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Preface

This book presents some of the basic topological ideas used 1n studying
differentiable manifolds and maps. Mathematical prerequisites have been
kept to a minimum; the standard course in analysis and general topology 1s
adequate preparation. An appendix briefly summanzes some of the back-
ground matenal.

In order to emphasize the geometrical and intuitive aspects of difteren-
tial topology, I have avoided the use of algebraic topology. except in a few
isolated places that can easily be skipped. For the same reason I make no
use of differential forms or tensors.

In my view, advanced algebraic techniques like homology theory are
better understood after one has seen several examples of how the raw
material of geometry and analysis is distilled down to numerical invarnants.
such as those developed in this book : the degree of a map. the Euler number
of a vector bundle, the genus of a surface, the cobordism class of a manifold.
and so forth. With these as motivating examples, the use of homology and
homotopy theory in topology should seem quite natural.

There are hundreds of exercises, ranging in difficulty from the routine to
the unsolved. While these provide examples and further developments of

the theory, they are only rarely relied on in the proofs of theorems.

vi)
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Introduction

Any problem which is non-linear in character, which involves more than one
coordinate system or more than one variable, or where structure is inttially
defined in the large, is likely to require considerations of topology and group
theory for its solution. In the solution of such problems classical analysis will
frequently appear as an instrument in the small, integrated over the whole prob-
lem with the aid of topology or group theory.

— M. Morse, Calculus of Variations
in the Large, 1934

La possibilité d"utiliser le modéle differential est, a mes yeux, la justification
ultime de 'emploi des modéles quantitifs dans les sciences.

—R. Thom. Stabilite Structurelle
et Morphogénese. 1972

In many branches of mathematics one finds spaces that can be described
locally by n-tuples of teal numbers. Such objects are called manlfolds: a
manifold is a topological space which is locally homeomorphic to Euclidean
n-space R". We can think of a manifold as being made of pieces of R* glued
together by homeomorphisms. If these homeomorphisms are chosen to be

differentiable, we obtain a differentiable manifold. This book is concerned
mainly with differentiable manifolds.

The Development of Differentiable Topology

The concept of manifold emerged gradually from the geometry and func-
tion theory of the nineteenth century. Differential geometers studied curves
and surfaces in “ordinary space™; they were mainly interested in local con-
cepts such as curvature. Function theorists took a more global point of view:
they realized that invariants of a function F of several real or complex vari-
ables could be obtained from topological invariants of the sets F~ '(c); for
“most” values of ¢, these are manifolds.

Riemann broke new ground with the construction of what we call

Riemann surfaces. These were perhaps the first abstract manifolds; that s,
they were not defined as subsets of Euclidean space.

Riemann surfaces furnish a good example of how manifolds can be used
to investigate global questions. The idea of a convergent power series (in one
complex variable) is not difficult. This simple local concept becomes a com-
plex global one, however, when the process of analytic continuation 1S
introduced. The collection of all possible analytic continuations of a con-
vergent power series has a global nature which 1s quite elusive. The global

i



2 Introduction

aspect suddenly becomes clear as soon as Riemann surfaces are introduced:

the continuations fit together to form a (single valued) function on a surface.

The surface expresses the global nature of the analytic continuation process.
The problem has become geometrized.

Riemann introduced the global invariant of the connectivity of a surface:
this meant maximal number of curves whose union does not disconnect the
surface, plus one. It was known and “proved” in the 1860’s that compact
orientable surfaces were classified topologically by their connectivity.
Strangely enough, no one in the nineteenth century saw the necessity for
proving the subtle and difficult theorem that the connectivity of a compact
surface is actually finite. .

Poincaré began the topological analysis of 3-dimensional manifolds. In
a series of papers on “Analysis Situs,” remarkable for their originality and
power, he invented many of the basic tools of algebraic topology. He also
bequeathed to us the most important unsolved probiem in differential
topology, known as Poincare's conjecture. is every simply connected compact
3-manifold, without boundary, homeomorphic to the 3-sphere?

It is interesting to note that Poincaré used purely differentiable methods
at the beginning of his series of papers, but by the end he relied heavily on
combinatorial techniques. For the next thirty years topologists concentrated
almost exclusively on combinatorial and algebraic methods.

Although Herman Wey! had defined abstract differentiable manifolds 1n
1912 in his book on Riemann surfaces, it was not until Whitney’s papers of
1936 and later that the concept of differentiable manifold was firmly estab-
lished as an important mathematical object, having its own problems and

Since Whitney’s papers appeared, differential topology has undergone a
rapid development. Many fruitful connections with algebraic and piece-
wise linear topology were found; good progress was made on such questions
as embedding, immersions, and classification by homotopy equivalence or
diffeomorphism. Poincaré’s conjecture is still unsolved, however. In recent

years techniques and results from differentiai topology have become im-
portant in many other fields.

The Nature of Differential Topology

In today’s mathematical sciences manifolds are found in many different
fields. In algebra they occur as Lie groups; In relativity as space-time; 1n
economics as indifference surfaces; in mechanics as phase-spaces and energy
surfaces. Wherever dynamical processes are studied, (hydrodynamics, popu-
lation genetics, electrical circuits, etc.) manifolds are used for the “state-
space,” the setting for a model of the process by a differential equation or
a mapping.

In most of these examples the historical development follows the local-
to-global pattern. Lie groups, for example, were originally “local groups”
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having a single parametrization as a neighborhood of the origin in K", Only
later did global questions arise, such as the classification of compact groups.
In each case the global nature of the subject became geometrized {(at least

partially) by the introduction of mamifolds. In mechanics. for example. the
differences in the possible long-term behavior of two physical systems become

clear if it is known that one energy surface is a sphere and the other 1s a
torus.

When manifolds occur “naturaily” in a branch of mathematics, there 1s
always present some extra structurc: a Riemannian metric, a binary opera-
tion, a dynamical system, a conformal structure, etc. 1t is often this structure
which is the main object of interest; the manifold is merely the setting. But
the differential topologist studies the manifold itself; the extra structures
are used only as tools.

The extra structure often presents fascinating local questions. In a
Riemannian manifold, for instance, the curvatur¢ may vary from point to
point. But in differential topology there are no local questions. {More precisely.
they belong to calculus.) A manifold looks exactly the same at all points
because it is locally Euclidean. In fact, a manifold {(connected. without bound-
ary) is homogeneous in a more exact sense: its diffefomorphism group acts
transitively.

The questions which differential topology tries to answer are global: they
‘rvolve the whole manifold. Some typical questions are: Can a given mani-
fold be embedded in another one? If two manifolds are homeomorphic, are
they necessarily diffeomorphic? Which manitolds are boundanes of compact
manifolds? Do the topological invariants of a manifold have any special
properties? Does every manifold admit a non-trivial action of some cyclic
group’

Each of these questions is, of course, a shorthand request for a theory.

The embedding question, for example, really means: define and compute
diffeomorphism invariants that enable us to decide whether M embeds 1n

N, and in how many essentially distinct ways.

If we knew how to construct all possible manifolds and how to tell from
“computable” invariants when two are diffeomorphic. we would be a long
way toward answering any given question about manifolds. Unfortunately.
such a classification theorem seems unattainable at present. except for very
special classes of manifolds (such as surfaces). Therefore we must resort 1o
more direct attacks on specific questions, devising different theories for

different questions. Some of these theories, or parts of them, are presented
in this book.

The Contents of This Book

The first difficulty that confronts us in analyzing manifolds 1s their
homogeneity. A manifold has no distinguished “parts”; every point looks
like every other point. How can we break it down into simpler objects”
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The solution 18 to artificially impose on a manifold a nonhomogeneous
structure of some kind which can be analyzed. The major task then is to

derive intrinsic properties of the original manifold from properties of the
artificial structure,

This procedure is common in many parts of mathematics. In studying

vector spaces, for example, one imposes coordinates by means of a basis;
the cardinality of the basis is then proved to depend only on the vector space.
In algebraic topology one defines the homology groups of a polyhedron
In terms of a particular triangulation, and then proves the groups to be
independent of the triangutation.

Manifolds are, in fact, often studied by means of triangulations. A more

natural kind of decomposition, however, consists of the level sets f~*(y) of

a smooth map f:M — R, having the simplest kinds of critical points (where
Df vanishes). This method of analysis goes back to Poincare and even to
Maobius (1866); 1t received extensive development by Marston Morse and

today is called Morse theory. Chapter 6 is devoted to the elementary aspects

of Morse theory. In Chapter 9 Morse theory 1s used to classify compact
surfaces.

A basic 1dea in differential topology 1s that of general position or trans-
versality; this ts studied in Chapter 3. Two submanifolds A, B of a manifold
N are 1n general position if at every point of A n B the tangent spaces of
A and B span that of N. If A and B are not in general position, arbitrarily
small perturbations of one of them will put them in general position. If they
are in general position, they remain in it under all sufficiently small per-
turbations; and A n B is then a submanifold of the “right” dimension. A
map f:M — N is transverse to A if the graph of f and M x A are in general
positionin M x N.This makes f ~ '(A)a submanifold of M, and the topology
of f ~1(A) reflects many properties of f. In this way an important connection
between manifolds and maps is established.

Transversality 1s a great unifying idea in difierential topology; many
results, including most of those in this book, are ultimately based on trans-
versality in one form or another.

The theory of degrees of maps, developed in Chapter 5, is based on
transversality in the following way. Let f: M — N be a map between compact
oriented manifolds of the same dimension, without boundary. Suppose [ is
transverse to a point y € N; such a point is called a regular value of f. The
degree of f is the “algebraic” number of points in f ~!(y), that is, the number
of such points where f preserves orientation minus the number where f
reverses orientation. It turns out that this degree i1s independent of y and,

In fact, depends only on the homotopy class of f. If N = §” then the degree
is the only homotopy invariant. In this way we develop a bit of classical

algebraic topology: the set of homotopy classes { M,S"] is naturally 1so-
morphic to the group of integers.

The theory of fibre bundles, especially vector bundles, is one of the
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strongest links between algebraic and differential topelogy. Patterned on
the tangent and normal bundles of a manifold, vector bundles are analogous
to manifolds in form, but considerably simpler to analyze. Most of the deeper
diffeomorphism invariants are invariants of the tangent bundle. In Chapter 4
we develop the elementary theory of vector bundles, including the classifica-
tion theorem: isomorphism classes of vector bundles over M correspond
naturally to homotopy classes of maps from M into a certain Grassmann
manifold. This result relates homotopy theory to differential topology in a
new and important way.

Further importance of vector bundles comes from the tubular neighbor-
hood theorem: a submanifold B <« M has an essentially unique neighbor-
hood looking like a vector bundle over B.

In 1954 René Thom proposed the equivalence relation of cobordism: two
manifolds are cobordant if together they form the boundary of a compact
manifold. The resulting set of equivalence classes in each dimension has a
natural abelian group structure. In a tour de force of differential and algebraic

topology, Thom showed that these groups coincide with certain homotopy
groups, and he carried out a good deal of their calculation. The elementary

aspects of Thom's theory, which is a beautiful mixture of transversahty.
tubular neighborhoods, and the classification of vector bundles, 1s presented
in Chapter 7.

Of the remaining chapters, Chapter 1 introduces the basic definitions
and, proves the “easy” Whitney embedding theorem: any map of a compact
n-manifold into a (2n + 1)-mantfold can be approximated by embeddings.
Chapter 2 topologizes the set of maps from one manifold to another and
develops approximation theorems. A key result is that for most purposes it
can be assumed that every manifold is C*. Much of this chapter can be
skipped by a reader interested chiefly in compact C* manifolds. Chapter 3
is a technical chapter on isotopy, containing some frequently used methods
of deforming embeddings; these results are needed for the final chapter on
the classification of surfaces.

The first three chapters are fundamental to everything else in the book.
Most of Chapter 6 (Morse Theory) can be read immediately after Chapter 3:
while Chapter 7 (Cobordism) can be read directly after Chapter 4. The
classification of surfaces, Chapter 9, uses material from all the other chapters
except Chapter 7.

The more challenging exercises are starred, as are those requiring aige-
braic topology or other advanced topics. The few that have two stars are
really too difficult to be considered exercises, but are included for the sake

of the results they contain. Three-star “exercises” are problems to which |
do not know the answer.

A reference to Theorem 1 of Section 2 in Chapter 3 is written 3.2.1, or

as 2.1 if it appears in Chapter 3. The section is called Section 3.2. Numbers
in brackets refer to the bibliography.
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Chapter I
Manifolds and Maps

Il faut d’abord examiner la question de la définition des varietes.

—P. Heegard, Dissertation, 1892

The assemblage of points on a surface is a twofold manifoldness: the assem-
blage of points in tri-dimensional space is a threefold manifoldness; the values
of a continuous function of n arguments an n-fold manifoldness.

—@G. Chrystal, Encyclopedia
Brittanica, 1891

The introduction of numbers as coordinates . .. is an act of violence . . .

—H. Weyl, Philosophy of Mathematics
and Natural Science, 1949

Differential topology is the study of differentiable manifolds and maps.
A manifold is a topological space which locally looks like Cartesian n-space
R": it is built up of pieces of R* glued together by homeomorphisms. 11 these
homeomorphisms are differentiable we obtain a differentiable manifold.

The task of differential topology is the discovery and analysis of global
properties of manifolds. These properties are often quite subtle. In order to
study them, or even to express them, a wide variety of topological, analytic

and algebraic tools have been developed. Some of these will be examined 1n

this book.
In this chapter the basic concepts of differential topology are introduced:

differentiable manifolds, submanifolds and maps. and the tangent functor.
This functor assigns to each differentiable mamfold M another manifold
TM called its tangent bundle, and to every differentiable map f:M — N 1t
assigns @ map Tf:TM — TN. In local coordinates T/ is essentially the
derivative of f. Although its definition is necessarily rather complicated, the
tangent functor is the key to many problems in differential topology; it reveals

much of the deeper structure of manmifolds.
In Section 1.3 we prove some basic theorems about submanifolds, maps

and embeddings. The key ideas of regular value and transversality are intro-
duced. The regular value theorem, which 1s just a global version of the implictt

function theorem, is proved. It states that if /M — N 1s a map then under
certain conditions /= '(y) will be a submanifold of M. The submanifolds

7



8 1. Manifolds and Maps

£~ !(y)and of the map f are intimately related; in this way a powerful positive
feedback loop is created:

Theorems about Theorems about
mantiolds maps

This interplay between manifolds and maps will be exploited in later chapters.
Also proved in Section 1.3 is the pleasant fact that every compact mani-
fold embeds in some R?. Borrowing an analytic lemma from a later chapter,
we then prove a version of the deeper embedding theorem of Whitney:
every map of a compact n-manifold into R*"*' can be approximated by
embeddings.
Manifolds with boundary, or ¢-manifolds, are introduced tn Section 1.4.
These form a natural and indeed indispensable extension of the manifoids

defined in Section 1.1; their presence, however, tends to complicate the

mathematics. The special arguments needed to handle d-manifolds are
usually obvious; in order to present the main ideas without interruption we

shall frequently postpone or omit entirely proofs of theorems about
J-manifolds.

At the end of the chapter a convention is stated which is designed to
exclude the pathology of non-Hausdorff and nonparacompact manifolds.

Running through the chapter is an idea that pervades all of differential
topology: the passage from local to global. This theme 1s expressed In the
very definition of manifold; every statement about manifolds necessarily
repeats it, explicitly or implicitly. The proof of the regular value theorem,
for example, consists in pointing out the local nature of the hypothesis and
conclusion, and then applying the implicit function theorem (which 1s itself
a passage from infinitesimal to local). The compact embedding theorem
pieces together local embeddings to get a global one. Whitney's embedding
theorem builds on this, using, in addition, a lemma on the existence of regular
values. This proof of this lemma, as will be seen in Chapter 3, 1s a simple
globalization of a rather subtle local property of differentiable maps.

Every concept in differential topology can be analyzed in terms of this
local-global polarity. Often a definition, theorem or proof becomes clearer
if its various local and global aspects are kept in mind.

0. Submanifolds of R"**

Before giviﬁg formal definitions we first discuss informally the familiar
space S" and then more general submanifolds of Euclidean space.
The unit n-sphere 1s

" = {xe R"* x| = 1},

n+1

, 1/2
where |x| = (z xf) . We introduce local coordinates in S” as follows.
i=1

0. Submanifolds of R*™* 9

Forj=1,...,n + 1 define open hemispheres

Uzj"'l —_— {IES-:IJ}O},
UIJ —_— {IES-:Ij << U}.
Fori=1,...,2n + 2 define maps

@, U; = R,
@i(x) = (xg, ...y Xjy ooty X q) ifi = 2j — 1 or2j;

this means the n-tuple obtained from x by deleting the jth coordinate.
Clearly ¢, maps U, homeomorphically onto the open n-disk

B={yeR:|yl <1}

It is easy to see that @, !:B — R**! is analytic.
Each (¢, U,) is called a “chart” for S*; the set of all {¢,,U;) is an “atlas .

In terms of this atlas we say a map f:5" — R' is “differentiable of class C
in case each composite map

feor :B— R

is C7 1.e, has continuous partial denvatives of order r. If it happens that
g:S* -+ R™* s C"in this sense, and g(§™) < S™,itisnaturaltocallg:§" — S*™
a C" map. This definition is equivalent to the following. Let {(§;, ¥;}} be an
atlasfor§™, j=1,...,q9 Then g:5" — §™ 1s (" provided each map

W90 g l("'}) - R"

is C"; this makes sense because @;9~ '(V;) is an open subset of R".

Thus we have extended the notion of C* map to the unit spheres 5", n =
, 2,....Itiseasy to verify that the composition of (7 maps {1n this extended
sense) 1s again (7.

A larger class of manifolds is obtained as follows. Let f:R*** - R* be a

C' map,r = 1,and put M = f~'(0). Suppose that f has rank k at every point
of £~ 1(0); we call M a “regular level surface™. An exampleis M = §* < R*™’

N+ 1

where f(x) =1 — ) x/.

=1
Local coordinates are introduced into M as follows. Fix pe M. By a
linear coordinate change we can assume that the k x k matnx cf;/cx;,
1 < i, j <k, has rank k at p. Now identify R*"** with R" x R* and put
p = (a,b). According to the implicit function theorem *there exist a
neighborhood U x V of {a,b) in R* x R* and a C" map g:U — V, such
that g(x) = y if and only if f(x,y) = 0. Thus

Mn{U x V)= {(xg(x)):xe U}
= graph of g.



10 1. Manifolds and Maps i. Differential Structures 11

Define The set x x E, = M_ is called the “tangent space™ to M at x. We give

it the natural vector space structure inherited from E,. Notice that D, "
oW - R, induces a vector space isomorphism between R* and M,.

If we associate to every (x,y) € M, the point x + y € B""*, we obtain an
embedding M, — R*** The image of this embedding is an affine n-plane In
R"+* passing through x. It is tangent to M in the sense that it consists of all
vectors based at x which are tangents to curves in M passing through x.

Then (@,W) is taken as a local coordinate system on M. In terms of such
coordinates we can further extend the notion of C" map to maps between

regular level surfaces.

Exactly the same constructions are made when the domain of f 1s taken
to be an open subset of R**¥, rather than ail of R***.

A significantly broader class of manifolds comprises those subsets M of

R"*+* which locally are regular level surfaces of C" maps. That 1s, each point
of M has a neighborhood W < R*** such that

WAM=fY0)

for some C" map f:W — R* having rank k at each point W M. Local co-
ordinates are introduced and C’ maps are defined as before. A manifold of
this type is called an “n-dimensional submanifold of R*™*”.

In each of these examples it is easy to see that the coordinate changes are
C'. These coordinate changes are the maps

P ; @i oiU; o U;)— @;{U; N Uj)

where (@;,U,) and (¢;,U;) vary over an atlas for the manifold in question.
(The domain and range of ¢ jp; ' are open subsets of R™, so that it makes
sense to say that ¢, ' is C".)

This has an important implication: to verify that a map /M — N is O,
it suffices to check that for each point x € M there is at least one patr of charts,
(o,U) for M and (y,V) for N, with x € U and f(U) < V, such that the map

R™ 5 o(U) L% (V) = R”

is C". For suppose this is true, and let (3,0), (V) be any charts for M, N, we
must show that §f@ " is C". An arbitrary point in the domain of Gfp~ ' is
of the form &(x) where xe U n f~ 4T, Let (,U), (§,V) be charts for M, N
such that xe U, f(U) c Vand yfe ™ 'is C". Thenina neighborhood of @(x)

we have
et = Gy Hfe e ).

Thus §f@ ! is locally the composition of three C" maps, soit1s C".
Next we discuss the tangent bundle of an n-dimensionai submanifold
M < R"** Let x € M and let (¢,U) be a chart at x (that is, x € U). Put a =

o(x) e R". Let E, = R"** be the vector subspace which is the range of the

linear map
D(PJIIRH s R"+k.

Recause of the chain rule, E. depends only on x, not on the choice of (¢,U ).

If f:M — N is a " map (between submanifolds) and f(x) = z, a linear
map Tf,: M, — N, is defined as follows. Let {p,U), (W, V) be charts for M, ¥
at x, z. Put ¢{x)} = a, and define T/, by

T . (x, )+ (2.D(f @™ "), ).

This is independent of the choice of (p,U) and (,V), thanks to the chain rule.
The union of all the tangent spaces of M is called the “tangent bundle”

of M. The linear maps T/, form a map Tf:TM — TN. This map plays the
role of a “derivative” of themap /M — N.

By means of Tf we can extend the notion of “rank™ to maps between
submanifolds: the rank of f at x € M means the rank of the linear map
Tf.:M, - N,

The set TM is a subset of M x R*** hence of R*** x R*** Itis natural

to ask whether TM is a submanifold. In fact, if (¢,U) i1s a chart for M, we
obtain a natural chart ($,TU) for TM by identifying

TU = {(x,y)e TM:xe U}

and defining

¢.TU - R*" x R",
PH(x,y) = (e(x)(Dos ") ')

The:':e charts make TM into a C" ! submanifold. The maps Tf are of class
o
This completes our sketch of the basic notions of manifold, map and

tangent bundle for the special case of submanifolds of Euclidean space. We
now proceed to abstract manifolds.

1. Differential Structures

A topological space M is called an n-dimensional manifold if 1t s locally
homeomorphic to R*. That is, there is an open cover # = {U;}; ., of M such

ified
that for each i € A there is a map ¢;: U; = R" which maps U; homeomor-
phically onto an open subset of R". We call (¢;,U;) a chart {or coordinate
system) with domain U,; the'set of charts @ = ¢;,U 1., 15 an atlas.

Two charts (¢;,U;), (¢;,U;) are said to have (™ overlap if the coordinate
change

o iU n Uj) = (Ui 0 Uj)
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is of differentiability class C", and ¢;¢; ' is also C". See Figure 1-1. Here r
can be a natural number, 00, or @ (meaning real analytic). This definition
makes sense because ¢, (U; n U;) and ¢, {U; n U;) are open sets in R".

{FRFI
Figure 1 —1. Overlapping charts.

An atlas @ on M is called 7 if every pair of its charts has C" overlap. In
this case there is a unique maximal C" atlas ¥ which contains &. In fact ¥ 1S
the set of all charts which have C" overlap with every chart in .

A maximal C" atlas « on M is a C" differential structure; the pair (M,x) is
called a manifold of class C". A manifold of class > 1 1s called smooth.

To determine a C* differential structure it suffices to give a single (7 atlas
contained in it. Thus R" has a unique C” differential structure containing the
identity map of R". More generally every open set U < R"” has a unigue '
differential structure containing the inclusion map U < K"

Suppose a is a C* differential structure on M and r is an integer such that
1 € r < s.Since a also a C" atlas, it belongs to a unique C° differential struc-
ture on M, obtained by adding to a all charts having C" overlap with every
chart in a. In this way every C* manifold may be considered a C" mamifold.
In Chapter 2 we shall prove the converse.

I et r be fixed until further notice; we omit the term “C"."

1. Differential Structures I3
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If (M,®) and (N,'¥) are manifolds their Cartesian product is the manifold

(M x N,0), where @ is the differential structure contamng all charts of the

form
(@ x Yy, U x V)3i(eUed, (¢} V.

Here @ x y maps U x Vinto R™ x R” which we identfy with B="".
If (M,®) is a manifold and W < M is an open set the induced differential

structure on Wis

O|W = {(p,U)e®:U <« W,

A differential structure @ on M is often obtained by the collation of

differential structures ¢; on open sets U, covering M. This means that

¢ilUi M Uj —_— JlUl - Uj for all I,j

and @ is the unique differential structure on M containing each &, as a subset.
Let M be a topological space, (N,#) a manifold and h: M — N a homeo-

morphism of M onto an open subset of N. The induced differental structure
on M 1s

W@ = {(ehh 'U)i(@,U)e® and U < h(M)}.

The n-sphere S" is given the C® differential structure dehined by the atlas
given in the preceding section.

Real projective n-space P" is the C* manifold whose underlying space 1s
the identification space of §" under the antipodal map: we identify x € 3°
with — x. If p:S* — P"is the natural projection, p maps each open hemsphere
homeomorphically. Let {U,,..., U,} be a covering.of $" by open hemi-
spheres. If we give each set p(U;) = ¥, the differential structure @; induced
by (p|U;) ™', it is easy to see that ; and ¢; agree on V; N V. Thus P* 15 given
a differential structure by collation. )

More examples of manifolds are given in the exercises at the end of the
section.

Some manifolds are contained in other manifolds in a natural way; thus
S" « R"*1. A subset 4 of a C" manifold (M,®) 1s a C" submanifold of (M, P)
if for some integer k = 0, each point of 4 belongs to the domain of a chart
{p,U) € & such that

UnA = ¢ YRY

where R* = R" is the set of vectors whose last n — k coordinates are 0." We
call such a (@,U) a submanifold chart for (M,A). It is evident that if 4 1s a
submanifold of M then the maps

tplUﬁA:UﬁA—rR"

form a C" atlas for A, where (¢,U) varies over all submanifold charts. Thus

A is a C" manifold in its own right, of dimension k. The codimension of A 1s
n — k.

! For r = 0 this is sometimes called a tocally flat C* submanifold.
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Let W « R"beanopensetand f:W - Rfa(C"map, ] € r € w.Suppose
y € f(W) is a regular value of f; this means that f has rank g at every point
of £~ 1(y). (Therefore ¢ < n.} Then the subset §~'(y) is a C" submanifold
of B" of codimension ¢g. This follows from the implicit function theorem, as
explained in Section 1.0.

Endow M with the order topology. Then M is a 1-manifold which is Hausdorff but not
paracompact, cailed the long line. M has a C® differential structure but no Riemannian

metric. (See Koch and Puppe [ 1], Kneser and Kneser [1].)

10. Let L be the quotient space obtained from (R x 1) U{R x 0) by identifving (x.I}

with (x,0) if x # 0. Then L is a nonHausdorff 1-manifold. called the line with rwo origins.
It has a C? differential structure.

Fxercises *11. Let U = R* be a nonempty open set. Supbose given 3 C (r > O vector field

1. The Grassmann manifold G, , of k-dimensional linear subspaces or k-planes of R" 1s
given an atlas as follows. Let E < R" be a k-plane and E- its orthogonal mmple:qent.
[dentify R" with E x E.. Every k-plane near enough to E is the graph of a unique

on U without zeros, such that each integral curve is closed in L". Let M be the identi-

ﬁcatim} space obtained by collapsing each integral curve to a point. Then M isa C
I-mantfold, which can be non-Hausdorfl. [Hint: Use small intervals transverse to the
integral curves to construct charts. ]

linear map E — E*, In this way a neighborhood of E € G, , is mapped homeomorphi-

cally onto an open set in the vector space of linear maps E - E*. This makes G, , an

**12. A manifold is metrizable, and has a complete metric, if and only if it is paracompact
analytic manifold of dimension k(n — k).

and Hausdorfl. A connected metrizable manifold has a countable base. But there is a

connected separable Hausdorff 2-manifold which is not paracompact, (the double of M

2. Complex projective n-space is the manifold CP" of (real) dimension 2n obtained as in Exercise 7, Section 4.6).

foliows. An element of CP" is an equivalence class [zg, ..., 2,] of (n + 1)-tuples of
complex numbers not all 0. The equivalence relation is: [2y, ..., 2,] ={wzp, ..., wz, |
if w is a nonzero complex number. The topology is the natural quotient space topology.
An atlas {@;,U;}, i = 0,...,n is defined as follows. Let U; be the set of equivalence
classes whose i'th entry is nonzero. Map U, into C" by

**13. A paracompact manifold is an absolute neighborhood retract (see Hanner [1D.
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From now on we shall frequently suppress notation for the differential
structure on a manifold M.

Let M and N be C" manifolds and f:M — N a map. A pair of charts
(p,U) for M and (y,V) for N is adapted to fif f{U) < V. In this case the map

U™ :p(U) = (V)
4. The group O{n) of orthogonal n x n matrices iﬁnﬂ_ compact submanifold of the vector 1s defined; we call it the local representation of f in the given charts. at the

space R™ of all n x n matrices; 1ts dimension 1S z k. The component of the identity point x1if xe U.

| I e of T erminant | The map f 1s called differentiable at x if it has a local representation at x
is the subgroup SO(n) of orthogonal matrices ol determinant 1. which is differentiable. This definition makes sense since a local representa-

tion 1s a map between open sets in Cartesian spaces. Similarly, f is differen-

tiable of class C” if it has C" local representations at all points.

If [ is C" then every local representation is C'. To see this, let (.U} and
(¥,V) be a pair of charts adapted to f, and suppose fis C". To prove fo =1,
let y € (V) be any point; put x = ¢~ '(y). Let (¢9,.U ) and (,.V,) be an
adapted pair of charts giving f the C" local representation Y, f5 ! at x. By

replacing U, and ¥, by smaller open sets, if necessarv. we can arrange that
Up« Uand ¥V, < V. Then |

o™ = (Yo Wibofos Neoe ™)

in (U ). The first and third maps on the right are C” since they are coordinate

changes. Hence y¥/fo~'|p(U,) is the composition of " maps and so is C.

This proves that yf¢ ™! is C" in some neighborhood of every point. and so
it 1s .

(@) <{o&'t) if a<a or a=a and t <t.

where . indicates deletion. Under the natural identification of complex n-space L~
with R2", these maps form a C* atlas on CP(n).

3. Quaternionic projective n-space is a 4n-dimensional manifold constructed as in
Exercise 2, using quaternions instead of complex numbers.

5. Let & = {¢,,U;}; 4 be an atlas on an n-dimensional manifold M. Put ¢,(U;) =
V, = R", and let X be the identification space obtained [rom L }iea Vi x i when (x,i) 1s
identified with (@ @, '(x),j). Then X is homeomorphic to M.

6. If A is a submanifold of M, then A is a (relatively) closed submanifold of an open
submanifold of M.

7. Let G, c R x Rbethegraphofy =[x, 0 A < w.lfreZandr< i <r+1
then G, is a submanifold which is C" but not C**. What if 4 is an integer?

8. An atlas of class C" on a set X is sometimes defined as a collection of bijective maps
from subsets of X to open subsets of R” such that all coordinate changes are 7. Given

such an atlas @, there is a unique topology on X making & a C" atlas (as defined in
the text) on the space X.

9. Let C be the set of countable ordinal numbers. Let M = C x [0,c0\{0,0}. Give
M the total ordering
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Let f:M — N and g:N — P be C" maps between C" manifolds. It 1s easy
to verify, using local representations, that the composition gf:M — P 15
also C". The identity map and all constant maps are C". There is evidently a
category of C" manifolds and (" maps.

An isomorphism in the C” category is called a C" diffeomorphism. (It r = 0
this means a homeomorphism.) Explicitly, a C" diffeomorphism f:M — N
is a C" map between C” manifolds M and N which is a homeomorphism, and
whose inverse f ~!:N — M is also of class C". If such a map exists we call M
and N C’ diffeomorphic manifolds and write M = N. This 1s the basic equiv-
alence relation of differential topology.

Lest the reader lose heart at the prospect of an infinite sequence of equiv-
alence relations, one for each r, we hasten to point out that there is no essential
difference between C" and C*for 1 € r < s € oo {oreven s = w, but that 1s
much more difficult). In Chapter 3 we shall see that every C" mantifold 1s (*

diffeomorphic to a C® manifold, and the latter 1s unique up to C* diffeo-
morphism; and any C" map can be approximated by (* maps.

There is, however, an unbridgeable gap between C° and C". In fact one
of the most fascinating topics in differential topology began with the dis-

coveries by Kervaire [1] and Smale [1] of compact manifolds having no
differential structure whatever. (It is known that such a “nonsmoothable”

manifold must have dimension at least 4; explicit examples are known 1n
dimension 8.)

A basic task of differential topology is to find methods for deciding
whether two given manifolds diffecomorphic. Of course diffeomorphic mani-
folds are homeomorphic, and have the same homotopy type. Therefore the
diffeomorphism problem usually takes the form: what more do we need to
know about two manifolds, in addition to their having the same homotopy
type, to guarantee that they are diffeomorphic?

Often a differential invariant turns out to be a topological or homotopy
type invariant. (The classic example is the sum of the indices of zeros of a
vector field on a compact smooth manifold, which turns out to equal the
Euler characteristic.) Such an invariant cannot distinguish between non-
diffeomorphic manifolds which are homeomorphic. On the other hand,

when a differential invariant is a homotopy invariant as well, it is easier to
compute, |

One of the most important differential invariants is the tangent bundle.
In later chapters we will study the tangent bundle in some detail; here we

merely give its definition (as a manifold) and the definition of the tangent
of a map. |

Let (M,®) be a C"*! manifold, 0 € r € w, where oo + 1 = ¢ and
o+ 1 =aw with @ = {¢;,U,;};., Intuitively speaking, a "tangent vector’

to M at x € M is simply a vector in R” together with a chart which identifies
each point near x with a point of R".

A tangent vector should be an object independent of any particular chart,
however, so we make the following definition. A tangent vector to M 1S an
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equivalence class [ x,i,a] of triples
(x,,a)eM « A x R
under the equivalence relation:

[x,,a] = [r,jb
if and only if x = y and ]

D{(ﬂﬁp.—")(a‘r‘dx))a = b,

In other words, the derivative of the coordinate change at ¢,(x) sends a to b.

That th{s_ls an equtvalence relation follows from the rules for derivatives of
compositions and inverses. |

The set of all tangent vectors is TM, the tangent bundle of M. The map
P=pyTM - M

[xia]l— x

ts well defined. For any subset A « M we put p~'(A4) = T M:also p~'(x) =

M, for xe M. If U = M is open then (U,®|U) is also a C" ! manifold. and
we make the harmless identification T,M = TU.

For any chart (¢;,U,) € @ there is a well defined bijective map

Tfpi:TUi — (0;(Ul) X R. _ H‘Eﬂ x EH,
[I,i,ﬂ] — (qo'(x)iﬂ]'
The map |
(Tﬁpj)(T{P:’)“l:(ﬂi(Ui A Uj) X R — AU, x L)) x R
1s the homeomorphism

(_}-’,ﬂ] — (ij‘Pi_ l{ }'},D((Oﬂ-’i- l H }kﬂ

It l‘nllctws that TM’ has a topology making each To, a homeomorphism.
and this topology is unique. Moreover, since (T HNTe) ! is a C diffeo-

morphism, the set of charts {Te,, TU;}; ., is a C" atlas on TM. In this way

I'M 1s a " manifold. The projection map p: TM — M is (. The charts
(To,;, TU,) are called natural charts on TM.

Let x € U;. The map To;: M, — R", defined as the composition
M, c TU, i @:(U;) x B" - R",

is a byection; hence it induces an n-dimensional vector space structure on
M . This structure is independent of i, since if x € U,

(T'pjx)( T'pi:}* b= D(q}j(ﬂi- l){q}ix}

which 1s a linear automorphism of R”. In this way M, becomes a vector space,
the tangent space to M at x. Thus TM is the disjoint union of the vector spaces

M,. It 1s a bundle of vector spaces, or “vector bundle.” This aspect of T M
will be emphasized in later chapters.
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The simplest kind of tangent bundie is that of an open set W < R In
this case we identify TW with W x R? via the inclusion chart ¢: W — R¢
gnd the corresponding natural chart on TW. The projection TW — W is
just the natural projection W x R? - W. If M is a suomanifold of R> we

can think of tangent vectors to M as arrows and M, as a plane, as in
FlgLII'E 1-2.

M

- o

Figure 1-2. Tangent vectors to AMf = §2 = R

tet fiM > NbeaC*'map, 0 <r < w. A C"map Tf: TM - TN is
defined as follows: a local representation of T{ in natural charts on TM and
TN lis the derivative of the corresponding local representation of /. More
explicitly, let o,;: U, - R™ WV, - R" be charts for M. N with ftU) c V.
An application of the chain rule shows that the ¢’ map

(Tf}ij:TU:‘ — TV,
[I,f,ﬂ] = [f(x)&jﬁb(wjfwi_ 1}((P;I}ﬂ]
1s independent of i, j. Thus there is a well defined map 7/: TM — TN which

coincides with (Tf);;on TU..

It f(x) = ythen Tf maps M, into N, and the restriction of T/ is a linear
map: I, f*M, > N,
In the natural charts this is just the derivative at x of the corresponding

local representation of f. Thus I,/ may be thought of as the derivative of
/ at x. Note, however, that its domain and range depend on x.

Using natural charts one sees that the diagram

M——IL 1y

Pa Py
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Is comnutative, that is, f < py = py < Tf. Likewise.if f:M — Nandg: N —
are C"*! maps then the diagram

———
™ T{g:[) ro

commutes: in other words

I(g - [} = (Tg) - (Tf).
And clearly

T lmv —_ lTH'

(T'he identity map of any space S is denoted by 15.) These last two properties
may be summarized by saying that the assignments M — TM, [ T}
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