.

Define the Herbrand quotient by the expression q(A) = (AI: Ag)/(A g
: AI), provided

both indices are finite. Assume now that B is a subgroup of A such that GB c B,

(a) Define in a natural way an operation of G on A/B.

(b) Prove that

q(A) = q(B)q(A/B)

in the sense that if two of these quotients are finite, so is the third, and the stated

equality holds,

(c) If A is finite, show that q(A) = 1.
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(This exercise is a special case of the general theory of Euler characteristics discussed

in Chapter XX, Theorem 3. 1. After reading this, the present exercise becomes trivial.

Why?)

Primitive groups

46. Let G operate on a set S, Let S = U Si be a partition of S into disjoint subsets. We say

that the partition is stable under G if G maps each S; onto S
j

for some j, and hence G

induces a permutation of the sets of the partition among themselves, There are two

partitions of S which are obviously stable: the partition consisting of S itself, and the

partition consisting of the subsets with one element. Assume that G operates transitively,
and that S has more than one element. Prove that the following two conditions are

equivalent:

PRIM 1. The only partitions of S which are stable are the two partitions mentioned

above.

PRIM 2. If H is the isotropy group of an element of S, then H is a maximal subgroup

of G.

These two conditions define what is known as a primitive group, or more accurately, a

primitive operation of G on S.

Instead of saying that the operation of a group G is 2-transitive, one also says that it is

doubly transitive,

47. Let a finite group G operate transitively and faithfully on a set S with at least 2

elements and let H be the isotropy group of some element s of S. (All the other

isotropy groups are conjugates of H.) Prove the following:

(a) G is doubly transitive if and only if H acts transitively on the complement
of s in S.

(b) G is doubly transitive if and only if G = HTH, where T is a subgroup of G

of order 2 not contained in H.

(c) If G is doubly transitive, and (G : H) =

n, then

#(G) = den
-

l)n,

where d is the order of the subgroup fixing two elements. Furthermore, H

is a maximal subgroup of G, Le. G is primitive.

48. Let G be a group acting transitively on a set S with at least 2 elements. For each

x E G let I(x) = number of elements of S fixed by x. Prove:

(a) L I(x) = #(G).
XEG

(b) G is doubly transitive if and only if

L f(X)2 = 2 #(G).
XEG

49. A group as an automorphism group. Let G be a group and let Set(G) be the category

of G-sets (Le. sets with a G-operation), Let F: Set(G) Set be the forgetful functor,

which to each G-set assigns the set itself. Show that Aut(F) is naturally isomorphic
to G.
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Fiber products and coproducts
Pull-backs and push-outs

50. (a) Show that fiber products exist in the category of abelian groups. In fact, If X, Y

are abelian groups with homomorphisms f: X -+ Z and g: Y -+ Z show that

X x
z Y is the set of all pairs (x, y) with x E X and y E Y such that f(x) = g(y).

The maps Pt, P2 are the projections on the first and second factor respectIvely.

(b) Show that the pull-back of a surjectIve homomorphism is surjective.

51. (a) Show that fiber products exist in the category of sets.

(b) In any category e, consider the category e 7. of objects over Z. Let h: T -+ Z

be a fixed object in this category, Let F be the functor such that

F(X) = Morz(T, X),

where X is an object over Z, and Morz denotes morphisms over Z. Show that

F transforms fiber products over Z into fiber products in the category of sets.

(Actually, once you have understood the definitions, this is tautological.)

52, (a) Show that push-outs (i.e. fiber coproducts) exist in the category of abelian groups.

In this case the fiber coproduct of two homomorphisms f, g as above is denoted

by X (f) z
Y. Show that it is the factor group

X z y = (X Y)/W,

where W is the subgroup consisting of all elements (f(z), - g(z» with z E Z.

(b) Show that the push-out of an injective homomorphism is injective.

Remark. After you have read about modules over rings, you should note that the

above two exercises apply to modules as well as to abelian groups,

53. Let H, G, G' be groups, and let

f: H -+ G, g : H -+ G'

be two homomorphisms. Define the notion of coproduct of these two homomor-

phisms over H, and show that it exists.

54. (Tits). Let G be a group and let {GJiEl be a family of subgroups generating G.

Suppose G operates on a set S. For each i E I, suppose given a subset Si of S, and

let s be a point of S - l) Si. Assume that for each 9 E G;
-

{e}, we have
,

gSj C S; for allj =1= i, and g(s) E S; for all i.

Prove that G is the coproduct of the family {GJ;El' (Hint: Suppose a product

g.
. . .

gm
= id on S, Apply this product to s, and use Proposition 12.4.)

55. Let M E GL2(C) (2 x 2 complex matrices with non-zero determinant). We let

(
a b

)
az + b

M= ,andforzECweletM(z)=
d

'

c d cz +

If z
= -d/c (c =1= 0) then we put M(z) = 00, Then you can verify (and you should

have seen something like this in a course in complex analysis) that GL2(C) thus

operates on C U {oo}. Let A, A' be the eigenvalues of M viewed as a linear map on

C2. Let W, W' be the corresponding eigenvectors,

W =

f(W., w2) and W' = f(W;, w;),
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By a fixed point of M on C we mean a complex number z such that M(z) = z. Assume

that M has two distinct fixed points =1= 00.

(a) Show that there cannot be more than two fixed points and that these fixed

points are w
= wllw2 and w' = wi/w2. In fact one may take

W = t(w, 1), W' = t(w', 1).

(b) Assume that 1 AI < 1 A' I, Given z =1= w, show that

lim Mk(z) = w'.
k-oo

[Hint: Let S = (W, W') and consider S-IMkS(Z) = exkz where ex = AIA'.]

56. (Tits) Let M., . . .
,

M
r

E GL2(C) be a finite number of matrices. Let A;, A; be the

eigenvalues of M;. Assume that each M; has two distinct complex fixed points, and

that I A; I < 1 A; I. Also assume that the fixed points for MI' . , . , M
r

are all distinct

from each other, Prove that there exists a positive integer k such that M, . , ,
, M

are the free generators of a free subgroup of GL2(C), [Hint: Let wi' w; be the fixed

points of M;. Let V; be a small disc centered at Wi and V; a small disc centered at

w;. Let S;
=

V; U V;. Let s be a complex number which does not lie in any S;. Let

G;
= (M). Show that the conditions of Exercise 54 are satisfied for k sufficiently

large.] .

s.

57. Let G be a group acting on a set X. Let Y be a subset of X. Let Gy be the subset of

G consisting of those elements g such that g Y n Y is not empty. Let Gy be the

subgroup of G generated by Gy. Then GyY and (G
- Gy)Y are disjoint. [Hint:

Suppose that there exist gl E Gy and g2 E G but g2 $ Gy, and elements YI, Y2, E Y

such that g2Yl
=

g2Y2. Then g:;lglYI =

Y2, so g:;lg) E Gy whence g2 E Gy, contrary
to assumption.]

Application. Suppose that X = GY, but that X cannot be expressed as a disjoint
union as above unless one of the two sets is empty. Then we conclude that G - Gy

is empty, and therefore Gy generates G.

Example 1. Suppose X is a connected topological space, Y is open, and G acts

continuously. Then all translates of Yare open, so G is generated by G y.

Example 2. Suppose G is a discrete group acting continuously and discretely
on X. Again suppose X connected and Y closed. Then any union of translates of Y

by elements of G is closed, so again G - Gy is empty, and Gy generates G.



CHAPTER II

Rings

1. RINGS AND HOMOMORPHISMS

A ring A is a set, together with two laws of composition called multiplica-
tion and addition respectively, and written as a product and as a sum respec-

tively, satisfying the following conditions:

RI 1. With respect to addition, A is a commutative group.

RI 2. The multiplication is associative, and has a unit element.

RI 3. For all x, y, Z E A we have

(x + y)z = xz + yz

(This is called distributivity.)

As usual, we denote the unit element for addition by 0, and the unit

element for multiplication by 1. We do not assume that 1 =F o. We observe

that Ox = 0 for all x E A. Proof: We have Ox + x = (0 + l)x = Ix = x.

Hence Ox = o. In particular, if 1 = 0, then A consists of 0 alone.

For any x, YEA we have (-x)y = -(xy). Proof: We have

xy + (-x)y = (x + (-x))y = Oy = 0,

and z(x + y) = zx + zy.

so ( - x)y is the additive inverse of xy.

Other standard laws relating addition and multiplication are easily proved,
for instance ( - x)( - y) =

xy. We leave these as exercises.

Let A be a ring, and let U be the set of elements of A which have both a

right and left inverse. Then U is a multiplicative group. Indeed, if a has a

83
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right inverse b, so that ab = 1, and a left inverse c, so that ca = 1, then

cab = b, whence c = b, and we see that c (or b) is a two-sided inverse, and

that c itself has a two-sided inverse, namely a. Therefore U satisfies all the

axioms of a multiplicative group, and is called the group of units of A. It is

sometimes denoted by A*, and is also called the group of invertible elements

of A. A ring A such that 1 =F 0, and such that every non-zero element is

invertible is called a division ring.

Note. The elements of a ring which are left invertible do not necessarily
form a group.

Example. (The Shift Operator). Let E be the set of all sequences

a = (at, a2, a3 , ...)

of integers. One can define addition componentwise. Let R be the set of all

mappings f: E -+ E of E into itself such that f(a + b) = f(a) + f(b). The law

of composition is defined to be composition of mappings. Then R is a ring.

(Proof?) Let

T(a t , a2, a3, ...) = (0, at, a2, a3, ...).

Verify that T is left invertible but not right invertible.

A ring A is said to be commutative if xy
=

yx for all x, YEA. A commu-

tative division ring is called a field. We observe that by definition, a field

contains at least two elements, namely 0 and 1.

A subset B of a ring A is called a subring if it is an additive subgroup, if

it contains the multiplicative unit, and if x, Y E B implies xy E B. If that is

the case, then B itself is a ring, the laws of operation in B being the same as

the laws of operation in A.

For example, the center of a ring A is the subset of A consisting of all

elements a E A such that ax = xa for all x E A. One sees immediately that

the center of A is a subring.
Just as we proved general associativity from the associativity for three

factors, one can prove general distributivity. If x, Yt, ..., Yn are elements of a

ring A, then by induction one sees that

X(YI +
...

+ Yn) =

XYt +
...

+ XYn'

If Xi (i = 1, .
.., n) and Yj (j

= 1, ..., m) are elements of A, then it is also easily

proved that

Ct x)C Yj) = it j XiXj'

Furthermore, distributivity holds for subtraction, e.g.

x(Yt - Y2) =

XYt
-

XY2'

We leave all the proofs to the reader.
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Examples. Let S be a set and A a ring. Let Map(S, A) be the set of map-

pings of S into A. Then Map(S, A) is a ring if for f, g E Map(S, A) we define

(fg)(x) = f(x)g(x) and (f + g) (x) = f(x) + g(x)

for all XES. The multiplicative unit is the constant map whose value is the

multiplicative unit of A. The additive unit is the constant map whose value

is the additive unit of A, namely O. The verification that Map(S, A) is a ring
under the above laws of composition is trivial and left to the reader.

Let M be an additive abelian group, and let A be the set End(M) of

group-homomorphisms of M into itself. We define addition in A to be the

addition of mappings, and we define multiplication to be composition of

mappings. Then it is trivially verified that A is a ring. Its unit element is of

course the identity mapping. In general, A is not commutative.

Readers have no doubt met polynomials over a field previously. These pro-

vide a basic example of a ring, and will be defined officially for this book in 3.
Let K be a field. The set of n x n matrices with components in K is a

ring. Its units consist of those matrices which are invertible, or equivalently
have a non-zero determinant.

Let S be a set and R the set of real-valued functions on S. Then R is a

commutative ring. Its units consist of those functions which are nowhere O.

This is a special case of the ring Map(S, A) considered above.

The convolution product. We shall ,now give examples of rings whose

product is given by what is called convolution. Let G be a group and let K

be a field. Denote by K[G] the set of all formal linear combinations

rx = L axx with x E G and ax E K, such that all but a finite number of ax are

equal to O. (See 3, and also Chapter III, 4.) If P = L bxx E K[G], then one

can define the product

rxp = L L axbyxy = L ( L axby) z.

xeG yeG zeG xy=z

With this product, the group ring K[G] is a ring, which will be studied

extensively in Chapter XVIII when G is a finite group. Note that K[G] is

commutative if and only if G is commutative. The second sum on the right
above defines what is called a convolution product. If f, g are two functions

on a group G, we define their convolution f * g by

(f * g) (z) = L f(x)g(y).
xy=z

Of course this must make sense. If G is infinite, one may restrict this

definition to functions which are 0 except at a finite number of elements.

Exercise 12 will give an example (actually on a monoid) when another type
of restriction allows for a finite sum on the right.

Example from analysis. In analysis one considers a situation as follows.

Let L
1

= L
1

(R) be the space of functions which are absolutely integrable.
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Given functions f, gELt, one defines their convolution product f * g by

(f * g)(x) = t f(x - y)g(y) dy.

Then this product satisfies all the axioms of a ring, except that there is no

unit element. In the case of the group ring or the convolution of Exercise 12,

there is a unit element. (What is it?) Note that the convolution product in

the case of L
t

(R) is commutative, basic,\lly because R is a commutative

additive group. More generally, let G be a locally compact group with a

Haar measure JL Then the convolution product is defined by the similar

formula

(f * g)(x) = L f(xy-l )g(y) dJ1.(Y).

After these examples, we return to the general theory of rings.

A left ideal Q in a ring A is a subset of A which is a subgroup of the

additive group of A, such that AQ C Q (and hence AQ = Q since A contains

1). To define a right ideal, we require QA = Q, and a two-sided ideal is a

subset which is both a left and a right ideal. A two-sided ideal is called

simply an ideal in this section. Note that (0) and A itself are ideals.

If A is a ring and a E A, then Aa is a left ideal, called principal. We say

that a is a generator of Q (over A). Similarly, AaA is a principal two-sided

ideal if we define AaA to be the set of all sums L XiaYi with Xi' Yi E A. Cf.

below the definition of the product of ideals. More generally, let at, ..., an

be elements of A. We denote by (at, ..., an) the set of elements of A which

can be written in the form

Xt at +
...

+ xnan
with Xi E A.

Then this set of elements is immediately verified to be a left ideal, and

at, ..., an are called generators of the left ideal.

If { Qi} i e I
is a family of ideals, then their intersection

n Qi
i e I

is also an ideal. Similarly for left ideals. Readers will easily verify that if

Q = (at, ..., an)' then Q is the intersection of all left ideals containing the

elements at, ..

., an.

A ring A is said to be commutative if xy
=

yx for all X, YEA. In that

case, every left or right ideal is two-sided.

A commutative ring such that every ideal is principal and such that 1 =F 0

is called a principal ring.

Examples. The integers Z form a ring, which is commutative. Let Q be

an ideal =F Z and =F O. If n E Q, then -

n E Q. Let d be the smallest integer
> 0 lying in Q. If n E Q then there exist integers q, r with 0 < r < d such that

n = dq + r.
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Since a is an ideal, it follows that r lies in a, hence r = o. Hence a consists of

all multiples qd of d, with q E Z, and Z is a principal ring.
A similar example is the ring of polynomials in one variable over a field,

as will be proved in Chapter IV, also using the Euclidean algorithm.
Let R be the ring of algebraic integers in a number field K. (For

definitions, see Chapter VII.) Then R is not necessarily principal, but let p

be a prime ideal, and let Rp be the ring of all elements a/b with a, b E Rand

b rt p. Then in algebraic number theory, it is shown that R" is principal, with

one prime ideal mp consisting of all elements a/b as above but with a E p.

See Exercises 15, 16, and 17.

An example from analysis. Let A be the set of entire functions on the

complex plane. Then A is a commutative ring, and every finitely generated
ideal is principal. Given a discrete set of complex numbers {Zi} and integers

mi
> 0, there exists an entire function I having zeros at Zi of multiplicity mi

and no other zeros. Every principal ideal is of the form AI for some such I.
The group of units A* in A consists of the functions which have no zeros. It

is a nice exercise in analysis to prove the above statements (using the

Weierstrass factorization theorem).

We now return to general notions. Let a, b be ideals of A. We define ab

to be the set of all sums

X1Yl +
...

+ XnYn

with Xi E a and Yi E b. Then one verifies immediately that ab is an ideal, and

that the set of ideals forms a multiplicative monoid, the unit element being
the ring itself. This unit element is called the unit idea and is often written (1).
If a, b are left ideals, we define their product ab as above. It is also a left ideal,

and if a, b, c are left ideals, then we again have associativity: (ab)c = a(bc).
If a, b are left ideals of A, then a + b (the sum being taken as additive

subgroup of A) is obviously a left ideal. Similarly for right and two-sided

ideals. Thus ideals also form a monoid under addition. We also have

distributivity: If a 1 , ..., an' b are ideals of A, then clearly

b(a 1 +
...

+ an) = ba 1 +
...

+ ban'

and similarly on the other side. (However, the set of ideals does not form a

ring! )
Let a be a left ideal. Define aA to be the set of all sums a 1

X
1 +

. ..

+ anXn

with ai E a and Xi E A. Then aA is an ideal (two-sided).

Suppose that A is commutative. Let a, b be ideals. Then trivially

ab can b,

but equality does not necessarily hold. However, as an exercise, prove that if

a + b = A then ab = a n b.

As should be known to the reader, the integers Z satisfy another property

besides every ideal being principal, namely unique factorization into primes.
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We shall discuss the general phenomenon in. Be it noted here only that if

a ring A has the property of unique factorization into prime elements, and p

is a prime element, then the ideal (p) is prime, and the ring R(p) (defined as

above) is principal. See Exercise 6. Thus principal rings may be obtained in

a natural way from rings which are not principal.
As Dedekind found out, some form of unique factorization can be re-

covered in some cases, replacing unique factorization into prime elements by

unique factorization of (non-zero) ideals into prime ideals.

Example. There are cases when the non-zero ideals give rise to a group.

Let 0 be a subring of a field K such that every element of K is a quotient of

elements of 0; that is, of the form a/b with a, b E 0 and b =F O. By a fractional

ideal Q we mean a non-zero additive subgroup of K such that OQ C Q (and
therefore OQ = Q since 0 contains the unit element); and such th(!t there exists

an element CEO, C =F 0, such that CQ C o. We might say that a fractional

ideal has bounded denominator. A Dedekind ring is a ring 0 as above such

that the fractional ideals form a group under multiplication. As proved in

books on algebraic number theory, the ring of algebraic integers in a number

field is a Dedekind ring. Do Exercise 14 to get the property of unique
factorization into prime ideals. See Exercise 7 of Chapter VII for a sketch of

this proof.
If a E K, a =F 0, then oa is a fractional ideal, and such ideals are called

principal. The principal fractional ideals form a subgroup. The factor group

is called the ideal class group, or Picard group of 0, and is denoted by Pic(0).
See Exercises 13-19 for some elementary facts about Dedekind rings. It is

a basic problem to determine Pic(o) for various Dedekind rings arising in

algebraic number theory and function theory. See my book Algebraic Num-

ber Theory for the beginnings of the theory in number fields. In the case of

function theory, one is led to questions in algebraic geometry, notably the

study of groups of divisor classes on algebraic varieties and all that this

entails. The property that the fractional ideals form a group is essentially
associated with the ring having "dimension 1" (which we do not define

here). In general one is led into the study of modules under various equiva-
lence relations; see for instance the comments at the end of Chapter III, 4.

We return to the general theory of rings.

By a ring-homomorphism one means a mapping f: A -+ B where A, Bare

rings, and such that f is a monoid-homomorphism for the multiplicative
structures on A and B, and also a monoid-homomorphism for the additive

structure. In other words, f must satisfy:

f(a + a') = f(a) + f(a'),

f(l) = 1,

f(aa') = f(a)f(a'),

f(O) = 0,

for all a, a' E A. Its kernel is defined to be the kernel of f viewed as additive

homomorphism.
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The kernel of a ring-homomorphism f: A -. B is an ideal of A, as one

verifies at once.

Conversely, let a be an ideal of the ring A. We can construct the factor

ring A/a as follows. Viewing A and a as additive groups, let A/a be the

factor group. We define a multiplicative law of composition on A/a: If

x + a and y + a are two cosets of a, we define (x + a)(y + a) to be the coset

(xy + a). This coset is well defined, for if Xl' Yl are in the same coset as x, y

respectively, then one verifies at once that Xl Yl is in the same coset as xy.

Our multiplicative law of composition is then obviously associative, has a

unit element, namely the coset 1 + a, and the distributive law is satisfied

since it is satisfied for coset representatives. We have therefore defined a ring
structure on A/a, and the canonical map

f: A -. A/a

is then clearly a ring-homomorphism.

If g: A -. A' is a ring-homomorphism whose kernel contains a, then there

exists a unique ring-homomorphism g.: A/a -. A' making the following dia-

gram commutative:

A g) A'

f\ I.
A/a

Indeed, viewing f, g as group-homomorphisms (for the additive struc-

tures), there is a unique group-homomorphism g. making our diagram
commutative. We contend that g. is in fact a ring-homomorphism. We

could leave the trivial proof to the reader, but we carry it out in full. If

x E A, then g(x) = g.f(x). Hence for x, YEA,

g.(f(x)f(y)) = g.(f(xy)) = g(xy) = g(x)g(y)

= g.f(x)g.f(y).

Given " ,., E A/a, there exist x, YEA such that, = f(x) and,., = f(y). Since

f(1) = 1, we get g.f(1) = g(1) = 1, and hence the two conditions that g. be a

multiplicative monoid-homomorphism are satisfied, as was to be shown.

The statement we have just proved is equivalent to saying that the

canonical map f: A -. A/a is universal in the category of homomorphisms
whose kernel contains a.

Let A be a ring, and denote its unit element by e for the moment. The

map

A: Z -. A

such that A(n) = ne is a ring-homomorphism (obvious), and its kernel is an

ideal (n), generated by an integer n > O. We have a canonical injective homo-

morphism Z/nZ -. A, which is a (ring) isomorphism between ZjnZ and a
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subring of A. If nZ is a prime ideal, then n
= 0 or n

=

p for some prime number

p. In the first case, A contains as a subring a ring which is isomorphic to Z, and

which is often identified with Z. In that case, we say that A has characteristic

o. If on the other hand n =

p, then we say that A has characteristic p, and A

contains (an isomorphic image of) Z/pZ as a subring. We abbreviate Z/pZ by

Fp./
If K is a field, then K has characteristic 0 or p > O. In the first case, K

contains as a subfield an isomorphic image of the rational numbers, and in

the second case, it contains an isomorphic image of Fp. In either case, this

subfield will be called the prime field (contained in K). Since this prime field

is the smallest subfield of K containing 1 and has no automorphism except

the identity, it is customary to identify it with Q or Fp as the case may be.

By the prime ring (in K) we shall mean either the integers Z if K has

characteristic 0, or Fp if K has characteristic p.

Let A be a subring of a ring B. Let S be a subset of B commuting with

A; in other words we have as = sa for all a E A and s E S. We denote by
A [S] the set of all elements

a S
it. . .

S
in

ii'
. ,

in 1 n ,

the sum ranging over a finite number of n-tuples (i1, ..., in) of integers > 0,
and ait."inEA, S1,,,.,SnES. If B=A[S], we say that 8 is a set of

generators (or more precisely, ring generators) for B over A, or that B is

generated by S over A. If S is finite, we say that B is finitely generated
as a ring over A. One might say that A [8] consists of all not-necessarily-
commutative polynomials in elements of 8 with coefficients in A. Note that

elements of 8 may not commute with each other.

Example. The ring of matrices over a field is finitely generated over that

field, but matrices don't necessarily commute.

As with groups, we observe that a homomorphism is uniquely determined

by its effect on generators. In other words, let f: A -. A' be a ring-

homomorphism, and let B = A [S] as above. Then there exists at most one

extension of f to a ring-homomorphism of B having prescribed values on S.

Let A be a ring, a an ideal, and 8 a subset of A. We write

S = 0 (mod a)

if Sea. If x, YEA, we write

x = Y (mod a)

if x
-

YEa. If a is principal, equal to (a), then we also write

x = Y (mod a).

If f: A -. A/a is the canonical homomorphism, then x - Y (mod a) means

that f(x) = f(y). The congruence notation is sometimes convenient when we

want to avoid writing explicitly the canonical map f
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The factor ring A/a is also called a residue class ring. Cosets of a in A

are called residue classes modulo a, and if x E A, then the coset x + a is

called the residue class of x modulo a.

We have defined the notion of an isomorphism in any category, and so a

ring-isomorphism is a ring-homomorphism which has a two-sided inverse.

As usual we have the criterion:

A ring-homomorphism f: A -. B which is bijective is an isomorphism.

Indeed, there exists a set-theoretic inverse g: B -. A, and it is trivial to verify
that g is a ring-homomorphism.

Instead of saying "ring-homomorphism" we sometimes say simply

"homomorphism" if the reference to rings is clear. We note that rings form

a category (the morphisms being the homomorphisms).

Let f: A -. B be a ring-homomorphism. Then the image f(A) of f is a

subring of B. Proof obvious.

It is clear that an injective ring-homomorphism f: A -. B establishes a

ring-isomorphism between A and its image. Such a homomorphism will be

called an embedding (of rings).
Let f: A -. A' be a ring-homomorphism, and let a' be an ideal of A'.

Then f-l(a') is an ideal a in A, and we have an induced injective homo-

morphism
A/a -. A'/a'.

The trivial proof is left to the reader.

Proposition 1.1. Products exist in the category of rings.

In fact, let {Ai}iel be a family of rings, and let A = nAi be their product
as additive abelian groups. We define a multiplication in A in the obvious

way: If (Xi)iel and (Yi)iel are two elements of A, we define their product to

be (XiYi)i e I' i.e. we define multiplication componentwise, just as we did for

addition. The multiplicative unit is simply the element of the product whose

i-th component is the unit element of Ai. It is then clear that we obtain a

ring structure on A, and that the projection on the i-th factor is a ring-

homomorphism. Furthermore, A together with these projections clearly
satisfies the required universal property.

Note that the usual inclusion of Ai on the i-th factor is not a ring-

homomorphism because it does not map the unit element ei of Ai on the unit

element of A. Indeed, it maps ei on the element of A having ei as i-th

component, and 0 ( = 0i) as all other components.

Let A be a ring. Elements x, Y of A are said to be zero divisors if x =F 0,

Y =F 0, and xy
= O. Most of the rings without zero divisors which we con-

sider will be commutative. In view of this, we define a ring A to be entire if

1 =F 0, if A is commutative, and if there are no zero divisors in the ring.

(Entire rings are also called integral domains. However, linguistically, I feel
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the need for an adjective. "Integral" would do, except that in English,

"integral" has been used for "integral over a ring" as in Chapter VII, 1. In

French, as in English, two words exist with similar roots: "integral" and

"entire". The French have used both words. Why not do the same in

English? There is a slight psychological impediment, in that it would have

been better if the use of "integral" and "entire" were reversed to fit the

long-standing French use. I don't know what to do about this.)

Examples. The ring of integers Z is without zero divisors, and is there-

fore entire. If S is a set with more than 2 elements, and A is a ring with

1 =F 0, then the ring of mappings Map(S, A) has zero divisors. (Proof?)
Let m be a positive integer =F 1. The ring Z/mZ has zero divisors if and

only if m is not a prime number. (Proof left as an exercise.) The ring of

n x n matrices over a field has zero divisors if n > 2. (Proof?)

The next criterion is used very frequently.

Let A be an entire ring, and let a, b be non-zero elements of A. Then a, b

generate the same ideal if and only if there exists a unit u of A such that

b = au.

Proof If such a unit exists we have Ab = Aua = Aa. Conversely,
assume Aa = Ab. Then we can write a = be and b = ad with some elements

c, d E A. Hence a = adc, whence a(1 - dc) = 0, and therefore de = 1. Hence

c is a unit.

2. COMMUTATIVE RINGS

Throughout this section, we let A denote a commutative ring.

A prime ideal in A is an ideal p =F A such that A/p is entire. Equiva-

lently, we could say that it is an ideal p =F A such that, whenever x, YEA
and xy E p, then x E p or YEp. A prime ideal is often called simply a prime.

Let m be an ideal. We say that m is a maximal ideal if m =F A and if

there is no ideal Q =F A containing m and =F m.

Every maximal ideal is prime.

Proof Let m be maximal and let x, YEA be such that xy E m. Suppose
x ft m. Then m + Ax is an ideal properly containing m, hence equal to A.

Hence we can write

l=u+ax

with U E m and a E A. Multiplying by Y we find
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y
=

yu + axy,

whence y E m and m is therefore prime.

Let Q be an ideal =F A. Then Q is contained in some maximal ideal m.

Proof. The set of ideals containing Q and =F A is inductively ordered by

ascending inclusion. Indeed, if {bi } is a totally ordered set of such ideals,

then 1 ft b
i for any i, and hence 1 does not lie in the ideal b = Ubi' which

dominates all bi . If m is a maximal element in our set, then m =F A and m is

a maximal ideal, as desired.

The ideal {O} is a prime ideal of A if and only if A is entire.

(Proof obvious.)
We defined a field K to be a commutative ring such that 1 =t= 0, and such

that the multiplicative monoid of non-zero elements of K is a group (i.e. such

that whenever x E K and x =t= 0 then there exists an inverse for x). We note that

the only ideals of a field K are K and the zero ideal.

If m is a maximal ideal of A, then Aim is a field.

Proof If x E A, we denote by x its residue class mod m. Since m =F A

we note that Aim has a unit element =F o. Any non-zero element of Aim can

be written as x for some x E A, x ft m. To find its inverse, note that m + Ax

is an ideal of A =F m and hence equal to A. Hence we can write

1 = u + yx

with u E m and YEA. This means that yx = 1 (i.e. = 1) and hence that x has

an inverse, as desired.

Conversely, we leave it as an exercise to the reader to prove that:

If m is an ideal of A such that Aim is a field, then m is maximal.

Let f: A -+ A' be a homomorphism of commutative rings. Let p' be a prime

ideal of A', and let p
= f-

1

(p'). Then p is prime.

To prove this, let x, YEA, and xy E p. Suppose x ft p. Then f(x) ft p'.
But f(x)f(y) = f(xy) E p'. Hence f(y) E p', as desired.

As an exercise, prove that if f is surjective, and if m
'

is maximal in A',

then f-1 (m
/

) is maximal in A.

Example. Let Z be the ring of integers. Since an ideal is also an additive

subgroup of Z, every ideal =t= {O} is principal, of the form nZ for some integer
n > 0 (uniquely determined by the ideal). Let p be a prime ideal =t= {O},

p
= nZ. Then n must be a prime number, as follows essentially directly from

the definition of a prime ideal. Conversely, if p is a prime number, then pZ is

a prime ideal (trivial exercise). Furthermore, pZ is a maximal ideal. Indeed,

suppose pZ contained in some ideal nZ. Then p
= nm for some integer m, whence

n
=

p or n = 1, thereby proving pZ maximal.
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If n is an integer, the factor ring Z/nZ IS called the nng of integers
modulo n. We also denote

Z/nZ = Z(n).

If n is a prime number p, then the ring of integers modulo p is in fact a field,
denoted by Fp. In particular, the multiplicative group of Fp is called the

group of non-zero integers modulo p. From the elementary properties of

groups, we get a standard fact of elementary number theory: If x is an

integer =1= 0 (mod p), then x
p
- t

= 1 (mod p). (For simplicity, it is customary

to write mod p instead of mod pZ, and similarly to write mod n instead of

mod nZ for any integer n.) Similarly, given an integer n > 1, the units in the

ring Z/nZ consist of those residue classes mod nZ which are represented by

integers m =F 0 and prime to n. The order of the group of units in Z/nZ is

called by definition qJ(n) (where qJ is known as the Euler phi-function).

Consequently, if x is an integer prime to n, then xqJ(n) = 1 (mod n).

Theorem 2.1. (Chinese Remainder Theorem). Let at, ..., an be ideals of
A such that a i + a

j
= A for all i =F j. Given elements x

t, ...,
X

n
E A, there

exists x E A such that x = Xi (mod ai) for all i.

Proof If n = 2, we have an expression

1 =

al + a
2

for some elements ai E aj, and we let x =

X2at + Xta2'

For each i > 2 we can find elements ai E at and bi E ai such that

ai + bi
= 1, i > 2.

n

The product n (ai + bi) is equal to 1, and lies in
i=2

n

a l + n ai'
i=2

i.e. in at + a
2

...

an' Hence

n

at + n ai
= A.

i=2

By the theorem for n = 2, we can find an element Yl E A such that

Yl = 1 (mod Qt),

Yt
= 0 (mod.Ii 11;) .

1=2

We find similarly elements Y2, ..., Yn such that

Yj = 1 (mod a
j) and Yj = 0 (mod ai) for i =F j.

Then x =

Xl Yl +
...

+ XnYn satisfies our requirements.
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In the same vein as above, we observe that if a
1 , ..., an are ideals of a

ring A such that

a +
...

+ a =A1 n'

and if V 1 , ...,
V

n
are positive integers, then

al +
...

+ an = A.

The proof is trivial, and is left as an exercise.

Corollary 2.2. Let a 1 , ..., an be ideals of A. Assume that ai + aj
= A for

i i= j. Let

n

f: A -. n Alai = (Ala 1 ) x ...

X (Alan)
i=1

be the map of A into the product induced by the canonical map of A onto

n

Alai for each factor. Then the kernel of f is n ai' and f is surjective,
thus giving an isomorphism

i=1

Aln ai n Alai.

Proof That the kernel of f is what we said it IS, IS obvious. The

surjectivity follows from the theorem.

The theorem and its corollary are frequently applied to the ring of

integers Z and to distinct prime ideals (P1)' ..., (Pn). These satisfy the

hypothesis of the theorem since they are maximal. Similarly, one could take

integers m1, ...,
m

n
which are relatively prime in pairs, and apply the theorem

to the principal ideals (m 1) = m 1 Z, . . .
, (mn ) = mnZ. This is the ultraclassical

case of the Chinese remainder theorem.

In particular, let m be an integer> 1, and let

n
r.

m =

Pi
I

i

be a factorization of m into primes, with exponents ri
> 1. Then we have a

ring-isomorphism:

Z/mZ n Zlp?Z.
i

If A is a ring, we denote as usual by A * the multiplicative group of invertible

elements of A. We leave the following assertions as exercises:

The preceding ring-isomorphism of ZlmZ onto the product induces a group-

isomorphism

(ZlmZ)* n (ZlpiZ)*.
i

In view of our isomorphism, we have

qJ(m) = n qJ(pi).
i
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If p is a prime number and r an integer > 1, then

cp(pr) = (p
_ l)pr-l.

One proves this last formula by induction. If r = 1, then Z/pZ is a field, and

the multiplicative group of that field has order p
- 1. Let r be > 1, and

consider the canonical ring-homomorphism

Z/pr+l Z -. Z/prz,

arising from the inclusion of ideals (pr+l) C (pr). We get an induced group-

homomorphism

A: (Z/pr+l Z)* -. (Z/prz)*,

which is surjective because any integer a which represents an element of

Z/prz and is prime to p will represent an element of (Z/pr+l Z)*. Let a be an

integer representing an element of (Z/pr+l Z)*, such that A.(a) = 1. Then

a = 1 (mod prz),

and hence we can write

a = 1 + xpr (mod pr+l Z)

for some x E Z. Letting x = 0, 1, ..., p
- 1 gives rise to p distinct elements of

(Z/pr+l Z)*, all of which are in the kernel of A. Furthermore, the element x

above can be selected to be one of these p integers because every integer is

congruent to one of these p integers modulo (p). Hence the kernel of A has

order p, and our formula is proved.
Note that the kernel of A. is isomorphic to Z/pZ. (Proof?)

Application: The ring of endomorphisms of a cyclic group. One of the

first examples of a ring is the ring of endomorphisms of an abelian group. In

the case of a cyclic group, we have the following complete determination.

Theorem 2.3. Let A be a cyclic group of order n. For each k E Z let

fk: A A be the endomorphism x kx (writing A additively). Then k fk
induces a ring isomorphism Z/nZ = End(A), and a group isomorphism

(Z/nZ)* = Aut(A).

Proof Recall that the additive group structure on End(A) is simply
addition of mappings, and the multiplication is composition of mappings.
The fact that k 1---+ h is a ring-homomorphism is then a restatement of the

formulas

1 a = a, (k + k')a = ka + k'a, and (kk')a = k(k'a)

for k, k' E Z and a E A. If a is a generator of A, then ka = 0 if and only if

k = 0 mod n, so Z/nZ is embedded in End(A). On the other hand, let

f: A -. A be an endomorphism. Again for a generator a, we have f(a) = ka
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for some k, whence f = h since every x E A is of the form ma for some

m E Z, and

f(x) = f(ma) = mf(a) = mka = kma = kx.

This proves the isomorphism ZjnZ End(A). Furthermore, if k E (ZjnZ)*
then there exists k' such that kk' = 1 mod n, so A has the inverse h, and h is

an automorphism. Conversely, given any automorphism f with inverse g, we

know from the first part of the proof that f = fk, g =

gk' for some k, k', and

fog = id means that kk' == 1 mod n, so k, k' E (Z/nZ)*. This proves the

isomorphism (Z/nZ)* = Aut(A).

Note that if A is written as a multiplicative group C, then the map fk is

given by x 1---+ x
k

. For instance, let Jln be the group of n-th roots of unity in C.

Then all automorphisms of fin are given by

'1---+ ,k with k E (ZjnZ)*.

3. POLYNOMIALS AND GROUP RINGS

Although all readers will have met polynomial functions, this section lays
the ground work for polynomials in general. One needs polynomials over

arbitrary rings in many contexts. For one thing, there are polynomials over

a finite field which cannot be identified with polynomial functions in that

field. One needs polynomials with integer coefficients, and one needs to

reduce these polynomials mod p for primes p. One needs polynomials over

arbitrary commutative rings, both in algebraic geometry and in analysis, for

instance the ring of polynomial differential operators. We also have seen the

example of a ring B = A [S] generated by a set of elements over a ring A.

We now give a systematic account of the basic definitions of polynomials
over a commutative ring A.

We want to give a meaning to an expression such as

ao + at X +
...

+ anX
n

,

where ai E A and X is a "variable". There are several devices for doing so,

and we pick one of them. (I picked another in my Undergraduate Algebra.)
Consider an infinite cyclic group generated by an element X. We let S be the

subset consisting of powers x
r

with r > O. Then S is a monoid. We define

the set of polynomials A [X] to be the set of functions S -. A which are equal
to 0 except for a finite number of elements of S. For each element a E A we

denote by aX
n

the function which has the value a on x
n

and the value 0 for

all other elements of S. Then it is immediate that a polynomial can be

written uniquely as a finite sum
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aoXo +
...

+ anX
n

for some integer n E Nand ai E A. Such a polynomial is denoted by f(X).
The elements ai E A are called the coefficients of f We define the product

according to the convolution rule. Thus, given polynomials

n

f(X) = L aiXi
i=O

and

m

g(X) = L bjXj
j=O

we define the product to be

f(X)g(X) = t C+k a;bj) Xk.

It is immediately verified that this product is associative and distributive.

We shall give the details of associativity in the more general context of a

monoid ring below. Observe that there is a unit element, namely lXo.

There is also an embedding

A -. A[X] given by a 1---+ aXo.

One usually does not distinguish a from its image in A [X], and one writes a

instead ofaXo. Note that for C E A we have then cf(x) = L caiXi.
Observe that by our definition, we have an equality of polynomials

L aiX
i
= L biX

i

if and only if ai
= bi for all i.

Let A be a subring of a commutative ring B. Let x E B. If f E A [X] is a

polynomial, we may then define the associated polynomial function

fB: B -. B

by letting

fB(X) = f(x) =

ao + at x +
. ..

+ anx
n

.

Given an element b E B, directly from the definition of multiplication of

polynomials, we find:

The association

evb:ft-+ f(b)

is a ring homomorphism of A [X] into B.

This homomorphism is called the evaluation homomorphism, and is also said

to be obtained by substituting b for X in the polynomial. (Cf. Proposition
3.1 below.)

Let x E B. We now see that the subring A [x] of B generated by x over A

is the ring of all polynomial values f(x), for f E A [X]. If the evaluation map

fl---+ f(x) gives an isomorphism of A [X] with A [x], then we say that x is
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transcendental over A, or that x is a variable over A. In particular, X is a

variable over A.

Example. Let rx = fie Then the set of all real numbers of the form

a + brx, with a, b E Z, is a subring of the real numbers, generated by fie
Note that rx is not transcendental over Z, because the polynomial X

2
- 2 lies

in the kernel of the evaluation map ff(fi). On the other hand, it can be

shown that e = 2.718... and 1t are transcendental over Q. See Appendix 1.

Example. Let p be a prime number and let K = Z/pZ. Then K is a

field. Let f(X) = XP - X E K[X]. Then f is not the zero polynomial. But

fK is the zero function. Indeed, fK(O) = O. If x E K, x =F 0, then since the

multiplicative group of K has order p
- 1, it follows that x

p
- 1

= 1, whence

x
P

= x, so f(x) = o. Thus a non-zero polynomial gives rise to the zero

function on K.

There is another homomorphism of the polynomial ring having to do

with the coefficients. Let

cp: A -. B

be a homomorphism of commutative rings. Then there is an associated

homomorphism of the polynomial rings A[X] -. B[X], such that

f(X) = L aiXi L cp(ai)X
i
= (cpf)(X).

The verification that this mapping is a homomorphism is immediate, and

further details will be given below in Proposition 3.2, in a more general
context. We call f cpf the reduction map.

Examples. In some applications the map cp may be an isomorphism.
For instance, if f(X) has complex coefficients, then its complex conju-

gate f(X) = L aiX
i

is obtained by applying complex conjugation to its

coefficients.

Let p be a prime ideal of A. Let cp: A -. A' be the canonical homo-

morphism of A onto A/p. If f(X) is a polynomial in A [X], then cpf will

sometimes be called the reduction of fmodulo p.

For example, taking A = Z and p = (p) where p is a prime number, we

can speak of the polynomial 3X
4
- X + 2 as a polynomial mod 5, viewing

the coefficients 3, - 1, 2 as integers mod 5, i.e. elements of Z/5Z.

We may now combine the evaluation map and the reduction map to

generalize the evaluation map.

Let q>: A B be a homomorphism of commutative rings.
Let x E B. There is a unique homomorphism extending 'P

A [X] -. B such that Xx,

and for this homomorphism, L aiX
i

L cp(ai)x
i
.
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The homomorphism of the above statement may be viewed as the composite

A[X] ----+ B[X] B

where the first map applies lfJ to the coefficients of a polynomial, and the

second map is the evaluation at x previously discussed.

Example. In Chapter IX, 2 and 3, we shall discuss such a situation in

several variables, when (((Jf)(x) = 0, in which case x is called a zero of the

polynomial f

n

When writing a polynomial f(X) = L aiXi, if an =F 0 then we define n

i=l

to be the degree of f Thus the degree of f is the smallest integer n such

that a
r

= 0 for r > n. If f = 0 (i.e. f is the zero polynomial), then by con-

vention we define the degree of f to be -00. We agree to the convention

that

-00 + -00 = -00, -00 + n = -00,
- 00 < n,

for all nEZ, and no other operation with -00 is defined. A polynomial of

degree 1 is also called a linear polynomial. If f =F 0 and degf = n, then we

call an the leading coefficient of f We call ao its constant term.

Let

g(X) = b
o +

· ..

+ bmxm

be a polynomial in A [X], of degree m, and assume g =F O. Then

f(X)g(X) = aobo +
· ..

+ anbmX
m + n

.

Therefore:

If we assume that at least one of the leading coefficients an or b
m

is not a

divisor of 0 in A, then

deg(fg) = deg f + deg g

and the leading coefficient of fg is anbm
. This holds in particular when an or

b
m

is a unit in A, or when A is entire. Consequently, when A is entire,
A [X] is also entire.

If f or g
= 0, then we still have

deg(fg) = deg f + deg g

if we agree that -00 + m = -00 for any integer m.

One verifies trivially that for any polynomial f, g E A [X] we have

deg(f + g) < max(deg f, deg g),

again agreeing that -00 < m for every integer m.
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Polynomials in several variables

We now go to polynomials in several variables. Let A be a subring of

a commutative ring B. Let Xl'''.' X
n

E B. For each n-tuple of integers

(Vl, ...,
v

n ) = (v) E N
n

,
we use vector notation, letting (x) = (Xl' ...,

x
n ), and

M(v)(x) = X;1
...

x;n.

The set of such elements forms a monoid under multiplication. Let

A [x] = A [Xl' ..., xn] be the subring of B generated by Xl'.'" X
n

over A.

Then every element of A [x] can be written as a finite sum

L a(v)M(v)(x) with a(v) E A.

Using the construction of polynomials in one variable repeatedly, we may

form the ring

A[X1 , ..., Xn] = A[X1 ] [X2 ]
...

[Xn],

selecting X
n

to be a variable over A [Xl'
..

.,
X

n
- 1 ]. Then every element f of

A [Xl' .. .

, Xn] = A [X] has a unique expression as a finite sum

d
n

f = L jj(X1 , ...,
X

n
- 1 )xj

j=O

with jj E A [Xl' .. ·
,
X

n -1 ].

Therefore by induction we can write f uniquely as a sum

f = ( L a
V1 ".v

n

X;1
...

X;11) x;n
vn-o Vl'.",Vn-l

= L a(v)M(v)(X) = L a(v)X;1
...

x;n

with elements a(v) E A, which are called the coefficients of f. The products

M(v)(X) = X;1
...

x;n

will be called primitive monomials. Elements of A[X] are called polynomials

(in n variables). We call a(v) its coefficients.

Just as in the one-variable case, we have an evaluation map. Given (x) =

(x l' . . .

,
x

n ) and f as above, we define

f(x) = L a(v)M(v)(x) = L a(V)x;1
...

x;n.

Then the evaluation map

ev(x): A [X] -+ B such that ff(x)

is a ring-homomorphism. It may be viewed as the composite of the suc-

cessive evaluation maps in one variable Xi Xi for i = n, .
.., 1, because

A[X] c B[X].

Just as for one variable, if f(X) E A [X] is a polynomial in n variables,

then we obtain a function
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fB: Bn B by (x) f(x).

We say that f(x) is obtained by substituting (x) for (X) in f, or by specializing

(X) to (x). As for one variable, if K is a finite field, and f E K [X] one may

have f =F 0 but fK = O. Cf. Chapter IV, Theorem 1.4 and its corollaries.

Next let cp: A B be a homomorphism of commutative rings. Then we

have the reduction map (generalized in Proposition 3.2 below)

f(X) = L a(v)M(v)(X) L lfJ(a(v»M(v)(X) = (lfJf)(X).

We can also compose the evaluation and reduction. An element (x) E B
n

is

called a zero of f if (lfJf) (x) = O. Such zeros will be studied in Chapter IX.

Go back to A as a subring of B. Elements x l' . . .

,
X

n
E B are called

algebraically independent over A if the evaluation map

ff(x)

is injective. Equivalently, we could say that if f E A[X] is a polynomial and

f(x) = 0, then f
= 0; in other words, there are no non-trivial polynomial

relations among Xl' . . .
, X

n
over A.

Example. It is not known if e and 1t are algebraically independent over

the rationals. It is not even known if e + 1t is rational.

We now come to the notion of degree for several variables. By the degree
of a primitive monomial

M (X) = XVI. .. XVn
(v) 1 n

we shall mean the integer Ivl = V
1 +

...

+ V
n (which is > 0).

A polynomial

aX
V I

... XVn
1 n (a E A)

will be called a monomial (not necessarily primitive).
If f(X) is a polynomial in A [X] written as

f(X) = L a(V)X;1
...

X;n,

then either f = 0, in which case we say that its degree is -00, or f =F 0, and

then we define the degree of f to be the maximum of the degrees of the

monomials M(v)(X) such that a(v) =F o. (Such monomials are said to occur in

the polynomial.) We note that the degree of f is 0 if and only if

f(X) = aoXp
... X

n

o

for some ao E A, ao =F O. We also write this polynomial simply f(X) =

ao, i.e.

writing 1 instead of

X
O

... X
O

1 n ,

in other words, we identify the polynomial with the constant a
o .
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Note that a polynomial f(X1 , ...,
X

n ) in n variables can be viewed as a

polynomial in X
n

with coefficients in A [Xl' . . .
,
X

n
- 1 ] (if n > 2). Indeed, we

can write
d

n

f(X) = L jj(Xl' ...,
X

n
- 1 )X1,

j=O

where jj is an element of A [Xl' . ..
,
X

n
- 1 ]. By the degree of fin X

n
we shall

mean its degree when viewed as a polynomial in X
n

with coefficients in

A [Xl'
.

..,
X

n
- 1 ]. One sees easily that if this degree is d, then d is the largest

integer occurring as an exponent of X
n

in a monomial

a XVI... XVn
(v) 1 n

with a(v) =F o. Similarly, we define the degree of f in each variable Xi

(i = 1, .. .
, n).

The degree of f in each variable is of course usually different from its

degree (which is sometimes called the total degree if there is need to prevent

ambiguity). For instance,

XfX2 + xi

has total degree 4, and has degree 3 in Xl and 2 in X
2.

As a matter of notation, we shall often abbreviate "degree" by "deg.
"

For each integer d > 0, given a polynomial f, let fed) be the sum of all

monomials occurring in f and having degree d. Then

f = Lf(d).
d

Suppose f =F O. We say that f is homogeneous of degree d if f = fed); thus f
can be written in the form

f(X) = a XVI... XVn
(v) 1 n

with V 1 +
...

+ V
n

= d if a(v) =F O.

We shall leave it as an exercise to prove that a non-zero polynomial f in n

variables over A is homogeneous of degree d if and only if, for every set of
n + 1 algebraically independent elements u, t l' ...,

t
n

over A we have

f(ut l' · ..

,
ut

n ) = u4j(t l' .. .
,
t
n ).

We note that if f, g are homogeneous of degree d, e respectively, and

fg =F 0, then fg is homogeneous of degree d + e. If d = e and f + g =F 0, then

f + g is homogeneous of degree d.

Remark. In view of the isomorphism

A [Xl'
.

.., Xn] A [t l' ..
.,

t
n ]

between the polynomial ring in n variables and a ring generated over A by n
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algebraically independent elements, we can apply all the terminology we have

defined for polynomials, to elements of A [t l' .. .

,
t
n ]. Thus we can speak of

the degree of an element in A [t], and the rules for the degree of a product or

sum hold. In fact, we shall also call elements of A [t] polynomials in (t).

Algebraically independent elements will also be called variables (or indepen-
dent variables), and any distinction which we make between A [X] and A [t]
is more psychological than mathematical.

Suppose next that A is entire. By what we know of polynomials in one

variable and induction, it follows that A [Xl' . .
., Xn] is entire. In particular,

suppose f has degree d and g has degree e. Write

f = fed) + terms of lower degree,

g
= gee) + terms of lower degree.

Then fg = f(d)g(e) + terms of lower degree, and if fg =F 0 then f(d)g(e) =F o.

Thus we find:

deg(fg) = deg f + deg g,

deg(f + g) < max(deg f, deg g).

We are now finished with the basic terminology of polynomials. We end

this section by indicating how the construction of polynomials is actually a

special case of another construction which is used in other contexts. Inter-

ested readers can skip immediately to Chapter IV, giving further important

properties of polynomials. See also Exercise 33 of Chapter XIII for har-

monic polynomials.

The group ring or monoid ring

Let A be a commutative ring. Let G be a monoid, written multiplica-

tively.
Let A [G] be the set of all maps : G -. A such that (x) = 0 for almost

all x E G. We define addition in A[G] to be the ordinary addition of

mappings into an abelian (additive) group. If, pEA [G], we define their

product p by the rule

(P)(z) = L (x)P(y).
xy=z

The sum is taken over all pairs (x, y) with x, y E G such that xy
= z. This

sum is actually finite, because there is only a finite number of pairs of

elements (x, y) E G x G such that (x)P(y) =F o. We also see that (P)(t) = 0

for almost all t, and thus belongs to our set A [G].
The axioms for a ring are trivially verified. We shall carry out the proof

of associativity as an example. Let, p, YEA [G]. Then
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«(p)y) (z) = L (P)(x)y(y)
xy=z

=

xz Lx o((U)p(v)]y(y)
-

xz Lx O((U)P(V)y(y)]
= L (u)P(v)y(y),

(U,v,y)
uvy=z

this last sum being taken over all triples (u v, y) whose product is z. This

last sum is now symmetric, and if we had computed (a(f3y»(z), we would

have found this sum also. This proves associativity.
The unit element of A [G] is the function b such that b(e) = 1 and

b(x) = 0 for all x E G, x =F e. It is trivial to verify that = b = b for all

EA[G].
We shall now adopt a notation which will make the structure of A[G]

clearer. Let a E A and x E G. We denote by a. x (and sometimes also by ax)
the function whose value at x is a, and whose value at y is 0 if y =F x. Then

an element E A [G] can be written as a sum

= L (x).x.
xeG

Indeed, if {ax}xeG is a set of elements of A almost all of which are 0, and we

set

p = L ax. x,
xeG

then for any y E G we have P(y) = a
y (directly from the definitions). This also

shows that a given element admits a unique expression as a sum Lax. x.

With our present notation, multiplication can be written

( Lax. X) ( L by. Y) = L ax by
.

xy
x e G ye G x, y

and addition can be written

L ax. x + L bx.x = L (ax + bx).x,
xeG xeG xeG

which looks the way we want it to look. Note that the unit element of A[G]
is simply 1 .

e.

We shall now see that we can embed both A and G in a natural way in

A[G].
Let CPo: G -. A [G] be the map given by CPo(x) = 1. x. It is immediately

verified that CPo is a multiplicative monoid-homomorphism, and is in fact

injective, i.e. an embedding.
Let 10: A -. A[G] be the map given by

10 (a) = a. e.
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It is immediately verified that fo is a ring-homomorphism, and is also an

embedding. Thus we view A as a subring of A[G]. One calls A[G] the

monoid ring or monoid algebra of G over A, or the group algebra if G is a

group.

Examples. When G is a finite group and A = k is a field, then the group

ring kEG] will be studied in Chapter XVIII.

Polynomial rings are special cases of the above construction. In n vari-

ables, consider a multiplicative free abelian group of rank n. Let Xl' ...,
X

n

be generators. Let G be the multiplicative subset consisting of elements

X;l
...

X;" with Vi
> 0 for all i. Then G is a monoid, and the reader can

verify at once that A [G] is just A [Xl' ...,
X

n].

As a matter of notation we usually omit the dot in writing an element of

the ring A[G], so we write simply L axx for such an element.

More generally, let I = {i} be an infinite family of indices, and let S be

the free abelian group with free generators Xi' written multiplicatively. Then we

can form the polynomial ring A [X] by taking the monoid to consist of products

M(v)(X) = n Xi

Vi
,

i e I

where of course all but a finite number of exponents Vi are equal to o. If A is

a subring of the commutative ring B, and S is a subset of B, then we shall

also use the following notation. Let v: S -. N be a mapping which is 0 except

for a finite number of elements of S. We write

M(v)(S) = n x vex).
xeS

Thus we get polynomials in infinitely many variables. One interesting exam-

ple of the use of such polynomials will occur in Artin's proof of the existence

of the algebraic closure of a field, cf. Chapter V, Theorem 2.5.

We now consider the evaluation and reduction homomorphisms in the

present context of monoids.

Proposition 3.1. Let cp: G -. G' be a homomorphism of monoids. Then

there exists a unique homomorphism h: A [G] -. A [G'] such that h(x) =

cp(x) for all x E G and h(a) =
a for all a E A.

Proof In fact, let rx = L axx E A [G]. Define

h(rx) = L axcp(x).

Then h is immediately verified to be a homomorphism of abelian groups, and

h(x) = cp(x). Let p = L byY. Then

h(rxP) = C% axby) qJ(z).

We get h(rxP) = h(rx)h(P) immediately from the hypothesis that cp(xy) =
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qJ(X)qJ(Y). If e is the unit element of G, then by definition qJ(e) = e', so

Proposition 3.1 follows.

Proposition 3.2. Let G be a monoid and let f: A -+ B be a homomorphism

of commutative rings. Then there is a unique homomorphism

such that

h: A[G] -+ B[G]

h ( L axx) = L f(ax)x.
xeG xeG

Proof Since every element of A [G] has a unique expression as a sum

Laxx, the formula giving h gives a well-defined map from A[G] into B[G].
This map is obviously a homomorphism of abelian groups. As for multipli-
cation, let

Then

il = L axx and p = L byY.

heap) = ZGfCZ axby)Z
= L L f(ax)f(by)z

ze G
xy=z

= f(il)f(P).

We have trivially h(l) = 1, so h is a ring-homomorphism, as was to be

shown.

Observe that viewing A as a subring of A [G], the restriction of h to A is

the homomorphism f itself. In other words, if e is the unit element of G,

then

h(ae) = f(a)e.

4. LOCALIZATION

We continue to let A be a commutative ring.

By a multiplicative subset of A we shall mean a submonoid of A (viewed
as a multiplicative monoid according to RI 2). In other words, it is a subset

S containing 1, and such that, if x, YES, then xYES.
We shall now construct the quotient ring of A by S, also known as the

ring of fractions of A by S.

We consider pairs (a, s) with a E A and s E S. We define a relation

(a, s) (a', s')

between such pairs, by the condition that there exists an element Sl E S such
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that

S1 (s'a - sa') = O.

It is then trivially verified that this is an equivalence relation, and the

equivalence class containing a pair (a, s) is denoted by a/so The set of

equivalence classes is denoted by S-1 A.

Note that if 0 E S, then S-1 A has precisely one element, namely 0/1.
We define a multiplication in S-1 A by the rule

(a/s)(a'/s') = aa'/ss'.

It is trivially verified that this is well defined. This multiplication has a unit

element, namely 1/1, and is clearly associative.

We define an addition in S-1 A by the rule

a a's'a + sa'
-+-=
s s' ss'

It is trivially verified that this is well defined. As an example, we give the

proof in detail. Let a1/s1 = a/s, and let a;/s = a'/s'. We must show that

(s;a 1 + S1 a;)/s1s; = (s'a + sa')/ss'.

There exist S2, S3 E S such that

s2(sa 1
-

S1 a) = 0,

(
" , '

) 0S3 S a
1
-

S1 a =
.

We multiply the first equation by S3S'S; and the second by S2SS1. We then

add, and obtain

S2S3[s's(sa1-s1a)+ss1(s'a -sa')] =0.

By definition, this amounts to what we want to show, namely that there

exists an element of S (e.g. S2S3) which when multiplied with

ss'(s a 1 + S1 a;)
-

S1 s (s'a + sa')

yields O.

We observe that given a E A and s, s' E S we have

a/s = s'a/s's.

Thus this aspect of the elementary properties of fractions still remains true in

our present general context.

Finally, it is also trivially verified that our two laws of composition on

S-1 A define a ring structure.

We let

({Js: A S-1 A

be the map such that CPs<a)
= a/I. Then one sees at once that CPs IS a
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ring-homomorphism. Furthermore, every element of CfJs(S) is invertible In

S-1 A (the inverse of s/l is l/s).
Let e be the category whose objects are ring-homomorphisms

f: A -+ B

such that for every s E S, the element f(s) is invertible in B. If f: A -+ Band

f': A -+ B' are two objects of e, a morphism g of f into f' is a homo-

morphism

g: B -+ B'

making the diagram commutative:

A f) B

f\ f
B'

We contend that CfJs is a universal object in this category e.

Proof. Suppose that a/s = a'/s', or in other words that the pairs (a, s)
and (a', s') are equivalent. There exists S1 E S such that

s1(s'a - sa') = O.

Let f: A -+ B be an object of e. Then

f(S1) (f(s')f(a) - f(s)f(a')J = O.

Multiplying by f(s 1 )-1, and then by f(S')-1 and f(S)-1, we obtain

f(a)f(s)-1 = f(a')f(s')-1.

Consequently, we can define a map

h: S-1 A -+ B

such that h(a/s) = f(a)f(s)-1, for all a/s E S-1 A. It is trivially verified that h

is a homomorphism, and makes the usual diagram commutative. It is also

trivially verified that such a map h is unique, and hence that CfJs is the

required universal 0bject.

Let A be an entire ring, and let S be a multiplicative subset which does not

contain O. Then

CfJs: A -+ S-1 A

is injective.

Indeed, by definition, if a/I = 0 then there exists s E S such that sa = 0,

and hence a = o.

The most important cases of a multiplicative set S are the following:

1. Let A be a commutative ring, and let S be the set of invertible

elements of A (i.e. the set of units). Then S is obviously multiplicative, and is
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denoted frequently by A *. If A is a field, then A * is the multiplicative group

of non-zero elements of A. In that case, S-1 A is simply A itself.

2. Let A be an entire ring, and let S be the set of non-zero elements of A.

Then S is a multiplicative set, and S-1 A is then a field, called the quotient
field or the field of fractions, of A. It is then customary to identify A as a

subset of S-1 A, and we can write

als = S-l a

for a E A and s E S.

We have seen in 3 that when A is an entire ring, then A[X1 ,...,Xn J is

also entire. If K is the quotient field of A, the quotient field of A[X1 , ..., XnJ
is denoted by K(Xl' ...,

X
n). An element of K(Xl' ...,

X
n ) is called a rational

function. A rational function can be written as a quotient f(X)/g(X) where

f, g are polynomials. If (b 1 , . . .
, b

n ) is in K(n), and a rational function admits

an expression as a quotient fig such that g(b) =F 0, then we say that the

rational function is defined at (b). From general localization properties, we

see that when this is the case, we can substitute (b) in the rational function to

get a value f(b)/g(b).

3. A ring A is called a local ring if it is commutative and has a unique
maximal ideal. If A is a local ring and m is its maximal ideal, and x E A,

x m, then x is a unit (otherwise x generates a proper ideal, not contained in m,

which is impossible). Let A be a ring and p a prime ideal. Let S be the com-

plement of p in A. Then S is a multiplicative subset of A, and S-I A is denoted

by Ap. It is a local ring (cf. Exercise 3) and is called the local ring of A at p. Cf.

the examples of principal rings, and Exercises 15, 16.

Let S be a multiplicative subset of A. Denote by J(A) the set of ideals of

A. Then we can define a map

t/ls: J(A) -+ J(S-1A);

namely we let t/ls(a) = S-1 a be the subset of S-1 A consisting of all fractions

als with a E a and s E S. The reader will easily verify that S-1 a is an

S-1 A-ideal, and that t/ls is a homomorphism for both the additive and

multiplicative monoid structures on the set of ideals J(A). Furthermore, t/ls
also preserves intersections and inclusions; in other words, for ideals a, b of

A we have:

S-I(a + b) = S-1 a + S-1 b, S-I(ab) = (S-1 a)(S-1 b),

S-I(a n b) = S-1 an S-1 b.

As an example, we prove this last relation. Let x E a n b. Then xis is in

S-1 a and also in S-1 b, so the inclusion is trivial. Conversely, suppose we

have an element of S-1 A which can be written as als = bls' with a E a, b E b,
and s, s' E S. Then there exists s

1 E S such that

sl s 'a = slsb,
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and this element lies in both a and b. Hence

a/s = sls'a/s1s's

lies in S-l(anb), as was to be shown.

5. PRINCIPAL AND FACTORIAL RINGS

Let A be an entire ring. An element a =F 0 is called irreducible if it is not a

unit, and if whenever one can write a = be with b E A and e E A then b or e

is a unit.

Let a =F 0 be an element of A and assume that the principal ideal (a) is

prime. Then a is irreducible. Indeed, if we write a = be, then b or e lies in

(a), say b. Then we can write b = ad with some d E A, and hence a = acd.

Since A is entire, it follows that cd = 1, in other words, that e is a unit.

The converse of the preceding assertion is not always true. We shall

discuss under which conditions it is true. An element a E A, a =F 0, is said to

have a unique factorization into irreducible elements if there exists a unit u

and there exist irreducible elements Pi (i = 1, . . .
, r) in A such that

r

a = u n Pi'
i=l

and if given two factorizations into irreducible elements,

r s

a = u n Pi
= u' n qj,

i=l j=l

we have r = s, and after a permutation of the indices i, we have Pi
=

uiqi for

some unit Ui in A, i = 1, ...,
r.

We note that if P is irreducible and u is a unit, then up is also irreducible,

so we must allow multiplication by units in a factorization. In the ring
of integers Z, the ordering allows us to select a representative irreducible

element (a prime number) out of two possible ones differing by a unit,

namely + P, by selecting the positive one. This is, of course, impossible in

more general rings.

Taking r = 0 above, we adopt the convention that a unit of A has a

factorization into irreducible elements.

A ring is called factorial (or a unique factorization ring) if it is entire and if

every element =F 0 has a unique factorization into irreducible elements. We

shall prove below that a principal entire ring is factorial.

Let A be an entire ring and a, b E A, ab =F O. We say that a -divides band

write a I b if there exists e E A such that ac = b. We say that d E A, d =F 0, is a

greatest common divisor (g.c.d.) of a and b if dla, dlb, and if any element e

of A, e =f=. 0, which divides both a and b also divides d.
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Proposition 5.1. Let A be a principal entire ring and a, b E A, a, b =F O.

Let (a, b) = (c). Then c is a greatest common divisor of a and b.

Proof Since b lies in the ideal (c), we can write b = xc for some x E A,

so that clb. Similarly, cia. Let d divide both a and b, and write a = dy,
b = dz with y, z E A. Since c lies in (a, b) we can write

c = wa + tb

with some w, tEA. Then c = w dy + t dz = d(wy + tz), whence die, and our

proposition is proved.

Theorem 5.2. Let A be a principal entire ring. Then A is factorial.

Proof We first prove that every non-zero element of A has a factoriza-

tion into irreducible elements. Let S be the set of principal ideals =F 0 whose

generators do not have a factorization into irreducible elements, and suppose

S is not empty. Let (at) be in S. Consider an ascending chain

(at) (a2)
...

(an)
.. .

of ideals in S. We contend that such a chain cannot be infinite. Indeed, the

union of such a chain is an ideal of A, which is principal, say equal to (a).
The generator a must already lie in some element of the chain, say (an)' and

then we see that (an) c (a) c (all)' whence the chain stops at (an). Hence S is

inductively ordered, and has a maximal element (a). Therefore any ideal of A

containing (a) and -:1= (a) has a generator admitting a factorization.

We note that an cannot be irreducible (otherwise it has a factorization),
and hence we can write a = be with neither b nor c equal to a unit. But then

(b) -:1= (a) and (c) -:1= (a) and hence both b, c admit factorizations into irreducible

elements. The product of these factorizations is a factorization for a, contra-

dicting the assumption that S is not empty.
To prove uniqueness, we first remark that if p is an irreducible element of

A and a, b E A, plab, then pia or plb. Proof: If p a, then the g.c.d. of p, a

is 1 and hence we can write

1 =

xp + ya

with some x, YEA. Then b = bxp + yab, and since plab we conclude that

plb.

Suppose that a has two factorizations

a =

Pt
...

Pr
=

qt
...

qs

into irreducible elements. Since Pt divides the product farthest to the right,

Pt divides one of the factors, which we may assume to be qt after renum-

bering these factors. Then there exists a unit U t such that qt
=

UtPt. We

can now cancel Pt from both factorizations and get
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P2
...

Pr
= U 1 q 2

...

qs.

The argument is completed by induction.

We could call two elements a, b E A equivalent if there exists a unit u

such that a = bu. Let us select one irreducible element p out of each

equivalence class belonging to such an irreducible element, and let us denote

by P the set of such representatives. Let a E A, a =F O. Then there exists a

unit u and integers v(p) > 0, equal to 0 for almost all pEP such that

a = u n pV(P).
peP

Furthermore, the unit u and the integers v(p) are uniquely determined by a.

We call v(p) the order of a at p, also written ord
p

a.

If A is a factorial ring, then an irreducible element p generates a prime
ideal (p). Thus in a factorial ring, an irreducible element will also be called a

prime element, or simply a prime.
We observe that one can define the notion of least common multiple

(l.c.m.) of a finite number of non-zero elements of A in the usual manner: If

aI' ..., an E A

are such elements, we define a l.c.m. for these elements to be any C E A such

that for all primes p of A we have

ord
p

c = max ord
p ai.

i

This element C is well defined up to a unit.

If a, b E A are non-zero elements, we say that a, bare relaively prime if

the g.c.d. of a and b is a unit.

Example. The ring of integers Z is factorial. Its group of units consists

of 1 and - 1. It is natural to take as representative prime element the

positive prime element (what is called a prime number) p from the two

possible choices p and -

p. Similarly, we shall show later that the ring of

polynomials in one variable over a field is factorial, and one selects represen-

tatives for the prime elements to be the irreducible polynon1ials with leading
coefficient 1.

Examples. It will be proved in Chapter IV that if R is a factorial ring,
then the polynomial ring R [Xl' . . .

, Xn] in n variables is factorial. In partic-

ular, if k is a field, then the polynomial ring k[X1 , ..., Xn] is factorial. Note

that k[X1] is a principal ring, but for n > 2, the ring k[Xl' ..., Xn] is not

principal.
In Exercise 5 you will prove that the localization of a factorial ring is

factorial.

In Chapter IV, 9 we shall prove that the power series ring
k [[Xl'

. . .
, Xn]] is factorial. This result is a special case of the more general

statement that a regular local ring is factorial, but we do not define regular
local rings in this book. You can look them up in books on commutative
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algebra. I recommend:

H. MATSUMURA, Commutative Algebra, second edition, Benjamin-Cummings, New

York, 1980

H. MATSUMURA, Commutative Rings, Cambridge University Press, Cambridge,
UK, 1986

Examples from algebraic and complex geometry. Roughly speaking, reg-

ular local rings arise in the following context of algebraic or complex geom-

etry. Consider the ring of regular functions in the neighborhood of some

point on a complex or algebraic manifold. This ring is regular. A typical

example is the ring of convergent power series in a neighborhood of 0 in en.

In Chapter IV, we shall prove some results on power series which give some

algebraic background for those analytic theories, and which are used in

proving the factoriality of rings of power series, convergent or not.

Conversely to the above examples, singularities in geometric theories may

give rise to examples of non-factoriality. We give examples using notions

which are sufficiently basic so that readers should have encountered them in

more elementary courses.

Examples of non-factorial rings. Let k be a field, and let x be a variable

over k. Let R = k[x
2

,
x

3

]. Then R is not factorial (proof?). The ring R may

be viewed as the ring of regular functions on the curve y2 = x
3

,
which has a

singularity at the origin, as you can see by drawing its real graph.

Let R be the set of all numbers of the form a + b
, where a, b E Z.

Then the only units of Rare + 1, and the elements 3, 2 + ,
2 -

are irreducible elements, giving rise to a non-unique factorization

3
2

= (2 + )(2
-).

(Do Exercise 10.) Here the non-factoriality is not due to singularities but

due to a non-trivial ideal class group of R, which is a Dedekind ring. For a

definition see the exercises of Chapter III, or go straight to my book

Algebraic Number Theory, for instance.

As Trotter once pointed out (Math. Monthly, April 1988), the relation

sin
2

x = (1 + cos x)(l
-

cos x)

may be viewed as a non-unique factorization in the ring of trigonometric

polynomials R[sin x, cos x], generated over R by the functions sin x and

cos x. This ring is a subring of the ring of all functions, or of all differenti-

able functions. See Exercise 11.

EXERC1SES

We let A denote a commutative ring.

1. Suppose that 1 :F 0 in A. Let S be a multiplicative subset of A not containing o.

Let p be a maximal element in the set of ideals of A whose intersection with S is

empty. Show that p is prime.
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2. Let f: A A' be a surjective homomorphism of rings, and assume that A is local,

A' :F o. Show that A' is local.

3. Let p be a prime ideal of A. Show that A" has a unique maximal ideal, consisting
of all elements a/s with a E p and s p.

4, Let A be a principal ring and S a multiplicative subset with 0 S, Show that S-l A is

principal.

5. Let A be a factorial ring and S a multiplicative subset with 0 S. Show that S-l A is

factorial, and that the prime elements of S-l A are those primes p of A such that

(p) n S is empty.

6. Le! A be a factorial ring and p a prime element. Show that the local ring A(p) is

principal.

7. Let A be a principal nng and a
1 ,..., a" non-zero elements of A. Let

(a1, ..., a,,) = (d). Show that d is a greatest common divisor for the ai

(i = 1, .. .

, n).

8. Let p be a prime number, and let A be the ring Z/prz (r = integer > 1). Let G be

the group of units in A, i.e. the group of integers prime to p, modulo pro Show

that G is cyclic, except in the case when

p
= 2, r > 3,

in which case it is of type (2, 2
r
- 2

). [Hint: In the general case, show that G is

the product of a cyclic group generated by 1 + p, and a cyclic group of order

p
- 1. In the exceptional case, show that G is the product of the group { + 1 }

with the cyclic group generated by the residue class of 5 mod 2
r

.]

9. Let i be the complex number R. Show that the ring Z[i] is principal, and

hence factorial. What are the units?

10. Let D be an integer > 1, and let R be the set of all element a + b with

a, b E Z.

(a) Show that R is a ring.

(b) Using the fact that complex conjugation is an automorphism of C, show

that complex conjugation induces an automorphism of R.

(c) Show that if D > 2 then the only units in Rare + 1.

(d) Show that 3, 2 + R,
2 -R are irreducible elements in Z[R].

11. Let R be the ring of trigonometric polynomials as defined in the text. Show that

R consists of all functions f on R which have an expression of the form

"

f(x) = a
o + L (am cos mx + b

m
sin mx),

m=1

where ao, am, b
m

are real numbers. Define the trigonometric degree degtr(f) to be

the maximum of the integers r, s such that a
r ,

b
s :F o. Prove that

degtr(fg) = degtr(f) + degtr(g).

Deduce from this that R has no divisors of 0, and also deduce that the functions

sin x and 1 - cos x are irreducible elements in that ring.
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12. Let P be the set of positive integers and R the set of functions defined on P with

values in a commutative ring K. Define the sum in R to be the ordinary addition

of functions, and define the convolution product by the formula

(f * g)(m) = L f(x)g(y),
xy=m

where the sum is taken over all pairs (x, y) of positive integers such that xy
= m.

(a) Show that R is a commutative ring, whose unit element is the function such

that (1) = 1 and (x) = 0 if x :F 1.

(b) A function f is said to be multiplicative if f(mn) = f(m)f(n) whenever m, n are

relatively prime. If f, g are multiplicative, show that f * g is multiplicative.

(c) Let J1. be the Mobius function such that J1.(I) = 1, J1.(Pt
...

Pr) = (_I)r if Pt, ..., Pr

are distinct primes, and J1.(m) = 0 if m is divisible by p2 for some prime p.

Show that J1. * tpt
= , where tpt denotes the constant function having value

1. [Hint: Show first that J1. is multiplicative, and then prove the assertion

for prime powers.] The Mobius inversion formula of elementary number

theory is then nothing else but the relation J1. * tpt * f = f.

Oedekind rings

Prove the following statements about a Dedekind ring o. To simplify terminology,

by an ideal we shall mean non-zero ideal unless otherwise specified. We let K

denote the quotient field of o.

13. Every ideal is finitely generated. [Hint: Given an ideal a, let b be the fractional

ideal such that ab = o. Write 1 = L aibi with ai E a and bi E b. Show that

a = (at, ..., all).]

14. Every ideal has a factorization as a product of prime ideals, uniquely determined

up to permutation.

15. Suppose 0 has only one prime ideal p. Let t E P and t p2. Then p
= (t) is

principal.

16. Let 0 be any Dedekind ring. Let p be a prime ideal. Let 0" be the local ring at

p. Then 0" is Dedekind and has only one prime ideal.

17. As for the integers, we say that alb (a divides b) if there exists an ideal c such that

b = ac. Prove:

(a) alb if and only if b c a.

(b) Let a, b be ideals. Then a + b is their greatest common divisor. In particular,

a, b are relatively prime if and only if a + b = o.

18. Every prime ideal p is maximal. (Remember, p :F 0 by convention.) In particular,
if PI' ..., PII are distinct primes, then the Chinese remainder theorem applies to

h
.

'1 r

U h
.

t elr powers PI' ..., PII". se t IS to prove:

19. Let a, b be ideals. Show that there exists an element C E K (the quotient field of

0) such that ca is an ideal relatively prime to b. In particular, every ideal class in

Pic(o) contains representative ideals prime to a given ideal.

For a continuation, see Exercise 7 of Chapter VII.



CHAPTER III

Modules

Although this chapter is logically self-contained and prepares for future topics,
in practice readers will have had some acquaintance with vector spaces over a

field . We generalize this notion here to modules over rings. It is a standard fact

(to be reproved) that a vector space has a basis, but for modules this is not always
the case. Sometimes they do; most often they do not. We shall look into cases

where they do.

For examples of modules and their relations to those which have a basis, the

reader should look at the comments made at the end of 4.

1. BASIC DEFINITIONS

Let A be a ring. A left module over A, or a left A-module M is an abelian

group, usually written additively, together with an operation of A on M (viewing
A as a multiplicative monoid by RI 2), such that, for all Q, b E A and x, y E M

we have

(a + b)x = ax + bx and a(x + y) = ax + aYe

We leave it as an exercise to prove that a( -x) = -(ax) and that Ox = O. By
definition of an operation, we have 1 x = x.

In a similar way, one defines a right A-module. We shall deal only with left

A-modules, unless otherwise specified, and hence call these simply A-modules,
or even modules if the reference is clear.

117
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Let M be an A-module. By a submodule N of M we mean an additive sub-

group such that AN c N. Then N is a module (with the operation induced by
that of A on M).

Examples
We note that A is a module over itself.

Any commutative group is a Z-module.

An additive group consisting of 0 alone is a module over any ring.

Any left ideal of A is a module over A.

Let} be a two-sided ideal of A. Then the factor ring AI} is actually a module

over A. If a E A and a + } is a coset of } in A, then one defines the operation
to be a (x + }) =

ax + }. The reader can verify at once that this defines a module

structure on AI}. More general, if M is a module and N a submodule, we shall

define the factor module below. Thus if L is a left ideal of A, then AlLis also

a module. For more examples in this vein, see 4.

A module over a field is called a vector space. Even starting with vector

spaces, one is led to consider modules over rings. Indeed, let V be a vector space

over the field K. The reader no doubt already knows about linear maps (which

will be recalled below systematically). Let R be the ring of all linear maps of V

into itself. Then V is a module over R. Similarly, if V = K
n

denotes the vector

space of (vertical) n-tuples of elements of K, and R is the ring of n x n matrices

with components in K, then V is a module over R. For more comments along
these lines, see the examples at the end of 2.

Let S be a non-empty set and M an A-module. Then the set of maps

Map(S, M) is an A-module. We have already noted previously that it is a com-

mutative group, and for f E Map(S, M), a E A we define af to be the map

such that (aj)(s) = af(s). The axioms for a module are then trivially verified.

For further examples, see the end of this section.

For the rest of this section, we deal with a fixed ring A, and hence may omit

the prefix A -.

Let A be an entire ring and let M be an A-module. We define the torsion

submodule M
tor

to be the subset of elements x E M such that there exists

a E A, a =f=. 0 such that ax
= o. It is immediately verified that M

tor
is a submodule.

Its structure in an important case will be determined in 7 .

Let a be a left ideal, and M a module. We define aM to be the set of all

elements

atXt + . . . + anxn

with ai E a and Xi E M. It is obviously a submodule of M. If a, b are left ideals,
then we have associativity, namely

a{bM) = {ab)M.
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We also have some obvious distributivities, like (a + b)M = aM + bM. If

N, N' are submodules of M, then a(N + N') = aN + aN'.

Let M be an A-module, and N a submodule. We shall define a module

structure on the factor group M/N (for the additive group structure). Let

x + N be a coset of N in M, and let a E A. We define a(x + N) to be the

coset ax + N. It is trivial to verify that this is well defined (i.e. if y is in the

same coset as x, then ay is in the same coset as ax), and that this is an opera-

tion of A on M/N satisfying the required condition, making M/N into a

module, called the factor module of M by N.

By a module-homomorphism one means a map

f: M -. M'

of one module into another (over the same ring A), which is an additive group-

homomorphism, and such that

f(ax) = af(x)

for all a E A and x E M. It is then clear that the collection of A-modules is a

category, whose morphisms are the module-homomorphisms usually also

called homomorphisms for simplicity, if no confusion is possible. If we wish

to refer to the ring A, we also say that f is an A-homomorphism, or also that

it is an A-linear map.

If M is a module, then the identity map is a homomorphism. For any

module M', the map (: M -. M' such that (x) = 0 for all x EM is a homo-

morphism, called zero.

In the next section, we shall discuss the homomorphisms of a module into

itself, and as a result we shall give further examples of modules which arise in

practice. Here we continue to tabulate the translation of basic properties of groups

to modules.

Let M be a module and N a submodule. We have the canonical additive

group-homomorphism

f:M -. M/N

and one verifies trivially that it is a module-homomorphism.

Equally trivially, one verifies that f is universal in the category of homo-

morphisms of M whose kernel contains N.

If f: M -. M' is a module-homomorphism, then its kernel and image are

submodules ofM and M' respectively (trivial verification).

Let!: M M' be a homomorphism. By the cokernel of!we mean the factor

module M'/Im! = M' /!(M). One may also mean the canonical homomorphism
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M' M'/!(M) rather than the module itself. The context should make clear

which is meant. Thus the cokernel is a factor module of M' .

Canonical homomorphisms discussed in Chapter I, 3 apply to modules

mutatis mutandis. For the convenience of the reader, we summarise these

homomorphisms:

Let N, N' be two submodules of a module M. Then N + N' is also a sub-

module, and we have an isomorphism

Nj(N n N') (N + N')jN'.

IfM ::J M' ::J Mil are modules, then

(MjM")j(M'jM") MjM'.

Iff: M -. M' is a module-homomorphism, and N' is a submodule of M', then

f
-

l(N') is a submodule ofM and we have a canonical injective homomorphism

J:Mjf-l(N') -. M'jN'.

Iff is surjective, then J is a module-isomorphism.

The proofs are obtained by verifying that all homomorphisms which ap-

peared when dealing with abelian groups are now A-homomorphisms of

modules. We leave the verification to the reader.

As with groups, we observe that a module-homomorphism which is bijective
is a module-isomorphism. Here again, the proof is the same as for groups,

adding only the observation that the inverse map, which we know is a group-

isomorphism, actually is a module-isomorphism. Again, we leave the verifica-

tion to the reader.

As with abelian groups, we define a sequence of module-homomorphisms

M' 1. M Mil

to be exact if Imf = Ker g. We have an exact sequence associated with a

submodule N of a module M, namely

o -. N -. M -. MjN -. 0,

the map of N into M being the inclusion, and the subsequent map being the

canonical map. The notion of exactness is due to Eilenberg-Steenrod.
If a homomorphism u : N -. M is such that

O-.NM

is exact, then we also say that u is a monomorphism or an embedding. Dually,
if

u

N-.M-.O

is exact, we say that u is an epimorphism.
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Algebras

There are some things in mathematics which satisfy all the axioms of a ring

except for the existence of a unit element. We gave the example of L} (R) in

Chapter II, 1. There are also some things which do not satisfy associativity,
but satisfy distributivity. For instance let R be a ring, and for x, y E R define

the bracket product
[x, y]

=

xy
-

yx .

Then this bracket product is not associative in most cases when R is not com-

mutative, but it satisfies the distributive law.

Examples. A typical example is the ring of-differential operators with Coo

coefficients, operating on the ring of Coo functions on an open set in R n. The

bracket product

[D}, D2] =

D} 0 D2
- D2

0 D}

of two differential operators is again a differential operator. In the theory of Lie

groups, the tangent space at the origin also has such a bracket product.

Such considerations lead us to define a more general notion than a ring. Let

A be a commutative ring. Let E, F be modules. By a bilinear map

g: E x E F

we mean a map such that given x E E, the map y .-..+ g(x, y) is A-linear, and

given y E E, the map x g(x, y) is A-linear. By an A-algebra we mean a

module together with a bilinear map g: E x E E. We view such a map as a

law of composition on E. But in this book, unless otherwise specified, we shall

assume that our algebras are associative and have a unit element.

Aside from the examples already mentioned, we note that the group ring

A[G] (or monoid ring when G is a monoid) is an A-algebra, also called the group

(or monoid) algebra. Actually the group algebra can be viewed as a special
case of the following situation.

Let f: A B be a ring-homomorphism such that f(A) is contained in the

center of B, i.e.,f(a) commutes with every element of B for every a EA. Then

we may view B as an A-module, defining the operation of A on B by the map

(a, b) f(a)b

for all a E A and b E B. The axioms for a module are trivially satisfied, and the

multiplicative law of composition B x B B is clearly bilinear (i.e., A-bilinear).

In this book, unless otherwise specified, by an algebra over A, we shall always
mean a ring-homomorphism as above. We say that the algebra is finitely gen-

erated if B is finitely generated as a ring over f(A).
Several examples of modules over a polynomial algebra or a group algebra

will be given in the next section, where we also establish the language of

representations.
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2. THE GROUP OF HOMOMORPHISMS

Let A be a ring, and let X, X' be A-modules. We denote by HomA(X', X)
the set of A-homomorphisms of X' into X. Then HomA(X', X) is an abelian

group, the law of addition being that of addition for mappings into an abelian

group.

If A is commutative then we can make HomA(X', X) into an A-module, by

defining affor a E A andfE HomA(X', X) to be the map such that

(af)(x) = af(x).

The verification that the axioms for an A-module are satisfied is trivial. However,

if A is not commutative, then we view HomA(X', X) simply as an abelian group:

We also view HomA as a functor. It is actually a functor of two variables,
contravariant in the first and covariant in the second. Indeed, let Y be an

A-module, and let

X' !. X

be an A-homomorphism. Then we get an induced homomorphism

HomACt: Y): HomA(X, Y) -. HomA(X', Y)

(reversing the arrow!) given by

ggof

This is illustrated by the following sequence of maps:

X' !. X Y.

The fact that HomACt: Y) is a homomorphism is simply a rephrasing of the

property (g 1 + g2) 0 f =

g 1
0 f + g2

0 f, which is trivially verified. If f = id,
then composition withfacts as an identity mapping on g, i.e. g

0 id =

g.

If we have a sequence of A-homomorphisms

X' -. X -. X",

then we get an induced sequence

HomA(X', Y) HomA(X, Y) HomA(X", Y).

Proposition 2.1. A sequence

X' X -. X" -. 0

is exact if and only if the sequence

HomA(X', Y) HomA(X, Y) HomA(X", Y) 0

is exact for all Y.
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Proof This is an important fact, whose proof is easy. For instance,

suppose the first sequence is exact. If g : X" -+ Y is an A-homomorphism, its

image in HomA(X, Y) is obtained by composing g with the surjective map of

X on X". If this composition is 0, it follows that g
= 0 because X -+ X" is

surjective. As another example, consider a homomorphism g: X -+ Y such

that the composition

X' !. X !!. Y

is O. Then g vanishes on the image of A.. Hence we can factor g through the

factor module,

XIIm A.

I
X

9
Y

Since X -+ X" is surjective, we have an isomorphism

X/lm A. +-+ X".

Hence we can factor g through X", thereby showing that the kernel of

HomA(X', Y) HomA(X, Y)

is contained in the image of

HomA(X, Y) HomA(X", Y).

The other conditions needed to verify exactness are left to the reader. So is the

converse.

We have a similar situation with respect to the second variable, but then

the functor is covariant. Thus if X is fixed, and we have a sequence of A-

homomorphisms

Y' -+ Y -+ Y",

then we get an induced sequence

HomA(X, Y') -+ HomA(X, Y) -+ HomA(X, Y").

Proposition 2.2. A sequence

o -+ Y' -+ Y -+ Y",

is exact if and only if

o -+ HomA(X, Y') -+ HomA(X, Y) -+ HomA(X, Y")

is exact for all X.
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The verification will be left to the reader. It follows at once from the defini-

tions.

We note that to say that

o Y' Y

is exact means that Y' is embedded in Y, i.e. is isomorphic to a submodule of

Y. A homomorphism into Y' can be viewed as a homomorphism into Y if we

have Y' c: Y. This corresponds to the injection

o HomA(X, Y') HomA(X, Y).

Let Mod(A) and Mod(B) be the categories of modules over rings A and B,

and let F: Mod(A) Mod(B) be a functor. One says that F is exact if F

transforms exact sequences into exact sequences. We see that the Horn

functor in either variable need not be exact if the other variable is kept fixed.

In a later section, we define conditions under which exactness is preserved.

Endomorphisms. Let M be an A-module. From the relations

(g1 + g2) 0 I =

g1
0 I + g2

0 I

and its analogue on the right, namely

g
0 (/1 + 12) =

g 011 + g 0/2,

and the fact that there is an identity for composition, namely idM ,
we conclude

that HomA(M, M) is a ring, the multiplication being defined as composition
of mappings. If n is an integer > 1, we can write In to mean the iteration

of I with itself n times, and define 1° to be ide According to the general
definition of endomorphisms in a category, we also write EndA(M) instead of

HomA(M, M), and we call EndA(M) the ring of endomorphisms.
Since an A-module M is an abelian group, we see that Homz(M, M) (= set

of group-homomorphisms of M into itself) is a ring, and that we could have

defined an operation of A on M to be a ring-homomorphism A Homz(M, M).
Let A be commutative. Then M is a module over EndA(M). If R is a subring

of EndA(M) then M is a fortiori a module over R. More generally, let R be a

ring and let p: R EndA(M) be a ring homomorphism. Then p is called a

representation of R on M. This occurs especially if A = K is a field. The linear

algebra of representations of a ring will be discussed in Part III, in several

contexts, mostly finite-dimensional. Infinite-dimensional examples occur in anal-

ysis, but then the representation theory mixes algebra with analysis, and thus

goes beyond the level of this course.

Example. Let K be a field and let V be a vector space over K. Let

D: V V be an endomorphism (K-linear map). For every polynomial
P(X) E K[X], P(X) = L a;X

i
with a; E K, we can define
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P(D) = La;D;: v V

as an er:tdomorphism of V. The association P(X) P(D) gives a representation

p: K[X] EndK(V),

which makes V into a K[X]-module. It will be shown in Chapter IV that K[X]
is a principal ring. In 7 we shall give a general structure theorem for modules

over principal rings, which will be applied to the above example in the context

of linear algebra for finite-dimensional vector spaces in Chapter XIV, 3. Readers

acquainted with basic linear algebra from an undergraduate course may wish to

read Chapter XIV already at this point.

Examples for infinite-dimensional vector spaces occur in analysis. For

instance, let V be the vector space of complex-valued Coo functions on R. Let

D = d/dt be the derivative (if t is the variable). Then D: V V is a linear map,

and C[X] has the representation p: C[X] Endc(V) given by P P(D). A

similar situation exists in several variables, when we let V be the vector space

of Coo functions in n variables on an open set of R n. Then we let D;
= a/ati be

the partial derivative with respect to the i -th variable (i = 1, . . .

, n). We obtain

a representation

p: C[X}, . . .

, Xn] Endc(V)

such that p(Xi )
= Di .

Example. Let H be a Hilbert space and let A be a bounded hermitian oper-

ator on A. Then one considers the homomorphism R[X] R[A] C End(H),
from the polynomial ring into the algebra of endomorphisms of H, and one

extends this homomorphism to the algebra of continuous functions on the spec-

trum of A. ct. my Real and Functional Analysis, Springer Verlag, 1993.

Representations form a category as follows. We define a morphism of a

representation p: R EndA(M) into a representation p': R EndA(M'), or in

other words a homomorphism of one representation of R to another, to be

an A-module homomorphism h: M M' such that the following diagram is

commutative for every a E R:

M

p(a)j
M

h
) M'

jp'(a)

) M'
h

In the case when h is an isomorphism, then we may replace the above diagram

by the commutative diagram

EndA(M)

R
Y

j[hI

EndA(M')
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where the symbol [h] denotes conjugation by h, i.e. for f E EndA(M ) we have

[h]f = h 0 f 0 h-
l

.

Representations: from a monoid to the monoid algebra. Let G be a

monoid. By a representation of G on an A-module M, we mean a homomor-

phism p: G EndA(M) of G into the multiplicative monoid of EndA(M). Then

we may extend p to a homomorphism of the monoid algebra

A[G] EndA(M),

by letting

P( L axx) = L axp(x).
XEG XEG

It is immediately verified that this extension of ptoA[G] is a ring homomorphism,

coinciding with the given p on elements of G.

Examples: modules over a group ring. The next examples will follow a

certain pattern associated with groups of automorphisms. Quite generally, sup-

pose we have some category of objects, and to each object K there is associated

an abelian group F(K), functorially with respect to isomorphisms. This means

that if u: K K' is an isomorphism, then there is an associated isomorphism

F(u): F(K') F(K') such that F(id) = id and F(UT) = F(u) 0 F(T). Then the

group of automorphisms Aut(K) of an object operates on F(K); that is, we have

a natural homomorphism

Aut(K) Aut(F(K)) given by u F(u).

Let G = Aut(K). Then F(K) (written additively) can be made into a module

over the group ring Z[G] as above. Given an element a = L auu E Z[G], with

au E Z, and an element x E F(K), we define

ax
= L auF(u)x.

The conditions defining a module are trivially satisfied. We list several concrete

cases from mathematics at large, so there are no holds barred on the terminology.

Let K be a number field (i.e. a finite extension of the rational numbers). Let

G be its group of automorphisms. Associated with K we have the following

objects:

the ring of algebraic integers OK;

the group of units Ok;

the group of ideal classes C(K);

the group of roots of unity (K).

Then G operates on each of those objects, and one problem is to determine the

structure of these objects as Z[G]-modules. Already for cyclotomic fields this
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determination gives rise to substantial theories and to a number of unsolved

problems.

Suppose that K is a Galois extension of k with Galois group G (see Chapter
VI). Then we may view K itself as a module over the group ring k[G]. In Chapter
VI, 13 we shall prove that K is isomorphic to k[G] as module over k[G] itself.

In topology, one considers a space Xo and a finite covering X. Then Aut(X/Xo)
operates on the homology of X, so this homology is a module over the group

rIng.

With more structure, suppose that X is a projective non-singular variety, say

over the complex numbers. Then to X we can associate:

the group of divisor classes (Picard group) Pic(X);

in a given dimension, the group of cycle classes or Chow group CHP(X);

the ordinary homology of X;

the sheaf cohomology in general.

If X is defined over a field K finitely generated over the rationals, we can

associate a fancier cohomology defined algebraically by Grothendieck, and func-

torial with respect to the operation of Galois groups.

Then again all these objects can be viewed as modules over the group ring
of automorphism groups, and major problems of mathematics consist in deter-

mining their structure. I direct the reader here to two surveys, which contain

extensive bibliographies.

[CCFT 91] P. CAssou-NoGUES, T. CHINBURG, A. FROHLICH, M. J. TAYLOR,

L-functions and Galois modules, in L1unctions and Arithmetic J. Coates

and M, J, Taylor (eds,), Proceedings of the Durham Symposium July 1989,
London Math, Soc. Lecture Note Series 153, Cambridge University Press

(1991), pp, 75-139

[La 82] S, LANG, Units and class groups in number theory and algebraic geometry,
Bull. AMS Vol. 6 No.3 (1982), pp. 253-316

3. DIRECT PRODUCTS AND

SUMS OF MODULES

Let A be a ring. Let {M;hEI be a family of modules. We defined their direct

product as abelian groups in Chapter I, 9. Given an element (X;);EI of the direct

product, and a E A, we define a(x;)
=

(ax;). In other words, we multiply by an

element a c0mponentwise. Then the direct product 11M; is an A-module. The

reader will verify at once that it is also a direct product in the category of

A-modules.
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Similarly, let

M = EB Mi

i e I

be their direct sum as abelian groups. We define on M a structure of A-module:

If (XJiel is an element of M, i.e. a family of elements Xi E Mi such that Xi
= 0

for almost all i, and if a E A, then we define

a(xJiel = (axJiel,

that is we define multiplication by a componentwise. It is trivially verified that

this is an operation of A on M which makes M into an A-module. If one refers

back to the proof given for the existence of direct sums in the category of abelian

groups, one sees immediately that this proof now extends in the same way to

show that M is a direct sum of the family {Mi}iel as A-modules. (For instance,

the map

Aj:Mj-.M

such that A.J{x) has j-th component equal to X and i-th component equal to 0

for i i= j is now seen to be an A-homomorphism.)
This direct sum is a coproduct in the category of A-modules. Indeed,

the reader can verify at once that given a family of A-homomorphisms

{Ii: Mi N}, the map I defined as in the proof for abelian groups is also an A-

isomorphism and has the required properties. See Proposition 7.1 of Chapter I.

When I is a finite set, there is a useful criterion for a module to be a direct

product.

Proposition 3.1. Let M be an A-module and n an integer > 1. f'or each

i = 1,..., n let C{Ji : M -. M be an A-homomorphism such that

n

L C{Ji
= id and C{Ji

0

C{Jj
= 0

i = 1

if i i= j.

Then C{Jf = C{Jifor all i. Let Mi
= C{Ji(M), and let C{J: M -. n Mi be such that

C{J(x) = (C{Jt(x), . . .
, C{Jn(x)).

Then C{J is an A-isomorphism of M onto the direct product n Mi.

Proof For eachj, we have

n

C{Jj
=

C{Jj
0 id =

C{Jj
0 L C{Ji

=

C{Jj
0

C{Jj
= C{Jf,

i = 1

thereby proving the first assertion. It is clear that C{J is an A-homomorphism.
Let X be in its kernel. Since

n

X = id(x) = L C{Ji(X)
i =. t
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we conclude that x = 0, so ({J is injective. Given elements Yi E Mi for each

i = 1, ..., n, let x =

Yt + .. . + Yn. We obviously have ({JJ{Yi) = 0 if i =F j.
Hence

({Jj(x) =

Yj

for each j = 1,..., n. This proves that ({J is surjective, and concludes the proof
of our proposition.

We observe that when I is a finite set, the direct sum and the direct product
are equal.

Just as with abelian groups, we use the symbol Et> to denote direct sum.

Let M be a module over a ring A and let S be a subset of M. By a linear

combination of elements of S (with coefficients in A) one means a sum

Laxx
xeS

where {ax} is a set of elements of A, almost all of which are equal to O. These

elements ax are called the coefficients of the linear combination. Let N be

the set of all linear combinations of elements of S. Then N is a submodule of

M, for if

L axx and

xeS

Lbxx
xeS

are two linear combinations, then their sum is equal to

L (ax + bx)x,
xeS

and if C E A, then

C ( L axx) = L caxx,
xeS xeS

and these elements are again linear combinations of elements of S. We shall call

N the submodule generated by S, and we call S a set of generators for N. We

sometimes write N = A (S). If S consists of one element x, the module generated

by x is also written Ax, or simply (x), and sometimes we say that (x) is a principal
module.

A module M is said to be finitely generated, or of finite type, or finite over

A, if it has a finite number of generators.

A subset S of a module M is said to be linearly independent (over A) if when-

ever we have a linear combination

Laxx
xeS
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which is equal to 0, then ax
= 0 for all XES. If S is linearly independent and if

two linear combinations

L axx and L bxx

are equal, then ax
= b

x
for all XES. Indeed, subtracting one from the other

yields L (ax - bx)x = 0, whence ax
- b

x
= 0 for all x. If S is linearly indepen-

dent we shall also say that its elements are linearly independent. Similarly, a

family {Xi}iel of elements of M is said to be linearly independent if whenever we

have a linear combination

a.x. = 0
I I ,

i e I

then ai
= 0 for all i. A subset S (resp. a family {Xi}) is called linearly dependent

if it is not linearly independent, i.e. if there exists a relation

L axx
= 0 resp.

xeS

"
a.x. = 0

I I

i e I

with not all ax (resp. ai) = O. Warning. Let x be a single element of M which

is linearly independent. Then the family {Xi} i = 1, ..., n
such that Xi

= X for all i

is linearly dependent if n > 1, but the set consisting of X itself is linearly inde-

pendent.
Let M be an A-module, and let {Mi}iel be a family of submodules. Since

we have inclusion-homomorphisms

Ai : Mi
-+ M

we have an induced homomorphism

A. : EB Mi
-+ M

which is such that for any family of elements (Xi)i e I' all but a finite number of

which are 0, we have

A.«Xi)) = LXi.
i e I

If A. is an isomorphism, then we say that the family {MJ i e I is a direct sum

decomposition of M. This is obviously equivalent to saying that every element

of M has a unique expression as a sum

LXi

with Xi E Mb and almost all Xi
= O. By abuse of notation, we also write

M = EB Mi

in this case.
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If the family {Mi } is such that every element of M has some expression as a

sum L Xi (not necessarily unique), then we write M = L Mi. In any case, if

{M;} is an arbitrary family of submodules, the image of the homomorphism A..
above is a submodule of M, which will be denoted by L Mi.

If M is a module and N, N' are two submodules such that N + N' = M

and N (\ N' = 0, then we have a module-isomorphism

M N ffi N',

just as with abelian groups, and similarly with a finite number of submodules.

We note, of course, that our discussion of abelian groups is a special case

of our discussion of modules, simply by viewing abelian groups as modules

over Z. However, it seems usually desirable (albeit inefficient) to develop first

some statements for abelian groups, and then point out that they are valid

(obviously) for modules in general.
Let M, M', N be modules. Then we have an isomorphism of abelian groups

HomA(M ffi M', N) A HomA(M, N) x HomA(M', N),

and similarly

HomA(N, M x M') A HomA(N, M) x HomA(N, M').

The first one is obtained as follows. Iff: M ffi M' -. N is a homomorphism,

thenfinduces a homomorphismf1 : M -. N and a homomorphismf2 : M' -. N

by composing f with the injections of M and M' into their direct sum re-

spectively:

M -. M ffi {O} c M ffi M' !. N,

M' -. {O} ffi M' c M ffi M' !. N.

We leave it to the reader to verify that the association

f(fbf2)

gives an isomorphism as in the first box. The isomorphism in the second box

is obtained in a similar way. Given homomorphisms

f1 : N M

and

f2 : N -. M'
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we have a homomorphism f: N -+ M x M' defined by

f(x) = (fl(X),f2(X)).

I t is trivial to verify that the association

(fbf2) f

gives an isomorphism as in the second box.

Of course, the direct sum and direct product of two modules are isomorphic,
but we distinguished them in the notation for the sake of functoriality, and to

fit the infinite case, see Exercise 22.

Propoition 3.2. Let 0 -+ M' 1. M !!.. Mil -+ 0 be an exact sequence of
modules. The following conditions are equivalent:

1. There exists a homomorphism cp : Mil -+ M such that g
0

cp
= ide

2. There exists a homomorphism 1/1 : M -+ M' such that 1/1 0f = ide

If these conditions are satisfied, then we have isomorphisms:

M = Imfffi Ker 1/1, M = Ker g ffi 1m cp,

M M' ffi Mil.

Proof. Let us write the homomorphisms on the right:

M #. Mil -+ O.
qJ

Let x E M. Then

x
- qJ(g(x))

is in the kernel of g, and hence M = Ker g + 1m qJ.

This sum is direct, for if

x=y+z

with y E Ker g and z E 1m qJ, Z = qJ(w) with w E Mil, and applying g yields

g(x) = w. Thus w is uniquely determined by x, and therefore z is uniquely
determined by x. Hence so is y, thereby proving the sum is direct.

The arguments concerning the other side of the sequence are similar and

will be left as exercises, as well as the equivalence between our conditions. When

these conditions are satisfied, the exact sequence of Proposition 3.2 is said to

split. One also says that fjJ splits f and cp splits g.
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Abelian categories

Much in the theory of modules over a ring is arrow-theoretic. In fact, one

needs only the notion of kernel and cokernel (factor modules). One can axi-

omatize the special notion of a category in which many of the arguments are

valid, especially the arguments used in this chapter. Thus we give this axi-

omatization now, although for concreteness, at the beginning of the chapter,
we continue to use the language of modules. Readers should strike their own

balance when they want to slide into the more general framework.

Consider first a category C1 such that Mor(E, F) is an abelian group for

each pair of objects E, F of C1, satisfying the following two conditions:

AD 1. The law of composition of morphisms is bilinear, and there exists

a zero object 0, i.e. such that Mor(O, E) and Mor(E, 0) have precisely
one element for each object E.

AD 2. Finite products and finite coproducts exist in the category.

Then we say that C1 is an additive category.
Given a morphism E 1. F in C1, we define a kernel off to be a morphism

E' -+ E such that for all objects X in the category, the following sequence is

exact:

o Mor(X, E') --+ Mor(X, E) -+ Mor(X, F).

We define a cokernel for fto be a morphism F --+ F" such that for all objects X

in the category, the following sequence is exact:

o Mor(F", X) Mor(F, X) Mor(E, X).

It is immediately verified that kernels and cokernels are universal in a suitable

category, and hence uniquely determined up to a unique isomorphism if they
exist.

AD 3. Kernels and cokernels exist.

AD 4. If j : E -+ F is a morphism whose kernel is 0, then j is the kernel

of its cokernel. If r: E F is a morphism whose cokernel is 0,
then f is the cokernel of its kernel. A morphism whose kernel

and cokernel are 0 is an isomorphism.

A category a satisfying the above four axioms is. called an abeUan category.

In an abelian caegory, the group of morphisms is usually denoted by Horn,

so for two objects E, F we write

Mor(E, F) = Hom(E, F).

The morphisms are usually called homomorphisms. Given an exact sequence

o -+ M' --+ M,
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we say that M' is a subobject of M, or that the homomorphism of M' into M is a

monomorphism. Dually, in an exact sequence

M -+ Mil -+ 0,

we say that Mil is a quotient object of M, or that the homomorphism of M to

Mil is an epimorphism, instead of saying that it is surjective as in the category of

modules. Although it is convenient to think of modules and abelian groups to

construct proofs, usually such proofs will involve only arrow-theoretic argu-

ments, and will therefore apply to any abelian category. However, all the abelian

categories we shall meet in this book will have elements, and the kernels and

cokernels will be defined in a natural fashion, close to those for modules, so

readers may restrict their attention to these concrete cases.

Examples of abeUan categories. Of course, modules over a ring form an

abelian category, the most common one. Finitely generated modules over a

Noetherian ring form an abelian category, to be studied in Chapter X.

Let k be a field. We consider pairs (V, A) consisting of a finite-dimensional

vector space V over k, and an endomorphism A: V V. By a homomorphism

(morphism) of such pairs f: (V, A) (W, B) we mean a k-homomorphism

f: V W such that the following diagram is commutative:

V
f

) W

Aj jB
V

f

) W

It is routinely verified that such pairs and the above defined morphisms form an

abelian category. Its elements will be studied in Chapter XIV.

Let k be a field and let G be a group. Let Modk(G) be the category of finite-

dimensional vector spaces V over k, with an operation of G on V, i.e. a homo-

morphism G Autk(V). A homomorphism (morphism) in that category is a k-

homomorphism f: V W such that f(ax)
=

af(x) for all x E V and a E G. It

is immediate that Modk(G) is an abelian category. This category will be studied

especially in Chapter XVIII.

In Chapter XX, 1 we shall consider the category of complexes of modules

over a ring. This category of complexes is an abelian category.

In topology and differential geometry, the category of vector bundles over

a topological space is an abelian category.

Sheaves of abelian groups over a topological space form an abelian category,

which will be defined in Chapter XX, 6.
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4. FREE MODULES

Let M be a module over a ring A and let S be a subset of M. We shall say that

S is a basis ofM if S is not empty, if S generates M, and if S is linearly independent.
If S is a basis of M, then in particular M =F {O} if A =F {O} and every element of

M has a unique expression as a linear combination of elements of S. Similarly,
let {X;}iel be a non-empty family of elements of M. We say that it is a basis of

M if it is linearly independent and generates M.

If A is a ring, then as a module over itself, A admits a basis, consisting of the

unit element 1.

Let I be a non-empty set, and for each i E I, let Ai = A, viewed as an A-

module. Let

p'= ffiA i .

i e 1

Then F admits a basis, which consists of the elements ei of F whose i-th com-

ponent is the unit element of Ai' and having all other components equal to O.

By a free module we shall mean a module which admits a basis, or the zero

module.

Theorem 4.1. Let A be a ring and M a module over A. Let I be a non-empty

set, and let {Xi}iel be a basis of M. Let N be an A-module, and let {Yi}iel
be a family of elements of N. Then there exists a unique homomorphism

f: M -. N such that f(Xi) =

Yi for all i.

Proof Let x be an element of M. There exists a unique family {ai}iel of

elements of A such that

X= Laixi.
i e 1

We define

f(x) = L aiYi.

It is then clear thatfis a homomorphism satisfying our requirements, and

that it is the unique such, because we must have

f(x) = L aif(xi).

Corollary 4.2. Let the notation be as in the theorem, and assume that {Yi} i e 1

is a basis of N. Then the homomorphism f is an isomorphism, i.e. a module-

isomorphism.

Proof By symmetry, there exists a unique homomorphism

g:N-.M
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such that g(Yi) =

Xi for all i, and fog and g
0f are the respective identity map-

pIngs.

Corollary 4.3. Two modules having bases whose cardinalities are equal are

isomorphic.

Proof. Clear.

We shall leave the proofs of the following statements as exercises.

Let M be a free module over A, with basis {Xi}iel, so that

M = EB AXi.
i e 1

Let a be a two sided ideal of A. Then aM is a submodule of M. Each ax; is a

submodule of Ax;. We have an isomorphism (of A-modules)

M/aM EB AXi/axi.
i e 1

Furthermore, each Ax;/axi is isomorphic to A/a, as A-module.

Suppose in addition that A is commutative. Then A/a is a ring. p'urthermore

M/aM is afree module over A/a, and each Ax;/axi is free over A/a. IfXi is the

image ofXi under the canonical homomorphism

AXi -+ Ax;/ax;,

then the single element Xi is a basis ofAx;/axi over A/a.

All of these statements should be easily verified by the reader. Now let A be

an arbitrary commutative ring. A module M is called principal if there exists

an element x E M such that M = Ax. The map

a ax (for a E A)

is an A-module homomorphism of A onto M, whose kernel is a left ideal a, and

inducing an isomorphism of A-modules

A/a M.

Let M be a finitely generated module, with generators {VI' . . .
,

v
n }. Let F

be a free module with basis {eI' . . . , en}. Then there is a unique surjective

homomorphismf: F M such thatf(ei) =

Vi. The kernel off is a submodule

MI. Under certain conditions, M 1 is finitely generated (cf. Chapter X, 1 on

Noetherian rings), and the process can be continued. The systematic study of

this process will be carried out in the chapters on resolutions of modules and

homology.
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Of course, even if M is not finitely generated, one can carry out a similar

construction, by using an arbitrary indexing set. Indeed, let {Vi} (i E I) be a family
of generators. For each i, let F

i be free with basis consisting of a single element

ei, so Fi
::::::: A. Let F be the direct sum of the modules F

i (i E I), as in Proposi-
tion 3.1. Then we obtain a surjective homomorphism f: F M such that

f(ei)
=

Vi. Thus every module is a factor module of a free module.

Just as we did for abelian groups in Chapter I, 7, we can also define the

free module over a ring A generated by a non-empty set S . We let A(S) be the

set of functions cp : S A such that cp(x)
= 0 for almost all XES. If a E A and

XES, we denote by ax the map cp such that cp(x) =
a and cp(y) = 0 for y =f=. x.

Then as for abelian groups, given cp E A (S) there exist elements ai E A and

Xi E S such that

cp
=

alxl + ... + anxn.

It is immediately verified that the family of functions {8x} (x E S) such that

8
x(x) = 1 and 8

x(Y)
= 0 for y =f=. x form a basis for A(S). In other words, the ex-

pression of cp as 2: aixi above is unique. This construction can be applied
when S is a group or a monoid G, and gives rise to the group algebra as in

Chapter II, 5.

Projective modules

There exists another important type of module closely related to free modules,

which we now discuss.

Let A be a ring and P a module. The following properties are equivalent,
and define what it means for P to be a projective module.

P 1. Given a homomorphism f: P -. Mil and surjective homomorphism

g : M -. Mil, there exists a homomorphism h: P -. M making the

following diagram commutative.

/l
M Mil 0

9

P 2. Every exact sequence 0 -. M' -. Mil -. P -. 0 splits.

P 3. There exists a module M such that P Et> M is free, or in words, P is a

direct summand of a free module.

P 4. The functor M 1---+ HomA(P, M) is exact.

We prove the equivalence of the four conditions.
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Assume P 1. Given the exact sequence of P 2, we consider the map f = id

in the diagram

P

;/ jid
Mil ) p ) 0

Then h gives the desired splitting of the sequence.

Assume P 2. Then represent P as a quotient of a free module (cf. Exercise 1)

F -. P -. 0, and apply P 2 to this sequence to get the desired splitting, which

represents F as a direct sum of P and some module.

Assume P 3. Since HomA(X ffi Y, M) = HomA(X, M) ffi HomA(Y, M),

and since M 1---+ HomA(F, M) is an exact functor if F is free, it follows that

HomA(P, M) is exact when P is a direct summand of a free module, which proves

P4.

Assume P 4. The proof of P 1 will be left as an exercise.

Examples. It will be proved in the next section that a vector space over a

field is always free, i.e. has a basis. Under certain circumstances, it is a theorem

that projective modules are free. In 7 we shall prove that a finitely generated

projective module over a principal ring is free. In Chapter X, Theorem 4.4 we

shall prove that such a module over a local ring is free; in Chapter XVI, Theo-

rem 3.8 we shall prove that a finite flat module over a local ring is free; and in

Chapter XXI, Theorem 3.7, we shall prove the Quillen-Suslin theorem that

if A = k[XI' . . .
, Xn] is the polynomial ring over a field k, then every finite pro-

jective module over A is free.

Projective modules give rise to the Grothendieck group. Let A be a ring.

Isomorphism classes of finite projective modules form a monoid. Indeed, if P

is finite projective, let [P] denote its isomorphism class . We define

[P] + [Q] = [P ffi Q].

This sum is independent of the choice of representatives P, Q in their class. The

conditions defining a monoid are immediately verified. The corresponding Groth-

endieck group is denoted by K(A).

We can impose a further equivalence relation that P is equivalent to P' if

there exist finite free modules F and F' such that P EB F is isomorphic to

P' EB F'. Under this equivalence relation we obtain another group denoted by

Ko(A). If A is a Dedekind ring (Chapter II, 1 and Exercises 13-19) it can be

shown that this group is isomorphic in a natural way with the group of ideal

classes Pic(A ) (defined in Chapter II, 1). See Exercises 11, 12, 13. It is also a
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problem to determine Ko(A) for as many rings as possible, as explicitly as pos-

sible. Algebraic number theory is concerned with Ko(A) when A is the ring of

algebraic integers of a number field. The Quillen-Suslin theorem shows if A is

the polynomial ring as above, then Ko(A) is trivial.

Of course one can carry out a similar construction with all finite modules.

Let [M] denote the isomorphism class of a finite module M. We define the sum

to be the direct sum. Then the isomorphism classes of modules over the ring
form a monoid, and we can associate to this monoid its Grothendieck group.

This construction is applied especially when the ring is commutative. There are

many variations on this theme. See for instance the book by Bass, Algebraic

K-theory, Benjamin, 1968.

There is a variation of the definition of Grothendieck group as follows. Let

F be the free abelian group generated by isomorphism classes of finite modules

over a ring R, or of modules of bounded cardinality so that we deal with sets.

In this free abelian group we let f be the subgroup generated by all elements

[M]
-

[M']
-

[M"]

for which there exists an exact sequence 0 M' M M" o. The factor

group FIf is called the Grothendieck group K(R). We shall meet this group

again in 8, and in Chapter XX, 3. Note that we may form a similar Grothendieck

group with any family of modules such that M is in the family if and only if M'

and M" are in the family. Taking for the family finite projective modules, one

sees easily that the two possible definitions of the Grothendieck group coincide

in that case.

5. VECTOR SPACES

A module over a field is called a vector space.

Theorem 5.1. Let V be a vector space over a field K, and assume that

V =F {O}. Let r be a set ofgenerators of V over K and let S be a subset ofr
which is linearly independent. Then there exists a basis CB of V such that

S c CB c r.

Proof Let be the set whose elements are subsets T of r which contain S

and are linearly independent. Then is not empty (it contains S), and we

contend that is inductively ordered. Indeed, if {} is a totally ordered subset
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of (by ascending inclusion), then U is again linearly independent and con-

tains S. By Zorn's lemma, let CB be a maximal element of. Then CB is linearly

independent. Let W be the subspace of V generated by CB. If W =F V, there

exists some element x E r such that x rt W. Then CB u {x} is linearly inde-

pendent, for given a linear combination

L ayY + bx = 0,
ye<B

ay,bEK,

we must have b = 0, otherwise we get

x = - Lb-IayYE W.

ye<B

By construction, we now see that a
y

= 0 for all Y E CB, thereby proving that

CB u {x} is linearly independent, and contradicting the maximality of CB. It

follows that W = V, and furthermore that CB is not empty since V =F {o}. This

proves our theorem.

If V is a vector space =F {O}, then in particular, we see that every set of

linearly independent elements of V can be extended to a basis, and that a basis

may be selected from a given set of generators.

Theorem 5.2. Let V be a vector space over afield K. Then two bases of V

over K have the same cardinality.

Proof. Let us first assume that there exists a basis of V with a finite

number of elements, say {VI'...' V
rn }, m > 1. We shall prove that any other

basis must also have m elements. For this it will suffice to prove: If WI' .

..,
W

n

are elements of V which are linearly independent over K, then n < m (for
we can then use symmetry). We proceed by induction. There exist elements

C
I'

. . .

, Crn of K such that

(1) WI
=

CIV I + ... + CrnVrn '

and some Ci , say C I'
is not equal to O. Then VI lies in the space generated

by WI' V2 ,
. . .

,
V

rn
over K, and this space must therefore be equal to V itself.

Furthermore, WI' V
2 ,

. . .

,
V

rn
are linearly independent, for suppose b I' . . .

,
b

rn

are elements of K such that

b l WI + b 2 V2 + . . . + b
rn

V
rn

= O.

If b I =F 0, divide by b I and express W
I as a linear combination of V2, . . .

,
V

rn
.

Subtracting from (1) would yield a relation of linear dependence among the

v;, which is impossible. Hence b l
= 0, and again we must have all b i

= 0

because the Vi are linearly independent.
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Suppose inductively that after a suitable renumbering of the Vi' we have

found W b . . .

,
W

r (r < n) such that

{ WI' . . .

,
W

r,
V
r + b . . .

, v
m }

is a basis of V. We express W
r + 1 as a linear combination

(2) W
r + 1

=

Ct W
l + ... + CrWr

+ C
r + 1 V

r + 1 + ... + CmVm

with Ci E K. The coefficients of the Vi in this relation cannot all be 0; otherwise

there would be a linear dependence among the w
j

. Say C
r + 1 =F o. Using an

argument similar to that used above, we can replace v
r + 1 by w

r + 1 and still have

a basis of V. This means that we can repeat the procedure until r = n, and

therefore that n <
m, thereby proving our theorem.

We shall leave the general case of an infinite basis as an exercise to the

reader. [Hint: Use the fact that a finite number of elements in one basis is

contained in the space generated by a finite number ofelements in another basis.]

If a vector space V admits one basis with a finite number of elements, say m,

then we shall say that V is finite dimensional and that m is its dimension. In

view of Theorem 5.2, we see that m is the number of elements in any basis

of V. If V = {O}, then we define its dimension to be 0, and say that V is

O-dimensional. We abbreviate dimension" by "dim" or dimK

"

if the

reference to K is needed for clarity.
When dealing with vector spaces over a field, we use the words subspace

and factor space instead of submodule and factor module.

Theorem 5.3. Let V be a vector space over afield K, and let W be a subspace.
Then

dimK V = dimK W + dimK V/W.

Iff: V -+ U is a homomorphism of vector spaces over K, then

dim V = dim Kerf + dim 1m!

Proof. The first statement is a special case of the second, taking for f the

canonical map. Let {uiLel be a basis of Imf, and let {wj}jeJ be a basis of

Ker f. Let {v;} i e I
be a family of elements of V such that j'(v;) = Ui for each

i E I. We contend that

{Vi' Wj}iel,jeJ

is a basis for V. This will obviously prove our assertion.
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Let x be an element of V. Then there exist elements {aJiel of K almost

all of which are 0 such that

f(x) = L aiui.
i e I

Hencef(x
-

L aiV;) = f(x)
- L aif(vi) = O. Thus

X-LaiVi

is in the kernel off, and there exist elements {bj} j e J
of K almost all of which are

o such that

x
-
"

a.v. = b.w.
i..J II J r

From this we see that x = L aivi + L bjwj, and that {Vi' W
j} generates V.

It remains to be shown that the family {Vi' Wj} is linearly independent. Suppose
that there exist elements Ci, d

j
such that

o = c.v. + "d.w.
II i..J J r

Applyingfyields

o = L cif(Vi) = L CiUb

whence all Ci
= O. From this we conclude at once that all d

j
= 0, and hence that

our family {Vb Wj} is a basis for V over K, as was to be shown.

Corollary 5.4. Let V be a vector space and W a subspace. Then

dim W < dim V.

If V is finite dimensional and dim W = dim V then W = v.

Proof Clear.

6. THE DUAL SPACE AND DUAL MODULE

Let E be a free module over a commutative ring A. We view A as a free

module of rank lover itself. By the dual module E
V

of E we shall mean the

module Hom(E, A). Its elements will be called functionals. Thus a functional

on E is an A-linear map f: E A. If x E E and f E EV, we sometimes denote

f(x) by (x, f). Keeping x fixed, we see that the symbol (x, f) as a function of

f E E
V

is A-linear in its second argument, and hence that x induces a linear map

on E
V

, which is 0 if and only if x
= O. Hence we get an injection E E

VV

which is not always a surjection.
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Let {xihEI be a basis of E. For each i E I letfi be the unique functional such

that fi(xj)
=

Sij (in other words, 1 if i =

j and 0 if i =t= j). Such a linear map

exists by general properties of bases (Theorem 4.1).

Theorem 6.1. Let E be a finite free module over the commutative ring A,

offinite dimension n. Then E
V

is also free, and dim E
V

= n. If {XI' . . . , xn}
is a basis for E, andfi is the functional such that fi(xj)

=

Sij, then ifl, . . .
, fn}

is a basis for E
V

.

Proof. LetfE E
V

and let ai
=

f(Xi) (i = 1,..., n). We have

f(c}xI + ... + cnxn ) =

clf(xl) + · .. + cnf(xn ).

Hence f = a
I fl + · · · + anfn' and we see that the fi generate E v. Furthermore,

they are linearly independent, for if

b J +...+b+=O
I I nJ n

with bi
E K, then evaluating the left-hand side on Xi yields

b. +. (x. ) = 0
IJii'

whence bi
= 0 for all i. This proves our theorem.

Given a basis {Xi} (i = 1,..., n) as in the theorem, we call the basis {fj}
the dual basis. In terms of these bases, w,e can express an element A of E with

coordinates (aI' . . .
, an)' and an element B of E

v
with coordinates (b l , . . .

, b
n),

such that

A =

alxl + · .. + anxn ,
B = blfl + ... + bnfn o

Then in terms of these coordinates, we see that

(A, B) = a I b }
+ ... + an b

n

= A · B

is the usual dot product of n-tuples.

Corollary 6.2. When E is free finite dimensional, then the map E E
VV

which to each X E V associates thefunctionalf (x, f) on E
V

is an isomorphism

of E onto E
VV

.

Proof. Note that since {fl, . . .
, fn} is a basis for E

V
, it follows from the

definitions that {x I' . 0 .
, xn} is the dual basis in E, so E = E

vv
.

Theorem 6.3. Let U, V, W be finite free modules over the commutative ring

A, and let

,\ cp

OWVUO

be an exact sequence ofA -homomorphisms. Then the induced sequence

o HomA(U, A) HomA(V, A) HomA(W, A) 0
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I.e.

o Uv Vv Wv 0

is also exact.

Proof This is a consequence of P2, because a free module is projective.

We now consider properties which have specifically to do with vector spaces,

because we are going to take factor spaces. So we assume that we deal with

vector spaces over a field K.

Let V, V' be two vector spaces, and suppose given a mapping

V x V' -. K

denoted by

(x, x') 1---+ (x, x')

for x E V and x' E V'. We call the mapping bilinear if for each x E V the function

x' 1-+ (x, x') is linear, and similarly for each x' E V' the function x 1---+ (x, x') is

linear. An element x E V is said to be orthogonal (or perpendicular) to a subset

S' of V' if (x, x') = 0 for all x' E S'. We make a similar definition in the

opposite direction. It is clear that the set of x E V orthogonal to S' is a sub-

space of V.

We define the kernel of the bilinear map on the left to be the subspace of V

which is orthogonal to V', and similarly for the kernel on the right.
Given a bilinear map as above,

V x V' -. K,

let W' be its kernel on the right and let W be its kernel on the left. Let x' be

an element of V'. Then x' gives rise to a functional on V, by the rule x 1---+ (x, x'),
and this functional obviously depends only on the coset of x' modulo W'; in

other words, if X'I = x (mod W'), then the functionals x 1---+ (x, X'I> and

x 1-+ (x, x) are equal. Hence we get a homomorphism

V' VV

whose kernel is precisely W' by definition, whence an injective homomorphism

o V'/W' VV.

Since all the functionals arising from elements of V' vanish on W, we can view

them as functionals on V/W, i.e. as elements of (V/W)v. So we actually get an

injective homomorphism

o V'/W' (V/W)V.

One could give a name to the homomorphism

9 : V' VV
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such that

(x, x') = (x, g(X')

for all x E V and x' E V'. However, it will usually be possible to describe it by an

arrow and call it the induced map, or the natural map. Giving a name to it

would tend to make the terminology heavier than necessary.

Theorem 6.4. Let V x V' K be a bilinear map, let W, W' be its kernels

on the left and right respectively, and assume that V' /W' is finite dimensional.

Then the induced homomorphism V' /W' (V/W)v is an isomorphism.

Proof. By symmetry, we have an induced homomorphism

V/W (V'/W')V

which is injective. Since

dim(V'/W')v = dim V'/W'

it follows that V/W is finite dimensional. From the above injective homomor-

phism and the other, namely

o V'/W' (V/W)v,

we get the inequalities

dim V/W < dim V'/W'

and

dim V'/W' < dim V/W,

whence an equality of dimensions. Hence our homomorphisms are surjective
and inverse to each other, thereby proving the theorem.

Remark 1. Theorem 6.4 is the analogue for vector spaces of the duality
Theorem 9.2 of Chapter I.

Remark 2. Let A be a commutative ring and let E be an A-module. Then

we may form two types of dual:

E" = Hom(E, Q/Z), viewing E as an abelian group;

E
V

= HomA(E, A), viewing E as an A-module.

Both are called dual, and they usually are applied in different contexts. For

instance, E
V

will be considered in Chapter XIII, while E" will be considered in

the theory of injective modules, Chapter XX, 4. For an example of dual module

E
V

see Exercise 11. If by any chance the two duals arise together and there is

need to distinguish between them, then we may call E" the Pontrjagin dual.
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Indeed, in the theory of topological groups G, the group of continuous homo-

morphisms of G into R/Z is the classical Pontrjagin dual, and is classically
denoted by G", so I find the preservation of that terminology appropriate.

Instead of R/Z one may take other natural groups isomorphic to R/Z. The

most common such group is the group of complex numbers of absolute value 1,

which we denote by SI. The isomorphism with R/Z is given by the map

x e
27Tix

.

Remark 3. A bilinear map V x V K for which V' = V is called a bilinear

form. We say that the form is non-singular if the corresponding maps

V' VV and V (V')v

are isomorphisms. Bilinear maps and bilinear forms will be studied at greater

length in Chapter XV. See also Exercise 33 of Chapter XIII for a nice example.

7. MODULES OVER PRINCIPAL RINGS

Throughout this section, we assume that R is a principal entire ring. All modules

are over R, and homomorphisms are R-homomorphisms, unless otherwise specified.

The theorems will generalize those proved in Chapter I for abelian groups.

We shall also point out how the proofs of Chapter I can be adjusted with sub-

stitutions of terminology so as to yield proofs in the present case.

Let F be a free module over R, with a basis {XJiel. Then the cardinality of

I is uniquely determined, and is called the dimension of F. We recall that this

is proved, say by taking a prime element p in R, and observing that F/pF is a

vector space over the field R/pR, whose dimension is precisely the cardinality
of I. We may therefore speak of the dimension of a free module over R.

Theorem 7.1. Let F be a free module, and M a submodule. Then M is free,
and its dimension is less than or equal to the dimension of F.

Proof For simplicity, we give the proof when F has a finite basis {Xi},
i = 1, ...,

n. Let M
r

be the intersection of M with (Xl' ...,
x

r), the module

generated by X b . . .

, Xr. Then M 1
= M n (Xl) is a submodule of (x 1), and is

therefore of type (a 1 Xl) with some al E R. Hence M
1 is either 0 or free, of di-

mension 1. Assume inductively that M
r

is free of dimension < r. Let Q be

the set consisting of all elements a E R such that there exists an element X E M

which can be written

X = b
l X t + . . . + brxr + ax

r + 1
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with bi E R. Then Q is obviously an ideal, and is principal, generated say by an

element a
r + 1.

If a
r + 1

= 0, then Mr+ 1
= M

r
and we are done with the inductive

step. If a
r + 1 ;/= 0, let W E M

r + 1
be such that the coefficient of w with respect

to X
r + 1

is a
r + 1.

If x E M
r + 1

then the coefficient of x with respect to X
r + 1 is

divisible by a
r + l'

and hence there exists C E R such that x
- cw lies in Mr.

Hence

M
r+ 1

= M
r

+ (w).

On the other hand, it is clear that M
r
n (w) is 0, and hence that this sum is direct,

thereby proving our theorem. (For the infinite case, see Appendix 2, 2.)

Corollary 7.2. Let E be a finitely generated module and E' a submodule.

Then E' is finitely generated.

Proof We can represent E as a factor module of a free module F with a

finite number of generators: If VI' . . ,

,
V

n
are generators of E, we take a free

module F with basis {x 1,
. . .

, xn} and map Xi on Vi. The inverse image of E' in F

is a submodule, which is free, and finitely generated, by the theorem. Hence

E' is finitely generated. The assertion also follows using simple properties of

Noetherian rings and modules.

If one wants to translate the proofs of Chapter I, then one makes the

following definitions. A free l-dimensio,nal module over R is called infinite

cyclic. An infinite cyclic module is isomorphic to R, viewed as module over

itself. Thus every non-zero submodule of an infinite cyclic module is infinite

cyclic. The proof given in Chapter I for the analogue of Theorem 7.1 applies
without further change.

Let E be a module. We say that E is a torsion module if given x E E, there

exists a E R, a ;/= 0, such that ax = O. The generalization of finite abelian group

is finitely generated torsion module. An element x of E is called a torsion element

if there exists a E R, a ;/= 0, such that ax = O.

Let E be a module. We denote by Etor the submodule consisting of all torsion

elements of E, and call it the torsion submodule of E. If Etor
= 0, we say that

E is torsion free.

Theorem 7.3. Let E be finitely generated. Then E/Etor is free. There exists

a free submodule F of E such that E is a direct sum

E =

Etor ED F.

The dimension of such a submodule F is uniquely determined.

Proof. We first prove that E/Etor is torsion free. If x E E, let i denote its

residue class mod Etor. Let b E R, b =t= 0 be such that bi = o. Then bx E E
top

and hence there exists c E R, c =t= 0, such that cbx = O. Hence x E Etor and

i = 0, thereby proving that E/Etor is torsion free. It is also finitely generated.
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Assume now that M is a torsion free module which is finitely generated. Let

{VI' . . .
, v

n } be a maximal set of elements of M among a given finite set of

generators {YI' . . .
, Ym} such that {VI' . . . ,

v
n } is linearly independent. If Y is

one of the generators, there exist elements a, bb . . .
, b

n
E R not all 0, such that

ay + btvt + ... + bnvn
= O.

Then a ;/= 0 (otherwise we contradict the linear independence of v t, . . .

, vn).

Hence ay lies in (Vb. . .

, Vn). Thus for each j = 1, . . .

,
m we can find a

j
E R,

aj ;/= 0, such that ajYj lies in (Vb. . .

, vn). Let a =

at
. . .

am be the product. Then

aM is contained in (v t, . . .

, vn), and a ;/= O. The map

X 1---+ ax

is an injective homomorphism, whose image is contained in a free module.

This image is isomorphic to M, and we conclude from Theorem 7. 1 that M is

free, as desired.

To get the submodule F we need a lemma.

Lemma 7.4. Let E, E' be modules, and assume that E' is free. Let f: E -. E'

be a surjective homomorphism. Then there exists afree submodule F ofE such

that the restriction off to F induces an isomorphism ofF with E', and such that

E = F ffi Kerf

Proof Let {Xaiel be a basis of E'. For each i, let Xi be an element of E such

thatf(xi) = x. Let F be the submodule of E generated by all the elements Xi'

i E I. Then one sees at once that the family of elements {Xi}iel is linearly inde-

pendent, and therefore that F is free. Given X E E, there exist elements ai E R

such that

f(x) = L aix.

Then x
- L aixi lies in the kernel off, and therefore E = Kerf + F. It is clear

that Kerfn F = 0, and hence that the sum is direct, thereby proving the lemma.

We apply the lemma to the homomorphism E E/Etor in Theorem 7.3 to

get our decomposition E =

Etor ED F. The dimension of F is uniquely determined,

because F is isomorphic to E/Etor for any decomposition of E into a direct sum

as stated in the theorem.

The dimension of the free module F in Theorem 7.3 is called the rank of E.

In order to get the structure theorem for finitely generated modules over R,

one can proceed exactly as for abelian groups. We shall describe the dictionary
which allows us to transport the proofs essentially without change.

Let E be a module over R. Let x E E. The map a 1-+ ax is a homomorphism
of R onto the submodule generated by x, and the kernel is an ideal, which is

principal, generated by an element mER. We say that m is a period of x. We
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note that m is determined up to multiplication by a unit (if m =F 0). An element

c E R, c =F 0, is said to be an exponent for E (resp. for x) if cE = 0 (resp. cx = 0).
Let p be a prime element. We denote by E(p) the submodule of E consisting

of all elements x having an exponent which is a power pr (r > 1). A p-submodule
of E is a submodule contained in E(p).

We select once and for all a system of representatives for the prime elements

of R (modulo units). For instance, if R is a polynomial ring in one variable over

a field, we take as representatives the irreducible polynomials with leading
coefficient 1.

Let mER, m =F O. We denote by Em the kernel of the map x 1-+ mx. It consists

of all elements of E having exponent m.

A module E is said to be cyclic if it is isomorphic to R/(a) for some element

a E R. Without loss of generality if a =F 0, one may assume that a is a product of

primes in our system of representatives, and then we could say that a is the order

of the module.

Let r
l' . . .

, rs be integers > 1. A p-module E is said to be of type

(pr 1, . . .

, pr
s

)

if it is isomorphic to the product of cyclic modules R/(pri) (i = 1, . . .

, s). If p

is fixed, then one could say that the module is of type (rb . . .
, rs) (relative to p).

All the proofs of Chapter I, 8 now go over without change. Whenever we

argue on the size of a positive integer m, we have a similar argument on the

number of prime factors appearing in its prime factorization. If we deal with a

prime power pr, we can view the order as being determined by r. The reader

can now check that the proofs of Chapter I, 8 are applicable.

However, we shall develop the theory once again without assuming any

knowledge of Chapter I, 8. Thus our treatment is self-contained.

Theorem 7.5. Let E be a finitely generated torsion module =F O. Then E is

the direct sum

E = EB E(p),
p

taken over all primes p such that E(p) =F O. Each E(p) can be written as a direct

sum

E(p) = R/(p
V

l) ffi . . . ffi R/(pV
s

)

with 1 < V
1

< . . . < v
s

. The sequence Vb . . .

,
V

s
is uniquely determined.

Proof Let a be an exponent for E, and suppose that a = bc with (b, c) = (1).

Let x, y E R be such that

1 = xb + yc.
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We contend that E = Eb Et> Ec. Our first assertion then follows by induction,

expressing a as a product of prime powers. Let v E E. Then

v = xbv + ycv.

Then xbv E Ec because cxbv = xav = o. Similarly, ycv E Eb. Finally Eb n Ec = 0,
as one sees immediately. Hence E is the direct sum of Eb and Ec.

We must now prove that E(p) is a direct sum as stated. If Yb . . .

, Ym are

elements of a module, we shall say that they are independent if whenever we have

a relation

a 1 Y 1 + . . . + am Ym
= 0

with ai E R, then we must have aiYi
= 0 for all i. (Observe that independent

does not mean linearly independent. ) We see at once that Y l, . . .
, Ym are inde-

pendent if and only if the module (y l'
. . .

, Ym) has the direct sum decomposition

(y l, . . .

, Ym) = (y l) Et> . . . Et> (ym)

in terms of the cyclic modules (yi), i == 1, . . .

,
m.

We now have an analogue of Lemma 7.4 for modules having a prime power

exponent.

Lemma 7.6. Let E be a torsion module ofexponent pr (r > l)for some prime
element p. Let Xl E E be an element of period pro Let E = E/(x l ). Let

Y l, . . .

, Ym be independent elements ofE. Thenfor each i there exists a repre-

sentative Yi E E ofYi, such that the period of Yi is the same as the period ofYi.
The elements X b Yb . . .

, Ym are independent.

Proof Let Y E E have period pn for some n > 1. Let Y be a representative of

Y in E. Then pny E (Xl), and hence

pny = pScXb C E R, p C,

for some s < r. If s =

r, we see that Y has the same period as y. If s < r, then

pSCXl has period pr-s, and hence Y has period pn+r-s. We must have

n + r
-

s <
r,

because pr is an exponent for E. Thus we obtain n <
s, and we see that

Y
-

ps-nCXl

is a representative for Y, whose period is pn.
Let Yi be a representative for Yi having the same period. We prove that

Xb Yl,. . .

, Ym are independent. Suppose that a, al,. . .

, am E R are elements such

that

aXl + alYl + . . . + amYm
= O.
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Then
a 1 Y 1 + . . . + am Ym

= O.

By hypothesis, we must have aiYi = 0 for each i. If pr
i is the period of Yi, then

pr
i divides ai. We then conclude that aiYi

= 0 for each i, and hence finally
that ax

1
= 0, thereby proving the desired independence.

To get the direct sum decomposition of E(p), we first note that E(p) is

finitely generated. We may assume without loss of generality that E = E(p).
Let x

1 be an element of E whose period pr
l is such that r

1 is maximal. Let

E = E/(x 1 ). We contend that dim Ep as vector space over R/pR is strictly less

than dim Ep. Indeed, if Yl, ..., Ym are linearly independent elements of Ep
over R/pR, then Lemma 7.6 implies that dim Ep

>
m + 1 because we can always

find an element of (Xl) having period p, independent of Yb . . .

, Ym. Hence

dim Ep < dim Ep. We can prove the direct sum decomposition by induction.

If E =F 0, there exist elements x2 ,
. . .

, Xs having periods pr
2

,
. . .

, prs respectively,
such that r2

> · · · >

rr By Lemma 7.6, there exist representatives X2, . . . ,
X

r

in E such that Xi has period pr
i and Xl' . . .

,
X

r
are independent. Since pr

1 is such

that rl is maximal, we have rl
>

r2, and our decomposition is achieved.

The uniqueness will be a consequence of a more general uniqueness theorem,

which we state next.

Theorem 7.7. Let E be a finitely generated torsion module, E =F O. Then

E is isomorphic to a direct sum of non-zero factors

R/(ql) ffi . . . ffi R/(qr),

where ql, .
.., qr are non-zero elements ofR, and qllq21.. .Iqr. The sequence

of ideals (ql), . . .

, (qr) is uniquely determined by the above conditions.

Proof. Using Theorem 7.5, decompose E into a direct sum ofp-submodules,

say E(p 1) ffi . . . ffi E(PI)' and then decompose each E(pJ into a direct sum of

cyclic submodules of periods P'iij. We visualize these symbolically as described

by the following diagram:

E(p 1): r
11

< r 12
< . . .

E(p2): r21
<

r22
< ...

E(PI): r' 1
<

r'2
< . . .

A horizontal row describes the type of the module with respect to the prime at

the left. The exponents rij are arranged in increasing order for each fixed

i = 1, ..

.,
l. We let q b . . .

, qr correspond to the columns of the matrix of

exponents, in other words

q
_

P
rl1

p
r21

P
rl1

1
-

1 2
...

I,

q
_

P
r12

p
r22

P
rl2

2
-

1 2
...

I,
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The direct sum of the cyclic modules represented by the first column is then

isomorphic to R/{q 1)' because, as with abelian groups, the direct sum of cyclic
modules whose periods are relatively prime is also cyclic. We have a similar

remark for each column, and we observe that our proof actually orders the qj

by increasing divisibility, as was to be shown.

Now for uniqueness. Let p be any prime, and suppose that E = R/{pb) for

some bE R, b =1= o. Then Ep is the submodule bR/{pb), as follows at once from

unique factorization in R. But the kernel of the composite map

R -. bR -. bR/{pb)

is precisely (p). Thus we have an isomorphism

R/{p) bR/{pb).

Let now E be expressed as in the theorem, as a direct sum of r terms. An

element

v = VIEt> . . . Et> V
r , Vi E R/{qJ

is in E
p
if and only if PVi

= 0 for all i. Hence E
p

is the direct sum of the kernel of

multiplication by p in each term. But Ep is a vector space over R/{p), and its

dimension is therefore equal to the number of terms R/{ qi) such that p divides qi.

Suppose that p is a prime dividing q 1, and hence q i for each i = 1,..., r. Let

E have a direct sum decomposition into d terms satisfying the conditions of the

theorem, say

E = R/{q'l) Et> . . . Et> R/{q).

Then p must divide at least r of the elements qj, whence r < s. By symmetry,

r =
s, and p divides qj for all j.

Consider the module pEe By a preceding remark, if we write qi
= pbi' then

pE R/{b 1 ) Et> . . . Et> R/{br),

and b 1 I . . . I br
. Some of the b

i may be units, but those which are not units

determine their principal ideal uniquely, by induction. Hence if

(b 1) = . . . = (bj) = 1

but (bj + 1) =F (I), then the sequence of ideals

(bj -t' 1), . . .

, (br)
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is uniquely determined. This proves our uniqueness statement, and concludes

the proof of Theorem 7. 7 .

The ideals (ql), . . . , (qr) are called the invariants of E.

For one of the main applications of Theorem 7.7 to linear algebra, see Chapter

XV, 2.

The next theorem is included for completeness. It is called the elementary
divisors theorem.

Theorem 7.8. Let F be afree module over R, and let M be afinitely generated
submodule =t= O. Then there exists a basis CB of F, elements e I' . . .

, em in this

basis, and non-zero elements aI' . . .
, am E R such that:

(i) The elements aIel' . .
., am em form a basis of Mover R.

(ii) We have a; I a;+ I for i = 1,..., m
- 1.

The sequence of ideals (a I) ,
. . .

, (am) is uniquely determined by the preceding
conditions.

Proof. Write a finite set of generators for M as linear combination of a finite

number of elements in a basis for F. These elements generate a free submodule

of finite rank, and thus it suffices to prove the theorem when F has finite rank,

which we now assume. We let n
= rank(F).

The uniqueness is a corollary of Theorem 7.7. Suppose we have a basis as

in the theorem. Say aI, . . .

, as are units, and so can be taken to be = 1, and

as+j
=

qj with qll q21 . . . I qr non-units. Observe that F/M = F is a finitely

generated module over R, having the direct sum expression

r

F/M = F = EB (R/qjR)ej EB free module of rank n
-

(r + s)
j= I

where a bar denotes the class of an element of F mod M. Thus the direct sum

over j
= 1,. . .

,
r is the torsion submodule of F

, whence the elements ql, . . .
,

qr are uniquely determined by Theorem 7.7. We have r + s
=

m, so the rank

of F/M is n
-

m, which determines m uniquely. Then s
=

m
-

r is uniquely
determined as the number of units among aI' . . .

, am. This proves the uniqueness

part of the theorem. Next we prove existence.

Let A be a functional on F, in other words, an element of HomR(F, R) . We

let J,\ = A(M). Then J,\ is an ideal of R. Select A
I such that A I (M) is maximal

in the set of ideals {J,\}, that is to say, there is no properly larger ideal in the

set {J,\}.
Let A.t (M) = (at). Then at =F 0, because there exists a non-zero element of

M, and expressing this element in terms of some basis for F over R, with some

non-zero coordinate, we take the projection on this coordinate to get a func-

tional whose value on M is not O. Let Xt EM be such that A.t(Xt) =

at. For

any functional g we must have g(Xt) E (at) [immediate from the maximality of
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At (M)]. Writing x t in terms of any basis of F, we see that its coefficients must

all be divisible by a t. (If some coefficient is not divisible by aI, project on this

coefficient to get an impossible functional.) Therefore we can write Xt
=

atet

with some element el E F.

Next we prove that F is a direct sum

F = Ret Et> Ker At.

Since At(et) = 1, it is clear that Ret n Ker At = o. Furthermore, given x E F

we note that x
- At (x)e t is in the kernel of At. Hence F is the sum of the in-

dicated submodules, and therefore the direct sum.

We note that Ker Al is free, being a submodule of a free module (Theorem

7.1). We let

FI
= Ker Al and M

I
= M n Ker AI.

We see at once that M =

RXI EB MI.

Thus M I is a submodule of FI and its dimension is one less than the dimension

of M. From the maximality condition on Al (M), it follows at once that for any

functional A on F
I' the image A(M) will be contained in Al (M) (because otherwise,

a suitable linear combination of functionals would yield an ideal larger than

(al)). We can therefore complete the existence proof by induction.

In Theorem 7 .8, we call the ideals (al)' . . .

, (am) the invariants of M in F.

For another characterization of these invariants, see Chapter XIII, Proposition
4.20.

Example. First, see examples of situations similar to those of Theorem 7.8

in Exercises 5, 7, and 8, and for Dedekind rings in Exercise 13.

Example. Another way to obtain a module M as in Theorem 7.8 is as

a module of relations. Let W be a finitely generated module over R, with genera-

tors WI'. . .,
w

n
. By a relation among {WI' . . .,

w
n } we mean an element

(a], . . .
, an) E Rn such that L a;wi

= o. The set of such relations is a sub-

module of R n, to which Theorem 7.8 may be applied.

It is also possible to formulate a proof of Theorem 7.8 by considering M as

a submodule of Rn, and applying the method of row and column operations to

get a desired basis. In this context, we make some further comments which may

serve to illustrate Theorem 7.8. We assume that the reader is acquainted with

matrices over a ring. By row operations we mean: interchanging two rows;

adding a multiple of one row to another; multiplying a row by a unit in the ring.
We define column operations similarly. These row and column operations

correspond to multiplication with the so-called elementary matrices in the ring.

Theorem 7.9. Assume that the elementary matrices in R generate GL,iR).

Let (xij) be a non-zero matrix with components in R. Then with a finite
number of row and column oJ}erations, it is possible to bring the matrix to

the form



III, 8 EULER-POINCARE MAPS 155

al 0

o a2

o

o

o

o o

o

o

am

o o

with a 1
. . .

am 0 and a 1 I a21 . . . I am.

We leave the proof for the reader. Either Theorem 7.9 can be viewed as

equivalent to Theorem 7.8, or a direct proof may be given. In any case, Theorem

7.9 can be used in the following context. Consider a system of linear equations

CllXI + ... + ClnXn

= 0

CrlXI + .. · + CrnXn

= o.

with coefficients in R. Let F be the submodule of R
n

generated by the vectors

X =

(Xl' . . .
,
x

n ) which are solutions of this system. By Theorem 7.1, we know

that F is free of dimension <
n. Theorem 7.9 can be viewed as providing a

normalized basis for F in line with Theorem 7.8.

Further example. As pointed out by Paul Cohen, the row and column

method can be applied to modules over a power series ring o[[X]], where 0 is

a complete discrete valuation ring. Cf. Theorem 3.1 of Chapter 5 in my Cyclo-
tomic Fields I and II (Springer Verlag, 1990). For instance, one could pick 0 it-

self to be a power series ring k[[T]] in one variable over a field k, but in the

theory of cyclotomic fields in the above reference, 0 is taken to be the ring of

p-adic integers. On the other hand, George Bergman has drawn my attention to

P. M. Cohn's "On the structure of GL-;. of a ring," IHES Publ. Math. No. 30

(1966), giving examples of principal rings where one cannot use row and column

operations in Theorem 7.9.

8. EULER-POINCARE MAPS

The present section may be viewed as providing an example and application
of the Jordan-Holder theorem for modules. But as pointed out in the examples
and references below, it also provides an introduction for further theories.

Again let A be a ring. We continue to consider A-modules. Let r be an

abelian group, written additively. Let cp be a rule which to certain modules

associates an element of r, subject to the following condition:



156 MODULES III, 8

If0 -. M' -. M -. Mil -. 0 is exact, then qJ(M) is defined ifand only if qJ(M')
and qJ(M") are defined, and in that case, we have

qJ(M) = qJ(M') + qJ(M").

Furthermore qJ(O) is defined and equal to o.

Such a rule qJ will be called an Euler-Poincare mapping on the category of

A-modules. If M' is isomorphic to M, then from the exact sequence

o -. M' -. M -. 0 -. 0

we conclude that qJ(M') is defined if qJ(M) is defined, and that qJ(M') = qJ(M).
Thus if qJ(M) is defined for a module M, qJ is defined on every submodule and

factor module of M. In particular, if we have an exact sequence of modules

M' -. M -. M"

and if qJ(M') and qJ(M") are defined, then so is qJ(M), as one sees at once by

considering the kernel and image of our two maps, and using the definition.

Examples. We could let A = Z, and let qJ be defined for all finite abelian

groups, and be equal to the order of the group. The value of qJ is in the multi-

plicative group of positive rational numbers.

As another example, we consider the category of vector spaces over a field k.

We let qJ be defined for finite dimensional spaces, and be equal to the dimension.

The values of cp are then in the additive group of integers.
In Chapter XV we shall see that the characteristic polynomial may be con-

sidered as an Euler-Poincare map.

Observe that the natural map of a finite module into its image in the Groth-

endieck group defined at the end of 4 is a universal Euler-Poincare mapping.
We shall develop a more extensive theory of this mapping in Chapter XX, 3.

If M is a module (over a ring A), then a sequence of submodules

M = M
1

::J M2
::J . . . ::J M

r

= 0

is also called a finite filtration, and we call r the length of the filtration. A module

M is said to be simple if it does not contain any submodule other than 0 and M

itself, and if M =F O. A filtration is said to be simple if each MdM
i + 1 is simple.

The Jordan-Holder theorem asserts that two simple filtrations of a module are

equivalent.

A module M is said to be of finite length if it is 0 or if it admits a simple

(finite) filtration. By the Jordan-Holder theorem, the length of such a simple
filtration is the uniquely determined, and is called the length of the module. In

the language of Euler characteristics, the Jordan-Holder theorem can be re-

formulated as follows:
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Theorem 8.1. Let qJ be a rule which to each simple module associates an

element of a commutative group r, and such that ifM M' then

qJ(M) = qJ(M').

Then qJ has a unique extension to an Euler-Poincare mapping defined on all

modules offinite length.

Proof Given a simple filtration

M=M1 =>M2 =>...=>M
r

=O

we define
r- 1

qJ(M) = L qJ(Mi/Mi + 1).
i = 1

The Jordan-Holder theorem shows immediately that this is well-defined, and

that this extension of qJ is an Eule.r-Poincare map.

In particular, we see that the length function is the Euler-Poincare map

taking its values in the additive group of integers, and having the value 1 for any

simple module.

9. THE SNAKE LEMMA

This section gives a very general lemma, which will be used many times,

so we extract it here. The reader may skip it until it is encountered, but already
we give some exercises which show how it is applied: the five lemma in Exercise

15 and also Exercise 26. Other substantial applications in this book will occur

in Chapter XVI, 3 in connection with the tensor product, and in Chapter XX

in connection with complexes, resolutions, and derived functors.

We begin with routine comments. Consider a commutative diagram of homo-

morphisms of modules.

M'
f

) M

dJ jd
N'

h

) N

Then f induces a homomorphism

Ker d' Ker d.

Indeed, suppose d'x' = O. Then df(x') = 0 because df(x') = hd'(x') = O.
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Similarly, h induces a homomorphism

Coker d' Coker d

in a natural way as follows. Let y' E N' represent an element of N' /d'M'. Then

hy' mod dM does not depend on the choice of y' representing the given element,

because if y" = y' + d'x', then

hy" = hy' + hd'x' = hy' + dfx' = hy' mod dM.

Thus we get a map

h*: N'/d'M' = Coker d' N/dM = Coker d,

which is immediately verified to be a homomorphism.
In practice, given a commutative diagram as above, one sometimes writes f

instead of h, so one writes f for the horizontal maps both above and below the

diagram. This simplifies the notation, and is not so incorrect: we may view

M', N' as the two components of a direct sum, and similarly for M, N. Then f
is merely a homomorphism defined on the direct sum M' ED N' into M ED N.

The snake lemma concerns a commutative and exact diagram called a snake

diagram:

M'
f

M
9

M" 0

dJ dj d"j
0 ) N'

f

) N ) N"
9

Let z" E Ker d" . We can construct elements of N' as follows. Since 9 is

surjective, there exists an element z E M such that gz
= z". We now move

vertically down by d, and take dz. The commutativity d"g = gd shows that

gdz = 0 whence dz is in the kernel of 9 in N. By exactness, there exists an

element z' E N' such thatfz' = dz. In brief, we write

,

1
-1

d
-1"

Z = 0 0g z.

Of course, z' is not well defined because of the choices made when taking inverse

images. However, the snake lemma will state exactly what goes on.

Lemma 9.1. (Snake Lemma). Given a snake diagram as above, the map

b : Ker d" -. Coker d'

given by bz" = 1-
1

° dog
- 1

Z" is well defined, and we have an exact sequence

d

Ker d' -. Ker d -. Ker d" -. Coker d' -+ Coker d -. Coker d"

where the maps besides b are the natural ones.



1I1,10 DIRECT AND INVERSE LIMITS 159

Proof. It is a routine verification that the class of z' mod 1m d' is in-

dependent of the choices made when taking inverse images, whence defining
the map b. The proof of the exactness of the sequence is then routine, and

consists in chasing around diagrams. It should be carried out in full detail

by the reader who wishes to acquire a feeling for this type of triviality. As an

example, we shall prove that

Ker 5 C 1m g.

where g* is the induced map on kernels. Suppose the image of z" is 0 in Coker

d'. By definition, there exists u' E M' such that z' = d' u'. Then

dz = fz' = fd'u' = dfu'

by commutativity. Hence

d(z -

fu') = 0,

and z
-

fu' is in the kernel of d. But g(z
- fu') =

gz
= z". This means that z" is

in the image of g*, as desired. All the remaining cases of exactness will be left

to the reader.

The original snake diagram may be completed by writing in the kernels

and cokernels as follows (whence the name of the lemma):

Ker d'

I
M'

) Ker d

I
M

) Ker d"

I
M" o

o N'

I
Coker d'

N

I
) Coker d

N"

I
) Coker d"

10. DIRECT AND INVERSE LIMITS

We return to limits, which we considered for groups in Chapter I. We now

consider linlits in other categories (rings, modules), and we point out that limits

satisfy a universal property, in line with Chapter I, 11.

Let I = {i} be a directed system of indices, defined in Chapter I, 10. Let

C1 be a category, and {Ai} a family of objects in C1. For each pair i
, j such that
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i <

j assume given a morphism

fi.. A . -+ A '

J
.

I J

such that, whenever i < j < k, we have

ft 0f = fl and f = ide

Such a family will be called a directed family of morphisms. A direct limit

for the family {f} is a universal object in the following category e. Ob(e)
consists of pairs (A, (fi)) where A E Ob(C1) and (fi) is a family of morphisms

fi : Ai -+ A, i E I, such that for all i < j the following diagram is commutative:

fi.
A. J) A.

1 J

f\ ;
A

(Universal of course means universally repelling.)
Thus if (A, (fi)) is the direct limit, and if (B, (gi)) is any object in the above

category, then there exists a unique morphism ({J: A -+ B which makes the

following diagram commutative:

f

AA)
Aj

j
B

For simplicity, one usually writes

A = limA.
I'

i

omitting the f from the notation.

Theorem 10.1. Direct limits exist in the category ofabelian groups, or more

generally in the category of modules over a ring.

Proof Let {Mi} be a directed system of modules over a ring. Let M be

their direct sum. Let N be the submodule generated by all elements

Xij
= (. . . , 0, x, 0, . . . ,

-

flex), 0, . . .)
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where, for a given pair of indices (i,j) with j > i, xij has component x in Mi ,

f(x) in M
j ,

and component 0 elsewhere. Then we leave to the reader the veri-

fication that the factor module MjN is a direct limit, where the maps of Mi into

MjN are the natural ones arising from the composite homomorphism

Mi
-. M -. MjN.

Example. Let X be a topological space, and let x E X. The open neigh-
borhoods of x form a directed system, by inclusion. Indeed, given two open

neighborhoods U and V, then U n V is also an open neighborhood contained in

both U and V. In sheaf theory, one assigns to each, U an abelian groupA(U) and

for each pair U ::J Va homomorphism h : A( U) A(V) such that if U ::J V::J W

then hW 0 h = h«,. Then the family of such homomorphisms is a directed family.
The direct limit

fun A(U)

U

is called the stalk at the point x . We shall give the formal definition of a sheaf

of abelian groups in Chapter XX, 6. For further reading, I recommend at least

two references. First, the self-contained short version ofChapter II in Hartshorne's

Algebraic Geometry, Springer Verlag, 1977. (Do all the exercises of that section,

concerning sheaves.) The section is only five pages long. Second, I recommend

the treatment in Gunning's Introduction to Holomorphic Functions of Several

Variables, Wadsworth and Brooks/Cole, 1990.

We now reverse the arrows to define inverse limits. We are again given a

directed set I and a family of objects Ai. Ifj > i we are now given a morphism

f
.

A . -. A .

I. J I

satisfying the relations

fofl =f' and f: = id,

if j > i and i > k. As in the direct case, we can define a category of objects

(A, h) with h: A -. Ai such that for all i, j the following diagram is com-

mutative:

(A\
A. A.

J
/1

I

A universal object in this category is called an inverse limit of the system (Ai,f).
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As before, we often say that

A = Jim Ai
i

is the inverse limit, omitting thef from the notation.

Theorem 10.2. Inverse limits exist in the category of groups, in the category

of modules over a ring, and also in the category of rings.

Proof. Let {Gi} be a directed family of groups, for instance, and let r be

their inverse limit as defined in Chapter I, 10. Letpi: r Gi be the projection

(defined as the restriction from the projection of the direct product, since r is

a subgroup of II Gi ). It is routine to verify that these data give an inverse limit

in the category of groups. The same construction also applies to the category of

rings and modules.

Example. Letp be a prime number. For n
>

m we have a canonical surjective

ring homomorphism

f::': Z/pnz Z/pmz.

The projective limit is called the ring of p-adic integers, and is denoted by Zp.
For a consideration of this ring as a complete discrete valuation ring, see Exercise

17 and Chapter XII.

Let k be a field. The power series ring k[[T]] in one variable may be viewed

as the projective Jimit of the factor polynomial rings k[T]/(T
n

), where for

n
>

m we have the canonical ring homomorphism

f;: k[T]/(T
n

) k[T]/(T
m

).

A similar remark applies to power series in several variables.

More generally, let R be a commutative ring and let J be a proper ideal. If

n
>

m we have the canonical ring homomorphism

f::': R/Jn R/Jm.

Let RJ
= lim R/In be the projective limit. Then R has a natural homomorphism

into R
J . If R is a Noetherian local ring, then by Krull's theorem (Theorem 5.6

of Chapter X), one knows that nJn = {OJ, and so the natural homorphism of R

in its completion is an embedding. This construction is applied especially when

J is the maximal ideal. It gives an algebraic version of the notion of holomorphic
functions for the following reason.

Let R be a commutative ring and J a proper ideal. Define a J-Cauchy se-

quence {xn} to be a sequence of elements of R satisfying the following condition.

Given a positive integer k there exists N such that for all n, m
> N we have

X
n

-

X
m

E Jk. Define a null sequence to be a sequence for which given k there

exists N such that for all n
> N we have x

n
E Jk. Define addition and multipli-
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cation of sequences termwise. Then the Cauchy sequences form a ring e, the

null sequences form an ideal X, and the factor ring e/x is called the J-adic

completion of R. Prove these statements as an exercise, and also prove that there

is a natural isomorphism

e/x = lliTI R/Jn.

Thus the inverse limit !i!!! R/In is also called the J-adic completion. See Chapter
XII for the completion in the context of absolute values on fields.

Examples. In certain situations one wants to determine whether there exist

solutions of a system of a polynomial equationf(Xl'
. . .

,
X

n ) = 0 with coefficients

in a power series ring k[T], say in one variable. One method is to consider the

ring mod (TN), in which case this equation amounts to a finite number of equations
in the coefficients. A solution off(X) = 0 is then viewed as an inverse limit of

truncated solutions. For an early example of this method see [La 52], and for

an extension to several variables [Ar 68].

[La 52] S. LANG, On quasi algebraic closure, Ann of Math. 55 (1952), pp. 373-390

[Ar 68] M. ARTIN, On the solutions of analytic equations, Invent. Math, 5 (1968), pp.

277-291

See also Chapter XII, 7 .

In Iwasawa theory, one considers a sequence of Galois cyclic extensions Kn
over a number field k of degree pn with p prime, and with Kn C Kn+l. Let G

n

be the Galois group of Kn over k. Then one takes the inverse limit of the group

rings (Z/pnZ)[Gn], following Iwasawa and Serre. Cf. my Cyclotomic Fields,

Chapter 5. In such towers of fields, one can also consider the projective limits

of the modules mentioned as examples at the end of 1. Specifically, consider

the group of pn-th roots of unity pn, and let Kn
=

Q(pn+l), with Ko
=

Q(p).
We let

Tp()
=

!i!!! pn

under the homomorphisms pn+l pn given by ( (p. Then Tp() becomes

a module for the projective limits of the group rings. Similarly, one can consider

inverse limits for each one of the modules given in the examples at the end of

1. (See Exercise 18.) The determination of the structure of these inverse limits

leads to fundamental problems in number theory and algebraic geometry.

After such examples from real life after basic algebra, we return to some

general considerations about inverse limits.

Let (Ai' I{) = (Ai) and (Bi , g{) = (Bi) be two inverse systems of abelian

groups indexed by the same indexing set. A homomorphism (Ai) -+ (Bi) is the

obvious thing, namely a family of homomorphisms

hi : Ai -+ Bi
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for each i which commute with the maps of the inverse systems:

hj
) B.

j:
A.

Ii r
A.

I
) B.

hi
I

A sequence

o (Ai) (Bi) (Ci) 0

is said to be exact if the corresponding sequence of groups is exact for each i.

Let (An) be an inverse system of sets, indexed for simplicity by the positive

integers, with connecting maps

Um, n
: Am An for m > n.

We say that this system satisfies the Mittag-Leffler condition ML if for each n,

the decreasing sequence um, n{Am) (m > n) stabilizes, i.e. is constant for m

sufficiently large. This condition is satisfied when um,n is surjective for all m,

n.

We note that trivially, the inverse limit functor is left exact, in the sense that

given an exact sequence

o (An) (Bn) (Cn) 0

then

o li.m An li.m Bn li.m C
n

is exact.

Proposition 10.3. Assume that (An) satisfies ML. Given an exact sequence

o (An) (Bn) !!. (Cn) 0

of inverse systems, then

o li.m An Jim Bn Jim C
n

0

is exact.

Proof The only point is to prove the surjectivity on the right. Let (cn) be

an element of the inverse limit. Then each inverse image g

-

l{Cn) is a coset of

An' so in bijection with An. These inverse images form an inverse system, and

the ML condition on (An) implies ML on (g-l{Cn)). Let Sn be the stable subset

Sn = () u. n{g
-

l{Cm)).
mn
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Then the connecting maps in the inverse system (Sn) are surjective, and so there

is an element (bn) in the inverse limit. It is immediate that g maps this element

on the given (cn), thereby concluding the proof of the Proposition.

Proposition 10.4. Let (Cn ) be an inverse system ofabeUan groups satisfying
ML, and let (um,n) be the system of connecting maps. Then we have an exact

sequence

rI
l-u

rIo -+ Jim C
n

-+ C
n
--. C

n
-+ O.

Proof. For each positive integer N we have an exact sequence with a finite

product

N N

o -+ lim C
n

-+ rI C
n rI C

n
-+ o.

lnN n=1 n=1

The map u is the natural one, whose effect on a vector is

(0, . . .

, 0, C
m , 0, . . .

, 0) 1---+ (0, . . .

, 0, U
m m

- 1 C
m , 0, . . .

, 0).
,

One sees immediately that the sequence is exact. The infinite products are in-

verse limits taken over N. The hypothesis implies at once that ML is satisfied

for the inverse limit on the left, and we can therefore apply Proposition 10.3 to

conclude the proof.

EXERCISES

1. Let V be a vector space over a field K, and let U, W be subspaces. Show that

dim U + dim W = dim(U + W) + dim(U () W).

2. Generalize the dimension statement ofTheorem 5.2 to free modules over a commutative

ring. [Hint: Recall how an analogous statement was proved for free abelian groups,

and use a maximal ideal instead of a prime number.]

3. Let R be an entire ring containing a field k as a subring, Suppose that R is a finite

dimensional vector space over k under the ring multiplication, Show that R is a field,

4. Direct sums.

(a) Prove in detail that the conditions given in Proposition 3,2 for a sequence to

split are equivalent. Show that a sequence 0 ---7> M' M Mil ---7> 0 splits if

and only if there exists a submodule N of M such that M is equal to the direct

sum 1mf EB N, and that if this is the case, then N is isomorphic to M". Complete
all the details of the proof of Proposition 3,2,
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(b) Let E and Ei(i
= 1".., m) be modules over a ring. Let 'Pi: E

i
E and

.pi: E E
i be homomorphisms having the following properties:

.11. 0 {(). = idY', 'f" , .pi 0

qJj
= 0 if i :F j,

m

L qJi
0 .pi = ide

i = t

Show that the map x r-+ (.ptJC,..., .pm x) is an isomorphism of E onto the direct product
of the Ei (i = 1,.." m), and that the map

(x t, . . .

,
x

m) qJ 1
X t + ... + qJm X

m

is an isomorphism of this direct product onto E.

Conversely, if E is equal to a direct product (or direct sum) of submodules

E
i (i = I, , . ,

, m), if we let 'Pi be the inclusion of E
i

in E, and .pi the projection of

E on E
i ,

then these maps satisfy the above-mentioned properties.

5. Let A be an additive subgroup of Euclidean space Rn, and assume that in every bounded

region of space, there is only a finite number of elements of A. Show that A is a free

abelian group on < n generators. [Hint: Induction on the maximal number of

linearly independent elements of A over R. Let Vb . . .
, V

m
be a maximal set of such

elements, and let Ao be the subgroup of A contained in the R-space generated by

Vb . . ,

,
v

m
-

t . By induction, one may assume that any element of Ao is a linear integral
combination of Vb ...,

V
m -l' Let S be the subset of elements V E A of the form

V =

at Vt + . . . + am V
m

with real coefficients ai satisfying

o <
ai < 1

o <
am

< 1.

if i = 1, . . .
,

m
- 1

If v is an element of S with the smallest am :F 0, show that {Vt, . . . , V
m

- h v} is a basis

of A over Z,]

Note. The above exercise is applied in algebraic number theory to show that the

group of units in the ring of integers of a number field modulo torsion is isomorphic
to a lattice in a Euclidean space. See Exercise 4 of Chapter VII.

6. (Artin-Tate). Let G be a finite group operating on a finite set S. For w E S, denote

1 .

w by [w], so that we have the direct sum

Z(S) = L Z[w].
WES

Define an action of G on Z(S) by defining o'[w] = [o'w] (for w E S), and extending
0' to Z(S) by linearity. Let M be a subgroup of Z(S) of rank #[S]. Show that M has

a Z-basis {Yw}wes such that O'Yw
=

Yaw for all w E S. (Cf, my Algebraic Number

Theory, Chapter IX, 4, Theorem I.)

7, Let M be a finitely generated abelian group, By a seminorm on M we mean a real-

valued function v I v I satisfying the following properties:
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I v I
> 0 for all v EM;

Invl = In I I vi for n E Z;

I v + wi
<:

I v I + I W I for all v, W EM.

By the kernel of the seminorm we mean the subset of elements v such that I v I = 0,

(a) Let Mo be the kernel. Show that Mo is a subgroup. If Mo
= {O}, then the

seminorm is called a norm.

(b) Assume that M has rank r. Let VI' , . .
,

v
r

E M be linearly independent over

Z mod Mo. Prove that there exists a basis {W.,., .,
w

r } of M/Mo such that

i

Iwil
<: L Ivjl.

j=1

[Hint: An explicit version of the proof of Theorem 7.8 gives the result.

Without loss of generality, we can asume Mo
= {O}. Let M I

= (V., , . .
,

v
r),

Let d be the exponent of M/M I.
Then dM has a finite index in MI. Let nj ,j

be the smallest positive integer such that there exist integers nj, I' . . .
, nj,j_1

satisfying

nj,IV I
+ ... + nj,jvj

= dW
j

for some w
j

E M.

Without loss of generality we may assume 0 <:

nj,k
<: d - 1. Then the elements

WI' . . ,
,

W
r

form the desired basis.]

8, Consider the multiplicative group Q* of non-zero rational numbers. For a non-zero

rational number x = a/b with a, b E Z and (a, b) = 1, define the height

h(x) = log max( I a I, I b I).

(a) Show that h defines a seminorm on Q*, whose kernel consists of + 1 (the

torsion group).

(b) Let M
I be a finitely generated subgroup of Q* , generated by rational numbers

XI' , . . ,
x

m
' Let M be the subgroup of Q* consisting of those elements X such

that X
S

E M I for some positive integer s, Show that M is finitely generated,
and using Exercise 7, find a bound for the seminorm of a set of generators

of M in terms of the seminorms of x I' , . .
,

X
m

.

Note. The above two exercises are applied in questions of diophantine

approximation, See my Diophantine approximation on toruses, Am. J. Math.

86 (1964), pp. 521-533, and the discussion and references I give in Ency-

clopedia ofMathematical Sciences, Number Theory III, Springer Verlag, 1991,

pp. 240-243,

Localization

9, (a) Let A be a commutative ring and let M be an A-module. Let S be a multiplicative
subset of A. Define S-I M in a manner analogous to the one we used to define

S-I A, and show that S-IM is an S-I A-module.

(b) If 0 M' M M" 0 is an exact sequence, show that the sequence

o S-IM' S-IM S-IM" 0 is exact.
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10. (a) If p is a prime ideal, and S = A -

p is the complement of p in the ring A, then

S-IM is denoted by M
p.

Show that the natural map

M n Mp

of a module M into the direct product of all localizations M
p

where p ranges over

all maximal ideals, is injective.

(b) Show that a sequence 0 M' M M" 0 is exact if and only if the sequence

o M Mp M"p 0 is exact for all primes p.

(c) Let A be an entire ring and let M be a torsion-free module. For each prime p of

A show that the natural map M Mp is injective. In particular A Ap is injective,
but you can see that directly from the imbedding of A in its quotient field K,

Projective modules over Dedekind rings

For the next exercise we assume you have done the exercises on Dedekind rings in

the preceding chapter . We shall see that for such rings, some parts of their module theory
can be reduced to the case of principal rings by localization. We let 0 be a Dedekind ring
and K its quotient field.

11. Let M be a finitely generated torsion-free module over o. Prove that M is projective.

[Hint: Given a prime ideal p, the localized module Mp is finitely generated torsion-

free over 0p, which is principal. Then Mp is projective, so if F is finite free over 0,

and f: F M is a surjective homomorphism, then fp: Fp Mp has a splitting

gp: M
p Fp, such that fp

0

gp
= id

Mp
. There exists c

p
E 0 such that c

p ft p and

cpgp(M) C F. The family {cp } generates the unit ideal 0 (why?), so there is a finite

number of elements c
p ,

and elements X; E 0 such that 2: x;cp,
= 1. Let

9
= 2: x;cp,gp,.

Then show that g: M F gives a homomorphism such that fog
= id

M ,]

12. (a) Let a, b be ideals. Show that there is an isomorphism of 0 -modules

aEBboEBab

[Hint: First do this when a, b are relatively prime. Consider the homomorphism
a EB b a + b, and use Exercise 10. Reduce the general case to the relatively

prime case by using Exercise 19 of Chapter II.]

(b) Let a, b be fractional ideals, and letf: a b be an isomorphism (of o-modules,

of course). Thenfhas an extension to a K-linear mapfK: K K, Let c =

fK(I).
Show that b = ca and that f is given by the mapping me: X cx (multiplication

by c).

(c) Let a be a fractional ideal. For each b E a
-I

the map mb: a 0 is an element

of the dual a V. Show that a
-I = a

v = Hom
o( a, 0) under this map, and so

a
VV = a.

13. (a) Let M be a projective finite module over the Dedekind ring o. Show that there

exist free modules F and F' such that F ::) M ::) F', and F, F' have the same

rank, which is called the rank of M.

(b) Prove that there exists a basis {e., . . .
, en} of F and ideals a., , . ,

, a
n

such that

M =

aiel + . .. + anen ,
or in other words, M = EB a;.
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(c) Prove that M = on-I EB a for some ideal a, and that the association M a

induces an isomorphism of Ko(0) with the group of ideal classes Pic(0). (The

group Ko(o) is the group of equivalence classes of projective modules defined at

the end of 4.)

A few snakes

14. Consider a commutative diagram of R-modules and homomorphisms such that each

row is exact:

) M

qj
) 0M'

Ij
) M"

hj
o ) N' ) N ) N"

Prove:

(a) Iff, hare monomorphisms then g is a monomorphism,

(b) Iff, h are surjective, then g IS surjective.

(c) Assume in addition that 0 --+ M' --+ M is exact and that N --+ N" --+ 0 is exact.

Prove that if any two off, g, h are Isomorphisms, then so IS the thud. [Hint:-
Use the snake lemma,]

15. The five lemma. Consider a commutative diagram of R-modules and homomorph-
isms such that each row is exact:

Mt

'.j
) M 2

f,j
) M4

14j
) M3

1.j
) Ms

1,j
Nt ) N

2
) N 3

) N4
) N s

Prove:

(a) If11 is surjective and 12,14 are monomorphisms, then/3 IS a monomorphism,

(b) IfIs is a monomorphism and 12,14 are surjective, then 13 is surjective, [Hint:

Use the snake lemma,]

Inverse limits

16. Prove that the inverse limit of a system of simple groups in which the homomorphisms
are surjective is either the trivial group, or a simple group.

17. (a) Let n range over the positive integers and let p be a prime number, Show that

the abelian groups An
= Z/pnz form a projective system under the canonical

homomorphism if n
>

m, Let Zp be its inverse limit. Show that Zp maps sur-

jectively on each Z/pnz; that Zp has no divisors of 0, and has a unique maximal

ideal generated by p. Show that Zp is factorial, with only one prime, namely p

itself.
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(b) Next consider all ideals of Z as forming a directed system, by divisibility. Prove

that

!!!!! Z/(a) = n Zp,
(a) p

where the limit is taken over all ideals (a), and the product is taken over all

pnmes p.

18. (a) Let {An} be an inversely directed sequence of commutative rings, and let {Mn }

be an inversely directed sequence of modules, M
n being a module over An such

that the following diagram is commutative:

An+1 x M
n + 1

M
n + 1

An X M
n

M
n

The vertical maps are the homomorphisms of the directed sequence, and the

horizontal maps give the operation of the ring on the module. Show that!!!!! M
n

is a module over!!!!! An.

(b) Let M be a p-divisible group. Show that Tp(A) is a module over Zp.
(c) Let M, N be p-divisible groups, Show that Tp(M EB N) =

Tp(M) EB Tp(N), as

modules over Zp.

Direct limits

19. Let (A;,f) be a directed family of modules. Let ak E Ak for some k, and suppose that

the image of ak in the direct limit A is o. Show that there exists some index j > k such

that f(ak) = O. In other words whether some element in some group Ai vanishes

In the direct limit can already be seen within the original data, One way to see this

is to use the construction of Theorem 10.1.

20. Let I, J be two directed sets, and give the product I x J the obvious ordering that

(i,j) < (i',j') if i < i' and j < j'. Let A
ij

be a family of abelian groups, with homo-

morphisms indexed by I x J, and forming a directed family, Show that the direct

limits

lim limAij and lim limAij
i j j i

exist and are isomorphic in a natural way, State and prove the same result for inverse

limits.

21. Let (M,f), (M;, g) be directed systems of modules over a ring. By a homomorphism

(M;) (M;)

one means a family of homomorphisms Ui : M; Mi
for each i which commute with

thef, g. Suppose we are given an exact sequence

o (MD (Mi) (M') 0

of directed systems, meaning that for each i, the sequence

o M M. -+ M' 0
& I I
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is exact. Show that the dIrect limit preserves exactness, that is

o hm M hill M; h111 M;' 0

IS exact.

22. (a) Let {M;} be a family of modules over a flng. For any module N show that

Hom(ffi M;, N) = n Hom(Mi , N)

(b) Show that

Hom(N, n M;) = n Hom(N, M;).

23, Let {M i } be a directed family of modules over a ring. For any module N show that

11m Hom(N, M;) = Hom(N, Jim M;)

24. Show that any module is a direct limit of finitely generated submodules.

A module M is called finitely presented if there is an exact sequence

FlFoMO

where F0, Flare free with finite bases. The image ofF 1 in F0 is said to be the submodule

of relations, among the free basis elements of F0 .

25. Show that any module is a direct limit of finitely presented modules (not necessarily

submodules). In other words, given M, there exists a directed system {M;, fJ} with Mi

finitely presented for all i such that

M lim Mi.

[Hint: Any finitely generated submodule is such a direct limit, since an infinitely

generated module of relations can be viewed as a limit of finitely generated modules of

relations. Make this precise to get a proof.]

26, Let E be a module over a ring. Let {Mi } be a directed family of modules. If E is finitely

generated, show that the natural homomorphism

lim Hom(E, Mi) Hom(E, lim Mi)

IS Injective. If E is finitely presented, show that this homomorphism is an isomorphism.
Hint: First prove the statements when E is free with finite basis. Then, say E is

finitely presented by an exact sequence F 1 F0 E O. Consider the diagram:

o ) li111 Hom(E, Mi)

I

) lim Hom(F0, Mi)

I

) lim Hom(F l' Mi)

I
o ) Hom(E, liIIl Mi) ) Hom(F0' lim M;) ) Hom(F l' lim Mi)
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Graded Algebras

Let A be an algebra over a field k. By a filtration of A we mean a sequence of k-

vector spaces Ai (i == 0, I, . . .) such that

Ao c Al c A2 c ,., and U A; == A,

and A;Aj c A;+j for all i, j > O. In particular, A is an Ao-algebra. We then call A a fil-

tered algebra, Let R be an algebra. We say that R is graded if R is a direct sum

R == EB R; of subspaces such that R;Rj c R;+j for all i, j > o.

27. Let A be a filtered algebra. Define R; for i > 0 by R; == A;/A;_I. By definition,

A_I == {O}. Let R == EB R;, and R; == gr;(A). Define a natural product on R making
R into a graded algebra, denoted by gr(A), and called the associated graded algebra.

28. Let A, B be filtered algebras, A == U A; and B == UBi. Let L: A -+ B be an (Ao, Bo)-
linear map preserving the filtration, that is L(A;) c B; for all i, and L(ca) ==

L(c)L(a) for c E Ao and a E A; for all i.

(a) Show that L induces an (Ao, Bo)-linear map

gr;(L): gr;(A) -+ gr;(B) for all i,

(b) Suppose that gr;(L) is an isomorphism for all i. Show that L is an (Ao, Bo)-
isomorphism.

29. Suppose k has characteristic o. Let n be the set of all strictly upper triangular ma-

trices of a given size n x n over k.

(a) For a given matrix X E n, let DI (X), . . .

, Dn(X) be its diagonals, so DI ==

DI (X) is the main diagonal, and is 0 by the definition of n. Let ni be the

subset of n consisting of those matrices whose diagonals DI ,
. . .

, Dn-i are O.

Thus no == {O}, nl consists of all matrices whose components are 0 except

possibly for Xnn ; n2 consists of all matrices whose components are 0 except

possibly those in the last two diagonals; and so forth. Show that each n; is

an algebra, and its elements are nilpotent (in fact the (i + 1 )-th power of its

elements is 0).

(b) Let U be the set of elements I + X with X E n. Show that U is a multi-

plicative group.

(c) Let exp be the exponential series defined as usual. Show that exp defines a

polynomial function on n (all but a finite number of terms are 0 when eval-

uated on a nilpotent matrix), and establishes a bijection

exp: n -+ U.

Show that the inverse is given by the standard log series.



CHAPTER IV

Polynomials

This chapter provides a continuation of Chapter II, 3. We prove stan-

dard properties of polynomials. Most readers will be acquainted with some

of these properties, especially at the beginning for polynomials in one vari-

able. However, one of our purposes is to show that some of these properties
also hold over a commutative ring when properly formulated. The Gauss

lemma and the reduction criterion for irreducibility will show the importance
of working over rings. Chapter IX will give examples of the importance of

working over the integers Z themselves to get universal relations. It happens
that certain statements of algebra are universally true. To prove them, one

proves them first for elements of a polynomial ring over Z, and then one

obtains the statement in arbitrary fields (or commutative rings as the case

may be) by specialization. The Cayley-Hamilton theorem of Chapter XV,

for instance, can be proved in that way.

The last section on power series shows that the basic properties of

polynomial rings can be formulated so as to hold for power series rings. I

conclude this section with several examples showing the importance of power

series in various parts of mathematics.

1. BASIC PROPERTIES FOR POLYNOMIALS

IN ONE VARIABLE

We start with the Euclidean algorithm.

Theorem 1.1. Let A be a commutative ring, let f, g E A [X] be poly-
nomials in one variable, of degrees > 0, and assume that the leading

173
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coefficient of g is a unit In A. Then there exist unique polynomials

q, r E A[X] such that

f =

gq + r

and deg r < deg g.

Proof. Write

f(X) = anX
n

+
...

+ ao,

g(X) = bdX
d

+
. ..

+ bo ,

where n = deg f, d = deg g so that an, bd =F 0 and bd is a unit in A. We use

induction on n.

If n = 0, and deg g > deg f, we let q
= 0, r = f. If deg g

= deg f = 0, then

we let r = 0 and q = a
nbi

1
.

Assume the theorem proved for polynomials of degree < n (with n > 0).
We may assume deg g

< deg f (otherwise, take q
= 0 and r = f). Then

f(X) = a
n
bi

1

Xn-dg(X) + fl (X),

where f1 (X) has degree < n. By induction, we can find q l' r such that

f(X) = a
nbi

1

xn-dg(X) + q 1 (X)g(X) + r(X)

and deg r < deg g. Then we let

q(X) = a
n bi

1
X

n
-d

+ q 1 (X)

to conclude the proof of existence for q, r.

As for uniqueness, suppose that

f =

qlg + r1
=

q2g + r2

with deg r
1

< deg g and deg r2 < deg g. Subtracting yields

(q1 -

q2)g = r
2
-

r
1

.

Since the leading coefficient of g is assumed to be a unit, we have

deg(q1 -

q2)g = deg(q1 - q2) + deg g.

Since deg(r2
-

r1) < deg g, this relation can hold only if q 1
-

q2
= 0, I.e.

ql
=

q2, and hence finally r
1

=

r2 as was to be shown.

Theorem 1.2. Let k be a field. Then the polynomial ring in one variable

k [X] is principal.
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Proof Let a be an ideal of k[X], and assume Q =F o. Let g be an

element of Q of smallest degree > O. Let f be any element of Q such that

f =F O. By the Euclidean algorithm we can find q, r E k[X] such that

f =

qg + r

and deg r < deg g. But r = f -

qg, whence r is in Q. Since g had minimal

degree > 0 it follows that r = 0, hence that Q consists of all polynomials qg

(with q E k[X]). This proves our theorem. By Theorem 5.2 of Chapter II we

get:

Corollary 1.3. The ring k [X] is factorial.

If k is a field then every non-zero element of k is a unit in k, and one sees

immediately that the units of k[X] are simply the units of k. (No polyno-
mial of degree > 1 can be a unit because of the addition formula for the

degree of a product.)
A polynomial f(X) E k[X] is called irreducible if it has degree > 1, and if

one cannot write f(X) as a product

f(X) = g(X)h(X)

with g, h E k[X], and both g, h k. Elements of k are usually called constant

polynomials, so we can also say that in such a factorization, one of 9 or h must

be constant. A polynomial is called monic if it has leading coefficient 1.

Let A be a commutative ring and f(X} a polynomial in A [X]. Let A be

a subring of B. An element b E B is called a root or a zero of f in B if

f(b) = o. Similarly, if (X) is an n-tuple of variables, an n-tuple (b) is called a

zero of f if f(b) = o.

Theorem 1.4. Let k be a field and f a polynomial in one variable X in

k [X], of degree n > O. Then f has at most n roots in k, and if a is a root

off in k, then X -

a divides f(X).

Proof Suppose f(a) = O. Find q, r such that

f(X) = q(X)(X - a) + r(X)

and deg r < 1. Then

o = f(a) = r(a).

Since r = 0 or r is a non-zero constant, we must have r = 0, whence X -

a

divides f(X). If at, ..., am are distinct roots of f in k, then inductively we see

that the product

(X -

at)". (X -

am)
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divides j(X), whence m < n, thereby proving the theorem. The next corollaries

give applications of Theorem 1.4 to polynomial functions.

Corollary 1.5. Let k be a field and T an infinite subset of k. Let

f(X) E k[X] be a polynomial in one variable. If f(a) = 0 for all a E T, then

f = 0, i.e. f induces the zero function.

Corollary 1.6. Let k be a field, and let S1' ..., Sn be infinite subsets of k.

Let f(Xl' ...,
X

n ) be a polynomial in n variables over k. If f(a1' ..., an) = 0

for all aj E Sj (i = 1,..., n), then f = o.

Proof By induction. We have just seen the result is true for one

variable. Let n > 2, and write

f(Xl' .. .,
X

n) = L h(Xl' ..
.,

X
n
- 1 )xj

j

as a polynomial in X
n

with coefficients in k[Xl'
.
..,

X
n
- 1 ]. If there exists

(b1 , ...,
b

n
-

1 ) E 81
X

...

X Sn-1

such that for some j we have h(b1 ,
. . .

,
b

n
- 1 ) ;/= 0, then

f(b1 ,
.. .

,
b

n
- 1 ,

X
n )

is a non-zero polynomial in k[Xn] which takes on the value 0 for the infinite

set of elements 8n. This is impossible. Hence Jj induces the zero function on

81
x

...

X 8n-1 for all j, and by induction we have Jj = 0 for all j. Hence

f = 0, as was to be shown.

Corollary 1.7. Let k be an infinite field and f a polynomial in n variables

over k. Iff induces the zero function on k(n), then f = o.

We shall now consider the case of finite fields. Let k be a finite field with

q elements. Let f(Xl'
. ..

,
X

n ) be a polynomial in n variables over k. Write

f(X1 , ...,
X

n ) = L a(V)X;l
...

X;".

If a(v) ;/= 0, we recall that the monomial M(v)(X) occurs in f Suppose this is

the case, and that in this monomial M(v)(X), some variable Xi occurs with an

exponent Vi
>

q. We can write

X,vi
= X9+/l

I I' J-l
= integer > o.

If we now replace xt
i

by Xr+
1

in this monomial, then we obtain a new

polynomial which gives rise to the same function as f The degree of this

new polynomial is at most equal to the degree of f
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Performing the above operation a finite number of times, for all the

monomials occurring in f and all the variables Xl' ...,
X

n
we obtain some

polynomial f* giving rise to the same function as f, but whose degree in

each variable is < q.

Corollary 1.8. Let k be a finite field with q elements. Let f be a

polynomial in n variables over k such that the degree of f in each variable

is < q. Iff induces the zero function on ken), then f = o.

Proof By induction. If n = 1, then the degree of f is < q, and hence f
cannot have q roots unless it is O. The inductive step is carried out just as

we did for the proof of Corollary 1.6 above.

Let f be a polynomial in n variables over the finite field k. A polynomial

g whose degree in each variable is < q will be said to be reduced. We have

shown above that there exists a reduced polynomial f* which gives the same

function as f on ken). Theorem 1.8 now shows that this reduced polynomial is

unique. Indeed, if g l' g2 are reduced polynomials giving the same function,

then gl
-

g2 is reduced and gives the zero function. Hence gl
-

g2
= 0 and

gl
=

g2.

We shall give one more application of Theorem 1.4. Let k be a field. By
a multiplicative subgroup of k we shall mean a subgroup of the group k*

(non-zero elements of k).

Theorem 1.9. Let k be a field and let U be a finite multiplicative sub-

group of k. Then U is cyclic.

Proof Write U as a product of subgroups U(p) for each prime p, where

U(p) is a p-group. By Proposition 4.3(vi) of Chapter I, it will suffice to prove

that U(p) is cyclic for each p. Let a be an element of U(p) of maximal period

pr for some integer r. Then xP" = 1 for every element x E U(p), and hence all

elements of U(p) are roots of the polynomial

X p"
- 1.

The cyclic group generated by a has pr elements. If this cyclic group is not

equal to U(p), then our polynomial has more than pr roots, which is

impossible. Hence a generates U(p), and our theorem is proved.

Corollary 1.10. If k is a finite field, then k* is cyclic.

An element , in a field k such that there exists an integer n > 1 such that

,n = 1 is called a root of unity, or more precisely an n-th root of unity. Thus

the set of n-th roots of unity is the set of roots of the polynomial x
n
- 1.

There are at most n such roots, and they obviously form a group, which is
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cyclic by Theorem 1.9. We shall study roots of unity in greater detail

later. A generator for the group of n-th roots of unity is called a primitive
n-th root of unity. For example, in the complex numbers, e

21ti/n is a primi-
tive n-th root of unity, and the n-th roots of unity are of type e21tiv/n with

1 < v < n.

The group of roots of unity is denoted by p. The group of roots of unity
in a field K is denoted by p(K).

A field k is said to be algebraically closed if every polynomial in k[X] of

degree > 1 has a root in k. In books on analysis, it is proved that the

complex numbers are algebraically closed. In Chapter V we shall prove that

a field k is always contained in some algebraically closed field. If k is

algebraically closed then the irreducible polynomials in k [X] are the poly-
nomials of degree 1. In such a case, the unique factorization of a polynomial

f of degree > 0 can be written in the form

r

f(X) = c n (X - i)mi
i=l

with C E k, c =F 0 and distinct roots t, . . .

, r. We next develop a test when

mi > 1.

Let A be a commutative ring. We define a map

D: A [X] A [X]

of the polynomial ring into itself. If f(X) = anXn +
...

+ ao with ai E A, we

define the derivative

n

Df(X) = f'(X) = L va
v
Xv-l = nanX

n
- t

+
...

+ at.
v=l

One verifies easily that if f, g are polynomials in A [X], then

(f + g)' = f' + g', (fg)' = f'g + fg',

and if a E A, then

(af)' = af'.

Let K be a field and f a non-zero polynomial in K[X]. Let a be a root

offin K. We can write

f(X) = (X - a)mg(X)

with some polynomial g(X) relatively prime to X -

a (and hence such that

g(a) =F 0). We call m the multiplicity of a in f, and say that a is a multiple
root if m > 1.
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Proposition 1.11. Let K, f be as above. The element a of K is a multiple
root off if and only if it is a root and f'(a) = o.

Proof Factoring f as above, we get

f'(X) = (X - a)mg'(X) + m(X - a)m-l g(x).

If m > 1, then obviously f'(a) = O. Conversely, if m = 1 then

f'(X) = (X - a)g'(X) + g(X),

whence f'(a) = g(a) =F O. Hence if f'(a) = 0 we must have m > 1, as desired.

Proposition 1.12. Let f E K[X]. If K has characteristic 0, and f has

degree > 1, then f' =F o. Let K have characteristic p > 0 and f have

degree > 1. Then f' = 0 if and only if, in the expression for f(X) given

by

n

f(X) = L ayX
Y

,

y=l

p divides each integer v such that a
y =F o.

Proof If K has characteristic 0, then the derivative of a monomial ayXY
such that v > 1 and a

y =F 0 is not zero since it is va
y
Xy-l. If K has

characteristic p > 0, then the derivative of such a monomial is 0 if and only if

pi v, as contended.

Let K have characteristic p > 0, and let f be written as above, and be

such that f'(X) = O. Then one can write

d

f(X) = L b/lXP/l
/l=1

with b/l E K.

Since the binomial coefficients () are divisible by p for 1 < v <
P
- 1 we

see that if K has characteristic p, then for a, b E K we have

(a + b)P = a
P

+ b P
.

Since obviously (ab)P = aPb P
, the map

X 1---+ x
P

is a homomorphism of K into itself, which has trivial kernel, hence is

injective. Iterating, we conclude that for each integer r > 1, the map x 1---+ x
P

"



180 POLYNOMIALS IV, 2

is an endomorphism of K, called the Frobenius endomorphism. Inductively, if

C l' ...,
C

n
are elements of K, then

(C 1 +... + cnY' = cf +... + c:.

Applying these remarks to polynomials, we see that for any element a E K

we have

(X
- a)P'" = xP'" - aP'".

If C E K and the polynomial

xP'" - C

has one root a in K, then aP'" = C and

xP'" - C = (X - a)P".

Hence our polynomial has precisely one root, of multiplicity pro For In-

stance, (X - 1 )p" = X P'" - 1.

2. POLYNOMIALS OVER A FACTORIAL RING

Let A be a factorial ring, and K its quotient field. Let a E K, a =F O. We

can write a as a quotient of elements in A, having no prime factor in

common. If p is a prime element of A, then we can write

a = prb,

where b E K, r is an integer, and p does not divide the numerator or

denominator of b. Using the unique factorization in A, we see at once that r

is uniquely determined by a, and we call r the order of a at p (and write

r = ord
p a). If a = 0, we define its order at p to be 00.

If a, a' E K and aa' =F 0, then

ordp(aa') = ord
p

a + ord
p

a'.

This is obvious.

Let f(X) E K [X] be a polynomial in one variable, written

f(X) = ao + a
1 X +

...

+ anX
n

.

If f = 0, we define ord
p f to be 00. If f =F 0, we define ord

p f to be
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ord
p f = min ord

p ah

the minimum being taken over all those i such that ai =F O.

If r = ord
p f, we call upr a p-content for f, if u is any unit of A. We define

the content of f to be the product.

n pordpf
,

the product being taken over all p such that ord
p I =F 0, or any multiple of

this product by a unit of A. Thus the content is well defined up to

multiplication by a unit of A. We abbreviate content by cont.

If b E K, b =F 0, then cont(bf) = b cont(f). This is clear. Hence we can

write

f(X) = e. 11 (X)

where e = cont(f), and fl (X) has content 1. In particular, all coefficients of

fl lie in A, and their g.c.d. is 1. We define a polynomial with content 1 to be

a primitive polynomial.

Theorem 2.1. (Gauss Lemma). Let A be a factorial ring, and let K be

its quotient field. Let f, g E K[X] be polynomials in one variable. Then

cont(fg) = cont(f) cont(g).

Proof. Writing 1= efl and g
= dg 1 where c = cont(f) and d = cont(g),

we see that it suffices to prove: If f, g have content 1, then fg also has

content 1, and for this, it suffices to prove that for each prime p, ordp(fg) = O.

Let

f(X) = anX
n

+
. ..

+ ao,

g(X) = bmxm +
· ..

+ b
o ,

an =F 0,

b
m =F 0,

be polynomials of content 1. Let p be a prime of A. It will suffice to prove

that p does not divide all coefficients of fg. Let r be the largest integer such

that 0 < r < n, a
r =F 0, and p does not divide are Similarly, let b

s
be the

coefficient of g farthest to the left, b
s =F 0, such that p does not divide b

s
.

Consider the coefficient of xr+s in f(X)g(X). This coefficient is equal to

e = arbs + a
r+l

b
s
- 1 +

...

+ a
r-l

b
S + 1 +

...

and p l arbs. However, p divides every other non-zero term in this sum since

in each term there will be some coefficient ai to the left of a
r

or some

coefficient b
j

to the left of b
s

. Hence p does not divide e, and our lemma is

proved.



182 POLYNOMIALS IV, 2

We shall now give another proof for the key step in the above argument,

namely the statement:

Iff, g E A [X] are primitive (i.e. have content 1) then fg is primitive.

Proof. We have to prove that a given prime p does not divide all the

coefficients of fg. Consider reduction mod p, namely the canonical homo-

morphism A --+ A/(p) = A . Denote the image of a polynomial by a bar, so

fH1 and g 1---+ g under the reduction homomorphism. Then

fg = !g.

By hypothesis, 1 =F 0 and g =F O. Since A is entire, it follows that fg =F 0, as

was to be shown.

Corollary 2.2. Let f(X) E A [X] have a factorization f(X) = g(X)h(X) in

K[X]. If C
g

= cont(g), Ch
= cont(h), and g

= C
ggl, h = chh l ,

then

f(X) =

Cgchgl (X)h 1 (X),

and CgCh is an element of A. In particular, if f, g E A [X] have content 1,

then h E A [X] also.

Proof The only thing to be proved is CgCh E A. But

cont(f) =

CgCh cont(g 1 hI) =

CgCh,

whence our assertion follows.

Theorem 2.3. Let A be a factorial ring. Then the polynomial ring A[X]
in one var_iable is factorial. Its prime elements are the primes of A and poly-
nomials in A[X] which are irreducible in K[X] and have content 1.

Proof Let f E A[X], f =F O. Using the unique factorization in K[X]
and the preceding corollary, we can find a factorization

f(X) = c. PI (X)
...

p,(X)

where C E A, and PI' ..., P, are polynomials in A [X] which are irreducible in

[X]. Extracting the!:. contents, we may assume without loss of generality
that the content of Pi is 1 for each i. Then c

= cont(f) by the Gauss lemma.

This gives us the existence of the factorization. It follows that each Pj(X) is

irreducible in A[X]. If we have another such factorization, say

f(X) = d. ql (X)
...

qs(X),

then from the unique factorization in K[X] we conclude that r = s, and after

a permutation of the factors we have

Pi
=

aiqi
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with elements aj E K. Since both Ph qi are assumed to have content 1, it

follows that ai in fact lies in A and is a unit. This proves our theorem.

Corollary 2.4. Let A be a factorial ring. Then the ring of polynomials in

n variables A [Xl' .. .

, Xn] is factorial. Its units are precisely the units of
A, and its prime elements are either primes of A or polynomials which are

irreducible in K [X] and have content 1.

Proof. Induction.

In view of Theorem 2.3, when we deal with polynomials over a factorial

ring and having content 1, it is not necessary to specify whether such

polynomials are irreducible over A or over the quotient field K. The two

notions are equivalent.

Remark 1. The polynomial ring K[X1 , ..., Xn] over a field K is not

principal when n > 2. For instance, the ideal generated by Xl' . . .
,
X

n
is not

principal (trivial proof).

Remark 2. It is usually not too easy to decide when a given polynomial
(say in one variable) is irreducible. For instance, the polynomial X

4
+ 4 is

reducible over the rational numbers, because

X
4

+ 4 = (X
2
- 2X + 2)(X

2
+ 2X + 2).

Later in this book we shall give a precise criterion when a polynomial
x

n
-

a is irreducible. Other criteria are given in the next section.

3. CRITERIA FOR IRREDUCIBiliTY

The first criterion is:

Theorem 3.1. (Eisenstein's Criterion). Let A be a factorial ring. Let K

be its quotient field. Let f(X) = anXn +
...

+ ao be a polynomial of degree
n > 1 in A[X]. Let p be a prime of A, and assume:

an =1= 0 (mod p), ai = 0 (mod p)

ao =1= 0 (mod p2).

Then f(X) is irreducible in K[X].

for all i < n,
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Proof Extracting a g.c.d. for the coefficients of f, we may assume

without loss of generality that the content of f is 1. If there exists a

factorization into factors of degree > 1 in K [X], then by the corollary of

Gauss' lemma there exists a factorization in A [X], say f(X) = g(X)h(X),

g(X) = bdX
d

+
. ..

+ b
o ,

h(X) = cmX
m

+
. ..

+ co,

with d, m > 1 and bdcm =F O. Since boco =

ao is divisible by p but not p2, it

follows that one of bo , Co is not divisible by p, say boo Then plco
. Since

cmbd
=

an is not divisible by p, it follows that p does not divide Cm. Let C
r

be

the coefficient of h furthest to the right such that C
r =1= 0 (mod p). Then

a
r

= bocr
+ b 1 c

r-l +....

Since p l bocr
but p divides every other term in this sum, we conclude that

p 1 a
r ,

a contradiction which proves our theorem.

Example. Let a be a non-zero square-free integer =F + 1. Then for any

integer n > 1, the polynomial x
n
- a is irreducible over Q. The polynomials

3X
5
- 15 and 2X

10
- 21 are irreducible over Q.

There are some cases in which a polynomial does not satisfy Eisenstein's

criterion, but a simple transform of it does.

Example. Let p be a prime number. Then the polynomial

f(X) = Xp-l +... + 1

is irreducible over Q.

Proof It will suffice to prove that the polynomial f(X + 1) is irreducible

over Q. We note that the binomial coefficients

(
p

)
p!

v v!(p
- v)!'

1 < v <
P
- 1,

are divisible by p (because the numerator is divisible by p and the denomina-

tor is not, and the coefficient is an integer). We have

(X + I)P - 1 XP + pXp-l +
...

+ pX
f(X + 1) =

(X + 1)
- 1

=

X

from which one sees that f(X + 1) satisfies Eisenstein's criterion.

Example. Let E be a field and t an element of some field containing E such

that t is transcendental over E. Let K be the quotient field of E[ t].
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For any integer n > 1 the polynomial x
n
- t is irreducible in K[X]. This

comes from the fact that the ring A = E[t] is factorial and that t is a prime
in it.

Theorem 3.2. (Reduction Criterion). Let A, B be entire rings, and let

({J: A -+ B

be a homomorphism. Let K, L be the quotient fields of A and B respec-

tively. Let f E A [X] be such that ({Jf =F 0 and deg ({Jf = deg f If ({Jf is

irreducible in L[X], then f does not have a factorization f(X) = g(X)h(X)
with

g,hEA[X] and degg, degh > 1.

Proof. Suppose f has such a factorization. Then ({Jf = «({Jg)«({Jh). Since

deg ({Jg
< deg g and deg ({Jh < deg h, our hypothesis implies that we must

have equality in these degree relations. Hence from the irreducibility in

L[X] we conclude that g or h is an element of A, as desired.

In the preceding criterion, suppose that A is a local ring, i.e. a ring having
a unique maximal ideal p, and that p is the kernel of ({J. Then from the

irreducibility of ({Jf in L[X] we conclude the irreducibility of f in A [X].

Indeed, any element of A which does not lie in p must be a unit in A, so our

last conclusion in the proof can be strengthened to the statement that g or h

is a unit in A.

One can also apply the criterion when A is factorial, and in that case

deduce the irreducibility of f in K[X].

Example. Let p be a prime number. It will be shown later that

XP - X-I is irreducible over the field Z/pZ. Hence XP - X-I is irreduc-

ible over Q. Similarly,

X
5
- 5X

4
- 6X - 1

is irreducible over Q.

There is also a routine elementary school test whether a polynomial has a

root or not.

Proposition 3.3. (Integral Root Test). Let A be a factorial ring and K

its quotient field. Let

f(X) = anX
n

+
...

+ ao E A [X].

Let rx E K be a root of f, with rx = b/d expressed with b, d E A and b, d

relatively prime. Then blao and dlan
. In particular, if the leading coefficient

an is 1, then a root rx must lie in A and divides ao.
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We leave the proof to the reader, who should be used to this one from way

back. As an irreducibility test, the test is useful especially for a polynomial of

degree 2 or 3, when reducibility is equivalent with the existence of a root in

the given field.

4. HILBERT'S THEOREM

This section proves a basic theorem of Hilbert concerning the ideals of a

polynomial ring. We define a commutative ring A to be Noetherian if every

ideal is finitely generated.

Theorem 4.1. Let A be a commutative Noetherian ring. Then the polyno-
mial ring A [X] is also Noetherian.

Proof. Let be an ideal of A[X] . Let a; consist of 0 and the set of elements

a E A appearing as leading coefficient in some polynomial

ao + a t
X +

...

+ aX
i

lying in. Then it is clear that Qi is an ideal. (If a, b are in Qi, then a + b is

in Qi as one sees by taking the sum and difference of the corresponding
polynomials. If x E A, then xa E Qi as one sees by multiplying the corre-

sponding polynomial by x.) Furthermore we have

Qo C Qt C Q2 C.",

in other words, our sequence of ideals {Qi} is increasing. Indeed, to see this

multiply the above polynomial by X to see that a E Qi+t.

By criterion (2) of Chapter X, 1, the sequence of ideals {Qi} stops, say at

Qr:

Qo C Qt C Q2 C
...

C Qr
=

Qr+t
=

. ..

.

Let

ao t , ..., a
ono

be generators for Qo,

... ........ .......... .....

art, ..., a
rn

,.

be generators for Qr'

For each i = 0, ..., rand j = 1, ...,
ni let fij be a polynomial in , of degree

i, with leading coefficient aij. We contend that the polynomials /;,j are a set

of generators for .

Let f be a polynomial of degree d in. We shall prove that f is in the

ideal generated by the /;,j, by induction on d. Say d > O. If d > r, then we
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note that the leading coefficients of

X
d-r

f, X
d-r

f,r l' ..., rn
r

generate Qd.

polynomial

Hence there exist elements c l' .. .
, c

n
E A such that the

r

f -

C xd-rf, -... -

C Xd-rf,1 r 1 n,. rn,.

has degree < d, and this polynomial also lies in. If d < r, we can subtract

a linear combination

f -

c 1 h1 -
...

-

cndfdnd

to get a polynomial of degree < d, also lying in . We note that the

polynomial we have subtracted from f lies in the ideal generated by the hj.
By induction, we can subtract a polynomial g in the ideal generated by the

fij such that f -

g
= 0, thereby proving our theorem.

We note that if cp: A -. B is a surjective homomorphism of commutative

rings and A is Noetherian, so is B. Indeed, let b be an ideal of B, so lfJ
-1

(b)
is an ideal of A. Then there is a finite number of generators (ah . . . , an) for

cp-1(b), and it follows since lfJ is surjective that b = lfJ(lfJ-l(b)) is generated by

cp(a 1 ), ..
., cp(an ), as desired. As an application, we obtain:

Corollary 4.2. Let A be a Noetherian commutative ring, and let B =

A [xI' ...
, xm] be a commutative ring finitely generated over A. Then B is

Noetherian.

Proof Use Theorem 4.1 and the preceding remark, representing B as a

factor ring of a polynomial ring.

Ideals in polynomial rings will be studied more deeply in Chapter IX.

The theory of Noetherian rings and modules will be developed in Chapter X.

5. PARTIAL FRACTIONS

In this section, we analyze the quotient field of a principal ring, using the

factoriality of the ring.

Theorem 5.1. Let A be a principal entire ring, and let P be a set of

representatives for its irreducible elements. Let K be the quotient field of

A, and let rx E K. For each pEP there exists an element rxp E A and an

integer j(p) > 0, such that j(p) = 0 for almost all pEP, rxp and pj(P) are
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relatively prime, and

_ rxp
rx -

p":p pj(P)
.

If we have another such expression

(X = L )'

peP P

then j(p) = i(p) for all p, and rxp = PP
mod pj(P) for all p.

Proof We first prove existence, in a special case. Let a, b be rela-

tively prime non-zero elements of A. Then there exists x, YEA such that

xa + yb = 1. Hence

1 x y
- = - + -.

ab b a

Hence any fraction cjab with c E A can be decomposed into a sum of two

fractions (namely cxjb and cyja) whose denominators divide b and a respec-

tively. By induction, it now follows that any rx E K has an expression as

stated in the theorem, except possibly for the fact that p may divide rxp.

Canceling the greatest common divisor yields an expression satisfying all the

desired conditions.

As for uniqueness, suppose that rx has two expressions as stated in the

theorem. Let q be a fixed prime in P. Then

rxq Pq PP rxp

qj(q)
-

qi(q)
=

P'tq pi(p)
-

pj(P)
.

If j(q) = i(q) = 0, our conditions concerning q are satisfied. Suppose one of

j(q) or i(q) > 0, say j(q), and say j(q) > i(q). Let d be a least common multiple
for all powers pj(P) and pi(p) such that p =F q. Multiply the above equation by

dqj(q). We get

d(rxq

- qj(q)-i(q)pq ) = qj(q)P

for some pEA. Furthermore, q does not divide d. If i(q) < j(q) then q

divides rxq' which is impossible. Hence i(q) = j(q). We now see that qj(q)
divides rxq

-

Pq, thereby proving the theorem.

We apply Theorem 5.1 to the polynomial ring k[X] over a field k. We

let P be the set of irreducible polynomials, normalized so as to have leading
coefficient equal to 1. Then P is a set of representatives for all the irreduc-

ible elements of k[X]. In the expression given for rx in Theorem 5.1, we can

now divide rxp by pj(P), i.e. use the Euclidean algorithm, if deg cx
p

> deg pj(P).
We denote the quotient field of k[X] by k(X), and call its elements rational

functions.



IV, 5 PARTIAL FRACTIONS 189

Theorem 5.2. Let A = k[X] be the polynomial ring in one variable over a

field k. Let P be the set of irreducible polynomials in k [X] with leading

coefficient 1. Then any element f of k(X) has a unique expression

1;,(X)
f(X) = L

(X)i(P)
+ g(X),

peP p

where 1;" g are polynomials, 1;, = 0 if j(p) = 0, 1;, is relatively prime to p if

j(p) > 0, and deg 1;, < deg pj(P) if j(p) > O.

Proof. The existence follows at once from our previous remarks. The

uniqueness follows from the fact that if we have two expressions, with

elements 1;, and lfJp respectively, and polynomials g, h, then pj(p) divides

1;,
-

lfJp ' whence 1;,
-

lfJp
= 0, and therefore 1;, =

lfJp ' g = h.

One can further decompose the term 1;,lpj(P) by expanding 1;, according to

powers of p. One can in fact do something more general.

Theorem 5.3. Let k be a field and k[X] the polynomial ring in one

variable. Let f, g E k[X], and assume deg g
> 1. Then there exist unique

polynomials

fo, fl, ..., i1 E k [X]

such that deg Ii < deg g and such that

f = fo + ftg +
...

+ i1g
d

.

Proof. We first prove existence. If deg g > deg f, then we take 10 = f
and Ii = 0 for i > O. Suppose deg g

< deg f We can find polynomials q, r

with deg r < deg g such that

f =

qg + r,

and since deg g
> 1 we have deg q < deg f Inductively, there exist polyno-

mials ho, hI' ..., hs such that

q
= ho + ht g +

...

+ hsg
S

,

and hence

f = r + hog +
...

+ hsg
s + t

,

thereby proving existence.

As for uniqueness, let

f = fo + ft g +
...

+ i1g
d

=

lfJo + lfJt g +
· ..

+ lfJmg
m

be two expressions satisfying the conditions of the theorem. Adding terms
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equal to 0 to either side, we may assume that m = d. Subtracting, we get

o = (fo
-

lpo) +
...

+ (j;, - <Pd)gd.

Hence g divides fo -

<Po, and since deg(fo
- <Po) < deg g we see that fo =

<Po.

Inductively, take the smallest integer i such that h =F <Pi (if such i exists).

Dividing the above expression by gi we find that g divides Ii
-

<Pi and hence

that such i cannot exist. This proves uniqueness.

We shall call the expression for f in terms of g in Theorem 5.3 the g-adic

expansion of f If g(X) = X, then the g-adic expansion is the usual expres-

sion of f as a polynomial.

Remark. In some sense, Theorem 5.2 redoes what was done in Theorem

8.1 of Chapter I for Q/Z; that is, express explicitly an element of K/A as a

direct sum of its p-components.

6. SYMMETRIC POLYNOMIALS

Let A be a commutative ring and let t l' . ..
,

t
n

be algebraically indepen-
dent elements over A. Let X be a variable over A [t l' . .

., tnJ. We form the

polynomial

F(X) = (X - t 1)
...

(X - t
n )

= x
n
-

St xn
- 1

+
...

+ (-l)nsn ,

where each Si
= Si(t l' . .

.,
t

n ) is a polynomial in t l' ..., tn. Then for instance

Sl
= t

1 +
...

+ t
n

and Sn
= t 1

...

tn'

The polynomials Sl' ..., Sn are called the elementary symmetric polynomials
of t l' ..

., tn'

We leave it as an easy exercise to verify that Si is homogeneous of degree i

in t l' ..., tn.

Let (J be a permutation of the integers (1,..., n). Given a polynomial

I(t) E A[t] = A[t 1 ,
. . .

, t
n ], we define ulto be

u1( t
I' . . . tn)

= 1( t
0'(1 ),

. . .
,

t
0'(n »

.

If u, T are two permutations, then uTI = u( Tf) and hence the symmetric group

G on n letters operates on the polynomial ring A [t]. A polynomial is called

symmetric if ul =

I for all u E G. It is clear that the set of symmetric

polynomials is a subring of A [tJ, which contains the constant polynomials
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(i.e. A itself) and also contains the elementary symmetric polynomials s l' . . .
, sn'

We shall see below that A [s l' . . .

, sn] is the ring of symmetric polynomials.
Let Xl' ...,

X
n

be variables. We define the weight of a monomial

XVI ... XVn1 n

to be V
1 + 2V2 +

...

+ nv
n

. We define the weight of a polynomial
g(Xl'

.. .
,
X

n ) to be the maximum of the weights of the monomials occurring
In g.

Theorem 6.1. Let f(t) E A [t l' ...,
t

n ] be symmetric of degree d. Then

there exists a polynomial g(Xl' . . .

,
X

n ) of weight < d such that

f(t) = g(Sl, ..., sn).

Proof By induction on n. The theorem is obvious if n = 1, because

Sl=t 1
.

Assume the theorem proved for polynomials in n - 1 variables.

If we substitute t
n

= 0 in the expression for F(X), we find

(X - t 1 )... (X - t
n
- 1 )X = xn - (Sl)Oxn-l +... + (_1)n-l(sn_l)OX,

where (Si)O is the expression obtained by substituting t
n

= 0 in Si' We see

that (s 1 )0' . . .

, (Sn-l)O are precisely the elementary symmetric polynomials in

t l' ..
.,

t
n
- 1 .

We now carry out induction on d. If d = 0, our assertion is trivial.

Assume d > 0, and assume our assertion proved for polynomials of degree
< d. Let f(t l' ...,

t
n ) have degree d. There exists a polynomial

g 1 (Xl'
..

.,
X

n
- 1 ) of weight < d such that

f(t 1 , ..., tn-I' 0) = gl((Sl)O' ..., (Sn-l)O)'

We note that gl(Sl' ..., Sn-l) has degree < d in t 1 , ..., tn' The polynomial

fl(t 1 , ...,
t

n ) = f(t 1 , ...,
t

n )
- gl(SI' ..., Sn-l)

has degree < d (in t 1 , ...,
t

n ) and is symmetric. We have

fl (t l' .. .
,

t
n -1, 0) = o.

Hence fl is divisible by tn' i.e. contains t
n

as a factor. Since fl is symmetric,
it contains t 1

...

t
n

as a factor. Hence

fl = S
nf2 (t l' . . .

,
t
n )

for some polynomial f2' which must be symmetric, and whose degree IS
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< d - n < d. By induction, there exists a polynomial g2 in n variables and

weight < d - n such that

f2(t 1 , ...,
t

n ) = g2(S1' ..., sn).
We obtain

f(t) = g1(S1' ..., Sn-1) + sng2(S1' ..., sn)'

and each term on the right has weight < d. This proves our theorem.

We shall now prove that the elementary symmetric polynomials S1'''.' Sn

are algebraically independent over A.

If they are not, take a polynomial f(Xl' ...,
X

n ) E A [X] of least degree
and not equal to 0 such that

f(s l' · ..
, Sn) = O.

Write f as a polynomial in X
n

with coefficients in A [Xl' ...,
X

n
- 1 ],

f(Xl'
. .

.,
X

n) = fo(Xl'
. .

.,
X

n
- 1 ) +

. ..

+ h(Xl' . .

.,
X

n
- 1 )X.

Then fo =F O. Otherwise, we can write

f(X) = X
n l/1(X)

with some polynomial 1/1, and hence snl/1(S1' ..., sn) = O. From this it follows

that I/1(S1' ..., sn) = 0, and 1/1 has degree smaller than the degree of f
We substitute Si for Xi in the above relation, and get

o = fo (s l' . ..
,

S
n -1) +

...

+ h(S l' .. .
,

S
n -1 ) S: .

This is a relation in A [t l' . . .

,
t

n ], and we substitute 0 for t
n

in this relation.

Then all terms become 0 except the first one, which gives

o = fO(S1)0, ..., (Sn-1)0),

using the same notation as in the proof of Theorem 6.1. This is a non-trivial

relation between the elementary symmetric polynomials in t l' . . .
,
t

n
- 1 ,

a

contradiction.

Example. (The Discriminant). Let f(X) = (X
- t 1)

...

(X - t
n ). Con-

sider the product

£5(t) = n (ti - t
j).

i<j

For any permutation (J of (1, . .
., n) we see at once that

£5a(t) = + £5(t).
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Hence l5(t)2 is symmetric, and we call it the discriminant:

Df = D(Sl"'" sn) = n (ti - t
j)2.

i<j

We thus view the discriminant as a polynomial in the elementary symmetric
functions. For a continuation of the general theory, see 8. We shall now

consider special cases.

Quadratic case. You should verify that for a quadratic polynomial

f(X) = X
2

+ bX + c, one has

D = b
2
- 4c.

Cubic C9.se. Consider f(X) = X
3

+ aX + b. We wish to prove that

D = -4a
3
- 27b

2
.

Observe first that D is homogeneous of degree 6 in t l' t
2' Furthermore, a is

homogeneous of degree 2 and b is homogeneous of degree 3. By Theorem

6.1 we know that there exists some polynomial g(X2 ,
X

3 ) of weight 6 such

that D = g(a, b). The only monomials X of weight 6, i.e. such that

2m + 3n = 6 with integers m, n > 0, are those for which m = 3, n = 0, or

m = 0 and n = 2. Hence

g(X2 ,
X

3 ) = vxl + wxf

where v, ware integers which must now be determined.

Observe that the integers v, ware universal, in the sense that for any

special polynomial with special values of a, b its discriminant will be given

by g(a, b) = va
3

+ wb
2

.

Consider the polynomial

fl(X) = X(X - 1)(X + 1) = X
3
- X.

Then a = -1, b = 0, and D = -va
3

= -v. But also D = 4 by using the

definition of the discriminant of the product of the differences of the roots,

squared. Hence we get v = -4. Next consider the polynomial

f2(X) = X
3
- 1.

Then a = 0, b = -1, and D = 2b
2

= w. But the three roots of f2 are the

cube roots of unity, namely

-1 + yC3 -1- yC3
1,

2
'

2

Using the definition of the discriminant we find the value D = - 27. Hence

we get w = - 27. This concludes the proof of the formula for the dis-

criminant of the cubic when there is no X
2

term.
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In general, consider a cubic polynomial

f(X) = X
3
-

St X2 + S2 X -

S3
= (X - tt)(X - t2 )(X

- t3 ).

We find the value of the discriminant by reducing this case to the simpler
case when there is no X

2
term. We make a translation, and let

Y = X -is! so X = Y + iSt = Y + i(tt + t
2 + t3 ).

Then f(X) becomes

f(X) = f*(Y) = y
3

+ aY + b = (Y
- ut)(Y

- U2)(Y
- u 3 ),

where a = U t U2 + U
2

U 3 + UtU3 and b =

-UtU2U3, while U t + U
2 + U 3

= O.

We have

Ui
= ti -is! for i = 1, 2, 3,

and Ui
-

u
j

= ti
- t

j
for all i =F j, so the discriminant is unchanged, and you

can easily get the formula in general. Do Exercise 12(b).

7. MASON-STOTHERS THEOREM AND THE

abc CONJECTURE

In the early 80s a new trend of thought about polynomials started with the

discovery of an entirely new relation. Let I(t) be a polynomial in one variable

over the complex numbers if you wish (an algebraically closed field of charac-

teristic 0 would do). We define

no(f) = number of distinct roots of f.

Thus no(f) counts the zeros of f by giving each of them multiplicity 1, and

no(f) can be small even though deg f is large.

Theorem 7.1 (Mason-Stothers, (Mas 84), (Sto 81». Let a(t), b(t), e(t) be

relatively prime polynomials sueh that a + b = e. Then

max deg{a, b, e} < no(abc)
- I.

Proof (Mason) Dividing by c, and letting 1 = ale, g == ble we have

f + g
= 1,

where f, g are rational functions. Differentiating we get f' + g' = 0, which

we rewrite as

f' g'

f
f +

g
g = 0,
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so that

b g f'lf
- -

a-l-
-

g'lg
.

Let

a(t) = c 1 n (t - i)mi, b(t) = C
2 n (t - pj)n

j
, c(t) = C 3 n (t - YkYk.

Then by calculus algebraicized in Exercise 11 (c), we get

b f'lf
- = -- -

a g'lg

L
mi

- L
rk

t - i t - Yk

L
n
j

- L
rk

t - Pi t - Yk

A common denominator for f'lf and g'lg is given by the product

No = n (t - i) n (t
-

Pj) n (t - Yk)'

whose degree is no(abc). Observe that Nof'lf and Nog'lg are both polyno-
mials of degrees at most no(abc) - 1. From the relation

b Nof'lf
-= -

a Nog'lg'

and the fact that a, b are assumed relatively prime, we deduce the inequality
in the theorem.

As an application, let us prove Fermat's theorem for polynomials. Thus

let x(t), y(t), z(t) be relatively prime polynomials such that one of them has

degree > 1, and such that

x(t)n + y(t)n = z(t)n.

We want to prove that n < 2. By the Mason-Stothers theorem, we get

n deg x = deg x(t)n < deg x(t) + deg y(t) + deg z(t) - 1,

and similarly replacing x by y and z on the left-hand side. Adding, we find

n(deg x + deg y + deg z) < 3(deg x + deg y + deg z) - 3.

This yields a contradiction if n > 3.

As another application in the same vein, one has:

Davenport's theorem. Let f, g be non-constant polynomials such that

f3 - g2 =F o. Then

deg(f3 - g2) > ! deg f - 1.

See Exercise 13.
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One of the most fruitful analogies in mathematics is that between the

integers Z and the ring of polynomials F[t] over a field F. Evolving from

the insights of Mason [Ma 84], Frey [Fr 87], Szpiro, and others, Masser and

Oesterle formulated the abc conjecture for integers as follows. Let m be a

non-zero integer. Define the radical of m to be

No(m) = n p,
plm

i.e. the product of all the primes dividing m, taken with multiplicity 1.

The abc conjecture. Given e > 0, there exists a positive number C(e) having
the following property. For any non-zero relative prime integers a, b, c

such that a + b = c, we have

max(lal, Ibl, Icl) < C(e)No (abc)l+£.

Observe that the inequality says that many prime factors of a, b, c occur to

the first power, and that if "small" primes occur to high powers, then they
have to be compensated by "large" primes occurring to the first power. For

instance, one might consider the equation

2
n

+ 1 = m.

For m large, the abc conjecture would state that m has to be divisible by

large primes to the first power. This phenomenon can be seen in the tables

of [BLSTW 83].
Stewart-Tijdeman [ST 86] have shown that it is necessary to have the e in

the formulation of the conjecture. Subsequent examples were communicated to

me by Wojtek Jastrzebowski and Dan Spielman as follows.

We have to give examples such that for all C > 0 there exist natural

numbers a, b, c relatively prime such that a + b = c and lal > CNo(abc). But

trivially,

2
n

l(3
2n
- 1).

We consider the relations an + b
n

= C
n given by

3
2n
- 1 =

Cn'

It is clear that these relations provide the desired examples. Other examples
can be constructed similarly, since the role of 3 and 2 can be played by other

integers. Replace 2 by some prime, and 3 by an integer = 1 mod p.

The abc conjecture implies what we shall call the

Asymptotic Fermat Theorem. For all n sufficiently large, the equation

x
n

+ yn = zn

has no solution in relatively prime integers =F O.
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The proof follows exactly the same pattern as for polynomials, except

that we write things down multiplicatively, and there is a 1 + e floating
around. The extent to which the abc conjecture will be proved with an

explicit constant C(e) (or say C(I) to fix ideas) yields the corresponding

explicit determination of the bound for n in the application. We now go into

other applications.

Hall's conjecture [Ha 71]. If u, v are relatively prime non-zero integers

such that u
3
-

v
2

=F 0, then

lu
3
-

v
2

1 » luI
1 /2 -t:.

The symbol » means that the left-hand side is > the right-hand side times a

constant depending only on e. Again the proof is immediate from the abc

conjecture. Actually, the hypothesis that u, v are relatively prime is not

necessary; the general case can be reduced to the relatively prime case by

extracting common factors, and Hall stated his conjecture in this more

general way. However, he also stated it without the epsilon in the exponent,

and that does not work, as was realized later. As in the polynomial case,

Hall's conjecture describes how smalllu
3
-

v
2

1 can be, and the answer is not

too small, as described by the right-hand side.

The Hall conjecture can also be interpreted as giving a bound for integral

relatively prime solutions of

v
2

= u
3

+ b with integral b.

Then we find

lul « IbI
2

+t:.

More generally, in line with conjectured inequalities from Lang-Waldschmidt

[La 78], let us fix non-zero integers A, B and let u, v, k, m, n be variable,
with u, v relatively prime and mv > m + n. Put

Au
m

+ Bv
n

= k.

By the abc conjecture, one derives easily that

(1)
m

( 1 +t:)

lul « No(k)mn-(m+n) and

mn
( 1 +t:)

Ivl « No(k)mn-(m+n) .

From this one gets
mn

( 1 +t:)

I kl « No(k)mn-(m+n) .

The Hall conjecture is a special case after we replace No(k) with Ikl, because

No(k) < Ikl.
Next take m = 3 and n = 2, but take A = 4 and B = - 27. In this case

we write

D = 4u
3
- 27v

2
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and we get

(2) lul « N
o (D)2+£ and Ivl « No (D)3+£.

These inequalities are supposed to hold at first for u, v relatively prime.

Suppose we allow u, v to have some bounded common factor, say d. Write

u = u'd and v = v'd

with u', v' relatively prime. Then

D = 4d
3u,3 - 27d

2v'2.

Now we can apply inequality (1) with A = 4d
3

and B = -27d
2

, and we find

the same inequalities (2), with the constant implicit in the sign « depending
also on d, or on some fixed bound for such a common factor. Under these

circumstances, we call inequalities (2) the generalized Szpiro conjecture.
The original Szpiro conjecture was stated in a more sophisticated situa-

tion, cf. [La 90] for an exposition, and Szpiro's inequality was stated in the

form

IDI « N(D)6+£,

where N(D) is a more subtle invariant, but for our purposes, it is sufficient

and much easier to use the radical No (D).
The point of D is that it occurs as a discriminant. The trend of thoughts

in the direction we are discussing was started by Frey [Fr 87], who asso-

ciated with each solution of a + b = c the polynomial

x(x - a)(x + b),

which we call the Frey polynomial. (Actually Frey associated the curve

defined by the equation y2 = x(x - a)(x + b), for much deeper reasons, but

only the polynomial on the right-hand side will be needed here.) The

discriminant of the polynomial is the product of the differences of the roots

squared, and so

D = (abc)2.

We make a translation

b-a
=x+

3

to get rid of the x
2

-term, so that our polynomial can be rewritten

3 - Y2 -

Y3,

where Y2, Y3 are homogeneous in a, b of appropriate weight. The dis-

criminant does not change because the roots of the polynomial in are
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translations of the roots of the polynomial in x. Then

D = 4y - 27y.

The translation with (b - a)/3 introduces a small denominator. One may

avoid this denominator by using the polynomial x(x - 3a)(x
- 3b), so that

Y2, Y3 then come out to be integers, and one can apply the generalized Szpiro

conjecture to the discriminant, which then has an extra factor D = 3
6

(abc)2.
It is immediately seen that the generalized Szpiro conjecture implies

asymptotic Fermat. Conversely:

Generalized Szpiro implies the abc conjecture.

Indeed, the correspondence (a, b) +-+ (Y2, Y3) is invertible, and has the" right"

weight. A simple algebraic manipulation shows that the generalized Szpiro
estimates on Y2, Y3 imply the desired estimates on lal, Ibl. (Do Exercise 14.)
From the equivalence between abc and generalized Szpiro, one can use the

examples given earlier to show that the epsilon is needed in the Szpiro

conjecture.

Finally, note that the polynomial case of the Mason-Stothers theorem and

the case of integers are not independent, or specifically the Davenport theorem

and Hall's conjecture are related. Examples in the polynomial case parametrize
cases with integers when we substitute integers for the variables. Such examples
are given in [BCHS 65], one of them (due to Birch) being

f(t) = t
6

+ 4t
4

+ 10t
2

+ 6 and g(t) = t
9

+ 6t
7

+ 21t
S

+ 35t
3

+ ¥t,

whence

deg(f(t)3 - g(t)2) = t deg f + 1.

This example shows that Davenport's inequality is best possible, because the

degree attains the lowest possible value permissible under the theorem.

Substituting large integral values of t = 2 mod 4 gives examples of similarly
low values for x

3
- y2. For other connections of all these matters, cf. [La 90].

Bibliography

[BCHS 65] B. BIRCH, S. CHOWLA, M. HALL, and A. SCHINZEL, On the difference

x
3
- y2, Norske Vide Selsk. Forrh. 38 (1965) pp. 65-69

[BLSTW 83] J. BRILLHART, D. H. LEHMER, J. L. SELFRIDGE, B. TUCKERMAN, and S.

WAGSTAFF Jr., Factorization of bPI + 1, b = 2, 3, 5, 6, 7, 10, 11 up to

high powers, Contemporary Mathematics Vol. 22, AMS, Providence,

RI, 1983

[Dav 65] H. DAVENPORT, On f3(t) - g2(t), Norske Vide Selsk. Forrh. 38 (1965)

pp. 86-87

[Fr 87] G. FREY, Links between solutions of A - B = C and elliptic curves,

Number Theory, Lecture Notes 1380, Springer-Verlag, New York, 1989

pp. 31-62



200 POLYNOMIALS

[Ha 71]

[La 90]

[Ma 84a]

[Ma 84b]

[Ma 84c]

[Si 88]

[ST 86]

IV, 8

M. HALL, The diophantine equation x
3
- y2 = k, Computers and

Number Theory, ed. by A. O. L. Atkin and B. Birch, Academic

Press, London 1971 pp. 173-198

S. LANG, Old and new conjectured diophantine inequalities, Bull.

AMS Vol. 23 No.1 (1990) pp. 37-75

R. C. MASON, Equations over function fields, Springer Lecture Notes

1068 (1984), pp. 149-157; in Number Theory, Proceedings of the

Noordwijkerhout, 1983

R. C. MASON, Diophantine equations over function fields, London

Math. Soc. Lecture Note Series Vol. 96, Cambridge University
Press, Cambridge, 1984

R. C. MASON, The hyperelliptic equation over function fields, Math.

Proc. Cambridge Phi/os. Soc. 93 (1983) pp. 219-230

J. SILVERMAN, Wieferich's criterion and the abc conjecture, Journal of
Number Theory 30 (1988) pp. 226-237

C. L. STEWART and R. TUDEMAN, On the Oesterle-Masser Conjecture,
Mon. Math. 102 (1986) pp. 251-257

See additional references at the end of the chapter.

8. THE RESULTANT

In this section, we assume that the reader is familiar with determinants.

The theory of determinants will be covered later. The section can be viewed

as giving further examples of symmetric functions.

Let A be a commutative ring and let Vo,..., v
n ,

W
o ,...,

W
m

be alge-

braically independent over A. We form two polynomials:

Iv(X) = voX
n

+
...

+ v
n ,

gw(X) = woX
m

+
...

+ W
m

.

We define the resultant of (v, w), or of Iv, gw, to be the determinant

m

W
o

W1
...

W
m

Vo
V

1
...

V
n

Vo V 1
...

V
n

n

Vo V 1
...

V
n

Wo W
1

...

W
m

W
o

W
1

...

W
m

l

y

m+n

The blank spaces are supposed to be filled with zeros.
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If we substitute elements (a) = (ao, ..
., an) and (b) = (bo ,

..

.,
b

m ) in A for

(v) and (w) respectively in the coefficients of fv and gw' then we obtain

polynomials fa and gb with coefficients in A, and we define their resultant to

be the determinant obtained by substituting (a) for (v) and (b) for (w) in the

determinant. We shall write the resultant of fv, gw in the form

Res(fv' gw) or R(v, w).

The resultant Res(fa, gb) is then obtained by substitution of (a), (b) for (v), (w)

respectively.
We observe that R(v, w) is a polynomial with integer coefficients, i.e. we

may take A = Z. If z is a variable, then

R(zv, w) = zmR(v, w) and R(v, zw) = znR(v, w)

as one sees immediately by factoring out z from the first m rows (resp. the

last n rows) in the determinant. Thus R is homogeneous of degree m in its

first set of variables, and homogeneous of degree n in its second set of

variables. Furthermore, R(v, w) contains the monomial

vmw
n

o m

with coefficient 1, when expressed as a sum of monomials.

If we substitute 0 for V
o and W

o
in the resultant, we obtain 0, because the

first column of the determinant vanishes.

Let us work over the integers Z. We consider the linear equations

Xm-tfv(X) = voxn+m-t + Vt x
n + m

- 2
+... + vnX

m
- t

X
m
- 2

fv(X) = voxn+m-2 +... + v X
m
-

2

n

fv(X) = voX
n

+... + V
n

xn-tgw(X) = wox
n + m

- t
+ w

t
x

n + m
- 2

+
...

+ wmX
n
- t

xn-2gw(X) = wo
x

n + m
- 2

+
...

+ w
m
X

n
-

2

gw(X) = woxm +
. . .

+ w
m

.

Let C be the column vector on the left-hand side, and let

Co, ...,
C

m + n

be the column vectors of coefficients. Our equations can be written

C = xn+m-tc
o +

...

+ 1. C
m + n

.

By Cramer's rule, applied to the last coefficient which is = 1,

R(v, w) = det(Co , ...,
C

m + n ) = det(Co , ...,
C

m + n
- t ' C).
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From this we see that there exist polynomials CPv,w and t/lv,w in Z[v, w][X]
such that

'P,v,w/v + t/1v,wgw
= R(v,w) =

Res(fv, fw).

Note that R(v, w) E Z[v, w] but that the polynomials on the left-hand side

involve the variable X.

If A.: Z[v, w] -. A is a homomorphism into a commutative ring A and we

let A.(v) = (a), A.(w) = (b), then

CPa,bfa + t/la,bgb = R(a, b) = Res(h, fb).

Thus from the universal relation of the resultant over Z we obtain a similar

relation for every pair of polynomials, in any commutative ring A.

Proposition 8.1. Let K be a subfield of a field L, and let h, gb be

polynomials in K[X] having a common root in L. Then R(a, b) = o.

Proof If fa() = gb() = 0, then we substitute for X in the expression
obtained for R(a, b) and find R(a, b) = o.

Next, we shall investigate the relationship between the resultant and the

roots of our polynomials fv, gw. We need a lemma.

Lemma 8.2. Let h(Xl'
.. .

,
X

n ) be a polynomial in n variables over the

integers Z. If h has the value 0 when we substitute XI for X
2 and leave

the other Xi fixed (i =F 2), then h(Xl' . . .
,
X

n ) is divisible by XI
- X

2 in

Z[X1 , ...,
X

n].

Proof Exercise for the reader.

Let vo, t l' ..., tn' WO, U l' ..., Urn be algebraically independent over Z and

form the polynomials

fv = vo(X
- t 1 )... (X - t

n ) = voX
n

+... + v
n ,

gw
= wo(X - u 1 )... (X - urn) = woxm +... + w

rn
.

Thus we let

Vi
= ( -l)ivosi(t) and w

j
= ( -l)iwosj(u).

We leave to the reader the easy verification that

vo, VI' ...,
v

n , WO, WI' ...,
W

m

are algebraically independent over Z.

Proposition 8.3. Notation being as above, we have

n m

Res(fv' gw) = vO'w8 n n (ti
- u

j).
i=1 j=1
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Proof. Let S be the expression on the right-hand side of the equality in

the statement of the proposition.
Since R(v, w) is homogeneous of degree m in its first variables, and

homogeneous of degree n in its second variables, it follows that

R = vow8h(t, u)

where h(t, u) E Z[t, u]. By Proposition 8.1, the resultant vanishes when we

substitute t
i for Uj (i = 1, . . .

,
nand j = 1, . .

., m), whence by the lemma, view-

ing R as an element of Z[vo, wo , t, u] it follows that R is divisible by t i
-

Uj
for each pair (i,j). Hence S divides R in Z[vo ,

wo , t, u], because t i
-

Uj is

obviously a prime in that ring, and different pairs (i,j) give rise to different

prImes.

From the product expression for S, namely

(1)

n m

S = vow8 f1 f1 (t i
-

u
j),

i=1 j=1

we obtain

n n m

f1 g(t i ) = w8 f1 f1 (t i
-

u
j),

i=l i=1 j=1

whence

(2)

n

S = Vo f1 g(tJ.
i=l

Similarly,

(3)

m

S = (-1)nmw8 f1 f(uj).
j=1

From (2) we see that S is homogeneous and of degree n in (w), and from (3)
we see that S is homogeneous and of degree m in (v). Since R has exactly the

same homogeneity properties, and is divisible by S, it follows that R = cS for

some integer c. Since both Rand S have a monomial vow occurring in

them with coefficient 1, it follows that c = 1, and our proposition is proved.

We also note that the three expressions found for S above now give us a

factorization of R. We also get a converse for Proposition 8.1.

Corollary 8.4. Let fa' gb be polynomials with coefficients in a field K, such

that aobo =F 0, and such that fa, gb split in factors of degree 1 in K[X].
Then Res(h, gb) = 0 if and only ifhand gb have a root in common.

Proof. Assume that the resultant is o. If

h = ao(X
- 1)". (X -

n)'

gb
= bo(X - PI)

...

(X - Pn)'

is the factorization of h, gb, then we have a homomorphism
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Z[vo, t, w
o , u] -+ K

such that V
o

1---+ ao, W
o

1---+ bo ,
ti

1---+ (Xi' and u
j

1---+ Pj for all i, j. Then

o = Res(la, gb) = aO'bo n n «(Xi - Pj),
i j

whence fa, Ib have a root in common. The converse has already been

proved.
We deduce one more relation for the resultant in a special case. Let Iv be

as above,

Iv(X) = voX
n

+... + V
n

= vo(X - t 1 )... (X - t
n ).

From (2) we know that if I: is the derivative of Iv, then

(4) Res(lv' I:) = v8-
1

n I'(ti ).
i

Using the product rule for differentiation, we find:

I:(X) = L vo(X
- t 1 )

...

(X
- ti )

...

(X - t
n ),

i

I:(ti ) = VO(t i
- t 1)

...

(t i
- t

i )
...

(t i
- t

n ),

where a roof over a term means that this term is to be omitted.

We define the discriminant of Iv to be

D(lv) = D(v) = (_1)n(n-l)/2v5
n-2

n (ti
- t

j ).
i#:j

Proposition 8.5. Let Iv be as above and have algebraically independent

coefficients over Z. Then

(5) Res(lv, I:) = v5
n
- 1

n (ti
- t

j) = ( -1)n(n-l)/2 voD(lv)'
i#:j

Proof One substitutes the expression obtained for I:(ti ) into the prod-
uct (4). The result follows at once.

When we substitute 1 for Vo, we find that the discriminant as we defined

it in the preceding section coincides with the present definition. In particular,
we find an explicit formula for the discriminant. The formulas in the special
case of polynomials of degree 2 and 3 will be given as exercises.

Note that the discriminant can also be written as the product

D(lv) = v5
n
- 2

n (ti
- t

j)2.
i<j

Serre once pointed out to me that the sign (_1)n(n-l)/2 was missing in the

first edition of this book, and that this sign error is quite common in the

literature, occurring as it does in van der Waerden, Samuel, and Hilbert (but
not in his collected works, corrected by Olga Taussky); on the other hand

the sign is correctly given in Weber's Algebra, Vol. I, 50.

For a continuation of this section, see Chapter IX, 3 and 4.
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9. POWER SERIES

Let X be a letter, and let G be the monoid of functions from the set {X}
to the natural numbers. If v E N, we denote by XV the function whose value

at X is v. Then G is a multiplicative monoid, already encountered when we

discussed polynomials. Its elements are X
O

, Xl, X
2

, ..., Xv, ... .

Let A be a commutative ring, and let A [[X]] be the set of functions

from G into A, without any restriction. Then an element of A [[X]] may be

viewed as assigning to each monomial Xv a coefficient a
v

E A. We denote

this element by
00

L avXv.
v=O

The summation symbol is not a sum, of course, but we shall write the above

expression also in the form

aoX
O

+ atX
t

+
...

and we call it a formal power series with coefficients in A, in one variable.

We call ao, a l ,
... its coefficients.

Given two elements of A [[X]], say

00

L avX
v

and
v=O

00

L b/lX/l,
/l=O

we define their product to be

00

L CiX
i

i=O

where

Ci
= L avb/l.

v+ /l=i

Just as with polynomials, one defines their sum to be

00

L (av
+ bv)X

v

.

v=O

Then we see that the power series form a ring, the proof being the same as

for polynomials.
One can also construct the power series ring in several variables

A[[Xt , ..., Xn]] in which every element can be expressed in the form

L a(V)X:l
... X;" = L a(v)M(v)(Xl, .

..,
X

n )
(v)

with unrestricted coefficients a(v) in bijection with the n-tuples of integers

(Vt, ...,
v

n ) such that Vi
> 0 for all i. It is then easy to show that there is an

isomorphism between A [[Xl, ..., Xn]] and the repeated power series ring
A [[Xt]] ... [[Xn]]. We leave this as an exercise for the reader.
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The next theorem will give an analogue of the Euclidean algorithm for

power series. However, instead of dealing with power series over a field, it is

important to have somewhat more general coefficients for certain applica-
tions, so we have to introduce a little more terminology.

Let A be a ring and I an ideal. We assume that

00

n IV = {O}.
v=l

We can view the powers IV as defining neighborhoods of 0 in A, and we can

transpose the usual definition of Cauchy sequence in analysis to this situation,

namely: we define a sequence {an} in A to be Cauchy if given some power IV

there exists an integer N such that for all m, n > N we have

am
-

an E IV.

Thus IV corresponds to the given E of analysis. Then we have the usual

notion of convergence of a sequence to an element of A. One says that A is

complete in the /-adic topology if every Cauchy sequence converges.

Perhaps the most important example of this situation is when A is a local

ring and I = m is its maximal ideal. By a complete local ring, one always
means a local ring which is complete in the m-adic topology.

Let k be a field. Then the power series ring

R = k[[Xl , ..., Xn]]

in n variables is such a complete local ring. Indeed, let m be the ideal

generated by the variables Xl' ..., Xn. Then Rim is naturally isomorphic to

the field k itself, so m is a maximal ideal. Furthermore, any power series of

the form

f(X) =

Co
-

fl (X)

with Co E k, Co =F 0 and fl (X) E m is invertible. To prove this, one may first

assume without loss of generality that Co
= 1. Then

(1 - fl(X))-l = 1 + fl(X) + fl(X)2 + fl(X)3 +...

gives the inverse. Thus we see that m is the unique maximal ideal and R is

local. It is immediately verified that R is complete in the sense we have just
defined. The same argument shows that if k is not a field but Co is invertible

in k, then again f(X) is invertible.

Again let A be a ring. We may view the power series ring in n variables

(n > 1) as the ring of power series in one variable X
n

over the ring of power

series in n - 1 variables, that is we have a natural identification

A [[Xl' ..., Xn]] = A [[Xl' ...,
X

n
- l ]] [[Xn]].

If A = k is a field, the ring k[[Xl , ...,
X

n
-

l ]] is then a complete local

ring. More generally, if 0 is a complete local ring, then the power series ring
o[[X]] is a complete local ring, whose maximal ideal is (m, X) where m is

the maximal ideal of o. Indeed, if a power series L avXv has unit constant
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term ao E 0*, then the power series is a unit in o[[X]], because first, without

loss of generality, we may assume that ao
= 1, and then we may invert 1 + h

with h E (m, X) by the geometric series 1 - h + h
2
- h

3
+

.,.

.

In a number of problems, it is useful to reduce certain questions about

power series in several variables over a field to questions about power series

in one variable over the more complicated ring as above. We shall now

apply this decomposition to the Euclidean algorithm for power series.

Theorem 9.1. Let 0 be a complete local ring with maximal ideal m. Let

00

f(X) = L aiXi
i=O

be a power series in o[[X]] (one variable), such that not all ai lie in m.

Say ao, ...,
a

n
- 1

E m, and an E 0* is a unit. Given g E 0 [[X]] we can solve

the equation

g=qf+r

uniquely with q E o[[X]], r E o[X], and deg r < n - 1.

Proof (Manin). Let rx and t be the projections on the beginning and

tail end of the series, given by

n-l

rx: L biX
i

1--+ L biX
i
= bo + b1

X +
...

+ b
n
- 1 x

n

-l,
i=O

00

t: L biXil--+ L biX
i-n

= b
n

+ b
n + 1 X + b

n + 2
X

2
+....

i=n

Note that t(hX
n

) = h for any hE o[[X]]; and h is a polynomial of degree

< n if and only if t(h) = O.

The existence of q, r is equivalent with the condition that there exists q

such that

t(g) = t(qf).

Hence our problem is equivalent with solving

t(g) = t(qrx(f») + t(qt(f)X
n

) = t(qrx(f») + qt(f).

Note that t(f) is invertible. Put Z = qt(f). Then the above equation is

equivalent with

(
rx(f»

) (
rx(f»

)-r(g) = -r Z

-r(f)
+ Z = I + -r 0

-r(f)
Z.

Note that

rx(f)
-r 0

-r(f)
: o([X]] -+ mo[[X]],

because rx(f)/t(f) E mo[[X]]. We can therefore invert to find Z, namely
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(
(X(f)

)
-l

Z = I + . 0

.(f)
.(g),

which proves both existence and uniqueness and concludes the proof.

Theorem 9.2. (Weierstrass Preparation). The power series f in the pre-

vious theorem can be written uniquely in the form

f(X) = (X
n

+ b
n
- 1 x

n
- 1

+
...

+ bo)u,

where bi E m, and u is a unit in o[[X]].

Proof. Write uniquely

X
n

= qf + r,

by the Euclidean algorithm. Then q is invertible, because

q=CO+CI X +.",

f =
...

+ anX
n

+ ...,

so that

1 = coan (mod m),

and therefore Co is a unit in o. We obtain qf = x
n
-

r, and

f = q-l(X
n
-

r),

with r = 0 (mod m). This proves the existence. Uniqueness is immediate.

The integer n in Theorems 9.1 and 9.2 is called the Weierstrass degree of f,
and is denoted by degw f. We see that a power series not all of whose coeffi-

cients lie in m can be expressed as a product of a polynomial having the given
Weierstrass degree, times a unit in the power series ring. Furthermore, all

the coefficients of the polynomial except the leading one lie in the maximal

ideal. Such a polynomial is called distinguished, or a Weierstrass polynomial.

Remark. I rather like the use of the Euclidean algorithm in the proof of

the Weierstrass Preparation theorem. However, one can also give a direct

proof exhibiting explicitly the recursion relations which solve for the coeffi-

cients of u, as follows. Write u = L CiXi. Then we have to solve the

equations
boco = ao ,

bo c 1 + b 1 Co
= a 1 ,

bO
c

n
- 1 +

. ..

+ b
n
- 1 Co

= a
n-l,

bocn
+

. ..

+ Co
=

an,

b
o C

n + 1 +
. ..

+ C
1

=

an + 1 ,
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In fact, the system of equations has a unique solution mod m
r

for each

positive integer r, after selecting Co to be a unit, say Co
= 1. Indeed, from

the first n equations (from 0 to n - 1) we see that b
o ,...,

b
n
- 1 are uniquely

determined to be 0 mod m. Then Cn' c
n + 1 ,

. .. are uniquely determined

mod m by the subsequent equations. Now inductively, suppose we have

shown that the coefficients bi' c
j

are uniquely determined mod m
r

. Then one

sees immediately that from the conditions ao, ...,
a

n
- 1

= 0 mod m the first n

equations define b
i uniquely mod mr+l because all bi

= 0 mod m. Then

the subsequent equations define Cj mod mr+l uniquely from the values of

bi mod mr+l and Cj mod m
r

. The unique system of solutions mod m
r

for each

r then defines a solution in the projective limit, which is the complete local

rIng.

We now have all the tools to deal with unique factorization in one important
case.

Theorem 9.3. Let k be a field. Then k[[X., . . .
, Xn]] is factorial.

Proof. Letf(x)
= f(X1 ,

. . .
,
X

n ) E k[[X]] be =f=. O. After making a sufficiently

general linear change of variables (when k is infinite)

x. = "c..Y. with c.. E k
I L.J I}} I}'

we may assume without loss of generality thatf(O, . . .
, 0, x

n ) =f=. o. (When k is

finite, one has to make a non-linear change, cf. Theorem 2.1 of Chapter VIII.)

Indeed, if we writef(X) =

fd(X) + higher terms, wherefd(X) is a homogeneous

polynomial of degree d >
0, then changing the variables as above preserves the

degree of each homogeneous component of f, and since k is assumed infinite,

the coefficients Cij can be taken so that in fact each power Yf (i = 1,..., n)

occurs with non-zero coefficient.

We now proceed by induction on n. Let Rn
= k[[X1 ,

. . .
, Xn]] be the power

series in n variables, and assume by induction that R
n
-

I
is factorial. By Theorem

9.2, writef =

9U where u is a unit and 9 is a Weierstrass polynomial in Rn-I[Xn].

By Theorem 2.3, Rn-I[Xn] is factorial, and so we can write 9 as a product of

irreducible elements 91' . . .

, 9r E Rn-I [Xn], sof
=

91
· · ·

9ru ,
where the factors

9i are uniquely determined up to multiplication by units. This proves the existence

of a factorization. As to uniqueness, suppose f is expressed as a product of

irreducible elements in Rn, f
= fl

...

fs. Then fq(O, . . .
, 0, x

n ) =f=. 0 for each

q
= 1, . . .

, s, so we can writefq

=

hqu where u is a unit and hq is a Weierstrass

polynomial, necessarily irreducible in Rn-I[Xn]. Then f =

9U= n hq n u
with 9 and all hq Weierstrass polynomials. By Theorem 9.2, we must have

9
= n h

q
,

and since Rn-I [Xn ] is factorial, it follows that the polynomials hq
are the same as the polynomials 9i, up to units. This proves uniqueness.

Remark. As was pointed out to me by Dan Anderson, I incorrectly stated

in a previous printing that if () is a factorial complete local ring, then ()[[X]]
is also factorial. This assertion is false, as shown by the example

k(t)[[X., X2 ,
X3]]/(Xr + xi + X)



210 POLYNOMIALS IV, 9

due to P. Salmon, Su un problema post da P. Samuel, Atti Acad. Naz. Lincei

Rend. Cl. Sc. Fis. Matern. 40(8) (1966) pp. 801-803. It is true that if () is a

regular local ring in addition to being complete, then ()[[X]] is factorial, but this

is a deeper theorem. The simple proof I gave for the power series over a field

is classical. I chose the exposition in [GrH 78].

Theorem 9.4. IfA is Noetherian, then A[[X]] is also Noetherian.

Proof Our argument will be a modification of the argument used in the

proof of Hilbert's theorem for polynomials. We shall consider elements of

lowest degree instead of elements of highest degree.
Let be an ideal of A [[X]]. We let Qi be the set of elements a E A such

that a is the coefficient of X
i
in a power series

aX
i
+ terms of higher degree

lying in. Then Qi is an ideal of A, and Qi C Qi+l (the proof of this assertion

being the same as for polynomials). The ascending chain of ideals stops:

Qo C Q 1
C Q 2

C
. ..

C Qr
=

Qr+ 1
=

. . .

As before, let aij (i = 0, . . .

,
rand j = 1, . .

.,
ni ) be generators for the ideals

Qi, and let fij be power series in A having aij as beginning coefficient.

Given f E 21, starting with a term of degree d, say d < r, we can find

elements Ct ,
. . .

, Cnd E A such that

f -

c 1 hl
-

...
-

cndhnd

starts with a term of degree > d + 1. Proceeding inductively, we may as-

sume that d > r. We then use a linear combination

f - C(d)Xd-rf, -... - C(d) xd-rf,1 rl n,. rn,.

to get a power series starting with a term of degree > d + 1. In this way, if

we start with a power series of degree d > r, then it can be expressed as a

linear combination of frt, . . .
, frnr by means of the coefficients

00 00

g 1 (X) = L cv)x
v
-

r

, ..., gn,.(X) = L C:)x
v
-

r

,

v=d v=d

and we see that the fij generate our ideal , as was to be shown.

Corollary 9.5. If A is a Noetherian commutative ring, or a field, then

A [[Xl' ..
., Xn]] is Noetherian.

Examples. Power series in one variable are at the core of the theory of

functions of one complex variable, and similarly for power series in several

variables in the higher-dimensional case. See for instance [Gu 90].

Weierstrass polynomials occur in several contexts. First, they can be used

to reduce questions about power series to questions about polynomials, in

studying analytic sets. See for instance [GrH 78], Chapter O. In a number-
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theoretic context, such polynomials occur as characteristic polynomials in

the Iwasawa theory of cyclotomic fields. Cf. [La 90], starting with Chapter
5.

Power series can also be used as generating functions. Suppose that to

each positive integer n we associate a number a(n). Then the generating
function is the power series L a(n)t

n

. In significant cases, it turns out that

this function represents a rational function, and it may be a major result to

prove that this is so.

For instance in Chapter X, 6 we shall consider a Poincare series,
associated with the length of modules. Similarly, in topology, consider a

topological space X such that its homology groups (say) are finite dimen-

sional over a field k of coefficients. Let h
n

= dim Hn(X, k), where Hn is the

n-th homology group. The Poincare series is defined to be the generating
serIes

Px(t) = L hnt
n

.

Examples arise in the theory of dynamical systems. One considers a

mapping T: X -. X from a space X into itself, and we let N
n

be the number

of fixed points of the n-th iterate Tn = ToT 0
. . .

0 T (n times). The generat-

ing function is L Nnt
n

. Because of the number of references I give here, I

list them systematically at the end of the section. See first Artin-Mazur

[ArM 65]; a proof by Manning of a conjecture of Smale [Ma 71]; and

Shub's book [Sh 87], especially Chapter 10, Corollary 10.42 (Manning's
theorem).

For an example in algebraic geometry, let V be an algebraic variety
defined over a finite field k. Let Kn be the extension of k of degree n (in a

given algebraic closure). Let N
n

be the number of points of V in Kn. One

defines the zeta function Z(t) as the power series such that Z(O) = 1 and

00

Z'/Z(t) = L N
n
t

n
- 1

.

n=l

Then Z( t) is a rational function (F. K. Schmidt when the dimension of V is 1,

and Dwork in higher dimensions). For a discussion and references to the

literature, see Appendix C of Hartshorne [Ha 77].

Finally we mention the partition function p(n), which is the number of

ways a positive integer can be expressed as a sum of positive integers. The

generating function was determined by Euler to be

00 00

1 + L p(n)t
n

= n (1 - t
n

)-l.
n=l n=l

See for instance Hardy and Wright [HardW 71], Chapter XIX. The generat-

ing series for the partition function is related to the power series usually

expressed in terms of a variable q, namely
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00 00

& =

q n (1 - qn)24 = L t(n)qn,
n=l n=l

which is the generating series for the Ramanujan function t(n). The power

series for & is also the expansion of a function in the theory of modular

functions. For an introduction, see Serre's book ESe 73], last chapter, and

books on elliptic functions, e.g. mine. We shall mention one application of

the power series for & in the Galois theory chapter.

Generating power series also occur in K-theory, topological and algebraic

geometric, as in Hirzebruch's formalism for the Riemann-Roch theorem and

its extension by Grothendieck. See Atiyah [At 67], Hirzebruch [Hi 66], and

[FuL 86]. I have extracted some formal elementary aspects having directly
to do with power series in Exercises 21-27, which can be viewed as basic

examples. See also Exercises 31-34 of the next chapter.

[ArM 65]

[At 67]

[FuL 85]

[GrH 78]

[Gu 90]

[HardW 71]

[Hart 77]

[Hi 66]

[La 90]

[Ma 71]

ESe 73]

[Sh 87]
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EXERCISES

1. Let k be a field and f(X) E k[X] a non-zero polynomial. Show that the following
conditions are equivalent:

(a) The ideal (f(X)) is prime.

(b) The ideal (f(X)) is maximal.

(c) f(X) is irreducible.

2. (a) State and prove the analogue of Theorem 5.2 for the rational numbers.

(b) State and prove the analogue of Theorem 5.3 for positive integers.

3. Let f be a polynomial in one variable over a field k. Let X, Y be two variables.

Show that in k[X, Y] we have a "Taylor series" expansion

II

f(X + Y) = f(X) + L lpi(X) y
i

,

i=l

where lpi(X) is a polynomial in X with coefficients in k. If k has characteristic 0,

show that

D'.f(X)
lpi(X) =

.,
.

l.

4. Generalize the preceding exercise to polynomials in several variables (introduce

partial derivatives and show that a finite Taylor expansion exists for a polynomial
in several variables).

5. (a) Show that the polynomials X
4

+ 1 and X
6

+ X
3

+ 1 are irreducible over the

rational numbers.

(b) Show that a polynomial of degree 3 over a field is either irreducible or has a

root in the field. Is X
3
- 5X

2
+ 1 irreducible over the rational numbers?

(c) Show that the polynomial in two variables X
2

+ y
2
- 1 is irreducible over

the rational numbers. Is it irreducible over the complex numbers?

6. Prove the integral root test of 3.

7. (a) Let k be a finite field with q elements. Let f(Xl' ..., XII) be a polynomial in

k[X] of degree d and assume f(O,..., 0) = O. An element (a 1 ,..., all) E k(lI)

such that f(a) = 0 is called a zero of f. If n > d, show that f has at least one

other zero in k(II). [Hint: Assume the contrary, and compare the degrees of

the reduced polynomial belonging to

1 - f(X)Q-1

and (1
-

Xl-
1

)
...

(1 -

X:-
1

). The theorem is due to Chevalley.]

(b) Refine the above results by proving that the number N of zeros of f in k(lI) is

= 0 (mod p), arguing as follows. Let i be an integer > 1. Show that

'"
.

{
q
- 1 = -1 if q

- 1 divides i,
x' =

X E k 0 otherwise.

Denote the preceding function of i by tjJ(i). Show that
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N = L (1 - f(x)q-l )
x e ken)

and for each n-tuple (iI' . ..
, in) of integers > 0 that

L Xl... xn = "'(il)
...

"'(in).
xek(n)

Show that both terms in the sum for N above yield 0 mod p. (The above

argument is due to Warning.)

(c) Extend Chevalley's theorem to r polynomials fl, ..., f,. of degrees d 1 ,...,
d

r

respectively, in n variables. If they have no constant term and n > L di , show

that they have a non-trivial common zero.

(d) Show that an arbitrary function f: k(n) k can be represented by a poly-
nomial. (As before, k is a finite field.)

8. Let A be a commutative entire ring and X a variable over A. Let a, b E A and

assume that a is a unit in A. Show that the map X....-+ aX + b extends to a

unique automorphism of A [X] inducing the identity on A. What is the inverse

automorphism?

9. Show that every automorphism of A [X] is of the type described in Exercise 8.

10. Let K be a field, and K(X) the quotient field of K[X]. Show that every automorphism
of K(X) which induces the identity on K is of type

aX+b
X....-+

eX +d

with a, b, e, d E K such that (aX + b)/(eX + d) is not an element of K, or

equivalently, ad - be :F O.

11. Let 1 be a commutative entire ring and let K be its quotient field. We show here

that some formulas from calculus have a purely algebraic setting. Let D: A --. A

be a derivation, that is an additive homomorphism satisfying the rule for the

derivative of a product, namely

D(xy) = xDy + yDx for x, YEA.

(a) Prove that D has a unique extension to a derivation of K into itself, and that

this extension satisfies the rule

/ )
yDx

-

xDy
D(x y

=

2

Y

for x, YEA and y :F o. [Define the extension by this formula, prove that it is

independent of the choice of x, y to write the fraction x/y, and show that it

is a derivation having the original value on elements of A.]

(b) Let L(x) = Dx/x for x E K*. Show that L(xy) = L(x) + L(y). The homo-

morphism L is called the logarithmic derivative.

(c) Let D be the standard derivative in the polynomial ring k[X] over a field k.

Let R(X) = e f1 (X
-

CXi)m
i with CXi E k, e E k, and m

i E Z, so R(X) is a rational
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function. Show that

m.

R'/R = L
I

.

X - ex.
I

12. (a) If f(X) = aX
2

+ bX + c, show that the discriminant of f is b
2
- 4ac.

(b) If f(X) = a
o
X

3
+ at X

2
+ a2 X + a3, show that the discriminant of f is

aa - 4aoa - 4aa3 - 27aa + 18ao a
t
a

2 a
3

.

(c) Let f(X) = (X - t t)
...

(X - t
ll ). Show that

II

Df = (_1)"("-1)/2 f1 f'(ti ).
i=1

13. Polynomials will be taken over an algebraically closed field of characteristic O.

(a) Prove

Davenport's theorem. Let f(t), g(t) be polynomials such that f3 - g2 :F o. Then

deg(f3 - g2) > 1 deg f + 1.

Or put another way, let h = f3 - g2 and assume h :F o. Then

deg f < 2 deg h - 2.

To do this, first assume f, 9 relatively prime and apply Mason's theorem. In

general, proceed as follows.

(b) Let A, B, f, 9 be polynomials such that Af, Bg are relatively prime :F O. Let

h = Af3 + Bg
2

. Then

deg f < deg A + deg B + 2 deg h - 2.

This follows directly from Mason's theorem. Then starting with f, 9 not

necessarily relatively prime, start factoring out common factors until no

longer possible, to effect the desired reduction. When I did it, I needed to do

this step three times, so don't stop until you get it.

(c) Generalize (b) to the case of fm - g" for arbitrary positive integer exponents

m and n.

14. Prove that the generalized Szpiro conjecture implies the abc conjecture.

15. Prove that the abc conjecture implies the following conjecture: There are infinitely

many primes p such that 2p
-

1

=1= 1 mod p2. [Cf. the reference [Sit 88] and [La 90]
at the end of 7.]

16. Let w be a complex number, and let c = max(l, Iwl). Let F, G be non-zero

polynomials in one variable with complex coefficients, of degrees d and d' respec-

tively, such that IFI, IGI > 1. Let R be their resultant. Then

IRI < Cd+d'[IF(w)1 + IG(w)l] IFld'IGld(d + d,)d+d'.

(We denote by IFI the maximum of the absolute values of the coefficients of F.)

17. Let d be an integer > 3. Prove the existence of an irreducible polynomial of

degree d over Q, having precisely d - 2 real roots, and a pair of complex

conjugate roots. Use the following construction. Let b1 , ...,
bd - 2 be distinct
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integers, and let a be an integer> O. Let

g(X) = (X
2

+ a)(X
- b

1 )
...

(X - b
d- 1 ) = X

d
+ Cd_1 Xd

- 1
+

...

+ Co.

Observe that Ci E Z for all i. Let p be a prime number, and let

P
gll(X) = g(X) + diI

P

so that gll converges to g (i.e. the coefficients of gll converge to the coefficients

of g).

(a) Prove that gll has precisely d - 2 real roots for n sufficiently large. (You may

use a bit of calculus, or use whatever method you want.)

(b) Prove that gll is irreducible over Q.

Integral-valued polynomials

18. Let P(X) E Q[X] be a polynomial in one variable with rational coefficients. It

may happen that P(n) E Z for all sufficiently large integers n without necessarily P

having integer coefficients.

(a) Give an example of this.

(b) Assume that P has the above property. Prove that there are integers

Co, C1, ..., C
r

such that

P(X)=CO()+Cl(,
X

l)+ooo+c"
where

(
X

) = X(X
-

1)
...

(X - r + 1)
r r!

is the binomial coefficient function. In particular, P(n) E Z for all n. Thus we

may call P integral valued.

(c) Let f: Z --. Z be a function. Assume that there exists an integral valued

polynomial Q such that the difference function f defined by

(f)(n) = f(n) - f(n - 1)

is equal to Q(n) for all n sufficiently large. Show that there exists an integral-
valued polynomial P such that f(n) = P(n) for all n sufficiently large.

Exercises on symmetric functions

19. (a) Let Xl'...' XII be variables. Show that any homogeneous polynomial in

Z [Xl' . . . , XII] of degree > n(n -

1) lies in the ideal generated by the elemen-

tary symmetric functions Sl, ..., SII.

(b) With the same notation show that Z[Xl' ..., XII] is a free Z[Sl'''.' SII]
module with basis the monomials

x(r) = Xl
...

X;"

with 0 <
ri

< n - i.
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(c) Let Xl'... , X" and Y1 ,..., Y
m

be two independent sets of variables. Let

s 1, . ..
, srI be the elementary symmetric functions of X and s,..., s the

elementary symmetric functions of Y (using vector vector notation). Show

that Z[X, Y] is free over Z[s, s'] with basis x(r)y(q), and the exponents (r), (q)

satisfying inequalities as in (b).

(d) Let I be an ideal in Z[s, s']. Let J be the ideal generated by I in Z[X, Y].
Show that

J n Z [s, s'] = I.

20, Let A be a commutative ring. Let t be a variable. Let

m

f(t) = L ait
i

i=O

and

"

g(t) = L bit
i

i=O

be polynomials whose constant terms are ao
= b

o
= 1. If

f(t)g(t) = 1,

show that there exists an integer N (= (m + n)(m + n - 1)) such that any mono-

mial

arl ...

a
rn

1 "

with Ljrj > N is equal to O. [Hint: Replace the a's and b's by variables. Use

Exercise 19(b) to show that any monomial M(a) of weight> N lies in the ideal I

generated by the elements

k

Ck
= L aibk-i

i=O

(letting a
o

= b
o

= 1). Note that Ck is the k-th elementary symmetric function of

the m + n variables (X, Y).]

[Note: For some interesting contexts involving symmetric functions, see

Cartier's talk at the Bourbaki Seminar, 1982-1983.]

A-rings

The following exercises start a train of thought which will be pursued in Exercise

33 of Chapter V; Exercises 22-24 of Chapter XVIII; and Chapter XX, 3. These

originated to a large extent in Hirzebruch's Riemann-Roch theorem and its extension

by Grothendieck who defined A-rings in general.
Let K be a commutative ring. By l-operations we mean a family of mappings

Ai: K K

for each integer i > 0 satisfying the relations for all x E K:

AO(X) = 1, A
1

(x) = x,

and for all integers n > 0, and x, y E K,

"

A"(X + y) = L Ai(X)A"-i(y).
i=O
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The reader will meet examples of such operations in the chapter on the alternat-

ing and symmetric products, but the formalism of such operations depends only
on the above relations, and so can be developed here in the context of formal

power series. Given a A.-operation, in which case we also say that K is a l-ring,
we define the power series

00

A.t(x) = L A.i(X)t
i
.

i=O

Prove the following statements.

21. The map x....-+ A.t(x) is a homomorphism from the additive group of K into the

multiplicative group of power series 1 + tK[[ t]] whose constant term is equal to

1. Conversely, any such homomorphism such that A.t(x) = 1 + xt + higher terms

gives rise to A.-operations.

22. Let s = at + higher terms be a power series in K [[t]] such that a is a unit in K.

Show that there is a power series

t = g(s) = L bis
i

with bi E K.

Show that any power series f(t) E K[[t]] can be written in the form h(s) for some

other power series with coefficients in K.

Given a A.-operation on K, define the corresponding Grotbendieck power series

Yt(x) = A.
t/(1-t)(x) = A.s(x)

where s = t/(1 -

t). Then the map

x....-+ Yt(x)

is a homomorphism as before. We define yi(x) by the relation

Yt(x) = L yi(X)t
i
.

Show that Y satisfies the following properties.

23. (a) For every integer n > 0 we have

II

y"(X + y) = L yi(X)y"-i(y).
.i=O

(b) Yt(l) = 1/(1 -

t).

(c) Yt( -1) = 1 - t.

24. Assume that A.iU = 0 for i > 1. Show:

(a) Yt(u
- 1) = 1 + (u - l)t.

00

(b) Yt(1 - u) = L (1 - U)it
i
.

i=O

25. Bernoulli numbers. Define the Bernoulli numbers Bk as the coefficients In the

power senes

t
00 t

k

F(t)= t

= L Bk-.
e - 1 k=O k!
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Of course, e
t
= L t

Pl

In! is the standard power series with rational coefficients tin!.
Prove:

(a) Bo = 1, Bt = -1, B
2

= t.
(b) F( - t) = t + F(t), and Bk = 0 if k is odd 1.

26. Benoulli pol.ynomials. Define the Bernoulli polynomials Ba:(X) by the power
senes expanS10n

te
tX 00

t
k

F(t, X) =

t

= L Bk(X)-.
e - 1 k=O k!

It is clear that Bk = Bk(O), so the Bernoulli numbers are the constant terms of the

Bernoulli polynomials. Prove:

(a) Bo(X) = 1, B
1 (X) = X -1, B

2 (X) = x
2
- X + t.

(b) For each positive integer N,

Bk(X) = Nk-t Nf Bk (
X + a

) .

a=O N

(c) Bk(X) = X
k

-1kXk-t + lower terms.

t
k

(d) F (t, X + 1) - F(t, X) = teXt = t L X
k

,
.

k.

(e) Bk(X + 1) - Bk(X) = kX
k - t

for k > 1.

27. Let N be a positive integer and let f be a function on Z/NZ. Form the power

senes

N -1 te(a+X)t

Ff(t, X) = L f(a) Nt
.

a=O e - 1

Following Leopoldt, define the generalized Bernoulli polynomials relative to the

function f by

00
t

k

Ff(t, X) =

kf:O Bk,f(X)
k r

In particular, the constant term of Bk,f(X) is defined to be the generalized
Bernoulli number Bk,f = Bk,f(O) introduced by Leopoldt in cyclotomic fields.

Prove:

(a) Ff(t, X + k) = e
kt

Ff(t, X).

(b) Ff(t, X + N)
-

Ff(t, X) = (e
Nt
- I)Ff(t, X).

1 N-1

(c)
k [Bk,f(X + N) - Bk.f(X)] =

ao f(a)(a + xl-
1

.

(d) Bk.J(X) = ito e) B;,fxn
-

i

= Bk,f + kBk-t.fX +
...

+ kB
1 ,f

Xk
- 1

+ BO,fXk.

Note. The exercises on Bernoulli numbers and polynomials are designed not

only to give examples for the material in the text, but to show how this material

leads into major areas of mathematics: in topology and algebraic geometry centering
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around Riemann-Roch theorems; analytic and algebraic number theory, as in the

theory of the zeta functions and the theory of modular forms, cf. my Introduction

to Modular Forms, Springer-Verlag, New York, 1976, Chapters XIV and XV; my

Cyclotomic Fields, I and II, Springer-Verlag, New York, 1990, Chapter 2, 2; Kubert-

Lang's Modular Units, Springer-Verlag, New York, 1981; etc.

Further Comments, 1996-2001. I was informed by Umberto Zannier that what has

been called Mason's theorem was proved three years earlier by Stothers [Sto 81], Theo-

rem 1.1. Zannier himself has published some results on Davenport's theorem [Za 95],
without knowing of the paper by Stothers, using a method similar to that of Stothers,
and rediscovering some of Stothers' results, but also going beyond, Indeed, Stothers uses

the "Belyi method" belonging to algebraic geometry, and increasingly appearing as a

fundamental tool. Mason gave a very elementary proof, accessible at the basic level of

algebra. An even shorter and very elegant proof of the Mason-Stothers theorem was

given by Noah Snyder [Sny 00]. I am much indebted to Snyder for showing me that

proof before publication, and I reproduced it in [La 99b]. But I recommend looking at

Snyder's version,

[La 99b] S. LANG, Math Talks for Undergraduates, Springer Verlag 1999

[Sny 00] N. SNYDER, An alternate proof of Mason's theorem, Elemente der Math. 55

(2000) pp. 93-94

[Sto 81] W, STOTHERS, Polynomial identities and hauptmoduln, Quart. J. Math. Oxford
(2) 32 (1981) pp. 349-370

[Za 95] U. ZANNIER, On Davenport's bound for the degree off3 - g2 and Riemann's

existence theorem, Acta Arithm. LXXI.2 (1995) pp. 107-137



Part Two

ALGEBRAIC

EQUATIONS

This part is concerned with the solutions of algebraic equations, in one

or several variables. This is the recurrent theme in every chapter of this

part, and we lay the foundations for all further studies concerning such

equations.
Given a subring A of a ring B, and a finite number of polynomials

i1' ..., in in A [Xl' ...,
X

n], we are concerned with the n-tuples

(b 1 ,
.. .

,
b

n ) E B(n)

such that

h(b1 , ...,
b

n } = 0

for i = 1, ...,
r. For suitable choices of A and B, this includes the general

problem of diophantine analysis when A, B have an "arithmetic" structure.

We shall study various cases. We begin by studying roots of one polyno-
mial in one variable over a field. We prove the existence of an algebraic

closure, and emphasize the role of irreducibility.
Next we study the group of automorphisms of algebraic extensions of a

field, both intrinsically and as a group of permutations of the roots of a

polynomial. We shall mention some major unsolved problems along the

way.

It is also necessary to discuss extensions of a ring, to give the possibil-

ity of analyzing families of extensions. The ground work is laid in Chapter
VII.

In Chapter IX, we come to the zeros of polynomials in several variables,

essentially over algebraically closed fields. But again, it is advantageous to

221
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consider polynomials over rings, especially Z, since in projective space, the

conditions that homogeneous polynomials have a non-trivial common zero

can be given universally over Z in terms of their coefficients.

Finally we impose additional structures like those of reality, or metric

structures given by absolute values. Each one of these structures gives rise to

certain theorems describing the structure of the solutions of equations as

above, and especially proving the existence of solutions in important cases.



CHAPTER V

Algebraic Extensions

In this first chapter concerning polynomial equations, we show that given
a polynomial over a field, there always exists some extension of the field

where the polynomial has a root, and we prove the existence of an algebraic
closure. We make a preliminary study of such extensions, including the

automorphisms, and we give algebraic extensions of finite fields as examples.

1. FINITE AND ALGEBRAIC EXTENSIONS

Let F be a field. If F is a subfield of a field E, then we also say that E is

an extension field of F. We may view E as a vector space over F, and we say

that E is a finite or infinite extension of F according as the dimension of this

vector space is finite or infinite.

Let F be a subfield of a field E. An element rx of E is said to be algebraic
over F if there exist elements ao, ..., an (n > 1) of F, not all equal to 0, such

that

a
o + a 1 rx +

. ..

+ an rx
n

= O.

If rx =F 0, and rx is algebraic, then we can always find elements ai as above

such that ao =F 0 (factoring out a suitable power of rx).
Let X be a variable over F. We can also say that rx is algebraic over F if

the homomorphism
F [X] E

223
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which is the identity on F and maps X on rx has a non-zero kernel. In that

case the kernel is an ideal which is principal, generated by a single polyno-
mial p(X), which we may assume has leading coefficient 1. We then have an

isomorphism

F[X]j(p(X)) F[rx],

and since F[rx] is entire, it follows that p(X) is irreducible. Having normal-

ized p(X) so that its leading coefficient is 1, we see that p(X) is uniquely
determined by rx and will be called THE irreducible polynomial of rx over F.

We sometimes denote it by Irr(rx, F, X).
An extension E of F is said to be algebraic if every element of E is

algebraic over F.

Proposition 1.1. Let E be a finite extension of F. Then E is algebraic
over F.

Proof Let rx E E, rx =F o. The powers of rx,

1
2 n

, rx, rx
, ...,

rx
,

cannot be linearly independent over F for all positive integers n, otherwise

the dimension of E over F would be infinite. A linear relation between these

powers shows that rx is algebraic over F.

Note that the converse of Proposition 1.1 is not true; there exist infinite

algebraic extensions. We shall see later that the subfield of the complex
numbers consisting of all algebraic numbers over Q is an infinite extension

of Q.
If E is an extension of F, we denote by

[E : F]

the dimension of E as vector space over F. It may be infinite.

Proposition 1.2. Let k be a field and FeE extension fields of k. Then

[E : k] = [E : F] [F : k].

If {Xi}iel is a basis for F over k and {Yj}jeJ is a basis for E over F, then

{XiYj}(i,j)elxJ is a basis for E over k.

Proof Let Z E E. By hypothesis there exist elements rx
j

E F, almost all

rx
j

= 0, such that

Z = L rxjYjo
jeJ

For each j E J there exist elements b
ji

E k, almost all of which are equal to 0,

such that
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rx
j

= L bjiXi ,

ie I

and hence

z = b..x,y .

i..J i..J JI I r
j i

This shows that {xiYj} is a family of generators for E over k. We must show

that it is linearly independent. Let {cij } be a family of elements of k, almost

all of which are 0, such that

c..x.y
. = 0

IJ I J
.

j i

Then for each j,

c..x, = 0
i..J IJ I

i

because the elements Yj are linearly independent over F. Finally Cij
= 0 for

each i because {Xi} is a basis of F over k, thereby proving our proposition.

Corollary 1.3. The extension E of k is finite if and only if E is finite over

F and F is finite over k.

As with groups, we define a tower of fields to be a sequence

F1
c F

2
C

. ..

c Fn

of extension fields. The tower is called finite if and only if each step is finite.

Let k be a field, E an extension field, and rx E E. We denote by k(rx) the

smallest subfield of E containing both k and rx. It consists of all quotients

f(rx)/g(rx), where f, g are polynomials with coefficients in k and g(rx) =F O.

Proposition 1.4. Let rx be algebraic over k. Then k(rx) = k[rx], and k(rx) is

finite over k. The degree [k(rx) : k] is equal to the degree of Irr(rx, k, X).

Proof Let p(X) = Irr(rx, k, X). Let f(X) E k[X] be such that f(rx) =F O.

Then p(X) does not divide f(X), and hence there exist polynomials g(X),

h(X) E k[X] such that

g(X)p(X) + h(X)f(X) = 1.

From this we get h(rx)f(rx) = 1, and we see that f(rx) is invertible in k[rx].
Hence k[rx] is not only a ring but a field, and must therefore be equal to

k(rx). Let d = deg p(X). The powers

1
d-l

, rx, . .
.,

rx

are linearly independent over k, for otherwise suppose

ao + al rx +... + ad _ 1 rx
d- 1

= 0
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with ai E k, not all ai
= O. Let g(X) =

ao +
· ..

+ ad-l X
d- 1

. Then g =F 0 and

g() = O. Hence p(X) divides g(X), contradiction. Finally, let f(a.) E k[],
where f(X) E k[X]. There exist polynomials q(X), r(X) E k[X] such that

deg r < d and

f(X) = q(X)p(X) + r(X).

Then f() = r(), and we see that 1,,..., d-l generate k[] as a vector space

over k. This proves our proposition.
Let E, F be extensions of a field k. If E and F are contained in some field

L then we denote by EF the smallest subfield of L containing both E and

F, and call it the compositum of E and F, in L. If E, F are not given as

embedded in a common field L, then we cannot define the compositum.
Let k be a subfield of E and let l'

. . .

, n be elements of E. We denote

by

k(l' ..., n)

the smallest subfield of E containing k and 1' ..., n' Its elements consist of

all quotients

f( l' .. .

, n)

g(l' ..., n)

where f, g are polynomials in n variables with coefficients in k, and

g( l'
. ..

, n) =F O.

Indeed, the set of such quotients forms a field containing k and l'
. . .

, n.

Conversely, any field containing k and

1, ..., n

must contain these quotients.
We observe that E is the union of all its subfields k(l'"'' n) as

(1' ..., n) ranges over finite subfamilies of elements of E. We could define

the compositum of an arbitrary subfamily of subfields of a field L as the

smallest subfield containing all fields in the family. We say that E is finitely

generated over k if there is a finite family of elements l' . . .
, n of E such

that

E = k ( l'
. ..

, n)'

We see that E is the compositum of all its finitely generated subfields over k.

Proposition 1.5. Let E be a finite extension of k. Then E is finitely

generated.

Proof. Let {1'.." n} be a basis of E as vector space over k. Then

certainly
E = k(l' ..., n)'
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If E = k(rx l' ...,
rx

n ) is finitely generated, and F is an extension of k, both

F, E contained in L, then

EF = F(rx 1 , ...,
rx

n ),

and EF is finitely generated over F. We often draw the following picture:

EF

/
""F

E""/
k

Lines slanting up indicate an inclusion relation between fields. We also call

the extension EF of F the translation of E to F, or also the lifting of E to

F.

Let rx be algebraic over the field k. Let F be an extension of k, and

assume k(rx), F both contained in some field L. Then rx is algebraic over F.

Indeed, the irreducible polynomial for rx over k has a fortiori coefficients in

F, and gives a linear relation for the powers of rx over F.

Suppose that we have a tower of fields:

k c k(rx 1 ) C k(rx 1 ,
rx

2 ) c
...

c k(rx 1 , ...,
rx

n ),

each one generated from the preceding field by a single element. Assume that

each rxi is algebraic over k, i = 1, ...,
n. As a special case of our preceding

remark, we note that rxi+l is algebraic over k(rx 1 ,
.

..,
rxi ). Hence each step of

the tower is algebraic.

Proposition 1.6. Let E = k(rx 1 , ...,
rx

n ) be a finitely generated extension of
a field k, and assume rxi algebraic over k for each i = 1, ...,

n. Then E is

finite algebraic over k.

Proof From the above remarks, we know that E can be obtained as the

end of a tower each of whose steps is generated by one algebraic element,

and is therefore finite by Proposition 1.4. We conclude that E is finite over k

by Corollary 1.3, and that it is algebraic by Proposition 1.1.

Let e be a certain class of extension fields FeE. We shall say that e is

distinguished if it satisfies the following conditions:

(1) Let keF c E be a tower of fields. The extension k c E is in e if and

only if keF is in e and FeE is in e.

(2) If k c E is in e, if F is any extension of k, and E, F are both

contained in some field, then F c EF is in e.

(3) If keF and k c E are in e and F, E are subfields of a common field,

then k c FE is in e.
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The diagrams illustrating our properties are as follows:

E

I
F

I
k

(1)

EF

/ "'F

E", /
k

(2)

EF

/
E F

/
k

(3)

These lattice diagrams of fields are extremely suggestive in handling exten-

sion fields.

We observe that (3) follows formally from the first two conditions.

Indeed, one views EF over k as a tower with steps keF c EF.

As a matter of notation, it is convenient to write ElF instead of FeE to

denote an extension. There can be no confusion with factor groups since we

shall never use the notation ElF to denote such a factor group when E is an

extension field of F.

Proposition 1.7. The class of algebraic extensions is distinguished, and so

is the class of finite extensions.

Proof: Consider first the class of finite extensions. We have already

proved condition (1). As for (2), assume that Elk is finite, and let F be any

extension of k. By Proposition 1.5 there exist elements a l ,..., an E E such

that E = k(a l , ..., an)' Then EF = F(al' ..., an), and hence EFIF is finitely

generated by algebraic elements. Using Proposition 1.6 we conclude that

EFIF is finite.

Consider next the class of algebraic extensions, and let

kcFcE

be a tower. Assume that E is algebraic over k. Then a fortiori, F is

algebraic over k and E is algebraic over F. Conversely, assume each step in

the tower to be algebraic. Let a E E. Then a satisfies an equation

ana
n

+
...

+ ao
= 0

with ai E F, not all ai
= O. Let Fo = k(an ,

. .
.,

a
o )' Then Fo is finite over k by

Proposition 1.6, and a is algebraic over Fo. From the tower

k c Fo = k(an , ..., ao) c: Fo(a)

and the fact that each step in this tower is finite, we conclude that Fo(a) is

finite over k, whence a is algebraic over k, thereby proving that E is algebraic
over k and proving condition (1) for algebraic extensions. Condition (2) has

already been observed to hold, i.e. an element remains algebraic under lifting,
and hence so does an extension.
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Remark. It is true that finitely generated extensions form a distinguished

class, but one argument needed to prove part of (1) can be carried out only
with more machinery than we have at present. Cf. the chapter on transcen-

dental extensions.

2. ALGEBRAIC CLOSURE

In this and the next section we shall deal with embeddings of a field into

another. We therefore define some terminology.
Let E be an extension of a field F and let

u: F -+ L

be an embedding (i.e. an injective homomorphism) of F into L. Then u

induces an isomorphism of F with its image uF, which is sometimes written

F
lI

. An embedding t of E in L will be said to be over u if the restriction of t

to F is equal to u. We also say that t extends u. If u is the identity then we

say that t is an embedding of E over F.

These definitions could be made in more general categories, since they

depend only on diagrams to make sense:

E

inej
F ) L

E T) L

in\ Ie
F

T

) L

jid
(J

Remark. Let f(X) E F [X] be a polynomial, and let rx be a root of f in

E. Say f(X) =

ao +
...

+ anX
n

. Then

o =

f(a)
=

ao + ala + · .. + ana
n

.

If t extends u as above, then we see that trx is a root of fll because

o = t{f(rx)) = ag + ar(trx) +
...

+ a:(trx)n.

Here we have written all instead of u(a). This exponential notation is

frequently convenient and will be used again in the sequel. Similarly, we

write F
lI

instead of u(F) or uF.

In our study of embeddings it will also be useful to have a lemma

concerning embeddings of algebraic extensions into themselves. For this we

note that if u: E -+ L is an embedding over k (i.e. inducing the identity on k),

then u can be viewed as a k-homomorphism of vector spaces, because both

E, L can be viewed as vector spaces over k. Furthermore u is injective.
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Lemma 2.1. Let E be an algebraic extension of k, and let (1: E -+ E be an

embedding of E into itself over k. Then (1 is an automorphism.

Proof. Since (1 is injective, it will suffice to prove that (1 is surjective. Let

rx be an element of E, let p(X) be its irreducible polynomial over k, and let E'

be the subfield of E generated by all the roots of p(X) which lie in E. Then

E' is finitely generated, hence is a finite extension of k. Furthermore, (1 must

map a root of p(X) on a root of p(X), and hence (1 maps E' into itself. We

can view (1 as a k-homomorphism of vector spaces because (1 induces the

identity on k. Since (1 is injective, its image (1(£') is a subspace of E' having
the same dimension [E' : k]. Hence u(E') = E'. Since a E E', it follows that

a is in the image of u, and our lemma is proved.

Let E, F be extensions of a field k, contained in some bigger field L. We

can form the rIng E[F] generated by the elements of F over E. Then E[F] =

F[E], and EF is the quotient field of this ring. It is clear that the elements of

E[F] can be written in the form

a 1 b1 +
...

+ anbn

with ai E E and bi E F. Hence EF is the field of quotients of these elements.

Lemma 2.2. Let E
1 ,

E2 be extensions of a field k, contained in some

bigger field E, and let (1 be an embedding of E in some field L. Then

(1(E 1
E

2 ) = (1(E 1 )(1(E2 ).

Proof We apply (1 to a quotient of elements of the above type, say

(
a 1 b 1 +

...

+ anbn

)
arbr +... + a:b:

(1

a; b; +
...

+ ab
=

aab;a +
.. ·

+ a;:b;:
,

and see that the image is an element of (1(E 1 )(1(E2 ). It is clear that the image

(1(E 1
E

2 ) is (1(E 1 )(1(E2 ).

Let k be a field, f(X) a polynomial of degree > 1 in k[X]. We consider

the problem of finding an extension E of k in which f has a root. If p(X) is

an irreducible polynomial in k[X] which divides j(X), then any root of p(X)
will also be a root of ,f(X), so we may restrict ourselves to irreducible

polynomials.
Let p(X) be irreducible, and consider the canonical homomorphism

(1: k[X] -+ k[X]j(p(X)).

Then (1 induces a homomorphism on k, whose kernel is 0, because every

nonzero element of k is invertible in k, generates the unit ideal, and 1 does

not lie in the kernel. Let be the image of X under (1, i.e. = (1(X) is the

residue class of X mod p(X). Then

pa() = pa(x
a

} = (p(x))a = o.
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Hence is a root of pel, and as such is algebraic over uk. We have now

found an extension of uk, namely uk() in which pel has a root.

With a minor set-theoretic argument, we shall have:

Proposition 2.3. Let k be a field and f a polynomial in k[X] of degree
> 1. Then there exists an extension E of k in which f has a root.

Proof We may assume that f =

p is irreducible. We have shown that

there exists a field F and an embedding

u: k --. F

such that pel has a root in F. Let S be a set whose cardinality is the same

as that of F - uk (= the complement of uk in F) and which is disjoint from

k. Let E = k uS. We can extend u: k -+ F to a bijection of E on F. We now

define a field structure on E. If x, y E E we define

xy
= u-

1

(u(x)u(y»),

x + y
= u-

1

(u(x) + u(y»).

Restricted to k, our addition and multiplication coincide with the given
addition and multiplication of our original field k, and it is clear that k is a

subfield of E. We let rx = U-1(). Then it is also clear that p(rx) = 0, as

desired.

Corollary 2.4. Let k be a field and let f1, ..., f" be polynomials in k[X]

of degrees > 1. Then there exists an extension E of k in which each h has

a root, i = 1, ...,
n.

Proof Let £1 be an extension in which f1 has a root. We may view f2
as a polynomial over E 1. Let E

2 be an extension of E
1 in which f2 has a

root. Proceeding inductively, our corollary follows at once.

We define a field L to be algebraically closed if every polynomial in L[X]
of degree > 1 has a root in L.

Theorem 2.5. Let k be afield. Then there exists an algebraically closedfield

containing k as a subfield.

Proof We first construct an extension El of k in which every polyno-
mial in k[X] of degree > 1 has a root. One can proceed as follows (Artin).
To each polynomial f in k[X] of degree > 1 we associate a letter X

f
and we

let S be the set of all such letters X
f (so that S is in bijection with the set of

polynomials in k[X] of degree > 1). We form the polynomial ring k[S], and

contend that the ideal generated by all the polynomials f(Xf) in k[S] is not

the unit ideal. If it is, then there is a finite combination of elements in our

ideal which is equal to 1:

glfl (Xfl ) +
...

+ gnf,,(Xfn ) = 1
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with gi E k[S]. For simplicity, write Xi instead of Xfi. The polynomials gi

will involve actually only a finite number of variables, say Xl' ...,
X

N (with
N > n). Our relation then reads

n

L gi(X1 , ..., XN)Ii{Xi ) = 1.
i=l

Let F be a finite extension in which each polynomial fl' . . .
, f" has a root,

say rx
i is a root of Ii in F, for i = 1, ...,

n. Let rx
i
= 0 for i > n. Substitute rx

i

for Xi in our relation. We get 0 = 1, contradiction.

Let m be a maximal ideal containing the ideal generated by all polyno-
mials f(Xf) in k[S]. Then k[S]jm is a field, and we have a canonical map

u: k[S] -+ k[S]jm.

For any polynomial f E k[X] of degree > 1, the polynomial fa has a root in

k[S]jm, which is an extension of uk. Using the same type of set-theoretic

argument as in Proposition 2.3, we conclude that there exists an extension

E
1 of k in which every polynomial f E k [X] of degree > 1 has a root in E 1.

Inductively, we can form a sequence of fields

£1 c E
2

C E3 C
...

c En
...

such that every polynomial in En[X] of degree > 1 has a root in En+l. Let E

be the union of all fields En' n = 1, 2, .... Then E is naturally a field, for if

x, y E E then there exists some n such that x, y E En' and we can take the

product or sum xy or x + y in En. This is obviously independent of the

choice of n such that x, y E En' and defines a field structure on E. Every

polynomial in E [X] has its coefficients in some subfield En' hence a root in

E
n + 1 , hence a root in E, as desired.

Corollary 2.6. Let k be a field. There exists an extension k
8

which is

algebraic over k and algebraically closed.

Proof Let E be an extension of k which is algebraically closed and let

k
8

be the union of all subextensions of E, which are algebraic over k. Then

k
8

is algebraic over k. If rx E E and rx is algebraic over k
8

then rx is algebraic
over k by Proposition 1.7. If f is a polynomial of degree > 1 in k

8

[X], then

f has a root rx in E, and rx is algebraic over k
8

. Hence rx is in k
8

and k
8

is

algebraically closed.

We observe that if L is an algebraically closed field, and f E L[X] has

degree > 1, then there exists c ELand rx l' ...,
rx

n
E L such that

f(X) = c(X -

rx 1 )
...

(X - rx
n ).

Indeed, f has a root rx 1 in L, so there exists g(X) E L[X] such that

f{X) = (X - rx 1 )g(X).

If deg g
> 1, we can repeat this argument inductively, and express f as a
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product of terms (X -

ai ) (i = 1, ..., n) and an element c E L. Note that c is

the leading coefficient of f, i.e.

f(X) = cX" + terms of lower degree.

Hence if the coefficients of f lie in a subfield k of L, then c E k.

Let k be a field and (1: k -+ L an embedding of k into an algebraically
closed field L. We are interested in analyzing the extensions of (1 to algebraic
extensions E of k. We begin by considering the special case when E is

generated by one element.

Let E = k(a) where a is algebraic over k. Let

p(X) = Irr(a, k, X).

Let p be a root of pCl in L. Given an element of k(a) = k[a], we can write it

in the form f(a) with some polynomial f(X) E k[X]. We define an extension

of (1 by mapping

f(a) t--+ fCl (/3).

This is in fact well defined, i.e. independent of the choice of polynomial f(X)
used to express our element in k[a]. Indeed, if g(X) is in k[X] and such that

g(a) = f(a), then (g
-

f)(a) = 0, whence p(X) divides g(X)
-

f(X). Hence

pCl(X) divides gCl(X) - fCl(X), and thus gCl(P) = fCl(/3). It is now clear that our

map is a homomorphism inducing (1 on k, and that it is an extension of (1 to

k(a). Hence we get:

Proposition 2.7. The number of possible extensions of (1 to k(a) is < the

number of roots of p, and is equal to the number of distinct roots of p.

This is an important fact, which we shall analyze more closely later. For

the moment, we are interested in extensions of (1 to arbitrary algebraic
extensions of k. We get them by using Zorn's lemma.

Theorem 2.8. Let k be a field, E an algebraic extension of k, and

(1: k -+ L an embedding of k into an algebraically closed field L. Then

there exists an extension of (1 to an embedding of E in L. If E is

algebraically closed and L is algebraic over (1k, then any such extension of
(1 is an isomorphism of E onto L.

Proof Let S be the set of all pairs (F, t) where F is a subfield of E

containing k, and t is an extension of (1 to an embedding of F in L. If (F, t)
and (F', t') are such pairs, we write (F, t) < (F

'

, t') if F c F
'

and t'IF = t.

Note that S is not empty [it contains (k, (1)], and is inductively ordered: If

{(fi, ti)} is a totally ordered subset, we let F = U li and define t on F to be

equal to ti on each lie Then (F, t) is an upper bound for the totally ordered

subset. Using Zorn's lemma, let (K, A.) be a maximal element in S. Then A. is

an extension of (1, and we contend that K = E. Otherwise, there exists a E E,
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rx rt K. By what we saw above, our embedding A. has an extension to K(rx),

thereby contradicting the maximality of (K, A.). This proves that there exists

an extension of (1 to E. We denote this extension again by (1.

If E is algebraically closed, and L is algebraic over (1k, then (1E is

algebraically closed and L is algebraic over (1E, hence L = (1E.

As a corollary, we have a certain uniqueness for an "algebraic closure" of

a field k.

Corollary 2.9. Let k be a field and let E, E' be algebraic extensions of k.

Assume that E, E' are algebraically closed. Then there exists an iso-

morphism

t: E -+ E'

of E onto E' inducing the identity on k.

Proof Extend the identity mapping on k to an embedding of E into E'

and apply the theorem.

We see that an algebraically closed and algebraic extension of k is

determined up to an isomorphism. Such an extension will be called an

algebraic closure of k, and we frequently denote it by k
8

. In fact, unless

otherwise specified, we use the symbol k
8

only to denote algebraic closure.

It is now worth while to recall the general situation of isomorphisms and

automorphisms in general categories.
Let Ci be a category, and A, B objects in Ci. We denote by Iso(A, B) the

set of isomorphisms of A on B. Suppose there exists at least one such

isomorphism (1: A -+ B, with inverse (1-1: B -+ A. If qJ is an automorphism of

A, then (1 0 qJ: A -+ B is again an isomorphism. If 1/1 is an automorphism of

B, then 1/1 0 (1: A -+ B is again an isomorphism. Furthermore, the groups

of automorphisms Aut(A) and Aut(B) are isomorphic, under the mappings

qJ(1 0 qJ 0 (1-1,

(1-1 0 1/1 0 (1 +-11/1,

which are inverse to each other. The isomorphism (1 0 qJ 0 (1-1 IS the one

which makes the following diagram commutative:

A
(J

) B

l 1<10O<1-1

A ) B
(J

We have a similar diagram for (1-1 0 1/1 0 (1.

Let t: A -+ B be another isomorphism. Then t-
1

0 (1 is an automorphism
of A, and t 0 (1-1 is an automorphism of B. Thus two isomorphisms differ by
an automorphism (of A or B). We see that the group Aut(B) operates on the
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set Iso(A, B) on the left, and Aut(A) operates on the set Iso(A, B) on the

right.
We also see that Aut(A) is determined up to a mapping analogous 'to a

conjugation. This is quite different from the type of uniqueness given by
universal objects in a category. Such objects have only the identity auto-

morphism, and hence are determined up to a unique isomorphism.
This is not the case with the algebraic closure of a field, which usually

has a large amount of automorphisms. Most of this chapter and the next is

devoted to the study of such automorphisms.

Examples. It will be proved later in this book that the complex numbers

are algebraically closed. Complex conjugation is an automorphism of C.

There are many more automorphisms, but the other automorphisms =1= ide are

not continuous . We shall discuss other possible automorphisms in the chapter
on transcendental extensions. The subfield of C consisting of all numbers which

are algebraic over Q is an algebraic closure Qa of Q. It is easy to see that Qa
is denumerable. In fact, prove the following as an exercise:

If k is a field which is not finite, then any algebraic extension of k has the

same cardinality as k.

If k is denumerable, one can first enumerate all polynomials in k, then

enumerate finite extensions by their degree, and finally enumerate the cardi-

nality of an arbitrary algebraic extension. We leave the counting details as

exerCIses.

In particular, Q8 =F C. If R is the field of real numbers, then R
8

= C.

If k is a finite field, then algebraic closure k
8

of k is denumerable. We

shall in fact describe in great detail the nature of algebraic extensions of

finite fields later in this chapter.
Not all interesting fields are subfields of the complex numbers. For

instance, one wants to investigate the algebraic extensions of a field C(X)
where X is a variable over C. The study of these extensions amounts to the

study of ramified coverings of the sphere (viewed as a Riemann surface), and

in fact one has precise information concerning the nature of such extensions,
because one knows the fundamental group of the sphere from which a finite

number of points has been deleted. We shall mention this example again
later when we discuss Galois groups.

3. SPLITTING FIELDS AND

NORMAL EXTENSIONS

Let k be a field and let f be a polynomial in k [X] of degree > 1. By a

splitting field K of f we shall mean an extension K of k such that f splits
into linear factors in K, i.e.
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f(X) = c(X -

1)
...

(X - n)

with i E K, i = 1, ..., n, and such that K = k(1' ..., n) is generated by all

the roots of f

Theorem 3.1. Let K be a splitting field of the polynomial f(X) E k[X]. If
E is another splitting field of f, then there exists an isomorphism u: E -. K

inducing the identity on k. If k eKe k
8

,
where k

8

is an algebraic closure

of k, then any embedding of E in k8 inducing the identity on k must be an

isomorphism of E onto K.

Proof Let K
8

be an algebraic closure of K. Then K
8

is algebraic over

k, hence is an algebraic closure of k. By Theorem 2.8 there exists an

embedding

u: E -+ K
8

inducing the identity on k. We have a factorization

f(X) = c(X - P1)
...

(X
- Pn)

with Pi E E, i = 1, ...,
n. The leading coefficient c lies in k. We obtain

f(X) = fCl(X) = c(X - UP1)
.,.

(X - u/3n).

We have unique factorization in K
8

[X]. Since f has a factorization

f(X) = c(X - 1)
...

(X
- n)

in K[X], it follows that (U/31' ..., uPn) differs from (1'"'' n) by a permuta-

tion. From this we conclude that UPi E K for i = 1, ...,
n and hence that

uE c K. But K = k(1' ..., n) = k(UP1' ..., u/3n), and hence uE = K, because

E = k(P1' . ..
, Pn).

This proves our theorem.

We note that a polynomial f(X) E k[X] always has a splitting field,

namely the field generated by its roots in a given algebraic closure k
8

of k.

Let I be a set of indices and let {h}iel be a family of polynomials in

k[X], of degrees > 1. By a splitting field for this family we shall mean an

extension K of k such that every h splits in linear factors in K[X], and K is

generated by all the roots of all the polynomials h, i E I. In most applica-
tions we deal with a finite indexing set I, but it is becoming increasingly

important to consider infinite algebraic extensions, and so we shall deal with

them fairly systematically. One should also observe that the proofs we shall

give for various statements would not be simpler if we restricted ourselves to

the finite case.

Let k
8

be an algebraic closure of k, and let K
i be a splitting field of h in

k
8

. Then the compositum of the K
i is a splitting field for our family,
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since the two conditions defining a splitting field are immediately satisfied.

Furthermore Theorem 3.1 extends at once to the infinite case:

Corollary 3.2. Let K be a splitting field for the family {};}iel and let E

be another splitting field. Any embedding of E into K
8

inducing the

identity on k gives an isomorphism of E onto K.

Proof Let the notation be as above. Note that E contains a unique

splitting field E
i of }; and K contains a unique splitting field Ki of};. Any

embedding (J of E into K
8

must map E
i onto Ki by Theorem 3.1, and hence

maps E into K. Since K is the compositum of the fields K
i ,

our map (J must

send E onto K and hence induces an isomorphism of E onto K.

Remark. If I is finite, and our polynomials are 11' ..., fn' then a split-

ting field for them is a splitting field for the single polynomial f(X) =

fl (X)
...

fn(X) obtained by taking the product. However, even when dealing
with finite extensions only, it is convenient to deal simultaneously with sets

of polynomials rather than a single one.

Theorem 3.3. Let K be an algebraic extension of k, contained in an

algebraic closure k
8

of k. Then the following conditions are equivalent:

NOR 1. Every embedding of K in k8 over k induces an automorphism of K.

NOR 2. K is the splitting field of a family of polynomials in k[X].

NOR 3. Every irreducible polynomial of k[X] which has a root in K

splits into linear factors in K.

Proof. Assume NOR 1. Let rx be an element of K and let Pa(X) be its

irreducible polynomial over k. Let p be a root of PCl in k
8

. There exists an

isomorphism of k(rx) on k(P) over k, mapping rx on p. Extend this iso-

morphism to an embedding of K in k
8

. This extension is an automorphism (J

of K by hypothesis, hence (Jrx = p lies in K. Hence every root of PCl lies in K,

and PCl splits in linear factors in K[X]. Hence K is the splitting field of the

family {pCI} CI e K as rx ranges over all elements of K, and NOR 2 is satisfied.

Conversely, assume NOR 2, and let {};}iel be the family of polynomials
of which K is the splitting field. If rx is a root of some }; in K, then for any

embedding (J of K in k
8

over k we know that (Jrx is a root of};. Since K is

generated by the roots of all the polynomials /;" it follows that (J maps K

into itself. We now apply Lemma 2.1 to conclude that (J is an automorphism.
Our proof that NOR 1 implies NOR 2 also shows that NOR 3 is

satisfied. Conversely, assume NOR 3. Let (J be an embedding of K in k
8

over k. Let rx E K and let p(X) be its irreducible polynomial over k. If (J is

an embedding of K in k
8

over k then (J maps rx on a root p of p(X), and by

hypothesis p lies in K. Hence (Jrx lies in K, and (J maps K into itself. By
Lemma 2.1, it follows that (J is an automorphism.
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An extension K of k satisfying the hypotheses NOR 1, NOR 2, NOR 3

will be said to be normal. It is not true that the class of normal extensions is

distinguished. For instance, it is easily shown that an extension of degree 2

is normal, but the extension Q(.y2) of the rational numbers is not normal

(the complex roots of X
4
- 2 are not in it), and yet this extension is obtained

by successive extensions of degree 2, namely

E = Q() => F => Q,

where

F = Q(), = v0- and E = F().

Thus a tower of normal extensions is not necessarily normal. However, we

still have some of the properties:

Theorem 3.4. Normal extensions remain normal under lifting. If
K => E => k and K is normal over k, then K is normal over E. If K

l'
K

2

are normal over k and are contained in some field L, then K
1
K2

is normal

over k, and so is K 1 n K2 .

Proof For our first assertion, let K be normal over k, let F be any

extension of k, and assume K, F are contained in some bigger field. Let (J be

an embedding of KF over F (in Fa). Then (J induces the identity on F, hence

on k, and by hypothesis its restriction to K maps K into itself. We get

(KFY' = K
CI

F
CI

= KF whence KF is normal over F.

Assume that K => E => k and that K is normal over k. Let (J be an

embedding of Kover E. Then (J is also an embedding of Kover k, and

our assertion follows by definition.

Finally, if K 1 ,
K

2 are normal over k, then for any embedding (J of K 1 K2

over k we have

(J(K 1
K

2 ) = (J(K 1)(J(K2 )

and our assertion again follows from the hypothesis. The assertion concern-

ing the intersection is true because

(J(K I n K
2 ) = (J(K I) n (J(K2 ).

We observe that if K is a finitely generated normal extension of k, say

K = k( I' . ..
, n)'

and P1,.'" Pn are the respective irreducible polynomials of l' ..., n over

k then K is already the splitting field of the finite family PI'.'" Pn' We

shall investigate later when K is the splitting field of a single irreducible

polynomial.
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4. SEPARABLE EXTENSIONS

Let E be an algebraic extension of a field F and let

a: F L

be an embedding of F in an algebraically closed field L. We investigate more

closely extensions of a to E. Any such extension of a maps E on a subfield

of L which is algebraic over aF. Hence for our purposes, we shall assume

that L is algebraic over aF, hence is equal to an algebraic closure of aF.

Let S(I be the set of extensions of a to an embedding of E in L.

Let L' be another algebraically closed field, and let t: F L' be an

embedding. We assume as before that L' is an algebraic closure of tF.

By Theorem 2.8, there exists an isomorphism A.: L L' extending the map

t 0 0'-1 applied to the field aF. This is illustrated in the following diagram:

L' (

A.

L

E
(1.

I
tF ( F ) aF

T (1

We let S1: be the set of embeddings of E in L' extending t.

If 0'* E S(I is an extension of a to an embedding of E in L, then A. 0 0'* is

an extension of t to an embedding of E into L', because for the restriction to

F we have

A. 0 0'* = t 0 0'-1 0 a = t.

Thus A. induces a mapping from S(I into S1:' It is clear that the inverse

mapping is induced by A. -1, and hence that S(I' S1: are in bijection under the

mappIng

0'* 1---+ A. 0 0'*.

In particular, the cardinality of S(I' S1: is the same. Thus this cardinality

depends only on the extension ElF, and will be denoted by

[E : F]s.

We shall call it the separable degree of E over F. It is mostly interesting
when ElF is finite.

Theorem 4.1. Let E ::J F ::J k be a tower. Then

[E : k]s = [E : F]s[F: k]s.

Furthermore, if E is finite over k, then [E: k]s is finite and
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[E : k]s < [E : k].

The separable degree is at most equal to the degree.

Proof. Let 0': k -+ L be an embedding of k in an algebraically closed field

L. Let {O'i}iel be the family of distinct extensions of (J to F, and for each i, let

{tij} be the family of distinct extensions of (Ji to E. By what we saw before,

each (Ji has precisely [E: F]s extensions to embeddings of E in L. The set of

embeddings {tij} contains precisely

[E: F]s[F: k]s

elements. Any embedding of E into Lover (J must be one of the tij, and thus

we see that the first formula holds, i.e. we have multiplicativity in towers.

As to the second, let us assume that Elk is finite. Then we can obtain E

as a tower of extensions, each step being generated by one element:

k c k(a 1 ) c k(a1' (2) c
...

c k(a 1 , ...,
a

r) = E.

If we define inductively F"+1 = F,,(a,,+1) then by Proposition 2.7,

[F,,(a"+l) : F,,]s < [F,,(a"+l) : 1;].

Thus our inequality is true in each step of the tower. By multiplicativity, it

follows that the inequality is true for the extension Elk, as was to be shown.

Corollary 4.2. Let E be finite over k, and E ::J F ::J k. The equality

[E : k]s = [E : k]

holds if and only if the corresponding equality holds in each step of the

tower, i.e. for ElF and Flk.

Proof. Clear.

It will be shown later (and it is not difficult to show) that [E: k]s divides

the degree [E: k] when E is finite over k. We define [E: k]i to be the

quotient, so that

[E: k]s[E: k]i = [E : k].

It then follows from the multiplicativity of the separable degree and of the

degree in towers that the symbol [E: k]i is also multiplicative in towers. We

shall deal with it at greater length in 6.
Let E be a finite extension of k. We shall say that E is separable over k if

[E : k]s = [E : k].
An element a algebraic over k is said to be separable over k if k(a) is

separable over k. We see that this condition is equivalent to saying that the

irreducible polynomial Irr(a, k, X) has no multiple roots.

A polynomial f(X) E k[X] is called separable if it has no multiple roots.
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If a is a root of a separable polynomial g(X) E k[X] then the irreducible

polynomial of a over k divides g and hence rx is separable over k.

We note that if keF C K and a E K is separable over k, then a is separable
over F. Indeed, iff is a separable polynomial in k[X] such thatf(a) = 0, then

f also has coefficients in F, and thus a is separable over F. (We may say that a

separable element remain's separable under lifting.)

Theorem 4.3. Let E be a finite extension of k. Then E is separable over k

if and only if each element of E is separable over k.

Proof Assume E is separable over k and let a E E. We consider the

tower

k c k(a) c E.

By Corollary 4.2, we must have [k(a): k] = [k(a): k]s whence a is separable
over k. Conversely, assume that each element of E is separable over k. We

can write E = k(al' . . .
, an) where each a; is separable over k. We consider

the tower

k c k(a 1 ) c k(a 1 ,
(2 ) c." c k(a 1 , ..., an).

Since each ai is separable over k, each ai is separable over k(aI' .. .
, ai-I) for

i > 2. Hence by the tower theorem, it follows that E is separable over k.

We observe that our last argument shows: If E is generated by a finite

number of elements, each of which is separable over k, then E is separable
over k.

Let E be an arbitrary algebraic extension of k. We define E to be

separable over k if every finitely generated subextension is separable over

k, i.e., if every extension k(aI' . . .
, an) with a 1 ,. . .

, an E E is separable
over k.

Theorem 4.4. Let E
/

be an algebraic extension of k, generated by a

family of elements {ai}iel. If each ai is separable over k then E is

separable over k.

Proof Every element of E lies in some finitely generated subfield

k(ai ,
. .. , a: ),1 .n

and as we remarked above, each such subfield is separable over k. Hence

every element of E is separable over k by Theorem 4.3, and this concludes

the proof.

Theorem 4.5. Separable extensions form a distinguished class of exten-

sions.
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Proof Assume that E is separable over k and let E::J F ::J k. Every

element of E is separable over F, and every element of F is an element of E,

so separable over k. Hence each step in the tower is separable. Conversely,

assume that E ::J F ::J k is some extension such that E/F is separable and F/k
is separable. If E is finite over k, then we can use Corollary 4.2. Namely, we

have an equality of the separable degree and the degree in each step of the tower,

whence an equality for E over k by multiplicativity.
If E is infinite, let rx E E. Then rx is a root of a separable polynomial f(X)

with coefficients in F. Let these coefficients be an,..., ao. Let Fo =

k(an , ...,
ao ). Then Fo is separable over k, and rx is separable over Fo. We

now deal with the finite tower

k c Fo c Fo(rx)

and we therefore conclude that Fo(rx) is separable over k, hence that rx

is separable over k. This proves condition (1) in the definition of
"

distinguished.
"

Let E be separable over k. Let F be any extension of k, and assume that

E, F are both subfields of some field. Every element of E is separable over k,

whence separable over F. Since EF is generated over F by all the elements

of E, it follows that EF is separable over F, by Theorem 4.4. This proves

condition (2) in the definition of "distinguished," and concludes the proof of

our theorem.

Let E be a finite extension of k. The intersection of all normal extensions

K of k (in an algebraic closure E8) containing E is a normal extension of k

which contains E, and is obviously the smallest normal extension of k

containing E. If 0'1' ..., O'n are the distinct embeddings of E in E
8

,
then the

extension

K = (0'1 E) (0'2 E)
...

(O'n E),

which is the compositum of all these embeddings, is a normal extension of k,

because for any embedding of it, say t, we can apply t to each extension

O'iE. Then (to'1' ..., to'n) is a permutation of (0'1' ..., O'n) and thus t maps K

into itself. Any normal extension of k containing E must contain O'iE for

each i, and thus the smallest normal extension of k containing E is precisely

equal to the compositum

(0'
1 E)

...

(0'n E).

If E is separable over k, then from Theorem 4.5 and induction we

conclude that the smallest normal extension of k containing E is also separ-

able over k.

Similar results hold for an infinite algebraic extension E of k, taking an

infinite compositum.
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In light of Theorem 4.5, the compositum of all separable extensions of a

field k in a given algebraic closure k
a

is a separable extension, which will be

denoted by k
S

or ksep
,

and will be called the separable closure of k. As a

matter of terminology, if E is an algebraic extension of k, and (J any

embedding of E in k
a

over k, then we call (JE a conjugate of E in k
a

. We can

say that the smallest normal extension of k containing E is the compositum of
all the conjugates of E in Ea.

Let rx be algebraic over k. If (J
l' ..., (Jr are the distinct embeddings of k(rx)

into k
a

over k, then we call (J 1 rx, .

.., (Jrrx the conjugates of rx in /(8. These

elements are simply the distinct roots of the irreducible polynomial of rx over

k. The smallest normal extension of k containing one of these conjugates is

simply k((J 1 rx, . . .
, (Jrrx).

Theorem 4.6. (Primitive Element Theorem). Let E be a finite extension

of a field k. There exists an element rx E E such that E = k(rx) if and only

if there exists only a finite number of fields F such that k c: FeE. If E

is separable over k, then there exists such an element rx.

Proof If k is finite, then we know that the multiplicative group of E is

generated by one element, which will therefore also generate E over k. We

assume that k is infinite.

Assume that there is only a finite number of fields, intermediate between

k and E. Let rx, pEE. As c ranges over elements of k, we can only have

a finite number of fields of type k(rx + cP). Hence there exist elements c l'

C2 E k with C l =F C
2 such that

k(rx + c1P) = k(rx + c2 P).

Note that rx + clP and rx + c2 P are in the same field, whence so is (c l
- C2)P,

and hence so is p. Thus rx is also in that field, and we see that k(rx, P) can be

generated by one element.

Proceeding inductively, if E = k(rx l , ...,
rx

n ) then there will exist elements

C 2 , ..., C
n

E k such that

E = k()

where = rx l + C2rx2 +
...

+ cnrxn
. This proves half of our theorem.

Conversely, assume that E = k(rx) for some rx, and let f(X) = Irr(rx, k, X).
Let keF c E. Let gF(X) = Irr(rx, F, X). Then gF divides f. We have unique
factorization in E[X], and any polynomial in E[X] which has leading
coefficient 1 and divides f(X) is equal to a product of factors (X - rxi ) where

at, . . .
, an are the roots off in a fixed algebraic closure. Hence there is only a

finite number of such polynomials. Thus we get a mapping

FgF

from the set of intermediate fields into a finite set of polynomials. Let Fo be
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the subfield of F generated over k by the coefficients of gF(X). Then gF has

coefficients in Fo and is irreducible over Fo since it is irreducible over F.

Hence the degree of rx over Fo is the same as the degree of rx over F. Hence

F = Fo. Thus our field F is uniquely determined by its associated poly-
nomials gF, and our mapping is therefore injective. This proves the first

assertion of the theorem.

As to the statement concerning separable extensions, using induction,
we may assume without loss of generality that E = k(rx, P) where rx, pare

separable over k. Let 0'1'''.' O'n be the distinct embeddings of k(rx, P) in k
a

over k. Let

P(X) = n (O'i rx + XO'iP -

O'jrx
- XO'jP).

ij

Then P(X) is not the zero polynomial, and hence there exists C E k such

that P(c) =F O. Then the elements O'i(rx + cP) (i = 1, ..
., n) are distinct, whence

k(rx + cP) has degree at least n over k. But n = [k(rx, P) : k], and hence

k(rx, P) = k(rx + cP),

as desired.

If E = k(rx), then we say that rx is a primitive element of E (over k).

5. FINITE FIELDS

We have developed enough general theorems to describe the structure of

finite fields. This is interesting for its own sake, and also gives us examples
for the general theory.

Let F be a finite field with q elements. As we have noted previously, we

have a homomorphism

Z-+F

sending 1 on 1, whose kernel cannot be 0, and hence is a principal ideal

generated by a prime number p since Z/pZ is embedded in F and F has no

divisors of zero. Thus F has characteristic p, and contains a field isomorphic
to Z/pZ.

We remark that Z/pZ has no automorphisms other than the identity.

Indeed, any automorphism must map 1 on 1, hence leaves every element

fixed because 1 generates Z/pZ additively. We identify Z/pZ with its image
in F. Then F is a vector space over Z/pZ, and this vector space must be
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finite since F is finite. Let its degree be n. Let W
1 ,..., W" be a basis for F

over Z/pZ. Every element of F has a unique expression of the form

al WI +
· · ·

+ a"w"

with ai E Z/pZ. Hence q
= p".

The multiplicative group F* of F has order q
- 1. Every a E F* satisfies

the equation xq-t = 1. Hence every element of F satisfies the equation

f(X) = xq - X = o.

This implies that the polynomial f(X) has q distinct roots in F, namely all

elements of F. Hence f splits into factors of degree 1 in F, namely

xq - X = n (X - a).
a.eF

In particular, F is a splitting field for f. But a splitting field is uniquely
determined up to an isomorphism. Hence if a finite field of order p" exists, it

is uniquely determined, up to an isomorphism, as the splitting field of

Xp"
- X over Z/pZ.

As a matter of notation, we denote Z/pZ by Fp. Let n be an integer > 1

and consider the splitting field of

Xp" - X =f(X)

in an algebraic closure F;. We contend that this splitting field is the set of

roots of f(X) in F;. Indeed, let a, p be roots. Then

(a + P)P" - (a + P) = a
P
"

+ PP" - a
- p = 0,

whence a + p is a root. Also,

(aP)P" - ap = aP"pP" - ap = ap - ap = 0,

and ap is a root. Note that 0, 1 are roots of f(X). If P #= 0 then

(P-1 )P" _ p-1 = (Pp")-1 _ p-l = 0

so that p-t is a root. Finally,

(- p)P" - (- 13) = (-I)P"pP" + p.

If p is odd, then (-I)P" = -1 and we see that - p is a root. If p is even then

- 1 = 1 (in Z/2Z) and hence - p = 13 is a root. This proves our contention.

The derivative of f(X) is

f'(X) = p"XP"-1 - 1 = -1.

Hence f(X) has no multiple roots, and therefore has p" distinct roots in

F;. Hence its splitting field has exactly p" elements. We summarize our

results:
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Theorem 5.1. For each prime p and each integer n > 1 there exists a finite

field of order p" denoted by Fpn, uniquely determined as a subfield of an

algebraic closure F;. It is the splitting field of the polynomial

Xpn - X,

and its elements are the roots of this polynomial. Every finite field is

isomorphic to exactly one field F
pn.

We usually write p" =

q and Fq instead of Fpn.

Corollary 5.2. Let Fq be a finite field. Let n be an integer > 1. In a

given algebraic closure F:, there exists one and only one extension of Fq of

degree n, and this extension is the field Fqn.

Proof Let q
= pm. Then q" = pm". The splitting field of xqn - X is

precisely Fpmn and has degree mn over ZjpZ. Since Fq has degree mover

ZjpZ, it follows that Fqn has degree n over Fq. Conversely, any extension of

degree n over Fq has degree mn over Fp and hence must be Fpmn. This proves

our corollary.

Theorem 5.3. The multiplicative group of a finite field is cyclic.

Proof. This has already been proved in Chapter IV, Theorem 1.9.

We shall determine all automorphisms of a finite field.

Let q
= pn and let Fq be the finite field with q elements. We consider the

Frobenius mapping

cp: Fq -+ Fq

such that cp(x) = x
p

. Then cp is a homomorphism, and its kernel is 0 since Fq
is a field. Hence cp is injective. Since Fq is finite, it follows that cp is

surjective, and hence that cp is an isomorphism. We note that it leaves Fp
fixed.

Theorem 5.4. The group of automorphisms of Fq is cyclic of degree n,

generated by cpo

Proof. Let G be the group generated by cpo We note that cpn = id

because cp"(x) = x
pn

= x for all x E Fq. Hence n is an exponent for cpo Let d

be the period of cp, so d > 1. We have cpd(X) = x
Pd for all x E Fq. Hence each

x E Fq is a root of the equation

Xpd
- X = o.

This equation has at most pd roots. It follows that d > n, whence d = n.

There remains to be proved that G is the group of all automorphisms of

Fq. Any automorphism of Fq must leave Fp fixed. Hence it is an auto-
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morphism of Fq over Fp. By Theorem 4.1, the number of such auto-

morphisms is < n. Hence Fq cannot have any other automorphisms except
for those of G.

Theorem 5.5. Let m, n be integers
> 1. Then in any algebraic closure of

F
P'

the subfield F
p'I

is contained in F
p'" if and only if n divides m. If that is the

case, let q
=

pn, and let m = nd. Then F
p'"

is normal and separable over F
q'

and the group ofautomorphisnls ofFpm
over F

q
is cyclic oforder d, generated

by cpn.

Proof. All the statements are trivial consequences of what has already been

proved and will be left to the reader.

6. INSEPARABLE EXTENSIONS

This section is of a fairly technical nature, and can be omitted without

impairing the understanding of most of the rest of the book.

We begin with some remarks supplementing those of Proposition 2.7.

Let f(X) = (X - )mg(X) be a polynomial in k[X], and assume X -

does not divide g(X). We recall that m is called the multiplicity of in f
We ay that is a multiple root of f if m > 1. Otherwise, we say that is a

simple root.

Proposition 6.1. Let be algebraic over k, E k
8

,
and let

f(X) = Irr(, k, X).

If char k = 0, then all roots off have multiplicity 1 (f is separable). If

char k =

p > 0,

then there exists an integer Jl
> 0 such that every root of f has multiplicity

pll. We have

[k(): k] = pll[k(): k]s,

and p/l is separable over k.

Proof Let l' ..., r be the distinct roots of f in k
a

and let =

1 . Let

m be the multiplicity of in f. Given 1 < i < r, there exists an isomorphism

(1: k() -. k(i)

over k such that (1 =

i. Extend (1 to an automorphism of k
8

and denote
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this extension also by (1. Since f has coefficients in k we have f(1 = f We

note that

r

f(X) = IT (X
-

ua)mj

j= 1

if mj is the multiplicity of aj in f. By unique factorization, we conclude that

mi
= m 1 and hence that all mi are equal to the same integer m.

Consider the derivative f'(X). If f and f' have a root in common, then rx

is a root of a polynomial of lower degree than deg f. This is impossible
unless deg f' = -00, in other words, f' is identically O. If the characteristic

is 0, this cannot happen. Hence if f has multiple roots, we are in characteris-

tic p, and f(X) = g(XP) for some polynomial g(X) E k[X]. Therefore rx
P is a

root of a polynomial g whose degree is < deg f Proceeding inductively, we

take the smallest integer Jl
> 0 such that rxp/l is the root of a separable

polynomial in k[X], namely the polynomial h such that

f(X) = h(XP").

Comparing the degree of f and g, we conclude that

[k(rx) : k(rx
P
)] =

p.

Inductively, we find

[k(rx) : k(rxP")] = pll.

Since h has roots of multiplicity 1, we know that

[k(rxp/l): k]s = [k(rxp/l): k],

and comparing the degree of f and the degree of h, we see that the num-

ber of distinct roots of f is equal to the number of distinct roots of h.

Hence

[k(rx) : k]s = [k(rxP") : k]s.

From this our formula for the degree follows by multiplicativity, and our

proposition is proved. We note that the roots of hare

p/l p/l
rx 1 , ...,

rx
r

·

Corollary 6.2. For any finite extension E of k, the separable degree

[E : k]s divides the degree [E: k]. The quotient is 1 if the characteristic is

0, and a power of p if the characteristic is p > O.

Proof We decompose Elk into a tower, each step being generated by
one element, and apply Proposition 6.1, together with the multiplicativity of

our indices in towers.

If ElK is finite, we call the quotient



V, 6 INSEPARABLE EXTENSIONS 249

[E : k]

[E : k]s

the inseparable degree (or degree of inseparability), and denote it by [E: k]i as

in 4. We have

[E: k]s[E : k]i = [E: k].

Corollary 6.3. A finite extension is separable if and only if [E : k]i = 1.

Proof By definition.

Corollary 6.4 If E => F => k are two finite extensions, then

[E : k]i = [E : F]i[F : k]i'

Proof. Immediate by Theorem 4.1.

We now assume throughout that k is a field of characteristic p > O.

An element rx algebraic over k is said to be purely inseparable over k if

there exists an integer n > 0 such that rx
p
"

lies in k.

Let E be an algebraic extension of k. We contend that the following
conditions are equivalent:

P. Ins. 1. We have [E : k]s = 1.

P. Ins. 2. Every element rx of E is purely inseparable over k.

P. Ins. 3. For every rx E E, the irreducible equation of rx over k is of type
X p"

-

a = 0 with some n > 0 and a E k.

P. Ins. 4. There exists a set of generators {rxi } i e 1 of E over k such that

each rx
i

is purely inseparable over k.

To prove the equivalence, assume P. Ins. 1. Let rx E E. By Theorem 4.1,

we conclude that [k(rx): k]s = 1. Let f(X) = Irr(rx, k, X). Then f has only one

root since

[k(rx) : k]s

is equal to the number of distinct roots of f(X). Let m = [k(rx): k]. Then

deg f = m, and the factorization of f over k(rx) is f(X) = (X -

rx)m. Write

m = pnr where r is an integer prime to p. Then

f(X) = (XP" - rxP"t

= xp"r - rrx
P"Xp"(r-l) + lower terms.

Since the coefficients of f(X) lie in k, it follows that

rrx
p"
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lies in k, and since r =F 0 (in k), then rx
P
"

lies in k. Let a = rx
p". Then (X is

a root of the polynomial XP" - a, which divides f(X). It follows that

f(X) = XP" - a.

Essentially the same argument as the preceding one shows that P. Ins. 2

implies P. Ins. 3. It is trivial that the third condition implies the fourth.

Finally, assume P. Ins. 4. Let E be an extension generated by purely

inseparable elements rxi (i E I). Any embedding of E over k maps rxi on a root

of

h(X) = Irr(rxi , k, X).

But h(X) divides some polynomial Xp" -
a, which has only one root. Hence

any embedding of E over k is the identity on each (Xi' whence the identity on

E, and we conclude that [E: k]s = 1, as desired.

An extension satisfying the above four properties will be called purely

inseparable.

Proposition 6.5. Purely inseparable extensions form a distinguished class

of extensions.

Proof The tower theorem is clear from Theorem 4.1, and the lifting

property is clear from condition P. Ins. 4.

Proposition 6.6. Let E be an algebraic extension of k. Let Eo be the

compositum of all subfields F of E such that F::J k and F is separable
over k. Then Eo is separable over k, and E is purely inseparable over

Eo.

Proof Since separable extensions form a distinguished class, we know

that Eo is separable over k. In fact, Eo consists of all elements of E which

are separable over k. By Proposition 6.1, given rx E E there exists a power of

p, say pn such that rx
P
"

is separable over k. Hence E is purely inseparable
over Eo, as was to be shown.

Corollary 6.7. If an algebraic extension E of k is both separable and

purely inseparable, then E = k.

Proof Obvious.

Corollary 6.8. Let K be normal over k and let Ko be its maximal separa-

ble subextension. Then Ko is also normal over k.

Proof Let (J be an embedding of Ko in K
8

over k and extend (J to an

embedding of K. Then (J is an automorphism of K. Furthermore, (JKo is

separable over k, hence is contained in Ko, since Ko is the maximal separa-

ble subfield. Hence (JKo
= Ko, as contended.
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Corollary 6.9. Let E, F be two finite extensions of k, and assume that

Elk is separable, Flk is purely inseparable. Assume E, Fare subfields of a

common field. Then

[EF: F] = [E : k] = [EF: k]s,

[EF: E] = [F : k] = [EF: k]i.

Proof. The picture is as follows:

EF

p;/
E F

ks
The proof is a trivial juggling of indices, using the corollaries of Proposition
6.1. We leave it as an exercise.

Corollary 6.10. Let EP denote the field of all elements x
P

,
x E E. Let E

be a finite extension of k. If EPk = E, then E is separable over k. If E is

separable over k, then EP"k = E for all n > 1.

Proof. Let Eo be the maximal separable subfield of E. Assume EPk = E.

Let E = k(rx 1 , ...,
rx

n ). Since E is purely inseparable over Eo there exists m

such that rxr'" E Eo for each i = 1, ...,
n. Hence EP'" c Eo. But EP'"k = E

whence E = Eo is separable over k. Conversely, assume that E is separable
over k. Then E is separable over EPk. Since E is also purely inseparable over

EPk we conclude that E = EPk. Similarly we get E = Epnk for n
:>

1, as was

to be shown.

Proposition 6.6 shows that any algebraic extension can be decomposed
into a tower consisting of a maximal separable subextension and a purely

inseparable step above it. Usually, one cannot reverse the order of the

tower. However, there is an important case when it can be done.

Proposition 6.11. LetK be normal over k. Let G be its group ofautomorphisms

over k. Let [(G be the fixed field ofG (see Chapter VI, 1). Then KG is purely

inseparable over k, and K is separable over KG. IfKo is the maximal separa-

ble subextension of K, then K == KGKo and Ko n KG == k.

Proof Let rx E KG. Let t be an embedding of k(rx) over k in K
a

and

extend t to an embedding of K, which we denote also by t. Then t is an

automorphism of K because K is normal over k. By definition, trx = rx and

hence t is the identity on k(rx). Hence [k(rx): k]s = 1 and rx is purely in-

separable. Thus KG is purely inseparable over k. The intersection of Ko
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and KG is both separable and purely inseparable over k, and hence is equal

to k.

To prove that K is separable over KG, assume first that K is finite over

k, and hence that G is finite, by Theorem 4.1. Let rx E K. Let 0'1' ..., O'r be a

maximal subset of elements of G such that the elements

0'1 rx, ..., O'rrx

are distinct, and such that a} is the identity, and rx is a root of the polynomial

r

f(X) = n (X -

O'i rx).
i=1

For any t E G we note that fT: = f because t permutes the roots. We note

that f is separable, and that its coefficients are in the fixed field KG. Hence rx

is separable over KG. The reduction of the infinite case to the finite case is

done by observing that every rx E K is contained in some finite normal

subextension of K. We leave the details to the reader.

We now have the following picture:

K

K KG

/0,,-
Ko "-KG

KonKG = k

By Proposition 6.6, K is purely inseparable over Ko, hence purely insepara-
ble over KoKG. Furthermore, K is separable over KG, hence separable over

KoKG. Hence K = KoKG, thereby proving our proposition.
We see that every normal extension decomposes into a compositum of

a purely inseparable and a separable extension. We shall define a Galois ex-

tension in the next chapter to be a normal separable extension. Then Ko
is Galois over k and the normal extension is decomposed into a Galois and a

purely inseparable extension. The group G is called the Galois group of the

extension Klk.
A field k is called perfect if kP

= k. (Every field of characteristic zero is

also called perfect.)

Corollary 6.12. If k is perfect, then every algebraic extension of k is

separable, and every algebraic extension of k is perfect.

Proof Every finite algebraic extension is contained in a normal exten-

sion, and we apply Proposition 6.11 to get what we want.
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EXERCISES

1. Let E = Q(), where is a root of the equation

3 + 2 + + 2 = 0,

Express (2 + + 1)(2 + ) and ( - 1)-1 in the form

a2 + b + c

with a, b, C E Q.

2. Let E = F() where is algebraic over F, of odd degree. Show that E = F(2).

3. Let and f3 be two elements which are algebraic over F. Let f(X) = Irr(, F, X)
and g(X) = Irr(f3, F, X). Suppose that deg f and deg g are relatively prime. Show

that g is irreducible in the polynomial ring F() [X].

4, Let be the real positive fourth root of 2. Find all intermediate fields in the

extension Q() of Q.

5. If is a complex root of X
6

+ X
3

+ 1, find all homomorphisms a: Q() -+ c.

[Hint: The polynomial is a factor of X
9
- 1.]

6. Show that .j2 + J3 is algebraic over Q, of degree 4.

7. Let E, F be two finite extensions of a field k, contained in a larger field K. Show

that

[EF: k] < [E : k] [F : k].

If [E : k] and [F: kJ are relatively prime, show that one has an equality sign in

the above relation.

8. Let f(X) E k[X] be a polynomial of degree n. Let K be its splitting field. Show

that [K:k] divides n!

9. Find the splitting field of X p8 - lover the field Z/pZ.

10. Let be a real number such that 4 = 5.

(a) Show that Q(i2) is normal over Q.

(b) Show that Q( + i) is normal over Q(i2).

(c) Show that Q( + i) is not normal over Q.

11. Describe the splitting fields of the following polynomials over Q, and find the

degree of each such splitting field.

(a) X
2
- 2 (b) X

2
- 1

(c) X
3
- 2 (d) (X

3
- 2)(X

2
-

2)

(e) X
2

+ X + 1 (f) X
6

+ X
3

+ 1

(g) X
5
- 7

12. Let K be a finite field with pn elements. Show that every element of K has a

unique p-th root in K.
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13. If the roots of a monic polynomial f(X) E k[X] in some splitting field are distinct,

and form a field, then char k =

p and f(X)
= Xpn - X for some n

> 1.

14. Let char K =

p. Let L be a finite extension of K, and suppose [L: K] prime to

p. Show that L is separable over K.

15. Suppose char K =

p. Let a E K. If a has no p-th root in K, show that X p"
-

a is

irreducible in K [X] for all positive integers n.

16. Let char K =

p. Let (1 be algebraic over K. Show that (1 is separable if and only
if K ((1) = K ((1P") for all positive integers n.

17. Prove that the following two properties are equivalent:

(a) Every algebraic extension of K is separable.

(b) Either char K = 0, or char K =

p and every element of K has a p-th root in

K.

18. Show that every element of a finite field can be written as a sum of two squares

in that field.

19. Let E be an algebraic extension of F. Show that every subring of E which

contains F is actually a field, Is this necessarily true if E is not algebraic over F?

Prove or give a counterexample.

20, (a) Let E = F(x) where x is transcendental over F. Let K :F F be a subfield of E

which contains F. Show that x is algebraic over K.

(b) Let E = F(x). Let y
= f(x)jg(x) be a rational function, with relatively prime

polynomials f, g E F[x]. Let n = max(deg f, deg g). Suppose n > 1. Prove

that

[F(x) : F(y)] = n.

21. Let Z+ be the set of positive integers, and A an additive abelian group. Let

f: Z+ A and g: Z+ A be maps. Suppose that for all n,

f(n) = L g(d).
din

Let J.1. be the Mobius function (cf. Exercise 12 of Chapter II). Prove that

g(n) = L J.1.(njd)f(d).
din

22. Let k be a finite field with q elements. Let f(X) E k[X] be irreducible. Show that

f(X) divides xq" - X if and only if deg f divides n. Show the multiplication
formula

xq" - X = f1 f1 fd(X),
din fd irr

where the inner product is over all irreducible polynomials of degree d with

leading coefficient 1. Counting degrees, show that

qn = L dt/J(d),
din

where t/J(d) IS the number of irreducible polynomials of degree d. Invert by
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Exercise 21 and find that

nt/J(n) = L J.l(d)qn/d.
din

23. (a) Let k be a finite field with q elements. Define the zeta function

Z(t) = (I - t)-l rI (1 - t
degp)-l,

P

where p ranges over all irreducible polynomials p
= p(X) in k[X] with leading

coefficient 1. Prove that Z(t) is a rational function and determine this rational

function.

(b) Let 1t
q (n) be the number of primes p as in (a) of degree < n. Prove that

q qm
1t (m) '" -

q

q-Im
for m 00.

Remark. This is the analogue of the prime number theorem in number theory,
but it is essentially trivial in the present case, because the Riemann hypothesis is

trivially verified. Things get more interesting fast after this case. Consider an

equation y2 = x
3

+ ax + b over a finite field Fq of characteristic :F 2, 3, and

having q elements. Assume - 4a
3
- 27b

2
:F 0, in which case the curve defined by

this equation is called an elliptic curve. Define N
n by

N
n

- I = number of points (x, y) satisfying the above equation with

x, y E Fq" (the extension of Fq of degree n).

Define the zeta function Z(t) to be the unique rational function such that Z(O) = I

and

Z'/Z(t) = L N
n
t

n
- 1

.

A famous theorem of Hasse asserts that Z(t) is a rational function of the form

(I - t)(l - t)
Z(t) =

,

(1 - t)(1 -

qt)

where is an imaginary quadratic number (not real, quadratic over Q), is its

complex conjugate, and =

q, so II = ql/2. See Hasse, "Abstrakte Bergrundung
der komplexen Multiplikation und Riemannsche Vermutung in Funktionen-

korpern," Abh. Math. Sem. Univ. Hamburg 10 (1934) pp. 325-348.

24. Let k be a field of characteristic p and let t, u be algebraically independent over

k. Prove the following:

(a) k(t, u) has degree p2 over k(t
P

, uP).

(b) There exist infinitely many extensions between k(t, u) and k(t
P

, uP).

25. Let E be a finite extension of k and let pr = [E : k]i. We assume that the

characteristic is p > o. Assume that there is no exponent pS with s < r such that

Epsk is separable over k (i.e., such that pS is separable over k for each in E),
Show that E can be generated by one element over k. [Hint: Assume first that

E is purely inseparable.]
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26. Let k be a field, f(X) an irreducible polynomial in k[X], and let K be a finite normal

extension of k. If g, h are monic irreducible factors of f(X) in K[X], show that there

exists an automorphism u of Kover k such that 9
= her. Give an example when this

conclusion is not valid if K is not normal over k.

27. Let Xl' ..., XII be algebraically independent over a field k. Let y be algebraic over

k(x) = k(x l ,
. . .

, XII). Let P(XII + I ) be the irreducible polynomial of y over k(x).
Let <p(x) be the least common multiple of the denominators of the coefficients of

P. Then the coefficients of <p(x)P are elements of k[x]. Show that the polynomial

f(XI'
..

., XII + I ) = <p(XI' .. ., XII)P(XII + I )

is irreducible over k, as a polynomial in n + 1 variables.

Conversely, let f(XI'
. . .

,
X

II + I ) be an irreducible polynomial over k. Let

X
I' . . .

, XII be algebraically independent over k. Show that

f(x l ,
.. .

, XII' X
n + 1)

is irreducible over k(x l ,
. .., XII).

If f is a polynomial in n variables, and (b) = (bl , ..., b
ll ) is an n-tuple of

elements such that f(b) = 0, then we say that (b) is a zero of f. We say that (b) is

non-trivial if not all coordinates bi
are equal to o.

28. Let f(Xl' . . .
, XII) be a homogeneous polynomial of degree 2 (resp. 3) over a field

k. Show that if f has a non-trivial zero in an extension of odd degree (resp.

degree 2) over k, then f has a non-trivial zero in k.

29. Let f(X, Y) be an irreducible polynomial in two variables over a field k. Let t be

transcendental over k, and assume that there exist integers m, n :F 0 and elements

a, b E k, ab :F 0, such that f(at", bt
m

) = o. Show that after inverting possibly X or

and up to a constant factor, f is of type

Xmy" - C

with some C E k.

The answer to the following exercise is not known.

30. (Artin conjecture). Let f be a homogeneous polynomial of degree d in n vari-

ables, with rational coefficients. If n > d, show that there exists a root of unity',
and elements

XI' ..., XII E Q[,]

not all 0 such that f(x l ,
. ..

, XII) = O.

31. Difference equations. Let U
I' ..., Ud be elements of a field K. We want to solve

for infinite vectors (xo, X
I'

.. .
, XII' . ..) satisfying

(*) XII
= U

I XII-I +
. ..

+ UdXII-d for n > d.

Define the characteristic polynomial of the system to be

X
d
-

(UIX
d - 1

+
...

+ u
d ) = f(X).
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Suppose cx is a root of f.

(a) Show that XII
= cx" (n > 0) is a solution of (*).

(b) Show that the set of solutions of (*) is a vector space of dimension d.

(c) Assume that the characteristic polynomial has d distinct roots cx
l ,..., CXd.

Show that the solutions (cx), ..., (cx;) form a basis for the space of solutions.

(d) Let XII
= b

l cx +
. ..

+ bdcx; for n > 0, show how to solve for b
l , ...,

bd
in terms

of CX
I , ..., CXd and Xo, ..., Xd-l. (Use the Vandermonde determinant.)

(e) Under the conditions of (d), let F(T) = LXII T". Show that F(T) represents a

rational function, and give its partial fraction decomposition.

32. Let d = 2 for simplicity. Given ao, ai' u, v, w, t E K, we want to find the solutions

of the system

all
= ua

ll
- 1

-

v ta
ll -2

- t"w for n
> 2.

Let CX I , CX2 be the root of the characteristic polynomial, that is

1 - uX + vtX
2

= (I - cxIX)(1
-

cx
2 X).

Assume that CXI, CX
2

are distinct, and also distinct from t. Let

00

F(X) = L allX".
11=0

(a) Show that there exist elements A, B, C of K such that

ABC

F(X) = + + .

l-cxlX l-cx
2
X l-tX

(b) Show that there is a unique solution to the difference equation given by

all
= Acx + Bcx; + Ct" for n > o.

(To see an application of this formalism to modular forms, as in the work of

Manin, Mazur, and Swinnerton-Dyer, cf. my Introduction to Modular Forms,

Springer-Verlag, New York, 1976, Chapter XII, 2.)

33. Let R be a ring which we assume entire for simplicity. Let

g(T) = T
d
-

ad-l T
d- l

-
...

-

a
o

be a polynomial in R [T], and consider the equation

T
d

= a
o + a I T +

...

+ ad-l T
d- l

.

Let X be a root of g( T).

(a) For any integer n > d there is a relation

X" = a
O ,1I

+ al,lIx +
...

+ ad_I,lIxd-1

with coefficients ai,j in Z[ao, . . .
, ad-I] c R.

(b) Let F(T) E R[T] be a polynomial. Then

F(x) = ao(F) + a
l (F)x +

...

+ a
d- l (F)X

d- 1

where the coefficients ai(F) lie in R and depend linearly on F.
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(c) Let the Vandermonde determinant be

1 Xl

1 X
2

V(x 1 , ..., Xd) =

"-1

Xl
d-l

X
2

= fl (Xj
- Xi).

i<j

1 Xd
d-l

X
d

Suppose that the equation g( T) = 0 has d roots and that there is a factoriza-

tion

d

g(T) = fl (T - Xi).
i=1

Substituting Xi for X with i = 1, . .

.,
d and using Cramer's rule on the resulting

system of linear equations, yields

aj(F) = Aj(F)

where is the Vandermonde determinant, and AlF) is obtained by replacing
the j-th column by t(F(x1), . . .

, F(x,,)), so

1 Xl F(x 1 )

1 X2 F(x2 )
Aj(F) =

d-l

Xl

d-l
X

2

1 Xd F(xd )
d-l

X
d

If A # 0 then we can write

aiF) = iF)/.

Remark. If F(T) is a power series in R[[T]] and if R is a complete local ring,
with Xl' ..., Xd in the maximal ideal, and x =

Xi for some i, then we can evaluate

F(x) because the series converges. The above formula for the coefficients aj(F)
remains valid.

34. Let Xl' ..., Xd be independent variables, and let A be the ring

d

Q[[Xl,..., Xd]] [T]/fl (T -

Xi).
i=l

Substituting some Xi for T induces a natural homomorphism qJi of A onto

Q[[Zl, ..., Xd]] = R,

and the map Z i-+ (CPl (z), .

.., tpd(Z») gives an embedding of A into the product of R

with itself d times.

Let k be an integer, and consider the formal power series

d
(T-x.)eT-Xi

d

F(T) = e
kT

fl T-x

I

= e
kT

fl h(T -

Xi)
i=l e i-I i=l

where h(t) = tet/(e
t
- 1). It is a formal power series in T, T -

Xl' ...,
T - X

d
.

Under substitution of some Xj for T it becomes a power series in Xj and Xj
-

Xi'

and thus converges in Q[[Xl, ...,
x

d]].
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(a) Verify that

d

F(T) = ao(F) +
...

+ a
d _ 1 (F)T

d- 1
mod n (T - Xi)

i=l

where ao(F), ...,
ad - 1 (F) E Q[[Xb ...,

x
d]], and that the formula given in the

preceding exercise for these coefficients in terms of Vandermonde determi-

nants is valid.

(b) Show that ad- 1 (F) = 0 if -(d - 1) < k < 0 and ad-l (F) = 1 if k = O.

Remark. The assertion in (a) is a simple limit. The assertion in (b) is a fact

which has been used in the proof of the Hirzebruch-Grothendieck-Riemann-

Roch theorem and as far as I know there was no simple known proof until Roger
Howe pointed out that it could be done by the formula of the preceding exercise

as follows. We have

1 Xl
d-2

F(Xl)Xl

V(x 1 ,
. ..

,
x

n)ad-l (F) =

1 X
d

d-2

F(Xd)X
d

Furthermore,

F(x.) = ekxj n
(Xj

-

xn)eXj-Xn
.

J

n:#:j eXj
-

Xn
- 1

We use the inductive relation of Vandermonde determinants

V(x l'
. ..

,
X

d ) = V(x l'
. . .

, j' .. . , Xd) ( - 1 )d-j n (xj
-

x
n ).

":#:j

We expand the determinant for a
d
-

1 (F) according to the last column to get

d 1
a

d- 1 (F) = L e(k+d-l)xj n x x
.

j=l n:#:j e j - e
n

Using the inductive relation backward, and replacing Xi by e
Xi which we denote

by Yi for typographical reasons, we get

1 Yl
d-2

y+d-lYl

d-2

y;+d-lYd

V(Yl' ..., Yd)ad-l (F) =

1 Yd

If k :F 0 then two columns on the right are the same, so the determinant is O. If

k = 0 then we get the Vandermonde determinant on the right, so ad-l (F) = 1.

This proves the desired value.





CHAPTER V I

Galois Theory

This chapter contains the core of Galois theory . We study the group of

automorphisms of a finite (and sometimes infinite) Galois extension at length,
and give examples, such as cyclotomic extensions, abelian extensions, and even

non-abelian ones, leading into the study of matrix representations of the Galois

group and their classifications . We shall mention a number of fundamental

unsolved problems, the most notable of which is whether given a finite group

G, there exists a Galois extension of Q having this group as Galois group. Three

surveys give recent points of view on those questions and sizeable bibliographies:

B, MATZAT, Konstruktive Galoistheorie, Springer Lecture Notes 1284, 1987

B. MATZAT, Uber das Umkehrproblem der Galoisschen Theorie, lahrsbericht Deutsch.

Mat.-Verein. 90 (1988), pp, 155-183

J. P. SERRE, Topics in Galois theory, course at Harvard, 1989, Jones and Bartlett,

Boston 1992

More specific references will be given in the text at the appropriate moment

concerning this problem and the problem of determining Galois groups over

specific fields, especially the rational numbers.

1. GALOIS EXTENSIONS

Let K be a field and let G be a group of automorphisms of K. We denote

by KG the subset of K consisting of all elements x E K such that x(J = x for all

a E G. It is also called the fixed field of G. It is a field because if x, Y E KG then

(x + y)(J = x(J + y(J = x + Y

261
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for all (J E G, and similarly, one verifies that K is closed under multiplication,

subtraction, and multiplicative inverse. Furthermore, KG contains 0 and 1,

hence contains the prime field.

An algebraic extension K of a field k is called Galois if it is normal and

separable. We consider K as embedded in an algebraic closure. The group of

automorphisms of Kover k is called the Galois group of Kover k, and is denoted

by G(K/k), GK1k , Gal(K/k), or simply G. It coincides with the set of embeddings

of K in J(8- over k.

For the convenience of the reader, we shall now state the main result of the

Galois theory for finite Galois extensions.

Theorem 1.1. Let K be a finite Galois extension of k, with Galois group G.

There is a bijection between the set of subfields E of K containing k, and the

set of subgroups H ofG, given by E = K
H

. Thefield E is Galois over k if and

only ifH is normal in G, and if that is the case, then the map (J 1---+ (J I E induces

an isomorphism of GjH onto the Galois group of E over k.

We shall give the proofs step by step, and as far as possible, we give them for

infinite extensions.

Theorem 1.2. Let K be a Galois extension of k. Let G be its Galois group.

Then k = KG. If F is an intermediatefield, keF c K, then K is Galois over

F. The map

F 1---+ G(KjF)

from the set of intermediate fields into the set of subgroups of G is injective.

Proof Let rx E KG. Let (J be any embedding of k(rx) in K
8

, inducing the

identity on k. Extend (J to an embedding of K into K
8

,
and call this extension (J

also. Then (J is an automorphism of Kover k, hence is an element of G. By

assumption, (J leaves rx fixed. Therefore

[k(rx) : k]s = 1.

Since rx is separable over k, we have k(rx) = k and rx is an element of k. This proves

our first assertion.

Let F be an intermediate field. Then K is normal and separable over F by
Theorem 3.4 and Theorem 4.5 of Chapter V. Hence K is Galois over F. If H =

G(K/F) then by what we proved above we conclude that F = K
H

. If F, F' are

intermediate fields, and H = G(K/F), H' = G(K/F'), then

F = K
H

and F' = K
H

'.

If H = H' we conclude that F = F', whence our map

F 1---+ G(KjF)

is injective, thereby proving our theorem.
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We shall sometimes call the group G(K/F) of an intermediate field the group

associated with F. We say that a subgroup H of G belongs to an intermediate

field F if H = G(K/F).

Corollary 1.3. Let K/k be Galois with group G. Let F, F' be two inter-

mediate fields, and let H, H' be the subgroups of G belonging to F, F' respec-

tively. Then H n H' belongs to FF'.

Proof Every element of H n H' leaves FF' fixed, and every element of G

which leaves FF' fixed also leaves F and F' fixed and hence lies in H n H'.

This proves our assertion.

Corollary 1.4. Let the notation be as in Corollary 1.3. Thefixedfield of the

smallest subgroup of G containing H, H' is F n F'.

Proof Obvious.

Corollary 1.5. Let the notation be as in Corollary 1.3. Then F c F' if
and only ifH' c H.

Proof If F c F' and (J E H' leaves F' fixed then (J leaves F fixed, so (J lies

in H. Conversely, if H' c H then the fixed field of H is contained in the fixed

field of H', so F c F'.

Corollary 1.6. Let E be a finite separable extension of a field k. Let K be

the smallest normal extension of k containing E. Then K is finite Galois over

k. There is only afinite number of intermediate fields F such that keF c E.

Proof We know that K is normal and separable, and K is finite over k

since we saw that it is the finite compositum of the finite number of conjugates
of E. The Galois group of K/k has only a finite number of subgroups. Hence

there is only a finite number of subfields of K containing k, whence a fortiori a

finite number of subfields of E containing k.

Of course, the last assertion of Corollary 1.6 has been proved in the preceding

chapter, but we get another proof here from another point of view.

Lemma 1.7. Let E be an algebraic separable extension of k. Assume that

there is an integer n > 1 such that every element rx ofE is ofdegree < n over k.

Then E is finite over k and [E : k] < n.

Proof Let rx be an element of E such that the degree [k(rx) : k] is maximal,

say m < n. We contend that k(rx) = E. If this is not true, then there exists an

element pEE such that p rt k(rx), and by the primitive element theorem, there

exists an element Y E k(rx, P) such that k(rx, P) = key). But from the tower

k c k(rx) c k(rx, P)

we see that [k(rx, P) : k] > m whence y has degree> mover k, contradiction.
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Theorem 1.8. (Artin). Let K be afield and let G be a finite group of auto-

morphisms ofK, oforder n. Let k = KG be the fixed field. Then K is afinite
Galois extension ofk, and its Galois group is G. We have [K : k] = n.

Proof. Let rx E K and let U1, ...,
U

r
be a maximal set of elements of G such

that U 1 rx, ..., U
r

rx are distinct. If! E G then (!U 1 rx, . . .

,
!U

r rx) differs from

(U1rx,. .., urrx) by a permutation, because! is injective, and every !Uirx is among

the set {U1rx,..., urrx}; otherwise this set is not maximal. Hence rx is a root of

the polynomial

r

f{X) = n (X -

Ui rx),
i= 1

and for any! E G, ff = f. Hence the coefficients of f lie in KG = k. Further-

more, f is separable. Hence every element rx of K is a root of a separable

polynomial of degree < n with coefficients in k. Furthermore, this poly-
nomial splits in linear factors in K. Hence K is separable over k, is normal

over k, hence Galois over k. By Lemma 1.7, we have [K : k] < n. The Galois

group of Kover k has order <
[K:k] (by Theorem 4.1 of Chapter V), and hence

G must be the full Galois group. This proves all our assertions.

Corollary 1.9. Let K be a finite Galois extension of k and let G be its Galois

group. Then every subgroup of G belongs to some subfield F such that

keF c K.

Proof. Let H be a subgroup of G and let F = K
H

. By Artin's theorem we

know that K is Galois over F with group H.

Remark. When K is an infinite Galois extension of k, then the preceding

corollary is not true any more. This shows that some counting argument

must be used in the proof of the finite case. In the present treatment, we have

used an old-fashioned argument. The reader can look up Artin's own proof in

his book Galois Theory. In the infinite case, one defines the Krull topology on

the Galois group G (cf. exercises 43-45), and G becomes a compact totally
disconnected group. The subgroups which belong to the intermediate fields are

the closed subgroups. The reader may disregard the infinite case entirely through-
out our discussions without impairing understanding. The proofs in the infinite

case are usually identical with those in the finite case.

The notions of a Galois extension and a Galois group are defined completely

algebraically. Hence they behave formally under isomorphisms the way one

expects from objects in any category. We describe this behavior more explicitly
in the present case.

Let K be a Galois extension of k. Let

A. : K -. A.K
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be an isomorphism. Then AK is a Galois extension of Ak.

K
).

) AK

k
) Ak

A

Let G be the Galois group of Kover k. Then the map

0'1---+A.oO'OA.-
1

gives a homomorphism of G into the Galois group of AK over Ak, whose inverse

is given by

A.
- 1

0 t 0 A. t.

Hence G(AK/Ak) is isomorphic to G(K/k) under the above map. We may write

G(lK/A.k)A = G(K/k)

or

G(A.K/A.k) = A.G(K/k)A. -1,

where the exponent A. is "conjugation,"

O'A = A.
-

1
0 0' 0 A..

There is no avoiding the contravariance if we wish to preserve the rule

(O'A)W = O'AW

when we compose mappings A. and w.

In particular, let F be an intermediate field, keF c K, and let A.: F -+ A.F

be an embedding of F in K, which we assume is extended to an automorphism
of K. Then A.K = K. Hence

G(K/A.F)A = G(K/F)

and

G(K/A.F) = A.G(K/F)A.
-

1.

Theorem 1.10. Let K be a Galois extension of k with group G. Let F be a

subfield, keF c K, and let H = G(K/F). Then F is normal over k if and

only ifH is normal in G. IfF is normal over k, then the restriction map 0' 1---+ 0' I F
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is a homomorphism of G onto the Galois group ofF over k, whose kernel is H.

We thus have G(F/k) G/H.

Proof Assume F is normal over k, and let G' be its Galois group. The

restriction map (J (J I F maps G into G', and by definition, its kernel is H.

Hence H is normal in G. Furthermore, any element! E G' extends to an em-

bedding of K in K
a

,
which must be an automorphism of K, so the restriction

map is surjective. This proves the last statement. Finally, assume that F is not

normal over k. Then there exists an embedding A. of F in Kover k which is not

an automorphism, i.e. A.F =F F. Extend A. to an automorphism of Kover k.

The Galois groups G(K/A.F) and G(K/F) are conjugate, and they belong to

distinct subfields, hence cannot be equal. Hence H is not normal in G.

A Galois extension K/k is said to beabelian (resp. cyclic) if its Galois group G

is abelian (resp. cyclic).

Corollary 1.11. Let K/k be abelian (resp. cyclic). If F is an intermediate

field, keF c K, then F is Galois over k and abelian (resp. cyclic).

Proof This follows at once from the fact that a subgroup of an abelian

group is normal, and a factor group of an abelian (resp. cyclic) group is abelian

(resp. cyclic).

Theorem 1.12. Let K be a Galois extension ofk, let F be an arbitrary exten-

sion and assume that K, Fare subfields afsome otherfield. Then KF is Galois

over F, and K is Galois over K n F. Let H be the Galois group ofKF over F,

and G the Galois group of Kover k. If (J E H then the restriction of (J to K is

in G, and the map

O'I-+(JIK

gives an isomorphism of H on the Galois group of Kover K n F.

Proof Let (J E H. The restriction of (J to K is an embedding of Kover k,

whence an element of G since K is normal over k. The map (J 1-+ (J I K is clearly a

homomorphism. If (J I K is the identity, then (J must be the identity of KF

(since every element of KF can be expressed as a combination of sums, products,
and quotients of elements in K and F). Hence our homomorphism (J 1-+ (J I K is

injective. Let H' be its image. Then H' leaves K n F fixed, and conversely, if an

element rx E K is fixed under H', we see that rx is also fixed under H, whence

rx E F and rx E K n F. Therefore K n F is the fixed field. If K is finite over k,
or even KF finite over F, then by Theorem 1.8, we know that H' is the Galois

group of Kover K n F, and the theorem is proved in that case.

(In the infinite case, one must add the remark that for the Krull topology,
our map u ul K is continuous, whence its image is closed since H is compact.
See Theorem 14. 1; Chapter I, Theorem 10. 1; and Exercise 43.)
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The diagram illustrating Theorem 1.12 is as follows:

/KFF
K /

KnF

k

It is suggestive to think of the opposite sides of a parallelogram as being equal.

Corollary 1.13. Let K be afinite Galois extension ofk. Let F be an arbitrary
extension of k. Then [KF : F] divides [K : k].

Proof Notation being as above, we know that the order of H divides the

order of G, so our assertion follows.

Warning. The assertion of the corollary is not usually valid if K is not

Galois over k. For instance, let lJ. = .j2 be the real cube root of 2, let ( be a

cube root of 1, ( =I 1, say

-1 + 13
( = v -J

2
'

and let P = (rx. Let E = Q(P). Since P is complex and rx real, we have

Q(P) =I Q(rx).

Let F = Q(rx). Then E n F is a subfield of E whose degree over Q divides 3.

Hence this degree is 3 or 1, and must be 1 since E =I F. But

EF = Q(rx, P) = Q(rx, () = Q(rx, J=3).

Hence EF has degree 2 over F.

Theorem 1.14. Let Kl and K 2 be Galois extensions of a field k, with Galois

groups G 1 and G 2 respectively. Assume K b
K

2 are subfields of some field.
Then K lK2 is Galois over k. Let G be its Galois group. Map G -. G 1

X G2

by restriction, namely

a 1---+ (aIKl' aIK2 ).

This map is injective. If K 1 n K2
= k then the map is an isomorphism.
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Proof Normality and separability are preserved in taking the compositum
of two fields, so K 1 K2 is Galois over k. Our map is obviously a homomorphism
of G into G 1

x G 2 . If an element (JEG induces the identity on K 1 and K 2

then it induces the identity on their compositum, so our map is injective. Assume

that K
1
n K 2

= k. According to Theorem 1.12, given an element (J 1 E G 1 there

exists an element (J of the Galois group of K
1
K2 over K

2 which induces (J1 on

K 1. This (J is afortiori in G, and induces the identity on K 2
. Hence G 1

x {e2 }
is contained in the image of our homomorphism (where e2 is the unit element of

G 2 ). Similarly, {e 1 } x G 2 is contained in this image. Hence their product is

contained in the image, and their product is precisely G 1
X G 2 . This proves

Theorem 1.14.

K
1 K2

/
K 1 K 2

/
K 1 n K2

k

Corollary 1.15. Let K
b . . .

, Kn be Galois extensions of k with Galois

groups G b ...
, G

n
. Assume that Ki + 1 n (K 1

. . . K
i) = k for each

i = 1,..., n
- 1. Then the Galois group of K

1
. . . Kn is isomorphic to the

product G 1
X ... x G

n
in the natural way.

Proof Induction.

Corollary 1.16. Let K be a finite Galois extension of k with group G, and

assume that G can be written as a direct product G = G 1
X ... x G

n.
Let

K i be the fixed field of

G
1

X ... x {I} x ... x G
n

where the group with 1 element occurs in the i-th place. Then Ki is Galois over

k, and K i + 1 n (K 1
. . . K;) = k. Furthermore K = K 1

. . . K
n

.

Proof By Corollary 1.3, the compositum ofall Ki belongs to the intersection

of their corresponding groups, which is clearly the identity. Hence the composi-

turn is equal to K. Each factor of G is normal in G, so K
i

is Galois over k. By

Corollary 1.4, the intersection of normal extensions belongs to the product of

their Galois groups, and it is then clear that K i + 1 n (K 1
. . . K i) = k.



VI, 2 EXAMPLES AND APPLICATIONS 269

Theorem 1.17. Assume all fields contained in some common field.

(i) IfK, L are abelian over k, so is the composite KL.

(ii) IfK is abelian over k and E is any extension ofk, then KE is abeUan over E.

(iii) IfK is abelian over k and K ::J E :::> k where E is an intermediatefield, then

E is abelian over k and K is abelian over E.

Proof Immediate from Theorems 1.12 and 1.14.

If k is a field, the composite of all abelian extensions of k in a given algebraic
closure k

d

is called the maximum abelian extension of k, and is denoted by k
ab

.

Remark on notation. We have used systematically the notation:

k
a

= algebraic closure of k;

k
S

= separable closure of k;

k
ab

= abelian closure of k = maximal abelian extension.

We have replaced other people's notation k (and mine as well in the first edition)
with k

a

in order to make the notation functorial with respect to the ideas.

2. EXAMPLES AND APPLICATIONS

Let k be a field andf(X) a separable polynomial of degree
> 1 in k[X]. Let

f(X) = (X - 1) . . . (X - n)

be its factorization in a splitting field Kover k. Let G be the Galois group of K

over k. We call G the Galois group offover k. Then the elements of G permute

the roots off Thus we have an injective homomorphism of G into the symmetric

group Sn on n elements. Not every permutation need be given by an element

of G. We shall discuss examples below.

Example 1. Quadratic extensions. Let k be a field and a E k. If a is not

a square in k, then the polynomial X
2
-

a has no root in k and is therefore

irreducible. Assume char k =t= 2. Then the polynomial is separable (because

2 =t= 0), and if a is a root, then k(a) is the splitting field, is Galois, and its

Galois group is cyclic of order 2.

Conversely, given an extension K of k of degree 2, there exists a E k such that

K = k(a) and a
2

= a. This comes from completing the square and the quadratic
formula as in elementary school. The formula is valid as long as the characteristic

of k is =t= 2.
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Example 2. Cubic extensions. Let k be a field of characteristic =t= 2 or

3. Let

f(X) = X
3

+ aX + b.

Any polynomial of degree 3 can be brought into this form by completing the

cube. Assume thatfhas no root in k. Thenfis irreducible because any factoriza-

tion must have a factor of degree 1. Let a be a root of f(X). Then

[k(a): k] = 3.

Let K be the splitting field. Since char k =t= 2, 3, f is separable. Let G be the

Galois group. Then G has order 3 or 6 since G is a subgroup of the symmetric

group S3. In the second case, k(a) is not normal over k.

There is an easy way to test whether the Galois group is the full symmetric

group. We consider the discriminant. If ell' el2, el 3 are the distinct roots of

f(X), we let

b = (ell - el 2 )(el2 - el3)(elt - el3) and = b
2

.

If G is the Galois group and (J E G then (J(b) = + b. Hence (J leaves fixed.

Thus Ll is in the ground field k, and in Chapter IV, 6, we have seen that

Ll = -4a
3
- 27b

2
.

The set of (]" in G which leave 5 fixed is precisely the set of even permutations.
Thus G is the symmetric group if and only if Ll is not a square in k. We may

summarize the above remarks as follows.

Let f(X) be a cubic polynomial in k[X], and assume char k =t= 2, 3. Then:

(a) f is irreducible over k if and only iff has no root in k.

(b) Assume f irreducible. Then the Galois group off is S3 if and only if the

discriminant off is not a square in k. If the discriminant is a square, then

the Galois group is cyclic of order 3, equal to the alternating group A3 as

a permutation of the roots off.

For instance, consider

f(X) = X
3
- X + 1

over the rational numbers. Any rational root must be 1 or - 1, and so f(X) is

irreducible over Q. The discriminant is - 23, and is not a square. Hence the

Galois group is the symmetriroup. The splitting field contains a subfield of

degree 2, namely k(8) = k(VLl ).

On the other hand, letf(X) = X
3
- 3X + 1. Thenfhas no root in Z, whence

no root in Q, so f is irreducible. The discriminant is 81, which is a square, so

the Galois group is cyclic of order 3.

Example 3. We consider the polynomial f(X) = X
4
- 2 over the

rationals Q. It is irreducible by Eisenstein's criterion. Let el be a real root.
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Let i = .J=l. Then + rx and + irx are the four roots of f(X), and

[Q(a) : Q] = 4.

Hence the splitting field ofj(X) is

K = Q(rx, i).

The field Q(rx) n Q(i) has degree 1 or 2 over Q. The degree cannot be 2 otherwise

i E Q(rx), which is impossible since rx is real. Hence the degree is 1. Hence i has

degree 2 over Q(rx) and therefore [K : Q] = 8. The Galois group off(X) has

order 8.

There exists an automorphism! of K leaving Q(rx) fixed, sending i to - i,

because K is Galois over Q(rx), of degree 2. Then!2 = ide

Q(rx, i) = K

y
Q(rx) Q(i)

Q

By the multiplicativity of degrees in towers, we see that the degrees are as

indicated in the diagram. Thus X
4
- 2 is irreducible over Q(i). Also, K is

normal over Q(i). There exists an automorphism (1 of Kover Q(i) mapping the

root a of X
4
- 2 to the root ia. Then one verifies at once that 1, U, u

2
,

U3 are

distinct and (14 = ide Thus (1 generates a cyclic group of order 4. We denote it

by «(1). Since! rt «(1) it follows that G = «(1, !) is generated by (1 and! because

«(1) has index 2. Furthermore, one verifies directly that

!(1 = (13!,

because this relation is true when applied to rx and i which generate Kover Q.
This gives us the structure of G. It is then easy to verify that the lattice of sub-

groups is as follows:

G

2 21:-:--- 2 3

/'"U .)U'I '/(i'U 'U.,
(1,.)

(1,U2.)1'U(1'U.)
(1,u

3

.)

(1)
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Example 4. Let k be a field and let t 1, . . .

,
t

n
be algebraically independent

over k. Let K = k(t l' . . .

,
t

n). The symmetric group G on n letters operates on

K by permuting (t l' . . .

,
t

n) and its fixed field is the field of symmetric functions,

by defini tion the field of those elements of K fixed under G. Let S l' . . .

, Sn be the

elementary symmetric polynomials, and let

n

f(X) = n (X - t;).
i = 1

Up to a sign, the coefficients off are S b . . .
, Sn . We let F = KG . We contend

that F = k(s l'
. . .

, sn). Indeed,

k(s l'
. . .

, Sn) C F.

On the other hand, K is the splitting field off(X), and its degree over F is n!.

Its degree over k(Sb. . .

, sn) is < n! and hence we have equality, F = k(S1'. . .

, sn).
The polynomial f(X) above is called the general polynomial of degree n.

We have just constructed a Galois extension whose Galois group is the sym-

metric group.

Using the Hilbert irreducibility theorem, one can construct a Galois extension

of Q whose Galois group is the symmetric group. (Cf. Chapter VII, end of 2,
and [La 83], Chapter IX.) It is unknown whether given a finite group G, there

exists a Galois extension of Q whose Galois group is G. By specializing para-

meters, Emmy Noether remarked that one could prove this if one knew that every

field E such that

Q(Sb...,Sn) C E C Q(tb...,tn)

is isomorphic to a field generated by n algebraically independent elements.

However, matters are not so simple, because S wan proved that the fixed field

of a cyclic subgroup of the symmetric group is not necessarily generated by

algebraically independent elements over k [Sw 69], [Sw 83].

Example 5. We shall prove that the complex numbers are algebraically
closed. This will illustrate almost all the theorems we have proved previously.

We use the following properties of the real numbers R: It is an ordered field,

every positive element is a square, and every polynomial of odd degree in R[X]
has a root in R. We shall discuss ordered fields in general later, and our argu-

ments apply to any ordered field having the above properties.
Let i = yCl" (in other words a root of Xl + 1). Every element in R(i)

has a square root. If a + bi E R(i), a, bE R, then the square root is given by
c + di, where

2
a + Ja

2
+ b

2

2

-

a + Ja
2

+ b
2

c =

2
and d =

2
.

Each element on the right ofour equalities is positive and hence has a square root

in R, It is then trivial to determine the sign of c and d so that (c + di)2 = a + bi.
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Since R has characteristic 0, every finite extension is separable. Every finite

extension of R(i) is contained in an extension K which is finite and Galois over

R. We must show that K = R(i). Let G be the Galois group over R and let H

be a 2-Sylow subgroup of G. Let F be its fixed field. Counting degrees and

orders, we find that the degree of F over R is odd. By the primitive element

theorem, there exists an element rx E F such that F = R(rx). Then rx is the root of

an irreducible polynomial in R[X] of odd degree. This can happen only if this

degree is 1. Hence G = H is a 2-group.
We now see that K is Galois over R(i). Let G 1 be its Galois group. Since G 1

is a p-group (with p
= 2), if G 1

is not the trivial group, then G
1

has a subgroup

G 2
of index 2. Let F be the fixed field of G2

. Then F is of degree 2 over R(i); it

is a quadratic extension. But we saw that every element of R(i) has a square

root, and hence that R(i) has no extensions of degree 2. It follows that G 1 is the

trivial group and K = R(i), which is what we wanted.

(The basic ideas of the above proof were already in Gauss. The variation

of the ideas which we have selected, making a particularly efficient use of the

Sylow group, is due to Artin.)

Example 6. Let f(X) be an irreducible polynomial over the field k, and

assume that f is separable. Then the Galois group G of the splitting field is

represented as a group of permutations of the n roots, where n = degf When-

ever one has a criterion for this group to be the full symmetric group Sn, then

one can see if it applies to this representation of G. For example, it is an easy

exercise (cf. Chapter I, Exercise 38) that for p prime, Sp is generated by

[123
. · ·

p] and any transposition . We then have the following result.

Let f(X) be an irreducible polynomial with rational coefficients and ofdegree

p prime. Iff has precisely two nonreal roots in the complex numbers, then the

Galois group off is Sp.

Proof The order of G is divisible by p, and hence by Sylow's theorem, G

contains an element of order p. Since G is a subgroup of Sp which has order p!,
it follows that an element of order p can be represented by a p-cycle [123

· · ·

p]
after a suitable ordering of the roots, because any smaller cycle has order less

than p, so relatively prime to p. But the pair of complex conjugate roots shows

that complex conjugation induces a transposition in G. Hence the group is all

of S
p

.

A specific case is easily given. Drawing the graph of

f(X) = X
S
- 4X + 2

shows thatfhas exactly three real roots, so exactly two complex conjugate roots.

Furthermore f is irreducible over Q by Eisenstein's criterion, so we can apply
the general statement proved above to conclude that the Galois group of f
over Q is Ss. See also Exercise 17 of Chapter IV.
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Example 7. The preceding example determines a Galois group by finding
some subgroups passing to an extension field of the ground field. There are

other possible extensions of Q rather than the reals, for instance p-adic fields

which will be discussed later in this book. However, instead of passing to an

extension field, it is possible to use reduction mod p. For our purposes here, we

assume the following statement, which will be proved in Chapter VII, theorem

2.9.

Let f(X) E Z[X] be a polynomial with integral coefficients, and leading

coefficient 1. Let p be a prime number. Let l(X) = f(X) mod p be the

polynomial obtained by reducing the coefficients mod p. Assume that f has

no multiple roots in an algebraic closure of F
p.

Then there exists a bijection

(b . . .

, n) 1-+ ( b
. . .

, n)

of the roots offonto those of1, and an embedding of the Galois group ofJas a

subgroup of the Galois group o.f f, which gives an isomorphism of the action of
those groups on the set of roots.

The embedding will be made precise in Chapter VII, but here we just want to

use this result to compute Galois groups.

For instance, consider X
5
- X-I over Z. Reducing mod 5 shows that

this polynomial is irreducible. Reducing mod 2 gives the irreducible factors

(X
2

+ X + 1)(X
3

+ X
2

+ 1) (mod 2).

Hence the Galois group over the rationals contains a 5-cycle and a product of a

2-cycle and a 3-cycle. The third power of the product of the 2-cycle and 3-cycle
is a 2-cycle, which is a transposition. Hence the Galois group contains a trans-

position and the cycle [123
. · ·

p], which generate S
p (cf. the exercises of Chapter

I on the symmetric group). Thus the Galois group of X5 - X-I is Sp.

Example 8. The technique of reducing mod primes to get lots of elements

in a Galois group was used by Schur to determine the Galois groups of classical

polynomials [Schur 31]. For instance, Schur proves that the Galois group over

Q of the following polynomials over Q is the symmetric group:

n

(a) f(X) = L x
m

1m! (in other words, the truncated exponential series), if
m=O

n is not divisible by 4. If n is divisible by 4, he gets the alternating group.

(b) Let

Hm(X)
=

(-l)
m

e
x2/2

:;m (e-
X2/2

)

be the m-th Hermite polynomial. Put

H2n (X) = KO)(X2) and H2n +1 (X) = XK1)(X2).

Then the Galois group of K<j)(X) over Q is the symmetric group Sn for i = 0,

1, provided n > 12. The remaining cases were settled in [Schulz 37].
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Example 9. This example is addressed to those who know something
about Riemann surfaces and coverings. Let t be transcendental over the com-

plex numbers C, and let k = C(t). The values of t in C, or 00, correspond to the

points of the Gauss sphere S, viewed as a Riemann surface. Let P 1, . . .

,
P

n + 1 be

distinct points of S. The finite coverings of S -

{PI, . . .

,
Pn- I } are in bijection

with certain finite extensions of C(t), those which are unramified outside

PI,. . .

, Pn-I. Let K be the union of all these extension fields corresponding to

such coverings, and let nn) be the fundamental group of

S - {Pb...,Pn+l}.

Then it is known that n\n) is a free group on n generators, and has an embedding
in the Galois group of Kover C(t), such that the finite subfields of Kover

C(t) are in bijection with the subgroups of n\n) which are of finite index. Given a

finite group G generated by n elements (11' ...,
(1

n
we can find a surjective

homomorphism nn) G mapping the generators of ni
n)

on (11, . . .

, an. Let H

be the kernel. Then H belongs to a subfield K
H

of K which is normal over C(t)
and whose Galois group is G. In the language of coverings, H belongs to a

finite covering of

S -

{PI ,
. . .

,
Pn+ I }.

Over the field C(t) one can use analytic techniques to determine the Galois

group. The Galois group is the completion of a free group, as proved by

Douady [Dou 64]. For extensions to characteristic p, see [Pop 95]. A funda-

mental problem is to determine the Galois group over Q(t), which requires
much deeper insight into the number theoretic nature of this field. Basic con-

tributions were made by Belyi [Be 80], [Be 83], who also considered the field

Q(Jl)(t), where Q(Jl) is the field obtained by adjoining all roots of unity to the

rationals. Belyi proved that over this latter field, essentially all the classical fi-

nite groups occur as Galois groups. See also Conjecture 14.2 below.

For Galois groups over Q(t), see the survey [Se 88], which contains a

bibliography. One method is called the rigidity method, first applied by Shih

[Shi 74], which I summarize because it gives examples of various notions defined

throughout this book. The problem is to descend extensions of C(t) with a given
Galois group G to extensions ofQ(t) with the same Galois group. If this extension

is Kover Q(t), one also wants the extension to be regular over Q (see the

definition in Chapter VIII, 4). To give a sufficient condition, we need some

definitions. Let G be a finite group with trivial center. Let CI' C2 , C3 be conjugacy
classes. Let P = P(CI' C2 , C3 ) be the set of elements

(91,92,93) E C 1
X C2

X C3

such that 919293
= 1. Let P' be the subset of P consisting of all elements

(9., 92' 93) E P such that G is generated by 91' 92' 93. We say that the family

(C., C2 , C3 ) is rigid if G operates transitively on P', and P' is not empty.
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We define a conjugacy class C of G to be rational if given g E C and a

positive integer s relatively prime to the order of g, then g5 E C. (Assuming that

the reader knows the terminology of characters defined in Chapter XVIII, this

condition of rationality is equivalent to the condition that every character X of

G has values in the rational numbers Q.) One then has the following theorem,

which is contained in the works of Shih, Fried, Belyi, Matzat and Thompson.

Rigidity theorem. Let G be a finite group with trivial center, and let

C}, C2 ,
C3 be conjugacy classes which are rational, and such that the family

(C}, C2 , C3) is rigid. Then there exists a Galois extension of Q(t) with Galois

group G (and such that the extension is regular over Q).

[Be 80]

[Be 83]

[Dou 64]

[La 83]

[Pop 95]

[Se 88]

[Shi 74]

[Sw 69]

[Sw 83]
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3. ROOTS OF UNITY

Let k be a field. By a root of unity (in k) we shall mean an element' E k

such that ,n = 1 for some integer n > 1. If the characteristic of k is p, then the

equation

Xpm
= 1

has only one root, namely 1, and hence there is no pm-th root of unity except 1.
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Let n be an integer> 1 and not divisible by the characteristic. The polynomial

X
n
- 1

is separable because its derivative is nX
n
- 1

=F 0, and the only root of the deriva-

tive is 0, so there is no common root. Hence in k
a

the polynomial x
n
- 1 has n

distinct roots, which are roots of unity. They obviously form a group, and we

know that every finite multiplicative group in a field is cyclic (Chapter IV,

Theorem 1.9). Thus the group of n-th roots of unity is cyclic. A generator for

this group is called a primitive n-th root of unity.
If Jln denotes the group of all n-th roots of unity in k

a

and m, n are relatively

prime integers, then

Jlnzn Jim X Jln.

This follows because Jim, Jln cannot have any element in common except 1,

and because JlmJln consequently has mn elements, each of which is an mn-th

root of unity. Hence JlmJln
=

Jlmn' and the decomposition is that of a direct

product.
As a matter of notation, to avoid double indices, especially in the prime

power case, we write J1[n] for J1n. So if p is a prime, J1[pr] is the group of

pr-th roots of unity. Then J1[pOO] denotes the union of all J1[pr] for all

positive integers r. See the comments in 14.

Let k be any field. Let n be not divisible by the characteristic p. Let ( =

(n be a primitive n-th root of unity in ka
. Let (f be an embedding of k«() in k

a

over k. Then

(a()n = a«(n) = 1

so that a( is an n-th root of unity also. Hence a( = (i for some integer i = i(a),

uniquely determined mod n. It follows that a maps k«() into itself, and hence

that k«() is normal over k. If T is another automorphism of k«() over k then

aT( = (i(G)i(f).

Since a and Tare automorphisms, it follows that i(a) and i(T) are prime to n

(otherwise, a( would have a period smaller than n). In this way we get a homo-

morphism of the Galois group G of k(() over k into the multiplicative group

(ZjnZ)* of integers prime to n, mod n. Our homomorphism is clearly injective
since ;(a) is uniquely determined by a mod n, and the effect of a on k«() is

determined by its effect on (. We conclude that k«() is abelian over k.

We know that the order of (ZjnZ)* is qJ(n). Hence the degree [k«(): k]
divides qJ(n).

For a specific field k, the question arises whether the image of G
K({)/K

in

(Z/nZ)* is all of (Z/nZ)
*

. Looking at K = R or C, one sees that this is not

always the case. We now give an important example when it is the case.
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Theorem 3.1. Let ( be a primitive n-th root of unity. Then

[Q«() : Q] = qJ(n),

where cp is the Euler function. The map u i(u) gives an isomorphism

GQ«()/Q (Z/nZ)*.

Proof. Let j'(X) be the irreducible polynomial of ( over Q. Then f(X)
divides xn - 1, say xn - 1 = f(X)h(X), where bothf, h have leading coefficient

1. By the Gauss lemma, it follows thatJ: h have integral coefficients. We shall

now prove that if p is a prime number not dividing n, then (P is also a root off
Since (P is also a primitive n-th root of unity, and since any primitive n-th root of

unity can be obtained by raising ( to a succession of prime powers, with primes
not dividing n, this will imply that all the primitive n-th roots of unity are roots

ofJ: which must therefore have degree > qJ(n), and hence precisely qJ(n).

Suppose (P is not a root off Then (P is a root of h, and ( itself is a root

of h(XP). Hencef(X) divides h(XP), and we can write

h(XP) = f(X)g(X).

Since f has integral coefficients and leading coefficient 1, we see that 9 has

integral coefficients. Since a
P -

a (mod p) for any integer a, we conclude that

h(XP) = h(X)P (mod p),

and hence

h(X)P = f(X)g(X) (mod p).

In particular, if we denote by f and h the polynomials in Z/pZ obtained by

reducing f and h respectively mod p, we see that J and Ii are not relatively

prime, i.e. have a factor in common. But x
n
- T = .f(X)Ii(X), and hence

x
n
- T has multiple roots. This is impossible, as one sees by taking the de-

rivative, and our theorem is proved.

Corollary 3.2. If n, m are relative prime integers > 1, then

Q«(n) n Q«(m) = Q.

Proof We note that (n and (m are both contained in Q((mn) since (:Zn is a

primitive m-th root of unity. Furthermore, (m (n is a primitive mn-th root of

unity. Hence

Q«(n)Q«(m) = Q('mn).

Our assertion follows from the multiplicativity qJ(mn) = qJ(m)qJ(n).

Suppose that n is a prime number p (having nothing to do with the character-

istic). Then

XP
- 1 = (X

- 1)(XP-
1

+ . . . + 1).
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Any primitive p-th root of unity is a root of the second factor on the right of this

equation. Since there are exactly p
- 1 primitive p-th roots of unity, we con-

clude that these roots are precisely the roots of

XP
- 1

+ . . . + 1.

We saw in Chapter IV, 3 that this polynomial could be transformed into

an Eisenstein polynomial over the rationals. This gives another proof that

[Q«(p): Q] =

p
- 1.

We investigate more closely the factorization of x
n
- 1, and suppose that

we are in characteristic 0 for simplicity.
We have

X
n - 1 = IT (X

-

(),
(

where the product is taken over all n-th roots of unity. Collect together all terms

belonging to roots of unity having the same period. Let

<I>d(X)
= IT (X

-

,)
period (=d

Then

X
n - 1 = IT <I>d(X).

din

We see that <I>} (X) = X-I, and that

<l>n(X) =

X
n
- 1

IT <I>d(X)
din
d<n

From this we can compute <I> (X) recursively, and we see that <l>n(X) is a polynomial
in Q[X] because we divide recursively by polynomials having coefficients in Q.
All our polynomials have leading coefficient 1, so that in fact <I>n(X) has integer

coefficients by Theorem 1. 1 of Chapter IV. Thus our construction is essentially
universal and would hold over any field (whose characteristic does not divide

n).

We call <l>n(X) the n-th cyclotomic polynomial.
The roots of <l>n are precisely the primitive n-th roots of unity, and hence

deg <l>n = cp(n).

From Theorem 3.1 we conclude that <I>
n

is irreducible over Q, and hence

<l>n(X)
=

Irr«(n, Q, X).



280 GALOIS THEORY VI, 3

We leave the proofs of the following recursion formulas as exercises:

1. If P is a prime number, then

<l>p(X) =Xp-l +Xp-2 + ... + 1,

and for an integer r > 1,

r-l

<l>pr(X)
=

<l>p(XP ).

2. Let n = p;l . . . P be a positive integer with its prime factorization. Then

<l>n(X)
=

<l>Pl' 'Ps(XPP-1 pS-l).

3. If n is odd > 1, then <l>2n(X) = <I>n(
-

X).

4. If p is a prime number, not dividing n, then

_

<I>n(XP)
<Ppn(X)

-

<Pn(X)
.

On the other hand, if pin, then <I>pn(X)
= <I>n(XP).

5. We have

<I>n(X)
= IT (X

n/d
- 1 )JL(d) .

din

As usual, J1 is the Mobius function:

{
o if n is divisible by p2 for some prime p,

J1(n) = (-I)r if n =

PI
. . .

Pr is a product of distinct primes,
1 if n = 1.

As an exercise, show that

LJL(d) = {
I if n = I,

dl n
0 if n > 1.

Example. In light of Exercise 21 of Chapter V, we note that the association

n <l>n(X) can be viewed as a function from the positive integers into the

multiplicative group of non-zero rational functions. The multiplication formula

xn - 1 = n <I>d(X) can therefore be inverted by the general formalism of

convolutions. Computations of a number of cyclotomic polynomials show that

for low values of n, they have coefficients equal to 0 or + 1. However, I am

indebted to Keith Conrad for bringing to my attention an extensive literature on

the subject, starting with Bang in 1895. I include only the first and last items:

A. S. BANG, Om Ligningen <l>m(X) = 0, Nyt Tidsskrift for Matematik (B) 6 (1895),

pp. 6-12

H. L. MONTGOMERY and R. C. VAUGHN, The order of magnitude of the m-th coef-

ficients of cyclotomic polynomials, Glasgow Math, J. 27 (1985), pp, 143-159
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In particular, if <I>n(X)
=

anjXj, define L(j)
=

log max
n I anj I. Then Montgomery

and Vaughn prove that

.1/2 .1/2
J

« LU«
J

(log j)
1/4

(log J)
1/4

where the sign « means that the left-hand side is at most a positive constant

times the right-hand side for j 00. Bang also points out that <l>lOS(X) is a

cyclotomic polynomial of smallest degree having coefficients =1= 0 or
+ 1: the

coefficient of X7 and X
4 1

is -2 (all others are 0 or +
1).

If ( is an n-th root of unity and ( =F 1, then

1 - (n
1 y yn

- 1
0

1-(=
++...+ =.

This is trivial, but useful.

Let F
q

be the finite field with q elements, q equal to a power of the odd prime
number p. Then F: has q

- 1 elements and is a cyclic group. Hence we have

the index

(F: : F:2) = 2.

If v is a non-zero integer not divisible by p, let

() = { -
if v = x

2

(mod p) for some x,

if v =1= x
2

(mod p) for all x.

This is known as the quadratic symbol, and depends only on the residue class

of v mod p.

From our preceding remark, we see that there are as many quadratic residues

as there are non-residues mod p.

Theorem 3.3. Let ( be a primitive p-th root of unity, and let

s = ()c,
the sum being taken over non-zero residue classes mod p. Then

S2 = ( / )P.
Every quadratic extension ofQ is contained in a cyclotomic extension.

Proof. The last statement follows at once from the explicit expression of

+ p as a square in Q«(), because the square root of an integer is contained in the
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field obtained by adjoining the square root of the prime factors in its factoriza-

tion, and also J=1. Furthermore, for the prime 2, we have (1 + i)2 = 2i. We

now prove our assertion concerning S2. We have

S
2

= L ( ) (
J1

) (V
+ Jl

= L (
VJ1

) (V
+

Jl.

v, Jl P P v, Jl P

As v ranges over non-zero residue classes, so does VJ1 for any fixed J1, and hence

replacing v by vJ1 yields

S2 = L (
VJ1

2

) (Jl(V+
1)

= L ( ) (Jl(V
+ 1)

V,Jl P V,11 P

= L ( ) (O + L ( ) L (I1(V+ 1).

11 P v*-l P 11

But 1 + ( + . . . + (P-I = 0, and the sum on the right over J1 consequently

yields - 1. Hence

S2 = ( ) (P
- 1) + (-1) L ( )P v* - 1 P

=

p( /)
-

G)
=

p( /).
as desired.

We see that Q(JP) is contained in Q«(, J=1) or Q«(), depending on the

sign of the quadratic symbol with - 1. An extension of a field is said to be

cyclotomic if it is contained in a field obtained by adjoining roots of unity.
We have shown above that quadratic extensions of Q are cyclotomic. A

theorem of Kronecker asserts that every abelian extension of Q is cyclotomic,
but the proof needs techniques which cannot be covered in this book.

4. LINEAR INDEPENDENCE OF

CHARACTERS

Let G be a monoid and K a field. By a character of G in K (in this chapter),
we shall mean a homomorphism

X:G-+K*

of G into the multiplicative group of K. The trivial character is the homo-
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morphism taking the constant value I. Functions /;: G -+ K are called linearly

independent over K if whenever we have a relation

a Ifl + . , . + an in = 0

with ai E K, then all ai
= O.

Examples. Characters will occur in various contexts in this book. First,

the various conjugate embeddings of an extension field in an algebraic closure

can be viewed as characters. These are the characters which most concern us in

this chapter. Second, we shall meet characters in Chapter XVIII, when we shall

extend the next theorem to a more general kind of character in connection with

group representations.
Next, one meets characters in analysis. For instance, given an integer m, the

functionf: R/Z C* such thatf(x) = e
21Timx

is a character on R/Z. It can be

shown that all continuous homomorphisms of R/Z into C* are of this type.

Similarly, given a real numbery, the function x .....-+ e21Tixy is a continuous character

on R, and it is shown in Fourier analysis that all continuous characters of absolute

value 1 on R are of this type.

Further, let X be a compact space and let R be the ring of continuous complex-
valued functions on X. Let R* be the group of units of R. Then given x E X the

evaluation mapf f(x) is a character of R* into C*. (Actually, this evaluation

map is a ring homomorphism of R onto C.)

Artin found a neat way of expressing a linear independence property which

covers all these cases, as well as others, in the following theorem [Ar 44].

Theorem 4.1. (Artin). Let G be a monoid and K a field. Let X., . . . , Xn

be distinct characters of G in K. Then they are linearly independent over K.

Proof One character is obviously linearly independent. Suppose that we

have a relation

a I Xl + . . . + an X n
= 0

with a; E K, not all O. Take such a relation with n as small as possible. Then

n > 2, and no ai is equal to O. Since X I' X2 are distinct, there exists Z E G such

that Xl(Z) =F X2(Z). For all x E G we have

alXl(xz) + ... + anXn(xz) = 0,

and since Xi is a character,

alXl (Z)Xl + . . . + anXn(z)Xn = O.

Divide by Xl(Z) and subtract from our first relation. The term alXI cancels, and

we get a relation

(a2

X2(Z)
-

a 2 ) X2 + . . . = O.

X I (z)
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The first coefficient is not 0, and this is a relation of smaller length than our first

relation, contradiction.

As an application of Artin's theorem, one can consider the case when K is a

finite normal extension of a field k, and when the characters are distinct auto-

morphisms (11' . .

., (1n of Kover k, viewed as homomorphisms of K* into K*.

This special case had already been considered by Dedekind, who, however,

expressed the theorem in a somewhat different way, considering the determinant

constructed from (1iWj where w
j

is a suitable set of elements of K, and proving in

a more complicated way the fact that this determinant is not o. The formulation

given above and its particularly elegant proof are due to Artin.

As another application, we have:

Corollary 4.2. Let a b . . .
, an be distinct non-zero elements of a field K. If

aI, . . .
, an are elements of K such that for all integers v

> 0 we have

a 1 a + . . . + an a = 0

then ai
= 0 for all i.

Proof We apply the theorem to the distinct homomorphisms

V 1---+ a Y
I

of Z?;.o into K* .

Another interesting application will be given as an exercise (relative in-

variants).

5. THE NORM AND TRACE

Let E be a finite extension of k. Let [E : kJs =
r, and let

pJl = [E: kJ i

if the characteristic is p > 0, and 1 otherwise. Let (11, . . .

,
(1

r
be the distinct

embeddings of E in an algebraic closure k
a

of k. If a is an element of E, we

define its norm from E to k to be

NE/k(a)
= N[(rx.) =

vO/
1v rx.

P"
= (01 Uvrx.YE:k

Ji

.

Similarly, we define the trace

r

TrE/k(a) = Trf(Cl) = [E: kJi L (1v a.

v=1

The trace is equal to 0 if [E : kJi > 1, in other words, if Elk is not separable.
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Thus if E is separable over k, we have

Nf(a) = n aa

(1

where the product is taken over the distinct embeddings of E in k
8

over k.

Similarly, if Elk is separable, then

Trf(a) = L ua.

(1

Theorem 5.1. Let Elk be a finite extension. Then the norm Nt is a multi-

plicative homomorphism of E* into k* and the trace is an additive homo-

morphism of E into k. IfE => F => k is a tower offields, then the two maps are

transitive, in other words,

Nf = N[ 0 N: and Trf = Trf 0 Tr:.

If E = k(a), andf(X) = Irr(a, k, X) = x
n

+ a
n _1 Xn

- 1
+ ... + ao, then

N(a)(a) = ( - l)na o and Tr(a)(a) = -

a
n
- 1.

Proof For the first assertion, we note that aPI-L is separable over k if

pJ1 = [E: kJi. On the other hand, the product

r

n u
v

aPI-L
v= 1

is left fixed under any isomorphism into k
8

because applying such an iso-

morphism simply permutes the factors. Hence this product must lie in k since

aPI-L is separable over k. A similar reasoning applies to the trace.

For the sec0!ld assertion, let {T i} be the family of dij?ct embeddings of F

into k
8

over k. Extend each T
j

to an automorphism of k8, and denote this

extension by Tj also. Let {u;} be the family of embeddings of E in k
8

over F.

(Without loss of generality, we may assume that E c k
8

.) If u is an embedding
of E over k in k

8

,
then for some j, Tj-

1
a leaves F fixed, and hence 7:} 1U =

Ui for

some i. Hence u =

7:jUi and consequently the family {TjUi} gives all distinct

embeddings of E into k
8

over k. Since the inseparability degree is multiplicative
in towers, our assertion concerning the transitivity of the norm and trace is

obvious, because we have already shown that N maps E into F, and similarly
for the trace.

Suppose now that E = k(a). We have

f(X) = «X -

a 1) . . . (X -

a
r))

[E : k],

if a
b . . .

,
a

r
are the distinct roots off Looking at the constant term offgives us

the expression for the norm, and looking at the next to highest term gives us the

expression for the trace.

We observe that the trace is a k-linear map of E into k, namely

Trf(ca) = c Trf(a)
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for all a E E and c E k. This is clear since c is fixed under every embedding of

E over k. Thus the trace is a k-linear functional of E into k. For simplicity,
we write Tr = Trt.

Theorem 5.2. Let E be afinite separable extension of k. Then Tr: E -. k is

a non-zero functional. The map

(x, y) Tr(xy)

of E x E -. k is bilinear, and identifies E with its dual space.

Proof. That Tr is non-zero follows from the theorem on linear indepen-
dence of characters. For each x E E, the map

Tr
x

: E -. k

such that Trx(Y) = Tr(xy) is obviously a k-linear map, and the map

X J-+ Trx

is a k-homomorphism of E into its dual space E
V

. (We don't write E* for the

dual space because we use the star to denote the multiplicative group of E.)

If Tr
x

is the zero map, then Tr(xE) = O. If x =F 0 then xE = E. Hence the

kernel of x J-+ Trx is o. Hence we get an injective homomorphism of E into

the dual space E. Since these spaces have the same finite dimension, it follows

that we get an isomorphism. This proves our theorem.

Corollary 5.3. Let WI, . . .

,
W

n
be a basis of E over k. Then there exists a

basis W
/

I ,
. . .

, W of E over k such that Tr(Wi wj) = bij.

Proof The basis W
/

I ,
. . .

, w is none other than the dual basis which we

defined when we considered the dual space of an arbitrary vector space.

Corollary 5.4. Let E be a finite separable extension of k, and let (J I'
. . .

,
(J

n

be the distinct set of embeddings of E into k
8

over k. Let WI' . . .

,
W

n
be ele-

ments of E. Then the vectors

I
= «(J I W b . . .

,
(J I

Wn),

n = «(JnWb..., (Jnwn)

are linearly independent over E if WI' . . .
, wnform a basis of E over k.

Proof Assume that W b . . .

,
W

n
form a basis of Elk. Let a I' . . .

, an be ele-

ments of E such that

a I I + . . . + an n = O.

Then we see that

a
I (J I + . . . + an (J

n
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applied to each one of WI' . . .

,
W

n gives the value O. But 0' l' . . .
,

0'
n

are linearly

independent as characters of the multiplicative group E* into k
8
*. It follows that

rxi
= 0 for i = 1, . . .

, n, and our vectors are linearly independent.

Remark. In characteristic 0, one sees much more trivially that the trace is

not identically o. Indeed, if C E k and c =F 0, then Tr(c) = nc where n = [E: k],
and n =F O. This argument also holds in characteristic p when n is prime to p.

Propoition 5.5. Let E = k(rx) be a separable extension. Let

f(X) = Irr(rx, k, X),

and let f'(X) be its derivative. Let

({()IX) = Po + P.X + ... + Pn_.xn
-.

with Pi E E. Then the dual basis of 1, rx, . . .

,
rx

n
- 1

is

Po Pn-l

f'(rx)'...' f'(rx).

Proof Let rx 1, . . .

,
rx

n
be the distinct roots off Then

i f(X) IX
= X'

i = 1 (X - rxi) f'(rxi)
for 0 < r < n

- 1.

To see this, let g(X) be the difference of the left- and right-hand side of this

equality. Then g has degree < n
- 1, and has n roots rxf, . . .

,
rx

n
. Hence g is

identically zero.

The polynomials
f(X)

(X - (Xi) f'(rxi)

rx
I

are all conjugate to each other. If we define the trace of a polynomial with

coefficients in E to be the polynomial obtained by applying the trace to the

coefficients, then

[
f(X) rx

r

]
r

Tr
(X _

IX) f'(IX)
= X ·

Looking at the coefficients of each power of X in this equation, we see that

(
i /3j

)
_Tr IX

f'(IX)
- bij,

thereby proving our proposition.

Finally we establish a connection with determinants, whose basic properties
we now assume. Let E be a finite extension of k, which we view as a finite

dimensional vector space over k. For each a E E we have the k-linear map
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multiplication by a,

ma: E E such that ma(x) = ax.

Then we have the determinant det(ma), which can be computed as the determinant

of the matrix M
a representing ma with respect to a basis. Similarly we have the

trace Tr(ma), which is the sum of the diagonal elements of the matrix Ma.

Proposition 5.6. Let E be a finite extension of k and let a E E. Then

det(ma) = NE/k(a) and Tr(ma) =

TrE/k(a).

Proof. Let F = k(a). If [F : k] = d, then 1, a,..., -I is a basis

for F over k. Let {Wb...' w
r } be a basis for E over F. Then {aiwj}

(i = 0, . . .
,

d -

1; j
= 1,.. .

, r) is a basis for E over k. Let

f(X) = X
d

+ ad_IXd
- I

+ . . . + ao

be the irreducible polynomial of a over k. Then NF/k(a) = (-1 )dao ,
and by the

transitivity of the norm, we have

NE/k(a)
= NF/k(a)r.

The reader can verify directly on the above basis that NF/k(rx)r is the determinant

of ma on F, and then that NF/k( a)d is the determinant of ma on E, thus concluding
the proof for the determinant. The trace is handled exactly in the same way,

except that TrE/k(a)
=

r
·

TrF/k(a). The trace of the matrix for ma on F is equal
to -ad-I. From this the statement identifying the two traces is immediate, as it

was for the norm.

6. CYCLIC EXTENSIONS

We recall that a finite extension is said to be cyclic if it is Galois and its

Galois group is cyclic. The determination of cyclic extensions when enough roots

of unity are in the ground field is based on the following fact.

Theorem 6.1. (Hilbert's Theorem 90). Let K/k be cyclic of degree n

with Galois group G. Let (J be a generator of G. Let {3 E K. The norm

N:({3) = N(fJ) is equal to I if and only if there exists an element rx =F 0 in K

such that f3 = rx/(Jrx.

Proof Assume such an element rx exists. Taking the norm of {3 we get

N(rx)jN((Jrx). But the norm is the product over all automorphisms in G. Inserting
(J just permutes these automorphisms. Hence the norm is equal to 1.

It will be convenient to use an exponential notation as follows. If t, t' E G

and E K we write

T+
t'

= tt'.
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By Artin's theorem on characters, the map given by

id + fJu + pi
+ a

u
2

+ . . . + pi
+ a + ... + a"

- 2

Un
- I

on K is not identically zero. Hence there exists f} E K such that the element

rx = e + pea + pi
+ a

e
a2

+ .. . + pi
+ a + ... + a"

-

20a
"
- 1

is not equal to O. It is then clear that prx
a

= rx using the fact that N(P) = 1, and

hence that when we apply u to the last term in the sum, we obtain f}. We divide

by rx
a

to conclude the proof.

Theorem 6.2. Let k be a field, n an integer > 0 prime to the characteristic

of k, and assume that there is a primitive n-th root of unity in k.

(i) Let K be a cyclic extension ofdegree n. Then there exists rx E K such that

K = k(rx), and rx satisfies an equation X
n
-

a = 0for some a E k.

(ii) Conversely, let a E k. Let rx be a root ofx
n
-

a. Then k(rx) is cyclic over

k, of degree d, din, and rx
d

is an element of k.

Proof Let ( be a primitive n-th root of unity in k, and let K/k be cyclic with

groupG. LetubeageneratorofG. WehaveN((-l) = ((-I)n = 1. By Hilbert's

theorem 90, there exists rx E K such that urx = (rx. Since ( is in k, we have

uirx = (irx for i = 1,..., n. Hence the elements (irx are n distinct conjugates of rx

over k, whence [k(rx) : k] is at least equal to n. Since [K : k] =
n, it follows that

K = k(rx). Furthermore,

u(rxn) = u(rx)n = ((rx)n = rx
n

.

Hence rx
n

is fixed under u, hence is fixed under each power of u, hence is fixed

under G. Therefore rx
n

is an element of k, and we let a = rx
n

. This proves the

first part of the theorem.

Conversely, let a E k. Let a be a root of x
n
-

a. Then a(i is also a root for

each i = 1, . . .
, n, and hence all roots lie in k(a) which is therefore normal over

k. All the roots are distinct so k(a) is Galois over k. Let G be the Galois group.

If u is an automorphism of k(rx)/k then urx is also a root of x
n
-

a. Hence

urx = w
a

rx where W
a

is an n-th root of unity, not necessarily primitive. The map

u 1---+ W
a

is obviously a homomorphism of G into the group of n-th roots of unity,
and is injective. Since a subgroup of a cyclic group is cyclic, we conclude that

G is cyclic, of order d, and din. The image of G is a cyclic group of order d.

If u is a generator of G, then ClJ
u

is a primitive dth root of unity. Now we get

u(rx
d

) = (urx)d = (Warx)d = ad.

Hence rx
d

is fixed under u, and therefore fixed under G. It is an element of k, and

our theorem is proved.
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We now pass to the analogue of Hilbert's theorem 90 in characteristic p for

cyclic extensions of degree p.

Theorem 6.3. (Hilbert's Theorem 90, Additive Form). Let k be a field and

K/k a cyclic extension of degree n with group G. Let () be a generator of G.

Let {3 E K. The trace Trt({3) is equal to 0 ifand only if there exists an element

rx E K such that {3 = rx - arx.

Proof If such an element rx exists, then we see that the trace is 0 because

the trace is equal to the sum taken over all elements of G, and applying a per-

mutes these elements.

Conversely, assume Tr(f3) = O. There exists an element (J E K such that

Tr((J) =F O. Let

a; = Tre) [pea + (P + up)e
a2

+ . . . + (P + up + . . . + u"-
2

p)e
an

-

'].

From this it follows at once that {3 = rx - arx.

Theorem 6.4. (Artin-Schreier) Let k he afield ofcharacteristic p.

(i) Let K be a cyclic extension of k of degree p. Then there exists r:1 E K such

that K = k(r:1) and r:1 satisfies an equation XP - X -

a = 0 with some

a E k.

(ii) Conversely, given a E k, the polynomial f(X) = XP - X -

a either has

one root in k, in which case all its roots are in k, or it is irreducible. In

this latter case, if rx is a root then k(r:1) is cyclic of degree p over k.

Proof Let K/k be cyclic of degree p. Then Trf( -1) = 0 (it is just the sum

of -1 with itself p times). Let a be a generator of the Galois group. By the

additive form of Hilbert's theorem 90, there exists rx E K such that arx
-

rx = 1,

or in other words, arx = rx + 1. Hence airx = rx + i for all integers i = 1, . . .

, p

and rx has p distinct conjugates. Hence [k(rx) : k] >
p. It follows that K = k(rx).

We note that

a(rx
P
- rx) = a(rx)P - a(r:1) = (rx + I)P - (rx + 1) = r:1

P
- rx.

Hence rx
P
- rx is fixed under a, hence it is fixed under the powers of a, and

therefore under G. It lies in the fixed field k. If we let a = rx
P
-

rx we see that

our first assertion is proved.

Conversely, let a E k. If rx is a root of XP - X -

a then rx + i is also a

root for i = 1, . . .

, p. Thus f(X) has p distinct roots. If one root lies in k

then all roots lie in k. Assume that no root lies in k. We contend that the



VI, 7 SOLVABLE AND RADICAL EXTENSIONS 291

polynomial is irreducible. Suppose that

f(X) = g(X)h(X)

with g, h E k[X] and 1 < deg g < p. Since

p

f(X) = n (X -

(l - i)
i = 1

we see that g(X) is a product over certain integers i. Let d = deg g. The co-

efficient of X
d- 1

in 9 is a sum of terms -(a + i) taken over precisely d integers
i. Hence it is equal to -do: + j for some integer j. But d =1= 0 in k, and hence

0: lies in k, because the coefficients of 9 lie in k, contradiction. We know therefore

thatf(X) is irreducible. All roots lie in k(a), which is therefore normal over k.

Since f(X) has no multiple roots, it follows that k«(l) is Galois over k. There

exists an automorphism a of k«(l) over k such that a(l = (l + 1 (because (l + 1

is also a root). Hence the powers a
i
of a give ai(l = (l + i for i = 1, . . .

, p and

are distinct. Hence the Galois group consists of these powers and is cyclic,
thereby proving the theorem.

For cyclic extensions of degree pr, see the exercises on Witt vectors and the

bibliography at the end of 8.

7. SOLVABLE AND RADICAL EXTENSIONS

A finite extension Elk (which we shall assume separable for convenience) is

said to be solvable if the Galois group of the smallest Galois extension K of k

containing E is a solvable group. This is equivalent to saying that there exists a

solvable Galois extension L of k such that k c EeL. Indeed, we have

k c E eKe Land G(Klk) is a homomorphic image of G(Llk).

Proposition 7.1. Solvable extensionsform a distinguished class ofextensions.

Proof Let Elk be solvable. Let F be a field containing k and assume E, f'

are subfields of some algebraically closed field. Let K be Galois solvable over k,

and E c K. Then KF is Galois over F and G(KFIF) is a subgroup of G(Klk)

by Theorem 1.12. Hence EFIF is solvable. It is clear that a subextension of a

solvable extension is solvable. Let E ::J F ::J k be a tower, and assume that ElF
is solvable and FIk is solvable. Let K be a finite solvable Galois extension of k

containing F. We just saw that EKIK is solvable. Let L be a solvable Galois

extension of K containing EK. If a is any embedding of Lover k in a given

algebraic closure, then aK = K and hence aL is a solvable extension of K. We

let M be the compositum of all extensions aL for all embeddings a of Lover k.
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Then M is Galois over k, and is therefore Galois over K. The Galois group of

Mover K is a subgroup of the product

n G(uLIK)
(1

by Theorem 1.14. Hence it is solvable. We have a surjective homomorphism

G(Mlk) -. G(Klk) by Theorem 1.10. Hence the Galois group of M/k has a

solvable normal subgroup whose factor group is solvable. It is therefore

solvable. Since E c M, our proof is complete.

EK

/
E

K

/
F

k

A finite extension F of k is said to be solvable by radicals if it is separable and

if there exists a finite extension E of k containing F, and admitting a tower

decomposition

k = Eo C E
1

C E2
C ... C Em = E

such that each step E;+ liE; is one of the following types:

1. It is obtained by adjoining a root of unity.

2. It is obtained by adjoining a root of a polynomial x
n
-

a with a E Ei
and

n prime to the characteristic.

3. It is obtained by adjoining a root of an equation XP - X -

a with

a E Ei if P is the characteristic > o.

One can see at once that the class of extensions which are solvable by
radicals is a distinguished class.

Theorem 7.2. Let E be a separable extension of k. Then E is solvable by
radicals if and only ifElk is solvable.

Proof Assume that Elk is solvable, and let K be a finite solvable Galois

extension of k containing E. Let m be the product of all primes unequal to the

characteristic dividing the degree [K : k], and let F = k«() where ( is a primitive
m-th root of unity. Then FIk is abelian. We lift Kover F. Then KF is solvable

over F. There is a tower of subfields between F and KF such that each step is

cyclic of prime order, because every solvable group admits a tower of sub-
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groups of the same type, and we can use Theorem 1.10. By Theorems 6.2 and

6.4, we conclude that KF is solvable by radicals over F, and hence is solvable

by radicals over k. This proves that Elk is solvable by radicals.

KF

/
K F

k/
Conversely, assume that Elk is solvable by radicals. For any embedding (J

of E in E
8

over k, the extension (JElk is also solvable by radicals. Hence the

smallest Galois extension K of E containing k, which is a composite of E and

its conjugates is solvable by radicals. Let m be the product of all primes unequal
to the characteristic dividing the degree [K : k] and again let F = k(,) where'
is a primitive m-th root of unity. It will suffice to prove that KF is solvable over

F, because it follows then that KF is solvable over k and hence G(Klk) is solvable

because it is a homomorphic image of G(KFIk). But KFIF can be decomposed
into a tower of extensions, such that each step is prime degree and of the type
described in Theorem 6.2 or Theorem 6.4, and the corresponding root of unity
is in the field F. Hence KFIF is solvable, and our theorem is proved.

Remark. One could modify our preceding discussion by not assuming
separability. Then one must deal with normal extensions instead of Galois

extensions, and one must allow equations XP -

a in the solvability by radicals,
with p equal to the characteristic. Then we still have the theorem corresponding
to Theorem 7.2. The proof is clear in view of Chapter V, 6.

For a proof that every solvable group is a Galois group over the rationals, I

refer to Shafarevich [Sh 54], as well as contributions of Iwasawa [Iw 53].

[lw 53] K. IWAsAwA, On solvable extension of algebraic number fields, Ann. ofMath.

58 (1953), pp. 548-572

[Sh 54] I. SHAFAREVICH, Construction of fields of algebraic numbers with given solvable

Galois group, lzv. Akad. Nauk SSSR 18 (1954), pp. 525-578 (Amer. Math.

Soc. Transl. 4 (1956), pp. 185-237)

8. ABELIAN KUMMER THEORY

In this section we shall carry out a generalization of the theorem concerning
cyclic extensions when the ground field contains enough roots of unity.

Let k be a field and m a positive integer. A Galois extension K of k with

group G is said to be of exponent m if (Jm = 1 for all (J E G.
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We shall investigate abelian extensions of exponent m. We first assume

that m is prime to the characteristic of k, and that k contains a primitive m-th

root of unity. We denote by Pm the group of m-th roots of unity. We assume

that all our algebraic extensions in this section are contained in a fixed algebraic
closure k

a

.

Let a E k. The symbol al/", (or ) is not well defined. If rx
m

= a and ( is

an m-th root of unity, then «(rx)"' = a also. We shall use the symbol a
l /m

to

denote any such element rx, which will be called an m-th root of a. Since the

roots of unity are in the ground field, we observe that the field k(rx) is the same

no matter which m-th root rx of a we select. We denote this field by k(a
l /m

).
We denote by k*m the subgroup of k* consisting of all m-th powers of non-

zero elements of k. It is the image of k* under the homomorphism x 1---+ x
m

.

Let B be a subgroup of k* containing k*m. We denote by k(B
I /m

) or KB the

composite of all fields k(a
l /m

) with a E B. It is uniquely determined by B as a

subfield of k
a

.

Let a E B and let rx be an m-th root of a. The polynomial X
m
-

a splits into

linear factors in KB, and thus KB is Galois over k, because this holds for all

a E B. Let G be the Galois group. Let U E G. Then urx =

W(lrx for some m-th

root of unity W(I E Pm C k*. The map

U J-+ W(I

is obviously a homomorphism of G into Pm' i.e. for t, U E G we have

turx =

WtW(lrx
=

W(lWtrx.

We may write W(1 = urx/rx. This root of unity W(1 is independent of the choice

of m-th root of a, for if rx' is another m-th root, then rx' = (rx for some ( E Pm'

whence

urx'/rx' = (urx/(rx = urx/rx.

We denote W(I by (u, a). The map

(u, a) 1---+ (u, a)

gIves us a map

G x B -+ Pm.

If a, bE Band rx
m

=
a, pm = b then (rx{3)m = ab and

u(rxf3)/rx{3 = (urx/rx)(u{3/{3).

We conclude that the map above is bilinear. Furthermore, if a E k*m it follows

that <u, a) = 1.

Theorem 8.1. Let k be afield, m an integer> 0 prime to the characteristic of

k, and assume that a primitive m-th root of unity lies in k. Let B be a subgroup

of k* containing k*m and let KB
= k(B

I / m

). Then KB is Galois, and abelian

of exponent m. Let G be its Galois group. We have a bilinear map

G x B -+ Pm given by (u, a) J-+ (u, a).
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If U E G and a E B, and rx
m

= a then <u, a) = urx/rx. The kernel on the left is 1

and the kernel on the right is k*m. The extension KB/k is finite if and only if

(B : k*m) is finite. If that is the case, then

B/k*m = G",

and in particular we have the equality

[KB : k] = (B: k*m).

Proof Let u E G. Suppose (u, a) = 1 for all a E B. Then for every gener-

ator rx of K
B such that rx

m
= a E B we have urx = rx. Hence u induces the identity

on KB and the kernel on the left is 1. Let a E B and suppose (u, a) = 1 for all

u E G. Consider the subfield k(a
1/m

) of KB . If a
1 /m

is not in k, there exists an

automorphism of k(a
1 1

m) over k which is not the identity. Extend this auto-

morphism to KB ,
and call this extension u. Then clearly (u, a) =F 1. This

proves our contention.

By the duality theorem of Chapter I, 9 we see that G is finite if and only
if B/k*m is finite, and in that case we have the isomorphism as stated, so that

in particular the order of G is equal to (B : k*m), thereby proving the theorem.

Theorem 8.2. Notation being as in Theorem 8.1, the map B KB gives a

bijection ofthe set ofsubgroups ofk* containing k*m and the abeUan extensions

of k of exponent m.

Proof Let Bb B2 be subgroups of k* containing k*m. If B
1
c B2 then

k(B}/m) c k(B/m). Conversely, assume that k(B}/m) c k(B/m). We wish to

prove B 1
c B2 . Let bE B 1 . Then k(b

1/m
) c k(B/m) and k(b

1/m
) is contained in

a finitely generated subextension of k(B/m). Thus we may assume without loss

of generality that B2/k*m is finitely generated, hence finite. Let B3 be the sub-

group of k* generated by B2 and b. Then k(B/m) = k(B/m) and from what we

saw above, the degree of this field over k is precisely

(B2 : k*m) or (B 3 : k*m).

Thus these two indices are equal, and B2
= B3. This proves that B 1

C B2
.

We now have obtained an injection of our set of groups B into the set of

abelian extensions of k of exponent m. Assume finally that K is an abelian

extension of k of exponent m. Any finite subextension is a composite of cyclic
extensions of exponent m because any finite abelian group is a product of

cyclic groups, and we can apply Corollary 1.16. By Theorem 6.2, every cyclic
extension can be obtained by adjoining an m-th root. Hence K can be obtained

by adjoining a family of m-th roots, say m-th roots of elements {bj}jeJ with

b
j

E k*. Let B be the subgroup of k* generated by all b
j

and k*m. If b' = bam

with a, b E k then obviously

k(b'1 /
m) = k(b

1 1
m).

Hence k(B
1 /m

) = K, as desired.
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When we deal with abelian extensions of exponent p equal to the char-

acteristic, then we have to develop an additive theory, which bears the same

relationship to Theorems 8.1 and 8.2 as Theorem 6.4 bears to Theorem 6.2.

If k is a field, we define the operator by

(x) = x
P
-

x

for x E k. Then is an additive homomorphism of k into itself. The subgroup

(k) plays the same role as the subgroup k*m in the multiplicative theory,

whenever m is a prime number. The theory concerning a power of p is slightly

more elaborate and is due to Witt.

We now assume k has characteristic p. A root of the polynomial XP - X -

a

with a E k will be denoted by KJ
-

1a. If B is a subgroup of k containing k

we let KB
= k(

-1

B) be the field obtained by adjoining
-

1a to k for all a E B.

We emphasize the fact that B is an additive subgroup of k.

Theorem 8.3. Let k be a field of characteristic p. The map B 1---+ k(
- 1

B)

is a bijection between subgroups of k containing k and abelian extensions of
k of exponent p. Let K = K

B
= k(

- 1

B), and let G be its Galois group.

If (1 E G and a E B, and (X = a, let «(1, a) = (1(X - (X. Then we have a bilinear

map

G x B Z/pZ given by «(1, a) «(1, a).

The kernel on the left is 1 and the kernel on the right is tJk. The extension

KB/k is finite if and only if (B : k) is finite and if that is the case, then

[KB : k] = (B : k).

Proof. The proof is entirely similar to the proof of Theorems 8. 1 and 8.2.

It can be obtained by replacing multiplication by addition, and using the
"

-th
root" instead of an m-th root. Otherwise, there is no change in the wording of

the proof.
The analogous theorem for abelian extensions of exponent pn requires

Witt vectors, and will be developed in the exercises.
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9. THE EQUATION X
n
-

B
= 0

When the roots of unity are not in the ground field, the equation x
n
-

a = 0

is still interesting but a little more subtle to treat.

Theorem 9.1. Let k be afield and n an integer > 2. Let a E k, a =F O. Assume

that for all prime numbers p such that pin we have a rt kP
,

and if 41 n then

art - 4k
4

. Then X
n
-

a is irreducible in k[X].

Proof Our first assumption means that a is not a p-th power in k. We

shall reduce our theorem to the case when n is a prime power, by induction.

Write n = prm with p prime to m, and p odd. Let

m

x
m
-

a = n (X - v)
v= 1

be the factorization of xm -

a into linear factors, and say
=

1. Substituting
Xp

r

for X we get

m

x
n
-

a = xprm -

a = n (X
pr

- v).
v=l

We may assume inductively that x
m
-

a is irreducible in k[X]. We contend

that is not a p-th power in k(). Otherwise, = pP, P E k(). Let N be the

norm from k() to k. Then

-a = (-l)mN() = (-l)mN(pp) = (-l)mN(p)P.

If m is odd, a is a p-th power, which is impossible. Similarly, if m is even and p

is odd, we also get a contradiction. This proves our contention, because m is

prime to p. If we know our theorem for prime powers, then we conclude that

Xp
r

- is irreducible over k(). If A is a root of Xp" -

r:1 then k c k(r:1) c k(A)

gives a tower, of which the bottom step has degree m and the top step has degree

pro It follows that A has degree n over k and hence that X
n
-

a is irreducible.

We now suppose that n = pr is a prime power.

If p is the characteristic, let be a p-th root of a. Then XP -

a = (X - )P
and hence Xp

r

-

a = (XP
r
- 1

- )P if r > 2. By an argument even more trivial

than before, we see that a is not a p-th power in k(a), hence inductively
)(pr-I -

a is irreducible over k(a). Hence)(pr -

a is irreducible over k.

Suppose that p is not the characteristic. We work inductively again, and

let be a root of XP -

a.

Suppose a is not a p-th power in k. We claim that XP -

a is irreducible.

Otherwise a root a of XP
-

a generates an extension k(a) of degree d < P

and aP = a, Taking the norm from k(a) to k we get N(a)P = ad. Since d is

prime to p, it follows that a is a p-th power in k, contradiction.



298 GALOIS THEORY VI, 9

Let r > 2. We let rx = rx
1

. We have

P

XP -

a = n (X - rxv)
\'=1

and
p

)(pr -

a = IT (Xpr
- I

-

a
v).

v= I

Assume that rx is not a p-th power in k(rx). Let A be a root of Xp
r
- 1

- rx. If p

is odd then by induction, A has degree pr- lover k(rx), hence has degree pr over

k and we are done. If p
= 2, suppose rx = -4p4 with P E k(rx). Let N be the

norm from k(a) to k. Then -a
= N(a) = 16N({3)4, so -a is a square in k. Since

p
= 2 we get v=I E k(a) and a

= (v=I 2(32)2, a contradiction. Hence again

by induction, we find that A has degree pr over k. We therefore assume that

a = /3P with some /3 E k(a), and derive the consequences.

Taking the norm from k(rx) to k we find

-

a = ( -1)PN(rx) = ( - I)PN(PP) = ( -l)PN(fJ)P.

If p is odd, then a is a p-th power in k, contradiction. Hence p
= 2, and

-a = N(P)2

is a square in k. Write -a = b
2

with bE k. Since a is not a square in k we con-

clude that - 1 is not a square in k. Let i
2

= - 1. Over k(i) we have the factoriza-

tion

X
2r

_

a = X
2 "

+ b
2

= (X
2r

- 1

+ ib)(X
2r

- 1
- ib).

Each factor is of degree 2
r
- 1

and we argue inductively. If X
2r

- 1

+ ib is reducible

over k(i) then + ib is a square in k(i) or lies in - 4(k(i))4. In either case, + ib is a

square in k(i), say

+ ib = (e + di)2 = c
2

+ 2edi - d
2

with c, d E k. We conclude that c
2

= d
2

or c = +d, and + ib = 2cdi = + 2c
2
;.

Squaring gives a contradiction, namely

a = -b
2

= -4c
4

.

We now conclude by unique factorization that X
2r

+ b
2

cannot factor in

k[X], thereby proving our theorem.

The conditions of our theorem are necessary because

X
4

t 4b
4

= (X
2

+ 2bX + 2b
2

)(X
2
- 2bX + 2b

2

).

If n = 4m and a E - 4k
4

then x
n
-

a is reducible.
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Corollary 9.2. Let k be a field and assume that a E k, a =F 0, and that a is not

a p-th powerfor some prime p. Ifp is equal to the characteristic, or ifp is odd,
then for every integer r > 1 the polynomial Xpr

-

a is irreducible over k.

Proof The assertion is logically weaker than the assertion of the theorem.

Corollary 9.3. Let k be a field and assume that the algebraic closure k
a

of k

is of finite degree > lover k. Then k
a

= k(i) where i
2

= - 1, and k has

characteristic o.

Proof. We note that k8 is normal over k. If k8 is not separable over k, so

char k =

p > 0, then /(!l is purely inseparable over some subfield of degree>
1 (by Chapter V, 6), and hence there is a subfield E containing k, and an element

a E E such that XP -

a is irreducible over E. By Corollary 9.2, k8 cannot be of

finite degree over E. (The reader may restrict his or her attention to characteristic

o if Chapter V, 6 was omitted.)
We may therefore assume that k

a

is Galois over k. Let k
1

= k(i). Then k
a

is also Galois over k
1.

Let G be the Galois group of k
a

/k I. Suppose that there

is a prime number p dividing the order of G, and let H be a subgroup of order p.

Let F be its fixed field. Then [k
a

: F] =

p. If p is the characteristic, then Exercise

29 at the end of the chapter will give the contradiction. We may assume that p

is not the characteristic. The p-th roots of unity =F 1 are the roots of a poly-
nomial of degree <

p
- 1 (namely Xp

- 1
+ . . . + 1), and hence must lie in F.

By Theorem 6.2, it follows that k
a

is the splitting field of some polynomial
XP -

a with a E F. The polynomial XP2
-

a is necessarily reducible. By the

theorem, we must have p
= 2 and a = -4b

4
with bE F. This implies

k
a

= F(a
l / 2

) = F(i).

But we assumed i E k
1, contradiction.

Thus we have proved /(!l = k(i). It remains to prove that char k = 0, and for

this I use an argument shown to me by Keith Conrad. We first show that a sum

of squares in k is a square. It suffices to prove this for a sum of two squares,

and in this case we write an element x + iy E k(i) = k8 as a square.

x + iy
= (u + iv)2, x, y, u, v E k,

and then x
2

+ y2 = (u
2

+ v
2
)2. Then to prove k has characteristic 0, we merely

observ that if the characteristic is > 0, then - 1 is a finite sum 1 + ... .+ 1,

whence a square by what we have just shown, but k8 = k(i), so this concludes

the proof.

Corollary 9.3 is due to Artin; see [Ar 24], given at the end of Chapter XI.

In that chapter, much more will be proved about the field k.

Example 1. Let k = Q and let G
Q

= G(Qa/Q). Then the only non-trivial

torsion elements in G
Q

have order 2. It follows from Artin's theory (as given
in Chapter XI) that all such torsion elements are conjugate in G

Q
. One uses

Chapter XI, Theorems 2.2, 2.4, and 2.9.)
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Example 2. Let k be a field of characteristic not dividing n. Let a E k,

a =t= 0 and let K be the splitting field of X
n
-

a. Let a be one root of

x
n
-

a, and let ( be a primitive n-th root of unity. Then

K = k(a, () = k(a, fLn).

We assume the reader is acquainted with matrices over a commutative ring. Let

u E GK/k . Then (ua)n =

a, so there exists some integer b = b(u) uniquely
determined mod n, such that

u(a) = ar'(u).

Since u induces an automorphism of the cyclic group fLn' there exists an integer

d( u) relatively prime to n and uniquely determined mod n such that u( ()

(d(u). Let G(n) be the subgroup of GL2(Z/nZ) consisting of all matrices

M = G ) with b E Z/nZ and d E (Z/nZ)*.

Observe that #G(n) =

ncp(n). We obtain an injective map

0" M(O") = (b() d(») of GK1k
=-+ G(n),

which is immediately verified to be an injective homomorphism. The question

arises, when is it an isomorphism? The next theorem gives an answer over some

fields, applicable especially to the rational numbers.

Theorem 9.4. Let k be a field. Let n be an odd positive integer prime to the

characteristic, and assume that [k(fLn) : k] = cp(n). Let a E k, and suppose that

for each prime pin the element a is not a p-th power in k. Let K be the splitting

field of x
n -

a over k. Then the above homomorphism u M(u) is an

isomorphism of GK/k with G(n). The commutator group is Gal(K/k(fLn))' so

k(fLn) is the maximal abelian subextension of K.

Proof. This is a special case of the general theory of 11, and Exercise 39,

taking into account the representation of GK/k in the group of matrices. One need

only use the fact that the order of GK/k is ncp(n), according to that exercise, and

so #(GK/k) = #G(n), so GK/k
= G(n). However, we shall given an independent

proof as an example of techniques of Galois theory . We prove the theorem by
induction.

Suppose first n =

p is prime. Since [k(fLp) : k] =

p
- 1 is prime to p, it

follows that if a is a root of XP -

a, then k(a) n k(fLp)
= k because

[k(a) : k] =

p. Hence [K : k] =

p(p
-

1), so GK/k
= G(p).

A direct computation of a commutator of elements in G(n) for arbitrary n

shows that the commutator subgroup is contained in the group of matrices

G ). b E Z/nZ.
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and so must be that subgroup because its factor group is isomorphic to (ZjnZ)*

under the projection on the diagonal. This proves the theorem when n =

p.

Now let pin and write n
=

pm. Then [k(J1m) : k] =

cp(m), immediately from

the hypothesis that [k(J1n) : k] = cp(n). Let a be a root of x
n
-

a, and let

f3
= aPe Then f3 is a root of x

m
-

a, and by induction we can apply the theorem

to x
m
-

a. The field diagram is as follows.

/k(a,
J.tn)

k(l3, J.tn)

k(J.tn)
/

k(a)

k(l3fP'
k

Since a has degree pm over k, it follows that a cannot have lower degree than

p over k(f3), so [k( a) : k(f3)]
=

p and XP -

(3 is irreducible over k(f3) . We apply
the first part of the proof to XP -

f3 over k(f3). The property concerning the

maximal abelian subextension of the splitting field shows that

k( a) n k(f3, J1n)
= k(f3).

Hence [k(a, J1n) : k(f3, J1n)]
=

p. By induction, [k(f3, J1n) : k(J1n)]
=

m, again
because of the maximal abelian subextension of the splitting field of x

m
-

a

over k. This proves that [K: k] = ncp(n), whence GK/k
= G(n), and the commutator

statement has already been proved. This concludes the proof of Theorem 9.4.

Remarks. When n is even, there are some complications, because for

instance Q(V2) is contained in Q(J18), so there are dependence relations among

the fields in question. The non-abelian extensions, as in Theorem 9.4, are of

intrinsic interest because they constitute the first examples of such extensions

that come to mind, but they arose in other important contexts. For instance,

Artin used them to give a probabilistic model for the density of primes p such

that 2 (say) i a primitive root mod p (that is, 2 generates the cyclic group

(ZjpZ)*. Instead of 2 he took any non-square integer =t= + 1. At first, Artin did

not realize explicitly the above type of dependence, and so came to an answer

that was off by some factor in some cases. Lehmer discovered the discrepancy

by computations. As Artin then said, one has to multiply by the "obvious" factor

which reflects the field dependencies. Artin never published his conjecture, but

the matter is discussed in detail by Lang-Tate in the introduction to his collected

papers (Addison-Wesley, Springer Verlag).
Similar conjectural probabilistic models were constructed by Lang-Trotter in

connection with elliptic curves, and more generally with certain p-adic repre-

sentations of the Galois group, in "Primitive points on elliptic curves", Bull.

AMS 83 No.2 (1977), pp. 289-292; and [LaT 75] (end of 14).

For further comments on the p-adic representations of Galois groups, see 14

and 15.
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10. GALOIS COHOMOLOGY

Let G be a group and A an abelian group which we write additively for the

general remarks which we make, preceding our theorems. Let us assume that

G operates on A, by means of a homomorphism G -. Aut(A). By a l-cocycle of

G in A one means a family ofelements {rxa} a E G with rxa E A, satisfying the relations

rxu + urx
r

= rx
ar

for all u, t E G. If {rxa}aEG and {Pa}aEG are l-cocycles, then we can add them to

get a l-cocycle {rxa + Pa} a E G. It is then clear that l-cocycles form a group,

denoted by Zl(G, A). By a l-coboundary of G in A one means a family of ele-

ments {rxa}aEG such that there exists an element pEA for which rxa
= up -

P
for all u E G. It is then clear that a I-coboundary is a l-cocycle, and that the

l-coboundaries form a group, denoted by B
1

(G, A). The factor group

Zl(G, A)jB
1

(G, A)

is called the first cohomology group of G in A and is denoted by H
1

(G, A).

Remarks. Suppose G is cyclic. Let

TrG: A A be the homomorphism a L u(a).
UEG

Let y be a generator of G. Let (I
-

y)A be the subgroup of A consisting of all

elements a
-

y(a) with a E A. Then (I
-

y)A is contained in ker TrG. The

reader will verify as an exercise that there is an isomorphism

ker TrG/(1
-

y)A = H1(G, A).

Then the next theorem for a cyclic group is just Hilbert's Theorem 90 of 6.

Cf. also the cohomology of groups, Chapter XX, Exercise 4, for an even more

general context.

Theorem 10.1. Let Kjk be a finite Galois extension with Galois group G.

Then }'or the operation of G on K* we have H
1

(G, K*) = I, and for the

operation of G on the additive group of K we have H
1

(G, K) = O. In other

words, the first cohomology group is trivial in both cases.

Proof. Let {rxa}aEG be a l-cocycle of G in K*. The multiplicative cocycle
relation reads

a

rxa rxt
=

rxat.
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By the linear independence of characters, there exists (J E K such that the element

P = L C<r !«(J)
TeG

is =F O. Then

up = L U!«(J) = L C<arC<; lut«(J)
reG reG

= C<;
1

L C<aT U!((J) = C<a-
1

p.
reG

We get C<a
= PluP, and using P-

1
instead of P gives what we want.

For the additive part of the theorem, we find an element (J E K such that the

trace Tr((J) is not equal to O. Given a l-cocycle {C<a} in the additive group of K,

we let

1

P =

Tr(O) tGIXt .(0).

It follows at once that C<a
= P - up, as desired.

The next lemma will be applied to the non-abelian Kummer theory of the

next section.

Lemma 10.2. (Sah). Let G be a group and let E be a G-module. Let t be in

the center of G. Then H
1

(G, E) is annihilated by the map x 1-+ tX - x on E.

In particular, if this map is an automorphism of E, then H
1

(G, E) = O.

Proof. Let f be a l-cocycle of G in E. Then

f(u) =f(1:u1:-
1

) =f(1:) + 1:(f(ut-
1

)

= f(1:) + 1:[/(u) + uf(t-
1

)].

Therefore

!f(u) -

f(u) = -

utf(1:

-

1) - f(t).

Butf(l) = f(l) + f(l) impliesf(l) = 0, and

o = f(l) = f(!1:- 1) = f(t) + 1:f(t-
1

).

This shows that (! - l)f(u) = (u
-

l)f(1:), so fis a coboundary. This proves

the lemma.
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11. NON-ABELIAN KUMMER EXTENSIONS

We are interested in the splitting fields of equations x
n
-

a = 0 when the

n-th roots of unity are not contained in the ground field. More generally, we

want to know roughly (or as precisely as possible) the Galois group of simul-

taneous equations of this type. For this purpose, we axiomatize the pattern
of proof to an additive notation, which in fact makes it easier to see what is

gOIng on.

We fix an integer N > 1, and we let M range over positive integers divid-

ing N. We let P be the set of primes dividing N. We let G be a group, and let:

A = G-module such that the isotropy group of any element of A is of finite

index in G . We also assume that A is divisible by the primes piN,
that is

pA = A for all pEP.

r = finitely generated subgroup of A such that r is pointwise fixed by G.

We assume that AN is finite. Then r is also finitely generated. Note that

1
-r::JAN .

N

Example. For our purposes here, the above situation summarizes the

properties which hold in the following situation. Let K be a finitely generated
field over the rational numbers, or even a finite extension of the rational numbers.

We let A be the multiplicative group of the algebraic closure K
a

. We let G = GK

be the Galois group Gal(KajK). We let r be a finitely generated subgroup of

the multiplicative group K*. Then all the above properties are satisfied. We

see that AN =

J1N is the group of N-th roots of unity. The group written r

in additive notation is written r
1 /N in multiplicative notation.

Next we define the appropriate groups analogous to the Galois groups of

Kummer theory, as follows. For any G-submodule B of A, we let:

G(B) = image of G in Aut(B),

G(N) = G(A N) = image of G in Aut(A N),

H(N) = subgroup of G leaving AN pointwise fixed,

Hr(M, N) (for MIN) = image of H(N) in Aut( r}
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Then we have an exact sequence:

o -+ Hr<M, N) -+ G( r + AN) -+ G(N) -+ O.

Example. In the concrete case mentioned above, the reader will easily

recognize these various groups as Galois groups. For instance, let A be the

multiplicative group. Then we have the following lattice of field extensions

with corresponding Galois groups:

G(r
1 /M

pN)

K( r
1 / M

)}JlN'1 Hr(M, N)

K(PN)

}1 G(N)
K

In applications, we want to know how much degeneracy there is when we trans-

late K(PM' r
1 /M

) over K(PN) with MIN. This is the reason we play with the

pair M, N rather than a single N.

Let us return to a general Kummer representation as above. We are in-

terested especially in that part of (ZINZ)* contained in G(N), namely the group

of integers n (mod N) such that there is an element En] in G(N) such that

[n]a = na for all a E AN.

Such elements are always contained in the center of G(N), and are called

homotheties.

Write

N = f1 pn(p)

Let S be a subset of P. We want to make some non-degeneracy assumptions
about G(N). We call S the special set.

There is a product decomposition

(ZINZ)* = n (Zlpn(p)z)*.
piN

If 21 N we suppose that 2 E S. For each pES we suppose that there is an integer

c(p) = pf(p) withf(p) > 1 such that

G(A ) n V n (Zlp
n(p)

z)
*

,N:::::> e(p)
X

peS p,S

where Ve(P) is the subgroup of Z(pn(p») consisting of those elements = 1 mod c(P).
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The product decomposition on the right is relative to the direct sum decom-

position

AN = EB Apn(p).
piN

The above assumption will be called the non-degeneracy assumption. The

integers c(p) measure the extent to which G(A N) is degenerate.
Under this assumption, we observe that

[2] E G(A M) if MIN and M is not divisible by primes of S;

[1 + c] E G(A M) if M I Nand M is divisible only by primes of S,

where

c = c(S) = n c(p).
peS

We can then use [2] - [1] = [1] and [1 + c] - [1] = [c] in the context of

Lemma 10.2, since [1] and [c] are in the center of G.

For any M we define

c(M) = n c(p).
plM
peS

Define

1
r' = - r nAG

N

and the exponent

e(r'/r) = smallest positive integer e such that er' c r.

It is clear that degeneracy in the Galois group Hr(M, N) defined above can

arise from lots of roots of unity in the ground field, or at least degeneracy in

the Galois group of roots of unity; and also if we look at an equation

X
M
-

a = 0,

from the fact that a is already highly divisible in K. This second degeneracy
would arise from the exponent e(r'/r), as can be seen by looking at the Galois

group of the divisions of r. The next theorem shows that these are the only
sources of degeneracy.

We have the abelian Kummer pairing for M I N,

Hr(M, N) x r/Mr -. AM given by (t, x) 1-+ ty
-

y,

where y is any element such that My = x. The value of the pairing is indepen-



VI, 11 NON-ABELIAN KUMMER EXTENSIONS 307

dent of the choice of y. Thus for x E r, we have a homomorphism

CfJx : Hr(M, N) -. AM

such that

CfJx(t) =

ty
-

y, where My = x.

Theorem 11.1. Let MIN. Let CfJ be the homomorphism

CfJ: r -. Hom(Hr(M, N), AM)

and let r
q)

be its kernel. Let eM(r) = g.c.d. (e(r'/r), M). Under the non-

degeneracy assumption, we have

c(M)eM(r)rq>
c Mr.

Proof Let x E r and suppose CfJx
= O. Let My = x. For (J E G let

Ya
=

(JY
-

y.

Then {Ya} is a 1-cocycle of G in AM' and by the hypothesis that CfJx
= 0, this

cocycle depends only on the class of (J modulo the subgroup of G leaving the

elements of AN fixed. In other words, we may view {Ya} as a cocycle of G(N) in

AM. Let c = c(N). By Lemma 10.2, it follows that {cYa} splits as a cocycle of

G(N) in AM. In other words, there exists to E AM such that

cYa
= (Jto

-

to,

and this equation in fact holds for (J E G. Let t be such that ct = to. Then

c(JY
-

cy
= (Jct - cy,

whence c(y -

t) is fixed by all (J E G, and therefore lies in r. Therefore
N

e(r'/r)c(y - t) E r.

We multiply both sides by M and observe that cM(y
- t) = cMy = cx. This

shows that

c(N)e(r'/r)rqJ
c Mr.

Since r/Mr has exponent M, we may replace e(r'/r) by the greatest common

divisor as stated in the theorem, and we can replace c(N) by c(M) to conclude

the proof.

Corollary 11.2. Assume that M is prime to 2(r' : r) and is not divisible by

any primes of the special set S. Then we have an injection

CfJ: r/Mf -. Hom(Hr<M, N), AM).
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Ifin addition r isfree with basis {af,. . .

, a
r }, and we let CPi

=

CPa;, then the map

Hr(M, N) A<;j given by ! -. (CPt (!), . . .

, CPr( i))

is injective. If AM is cyclic of order M, this map is an isomorphism.

Proof Under the hypotheses of the corollary, we have c(M) = 1 and

CM(r) = 1 in the theorem.

Example. Consider the case of Galois theory when A is the multiplicative

group of Ka. Let a f,
. . .

,
a

r
be elements of K* which are multiplicatively inde-

pendent. They generate a group as in the corollary. Furthermore, AM =

PM

is cyclic, so the corollary applies. If M is prime to 2(r' : r) and is not divisible

by any primes of the special set S, we have an isomorphism

cp: r/Mr -. Hom(Hr(M, N), PM).

12. ALGEBRAIC INDEPENDENCE OF

HOMOMORPHISMS

Let A be an additive group, and let K be a field. Let At, . . .

, An : A -. K be

additive homomorphisms. We shall say that At, ..., An are algebraically

dependent (over K) if there exists a polynomial !(Xt ,..., X
n ) in

K [Xt ,
. . .

, Xn] such that for all x E A we have

f(At(X),..., An(X)) = 0,

but such that f does not induce the zero function on K(n), i.e. on the direct

product of K with itself n times. We know that with each polynomial we can

associate a unique reductXl polynomial giving the same function. If K is

infinite, the reduced polynomial is equal to f itself. In our definition of de-

pendence, we could as well assume that f is reduced.

A polynomial f(Xb
. . .

,
Xn) will be called additive if it induces an additive

homomorphism of K(n) into K. Let (Y) = (Yt ,
. .

., ) be variables inde-

pendent from (X). Let

g(X, Y) = f(X + Y) - f(X) - f(Y)

where X + Y is the componentwise vector addition. Then the total degree of

g viewed as a polynomial in (X) with coefficients in K[ Y] is strictly less than

the total degree off, and similarly, its degree in each Xi is strictly less than the

degree off in each Xi. One sees this easily by considering the difference of

monomials,
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M(v)(X + Y) -

M(v)(X)
-

M(v)(Y)

= (X t + Y
t )VI. . . (Xn + )

V n
- X'1

1
. . . Xn - Y'1

1
. .. Y".

A similar assertion holds for g viewed as a polynomial in (Y) with coefficients in

K [X].

Iff is reduced, it follows that g is reduced. Hence iff is additive, it follows

that g is the zero polynomial.

Example. Let K have characteristic p. Then in one variable, the map

1---+ apm

for a E K and m > 1 is additive, and given by the additive polynomial aXpm.

We shall see later that this is a typical example.

Theorem 12.1. (Artin). Let Ab...' An : A -. K be additive homomorph-
isms of an additive group into a field. If these homomorphisms are alge-

braically dependent over K, then there exists an additive polynomial

f(X b
. . .

,
Xn) =F 0

in K[X] such that

f(At (x), . . .

, An(X)) = 0

for all x E A.

Proof Let f(X) = f(Xb..., X
n) E K[X] be a reduced polynomial of

lowest possible degree such that f =F 0 but for all x E A, f(i\(x)) = 0, where

i\(x) is the vector (AI (x), ..., An(X)). We shall prove thatfis additive.

Let g(X, Y) = f(X + Y) - f(X) -

f(Y). Then

g(i\(x), i\(y)) = f(i\(x + y)) - f(i\(x)) - f(i\(y)) = 0

for all x, YEA. We shall prove that g induces the zero function on K(n) X K(n).

Assume otherwise. We have two cases.

Case 1. We have g(, i\(y)) = 0 for all E K(n) and all YEA. By

hypothesis, there exists ' E K(n) such that g(', Y) is not identically O. Let

P( Y) = g(', Y). Since the degree of g in (Y) is strictly smaller than the degree
of f, we have a contradiction.

Case 2. There exist ' E K(n) and y' E A such that g(', i\(y')) =F o. Let

P(X) = g(X, i\(y')). Then P is not the zero polynomial, but P(i\(x)) = 0 for all

x E A, again a contradiction.
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We conclude that g induces the zero function on K(n) X K(n), which proves

what we wanted, namely thatf is additive.

We now consider additive polynomials more closely.

Letfbe an additive polynomial in n variables over K, and assume thatfis
reduced. Let

/;(X;) = f(O, . . .

, Xi' . . .

, 0)

with Xi in the i-th place, and zeros in the other components. By additivity, it

follows that

f(X l'
. . .

,
Xn) = fl (X 1) + . . . + fn{Xn)

because the difference of the right-hand side and left-hand side is a reduced

polynomial taking the value 0 on K(n). Furthermore, each /; is an additive

polynomial in one variable. We now study such polynomials.
Let f{X) be a reduced polynomial in one variable, which induces a linear

map of K into itself. Suppose that there occurs a monomial arX
r

in f with

coefficient a
r =F o. Then the monomials of degree r in

g{X, Y) = f{X + Y) - f{X) - f{Y)

are given by

ar{X + y)r - arX
r
-

a
r

yr.

We have already seen that g is identically O. Hence the above expression is

identically O. Hence the polynomial

{X + y)r _ x
r

_ y
r

is the zero polynomial. It contains the term rx
r
- 1

Y. Hence if r > 1, our field

must have characteristic p and r is divisible by p. Write r = pnls where s is

prime to p. Then

o = {X + yy - x
r

_ yr = {Xpm + ypm)s _ {Xpm)s _ (ypm)s.

Arguing as before, we conclude that s = 1.

Hence iff is an additive polynomial in one variable, we have

m

f{X) = L avXPv,
v=o

with a
v

E K. In characteristic 0, the only additive polynomials in one variable

are of type aX with a E K.

As expected, we define A.t, . . .

,
A.

n
to be algebraically independent if, whenever

fis a reduced polynomial such thatf{i\(x» = 0 for all x E K, thenfis the zero

polynomial.
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We shall apply Theorem 12.1 to the case when A. 1 ,.
.

.,
A.

n
are automorphisms

of a field, and combine Theorem 12.1 with the theorem on the linear indepen-
dence of characters.

Theorem 12.2. Let K be an infinite field, and let (J l' . . .

,
(J

n
be the distinct

elements of a finite group of automorphisms of K. Then (J 1,
. . .

,
(J

n
are alge-

braically independent over K.

Proof (Artin). In characteristic 0, Theorem 12.1 and the linear inde-

pendence of characters show that our assertion is true. Let the characteristic

be p > 0, and assume that (J 1, . . .

, (J
n

are algebraically dependent.
There exists an additive polynomial f(X 1 ,...,Xn) in K[X] which is

reduced, j' =F 0, and such that

f((J 1 (x), . . .

, (Jn(x)) = 0

for all x E K. By what we saw above, we can write this relation in the form

n m

L L air(Ji(X)pr = 0

i=1 r=1

for all x E K, and with not all coefficients air equal to O. Therefore by the linear

independence of characters, the automorphisms

{u
p

,

.

r

}
.

h
.

1 d 1WIt I =
,...,

n an r =
,..., m

cannot be all distinct. Hence we have

(Jpr = (Jl!s
, J

with either i =F j or r =F s. Say r < s. For all x E K we have

(Ji(X)pr = (Jj(x)ps.

Extracting p-th roots in characteristic p is unique. Hence

( ) ( )
PS

_ r

(
pS

-

r

)(Ji X =

(Jj x =

(Jj x

for all x E K. Let (J = (J;I(Ji. Then

s-r

(J(x) = x
P

for all x E K. Taking (In = id shows that

P
n(s

-

r)

x=x

for all x E K. Since K is infinite, this can hold only if s = r. But in that case,

(Ji
=

(Jj, contradicting the fact that we started with distinct automorphisms.
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13. THE NORMAL BASIS THEOREM

Theorem 13.1. Let K/k be afinite Galois extension oj degree n. Let (J 1,.
.

.,
(J

n

be the elements of the Galois group G. Then there exists an element W E K

such that (J 1 W, . . .

,
(J

n
W form a basis of Kover k.

Proof. We prove this here only when k is infinite. The case when k is

finite can be proved later by methods of linear algebra, as an exercise.

For each (J E G, let X(1 be a variable, and let tu.t
= X(1-1t. Let Xi = X(1j. Let

f{X b . . .

,
Xn) = det(tuj .

(1j).

Thenf is not identically 0, as one sees by substituting 1 for X
id and 0 for X

(1
if

(J =F ide Since k is infinite,fis reduced. Hence the determinant will not be 0 for

all x E K if we substitute (Ji{X) for Xi inf. Hence there exists WE K such that

det{(Ji-
1

(Jj{W)) =F O.

Suppose ab . . .
, an E k are such that

a 1 (J 1 (w) + . . . + an (Jn{w) = o.

Apply (Ji-
1

to this relation for each i = 1,..., n. Since a
j

E k we get a system of

linear equations, regarding the a
j

as unknowns. Since the determinant of the

coefficients is =F 0, it follows that

a. = 0
J

for j = 1,..., n

and hence that W is the desired element.

Remark. In terms of representations as in Chapters III and XVIII, the

normal basis theorem says that the representation of the Galois group on the

additive group of the field is the regular representation. One may also say that

K is free of dimension lover the group ring k[G]. Such a result may be viewed

as the first step in much more subtle investigations having to do with algebraic
number theory. Let K be a number field (finite extension of Q) and let 0

K be

its ring of algebraic integers, which will be defined in Chapter VII, 1. Then

one may ask for a description of 0
K as a Z[G] module, which is a much more

difficult problem. For fundamental work about this problem, see A. Frohlich,

Galois Module Structures ofAlgebraic Integers, Ergebnisse der Math. 3 Folge
Vol. 1, Springer Verlag (1983). See also the reference [CCFT 91] given at the

end of Chapter III, 1.
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14. INFINITE GALOIS EXTENSIONS

Although we have already given some of the basic theorems of Galois theory

already for possibly infinite extensions, the non-finiteness did not really appear

in a substantial way. We now want to discuss its role more extensively.
Let K/k be a Galois extension with group G. For each finite Galois subex-

tension F, we have the Galois groups GKIF and G
Flk . Put H = GKIF .

Then H has finite index, equal to #(GFlk ) = [F : k]. This just comes as a special
case of the general Galois theory . We have a canonical homomorphism

G G/H = GFlk .

Therefore by the universal property of the Inverse limit, we obtain a

homomorphism

G lim G/H,
HEft

where the limit is taken for H in the family of Galois groups GKIF as above.

Theorem 14.1. The homomorphism G lim G/H is an isomorphism.

Proof. First the kernel is trivial, because if lTis in the kernel, then lTrestricted

to every finite subextension of K is trivial, and so is trivial on K. Recall that an

element of the inverse limit is a family {lTH} with lTH E G/H, satisfying a certain

compatibility condition. This compatibility condition means that we may define

an element IT of G as follows. Let a E K. Then a is contained in some finite

Galois extension F C K. Let H = Gal(K/F). Let ua
=

uHa. The compatibility
condition means that lTHa is independent of the choice ofF. Then it is immediately
verified that IT is an automorphism of Kover k, which maps to each lTH in the

canonical map of G into G/H. Hence the map G lim. G/H is surjective, thereby

proving the theorem.

Remark. For the topological interpretation, see Chapter I, Theorem 10. 1
,

and Exercise 43.

Example. Let J1[pOC] be the union of all groups of roots of unity J1[pn],

where p is a prime and n
= 1, 2, ... ranges over the positive integers. Let

K = Q(J1[pOC]). Then K is an abelian infinite extension of Q. Let Zp be the ring
of p-adic integers, and Z; the group of units. From 3, we know that (Z/pnz)*
is isomorphic to Gal(Q(J1[pn]/Q)). These isomorphisms are compatible in the

tower of p-th roots of unity, so we obtain an isomorphism

Z; Gal(Q(J1[pOO]/Q)).
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Towers of cyclotomic fields have been extensively studied by Iwasawa. Cf.

a systematic exposition and bibliography in [La 90].

For other types of representations in a group GL 2(Zp), see Serre [Se 68],

[Se 72], Shimura [Shi 71], and Lang-Trotter [LaT 75]. One general framework

in which the representation of Galois groups on roots of unity can be seen has

to do with commutative algebraic groups, starting with elliptic curves. Specif-

ically, consider an equation

y2 = 4x
3
-

g2x
-

g3

with g2, g3 E Q and non-zero discriminant: = g
- 27g =t= o. The set of

solutions together with a point at infinity is denoted by E. From complex analysis

(or by purely algebraic means), one sees that if K is an extension of Q, then the

set of solutions E(K) with x, y E K and 00 form a group, called the group of

rational points of E in K. One is interested in the torsion group, say E(Qa)tor of

points in the algebraic closure, or for a given prime p, in the group E(Qa)[pr]
and E(Qa)[pOC]. As an abelian group, there is an isomorphism

E(Qa)[pr] = (Zfprz) x (Zfprz),

so the Galois group operates on the points of order pr via a representation in

GL2(Zfp rz), rather than GLt(Zfprz) = (Zfprz)* in the case of roots of unity.

Passing to the inverse limit, one obtains a representation of Gal(QafQ) = G
Q

in GL2(Zp). One of Serre's theorems is that the image of G
Q

in GL2(Zp) is a

subgroup of finite index, equal to GL2(Zp) for all but a finite number of primes

p, if End C (E) = Z.

More generally, using freely the language of algebraic geometry, when A is

a commutative algebraic group, say with coefficients in Q, then one may consider

its group of points A(Qa)top and the representation of G
Q

in a similar way.

Developing the notions to deal with these situations leads into algebraic geometry.

Instead of considering cyclotomic extensions of a ground field, one may also

consider extensions of cyclotomic fields. The following conjecture is due to

Shafarevich. See the references at the end of 7.

Conjecture 14.2. Let ko
= Q(J1) be the compositum ofall cyclotomic exten-

sions of Q in a given algebraic closure Qa. Let k be a finite extension of ko.
Let Gk

= Gal(Qafk). Then Gk is isomorphic to the completion of a free group

on countably many generators.

If G is the free group, then we recall that the completion is the inverse limit

lim GfH, taken over all normal subgroups H of finite index. Readers should

view this conjecture as being in analogy to the situation with Riemann surfaces,

as mentioned in Example 9 of 2. It would be interesting to investigate the extent

to which the conjecture remains valid if Q(J1) is replaced by Q(A(Qa)tor)' where

A is an elliptic curve. For some results about free groups occurring as Galois

groups, see also Wingberg [Wi 91].
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15. THE MODULAR CONNECTION

This final section gives a major connection between Galois theory and the

theory of modular forms, which has arisen since the 1960s.

One fundamental question is whether given a finite group G, there exists a

Galois extension K of Q whose Galois group is G. In Exercise 23 you will prove

this when G is abelian.

Already in the nineteenth century, number theorists realized the big difference

between abelian and non-abelian extensions, and started understanding abelian

extensions. Kronecker stated and gave what are today considered incomplete

arguments that every finite abelian extension of Q is contained in some extension

Q( (), where ( is a root of unity. The difficulty lay in the peculiarities of the

prime 2. The trouble was fixed by Weber at the end of the nineteenth century.

Note that the trouble with 2 has been systematic since then. It arose in Artin's

conjecture about densities of primitive roots as mentioned in the remarks after

Theorem 9.4. It arose in the Grunwald theorem of class field theory (corrected

by Wang, cf. Artin-Tate [ArT 68], Chapter 10). It arose in Shafarevich' s proof

that given a solvable group, there exists a Galois extension of Q having that

group as Galois group, mentioned at the end of 7.

Abelian extensions of a number field F are harder to describe than over the

rationals, and the fundamental theory giving a description of such extensions is

called class field theory (see the above reference). I shall give one significant

example exhibiting the flavor. Let RF be the ring of algebraic integers in F. It

can be shown that RF is a Dedekind ring. (Cf. [La 70], Chapter I, 6, Theorem

2.) Let P be a prime ideal of RF . Then P n z =

(p) for some prime number p.
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Furthermore, R
F/P is a finite field with q elements. Let K be a finite Galois

extension of F. It will be shown in Chapter VII that there exists a prime Q of

RK such that Q n RF
= P. Furthermore, there exists an element

FrQ E G = Gal(K/F)

such that FrQ(Q)
= Q and for all a E R

K
we have

FrQa
= a'l mod Q.

We call FrQ a Frobenius element in the Galois group G associated with Q. (See

Chapter VII, Theorem 2.9.) Furthermore, for all but a finite number of Q, two

such elements are conjugate to each other in G. We denote any of them by Frp.

If G is abelian, then there is only one element Frp in the Galois group.

Theorem 15.1. There exists a unique finite abelian extension K of F having

the following property. If PI' P2 are prime ideals of RF ,
then

Frpi
=

Frp2 if and only if there is an element a of K such that aPI
= P2.

In a similar but more complicated manner, one can characterize all abelian

extensions of F. This theory is known as class field theory, developed by Kro-

necker, Weber, Hilbert, Takagi, and Artin. The main statement concerning the

Frobenius automorphism as above is Artin' s Reciprocity Law. Artin-Tate's notes

give a cohomological account of class field theory. My Algebraic Number Theory

gives an account following Artin's first proof dating back to 1927, with later

simplifications by Artin himself. Both techniques are valuable to know.

Cyclotomic extensions should be viewed in the light of Theorem 15. 1 . Indeed,

let K = Q((), where ( is a primitive n-th root of unity. For a prime ptn, we

have the Frobenius automorphism Frp, whose effect on (is Fr
p«()

= (P. Then

Fr
p1

= Fr
p2

if and only if PI
=

P2 mod n.

To encompass both Theorem 15.1 and the cyclotomic case in one framework,

one has to formulate the result of class field theory for generalized ideal classes,

not just the ordinary ones when two ideals are equivalent if and only if they
differ multiplicatively by a non-zero field element. See my Algebraic Number

Theory for a description of these generalized ideal classes.

The non-abelian case is much more difficult. I shall indicate briefly a special
case which gives some of the flavor of what goes on. The problem is to do for

non-abelian extensions what Artin did for abelian extensions. Artin went as far

as saying that the problem was not to give proofs but to formulate what was to

be proved. The insight of Langlands and others in the sixties shows that actually
Artin was mistaken. The problem lies in both. Shimura made several computations
in this direction involving "modular forms" [Sh 66]. Langlands gave a number

of conjectures relating Galois groups with "automorphic forms", which showed

that the answer lay in deeper theories, whose formulations, let alone their proofs,
were difficult. Great progress was made in the seventies by Serre and Deligne,
who proved a first case of Langland's conjecture [DeS 74].
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The study of non-abelian Galois groups occurs via their linear "representa-
tions". For instance, let l be a prime number. We can ask whether GLn(F/), or

GL2(F[), or PGL2(F[) occurs as a Galois group over Q, and "how". The problem
is to find natural objects on which the Galois group operates as a linear map,

such that we get in a natural way an isomorphism of this Galois group with one

of the above linear groups. The theories which indicate in which direction to

find such objects are much beyond the level of this course, and lie in the theory

of modular functions, involving both analysis and algebra, which form a back-

ground for the number theoretic applications. Again I pick a special case to give
the flavor.

Let K be a finite Galois extension of Q, with Galois group

G = Gal(K/Q).

Let

p: G GL2(F[)

be a homomorphism of G into the group of 2 x 2 matrices over the finite field

F[ for some prime l. Such a homomorphism is called a representation of G.

From elementary linear algebra, if

M = e )
is a 2 x 2 matrix, we have its trace and determinant defined by

tr(M) =
a + d and det M = ad - bc.

Thus we can take the trace and determinant tr p(u) and det p(u) for u E G.

Consider the infinite product with a variable q:

oc oc

Il(q) =

q f1 (1
-

qn)24 = L anqn.
n=I n=I

The coefficients an are integers, and al
= 1.

Theorem 15.2. For each prime l there exists a unique Galois extension K of

Q, with Galois group G, and an injective homomorphism

p: G GL2(F[)

having the following property. For all but a finite number ofprimes p, if a
p

is

the coefficient of qP in Il(q), then we have

tr p(Frp) = a
p

mod land det p(Frp) = pIl mod l.

Furthermore, for all primes l =f=. 2, 3, 5, 7,23,691, the image p(G) in GL2(F/)
consists of those matrices M E GL2(F/) such that det M is an eleventh power

in Ff.
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The above theorem was conjectured by Serre in 1968 [Se 68]. A proof of

the existence as in the first statement was given by Deligne [De 68]. The second

statement, describing how big the Galois group actually is in the group of matrices

GL2(F/) is due to Serre and Swinnerton-Dyer [Se 72], [SwD 73].

The point of Il(q) is that if we put q
= e

27Tiz
,

where Z is a variable in the

upper half-plane, then Il is a modular form of weight 12. For definitions and an

introduction, see the last chapter of [Se 73], [La 73], [La 76], and the following
comments. The general result behind Theorem 15.2 for modular forms of weight
> 2 was given by Deligne [De 73]. For weight 1, it is due to Deligne-Serre

[DeS 74] . We summarize the situation as follows.

Let N be a positive integer. To N we associate the subgroups

r(N) C r}(N) C ro(N)

of SL2(Z) defined by the conditions for a matrix a
= (: ) E SL2(Z):

a E r(N) if and only if a = d = 1 mod Nand b == c = 0 mod N;

a E r}(N) if and only if a = d = 1 mod Nand c = 0 mod N;

a E ro(N) if and only if c = 0 mod N.

Letf be a function on the upper half-plane Sj = {z E C, Im(z) > O}. Let k

be an integer. For

y
= (: ) E SL 2(R),

define f 0 [')']k (an operation on the right) by

az + b
f 0 [')']k(z)

= (cz + d)
-

'l( ')'z) where ')'Z
=

cz + d
.

Let r be a subgroup of SL2(Z) containing r(N). We definefto be modular of

weight k on r if:

Mk 1. f is holomorphic on Sj;

Mk 2. f is holomorphic at the cusps, meaning that for all a E SL
2(Z), the

function f 0 [a]k has a power series expansion

00

f 0 [a]k(z)
= L ane27Tinz/N;

n=O

Mk 3. We havefo [')']k
= ffor all ')' E r.

One says that f is cuspidal if in Mk 2 the power series has a zero; that is, the

power starts with n
> 1.
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Suppose thatfis modular of weight k on r(N). Thenfis modular on r)(N)
if and only if f(z + 1) = f(z), or equivalently f has an expansion of the form

::x;

f(z) =

f::x;(qz)
= L anqn where q

=

qz
=

e
2mz

.

n=O

This power series is called the q-expansion of f.

Suppose f has weight k on r} (N). If Y E ro(N) and y is the above written

matrix, then f 0 [Y]k depends only on the image of d in (Z/NZ)*, and we then

denote f 0 [Y]k by f 0 [d]k. Let

e: (Z/NZ)* C*

be a homomorphism (also called a Dirichlet character). One says that e is odd

if e( -1) = -1, and even if e( -1) = 1. One says that f is modular of type

(k, e) on ro(N) iffhas weight k on r}(N), and

f 0 [d]k
= e(d)f for all d E (Z/NZ)*.

It is possible to define an algebra of operators on the space of modular forms

of given type. This requires more extensive background, and I refer the reader

to [La 76] for a systematic exposition. Among all such forms, it is then possible
to distinguish some of them which are eigenvectors for this Hecke algebra, or,

as one says, eigenfunctions for this algebra. One may then state the Deligne-
Serre theorem as follows.

Let f =t= 0 be a modularform of type (1 , e) on ro(N), sof has weight 1. Assume

that e is odd. Assume that f is an eigenfunction of the Hecke algebra, with q-

expansion fx
= L anqn, normalized so that a}

= 1. Then there exists a unique

finite Galois extension K of Q with Galois group G, and a representation

p: G GL2(C) (actually an injective homomorphism), such that for all

primes p % N the characteristic polynomial of p(Frp) is

X
2
-

apX + e(p).

The representation p is irreducible if and only iff is cuspidal.

Note that the representation p has values in GL2(C). For extensive work of Serre

and his conjectures concerning representations of Galois groups in GL2(F) when

F is a finite field, see [Se 87]. Roughly speaking, the general philosophy started

by a conjecture of Taniyama-Shimura and the Langlands conjectures is that

everything in sight is "modular". Theorem 15.2 and the Deligne-Serre theorem

are prototypes of results in this direction. For "modular" representations in GL2(F),

when F is a finite field, Serre's conjectures have been proved, mostly by Ribet

[Ri 90]. As a result, following an idea of Frey, Ribet also showed how the

Taniyama-Shimura conjecture implies Fermat's last theorem [Ri 90b]. Note that

Serre's conjectures that certain representations in GL2(F) are modular imply the

Taniyama-Shimura conjecture.
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EXERCISES

1. What is the Galois group of the following polynomials?

(a) X
3
- X-lover Q.

(b) X
3
- 10 over Q.

(c) X
3
- 10 over Q(J2),

(d) X
3
- 10 over Q(J=3),

(e) X
3
- X-lover Q(J=23).

(f) X
4
- 5 over Q, Q(J5), Q(j-=5), Q(i).

(g) X
4
-

a where a IS any integer # 0, # + 1 and IS square free, Over Q.
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(h) X3 -

a where a is any square-free integer
> 2. Over Q.

(i) X
4

+ 2 over Q, Q(i),

(j) (X
2
- 2)(X

2
- 3)(X

2
- 5)(X

2
- 7) over Q.

(k) Let PI' .,., Pn be distinct prime numbers. What is the Galois group of

(X
2
-

PI) ... (X
2
-

Pn) over Q?

(I) (X
3
- 2)(X

3
-

3)(X
2
- 2) over Q(J- 3).

(m) x
n
-

t, where t is transcendental over the complex numbers C and n is a

positive integer. Over C(t),

(n) X
4
-

t, where t is as before. Over R(t),

2. Find the Galois groups over Q of the following polynomials.

(a) X
3

+ X + 1 (b) X
3
- X + 1 (g) X3 + X2 - 2X - 1

(c) X
3

+ 2X + 1 (d) X
3
- 2X + 1

(e) X
3
- X-I (f) X3 - 12X + 8

3. Let k = C(t) be the field of rational functions in one variable. Find the Galois group

over k of the following polynomials:

(a) X
3

+ X + t (b) X
3
- X + t

(c) X
3

+ tX + 1 (d) X
3
- 2tX + t

(e) X
3
- X - t (f) X

3
+ t

2
X - t

3

4. Let k be a field of characteristic =1= 2, Let c E k, c tt. k
2

, Let F = k(\!'";;), Let

a
=

a + b \!'";; with a, b E k and not both a, b = O. Let E = F(). Prove that

the following conditions are equivalent.

(1) E is Galois over k,

(2) E = F(W), where a' = a
- b\!'";;.

(3) Either aa' =
a

2
- cb

2
E k2

or caa' E k2
.

Show that when these conditions are satisfied, then E is cyclic over k of degree 4 if

and only if caa' E k
2

,

5. Let k be a field of characteristic =1= 2, 3, Let f(X), g(X) = X2 -

c be irreducible

polynomials over k, of degree 3 and 2 respectively. Let D be the discriminant of f.
Assume that

[k(D
I/

2) : k] = 2 and k(D
I/2

) =1= k(C
Il2

).

Let a be a root off and (3 a root of 9 in an algebraic closure. Prove:

(a) The splitting field of fg over k has degree 12,

(b) Let)' =
a + (3, Then [k()') : k] = 6.

6, (a) Let K be cyclic over k of degree 4, and of characteristic =1= 2. Let GKlk
= (a),

Let E be the unique subfield of K of degree 2 over k. Since [K : E] = 2, there

exists a E K such that a
2 =

'Y E E and K = E(a). Prove that there exists

Z E E such that

zaz = - 1
,

aa = za, z2 =

a)'/ )'.

(b) Conversely, let E be a quadratic extension of k and let GElk
= (T), Let z E E

be an element such that ZTZ
= - 1. Prove that there exists )' E E such that

z2 = T)'/)'. Then E = k( )'). Let a
2 =

)', and let K = k(a). Show that K is

Galois, cyclic of degree 4 over k, Let a be an extension of T to K. Show that

a is an automorphism of K which generates GKlk , satisfying a
2
a = -

a and

aa = +
za. Replacing z by

-

z originally if necessary, one can then have

aa =
za,
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7. (a) Let K = Q() where a E Z, a < O. Show that K cannot be embedded in a

cyclic extension whose degree over Q is divisible by 4.

(b) Let f(X)
= X4 + 30X

2
+ 45. Let a be a root of F. Prove that Q(a) is cyclic of

degree 4 over Q.

(c) Letf(X)
= X

4
+ 4x 2 + 2. Prove thatf is irreducible over Q and that the Galois

group is cyclic.

8. Letf(X) = X
4

+ aX
2

+ b be an irreducible polynomial over Q, with roots + ex, + (J,

and splitting field K.

(a) Show that Gal{K/Q) is isomorphic to a subgroup of Ds (the non-abelian group

oforder 8 other than the quaternion group), and thus is isomorphic to one of the

following:

(i) Z/4Z (ii) Z/2Z x Z/2Z (iii) Ds.

(b) Show that the first case happens if and only if

a {3

{3

-

a

E Q.

Case (ii) happens if and only if a{3 E Q or a
2
-

{32 E Q. Case (iii) happens

otherwise. (Actually, in (ii), the case a
2 -

{32 E Q cannot occur. It corresponds

to a subgroup Ds C S4 which is isomorphic to Z/2Z x Z/2Z, but is not

transitive on {I, 2, 3, 4 }).

(c) Find the splitting field K in C of the polynomial

X
4
- 4X

2
- 1.

Determine the Galois group of this splitting field over Q, and describe fully
the lattices of subfields and of subgroups of the Galois group.

9. Let K be a finite separable extension of a field k, of prime degree p. Let () E K be

such that K = k{(}), and let (}b . . .

, (}p be the conjugates of (} over k in some algebraIc

closure. Let (} = 0 t. If (}2 E k(0), show that K is Galois and in fact cyclic over k,

10. Letf{X) E Q[X] be a polynomial of degree n, and let K be a splitting field offover Q,

Suppose that Gal(K/Q) is the symmetric group Sn with n > 2.

(a) Show thatfis irreducible over Q.

(b) If ex is a root off, show that the only automorphism of Q(ex) is the identity.

(c) If n > 4, show that exn Q.

11. A polynomial f(X) is said to be reciprocal if whenever r:x is a root, then I / IS also a

root. We suppose that f has coefficients in a real subfield k of the complex numbers. If

j is irreducible over k, and has a nonreal root of absolute value 1, show that j IS

reciprocal of even degree.

12. What is the Galois group over the rationals of X
5
- 4X + 2?

13. What is the Galois group over the rationals of the following polynomials:

(a) X
4

+ 2X
2

+ X + 3

(b) X
4

+ 3X
3
- 3X - 2

(c) X
6

+ 22X
5
- 9X

4
+ 12X

3
- 37X

2
- 29X - 15

[Hint: Reduce mod 2, 3, 5.]

14. Prove that given a symmetric group Sn, there eXIsts a polynomialf(X) E Z[X] with

leading coefficient 1 whose Galois group over Q is Sn. [Hint: Reducing mod 2, 3, 5,

show that there exists a polynomial whose reductions are such that the Galois group
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contaIns enough cycles to generate SII. Use the ChInese remainder theorem, also to

be able to apply Eisenstein's criterion.]

15. Let K/k be a Galois extension, and let F be an intermediate field between k and K.

Let H be the subgroup of Gal(K/k) mapping F into itself. Show that H is the normal-

izer of Gal(K/F) in Gal(K/k).

16. Let K/k be a finite Galois extension with group G. Let a E K be such that

{aa}UEG is a normal basis, For each subset S of G let S(a) = 2: UES
aa . Let H be a

subgroup of G and let F be the fixed field of H. Show that there exists a basis of F

over k consisting of elements of the form S(a),

Cyclotomic fields

17. (a) Let k be a field of characteristic t2n, for some odd integer n
>

1, and let' be

a primitive n-th root of unity, in k, Show that k also contains a primitive 2n-th

root of unity.

(b) Let k be a finite extension of the rationals. Show that there is only a finite number

of roots of unity in k.

18. (a) Determine which roots of unity lie in the following fields: Q(i), Q(v=2),

Q(v2), Q(Y=3), Q(V3), Q(v=5).

(b) For which integers m does a primitive m-th root of unity have degree 2 over Q?

19. Let (be a primitive n-th root of unity. Let K = Q( ().

(a) If n =

pr (r
>

1) is a prime power, show that NK/Q(l
-

() =

p.

(b) If n is composite (divisible by at least two primes) then NK/Q(l
-

,) = 1.

20. Let I(X) E Z[X] be a non-constant polynomial with integer coefficients. Show that

the values I(a) with a E Z+ are divisible by infinitely many primes.

[Note: This is trivial. A much deeper question is whether there are infinitely many

a such that/(a) is prime, There are three necessary conditions:

The leading coefficient ofI is positive.
The polynomial is irreducible.

The set of values I(Z+) has no common divisor> 1.

A conjecture of Bouniakowski [Bo 1854] states that these conditions are sufficient.

The conjecture was rediscovered later and generalized to several polynomials by
Schinzel [Sch 58]. A special case is the conjecture that X2 + 1 represents infinitely

many primes. For a discussion of the general conjecture and a quantitative version

giving a conjectured asymptotic estimate, see Bateman and Horn [BaH 62]. Also see

the comments in [HaR 74]. More precisely, let I., . . . ,Ir be polynomials with integer
coefficients satisfying the first two conditions (positive leading coefficient, irre-

ducible). Let

I
=

II
. · .

Ir

be their product, and assume that I satisfies the third condition. Define:

7T(f)(X)
= number of positive integers n

<
x such that/l(n), . . . ,Ir(n) are all primes.

(We ignore the finite number of values of n for which some li(n) is negative.) The
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Bateman-Horn conjecture is that

x

1T(f)(X)
- (d1

.. .

dr)-IC(f) I (10; t)'
dt,

o

where

C(f)
= 9{ (1

-

) -r(1
-

)},
the product being taken over all primes p, and Nf(p) is the number of solutions of

the congruence

f(n) == 0 mod p.

Bateman and Horn show that the product converges absolutely. When r = 1 and

f(n) = an + b with a, b relatively prime integers, a > 0, then one gets Dirichlet's

theorem that there are infinitely many primes in an arithmetic progression, together
with the Dirichlet density of such primes.

[BaH 62] P. T. BATEMAN and R. HORN, A heuristic asymptotic formula concerning

the distribution of prime numbers, Math. Compo 16 (1962) pp. 363-367

[Bo 1854] V, BOUNIAKOWSKY, Sur les diviseurs numeriques invariables des fonc-

tions rationnelles entieres, Memoires sc. math. et phys. T. VI (1854-

1855) pp. 307-329

[HaR 74] H. HALBERSTAM and H.-E. RICHERT, Sieve methods, Academic Press,

1974

[Sch 58] A. SCHINZEL and W. SIERPINSKI, Sur certaines hypotheses concernant

les nombres premiers, Acta Arith. 4 (1958) pp. 185-208

21. (a) Let a be a non-zero integer, p a prime, n a positive integer, and p n. Prove

that p I <l>n(a) if and only if a has period n in (Z/pZ)*.

(b) Again assume p,r n Prove that p I <l>n(a) for some a E Z if and only if p
= 1

mod n. Deduce from this that there are infinitely many primes == 1 mod n, a

special case of Dirichlet's theorem for the existence of primes in an arithmetic

progression.

22. Let F = F
p

be the prime field of characteristic p. Let K be the field obtained from

F by adjoining all primitive I-th roots of unity, for all prime numbers I =1= p. Prove

that K is algebraically closed. [Hint: Show that if q is a prime number, and r an

integer
>

1, there exists a prime I such that the period of p mod I is qr, by using
the following old trick of Van der Waerden: Let I be a prime dividing the number

qr 1
b

P
-

(
r- 1 1 r- 1 2

=

qr
- 1

1

= pq - l)q
-

+ q(pq - l)q
-

+... + q.
p

-

If I does not divide pqr-
1
- 1, we are done. Otherwise, I =

q. But in that case q2 does

not divide b, and hence there exists a prime I #- q such that I divides b. Then the degree
of F(,,) over F is qr, so K contains subfields of arbitrary degree over F.]

23. (a) Let G be a finite abelian group. Prove that there exists an abelian extension of

Q whose Galois group is G.
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(b) Let k be a finite extension of Q, and let G be a finite abelian group. Prove that

there exist infinitely many abelian extensions of k whose Galois group is G.

24. Prove that there are infinitely many non-zero integers a, b =1= 0 such that

- 4a
3
- 27b

2
is a square in Z,

25. Let k be a field such that every finite extension is cyclic. Show that there exists an

automorphism u of k
a

over k such that k is the fixed field of u.

26. Let Qa be a fixed algebraic closure of Q. Let E be a maximal subfield of Qa not

containing \12 (such a subfield exists by Zorn's lemma). Show that every finite

extension of E is cyclic. (Your proof should work taking any algebraic irrational

number instead of \12.)

27. Let k be a field, k
a

an algebraic closure, and u an automorphism of ka

leaving k

fixed. Let F be the fixed field of u, Show that every finite extension of F is cyclic,

(The above two problems are examples of Artin, showing how to dig holes in an

algebraically closed field,)

28. Let E be an algebraic extension of k such that every non-constant polynomial f(X)
in k[X] has at least one root in E, Prove that E is algebraically closed. [Hint: Discuss

the separable and purely inseparable cases separately, and use the primitive element

theorem. ]

29. (a) Let K be a cyclic extension ofa field F, with Galois group G generated by (1. Assume

that the characteristic is p, and that [K: F] = pm-
1

for some integer m > 2.

Let (J be an element of K such that Tr:({J) = 1. Show that there exists an element

(1 in K such that

(1(1
- (1 = {JP - (J.

(b) Prove that the polynomial XP - X - ex is irreducible in K[X].

(c) If e is a root of thIs polynomial, prove that F(e) is a Galois, cyclic extension of

degree pm of F, and that its Galois group is generated by an extension (1* of (1

such that

(1*(e) = () + (J.

30. Let A be an abelian group and let G be a finite cyclic group operating on A [by means

of a homomorphism G Aut(A)]. Let (1 be a generator of G. We define the trace

TrG
= Tr on A by Tr(x) = L !x. Let ATr denote the kernel of the trace, and let

reG

(1 - (1)A denote the subgroup of A consIsting of all elements of type y
-

(1Y, Show that

H leG, A) ATr/( 1 - (1)A,

31. Let F be a finite field and K a finite extension of F. Show that the norm N: and the

trace Tr: are surjective (as maps from K into F).

32. Let E be a finite separable extension of k, of degree n. Let W = (w t "
. ,

,
w

n) be elements

of E. Let (11' , . ,
,

(1
n

be the distinct embeddings of E In k
a

over k, Define the dis-

criminant of W to be

DE/k(W)
= det( UiWj)

2
,

Prove:

(a) If V =

(V., , . .
,

v
n ) is another set of elements of E and C =

(cij) is a matrix

of elements of k such that Wi
= 2: cijvj ,

then

DE/k(W)
= det(C)2DE/k (V).
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(b) The discriminant is an element of k.

(c) Let E = k(rx) and letf(X) = Irr(rx,k, X). Let rxl'...' rx
n

be the roots off and

say rx = rx
l

. Then

n

f'(rx) = n (rx -

rx).
j= 2

Show that

DElk(l, rx, ...
,

rx
n
-

1) = (_l)"(n-l)/
2

Nf(f'(rx».

(d) Let the notation be as in (a). Show that det(Tr(wiw) = (det(O"iw)2. [Hint:

Let A be the matrix (0"; w). Show that tAA is the matrix (Tr(wiw),]

Rational functions

33, Let K = C(x) where x is transcendental over C, and let' be a primitive cube root of

unity in C. Let 0" be the automorphism of Kover C such that O"X = 'x. Let! be the

automorphism of Kover C such that !X = X-I. Show that

a
3 = 1 = il and Ta

= a-
1
T.

Show that the group of automorphisms G generated by a and T has order 6 and the

subfield F of K fixed by G is the field C(y) where y
= x

3
+ x-

3
.

34. Give an example of a field K which is of degree 2 over two distinct subfields E and F

respectively, but such that K is not algebraic over E n F.

35. Let k be a field and X a variable over k. Let

(X) =

f(X)
qJ

g(X)

be a rational function in k(X), expressed as a quotient of two polynomials f, g which

are relatively prime. Define the degree of qJ to be max(deg f, deg g). Let Y = qJ(X).

(a) Show that the degree of qJ is equal to the degree of the field extension k(X) over key)

(assuming y k), (b) Show that every automorphism ofk(X) over k can be represented

by a rational function ({J of degree 1, and is therefore induced by a map

aX + b
X

eX + d

with a, b, e, dE k and ad - be #- o. (c) Let G be the group of automorphisms of k(X)
over k. Show that G is generated by the following automorphisms:

!b : X X + b, O"a: XaX (a #- 0), XX-l

with a, b E k.

36. Let k be a finite field with q elements. Let K = k(X) be the rational field in one variable.

Let G be the group of automorphisms of K obtained by the mappings

aX + b
X

eX + d



V I, Ex EXERCISES 327

with a, b, c, d in k and ad - bc #- O. Prove the following statements:

(a) The order of G is q3 -

q.

(b) The fixed field of G is equal to key) where

(xq
2

_ X)q+
1

y=

(xq
- X)q2+

1
.

(c) Let H I be the subgroup of G consisting of the mappings X t--+ aX + b with

a #- O. The fixed field of H I
is k(T) where T = (xq - X)q- 1.

(d) Let H2 be the subgroup of H I consisting of the mappings X X + b with

bE k. The fixed field of H 2
is equal to k(Z) where Z = xq - X.

Some aspects of Kummer theory

37. Let k be a field of characteristic 0, Assume that for each finite extension E of k, the

index (E* : E*n) is finite for every positive integer n. Show that for each positive integer

n, there exists only a finite number of abelian extensions of k of degree n.

38. Let a #- 0, #- + 1 be a square-free integer. For each prime number p, let Kp be

the splitting field of the polynomial XP - a over Q. Show that [Kp
: Q] = p(p

- 1).
For each square-free integer m > 0, let

Km = n Kp
plm

be the compositum of all fields K
p

for pi m. Let d
m

= [Km: Q] be the degree of Km

over Q. Show that if m is odd then d
m

= n d
p ,

and if m is even, m = 2n then d2n
= d

n

plm

or 2d
n according as va is or is not in the field of m-th roots of unity Q('m).

39. Let K be a field of characteristic 0 for simplicity. Let r be a finitely generated subgroup
of K*. Let N be an odd positive integer. Assume that for each prime piN we have

r = r
l /p

n K,

and also that Gal(K(PN)/K) Z(N)*. Prove the following.

(a) f/f
N = f/(f n K*N) = fK*N/K*N.

(b) Let KN = K(PN). Then

r n KN = r
N

.

[Hint: If these two groups are not equal, then for some prime piN there exists

an element a E r such that

a = bP with bEKN but bK.

In other words, a is not a p-th power in K but becomes a p-th power in KN. The

equation x
P
-

a is irreducible over K. Show that b has degree p over K(pp),

and that K(pp, a
11P

) is not abelian over K, so a
l /p has degree p over K(pp).

Finish the proof yourself.]
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(c) Conclude that the natural Kummer map

f/f
N

Hom(Hr<N), J1N)

is an isomorphism.

(d) Let Gr(N) = Gal(K(f
l /N

, J1N)/K). Then the commutator subgroup of Gr(N)
is Hr<N), and in particular Gal(KN/K) is the maximal abelian quotient of

Gr<N).

40. Let K be a field and p a prime number not equal to the characteristic of K. Let f be a

finitely generated subgroup of K*, and assume that f is equal to its own p-division

group in K, that is if Z E K and zP E f, then z E f. If p is odd, assume that J1p
c K, and

if p
= 2, assume that J14 c K. Let

(f : fP) = pr
+ I

.

Show that flIp is its own p-divislon group in K(f
l /p

), and

[K(f1/pm): K] = pm(r+
1)

for all positive integers m.

41. Relative invariants (Sato). Let k be a field and K an extension of k. Let G be a group

of automorphisms of Kover k, and assume that k is the fixed field of G. (We do not

assume that K is algebraic over k.) By a relative invariant of G in K we shall mean an

element P E K, P #- 0, such that for each U E G there exists an element l(u) E k for

which pCT = X(u)P, Since u is an automorphism, we have X(u) E k*. We say that the

map X : G k* belongs to P, and call it a character, Prove the following statements:

(a) The map X above is a homomorphism.

(b) If the same character X belongs to relative invariants P and Q then there

exists C E k* such that P = cQ.

(c) The relative invariants form a multiplicative group, which we denote by I.

Elements PI' . , .
, Pm of I are called multiplicatively independent mod k* if

their images in the factor group l/k* are multiplicatively independent, i.e. if

given integers v I' . . .
,

V
m

such that

p"l . . , p"m = C E k*
1m'

then VI
= . . . = V

m
= o.

(d) If PI' ...
, Pm are multiplicatively independent mod k* prove that they are

algebraically independent over k, [Hint: Use Artin's theorem on characters,]

(e) Assume that K = k(X l'
. . .

,
Xn) is the quotient field of the polynomial ring

k[X h... , Xn] = k[X], and assume that G induces an automorphism of the

polynomial ring. Prove: IfF 1 (X) and F2(X) are relative invariant polynomials,
then their g.c.d. is relative invariant. If P(X) = F 1 (X)/F2(X) is a relative

invariant, and is the quotient of two relatively prime polynomials, then F 1 (X)

and F2(X) are relative invariants. Prove that the relative invariant poly-
nomials generate I/k*. Let S be the set of relative invariant polynomials which

cannot be factored into a product of two relative invariant polynomials of

degrees > 1. Show that the elements of S/k* are multiplicatively independent,
and hence that l/k* is a free abelian group. [If you know about transcendence

degree, then using (d) you can conclude that this group is finitely generated.]
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42, Let f(z) be a rational function with coefficients in a finite extension of the rationals.

Assume that there are infinitely many roots of unity, such thatf(') is a root of unity.
Show that there exists an integer n such thatf(z) = cz" for some constant c (which is in

fact a root of unity).
This exercise can be generalized as follows: Let robe a finitely generated multi-

plicative group of complex numbers. Let r be the group of all complex numbers ')'

such that ym lies in r0 for some integer m #- O. Let f(z) be a rational function with

complex coefficients such that there exist infinitely many y E r for whichf(y) lies in r.

Then again,f(z) = cz" for some c and n. (Cf. Fundamentals ofDiophantine Geometry.)

43. Let K/k be a Galois extension. We define the Krull topology on the group

G(K/k) = G by defining a base for open sets to consist of all sets aH where a E G

and H = G(K/F) for some finite extension F of k contained in K.

(a) Show that if one takes only those sets aH for which F is finite Galois over

k then one obtains another base for the same topology.
(b) The projective limit !i!!! G/H is embedded in the direct product

lim G/H n G/H.
H H

Give the direct product the product topology. By Tychonoff's theorem in

elementary point set topology, the direct product is compact because it is a

direct product of finite groups, which are compact (and of course also discrete).
Show that the inverse limit!!!!!. G/H is closed in the product, and is therefore

compact.

(c) Conclude that G(K/k) is compact.

(d) Show that every closed subgroup of finite index in G(K/k) is open.

(e) Show that the closed subgroups of G(K/k) are precisely those subgroups
which are of the form G(K/F) for some extension F of k contained in K.

(f) Let H be an arbitrary subgroup of G and let F be the fixed field of H. Show

that G(K/F) is the closure of H in G.

44. Let k be a field such that every finite extension is cyclic, and having one extension of

degree n for each integer n. Show that the Galois group G = G(k
8

jk) is the inverse limit

lim ZjmZ, as mZ ranges over all ideals of Z, ordered by inclusion. Show that this limit

is isomorphic to the direct product of the limits

n lim Z/pnz = nZp
p n-+ oo

p

taken over all prime numbers p, in other words, it is isomorphic to the product of all

p-adic integers.

45. Let k be a perfect field and k a its algebraic closure. Let a E G(k
8

/k) be an element

of infinite order, and suppose k is the fixed field of a. For each prime p, let Kp be

the composite of all cyclic extensions of k of degree a power of p.

(a) Prove that k a is the composite of all extensions Kp.
(b) Prove that either Kp

= k, or Kp is infinite cyclic over k. In other words, Kp
cannot be finite cyclic over k and =1= k.

(c) Suppose k 8 =

Kp for some prime p, so k
a is an infinite cyclic tower of

p-extensions. Let u be a p-adic unit, u E Z; such that u does not represent

a rational number. Define aU, and prove that a, aU are linearly independent
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over Z, i.e. the group generated by a and aU is free abelian of rank 2. In

particular {a} and {a, aU} have the same fixed field k.

Witt vectors

46. Let Xl' X2, . . . be a sequence of algebraically independent elements over the integers
Z. For each integer n

:> 1 define

x(n) = L dX:;/d.
din

Show that X
n

can be expressed in terms of X(d) for din, with rational coefficients.

Using vector notation, we call (x I' X2, . . .) the Witt components of the vector x,

and call (xCI), x
(2

), . . .) its ghost components. We call x a Witt vector.

Define the power series

fx{t) = n (1 -

xnt
n

).
nl

Show that

d
- t - logfx(t) = L x(n)t

n

.

dt
n I

[By logf(t) we meanf'(t)/f(t) iff(t) is a power series, and the derivativef'(t) is taken
dt

formally.]
If x, yare two Witt vectors, define their sum and product componentwise with

respect to the ghost components, i.e.

(x t y)(n) = x
cn )
t yen).

What is (x + Y)n? Well, show that

!x(t)!y(t)
= 0(1 + (x + Y)nt

n

) =

!x+y(t).

Hence (x + Y)n is a polynomial with integer coefficients in XI' y.,..., x
n , Yn. Also show

that

!xy(t)
= n (1 - xr;/dy/etm)de/m

d.e I

where m is the least common multiple of d, e and d, e range over all integers
:> 1. Thus

(xY)n is also a polynomial in x., Yl ...,
x

n , Yn with integer coefficients. The above

arguments are due to Witt (oral communication) and differ from those of his original
paper.

If A is a commutative ring, then taking a homomorphic image of the polynomial
ring over Z into A, we see that we can define addition and multiplication of Witt

vectors with components in A, and that these Witt vectors form a ring W(A). Show

that W is a functor, i.e. that any ring homomorphism qJ of A into a commutative ring A'

induces a homomorphism W(qJ): W(A) -+ W(A').
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47. Let p be a prime number, and consider the projection of W(A) on vectors whose

components are indexed by a power of p. Now use the log to the base p to index

these components, so that we write X
n

instead of x
p
". For instance, Xo now denotes

what was Xl previously. For a Witt vector x =

(Xo, Xl' . . . ,Xn ,
. . .) define

Yx = (0, Xo, Xb . ..) and Fx = (xg, xf, . . .).

Thus Y is a shifting operator. We have V 0 F = F 0 Y. Show that

(Yx)(n) = px(n-l) and x
Cn )

= (Fx)(n-l) + pnxn.

Also from the definition, we have

x(n) = x" + pX"-l + . .. + P n.x
n.

48. Let k be a field ofcharacteristic p, and consider W(k). Then V is an additive endomorph-
ism of W(k), and F is a ring homomorphism of W(k) into itself. Furthermore, ifX E W(k)
then

pX
= VFx.

If x, y E W(k), then (Vix)(Yjy) = y
i +

j(FPjx. FPiy). For a E k denote by {a} the Witt

vector (a, 0, 0, , . .). Then we can write symbolically

00

x = L yi{x;}.
i=O

Show that if x E W(k) and Xo #- 0 then x is a unit in W(k). Hint: One has

l-x{xo
1

} = Vy

and then

00 00

x{xo I} L (Vy)i = (1
-

Vy) L (Vy)i = 1.

o 0

49. Let n be an integer > 1 and p a prime number again. Let k be a field of characteristic p.

Let J.t;,(k) be the ring of truncated Witt vectors (xo, . . .
,
X

n
- 1) with components in k.

We view Jt;,(k) as an additive group. If x E Jt;,(k), define fcJ(x) = Fx - x. Then fcJ is a

homomorphism. If K is a Galois extension of k, and u E G(K/k), and X E Wn(K) we

can define (JX to have component «(Jxo, . . .

,
(Jx

n
- 1 ). Prove the analogue of Hilbert's

Theorem 90 for Witt vectors, and prove that the first cohomology group is trivial. (One

takes a vector whose trace is not 0, and finds a coboundary the same way as in the proof
of Theorem 10.1).

50. If x E Jt;,(k), show that there exists E J.t;,(k) such that fcJ() = x. Do this inductively,

solving first for the first component, and then showing that a vector (0, (11' . . .
, (1n - 1) is

in the image of fcJ if and only if «(1., . , ,

, (1n- 1) is in the image of fcJ. Prove inductively
that if , ' E J.t;,(k') for some extension k' of k and if fcJ = fcJ' then - ' is a vector

with components in the prime field. Hence the solutions of fcJ = x for given x E Jt;,(k)

all differ by the vectors with components in the prime field, and there are pn such

vectors. We define

k() = k( 0'
. . .

, n
- 1),
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or symbolically,

k(p
- 1

x),

Prove that it is a Galois extension of k, and show that the cyclic extensions of k, of

degree p", are precisely those of type k(p
- 1

x) with a vector x such that Xo pk.

51. Develop the Kummer theory for abelian extensions of k of exponent p" by using (k).
In other words, show that there is a bijection between subgroups B of (k) containing

p (k) and abelian extensions as above, given by

BKB

where K
B

= k(p-lB). All of this is due to Witt, cf. the references at the end of 8,

especially [Wi 37]. The proofs are the same, mutatis mutandis, as those given for

the Kummer theory in the text.

Further Progress and directions

Major progress was made in the 90s concerning some problems mentioned in the

chapter. Foremost was Wiles's proof of enough of the Shimura-Taniyama conjecture to

imply Fermat's Last Theorem [Wil 95], [TaW 95].

[TaW 95] R. TAYLOR and A. WILES, Ring-theoretic properties or certain Hecke alge-
bras, Annals of Math. 141 (1995) pp, 553-572

[Wil 95] A. WILES, Modular elliptic curves and Fermat's last theorem, Annals. of
Math. 141 (1995) pp. 443-551

Then a proof of the complete Shimura-Taniyama conjecture was given in [BrCDT 0 I].

[BrCDT 01] C. BREUIL, B. CONRAD, F, DIAMOND, R. TAYLOR, On the modularity of el-

liptic curves over Q: Wild 3-adic exercises, J. Arner, Math. Soc. 14 (2001)

pp. 843-839

In a quite different direction, Neukirch started the characterization of number fields

by their absolute Galois groups [Ne 68], [Ne 69a], [Ne 69b], and proved it for Galois

extensions of Q. His results were extended and his subsequent conjectures were proved

by Ikeda and Uchida [Ik 77], [Uch 77], [Uch 79], [Uch 81]. These results were extended

to finitely generated extensions of Q (function fields) by Pop [Pop 94], who has a more

extensive bibliography on these and related questions of algebraic geometry. For these

references, see the bibliography at the end of the book.



CHAPTER V II

Extensions of Rings

It is not always desirable to deal only with field extensions. Sometimes one

wants to obtain a field extension by reducing a ring extension modulo a prime
ideal. This procedure occurs in several contexts, and so we are led to give the

basic theory of Galois automorphisms over rings, looking especially at how the

Galois automorphisms operate on prime ideals or the residue class fields. The

two examples given after Theorem 2.9 show the importance of working over

rings, to get families of extensions in two very different contexts.

Throughout this chapter, A, B, C will denote commutative rings.

1. INTEGRAL RING EXTENSIONS

In Chapters V and VI we have studied algebraic extensions of fields. For a

number of reasons, it is desirable to study algebraic extensions of rings.
For instance, given a polynomial with integer coefficients, say X

5
- X - 1,

one can reduce this polynomial mod p for any prime p, and thus get a poly-
nomial with coefficients in a finite field. As another example, consider the

polynomial

X
n

X
n- 1

+ Sn - 1 + . . . + So

where Sn _ l'
. . .

, So are algebraically independent over a field k. This poly-
nomial has coefficients in k[so, . . .

, Sn- 1] and by substituting elements of k for

So, . . .

, Sn-l one obtains a polynomial with coefficients in k. One can then get

333
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information about polynomials by taking a homomorphism of the ring in

which they have their coefficients. This chapter is devoted to a brief description
of the basic facts concerning polynomials over rings.

Let M be an A-module. We say that M is faithful if, whenever a E A is such

that aM = 0, then a
= O. We note that A is a faithful module over itself since

A contains a unit element. Furthermore, if A =t= 0, then a faithful module over

A cannot be the O-module.

Let A be a subring of B. Let a E B. The following conditions are equivalent:

INT 1. The element a is a root of a polynomial

X
n

+ a
n
- 1

x
n
- 1

+ . . . + ao

with coefficients ai E A, and degree n > 1. (The essential thing here

is that the leading coefficient is equal to 1.)

INT 2. The subring A[a] is a finitely generated A-module.

INT 3. There exists a faithful module over A[a] which is a finitely gener-

ated A-module.

We prove the equivalence. Assume INT 1. Let g(X) be a polynomial
In A[X] of degree > I with leading coefficient 1 such that g(a) = O. If

f(X) E A[X] then

f(X) = q(X)g(X) + r(X)

with q, r E A[X] and deg r < deg g. Hence f(a) = r(a), and we see that if

deg g
=

n, then 1, a, . . .

,
a

n
- 1

are generators of A[a] as a module over A.

An equation g(X) = 0 with g as above, such that g(a) = 0 is called an

integral equation for a over A.

Assume INT 2. We let the module be A[a] itself.

Assume INT 3, and let M be the faithful module over A[a] which is finitely

generated over A, say by elements WI' . . .

,
W

n
. Since aM c M there exist ele-

ments aij E A such that

aw 1
=

all WI + . . . + a 1 n
W

n ,

aWn
=

an 1 WI + . . . + ann W
n

.

Transposing aW b . . .

, aWn to the right-hand side of these equations, we con-

clude that the determinant

a
-

all

a -

a22 -a..
I)

d=

-a..
I)

a -

ann
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is such that dM = o. (This will be proved in the chapter when we deal with

determinants.) Since M is faithful, we must have d = O. Hence rx is a root of

the polynomial
det(Xbij

-

aij),

which gives an integral equation for rx over A.

An element rx satisfying the three conditions INT 1, 2, 3 is called integral
over A.

Proposition 1.1. Let A be an entire ring and K its quotient field. I£t rx be

algebraic over K. Then there exists an element c =F 0 in A such that crx is

integral over A.

Proof. There exists an equation

n n-l
0an rx + an - 1

rx + . . . + ao
=

with ai E A and an # O. Multiply it by a
-

1. Then

(an rx)n + . . . + ao a:
- 1

= 0

is an integral equation for anrx over A. This proves the proposition.

Let A C B be subrings of a commutative ring C, and let a E C. If a is integral
over A then a is a fortiori integral over B. Thus integrality is preserved under

lifting. In particular, a is integral over any ring which is intermediate between

A and B.

Let B contain A as a subring. We shall say that B is integral over A if every

element of B is integral over A.

Proposition 1.2. IfB is integral over A andfinitely generated as an A-algebra,
then B is finitely generated as an A-module.

Proof. We may prove this by induction on the number of ring generators,

and thus we may assume that B = A[rx] for some element rx integral over A, by

considering a tower

A c A[rx 1 ] c A[rx b rxl] C . . . c A[rxl' . . .

,
rx

n] = B.

But we have already seen that our assertion is true in that case, this being part

of the definition of integrality.

Just as we did for extension fields, one may define a class e of extension

rings A c B to be distinguished if it satisfies the analogous properties, namely:

(1) Let A c B c C be a tower of rings. The extension A c C is in e if

and only if A c B is in e and B c C is in e.

(2) If A c B is in e, if C is any extension ring of A, and if B, C are both

subrings of some ring, then C c B[C] is in e. (We note that

B[C] = C[B] is the smallest ring containing both B and C.)
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As with fields, we find formally as a consequence of (1) and (2) that (3) holds,

namely:

(3) If A c B and Ace are in e, and B, Care subrings of some ring,
then A c B[C] is in e.

Proposition 1.3. Integral ring extensions form a distinguished class.

Proof. Let A C Bee be a tower of rings. If C is integral over A, then it

is clear that B is integral over A and C is integral over B. Conversely, assume

that each step in the tower is integral. Let a E C. Then a satisfies an integral

equation

n

b
n- 1

+ + b 0a + n-l
a ,..

0
=

with bi E B. Let B
1

= A[bo ,
. . .

,
b

n
- 1]. Then B 1

is a finitely generated A-

module by Proposition 1.2, and is obviously faithful. Then B
1 [a] is finite over

B b hence over A, and hence a is integral over A. Hence C is integral over A.

Finally let B, C be extension rings of A and assume B integral over A. Assume

that B, Care subrings of some ring. Then C[B] is generated by elements of

B over C, and each element of B is integral over C. That C[B] is integral over

C will follow immediately from our next proposition.

Proposition 1.4. Let A be a subring of C. Then the elements of C which are

integral over A form a subring of c.

Proof. Let a, p E C be integral over A. Let M = A[a] and N = A[P].
Then MN contains 1, and is therefore faithful as an A-module. Furthermore,
aM c M and pN c N. Hence MN is mapped into itself by multiplication
with a + p and a{3. Furthermore MN is finitely generated over A (if {Wi} are

generators of M and {Vj} are generators of N then {Wi V
j } are generators of

MN). This proves our proposition.

In Proposition 1.4, the set of elements of C which are integral over A is

called the integral closure of A in C

Example. Consider the integers Z. Let K be a finite extension of Q. We

call K a number field. The integral closure of Z in K is called the ring of

algebraic integers of K. This is the most classical example.
In algebraic geometry, one considers a finitely generated entire ring Rover

Z or over a field k. Let F be the quotient field of R. One then considers the

integral closure of R in F, which is proved to be finite over R. If K is a finite

extension of F, one also considers the integral closure of R in K.

Proposition 1.5. Let A c B be an extension ring, and let B be integral
over A. Let u be a homomorphism of B. Then u(B) is integral over u(A).

Proof. Let a E B, and let

n n-l
0a + an -

1
a + . . . + ao

=
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be an integral equation for rx over A. Applying (J yields

(J(rx)n + (J(an
_ 1 )(J(rx)n-l + ... + (J(ao) = 0,

thereby proving our assertion.

Corollary 1.6. Let A be an entire ring, k its quotient field, and E a finite
extension of k. Let rx E E be integral over A. Then the norm and trace of rx

(from E to k) are integral over A, and so are the coefficients of the irreducible

polynomial satisfied by rx over k.

Proof. For each embedding (J of E over k, (Jrx is integral over A. Since the

norm is the product of (Jrx over all such (J (raised to a power of the characteristic),
it follows that the norm is integral over A. Similarly for the trace, and similarly
for the coefficients of Irr(rx, k, X), which are elementary symmetric functions of

the roots.

Let A be an entire ring and k its quotient field. We say that A is integrally
closed if it is equal to its integral closure in k.

Proposition 1.7. Let A be entire andfactorial. Then A is integrally closed.

Proof. Suppose that there exists a quotient a/b with a, b E A which is

integral over A, and a prime element p in A which divides b but not a. We have,

for some integer n > 1, and ai E A,

(a/b)n + a
n _l(a/b)n-l + . .. + ao

= 0

whence

an + an _ 1 ban
- 1

+ . . . + ao b
n

= o.

Since p divides b, it must divide an, and hence must divide a, contradiction.

Let f: A -. B be a ring-homomorphism (A, B being commutative rings).
We recall that such a homomorphism is also called an A-algebra. We may

view B as an A-module. We say that B is integral over A (for this ring-homo-

morphism f) if B is integral over f(A). This extension of our definition of

integrality is useful because there are applications when certain collapsings take

place, and we still wish to speak of integrality. Strictly speaking we should

not say that B is integral over A, but that f is an integral ring-homomorphism,
or simply that f is integral. We shall use this terminology frequently.

Some of our preceding propositions have immediate consequences for

integral ring-homomorphisms; for instance, if f: A -. Band g: B -. Care

integral, then g 0 f: A -. C is integral. However, it is not necessarily true that

if g
0 f is integral, so is f.
Let f: A -. B be integral, and let S be a multiplicative subset of A. Then

we get a homomorphism
S

- 1

f: S
- 1

A -. S
- 1

B,

where strictly speaking, S-1B = (f(S))-1B, and S-lf is defined by

(S- If)(x/s) = f(x)/f(s).
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It is trivially verified that this is a homomorphism. We have a commutative

diagram

B ) s-
1
B

fl IS-If
A s-

1
A

the horizontal maps being the canonical ones: x -. x/l.

Proposition 1.8. Let f: A -. B be integral, and let S be a multiplicative

subset of' A. Then S- If': S-
1
A -. s-

1
B is integral.

Proof. If rx E B is integral over f(A), then writing rxp instead of f(a){Jr for

a E A and p E B we have

rx
n

+ an _ 1 rx
n
- 1

+ . . . + ao
= 0

with ai E A. Taking the canonical image in S-
1
A and S-

1
B respectively, we

see that this relation proves the integrality of rx/I over S
-

1

A, the coefficients

being now ai/I.

Proposition 1.9. Let A be entire and integrally closed. Let S be a multipli-
cative subset of A, 0 ft S. Then S-

1
A is integrally closed.

Proof. Let rx be an element of the quotient field, integral over S
- 1

A. We

have an equation

n

+
an- 1 n- 1

+ +
ao

- 0rx -rx ...

--,

Sn - 1 So

ai E A and Si E S. Let s be the product sn- 1
. . .

so. Then it is clear that srx is

integral over A, whence in A. Hence rx lies in S-1A, and S-
1
A is integrally

closed.

Let p be a prime ideal of a ring A and let S be the complement of p in A.

We write S = A -

p. Iff: A -. B is an A-algebra (i.e. a ring-homomorphism),
we shall write B" instead of S-1 B. We can view B" as an A" = S-1 A-module.

Let A be a subring of B. Let p be a prime ideal of A and let be a prime
ideal of B. We say that lies above p if n A =

p. If that is the case, then

the injection A -. B induces an injection of the factor rings

A/p -. B/,

and in fact we have a commutative diagram:

B B/

I I
A ) A/p
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the horizontal arrows being the canonical homomorphisms, and the vertical

arrows being injections.
If B is integral over A, then B/ is integral over Alp by Proposition 1.5.

Proposition 1.10. Let A be a subring of B, let p be a prime ideal of A, and

assume B integral over A. Then pB =F B and there exists a prime ideal of
B lying above p.

Proof. We know that B" is integral over A" and that A" is a local ring
with maximal ideal m"

= S-
I

p,
where S = A -

p. Since we obviously have

pB"
= pA" B" =

m" B",

it will suffice to prove our first assertion when A is a local ring. (Note that the

existence of a prime ideal p implies that 1 =F 0, and pB = B if and only if 1 E pB.)
In that case, if pB = B, then 1 has an expression as a finite linear combination

of elements of B with coefficients in p,

1 = a 1 b
1 + . . . + an b

n

with ai E p and b i E B. We shall now use notation as if A" c B". We leave it

to the reader as an exercise to verify that our arguments are valid when we

deal only with a canonical homomorphism A" -. B". Let Bo = A[b h . . .

, bnJ.
Then pBo = Bo and Bo is a finite A-module by Proposition 1.2. Hence Bo = 0

by Nakayama's lemma, contradiction. (See Lemma 4.1 of Chapter X.)

To prove our second assertion, note the following commutative diagram:

'

l
B

I
A ) A

"

We have just proved m" B" =F B". Hence m" B" is contained in a maximal ideal

9Jl of B". Taking inverse images, we see that the inverse image of 9Jl in A" is an

ideal containing m" (in the case of an inclusion A" c B" the inverse image is

9Jl n A,,). Since m" is maximal, we have 9J1 n A" =

m". Let be the inverse

image of 9J1 in B (in the case of inclusion, = 9Jl n B). Then is a prime
ideal of B. The inverse image of m" in A is simply p. Taking the inverse image

of 9Jl going around both ways in the diagram, we find that

n A = p,

as was to be shown.

Proposition 1.11. Let A be a subring of B, and assume that B is integral

over A. Let be a prime ideal of B lying over a prime ideal p of A, Then

is maximal if and only if p is maximal.
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Proof. Assume p maximal in A. Then A/p is a field, and B/ is an entire

ring, integral over A/p. If rx E B/, then rx is algebraic over A/p, and we know

that A/p[rx] is a field. Hence every non-zero element of B/ is invertible in

B/, which is therefore a field. Conversely, assume that is maximal in B.

Then B/ is a field, which is integral over the entire ring A/p. If A/p is not a

field, it has a non-zero maximal ideal m. By Proposition 1.10, there exists a

prime ideal 9Jl of B/ lying above m, 9Jl =F 0, contradiction.

2. INTEGRAL GALOIS EXTENSIONS

We shall now investigate the relationship between the Galois theory of a

polynomial, and the Galois theory of this same polynomial reduced modulo a

prime ideal.

Proposition 2.1. Let A be an entire ring, integrally closed in its quotient

field K. Let L be a finite Galois extension of K with group G. Let p be a

maximal ideal of A, and let , .Q be prime ideals of the integral closure B of
A in L lying above p. Then there exists (J E G such that (J = .Q.

Proof. Suppose that .Q =F (J for any (J E G. Then t.Q =F (J for any pair
of elements (J, ! E G. There exists an element x E B such that

x = 0 (mod (J),

x = 1 (mod (J.Q),

all (J E G

all (J E G

(use the Chinese remainder theorem). The norm

N(x) = n (Jx

tiE G

lies in B (\ K = A (because A is integrally closed), and lies in n A = p.

But x rt (J.Q for all (J E G, so that (JX rt .Q for all (J E G. This contradicts the fact

that the norm of x lies in p = .Q n A.

If one localizes, one can eliminate the hypothesis that p is maximal; just
assume that p is prime.

Corollary 2.2 Let A be integrally closed in its quotient field K. Let E be a

finite separable extension of K, and B the integral closure of A in E. Let p be

a maximal ideal ofA. Then there exists only a finite number ofprime ideals of
B lying above p.

Proof. Let L be the smallest Galois extension of K containing E. If.Q t,

.Q2 are two distinct prime ideals of B lying above p, and h 2 are two prime
ideals of the integral closure of A in L lying above .Qt and .Q2 respectively, then

t =F 2. This argument reduces our assertion to the case that E is Galois

over K, and it then becomes an immediate consequence of the proposition.
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Let A be integrally closed in its quotient field K, and let B be its integral
closure in a finite Galois extension L, with group G. Then (JB = B for every

a E G. Let p be a maximal ideal of A, and a maximal ideal of B lying above p.

We denote by G'J\ the subgroup of G consisting of those automorphisms such

that (J =. Then G'J\ operates in a natural way on the residue class field

B/, and leaves Alp fixed. To each (J E G'J\ we can associate an automorphism
ii of B/ over Alp, and the map given by

(JI-+(J

induces a homomorphism of G'J\ into the group of automorphisms of B/
over Alp.

The group G'J\ will be called the decomposition group of. Its fixed field

will be denoted by Ldec, and will be called the decomposition field of. Let

B
dec

be the integral closure of A in Ldec, and .Q = n Bdec. By Proposition 2.1,
we know that is the only prime of B lying above .Q.

Let G = U (JjG'J\ be a coset decomposition of G in G. Then the prime
ideals (J

j
are precisely the distinct primes of B lying above p. Indeed, for two

elements (J, ! E G we have a = t if and only if t-l(J = , i.e. t-
1

(J lies in

G'J\. Thus t, (J lie in the same coset mod G.
It is then immediately clear that the decomposition group of a prime (J

is aG'J\ (J
-

1.

Proposition 2.3. The field L
dec

is the smallest subfield E of L containing
K such that is the only prime of B lying above n E (which is prime in

B n E).

Proof. Let E be as above, and let H be the Galois group of Lover E. Let

q
= n E. By Proposition 2.1, all primes of B lying above q are conjugate by

elements of H. Since there is only one prime, namely , it means that H leaves

invariant. Hence G c G'J\ and E ::J Ldec. We have already observed that

L
dec

has the required property.

Proposition 2.4. Notation being as above, we have Alp = Bdec/.Q (under
the canonical injection Alp -+ B

dec

I.Q).

Proof. If a is an element of G, not in G'J\' then (J =F and (J-l =F .

Let

.Qu = (J-l n Bdec.

Then .Qa =F.Q. Let x be an element of Bdec. There exists an element y of B
dec

such that

y = x (mod.Q)

y = 1 (mod .Qa)
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for each u in G, but not in G'J\. Hence in particular,

y = x (mod)

y = 1 (mod u-
1

)

for each u not in G'J\. This second congruence yields

uy = 1 (mod)

for all u rt G'J\. The norm of y from L
dec

to K is a product of y and other factors

uy with u rt G'J\. Thus we obtain

N
LdeC

{ )
_

K Y = X (mod ).

But the norm lies in K, and even in A, since it is a product of elements integral
over A. This last congruence holds mod .Q, since both x and the norm lie in

B
dec

. This is precisely the meaning of the assertion in our proposition.

If x is an element of B, we shall denote by x its image under the homo-

morphism B -+ B/. Then u is the automorphism ofB/ satisfying the relation

ux = (ux).

If f{X) is a polynomial with coefficients in B, we denote by!{X) its natural

image under the above homomorphism. Thus, if

f{X) = bnX
n

+ ... + bo ,

then

!(X) = Dn xn + ... + Do.

Proposition 2.5. Let A be integrally closed in its quotient field K, and let

B be its integral closure in a finite Galois extension L of K, with group G.

Let p be a maximal ideal of A, and a maximal ideal of B lying above p.

Then B/ is a normal extension of A/p, and the map u 1-+ U induces a homo-

morphism of G'J\ onto the Galois group of B/ over A/p.

Proof. Let B = B/ and A = A/p. Any element of B can be written as

x for some x E B. Let x generate a separable subextension of B over A, and let

f be the irreducible polynomial for x over K. The coefficients of f lie in A

because x is integral over A, and all the roots off are integral over A. Thus

m

f{X) = n (X
-

Xi)
i = 1
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splits into linear factors in B. Since

m

J(X) = L (X -

Xi)
i = 1

and all the Xi lie in B, it follows thatJsplits into linear factors in B. We observe

that f(x) = 0 implies J(x) = o. Hence B is normal over A, and

[A(x) : A] < [K(x): K] < [L: K].

ThIs implies that the maximal separable subextension of A in B is of finite

degree over A (using the primitive element theorem of elementary field theory).
This degree is in fact bounded by [L : K].

There remains to prove that the map (J 1---+ if gives a surjective homo-

morphism of G'J\ onto the Galois group of B over A. To do this, we shall give
an argument which reduces our problem to the case when is the only prime
ideal of B lying above p. Indeed, by Proposition 2.4, the residue class fields of

the ground ring and the ring B
dec

in the decomposition field are the same.

This means that to prove our surjectivity, we may take Ldec as ground field.

This is the desired reduction, and we can assume K = Ldec, G = G'J\.
This being the case, take a generator of the maximal separable subextension

of 13 over A, and let it be x, for some element x in B. Let f be the irreducible

polynomial of x over K. Any automorphism of B is determined by its effect

on X, and maps x on some root ofJ. Suppose that x = x 1. Given any root Xi

off, there exists an element (J of G = G'J\ such that (JX =

Xi. Hence ifx = Xi.
Hence the automorphisms of B over A induced by elements of G operate

transitively on the roots of J. Hence they give us all automorphisms of the

resid ue class field, as was to be shown.

Corollary 2.6. Let A be integrally closed in its quotient field K. Let L be a

finite Galois extension of K, and B the integral closure of A in L. Let p be a

maximal ideal ofA. Let cp: A Alp be the canonical homomorphism, and let

t/1I' t/12 be two homomorphisms of B extending cp in a given algebraic closure

ofAlp. Then there exists an automorphism (]" of Lover K such that

t/J 1
= t/J 2

0 (J.

Proof. The kernels of 1/1 1, 1/1 2 are prime ideals of B which are conjugate

by Proposition 2.1. Hence there exists an element! of the Galois group G

such that t/J 1, 1/1 2
0 ! have the same kernel. Without loss of generality, we may

therefore assume that 1/1 l' 1/12 have the same kernel. Hence there exists an

automorphism w of 1/1 1 (B) onto 1/1 2(B) such that W 0 1/1 1
= 1/1 2. There exists an

element (J of G'J\ such that w 0 1/1 1
= 1/1 1

0 (J, by the preceding proposition. This

proves what we wanted.
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Remark. In all the above propositions, we could assume p prime instead

of maximal. In that case, one has to localize at p to be able to apply our proofs.

In the above discussions, the kernel of the map

G'J\ -+ G'J\

is called the inertia group of. It consists of those automorphisms of G'J\
which induce the trivial automorphism on the residue class field. Its fixed field

is called the inertia field, and is denoted by L
in

.

Corollary 2.7. Let the assumptions be as in Corollary 2.6 and assume that

is the only prime of B lying above p. Let f(X) be a polynomial in A[X]
with leading coefficient 1. Assume that f is irreducible in K[X], and has a

root rx in B. Then the reduced polynomialf is a power of an irreducible poly-
nomial in A[X].

Proof. By Corollary 2.6, we know that any two roots off are conjugate
under some isomorphism of B over A, and hence thatfcannot split into relative

prime polynomials. Therefore, f is a power of an irreducible polynomial.

Proposition 2.8. Let A be an entire ring, integrally closed in its quotient

field K. Let L be a finite Galois extension of K. Let L = K(rx), where rx is

integral over A, and let

f(X) = xn + an_1X
n
- 1

+ ... + ao

be the irreducible polynomial of rx over k, with ai E A. Let p be a maximal

ideal in A, let be a prime ideal of the integral closure B of A in L, lying
above p. Let f(X) be the reduced polynomial with coefficients in Alp. Let

G'J\ be the decomposition group. If f has no multiple roots, then the map

(J 1-+ U has trivial kernel, and is an isomorphism of G'J\ on the Galois group of

f over Alp.

Proof. Let

f(X) = n (X - Xi)

be the factorization of f in L. We know that all Xi E B. If (J E G", then we

denote by a the homomorphic image of (J in the group G
'J\'

as before. We

have

f(x) = n (X -

Xi)'

Suppose that ax; = Xi for all i. Since ((Jx;) = axi ,
and since fhas no multiple

roots, it follows that (J is also the identity. Hence our map is injective, the in-

ertia group is trivial. The field A[x l'
. . .

, xn] is a subfield of B and any auto-
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morphism of B over A which restricts to the identity on this subfield must be

the identity, because the map G'J\ -. G'J\ is onto the Galois group of B over A.

Hence B is purely inseparable over A[x I' . . .

, xn] and therefore G'J\ is iso-

morphic to the Galois group of J over A.

Proposition 2.8 is only a special case of the more-general situation when

the root of a polynomial does not necessarily generate a Galois extension. We

state a version useful to compute Galois groups.

Theorem 2.9. Let A be an entire ring, integrally closed in its quotient field
K. Let f(X) E A[X] have leading coefficient 1 and be irreducible over K

(or A, it's the same thing). Let p be a maximal ideal ofA and let J = f mod p.

Suppose that J has no multiple roots in an algebraic closure of A/p. Let

L be a splitting field for f over K, and let B be the integral closure of A in

L. Let be any prime of B above p and let a bar denote reduction mod p.

Then the map

G'J\ -. G'J\

is an isomorphism of G'J\ with the Galois group ofJ over A.

Proof. Let (rx l ,
. . .

,
rx

n ) be the roots off in B and let (ai' . . .
, an) be their

reductions mod. Since

n

f(X) = n (X -

rx;),
i = 1

it follows that

n

J(X) = n (X - a;).
i = I

Any element of G is determined by its effect as a permutation of the roots, and

for (J E G'J\' we have

(j 'ii = (Jrx
;.

Hence if u = id then (J = id, so the map G'J\ -. G'J\ is injective. It is surjective

by Proposition 2.5, so the theorem is proved.

This theorem justifies the statement used to compute Galois groups in Chapter

VI, 2.

Theorem 2.9 gives a very efficient tool for analyzing polynomials over a

rlng.

Example. Consider the "generic" polynomial

fw(X) = xn + wn_Ixn-1 +... + W
o



346 EXTENSION OF RINGS VII, 3

where wo, . . . , Wn-I are algebraically independent over a field k. We know that

the Galois group of this polynomial over the field K =

k(wo, . . .

, wn-I) is the

symmetric group. Let t l ,
. . .

, t
n

be the roots. Let a be a generator of the splitting
field L; that is, L = K(a). Without loss of generality, we can select a to be

integral over the ring k[wo, . . .

, wn-I ](multiply any given generator by a suitably
chosen polynomial and use Proposition 1.1). Let gw(X) be the irreducible poly-
nomial of a over k(wo, . . .

, Wn-I). The coefficients of 9 are polynomials in (w).

If we can substitute values (a) for (w) with ao, . . .
, an-I E k such that ga remains

irreducible, then by Proposition 2.8 we conclude at once that the Galois group

of ga is the symmetric group also. Similarly, if a finite Galois extension of

k(wo, . . .
, wn-I) has Galois group G, then we can do a similar substitution to

get a Galois extension ofk having Galois group G, provided the special polynomial

ga remains irreducible.

Example. Let K be a number field; that is, a finite extension of Q. Let 0

be the ring of algebraic integers. Let L be a finite Galois extension of K and ()

the algebraic integers in L. Let p be a prime of 0 and a prime of () lying above

p. Then ojp is a finite field, say with q elements. Then ()j is a finitextension
of ojp, and by the theory of finite fields, there is a unique element in G'J\' called

the Frobenius element Fr'J\ ' such that Fr'J\(i)
= iq for i E ()j. The conditions

of Theorem 2.9 are satisfied for all but a finite number of primes p, and for such

primes, there is a unique element Fr'J\ E G'J\ such that Fr'J\(x)
= xq mod for all

x E () . We call Fr'J\ the Frobenius element in G'J\. Cf. Chapter VI, 15, where

some of the significance of the Frobenius element is explained.

3. EXTENSION OF HOMOMORPHISMS

When we first discussed the process of localization, we considered very

briefly the extension of a homomorphism to a local ring. In our discussion of

field theory, we also described an extension theorem for embeddings of one

field into another. We shall now treat the extension question in full generality.
First we recall the case of a local ring. Let A be a commutative rin,g and p

a prime ideal. We know that the local ring Ap is the set of all fractions x/y, with

x, YEA and Y fj. p. Its maximal ideal consists of those fractions with x E p. Let

L be a field and let cp: A L be a homomorphism whose kernel is p. Then we

can extend cp to a homomorphism of A" into L by letting

({J(X/Y) = ({J(x)/({J(Y)

if x/y is an element of A" as above.

Second, we have integral ring extensions. Let 0 be a local ring with maximal

ideal m, let B be integral over 0, and let ({J : 0 -. L be a homomorphism of 0
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into an algebraically closed field L. We assume that the kernel of qJ is m. By

Proposition 1.10, we know that there exists a maximal ideal 9J1 of B lying above

m, i.e. such that 9Jl n 0 = m. Then BI9Jl is a field, which is an algebraic exten-

sion of o/m, and o/m is isomorphic to the subfield qJ(o) of L because the kernel

of qJ is m.

We can find an isomorphism of o/m onto qJ(o) such that the composite

homomorphism

o -+ o/m -+ L

is equal to qJ. We now embed BI9Jl into L so as to make the following diagram
commutative:

B ) BI9Jl

1 1
o ) o/m ) L

and in this way get a homomorphism of B into L which extends qJ.

Proposition 3.1. Let A be a subring of B and assume that B is integral over

A. Let qJ: A -+ L be a homomorphism into a field L which is algebraically
closed. Then qJ has an extension to a homomorphism of B into L.

Proof. Let p be the kernel of qJ and let S be the complement of p in A.

Then we have a commutative diagram

) S-
1
B

1
) S-IA = A

"

B

1
A

and qJ can be factored through the canonical homomorphism of A into S-1 A.

Furthermore, S-1 B is integral over S-1 A. This reduces the question to the

case when we deal with a local ring, which has just been discussed above.

Theorem 3.2. Let A be a subring of a field K and let x E K, x =F O. Let

qJ : A -+ L be a homomorphism of A into an algebraically closed field L.

Then qJ has an extension to a homomorphism of A[x] or A[x-
1

] into L.

Proof. We may first extend qJ to a homomorphism of the local ring A",
where p is the kernel of qJ. Thus without loss of generality, we may assume that

A is a local ring with maximal ideal m. Suppose that

mA[x-
1

] = A[x-
1

].



348 EXTENSION OF RINGS VII, 93

Then we can write

1
-I -n

=

ao + alx +. . . + anx

with ai E m. Multiplying by x
n

we obtain

(1 -

ao)xn + b
n
- IX

n
- I

+ . . . + bo
= 0

with suitable elements b i E A. Since ao E m, it follows that 1 -

ao rt m and

hence 1 -

ao is a unit in A because A is assumed to be a local ring. Dividing

by 1 -

ao we see that x is integral over A, and hence that our homomorphism
has an extension to A [x] by Proposition 3.1.

If on the other hand we have

mA[x-
l

] =F A[x-
I

]

then mA[x-
l

] is contained in some maximal ideal of A[x- I] and n A

contains m. Since m is maximal, we must have n A = m. Since qJ and the

canonical map A -+ Aim have the same kernel, namely m, we can find an

embedding t/J of Aim into L such that the composite map

A -+ Aim L

is equal to qJ. We note that Aim is canonically embedded in B/ where

B = A[x
-

I], and extend t/J to a homomorphism of B/ into L, which we can

do whether the image of x-
1

in B/ is transcendental or algebraic over Aim.
The composite B B/ -+ L gives us what we want.

Corollary 3.3. Let A be a subring ofafield K and let L be an algebraically
closed field. Let qJ : A -+ L be a homomorphism. Let B be a maximal subring

of K to which qJ has an extension homomorphism into L. Then B is a local

ring and if x E K, x =F 0, then x E B or X-I E B.

Proof. Let S be the set of pairs (C, t/J) where C is a subring of K and

t/J : C -+ L is a homomorphism extending qJ. Then S is not empty (containing

(A, qJ)], and is partially ordered by ascending inclusion and restriction. In

other words, (C, t/J) < (C', t/J') if C c C' and the restriction of t/J' to C is equal
to t/J. It is clear that S is inductively ordered, and by Zorn's lemma there exists

a maximal element, say (B, t/J 0). Then first B is a local ring, otherwise t/J 0 extends

to the local ring arising from the kernel, and second, B has the desired property

according to Theorem 3.2.

Let B be a subring of a field K having the property that given x E K, x =t= 0,

then x E B or X-I E B. Then we call B a valuation ring in K. We shall study
such rings in greater detail in Chapter XII. However, we shall also give some

applications in the next chapter, so we make some more comments here.
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Let F be a field. We let the symbol 00 satisfy the usual algebraic rules. If

a E F, we define

a + 00 = 00, a.oo=oo if a # 0,

1 1
00 . 00 =

00,
- = 00 and - = o.
0 00

The expressions 00 + 00,0.00, 0/0, and 00/00 are not defined.

A place ({J of a field K into a field F is a mapping

cp: K -. {F, oo}

of K into the set consisting of F and 00 satisfying the usual rules for a homo-

morphism, namely

lfJ(a + b) = lfJ(a) + ((J(b),

cp(ab) = lfJ(a)lfJ(b)

whenever the expressions on the right-hand side of these formulas are defined,

and such that ({J( 1) = 1. We shall also say that the place is F-valued. The

elements of K which are not mapped into 00 will be called finite under the place,
and the others will be called infinite.

The reader will verify at once that the set 0 of elements of K which are

finite under a place is a valuation ring of K. The maximal ideal consists of those

elements x such that ({J(x) = O. Conversely, if 0 is a valuation ring of K with

maximal ideal m, we let cp: 0 -. o/m be the canonical homomorphism, and

define ({J(x) = 00 for x E K, x rt o. Then it is trivially verified that lfJ is a place.
If ({Jl : K -. {F bOO} and ({J2 : K -. {F2, oo} are places of K, we take their

restrictions to their images. We may therefore assume that they are surjective.
We shall say that they are equivalent if there exists an isomorphism A.: F 1

-. F2

such that ({J2
=

({J lOA.. (We put A.( 00) = 00.) One sees that two places are

equivalent if and only if they have the same valuation ring. It is clear that there

is a bijection between equivalence classes of places of K, and valuation rings of

K. A place is called trivial if it is injective. The valuation ring of the trivial place
is simply K itself.

As with homomorphisms, we observe that the composite of two places is also

a place (trivial verification).
It is often convenient to deal with places instead of valuation rings, just as it is

convenient to deal with homomorphisms and not always with canonical homo-

morphisms or a ring modulo an ideal.

The general theory of valuations and valuation rings is due to Krull, All-

gemeine Bewertungstheorie, J. reine angew. Math. 167 (1932), pp. 169-196.

However, the extension theory of homomorphisms as above was realized only
around 1945 by Chevalley and Zariski.
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We shall now give some examples of places and valuation rings.

Example 1. Let p be a prime number. Let Z(p) be the ring of all rational

numbers whose denominator is not divisible by p. Then Z(p) is a valuation ring.
The maximal ideal consists of those rational numbers whose numerator is divisible

by p.

Example 2. Let k be a field and R = k[X] the polynomial ring in one

variable. Let p
=

p(X) be an irreducible polynomial. Let 0 be the ring of rational

functions whose denominator is not divisible by p. Then 0 is a valuation ring,
similar to that of Example 1.

Example 3. Let R be the ring of power series k[[X]] in one variable. Then

R is a valuation ring, whose maximal ideal consists of those power series divisible

by X. The residue class field is k itself.

Example 4. Let R = k[[X l' . . .

, Xn]] be the ring of power series in several

variables. Then R is not a valuation ring, butR is imbedded in the field of repeated

power series k«X 1 ))«X2 ))
· · ·

«Xn )) =

Kn. By Example 3, there is a place of

Kn which is Kn-l-valued. By induction and composition, we can define a

k-valued place of Kn. Since the field of rational functions k(Xl' . . .
,

X
n ) is

contained in Kn, the restriction of this place to k(X l' . . . ,
X

n ) gives a k-valued

place of the field of rational functions in n variables.

Example 5. In Chapter XI we shall consider the notion of ordered field.

Let k be an ordered subfield of an ordered field K. Let 0 be the subset of elements

of K which are not infinitely large with respect to k. Let m be the subset of

elements of 0 which are infinitely small with respect to k. Then 0 is a valuation

ring in K and m is its maximal ideal.

The following property of places will be used in connection with projective

space in the next chapter.

Proposition 3.4. Let cp: K {L, oo} be an L-valued place of K. Given a

finite number of non-zero elements Xl, . . .
, X

n
E K there exists an index j such

that cp is finite on xiiXj for i = 1,..., n.

Proof. Let B be the valuation ring of the place. Define Xi
<

Xj to mean that

xilxj E B. Then the relation < is transitive, that is if Xi
<

Xj and Xj
<

X
r

then

Xi
<

Xr- Furthermore, by the property of a valuation ring, we always have

Xi
<

Xj or Xj
<

Xi for all pairs of indices i, j. Hence we may order our ele-

ments, and we select the index j such that Xi
<

Xj for all i. This index j
satisfies the requirement of the proposition.

We can obtain a characterization of integral elements by means of val-

uation rings . We shall use the following terminology. If 0, .0 are local

rings with maximal ideals m, 9Jl respectively, we shall say that .0 lies above 0

if 0 c .0 and 9Jl n 0 = m. We then have a canonical injection o/m .o/9Jl.
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Proposition 3.5. Let 0 be a local ring contained in a field L. An element x o.f
L is integral over 0 if' and only if x lies in every valuation ring .0 oj'L lying
above o.

Proof Assume that x is not integral over o. Let m be the maximal ideal of o.

Then the ideal (m, 1/x) of o[l/x] cannot be the entire ring, otherwise we can

write

-1 = a
n(1/x)n + . . . + at (l/x) + y

with y E m and ai E o. From this we get

(I + y)xn + . . . + an
= O.

But 1 + Y is not in m, hence is a unit of o. We divide the equation by 1 + Y to

conclude that x is integral over 0, contrary to our hypothesis. Thus (m, l/x) is

not the entire ring, and is contained in a maximal ideal , whose intersection

with 0 contains m and hence must be equal to m. Extending the canonical homo-

morphism 0[1/x] -. o[l/x]/ to a homomorphism of a valuation ring .0 of L,
we see that the image of I/x is 0 and hence that x cannot be in this valuation ring.

Conversely, assume that x is integral over 0, and let

x
n

+ an-l x
n
- l

+ · . . + ao
= 0

be an integral equation for x with coefficients in o. Let 0 be any valuation ring
of L lying above o. Suppose x fj. .0. Let cp be the place given by the canonical

homomorphism of .0 modulo its maximal ideal. Then cp(x) = 00 so cp( 1 /x) = 0..

Divide the above equation by x
n

, and apply cpo Then each term except the first

maps to 0 under cp, so we get cp( 1) = 0, a contradiction which proves the

proposition.
..

Proposition 3.6. Let A be a ring contained in a field L. An element x of L

is integral over A if and only ifx lies in every valuation ring .0 ofL containing

A. In terms ofplaces, x is integral over A if and only if every place of L finite
on A is finite on x.

Proof. Assume that every place finite on A is finite on x . We may assume

x =t= o. If 1/x is a unit in A[ 1/x] then we can write

x
=

Co + cI(I/x) + ... + c
n_I(I/x)n-l

with Ci E A and some n. Multiplying by x
n
- l

we conclude that x is integral over

A. If 1/x is not a unit in A [ 1/x], then 1/x generates a proper principal ideal.

By Zorn's lemma this ideal is contained in a maximal ideal IDl. The homomorphism
A [ 1/x] A [ 1/x] /m can be extended to a place which is a finite on A but maps
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1/x on 0, so x on 00, which contradicts the possibility that 1/x is not a unit in

A [1/x] and proves that x is integral over A. The converse implication is proved

just as in the second part of Proposition 3.5.

Remark. Let K be a subfield of L and let x E L. Then x is integral over

K if and only if x is algebraic over K. So if a place cp of L is finite on K, and x

is algebraic over K, then cp is finite on K(x). Of course this is a trivial case of

the integrality criterion which can be seen directly. Let

x
n

+ an_Ix
n
- 1

+ ... + ao
= 0

be the irreducible equation for x over K. Suppose x =t= o. Then ao =t= O. Hence

cp(x) =t= 0 immediately from the equation, so cp is an isomorphism of K(x) on its

Image.

The next result is a generalization whose technique of proof can also be used

in Exercise 1 of Chapter IX (the Hilbert-Zariski theorem).

Theorem 3.7. General Integrality Criterion. Let A be an entire ring.

Let Z
I' . . .

, Zm be elements ofsome extensionfield of its quotientfield K. Assume

that each Zs (s = 1,..., m) satisfies a polynomial relation

Zs + gs(zl, ..., zm)
= 0

where gs(ZI, . . .
, Zm) E A[ZI' . . . , Zm] is a polynomial of total degree < d

s ,

and that any pure power of Zs occuring with non-zero coefficient in gs occurs

with a power strictly less than d
s

. Then ZI, . . .
, Zm are integral over A.

Proof. We apply Proposition 3.6. Suppose some Zs is not integral over A.

There exists a place cp of K, finite on A, such that cp(zs)
= 00 for some s. By

Proposition 3.4 we can pick an index s such that cp(Zj/Zs) =t= 00 for all j . We

divide the polynomial relation of the hypothesis in the lemma by z'js and apply
the place. By the hypothesis on gs, it follows that cp(gs(z)/z'fs ) = 0, whence we

get 1 = 0, a contradiction which proves the theorem.

EXERCISES

1. Let K be a GaloIs extensIon of the rationals Q, wIth group G. Let B be the Integral
closure of Z in K, and let a E B be such that K = Q(a). Let f(X) = Irr(a, Q, X), Let

p be a prIme number, and assume that f remains irreducIble mod p over Z/pZ, What

can you say about the Galois group G? (ArtIn asked this question to Tate on his qualify-

ing exam,)

2, Let A be an entIre ring and K its quotIent field. Let t be transcendental over K, If A

is integrally closed, show that A[t] is integrally closed,
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For the following exercises, you can use 91 of Chapter X.

3, Let A be an entire nng, Integrally closed in its quotient field K, Let L be a finite separable
extension of K, and let B be the integral closure of A in L. If A is Noetherian, show that

B IS a finite A-module. [Hint: Let {Wt, .

.., WII} be a basis of Lover K. Multiplying
all elements of this basis by a suitable element of A, we may assume without loss of

generality that all Wi are integral over A. Let {w't, . . .
, w} be the dual basis relative to

the trace, so that Tr(w;wj) = b;j' Write an element (1 of L integral over A in the form

(1 = b 1 w't + ' . . + b
ll w

with h
j

E K, Taking the trace Tr(aw;), for i = 1" . .
, n, conclude that B is contained

in the finite module Aw; + ... + Aw.] Hence B is Noetherian.

4, The preceding exercise applies to the case when A = Z and k = Q. Let L be a finite

extension of Q and let 0
L be the ring of algebraic integers in L. Let ai' . . .

, an be

the distinct embeddings of L into the complex numbers. Embedded 0L into a Euclidean

space by the map

a (al a, . . .
, ana),

Show that in any bounded region of space, there is only a finite number of elements

of OLe [Hint: The coefficients in an integral equation for a are elementary symmetric
functions of the conjugates of a and thus are bounded integers,] Use Exercise 5 of

Chapter III to conclude that 0L is a free Z-module of dimension <
n. In fact, show

that the dimension is n, a basis of 0L over Z also being a basis of Lover Q,

5. Let E be a finite extension of Q, and let 0
E be the ring of algebraic integers of E. Let

U be the group of units of 0 E. Let ai' . . .
, an be the distinct embeddings of E into

C, Map U into a Euclidean space, by the map

I: a(log 100tal,..., log 10"11(11).

Show that l( U) IS a free abelian group, finitely generated, by showing that in any finIte

region of space, there is only a finite number of elements of l( U), Show that the kernel

of lis a finite group, and is therefore the group of roots of unity in E. Thus U itself is a

finitely generated abelian group.

6. Generalize the results of 92 to infinite Galois extensions, especially Propositions 2.1

and 2.5, using Zorn's lemma,

7. Dedekind rings. Let 0 be an entire ring which is Noetherian, integrally closed, and

, such that every non-zero prime ideal is maximal. Define a fractional ideal a to be an

o -submodule =1= 0 of the quotient field K such that there exists cEO, c =1= 0 for which

c a CO. Prove that the fractional ideals form a group under multiplication. Hint

following van der Waerden: Prove the following statements in order:

(a) Given an ideal a =1= 0 in 0, there exists a product of prime ideals

PI...PrCa.

(b) Every maximal ideal P is invertible, i.e. if we let p-
I

be the set of elements

x E K such that x pC 0
,

then p
- I

P
= 0,

(c) Every non-zero ideal is invertible, by a fractional ideal. (Use the Noetherian

property that if this is not true, there exists a maximal non-invertible ideal

a, and get a contradiction.)
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8. Using prime ideals instead of prime numbers for a Dedekind ring A, define the notion

of content as in the Gauss lemma, and prove that iff(X), g(X) E A[X] are polynomials

of degree
> 0 with coefficients in A, then cont(fg) = cont(j)cont(g). Also if K is

the quotient field of A, prove the same statement for f, 9 E K[X].

9. Let A be an entire ring, integrally closed. Let B be entire, integral over A. Let Q.,

Q2 be prime ideals of B with Q I
:J Q2 but Q I =1= Q2. Let P;

=

Q; n A, Show that

PI =1= P
2

.

10. Let n be a positive integer and let (, (' be primitive n-th roots of unity.

(a) Show that (1
-

0/(1
-

(') is an algebraic integer.

(b) If n
> 6 is divisible by at least two primes, show that 1 -

(is a unit in the

ring Z[.

11. Let p be a prime and ( a primitive p-th root of unity. Show that there is a principal

ideal J in Z[(] such that JP-I = (p) (the principal ideal generated by p),

Symmetric Polynomials

12. Let F be a field of characteristic o. Let t) ,
. , .

,
t
n be algebraically independent over F.

Let 5), , . .

, Sn be the elementary symmetric functions. Then R = F[t), , . .

, tn] is an

integral extension of S = F[s), , , ,

, sn], and actually is its integral closure in the

rational field F(t)".., tn). Let W be the group of permutation of the variables

t),...,tn
.

(a) Show that S = R
W

is the fixed subring of R under W.

(b) Show that the elements t1
. . .

tn with 0 < '; < n
- i form a basis of Rover

S, so in particular, R is free over S.

I am told that the above basis is due to Kronecker. There is a much more interesting

basis, which can be defined as follows.

Let a), . , .

, an be the partial derivatives with respect to t)" , .

, tn, so a; = a/at;, Let

P E F[t] = F[t) ,
, , ,

,
tn ]. Substituting a; for ti (i = 1, . , ,

, n) gives a partial differential

operator P(a) = P(a), . . .

, an) on R. An element of S can also be viewed as an element of

R. Let Q E R. We say that Q is W-harmonic if P(a) Q = 0 for all symmetric polynomials
PES with 0 constant term. It can be shown that the W-harmonic polynomials form a

finite dimensional space. Furthermore, if {H) ,
. , .

,
HN} is a basis for this space over F,

then it is also a basis for Rover S. This is a special case of a general theorem of Che-

valley. See [La 99b], where the special case is worked out in detail.



CHAPTER VIII

Transcendental Extensions

Both for their own sake and for applications to the case of finite exten-

sions of the rational numbers, one is led to deal with ground fields which are

function fields, i.e. finitely generated over some field k, possibly by elements

which are not algebraic. This chapter gives some basic properties of such

fields.

1. TRANSCENDENCE BASES

Let K be an extension field of a field k. Let S be a subset of K. We

recall that S (or the elements of S) is said to be algebraically independent
over k, if whenever we have a relation

o = L a(v)M(v)(S) = L a(v) n x
vex)

xeS

with coefficients a(v) E k, almost all a(v)
= 0, then we must necessarily have all

a(v)
= o.

We can introduce an ordering among algebraically independent subsets of

K, by ascending inclusion. These subsets are obviously inductively ordered,

and thus there exist maximal elements. If S is a subset of K which is

algebraically independent over k, and if the cardinality of S is greatest among

all such subsets, then we call this cardinality the transcendence degree or

dimension of Kover k. Actually, we shall need to distinguish only between

finite transcendence degree or infinite transcendence degree. We observe that

355



356 TRANSCENDENTAL EXTENSIONS VIII, 1

the notion of transcendence degree bears to the notion of algebraic indepen-
dence the same relation as the notion of dimension bears to the notion of

linear independence.
We frequently deal with families of elements of K, say a family {Xi}iel'

and say that such a family is algebraically independent over k if its elements

are distinct (in other words, Xi =F x
j

if i =F j) and if the set consisting of the

elements in this family is algebraically independent over k.

A subset S of K which is algebraically independent over k and is maximal

with respect to the inclusion ordering will be called a transcendence base of

Kover k. From the maximality, it is clear that if S is a transcendence base

of Kover k, then K is algebraic over k(S).

Theorem 1.1. Let K be an extension of a field k. Any two transcendence

bases of Kover k have the same cardinality. If r is a subset of K such that

K is algebraic over k(r), and S is a subset of r which is algebraically indepen-
dent over k, then there exists a transcendence base of Kover k such that

S C (B C r.

Proof. We shall prove that if there exists one finite transcendence base, say

{xI' . . .

, x
m}, m

>
1, m minimal, then any other transcendence base must also

have m elements. For this it will suffice to prove: If Wb . . .
,

W
n

are elements

of K which are algebraically independent over k then n
<

m (for we can then

use symmetry). By assumption, there exists a non-zero irreducible polynomial

fl in m + 1 variables with coefficients in k such that

fl (w I' XI' . . .
, xm)

= o.

After renumbering xI' . . .
, X

m
we may write fl

=

gj(WI' X2, . . .
, x

m) x1 with

some gN =t= 0 with some N > 1. No irreducible factor of gN vanishes on

(WI' X2, . . .

, x
n), otherwise WI would be a root of two distinct irreducible polyno-

mials over k(XI' . ..

,
x

m). Hence XI is algebraic over k(wI' x2' . ..
, x

m) and

Wb X2, ...
, X

m
are algebraically independent over k, otherwise the minimal-

ity of m would be contradicted. Suppose inductively that after a suitable re-

numbering of X2, . . .

,
X

m
we have found WI' . ..

,
W

r (r < n) such that K is

algebraic over k(w l ,
...

,
W

n
X

r+ I'
...

, x
m). Then there exists a non-zero

polynomial f in m + 1 variables with coefficients in k such that

f(wr+l, WI' ... , W
r , Xr+l, ... , x

m) = o.

Since the w' s are algebraically independent over k, it follows by the same argument

as in the first step that some Xj' say x
r + I' is algebraic over k(WI' . ..

,
w

r + I'

x
r+2, . ..

,
x

m). Since a tower of algebraic extensions is algebraic, it follows

that K is algebraic over k(wI' . ..
,

W
r + I' X

r+2, . ..
,

x
m). We can repeat the

procedure, and if n
>

m we can replace all the x's by w's, to see that K is

algebraic over k(wI' . . .
,

w
m). This shows that n

>
m implies n

=

m, as desired.



VIII, 2 NOETHER NORMALIZATION THEOREM 357

We have now proved: Either the transcendence degree is finite, and is

equal to the cardinality of any transcendence base, or it is infinite, and every

transcendence base is infinite. The cardinality statement in the infinite case

will be left as an exercise. We shall also leave as an exercise the statement

that a set of algebraically independent elements can be completed to a

transcendence base, selected from a given set I such that K is algebraic over

k(f). (The reader will note the complete analogy of our statements with those

concerning linear bases.)

Note. The preceding section is the only one used in the next chapter. The

remaining sections are more technical, especially 3 and which will not be

used in the rest of the book. Even 2 and 5 will only be mentioned a

couple of times, and so the reader may omit them until they are referred to

again.

2. NOETHER NORMALIZATION THEOREM

Theorem 2.1. Let k[x l , ..., xn] = k[x] be a finitely generated entire ring
over a field k, and assume that k(x) has transcendence degree r. Then there

exist elements YI, ..., Yr in k[x] such that k[x] is integral over

kEy] = k[Yl' ..., Yr].

Proof If (x I' . . .

,
x

n ) are already algebraically independent over k, we

are done. If not, there is a non-trivial relation

L a(j)x{l
... xn = 0

with each coefficient a(j) E k and a(j) =F o. The sum is taken over a finite

number of distinct n-tuples of integers (j I' . .., jn)' jv > O. Let m2, ..., m
n

be

positive integers, and put

m2 m
n

Y2
= X

2
-

XI ,..., Yn
= X

n

-

XI .

Substitute Xi
=

Yi + Xi (i = 2, ..., n) in the above equation. Using vector

notation, we put (m) = (1, m2, ...,
m

n ) and use the dot product (j)' (m) to

denote jl + m
2 j2 +

...

+ mnjn' If we expand the relation after making the

above substitution, we get

" (j)'(m)
+ f( )

- 0c
(j)

X I
X I' Y2' . . .

, Yn
-

where f is a polynomial in which no pure power of X I appears. We now

select d to be a large integer [say greater than any component of a vector (j)
such that c(j) =F 0] and take

(m) = (1, d, d
2

,
..

.,
d

n

).
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Then all (j). (m) are distinct for those (j) such that c
U) =F o. In this way we

obtain an integral equation for Xl over k[Y2'.'" Yn]. Since each Xi (i > 1)
is integral over k[x l , Y2, ..., Yn]' it follows that k[x] is integral over

k[Y2' ..., Yn]. We can now proceed inductively, using the transitivity of

integral extensions to shrink the number of y's until we reach an alge-

braically independent set of y's.

The advantage of the proof of Theorem 2.1 is that it is applicable when k

is a finite field. The disadvantage is that it is not linear in Xl' ..., Xn. We

now deal with another technique which leads into certain aspects of algebraic

geometry on which we shall comment after the next theorem.

We start again with k[x l ,..., xn] finitely generated over k and entire.

Let (Uij) (i, j = 1, . .

., n) be algebraically independent elements over k(x), and

let ku = k(u) = k(Uij)all i,j. Put

n

Y
. =

"
U..X.

I U J.

j=l

This amounts to a generic linear change of coordinates in n-space, to use

geometric terminology. Again we let r be the transcendence degree of k(x)
over k.

Theorem 2.2. With the above notation, ku[x] is integral over

ku [y l, .. .

, Yr ].

Proof Suppose some Xi is not integral over ku [y l, . . .
, Yr]. Then there

exists a place qJ of ku(Y) finite on ku [y l, . . .
, Yr] but taking the value 00 on

some Xi. Using Proposition 3.4 of Chapter VII, and renumbering the indices

if necessary, say qJ(xj/xn ) is finite for all i. Let zj = qJ(Xj/xn ) for j = 1, . ..
,

n.

Then dividing the equations Yi
= L uijxj by X

n (for i = 1, . . .
, r) and applying

the place, we get

0= UllZ; + Ul2Z +... + U ln ,

o = U
r 1 Z + U

r2 Z +
. ..

+ Urn.

The transcendence degree of k(z') over k cannot be r, for otherwise, the place
qJ would be an isomorphism of k(x) on its image. [Indeed, if, say, z;, . . .

, z;
are algebraically independent and Zi

= xi/xn , then z
l, ..., Zr are also alge-

braically independent, and so form a transcendence base for k(x) over k.

Then the place is an isomorphism from k(z l, . .
., zr) to k(z;,..., z;), and

hence is an isomorphism from k(x) to its image.] We then conclude that

U
ln , ..., Urn E k(uij, z') with i = 1, ..., r; j = 1, ...,

n
- 1.

Hence the transcendence degree of k(u) over k would be < rn - 1, which is a

contradiction, proving the theorem.



VIII, 2 NOETHER NORMALIZATION THEOREM 359

Corollary 2.3. Let k be a field, and let k(x) be a finitely generated
extension of transcendence degree r. There exists a polynomial P(u) =

P(Uij) E k[u] such that if (c) = (cij ) is a family of elements c
ij

E k satisfying

P(c) =F 0, and we let Y; = L CijXj ,
then k[x] is integral over k[y, ..., Y;].

Proof By Theorem 2.2, each Xi is integral over ku [yI' . . .
, Yr]. The

coefficients of an integral equation are rational functions in ku. We let P(u)
be a common denominator for these rational functions. If P(c) =F 0, then

there is a homomorphism

qJ: k(x) [u, p(U)-I] -. k(x)

such that qJ(u) = (c), and such that lfJ is the identity on k(x). We can apply lfJ

to an integral equation for Xi over ku [y] to get an integral equation for Xi

over kEy'], thus concluding the proof.

Remark. After Corollary 2.3, there remains the problem of finding ex-

plicitly integral equations for Xl' ...,
X

n (or Yr+l, ..., Yn) over ku[YI' ..., Yr].
This is an elimination problem, and I have decided to refrain from further

involvement in algebraic geometry at this point. But it may be useful to

describe the geometric language used to interpret Theorem 2.2 and further

results in that line. After the generic change of coordinates, the map

(YI' ..., Yn)I---+(YI' ..., Yr)

is the generic projection of the variety whose coordinate ring is k[x] on

affine r-space. This projection is finite, and in particular, the inverse image of

a point on affine r-space is finite. Furthermore, if k(x) is separable over k (a
notion which will be defined in 4), then the extension ku(Y) is finite separable
over ku(Yt,..., Yr) (in the sense of Chapter V). To determine the degree of

this finite extension is essentially Bezout's theorem. Cf. [La 58], Chapter

VIII, 6.
The above techniques were created by van der Waerden and Zariski, cf.,

for instance, also Exercises 5 and 6. These techniques have unfortunately not

been completely absorbed in some more recent expositions of algebraic

geometry. To give a concrete example: When Hartshorne considers the

intersection of a variety and a sufficiently general hyperplane, he does not

discuss the "generic" hyperplane (that is, with algebraically independent
coefficients over a given ground field), and he assumes that the variety is

non-singular from the start (see his Theorem 8.18 of Chapter 8, [Ha 77]).
But the description of the intersection can be done without simplicity as-

sumptions, as in Theorem 7 of [La 58], Chapter VII, 6, and the corre-

sponding lemma. Something was lost in discarding the technique of the

algebraically independent (uij ).
After two decades when the methods illustrated in Chapter X have been

prevalent, there is a return to the more explicit methods of generic construc-

tions using the algebraically independent (uij) and similar ones for some
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applications because part of algebraic geometry and number theory are

returning to some problems asking for explicit or effective constructions, with

bounds on the degrees of solutions of algebraic equations. See, for instance,

[Ph 91-95], [So 90], and the bibliography at the end of Chapter X, 6. Return-

ing to some techniques, however, does not mean abandoning others; it

means only expanding available tools.
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3. LINEARLY DISJOINT EXTENSIONS

In this section we discuss the way in which two extensions K and L of a

field k behave with respect to each other. We assume that all the fields

involved are contained in one field Q, assumed algebraically closed.

K is said to be linearly disjoint from Lover k if every finite set of

elements of K that is linearly independent over k is still such over L.

The definition is unsymmetric, but we prove right away that the property
of being linearly disjoint is actually symmetric for K and L. Assume K

linearly disjoint from Lover k. Let Y 1, . . .

, Yn be elements of L linearly

independent over k. Suppose there is a non-trivial relation of linear depen-
dence over K,

(1) XIYl + X2Y2 +
...

+ XnYn
= o.

Say Xl' ...,
X

r
are linearly independent over k, and x

r+ l' ...,
X

n
are linear

r

combinations Xi
= L ai/lx/l' i = r + 1, ...,

n. We can write the relation (1) as

/l=1

follows:

,.t. x,.Y,. + i=t. Ct. ai,.x,.) Yi
= 0

and collecting terms, after inverting the second sum, we get

J. (y,. + i=t. (ai,.Yi») x,.
= o.
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The y's are linearly independent over k, so the coefficients of x/l are =F O.

This contradicts the linear disjointness of K and Lover k.

We now give two criteria for linear disjointness.

Criterion 1. Suppose that K is the quotient field of a ring Rand L the

quotient field of a ring S. To test whether Land K are linearly disjoint, it

suffices to show that if elements Yl, ..., Yn of S are linearly independent over

k, then there is no linear relation among the y's with coefficients in R.

Indeed, if elements Y l, . . .
, Yn of L are linearly independent over k, and if

there is a relation Xl Yl +
...

+ XnYn
= 0 with Xi E K, then we can select Y in

S and X in R such that xy =F 0, YYi E S for all i, and XXi E R for all i.

Multiplying the relation by xy gives a linear dependence between elements of

Rand S. However, the YYi are obviously linearly independent over k, and

this proves our criterion.

Criterion 2. Again let R be a subring of K such that K is its quotient
field and R is a vector space over k. Let {Uti} be a basis of R considered as a

vector space over k. To prove K and L linearly disjoint over k, it suffices to

show that the elements {Uti} of this basis remain linearly independent over L.

Indeed, suppose this is the case. Let Xl'...' x
m

be elements of R linearly

independent over"k. They lie in a finite dimension vector space generated by
some of the Uti' say U l' . . .

, Un. They can be completed to a basis for this

space over k. Lifting this vector space of dimension n over L, it must

conserve its dimension because the u's remain linearly independent by hy-

pothesis, and hence the x's must also remain linearly independent.

Proposition 3.1. Let K be a field containing another field k, and let

L ::J E be two other extensions of k. Then K and L are linearly disjoint
over k if and only if K and E are linearly disjoint over k and KE, L are

linearly disjoint over E.

KL

/\
KE L

/\/

\/E
k
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Proof Assume first that K, E are linearly disjoint over k, and KE, L are

linearly disjoint over E. Let {K} be a basis of K as vector space over k (we
use the elements of this basis as their own indexing set), and let {rx} be a

basis of E over k. Let {l} be a basis of Lover E. Then {rxl} is a basis of L

over k. If K and L are not linearly disjoint over k, then there exists a

relation

L (L CJCA.CZK) lrx = 0

A, cz JC

with some CJCACZ =F 0, CJCA.CZ E k.

Changing the order of summation gives

L (L CJCAczKrx) A. = 0
A JC,A

contradicting the linear disjointness of Land KE over E.

Conversely, assume that K and L are linearly disjoint over k. Then a

fortiori, K and E are also linearly disjoint over k, and the field KE is the

quotient field of the ring E[K] generated over E by all elements of K. This

ring is a vector space over E, and a basis for Kover k is also a basis for this

ring E[K] over E. With this remark, and the criteria for linear disjointness,
we see that it suffices to prove that the elements of such a basis remain

linearly independent over L. At this point we see that the arguments given
in the first part of the proof are reversible. We leave the formalism to the

reader.

We introduce another notion concerning two extensions K and L of a

field k. We shall say that K is free from Lover k if every finite set of

elements of K algebraically independent over k remains such over L. If (x)
and (y) are two sets of elements in Q, we say that they are free over k (or

independent over k) if k(x) and k(y) are free over k.

Just as with linear disjointness, our definition is unsymmetric, and we

prove that the relationship expressed therein is actually symmetric. Assume

therefore that K is free from Lover k. Let Yt,..., Yn be elements of L,

algebraically independent over k. Suppose they become dependent over K.

They become so in a subfield F of K finitely generated over k, say of

transcendence degree rover k. Computing the transcendence degree of F(y)
over k in two ways gives a contradiction (cf. Exercise 5).

F(y)

7"'"
F

'"
k(y)

r

'" /"
k
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Proposition 3.2. If K and L are linearly disjoint over k, then they are free
over k.

Proof Let Xl' ...,
X

n
be elements of K algebraically independent over k.

Suppose they become algebraically dependent over L. We get a relation

L YaM«(x) = 0

between monomials M«(x) with coefficients y« in L. This gives a linear

relation among the M«(x). But these are linearly independent over k because

the x's are assumed algebraically independent over k. This is a contradiction.

Proposition 3.3. Let L be an extension of k, and let (u) = (u 1 ,
..

.,
u

r ) be a

set of quantities algebraically independent over L. Then the field k(u) is

linearly disjoint from Lover k.

Proof. According to the criteria for linear disjointness, it suffices to

prove that the elements of a basis for the ring k[u] that are linearly indepen-
dent over k remain so over L. In fact the monomials M(u) give a basis of

k[u] over k. They must remain linearly independent over L, because as

we have seen, a linear relation gives an algebraic relation. This proves our

proposition.

Note finally that the property that two extensions K and L of a field k

are linearly disjoint or free is of finite type. To prove that they have either

property, it suffices to do it for all subfields Ko and Lo of K and L

respectively which are finitely generated over k. This comes from the fact

that the definitions involve only a finite number of quantities at a time.

4. SEPARABLE AND REGULAR EXTENSIONS

Let K be a finitely generated extension of k, K = k(x). We shall say that

it is separably generated if we can find a transcendence basis (t I' ...,
t
r) of

K/k such that K is separably algebraic over k(t). Such a transcendence base

is said to be a separating transcendence base for Kover k.

We always denote by p the characteristic if it is not O. The field obtained

from k by adjoining all pm-th roots of all elements of k will be denoted by
k

l/pm
. The compositum of all such fields for m = 1, 2, ...,

is denoted by k
l/poo

.

Proposition 4.1. The following conditions concerning an extension field K

of k are equivalent:

(i) K is linearly disjoint from kl/pOO.

(ii) K is linearly disjoint from k
l/pm

for some m.
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(iii) Every subfield of K containing k and finitely generated over k is

separably generated.

Proof It is obvious that (i) implies (ii). In order to prove that (ii)

implies (iii), we may clearly assume that K is finitely generated over k, say

K = k(x) = k(x I'
.. .

,
x

n ).

Let the transcendence degree of this extension be r. If r = n, the proof is

complete. Otherwise, say x I' .. . ,
X

r
is a transcendence base. Then Xr+l is

algebraic over k(x I' .. .
,
x

r). Let f(XI' . . .
,
X

r+ l ) be a polynomial of lowest

degree such that

f(XI"'" x
r+ l ) = O.

Then f is irreducible. We contend that not all Xi (i = 1, ...,
r + 1) appear to

the p-th power throughout. If they did, we could write f(X) = L c(JM(J(X)P
where M(J(X) are monomials in XI' ..., Xr+l and C(J E k. This would imply
that the M(J(x) are linearly dependent over k

l/p
(taking the p-th root of the

equation L c(JM(J(x)P = 0). However, the M(J(x) are linearly independent over

k (otherwise we would get an equation for Xl' ..., Xr+l of lower degree) and

we thus get a contradiction to the linear disjointness of k(x) and k
l/p

. Say
X

1 does not appear to the p-th power throughout, but actually appears in

f(X). We know that f(X) is irreducible in k[XI , ...,Xr+IJ and hence f(x)=O
is an irreducible equation for Xl over k(x2 ,..., x

r + l ). Since Xl does not

appear to the p-th power throughout, this equation is a separable equation
for Xl over k(x2 ,....,

x
r + l ), in other words, Xl is separable algebraic over

k(x2 ,
. . .

,
x

r+ l ). From this it follows that it is separable algebraic over

k(x2 , ...,
x

n ). If (X2' ..
.,

x
n ) is a transcendence base, the proof is complete. If

not, say that X
2

is separable over k(X3' ...,
x

n ). Then k(x) is separable over

k(x3 , ...,
x

n ). Proceeding inductively, we see that the procedure can be

continued until we get down to a transcendence base. This proves that (ii)

implies (iii). It also proves that a separating transcendence base for k(x) over

k can be selected from the given set of generators (x).
To prove that (iii) implies (i) we may assume that K is finitely generated

over k. Let (u) be a transcendence base for Kover k. Then K is separably

algebraic over k(u). By Proposition 3.3, k(u) and k
1 /poo

are linearly disjoint.
Let L = kl/pOO. Then k(u)L is purely inseparable over k(u), and hence is

linearly disjoint from Kover k(u) by the elementary theory of finite algebraic
extensions. Using Proposition 3.1, we conclude that K is linearly disjoint
from Lover k, thereby proving our theorem.

An extension K of k satisfying the conditions of Proposition 4.1 is called

separable. This definition is compatible with the use of the word for alge-
braic extensions.

The first condition of our theorem is known as MacLane's criterion. It

has the following immediate corollaries.
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Corollary 4.2. If K is separable over k, and E is a subfield of K contain-

ing k, then E is separable over k.

Corollary 4.3. Let E be a separable extension of k, and K a separable
extension of E. Then K is a separable extension of k.

Proof Apply Proposition 3.1 and the definition of separability.

Corollary 4.4. If k is perfect, every extension of k is separable.

Corollary 4.5. Let K be a separable extension of k, and free from an

extension L of k. Then KL is a separable extension of L.

Proof An element of KL has an expression in terms of a finite number

of elements of K and L. Hence any finitely generated subfield of KL

containing L is contained in a composite field FL, where F is a subfield of K

finitely generated over k. By Corollary 4.2, we may assume that K is finitely

generated over k. Let (t) be a transcendence base of Kover k, so K is

separable algebraic over k(t). By hypothesis, (t) is a transcendence base of

KL over L, and since every element of K is separable algebraic over k(t), it

is also separable over L(t). Hence KL is separably generated over L. This

proves the corollary.

Corollary 4.6. Let K and L be two separable extensions of k, free from
each other over k. Then KL is separable over k.

Proof Use Corollaries 4.5 and 4.3.

Corollary 4.7. Let K, L be two extensions of k, linearly disjoint over k.

Then K is separable over k if and only if KL is separable over L.

Proof If K is not separable over k, it is not linearly disjoint from k
1/p

over k, and hence a fortiori it is not linearly disjoint from Lk
1/p

over k. By

Proposition 4.1, this implies that KL is not linearly disjoint from Lk
1/p

over

L, and hence that KL is not separable over L. The converse is a special case

of Corollary 4.5, taking into account that linearly disjoint fields are free.

We conclude our discussion of separability with two results. The first one

has already been proved in the first part of Proposition 4.1, but we state it

here explicitly.

Proposition 4.8. If K is a separable extension of k, and is finitely gener-

ated, then a separating transcendence base can be selected from a given set

of generators.

To state the second result we denote by Kpm the field obtained from K

by raising all elements of K to the pm-th power.



366 TRANSCENDENTAL EXTENSIONS VIII, 4

Proposition 4.9. Let K be a finitely generated extension of a field k. If
Kpmk = K for some m, then K is separably algebraic over k. Conversely, if
K is separably algebraic over k, then K pmk = K for all m.

Proof. If K/k is separably algebraic, then the conclusion follows from

the elementary theory of finite algebraic extensions. Conversely, if K/k is

finite algebraic but not separable, then the maximal separable extension of k

in K cannot be all of K, and hence KPk cannot be equal to K. Finally, if

there exists an element t of K transcendental over k, then k(t
1 /pm

) has degree

pm over k(t), and hence there exists a t such that t
1 /pm does not lie in K. This

proves our proposition.

There is a class of extensions which behave particularly well from the

point of view of changing the ground field, and are especially useful in

algebraic geometry. We put some results together to deal with such exten-

sions. Let K be an extension of a field k, with algebraic closure K
8

. We

claim that the following two conditions are equivalent:

REG 1. k is algebraically closed in K (i.e. every element of K algebraic
over k lies in k), and K is separable over k.

REG 2. K is linearly disjoint from k
8

over k.

We show the equivalence. Assume REG 2. By Proposition 4.1, we know that

K is separably generated over k. It is obvious that k must be algebraically
closed in K. Hence REG 2 implies REG 1. To prove the converse we need

a lemma.

Lemma 4.10. Let k be algebraically closed in extension K. Let x be

some element of an extension of K, but algebraic over k. Then k(x) and K

are linearly disjoint over k, and [k(x) : k] = [K(x) : K].

Proof Let f(X) be the irreducible polynomial for x over k. Then f
remains irreducible over K; otherwise, its factors would have coefficients

algebraic over k, hence in k. Powers of x form a basis of k(x) over k, hence

the same powers form a basis of K(x) over K. This proves the lemma.

To prove REG 2 from REG 1, we may assume without loss of generality
that K is finitely generated over k, and it suffices to prove that K is linearly

disjoint from an arbitrary finite algebraic extension L of k. If L is separable

algebraic over k, then it can be generated by one primitive element, and we

can apply Lemma 4.10.

More generally, let E be the maximal separable subfield of L containing
k. By Proposition 3.1, we see that it suffices to prove that KE and L are

linearly disjoint over E. Let (t) be a separating transcendence base for K

over k. Then K is separably algebraic over k(t). Furthermore, (t) is also a

separating transcendence base for KE over E, and KE is separable algebraic
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over E(t). Thus KE is separable over E, and by definition KE is linearly

disjoint from Lover K because L is purely inseparable over E. This proves

that REG 1 implies REG 2.

Thus we can define an extension K of k to be regular if it satisfies either

one of the equivalent conditions REG 1 or REG 2.

Proposition 4.11.

(a) Let K be a regular extension of k, and let E be a subfield of K containing

k. Then E is regular over k.

(b) Let E be a regular extension of k, and K a regular extension of E.

Then K is a regular extension of k.

(c) If k is algebraically closed, then every extension of k is regular.

Proof. Each assertion is immediate from the definition conditions REG

1 and REG 2.

Theorem 4.12. Let K be a regular extension of k, let L be an arbitrary
extension of k, both contained in some larger field, and assume that K, L

are free over k. Then K, L are linearly disjoint over k.

Proof (Artin). Without loss of generality, we may assume that K is

finitely generated over k. Let x t, . . .
,

X
n

be elements of K linearly indepen-
dent over k. Suppose we have a relation of linear dependence

XtYt +
...

+ XnYn
= 0

with Yi E L. Let lfJ be a ka-valued place of Lover k. Let (t) be a transcen-

dence base of Kover k. By hypothesis, the elements of (t) remain alge-

braically independent over L, and hence lfJ can be extended to a place of KL

which is identity on k(t). This place must then be an isomorphism of K on

its image, because K is a finite algebraic extension of k(t) (remark at the

end of Chapter VII, 3). After a suitable isomorphism, we may take a place

equivalent to lfJ which is the identity on K. Say ({J(Yi/Yn) is finite for all i (use

Proposition 3.4 of Chapter VII). We divide the relation of linear dependence

by Yn and apply ({J to get L Xi ({J(Yi/Yn) = 0, which gives a linear relation

among the Xi with coefficients in k
a

, contradicting the linear disjointness.
This proves the theorem.

Theorem 4.13. Let K be a regular extension of k, free from an extension

L of k over k. Then KL is a regular extension of L.

Proof. From the hypothesis, we deduce that K is free from the algebraic
closure La of Lover k. By Theorem 4.12, K is linearly disjoint from La over

k. By Proposition 3.1, KL is linearly disjoint from La over L, and hence KL

is regular over L.
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Corollary 4.14. Let K, L be regular extensions of k, free from each other

over k. Then KL is a regular extension of k.

Proof. Use Corollary 4.13 and Proposition 4.11(b).

Theorem 4.13 is one of the main reasons for emphasizing the class of

regular extensions: they remain regular under arbitrary base change of the

ground field k. Furthermore, Theorem 4.12 in the background is important
in the study of polynomial ideals as in the next section, and we add

some remarks here on its implications. We now assume that the reader is

acquainted with the most basic properties of the tensor product (Chapter

XVI, 1 and 2).

Corollary 4.15. Let K = k(x) be a finitely generated regular extension,

free from an extension L of k, and both contained in some larger field.
Then the natural k-algebra homomorphism

L @k k[x] -+ L[x]

is an isomorphism.

Proof By Theorem 4.12 the homomorphism is injective, and it is obvi-

ously surjective, whence the corollary follows.

Corollary 4.16. Let k(x) be a finitely generated regular extension, and let

P be the prime ideal in k [X] vanishing on (x), that is, consisting of all

polynomials f(X) E k[X] such that f(x) = O. Let L be an extension of k,

free from k(x) over k. Let PL be the prime ideal in L[X] vanishing on (x).
Then PL

= pL[X], that is PL is the ideal generated by P in L[X], and in

particular, this ideal is prime.

Proof Consider the exact sequence

o -+ P -+ k[X] -+ k[x] -+ o.

Since we are dealing with vector spaces over a field, the sequene remains

exact when tensored with any k-space, so we get an exact sequence

o -+ L @k P -+ L[X] -+ L 0k k[x] -+ O.

By Corollary 4.15, we know that L k k[x] ::::::: L[x], and the image of L 0k P

in L[X] is pL[X], so the lemma is proved.

Corollary 4.16 shows another aspect whereby regular extensions behave

well under extension of the base field, namely the way the prime ideal P

remains prime under such extensions.
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5. DERIVATIONS

A derivation D of a ring R is a mapping D: R -+ R of R into itself which is

linear and satisfies the ordinary rule for derivatives, i.e.,

D(x + y) = Dx + Dy and D(xy) = xDy + yDx.

As an example of derivations, consider the polynomial ring k[X] over a field

k. For each variable Xi' the partial derivative a/aXi taken in the usual

manner is a derivation of k[X].
Let R be an entire ring and let K be its quotient field. Let D: R -+ R be a

derivation. Then D extends uniquely to a derivation of K, by defining

D(u/v) =

vDu uDv
.

v

It is immediately verified that the expression on the right-hand side is

independent of the way we represent an element of K as u/v (u, v E R), and

satisfies the conditions defining a derivation.

Note. In this section, we shall discuss derivations of fields. For deriva-

tions in the context of rings and modules, see Chapter XIX, 3.

A derivation of a field K is trivial if Dx = 0 for all x E K. It is trivial over

a subfield k of K if Dx = 0 for all x E k. A derivation is always trivial over

the prime field: One sees that

D(I) = D(1
.

1) = 2D(I),

whence D(I) = o.

We now consider the problem of extending derivations. Let

L = K(x) = K(x 1 , ...,
x

n )

be a finitely generated extension. If f E K[X], we denote by af/axi the

polynomials af/aXi evaluated at (x). Given a derivation D on K, does there

exist a derivation D* on L coinciding with D on K? If f(X) E K[X] is a

polynomial vanishing on (x), then any such D* must satisfy

(1) o = D*f(x) = fD(X) + L (af/ax;)D*Xi'

where fD denotes the polynomial obtained by applying D to all coefficients

of f. Note that if relation (1) is satisfied for every element in a finite set of

generators of the ideal in K[X] vanishing on (x), then (1) is satisfied by every

polynomial of this ideal. This is an immediate consequence of the rules for

derivations. The preceding ideal will also be called the ideal determined by

(x) in K [X].
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The above necessary condition for the existence of a D* turns out to be

sufficien1.

Theorem 5.1. Let D be a derivation of a field K. Let

(x) = (Xl' ...,
x

n )

be a finite family of elements in an extension of K. Let {h(X)} be a set of

generators for the ideal determined by (x) in K[X]. Then, if (u) is any set

of elements of K(x) satisfying the equations

o = hD(x) + L (Oh/OXi)Ui ,

there is one and only one derivation D* of K(x) coinciding with D on K,

and such that D*Xi
=

Ui for every i.

Proof The necessity has been shown above. Conversely, if g(x), h(x) are

in K[x], and h(x) # 0, one verifies immediately that the mapping D* defined

by the formulas

og
D*g(x) = gD(X) + L Ui,

uX'
I

*

( /h) =

hD*g - gD*h
D g

h
2 '

is well defined and is a derivation of K(x).

Consider the special case where (x) consists of one element x. Let D be a

given derivation on K.

Case 1. x is separable algebraic over K. Let f(X) be the irreducible

polynomial satisfied by x over K. Then f'(x) # o. We have

o = fD(x) + f'(x)u,

whence u = -fD(x)/f'(x). Hence D extends to K(x) uniquely. If D is trivial

on K, then D is trivial on K(x).

Case 2. x is transcendental over K. Then D extends, and u can be

selected arbitrarily in K(x).

Case 3. x is purely inseparable over K, so x
P
-

a = 0, with a E K. Then

D extends to K(x) if and only if Da = o. In particular if D is trivial on K,

then u can be selected arbitrarily.

Proposition 5.2. A finitely generated extension K(x) over K is separable

algebraic if and only if every derivation D of K(x) which is trivial on K is

trivial on K(x).

Proof If K(x) is separable algebraic over K, this is Case 1. Conversely,
if it is not, we can make a tower of extensions between K and K(x), such
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that each step is covered by one of the three above cases. At least one step

will be covered by Case 2 or 3. Taking the uppermost step of this latter

type, one sees immediately how to construct a derivation trivial on the

bottom and nontrivial on top of the tower.

Proposition 5.3. Given K and elements (x) = (Xl' ...,
x

n) in some extension

field, assume that there exist n polynomials /;, E K [X] such that:

(i) /;,(x) = 0, and

(ii) det(o/;,joxj) =F O.

Then (x) is separably algebraic over K.

Proof. Let D be a derivation on K(x), trivial on K. Having h(x) = 0 we

must have D/;,(x) = 0, whence the DXi satisfy n linear equations such that the

coefficient matrix has non-zero determinant. Hence DXi = 0, so D is trivial

on K(x). Hence K(x) is separable algebraic over K by Proposition 5.2.

The following proposition will follow directly from Cases 1 and 2.

Proposition 5.4. Let K = k(x) be a finitely generated extension of k. An

element z of K is in K Pk if and only if every derivation D of Kover k is

such that Dz = O.

Proof. If z is in KPk, then it is obvious that every derivation D of K

over k vanishes on z. Conversely, if z r$ K Pk, then z is purely inseparable
over KPk, and by Case 3 of the extension theorem, we can find a derivation

D trivial on KPk such that Dz = 1. This derivation is at first defined on the

field KPk(z). One can extend it to K as follows. Suppose there is an element

W E K such that w r$ KPk(z). Then w
P

E KPk, and D vanishes on w
p

. We can

then again apply Case 3 to extend D from KPk(z) to KPk(z, w). Proceeding

stepwise, we finally reach K, thus proving our proposition.

The derivations D of a field K form a vector space over K if we define zD

for z E K by (zD)(x) = zDx.

Let K be a finitely generated extension of k, of dimension rover k. We

denote by 1> the K-vector space of derivations D of Kover k (derivations of

K which are trivial on k). For each z E K, we have a pairing

(D, z) 1---+ Dz

of (1), K) into K. Each element z of K gives therefore a K-linear functional

of 1>. This functional is denoted by dz. We have

d(yz) =

y dz + z dy,

d(y + z) = dy + dz.

These linear functionals form a subspace tF of the dual space of D, if we

define y dz by (D, y dz) 1---+ yDz.
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Proposition 5.5. Assume that K is a separably generated and finitely

generated extension of k of transcendence degree r. Then the vector space

(over K) of derivations of Kover k has dimension r. Elements t l' . . .

,
t
r

of K from a separating transcendence base of Kover k if and only if
dt

l' ...,
dt

r form a basis of the dual space of over K.

Proof If t l' ...,
t
r

is a separating transcendence base for Kover k, then

we can find derivations D1 , ..., Dr of Kover k such that Ditj
= ij' by Cases

1 and 2 of the extension theorem. Given D E, let Wi
= Dti . Then clearly

D = L wiDi , and so the Di form a basis for over K, and the dt
i form the

dual basis. Conversely, if dt l' ...,
dt

r
is a basis for ft over K, and if K is not

separably generated over k(t), then by Cases 2 and 3 we can find a derivation

D which is trivial on k(t) but nontrivial on K. If D1 , ..., Dr is the dual basis

of dt l' ...,
dt

r (so Ditj
= ij) then D, D1 , ..., Dr would be linearly independent

over K, contradicting the first part of the theorem.

Corollary 5.6. Let K be a finitely generated and separably generated
extension of k. Let z be an element of K transcendental over k. Then K is

separable over k(z) if and only if there exists a derivation D of Kover k

such that Dz =F O.

Proof If K is separable over k(z), then z can be completed to a separat-

ing base of Kover k and we can apply the proposition. If Dz =F 0, then

dz =F 0, and we can complete dz to a basis of over K. Again from the

proposition, it follows that K will be separable over k(z).

Note. Here we have discussed derivations of fields. For derivations in

the context of rings and modules, see Chapter XVI.

As an application, we prove:

Theorem 5.7. (Zariski-Matsusaka). Let K be a finitely generated sepa-

rable extension of a field k. Let y, z E K and z rt K Pk if the characteristic

is p > O. Let u be transcendental over K, and put ku = k(u), Ku = K(u).

(a) For all except possibly one value of c E k, K is a separable extension of

k(y + cz). Furthermore, Ku is separable over ku(Y + uz).

(b) Assume that K is regular over k, and that its transcendence degree is at

least 2. Then for all but a finite number of elements c E k, K is

a regular extension of k(y + cz). Furthermore, Ku is regular over

ku(Y + uz).

Proof. We shall use throughout the fact that a subfield of a finitely

generated extension is also finitely generated (see Exercise 4).
If W is an element of K, and if there exists a derivation D of Kover

k such that Dw =F 0, then K is separable over k(w), by Corollary 5.6. Also

by Corollary 5.6, there exists D such that Dz =F O. Then for all elements

c E k, except possibly one, we have D(y + cz) = Dy + cDz =F O. Also we

may extend D to Ku over ku by putting Du = 0, and then one sees that



VIII, 5 DERIVATIONS 373

D(y+uz)= Dy + uDz =F 0, so K is separable over k(y + cz) except possibly
for one value of c, and Ku is separable over ku(Y + uz). In what follows,
we assume that the constants C

l' C2' ... are different from the exceptional
constant, and hence that K is separable over k(y + ciz) for i = 1, 2.

Assume next that K is regular over k and that the transcendence degree
is at least 2. Let Ei

= k(y + ciz) (i = 1, 2) and let E; be the algebraic closure

of E
i in K. We must show that E; = Ei for all but a finite number of

constants. Note that k(y, z) = E
1
E

2 is the compositum of Eland E
2 ,

and

that k(y, z) has transcendence degree 2 over k. Hence E and E; are free

over k. Being subfields of a regular extension of k, they are regular over k,
and are therefore linearly disjoint by Theorem 4.12.

K

I

/L
E'l (y, z) E(y, z)

/ k(Y.Z(

E'l / /E2
k(y + C 1 z) k(y + c

2 z)

k

By construction, E and E;' are finite separable algebraic extensions of E
1

and E
2 respectively. Let L be the separable algebraic closure of k(y, z) in K.

There is only a finite number of intermediate fields between k(y, z) and L.

Furthermore, by Proposition 3.1 the fields E (y, z) and E;'(y, z) are linearly

disjoint over k(y, z). Let c 1 range over the finite number of constants which

will exhaust the intermediate extensions between Land k(y, z) obtainable by

lifting over k(y, z) a field of type E;. If C2
is now chosen different from any

one of these constants C l' then the only way in which the condition of linear

disjointness mentioned above can be compatible with our choice of C2 is that

E;(y, z) = k(y, z), i.e. that E; = k(y + c
2 z). This means that k(y + c

2 z) is

algebraically closed in K, and hence that K is regular over k(y + C2Z).
As for Ku, let u 1 ,

u
2 ,

... be infinitely many elements algebraically indepen-
dent over K. Let k' = k(Ul' u

2 , ...) and K' = K(u 1 ,
u

2 , ...) be the fields

obtained by adjoining these elements to k and K respectively. By what has

already been proved, we know that K' is regular over k'(u + UiZ) for all

but a finite number of integers i, say for i = 1. Our assertion (a) is then

a consequence of Corollary 4.14. This concludes the proof of Theorem 5.7.
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Theorem 5.8. Let K = k(x l' . . .

, Xn) = k(x) be a finitely generated regular
extension of a field k. Let u l' . . .

, Un be algebraically independent over

k(x). Let

U
n + 1

= U 1
X

1 +
...

+ UnXn '

and let ku = k(u l'
. .

., Un' u
n + 1 ). Then ku(x) is separable over ku, and if the

transcendence degree of k(x) over k is > 2, then ku(x) is regular over ku.

Proof By the separability of k(x) over k, some Xi does not lie in K Pk,

say X
n rt K Pk. Then we take

y
= U 1

X
1 +

...

+ U
n -1 Xn-l and Z =

Xn'

so that U
n + 1

=

Y + UnZ, and we apply Theorem 5.7 to conclude the proof.

Remark. In the geometric language of the next chapter, Theorem 5.8

asserts that the intersection of a k-variety with a generic hyperplane

UI Xl +
...

+ unXn

- U
n + 1

= 0

is a ku-variety, if the dimension of the k-variety is > 2. In any case, the

extension ku(x) is separable over ku.

EXERCISES

1. Prove that the complex numbers have infinitely many automorphisms. [Hint:
Use transcendence bases.] Describe all automorphisms and their cardinality.

2. A subfield k of a field K is said to be algebraically closed in K if every element of

K which is algebraic over k is contained in k. Prove: If k is algebraically closed

in K, and K, L are free over k, and L is separable over k or 1). is separable over

k, then L is algebraically closed in KL.

3. Let k c E c K be extension fields. Show that

tr. deg. (Kjk) = tr. deg. (KjE) + tr. deg. (Ejk).

If {Xi} is a transcendence base of Ejk, and {Yj} is a transcendence base of KjE,
then {Xi' Yj} is a transcendence base of Kjk.

4. Let Kjk be a finitely generated extension, and let K => E => k be a subextension.

Show that Ejk is finitely generated.

5. Let k be a field and k(x 1, . . .
, X,.) = k(x) a finite separable extension. Let

u l'
. . .

, U,. be algebraically independent over k. Let

W =

U1Xl +
...

+ U,.X,..

Let ku = k(u 1 ,
. . .

, U,.). Show that ku(w) = ku(x).
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6. Let k(x) = k(x l'
. . .

, XII) be a separable extension of transcendence degree r > 1.

Let uij (i = 1, ..., r; j = 1, ..., n) be algebraically independent over k(x). Let

II

Y
. = U..X.
1 I) J.

j=1

Let ku = k(Uij)all i,j.
(a) Show that ku(x) is separable algebraic over k(Yl' ..., Yr).

(b) Show that there exists a polynomial P(u) E k[u] having the following prop-

erty. Let (c) = (ci) be elements of k such that P(c) :F O. Let

II

Y
= C..X.

I IJ J.

j=1

Then k(x) separable algebraic over k(y').

7. Let k be a field and k[x 1 , ..., XII] = R a finitely generated entire ring over k with

quotient field k(x). Let L be a finite extension of k(x). Let I be the integral
closure of R in L. Show that I is a finite R-module. [Use Noether normalization,
and deal with the inseparability problem and the separable case in two steps.]

8. Let D be a derivation of a field K. Then D": K K is a linear map. Let

p,. = Ker D", so p,. is an additive subgroup of K. An element X E K is called a

logarithmic derivative (in K) if there exists Y E K such that X = Dyjy. Prove:

(a) An element X E K is the logarithmic derivative of an element YEP" but

y 1;.-1 (n > 0) if and only if

(D + x)"(I) = 0 and (D + X)"-1 (1) :F O.

(b) Assume that K = UP,., i.e. given X E K then x E p,. for some n > O. Let F be

a subfield of K such that DF c F. Prove that x is a logarithmic derivative in

F if and only if x is a logarithmic derivative in K. [Hint: If x = Dyjy then

(D + x) = y-lD 0 y and conversely.]

9. Let k be a field of characteristic 0, and let z
l' ..., Zr be algebraically independent

over k. Let (eij), i = 1, ...,
m and j = 1, ...,

r be a matrix of integers with r > m,

and assume that this matrix has rank m. Let

W. = ze
1

il
... zeir

I r
for i = 1, ..., m.

Show that WI' ...,
w

m
are algebraically independent over k. [Hint: Consider the

K-homomorphism mapping the K-space of derivations of Kjk into K(r) given by

D ...... (Dz
1 /Z

b .. .
,
Dz

r/Z
r ),

and derive a linear condition for those D vanishing on k(w1 ,
.
..,

w
m ).]

10. Let k, (z) be as in Exercise 9. Show that if P is a rational function then

d(P(z)) = grad P(z). dz,

using vector notation, i.e. dz = (dz l' . .

.,
dz

r ) and grad P = (D1 P, . . .
, DrP). Define

d log P and express it in terms of coordinates. If P, Q are rational functions in

k(z) show that

d log(PQ) = d log P + d log Q.





CHAPTER I X

Algebraic Spaces

This chapter gives the basic results concerning solutions of polynomial equa-

tions in several variables over a field k. First it will be proved that if such

equations have a common zero in some field, then they have a common zero in

the algebraic closure of k, and such a zero can be obtained by the process known

as specialization. However, it is useful to deal with transcendental extensions

of k as well. Indeed, if p is a prime ideal in k[X] = k[Xb . . .
,

X
n], then

k[X]/p is a finitely generated ring over k, and the images Xi of Xi in this ring

may be transcendental over k, so we are led to consider such rings.
Even if we want to deal only with polynomial equations over a field, we are

led in a natural way to deal with equations over the integers Z. Indeed, if the

equations are homogeneous in the variables, then we shall prove in 3 and 4

that there are universal polynomials in their coefficients which determine whether

these equations have a common zero or not. "Universal" means that the coef-

ficients are integers, and any given special case comes from specializing these

universal polynomials to the special case.

Being led to consider polynomial equations over Z, we then consider ideals

a in Z[X]. The zeros of such an ideal form what is called an algebraic space. If

p is a prime ideal, the zeros of p form what is called an arithmetic variety. We

shall meet the first example in the discussion of elimination theory, for which

I follow van der Waerden' s treatment in the first two editions of his Moderne

Algebra, Chapter XI.

However, when taking the polynomial ring Z[X]/a for some ideal a, it usually

happens that such a factor ring has divisors of zero, or even nilpotent elements.

Thus it is also natural to consider arbitrary commutative rings, and to lay the

foundations of algebraic geometry over arbitrary commutative rings as did Groth-

endieck. We give some basic definitions for this purpose in 5. Whereas the

present chapter gives the flavor of algebraic geometry dealing with specific

polynomial ideals, the next chapter gives the flavor of geometry developing from

commutative algebra, and its systematic application to the more general cases

just mentioned.

377
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The present chapter and the next will also serve the purpose of giving the

reader an introduction to books on algebraic geometry, notably Hartshorne's

systematic basic account. For instance, I have included those results which are

needed for Hartshorne's Chapter I and II.

1. HILBERT'S NULLSTELLENSATZ

The Nullstellensatz has to do with a special case of the extension theorem

for homomorphisms, applied to finitely generated rings over fields.

Theorem 1.1. Let k be a field, and let k[x] = k[x b ..., xn] be a finitely

generated ring over k. Let ({J: k -. L be an embedding of k into an alge-

braically closed field L. Then there exists an extension of ({J to a homo-

morphism of k[x] into L.

Proof. Let 9Jl be a maximal ideal of k[x]. Let (J be the canonical homo-

morphism (J: k[x] -. k[x]/9Jl. Then (Jk[(Jxb . . .

,
(Jx

n] is a field, and is in fact

an extension field of (Jk. Ifwe can prove our theorem when the finitely generated

ring is in fact a field, then we apply ({J
0 (J

- 1
on (Jk and extend this to a homo-

morphism of (Jk[(Jx 1 ,
. . .

,
(Jx

n] into L to get what we want.

Without loss of generality, we therefore assume that k[x] is a field. If it is

algebraic over k, we are done (by the known result for algebraic extensions).

Otherwise, let t b . . .

,
t
r

be a transcendence basis, r > 1. Without loss of

generality, we may assume that ({J is the identity on k. Each element x
l' . . .

,
X

n

is algebraic over k(t t,
. . .

,
t
r). If we multiply the irreducible polynomial

Irr(xi' k(t), X) by a suitable non-zero element of k[t], then we get a polynomial
all of whose coefficients lie in k[t]. Let al (t), . . .

, an(t) be the set of the leading
coefficients of these polynomials, and let a(t) be their product,

a(t) = a 1 (t) . . .

a
n( t ).

Since a(t) =t= 0, there exist elements t;, . . .

, t; E k
a

such that a(t') =t= 0, and

hence ai(t') =t= 0 for any i. Each Xi is integral over the ring

k [t
l' . . .

, t"
( )

'
. . .

, )] .

al t ar(t

Consider the homomorphism

({J: k[tt,..., t
r] -. k

a

such that lfJ is the identity on k, and ((J(tj)
= tj. Let p be its kernel. Then a(t) p.
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Our homomorphism ({J extends uniquely to the local ring k[t]" and by the

preceding remarks, it extends to a homomorphism of

k[t],,[x l'
. . .

,
x

n]

into k
a

, using Proposition 3.1 of Chapter VII. This proves what we wanted.

Corollary 1.2. Let k be a field and k[x 1, . . .

,
X

n] a finitely generated ex-

tension ring of k. If k[x] is afield, then k[x] is algebraic over k.

Proof. All homomorphisms of a field are isomorphisms (onto the image),
and there exists a homomorphism of k[x] over k into the algebraic closure of k.

Corollary 1.3. Let k[x l'
. . .

,
x

n] be a finitely generated entire ring over a

field k, and let Y1, . . .

, Ym be non-zero elements of this ring. Then there exists

a homomorphism

t/1 : k[x] k
8

over k such that t/1(Yj) =F 0 for all j = 1, . . .
, m.

Proof. Consider the ring k[x b . . .

,
x

n , Y 1
1

,
. . .

, Y'; 1] and apply the

theorem to this ring.

Let S be a set of polynomials in the polynomial ring k[X 1,
. . .

,
Xn] in n

variables. Let L be an extension field of k. By a zero of S in L one means an

n-tuple of elements (c l'
. . .

, cn) in L such that

f(c 1,
. . .

,
C

n) = 0

for alII E S. If S consists of one polynomial.!: then we also say that (c) is a zero

off The set of all zeros of S is called an algebraic set in L (or more accurately
in L(n». Let Q be the ideal generated by all elements of S. Since S C Q it is clear

that every zero of Q is also a zero of S. However, the converse obviously holds,

namely every zero of S is also a zero of Q because every element of Q is of type

g1(X)fl(X) + ... + gm(X)fm(X)

with jj E Sand gi E k[X]. Thus when considering zeros of a set S, we may

just consider zeros of an ideal. We note parenthetically that every ideal is

finitely generated, and so every algebraic set is the set of zeros of a finite number

of polynomials. As another corollary of Theorem 1. 1, we get:

Theorem 1.4. Let Q be an ideal in k[X] = k[X b . . .
,
Xn]. Then either

Q = k[X] or Q has a zero in k
3

.
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Proof. Suppose 0 =F k[X]. Then 0 is contained in some maximal ideal

m, and k[X]/m is a field, which is a finitely generated extension of k, because

it is generated by the images of Xl' . . .

,
X

n
mod m. By Corollary 2.2, this

field is algebraic over k, and can therefore be embedded in the algebraic closure

k
a

. The homomorphism on k[X] obtained by the composition of the canonical

map mod m, followed by this embedded gives the desired zero of 0, and con-

cludes the proof of the theorem.

In 3 we shall consider conditions on a family of polynomials to have a

common zero. Theorem 1.4 implies that if they have a common zero in some

field, then they have a common zero in the algebraic closure of the field generated

by their coefficients over the prime field.

Theorem 1.5. (Hilbert's Nullstellensatz). Let a be an ideal in k[X]. Let

fbe a polynomial in k[X] such thatf(c) = 0 for every zero (c) = (c 1 ,.
. .

, Cn)

of 0 in k
a

. Then there exists an integer m > 0 such tha/I'm E o.

Proof. We may assume that f =F O. We use the Rabinowitsch trick of

introducing a new variable Y, and of considering the ideal 0' generated by
o and 1 -

Yf in k[X, Y]. By Theorem 1.4, and the current assumption, the

ideal 0' must be the whole polynomial ring k[X, Y], so there exist polynomials

gi E k[X, Y] and hi E 0 such that

1 = go(1
-

Yf) + glh 1 + ... + grhr.

We substitute f
-1

for Y and multiply by an appropriate power fm of f to

clear denominators on the right-hand side. This concludes the proof.

For questions involving how effective the Nullstellensatz can be made, see

the following references also related to the discussion of elimination theory
discussed later in this chapter.
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2. ALGEBRAIC SETS, SPACES AND VARIETIES

We shall make some very elementary remarks on algebraic sets. Let k be a

field, and let A be an algebraic set of zeros in some fixed algebraically closed

extension field of k. The set of all polynomials f E k[X b
. . .

,
Xn] such that

f(x) = 0 for all (x) E A is obviously an ideal 0 in k[X], and is determined by
A. We shall call it the ideal belonging to A, or say that it is associated with A.

If A is the set of zeros of a set S of polynomials, then S c 0, but 0 may be bigger
than S. On the other hand, we observe that A is also the set of zeros of o.

Let A, B be algebraic sets, and 0, b their associated ideals. Then it is clear

that A c B if and only if Q => b. Hence A = B if and only if 0 = b. This has an

important consequence. Since the polynomial ring k[X] is Noetherian, it

follows that algebraic sets satisfy the dual property, namely every descending

sequence of algebraic sets

Al=>A2=>...

must be such that Am = Am+ 1
= . . . for some integer m, i.e. all Av are equal for

v > m. Furthermore, dually to another property characterizing the Noetherian

condition, we conclude that every non-empty set of algebraic sets contains a

minimal element.

Theorem 2.1. The finite union and the finite intersection of algebraic sets

are algebraic sets. If A, B are the algebraic sets of zeros of ideals 0, b, respec-

tively, then A u B is the set of zeros of 0 n b and A n B is the set of zeros of

(Q, b).

Proof'. We first consider A u B. Let (x) E A u B. Then (x) is a zero

of 0 n b. Conversely, let (x) be a zero of 0 n b, and suppose (x) rt A. There

exists a polynomial f E 0 such that f(x) ;/= O. But ob con b and hence

(fg)(x) = 0 for all g E b, whence g(x) = 0 for all g E b. Hence (x) lies in B, and

A u B is an algebraic set of zeros of 0 n b.

To prove that A n B is an algebraic set, let (x) E A n B. Then (x) is a zero

of (0, b). Conversely, let (x) be a zero of (0, b). Then obviously (x) E A n B, as

desired. This proves our theorem.

An algebraic set V is called k-irreducible if it cannot be expressed as a union

V = A u B of algebraic sets A, B with A, B distinct from V. We also say ir-

reducible instead of k-irreducible.

Theorem 2.2. Let A be an algebraic set.

(i) Then A can be expressed as a finite union of irreducible algebraic sets

A =

VI u . . . U .

(ii) If there is no inclusion relation among the "1, i. e. if "1 ct for i =t= j, then

the representation is unique.
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(iii) Let W, Vi, . . ., be irreducible algebraic sets such that

W C VI u . . . U .

Then W C "1 for some i.

Proof. We first show existence. Suppose the set of algebraic sets which

cannot be represented as a finite union of irreducible ones is not empty. Let

V be a minimal element in its. Then V cannot be irreducible, and we can write

V = A u B where A, B are algebraic sets, but A =F V and B =F V. Since each

one of A, B is strictly smaller than V, we can express A, B as finite unions of

irreducible algebraic sets, and thus get an expression for V, contradiction.

The uniqueness will follow from (iii), which we prove next. Let W be con-

tained in the union VI U . . . U . Then

W = (W n VI) U . . . U (W n ).

Since each W n "1 is an algebraic set, by the irreducibility of W we must have

W = W n "1 for some i. Hence W C "1 for some i, thus proving (iii).

Now to prove (ii), apply (iii) to each "}. Then for each j there is some i such

that"} C "1. Similarly for each i there exists v such that "1 C W
V

. Since there

is no inclusion relation among the "}' s, we must have"}
=

\.';
= Wv- This proves

that each"} appears among the \.';'s and each \.'; appears among the "}'s, and

proves the uniqueness of the representation. It also concludes the proof of Theo-

rem 2.2.

Theorem 2.3 An algebraic set is irreducible ifand only if its associated ideal

is prime.

Proof. Let V be irreducible and let p be its associated ideal. If p is not

prime, we can find two polynomials f, 9 E k[X] such that f fj. p , 9 fj. p, but

fg E p. Let Q =

(p, f) and b =

(p, g). Let A be the algebraic set of zeros of Q
,

and B the algebraic set of zeros of b. Then A C V, A =t= V and B C V, B =t= V.

Furthermore A U B = V. Indeed, A U B C V trivially. Conversely, let (x) E V.

Then (fg)(x) = 0 implies f(x) or g(x)
= O. Hence (x) E A or (x) E B, proving

V = A U B, and V is not irreducible. Conversely, let V be the algebraic set

of zeros of a prime ideal p. Suppose V = A U B with A =t= V and B =t= V.

Let Q, b be the ideals associated with A and B respectively. There exist poly-
nomials f E Q, f fj. p and 9 E b, 9 fj. p. Butfg vanishes on A U B and hence lies

in p, contradiction which proves the theorem.

Warning. Given a field k and a prime ideal p in k[X], it may be that the

ideal generated by p in ka[X] is not prime, and the algebraic set defined over k
a

by p ka[X] has more than one component, and so is not irreducible. Hence the

prefix referring to k is really necessary.

It is also useful to extend the terminology of algebraic sets as follows. Given

an ideal a C k[X], to each field K containing k we can associate to Q the set
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a (K) consisting of the zeros of a in K. Thus a is an association

a: K a(K) C [«n).

We shall speak of a itself as an algebraic space, so that a is not a set, but

to each field K associates the set a (K). Thus a is a functor from extensions

K of k to sets (functorial with respect to field isomorphisms). By a k-variety we

mean the algebraic space associated with a prime ideal p.

The notion of associated ideal applies also to such a' and the associated

ideal of a is also rad(a). We shall omit the subscript a and write simply for

this generalized notion of algebraic space. Of course we have

a
=

rad(a).

We say that a(K) is the set of points of a in K. By the Hilbert Nullstellensatz,

Theorem 1.1, it follows that if K C K' are two algebraically closed fields

containing k, then the ideals associated with a(K) and 9l
a (K') are equal to each

other, and also equal to rad(a). Thus the smallest algebraically closed field ka

containing k already determines these ideals. However, it is also useful to consider

larger fields which contain transcendental elements, as we shall see.

As another example, consider the polynomial ring k[Xl' . . . , Xn]
= k[X].

Let An denote the algebraic space associated with the zero ideal. Then An

is called affine n-space. Let K be a field containing k. For each n-tuple

(CI, . . .

,
c

n ) E K(n) we get a homomorphism

cp: k[Xl' . . .
, Xn] K

such that cp(Xi )
=

Ci for all i. Thus points in An(K) correspond bijectively to

homomorphisms of k(X) into K.

More generally, let V be a k-variety with associated prime ideal p. Then

k[X]/p is entire. Denote by i the image ofXi under the canonical homomorphism

k[X] k[X]/p. We call (fJ the generic point of V over k. On the other hand,

let (x) be a point of V in some field K. Then p vanishes on (x), so the homomor-

phism cp : k[X] k[x] sending Xi xi factors through k[X] /p = k[ gj, whence

we obtain a natural homomorphism k[ gj k[x]. If this homomorphism is an

isomorphism, then we call (x) a generic point of V in K.

Given two points (x) E An(K) and (x') E An(K'), we say that (x') is a

specialization of (x) (over k) if the map Xi xi is induced by a homomorphism

k[x] k[x']. From the definition of a generic point of a variety, it is then

immediate that:

A variety V is the set of specializations of its generic point, or of a generic

point.

In other words, V(K) is the set of specializations of (fJ in K for every field K

containing k.

Let us look at the converse construction of algebraic sets. Let (x) =

(x l' . . .
,

x
n ) be an n-tuple with coordinates Xi E K for some extension field

K of k. Let p be the ideal in k[X] consisting of all polynomials f(X) such that
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f(x) = o. We call p the ideal vanishing on (x). Then p is prime, because if

fg E P so f(x)g(x) = 0, then f E P or g E P since K has no divisors of o. Hence

p is a k-variety V, and (x) is a generic point of V over k because k[X]j p
= k[x].

For future use, we state the next result for the polynomial ring over a factorial

ring rather than over a field.

Theorem 2.4. Let R be afactorial ring, and let"'}, . . .
,

W
m

be m independent
variables over its quotient field k. Let k(wI' . . .

,
w

m) be an extension of tran-

scendence degree m
- 1. Then the ideal in R[W] vanishing on (w) is principal.

Proof. By hypothesis there is some polynomial P(W) E R[W] of degree
::> 1 vanishing on (w), and after taking an irreducible factor we may assume

that this polynomial is irreducible, and so is a prime element in the factorial ring
R[W]. Let G(W) E R[W] vanish on (w). To prove that P divides G, after selecting
some irreducible factor of G vanishing on (w) if necessary, we may assume

without loss of generality that G is a prime element in R[W]. One of the variables

""i occurs in P(W), say W
m ,

so that W
m

is algebraic over k(WI' . . .
,

w
m -I). Then

(wI' . .

., wm-l) are algebraically independent, and hence W
m

also occurs in

G. Furthermore, P(w},..., wm-I, W
m) is irreducible as a polynomial in

k(wI' . .
.,

w
m-l )[Wm] by the Gauss lemma as in Chapter IV, Theorem 2.3.

Hence there exists a polynomial H(Wm) E k(WI, . . . , Wm-I )[WmJ such that

G(W) =

H(Wm)P(W).

Let R' = R[WI' . .
.,

W
m

- d. Then P, G have content 1 as polynomials in

R'[Wm]. By Chapter IV Corollary 2.2 we conclude that H E R'[Wm ] = R[W],
which proves Theorem 2.4.

Next we consider homogeneous ideals and projective space. A polynomial
f(X) E k[X] can be written as a linear combination

f(X) = 2: c(II)M(II)(X)

with monomials M(II)(X)
= XI ... xn and C(II) E k. We denote the degree of

M( II) by

I vi =

deg M(II)
= 2: Vi'

If in this expression for f the degrees of the monomials X<II) are all the same

(whenever the coefficient C(II) is =1= 0), then we say thatf is a form, or also that

f is a homogeneous (of that degree). An arbitrary polynomial f(X) in K[X] can

also be written

f(X) = 2:f(d)(X),

where each f(d) is a form of degree d (which may be 0). We call f(d) the

homogeneous part off of degree d.

An ideal Q of k[X] is called homogeneous if whenever f E Q then each

homogeneous part fd) also lies in a.
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Proposition 2.5. An ideal Q is homogeneous if and only if Q has a set of

generators over k[X] consisting offorms.

Proof. Suppose a is homogeneous and that fb . . .

, fr are generators. By

hypothesis, for each integer d ::> 0 the homogeneous components f/d) also lie in

Q, and the set of such fi(d) (for all i, d) form a set of homogeneous generators.

Conversely, let f be a homogeneous element in Q and let g E K[X] be arbitrary.
For each d, g(d)f lies in Q, and g(d)f is homogeneous, so all the homogeneous

components of gf also lie in Q. Applying this remark to the case when f ranges

over a set of homogeneous generators for Q shows that Q is homogeneous, and

concludes the proof of the proposition.

An algebraic space ?I is called homogeneous if for every point (x) E Cfl and

t transcencental over k(x), the point (tx) also lies in . If t, u are transcendental

over k(x), then there is an isomorphism

k[x, t] k[x, u]

which sends t on u and restricts to the identity on k[x], so to verify the above

condition, it suffices to verify it for some transcendental t over k(x).

Proposition 2.6. An algebraic space Cfl is homogeneous if and only if its

associated ideal Q is homogeneous.

Proof. Suppose Cfl is homogeneous. Letf(X) E k[X] vanish on . For each

(x) E Cfl and t transcendental over k(x) we have

o = f(x) = f(tx) = L tdf(d)(x).
d

Thereforef(d)(x) = 0 for all d, whencefd) E Q for all d. Hence Q is homogeneous.

Conversely, suppose Q homogeneous. By the Hilbert Nullstellensatz, we know

that consists of the zeros of Q, and hence consists of the zeros of a set of

homogeneous generators for Q. But iff is one of those homogeneous generators

of degree d, and (x) is a point of C'fl, then for t transcendental over k(x) we have

o = f(x)
= tdf(x) = f(tx),

so (tx) is also a zero of Q. Hence Cfl is homogeneous, thus proving the proposition.

Proposition 2.7. Let be a homogeneous algebraic space. Then each irre-

ducible component V of is also homogeneous.

Proof. Let V =

VI'. . ., be the irreducible components of Cfl, without

inclusion relation. By Remark 3.3 we know that VI ct V2 U . . . U , so there

is a point (x) E VI such that (x) fj. \t} for i = 2, . . . ,
r. By hypothesis, for t transcen-

dental over k(x) it follows that (tx) E Cfl so (tx) E \'i for some i. Specializing to

t = 1, we conclude that (x) E \';, so i = 1, which proves that VI is homoge-

neous, as was to be shown.

Let V be a variety defined over k by a prime ideal p in k[X]. Let (x) be a

generic point of V over k. We say that (x) is homogeneous (over k) if for t
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transcendental over k(x), the point (tx) is also a point of V, or in other words,

(tx) is a specialization of (x). If this is the case, then we have an isomorphism

k[x l' . . .
, Xn] = k[ tx l' . . .

, txn] ,

which is the identity on k and sends Xi on tXi. It then follows from the preceding

propositions that the following conditions are equivalent for a variety V over k:

V is homogeneous.
The prime ideal of V in k[X] is homogeneous.

A generic point of V over k is homogeneous.

A homogeneous ideal always has a zero, namely the origin (0), which will

be called the trivial zero. We shall want to know when a homogeneous algebraic
set has a non-trivial zero (in some algebraically closed field). For this we introduce

the terminology of projective space as follows. Let (x) be some point in An and

A an element of some field containing k(x). Then we denote by (Ax) the point

(Ax}, . . .
,

Ax
n ). Two points (x), (y) E An(K) for some field K are called equivalent

if not all their coordinates are 0, and there exists some element A E K, A =t= 0,

such that (Ax) =

(y). The equivalence classes of such points in An(K) are called

the points of projective space in K. We denote this projective space by pn-l,
and the set of points of projective space in K by pn-l (K) . We define an algebraic

space in projective space to be the non-trivial zeros of a homogeneous ideal,

with two zeros identified if they differ by a common non-zero factor.

Algebraic spaces over rings

As we shall see in the next section, it is not sufficient to look only at ideals

in k[X] for some field k. Sometimes, even often, one wants to deal with polynomial

equations over the integers Z, for several reasons. In the example of the next

sections, we shall find universal conditions over Z on the coefficients of a system

of forms so that these forms have a non-trivial common zero. Furthermore, in

number theory-diophantine questions-one wants to consider systems of equa-

tions with integer coefficients, and to determine solutions of these equations in

the integers or in the rational numbers, or solutions obtained by reducing mod

p for a prime p. Thus one is led to extend the notions of algebraic space and

variety as follows. Even though the applications of the next section will be over

Z, we shall now give general definitions over an arbitrary commutative ring R.

Let f(X) E R[X] = R[Xl' . . .

, Xn] be a polynomial with coefficients in R.

Let R A be an R-algebra, by which for the rest of this chapter we mean a

homomorphism of commutative rings. We obtain a corresponding homomorphism

R[X] A[X]

on the polynomial rings, denoted by f fA whereby the coefficients of fA are

the images of the coefficients off under the homomorphism R A. By a zero

off in A we mean a zero of fA in A. Similarly, let S be a set of polynomials in

R[X]. By a zero of S in A we mean a common zero in A of all polynomials

f E S. Let a be the ideal generated by S in R[X]. Then a zero of S in A is also
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a zero of Q in A. We denote the set of zeros of S in A by ?1 s(A), so that we have

?1 s(A) = a (A).

We call a(A) an algebraic set over R. Thus we have an association

?1
a

: A ?1
a (A)

which to each R-algebra associates the set of zeros of Q in that algebra. We note

that R-algebras form a category, whereby a morphism is a ring homomorphism

cp: A A' making the following diagram commutative:

A

R/j
A'

Then it is immediately verified that ?1
a

is a functor from the category of R-

algebras to the category of sets. Again we call ?1
a

an algebraic space over R.

If R is Noetherian, then R[X] is also Noetherian (Chapter IV, Theorem 4.1),

and so if Q is an ideal, then there is always some finite set of polynomials S

generating the ideal, so s
=

a.
The notion of radical of Q is again defined as the set of polynomials

h E R[X] such that h
N

E Q for some positive integer N. Then the following state-

ment is immediate:

Suppose that R is entire. Then for every R-algebra R K with a field K, we

have

?1
a (K) = ?1 rad(a)(K).

We can define affine space An over R. Its points consist of all n-tuples

(x l' . . .

,
X

n ) = (x) with Xi in some R-algebra A. Thus An is again an association

A An(A)

from R-algebras to sets of points. Such points are In bijection with

homormorphisms

R[X] A

from the polynomial ring over R into A. In the next section we shall limit ourselves

to the case when A = K is a field, and we shall consider only the functor

K An(K) for fields K. Furthermore, we shall deal especially with the case

when R = Z, so Z has a unique homomorphism into a field K. Thus a field K

can always be viewed as a Z-algebra.

Suppose finally that R is entire (for simplicity) . We can also consider projective

space over R. Let Q be an ideal in R[X]. We define a to be homogeneous just as

before. Then a homogeneous ideal in R[X] can be viewed as defining an algebraic
subset in projective space pn(K) for each field K (as an R-algebra). If R = Z,
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then a defines an algebraic subset in pn(K) for every field K. Similarly, one can

define the notion of a homogeneous algebraic space Cfl over R, and over the

integers Z a fortiori. Propositions 2.6 and 2.7 and their proofs are also valid in

this more general case, viewing Cfl = Cfl
a

as a functor from fields K to sets pn(K).
If Q is a prime ideal P, then we call Cfl

p an R-variety V. If R is Noetherian,

so R[X] is Noetherian, it follows as before that an algebraic space Cfl over R is

a finite union of R-varieties without inclusion relations. We shall carry this out

in 5, in the very general context of commutative rings. Just as we did over a

field, we may form the factor ring Z[X]/p and the image (x) of (X) in this factor

ring is called a generic point of V.

3. PROJECTIONS AND ELIMINATION

Let (W) =

(WI' . . .
,

W
m) and (X) = (XI' . . .

,
X

n ) be two sets of independent
variables. Then ideals in k[W, X] define algebraic spaces in the product space

Am
+

n. Let Q be an ideal in k[ W, X]. Let Q I
= Q n k[ W]. Let Cfl be the algebraic

space of zeros of Q and let Cfl
l be the algebraic space of zeros of Q I.

We have

the projection

pr:Cflm+n Cflm or pr: Am+n Am

which maps a point (w, x) to its first set of coordinates (w). It is clear that

pr Cfl C Cfl
l . In general it is not true that pr Cfl = Cfl l . For example, the ideal p gen-

erated by the single polynomial WI
- W2X

I
= 0 is prime. Its intersection with

k[WI ,
W2 ] is the zero ideal. But it is not true that every point in the affine

(WI' W2 )-space is the projection of a point in the variety Cfl
p

. For instance, the

point (1, 0) is not the projection of any zero of p. One says in such a case that

the projection is incomplete . We shall now consider a situation when such a

phenomenon does not occur.

In the first place, let P be a prime ideal in k[W, X] and let V be its variety
of zeros. Let (w, x) be a generic point of V. Let PI

=

P n k[W]. Then (w) is a

generic point of the variety VI which is the algebraic space zeros of PI. This is

immediate from the canonical injective homomorphism

k[W]/PI k[W, X]/p.

Thus the generic point (w) of VI is the projection of the generic point (w, x) of

V. The question is whether a special point (w') of VI is the projection of a point
of V.

In the subsequent applications, we shall consider ideals which are homo-

geneous only in the X-variables, and similarly algebraic subsets which are homo-

geneous in the second set of variables in An.
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An ideal Q in k[ W, X] which is homogeneous in (X) defines an algebraic space

in Am X pn-I. If V is an irreducible component of the algebraic set defined by
Q, then we may view V as a subvariety of Am X pn-I. Let p be the prime ideal

associated with V. Then p is homogeneous in (X). Let PI
=

P n k[W]. We shall

see that the situation of an incomplete projection mentioned previously is elim-

inated when we deal with projective space.

We can also consider the product Am X pn, defined by the zero ideal over

Z. For each field K, the set of points of A
m

x pn in K is Am(K) X pn(K). An

ideal Q in Z[W, X], homogeneous in (X), defines an algebraic space ?l = a in

Am X pn. We may form its projection I on the first factor. This applies in

particular when Q is a prime ideal p, in which case we call 9l
a

an arithmetic

subvariety of Am X pn. Its projection VI is an arithmetic subvariety of Am,
associated with the prime ideal PI

=

P n Z[W].

Theorem 3.1. Let (W) =

("), . . .
,

W
m) and (X) =

(Xl' . . .
, X

n ) be indepen-
dent families of variables. Let P be a prime ideal in k[W, X] (resp. Z[ X])
and assume P is homogeneous in (X). Let V be the corresponding irreducible

algebraic space in Am X pn-I. Let PI
=

P n k[W] (resp. p n Z[W]), and let

VI be the projection of V on the first factor. Then VI is the algebraic space

of zeros of PI in Am.

Proof. Let V have generic point (w, x). We have to prove that every zero

(w') of PI in a field is the projection of some zero (w', x') of P such that not all

the coordinates of (x') are equal to O. By assumption, not all the coordinates of

(x) are equal to 0, since we viewed Vas a subset of Am X pn-I. For definiteness,

say we are dealing with the case of a field k. By Chapter VII, Proposition 3.3,

the homomorphism k[w] k[w'] can be extended to a place cp of k(w, x).

By Proposition 3.4 of Chapter VII, there is some coordinate Xj such that

CP(Xi /Xj) =t= 00 for all i = 1,. . .
, n . We let xi =

CP(Xi /Xj) for all i to conclude the

proof. The proof is similar when dealing with algebraic spaces over Z, replacing
k by Z.

Remarks. Given the point (w') E Am, the point (w', x') in Am X pn-l may

of course not lie in k(w'). The coordinates (x') could even be transcendental

over k(x'). By anyone of the forms of the Hilbert Nullstellensatz, say Corollary
1.3 of Theorem 1.1, we do know that (x') could be found algebraic over k(w'),
however. In light of the various versions of the Nullstellensatz, if a set of forms

has a non-trivial common zero in some field, then it has a non-trivial common

zero in the algebraic closure of the field generated by the coefficients of the

forms over the prime field. In a theorem such as Theorem 1 .2 below, the conditions

on the coefficients for the forms to have a non-trivial common zero (or a zero

in projective space) are therefore also conditions for the forms to have such a

zero in that algebraic closure.

We shall apply Theorem 3.1 to show that given a finite family of homogeneous

polynomials, the property that they have a non-trivial common zero in some
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algebraically closed field can be expressed in terms of a finite number of universal

polynomial equations in their coefficients . We make this more precise as follows.

Consider a finite set of forms (f) = (fl,. . .
, fr). Let dI' . . .

,
d

r
be their

degrees . We assume di
> 1 for i = 1,.. . , r. Each.li can be written

(1) /;
= L wi,(II)M(II)(X)

where M(II)(X) is a monomial in (X) of degree d
i , and wi,(II) is a coefficient. We

shall say that (f) has a non-trivial zero (x) if (x) =t= (0) and.li (x) = 0 for all i.

We let (w) =

(w)f be the point obtained by arranging the coefficients w
i,(II)

of

the forms in some definite order, and we consider this point as a point in some

affine space Am, where m is the number of such coefficients. This integer m is

determined by the given degrees dl , . . . , dr- In other words, given such degrees,
the set of all forms (f) =

(fl, . . . , fr) with these degrees is in bijection with

the points of Am.

Theorem 3.2. (Fundamental theorem of elimination theory.) Given

degrees dl , . . ., dr' the set of all forms (fl, . . .
, fr) in n variables having a

non-trivial common zero is un algebraic subspace of Am over Z.

Proof. Let (W) = (Wi,( II») be a family of variables independent of (X). Let

(F) = (FI , . . .
, Fr) be the family of polynomials in Z[W, X] given by

(2) Fi(W, X) = L Wi,(II)M(II)(X)

where M(II)(X) ranges over all monomials in (X) of degree di , so (W) =

(W)F.
We call F

I ,
. . .

, Fr generic forms. Let

Q = ideal in Z[W, X] generated by F
I ,

. . . , Fr-

Then Q is homogeneous in (X). Thus we are in the situation of Theorem 3. 1
,

with Q defining an algebraic space C1 in Am X pn-I. Note that (w) is a specialization
of (W), or, as we also say, (f) is a specialization of (F). As in Theorem 3.1,

let (tl be the projection of (t on the first factor. Then directly from the definitions,

(f) has a non-trivial zero if and only if (w)f lies in a
I' so Theorem 3.2 is a

special case of Theorem 3. 1.

Corollary 3.3. Let (f) be a family of n forms in It variables, and assume

that (w)f is a generic point of Am, i. e. that the coefficients of these forms are

algebraically independent. Then (f) does not have a non-trivial zero.

Proof. There exists a specialization of (f) which has only the trivial zero,

namely fl = Xjl, . . . , f = Xn.

Next we follow van der Waerden in showing that C1 and hence C1 1 are irreducible.

Theorem 3.4. The algebraic space C1. offorms having a non-trivial common

zero in Theorem 3.2 is actually a Z-variety, i. e. it is irreducible. The prime ideal
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p in Z[W, X] associated with a consists of all polynomials G(W, X) E Z[W, X]
such that for some index j there is an integer s

::> 0 satisfying

(*)j XJG(W, X) = 0 mod (F}, . . .
, Fr); that is, XJG(W, X) E Q.

If relation (*) holds for one index j, then it holds for every j
= 1, . . .

,
n. (Of

course, the integer s depends on j.)

Proof. We construct a generic point of (1. We select anyone of the variables,

say Xq, and rewrite the forms F
i as follows:

F. ( W X) = F + Z.Xdi
" I I q

where Ff is the sum of all monomials except the monomial containing Xgi.
The coefficients (W) are thereby split into two families, which we denote by (Y)

and (Z), where (Z) =

(Z},..., Zr) are the coefficients of (X gl, . . .
,

X gr) in

(F}, . . .
,

F
r), and (Y) is the remaining family of coefficients of Ff, . . .

, F;.
We have (W) = (Y, Z), and we may write the polynomials F

i in the form

Fi(W, X) =

Fi(Y, Z, X) = Ff(Y, X) + ZiXgi.

Corresponding to the variables (Y, X) we choose quantities (y, x) algebraically

independent over Z . We let

(3) Zi
= -Ff(y, x)1xg

i =

-Ff(y, xlxq).

We shall prove that (y, Z, x) is a generic point of (1.

From our construction, it is immediately clear that Fi(y, Z, x) = 0 for all i,

and consequently if G(W, X) E Z[W, X] satisfies (*), then G(y, z, x) = o.

Conversely, let G(Y, Z, X) E Z[Y, Z, X] = Z[W, X] satisfy G(y, z, x) = o.

From Taylor's formula in several variables we obtain

G(Y, Z, X) = G(Y,..., -Fflxgi + Zi + Fflxgi,..., X)

= G(Y, -Fflxgi, X) + L (Zi + Fflxgi)JLiHJLi(Y, Z, X),

where the sum is taken over terms having one factor (Zi + Fi IXi) to some

power J.Li > 0, and some factor H
JLi

in Z[Y, Z, X]. From the way (y, z, x) was

constructed, and the fact that G(y, z, x) = 0, we see that the first term vanishes,

and hence

G(Y, Z, X) = L (Zi + Ff IXgi)JLiHJLi(Y, Z, X).

Clearing denominators of Xq, for some integer s we get

XG(Y, Z, X) = 0 mod (Fi ,
. . . ,

F
r),

or in other words, (*)q is satisfied. This concludes the proof of the theorem.

Remark. Of course the same statement and proof as in Theorem 3.4

holds with Z replaced by a field k. In that case, we denote by Qk the ideal in

k[W, X] generated by the generic forms, and similarly by Pk the associated prime
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ideal. Then

Qk,1
=

Qk n k[W] and Pk,1
=

Pk n k[W].

The ideal P in Theorem 3.4 will be called the prime associated with the

ideal of generic forms. The intersection PI
=

P n Z[W] will be called the prime
elimination ideal of these forms. If (1 denotes as before the zeros of P (or of

Q), and (11 is its projection on the first factor, then PI is the prime associated

with (11. The same terminology will be used if instead of Z we work over a

field k. (Note: homogeneous elements of PI have been called inertia forms in

the classical literature, following Hurwitz. I am avoiding this terminology be-

cause the word "inertia" is now used in a standard way for inertia groups as in

Chapter VII, 2.) The variety of zeros of PI will be called the resultant vari-

ety. It is determined by the given degrees dI' . . . , d
n , so we could denote it

by (11(db ...,
d

n ).

Exercise. Show that if P is the prime associated with the ideal of generic

forms, then P n Z = (0) is the zero ideal.

Theorem 3.5. Assume r =

n, so we deal with n forms in n variables. Then

PI is principal, generated by a single polynomial, so (11 is what one calls a

hypersurface. If (w) is a generic point of (11 over a field k, then the transcen-

dence degree of k(w) over k is m
- 1.

Proof, We prove the second statement first, and use the same notation as in

the proof of Theorem 3.4. Let Uj
=

Xj/xn. Then Un
= 1 and (y), (UI'...' un-I)

are algebraically independent. By (3), we have Zi
=

-Ft(y, u), so

k(w) = k(y, z) C k(y, u),

and so the transcendence degree of k(w) over k is <
m

- 1. We claim that this

transcendence degree is m
- 1. It will suffice to prove that UI, . . .

, un-I are

algebraic over k(w) = k(y, z). Suppose this is not the case. Then there exists a

place cP of k(w, u), which is the identity on k(w) and maps some Uj on 00. Select

an index q such that CP(Ui /u
q) is finite for all i = 1,. . . , n

- 1. Let Vi
=

ui /u
q

and v; =

CP(Ui /u
q). Denote by 1iq the coefficient of X; in F

i and let y* denote

the variables (Y) from which Y
lq ,.

.

.,
Y

nq
are deleted. By (3) we have for

i=I,...,n:

o =

Y
. ud; + z. + F*(y

*
U)lq q I I ,

=

Yiq + Zi/U:' + Fi*(y*, u/uq).

Applying the place yields

o =

Yiq
+ Ft*(y*, v').

In particular, Yiq E k(y*, v') for each i = 1, . . .

, n. But the transcendence degree
of k(v') over k is at most n

-

1, while the elements (Ylq, . . .

, Ynq' y*) are

algebraically independent over k, which gives a contradiction proving the

theorem.
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Remark. There is a result (I learned it from [Jo 80]) which is more precise
than Theorem 3.5. Indeed, let a as in Theorem 3.5 be the variety of zeros of

P, and C1 1 its projection. Then this projection is birational in the following sense.

Using the notation of the proof of Theorem 3.5, the result is not only that k(w)

has transcendence degree m
- lover k, but actually we have

Q(y, z) = Q(w) =

Q(y, u).

Proof. Let PI
= (R), so R is the resultant, generating the principal ideal

PI. We shall need the following lemma.

Lemma 3.6. There is a positive integer s with the following properties. Fix

an index i with 1 -< i -<
n
- 1. For each pair of n-tuples of integers

> 0

(a) = (aI' . . . , an) and (13) =

(131' . . .
, 13n)

with I al = 1131 = di ,
we have

s

(
aR

_

aR

)
=

X
n M(o:)(X) aw. M({3)(X) aw.

- 0 mod (FI ,
. . .

, Fn).
1,({3) 1,(0:)

To see this, we ust: the fact from Theorem 3.4 that for some s,

XR(W)
=

QIFI + .. · + QnFn with Qj E Z[W, X].

Differentiating with respect to "'i,({3) we get

X aR = QjM(f3)(X) mod (F)o . . . , F
n ),

i , ( (3)

and similarly

X R =

QjM(a)(X) mod (FI,' . . , Fn)'
a

i,(o:)

We multiply the first congruence by M(o:)(X) and the second by M({3)(X), and we

subtract to get our lemma.

From the above we conclude that

aR aR

M(o:)(X) aw

-

M({3)(X)
i, ( (3)

a "'i, ( 0:)

vanishes on C1, i.e. on the point (w, u), after we put X
n

= 1. Then we select

M(o:)(X)
= Xf; and M({3)(X)

= Xf;-IX
n

for i = 1,. . .
,

n
-

1,

and we see that we have the rational expression

aR/a"'i,({3)
u,

=

/
' for i = 1,.. .

,
n
-

1,1
aR a"'f,(o:) (w)=(w)

thus showing that Q(u) C Q(w), as asserted.
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We note that the argument also works over the prime field of characteristic

p. The only additional remark to be made is that there is some partial derivative

aR/a,(a) which does not vanish on (w). This is a minor technical matter, which

we leave to the reader.

The above argument is taken from [Jo 80], Proposition 3.3.1. Jouanolou links

old-time results as in Macaulay [Ma 16] with more recent techniques of com-

mutative algebra, including the Koszul complex (which will be discussed in

Chapter XXI). See also his monographs [Jo 90], [Jo 91].

Still following van der Waerden, we shall now give a fairly explicit deter-

mination of the polynomial generating the ideal in Theorem 3.5 . We deal with

the generic forms Fj(W, X) (i = 1, . . .
, n). According to Theorem 3.5, the ideal

PI is generated by a single element. Because the units in Z[W] consist only of

+ 1, it follows that this element is well defined up to a sign. Let

R(W) = R(Fb . . .
, Fn)

be one choice of this element. Later we shall see how to pick in a canonical way

one of these two possible choices . We shall prove various properties of this

element, which will be called the resultant of Fb . . .
, Fn.

For each i = 1, . . .
,

n we let Dj be the product of the degrees with dj omitted;
that is,

A

D. = d.. · d, . · · d
I I I n.

We let d be the positive integer such that d - 1 = L (dj
-

1).

Lemma 3.7. Given one of the indices, say n, there is an element Rn(W) lying
in PI' satisfying the following properties.

(a) For each i, Rn(W)Xf = 0 mod (FI' . . .
, Fn) in Z[ X].

(b) For each i, Rn(W) is homogeneous in the set of variables (,(V»)' and is of
degree Dn in (,(v»)' i.e. in the coefficient of Fn.

(c) As a polynomial in Z[W], Rn(W) has content 1, i.e. is primitive.

Proof. The polynomial Rn(W) will actually be explicitly constructed. Let

Mu(X) denote the monomials of degree I u I = d . We partition the indexing set

S = {u} into disjoint subsets as follows.

Let S I
= {UI} be the set of indices such that Mu)(X) is divisible by Xjl .

Let S2 = {U2} be the set of indices such that M
U2(X) is divisible by Xq2 but

not by Xjl.

Let Sn
= {un} be the set of indices such that Mun(X) is divisible by Xn but

not by Xjl,..., X-Il.
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Then S is the disjoint union of S I' . . .

, Sn. Write each monomial as follows:

MUl(X)
=

HUl(X)Xjl so deg HUl
= d - d

l

M (X) = H (X)Xdn so deg HrY"

= d - d .

UI Un n
Un n

Then the number of polynomials

H
U'I

Fh . . . ,
H

U'
n Fn (with (TIE S h . . .

, (Tn E S
n )

is precisely equal to the number of monomials of degree d. We let Rn be the

determinant of the coefficients of these polynomials, viewed as forms in (X) with

coefficients in Z[W]. Then Rn
=

Rn(W) E Z[W] . We claim that Rn(W) satisfies

the properties of the lemma.

First we note that if (Tn E Sn, then Hun(X) is divisible by a power of Xi at

most di
-

1, for i = 1,. . . , n
- 1. On the other hand, the degree of Hun(X) in

X
n

is determined by the condition that the total degree is d -

dno Hence Sn has

exactly Dn elements. It follows at once that Rn(W) is homogeneous of degree Dn
in the coefficients of Fn, i.e. in (Wn ,(II»)' From the construction it also follows

that Rn is homogeneous in each set of variables ("",(II») for each i = 1,...,

n
- 1.

If we specialize the forms F
i (i = 1,. . . , n) to Xfi, then Rn specializes to 1,

and hence Rn =t= 0 and Rn is primitive. For each (Ti we can write

HuFi= L Cuuo(W)Mu(X),
I

uE S
' I

where MU'(X) «(T E S) ranges over all monomials of degree d in (X), and C
u uo(W)

, I

is one of the variables (W). Then by definition

Rn(W)
=

det(CU,U'l(W)(UlESI)' . . .

, Cu,un(W)(UnESn»)
= det(C).

where (TI E S I' . . .

, (Tn E Sn indexes the columns, and (T indexes the rows. Let

B = C be the matrix with components in Z[W, X] such that

BC = det(C)/ =

Rn/.

(See Chapter XIII, Corollary 4.17.) Then for each (T, we have

Rn(W)Mu(X) = L L B
i uoFi.

i UiESi
' I

Given i, we take for (T the index such that Mu(X) = Xf in order to obtain the

first relation in Lemma 3.7. By Theorem 3.4, we conclude that Rn(W) E PI. This

concludes the proof of the lemma.

Of course, we picked an index n to fix ideas. For each i one has a polynomial
R

i satisfying the analogous properties, and in particular homogeneous of degree
D

i in the variables (Wi,(II») which are the coefficients of the form F
i .
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Theorem 3.8. Let R be the resultant of the n generic forms F
i over Z, in n

variables. Then R satisfies the following properties.

(a) R is the greatest common divisor in Z[W] of the polynomials R
I' . . .

, Rn.

(b) R is homogeneous of degree Di in the coefficients of F
i .

(c) Let F
i

=
. . . + "'i,(d;)Xf;, so "'i,(d;) is the coefficient ofXf;. Then R contains

the monomial

n

+ Il WD,
-

.

(d.)
.

.

I
I"

1=

Proof. The idea will be to specialize the forms F
I ,

. . . , Fn to products of

generic linear forms, where we can tell what is going on. For that we need a

lemma of a more general property eventually to be proved. We shall use the

following notation. If fl, . . .
, fn are forms with coefficients (w), then we write

R(fl, . . . , fn)
= R(w).

Lemma 3.9. Let G, H be generic independent forms with deg(GH) = d
l

.

Then R(GH, F2 ,.
. .

, Fn) is divisible by R(G, F2 ,.
. .

, Fn)R(H, F2 ,.
. .

, Fn).

Proof. By Theorem 3.5, there is an expression

XR(FI' . . .

, Fn)
= QIF I

+ ... + QnFn with Qi E Z[W, X].

Let W
G ,

WH ,
W

F2 ,
. . .

,
W

Fn
be the coefficients of G, H, F

2 ,
. . .

, Fn respectively,
and let (w) be the coefficients of GH, F2 ,

. . . , Fn. Then

R(w) = R(GH, F2 ,
. . .

,
F

n ),

and we obtain

XR(w)
=

QI(W, X)GH + Q2(w, X)F2
+ Qn(w, X)Fno

Hence R(GH, F
2 ,

. . .
, Fn) belongs to the elimination ideal of G, F2 , . . . , Fn in

the ring Z[WG ,
W

H , W
F2 ,.

. .

,
WFn]' and similarly with H instead of G. Since

WH is a family of independent variables over Z[WG ,
W

F2 ,
. . .

,
WFn]' it follows

that R(G, F2 ,
. . .

, Fn) divides R(GH, F
2 , . . .

, Fn) in that ring, and similarly for

R(H, F2 ,
. . .

, Fn). But (WG) and (WH) are independent sets of variables, and so

R(G, F2 ,
. . .

,
F

n ), R(H, F2 ,.
. .

, Fn) are distinct prime elements in that ring, so

their product divides R(GH, F2 ,
. . .

, Fn) as stated, thus proving the lemma.

Lemma 3.9 applies to any specialized family of polynomials g, h, fl, . . .
,

fn with coefficients in a field k. Observe that for a system of n linear forms in

n variables, the resultant is simply the determinant of the coefficients. Thus if

L
I' . . . , Ln are generically independent linear forms in the variables X

I' . . . ,
X

n ,

then their resultant R(L I'
. . . , Ln) is homogeneous of degree 1 in the coefficients

of L
i for each i. We apply Lemma 3.9 to the case of forms fl, . . .

, fn-I, which

are products of generically independent linear forms. By Lemma 3.9 we conclude

that for this specialized family of form, their resultant has degree at least Dn in
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the coefficients of Fn, so for the generic forms F
I ,

. . .
, Fn their resultant has

degree at least Dn in the coefficients of Fno Similarly R(FI , . . .
, Fn) has degree

at least D
i

in the coefficients of F
i for each i. But R divides the n elements

R I (W), . . . , Rn(W) constructed in Lemma 3.7. Therefore we conclude that R has

degree exactly Di in the coefficients of F
i . By Theorem 3.5, we know that R

divides each Ri . Let G be the greatest common divisor of R
I' . . .

, Rn in Z[W].
Then R divides G and has the same degree in each set of variables (,(v») for

i = 1,..., n. Hence there exists c E Z such that G = cR. We must have

c
= + 1, because, say, Rn is primitive in Z[W]. This proves (a) and (b) of the

theorem.

As to the third part, we specialize the forms to /; = Xf;, i = 1,. . .
,

n. Then

Rn specializes to 1, and since R divides Rn it follows that R itself specializes to

+ 1. Since all coefficients of the forms specialize to 0 except those which we

denoted by ,(d;)' it follows that R(W) contains the monomial which is the product
of these variables to the power D

i , up to the sign + 1. This proves (c), and

concludes the proof of Theorem 3.8.

We can now normalize the resultant by choosing the sign such that R contains

the monomial

n

M
- IT WD;
-

i (d
.

) ,

i=1
"

with coefficient + 1. This condition determines R uniquely, and we then denote

R also by

R = Res(FI ,
. . .

, Fn).

Given forms II, . . . , In with coefficients (w) in a field K (actually any commu-

tative ring), we can then define their resultant

Res(fl, . . .
, fn) = R(w)

with the normalized polynomial R 0 With this normalization, we then have a

stronger result than Lemma 3.9.

Theorem 3.10. Let fl
= gh be a product oflorms such that deg(gh)

= d
l .

Let 12, . . .
, In be arbitrary lorms of degrees d2 ,

. . . , d
n

. Then

Res(gh, 12, . . .

, In)
= Res(g, 12, . . .

, In)Res(h, 12' . . .
, fn).

Proof. From the fact that the degrees have to add in a product ofpolynomials,

together with Theorem 3.8(a) and (b), we now see in Lemma 3.9 that we must

have the precise equality in what was only a divisibility before we knew the

precise degree of R in each set of variables.

Theorem 3. 10 is very useful in proving further properties of the determinant,

because it allows a reduction to simple cases under factorization of polynomials.
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For instance one has:

Theorem 3.11. Let FI' . . .
, Fn be the generic forms in n variables, and let

FI ,
. . .

, Fn be the forms obtained by substituting X
n

= 0, so that FI ,
. . .

, Fn -I

are the generic forms in n
- 1 variables. Let n

> 2. Then

Res(FI ,
. . .

,
F

n
- I , Xn) = Res(FI ,

. . .

, Fn _l)dn
.

Proof. By Theorem 3.10 it suffices to prove the assertion when d
n

= 1. By
Theorem 3.4, for each i = 1,. . .

,
n
- 1 we have an expression

(*) XfRes(F1 ,..., F
n
- I ,

X
n ) =

QIFI
+ ... + Qn-IFn-1 + QnXn

with Qj E Z[W, X] (depending on the choice of i). The left-hand side can be

written as a polynomial in the coefficients of F
1 ,

. . .
, Fn-I with the notation

XfR(WF I'
. . .

,
WF

n
_ I' Ixn)

= XfP("F I
' . . .

, WF
n

_ I)
= XtP(W( n -I)

), say;

thus in the generic linear form in XI' . . .

,
X

n
we have specialized all the coef-

ficients to 0 except the coefficient of X
n , which we have specialized to 1. Sub-

stitute X
n

= 0 in the right side of (*). By Theorem 3.4, we conclude that

p(w
(n -I)) lie in the resultant ideal of FI '...' F

n
- I , and therefore

Res(F1 ,
. .

.,
F

n
- I ) divides p(w(n-I)). By Theorem 3.8 we know that

p(w(n-I)) has the same homogeneity degree in Wp. (i = 1,..., n
-

1)
_ _ I

as Res(FI ,
. . .

,
F

n
- I ). Hence there is c E Z such that

cRes(FI ,...,
F

n
-

I ) = Res(FI ,..., F
n
- I ,

X
n ).

One finds c
= 1 by specializing FI ,

. . .
,

F
n
-

I to Xii, . . .
, X"--II respectively,

thus concluding the proof.

The next basic lemma is stated for the generic case, for instance in Macaulay

[Ma 16], and is taken up again in [Jo 90], Lemma 5.6.

Lemma 3.12. Let A be a commutative ring. Let fl' . . .
, fn' gl' . . .

, gn be

homogeneous polynomials in A[XI' . . .
,
X

n]. Assume that

(g I' . . .
, gn) C ifl, . . .

, fn)

as ideals in A [X] . Then

Res(fl'... ,fn) divides Res(gl'...' gn) in A.

Proof. Express each gi
= 2: hi}h with hij homogeneous in A[X]. By spe-

cialization, we may then assume that gi
= 2: HijFj where Hi} and Fj have alge-

braically independent coefficients over Z. By Theorem 3.4, for each i we have

a relation

Xf Res(gl'. . . , gn)
= QIgI + ... + Qngn with some Qi E Z[WH , WF],
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where WH ,
WF denote the independent variable coefficients of the polynomials

Hi} and Fj respectively. In particular,

(*) Xf Res(gl'. . .
, gn) = 0 mod (FI'. . . , Fn)Z[WH ,

WF , X].

Note that Res(gl, . . .
, gn)

= P(WH ,
WF) E Z[WH , WF] is a polynomial with

integer coefficients. If (wF) is a generic point of the resultant variety C1 1 over

Z, then P(WH , wF)
= 0 by (*). Hence Res(FI ,

. . .
, Fn) divides P(WH ,

WF), thus

proving the lemma.

Theorem 3.13. Let A be a commutative ring and let d
l ,

. . . ,
d

n
be integers

> 1 as usual. Let./; be homogeneous of degree d
i in A[X] = A[X I ,...,

X
n].

Let d be an integer
>

1, and let gi, . .
., gn be homogeneous of degree d in

A[X]. Then

./; 0 9
=

./; (g I' . . .
, gn)

is homogeneous of degree ddi , and

Res(fl 0

g,... ,fn 0 g) = Res(gl'...' gn)dJ."dn

Res(fl'... ,fn)d
n
- 1

in A.

Proof. We start with the standard relation of Theorem 3.4:

(*) XfRes(FI ,
. . .

, Fn) = 0 mod (FI , . . .
, Fn )Z[WF , X].

We let G I ,
. . .

,
G

n
be independent generic polynomials of degree d, and let WG

denote their independent variable coefficients. Substituting Gi for Xi in (*), we

find

GfRes(FI ,
. . .

, Fn) = 0 mod (FloG, . . .
, Fn 0 G)Z[WF ,

WG , X].

Abbreviate Res(FI ,
. . .

, Fn) by R(F), and let gi
= GfR(F). By Lemma 3.12, it

follows that

Res(fl 0 G, . . .
, Fn 0 G) divides Res(GR(F), . . .

, GR(F)) in Z[WF , WG].

By Theorem 3.10 and the homogeneity of Theorem 3.8(b) we find that

Res(GR(F), . . .

, Gs"R(F))
=

Res(G., . . .
, Gn)M Res (FI ,

. . . , Fn)N

with integers M, N > o. Since Res(G I' . . .
, Gn) and Res(FI ,

. . .
, Fn) are distinct

prime elements in Z[WG ,
WF] (distinct because they involve independent vari-

abies), it follows that

(**) Res(FI
0 G,..., Fn 0 G) =

E Res(G I ,..., Gn)a Res(FI ,..., Fn)b

with integers a, b > 0 and E
= 1 or -1. Finally, we specialize F

i to "'fXfi and

we specialize Gi to ViXf, with independent variables (WI' . . .

,
W

n , VI' . . .
, V

n ).
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Substituting in (**), we obtain

Res(WI UjlXjd 1
,

. . .

, WnUnXd n)

=
e Res(UIXj,. . .

, UnX)a Res(WIXjl, . . .
, WnXn)b.

By the homogeneity of Theorem 3.8(b) we get

I1("'iUdi)d1 di dnd
n
- 1

= eI1u1
n
-

la I1W1 1 Ji dnb

i i i

From this we get at once e
= 1 and a, b are what they are stated to be in the

theorem.

Corollary 3.14. Let C =

(cij) be a square matrix with coefficients in A. Let

fi(X)
=

Fi(CX) (where CX is multiplication of matrices, viewing X as a column

vector). Then

Res(fl, . . . , fn)
= det(C)d1...dn Res(FI ,

. . .
, Fn).

Proof. This is the case when d = 1 and gi is a linear form for each i.

Theorem 3.15. Let fl, . .
., in be homogeneous in A[X], and suppose

d
n

>

difor all i. Let hi be homogeneous of degree d
n

- di in A[X]. Then

n-I

Res(fl, . . .
, fn- b fn + hjh)

= Res(fb. . .
, fn) in A.

}=I

Proof. We may assumefi
= F

i are the generic forms, Hi are forms generic

independent from FI'. .
., Fn, and A = Z[WF ,

WH], where (WF) and (WH)

are the coefficients of the respective polynomials. We note that the ideals

(FI ,
. . . , Fn) and (FI ,

. . .
, Fn + .L HjFj) are equal. From Lemma 3.12 we

j=Fn

conclude that the two resultants in the statement of the theorem differ by a factor

of 1 or
- 1. We may now specialize H

ij
to 0 to determine that the factor is + 1

,

thus concluding the proof.

Theorem 3.16. Let 7T be a permutation of {I, . . . , n}, and let e( 7T) be its

sign. Then

Res(F1T(l)'...'
F

1T(n»)
= e(7T)dl"

d
n Res(FI ,..., Fn).

Proof. Again using Lemma 3. 12 with the ideals (FI'...' Fn) and

(F1T(1)'
. . . , F

1T (n»), which are equal, we conclude the desired equality up to a

factor + 1, in Z[ WF] . We determine this sign by specializing F
i to Xfi, and using

the multiplicativity of Theorem 3.10. We are then reduced to the case when

F
i
=

Xi' so a linear form; and we can apply Corollary 3.14 to conclude the proof.

The next theorem was an exercise in van der Waerden's Moderne Algebra.
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Theorem 3.17. Let L
I' . . .

, Ln- I, F be generic forms in n variables, such

that L
I ,

. . .
, Ln-I are of degree 1, and F has degree d = d

n
. Let

djU
= 1,..., n)

be (-1)
n-j times the j-th minor determinant of the coefficient matrix of the

forms (L I ,
. . .

,
L

n
-

I ). Then

Res(L I ,..., L
n
- I , F) = F(d l ,..., d

n ).

Proof. We first claim that for all j
= 1,. . .

, n we have the congruence

(*) Xndj
-

Xjdn

= 0 mod (LI' . . .
, Ln -I )Z[ X],

where as usual, (W) are the coefficients of the forms L
I' . . .

,
L

n
-

I , F. To see

this, we consider the system of linear equations

WI IXI
+ . .. + WI,n -IXn -I

=

LI( X)
-

WI,nXn

-l,IXI + ... + -l,n-IXn-l
=

Ln-I(X)
-

Wn-l,nXn.

If C = (C
l

,
. . . , C

n
- I

) is a square matrix with columns Cj, then a solution of

a system of linear equations CX = C
n

satisfies Cramer's rule

Xjdet(C
I
,..., cn-I) = det(C

I
,..., C

n

,..., cn-I).

Using the fact that the determinant is linear in each column, (*) falls out.

Then from the congruence (*) it follows that

XF(dl'...' d
n ) = dF(XI'...' X

n ) mod (LI'...' Ln-I)Z[ X],

whence

XF(db. . .
,

d
n ) = 0 mod (LI'. . .

,
L

n
- I , F).

Hence by Theorem 3.4 and the fact that Res(L I ,
. . .

,
L

n
- I , F) = R(W) generates

the elimination ideal, it follows that there exists c E Z[W] such that

F(d l ,..., d
n ) = cRes(L I ,..., L

n
- I , F).

Since the left side is homogeneous of degree 1 in the coefficients WF and homo-

geneous of degree d in the coefficients WL;
for each i = 1, . . . , n

-

1, it follows

from Theorem 3.8 that c E Z. Specializing L
i to Xi and F to X makes d

j specialize
to 0 if j =t= nand d

n specializes to 1. Hence the left side specializes to 1, and

so does the right side, whence c = 1. This concludes the proof.
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4. RESULTANT SYSTEMS

The projection argument used to prove Theorem 3.4 has the advantage of

constructing a generic point in a very explicit way. On the other hand, no explicit,
or even effective, formula was given to construct a system of forms defining

at. We shall now reformulate a version of Theorem 3.4 over Z and we shall

prove it using a completely different technique which constructs effectively a

system of generators for an ideal of definition of the arithmetic variety Cl i in

Theorem 3.2.

Theorem 4.1. Given degrees dl ,
. . .

, d
r

>
1, and positive integers m, n. Let

(W) =

(,(JI») be the variables as in 3, (2) viewed as algebraically independent
elements over the integers Z. There exists an effectively determinable finite
number ofpolynomials Rp(W) E Z[W] having the following property. Let (f)
be as in (1), a system offorms of the given degrees with coefficients (w) in

some field k. Then (f) has a non-trivial common zero if and only if Rp(w)
= 0

for all p.

A finite family {Rp } having the property stated in Theorem 4.1 will be called

a resultant system for the given degrees. According to van der Waerden

(Moderne Algebra, first and second edition, 80), the following technique of

proof using resultants goes back to Kronecker elimination, and to a paper of

Kapferer (Uber Resultanten und Resultantensysteme, Sitzungsber. Bayer. Akad.

Munchen 1929, pp. 179-200). The family of polynomials {Rp(W)} is called a

resultant system, because of the way they are constructed. They form a set of

generators for an ideal b l such that the arithmetic variety Cl i is the set of zeros

of b l . I don't know how close the system constructed below is to being a set of

generators for the prime ideal PI in Z[W] associated with Cl i . Actually we shall

not need the whole theory of Chapter IV, 10; we need only one of the char-

acterizing properties of resultants.
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Let p, q be positive integers. Let

I' = v-
yp + V

I
XP-

I
X2

+ ... + v XPJ V (Y1 I I P 2

9
= Woxq + W I

Xq-
I
X2

+ .. . + w xq
w I I q 2

be two generic homogeneous polynomials in Z[v, w, XI' X2 ] = Z[v, w] [X]. In

Chapter IV, 10 we defined their resultant Res(fv, gw) in case X2
= I, but we

find it now more appropriate to work with homogeneous polynomials. For our

purposes here, we need only the fact that the resultant R(v, w) is characterized

by the following property. If we have a specialization (a , b) of (v, w) in a field

K, and if fa' fb have a factorization

P

fa
=

ao IT (XI
-

a;X2 )
;= I

q

gb
= bo IT (XI

-

f3jX2)
j=1

then we have the symmetric expressions in terms of the roots:

R(a, b) = Res(!a, fb)
=

agbg D (a;
-

f3j )
I,}

=

ag IJ gb(a;, 1) =

(-I)pqbb IJfa(f3j, I).
I }

From the general theory of symmetric polynomials, it is a priori clear that

R(v, w) lies in Z[v, w], and Chapter IV, 10 gives an explicit representation

'Pv,wfv + t/lv,wgw
= X+q-IR(v, w)

where 'Pv,w and t/lv,w E Z[v, W, X]. This representation will not be needed. The

next property will provide the basic inductive step for elimination.

Proposition 4.2. Let fa' gb be homogeneous polynomials with coefficients in

a field K. Then R(a, b) = 0 if and only if the system of equations

fa(X)
= 0, gb(X)

= 0

has a non-trivial zero in some extension of K (which can be taken to be finite).

If ao
= 0 then a zero of gb is also a zero of fa; and if bo

= 0 then a zero of fa
is also a zero of gb. If aobo =t= 0 then from the expression of the resultant as a

product of the difference of roots (ai
-

f3j) the proposition follows at once.

We shall now prove Theorem 4.1 by using resultants. We do this by induction

on n.
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If n
= 1, the theorem is obvious.

If n
= 2, r = 1, the theorem is again obvious, taking the empty set for (Rp).

If n = 2, r = 2, then the theorem amounts to Proposition 4.2.

Assume now n = 2 and r > 2, so we have a system of homogeneous equations

o =

fl(X)
= f2(X)

=
. . .

=

fr(X)

with (X) = (XI, X2 ). Let di be the degree of.f; and let d =
max di . We replace

the family {Jj(X)} by the family of all polynomials

/; (X)X1-
d; and /; (X)X1-

d
;, i = 1,..., r.

These two families have the same sets of non-trivial zeros, so to prove Theorem

4.1 we may assume without loss of generality that all the polynomials fl, . . . ,

fr have the same degree d.

With n = 2, consider the generic system of forms of degree d in (X):

(4) fj( X) = 0 with i = 1,..., r, in two variables (X) = (X I' X2 ),

where the coefficients of F
i are "'i,D, . . .

, "'i,d so that

(W) =

("),0'...' WI,d'...' ,o,..., ,d).

The next proposition is a special case of Theorem 4.1, but gives the first step
of an induction showing how to get the analogue of Proposition 4.2 for such a

larger system. Let TI ,
. . .

, Tr and UI' . . .
, U

r
be independent variables over

Z[W, X]. Let FI'...' Fr be the generic forms of 3, (2). Let

f =

FI( X)TI
+ · .. + Fr( X)Tr

9
=

FI( X)UI
+ · .. + Fr( X)Ur

sof, 9 E Z[W, T, U][X]. Thenf, 9 are polynomials in (X) with coefficients in

Z[W, T, U]. We may form their resultant

Res(f, g) E Z[W, T, U].

Thus Res(f, g) is a polynomial in the variables (T, U) with coefficients in Z[W].
We let (QJL(W)) be the family of coefficients of this polynomial.

Proposition 4.3. The system {QJL(W)} just constructed satisfies the property

of Theorem 4.1, i.e. it is a resultant system for r forms of the same degree d.

Proof. Suppose that there is a non-trivial solution of a special system

fj(W, X) = 0 with (w) in some field k. Then (w, T, U) is a common non-trivial

zero of f, g, so Res(f, g)
= 0 and therefore QJL(w)

= 0 for all J..L. Conversely,
suppose that QJL(w)

= 0 for all J..L. Let .f;(X) =

Fi(w, X). We want to show

thatfi(X) for i = 1,. . .
,
r have a common non-trivial zero in some extension of
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k. If all.li are 0 in k[X I , X2 ] then they have a common non-trivial zero. If, say,

fl =t= 0 in k[X], then specializing T2 ,
. . .

, Tr to 0 and TI to 1 in the resultant

Res(f, g), we see that

Res(fl,/2U2
+ ... + frUr) = 0

as a polynomial in k[ U2' . . .
, U

r]. After making a finite extension of k if neces-

sary, we may assume that fl (X) splits into linear factors. Let {ai} be the roots

of fl(X I , 1). Then some (ai' 1) must also be a zero of 12 U2
+ ... + IrUr,

which implies that (ai' 1) is a common zero of II' . . .

, Ir since U2' . . ., U
r

are algebraically independent over k. This proves Proposition 4.3.

We are now ready to do the inductive step with n > 2. Again, let

.Ii(X)
=

Fi(w, X) for j
= 1,..., r

be polynomials with coefficients (w) in some fields k.

Remark 4.4. There exists a non-trivial zero of the system

fi
= 0 (i = 1, . . . , r)

in some extension of k if and only if there exist

(XI'. . .

, Xn-I) =t= (0,. . . ,0) and (xn , t) =t= (0,0)

in some extension of k such that

.Ii ( tx
b . . .

,
tx

n
-

I' X
n ) = 0 for i = 1,..., r.

So we may now construct the system (Rp ) inductively as follows.

Let T be a new variable, and let x(n-I) = (Xb . . .
,

X
n
- I ). Let

9i (W, X( n
-

I), S
n' T) = Fi (W, TXI'

. . .

,
TX

n
- I' Xn) E Z [W, X( n -I)

] [Xn' T].

Then gi is homogeneous in the two variables (Xn , T). By the theorem for two

variables, there is a system of polynomials (QJL) in Z[W, x(n-I)] having the

property: if(w, .in-I) is a point in afield K, then

gi(W, x(n-I), X
n ' T) have a non-trivial common zero for i = 1,..., r.

QJL(w, x(n-I) = 0 for all J..L.

Viewing each QJL as a polynomial in the variables (x(n-I», we decompose each

QJL as a sum of its homogeneous terms, and we let (HA( x(n-I)) be the fam-

ily of these polynomials, homogeneous in (x<n-I». From the homogeneity

property of the forms Fj in (X), it follows that if t is transcendental over K

and gi(w, x(n-I), X
n , T) have a non-trivial common zero for j

= 1,..., r

then gi(w, tx(n-I), X
n , T) also have a non-trivial common zero. Therefore
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QJL(W, tX(n-l)) = 0 for all J.L, and so HA (w, x(n-l)) = O. Therefore we may use the

family of polynomials (HA) instead of the family (QJL)' and we obtain the property:

if (w, x(n-l)) is a point in a field K, then

gi(W, x(n-l), X
n ' T) have a non-trivial common zero for i = 1,..., r

HA(w, x(n-l)) = o for all A.

By induction on n, there exists a family (Rp(W)) of polynomials in Z[W]

(actually homogeneous), having the property: if (w) is a point in a field K, then

HA (w, x(n-l)) have a non-trivial common zero for all A

Rp(w)
= 0 for all p.

In light of Remark 4.4, this concludes the proof of Theorem 4.1 by the resultant

method.

5. SPEC OF A RING

We shall extend the notions of 2 to arbitrary commutative rings.
Let A be a commutative ring. By spec(A) we mean the set of all prime ideals

of A. An element of spec(A) is also called a point of spec(A).
If f E A, we view the set of prime ideals p of spec(A) containing fas the set

of zeros off Indeed, it is the set of p such that the image off in the canonical

homomorphism
A Alp

is O. Let a be an ideal, and let (a) (the set of zeros of a) be the set of all

primes of A containing a. Let a, b be ideals. Then we have:

Proposition 5.1.

(i) (ab) = (a) U (b).

(ii) If {ai} is a family of ideals, then (L a;)
= n (a;).

(iii) We have (a) C (b) if and only if rad(a) :J rad(b), where rad(a), the

radical of a, is the set of all elements x E A such that x
n

E a for some

positive integer n.

Proof. Exercise. See Corollary 2.3 of Chapter X.

A subset C of spec(A) is said to be closed if there exists an ideal a of A such

that C consists of those prime ideals p such that a c p. The complement of a

closed subset of spec(A) is called an open subset of spec(A). The following
statements are then very easy to verify, and will be left to the reader.
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Proposition 5.2. The union of a finite number of closed sets is closed. The

intersection of an arbitraryfamily of closed sets is closed.

The intersection of a finite number of open sets is open. The union of an

arbitrary family ofopen sets is open.

The empty set and spec(A) itself are both open and closed.

If S is a subset of A, then the set of prime ideals p E spec(A) such that S c p

coincides with the set of prime ideals p containing the ideal generated by S.

The collection of open sets as in Proposition 5.2 is said to be a topology on

spec( A), called the Zariski topology.

Remark. In analysis, one considers a compact Hausdorff space S. "Haus-

dorff" means that given two points P, Q there exists disjoint open sets Up, U
Q

containing P and Q respectively. In the present algebraic context, the topology
is not Hausdorff. In the analytic context, let R be the ring of complex valued

continuous functions on S. Then the maximal ideals of R are in bijection with

the points of S (Gelfand-Naimark theorem). To each point PES, we associate

the ideal Mp of functions f such that f(P) = o. The association P Mp

gives the bijection. There are analogous results in the complex analytic case.

For a non-trivial example, see Exercise 19 of Chapter XII.

Let A, B be commutative rings and cp: A B a homomorphism. Then cp

induces a map

qJ* = spec(qJ) =

qJ

-

1
: spec(B) -. spec(A)

by

p qJ

- 1

(p).

Indeed, it is immediately verified that ({J
-

l(p) is a prime ideal of A. Note however

that the inverse image of a maximal ideal of B is not necessarily a maximal ideal

of A. Example? The reader will verify at once that spec«({J) is continuous, in the

sense that if U is open in spec(B), then qJ

-

1( U) is open in spec(A).
We can then view spec as a contravariant functor from the category of

commutative rings to the category of topological spaces.

By a point of spec(A) in a field L one means a mapping

spec«({J): spec(L) spec(A)

induced by a homomorphism ({J : A L of A into L.

For example, for each prime number p, we get a point of spec(Z), namely

the point arising from the reduction map

Z -. Z/pZ.
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The corresponding point is given by the reversed arrow,

spec(Z) spec(ZjpZ).

As another example, consider the polynomial ring k[Xl' . . .

,
Xn] over a

field k. For each n-tuple (Cl, . . .

, cn) in k
8(n)

we get a homomorphism

qJ : k[X 1,
. . .

,
Xn] -. k

8

such that qJ is the identity on k, and qJ(X i) =

Ci for all i. The corresponding

point is given by the reversed arrow

spec k[X] spec(k
8

).

Thus we may identify the points in n-space k
8(n) with the points of spec k[X]

(over k) in k
8

.

However, one does not want to take points only in the algebraic closure of

k, and of course one may deal with the case of an arbitrary variety V over k

rather than all of affine n-space. Thus let k[xI' . . .
, xn] be a finitely generated

entire ring over k with a chosen family of generators. Let V =

spec k[x]. Let A

be a commutative k-algebra, corresponding to a homomorphism k A. Then a

point of V in A may be described either as a homomorphism

cp: k[xl' . . .
, Xn] A,

or as the reversed arrow

spec(A) spec(k[x])

corresponding to this homomorphism. If we put Ci
=

CP(Xi)' then one may call

(c) = (c l' . . .
,

Cn) the coordinates of the point in A. By a generic point of V

in a field K we mean a point such that the map cp: k[x] K is injective, i.e. an

isomorphism of k[x] with some subring of K.

Let A be a commutative Noetherian ring. We leave it as an exercise to

verify the following assertions, which translate the Noetherian condition into

properties of closed sets in the Zariski topology.
Closed subsets of spec(A) satisfy the descending chain condition, i.e., if

C 1
=> C2

=> C
3

=> ...

is a descending chain of closed sets, then we have C
n

= C
n + 1

for all sufficiently

large n. Equivalently, let {C;} i e 1
be a family of closed sets. Then there exists a

relatively minimal element of this family, that is a closed set Cio in the family
such that for all i, if Ci

c Cio then Ci
= Cio. The proof follows at once from

the corresponding properties of ideals, and the simple formalism relating
unions and intersections of closed sets with products and sums of ideals.
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A closed set C is said to be irreducible if it cannot be expressed as the union

of two closed sets

C;/=C 1
UC

2

with C
1 ;/= C and C2 ;/= C.

Theorem 5.3. Let A be a Noetherian commutative ring. Then every closed

set C can be expressed as a finite union of irreducible closed sets, and this

expression is unique if in the union

C = C
1

U . . . U C
r

of irreducible closed sets, we have Ci cF C
j if i ;/= j.

Proof. We give the proof as an example to show how the version of Theorem

2.2 has an immediate translation in the more general context of spec(A). Suppose
the family of closed sets which cannot be represented as a finite union of irreducible

ones is not empty. Translating the Noetherian hypothesis in this case shows that

there exists a minimal such set C. Then C cannot be irreducible, and we can

write C as a union of closed sets

C = C' U C",

with C' ;/= C and C" ;/= C. Since C' and C" are strictly smaller than C, then we

can express C' and C" as finite unions of irreducible closed sets, thus getting a

similar expression for C, and a contradiction which proves existence.

As to uniqueness, let

C = C
1

U . . . U C
r

= Z
1 U . . . U Zs

be an expression of C as union of irreducible closed sets, without inclusion

relations. For each Z
j

we can write

Zj = (Zj n C
1 ) u ... u (Zj n C

r).

Since each Zj n Ci
is a closed set, we must have Zj = Zj n Ci for some i. Hence

Zj = C
i for some i. Similarly, Ci

is contained in some Zk. Since there is no

inclusion relation among the Z/s, we must have Zj = Ci
= Zk. This argument

can be carried out for each Zj and each Ci
. This proves that each Zj appears

among the C;'s and each Ci appears among the Z/s, and proves the uniqueness

of our representation. This proves the theorem.

Proposition 5.4. Let C be a closed subset of spec(A). Then C is irreducible

if and only if C = Cfl(p) for some prime ideal p.

Proof. Exercise.

More properties at the same basic level will be given in Exercises 14-19.
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EXERCISES

Integrality

1. (Hilbert-Zariski) Let k be a field and let V be a homogeneous variety with generic

point (x) over k. Let be the algebraic set of zeros in k
a of a homogeneous ideal in

k[X] generated by forms fl, . , .
, fr in k[X]. Prove that V n has only the trivial

zero if and only if each x; is integral over the ring k[f(x)] =

k[fl(X),. . .
, fr(x)].

(Compare with Theorem 3,7 of Chapter VII.)

2. Let fl' . . .
, fr be forms in n variables and suppose n > r. Prove that these forms

have a non-trivial common zero.

3. Let R be an entire ring. Prove that R is integrally closed if and only if the local ring

Rp is integrally closed for each prime ideal p,

4. Let R be an entire ring with quotient field K. Let t be transcendental over K. Let

f(t) = L a;t; E K[t], Prove:

(a) If f( t) is integral over R[ t], then all a; are integral over R,

(b) If R is integrally closed, then R[t] is integrally closed,

For the next exercises, we let R = k[x] = k[X]/p, where p is a homogeneous prime
ideal. Then (x) is a homogeneous generic point for a k-variety V, We let I be the integral
closure of R in k(x), We assume for simplicity that k(x) is a regular extension of k,

5, Let z = L C;X; with c; E k, and z =1= O. If k[x] is integrally closed, prove that k[x/z]
is integrally closed.

6, Define an element f E k(x) to be homogeneous iff( tx) = tdf(x) for t transcendental

over k(x) and some integer d. Let f E I. Show that f can be written in the form

f
= L/; where each/; is homogeneous of degree i >

0, and where also/; E I, (Some

/; may be 0, of course.)

We let Rm denote the set of elements of R which are homogeneous of degree m.

Similarly for 1m. We note that Rm and 1m are vector spaces over k, and that R (resp. I)

is the direct sum of all spaces Rm (resp. 1m) for m
= 0, 1,. . . This is obvious for R, and

it is true for I because of Exercise 6,

7. Prove that I can be written as a sum I = RZ I
+ . . . + Rzs, where each z; is homoge-

neous of some degree d;.

8. Define an integer m
> 1 to be well behaved if 1m

=

Iqm for all integers q
> 1. If

R = I, then all m are well behaved. In Exercise 7, suppose m
>

max d;, Show that

m is well behaved.

9. (a) Prove that 1m is a finite dimensional vector space over k. Let wo, . . .
, WM be a

basis for 1m over k. Then k[Im] = k[w].

(b) If m is well behaved, show that k[Im] is integrally closed.

(c) Denote by k«x» the field generated over k by all quotients x;/Xj with x
j

=1= 0,
and similarly for k«w», Show that k«x» = k«w».

(If you want to see Exercises 4-9 worked out, see my Introduction to Algebraic

Geometry, Interscience 1958, Chapter V.)
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Resultants

10. Prove that the resultant defined for n forms in n variables in 3 actually coincides

with the resultant of Chapter IV, or 4 when n = 2.

11. Let a =

(II' . . , ,Ir) be a homogeneous ideal in k[XI , . . .
,
X

n ) (with k algebraically
closed). Assume that the only zeros of a consist of a finite number of points

(x(l», .,., (x(d» in projective space pn-I, so the coordinates of each x(j) can be

taken in k. Let u I' , . .
, un be independent variables and let

Lu(X)
=

ulX) + ... + unXn.

Let R )(u), , , ,
, RS<u) E k[u] be a resultant system for II' . . ,

, Ir, Lu.

(a) Show that the common non-trivial zeros of the system R;(u) (i = 1,..., s)

in k are the zeros of the polynomial

n Lu(x(j» E k[u].
j

(b) Let D(u) be the greatest common divisor of RI(u), , . ,
, RS<u) in k[u]. Show

that there exist integers m
j

> 1 such that (up to a factor in k)

d

D(u) = n Lu(x(j»mJ
.

j=1

[See van der Waerden, Moderne Algebra, Second Edition, Volume II, 79.]

12, For forms in 2 variables, prove directly from the definition used in 4 that one has

Res(lg, h) =

Res(f, h) Res(g, h)

Res(f, g) = (-I)(degf )(degg)Res(g, I).

13. Let k be a field and let Z k be the canonical homomorphism. If F E Z[W, X], we

denote by F the image of F in k["W: X] under this homomorphism. Thus we get R
,

the image of the resultant R,

(a) Show that R is a generator of the prime ideal Pk,1 of Theorem 3.5 over the

field k, Thus we may denote R by R
k

,

(b) Show that R is absolutely irreducible, and so is R
k , In other words, Rk is

irreducible over the algebraic closure of k,

Spec of a ring

14. Let A be a commutative ring. Define spec(A) to be connected if spec(A) is not the

union of two disjoint non-empty closed sets (or equivalently, spec(A) is not the union

of two disjoint, non-empty open sets),

(a) Suppose that there are idempotents el, e2 in A (that is ey =

el and e =

e2),
=1= 0, 1, such that ele2

= 0 and el + e2
= 1. Show that spec(A) is not

connected.

(b) Conversely, if spec(A) is not connected, show that there exist idempotents
as in part (a).

In either case, the existence of the idempotents is equivalent with the fact that the

ring A is a product of two non-zero rings, A = A 1 X A 2 .
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15. Prove that the Zariski topology is compact, in other words: let {Vi}iel be a family of

open sets such that

U Vi = spec(A),
i

Show that there IS a finite number of open sets Vii' , . .
, Vi" whose union is spec(A).

[Hint: Use closed sets, and use the fact that if a sum of ideals is the unit ideal, then 1

can be written as a finite sum of elements.]

16, Let 1 be an element of A. Let S be the multiplicative subset {I, I, 1
2

, 1
3

,
. . ,} con-

sisting of the powers of I. We denote by Af the ring S-
I
A as in Chapter II, 3.

From the natural homomorphism A Af one gets the corresponding map

spec(Af) spec(A).

(a) Show that spec(Af) maps on the open set of points in spec(A) which are not

zeros of I.

(b) Given a point p E spec(A), and an open set V containing p, show that there

exists 1 such that p E spec(Af) C V.

17. Let Vi
=

spec(Af) be a finite family of open subsets of spec(A) covering spec(A).
For each i, let ai//; E A.t" Assume that as functions on Vi n V

j
we have ai//; =

aj/fj
for all pairs i, j, Show that there exists a unique element a E A such that a

=

a; //;
in Af, for all i.

18. Let k be a field and let k[x., . . .
, xn]

= A C K be a finitely generated subring of

some extension field K. Assume that k(x I' . . .
,
x

n ) has transcendence degree" Show

that every maximal chain of prime ideals

A :J PI :J P2 :J , . . :J Pm :J {O},

with PI =1= A, Pi =1= P
i + l , Pm =1= {O}, must have m

= "

19. Let A =

Z[XI, . . .
, xn] be a finitely generated entire ring over Z. Show that every

maximal chain of prime ideals as in Exercise 18 must have m = , + 1. Here, , =

transcendence degree of Q(X., , , .
,

x
n ) over Q,



CHAPTER X

Noetherian Rings and

Modules

This chapter may serve as an introduction to the methods of algebraic geometry
rooted in commutative algebra and the theory of modules, mostly over a Noeth-

, .

erlan rIng.

1. BASIC CRITERIA

Let A be a ring and M a module (i.e., a left A-module). We shall say that

M is Noetherian if it satisfies anyone of the following three conditions:

(1) Every submodule of M is finitely generated.

(2) Every ascending sequence of submodules of M,

M
1
cM2 cM3 c...,

such that M; =F M
i + 1

is finite.

(3) Every non-empty set S of submodules of M has a maximal element

(i.e., a submodule M
0 such that for any element N of S which contains

Mo we have N = Mo).

We shall now prove that the above three conditions are equivalent.

(1) (2) Suppose we have an ascending sequence of submodules of M as

above. Let N be the union of all the Mi (i = 1, 2, . . .). Then N is finitely gen-

erated, say by elements X b
. . .

,
X

r ,
and each generator is in some Mi' Hence

there exists an index j such that

X
b

. . .

,
X

r
E M

j
.

413
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Then

<X 1 ,...,Xr) C M
j
eN = <Xf,...,xr),

whence equality holds and our implication is proved.

(2) (3) Let No be an element of S. If No is not maximal, it is properly
contained in a submodule N

1.
If N

1
is not maximal, it is properly contained in

a submodule N2. Inductively, if we have found Ni which is not maximal, it is

contained properly in a submodule N
i + 1.

In this way we could construct an

infinite chain, which is impossible.

(3) (1) Let N be a submodule of M. Let ao E N. If N =F (ao), then

there exists an element a
1

E N which does not lie in (ao). Proceeding induc-

tively, we can find an ascending sequence of submodules of N, namely

<ao) c (ao, a 1) c (ao, a b a2) c . . .

where the inclusion each time is proper. The set of these submodules has a

maximal element, say a submodule (ao , ab...' a
r ), and it is then clear that

this finitely generated submodule must be equal to N, as was to be shown.

Proposition 1.1. Let M be a Noetherian A-module. Then every submodule

and every factor module of M is Noetherian.

Proof. Our assertion is clear for submodules (say from the first condi-

tion). For the factor module, let N be a submodule and f: M -. M/N the

canonical homomorphism. Let M
1

C M
2

C . . . be an ascending chain of sub-

modules of M/N and let M
i
= f-l(Mi). Then M

1
C M

2
C . . . is an ascending

chain of submodules of M, which must have a maximal element, say M
r ,

so

that Mi
= M

r
for r > i. Then f(M;) = Mi and our assertion follows.

Proposition 1.2. Let M be a module, N a submodule. Assume that Nand

M/N are Noetherian. Then M is Noetherian.

Proof. With every submodule L of M we associate the pair of modules

LH(L n N, (L + N)/N).

We contend: If E c F are two submodules of M such that their associated

pairs are equal, then E = F. To see this, let x E F. By the hypothesis that

(E + N)/N = (F + N)/N there exist elements u, v E Nand y E E such that

y + u = x + v. Then

x
-

y
= u - V E F n N = E n N.

Since Y E E, it follows the x E E and our contention is proved. If we have an

ascending sequence

E
1

C E
2

C . . .
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then the associated pairs form an ascending sequence of submodules of Nand

M/N respectively, and these sequences must stop. Hence our sequence

E
1

C E
2

. . . also stops, by our preceding contention.

Propositions 1.1 and 1.2 may be summarized by saying that in an exact

sequence 0 -. M' -. M -. M" -+ 0, M is Noetherian if and only if M' and M"

are Noetherian.

Corollary 1.3. Let M be a module, and let N, N' be submodules. If
M = N + N' and if both N, N' are Noetherian, then M is Noetherian. A

finite direct sum of Noetherian modules is Noetherian.

Proof. We first observe that the direct product N x N' is Noetherian

since it contains N as a submodule whose factor module is isomorphic to N',

and Proposition 1.2 applies. We have a surjective homomorphism

N x N' -. M

such that the pair (x, x') with x E N and x' E N
'

maps on x + x'. By Prop-
osition 1.1, it follows that M is Noetherian. Finite products (or sums) follow

by induction.

A ring A is called Noetherian if it is Noetherian as a left module over itself.

This means that every left ideal is finitely generated.

Proposition 1.4. Let A be a Noetherian ring and let M be afinitely generated
module. Then M is Noetherian.

Proof. Let Xl' . . .

,
X

n
be generators of M. There exists a homomorphism

f: A x A x ... x A -. M

of the product of A with itself n times such that

f(a1,...,an) = a 1 x 1 + ... + anxn.

This homomorphism is surjective. By the corollary of the preceding proposition,
the product is Noetherian, and hence M is Noetherian by Proposition 1.1.

Proposition 1.5. Let A be a ring which is Noetherian, and let qJ : A -. B be

a surjective ring-homomorphism. Then B is Noetherian.

Proof. Let b
1

C . . . c b
n

c . . . be an ascending chain of left ideals of B

and let ai
=

qJ

-

l(bi). Then the ai form an ascending chain of left ideals of A

which must stop, say at a
r

. Since qJ(a;) = bi for all i, our proposition is proved.

Proposition 1.6. Let A be a commutative Noetherian ring, and let S be a

multiplicative subset of A. Then S-
1
A is Noetherian.

Proof. We leave the proof as an exercise.



416 NOETHERIAN RINGS AND MODULES X, 2

Examples. In Chapter IV, we gave the fundamental examples of Noeth-

erian rings, namely polynomial rings and rings of power series. The above

propositions show how to construct other examples from these, by taking factor

rings or modules, or submodules.

We have already mentioned that for applications to algebraic geometry, it is

valuable to consider factor rings of type k[X]/a, where a is an arbitrary ideal.

For this and similar reasons, it has been found that the foundations should be

laid in terms of modules, not just ideals or factor rings. Notably, we shall first

see that the prime ideal associated with an irreducible algebraic set has an analogue
in terms of modules. We shall also see that the decomposition of an algebraic
set into irreducibles has a natural formulation in terms of modules, namely by

expressing a submodule as an intersection or primary modules.

In 6 we shall apply some general notions to get the Hilbert polynomial of

a module of finite length, and we shall make comments on how this can be

interpreted in terms of geometric notions. Thus the present chapter is partly
intended to provide a bridge between basic algebra and algebraic geometry.

2. ASSOCIATED PRIMES

Throughout this section, we let A be a commutative ring. Modules and homo-

morphisms are A-modules and A-homomorphisms unless otherwise specified.

Proposition 2.1. Let S be a multiplicative subset of A, and assume that S

does not contain O. Then there exists an ideal of A which is maximal in the

set of ideals not intersecting S, and any such ideal is prime.

Proof. The existence of such an ideal p follows from Zorn's lemma (the
set of ideals not meeting S is not empty, because it contains the zero ideal, and is

clearly inductively ordered). Let p be maximal in the set. Let a, b E A, ab E p,

but a $ p and b $ p. By hypothesis, the ideals (a, p) and (b, p) generated by a

and p (or band p respectively) meet S, and there exist therefore elements

s, s' E S, c, c', x, x' E A, p, p' E P such that

s = ca + xp and s' = c'b + x'p'.

Multiplying these two expressions, we obtain

ss' = cc'ab + p"

with some p" E p, whence we see that ss' lies in p. This contradicts the fact

that p does not intersect S, and proves that p is prime.

An element a of A is said to be nilpotent if there exists an integer n > 1 such

that an = o.



X, 2 ASSOCIATED PRIMES 417

Corollary 2.2. An element a of A is nilpotent if and only if it lies in every

prime ideal of A.

Proof. If an = 0, then an E p for every prime p, and hence a E p. If an =F 0

for any positive integer n, we let S be the multiplicative subset of powers of a,

namely {1, a, a
2

,
. . .}, and find a prime ideal as in the proposition to prove the

converse.

Let a be an ideal of A. The radical of a is the set of all a E A such that an E a

for some integer n > 1, (or equivalently, it is the set of elements a E A whose

image in the factor ring Ala is nilpotent). We observe that the radical of a is an

ideal, for if an = 0 and b
m

= 0 then (a + b)k = 0 if k is sufficiently large: In the

binomial expansion, either a or b will appear with a power at least equal to

n or m.

Corollary 2.3. An element a of A lies in the radical of an ideal a if and only

if it lies in every prime ideal containing a.

Proof. Corollary 2.3 is equivalent to Corollary 2.2 applied to the ring A/a.

We shall extend Corollary 2.2 to modules. We first make some remarks on

localization. Let S be a multiplicative subset of A. If M is a module, we can

define S-
1
M in the same way that we defined S-1 A. We consider equivalence

classes of pairs (x, s) with x E M and s E S, two pairs (x, s) and (x', S') being

equivalent if there exists SI E S such that SI (s'x - SX') = o. We denote the

equivalence class of (x, s) by xis, and verify at once that the set of equivalence
classes is an additive group (under the obvious operations). It is in fact an

A-module, under the operation

(a, xis) 1---+ axis.

We shall denote this module of equivalence classes by S-
1
M. (We note that

S-
1
M could also be viewed as an S-

1

A-module.)
If p is a prime ideal of A, and S is the complement of p in A, then S-

1
M is

also denoted by M".
It follows trivially from the definitions that if N -. M is an injective homo-

morphism, then we have a natural injection S-
1
N -. S-

1
M. In other words, if

N is a submodule of M, then S-
1
N can be viewed as a submodule of S-

1
M.

If x E Nand s E S, then the fraction xis can be viewed as an element of S-1 N

or S-
1
M. If xis = 0 in S-1 M, then there exists SI E S such that SIX

= 0, and

this means that xis is also 0 in S-
1
N. Thus if p is a prime ideal and N is a sub-

module of M, we have a natural inclusion of N" in M". We shall in fact identify

N" as a submodule of M". In particular, we see that M" is the sum of its sub-

modules (Ax)", for x E M (but of course not the direct sum).
Let x E M. The annihilator a of x is the ideal consisting of all elements

a E A such that ax = O. We have an isomorphism (of modules)

Ala Ax



418 NOETHERIAN RINGS AND MODULES X, 2

under the map

a -+ ax.

Lemma 2.4. Let x be an element of a module M, and let Q be its annihilator.

Let p be a prime ideal of A. Then (Ax)" =F 0 if and only if p contains Q.

Proof. The lemma is an immediate consequence of the definitions, and

will be left to the reader.

Let a be an element of A. Let M be a module. The homomorphism

X t---+ ax, xEM

will be called the principal homomorphism associated with a, and will be de-

noted by aM. We shall say that aM is locally nilpotent if for each x E M there

exists an integer n{x) > 1 such that an(x)x = O. This condition implies that

for every finitely generated submodule N of M, there exists an integer n > 1

such that anN = 0 : We take for n the largest power of a annihilating a finite

set of generators of N. Therefore, if M is finitely generated, aM is locally

nilpotent ifand only if it is nilpotent.

Proposition 2.5. Let M be a module, a E A. Then aM is locally nilpotent

if and only if a lies in every prime ideal p such that M" =F o.

Proof. Assume that aM is locally nilpotent. Let p be a prime of A such

that M" =F O. Then there exists x E M such that (Ax)" =F O. Let n be a positive

integer such that anx = O. Let Q be the annihilator of x. Then an E Q, and hence

we can apply the lemma, and Corollary 4.3 to conclude that a lies in every prime
p such that M" =F O. Conversely, suppose aM is not locally nilpotent, so there

exists x E M such that anx = 0 for all n
> o. Let S = {I, a, a

2
,.. .}, and

using Proposition 2.1 let p be a prime not intersecting S. Then (Ax)p =t= 0, so

M
p

=t= 0 and a fj. p, as desired.

Let M be a module. A prime ideal p of A will be said to be associated with

M if there exists an element x E M such that p is the annihilator of x. In par-

ticular, since p =F A, we must have x =F O.

Proposition 2.6. Let M be a module =F O. Let p be a maximal element in the

set of ideals which are annihilators of elements x E M, x =F o. Then p is prime.

Proof. Let p be' the annihilator of the element x =F O. Then p =F A. Let

a, b E A, ab E p, a $ p. Then ax =F O. But the ideal (b, p) annihilates ax, and

contains p. Since p is maximal, it follows that b E p, and hence p is prime,

Corollary 2.7. IfA is Noetherian and M is a module =t= 0, then there exists

a prime associated with M.

Proof. The set of ideals as in Proposition 2.6 is not empty since M =t= 0,

and has a maximal element because A is Noetherian.
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Corollary 2.8. Assume that both A and M are Noetherian, M =F O. Then

there exists a sequence of submodules

M = M
1

::J M
2

::J . . . ::J M
r

= 0

such that each factor module Mi/Mi + 1 is isomorphic to A/Pi for some

prime Pi.

Proof. Consider the set of submodules having the property described in

the corollary. It is not empty, since there exists an associated prime P of M,
and if P is the annihilator of x, then Ax A/p. Let N be a maximal element in

the set. If N =F M, then by the preceding argument applied to M/N, there exists

a submodule N' of M containing N such that N'/N is isomorphic to A/p for

some p, and this contradicts the maximality of N.

Proposition 2.9. Let A be Noetherian, and a E A. Let M be a module.

Then aM is injective ifand only ifa does not lie in any associated prime of M.

Proof. Assume that aM is not injective, so that ax = 0 for some x E M,
x =t= O. By Corollary 2.7, there exists an associated prime p of Ax, and a is an

element of p. Conversely, if aM is injective, then a cannot lie in any associated

prime because a does not annihilate any non-zero element of M.

Proposition 2.10. Let A be Noetherian, and let M be a module. Let a E A.

The following conditions are equivalent:

(i) aM is locally nilpotent.

(ii) a lies in every associated prime of M.

(ii i) a lies in every prime p such that M" =F o.

If P is a prime such that Mp =t= 0, then p contains an associated prime of M.

Proof. The fact that (i) implies (ii) is obvious from the definitions, and

does not need the hypothesis that A is Noetherian. Neither does the fact that

(iii) implies (i), which has been proved in Proposition 2.5. We must therefore

prove that (ii) implies (iii) which is actually implied by the last statement. The

latter is proved as follows. Let p be a prime such that Mp =t= o. Then there exists

x E M such that (Ax)p =t= o. By Corollary 2.7, there exists an associated prime

q of (Ax)" in A. Hence there exists an element Y/s of (Ax)", with Y E Ax,

s p, and Y/s =t= 0, such that q is the annihilator of y/s. It follows that q c p,

for otherwise, there exists b E q, b p, and 0 = by/s, whence y/s
= 0, contra-

diction. Let b I ,
. . . , b

n
be generators for q. For each i, there exists Si E A,

si fj. p, such that SibiY
= 0 because biy/s

= O. Let t =

SI
...

Sn. Then it is

trivially verified that q is the annihilator of ty in A. Hence q c p, as desired.

Let us define the support of M by

supp(M) = set of primes p such that M" =F o.
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We also have the annihilator of M,

ann(M) = set of elements a E A such that aM = O.

We use the notatIon

ass(M) = set of associated primes of M.

For any ideal a we have its radical,

rad(a) = set of elements a E A such that an E a for some integer n > 1.

Then for finitely generated M, we can reformulate Proposition 2. 10 by the

following formula:

rad(ann(M)) = n p
=

p e supp(M)

n p.

p e ass(M)

Corollary 2.11. Let A be Noetherian, and let M be a module. Thefollowing
conditions are equivalent:

(i) There exists only one associated prime of M.

(ii) We have M =F 0, and for every a E A, the homomorphism aM is injective,
or locally nilpotent.

If these conditions are satisfied, then the set of elements a E A such that aM

is locally nilpotent is equal to the associated prime of M.

Proof. Immediate consequence of Propositions 2.9 and 2. 10.

Proposition 2.12. Let N be a submodule of M. Every associated prime of
N is associated with M also. An associated prime of M is associated with N

or with MIN.

Proof. The first assertion is obvious. Let p be an associated prime of M,

and say p is the annihilator of the element x =F o. If Ax n N = 0, then Ax is

isomorphic to a submodule ofMIN, and hence p is associated with MIN. Suppose
Ax n N =t= o. Let y

= ax E N with a E A and y =t= o. Then p annihilates y.

We claim p
=

ann(y). Let b E A and by = o. Then ba E p but a fj. p, so

b E p. Hence p is the annihilator of y in A, and therefore is associated with

N, as was to be shown.
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3. PRIMARY DECOMPOSITION

We continue to assume that A is a commutative ring, and that modules (resp.

homomorphisms) are A-modules (resp. A-homomorphisms), unless otherwise

specified.

Let M be a module. A submodule Q of M is said to be primary if Q =F M,

and if given a E A, the homomorphism aM/Q is either injective or nilpotent.

Viewing A as a module over itself, we see that an ideal q is primary if and only
if it satisfies the following condition:

Given a, b E A, ab E q and a rt q, then b
n

E q for some n > 1.

Let Q be primary. Let p be the ideal of elements a E A such that aM/Q is

nilpotent. Then p is prime. Indeed, suppose that a, b E A, ab E p and a rt p.

Then aM/Q is injective, and consequently alt/Q
is injective for all n > 1. Since

(ab)M/Q is nilpotent, it follows that bM/Q
must be nilpotent, and hence that b E p,

proving that p is prime. We shall call p the prime belonging to Q, and also say

that Q is p-primary.
We note the corresponding property for a primary module Q with prime p:

Let b E A and x E M be such that bx E Q. If x fj. Q then b E p.

Examples. Let m be a maximal ideal of A and let q be an ideal of A such

that m
k

C q for some positive integer k. Then q is primary, and m belongs to

q. We leave the proof to the reader.

The above conclusion is not always true if m is replaced by some prime ideal

p. For instance, let R be a factorial ring with a prime element t. Let A be the

subring of polynomials f(X) E R[X] such that

f(X)
=

ao + alX + . . .

with a 1 divisible by t. Let p
= (tX, X

2
). Then p is prime but

p2 =

(t
2
X

2
,

tX
3

, X4)

is not primary, as one sees because X
2

rt p2 but t
k

rt p2 for all k > I, yet

t
2
X

2
E P 2.

Proposition 3.1. Let M be a 1nodule, and Qt, . . .
, Qr submodules which are

p-primary for the same prime p. Then Q tn.
. . n Qr is also p-primary.

Proof. Let Q = Q tn.
. . n Qr. Let a E p. Let n i be such that (aM/Q)n

i
= 0

for each i = 1, . . .

,
r and let n be the maximum of n., . . .

,
n

r
. Then alt/Q

= 0,

so that aM/Q is nilpotent. Conversely, suppose a rt p. Let x E M, x rt Qj for

some j. Then anx rt Qj for all positive integers n, and consequently aM/Q is

injective. This proves our proposition.
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Let N be a submodule of M. When N is written as a finite intersection of

primary submodules, say

N = Ql n ... n Qr,

we shall call this a primary decomposition of N. Using Proposition 3. 1, we

see that by grouping the Qi according to their primes, we can always obtain

from a given primary decomposition another one such that the primes belonging
to the primary ideals are all distinct. A primary decomposition as above such

that the prime ideals P l'
. . .

, Pr belonging to Q l'
. . .

, Qr respectively are distinct,

and such that N cannot be expressed as an intersection of a proper subfamily
of the primary ideals {Q 1,

. . .

, Qr} will be said to be reduced. By deleting some.

of the primary modules appearing in a given decomposition, we see that if N

admits some primary decomposition, then it admits a reduced one. We shall

prove a result giving certain uniqueness properties of a reduced primary

decomposition.
Let N be a submodule of M and let x i be the canonical homomorphism.

Let Q be a submodule of M = M/N and let Q be its inverse image in M. Then

directly from the definition, one sees that Q is primary if and only if Q is primary;
and if they are primary, then the prime belonging to Q is also the prime belonging
to Q . Furthermore, if N = Q 1 n . . . n Qr is a primary decomposition of N in

M, then

(0) = Q I
n . . . n Qr

is a primary decomposition of (0) in M
, as the reader will verify at once from

the definitions. In addition, the decomposition of N is reduced if and only if the

decomposition of (0) is reduced since the primes belonging to one are the same

as the primes belonging to the other.

Let Q 1
n . . . n Qr = N be a reduced primary decomposition, and let Pi

belong to Qi. If Pi does not contain Pi (j ;/= i) then we say that Pi is isolated.

The isolated primes are therefore those primes which are minimal in the set

of primes belonging to the primary modules Qi.

Theorem 3.2. Let N be a submodule of M, and let

N = Q 1 n . . . n Qr = Q'l n . . . n Q

be a reduced primary decomposition of N. Then r = s. The set of primes

belonging to Qb ..., Qr and Q'l, ..., Q; is the same. If {Ph...' Pm} is the

set of isolated primes belonging to these decompositions, then Qi = Q for
i = 1, . . .

, m, in other words, the primary modules corresponding to isolated

primes are uniquely determined.

Proof. The uniqueness of the number of terms in a reduced decomposition
and the uniqueness of the family of primes belonging to the primary components

will be a consequence of Theorem 3.5 below.
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There remains to prove the uniqueness of the primary module belonging
to an isolated prime, say Pl. By definition, for each j = 2, . . .

,
r there exists

a
j

E Pj
and a

j rt Pl. Let a = a 2
. . . a

r
be the product. Then a E Pj

for all j > 1,

but a rt Pl. We can find an integer n > 1 such that alt/Qj
= 0 for j = 2, . . .

,
r.

Let

N
1

= set of x E M such that a"x E N.

We contend that Ql = N
1. This will prove the desired uniqueness. Let x E Ql.

Then a"x E Ql n... n Qr = N, so X E N
1

. Conversely, let x E N
1 ,

so that

a"x E N, and in particular a"x E Q 1. Since a rt PI' we know by definition that

aM/Ql is injective. Hence x E Ql, thereby proving our theorem.

Theorem 3.3. Let M be a Noetherian module. Let N be a submodule of
M. Then N admits a primary decomposition.

Proof. We consider the set of submodules of M which do not admit a

primary decomposition. If this set is not empty, then it has a maximal element

because M is Noetherian. Let N be this maximal element. Then N is not

primary, and there exists a E A such that aM/N is neither injective nor nilpotent.
The increasing sequence of modules

Ker aM/N
c Ker ait/N c Ker a/N c . · .

stops, say at a/N. Let ({J: M/N -. M/N be the endomorphism ({J
= a/N.

Then Ker ({J2 = Ker ({J. Hence 0 = Ker ({J n 1m ({J in M/N, and neither the

kernel nor the image of lfJ is o. Taking the inverse image in M, we see that N is

the intersection of two submodules of M, unequal to N. We conclude from the

maximality of N that each one of these submodules admits a primary de-

composition, and therefore that N admits one also, contradiction.

We shall conclude our discussion by relating the primes belonging to a

primary decomposition with the associated primes discussed in the previous
section.

Proposition 3.4. Let A and M be Noetherian. A submodule Q of M is

primary if and only if M/Q has exactly one associated prime P, and in that

case, P belongs to Q, i.e. Q is p-primary.

Proof. Immediate consequence of the definitions, and Corollary 2. 11.

Theorem 3.5. Let A and M be Noetherian. The associated primes of M

are precisely the primes which belong to the primary modules in a reduced

primary decomposition of 0 in M. In particular, the set of associated primes

of M is finite.

Proof. Let

o = Q 1
n . . . n Qr
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be a reduced primary decomposition of 0 in M. We have an injective homo-

morphism

r

M -+ EBM/Qi.
i = 1

By Proposition 2. 12 and Proposition 3.4, we conclude that every associated

prime of M belongs to some Qi. Conversely, let N = Q2 n . . . n Qr. Then

N =F 0 because our decomposition is reduced. We have

N = N/(N n Q1) (N + Q1)/Q1 C M/Q1.

Hence N is isomorphic to a submodule of M/Q1' and consequently has an

associated prime which can be none other than the prime P 1 belonging to Q 1.

This proves our theorem.

Theorem 3.6. Let A be a Noetherian ring. Then the set of divisors of zero

in A is the set-theoretic union of all primes belonging to primary ideals in a

reduced primary decomposition of o.

Proof. An element of a E A is a divisor of 0 if and only if aA is not injective.

According to Proposition 2.9, this is equivalent to a lying in some associated

prime of A (viewed as module over itself). Applying Theorem 3.5 concludes the

proof.

4. NAKAYAMA'S LEMMA

We let A denote a commutative ring, but not necessarily Noetherian.

When dealing with modules over a ring, many properties can be obtained

first by localizing, thus reducing problems to modules over local rings. In practice,
as in the present section, such modules will be finitely generated. This section

shows that some aspects can be reduced to vector spaces over a field by reducing
modulo the maximal ideal of the local ring. Over a field, a module always has

a basis . We extend this property as far as we can to modules finite over a local

ring. The first three statements which follow are known as Nakayama's lemma.

Lemma 4.1. Let a be an ideal ofA which is contained in every maximal ideal

of A. Let E be a finitely generated A-module. Suppose that aE = E. Then

E = {O}.



X, 4 NAKAYAMA'S LEMMA 425

Proof. Induction on the number of generators of E. Let x
I'

. . .
, Xs be

generators of E. By hypothesis, there exist elements a I'
. . .

, as E Q such that

x
s

= a I
x

I + . . . + as Xs ,

so there is an element a (namely as) in Q such that (1 + a)xs lies in the module

generated by the first s
- 1 generators. Furthermore 1 + a is a unit in A,

otherwise 1 + a is contained in some maximal ideal, and since a lies in all

maximal ideals, we conclude that 1 lies in a maximal ideal, which is not possible.
Hence Xs itself lies in the module generated by s - 1 generators, and the proof
is complete by induction.

Lemma 4.1 applies in particular to the case when A is a local ring, and

Q = m is its maximal ideal.

Lemma 4.2. Let A be a local ring, let E be afinitely generated A-module, and

F a submodule. If E = F + mE, then E = F.

Proof. Apply Lemma 4.1 to ElF.

Lemma 4.3. Let A be a local ring. Let E be a finitely generated A-module.

If x), . . .
,

X
n

are generators for E mod mE, then they are generators for E.

Proof. Take F to be the submodule generated by XI' . . .

, Xn.

Theorem 4.4. Let A be a local ring and E a finite projective A-module.

Then E is free. In fact, if x
I' . . .

,
X

n
are elements of E whose residue classes

XI' . . .

,
x

n
are a basis of ElmE over Aim, then XI' . . .

,
X

n
are a basis of E

over A. If X
I'

. . .

,
X

r
are such that X

I'
. . .

,
x

r
are linearly independent over

Aim, then they can be completed to a basis of E over A.

Proof I am indebted to George Bergman for the following proof of the

first statement. Let F be a free module with basis e I, . . .
, en, and let f: f' E

be the homomorphism mapping ei to Xi. We want to prove thatfis an isomor-

phism. By Lemma 4.3, f is surjective. Since E is projective, it follows that f

splits, i.e. we can write F = Po EB Ph where Po = Ker f and PI is mapped

isomorphically onto E by f Now the linear independence of XI, . . . , X
n

mod

mE shows that

Po C mE = mP
0

C mPI.

Hence Po C mpo- Also, as a direct summand in a finitely generated module, Po

is finitely generated. So by Lemma 4.3, Po = (0) and f is an isomorphism, as

was to be proved.
As to the second statement, it is immediate since we can complete a given
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sequence Xb . . .
, Xr

with X., . . . ,
x

r linearly independent over AIm, to a

sequence XI, . . .
, X

n
with XI, . . .

, x
n lineary independent over AIm, and then

we can apply the first part of the proof. This concludes the proof of the theorem.

Let E be a module over a local ring A with maximal ideal m. We let

E(m) = E/mE. If f: E -. F is a homomorphism, then f induces a homo-

morphism

.f(m) : E(m) -. F(m).

If f is surjective, then it follows trivially that fem) is surjective.

Proposition 4.5. Let f: E -. F be a homomorphism of modules, finite over a

local ring A. Then:

(i) If .f(m) is surjective, so is f.

(ii) Assume! is injective. If .f(m) is surjective, then! is an isomorphism.

(iii) Assume that E, F are free. If.f(m) is injective (resp. an isomorphism) then

f is injective (resp. an isomorphism).

Proof. The proofs are immediate consequences of Nakayama's lemma and

will be left to the reader. For instance, in the first statement, consider the exact

sequence

E-.F-.F/Im!-.O

and apply Nakayama to the term on the right. In (iii), use the lifting of bases

as in Theorem 4.4.

5. FILTERED AND GRADED MODULES

Let A be a commutative ring and E a module. By a filtration of E one means

a sequence of submodules

E = Eo ::J E
1

::J E
2

::J . . . ::J En ::J . . .

Strictly speaking, this should be called a descending filtration. We don't

consider any other.

Example. Let a be an ideal of a ring A, and E an A-module. Let

En = anE.

Then the sequence of submodules {En} is a filtration.

More generally, let {En} be any filtration of a module E. We say that it is

an a-filtration if aE
n

c E
n + 1

for all n. The preceding example is an a-filtration.
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We say that an a-filtration is a-stable, or stable if we have aEn = E
n + 1 for all n

sufficiently large.

Proposition 5.1. Let {En} and {E} be stable a-filtrations of E. Then there

exists a positive integer d such that

En+d c E and E+d c En

for all n > o.

Proof. It suffices to prove the proposition when E = anE. Since

aEn c En+ 1
for all n, we have anE c En. By the stability hypothesis, there

exists d such that

En+d = anEd canE,

which proves the proposition.

A ring A is called graded (by the natural numbers) if one can write A as a

direct sum (as abelian group),
00

A=EBAn,
n=O

such that for all integers m, n > 0 we have AnAm c An+m. It follows in par-

ticular that Ao is a subring, and that each component An is an Ao-module.
Let A be a graded ring. A module E is called a graded module if E can be

expressed as a direct sum (as abelian group)

00

E= EBEn'
n=O

such that AnEm c En+m. In particular, En is an Ao-module. Elements of En are

then called homogeneous of degree n. By definition, any element of E can be

written uniquely as a finite sum of homogeneous elements.

Example. Let k be a field, and let X
0'

. . .

,
X

r
be independent variables.

The polynomial ring A = k[Xo,..., Xr] is a graded algebra, with k = Ao.
The homogeneous elements of degree n are the polynomials generated by the

monomials in X
0'

. . .

,
X

r
of degree n, that is

r

X . . . X" with L di
= n.

i=O

An ideal I of A is called homogeneous if it is graded, as an A-module. If this

is the case, then the factor ring AII is also a graded ring.

Proposition 5.2. Let A be a graded ring. Then A is Noetherian if and only

if Ao is Noetherian, and A is finitely generated as Ao-algebra.
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Proof. A finitely generated algebra over a Noetherian ring is Noetherian,
because it is a homomorphic image of the polynomial ring in finitely many

variables, and we can apply Hilbert's theorem.

Conversely, suppose that A is Noetherian. The sum

00

A
+

= EB An
n=l

is an ideal of A, whose residue class ring is Ao, which is thus a homomorphic

image of A, and is therefore Noetherian. Furthermore, A
+

has a finite number

of generators Xl' . . .

, Xs by hypothesis. Expressing each generator as a sum of

homogeneous elements, we may assume without loss of generality that these

generators are homogeneous, say of degrees d
l'

. . .

,
d

s respectively, with all

d; > o. Let B be the subring of A generated over Ao by Xl' . . .

, Xs. We claim

that An C B for all n. This is certainly true for n = O. Let n > o. Let X be

homogeneous of degree n. Then there exist elements a; E An-d. such that

s

x= La;x;.
; = 1

Since d; > 0 by induction, each a; is in Ao[x 1,
. . .

, xs] = B, so this shows x E B

also, and concludes the proof.

We shall now see two ways of constructing graded rings from filtrations.

First, let A be a ring and a an ideal. We view A as a filtered ring, by the

powers an. We define the first associated graded ring to be

00

Sa(A) = S = EB an.

n=O

Similarly, if E is an A-module, and E is filtered by an a-filtration, we define

00

Es = EB En.
11=0

Then it is immediately verified that Es is a graded S-module.

Observe that if A is Noetherian, and a is generated by elements Xl' . . .

, Xs

then S is generated as an A-algebra also by Xl' . . .

, Xs, and is therefore also

Noetherian.

Lemma 5.3. Let A be a Noetherian ring, and E a finitely generated module,
with an a-filtration. Then Es is finite over S if and only if the filtration of E

is a-stable.

Proof. Let

n

Fn = EBE;,
;=0
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and let

G
n

= Eo Et> ... Et> En Et> aE
n Et> a2En Et> a3En Et> ...

Then G
n

is an S-submodule of Es, and is finite over S since Fn is finite over A.

We have

G
n

c G"+1 and UGn
= Es.

Since S is Noetherian, we get:

Es is finite over S <=> Es = G
N

for some N

<=>EN+m = amEN for all m > 0

<=> the filtratIon of E is a-stable.

This proves the lemma.

Theorem 5.4. (Artin-Rees). Let A be a Noetherian ring, a an ideal, E a

.finite A-module with a stable a-filtration. Let F be a submodule, and let

Fn = F (\ En. Then {Fn} is a stable a-filtration of F.

Proof. We have

a(F n E,.) c aF n aE,. c F n E
n + 1 ,

so {F,.} is an a-filtration of F. We can then form the associated graded S-module

FS, which is a submodule of Es, and IS finite over S since S is Noetherian. We

apply Lemma 5.3 to conclude the proof.

We reformulate the Artin-Rees theorem in its original form as follows.

Corollary 5.5. Let A be a Noetherian ring, E a finite A-module, and F a

submodule. Let a be an ideal. There exists an integer s such that for all

integers n > s we have

a"E n F = a"-S(aSE n F).

Proof. Special case of Theorem 5.4 and the definitions.

Theorem 5.6. (Krull). Let A be a Noetherian ring, and let a be an ideal

contained in every maxilnal ideal of A. Let E be a finite A-module. Then

00

n anE = O.

n=1

Proof. Let F = n anE and apply Nakayama's lemma to conclude the

proof.
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Corollary 5.7. Let 0 be a local Noetherian ring with maximal ideal m. Then

00

n m
n

= o.

n=l

Proof. Special case of Theorem 5.6 when E = A.

The second way of forming a graded ring or module is done as follows. Let

A be a ring and a an ideal of A. We define the second associated graded ring

00

gra(A) = EB an/an
+

1.
n=O

Multiplication is defined in the obvious way. Let a E an and let a denote its

residue class mod an
+

1. Let bEam and let D denote its residue class lTIod am
+

1.

We define the product aD to be the residue class of ab mod a
m + n +

1. It is easily
verified that this definition is independent of the choices of representatives and

defines a multiplication on gra(A) which makes gra(A) into a graded ring.
Let E be a filtered A-module. We define

00

gr(E) = EB En/En + 1.

n=O

If the filtration is an a-filtration, then gr(E) is a graded gra(A)-module.

Proposition 5.8. Assume that A is Noetherian, and let a be an ideal of A.

Then gra(A) is Noetherian. IfE is afinite A-module with a stable a-filtration,
then gr(E) is a finite gra(A)-module.

Proo}'. Let Xl' . . .

, Xs be generators of a. Let Xi be the residue class of Xi

in a/a
2

. Then

gra(A) = (A/a)[xl' . . .

, xs]

is Noetherian, thus proving the first assertion. For the second assertion, we

have for some d,

Ed+m = amEd for all m > o.

Hence gr(E) is generated by the finite direct sum

gr(E)o (f) . . . ffi gr(E)d .

But each gr(E)n = En/En + 1
is finitely generated over A, and annihilated by a,

so is a finite A/a-module. Hence the above finite direct sum is a finite A/a-

module, so gr(E) is a finite gra(A)-module, thus concluding the proof of the

proposition.
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6. THE HILBERT POLYNOMIAL

The main point of this section is to study the lengths of certain filtered

modules over local rings, and to show that they are polynomials in appropriate
cases. However, we first look at graded modules, and then relate filtered

modules to graded ones by using the construction at the end of the preceding
section.

We start with a graded Noetherian ring together with a finite graded A-module

E, so

x

A = EB An
n=O

oc

and E =

EB En.
n=O

We have seen in Proposition 5.2 that Ao is Noetherian, and that A is a finitely

generated Ao-algebra. The same type of argument shows that E has a finite number

of homogeneous generators, and En is a finite Ao-module for all n
> o.

Let cp be an Euler-Poincare Z-valued function on the class of all finite

Ao-modules, as in Chapter III, 8. We define the Poincare series with respect

to cp to be the power series

00

PqJ(E, t) = L qJ(En)t
n

E Z[[tJJ.
n=O

We write P(E, t) instead of PqJ(E, t) for simplicity.

Theorem 6.1. (Hilbert-Serre). Let s be the number of generators of A as

Ao-algebra. Then P(E, t) is a rational function of type

P(E, t) =

s

f(t)

n (1 - t
di

)
i= 1

with suitable positive integers di ,
and f(t) E Z[tJ.

Proof. Induction on s. For s
= 0 the assertion is trivially true. Let s

> 1.

Let A =

AO[XI, . . . , x
s ]' deg. Xi

= di
> 1. Multiplication by Xs on E gives rise

to an exact sequence

o -+ Kn -+ En En+ds

-+ Ln+ds

-+ O.

Let

K = EB Knand L = EB Ln.
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Then K, L are finite A-modules (being submodules and factor modules of E),
and are annihilated by XS' so are in fact graded AO[XI' . . .

,
X

s
- d-modules. By

definition of an Euler-Poincare function, we get

qJ(Kn) - qJ(En) + qJ(En+ds
) -

qJ(Ln+ds
) = O.

Multiplying by t
n + ds and summing over n, we get

(1 - tds)P(E, t) = P(L, t) - tdsP(K, t) + g(t),

where g(t) is a polynomial in Z[tJ. The theorem follows by induction.

Remark. In Theorem 6.1, if A = Ao[X l'
. . .

, xsJ then di
= deg Xi as shown

in the proof. The next result shows what happens when all the degrees are

equal to 1.

Theorem 6.2. Assume that A is generated as an Ao-algebra by homogeneous
elements ofdegree 1. Let d be the order of the pole of P(E, t) at t = 1. Then

for all sufficiently large n, qJ(En) is a polynomial in n of degree d - 1. (For
this statement, the zero polynomial is assumed to have degree - 1.)

Proof. By Theorem 6.1, cp(En ) is the coefficient of t
n

in the rational function

P(E, t) = f(t)/(1 - t)s.

Cancelling powers of 1 -

t, we write P(E, t) = h(t)/(l - t)d, and h(l) ;/= 0, with

h(t) E Z[tJ. Let

m

h(t) = L ak t
k

.

k=O

We have the binomial expansion

( _ )
-d

= (
d + k - 1

)
k

1 t

kO d _ 1
t .

For convenience we let (_;) = 0 for n > 0 and (_;) = 1 for n = -1. We

then get

m

(
d + n

- k - 1

)cp(En) =

koak d - 1
for all n > m.

The sum on the right-hand side is a polynomial in n with leading term

d- 1
n

(L ak)
(d _ I)!

oF O.

This proves the theorem.
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The polynomial of Theorem 6.2 is called the Hilbert polynomial of the

graded module E, with respect to cpo

We now put together a number of results of this chapter, and give an application
of Theorem 6.2 to certain filtered modules.

Let A be a Noetherian local ring with maximal ideal m. Let q be an m-

primary ideal. Then A/q is also Noetherian and local. Since some power of m

is contained in q, it follows that A/q has only one associated prime, viewed as

module over itself, namely m/q itself. Similarly, if M is a finite A/q-module,
then M has only one associated prime, and the only simple A/q-module is in

fact an A/m-module which is one-dimensional. Again since some power of m

is contained in q, it follows that A/q has finite length, and M also has finite

length. We now use the length function as an Euler-Poincare function in

applying Theorem 6.2.

Theorem 6.3. Let A be a Noetherian local ring with maximal ideal m.

Let q be an m-primary ideal, and let E be a finitely generated A-module, with

a stable q-filtration. Then:

(i) E/En has finite length for n > o.

(ii) For all sufficiently large n, this length is a polynomial g(n) of degree < s,

where s is the least number of generators of q.

(iii) The degree and leading coefficient ofg(n) depend only on E and q, but not

on the chosen filtration.

Proof. Let

G = grq(A) = EB qn/qn+ 1.

Then gr(E) = EB En/En + 1
is a graded G-module, and Go = A/q. By Proposition

5.8, G is Noetherian and gr(E) is a finite G-module. By the remarks preceding
the theorem, E/En has finite length, and if qJ denotes the length, then

n

qJ(E/En) = L qJ(Ej
_ 1/Ej).

j= 1

If XI' . . .

, Xs generate q, then the images x
l'

. . .

, Xs in q /q2 generate G as A/q-

algebra, and each Xi has degree 1. By Theorem 6.2 we see that

qJ(En/En+ 1) = h(n)

is a polynomial in n of degree < s
- 1 for sufficiently large n. Since

cp(E/En+l)
-

cp(E/En) = h(n),

it follows by Lemma 6.4 below that cp(E/En) is a polynomial g(n) of degree
<

s for all large n. The last statement concerning the independence of the degree
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of 9 and its leading coefficient from the chosen filtration follows immediately
from Proposition 5.1, and will be left to the reader. This concludes the proof.

From the theorem, we see that there is a polynomial 1..£, q
such that

1..£, q(n) = length(EjqnE)

for all sufficiently large n. If E = A, then XA, q
is usually called the characteristic

polynomial of q. In particular, we see that

XA,q(n) = length(Ajqn)

for all sufficiently large n.

For a continuation of these topics into dimension theory, see [AtM 69] and

[Mat 80].

We shall now study a particularly important special case having to do with

polynomial ideals. Let k be a field, and let

A = k[Xo ,
. . .

,
XN]

be the polynomial ring in N + 1 variable. Then A is graded, the elements of

degree n being the homogeneous polynomials of degree n. We let a be a homo-

geneous ideal of A, and for an integer n
> 0 we define:

cp(n)
=

dimk An

cp(n, a) =

dimk an

x(n, a) =

dimk An/an =

dimk An
-

dimk an
=

cp(n)
-

cp(n, a).

As earlier in this section, An denotes the k-space of homogeneous elements of

degree n in A, and similarly for an. Then we have

(
N + n

)cp(n)
=

N
.

We shall consider the binomial polynomial

(
1\

=
T(T

-

1)
· · .

(T
- d + 1) T

d

(1)
dJ d!

=

d!
+ lower terms.

Iff is a function, we define the difference function Ilf by

Ilf(T) = f(T + 1)
-

f(T).

Then one verifies directly that

(2) (:) = C
T

J.
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Lemma 6.4. Let P E Q[T] be a polynomial of degree d with rational

coefficients.

(a) If P(n) E Z for all sufficiently large integers n, then there exist integers

co' . . .
, cd such that

P(T) = CO() + c,C
T

J +
'" + Cd'

In particular, P(n) E Z for all integers n.

(b) Iff: Z Z is any function, and if there exists a polynomial Q(T) E Q[T]
such that Q(Z) C Z and df(n) = Q(n) for all n sufficiently large, then

there exists a polynomial P as in (a) such thatf(n) =

P(n)for all n sufficiently

large.

Proof. We prove (a) by induction. If the degree of P is 0, then the assertion

is obvious. Suppose deg P > 1. By (1) there exist rational numbers co' . . .

, Cd

such that P(T) has the expression given in (a). But dP has degree strictly smaller

than deg P. Using (2) and induction, we conclude that co' . . .
, Cd-l must be

integers. Finally Cd is an integer because P(n) E Z for n sufficiently large. This

proves (a).

As for (b), using (a), we can write

Q(T) = co(
T

) + . . . + cd-I
d - 1

with integers co, . . .
, Cd-I. Let PI be the "integral" of Q, that is

P,(T)
= CO() + ...

+ Cd-'()' so AP, = Q.

Then d(f
-

PI)(n)
= 0 for all n sufficiently large. Hence (f

-

PI)(n) is equal

to a constant cd for all n sufficiently large, so we let P =

PI + cd to conclude

the proof.

Proposition 6.5. Let Q, b be homogeneous ideals in A. Then

cp(n, a + b) = cp(n, a) + cp(n, b)
-

cp(n, a n b)

x(n, a+ b) =

x(n, a) + x(n, b)
-

x(n, a n b).

Proof. The first is immediate, and the second follows from the definition

of x.
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Theorem 6.6. Let F be a homogeneous polynomial of degree d. Assume that

F is not a divisor of zero mod a, that is: if G E A, FG E a, then G Ea. Then

x(n, + (F)) = X(n, a)
-

X(n
-

d, a).

Proof. First observe that trivially

cp(n, (F)) = cp(n
-

d),

because the degree of a product is the sum of the degrees. Next, using the

hypothesis that F is not divisor of 0 mod a, we conclude immediately

cp(n, a n (F)) =

cp(n
-

d, a).

Finally, by Proposition 6.5 (the formula for X), we obtain:

x(n, a + (F)) =

x(n, a) + x(n, (F))
-

x(n, a n (F))

=

x(n, a) + cp(n)
-

cp(n, (F))
-

cp(n) + cp(n, a n (F))

= x(n, a)
-

cp(n
-

d) + cp(n
-

d, a)

= x(n, a)
-

x(n
-

d, a )

thus proving the theorem.

We denote by m the maximal ideal m = (Xo ,
. . .

,
XN) in A. We call m the

irrelevant prime ideal. An ideal is called irrelevant if some positive power of

m is contained in the ideal. In particular, a primary ideal q is irrelevant if and

only if m belongs to q. Note that by the Hilbert nullstellensatz, the condition

that some power of m is contained in a is equivalent with the condition that the

only zero of a (in some algebraically closed field containing k) is the trivial zero.

Proposition 6.7. Let a be a homogeneous ideal.

(a) If a is irrelevant, then x(n, a) = 0 for n sufficiently large.

(b) In general, there is an expression a = q 1 n . . . n q s
as a reduced primary

decomposition such that all qi are homogeneous.

(c) If an irrelevant primary ideal occurs in the decomposition, let b be the

intersection of all other primary ideals. Then

x(n, a) =

x(n, b)

for all n sufficiently large.

Proof. For (a), by assumption we have An
=

an for n sufficiently large, so

the assertion (a) is obvious. We leave (b) as an exercise. As to (c), say qs is

irrelevant, and let b =

q 1
n . . . n qs-l' By Proposition 6.5, we have

x(n, b + qs)
=

x(n, b) + x(n, qs)
-

x(n, a).

But b + q s
is irrelevant, so (c) follows from (a), thus concluding the proof.
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We now want to see that for any homogeneous ideal a the function f such

that

f(n) =

x(n, a)

satisfies the conditions of Lemma 6.4(b). First, we observe that if we change
the ground field from k to an algebraically closed field K containing k, and we

let AK
= K[Xo ,

. . .
,

XN], OK
= Ka, then

dimk An
=

dimK AK,n and dimk an
=

dimK aK,n.

Hence we can assume that k is algebraically closed.

Second, we shall need a geometric notion, that of dimension. Let V be a

variety over k, say affine, with generic point (x) =

(Xb . . .

, XN). We define its

dimension to be the transcendence degree of k(x) over k. For a projective variety,
defined by a homogeneous prime ideal p, we define its dimension to be the

dimension of the homogeneous variety defined by p minus 1.

We now need the following lemma.

Lemma 6.8. Let V, W be varieties over a field k.

ffV:J Wand dim V = dim W, then V = W.

Proof. Say V, Ware in affine space AN. Let Pv and Pw be the respective

prime ideals of V and W in k[X]. Then we have a canonical homomorphism

k[X]/pv = k[x] k[y] = k[X]/pw

from the affine coordinate ring of V onto the affine coordinate ring of W. If the

transcendence degree of k(x) is the same as that of k(y), and say Yl' . . .
, Yr form

a transcendence basis of k(y) over k, then Xl' . . .

,
X

r
is a transcendence basis

of k(x) over k, the homomorphism k[x] k[y] induces an isomorphism

k[XI'...' xr] k[Yb. ."., Yr]'

and hence an isomorphism on the finite extension k[x] to k[y], as desired.

Theorem 6.9. Let ° be a homogeneous ideal in A. Let r be the maximum

dimension of the irreducible components of the algebraic space in projective

space defined by a. Then there exists a polynomial P E Q[T] of degree
<

r,

such that P(Z) C Z, and such that

P(n) =

x(n, a)

for all n sufficiently large.



438 NOETHERIAN RINGS AND MODULES X, 6

Proof. By Proposition 6.7(c), we may assume that no primary component

in the primary decomposition of a is irrelevant. Let Z be the algebraic space of

zeros of a in projective space. We may assume k algebraically closed as noted

previously. Then there exists a homogeneous polynomial L E k[X] of degree 1

(a linear form) which does not lie in any of the prime ideals belonging to the

primary ideals in the given decomposition. In particular, L is not a divisor of

zero mod a. Then the components of the algebraic space of zeros of a + (L)

must have dimension <
r
- 1. By induction and Theorem 6.6, we conclude

that the difference

x(n, a)
-

x(n
-

1, a)

satisfies the conditions of Lemma 6.4(b), which concludes the proof.

The polynomial in Theorem 6.9 is called the Hilbert polynomial of the

ideal a.

Remark. The above results give an introduction for Hartshorne's [Ha 77],

Chapter I, especially 7. If Z is not empty, and if we write

n
r

x(n, a) =

c,
+ lower terms,

r.

then c > 0 and c can be interpreted as the degree of Z, or in geometric terms,

the number of points of intersection of Z with a sufficiently general linear variety
of complementary dimension (counting the points with certain multiplicities).
For explanations and details, see [Ha 77], Chapter I, Proposition 7 . 6 and Theorem

7.7; van der Waerden [vdW 29] which does the same thing for multihomogeneous

polynomial ideals; [La 58], referred to at the end of Chapter VIII, 2; and the

papers [MaW 85], [Ph 86], making the link with van der Waerden some six

decades before.

[AtM 69]

[Ha 77]

[MaW 85]

[Mat 80]

[Ph 86]

[vdW 29]
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7. INDECOMPOSABLE MODULES

Let A be a ring, not necessarily commutative, and E an A-module. We

say that E is Artinian if E satisfies the descending chain condition on sub-

modules, that is a sequence

E
1

::J E
2

::J E3 . . .

must stabilize: there exists an integer N such that if n > N then En = En + 1.

Example 1. If k is a field, A is a k-algebra, and E is a finite-dimensional

vector space over k which is also an A-module, then E is Artinian as well as

Noetherian.

Example 2. Let A be a commutative Noetherian local ring with maximal

ideal m, and let q be an m-primary ideal. Then for every positive integer n,

Alqn is Artinian. Indeed, Alqn has a Jordan-Holder filtration in which each

factor is a finite dimensional vector space over the field Aim, and is a module

of finite length. See Proposition 7.2.

Conversely, suppose that A is a local ring which is both Noetherian and

Artinian. Let m be the maximal ideal. Then there exists some positive integer
n such that m

n
= O. Indeed, the descending sequence m

n

stabilizes, and

Nakayama's lemma implies our assertion. It then also follows that every

primary ideal is nilpotent.

As with Noetherian rings and modules, it is easy to verify the following
statements:

Proposition 7.1. Let A be a ring, and let

o -+ E' -+ E -+ E" -+ 0

be an exact sequence of A-modules. Then E is Artinian if and only if E' and

E" are Artinian.

We leave the proof to the reader. The proof is the same as in the Noetherian

case, reversing the inclusion relations between modules.

Proposition 7.2. A module E has a finite simple filtration if and only if E

is both Noetherian and Artinian.

Proof. A simple module is generated by one element, and so is Noetherian.

Since it contains no proper submodule =t= 0, it is also Artinian. Proposition 7.2

is then immediate from Proposition 7. 1.

A module E is called decomposable if E can be written as a direct sum

E = E
1 (f)E2
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with E
1 =F E and E2 =F E. Otherwise, E is called indecomposable. If E is

decomposable as above, let e
1

be the projection on the first factor, and

e2
= 1 - e

1 the projection on the second factor. Then e b e2 are idempotents
such that

e
1 =F 1, e2 =F 1, e 1 + e2

= 1 and e 1 e2 =

e2el
= O.

Conversely, if such idempotents exist in End(E) for some module E, then E is

decomposable, and ei is the projection on the submodule eiE.
Let u: E -+ E be an endomorphism of some module E. We can form the

descending sequence

1m u ::> 1m u
2

::J 1m u
3

::J . . .

If E is Artinian, this sequence stabilizes, and we have

1m un = 1m un
+ 1

for all sufficiently large n.

We call this submodule uOO(E), or 1m U
OO

.

Similarly, we have an ascending sequence

Ker u c Ker u
2

c Ker u
3

c . . .

which stabilizes if E is Noetherian, and in this case we write

Ker U
OO

= Ker un for n sufficiently large.

Proposition 7.3. (Fitting's Lemma). Assume that E is Noetherian and

Artinian. Let u E End(E). Then E has a direct sum decomposition

E = 1m U
OO

Et> Ker U
OO

.

Furthermore, the restriction ofu to 1m U
OO

is an automorphism, and the restric-

tion of u to Ker U
OO

is nilpotent.

Proof. Choose n such that 1m U
OO

= 1m un and Ker U
OO

= Ker un. We

have

1m U
OO

n Ker U
OO

= {O},

for if x lies in the intersection, then x = un(y) for some y E E, and then

o = un(x) = u
2n

(y). So y E Ker u
2n

= Ker un, whence x = un(y) = O.

Secondly, let x E E. Then for some y E un(E) we have

un(x) = un(y).
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Then we can write

x = x
- Un(y) + Un(y),

which shows that E = 1m U
OO

+ Ker U
OO

. Combined with the first step of the

proof, this shows that E is a direct sum as stated.

The final assertion is immediate, since the restriction of u to 1m U
OO

is sur-

jective, and its kernel is 0 by the first part of the proof. The restriction of u to

Ker U
OO

is nilpotent because Ker U
OO

= Ker un. This concludes the proof of the

proposition.

We now generalize the notion of a local ring to a non-commutative ring.
A ring A is called local if the set of non-units is a two-sided ideal.

Proposition 7.4. Let E be an indecomposable module over the ring A. Assume

E Noetherian and Artinian. Any endomorphism of E is either nilpotent or an

automorphism. Furthermore End(E) is local.

Proof. By Fitting's lemma, we know that for any endomorphism u, we

have E = 1m U
OO

or E = Ker u
oo

. So we have to prove that End(E) is local.

Let u be an endomorphism which is not a unit, so u is nilpotent. For any

endomorphism v it follows that uv and vu are not surjective or injective respec-

tively, so are not automorphisms. Let U1, U2 be endomorphisms which are not

units. We have to show U1 + U2 is not a unit. If it is a unit in End(E), let

Vi
= Ui(U1 + U2)-1. Then V1 + V

2
= 1. Furthermore, V

1
= 1 - V

2
is invertible

by the geometric series since V2 is nilpotent. But v 1 is not a unit by the first part

of the proof, contradiction. This concludes the proof.

Theorem 7.5. (Krull-Remak-Schmidt). Let E =F 0 be a module which is

both Noetherian and Artinian. Then E is afinite direct sum ofindecomposable
modules. Up to a permutation, the indecomposable components in such a

direct sum are uniquely determined up to isomorphism.

Proof. The existence of a direct sum decomposition into indecomposable
modules follows from the Artinian condition. If first E = E

1 Et> E
2 ,

then either

E
1 ,

E
2 are indecomposable, and we are done; or, say, E

1
is decomposable.

Repeating the argument, we see that we cannot continue this decomposition

indefinitely without contradicting the Artinian assumption.
There remains to prove uniqueness. Suppose

E = E
1 Et> . . . Et> Er = F

1 Et> . . . Et> F
s

where Eb F..j are indecomposable. We have to show that r = s and after some

permutation, E
i Fi

. Let ei be the projection of E on Ei ,
and let Uj be the

projection of E on Fj, relative to the above direct sum decompositions. Let:

v.=e 1 u, and w.=u.e 1J J J J.
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Then L u
j

= idE implies that

s

L vjwjlEI = idE..
j == 1

By Proposition 7.4, End(E 1 ) is local, and therefore some VjWj
is an automor-

phism of E
1

. After renumbering, we may assume that V
1

W
1

is an automorphism
of E 1.

We claim that VI and WI induce isomorphisms between E
I and F.,

This follows from a lemma.

Lemma 7.6. Let M, N be modules, and assume N indecomposable. Let

u: M N and v: N M be such that vu is an automorphism. Then u, v

are isomorphisms.

Proof. Let e = U(VU)-1 V. Then e
2

= e is an idempotent, lying in End(N),
and therefore equal to 0 or 1 since N is assumed indecomposable. But e =F 0

because idM =F 0 and

o =F idM
= id = (vu)

- I
VU(VU)

-1
VU .

So e = idN . Then u is injective because vu is an automorphism; v is injective
because e = idN is injective; u is surjective because e = idN ; and v is surjective
because vu is an automorphism. This concludes the proof of the lemma.

Returning to the theorem, we now see that

E = F 1 ffi (E2 ffi... (f) Er).

Indeed, e 1 induces an isomorphism from F
1

to E
1 ,

and since the kernel of e
1

is E
2 ffi . . . ffi Er it follows that

F
1

n (E2 ffi . . . ffi Er) = O.

But also, F 1
= E

1 (mod E
2 ffi . . . ffi E

r), so E is the sum ofF 1 and E
2 ffi . . . ffi Er,

whence E is the direct sum, as claimed. But then

ElF 1 F2 ffi... ffi Fs E
2 E9." ffi Er'

The proof is then completed by induction.

We apply the preceding results to a commutative ring A. We note that an

idempotent in A as a ring is the same thing as an idempotent as an element of

End(A), viewing A as module over itself. Furthermore End(A) A. Therefore,
we. find the special cases:

Theorem 7.7. Let A be a Noetherian and Artinian commutative ring.
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(i) IfA is indecomposable as a ring, then A is local.

(ii) In general, A is a direct product of local rings, which are Artinian and

Noetherian.

Another way of deriving this theorem will be given in the exercises.

EXERCISES

1, Let A be a commutative ring. Let M be a module, and N a submodule. Let

N = QI n ." n Qr be a primary decomposition of N. Let Qi = QJN. Show that

o = <21 n ' , . n Qr is a primary decomposition of 0 in MIN. State and prove the

converse,

2, Let p be a prime ideal, and a, b ideals of A, If ab c p, show that a c p or b c p.

3. Let q be a primary ideal. Let a, b be ideals, and assume ab c q. Assume that b is

finitely generated, Show that a c q or there exists some positive integer n such that

b" c q,

4, Let A be Noetherian, and let q be a p-primary ideal. Show that there exists some n > 1

such that p" c q,

5, Let A be an arbitrary commutative ring and let S be a multiplicative subset. Let p

be a prime ideal and let q be a p-primary ideal. Then p intersects S if and only if q

intersects S. Furthermore, if q does not intersect S, then S- lq is S-l p
-

primary in

S-I A,

6. If a is an ideal of A, let as
= S- la, If qJs : A S-I A is the canonical map, abbreviate

lfJs
1

(as) by as n A, even though qJs is not injective. Show that there is a bijection

between the prime ideals of A which do not intersect S and the prime ideals of S
- 1

A,

given by

p ps and ps Ps n A =

p.

Prove a similar statement for primary ideals instead of prime ideals.

7. Let a =

q 1 n . . , n qr be a reduced primary decomposition of an ideal. Assume that

q I'
. , ,

, q; do not intersect S, but that q j
intersects S for j > i. Show that

as =

qls n .. , n qiS

is a reduced primary decomposition of as,

8. Let A be a local ring. Show that any idempotent #- 0 in A is necessarily the unit

element. (An idempotent is an element e E A such that e
2

= e.)

9, Let A be an Artinian commutative ring. Prove:

(a) All prime ideals are maximal. [Hint: Given a prime ideal p, let x E A, x(p) = o.

Consider the descending chain (x) ::> (x
2

) ::> (x
3

) ::> ' . '.]



444 NOETHERIAN RINGS AND MODULES X, Ex

(b) There IS only a finite number of pnme, or maximal, Ideals. [Hint: Among all

finite Intersections of maximal Ideals, pick a minimal one,]

(c) The Ideal N of nilpotent elements In A is nilpotent, that IS there eXists a positive

Integer k uch that N" = (0). [Hillt: Let k be such that N" = N" J. Let a = N".

Let b be a minimal ideal i= 0 such that ba i= o. Then b I pnnclpal and ba = b.]

(d) A IS Noetherian.

(e) There eXists an Integer r such that

A = n A/n{

where the product IS taken over all maximal ideals.

(f) We have

A = nAp'

where again the product IS taken over all prime ideals p.

10, Let A, B be local nngs with maximal ideals m
A ,

mB , respectively. Let f: A B be a

homomorphism. We say that f IS local If f
-

l(mB) = m
A

, Suppose this is the case,

Assume A, B Noetherian, and assume that:

1. A/nt A B/Ut H
IS an Isomorphism,

2. m
A mH/nt IS surjective:

3. B IS a finite A -module, via f.

Prove that r IS surjective, [Hint: Apply Nakayama tWice.]

For an ideal a, recall from Chapter IX, 5 that ?1 (a) is the set of primes containing a.

11, Let A be a commutative ring and M an A-module. Define the support of M by

supp(M) = {p E spec(A) : M
p

i= O}.

IfM is finite over A, show that supp(M)
= ?1 (ann(M», where ann(M) is the annihilator

of M in A, that is the set of elements a E A such that aM = o.

12. Let A be a Noetherian ring and M a finite A-module. Let / be an ideal of A such that

supp(M) C ?1 (/). Then /nM = 0 for some n > 0,

13, Let A be any commutative ring, and M, N modules over A. If M is finitely presented,
and S is a multiplicative subset of A, show that

S-1 HomA(M, N) Hom
s -lA(S-l M, S-I N),

This is usually applied when A is Noetherian and M finitely generated, in which case

M is also finitely presented since the module of relations is a submodule of a finitely

generated free module.

14. (a) Prove Proposition 6. 7(b).

(b) Prove that the degree of the polynomial P in Theorem 6.9 is exactly r.

Locally constant dimensions

15. Let A be a Noetherian local ring. Let E be a finite A-module. Assume that A has no

nilpotent elements, For each pnme Ideal p of A, let k(p) be the residue class field, If

dlm,,(p) Ep/pEp is constant for all p, show that E IS free, [Hint: Let Xl' , , .

,
X

r
E A be
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such that the residue classes mod the maximal ideal form a basis for E/mE over k(m).
We get a surjective homomorphism

A
r

E -+ O.

Let J be the kernel. Show that J
p

C mp A; for all p so J c p for all p and J = 0.]

16. Let A be a Noetherian local ring without nilpotent elements. Letf: E -+ F be a homo-

morphism of A-modules, and suppose E, F are finite free. For each prime p of A let

I(p) : Ep/pEp
-+ Fp/pFp

be the corresponding k(p)-homomorphism, where k(p) = Ap/pAp is the residue class

field at p, Assume that

dimk(p) 1m hp)

is constant.

(a) Prove that Film fand 1m f are free, and that there is an isomorphism

F 1m f e> (Film f).

[Hint: Use Exercise 15.]

(b) Prove that Ker j is free and E (Ker f) e> (1m f). [Hint: Use that finite

projective is free.]

The next exercises depend on the notion of a complex, which we have not yet formally
defined. A (finite) complex E is a sequence of homomorphisms of modules

dO d
1

d
n

o EO EI . . . En 0

and homorphisms d
i

: Ei E
i + 1

such that d
i + 1

0 di
= 0 for all i. Thus Im(d

i
) C Ker (d

i +

1).
The homology Hi of the complex is defined to be

Hi = Ker(d
i + 1

)/Im(d
i
).

By definition, HO = EO and Hn = En/lm(d
n

), You may want to look at the first section

of Chapter XX, because all we use here is the basic notion, and the following property,

which you can easily prove. Let E, F be two complexes. By a homomorphismf: E F

we mean a sequence of homomorphisms

fi: Ei Fi

making the diagram commutative for all i:

dk
) Ei

+ 1

[!i+ I

Ei

/;[
d}

Fi+lFi

Show that such a homomorphismf induces a homomorphism H(f): H(E) H(F) on the

homology; that is, for each i we have an induced homomorphism

Hi(f): Hi(E) Hi(F).
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The following exercises are inspired from applications to algebraic geometry, as for

instance in Hartshorne, Aigebraic Geometry, Chapter III, Theorem 12.8. See also Chapter

XXI, 1 to see how one can construct complexes such as those considered in the next

exercises in order to compute the homology with respect to less tractable complexes.

Reduction of a complex mod p

17. Let 0 KO K
1

. . . K
n

0 be a complex of finite free modules over a local

Noetherian ring A without nilpotent elements. For each prime p of A and module E,

let E(p) = Ep/pEp, and similarly let K(p) be the complex localized and reduced mod p.

For a given integer i, assume that

dimk(p) Hi(K(p»

is constant, where Hi is the i-th homology of the reduced complex. Show that Hi(K)
is free and that we have a natural isomorphism

Hi(K)(p) Hi(K(p».

[Hint: First write d:p )
for the map induced by d

i
on Ki(p). Write

dimk(p) Ker d:p )
= dimk(p) Ki(p) -

dimk(p) 1m d:p).

Then show that the dimensions dimk(p) 1m d:p )
and dimk(p) 1m d:;>

1
must be constant.

Then apply Exercise 12.]

Comparison of homology at the special point

18. Let A be a Noetherian local ring. Let K be a finite complex, as follows:

o KO -+ . . . -+ Kn 0,

such that K
i

is finite free for all;, For some index i assume that

Hi(K)(m) Hi(K(m))

is surjective. Prove:

(a) This map is an isomorphism.

(b) The following exact sequences split:

o Ker d
i

K
i

-+ 1m d
i

0

o 1m d
i

K
i + 1

(c) Every term in these sequences is free.

19. Let A be a Noetherian local ring. Let K be a complex as in the previous exercise. For

some i assume that

Hi(K)(m) Hi(K(m»

is surjective (or equivalently is an isomorphism by the previous exercise). Prove that
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the following conditions are equivalent:

(a) H
i - 1

(K)(m) -... H
i - 1

(K(m» is surjective.

(b) H
i -

l(K)(m) H
i - 1

(K(m» is an isomorphism.

(c) Hi(K) is free.

[Hint: Lift bases until you are blue in the face.]

(d) If these conditions hold, then each one of the two inclusions

1m d
i - 1

C Ker d
i
c K

i

splits, and each one of these modules is free, Reducing mod m yields the

corresponding inclusions

1m d:;'/ c Ker d:m )
c Ki(m),

and induce the isomorphism on cohomology as stated in (b). [Hint: Apply
the preceding exercise,]





CHAPTER XI

Real Fields

1. ORDERED FIELDS

Let K be a field. An ordering of K is a subset P of K having the following

properties:

ORD 1. Given x E K, we have either x E P, or x = 0, or -

x E P, and these

three possibilities are mutually exclusive. In other words, K is the

disjoint union of P, {O}, and - P.

ORD 2. If x, YEP, then x + Y and xy E P.

We shall also say that K is ordered by P, and we call P the set of positive
elements.

Let us assume that K is ordered by P. Since 1 =F 0 and 1 = 1
2

= ( _1)2
we see that 1 E P. By ORD 2, it follows that 1 + . . . + 1 E P, whence K has

characteristic o. If x E P, and x =F 0, then xx-
1

= 1 E P implies that x-
1

E P.

Let x, Y E K. We define x < Y (or Y > x) to mean that y
-

x E P. If x < 0

we say that x is negative. This means that -

x is positive. One verifies trivially
the usual relations for inequalities, for instance:

x<y and y<z implies x < z,

x<y and z>O implies xz < yz,

implies
1 1

x<y and x, y > 0 - <-.

y x

We define x <
y to mean x < y or x =

y. Then x <
y and y

< x imply x =

y.

If K is ordered and x E K, x =F 0, then x
2

is positive because x
2

= ( - X)2
and either x E P or -

x E P. Thus a sum of squares is positive, or O.

Let E be a field. Then a product of sums of squares in E is a sum of squares.

If a, bEE are sums ofsquares and b =F 0 then a/b is a sum ofsquares.

449
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The first assertion is obvious, and the second also, from the expression

a/b = ab{b-
1

)2.
If E has characteristic =F 2, and - 1 is a sum of squares in E, then every

element a E E is a sum of squares, because 4a = {1 + a)2 - (1 - a)2.
If K is a field with an ordering P, and F is a subfield, then obviously, P n F

defines an ordering of F, which is called the induced ordering.
We observe that our two axioms ORD 1 and ORD 2 apply to a ring. If

A is an ordered ring, with 1 =F 0, then clearly A cannot have divisors of 0, and

one can extend the ordering of A to the quotient field in the obvious way: A

faction is called positive if it can be written in the form a/b with a, b E A and

a, b > O. One verifies trivially that this defines an ordering on the quotient
field.

Example. We define an ordering on the polynomial ring R[t] over the

real numbers. A polynomial

f{t) = ant
n

+ . . . + ao

with an =F 0 is defined to be positive if an > o. The two axioms are then trivially
verified. We note that t > a for all a E R. Thus t is infinitely large with respect

to R. The existence of infinitely large (or infinitely small) elements in an ordered

field is the main aspect in which such a field differs from a subfield of the real

numbers.

We shall now make some comment on this behavior, i.e. the existence of

infinitely large elements.

Let K be an ordered field and let F be a subfield with the induced ordering.
As usual, we put I x I = x if x > 0 and I x I = -

x if x < O. We say that an element

rx in K is infinitely large over F if I rx I > x for all x E F. We say that it is infinitely
small over FifO < Irxl < Ixl for all x E F, x =F O. We see that rx is infinitely large
if and only if rx-

1
is infinitely small. We say that K is archimedean over F if K

has no elements which are infinitely large over F. An intermediate field Fh

K ::J Fl ::J F, is maximal archimedean over F in K if it is archimedean over F,

and no other intermediate field containing Fl is archimedean over F. If Fl is

archimedean over F and F
2

is archimedean over Fl then F
2 is archimedean over

F. Hence by Zorn's lemma there always exists a maximal archimedean subfield

Fl of Kover F. We say that F is maximal archimedean in K if it is maximal

archimedean over itself in K.

Let K be an ordered field and F a subfield. Let 0 be the set of elements of K

which are not infinitely large over F. Then it is clear that 0 is a ring, and that for

any rx E K, we have rx or rx-
1

E o. Hence 0 is what is called a valuation ring,

containing F. Let m be the ideal of all rx E K which are infinitely small over F.

Then m is the unique maximal ideal of 0, because any element in 0 which is not

in m has an inverse in o. We call 0 the valuation ring determined by the ordering
of KIF.
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Pfoposition 1.1. Let K be an ordered field and F a subfield. Let 0 be the

valuation ring determined by the ordering of KIF, and let m be its maximal

ideal. Then o/m is a real field.

Proof Otherwise, we could write

- 1 = L rxf + a

with rx i E 0 and a E m. Since L rxf is positive and a is infinitely small, such a

relation is clearly impossible.

2. REAL FIELDS

A field K is said to be feal if - 1 is not a sum of squares in K. A field K is

said to be feal closed if it is real, and if any algebraic extension of K which is real

must be equal to K. In other words, K is maximal with respect to the property
of reality in an algebraic closure.

Proposition 2.1. Let K be a real field.

(i) If a E K, then K(fi) or K( ) is real. If a is a sum of squares in K,

then KCv') is real. IfK() is not real, then -a is a sum of squares

in K.

(ii) Iff is an irreducible polynomial ofodd degree n in K[X] and if rx is a root

off, then K(rx) is real.

Proof Let a E K. If a is a square in K, then K(fi) = K and hence is real by

assumption. Assume that a is not a square in K. IfK(fi) is not real, then there

exist b i , Ci E K such that

-1 = L (bi + ci fi)2

= L (bf + 2cibifi + cfa).

Since fi is of degree 2 over K, it follows that

- 1 = L bf + a L cf.

If a is a sum of squares in K, this yields a contradiction. In any case, we con-

clude that

1 + L bf
-a =

L
2

C.
I

is a quotient of sums of squares, and by a previous remark, that -

a is a sum of

squares. Hence K() is real, thereby proving our first assertion.
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As to the second, suppose K(lL) is not real. Then we can write

- 1 = L gi(lL)2

with polynomials gi in K[X] of degree < n
- 1. There exists a polynomial h

in K[X] such that

- 1 = L gi(X)2 + h(X)f(X).

The sum of gi(X)2 has even degree, and this degree must be > 0, otherwise -1

is a sum of squares in K. This degree is < 2n - 2. Since f has odd degree n, it

follows that h has odd degree < n
- 2. If P is a root of h then we see that - 1

is a sum of squares in K(P). Since deg h < deg f, our proof is finished by
induction.

Let K be a real field. By a real closure we shall mean a real closed field L

which is algebraic over K.

Theorem 2.2. Let K be a real field. Then there exists a real closure of K.

If R is real closed, then R has a unique ordering. The positive elements are

the squares of R. Every positive element is a square, and every polynomial of
odd degree in R[X] has a root in R. We have Ra = R(v=I).

Proof By Zorn's lemma, our field K is contained in some real closed field

algebraic over K. Now let R be a real closed field. Let P be the set of non-zero

elements of R which are sums of squares. Then P is closed under addition and

multiplication. By Proposition 2.1, every element of P is a square in R, and given
a E R, a =F 0, we must have a E P or -

a E P. Thus P defines an ordering. Again

by Proposition 2.1, every polynomial of odd degree over R has a root in R. Our

assertion follows by Example 5 of Chapter VI, 2.

Corollary 2.3. Let K be a real field and a an element of K which is not a

sum of squares. Then there exists an ordering of K in which a is negative.

Proof The field K( ) is real by Proposition 1.1 and hence has an

ordering as a subfield of a real closure. In this ordering, - a > 0 and hence a is

negative.

Proposition 2.4. Let R be afield such that R =F R
a

but Ra = R(J=l). Then

R is real and hence real closed.

Proof Let P be the set of elements of R which are squares and =F o. We

contend that P is an ordering of R. Let a E R, a =F O. Suppose that a is not a

square in R. Let lL be a root of X
2
-

a = O. Then R(lL) = R(J=l), and hence

there exist c, d E R such that lL = C + dJ=l. Then

lL
2

= c
2

+ 2cdJ=l - d
2

.



XI, 2 REAL FIELDS 453

Since 1, J=1 are linearly independent over R, it follows that c = 0 (because

aft R
2

), and hence -

a is a square.

We shall now prove that a sum of squares is a square. For simplicity, write

i = J=1. Since R(i) is algebraically closed, given a, bE R we can find c, dE R

such that (c + di)2 = a + bi. Then a = c
2
- d

2
and b = 2cd. Hence

a
2

+ b
2

= (c
2

+ d
2

)2,

as was to be shown.

If a E R, a =F 0, then not both a and -a can be squares in R. Hence P is an

ordering and our proposition is proved.

Theorem 2.5. Let R be a real closed field, and f(X) a polynomial in R[X].
Let a, b E R and assume that f(a) < 0 and f(b) > O. Then there exists c

between a and b such that f(c) = o.

Proof Since R(Fi) is algebraically closed, it follows that f splits into a

product of irreducible factors of degree 1 or 2. If X
2

+ rxX + p is irreducible

(rx, PER) then it is a sum of squares, namely

(X + r + (p
-

).
and we must have 4p > rx

2
since our factor is assumed irreducible. Hence the

change of sign off must be due to the change of sign of a linear factor, which is

trivially verified to be a root lying between a and b.

Lemma 2.6. Let K be a subfield ofan orderedfield E. Let rx E E be algebraic
over K, and a root of the polynomial

f(X) = x
n

+ a
n
- lxn-

1
+ . . . + aO

with coefficients in K. Then I rx I < 1 + I an - 1 I + . . . + I ao I.

Proof If I rx I < 1, the assertion is obvious. If I rx I > 1, we express I rx In in

terms of the terms of lower degree, divide by I rx In
-

1, and get a proof for our

lemma.

Note that the lemma implies that an element which is algebraic over an

ordered field cannot be infinitely large with respect to that field.

Let f(X) be a polynomial with coefficients in a real closed field R, and

assume that f has no multiple roots. Let u < v be elements of R. By a Sturm

sequence for f over the interval [u, v] we shall mean a sequence of polynomials

S = {f = fo, f' = fh . . .

, fm}

having the following properties:
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ST 1. The last polynomial fm is a non-zero constant.

ST 2. There is no point x E [u, v] such that fj(x) = fi+ I(X) = 0 for any

value 0 < j < m - 1.

ST 3. If x E [u, v] and f;{x) = 0 for some j = 1, . . .

,
m

- 1, then fj-l(X)

and.fj+ I (x) have opposite signs.

ST 4. We have .fj(u) ;/= 0 and f;{v) =F 0 for all j = 0, . . .
, m.

For any x E [u, v] which is not a root of any polynomial/; we denote by

J.iiS(x) the number of sign changes in the sequence

{f(x), fl (x), . . .

, fm(x)},

and call Ws(x) the variation of signs in the sequence.

Theorem2.7. (Sturm's Theorem). The number of roots off between u and v

is equal to Ws(u) - Ws(v)for any Sturm sequence S.

Proof. We observe that if (X I < (X2 < . . . < ex
r

is the ordered sequence of

roots of the polynomials fj in [u, v] U = 0, . . .

,
m

- 1), then Ws(x) is constant

on the open intervals between these roots, by Theorem 2.5. Hence it will suffice

to prove that if there is precisely one element ex such that u < (X < v and ex is a

root of some fj, then Ws(u) - Ws(v) = 1 if ex is a root of f, and 0 otherwise.

Suppose that (X is a root of some jj, for 1 < j < m
- 1. Then.fj_ 1 (C(), jj+ 1 (ex)

have opposite signs by ST 3, and these signs do not change when we replace ex

by u or v. Hence the variation of signs in

{ fj - 1 (u), h{u), jj + I (u)} and {.fj - 1 (v), jj(v), fj + I (v) }

is the same, namely equal to 2. If ex is not a root of f, we conclude that

WS(u) = Ws(v).

If ex is a root of f, then f(u) and f(v) have opposite signs, but f'(u) and f'(v)
have the same sign, namely, the sign of f'(ex). Hence in this case,

WS(u) = Ws(v) + 1.

This proves our theorem.

It is easy to construct a Sturm sequence for a polynomial without multiple
roots. We use the Euclidean algorithm, writing

f = glf'
-

f2,

12 =

g 2 fl
-

f3,

fm-2 = gm-Ifm-I
-

fm'
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using f' = fl. Since f, f' have no common factor, the last term of this sequence

is non-zero constant. The other properties of a Sturm sequence are trivially

verified, because if two successive polynomials of the sequence have a com-

mon zero, then they must all be 0, contradicting the fact that the last one is not.

Corollary 2.8. Let K be an ordered field, f an irreducible polynomial of

degree > lover K. The number ofroots off in two real closures ofK inducing

the given ordering on K is the same.

Proof We can take v sufficiently large positive and u sufficiently large

negative in K so that all roots off and all roots of the polynomials in the Sturm

sequence lie between u and v, using Lemma 2.6. Then J.iiS(u) - Ws(v) is the

total number of roots off in any real closure of K inducing the given ordering.

Theorem 2.9. Let K be an ordered field, and let R, R' be real closures of K,

whose orderings induce the given ordering on K. Then there exists a unique

isomorphism U : R -+ R' over K, and this isomorphism is order-preserving.

Proof We first show that given a finite subextension E of Rover K, there

exists an embedding of E into R' over K. Let E = K(ll), and let

f(X) = Irr(ll, K, X).

Then f(ll) = 0 and the corollary of Sturm's Theorem (Corollary 2.8) shows that

f has a root P in R'. Thus there exists an isomorphism of K(ll) on K(P) over K,

mapping II on p.
Let 1l1, . . .

,
ll

n
be the distinct roots off in R, and let PI' . . .

, Pm be the distinct

roots of f in R'. Say

11 1
< . . . < ll

n
in the ordering of R,

PI < . . . < Pm in the ordering of R'.

We contend that m = n and that we can select an embedding U of K(llf, . . .
,
ll

n)

into R' such that Ulli
= Pi for i = 1, . . .

,
n. Indeed, let Yi be an element of R

such that

Y? = ll
i + 1

-

lli for i = 1, . . .

,
n
- 1

and let E 1
= K(1l 1 ,...,

ll
n , Yf, ..., Yn-l)' By what we have seen, there exists

an embedding U of E 1 into R', and then Ull
i + 1

- Ull i
is a square in R'. Hence

U1l 1 < . . . < Ull
n

.

This proves that m > n. By symmetry, it follows that m = n. Furthermore,

the condition that (Jlli
= Pi for i = 1, . . .

,
n determines the effect of U on
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K(rx1,...,rxn). We contend that (J is order-preserving. 'Let YEK(rxb'..'rxn)
and 0 < y. Let Y E R be such that y2 =

y. There exists an embedding of

K(rx 1,
. . .

,
rx

n , Y l'
. . .

, Yn
-

1, y)

into R' over K which must induce a on K(rxb . . .

,
rx

n ) and is such that ay is a

square, hence > 0, as contended.

Using Zorn's lemma, it is now clear that we get an isomorphism of R onto R'

over K. This isomorphism is order-preserving because it maps squares on

squares, thereby proving our theorem.

Proposition 2.10. Let K be an orderedfield, K' an extension such that there is

no relation

n

-1 = 'a.rx
I I

i = 1

with ai E K, ai > 0, and rxi E K'. Let L be thefield obtainedfrom K
'

by adjoining
the square roots ofall positive elements of K. Then L is real.

Proof If not, there exists a relation of type

n

-1 = 'a.rx
I I

i = 1

with ai E K, ai > 0, and rxi E L. (We can take ai
= 1.) Let r be the smallest

integer sch that we can write such a relation with rx i
in a subfield of L, of type

K'(A, . . .

, A)

with b
j

E K, b
j

> O. Write

rx, = x. + Y
' fb

I I I'V U
r

with Xi' Yi E K'(A, . .

., ). Then

-1 = L ai(x i + Yifir)2
= L ai(xf + 2XiYifir + yfbr).

By hypothesis, fir is not in K'(bb . .

., ). Hence

-1 = L aixf + L aibryf,

contradicting the minimality of r.

Theorem 2.11. Let K be an orderedfield. There exists a real closure R ofK

inducing the given ordering on K.
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Proof Take K' = K in Proposition 2.10. Then L is real, and is contained

in a real closure. Our assertion is clear.

Corollary 2.12. Let K be an orderedfield, and K' an extensionfield. In order

that there exist an ordering on K' inducing the given ordering of K, it is

necessary and sufficient that there is no relation of type

n

-1 = a.rx?-
I I

i= 1

with ai E K, ai > 0, and rxi E K'.

Proof. If there is no such relation, then Proposition 2.10 states that L is

contained in a real closure, whose ordering induces an ordering on K', and the

given ordering on K, as desired. The converse is clear.

Example. Let Q8 be the field of algebraic numbers. One sees at once that

Q admits only one ordering, the ordinary one. Hence any two real closures of Q
in Q8 are isomorphic, by means of a unique isomorphism. The real closures of Q
in Q8 are precisely those subfields of Q8 which are of finite degree under Q8.
Let K be a finite real extension of Q, contained in Q8. An element rx of K is a

sum of squares in K if and only if every conjugate of rx in the real numbers is

positive, or equivalently, if and only if every conjugate of rx in one of the real

closures of Q in Q8 is positive.

Note. The theory developed in this and the preceding section is due to Artin-

Schreier. See the bibliography at the end of the chapter.

3. REAL ZEROS AND HOMOMORPHISMS

Just as we developed a theory of extension of homomorphisms into an

algebraically closed field, and Hilbert's Nullstellensatz for zeros in an alge-

braically closed field, we wish to develop the theory for values in a real closed

field. One of the main theorems is the following:

Theorem 3.1. Let k be a field, K = k(x b
. . .

,
x

n) a finitely generated
extension. Assume that K is ordered. Let Rk be a real closure of k inducing
the same ordering on k as K. Then there exists a homomorphism

qJ : k[x 1, . . .

,
X

n] -+ Rk

over k.
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As applications of Theorem 3.1, one gets:

Corollary 3.2. Notation being as in the theorem, let Y1, . . .
, Ym E k[x] and

assume

Y1 < Y2 < . . . < Ym

is the given ordering of K. Then one can choose qJ such that

qJY 1 < . . . < qJYm.

Proof Let Yi E K
8

be such that yf =

Yi+ 1
-

Yi. Then K(Y1'...' Yn-1)

has an ordering inducing the given ordering on K. We apply the theorem to the

rIng

k[
-1 -1

]X l'
. . .

,
x

n , Y 1 ,..., Ym
- b Y h . . .

, Ym
- 1 .

Corollary 3.3. (Artin). Let k be a real field admitting only one ordering.

Let f(X 1, . . .

,
Xn) E k(X) be a rational function having the property that for

all (a) = (ab . . .

, an) ERin) such that f(a) is defined, we have f(a) > O. Then

j (X) is a sum of squares in k(X).

Proof Assume that our conclusion is false. By Corollary 2.3, there exists

an ordering of k(X) in which f is negative. Apply Corollary 3.2 to the ring

k[X 1, . . .

,
X

n' h(X)
- 1

]

where h(X) is a polynomial denominator for f(X). We can find a homo-

morphism qJ of this ring into Rk (inducing the identity on k) such that qJ(f) < O.

But

qJ(f) = f(qJX l'
. . .

, qJXn).

contradiction. We let ai
= qJ(X i) to conclude the proof.

Corollary 3.3 was a Hilbert problem. The proof which we shall describe for

Theorem 3. 1 differs from Artin' s proof of the corollary in several technical

aspects.

We shall first see how one can reduce Theorem 3.1 to the case when K has

transcendence degree 1 over k, and k is real closed.

Lemma 3.4. Let R be a real closed field and let Ro be a subfield which is

algebraically closed in R (i.e. such that every element of R not in Ro is tran-

scendental over Ro). Then Ro is real closed.

Proof Let f{X) be an irreducible polynomial over Ro. It splits in R into

linear and quadratic factors. Its coefficients in R are algebraic over Ro, and

hence must lie in Ro. Hence f(X) is linear itself, or quadratic irreducible already
over Ro. By the intermediate value theorem, we may assume that f is positive
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definite, i.e. f(a) > 0 for all a E Ro. Without loss of generality, we may assume

that f(X) = X
2

+ b
2

for some b E Ro. Any root of this polynomial will bring

J=1 with it and therefore the only algebraic extension of Ro is Ro(J=1).

This proves that Ro is real closed.

Let RK be a real closure of K inducing the given ordering on K. Let Ro be

the algebraic closure of k in R
K . By the lemma, Ro is real closed.

We consider the field Ro(x 1,
. . .

,
x

n). If we can prove our theorem for the

ring Ro[x 1, . . .

,
x

n], and find a homomorphism

t/J : Ro[x b
. . .

, xn] Ro,

then we let (J : Ro RK
be an isomorphism over k (it exists by Theorem 2.9), and

we let qJ
= (J 0 t/J to solve our problem over k. This reduces our theorem to the

case when k is real closed.

Next, let F be an intermediate field, K => F => k, such that K is of tran-

scendence degree lover F. Again let RK be a real closure of K preserving the

ordering, and let RF be the real closure of F contained in R
K . If we know our

theorem for extensions of dimension 1, then we can find a homomorphism

t/J : RF[x b . . .

, xn] RF .

We note that the field k(t/JXb...' t/Jxn) has transcendence degree < n
- 1,

and is real, because it is contained in RF . Thus we are reduced inductively to

the case when K has dimension 1, and as we saw above, when k is real closed.

One can interpret our statement geometrically as follows. We can write

K = R(x, y) with x transcendental over R, and (x, y) satisfying some irreducible

polynomial f(X, Y) = 0 in R[X, Y]. What we essentially want to prove is that

there are infinitely many points on the curve f(X, Y) = 0, with coordinates

lying in R, i.e. infinitely many real points.
The main idea is that we find some point (a, b) E R(2) such that f(a, b) = 0

but D 2 f(a, b) =F o. We can then use the intermediate value theorem. We see

that f(a, b + h) changes sign as h changes from a small positive to a small

negative element of R. Ifwe take a' E R close to a, thenf(a', b + h) also changes

sign for small h, and hence f(a', Y) has a zero in R for all a' sufficiently close to a.

In this way we get infinitely many zeros.

To find our point, we consider the polynomial f(x, Y) as a polynomial in one

variable Y with coefficients in R(x). Without loss of generality we may assume

that this polynomial has leading coefficient 1. We construct a Sturm sequence

for this polynomial, say

{f(x, Y), fl (x, Y), . . .

, fm(x, Y)}.

Let d = deg f. If we denote by A(x) = (ad- 1 (x), . . .

, ao(x)) the coefficients of

f(x, Y), then from the Euclidean alogrithm, we see that the coefficients of the
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polynomials in the Sturm sequence can be expressed as rational functions

{ Gv(A(x))}

in terms of ad-1(x),..., ao(x).
Let

v(x) = 1 + ad- 1 (x) + . . . + ao(x) + s,

where s is a positive integer, and the signs are selected so that each term in this

sum gives a positive contribution. We let u(x) = - v(x), and select s so that

neither u nor v is a root of any polynomial in the Sturm sequence for f. Now

we need a lemma.

Lemma 3.5. Let R be a real closed field, and {hi(x)} a finite set of rational

functions in one variable with coefficients in R. Suppose the rational field

R(x) ordered in some way, so that each hi(x) has a sign attached to it. Then

there exist infinitely many special values c of x in R such that hi(c) is defined
and has the same sign as hi(x),for all i.

Proof. Considering the numerators and denominators of the rational

functions, we may assume without loss of generality that the hi are polynomials.
We then write

hi(x) = a n (x - A) n p(x),

where the first product is extended over all roots A of hi in R, and the second

product is over positive definite quadratic factors over R. For any E R, p() is

positive. It suffices therefore to show that the signs of (x - A.) can be preserved
for all A by substituting infinitely many values a for x. We order all values of A.

and of x and obtain

. . . < ,1.1 < X < A.2 < . . .

where possibly ,1.1 or ,1.2 is omitted if x is larger or smaller than any A. Any value

a of x in R selected between A.
1 and ,1.2 will then satisfy the requirements of our

lemma.

To apply the lemma to the existence of our point, we let the rational functions

{h 1 (x)} consist of all coefficients ad-l (x), . .

., ao(x), all rational functions

Gv(A(x)), and all values jj(x, u(x)), Jj(x, v(x)) whose variation in signs satisfied

Sturm's theorem. We then find infinitely many special values a of x in R which

preserve the signs of these rational functions. Then the polynomialsf(a, Y) have

roots in R, and for all but a finite number of a, these roots have multiplicity 1.

It is then a matter of simple technique to see that for all but a finite number of

points on the curve, the elements x l' . . .

,
X

n
lie in the local ring of the homo-

morphism R[x, y] R mapping (x, y) on (a, b) such that f(a, b) = 0 but
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D2 f(a, b) # o. (Cf. for instance the example at the end of 4, Chapter XII, and

Exercise 18 of that chapter.) One could also give direct proofs here. In this

way, we obtain homomorphisms

R [x l'
. . .

,
X

n] -+ R,

thereby proving Theorem 3.1.

Theorem 3.6. Let k be a real field, K = k(x 1 ,
. . .

,
x

n , y) = k(x, y) a

finitely generated extension such that Xl' . . .

,
X

n are algebraically independent
over k, and y is algebraic over k(x). Let f(X, Y) be the irreducible polynomial
in k[X, Y] such that f(x, y) = O. Let R be a real closed field containing k,
and assume that there exists (a, b) E R(n+ 1) such that f(a, b) = 0 but

Dn+lf(a, b) # o.

Then K is real.

Proof Let t I'
. . .

,
t

n
be algebraically independent over R. Inductively, we

can put an ordering on R(t b . . .

,
t

n) such that each t i is infinitely small with

respect to R, (cf. the example in 1). Let R' be a real closure of R(t 1, . . .

, t
n)

preserving the ordering. Let Ui
=

ai + t i for each i = 1,. . .
, n. Thenf(u, b + h)

changes sign for small h positive and negative in R, and hence f(u, Y) has a

root in R', say v. Since f is irreducible, the isomorphism of k(x) on k(u) sending
Xi on U i extends to an embedding of k(x, y) into R', and hence K is real, as was to

be shown.

In the language of algebraic geometry, Theorems 3.1 and 3.6 state that the

function field of a variety over a real field k is real if and only if the variety has a

simple point in some real closure of k.

EXERCISES

I. Let rx be algebraic over Q and assume that Q(rx) is a real field, Prove that ex is a sum of

squares In Q(rx) if and only if for every embedding (J of Q(ex) in R we have Gex > O.

2. Let F be a finite extension of Q. Let qJ: F Q be a Q-linear functional such that

cp(x
2

) > 0 for all x E F, x # O. Let rx E F, ex # O. If cp(exx
2

) > 0 for all x E F, show that ex is

a sum of squares in F, and that F is totally real, i,e. every embedding of F in the complex
numbers is contained in the real numbers. [Hint: Use the fact that the trace gives an

identification of F with its dual space over Q, and use the approximation theorem of

Chapter XII, 91.]
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3. Let (1 < t < (J be a real interval, and let f(t) be a real polynomial which is positive on this

Interval. Show that f(t) can be written in the form

C(L Q: + L (t
-

cx)Q; + L ({J - t)Qi)

where Q2 denotes a square, and c > 0, Hint: Split the polynomial, and use the Identity:

(t - CX)2({J -

t) + (t
- cx)({J - t)2

(t - cx)({J - t) =

{J
.

-(1

Remark. The above seemingly innocuous result is a key step in developing the

spectral theorem for bounded hermitian operators on Hilbert space, See the appendix

of [La 72] and also [La 85],

4, Show that the field of real numbers has only the identity automorphism. [Hint: Show

that an automorphism preserves the ordering.]

Real places

For the next exercises, cf, Krull [Kr 32] and Lang [La 53], These exercises form a

connected sequence, and solutions will be found in [La 53].

5. Let K be a field and suppose that there exists a real place of K; that is, a place cp

with values in a real field L. Show that K is real.

6, Let K be an ordered real field and let F be a subfield which is maximal archimedean

in K, Show that the canonical place of K with respect to F is algebraic over F (i.e.

if 0 is the valuation ring of elements of K which are not infinitely large over F, and

m is its maximal ideal, then o/m is algebraic over F).

7, Let K be an ordered field and let F be a subfield which is maximal archimedean in

K, Let K' be the real closure of K (preserving the ordering), and let F' be the real

closure of F contained in K'. Let cp be the canonical place of K' with respect to F'.

Show that cp(K') is F' -valued, and that the restriction of cp to K is equivalent to the

canonical place of Kover F,

8. Define a real field K to be quadratically closed if for all a E K either or

lies in K. The ordering of a quadratically closed real field K is then uniquely

determined, and so is the real closure of such a field, up to an isomorphism over K.

Suppose that K is quadratically closed. Let F be a subfield of K and suppose that

F is maximal archimedean in K. Let cp be a place of Kover F, with values in a

field which is algebraic over F. Show that cp is equivalent to the canonical place of

Kover F,

9. Let K be a quadratically closed real field. Let cp be a real place of K, taking its values

in a real closed field R. Let F be a maximal subfield of K such that cp is an isomorphism
on F, and identify F with cp(F). Show that such F exists and is maximal archimedean

in K, Show that the image of cp is algebraic over F, and that cp is induced by the

canonical place of Kover F.

10. Let K be a real field and let cp be a real place of K, taking its values in a real closed

field R. Show that there is an extension of cp to an R-valued place of a real closure

of K, [Hint: first extend cp to a quadratic closure of K, Then use Exercise 5.]
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11. Let K C KI C K2 be real closed fields. Suppose that K is maximal archimedean in

K
I

and K
I is maximal archimedean in K2. Show that K is maximal archimedean in

K
2 .

12. Let K be a real closed field. Show that there exists a real closed field R containing

K and having arbitrarily large transcendence degree over K, and such that K is maximal

archimedean in R.

13, Let R be a real closed field. Let II' . , . , Ir be homogeneous polynomials of odd

degrees in n variables over R. If n > r, show that these polynomials have a non-

trivial common zero in R. (Comments: If the forms are generic (in the sense of Chapter

IX), and n
= r + 1, it is a theorem of Bezout that in the algebraic closure Ra the

forms have exactly d I
. . . d

m
common zeros, where di is the degree of fi. You may

assume this to prove the result as stated. If you want to see this worked out, see

[La 53], Theorem 15. Compare with Exercise 3 of Chapter IX.)
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CHAPTER XII

Absolute Values

1. DEFINITIONS, DEPENDENCE, AND

INDEPENDENCE

Let K be a field. An absolute value v on K is a real-valued function x 1-+ I x Iv
on K satisfying the following three properties:

AV 1. We have I x Iv > 0 for all x E K, and I x Iv = 0 if and only if x = o.

AV 2. For all x, YEK, we have Ixylv = Ixlvlylv.

AV 3. For all x, y E K, we have I x + y Iv < I x Iv + I y Iv.

If instead of AV 3 the absolute value satisfies the stronger condition

AV 4. Ix + ylv < max(lxl v , Iylv}

then we shall say that it is a valuation, or that it is non-archimedean.

The absolute value which is such that I x Iv = 1 for all x =F 0 is called trivial.

We shall write I x I instead of I x Iv if we deal with just one fixed absolute value.

We also refer to v as the absolute value.

An absolute value of K defines a metric. The distance between two elements

x, y of K in this metric is I x
-

y I. Thus an absolute value defines a topology on

K. Two absolute values are called dependent if they define the same topology.
If they do not, they are called independent.

We observe that 111 = 11
2

1 = 1(- 1)21 = 111
2

whence

111 = 1-11 = 1.

Also, I-xl = Ixl for all x E K, and lx-II = Ixl-
1

for x i= o.

465
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Proposition 1.1. Let I II and I b be non-trivial absolute values on afield K.

They are dependent if and only if the relation

Ixll < 1

implies I x b < 1. If they are dependent, then there exists a number A. > 0

such that Ixl l
= Ixl for all x E K.

Proof If the two absolute values are dependent, then our condition is

satisfied, because the set of x E K such that / X/I < 1 is the same as the set such

that lim x
n

= 0 for n --+ 00. Conversely, assume the condition satisfied. Then

I x II > 1 implies I x b > 1 since I x
- I

11 < 1. By hypothesis, there exists an

element xoEK such that Ixoll > 1. Let a = Ixoll and b = Ixol2. Let

A. =

log b
.

log a

Let x E K, x ;/= O. Then I x II = I Xo I for some number (1. If m, n are integers such

that m/n > (1 and n > 0, we have

I x 11 > I Xo 17/
n

whence

I x
n

/x II < 1,

and thus

I xn/x 12 < 1.

This implies that I x b < I Xo I/n. Hence

Ixb < I xol2.

Similarly, one proves the reverse inequality, and thus one gets

Ixb = IXo l 2

for all x E K, x ;/= O. The assertion of the proposition is now obvious, i.e.

Ixb = Ixl.

We shall give some examples of absolute values.

Consider first the rational numbers. We have the ordinary absolute value

such that I m I = m for any positive integer m.

For each prime number p, we have the p-adic absolute value vp, defined by the

formula

I prm/n I p
= l/pr
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where r is an integer, and m, n are integers ;/= 0, not divisible by p. One sees at

once that the p-adic absolute value is non-archimedean.

One can give a similar definition of a valuation for any field K which is the

quotient field of a principal ring. For instance, let K = k(t) where k is a field

and t is a variable over k. We have a valuation v
p

for each irreducible polynomial

p(t) in k[t], defined as for the rational numbers, but there is no way ofnormalizing
it in a natural way. Thus we select a number c with 0 < c < 1 and for any

rational function PJ/g where f, g are polynomials not divisible by p, we define

Ipl/glp
= cr.

The various choices of the constant c give rise to dependent valuations.

Any subfield of the complex numbers (or real numbers) has an absolute

value, induced by the ordinary absolute value on the complex numbers. We shall

see later how to obtain absolute values on certain fields by embedding them into

others which are already endowed with natural absolute values.

Suppose that we have an absolute value on a field which is bounded on the

prime ring (i.e. the integers Z if the characteristic is 0, or the integers mod p if
the characteristic is p). Then the absolute value is necessarily non-archimedean.

Proof For any elements x, y and any positive integer n, we have

I(x + yrl < L (:)xvyn
-

v
< nC max(lxl, Iyl)n,

Taking n-th roots and letting n go to infinity proves our assertion. We note that

this is always the case in characteristic> 0 because the prime ring is finite!

If the absolute value is archimedean, then we refer the reader to any other

book in which there is a discussion of absolute values for a proof of the fact that

it is dependent on the ordinary absolute value. This fact is essentially useless

(and is never used in the sequel), because we always start with a concretely given
set of absolute values on fields which interest us.

In Proposition 1.1 we derived a strong condition on dependent absolute

values. We shall now derive a condition on independent ones.

Theorem 1.2. (Approximation Theorem). (Artin-Whaples). Let K be

afield and I 11'...' I Is non-trivial pairwise independent absolute values on K.

Let XI' . . .

, Xs be elements ofK, and l > O. Then there exists x E K such that

IX-Xili<l

for all i.
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Proof Consider first two of our absolute values, say VI and V2. By hypo-
thesis we can find rx E K such that I rx II < 1 and I rx Is > 1. Similarly, we can find

PEKsuchthat/PII > land/Pis < 1. Puty = P/rx. Thenlyll > landlyls < 1.

We shall now prove that there exists z E K such that I z II > 1 and I z Ij < 1

for j = 2, . . .
,

s. We prove this by induction, the case s = 2 having just been

proved. Suppose we have found z E K satisfying

Izil > 1 and Izlj < 1 for j = 2, . . .

,
s
- 1.

If I z Is < 1 then the element zny for large n will satisfy our requirements.
If I z Is > 1, then the sequence

zn
t

n
=

1 + zn

tends to 1 at VI andvs,and tendstoOatvjU = 2,..., s
- 1). For large n, it is then

clear that t
n Y satisfies our requirements.

Using the element z that we have just constructed, we see that the sequence

zn/( 1 + zn) tends to 1 at V I and to 0 at v
j

for j = 2, . . .
,

s. For each i = 1, . . .
,

s

we can therefore construct an element Zi which is very close to 1 at Vi and very

close to 0 at Vj (j =1= i). The element

x =

ZIX I + ... + ZsXs

then satisfies the requirement of the theorem.

2. COMPLETIONS

Let K be a field with a non-trivial absolute value v, which will remain fixed

throughout this section. One can then define in the usual manner the notion of a

Cauchy sequence. It is a sequence {xn} of elements in K such that, given l > 0,

there exists an integer N such that for all n, m > N we have

I Xn

-

X
m I < l.

We say that K is complete if every Cauchy sequence converges.

Proposition 2.1. There exists a pair (Kv, i) consisting ofafield Kv, complete
under an absolute value, and an embedding i: K -+ Kv such that the absolute

value on K is induced by that ofKv (i.e. I x Iv = I ix / for x E K), and such that iK

is dense in Kv. If (K, i') is another such pair, then there exists a unique
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isomorphism qJ: Kv -+ K preserving the absolute values, and making the

following diagram commutative:

Kv
qJ

K
'

)
v

\1
K

Proof The uniqueness is obvious. One proves the existence in the well-

known manner, which we shall now recall briefly, leaving the details to the reader.

The Cauchy sequences form a ring, addition and multiplication being taken

componentwise.
One defines a null sequence to be a sequence {xn} such that lim X

n
= O. The

n-CX)

null sequences form an ideal in the ring of Cauchy sequences, and in fact form a

maximal ideal. (If a Cauchy sequence is not a null sequence, then it stays away

from 0 for all n sufficiently large, and one can then take the inverse of almost all

its terms. Up to a finite number of terms, one then gets again a Cauchy sequence.)
The residue class field of Cauchy sequences modulo null sequences is the

field K
v

. We embed K in K
v
"on the diagonal", i.e. send x E K on the sequence

(x, x, x, . . .).
We extend the absolute value of K to Kv by continuity. If {xn} is a Cauchy

sequence, representing an element in Kv, we define I I = lim I Xn I. It is easily

proved that this yields an absolute value (independent of the choice of repre-

sentative sequence {xn} for ), and this absolute value induces the given one on K.

Finally, one proves that Kv is complete. Let {n} be a, Cauchy sequence in

Kv. For each n, we can find an element X
n

E K such that I n -

X
n I < 1/n. Then

one verifies immediately that {xn} is a Cauchy sequence in K. We let be its

limit in K
v. By a three-l argument, one sees that {n} converges to , thus

proving the completeness.

A pair (Kv, i) as in Proposition 2.1 may be called a completion of K. The

standard pair obtained by the preceding construction could be called the

completion of K.

Let K have a non-trivial archimedean absolute value v. If one knows that the

restriction of v to the rationals is dependent on the ordinary absolute value, then

the completion Kv is a complete field, containing the completion of Q as a

closed subfield, i.e. containing the real numbers R as a closed subfield. It will be

worthwhile to state the theorem of Gelfand-Mazur concerning the structure of

such fields. First we define the notion of normed vector space.

Let K be a field with a non-trivial absolute value, and let E be a vector space

over K. By a norm on E (compatible with the absolute value of K) we shall

mean a function -+ I I of E into the real numbers such that:

NO 1. I I > 0 for all E E, and = 0 if and only if = o.
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NO 2. For all x E K and gEE we have Ixgl - Ixllgl.

NO 3. If , ' E E then I + ' I < I I + I' I.

Two norms I II and I 12 are called equivalent if there exist numbers C
I'

C2
> 0

such that for all E E we have

CIIII < Ib < C2111.

Suppose that E is finite dimensional, and let Wb . . .

,
W

n
be a basis of E

over K. If we write an element

= XIWI + ... + XnWn

in terms of this basis, with Xi E K, then we can define a norm by putting

II = maxlxd.
i

The three properties defining a norm are trivially satisfied.

Proposition 2.2. Let K be a complete field under a non-trivial absolute value,

and let E be a finite-dimensional space over K. Then any two norms on E

(compatible with the given absolute value on K) are equivalent.

Proof We shall first prove that the topology on E is that of a product space,

i.e. if WI' . . .
,

W
n

is a basis of E over K, then a sequence

(v)
= x(v)w + ... + x(v)wI Inn'

Xv) E K
I ,

is a Cauchy sequence in E only if each one of the n sequences xv) is a Cauchy

sequence in K. We do this by induction on n. It is obvious for n = 1. Assume

n > 2. We consider a sequence as above, and without loss of generality, we may

assume that it converges to O. (If necessary, consider (v) - (Jl) for v, J.l -+ 00.)
We must then show that the sequences of the coefficients converge to 0 also.

If this is not the case, then there exists a number a > 0 such' that we have for

some j, say j = 1,

I x<y) I > a

for arbitrarily large v. Thus for a subsequence of (v), (V)/x\v) converges to 0, and

we can write

(V) xcv) xcv)2 n

M
-

WI =

M
W2 + ... +

M
W

n
.

XI XI XI

We let y/(v) be the right-hand side of this equation. Then the subsequence y/(V)

converges (according to the left-hand side of our equation). By induction, we
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conclude that its coefficients in terms of W
2 ,

. . .

,
W

n
also converge in K, say to

Y2, . . .

, Yn. Taking the limit, we get

W 1
=

Y2 W2 + . . . + Ynwn,

contradicting the linear independence of the Wi.

We must finally see that two norms inducing the same topology are equivalent.
Let I 11 and I Iz be these norms. There exists a number C > 0 such that for any

E E we have

I 11 < C implies I Iz < 1.

Let a E K be such that 0 < I a I < 1. For every E E there exists a unique integer
s such that

Cia I < las11 < c.

Hence I aS Iz < 1 whence we get at once

11z < C-1Ial-1111.

The other inequality follows by symmetry, with a similar constant.

Theorem 2.3. (Gelfand-Mazur). Let A be a commutative algebra over the

real numbers, and assume that A contains an element j such that j2 = -1. Let

C = R + Rj. Assume that A is normed (as a vector space over R), and that

Ixyl
<

Ixllyl for all x, yEA. Given Xo E A, Xo =t= 0, there exists an element

c E C such that Xo
-

c is not invertible in A.

Proof (Tornheim). Assume that Xo
-

z is invertible for all Z E C.

Consider the mapping f : C -. A defined by

f(z) = (xo
- Z)-1.

I t is easily verified (as usual) that taking inverses is a continuous operation.
Hence f is continuous, and for z =F 0 we have

j(z) = Z-1(XOZ-1 _ 1)-1 =!

(
1

)
.

z Xo
_ 1

z

From this we see thatf(z) approaches 0 when z goes to infinity (in C). Hence the

map z 1---+ I f(z) I is a continuous map of C into the real numbers > 0, is bounded,

and is small outside some large circle. Hence it has a maximum, say M. Let D



472 ABSOLUTE VALUES XII, 2

be the set of elements z E C such that If(z)1 = M. Then D is not empty; D is

bounded and closed. We shall prove that D is open, hence a contradiction.

Let Co be a point of D, which, after a translation, we may assume to be the

origin. We shall see that if r is real> 0 and small, then all points on the circle of

radius r lie in D. Indeed, consider the sum

1
n

1

S(n) = - L k
n k = 1 Xo

- OJ r

where OJ is a primitive n-th root of unity. Taking formally the logarithmic
n

derivative of x
n
-

r
n

= n (X - wkr) shows that

k=l

nXn-
1

X
n
-

r
n

n

1

-L
X

k '

k=l -OJr

and hence, dividing by n, and by X
n
-

1, and substituting Xo for X, we obtain

1

S(n) =

(/ t-
1

.

Xo
-

r r Xo

If r is small (say I r/xo I < 1), then we see that

limIS(n)1 = = M.
n-+ 00 Xo

Suppose that there exists a complex number A. of absolute value 1 such that

1
< M.

Xo
-

ILr

Then there exists an interval on the unit circle near A., and there exists l > 0 such

that for all roots of unity' lying in this interval, we have

1

y
<M-c

Xo
-

r

(This is true by continuity.) Let us take n very large. Let b
n

be the number of

n-th roots of unity lying in our interval. Then bn/n is approximately equal to the

length of the interval (times 2n): We can express S(n) as a sum

1

[
1 1

]S(n) =

n
LI

x
k

+ Ln k '

o
-

w r Xo
-

w r
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the first sum LI being taken over those roots ofunity w
k

lying in our interval, and

the second sum being taken over the others. Each term in the second sum has

norm < M because M is a maximum. Hence we obtain the estimate

1

IS(n)1 < -

[ILl I + ILulJ
n

1
< - (bn(M - l) + (n -

bn)M)
n

b
n

< M --l.

n

This contradicts the fact that the limit of I S(n) I is equal to M.

Corollary 2.4. Let K be a field, which is an extension of R, and has an

absolute value extending the ordinary absolute value on R. Then K = R or

K = C.

Proof Assume first that K contains C. Then the assumption that K is a

field and Theorem 2.3 imply that K = C.

If K does not contain C, in other words, does not contain a square root of

-1, we let L = K(j) wherej2 = -1. We define a norm on L (as an R-space) by

putting

I x + yj I = I x I + I y I

for x, y E K. This clearly makes L into a normed R-space. Furthermore, if

z = x + yj and z' = x' + y'j are in L, then

Izz'l = lxx' - yy'l + Ixy' + x'yl
< lxx' I + Iyy'l + Ixy'l + Ix'yl
< I x II x' I + I y II y' I + I x II y' I + I x' II y I
< (I x I + I y I ) ( I x' I + I y' I )
< I z II z' I ,

and we can therefore apply Theorem 2.3 again to conclude the proof.

As an important application of Proposition 2.2, we have:

Proposition 2.5. Let K be complete with respect to a nontrivial absolute

value v. If E is any algebraic extension of K, then v has a unique extension to

E. If E is finite over K, then E is complete.

Proof In the archimedean case, the existence is obvious since we deal

with the real and complex numbers. In the non-archimedean case, we postpone
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the existence proof to a later section. It uses entirely different ideas from the

present ones. As to uniqueness, we may assume that E is finite over K. By

Proposition 2.2, an extension of v to E defines the same topology as the max

norm obtained in terms of a basis as above. Given a Cauchy sequence (v) in E,

(v) =

Xv 1 WI + . . . + X
vn

W
n ,

the n sequences {Xvi} (i = 1,..., n) must be Cauchy sequences in K by the

definition of the max norm. If {xv;} converges to an element Zi in K, then it

is clear that the sequence (v) converges to Z
1
W 1 + . . . + Z

n
W

n
. Hence E is

complete. Furthermore, since any two extensions of v to E are equivalent,
we can apply Proposition 1.1, and we see that we must have A. = 1, since the

extensions induce the same absolute value v on K. This proves what we want.

From the uniqueness we can get an explicit determination of the absolute

value on an algebraic extension of K. Observe first that if E is a normal extension

of K, and (J is an automorphism of E over K, then the function

X 1---+ I (JX I

is an absolute value on E extending that of K. Hence we must have

l(Jxl = Ix I

for all x E E. If E is algebraic over K, and (J is an embedding of E over K in K
8

,

then the same conclusion remains valid, as one sees immediately by embedding
E in a normal extension of K. In particular, if rx is algebraic over K, of degree n,

and if rx b . . .

,
rx

n
are its conjugates (counting multiplicities, equal to the degree of

inseparability), then all the absolute values I rx
i I are equal. Denoting by N

the norm from K(rx) to K, we see that

I N(rx) I = I rx In,

and taking the n-th root, we get:

Proposition 2.6. Let K be complete with respect to a non-trivial absolute

value. Let rx be algebraic over K, and let N be the normfrom K(rx) to K. Let

n = [K(rx): K]. Then

Irxl = I N(rx) 1
1 /n

.

In the special case of the complex numbers over the real numbers, we can

write rx = a + bi with a, b E R, and we see that the formula of Proposition 2.6 is

a generalization of the formula for the absolute value of a complex number,

rx = (a
2

+ b
2

)1/2,

since a
2

+ b
2

is none other than the norm of rx from C to R.
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Comments and examples. The process of completion is widespread in

mathematics. The first example occurs in getting the real numbers from the

rational numbers, with the added property of ordering. I carry this process out

in full in [La 90a], Chapter IX, 3. In all other examples I know, the ordering

property does not intervene . We have seen examples of completions of fields in

this chapter, especially with the p-adic absolute values which are far away from

ordering the field. But the real numbers are nevertheless needed as the range of

values of absolute values, or more generally norms.

In analysis, one completes various spaces with various norms. Let V be a

vector space over the complex numbers, say. For many applications, one must

also deal with a seminorm, which satisfies the same conditions except that in

NO 1 we require only that II II
::> O. We allow II II = 0 even if * o.

One may then form the space of Cauchy sequences, the subspace of null

sequences, and the factor space V. The seminorm can be extended to a seminorm

on V by continuity, and this extension actually turns out to be a norm. It is a

general fact that V is then complete under this extension. A Banach space is a

complete normed vector space.

Example. Let V be the vector space of step functions on R, a step function

being a complex valued function which is a finite sum of characteristic functions

of intervals (closed, open, or semiclosed, i.e. the intervals mayor may not

contain their endpoints). For f E V we define the Ll.seminorm by

11/11 I
== J I/(x) I dx.

R

The completion of V with respect to this seminorm is defined to be L
I
(R). One

then wants to get a better idea of what elements of L
I
(R) look like. It is a simple

lemma that given an L I-Cauchy sequence in V, and given E > 0, there exists a

subsequence which converges uniformly except on a set of measure less than E.

Thus elements of L
I
(R) can be identified with pointwise limits of L I-Cauchy

sequences in V. The reader will find details carried out in [La 85].

Analysts use other norms or seminorms, of course, and other spaces, such

as the space of Coo functions on R with compact support, and norms which may

bound the derivatives. There is no end to the possible variations.

Theorem 2.3 and Corollary 2.4 are also used in the theory of Banach algebras,

representing a certain type of Banach algebra as the algebra of continuous func-

tions on a compact space, with the Gelfand-Mazur and Gelfand-Naimark theo-

rems. Cf. [Ri 60] and [Ru 73].

Arithmetic example. For p-adic Banach spaces in connection with the

number theoretic work of Dwork, see for instance Serre [Se 62], or also

[La 90b], Chapter 15.

In this book we limit ourselves to complete fields and their finite extensions.
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3. FINITE EXTENSIONS

Throughout this section we shall deal with a field K having a non-trivial

absolute value v.

We wish to describe how this absolute value extends to finite extensions of K.

If E is an extension ofK and w is an absolute value on E extending v, then we shall

write wi v.
.

If we let K
v

be the completion, we know that v can be extended to Kv, and

then uniquely to its algebraic closure K. If E is a finite extension of K, or even

an algebraic one, then we can extend v to E by embedding E in K by an iso-

morphism over K, and taking the induced absolute value on E. We shall now

prove that every extension of v can be obtained in this manner.

Proposition 3.1. Let E be a.finite extension ofK. Let w be an absolute value

on E extending v, and let Ew be the completion. Let Kw be the closure of K in

Ew and identify E in Ew. Then Ew
=

EKw (the composite .field).

Proof We observe that Kw is a completion of K, and that the composite
field EK

w
is algebraic over Kwand therefore complete by Proposition 2.5. Since

it contains E, it follows that E is dense in it, and hence that Ew = EK
w.

If we start with an embedding u : E -+ K (always assumed to be over K),
then we know again by Proposition 2.5 that uE. Kv is complete. Thus this

construction and the construction of the proposition are essentially the same, up

to an isomorphism. In the future, we take the embedding point of view. We

must now determine when two embeddings give us the same absolute value on E.

Given two embeddings u, T: E K, we shall say that they are conjugate
over Xv if there exists an automorphism A of K over Kv such that u = AT. We

see that actually A is determined by its effect on TE, or TE . K
v.
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Proposition 3.2. Let E be an algebraic extension of K. Two embeddings

a, T : E -+ K give rise to the same absolute value on E if and only if they are

conjugate over K
v

.

Proof Suppose they are conjugate over Kv. Then the uniqueness of the

extension of the absolute value from Kv to K guarantees that the induced

absolute values on E are equal. Conversely, suppose this is the case. Let

A: TE -+ aE be an isomorphism over K. We shall prove that A extends to an

isomorphism of TE . Kv onto aE. Kv over Kv. Since tE is dense in tE. Kv,

an element x E TE . Kv can be written

x = lim tX
n

with X
n

E E. Since the absolute values induced by a and t on E coincide, it

follows that the sequence ATX
n

= aX
n converges to an element of aE . Kv which

we denote by AX. One then verifies immediately that AX is independent of the

particular sequence tX
n used, and that the map A: tE .

Kv -+ aE . Kv is an iso-

morphism, which clearly leaves Kv fixed. This proves our proposition.
In view of the previous two propositions, if w is an extension of v to a finite

extension E of K, then we may identify Ew and a composite extension EKv of E

and K
v.

If N = [E: K] is finite, then we shall call

N
w

= [Ew: Kv]

the local degree.

Proposition 3.3. Let E be afinite separable extension ofK, ofdegree N. Then

N = L N
w

.

wlv

Proof We can write E = K{lL) for a single element lL. Let f{X) be its

irreducible polynomial over K. Then over Kv, we have a decomposition

f{X) = f1 (X) . . . f,.{X)

into irreducible factors h{X). They all appear with multiplicity 1 according to

our hypothesis of separability. The embeddings of E into K correspond to the

maps of lL onto the roots of the h. Two embeddings are conjugate if and only if

they map lL onto roots of the same polynomial h. On the other hand, it is clear

that the local degree in each case is precisely the degree of h. This proves our

proposition.

Proposition 3.4. Let E be afinite extension of K. Then

L [Ew : Kv] < [E: K].
wlv
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IfE is purely inseparable over K, then there exists only one absolute value won

E extending v.

Proof Let us first prove the second statement. If E is purely inseparable
over K, and pr is its inseparable degree, then (:/f" E K for every rx in E. Hence v has

a unique extension to E. Consider now the general case of a finite extension, and

let F = EprK. Then F is separable over K and E is purely inseparable over F.

By the preceding proposition,

L [Fw: Kv]
= [F:K],

wlv

and for each w, we have [Ew: Fw] < [E: F]. From this our inequality in the

statement of the proposition is obvious.

Whenever v is an absolute value on K such that for any finite extension E ofK

we have [E : K] = L [Ew : Kv] we shall say that v is well behaved. Suppose we

wlv

have a tower of finite extensions, L ::J E ::J K. Let w range over the absolute

values of E extending v, and u over those of L extending v. If u I w then Lu
contains Ew. Thus we have:

L[Lu:Kv] = L L[Lu:Ew][Ew:Kv]
ulv wlv ulw

= L [Ew : Kv] L [Lu : Ew]
wlv ulw

< L [Ew : Kv] [L : E]
wlv

< [E: K] [L : E].

From this we immediately see that if v is well behaved, E finite over K, and w

extends v on E, then w is well behaved (we must have an equality everywhere).
Let E be a finite extension of K. Let pr be its inseparable degree. We recall

that the norm of an element rx E K is given by the formula

Ni(rx) = n urx
P

"

(1

where u ranges over all distinct isomorphisms of E over K (into a given algebraic
closure).

If w is an absolute value extending v on E, then the norm from Ew to Kv will

be called the local norm.

Replacing the above product by a sum, we get the trace, and the local trace.

We abbreviate the trace by Tr.

Proposition 3.8. Let E be a finite extension of K, and assume that v is well
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behaved. Let rx E E. Then:

N{rx) = n N:{rx)
wlv

Tri{rx) = L Tri:{rx)
wlv

Proof Suppose first that E = K{rx), and let f{X) be the irreducible poly-
nomial of rx over K. If we factor f{X) into irreducible terms over Kv, then

f{X) = fl (X) . . . f,.{X)

where each /;(X) is irreducible, and the /; are distinct because of our hypothesis
that v is well behaved. The norm Ni{rx) is equal to ( _l)degf times the constant

term of f, and similarly for each /;. Since the constant term off is equal to the

product of the constant terms of the /;, we get the first part of the proposition.
The statement for the trace follows by looking at the penultimate coefficient off
and each /; .

If E is not equal to K{rx), then we simply use the transitivity of the norm and

trace. We leave the details to the reader.

One can also argue directly on the embeddings. Let U 1, . . .

,
U

m
be the distinct

embeddings of E into K over K, and let pr be the inseparable degree of E

over K. The inseparable degree of uE . Kv over Kv for any u is at most equal
to pro If we separate u b . . .

, Urn into distinct conjugacy classes over Kv,
then from our hypothesis that v is well behaved, we conclude at once that the

inseparable degree of uiE . Kv over Kv must be equal to pr also, for each i.

Thus the formula giving the norm as a product over conjugates with multi-

plicity pr breaks up into a product of factors corresponding to the conjugacy
classes over K

v.

Taking into account Proposition 2.6, we have:

Proposition 3.6. Let K have a well-behaved absolute value v. Let E be a

finite extension of K, and rx E E. Let

N
w

= [Ew: Kv]

for each absolute value w on E extending v. Then

n Irxlw = IN{rx)lv.
wlv
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4. VALUATIONS

In this section, we shall obtain, among other things, the existence theorem

concerning the possibility of extending non-archimedean absolute values to

algebraic extensions. We introduce first a generalization of the notion of non-

archimedean absolute value.

Let r be a multiplicative commutative group. We shall say that an ordering
is defined in r if we are given a subset S of r closed under multiplication such

that r is the disjoint union of S, the unit element 1, and the set S-
I

consisting of

all inverses of elements of S.

If , f3 E r we define < f3 to mean f3-
I

E S. We have < 1 if and only if

E S. One easily verifies the following properties of the relation <:

1. For , f3 E r we have < f3, or = f3, or f3 < , and these possibilities
are mutually exclusive.

2. < f3 implies y < f3y for any y E r.

3. < f3 and f3 < y implies < y.

(Conversely, a relation satisfying the three properties gives rise to a subset S

consisting of all elements < 1. However, we don't need this fact in the sequel.)
It is convenient to attach to an ordered group formally an extra element 0,

such that O = 0, and 0 < for all E r. The ordered group is then analogous
to the multiplicative group of positive reaIs, except that there may be non-

archimedean ordering.
If E rand n is an integer =F 0, such that n = 1, then = 1. This follows at

once from the assumption that S is closed under multiplication and does not

contain 1. In particular, the map 1---+ n is injective.
Let K be a field. By a valuation of K we shall mean a map x 1-+ I x I of K into

an ordered group r, together with the extra element 0, such that:

VALl. Ix I = o if and only if x =0.

VAL 2. Ixyl = Ixllylforallx,YEK.

VAL 3. Ix + yl < max(lxl, Iyl).

We see that a valuation gives rise to a homomorphism of the multiplicative

group K* into r. The valuation is called trivial if it maps K* on 1. If the map

giving the valuation is not surjective, then its image is an ordered subgroup of r,
and by taking its restriction to this image, we obtain a valuation onto an ordered

group, called the value group.

We shall denote valuations also by v. If VI' V2 are two valuations of K, we

shall say that they are equivalent if there exists an order-preserving isomorphism
A of the image of Vl onto the image of V2 such that

Ixb = Alxl l



XII, 4 VALUATIONS 481

for all x E K. (We agree that A.(O) = 0.)
Valuations have additional properties, like absolute values. For instance,

111 = 1 because 111 = 111
2

. Furthermore,

I + xl = Ixl

for all x E K. Proof 0bvious. Also, if I x I < I y I then

Ix + yl = Iyl.

To see this, note that under our hypothesis, we have

Iyl = Iy + x
- xl < max(ly + xl, Ix I) = Ix + yl < max(lxl, Iyl) = Iyl.

Finally, in a sum

XI + . . . + X
n

= 0,

at least two elements of the sum have the same value. This is an immediate

consequence of the preceding remark.

Let K be a field. A subring 0 of K is called a valuation ring if it has the

property that for any x E K we have x E 0 or x-
1

E O.

We shall now see that valuation rings give rise to valuations. Let 0 be a

valuation ring of K and let V be the group of units of o. We contend that 0 is a

local ring. Indeed suppose that x, y E 0 are not units. Say xjy EO. Then

1 + xjy = (x + y)jy E o.

Ifx + y were a unit then Ijy E 0, contradicting the assumption that y is not a unit.

Hence x + y is not a unit. One sees trivially that for Z E 0, zx is not a unit. Hence

the nonunits form an ideal, which must therefore be the unique maximal ideal

of o.

Let m be the maximal ideal of 0 and let m* be the multiplicative system of

nonzero elements of m. Then

- 1

K* = m* u V u m*

is the disjoint union of m*, V, and m*
-

1. The factor group K*jV can now be

given an ordering. If x E K*, we denote the coset xV by I x I. We put 101 = o.

We define I x I < 1 (i.e. I x IE S) if and only if x E m*. Our set S is clearly closed

under multiplication, and if we let r = K*jV then r is the disjoint union of S,

1, S-I. In this way we obtain a valuation of K.

We note that if x, y E K and x, y =F 0, then

Ixl < lyl<=>lxjyl < 1 <=>xjYEm*.

Conversely, given a valuation of K into an ordered group we let 0 be the

subset of K consisting of all x such that I x I < 1. It follows at once from the
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axioms of a valuation that 0 is a ring. If I x I < 1 then I X-I I > 1 so that X-I is

not in o. If I x I = 1 then I X-I I = 1. We see that 0 is a valuation ring, whose

maximal ideal consists of those elements x with I x I < 1 and whose units consist

of those elements x with I x I = 1. The reader will immediately verify that there is

a bijection between valuation rings of K and equivalence classes of valuations.

The extension theorem for places and valuation rings in Chapter VII now

gives us immediately the extension theorem for valuations.

Theorem 4.1. Let K be a subfield ofafield L. Then a valuation on K has an

extension to a valuation on L.

Proof. Let 0 be the valuation ring on K corresponding to the given valua-

tion. Let qJ : 0 -. o/m be the canonical homomorphism on the residue class field,
and extend qJ to a homomorphism of a valuation ring .0 of L as in 3 of Chapter
VII. Let we be the maximal ideal of sO. Since we n 0 contains m but does not

contain 1, it follows that we n 0 = m. Let V' be the group of units of (). Then

V' n K = V is the group of units of o. Hence we have a canonical injection

K*/V -. L*/V'

which is immediately verified to be order-preserving. Identifying K*/V in

L*/V' we have obtained an extension of our valuation of K to a valuation of L.

Ofcourse, when we deal with absolute values, we require that the value group

be a subgroup of the multiplicative reals. Thus we must still prove something
about the nature of the value group L*/V', whenever L is algebraic over K.

Proposition 4.2. Let L be a finite extension of K, of degree n. Let w be a

valuation of L with value group r'. Let r be the value group of K. Then

(r' : r) < n.

Proof. Let Y h . . .

, Yr be elements of L whose values represent distinct

cosets of r in r'. We shall prove that the Yj are linearly independent over K. In

a relation alYl + . . . + arYr
= 0 with aj E K, a

j =F 0 two terms must have the

same value, say laiyd = lajyjl with i =F j, and hence

ly;I = lai-lajIIYjl.

This contradicts the assumption that the values of Yi, Yj (i =F j) represent distinct

cosets of r in r', and proves our proposition.

Corollary 4.3. There exists an integer e > 1 such that the map y 1---+ ye
induces an injective homomorphism of r' into r.

Proof. Take e to be the index (r' : r).
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Corollary 4.4. If K is a field with a valuation v whose value group is an

ordered subgroup of the ordered group of positive real numbers, and if L is an

algebraic extension of K, then there exists an extension of v to L whose value

group is also an ordered subgroup of the positive reals.

Proof We know that we can extend v to a valuation w of L with some value

group r', and the value group r of v can be identified with a subgroup of R +.

By Corollary 4.3, every element of r' has finite period modulo r. Since every

element of R
+

has a unique e-th root for every integer e > 1, we can find in an

obvious way an order-preserving embedding of r' into R
+

which induces the

identity on r. In this way we get our extension of v to an absolute value on L.

Corollary 4.5. If L is finite over K, and if r is infinite cyclic, then r' is also

infinite cyclic.

Proof Use Corollary 4.3 and the fact that a subgroup of a cyclic group is

cyclic.

We shall now strengthen our preceding proposition to a slightly stronger one.

We call (r' : r) the ramification index.

Proposition 4.6. Let L be afinite extension ofdegree n ofafield K, and let.tJ

be a valuation ring ofL. Let 9Jl be its maximal ideal, let 0 = .0 n K, and let m

be the maximal ideal of 0, i.e. m = 9Jl n o. Then the residue class degree

[D/9Jl: o/m] isfinite. Ifwe denote it by f, and ife is the ramification index, then

ef < n.

Proof Let Yb . . .

, Ye be representatives in L* of distinct cosets of r'/r and

let Z b . . .

, Zs be elements of .0 whose residue classes mod 9Jl are linearly inde-

pendent over o/m. Consider a relation

"
a..z.y

. = 0
i..J IJ J l

i, j

with aij E K, not all aij
= O. In an inner sum

s

L aijzj,
j= 1

divide by the coefficient aiv having the biggest valuation. We obtain a linear

combination of Z l'
. . .

, Zs with coefficients in 0, and at least one coefficient equal
to a unit. Since Z b . . .

, Zs are linearly independent mod 9Jl over o/m, it follows

that our linear combination is a unit. Hence

s

L aijzj
= laiv I

j= 1
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for some index v. In the sum

t ( t aijZj)Yi
= 0

i==1 j=1

viewed as a sum on i, at least two terms have the same value. This contradicts

the independence of I Y11, . . .

, I Ye I mod r just as in the proof of Proposition 4.2.

Remark. Our proof also shows that the elements {ZjY;} are linearly in-

dependent over K. This will be used again later.

If w is an extension of a valuation v, then the ramification index will be

denoted by e(w Iv) and the residue class degree will be denoted by f(w Iv).

Proposition 4.7. Let K be a field with a valuation v, and let K c EeL be

finite extensions ofK. Let w be an extension ofv to E and let u be an extension

ofw to L. Then

e(u I w)e(w I v) = e(u I v),

f(ulw)f(wlv) = f(ulv).

Proof Obvious.

We can express the above proposition by saying that the ramification index

and the residue class degree are multiplicative in towers.

We conclude this section by relating valuation rings in a finite extension with

the integral closure.

Proposition 4.8. Let 0 be a valuation ring in a field K. Let L be a finite
extension ofK. Let () be a valuation ring ofL lying above 0, and we its maximal

ideal. Let B be the integral closure of 0 in L, and let = we n B. Then () is

equal to the local ring B\!3.

Proof It is clear that B is contained in.o. Conversely, let x be an element

of .0. Then x satisfies an equation with coefficients in K, not all 0, say

an x
n

+ . . . + ao
= 0, ai E K.

Suppose that as is the coefficient having the biggest value among the ai for the

valuation associated with the valuation ring 0, and that it is the coefficient

farthest to the left having this value. Let bi
= aJas

. Then all b
i

E 0 and

b
n ,

. . .

,
b

s + 1 E 9Jl.
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Divide the equation by X
S

. We get

(bnx
n
-

s

+ ... + bs+1x + 1) + (bs
-

1 + ... + b
o XSI ) = O.

Let y and z be the two quantities in parentheses in the preceding equation, so

that we can write

-

y
= z/x and -xy = z.

To prove our proposition it will suffice to show that y and z lie in B and that y is

not in \.p.
We use Proposition 3.5 of Chapter VII. If a valuation ring of Labove

contains x, then it contains y because y is a polynomial in x with coefficients in

Hence such a valuation ring also contains z
= -

xy. If on the other hand the

valuation ring of L above contains 1/x, then it contains z because z is a

polynomial in 1/x with coefficients in . Hence this valuation ring also contains

y. From this we conclude by Chapter VII, Proposition 3.5, that y, z lie in B.

Furthermore, since xED, and b
n ,...,

b
s + 1 are in 9Jl by construction, it

follows that y cannot be in Wl, and hence cannot be in \.p. This concludes the

proof.

Corollary 4.9. Let the notation be as in the proposition. Then there is only
a finite number of valuation rings of L lying above .

Proof This comes from the fact that there is only a finite number of

maximal ideals \.P of B lying above the maximal ideal of 0 (Corollary of Pro-

position 2.1, Chapter VII).

Corollary 4.10. Let the notation be as in the proposition. Assume in addition

that L is Galois over K. If.o and .0' are two valuation rings ofL lying above 0,

with maximal ideals 9Jl, Wl' respectively, then there exists an automorphism (J

of Lover K such that aD = .0' and aWl = Wl'.

Proof Let = .0 n B and ' = .0' n B. By Proposition 2.1 of Chapter

VII, we know that there exists an automorphism u of Lover K such that

uq3 = q3'. From this our assertion is obvious.

Example. Let k be a field, and let K be a finitely generated extension of

transcendence degree 1. If t is a transcendence base of Kover k, then K is finite

algebraic over k(t). Let.o be a valuation ring of K containing k, and assume that

D is =f. K. Let 0 = .0 n k(t). Then 0 is obviously a valuation ring of k(t) (the
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condition about inverses is afortiori satisfied), and the corresponding valuation

of k(t) cannot be trivial. Either t or t-
1

EO. Say t E o. Then 0 n k[t] cannot be

the zero ideal, otherwise the canonical homomorphism 0 o/m of 0 modulo its

maximal ideal would induce an isomorphism on k[t] and hence an isomorphism
on k(t), contrary to hypothesis. Hence m n k[t] is a prime ideal p, generated by
an irreducible polynomial p(t). The local ring k[t]p is obviously a valuation

ring, which must be 0 because every element of k(t) has an expression of type pru
where u is a unit in k[t]p. Thus we have determined all valuation rings of k(t)

containing k, and we see that the value group is cyclic. Such valuations will be

called discrete and are studied in greater detail below. In view of Corollary 4.5,
it follows that the valuation ring D of K is also discrete.

The residue class field o/m is equal to k[t]/p and is therefore a finite exten-

sion of k. By Proposition 4.6, it follows that ()1m is finite over k (if m denotes

the maximal ideal of ().

Finally, we observe that there is only a finite number of valuation rings D

of K containing k such that t lies in the maximal ideal of .0. Indeed, such a

valuation ring must lie above k[t]p where p
= (t) is the prime ideal generated by

t, and we can apply Corollary 4.9.

5. COMPLETIONS AND VALUATIONS

Throughout this section, we deal with a non-archimedean absolute value

v on a field K. This absolute value is then a valuation, whose value group rK is a

subgroup of the positive reals. We let 0 be its valuation ring, m the maximal ideal.

Let us denote by K the completion of K at v, and let 6 (resp. fit) be the closure

of 0 (resp. m) in K. By continuity, every element of 0 has value < 1, and every

element of K which is not in 6 has value > 1. If x E R then there exists an

element Y E K such that I x -

Y I is very small, and hence I x I = I y I for such an

element y (by the non-archimedean property). Hence 0 is a valuation ring in

K, and fit is its maximal ideal. Furthermore,

6 n K = 0 and fit n K = m,

and we have an isomorphism

o/m 6/fit.

Thus the residue class field o/m does not change under completion.
Let E be an extension of K, and let 0E be a valuation ring of E lying above o.

Let mE be its maximal ideal. We assume that the valuation corresponding to 0E

is in fact an absolute value, so that we can form the completion E. We then have
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a commutative diagram:

) 8ElmE

1
) 81m

°ElmE

1
o/m

the vertical arrows being injections, and the horizontal ones being isomorphisms.
Thus the residue class field extension of our valuation can be studied over the

completions E of K.

We have a similar remark for the ramification index. Let rv(K) and rv(.K)
denote the value groups of our valuation on K and K respectively (i.e. the image
of the map x I x I for x E K* and x E K* respectively). We saw above that

rv(K) = rv(K); in other words, the value group is the same under completion,
because of the non-archimedean property. (This is of course false in the archime-

dean case.) If E is again an extension of K and w is an absolute value of E

extending v, then we have a commutative diagram

rw(E)

1
rv(K)

=:

) rw(E)

L
) rv(K)

from which we see that the ramification index (rw(E) : rv(K» also does not

change under completion.

6. DISCRETE VALUATIONS

A valuation is called discrete if its value group is cyclic. In that case, the

valuation is an absolute value (if we consider the value group as a subgroup of

the positive reals). The p-adic valuation on the rational numbers is discrete for

each prime number p. By Corollary 4.5, an extension of a discrete valuation to a

finite extension field is also discrete. Aside from the absolute values obtained

by embedding a field into the reals or complex numbers, discrete valuations are

the most important ones in practice. We shall make some remarks concerning
them.

Let v be a discrete valuation on a field K, and let 0 be its valuation ring. Let

m be the maximal ideal. There exists an element n of m which is such that its

value In I generates the value group. (The other generator of the value group is

I rc- 1/.) Such an element n is called a local parameter for v (or for m). Every
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element x of K can be written in the form

x = U1{

with some unit u of 0, and some integer r. Indeed, we have I x I = ITt I' = ITt
r

I
for some r E Z, whence x/Tt

r

is a unit in o. We call r the order of x at v. It is

obviously independent of the choice of parameter selected. We also say that x

has a zero of order r. (If r is negative, we say that x has a pole of order -

r.)
In particular, we see that m is a principal ideal, generated by Tt. As an exercise,

we leave it to the reader to verify that every ideal of 0 is principal, and is a power

of m. Furthermore, we observe that 0 is a factorial ring with exactly one prime
element (up to units), namely Tt.

If x, y E K, we shall write x '"

y if Ix I = Iyl. Let Tti (i = 1,2,...) be a

sequence of elements of 0 such that Tti
'" Tt

i
. Let R be a set of representatives of

o/m in o. This means that the canonical map 0 o/m induces a bijection of R

onto o/m.

Assume that K is complete under our valuation. Then every element x ofo can

be written as a convergent series

x =

ao + alTtl + a2 Tt 2 + . . .

with ai E R, and the ai are uniquely determined by x.

This is easily proved by a recursive argument. Suppose we have written

x = ao + . . . + an Tt
n (mod m

n + 1

)

then x
- (ao + . . . + an Tt

n) = Tt
n + lY for some y EO. By hypothesis, we can

write y
= a

n + 1 + TtZ with some a
n + 1 E R. From this we get

x = ao + . . . + an + ITtn + 1 (mod m
n +

2),

and it is clear that the n-th term in our series tends to O. Therefore our series

converges (by the non-archimedean behavior !). The fact that R contains precisely
one representative of each residue class mod m implies that the ai are uniquely
determined.

Examples. Consider first the case of the rational numbers with the p-adic
valuation v

p
. The completion is denoted by Qp. It is the field ofp-adic numbers.

The closure of Z in Qp is the ring of p-adic integers Zp. We note that the prime
number p is a prime element in both Z and its closure Zp. We can select our set

of representatives R to be the set of integers (0, 1,. . .

, p
-

1). Thus every p-

adic integer can be written uniquely as a convergent sum 2: a;p; where a; is an

integer, 0 <

a;
<

p
- 1. This sum is called its p-adic expansion. Such sums

are added and multiplied in the ordinary manner for convergent series.



XII, 6 DISCRETE VALUATIONS 489

For instance, we have the usual formalism of geometric series, and if we take

p
= 3, then

2
-1 =

1 _ 3
= 2(1 + 3 + 3

2
+ . . .).

We note that the representatives (0, 1, . . .

, p
- 1) are by no means the only

ones which can be used. In fact, it can be shown that Zp contains the (p - 1)-th
roots of unity, and it is often more convenient to select these roots of unity as

representatives for the non-zero elements of the residue class field.

Next consider the case of a rational field k(t), where k is any field and t is

transcendental over k. We have a valuation determined by the prime element t

in the ring k[t]. This valuation is discrete, and the completion ofk[t] under this

valuation is the power series ring k[[t]]. In that case, we can take the elements

of k itself as repersentatives of the residue class field, which is canonically

isomorphic to k. The maximal ideal of k[[t]] is the ideal generated by t.

This situation amounts to an algebraization of the usual situation arising in

the theory of complex variables. For instance, let Zo be a point in the complex

plane. Let 0 be the ring of functions which are holomorphic in some disc around

Zo. Then 0 is a discrete valuation ring, whose maximal ideal consists of those

functions having a zero at Zo. Every element of 0 has a power series expansion

00

f(z) = L av(z
- zo)v.

v==m

The representatives of the residue class field can be taken to be complex numbers,

avo If am =I 0, then we say that j(z) has a zero of order m. The order is the same,

whether viewed as order with respect to the discrete valuation in the algebraic
sense, or the order in the sense of the theory of complex variables. We can select a

canonical uniformizing parameter namely z
-

Zo, and

j(z) = (z - zo)mg(z)

where g(z) is a power series beginning with a non-zero constant. Thus g(z) is

invertible.

Let K be again complete under a discrete valuation, and let E be a finite

extension of K. Let 0E, mE be the valuation ring and maximal ideal in E lying
above 0, m in K. Let m be a prime element in E. If rE and r

K
are the value

groups of the valuations in E and K respectively, and

e = (rE: rK)

is the ramification index, then

I n
e

I = In I ,
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and the elements

n
i
n
j
,

0 <
.

< - 1
.

- 0 1 2
=

I
=

e ,J
-

, , ,...

have order je + i in E.

Let Wl, . . .

, wf be elements of E such that their residue classes mod mE from

a basis of 0ElmE . If R is as before a set of representatives of o/m in 0, then the set

consisting of all elements

alw l + ... + afwf

with aj E R is a set of representatives of 0ElmE in 0E. From this we see that every

element of 0E admits a convergent expansion

e-l f 00

L L L a
v , i,jnjWv

n
i
.

i==O v= 1 j=O

Thus the elements {Wv
n

i

} form a set of generators of 0E as a module over o.

On the other hand, we have seen in the proof of Proposition 4.6 that these

elements are linearly independent over K. Hence we obtain:

Proposition 6.1. Let K be complete under a discrete valuation. Let E be a

finite extension of K, and let e, f be the ramification index and residue class

degree respectively. Then

ef = [E: K].

Corollary 6.2. Let rx E E, rx =I O. Let v be the valuation on K and wits

extension to E. Then

ord
v Ni(rx) = f(w I v) ord

w
rx.

Proof This is immediate from the formula

I Ni(rx) I = I rx lef

and the definitions.

Corollary 6.3. Let K be anyfield and va discrete valuation on K. Let E be a

finite extension of K. If v is well behaved in E (for instance if E is separable
over K), then

L e(wlv)f(wlv) = [E: K].
wlv

If E is Galois over K, then all e
w

are equal to the same number e, all fw are
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equal to the same number f, and so

efr = [E: K],

where r is the nunlber of extensions of v to E.

Proof. Our first assertion comes from our assumption, and Proposition 3.3.

If E is Galois over K, we know from Corollary 4.10 that any two valuations of E

lying above v are conjugate. Hence all ramification indices are equal, and

similarly for the residue class degrees. Our relation efr = [E: K] is then

obvious.

7. ZEROS OF POLYNOMIALS IN

COMPLETE FIELDS

Let K be complete under a non-trivial absolute value.

Let

f(X) = n (X - rxi)'i

be a polynomial in K[X] having leading coefficient 1, and assume the roots rxi

are distinct, with multiplicities ri. Let d be the degree of f. Let g be another

polynomial with coefficients in Ka, and assume that the degree of g is also d, and

that 9 has leading coefficient 1. We let I 9 I be the maximum of the absolute values

of the coefficients of g. One sees easily that if I g I is bounded, then the absolute

values of the roots of 9 are also bounded.

Suppose that 9 comes close to f, in the sense that If
-

g I is small. If P is

any root of g, then

If(P)
- g(P) I = If(P)1 = n Irxi

- Plr
i

is small, and hence P must come close to some root of f. As P comes close to

say rx = lI.. l ,
its distance from the other roots of f approaches the distance of lI..l

from the other roots, and is therefore bounded from below. In that case, we say

that P belongs to lI...

Proposition 7.1. Ifg is'sufficiently close to f, and Pl, ..., Ps are the roots ofg

belonging to rx (counting multiplicities), then s =

rl is the multiplicity of rx in f.

Proof Assume the contrary. Then we can find a sequence gv of poly-
nomials approaching f with precisely s roots P\V), . . .

, PV) belonging to rx, but

with s =I r. (We can take the same multiplicity s since there is only a finite

number ofchoices for such multiplicities.) Furthermore, the other roots ofg also
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belong to roots off, and we may suppose that these roots are bunched together,

according to which root off they belong to. Since lim gv
= f, we conclude that rx

must have multiplicity s in f, contradiction.

Next we investigate conditions under which a polynomial has a root in a

complete field.

We assume that K is complete under a discrete valuation, with valuation ring 0,

maximal ideal p. We let n be a fixed prime element of p.

We shall deal with n-space over o. We denote a vector (al' . . .

, an) with

ai E 0 by A. If f(X 1, . . .

,
Xn) E o[X] is a polynomial in n variables, with integral

coefficients, we shall say that A is a zero off if f(A) = 0, and we say that A is a

zero of f mod pm if f(A) = 0 (mod pm).
Let C = (co, . . .

, c
n) be in o(n

+
1). Let m be an integer > 1. We consider the

nature of the solutions of a congruence of type

(*) nm(co + CIX 1 + . . . + CnXn) = 0 (mod pm+ 1).

This congruence is equivalent with the linear congruence

(**) Co + c 1 x 1 + . . . + c
n

X
n

= 0 (mod p).

If some coefficient Ci (i = 1, . . .

, n) is not = 0 (mod p), then the set of solutions is

not empty, and has the usual structure of a solution of one inhomogeneous
linear equation over the field o/p. In particular, it has dimension n

- 1.

A congruence (*) or (**) with some Ci 0 (mod p) will be called a proper

congruence.

As a matter of notation, we write Di f for the formal partial derivative of f
with respect to Xi. We write

grad f(X) = (Dlf(X), . . .

, Dnf(X».

Proposition 7.2. Let f(X) E o[X]. Let r be an integer > 1 and let A E o(n) be

such that

f(A) = 0 (mod p2r-l),

Dif(A) = 0 (mod pr-l),

D
i f(A) =F- 0 (mod pr),

for all i = 1,..., n,

for some i = 1, . . .

,
n.

Let v be an integer > 0 and let BE o(n) be such that

B = A (mod pr) and f(B) = 0 (mod p2r-
1 +

V).

A vector Y E o(n) satisfies

Y = B (mod pr+v) and f(Y) = 0 (mod p2r+v)
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if and only if Y can be written in the form Y = B + nr+ vc, with some C E o(n)

satisfying the proper congruence

f(B) + r{+v grad f(B). C = 0 (mod p2r+v).

Proof The proof is shorter than the statement of the proposition. Write

Y = B + nr+vC. By Taylor's expansion,

f(B + nr+ VC) = f(B) + nr+
v

grad f(B) . C (mod p2r+ 2V).

To solve this last congruence mod p2r
+

v, we obtain a proper congruence by

hypothesis, because grad f(B) = grad f(A) = 0 (mod pr- 1).

Corollary 7.3. Assumptions being as in Proposition 7.2, there exists a zero

off in o(n) which is congruent to A mod pro

Proof We can write this zero as a convergent sum

A + n
r + 1

C 1 + n
r + 2

C2 + . . .

solving for C l' C2, . . . inductively as in the proposition.

Corollary 7.4. Let f be a polynomial in one variable in o[X], and let a EO

be such that f(a) = 0 (mod ) but f'(a) =1= 0 (mod ). Then there exists

bE 0, b = a (mod p) such that f(b) = o.

Proof Take n = 1 and r = 1 in the proposition, and apply Corollary 7.3.

Corollary 7.5. Let m be a positive integer not divisible by the characteristic

of K. There exists an integer r such that for any a E 0, a = 1 (mod p'), the

equation xm -

a = 0 has a root in K.

Proof Apply the proposition.

Example. In the 2-adic field Q2, there exists a square root of - 7, Le.

E Q2, because - 7 = 1 - 8.

When the absolute value is not discrete, it is still possible to formulate a

criterion for a polynomial to have a zero by Newton approximation. (Cf. my

paper, "On quasi-algebraic closure," Annals of Math. (1952) pp. 373-390.

Proposition 7.6. Let K be a complete under a non-archimedean absolute

value (nontrivial). Let 0 be the valuation ring and let f(X) E o[X] be a poly-
nomial in one variable. Let CX

o E 0 be such that

I f(cxo) I < I f'(CXO)21

(here f' denotes the formal derivative off). Then the sequence

f(cxi)
CXi + 1

=

CXi
-

f'«(1.i)
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converges to a root rx off in 0, and we have

<
f(rxo)

loc
-

OCo I =

f'(OCO)2
< 1.

Proof Let c = 1 f(rxo)1f'(rxo)21 < 1. We show inductively that:

1. I rxi I < 1,

2. I rx i
-

rxo I <
c,

3. f(rxi)
< 2 i

f'(rxi)2
=

c .

These three conditions obviously imply our proposition. If i = 0, they are

hypotheses. By induction, assume them for i. Then:

1. I f(rxi)1f'(rx i)21 < C
2i

gives 1 rxi + 1
- rxd < C

2i
< 1, whence I rxi+ 11 < 1.

2. I rxi + 1
-

rxo I < max { I rxi + 1
- rxd, I rxi

-

rxo I} = c.

3. By Taylor's expansion, we have

f( ) f( ) f
'

( )
f(rxi)

p(
f(rxi»

)
2

rxi+ 1
=

rxi
-

rxi
f'(rxi)

+

f'(rxi)

for some p E 0, and this is less than or equal to

f(rxi)
2

f'(rxi)

in absolute value.

Using Taylor's expansion on f'(rxi+ 1) we conclude that

If'(rxi+l)1 = If'(rxi)l.

From this we get

f(rxi + 1)

f'(rxi + 1)2
<

2i + 1

=c

as desired.

The technique of the proposition is also useful when dealing with rings, say a

local ring 0 with maximal ideal m such that m
r

= 0 for some integer r > O.

If one has a polynomial f in o[X] and an approximate root rxo such that

f'(rxo) =1= 0 mod m,

then the Newton approximation sequence shows how to refine rxo to a root off.

Example in several variables. Let K be complete under a non-archimedean

absolute value. Let f(XI' . . .
, X

n + I) E K[X] be a polynomial with coefficients
in K. Let (aI, . . .

, an' b) E K
n + I. Assume that f(a, b) = O. Let D

n + I be the
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partial derivative with respect to the (n + 1 )-th variable, and assume that

D
n + If(a, b) =/:; O. Let (a) E K

n
be sufficiently close to (a). Then there exists an

element 5 of K close to b such that f(a, 5) = O.

This statement is an immediate corollary of Proposition 7.6. By multiplying
all ai' b by a suitable non-zero element of K one can change them to elements

of o. Changing the variables accordingly, one may assume without loss of gen-

erality that ai' b EO, and the condition on the partial derivative not vanishing
is preserved. Hence Proposition 7.6 may be applied. After perturbing (a) to

(a), the element b becomes an approximate solution ofj(a, X). As (a) approaches
(a), f(a, b) approaches 0 and Dn+1f(a, b) approaches Dn+1j(a, b) =/:; O.

Hence for (a) sufficiently close to (a), the conditions of Proposition 7.6 are

satisfied, and one may refine b to a root off(a, X), thus proving the assertion.

The result was used in a key way in my paper "On Quasi Algebraic Closure".

It is the analogue of Theorem 3.6 of Chapter XI, for real fields.

In the language of algebraic geometry (which we now assume), the result

can be reformulated as follows. Let V be a variety defined over K. Let P be a

simple point of V in K. Then there is a whole neighborhood of simple points of

V in K. Especially, suppose that V is defined by a finite number of polynomial

equations over a finitely generated field k over the prime field. After a suitable

projection, one may assume that the variety is affine, and defined by one equa-

tion f(Xb . . .

,
X

n + I)
= 0 as in the above statement, and that the point is

P =

(aI' . . .
, an, b) as above. One can then select ai

=

Xi close to ai but such

that (xI' . . .
,

x
n ) are algebraically independent over k. Let y b the refinement

of b such that f(x, y)
= O. Then (x, y) is a generic point of V over k, and the

coordinates of (x, y) lie in K. In geometric terms, this means that the function

field of the variety can be embedded in Kover k, just as Theorem 3.6 of Chapter
XI gave the similar result for an embedding in a real closed field, e.g. the real

numbers.

EXERCISES

1. (a) Let K be a field with a valuation. If

l(X) =

ao + at X + ... + anxn

is a polynomial in K[X], define I j I to be the max on the values lai I(i = 0, . . .
, n).

Show that this defines an extension of the valuation to K[X], and also that the

valuation can be extended to the rational field K(X). How is Gauss' lemma a

special case of the above statement? Generalize to polynomials in several variables.

(b) Let f be a polynomial with complex coefficients. Define I f I to be the maximum

of the absolute values of the coefficients. Let d be an integer > 1. Show that
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there exist constants C l' C2 (depending only on d) such that, if I, g are polynomials

in C[X] of degrees < d, then

C II j "g 1 < I jg I < C21 f " g I.

[Hint: Induction on the number of factors of degree 1. Note that the right

inequality is trivial.]

2. Let M
Q

be the set of absolute values consisting of the ordinary absolute value and all

p-adic absolute values v
p

on the field of rational numbers Q. Show that for any rational

number a E Q, a =F 0, we have

n lalv
= 1.

veMQ

If K is a finite extension of Q, and MK denotes the set of absolute values on K extending
those of M

Q ,
and for each WE MK we let N

w
be the local degree [Kw: Qv]' show that

for ex E K, ex =F 0, we have

n lexlw = 1.

weMK

3. Show that the p-adic numbers Qp have no automorphisms other than the identity.

[Hint: Show that such automorphisms are continuous for the p-adic topology. Use

Corollary 7.5 as an algebraic characterization of elements close to 1.]

4. Let A be a principal entire ring, and let K be its quotient field. Let 0 be a valuation ring
of K containing A, and assume 0 =F K. Show that 0 is the local ring A(p) for some prime
element p. [This applies both to the ring Z and to a polynomial ring k[X] over a field k.]

5. Let A be an entire ring, and let K be its quotient field. Assume that every finitely

generated ideal of A is principal. Let 0 be a discrete valuation ring of K containing A.

Show that 0 = A(p) for some element p of A, and that p is a generator of the maximal

ideal of o.

6. Let Qp be a p-adic field. Show that Qp contains infinitely many quadratic fields of

type Q( ), where m is a positive integer.

7. Show that the ring of p-adic integers Zp is compact. Show that the group of units in Zp
is compact.

8. If K is a field complete with respect to a discrete valuation, with finite residue class field,

and if 0 is the ring of elements ofK whose orders are > 0, show that 0 is compact. Show

that the group of units of 0 is closed in 0 and is compact.

9. Let K be a field complete with respect to a discrete valuation, let 0 be the ring of integers
of K, and assume that 0 is compact. Let 11' 12' . . . be a sequence of polynomials in n

variables, with coefficients in o. Assume that all these polynomials have degree < d,

and that they converge to a polynomial I (i.e. that 1 I-/; 1 -+ 0 as i -+ (0). If each /; has

a zero in 0, show that I has a zero in o. If the polynomials /; are homogeneous ofdegree
d, and ifeach Ii has a non-trivial zero in 0, show that I has a non-trivial zero in o. [Hint:
Use the compactness of 0 and of the units of 0 for the homogeneous case.]

(For applications of this exercise, and also of Proposition 7.6, cf. my paper "On

quasi-algebraic closure," Annals of Math., SS (1952), pp. 412-444.)
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10. Show that if p, p' are two distinct prime numbers, then the fields Qp and Qp' are not

isomorphic.

11. Prove that the field Qp contains all (p - 1)-th roots ofunity. [Hint: Use Proposition 7.6,

applied to the polynomial XP-
1
- 1 which splits into factors of degree 1 in the residue

class field.] Show that two distinct (p
- 1)-th roots ofunity cannot be congruent mod p.

12. (a) Let f(X) be a polynomial of degree 1 in Z[X]. Show that the values f(a) for

a E Z are divisible by infinitely many primes.

(b) Let F be a finite extension of Q. Show that there are infinitely many primes p

such that all conjugates of F (in an algebraic closure of Qp) actually are contained

in Qp. [Hint: Use the irreducible polynomial of a generator for a Galois extension

of Q containing F.]

13. Let K be a field ofcharacteristic 0, complete with respect to a non-archimedean absolute

value. Show that the series

x
2

x
3

exp(x) = 1 + x + - + - + . . .

2! 3!

x
2

x
3

10g(1 + x) = x - - + - - . . .

2 3

converge in some neighborhood ofO. (The main problem arises when the characteristic

of the residue class field is p > 0, so that p divides the denominators n! and n. Get an

expression which determines the power of p occurring in n!.) Prove that the exp and

log give mappings inverse to each other, from a neighborhood of 0 to a neighborhood
of 1.

14. Let K be as in the preceding exercise, of characteristic 0, complete with respect to a non-

archimedean absolute value. For every integer n > 0, show that the usual binomial

expansion for (1 + X)l/" converges in some neighborhood ofO. Do this first assuming
that the characteristic of the residue class field does not divide n, in which case the asser-

tion is much simpler to prove.

15. Let F be a complete field with respect to a discrete valuation, let 0 be the valuation ring,
n a prime element, and assume that o/(n) = k. Prove that if a, bE 0 and a = b (mod n')

with r > 0 then a
pn

= bpn
(mod nr+") for all integers n > O.

16. Let F be as above. Show that there exists a system of representatives R for 0/(n) in 0

such that RP = R and that this system is unique (Teichmiiller). [Hint: Let ex be a residue

class in k. For each v > 0 let a
v

be a representative in 0 of a
P

v

and show that the

sequence av converges for v --+ 00, and in fact converges to a representative a of ex,

independent of the choices of a
v .] Show that the system of representatives R thus

obtained is closed under multiplication, and that if F has characteristic p, then R is

closed under addition, and is isomorphic to k.

17. (a) (Witt vectors again). Let be a perfect field of characteristic p. We use the

Witt vectors as described in the exercises of Chapter VI. One can define an

absolute value on W(k), namely Ix I =

p-r if X
r

is the first non-zero component

of x. Show that this is an absolute value, obviously discrete, defined on the ring,
and which can be extended at once to the quotient field. Show that this quotient
field is complete, and note that W(k) is the valuation ring. The maximal ideal

consists of those x such that Xo
= 0, i.e. is equal to pW(k).
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(b) Assume that F has characteristic O. Map each vector x E W(k) on the element

L f-'pi

where i is a representative of Xi in the special system of Exercise 15. Show that

this map is an embedding of W(k) Into o.

18. (Local uniformization). Let k be a field, K a finitely generated extension of transcendence

degree 1, and 0 a discrete valuation ring of Kover k, with maximal ideal m. Assume that

o/m = k. Let x be a generator ofm, and assume that K is separable over k(x). Show that

there exists an element Y EO such that K = k(x, y), and also having the following

property. Let cp be the place on K determined by o. Let a = cp(x), b = cp(y) (of course

a = 0). Let f(X, Y) be the irreducible polynomIal in k[X, Y] such that f(x, y) = O.

Then D
2 f (a, b) =I: O. [Hint: Write first K = k(x, z) where z is integral over k[x]. Let

z =

Zh . . .
, zn(n > 2) be the conjugates of Z over k(x), and extend 0 to a valuation

ring D of k(x, Zl, ..., zn). Let

Z =

ao + atX + . . . + arx
r

+ . . .

be the power series expansion of z with ai E k, and let P,(x) =

ao + . . . + a,x
r

. For

i = 1, . . .

,
n let

Zj
- P,(x)

Yi=
x'

Taking r large enough, show that Yl has no pole at D but Y2, . . .

, Yn have poles at D.

The elements Yl, . .

., Yn are conjugate over k(x). Let f(X, Y) be the irreducible poly-
nomial of (x, y) over k. Then f(x, Y) = I/1n(x)yn + ... + l/1o(x) with l/1i(x)k[x]. We

may also assume 1/1;(0) =I: 0 (since f is irreducible). Write f(x, Y) in the form

f(x, Y) = I/1n(X)Y2 ... Yn(Y
-

Yl)(Y2"
1
Y - 1). .. (y';-

1
Y - 1).

Show that I/1n(X)Y2 . . .

Yn
= u does not have a pole at D. Ifw E D, let w denote its residue

class modulo the maximal ideal of D. Then

o =I: f(x, Y) = (-I)n-l u(Y
-

.vt).

Let Y
=

Yh .v = b. We find that D2 f(a, b) = (_I)n-l u =I: 0.]

19. Prove the converse of Exercise 17, i.e. if K = k(x, y), f(X, Y) is the irreducible poly-
nomial of (x, y) over k, and if a, bE k are such that f(a, b) = 0, but D 2 f(a, b) =I: 0,

then there exists a unique valuation ring 0 of K with maximal ideal m such that x = a

and Y = b (mod m). Furthermore, o/m = k, and x
-

a is a generator of m. [Hint:
If g(x, y) E k[x, y] is such that g(a, b) = 0, show that g(x, y) = (x - a)A(x, y)IB(x, y)
where A, B are polynomials such that B(a, b) =I: O. If A(a, b) = 0 repeat the process.

Show that the process cannot be repeated indefinitely, and leads to a proofof the desired

assertion.]

20. (Iss'sa-Hironaka Ann. ofMath 83 (1966), pp. 34-46). This exercise requires a good

working knowledge of complex variables. Let K be the field of meromorphic functions

on the complex plane C. Let,Q be a discrete valuation ring of K (containing the
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constants C). Show that the function z is in . [Hint: Let aI' a2 ,
.. . be a discrete

sequence of complex numbers tending to infinity, for instance the positive integers.
Let VI' v2 ,

. . . , be a sequence of integers, 0 <:

Vi
<:

P
-

1, for some prime number

p, such that Vipi is not the p-adic expansion of a rational number. Letfbe an entire

function having a zero of order Vipi at a
i for each i and no other zero. If z is not in

0, consider the quotient

f(z)
g(z) =

n

n (z - ai)Vipi
i= 1

From the Weierstrass factorization of an entire function, show that g(z) = h(z)pn+
1

for

some entire function h(z). Now analyze the zero of g at the discrete valuation of 0 in

terms of that off and n (z - aiyipi to get a contradiction.]
If U is a non-compact Riemann surface, and L is the field ofmeromorphic functions

on U, and if 0 is a discrete valuation ring ofL containing the constants, show that every

holomorphic function lp on U lies in o. [Hint: Map lp : U -+ C, and get a discrete valua-

tion of K by composing lp with meromorphic functions on C. Apply the first part of the

exercise.] Show that the valuation ring is the one associated with a complex number.

[Further hint: If you don't know about Riemann surfaces, do it for the complex plane.
For each z E U, letfz be a function holomorphic on U and having only a zero of order 1

at z. If for some Zo the function fzo
has order > 1 at 0, then show that 0 is the valuation

ring associated with zo. Otherwise, every function fz has order 0 at o. Conclude that the

valuation of 0 is trivial on any holomorphic function by a limit trick analogous to that

of the first part of the exercise.]





Part Three

LINEAR ALGEBRA

and

REPRESENTATIONS

We shall be concerned with modules and vector spaces, going into their

structure under various points of view. The main theme here is to study a pair,

consisting of a module, and an endomorphism, or a ring of endomorphisms,
and try to decompose this pair into a direct sum of components whose structure

can then be described explicitly. The direct sum theme recurs in every chapter.

Sometimes, we use a duality to obtain our direct sum decomposition relative

to a pairing, and sometimes we get our decomposition directly. If a module

refuses to decompose into a direct sum of simple components, then there is no

choice but to apply the Grothendieck construction and see what can be ob-

tained from it.

The extension theme occurs only once, in Witt's theorem, in a brief counter-

point to the decomposition theme.
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CHAPTER XIII

Matrices and Linear Maps

Presumably readers of this chapter will have had some basic acquaintance
with linear algebra in elementary courses . We go beyond such courses by pointing
out that a lot of results hold for free modules over a commutative ring. This is

useful when one wants to deal with families of linear maps, and reduction modulo

an ideal.

Note that 8 and 9 give examples of group theory in the context of linear

groups.

Throughout this chapter, we let R be a commutative ring, and we let

E, F be R-modules. We suppress the prefix R in front of linear maps and

modules.

1. MATRICES

By an m x n matrix in R one means a doubly indexed family of elements

of R, (aij), (i = 1,..., m and j = 1, . . .

, n), usually written in the form

(
all

:::
aln

) .

am 1
a

mn

We call the elements aij the coefficients or components of the matrix. A

1 x n matrix is called a row vector (of dimension, or size, n) and a m x 1 matrix

is called a column vector (of dimension, or size, m). In general, we say that

(m, n) is the size of the matrix, or also m x n.

We define addition for matrices of the same size by components. IfA = (aij)
and B = (bij) are matrices of the same size, we define A + B to be the matrix

whose ij-component is aij + bij. Addition is obviously associative. We define

the multiplication of a matrix A by an element C E R to be the matrix (caij),

503
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whose ij-component is caij. Then the set of m x n matrices in R is a module

(Le. an R-module).
We define the product AB of two matrices only under certain conditions.

Namely, when A has size (m, n) and B has size (n, r), i.e. only when the size of

the rows of A is the same as the size of the columns of B. If that is the case, let

A = (aij) and let B = (bjk). We define AB to be the m x r matrix whose ik-

component is

n

L aij b
jk

.

j= 1

If A, B, C are matrices such that AB is defined and BC is defined, then so is

(AB)C and A(BC) and we have

(AB)C = A(BC).

This is trivial to prove. If C = (Ckl)' then the reader will see at once that the

ii-component of either of the above products is equal to

L L aijbjkCkl'
j k

An m x n matrix is said to be a square matrix if m = n. For example, a

1 x 1 matrix is a square matrix, and will sometimes be identified with the

element of R occurring as its single component.

For a given integer n > 1 the set of square n x n matricesforms a ring.

This is again trivially verified and will be left to the reader.

The unit element of the ring of n x n matrices is the matrix

0 . . . 0 0

1 0

In =

0 0

whose components are equal to 0 except on the diagonal, in which case they
are equal to 1. We sometimes write I instead of In.

If A = (aij) is a square matrix, we define in general its diagonal components
to be the elements aii'

We have a natural ring-homomorphism of R into the ring of n x n matrices,

given by

c cI
n

.

Thus cl
n

is the square n x n matrix having all its components equal to 0 except
the diagonal components, which are equal to c. Let us denote the ring of n x n



XIII, 1 MATRICES 505

matrices in R by Matn(R). Then Matn(R) is an algebra over R (with respect to

the above homomorphism).
Let A =

(aij) be an m x n matrix. We define its transpose tA to be the matrix

(aj;) (j
= 1,. . .

,
nand i = 1,. . .

, m). Then tA is an n X m matrix. The reader

will verify at once that if A, B are of the same size, then

t(A + B) = tA + tB.

If c E R then t(cA) = c!4. If A, B can be multiplied, then tB is defined and we

have

t(AB) = tBtA.

We note the operations on matrices commute with homomorphisms. More

precisely, let lp: R R' be a ring-homomorphism. If A, B are matrices in R,

we define lpA to be the matrix obtained by applying lp to all the components of

A. Then

lp(A + B) = lpA + lpB, lp(AB) = (lpA)(lpB),

lpCA) = tlp(A).

lp(cA) = lp(c)lpA,

A similar remark will hold throughout our discussion of matrices (for
instance in the next section).

Let A = (aij) be a square n x n matrix in a commutative ring R. We define

the trace of A to be

n

tr(A) = L aii ;
i= 1

in other words, the trace is the sum of the diagonal elements.

If A, Bare n x n matrices, then

tr(AB) = tr(BA).

Indeed if A = (a..) and B = (b. .) then
, IJ IJ

tr(AB) = L L aivbvi = tr(BA).
i v

As an application, we observe that if B is an invertible n x n matrix, then

tr(B-
1

AB) = tr(A).

Indeed, tr(B-
1

AB) = tr(ABB-
1

) = tr(A).
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2. THE RANK OF A MATRIX

Let k be a field and let A be an m x n matrix in k. By the row rank of A we

shall mean the maximum number of linearly independent rows of A, and by the

column rank of A we shall mean the maximum number of linearly independent
columns of A. Thus these ranks are the dimensions of the vector spaces gen-

erated respectively by the rows of A and the columns of A. We contend that

these ranks are equal to the same number, and we define the rank of A to be

that number.

Let A 1, . . .

,
An be the columns of A, and let At, . . .

, Am be the rows of A.

Let tx = (Xb ..

.,
x

m) have components Xj E k. We have a linear map

XxIAl + ... + xmAm

of k(m) onto the space generated by the row vectors. Let W be its kernel. Then

W is a subspace of k(m) and

dim W + row rank = m.

If Y is a column vector of dimension m, then the map

(X, y)tXY = X. Y

is a bilinear map into k, if we view the 1 x 1 matrix
t
X Y as an element of k.

We observe that W is the orthogonal space to the column vectors A 1, . . .
, An,

i.e. it is the space of all X such that X . Aj = 0 for allj = 1, . . .

,
n. By the duality

theorem of Chapter III, we know that k(m) is its own dual under the pairing

(X, y).-. X . Y

and that k(m)IW is dual to the space generated by AI, . . . ,
An. Hence

dim k(m)IW = column rank,

or

dim W + column rank = m.

From this we conclude that

column rank = row rank,

as desired.

We note that W may be viewed as the space of solutions of the system of n

linear equations

x 1 A l + ... + xmAm = 0,
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in m unknowns x I' . . .

, Xm. Indeed, if we write out the preceding vector equation
in terms of all the coordinates, we get the usual system of n linear equations.
We let the reader do this if he or she wishes.

3. MATRICES AND LINEAR MAPS

Let E be a module, and assume that there exists a basis CB = {l' · · ·
, n}

for E over R. This means that every element of E has a unique expression as a

linear combination

x =

Xl 1 + . . . + Xnn

with Xi E R. We call (Xl' . . .

,
x

n) the components of X with respect to the basis.

We may view this n-tuple as a row vector. We shall denote by X the transpose

of the row vector (Xl'...' X
n). We call Xthe column vector of x with respect to

the basis.

We observe that if {'l' . . .
, } is another basis of E over R, then m = n.

Indeed, let p be a maximal ideal of R. Then E/pE is a vector space over the

field R/pR, and it is immediately clear that if we denote by i the residue class

of i mod pE, then {b . . .
, n} is a basis for ElpE over RlpR. Hence n is also

the dimension of this vector space, and we know the invariance of the cardinality
for bases of vector spaces over fields. Thus m = n. We shall call n the dimension

of the module E over R.

We shall view R(n) as the module of column vectors of size n. It is a free

module of dimension n over R. It has a basis consisting of the unit vectors

e 1, . . .

,
en such that

t

e
i
= (0, . . .

, 0, 1, 0, . . .
, 0)

has components 0 except for its i-th component, which is equal to 1.

An m x n matrix A gives rise to a linear map

LA : R(n) R(m)

by the rule

X t---+ AX.

Namely, we have A(X + Y) = AX + A Y and A(cX) = cAX for column

vectors X, Y and c E R.
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The above considerations can be extended to a slightly more general

context, which can be very useful. Let E be an abelian group and assume that

R is a commutative subring of

Endz (E) = Homz(E, E).

Then E is an R-module. Furthermore, if A is an m x n matrix in R, then we get

a linear map

LA : E(n) E(m)

defined by a rule similar to the above, namely X H AX. However, this has to

be interpreted in the obvious way. If A = (aij) and X is a column vector of

elements of E, then

(
all

AX=

a
m 1

aln

)(
X

t)
=

(Yt ) ,

a
mn

X
n Ym

n

where Y
. = "a..x.
I I) )

.

j= 1

If A, B are matrices in R whose product is defined, then for any c E R we

have

LAB = LALB and LeA = cLA .

Thus we have associativity, namely

A(BX) = (AB)X.

An arbitrary commutative ring R may be viewed as a module over itself.

In this way we recover the special case of our map from R(n) into R(m). Further-

more, if E is a module over R, then R may be viewed as a ring ofendomorphisms
of E.

Proposition 3.1. Let E be a free module over R, and let {x l' . . .
, xn} be a

basis. Let Y l'
. . .

, Yn be elements of E. Let A be the matrix in R such that

A(:)
=

(;:).
Then {Yb . . .

, Yn} is a basis of E if and only if A is invertible.

Proof. Let X, Y be the column vectors of our elements. Then AX = Y.

Suppose Y is a basis. Then there exists a matrix C in R such that CY = X.
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Then CAX = X, whence CA = I and A is invertible. Conversely, assume that

A is invertible. Then X = A
- 1

Y and hence Xl'.'" X
n

are in the module

generated by Yl, . .

., Yn. Suppose that we have a relation

blYl + . . . + bnYn = 0

with b
i

E R. Let B be the row vector (b l ,
. . .

,
b

n). Then

BY = 0

and hence BAX = O. But {x l'
. . .

, xn} is a basis. Hence BA = 0, and hence

BAA
- 1

= B = O. This proves that the components of Yare linearly indepen-
dent over R, and proves our proposition.

We return to our situation of modules over an arbitrary commutative

ring R.

Let E, F be modules. We shall see how we can associate a matrix with a

linear map whenever bases of E and F are given. We assume that E, F are free.

We let (S = {l' . . .
, n} and (S' = {, . . .

, ;,,} be bases ofE andFrespectively.
Let

f: E F

be a linear map. There exist unique elements aij E R such that

f( 1) = a 11 'l + . . . + am 1 ,

j'(n) = aln'l + .. . + amn'

or in other words,

m

f(j) = L aij
i= 1

(Observe that the sum is over the first index.) We define

M,(f) = (aij).

If x = x 1 1 + . . . + X
n n is expressed in terms of the basis, let us denote the

column vector X of components of x by M(8(x). We see that

M(8,(f(x» = M'(f)M(8(x),

In other words, if X' is the column vector off(x), and M is the matrix associated

withf then X' = MX. Thus the operation of the linear map is reflected by the

matrix multiplication, and we have f = LM
.
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Proposition 3.2. Let E, F, D be modules, and let CB, CB', CB" be finite bases

of E, F, D, respectively. Let

EFD

be linear maps. Then

<B <B' <B
M<B,,(g 0 f) = M<B,,(g)M<B.(f).

Proof'. Let A and B be the matrices associated with the maps f, g respec-

tively, with respect to our given bases. If X is the column vector associated with

x E E, the vector associated with g(f(x» is B(AX) = (BA)X. Hence BA is the

matrix associated with g
0 f. This proves what we wanted.

Corollary 3.3. Let E = F. Then

M,(id)M/(id) = M:(id) = I.

Each matrix M/(id) is invertible (i.e. is a unit in the ring of matrices).

Proof. Obvious.

Corollary 3.4. Let N = M,(id). Then

M:(f) = M/(id)M(f)M'(id) = NM(f)N-l.

Proof. Obvious

Corollary 3.5. Let E be a free module of dimension n over R. Let CB be a

basis of E over R. The map

f M(f)

is a ring-isomorphism of the ring ofendomorphisms ofE onto the ring ofn x n

matrices in R. In fact, the isomorphism is one of algebras over R.

We shall call the matrix M(f) the matrix associated withfwith respect to

the basis CB.

Let E be a free module of dimension n over R. By GL(E) or AutR(E) one

means the group of linear automorphisms of E. It is the group of units in

EndR(E). By GLn(R) one means the group of invertible n x n matrices in R.

Once a basis is selected for E over R, we have a group-isomorphism

GL(E) GLn(R)

with respect to this basis.
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Let E be as above. If

f: E E

is a linear map, we select a basis CB and let M be the matrix associated with f
relative to CB. We define the trace off to be the trace of M, thus

tr(f) = tr(M).

If M' is the matrix off with respect to another basis, then there exists an in-

vertible matrix N such that M' = N-
l

MN, and hence the trace is independent
of the choice of basis.

4. DETERMINANTS

Let E
1 ,

. . .

, En' F be modules. A map

f : E 1
X ... x En F

is said to be R-multilinear (or simply multilinear) if it is linear in each variable,

i.e. if for every index i and elements Xl' . . .
, Xi-I' Xi+ l' . . .

,
X

n , Xj E Ej, the map

X Hf(xb . . .

, Xi - l' X, Xi + l' . . .

,
X

n)

is a linear map of Ei into F.

A multilinear map defined on an n-fold product is also called n-multilinear.

If E 1
= . . . = En = E, we also say that f is a multilinear map on E, instead of

saying that it is multilinear on E(n).

Let f be an n-multilinear map. If we take two indices i, j and i #- j then

fixing all the variables except the i-th and j-th variable, we can view f as a

bilinear map on Ei
x Ej.

Assume that E 1
= ... = En = E. We say that the multilinear map f is

alternating iff(x 1, . . .
,
x

n) = 0 whenever there exists an index i, 1 < i < n
- 1,

such that Xi
=

Xi+ 1 (in other words, when two adjacent elements are equal).

Proposition 4.1. Let f be an n-multilinear alternating map on E. Let

XI' . . .

,
X

n
E E. Then

f(. . .

, X;, Xi + b . · .) = -

f(. . .
, Xi + b Xi' . . .).

In other words, when we interchange two adjacent arguments off, the value

off changes by a sign. If Xi
= xjfor i #- j then f(x l'

. · ·
,
x

n) = O.
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Proof. Restricting our attention to the factors in the i-th and j-th place, with

j = i + 1, we may assume f is bilinear for the first statement. Then for all x,

Y E E we have

o = f(x + y, x + y) = f(x, y) + f(y, x).

This proves what we want, namely f(y, x) = -

f(x, y). For the second asser-

tion, we can interchange successively adjacent arguments off until we obtain

an n-tuple of elements of E having two equal adjacent arguments. This shows

that when Xi
=

Xj, i :1= j, then f(Xb . . .
,
x

n) = O.

Corollary 4.2. Let f be an n-multilinear alternating map on E. Let

Xl' ...,Xn
EE. Let i #j and let a ER. Then the value off on (xl,...,xn)

does not change if we replace Xi by Xi + aXj and leave all other components

fixed.

Proof. Obvious.

A multilinear alternating map taking its value in R is called a multilinear

alternating form.

On repeated occasions we shall evaluate multilinear alternating maps on

linear combinations of elements of E. Let

WI
=

a11v 1 + ... + alnvn ,

W
n

=

an I V 1 + . . . + ann v
n

.

Let f be n-multilinear alternating on E. Then

f(wb...' w
n) = f(allv 1 + ... + a1nvn ,..., anlvl + ... + annvn).

We expand this by multilinearity, and get a sum of terms of type

a I , 0'( 1)
. . .

an, O'(n) f(V0'( I ),
. · .

,
V

O'(n»,

where a ranges over arbitrary maps of {I, . . .

, n} into itself. If a is not a bijection

(i.e. a permutation), then two arguments VO'(i) and vO'(j) are equal for i :1= j, and

the term is equal to O. Hence we may restrict our sum to permutations a.

Shuffling back the elements (VO'(l)' . . .

, vO'(n») to their standard ordering and using

Proposition 4.1, we see that we have obtained the following expansion:

Lemma 4.3. If W l ,
. . .

,
W

n
are as above, then

f(w l ,...,
w

n) = L l(a)al,O'(1)'" an,O'(n)f(Vb.", v
n)

0'

where the sum is taken over all permutations a of {I, . . .

, n} and l(a) is the

sign of the permutation.
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For determinants, I shall follow Artin's treatment in Galois Theory.

By an n x n determinant we shall mean a mapping

det : Matn(R) R

also written

D : Mat,.(R) R

which, when viewed as a function of the column vectors A 1, . . .

,
An of a matrix

A, is multilinear alternating, and such that D(I) = 1. In this chapter, we use

mostly the letter D to denote determinants.

We shall prove later that determinants exist. For the moment, we derive

properties.

Theorem 4.4. (Cramer's Rule). Let A
1

,
. . .

,
An be column vectors ofdimen-

sion n. Let Xl, . . .

,
X

n
E R be such that

xlA
l

+ ... + xnA
n

= B

for some column vector B. Then for each i we have

Xi D(A 1, . . .

, An) = D(A 1, . . .

, B, . . .

, An),

where B in this last line occurs in the i-th place.

Proof. Say i = 1. We expand

n

D(B, A
2

, ..., An) = L xjD(Aj, A
2

,
.

.., An),
j= 1

and use Proposition 4.1 to get what we want (all terms on the right are equal
to 0 except the one having x

1
in it).

Corollary 4.5. Assume that R is a field. Then A 1, . . .

,
An are linearly

dependent if and only if D(A 1, . . .
, An) = o.

Proof. Assume we have a relation

Xl A
1

+ . . . + xnA
n

= 0

with Xi E R. Then XiD(A) = 0 for all i. If some Xi =I 0 then D(A) = o. Con-

versely, assume that A 1, . . .

,
An are linearly independent. Then we can express

the unit vectors e 1, . . .

,
en as linear combinations

e
1

= bllA
1

+ . . . + blnA
n

,

en = b
n 1

A
1

+ . . . + b
nn

An
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with bij E R. But

1 = D(e 1, . . .

, en).

Using a previous lemma, we know that this can be expanded into a sum of

terms involving D(A 1, . . .

, An), and hence D(A) cannot be o.

Proposition 4.6. If determinants exist, they are unique. If A 1, . . .
,

An are

the column vectors of dimension n, of the matrix A = (aij), then

D(A 1, . . .
, An) = L £(a)aa(l), 1

. . .

aa(n),n'
0'

where the sum is taken over all permutations a of {I, . . .

, n}, and £(a) is the

sign of the permutation.

Proof. Let e
l

,
. . .

,
en be the unit vectors as usual. We can write

A
1

= a 11 e
1

+ . . . + an 1 en,

An =

alne
n

+ . . . + ann en.

Therefore

D(A 1, . . .

, An) = L £(a)aa(l),l
. . .

aa(n),n
0'

by the lemma. This proves that the value of the determinant is uniquely deter-

mined and is given by the expected formula.

Corollary 4.7. Let lp : R R' be a ring-homomorphism into a commutative

ring. If A is a square matrix in R, define lpA to be the matrix obtained by

applying qJ to each component of A. Then

lp(D(A» = D(lpA).

Proof. Apply lp to the expression of Proposition 4.6.

Proposition 4.8. If A is a square matrix in R then

D(A) = D('A).

Proof. In a product

aa(l),l
. . .

aa(n),n

each integer k from 1 to n occurs precisely once among the integers a( 1), . . .

, a(n).
Hence we can rewrite this product in the form

al,a-t(l)... a
n,a-

1
(n).
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Since £(a) = £(a- 1), we can rewrite the sum in Proposition 4.6 in the form

L £(a-
l

)al,a- 1
(l)

...

a",a 1(,,).
a

In this sum, each term corresponds to a permutation a. However, as a ranges

over all permutations, so does a- 1. Hence our sum is equal to

L £(a)a 1 , a(l)
. . .

an, a(,,) ,

a

which is none other than DCA), as was to be shown.

Corollary 4.9. The determinant is multilinear and alternating with respect

to the rows of a matrix.

We shall now prove existence, and prove simultaneously one additional

important property of determinants.

When n = 1, we define D(a) = a for any a E R.

Assume that we have proved the existence of determinants for all integers
< n (n > 2). Let A be an n x n matrix in R, A = (aij). We let A

ij
be the

(n
-

1) x (n
-

1) matrix obtained from A by deleting the i-th row and j-th
column. Let i be a fixed integer, 1 < i < n. We define inductively

D(A) = ( _1)i+ lailD(Ail ) + . . . + ( -1)i+nain D(A i,,).

(This is known as the expansion of D according to the ;-th row.) We shall prove

that D satisfies the definition of a determinant.

Consider D as a function of the k-th column, and consider any term

_ i+j
( 1) aijD(Aij).

Ifj =I k then aij does not depend on the k-th column, and D(Aij) depends linearly
on the k-th column. Ifj = k, then aij depends linearly on the k-th column, and

D(Aij) does not depend on the k-th column. In any case our term depends

linearly on the k-th column. Since D(A) is a sum ofsuch terms, it depends linearly
on the k-th column, and thus D is multilinear.

Next, suppose that two adjacent columns of A are equal, say A
k

= Ak+ 1.

Letj be an index =1= k and =I k + 1. Then the matrix A
ij

has two adjacent equal

columns, and hence its determinant is equal to O. Thus the term corresponding
to an index j =f. k or k + 1 gives a zero contribution to D(A). The other two

terms can be written

i+k i+k+ 1

( -1) aikD(A ik) + ( -1) ai,k+ 1D(Ai,k+ 1).

The two matrices Aik and Ai,k+ 1 are equal because of our assumption that the

k-th column of A is equal to the (k + 1 )-th column. Similarly, aik
=

ai, k + 1.
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Hence these two terms cancel since they occur with opposite signs. This proves

that our form is alternating, and gives:

Proposition 4.10. Determinants exist and satisfy the rule of expansion

according to rows and columns.

(For columns, we use the fact that D(A) = DCA).)

Example. We mention explicity one of the most important determinants.

Let Xl' . . .
,

X
n

be elements of a commutative ring. The Vandermonde deter-

minant V = V(x I, . . .

,
x

n ) of these elements is defined to be

1 1

Xl X2

V=

n-I n-I
Xl X2

1

X
n

n-I
X

n

whose value can be determined explicitly to be

V = n (x.
-

x;).
'

<
. J

I ]

If the ring is entire and X; =1= Xj for i =1= j, it follows that V =1= o. The proof for

the stated value is done by multiplying the next to the last row by X I and subtracting
from the last row. Then repeat this step going up the rows, thus making the

elements of the first column equal to 0, except for 1 in the upper left-hand corner.

One can then expand according to the first column, and use the homogeneity

property and induction to conclude the proof of the evaluation of V.

Theorem 4.11. Let E be a module over R, and let V l ,
. . .

,
V

n
be elements ofE.

Let A = (aij) be a matrix in R, and let

A(:)
=

(:)
Let be an n-multilinear alternating map on E. Then

(Wl' . . .

,
w

n) = D(A) (Vl' . . .

,
v

n).

Proof. We expand

(allVl + ... + alnvn ,..., anlv 1 + ... + annvn),

and find precisely what we want, taking into account D(A) = DCA).
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Let E, F be modules, and let L:(E, F) denote the set of n-multilinear alter-

nating maps of E into F. If F = R, we also writeL:(E, R) = L:(E). It is clear

that L:(E, F) is a module over R, i.e. is closed under addition and multiplication

by elements of R.

Corollary 4.12. Let E be afree module over R, and let {VI' . . .

,
v

n } be a basis.

Let F be any module, and let W E F. There exists a unique n-multilinear

alternating map

w : Ex. .. x E F

such that w(Vl' . . .

, v
n) = w.

Proof. Without loss of generality, we may assume that E = R(n), and then,
if A 1, . . .

, An are column vectors, we define

w(A 1,..., An) = D(A)w.

Then w obviously has the required properties.

Corollary 4.13. IfE is free over R, and has a basis consisting of n elements,
then L:(E) is free over R, and has a basis consisting of 1 element.

Proof. We let l be the multilinear alternating map taking the value 1 on a

basis {v 1, . . .

,
v

n }. Any element q> E L:(E) can then be written in a unique way

as Cl' with some c E R, namely c = q>(Vl" . .

,
v

n). This proves what we wanted.

Any two bases of L:(E) in the preceding corollary differ by a unit in R. In

other words, if is a basis of L:(E), then = Cl = c for some c E R, and c

must be a unit. Our l depends of course on the choice of a basis for E. When

we consider R(n), our determinant D is precisely l' relative to the standard

basis consisting of the unit vectors e
l

,
. . .

,
en.

It is sometimes convenient terminology to say that any basis of L:(E) is a

determinant on E. In that case, the corollary to Cramer's rule can be stated as

follows.

Corollary 4.14. Let R be a field. Let E be a vector space of dimension n.

Let be any determinant on E. Let v l ,. . .

, V
n

E E. In order that {v l ,
. . .

,
v

n }
be a basis of E it is necessary and sufficient that

(Vl"'.' v
n) =I o.

Proposition 4.15. Let A, B be n x n matrices in R. Then

D(AB) = D(A)D(B).
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Proof. This is actually a corollary of Theorem 4.11. We take v l'
. . .

,
V

n

to be the unit vectors e
1

,
. . .

, en, and consider

AB

We obtain

D(w l ,.
. .

,
W

n) = D(AB)D(e
1

,.
. .

, en).

On the other hand, by associativity, applying Theorem 4.11 twice,

D(Wb . . .

,
W

n) = D(A)D(B)D(e1,. . .
, en).

Since D(e
1

,
. . .

, en) = 1, our proposition follows.

Let A = (aij) be an n x n matrix in R. We let

A = (bij)

be the matrix such that

i+jb.. = ( - 1 ) D(A ..)IJ JI
.

(Note the reversal of indices!)

Proposition 4.16. Let d = D(A). Then AA = AA = dIe The determinant

D(A) is invertible in R if and only ifA is invertible, and then

1
1-

A
-

=

d
A.

Proof For any pair of indices i, k the ik-component of AA is

ailblk + ai2b2k + ... + ainbnk = ail( -l)k+ ID(Akl ) + ... + ain( -l)k+nD(Akn).

If i = k, then this sum is simply the expansion of the determinant according
to the i-th row, and hence this sum is equal to d. If i =I k, let A be the matrix

obtained from A by replacing the k-th row by the i-th row, and leaving all other

rows unchanged. Ifwe delete the k-th row and thej-th column from A, we obtain

the same matrix as by deleting the k-th row andj-th column from A. Thus

Ak
' = Ak

'

1 l'

and hence our sum above can be written

k+ 1
-

k+
-

ail ( -1) D(Akl ) + . . . + ain( -1) nD(Akn).
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This is the expansion of the determinant of A according to the i-th row. Hence

D(A) = 0, and our sum is O. We have therefore proved that the ik-component
of AA is equal to d if i = k (i.e. if it is a diagonal component), and is equal to 0

otherwise. This proves that AA = dIe On the other hand, we see at once from
- ......,

the definitions that = !4. Then

- -.......,

t(AA) = !4 = = dI,

and consequently, AA = dI also, since t(dI) = dIe When d is a unit in R, then A

is invertible, its inverse being d
- 1 A. Conversely, ifA is invertible, and AA

- 1
= I,

then D(A)D(A -1) = 1, and hence D(A) is invertible, as was to be shown.

Corollary 4.17. Let F be any R-module, and let WI' . . . , W
n

be elements of
F. Let A =

(aij) be an n x n matrix in R. Let

allwl + .. · + alnwn

=

VI

anlwl + .. · + annwn

= v
n

.

Then one can solve explicitly

D(A)wI WI

V
n

VI
-

= D(A) = A

D(A)wn
W

n

In particular, if Vi
= 0 for all i, then D(A)wi

= 0 for all i. If Vi
= 0 for all i

and F is generated by WI, . . . ,
W

n '
then D(A)F = o.

Proof. This is immediate from the relation AA = D(A)I, using the remarks

in 3 about applying matrices to column vectors whose components lie in the

module.

Proposition 4.18. Let E, F be free modules of dimension n over R. Let

f: E F be a linear map. Let CB, CB' be bases of E, F respectively over R.

Then f is an isomorphism if and only if the determinant of its associated

matrix M,(f) is a unit in R.

Proof Let A = M,(f). By definition, f is an isomorphism if and only
if there exists a linear map 9 : F E such that 9

0 f = id and fog = ide If f is

an isomorphism, and B = M'(g), then AB = BA = I. Taking the determinant

of the product, we conclude that D(A) is invertible in R. Conversely, if D(A)
is a unit, then we can define A-I by Proposition 4.16. This A-I is the associated

matrix of a linear map g:F E which is an inverse for f, as desired.

Finally, we shall define the determinant of an endomorphism.
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Let E be a free module over R, and let (B be a basis. Let f: E E be an

endomorphism of E. Let

M = M(f).

If (B' is another basis of E, and M' = M:(f), then there exists an invertible

matrix N such that

M' = NMN-
l

.

Taking the determinant, we see that D(M') = D(M). Hence the determinant

does not depend on the choice of basis, and will be called the determinant of the

linear mapf We shall give below a characterization of this determinant which

does not depend on the choice of a basis.

Let E be any module. Then we can view L:(E) as a functor in the variable E

(contravariant). In fact, we can view L:(E, F) as a functor of two variables,
contravariant in the first, and covariant in the second. Indeed, suppose that

E'.4 E

is a linear map. To each multilinear map q> : E(n) F we can asociate the

composite map q>
0 j'(n),

E
' , /(n) (()

X ... x E -----.E x ... x E F

where f(n) is the product of f with itself n times. The map

L:(f) : L:(E, F) L:(E', F)

given by

q> q> 0 f(n),

is obviously a linear map, which defines our functor. We shall sometimes write

f* instead of L;(f).
In particular, consider the case when E = E' and F = R. We get an induced

map

f* : L:(E) L:(E).

Proposition 4.19. Let E be afree module over R, ofdimension n. Let {d} be a

basis of L:(E). Let f: E E be an endomorphism of E. Then

f* = D(f).

Proof This is an immediate consequence of Theorem 4.11. Namely, we

let {v t ,.. ., v
n } be a basis of E, and then take A (or ) to be a matrix offrelative

to this basis. By definition,

f*(Vl' . . .

,
v

n) = (f(Vl)' . . .

, f(vn»,
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and by Theorem 4.11, this is equal to

D(A) (Vb . . .

,
v

n).

By Corollary 4.12, we conclude that f* = D(A) since both of these forms take

on the same value on (VI' . . .
,

v
n).

The above considerations have dealt with the determinant as a function on

all endomorphisms of a free module. One can also view it multiplicatively, as

a homomorphism.

det: GLn(R) R*

from the group of invertible n x n matrices over R into the group of units of R.

The kernel of this homomorphism, consisting of those matrices with deter-

minant 1, is called the special linear group, and is denoted by SLn(R).

We now give an application of determinants to the situation of a free module

and a submodule considered in Chapter III, Theorem 7.8.

Proposition 4.20. Let R be a principal entire ring. Let F be a free module

over R and let M be a finitely generated submodule. Let {el' . . .
, em' . . . } be

a basis ofF such that there exist non-zero elements ai, . . . , am E R such that:

(i) The elements aiel, . . .
, amemform a basis ofMover R.

(ii) We have a; I a;+ I for i = 1,..., m
- 1.

Let L be the set of all s-multilinear alternating forms on F. Let J
s

be the ideal

generated by all elements f(YI' . . .
, Ys)' withf E L and YI' . . .

, Ys E M. Then

J
s

= (a 1
. . . as).

Proof. We first show that J
s
c (al . . . as). Indeed, an element Y EM can be

written in the form

Y
=

clalel + ... + crarer
.

Hence if Yl' . . .
, Ys EM, andfis multilinear alternating on F, thenf(YI' . . . , Ys)

is equal to a sum in terms of type

Cit
. . .

Cisait
. . .

aisf(eit' . . .

, eis).

This is non-zero only when eit' . . .
, ei

s

are distinct, in which case the product

al
. . .

as divides this term, and hence J
s

is contained in the stated ideal.

Conversely, we show that there exists an s-multilinear alternating form which

gives precisely this product. We deduce this from determinants. We can write

F as a direct sum

F = (e l' . . .
,

er) F'r
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with some submodule Fr. Let}; (i = 1,..., r) be the linear map F -+ R such

that};(ej) = ij' and such that}; has value 0 on Fr. For V l ,
. . .

,
V

s
E F we define

f(vl' . . .

,
v

s) = det(};(vj».

Then f is multilinear alternating and takes on the value

f(e2' . . .

,
es) = 1,

as well as the value

f(aleb...,ases) =

al ...a
s

.

This proves the proposition.

The uniqueness of Chapter III, Theorem 7.8 is now obvious, since first (al)
is unique, then (ala2) is unique and the quotient (a2) is unique, and so forth by
induction.

Remark. Compare the above theorem with Theorem 2.9 of Chapter XIX,

in the theory of Fitting ideals, which gives a fancier context for the result.

5. DUALITY

Let R be a commutative ring, and let E, F be modules over R. An R-

bilinear form on E x F is a map

f:E x FR

having the following properties: For each x E E, the map

yf(x, y)

is R-linear, and for each y E F, the map

x f(x, y)

is R-linear. We shall omit the prefix R- in the rest of this section, and write

<x, y)/ or <x, y) instead of f(x, y). If x E F, we write x -1 y if <x, y) = O.

Similarly, if S is a subset of F, we define x -1 S if x -1 y for all YES. We then say

that x is perpendicular to S. We let SJ.. consist of all elements of E which are

perpendicular to S. It is obviously a submodule of E. We define perpendicu-

larity on the other side in the same way. We define the kernel off on the left

to be F1. and the kernel on the right to be E1.. We say thatfis non-degenerate
on the left if its kernel on the left is O. We say that f is non-degenerate on the

right if its kernel on the right is o. If Eo is the kernel off on the left, then we
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get an induced bilinear map

EIEo x F R

which is non-degenerate on the left, as one verifies trivially from the definitions.

Similarly, if F0 is the kernel off on the right, we get an induced bilinear map

EIEo x FIFo R

which is non-degenerate on either side. This map arises from the fact that the

value <x, y) depends only on the coset of x modulo Eo and the coset of y

modulo Fo.

We shall denote by L
2

(E, F; R) the set of all bilinear maps of E x F into R.

It is clear that this set is a module (i.e. an R-module), addition of maps being the

usual one, and also multiplication of maps by elements of R.

The form f gives rise to a homomorphism

lpf : E HomR(F, R)

such that

lpf(x)(y) = f(x, y) = <x, y),

for all XE Eandye F. We shall call HomR(F, R) the dual module ofF, and denote

it by F
V

. We have an isomorphism

L2(E, F; R) HomR(E, HomR(F, R)

given by ft---+ lpf, its inverse being defined in the obvious way: If

lp : E HomR(F, R)

is a homomorphism, we let f be such that

f(x, y) = lp(x) (y).

We shall say that f is non-singular on the left if lpf is an isomorphism, in

other words if our form can be used to identify E with the dual module of F.

We define non-singular on the right in a similar way, and say that f is non-

singular if it is non-singular on the left and on the right.

Warning: Non-degeneracy does not necessarily imply non-singularity.

We shall now obtain an isomorphism

I EndR(E) f-+ L
2

(E, F; R)

depending on a fixed non-singular bilinear map f: E x F R.



524 MATRICES AND LINEAR MAPS XIII, 5

Let A E EndR(E) be a linear map of E into itself. Then the map

(x, y) <Ax, y) = <Ax, y)/

is bilinear, and in this way, we associate linearly with each A E EndR(E) a bilinear

map in L
2

(E, F; R).

Conversely, let h : E x F R be bilinear. Given x E E, the map hx : F R

such that hx(Y) = h(x, y) is linear, and is in the dual space F
V

. By assumption,
there exists a unique element x' E E such that for all y E F we have

h(x, y) = <x', y).

It is clear that the association x x' is a linear map of E into itself. Thus with

each bilinear map E x F R we have associated a linear map E E.

It is immediate that the mappings described in the last two paragraphs are

inverse isomorphisms between EndR(E) and L2(E, F; R). We emphasize of

course that they depend on our form f.
Of course, we could also have worked on the right, and thus we have a

similar isomorphism

I L2(£, F; R) +-+ EndR(F) I
depending also on our fixed non-singular form f.

As an application, let A : E E be linear, and let (x, Y) (Ax, y) be its

associated bilinear map. There exists a unique linear map

tA : F F

such that

<Ax, y) = <x, 'Ay)

for all x E E and Y E F. We call
t
A the transpose of A with respect to f

It is immediately clear that if, A, B are linear maps of E into itself, then for

CE R,

t(cA) = c'A, t(A + B) = tA + tB, and t(AB) = tBtA.

More generally, let E, F be modules with non-singular bilinear forms denoted

by ( , )E and ( , )F respectively. Let A: E F be a linear map. Then by the

non-singularity of ( , )E there exists a unique linear map tA: F E such that

(Ax, Y)F = (x, tAY)E for all x E E and y E F.

We also call tA the transpose with respect to these forms.

Examples. For a nice classical example of a transpose, see Exercise 33.

For the systematic study when a linear map is equal to its transpose, see the
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spectral theorems of Chapter XV. Next I give another example of a transpose

from analysis as follows. Let E be the (infinite dimensional) vector space of

ex functions on R, having compact support, i.e. equal to 0 outside some finite

interval. We define the scalar product

x

(f, g) = f f(x)g(x)dx.
-x

Let D: E E be the derivative. Then one has the formula

(Df, g) = -(f, Dg).

Thus one says that tD = -D, even though the scalar product is not "non-singular",
but much of the formalism of non-singular forms goes over. Also in analysis,
one puts various norms on the spaces and one extends the bilinear form by

continuity to the completions, thus leaving the domain of algebra to enter the

domain of estimates (analysis). Then the spectral theorems become more com-

plicated in such analytic contexts.

Let us assume that E = F. Let f: E x E R be bilinear. By an auto-

morphism of the pair (E,/), or simply off, we shall mean a linear automorphism
A : E E such that

<Ax, Ay> = <x, y>

for all x, y E E. The group of automorphisms off is denoted by Aut(f).

Proposition 5.1. Let f:E x E R be a non-singular bilinear form. Let

A: E E be a linear map. Then A is an automorphism of f if and only if
t
AA = id, and A is invertible.

Proof From the equality

<x, y> = <Ax, Ay> = <x, tAAy>

holding for all x, y E E, we conclude that
t
A A = id if A is an automorphism of f

The converse is equally clear.

Note. If E is free and finite dimensional, then the condition
f
AA = id

implies that A is invertible.

Let f: E x E R be a bilinear form. We say that f is symmetric if

f(x, y) = f(y, x) for all x, y E E. The set of symmetric bilinear forms on E will

be denoted by L;(E). Let us take a fixed symmetric non-singular bilinear form

f on E, denoted by (x, y) <x, y>. An endomorphism A : E E will be said

to be symmetric with respect to f if fA = A. It is clear that the set of sym-

metric endomorphisms of E is a module, which we shall denote by Sym(E).
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Depending on our fixed symmetric non-singular f, we have an isomorphism

L;(E) +-+ Sym(E)

which we describe as follows. If 9 is symmetric bilinear on E, then there exists

a unique linear map A such that

g(x, y) = (Ax, y)

for all x, y E E. Using the fact that both f, 9 are symmetric, we obtain

<Ax, y) = <Ay, x) = <y, 'Ax) = <'Ax, y).

Hence A = 'A. The association 9 A gives us a homomorphism from L;(E)
into Sym(E). Conversely, given a symmetric endomorphism A of E, we can

define a symmetric form by the rule (x, y) <Ax, y), and the association of

this form to A clearly gives a homomorphism of Sym(E) into L;(E) which is

inverse to the preceding homomorphism. Hence Sym(E) and L;(E) are iso-

morphic.
We recall that a bilinear form g: E x E R is said to be alternating if

g(x, x) = 0 for all x E E, and consequently g(x, y) = -

g(y, x) for all x, y E E.

The set of bilinear alternating forms on E is a module, denoted by L;(E).
Let f be a fixed symmetric non-singular bilinear form on E. An endo-

morphism A: E E will be said to be skew-symmetric or alternating with

respect to f if 'A = - A, and also <Ax, x) = 0 for all x E E. If for all a E R,

2a = 0 implies a = 0, then this second condition <Ax, x) = 0 is redundant,
because <Ax, x) = -

<Ax, x) implies <Ax, x) = O. It is clear that the set of

alternating endomorphisms of E is a module, denoted by Alt(E). Depending
on our fixed symmetric non-singular form f, we have an isomorphism

L(E) +-+ Alt(E)

described as usual. If 9 is an alternating bilinear form on E, its corresponding
linear map A is the one such that

g(x, y) = <Ax, y)

for all x, y E E. One verifies trivially in a manner similar to the one used in the

symmetric case that the correspondence 9 A gives us our desired iso-

morphism.

Examples. Let k be a field and let E be a finite-dimensional vector space

over k. Letf: E x E --+ E be a bilinear map, denoted by (x, y) xy. To each
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X E E, we associate the linear map Ax : E E such that

Ax(Y) =

xy.

Then the map obtained by taking the trace, namely

(x, y) tr(Axy)

is a bilinear form on E. If xY
=

yx, then this bilinear form is symmetric.
Next, let E be the space of continuous functions on the interval [0, 1]. Let

K(s, t) be a continuous function of two real variables defined on the square

o < s < 1 and 0 < t < 1. For lp, t/J E E we define

<cp, t/J> = IIcp(s)K(s, t)t/J(t) ds dt,

the double integral being taken on the square. Then we obtain a bilinear form

on E. If K(s, t) = K(t, s), then the bilinear form is symmetric. When we discuss

matrices and bilinear forms in the next section, the reader will note the similarity
between the preceding formula and the bilinear form defined by a matrix.

Thirdly, let U be an open subset of a real Banach space E (or a finite-dimen-

sional Euclidean space, if the reader insists), and let f: U R be a map which

is twice continuously differentiable. For each x E U, the derivative

Df(x): E R is a continuous linear map, and the second derivative D
2

f(x)
can be viewed as a continuous symmetric bilinear map of E x E into R.

6. MATRICES AND BILINEAR FORMS

We shall investigate the relation between the concepts introduced above and

matrices. Letf : E x F R be bilinear. Assume that E, F are free over R. Let

(B = {v l ,
. .

.,
v

m } be a basis for E over R, and let (B' = {Wl, . .
.,

w
n } be a basis

for F over R. Let gij
= <Vi' W

j). If

x = X 1 V 1 + . . . + x
m

v
m

and

Y
=

Yl Wl + . . . + Yn w
n

are elements of E and F respectively, with coordinates Xi' Yj E R, then

m n

<x, y) = L L gijXiYj'
i= 1 j= 1



528 MATRICES AND LINEAR MAPS XIII, 6

Let X, Y be the column vectors of coordinates for x, y respectively, with respect

to our bases. Then

<x, y) = tXGY

where G is the matrix (gij). We could write G = M,(f). We call G the matrix

associated with the form/relative to the bases CB, (1\'.

Conversely, given a matrix G (of size m x n), we get a bilinear form from

the map

(X, Y) tXG Y.

In this way, we get a correspondence from bilinear forms to matrices and back,
and it is clear that this correspondence induces an isomorphism (of R-modules)

L2(E, F; R) +-+ Mat
m x n(R)

given by

fM,(f).

The two maps between these two modules which we described above are clearly
inverse to each other.

If we have bases CB = {Vb...' v
n } and CB' = {w}, ...,

w
n } such that

<Vi' W
j)

= ij, then we say that these bases are dual to each other. In that case,

if X is the coordinate vector of an element of E, and Y the coordinate vector of

an element of F', then the bilinear map on X, Y has the value

X . Y =

Xl Y 1 + . . . + X
n Yn

given by the usual dot product.
It is easy to derive in general how the matrix G changes when we change

bases in E and F'. However, we shall write down the explicit formula only when

E = F' and CB = CB'. Thus we have a bilinear formf: E x E R. Let e be

another basis of E and write X<B and Xe for the column vectors belonging to

an element x of E, relative to the two bases. Let C be the invertible matrix

M(id), so that

X<B = CXe.

Then our form is given by

<x, y) = txetCGCYe
.

We see that

(1) M(f) = tCM(f)C.

In other words, the matrix of the bilinear form changes by the transpose.
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IfF is free over R, with a basis {11b.", 11n}, then HomR(F, R) is also free,
and we have a dual basis {111, . . .

, 11} such that

'n ( 'no) = 5..
°11 O'l ')"

This has already been mentioned in Chapter III, Theorem 6. 1.

Proposition 6.1. Let E, F be free modules of dimension n over R and let

f: E x F' R be a bilinear form. Then the following conditions are equiv-
alent:

f is non-singular on the left.

f is non-singular on the right.

f is non-singular.

The determinant of the matrix off relative to any bases is invertible in R.

Proof Assume that f is non-singular on the left. Fix bases of E and F

relati ve to which we write elements of these modules as column vectors, and

giving rise to the matrix G forf Then our form is given by

(X, Y)'XGY

where X, Yare column vectors with coefficients in R. By assumption the map

X'XG

gives an isomorphism between the module of column vectors, and the module

of row vectors of length n over R. Hence G is invertible, and hence its deter-

minant is a unit in R. The converse is equally clear, and if det(G) is a unit, we

see that the map

YGY

must also be an isomorphism between the module of column vectors and itself.

This proves our assertion.

We shall now investigate how the transpose behaves in terms of matrices.

Let E, F be free over R, of dimension n.

Letf: E x F -+ R be a non-singular bilinear form, and assume given a basis

(B of E and (B' of F. Let G be the matrix of f relative to these bases. Let

A : E -+ E be a linear map. If x E E, y E F', let X, Y be their column vectors

relative to (B, (B'. Let M be the matrix of A relative to (B. Then for x E E and

y E F we have

<Ax, y) = '(MX)GY = 'X'MGY.

Let N be the matrix of
'
A relative to the basis (B'. Then NY is the column vector

of 'Ay relative to (B'. Hence

<x, 'Ay) = 'XGNY.
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From this we conclude that tMG = GN, and since G is invertible, we can solve

for N in terms of M. We get:

Proposition 6.2. Let E, F befree over R, ofdimension n. Letf : E x F R

be a non-singular bilinear form. Let CB, CB' be bases of E and F respectively
over R, and let G be the matrix offrelative to these bases. Let A : E E be a

linear map, and let M be its matrix relative to CB. Then the matrix of tA

relative to CB' is

(G
- 1

)tMG.

Corollary 6.3. If G is the unit matrix, then the matrix of the transpose is

equal to the transpose of the matrix.

In terms of matrices and bases, we obtain the following characterization

for a matrix to induce an automorphism of the form.

Corollary 6.4. Let the notation be as in Proposition 6.2, and let E = F,
CB = 03'. An n x n matrix M is the matrix of an automorphism of the form

f (relative to our basis) if and only if

tMGM = G.

If this condition is satisfied, then in particular, M is invertible.

Proof. We use the definitions, together with the formula given in

Proposition 6.2. We note that M is invertible, for instance because its deter-

minant is a unit in R.

A matrix M is said to be symmetric (resp. alternating) if tM = M (resp.
t

M = - M and the diagonal elements of Mare 0).
Let f: E x E R be a bilinear form. We say that f is symmetric if

f(x, y) = f(y, x) for all x, y E E. We say that f is alternating iff(x, x) = 0 for

all x E E.

Proposition 6.5. Let E be a free module of dimension n over R, and let CB

be afixed basis. The map

f M(f)

induces an isomorphism between the module of symmetric bilinear forms on

E x E (resp. the module of alternating forms on E x E) and the module of

symmetric n x n matrices over R (resp. the module of alternating n x n

matrices over R).
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Proof. Consider first the symmetric case. Assume thatfis symmetric. In

terms of coordinates, let G = M(f). Our form is given by 'XGY which must

be equal to 'YGX by symmetry. However, 'XGY may be viewed as a 1 x 1

matrix, and is equal to its transpose, namely 'Y'GX. Thus

'YGX = 'Y'GX

for all vectors X, Y. It follows that G = 'G. Conversely, it is clear that any

symmetric matrix defines a symmetric form.

As for the alternating case, replacing x by x + y in the relation <x, x) = 0

we obtain

<x, y) = <y, x) = o.

In terms of the coordinate vectors X, Y and the matrix G, this yields

'XGY + 'YGX = O.

Taking the transpose of, say, the second of the 1 x 1 matrices entering in this

relation, yields (for all X, Y):

tXGY + 'X'GY = O.

Hence G + 'G = O. Furthermore, letting X be anyone of the unit vectors

'(0, . . .

, 0, 1, 0, . . .

, 0)

and using the relation 'XGX = 0, we see that the diagonal elements of G

must be equal to O. Conversely, if G is an n x n matrix such that 'G + G = 0,

and such that g ii
= 0 for i = 1, . . .

,
n then one verifies immediately that the

map

(X, Y)'XGY

defines an alternating form. This proves our proposition.

Of course, if as is usually the case, 2 is invertible in R, then our condition
t
M = - M implies that the diagonal elements of M must be o. Thus in that

case, showing that G + tG = 0 implies that G is alternating.

7. SESQUILINEAR DUALITY

There exist forms which are not quite bilinear, and for which the results

described above hold almost without change, but which must be handled

separately for the sake of clarity in the notation involved.
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Let R have an automorphism of period 2. We write this automorphism as

a a (and think of complex conjugation).

Following Bourbaki, we say that a map

f:Exf-+R

is a sesquilinear form if it is Z-bilinear, and if for x E E, Y E F, and a E R we

have

f(ax, y) = af(x, y)

and

f(x, ay) = af(x, y).

(Sesquilinear means I! times linear, so the terminology is rather good.)
Let E, E' be modules. A map qJ : E E' is said to be anti-linear (or semi-

linear) if it is Z-linear, and qJ(ax) = aqJ(x) for all x E E. Thus we may say that

a sesquilinear form is l inear in its first variable, and anti-linear in its second

variable. We let HomR(E, E') denote the module of anti-linear maps of E

into E'.

We shall now go systematIcally through the same remarks that we made

previously for bilinear forms.

We define perpendicularity as before, and also the kernel on the right and

on the left for any sesquilinear form f. These kernels are submodules, say Eo
and fo, and we get an ind uced sesquilinear form

EIEo x FIFo R,

which is non-degenerate on either side.

Let F be an R-module. We define its anti-module F to be the module whose

additive group is the same as f, and such that the operation R x F F is

given by

(a, y) aYe

Then F is a module. We have a natural isomorphism

HomR(F, R) +-+ HomR(f, R),

as R-modules.

The sesquilinear form f: E x F -+ R induces a linear map

qJf : E HomR(F, R).

We say thatfis non-singular on the left if qJf is an isomorphism. Similarly, we

have a corresponding linear map

qJf : F HomR(E, R)
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from F into the dual space of E, and we say that f is non-singular on the right
if qJf is an isomorphism. We say that f is non-singular if it is non-singular on

the left and on the right.
We observe that our sesquilinear formfcan be viewed as a bilinear form

f : E x F R,

and that our notions of non-singularity are then compatible with those defined

previously for bilinear forms.

If we have a fixed non-singular sesquilinear form on E x F, then depending
on this form, we obtain an isomorphism between the module of sesquilinear
forms on E x F and the module of endomorphisms of E. We also obtain an

anti-isomorphism between these modules and the module of endomorphisms
of F. In particular, we can define the analogue of the transpose, which in the

present case we shall call the adjoint. Thus, letf: E x F R be a non-singular

sesquilinear form. Let A : E -+ E be a linear map. There exists a unique linear

map

A
*

: f" -+ f"

such that

(Ax, y) = (x, A*y)

for all x E E and y E f". Note that A
* is linear, not anti-linear. We call A

* the

adjoint of A with respect to our form}: We have the rules

(cA)* = cA*, (A + B)* = A
*

+ B*, (AB)* = B*A*

for all linear maps A, B of E into itself, and C E R.

Let us assume that E = f". Let f: E x E -+ R be sesquilinear. By an

automorphism offwe shall mean a linear automorphism A : E E such that

(Ax, Ay) = (x, y)

just as we did for bilinear forms.

Proposition 7.1. Let f: E x E R be a non-singular sesquUinear form.
Let A : E E be a linear map. Then A is an automorphism o.f.f if and only

f A
*
A = id, and A is invertible.

The proof, and also the proofs of subsequent propositions, which are

completely similar to those of the bilinear case, will be omitted.

A sesquilinear form g : E x E R is said to be hermitian if

g(x, y) = g(y, x)

for all x, y E E. The set of hermitian forms on E will be denoted by L;(E). Let

Ro be the subring of R consisting of all elements fixed under our automorphism
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a a (i.e. consisting of all elements a E R such that a = a). Then L(E) is an

Ro-module.
Let us take a fixed hermitian non-singular form f on E, denoted by

(x, y) <x, y). An endomorphism A : E E will be said to be hermitian

with respect tofif A *
= A. It is clear that the set of hermitian endomorphisms

is an Ro-module, which we shall denote by Herm(E). Depending on our fixed
hermitian non-singular form f, we have an Ro-isomorphism

L(E) Herm(E)

described in the usual way. A hermitian form g corresponds to a hermitian

map A if and only if

g(x, y) = <Ax, y)

for all x, y E E.

We can now describe the relation between our concepts and matrices, just
as we did with bilinear forms.

We start with a sesquilinear form f: E x F R.

If E, f" are free, and we have selected bases as before, then we can again
associate a matrix G with the form, and in terms of coordinate vectors X, Y

our sesquilinear form is given by

(X, y)tXG Y
,

where Y is obtained from Y by applying the automorphism to each component
of Y.

If E = F' and we use the same basis on the right and on the left, then with

the same notation as that used in formula (I), if f is sesquilinear, the formula

now reads

(IS) M(f) = teM(f)C.

The automorphism appears.

Proposition 7.2. Let E, f" be free modules of dimension n over R, and let

f': E x F R be a sesquilinear form. Then the following conditions are

equivalent.

f is non-singular on the left.

f is non-singular on the right.

f is non-singular.

The determinant of the matrix of f relative to any bases is invertible in R.
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Proposition 7.3. Let E, F befree over R, ofdimension n. Letf : E x F R

be a non-singular sesquilinearform. Let CB, CB' be bases ofE and F respectively
over R, and let G be the matrix of f relative to these bases. Let A : E E be

a linear map, and let M be its matrix relative to <:B. Then the matrix of A *

relative to CB' is

(G -l)'MG.

Corollary 7.4. If G is the unit matrix, then the matrix of A
*

is equal to
'
M.

Corollary 7.5. Let the notation be as in the proposition, and let CB = CB'

be a basis of E. An n x n matrix M is the matrix of an automorphism of f
(relative to our basis) if and only if

tMGM = G.

A matrix M is said to be hermitian if tM = M.

Let Ro be as before the subring of R consisting of all elements fixed under

our automorphism a a (i.e. consisting of all elements a E R such that a = a).

Proposition 7.6. Let E be a free module of dimension n over R, and let CB

be a basis. The map

f M(f)

induces an Ro-isomorphism between the Ro-module of hermitian forms on E

and the Ro-module of n x n hermitian matrices in R.

Remark. If we had assumed at the beginning that our automorphism
a a has period 2 or 1 (i.e. if we allow it to be the identity), then the results

on bilinear and symmetric forms become special cases of the results of this

section. However, the notational differences are sufficiently disturbing to warrant

a repetition of the results as we have done.

Terminology

For some confusing reason, the group of automorphisms of a symmetric

(resp. alternating, resp. hermitian) form on a vector space is called the orthogonal

(resp. symplectic, resp. unitary) group of the form. The word orthogonal is

especially unfortunate, because an orthogonal map preserves more than

orthogonality: It also preserves the scalar product, i.e. length. Furthermore,

the word symplectic is also unfortunate. It turns out that one can carry out a

discussion of hermitian forms over certain division rings (having automorphisms
of order 2), and their group of automorphisms have also been called symplectic,

thereby creating genuine confusion with the use of the word relative to alter-

nating forms.
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In order to unIfy and improve the terminology, I have discussed the matter

with several persons, and it seems that one could adopt the following con-

ventions.

As said in the text, the group of automorphisms of any formf is denoted by

Aut(f).
On the other hand, there is a standard form, described over the real numbers

in terms of coordinates by

f(x, x) = xi + . . . + x;,

over the complex numbers by

f(x, x) = XIX I + ... + XnXn '

and over the quaternions by the same formula as in the complex case. The

group of automorphisms of this form would be called the unitary group, and

be denoted by Un. The points of this group in the reals (resp. complex, resp.

quaternions) would be denoted by

Un(R), Un(C), Un(K),

and these three groups would be called the real unitary group (resp. complex

unitary group, resp. quaternion unitary group). Similarly, the group of points
of Un in any subfield or subring k of the quaternions would be denoted by Un(k).

Finally, if f is the standard alternating form, whose matrix is

(- ).
one would denote its group of automorphisms by A 2n' and call it the alternating
form group, or simply the alternating group, if there is no danger of confusion

with the permutation group. The group of points of the alternating form

group in a field k would then be denoted by A 2n(k).
As usual, the subgroup of Aut(f) consisting of those elements whose

determinant is 1 would be denoted by adding the letter S in front, and would

still be called the special group. In the four standard cases, this yields

SUn(R), SUn(C), S Un(K), SA 2n(k).

8. THE SIMPLICITY OF SL
2 (F)/:I: 1

Let F be a field. Let n be a positive integer. By GLn(F) we mean the group

of n x n invertible matrices over F. By SLn(F) we mean the subgroup of those

matrices whose determinant is equal to 1. By PGLn(f) we mean the factor

group of GLn(F') by the subgroup of scalar matrices (which are in the center).
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Similarly for PSLn(F). In this section, we are interested in giving an application
of matrices to the group theoretic structure of SL

2
. The analogous statements

for SL
n

with n > 3 will be proved in the next section.

The standard Borel subgroup B of GL
2

is the group of all matrices

( :)
with a, b, d E F' and ad =f. O. For the Borel subgroup of SL

2 ,
we require in

addition that ad = 1. By a Borel subgroup we mean a subgroup which is

conjugate to the standard Borel subgroup (whether in GL
2

or SL 2 ). We let

U be the group of matrices

u(b) = ( ). with b E F.

We let A be the group of diagonal matrices

( ). with a, d E P.

Let

s(a)=( al) with a E F'*

and

w=(_ ).
For the rest of this section, we let

G = GL
2(F) or SL 2(F).

Lemma 8.1. The matrices

X(b) = ( ) and Y(c) = ( )
generate SL

2(F).

Proof. Multiplying an arbitrary element of SL 2 (F') by matrices of the

above type on the right and on the left corresponds to elementary row and

column operations, that is adding a scalar multiple of a row to the other, etc.

Thus a given matrix can always be brought into a form

( a 1)
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by such multiplications . We want to express this matrix with a =1= 1 in the form

( )G )( )e ).
Matrix multiplication will show that we can solve this equation, by selecting x

arbitrarily =1= 0, then solving for b, e, and d successively so that

-x -b
1 + bx =

a, e =

1 + bx
'

d =

1 + be
.

Then one finds 1 + be = (1 + xb)
- 1

and the two symmetric conditions

b + bed + d = 0

e + bex + x
= 0,

so we get what we want, and thereby prove the lemma.

Let U be the group of lower matrices

( ).
Then we see that

wVw-
1

= U.

Also note the commutation relation

(
a 0

)
-1

(
dO

)wOdw =Oa'

so w normalizes A. Similarly,

wBw-
l

= B

is the group of lower triangular matrices.

We note that

B = AU = VA
,

and also that A normalizes V.

There is a decomposition of G into disjoint subsets

G = B u BwB.

Indeed, view G as operating on the left of column vectors. The isotropy group of

e
l

= ()
is obviously U. The orbit Be

1
consists of all column vectors whose second
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component is O. On the other hand,

we
1

= ( _).
and therefore the orbit Bwe

l
consists of all vectors whose second component

is =I 0, and whose first component is arbitrary. Since these two orbits of Band

BwB cover the orbit Gel, it follows that the union of Band BwB is equal to G

(because the isotropy group U is contained in B), and they are obviously

disjoint. This decomposition is called the Bruhat decomposition.

Proposition 8.2. The Borel subgroup B is a maximal proper subgroup.

Proof. By the Bruhat decomposition, any element not in B lies in BwB,

so the assertion follows since B, BwB cover G.

Theorem 8.3. IfF has at least four elements, then SL2 (F) is equal to its own

commutator group.

Proof. We have the commutator relation (by matrix multiplication)

s(a)u(b)s(a)-lu(b)-l = u(ba
2
- b) = u(b(a

2
-

1».

Let G = SL 2 (F) for this proof. We let G' be the commutator subgroup, and

similarly let B' be the commutator subgroup of B. We prove the first assertion

that G = G'. From the hypothesis that F has at least four elements, we can

find an element a =I 0 in F such that a
2

=I 1, whence the commutator relation

shows that B' = U. It follows that G' ::) U, and since G' is normal, we get

G' ::) wUw-
1

.

From Lemma 8.1, we conclude that G' = G.

Let Z denote the center of G. It consists of + I, that is + the identity 2 x 2

matrix if G = SL 2(F); and Z is the subgroup of scalar matrices if G = GL2 (F).

Theorem 8.4. IfF has at least four elements, then SL2(F)/Z is simple.

The proof will result from two lemmas.

Lemma 8.5. The intersection of all conjugates of B in G is equal to z.

Proof. We leave this to the reader, as a simple fact using conjugation
with w.

Lemma 8.6. Let G = SL 2(F). If H is normal in G, then either H c Z or

H ::) G'.

Proof. By the maximality of B we must have

HB = B or HB = G.
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If HB = B then H c B. Since H is normal, we conclude that H is contained in

every conjugate of B, whence in the center by Lemma 8.5. On the other hand,

suppose that HB = G. Write

w = hb

with h E Hand b E B. Then

wUw-
l

= U = hbUb-lh-
l

= hUh-
1

C HU

because H is normal. Since U c HU and U, U generate SL 2(F), it follows that

HU = G. Hence

GIH = HUIH UI(U n H)

is abelian, whence H ::) G', as was to be shown.

The simplicity of Theorem 8.4 is an immediate consequence of Lemma 8.6.

9. THE GROUP SLn(F), n > 3.

In this section we look at the case with n > 3, and follow parts of Artin's

Geometric Algebra, Chapter IV. (Artin even treats the case of a non-commuta-

tive division algebra as the group ring, but we omit this for simplicity.)
For i,j = 1,..., nand i =I j and C E F, we let

Eij(c) =

1

1

c..
I)

o

be the matrix which differs from the unit matrix by having C in the ij-component
instead of O. We call such Eij(c) an elementary matrix. Note that

det Eij(c) = 1.

If A is any n x n matrix, then multiplication Eij(c)A on the left adds c times the

j-th row to the i-th row of A. Multiplication AEij(c) on the right adds c times

the i-th column to the j-th column. We shall mostly multiply on the left.

For fixed i =I j the map

c Ei){C)



XIII, 9 THE GROUP SLn(F), n
> 3 541

is a homomorphism of F into the multiplicative group of n x n matrices

GLn(F).

Proposition 9.1. The group SLn(F) is generated by the elementary matrices.

If A E GLn(F), then A can be written in the form

A = SD
,

",'here S E SLn(F) and D is a diagonal matrix of the form

D=

so D has 1 on the diagonal except on the lower right corner, where the com-

ponent is d = det(A).

Proof. Let A E GLn(F'). Since A is non-singular, the first component of

some row is not zero, and by an elementary row operation, we can make

all =I O. Adding a suitable multiple of the first row to the second row, we make

a21 =I 0, and then adding a suitable multiple of the second row to the first we

make all
= 1. Then we subtract multiples of the first row from the others to

make ai 1
= 0 for i =I 1.

We now repeat the procedure with the second row and column, to make

a22
= 1 and ai2

= 0 if i > 2. But then we can also make a 1 2
= 0 by sub-

tracting a suitable multiple of the second row from the first, so we can get

ai2
= 0 for i =I 2.

We repeat this procedure until we are stopped at ann
= d =I 0, and anj

= 0

for j =f. n. Subtracting a suitable multiple of the last row from the preceding
ones yields a matrix D of the form indicated in the statement of the theorem,
and concludes the proof.

Theorem 9.2. For n > 3, SLn(F) is equal to its own commutator group.

Proof. It suffices to prove that Eij(c) is a commutator. Using n > 3, let

k =I i, j. Then by direct computation,

Eij(c) = Eik(C)Ekj(I)Eik( -c)Ekj( -1)

expresses Eij(c) as a commutator. This proves the theorem.

We note that if a matrix M commutes with every element of SLn(F'), then

it must be a scalar matrix. Indeed, just the commutation with the elementary
matrices

E..( I ) = 1+1..
I} I}
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shows that M commutes with all matrices 1
ij (having 1 in the ij-component,

o otherwise), so M commutes with all matrices, and is a scalar matrix. Taking
the determinant shows that the center consists of n(F)I, where n(F) is the

group of n-th roots of unity in F.

We let Z be the center of SLn(F), so we have just seen that Z is the group

of scalar matrices such that the scalar is an n-th root of unity. Then we define

PSLn(F) = SLn(F)/Z.

Theorem 9.3. For n > 3, PSLn(F) is simple.

The rest of this section is devoted to the proof. We view GLn(F) as operating
on the vector space E = F

n

. If A. is a non-zero functional on E, we let

H A.
= Ker A.,

and call H). (or simply H) the hyperplane associated with A. Then dim H = n
- 1,

and conversely, if H is a subspace of codimension 1, then E/H has dimension

1.. and is the kernel of a functional.

An element T E GLn(F) is called a transvection if it keeps every element of

some hyperplane H fixed, and for all x E E, we have

Tx = x + h for some h E H.

Given any element U E H). we define a transvection Tu by

Tux = x + A.(x)u.

Every transvection is of this type. If u, v E H;. ,
it is immediate that

Tu+v = Tu 0 Tv.

If T is a transvection and A E GLn(F), then the conjugate ATA
- 1

is ob-

viously a transvection.

The elementary matrices Eij(c) are transvections, and it will be useful to

use them with this geometric interpretations, rather than formally as we did

before. Indeed, let e 1, . . .

, en be the standard unit vectors which form a basis

of F(n). Then EiJ{c) leaves ek fixed if k =I j, and the remaining vector e
j

is moved

by a multiple of ej. We let H be the hyperplane generated by ek with k =f. j,
and thus see that Eij(c) is a transvection.

Lemma 9.4. For n > 3, the transvections =I I form a single conjugacy class

in SLn(F').

Proof. First, by picking a basis of a hyperplane H = H). and using one

more element to form a basis of F(n), one sees from the matrix of a transvection

T that det T = 1, i.e. transvections are in SLn(F).
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Let T' be another transvection relative to a hyperplane H'. Say

Tx = x + A(X)U and T'x = x + A'(X)U'

with U E Hand u' E H'. Let z and z' be vectors such that A(Z) = 1 and A'(Z') = 1.

Since a basis for H together with z is a basis for F(n), and similarly a basis for

H' together with z' is a basis for F(n), there exists an element A E GLn(F) such

that

Au = u', AH = H'
, Az = z'.

It is then immediately verified that

A TA
-1

= T',

so T, T' are conjugate in GLn(F). But in fact, using n > 3, the hyperplanes H,

H' contain vectors which are independent. We can change the image of a basis

vector in H' which is independent of u' by some factor in F so as to make

det A = 1, so A E SLn(F). This proves the lemma.

We now want to show that certain subgroups of GLn(F) are either con-

tained in the center, or contain SLn(F). Let G be a subgroup of GLn(F). We

say that G is SLIt-invariant if

AGA
- 1

c G for all A E SLn(F).

Lemma 9.5. Let n > 3. Let G be SLn-invariant, and suppose that G contains

a transvection T =I I. Then SLn(F') c G.

Proof. By Lemma 9.4, all transvections are conjugate, and the set of

transvections contains the elementary matrices which generate SLn(F) by

Proposition 9.1, so the lemma follows.

Theorem 9.6. Let n > 3. JfG is a subgroup ofGLn(F) which is SLn-invariant
and which is not contained in the center of GLn(F), then SLn(F) c: G.

Proof. By the preceding lemma, it suffices to prove that G contains a

transvection, and this is the key step in the proof of Theorem 9.3.

We start with an element A E G which moves some line. This is possible
since G is not contained in the center. So there exists a vector u =I 0 such that

Au is not a scalar multiple of u, say Au = v. Then u, v are contained in some

hyperplane H = Ker A. Let T = Tu and let

B=ATA-IT-
l

.

Then

A TA
- 1

=I T and B = A TA
- 1

T
- 1

=f. J.
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This is easily seen by applying say B to an arbitrary vector x, and using the

definition of Tu. In each case, for some x the left-hand side cannot equal the

right-hand side.

For any vector x E F(n) we have

Bx -

X E (u, v),

where (u, v) is the plane generated by u, v. It follows that BH c H, so

BH = Hand Bx - x E H.

We now distinguish two cases to conclude the proof. First assume that B

commutes with all transvections with respect to H. Let W E H. Then from the

definitions, we find for any vector x:

BTwx = Bx + A(x)Bw

TwBx = Bx + A(Bx)w = Bx + A(X)W.

Since we are in the case BTw = TwB, it follows that Bw = w. Theretore B

leaves every vector of H fixed. Since we have seen that Bx -

x E H for all x,

it follows that B is a transvection and is in G, thus proving the theorem in this

case.

Second, suppose there is a transvection Tw with w E H such that B does not

commute with Tw. Let

C = BTwB-IT:,l.

Then C =I I and C E G. Furthermore C is a product of T:,
1

and BTwB-1
whose hyperplanes are Hand BH, which is also H by what we have already

proved. Therefore C is a transvection, since it is a product of transvections

with the same hyperplane. And C E G. This concludes the proof in the second

case, and also concludes the proof of Theorem 9.6.

We now return to the main theorem, that PSLn(F) is simple. Let G be a

normal subgroup of PSLn(F), and let G be its inverse image in SLn(F). Then G

is SLn-invariant, and if G =I 1, then G is not equal to the center of SLn(F).
Therefore G contains SLn(F) by Theorem 9.6, and therefore G = PSL,lF), thus

proving that PSLn(F) is simple.

Example. By Exercise 41 of Chapter I, or whatever other means, one sees

that PSL2(Fs)
= As (where Fs is the finite field with 5 elements). While you are

in the mood, show also that

PGL2(F3 ) = S4 but SL2(F3 ) f S4; PSL2 (F3 ) = A4.
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EXERCISES

1. Interpret the rank of a matrix A in terms of the dimensions of the image and kernel

of the linear map LA.

2. (a) Let A be an invertible matrix in a commutative ringR. Show that ('A)-I = t(A-
I
).

(b) Let f be a non-singular bilinear form on the module E over R. Let A be an

R-automorphism of E. Show that ('A)-I = t(A -I). Prove the same thing in the

hermitian case, i.e. (A*)-I = (A-I)*.

3. Let V, W be finite dimensional vector spaces over a field k. Suppose given

non-degenerate bilinear forms on V and W respectively, denoted both by (, ).
Let L: V W be a surjective linear map and let tL be its transpose; that IS,

(Lv, w) = (v, tLw) for v E V and w E W.

(a) Show that tL is injective.

(b) Assume in addition that if v E V, v =1= 0 then (v, v) =1= O. Show that

V = Ker L EB 1m tL,

and that the two summands are orthogonal. (Cf. Exercise 33 for an example.)

4. Let At. . .
, A, be row vectors of dimension n, over a field k. Let X = (x l' . . .

,
x

n). Let

b l' . . .

,
b

r
E k. By a system of linear equations in k one means a system of type

A 1
. X = b l' . . .

, Ar . X = b
r

.

If b 1
= . . . = b

r
= 0, one says the system is homogeneous. We call n the number of

variables, and r the number of equations. A solution X of the homogeneous system

is called trivial if Xi
= 0, i = 1,..., n.

(a) Show that a homogeneous system of r linear equations In' n unknowns with

n > r always has a non-trivial solution.

(b) Let L be a system of homogeneous linear equations over a field k. Let k be a

subfield of k'. If L has a non-trivial solution in k', show that it has a non-trivial

solution in k.

5. Let M be an n x n matrix over a field k. Assume that tr(MX) = 0 for all n x n matrices

X In k. Show that M = O.

6. Let S be a set of n x n matrices over a field k. Show that there exists a column vector

X i= 0 of dimension n in k, such that MX = X for all M E S if and only if there exists

such a vector in some extension field k' of k.

, 7. Let H be the division ring over the reals generated by elements i, j, k such that

i
1

=j1 = k
1

= -1, and

ij = -

ji = k, jk = - kj = i, ki = - ik = j.

Then H has an automorphism of order 2, given by

ao + at; + a1j + a3 kHao
-

a1 i - a2j
-

a3 k .

Denote this automorphism by ex H a. What is exa? Show that the theory of hermitian
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forms can be carrIed out over H, which is called the division rIng of quaternions (or by
abuse of language, the non-commutative field of quaternions).

8. Let N be a strIctly upper trIangular n x n matrIx, that IS N = (ai) and aij
= 0 If i > j.

Show that N
n

= O.

9. Let E be a vector space over k, of dimension n. Let T: E -+ E be a lInear map such

that T is nilpotent, that IS T
m

= 0 for some posItive integer m. Show that there eXists

a basis of E over k such that the matrix of T with respect to this basis is strictly

upper triangular.

10. If N IS a nilpotent n x n matrIX, show that I + N is Invertible.

11. Let R be the set of all upper trIangular n x n matrIces (aij) with aij in some field k, so

aij
= 0 If i > j. Let J be the set of all strIctly upper triangular matrIces. Show that J

is a two-sided Ideal in R. How would you descrIbe the factor ring R/J?

12. Let G be the group of upper triangular matrices with non-zero diagonal elements.

Let H be the subgroup consisting of those matrices whose diagonal element IS 1.

(Actually prove that H IS a subgroup). How would you descrIbe the factor group G/H?

13. Let R be the ring of n x n matrices over a field k. Let L be the subset of matrices

which are 0 except on the first column.

(a) Show that L is a left ideal.

(b) Show that L is a minimal left ideal; that is, if L' C L is a left ideal and

L' =1= 0, then L' = L. (For more on this situation, see Chapter VII, 5.)

14. Let F be any field. Let D be the subgroup of diagonal matrIces In GLn(F). Let N be

the normalIzer of D In GLn(F). Show that N/D is isomorphic to the symmetrIc group

on n elements.

15. Let F be a finite field with q elements. Show that the order of GLn(F) IS

n

(qn _ 1 )(qn
_

q) . . . (qn
_

qn
-

1) = qn(n
-

1 )/2

n (qi - 1).
i = 1

[Hint: Let Xl' . . .
,

X
n

be a basis of F
n

. Any element of GLn(F) IS uniquely determined

by its effect on this basis, and thus the order of GLn(F) IS equal to the number of all

possible bases. If A E GLn(F), let AXi =

Yi' For Yl we can select any of the qn
- 1

non-zero vectors in F
n

. Suppose Inductively that we have already chosen Y., . . .
, Yr

with r < n. These vectors span a subspace of dimension r which contains qr elements.

For Yi+ 1 we can select any of the qn
-

qr elements outside of this subspace. The

formula drops out.]

16. Again let F be a finite field with q elements. Show that the order of SLn(F) is

n

qn(n-l)/2 n (qi - 1);
i = 2

and that the order of PSLn(F) IS

1
n- 1

- qn(n
-

1)/2

n (qi - 1),
d

i=2

where d is the greatest common divisor of nand q
- 1.
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17. Let F be a finIte field with q elements. Show that the group of all upper tnangular
matnces with I on the diagonal IS a Sylow subgroup of GLn(F) and of SLn(F).

18. The reduction map Z -+ ZjNZ, where N is a positive integer defines a homomorphism

SL 2(Z) -+ SL 2(ZjNZ).

Show that this homomorphism is surjective. [Hint: Use elementary divisors, i.e. the

structure of submodules of rank 2 over the principal ring Z.]

19. Show that the order of SL 2(ZjNZ) is equal to

N
3

n ( 1 -

) ,

piN P

where the product IS taken over all primes dividing N.

20. Show that one has an exact sequence

1 -+ SL2(ZjNZ) -+ GL 2(ZjNZ) (ZjNZ)* -+ 1.

In fact, show that

GL 2(ZjNZ) = SL2(Z/NZ)GN ,

where GN is the group of matrices

(0
1 A

d) with d E (ZjNZ)*.

21. Show that SL2(Z) is generated by the matrices

( :) and (
-

).
22. Let p be a prime

> 5. Let G be a subgroup of SL2(Z/pnz) with n
> 1. Assume that

the image of G in SL2(Z/pZ) under the natural homomorphism is all of SL2(Z/pZ).
Prove that G = SL2(Z/pnz).

Note. Exercise 22 is a generalization by Serre of a result of Shimura; see Serre's Abelian

f-adic Representations and elliptic curves, Benjamin, 1968, IV, 3, Lemma 3. See also

my exposition in Elliptic Functions, Springer Verlag, reprinted from Addison-Wesley,

1973, Chapter 17, 4.

23. Let k be a field in which every quadratic polynomial has a root. Let B be the Borel

subgroup of GL2(k). Show that G is the union of all the conjugates of B. (This cannot

happen for finite groups!)

24. Let A, B be square matrices of the same size over a field k. Assume that B is non-

singular. If t is a variable, show that det(A + tB) is a polynomial in t, whose leading
coefficient is det(B), and whose constant term is det(A).

25. Let all' ...
, a ln be elements from a principal ideal ring, and assume that they generate

the unit ideal. Suppose n > I. Show that there exists a matrix (aij) with this given
first row, and whose determinant is equal to I.
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26. Let A be a commutative ring, and I = (x 1, . . .

, x,) an ideal. Let cij E A and let

,

Y
. = 'c..x.
I '- I) )

.

j= 1

Let I' = (Yl' ..., y,). Let D = det(ci). Show that DI c 1'.

27. Let L be a free module over Z with basis e., . .

., en. Let M be a free submodule of the

same rank, with basis U 1 , ..., Un. Let Ui
= L cijej

. Show that the index (L: M) is

given by the determinant:

(L : M) = I det(cij) I.

28. (The Dedekind determinant). Let G be a finite commutative group and let F be the

vector space of functions of G into C. Show that the characters of G (homomorphisms
of G into the roots of unity) form a basis for this space. If f: G C is a function,

show that for a, bEG.

det(f(ab
-

1» = n I x(a)f(a),
l aeG

where the product is taken over all characters. [Hint: Use both the characters and

the charilcteristic functions of elements of G as bases for F, and consider the linear map

T = L f(a),

where is translation by a.] Also show that

det(f(ab
-

1» = ( I f(a») det(j (ab
-

1) - j (b
- 1

»,
aeG

where the determinant on the left is taken for all a, bEG, and the determinant on

the right is taken only for a, b =1= 1.

29. Let 9 be a module over the commutative ring R. A bilinear map 9 x 9 -+ 9, written

(x, Y)....... [x, y], is said to make 9 a Lie algebra if [x, x] = 0 and

[[x, y], z] + [[y,z],x] + [[z,x],y] = 0

for all x, y, Z E 9.

(a) Let Mn(R) be the ring of matrices over R. If x, y E Mn(R), show that the

product

(x, y) ....... [x, y] =

xy
-

yx

makes Mn(R) into a Lie algebra.

(b) Let 9 be a Lie algebra. Let x E 9, and let Lx, L(x) or Lie x be the linear map

given by Lx (y) = [x, y]. Show that Lx is a derivation of 9 into itself (i.e.

satisfies the rule D([y, z]) = [Dy, z] + [y, Dz».
(c) Show that the map x Lx is a Lie homomorphism of 9 into the module of

derivations of 9 into itself.

30. Given a set of polynomials {PlXi)} in the polynomial ring R[Xij] (1 < i, j < n), a

zero of this set in R is a matrix x = (Xij) such that xij E Rand P,,(xij) = 0 for all v.

We use vector notation, and write (X) = (Xij). We let G(R) denote the set of zeros
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of our set of polynomials {Py }. Thus G(R) c Mn(R), and if R' is any commutative

associative R-algebra we have G(R') c Mn(R'). We say that the set {Py } defines an

algebraic group over R if G(R') is a subgroup of the group GLn(R') for all R' (where

GLn(R') is the multiplicative group of invertible matrices in R').
As an example, the group of matrices satisfying the equation 'XX = In IS an alge-

braic group.

Let R' be the R-algebra which is free, with a basis {I, t} such that t
2

= O. Thus

R' = R[t]. Let g be the set of matrices x E Mn(R) such that In + tx E G(R[t]). Show

that g is a Lie algebra. [Hint: Note that

PlIn + tX) = Plln) + grad Py(In)tX.

Use the algebra R[t, u] where t
2

= u
2

= 0 to show that if In + tx E G(R[t]) and

In + uy E G(R[u]) then [x, y] E g.]

(I have taken the above from the first four pages of [Se 65]. For more information

on Lie algebras and Lie Groups, see [Bo 82] and [Ja 79].

[Bo 82] N. BOURBAKI, Lie Algebras and Lie Groups, Masson, 1982

[Ja 79] N. JACOBSON, Lie Algebras, Dover, 1979 (reprinted from Interscience,

1962)

[Se 65] J. P. SERRE, Lie Algebras and Lie Groups, Benjamin, 1965. Reprinted

Springer Lecture Notes 1500. Springer/Verlag 1992

Non-commutative cocycles

Let K be a finite Galois extension of a field k. Let r = GLn(K), and G = Gal(Kjk).
Then G operates on r. By a cocycle of G in r we mean a family of elements {A(a)}

satisfying the relation

A(a)aA(r) = A(u!).

We say that the cocycle splits If there exists B E r such that

A(a) = B- laB for all a E G.

In this non-commutative case, cocycles do not form a group, but one could define an

equivalence relation to define cohomology classes. For our purposes here, we care

only whether a cocycle splits or not. When every cocycle splits, we also say that

H
1

(G, r) = 0 (or 1).

31. Prove that H
1

(G, GLn(K» = 1. [Hint: Let {el'...' eN} be a basis of Matn(k) over k,

say the matrices with 1 in some component and 0 elsewhere. Let

N

X = 'x.e.
'- I I

i = 1

with variables Xi. There exists a polynomial P(X) such that x is invertible if and only
if (x.,...,XN) i= O. Instead of P(Xl,...,XN) we also write P(x). Let {A(a)} be a

cocycle. Let {ta} be algebraically independent variables over k. Then

P( I t'lA(Y») # 0

'lEG
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because the polynomial does not vanish when one t
y

is replaced by 1 and the others

are replaced by O. By the algebraic independence of automorphisms from Galois

theory, there exists an element y E K such that if we put

B = L (yy)A(y)
y

then P(B) =1= 0, so B is invertible. It is then immediately verified that A(O") = BO"B- 1.

But when k is finite, cf. my Algebraic Groups over Finite Fields, Am. J. Vol 78 No.

3, 1956.]

32. Invariant bases. (Kolchin-Lang, Proc. AMS Vol 11 No.1, 1960). Let K be a finite

Galois extension of k, G = Gal(K/k) as in the preceding exercise. Let V be a

finite-dimensional vector space over K, and suppose G operates on V in such a

way that a(av) = a(a)a(v) for a E K and v E V. Prove that there exists a basis

{WI'.'.' w
n } such that UWi

=

Wi for all i = 1,..., n and all a E G (an invariant

basis). Hint: Let {VI'.. .,
v

n } be any basis, and let

a (V:l )
= A(O")(I)Uti V

tI

where A(a) is a matrix in GLiK). Solve for B in the equation (O"B)A(O") = B, and let

() = B(::}
The next exercises on harmonic polynomials have their source in Whittaker, Math.

Ann. 1902; see also Whittaker and Watson, Modern Analysis, Chapter XIII.

33. Harmonic polynomials. Let Polen, d) denote the vector space of homogeneous poly-
nomials of degree d in n variables X

I'
. . .

,
X

n
over a field k of characteristic O.

For an n-tuple of integers (VI' . .
.,

v
n ) with Vi

> 0 we denote by M(J,I) as usual the

monomial

M(J,I)(X)
= XII . . . Xn.

Prove:

(a) The number of monomials of degree d is (
n
- 1 + d

) , so this number is
n
- 1

the dimension of Pol(n, d).

(b) Let (D) = (DI ,
. . .

, Dn) where D
i is the partial derivative with respect to the

i-th variable. Then we can define P(D) as usual. For P, Q E Polen, d), define

(P, Q) = P(D)Q(O).

Prove that this defines a symmetric non-degenerate scalar product on

Pol(n, d). If k is not real, it may happen that P =1= 0 but (P, P) = O. However,

if the ground field is real, then (P, P) > 0 for P =1= O. Show also that the

monomials of degree d form an orthogonal basis. What is (M(J,I)' M(J,I»?
(c) The map P P(D) is an isomorphism of Polen, d) onto its dual.
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(d) Let = Dt + . . . + D. Note that : Pol(n, d) Pol(n, d -

2) is a linear

map. Prove that is surjective.

(e) Define Har(n, d) = Ker = vector space of harmonic homogeneous poly-
nomials of degree d. Prove that

dim Har(n, d) = (n + d -

3)! (n + 2d -

2)/(n
-

2)! d !.

In particular, if n = 3, then dim Har(3, d) = 2d + 1.

(f) Let r
2

= Xt + .. . + X. Let S denote multiplication by r
2

. Show that

(P, Q) = (P, SQ) for P E Pol(n, d) and Q E Pol(n, d -

2),

so t = S. More generally, for R E Pol(n, m) and Q E Pol(n, d -

m) we

have

(R(D)P, Q) = (P, RQ).

(g) Show that [, S] = 4d + 2n on Pol(n, d). Here [, S] = 0 S - S 0 .

Actually, [, S] = 4E + 2n, where E is the Euler operator E = 2: X;D;,
which is, however, the degree operator on homogeneous polynomials.

(h) Prove that Pol(n, d) = Har(n, d) EB r
2
Pol(n, d -

2) and that the two summands

are orthogonal. This is a classical theorem used in the theory of the Laplace

operator.

( i ) 2Let (c., . . .
, cn) E k

n
be such that L.JC;

= O. Let

H(X) =

(c.X. + ... + cnXn)d.

Show that H is harmonic, i.e. lies in Har(n, d).

(j) For any Q E Pol(n, d), and a positive integer m, show that

Q(D)H';'(X) = m(m
-

1)
. . .

(m
- d + l)Q(c)H,;,-d(X).

34. (Continuation of Exercise 33). Prove:

Theorem. Let k be algebraically closed of characteristic O. Let n
> 3. Then

Har(n, d) as a vector space over k is generated by all polynomials H with (c) E k n

such that 2: ct = O.

[Hint: Let Q E Har(n, d) be orthogonal to all polynomials H with (c) E k
n

. By
Exercise 33(h), it suffices to prove that r

2

1 Q. But if 2: ct = 0, then by Exercise

33(j) we conclude that Q(c)
= O. By the Hilbert Nullstellensatz, it follows that there

exists a polynomial F(X) such that

Q(X)S = r
2
(X)F(X) for some positive integer s.

But n
> 3 implies that r

2
(X) is irreducible, so r

2
(X) divides Q(X).]

35. (Continuation of Exercise 34). Prove that the representation of O(n) = Un(R) on

Har(n, d) is irreducible.

Readers will find a proof in the following:

S. HELGASON
, Topics in Harmonic Analysis on Homogeneous Spaces, Birkhauser, 1981

(see especially 3, Theorem 3. 1 (ii))

N. VILENKIN, Special Functions and the Theory of Group Representations, AMS Trans-

lations of mathematical monographs Vol. 22, 1968 (Russian original, 1965), Chapter

IX, 2.
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R. HOWE and E. C. TAN, Non-Abelian Harmonic Analysis, Universitext, Springer Verlag,
New York, 1992.

The Howe-Tan proof runs as follows. We now use the hermitian product

(P, Q) = f P(x) Q(x) da(x),

S,,-I

where a is the rotation invariant measure on the (n-l)-sphere 8 n
- l

. Let

el, . . .

, en be the unit vectors in R
n

. We can identify O(n
-

I) as the subgroup of

O(n) leaving en fixed. Observe that O(n) operates on Har(n, d), say on the right by

composition P po A, A E O(n), and this operation commutes with . Let

A: Har(n, d) --t C

be the functional such that ,1(P) == P(en ). Then A is O(n - I )-Invariant, and since the

hermitian product is non-degenerate, there exists a harmonic polynomial Qn such

that

,1(P) = <P, Qn> for all P E Har(n, d).

Let M c Har(n, d) be an O(n)-submodule. Then the restriction AM of A to M is

nontrivial because O(n) acts transitively on Sn-l. Let Q,';f be the orthogonal pro-

jection of Qn on M. Then Qtt is O(n - 1 )-invariant, and so is a linear combination

Q(x) = L c
j x I.

j+2k=d

Furthermore QIf is harmonic. From this you can show that Q is uniquely determined,

by showing the existence of recursive relations among the coefficients Cj. Thus the

submodule M is uniquely determined, and must be all of Har(n, d).

Irreducibility of sln(F).

36. Let F be a field of characteristic O. Let 9
== sIll (F) be the vector space of matrices

with trace 0, with its Lie algebra structure [X, Y] == XY - YX. Let Eij be the matrix

having (i, j)-component 1 and all other components O. Let G == SLn(F). Let A be

the multiplicative group of diagonal matrices over F.

(a) Let Hi == Eu -

Ei+l,i+l for i = 1, . . .

,
n
- I. Show that the elements Eij

(i i= j), HI,. . .

, Hn-l form a basis of 9 over F.

(b) For g E G let c(g) be the conjugation action on g, that is c(g)X == gXg-
l

.

Show that each Eij is an eigenvector for this action restricted to the group A.

(c) Show that the conjugation representation of G on 9 is irreducible, that is, if

V i= 0 is a subspace of 9 which is c( G)-stable, then V ==

g. Hint: Look up

the sketch of the proof in [JoL 01], Chapter VII, Theorem 1.5, and put in all

the details. Note that for i i= j the matrix Eij is nilpotent, so for variable t,

the exponential series exp( tEij) is actually a polynomial. The derivative with

respect to t can be taken in the formal power series F[[t]], not using limits. If

X is a matrix, and x(t) == exp(tX), show that

x(t) Yx(tr
l

= XY - YX = [X, Y].
1=0



CHAPTER X I V

Representation of One

Endomorphism

We deal here with one endomorphism of a module, actually a free module,

and especially a finite dimensional vector space over a field k. We obtain the

Jordan canonical form for a representing matrix, which has a particularly simple

shape when k is algebraically closed. This leads to a discussion of eigenvalues
and the characteristic polynomial. The main theorem can be viewed as giving
an example for the general structure theorem of modules over a principal ring.
In the present case, the principal ring is the polynomial ring k[X] in one variable.

1. REPRESENTATIONS

Let k be a commutative ring and E a module over k. As usual, we denote by

Endk(E) the ring ofk-endomorphisms of E, Le. the ring of k-linear maps of E into

itself.

Let R be a k-algebra (given by a ring-homomorphism k R which allows

us to consider R as a k-module). By a representation of R in E one means a k-

algebra homomorphism R Endk(E), that is a ring-homomorphism

p: R Endk(E)

which makes the following diagram commutative:

R ) Endk(E)

/
k

553
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[As usual, we view Endk(E) as a k-algebra; if I denotes the identity map of E,

we have the homomorphism of k into Endk(E) given by a al. We shall also

use I to denote the unit matrix if bases have been chosen. The context will

always make our meaning clear.]
We shall meet several examples of representations in the sequel, with various

types of rings (both commutative and non-commutative). In this chapter, the

rings will be commutative.

We observe that E may be viewed as an Endk(E) module. Hence E may be

viewed as an R-module, defining the operation of R on E by letting

(x, v) p(x)v

for x E R and v E E. We usually write xv instead of p(x)v.

A subgroup F of E such that RF c F will be said to be an invariant sub-

module of E. (It is both R-invariant and k-invariant.) We also say that it is

invariant under the representation.
We say that the representation is irreducible, or simple, if E =I 0, and if the

only invariant submodules are 0 and E itself.

The purpose of representation theories is to determine the structure of all

representations of various interesting rings, and to classify their irreducible

representations. In most cases, we take k to be a field, which mayor may not

be algebraically closed. The difficulties in proving theorems about representa-

tions may therefore lie in the complication of the ring R, or the complication of

the field k, or the complication of the module E, or all three.

A representation p as above is said to be completely reducible or semi-simple
if E is an R-direct sum of R-submodules Ei ,

E = E 1 (f) . . . (f) Em

such that each Ei is irreducible. We also say that E is completely reducible.

It is not true that all representations are completely reducible, and in fact those

considered in this chapter will not be in general. Certain types of completely
reducible representations will be studied later.

There is a special type of representation which will occur very frequently.
Let v E E and assume that E = Rv. We shall also write E = (v). We then say

that E is principal (over R), and that the representation is principal. If that is

the case, the set of elements x E R such that xv = 0 is a left ideal a of R (obvious).
The map of R onto E given by

xxv

induces an isomorphism of R-modules,

Ria E

(viewing R as a left module over itself, and Ria as the factor module). In this

map, the unit element 1 of R corresponds to the generator v of E.
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As a matter of notation, if v l'
. . .

,
V

n
E E, we let (VI' . . .

,
v

n) denote the sub-

module of E generated by Vb . . .

,
V

n
.

Assume that E has a decomposition into a direct sum of R-submodules

E=El...Es.

Assume that each E; is free and of dimension >
lover k. Let CB 1 ,... , CBs be

bases for El' . . .
, Es respectively over k. Then { CB I' . .

., <B s} is a basis for E.

Let 'P E R, and let 'P i be the endomorphism induced by 'P on E;. Let M; be the

matrix of 'Pi with respect to the basis CB;. Then the matrix M of 'P with respect

to { CB ., . . .
, CB s} looks like

o 0

M2 0

o 0

o 0 Ms

A matrix of this type is said to be decomposed into blocks, M
l' . . . Ms. When

we have such a decomposition, the study of qJ or its matrix is completely reduced

(so to speak) to the study of the blocks.

It does not always happen that we have such a reduction, but frequently

something almost as good happens. Let E' be a submodule of E, invariant

under R. Assume that there exists a basis of £' over k, say {Vl' . . .

, v
m}, and that

this basis can be completed to a basis of E,

{v l' . . .

,
V

m ,
V

m + l' . . .

,
V

n }.

This is always the case if k is a field.

Let lp E R. Then the matrix of lp with respect to this basis has the form

(
Mf *

)o M".

Indeed, since E' is mapped into itself by qJ, it is clear that we get M' in the upper

left, and a zero matrix below it. Furthermore, for each j = m + 1,..., n we can

write

cpV
=

CjlVI + . . . + CjmVm + Cj,m + 1t),11 + I + . . . + Cjnvn.

The transpose of the matrix (Cji) then becomes the matrix

(,,)
occurring on the right in the matrix representing lp.
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Furthermore, consider an exact sequence

o E' E E" o.

Let v
m + 1, . . .

,
v

n
be the images of V

m + 1,
. . .

,
V

n
under the canonical map E E".

We can define a linear map
"

.

E
"

E
"

cp.

in a natural way so that (cpr ) = cp"(v) for aU v E E. Then it is clear that the

matrix of cp" with respect to the basis {v l'
. . .

,
v

n } is M".

2. DECOMPOSITION OVER ONE

ENDOMORPHISM

Let k be a field and E a finite-dimensional vector space over k, E =f. O. Let

A E Endk(E) be a linear map of E into itself. Let t be transcendental over k. We

shall define a representation of the polynomial ring k[t] in E. Namely, we have

a homomorphism

k[t] k[A] c Endk(E)

which is obtained by substituting A for t in polynomials. The ring k[A] is the

subring of Endk(E) generated by A, and is commutative because powers of A

commute with each other. Thus if f(t) is a polynomial and v E E, then

f(t)v = f(A)v.

The kernel of the homomorphism f(t) f(A) is a principal ideal of k[t],
which is =f. 0 because k[A] is finite dimensional over k. It is generated by a

unique polynomial of degree> 0, having leading coefficient 1. This polynomial
will be called the minimal polynomial of A over k, and will be denoted by qA(t).
It is of course not necessarily irreducible.

Assume that there exists an element v E E such that E = k[t]v = k[A]v.
This means that E is generated over k by the elements

v, A v, A
2

V
,

. . . .

We called such a module principal, and if R = k[t] we may write E = Rv = (v).
If qA(t) = t

d
+ ad- 1 t

d - 1
+ . . . + ao then the elements

A A
d- 1

v, v,..., v

constitute a basis for E over k. This is proved in the same way as the analogous
statement for finite field extensions. First we note that they are linearly inde

pendent, because any relation of linear dependence over k would yield a poly-
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nomial g(t) of degree less than deg qA and such that g(A) = o. Second, they

generate E because any polynomial f(t) can be written f(t) = g(t)qA(t) + r(t)
with deg r < deg qA. Hencef(A) = r(A).

With respect to this basis, it is clear that the matrix of A is of the following

type:

000

100

010

o -ao

o -at

o -a2

.......................... .

o 0 0 0 -

ad -

2

o 0 0 ... 1 _

ad- 1

If E = (v) is principal, then E is isomorphic to k[t]/(qA(t» under the map

f(t) f(A)v. The polynomial qA is uniquely determined by A, and does not

depend on the choice of generator v for E. This is essentially obvious, because

iffl, f2 are two pol¥nomials with leading coefficient 1, then k[t]/(fl (t» is iso-

morphic to k[t]/(f2(t» if and only iffl = f2. (Decompose each polynomial into

prime powers and apply the structure theorem for modules over principal rings.)
If E is principal then we shall call the polynomial qA above the polynomial

invariant of E, with respect to A, or simply its invariant.

Theorem 2.1. Let E be a non-zero finite-dimensional space over the field k,
and let A E Endk(E). Then E admits a direct sum decomposition

E = E
1 (f) . . . (f) Er,

where each E
i is a principal k[A]-submodule, with invariant qi =I 0 such that

qllq21...lqr.

The sequence (qb . . .

, qr) is uniquely determined by E and A, and qr is the

minimal polynomial ofA.

Proof The first statement is simply a rephrasing in the present language
for the structure theorem for modules over principal rings. Furthermore, it is

clear that qr(A) = 0 since qi I qr for each i. No polynomial of lower degree than

qr can annihilate E, because in particular, such a polynomial does not annihilate

Er. Thus qr is the minimal polynomial.

We shall call (q 1, . . .

, qr) the invariants of the pair (E, A). Let E = k(n), and

let A be an n x n matrix, which we view as a linear map of E into itself. The

invariants (ql, . . .

, qr) will be called the invariants of A (over k).

Corollary 2.2. Let k
'

be an extension field ofk and let A be an n x n matrix

in k. The invariants of A over k are the same as its invariants over k
'

.
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Proof. Let {Vl,. . .

,
v

n } be a basis of k(n) over k. Then we may view it also

as a basis of k'(n) over k'. (The unit vectors are in the k-space generated by

VI' . . .

,
V

n ; hence V l ,
. . .

,
V

n generate the n-dimensional space k,(n) over k'.) Let

E = k(n). Let LA be the linear map of E determined by A. Let L be the linear

map of k,(n) determined by A. The matrix of LA with respect to our given basis is

the same as the matrix of L. We can select the basis corresponding to the

decomposition

E = E
1 (f) . . . (f) Er

determined by the invariants q 1, . . .

, qr. It follows that the invariants don't

change when we lift the basis to one of k,(n).

Corollary 2.3. Let A, B be n x n matrices over a field k and let k' be an

extension field ofk. Assume that there is an invertible matrix C' in k' such that

B = C'AC,-l. Then there is an invertible matrix CinksuchthatB = CAC-
l

.

Proof. Exercise.

The structure theorem for modules over principal rings gives us two kinds

of decompositions. One is according to the invariants of the preceding theorem.

The other is according to prime powers.

Let E =I 0 be a finite dimensional space over the field k, and let A : E E

be in Endk(E). Let q
=

qA be its minimal polynomial. Then q has a factorization,

e l e

q=Pl...Ps
s

(ei > 1)

into prime powers (distinct). Hence E is a direct sum of submodules

E = E(Pl) (f) . . . (f) E(ps)'

such that each E(Pi) is annihilated by pfi. Furthermore, each such submodule

can be expressed as a direct sum of submodules isomorphic to k[t]/(p
e

) for

some irreducible polynomial p and some integer e > 1.

Theorem 2.4. Let qA(t) = (t
-

ex)e for some ex E k, e > 1. Assume that E

is isomorphic to k[t]/(q). Then E has a basis over k such that the matrix ofA

relative to this basis is of type

ex 0 0

1 ex 0

o 0

o 1 ex
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Proof Since E is isomorphic to k[t]/(q), there exists an element v E E

such that k[t]v = E. This element corresponds to the unit element of k[t] in the

isomorphism

k[t]/(q) E.

We contend that the elements

v, (t - ex)v, . . .

, (t
-

ex)e- lV,

or equivalently,

v, (A - ex)v, . . .

, (A -

ex)e- lV,

torm a basis for E over k. They are linearly independent over k because any

relation of linear dependence would yield a relation of linear dependence between

A A
e- 1

v, v,..., v,

and hence would yield a polynomial g(t) of degree less than deg q such that

g(A) = O. Since dim E =

e, it follows that our elements form a basis for E

over k. But (A - ex)e = O. It is then clear from the definitions that the matrix of

A with respect to this basis has the shape stated in our theorem.

Corollary 2.5. Let k be algebraically closed, and let E be afinite-dimensional
non-zero vector space over k. Let A E Endk(E). Then there exists a basis of
E over k such that the matrix ofA with respect to this basis consists ofblocks,
and each block is of the type described in the theorem.

A matrix having the form described in the preceding corollary is said to be in

Jordan canonical form.

Remark 1. A matrix (or an endomorphism) N is said to be nilpotent if

there exists an integer d > 0 such that Nd = 0 . We see that in the decomposition
of Theorem 2.4 or Corollary 2.5, the matrix M is written in the form

M=B+N

where N is nilpotent. In fact, N is a triangular matrix (i.e. it has zero coefficients

on and above the diagonal), and B is a diagonal matrix, whose diagonal elements

are the roots of the minimal polynomial. Such a decomposition can always be

achieved whenever the field k is such that all the roots of the minimal polynomial
lie in k. We observe also that the only case when the matrix N is 0 is when all

the roots of the minimal polynomial have multiplicity 1. In this case, if

n = dim E, then the matrix M is a diagonal matrix, with n distinct elements on

the diagonal.
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Remark 2. The main theorem of this section can also be viewed as falling
under the general pattern of decomposing a module into a direct sum as far as

possible, and also giving normalized bases for vector spaces with respect to

various structures, so that one can tell in a simple way the effect of an endo-

morphism. More formally, consider the category of pairs (E, A), consisting
of a finite dimensional vector space E over a field k, and an endomorphism
A: E E. By a morphism of such pairs

f: (E, A) (E', A')

we mean a k-homomorphism f: E E' such that the following diagram is

commutative:

f E
'

)

jA'
E

Aj
E

f
) E'

It is then immediate that such pairs form a category, so we have the notion of

isomorphism. One can reformulate Theorem 2.1 by stating:

Theorem 2.6. Two pairs (E, A) and (F, B) are isomorphic if and only if they
have the same invariants.

You can prove this as Exercise 19. The Jordan basis gives a normalized form

for the matrix associated with such a pair and an appropriate basis.

In the next chapter, we shall find conditions under which a normalized matrix

is actually diagonal, for hermitian, symmetric, and unitary operators over the

complex numbers.

As an example and application of Theorem 2.6, we prove:

Corollary 2.7. Let k be a field and let K be a finite separable extension of

degree n. Let V be a finite dimensional vector space of dimension n over k, and

let p, p' : K Endk(V) be two representations of K on V,. that is, embeddings

of K in Endk(V). Then p, p' are conjugate,. that is, there exists B E Autk(V)
such that

p'() = Bp()B-I for all E K.

Proof. By the primitive element theorem of field theory, there exists an

element a E K such that K = k[a]. Let p(t) be the irreducible polynomial of a

over k. Then (V, p(a» and (V, p'(a» have the same invariant, namely p(t).
Hence these pairs are isomorphic by Theorem 2.6, which means that there exists

B E Autk(V) such that

p'(a) =

Bp(a)B-
1

.

But all elements of K are linear combinations of powers of a with coefficients

in k, so it follows immediately that p'() = Bp( )B
-I

for all E K, as desired.



XIV, 3 THE CHARACTERISTIC POLYNOMIAL 561

To get a representation of K as in corollary 2.7, one may of course select a

basis of K, and represent multiplication of elements of K on K by matrices with

respect to this basis. In some sense, Corollary 2.7 tells us that this is the only

way to get such representations . We shall return to this point of view when

considering Cartan subgroups of GLn in Chapter XVIII, 12.

3. THE CHARACTERISTIC POLYNOMIAL

Let k be a commutative ring and E a free module of dimension n over k.

We consider the polynomial ring k[t], and tllinear map A : E E. We have a

homomorphism

k[t] k[A]

as before, mapping a polynomial f(t) on f(A), and E becomes a module over

the ring R = k[t]. Let M be any n x n matrix in k (for instance the matrix of A

relative to a basis of E). We define the characteristic polynomial PM(t) to be the

determinant

det(tln

-

M)

where In is the unit n x n matrix. It is an element of k[t]. Furthermore, if N

is an invertible matrix in R, then

det(tln

- N-IMN) = det(N-l(tln

- M)N) = det(t1n - M).

Hence the characteristic polynomial of N
-

1
MN is the same as that of M. We

may therefore define the characteristic polynomial of A, and denote by PA, the

characteristic polynomial of any matrix M associated with A with respect to

some basis. (If E = 0, we define the characteristic polynomial to be 1.)
If cp : k k' is a homomorphism of commutative rings, and M is an n x n

matrix in k, then it is clear that

PqJM(t) = CPPM(t)

where CPPM is obtained from PM by applying qJ to the coefficients of PM.

Theorem 3.1. (Cayley-Hamilton). We have PA(A) = o.

Proof Let {v l' . . .
,

v
n } be a basis of E over k. Then

n

tv. = "a..v.
J i...J IJ I

i= 1

where (aij) = M is the matrix of A with respect to the basis. Let B(t) be the

matrix with coefficients in k[t], defined in Chapter XIII, such that

B(t)B(t) = PA(t)1n
.
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Then

(
V 1

) (
pA(t)Vl

) (
0

)B(t)B(t) : = : =:

V
n

PA(t)Vn
°

because

B(t{)
= (I)

-

Hence PA(t)E = 0, and therefore PA(A)E = 0. This means that PA(A) = 0,

as was to be shown.

Assume now that k is a field. Let E be a finite-dimensional vector space over

k, and let A E Endk(E). By an eigenvector w of A in E one means an element

wEE, such that there exists an element A E k for which AW = AW. If W =I 0, then

A is determined uniquely, and is called an eigenvalue of A. Of course, distinct

eigenvectors may have the same eigenvalue.

Theorem 3.2. The eigenvalues of A are precisely the roots of the character-

istic polynomial of A.

Proof Let A be an eigenvalue. Then A - AI is not invertible in Endk(E),
and hence det(A - AI) = 0. Hence A is a root of PA. The arguments are re-

versible, so we also get the converse.

For simplicity of notation, we often write A - A instead of A - AI.

Theorem 3.3. Let w 1, . . .

,
W

m
be non-zero eigenvectors of A, having distinct

eigenvalues. Then they are linearly independent.

Proof Suppose that we have

a 1 W 1 + . . . + am W
m

= °

with ai E k, and let this be a shortest relation with not all ai
= ° (assuming such

exists). Then ai =I ° for all i. Let A l ,
. . .

, Am be the eigenvalues of our vectors.

Apply A - Al to the above relation. We get

a2(A2
- A l )W2 + . . . + am(Am - Al)Wm

= 0,

which shortens our relation, contradiction.

Corollary 3.4. If A has n distinct eigenvalues Ab . . .
, An belonging to eigen-

vectors Vl,. . .
,

V
n ,

and dim E =

n, then {v l ,. . .

,
v

n } is a basisfor E. The matrix



XIV, 3 THE CHARACTERISTIC POLYNOMIAL 563

of A with respect to this basis is the diagonal matrix:

o

A.2

o A.
n

Warning. It is not always true that there exists a basis of E consisting of

eigenvectors!

Remark. Let k be a subfield of k'. If M is a matrix in k we can define its
,

characteristic polynomial with respect to k, and also with respect to k'. It is

clear that the characteristic polynomials thus obtained are equal. If E is a vector

space over k, we shall see later how to extend it to a vector space over k'. A

linear map A extends to a linear map of the extended space, and the character-

istic polynomial of the linear map does not change either. Actually, if we select

a basis for E over k, then E k(n), and k(n) c k'(n) in a natural way. Thus selecting
a basis allows us to extend the vector space, but this seems to depend on the

choice of basis. We shall give an invariant definition later.

Let E = E
1 (f) . . . (f) Er be an expression of E as a direct sum of vector

spaces over k. Let A E Endk(E), and assume that AEi
c Ei for all i = 1, . . .

,
r.

Then A induces a linear map on Ei . We can select a basis for E consisting of

bases for E 1, . . .

, Er, and then the matrix for A consists of blocks. Hence we see

that

r

PA(t) = n PAi(t).
i = 1

Thus the characteristic polynomial is multiplicative on direct sums.

Our condition above that AEi
c Ei can also be formulated by saying that

E is expressed as a k[A]-direct sum of k[A]-submodules, or also a k[t]-direct
sum of k[t]-submodules. We shall apply this to the decomposition of E given
in Theorem 2.1.

Theorem 3.5. Let E be a finite-dimensional vector space over a field k, let

A E Endk(E), and let ql, . . .
, qr be the invariants of(E, A). Then

PA(t) =

q 1 (t) . . .

qr(t).

Proof We assume that E = k(n) and that A is represented by a matrix M.

We have seen that the invariants do not change when we extend k to a larger

field, and neither does the characteristic polynomial. Hence we may assume that

k is algebraically closed. In view of Theorem 2.1 we may assume that M has a
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single invariant q. Write

q(t) = (t
- cxl)e1 . . . (t - rJ.s)e

s

with distinct cx
l' . . .

, CXs . We view M as a linear map, and split out vector space

further into a direct sum of submodules (over k[t]) having invariants

(t
- cxl)e1, . . .

, (t
-

cxs)e.

respectively (this is the prime power decomposition). For each one of these

submodules, we can select a basis so that the matrix of the induced linear map has

the shape described in Theorem 2.4. From this it is immediately clear that the

characteristic polynomial of the map having invariant (t - cx)e is precisely

(t - ex)e, and our theorem is proved.

Corollary 3.6. The minimal polynomial of A and its characteristic poly-
nomial have the same irreducible factors.

Proof. Because qr is the minimal polynomial, by Theorem 2.1.

We shall generalize our remark concerning the multiplicativity of the

characteristic polynomial over direct sums.

Theorem 3.7. Let k be a commutative ring, and in the following diagram,

o ) E'

A'!
) E"

A"!
) E

A!
) 0

o ) E' ) E ) E" ) 0

let the rows be exact sequences offree modules over k, offinite dimension, and

let the vertical maps be k-linear maps making the diagram commutative. Then

PA(t) = PA,(t)PA,,(t).

Proof. We may assume that E' is a submodule of E. We select a basis

{Vl, . ..
,

v
m } for E'. Let {vm + l'

. .

., v} be a basis for E", and let v
m + 1,

. . .

,
V

n

be elements of E mapping on V
m + l' . . .

,
v

n respectively. Then

{V 1, . . .

,
V

m ,
V

m + b . . .
,

V
n }

is a basis for E (same proof as Theorem 5.2 of Chapter III), and we are in the

situation discussed in 91. The matrix for A has the shape

(' ,,)
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where M' is the matrix for A' and M" is the matrix for A". Taking the character-

istic polynomial with respect to this matrix obviously yields our multiplicative

property.

Theorem 3.8. Let k be a commutative ring, and E afree module ofdimension

n over k. Let A E Endk(E). Let

PA(t) = t
n

+ c
n

_ 1 t
n
- 1

+ . . . + co.

Then

tr(A) = -C
n
- 1 and det(A) = (-l)nco.

Proof. For the determinant, we observe that PA(O) =

co. Substituting
t = 0 in the definition of the characteristic polynomial by the determinant shows

that Co
= ( -l)n det(A).

For the trace, let M be the matrix representing A with respect to some basis,
M =

(aij). We consider the determinant det(t1n
-

aij). In its expansion as a sum

over permutations, it will contain a diagonal term

(t
-

all) . . . (t - ann),

which will give a contribution to the coefficient of t
n
- 1

equal to

-

(a 1 1 + . . . + ann)'

No other term in this expansion will give a contribution to the coefficient of

t
n
-

1, because the power of t occurring in another term will be at most t
n
-

2.

This proves our assertion concerning the trace.

Corollary 3.9. Let the notation be as in Theorem 3.7. Then

tr(A) = tr(A') + tr(A,,) and det(A) = det(A') det(A").

Proof. Clear.

We shall now interpret our results in the Euler-Grothendieck group.

Let k be a commutative ring. We consider the category whose objects are

pairs (E, A), where E is a k-module, and A E Endk(E). We define a morphism

(E', A') (E, A)

to be a k-linear map E' E making the following diagram commutative:

E'

A-j

f
) E

jA
E' ) E

f
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Then we can define the kernel of such a morphism to be again a pair. Indeed,
let E be the kernel off: E' E. Then A' maps Eo into itself because

fA'E = AfE = o.

We let A be the restriction of A' on Eo. The pair (E, A) is defined to be the

kernel of our morphism.
We shall denote by fagain the morphism of the pair (E', A') (E, A). We

can speak of an exact sequence

(E', A') (E, A) (E", A"),

meaning that the induced sequence

E' E E"

is exact. We also write 0 instead of (0, 0), according to our universal convention

to use the symbol 0 for all things which behave like a zero element.

We observe that our pairs now behave formally like modules, and they in

fact form an abelian category.
Assume that k is a field. Let (t consist of all pairs (E, A) where E is finite

dimensional over k.

Then Theorem 3.7 asserts that the characteristic polynomial is an Euler-

Poincare map defined for each object in our category (t, with values into the

multiplicative monoid ofpolynomials with leading coefficient 1.

Since the values of the map are in a monoid, this generalizes slightly the notion

of Chapter III, 8, when we took the values in a group. Of course when k is a

field, which is the most frequent application, we can view the values of our map

to be in the multiplicative group of non-zero rational functions, so our previous
situation applies.

A similar remark holds now for the trace and the determinant. If k is a

field, the trace is an Euler map into the additive group of the field, and the deter-

minant is an Euler map into the multiplicative group ofthefield. We note also that

all these maps (like all Euler maps) are defined on the isomorphism classes of

pairs, and are defined on the Euler-Grothendieck group.

Theorem 3.10. Let k be a commutative ring, M an n x n matrix in k, andf
a polynomial in k[t]. Assume that PM(t) has a factorization,

n

PM(t) = n (t
-

exi)
i= 1

into linear factors over k. Then the characteristic polynomial of f(M) is

given by
n

Pf(M)(t) = n (t
-

f(exi»,
i= 1
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and

n n

det(f(M») = n f(rxi).
i= 1

tr(f(M») = L f(rxi),
i = 1

Proof. Assume first that k is a field. Then using the canonical decomposi-
tion in terms of matrices given in Theorem 2.4, we find that our assertion is

immediately obvious. When k is a ring, we use a substitution argument. It is

however necessary to know that if X =

(x;j) is a matrix with algebraically
independent coefficients over Z, then Px(t) has n distinct roots Yl, . . .

, Yn [in
an algebraic closure of Q(X)] and that we have a homomorphism

z [xij, Y 1, . . .

, Yn] k

mapping X on M and Yl,. . .
, Yn on rxl,. . .

, rxn. This is obvious to the reader who

read the chapter on integral ring extensions, and the reader who has not can

forget about this part of the theorem.

EXERCISES

1. Let T be an upper triangular square matrix over a commutative ring (i.e. all the ele-

ments below and on the diagonal are 0). Show that T is nilpotent.

2. Carry out explicitly the proof that the determinant of a matrix

* *

M2

0 *

0 0 . . . 0 Ms

where each Mi is a square matrix, is equal to the product of the determinants of the

matrices M 1 ,..., Ms.

3. Let k be a commutative ring, and let M, M' be square n x n matrices in k. Show that

the characteristic polynomials of MM' and M'M are equal.

4. Show that the eigenvalues of the matrix

o 1 0 0

001 0

000 1

100 0

in the complex numbers are + 1, + i.
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5. Let M, M' be square matrices over a field k. Let q, q' be their respective minimal

polynomials. Show that the minimal polynomIal of

( .)
is the least common multiple of q, q'.

6. Let A be a nilpotent endomorphism of a finite dimensional vector space E over the field

k. Show that tr(A) = O.

7. Let R be a principal entire ring. Let E be a free module over R, and let E
V

= HomR(E, R)

be its dual module. Then E
v

is free of dimension n. Let F be a submodule of E.

Show that E
V

/F.l can be viewed as a submodule of F
V

, and that its invariants are

the same as the invariants of F in E.

8. Let E be a finite-dImensional vector space over a field k. Let A E Autk(E). Show that

the following conditions are equivalent:

(a) A = I + N, with N nilpotent.

(b) There exists a basis of £ such that the matrix of A with respect to this basis has

all its diagonal elements equal to 1 and all elements above the diagonal equal

to o.

(c) All roots of the characteristic polynomial of A (in the algebraIc closure of k)

are equal to 1.

9. Let k be a field of characteristic 0, and let M be an n x n matrix in k. Show that M is

nilpotent if and only if tr(M
V

) = 0 for 1 < v < n.

10. Generalize Theorem 3.10 to rational functions (instead of polynomials), assuming

that k is a field.

11. Let E be a finite-dimensional space over the field k. Let ex E k. Let E(1 be the subspace
of Ii generated by all eigenvectors of a given endomorphism A of £, having ex as an

eigenvalue. Show that every non-zero element of £(1 is an eigenvector of A having ex as

an eigenvalue.

12. Let E be finite dimensional over the field k. Let A E Endk(E). Let v be an eigenvector
for A. Let BE Endk(E) be such that AB = BA. Show that Bv is also an eigenvector

for A (if Bv i= 0), with the same eigenvalue.

DiagonaUzable endomorphisms

Let E be a finite-dimensional vector space over a field k, and let S E Endk(E). We say

that S is diagonalizable if there eXIsts a basis of £ consistIng of eigenvectors of S. The

matrix of S with respect to this basis is then a diagonal matrIx.

13. (a) If S is diagonahzable, then its minimal polynomial over k is of type

m

q(t) = n (t - Ai),
i = I

where AI' . . .

, Am are distinct elements of k.

(b) Conversely, if the minimal polynomial of S is of the preceding type, then S is

diagonalizable. [Hint: The space can be decomposed as a direct sum of the

subspaces E).j annihilated by S - Ai.]
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(c) If S is diagonalizable, and if F is a subspace of E such that SF c F, show that S

is diagonalizable as an endomorphism of F, I.e. that F has a basis consisting of

eigenvectors of S.

(d) Let S, T be endomorphisms of E, and assume that S, T commute. Assume that

both S, Tare diagonalizable. Show that they are simultaneously diagonalizable,
i.e. there exists a basis of E consisting of eigenvectors for both Sand T. [Hint:
If A is an eigenvalue of S, and E). is the subspace of E consisting of all vectors v

such that Sv = AV, then TE). c E)..]

t 4. Let E be a finite-dimensional vector space over an algebraically closed field k. Let

A E Endk(E). Show that A can be written In a unique way as a sum

A=S+N

where S is diagonalizable, N IS nIlpotent, and SN = NS. Show that S, N can be ex-

pressed as polynomials in A. [Hint: Let PA(t) = n (t - Ai)m
, be the factorization

of PA(t) with distinct Ai. Let Ei be the kernel of (A - Ai)m
i

. Then E is the direct sum of

the Ei . Define S on E so that on Ei , Sv = AiV for all v E Ei . Let N = A - S. Show

that S, N satisfy our requirements. To get S as a polynomial in A, let g be a polynomial
such that g(t) = Ai mod (t - Ai)m

, for all i, and g(t) = 0 mod t. Then S = g(A)
and N = A - g(A).]

t 5. After you have read the section on the tensor product of vector spaces, you can easily
do the following exercise. Let E, F be finite-dimensional vector spaces over an alge-

braically closed field k, and let A : E -+ E and B : F -+ F be k-endomorphisms of E, F,

respectively. Let

PA(t) = n (t - lXi)ni and PB(t) = n (t
-

(3)m
j

be the factorizations of their respectively characteristic polynomials, into distinct

linear factors. Then

PA@B(t) = n (t
-

lXi(3)nimj.
i. j

[Hint: Decompose E into the direct sum of subspaces Ei ,
where Ei is the subspace of

E annihilated by some power of A -

lXi. Do the same for F, getting a decomposition
into a direct sum of subspaces Fj. Then show that some power of A (8) B -

lXi{3j
annihilates Ei (8) Fj. Use the fact that E (8) F is the direct sum of the subspaces Ei (8) Fj,
and that dimk(Ei (8) F

j)
= nimj.]

16. Let r be a free abelian group of dimension n > 1. Let r' be a subgroup of dimension n

also. Let {V.,..., vn} be a basis of r, and let {w 1 ,..., w
II } be a basis of r'. Write

Wi
= L aijvj

.

Show that the index (r : r') is equal to the absolute value of the determinant of the

matrix (aij).

17. Prove the normal basis theorem for finite extensions of a finite field.

18. Let A = (aij) be a square n x n matrix over a commutative ring k. Let Aij be the matrix

obtained by deleting the i-th row andj-th column from A. Let bij = (_I)i+ j
det(Aji),

and let B be the matrix (b ij). Show that det(B) = det(A)n
-

1, by reducing the problem to

the case when A is a matrix with variable coefficients over the integers. Use this same

method to give an alternative proof of the Cayley-Hamilton theorem, that PA(A) = O.
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19. Let (E, A) and (E', A') be pairs consisting of a finite-dimensional vector space over a

field k, and a k-endomorphism. Show that these pairs are isomorphic if and only if

their invariants are equal.

20. (a) How many non-conjugate elements of GL2(C) are there with characteristic poly-
nomial (3(t + 1)2(t - I)?

(b) How many with characteristic polynomial t
3 - 1001 t?

21. Let V be a finite dimensional vector space over Q and let A: V V be a Q-linear

map such that A5 = Id. Assume that if v E V is such that Av =

v, then v = O. Prove

that dim V is divisible by 4.

22. Let V be a finite dimensional vector space over R, and let A: V V be an R-linear

map such that A2 = - Id. Show that dim V is even, and that V is a direct sum of 2-

dimensional A-invariant subspaces.

23. Let E be a finite-dimensional vector space over an algebraically closed field k. Let

A, B be k-endomorphisms of E which commute, i.e. AB = BA. Show that A and B have

a common eigenvector. [Hint: Consider a subspace consisting of all vectors having
a fixed element of k as eigenvalue.]

24. Let V be a finite dimensional vector space over a field k. Let A be an endomorphism
of V. Let Tr(Am) be the trace of Am as an endomorphism of V. Show that the following

power series in the variable t are equal:

(
IX)

)
d

IX)

exp L -Tr(Am)
t

m

= det(I
-

tA) or
--

d
log det(I

-

tA) = L Tr(Am)t
m

.

m= I m t
m= I

Compare with Exercise 23 of Chapter XVIII.

25. Let V, W be finite dimensional vector spaces over k, of dimension n. Let (v, w)

(v, w) be a non-singular bilinear form on V x W. Let c E k, and let A: V V and

V: W W be endomorphisms such that

(Av, Bw) = c(v, w) for all v E V and w E W.

Show that

and
det(A)det(tl

-

B) = (-I)ndet(cl
-

tA)

det(A)det(B) =
c

n
.

For an application of Exercises 24 and 25 to a context of topology or algebraic
geometry, see Hartshorne's Algebraic Geometry, Appendix C, 4.
26. Let G == SLn (C) and let K be the complex unitary group. Let A be the group of di-

agonal matrices with positive real components on the diagonal.

(a) Show that if g E NorG(A) (normalizer of A in G), then c(g) (conjugation by

g) permutes the diagonal components of A, thus giving rise to a homo-

morphism NorG(A) ---+ W to the group W of permutations of the diagonal
coordinates.

By definition, the kernel of the above homomorphism is the centralizer CenG(A).
(b) Show that actually all permutations of the coordinates can be achieved by

elements of K, so we get an isomorphism

W NorG(A)/CenG(A) NorK(A)/CenK(A).

In fact, the K on the right can be taken to be the real unitary group, because

permutation matrices can be taken to have real components (0 or + 1).



CHAPTER XV

Structure of Bilinear Forms

There are three major types of bilinear forms: hermitian (or symmetric),

unitary, and alternating (skew-symmetric). In this chapter, we give structure

theorems giving normalized expressions for these forms with respect to suitable

bases. The chapter also follows the standard pattern of decomposing an object
into a direct sum of simple objects, insofar as possible.

1. PRELIMINARIES, ORTHOGONAL SUMS

The purpose of this chapter is to go somewhat deeper into the structure

theory for our three types of forms. To do this we shall assume most of the time

that our ground ring is a field, and in fact a field of characteristic =f. 2 in the

symmetric case.

We recall our three definitions. Let E be a module over a commutative

ring R. Let g: E x E -+ R be a map. If g is bilinear, we call g asymmetric form

if g(x, y) = g(y, x) for all x, y E E. We call g alternating if g(x, x) = 0, and hence

g(x, y) = - g(y, x) for all x, y E E. If R has an automorphism of order 2,

written a a, we say that g is a hermitian form if it is linear in its first variable,

antilinear in its second, and

g(x, y) = g(y, x).

We shall write g(x, y) = <x, y) if the reference to g is clear. We also oc-

casionally write g(x, y) = x. y or g(x, x) = x
2

. We sometimes call g a scalar

product.

571
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If Vb . .

.,
V

m
E E, we denote by (Vl,. . .

,
v

m ) the submodule of E generated by

Vb. . .

, V
m

.

Let 9 be symmetric, alternating, or hermitian. Then it is clear that the left

kernel of 9 is equal to its right kernel, and it will simply be called the kernel of g.

In anyone of these cases, we say that 9 is non-degenerate if its kernel is O.

Assume that E is finite dimensional over the field k. The form is non-degenerate
if and only if it is non-singular, i.e., induces an isomorphism of E with its dual

space (anti-dual in the case of hermitian forms).

Except for the few remarks on the anti-linearity made in the previous

chapter, we don't use the results of the duality in that chapter. We need only
the duality over fields, given in Chapter III. Furthermore, we don't essentially
meet matrices again, except for the remarks on the pfaffian in 1 O.

We introduce one more notation. In the study of forms on vector spaces,

we shall frequently decompose the vector space into direct sums of orthogonal

subspaces. If E is a vector space with a form g as above, and f"', F" are subspaces,
we shall write

E = f' 1- f"

to mean that E is the direct sum of f' and f", and that F is orthogonal (or

perpendicular) to f", in other words, x 1- y (or <x, y) = 0) for all x E f"' and

y E f"". We then say that E is the orthogonal sum of f' and f"". There will be no

confusion with the use of the symbol .1 when we write f'1- f" to mean simply that

f' is perpendicular to f". The context always makes our meaning clear.

Most of this chapter is devoted to giving certain orthogonal decompositions

ofa vector space with one ofour three types offorms, so that eachfactor in the sum

is an easily recognizable type.

In the symmetric and hermitian case, we shall be especially concerned with

direct sum decompositions into factors which are I-dimensional. Thus if

< , ) is symmetric or hermitian, we shall say that {VI' . . .
,

v
n } is an orthogonal

basis (with respect to the form) if <Vi, V
j )

= 0 whenever i =f. j. We see that an

orthogonal basis gives such a decomposition. If the form is nondegenerate,
and if {v l' . . .

,
v

n } is an orthogonal basis, then we see at once that < Vi, Vi) i= 0

for all i.

Proposition 1.1. Let E be a vector space over the field k, and let g be aform

of one o.f the three above types. Suppose that E is expressed as an orthogonal

sum,

E = E
1

.1 . . . 1- Em.

Then 9 is non-degenerate on E if and only f it is non-degenerate on each Ei .

If E? is the kernel of the restriction of 9 to Ei , then the kernel of 9 in E is the

orthogonal sum

EO = E? 1- . . . 1- E.
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Proof Elements v, ",' of £ can be written uniquely

m

V = "v.
I'

i = 1

m

W = L Wi
i = 1

with Vi' "'iE£i. Then

v. w =

m

"V.. W.
I I'

i = 1

and V. W = 0 if Vi. Wi
= 0 for each i = 1, . .

.,
m. From this our assertion is

obvious.

Observe that if E
l'

. . .

, Em are vector spaces over k, and g 1, . . .

, gm are forms

on these spaces respectively, then we can define a form g
=

gl (f) . . . (f) gm on the

direct sum E = E 1 (f) . . . (f) Em; namely if v, ware written as above, then we let

m

g(v, w) = I gi(V i , Wi).
i = 1

I t is then clear that, in fact, we have E = E
1

1. . . . 1. Em . We could also write

g
=

g 1 1. . . . 1. gm.

Proposition 1.2. Let E be a finite-dimensional space over the field k, and let

g be aform of the preceding type on E. Assume that g is non-degenerate. Let

F be a subspace of E. The form is non-degenerate on F if and only if
F + F.1 = E, and also if and only if it is non-degenerate on F.1.

Proo.f We have (as a trivial consequence of Chapter III, 95)

dim F' + dim F'.1 = dim £ = dim(F' + F'.1) + dim(F' n f"'.1).

Hence f"' + f"'.1 = £ if and only if dim(f"' n F'.1) = O. Our first assertion follows

at once. Since F', F'.1 enter symmetrically in the dimension condition, our second

assertion also follows.

Instead of saying that a form is non-degenerate on E, we shall sometimes say,

by abuse of language, that E is non-degenerate.
Let £ be a finite-dimensional space over the field k, and let g be a form of

the preceding type. Let Eo be the kernel of the form. Then we get an induced

form of the same type

go : EIEo x £IEo k,

because g(x, y) depends only on the coset of x and the coset of y modulo Eo.

Furthermore, 90 is non-degenerate since its kernel on both sides is O.

Let £, £' be finite-dimensional vector spaces, with forms g, g' as above,

respectively. A linear map a : E E' is said to be metric if

g'(ax, ay) = g(x, y)
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or in the dot notation, ax .

ay
= x .

y for all x, y E E. If (J is a linear isomorphism,
and is metric, then we say that a is an isometry.

Let E, Eo be as above. Then we have an induced form on the factor space

EIEo. If W is a complementary subspace of Eo, in other words, E = Eo (f) W,

and if we let a : E EIEo be the canonical map, then (J is metric, and induces

an isometry of W on EIEo. This assertion is obvious, and shows that if

E = Eo (f) W'

is another direct sum decomposition of E, then W' is isometric to W. We know

that W EIEo is nondegenerate. Hence our form determines a unique non-

degenerate form, up to isometry, on complementary subspaces of the kernel.

2. QUADRATIC MAPS

Let R be a commutative ring and let E, F' be R-modules. We suppress the

prefix R- as usual. We recall that a bilinear map.f: E x E F' is said to be

symmetric if f(x, y) = f(y, x) for all x, y E E.

We say that F is without 2-torsion if for all y E f' such that 2y = 0 we have

y
= O. (This holds if 2 is invertible in R.)

Letj: E F' be a mapping. We shall say that.fis quadratic (i.e. R-quadratic)
if there exists a symmetric bilinear map 9 : E x E f' and a linear map h: E F'

such that for all x E E we have

f(x) = g(x, x) + h(x).

Proposition 2.1. Assume that f' is without 2-torsion. Let.f : E F' be

quadratic, expressed as above in terms of a symmetric bilinear map and a

linear map. Then g, h are uniquely determined by.! F'or all x, y E E we have

2g(x, y) = .f(x + y)
-

f(x)
-

f(y).

Proof If we compute f(x + y) -

f(x)
- f(y), then we obtain 2g(x, y).

If gt is symmetric bilinear, hi is linear, and .f(x) = gl(X, x) + hl(x), then

2g(x, y) = 2g I (x, y). Since F is assumed to be without 2-torsion, it follows that

g(x, y) =

9 I (x, y) for all x, y E E, and thus that 9 is uniquely determined. But

then h is determined by the relation

h(x) = f(x)
-

g(x, x).

We call g, h the bilinear and linear maps associated with!

If.f: E f' is a map, we define

f: E x E F'
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by

I1f(x, y) = f(x + y) -

f(x) -

f(y).

We say that f is homogeneous quadratic if it is quadratic, and if its associated

linear map is o. We shall say that F' is uniquely divisible by 2 if for each Z E F

there exists a unique u E f such that 2u = z. (Again this holds if 2 is invertible

in R.)

Proposition 2.2. Let f: E f' be a map such that 4f is bilinear. Assume

that f is uniquely divisible by 2. Then the map x f(x) - tl1f(x, x) is

Z-linear. If f satisfies the condition f(2x) = 4f(x), then f is homogeneous

quadratic.

Proof Obvious.

By a quadratic form on E, one means a homogeneous quadratic map

f: E R, with values in R.

In what follows, we are principally concerned with symmetric bilinear

forms. The quadratic forms playa secondary role.

3. SYMMETRIC FORMS, ORTHOGONAL BASES

Let k be a field of characteristic =1= 2.

Let E be a vector space over k, with the symmetric form g. We say that 9

is a null form or that E is a null space if (x, y) = 0 for all x, y E E. Since we

assumed that the characteristic of k is =I 2, the condition x
2

= 0 for all x E E

implies that 9 is a null form. Indeed,

4x .

y
= (x + y)2 -

(x
_ y)2.

Theorem 3.1. Let E be =1= 0 and finite dimensional over k. Let g be a sym-

metric form on E. Then there exists an orthogonal basis.

Proof We assume first that 9 is non-degenerate, and prove our assertion by
induction in that case. If the dimension n is 1, then our assertion is obvious.

Assume n > 1. Let VI E E be such that vI =f. 0 (such an element exists since

g is assumed non-degenerate). Let f = (VI) be the subspace generated by VI.

Then f' is non-degenerate, and by Proposition 1.2, we have

E=F+F1-.

Furthermore, dim f.l = n
- 1. Let {V2, . . .

,
v

n } be an orthogonal basis of F'1-.
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Then {v l'
. .

., v
n } are pairwise orthogonal. Furthermore, they are linearly

independent, for if

a 1 VI + . . . + an V
n

= 0

with ai E k then we take the scalar product with Vi to get ai v; = 0 whence ai
= 0

for all i.

Remark. We have shown in fact that if9 is non-degenerate, and v E Eis such

that v
2

# 0 then we can complete v to an orthogonal basis of E.

Suppose that the form g is degenerate. Let Eo be its kernel. We can write

E as a direct sum

E = Eo (f) W

for some subspace W. The restriction of g to W is non-degenerate; otherwise

there would be an element of W which is in the kernel of E, and =f. O. Hence if

{VI' ...,
v
r } is a basis of Eo, and {WI'...' ""n-r} is an orthogonal basIs of W, then

{ VI' . . .

,
V

r , WI' . . .

,
W

n
- r}

is an orthogonal basis of E, as was to be shown.

Corollary 3.2. Let {VI'..., vn} be an orthogonal basis qf E. Assume that

vl =f. 0 for i < rand vf = 0 {or i > r. Then the kernel o.f E is equal to

(vr + b . . .

,
v

n ).

Proof Obvious.

If {VI' . . .

, Vn} is an orthogonal basis of E and if we write

x = X
I V I + . . . + X

n
V

n

with Xi E k, then

X
2 2 2

=alx l +...+anxn

where ai
= <Vi' Vi). In this representation of the form, we say that it is diagonal-

ized. With respect to an orthogonal basis, we see at once that the associated

matrix of the form is a diagonal matrix, namely

a l

a
2 o

a
r

o o

o
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Example. Note that Exercise 33 of Chapter XIII gave an interesting example
of an orthogonal decomposition involving harmonic polynomials.

4. SYMMETRIC FORMS OVER ORDERED FIELDS

Theorem 4.1. (Sylvester) Let k be an ordered field and let E be a finite
dimensional vector space over k, with a non-degenerate symmetricform g. There

exists an integer r
> 0 such that, if {V., . . . ,vn } is an orthogonal basis of E,

then precisely r among the n elements vy, . . . , v are> 0, and n
-

r among

these elements are < o.

Proof. Let ai
= vf, for i = 1, . . .

,
n. After renumbering the basis elements,

say ai' . . .

, a
r

> 0 and ai < 0 for i > r. Let {w I'
. . .

,
w

n } be any orthogonal basis,

and let bi
= wl. Say b

l ,
. . .

,
b

s
> 0 and b

j
< 0 for j > s. We shall prove that

r = s. Indeed, it will suffice to prove that

Vb . . .

,
V
r ,

W
s + b . . .

,
W

n

are linearly independent, for then we get r + n
-

s < n, whence r < s, and

r = s by symmetry. Suppose that

XIV l + ... + XrVr
+ Ys+IWs + l + ... + YnWn

= O.

Then

XIVl + ... + XrVr
=

-Ys+IWs + 1
- ... -

YnWn.

Squaring both sides yields

2 2
b

2
+b

2

a1xI + ... + arXr

=

s+ lYs+ 1 + ...

nYn.

The left-hand side is > 0, and the right-hand side is < O. Hence both sides are

equal to 0, and it follows that Xi
=

Yj
= 0, in other words that our vectors are

linearly independent.

Corollary 4.2. Assume that every positive element of k is a square. Then

there exists an orthogonal basis {VI' . . .

,
v

n } of E such that vf = 1 for i < r

and vf = - 1 for i > r, and r is uniquely determined.

Proof. We divide each vector in an orthogonal basis by the square root of

the absolute value of its square.

A basis having the property of the corollary is called orthonormal. If X is an

element of E having coordinates (x l' . . .

,
x

n ) with respect to this basis, then

X
2 2 2 2 2

= X I + . . . + X
r

-

X
r + I

- . . . -

Xn.
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We say that a symmetric form 9 is positive definite if X
2

> 0 for all

X E E, X =/; O. This is the case if and only if r = n in Theorem 4.1. We say

that 9 is negative definite if X
2

< 0 for all X E E, X =/; O.

Corollary 4.3. The vector space E admits an orthogonal decomposition
E = E+ 1. E- such that g is positive definite on E

+
and negative definite on

E-. The dimension of E+ (or E-) is the same in all such decompositions.

Let us now assume that the form g is positive definite and that every positive

element of k is a square.

We define the norm of an element v E E by

Ivl=.

Then we have I v I > 0 if v =I O. We also have the Schwarz inequality

Iv.wl < Ivllwl

for all v, WEE. This is proved in the usual way, expanding

o < (av + bw)2 = (av + bw). (av + bw)

by bilinearity, and letting b = I v I and a = I w I. One then gets

+ 2ab v . w < 21 V 1
2

I W 1
2

.

If I v I or I wi = 0 our inequality is trivial. If neither is 0 we divide by I v II w I to get

what we want.

From the Schwarz inequality, we deduce the triangle inequality

Iv + wi < Ivl + Iwl.

We leave it to the reader as a routine exercise.

When we have a positive definite form, there is a canonical way of getting an

orthonormal basis, starting with an arbitrary basis {v l ,
. . .

,
v

n } and proceeding

inductively. Let

,
1

VI
=

Yv
VI.

Then Vl has norm 1. Let

w
2

=

V2
-

(V2 . V'I )V'b

and then

,
1

v 2
=

l w2I
w2 .
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Inductively, we let

W = v
-

(V
. V'

l )V'l
- . . . - (V .

v
,

)v
'

r r r r r- 1 r- 1

and then

,
1

V
r

=

I wr l
W

r
.

The {V'l' . . .

, v} is an orthonormal basis. The inductive process just described

is known as the Gram-Schmidt orthogonalization.

5. HERMITIAN FORMS

Let ko be an ordered field (a subfield of the reals, if you wish) and let k = ko(i),
where i = J=l. Then k has an automorphism of order 2, whose fixed field

is ko.
Let E be a finite-dimensional vector space over k. We shall deal with a hermi-

tian form on E, i.e. a map

ExEk

written

(x, y) (x, y)

which is k-linear in its first variable, k-anti-linear in its second variable, and such

that

(x, y) = (y, x)

for all x, y E E.

We observe that (x, x) E ko for all x E E. This is essentially the reason why
the proofs of statements concerning symmetric forms hold essentially without

change in the hermitian case. We shall now make the list of the properties which

apply to this case.

Theorem 5.1. There exists an orthogonal basis. Iftheform is non-degenerate,

there exists an integer r having the following property. If {V., . . .
,

v
n } is an

orthogonal basis, then precisely r among the n elements

(VI' VI)' . . . , (vn ,
v

n )

are> 0 and n
-

r among these elements are < O.
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An orthogonal basis {Vb. . .

,
v

n } such that <Vi' Vi) = 1 or - 1 is called an

orthonormal basis.

Corollary 5.2. Assume that theform is non-degenerate, and that every positive
element of ko is a square. Then there exists an orthonormal basis.

We say that the hermitian form is positive definite if (x, x) > 0 for all

x E E. We say that it is negative definite if (x, x) < 0 for all x E E, x =/; O.

Corollary 5.3. Assume that the form is non-degenerate. Then E admits an

orthogonal decomposition E = E+ .1 E- such that the form is positive definite
on E+ and negative definite on E-. The dimension of E+ (or E-) is the same

in all such decompositions.

The proofs of Theorem 5. 1 and its corollaries are identical with those of the

analogous results for symmetric forms, and will be left to the reader.

We have the polarization identity, for any k-linear map A : E E, namely

<A(x + y), (x + y» - <A(x - y), (x
- y» = 2[<Ax, y) + <Ay, x)].

If <Ax, x) = 0 for all x, we replace x by ix and get

<Ax, y) + <Ay, x) = 0,

i<Ax, y) -

i<Ay, x) = o.

From this we conclude:

If <Ax, x) = 0, for all x, then A = O.

This is the only statement which has no analogue in the case of symmetric
forms. The presence of i in one of the above linear equations is essential to the

conclusion. In practice, one uses the statement in the complex case, and one

meets an analogous situation in the real case when A is symmetric. Then the

statement for symmetric maps is obvious.

Assume that the hermitian form is positive definite, and that every positive
element of ko is a square.

We have the Schwarz inequality, namely

I <x, y) 1
2

< <x, x)<y, y)

whose proof comes again by expanding

o « ax + py,ax + py)

and setting a = <y, y) and p = - <x, y).
We define the norm of I x I to be

Ixl = J<x, x).
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Then we get at once the triangle inequality

Ix + yl
<

Ixl + Iyl,

and for r:J. E k,

I r:J.x I = I r:J.11 x I.

Just as in the symmetric case, given a basis, one can find an orthonormal

basis by the inductive procedure of subtracting successive projections. We leave

this to the reader.

6. THE SPECTRAL THEOREM (HERMITIAN CASE)

Throughout this section, we let E be afinite dimensional space over C, ofdimension

> 1, and we endow E with a positive definite hermitian form.

Let A : E -+ E be a linear map (i.e. C-linear map) of E into itself. For fixed

y E E, the map x <Ax, y) is a linear functional, and hence there exists a

unique element y* E E such that

<Ax, y> = <x, y*)

for all x E E. We define the map A *
: E E by A *y = y*. It is immediately

clear that A
* is linear, and we shall call A

* the adjoint of A with respect to our

hermitian form.

The following formulas are trivially verified, for any linear maps A, B of E

into itself:

(A + B)* = A
*

+ B*,

(r:J.A )
*

= CiA
*

,

A** = A
,

(AB)* = B*A*.

A linear map A is called self-adjoint (or hermitian) if A* = A.

Proposition 6.1. A is hermitian if and only if (Ax, x) is real for all x E E.

Proo.f Let A be hermitian. Then

<Ax, x) = <x, Ax) = <Ax, x),

whence <Ax, x) is real. Conversely, assume <Ax, x) is real for all x. Then

<Ax, x) = <Ax, x> = <x, Ax) = <A*x, x),

and consequently < (A
- A *)x, x) = 0 for all x. Hence A = A

*

by polarization.
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Let A : E E be a linear map. An element E E is called an eigenvector
of A if there exists A E C such that A = A. If =I 0, then we say that A is an

eigenvalue of A, belonging to .

Proposition 6.2. Let A be hermitian. Then all eigenvalues belonging to

nonzero eigenvectors of A are real. If, ' are eigenvectors =1= 0 having

eigenvalues A, X respectively, and if A =1= X, then .1 '.

Proof Let A be an eigenvalue, belonging to the eigenvector =f. O. Then

<A, > = <, A>, and these two numbers are equal respectively to A<, >
and A<, >. Since =I 0, it follows that A = A

,
i.e. that A is real. Secondly,

assume that , ' and A, A' are as described above. Then

<A, '> = A<, '> = <, A'> = A'<, '>,

from which it follows that <, '> = O.

Lemma 6.3. Let A : E E be a linear map, and dim E > 1. Then there

exists at least one non-zero eigenvector of A.

Proof We consider C[A], i.e. the ring generated by A over C. As a vector

space over C, it is contained in the ring of endomorphisms of E, which is finite

dimensional, the dimension being the same as for the ring of all n x n matrices

if n = dim E. Hence there exists a non-zero polynomial P with coefficients in

C such that P(A) = O. We can factor P into a product of linear factors,

P(X) = (X - Al) . . . (X
-

Am)

with Aj E C. Then (A - All) . . . (A
- AmI) = O. Hence not all factors A -

Ajl
can be isomorphisms, and there exists A E C such that A - AI is not an iso-

morphism. Hence it has an element =I 0 in its kernel, and we get A
- A = O.

This shows that is a non-zero eigenvector, as desired.

Theorem 6.4. (Spectral Theorem, Hermitian Case). Let E be a non-

zero finite dimensional vector space over the complex numbers, with a positive

definite hermitian form. Let A : E E be a hermitian linear map. Then E has

an orthogonal basis consisting of eigenvectors of A.

Proof Let 1 be a non-zero eigenvector, with eigenvalue A
l ,

and let E 1 be

the subspace generated by 1. Then A maps Et into itself, because

<AEt, l> = <Et, Al> = <Et, All> = Al<Et, l> = 0,

whence AEt is perpendicular to l'

Since 1 =I 0 we have < l' 1> > 0 and hence, since our hermitian form is

non-degenerate (being positive definite), we have

E = E 1 (f) Et.
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The restriction of our form to Et is positive definite (if dim E > 1). From

Proposition 6.1, we see at once that the restriction of A to Etis hermitian. Hence

we can complete the proof by induction.

Corollary 6.5. Hypotheses being as in the theorem, there exists an ortho-

normal basis consisting of eigenvectors ofA.

Proof. Divide each vector in an orthogonal basis by its norm.

Corollary 6.6. Let E be a non-zero finite dimensional vector space over the

complex numbers, with a positive definite hermitian form f. Let g be another

hermitian form on E. Then there exists a basis of E which is orthogonal for
both f and g.

Proof. We write f(x, y) = (x, y). Since f is non-singular, being positive

definite, there exists a unique hermitian linear map A such that g(x, y) = (Ax, y)
for all x, y E E. We apply the theorem to A, and find a basis as in the theorem,

say {Vl, . . .
,

v
n }. Let Ai be the eigenvalue such that AVi = AiVi. Then

g(vj, Vj) = (Avj, Vj) = Ai(Vi, Vj),

and therefore our basis is also orthogonal for g, as was to be shown.

We recall that a linear map U : E E is unitary if and only if V* = V-I.

This condition is equivalent to the property that (Ux, Vy) = (x, y) for all elements

x, y E E. In other words, V is an automorphism of the form f.

Theorem 6.7. (Spectral Theorem, Unitary Case). Let E be a non-zero

finite dimensional vector space over the complex numbers, with a positive definite
hermitianform. Let U : E E be a unitary linear map. Then E has an orthogonal
basis consisting of eigenvectors of V.

Proof. Let 1 =I 0 be an eigenvector of U. It is immediately verified that

the subspace of E orthogonal to
1

is mapped into itself by U, using the relation

U* = U
-

1, because if fl is perpendicular to 1, then

(Ufl, 1) = (fl, U* 1) = (fl, U
- 1

1) = (fl, A
- 1

1) = o.

Thus we can finish the proof by induction as before.

Remark. If A is an eigenvalue of the unitary map U, then A has necessarily
absolute value 1 (because U preserves length), whence A can be written in the

form e
i8

with () real, and we may view U as a rotation.

Let A : E E be an invertible linear map. Just as one writes a non-zero

complex number z
= re;() with r > 0, there exists a decomposition of A as a

product called its polar decomposition. Let P : E E be linear. We say that P

is semipositive if P is hermitian and we have (Px, x)
> 0 for all x E E. If we

have (Px, x) > 0 for all x =1= 0 in E then we say that P is positive definite. For
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example, if we let P = A *A then we see that P is positive definite, because

(A *Ax, x) = (Ax, Ax) > 0 if x =1= O.

Proposition 6.8. Let P be semipositive. Then P has a unique semipositive

square root B : E E, i.e. a semipositive linear map such that B
2

= P.

Proof. For simplicity, we assume that P is positive definite. By the spectral

theorem, there exists a basis of E consisting of eigenvectors. The eigenvalues
must be > 0 (immediate from the condition of positivity). The linear map defined

by sending each eigenvector to its multiple by the square root of the corresponding

eigenvalue satisfies the required conditions. As for uniqueness, since B commutes

with P because B
2

= P, it follows that if {V., . . .

,
v

n } is a basis consisting of

eigenvectors for P, then each Vi is also an eigenvector for B. (Cf. Chapter XIV,

Exercises 12 and 13(d).) Since a positive number has a unique positive square

root, it follows that B is uniquely determined as the unique linear map whose

effect on Vi is multiplication by the square root of the corresponding eigenvalue
for P.

Theorem 6.9. Let A : E E be an invertible linear map. Then A can be

written in a unique way as a product A = VP, where V is unitary and P is

positive definite.

Proof. Let P = (A *A)1I2, and let V = AP-
I

. Using the defiitions, it is

immediately verified that V is unitary, so we get the existence of the decom-

position. As for uniqueness, suppose A =

VIPI . Let

V2
= ppl

l
= V-IVI .

Then U2 is unitary, so VV2 = I. From the fact that p* = P and Pi =

P., we

conclude that p2 = pi. Since P, PI are Hermitian positive definite, it follows

as in Proposition 6.8 that P =

PI' thus proving the theorem.

Remark. The arguments used to prove Theorem 6.9 apply in the case of

Hilbert space in analysis. Cf. my Real Analysis. However, for the uniqueness,
since there may not be "eigenvalues", one has to use another technique from

analysis, described in that book.

As a matter of terminology, the expression A = VP in Theorem 6.9 is called

the polar decomposition of A. Of course, it does matter in what order we write

the decomposition. There is also a unique decomposition A =

PI V I with PI

positive definite and V I unitary (apply Theorem 6.9 to A -I, and then take

inverses) .

7. THE SPECTRAL THEOREM (SYMMETRIC CASE)

Let E be a finite dimensional vector space over the real numbers, and let 9 be

a symmetric positive definite form on E. If A : E E is a linear map, then we know
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that its transpose, relative to g, is defined by the condition

<Ax, y) = <x, tAy)

for all x, y E E. We say that A is symmetric if A = tA. As before, an element

E E is called an eigenvector of A if there exists A E R such that A = A, and A.

is called an eigenvalue if =f. o.

Theorem 7.1. (Spectral Theorem, Symmetric Case). Let E =1= O. Let

A : E E be a symmetric linear map. Then E has an orthogonal basis

consisting of eigenvectors of A.

Proof. If we select an orthogonal basis for the positive definite form,
then the matrix of A with respect to this basis is a real symmetric matrix, and

we are reduced to considering the case when E = R
n

. Let M be the matrix repre-

senting A. We may view M as operating on en, and then M represents a hermi-

tian linear map. Let z =f. 0 be a complex eigenvector for M, and write

z = x + iy,

with x, y ERn. By Proposition 6.2, we know that an eigenvalue A for M, be-

longing to z, is real, and we have Mz = AZ. Hence Mx = Ax and My
=

Ay.
But we must have x =I 0 or y =I O. Thus we have found a nonzero eigenvector
for M, namely, A, in E. We can now proceed as before. The orthogonal comple-
ment of this eigenvector in E has dimension (n

-

1), and is mapped into itself by
A. We can therefore finish the proof by induction.

Remarks. The spectral theorems are valid over a real closed field; our

proofs don't need any change. Furthermore, the proofs are reasonably close

to those which would be given in analysis for Hilbert spaces, and compact

operators. The existence of eigenvalues and eigenvectors must however be

proved differently, for instance using the Gelfand-Mazur theorem which we have

actually proved in Chapter XII, or using a variational principle (Le. finding a

maximum or minimum for the quadratic function depending on the operator).

Corollary 7.2. Hypotheses being as in the theorem, there exists an ortho-

normal basis consisting of eigenvectors of A.

Proof Divide each vector in an orthogonal basis by its norm.

Corollary 7.3. Let E be a non-zero finite dimensional vector space over the

reaIs , with a positive definite symmetric form f. Let 9 be another symmetric

form on E. Then there exists a basis of E which is orthogonal for bothf and g.

Proof We write f(x, y) = <x, y). Since f is non-singular, being positive
definite, there exists a unique symmetric linear map A such that

g(x, y) = <Ax, y)
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for all x, Y E E. We apply the theorem to A, and find a basis as in the theorem.

It is clearly an orthogonal basis for g (cf. the same proof in the hermitian case).

The analogues of Proposition 6.8 and the polar decomposition also hold in

the present case, with the same proofs. See Exercise 9.

8. ALTERNATING FORMS

Let E be a vector space over the field k, on which we now make no restriction.

We letfbe an alternating form on E, i.e. a bilinear mapf: E x E -+ k such that

f(x, x) = x
2

= 0 for all x E E. Then

x.y=-y.x

for all x, Y E E, as one sees by substituting (x + y) for x in x
2

= o.

We define a hyperbolic plane (for the alternating form) to be a 2-dimensional

space which is non-degenerate. We get automatically an element w such that

w
2

= 0, w =/; o. If P is a hyperbolic plane, and W E P, w =t= 0, then there exists

an element y =1= 0 in P such that w
·

y =t= O. After dividing y by some constant,

we may assume that w
·

y
= 1. Then y

·

w
= - 1. Hence the matrix of the form

with respect to the basis {w, y} is

(- )
The pair w, y is called a hyperbolic pair as before. Given a 2-dimensional vector

space over k with a bilinear form, and a pair of elements {w, y} satisfying the

relations

w
2

= y2 = 0, y
. w = - 1, w .

y
= 1,

then we see that the form IS alternating, and that (w, y) is a hyperbolic plane for

the form.

Given an alternating form f on E, we say that E (or .f) is hyperbolic if E is

an orthogonal sum of hyperbolic planes. We say that E (or 1) is null if x .

y
= 0

for all x, Y E E.

Theorem 8.1. Let f be an alternating form on the finite dimensional vector

space E over k. Then E is an orthogonal sum of its kernel and a hyperbolic

subspace. IfE is non-degenerate, then E is a hyperbolic space, and its dimension

IS even.

Proof. A complementary subspace to the kernel is non-degenerate, and

hence we may assume that E is non-degenerate. Let wEE, w =f. O. There

exists Y E E such that w .

y =I 0 and y =I O. Then (w, y) is non-degenerate, hence

is a hyperbolic plane P. We have E = P (f) p.l and p.l is non-degenerate. We
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complete the proof by induction.

Corollary 8.2. All alternating non-degenerate forms of a given dimension

over a field k are isometric.

We see from Theorem 8. 1 that there exists a basis of E such that relative to

this basis, the matrix of the alternating form is

o 1

-1 0

o 1

-1 0

o 1

-1 0

o

o

For convenience of writing, we reorder the basis elements of our orthogonal
sum of hyperbolic planes in such a way that the matrix of the form is

(- )
where]

r
is the unit r x r matrix. The matrix

(
0 Ir

)-] 0
r

is called the standard alternating matrix.

Corollary 8.3. Let E be a finite dimensional vector space over k, with a

non-degenerate symmetric form denoted by < , ). Let n be a non-de-

generate alternating form on £. Then there exists a direct sum decomposition
E =

EI E9 £2 and a symmetric automorphism A of E (with respect to < , »)

having the following property. If x, y E E are written

X=(Xb X2) with XtEEl and X 2 EE2 ,

y
= (y 1, Y2) with 1 EEl and y2

E E
2 ,
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then

Q(x, Y) = < AXl' Y 2> - < Ax 2 , Y 1 >.

Proof Take a basis of E such that the matrix of Q with respect to this basis

is the standard alternating matrix. Let f be the symmetric non-degenerate
form on E given by the dot product with respect to this basis. Then we obtain

a direct sum decomposition of E into subspaces Eb E2 (corresponding to the

first n, resp. the last n coordinates), such that

Q(x, y) = f(x t , Y2) - !(X2, Yl).

Since < , > is assumed non-degenerate, we can find an automorphism A having
the desired effect, and A is symmetric becausef is symmetric.

9. THE PFAFFIAN

An alternating matrix is a matrix G such that 'G = - G and the diagonal
elements are equal to O. As we saw in Chapter XIII, 96, it is the matrix of an

alternating form. We let G be an n x n matrix, and assume n is even. (For odd

n, cf. exercises.)
We start over a field of characteristic O. By Corollary 8.2, there exists a non-

singular matrix C such that 'CGC is the matrix

(- )
and hence

det(C)2 det(G) = 1 or 0

according as the kernel of the alternating form is trivial or non-trivial. Thus in

any case, we see that det(G) is a square in the field.

Now we move over to the integers Z. Let t
ij (1 < i < j < n) be n(n - 1)/2

algebraically independent elements over Q, let tu
= 0 for i = 1, . . .

, n, and let

t
ij

= - t
ji

for i > j. Then the matrix T = (tij) is alternating, and hence det(T)
is a square in the field Q(t) obtained from Q by adjoining all the variables t

ij
.

However, det(T) is a polynomial in Z[tJ, and since we have unique factorization

in Z[t], it follows that det(T) is the square of a polynomial in Z[t]. We can write

det(T) = p(t)2.

The polynomial P is uniquely determined up to a factor of + 1. Ifwe substitute
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values for the tij so that the matrix T specializes to

(
0 I

nI2

) ,
- I

nl 2 0

then we see that there exists a unique polynomial P with integer coefficients

taking the value 1 for this specialized set of values of (t). We call P the generic
Pfaffian of size n, and write it Pf.

Let R be a commutative ring. We have a homomorphism

Z[t] -+ R[t]

induced by the unique homomorphism of Z into R. The image of the generic
Pfaffian of size n in R[t] is a polynomial with coefficients in R, which we still

denote by Pf. If G is an alternating matrix with coefficients in R, then we write

Pf(G) for the value of Pf(t) when we substitute gij for tij in Pf. Since the deter-

minant commutes with homomorphisms, we have:

Theorem 9.1. Let R be a commutative ring. Let (gij)
= G be an alternating

matrix with gij E R. Then

det(G) = (Pf(G»2.

Furthermore, if C is an n x n matrix in R, then

Pf(CGtC) = det(C) Pf(G).

Proof The first statement has been proved above. The second statement

will follow if we can prove it over Z. Let Uij (i, j = 1,..., n) be algebraically

independent over Q, and such that Uij, t
ij

are algebraically independent over Q.
Let U be the matrix (uij). Then

Pf(UTtU) = + det(U) Pf(T),

as follows immediately from taking the square of both sides. Substitute values

for U and T such that U becomes the unit matrix and T becomes the standard

alternating matrix. We conclude that we must have a + sign on the right-hand
side. Our assertion now follows as usual for any substitution of U to a matrix in

R, and any substitution of T to an alternating matrix in R, as was to be shown.

10. WITT'S THEOREM

We go back to symmetric forms and we let k be a field of characteristic =/; 2.
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Let E be a vector space over k, with a symmetric form. We say that E is a

hyperbolic plane if the form is non-degenerate, if E has dimension 2, and if there

exists an element w =I 0 in E such that ",,2 = O. We say that E is a hyperbolic

space if it is an orthogonal sum of hyperbolic planes. We also say that the form

on E is hyperbolic.

Suppose that E is a hyperbolic plane, with an element w =I 0 such that

w
2

= O. Let u E E be such that E = (w, u). Then u . w =I 0; otherwise w would

be a non-zero element in the kernel. Let b E k be such that w . bu = bw . u = 1.

Then select a E k such that

(aw + bu)2 = 2abw . u + b
2
u

2
= O.

(This can be done since we deal with a linear equation in a.) Put v = aw + bu.

Then we have found a basis for E, namely E = (w, v) such that

w
2

= v
2

= 0 and w . v = 1.

Relative to this basis, the matrix of our form is therefore

( ).
We observe that, conversely, a space E having a basis {w, v} satisfying

w
2

= v
2

= 0 and w . v = 1 is non-degenerate, and thus is a hyperbolic plane. A

basis {w, v} satisfying these relations will be called a hyperbolic pair.
An orthogonal sum of non-degenerate spaces is non-degenerate and hence

a hyperbolic space is non-degenerate. We note that a hyperbolic space always
has even dimension.

Lemma 10.1. Let E be a finite dimensional vector space over k, with a non-

degenerate symmetric form g. Let F be a subspace, Fa the kernel of F, and

suppose we have an orthogonal decomposition

F = 1-"'0 1. u.

Let {w b . . .

,
w

s } be a basis of F
o. Then there exist elements Vb . . .

,
V

s
in E

perpendicular to U, such that each pair {Wi' Vi} is a hyperbolic pair generating
a hyperbolic plane Pi' and such that we have an orthogonal decomposition

U 1. PI 1....1. Ps.

Proof Let

U 1
= (w2' . . .

,
ws) (f) U.

Then U 1 is contained In F0 (f) U properly, and consequently (1-"'0 (f) U).l IS
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contained in vt properly. Hence there exists an element Ul E vi but

Ul (Fo (f) U).L.

We have Wl
.

Ul =I 0, and hence (w l ,
u l ) is a hyperbolic plane Pl. We have

seen previously that we can find V l E PI such that {w l ,
v l } is a hyperbolic pair.

Furthermore, we obtain an orthogonal sum decomposition

F 1
= (w2' . . .

,
Ws) .1. p 1 .1. U.

Then it is clear that (W 2 ,
. . .

,
w

s) is the kernel of F
1, and we can complete the

proof by induction.

Theorem 10.2 Let E be a finite dimensional vector space over k, and let g

be a non-degenerate symmetric form on E. Let F, F' be subspaces of E, and

let a-: F F' be an isometry. Then a- can be extended to an isometry ofE onto

itself.

Proof. We shall first reduce the proof to the case when F is non-degenerate.
We can write F = F0

.1. V as in the lemma of the preceding section, and

then aF = F' = (JF0
.1. aV. Furthermore, aF0

= F is the kernel of F'. Now

we can enlarge both F and F' as in the lemma to orthogonal sums

V .1. P 1 .1. . . . .1. Psand (J U .1. P'l .1. . . . .1. P

corresponding to a choice of basis in F0 and its corresponding image in F.
Thus we can extend a to an isometry of these extended spaces, which are non-

degenerate. This gives us the desired reduction.

We assume that f", f'" are non-degenerate, and proceed stepwise.

Suppose first that F' = F, i.e. that (J is an isometry of F onto itself. We can

extend (J to E simply by leaving every element of F.L fixed.

Next, assume that dim F = dim F' = 1 and that F =I F'. Say F = (v) and

F' = (v'). Then v
2

= V,2. Furthermore, (v, v') has dimension 2.

If (v, v') is non-degenerate, it has an isometry extending (J, which maps v on

v' and v' on v. We can apply the preceding step to conclude the proof.
If (v, v') is degenerate, its kernel has dimension 1. Let W be a basis for this

kernel. There exist a, b E k such that v' = av + bw. Then V,2 = a
2
v

2
and hence

a = + 1. Replacing v' by
- v' if necessary, we may assume a = 1. Replacing w

by bw, we may assume v' = v + w. Let z
= v + v'. We apply Lemma 10.1 to

the space

(W, z) = (w) .1. (z).

We can find an element Y E E such that

y
. z = 0, y2 = 0, and w .

y
= 1.
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The space (z, w, y) = (z) 1. (w, y) is non-degenerate, being an orthogonal sum

of (z) and the hyperbolic plane (w, y). It has an isometry such that

zz, w -w, y
-

y.

But v = l(z -

w) is mapped on v' = l(z + w) by this isometry. We have

settled the present case.

We finish the proof by induction. By the existence of an orthogonal basis

(Theorem 3.1), every subspace F of dimension > 1 has an orthogonal de-

composition into a sum of subspaces of smaller dimension. Let F = F 1 1. F
2

with dim F 1 and dim F2
> 1. Then

aF = aF 1 1. af" 2 .

Let a 1
= a IF 1 be the restriction of a to Fl. By induction, we can extend a 1 to

an isometry

al:EE.

Then al(Ff) = (a 1
F l ).l. Since aF 2 is perpendicular to aF l

= alF 1 ,
it follows

that (JF2 is contained in a 1 (Ft). Let a 2
= a I F2. Then the isometry

a 2 : F
2

-+ a2 F
2

= aF2

extends by induction to an isometry

a2 : Ft -+ (j 1 (Ft).

The pair (a 1, a2) gives us an isometry of F
1

1. Ft = E onto itself, as desired.

Corollary 10.3. Let E, E' be finite dimensional vector spaces with non-

degenerate symmetric forms, and assume that they are isometric. Let F, F' be

subspaces, and let (j: F F' be an isometry. Then (j can be extended to an

isometry of E onto E'.

Proof. Clear.

Let E be a space with a symmetric form g, and let F be a null subspace.
Then by Lemma 10. 1, we can embed F in a hyperbolic subspace H whose

dimension is 2 dim F.

As applications of Theorem 10.2, we get several corollaries.

Corollary 10.4. Let E be a finite dimensional vector space with a non-

degenerate symmetric form. Let W be a maximal null subspace, and let W' be

some null subspace. Then dim W' < dim W, and W' is contained in some

maximal null subspace, whose dimension is the same as dim W.
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Proof. That W' is contained in a maximal null subspace follows by Zorn's

lemma. Suppose dim W' > dim W. We have an isometry of W onto a subspace
of W' which we can extend to an isometry of E onto itself. Then (J

- I

(W') is a

null subspace containing W, hence is equal to W, whence dim W = dim W'.

Our assertions follow by symmetry.

Let E be a vector space with a non-degenerate symmetric form. Let W be a

null subspace. By Lemma 10.1 we can embed W in a hyperbolic subspace H of

E such that W is the maximal null subspace of H, and H is non-degenerate. Any
such H will be called a hyperbolic enlargement of W.

Corollary 10.5. Let E be a finite dimensional vector space with a non-

degenerate symmetric form. Let Wand W' be maximal null subspaces. Let H,

H' be hyperbolic enlargements ofW, W' respectively. Then H, H' are isometric

and so are Hi. and H' 1-.

Proof. We have obviously an isometry of H on H', which can be extended

to an isometry of E onto itself. This isometry maps Hi. on H'i., as desired.

Corollary 10.6. Let gl' g2' h be symmetricforms onfinite dimensional vector

spaces over the field of k. If gl EB h is isometric to g2 EB h, and if gl' g2 are

non-degenerate, then gl is isometric to g2.

Proof. Let gl be a form on El and g2 a form on E
2

. Let h be a form on F.

Then we have an isometry between F' (f) Eland F' (f) E2. Extend the identity
id : F F to an isometrya- of F EB E 1 to F EB E 2 by Corollary 10.3. Since El
and E 2 are the respective orthogonal complements of F in their two spaces, we

must have a-(E 1 ) = E 2 , which proves what we wanted.

If 9 is a symmetric form on E, we shall say that 9 is definite if g(x, x) =/; 0

for any x E E, x =1= 0 (i.e. x
2

=1= 0 if x =1= 0).

Corollary 10.7. Let 9 be a symmetricform on E. Then 9 has a decomposition
as an orthogonal sum

9
=

go (f) ghyp (f) gdef

where go is a null form, ghyp is hyperbolic, and gdef is definite. The form

ghyp (f) gdef is non-degenerate. The forms go, ghyp, and gdef are uniquely
determined up to isometries.

Proof. The decomposition 9
=

go (f) gl where go is a null form and gl

is non-degenerate is unique up to an isometry, since go corresponds to the

kernel of g.

We may therefore assume that 9 is non-degenerate. If

9
=

gh (f) gd
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where gh is hyperbolic and gd is definite, then gh corresponds to the hyperbolic

enlargement of a maximal null subspace, and by Corollary 10.5 it follows that

gh is uniquely determined. Hence gd is uniquely determined as the orthogonal

complement of gh. (By uniquely determined, we mean of course up to an

isometry. )

We shall abbreviate ghyp by gh and gdef by gd.

11. THE WITT GROUP

Let g, cp by symmetric forms on finite dimensional vector spaces over k . We

shall say that they are equivalent if gd is isometric to CPd' The reader will verify
at once that this is an equivalence relation. Furthermore the (orthogonal) sum

of two null forms is a null form, and the sum of two hyperbolic forms is hyperbolic.

However, the sum of two definite forms need not be definite. We write our

equivalence g
--

cpo Equivalence is preserved under orthogonal sums, and hence

equivalence classes of symmetric forms constitute a monoid.

Theorem 11.1. The monoid of equivalence classes of symmetric forms (over

the field k) is a group.

Proof. We have to show that every element has an additive inverse. Let 9

be a symmetric form, which we may assume definite. We let -g be the form

such that (-g)(x, y) = -g(x, y). We contend that g (f) -g is equivalent to O.

Let E be the space on which 9 is defined. Then 9 (f)
-

9 is defined on E (f) E.

Let W be the subspace consisting of all pairs (x, x) with x E E. Then W is a null

space for 9 (f) -

g. Since dim(E (f) E) = 2 dim W, it follows that W is a maximal

null space, and that 9 (f) -

9 is hyperbolic, as was to be shown.

The group of Theorem 11.1 will be called the Witt group of k, and will be

denoted by W(k). It is of importance in the study of representations of elements

of k by the quadratic form f arising from g [i.e. f(x)
=

g(x, x)], for instance

when one wants to classify the definite forms f.
We shall now define another group, which is of importance in more functorial

studies of symmetric forms, for instance in studying the quadratic forms arising
from manifolds in topology.

We observe that isometry classes of non-degenerate symmetric forms (over

k) constitute a monoid M(k), the law of composition being the orthogonal sum.

Furthermore, the cancellation law holds (Corollary 10.6). We let

cl : M(k) WG(k)
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be the canonical map of M(k) into the Grothendieck group of this monoid,

which we shall call the Witt-Grothendieck group over k. As we know, the

cancellation law implies that cl is injective.
If 9 is a symmetric non-degenerate form over k, we define its dimension

dim g to be the dimension of the space E on which it is defined. Then it is clear

that

dim(g (f) g') = dim 9 + dim g'.

Hence dim factors through a homomorphism

dim: WG(k) z.

This homomorphism splits since we have a non-degenerate symmetric form of

dimension 1.

Let WGo(k) be the kernel of our homomorphism dim. If 9 is a symmetric

non-degenerate form we can define its determinant det(g) to be the determinant

of a matrix G representing 9 relative to a basis, modulo squares. This is well

defined as an element of k*Ik*2. We define det of the O-form to be 1. Then det is

a homomorphism

det: M(k) k*lk*2,

and can therefore be factored through a homomorphism, again denoted by

det, of the Witt-Grothendieck group, det: WG(k) k*lk*2.
Other properties of the Witt-Grothendieck group will be given in the

exerCIses.

EXERCISES

1. (a) Let E be a finite dImensional space over the complex numbers, and let

h:ExE-+C

be a hermitian form. WrIte

h(x, y) = g(x, y) + if(x, y)

where g, f are real valued. Show that g, fare R-bilinear, g is symmetric, f is

alternating.

(b) Let E be finite dimensIonal over C. Let g: E x E -+ C be R-bilinear. Assume

that for all x E E, the map y 1-+ g(x, y) is C-linear, and that the R-bilinear form

f(x, y) = g(x, y) -

g(y, x)



596 STRUCTURE OF BILINEAR FORMS XV, Ex

IS real-valued on E x E. Show that there exists a hermitian form h on E and a

symmetrIc C-bilinear form 1/1 on E such that 2ig = h + 1/1. Show that hand 1/1 are

uniquely determined.

2. Prove the real case of the unitary spectral theorem: If E is a non-zero finite dimensional

space over R, with a positive definite symmetric form, and U : E -+ E IS a unitary linear

map, then E has an orthogonal decomposition into subspaces of dimension 1 or 2,

invariant under U. If dim E = 2, then the matrix of U with respect to any ortho-

normal basis IS of the form

(
COS (}

sin (}

-sin (}

) or (
-1

cos (} 0

0

) (
COS (}

1 Sl n (}

- sin (}

)cos (}
,

depending on whether det( U) = 1 or
- 1. Thus U is a rotatIon, or a rotation followed

by a reflection.

3. Let E be a finite-dimensional, non-zero vector space over the reals, with a positive

definite scalar product. Let T: E -+ E be a unitary automorphism of E. Show that E

is an orthogonal sum of subspaces

E = E 1 1. . . . 1. Em

such that each Ei is T-invariant, and has dimension 1 or 2. If E has dimension 2, show

that one can find a basis such that the matrix associated with T with respect to this

basis is

(
cos (}

sin (}

- sin (}

) or

cos (} (
-cos (}

sin (}

sin (}

)cos (}
,

according as det T = 1 or det T = -1.

4. Let E be a finite dimensional non-zero vector space over C, with a positive definite

hermitian product. Let A, B : E E be a hermitian endomorphism. Assume that

A B = BA. Prove that there exists a basis of E consisting of common eigenvectors
for A and B.

5. Let E be a finite-dimensional space over the complex, with a positive definite hermitian

form. Let S be a set of (C-linear) endomorphisms of E having no invariant subspace

except 0 and E. (This means that if F is a subspace of E and BF c F for all B E S, then

F = 0 or F = E.) Let A be a hermitian map of E into Itself such that AB = BA for all

BE S. Show that A = AI for some real number A. [Hint: Show that there exists

exactly one eigenvalue of A. If there were two eigenvalues, say Al i= Az, one could find

two polynomials f and g with real coefficients such that f(A) i= 0, g(A) i= 0 but

f(A)g(A) = O. Let F be the kernel of g(A) and get a contradiction.]

6. Let E be as in Exercise 5. Let T be a C-linear map of E into itself. Let

A = !<T + T*).

Show that A is hermitian. Show that T can be written in the form A + iB where A, B

are hermitian, and are uniquely determined.

7. Let S be a commutative set of C-linear endomorphisms of E having no invariant sub-

space unequal to 0 or E. Assume in addition that if B E S, then B* E S. Show that each
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element of S is of type rxI for some complex number rx. [Hint: Let Bo E S. Let

A = !(Bo + B).

Show that A = ),,1 for some real A..]

8. An endomorphism B of E is said to be normal if B commutes with B*. State and prove a

spectral theorem for normal endomorphisms.

Symmetric endomorphisms

For Exercises 9, 10 and 11 we let E be a non-zero finite dimensional vector space over

R, with a symmetric positive definite scalar product g, which gives rise to a norm lion E.

Let A : E E be a symmetric endomorphism of E with respect to g. Define A ;> 0

to mean (Ax, x)
;> 0 for all x E E.

9. (a) Show that A ;> 0 if and only if all eigenvalues of A belonging to non-zero

eigenvectors are
;> O. Both in the hermitian case and the symmetric case, one

says that A is semipositive if A ;>
0, and positive definite if (Ax, x) > 0 for all

x =1= O.

(b) Show that an automorphism A of E can be written in a unique way as a product
A = UP where U is real unitary (that is, tuu = I), and P is symmetric positive
definite. For two hermitian or symmetric endomorphisms A, B, define A ;> B to

mean A - B ;>
0, and similarly for A > B. Suppose A > O. Show that there are

two real numbers a > 0 and f3 > 0 such that al < A <

f3I.

10. If A is an endomorphism of E, define its norm I A I to be the greatest lower bound of

all numbers C such that lAx I
<

clxl for all x E E.

(a) Show that this norm satisfies the triangle inequality.

(b) Show that the series

A2
exp(A)

= I + A +
2!

+ . . .

converges, and if A commutes with B, then exp(A + B) =

exp(A) exp(B).
If A is sufficiently close to I, show that the series

(A
-

1) (A
- 1)2

10g(A) = - + . . .

1 2

converges, and if A commutes with B, then

10g(AB) = log A + log B.

(c) Using the spectral theorem, show how to define log P for arbitrary positive
definite endomorphisms P.

11. Again, let E be non-zero finite dimensional over R, and with a positive definite

symmetric form. Let A : E E be a linear map. Prove:

(a) IfA is symmetric (resp. alternating), then exp(A) is symmetric positive definite

(resp. real unitary).

(b) If A is a linear automorphism of E sufficiently close to I, and is symmetric
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positive definite (resp. real unitary), then log A is symmetric (resp.

alternating) .

(c) More generally, if A is positive definite, then log A is symmetric.

12. Let R be a commutative ring, let E, F be R-modules, and letf: E -+ F be a mapping.
Assume that multiplication by 2 in F is an invertible map. Show thatfis homogeneous

quadratic if and only iff satisfies the parallelogram law:

f(x + y) + f(x
-

y) = 2f(x) + 2f(y)

for all x, y E E.

13 . (Tate) Let E, F be complete normed vector spaces over the real numbers. Let

f: E -+ F be a map having the following property. There exists a number C > 0 such

that for all x, y E E we have

If(x + y)
- f(x) - f(y) I < C.

Show that there exists a unique additive map g : E F such that Ig - fl is bounded

(i.e.lg(x) - f(x) I is bounded as a function of x). Generalize to the bilinear case. [Hint:
Let

. f(2"x)
g(x) = 11m

"
.]

"-CX>
2

14. (Tate) Let S be a set and f:S S a map of S into itself. Let h:S R be a real

valued function. Assume that there exists a real number d > 1 such that h 0 f
-

df
is bounded. Show that there exists a unique function h

f
such that h

f
- h is bounded,

and h
f

0 f = dh
f

. [Hint: Let hf(x)
= Iim h(fn(x))/d

n

.]

15. Define maps of degree> 2, from one module into another. [Hint: For degree 3,
consider the expression

f(x + y + z) - f(x + y) -

f(x + z)
-

f(y + z) + f(x) + f(y) + f(z).]

GeneralIze the statement proved for quadratic maps to these higher-degree maps, i.e.

the uniqueness of the various multilinear maps entering into their definitions.

Alternating forms

16. Let E be a vector space over a field k and let g be a bilinear form on E. Assume that

whenever x, y E E are such that g(x, y) = 0, then g(y, x) = O. Show that g is symmetric
or alternating.

17. Let E be a module over Z. Assume that E is free, of dimension n > 1, and let f be a

bilinear alternating form on E. Show that there exists a basis {ei} (i = 1,..., n) and

an integer r such that 2r < n,

e 1
.

ez
=

a., e 3
.

e4
= a2, ...,

e2, - 1
. e2,

=

a,

where a.,..., a
r

E Z, ai i= 0, and ai divides ai+ 1 for i = 1, . . .

,
r
- 1 and finally

ei
.

ej
= 0 for all other pairs of indices i < j. Show that the ideals Zai are uniquely

determined. [Hint: Consider the injective homomorphism lpf: E -+ EV of E into the
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dual space over Z, viewing cpf(E) as a free submodule of EV.]. Generalize to principal

nngs when you know the basis theorem for modules over these rings.

Remark. A basis as in Exercise 18 is called a symplectic basis. For one use of

such a basis, see the theory of theta functions, as in my Introduction to Algebraic and

Abelian Functions (Second Edition, Springer Verlag), Chapter VI, 3.

18. Let E be a finite-dimensional vector space over the reals, and let < , > be a symmetric

positive definite form. Let Q be a non-degenerate alternating form on E. Show that

there exists a direct sum decomposition

E = E 1 EB E2

having the following property. If x, y E E are written

x = (Xl' X
2 ) With XI EEl and X 2 E E2 ,

y = (y b Y2) with Y lEE I and Y 2 E E
2'

then fl(x, Y) = (XI' Y2)
-

(X2' YI). [Hint: Use Corollary 8.3, show that A is positive
definite, and take its square root to transform the direct sum decomposition obtained

in that corollary.]

19. Show that the pfaffian of an alternating n x n matnx is 0 when n is odd.

20. Prove all the properties for the pfaffian stated in Artin's Geometric Algebra (Inter-

science, 1957), p. 142.

The Witt group

21. Show explicitly how W(k) is a homomorphic image of WG(k).

22. Show that WG(k) can be expressed as a homomorphic image of Z[k*/k*2] [Hint:
Use the eXistence of orthogonal bases.]

23. Witt's theorem is still true for alternating forms. Prove it or look it up in Artin (ref.
in Exercise 20).

SLn(R)

There is a whole area of linear algebraic groups, giving rise to an extensive algebraic

theory as well as the possibility of doing Fourier analysis on such groups. The group

SLn(R) (or SLn(C) can serve as a prototype, and a number of basic facts can be easily
verified. Some of them are listed below as exercises. Readers wanting to see solutions can

look them up in [JoL 01], Spherical Inversion on SLn(R), Chapter I.

24. Iwasawa decomposition. We start with GLn(R). Let:

G = GLn(R);

K = subgroup of real unitary n x n matrices;

U =

group of real unipotent upper triangular matrices, that is having components 1

on the diagonal, arbitrary above the diagonal, and 0 below the diagonal;
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A =

group of diagonal matrices with positive diagonal components.

Prove that the product map U x A x K -+ UAK eGis actually a bijection. This

amounts to Gram-Schmidt orthogonalization. Prove the similar statement in the

complex case, that is, for G(C) = GLn(C), K(C) = complex unitary group.. U(C) =

complex unipotent upper triangular group, and A the same group of positive diag-
onal matrices as in the real case.

25. Let now G == SLn (R), and let K, A be the corresponding subgroups having deter-

minant 1. Show that the product U x A x K -+ UAK again gives a bijection with G.

26. Let a be the R-vector space of real diagonal matrices with trace O. Let a
v

be the

dual space. Let ai (i == 1,. . .

,
n - 1) be the functional defined on an element H =

diag(h l ,. . .

,
hn ) by lI.;(H) = h; - h;+I. (a) Show that {lI.l,"', lI.n-l} is a basis of a

v

over R. (b) Let H;;+ I be the diagonal matrix with h; = I, hi+ I
== -1, and hj

== 0

for j=l-i,i+l. Show that {HI ,2,...,Hn
- l ,n} is a basis of a. (c) Abbreviate

Hi i+ I
== H; (i = I,..., n

-

I). Let af E a
v

be the functional such that lI.; (Hj) == Jij
(== I if i == j and 0 otherwise). Thus {lI. ,

. . .

, lI._1 } is the dual basis of

{HI,' .., Hn-l}. Show that

lI.;(H) == hi + ... + hi.

27. The trace form. Let Matn(R) be the vector space of real n x n matrices. Define the

twisted trace form on this space by

Br(X, Y) = tr(X' Y) = (X, Y)t.

As usual,
r
Y is the transpose of a matrix Y. Show that Hr is a symmetric positive

definite bilinear form on Matn(R). What is the analogous positive definite hermitian

form on Matn(C)?

28. Positivity. On a (real diagonal matrices with trace 0) the form of Exercise 27 can be

defined by tr(XY), since elements X, YEa are symmetric. Let d = {ai, . . .

, an-I}
denote the basis of Exercise 26. Define an element H E a to be semipositive (writen
H > 0) if ai(H) > 0 for all i = 1,...,n - 1. For each a E a

V

,
let Ha. E a represent a

with respect to Br, that is (Ha., H) = a(H) for all H E a. Show that H > 0 if and

only if
n-I

H == L SiHrx
'

I

;= I

with S; > o.

Similarly, define H to be positive and formulate the similar condition with Si > O.

29. Show that the elements na; (i = I,. . .

,
n
-

1) can be expressed as linear combina-

tions of lI.l ,
. . .

, an-I with positive coefficients in Z.

30. Let W be the group of permutations of the diagonal elements in the vector space a of

diagonal matrices. Show that ao is a fundamental domain for the action of Won a

(i.e., given H E a, there exists a unique H+ > 0 such that H+ == wH for some

WE W.



CHAPTER XVI

The Tensor Product

Having considered bilinear maps, we now come to multilinear maps and basic

theorems concerning their structure. There is a universal module representing
multilinear maps, called the tensor product. We derive its basic properties, and

postpone to Chapter XIX the special case of alternating products. The tensor

product derives its name from the use made in differential geometry, when this

product is applied to the tangent space or cotangent space of a manifold. The

tensor product can be viewed also as providing a mechanism for "extending the

base"; that is, passing from a module over a ring to a module over some algebra
over the ring. This "extension" can also involve reduction modulo an ideal,

because what matters is that we are given a ring homomorphismf: A B, and

we pass from modules over A to modules over B. The homomorphism f can be

of both types, an inclusion or a canonical map with B = All for some ideal l,

or a composition of the two.

I have tried to provide the basic material which is immediately used in a

variety of applications to many fields (topology, algebra, differential geometry,

algebraic geometry, etc.).

1. TENSOR PRODUCT

Let R be a commutative ring. If E 1, . . .
, En' }' are modules, we denote by

Ln(Eb . . . , En; F)

the module of n-multilinear maps

f: E 1
X ... x En -+ f".

601
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We recall that a multilinear map is a map which is linear (i.e., R-linear) in each

variable. We use the words linear and homomorphism interchangeably. Unless

otherwise specified, modules, homomorphisms, linear, multilinear refer to the ring R.

One may view the multilinear maps ofa fixed set of modules E
l ,

. . .

, En as the

objects of a category. Indeed, if

f : E 1
X ... x En F and g: E 1

X ... x En G

are multilinear, we define a morphism f g to be a homomorphism h : F G

which makes the following diagram commutative:

F

Y
El X ... x

En jh
G

A universal object in this category is called a tensor product of E
1, . . .

, En

(over R).
We shall now prove that a tensor product exists, and in fact construct one in a

natural way. By abstract nonsense, we know of course that a tensor product is

uniquely determined, up to a unique isomorphism.
Let M be the free module generated by the set of all n-tuples (x l' . . .

,
x

n),

(Xi E Ei), i.e. generated by the set E 1
X ... x En. Let N be the submodule

generated by all the elements of the following type:

(x l' . . .
, Xi + x, . . .

,
x

n) - (x 1,
. . .

, Xi' . . .

,
X

n) - (x l' . . .

, X, . . .
,

X
n)

(x l' . . .

, aXi, . . .

,
X

n) - a(x 1, . . .

,
X

n)

for all Xi E E
i , X; E Ei ,

a E R. We have the canonical injection

E
1

X ... x En M

of our set into the free module generated by it. We compose this map with the

canonical map M MIN on the factor module, to get a map

q>: El x ... x En MIN.

We contend that q> is multilinear and is a tensor product.
It is obvious that qJ is multilinear-our definition was adjusted to this

purpose. Let

f: El x ... x En G

be a multilinear map. By the definition of free module generated by

E 1
X ... x En
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we have an induced linear map M -+ G which makes the following diagram
commutative:

M

E
1

X .'. x En( j
G

Sincef is multilinear, the induced map M G takes on the value 0 on N. Hence

by the universal property of factor modules, it can be factored through MIN,
and we have a homomorphism f* : MIN G which makes the following dia-

gram commutative:

MIN

Y
E

1
X ... x En jfO

G
Since the image of q> generates MIN, it follows that the induced map f* is

uniquely determined. This proves what we wanted.

The module MIN will be denoted by

n

El (8) . . . (8) En or also (8) E
i .

i = 1

We have constructed a specific tensor product in the isomorphism class of tensor

products, and we shall call it the tensor product of E l ,
.

.., En. IfXi E Ei ,
we write

q>(x l' . . .

,
X

n) =

Xl (8) . . . (8) X
n

=

Xl (8) R
. . . (8) R Xn'

We have for all i,

Xl (8) . . . (8) aXi (8) . . . (8) X
n

= a(x 1 (8) . . . (8) X
n),

Xl (8) . . . (8) (Xi + xD (8) . . . (8) X
n

= (X 1 (8) . . . (8) X
n) + (X 1 (8) . . . (8) X; (8) . . . (8) X

n)

for Xi' X; E Ei and a E R.

If we have two factors, say E (8) F, then every element of E (8) F' can be

written as a sum of terms X (8) Y with X E E and y E F, because such terms generate

E (8) F over k, and a(x (8) y) = ax (8) y for a E R.
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Remark. If an element of the tensor product is 0, then that element can

already be expressed in terms of a finite number of the relations defining the

tensor product. Thus if E is a direct limit of submodules Ei then

fun F (8) Ei
= F' (8) fun E

i
= F (8) E.

In particular, every module is a direct limit of finitely generated submodules,
and one uses frequently the technique of testing whether an element of F (8) E is

o by testing whether the image of this element in F (8) E
i is 0 when E

i ranges over

the finitely generated submodules of E.

Warning. The tensor product can involve a great deal of collapsing between

the modules. For instance, take the tensor product over Z of ZlmZ and ZlnZ
where m, n are integers> 1 and are relatively prime. Then the tensor product

ZlnZ (8) ZlmZ = o.

Indeed, we have n(x (8) y) = (nx) (8) y
= 0 and m(x (8) y) = x (8) my

= O. Hence

x (8) y
= 0 for all x E ZlnZ and y E ZlmZ. Elements of type x (8) y generate the

tensor product, which is therefore O. We shall see later conditions under which

there is no collapsing.
In many subsequent results, we shall assert the existence of certain linear

maps from a tensor product. This existence is proved by using the universal

mapping property of bilinear maps factoring through the tensor product. The

uniqueness follows by prescribing the value of the linear maps on elements of

type x (8) y (say for two factors) since such elements generate the tensor product.
We shall prove the associativity of the tensor product.

Proposition 1.1. Let E l ,
E

2 , E3 be modules. Then there exists a unique

isomorphism

(E l (8) E2 ) (8) E3 El (8) (E2 (8) E
3)

such that

(x (8) y) (8) z x (8) (y (8) z)

for x EEl' Y E E2 and Z E E
3 .

Proof. Since elements of type (x (8) y) (8) Z generate the tensor product, the

uniqueness of the desired linear map is obvious. To prove its existence, let

x EEl. The map

Ax: E
2

x E3 (E l (8) E2) (8) E3
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such that Ax(Y, z) = (x @ y) @ z is clearly bilinear, and hence factors through a

linear map of the tensor product

Ax: E2 @ E3 (E l @ E
2) @ E3.

The map

El X (E2@E3)(El@E2)@E3

such that

(x, ex) Ax(ex)

for x E El and ex E E
2 @ E3 is then obviously bilinear, and factors through a

linear map

El @ (E2 @ E
3) (E 1 @ E2 ) @ E

3 ,

which has the desired property (clear from its construction).

Proposition 1.2. Let E, F' be modules. Then there is a unique isomorphism

E@ff@E

such that x @ y y @ x for x E E and y E F.

Proof The map E x F -+ F @ E such that (x, y) y @ x is bilinear, and

factors through the tensor product E @ F, sending x @ y on y @ x. Since this

last map has an inverse (by symmetry) we obtain the desired isomorphism.

The tensor product has various functorial properties. First, suppose that

/; : E E
i (i = 1, . . .

, n)

is a collection of linear maps. We get an induced map on the product,

n h: n Ei -+ n E
i .

If we compose n h with the canonical map into the tensor product, then we get

an induced linear map which we may denote by T(fl, . . .

, fn) which makes the

following diagram commutative:

E'l X ... x E' ) E'l @ . . . @ En

nf.J j T(J" , f,,)

El X ... x E ) E 1 @ . · . @ Enn
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It is immediately verified that T is functorial, namely that if we have a com-

posite of linear maps h 0 gi (i = 1,..., n) then

T(fl 0
9 b . . .

, in 0 gn) = T(fl' . . .

, in) 0 T(g l'
. . .

, gn)

and

T(id, . . .

, id) = ide

We observe that T(fl'...' fn) is the unique linear map whose effect on an

element X'l (8) . . . (8) x of E'l (8) . . . (8) E is

X'l (8) . . . (8) x fl (X'l) (8) . . . (8) in(x).

We may view T as a map

n

(
rt n

)I\ L(E;, Ei) -+ L E;,i
Ej ,

and the reader will have no difficulty in verifying that this map is multilinear.

We shall write out what this means explicitly for two factors, so that our map can

be written

(f, g) T(f, g).

Given homomorphisms f: F' F' and gl, g2 : E' E, then

T(f, gl + g2) = T(f, gl) + T(f, g2),

T(f, agl) = aT(f, gl).

In particular, select a fixed module F, and consider the functor t =

tF (from
modules to modules) such that

t(E) = F (8) E.

Then t gives rise to a linear map

t: L(E', E) L(t(E'), t(E»

for each pair of modules E', E, by the formula

t(f) = T(id, f).

Remark. By abuse of notation, it is sometimes convenient to write

fl (8) . . . (8) in instead of T(fl"." in).
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This should not be confused with the tensor product of elements taken in the

tensor product of the modules

L(E'l' E 1) (8) . . . (8) L(E, En).

The context will always make our meaning clear.

2. BASIC PROPERTIES

The most basic relation relating linear maps, bilinear maps, and the tensor

product is the following: For three modules E, F', G,

L(E, L(F, G) L2(E, F; G) L(E (8) F, G).

The isomorphisms involved are described in a natural way.

(i) L2(E, F; G) L(E, L(F, G».

If f : E x F G is bilinear, and x E E, then the map

fx:FG

such that fx(Y) = f(x, y) is linear. Furthermore, the map x fx is linear, and

is associated with f to get (i).

(ii) L(E, L(F, G» L2(E, F; G).

Let qJ E L(E, L(F', G». We let j : E x F G be the bilinear map such that

fqJ(x, y) = qJ(X) (y).

Then qJ fqJ defines (ii).
It is clear that the homomorphisms of (i) and (ii) are inverse to each other

and therefore give isomorphisms of the first two objects in the enclosed box.

(iji) L 2(E, F; G) L(E (8) F, G).

This is the map f f* which associates to each bilinear map f the induced

linear map on the tensor product. The association f f* is injective (because

f* is uniquely determined by f), and it is surjective, because any linear map

of the tensor product composed with the canonical map E x F -+ E (8) F gives
rise to a bilinear map on E x F.
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n

Proposition 2.1. Let E = EB Ei be a direct sum. Then we have an isomor-

i = 1

phism

n

F (8) E +-+ EB (F (8) E
i).

i= 1

Proof. The isomorphism is given by abstract nonsense. We keep F fixed,

and consider the functor! : X F (8) X. As we saw above, t is linear. We have

projections Tti : E E of E on E
i . Then

Tti
0 Tti

=

Tti, Tt.OTt.=O
I J

if i =I j,

n

L Tti
= ide

;=1

We apply the functor!, and see that !(Tt;) satisfies the same relations, hence gives
a direct sum decomposition of t(E) = F (8) E. Note that t(Tti) = id (8) Tti.

Corollary 2.2. Let I be an indexing set, and E = EB Ei . Then we have an

i e I

isomorphism

(ffl E) @ F

ffl (Ei @ F).

Proof. Let S be a finite subset of I. We have a sequence of maps

(ffl Ei) X F --+

ffl (E; @ F) --+

ffl (Ei @ F)

the first of which is bilinear, and the second is linear, induced by the inclusion of

S in I. The first is the obvious map. IfS c S', then a trivial commutative diagram
shows that the restriction of the map

(. Ei) X F --+

ffl (Ei @ F)

induces our preceding map on the sum for i E S. But we have an injection

($ Ei) x F ($ Ei ) x F.
I e S I e S'

Hence by compatibility, we can define a bilinear map

($ Ei) x F EB (Ei (8) F),
reI iel
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and consequently a linear map

(ffl E
i) @ F --+

ffl (Ei @ F).

In a similar way, one defines a map in the opposite direction, and it is clear

that these maps are inverse to each other, hence give an isomorphism.

Suppose now that E is free, of dimension lover R. Let {v} be a basis, and

consider F (8) E. Every element of F (8) E can be written as a sum of terms y (8) av

with y E F and a E R. However, y (8) av =

ay (8) v. In a sum ofsuch terms, we can

then use linearity on the left,

Jl(Yi @ v) = (J/i) @ v, Yi E F.

Hence every element is in fact of type y (8) v with some Y E F.

We have a bilinear map

FxEF

such that (y, av) ay, inducing a linear map

F (8) E F.

We also have a linear map F F (8) E given by y y (8) v. It is clear that these

maps are inverse to each other, and hence that we have an isomorphism

F (8) E F.

Thus every element of F (8) E can be written uniquely in the form y (8) v, Y E F.

Proposition 2.3. Let E befree over R, with basis {viheI. Then every element

of F (8) E has a unique expression of the form

LYi(8) Vi'
i e I

YiE F

with almost all Yi
= o.

Proof. This follows at once from the discussion of the I-dimensional case,

and the corollary of Proposition 2. 1.

Corollary 2.4. Let E, F be free over R, with bases {V;}ieI and {Wj}jeJ re-

spectively. Then E (8) F is free, with basis {Vi (8) Wj}. We have

dim(E (8) F) = (dim E)(dim F).
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Proof. Immediate from the proposition.

We see that when E is free over R, then there is no collapsing in the tensor

product. Every element of F (8) E can be viewed as a "formal" linear combina-

tion of elements in a basis of E with coefficients in F.

In particular, we see that R (8) E (or E (8) R) is isomorphic to E, under the

correspondence x x (8) 1.

Proposition 2.5. Let E, F befree offinite dimension over R. Then we have an

isomorphism

EndR(E) (8) EndR(F) EndR(E (8) F)

which is the unique linear map such that

f (8) g T(f, g)

for f E EndR(E) and 9 E EndR(F).

[We note that the tensor product on the left is here taken in the tensor

product of the two modules EndR(E) and EndR(F).]

Proof Let {vd be a basis of E and let {Wj} be a basis of F. Then {Vi (8) w
j}

is a basis of E (8) F. For each pair of indices (i', j') there exists a unique endo-

morphism f = Ii, i' of E and 9
=

9j, j'
of F such that

f(vi) =

Vi' and f(vv) = 0 if v =I i

g(Wj) =

wj' and g(wJl) = 0 if Jl =I j.

Furthermore, the families {!i, i'} and {gj, j'} are bases of EndR(E) and EndR(F)

respectively. Then

T(f, g)(vv (8) W ) = {
Vi. @ Wj' f (v, Ji) =

(,)Jl
0 If (v, II) #- (l, )).

Thus the family {T(!i, i' , 9j, j')} is a basis of EndR(E (8) F). Since the family

{Ii, i' (8) gj,j'} is a basis ofEndR(E) <8> EndR(F), the assertion of our proposition is

now clear.

In Proposition 2.5, we see that the ambiguity of the tensor sign in f (8) 9 is in

fact unambiguous in the important special case of free, finite dimensional

modules. We shall see later an important application of Proposition 2.5 when

we discuss the tensor algebra of a module.

Proposition 2.6. Let

o -+ E' E !. E" 0
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be an exact sequence, and F any module. Then the sequence

F (8) E' -+ F (8) E F (8) E" 0

is exact.

Proof. Given x" E E" and y E F, there exists x E E such that x" = t/J(x), and

hence y (8) x" is the image of y (8) x under the linear map

F (8) E F (8) E".

Since elements of type y (8) x" generate F (8) E", we conclude that the preceding
linear map is surjective. One also verifies trivially that the image of

F (8) E' F (8) E

is contained in the kernel of

F (8) E -+ F (8) E".

Conversely, let I be the image of F (8) E' F (8) E, and let

f : (F (8) E)II F (8) E"

be the canonical map. We shall define a linear map

9 : F (8) E" (F (8) E)II

such that 9
0 f = id, This obviously will imply that f is injective, and hence will

prove the desired converse.

Let y E F and x" E E". Let x E E be such that t/J(x) = x". We define a map

F x E" (F (8) E)II by letting

(y, x") y (8) x (mod I),

and contend that this map is well defined, i.e. independent of the choice of x

such that t/J(x) = x". If t/J(Xl) = t/J(X2) = x", then t/J(x l
- X2) = 0, and by

hypothesis, Xl
- x

2
= q>(x') for some x' E E'. Then

y (8) Xl
-

Y (8) X2
=

Y (8) (Xl
- X2) =

y (8) q>(x').

This shows that y (8) Xl = Y (8) X2 (mod I), and proves that our map is well

defined. It is obviously bilinear, and hence factors through a linear map g, on

the tensor product. It is clear that the restriction of 9
0 f on elements of type

y (8) x" is the identity. Since these elements generate F (8) E", we conclude

that f is injective, as was to be shown.
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It is not always true that the sequence

o F (8) E' F (8) E F (8) E" 0

is exact. It is exact if the first sequence in Proposition 2.6 splits, i.e. if E is

essentially the direct sum of E' and E". This is a trivial consequence of Pro-

position 2.1, and the reader should carry out the details to get accustomed to the

formalism of the tensor product.

Proposition 2.7. Let a be an ideal of R. Let E be a module. Then the map

(Ria) x E ElaE induced by

(a, x) ax (mod aE), a E R, x E E

is bilinear and induces an isomorphism

(Ria) (8) E ElaE.

Proof. Our map (a, x) ax (mod aE) clearly induces a bilinear map of

Ria x E onto ElaE, and hence a linear map of Ria (8) E onto ElaE. We can

construct an inverse, for we have a well-defined linear map

E Ria (8) E

such that x I (8) x (where I is the residue class of 1 in Ria). It is clear that aE

is contained in the kernel of this last linear map, and thus that we obtain a

homomorphism

ElaE Ria (8) E,

which is immediately verified to be inverse to the homomorphism described in

the statement of the proposition.

The association E ElaE Ria (8) E is often called a reduction map. In

94, we shall interpret this reduction map as an extension of the base.

3. FLAT MODULES

The question under which conditions the left-hand arrow in Proposition 2.6

is an injection gives rise to the theory of those modules for which it is, and we

follow Serre in calling them flat. Thus formally, the following conditions are

equivalent, and define a flat module F, which should be called tensor exact.

F 1. For every exact sequence

E' E E"
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the sequence

F (8) E' -+ F (8) E F (8) E"

is exact.

F 2. For every short exact sequence

o -+ E' -+ E -+ E" 0

the sequence

o F' (8) E' -+ F (8) E F (8) E" 0

is exact.

F 3. For every injection 0 E' E the sequence

o -+ F (8) E' F (8) E

is exact.

It is immediate that F 1 implies F 2 implies F 3. Finally, we see that F 3 implies
F 1 by writing down the kernel and image of the map E' E and applying F 3.

We leave the details to the reader.

The following proposition gives tests for flatness, and also examples.

Proposition 3.1.

(i) The ground ring is flat as module over itself.

(ii) Let F = EB Fi be a direct sum. Then F isflat ifand only ifeach F
i isflat.

(iii) A projective module is flat.

The properties expressed in this proposition are basically categorical, cf. the

comments on abstract nonsense at the end of the section. In another vein, we

have the following tests having to do with localization.

Proposition 3.2.

(i) Let S be a multiplicative subset of R. Then S-
1
R is flat over R.

(ii) A module M isflat over R ifand only if the localization Mp is flat over Rp
for each prime ideal p of R.

(iii) Let R be a principal ring. A module F isflat ifand only ifF is torsionfree.

The proofs are simple, and will be left to the reader. More difficult tests for

flatness will be proved below, however.

Examples of non-flatness. If R is an entire ring, and a module Mover R

has torsion, then M is not flat. (Prove this, which is immediate.)
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There is another type of example which illustrates another bad phenomenon.
Let R be some ring in a finite extension K of Q, and such that R is a finite

module over Z but not integrally closed. Let R' be its integral closure. Let p be

a maximal ideal of R and suppose that pR' is contained in two distinct maximal

ideals $1 and $2' Then it can be shown that R' is not flat over R, otherwise R'

would be free over the local ring Rp, and the rank would have to be 1, thus

precluding the possibility of the two primes $1 and $2. It is good practice for

the reader actually to construct a numerical example of this situation. The same

type of example can be constructed with a ring R = k[x,y], where k is an

algebraically closed field, even of characteristic 0, and x, yare related by an

irreducible polynomial equation f(x,y) = 0 over k. We take R not integrally
closed, such that its integral closure exhibits the same splitting of a prime p of

R into two primes. In each one of these similar cases, one says that there is a

singularity at p.

As a third example, let R be the power series ring in more than one variable

over a field k. Let m be the maximal ideal. Then m is not flat, because otherwise,

by Theorem 3.8 below, m would be free, and if R =

k[[x., . . .

,
x

n ]], then x.,

. . .
, X

n
would be a basis for mover R, which is obviously not the case, since

x., X2 are linearly dependent over R when n
> 2. The same argument, of course,

applies to any local ring R such that mlm
2

has dimension > 2 over Rim.

Next we come to further criteria when a module is flat. For the proofs, we

shall snake it all over the place. Cf. the remark at the end of the section.

Lemma 3.3. Let F be flat, and suppose that

ONMFO

is an exact sequence. Thenfor any E, we have an exact sequence

o N (8) E M (8) E F (8) E O.

Proof Represent E as a quotient of a flat L by an exact sequence

o K L -+ E o.
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Then we have the following exact and commutative diagram:

0

j
Nfg)K ) M@K ) F@K ) 0

j j j
0 ) N@L ) M@L ) F@L

j j
N@E ) M@E

j j
0 0

The top right 0 comes by hypothesis that F is flat. The 0 on the left comes from

the fact that L is flat. The snake lemma yields the exact sequence

ON@EM@E

which proves the lemma.

Proposition 3.4. Let

o F' F F" 0

be an exact sequence, and assume that F" isflat. Then F isflat ifand only ifF'

is flat. More generally, let

o FO F
1

. . . F" 0

be an exact sequence such that F
l

,
. . .

,
F" are flat. Then FO is flat.
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Proof. Let 0 E' E be an injection. We have an exact and commuta-

tive diagram:

o

0

j
) F' (8) E' ) F' (8) E' ) F" (8) E' ) 0

j j j
) F' (8) E ) F(8)E ) F'" (8) Eo

The 0 on top is by hypothesis that F" is flat, and the two zeros on the left are

justified by Lemma 3.3. If F' is flat, then the first vertical map is an injection, and

the snake lemma shows that F is flat. If F is flat, then the middle column is an

injection. Then the two zeros on the left and the commutativity of the left square

show that the map F' (8) E' F" (8) E is an injection, so F' is flat. This proves the

first statement.

The proof of the second statement is done by induction, introducing kernels

and cokernels at each step as in dimension shifting, and apply the first statement

at each step. This proves the proposition

To give flexibility in testing for flatness, the next two lemmas are useful, in

relating the notion of flatness to a specific module. Namely, we say that F is

E-flat or flat for E, if for every monomorphism

o E' E

the tensored sequence

o F' (8) E' F' (8) E

is also exact.

Lemma 3.5. Assume that F is E-flat. Then F' is also flatfor every submodule

and every quotient module of E.

Proof The submodule part is immediate because if E'l C E c E are

submodules, and F (8) E'l F (8) E is a monomorphism so is F (8) E'1 F (8) E
since the composite map with F (8) E2 F' (8) E is a monomorphism. The only

question lies with a factor module. Suppose we have an exact sequence

o N E M o.

Let M' be a submodule of M and E' its inverse image in E. Then we have a
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commutative diagram of exact sequences:

0 ) N ) E' ) M'

" I I
0 ) N ) E ) M

) 0

) o.

We tensor with F to get the exact and commutative diagram

0 K

I I
F@N ) F @ E' ) F @ M' ) 0

I I I
0 ) F@N ) F@E

..
) F@M

I
0

\vhere K is the questionable kernel which we want to prove is O. But the snake

lemma yields the exact sequence

OKO

which concludes the proof.

Lemma 3.6. Let {EJ be afamily ofmodules, and suppose that F isflatfor each

Ei . Then F is flat for their direct sum.

Proof. Let E = EB Ei be their direct sum. We have to prove that given any

submodule E' of E, the sequence

o F @ E' F @ E = EB F @ Ei

is exact. Note that if an element of F @ E' becomes 0 when mapped into the

direct sum, then it becomes 0 already in a finite subsum, so without loss of

generality we may assume that the set of indices is finite. Then by induction,

we can assume that the set of indices consists of two elements, so we have two

modules EI and E2, and E = EI 8:) E2 . Let N be a submodule of E. Let N1

= N n EI and let N2 be the in1age of N under the projection on E2 . Then
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we have the following commutative and exact diagram:

o

I

T

o

I
) N 2

I
) 0) N

I
o ) El ) E ) E2

Tensoring with F we get the exact and commutative diagram:

0 0

I I
F'@ Nt ) F'@N ) F'@N2

) 0

I I I
0 ) F' @ E 1

) F'@ E ) F @ E
2

The lower left exactness is due to the fact that E = E 1 @ E2
. Then the snake

lemma shows that the kernel of the middle vertical map is o. This proves the

lemma.

The next proposition shows that to test for flatness, it suffices to do so only
for a special class of exact sequences arising from ideals.

Proposition 3.7. F' is flat ifand only iffor every ideal a of R the natural map

a@F'aF

is an isomorphism. lnfact, F' is flat if and onlyfor every ideal a of R tensoring

the sequence

o -+ a R Ria -+ 0

with f" yields an exact sequence.

Proof If F is flat, then tensoring with F and using Proposition 2.7 shows

that the natural map is an isomorphism, because aM is the kernel of M MlaM.

Conversely, assume that this map is an isomorphism for all ideals a. This means
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that F is R-flat. By Lemma 3.6 it follows that F is flat for an arbitrary direct sum

of R with itself, and since any module M is a quotient of such a direct sum,

Lemma 3.5 implies that F is M-flat, thus concluding the proof.

Remark on abstract nonsense. The proofs of Proposition 3.1 (i), (ii), (iii),
and Propositions 3.3 through 3.4 are basically rooted in abstract nonsense,

and depend only on arrow theoretic arguments. Specifically, as in Chapter XX,

6, suppose that we have a bifunctor T on two distinct abelian categories a and

CB such that for each A, the functor B T(A, B) is right exact and for each B

the functor A T(A, B) is right exact. Instead of "flat" we call an object A

of a trexact if B T(A, B) is an exact functor; and we call an object L of CB

T-exact if A T(A, L) is exact. Then the references to the base ring and free

modules can be replaced by abstract nonsense conditions as follows.

In the use of L in Lemma 3.3, we need to assume that for every object E of B

there is a tT-exact L and an epimorphism

L E O.

For the analog of Proposition 3.7, we need to assume that there is some

object R in CB for which F is R-exact, that is given an exact sequence

Oa-+R

then 0 T(F, a) T(F', R) is exact; and we also need to assume that R is a

generator in the sense that every object B is the quotient of a direct sum ofR with

itself, then over some family of indices, and T respects direct sums.

The snake lemma is valid in arbitrary abelian categories, either because its

proof is "functorial," or by using a representation functor to reduce it to the

category of abelian groups. Take your pick.
In particular, we really don't need to have a commutative ring as base ring,

this was done only for simplicity of language.

We now pass to somewhat different considerations.

Theorem 3.8. Let R be a commutative local ring, and let M be a finite flat
module over R. Then M is free. In fact, if x I' . . . ,

X
n

E M are elements of M

whose residue classes are a basis of MlmM over Rim, then Xl' . . .

,
X

n form
a basis of Mover R.

Proof. Let R(n) M be the map which sends the unit vectors of R(n) on

Xl'...' x
n respectively, and let N be its kernel. We get an exact sequence

o N R(n) M,
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whence a commutative diagram

m@N

II
) m @ R<n)

gl
) R(n)

) m@M

hi
o ) N ) M

in which the rows are exact. Since M is assumed flat, the map h is an injection.

By the snake lemma one gets an exact sequence

o coker f -+ coker g coker h,

and the arrow on the right is merely

R(n)ImR<n) -+ MImM,

which is an isomorphism by the assumption on x b . . .

, Xn. It follows that

coker f = 0, whence mN = N, whence N = 0 by Nakayama if R is Noetherian,

so N is finitely generated. If R is not assumed Noetherian, then one has to add

a slight argument as follows in case M is finitely presented.

Lemma 3.9. Assume that M is finitely presented, and let

O-+NEMO

be exact, with E finite free. Then N is finitely generated.

Proof. Let

Ll -+ L2
-+ M 0

be a finite presentation of M, that is an exact sequence with Lb L 2
finite free.

Using the freeness, there exists a commutative diagram

Ll

I
.

1
) 0) M

Id
. M ) 0o ) N ) E

such that L2 E is surjective. Then the snake lemma gives at once the exact

sequence

o coker(L l N) 0,

so coker(L 1 N) = 0, whence N is an image of Ll and is therefore finitely

generated, thereby proving the lemma, and also completing the proofofTheorem

3.8 when M is finitely presented.
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We still have not proved Theorem 3.8 in the fully general case. For this we

use Matsumura's proof (see his Commutative Algebra, Chapter 2), based on the

following lemma.

Lemma 3.10. Assume that M is flat over R. Let a; E A, Xi E Mfor i = I,

. . .

, n, and suppose that we have the relation

n

Laixi = O.
i = 1

Then there exists an integer s and elements b
,j

E A and Yj E M (j = 1,..., s)
such that

, a.b.. = 0
I I}

i

for all j and Xi
= L bijYj

j

for all i.

Proof. We consider the exact sequence

o K R(n) R

where the map R(n) R is given by
n

(b l' . . .
,

bn) L ai b;,
i = 1

and K is its kernel. Since M is flat it follows that

K (8) M M(n) M

is exact, where fM is given by

n

fM(Zl,...,Zn)= Laizi.
i = 1

Therefore there exist elements Pj E K and Yj E M such that

s

(Xl' ...,
x

n) = L Pj Yj.
j== 1

Write Pj = (b lj ,
. . .

,
b

nj) with b
ij

E R. This proves the lemma.

We may now apply the lemma to prove the theorem in exactly the same way

we proved that a finite projective module over a local ring is free in Chapter X,

Theorem 4.4, by induction. This concludes the proof.

Remark. In the applications I know of, the base ring is Noetherian, and so

one gets away with the very simple proof given at first. I did not want to obstruct

the simplicity of this proof, and that is the reason I gave the additional tech-

nicalities in increasing order of generality.
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Applications ofhomology . We end this section by pointing out a connection

between the tensor product and the homological considerations of Chapter XX,

8 for those readers who want to pursue this trend of thoughts. The tensor product
is a bifunctor to which we can apply the considerations of Chapter XX, 8. Let

M, N be modules. Let

. .. Ei Ei - 1 Eo -+ M 0

be a free or projective resolution of M, i.e. an exact sequence where Ei is free or

projective for all i > O. We write this sequence as

EM M -+ O.

Then by definition,

Tori(M, N) = i-th homology of the complex E (8) N, that is of

. . . Ei (8) N Ei - 1 (8) N -+ . . . -+ Eo (8) N O.

This homology is determined up to a unique isomorphism. I leave to the reader

to pick whatever convention is agreeable to fix one resolution to determine a

fixed representation of Tori(M, N), to which all others are isomorphic by a

unique isomorphism.
Since we have a bifunctorial isomorphism M (8) N N (8) M, we also get a

bifunctorial isomorphism

Tori(M, N) Tori(N, M)

for all i. See Propositions 8.2 and 8.2' of Chapter XX.

Following general principles, we say that M has Tor-dimension < d if

Tor;(M, N) = 0 for all i > d and all N. From Chapter XX, 8 we get the follow-

ing result, which merely replaces T-exact by flat.

Theorem 3.11. The following three conditions are equivalent concerning a

module M.

(i) M is flat.

(ii) Torl(M, N) = 0 for all N.

(iii) Tori(M, N) = 0 for all i > 1 and all N, in other words, M has Tor-

dimension O.

Remark. Readers willing to use this characterization can replace some of

the preceding proofs from 3.3 to 3.6 by a Tor-dimension argument, which is

more formal, or at least formal in a different way, and may seem more rapid.
The snake lemma was used ad hoc in each case to prove the desired result. The

general homology theory simply replaces this use by the corresponding formal

homological step, once the general theory of the derived functor has been carried

out.



XVI, 4 EXTENSION OF THE BASE 623

4. EXTENSION OF THE BASE

Let R be a commutative ring and let E be a R-module. We specify R since

we are going to work with several rings in a moment. Let R R' be a homo-

morphism ofcommutative rings, so that R' is an R-algebra, and may be viewed as

an R-module also. We have a 3-multilinear map

R' x R' x E -+ R' (8) E

defined by the rule

(a, b, x) ab (8) x.

This induces therefore a R-linear map

R' (8) (R' (8) E) R' (8) E

and hence a R-bilinear map R' x (R' (8) E) R' (8) E. It is immediately verified

that our last map makes R' (8) E into a R'-module, which we shall call the

extension of E over R', and denote by ER ,. We also say that E
R

, is obtained by
extension of the base ring from R to R'.

Example 1. Let a be an ideal of R and let R Ria be the canonical homo-

morphism. Then the extension of E to Ria is also called the reduction of E

modulo a. This happens often over the integers, when we reduce modulo a prime

p (i.e. modulo the prime ideal (p».

Example 2. Let R be a field and R' an extension field. Then E is a vector

space over R, and E
R

, is a vector space over R'. In terms of a basis, we see that

our extension gives what was alluded to in the preceding chapter. This example
will be expanded in the exercises.

We draw the same diagrams as in field theory:

ER
,

E/ R'
R/

to visualize an extension of the base. From Proposition 2.3, we conclude:

Proposition 4.1. Let E be a free module over R, with basis {Vi}ieI. Let

v; = 1 (8) Vi. Then E
R

, is afree module over R', with basis {V;}ieI'

We had already used a special case of this proposition when we observed that

the dimension of a free module is defined, i.e. that two bases have the same
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cardinality. Indeed, in that case, we reduced modulo a maximal ideal of R to

reduce the question to a vector space over a field.

When we start changing rings, it is desirable to indicate R in the notation

for the tensor product. Thus we write

ER' = R' (8) E = R' (8)R E.

Then we have transitivity of the extension of the base, namely, if R R' R" is a

succession of homomorphisms of commutative rings, then we have an iso-

morphism

R" (8) R
E R" (8) R' (R' (8) R E)

and this isomorphism is one of R"-modules. The proof is trivial and will be left

to the reader.

If E has a multiplicative structure, we can extend the base also for this

multiplication. Let R -+ A be a ring-homomorphism such that every element in

the image of R in A commutes with every element in A (Le. an R-algebra). Let

R R' be a homomorphism of commutative rings. We have a 4-multilinear

map

R' x A x R' x A R' (8) A

defined by

(a, x, b, y) ab (8) xy.

We get an induced R-linear map

R' (8) A (8) R' (8) A R' (8) A

and hence an induced R-bilinear map

(R' (8) A) x (R' (8) A) R' (8) A.

It is trivially verified that the law of composition on R' (8) A we have just
defined is associative. There is a unit element in R' (8) A, namely, 1 (8) 1. We

have a ring-homomorphism of R' into R' (8) A, given by a a (8) 1. In this way

one sees at once that R' (8) A = AR' is an R'-algebra. We note that the map

xl(8)x

is a ring-homomorphism of A into R' (8) A, and that we get a commutative

diagram of ring homomorphisms,

R' (8) A = AR'

A
/R'
R/
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For the record, we give some routine tests for flatness in the context of base

extension.

Proposition 4.2. Let R A be an R-algebra, and assume A commutative.

(i) Base change. If F is aj/at R-module, then A Q9R F is aflat A-module.

(ii) Transitivity. IfA is ajiat commutative R-algebra and M is a flat A-module,

then M is flat as R-module.

The proofs are immediate, and will be left to the reader.

5. SOME FUNCTORIAL ISOMORPHISMS

We recall an abstract definition. Let 21, be two categories. The functors

of 21 into (say covariant, and in one variable) can be viewed as the

objects of a category, whose morphisms are defined as follows. If L, M are two

such functors, a morphism H : L M is a rule which to each object X of 21

associates a morphism Hx: L(X) -+ M(X) in , such that for any morphism

f: X Y in 21, the following diagram is commutative:

L(X) Bx) M(X)

L<JJj jM(f)

L(Y) By) M(Y)

We can therefore speak of isomorphisms of functors. We shall see examples of

these in the theory of tensor products below. In our applications, our categories
are additive, that is, the set of morphisms is an additive group, and the composi-

tion law is Z-bilinear. In that case, a functor L is called additive if

L(f + g) = L(f) + L(g).

We let R be a commutative ring, and we shall consider additive functors from

the category of R-modules into itself. For instance we may view the dual

module as a functor,

E E
V

= L(E, R) = HomR(E, R).

Similarly, we have a functor in two variables,

(E, F) L(E, F') = HomR(E, F),

contravariant in the first, covariant in the second, and bi-additive.
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We shall give several examples of functorial isomorphisms connected with

the tensor product, and for this it is most convenient to state a general theorem,

giving us a criterion when a morphism of functors is in fact an isomorphism.

Proposition 5.1. Let L, M be two functors (both covariant or both contra-

variant) from the category ofR-modules into itself. Assume that bothfunctors
are additive. Let H : L M be a morphism offunctors. IfHE: L(E) M(E)
is an isomorphismfor every I-dimensionalfree module E over R, then HE is an

isomorphismfor every finite-dimensional free module over R.

Proof. We begin with a lemma.

Lemma 5.2. Let E and Ei (i = 1, . . .
, m) be modules over a ring. Let

lpi : Ei
E and t/J i : E Ei be homomorphisms having thefollowing properties:

'/1. 0 (f). = id'1', 't'l , t/Ji 0 qJj
= 0 if i =I j

m

L qJi
0 t/Ji = id,

i = 1

Then the map

x (t/J 1 X, . . .

, t/Jm X)

m

is an isomorphism of E onto the direct product n Ei ,
and the map

i= 1

(x l' . . .

,
X

m) lp 1 X 1 + . . . + lpm
X

m

is an isomorphism of the product onto E. Conversely, ifE is equal to the direct

sum of submodules Ei (i = 1,..., m), if we let t/Ji be the inclusion of E
i in E,

and lpi the projection of E on Ei ,
then these maps satisfy the above-mentioned

properties.

Proof. The proof is routine, and is essentially the same as that of Proposition
3.1 of Chapter III. We shall leave it as an exercise to the reader.

We observe that the families {lp;} and {t/J;} satisfying the properties of the

lemma behave functorially: If T is an additive contravariant functor, say, then

the families {T(t/J i)} and {T(lpi)} also satisfy the properties ofthe lemma. Similarly
if T is a covariant functor.

To apply the lemma, we take the modules Ei to be the I-dimensional

components occurring in a decomposition of E in terms of a basis. Let us assume

for instance that L, M are both covariant. We have for each module E a com-
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mutative diagram

L(E)

L(<p')1
L(E;)

HE
) M(E)

1M(<p,)

HEi
) M(Ei)

and a similar diagram replacing qJi by t/J i, reversing the two vertical arrows.

Hence we get a direct sum decomposition of L(E) in terms of L(t/Ji) and L(qJi)'
and similarly for M(E), in terms of M(t/J;) and M(qJi). By hypothesis, H

Ei
is an

isomorphism. It then follows trivially that HE is an isomorphism. For instance,
to prove injectivity, we write an element v E L(E) in the form

v = L L(qJi)Vb

with Vi E L(Ei). If HE v = 0, then

o = L HEL(qJi)Vi = L M(qJi)HEiVi'

and since the maps M(qJi) (i = 1,..., m) give a direct sum decomposition of

M(E), we conclude that H
Ei Vi

= 0 for all i, whence Vi
= 0, and V = O. The

surjectivity is equally trivial.

When dealing with a functor of several variables, additive in each variable,
one can keep all but one of the variables fixed, and then apply the proposition.
We shall do this in the following corollaries.

Corollary 5.3. Let E', E, F', F befree andfinite dimensional over R. Then we

have a functorial isomorphism

L(E', E) (8) L(F', F) L(E' (8) F', E (8) F)

such that

f (8) 9 T(f, g).

Proof. Keep E, F', F fixed, and view L(E', E) (8) L(F', F) as a functor in the

variable E'. Similarly, view

L(E' (8) F\ E (8) F)

as a functor in E'. The mapf (8) 9 T(f, g) is functorial, and thus by the lemma,
it suffices to prove that it yields an isomorphism when E' has dimension 1.

Assume now that this is the case; fix E' of dimension 1, and view the two

expressions in the corollary as functors of the variable E. Applying the lemma
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again, it suffices to prove that our arrow is an isomorphism when E has di-

mension 1. Similarly, we may assume that F, F' have dimension 1. In that

case the verification that the arrow is an isomorphism is a triviality, as desired.

Corollary 5.4. Let E, F be free and finite dimensional. Then we have a

natural isomorphism

EndR(E) (8) EndR(F) -+ EndR(E (8) F).

Proof Special case of Corollary 5.3.

Note that Corollary 5.4 had already been proved before, and that we

mention it here only to see how it fits with the present point of view.

Corollary 5.5. Let E, F be free finite dimensional over R. There is a func-

torial isomorphism

E
V

0 F --+ L(E, F)

given for A E E
V

and Y E F by the map

A Q9 y A).,y

where A).,y is such that for all x E E, we have A).,y(x) = A(X)Y.

The inverse isomorphism of Corollary 5.5 can be described as follows.

Let {VI,..., vn } be a basis of E, and let {v(,..., v
n

V

} be the dual basis. If

A E L(E, F), then the element

n

Ev/ (8)A(v;) EE
v

(8)F
;=1

maps to A. In particular, if E = F, then the element mapping to the identity idE

is called the Casimir element
n

E v/ (8) V;,
;=1

independent of the choice of basis. Cf. Exercise 14.

To prove Corollary 5.5, justify that there is a well-defined homomorphism
of E

V

Q9 F to L(E, F), by the formula written down. Verify that this homo-

morphism is both injective and surjective. We leave the details as exercises.

Differential geometers are very fond of the isomorphism

L(E, E) --+ E
V
0 E,

and often use E
V

0 E when they think geometrically of L(E, E), thereby em-

phasizing an unnecessary dualization, and an irrelevant formalism, when it is

easier to deal directly with L(E, E). In differential geometry, one applies
various functors L to the tangent space at a point on a manifold, and elements

of the spaces thus obtained are called tensors (of type L).



XVI, 6 TENSOR PRODUCT OF ALGEBRAS 629

Corollary 5.6. Let E, F be free and finite dimensional over R. There is a

functorial isomorphism

EVFV (EF)v.

given for XV E E
V

and yV E F
V

by the map

XV yV t---+ A,

where A is such that, for all x E E and y E F,

A(X y)
= (x, XV)(y, yV).

Proof. As before.

Finally, we leave the following results as an exercise.

Proposition 5.7. Let E be free and finite dimensional over R. The trace

function on L(E, E) is equal to the composite of the two maps

L(E, E) E
V

E R,

where thefirst map is the inverse of the isomorphism described in Corollary 5.5,

and the second map is induced by the bilinear map

(XV, x) 1--+ (x, XV).

Of course, it is precisely in a situation involving the trace that the iso-

morphism of Corollary 5.5 becomes important, and that the finite dimen-

sionality of E is used. In many applications, this finite dimensionality plays
no role, and it is better to deal with L(E, E) directly.

6. TENSOR PRODUCT OF ALGEBRAS

In this section, we again let R be a commutative ring. By an R-algebra we

mean a ring homomorphism R A into a ring A such that the image of R is

contained in the center of A.

Let A, B be R-algebras. We shall make A B into an R-algebra. Given

(a, b) E A x B, we have an R-bilinear map

Ma,b: A x B A 0 B such that Ma,b(a', b') = aa' 0 bb'.

Hence Ma,b induces an R-linear map ma,b: A B A (8) B such that

ma,b(a', b') = aa' 0 bb'. But ma,b depends bilinearly on a and b, so we obtain

finally a unique R-bilinear map

A0BxABA0B
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such that (a b)(a' b') = aa' bb'. This map is obviously associative, and

we have a natural ring homomorphism

R A 0 B given by c 1 0 c
= c 0 1.

Thus A 0 B is an R-algebra, called the ordinary tensor product.

Application: commutative rings

We shall now see the implication of the above for commutative rings.

Proposition 6.1. Finite coproducts exist in the category of commutative

rings, and in the category of commutative algebras over a commutative ring.

IfR A and R B are two homomorphisms of commutative rings, then their

coproduct over R is the homomorphism R A 0 B given by

a a (8) 1 = 1 (8) a.

Proof. We shall limit our proof to the case of the coproduct of two ring

homomorphisms R A and R B. One can use induction.

Let A, B be commutative rings, and assume given ring-homomorphisms into

a commutative ring C,

qJ : A C and tfJ: B c.

Then we can define a Z-bilinear map

AxBC

by (x, y) qJ(x)tfJ(y). From this we get a unique additive homomorphism

A(8)BC

such that x (8) y q>(x)tfJ(y). We have seen above that we can define a ring
structure on A (8) B, such that

(a (8) b)(c (8) d) = ac (8) bd.

It is then clear that our map A (8) B C is a ring-homomorphism. We also have

two ring-homomorphisms

A 1. A (8) Band B.!4 A (8) B

given by

x x (8) 1 and y 1 (8) y.

The universal property of the tensor product shows that (A (8) B, f, g) is a

coproduct of our rings A and B.

If A, B, Care R-algebras, and if qJ, tfJ make the following diagram com-



XVI, 6 TENSOR PRODUCT OF ALGEBRAS 631

mutative,

c

A"
B

""-R/
then A (8) B is also an R-algebra (it is in fact an algebra over R, or A, or B, de-

pending on what one wants to use), and the map A (8) B C obtained above

gives a homomorphism of R-algebras.
A commutative ring can always be viewed as a Z-algebra (Le. as an algebra

over the integers). Thus one sees the coproduct of commutative rings as a

special case of the coproduct of R-algebras.

Graded Algebras. Let G be a commutative monoid, written additively. By
a G-graded ring, we shall mean a ring A, which as an additive group can be

expressed as a direct sum.

A = E8 Ar,
reG

and such that the ring multiplication maps Ar x As into A
r + s '

for all r, S E G.

In particular, we see that Ao is a subring.
The elements of Ar are called the homogeneous elements of degree r.

We shall construct several examples of graded rings, according to the

following pattern. Suppose given for each rEG an abelian group Ar (written

additively), and for each pair r, S E G a map Ar x As Ar+s. Assume that Ao
is a commutative ring, and that composition under these maps is associative and

Ao-bilinear. Then the direct sum A = EB Ar is a ring: We can define multiplica-
reG

tion in the obvious way, namely

( L Xr) ( L YS) = L ( L XrYs) .

reG seG reG r+s=r

The above product is called the ordinary product. However, there is another

way. Suppose the grading is in Z or Z/2Z. We define the super product of

x E Ar and yEAs to be (-l)rsxy , where xy is the given product. It is easily veri-

fied that this product is associative, and extends to what is called the super

product A 0 A A associated with the bilinear maps. If R is a commutative

ring such that A is a graded R-algebra, i.e. RAr C Ar for all r (in addition to the

condition that A is a graded ring), then with the super product, A is also an

R-algebra, which will be denoted by Asu, and will be called the super algebra
associated with A.
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Example. In the next section, we shall meet the tensor algebra T(E), which

will be graded as the direct sum of Tr(E), and so we get the associated super

tensor algebra Tsu(E) according to the above recipe.

Similarly, let A, B be graded algebras (graded by the natural numbers as

above). We define their super tensor product

A @su B

to be the ordinary tensor product as graded module, but with the super product

(a 0 b)(a' 0 b') = (-I)(deg b)(deg a')aa' 0 bb'

if b, a' are homogeneous elements ofBandA respectively. It is routinely verified

that A @su B is then a ring which is also a graded algebra. Except for the sign,
the product is the same as the ordinary one, but it is necessary to verify associativity

explicitly. Suppose a' E Ai' b E Bj, a" E As, and b' E Br. Then the reader will

find at once that the sign which comes out by computing

(a @su b)(a' @su b')(a" @su b")

in two ways turns out to be the same, namely (
- l)U

+js +
sr. Since bilinearity is

trivially satisfied, it follows that A @su B is indeed an algebra.
The super product in many ways is more natural than what we called the

ordinary product. For instance, it is the natural product of cohomology in topol-

ogy. Cf. Greenberg-Harper, Algebraic Topology, Chapter 29. For a similar con-

struction with Z/2Z-grading, see Chapter XIX, 4.

7. THE TENSOR ALGEBRA OF A MODULE

Let R be a commutative ring as before, and let E be a module (Le. an

R-module). For each integer r
>

0, we let

r

Tr(E) = (8) E and TO(E) = R.
i = 1

Thus Tr(E) = E (8) . . . (8) E (tensor product taken r times). Then T
r

is a functor,
whose effect on linear maps is given as follows. Iff: E F is a linear map, then

Tr(f) = T(f, . . .
, f)

in the sense of 91.
From the associativity of the tensor product, we obtain a bilinear map

Tr(E) x TS(E) Tr+s(E),



XVI, 7 THE TENSOR ALGEBRA OF A MODULE 633

which is associative. Consequently, by means of this bilinear map, we can define

a ring structure on the direct sum

00

T(E) = EB Tr(E),
r==O

and in fact an algebra structure (mapping R on TO(£) = R). We shall call T(E)
the tensor algebra of E, over R. It is in general not commutative. If x, y E T(E),
we shall again write x (8) y for the ring operation in T(E).

Let f: E -+ F be a linear map. Then f induces a linear map

Tr(f) : Tr(E) -+ Tr(F)

for each r > 0, and in this way induces a map which we shall denote by T(f) on

T(E). (There can be no ambiguity with the map of 1, which should now be

written Tl(f), and is in fact equal to f since Tl(E) = E.) It is clear that T(f) is

the unique linear map such that for Xl' . . .

,
X

r
E E we have

T(f)(Xl (8) ... (8) X
r) = f(x 1 ) (8) ... (8) f(xr).

Indeed, the elements of Tl(E) = E are algebra-generators of T(E) over R. We

see that T(f) is an algebra-homomorphism. Thus T may be viewed as afunctor

from the category of modules to the category of graded algebras, T(f) being a

homomorphism of degree O.

When E is free and finite dimensional over R, we can determine the structure

of T(E) completely, using Proposition 2.3. Let P be an algebra over k. We shall

say that P is a non-commutative polynomial algebra if there exist elements

t l' . . .

,
t

n
E P such that the elements

M
(

" )(t ) = t" ... t"
I 11 Is

with 1 < iv < n form a basis of P over R. We may call these elements non-

commutative monomials in (t). As usual, by convention, when r = 0, the

corresponding monomial is the unit element of P. We see that t 1, . . .

,
t

n generate

P as an algebra over k, and that P is in fact a graded algebra, where P
r
consists of

linear combinations of monomials ti 1

. . . t
ir

with coefficients in R. It is natural to

say that t b . . .

,
t

n
are independent non-commutative variables over R.

Proposition 7.1. Let E befree ofdimension n over R. Then T(E) is isomorphic
to the non-commutative polynomial algebra on n variables over R. In other

words, if {v l'
. . .

,
v

n } is a basis of E over R, then the elements

M
(i) ( V) ==

ViI (8) ... (8) V;v' 1 < iv < n

form a basis of Tr(E), and every element of T(E) has a unique expression as a

finite sum

L a(i) M(i)(v),
(i)

a(i) E R
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with almost all a(i> equal to o.

Proof. This follows at once from Proposition 2.3.

The tensor product of linear maps will now be interpreted in the context of

the tensor algebra.

For convenience, we shall denote the module of endomorphisms EndR(E) by

L(E) for the rest of this section.

We form the direct sum

00

(L T)(E) = EB L(Tr(E»,
r=O

which we shall also write L T(E) for simplicity. (Of course, L T(E) is not equal to

EndR(T(E», so we must view L T as a single symbol.) We shall see that L T is a

functor from modules to graded algebras, by defining a suitable multiplication
on L T(E). Let f E L(Tr(E», 9 E L(TS(E», h E L(Tm(E». We define the product

fg E L(Tr+s(E» to be T(f, g), in the notation of 91, in other words to be the

unique linear map whose effect on an element x (8) y with x E Tr(E) and

y E TS(E) is

x (8) y f(x) (8) g(y).

In view of the associativity of the tensor product, we obtain at once the as-

sociativity (fg)h = f(gh), and we also see that our product is bilinear. Hence

L T(E) is a k-algebra.
We have an algebra-homomorphism

T(L(E» L T(E)

given in each dimension r by the linear map

fl (8) . . . (8) f,. T(fb . . .

, f,.) = .fl . . . f,..

We specify here that the tensor product on the left is taken in

L(E) (8) . . . (8) L(E).

We also note that the homomorphism is in general neither surjective nor injective.
When E is free finite dimensional over R, the homomorphism turns out to be

both, and thus we have a clear picture of L T(E) as a non-commutative poly-
nomial algebra, generated by L(E). Namely, from Proposition 2.5, we obtain:

Proposition 7.2. Let E be free, finite dimensional over R. Then we have an

algebra-isomorphism

00

T(L(E» = T(EndR(E» LT(E) = EB EndR(Tr(E»
r=O
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given by

f (8) g T(f, g).

Proof. By Proposition 2.5, we have a linear isomorphism in each dimen-

sion, and it is clear that the map preserves multiplication.

In particular, we see that L T(E) IS a noncommutative polynomial algebra.

8. SYMMETRIC PRODUCTS

Let 6n denote the symmetric group on n letters, say operating on the integers

(1, . . .

, n). An r-multilinear map

f : E(r) F

is said to be symmetric if f(x l' . . .

,
X

r) = f(X(1(l)' . . .

, xa(r» for all (J E 6r.
In Tr(E), we let b

r
be the submodule generated by all elements of type

Xl (8) . . . (8) X
r

-

Xa(l) (8) . . . (8) Xa(r)

for all Xi E E and a E 6r. We define the factor module

sr(E) = Tr(E)/br'

and let

00

S(E) = EB sr(E)
r==O

be the direct sum. It is immediately obvious that the direct sum

00

b = EB b
r

r=O

is an ideal in T(E), and hence that S(E) is a graded R-algebra, which is called the

symmetric algebra of E.

Furthermore, the canonical map

E(r) sr(E)

obtained by composing the maps

E(r) Tr(E) Tr(E)/br

= sr(E)

/

is universal for r-multilinear symmetric maps.
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We observe that S is afunctor,from the category of modules to the category

of graded R-algebras. The image of (x 1, . . .

,
x

r) under the canonical map

E(r) -+ sr(E)

will be denoted simply by Xl'
. .

Xr.

Proposition 8.1. Let E be free of dimension n over R. Let {Vl, . . .
,

v
n } be a

basis ofE over k. Viewed as elements ofSl(E) in S(E), these basis elements are

algebraically independent over R, and S(E) is therefore isomorphic to the

polynomial algebra in n variables over R.

Proof Let t l' . . .
,

t
n

be algebraically independent variables over R, and

form the polynomial algebra R[t b .

..,
t

n]. Let Pr be the R-module of homo-

geneous polynomials of degree r. We define a map of E(r) Pr as follows. If

w
l ,

. . .

,
W

r
are elements of E which can be written

n

Wi
= L aivvv,

v = 1

i = 1,..., r,

then our map is given by

(w 1, . . .

,
Wr) (a 11 t 1 + . . . + a 1 n

tn) . . . (ar 1 t 1 + . . . + a
rn

t
n ).

It is obvious that this map is multilinear and symmetric. Hence it factors

through a linear map of sr(E) into Pr:

E(r) ) sr(E)

p/
r

From the commutativity of our diagram, it is clear that the element Vit
. . .

Vis in

sr(E) maps on tit.
. .

tis in Pr for each r-tuple of integers (i) = (i l ,
. . .

,
i
r). Since

the monomials Mcn(t) of degree r are linearly independent over k, it follows that

the monomials MCi)(V) in S'(E) are also linearly independent over R, and that

our map sr(E) -+ Pr is an isomorphism. One verifies at once that the multiplica-
tion in S(E) corresponds to the multiplication of polynomials in R[t], and thus

that the map of S(E) into the polynomial algebra described as above for each

component sr(E) induces an algebra-isomorphism of S(E) onto R[t], as desired.

Proposition 8.2. Let E = E' (f) E" be a direct sum of finite free modules.

Then there is a natural isomorphism

sn(E' (f) E") E8 SPE' (8) sqE".

p+q=n

In fact, this is but the n-part of a graded isomorphism

SeE' (f) E") SE' (8) SE".
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Proof The isomorphism comes from the following maps. The inclusions

of E' and E" into their direct sum give rise to the functorial maps

SE' (8) SE" -+ SE,

and the claim is that this is a graded isomorphism. Note that SE' and SE" are

commutative rings, and so their tensor product is just the tensor product of

commutative rings discussed in 6. The reader can either give a functorial map

backward to prove the desired isomorphism, or more concretely, SE' is the

polynomial ring on a finite family of variables, SE" is the polynomial ring in

another family of variables, and their tensor product is just the polynomial ring
in the two families of variables. The matter is easy no matter what, and the

formal proof is left to the reader.

EXERCISES

1. Let k be a field and k(ex) a finite extension. Letf(X) = Irr(ex, k, X), and suppose thatfis

separable. Let k' be any extension of k. Show that k(ex) (8) k' is a direct sum of fields.

If k' is algebraically closed, show that these fields correspond to the embeddings of

k(ex) In k'.

2. Let k be a field, f(X) an Irreducible polynomial over k, and ex a root of f. Show that

k(ex) (8) k' is isomorphic, as a k'-algebra, to k'[X]/(f(X».

3. Let E be a finite extension of a field k. Show that E is separable over k if and only if

E (8)k L has no nilpotent elements for all extensions L of k, and also when L = kat

4. Let cp : A B be a commutative ring homomorphism. Let E be an A-module and F

a B-module. Let FA be the A-module obtained from F via the operation of A on F

through cp, that is for y E FA and a E A this operation is given by

(a, y) 1-+ cp(a)y.

Show that there IS a natural isomorphism

HomB(B (8) A E, F) HomA(E, FA).

5. The norm. Let B be a commutative algebra over the commutative ring R and assume

that B is free of rank r. Let A be any commutative R-algebra. Then A 0 B is both

an A-algebra and a B-algebra. We view A (8) B as an A-algebra, which is also free

of rank r. If {e I' . . .
,

er} is a basis of B over R, then

1 A (8) e l' . . .

,
1

A (8) e
r

is a basis of A (8) B over A. We may then define the norm

N = N
A @ B. A

: A (8) B -+ A

as the unique map which coincides with the determinant of the regular representation.
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In other words, if bE Band bB
denotes multiplication by b, then

N
B, R(b) = det(bB);

and similarly after extension of the base. Prove:

(a) Let lp : A -+ C be a homomorphism of R-algebras. Then the following diagram
is commutative:

A@B

Nj
A

tp @ id
) C 0 B

jN
C

tp

(b) Let x, YEA @ B. Then N(x @B y) = N(x) @ N(y). [Hint: Use the com-

mutativity relations eiej
=

eje; and the associativity.]

A little flatness

6. Let M, N be flat. Show that M @ N is flat.

7. Let F be a flat R-module, and let a E R be an element which is not a zero-divisor. Show

that if ax = 0 for some x E F then x = o.

8. Prove Proposition 3.2.

Faithfully flat

9. We continue to assume that rings are commutative. Let M be an A-module. We say

that M is faithfully flat if M is flat, and if the functor

TM : E M @A E.

is faithful, that is E # 0 implies M @ A E =1= O. Prove that the following conditions are

equivalent.

(i) M is faithfully flat.

(ii) M is flat, and if u : F -+ E is a homomorphism of A-modules, u # 0, then

TM(U): M @A F -+ M @A E is also #0.

(iii) M is flat, and for all maximal ideals m of A, we have mM # M.

(iv) A sequence of A-modules N' -+ N -+ N" is exact if and only if the sequence

tensored with M is exact.

10. (a) Let A -+ B be a ring-homomorphism. If M is faithfully flat over A, then B @A M

is faithfully flat over B.

(b) Let M be faithfully flat over B. Then M viewed as A-module via the homomorphism
A -+ B is faithfully flat over A if B is faithfully flat over A.

11. Let P, M, E be modules over the commutative ring A. If P is finitely generated (resp.

finitely presented) and E is flat, show that the natural homomorphism

HomA(P, M) @A E -+ HomA(P, M @A E)

is a monomorphism (resp. an isomorphism).
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[Hint: Let F 1
-+ F0

-+ P -+ 0 be a finite presentation, say. Consider the diagram

o ) HomA(P, M) (8) A
E ) HomA(F0, M) (8)A E ) HomA(F., M) (8)A E

! ! !
o · HomA(P, M (8) A E) · HomA(F0, M (8)A E) ) HornA(F 1, M (8) A E)].

Tensor products and direct limits

12. Show that the tensor product commutes with direct limits. In other words, if {EJ is a

directed family of modules, and M is any module, then there is a natural isomorphism

lim(Ei (8) A M) (lim Ei) (8) A M.
---+

13. (D. Lazard) Let E be a module over a commutative ring A. Tensor products are all

taken over that ring. Show that the following conditions are equivalent:

(i) There exists a direct family {F;} of free modules of finite type such that

E lim Fi .

----+

(ii) E is flat.

(iii) For every finitely presented module P the natural homomorphism

HomA(P, A) (8)A E -+ HomA(P, E)

is surjective.

(iv) For every finitely presented module P and homomorphism f: P -+ E there

exists a free module F, finitely generated, and homomorphisms

g : P -+ F and h : F -+ E

such that f = hog.

Remark. The point of Lazard's theorem lies in the first two conditions: E is fiat

ifand only ifE is a direct limit offree modules offinite type.

[Hint: Since the tensor product commutes with direct limits, that (i) implies (ii)
comes from the preceding exercise and the definition of flat.

To show that (ii) implies (iii), use Exercise 11.

To show that (Hi) implies (iv) is easy from the hypothesis.
To show that (iv) implies (i), use the fact that a module is a direct limit of finitely

presented modules (an exercise in Chapter III), and (iv) to get the free modules

instead. For complete details, see for instance Bourbaki, Algebre, Chapter X, 1,
Theorem 1, p. 14.]

The Casimir element

14. Let k be a commutative field and let E be a vector space over k, of finite dimension

n. Let B be a nondegenerate symmetric bilinear form on E, inducing an iso-
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morphism E ---+ E
v

of E with its dual space. Let {VI, . . .

,
Vn } be a basis of E. The B-

dual basis {v, . . .

, v} consists of the elements of E such that B(Vi, vi) = ij.
(a) Show that the element L: Vi (8) vI in E (8) E is independent of the choice of

basis. We call this element the Casimir element (see below).

(b) In the symmetric algebra S(E), let QB = L: ViVIe Show that QB is indepen-
dent of the choice of basis. We call QB the Casimir polynomial. It depends on

B, of course.

(c) More generally, let D be an (associative) algebra over k, let : E ---+ D be an

injective linear map of E into D. Show that the element L: (Vi)(vI) =

(J)B,fI) is independent of the choice of basis. We call it the Casimir element in

D, determined by and B.

Remark. The terminology of the Casimir element is determined by the classical

case, when G is a Lie group, E =

9
= Lie( G) is the Lie algebra of G (tangent space at the

origin with the Lie algebra product determined by the Lie derivative), and (v) is the

differential operator associated with V (Lie derivative in the direction of v). The Casimir

element is then a partial differential operator in the algebra of all differential operators

on G. Cf. basic books on manifolds and Lie theory, for instance [JoL 01], Chapter II, 1
and Chapter VII, 2.

15. Let E = sIn(k) = subspace of Matn(k) consisting of matrices with trace O. Let B be

the bilinear form defined by B(X, Y) = tr(XY). Let G = SLn(k). Prove:

(a) B is c( G)-invariant, where c(g) is conjugation by an element g E G.

(b) B is invariant under the transpose (X, Y) (tX,
t

Y).

(c) Let k = R. Then B is positive definite on the symmetric matrices and nega-

tive definite on the skew-symmetric matrices.

(d) Suppose G is given with an action on the algebra D of Exercise 14, and that

the linear map : E ---+ D is G-linear. Show that the Casimir element is G-

invariant (for the conjugation action on S(E), and the given action on D).



CHAPTER XVII

Semisimplicity

In many applications, a module decomposes as a direct sum of simple sub-

modules, and then one can develop a fairly precise structure theory, both under

general assumptions, and particular applications. This chapter is devoted to

those results which can be proved in general. In the next chapter, we consider

those additional results which can be proved in a classical and important special
case.

I have more or less followed Bourbaki in the proof of Jacobson's density
theorem.

1. MATRICES AND LINEAR MAPS OVER

NON-COMMUTATIVE RINGS

In Chapter XIII, we considered exclusively matrices over commutative

rings. For our present purposes, it is necessary to consider a more general
situation.

Let K be a ring. We define a matrix (lpij) with coefficients in K just as we

did for commutative rings. The product of matrices is defined by the same

formula. Then we again have associativity and distributivity, whenever the

size of the matrices involved in the operations makes the operations defined.

In particular, the square n x n matrices over K form a ring, again denoted by

Matn(K). We have a ring-homomorphism

K Matn(K)

on the diagonal.

641
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By a division ring we shall mean a ring with 1 =I 0, and such that every

non-zero element has a multiplicative inverse.

If K is a division ring, then every non-zero K-module has a basis, and the

cardinalities of two bases are equal. The proof is the same as in the commutative

case; we never needed commutativity in the arguments. This cardinality is

again called the dimension of the module over K, and a module over a division

ring is called a vector space.

We can associate a matrix with linear maps, depending on the choice of a

finite basis, just as in the commutative case. However, we shall consider a

somewhat different situation which we want to apply to semisimple modules.

Let R be a ring, and let

E = E 1
. . . (f) En' F=Fl(f)...Fm

be R-modules, expressed as direct sums of R-submodules. We wish to describe

the most general R-homomorphism of E into F.

Suppose first F = F 1 has one component. Let

lp : E 1 (f) . . . (f) En F

be a homomorphism. Let lpj: Ej F be the restriction of lp to the factor Ej'
Every element x E E has a unique expression x =

Xl + . . . + X
n ,

with Xj E Ej'
We may therefore associate with x the column vector X = t(x b

..

.,
x

n), whose

components are in E l'
. . .

, En respectively. We can associate with lp the row

vector (lpb . . .

, lpn), lpj E HomR(Ej , F), and the effect of lp on the element x of

E is described by matrix multiplication, of the row vector times the column

vector.

More generally, consider a homomorphism

lp : E 1 (f) . · . En F
1 (f) . . . (f) F

m'

Let lri : F
1 (f) . . . (f) F

m
Fi be the projection on the i-th factor. Then we can

apply our previous remarks to lri
0

lp, for each i. In this way, we see that there

exist unique elements lpij E HomR(Ej ,
Fi), such that lp has a matrix representa-

tion

(
lpl1

M(lp) = :

lpml

...

qJt
n

)lpmn

whose effect on an element x is given by matrix multiplication, namely

(qJ
1

. ..

qJt") (X:l)
.

lpml lpmn X
n
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Conversely, given a matrix (lpij) with lpij E HomR(Ej ,
Fi), we can define an

element of HomR(E, F) by means of this matrix. We have an additive group-

isomorphism between HomR(E, F) and this group of matrices.

In particular, let E be afixed R-module, and let K = EndR(E). Then we have

a ring-isomorphism

EndR(E(n» Matn(K)

which to each lp E End R(E(n» associates the matrix

(qJ
1

· ..

qJt")lpn 1 lpnn

determined as before, and operating on the left on column vectors of E(n), with

components in E.

Remark. Let E be a I-dimensional vector space over a division ring D,
and let {v} be a basis. For each a E D, there exists a unique D-linear map

fa : E E such that fa(v) = avo Then we have the rule

fafb = fba.

Thus when we associate a matrix with a linear map, depending on a basis, the

multiplication gets twisted. Nevertheless, the statement we just made preceding
this remark is correct!! The point is that we took the lpij in EndR(E), and not

in D, in the special case that R = D. Thus K is not isomorphic to D (in the

non-commutative case), but anti-isomorphic. This is the only point ofdifference

of the formal elementary theory of linear maps in the commutative or non-

commutative case.

We recall that an R-module E is said to be simple if it is =I 0 and if it has no

submodule other than 0 or E.

Proposition 1.1. Schur's Lemma. Let E, F be simple R-modules. Every
non-zero homomorphism of E into F is an isomorphism. The ring EndR(E) is

a division ring.

Proof. Letf : E F be a non-zero homomorphism. Its image and kernel

are submodules, hence Ker f = 0 and 1m f = F. Hence f is an isomorphism.
If E = F, then f has an inverse, as desired.

The next proposition describes completely the ring of endomorphisms of a

direct sum of simple modules.

Proposition 1.2. Let E = E\nt> (f) . . . (f) Enr) be a direct sum of simple

modules, the Ei being non-isomorphic, and each Ei being repeated ni times in
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the sum. Then, up to a permutation, E
l'

. . .

, Er are uniquely determined up

to isomorphisms, and the multiplicities n 1,
. . .

,
n

r
are uniquely determined.

The ring EndR(E) is isomorphic to a ring of matrices, of type

M 2

o

o

where M
i is an ni x ni matrix over EndR(Ei). (The isomorphism is the one

with respect to our direct sum decomposition.)

Proof. The last statement follows from our previous considerations, taking
into account Proposition 1.1.

Suppose now that we have two R-modules, with direct sum decompositions
into simple submodules, and an isomorphism

E\nd (f) . . . (f) Enr) F\md (f) . . . (f) Fms),

such that the Ei are non-isomorphic, and the Fj are non-isomorphic. From

Proposition 1.1, we conclude that each Ei is isomorphic to some Fj, and con-

versely. It follows that r =

s, and that after a permutation, Ei Fi . Further-

more, the isomorphism must induce an isomorphism

End --+ Fmd
I I

for each i. Since Ei Fi ,
we may assume without loss of generality that in

fact E i
= Fi

. Thus we are reduced to proving: If a module is isomorphic to

E(n) and to E(m), with some simple module E, then n = m. But EndR(E(n» is

isomorphic to the n x n matrix ring over the division ring EndR(E) = K.

Furthermore this isomorphism is verified at once to be an isomorphism as

K-vector space. The dimension of the space of n x n matrices over K is n
2

.

This proves that the multiplicity n is uniquely determined, and proves our

proposition.

When E admits a (finite) direct sum decomposition of simple submodules,

the number of times that a simple module of a given isomorphism class occurs

in a decomposition will be called the multiplicity of the simple module (or of

the isomorphism class of the simple module).

Furthermore, if

E = E\nd (f) . . . (f) Enr)

is expressed as a sum of simple submodules, we shall call nl + . . . + n
r

the

length of E. In many applications, we shall also write

r

E =

nl E l (f) .'. (f) nrEr = EB n;E;.
i= 1
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2. CONDITIONS DEFINING SEMISIMPLICITY

Let R be a ring. Unless otherwise specified in this section all modules and

homomorphisms will be R-modules and R-homomorphisms.

The following conditions on a module E are equivalent:

SS 1. E is the sum of a family of simple submodules.

SS 2. E is the direct sum of a family of simple submodules.

SS 3. Every submodule F of E is a direct summand, i.e. there exists a

submodule F' such that E = F (f) F'.

We shall now prove that these three conditions are equivalent.

Lemma 2.1. Let E = 2: be a sum (not necessarily direct) of simple sub-
iEI

modules. Then there exists a subset J c I such that E is the direct sum

EB Ej.
jEJ

Proof. Let J be a maximal subset of I such that the sum L Ej is direct.

jeJ

We contend that this sum is in fact equal to E. It will suffice to prove that each

Ei is contained in this sum. But the intersection of our sum with Ei is a sub-

module of E;, hence equal to 0 or E
i

. If it is equal to 0, then J is not maximal,

since we can adjoin i to it. Hence Ei is contained in the sum, and our lemma is

proved.
The lemma shows that SS 1 implies SS 2. To see that SS 2 implies SS 3, take

a submodule F, and let J be a maximal subset of 1 such that the sum F + EB Ej
jeJ

is direct. The same reasoning as before shows that this sum is equal to E.

Finally assume SS3. To show SS 1, we shall first prove that every non-zero

submodule of E contains a simple submodule. Let v E E, v =1= O. Then by

definition, Rv is a principal submodule, and the kernel of the homomorphism

RRv

is a left ideal L =f. R. Hence L is contained in a maximal left ideal M '# R

(by Zorn's lemma). Then MIL Is a maximal submodule of RIL (unequal to

RIL), and hence Mv is a maximal submodule of Rv, unequal to Rv, correspond-

ing to MIL under the isomorphism

RIL Rv.



646 SEMISIMPLICITY XVII, 3

We can write E = Mv (f) M' with some submodule M'. Then

Rv = Mv (M' n Rv),

because every element x E Rv can be written uniquely as a sum x = av + x'

with a E M and x' E M', and x' =
x
-

av lies in Rv. Since Mv is maximal in

Rv, it follows that M' n Rv is simple, as desired.

Let Eo be the submodule of E which is the sum of all simple submodules of

E. If Eo =f. E, then E = Eo (f) F with F =1= 0, and there exists a simple sub-

module of F, contradicting the definition of Eo. This proves that SS 3 implies
551.

A module E satisfying our three conditions is said to be semisimple.

Proposition 2.2. Every submodule and every factor module of a semisimple
module is semisimple.

Proof. Let F be a submodule. Let F0 be the sum of all simple submodules

of F. Write E = F
0 (f) Fo. Every element x of F has a unique expression

x =

Xo + Xo with Xo E F0 and Xo E Fo. But Xo = x
-

Xo E F. Hence F is

the direct sum

F = F
0 (f) (F n Fo).

We must therefore have F0
= F, which is semisimple. As for the factor module,

write E = F (f) F'. Then F' is a sum of its simple submodules, and the canonical

map E ElF induces an isomorphism ofF' onto ElF. Hence ElF is semisimple.

3. THE DENSITY THEOREM

Let E be a semisimple R-module. Let R' = R'(E) be the ring EndR(E). Then

E is also a R' -module, the operation of R' on E being given by

(cp, x) cp(x)

for cp E R' and x E E. Each a E R induces a R' -homomorphism fa: E E by
the map fa(x) =

ax. This is what is meant by the condition

cp((Xx) = (Xcp(x).

We let R" = R"(E) =

EndR,(E). We call R' the commutant of Rand R" the

bicommutant. Thus we get a ring-homomorphism

R EndR,(E)
= R"(E) = R"
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by a h. We now ask how big is the image of this ring-homomorphism.
The density theorem states that it is quite big.

Lemma 3.1. Let E be semisimple over R. Let R' =

EndR(E), f E EndR,(E)
as above. Let x E R. There exists an element a E R such that ax = f(x).

Proof. Since E is semisimple, we can write an R-direct sum

E = Rx (f) F

with some submodule F. Let 7T: E Rx be the projection. Then 7T E R', and

hence

f(x) = f(nx) = nf(x).

This shows that f(x) E Rx, as desired.

The density theorem generalizes the lemma by dealing with a finite number

of elements of E instead of just one. For the proof, we use a diagonal trick.

Theorem 3.2. (Jacobson). Let E be semisimple over R, and let

R' =

EndR(E). Let f E EndR,(E). Let Xl' . .
., x

n
E E. Then there exists an

element a E R such that

ax;
=

f(x;) for i = 1,..., n.

IfE isfinitely generated over R', then the natural map R EndR,(E) is surjective.

Proof. For clarity of notation, we shall first carry out the proof in case E

is simple. Let fen) : E(n) -+ E(n) be the product map, so that

f(n)(Yl,..., Yn) = (f(Yl)'... ,f(Yn».

Let R = EndR(E(n». Then R is none other than the ring of matrices with

coefficients in R'. Since f commutes with elements of R' in its action on E, one

sees immediately thatf(n) is in EndR(E(n». By the lemma, there exists an element

a E R such that

(ax 1, . . .

,
ax

n) = (f(x 1)' . . .

, f(xn»,

which is what we wanted to prove.

When E is not simple, suppose that E is equal to a finite direct sum of simple
submodules E; (non-isomorphic), with multiplicities n;:

E = E\n
d

(f) . . . (f) Enr) (Ei * Ej if i =I j),

then the matrices representing the ring of endomorphisms split according to

blocks corresponding to the non-isomorphic simple components in our direct

sum decomposition. Hence here again the argument goes through as before.
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The main point is thatf(n) lies in End(E(n», and that we can apply the lemma.

We add the observation that if E is finitely generated over R', then an element

f E EndR,(E) is determined by its value on a finite number of elements of E, so

the asserted surjectivity R EndR,(E) follows at once. In the applications

below, E will be a finite dimensional vector space over a field k, and R will be

a k-algebra, so the finiteness condition is automatically satisfied.

The argument when E is an infinite direct sum would be similar, but the

notation is disagreeable. However, in the applications we shall never need the

theorem in any case other than the case when E itself is a finite direct sum of

simple modules, and this is the reason why we first gave the proof in that case,

and let the reader write out the formal details in the other cases, if desired.

Corollary 3.3. (Burnside's Theorem). Let E be a finite-dimensional
vector space over an algebraically closed field k, and let R be a subalgebra of

Endk(E). If E is a simple R-module, then R = End
R

, (E).

Proof. We contend that EndR(E)
= k. At any rate, EndR(E) is a division

ring R', containing k as a subring and every element of k commutes with every

element of R'. Let a E R'. Then k( a) is a field. Furthermore, R' is contained in

Endk(E) as a k-subspace, and is therefore finite dimensional over k. Hence k(lJ.)
is finite over k, and therefore equal to k since k is algebraically closed. This

proves that EndR(E)
= k. Let now {VI' . . .

,
v

n } be a basis of E over k. Let

A E Endk(E). According to the density theorem, there exists a E R such that

(xVi
= AVi for i = 1, . . .

,
n.

Since the effect of A is determined by its effect on a basis, we conclude that

R = Endk(E).

Corollary 3.3 is used in the following situation as in Exercise 8. Let E

be a finite-dimensional vector space over field k. Let G be a submonoid of

GL(E) (multiplicative). A G-invariant subspace F of E is a subspace such that

a-F C F for all a- E G. We say that E is G-simple if it has no G-invariant

subspace other than 0 and E itself, and E =1= O. Let R = k[G] be the subalgebra
of Endk(E) generated by Gover k. Since we assumed that G is a monoid, it

follows that R consists of linear combinations

,
a.a.t- r I

with ai E k and ai E G. Then we see that a subspace F of E is G-invariant if and

only if it is R-invariant. Thus E is G-simple if and only if it is simple over R in

the sense which we have been considering. We can then restate Burnside's

theorem as he stated it:

Corollary 3.4. Let E be a finite dimensional vector space over an alge-

braically closed field k, and let G be a (multiplicative) submonoid of GL(E).
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If E is G-simple, then kEG] = Endk(E).

When k is not algebraically closed, then we still get some result. Quite

generally, let R be a ring and E a simple R-module. We have seen that EndR(E)
is a division ring, which we denote by D, and E is a vector space over D.

Let R be a ring, and E any R-module. We shall say that E is a faithful

module if the following condition is satisfied. Given (X E R such that (Xx = 0

for all x E E, we have (X = O. In the applications, E is a vector space over a field

k, and we have a ring-homomorphism of R into Endk(E). In this way, E is an

R-module, and it is faithful if and only if this homomorphism is injective.

Corollary 3.5. (Wedderburn's Theorem). Let R be a ring, and E a simple,

faithful module over R. Let D = EndR(E), and assume that E is finite dimen-

sional over D. Then R = EndD(E).

Proof. Let {Vl"." v
n } be a basis of E over D. Given A E EndD(E), by

Theorem 3.2 there exists rx E R such that

rxVi
= AVi

for i = 1, . . .

,
n.

Hence the map R EndD(E) is surjective. Our assumption that E is faithful

over R implies that it is injective, and our corollary is proved.

Example. Let R be a finite-dimensional algebra over a field k, and assume

that R has a unit element, so is a ring. If R does not have any two-sided ideals

other than 0 and R itself, then any nonzero module E over R is faithful, because

the kernel of the homomorphism

R Endk(E)

is a two-sided ideal =f. R. If E is simple, then E is finite dimensional over k.

Then D is a finite-dimensional division algebra over k. Wedderburn's theorem

gives a representation of R as the ring of D-endomorphisms of E.

Under the assumption that R is finite dimensional, one can find a simple
module simply by taking a minimal left ideal =1= O. Such an ideal exists merely

by taking a left ideal of minimal non-zero dimension over k. An even shorter

proof of Wedderburn's theorem will be given below (Rieffel's theorem) in this

case.

Corollary 3.6. Let R be a ring, finite dimensional algebra over afield k which

is algebraically closed. Let V be a finite dimensional vector space over k, with

a simple faithful representation p: R ---+ Endk(V). Then p is an isomorphism,
in other words, R = Matn(k).

Proof. We apply Corollary 3.5, noting that D is finite dimensional over

k. Given a E D, we note that k(a) is a commutative subfield of D, whence

k( a) = k by assumption that k is algebraically closed, and the corollary follows.
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Note. The corollary applies to simple rings, which will be defined below.

Suppose next that VI' . . . , V
m

are finite dimensional vector spaces over a field

k, and that R is a k-algebra with representations

R Endk( \'; ), i = 1,. . .

, m,

so \'; is an R-module. If we let

E =

\'1 EB · · · EB V
m ,

then E is finite over R'(E), so we get the following consequence of Jacobson's

density theorem.

Theorem 3.7. Existence of projection operators. Let k be a field, R a

k-algebra, and \'1, . . ., V
m finite dimensional k-spaces which are also simple

R-modules, and such that \'; is not R-isomorphic to for i =1= j. Then there

exist elements e; E R such that e; acts as the identity on \'; and e;
= 0

ifj =1= i.

Proof. We observe that the projection fi from the direct sum E to the i -th

factor is in EndR,(E), because if cp E R' then cp() C \:f for allj. We may therefore

apply the density theorem to conclude the proof.

Corollary 3.8. (Bourbaki). Let k be a field of characteristic O. Let R be

a k-algebra, and let E, F be semisimple R-modules, finite dimensional over k.

For each a E R, let aE' aF be the corresponding k-endomorphisms on E and

F respectively. Suppose that the traces are equal; that is,

tr(aE)
=

tr(aF) for all a E R.

Then E is isomorphic to F as R-module.

Proof. Each of E and F is isomorphic to a finite direct sum of simple R-

modules, with certain multiplicities. Let V be a simple R-module, and suppose

E = v<n) EB direct summands not isomorphic to V

F = v<m) EB direct summands not isomorphic to V.

It will suffice to prove that m
=

n. Let ev be the element of R found in Theorem

3.7 such that ev acts as the identity on V, and is 0 on the other direct summands

of E and F. Then

tr(eE)
= ndimk(V) and tr(eF)

= mdimk(V),

Since the traces are equal by assumption, it follows that m =

n, thus concluding
the proof. Note that the characteristic 0 is used here, because the values of the

trace are in k.

Example. In the language of representations, suppose G is a monoid, and
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we have two semisimple representations into finite dimensional k-spaces

p : G Endk(E) and p': G Endk(F)

(so p and p' map G into the multiplicative monoid of Endk ). Assume that

tr p( u) = tr p' (u) for all u E G. Then p and p' are isomorphic. Indeed, we let

R = k[G], so that p and p' extend to representations of R. By linearity, one has

that tr p(a)
= tr p'(a)' for all a E R, so one can apply Corollary 3.8.

4. SEMISIMPLE RINGS

A ring R is called semisimple if 1 =I 0, and if R is semisimple as a left module

over itself.

Proposition 4.1. IfR is semisimple, then every R-module is semisimple.

Proof. An R-module is a factor module of a free module, and a free module

is a direct sum of R with itself a certain number of times. We can apply Proposi-
tion 2.2 to conclude the proof.

Examples. 1) Let k be a field and let R =

Matn(k) be the algebra of

n x n matrices over k. Then R is semisimple, and actually simple, as we shall

define and prove in 5, Theorem 5.5.

2) Let G be a finite group and suppose that the characteristic of k does not

divide #(G). Then the group ring k[G] is semisimple, as we shall prove in Chapter

XVIII, Theorem 1.2.

3) The Clifford algebras en over the real numbers are semisimple. See Exer-

cise 19 of Chapter XIX.

A left ideal of R is an R-module, and is thus called simple if it is simple as a

module. Two ideals L, L' are called isomorphic if they are isomorphic as

modules.

We shall now decompose R as a sum of its simple left ideals, and thereby

get a structure theorem for R.

Let {LJ i E I be a family of simple left ideals, no two of which are isomorphic,
and such that each simple left ideal is isomorphic to one of them. We say that

this family is a family of representatives for the isomorphism classes of simple
left ideals.

Lemma 4.2. Let L be a simple left ideal, and let E be a simple R-module.

If L is not isomorphic to E, then LE = o.

Proof. We have RLE = LE, and LE is a submodule of E, hence equal to
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o or E. Suppose LE = E. Let y E E be such that

Ly =f. o.

Since Ly is a submodule of E, it follows that Ly = E. The map lJ. lJ.y of L

into E is a homomorphism of L into E, which is surjective, and hence nonzero.

Since L is simple, this homomorphism is an isomorphism.
Let

R
i
= L L

L Li

be the sum of all simple left ideals isomorphic to L
i

. From the lemma, we con-

clude that R i Rj
= 0 if i =I j. This will be used constantly in what follows. We

note that R i is a left ideal, and that R is the sum

R = R.
i...J p

ieI

because R is a sum of simple left ideals. Hence for any j E I,

R.cR.R=R.R.cR.
J J J J l'

the first inclusion because R contains a unit element, and the last because R
j

is a left ideal. We conclude that R
j

is also a right ideal, i.e. R
j

is a two-sided

ideal for all j E I.

We can express the unit element 1 of R as a sum

1 = L ei
ieI

with ei E Ri
. This sum is actually finite, almost all ei

= O. Say ei =I 0 for

indices i = 1, . . .

, S, so that we write

r =

el + . . . + e
s

.

For any x E R, write

x = x.
i...J "

i e I

Xi E R i .

For j = 1, . . .

,
s we have ejx

=

ejxj
and also

X. = 1 . x. = e l x, + . . . + ex. = e.x.
J 1 J s 1 J J.

Furthermore, x =

elx + . . . + esx. This proves that there is no index i

other than i = 1,..., s and also that the i-th component Xi of x is uniquely
determined as eix

=

eixi. Hence the sum R = Rl + ... + Rs is direct, and

furthermore, e i
is a unit element for R i ,

which is therefore a ring. Since



XVII, 4 SEMISIMPLE RINGS 653

R i
R

j
= 0 for i =f. j, we find that in fact

s

R = n R
i

i= 1

is a direct product of the rings R
i

.

A ring R is said to be simple if it is semisimple, and if it has only one

isomorphism class of simple left ideals . We see that we have proved a structure

theorem for semisimple rings:

Theorem 4.3. Let R be semisimple. Then there is only a finite number of
non-isomorphic simple left ideals, say L l ,

. . .

, Ls. If

R i
= L L

L :: Li

is the sum ofall simple left ideals isomorphic to Li ,
then R i is a two-sided ideal,

which is also a ring (the operations being those induced by R), and R is ring

isomorphic to the direct product

s

R = n Rio
i = 1

Each R
i is a simple ring. If ei is its unit element, then 1 =

el + . . . + e
s , and

R i
= Rei. We have eiej

= 0 if i =f. j.

We shall now discuss modules.

Theorem 4.4. Let R be semisimple, and let E be an R-module =I O. Then

s s

E = EB RiE = EB ei E,

i=l i=l

and R i E is the submodule of E consisting of the sum of all simple submodules

isomorphic to Li
.

Proof. Let Ei
be the sum of all simple submodules of E isomorphic to L

i
.

If V is a simple submodule of E, then R V = V, and hence L
i
V = V for some i.

By a previous lemma, we have L
i V. Hence E is the direct sum of E 1, . . .

, Es.
It is then clear that Ri E

= Ei
.

Corollary 4.5. Let R be semisimple. Every simple module is isomorphic to

one of the simple left ideals L
i

.

Corollary 4.6. A simple ring has exactly one simple module, up to ISO-

morphism.
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Both these corollaries are immediate consequences of Theorems 4.3 and 4.4.

Proposition 4.7. Let k be a field and E a finite dimensional vector space

over k. Let S be a subset of Endk(E). Let R be the k-algebra generated by the

elements of S. Then R is semisimple if and only if E is a semisimple R (or S)
module.

Proof. If R is semisimple, then E is semisimple by Proposition 4.1. Con-

versely, assume E semisimple as S-module. Then E is semisimple as R-module,
and so is a direct sum

n

E = EB Ei

i= 1

where each Ei is simple. Then for each i there exists an element Vi E Ei such

that E
i
= RVi. The map

X (XV1'...' xv
n)

is a R-homomorphism of R into E, and is an injection since R is contained in

Endk(E). Since a submodule of a semisimple module is semisimple by Proposi-
tion 2.2, the desired result follows.

5. SIMPLE RINGS

Lemma 5.1. Let R be a ring, and tfJ E EndR(R) a homomorphism of R into

itself, viewed as R-module. Then there exists rJ. E R such that tfJ(x) = XrJ. for
all x E R.

Proof. We have tfJ(x) = tfJ(x . 1) = xtfJ( 1). Let rJ. = tfJ( 1).

Theorem 5.2. Let R be a simple ring. Then R is afinite direct sum of simple

left ideals. There are no two-sided ideals except 0 and R. If L, M are simple

left ideals, then there exists rJ. E R such that LrJ. = M. We have LR = R.

Proof. Since R is by definition also semisimple, it is a direct sum of simple
m

left ideals, say ffiLj. We can write 1 as a finite sum 1 = ? f3j, with f3j E Lj'
jEJ ]

= 1

Then
m m

R = EB Rf3j = EB Lj.
j== 1 j== 1
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This proves our first assertion. As to the second, it is a consequence of the

third. Let therefore L be a simple left ideal. Then LR is a left ideal, because

RLR = LR, hence (R being semisimple) is a direct sum of simple left ideals,

say

m

LR = EB L
j,

j= 1

L = Ll.

Let M be a simple left ideal. We have a direct sum decomposition R = L L'.

Let n : R L be the projection. It is an R-endomorphism. Let (J: L M be

an isomorphism (it exists by Theorem 4.3). Then (J 0 1t : R R is an R-endo-

morphism. By the lemma, there exists rx E R such that

(J 0 n(x) = xrx for all x E R.

Apply this to elements x E L. We find

(J(x) = xrx for all x E L.

The map x xrx is a R-homomorphism of L into M, is non-zero, hence is an

isomorphism. From this it follows at once that LR = R, thereby proving our

theorem.

Corollary 5.3. Let R be a simple ring. Let E be a simple R-module, and L

a simple left ideal of R. Then LE = E and E is faithful.

Proof. We have LE = L(RE) = (LR)E = RE = E. Suppose rxE = 0

for some rx E R. Then RrxRE = RrxE = O. But RrxR is a two-sided ideal. Hence

RrxR = 0, and rx = O. This proves that E is faithful.

Theorem 5.4. (RiefIel). Let R be a ring without two-sided ideals except 0

and R. Let L be a nonzero left ideal, R' = EndR(L) and R" = EndR,(L).
Then the natural map A.: R R" is an isomorphism.

Proof. The kernel of A is a two-sided ideal, so A is injective. Since LR

is a two-sided ideal, we have LR = Rand A(L)A(R) = A(R). For any x, y E L,

and fER", we have f(xy) = f(x)y, because right multiplication by y is an

R-endomorphism of L. Hence A(L) is a left ideal of R", so

R" = R"A(R) = R"A(L)A(R) = A(L)A(R) = A.(R),

as was to be shown.

In Rieffel's theorem, we do not need to assume that L is a simple module.
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On the other hand, L is an ideal. So this theorem is not equivalent with previous
ones of the same nature. In 7, we shall give a very general condition under

which the canonical homomorphism

R -+ R"

of a ring into the double endomorphism ring of a module is an isomorphism.
This will cover all the previous cases.

As pointed out in the example following Wedderburn's theorem, Rieffel's

theorem applies to give another proof when R is a finite-dimensional algebra

(with unit) over a field k.

The next theorem gives a converse, showing that matrix rings over division

algebras are simple.

Theorem 5.5. Let D be a division ring, and E a finite-dimensional vector

space over D. Let R = EndD(E). Then R is simple and E is a simple R-module.

Furthermore, D = EndR(E).

Proof. We first show that E is a simple R-module. Let v E E, v =I O. Then

v can be completed to a basis of E over D, and hence, given wEE, there exists

rJ.. E R such that rJ..V = w. Hence E cannot have any invariant subspaces other

than 0 or itself, and is simple over R. It is clear that E is faithful over R. Let

{Vl, . . .

,
v

m } be a basis of E over D. The map

rJ.. (rJ..v l , ..., rJ..l'm)

of R into E(m) is an R-homomorphism of R into E(m), and is injective. Given

(Wl, . . .

,
w

m) E E(m), there exists r:J. E R such that rJ..Vi
=

Wi and hence R is R-

isomorphic to E(m). This shows that R (as a module over itself) is isomorphic
to a direct sum of simple modules and is therefore semisimple. Furthermore,

all these simple modules are isomorphic to each other, and hence R is simple

by Theorem 4.3.

There remains to prove that D = EndR(E). We note that E is a semisimple
module over D since it is a vector space, and every subspace admits a com-

plementary subspace. We can therefore apply the density theorem (the roles

of Rand D are now permuted !). Let qJ E EndR(E). Let v E E, v =f. O. By the

density theorem, there exists an element a E D such that qJ(v) = avo Let WEE.

There exists an element fER such that f(v) = w. Then

qJ(W) = qJ(f(v») = f(qJ(v» = f(av) = af(v) = aWe

Therefore qJ(w) = aw for all WEE. This means that qJ E D, and concludes our

proof.

Theorem 5.6. Let k be a field and E a finite-dimensional vector space of
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dimension mover k. Let R = Endk(E). Then R is a k-space, and

dim
k R = m

2
.

Furthermore, m is the number of simple left ideals appearing in a direct sum

decomposition of R as such a sum.

Proof. The k-space of k-endomorphisms of E is represented by the space

of m x m matrices in k, so the dimension of R as a k-space is m
2

. On the other

hand, the proof of Theorem 5.5 showed that R is R-isomorphic as an R-module

to the direct sum E(m). We know the uniqueness of the decomposition of a

module into a direct sum of simple modules (Proposition 1.2), and this proves

our assertion.

In the terminology introduced in 1, we see that the integer m in Theorem

5.6 is the length of R.

We can identify R = Endk(E) with the ring of matrices Matm(k), once a

basis of E is selected. In that case, we can take the simple left ideals to be the

ideals L i (i = 1,..., m) where a matrix in Li has coefficients equal to 0 except
in the i-th column. An element of Ll thus looks like

o

all 0

o

We see that R is the direct sum of the m columns.

We also observe that Theorem 5.5 implies the following:

If a matrix M E Matm(k) commutes with all elements of Matm(k), then M is a

scalar matrix.

Indeed, such a matrix M can then be viewed as an R-endomorphism of E,

and we know by Theorem 5.5 that such an endomorphism lies in k. Of course,

one can also verify this directly by a brute force computation.

6. THE JACOBSON RADICAL, BASE CHANGE,
AND TENSOR PRODUCTS

Let R be a ring and let M be a maximal left ideal. Then RIM is an R-module,

and actually RIM is simple. Indeed, let J be a submodule of RIM with

] =1= RIM. Let J be its inverse image in R under the canonical homomorphism.
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Then J is a left ideal =1= M because J =1= RIM, so J = Rand J = O. Conversely,
let E be a simple R-module and let v E E, v =1= O. Then Rv is a submodule =1= 0

of E, and hence Rv = E. Let M be the kernel of the homomorphism x xv.

Then M is a left ideal, and M is maximal; otherwise there is a left ideal M' with

R :) M' :) M and M' =1= R, =1= M. Then RIM = E and RIM' is a non-zero homo-

morphic image of E, which cannot exist since E is simple (Schur's lemma,

Proposition 1.1). Thus we obtain a bijection between maximal left ideals and

simple R-modules (up to isomorphism).
We define the Jacobson radical of R to be the left ideal N which is the

intersection of all maximal left ideals of R . We may also denote N = Rad(R).

Theorem 6.1. (a) For every simple R-module we have NE = O.

(b) The radical N is a two-sided ideal, containing all nilpotent two-sided ideals.

(c) Let R be a finite dimensional algebra over field k. Its radical is {OJ, if and

only if R is semisimple.

(d) If R is a finite dimensional algebra over a field k, then its radical N is

nilpotent (i.e. N
r

= 0 for some positive integer r).

These statements are easy to prove, and hints will be given appropriately. See

Exercises 1 through 5.

Observe that under finite dimensionality conditions, the radical's being 0

gives us a useful criterion for a ring to be semisimple, which we shall use in

the next result.

Theorem 6.2. Let A be a semisimple algebra, finite dimensional over afield
k. Let K be a finite separable extension of k. Then K 0 k A is a semisimple
over K.

Proof. In light of the radical criterion for semisimplicity, it suffices to prove

that K 0 k A has zero radical, and it suffices to do so for an even larger extension

than K, so that we may assume K is Galois over k, say with Galois group G.

Then G operates on K 0 A by

u(x 0 a) =
ax 0 a for x E K and a E A.

Let N be the radical of K 0 A. Since N is nilpotent, it follows that uN is also

nilpotent for all u E G, whence uN = N because N is the maximal nilpotent
ideal (Exercise 5). Let {aI' . . .

, am} be a basis of A over k. Suppose N contains

the element

= L Xi 0 ai =1= 0 with Xi E K.

For every y E K the element (y 0 I) = LYx; 0 a; also lies in N. Then

trace«y 0 I)) = L u = L Tr(yx;) 0 a;
= L 1 0 a;Tr(yx;)

also lies in N, and lies in 1 0 A = A, thus proving the theorem.
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Remark. For the case when A is a finite extension of k, compare with

Exercises 1, 2, 3 of Chapter XVI.

Let A be a semisimple algebra, finite dimensional over a field k. Then by
Theorem 6.2 the extension of scalars A 0 k k

a
is semisimple if k is perfect. In

general, an algebra A over k is said to be absolutely semisimple if A 0 k k
a

is

semisimple.
We now look at semisimple algebras over an algebraically closed field.

Theorem 6.3. Let A, B be simple algebras, finite dimensional over a

field k which is algebraically closed. Then A 0k B is also simple. We have

A = Endk(V) and B = Endk(W) where V, Warefinite dimensional vector spaces

over k, and there is a natural isomorphism

A 0k B = Endk(V 0k W) = Endk(V) 0k Endk(W).

Proof. The formula is a special case of Theorem 2.5 of Chapter XVI, and

the isomorphisms A = Endk(V), B = Endk(W) exist by Wedderburn's theorem

or its corollaries.

Let A be an algebra over k and let F be an extension field of k. We denote

by AF the extension of scalars

AF
= A 0k F.

Thus AF is an algebra over F. As an exercise, prove that if k is the center of A,

then F is the center of AF . (Here we identify F with 1 0 F.)

Let A, B be algebras over k. We leave to the reader the proof that for every

extension field F of k, we have a natural isomorphism

(A 0k B)F
= AF 0F BF

.

We apply the above considerations to the tensor product of semisimple

algebras.

Theorem 6.4. Let A, B be absolutely semisimple algebras finite dimensional

over a field k. Then A 0 k B is absolutely semisimple.

Proof. Let F = k
a

. Then A
F

is semisimple by hypothesis, so it is a direct

product of simple algebras, which are matrix algebras, and in particular we can

apply Theorem 6.3 to see that A
F 0 F BF has no radical. Hence A 0k B has no

radical (because if N is its radical, then N 0 k F = N
F

is a nilpotent ideal of

A
F 0 F

B
F), whence A 0k B is semisimple by Theorem 6.1(c).

Remark. We have proved the above tensor product theorems rapidly in

special cases, which are already important in various applications. For a more

general treatment, I recommend Bourbaki's Algebra, Chapter VIII, which gives
an exhaustive treatment of tensor products of semisimple and simple algebras.
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7. BALANCED MODULES

Let R be a ring and E a module. We let R'(E) = EndR(E) and

R"(E) = EndR,(E).

Let A: R R" be the natural homomorphism such that Ax(V) = xv for x E R

and v E E. If A is an isomorphism, we shall say that E is balanced. We shall say

that E is a generator (for R-modules) if every module is a homomorphic image
of a (possibly infinite) direct sum of E with itself. For example, R is a generator.

More interestingly, in Rieffel's Theorem 5.4, the left ideal L is a gen-

erator, because LR = R implies that there is a surjective homomorphism
Lx. .. x L R since we can write 1 as a finite combination

1 =

xlal + · · · + xnan
with Xi ELand ai E R.

The map (xl' . . .

,
X

n ) xlal + · · · + xnan
is a R-homomorphism of left module

onto R.

If E is a generator, then there is a surjective homomorphism en) R (we

can take n finite since R is finitely generated, by one element 1).

Theorem 7.1. (Morita). Let E be an R-module. Then E is a generator if
and only if E is balanced and finitely generated projective over R'(E).

Proof. We shall prove half of the theorem, leaving the other half to the

reader, using similar ideas (see Exercise 12). So we assume that E is a generator,
and we prove that it satisfies the other properties by arguments due to Faith.

We first prove that for any module F, R EB F is balanced. We identify Rand

F as the submodules R EB 0 and 0 F of R EB F, respectively. For W E F,

let «Pw:R F F be the map «Pw(x + v) =
xw. Then any f E R"(R EB F)

commutes with '7TI, '7T2, and each «Pw. From this we see at once that

f(x + v) =

f(I)(x + v) and hence that R EB F is balanced. Let E be a gen-

erator, and E(n) R a surjective homomorphism. Since R is free, we can write

E(n) = R EB F for some module F, so that En) is balanced, Let g E R '(E).
Then g(n) commutes with every element 'P

=

('PU) in R '(E(n» (with components

'PU E R '(E», and hence there is some X E R such that g(n) = Ai
n). Hence

g
=

Ax, thereby proving that E is balanced, since A is obviously injective.
To prove that E is finitely generated over R'(E), we have

R'(E)(n) HomR(E(n), E) HomR(R, E) (f) HomR(F, E)

as additive groups. This relation also obviously holds as R'-modules if we

define the operation of R' to be composition of mappings (on the left). Since

HomR(R, E) is R'-isomorphic to E under the map h h( 1), it follows that E is

an R'-homomorphic image of R,(n), whence finitely generated over R'. We also

see that E is a direct summand of the free R'-module R'(n) and is therefore

projective over R'(E). This concludes the proof.
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EXERCISES

The radical

1. (a) Let R be a ring. We define the radical of R to be the left ideal N which is the inter-

section of all maximal left ideals of R. Show that NE = 0 for every simple R-module

E. Show that N is a two-sided ideal. (b) Show that the radical of R/N is O.

2. A ring is said to be Artinian if every descending sequence of left ideals J I
::> J2

::> . . .

with Ji =1= J;+ I is finite. (a) Show that a finite dimensional algebra over a field is

Artinian. (b) If R is Artinian, show that every non-zero left ideal contains a simple
left ideal. (c) If R is Artinian, show that every non-empty set of ideals contains a

minimal ideal.

3. Let R be Artinian. Show that its radical is 0 if and only if R is semisimple. [Hint: Get

an injection of R into a direct sum EB R/M; where {M;} is a finite set of maximal left

ideals.]

4. Nakayama's lemma. Let R be any ring and M a finitely generated module. Let N

be the radical of R. If NM = M show that M = O. [Hint: Observe that the proof
of Nakayama's lemma still holds.]

5. (a) Let J be a two-sided nilpotent ideal of R. Show that J is contained in the radical.

(b) Conversely, assume that R is Artinian. Show that its radical is nilpotent, i.e.,

that there exists an integer r
> 1 such that Nr = O. [Hint: Consider the descending

sequence of powers Nr, and apply Nakayama to a minimal finitely generated left

ideal L C N°O such that N°OL =1= O.

6. Let R be a semisimple commutative ring. Show that R is a direct product of fields.

7. Let R be a finite dImensional commutative algebra over a field k. If R has no nilpotent
element =1= 0, show that R is semisimple.

8. (Kolchin) Let E be a finite-dimensional vector space over a field k. Let G be a sub-

group of GL(E) such that every element A EGis of type I + N where N is nilpotent.
Assume E i= O. Show that there exists an element v E E, v i= 0 such that Av = v for all

A E G. [Hint: First reduce the question to the case when k is algebraically closed by

showing that the problem amounts to solving linear equations. Secondly, reduce it to

the case when E is a simple k[G]-module. Combining Burnside's theorem with the

fact that tr(A) = tr(/) for all A E G, show that if Ao E G, Ao = I + N, then tr(NX) = 0

for all X E Endk(E), and hence that N = 0, Ao = I.]

Semisimple operations

9. Let E be a finite dimensional vector space over a field k. Let R be a semisimple sub-

algebra of Endk(E). Let a, b E R. Assume that

Ker bE ::> Ker aE,

where bE is multIplicatIon by b on E and similarly for aE. Show that there exists an

element S E R such that sa = b. [Hint: Reduce to R simple. Then R = Endo(Eo )

and E = Eg'). Let v l' . . .

,
V
r

E E be a D-basls for aE. Define s by S(avi) = bVi and
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extend s by D-linearity. Then saE
= bE, so sa == b.]

10. Let E be a finite-dimensional vector space over a field k. Let A E Endk(E). We say

that A is semisimple if E is a semisimple A-space, or equivalently, let R be the k-algebra

generated by A, then E is semisimple over R. Show that A is semisimple if and only
if its minimal polynomial has no factors of multiplicity> lover k.

11. Let E be a finite-dimensional vector space over a field k, and let S be a commutative

set of endomorphisms of E. Let R == k[S]. Assume that R is semisimple. Show that

every su bset of S is semisimple.

12. Prove that an R-module E is a generator if and only if it is balanced, and finitely

generated projective over R'(E). Show that Theorem 5.4 is a consequence of Theorem

7.1.

13. Let A be a principal ring with quotient field K. Let An be n-space over A, and let

T == An EB An EB . . . EB An

be the direct sum of An with itselfr times. Then T is free of rank nr over A. Ifwe view

elements of An as column vectors, then T is the space of n x r matrices over A. Let

M == Matn(A) be the ring of n x n matrices over A, operating on the left of T. By a

lattice L in T we mean an A-submodule of rank nr over A. Prove that any such lattice

which is M-stable is M-isomorphic to T itself. Thus there is just one M-isomorphism
class of lattices. [Hint: Let gEM be the matrix with 1 in the upper left corner and

o everywhere else, so g is a projection of An on a I-dimensional subspace. Then multi-

plication on the left g: T -+ A, maps T on the space of n x r matrices with arbitrary
first row and 0 everywhere else. Furthermore, for any lattice L in T the image gL is a

lattice in A" that is a free A-submodule of rank r. By elementary divisors there exists

an r x r matrix Q such that

gL == A,Q (multiplication on the right).

Then show that TQ == L and that multiplication by Q on the right is an M-isomorphism
of T with L.]

14. Let F be a field. Let n == n(F) be the vector space of strictly upper triangular n x n

matrices over F. Show that n is actually an algebra, and all elements of n are nilpo-
tent (some positive integral power is 0).

15. Conjugation representation. Let A be the multiplicative group of diagonal matrices in

F with non-zero diagonal components. For a E A, the conjugation action of a on

Matn(F) is denoted by c(a), so c(a)M == aMa-
1

for M E Matn(F). (a) Show that n

is stable under this action. (b) Show that n is semisimple under this action. More

precisely, for I < i < j < n, let Eij be the matrix with (ij)-component I, and all other

components O. Then these matrices Eij form a basis for n over F, and each Eij is an

eigenvector for the conjugation action, namely for a == diag(al, . . .

, an), we have

aEija-
1

= (ai/a) )Eij,

so the corresponding character Xu is given by Xij(a) == ai/a). (c) Show that Matn(F)
is semisimple, and in fact is equal to b EB n EB tn, where b is the space of diagonal
matrices.



CHAPTER XVIII

Representations of Finite

G rou ps

The theory of group representations occurs in many contexts. First, it is

developed for its own sake: determine all irreducible representations of a given

group. See for instance Curtis-Reiner's Methods ofRepresentation Theory (Wiley-

Interscience, 1981). It is also used in classifying finite simple groups. But already
in this book we have seen applications of representations to Galois theory and

the determination of the Galois group over the rationals. In addition, there is an

analogous theory for topological groups. In this case, the closest analogy is with

compact groups, and the reader will find a self-contained treatment of the compact

case entirely similar to 5 of this chapter in my book SL2(R) (Springer Verlag),

Chapter II, 2. Essentially, finite sums are replaced by integrals, otherwise the

formalism is the same. The analysis comes only in two places. One of them is

to show that every irreducible representation of a compact group is finite dimen-

sional; the other is Schur's lemma. The details of these extra considerations are

carried out completely in the above-mentioned reference. I was careful to write

up 5 with the analogy in mind.

Similarly, readers will find analogous material on induced representations in

SL2(R), Chapter III, 2 (which is also self-contained).

Examples of the general theory come in various shapes. Theorem 8.4 may

be viewed as an example, showing how a certain representation can be expressed
as a direct sum of induced representations from I-dimensional representations.

Examples of representations of S3 and S4 are given in the exercises. The entire

last section works out completely the simple characters for the group GL2(F)

when F is a finite field, and shows how these characters essentially come from

induced characters.

For other examples also leading into Lie groups, see W. Fulton and J. Harris,

Representation Theory, Springer Verlag 1991.
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1. REPRESENTATIONS AND SEMISIMPLICITY

Let R be a commutative ring and G a group. We form the group algebra

R[G]. As explained in Chapter II, 3 it consists of all formal linear combinations

L au (j

UEG

with coefficients au E R, almost all of which are o. The product is taken in the

natural way,

( L au(j) ( L b
t
t)

= L a(JbraT.
UEG tEG U,t

Let E be an R-module. Every algebra-homomorphism

R[G] EndR(E)

induces a group-homomorphism

G AutR(E),

and thus a representation of the ring R[G] in E gives rise to a representation of

the group. Given such representations, we also say that R[G], or G, operate on

E. We note that the representation makes E into a module over the ring R[G].

Conversely, given a representation of the group, say p : G AutR(E), we

can extend p to a representation of R[G] as follows. Let a = L aua- and x E E.

We define

p(rx)x = L au p((j)x.

It is immediately verified that p has been extended to a ring-homomorphism of

R[G] into EndR(E). We say that p is faithful on G if the map p : G AutR(E)
is injective. The extension of p to R[G] may not be faithful, however.

Given a representation of G on E, we often write simply a-x instead of p(a-)x,
whenever we deal with a fixed representation throughout a discussion.

An R-module E, together with a representation p, will be called a G-module,
or G-space, or also a (G, R)-module if we wish to specify the ring R. If E, F

are G-modules, we recall that a G-homomorphismf: E F is an R-linear map
such thatf(ax) =

a-f(x) for all x E E and a- E G.

Given a G-homomorphism f : E F, we note that the kernel of f is a G-

submodule of E, and that the R-factor module FIf(E) admits an operation of G

in a unique way such that the canonical map F FIf(E) is a G-homomorphism.
By a trivial representation p: G AutR(E), we shall mean the representation

such that p(G) = 1. A representation is trivial if and only if ax =
x for all

x E E . We also say in that case that G operates trivially.
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We make R into a G-module by making G act trivially on R.

We shall now discuss systematically the representations which arise from a

given one, on Horn, the dual, and the tensor product. This pattern will be repeated
later when we deal with induced representations.

First, HomR(E, F) is a G-module under the action defined forf E HomR(E, F)

by

([a-]f)(x) = a-f(a--1x).

The conditions for an operation are trivially verified. Note the a--
1

inside the

expression. We shall usually omit parentheses, and write simply [a-]f(x) for the

left-hand side. We note thatf is a G-homomorphism if and only if [a-]f
=

f for

all a- E G.

We are particularly concerned when F = R (so with trivial action), in which

case HomR(E, R) = E
V

is the dual module. In the terminology of representations,
if p: G AutR(E) is a representation of G on E, then the action we have just
described gives a representation denoted by

pV : G AutR(E
v

),

and called the dual representation (also called contragredient (ugh!) in the

Ii terature) .

Suppose now that the modules E, F are free and finite dimensional over R.

Let p be representation of G on E. Let M be the matrix of p( a-) with respect to

a basis, and let M
V

be the matrix of pV (a-) with respect to the dual basis. Then

it is immediately verified that

(1) M
V

= tM-
1

.

Next we consider the tensor product instead of Horn. Let E, E' be (G, R)-

modules . We can form their tensor product E 0 E', always taken over R. Then

there is a unique action of G on E 0 E' such that for a- E G we have

a-(x 0 x') = ax 0 ax'.

Suppose that E, F are finite free over R. Then the R-isomorphism

(2) E
V

0 F = HomR(E, F)

of Chapter XVI, Corollary 5.5, is immediately verified to be a G-isomorphism.
Whether E is free or not, we define the G-invariant submodule of E to be

invG(E)
= R-submodule of elements x E E such that ax

=
x for all a- E G. If

E, F are free then we have an R-isomorphism

(3) invG(E
V

0 F) = HomG(E, F).
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If p: G AutR(E) and p': G AutR(E') are representations of G on E

and E' respectively, then we define their sum p EB p' to be the representation
on the direct sum E EB E', with a- E G acting componentwise. Observe that G-iso-

morphism classes of representations have an additive monoid structure under

this direct sum, and also have an associative multiplicative structure under the

tensor product. With the notation of representations, we denote this product by

p 0 p'. This product is distributive with respect to the addition (direct sum).

If G is a finite group, and E is a G-module, then we can define the trace

TrG: E E which is an R-homomorphism, namely

TrG(x) = L (JX.

tTEG

We observe that TrG(x) lies in invG(E), i.e. is fixed under the operation of

all elements of G. This is because

t TrG(x) = L tax,

tTEG

and multiplying by t on the left permutes the elements of G.

In particular, if f: E F is an R-homomorphism of G-modules, then

TrG(f): E F is a G-homomorphism.

Proposition 1.1. Let G be a finite group and let E', E, F, F' be G-modules.

Let

E' E F !. F'

be R-homomorphisms, and assume that cp, «/1 are G-homomorphisms. Then

TrG( t/J 0 f 0 qJ) = t/J 0 TrG(f) 0
qJ.

Proof We have

TrG(t/J 0 f 0 qJ) = L (J(t/J 0 f 0 qJ) = L (at/J) 0 (af) 0 (aqJ)
tTEG tTEG

= t/J 0 ( L af) 0
qJ

= t/J 0 TrG(f) 0
qJ.

tTEG

Theorem 1.2. (Maschke). Let G be ajinite group oj'order n, and let k be a

field whose characteristic does not divide n. Then the group ring k[G] is

semisimple.

Proof Let E be a G-module, and F a G-submodule. Since k is a field,
there exists a k-subspace F' such that E is the k-direct sum of F and F' . We let

the k-linear map n : E F be the projection on F. Then n(x) = x for all x E F.
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Let

1

lp
= -

TrG(n).
n

We have then two G-homomorphisms

oFbE
qJ

such that j is the inclusion, and lp
0 j = ide It follows that E is the G-direct sum

of F and Ker lp, thereby proving that kEG] is semisimple.

Except in 7 we denote by G a finite group, and we denote E, F finite

dimensional k-spaces, where k is a field of characteristic not dividing

#(G). We usually denote #(G) by n.

2. CHARACTERS

Let p: kEG] Endk(E) be a representation. By the character X
p

of the

representation, we shall mean the k-valued function

Xp
: kEG] k

such that Xp(rx) = tr p(rx) for all rx E kEG]. The trace here is the trace of an endo-

morphism, as defined in Chapter XIII, 93. If we select a basis for E over k, it is

the trace of the matrix representing p(rx), i.e., the sum of the diagonal elements.

We have seen previously that the trace does not depend on the choice of the basis.

We sometimes write XE instead of Xp
.

We also call E the representation space of p.

By the trivial character we shall mean the character of the representation of

G on the k-space equal to k itself, such that ax = x for all x E k. It is the function

taking the value 1 on all elements of G. We denote it by Xo or also by I G if we

need to specify the dependence on G.

We observe that characters are functions on G, and that the values of a

character on elements of kEG] are determined by its values on G (the extension

from G to k[G] being by k-linearity).
We say that two representations p, lp of G on spaces E, F are isomorphic if

there is a G-isomorphism between E and F. We then see that if p, lp are iso-

morphic representations, then their characters are equal. (Put in another way,

if E, Fare G-spaces and are G-isomorphic, then XE
= XF.) In everything that

follows, we are interested only in isomorphism classes of representations.
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If E, Fare G-spaces, then their direct sum E (f) F is also a G-space, the opera-

tion of G being componentwise. If x (f) y E E (f) F with x E E and Y E F, then

(J(x (f) y) = ax (f) ay.

Similarly, the tensor product E (8)k F = E (8) F is a G-space, the operation
of G being given by a(x @ y) = ax (8) ay.

Proposition 2.1. If E, Fare G-spaces, then

XE + XF
=

XECfJF and XEXF
=

XE@F.

If XV denotes the character of the dual representation on E
V

, then

XV (a-) = X(a--
1
)

X(a-) if k = C.

Proof The first relation holds because the matrix of an element a in the

representation E (f) F decomposes into blocks corresponding to the representa-

tion in E and the representation in F. As to the second, if {va is a basis of E and

{wj} is a basis of F over k, then we know that {Vi (8) Wj} is a basis of E @ F. Let

(a iv) be the matrix of a with respect to our basis of E, and (bhJ its matrix with

respect to our basis of F. Then

a(Vi @ w
j)

=

(JVi (8) aW
j

= L aivvv (8) L b
jJJ

w
JJ

v JJ

= L aiv b
jJJ

V
v (8) W

JJ
.

V,JJ

By definition, we find

XE@F(a) = L L aiibjj = XE(a)XF(a),
i j

thereby proving the statement about tensor products. The statement for the char-

acter of the dual representation follows from the formula for the matrix tM-
1

given in 1. The value given as the complex conjugate in case k = C will be

proved later in Corollary 3.2.

So far, we have defined the notion of character associated with a representa-
tion. It is now natural to form linear combinations of such characters with more

general coefficients than positive integers. Thus by a character of G we shall

mean a function on G which can be written as a linear combination of characters

of representations with arbitrary integer coefficients. The characters associated

with representations will be called effective characters. Everything we have

defined of course depends on the field k, and we shall add over k to our expressions
if we need to specify the field k.
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We observe that the characters form a ring in view of Proposition 2.1. For

most of our work we do not need the multiplicative structure, only the additive

one.

By a simple or irreducible character of G one means the character of a

simple representation (Le., the character associated with a simple k[G]-module).

Taking into account The.orem 1.2, and the results of the preceding chapter

concerning the structure of simple and semisimple modules over a semisimple

ring (Chapter XVII, 4) we obtain:

Theorem 2.2. There are only afinite number ofsimple characters ofG (over

k). The characters of representations of G are the linear combinations of the

simple characters with integer coefficients > o.

We shall use the direct product decomposition of a semisimple ring. We

have

s

kEG] = n R i

i= 1

where each R i is simple, and we have a corresponding decomposition of the unit

element of k[G] :

1 =

el + . . . + e
s ,

where ei is the unit element of R i ,
and eiej

= 0 if i =I j. Also, RiRj = 0 if i =f. j.
We note that s = s(k) depends on k.

If L
i denotes a typical simple module for R i (say one of the simple left ideals),

we let Xi be the character of the representation on L
i

.

We observe that Xi(ex) = Ofor all ex E Rj ifi =I j. This is afundamental relation

of orthogonality, which is obvious, but from which all our other relations will

follow.

Theorem 2.3. Assume that k has characteristic O. Then every effective char-

acter has a unique expression as a linear combination

s

X
= L niXi,

i = 1

ni E Z, ni
> 0,

where Xl' . . .

, Xs are the simple characters ofGover k. Two representations are

isomorphic if and only if their associated characters are equal.
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Proof. Let E be the representation space of X. Then by Theorem 4.4 of

Chapter XVII,

s

E E9 ni Li
.

i= 1

The sum is finite because we assume throughout that E is finite dimensional.

Since ei acts as a unit element on Li ,
we find

Xi(ei) = dimk Li
.

We have already seen that Xi(ej) = 0 if i =1= j. Hence

x(ei) =

ni dimk Li .

Since dimk Li depends only on the structure of the group algebra, we have

recovered the multiplicities n b
. . .

, ns. Namely, ni is the number of times that

Li occurs (up to an isomorphism) in the representation space of X, and is the

value of x(ei) divided by dimk
Li (we are in characteristic 0). This proves our

theorem.

As a matter of definition, in Theorem 2.3 we call ni the multiplicity of Xi in X.

In both corollaries, we continue to assume that k has characteristic O.

Corollary 2.4. As functions of G into k, the simple characters

Xl' . . ·
, Xs

are linearly independent over k.

Proof. Suppose that L aiXi
= 0 with ai E k. We apply this expression to ej

and get

o = (L aiXi)(ej) =

aj dimk Lj'

Hence a
j

= 0 for all j.

In characteristic 0 we define the dimension of an effective character to be

the dimension of the associated representation space.

Corollary 2.5. Thefunction dim is a homomorphism ofthe monoid ofeffective
characters into Z.
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Example. Let G be a cyclic group of order equal to a prime number p.

We form the group algebra Q[G]. Let (J be a generator of G. Let

I
2 p-l

+(J+a +...+a

e2
= 1 -

el.el
=

p

Then Tel
=

el for any T E G and consequently ei = e t
. It then follows that

e =

e2 and ele2
= O. The field Qet is isomorphic to Q. Let w =

ae2. Then

w
p

=

e2. Let Q2 = Qe2. Since w =I e2, and satisfies the irreducible equation

Xp
- 1

+ . . . + 1 = 0

over Q2' it follows that Q2(W) is isomorphic to the field obtained by adjoining
a primitive p-th root of unity to the rationals. Consequently, Q[G] admits the

direct product decomposition

Q[G] Q x Q«()

where ( is a primitive p-th root of unity.
As another example, let G be any finite group, and let

1

el
= -

L a.

n tTEG

Then for any T E G we have Tel
=

el, and ei =

el. If we let e'l = 1 -

el then

e,? = e'l' and e'lel = ele'l = O. Thus for any field k (whose characteristic does

not divide the order of G according to conventions in force), we see that

kEG] = ke l
x k[G]e'l

is a direct product decomposition. In particular, the representation of G on the

group algebra k[G] itself contains a I-dimensional representation on the

component ke l ,
whose character is the trivial character.

3. 1-DIMENSIONAL REPRESENTATIONS

By abuse of language, even in characteristic p > 0, we say that a character is

I-dimensional if it is a homomorphism G k*.

Assume that E is a I-dimensional vector space over k. Let

p : G Autk(E)

be a representation. Let {v} be a basis of E over k. Then for each a E G, we have

av = X«(J)v
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for some element X«(J) E k, and x(a) =I 0 since a induces an automorphism of E.

Then for! E G,

!(JV = X«(J)!V = x(a)x('r)v = X«(JT)V.

We see that X: G k* is a homomorphism, and that our I-dimensional char-

acter is the same type of thing that occurred in Artin's theorem in Galois theory.

Conversely, let X: G k* be a homomorphism. Let E be a I-dimensional

k-space, with basis {v}, and define a(av) = ax(a)v for all a E k. Then we see at

once that this operation of G on E gives a representation of G, whose associated

character is X.

Since G is finite, we note that

X«(J)" = x(a") = X(I) = 1.

Hence the values of I-dimensional characters are n-th roots of unity. The

I-dimensional characters form a group under multiplication, and when G is a

finite abelian group, we have determined its group of I-dimensional characters

in Chapter I, 9.

Theorem 3.1. Let G be a finite abeUan group, and assume that k is alge-

braically closed. Then every simple representation ofG is I-dimensional. The

simple characters of G are the homomorphisms of G into k*.

Proof. The group ring k[G] is semisimple, commutative, and is a direct

product of simple rings. Eah simple ring is a ring of matrices over k (by Corollary
3.6 Chapter XVII), and can be commutative if and only if it is equal to k.

For every I-dimensional character X of G we have

X«(J)-
1

= X«(J-l).

If k is the field of complex numbers, then

X«(J) = X«(J)-
1

= x(a- 1).

Corollary 3.2. Let k be algebraically closed. Let G be a finite group. For

any character X and (J E G, the value X«(J) is equal to a sum ofroots ofunity with

integer coefficients (i.e. coefficients in Z or ZlpZ depending on the char-

acteristic of k).

Proof. Let H be the subgroup generated by a. Then H is a cyclic subgroup.
A representation of G having character X can be viewed as a representation for

H by restriction, having the same character. Thus our assertion follows from

Theorem 3.1.
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4. THE SPACE OF CLASS FUNCTIONS

By a class function of G (over k, or with values in k), we shall mean a function

f: G k such that f(a-Ta--
1
) = f(T) for all a-, T E G. It is clear that characters

are class functions, because for square matrices M, M' we have

tr(MM'M-
1
) = tr(M').

Thus a class function may be viewed as a function on conjugacy classes.

We shall always extend the domain of definition of a class function to the

group ring, by linearity. If

rx = L aqa,
qEG

and f is a class function, we define

f(rx) = L a
q f«(J).

qEG

Let ao E G. If a E G, we write a ao if (J is conjugate to ao, that is, if there

exists an element t such that (J0
= t(Jt

-

1. An element of the group ring of type

y
= L (J

q-qo

will also be called a conjugacy class.

Proposition 4.1. An element of k[G] commutes with every element of G if
and only if it is a linear combination of conjugacy classes with coefficients in k.

Proof Let rx = L aqa and assume rxt = trx for all t E G. Then

qEG

L a
q
t(Jt-

l
= L aqa.

qEG qEG

Hence aqo
= a

q
whenever (J is conjugate to (Jo, and this means that we can write

rx = L a
y Y

y

where the sum is taken over all conjugacy classes y.

Remark. We note that the conjugacy classes in fact form a basis of the

center of Z[G] over Z, and thus playa universal role in the theory of rep-

resentations.

We observe that the conjugacy classes are linearly independent over k,

and form a basis for the center of k[G] over k.
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Assume for the rest of this section that k is algebraically closed. Then

s

kEG] = n R i

i = 1

is a direct product of simple rings, and each R i
is a matrix algebra over k. In a

direct product, the center is obviously the product of the centers of each factor.

Let us denote by k i the image of k in R i ,
in other words,

k. = ke.
I n

where ei is the unit element of R i . Then the center of k[G] is also equal to

s

n kj

i = 1

which is s-dimensional over k.

If Li is a typical simple left ideal of R i ,
then

R
i Endk(L i ).

We let

di
= dimk Li

.

Then

s

dl = dimk R i and L dl = n.

i = 1

We also have the direct sum decomposition

R. Ldi)
I I

as a (G, k)-space.
The above notation will remain fixed from now on.

We can summarize some of our results as follows.

Proposition 4.2. Let k be algebraically closed. Then the number ofconjugacy
classes ofG is equal to the number ofsimple characters ofG, both ofthese being

equal to the number s above. The conjugacy classes Yl, . . .

, Ys and the unit

elements e l'
. . .

,
e

s form bases of the center of k[G].

The number of elements in Yi will be denoted by hi. The number of elements

in a conjugacy class Y will be denoted by hy. We call it the class number. The

center of the group algebra will be denoted by Zk(G).
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We can view kEG] as a G-module. Its character will be called the regular

character, and will be denoted by Xreg or rG if we need to specify the dependence
on G. The representation on kEG] is called theregular representation. From our

direct sum decomposition of kEG] we get

s

Xreg
= L diXi.

i= 1

We shall determine the values of the regular character.

Proposition 4.3. Let Xreg be the regular character. Then

Xreg«(J) = 0 if (J E G, (J =I 1

Xreg(l) = n.

Proof Let 1 =

(Jl, . . .

, (In be the elements of G. They form a basis of kEG]
over k. The matrix of 1 is the unit n x n matrix. Thus our second assertion

follows. If (J =I 1, then multiplication by (J permutes (J l' . . .

,
(J

n'
and it is im-

mediately clear that all diagonal elements in the matrix representing (J are O.

This proves what we wanted.

We observe that we have two natural bases for the center Zk(G) of the

group ring. First, the conjugacy classes of elements of G. Second, the elements

e l ,
. . .

,
e

s (i.e. the unit elements of the rings R i). We wish to find the relation

between these, in other words, we wish to find the coefficients of ei when ex-

pressed in terms of the group elements. The next proposition does this. The

values of these coefficients will be interpreted in the next section as scalar

products. This will clarify their mysterious appearance.

Proposition 4.4. Assume again that k is algebraically closed. Let

ei
= L at t,

tEG

at E k.

Then

1
_

1
d

i -

1

at
= -

Xreg(ei t ) = -

Xi(t ).
n n

Proof We have for all t E G:

Xreg(eir:-
1

) =

Xreg( L auar:-
l

) = L aUXreg«(Jr:-
l

).
UEG uEG
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By Proposition 4.3, we find

xreg(ei
t

-

1) = na
t

.

On the other hand,

s

Xreg(ei t
-

l

) = L djXj(ei t
- l

) = diXi(ei!-l) = dixlt
-

l

).
j= 1

Hence

di X i(t
-

1) = na
t

for all t E G. This proves our proposition.

Corollary 4.5. Each ei can be expressed in terms of group elements with

coefficients which lie in the field generated over the prime field by m-th roots

of unity, ifm is an exponent for G.

Corollary 4.6. The dimensions di are not divisible by the characteristic of k.

Proof Otherwise, ei
= 0, which is impossible.

Corollary 4.7. The simple characters X b . . .
, Xs are linearly independent

over k.

Proof The proof in Corollary 2.4 applies, since we now know that the

characteristic does not divide di .

Corollary 4.8. Assume in addition that k has characteristic O. Then d;j n

for each i.

Proof. Multiplying our expression for ei by nidi' and also bye;, we find

n
-1

d
ei

=

i...J X i((J )ae i .

i tTEG

Let ( be a primitive m-th root of unity, and let M be the module over Z gen-

erated by the finite number of elements (Vaei (v = 0, . . .

,
m

- 1 and a E G).
Then from the preceding relation, we see at once that multiplication by nidi

maps M into itself. By definition, we conclude that nidi is integral over Z,

and hence lies in Z, as desired.

Theorem 4.9. Let k be algebraically closed. Let Zk(G) be the center of

kEG], and let Xk(G) be the k-space of class functions on G. Then Zk(G) and

Xk(G) are the dual spaces of each other, under the pairing

(I, rx) f(rx).
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The simple characters and the unit elements e t ,
. . .

, esform orthogonal bases

to each other. We have

X
.(e .) = . .d.
I ] I) I.

Proof. The formula has been proved in the proof of Theorem 2.3. The

two spaces involved here both have.;: dimension s, and d; =f. 0 in k. Our prop-

osition is then clear.

5. ORTHOGONALITY RELATIONS

Throughout this section, we assume that k is algebraically closed.

If R is a subring of k, we denote by XR(G) the R-module generated over R

by the characters of G. It is therefore the module of functions which are linear

combinations of simple characters with coefficients in R. If R is the prime ring
(i.e. the integers Z or the integers mod p if k has characteristic p), then we denote

XR(G) by X(G).
We shall now define a bilinear map on X(G) x X(G). If f, 9 E X(G), we

define

1
< f, g) = -

L f(a)g((J

- 1

).
n

O'EG

Theorem 5.1. The symbol <1, g) forf, 9 E X(G) takes on values in the prime

ring. The simple charactersform an orthonormal basisfor X(G), in other words

<Xh Xj) = ij.

For each ring R c k, the symbol has a unique extension to an R-bilinearform

XR(G) x XR(G) R, given by the same formula as above.

Proof By Proposition 4.4, we find

di -

1

)Xj(ei) = -

i...J Xi(a Xj«(J).
n O'EG

If i =I j we get 0 on the left-hand side, so that Xi and Xj are orthogonal. If i = j
we get d i on the left-hand side, and we know that di =f. 0 in k, by Corollary 4.6.

Hence <Xh Xi) = 1. Since every element of X(G) is a linear combination of

simple characters with integer coefficients, it follows that the values of our

bilinear map are in the prime ring. The extension statement is obvious, thereby

proving our theorem.
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Assume that k has characteristic O. Let m be an exponent for G, and let R

contain the m-th roots of unity. If R has an automorphism of order 2 such that

its effect on a root of unity is , ,- 1, then we shall call such an automorphism
a conjugation, and denote it by a a.

Theorem 5.2. Let k have characteristic 0, and let R be a subring containing
the m-th roots of unity, and having a conjugation. Then the bilinear form on

X(G) has a unique extension to a hermitian form

XR(G) x XR(G) R,

given by the formula

1 -

<1, g) = -

L f«(J)g(a).
n UEG

The simple characters constitute an orthonormal basis of XR(G) with respect

to this form.

Proof The formula given in the statement of the theorem gives the same

value as before for the symbol <1, g) when1, g lie in X(G). Thus the extension

exists, and is obviously unique.

We return to the case when k has arbitrary characteristic.

Let Z(G) denote the additive group generated by the conjugacy classes

Yl,. . .

, Ys over the prime ring. It is ofdimension s. We shall define a bilinear map

on Z(G) x Z(G). If rx = L au (J has coefficients in the prime ring, we denote by
rJ..

-

the element L au a

-

1.

Proposition 5.3. For rx, p E Z(G), we can define a symbol <rx, P) by either one

of the following expressions, which are equal:

liS

<rx, P) = -

Xreg(rxP-) = -

L Xv(rx)Xv(P-).
n n

v= 1

The values of the symbol lie in the prime ring.

Proof Each expression is linear in its first and second variable. Hence

to prove their equality, it will suffice to prove that the two expressions are equal
when we replace rx by ei and P by an element t of G. But then, our equality is

equivalent to

S

Xreg(ei t
-

l

) = L Xv(ei)Xv(t-
l

).
v== 1

Since Xv(ei)
= 0 unless v = i

,
we see that the right-hand side of this last relation

is equal to diXi (T-
1
). Our two expressions are equal in view of Proposition 4.4.
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The fact that the values lie in the prime ring follows from Proposition 4.3: The

values of the regular character on group elements are equal to 0 or n, and hence

in characteristic 0, are integers divisible by n.

As with XR(G), we use the notation ZR(G) to denote the R-module generated
by Yl,".' Ys over an arbitrary subring R of k.

Lemma 5.4. For each ring R contained in k, the pairing of Proposition 5.3

has a unique extension to a map

ZR(G) x Z(G) R

which is R-linear in its first variable. If R contains the m-th roots of unity,
where m is an exponent for G, and also contains Iln, then ei E ZR(G)for all i.

The class number hi is not divisible by the characteristic of k, and we have

s

1
ei

= L (ej, Yv) -
h

YV.
v=l v

Proof We note that hi is not divisible by the characteristic because it is

the index of a subgroup of G (the isotropy group of an element in Yi when G

operates by conjugation), and hence hi divides n. The extension of our pairing
as stated is obvious, since )'1' . . .

, )'S form a basis of Z(G) over the prime ring.
The expression of ei in terms of this basis is only a reinterpretation of Proposition
4.4 in terms of the present pairing.

Let E be a free module over a subring R of k, and assume that we have a

bilinear symmetric (or hermitian) form on E. Let {Vb. . .

,
v

s } be an orthogonal
basis for this module. If

v = a 1 v 1 + . . . + as v
s

with ai E R, then we call a 1,
. . .

, as the Fourier coefficients of v with respect to

our basis. In terms of the form, these coefficients are given by

(V, Vi)
a. =

I

(Vi' Vi)

provided (Vi' Vi) #- O.

We shall see in the next theorem that the expression for ei in terms of

Y b . . .

, Ys
is a Fourier expansion.

Theorem 5.5. The conjugacy classes Yl, ..., Ys constitute an orthogonal
basis for Z(G). We have <Yi' Yi) = hi' For each ring R contained in k, the

bilinear map of Proposition 5.3 has a unique extension to a R-bilinear map

ZR(G) x ZR(G) R.
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Proof We use the lemma. By linearity, the formula in the lemma remains

valid when we replace R by k, and when we replace ei by any element of Zk(G), in

particular when we replace ei by fi. But {ft,. .

., Ys} is a basis of Zk(G), over k.

Hence we find that <Y;, Yi) = hi and <Yi, Yj) = 0 if i =f. j, as was to shown.

Corollary 5.6. If G is commutative, then

1
n

_ 1

{
o if a is not equal to t

-

L Xv«(J)Xv(t ) =

1
.

f
.

In
v = 1

I (J IS equa to 'C.

Proof. When G is commutative, each conjugacy class has exactly one ele-

ment, and the number of simple characters is equal to the order of the group.

We consider the case of characteristic 0 for our Z(G) just as we did for X(G).
Let k have characteristic 0, and R be a subring of k containing the m-th roots of

unity, and having a conjugation. Let (1. = L aa(J with aa E R. We define

aEG

a = L Qa a

-

1
.

aEG

Theorem 5.7. Let k have characteristic 0, and let R be a subring of k, con-

taining the m-th roots ofunity, and having a conjugation. Then the pairing .of

Proposition 5.3 has a unique extension to a hermitian form

ZR(G) x ZR(G) R

given by the formulas

lIS _

<(1., P) = - Xreg«(1.p) = - L Xv«(1.)Xv(P).
n n

v= 1

The conjugacy classes Yl, ..., Ysform an orthogonal basis for ZR(G). If R

contains Iln, then el, . . .

,
es lie in ZR( G) and alsoform an orthogonal basisfor

ZR(G). We have <ei, ei) = df/n.

Proof The formula given in the statement of the theorem gives the same

value as the symbol <(1., P) of Proposition 5.3 when (1., P lie in Z(G). Thus the

extension exists, and is obviously unique. Using the second formula in Propo-
sition 5.3, defining the scalar product, and recalling that Xv(e i) = 0 if v =f. i, we

see that

1 -

<e;, ei) = -

Xi(ei)Xi(ei),
n

whence our assertion follows.
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We observe that the Fourier coefficients of e i relative to the basis rl, . . .

, rs

are the same with respect to the bilinear form of Theorem 5.5, or the hermitian

form of Theorem 5.7. This comes from the fact that rb . . .

, Ys lie in Z(G), and

form a basis of Z(G) over the prime ring.
We shall now reprove and generalize the orthogonality relations by another

method. Let E be a finite dimensional (G, k)-space, so we have a representation

G Autk(E).

After selecting a basis of E, we get a representation of G by d x d matrices. If

{Vl' ..., Vd} is the basis, then we have the dual basis {Ab ...,
A.d } such that

Ai(Vj) = ij. If an element a of G is represented by a matrix (pij(a), then each

coefficient Pij«(J) is a function of a, called the ij-coefficient function. We can also

write

pij(a) = Aj(avi).

But instead of indexing elements of a basis or the dual basis, we may just as

well work with any functional A on E, and any vector v. Then we get a function

a A(av) = PA, v(a),

which will also be called a coefficient function. In fact, one can always complete
v =

Vl to a basis such that A = Al is the first element in the dual basis, but using
the notation PA, v

is in many respects more elegant.
We shall constantly use:

Schur's Lemma. Let E, F be simple (G, k)-spaces, and let

qJ:EF

be a homomorphism. Then either qJ
= 0 or qJ is an isomorphism.

Proof Indeed, the kernel of q> and the image of qJ are subspaces, so the

assertion is obvious.

We use the same formula as before to define a scalar product on the space of

all k-valued functions on G, namely

1

<f, g) = -

L f(a)g(a-
1

).
n

O'EG

We shall derive various orthogonality relations among coefficient functions.

Theorem 5.8. Let E, F be simple (G, k)-spaces. Let A be a k-linearfunctional
on E, let x E E and Y E F. If E, F are not isomorphic, then

I A(ax)a-
1

Y
= o.

O'EG
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If J1 is a functional on F then the coefficient functions PA, x
and Pjj, yare ortho-

gonal, that is

L A«(JX)J1«(J-
1

y) = o.

tTEG

Proof. The map x L A«(JX)(J-
1

y is a G-homomorphism of E into F, so

Schur's lemma concludes the proof of the first statement. The second comes by

applying the functional J1.

As a corollary, we see that if X, «/1 are distinct irreducible characters of G

over k, then

(X, «/1) = 0,

that is the characters are orthogonal. Indeed, the character associated with a

representation P is the sum of the diagonal coefficient functions,

d

X= LPii'
i = 1

where d is the dimension of the representation. Two distinct characters cor-

respond to non-isomorphic representations, so we can apply Proposition 5.8.

Lemma 5.9. Let E be a simple (G, k)-space. Then any G-endomorphism of
E is equal to a scalar multiple of the identity.

Proof. The algebra EndG,k(E) is a division algebra by Schur's lemma,
and is finite dimensional over k. Since k is assumed algebraically closed, it must

be equal to k because any element generates a commutative subfield over k.

This proves the lemma.

Lemma 5.10. Let E be a representation space for G of dimension d. Let A

be a functional on E, and let x E E. Let q>A, x
E Endk(E) be the endomorphism

such that

q>A, x(Y) = A(Y)X.

Then tr(qJ;.,x) = A(X).

Proof. If x = 0 the statement is obvious. Let x =I O. If A(X) =f. 0 we pick
a basis of E consisting of x and a basis of the kernel of A. If A(X) = 0, we pick a

basis of E consisting of a basis for the kernel of A, and one other element. In

either case it is immediate from the corresponding matrix representing qJ A, x
that

the trace is given by the formula as stated in the lemma.

Theorem 5.11. Let p:G -+ Autk(E) be a simple representation of G, of
dimension d. Then the characteristic ofk does not divide d. Let x, y E E. Then

for any functionals A, J1 on E,

n

L A(crX)J1(cr-
l

Y) =

d
A.(Y)J1(x).

tTEG
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Proof It suffices to prove that

n

L l(o-x)q-
1

y
=

d
l(y)x.

tTEG

For fixed y the map

x L l«(JX)(J-
1

y
tTEG

is immediately verified to be a G-endomorphism of E, so is equal to cI for some

c E k by Lemma 5.9. In fact, it is equal to

L p((J

-

1) 0 lpA, y
0 p((J).

tTEG

The trace of this expression is equal to n. tr(lpA,Y) by Lemma 5.10, and also to dc.

Taking A, y such that l(y) = 1 shows that the characteristic does nt divide d,

and then we can solve for c as stated in the theorem.

Corollary 5.12. Let X be the character of the representation of G on the

simple space E. Then

<X, X> = 1.

Proof This follows immediately from the theorem, and the expression of

X as

X
=

PI 1 + . . . + Pdd .

We have now recovered the fact that the characters of simple representations
are orthonormal. We may then recover the idempotents in the group ring, that

is, if Xl' . . .

, Xs are the simple characters, we may now define

di - 1

ei
= -

I..J Xi((J)(J .

n tTEG

Then the orthonormality of the characters yields the formulas:

s

Corollary 5.13. x;(ej) = ijdi and Xreg
= L diXi'

i = 1

Proof The first formula is a direct application of the orthonormality of the

characters. The second formula concerning the regular character is obtained

by writing

Xreg
= L mjXj

j
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with unknown coefficients. We know the values Xreg(l) = nand Xreg«(J) = 0 if

(J =I 1. Taking the scalar product of Xreg with Xi for i = 1, . . .

,
s immediately

yields the desired values for the coefficients m
j'

Since a character is a class function, one sees directly that each ei
is a linear

combination of conjugacy classes, and so is in the center of the group ring k[G].
Now let Ei be a representation space of Xi' and let Pi be the representation

of G or kEG] on E
i

. For ex E kEG] we let Pi(ex): Ei E i be the map such that

Pi(ex)X = exx for all x E Ei .

Proposition 5.14. We have

p;(ei) = id af1:d pi(ej) = 0 if i =1= j.

Proof The map x e;x is a G-homomorphism of E; into itself since ei is in

the center of kEG]. Hence by Lemma 5.9 this homomorphism is a scalar

multiple of the identity. Taking the trace and using the orthogonality relations

between simple characters immediately gives the desired value of this scalar.

We now find that

s

L ei
= 1

i = 1

because the group ring kEG] is a direct sum of simple spaces, possibly with

multiplicities, and operates faithfully on itself.

The orthonormality relations also allow us to expand a function in a Fourier

expression, relative to the characters if it is a class function, and relative to the

coefficient functions in general. We state this in two theorems.

Theorem 5.15. Let fbe a class function on G. Then

s

f = L <f, Xi)Xi.
i = 1

Proof The number of conjugacy class is equal to the number of distinct

characters, and these are linearly independent, so they form a basis for the class

functions. The coefficients are given by the stated formula, as one sees by taking
the scalar product offwith any character Xj and using the orthonormality.

Theorem 5.16. Let p(i) be a matrix representation of G on Ei relative to a

choice ofbasis, and let pi!Jl
be the coefficientfunctions ofthis matrix, i = 1,..., s

and v, J1
= 1,..., die Then thefunctions p!Jlform an orthogonal basisfor the

space ofaUfunctions on G, and hencefor anyfunctionfon G we have

_

1
(i) (i)

f -

d
<I, PV,JJ)PV,Jl'

i = 1 v, Jl i
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Proof That the coefficient functions form an orthogonal basis follows from

Theorems 5.8 and 5.11. The expression off in terms of this basis is then merely
the standard Fourier expansion relative to any scalar product. This concludes

the proof.

Suppose now for concreteness that k = C is the complex numbers. Recall

that an effective character X is an element of X(G), such that if

s

X
= 2: miXi

i= 1

is a linear combination of the simple characters with integral coefficients, then

we have mi
> 0 for all i. In light of the orthonormality of the simple characters,

we get for all elements X E X(G) the relations

s

IIxII2 = (X, X) = 2: ml and mi
= (X, Xi).

i= 1

Hence we get (a) of the next theorem.

Theorem 5.17. (a) Let X be an effective character in X(G). Then X is simple
over C if and only if II XII2 = 1, or alternatively,

2: / X(a-) /2 = #(G).
aEG

(b) Let X, «/1 be effective characters in X(G), and let E, F be their representation

spaces over C. Then

(X, «/1)G = dim HomG(E, F).

Proof. The first part has been proved, and for (b), let «/1 = L qiXi. Then by

orthonormality, we get

(X, «/1)G = L miqi.

But if E
i is the representation space of Xi over C, then by Schur's lemma

dim HomG(Ei ,
Ei ) = 1 and dim HomG(Ei ,

E
j) = 0 for i =1= j.

Hence dim HomG(E, F) = L miqi, thus proving (b).

Corollary 5.18 With the above notation and k =

Cfor simplicity, we have:

(a) The multiplicity of I G in E
V

F is dimk invG(E
v

F).

(b) The (G, k)-space E is simple if and only if I G has multiplicity 1 in E
V

E.

Proof Immediate from Theorem 5.17 and formula (3) of91.

Remark. The criterion of Theorem 5.17(a) is useful in testing whether a

representation is simple. In practice, representations are obtained by inducing
from I-dimensional characters, and such induced representations do have a ten-

dency to be irreducible. We shall see a concrete case in 12.
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6. INDUCED CHARACTERS

The notation is the same as in the preceding section. However, we don't need

all the results proved there; all we need is the bilinear pairing on X(G), and its

extension to

XR(G) x XR(G) R.

The symbol < , > may be interpreted either as the bilinear extension, or the

hermitian extension according to Theorem 5.2.

Let S be a subgroup of G. We have an R-linear map called the restriction

res : XR(G) XR(S)

which to each class function on G associates its restriction to S. It is a ring-

homomorphism. We sometimes letfs denote the restriction off to S.

We shall define a map in the opposite direction,

ind : XR(S) XR(G),

which we call the induction map. If g E XR(S), we extend g to gs on G by

letting gs( a-) = 0 if a- S. Then we define the induced function

gG(u) = ind(g)(u) =

(5 1)
2: g/...TUT-

1
).

.

'rEG

Then ind(g) is a class function on G. It is clear that ind¥ is R-linear.

Since we deal with two groups Sand G, we shall denote the scalar product

by < , >s and < , >G when it is taken with these respective groups. The next

theorem shows among other things that the restriction and transfer are adjoint
to each other with respect to our form.

Theorem 6.1. Let S be a subgroup ofG. Then the following rules hold:

(i) (Frobenius reciprocity) For f E XR(G), and 9 E XR(S) we have

(ind(g), f)G = (g, Resfj(f»s.

(ii) Ind(g)f = ind(gfs).
(iii) 1fT C S C G are subgroups ofG, then

ind 0 ind = ind¥.

(iv) If a- E G and gU is defined by gU(T
U

) =

g(T), where T
U

= a--1Ta-, then

ind¥(g) = ind<T(gU).

(v) If «/1 is an effective character of S then indfj( «/1) is effective.
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Proof. Let us first prove (ii) . We must show that gGf = (gfs)G . We have

(gGf)(T) =

(S 1)
L 9S<UTU-

I
)!(T) =

(S 1)
L 9S(UTU-

I
)!(UTU-

I
).

.

UEG
.

UEG

The last expression just obtained is equal to (gfs)G, thereby proving (ii). Let us

sum over! in G. The only non-zero contributions in our double sum will come

from those elements of S which can be expressed in the form a!(J-l with (J, ! E G.

The number of pairs «(J, !) such that (J!(J-
1

is equal to a fixed element of G is

equal to n (because for every A. E G, «(JA., A
-

I!A.) is another such pair, and the

total number of pairs is n
2
). Hence our expression is equal to

1

(G : 1)
(S : 1) ;../(A)!(A).

Our first rule then follows from the definitions of the scalar products in G and S

respectively.
Now let g

= «/1 be an effective character of S, and let f
=

X be a simple
character of G From (i) we find that the Fourier coefficients of gG are integers
> 0 because resy(x) is an effective character of S. Therefore the scalar product

< «/1, resr (X» s

is > O. Hence t/JG is an effective character of G, thereby proving (v).

In order to prove the transitivity property, it is convenient to use the fol-

lowing notation.

Let {c} denote the set of right cosets of S in G . For each right coset c, we

select a fixed coset representative denoted by c. Thus if c 1, . . .

,
C

r
are these

representatives, then

r

G = U c = U Sc = U SCi.
c c i==l

Lemma 6.2. Let 9 be a class function on S. Then

r

indff(g)() = EgS(CiC;-I).
;=1

Proof. We can split the sum over all a E G in the definition of the induced

function into a double sum

r

L = L L
tTEG tTES i= 1
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and observe that each term gs(a-cc-la--I) is equal to gS(cc-l) if a-E S, because

g is a class function. Hence the sum over a- E S is enough to cancel the factor

1/(S : 1) in front, to give the expression in the lemma.

If T c S c G are subgroups of G, and if

G = U SCi and S = U TJ
j

are decompositions into right cosets, then {aj cJ form a system of representatives
for the right cosets of T in G. From this the transitivity property (iii) is obvious.

We shall leave (iv) as an exercise (trivial, using the lemma).

7. INDUCED REPRESENTATIONS

Let G be a group and S a subgroup of finite index. Let F be an S-module.

We consider the category e whose objects are S-homomorphisms cp : F E of

F into a G-module E. (We note that a G-module E can be regarded as an S-

module by restriction.) If cp' : F E' is another object in e, we define a morphism

cp' cp in e to be a G-homomorphism 17 : E' E making the following diagram
commutative:

E'

jF "

E
A universal object in e is determined up to a unique G-isomorphism. It will

be denoted by

ind¥ : F ind¥(F).

We shall prove below that a universal object always exists. If qJ : F E is a

universal object, we call E an induced module. It is uniquely determined, up to a

unique G-isomorphism making a diagram commutative. For convenience, we

shall select one induced module such that qJ is an inclusion. We shall then call

this particular module ind¥(F) the G-module induced by F. In particular, given
an S-homomorphism cp: F E into a G-module E, there is a unique G-homo-

morphism cp*: ind(F) E making the following diagram commutative:

.

ndG
ind¥ (F)

17

jF (()*
= indf(({)

E
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The association cp ind( cp) then induces an isomorphism

HomG(indr(F), E) = Homs(F, res(E»,

for an S-module F and a G-module E. We shall see in a moment that ind is a

functor from Mod(S) to Mod(G), and the above formula may be described as

saying that induction is the adjoint functor of restriction. One also calls this

relation Frobenius reciprocity for modules, because Theorem 6.1 (i) is a

corollary.

Sometimes, if the reference to F as an S-module is clear, we shall omit the

subscript S, and write simply

indG(F)

for the induced module.

Letf: F' F be an S-homomorphism. If

cp : F' ind(F')

is a G-module induced by F', then there exists a unique G-homomorphism

indr(F') indr(F) making the following diagram commutative:

F

Ij
,

F

G

lps
) indy(F')

,

,

,

,

,

,

.,. j
indf(f)

) indG
(F)

cp
s

It is simply the G-homomorphism corresponding to the universal property

for the S-homomorphism qJ 0 f, represented by a dashed line in our diagram.
Thus ind is a functor, from the category of S-modules to the category of G-

modules.

From the universality and uniqueness of the induced module, we get some

formal properties:

ind commutes with direct sums: If we have an S-direct sum F F', then

ind(F EB F') = ind(F) EB ind(F'),

the direct sum on the right being a G-direct sum.

Iff, g : F' -+ Fare S-homomorphisms, then

indr(f + g)
= ind(f) + indr(g).

1fT c S c G are subgroups ofG, and F is a T-module, then

indy 0 ind(F) = ind¥(F).
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In all three cases, the equality between the left member and the right member

of our equations follows at once by using the uniqueness of the universal object.
We shall leave the verifications to the reader.

To prove the existence of the induced module, we let M(F) be the additive

group of functionsf: G F satisfying

(Jf() = f«(J)

for (J E S and E G. We define an operation of G on M(F) by letting

«(Jf)() = f((J)

for (J, E G. It is then clear that M(F) is a G-module.

Proposition 7.1. Let qJ: F -+ M(F) be such that qJ(x) =

qJx is the map

( ) = {
o if t FJ S

qJx t
.

f StX 1 t E .

Then qJ is an S-homomorphism, qJ : F M(F) is universal, and qJ is injective.
The image of qJ consists of those elements fE M(F) such that f(t) = ° if
t FJ s.

Proof Let (J E S and x E F. Let t E G. Then

«(JqJx)(t) = qJx(t(J).

If t E S, then this last expression is equal to qJux(t). If t FJ S, then t(J FJ S, and

hence both qJux(t) and qJx(t(J) are equal to O. Thus qJ is an S-homomorphism,
and it is immediately clear that qJ is injective. Furthermore, iffE M(F) is such

thatf(t) = 0 if! FJ S, then from the definitions, we conclude thatf =

qJx where

x = f(I).
There remains to prove that qJ is universal. To do this, we shall analyze more

closely the structure of M(F).
r

Proposition 7.2. Let G = U SCi be a decomposition of G into right cosets.

i = 1

Let F
1 be the additive group offunctions in M(F) having value 0 at elements

E G, FJ S. Then

r

M(F) = EB Ci-
1
F l'

i = 1

the direct sum being taken as an abelian group.

Proof For eachfE M(F), leth be the function such that

{
o if FJ SCi

Ji() =

f(
):
) l

.

f ): S
-

E Ci.
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For all (J E S we have fi«(Jci) = (Ci fiX(J). It is immediately clear that Ci fi lies in

F l ,
and

r

f = L Ci- l(Ci fi).
i= 1

Thus M(F) is the sum of the subgroups ci

- 1
F l' It is clear that this sum is

direct, as desired.

We note that {c II, . . .

, C;- I} form a system of representatives for the left
cosets of S in G. The operation of G on Mb(F) is defined by the presceding direct

sum decomposition. We see that G permutes the factors transitively. The factor

F 1
is S-isomorphic to the original module F, as stated in Proposition 7.1.

Suppose that instead of considering arbitrary modules, we start with a com-

mutative ring R and consider only R-modules E on which we have a representation
of G, Le. a homomorphism G AutR(E), thus giving rise to what we call a

(G, R)-module. Then it is clear that all our constructions and definitions can be

applied in this context. Therefore if we have a representation of S on an R-module

F, then we obtain an induced representation of G on indy(F). Then we deal with

the category e of S-homomorphisms of an (S, R)-module into a (G, R)-module.

To simplify the notation, we may write "G-module" to mean "(G, R)-module"

when such a ring R enters as a ring of coefficients.

Theorem 7.3. Let {Ab . . .

, Ar} be a system of left coset representatives ofS in

G. There exists a G-module E containing F as an S-submodule, such that

r

E = EB Ai F
i = 1

is a direct sum (as R-modules). Let cp : F E be the inclusion mapping. Then

cp is universal in our category e, i.e. E is an induced module.

Proof By the usual set-theoretic procedure of replacing F
1 by F in M(F),

obtain a G-module E containing F as a S-submodule, and having the desired

direct sum decomposition. Let q/: F E' be an S-homomorphism into a

G-module E'. We define

h : E E'

by the rule

h(AIX l + ... + ArXr) = Allp'(Xl) + ... + Arlp'(Xr)

for Xi E F. This is well defined since our sum for E is direct. We must show that

h is a G-homomorphism. Let (J E G. Then

(JA.i = AO'(i) '!
0', i

where (J(i) is some index depending on (J and i, and to', i
is an element of S, also
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depending on (J, i. Then

h(aAi xi) = h(Au(i)tu,ixi) = Au(i)lp'('ru,ixi).

Since q/ is an S-homomorphism, we see that this expression is equal to

Au(i) tu , i lp'(Xi) = (Jh(Aixi).

By linearity, we conclude that h is a G-homomorphism, as desired.

In the next proposition we return to the case when R is our field k.

Proposition 7.4. Let t/J be the character of the representation of S on the

k-space F. Let E be the space ofan induced representation. Then the character

X of E is equal to the induced character .pG, i.e. is given by the formula

x() = L t/JO(CC-l),
c

where the sum is taken over the right cosets c ofS in G, C is afixed coset repre-

sentativefor c, and t/J 0 is the extension of t/J to G obtained by setting t/J o((J) = 0

ifaftS.

Proof Let {Wl, . . .

,
w

m } be a basis for F over k. We know that

E = EB C-
1
F.

Let a be an element of G. The elements {c(J

-

lWj}c,j form a basis for E over k.

We observe that caca

-

1
is an element of S because

SC(J = Sca = Scu.

We have

a(cu

- 1
Wj) = C- l(cacu

-

l)Wj.

Let

(caea

-

1)Jlj

be the components of the matrix representing the effect of c(Jca

- 1
on F with

respect to the basis {w b
. . .

,
w

m }. Then the action of a on E is given by

(J(cu

- 1

Wj)
= C-

1

L (caca

-

1

)Jlj W
Jl

Jl

= L (c(Jca

-

l)Jlj(C- lWJl).
Jl

By definition,

x(a) = L L (cac(J -l)jj.
cu = c j
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But C(J = C if and only if c(Jc-
1

E S. Furthermore,

t/J(C(JC- 1) = L (C(JC-
1

)jj'
j

Hence

x(a) = L t/Jo(C(Jc-
l

),
c

as was to be shown.

Remark. Having given an explicit description of the representation space

for an induced character, we have in some sense completed the more elementary

part of the theory of induced characters. Readers interested in seeing an application
can immediately read 12.

Double eosets

Let G be a group and let S be a subgroup. To avoid superscripts we use the

following notation. Let l' E G . We write

[y]S = ySy-l and S[y] =

y-
1
Sy.

We shall suppose that S has finite index. We let H be a subgroup. A subset of G

of the form HI'S is called a double coset. As with cosets, it is immediately
verified that G is a disjoint union of double cosets . We let {I'} be a family of

double coset representatives, so we have the disjoint union

G = U HI'S.
"

For each l' we have a decomposition into ordinary cosets

H = U T..)H n[y]S),
'Ty

where {T,,} is a finite family of elements of H, depending on 1'.

Lemma 7.5. The elements {T"y} form a family of left coset representatives

for S in G,. that is, we have a disjoint union

G = U T"YS.
",'Ty

Proof. First we have by hypothesis

G = U U T,,(H n [y]S)yS,
" Ty

and so every element of G can be written in the form

T,,1'SlY
-

II's2
=

T"l's with s l' S2, S E S.

On the other hand, the elements T"l' represent distinct cosets of S, because if

T"yS =

T,,' 1" S, then l'
=

1", since the elements l' represent distinct double cosets,
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whence Ty and T
"I' represent the same coset of ySy-I, and therefore are equal.

This proves the lemma.

Let F be an S-module. Given y E G, we denote by [y]F the [y]S-module
such that for ysy-I E [y]S, the operation is given by

ysy-I ·

[y]x
= [y]sx.

This notation is compatible with the notation that if F is a submodule of a G-

module E, then we may form yF either according to the formal definition above,

or according to the operation of G. The two are naturally isomorphic (essentially

equal). We shall write

[y] : F --+ yF or [y]F

for the above isomorphism from the S-module F to the [y] S -module yF. If S I

is a subgroup of S, then by restriction F is also an SI-module, and we use [y]
also in this context, especially for the subgroup H n [y]S which is contained in

[y]S.

Theorem 7.6. Applied to the S-module F, we have an isomorphism of H-

modules

G
.

d
G LD

.

d
H [y]S

[ ]resH
0 In

s
=

Q7
In

Hn[y]s
0

resHn[y]S
0

y

"I

where the direct sum is taken over double coset representatives y.

Proof. The induced module ind¥(F) is simply the direct sum

ind(F) = E9 TyyF
y,Toy

by Lemma 7.5, which gives us coset representatives of S in G, and Theorem

7 .3. On the other hand, for each y, the module

E9 TyyF
Toy

is a representation module for the induced representation from Hn [y]S on yF
to H. Taking the direct sum over y, we get the right-hand side of the expression
in the theorem, and thus prove the theorem.

Remark. The formal relation of Theorem 7.6 is one which occurred in

Artin's formalism of induced characters and L-functions; cf. the exercises and

[La 70], Chapter XII, 3. For applications to the cohomology of groups, see

[La 96]. The formalism also emerged in Mackey's work [Ma 51], [Ma 53], which

we shall now consider more systematically. The rest of this section is due

to Mackey. For more extensive results and applications, see Curtis-Reiner

[CuR 81], especially Chapter 1. See also Exercises 15, 16, and 17.

To deal more systematically with conjugations, we make some general func-

torial remarks. Let E be a G-module. Possibly one may have a commutative ring
R such that E is a (G, R)-module. We shall deal systematically with the functors
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HomG, E
V

,
and the tensor product. Let

A:EAE

by a R-isomorphism. Then interpreting elements of G as endomorphisms of E

we obtain a group AGA-
I

operating on AE. We shall also write [A]G instead of

AGA-I. Let EI' E
2 be (G, R)-modules. Let Al : E; A;E; be R-isomorphisms.

Then we have a natural R-isomorphism

(1) A2HomG(EI ,
E2 )Al

l
= HomA2GXjl(AI EI , A2 E2)'

and especially

[A]HomG(E, E) =

Hom[A]G(AE, AE).

As a special case of the general situation, let H, S be subgroups of G, and let

FI ,
F2 be (H, R)- and (S, R)-modules respectively, and let u, T E G. Suppose

that u-
I
T lies in the double coset D = HyS. Then we have an R-isomorphism

(2) Hom[0"]Hn[T]s([u]F1 , [T]F2 ) =

HomHn['Y]s(f}, [y]F2 ).

This is immediate by conjugation, writing T
= uhys with h E H, s E S, conjugating

first with [ah]-l, and then observing that for s E S, and an S-module F, we

have [s]S = S, and [s-I]F is isomorphic to F. In light of (2), we see that the

R-module on the left-hand side depends only on the double coset. Let D be a

double coset . We shall use the notation

MD(FI ,
F2 )

=

HomHn ['Y]S (FI' [y]F2 )

where y represents the double coset D. With this notation we have:

Theorem 7.7 . Let H, S be subgroups of finite index in G. Let FI' F2 be

(H, R) and (S, R)-modules respectively. Then we have an isomorphism of R-

modules

HomG(ind(FI)' ind¥(F2 » = EB MD(FI ,
F2 ),

D

where the direct sum is taken over all double cosets HyS = D.

Proof. We have the isomorphisms:

HomG(ind(FI)' indf(F2 » = HomH(FI , resfi 0 indf(F2 »

= EB HomH(FI , indJin['Y]s 0 res }J['Y]S 0 [y]F2 )
'Y

= EB HomHn ['Y]s(FI , [y]F2 )
'Y

by applying the definition of the induced module in the first and third step, and

applying Theorem 7.6 in the second step. Each term in the last expression is

what we denoted by MD(FI ,
F2 ) if y is a representative for the double coset D.

This proves the theorem.
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Corollary 7.8. Let R = k = C. Let S, H be subgroups of the finite group

G. Let D = HyS range over the double cosets, with representatives y. Let X

be an effective character ofHand «/1 an effective character of S. Then

<ind«x), ind(<</1»G = 2: <X, [y]«/1)Hn['Y]S.
'Y

Proof. Immediate from Theorem 5. 17 (b) and Theorem 7.7, taking dimen-

sions on the left-hand side and on the right-hand side.

Corollary 7.9. (Irreducibility of the induced character). Let S be a

subgroup of the finite group G. Let R = k = C. Let t/J be an effective character

of S. Then ind(<</1) is irreducible if and only if «/1 is irreducible and

<<</1, [y]«/1)sn['Y]S
= 0

for all y E G, y S.

Proof. Immediate from Corollary 7.8 and Theorem 5.17(a). It is of course

trivial that if «/1 is reducible, then so is the induced character.

Another way to phrase Corollary 7 .9 is as follows. Let F, F' be representation

spaces for S (over C). We call F, F' disjoint if no simple S-space occurs both

in F and F'. Then Corollary 7.9 can be reformulated:

Corollary 7.9'. Let S be a subgroup of the finite group G. Let F be an

(S, k)-space (with k = C). Then ind(F) is simple if and only if F is simple
and for all y E G and y S, the S n [y]S-modules F and [y]F are disjoint.

Next we have the commutation of the dual and induced representations.

Theorem 7.10. Let S be a subgroup ofG and let F be a finite free R-module.

Then there is a G-isomorphism

ind(Fv) = (ind(F»v .

Proof. Let G = U A;S be a left coset decomposition. Then, as in Theorem

7 . 3, we can express the representation space for ind(F) as

ind(F) = E9A;F.

We may select Al = 1 (unit element of G). There is a unique R-homomorphism

f: F
V

(indy(F»v

such that for cp E F
V

and x E F we have

{
o if i =1= 1

f(cp)(A;x)
=

( )
.

f
.

1cp X 1 I =

,

which is in fact an R-isomorphism of F
V

on (AIF)v . We claim that it is an S-
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homomorphism. This is a routine verification, which we write down. We have

{
o if i =1= 1

f([a-]cp)(A;x) =

( (
-1

»
.

f
.

1a-cpa- x 11= .

On the other hand, note that if a- E S then a--
I
Al E S so a--

I
AIX E AIF for

x E F; but if a- S, then a--
I

A; S for i =1= 1 so a--
I

A;X AIF. Hence

{
o if i =1= 1

[a-](f(cp»(Alx) = a-f(cp)(a--
I
A;X)

=

( (
-I

)
.

f
.

1a-cpa- x 11= .

This proves that f commutes with the action of S.

By the universal property of the induced module, it follows that there is a

unique (G, R)-homomorphism

ind(f) : ind(Fv) (ind(F»v ,

which must be an isomorphism becausefwas an isomorphism on its image, the

AI-component of the induced module. This concludes the proof of the theorem.

Theorems and definitions with Hom have analogues with the tensor product.
We start with the analogue of the definition.

Theorem 7.11. Let S be a subgroup of finite index in G. Let F be an S-

module, and E a G-module (over the commutative ring R). Then there is an

isomorphism

indy(ress(E) 0 F) = E 0 ind(F).

Proof. The G-module ind(F) contains F as a summand, because it is the

direct sum E9A;F with left coset representatives A; as in Theorem 7.3. Hence

we have a natural S-isomorphism

f: ress(E) 0 F E 0AIF C E 0 ind(F).

taking the representative Al to be 1 (the unit element of G). By the universal

property of induction, there is a G-homomorphism

ind(f) : ind¥(ress(E) 0 F) E 0 ind (F),

which is immediately verified to be an isomorphism, as desired. (Note that here

it only needed to verify the bijectivity in this last step, which comes from the

structure of direct sum as R-modules.)

Before going further, we make some remarks on functorialities. Suppose we

have an isomorphism G = G', a subgroup H of G corresponding to a subgroup
H' of G' under the isomorphism, and an isomorphism F = F' from an H-module

F to an H' -module F' commuting with the actions of H, H'. Then we get an

isomorphism

ind(F) = ind:(F').
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In particular, we could take a- E G, let G' = [a-]G = G, H' = [a-]H and

F' = [a-]F.

Next we deal with the analogue of Theorem 7.7 . We keep the same notation

as in that theorem and the discussion preceding it. With the two subgroups H

and S, we may then form the tensor product

[a-]Fl 0 [T]F2

with a-, T E G. Suppose a--
1
TED for some double coset D = HyS. Note that

[a-]F1 0 [T]F2 is a [a-]H n [T]S-module. By conjugation we have an isomorphism

(3) indfu]Hn[T]s([a-]F1 0 [T]F2 ) = indJ]n['Y]s (F1 0 [y]F2 ).

Theorem 7.12. There is a G-isomorphism

ind(Fl) 0 ind¥(F2) = E9 indn ['Y]s(F1 0 [y]F2),
'Y

where the sum is taken over double coset representatives y.

Proof. We have:

ind(Fl) 0 ind¥(F2 ) = ind(Fl 0 resH ind¥(F2 » by Theorem 7. 11

= E9 ind(Fl 0 indZn['Y]s resH n([y]F2 ) by Theorem 7.6

'Y

= ind0ndZn[YIS (resf1n [YIS (Fj) 0 res }Js[YIS([ 'Y]F2 »)) by Theorem 7.7

= E9 indn ['Y]s(F1 0 [y]F2 ) by transitivity of induction

'Y

where we view Fl n [y]F2 as an H n [y]S-module in this last line. This proves

the theorem.

General comment. This section has given a lot of relations for the induced

representations. In light of the cohomology of groups, each formula may be

viewed as giving an isomorphism of functors in dimension 0, and therefore gives
rise to corresponding isomorphisms for the higher cohomology groups Hq. The

reader may see this developed further than the exercises in [La 96].

[CuR 81]
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The next three sections, which are essentially independent of each other, give

examples of induced representations. In each case, we show that certain

representations are either inducedfrom certain well-known types, or are linear

combinations with integral coefficients of certain well-known types. The most

striking feature is that we obtain all characters as linear combinations of in-

duced characters arising from I-dimensional characters. Thus the theory of
characters is to a large extent reduced to the study of I-dimensional, or abelian

characters.

8. POSITIVE DECOMPOSITION OF THE

REGULAR CHARACTER

Let G be a finite group and let k be the complex numbers. We let I G be the

trivial character, and rG denote the regular character.

Proposition 8.1. Let H be a subgroup of G, and let «/1 be a character of H.

Let «/1G be the induced character. Then the multiplicity of IH in «/1 is the same

as the multiplicity of I G in «/1
G

.

Proof By Theorem 6.1 (i), we have

< «/1, I H)H = < «/1
G

,
I G)G .

These scalar products are precisely the multiplicities in question.

Proposition 8.2. The regular representation is the representation induced

by the trivial character on the trivial subgroup of G.

Proof This follows at once from the definition of the induced character

«/1
G

( T) = 2: «/1H( a-Ta--
1
),

(TEG

taking t/J = 1 on the trivial subgroup.

Corollary 8.3. The multiplicity of 1 G in the regular character rG is equal to 1.

We shall now investigate the character

UG
= rG

- I G
.

Theorem 8.4. (Aramata). The character nUG is a linear combination with

positive integer coefficients of characters induced by I-dimensional characters

of cyclic subgroups of G.

The proof consists of two propositions, which give an explicit description of

the induced characters. I am indebted to Serre for the exposition, derived from

Brauer's.
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If A is a cyclic group of order a, we define the function eA on A by the condi-

tions:

{
a if (J is a generator of A

e «(J) =

A
0 otherwise.

We let AA = q>(a)rA
- eA (where q> is the Euler function), and AA = 0 if a = 1.

The desired result is contained in the following two propositions.

Proposition 8.5. Let G be afinite group oforder n. Then

nUG
= L AX ,

the sum being taken over all cyclic subgroups of G.

Proof Given two class functions X, tfJ on G, we have the usual scalar

product :

1 -

< tfJ, X)G = -

L tfJ((J)X((J).
n (1EG

Let tfJ be any class function on G. Then:

< tfJ, nUG) = < tfJ, nrG)
-

< tfJ, nl G)

= ntfJ(l) - L tfJ«(J).
(1EG

On the other hand, using the fact that the induced character is the transpose of

the restriction, we obtain

L <t/J, AX) = L <t/JIA, AA)
A A

= L < tfJ I A, q>(a)rA
- eA)

A

1
= L q>(a)tfJ(l)

-

L
- L atfJ(a)

A A a
(1 gen A

= ntfJ(l) - L tfJ«(J).
(1EG

Since the functions on the right and left of the equality sign in the statement ofour

proposition have the same scalar product with an arbitrary function, they are

equal. This proves our proposition.

Proposition 8.6. If A =I {I}, the function AA is a linear combination of ir-

reducible nontrivial characters of A with positive integral coefficients.
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Proof. If A is cyclic of prime order, then by Proposition 8.5, we know that

AA = nuA ,
and our assertion follows from the standard structure of the regular

representation.
In order to prove the assertion in general, it suffices to prove that the Fourier

coefficients of AA with respect to a character of degree 1 are integers > O. Let

tfJ be a character of degree 1. We take the scalar product with respect to A, and

obtain:

< tfJ, AA> = q>(a)tfJ( 1) - L tfJ((J)
0' gen

= q>(a) - L tfJ«(J)
0' gen

= L (1 - tfJ«(J».
0' gen

The sum L tfJ(a) taken over generators of A is an algebraic integer, and is in fact

a rational number (for any number of elementary reasons), hence a rational

integer. Furthermore, if tfJ is non-trivial, all real parts of

1 - tfJ( (J)

are> 0 if a =f. id and are 0 if a = ide From the last two inequalities, we conclude

that the sums must be equal to a positive integer. If tfJ is the trivial character,

then the sum is clearly O. Our proposition is proved.

Remark. Theorem 8.4 and Proposition 8.6 arose in the context of zeta

functions and L-functions, in Aramata' s proof that the zeta function of a number

field divides the zeta function of a finite extension [Ar 31], [Ar 33]. See also

Brauer [Br 47a], [Br 47b]. These results were also used by Brauer in showing
an asymptotic behavior in algebraic number theory, namely

10g(hR) log D1I2 for [k : Q]/log D 0,

where h is the number of ideal classes in a number field k, R is the regulator,
and D is the absolute value of the discriminant. For an exposition of this appli-

cation, see [La 70], Chapter XVI.
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9. SUPERSOLVABLE GROUPS

Let G be a finite group. We shall say that G is supersolvable if there exists a

sequence of subgroups

{I} C G l
c G 2

C ... c G
m

= G

such that each G i is normal in G, and Gi + I/G i is cyclic of prime order.

From the theory of p-groups, we know that every p-group is super-solvable,
and so is the direct product of a p-group with an abelian group.

Proposition 9.1. Every subgroup and every factor group of a super-solvable

group is supersolvable.

Proof Obvious, using the standard homomorphism theorems.

Proposition 9.2. Let G be a non-abelian supersolvable group. Then there

exists a normal abeUan subgroup which contains the center properly.

Proof Let C be the center of G, and let G = GIC. Let H be a normal

subgroup of prime order in G and let H be its inverse image in G under the

canonical map G GIC. If a is a generator of H
,
then an inverse image a of a

,

together with C, generate H. Hence H is abelian, normal, and contains the

center properly.

Theorem 9.3. (Blichfeldt). Let G be a supersolvable group, let k be alge-

braically closed. Let E be a simple (G, k)-space. If dimk E > 1, then there

exists a proper subgroup H of G and a simple H-space F such that E is induced

byF.

Proof Since a simple representation of an abelian group is I-dimensional,
our hypothesis implies that G is not abelian.

We shall first give the proof of our theorem under the additional hypothesis
that E is faithful. (This means that ax = x for all x E E implies a = 1.) It will

be easy to remove this restriction at the end.

Lemma 9.4. Let G be afinite group, and assume k algebraically closed. Let

E be a simple, faithful G-space over k. Assume that there exists a normal abeUan

subgroup H of G containing the center of G properly. Then there exists a

proper subgroup HI of G containing H, and a simple HI -space F such that E

is the induced module ofFfrom HI to G.

Proof We view E as an H-space. It is a direct sum of simple H-spaces, and

since H is abelian, such simple H-space is I-dimensional.

Let v E E generate a I-dimensional H-space. Let t/J be its character. If

WEE also generates a I-dimensional H-space, with the same character t/J, then
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for all a, bE k and t E H we have

t(av + bw) = t/J(t)(av + bw).

If we denote by F", the subspace of E generated by all I-dimensional H-sub-

spaces having the character t/J, then we have an H-direct sum decomposition

E = E8 F",.
'"

We contend that E =1= F",. Otherwise, let v E E, v =I 0, and (J E G. Then (J

- 1
V

is a I-dimensional H-space by assumption, and has character t/J. Hence for

tE H,

t((J

- 1

v) = t/J(t)(J
- 1

V

«(Jt(J-l)V = (Jt/J(t)(J-IV = t/J(t)v.

This shows that (Jt(J-l and t have the same effect on the element v of E. Since

H is not contained in the center of G, there exist t E Hand (J E G such that

(Jt(J-
1

=I t, and we have contradicted the assumption that E is faithful.

We shall prove that G permutes the spaces F", transitively.
Let v E F

",.
For any t E Hand (J E G, we have

t((Jv) = (J((J

- 1

t(J)v = (Jt/J( (J

- 1

t(J)v = t/J (1(t)(Jv,

where t/J(1 is the function on H given by t/J(1(t) = t/J«(J-lt(J). This shows that a

maps F
'"

into F
"'a. However, by symmetry, we see that (J-l maps F

"'a
into F

"',

and the two maps (J, (J

- 1

give inverse mappings between F
"'a

and F",. Thus G

permutes the spaces {F",}.
Let E' = GF

t/Jo
= L a-Ft/Jo for some fixed t/1o. Then E' is a G-subspace of E,

and since E was assumed to be simple, it follows that E' = E. This proves that

the spaces {Ft/J} are permuted transitively.
Let F = F"'t for some fixed t/Jl' Then F is an H-subspace of E. Let Hl be

the subgroup of all elements t E G such that tF = F. Then H 1 =I G since

E =I F",. We contend that F is a simple H I-subspace, and that E is the induced

space of F from H 1 to G.

To see this, let G = U Hie be a decomposition of G in terms of right cosets

of HI. Then the elements {c
-

l} form a system of left coset representatives of

H 1. Since

E = L (JF

(1eG

it follows that

E = L c-
1
F.

c

We contend that this last sum is direct, and that F is a simple HI-space.
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Since G permutes the spaces {F",}, we see by definition that HI is the isotropy

group ofF for the operation of G on this set of spaces, and hence that the elements

of the orbit are precisely {c-
1

F}, as c ranges over all the cosets. Thus the spaces

{c-
l

F} are distinct, and we have a direct sum decomposition

E = EB c-1F.
c

If W is a proper H I-subspace of F, then EB c-
1
W is a proper G-subspace of E,

contradicting the hypothesis that E is simple. This proves our assertions.

We can now apply Theorem 7.3 to conclude that E is the induced module

from F, thereby proving Theorem 9.3, in case E is assumed to be faithful.

Suppose now that E is not faithful. Let Go be the normal subgroup of G

which is the kernel of the representation G -+ Autk(E). Let G = GIGo. Then

E gives a faithful representation of G. As E is not I-dimensional, then G is not

abelian and there exists a proper normal subgroup H of G and a simple H-space

F such that

E =

indF).

Let H be the inverse image of H in the natural map G G. Then H ::) Go,
and F is a simple H-space. In the operation of G as a permutation group of the

k-subspaces {aF}UEG, we know that H is the isotropy group of one component.

Hence H is the isotropy group in G of this same operation, and hence applying
Theorem 7.3 again, we conclude that E is induced by F in G, i.e.

E = ind(F),

thereby proving Theorem 9.3.

Corollary 9.5. Let G be a product of a p-group and a cyclic group, and let k

be algebraically closed. IfE is a simple (G, k)-space and is not I-dimensional,

then E is induced by a I-dimensional representation of some subgroup.

Proof We apply the theorem step by step using the transitivity of induced

representations until we get a I-dimensional representation of a subgroup.

10. BRAUER'S THEOREM

We let k = C be the field of complex numbers. We let R be a subring of k.

We shall deal with XR(G), i.e. the ring consisting of all linear combinations with

coefficients in R of the simple characters of Gover k. (It is a ring by Proposition

2.1.)



XVIII, 10 BRAUER'S THEOREM 705

Let H = {Hex} be a fixed family of subgroups of G, indexed by indices {}.
We let VR(G) be the additive subgroup of XR(G) generated by all the functions

which are induced by functions in XR(Hex ) for some Hex in our family. In other

words,

VR(G)
= L inda(XR(Ha».

a

We could also say that VR(G) is the subgroup generated over R by all the char-

acters induced from all the Hex.

Lemma 10.1. VR(G) is an ideal in XR(G).

Proof This is immediate from Theorem 6.1.

For many applications, the family of subgroups will consist of" elementary"

subgroups: Let p be a prime number. By a p-elementary group we shall mean

the product ofa p-group and a cyclic group (whose order may be assumed prime
to p, since we can absorb the p-part of a cyclic factor into the p-group). An

element (J EGis said to be p-regular if its period is prime to p, and p-singular
if its period is a power of p. Given x E G, we can write in a unique way

x = aT

where a is p-singular, ! is p-regular, and a, ! commute. Indeed, if prm is the period
ofx, with m prime to p, then 1 = vpr + J.1m whence x = (xm)Jl(xpr)V and we get our

factorization. It is clearly unique, since the factors have to lie in the cyclic

subgroup generated by x. We call the two factors the p-singular and p-regular
factors of x respectively.

The above decomposition also shows:

Proposition 10.2. Every subgroup and every factor group of a p-elementary

group is p-elementary. If S is a subgroup of the p-elementary group P x C,

where P is a p-group, and C is cyclic, oforder prime to p, then

S = (S n P) x (S n C).

Proof Clear.

Our purpose is to show, among other things, that ifourfamily {Hex} is such that

every p-elementary subgroup of G is contained in some Hex, then VR(G) = XR(G)

for every ring R. It would of course suffice to do it for R = Z, but for our pur-

poses, it is necessary to prove the result first using a bigger ring. The main result

is contained in Theorems 10.11 and 10.13, due to Brauer. We shall give an

exposition of Brauer-Tate (Annals of Math., July 1955).
We let R be the ring Z[(] where ( is a primitive n-th root of unity. There

exists a basis of R as a Z-module, namely 1, (, . . .

, (N-
1

for some integer N.

This is a trivial fact, and we can take N to be the degree of the irreducible poly-
nomial of ( over Q. This irreducible polynomial has leading coefficient 1, and
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has integer coefficients, so the fact that

1, (, . . .
, (N-

1

form a basis of Z[(] follows from the Euclidean algorithm. We don't need to

know anything more about this degree N.

We shall prove our assertion first for the above ring R. The rest then follows

by using the following lemma.

Lemma 10.3. If dE Z and the constant function d.l G belongs to V
R then

d.l G belongs to Vz .

Proof We contend that 1, (,. . .

, (N-
1

are linearly independent over Xz(G).

Indeed, a relation of linear dependence would yield

s N- 1

L L CvjXv(j = 0

v= 1 j= 0

with integers Cvj not all O. But the simple characters are linearly independent
over k. The above relation is a relation between these simple characters with

coefficients in R, and we get a contradiction. We conclude therefore that

V
R

= Vz Vz ( . . . (f) VZ (N
- 1

is a direct sum (of abelian groups), and our lemma follows.

If we can succeed in proving that the constant function 1 G lies in VR(G),
then by the lemma, we conclude that it lies in Vz(G), and since Vz(G) is an ideal,

that Xz(G) = Vz(G).
To prove our theorem, we need a sequence of lemmas.

Two elements x, x' of G are said to be p-conjugate if their p-regular factors

are conjugate in the ordinary sense. It is clear that p-conjugacy is an equivalence

relation, and an equivalence class will be called a p-conjugacy class, or simply a

p-class.

Lemma 10.4. LetfEXR(G), and assume thatf«(J)EZfor all (JEG. Then

f is constant mod p on every p-c lass.

Proof Let x = at, where a is p-singular, and t is p-regular, and a, t com-

mute. It will suffice to prove that

f(x) = f(t) (mod p).

Let H be the cyclic subgroup generated by x. Then the restriction of f to H

can be written

fH = L ajt/Jj
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with aj E R, and t/Jj being the simple characters of H, hence homomorphisms of

H into k*. For some power pr we have x
pr

= t
pr

,
whence t/JJ{x)11'" = t/JJ{t)pr, and

hence

f(x)pr = f(t)pr (mod pR).

We now use the following lemma.

Lemma 10.5. Let R = Z[(] be as before. If a E Z and a E pR then a E pZ.

Proof This is immediate from the fact that R has a basis over Z such that

1 is a basis element.

Applying Lemma 10.5, we conclude that f(x) = f(t) (mod p), because

bpr
= b (mod p) for every integer b.

Lemma 10.6. Let t be p-regular in G, and let T be the cyclic subgroup

generated by t. Let C be the subgroup of G consisting of all elements com-

muting with t. Let P be a p-Sylow subgroup ofC. Then there exists an element

.p E XR(T x P) such that the inducedfunctionf
= «/p has thefollowingproperties:

(i) f«(J) E Z for all (J E G.

(ii) f(a) = 0 if (J does not belong to the p-class of t.

(iii) f(t) = (C: P) =1= o (mod p).

Proof We note that the subgroup of G generated by T and P is a direct pro-

duct T x P. Let t/J 1, . . .

, t/Jr be the simple characters of the cyclic group T, and

assume that these are extended to T x P by composition with the projection:

T x P Tk*.

We denote the extensions again by t/J l' . . .
, t/Jr' Then we let

r

t/J = L t/J v(t)t/J v
.

v= 1

The orthogonality relations for the simple characters of T show that

t/J(ty) = t/J(t) = (T : 1) for YEP

t/J«(J) = 0 if a E TP, and (J ft tP.

We contend that .pG satisfies our requirements.

First, it is clear that .plies in XR(TP).
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We have for U E G:

G _

1 '" -I _

1
(«/1 (u)

-

(TP : 1) xfb «/11P(xax ) -

(P : 1)
J.L u)

where J.L( u) is the number of elements x E G such that xax-
I

lies in TP. The

number J1«(J) is divisible by (P: 1) because if an element x of G moves (J into tP

by conjugation, so does every element of Px. Hence the values of «/1G lie in Z.

Furthermore, J1«(J) =I 0 only if (J is p-conjugate to t, whence our condition

(ii) follows.

Finally, we can have Xtx-
1

=

ty with YEP only if y
= 1 (because the period

of t is prime to p). Hence J1(t) = (C : 1), and our condition (iii) follows.

Lemma 10.7. Assume that the family of subgroups {Ha} covers G (i.e. every

element ofG lies in some Ha). Iffis a classfunction on G taking its values in

Z, and such that all the values are divisible by n = (G : 1), then f belongs to

VR(G).

Proof. Let y be a conjugacy class, and let p be prime to n. Every element

of G is p-regular, and all p-subgroups of G are trivial. Furthermore, p-conjugacy
is the same as conjugacy. Applying Lemma 10.6, we find that there exists in

VR(G) a function taking the value 0 on elements (J FJ y, and taking an integral
value dividing n on elements ofy. Multiplying this function by some integer, we

find that there exists a function in VR(G) taking the value n for all elements of y,

and the value 0 otherwise. The lemma then follows immediately.

Theorem 10.8. (Artin). Every character of G is a linear combination with

rational coefficients of induced characters from cyclic subgroups.

Proof In Lemma 10.7, let {Ha} be the family of cyclic subgroups of G. The

constant function n.1 G belongs to VR(G). By Lemma 10.3, this function belongs
to Vz(G), and hence nXz(G) c Vz(G). Hence

1

Xz(G) c -

Vz(G),
n

thereby proving the theorem.

Lemma 10.9. Let p be a prime number, and assume that every p-elementary

subgroup ofG is contained in some Ha. Then there exists afunctionfE VR(G)
whose values are in Z, and = 1 (mod pr).

Proof We apply Lemma 10.6 again. For each p-class y, we can find a func-

tionfy in VR(G), whose values are 0 on elements outside y, and =1= 0 mod p for

elements of y. Let f = L fy, the sum being taken over all p-classes. Then

f(a) 1= 0 (modp) for all (J E G. Taking f(p-l)pr-I gives what we want.
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Lemma 10.10. Let p be a prime number and assume that every p-elementary

subgroup of G is contained in some Hex. Let n =

no pr where no is prime to p.

Then the constant function no.1G belongs to Vz(G).

Proof By Lemma 10.3, it suffices to prove that no.lG belongs to VR(G).

Letfbe as in Lemma 10.9. Then

no.1G = no(lG
- f) + nof

Since no( 1 G
- f) has values divisible by nop' == n, it lies in VR ( G) by Lemma

10.7. On the other hand, nof E VR( G) because f E VR ( G). This proves our lemma.

Theorem 10. t 1. (Brauer). Assume that for every prime number p, every

p-elementary subgroup oj' G is contained in some Hex. Then X(G) = Vz(G).

Every character of G is a linear combination, with integer coefficients, of
characters induced from subgroups Hex.

Proof Immediate from Lemma 10.10, since we can find functions no.1G in

Vz(G) with no relatively prime to any given prime number.

Corollary 10.12. A class function f on G belongs to X(G) if and only if its

restriction to Hex belongs to X(Hex)for each.

Proof Assume that the restriction offto Hex is a character on Hex for each.

By the theorem, we can write

IG
= L C

a inda( tPa)
a

where C
ex

E Z, and t/lex E X(Hc). Hence

f = L C
a inda(tPafHa)'

a

using Theorem 6.1. If fHOt

E X(Hex), we conclude that f belongs to X(G). The

converse is of course trivial.

Theorem 10.13. (Brauer). Every character of G is a linear combination

with integer coefficients of characters induced by I-dimensional characters of

subgroups.

Proof By Theorem 10.11, and the transitivity of induction, it suffices to

prove that every character of a p-elementary group has the property stated in

the theorem. But we have proved this in the preceding section, Corollary 9.5.
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11. FIELD OF DEFINITION OF A

REPRESENTATION

We go back to the general case of k having characteristic prime to #G. Let

E be a k-space and assume we have a representation of G on E. Let k' be an

extension field of k. Then G operates on k' 0k E by the rule

(J(a (8) x) = a (8) (JX

for a E k' and x E E. This is obtained from the bilinear map on the product
k' x E given by

(a, x) a (8) (JX.

We view E' = k' (8)k E as the extension of E by k', and we obtain a representation
of G on E'.

Proposition 11.1. Let the notation be as above. Then the characters of the

representations of G on E and on E' are equal.

Proof. Let {v 1, . . .
,

v
m } be a basis of E over k. Then

{I (8) V l'
. . .

,
1 (8) v

m }

is a basis of E' over k'. Thus the matrices representing an element a of G with

respect to the two bases are equal, and consequently the traces are equal.

Conversely, let k' be a field and k a subfield. A representation of G on a

k'-space E' is said to be definable over k if there exists a k-space E and a repre-

sentation of G on E such that E' is G-isomorphic to k' (8)k E.

Proposition 11.2. Let E, F be simple representation spaces for the finite

group Gover k. Let k' be an extension of k. Assume that E, F are not G-

isomorphic. Then no k'-simple component of E
k

, appears in the direct sum

decomposition of F
k' into k'-simple subspaces.

Proof. Consider the direct product decomposition

s(k)

kEG] = n RJl(k)
Jl=l

over k, into a direct product of simple rings. Without loss of generality, we may

assume that E, Fare simle left ideals of k[G], and they will belong to distinct

factors of this product by assumption. We now take the tensor product with

k', getting nothing else but k'[G]. Then we obtain a direct product decomposi-
tion over k'. Since Rv(k)RJl(k) = 0 if v =I J1, this will actually be given by a direct
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product decomposition of each factor RJl(k):

s(k) m(Jl)

k'[G] = n n RJli(k').
Jl=l i=l

Say E = Lv and F = LJl with v =I J1. Then RJlE = O. Hence RJliEk' = 0 for

each i = 1,..., m(J1). This implies that no simple component of Ek' can be

G-isomorphic to anyone of the simple left ideals of RJli' and proves what we

wanted.

Corollary 11.3. The simple characters Xl' . . .

, Xs(k) of Gover k are linearly

independent over any extension k' of k.

Proof. This follows at once from the proposition, together with the linear

independence of the k'-simple characters over k'.

Propositions 11.1 and 11.2 are essentially general statements of an abstract

nature. The next theorem uses Brauer's theorem in its proof.

Theorem 11.4. (Brauer). Let G be a finite group of exponent m. Every
representation ofG over the complex numbers (or an algebraically closedfield

of characteristic 0) is definable over the field Q((m) where (m is a primitive
m-th root of unity.

Proof. Let X be the character of a representation of Gover C, i. e. an effec!ive

character. By Theorem 10.13, we can write

X
=

Cj ind('h),
]

Cj E Z,

the sum being taken over a finite number of subgroups Sj, and «/Ij being a 1-

dimensional character of Sj. It is clear that each «/Ij is definable over Q( (m). Thus

the induced character «/If is definable over Q( (m). Each t/Jf can be written

«/If
= L djlLXIL ,

IL
IL E Z

where {XJl } are the simple characters of Gover Q«(m). Hence

x
= (Cjdjll)Xw

The expression of X as a linear combination of the simple characters over k is

unique, and hence the coefficient

I cjdjJl

j

is > O. This proves what we wanted.
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12. EXAMPLE: GL2 OVER A FINITE FIELD

Let F be a field . We view GL2(F) as operating on the 2-dimensional

vector space V = F
2

. We let Fa be the algebraic closure as usual, and we let

va = Fax Fa = Fa 0 V (tensor product over F). By semisimple, we always
mean absolutely semisimple, i.e. semisimple over the algebraic closure Fa. An

element a E GL2(F) is called semisimple if va is semisimple over F
a

[ aJ. A sub-

group is called semisimple if all its elements are semisimple.
Let K be a separable quadratic extension of F. Let {WI' W2} be a basis of K.

Then we have the regular representation of K with respect to this basis, namely

multiplication representing K* as a subgroup of GL2(F). The elements of norm

1 correspond precisely to the elements of SL2(F) in the image of K*. A different

choice of basis of K corresponds to conjugation of this image in GL2(F). Let CK

denote one of these images. Then CK is called a non-split Cartan subgroup.
The subalgebra

F[CKJ C Mat2(F)

is isomorphic to K itself, and the units of the algebra are therefore the elements

of CK
= K*.

Lemma 12.1. The subgroup CK is a maximal commutative semisimple

subgroup.

Proof. If a E GL2(F) commutes with all elements of CK then a must lie in

F[CK]' for otherwise {I, a} would be linearly independent over F[CK]' whence

Mat2(F) would be c.ommutative, which is not the case. Since a is invertible, a

is a unit in F[CKJ, so a E CK ,
as was to be shown.

By the split Cartan subgroup we mean the group of diagonal matrices

( )Witha,dEF*.
We denote the split Cartan by A, or A(F) if the reference to F is needed.

By a Cartan subgroup we mean a subgroup conjugate to the split Cartan or

to one of the subgroups CK as above.

Lemma 12.2. Every maximal commutative semisimple subgroup of GL2(F)
is a Cartan subgroup, and conversely.

Proof. It is clear that the split Cartan subgroup is maximal commutative

semisimple. Suppose that H is a maximal commutative semisimple subgroup of

GL2(F). If H is diagonalizable over F, then H is contained in a conjugate of the

split Cartan. On the other hand, suppose H is not diagonalizable over F. It is

diagonalizable over the separable closure of F, and the two eigenspaces of
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dimension 1 give rise to two characters

«/1, «/1' : H FS*

of H in the multiplicative group of the separable closure. For each element

a E H the values «/1( a) and «/1'( a) are the eigenvalues of a, and for some element

a E H these eigenvalues are distinct, otherwise H is diagonalizable over F.

Hence the pair of elements «/1( a), «/1'( a) are conjugate over F. The image «/1(H)
is cyclic, and if «/1( a) generates this image, then we see that «/1( a) generates a

quadratic extension K of F. The map

a «/1(a) with a E H

extends to an F-linear mapping, also denoted by «/1, of the algebra F[H] into K.

Since F[H] is semisimple, it follows that «/1 : F[H] K is an isomorphism.
Hence «/1 maps H into K*, and in fact maps H onto K* because H was taken to

be maximal. This proves the lemma.

In the above proof, the two characters «/1, «/1' are called the (eigen)characters
of the Cartan subgroup. In the split case, if a has diagonal elements, a, d then

we get the two characters such that «/1(a) =
a and «/1'(a) = d. In the split case,

the values of the characters are in F. In the non-split case, these values are

conjugate quadratic over F, and lie in K.

Proposition 12.3. Let H be a Cartan subgroup ofGL2(F) (split or not). Then

H is of index 2 in its normalizer N(H).

Proof. We may view GL2(F) as operating on the 2-dimensional vector space

va = Fa EB Fa, over the algebraic closure Fa. Whether H is split or not, the

eigencharacters are distinct (because of the separability assumption in the non-

split case), and an element of the normalizer must either fix or interchange the

eigenspaces. If it fixes them, then it lies in H by the maximality of H in Lemma

12.2. If it interchanges them, then it does not lie in H, and generates a unique
coset of NIH, so that H is of index 2 in N.

In the split case, a representative of NIA which interchanges the eigenspaces
is given by

w
= ( ) .

In the non-split case, let a-: K K be the non-trivial automorphism. Let

{a, a-a} be a normal basis. With respect to this basis, the matrix of a- is precisely
the matrix

w
= ( ) .

Therefore again in this case we see that there exists a non-trivial element in the
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normalizer of A. Note that it is immediate to verify the relation

M(a-)M(x)M(a--
1
) = M(ax),

if M(x) is the matrix associated with an element x E K.

Since the order of an element in the multiplicative group of a field is prime
to the characteristic, we conclude:

IfF has characteristic p, then an element offinite order in GL2(F) is semisimple

if and only if its order is prime to p.

Conjugacy classes

We shall determine the conjugacy classes explicitly . We specialize the sit-

uation, and from now on we let:

F = finite field with q elements;

G = GL2(F);

Z = center of G;

A = diagonal subgroup of G;

C = K* = a non-split Cartan subgroup of G.

Up to conjugacy there is only one non-split Cartan because over a finite field

there is only one quadratic extension (in a given algebraic closure Fa) (cf.

Corollary 2.7 of Chapter XIV). Recall that

#(G) = (q2
-

1)(q2
-

q)
=

q(q + I)(q
- 1)2.

This should have been worked out as an exercise before. Indeed, F x F has q2
elements, and #(G) is equal to the number of bases of F x F. There are q2

- 1

choices for a first basis element, and then q2
-

q choices for a second (omitting

(0, 0) the first time, and all chosen elements the second time). This gives the

value for #(G).
There are two cases for the conjugacy classes of an element a.

Case 1. The characteristic polynomial is reducible, so the eigenvalues lie

in F. In this case, by the Jordan canonical form, such an element is conjugate
to one of the matrices

( ), ( ), ( ) with d * a.

These are called central, unipotent, or rational not central respectively.

Case 2. The characteristic polynomial is irreducible. Then a is such that

F[a] = E, where E is the quadratic extension of F of degree 2. Then {I, a} is

a basis of F[a] over F, and the matrix associated with a under the representation

by multiplication on F[ a] is

(
0 -b

) ,

1 -a
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where a, b are the coefficients of the characteristic polynomial X
2

+ ax + b.

We then have the following table.

Table 12.4

class # of classes # of elements in the class

( ) q
- 1 1

( :) q
- 1 q2

- 1

( ) 1

q2 + q-(q
-

l)(q
-

2)
2

with a =1= d

a E C - F*
1

q2
_

q-(q
-

l)q
2

In each case one computes the number of elements in a given class as the index

of the normalizer of the element (or centralizer of the element). Case 1 is trivial.

Case 2 can be done by direct computation, since the centralizer is then seen to

consist of the matrices

G ), X E F,

with x =1= O. The third and fourth cases can be done by using Proposition 12.3.

As for the number of classes of each type, the first and second cases correspond
to distinct choices of a E F* so the number of classes is q

- 1 in each case. In

the third case, the conjugacy class is determined by the eigenvalues. There are

q
- 1 possible choices for a, and then q

- 2 possible choices for d. But the

non-ordered pair of eigenvalues determines the conjugacy class, so one must

divide (q - 1) (q - 2) by 2 to get the number of classes. Finally, in the case

of an element in a non-split Cartan, we have already seen that if (J generates

Gal(K/F), then M(ax) is conjugate to M(x) in GL2 (F). But on the other

hand, suppose x, x' E K* and M(x), M(x') are conjugate in GL2 (F) under a given

regular representation of K* on K with respect to a given basis. Then this

conjugation induces an F-algebra isomorphism on F[CK], whence an automor-

phism ofK, which is the identity, or the non-trivial automorphism u. Consequently
the number of conjugacy classes for elements of the fourth type is equal to

#(K)
-

#(F) q2
-

q

2 2

which gives the value in the table.
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Borel subgroup and induced representations

We let:

U =

group of unipotent elements ( );
B = Borel subgroup

= UA = AU.

Then #(B) =

q(q
- 1)2 = (q

- I )(q2
-

q). We shall construct representations
of G by inducing characters from B, and eventually we shall construct all irre-

ducible representations of G by combining the induced representations in a suitable

way. We shall deal with four types of characters. Except in the first type, which

is I-dimensional and therefore obviously simple, we shall prove that the other

types are simple by computing induced characters. In one case we need to subtract

a one-dimensional character. In the other cases, the induced character will turn

out to be simple. The procedure will be systematic. We shall give a table of

values for each type. We verify in each case that for the character X which we

want to prove simple we have

L Ix(I3)1
2

= #(G),
{3EG

and then apply Theorem 5 .17(a) to get the simplicity. Once we have done this

for all four types, from the tables of values we see that they are distinct. Finally,
the total number of distinct characters which we have exhibited will be equal to

the number of conjugacy classes, whence we conclude that we have exhibited

all simple characters.

We now carry out this program. I myself learned the simple characters of

GL2(F) from a one-page handout by Tate in a course at Harvard, giving the

subsequent tables and the values of the characters on conjugacy classes. I filled

out the proofs in the following pages.

First type

J.L : F* C* denotes a homomorphism. Then we obtain the character

J.L
0 det: G C *

,

which is I-dimensional. Its values on representatives of the conjugacy classes

are given in the following table.

Table 12.5(1)

X ( ) ( ) ( )d * a

a E C - F*

J..L
0 det J.L(a)2 J..L(a)2 J.L(ad) J.L

0 det( a)
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The stated values are by definition. The last value can also be written

J-L(det a) =

J-L(NK/F(a»,

viewing a as an element of K*
, because the reader should know from field theory

that the determinant gives the norm.

A character of G will be said to be of first type if it is equal to J.L
0 det for

some J-L. There are q
- 1 characters of first type, because #(F*) =

q
- 1.

Second type

Observe that we have BIU = A. A character of A can therefore be viewed

as a character on B via BIU . We let:

«/IlL
=

resA (J-L 0 det), and view «/IlL therefore as a character on B. Thus

IL( :) = p.(ad).

We obtain the induced character

«/I
= ind(<</IIL).

Then «/I is not simple. It contains J-L
0 det, as one sees by Frobenius reciprocity:

<indg",I"J.l 0 det)G = <I"J.l 0 det)B = B) E 1J.l 0 det(p)1
2

= 1.
# peB

Characters X
=

«/I
-

J-L
0 det will be called of second type.

The values on the representatives of conjugacy classes are as follows.

Table 12.5(11)

X ( ) ( ) ( )d * a

a E C - F*

«/I
-

J-L
0 det qJ-L(a)2 0 J-L(ad)

-

J.L
0 det( a)

Actually, one computes the values of t/J, and one then subtracts the value of

() 0 del. For this case and the next two cases, we use the formula for the induced

function:

ind}i(cp)(a) =

#() {3G CPH({3aW
1
)

where ({)H is the function equal to ({) on Hand 0 outside H. An element of the

center commutes with all {3 E G, so for ({)
=

t/JIL
the value of the induced character
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on such an element is

#(G) 2 _ 2

#(B)
JL(a) - (q + l)JL(a) ,

which gives the stated value.

For an element u
= ( ), the only elements f3 E G such that f3u{r

I
lies

in B are the elements of B (by direct verification). It is then immediate that

ind("',J( ) = p.(af,

which yields the stated value for the character X. Using Table 12.4, one finds

at once that L I x({3) 1
2

= #(G), and hence;

A character X of second type is simple.

The table of values also shows that there are q
- 1 characters of second type.

The next two types deal especially with the Cartan subgroups.

Third type

«/1 : A C* denotes a homomorphism.

As mentioned following Proposition 12.3, the representative w
=

WA
= w-

1
for

N(A)IA is such that

w( )w = ( ) = a
W

if a = ( ).
Thus conjugation by w is an automorphism of order 2 on A. Let [w] «/1 be the

conjugate character; that is, ([w]«/1)(a) = «/1(waw) = «/1(a
W

) for a E A. Then

[w] (f-l 0 det) ==

f-l 0 del. The characters f-l 0 det on A are precisely those which are

invariant under [w]. The others can be written in the form

'" ( ) = "'1 (a)"'2(d),

with distinct characters «/11' «/12: F* C*. In light of the isomorphism
BIU = A, we view «/1 has a character on B. Then we form the induced character

«/1G = ind(<</1) = ind([w]«/1).

With «/1 such that [w] «/1 =1= «/1, the characters X
= «/1G will be said to be of the

third type. Here is their table of values.
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Table 12.5(111)

x ( ) ( ) a = ( )d * a

a E C - F*

t/1G
(q + 1 )t/J(a) t/J(a) t/J( a) + t/J( a

W

) 0
t/J =1= [w] t/1

The first entry on central elements is immediate. For the second, we have already
seen that if {3 EGis such that conjugating

13( )WI E B,

then (3 E B, and so the formula

ifP(a) =

#:B) I3G I/IB(l3aW
I
)

immediately gives the value of «/p on unipotent elements. For an element of A

with a =1= d, there is the additional possibility of the normalizer of A with the

elements w, and the value in the table then drops out from the formula. For

elements of the non-split Cartan group, there is no element of G which conjugates
them to elements of B, so the value in the last column is O.

We claim that a character X
= t/JG of third type is simple.

The proof again uses the test for simplicity, i. e. that L 1 x({3) 1
2

= # (G). Observe

that two elements a, a' E A are in the same conjugacy class in G if and only if

a' = a or a' = [w]a. This is verified by brute force. Therefore, writing the

sum L 1 t/JG({3) 1
2

for (3 in the various conjugacy classes, and using Table 12.4,

we find:

L 1 t/JG({3) 1
2

=

(q + 1)2(q
-

I)
{3EG

+ (q
-

1)(q2
-

I) + (q2 + q) L 1 t/J(a) + t/J(a") 1 2.
uE(A -F*)/w

The third term can be written

(q2 + q) aEF* (I/I(a) + I/I(a
W

»( I/I(a -I) + I/I(a -W»

=

2

1

(q2 + q) L (l + 1 + I/I(a l-w) + I/I(a
w
- l

».
U EA -F*

We write the sum over a E A - F* as a sum for a E A minus the sum for
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a E F*. If a E F* then a
l - w

=
a

W
- 1

= I. By assumption on «/1, the character

a «/1(a
l - w

) for a E A

is non-trivial, and therefore the sum over a E A is equal to O. Therefore, putting
these remarks together, we find that the third term is equal to

1

2
(q2 + q)[2(q

- 1)2 -

2(q
-

1)
-

2(q
-

1)] = q(q2
-

I)(q
-

3).

Hence finally

L I t/P(J3) (2 =

(q + 1)(q2
-

I) + (q
- 1)(q2

-

I) + q(q2
-

I)(q
-

3)
(3EG

=

q(q
-

1)(q2
-

I) = #(G),

thus proving that «/1G is simple.

Finally we observe that there are !(q
-

I)(q
-

2) characters of third type.

This is the number of characters «/1 such that [w] «/1 =1= «/1, divided by 2 because

each pair «/1 and [w] «/1 yields the same induced character «/1
G

. The table of values

shows that up to this coincidence, the induced characters are distinct.

Fourth type

o : K* C* denotes a homomorphism, which is viewed as a character on

C = CK .

By Proposition 12.3, there is an element WE N(C) but w C, w
= w-

1
. Then

a waw
= [w] a

is an automorphism of C, but x wxw is also a field automorphism of

F[C] = Kover F. Since [K : F] = 2, it follows that conjugation by w is the auto-

morphism a a
q

. As a result we obtain the conjugate character [w] 8 such that

([w] 0)(a) = 8([w] a) = O( a
W

),

and we get the induced character

OG = indg(O) = indg([w]O).

Let J..L : F* C * denote a homomorphism as in the first type. Let:

A : F+ C* be a non-trivial homomorphism.

(JL, ,\) = the character on ZU such that

(JL, A)(( :)) = JL(a)A(x).

(JL, ,\)G = indu(J..L, ,\).
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A routine computation of the same nature that we have had previously gives the

following values for the induced characters OG and (J.L, A)G.

x ( ) ( ) ( )d * a

a E C - F*

OG (q2
-

q)O(a) 0 0 O( a) + O( a
W

)

(J.L, A)G (q2
- 1 )J-L(a)

-

JL(a) 0 0

These are intermediate steps. Note that a direct computation using Frobenius

reciprocity shows that OG occurs in the character (res 0, A)G, where the restriction

res 0 is to the group F*, so res 0 is one of our characters J-L. Thus we define:

0' = (res 0, A)G - OG = ([w]O)',

which is an effective character. A character 0' is said to be of fourth type if 0

is such that 0 =/; [w] O. These are the characters we are looking for. Using the

intermediate table of values, one then finds the table of values for those characters

of fourth type.

Table 12.5(IV)

x ( ) ( ) ( )d * a

a E C - F*

0'
(q

-

l)O(a)
-

O(a) 0 -

O( a)
-

O( a
W

)
o =1= [w]O

We claim that the characters 0' offourth type are simple.
To prove this, we evaluate

L I 0'(13) I
2

=

(q
-

1) iq
-

1) + (q
- 1 )(q

2
- 1 )

(3EG

+ 4(q2 -

q) aE{;-F* 18(a) + 8(a") I 2.

We use the same type of expansion as for characters of third type, and the final

value does turn out to be #(G), thus proving that 0' is simple.
The table also shows that there are4#(C -

F*) = 4(q2
-

q) distinct characters

of fourth type. We thus come to the end result of our computations.



722 REPRESENTATIONS OF FINITE GROUPS XVIII, Ex

Theorem 12.6. The irreducible characters of G = GL2(F) are as follows.

type
number of

dimension
that type

I J.L
0 det q

- 1 1

II «/1
-

J..L
0 det q

- 1 q

III «/1G from pairs «/1 =1= [w] t/1
1

1-(q
-

l)(q
-

2) q+
2

IV ()' from pairs () =1= [w] ()
1

q
- 1-(q

-

l)q
2

Proof. We have exhibited characters of four types. In each case it is imme-

diate from our construction that we get the stated number of distinct characters

of the given type. The dimensions as stated are immediately computed from the

dimensions of induced characters as the index of the subgroup from which we

induce, and on two occasions we have to subtract something which was needed

to make the character of given type simple. The end result is the one given in

the above table. The total number of listed characters is precisely equal to the

number of classes in Table 12.4, and therefore we have found all the simple

characters, thus proving the theorem.

EXERCISES

1. The group 53. Let 83 be the symmetric group on 3 elements,

(a) Show that there are three conjugacy classes.

(b) There are two characters of dimension 1, on S3/A3.

(c) Let d
j (i = 1, 2, 3) be the dimensions of the irreducible characters. Since

L dt = 6, the third irreducible character has dimension 2. Show that

the third representation can be realized by considering a cubic equation
X3 + aX + b = 0, whose Galois group is 83 over a field k. Let V be the k-

vector space generated by the roots. Show that this space is 2-dimensional

and gives the desired representation, which remains irreducible after tensoring
with k a

.

(d) Let G =

S3. Write down an idempotent for each one of the simple components

of C[G]. What is the multiplicity of each irreducible representation of G in

the regular representation on C[G]?
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2. The groups S4 and A4. Let S4 be the symmetric group on 4 elements.

(a) Show that there are 5 conjugacy classes.

(b) Show that A4 has a unique subgroup of order 4, which is not cyclic, and

which is normal in S4. Show that the factor group is isomorphic to S3' so

the representations of Exercise 1 give rise to representations of S4.

(c) Using the relation 2: dr = #(S4) = 24, conclude that there are only two other

irreducible characters of 84 , each of dimension 3.

(d) Let X4 + a2X2 + a.X + ao be an irreducible polynomial over a field k, with

Galois group 54. Show that the roots generate a 3-dimensional vector space

V over k, and that the representation of S4 on this space is irreducible, so

we obtain one of the two missing representations.

(e) Let p be the representation of (d). Define p' by

p'(a) = p(a) if a is even;

p' (a) = -p(a) if a is odd.

Show that p' is also irreducible, remains irreducible after tensoring with ka,

and is non-isomorphic to p. This concludes the description of all irreducible

representations of S4.

(f) Show that the 3-dimensional irreducible representations of S4 provide an

irreducible representation of A4.

(g) Show that all irreducible representations ofA4 are given by the representations
in (f) and three others which are one-dimensional.

3. The quaternion group. Let Q = { + 1, +
x,

+
y,

+ z} be the quaternion group, with

x
2

= y2 = Z2 = -1 and xy
=

-yx, xz =

-zx, yz
=

-zy.

(a) Show that Q has 5 conjugacy classes.

Let A = { + I}. Then Q/A is of type (2,2), and hence has 4 simple characters,

which can be viewed as simple characters of Q.

(b) Show that there is only one more simple character of Q, of dimension 2.

Show that the corresponding representation can be given by a matrix rep-

resentation such that

p(x)
= ( ) ,

-l (
0 1

) (
0 i

)p(y)
=

-1 0'
p(z)

=

i O.

(c) Let H be the quaternion field, i.e. the algebra over R having dimension 4,

with basis {I, x, y, z} as in Exercise 3, and the corresponding relations as

above. Show that C (8) RH = Mat2(C) (2 x 2 complex matrices). Relate this

to (b).

4. Let S be a normal subgroup of G. Let «/1 be a simple character of S over C. Show

that ind( «/1) is simple if and only if «/1 = [a] «/1 for all a E S.

5. Let G be a finite group and S a normal subgroup. Let p be an irreducible representation
of Gover C. Prove that either the restriction of p to S has all its irreducible components

S-isomorphic to each other, or there exists a proper subgroup H of G containing S

and an irreducible representation (J of H such that p
::::::: ind(J).

6. Dihedral group D2n . There is a group of order 2n (n even integer
>

2) generated

by two elements a, 7' such that
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an = 1, T
2 = 1, and TaT

= a-
1

.

It is called the dihedral group.

(a) Show that there are four representations of dimension 1, obtained by the four

possible values + 1 for a and T.

(b) Let en be the cyclic subgroup of D2n generated by a. For each integer

r = 0, . . .
,

n
- 1 let I/Ir be the character of en such that

t/Jr((J) = (r (( = prim. n-th root of unity)

Let Xr be the induced character. Show that Xr
=

Xn-r'

(c) Show that for 0 < r < n/2 the induced character Xr is simple, of dimension

2, and that one gets thereby (
-

I) distinct characters of dimension 2.

(d) Prove that the simple characters of (a) and (c) give all simple characters of

D2n .

7. Let G be a finite group, semidirect product of A, H where A is commutative and

normal. Let A" = Hom(A, C*) be the dual group. Let G operate by conjugation on

characters, so that for a E G, a E A, we have

[a] I/I(a) = I/I(a-Ia a) .

Let 1/11' . . .
, I/Ir be representatives of the orbits of H in A", and let H;(i

= 1,. . .
, r)

be the isotropy group of I/Ii. Let Gi
=

AH;.

(a) For a E A and h E Hi, define I/Ii(ah)
=

I/I;(a). Show that 1/1; is thus extended

to a character on G;.
Let (J be a simple representation of H; (on a vector space over C). From

H;
= G;/A, view (J as a simple representation of G;. Let

P;,8
=

indg,( 1/1; 0 (J).

(b) Show that P;,8 is simple.

(c) Show that P;,8
=

Pi:8' implies i = i' and (J = (J'.

(d) Show that every irreducible representation of G is isomorphic to some P ;,8

8. Let G be a finite group operating on a finite set S. Let C[S] be the vector space

generated by S over C. Let 1/1 be the character of the corresponding representation
of G on C[S].

(a) Let a E G. Show that I/I( a) = number of fixed points of a in S.

(b) Show that (1/1, 1 G)G is the number of G-orbits in S.

9. Let A be a commutative subgroup of a finite group G. Show that every irreducible

representation of Gover C has dimension -<
(G : A).

10. Let F be a finite field and let G = SL2(F). Let B be the subgroup of G consisting of

all matrices

a == ( :) E SL2(F), so d == a-I,

Let J.L : F* C* be a homomorphism and let I/I#J. : B C* be the homomorphism
such that 1/I#J.(a)

= J.L(a). Show that the induced character ind(I/I#J.) is simple if

1L2 =1= 1.
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11. Determine all simple characters of SL2(F), giving a table for the number of such

characters, representatives for the conjugacy classes, as was done in the text for GL2 ,

over the complex numbers.

12. Observe that A5 = SL2(F4) = PSL2(F5). As a result, verify that there are 5 conjugacy
classes, whose elements have orders 1, 2, 3, 5, 5 respectively, and write down

explicitly the character table for A5 as was done in the text for GL2 .

13. Let G be a p-group and let G Aut(V) be a representation on a finite dimensional

vector space over a field of characteristic p. Assume that the representation is irre-

ducible. Show that the representation is trivial, i.e. G acts as the identity on V.

14. Let G be a finite group and let C be a conjugacy class. Prove that the following two

conditions are equivalent. They define what it means for the class to be rational.

RAT 1. For all characters X of G, x(a) E Q for a E C.

RAT 2. For all a E C, and j prime to the order of a, we have aj E C.

15. Let G be a group and let HI, H2 be subgroups of finite index. Let PI' P2 be repre-

sentations of HI, H2 on R-modules F I ,
F2 respectively. Let MG(F I ,

F
2 ) be the R-

module of functions!: G HomR(F I'
F2) such that

!(h l ah2 ) = P2(h2 )!(a)PI(h l )

for all a E G, h; E H; (i = 1, 2). Establish an R-module isomorphism

HomR(Fy, Ffj) MG(F., F
2 ).

By Fy we have abbreviated ind (F;).
I

16. (a) Let G I ,
G2 be two finite groups with representations on C-spaces E I , E 2 . Let

E I 0 E
2 be the usual tensor product over C, but now prove that there is an action

of G I
x G2 on this tensor product such that

(ai' a2)(x (8) y) =

alx (8) a2Y for al E G I , a2 E G2 .

This action is called the tensor product of the other two. If PI' P2 are the

representations of G I , G2 on EI' E 2 respectively, then their tensor product is

denoted by PI (8) P2. Prove: If PI' P2 are irreducible then P2 (8) P2 is also irreducible.

[Hint: Use Theorem 5.17.]

(b) Let XI' X2 be the characters of PI' P2 respectively. Show that XI (8) X2 is the

character of the tensor product. By definition,

XI (8) X2(al, a2)
=

XI(al) X2(a2).

17. With the same notation as in Exercise 16, show that every irreducible representation
of G I

x G2 over C is isomorphic to a tensor product representation as in Exercise

16. [Hint: Prove that if a character is orthogonal to all the products XI (8) X2 of

Exercise 16(b) then the character is 0.]

Tensor product representations

18. Let P be the non-commutative polynomial algebra over a field k, in n variables. Let

Xl' . . .
, x, be distinct elements of PI (i.e. linear expressions in the variables t 1, . . .

,
t
n)



726 REPRESENTATIONS OF FINITE GROUPS XVIII, Ex

and let a h . . .
,

a
r

E k. If

alX + ... + arx; = 0

for all integers v = 1, ..

.,
r show that a i

= 0 for i = 1,..., r. [Hint: Take the

homomorphism on the commutative polynomial algebra and argue there.]

19. Let G be a finite set of endomorphisms of a finite-dimensional vector space E over the

field k. For each a E G, let CfT be an element of k. Show that if

L C(1 Tr(a) = 0

(1eG

for all integers r > 1, then C(1
= 0 for all a E G. [Hint: Use the preceding exercise, and

Proposition 7.2 of Chapter XVI.]

20. (Steinberg). Let G be a finite monoid, and k[G] the monoid algebra over a field k. Let

G -+ Endk(E) be a faithful representation (i.e. injective), so that we identify G with a

multiplicative subset of Endk(E). Show that Tr induces a representation of G on Tr(E),
whence a representation of k[G] on Tr(E) by linearity. If ex E k[G] and if Tr(ex) = 0 for

all integers r > 1, show that ex = O. [Hint: Apply the preceding exercise.]

21. (Burnside). Deduce from Exercise 20 the following theorem of Burnside: Let G be

a finite group, k a field of characteristic prime to the order of G, and E a finite

dimensional (G, k)-space such that the representation of G is faithful. Then every

irreducible representation of G appears with multiplicity
> 1 in some tensor power

T
r

(E) .

22. Let X(G) be the character ring of a finite group G, generated over Z by the simple
characters over C. Show that an elementf E X(G) is an effective irreducible character

if and only if (f, f)G = 1 and f( 1)
> O.

23. In this exercise, we assume the next chapter on alternating products. Let p be an

irreducible representation of G on a vector space E over C. Then by functoriality we

have the corresponding representations sr(p) and /,{(p) on the r-th symmetric power

and r-th alternating power of E over C. If X is the character of p, we let sr(X) and

/'{(X) be the characters of sr(p) and /,{(p) respectively, on sr(E) and /,{(E). Let t

be a variable and let

00 00

at(x)
= L s r(X) t

r

, At(X) = L /'{(X) t
r

.

r=O rO

(a) Comparing with Exercise 24 of Chapter XIV, prove that for x E G we have

at(x)(x)
= det(l

-

p(X)t)-1 and A,(X)(x) = det(I + p(x)t).

(b) For a functionf on G define 1JIn(f) by 1JIn(f)(x) =

f(x
n

). Show that

-

d
log IT,(X)

= i 1pn(X)t" and -log L,(X) = i 1pn(X)(n.
dt n

= I dt n
= I

(c) Show that

n

nSn(x)
= L 1JIr(X)sn- r(X) and

r=1

00

n!\n(x) = L (-I)r-
1 1JIr(X)!\n-r(X).

r= 1
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24. Let X be a simple character of G. Prove that 1JI'n(X) is also simple. (The characters

are over C.)

25. We now assume that you know 3 of Chapter xx.

(a) Prove that the Grothendieck ring defined there for Modc(G) is naturally

isomorphic to the character ring X(G).

(b) Relate the above formulas with Theorem 3. 12 of Chapter XX.

(c) Read Fulton-Lang's Riemann-Roeh Algebra, Chapter I, especially 6, and

show that X(G) is a A-ring, with 1JI'n as the Adams operations.

Note. For further connections with homology and the cohomology of groups, see

Chapter XX, 3, and the references given at the end of Chapter XX, 3.

26. The following formalism is the analogue of Artin's formalism of L-series in number

theory. Cf. Artin's "Zur Theorie der L-Reihen mit allgemeinen Gruppenchar-

akteren", Collected papers, and also S. Lang, "L-series of a covering", Proc. Nat.

Aead Se. USA (1956). For the Artin formalism in a context of analysis, see J. Jor-

genson and S. Lang, "Artin formalism and heat kernels", J. reine angew. Math. 447

(1994) pp. 165-200.

We consider a category with objects {V}. As usual, we say that a finite group G

operates on U if we are given a homomorphism p : G -+ Aut( V). We then say that U is a

G-object, and also that p is a representation of G in U. We say that G operates trivially
if p(G) = ide For simplicity, we omit the p from the notation. By a G-morphism
I: U -+ V between G-objects, one means a morphism such thatf 0 (J = (J 0 ffor all (J E G.

We shall assume that for each G-object V there exists an object U/G on which G

operates trivially, and a G-morphism nu, G : U -+ V/G having the following universal

property : Iff: U -+ V' is a G-morphism, then there exists a unique morphism

f/G: U/G -+ U'/G

making the following diagram commutative:

U

j
V/G

f
) V'

j
) V'/G

fiG

In particular, if H is a normal subgroup of G, show that G/H operates in a natural way

on U/H.
Let k be an algebraically closed field of characteristic o. We assume given a functor

E from our category to the category of finite dimensional k-spaces. If V is an object in

our category, and I: V -+ V' is a morphism, then we get a homomorphism

E(/) = f* : E(U) -+ E(V').

(The reader may keep in mind the special case when we deal with the category of

reasonable topological spaces, and E is the homology functor in a given dimension.)
If G operates on V, then we get an operation of G on E(V) by functoriality.
Let U be a G-object, and F: U -+ VaG-morphism. If PF(t) = n (t

-

(Xi) is the

characteristic polynomial of the linear map F
*

: E(V) -+ E(V), we define

ZF(t) = n (1 - ait),
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and call this the zeta function of F. If F is the identity, then ZF(t) = (1
- t)B(U) where

we define B(U) to be dimk E(U).
Let X. be a simple character of G. Let d

x
be the dimension of the simple representation

of G belonging to X, and n = ord(G). We define a linear map on E(U) by letting

d
x , -1

ex
= -

L '1.(0" )0"* .

n
CJeG

Show that e; =

ex' and that for any positive integer J1 we have (ex 0 F*)Jl =

ex
0 F:.

If Px(t) = n (t - Pj{X» is the characteristic polynomial of ex
0 F

*,
define

LF(t, X, UIG) = n (1 -

Pj{X)t).

Show that the logarithmic derivative of this function is equal to

1
00

- -

L tr(ex
0 F:)t

Jl
- I

.

N
Jl= 1

Define LF(t, X, VIG) for any character X by linearity. If we write V = UIG by abuse of

notation, then we also write LF(t, X, UIV). Then for any X, X' we have by definition,

LF(t, X + X', VIV) = LF(t, X, VIV)LF(t, X', UIV).

We make one additional assumption on the situation:

Assume that the characteristic polynomial of

1
-

L 0"*
0 F

*
n

ueG

is equal to the characteristic polynomial ofFIG on E(UIG). Prove the following statement:

(a) If G = {I} then

LF(t, 1, UIV) = ZF(t).

(b) Let V = UIG. Then

LF(t, 1, UIV) = ZF(t).

(c) Let H be a subgroup of G and let t/J be a character of H. Let W = VIH, and let

t/JG be the induced character from H to G. Then

LF(t, t/J, U/W) =

LF(t, t/JG, U/V).

(d) Let H be normal in G. Then GIH operates on UIH = W. Let 1/1 be a character

of GIH, and let X be the character of G obtained by composing 1/1 with the

canonical map G --+ GIH. Let lp
= FIH be the morphism indu:ed on

UIH = W.

Then

LqJ(t, t/J, WIV) = LF(t, X, UIV).

(e) If V= UIG and B(V) = dimk E(V), show that (1 - t)B(V) divides (1 - t)B(U).
Use the regular character to determine a factorization of (1 - t)B(U).
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27. Do this exercise after you have read some of Chapter VII. The point is that for fields

of characteristic not dividing the order of the group, the representations can be obtained

by "reducing modulo a prime". Let G be a finite group and let p be a prime not

dividing the order of G. Let F be a finite extension of the rationals with ring of

algebraic integers OF. Suppose that F is sufficiently large so that all F-irreducible

representations of G remain irreducible when tensored with Qa = Fa. Let p be a

prime of OF lying above p, and let op be the corresponding local ring.
·

(a) Show that an irreducible (G, F)-space V can be obtained from a (G, op)-
module E free over 0p, by extending the base from 0

p
to F, i. e. by tensoring

so that V = E 0 F (tensor product over 0 p).

(b) Show that the reduction mod p of E is an irreducible representation of G in

characteristic p. In other words, let k = 0 /p =

op/mp where mp is the maximal

ideal of Ope Let E( p) = E 0 k (tensor product over op). Show that G operates

on E(p) in a natural way, and that this representation is irreducible. In fact,

if X is the character of G on V, show that X is also the character on E, and

that X mod m
p

is the character on E( p).

(c) Show that all irreducible characters of G in characteristic p are obtained as

in (b).





CHAPTER X I X

The Alternating Product

The alternating product has applications throughout mathematics. In differ-

ential geometry, one takes the maximal alternating product of the tangent space

to get a canonical line bundle over a manifold. Intermediate alternating products

give rise to differential forms (sections of these products over the manifold). In

this chapter, we give the algebraic background for these constructions.

For a reasonably self-contained treatment of the action of various groups of

automorphisms of bilinear forms on tensor and alternating algebras, together
with numerous classical examples, I refer to:

R. HOWE, Remarks on classical invariant theory, Trans. AMS 313 (1989),

pp. 539-569

1 DEFINITION AND BASIC PROPERTIES

Consider the category of modules over a commutative ring R.

We recall that an r-multilinear map f: E(r) F is said to be alternating
if f(xl' . .

.,
x

r) = 0 whenever Xi
=

Xj for some i =I j.

Let a
r

be the submodule of the tensor product Tr(E) generated by all elements

of type

Xl (8) . . . (8) X
r

where Xi
=

Xj for some i =I j. We define

/\r(E) = Tr(E)/ar
.

Then we have an r-multilinear map E(r) /\r(E) (called canonical) obtained

731
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from the composition

E(r) -+ Tr(E) Tr(E)/or = /\ r(E).

It is clear that our map is alternating. Furthermore, it is universal with respect

to r-multilinear alternating maps on E. In other words, if f : E(r) F is such a

map, there exists a unique linear map f* : /\r(E) F such that the following

diagram is commutative:

/\r(E)

E(r)/

jf.
F

Our map f* exists because we can first get an induced map Tr(E) F making
the following diagram commutative:

Tr(E)

E(r)
/

j
F

and this induced map vanishes on Or, hence inducing our f*.
The image of an element (x l' . . .

,
X

r) E E(r) in the canonical map into

/\r(E) will be denoted by Xl 1\ ... 1\ Xr' It is also the image of Xl (8) . . . (8) X
r
in

the factor homomorphism Tr(E) /\r(E).
In this way, f\r becomes a functor, from modules to modules. Indeed, let

u: E F be a homomorphism. Given elements Xl" .
., X

r
E E, we can map

(Xl' . . .
,

X
r) U(XI) "

· . ·

1\ U(Xr) E f\r(F).

This map is multilinear alternating, and therefore induces a homomorphism

f\r(u): f\r(E) f\r(F).

The association U f\r(u) is obviously functorial.

Example. Open any book on differential geometry (complex or real) and

you will see an application of this construction when E is the tangent space of

a point on a manifold, or the dual of the tangent space. When taking the dual,

the construction gives rise to differential forms.

We let /\(E) be the direct sum

00

/\ (E) = ffi /\ r(E).
r=O
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We shall make I\(E) into a graded R-algebra and call it the alternating algebra
of E, or also the exterior algebra, or the Grassmann algebra. We shall first

discuss the general situation, with arbitrary graded rings.
Let G be an additive monoid again, and let A = EB Ar be a G-graded

reG

R-algebra. Suppose given for each Ar a submodule ar, and let a = EB are
reG

Assume that a is an ideal of A. Then a is called a homogeneous ideal, and we can

define a graded structure on Ala. Indeed, the bilinear map

Ar x As A
r + s

sends a
r

x As into a
r + s

and similarly, sends A, x as into a
r + s

. Thus using repre-

sentatives in Ar, As respectively, we can define a bilinear map

Ar/ar x Aslas Ar+slar + s ,

and thus a bilinear map A/a x Ala A/a, which obviously makes Ala into a

graded R-algebra.
We apply this to Tr(E) and the modules a

r
defined previously. If

Xi
= X

j (i =I j)

in a product Xl 1\ ... 1\ X" then for any Yb . . .

, Ys E E we see that

Xl 1\ ... 1\ X
r

1\ Y 1
1\ ... 1\ Ys

lies in a
r + s ,

and similarly for the product on the left. Hence the direct sum EB a
r

is an ideal of T(E), and we can define an R-algebra structure on T(E)/a. The

product on homogeneous elements is given by the formula

((x 1 1\ ... 1\ X
r), (y 1 1\ ... 1\ Ys)) X I

1\ ... 1\ X
r

1\ Y I
1\ ... 1\ YS

.

We use the symbol 1\ also to denote the product in /\(E). This product is called

the alternating product or exterior product. If x E E and y E E, then

x 1\ y
=

-y 1\ x, as follows from the fact that (x + y) 1\ (x + y)
= o.

We observe that /\ is a functor from the category of modules to the category

ofgraded R-algebras. To each linear map f : E -+ F we obtain a map

/\(f) : /\(E) /\(F)

which is such that for Xl' . . .

,
X

r
E E we have

/\(f)(Xl 1\ ... 1\ X
r) = f(xl) 1\ ... 1\ f(xr).

Furthermore, /\(f) is a homomorphism of graded R-algebras.
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Proposition 1.1. Let E be free of dimension n over R. If r » n then

/\r(E) = O. Let {VI' . . .
,

v
n } be a basis of E over R. If 1 < r < fl, then

/\r(E) is free over R, and the elements

V; 1
1\

. . ·

1\ v;r' i1<"'<ir

form a basis of /\r(E) over k. We have

dimR /\r(E) = ().
Proof. We shall first prove our assertion when r = n. Every element of E

can be written in the form L ai Vi' and hence using the formula x 1\ y
= -

Y 1\ X

we conclude that V l
1\ ... 1\ V

n generates /\n(E). On the other hand, we know

from the theory of determinants that given a E R, there exists a unique multi-

linear alternating form fa on E such that

fa(v 1, . . .

,
V

n) = a.

Consequently, there exists a unique linear map

/\n(E) R

taking the value a on v 1
1\ ... 1\ V

n
. From this it follows at once that

V l 1\ ... 1\ V
n

is a basis of /\n(E) over R.

We now prove our statement for 1 < r < n. Suppose that we have a relation

o = a
(

'

)
v' 1\... 1\ v'

i...J I II Ir

with i
1

< · · · < i rand a(O E R. Select any r-tuple (j) =

(jl' . . .
, jr) such that

jl < ... < jr and letjr+ 1'... ,jn be those values ofi which do not appear among

(jb... ,jr). Take the alternating product with Vjr+1 1\ ..'1\ Vjn. Then we shall

have alternating products in the sum with repeated components in all the terms

except the (j)-term, and thus we obtain

o = a
(

'

)
v ' 1\... 1\ v' 1\ ... 1\ v' .

J 11 Jr In

Reshuffling vh 1\ ... 1\ v
jn

into V l 1\ ... 1\ V
n simply changes the right-hand

side by a sign. From what we proved at the beginning of this proof, it follows

that aU)
= O. Hence we have proved our assertion for 1 < r < n.

When r = 0, we deal with the empty product, and 1 is a basis for /\O(E) = R

over R. We leave the case r > n as a trivial exercise to the reader.

The assertion concerning the dimension is trivial, considering that there is a

bijection between the set of basis elements, and the subsets of the set of integers

( 1, . . .

, n).
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Remark. It is possible to give the first part of the proof, for /\n(E), without

assuming known the existence of determinants. One must then show that an

admits a I-dimensional complementary submodule in Tn(E). This can be done

by simple means, which we leave as an exercise which the reader can look up

in the more general situation of 4. When R is a field, this exercise is even more

trivial, since one can verify at once that VI 0 . · · 0 V
n

does not lie in an. This

alternative approach to the theorem then proves the existence of determinants.

Proposition 1.2. Let

o E' E E" 0

be an exact sequence offree R-modules offinite ranks r, n, and s respectively.
Then there is a natural isomorphism

cP : I\
r
E' 0 I\s E" 1\ nEe

This isomorphism is the unique isomorphism having the following property. For

elements VI' . .
.,

v
r

E E' and WI' . .
.,

W
s

E E", let UI' . . ., Us be liftings of

WI, . . . ,
W

s
in E. Then

CP«VI 1\
. · ·

1\ v
r) 0 (wI 1\

· · ·

1\ w
s » =

VI 1\
. · .

1\ V
r

1\ UI 1\
...

1\ us.

Proof. The proof proceeds in the usual two steps. First one shows the

existence of a homomorphism cP having the desired effect. The value on the right
of the above formula is independent of the choice of u.,..., Us lifting

WI' . . .
,

W
s by using the alternating property, so we obtain a homomorphism cpo

Selecting in particular {V.,..., v
r} and {WI'.." w

s } to be bases of E' and E"

respectively, one then sees that cp is both injective and surjective. We leave the

details to the reader.

Given a free module E of rank n, we define its determinant to be

detE = I\
max

E = I\
n
E.

Then Proposition 1.2 may be reformulated by the isomorphism formula

det(E') 0 det(E") = det(E).

If R = k is a field, then we may say that det is an Euler-Poincare map on the

category of finite dimensional vector spaces over k.

Example. Let V be a finite dimensional vector space over R. By a volume

on V we mean a norm IIII on det V. Since V is finite dimensional, such a norm

is equivalent to assigning a positive number c to a given basis of det(V). Such

a basis can be expressed in the form el 1\
· · ·

1\ en' where {e., . . .
, en} is a basis

of V. Then for a E R we have

II ae I 1\
...

1\ en II = I a I c.
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In analysis, given a volume as above, one then defines a Haar measure J..L on V

by defining the measure of a set S to be

JL(S)
= file) 1\

...

1\ en II dXl
... dx

n ,

s

where Xl' . . .
,

X
n

are the coordinates on V with respect to the above basis. As

an exercise, show that the expression on the right is the independent of the choice

of basis.

Proposition 1.2 is a special case of the following more general situation. We

consider again an exact sequence of free R-modules of finite rank as above. With

respect to the submodule E' of E, we define

/\7E = submodule of /\nE generated by all elements

, ,

Xl /\ ... /\ Xi /\ Yi+l/\
... /\ Yn

with x'l' . . .
, x; E E' viewed as submodule of E.

Then we have a filtration

/\iE ::::> /\i+ 1 E.

Proposition 1.3. There is a natural isomorphism

/\iE' (8) /\n-iE" /\iEI/\i+ lEe

Proof Let X'{,..., X _ i be elements of E", and lift them to elements

Yl, . . .

, Yn-i of E. We consider the map

(
' ,,, "

)
' ,

Xl,...,Xi,Xl"..,Xn-i Xl /\ ... /\ Xi /\ Yl /\ ... /\ Yn-i

with the right-hand side taken mod /\i+ lEe Then it is immediate that this map

factors through

/\iE' (8) /\n-iE" /\iEI/\i+ lE,

and picking bases shows that one gets an isomorphism as desired.

In a similar vein, we have:

Proposition 1.4. Let E = E' EB E" be a direct sum offinite free modules.

Then for every positive integer n, we have a module isomorphism

/\nE E9 /\PE' (8) /\qE".
p+q==n
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In terms of the alternating algebras, we have an isomorphism

I\E = 1\£' 0su I\E".

where 0su is the superproduct of graded algebras.

Proof. Each natural injection of E' and E" into E induces a natural map on

the alternating algebras, and so gives the homomorphism

/\E' (8) /\E" /\E,

which is graded, Le. for p
= 0, . . .

,
n we have

/\PE' (8) /\n-PE" -+ /\nE.

To verify that this yields the desired isomorphism, one can argue by picking
bases, which we leave to the reader. The anti -commutation rule of the alternating

product immediately shows that the isomorphism is an algebra isomorphism for

the super product I\E' 0su 1\£".

We end this section with comments on duality. In Exercise 3, you will prove:

Proposition 1.5. Let E be free of rank n over R. For each positive integer

r, we have a natural isomorphism

I\r(E
V

) = I\r(E)V .

The isomorphism is explicitly described in that exercise. A more precise property

than "natural" would be that the isomorphism is functorial with respect to the

category whose objects are finite free modules over R, and whose morphisms
are isomorphisms.

Examples. Let L be a free module over R of rank 1. We have the dual

module LV =

HomR(L, R), which is also free of the same rank. For a positive

integer m, we define

LfS-m = (LV)fS
m = LV 0", 0 LV (tensor product taken m times).

Thus we have defined the tensor product of a line with itself for negative integers.
We define L

fZ)O = R. You can easily verify that the rule

LfSp 0 LfSq = LfS(p+q)

holds for all integers p, q E Z, with a natural isomorphism. In particular, if

q
=

-p then we get R itself on the right-hand side.

Now let E be an exact sequence of free modules:

E : 0 Eo EI
· · .

Em O.
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We define the determinant of this exact sequence to be

det(E) = Q9 det(E; )(-li.

As an exercise, prove that det(E) has a natural isomorphism with R, functorial

with respect to isomorphisms of exact sequences.

Examples. Determinants of vector spaces or free modules occur in several

branches of mathematics, e. g. complexes of partial differential operators, homol-

ogy theories, the theory of determinant line bundles in algebraic geometry, etc.

For instance, given a non-singular projective variety V over C, one defines the

determinant of cohomology of V to be

det H(V) = Q9 det H;(V)(_l)i,

where H;(V) are the cohomology groups. Then det H(V) is a one-dimensional

vector space over C, but there is no natural identification of this vector space

with C, because a priori there is no natural choice of a basis. For a notable

application of the determinant of cohomology, following work of Faltings, see

Deligne, Le determinant de la cohomologie, in Ribet, K. (ed.), Current Trends

in Arithmetical Algebraic Geometry, Proc. Arcata 1985. (Contemporary Math. vol

67, AMS (1985), pp. 93-178.)

2. FITTING IDEALS

Certain ideals generated by determinants are coming more and more into

use, in several branches of algebra and algebraic geometry. Therefore I include

this section which summarizes some of their properties. For a more extensive

account, see Northcott's book Finite Free Resolutions which I have used, as well

as the appendix of the paper by Mazur-Wiles: "Class Fields ofabelian extensions

of Q," which they wrote in a self-contained way. (Invent. Math. 76 (1984), pp.

179-330.)
Let R be a commutative ring. Let A be a p x q matrix and B a q x s matrix

with coefficients in R. Let r > 0 be an integer. We define the determinant ideal

Ir(A) to be the ideal generated by all determinants of r x r submatrices of A.

This ideal may also be described as follows. Let S: be the set of sequences

J = (j l' . . .

, jr) with 1 < j 1 < j2 < . . . < jr <
p.

Let A = (aij). Let 1 < r < min(p, q). Let K = (k b . . .

,
k

r) be another element

of S:. We define

ahk 1 ah k 2 ahkr

A (r) -
ahk 1

a
j2k 2

a
j2kr

JK
-

a
jrk 1

a
jrk 2

a. kJr r
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where the vertical bars denote the determinant. With J, K ranging over S:
we may view Ark as the JK-component of a matrix A (r) which we call the r-th

exterior power of A.

One may also describe the matrix as follows. Let {e., . . .
,

e
p } be a basis of

RP and {u 1, . . .
,

U
q } a basis of Rq. Then the elements

e. 1\ ".1\ e.
Jl Jr (j 1 < j2 < . . . < jr)

form a basis for /,(RP and similarly for a basis of !\Rq. We may view A as a

linear map of RP into Rq, and the matrix A
lr) is then the matrix representing the

exterior power /'(A viewed as a linear map of /,(RP into I\rRq. On the whole,
this interpretatIon will not be especially useful for certain computations, but it

does give a slightly more conceptual context for the exterior power. Just at the

beginning, this interpretation allows for an immediate proof of Proposition 2. 1.

For r = 0 we define A (0)
to be the 1 x 1 matrix whose single entry is the

unit element of R. We also note that A (1)
= A.

Proposition 2.1. Let A be a p x q matrix and B a q x s matrix. Then

(AB)(r) = A (r)B(r) for r > o.

If one uses the alternating products as mentioned above, the proof simply

says that the matrix of the composite of linear maps with respect to fixed bases

is the product of the matrices. If one does not use the alternating products, then

one can prove the proposition by a direct computation which will be left to the

reader .

We have formed a matrix whose entries are indexed by a finite set S:. For

any finite set S and doubly indexed family (CJK) with J, K E S we may also

define the determinant as

det(cJK) = L £«(J) ( n CJ,(1(J»)(1 JeS

where (J ranges over all permutations of the set.

For r > 0 we define the determinant ideal Ir(A) to be the ideal generated by
all the components of A(r), or equivalently by all r x r subdeterminants of A.

We have by definition

A(O) = Rand A(l) = ideal generated by the components of A.

Furthermore

Ir(A) = 0 for r > min(p, q)

and the inclusions

R = Io(A) ::) Il(A) ::) 1 2 (A) ::) ...
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By Proposition 10.1, we also have

(1) Ir(AB) c Ir(A) n Ir(B).

Therefore, if A = UBU' where U, U' are square matrices of determinant 1, then

(2) Ir(A) = Ir(B).

Next, let E be an R-module. Let Xl' . . .
,
x

q
be generators of E. Then we

may form the matrix of relations (a 1, . . .

,
a

q) E Rq such that

q

L aixi
= O.

i= 1

Suppose first we take only finitely many relations, thus giving rise to a p x q

matrix A. We form the determinant ideal Ir(A). We let the determinant ideals

of the family of generators be:

Ir(X l' . . .

,
X

q)
= Ir(X) = ideal generated by IlA) for all A.

Thus we may in fact take the infinite matrix of relations, and say that Ir(x) is

generated by the determinants of all r x r submatrices. The inclusion relations

of ( 1) show that

R = Io(x) ::) I 1 (x) ::) I 2(X) ::) . . .

Ir(x) = 0 if r > q.

Furthermore, it is easy to see that if we form a submatrix M of the matrix of all

relations by taking only a family of relations which generate the ideal of all

relations in Rq, then we have

Ir(M) = Ir(x).

We leave the verification to the reader. We can take M to be a finite matrix when

E is finitely presented, which happens if R is Noetherian.

In terms of this representation of a module as a quotient of Rq, we get the

following characterization.

Proposition 2.2. Let Rq E 0 be a representation of E as a quotient of

Rq, and let Xl, . . . ,
x

q
be the images of the unit vectors in Rq. Then Ir(x) is the

ideal generated by all values

A.(w b . . .

,
W

r)

where w
l ,

. . .

,
W

r
E Ker(Rq E) and A. E L(Rq, R).

Proof. This is immediate from the definition of the determinant ideal.
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The above proposition can be useful to replace a matrix computation by a

more conceptual argument with fewer indices. The reader can profitably trans-

late some of the following matrix arguments in these more invariant terms.

We now change the numbering, and let the Fitting ideals be:

Fk(X) = Iq-k(x) for 0 < k <
q

Fk(X) = R when k > q.

Lemma 2.3. The Fitting ideal Fk(x) does not depend on the choice of

generators (x).

Proof. Let Yl, . . .

, Ys be elements of E. We shall prove that

Ir(x) = Ir+s(x, y).

The relations of (x, y) constitute a matrix of the form

all a
lq

0

a
pq

0

b
lq

1 0

b
sq

0

W =
apl

b
ll

bsl

o

o

o

1

By elementary column operations, we can change this to a matrix

( )
and such operations do not change the determinant ideals by (2). Then we

conclude that for all r > 0 we have

Ir(A) = Ir+s(W) c Ir+s(x, y).

This proves that Ir(x) c Ir+s(x, y).

Conversely, let C be a matrix of relations between the generators (x, y).
We also have a matrix of relations

C

b
lq

1
z=

b
sq

0

By elementary row operations, we can bring this matrix into the same shape
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as B above, with some matrix of relations A' for (x), namely

Z' = ( )
Then

Ir(A') = Ir+s(Z') = Ir+iZ) ::) Ir+s(C),

whence Ir+iC) c Ir(x). Taking all possible matrices of relations C shows

that Ir+s(x, y) c Ir(x), which combined with the previous inequality yields

Ir+s(x, y) = Ir(x).
Now given two families of generators (x) and (y), we simply put them side

by side (x, y) and use the new numbering for the Fk to conclude the proof of

the lemma.

Now let E be a finitely generated R-module with presentation

o K Rq E 0,

where the sequence is exact and K is defined as the kernel. Then K is generated

by q-vectors, and can be viewed as an infinite matrix. The images of the unit

vectors in Rq are generators (Xl' . . .
,

X
q). We define the Fitting ideal of the

module to be

Fk(E) = Fk(X).

Lemma 2.3 shows that the ideal is independent of the choice of presentation.
The inclusion relations of a determinant ideal Ir(A) of a matrix now translate

into reverse inclusion relations for the Fitting ideals, namely:

Proposition 2.4.

(i) We have

Fo(E) c F'l(E) c F 2 (E) c ...

(ii) If E can be generated by q elements, then

Fq(E) = R.

(iii) If E is finitely presented then Fk(E) is finitely generated for all k.

This last statement merely repeats the property that the determinant ideals of a

matrix can be generated by the determinants associated with a finite submatrix

if the row space of the matrix is finitely generated.
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Example. Let E = Rq be the free module of dimension q. Then:

F (E) = {
o if 0 < k <q

k
R if k >

q.

This is immediate from the definitions and the fact that the only relation of a

basis for E is the trivial one.

The Fitting ideal Fo(E) is called the zero-th or initial Fitting ideal. In some

applications it is the only one which comes up, in which case it IS called "the"

Fitting ideal F(E) of E. It is the ideal generated by all q x q determinants in

the matrix of relations of q generators of the module.

For any module E we let annR(E) be the annihilator of E in R, that is the

set of elements a E R such that aE = O.

Proposition 2.5. Suppose that E can be generated by q elements. Then

(annR(E»q c F(E) c annR(E).

In particular, if E can be generated by one element, then

F(E) = annR(E).

Proof. Let Xl' . . .

,
x

q
be generators of E. Let a l'

. . .

,
a

q
be elements of R

annihilating E. Then the diagonal matrix whose diagonal components are

aI, . . .

,
a

q
is a matrix of relations, so the definition of the Fitting ideal shows

that the determinant of this matrix, which is the product a 1
. . . a

q
lies in

Iq(E) c Fo(E). This proves the inclusion

annR(E)q c F(E).

Conversely, let A be a q x q matrix of relations between Xl' . . .

, Xq. Then

det(A)Xi = 0 for all i so det(A) E annR(E). Since F(E) is generated by such

determinants, we get the reverse inclusion which proves the proposition.

Corollary 2.6. Let E = Ria for some ideal a. Then F(E) = a.

Proof. The module Ria can be generated by one element so the corollary
is an immediate consequence of the proposition.

Proposition 2.7. Let

o E' E E" 0

be an exact sequence offinite R-modules. For integers m, n > 0 we have

Fm(E')Fn(E") c F
m + n(E).
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In particular (or F = F0'

F(E')F(E") c F(E).

Proof. We may assume E' is a submodule of E. We pick generators

Xl' . . .

,
x

p
of E' and elements Y l'

. . .
, Yq

in E such that their images y'{, . . .
, y;

in E" generate E". Then (x, y) is a family of generators for E. Suppose first that

m <
p and n <

q. Let A be a matrix of relations among y'{, . . .

, y; with q

columns. If (a 1, . . .
,

a
q) is such a relation, then

alYl + ... + aqYq
E E'

so there exist elements b l ,
. . .

,
b

p
E R such that

a. y.+b.x.=Oi...J I I i...J J J
.

Thus we can find a matrix B with p columns and the same number of rows as

A such that (B, A) is a matrix of relations of (x, y). Let C be a matrix of relations

of (x b . . .

,
xp). Then

( )
is a matrix of relations of (x, y). If D" is a (q

- n) x (q -

n) subdeterminant of

A and D' is a (p
- m) x (p - m) subdeterminant of C then D"D' is a

(p + q
-

m
- n) x (p + q

-

m
- n)

subdeterminant of the matrix

( )
and D"D' E Fm+n(E). Since Fm(E') is generated by determinants like D' and

Fn(E") is generated by determinants like D", this proves the proposition in the

present case.

If m > p and n > q then F
m + n(E) = Fm(E') = Fn(E") = R so the proposition

is trivial in this case.

Say m <
p and n > q. Then Fn(E") = R = Fq(E") and hence

Fm(E')Fn(E") = Fq(E")Fm(E') c Fp+n(E) c Fm+n(E)

where the inclusion follows from the first case. A similar argument proves

the remaining case with m > p and n <
q. This concludes the proof.

Proposition 2.8. Let E', E" be finite R-modules. For any integer n
> 0 we

have

Fn(E' E") = L Fr(E')Fs(E").
r+s=n
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Proof. Let Xl' . . .

,
X

p generate E
i

and Y 1, . . . , Yq generate E". Then (x, y)

generate E' EB E". By Proposition 2.6 we know the inclusion

L Fr(E')Fs(E") c Fn(E' E"),

so we have to prove the converse. If n >
p + q then we can take r >

p and

s >
q in which case

Fr(E') = Fs(E") = Fn(E) = R

and we are done. So we assume n < p + q. A relation between (x, y) in the

direct sum splits into a relation for (x) and a relation for (y). The matrix of

relations for (x, y) is therefore of the form

(
A' 0

)C =

0 A"

where A' is the matrix of relations for (x) and A" the matrix of relations for

(y). Thus

Fn(E' E") = L Ip+q-n(C)
c

where the sum is taken over all matrices C as above. Let D be a

(p + q
-

n) x (p + q
-

n)

subdeterminant. Then D has the form

B
'

0
D=

o B"

where B' is a k' x (p
-

r) matrix, and B" is a kIf x (q
- s) matrix with some

positive integers k', kIf, r, s satisfying

k' + kIf =

p + q
- nand r + s = n.

Then D = 0 unless k' =

p
- rand kIf =

q
-

s. In that case

D = det(B')det(B") E Fr(E')Fs(E"),

which proves the reverse inclusion and concludes the proof of the proposition.

Corollary 2.9. Let

s

E = EB Rlai

i = 1

where Qi is an ideal. Then F(E) = a l
. . .

as.

Proof. This is really a corollary of Proposition 2.8 and Corollary 2.6.
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3. UNIVERSAL DERIVATIONS

AND THE DE RHAM COMPLEX

In this section, all rings R, A, etc. are assumed commutative.

Let A be an R-algebra and M an A-module. By a derivation D: A M

(over R) we mean an R-linear map satisfying the usual rules

D(ab) = aDb + bDa.

Note that D(l) = 2D(1) so D(l) = 0, whence D(R) = o. Such derivations form

an A-module DerR(A, M)in a natural way, where aD is defined by (aD)(b) = aDb.

By a universal derivation for A over R, we mean an A-module Q, and a

derivation

d:AQ

such that, given a derivation D : A M there exists a unique A-homomorphism

f : Q M making the following diagram commutative:

A d) Q

\}
M

It is immediate from the definition that a universal derivation (d, Q) is uniquely
determined up to a unique isomorphism. By definition, we have a functorial

isomorphism

I DerR(A, M) ;::::: HomA(Q, M). I
We shall now prove the existence of a universal derivation.

The following general remark will be useful. Let

fl, f2 : A B

be two homomorphisms of R-algebras, and let J be an ideal in B such that

J2 = O. Assume that fl = f2 mod J; this means that fl(x) = f2(x) mod J for

all x in A. Then

D = f2
-

fl

is a derivation. This fact is immediately verified as follows:

f2(ab) = f2(a)f2(b) = [fl(a) + D(a)] [fl(b) + D(b)]
= fl(ab) + fl(b)D(a) + fl(a)D(b).
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But the A-module structure of J is given via fl or f2 (which amount to the same

thing in light of our assumptions on fl, f2), so the fact is proved.
Let the tensor product be taken over R.

Let mA : A (8) A A be the multiplication homomorphism, such that

mA(a (8) b) = ab. Let J = Ker mA . We define the module of differentials

QA/R = JIJ
2

,

as an ideal in (A (8) A)IJ
2

. The A-module structure will always be given via the

embedding on the first factor:

A A (8) A by a a (8) 1.

Note that we have a direct sum decomposition of A-modules

A (8) A = (A (8) 1) J,

and therefore

(A (8) A)IJ
2

= (A (8) 1) JIJ
2

.

Let

d: A JIJ
2

be the R-linear map a 1 (8) a
-

a (8) 1 mod J2.

Takingfl:a a 0 1 andf2:a 1 0 a, we see that d =

f2
-

fl' Hence d is

a derivation when viewed as a map into J/J
2

.

We note that J is generated by elements of the form

L Xi dYi.

Indeed, if L Xi (8) Yi E J, then by definition L Xi Yi
= 0, and hence

L Xi (8) Yi
= L xi(1 (8) Yi

-

Yi (8) 1),

according to the A-module structure we have put on A (8) A (operation of A on

the left factor.)

Theorem 3.1. The pair (JIJ
2

, d) is universal for derivations of A. This

means: Given a derivation D: A M there exists a unique A-linear map

f : JIJ
2

M making the following diagram commutative.

A d) JIJ2

\1
M
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Proof. There is a unique R-bilinear map

f: A (8) A M given by x (8) yxDy,

which is A-linear' by our definition of the A-module structure on A (8) A. Then

by definition, the diagram is commutative on elements of A, when we take f
restricted to J, because

f(1 (8) y
-

y (8) 1) = Dy.

Since JIJ2 is generated by elements of the form x dy, the uniqueness of the map

in the diagram of the theorem is clear. This proves the desired universal

property.

We may write the result expressed in the theorem as a formula

DerR(A, M) HomA(JIJ
2

, M).

The reader will find exercises on derivations which give an alternative way of

constructing the universal derivation, especially useful when dealing with

finitely generated algebras, which are factors of polynomial rings.
I insert here without proofs some furtl:er fundamental constructions, im-

portant in differential and algebraic geometry. The proofs are easy, and provide
. .

nIce exercIses.

Let R A be an R-algebra of commutative rings. For i > 0 define

i

I\
i 1

QA/R = QA/R,
where Q/R = A.

Theorem 3.2. There exists a unique sequence of R-homomorphisms

d
. ni ni + 1

i . I.A/R I.A/R

such that for W E Qi and '1 E Qj we have

d(w /\ '1) = dw /\ '1 + (-tyw /\ d'1.

Furthermore d 0 d = O.

The proof will be left as an exercise.

Recall that a complex of modules is a sequence of homomorphisms
.

1 di-I .

d i .

1
... E'- E' E'+

such that d
i

0 d
i
- 1

= O. One usually omits the superscript on the maps d. With

this terminology, we see that the fl/R form a complex, called the De Rham

complex.
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Theorem 3.3. Let k be a field of characteristic 0, and let A = k[Xl' . . .
, Xn]

be the polynomial ring in n variables. Then the De Room complex

o -+ k A Q/k .. .

Q/k 0

is exact.

Again the proof will be left as an exerCise. Hint: Use induction and

integrate formally.
Other results concerning connections will be found in the exercises below.

4. THE CLIFFORD ALGEBRA

Let k be a field. By an algebra throughout this section, we mean a k-algebra

given by a ring homomorphism k A such that the image of k is in the center

of A.

Let E be a finite dimensional vector space over the field k, and let 9 be a

symmetric form on E. We would like to find a universal algebra over k, in which

we can embed E, and such that the square in the algebra corresponds to the value

of the quadratic form in E. More precisely, by a Clifford algebra for g, we

shall mean a k-algebra C(g), also denoted by Cg(E), and a linear map

p: E C(g) having the following property: If «/1 : E L is a linear map of E

into a k-algebra L such that

«/J(x)2 = g(x, x)
· 1 (1 = unit element of L)

for all x E E, then there exists a unique algebra-homomorphism

C( t/J) = t/J *
: C(g) -+ L

such that the following diagram is commutative:

E
P

) C(g)

\/
L

By abstract nonsense, a Clifford algebra for 9 is uniquely determined, up to a

unique isomorphism. Furthermore, it is clear that if (C(g), p) exists, then C(g)
is generated by the image of p, i.e. by p(E), as an algebra over k.

We shall write p
=

Pg if it is necessary to specify the reference to 9 explicitly.
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We have trivially

p(X)2 = g(X, x)
· 1

for all x E E, and

p(x)p(y) + p(y)p(x)
= 2g(x, y)

. 1

as one sees by replacing x by x + y in the preceding relation.

Theorem 4.1. Let g be a symmetric bilinear form on a finite dimensional

vector space E over k. Then the Clifford algebra (C(g), p) exists. The map p

in injective, and C(g) has dimension 2
n

over k, if n = dim E.

Proof. Let T(E) be the tensor algebra as in Chapter XVI, 7. In that algebra,
we let I

9
be the two-sided ideal generated by all elements

x 0 x
-

g(x, x)
· 1 for x E E.

We define Cg(E)
= T(E)IIg

. Observe that E is naturally embedded in T(E) since

T(E) = k E9 E E9 (E 0 E) E9 . . .

.

Then the natural embedding ofE in TE followed by the canonical homomorphisms
of T(E) onto Cg(E) defines our k-linear map p : E Cg(E). It is immediate from

the universal property of the tensor product that Cg(E) as just defined satisfies

the universal property of a Clifford algebra, which therefore exists. The only

problem is to prove that it has the stated dimension over k.

We first prove that the dimension is < 2
n

. We give a proof only when

the characteristic of k is =1= 2 and leave characteristic 2 to the reader. Let

{V., . . .
,

v
n } be an orthogonal basis of E as given by Theorem 3.1 of Chapter

XV. Let e;
=

o/(v;), where 0/ : E L is given as in the beginning of the sec-

tion. Let ci
=

g(v;, Vi). Then we have the relations

e =
c.

I "
e.e.

=
-e.e. for all i =1= J

.

I ] ] I
.

This immediately implies that the subalgebra of L generated by «/1(E) over k is

generated as a vector space over k by all elements

e}1
. · ·

en with Vi
= 0 or 1 for i = 1,..., n.

Hence the dimension of this subalgebra is < 2 n. In particular, dim Cg(E)
< 2

n

as desired.

There remains to show that there exists at least one «/1: E L such that L

is generated by «/1(E) as an algebra over k, and has dimension 2 n; for in that

case, the homomorphism 0/* : Cg(E) L being surjective, it follows that dim

Cg(E)
::> 2

n
and the theorem will be proved. We construct L in the following

way . We first need some general notions.

Let M be a module over a commutative ring. Let i, j E Z/2Z. Suppose M

is a direct sum M =

Mo E9 M 1 where 0, 1 are viewed as the elements of Z/2Z.
We then say that M is Z/2Z-graded. If M is an algebra over the ring, we say
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it is a Z/2Z-graded algebra if M;Mj C M;+j for all i, j E Z/2Z. We simply

say graded, omitting the Z/2Z prefix when the reference to Z/2Z is fixed

throughout a discussion, which will be the case in the rest of this section.

Let A, B be graded modules as above, with A =

Ao EB A 1 and B =

Bo EB B I .

Then the tensor product A 0 B has a direct sum decomposition

A 0 B = EB A; 0 Bj.
; ,j

We define a grading on A 0 B by letting (A 0 B)o consist of the sum over indices

i, j such that i + j
= 0 (in Z/2Z), and (A 0 B)I consist of the sum over the

indices i, j such that i + j
= 1.

Suppose that A, B are graded algebras over the given commutative ring. There

is a unique bilinear map of A 0 B into itself such that

(a 0 b)(a' 0 b') = (-I)Uaa
'

0 bb'

if a' E A; and b E Bj. Just as in Chapter XVI, 6, one verifies associativity and

the fact that this product gives rise to a graded algebra, whose product is called

the super tensor product, or super product. As a matter of notation, when we

take the super tensor product of A and B, we shall denote the resulting algebra

by

A 0u B

to distinguish it from the ordinary algebra A 0 B of Chapter XVI, 6.

Next suppose that E has dimension lover k. Then the factor polynomial ring

k[X] I (x
2
-

C I) is immediately verified to be the Clifford algebra in this case.

We let t l be the image of X in the factor ring, so Cg(E)
=

k[t.J with tt =

CI.

The vector space E is imbedded as kt
I

in the direct sum k EB kt I .

In general we now take the super tensor product inductively:

Cg(E)
=

k[t.J 0su k[t2] 0su
· · ·

0su k[tn ], with k[t;]
= k[X]/(x

2
-

Ci).

Its dimension is 2 n. Then E is embedded in Cg(E) by the map

alvl + ... + anvn altl EB ... EB an tn.

The desired commutation rules among t;, tj are immediately verified from the

definition of the super product, thus concluding the proof of the dimension of

the Clifford algebra.

Note that the proof gives an explicit representation of the relations of the

algebra, which also makes it easy to compute in the algebra. Note further that

the alternating algebra of a free module is a special case, taking C;
= 0 for all

i. Taking the c; to be algebraically independent shows that the alternating algebra
is a specialization of the generic Clifford algebra, or that Clifford algebras are

what one calls perturbations of the alternating algebra. Just as for the alternating

algebra, we have immediately from the construction:

Theorem 4.2. Let g, g' by symmetric forms on E, E' respectively. Then we
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have an algebra isomorphism

C(g E9 g') = C(g) 0
suC(g').

Examples. Clifford algebras have had increasingly wide applications in

physics, differential geometry, topology, group representations (finite groups

and Lie groups), and number theory. First, in topology I refer to Adams [Ad 62]

and [ABS 64] giving applications of the Clifford algebra to various problems
in topology, notably a description of the way Clifford algebras over the reals

are related to the existence of vector fields on spheres. The multiplication in the

Clifford algebra gives rise to a multiplication on the sphere, whence to vector

fields. [ABS 64] also gives a number of computations related to the Clifford

algebra and its applications to topology and physics. For instance, let E = R
n

and let g be the negative of the standard dot product. Or more invariantly, take

for E an n-dimensional vector space over R, and let g be a negative definite

symmetric form on E. Let C
n

= C(g).

The operation

VI 0 . . . 0 V
r

V
r
0 . . . 0 VI

=

(VI 0 . . · 0 v
r)* for Vi E E

induces an endomorphism of Tr(E) for r
> O. Since V 0 V

-

g(v, v)
. 1 (for

V E E) is invariant under this operation, there is an induced endomorphism
*

: C
n Cn' which is actually an involution, that is x** =

x and (xy)* = y*x*
for x E Cn. We let Spin(n) be the subgroup of units in C

n generated by the unit

sphere in E (i. e. the set of elements such that g(v, v) = -

1), and lying in the

even part of Cn. Equivalently, Spin(n) is the group of elements x such that

xx* = 1. The name dates back to Dirac who used this group in his study of elec-

tron spin. Topologists and others view that group as being the universal cover-

ing group of the special orthogonal group SO(n) =

SUn(R).
An account of some of the results of [Ad 62] and [ABS 64] will also be

found in [Hu 75], Chapter 11. Second I refer to two works encompassing two

decades, concerning the heat kernel, Dirac operator, index theorem, and number

theory, ranging from Atiyah, Bott and Patodi [ABP 73] to Faltings [Fa 91], see

especially 4, entitled "The local index theorem for Dirac operators". The vector

space to which the general theory is applied is mostly the cotangent space at a

point on a manifold. I recommend the book [BGV 92], Chapter 3.

Finally, I refer to Brocker and Tom Dieck for applications of the Clifford

algebra to representation theory, starting with their Chapter I, 6, [BtD 85].
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EXERCISES

1. Let E be a finite dimensional vector space over a field k. Let Xl' . . .
,
x

p
be elements of E

such that Xl A ... A X
p

i= 0, and simIlarly YI A ... /\ Yp
=1= O. If C E k and

Xl A ... A X
p

=

CYI A . . . A Yp

show that x
I'

. . .
,

x
p

and Y I' . . .
, Yp generate the same subspace. Thus non-zero

decomposable vectors in I\PE up to non-zero scalar multiples correspond to

p-dimensional subspaces of E.

2. Let E be a free module of dimension n ove( the commutative ring R. Let f: E -+ E

be a linear map. Let lX,(f) = tr I\r(f), where I\r(f) IS the endomorphism of I\'(E)
into itself induced by f. We have

lXo(f) = 1, lXI(f) = tr(f), lXn(f) = det f,

and lX,(f) = 0 if r > n. Show that

det( 1 + f) = L lXr(f).
rO

[Hint: As usual, prove the statement when f IS represented by a matrix with variable

coefficients over the integers.] Interpret the lXr(f) In terms of the coefficients of the

characteristic polynomial of f.

3. Let E be a finite dimensional free module over the commutative ring R. Let E
V

be

its dual module. For each integer r
> 1 show that I\rE and I\rEv are dual modules

to each other, under the bilinear map such that

(VI 1\
. ..

1\ v
n v; 1\

. . .

1\ v;) det «Vi' vi»)

where (Vi' vi) is the value of vi on Vi' as usual, for Vi E E and vj E EV.

4. NotatIon being as in the preceding exercise, let F be another R-module which is free,

finite dimensional. Let f : E -+ F be a linear map. Relative to the bilinear map of the

preceding exercise, show that the transpose of 1\1 is I\r('!), i.e. is equal to the r-th

alternating product of the transpose of f.

5. Let R be a commutative ring. If E is an R-module, denote by L(E) the module of
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r-multilinear alternating maps of E into R itself (i.e. the r-multilinear alternating
forms on E). Let L(E) = R, and let

0()

Q(E) = EB L(E).
r=O

Show that Q(E) is a graded R-algebra, the multiplication being defined as follows. If

OJ E L(E) and t/J E L(E), and Vh . . .

,
V

r + s
are elements of E, then

(OJ A t/J)(v h ...,
v
r + s) = I £(0')OJ(Vo- 1 ,

. . .
, vo-r)t/!(Vo-(r+ 1)'

. . .
, vo-s)'

the sum being taken over all permutations 0' of (1, . . .

,
r + s) such that 0'1 < . . . < ar

and O'(r + 1) < . . . < O's.

Derivations

In thefollowing exercises on derivations, all rings are assumed commutative. Among
other things, the exercises give another proof of the existence of universal derivations.

Let R -+ A be a R-algebra (of commutative rings, according to our convention).
We denote the module ofuniversal derivations ofA over R by (dA/R , Q/R)' but we do not

assume that it necessarily exists. Sometimes we write d instead of d
A/R

for simplicity
if the reference to AIR is clear.

6. Let A = R[Xcx] be a polynomial ring in variables X
cx'

where a. ranges over some

indexing set, possibly infinite. Let Q be the free A-module on the symbols dX
cx'

and let

d:A-+Q

be the mapping defined by

of
df(X) = L -;-

dX
cx.

cx
uX

cx

Show that the pair (d, Q) is a universal derivation (dA/R , Q/R).

7. Let A -+ B be a homomorphism of R-algebras. Assume that the universal derivations

for AjR, BjR, and BjA exist. Show that one has a natural exact sequence:

B (8)A Q/R -+ Qi/R -+ Qi/A -+ O.

[Hint: Consider the sequence

0-+ DerA(B, M) -+ DerR(B, M) -+ DerR(A, M)

which you prove is exact. Use the fact that a sequence of B-modules

N' -+ N -+ N" -+ 0

is exact if and only if its Horn into M IS exact for every B-module M. Apply this to the

sequence of derivations.]

8. Let R -+ A be an R-algebra, and let I be an ideal of A. Let B = AjI. Suppose that the

universal derivation of A over R exists. Show that the universal derivation of B over R.
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also exists, and that there is a natural exact sequence

111
2

B (8)A Q/R Qj/R o.

[Hint: Let M be a B-module. Show that the sequence

o DerR(B, M) DerR(A, M) HomB(III
2

, M)

is exact.]

9. Let R B be an R-algebra. Show that the universal derivation of B over R exists

as follows. Represent B as a quotient of a polynomial ring, possibly in infinitely

many variables. Apply Exercises 6 and 7.

10. Let R A be an R-algebra. Let So be a multiplicative subset ofR, and S a multiplicative
subset of A such that So maps into S. Show that the universal derivation of S-1 A over

So
1
R is (d, S- lQ/R)' where

d(als) = (sdA/R(a)
- adA/R(s»/s

2
.

11. Let B be an R-algebra and M a B-module. On B ffi M define a product

(b, x)(b', y) = (bb', by + b'x).

Show that B ffi M is a B-algebra, if we identify an element b E B with (b, 0). For any

R-algebra A, show that the algebra homomorphisms HomA1g/R(A, B EB M) consist of

pairs (cp, D), where qJ: A B is an algebra homomorphism, and D: A M is a

derivation for the A-module structure on M induced by cp.

12. Let A be an R-algebra. Let t;: A R be an algebra homomorphism, which we call an

augmentation. Let M be an R-module. Define an A-module structure on M via t;, by

a . x = f,(a)x for a E A and x E M.

Write Me. to denote M with this new module structure. Let:

Dere(A, M) = A-module of derivations for the t;-module structure on M

I = Ker t;.

Then Derl;(A, M) is an All-module. Note that there is an R-module direct sum de-

composition A = R ffi I. Show that there is a natural A-module isomorphism

QA/RIIQA/R 111
2

and an R-module isomorphism

Der£(A, M) HomR(III
2

, M).

In particular, let '1 : A 111
2

be the projection of A on 111
2

relative to the direct sum

decomposition A = R EB I. Then '1 is the universal t;-derivation.

Derivations and connections

13. Let R A be a homomorphism of commutative rings, so we view A as an R-algebra.
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Let E be an A-module. A connection on E is a homomorphism of abelian groups

V : E -+ QIR (8) A
E

such that for a E A and x E E we have

V(ax) = aV(x) + da (8) x,

where the tensor product is taken over A unless otherwise specified. The kernel of V,

denoted by Ev ,
is called the submodule ofhorizontal elements, or the horizontal submodule

of(E, V).

(a) For any integer i > 1, define

"

/\
"

1

Q/R = 'QAIR.

Show that V can be extended to a homomorphism of R-modules

Vi : Q/R (8) E -+ Qi (8) E

by

Vlw (8) x) = dw (8) x + ( - l)iw A V(x).

(b) Define the curvature of the connection to be the map

K = VI 0 V : E -+ Q/R (8) A E.

Show that K is an A-homomorphism. Show that

Vi + 1
0 Vi(w (8) x) = W A K(x)

for w E Q/R and x E E.

(c) Let Der(AjR) denote the A-module of derivations of A into itself, over R.

Let V be a connection on E. Show that V induces a unique A-linear map

V: Der(AjR) -+ EndR(E)

such that

V(D)(ax) = D(a)x + aV(D)(x).

(d) Prove the formula

[V(D 1 ), V(D2)] - V([D 1 ,
D2]) = (D 1 A D2)(K)...

In this formula, the bracket is defined by [I, g] = log
-

go 1 for two endo-

morphismsI, g ofE. Furthermore, the right-hand side is the composed mapping

K 2 DI AD2

E -+ QAIR (8) E ) A (8) E E.
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14. (a) For any derivation D of a ring A Into itself, prove Leibniz's rule:

D"(xy) = Jo ()Di(X)Dn-i(y).
(b) Suppose A has characteristic p. Show that DP is a derivation.

15. Let AIR be an algebra, and let E be an A-module with a connection V. Assume that R

has characteristic p. Define

tjJ : Der(AjR) EndR(E)

by

tjJ(D) = (V(D»P - V(DP).

Prove that tjJ(D) is A-linear. [Hint: Use Leibniz's formula and the definition of a

connection.] Thus the image of tjJ is actually in EndA(E).

Some Clifford exercises

16. Let Cg(E) be the Clifford algebra as defined in 4. Define F;(C
g) = (k + E);, viewing

E as embedded in C
g

. Define the similar object F;(f\E) in the alternating algebra. Then

F;+ 1
:J F; in both cases, and we define the i-th graded module gr;

= F;/F;_I. Show

that there is a natural (functorial) isomorphism

gr;(Cg(E)) gr;(f\E).

17. Suppose that k = R, so E is a real vector space, which we now assume of even

dimension 2m. We also assume that 9 is non-degenerate. We omit the index 9 since

the symmetric form is now fixed, and we write C+, C- for the spaces of degree 0

and 1 respectively in the Z/2Z-grading. For elements x, y in C+ or C-
,

define their

supercommutator to be

{x, y} =

xy
-

(-1 )(degx)(degy)
yx.

Show that F
2m

-

t
is generated by supercommutators.

18. Still assuming 9 non-degenerate, let J be an automorphism of (E, g) (i.e.

g(Jx, Jy) = g(x, y) for all x, y E E) such that J2 = -ide Let Ec
= C (8)RE be the

extension of scalars from R to C. Then Ec has a direct sum decomposition

Ec
= Ec EB Ec

into the eigenspaces of J, with eigenvalues 1 and - 1 respectively. (Proof?) There

is a representation of Ec on f\Ec, i.e. a homomorphism Ec Endc(Ec ) whereby
an element of Ec operates by exterior multiplication, and an element of Ec operates

by inner multiplication, defined as follows.

For x' E Ec there is a unique C-linear map having the effect

r

x'(x 1 1\
. . .

1\ x
r)

= - 2 2: (-1 );-1 (x', x;) XI 1\
...

1\ x; 1\
. ..

1\ Xr.
;= 1
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Prove that under this operation, you get an isomorphism

Cg(E)c Endc(AEc ).

[Hint: Count dimensions.]

19. Consider the Clifford algebra over R. The standard notation is C
n

if E = R n with

the negative definite form, and C if E = Rn with the positive definite form. Thus

dim C
n

= dim C = 2 n
.

(a) Show that

C t
:::::: C

C; :::::: R x R

20. Establish isomorphisms:

C (8)R C = C x C; C (8)R H = Mz(C); H (8)R H = M4(R)

Cz
:::::: H (the division ring of quatemions)

C :::::: Mz(R) (2 x 2 matrices over R)

where Md(F)
= d x d matrices over F. For the third one, with H QS) H, define an

isomorphism

I: H 0R H HomR(H, H) = M4(R)

by I(x (8) y)(z) = xzy, where if y
=

Yo + Yt; + yzj + Y3k then

y
=

Yo
-

Yt;
-

yzj
-

Y3k .

21. (a) Establish isomorphisms

C
n + Z

= C (8) Cz
and C+z = C

n (8) C.

[Hint: Let {e(, . . .

, en+z} be the orthonormalized basis with e[ = -1. Then for

.

the first isomorphism map e; e; QS) e(eZ for; = 1,..., n and map e
n +], en+z

on 1 QS) e] and 1 QS) ez respectively.]

(b) Prove that C
n + 8

= C
n

QS) M(6(R) (which is called the periodicity property).

(c) Conclude that C
n

is a semi-simple algebra over R for all n.

From (c) one can tabulate the simple modules over Cn. See [ABS 64], reproduced
in Husemoller [Hu 75], Chapter 11, 6.



Part Four

HOMOLOGICAL

ALGEBRA

In the forties and fifties (mostly in the works of Cartan, Eilenberg, MacLane,

and Steenrod, see [CaE 57]), it was realized that there was a systematic way of

developing certain relations of linear algebra, depending only on fairly general
constructions which were mostly arrow-theoretic, and were affectionately called

abstract nonsense by Steenrod. (For a more recent text, see [Ro 79].) The results

formed a body of algebra, some of it involving homological algebra, which had

arisen in topology, algebra, partial differential equations, and algebraic geometry.

In topology, some of these constructions had been used in part to get homology
and cohomology groups of topological spaces as in Eilenberg-Steenrod [ES 52].

In algebra, factor sets and l-cocycles had arisen in the theory of group extensions,

and, for instance, Hilbert's Theorem 90. More recently, homological algebra
has entered in the cohomology of groups and the representation theory of groups.

See for example Curtis-Reiner [CuR 81], and any book on the cohomology of

groups, e.g. [La 96], [Se 64], and [Sh 72]. Note that [La 96] was written to pro-

vide background for class field theory in [ArT 68].
From an entirely different direction, Leray developed a theory of sheaves

and spectral sequences motivated by partial differential equations. The basic

theory of sheaves was treated in Godement's book on the subject [Go 58].

Fundamental insights were also given by Grothendieck in homological algebra

[Gro 57], to be applied by Grothendieck in the theory of sheaves over schemes

in the fifties and sixties. In Chapter XX, I have included whatever is necessary

of homological algebra for Hartshorne's use in [Ha 77]. Both Chapters XX and

XXI give an appropriate background for the homological algebra used in Griffiths-

Harris [GrH 78], Chapter 5 (especially 3 and 4), and Gunning [Gu 90]. Chapter
XX carries out the general theory of derived functors. The exercises and Chapter
XXI may be viewed as providing examples and computations in specific concrete

instances of more specialized interest.

759
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The commutative algebra of Chapter X and the two chapters on homological

algebra in this fourth part also provide an appropriate background for certain

topics in algebraic geometry such as Serre's study of intersection theory [Se 65] ,

Grothendieck duality, and Grothendieck's Riemann-Roch theorem in algebraic

geometry. See for instance [SGA 6].

Finally I want to draw attention to the use of homological algebra in certain

areas of partial differential equations, as in the papers of Atiyah-Bott-Patodi and

Atiyah-Singer on complexes of elliptic operators. Readers can trace some of the

literature from the bibliography given in [ABP 73].

The choice of material in this part was to a large extent motivated by all the

above applications.
For this chapter, considering the number of references and cross-references

given, the bibliography for the entire chapter is placed at the end of the chapter.



CHAPTER XX

General Homology Theory

To a large extent the present chapter is arrow-theoretic. There is a substantial

body of linear algebra which can be formalized very systematically, and con-

stitutes what Steenrod called abstract nonsense, but which provides a well-oiled

machinery applicable to many domains. References will be given along the way.

Most of what we shall do applies to abelian categories, which were mentioned

in Chapter III, end of 3. However, in first reading, I recommend that readers

disregard any allusions to general abelian categories and assume that we are

dealing with an abelian category of modules over a ring, or other specific abelian

categories such as complexes of modules over a ring.

1. COMPLEXES

Let A be a ring. By an open complex of A-modules, one means a sequence

of modules and homomorphisms {(E
i

,
d

i

)},

£i-l Ei! Ei+l

where i ranges over all integers and di maps E
i
into Ei+ 1, and such that

d
i

0 d
i - 1

= 0

for all i.

One frequently considers a finite sequence of homomorphisms, say

El...Er

761
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such that the composite of two successive ones is 0, and one can make this

sequence into a complex by inserting 0 at each end:

-+ 0 -+ 0 E
1

. . . E
r

-+ 0 0

Such a complex is called a finite or bounded complex.

Remark. Complexes can be indexed with a descending sequence of integers,
namely,

di + 1 di
-+ Ei + 1 ----. Ei Ei - 1

When that notation is used systematically, then one uses upper indices for

complexes which are indexed with an ascending sequence of integers:

-+ E
i - 1

E
i

Ei
+ 1

In this book, I shall deal mostly with ascending indices.

As stated in the introduction of this chapter, instead of modules over a ring,
we could have taken objects in an arbitrary abelian category.

The homomorphisms d
i

are often called differentials, because some of the

first complexes which arose in practice were in analysis, with differential operators

and differential forms. Cf. the examples below.

We denote a complex as above by (E, d). If the complex is exact, it is often

useful to insert the kernels and cokernels of the differentials in a diagram as

follows, letting Mi
= Ker d

i
= 1m d

i - 1.

E
i - 2

) E
i - l

) ) E
i

) Ei
+ 1

/ /\ /
M

i - l
M

i Mi+l

/\ / /\
o 0 0 0

Thus by definition, we obtain a family of short exact sequences

o -+ M
i

E
i

M
i + 1

O.

If the complex is not exact, then of course we have to insert both the image of

d
i - 1

and the kernel of die The factor

(Ker di)/(Im d
i - 1

)

will be studied in the next section. It is called the homology of the complex,
and measures the deviation from exactness.
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Let M be a module. By a resolution of M we mean an exact sequence

En En - 1
-+ . . . -+ Eo M O.

Thus a resolution is an exact complex whose furthest term on the right before

o is M. The resolution is indexed as shown. We usually write EM for the part of

complex formed only of the E;'s, thus:

EM is: En-+En-l...Eo,

stopping at Eo. We then write E for the complex obtained by sticking 0 on

the right:

E is: En En-l -+ ... Eo O.

If the objects Ei of the resolution are taken in some family, then the resolution is

qualified in the same way as the family. For instance, if E i is free for all i > 0

then we say that the resolution is a free resolution. If E
i

is projective for all

i > 0 then we say that the resolution is projective. And so forth. The same

terminology is applied to the right, with a resolution

o -+ M -+ EO -+ E
1

. . . En
- 1

-+ En ,

also written

o M -+ EM.

We then write E for the complex

o -+ EO E
l

E
2

. . .

.

See 5 for injective resolutions.

A resolution is said to be finite if E i (or Ei) = 0 for all but a finite number of

indices i.

Example. Every module admits a free resolution (on the left). This is a

simple application of the notion of free module. Indeed, let M be a module, and

let {Xj} be a family of generators, with j in some indexing set J. For each j let

Rej be a free module over R with a basis consisting of one element ej' Let

F = EB Re
j

jeJ

be their direct sum. There is a unique epimorphism

FMO

sending ej on x
j ,

Now we let M 1 be the kernel, and again represent M 1
as the

quotient of a free module. Inductively, we can construct the desired free

resolution.
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Example. The Standard Complex. Let S be a set. For i = 0, 1, 2, . . .

let E
i

be the free module over Z generated by (i + 1 )-tuples (xo, . . .

, x;) with

Xo, . . .

, X; E S. Thus such (i + 1 )-tuples form a basis of E; over Z. There is a

unique homomorphism

d;+I: E;+I E;

such that

;+ 1

d;+I(Xo,..., X;+I)
= L (-I)j(xo,..., Xj,..., x;+I),

j=O

where the symbol Xj means that this term is to be omitted. For i = 0, we define

do : Eo Z to be the unique homomorphism such that do(xo)
= 1. The map do

is sometimes called the augmentation, and is also denoted by £. Then we obtain

a resolution of Z by the complex

E;+ 1 E;
. . ·

Eo --4 Z o.

The formalism of the above maps d; is pervasive in mathematics. See Exercise

2 for the use of the standard complex in the cohomology theory of groups. For

still another example of this same formalism, compare with the Koszul complex
in Chapter XXI, 4.

Given a module M, one may form Hom(E;, M) for each i, in which case one

gets coboundary maps

5
i

: Hom(Ei , M) Hom(E;+I' M), 5(f) = fo d
i + l

,

obtained by composition of mappings. This procedure will be used to obtain

derived functors in 6. In Exercises 2 through 6, you will see how this procedure
is used to develop the cohomology theory of groups.

Instead of using homomorphisms, one may use a topological version with

simplices, and continuous maps, in which case the standard complex gives rise to

the singular homology theory of topological spaces. See [GreH 81], Chapter 9.

Examples. Finite free resolutions. In Chapter XXI, you will find other

examples of complexes, especially finite free, constructed in various ways with

different tools. This subsequent entire chapter may be viewed as providing

examples for the current chapter.

Examples with differential forms. In Chapter XIX, 3, we gave the exam-

ple of the de Rham complex in an algebraic setting. In the theory of differential

manifolds, the de Rham complex has differential maps

d;: {}i {};+ 1
,

sending differential forms of degree i to those of degree i + 1, and allows for

the computation of the homology of the manifold.

A similar situation occurs in complex differential geometry, when the maps

d; are given by the Dolbeault a-operators

a i
: {}P'; {}p,;+1
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operating on forms of type (p, i). Interested readers can look up for instance

Gunning's book [Gu 90] mentioned in the introduction to Part IV,Volume I, E.

The associated homology of this complex is called the Dolbeault or a-cohom-

ology of the complex manifold.

Let us return to the general algebraic aspects of complexes and resolutions.

It is an interesting problem to discuss which modules admit finite resoutions,

and variations on this theme. Some conditions are discussed later in this chapter
and in Chapter XXI. If a resolution

o En -+ En-l . . . -+ Eo M 0

is such that Em = 0 for m > n, then we say that the resolution has length < n

(sometimes we say it has length n by abuse of language).
A closed complex of A-modules is a sequence of modules and homomorph-

isms {(E
i

,
d

i

)} where i ranges over the set of integers mod n for some n > 2

and otherwise satisfying the same properties as above. Thus a closed complex
looks like this:

E
l

E
2

-+ . . . -+ En

We call n the Jength of the closed complex.
Without fear of confusion, one can omit the index i on d

i
and write just d.

We also write (E, d) for the complex {(E
i

,
d

i

)}, or even more briefly, we write

simply E.

Let (E, d) and (E', d') be complexes (both open or both closed). Let r be an

integer. A morphism or homomorphism (of complexes)

f: (E', d') (E, d)

of degree r is a sequence

h : E'
i

E
i + r

of homomorphisms such that for all i the following diagram is commutative:

E,(i- 1)

d-j

Ii - 1

) Ei
-

1 + r

jd
Ei+rE,i

I,

Just as we write d instead of d
i

,
we shall also write j instead of j. If the com-

plexes are closed, we define a morphism from one into the other only if they
have the same length.

It is clear that complexes form a category. In fact they form an abelian

category. Indeed, say we deal with complexes indexed by Z for simplicity, and

morphisms of degree O. Say we have a morphism of complexes f: C -+ C" or
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putting the indices:

) C
n

j
) Cn-l

j
)

) C" ) C"
n n-l

We let C = Ker(Cn
-+ C). Then the family (C) forms a complex, which we

define to be the kernel of f. We let the reader check the details that this and a

similar definition for cokernel and finite direct sums make complexes of

modules into an abelian category. At this point, readers should refer to Chapter
III, 9, where kernels and cokernels are discussed in this context. The snake

lemma of that chapter will now become central to the next section.

It will be useful to have another notion to deal with objects indexed by a

monoid. Let G be a monoid, which we assume commutative and additive to

fit the applications we have in mind here. Let {MJieG be a family of modules

indexed by G. The direct sum

M = EB Mi

ieG

will be called the G-graded module associated with the family {MJ i e G
. Let

{MJieG and {M}ieG be families indexed by G, and let M, M' be their asso-

ciated G-graded modules. Let rEG. By a G-graded morphism/: M' M of

degree r we shall mean a homomorphism such that j'maps M into M
i + r

for

each i E G (identifying M
i with the corresponding submodule of the direct

sum on the i-th component). Thus f is nothing else than a family of homo-

morphismsh :M -+ Mi+r.
If (E, d) is a complex we may view E as a G-graded module (taking the direct

sum of the components of the complex), and we may view d as a G-graded

morphism of degree 1, letting G be Z or ZlnZ. The most common case we en-

counter is when G = Z. Then we write the complex as

E = EB Ei ,
and d: E -+ E

maps E into itself. The differential d is defined as di on each direct summand

Ei, and has degree 1.

Conversely, if G is Z or ZlnZ, one may view a G-graded module as a com-

plex, by defining d to be the zero map.

For simplicity, we shall often omit the prefix" G-graded
"

in front of the word

"morphism ", when dealing with G-graded morphisms.
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2. HOMOLOGY SEQUENCE

Let (E, d) be a complex. We let

Zi(E) = Ker d
i

and call Zi(E) the module of i-cycles. We let

Bi(E) = 1m d
i - 1

and call Bi(E) the module of i-boundaries. We frequently write Zi and B
i

instead of Zi(E) and Bi(E), respectively. We let

Hi(E) = ZilBi = Ker di/Im d
i - l

,

and call Hi(E) the i-th homology group of the complex. The graded module

associated with the family {Hi} will be denoted by H(E), and will be called the

homology of E. One sometimes writes H*(E) instead of H(E).
If f: E' E is a morphism of complexes, say of degree 0, then we get an

induced canonical homomorphism

Hi(f) : Hi(E') Hi(E)

on each homology group. Indeed, from the commutative diagram defining a

morphism of complexes, one sees at once thatfmaps Zi(E') into Zi(E) and Bi(E')
into Bi(E), whence the induced homomorphism Hi(f). Compare with the begin-

ning remarks of Chapter III, 9. One often writes this induced homomorphism
as fi* rather than Hi(f), and if H(E) denotes the graded module of homology as

above, then we write

H(f)
=

f* : H(E') H(E).

We call H(f) the map induced by f on homology. If Hi(f) is an isomorphism
for all i, then we say that f is a homology isomorphism.

Note that iff: E' E and g: E E" are morphisms of complexes, then it

is immediately verified that

H(g) 0 H(f) = H(g 0 f) and H(id) = ide

Thus H is a functor from the category of complexes to the category of graded
modules.

We shall consider short exact sequences of complexes with morphisms of

degree 0:

o E' E !!. E" 0,



768 GENERAL HOMOLOGY THEORY XX, 2

which written out in full look like this:

I I I
0 ) E,(i

-

1)
E

i - l
) E,,(i-l) ) 0)

I
f

I I
0 ) E,i ) E

i g
) E"i ) 0

I
f

I I
0 ) E,(i

+ 1) ) Ei
+ 1 g

) E,,(i
+ 1)

) 0

I I I
0 ) E,(i+2) ) Ei

+ 2
) E,,(i+2) ) 0

I I I
One can define a morphism

lJ : H(E") H(E')

ofdegree 1, in other words, a family of homomorphisms

lJi : H"i H,(i
+ 1)

by the snake lemma.

Theorem 2.1. Let

o E' E E" 0

be an exact sequence of complexes with 1, g ofdegree O. Then the sequence

H(E')
f.

) H(E)

)
H(E")

is exact.

This theorem is merely a special application of the snake lemma.

If one writes out in full the homology sequence in the theorem, then it looks

like this:

H,i Hi H"i H,(i+ 1) Hi+
1 H,,(i+ 1)
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It is clear that our map is functorial (in an obvious sense), and hence that

our whole structure (H, ) is a functor from the category of short exact sequences

of complexes into the category of complexes.

3. EULER CHARACTERISTIC AND THE

GROTHENDIECK GROUP

This section may be viewed as a continuation of Chapter III, 8, on Euler-

Poincare maps. Consider complexes of A-modules, for simplicity.
Let E be a complex such that almost all homology groups Hi are equal to O.

Assume that E is an open complex. As in Chapter III, 8, let cp be an Euler-

Poincare mapping on the category of modules (Le. A-modules). We define the

Euler-Poincare characteristic Xcp(E) (or more briefly the Euler characteristic)

with respect to cp, to be

Xcp(E) = L ( -IYq>(H
i

)

provided q>(H
i

) is defined for all Hi, in which case we say that Xcp is defined for the

complex E.

If E is a closed complex, we select a definite order (E
1

,
. . .

, En) for the integers
mod n and define the Euler characteristic by the formula

n

Xcp(E) = L ( _l)iq;(H
i

)
i == 1

provided again all q>(H
i

) are defined.

For an example, the reader may refer to Exercise 28 of Chapter I.

One may view H as a complex, defining d to be the zero map. In that case,

we see that Xcp(H) is the alternating sum given above. More generally:

Theorem 3.1. Let F be a complex, which is of even length if it is closed.

Assume that q>(F
i

) is definedfor all i, q>(F
i

) = 0for almost all i, and Hi(F) = 0

for almost all i. Then Xcp(F) is defined, and

Xcp(F) = L (
- 1 Yq;(F

i

).
i

Proof Let Zi and B
i

be the groups of i-cycles and i-boundaries in F
i

respectively. We have an exact sequence

o -+ Zi -+ F
i

B
i + 1

o.

Hence Xlp(F) is defined, and

q>(F
i

) = q>(Zi) + q>(B
i +

1).
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Taking the alternating sum, our conclusion follows at once.

A complex whose homology is trivial is called acyclic.

Corollary 3.2. Let F be an acyclic complex, such that qJ(F
i

) is defined for
all i, and equal to 0for almost all i. If F is closed, we assume that F has even

length. Then

XqJ(F) = O.

In many applications, an open complex F is such that F
i

= 0 for almost

all i, and one can then treat this complex as a closed complex by defining an

additional map going from a zero on the far right to a zero on the far left. Thus

in this case, the study of such an open complex is reduced to the study of a

closed complex.

Theorem 3.3. Let

o E' E E" -+ 0

be an exact sequence of complexes, with morphisms of degree O. If the com-

plexes are closed, assume that their length is even. Let qJ be an Euler-Poincare

mapping on the category of modules. If XqJ is defined for two of the above

three complexes, then it is defined for the third, and we have

XqJ(E) = XqJ(E') + XqJ(E").

Proof We have an exact homology sequence

H,,(i- 1) H,i Hi H"i H,(i+ 1)

This homology sequence is nothing but a complex whose homology is trivial.

Furthermore, each homology group belonging say to E is between homology

groups of E' and E". Hence if XqJ is defined for E' and E" it is defined for E.

Similarly for the other two possibilities. If our complexes are closed of even

length n, then this homology sequence has even length 3n. We can therefore

apply the corollary of Theorem 3.1 to get what we want.

For certain applications, it is convenient to construct a universal Euler

mapping. Let a be the set of isomorphism classes of certain modules. If E is a

module, let [E] denote its isomorphism class. We require that a satisfy the

Euler-Poincare condition, Le. if we have an exact sequence

o E' E E" -+ 0,

then [E] is in a if and only if [E'] and [E"] are in a. Furthermore, the zero

module is in a.
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Theorem 3.4. Assume that a satisfies the Euler-Poincare condition. Then

there is a map

}' : a K(a)

of a into an abelian group K(a) having the universal property with respect to

Euler-Poincare maps defined on a.

To construct this, let Fab( a) be the free abelian group generated by the set of

such [E]. Let B be the subgroup generated by all elements of type

[E] - [E'] - [E"],

where

o E' E E" -+ 0

is an exact sequence whose members are in a. We let K(ct) be the factor group

Fab(a)IB, and let}': a K(a) be the natural map. It is clear that}' has the

universal property.

We observe the similarity of construction with the Grothendieck group of a

monoid. In fact, the present group is known as the Euler-Grothendieck group

of a, with Euler usually left out.

The reader should observe that the above arguments are valid in abelian

categories, although we still used the word module. Just as with the elementary

isomorphism theorems for groups, we have the analogue of the Jordan-Holder

theorem for modules. Of course in the case of modules, we don't have to worry

about the normality of submodules.

We now go a little deeper into K-theory. Let a be an abelian category. In

first reading, one may wish to limit attention to an abelian category of modules

over a ring. Let e be a family of objects in a. We shall say that e is a K-family
if it satisfies the following conditions.

K 1. e is closed under taking finite direct sums, and 0 is in e.

K 2. Given an object E in a there exists an epimorphism

L-+EO

with L in e.

K 3. Let E be an object admitting a finite resolution of length n

o -+ Ln . . .

Lo E 0

with Li E e for all i. If

ONFn-l ...Fo-+EO

is a resolution with N in a and F
0'

. . .

,
F

n- 1
in e, then N is also in e.
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We note that it follows from these axioms that if F is in e and F' is iso-

morphic to F, then F' is also in e, as one sees by looking at the resolution

o -+ F' F -+ 0 0

and applying K 3. Furthermore, given an exact sequence

o F' F -+ F" 0

with F and F" in e, then F' is in e, again by applying K 3.

Example. One may take for a the category of modules over a commutative

ring, and for e the family of projective modules. Later we shall also consider

Noetherian rings, in which case one may take finite modules, and finite pro-

jective modules instead. Condition K 2 will be discussed in 8.

From now on we assume that e is a K-family. For each object E in Q, we

let [E] denote its isomorphism class. An object E of a will be said to have

finite e-dimension if it admits a finite resolution with elements of e. We let

a(e) be the family of objects in a which are of finite e-dimension. We may

then form the

K(a(e» = Z[a(e)]IR(a(e»

where R(a(e» is the group generated by all elements [E] - [E'] -

[E"]

arising from an exact sequence

o -+ E' -+ E E" -+ 0

in a(e). Similarly we define

K(e) = z[(e)]IR(e),

where R(e) is the group of relations generated as above, but taking E', E, E"

in e itself.

There are natural maps

Ya(e): a(e) K(a(e» and re: e K(e),

which to each object associate its class in the corresponding Grothendieck

group. There is also a natural homomorphism

(: K(e) K(a(e»

since an exact sequence of objects of e can also be viewed as an exact sequence

of objects of a(e).
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Theorem 3.5. Let M E a(e) and suppose we have two resolutions

LM M 0 and L -+ M 0,

by finite complexes LM and L in e. Then

L ( -l)iye(Li) = L (-I)iye(L;).

Proof Take first the special case when there is an epimorphism L -+ LM ,

with kernel E illustrated on the following commutative and exact diagram.

o ) E ) L

j
M

j
o

) L
M

j
) M

id

j
o

) 0

The kernel is a complex

o -+ En En- 1
. . . -+ Eo -+ 0

which is exact because we have the homology sequence

Hp(E) Hp(L') Hp(L) Hp-l(E)

For p
> 1 we have Hp(L) = Hp(L') = 0 by definition, so Hp(E) = 0 for p

> 1.

And for p
= 0 we consider the exact sequence

Hl(L) Ho(E) Ho(L') Ho(L)

Now we have Hl(L) = 0, and Ho(L') Ho(L) corresponds to the identity

morphisms on M so is an isomorphism. It follows that Ho(E) = 0 also.

By definition of K-family, the objects Ep are in e. Then taking the Euler

characteristic in K(e) we find

X(L') -

x(L) = x(E) = 0

which proves our assertion in the special case.

The general case follows by showing that given two resolutions of M in e

we can always find a third one which tops both of them. The pattern of our

construction will be given by a lemma.
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Lemma 3.6. Given two epimorphisms u: M N and v: M' N in a,
there exist epimorphisms F M and F M' with F in e making thefollowing
diagram commutative.

/F
M M'

N/
Proof Let E = M x N M', that is E is the kernel of the morphism

M x M' -+ N

given by (x, y) ux
-

vy. (Elements are not really used here, and we could

write formally u
-

v instead.) There is some F in e and an epimorphism
F E -+ O. The composition of this epimorphism with the natural projections
of E on each factor gives us what we want.

We construct a complex L'M giving a resolution of M with a commutative

and exact diagram:

o

1
LM

1
L'M

I
L

I
o

) M

lid
, M

lid
) 0

) 0

) M ) 0

The construction is done inductively, so we put indices:

L. ) Li - 1I

1 1
L' ) L'

I 1- 1

I I
L ) L - 11
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Suppose that we have constructed up to L'_ 1
with the desired epimorphisms on

L i - I and L_ 1.
We want to construct L'. Let B; = Ker(Li - 1 L i - 2) and

similarly for B and B'. We obtain the commutative diagram:

) B.
1

r
B'

1

j

) L; - 1

r
) L'

1- 1

j

) L; - 2

r
) L'

1- 2

j

L.
I

L
1

) B
1

) L - 1
) L; - 2

If B;' B; or Bi' B; are not epimorphisms, then we replace L'_ 1 by

L;'_ 1 (f) Li (f) Li.

We let the boundary map to Li'- 2
be 0 on the new summands, and similarly

define the maps to L i - 1 and Li- 1 to be 0 on L and L
i - 1 respectively.

Without loss of generality we may now assume that

B' -+ B. and B' B
I I I I

are epimorphisms. We then use the construction of the preceding lemma.

We let

E. = L.'B B' and E = B' ,L
1 I Ql. ill I \J:7Bi I

.

Then both Ei and Ei have natural epimorphisms on Bi'. Then we let

N. = E. D" E
I I \Q7Vj 1

and we find an object Li' in e with an epimorphism Li' -+ N
i

. This gives us the

inductive construction of L" up to the very end. To stop the process, we use

K 3 and take the kernel of the last constructed Li' to conclude the proof.

Theorem 3.7. The natural map

£: K(e) K(a(e»

is an isomorphism.

Proof. The map is surjective because given a resolution

OFn-+...FoM-+O

with Fi E e for all i, the element

L (-l)iye(F;)
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maps on ra(e lM) under £. Conversely, Theorem 3.5 shows that the association

M L (-I)iye(Fi)

is a well-defined mapping. Since for any LEe we have a short exact sequence

o -+ L -+ L 0, it follows that this mapping following (. is the identity on K( e),
so (. is a monomorphism. Hence (. is an isomorphism, as was to be shown.

It may be helpful to the reader actually to see the next lemma which makes

the additivity of the inverse more explicit.

Lemma 3.8. Given an exact sequence in <1( e )

o -+ M' -+ M -+ M" 0

there exists a commutative and exact diagram

o ) LM'

j
) M'

j
o

) L
M"

j
M

"

.

j
o

. 0

) L
M

j
) M

j
o

) 0

o

with finite resolutions LM', L
M,

L
M" in e.

Proof We first show that we can find L', L, L" in e to fit an exact and

commutative diagram

o ) L' ) L ) L"

j j j
) M' ) M ) M"

j j j
0 0 0

) 0

o ) 0

We first select an epimorphism L" -+ M" with L" in e. By Lemma 3.6 there

exists Ll E e and epimorphisms Ll M, Ll L" making the diagram com-

mutative. Then let L
2

-+ M' be an epimorphism with L2 E e, and finally define

L = Ll (f) L
2 . Then we get morphisms L -+ M and L L" in the obvious

way. Let L' be the kernel of L L". Then L
2

c L' so we get an epimorphism
L' -+ M'.
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This now allows us to construct resolutions inductively until we hit the

n-th step, where n is some integer such that M, M" admit resolutions of length
n in e. The last horizontal exact sequence that we obtain is

o -+ L Ln -+ L -+ 0

and L can be chosen to be the kernel of L_ 1 L_ 2. By K 3 we know that

L lies in e, and the sequence

O L
"

L
"

n n- 1

is exact. This implies that in the next inductive step, we can take L+ 1
= o.

Then

o L + 1 Ln + 1
-+ 0 0

is exact, and at the next step we just take the kernels of the vertical arrows to

complete the desired finite resolutions in e. This concludes the proof of the

lemma.

Remark. The argument in the proof of Lemma 3.8 in fact shows:

If

o M' M M" 0

is an exact sequence in (1, and ifM, M" have finite e-dimension, then so does

M'.

In the category of modules, one has a more precise statement:

Theorem 3.9. Let (1 be the category of modules over a ring. Let (P be the

family ofprojective modules. Given an exact sequence of modules

o E' E E" -+ 0

if any two of E', E, E" admit finite resolutions in (p then the third does also.

Proofs in a more subtle case will be given in Chapter XXI, Theorem 2.7.

Next we shall use the tensor product to investigate a ring structure on the

Grothendieck group. We suppose for simplicity that we deal with an abelian

category of modules over a commutative ring, denoted by (1, together with a K-

familye as above, but we now assume that (1 is closed under the tensor product.
The only properties we shall actually use for the next results are the following

ones, denoted by TG (for "tensor" and "Grothendieck" respectively):

TG 1. There is a bifunctorial isomorphism giving commutativity

M@NN@M

for all M, N in (1; and similarly for distributivity over direct sums,

and associativity.
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TG 2. For all L in e the functor M L (8) M is exact.

TG 3. If L, L' are in e then L (8) L' is in e.

Then we may give K(e) the structure of an algebra by defining

cle(L) cle(L') = cle(L (8) L').

Condition TG 1 implies that this algebra is commutative, and we call it the

Grothendieck algebra. In practice, there is a unit element, but if we want one in

the present axiomatization, we have to make it an explicit assumption:

TG 4. There is an object R in e such that R (8) M M for all M in a.

Then cl
e (R) is the unit element.

Similarly, condition TG 2 shows that we can define a module structure on

K(a) over K(e) by the same formula

cle(L) cIa (M) = cIa (L (8) M),

and similarly K(a(e» is a module over K(e), where we recall that a(e) is the

family of objects in a which admit finite resolutions by objects in e.

Since we know from Theorem 3.7 that K(e) = K(a(e», we also have a

ring structure on K(a(e» via this isomorphism. We then can make the product
more explicit as follows.

Proposition 3.10. Let M E a(e) and let N E a. Let

o Ln . . . Lo M 0

be afinite resolution of M by objects in e. Then

cle(M) cla(N) = L (-IY cla(Li (8) N).

= L (-l)i cla(Hi(K»

where K is the complex

o Ln (8) N . . . Lo (8) N -+ M (8) N 0

and Hi(K) is the i-th homology of this complex.

Proof. The formulas are immediate consequences of the definitions, and of

Theorem 3. 1 .

Example. Let a be the abelian category of modules over a commutative

ring. Let e be the family of projective modules. From 6 on derived functors

the reader will know that the homology of the complex K in Proposition 3. 10

is just Tor(M, N). Therefore the formula in that proposition can also be written

c1e(M) cla(N) = L (-l)i cla(Tori(M, N».
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Example. Let k be a field. Let G be a group. By a (G, k)-module, we shall

mean a pair (E, p), consisting of a k-space E and a homomorphism

p: G Autk(E).

Such a homomorphism is also called a representation of G in E. By abuse of

language, we also say that the k-space E is a G-module. The group G operates

on E, and we write (JX instead of p«(J)x. The field k will be kept fixed in what

follows.

Let Modk(G) denote the category whose objects are (G, k)-modules. A mor-

phism in Modk(G) is what we call a G-homomorphism, that is a k-linear map

f: E F such that f(ax) = a-f(x) for all a- E G. The group of morphisms in

Modk(G) is denoted by HomG.

If E is a G-module, and (J E G, then we have by definition a k-automorphism
(J: E E. Since T

r

is a functor, we have an induced automorphism

Tr«(J): Tr(E) Tr(E)

for each r, and thus Tr(E) is also a G-module. Taking the direct sum, we see

that T(E) is a G-module, and hence that T is a functor from the category of

G-modules to the category of graded G-modules. Similarly for I\r, sr, and 1\, S.

It is clear that the kernel of a G-homomorphism is a G-submodule, and that

the factor module of a G-module by a G-submodule is again a G-module so the

category of G-modules is an abelian category.

We can now apply the general considerations on the Grothendieck group

which we write

K(G) =

K(Modk(G»

for simplicity in the present case. We have the canonical map

cl: Modk(G) K(G).

which to each G-module associates its class in K(G).
If E, Fare G-modules, then their tensor product over k, E (8) F, is also a

G-module. Here again, the operation of G on E (8) F is given functorially. If

a E G, there exists a unique k-linear map E (8) F E (8) F such that for x E E,

Y E F we have x (8) Y «(Jx) (8) «(JY). The tensor product induces a law of

composition on Modk(G) because the tensor products of G-isomorphic modules

are G-isomorphic.
Furthermore all the conditions TG 1 through TG 4 are satisfied. Since k is a

field, we find also that tensoring an exact sequence of G-modules over k with any

G-module over k preserves the exactness, so TG 2 is satisfied for all (G, k)-
modules. Thus the Grothendieck group K(G) is in fact the Grothendieck ring,
or the Grothendieck algebra over k.
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By Proposition 2.1 and Theorem 2.3 of Chapter XVIII, we also see:

The Grothendieck ring of a finite group G consisting of isomorphism classes of

finite dimensional (G, k)-spaces over a field k of characteristic 0 is naturally

isomorphic to the character ring Xz(G).

We can axiomatize this a little more. We consider an abelian category of

modules over a commutative ring R, which we denote by a for simplicity. For

two modules M, N in a we let Mor(M, N) as usual be the morphisms in a, but

Mor(M, N)isanabeliansubgroupofHomR(M, N). For example, we could take

a to be the category of (G, k)-modules as in the example we have just discussed,

in which case Mor(M, N) =

HomG(M, N).

We let e be the family of finite free modules in a. We assume that e satisfies
TG 1, TG 2, TG 3, TG 4, and also that e is closed under taking alternating pro-

ducts, tensor products and symmetric products. We let K = K(e). As we have

seen, K is itself a commutative ring. We abbreviate cl e
= cl.

We shall define non-linear maps

Ai : K K

using the alternating product. If E is finite free, we let

Ai(E) = cl(f\iE).

Proposition 1. 1 of Chapter XIX can now be formulated for the K-ring as follows.

Proposition 3.11. Let

o E' E E" 0

be an exact sequence offinitefree modules in a. Thenfor every integer n > 0

we have

"

A"(E) = L Ai(E')A"- i(E").
i=O

As a result of the proposition, we can define a map

At : K 1 + tK[[t]]

of K into the multiplicative group of formal power series with coefficients in K,

and with constant term 1, by letting

00

At(X) = L Ai(X)t
i
.

i=O
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Proposition 1.4 of Chapter XIX can be formulated by saying that:

The map

At : K 1 + tK [[t]]

is a homomorphism.

We note that if L is free of rank 1, then

AO(L) = ground ring;

Al(L) = cl(L);

Ai(L) = 0 for i > 1.

This can be summarized by writing

At(L) = 1 + cl(L)t.

Next we can do a similar construction with the symmetric product instead of

the alternating product. If E is a finite free module in e we let as usual:

S(E) = symmetric algebra of E;

Si(E) = homogeneous component of degree i in S(E).

We define

ai(E) = cl(Si(E»

and the corresponding power series

at(E) = L ai(E)t
i
.

Theorem 3.12. Let E be a finite free module in a, of rank r. Then for all

integers n > 1 we have

r

L (
- l)iAi(E)a"

-

i(E) = 0,
i ==0

where by definition aj(E) = 0for j < o. F'urthermore

at(E)A - t(E) = 1,

so the power series a,(E) and A
_ ,(E) are inverse to each other.

Proof. The first formula depends on the analogue for the symmetric product
and the alternating product of the formula given in Proposition 1.1 of Chapter
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XIX. It could be proved directly now, but the reader will find a proof as a special
case of the theory of Koszul complexes in Chapter XXI, Corollary 4.14. The

power series relation is essentially a reformulation of the first formula.

From the above formalism, it is possible to define other maps besides AJ and

u; .

Example. Assume that the group G is trivial, and just write K for the

Grothendieck ring instead of K( 1). For x E K define

t/J-t(x)
= -, :, log At(x)

= -, A; (x)/At(x).

Show that «/I-t is an additive and multiplicative homomorphism. Show that

«/1t(E)
= 1 + cl(E) t + cl(E)2 t

2
+ · ..

.

This kind of construction with the logarithmic derivative leads to the Adams

operations «/I; in topology and algebraic geometry. See Exercise 22 of Chapter
XVIII.

Remark. If it happens in Theorem 3.12 that E admits a decomposition into

I-dimensional free modules in the K-group, then the proof trivializes by using
the fact that At(L)

= 1 + cl(L)t if L is I-dimensional. But in the example of

(G, k)-spaces when k is a field, this is in general not possible, and it is also not

possible in other examples arising naturally in topology and algebraic geometry.

However, by "changing the base," one can sometimes achieve this simpler

situation, but Theorem 3.12 is then used in establishing the basic properties. Cf.
Grothendieck [SGA 6], mentioned in the introduction to Part IV, and other works

mentioned in the bibliography at the end, namely [Ma 69], [At 61], [At 67],

[Ba 68], [Bo 62]. The lectures by Atiyah and Bott emphasize the topological

aspects as distinguished from the algebraic-geometric aspects. Grothendieck

[Gr 68] actually shows how the formalism of Chern classes from algebraic

geometry and topology also enters the theory of representations of linear groups.

See also the exposition in [FuL 85], especially the formalism of Chapter I, 6.

For special emphasis on applications to representation theory, see Brocker-tom

ieck [BtO 85], especially Chapter II, 7, concerning compact Lie groups.

4. INJECTIVE MODULES

In Chapter III, 4, we defined projective modules, which have a natural

relation to free modules. By reversing the arrows, we can define a module Q to

be injective if it satisfies anyone of the following conditions which are equivalent:

I 1. Given any module M and a submodule M', and a homomorphism

f: M' Q, there exists an extension of this homomorphism to M,
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that is there exists h : M Q making the following diagram commuta-

tive :

o ) M' ) M

11/
12. The functor M HomA(M, Q) is exact.

I 3. Every exact sequence 0 Q M -+ M" -+ 0 splits.

We prove the equivalence. General considerations on homomorphisms as in

Proposition 2.1, show that exactness of the homed sequence may fail only at

one point, namely given

o M' M M" 0,

the question is whether

HomA(M, Q) HomA(M', Q) 0

is exact. But this is precisely the hypothesis as formulated in I 1, so I 1 implies
I 2 is essentially a matter of linguistic reformulation, and in fact I 1 is equivalent
to I 2.

Assume I 2 or I 1, which we know are equivalent. To get I 3 is immediate, by

applying lIto the diagram:

o ) Q M

id1/
To prove the converse, we need the notion of push-out (cf. Exercise 52 of

Chapter I). Given an exact diagram

0 ) M' ) M

j
Q

we form the push-out:

M' ) M

j 1
Q ) N = Q (f)M' M.
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Since M' M is a monomorphism, it is immediately verified from the construc-

tion of the push-out that Q N is also a monomorphism. By I 3, the sequence

OQN

splits, and we can now compose the splitting map N Q with the push-out map

M N to get the desired h : M Q, thus proving I 1.

We saw easily that every module is a homomorphic image of a free module.

There is no equally direct construction for the dual fact:

Theorem 4.1. Every module is a submodule of an injective module.

The proof will be given by dualizing the situation, with some lemmas. We

first look at the situation in the category of abelian groups. If M is an abelian

group, let its dual group be M" = Hom(M, Q/Z). If F is a free abelian group,

it is reasonable to expect, and in fact it is easily proved that its dual F" is an

injective module, since injectivity is the dual notion of projectivity. Furthermore,

M has a natural map into the double dual M"", which is shown to be a mono-

morphism. Now represent M" as a quotient of a free abelian group,

F M" o.

Dualizing this sequence yields a monomorphism

o M"" F"
,

and since M is embedded naturally as a subgroup of M"", we get the desired

embedding of M as a subgroup of F".

This proof also works in general, but there are details to be filled in. First

we have to prove that the dual of a free module is injective, and second we have

to be careful when passing from the category of abelian groups to the category
of modules over an arbitrary ring. We now carry out the details.

We say that an abehan group T is divisible if for every integer m, the homo-

morphism

mT : x mx

is surjective.

Lemma 4.2. If T is divisible, then T is injective in the category of abelian

groups.

Proof. Let M' c M be a subgroup of an abelian group, and let f: M' -+ T

be a homomorphism. Let x E M. We want first to extend f to the module

(M', x) generated by M' and x. If x is free over M', then we select any value

t E T, and it is immediately verified thatfextends to (M', x) by giving the value

f(x) = f. Suppose that x is torsion with respect to M', that is there is a

positive integer m such that mx EM'. Let d be the period of x mod M', so
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dx EM', and d is the least positive integer such that dx EM'. By hypothesis,
there exists an element U E T such that du = f(dx). For any integer n, and Z E M'

define

f(z + nx) = .f(z) + nu.

By the definition of d, and the fact that Z is principal, one sees that this value

for f is independent of the representation of an element of (M', x) in the form

z + nx, and then it follows at once that this extended definition of f is a

homomorphism. Thus we have extended f to (M', x).
The rest of the proof is merely an application of Zorn's lemma. We consider

pairs (N, g) consisting of submodules of M containing M', and an extension 9

of f to N. We say that (N, g) < (N l' gl) if N c N
1 and the restriction of gl

to N is g. Then such pairs are inductively ordered. Let (N, g) be a maximal

element. If N =I M then there is some x EM, x FJ N and we can apply the first

part of the proof to extend the homomorphism to (N, x), which contradicts

the maximality, and concludes the proof of the lemma.

Example. The abelian groups Q/Z and R/Z are divisible, and hence are

injective in the category of abelian groups.

We can prove Theorem 4.1 in the category of abelian groups following the

pattern described above. If F is a free abelian group, then the dual F/\ is a direct

product of groups isomorphic to Q/Z, and is therefore injective in the category
of abelian groups by Lemma 4.2. This concludes the proof.

Next we must make the necessary remarks to extend the system to modules.

Let A be a ring and let T be an abelian group. We make Homz(A, T) into an

A-module as follows. Letf:A T be an abelian group homomorphism. For

a E A we define the operation

(af)(b) = f(ba).

The rules for an operation are then immediately verified. Then for any A-module

X we have a natural isomorphism of abelian groups:

Homz(X, T) -=+ HomA(X, Hornz(A, T».

Indeed, let tjJ : X T be a Z-homomorphism. We associate with tjJ the homo-

morphism

f: X Homz(A, T)

such that

f(x)(a) = tjJ(ax).
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The definition of the A-module structure on Homz(A, T) shows that f is an

A-homomorphism, so we get an arrow from Homz(X, T) to

HomA(X, Homz(A, T».

Conversely, let f: X Homz(A, T) be an A-homomorphism. We define the

corresponding t/J by

t/J(x) = f(x)(l).

It is then immediately verified that these maps are inverse to each other.

We shall apply this when T is any divisible group, although we think of T

as being Q/Z, and we think of the homomorphisms into T as representing the

dual group according to the pattern described previously.

Lemma 4.3. If T is a divisible abelian group, then Homz(A, T) is injective in

the category of A-modules.

Proof. It suffices to prove that if 0 X Y is exact in the category of

A-modules, then the dual sequence obtained by taking A-homomorphisms into

Homz(A, T) is exact, that is the top map in the following diagram is surjective.

HomA(Y, Homz(A, T»

1

) HomA(X, Homz(A, T»

1

?

) 0

Homz(Y, T) Homz(X, T) ) 0

But we have the isomorphisms described before the lemma, given by the vertical

arrows of the diagram, which is commutative. The bottom map is surjective
because T is an injective module in the category of abelian groups. Therefore

the top map is surjective, thus proving the lemma.

Now we prove Theorem 4.1 for A-modules. Let M be an A-module. We can

embed M in a divisible abelian group T,

o M L T.

Then we get an A-homomorphism

M Homz(A, T)

by x fx' where fx(a) = f(ax). One verifies at once that x fx gives an em-

bedding of M in Homz(A, T), which is an injective module by Lemma 4.3. This

concludes the proof of Theorem 4. 1.
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5. HOMOTOPIES OF MORPHISMS OF

COMPLEXES

The purpose of this section is to describe a condition under which homo-

morphisms of complexes induce the same map on the homology and to show

that this condition is satisfied in an important case, from which we derive

applications in the next section.

The arguments are applicable to any abelian category. The reader may pre-

fer to think of modules, but we use a language which applies to both, and is no

more complicated than if we insisted on dealing only with modules.

Let E = {(E", d")} and E' = {(E'", d'")} be two complexes. Let

f, 9 : E E'

be two morphisms of complexes (of degree 0). We say thatfis homotopic to 9

if there exists a sequence of homomorphisms

h" : E" E'("- 1)

such that

J,
- d'("

- 1 )h + h d
"

"

-

gn
-

""+ 1
.

Lemma 5.1. Iff, 9 are homotopic, then f, 9 induce the same homomorphism
on the homology H(E), that is

H(f") = H(g"): H"(E) -+ H"(E').

Proof. The lemma is immediate, because J"
-

g" vanishes on the cycles,
which are the kernel of d", and the homotopy condition shows that the image of

J" -

g" is contained in the boundaries, that is, in the image of d'("- 1).

Remark. The terminology of homotopy is used because the notion and

formalism first arose in the context of topology. Cf. [ES 52] and [GreH 81].

We apply Lemma 5.1 to injective objects. Note that as usual the definition

of an injective module applies without change to define an injective object in

any abelian category. Instead of a submodule in I 1, we use a subobject, or

equivalently a monomorphism. The proofs of the equivalence of the three con-

ditions defining an injective module depended only on arrow-theoretic juggling,
and apply in the general case of abelian categories.

We say that an abelian category has enough injectives if given any object M

there eXIsts a monomorphism

OM-+I
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into an injective object. We proved in 4 that the category of modules over a

ring has enough injectives. We now assume that the abeUan category we work

with has enough injectives.

By an injective resolution of an object M one means an exact sequence

o -+ M /0 /1 -+ /2 -+

such that each]
n (n > 0) is injective. Given M, such a resolution exists. Indeed,

the monomorphism

o M ]0

exists by hypothesis. Let MO be its image. Again by assumption, there exists a

monomorphism

0-+ ]olMo ]1,

and the corresponding homomorphism 1° -+]1 has kernel MO. So we have

constructed the first step of the resolution, and the next steps proceed in the

same fashion.

An injective resolution is of course not unique, but it has some uniqueness
which we now formulate.

Lemma 5.2. Consider two complexes:

) EO ) £1 ) £2 ) . . .o ) M

!
o ) M' ) /0 ) ]

1
) /2 ) . . .

Suppose that the top row is exact, and that each In (n > 0) is injective. Let

qJ : M -+ M' be a given homomorphism. Then there exists a morphism f of
complexes such thatf_ 1

=

qJ; and any two such are homotopic.

Proof By definition of an injective, the homomorphism M ]0 via M'

extends to a homomorphism

fo : EO -+ /
°

,

which makes the first square commute:

.

1:0

M' ) ]0
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Next we must construct fl. We write the second square in the form

o EOIM

fo !
1° ) 1

1

) E
l

with the exact top row as shown. Again because 1
1

is injective, we can apply the

same argument and find fl to make the second square commute. And so on,

thus constructing the morphism of complexesf

Suppose f, 9 are two such morphisms. We define ho : EO -+ M' to be O.

Then the condition for a homotopy is satisfied in the first instance, when

f-l =g-1 ==qJ.

Next let d-
1

: M -+ EO be the embedding of M in EO. Since 1° is injective,
we can extend

dO: E
O

/1m d-
l

-+ El

to a homomorphism hI : E
l

1°. Then the homotopy condition is verified for

fo
-

go. Since ho = 0 we actually have in this case

fo -

go
= hI dO,

but this simplification is misleading for the inductive step which follows. We

assume constructed the map h
n + 1, and we wish to show the existence of hn+2

satisfying

fn+ 1
-

gn+ 1
= d,nh

n + I + h
n + 2 dn

+ l
.

Since 1m d
n

= Ker d
n +

I, we have a monomorphism En
+

l/Im d
n

En
+

2. By
the definition of an injective object, which in this case is In

+

1, it suffices to prove

that

In + I
-

gn + 1
- d,nh

n + 1 vanishes on the image of d
n

,

and to use the exact diagram:

o ) E
n +

111m d
n

fn + I
-

gn + I

!
In+

1

. En
+ 2

to get the existence of h
n + 2 : En

+ 2
-+ In

+ 1

extending fn + 1
-

gn + 1. But we

have :

(fn+ 1
-

gn+ 1
- d,nh

n + l)d
n

= (f,.+ 1
-

gn+ l)d
n
- d,nh

n + I dn
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-

(I, )d
n

d,n(f, d,(n-l)h )-

n+ 1
-

gn+ 1
-

n

-

gn
-

n

= (fn+ 1
-

gn+ l)d
n
-

d,n(fn - gn)

=0

by induction

because d'd' = 0

because 1, 9 are

homomorphisms of

complexes.

This concludes the proof of Lemma 5.2.

Remark. Dually, let PM' M' 0 be a complex with pi projective for

i > 0, and let EM M Obearesolution. Letq>: M' Mbeahomomorphism.
Then ({J extends to a homomorphism of complex P E. The proof is obtained

by reversing arrows in Lemma 5.2. The books on homological algebra that I

know of in fact carry out the projective case, and leave the injective case to the

reader. However, one of my motivations is to do here what is needed, for

instance in [Ha 77], Chapter III, on derived functors, as a preliminary to the

cohomology of sheaves. For an example of projective resolutions using free

modules, see Exercises 2-7, concerning the cohomology of groups.

6. DERIVED FUNCTORS

We continue to work in an abelian category. A covariant additive functor

F:a(B

is said to be left exact if it transfdrms an exact sequence

o M' M M"

into an exact sequence 0 F(M') F(M) -+ F(M"). We remind the reader

that F is called additive if the map

Hom(A', A) -+ Hom(FA', FA)
is additive.

We assume throughout that F is left exact unless otherwise specified, and

additive. We continue to assume that our abelian category has enough in-

jectives.

Given an object M, let

o M ]0 ]1 -+ ]2

be an injective resolution, which we abbreviate by

o M ]M,

where ]M is the complex ]0 1
1

]2. We let] be the complex

o ]0 ]1 ]2
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We define the right-derived functor R"F by

R"F(M) = H"(F(I»,

in other words, the n-th homology of the complex

o F(IO) F(I
l

) F(I
2

)

Directly from the definitions and the monomorphism M 1o ,
we see that there

is an isomorphism

ROF(M) = F(M).

This isomorphism seems at first to depend on the injective resolution, and so

do the functors R"F(M) for other n. However, from Lemmas 5.1 and 5.2 we

see that given two injective resolutions of M, there is a homomorphism between

them, and that any two homomorphisms are homotopic. Ifwe apply the functor

F to these homomorphisms and to the homotopy, then we see that the homology
of the complex F(I) is in fact determined up to a unique isomorphism. One

therefore omits the resolution from the notation and from the language.

Example 1. Let R be a ring and let a = Mod(R) be the category of R-

modules. Fix a module A. The functor M Hom(A, M) is left exact, Le. given
an exact sequence 0 M' M M", the sequence

o Hom(A, M') Hom(A, M) Horn (A, M")

is exact. Its right derived functors are denoted by Extn(A, M) for M variable.

Similarly, for a fixed module B, the functor X Horn (X, B) is right exact,

and it gives rise to its left derived functors. For the explicit mirror image of

the terminology, see the end of this section. In any case, we may consider A as

variable. In 8 we shall go more deeply into this aspect of the formalism, by

dealing with bifunctors. It will turn out that Ext
n

(A, B) has a dual interpretation
as a left derived functor of the first variable and right derived functor of the

second variable. See Corollary 8.5.

In the exercises, you will prove that Ext
1
(A, M) is in bijection with iso-

morphism classes of extensions, ofM by A, that is, isomorphism classes of exact

sequences

o A E M o.

The name Ext comes from this interpretation in dimension 1.

For the computation of Ext; in certain important cases, see Chapter XXI,

Theorems 4.6 and 4.11, which serve as examples for the general theory.

Example 2. Let R be commutative. The functor M A 0 M is right exact,

in other words, the sequence

A 0 M' A 0 M A 0 M" 0

is exact. Its left derived functors are denoted by Torn(A, M) for M variable.
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Example 3. Let G be a group and let R = Z[G] be the group ring. Let Ci

be the category of G-modules, Le. Ci = Mod(R), also denoted by Mod(G). For

a G-module A, let A
G

be the submodule (abelian group) consisting of those

elements v such that xv
= v for all x E G. Then A A

G is a left exact functor

from Mod(R) into the category of abelian groups. Its left derived functors give
rise to the cohomology of groups. Some results from this special cohomology
will be carried out in the exercises, as further examples of the general theory.

Example 4. Let X be a topological space (we assume the reader knows

what this is). By a sheaf of abelian groups on X, we mean the data:

(a) For every open set U of X there is given an abelian group (U).

(b) For every inclusion V C U of open sets there is given a homomorphism

res : (U) (V),

called the restriction from U to V, subject to the following conditions:

SH 1. (empty set) = O.

SH 2. res is the identity (U) (U).

SH 3. If W eve U are open sets, then resw 0 res = res.
SH 4. Let U be an open set and {\';} be an open covering of U. Let

s E (U). If the restriction of s to each \'; is 0, then s
.

O.

SH 5. Let U be an open set and let {\';} be an open covering of U. Suppose

given s; E (\';) for each i, such that given i, j the restrictions of s;

and Sj to \'; n V
j

are equal. Then there exists a unique S E (U) whose

restriction to \'; is S; for all i.

Elements of (U) are called sections of over U. Elements of (X) are called

global sections. Just as for abelian groups, it is possible to define the notion of

homomorphisms of sheaves, kernels, cokernels, and exact sequences. The asso-

ciation (X) (global sections functor) is a functor from the category of

sheaves of abelian groups to abelian groups, and this functor is left exact. Its

right derived functors are the basis ofcohomology theory in topology and algebraic

geometry (among other fields of mathematics). The reader will find a self-

contained brief definition of the basic properties in [Ha 77], Chapter II, 1, as

well as a proof that these form an abelian category. For a more extensive treatment

I recommend Gunning's [Gu 91], mentioned in the introduction to Part IV,

notably Volume III, dealing with the cohomology of sheaves.

We now return to the general theory of derived functors. The general theory
tells us that these derived functors do not depend on the resolution by projectives
or injectives according to the variance. As we shall also see in 8, one can even

use other special types of objects such as acyclic or exact (to be defined), which

gives even more flexibility in the ways one has to compute homology. Through
certain explicit resolutions, we obtain means of computing the derived functors
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explicitly. For example, in Exercise 16, you will see that the cohomology of

finite cyclic groups can be computed immediately by exhibiting a specific free

resolution of Z adapted to such groups. Chapter XXI will contain several other

examples which show how to construct explicit finite free resolutions, which

allow the determination of derived functors in various contexts.

The next theorem summarizes the basic properties of derived functors.

Theorem 6.1. Let a be an abelian category with enough injectives, and let

F : a ill be a covariant additive left exact functor to another abelian cate-

gory (B. Then:

(i) For each n > 0, R"F as defined above is an additive functor from a

to (B. Furthermore, it is independent, up to a unique isomorphism of

functors, of the choices of resolutions made.

(ii) There is a natural isomorphism F ROF.

(iii) For each short exact sequence

o M' M M" 0

and for each n > 0 there is a natural homomorphism

lJ" : R"F(M") R"
+ 1

F(M)

such that we obtain a long exact sequence:

R"F(M') R"F(M) R"F(M") R"+
1

F(M') -+.

(iv) Given a morphism of short exact sequences

) M

I
) 0o ) M'

I
) M"

I
o ) N' ) N ) N" ) 0

the lJ's give a commutative diagram:

R"F(M")

I
R"F(N")

b"
) R"+

1

F(M')

I
) R"+

1

F(N')
b"

(v) For each injective object I ofA andfor each n > 0 we have R"F(I) = O.

Properties (i), (ii), (iii), and (iv) essentially say that R"F is a delta-functor in a

sense which will be expanded in the next section. The last property (v) will be

discussed after we deal with the delta-functor part of the theorem.
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We now describe how to construct the <5-homomorphisms. Given a short

exact sequence, we can find an injective resolution of M', M, M" separately, but

they don't necessarily fit in an exact sequence of complexes. So we must achieve

this to apply the considerations of 91. Consider the diagram:

o

0 0 0

j 1 j
) M' ) M ) M"

j j j
) ]'0 ) X ) ]"0

) 0

o ) o.

We give monomorphisms M' ]'0 and M" ]"0 into injectives, and we want to

find X injective with a monomorphism M X such that the diagram is exact.

We take X to be the direct sum

x = ]'0 EE> ]"0.

Since ]'0 is injective, the monomorphism M' ]'0 can be extended to a homo-

morphism M ]'0. We take the homomorphism of Minto ]'0 EE> ]"0 which

comes from this extension on the first factor 1'0, and is the composite map

M M" /"0

on the second factor. Then M X is a monomorphism. Furthermore ]'0 X

is the monomorphism on the first factor, and X ]"0 is the projection on the

second factor. So we have constructed the diagram we wanted, giving the

beginning of the compatible resolutions.

Now we take the quotient homomorphism, defining the third row, to get an

exact diagram:

o

0 0 0

j j j
) M' ) M ) M"

j j j
) ]'0 ) ]0 ) ]"0

j j j
) N' ) N ) N"

j j j
0 0 0

) 0o

) 0

o ) 0
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where we let 1° = X, and N', N, N" are the cokernels of the vertical maps by
definition. The exactness of the N-sequence is left as an exercise to the reader.

We then repeat the construction with the N-sequence, and by induction construct

injective resolutions

o

0 0 0

j j j
) M' ) M ) M"

j j j
) l, ) 1M I")

M"

) 0

o ) 0

of the M-sequence such that the diagram of the resolutions is exact.

We now apply the functor F to this diagram. We obtain a short sequence of

complexes:

o F(I') F(I) F(I") 0,

which is exact because I = I' (f) I" is a direct sum and F is left exact, so F com-

mutes with direct sums. We are now in a position to apply the construction of

1 to get the coboundary operator in the homology sequence:

R"F(M') -+ R"F(M) R"F(M") R"+
1

F(M').

This is legitimate because the right derived functor is independent of the chosen

resolutions.

So far, we have proved (i), (ii), and (iii). To prove (iv), that is the naturality of

the delta homomorphisms, it is necessary to go through a three-dimensional

commutative diagram. At this point, I feel it is best to leave this to the reader,
since it is just more of the same routine.

Finally, the last property (v) is obvious, for if I is injective, then we can

use the resolution

OIIO

to compute the derived functors, from which it is clear that R"F = 0 for n > O.

This concludes the proof of Theorem 6.1.

In applications, it is useful to determine the derived functors by means of

other resolutions besides injective ones (which are useful for theoretical

purposes, but not for computational ones). Let again F be a left exact additive

functor. An object X is called F-acyclic if RnF(X) = 0 for all n > O.



796 GENERAL HOMOLOGY THEORY XX, 6

Theorem 6.2. Let

o M -+ XO Xl X
2

. . .

be a resolution of M by F-acyclics. Let

o M ]0 -+ ]1 ]2 . . .

be an injective resolution. Then there exists a morphism ofcomplexes XM ]M

extending the identity on M, and this morphism induces an isomorphism

H"F(X) H"F(I) = R"F(M) for all n > O.

Proof The existence of the morphism of complexes extending the identity
on M is merely Lemma 5.2. The usual proof of the theorem via spectral se-

quences can be formulated independently in the following manner, shown to

me by David Benson. We need a lemma.

Lemma 6.3. Let yi (i > 0) be F-acyclic, and suppose the sequence

o -+ yO yl y2 . . .

is exact. Then

o F(YO) F(yl) F(y2) ...

is exact.

Proof Since F is left exact, we have an exact sequence

o F(YO) F(yl) F(y2).

We want to show exactness at the next joint. We draw the cokernels:

o ) yO ) yl ) y2 ) y3

\/\/
Zl Z2

/\/\
000

So Zl = Coker(Yo yl); Z2 = Coker(yl y2); etc. Applying F we have

an exact sequence

o F(YO) F(yl) F(Zl) RIF(YO) = O.
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So F(Zl) = Coker(F(YO) -+ F(y
1

». We now consider the exact sequence

O-+ZlY2-+Y3

giving the exact sequence

o -+ F(Zl) F(y2) F(y3)

by the left-exactness of F, and proving what we wanted. But we can now

continue by induction because Z
1

is F-acyclic, by the exact sequence

o RnF(yl) -+ R"F(Zl) -+ R"+ IF(Yo) = O.

This concludes the proof of Lemma 6.3.

We return to the proof of Theorem 6.2. The injective resolution

o M 1M

can be chosen such that the homomorphisms X" I" are monomorphisms for

n > 0, because the derived functor is independent of the choice of injective
resolution. Thus we may assume without loss of generality that we have an

exact diagram:

o

o

j
) XO

j
) 1°

j
) yO

j
o

) M

id

j
o ) M

o

o

j
) Xl

j
) J

1

j
) yl

j
o

o

j
) X

2

j
) 1

2

j
) y2

j
o

defining Y" as the appropriate cokernel of the vertical map.

Since X" and I" are acyclic, so is Y" from the exact sequence

RkF(I") RkF( Y") R
k + 1

F(X").

Applying F we obtain a short exact sequence of complexes

o F(X) F(I) F(Y) O.
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whence the corresponding homology sequence

H"-lF(Y) H"F(X) H"F(I) -+ H"F(Y).

Both extremes are 0 by Lemma 6.3, so we get an isomorphism in the middle,

which by definition is the isomorphism

H"F(X) R"F(M),

thus proving the theorem.

Left derived functors

We conclude this section by a summary of the properties of left derived

functors.

We consider complexes going the other way,

X"...-+X2Xl XoMO

which we abbreviate by

X
M M O.

We call such a complex a resolution of M if the sequence is exact. We call it a

projective resolution if X" is projective for all n > O.

Given projective resolutions X
M,

YM
, and a homomorphism

lp : M M'

there always exists a homomorphism XM YM
, extending lp, and any two

such are homotopic.

In fact, one need only assume that XM is a projective resolution, and that

YM
, is a resolution, not necessarily projective, for the proof to go through.
Let T be a covariant additive functor. Fix a projective resolution of an ob-

ject M,

PM M O.

We define the left derived functor L" T by

Ln T(M) = H"(T(P»,

where T(P) is the complex

T(P") -+ ... T(P2) T(P l ) T(Po) O.

The existence of homotopies shows that L" T(M) is uniquely determined up

to a unique isomorphism if one changes the projective resolution.

We define T to be right exact if an exact sequence

M' M -+ M" 0
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yields an exact sequence

T(M') T(M) T(M") O.

If T is right exact, then we have immediately from the definitions

Lo T(M) M.

Theorems 6.1 and 6.2 then go over to this case with similar proofs. One

has to replace "injectives" by "projectives" throughout, and in Theorem 6.1,

the last condition states that for n > 0,

L" T(P) = 0 if P is projective.

Otherwise, it is just a question of reversing certain arrows in the proofs. For

an example of such left derived functors, see Exercises 2-7 concerning the

cohomology of groups.

7. DELTA-FUNCTORS

In this section, we axiomatize the properties stated in Theorem 6.1 following
Grothendieck.

Let a, CB be abelian categories. A (covariant) -functor from a to CB is a

family of additive functors F = {F"}"o, and to each short exact sequence

o M' M M" 0

an associated family of morphisms

": F"(M") F"+ l(M')

with n > 0, satisfying the following conditions:

DEL I. For each short exact sequence as above, there is a long exact

sequence

o FO(M') FO(M) FO(M") Fl(M') -+ . . .

-+ F"(M') F"(M) F"(M") F"+ l(M')

DEL 2. For each morphism of one short exact sequence as above into

another 0 N' N N" 0, the 's give a commutative

diagram:

F"(M")

!
F"(N")

lJ
) F"+ l(M')

!
lJ

) F"
+

l(N').
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Before going any further, it is useful to give another definition. Many proofs
in homology theory are given by induction from one index to the next. It turns

out that the only relevant data for going up by one index is given in two succes-

sive dimensions, and that the other indices are irrelevant. Therefore we general-
ize the notion of <5-functor as follows.

A o-functor defined in degrees 0, 1 is a pair of functors (F\ Fl) and to

each short exact sequence

o A' -+ A -+ A" -+ 0

an associated morphism

<5 : FO(A") Fl(A")

satisfying the two conditions as before, but putting n = 0, n + 1 = 1, and for-

getting about all other integers n. We could also use any two consecutive posi-
tive integers to index the <5-functor, or any sequence of consecutive integers
> O. In practice, only the case of all integers > 0 occurs, but for proofs, it is

useful to have the flexibility provided by using only two indices, say 0, 1.

The b-functor F is said to be universal, if given any other <5-functor G of a

into CB, and given any morphism of functors

fo : FO GO,

there exists a unique sequence of morphisms

in : F" Gn

for all n > 0, which commute with the <5" for each short exact sequence.

By the definition of universality, a <5-functor G such that GO = FO is uniquely
determined up to a unique isomorphism of functors. We shall give a condition

for a functor to be universal.

An additive functor F of a into CB is called erasable if to each object A there

exists a monomorphism u : A M for some M such that F(u) = O. In practice,
it even happens that F(M) = 0, but we don't need it in the axiomatization.

Linguistic note. Grothendieck originally called the notion "effaceable" in

French. The dictionary translation is "erasable," as I have used above. Ap-

parently people who did not know French have used the French word in English,
but there is no need for this, since the English word is equally meaningful and

convenient.

We say the functor is erasable by injectives if in addition M can be taken to

be injective.
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Example. Of course, a right derived functor is erasable by injectives, and

a left derived functor by projectives. However, there are many cases when one

wants erasability by other types of objects. In Exercises 9 and 14, dealing with

the cohomology of groups, you will see how one erases the cohomology functor

with induced modules, or regular modules when G is finite. In the category of

coherent sheaves in algebraic geometry, one erases the cohomology with locally
free sheaves of finite rank.

Theorem 7.1. Let F = {F"} be a covariant 1unctorfrom Ci into (B. ifF" is

erasable for each n > 0, then F is universal.

Proof Given an object A, we erase it with a monomorphism u, and get a

short exact sequence:

o -+ A M X -+ O.

Let G be another -functor with given fo: FO -+ GO. We have an exact com-

mutative diagram

FO(M) ) FO(X)
{),

) F
1

(A) ) 0

fO ) fO)
,

I

I

: f I?
I

,I,

GO(M) ) GO(X)
{)G

) Gl(A)

We get the 0 on the top right because of the erasability assumption that

Fl(cp) = O.

We want to construct

fl (A) : F
1

(A) -+ G l(A)

which makes the diagram commutative, is functorial in A, and also commutes

with the. Commutativity in the left square shows that Ker F is contained in

the kernel of G 0 fo. Hence there exists a unique homomorphism

fl(A): F
1

(A) Gl(A)

which makes the right square commutative. We are going to show that fl (A)
satisfies the desired conditions. The rest of the proof then proceeds by induction

following the same pattern.

We first prove the functoriality in A.

Let u: A B be a morphism. We form the push-out P in the diagram

A
cP

) M

u) )
B ) p
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Since q> is a monomorphism, it follows that B P is a monomorphism also.

Then we let P N be a monomorphism which erases P l'
This yields a com-

mutative diagram

o ) M

vj
) 0) A

uj
) X

wj
o ) B ) N ) f ) 0

where B N is the composite B P N, and f is defined to be the cokernel

of B N.

Functoriality in A means that the following diagram is commutative.

Pl(A)

f1 (A) j
Gl(A)

Fl(U)
) Fl(B)

j ft (B)

) Gl(B)
Fl(u)

This square is the right-hand side of the following cube:

D
F

F'(A)

Dr F'(B)

FO( X)

W).1;)( X )
F()( Y )

f>G G1(A)

GO(X)---- I,(B)

G'(B)

GO( Y)

All the faces of the cube are commutative except possibly the right-hand face.

It is then a general fact that if the top maps here denoted by F are epimorphisms,
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then the right-hand side is commutative also. This can be seen as follows. We

start with fl (B)Fl(U)F' We then use commutativity on the top of the cube,
then the front face, then the left face, then the bottom, and finally the back face.

This yields

fl (B)Fl(U)F = Gl(u)fl (A)F.

Since F is an epimorphism, we can cancel F to get what we want.

Second, we have to show thatft commutes with. Let

o A' A A" 0

be a short exact sequence. The same push-out argument as before shows that

there exists an erasing monomorphism 0 A' -+ M and morphisms v, w

making the following diagram commutative:

o ) A'

idl
) A'

A
ll

)

Iw
) A

Iv
) 0

o ) M ) X ) 0

Here X is defined as the appropriate cokernel of the bottom row. We now

consider the following diagram:

GO( X)

FO(A ")

.ro
fJ

F

GO( A ")

/ 6
F"'"

F
I
(A ')

ft (A')

fJ
G

G
I
(A ')..

FO(",)

F o( X)

to

Our purpose is to prove that the right-hand face is commutative. The triangles
on top and bottom are commutative by the definition of a -functor. The
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left-hand square is commutative by the hypothesis that /0 is a morphism
of functors. The front square is commutative by the definition of fl (A').
Therefore we find:

fl(A')F = fl(A')FFo(w)
= F foFO(w)
= FGO(w)fo
= F fo

(top triangle)

(front square)

(left square)

(bottom triangle).

This concludes the proof of Theorem 7.1, since instead of the pair of indices

(0, 1) we could have used (n, n + 1).

Remark. The morphismfl constructed in Theorem 7.1 depends functori-

ally onfo in the following sense. Suppose we have three delta functors F, G, H

defined in degrees 0, 1. Suppose given morphisms

fo : FO -+ GO and go: GO HO.

Suppose that the erasing monomorphisms erase both F and G. Then we can

constructfl and gl by applying the theorem. On the other hand, the composite

go fo = ho : FO HO

is also a morphism of functors, and the theorem yields the existence of a morph-
Ism

h l : F
l

H
l

such that (ho ,
h l ) is a -morphism. By uniqueness, we therefore have

h 1
=

g 1 fl'

This is what we mean by the functorial dependence as mentioned above.

Corollary 7.2. Assume that Ci has enough injectives. Thenfor any left exact

junctor F: Ci CB, the derived functors R"F with n > 0 form a universal

1unctor with F ROF, which is erasable by injectives. Conversely, if
G = {G"}"o is a universal 1unctor, then GO is left exact, and the G" are

isomorphic to R"GO for each n > o.

Proof. If F is a left exact functor, then the {R"F}"o form a -functor

by Theorem 6.1. Furthermore, for any object A, let u: A I be a monomor-

phism of A into an injective. Then R"F(I) = 0 for n > 0 by Theorem

6.1(iv), so R"F(u) = O. Hence R"F is erasable for all n > 0, and we can apply
Theorem 7.1.

Remark. As usual, Theorem 7.1 applies to functors with different variance.

Suppose {F"} is a family of contravariant additive functors, with n ranging over
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a sequence of consecutive integers, say for simplicity n > O. We say that F is a

contravariant t>-functor if given an exact sequence

o -+ M' M M" -+ 0

then there is an associated family of morphisms

b
n

: Fn(M') F
n +

l(M')

satisfying DEL 1 and DEL 2 with M' interchanged with Mil and N' inter-

changed with Nil. We say that F is coerasable if to each object A there exists an

epimorphism u: M -+ A such that F(u) = O. We say that F is universal if

given any other b-functor G of a into CB and given a morphism of functors

fo : F
O

-+ GO

there exists a unique sequence of morphisms

fn : Fn Gn

for all n > 0 which commute with b for each short exact sequence.

Theorem 7.1'. Let F = {F
n

} (n ranging over a consecutive sequence of

integers > 0) be a contravariant b{unctor from a into CB, and assume that

Fn is coerasable for n > 1. Then F is universal.

Examples of b-functors with the variances as in Theorems 7.1 and 7.1' will

be given in the next section in connection with bifunctors.

Dimension shifting

Let F = {F
n

} be a contravariant delta functor with n > O. Let 8 be a

family of objects which erases Fn for all n > 1, that is Fn(E) = 0 for n > 1 and

E E 8. Then such a family allows us to do what is called dimension shifting as

follows. Given an exact sequence

OQE-+MO

with E E 8, we get for n > 1 an exact sequence

o = Fn(E) Fn(Q) -+ F
n +

l(M) -+ F
n +

l(E) = 0,

and therefore an isomorphism

Fn(Q) F
n +

l(M),

which exhibits a shift of dimensions by one. More generally:

Proposition 7.3. Let

o Q En-l ... Eo -+ M 0
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be an exact sequence, such that Ei E 8. Then we have an isomorphism

FP(Q) FP+n(M) for p
> 1.

Proof Let Q = Qn. Also without loss of generality, take p
= 1. We may

insert kernels and cokernels at each step as follows:

En-1 ) E
n
- 2

/\/\/
Qn Qn- I Qn-2 Q1

/ /\ / /
o 0 0 o. . .0

) . . . ) Eo

/\
M

o

Then shifting dimension with respect to each short exact sequence, we find

isomorphisms

F1(Qn) F2(Qn_ 1) . . . Fn+ l(M).

This concludes the proof.

One says that M has F-dimension < d if Fn(M) = 0 for n > d + 1. By
dimension shifting, we see that if M has F-dimension < d, then Q has F-

dimension < d -

n in Proposition 7.3. In particular, if M has F-dimension n,

then Q has F-dimension O.

The reader should rewrite all this formalism by changing notation, using for

F the standard functors arising from Hom in the first variable, on the category
of modules over a ring, which has enough projectives to erase the left derived

functors of

A Hom(A, B),

for B fixed. We shall study this situation, suitably axiomatized, in the next sec-

tion.

8. BIFUNCTORS

In an abelian category one often deals with Hom, which can be viewed as a

functor in two variables; and also the tensor product, which is a functor in two

variables, but their variance is different. In any case, these examples lead to the

notion of bifunctor. This is an association

(A, B) T(A, B)
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where A, B are objects of abelian categories a and CB respectively, with values

in some abelian category. This means that T is functorial in each variable, with

the appropriate variance (there are four possibilities, with covariance and con-

travariance in all possible combinations); and if, say, T is covariant in all

variables, we also require that for homomorphisms A' A and B' B there

is a commutative diagram

T(A', B')

j
T(A, B')

) T(A', B)

j
) T(A, B).

If the variances are shuffled, then the arrows in the diagram are to be reversed in

the appropriate manner. Finally, we require that as a functor in each variable,

T is additive.

Note that Hom is a bifunctor, contravariant in the first variable and covari-

ant in the second. The tensor product is covariant in each variable.

The Hom functor is a bifunctor T satisfying the following properties:

HOM 1. T is contravariant and left exact in the first variable.

HOM 2. T is covariant and left exact in the second variable.

HOM 3. For any injective object J the functor

A T(A, J)

is exact.

They are the only properties which will enter into consideration in this

section. There is a possible fourth one which might come in other times:

"OM 4. For any projective object Q the functor

B T(Q, B)

is exact.

But we shall deal non-symmetrically, and view T as a functor of the second

variable, keeping the first one fixed, in order to get derived functors of the second

variable. On the other hand, we shall also obtain a <5-functor of the first variable

by using the bifunctor, even though this <5-functor is not a derived functor.

If CB has enough injectives, then we may form the right derived functors with

respect to the second variable

B R"T(A, B), also denoted by R"TA(B),
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fixing A, and viewing B as variable. If T = Hom, then this right derived functor

is called Ext, so we have by definition

Extn(A, X) = Rn Hom(A, X).

We shall now give a criterion to compute the right derived functors in terms

of the other (first) variable. We say that an object A is T-exact if the functor

B T(A, B) is exact. By a T-exact resolution of an object A, we mean a resolu-

tion

Ml-+Mo-+A-+O

where M
n

is T-exact for all n > O.

Examples. Let a and (B be the categories of modules over a commutative

ring. Let T = Hom. Then a T-exact object is by definition a projective module.

Now let the transpose of T be given by

tT(A, B) = T(B, A).

Then a tT-exact object is by definition an injective module.

If T is the tensor product, such that T(A, B) = A 0 B, then a T-exact object
is called flat.

Remark. In the category of modules over a ring, there are enough pro-

jectives and injectives. But there are other situations when this is not the case.

Readers who want to see all this abstract nonsense in action may consult

[GriH 78], [Ha 77], not to speak of [SGA 6] and Grothendieck's collected works.

It may genuinely happen in practice that CB has enough injectives but a does not

have enough projectives, so the situation is not all symmetric. Thus the functor

A R nT(A, B) for fixed B is not a derived functor in the variable A. In the

above references, we may take for a the category of coherent sheaves on a

variety, and for (B the category of all sheaves. We let T = Hom. The locally
free sheaves of finite rank are T-exact, and there are enough of them in a. There

are enough injectives in CB. And so it goes. The balancing act between T-exacts

on one side, and injectives on the other is inherent to the situation.

Lemma 8.1. Let T be a bifunctor satisfying HOM 1, HOM 2. Let A E a,
and let MA A 0, that is

-+Ml-+Mo-+AO

be a T-exact resolution of A. Let Fn(B) = Hn(T(M, B»)for BE (B. Then F

is a b-functor and FO(B) = T(A, B). If in addition T satisfies HOM 3,
then Fn(J) = 0for J injective and n > 1.
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Proof Given an exact sequence

o B' B B" 0

we get an exact sequence of complexes

o -+ T(M, B') T(M, B) -+ T(M, B") 0,

whence a cohomology sequence which makes F into a t5-functor. For n = 0

we get 1"O(B) = T(A, B) because X T(X, B) is contravariant and left exact

for X E a. If B is injective, then F"(B) = 0 for n > 1 by nOM 3, because

X T(X, B) is exact. This proves the lemma.

Proposition 8.2. Let T be a bifunctor satisfying nOM 1, HOM 2, nOM 3.

Assume that CB has enough injectives. Let A E a. Let

MA-+A-+O

be aT-exact resolution of A. Then the two t5{unctors

B R"T(A, B) and B H"(T(M, B»

are isomorphic as universal t5{unctors vanishing on injectives, for n > 1, and

such that

ROT(A, B) = HO(T(M), B) = T(A, B).

Proof This comes merely from the universality of a t5-functor erasable

by injectives.

We now look at the functoriality in A.

Lemma 8.3. Let T satisfy HOM 1, nOM 2, and HOM 3. Assume that

CB has enough injectives. Let

o A' A A" 0

be a short exact sequence. Then for fixed B, we have a long exact sequence

o T(A", B) T(A, B) T(A', B)

-+ RIT(A", B) RIT(A, B) RIT(A', B)

such that the association

A R"T(A, B)

is a l>junctor.
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Proof Let 0 B IB be an injective resolution of B. From the exactness

of the functor A T(A, J), for J injective we get a short exact sequence of

complexes

o T(A", IB) T(A, I
B) T(A', IB) o.

Taking the associated long exact sequence of homology groups of these com-

plexes yields the sequence of the proposition. (The functorality is left to

the readers.)

If T = Hom, then the exact sequence looks like

o Hom(A", B) Hom(A, B) Hom(A', B)

Ext
1

(A", B) Extl(A, B) -+ Extl(A', B)

and so forth.

We shall say that a has enough T-exacts if given an object A in a there is a

T-exact M and an epimorphism

M A O.

Proposition 8.4. Let T satisfy nOM 1, nOM 2, HOM 3. Assume that CB

has enough injectives. Fix B E CB. Then the association

A .-... R"T(A, B)

is a contravariant 1unctor on a which vanishes on T-exacts, for n > 1. If
a has enough T-exacts, then thisfunctor is universal, coerasable by T-exacts,

with value

ROT(A, B) = T(A, B).

Proof By Lemma 8.3 we know that the association is a -functor, and it

vanishes on T-exacts by Lemma 8.1. The last statement is then merely an

application of the universality of erasable -functors.

Corollary 8.5. Let a = CB be the category ofmodules over a ring. Forfixed
B, let ext"(A, B) be the left derived functor of A Hom(A, B), obtained by
means ofprojective resolutions of A. Then

ext"(A, B) = Ext"(A, B).

Proof. Immediate from Proposition 8.4.

The following proposition characterizes T-exacts cohomologically.
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Proposition 8.6. Let T be a bifunctor satisfying nOM 1, HOM 2, HOM 3.

Assume that CB has enough injectives. Then the following conditions are

equivalent:

TE 1. A is T-exact.

TE 2. For every B and every integer n > 1, we have R"T(A, B) = O.

TE3. For every B we have RIT(A, B) = o.

Proof Let

o B ]0 ]
1

be an injective resolution of B. By definition, R"T(A, B) is the n-th homology of

the sequence

o T(A, ]0) -+ T(A, ] 1) T(A, ]2)

If A is T-exact, then this sequence is exact for n > 1, so the homology is 0 and

TE 1 implies TE 2. Trivially, TE 2 implies TE 3. Finally assume TE 3. Given

an exact sequence

o B' -+ B B" -+ 0,

we have the homology sequence

o T(A, B') T(A, B) T(A, B") -+ R
1

T(A, B') .

If R
1

T(A, B') = 0, then by definition A is T-exact, thus proving the proposition.
We shall say that an object A has T-dimension < d if

R"T(A, B) = 0 for n > d and all B.

Then the proposition states in particular that A is T-exact if and only if A has

T-dimension O.

Proposition 8.7. Let T satisfy nOM 1, HOM 2, nOM 3. Assume that CB

has enough injectives. Suppose that an object A admits a resolution

o Ed -+ Ed - l
. . . Eo A 0

where Eo, . . .

, Ed are T-exact. Then A has T-dimension < d. Assume this

is the case. Let

o Q Ld - 1
. . . Lo A -+ 0

be a resolution where Lo, . . .

, Ld _ 1 are T-exact. Then Q is T-exact also.

Proof. By dimension shifting we conclude that Q has T-dimension 0,

whence Q is T-exact by Proposition 8.6.
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Proposition 8.7, like others, is used in the context of modules over a ring.
In that case, we can take T = Hom, and

RnT(A, B) = Extn(A, B).

For A to have T-dimension < d means that

Extn(A, B) = 0 for n > d and all B.

Instead of T-exact, one can then read projective in the proposition.
Let us formulate the analogous result for a bifunctor that will apply to the

tensor product. Consider the following properties.

TEN 1. T is covariant and right exact in the first variable.

TEN 2. T is covariant and right exact in the second variable.

TEN 3. For any projective object P the functor

A T(A, P)

is exact.

As for Hom, there is a possible fourth property which will play no role in this

section:

TEN 4. For any projective object Q the functor

B T(Q, B)

is exact.

Proposition 8.2'. Let T be a bifunctor satisfying TEN 1, TEN 2, TEN 3.

Assume that CB has enough projectives. Let A E a. Let

MA-+A-+O

be a T-exact resolution of'A. Then the two b{unctors

B Ln T(A, B) and B Hn(T(M, B»

are isomorphic as universal b-functors vanishing on projectives, and such that

Lo T(A, B) = Ho(T(M), B) = T(A, B).

Lemma 8.3'. Assume that T satisfies TEN 1, TEN 2, TEN 3. Assume that

CB has enough projectives. Let

o A' -+ A A" 0
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be a short exact sequence. Thenfor fixed B, we have a long exact sequence:

-+ Ll T(A', B) Ll T(A, B) -+ Ll T(A", B) -+

-+ T(A', B) T(A, B) -+ T(A", B) 0

which makes the association A Ln T(A, B) a 1unctor.

Proposition 8.4'. Let T satisfy TEN 1, TEN 2, TEN 3. Assume that CB has

enough projectives. Fix BE CB. Then the association

A Ln T(A, B)

is a contravariant b-functor on a which vanishes on T-exacts for n > 1. If a

has enough T-exacts, then this functor is universal, coerasable by T-exacts,

with the value

Lo T(A, B) = T(A, B).

Corollary 8.8. If there is a bifunctorial isomorphism T(A, B) T(B, A),
and if B is T-exact, then for all A, Ln T(A, B) = 0 for n > 1. In short,
T-exact implies acyclic.

Proof Let MA
= PA be a projective resolution in Proposition 8.2'. By

hypotheses, X T(X, B) is exact so Hn(T(P, B) = 0 for n > 1; so the

corollary is a consequence of the proposition.

The above corollary is formulated so as to apply to the tensor product.

Proposition 8.6'. Let T be a bifunctor satisfying TEN 1, TEN 2, TEN 3.

Assume that CB has enough projectives. Then the following conditions are

equivalent:

TE 1. A is T-exact.

TE 2. For every B and every integer n > 1 we have Ln T(A, B) = O.

TE 3. For every B, we have Ll T(A, B) = o.

Proof We repeat the proof of 8.6 so the reader can see the arrows pointing
in different ways.

Let

Ql Qo B 0

be a projective resolution of B. By definition, Ln T(A, B) is the n-th homology
of the sequence

T(A, Ql) T(A, Qo) o.
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If A is T-exact, then this sequence is exact for n > 1, so the homology is 0, and

TE 1 implies TE 2. Trivially, TE 2 implies TE 3. Finally, assume TE 3. Given

an exact sequence

OB'-+B-+B"O

we have the homology sequence

-+ L 1 T(A, B") T(A, B') T(A, B) T(A, B") -+ O.

If Ll T(A, B,,) is 0, then by definition, A is T-exact, thus proving the proposition.

9. SPECTRAL SEQUENCES

This section is included for convenience of reference, and has two purposes:

first, to draw attention to an algebraic gadget which has wide applications in

topology, differential geometry, and algebraic geometry, see Griffiths-Harris,

[GrH 78]; second, to show that the basic description of this gadget in the context

in which it occurs most frequently can be done in just a few pages.

In the applications mentioned above, one deals with a filtered complex

(which we shall define later), and a complex may be viewed as a graded object,
with a differential d of degree 1. To simplify the notation at first, we shall deal

with filtered objects and omit the grading index from the notation. This index

is irrelevant for the construction of the spectral sequence, for which we follow

Godement.

So let F be an object with a differential (i.e. endomorphism) d such that

d
2

= O. We assume that F is filtered, that is that we have a sequence

F = F
O

::::> F
1

::::> F
2

::::> . .. ::::> F" ::::> F"
+ 1

= {0} ,

and that dFP c FP. This data is called afiltered differential object. (We assume

that the filtration ends with 0 after a finite number of steps for convenience.)
One defines the associated graded object

Gr F = EB GrP F where GrP F = FP/FP+l.
PO

In fact, Gr F is a complex, with a differential of degree 0 induced by d itself, and

we have the homology H(Gr
P

F).
The filtration {FP} also induces a filtration on the homology H(F, d) = H(F);

namely we let

H(F)P = image of H(FP) in H(F).
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Since d maps FP into itself, H(FP) is the homology of FP with respect to the

restriction of d to FP, and it has a natural image in H(F) which yields this filtra-

tion. In particular, we then obtain a graded object associated with the filtered

homology, namely

Gr H(F) = EB GrP
H(F).

A spectral sequence is a sequence {Er, d
r } (r > 0) of graded objects

Er = EB E
po

together with homomorphisms (also called differentials) of degree r,

d
.

Ep
-+ Ep + r

r
.

r r

satisfying d; = 0, and such that the homology of Er is Er + l' that is

H(Er) = E
r + 1.

In practice, one usually has Er = Er+ 1
= . . . for r >

ro. This limit object is

called E
00'

and one says that the spectral sequence abuts to E
00. Actually, to be

perfectly strict, instead of equalities one should really be given isomorphisms,
but for simplicity, we use equalities.

Proposition 9.1. Let F be a filtered differential object. Then there exists a

spectral sequence {Er} with:

Eg = FPIFP+ 1; Ef = H(Gr
P

F); E = GrP
H(F).

Proof. Define

z = {x E FP such that dx E FP+r}

E = Z/[dz-=-r-
1)

+ zlJ.

The definition of E: makes sense, since Z is immediately verified to contain

dz-=-:r-
1)

+ Zl. Furthermore, d maps Z: into z:+r, and hence includes a

homomorphism

d
.

Ep Ep + r

r. r-+ r
.

We shall now compute the homology and show that it is what we want.

First, for the cycles: An element x E Z: represents a cycle of degree p in Er
if and only if dx E dZ:ll + Z;t+l, in other words

dx = dy + z, withYEZ:l and zEZ:l+l.
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Write x =

y + u, so du = z. Then u E FP and du E FP+r+ 1, that is u E Z+ l'
It

follows that

p-cycles of Er = (Z+ 1 + Zl)/(dZl+
1

+ Zl).

On the other hand, the p-boundaries in Er are represented by elements of

dz-r, which contains dZr+ 1. Hence

p-boundaries of Er = (dz-r + Zl)/(dZr+
1

+ Z: l).

Therefore

HP(Er) = (Z:+ 1 + Z: l )/(dZ:-
r

+ Z: l)

= Z;+I/(Z;+1 n (dZf-r + Z;/)).

Since

Zp dzp-r d Zp Zp+ 1
-

Zp+l
r + 1::) r

an
r + 1

n
r
- 1

-

r ,

it follows that

HP(Er) = Z:+ 1/(dZ:-
r

+ Z+ I) = E+ l'

thus proving the property of a spectral sequence.

Remarks. It is sometimes useful in applications to note the relation

dZ:1r-
1)

+ Z: l = Z: n (dFP-r+
1

+ FP+ 1).

The verification is immediate, but Griffiths-Harris use the expression on the

right in defining the spectral sequence, whereas Godement uses the expression
on the left as we have done above. Thus the spectral sequence may also be

defined by

I E = Z mod(dFrr+
1

+ p+ 1). I
This is to be interpreted in the sense that Z mod S means

(Z + S)/S or Z/(Z n S).

The term Eg is FPIFP+
1

immediately from the definitions, and by the

general property already proved, we get Ef = H(FPIFP+ 1). As to E, for

r large we have Z = ZP = cycles in FP, and

E = ZPI(ZP+
1

+ (dF
O

n FP»
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which is independent of r, and is precisely GrP
H(F), namely the p-graded

component of H(F), thus proving the theorem.

The differential d 1
can be specified as follows.

Proposition 9.2. The homomorphism

d
.

Ep Ep+ 1

1.11

is the coboundary operator arising from the exact sequence

o FP+IIFp+2 FPIFp+2 FPIFP+l 0

viewing each term as a complex with differential induced by d.

Proof Indeed, the coboundary

:E = H(FPIFP+l)H(Fp+lIFp+2) = El{+l

is defined on a representative cycle z by dz, which is the same way that we de-

fined d 1
.

In most applications, the filtered differential object is itself graded, because

it arises from the following situation. Let K be a complex, K = (KP, d) with

p
> 0 and d of degree 1. By a filtration FK, also called a filtered complex, we

mean a decreasing sequence of subcomplexes

K = F
O
K ::) F

1
K ::) F

2
K ::) . . . ::) F"K ::) F"

+ 1
K = {O}.

Observe that a short exact sequence of complexes

o K' K K" 0

gives rise to a filtration K ::) K' ::) {O}, viewing K' as a subcomplex.
To each filtered complex FK we associated the complex

Gr FK = Gr K = E8 GrP
K,

PO

where

GrP K = FPKIFp+1K,

and the differential is the obvious one. The filtration FPK on K also induces a

filtration FPH(K) on the cohomology, by

FPHq(K) = FPzqIFPBq.
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The associated graded homology is

where

Gr H(K) = EB GrP
Hq(K),

p,q

GrP
Hq(K) = FPHq(K)IFP+

1

Hq(K).

A spectral sequence is a sequence {En d
r} (r > 0) of bigraded objects

Er = EB E:,q
p, q 0

together with homomorphisms (called differentials)

d
r

: E:'
q

E:+
r , q- r+ 1

satisfying d
2

= 0
r ,

and such that the homology of Er is Er + l' that is

H(Er) = Er+ 1.

A spectral sequence is usually represented by the following picture:

(p , q)
e

EP.q
,

e(p+r,q-r+ I)

In practice, one usually has Er = E
r + 1

= . . . for r >
ro. This limit object

is called E
00'

and one says that the spectral sequence abuts to E
00

.

Proposition 9.3. Let FK be a filtered complex. Then there exists a spectral

sequence {Er} with:

Eg,q = FPKp+qIFP+IKp+q;

El{,q = Hp+q(GrP
K);

Eq = GrP

(Hp+q(K».

The last relation is usually written

Er => H(K),

and we say that the spectral sequence abuts to H(K).



XX, 9 SPECTRAL SEQUENCES 819

The statement of Proposition 9.3 is merely a special case of Proposition 9.1,

taking into account the extra graduation.
One of the main examples is the spectral sequence associated with a double

complex

K = EB Kp. q

p, q 0

which is a bigraded object, together with differentials

d': KP,q KP+ l,q and d": KP,q KP,q+ 1

satisfying

d,2 = d,,2 = 0 and d'd" + d"d' = o.

We denote the double complex by (K, d', d"). The associated single complex

(Tot(K), D) (Tot for total complex), abbreviated K*, is defined by

K" = EB KP,q and D = d' + d".

p+q=="

There are two filtrations on (K*, D) given by

'FPK" = EB KP',q

p' + q
= "

p'p

"FqK" = EB KP,q".

P + q' = "

q'q

There are two spectral sequences {'Er} and {"Er}, both abutting to H(Tot(K».

For applications, see [GrH 78], Chapter 3, 5; and also, for instance, [FuL 85],

Chapter V. There are many situations when dealing with a double complex directly
is a useful substitute for using spectral sequences, which are derived from double

complexes anyhow.

We shall now derive the existence of a spectral sequence in one of the most

important cases, the Grothendieck spectral sequence associated with the com-

posite of two functors. We assume that our abeUan category has enough injectives.
Let C = EB CP be a complex, and suppose CP = 0 if p < 0 for simplicity.

We define injective resolution of C to be a resolution

o -+ C ]0 ]1 ]2 -+ . . .

written briefly

o C ]e

such that each ]j is a complex, ]j = EB ]j, P, with differentials

dj, P
: ]j, P ]j, p+ 1
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and such that /j. P is an injective object. Then in particular, for each p we get

an injective resolution of CP, namely:

o CP 1°' P 11, P
-+ . . .

We let:

zj, P
= Ker dj, P

= cycles in degree p

Bj, P
= 1m dj, P

- 1
= boundaries in degree p

Hj,p = Zj'PIBj,p = homology in degree p.

We then get complexes

o ZP(C) Zo,p -+ Z1,p -+

o BP(C) BO,p B
1 ,p

o HP(C) HO,p -+ Hl,p

We say that the resolution 0 C Ie is fully injective if these three com-

plexes are injective resolutions of ZP(C), BP(C) and HP(C) respectively.

Lemma 9.4. Let

o M' M Mil 0

be a short exact sequence. Let

o M' 1M
, and 0 Mil 1M

"

be injective resolutions ofM' and Mil. Then there exists an injective resolution

o M 1 M

ofM and morphisms which make thefollowing diagram exact and commutative:

o .

l'
) M'

1
o

.

l
) M

1
o

) 0) I
M"

1
· Mil

1
o

) 0o

Proof The proof is the same as at the beginning of the proof of Theorem

6.1.
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Lemma 9.5. Given a complex C there exists a fully injective resolution of c.

Proof We insert the kernels and cokernels in C, giving rise to the short

exact sequences with boundaries BP and cycles ZP:

o BP -+ ZP -+ HP -+ 0

o -+ ZP-
I

cp
-

I
-+ BP -+ O.

We proceed inductively. We start with an injective resolution of

o ZP-
1

-+ CP
- 1

BP -+ 0

using Lemma 9.4. Next let

O-+HPIHP

be an injective resolution of HP. By Lemma 9.4 there exists an injective resolu-

tion

O-+ZPIzp

which fits in the middle of the injective resolutions we already have for BP and

HP. This establishes the inductive step, and concludes the proof.

Given a left exact functor G on an abelian category with enough injectives,
we say that an object X is G-acyclic if RPG(X) = 0 for p

> 1. Of course,

ROG(X) = G(X).

Theorem 9.6. (Grothendieck spectral sequence). Let

T:a(B and G:(Be

be covariant left exact functors such that if I is injective in a, then T(I) is

G-acyclic. Then for each A in a there is a spectral sequence {Er(A)}, such that

E,q(A) = RPG(RqT(A»

and Ef,q abuts (with respect to p) to Rp+q(GT)(A), where q is the grading
index.

Proof Let A be an object of a, and let 0 A -+ CA be an injective resolu-

tion. We apply T to get a complex

TC: 0 TCo -+ TC
I

-+ TC
2

By Lemma 9.5 there exists a fully injective resolution

o TC ITC

which has the 2-dimensional representation:
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o

1
) 12.1

1
) 12.0

1
) TC

2

1
o

1
) 10' 1

1
) 10' °

1
) TCO

1
o

1
) ILl

1
) 11,0

1
) TC

I

1
o

o

o

Then GI is a double complex. Let Tot(GI) be the associated single complex.
We now consider each of the two possible spectral sequences in succession,

which we denote by
1

E:'
q and

2

E:' q.

The first one is the easiest. For fixed p, we have an injective resolution

o TCP -+ Ifc

where we write Ifc instead of I TCP' This is the p-th column in the diagram. By
definition of derived functors, GIP is a complex whose homology is RqG, in

other words, taking homology with respect to d" we have

"HP,q(GI) = Hq(GIP) = (RqG)(TCP).

By hypothesis, CP injective implies that (RqG)(TCP) = 0 for q > O. Since G

is left exact, we have ROG(TCP) = TCP. Hence we get

{
G(CP) if q

= 0

"HP,q(GI) =

o if q > 0.'

Hence the non-zero terms are on the p-axis, which looks like

o GT(CO) GT(C
l

) GT(C
2

)

Taking
,

HP we get

lE.q(A) = {
R

O

P(G1)(A) if q
= 0

if q > O.

This yields

H"(Tot(GI» R"(GT)(A).
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The second one will use the full strength of Lemma 9.5, which had not been

used in the first part of the proof, so it is now important that the resolution

ITC
is fully injective. We therefore have injective resolutions

OZP(TC) lZO,p lZl,p lZ2,p

OBP(TC)-+ IBo,p-+ IB1,p IB2,p

OHP(TC) IHo,p IHl,p IH2,p

and the exact sequences

o
1
zq, p Iq, P 1

Bq
+ 1, P 0

o
1
Bq, P 1

zq, P 1
Hq. P 0

split because of the injectivity of the terms. We denote by I(p) the p-th row of the

double complex I = {Iq,P}. Then we find:

,

Hq, P(GI) = Hq(GI(P» = G
l
zq, PIG

1
Bq, P

= G' Hq, P(I)

by the first split sequence

by the second split sequence

because applying the functor G to a split exact sequence yields a split exact

sequence.

Then

2E.q = "HP('Hq,P(GI) = HP(G1Hq,P(I».

By the full injectivity of the resolutions, the complex'Hq,P(I) with p
> 0 is an

injective resolution of

Hq(TC) = (RqT)(A).

Furthermore, we have

HP(G'Hq,P) = RPG(RqT(A),

since a derived functor is the homology of an injective resolution. This proves

that (RPG)RqT(A» abuts to R"(GT)(A), and concludes the proof of the theorem.

Just to see the spectral sequence at work, we give one application relating
it to the Euler characteristic discussed in 93.

Let (1 have enough injectives, and let

T:(1CB

be a covariant left exact functor. Let a be a family of objects in (1 giving rise

to a K-group. More precisely, in a short exact sequence in (1, if two of the objects
lie in a' then so does the third. We also assume that the objects of a have

finite RT-dimension, which means by definition that if A E a then RiT(A) = 0
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for all i sufficiently large. We could take 3'a in fact to be the family of all objects
in a which have finite R T-dimension.

We define the Euler characteristic associated with T on K(3'a) to be

00

X T(A) = L ( - l)i cl(RiT(A».
i= 0

The cl denotes the class in the K-group K(3'<8) associated with some family

3'<8 of objects in CB, and such that RiT(A) E 3'<8 for all A E 3'a. This is the mini-

mum required for the formula to make sense.

Lemma 9.7. The map XT extends to a homomorphism

K(3'a) -+ K(3'<8).

Proof Let

o A' A A" 0

be an exact sequence in 3'. Then we have the cohomology sequence

RiT(A') RiT(A) RiT(A") Ri+ 1

T(A')

in which all but a finite number of terms are O. Taking the alternating sum in the

K-group shows that XT is an Euler-Poincare map, and concludes the proof.

Note that we have merely repeated something from 93, in a jazzed up context.

In the next theorem, we have another functor

G : CB e,

and we also have a family 3' giving rise to a K-group K(3'e). We suppose that

we can perform the above procedure at each step, and also need some condition

so that we can apply the spectral sequence. So, precisely, we assume:

CHAR 1. For all i, RiT maps 3'a into 3'<8, RiG maps 3'<8 into 3'e, and

Ri(GT) maps 3'a into 3' .

CHAR 2. Each subobject of an element of 3'a lies in 3'a and has finite

RT- and R(GT)-dimension; each subobject of an element of

3'<8 lies in 3'<8 and has finite RG-dimension.

Theorem 9.8. Assume that T : a -+ CB and G : CB e satisfy the conditions

CHAR 1 and CHAR 2. Also assume that T maps injectives to G-acyclics.
Then

XG
0

XT
=

XGT'
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Proof By Theorem 9.6, the Grothendieck spectral sequence of the com-

posite functor implies the existence of a filtration

. . . c FPR"(GT)(A) C FP+
1

R"(GT)(A) c . . .

of R"(GT)(A), such that

FP+ IIFP E"-p.

Then

00

XGT(A) = L (-I)" cl(R"(GT)(A»
"=0

00 00

= L (-I)n L cl(E"-P)
"=0 p=o

00

= L ( -I)" cl(E).
"=0

On the other hand,

00

XT(A) = L (-I)q cl(RqT(A»
q=O

and so

00

XG
0 XT(A) = L (-I)qXG(RqT(A»

q=O

00 00

= L (-I)q L (-I)P cl(RPG(RqT(A»
q=O p==O

00 "

= L (-I)" L cl(RPG(R"-PT(A»)
"=0 p=O

00

= L (
-

I)" cl(E).
"==0

Since E
r + 1 is the homology of Er, we get

00 00 00

L ( -1)" cl(E) = L ( -I)" cl(E3 ) = . . . = L ( -1)" cl(E).
"=0 "=0 "=0

This concludes the proof of the theorem.



826 GENERAL HOMOLOGY THEORY XX, Ex

EXERCISES

1. Prove that the example of the standard complex given in I is actually a complex,
and is exact, so it gives a resolution of Z. [Hint: To show that the sequence of the

standard complex is exact, choose an element z E S and define h : E; E;+ I
by letting

h(xo, . . .

, x;)
= (z, xo, . . .

, x;).

Prove that dh + hd = id, and that dd = O. Exactness follows at once.]

Cohomology of groups

2. Let G be a group. Use G as the set S in the standard complex. Define an action of

G on the standard complex E by letting

x(xo, . . .
, x;)

=

(xxo, . . .
, xx;).

Prove that each E; is a free module over the group ring Z[G]. Thus if we let

R = Z[G] be the group ring, and consider the category Mod(G) of G-modules, then

the standard complex gives a free resolution of Z in this category.

3. The standard complex E was written in homogeneous form, so the boundary maps

have a certain symmetry. There is another complex which exhibits useful features

as follows. Let F; be the free Z[G]-module having for basis i-tuples (rather than

(i + I)-tuples) (XI' . . .
, x;). For i = 0 we take Fo

= Z[G] itself. Define the boundary

operator by the formula

;-1

d(Xl, . . .

, Xi) = Xl (X2, . . .

, X;) + L (-I)
j
(Xl, . . .

, XjXj+ I ,
. . .

, Xi)
j=I

+ ( -1)
;+ I

(Xl, . . .

, X;).

Show that E = F (as complexes of G-modules) via the association

(XI'... ,x;) (I,xl,xlx2'... ,XIX2.'
.

x;),

and that the operator d given for F corresponds to the operator d given for E under

this isomorphism.

4. If A is a G-module, let AG be the submodule consisting of all elements v E A such

that xv = v for all X E G. Thus A
G has trivial G-action. (This notation is convenient,

but is not the same as for the induced module of Chapter XVIII.)

(a) Show that if Hq(G, A) denotes the q-th homology of the complex

HomG(E, A), then IfO(G, A) = AG. Thus the left derived functors of A AG

are the homology groups of the complex HomG(E, A), or for that matter,

of the complex Hom(F, A), where F is as in Exercise 3.

(b) Show that the group of I-cycles ZI(G, A) consists of those functions

f: G A satisfying

f(x) + xf(y) = f(xy) for all x, y E G.

Show that the subgroup of coboundaries BI(G, A) consists of those functions

ffor which there exists an element a E A such thatf(x) =
xa

-

a. The factor

group is then Hl(G, A). See Chapter VI, 10 for the determination of a special
case.
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(c) Show that the group of 2-cocycles Z2(G, A) consists of those functions

f: G A satisfying

xf(y, z)
-

f(xy, z) + f(x, yz)
-

f(x, y)
= o.

Such 2-cocycles are also called factor sets, and they can be used to describe

isomorphism classes of group extensions, as follows.

5. Group extensions. Let W be a group and A a normal subgroup, written multipli-

catively. Let G = WjA be the factor group. Let F; G W be a choice of coset

representatives. Define

f(x, y)
= F(x)F(y)F(xy)-I.

(a) Prove thatf is A-valued, and thatf: G x G A is a 2-cocycle.

(b) Given a group G and an abelian group A, we view an extension W as an

exact sequence

lAWG1.

Show that if two such extensions are isomorphic then the 2-cocycles associated

to these extensions as in (a) define the same class in HI (G, A).

(c) Prove that the map which we obtained above from isomorphism classes of

group extensions to H2(G, A) is a bijection.

6. Morphisms of the cohomology functor. Let A : G' G be a group homomorphism.
Then A gives rise to an exact functor

<1>,\ : Mod(G) Mod(G'),

because every G-module can be viewed as a G' -module by defining the operation of

a' E G' to be a'a = A(a')a. Thus we obtain a cohomology functor HG' 0 <1>,\.
Let G' be a subgroup of G. In dimension 0, we have a morphism of functors

A* : Hg Hg, 0 <1>,\ given by the inclusion AG AG' = <I>,\(A)G'.

(a) Show that there is a unique morphism of 5-functors

A*
: H

G
HG'

0 <1>,\

which has the above effect on Hg . We have the following important special
cases.

Restriction. Let H be a subgroup of G. Let A be a G-module. A function

from G into A restricts to a function from H into A. In this way, we get a

natural homomorphism called the restriction

res: Hq(G, A) Hq(H, A).

Inflation. Suppose that H is normal in G. Let AH be the subgroup of A

consisting of those elements fixed by H. Then it is immediately verified that

AH is stable under G, and so is a GjH-module. The inclusionAH A induces

a homomorphism

H1;(U)
= u

q
: Hq(G, AH) Hq(A).

Define the inflation

inf/H : Hq(GjH, AH) Hq(G, A)
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as the composite of the functorial morphism Hq(G/H, AH) Hq(G, AH)
followed by the induced homomorphism u

q

=

H'b(u) as above.

In dimension 0, the inflation gives the identity (AH) G/H = AG.

(b) Show that the inflation can be expressed on the standard cochain complex

by the natural map which to a function of G/H in A
H associates a function

of G into AH C A.

(c) Prove that the following sequence is exact.

o HI(G/H, AH) HI(G, A) HI(H, A).

(d) Describe how one gets an operation of G on the cohomology functor HG "by

conjugation" and functoriality.

(e) In (c), show that the image of restriction on the right actually lies in

HI(H, A)G (the fixed subgroup under G).

Remark. There is an analogous result for higher cohomology groups,

whose proof needs a spectral sequence of Hochschild-Serre. See [La 96],

Chapter VI, 2, Theorem 2. It is actually this version for H2 which is applied
to H

2
(G, K*), when K is a Galois extension, and is used in class field theory

[ArT 67].

7. Let G be a group, B an abelian group and MG(B)
= M(G, B) the set of mappings

from G into B. For x E G andfE M(G, B) define ([x]f)(y) = f(yx).

(a) Show that B MG(B) is a covariant, additive, exact functor from Mod(Z)

(category of abelian groups) into Mod(G).

(b) Let G' be a subgroup of G and G = UxjG' a coset decomposition. For

f E M(G, B) let fj be the function in M(G', B) such that fj(y)
=

f(xjY).
Show that the map

f Ofj
J

is a G' -isomorphism from M(G, B) to f1 M(G', B).
j

8. For each G-module A E Mod(G), define EA: A M(G, A) by the condition

EA (a) = the function fa such that fz(a) =
aa for a E G. Show that a fa is a

G-module embedding, and that the exact sequence

EA

o A M(G, A) X
A

= coker EA 0

splits over Z. (In fact, the map f f(e) splits the left side arrow.)

9. Let B E Mod(Z). Let Hq be the left derived functor of A AG.

(a) Show that Hq(G, MG(B))
= 0 for all q > O. [Hint: use a contracting homotopy

s: Cr(G, MG(B)) Cr-I(G, MG(B)) by (Sf)X2' ,xr(x)
=

ix,X2, ,xr(l).
.

Show that f = sdf + dsf.] Thus M
G

erases the cohomology functor.

(b) Also show that for all subgroups G' of G one has Hq(G', MG(B))
= 0 for

q > O.

10. Let G be a group and S a subgroup. Show that the bifunctors

(A, B) HomG(A, Mb(B)) and (A, B) Homs(A, B)

on Mod(G) x Mod(S) with value in Mod(Z) are isomorphic. The isomorphism is

given by the maps

cp (a ga)' for cp E Homs(A, B), where ga(a) =

cp(ua), ga E Mb(B).
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The inverse mapping is given by

f f(l) withf E HomG(A, Mb(B».

Recall that Mb (B) was defined in Chapter XVIII, 7 for the induced representation.

Basically you should already know the above isomorphism.

II. Let G be a group and S a subgroup. Show that the map

Hq(G, Mb(B» Hq(S, B) for B E Mod(S),

obtained by composing the restriction res with the S-homomorphism f f( I), is

an isomorphism for q > O. [Hint: Use the uniqueness theorem for cohomology
functors. ]

12. Let G be a group. Let e : Z[G] Z be the homomorphism such that e(L n(x)x) =

L n(x). Let I
G

be its kernel. Prove that I
G

is an ideal of Z[G] and that there is an

isomorphism of functors (on the category of groups)

G/GC = IG/lb, by xGC (x
-

I) + lb.

13. LetA E Mod(G) and a E Hl(G, A). Let {a(x)}XEG be a standard I-cocycle representing
a. Show that there exists a G-homomorphismf: IG

A such thatf(x
-

I) = a(x),

so f E (Hom(1G, A»G. Show that the sequence

o A = Hom(Z, A) Hom(Z[G], A) Hom(/G , A) 0

is exact, and that if 5 is the coboundary for the cohomology sequence, then

5(f) =
-a.

Finite groups

We now turn to the case of finite groups G. For such groups and a G-module A we

have the trace

T
G

: A A defined by TG(a)
= L aa.

UEG

We define a module A to be G-regular if there exists a Z-endomorphism u : A A such

that id
A

= TG(u). Recall that the operation of G on End(A) is given by

[a]f(a) = af(a-1a) for a E G.

14. (a) Show that a projective object in Mod(G) is G-regular.

(b) Let R be a commutative ring and let A be in ModR(G) (the category of (G, R)-

modules). Show that A is R[G]-projective if and only if A is R-projective and

R[G]-regular, meaning that idA
=

TG(u) for some R-homomorphism u : A A.

15. Consider the exact sequences:

E

(I) 0 IG Z[G] Z 0

E'

(2) 0 Z Z[G] JG 0

where the first one defines I
G ,

and the second is defined by the embedding

e' : Z Z[G] such that e'(n) = n(L a),
i.e. on the "diagonal". The cokernel of e' is JG by definition.

(a) Prove that both sequences (I) and (2) split in Mod(G).
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(b) Define MG(A) = Z[G] 0 A (tensor product over Z) for A E Mod(G). Show

that MG(A) is G-regular, and that one gets exact sequences (IA ) and (2A ) by

tensoring (I) and (2) with A. As a result one gets an embedding

t; = t;' (8) id : A = Z (8) A Z[G] (8) A.

16. Cyclic groups. Let G be a finite cyclic group of order n. Let a be a generator of G.

Let K
i

= Z[G] for i > O. Let t; : KO Z be the augmentation as before. For i odd

>
I, let d

i
: Ki Ki-I be multiplication by I-a. For i even

>
2, let d i be

multiplication by I + a + . . . + an-I. Prove that K is a resolution of Z. Conclude

that:

For i odd: Hi(G, A) = AG/TGA where TG
: a (I + a + ... + an-I)a;

For i even
> 2: Hi(G, A) = AT/(I

-

a)A, where AT is the kernel of TG in A.

17. Let G be a finite group. Show that there exists a 5-functor H from Mod(G) to

Mod (Z) such that:

(I) HO is (isomorphic to) the functor A A
G

/TGA.

(2) Hq(A) = 0 if A is injective and q > 0, and Hq(A) = 0 if A is projective and q

is arbitrary.

(3) H is erased by G-regular modules. In particular, H is erased by MG.

The 5-functor of Exercise 17 is called the special cohomology functor. It differs

from the other one only in dimension O.

18. Let H = HG be the special cohomology functor for a finite group G. Show that:

HO(/G) = 0; HO(Z) = HI(/) = Z/nZ where n = #(G);

HO(Q/z) = HI(Z) = H2(/) = 0

HI(Q/z) = H2(Z) = H3(/) = G" = Hom(G, Q/Z) by definition.

Injectives

19. (a) Show that If an abelian group T is injective In the category of abelian groups, then

It is divIsible.

(b) Let A be a principal entIre ring. Define the notIon of divisibility by elements of A for

modules in a manner analogous to that for abelian groups. Show that an A-

module IS injective If and only if It is A-divIsible. [The proof for Z should work

in exactly the same way.]

20. Let S be a multiplicative subset of the commutative Noetherian ring A. If / is an

injective A-module, show that S-I/ is an injective S-
I

A-module.

21. (a) Show that a direct sum of projective modules IS projective.

(b) Show that a direct product of Injective modules IS Injective.

22. Show that a factor module, direct summand, direct product, and direct sum of divIsible

modules are divIsible.

23. Let Q be a module over a commutative ring A. Assume that for every left ideal J of

A, every homomorphism cp : J Q can be extended to a homomorphism of A into

Q. Show that Q is injective. [Hint: Given M' C M and f : M' Q, let Xo E M

and Xo tt. M'. Let J be the left ideal of elements a E A such that axo EM'. Let

cp(a)
= f(axo) and extend cp to A, as can be done by hypothesis. Then show that
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one can extend f to M by the formula

f(x' + bxo) = f(x') + cp(b),

for x' E M and b E A. Then use Zorn's lemma. This is the same pattern of proof as

the proof of Lemma 4.2.]

24. Let

0-+1 1
-+1 2 -+1 3 -+0

be an exact sequence of modules. Assume that 1 1 ,
1

2
are injective.

(a) Show that the sequence splits.

(b) Show that 13 is injective.

(c) If I is injectIve and 1 = M EB N, show that M is injective.

25. (Do this exercise after you have read about Noetherian rings.) Let A be a Noetherian

commutative ring, and let Q be an injective A-module. Let a be an Ideal of A, and let

Q(Q) be the subset of elements x E Q such that anx = 0 for some n, depending on x.

Show that Q(Q) is injective. [Hint: Use Exercise 23.]

26. Let A be a commutative ring. Let E be an A-module, and let E" =

Homz(E, Q/Z)
be the dual module. Prove the following statements.

(a) A sequence

O-+N-+M-+E-+O

is exact if and only if the dual sequence

o E" M" N" 0

is exact.

(b) Let F be flat and 1 injective in the category of A-modules. Show that

HomA(F, I) is injective.

(c) E is flat if and only if E" is injective.

27. Extensions of modules. Let M, N be modules over a ring. By an extension of M

by N we mean an exact sequence

(*) ONEM O.

We shall now define a map from such extensions to Ext I(M, N). Let P be projective,
with a surjective homomorphism onto M, so we get an exact sequence

(**) 0 K P -4 M 0

where K is defined to be the kernel. Since P is projective, there exists a homomorphism
u: P E, and depending on u a unique homomorphism v: K N making the

diagram commutative:

o -----. K -----. P M ----+ 0

v

j
u

j
id j

o -----. N ---+ E ---+ M ---+ 0
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On the other hand, we have the exact sequence

(***) 0 Hom(M, N) Hom(P, N) Hom(K, N) Ext l(M, N) 0,

with the last term on the right being equal to 0 because Ext l(P, N) = O. To the

extension (*) we associate the image of v in Ext l(M, N).

Prove that this association is a bijection between isomorphism classes of extensions

(i.e. isomorphism classes of exact sequences as in (*)), and Ext1(M, N). [Hint:

Construct an inverse as follows. Given an element e of Ext l(M, N), using an exact

sequence (**), there is some element v E Hom(K, N) which maps on e in (***). Let

E be the push-out of v and w. In other words, let J be the submodule of N EB P

consisting of all elements (v(x), -w(x)) with x E K, and let E = (N EB P)/J. Show

that the map y (y, 0) mod J gives an injection of N into E. Show that the map

N EB P M vanishes on J, and so gives a surjective homomorphism E M O.

Thus we obtain an exact sequence (*); that is, an extension of M by N. Thus to each

element of Ext
1
(M, N) we have associated an isomorphism class of extensions of M

by N. Show that the maps we have defined are inverse to each other between iso-

morphism classes of extensions and elements of Ext
1
(M, N).]

28. Let R be a principal entire ring. Let a E R. For every R-module N, prove:

(a) Ext l(R/aR, N) = N/aN.

(b) For b E R we have Ext1(R/aR, R/bR) = R/(a, b), where (a, b) is the g.c.d
of a and b, assuming ab =1= O.

Tensor product of complexes.

29. Let K = EB Kp and L = EB Lq be two complexes indexed by the integers, and with

boundary maps lower indices by I. Define K (8) L to be the direct sum of the modules

(K (8) L)n, where

(K (8) L)n = EB Kp (8) Lq.
p+q=n

Show that there exist unique homomorphisms

d = d
n

: (K (8) L)n (K (8) L)n- 1

such that

d(x (8) y) = d(x) (8) y + ( -1)Px 0 d(y).

Show that K (8) L with these homomorphisms IS a complex, that is dad = O.

30. Let K, L be double complexes. We write K; and L; for the ordinary column complexes
of K and L respectively. Let cp: K L be a homomorphism of double complexes.
Assume that each homomorphism

tn.. K . L .

T'l. I I

is a homology isomorphism.

(a) Prove that Tot( cp): Tot(K) Tot(L) is a homology isomorphism. (If you

want to see this worked out, cf. [FuL 85], Chapter V, Lemma 5.4.)

(b) Prove Theorem 9.8 using (a) instead of spectral sequences.
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CHAPTER XX I

Finite Free Resolutions

This chapter puts together specific computations of complexes and homology.

Partly these provide examples for the general theory of Chapter XX, and partly

they provide concrete results which have occupied algebraists for a century.

They have one aspect in common: the computation of homology is done by means

of a finite free resolution, i. e. a finite complex whose modules are finite free.

The first section shows a general technique (the mapping cylinder) whereby
the homology arising from some complex can be computed by using another

complex which is finite free. One application of such complexes has already
been given in Chapter X, putting together Proposition 4.5 followed by Exercises

10-15 of that chapter.
Then we go to major theorems, going from Hilbert's Syzygy theorem, from

a century ago, to Serre's theorem about finite free resolutions of modules over

polynomial rings, and the Quillen-Suslin theorem. We also include a discussion

of certain finite free resolutions obtained from the Koszul complex. These apply,

among other things, to the Grothendieck Riemann-Roch theorem of algebraic

geometry.

Bibliographical references refer to the list given at the end of Chapter XX.

1. SPECIAL COMPLEXES

As in the preceding chapter, we work with the category of modules over a

ring, but the reader will notice that the arguments hold quite generally in an

abelian category.

In some applications one determines homology from a complex which is

not suitable for other types of construction, like changing the base ring. In this

section, we give a general procedure which constructs another complex with

835
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better properties than the first one, while giving the same homology. For an

application to Noetherian modules, see Exercises 12-15 of Chapter X.

Let f: K -+ C be a morphism of complexes. We say that j' is a homology

isomorphism if the natural map

H(f): H(K) -+ H(C)

is an isomorphism. The definition is valid in an abelian category, but the reader

may think of modules over a ring, or abelian groups even. A family 3' of objects
will be called sufficient if given an object E there exists an element F in 3' and

an epimorphism

F E 0,

and if 3' is closed under taking finite direct sums. For instance, we may use for

3' the family of free modules. However, in important applications, we shall deal

with finitely generated modules, in which case 3' might be taken as the family of

finite free modules. These are in fact the applications I have in mind, which

resulted in having axiomatized the situation.

Proposition 1.1. Let C be a complex such that HP(C) =I 0 only for
o <

p
< n. Let 3' be a sufficient family of projectives. There exists a

complex

o -+ KO K
1

. . . K
n

0

such that:

KP =I 0 only for 0 <
p

< n;

KP is in 3' for all p
> 1;

and there exists a homomorphism of complexes

f: K C

which is a homology isomorphism.

Proof We definefm by descending induction on m:

bm+ 1

) Km+l
K

) K
m + 2

J/m+1 J/m+2
) Km

JIm
) C

m
) C

m + 1

b
+ 1

) C
m + 2

We suppose that we have defined a morphism of complexes with p
> m + 1

such that HP(f) is an isomorphism for p
> m + 2, and

fm+ 1 : zm+ l(K) Hm+ l(C)
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is an epimorphism, where Z denotes the cycles, that is Ker. We wish to con-

struct Km and fm, thus propagating to the left. First let m > O. Let Bm+
1

be

the kernel of

Ker ;+l H
m +

l(C).

Let K' be in 3' with an epimorphism

' : K' B
m + 1

.

Let K" -+ Hm(C) be an epimorphism with K" in 3', and let

f" : K" zm(c)

be any lifting, which exists since K" is projective. Let

K
m

= K' EE> K"

and define m: Km -+ K
m + 1

to be ' on K' and 0 on K". Then

fm+ 1
0 '(K') c C(Cm)'

and hence there exists f' : K' -+ cm such that

c 0f' = fm + 1
0 '.

We now define fm : K
m

c
m

to be f' on K' and f" on K". Then we have

defined a morphism of complexes truncated down to m as desired.

Finally, if m = -1, we have constructed down to KO, o, andj with

KO HO(C) 0

exact. The last square looks like this, defining K
- 1

= o.

o ) CO

bO=b'
) 'K' C K

1

Ifl
) C

l

o ) K' EE> K"

1'\ /1"

We replace KO by KOI(Ker o n Ker fo). Then HO(f) becomes an isomorphism,
thus proving the proposition.

We want to say something more about KO. For this purpose, we define a

new concept. Let 3' be a family of objects in the given abelian category (think
of modules in first reading). We shall say that 3' is complete if it is sufficient, and

for any exact sequence

o F' F F" 0

with F" and F in 3' then F' is also in 3'.
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Example. In Chapter XVI, Theorem 3.4 we proved that the family of finite

flat modules in the category of finite modules over a Noetherian ring is complete.

Similarly, the family of flat modules in the category of modules over a ring is

complete. We cannot get away with just projectives or free modules, because

in the statement of the proposition, KO is not necessarily free but we want to

include it in the family as having especially nice properties. In practice, the

family consists of the flat modules, or finite flat modules. Cf. Chaper X, Theorem

4.4, and Chapter XVI, Theorem 3.8.

Proposition 1.2. Let j': K C be a morphism of complexes, such that KP,

HP(C) are #0 onlyfor p
= 1,...,n. Let3'beacompletefamily,andassume

that KP, CP are in 3' for all p, except possibly for KO. Iff is a homology

isomorphism, then KO is a/so in 3'.

Before giving the proof, we define a new complex called the mapping cylinder

of an arbitrary morphism of complexes f by letting

MP = KP (f) CP-
1

and defining M : MP MP+
1

by

M(X, y) = (x,fx - y).

It is trivially verified that M is then a complex, i.e. 0 = O. If C' is the com-

plex obtained from C by shifting degrees by one (and making a sign change
in c), so C'P = CP- 1, then we get an exact sequence of complexes

o C' M K 0

and hence the mapping cylinder exact cohomology sequence

HP(K) HP+ l(C')
"

HP(C)

) HP+ l(M) ) HP+ l(K) ) HP+ 2(C')
/I

HP+ l(C)

and one sees from the definitions that the cohomology maps

HP(K) -+ HP+ l(C') HP(C)

are the ones induced byf: K C.

We now return to the assumptions of Proposition 1.2, so that these maps are

isomorphisms. We conclude that H(M) = O. This implies that the sequence

o -+ KO -+ M
1

-+ M
2

. . . M"+
1

0

is exact. Now each MP is in 3' by assumption. Inserting the kernels and

cokernels at each step and using induction together with the definition of a

complete family, we conclude that KO is in 3', as was to be shown.
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In the next proposition, we have axiomatized the situation so that it is

applicable to the tensor product, discussed later, and to the case when the family

3' consists of flat modules, as defined in Chapter XVI. No knowledge of this

chapter is needed here, however, since the axiomatization uses just the general

language of functors and exactness.

Let 3' be a complete family again, and let T be a covariant additive functor

on the given category. We say that 3' is exact for T if given an exact sequence

o -+ F' -+ F -+ F" 0

in 3', then

o T(F') T(F) T(F") 0

is exact.

Proposition 1.3. Let 3' be a complete family which is exact for T. Let

f : K C be a morphism of complexes, such that KP and CP are in 3' for all

p, and KP, HP(C) are zero for all but a finite number of p. Assume that f is a

homology isomorphism. Then

T(f): T(K) T(C)

is a homology isomorphism.

Proof. Construct the mapping cylinder M for f. As in the proof of Propo-
sition 1.2, we get H(M) = 0 so M is exact. We then start inductively from the

right with zeros. We let ZP be the cycles in MP and use the short exact sequences

o ZP MP zp+
1

0

together with the definition of a complete family to conclude that ZP is in 3' for

all p. Hence the short sequences obtained by applying T are exact. But T(M)
is the mapping cylinder of the morphism

T(f) : T(K) T(C),

which is therefore an isomorphism, as one sees from the homology sequence of

the mapping cylinder. This concludes the proof.

2. FINITE FREE RESOLUTIONS

The first part of this section develops the notion of resolutions for a case

somewhat more subtle than projective resolutions, and gives a good example for

the considerations of Chapter xx. Northcott in [No 76] pointed out that minor

adjustments of standard proofs also applied to the non-Noetherian rings, only

occasionally slightly less tractable than the Noetherian ones.
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Let A be a ring. A module E is called stably free if there exists a finite free

module F such that E (f) F is finite free, and thus isomorphic to A(n) for some

positive integer n. In particular, E is projective and finitely generated.
We say that a module M has a finite free resolution if there exists a resolution

o -+ En . . . Eo M 0

such that each Ei is finite free.

Theorem 2.1. Let M be a projective module. Then M is stably free if and

only ifM admits a finite free resolution.

Proof. If M is stably free then it is trivial that M has a finite free resolution.

Conversely assume the existence of the resolution with the above notation.

We prove that M is stably free by induction on n. The assertion is obvious if

n = O. Assume n > 1. Insert the kernels and cokernels at each step, in the

manner of dimension shifting. Say

M
1

= Ker(Eo P),

giving rise to the exact sequence

o M
1 Eo M o.

Since M is projective, this sequence splits, and Eo M (f) MI. But M 1 has a

finite free resolution of length smaller than the resolution of M, so there exists

a finite free module F such that M
1 (f) F is free. Since Eo (f) F is also free, this

concludes the proof of the theorem.

A resolution

o En . . . Eo M 0

is called stably free if all the modules E
i (i = 0, . . .

, n) are stably free.

Proposition 2.2. Let M be an A-module. Then M has a finite free resolution

of length n
> 1 if and only ifM has a stably free resolution of length n.

Proof. One direction is trivial, so we suppose given a stably free resolution

with the above notation. Let 0 < i < n be some integer, and let F;, Fi + 1 be

finite free such that Ei (f) F
i and Ei + 1

Fi + 1
are free. Let F = F

i
F

i + 1.

Then we can form an exact sequence

o En .. . E
i + 1 (f) F Ei (f) F . . . EO M -+ 0

in the obvious manner. In this way, we have changed two consecutive modules

in the resolution to make them free. Proceeding by induction, we can then

make Eo, E
1 free, then E

l ,
E

2 free, and so on to conclude the proof of the

proposition.
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The next lemma is designed to facilitate dimension shifting.
We say that two modules M

l'
M

2
are stably isomorphic if there exist finite

free modules F
1 ,

F2 such that M
1 Fl M2

F
2

.

Lemma 2.3. Let M 1 be stably isomorphic to M2 . Let

ONl El-+Ml O

0N2E2-+M20

be exact sequences, where M
1 is stably isomorphic to M2 , and E

l ,
E

2 are

stably free. Then N
1

is stably isomorphic to N
2.

Proof. By definition, there is an isomorphism M
1

F
1

M
2 (f) F

2.

We have exact sequences

ONl-+El Fl-+Ml (f)Fl-+O

o N2
E

2 (f) F
2

M
2 (f) F

2
-+ 0

By Schanuel's lemma (see below) we conclude that

N
l (f) E

2 (f) F2
N

2 (f) El Fl.

Since E
l'

E2,
F

l'
F2 are stably free, we can add finite free modules to each side

so that the summands of N
1

and N
2 become free, and by adding I-dimensional

free modules if necessary, we can preserve the isomorphism, which proves that

N
1

is stably isomorphic to N2.

We still have to take care of Schanuel's lemma:

Lemma 2.4. Let

OKP-+MO

o K' P' M -+ 0

be exact sequences where P, P' are projective. Then there is an isomorphism

K (f) P' K' (f) P.

Proof. Since P is projective, there exists a homomorphism P P' making

the right square in the following diagram commute.

o . P

!w
) 0) K

u!
) M

Id
) M ) 0

j
. P'o ) K'
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Then one can find a homomorphism K K' which makes the left square

commute. Then we get an exact sequence

o K P (f) K' P' 0

by x (ix, ux) for x E K and (y, z) wy
-

jz. We leave the verification of

exactness to the reader. Since P' is projective, the sequence splits thus proving
Schanuel's lemma. This also concludes the proof of Lemma 2.3.

The minimal length of a stably free resolution of a module is called its

stably free dimension. To construct a stably free resolution of a finite module,
we proceed inductively. The preceding lemmas allow us to carry out the induc-

tion, and also to stop the construction if a module is of finite stably free dimen-

SIon.

Theorem 2.5. Let M be a module which admits a stably free resolution of

length n

o En
. . . Eo -+ M -+ O.

Let

Fm-+...FoMO

be an exact sequence with Fi stably free for i = 0, . . .

,
m.

(i) If m < n
- 1 then there exists a stably free F

m + 1 such that the exact

sequence can be continued exactly to

F
m + 1

. . . F
0

M o.

(ii) If m = n
- 1, let Fn = Ker(Fn

- 1
F

n
- 2 ). Then Fn is stably free

and thus

o -+ Fn -+ Fn- 1
. . . F0

M 0

is a stably free resolution.

Remark. If A is Noetherian then of course (i) is trivial, and we can even

pick F
m + 1 to be finite free.

Proof. Insert the kernels and cokernels in each sequence, say

Km = Ker(Em
-+ Em- 1) if m =f. 0

Ko = Ker(Eo M),

and define K:n similarly. By Lemma 2.3, Km is stably isomorphic to K:n, say

Km (f) F K (f) F'

with F, F' finite free.
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If m < n - 1, then Km is a homomorphic image of E
m + 1; so both Km (f) F

and K (f) F' are homomorphic images of E
m + 1 (f) F. Therefore K is a homo-

morphic image of Em + 1 (f) F which is stably free. We let F
m + 1

= Em + 1 (f) F to

conclude the proof in this case.

If m = n - 1, then we can take Kn = En. Hence Km (f) F is stably free, and

so is K (f) F' by the isomorphism in the first part of the proof. It follows trivially
that K is stably free, and by definition, K = F

m + 1
in this case. This concludes

the proof of the theorem.

Corollary 2.6. If 0 M 1
E M 0 is exact, M has stably free dimen-

sion <
n, and E is stably free, then M 1 has stably free dimension <

n
- 1.

Theorem 2.7. Let

o M' M M" 0

be an exact sequence. If any two of these modules have a finite free resolution,

then so does the third.

Proof. Assume M' and M have finite free resolutions. Since M is finite, it

follows that M" is also finite. By essentially the same construction as Chapter

XX, Lemma 3.8, we can construct an exact and commutative diagram where

E', E, E" are stably free:

o

o

j
.

1
1

) E

j
) M

j
o

o

j
)

1';
· E"

j
) Mil

j
o

) 0o

o

j
) M'

r
) E'

j
) M'

j
o

o ) 0

) 0

We then argue by induction on the stably free dimension of M. We see

that M
1

has stably free dimension < n - 1 (actually n - 1, but we don't care),
and M; has finite stably free dimension. By induction we are reduced to the

case when M has stably free dimension 0, which means that M is stably free.

Since by assumption there is a finite free resolution of M', it follows that M"

also has a finite free resolution, thus concluding the proof of the first assertion.
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Next assume that M', Mil have finite free resolutions. Then M is finite.

If both M' and Mil have stably free dimension 0, then M', Mil are projective
and M M' (f) Mil is also stably free and we are done. We now argue by
induction on the maximum of their stably free dimension n, and we assume

n > 1. We can construct an exact and commutative diagram as in the previous
case with E', E, E" finite free (we leave the details to the reader). But the maxi-

mum of the stably free dimensions of M'1 and M'; is at most n - 1, and so by
induction it follows that M I has finite stably free dimension. This concludes the

proof of the second case.

Observe that the third statement has been proved in Chapter XX, Lemma 3.8

when A is Noetherian, taking for (i, the abelian category of finite modules, and

for CC the family of stably free modules. Mitchell Stokes pointed out to me that

the statement is valid in general without Noetherian assumption, and can be

proved as follows. We assume that M, M" have finite free resolutions. We first

show that M' is finitely generated. Indeed, suppose first that M is finite free. We

have two exact sequences

o M' M M" 0

o K" F" M" 0

where F" is finite free, and K" is finitely generated because of the assumption
that M" has a finite free resolution. That M' is finitely generated follows from

Schanuel's lemma. If M is not free, one can reduce the finite generation of M'

to the case when M is free by a pull-back, which we leave to the reader.

Now suppose that the stably free dimension of M" is positive. We use the

same exact commutative diagram as in the previous cases, with E', E, E" finite

free. The stably free dimension of M'; is one less than that of M", and we are

done by induction. This concludes the proof of Theorem 2.7.

This also concludes our general discussion of finite free resolutions. For

more information cf. Northcott's book on the subject.
We now come to the second part of this section, which provides an applica-

tion to polynomial rings.

Theorem 2.8. Let R be a commutative Noetherian ring. Let x be a variable.

Ifeveryfinite R-module has afinitefree resolution, then everyfinite R[x]-module

has a finite free resolution.

In other words, in the category of finite R-modules, if every object is of

finite stably free dimension, then the same property applies to the category of

finite R[x]-modules. Before proving the theorem, we state the application we

have in mind.

Theorem 2.9. (Serre). If k is a field and XI, . . .
, x

r independent vari-

ables, then every finite projective module over k[XI' . . .

, xr] is stably free, or

equivalently admits a finite free resolution.
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Proof. By induction and Theorem 2.8 we conclude that every finite module

over k[Xb . . .

, xr] is of finite stably free dimension. (We are using Theorem

2.1.) This concludes the proof.

The rest of this section is devoted to the proof of Theorem 2.8.

Let M be a finite R[x]-module. By Chapter X, Corollary 2.8, M has a finite

filtration

M=Mo::)M l ::)...::)Mn=O

such that each factor MilMi + 1
is isomorphic to R[x]IPi for some prime Pi.

In light of Theorem 2. 7, it suffices to prove the theorem in case M = R [x] /p
where P is prime, which we now assume. In light of the exact sequence

o -+ P -+ R[x] -+ R[x]IP o.

and Theorem 2.7, we note that M has a finite free resolution if and only if P

does.

Let p = P n R. Then p is prime in R. Suppose there is some M = R[x]IP
which does not admit a finite free resolution. Among all such M we select one for

which the intersection p is maximal in the family of prime ideals obtained as

above. This is possible in light of one of the basic properties characterizing
Noetherian rings.

Let Ro = Rip so Ro is entire. Let Po = PlpR[xJ. Then we may view M

as an Ro[x]-module, equal to RoIPo. Letfl'...' in be a finite set of generators

for Po, and let f be a polynomial of minimal degree in Po. Let Ko be the

quotient field of Ro. By the euclidean algorithm, we can write

h =

qi f + ri for i = 1, . . .

,
n

with qi, ri E Ko[x] and deg ri < degf. Let do be a common denominator for

the coefficients of all qi,
r
i. Then do =f. 0 and

doh = qf + r

where q = do qi and r = do ri lie in Ro[x]. Since deg f is minimal in Po it

follows that r = 0 for all i, so

do Po c Ro[x]f = (f).

Let No = Po/(f), so No is a module over Ro[x], and we can also view No
as a module over R[x]. When so viewed, we denote No by N. Let d E R be any

element reducing to do mod p. Then d FJ p since do =f. O. The module No has

a finite filtration such that each factor module of the filtration is isomorphic to

some Ro[x]/Qo where Qo is an associated prime of No. Let Q be the inverse

image of Qo in R[x]. These prime ideals Q are precisely the associated primes
of N in R[x]. Since do kills No it follows that d kills N and therefore d lies in

every associated prime of N. By the maximality property in the selection of P,
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it follows that everyone of the factor modules in the filtration of N has a finite

free resolution, and by Theorem 2.7 it follows that N itself has a finite free

resolution.

Now we view Ro[x] as an R[x]-module, via the canonical homomorphism

R[x] -+ Ro[x] = R[x]/pR[x].

By assumption, p has a finite free resolution as R-module, say

o -+ En . . . -+ Eo -+ p o.

Then we may simply form the modules Ei[X] in the obvious sense to obtain a

finite free resolution of p[x] = pR[x]. From the exact sequence

o pR[x] R[x] Ro[x] -+ 0

we conclude that Ro[x] has a finite free resolution as R[x]-module.
Since Ro is entire, it follows that the principal ideal (f) in Ro[x] is R[x]-

isomorphic to Ro[x], and therefore has a finite free resolution as R[x]-module.
Theorem 2.7 applied to the exact sequence of R[x]-modules

o -+ (f) Po N -+ 0

shows that Po has a finite free resolution; and further applied to the exact

sequence

OpR[x]PPoO

shows that P has a finite free resolution, thereby concluding the proof of

Theorem 2.8.

3. UNIMODULAR POLYNOMIAL VECTORS

Let A be a commutative ring. Let (fl, . . .
, f,,) be elements of A generating

the unit ideal. We call such elements unimodular. We shall say that they have

the unimodular extension property if there exists a matrix in GLn(A) with first

column '(fl, . . .

, f,,). If A is a principal entire ring, then it is a trivial exercise to

prove that this is always the case. Serre originally asked the question whether

it is true for a polynomial ring k[x 1, . . .

,
X

r] over a field k. The problem was

solved by Quillen and Suslin. We give here a simplification of Suslin's proof by

Vaserstein, also using a previous result of Horrocks. The method is by induc-

tion on the number of variables, in some fashion.

We shall write f = t( 11' . . .

, j) for the column vector. We first remark

that f has the unimodular extension property if and only if the vector obtained

by a permutation of its components has this property. Similarly, we can make
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the usual row operations, adding a multiple gj; to jj (j =I i), and f has the uni-

modular extension property if and only if anyone of its transforms by row

operations has the unimodular extension property.

We first prove the theorem in a context which allows the induction.

Theorem 3.1. (Horrocks). Let (0, m) be a local ring and let A = o[x]
be the polynomial ring in one variable over o. Let f be a unimodular vector

in A (n) such that some component has leading coefficient 1. Then f has the

unimodular extension property.

Proof. (Suslin). If n = 1 or 2 then the theorem is obvious even without

assuming that 0 is local. So we assume n > 3 and do an induction of the

smallest degree d of a component off with leading coefficient 1. First we note

that by the Euclidean algorithm and row operations, we may assume that fl
has leading coefficient 1, degree d, and that degj; < d for j =I 1. Since f is

unimodular, a relation L gi j; = 1 shows that not all coefficients of f2, . . . ,j"
can lie in the maximal ideal m. Without loss of generality, we may assume that

some coefficient off2 does not lie in m and so is a unit since 0 is local. Write

fl(x) = x
d

+ ad_l xd
- l

+... + ao with ai EO,

f2(x) = bsxs + . . . + bo with bi E 0, S < d - 1,

so that some b i is a unit. Let a be the ideal generated by all leading coefficients

of polynomials 9 1 fl + g2 f2 of degree < d - 1. Then a contains all the co-

efficients bi ,
i = 0, . . .

,
s. One sees this by descending induction, starting with

b
s

which is obvious, and then using a linear combination

x
d -

S

f2(x)
-

bsfl(x).

Therefore a is the unit ideal, and there exists a polynomial 9 1 fl + 9 2 f2 of

degree < d - 1 and leading coefficient 1. By row operations, we may now get

a polynomial of degree < d - 1 and leading coefficient 1 as some component
in the i-th place for some i =I 1, 2. Thus ultimately, by induction, we may

assume that d = 0 in which case the theorem is obvious. This concludes the

proof.

Over any commutative ring A, for two column vectors f, 9 we write f
----

g

over A to mean that there exists M E GLn(A) such that

f = Mg,

and we say that f is equivalent to 9 over A. Horrocks' theorem states that a

unimodular vector f with one component having leading coefficient 1 is o[x]-

equivalent to the first unit vector e
1

. We are interested in getting a similar

descent over non-local rings. We can write f = f(x), and there is a natural

"constant" vector f(O) formed with the constant coefficients. As a corollary of

Horrocks' theorem, we get:



848 FINITE FREE RESOLUTIONS XXI, 3

Corollary 3.2. Let 0 be a local ring. Let f be a unimodular vector in

o[x](n) such that some component has leading coefficient 1. Then f f(O)
over o[x].

Proof. Note that f(O) E o(n) has one component which is a unit. It suffices

to prove that over any commutative ring R any element c E R(n) such that some

component is a unit is equivalent over R to e 1, and this is obvious.

Lemma 3.3. Let R be an entire ring, and let S be a multiplicative subset.

Let x, y be independent variables. Iff(x)
"-'

f(O) over S
-1

R[x], then there exists

c E S such that f(x + cy)
"-'

f(x) over R[x, y].

Proof. Let M E GLn(S-
1

R[x]) be such that f(x) = M(x)f(O). Then

M(x)- If(x) = f(O) is constant, and thus invariant under translation x x + y.

Let

G(x, y) = M(x)M(x + y)-l.

Then G(x, y)f(x + y) = f(x). We have G(x, 0) = I whence

G(x, y) = I + yH(x, y)

with H(x, y) E S-
1

R[x, y]. There exists c E S such that cH has coefficients in

R. Then G(x, cy) has coefficients in R. Since det M(x) is constant in S-
1

R, it

follows that det M(x + cy) is equal to this same constant and therefore that

det G(x, cy) = 1. This proves the lemma.

Theorem 3.4. Let R be an entire ring, and let f be a unimodular vector in

R[x](n), such that one component has leading coefficient 1. Then f(x)
"-'

f(O)
over R[x].

Proof. Let J be the set of elements c E R such thatf(x + cy) is equivalent
to f(x) over R[x, y]. Then J is an ideal, for if C E J and a E R then replacing y

by ay in the definition of equivalence shows that f(x + cay) is equivalent to

f(x) over R[x, ay], so over R[x, y]. Equally easily, one sees that if c, c' E J

then c + c' E J. Now let p be a prime ideal of R. By Corollary 3.2 we know

that f(x) is equivalent to f(O) over Rp[x], and by Lemma 3.3 it follows that

there exists c E Rand c ft p such that f(x + cy) is equivalent to f(x) over

R[x, y]. Hence J is not contained in p, and so J is unit ideal in R, so there exists

an invertible matrix M(x, y) over R[x, y] such that

f(x + y) = M(x, y)f(x).

Since the homomorphic image of an invertible matrix is invertible, we substitute

o for x in this last relation to conclude the proof of the theorem.

Theorem 3.5. (Quillen-Suslin). Let k be afield and letfbe a unimodular

vector in k[x 1 ,
. . .

,
x

r] (n). Then f has the unimodular extension property.
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Proof. By induction on r. If r = 1 then k[x 1] is a principal ring and the

theorem is left to the reader. Assume the theorem for r
- 1 variables with r > 2,

and put

R = k[xl,...,Xr
- 1 ].

We view f as a vector of polynomials in the last variable X
r

and want to apply
Theorem 3.4. We can do so if some component ofjhas leading coefficient 1 in

the variable Xr. We reduce the theorem to this case as follows. The proof of the

Noether Normalization Theorem (Chapter VIII, Theorem 2.1) shows that if we

let

\J = X
Jr r

Y
. = x.

- x'" I

I I r

then the polynomial vector

f(x 1,
. . .

,
Xr) = g( Y 1,

. . .

, Yr)

has one component with Yr-Ieading coefficient equal to 1. Hence there exists a

matrix N(y) = M(x) invertible over R[xr] = R[Yr] such that

g(Yb...' Yr) = N(Yl'...' Yr)g(Yb...' Yr-l, 0),

and g(Yb . . .

, Yr- l' 0) is unimodular in k[Yb . . .

, Yr- l](n). We can therefore

conclude the proof by induction.

We now give other formulations of the theorem. First we recall that a

module E over a commutative ring A is called stably free if there exists a finite

free module F such that E (f) F is finite free.

We shall say that a commutative ring A has the unimodular column exten-

sion property if every unimodular vector f E A (n) has the unimodular extension

property, for all positive integers n.

Theorem 3.6. Let A be a commutative ring which has the unimodular column

extension property. Then every stably free module over A is free.

Proof. Let E be stably free. We use induction on the rank of the free

modules F such that E (f) F is free. By induction, it suffices to prove that if

E (f) A is free then E is free. Let E (f) A = A(n) and let

p: A(n) A

be the projection. Let u
1

be a basis of A over itself. Viewing A as a direct

summand in E (f) A = A (n)
we write

U
1

= t(a 1 b . . .

, an 1 ) with ail EA.
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Then u
l

is unimodular, and by assumption u
1

is the first column of a matrix

M = (aij) whose determinant is a unit in A. Let

u
j

= Mej for j = 1,..., n,

where e
j is the j-th unit column vector of A (n). Note that u

1
is the first column

of M. By elementary column operations, we may change M so that u
j

E E for

j = 2, . . .

,
n. Indeed, if pe

j
= cu

1
for j > 2 we need only replace e

j
by e

j
-

ce
1

.

Without loss of generality we may therefore assume that u
2

,
. . .

,
un lie in E.

Since M is invertible over A, it follows that M induces an automorphism of

A(n) as A-module with itself by

XMX.

It follows immediately from the construction and the fact that A(n) = E (f) A

that M maps the free module with basis {e
2

,
. . .

, en} onto E. This concludes

t he proof.

If we now feed Serre's Theorem 2.9 into the present machinery consisting
of the Quillen-Suslin theorem and Theorem 3.6, we obtain the alternative version

of the Quillen-Suslin theorem:

Theorem 3.7. Let k be a field. Then every finite projective module over the

polynomial ring k[xI' . . .
, xr] is free.

4. THE KOSZUL COMPLEX

In this section, we describe a finite complex built out of the alternating

product of a free module. This gives an application of the alternating product,
and also gives a fundamental construction used in algebraic geometry, both

abstract and complex, as the reader can verify by looking at Griffiths-Harris

[GrH 78], Chapter V, 3; Grothendieck's [SGA 6]; Hartshorne [Ha 77], Chapter

III, 7; and Fulton-Lang [FuL 85], Chapter IV, 2.
We know from Chapter XX that a free resolution of a module allows us to

compute certain homology or cohomology groups of a functor. We apply this

now to Hom and also to the tensor product. Thus we also get examples of explicit

computations of homology, illustrating Chapter XX, by means of the Koszul

complex. We shall also obtain a classical application by deriving the so-called

Hilbert Syzygy theorem.

Let A be a ring (always assumed commutative) and M a module. A sequence

of elements XI' . . .

,
X

r
in A is called M-regular if MI(x., . . .

, xr)M =1= 0, if XI
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is not divisor of zero in M, and for i >
2, Xi is not divisor of 0 in

MI(xb...' Xi-l)M.

It is called regular when M = A.

Proposition 4.1. Let I =

(Xl" . .

,
x

r) be generated by a regular sequence

in A. Then 111
2

is free of dimension r over All.

Proof. Let Xi be the class of Xi mod 1
2

. It suffices to prove that Xl' . . .
,

X
r

are linearly independent. We do this by induction on r. For r = 1, if ax = 0,
then ax = bx2 for some b E A, so x(a - bx) = o. Since x is not zero divisor in A,
we have a = bx so a = O.

Now suppose the proposition true for the regular sequence Xl' . . .

,
X

r
- l .

Suppose
r

L QiXi = 0 In 111
2

.

i = 1

We may assume that L aixi
= 0 in A; otherwise L aixi

= L YiXi with Yi E I and

we can replace ai by ai
-

Yi without changing ai.

Since X
r

is not zero divisor in AI(x l' . . .
,

X
r -1) there exist bi E A such that

r- 1 r- 1 r- 1

arxr
+ L aixi

= 0 => a
r

= L bixi
=> L (ai + bixr)xi

= O.
i=1 i=l i=l

By induction,

r- 1

aj+bjxrE LAxi

i = 1

u = 1,..., r - 1)

so aj E I for allj, so aj = 0 for allj, thus proving the proposition.

Let K, L be complexes, which we write as direct sums

K = EB K
p

and L = EB Lq

with p, qEZ. Usually, Kp = Lq = 0 for p, q < o. Then the tensor product
K (8) L is the complex such that

(K (8) L)n = EB Kp (8) Lq;
p+q=n

and for U E K
p'

V E Lq the differential is defined by

d(u (8) v) = du (8) v + (
- I)Pu (8) dv.

(Carry out the detailed verification, which is routine, that this gives a complex.)
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Let A be a commutative ring and x E A. We define the complex K(x) to have

Ko(x) = A, Kl (x) = Ael, where el is a symbol, Ael is the free module of rank 1

with basis {el}, and the boundary map is defined by del = x, so the complex
can be represented by the sequence

o ) Ael

II
) K 1 (x)

d
) A

"
) Ko(x) ) 0

) 0

o

More generally, for elements Xl' . . .

,
X

r
E A we define the Koszul complex

K(x) = K(Xl' . . .

,
x

r) as follows. We put:

Ko(x)
= A;

K}(x)
= free module E with basis {el'. . .

,
e
r};

Kp(x)
= free module I'fE with basis {e;t 1\

...

1\ e;p}' i} < · · · < ip;

Kr(x)
= free module /'{E of rank 1 with basis e} 1\

...

1\ er-

We define the boundary maps by dei =

Xi and in general

d: Kp(x) K
p
- 1 (x)

by
p

d(e . 1\'.. 1\ e. ) = L ( - 1 )
j
- 1

x. e. 1\... 1\ €':. 1\ ... 1\ e. .

11 I
p . IJ 11 IJ Ip

}=l

A direct verification shows that d
2

= 0, so we have a complex

o Kr(x) ... Kp(x) ... Kl(X) A 0

The next lemma shows the extent to which the complex is independent of the

ideal I =

(xb . . .
,

x
r) generated by (x). Let

I = (x l' . . .

,
Xr) ::) I' = (y 1, . . .

, Yr)

be two ideals of A . We have a natural ring homomorphism

can: All' All.

Let {e'b . . .
, e} be a basis for K

1 (y), and let

Yi
= L cijXj with cij E A.

We define 11 : Kl (y) Kl (x) by

fl e = c..e.
1 i..J I} }
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and

fp = fl 1\ ... 1\ fl, product taken p times.

Let D = det(cij) be the determinant. Then for p
= r we get that

f,.: K,(y) Kr(x) is multiplication by D.

Lemma 4.2. Notation as above, the homomorphismsfp define a morphism of
Koszul complexes:

o ) Kr(Y) ---+. . . ) Kp(Y) ---+. . . ---+Kl(y) ---+ A All' ---+ 0

jf, = D y. y' Id jean
o ---+Kr(x) ---+. . .

---+Kp(x) ---+. . . ---+ K l(X) ---+ A ---+ All ---+ 0

and define an isomorphism ifD is a unit in A, for instance if (y) is a permutation

of (x).

Proof. By definition

f(e 1\... 1\ e ) = ( c. .e .) 1\ ... 1\ ( c. .e .)II I
P '11 ) r pJ )

.

j=l j=l

Then

fd(e1 1\ ... 1\ ep)

= f(t (
- l)k

- 1

Yik ei ,
/\ ... /\ /\ .'. /\ ei

p)
= L ( -l)k-l yik ( I cidej) /\ ... /\ I /\ ... /\ ( I Ci

Pjej)k j= 1 k j= 1

= L(-l)k-l ( .Icidej) 1\ ... 1\ ( .I.cikjXjej) 1\ ... 1\ ( ICiPjej))=1 )=1 j=l
'-v-"

omitted

= dlf(e 1\.'. 1\ e )II r
p

using Yik
= L CikjXj. This concludes the proof that thefp define a homomorphism

of complexes.
In particular, if (x) and (y) generate the same ideal, and the determinant D

is a unit (i.e. the linear transformation going from (x) to (y) is invertible over

the ring), then the two Koszul complexes are isomorphic.
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The next lemma gives us a useful way of making inductions later.

Proposition 4.3. There is a natural isomorphism

K(x l'
. . .

,
Xr) K(X 1) (8) . . . (8) K(Xr).

Proof. The proof will be left as an exercise.

Let I = (x 1, . . .

,
x

r) be the ideal generated by Xl' . . .

, Xr. Then directly from

the definitions we see that the O-th homology of the Koszul complex is simply

AlIA.

More generally, let M be an A-module. Define the Koszul complex of M by

K(x; M) = K(x l , ...,
X

r ; M) = K(x l , ...,
x

r) (8)A M

Then this complex looks like

o Kr(x) 0 M · · . K2(x) 0A M M(r) M o.

We sometimes abbreviate Hp(x; M) for HpK(x; M). The first and last homology

groups are then obtained directly from the definition of boundary . We get

Ho(K(x; M» = MIIM;

Hr(K(x); M) = {v E M such that xiV
= 0 for all i = 1,.. .

, r}.

In light of Proposition 4.3, we study generally what happens to a tensor

product of any complex with K(x), when x consists of a single element. Let

YEA and let C be an arbitrary complex ofA-modules. We have an exact sequence

of complexes

(1) o C C 0 K(y) (C 0 K(y»/C 0

made explicit as follows.

o

j
) (Cn + 1 (8) A) (Cn (8) K1(y»

j
) (Cn (8) A) (Cn

- 1 (8) K1(y)

j
) (Cn

- 1 (8) A) (Cn
- 2 (8) K1(y»

j

j
) C

n (8) K1(y)

jd. @ Id

) C
n
- 1 (8) K1(y»

jd. _ I @ ,d

) C
n
- 2 (8) K1(y)

j

) 0

o

1
) C

n + 1

j
) C

n

j
) Cn-l

j

o

) 0

) 0
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We note that C 0 K1(y) is just C with a dimension shift by one unit, in other

words

(2) (C 0 K1(Y»n+l
= C

n
0 K1(y).

In particular,

(3) Hn+1(C 0 K(y)/C) = Hn(C).

Associated with an exact sequence of complexes, we have the homology sequence,

which in this case yields the long exact sequence

) H
n + 1 (C) ) H

n + l(C (8) K 1 (y»

) H
n + 1 (C (8) K(y)jC)

n

Hn(C)

o
) Hn(C)

which we write stacked up according to the index:

Hp+1(C) Hp+1(C) Hp+1(C 0 K(y»

Hp(C) Hp(C) Hp(C 0 K(y»

ending in lowest dimension with

(4)

(5) H1(C) H1(C 0 K(y» Ho(C) Ho(C).

Furthermore, a direct application of the definition of the boundary map and the

tensor product of complexes yields:

The boundary map on H
p(C) (p

>
0) is induced by multiplication by (- 1 )Py:

(6) a =

(-I)Pm(y) : Hp(C) Hp(C).

Indeed, write

(C 0 K(y»p
= (Cp

0 A) E9 (Cp
- 1 0 K1(y» = C

p
E9 C

p
- 1 .

Let (v, w) E C
p

EB C
p
- 1 with v E C

p
and w E C

p
- 1 . Then directly from the

definitions,

(7) d(v, w) = (dv + (-I)p-lyw, dw).

To see (6), one merely follows up the definitions of the boundary, taking an

element w E C
p

= C
p

0 K1(y), lifting back to (0, w), applying d, and lifting
back to Cpo If we start with a cycle, Le. dw = 0, then the map is well defined

on the homology class, with values in the homology.

Lemma 4.4. Let yEA and let C be a complex as above. Then m(y) annihilates

Hp(C 0 K(y» for all p
> o.

Proof. If (v, w) is a cycle, Le. d(v, w) = 0, then from (7) we get at once

that (yv, yw)
= d(O, (-I)Pv), which proves the lemma.
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In the applications we have in mind, we let y
=

x
r

and

C =

K(x"...,xr-I;M)
=

K(XI,...,Xr-I)0M.

Then we obtain:

Theorem 4.5.(a) There is an exact sequence with maps as above:

HpK(x.,..., xr-l; M) HpK(XI'...' xr-l; M) HpK(XI'...' x
r ; M)

m(x r)
...

HI(XI,..., x
r ; M) Ho(x.,..., Xr-l; M) ----+ HO(xI'...' xr-l; M).

(b) Every element of I
=

(X., . . .
,
x

r) annihilates Hp(x; M) for p
> o.

(c) If I = A, then Hp(x; M) = 0 for all p
> o.

Proof. This is immediate from Proposition 4.3 and Lemma 4.4.

We define the augmented Koszul complex to be

o Kr(x; M)
· . .

KI(x; M) = M(r) M MI 1M o.

Theorem 4.6. Let M be an A-module.

(a) Let xl' . .
., X

r
be a regular sequence for M. Then HpK(x; M) = 0 for

p > o. (Of course, HoK(x; M) = MIIM.) In other words, the augmented

Koszul complex is exact.

(b) Conversely, suppose A is local, and Xl, . . . , X
r

lie in the maximal ideal of
A. Suppose M is finite over A, and also assume that HIK(x; M) = O. Then

(xl, . . .
,

x
r) is M-regular.

Proof. We prove (a) by induction on r. If r
= 1 then HI(x; M) = 0 directly

from the definition. Suppose r > 1. We use the exact sequence of Theorem

4.5(a). If p > 1 then Hp(x; M) is between two homology groups which are 0, so

Hp(x; M) = O. If P
= 1, we use the very end of the exact sequence of Theorem

4.5(a), noting that m(xr) is injective, so by induction we find HI (x; M) = 0 also,

thus proving (a).

As to (b), by Lemma 4.4 and the hypothesis, we get an exact sequence

m(xr)

HI(x., . . .
,

x
r
-

l ; M) ----+ HI(x., . . .

, xr-l; M) HI(x; M) = 0,

so m(xr) is surjective. By Nakayama's lemma, it follows that

HI(XI,..., Xr-l; M) = O.

By induction (X., . . .

, xr-l) is an M-regular sequence. Looking again at the tail

end of the exact sequence as in (a) shows that X
r

is MI(xI, . . .

, xr-I)M-regular,
whence proving (b) and the theorem.

We note that (b), which uses only the triviality of HI (and not all H
p) is

due to Northcott [No 68], 8.5, Theorem 8. By (a), it follows that Hp
= 0 for

p > o.
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An important special case of Theorem 4.6(a) is when M = A, in which case

we restate the theorem in the form:

Let Xl' . . .
,

X
r

be a regular sequence in A. Then K(x 1, . . .

,
x

r) is a free
resolution ofAII:

o Kr(x) ... Kl(X) A All o.

In particular, All has Tor-dimension < r.

For the Hom functor, we have:

Theorem 4.7. Let XI' . . .
,

X
r

be a regular sequence in A. Then there is an

isomorphism

lfJx,M: Hr(Hom(K(x), M» MllM

to be described below.

Proof. The module Kr(x) is I-dimensional, with basis el 1\ ... 1\ ere

Depending on this basis, we have an isomorphism

Hom(Kr(x), M) M,

whereby a homomorphism is determined by its value at the basis element in M.

Then directly from the definition of the boundary map d
r
in the Koszul complex,

which is

r

d
.

e 1 1\
· · ·

1\ e
""

(
- 1 Y

.

- 1
x.e 1 1\

· · ·

1\ e. 1\
...

1\ e
r' r J ) r

)=1

we see that

Hr(Hom(Kr(x), M) Hom(Kr(x), M)ld
r
- 1

Hom(Kr- 1 (x), M)

MllM.

This proves the theorem.

The reader who has read Chapter XX knows that the i -th homology group

of Hom(K(x), M) is called Exti(AI I, M), determined up to a unique isomorphism

by the complex, since two resolutions ofAI I differ by a morphism of complexes,
and two such morphisms differ by a homotopy which induces a homology iso-

morphism. Thus Theorem 4.7 gives an isomorphism

lfJx,M: Extr(AIl, M) MIIM.

In fact, we shall obtain morphisms of the Koszul complex from changing the

sequence. We go back to the hypothesis of Lemma 4.2.
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Lemma 4.8. If I
= (x) = (y) where (x), (y) are two regular sequences, then

we have a commutative diagram

MIIM

7
)Extr(A/I,

M)
D = del(e'j)

MIIM

where all the maps are isomorphisms of All-modules.

The fact that we are dealing with AII-modules is immediate since multiplication

by an element of A commutes with all homomorphisms in sight, and I an-

nihilates All.

By Proposition 4.1, we know that 111
2

is a free module of rank r over AI I.

Hence

/\r(III
2

)

is a free module of rank 1, with basis Xl /\ ... /\ x
r (where the bar denotes

residue class mod 1
2

). Taking the dual of this exterior product, we see that under

a change of basis, it transforms according to the inverse of the determinant

mod 1
2

. This allows us to get a canonical isomorphism as in the next theorem.

Theorem 4.9. Let xl, . . . , X
r

be a regular sequence in A, and let I = (x).

Let M be an A-module. Let

t/Jx,M: MIIM (MIIM) (8) /\r(III
2

)dual

be the embedding determined by the basis (Xl /\ ... /\ xr)dual of /\r(II1
2

)dual.
Then the composite isomorphism

Extr(AII, M) MIIM (MIIM) (8) /\r(III
2

)dual

is a functorial isomorphism, independent of the choice of regular generators

for I.

We also have the analogue of Theorem 4.5 in intermediate dimensions.

Theorem 4.10. Let Xl' . . .
, X

r
be an M-regular sequence in A. Let I = (x).

Then

Exti(AII, M) = 0 for i < r.

Proof. For the proof, we assume that the reader is acquainted with the

exact homology sequence. Assume by induction that Exti(AII, M) = 0 for
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i < r
- 1. Then we have the exact sequence

o = Exti-l(AI1, MlxlM) Exti(AI1, M) Exti(AI1, M)

for i < r. But Xl E 1 so multiplication by Xl induces 0 on the homology groups,

which gives Exti(AI1, M) = 0 as desired.

Let LN N 0 be a free resolution of a module N. By definition,

Tort(N, M) = i-th homology of the complex L (8) M.

This is independent of the choice of LN up to a unique isomorphism. We now

want to do for Tor what we have just done for Ext.

Theorem 4.11. Let I =

(xl, . . . , x
r) be an ideal ofA generated by a regular

sequence of length r.

(i) There is a natural isomorphism

Tort(AI1, All) !\/I(1112), for i > O.

(ii) Let L be a free All-module, extended naturally to an A-module. Then

Tort(L, All) L (8) !\/I(1112), for i > o.

These isomorphisms will follow from the next considerations.

First we use again that the residue classes Xl' . . .
,
x

r
mod 1

2
form a basis of

111
2

over All. Therefore we have a unique isomorphism of complexes

qJx: K(x) (8) All !\(II12) = E8 !\i(1112)

with zero differentials on the right-hand side, such that

- -

e. 1\... 1\ e. x. 1\... 1\ X. .

11 Ip 11 Ip

Lemma 4.12. Let I = (x) ::) I' = (y) be two ideals generated by regular

sequences of length r. Let f: K(y) K(x) be the morphism ofKoszul complexes

defined in Lemma 4.2. Then the following diagram is commutative:

K(y) (8) All'
qJy

) !\A/I,(/'ll'2)

f @can! !canonical horn

K(x) (8) AII
qJx

) !\A/I(I112)
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Proof. We have

qJx
0 (f (8) can)(e1 1\ ... 1\ ep (8) 1)

r r

=
c. .X. 1\ ... 1\ 'c. .x.

i...J 111 J IpJ J

j=2 j=l

=

Y
-. 1\... 1\ Y-.

= can( fn (e 1\... 1\ e » .

II Ip 't'y II Ip

This proves the lemma.

In particular, if I' = I then we have the commutative diagram

K(y)

j @dj )1\(1/1
2

)

K(x)

which shows that the identification of Tori(AII, All) with l\i(1112) via the

choices of bases is compatible under one isomorphism of the Koszul complexes,
which provide a resolution of All. Since any other homomorphism of Koszul

complexes is homotopic to this one, it follows that this identification does not

depend on the choices made and proves the first part of Theorem 4.11.

The second part follows at once, because we have

Tort(A/I, L) = Hi(K(x) (8) L) = Hi«K(x) (8) A All) (8) A/I
L

= 1\/1(1112) (8) L.

This concludes the proof of Theorem 4.11.

Example. Let k be a field and let A = k[x 1, . . .

,
x

r] be the polynomial ring
in r variables. Let I = (x l'

. . .

,
x

r) be the ideal generated by the variables. Then

AII = k, and therefore Theorem 4.11 yields for i > 0:

Tort(k, k) I\l(111
2

)

Tor(L, k) L (8) 1\(1112)

Note that in the present case, we can think of II1
2

as the vector space over k with

basis Xl' . . .

, xr. Then A can be viewed as the symmetric algebra SE, where E

is this vector space. We can give a specific example of the Koszul complex in this

context as in the next theorem, given for a free module.
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Theorem 4.13. Let E be afinitefree module of rank r over the ring R. For

each p
= 1,..., r there is a unique homomorphism

d
p

: !\pE (8) SE -+ !\p-
1
E (8) SE

such that

di«x 1
/\ ... /\ X

p) (8) y)

p

= L(-l)i-l(X l
/\ ... /\ /\ .../\ X

p)(8) (Xi (8) y)
i =1

where Xi E E and Y ESE. This gives the resolution

o -+ !\rE (8) SE !\r-
1
E (8) SE . . . -+ !\

0
E (8) SE R 0

Proof. The above definitions are merely examples of the Koszul complex
for the symmetric algebra SE with respect to the regular sequence consisting of

some basis of E.

Since d
p maps !\PE (8) SqE into !\p-

1
E (8) sq+

1

E, we can decompose this

complex into a direct sum corresponding to a given graded component, and

hence:

Corollary 4.14. For each integer n > 1, we have an exact sequence

o !\rE (8) sn
-

r

E . . . !\
1
E (8) sn

-

1
E snE 0

whereSjE = Ofor j < O.

Finally, we give an application to a classical theorem of Hilbert. The poly-
nomial ring A = k[x 1, . . .

, xr] is naturally graded, by the degrees of the homo-

geneous components. We shall consider graded modules, where the grading is in

dimensions > 0, and we assume that homomorphisms are graded of degree o.

So suppose M is a graded module (and thus Mi
= 0 for i < 0) and M is finite

over A. Then we can find a graded surjective homomorphism

Lo M 0

where Lo is finite free. Indeed, let Wl, . . .

,
W

n
be homogeneous generators of M.

Let e l ,
. . .

, en be basis elements for a free module Lo over A. We give Lo the

grading such that if a E A is homogeneous of degree d then aei is homogeneous of

degree

deg aei
= deg a + deg Wi.

Then the homomorphism of Lo onto M sending ei Wi is graded as desired.
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The kernel M 1 is a graded submodule ofLo. Repeating the process, we can find a

surjective homomorphism

L 1 M 1 O.

We continue in this way to obtain a graded resolution of M. We want this

resolution to stop, and the possibility of its stopping is given by the next theorem.

Theorem 4.15. (Hilbert Syzygy Theorem). Let k be a field and

A = k[x 1, . . .

, Xr]

the polynomial ring in r variables. Let M be a graded module over A, and let

o K Lr- 1
. . . Lo M 0

be an exact sequence of graded homomorphisms ofgraded modules, such that

Lo, . . .

, Lr- 1 are free. Then K is free. If'M is in addition finite over A and

Lo, . . .

, Lr -

1
are finite free, then K is finite free.

Proof. From the Koszul complex we know that Tori(M, k) = 0 for i > r

and all M. By dimension shifting, it follows that

Tori(K, k) = 0 for i > O.

The theorem is then a consequence of the next result.

Theorem 4.16. Let F be a graded finite module over A = k[x l , ...,
x

r]. If
Tor 1 (F, k) = 0 then F is free.

Proof. The method is essentially to do a Nakayama type argument in the

case of the non-local ring A. First note that

F @ k = FIIF

where I = (Xl' . . .
,
x

r). Thus F @ k is naturally an All = k-module. Let

Vl, . . .

,
V

n
be homogeneous elements of F whose residue classes mod IF form a

basis of FIIF over k. Let L be a free module with basis et, ..., en. Let

LF

be the graded homomorphism sending ei Vi for i = 1, . . .
,

n. It suffices to

prove that this is an isomorphism. Let C be the cokernel, so we have the exact

sequence

L F C o.

Tensoring with k yields the exact sequence

L @ k F @ k C @ k O.
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Since by construction the map L (8) k F (8) k is surjective, it follows that

C (8) k = O. But C is graded, so the next lemma shows that C = O.

Lemma 4.17. Let N be a graded module over A = k[x 1, . . .

,
x

r]. Let

I = (x l' . . .

,
X

r). If NilN = 0 then N = O.

Proof. This is immediate by using the grading, looking at elements of N

of smallest degree if they exist, and using the fact that elements of I have degree
> o.

We now get an exact sequence of graded modules

O-+E-+LFO

and we must show that E = O. But the exact homology sequence and our as-

sumption yields

o = Torl(F, k) E (8) k -+ L (8) k F (8) k O.

By construction L (8) k F (8) k is an isomorphism, and hence E (8) k = O.

Lemma 4.17 now shows that E = O. This concludes the proof of the syzygy

theorem.

Remark. The only place in the proof where we used that k is a field is in the

proof of Theorem 4.16 when we picked homogeneous elements Vb . . .

,
V

n
in M

whose residue classes mod 1M form a basis of MIIM over AlIA. Hilbert's

theorem can be generalized by making the appropriate hypothesis which allows

us to carry out this step, as follows.

Theorem 4.18. Let R be a commutatve local ring and let A = R[Xb . . .

, xr]
be the polynomial ring in r variables. Let M be a gradedfinite module over A,

projective over R. Let

o K Lr - 1
. . . Lo -+ M 0

be an exact sequence of graded homomorphisms of graded modules such that

Lo, . . .

, Lr- 1 are finite free. Then K is finite free.

Proof Replace k by R everywhere in the proof of the Hilbert syzygy

theorem. We use the fact that a finite projective module over a local ring is free.

Not a word needs to be changed in the above proof with the following exception.
We note that the projectivity propagates to the kernels and cokernels in the

given resolution. Thus F in the statement of Theorem 4.16 may be assumed

projective, and each graded component is projective. Then F'IIF' is projective
over AIIA = R, and so is each graded component. Since a finite projective
module over a local ring is free, and one gets the freeness by lifting a basis from the

resid ue class field, we may pick VI' . . .

,
V

n homogeneous exactly as we did in the

proof of Theorem 4. 16. This concludes the proof.
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EXERCISES

For exercises I through 4 on the Koszul complex, see [No 68], Chapter 8.

I. Let 0 M' M Mil 0 be an exact sequence of A-modules. Show that tensoring
with the Koszul complex K(x) one gets an exact sequence of complexes, and therefore

an exact homology sequence

o HrK(x; M') HrK(x; M) HrK(x; M") . . .

. . .

HpK(x; M') HpK(x; M) HpK(x; M") . . .

. . .

HoK(x; M') HoK(x; M) HoK(x; M") 0

2. (a) Show that there is a unique homomorphism of complexes

!: K(x; M) K(xl' . . .
,
x

r
- I ; M)

such that for v E M:

{
e. 1\ ".1\ e. (8) x v

f, (e; 1\." 1\ e
i (8) v) =

I) Ip r

p ) p
e. 1\

. ..

1\ e. 0 v
I) Ip

if i
p

=
r

if i
p

= r.

(b) Show that! is injective if X
r

is not a divisor of zero in M.

(c) For a complex C, denote by C( -I) the complex shifted by one place to the left,

so C(-I)n
= C

n
- I

for all n. Let M = M/xrM. Show that there is a unique

homomorphism of complexes

g: K(XI"..' x
r
-

I , I; M) K(Xl'...' x
r
- I ; M)(-I)

such that for v EM:

{
e. 1\

...

1\ e. (8) v

g (e. 1\
. ..

1\ C. (8) V) =
I) I

p -)

P I) Ip
0

if i
p

=
r

if i
p

< r.

(d) If X
r

is not a divisor of 0 in M, show that the following sequence is exact:

f g -

o K(x; M) K(x I' . . .
, Xr-I, I; M) K(x I' . . .

,
x

r
- I ; M)( -I) O.

Using Theorem 4.5(c), conclude that for all p
>

0, there is an isomorphism

HpK(x; M) HpK(x.,. ..,
x

r
- I ; M).

3. Assume A and M Noetherian. Let I be an ideal of A. Let ai' . . .

, ak be an M-regular

sequence in I. Show that this sequence can be extended to a maximal M-regular

sequence a I' . . .
,

a
q

in I, in other words an M-regular sequence such that there is

no M-regular sequence ai' . . . ,
a

q + I in I.

4. Again assume A and M Noetherian. Let I = (x I' . . .
,

x
r) and let a I' . . .

,
a

q
be a

maximal M-regular sequence in I. Assume 1M =1= M. Prove that

Hr-q(x; M) =1= 0 but Hp(x; M) = 0 for p > r
-

q.

[See [No 68], 8.5 Theorem 6. The result is similar to the result in Exercise 5, and

generalizes Theorem 4.5(a). See also [Mat 80], pp. 100-103. The result shows that
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all maximal M-regular sequences in M have the same length, which is called the

I-depth of M and is denoted by depth[(M). For the proof, let 5 be the maximal integer
such that HsK(x; M) =1= O. By assumption, Ho(x; M) = M/IM =1= 0, so 5 exists.

We have to prove that q + 5 = r. First note that if q
= 0 then 5 =

r. Indeed, if

q
= 0 then every element of I is zero divisor in M, whence I is contained in the

union of the associated primes of M, whence in some associated prime of M. Hence

Hr(x; M) =1= O.

Next assume q > 0 and proceed by induction. Consider the exact sequence

O M M M/aIM 0

where the first map is m(a l ). Since I annihilates Hp(x; M) by Theorem 4.5(c), we

get an exact sequence

o Hp(x; M) Hp(x; M/aIM) Hp_l(x; M) O.

Hence H
s + I (x; M/aiM) =1= 0, but Hp(x; M/aiM) = 0 forp

>
S + 2. From the hypothesis

that ai' . . .
, a

q
is a maximal M-regular sequence, it follows at once that a2, . . .

,
a

q

is maximal M/aIM-regular in I, so by induction, q
- 1 = r

-

(5 + 1) and hence

q + 5
=

r, as was to be shown.]

5. The following exercise combines some notions of Chapter XX on homology, and

some notions covered in this chapter and in Chapter X, 5. Let M be an A-module.

Let A be Noetherian, M finite module over A, and I an ideal of A such that 1M i= M.

Let r be an integer > 1. Prove that the following conditions are equivalent:

(i) Exti(N, M) = 0 for all i < r and all finite modules N such that supp(N) c (I).

(ii) Exti(A/I, M) = 0 for all i < r.

(iii) There exists a finite module N with supP(N) = (I) such that

Exti(N, M) = 0 for all i < r.

(iv) There exists an M-regular sequence a 1 ,
. . .

, a, in I.

[Hint: (i) (ii) (iii) is clear. For (iii) (iv), first note that

o = ExtO(N, M) = Hom(N, M).

Assume supp(N) = (I). Find an M-regular element in I. If there is no such element,

then I is contained in the set of divisors of 0 of M in A, which is the union of the as-

sociated primes. Hence I c P for some associated prime P. This yields an injection

A/P c M, so

o i= HomAp(Ap/PAp , M).

By hypothesis, Np i= 0 so Np/PNp =1= 0, and Np/PNp
is a vector space over Ap/PA

p ,

so there exists a non-zero Ap/PA
p homomorphism

Np/PNp
-+ Mp ,

so HomAp(Np,
Mp) =1= 0, whence Hom(N, M) =1= 0, a contradiction. This proves the

existence of one regular element a 1.
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Now let M
1

= Mja 1
M. The exact sequence

Ql

0-+ M --. M -+ MjalM -+ 0

yields the exact cohomology sequence

-+ Exti(N, M) -+ Exti(N, Mja 1 M) -+ Ext
i +

I(N, M) --.

so Exti(N, Mja1 M) = 0 for i < r - 1. By induction there exists an MI-regular se-

quence a2, . . .
, a, and we are done.

Last, (iv) (i). Assume the existence of the regular sequence. By induction,

Exti(N, aiM) = 0 for i < r
- 1. We have an exact sequence for i < r:

o -+ Exti(N, M) Exti(N, M)

But supp(N)
= (ann(N)) C (l), so I C rad(ann(N)), so at is nilpotent on N.

Hence at is nilpotent on Exti(N, M), so Exti(N, M) = O. Done.] See Matsumura's

[Mat 70], p. 100, Theorem 28. The result is useful in algebraic geometry, with for

instance M = A itself. One thinks of A as the affine coordinate ring of some variety,
and one thinks of the equations a

i
= 0 as defining hypersurface sections of this variety,

and the simultaneous equations at
= . . . = a

r

= 0 as defining a complete intersection.

The theorem gives a cohomological criterion in terms of Ext for the existence of such

a complete intersection.



APPENDIX 1

The Transcendence of

e and n

The proof which we shall give here follows the classical method of Gelfond

and Schneider, properly formulated. It is based on a theorem concerning values

of functions satisfying differential equations, and it had been recognized for some

time that such values are subject to severe restrictions, in various contexts.

Here, we deal with the most general algebraic differential equation.
We shall assume that the reader is acquainted with elementary facts con-

cerning functions of a complex variable. Let f be an entire function (Le. a

function which is holomorphic on the complex plane). For our purposes, we

say f is of order <
p if there exists a number C > 1 such that for all large R we

have

If(z)1 < C
RP

whenever I z I < R. A meromorphic function is said to be of order <
p if it is a

quotient of entire functions of order <
p.

Theorem. Let K be afinite extension of the rational numbers. Let fl' . . .

, fN
be meromorphic functions of order <

p. Assume that the field K(fl' . . .

, fN)
has transcendence degree > 2 over K, and that the derivative D = dldz maps

the ring K[fl' . . .

, fN] into itself. Let W
l ,

. . .

,
W

m
be distinct complex numbers

not lying among the poles of the Ji, such that

Ji(wv) E K

for all i = 1, . . .

,
N and v = 1,..., m. Then m < lOp [K : Q].

Corollary 1. (Hermite-Lindemann). If lJ. is algebraic (over Q) and =f. 0,
then e(1 is transcendental. Hence 1t is transcendental.

867
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Proof Suppose that rx and e
a

are algebraic. Let K = Q(rx, e
a

). The two

functions z and e
Z

are algebraically independent over K (trivial), and the ring

K[z, e
Z

] is obviously mapped into itself by the derivative. Our functions take on

algebraic values in K at rx, 2rx, . . .

,
mrx for any m, contradiction. Since e

2ni
= 1,

it follows that 2ni is transcendental.

Corollary 2. (Gelfond-Schneider). If rx is algebraic =I 0, 1 and if f3 is

algebraic irrational, then rx
fJ

= e
fJ log a

is transcendental.

Proof We proceed as in Corollary 1, considering the functions e
fJt and e

t

which are algebraically independent because p is assumed irrational. We look

at the numbers log rx, 210g rx, . . .

,
m log rx to get a contradiction as in Corollary 1.

Before giving the main arguments proving the theorem, we state some lemmas.

The first two, due to Siegel, have to do with integral solutions of linear homo-

geneous equations.

Lemma 1. Let

allxl + . . · + alnxn
= 0

a
r 1 X 1 + . . . + a

rn
x

n
= 0

be a system of linear equations with integer coefficients aij, and n > r. Let A

be a number such that I aij I < A for all i, j. Then there exists an integral,
non-trivial solution with

I xj I < 2(2nA)r/<n
-

r).

Proof We view our system of linear equations as a linear equation

L(X) = 0, where L is a linear map, L : z<n) z<r>, determined by the matrix of

coefficients. If B is a positive number, we denote by z<n>(B) the set of vectors X

in z<n) such that I X I < B (where I X I is the maximum of the absolute values

of the coefficients of X). Then L maps z<n)(B) into Z<r)(nBA). The number of

elements in z<n)(B) is > B
n

and « 2B + l)n. We seek a value of B such that

there will be two distinct elements X, Y in z<n)(B) having the same image,

L(X) = L( Y). For this, it will suffice that B
n

> (2nBA)r, and thus it will suffice

that

B = (2nA)r/<n
-

r).

We take X - Y as the solution of our problem.

Let K be a finite extension of Q, and let IK be the integral closure of Z in K.

From Exercise 5 of Chapter IX, we know that IK
is a free module over Z, of

dimension [K: Q]. We view K as contained in the complex numbers. If
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rx E K, a conjugate of rx will be taken to be an element (Jrx, where (J is an embedding
of Kin C. By the size ofa set ofelements of Kwe shall mean the maximum of the

absolute values of all conjugates of these elements.

By the size of a vector X = (x l' . . .

,
x

n) we shall mean the size of the set of its

coordinates.

Let W l ,
. . .

, WM be a basis of IKover Z. Let rx ElK, and write

rx =

alw l + ... + aMwM'

Let W'l' . . .

, w:V be the dual basis of W
l ,

. . .
, WM with respect to the trace. Then

we can express the (Fourier) coefficients a
j
of rx as a trace,

aj
= Tr(rxwj).

The trace is a sum over the conjugates. Hence the size of these coefficients is

bounded by the size of rx, times a fixed constant, depending on the size of the

elements wj.

Lemma 2. Let K be afinite extension ofQ. Let

rxllX l + ... + rxlnxn
= 0

rx
r 1 X 1 + . . . + rx

rn
x

n
= 0

be a system of linear equations with coefficients in IK, and n > r. Let A be a

number such that size(rxij) < A, for all i, j. Then there exists a non-trivial

solution X in IK such that

size(X) < C l (C2 nA)r/(n-r),

where C b C 2 are constants depending only on K.

Proof. Let W b . . .

, WM be a basis of IKover Z. Each x
j

can be written

X
j

= jlWl + ... + jMWM

with unknowns j;". Each rxij can be written

rxij
=

aij 1
W

l + . . . + aijM WM

with integers aij;" E Z. If we multiply out the rxijXj,
we find that our linear equa-

tions with coefficients in IK are equivalent to a system of rM linear equations in

the nM unknowns j;", with coefficients in Z, whose size is bounded by CA, where

C is a number depending only on M and the size of the elements W;.., together with

the products W;.. w, in other words where C depends only on K. Applying
Lemma 1, we obtain a solution in terms of the j;", and hence a solution X in IK ,

whose size satisfies the desired bound.
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The next lemma has to do with estimates of derivatives. By the size of a

polynomial with coefficients in K, we shall mean the size of its set of coefficients.

A denominator for a set of elements of K will be any positive rational integer
whose product with every element of the set is an algebraic integer. We define in

a similar way a denominator for a polynomial with coefficients in K. We

abbreviate" denominator" by den.

Let

P(Tl'...' TN) = L l1(v)M(v)(T)

be a polynomial with complex coefficients, and let

Q(Tl' . . .

, TN) = L p(v)M(v)(T)

be a polynomial with real coefficients > O. We say that Q dominates P if

111(v) I < p(V) for all (v). It is then immediately verified that the relation of domi-

nance is preserved under addition, multiplication, and taking partial derivatives

with respect to the variables T
1 ,

. . .

, TN.

Lemma 3. Let K be offinite degree over Q. Let fl, . . .

, fN be functions,

holomorphic on a neighborhood of a point w E C, and assume that D = dldz

maps the ring K[fl' . . .

, fN] into itself. Assume that Ii(w) E K for all i. Then

there. exists a number C 1 having the following property. Let P(Tl' . . .

, TN) be

a polynomial with coefficients in K, ofdegree < r. Ifwe set f = P(fl, . . .

, fN),
then we have, for all positive integers k,

size(Dkf(w» < size(P)rkk! c+r

Furthermore, there is a denominator for D".f(w) bounded by den(P)C +r.

Proof. There exist polynomials Pi(Tl ,
. . .

, TN) with coefficients in K such

that

Dii = Pi(fl' . . .

, fN).

Let h be the maximum of their degrees. There exists a unique derivation D on

K[Tl' ..., TN] such that D 7i = Pi(Tl'...' TN). For any polynomial P we have

N

D(P(Tl ,
. . .

, TN» = L (DiP)(Tl' . . .

, TN) . Pi(Tb
. . .

, TN)'
i = 1

where D
l ,

. . .

, DN are the partial derivatives. The polynomial P is dominated by

size(P)(1 + Tl + . . . + TN)r,

and each Pi is dominated by size(Pi)(l + Tl + ... + TN)h. Thus DP is dominated

by

size(P)C 2 r( 1 + Tl + . . . + TN)r
+

h.
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Proceeding inductively, one sees that Dkp is dominated by

size(P)C r"k! (1 + Tl . . . + TN)r+kh.

Substituting values h(w) for 1i, we obtain the desired bound on Dkf(w). The

second assertion concerning denominators is proved also by a trivial induction.

We now come to the main part of the proof of our theorem. Let f, 9 be two

functions among fl' . . .

, fN which are algebraically independent over K. Let

r be a positive integer divisible by 2m. We shall let r tend to infinity at the end

of the proof.
Let

r

F = L bijfig
j

i, j = 1

have coefficients b
ij

in K. Let n = r
2

/2m. We can select the b
ij

not all equal to 0,
and such that

DkF(wv) = 0

for 0 < k < n and v = 1,..., m. Indeed, we have to solve a system of mn linear

equations in r
2

= 2mn unknowns. Note that

mn
= 1.

2mn -

mn

We multiply these equations by a denominator for the coefficients. Using the

estimate of Lemma 3, and Lemma 2, we can in fact take the bij to be algebraic

integers, whose size is bounded by

O(r"n! Ci+
r

) < O(n
2

")

for n 00.

Since f, 9 are algebraically independent over K, our function F is not

identically zero. We let s be the smallest integer such that all derivatives of F

up to order s
- 1 vanish at all points W l ,

. . .

,
w

m ,
but such that DSF does not

vanish at one of the w, say w
1. Then s > n. We let

y = D
S

F(Wl) =I O.

Then y is an element of K, and by Lemma 3, it has a denominator which is

bounded by O(C1) for s 00. Let c be this denominator. The norm of cy from

K to Q is then a non-zero rational integer. Each conjugate of cy is bounded by

O(S5S). Consequently, we get

(1) 1 < I N(cy) I < O(S5s)[K:Q]- 11 y I,
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where I y I is the fixed absolute value of y, which will now be estimated very well by

global arguments.

Let f) be an entire function of order <..:
p, such that f)f and f)g are entire, and

f)(Wl) =I O. Then f)
2r

F is entire. We consider the entire function

H(z) = (z)2rF(z) .

n (z - wv)S
v= 1

Then H(w l ) differs from DSF(Wl) by obvious factors, bounded by Cs!. By the

maximum modulus principle, its absolute value is bounded by the maximum of

H on a large circle of radius R. Ifwe take R large, then z
-

W
v

has approximately
the same absolute value as R, and consequently, on the circle of radius R, H(z)

is bounded in absolute value by an expression of type

s
3s

c;rRP
Rms

We select R = Sl/2P. We then get the estimate

s
4s

c
s

Iyl < mS/2: .

S

We now let r tend to infinity. Then both nand s tend to infinity. Combining this

last inequality with inequality (1), we obtain the desired bound on m. This

concludes the proof.
Of course, we made no effort to be especially careful in the powers of s

occurring in the estimates, and the number 10 can obviously be decreased by

exercising a little more care in the estimates.

The theorem we proved is only the simplest in an extensive theory

dealing with problems of transcendence degree. In some sense, the theorem is

best possible without additional hypotheses. For instance, ifP(t) is a polynomial
with integer coefficients, then eP(t) will take the value 1 at all roots ofP, these being

algebraic. Furthermore, the functions

t t
2

t"

t, e
,

e
,...,

e

are algebraically independent, but take on values in Q(e) for all integral values

of t.

However, one expects rather strong results ofalgebraic independence to hold.

Lindemann proved that if r:J..l, . . .

,
r:J..

n
are algebraic numbers, linearly independent

over Q, then

e
at

e
a"

,...,

are algebraically independent.
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More generally, Schanuel has made the following conjecture: If (Xl' . . .

, (Xn

are complex numbers, linearly independent over Q, then the transcendence

degree of

IV IV
a 1 an

1.J\.1,
. . .

, I.J\.n' e
,...,

e

should be > n.

From this one would deduce at once the algebraic independence of e and 1t

(looking at 1, 21ti, e, e
2ni

), and all other independence statements concerning the

ordinary exponential function and logarithm which one feels to be true, for

instance, the statement that 1t cannot lie in the field obtained by starting with the

algebraic numbers, adjoining values of the exponential function, taking algebraic

closure, and iterating these two operations. Such statements have to do with

values of the exponential function lying in certain fields of transcendence degree
< n, and one hopes that by a suitable deepening of Theorem 1, one will reach

the desired results.





APPENDIX 2

Some Set Theory

1. DENUMERABLE SETS

Let n be a positive integer. Let J
n

be the set consisting of all integers k,

1 < k < n. If S is a set, we say that S has n elements if there is a bijection between

Sand J
n'

Such a bijection associates with each integer k as above an element of S,

say k ak. Thus we may use J
n
to "count" S. Part of what we assume about the

basic facts concerning positive integers is that if S has n elements, then the integer
n is uniquely determined by S.

One also agrees to say that a set has 0 elements if the set is empty.

We shall say that a set S is denumerable if there exists a bijection of S with the

set of positive integers Z +. Such a bijection is then said to enumerate the set S.

It is a mapping

nan

which to each positive integer n associates an element of S, the mapping being

injective and surjective.
If D is a denumerable set, and f : S D is a bijection of some set S with D,

then S is also denumerable. Indeed, there is a bijection 9 : D Z
+

,
and hence

9
0 f is a bijection of S with Z

+
.

Let T be a set. A sequence of elements of T is simply a mapping of Z
+

into T.

If the map is given by the association n X
n ,

we also write the sequence as

{xn}nboralso {x b X2,'. .}. For simplicity, we also write {xn} for the sequence.

Thus we think of the sequence as prescribing a first, second, . . .

,
n-th element of

T. We use the same braces for sequences as for sets, but the context will always
make our meaning clear.

875
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Examples. The even positive integers may be viewed as a sequence {xn} if

we put X
n

= 2n for n = 1, 2, . . .. The odd positive integers may also be viewed

as a sequence {Yn} if we put Yn
= 2n - 1 for n = 1, 2, . . .. In each case, the

sequence gives an enumeration of the given set.

We also use the word sequence for mappings of the natural numbers into a set,

thus allowing our sequences to start from 0 instead of 1. If we need to specify
whether a sequence starts with the O-th term or the first term, we write

{xn}nO or {Xn}n 1

according to the desired case. Unless otherwise specified, however, we always
assume that a sequence will start with the first term. Note that from a sequence

{xn}nO we can define a new sequence by letting Yn
=

Xn-l for n > 1. Then

Yl
=

Xo, Y2
=

Xl' . . .. Thus there is no essential difference between the two

kinds of sequences.

Given a sequence {xn}, we call X
n

the n-th term of the sequence. A sequence

may very well be such that all its terms are equal. For instance, if we let Xn
= 1

for all n > 1, we obtain the sequence {I, 1, 1,.. .}. Thus there is a difference

between a sequence of elements in a set T, and a subset of T. In the example just

given, the set of all terms of the sequence consists of one element, namely the

single number 1.

Let {x l' X 2 ,
. . .} be a sequence in a set S. By a subsequence we shall mean a

sequence {xn1 ,
x

n2 ,...} such that nl < n2 < .... For instance, if {xn} is the

sequence ofpositive integers, X
n

= n, the sequence of even positive integers {x 2n }
is a subsequence.

An enumeration of a set S is of course a sequence in S.

A set is finite if the set is empty, or if the set has n elements for some positive

integer n. If a set is not finite, it is called infinite.

Occasionally, a map of J
n

into a set T will be called a finite sequence in T.

A finite sequence is written as usual,

{Xl,...,Xn} or {XJi=l,...,n.

When we need to specify the distinction between finite sequences and maps of

Z
+

into T, we call the latter infinite sequences. Unless otherwise specified, we

shall use the word sequence to mean infinite sequence.

Proposition 1.1. Let D be an infinite subset of Z+. Then D is denumerable,

and in fact there is a unique enumeration of D, say {k., k2 ,
. . .} such that

k 1 < k
2

< . . . < k
n

< k
n + 1 < . . .

.

Proof. We let k l be the smallest element of D. Suppose inductively that we

have defined k
l

< ... < k
n ,

in such a way that any element k in D which is not

equal to k
1, . . .

,
k

n
is > k

n
. We define k

n + 1 to be the smallest element of D which

is > k
n

. Then the map n k
n

is the desired enumeration of D.
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Coronary 1.2. Let S be a denumerable set and D an infinite subset of S.

Then D is denumerable.

Proof Given an enumeration of S, the subset D corresponds to a subset of

Z
+

in this enumeration. Using Proposition 1.1, we conclude that we can enumer-

ate D.

Proposition 1.3. Every infinite set contains a denumerable subset.

Proof Let S be an infinite set. For every non-empty subset T of S, we

select a definite element aT in T. We then proceed by induction. We let Xl be the

chosen element as. Suppose that we have chosen Xl' . . .

,
X

n having the property

that for each k = 2, . . .

,
n the element Xk is the selected element in the subset

which is the complement of {x l' . . .

,
X

k
- l}. We let x

n + 1 be the selected element

in the complement of the set {Xl' . . .

,
x

n }. By induction, we thus obtain an

association n X
n

for all positive integers n, and since X
n =I Xk for all k < n it

follows that our association is injective, Le. gives an enumeration ofa subset of S.

Proposition 1.4. Let D be a denumerable set, and f: D S a surjective

mapping. Then S is denumerable or finite.

Proof For each YES, there exists an element Xy E D such that f(xy)
=

Y

because f is surjective. The association y Xv is an injective mapping of S into

D, because if

y, Z E Sand Xy
=

Xz

then

y
= f(xy) = f(xz) = z.

Let g(y)
=

XY. The image of 9 is a subset of D and D is denumerable. Since 9

is a bijection between S and its image, it follows that S is denumerable or finite.

Proposition 1.5. Let D be a denumerable set. Then D x D (the set ofaU pairs

(x, y) with x, y E D) is denumerable.

Proof. There is a bijection between D x D and Z
+

X Z
+

,
so it will suffice to

prove that Z
+

X Z
+

is denumerable. Consider the mapping of Z
+

X Z
+

-+ Z
+

given by

(m, n) 2
n

3
m

.

It is injective, and by Proposition 1.1, our result follows.

Proposition 1.6. Let {Dl' D
2 ,

. . .} be a sequence ofdenumerable sets. Let S

be the union of all sets Di (i = 1, 2, . . .). Then S is denumerable.
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Proof For each i = 1, 2, . . . we enumerate the elements of Di ,
as indicated

in the following notation:

D l
: {XlbX12,X13,...}

D
2

: {X21,X22,X23,...}

D
i

: {Xil' Xi2, Xi3, ...}

The map f: Z
+

X Z
+

-+ D given by

f(i, j) =

xij

is then a surjective map of Z
+

X Z
+

onto S. By Proposition 1.4, it follows that

S is denumerable.

Corollary 1.7. Let F be a non-emptyfinite set and D a denumerable set. Then

F x D is denumerable. If S l' S2'
. . . are a sequence of sets, each of which is

finite or denumerable, then the union S 1
U S2

U . . . is denumerable or finite.

Proof. There is an injection ofF into Z
+

and a bijection ofD with Z +. Hence

there is an injection of F x Z
+

into Z
+

X Z
+

and we can apply Corollary 1.2

and Proposition 1.6 to prove the first statement. One could also define a sur-

jective map of Z
+

X Z
+

onto F x D. (Cf. Exercises 1 and 4.) As for the second

statement, each finite set is contained in some denumerable set, so that the second

statement follows from Proposition 1.1 and 1.6.

For convenience, we shall say that a set is countable if it is either finite or

denumerable.

2. ZORN'S LEMMA

In order to deal efficiently with infinitely many sets simultaneously, one needs

a special property. To state it, we need some more terminology.
Let S be a set. An ordering (also called partial ordering) of S is a relation,

written x <
y, among some pairs ofelements ofS, having the following properties.

ORO 1. We have x < x.

ORO 2. Ifx <
y and y

< z then x < z.

ORO 3. Ifx <
y and y

< x then x =

y.
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We sometimes write y
> x for x <

y. Note that we don't require that the relation

x <
y or y

< x hold for every pair of elements (x, y) of S. Some pairs may not be

comparable. If the ordering satisfies this additional property, then we say that it

is a total ordering.

Example 1. Let G be a group. Let S be the set of subgroups. If H, H' are

subgroups of G, we define

H < H'

if H is a subgroup of H'. One verifies immediately that this relation defines an

ordering on S. Given two subgroups H, H' of G, we do not necessarily have

H < H' or H' < H.

Example 2. Let R be a ring, and let S be the set of left ideals of R. We define

an ordering in S in a way similar to the above, namely if L, L' are left ideals ofR,
we define

L < L'

if L c L'.

Example 3. Let X be a set, and S the set of subsets of X. If Y, Z are subsets

of X, we define Y < Z if Y is a subset of Z. This defines an ordering on S.

In all these examples, the relation of ordering is said to be that of inclusion.

In an ordered set, if x <
y and x =I y we then write x < y.

Let A be an ordered set, and B a subset. Then we can define an ordering on B

by defining x <
y for x, y E B to hold if and only if x <

y in A. We shall say that

Ro is the ordering on B induced by R, or is the restriction to B of the partial

ordering of A.

Let S be an ordered set. By a least element of S (or a smallest element) one

means an element a E S such that a < x for all XES. Similarly, by a greatest

element one means an element b such that x < b for all XES.

By a maximal element m of S one means an element such that if XES and

x > m, then x = m. Note that a maximal element need not be a greatest element.

There may be many maximal elements in S, whereas if a greatest element exists,

then it is unique (proof ?).

Let S be an ordered set. We shall say that S is totally ordered if given x, YES
we have necessarily x <

y or y
< x.

Example 4. The integers Z are totally ordered by the usual ordering. So

are the real numbers.

Let S be an ordered set, and T a subset. An upper bound of T (in S) is an

element b E S such that x < b for all x E T. A least upper bound of T in S is an

upper bound b such that, if c is another upper bound, then b < c. We shall say
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that S is inductively ordered if every non-empty totally ordered subset has an

upper bound.

We shall say that S is strictly inductively ordered if every non-empty totally
ordered subset has a least upper bound.

In Examples 1, 2, 3, in each case, the set is strictly inductively ordered. To

prove this, let us take Example 2. Let T be a non-empty totally ordered subset

of the set of subgroups of G. This means that ifH, H' E T, then H c H' or H' c H.

Let U be the union of all sets in T. Then:

1. U is a subgroup. Proof: If x, y E U, there exist subgroups H, H' E T

such that x E Hand Y E H'. If, say, H c H', then both x, Y E H' and hence

xYEH'. Hence XYEV. Also, X-1EH', so X-lEV. Hence V is a

subgroup.

2. V is an upper bound for each element of T. Proof: Every H E T is con-

tained in V, so H < V for all H E T.

3. V is a least upper bound for T. Proof: Any subgroup of G which

contains all the subgroups H E T must then contain their union V.

The proof that the sets in Examples 2, 3 are strictly inductively ordered is

entirely similar.

We can now state the property mentioned at the beginning of the section.

Zorn's Lemma. Let S be a non-empty inductively ordered set. Then there

exists a maximal element in S.

As an example of Zorn's lemma, we shall now prove the infinite version of a

theorem given in Chapters 1, 7, and XIV, 2, namely:

Let R be an entire, principal ring and let E be afree module over R. Let F be a

submodule. Then F is free. In fact, if {Vi}'el is a basis for E, and F =I {O},
then there exists a basis for F indexed by a subset of I.

Proof. For each subset J of I we let EJ be the free submodule of E generated

by all Vj,j E J, and we let FJ = EJ n F. We let S be the set of all pairs (FJ, w)
where J is a subset of I, and w : J' F

J is a basis of F
J indexed by a subset J' of J.

We write w
j

instead of w(j) for j E J'. If (FJ, w) and (FK, u) are such pairs, we

define (FJ, w)
<

(FK, u) if J c K, if J' c K', and if the restriction of u to J is

equal to w. (In other words, the basis u for FK is an extension of the basis w for

FJ.) This defines an ordering on S, and it is immediately verified that S is in fact

inductively ordered, and non-empty (say by the finite case of the result). We can

therefore apply Zorn's lemma. Let (FJ, w) be a maximal element. We contend

that J = I (this will prove our result). Suppose J =I I and let k E I but k ft J. Let

K = J u {k}. If

EJu{k} n F = FJ,
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then (FK, w) is a bigger pair than (FJ, w) contradicting the maximality assump-

tion. Otherwise there exist elements of F
K

which can be written in the form

CVk + Y

with some y E EJ and C E R, c =I O. The set of all elements C E R such that there

exists y E EJ for which CVk + Y E F is an ideal. Let a be a generator of this ideal,
and let

Wk
=

aVk + Y

be an element of F, with Y E EJ. If Z E FK then there exists b E R such that

Z
-

bWk E EJ. But z
-

bWk E F, whence z
-

bWk E FJ. It follows at once that

the family consisting of W
j (j E J) and Wk is a basis for FK, thus contradicting the

maximalityagain. This proves what we wanted.

Zorn's lemma could be just taken as an axiom of set theory. However, it is

not psychologically completely satisfactory as an axiom, because its statement

is too involved, and one does not visualize easily the existence of the maximal

element asserted in that statement. We show how one can prove Zorn's lemma

from other properties of sets which everyone would immediately grant as ac-

ceptable psychologically.
From now on to the end of the proof of Theorem 2.1, we let A be a non-

empty partially ordered and strictly inductively ordered set. We recall that

strictly inductively ordered means that every nonempty totally ordered subset

has a least upper bound. We assume given a map f: A A such that for all

x E A we have x < f(x). We could call such a map an increasing map.

Let a E A. Let B be a subset of A. We shall say that B is admissible if:

1. B contains a.

2. We have f(B) c B.

3. Whenever T is a non-empty totally ordered subset of B, the least upper

bound of T in A lies in B.

Then B is also strictly inductively ordered, by the induced ordering of A. We

shall prove:

Theorem 2.1. (Bourbaki). Let A be a non-empty partially ordered and

strictly inductively ordered set. Let f: A A be an increasing mapping.
Then there exists an element Xo E A such that f(xo) =

Xo.

Proof. Suppose that A were totally ordered. By assumption, it would have

a least upper bound b E A, and then

b < f(b) < b,
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so that in this case, our theorem is clear. The whole problem is to reduce the

theorem to that case. In other words, what we need to find is a totally ordered

admissible subset of A.

If we throw out of A all elements x E A such that x is not > a, then what

remains is obviously an admissible subset. Thus without loss of generality, we

may assume that A has a least element a, that is a < x for all x E A.

Let M be the intersection of all admissible subsets of A. Note that A itself is

an admissible subset, and that all admissible subsets of A contain a, so that M is

not empty. Furthermore, M is itself an admissible subset of A. To see this, let

x E M. Then x is in every admissible subset, so f(x) is also in every admissible

subset, and hence f(x) E M. Hence f(M) c M. If T is a totally ordered non-

empty subset of M, and b is the least upper bound of T in A, then b lies in every

admissible subset of A, and hence lies in M. It follows that M is the smallest

admissible subset of A, and that any admissible subset of A contained in M is

equal to M.

We shall prove that M is totally ordered, and thereby prove Theorem 2.1.

[First we make some remarks which don't belong to the proof, but will help
in the understanding of the subsequent lemmas. Since a E M, we see that

f(a) E M, f 0 f(a) E M, and in general f"(a) E M. Furthermore,

a < f(a) < f2(a) < . . .

.

Ifwe had an equality somewhere, we would be finished, so we may assume that

the inequalities hold. Let Do be the totally ordered set {f"(a)}"o. Then Do
looks like this:

a < f(a) < f2(a) < . . . < f"(a) < . . .

.

Let at be the least upper bound of Do. Then we can form

al < f(al) < f2(a l ) < . . .

in the same way to obtain D
l ,

and we can continue this process, to obtain

Dt, D 2 ,
. . . .

It is clear that Db D2 ,
. . . are contained in M. If we had a precise way of ex-

pressing the fact that we can establish a never-ending string of such denumerable

sets, then we would obtain what we want. The point is that we are now trying to

prove Zorn's lemma, which is the natural tool for guaranteeing the existence of

such a string. However, given such a string, we observe that its elements have

two properties: If c is an element of such a string and x < c, then f(x) < c.

Furthermore, there is no element between c and f(c), that is if x is an element of

the string, then x < cor f(c) < x. We shall now prove two lemmas which show

that elements of M have these properties.]
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Let C E M. We shall say that c is an extreme point ofM ifwhenever x E M and

x < c, then f(x) < c. For each extreme point c E M we let

Mc = set of x EM such that x < c or f(c) < x.

Note that Mc is not empty because a is in it.

Lemma 2.2. We have Mc = Mfor every extreme point c ofM.

Proof It will suffice to prove that Mc is an admissible subset. Let x E Mc.
If x < c then f(x) < c so f(x) E Mc. If x = c then f(x) = f(c) is again in Mc.
If f(c) < x, then f(c) < x < f(x), so once more f(x) E Mc. Thus we have

proved that f(Mc) c Mc.
Let T be a totally ordered subset of Mc and let b be the least upper bound of

T in M. If all elements x E Tare < c, then b < C and bE Mc. If some x E T is

suchthatf(c) < x,thenf(c) < x < b,andsobisinMc
. This proves our lemma.

Lemma 2.3. Every element of M is an extreme point.

Proof Let E be the set of extreme points of M. Then E is not empty because

a E E. It will suffice to prove that E is an admissible subset. We first prove that

fmapsEintoitself. LetcEE. LetxEMandsupposex < f(c). We must prove

thatf(x)
<

f(c). By Lemma 2.2, M =

Mc, and hence we have x < c, or x =

c,

or f(c) < x. This last possibility cannot occur because x < f(c). If x < c

then

f(x) < C < f(c).

If x = c then f(x) = f(c), and hence feE) c E.

Next let T be a totally ordered subset of E. Let b be the least upper bound

of T in M. We must prove that bEE. Let x E M and x < b. If for all c E T we

havef(c)
<

x, then c
<

f(c)
<

x implies that x is an upper bound for T, whence

b <
x, which is impossible. Since Mc

= M for all c E E, we must therefore

have x
<

c for some C E T. If x < c, thenf(x)
<

c
<

b, and if x
=

c, then

c = x < b.

Since c is an extreme point and Mc = M, we get f(x)
< b. This proves that

bEE, that E is admissible, and thus proves Lemma 2.3.

We now see trivially that M is totally ordered. For let x, y E M. Then x is an

extreme point of M by Lemma 2, and Y E M
x

so y
< x or

x < f(x) <
y,

thereby proving that M is totally ordered. As remarked previously, this con-

cludes the proof of Theorem 2.1.
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We shall obtain Zorn's lemma essentially as a corollary of Theorem 2.1.

We first obtain Zorn's lemma in a slightly weaker form.

Coronary 2.4. Let A be a non-empty strictly inductively ordered set. Then A

has a maximal element.

Proof. Suppose that A does not have a maximal element. Then for each

x E A there exists an element Yx E A such that x < Yx' Letf: A A be the map

such that f(x) =

Yx for all x EA. Then A, f satisfy the hypotheses of Theorem

2.1 and applying Theorem 2.1 yields a contradiction.

The only difference between Corollary 2.4 and Zorn's lemma is that in

Corollary 2.4, we assume that a non-empty totally ordered su bset has a least

upper bound, rather than an upper bound. It is, however, a simple matter to

reduce Zorn's lemma to the seemingly weaker form of Corollary 2.4. We do

this in the second corollary.

Corollary 2.5. (Zorn's lemma). Let S be a non-empty inductively ordered

set. Then S has a maximal element.

Proof. Let A be the set of non-empty totally ordered subsets of S. Then A

is not empty since any subset of S with one element belongs to A. If X, YEA,
we define X < Y to mean X c Y. Then A is partially ordered, and is in fact

strictly inductively ordered. For let T = {X;}ieI be a totally ordered subset of A.

Let

z = U Xi.
i e I

Then Z is totally ordered. To see this, let x, Y E Z. Then x E Xi and y E X
j

for

some i,j E I. Since T is totally ordered, say Xi c X
j

. Then x, y E X
j

and since

X
j

is totally ordered, x <
y or y

< x. Thus Z is totally ordered, and is obviously
a least upper bound for T in A. By Corollary 2.4, we conclude that A has a

maximal element X
o. This means that X

0 is a maximal totally ordered subset of

S (non-empty). Let m be an upper bound for X
0

in S. Then m is the desired

maximal element of S. For if XES and m < x then X0 u {x} is totally ordered,
whence equal to Xo by the maximality of Xo. Thus x E Xo and x < m. Hence

x = m, as was to be shown.

3. CARDINAL NUMBERS

Let A, B be sets. We shall say that the cardinality of A is the same as the

cardinality of B, and write

card(A) = card(B)

if there exists a bijection of A onto B.
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We say card(A) < card(B) if there exists an injective mapping (injection)

f: A B. We also write card(B) > card(A) in this case. It is clear that if

card(A) < card(B) and card(B) < card(C), then card(A) < card(C).

This amounts to saying that a composite of injective mappings is injective.

Similarly, if card(A) = card(B) and card(B) = card(C) then card(A) = card(C).

This amounts to saying that a composite of bijective mappings is bijectIve.
We clearly have card(A) = card(A). Using Zorn's lemma, it is easy to show (see

Exercise 14) that

card(A
<

card(B) or card(B)
<

card(A).

Let f : A -+ B be a surjective map of a set A onto a set B. Then

card(B) < card(A).

This is easily seen, because for each Y E B there exists an element x E A,

denoted by Xy, such that f(xy) =

y. Then the association y Xy is an injective

mapping of B into A, whence by definition, card(B) < card(A).

Given two nonempty sets A, B we have card(A)
<

card(B) or card(B)
<

card(A).

This is a simple application of Zorn's lemma. We consider the family of pairs

(S, f) where S is a subset of A andf: S --+ B is an injective mapping. From the

existence of a maximal element, the assertion follows at once.

Theorem 3.1. (Schroeder-Bernstein). Let A, B be sets, and suppose that

card(A) < card(B), and card(B) < card(A). Then

card(A) = card(B).

Proof. Let

f: A -+ Band g: B -+ A

be injections. We separate A into two disjoint sets Al and A 2 . We let Al consist

of all x E A such that, when we lift back x by a succession of inverse maps,

x, g-I(X), r-1og-1(x), g-1 of-l og-I(X),...

then at some stage we reach an element of A which cannot be lifted back to B by

g. We let A 2 be the complement of AI' in other words, the set of x E A which can

be lifted back indefinitely, or such that we get stopped in B (i.e. reach an element

of B which has no inverse image in A by f). Then A = Al U A 2
. We shall define

a bijection h of A onto B.

If x E A I'
we define h(x) = f(x).

If xEA 2 ,
we define h(x) = g-l(X) = unique element YEB such that

g(y) = x.

Then trivially, h is injective. We must prove that h is surjective. Let bE B.

If, when we try to lift back b by a succession of maps

'..Lf-l og-I rf-lo g-Iof-l(b)



886 SOME SET THEORY APPENDIX 2

we can lift back indefinitely, or if we get stopped in B, then g (b) belongs to A2

and consequently b = h(g(b)), so b lies in the image of h. On the other hand, if we

cannot lift back b indefinitely, and get stopped in A, then f-
1

(b) is defined

(Le., b is in the image off), andf-l(b) lies in Al. In this case, b = H(f-l(b))
is also in the image of h, as was to be shown.

Next we consider theorems concerning sums and products of cardinalities.

We shall reduce the study of cardinalities of products of arbitrary sets to the

denumerable case, using Zorn's lemma. Note first that an infinite set A always
contains a denumerable set. Indeed, since A is infinite, we can first select an

element a l
E A, and the complement of {al} is infinite. Inductively, if we have

selected distinct elements al, . . .

, an in A, the complement of {al' . . .

, an} is

infinite, and we can select an + 1
in this complement. In this way, we obtain a

sequence of distinct elements of A, giving rise to a denumerable subset of A.

Let A be a set. By a covering of A one means a set r of subsets of A such that

the union

Uc
Cer

of all the elements of r is equal to A. We shall say that r is a disjoint covering if

whenever C, C' E r, and C #- C', then the intersection of C and C' is empty.

Lemma 3.2. Let A be an infinite set. Then there exists a disjoint covering of
A by denumerable sets.

Proof. Let S be the set whose elements are pairs (B, r) consisting of a

subset B of A, and a disjoint covering of B by denumerable sets. Then S is not

empty. Indeed, since A is infinite, A contains a denumerable set D, and the pair

(D, {D}) is in S. If (B, r) and (B', r') are elements of S, we define

(B, r) < (B', r')

to mean that B c B', and r c r'. Let T be a totally ordered non-empty subset

of S. We may write T = {(Bi , ri)}ieI for some indexing set I. Let

B = U Bi and

i e I

r = U ri .

i e I

If C, C' E r, C #- C', then there exists some indices i, j such that C E ri and

C' E r
j

. Since T is totally ordered, \ve have, say,

(B;, ri) < (Bj ,
r
j ).

Hence in fact, C, C' are both elements of r
j ,

and hence C, C' have an empty
intersection. On the other hand, if x E B, then x E Bi for some i, and hence there

is some C E ri such that x E C. Hence r is a disjoint covering of B. Since the
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elements of each ri are denumerable subsets of A, it follows that r is a disjoint

covering of B by denumerable sets, so (B, r) is in S, and is obviously an upper

bound for T. Therefore S is inductively ordered.

Let (M, ) be a maximal element of S, by Zorn's lemma. Suppose that

M ¥ A. If the complement of M in A is infinite, then there exists a denumerable

set D contained in this complement. Then

(M u D, u {D})

is a bigger pair than (M, ), contradicting the maximality of (M, ). Hence the

complement of M in A is a finite set F. Let Do be an element of. Let

Dl = Do u F.

Then D 1
is denumerable. Let 1 be the set consisting of all elements of, except

Do, together with D 1. Then 1
is a disjoint covering of A by denumerable sets,

as was to be shown.

Theorem 3.3. Let A be an infinite set, and let D be a denumerable set. Then

card(A x D) = card(A).

Proof. By the lemma, we can write

A = U Di

i el

as a disjoint union of denumerable sets. Then

A x D = U (Di
X D).

ie 1

For each i E I, there is a bijection of Di
x Don Di by Proposition 1.5. Since the

sets Di
x D are disjoint, we get in this way a bijection of A x D on A, as desired.

Corollary 3.4. If F is a finite non-empty set, then

card(A x F) = card(A).

Proof. We have

card(A) < card(A x F) < card(A x D) = card(A).

We can then use Theorem 3.1 to get what we want.

Coronary 3.5. Let A, B be non-empty sets, A infinite, and suppose

card(B) < card(A).
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Then

card(A u B) = card(A).

Proof. We can write A u B = A u C for some subset C of B, such that C

and A are disjoint. (We let C be the set of all elements ofB which are not elements

of A.) Then card(C) < card(A). We can then construct an injection of A u C

into the product

A x {I, 2}

of A with a set consisting of 2 elements. Namely, we have a bijection of A with

A x {I} in the obvious way, and also an injection of C into A x {2}. Thus

card(A u C) < card(A x {1,2}).

We conclude the proof by Corollary 3.4 and Theorem 3.1.

Theorem 3.6. Let A be an infinite set. Then

card(A x A) = card(A).

Proof. Let S be the set consisting ofpairs (B, f) where B is an infinite subset

ofA, and f : B x B is a bijection ofB onto B x B. Then S is not empty because if

D is a denumerable subset of A, we can always find a bijection of D on D x D.

If (B, f) and (B', f') are in S, we define (B, f) < (B', f') to mean B c B', and the

restriction off' to B is equal to f. Then S is partially ordered, and we contend

that S is inductively ordered. Let T be a non-empty totally ordered subset of S,

and say T consists of the pairs (Bi , h) for i in some indexing set I. Let

M = UBi.
ie I

We shall define a bijection g: M M x M. If x E M, then x lies in some Bi .

We define g(x) = fi(x). This value h(X) is independent of the choice of Bi in

which x lies. Indeed, if x E Bj for some j E I, then say

(Bi,h) < (Bj,fj).

By assumption, Bi
C Bj, and fj(x) = hex), so 9 is well defined. To show 9 is

surjective, let x, y E M and (x, y) E M x M. Then x E Bi for some i E I and

y E Bj for somej E I. Again since T is totally ordered, say (Bi , Ii) < (Bj, fj). Thus

Bi
C Bj, and x, Y E Bj. There exists an element bE Bj such that

jj(b) = (x, y) E Bj x Bj.

By definition, g(b) = (x, y); so 9 is surjective. We leave the proof that 9 is

injective to the reader to conclude the proof that 9 is a bijection. We then see
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that (M, g) is an upper bound for T in S, and therefore that S is inductively
ordered.

Let (M, g) be a maximal element of S, and let C be the complement of M in A.

If card(C) < card(M), then

card(M) < card(A) = card(M u C) = card(M)

by Corollary 3.5, and hence card(M) = card(A) by Bernstein's Theorem. Since

card(M) = card(M x M), we are done with the proof in this case. If

card(M) < card(C),

then there exists a subset M 1
of C having the same cardinality as M. We consider

(M u M l ) x (M u M 1 )

= (M x M) u (M 1
x M) u (M x M 1) u (M 1

x M 1).

By the assumption on M and Corollary 3.5, the last three sets in parentheses on

the right of this equation have the same cardinality as M. Thus

(M u M l ) x (M u Ml ) = (M x M) u M 2

where M 2
is disjoint from M x M, and has the same cardinality as M. We now

define a bijection

gl : MuM 1 (M u M 1) x (M u M 1).

We let gl(X) = g(x) if x E M, and we let gl on M
1

be any bijection of M 1
on M2.

In this way we have extended 9 to MuMl' and the pair (M u M 1, gl) is in S,

contradicting the maximality of (M, g). The case card(M) < card(C) therefore

cannot occur, and our theorem is proved (using Exercise 14 below).

Corollary 3.7. If A is an infinite set, and A(n) = A x ... x A is the product
taken n times, then

card(A(n) = card(A).

Proof Induction.

Corollary 3.8. IfA I' . . .
, An are non-empty sets with An infinite, and

card(A i) < card(An)

fori = 1, ..., n, then

card(A 1
X ... x An) = card(An).
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Proof We have

card(An) < card(A 1
x ... x An) < card(An X ... X An)

and we use Corollary 3.7 and the Schroeder-Bernstein theorem to conclude the

proof.

Corollary 3.9. Let A be an infinite set, and let <I> be the set of finite subsets

of A. Then

card(<I» = card(A).

Proof. Let <l>n be the set of subsets of A having exactly n elements, for each

integer n = 1, 2, . . . . We first show that card(<I>n) < card(A). If F is an element

of <l>n, we order the elements of F in any way, say

F={Xl,...,Xn}.

and we associate with F the element (x l'
. . .

,
X

n) E A (n),

F t----+ (x l'
. . .

,
X

n).

If G is another subset of A having n elements, say G = {Yl' . . .

, Yn}, and G =I F,
then

(X l'
. · .

,
X

n) =1= (y l'
. . .

, Yn).

Hence our map

F (x l' . . .
,

X
n)

of <l>n into A(n) is injective. By Corollary 3.7, we conclude that

card(<I>n) < card(A).

Now <I> is the disjoint union of the <l>n for n = 1, 2, . . . and it is an exercise to

show that card(<I» < card(A) (cf. Exercise 1). Since

card(A) < card(<1»,

because in particular, card(<I>l) = card(A), we see that our corollary is proved.

In the next theorem, we shall see that given a set, there always exists another

set whose cardinality is bigger.

Theorem 3.10. Let A be an infinite set, and T the set consisting of two

elements {O, I}. Let M be the set ofall maps of A into T. Then

card(A) < card(M) and card(A) =1= card(M).
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Proof. For each x E A we let

fx : A {O, I}

be the map such that fx(x) = 1 andfx(Y) = 0 if Y =I x. Then x fx is obviously
an injection of A into M, so that card(A) < card(M). Suppose that

card(A) = card(M).

Let

xgx

be a bijection between A and M. We define a map h: A {O, I} by the rule

h(x) = 0 if gx(x) = 1,

h(x) = 1 if gx(x) = o.

Then certainly h =I gx for any x, and this contradicts the assumption that x gx

is a bijection, thereby proving Theorem 3.10.

Corollary 3.11. Let A be an infinite set, and let S be the set ofall subsets ofA.

Then card(A) < card(S) and card(A) =I card(S).

Proof We leave it as an exercise. [Hint: If B is a non-empty subset of A,
use the characteristic function lpB such that

QJB(X) = 1 if x E B,

QJB(X) = 0 if x fJ B.

What can you say about the association B (fJB ?]

4. WELL-ORDERING

An ordered set A is said to be well-ordered if it is totally ordered, and if every

non-empty subset B has a least element, that is, an element a E B such that

a < x for all x E B.

Example 1. The set of positive integers Z
+

is well-ordered. Any finite set

can be well-ordered, and a denumerable set D can be well-ordered: Any bijection
of D with Z

+
will give rise to a well-ordering of D.

Example 2. Let S be a well-ordered set anq let b be an element of some set,

b ft S. Let A = S u {b} . We define x < b for all XES. Then A is totally ordered,

and is in fact well-ordered.
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Proof. Let B be a non-empty subset of A. If B consists of b alone, then b is a

least element of B. Otherwise, B contains some element a E A. Then B n A is not

empty, and hence has a least element, which is obviously also a least element for

B.

Theorem 4.1. Every non-empty set can be well-ordered.

Proof Let A be a non-empty set. Let S be the set of all pairs (X, w), where

X is a subset ofA and w is a well-ordering of X. Note that S is not empty because

any single element of A gives rise to such a pair. If (X, w) and (X', w') are such

pairs, we define (X, w)
<:

(X', w') if X C X', if the ordering induced on X by
w' is equal to w, and if X is the initial segment of X'. It is obvious that this

defines an ordering on S, and we contend that S is inductively ordered. Let

{(Xi' Wi)} be a totally ordered non-empty subset of S. Let X = U Xi. If a, b EX,

tlien a, b lie in some Xi' and we define a
<: b in X if a

<: b with respect to the

ordering Wi. This is independent of the choice of i (immediate from the assumption
of total ordering). In fact, X is well ordered, for if Y is a non-empty subset of

X, then there is some element y E Y which lies in some X
j

. Let c be a least

element of X
j

n Y. One verifies at once that c is a least element of Y. We can

therefore apply Zorn's lemma. Let (X, w) be a maximal element in S. If X A,

then, using Example 2, we can define a well-ordering on a bigger subset than

X, contradicting the maximality assumption. This proves Theorem 4.1.

Note. Theorem 4.1 is an immediate and straightforward consequence of

Zorn's lemma. Usually in mathematics, Zorn's lemma is the most efficient tool

when dealing with infinite processes.

EXERCISES

1. Prove the statement made in the proof of Corollary 3.9.

2. IfA is an infinite set, and {J)n is the set of subsets of A having exactly n elements, show that

card(A) < card({J)n)

for n > 1.

3. Let Ai be infinite sets for i = 1, 2, . . . and assume that

card(A i) < card(A)

for some set A, and all i. Show that

card (91 Ai) < card(A).
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4. Let K be a subfield of the complex numbers. Show that for each integer n
>

1, the

cardinality of the set of extensions of K of degree n in C is <:

card(K).
5. Let K be an infinite field, and E an algebraic extension of K. Show that

card(E) = card(K).

6. Finish the proof of the Corollary 3.11.

7. If A, B are sets, denote by M(A, B) the set of all maps of A into B. If B, B' are sets with

the same cardinality, show that M(A, B) and M(A, B') have the same cardinality. If

A, A' have the same cardinality, show that M(A, B) and M(A', B) have the same

cardinality.

8. Let A be an infinite set and abbreviate card(A) by a. If B is an infinite set, abbreviate

card(B) by /3. Define a/3 to be card(A x B). Let B' be a set disjoint from A such that

card(B) = card(B'). Define a + /3 to be card(A u B'). Denote by BA the set of all maps
ofA into B, and denote card(BA) by /3

a
. Let C be an infinite set and abbreviate card(C)

by)'. Prove the following statements:

(a) rx({3 + y) = rx{3 + rxy.

(b) rx{3 = {3rx.

(c) rx
P + y

= rx
P

rx y.

9. Let K be an infinite field. Prove that there exists an algebraically closed field Ka

containing K as a subfield, and algebraic over K. [Hint: Let Q be a set of cardinality

strictly greater than the cardinality of K, and containing K. Consider the set 8 of all

pairs (E, lp) where E is a subset of Q such that K c E, and lp denotes a law of addition

and multiplication on E which makes E into a field such that K is a subfield, and E is

algebraic over K. Define a partial ordering on 8 in an obvious way; show that 8 is

inductively ordered, and that a maximal element is algebraic over K and algebraically
closed. You will need Exercise 5 in the last step.]

10. Let K be an infinite field. Show that the field of rational functions K(t) has the same

cardinality as K.

11. Let J
n

be the set of integers {I, . . .

, n}. Let Z
+

be the set of positive integers. Show

that the following sets have the same cardinality:

(a) The set of all maps M(Z+, In).

(b) The set of all maps M(Z
+

,
J2).

(c) The set of all real numbers x such that 0 < x < 1.

(d) The set of all real numbers.

12. Show that M(Z+, Z+) has the same cardinality as the real numbers.

13. Let S be a non-empty set. Let S' denote the product S with itself taken denumerably

many times. Prove that (8')' has the same cardinality as S'. [Given a set S whose

cardinality is strictly greater than the cardinality of R, I do not know whether it is

always true that card S = card S'.] Added 1994: The grapevine communicates to me

that according to Solovay, the answer is "no."

14. Let A, B be non-empty sets. Prove that

card(A)
<:

card(B) or card(B)
<:

card(A).

[Hint: consider the family of pairs (C, f) where C is a subset of A and f: C ---+ B is

an injective map. By Zorn's lemma there is a maximal element. Now finish the proof].
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Hasse zeta function, 255

height, 167

Herbrand quotient, 79

Hermite-Lindemann, 867

hermitian

form, 533, 571, 579

linear map, 534

matrix, 535

Hilbert

Nullstellensatz, 380, 551

polynomial, 433

-Serre theorem, 431

syzygy theorem, 862

theorem on polynomial rings, 185

theorem 90, 288

-Zariski theorem, 409

homogeneous, 410, 427, 631

algebraic space, 385

ideal, 385, 436, 733

integral closure, 409

point, 385

polynomial, 103, 107, 190, 384, 436

quadratic map, 575

homology, 445, 767

isomorphism, 767, 836

homomorphisms in categories, 765

homomorphism
of complex, 445, 765
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homomorphism (continued)

of groups, 10

of inverse systems, 163

of modules, 119, 122

of monoid, 10

of representations, 125

of rings, 88

homotopies of complexes,
787

Horrock's theorem, 847

Howe's proof, 258

hyperbolic

enlargement, 593

pair, 586, 590

plane, 586, 590

space, 590

hyperplane, 542

section, 374, 410

map, ix

module, 782, 830

resolution, 788, 801, 819

inner automorphism, 26

inseparable

degree, 249

extension, 247

integers mod n, 94

integral, 334, 351, 352, 409

closure, 336, 409

domain, 91

equation, 334

extension, 340

homomorphism, 337

map, 357

root test, 185

valued polynomials, 216, 435

integrally closed, 337

integrality criterion, 352, 409

invariant

bases, 550

submodule, 665

invariant

of linear map, 557, 560

of matrix, 557

of module, 153, 557, 563

of submodule, 153, 154

inverse, ix, 7

inverse limit, 50, 51,161,163,169

of Galois groups, 313, 328

inverse matrix, 518

invertible, 84

Irr(z,k,x), 224

irreducible

algebraic set, 382, 408

character, 669, 696

element, III

module, 554

polynomial, 175, 183

polynomial of a field element, 224

irrelevant prime, 436

isolated prime, 422

isometry, 572

isomorphism, 10, 54

of representations, 56, 667

isotropy group, 27

Iss'sa-Hironaka theorem, 498

Ideal, 86

class group, 88, 126

idempotent, 443

image, 11

indecomposable, 440

independent
absolute values, 465

characters, 283, 676

elements of module, 151

extensions, 362

variables, 102, 103

index, 12

induced

character, 686

homomorphism, 16

module, 688

ordering, 879

representation, 688

inductively ordered, 880

inertia

form, 393

group, 344

infinite

cyclic group, 8, 23

cyclic module, 147

extension, 223, 235

Galois extensions, 313

period, 8, 23

set, 876

under a place, 349

infinitely

large, 450

small, 450

injective

Jacobson

density, 647

radical, 658

Jordan-Holder, 22, 156

Jordan canonical form, 559
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K-family, 771

K-theory, 139, 771-782

kernel

of bilinear map, 48, 144, 522, 572

of homomorphism, 11, 133

Kolchin's theorem, 661

Koszul complex, 853

Krull

theorem, 429

topology, 329

Krull-Remak-Schmidt, 441

Kummer extensions

abelian, 294-296, 332

non-abelian, 297, 304, 326

norm, 478

parameter, 487

ring, 110, 425, 441

uniformization, 498

localization, 110

locally nilpotent, 418

logarithm, 497, 597

logarithmic derivative, 214, 375

Mackey's theorems, 694

MacLane's criterion, 364

mapping cylinder, 838

Maschke's theorem, 666

Mason-Stothers theorem, 194, 220

matrix, 503

of bilinear map, 528

over non-commutative ring, 641

maximal

abelian extension, 269

archimedean, 450

element, 879

ideal, 92

metric linear map, 573

minimal polynomial, 556, 572

Mittag-Leffler condition, 164

modular forms, 318, 319

module, 117

over principal ring, 146, 521

modulo an ideal, 90

Moebius inversion, 116, 254

monic, 175

monoid, 3

algebra, 106, 126

homomorphism, 10

monomial, 101

monomorphism, 120

Morita's theorem, 660

morphism, 53

of complex, 765

of functor, 65, 625, 800

or representation, 125

multilinear map, 511, 521, 602

multiple root, 178, 247

multiplicative

function, 116

subgroup of a field, 177

subset, 107

multiplicity
of character, 670

of root, 178

of simple module, 644

Nakayama's lemma, 424, 661

natural transformation, 65

L-functions, 727

lambda operation, 217

lambda-ring, 218, 780

Langlands conjectures, 316, 319

lattice, 662

law of composition, 3

Lazard's theorem, 639

leading coefficient, 100

least

common multiple, 113

element, 879

upper bound, 879

left

coset, 12

derived functor, 791

exact, 790

ideal, 86

module, 117

length
of complex, 765

of filtration, 433

of module, 433, 644

Lie algebra, 548

lie above

prime, 338

valuation ring, 350

lifting, 227

linear

combination, 129

dependence, 130

independence, 129, 150, 283

map, 119

polynomial, 100

linearly disjoint, 360

local

degree, 477

homomorphism, 444
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negative, 449

definite, 578

Newton approximation, 493

nilpotent, 416, 559, 569

Noether normalization, 357

Noetherian, 186,210,408-409,415,427

graded ring, 427

module, 413

non-commutative variables, 633

non-degenerate, 522, 572

non-singular, 523, 529

norm, 284, 578, 637

on a vector space, 469

on a finitely generated abelian group, 166

normal

basis theorem, 312

endomorphism, 597

extension, 238

subgroup, 14

tower, 18

normalizer, 14

Northcott theorems, 864

null

sequence, 52

space, 586

nullstellensatz, 380, 383

occur, 102, 176

odd permutation, 31

one-dimensional

character, 671

representation, 671

open complex, 761

open set, 406

operate

on a module, 664

on an object, 55

on a set, 25, 76

orbit, 28

decomposition formula, 29

order

of a group, 12

at p, 113, 488

at a valuation, 488

of a zero, 488

ordering, 449,480, 878

ordinary tensor product, 630

orthogonal

basis, 572-585

element, 48, 144, 572

group, 535

map, 535

sum, 572

orthogonality relations, 677

orthogonalization, 579

orthonormal, 577

over a map, 229

p-adic

integers, 51, 162, 169, 488

numbers, 488

p-class, 706

p-conjugate, 706

p-divisible, 50

p-elementary, 705

p-group, 33

p-regular, 705

p-singular, 705

p-subgroup, 33

pairing, 48

parallelogram law, 598

partial fractions, 187

partition, 79

function, 211

perfect, 252

period, 23, 148

periodicity of Clifford algebra, 758

permutation, 8, 30

perpendicular, 48, 144, 522

Pfaffian, 589

Pic or Picard group, 88, 126

place, 349, 482

Poincare series, 211, 431

point
of algebraic set, 383

in a field, 408

polar decomposition, 58
polarization identity, 580

pole, 488

polynomial, 97

algebra, 97, 633

function, 98

invariants, 557

irreducible, 175, 183

Noetherian, 185

Pontrjagin dual, 145

positive, 449

definite, 578, 583

power map, 10

power series, 205

factorial, 209

Noetherian, 210

pnmary

decomposition, 422

ideal, 421

module, 421



INDEX 911

radical

of an ideal, 388, 417

of a ring, 661

of an integer, 195

Ramanujan power series, 212

ramification index, 483

rank, 42, 46

of a matrix, 506

rational

conjugacy class, 276, 326, 725

element, 714

function, 110

real, 451

closed, 451

closure, 452

place, 462

zero, 457

reduced

decomposition, 422, 443

polynomial, 177

reduction

criterion, 185

map, 99, 102

modulo an ideal, 446, 623

mod p, 623

refinement of a tower, 18

regular

character, 675, 699

extension, 366

module, 699, 829

representation, 675, 829

sequence, 850

relations, 68

relative invariant, 171, 327

relatively prime, 113

representation, 55, 124, 126

functor, 64

of a group, 55,317,664

of a ring, 553

space, 667

residue class, 91

degree, 422, 483

ring, 91

resolution, 763, 798

resultant, 200, 398,410

system, 403

variety, 393

Ribet, 319

Rieffel's theorem, 655

Riemann surface, 275

Riemann-Roch, 212, 218, 220, 258

right

coset, 12, 75

derived functor, 791

exact functor, 791, 798

prime

element, 113

field, 90

ideal, 92

ring, 90

primitive

element, 243, 244

group, 80

operation, 79

polynomials, 181, 182

power series, 209

root, 301

root of unity, 277, 278

principal

homomorphism, 418

ideal, 86, 88

module, 554, 556

representation, 554

ring, 86, 146, 521

product
in category, 58

of groups, 9

of modules, 127

of rings, 91

profinite, 51

projection, 388

projective

module, 137, 168, 848, 850

resolution, 763

space, 386

proper, ix

congruence, 492

pull-back, 61

purely inseparable

element, 249

extension, 250

push-out, 62, 81

quadratic

extension, 269

form, 575

map, 574

symbol, 281

quadratically closed, 462

quatemions, 9, 545, 723, 758

Quillen-Suslin theorem, 848

quotient

field, 110

ring, 107
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right (continued)

ideal, 66

module, 117

rigid, 275

rigidity theorem, 276

ring, 83

homomorphism, 88

of fractions, 107

root, 175

of unity, 177, 276

roW

operation, 154

'rank, S06

vector, 503

simple

character, 669

group, 20

module, 156, 554, 643

ring, 653, 655

root, 247

simplicity of 5Ln, 539, 542

size of a matrix, 503

skew symmetric, 526

5L2' 69, 537, 539, 546

generators and relations, 69, 70, 537

5Ln, 521, 539, 541, 547

snake lemma, 158, 169, 614-621

Snyder's proof, 220

solvable

extension, 291, 314

group, 18, 293, 314

by radicals, 292

spec of a ring, 405, 410

special linear group, 14, 52, 59, 69, 541, 546,

547

specializing, 101

specialization, 384

spectral

sequence, 815-825

theorem, 581, 583, 585

split exact sequence, 132

splitting field, 235

square

matrix, 504

group, 9, 77, 270

root of operator, 584

stably free, 840

dimension, 840

stably isomorphic, 841

stalk, 161

standard

complex, 764

alternating matrix, 587

Steinberg theorem, 726

Stewart-Tijdeman, 196

strictly inductively ordered, 881

stripping functor, 62

Sturm's theorem, 454

subgroup, 9

submodule, 118

submonoid, 6

subobject, 134

subring, 84

subsequence, 876

subspace, 141

substituting, 98, 101

53 and 54' 722

scalar product, 571

Schanuel

conjecture, 873

lemma, 841

Schreier's theorem, 22

Schroeder-Bernstein theorem, 885

Schur

Galois groups, 274

lemma, 643

Schwarz inequality, 578, 580

section, 64, 792

self-adjoint, 581

semidirect product, 15, 76

semilinear, 532

seminorm, 166, 475

semipositive, 583, 597

semisimple

endomorphism, 569, 661

module, 554, 647, 659

representation, 554, 712

ring, 651

separable

closure, 243

degree, 239

element, 240

extension, 241, 658

polynomial, 241

separably generated, 363

separating transcendence basis, 363

sequence, 875

Serre's conjecture, 848

theorem, 844

sesquilinear form, 532

Shafarevich conjecture, 314

sheaf, 792

sign of a permutation, 31, 77
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super

algebra, 632

commutator, 757

product, 631, 751

tensor product, 632, 751

supersolvable, 702

support, 419

surjective, ix

Sylow group, 33

Sylvester's theorem, 577

symmetric

algebra, 635

endomorphism, 525, 585, 597

form, 525, 571

group, 29, 269, 272-274

matrix, 530

multilinear map, 635

polynomial, 190, 217

product, 635, 781, 861

symplectic, 535

basis, 599

syzygy theorem, 862

Szpiro conjecture, 198

transcendence

basis, 356

degree, 355

of e, 867

transcendental, 99

transitive, 28, 79

translation, 26, 227

transpose

of bifunctor, 808

of linear map, 524

of matrix, 505

transposition, 13

transvection, 542

trigonometric degree, 115

polynomial, 114, 115

trivial

character, 282

operation, 664

representation, 664

subgroup, 9

valuation, 465

two-sided ideal, 86, 655

type

of abelian group, 43

of module, 149Taniyama-Shimura conjecture, 316, 319

Tate group, 50, 163, 169

limit, 598

Taylor series, 213

tensor, 581, 628

algebra, 633

exact, 612

product, 602, 725

product of complexes, 832, 851

product representation, 725, 799

Tits construction of free group, 81

tor (for torsion), 42, 47, 149

Tor, 622, 791

dimension, 622

Tomheim proof, 471

torsion

free, 45, 147

module, 147, 149

total

complex, 815

degree, 103

totally ordered, 879

tower

of fields, 225

of groups, 18

trace

of element, 284, 666

of linear map, 511, 570

of matrix, 505, 511

unimodular, 846

extension property, 849

unipotent, 714

unique factorization, Ill, 116

uniquely divisible, 575

unit, 84

element, 3, 83

ideal, 87

unitary, 535, 583

universal, 37

ddta-functor, 800

derivation, 746

universally

attracting, 57

repelling, 57

upper bound, 879

upper diagonal group, 19

valuation, 465

valuation ring, 348, 481

determined by ordering, 450, 452

value group, 480

Vandermonde determinant, 257-259, 516

vanishing ideal, 38

variable, 99, 104

variation of signs, 454
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variety, 382

vector space, 118, 139

volume, 735

Witt group, 594, 599

theorem, 591

vector, 330, 492

Witt-Grothendieck group, 595

Warning's theorem, 214

Wedderburn's theorem, 649

Weiersttass

degree, 208

polynomial, 208

preparation theorem, 208

weight, 191

well-behaved, 410, 478

well-defined, x

well-ordering, 891

Weyl group, 570

Zariski-Matsusaka theorem, 372

Zariski topology, 407

Zassenhaus lemma, 20

zero

divisor, 91

element, 3

of ideal, 390, 405

of polynomial, 102, 175, 379, 390

zeta function, 211, 212, 255

Zorn's lemma, 880, 884



Graduate Texts in Mathematics

TAKEUTIlZARING. Introduction to 35 ALExANDERlWERMER. Several Complex
Axiomatic Set Theory 2nd ed. Variables and Banach Algebras. 3rd ed.

2 OXTOBY. Measure and Category. 2nd ed. 36 KELLEY!NAMIOKA et al. Linear

3 SCHAEFER. Topological Vector Spaces. Topological Spaces.
2nd ed. 37 MONIC Mathematical Logic.

4 HILTON/STAMMBACH A Course in 38 GRAUERTlFRrrzsCHE. Several Complex

Homological Algebra. 2nd ed. Variables.

5 MAc LANE. Categories for the Working 39 ARVESON. An Invitation to C*-Algebras.
Mathematician. 2nd ed. 40 KEMENY/SNEWKNAPP. Denumerable

6 HUGHESIPIPER. Projective Planes. Markov Chains. 2nd ed.

7 SERRE. A Course in Arithmetic. 41 APOSTOL. Modular Functions and Dirichlet

8 TAKEUTI/ZARING. Axiomatic Set Theory. Series in Number Theory
9 HUMPHREYs. Introduction to Lie Algebras 2nd ed.

and Representation Theory. 42 SERRE Linear Representations of Finite

10 COHEN A Course in Simple Homotopy Groups.

Theory. 43 GILLMAN/JERISON. Rings of Continuous

II CONWAY. Functions of One Complex Functions.

Variable I. 2nd ed. 44 KENDIG. Elementary Algebraic Geometry.
12 BEALS. Advanced Mathematical Analysis. 45 LoE-VE. Probability Theory I. 4th ed.

13 ANDERSON/fuLLER. Rings and Categories 46 LoE-VE. Probability Theory II. 4th ed.

of Modules 2nd ed. 47 MOISE. Geometric Topology in

14 GOLUBITSKY/GUILLEMIN. Stable Mappings Dimensions 2 and 3.

and Their Singularities. 48 SACHS/WU. General Relativity for

15 BERBERIAN. Lectures in Functional Mathematicians.

Analysis and Operator Theory. 49 GRUENBERG/WEIR. Linear Geometry.
16 WINTER. The Structure of Fields. 2nd ed.

17 ROSENBLATI. Random Processes. 2nd ed. 50 EDWARDS. Fermat's Last Theorem.

18 HALMos. Measure Theory. 51 KLINGENBERG A Course in Differential

19 HALMos. A Hilbert Space Problem Book. Geometry.
2nd ed. 52 HARTSHORNE. Algebraic Geometry.

20 HUSEMOLLER. Fibre Bundles. 3rd ed. 53 MANIN. A Course in Mathematical Logic.
21 HUMPHREYs. Linear Algebraic Groups. 54 GRAVERIWATKINS. Combinatorics with

22 BARNES/MACK. An Algebraic Introduction Emphasis on the Theory of Graphs.
to Mathematical Logic. 55 BROWNIPEARCY. Introduction to Operator

23 GREUB. Linear Algebra. 4th ed. Theory I: Elements of Functional

24 HOLMEs. Geometric Functional Analysis Analysis.
and Its Applications. 56 MASSEY. Algebraic Topology: An

25 HEWITT/STROMBERG. Real and Abstract Introduction.

Analysis. 57 CROWELrlFOX. Introduction to Knot

26 MANES. Algebraic Theories. Theory.
27 KELLEY. General Topology. 58 KOBLITZ. p-adic Numbers, p-adic
28 ZARISKIISAMUEL. Commutative Algebra. Analysis, and Zeta-Functions. 2nd ed.

V01. I. 59 LANG. Cyclotomic Fields.

29 ZARISKIISAMUEL. Commutative Algebra. 60 ARNOLD. Mathematical Methods in

Vol. II. Classical Mechanics. 2nd ed.

30 JACOBSON. Lectures in Abstract Algebra I. 61 WHITEHEAD. Elements of Homotopy
Basic Concepts. Theory.

31 JACOBSON. Lectures in Abstract Algebra II. 62 KARGAPOLOV/MERLZJAKOV. Fundamentals

Linear Algebra. of the Theory of Groups.
32 JACOBSON Lectures in Abstract Algebra 63 BOLLOBAS. Graph Theory.

III. Theory of Fields and Galois Theory. 64 EDWARDS. Fourier Series. Vol. I. 2nd ed.

33 HIRSCH. Differential Topology. 65 WELLS. Differential Analysis on Complex
34 SPITZER. Principles of Random Walk. Manifolds. 2nd ed.

2nd ed.



66 WATERHOUSE. Introduction to Affine 100 BERG/CHRISTENSENlREssEL. Harmonic

Group Schemes. Analysis on Semigroups: Theory of

67 SERRE. Local Fields. Positive Definite and Related Functions.

68 WEIDMANN. Linear Operators in Hilbert 101 EDWARDS. Galois Theory.

Spaces. 102 VARADARAJAN. Lie Groups, Lie Algebras
69 LANG. Cyclotomic Fields II. and Their Representations.
70 MASSEY. Singular Homology Theory. 103 LANG. Complex Analysis. 3rd ed.

71 FARKAS/KRA. Riemann Surfaces. 2nd ed. 104 DUBROVIN/FOMENKO/NOVIKOV. Modem

72 STILLWELL. Classical Topology and Geometry-Methods and Applications.
Combinatorial Group Theory. 2nd ed. Part II.

73 HUNGERFORD. Algebra. 105 LANG. S(R).
74 DAVENPORT. Multiplicative Number 106 SILVERMAN. The Arithmetic of Elliptic

Theory. 3rd ed. Curves.

75 HocHSCHILD. Basic Theory of Algebraic 107 OLVER. Applications of Lie Groups to

Groups and Lie Algebras. Differential Equations. 2nd ed.

76 lITAKA. Algebraic Geometry. 108 RANGE. Holomorphic Functions and

77 HECKE. Lectures on the Theory of Integral Representations in Several

Algebraic Numbers. Complex Variables.

78 BURRIS/SANKAPPANAVAR. A Course in 109 LEHTo. Univalent Functions and

Universal Algebra. Teichmiiller Spaces.
79 WALTERS. An Introduction to Ergodic 110 LANG. Algebraic Number Theory.

Theory. III HUSEMOLLER. Elliptic Curves.

80 ROBINSON. A Course in the Theory of 112 LANG. Elliptic Functions.

Groups. 2nd ed. 113 KARATZAS/SHREVE. Brownian Motion and

81 FORSTER. Lectures on Riemann Surfaces. Stochastic Calculus. 2nd ed.

82 Borrffu. Differential Forms in Algebraic 114 KOBLm. A Course in Number Theory and

Topology. Cryptography. 2nd ed.

83 WASHINGTON. Introduction to Cyclotomic 115 BERGERIGOSTIAUX. Differential Geometry:
Fields. 2nd ed. Manifolds, Curves, and Surfaces.

84 IRELAND/ROSEN. A Classical Introduction 116 KELLEY/SRINIVASAN. Measure and

to Modem Number Theory. 2nd ed. Integral. Vol. I.

85 EDWARDS. Fourier Series. Vol. II. 2nd ed. 117 SERRE. Algebraic Groups and Class Fields.

86 VAN LINT. Introduction to Coding Theory. 118 PEDERSEN. Analysis Now.

2nd ed. 119 ROTMAN. An Introduction to Algebraic
87 BROWN. Cohomology of Groups. Topology.
88 PIERCE. Associative Algebras. 120 ZIEMER. Weakly Differentiable Functions:

89 LANG. Introduction to Algebraic and Sobolev Spaces and Functions of Bounded

Abelian Functions. 2nd ed. Variation.

90 BR0NDSTED. An Introduction to Convex 121 LANG. Cyclotomic Fields I and II.

Polytopes. Combined 2nd ed.

91 BEARDON. On the Geometry of Discrete 122 REMMERT. Theory of Complex Functions.

Groups. Readings in Mathematics

92 DIESTEL. Sequences and Series in Banach 123 EBBINGHAUSIHERMES et al. Numbers.

Spaces. Readings in Mathematics

93 DUBROVIN/FoMENKO/NOVIKOV. Modem 124 DUBROVIN/FoMENKo/NOVIKOV. Modem

Geometry-Methods and Applications. Geometry-Methods and Applications.
Part I. 2nd ed. Part III.

94 WARNER. Foundations of Differentiable 125 BERENSTEINIGAY. Complex Variables:

Manifolds and Lie Groups. An Introduction.

95 SHIRYAEV. Probability. 2nd ed. 126 BOREL. Linear Algebraic Groups. 2nd ed.

96 CONWAY. A Course in Functional 127 MASSEY. A Basic Course in Algebraic
Analysis. 2nd ed. Topology.

97 KOBLITZ. Introduction to Elliptic Curves 128 RAUCH. Partial Differential Equations.
and Modular Forms. 2nd ed. 129 FuLTON/HARRIS. Representation Theory: A

98 BROCKERITOM DIECK. Representations of First Course.

Compact Lie Groups. Readings in Mathematics

99 GRovE/BENSON Finite Reflection Groups. 130 DODSON/POSTON. Tensor Geometry.
2nd ed.



131 LAM. A First Course in Noncommutative 163 DIXON/MORTIMER. Permutation Groups.

Rings. 2nd ed. 164 NATHANSON. Additive Number Theory:
132 BEARDON. Iteration of Rational Functions. The Classical Bases.

133 HARRIs. Algebraic Geometry: A First 165 NATHANSON. Additive Number Theory:
Course. Inverse Problems and the Geometry of

134 ROMAN. Coding and Information Theory. Sumsets.

135 ROMAN. Advanced Linear Algebra. 166 SHARPE. Differential Geometry: Cartan's

136 ADKINslWEINTRAUB. Algebra: An Generalization of Klein's Erlangen

Approach via Module Theory. Program.
137 AxLERIBoURDoNIRAMEY. Harmonic 167 MORANDI. Field and Galois Theory.

Function Theory. 2nd ed. 168 EWALD. Combinatorial Convexity and

138 COHEN. A Course in Computational Algebraic Geometry.

Algebraic Number Theory. 169 BHATIA. Matrix Analysis.
139 BREDON. Topology and Geometry. 170 BREOON. Sheaf Theory. 2nd ed.

140 AUBIN. Optima and Equilibria. An 171 PETERSEN. Riemannian Geometry.
Introduction to Nonlinear Analysis. 172 REMMERT. Classical Topics in Complex

141 BECKERIWEISPFENNING/KREDEL. Grabner Function Theory.
Bases. A Computational Approach to 173 DIESTEL. Graph Theory. 2nd ed.

Commutative Algebra. 174 BRIDGES. Foundations of Real and

142 LANG. Real and Functional Analysis. Abstract Analysis.
3rd ed. 175 LICKORISH. An Introduction to Knot

143 DOOB. Measure Theory. Theory.
144 DENNIslFARB. Noncommutative 176 LEE. Riemannian Manifolds.

Algebra. 177 NEWMAN. Analytic Number Theory.
145 VICK. Homology Theory. An 178 CLARKFlLEDYAEV/STERN/WOLENSKI.

Introduction to Algebraic Topology. Nonsmooth Analysis and Control

2nd ed. Theory.

146 BRIDGES. Computability: A 179 DOUGLAS. Banach Algebra Techniques in

Mathematical Sketchbook. Operator Theory. 2nd ed.

147 ROSENBERG. Algebraic K-Theory 180 SRIVASTAVA. A Course on Borel Sets.

and Its Applications. 181 KREss. Numerical Analysis.
148 ROTMAN. An Introduction to the 182 WALTER. Ordinary Differential

Theory of Groups. 4th ed. Equations.
149 RATCLIFFE. Foundations of 183 MEGGINSON. An Introduction to Banach

Hyperbolic Manifolds. Space Theory.
150 EISENBUD. Commutative Algebra 184 BOLLOBAS. Modem Graph Theory.

with a View Toward Algebraic 185 Cox/LITILEIO'SHEA. Using Algebraic

Geometry. Geometry.

151 SILYERMAN. Advanced Topics in 186 RAMAKRISHNANNALENZA. Fourier

the Arithmetic of Elliptic Curves. Analysis on Number Fields.

152 ZIEGLER. Lectures on Polytopes. 187 HARRIslMORRISON. Moduli of Curves.

153 fuLTON. Algebraic Topology: A 188 GOLDBLA17. Lectures on the Hyperrea1s:
First Course. An Introduction to Nonstandard Analysis.

154 BROWNIPEARCY. An Introduction to 189 LAM. Lectures on Modules and Rings.

Analysis. 190 ESMONDFlMURTY. Problems in Algebraic
155 KASSEL. Quantum Groups. Number Theory.
156 KECHRIS. Classical Descriptive Set 191 LANG. Fundamentals of Differential

Theory. Geometry.
157 MALLIAVIN' Integration and 192 HIRSCH/LACOMBE. Elements of

Probability. Functional Analysis.
158 ROMAN. Field Theory. 193 COHEN. Advanced Topics in

159 CONWAY. Functions of One Computational Number Theory.

Complex Variable II. 194 ENGEIlNAGEL. One-Parameter Semigroups

160 LANG. Differential and Riemannian for Linear Evolution Equations.
Manifolds. 195 NATHANSON. Elementary Methods in

161 BORWEIN/ERDELVI. Polynomials and Number Theory.

Polynomial Inequalities. 196 OSBORNE. Basic Homological Algebra.
162 ALPERIN/BELL. Groups and 197 EISENBUD/HARRIS. The Geometry of

Representations. Schemes



198 ROBERT. A Course in p-adic Analysis. 205 FELIXIHALPERlNffHOMAS. Rational

199 HEDENMALMIKoRENBLUMlZHU. Theory Homotopy Theory. 2nd ed.

of Bergman Spaces. 206 MURTY. Problems in Analytic Number

200 BAO/CHERN/SHEN. An Introduction to Theory.

Riemann-Finsler Geometry. Readings in Mathematics

201 HINDRY/SILVERMAN. Diophantine 207 GODSIIlROYLE. Algebraic Graph Theory.
Geometry: An Introduction. 208 CHENEY. Analysis for Applied

202 LEE. Introduction to Topological Mathematics.

Manifolds. 209 ARVESON. A Short Course on Spectral
203 SAGAN. The Symmetric Group: Theory.

Representations, Combinatorial 210 ROSEN. Number Theory in Function Fields

Algorithms, and Symmetric Functions. 211 LANG. Algebra, 3rd ed.

204 EsCOFIER. Galois Theory.




	Cover
	FOREWORD
	Logical Prerequisites
	CONTENTS
	Part One THE BASIC OBJECTS OF ALGEBRA
	CHAPTER1 Groups
	1. MONOIDS
	2. GROUPS
	3. NORMAL SUBGROUPS
	4. CYCLIC GROUPS
	5. OPERATIONS OF A GROUP ON A SET
	6. SYLOW SUBGROUPS
	7. DIRECT SUMS AND FREE ABELIAN GROUPS
	8. FINITELY GENERATED ABELIAN GROUPS
	9. THE DUAL GROUP
	10. INVERSE LIMIT AND COMPLETION
	11. CATEGORIES AND FUNCTORS
	12. FREE GROUPS
	EXERCISES

	CHAPTER2 Rings
	1. RINGS AND HOMOMORPHISMS
	2. COMMUTATIVE RINGS
	3. POLYNOMIALS AND GROUP RINGS
	4. LOCALIZATION
	5. PRINCIPAL AND FACTORIAL RINGS
	EXERC1SES

	CHAPTER3 Modules
	1. BASIC DEFINITIONS
	2. THE GROUP OF HOMOMORPHISMS
	3. DIRECT PRODUCTS AND SUMS OF MODULES
	4. FREE MODULES
	5. VECTOR SPACES
	6. THE DUAL SPACE AND DUAL MODULE
	7. MODULES OVER PRINCIPAL RINGS
	8. EULER-POINCARE MAPS
	9. THE SNAKE LEMMA
	10. DIRECT AND INVERSE LIMITS
	EXERCISES

	CHAPTER4 Polynomials
	1. BASIC PROPERTIES FOR POLYNOMIALS IN ONE VARIABLE
	2. POLYNOMIALS OVER A FACTORIAL RING
	3. CRITERIA FOR IRREDUCIBILITY
	4. HILBERT'S THEOREM
	5. PARTIAL FRACTIONS
	6. SYMMETRIC POLYNOMIALS
	7. MASON-STOTHERS THEOREM AND THE abc CONJECTURE
	8. THE RESULTANT
	9. POWER SERIES
	EXERCISES


	Part Two ALGEBRAIC EQUATIONS
	CHAPTER5 Algebraic Extensions
	1. FINITE AND ALGEBRAIC EXTENSIONS
	2. ALGEBRAIC CLOSURE
	3. SPLITTING FIELDS AND NORMAL EXTENSIONS
	4. SEPARABLE EXTENSIONS
	5. FINITE FIELDS
	6. INSEPARABLE EXTENSIONS
	EXERCISES

	CHAPTER6 Galois Theory
	1. GALOIS EXTENSIONS
	2. EXAMPLES AND APPLICATIONS
	3. ROOTS OF UNITY
	4. LINEAR INDEPENDENCE OF CHARACTERS
	5. THE NORM AND TRACE
	6. CYCLIC EXTENSIONS
	7. SOLVABLE AND RADICAL EXTENSIONS
	8. ABELIAN KUMMER THEORY
	9. THE EQUATION X^n-a=0
	10. GALOIS COHOMOLOGY
	11. NON-ABELIAN KUMMER EXTENSIONS
	12. ALGEBRAIC INDEPENDENCE OF HOMOMORPHISMS
	13. THE NORMAL BASIS THEOREM
	14. INFINITE GALOIS EXTENSIONS
	15. THE MODULAR CONNECTION
	EXERCISES

	CHAPTER7 Extensions of Rings
	1. INTEGRAL RING EXTENSIONS
	2. INTEGRAL GALOIS EXTENSIONS
	3. EXTENSION OF HOMOMORPHISMS
	EXERCISES

	CHAPTER8 Transcendental Extensions
	1. TRANSCENDENCE BASES
	2. NOETHER NORMALIZATION THEOREM
	3. LINEARLY DISJOINT EXTENSIONS
	4. SEPARABLE AND REGULAR EXTENSIONS
	5. DERIVATIONS
	EXERCISES

	CHAPTER9 Algebraic Spaces
	1. HILBERT'S NULLSTELLENSATZ
	2. ALGEBRAIC SETS,SPACES AND VARIETIES
	3. PROJECTIONS AND ELIMINATION
	4. RESULTANT SYSTEMS
	5. SPEC OF A RING
	EXERCISES

	CHAPTER10 Noetherian Rings and Modules
	1. BASIC CRITERIA
	2. ASSOCIATED PRIMES
	3. PRIMARY DECOMPOSITION
	4. NAKAYAMA'S LEMMA
	5. FILTERED AND GRADED MODULES
	6. THE HILBERT POLYNOMIAL
	7. INDECOMPOSABLE MODULES
	EXERCISES

	CHAPTER11 Real Fields
	1. ORDERED FIELDS
	2. REAL FIELDS
	3. REAL ZEROS AND HOMOMORPHISMS
	EXERCISES

	CHAPTER12 Absolute Values
	1. DEFINITIONS, DEPENDENCE,AND INDEPENDENCE
	2. COMPLETIONS
	3. FINITE EXTENSIONS
	4. VALUATIONS
	5. COMPLETIONS AND VALUATIONS
	6. DISCRETE VALUATIONS
	7. ZEROS OF POLYNOMIALS IN COMPLETE FIELDS
	EXERCISES


	Part Three LINEAR ALGEBRA and REPRESENTATIONS
	CHAPTER13 Matrices and Linear Maps
	1. MATRICES
	2. THE RANK OF A MATRIX
	3. MATRICES AND LINEAR MAPS
	4. DETERMINANTS
	5. DUALITY
	6. MATRICES AND BILINEAR FORMS
	7. SESQUILINEAR DUALITY
	8. THE SIMPLICITY OF SL2(F)/+-1
	9. THE GROUPS Ln(F),n>=3.
	EXERCISES

	CHAPTER14 Representation of One Endomorphism
	1. REPRESENTATIONS
	2. DECOMPOSITION OVER ONE ENDOMORPHISM
	3. THE CHARACTERISTIC POLYNOMIAL
	EXERCISES

	CHAPTER15 Structure of Bilinear Forms
	1. PRELIMINARIES,ORTHOGONAL SUMS
	2. QUADRATIC MAPS
	3. SYMMETRIC FORMS, ORTHOGONAL BASES
	4. SYMMETRICFORMS OVER ORDERED FIELDS
	5. HERMITIAN FORMS
	6. THE SPECTRAL THEOREM(HERMITIAN CASE)
	7. THE SPECTRAL THEOREM(SYMMETRIC CASE)
	8. ALTERNATING FORMS
	9. THE PFAFFIAN
	10. WITT'S THEOREM
	EXERCISES

	CHAPTER16 The Tensor Product
	1. TENSOR PRODUCT
	2. BASIC PROPERTIES
	3. FLAT MODULES
	4. EXTENSION OF THE BASE
	5. SOME FUNCTORIAL ISOMORPHISMS
	6. TENSOR PRODUCT OF ALGEBRAS
	7. THE TENSOR ALGEBRA OF A MODULE
	8. SYMMETRIC PRODUCTS
	EXERCISES

	CHAPTER17 Semisimplicity
	1. MATRICES AND LINEAR MAPSOVERNON-COMMUTATIVE RINGS
	2. CONDITIONS DEFINING SEMISIMPLICITY
	3. THE DENSITY THEOREM
	4. SEMISIMPLE RINGS
	5. SIMPLE RINGS
	6. THE JACOBSON RADICAL,BASE CHANGE,AND TENSOR PRODUCTS
	7. BALANCED MODULES
	EXERCISES

	CHAPTER18 Representations of Finite Groups
	1. REPRESENTATIONS AND SEMISIMPLICITY
	2. CHARACTERS
	3. 1-DIMENSIONAL REPRESENTATIONS
	4. THE SPACE OF CLASS FUNCTIONS
	5. ORTHOGONALITY RELATIONS
	6. INDUCED CHARACTERS
	7. INDUCED REPRESENTATIONS
	8. POSITIVE DECOMPOSITION OF THE REGULAR CHARACTER
	9. SUPERSOLVABLE GROUPS
	11. FIELD OF DEFINITION OF A REPRESENTATION
	12. EXAMPLE:GL2 OVER A FINITE FIELD
	EXERCISES

	CHAPTER19 The Alternating Product
	1. DEFINITION AND BASIC PROPERTIES
	2. FITTING IDEALS
	3. UNIVERSAL DERIVATIONS AND THE DE RHAM COMPLEX
	4. THE CLIFFORD ALGEBRA
	EXERCISES


	Part Four HOMOLOGICAL ALGEBRA
	CHAPTER20 General Homology Theory
	1. COMPLEXES
	2. HOMOLOGY SEQUENCE
	3. EULER CHARACTERISTIC AND THE GROTHENDIECK GROUP
	4. INJECTIVE MODULES
	5. HOMOTOPIES OF MORPHISMS OF COMPLEXES
	6. DERIVED FUNCTORS
	7. DELTA-FUNCTORS
	8. BIFUNCTORS
	9. SPECTRAL SEQUENCES
	EXERCISES

	CHAPTER21 Finite Free Resolutions
	1. SPECIAL COMPLEXES
	2. FINITE FREE RESOLUTIONS
	3. UNIMODULAR POLYNOMIAL VECTORS
	4. THE KOSZUL COMPLEX
	EXERCISES


	APPENDIX1 The Transcendence of e and π
	APPENDIX2 Some Set Theory
	1. DENUMERABLE SETS
	2. ZORN'S LEMMA
	3. CARDINAL NUMBERS
	4. WELL-ORDERING
	EXERCISES

	Bibliography
	INDEX
	Graduate Texts in Mathematics
	Back Cover



