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Preface to the Second Printing

For this printing, 1 have corrected some errors and made numerous minor
changes in the interest of clarity. The most significant corrections occur in
Sections 4.2, 4.3, 5.5, 30.3, 32.1, and 32.3. I have also updated the biblio-
graphy to some extent. Thanks are due to a number of readers who took the
trouble to point out errors, or obscurities ; especially helpful were the detailed
comments of Jos¢ Antonio Vargas.

James E. Humphreys
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Preface to the First Printing

Over the last two decades the Borel-Chevalley theory of linear algebraic
groups (as further developed by Borel, Steinberg, Tits, and others) has made
possible significant progress in a number of areas: semisimple Lie groups
and arithmetic subgroups, p-adic groups, classical linear groups, finite
simple groups, invariant theory, etc. Unfortunately, the subject has not
been as accessible as it ought to be, in part due to the fairly substantial
background in algebraic geometry assumed by Chevalley [8], Borel [4],
Borel, Tits [1]. The difficulty of the theory also stems in part from the fact
that the main results culminate a long series of arguments which are hard
to “see through” from beginning to end. In writing this introductory text,
aimed at the second year graduate level, I have tried to take these factors
into account. |

First, the requisite algebraic geometry has been treated in full in Chapter
I, modulo some more-or-less standard results from commutative algebra
(quoted in §0), e.g., the theorem that a regular local ring 1s an integrally
closed domain. The treatment is intentionally somewhat crude and is not
at all scheme-oriented. In fact, everything is done over an algebraically
closed field K (of arbitrary characteristic), even though most ot the eventual
applications involve a field of definition k. I believe this can be justified as
follows. In order to work over k from the outset, it would be necessary to
spend a good deal of time perfecting the foundations, and then the only
rationality statements proved along the way would be of a minor sort (cf.
(34.2)). The deeper rationality properties can only be appreciated after the
reader has reached Chapter X. (A survey of such results, without proofs,
is given 1n Chapter XII.)

Second, a special effort has been made to render the exposition trans-
parent. Except for a digression into characteristic 0 in Chapter V, the
development from Chapter II to Chapter XI is fairly “linear”, covering
the foundations, the structure of connected solvable groups, and then the
structure, representations and classification of reductive groups. The lecture
notes of Borel [4], which constitute an improvement of the methods in
Chevalley [8], are the basic source for Chapters II-1V, VI-X, while Chapter
XTI i1s a hybrid of Chevalley [8] and SGAD. From §27 on the basic facts
about root systems are used constantly; these are listed (with suitable ref-
erences) in the Appendix. Apart from §0, the Appendix, and a reference to
a theorem of Burnside in (17.5), the text is sclf-contained. But the reader is
asked to verify some minor points as exercises.

While the proofs of theorems mostly follow Borel [4], a number of
improvements have been made, among them Borel’s new proof of the
normalizer theorem (23.1), which he kindly communicated to me.

1X
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X | . | Preface to the First Printing

I had an opportunity to lecture on some of this material at Queen Mary
College in 1969, and at New York University in 1971-72. Several colleagues
have made valuable suggestions after looking at a preliminary version of
the manuscript; I especially want to thank Gerhard Hochschild, George
Seligman, and Ferdinand Veldkamp. I also want to thank Michael J. DeRise
for his help. Finally, I want to acknowledge the support of the National
Science Foundation and the excellent typing of Helen Samoraj and her staff.

James E. Humphreys

Conventions

K* = multiplicative group of the field K

char K = characteristic of K

char exp K = characteristic exponent of K, i.e., max {1, char K}
det = determinant

Tr = trace

Card = cardinality

1l = direct sum
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Chapter 1
Algebraic Geometry

0. Some Commutative Algebra

Algebraic geometry is heavily dependent on commutative algebra, the
study of commutative rings and fields (notably those arising from polyno-
mial rings in many variables); indeed, it is impossible to draw a sharp line
between the geometry and the algebra. For reference, we assemble in this
section some basic concepts and results (without proof) of an algebraic na-
ture. The theorems stated are in most cases “standard” and readily accessible
in the literature, though not always encountered in a graduate algebra course.

We shall give explicit references, usually by chapter and section, to the
following books:

[. = S. Lang, Algebra, Reading, Mass.: Addison-Wesley 1965.

7ZS = O. Zariski, P. Samuel, Commutative Algebra, 2 vol., Princeton:
Van Nostrand 1958, 1960.

AM = M. F. Atiyah, I. G. Macdonald, Introduction to Commutative
Algebra, Reading, Mass.: Addison-Wesley 1969.

J = N. Jacobson, Basic Algebra II, San Francisco: W. H. Freeman 1930.

There are of course other good sources for this material, e.g., Bourbaki
or van der Waerden. We remark that [ AM] is an especially suitable reference
for our purposes, even though some theorems there are set up as exercises.

All rings are assumed to be commutative (with 1).

0.1 A ring R is noetherian < each ideal of R is finitely generated < R has
ACC (ascending chain condition) on ideals <> each nonempty collection of ideals
has a maximal element, relative to inclusion. Any homomorphic image of a noe-
therian ring is noetherian. [L, VI§1] [ AM, Ch. 6, 7]. Hilbert Basis Theorem:
If R is noetherian, so is R[T] (polynomial ring in one indeterminate). In par-
ticular, for a field K, K[T,, T,, ..., T,] is noetherian. [L, VI §2] [ZS, IV §1]
|AM, 7.5].

0.2 IfKisafield, K[Tq,...,T,]is a UFD (unique factorization domain).
[L, V' §6].

0.3 Weak Nullstellensatz: Let Kbea field,L = K[x,,...,x,] afinitely

generated extension ring of K. If L is a field, then all x; are algebraic over K.
[L, X §2][ZS, VII§3][AM, 5.24; Ch. 5, ex. 18, 7.9].

0.4 LetL/Kbeafield extension. Elements x4, ..., x; € L are algebraically
independent over K if no nonzero polynomial f(T,, ..., ;) over K satisfies
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flx1, ..., x) = 0. A maximal subset of L algebraically independent over K is
called a transcendence basis of L/K. Its cardinality is a uniquely defined number,
the transcendence degree tr. deg., L. If L = K(xy, ..., X,), a transcendence basis
can be chosen from among the x;, say xq, . .., X4 Then K(x, ..., x;) is purely
transcendental over K and L/K(x,, ..., x,) is (finite) algebraic. [L, X §1]
| ZS, I11§12]]J, 8.12]. |

Liiroth Theorem: Let L = K(T) be a simple, purely transcendental exten-
sion of K. Then any subfield of L properly including K is also a simple, purely
transcendental extension. [J, 8.13].

0.5 Let E/F be a finite field extension. There is amap Ng,: E — F, called
the morm, which induces a homomorphism of multiplicative groups E* — F*,

such that Neg(a) is a power of the constant term of the minimal polynomial of

a over F, and in particular, Ng(a) = al¥*F whenever ae F. To define the

norm, view E as a vector space over F. For each a € E, x \— ax defines a linear
transformation E — E, let N (a) be its determinant. [ L, VIII §5] [ZS, IT1§10].

0.6 Let R o> § be an extension of rings. An element x € R is integral over
S <> X is a root of a monic polynomial over S <> the subring S|x]| of R is a
finitely generated S-module < the ring S| x| acts on some finitely generated
S-module V faithfully (i.e., y.V = 0 implies y = 0). R is integral over S if
each element of R is integral over S. The integral closure of S in R is the set
(a subring) of R consisting of all elements of R integral over S. If R is an integral
domain, with field of fractions F, R is said to be integrally closed if R equals

its integral closure in F. If R is integrally closed, so is the polynomial ring
R|T]. [L, IX§1][ZS, V§1] [AM, Ch.5]

0.7 Noether Normalization Lemma: Ler K be an arbitrary field, R =
K[x1,...,x,] afinitely generated integral domain over K with field of fractions
F, d = tr. deg., F. Then there exist elements yq, ..., vz € R such that R is

integral over K[ yy, . .., yi] (and the y; are algebraically independent over K).
[L, X §4] [ZS, V §4] [AM, Ch. 5, ex. 16 ].

0.8 Let R/S be a ring extension, with R integral over S.

Going Up Theorem: If P is a prime (resp. maximal) ideal of S, there
exists a prime (resp. maximal) ideal Q of R for which @ NS = P.[L, IX §1}
[ZS, V §2] [AM, 5.10, 5.117.

Going Down Theorem: Let S be integrally closed. If P, > P, are prime

ideals of S, Q, a prime ideal of R for which Q; N S = P, there exists a prime
ideal Q, = Q4 for which Q, n'S = P,.[ZS, V §3] [AM, 5.16].

Extension Theorem: Let R/S be an integral extension, K an algebraically
closed field. Then any homomorphism ¢:S — K extends to a homomorphism
@R - K.Ifxe R,aeK, o canfirst be extended to a homomorphism S| x| — K
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sending x to a (then be further extended to R, R being integral over S[x]),
provided f(x) = O implies f,(a) = O for f(T) € S| T] (f,(T} the polynomial over
K gotten by applying ¢ to each coefficient of f(T)). [L, IX §3] [AM, Ch. 5].

0.9 LetP,,...,P, beprimeidealsinaring R. If an ideal lies in the union
of the P, it must already lie in one of them. [ZS, IV §6, Remark p. 215].

0.10 Let S be a multiplicative setinaring R(0¢ S,1€ S,a,be S = ab e S).
The generalized ring of quotients S™'R is constructed using equivalence
classes of pairs (r, s) € R x S, where (r, s) ~ (', s') means that for some s" € 8§,
s"(rs’ — r's) = 0. The (prime) ideals of S™'R correspond bijectively to the
(prime) ideals of R not meeting S. In case R is an integral domain, with field
of fractions F, S™'R may be identified with the set of fractions r/s in F. In
general, the canonical map R — S~ 'R (sending r to the class of (r, 1)) is injective
only when S contains no zero divisors. For example, take S = {x"|ne Z"} for
x not nilpotent, to obtain S 'R, denoted R..; R is a subring of R, provided x
is not a zero divisor. Or take S = R — P, P a prime ideal. Then S™'R is de-
noted Rp and is a local ring (i.e., has a unique maximal ideal PRp, consisting
of the nonunits of Rp). The prime ideals of Rp correspond naturally to the prime
ideals of R contained in P. If R is an integrally closed domain, then so is Rp. If
R is noetherian, so is Rp. If M is a maximal ideal, the fields R/M and Ry;/M Ry,
are naturally isomorphic ; the canonicalmap R — R, induces a vector space iso-
morphism of M/M? onto MR,;/(MR,,)*. [L, I §3] [AM, Ch. 3].

0.11 Nakayama Lemma: Let R be a ring, M a maximal ideal, V a
finitely generated R-module for which V. = MV. Then there exists x ¢ M such
that xV = 0. In particular, if R is local (with unique maximal ideal M), x must
be a unit and therefore V = 0. [AM,2.5,2.6] |L, IX §1].

0.12 If R is a (noetherian) local ring with maximal ideal M, the powers of
M can be taken as a fundamental system of neighborhoods of 0 for a topology
(the M-adic topology) on R. This topology is Hausdorff, since [ M" = 0.
[AM, §10] [ ZS, IV §7, VIII §2]. The Krull dimension of R is the maximum
length k of a chain of prime ideals 0 S P, S P, G -+ & P, & R If this
equals the minimum number of generators of M, R is called regular. Theorem:
A regular local ring is an integral domain, integrally closed (in its field of

fractions). [AM, Ch. 11][ZS, VIII'§11; ¢f. Appendix 7 |.

0.13 Let I be an ideal in a noetherian ring R, and let Py, ..., P, be the
minimal prime ideals containing I. The image of PN N P, in R/I is
the nilradical of R/I, a nilpotent ideal. In particular, for large enough n,
PiPy---Plc(P,n-nP)y cl[AM,7.15][L, VI§].

0.14 A field extension E/F is separable if either char F = 0, or else char
F = p > 0 and the p™ powers of elements x, . . . , x, € E linearly independent
over F are again so. This generalizes the usual notion when E/F is finite.
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E = F(xy,...,x,) is separably gemerated over F if E is a finite separable
extension of a purely transcendental extension of F. For finitely generated
extensions E/F, “separably generated” is equivalent to “separable”, and E/F
is automatically separable when F is perfect. If F = L < E, E/F separable,
then L/F is separable. If F < L < E, E/L and L/F sepamble then E/F is
separable | ZS, 11§13 [L, X §6][J, 8.14].

0.15 A derivation 6:E — L (E afield, L an extension field of E), is a map
which satisfies o(x + y) = 6(x) + d(y) and d(xy) = x &(y) + &x) y. IfF is a
subfield of E, 0 is called an F-derivation if in addition 5(x) = 0 for all x € F (so
0 is F-linear). The space Derg(E, L) of all F-derivations E — L is a vector space
over L, whose dimension is tr. deg.. E if E/F is separably generated. E/F is
separable if and only if all derivations F — L extend to derivations E — L (L
an extension field of E). If char E = p > 0, all derivations of E vanish on the
subfield E” of p" powers. [ZS, 11 §17] [J,8.15][L, X §7].

1. Afline and Projective Varieties

In this section we consider subsets of affine or projective space defined
by polynomial equations, with special attention being paid to the way in
which geometric properties of these sets translate into algebraic properties
of polynomial rings. K always denotes an algebraically closed field, of
arbitrary characteristic. |

1.1. Ideals and Affine Varieties

The set K" = K x - -+ x K will be called affine n-space and denoted A”.
By affine variety will be meant (provisionally) the set of common zeros in
A" of a finite collection of polynomials. Evidently we have in mind curves,
surfaces, and the like. But the collection of polynomials defining a geometric
configuration can vary quite a bit without affecting the geometry, so we aim
for a tighter correspondence between geometry and algebra. As a first step,
notice that the ideal in K[T] = K[T,, ..., T,] generated by a set of polyno-
mials { f,(T)} has precisely the same common zeros as { f(T)}. Moreover, the
Hilbert Basis Theorem (0.1) asserts that each ideal in K[T] has a finite set of
generators, so every ideal corresponds to an affine variety. Unfortunately,
this correspondence 1s not 1-1: e.g., the ideals generated by T and by T2 are
distinct, but have the same zero set {0} in A'. We shall see shortly how to
deal with this phenomenon.

Formally, we can assign to each ideal I in K[T] the set ¥"(I) of its common
zeros in A", and to each subset X < A" the collection .#(X) of all polynomials
vanishing on X. It is clear that .#(X)is an ideal, and that we have inclusions:

X < V(H(X)),
I < 2(v (1))
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Of course, neither of these need be an equality (examples?). Let us examine
more closely the second inclusion. By definition, the radical /I of an ideal
Tis { f(T) e K[T]|f(T) € I for some r > 0}. This is easily seen to be an ideal,
including I. If f(T) fails to vanish at x = (x4, ..., x,), then f(T)" also fails
to vanish at x for each r > 0. From this it follows that /I = (¥ (I)), which
refines the above inclusion. Indeed, we now get equality—a fact which is
crucial but not at all intuitively obvious.

Theorem (Hilbert’s Nullstellensatz). If I is any ideal in K[T,, ..., T,],
then VI = (¥ ().

- Proof. In view of the finite generation of I, the theorem 1s equivalent to
the statement: “Given f(T), f1(T),..., f(T) in K[T], such that f(T) vanishes at
every common zero of the f,(T) in A", there exist r = 0 and g(7T), .

g(T) € K[T] for which f(T)" = 3 giT)fiT).

1=1
We show first that this statement follows from the assertion:

(*) Ifv(I) =0 then I = K[T]

(Notice that this is just a special case of the theorem, since only the ideal
K[T] can have K|[T] as radical!) Indeed, given f(T), f1(T), ..., f(T) as in-
dicated, we can introduce a new indeterminate T, and consider the collection
of polynomials in n + 1 indeterminates, fi(T),..., f(T), 1 — T, f(T). These
have no common zero in A"*!, thanks to the original condition imposed on
f(T), so (*) implies that they generate the unit ideal. Find polynomials
hi(To, ..., T, and A(Tq, ..., T,) for which 1 = h(T,, T)fi(T) + -+ +
h(To, T)fT) + A(Ty, TY(1 — T, f(T)). Then substitute 1/f(T) for T, through-
out, and multiply both sides by a sufficiently high power f (T)" to clear
denominators. This yields a relation of the desired sort.

It remains to prove (*), or equivalently, to show that a proper ideal in
KIT] has at least one common zero in A". (In the special case n = 1, this
would follow directly from the fact that K is algebraically closed.) Let us
attempt naively to construct a common zero. By Zorn’s Lemma, I lies in some
maximal ideal of K[T]|, and common zeros of the latter will serve for I as
well; so we might as well assume that I is maximal. Then the residue class
ring L = K[T]/I is a field; K may be identified with the residue classes of
scalar polynomials. If we write ¢; for the residue class of T, it is clear that

= K|t,,...,t,] (the smallest subring of L containing K and the ¢;). More-
over, the n-tuple (¢4, . . ., t,) 1s by construction a common zero of the polyno-
mials in 1. If we could identify L with K, the ¢; could already be found inside
K. But K is algebraically closed, so for this it would be enough to show that
the t; are algebraic over K, which is precisely the content of (0.3).

The Nullstellensatz (“zeros theorem”) implies that the operators 7, .# set
up a 1-1 correspondence between the collection of all radical ideals in K[ T]
(ideals equal to their radical) and the collection of all affine varieties in A",
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Indeed, if X = ¥(I), then #(X) = #(¥"(I)) = I, so that X may be re-
covered as ¥ (#(X)) (I and«/T having the same set of common zeros). On
the other hand, if I = /I, then I may be recovered as #(# (I)). Notice that
the correspondences X - .4(X)and I — ¥"(I) are inclusion-reversing. So the
noetherian property of K[ T] implies DCC (descending cham condition) on
the collection of affine varieties in A",

Examples of radical ideals are prime (in particular, maximal) ideals. We
shall examine m (1.3) the varieties corresponding to prime ideals.- For the
moment, just consider the case X = ¥7(I), I maximal. The Nullstellensatz
guarantees that X 1s nonempty, so let x € X. Clearly I = #(ix}) S K[T],
so I = #({x}) by maximality, and X = 7(I) = 7 (#({x})) = {x}. On the
other hand, if x € A", then f(T) — f(x) defines a homomorphism of K[ T] onto
K, whose kernel .#({x}) is maximal because K is a field. Thus the points of
A" correspond 1-1 to the maximal ideals of K[T].

A linear variety through x € A" is the zero set of linear polynomials of
the form ) a;(T; — x;). This is just a vector subspace of A" if the latter is
viewed as a vector space with origin x. From the Nullstellensatz (or linear
algebra!) we deduce that any linear polynomial vanishing on such a variety
1s a K-linear combination of the given ones.

1.2. Zariski Topology on Affine Space

If K were the field of complex numbers, A” could be given the usual
topology of complex n-space. Then the zero set of a polynomial f(T) would
be closed, being the inverse image of the closed set {0} in C under the con-
tinuous mapping x > f(x). The set of common zeros of a collection of
polynomials would equally well be closed, being the intersection of closed
sets. Of course, complex n-space has plenty of other closed sets which are
unobtainable 1n this way, as is clear already in case n = 1.

The 1dea of topologizing affine n-space by decreeing that the closed sets
are to be precisely the affine varieties turns out to be very fruitful. This is
called the Zariski topology. Naturally, it has to be checked that the axioms
for a topology are satisfied: (1) A" and ) are certainly closed, as the respective
zero sets of the ideals (0) and K[T]. (2) If I, J are two ideals, then clearly
v I) v v (J) = ¥ (I nJ) To establish the reverse inclusion, suppose x is a
zero of I n J, butnot of I or J. Say f(T) € I, g(T) € J, with f(x) # 0, g(x) # 0.
Since f(T)g(T)e I n J, we must have f(x)g(x) = 0, which is absurd. This
argument 1mplies that finite unions of closed sets are closed. (3) Let I, be an
arbitrary collection of ideals, so ) , I, is the ideal generated by this collec-
tion. Then it is clear that {},7°(I,) = ¥° () , I,), i.e., arbitrary intersections of
closed sets are closed.

What sort of topology is this? Points are closed, since x = (xq,. .., x,)
18 the only common zero of the polynomials T, — x,,..., T, — x,. But the
Hausdorfl separation axiom fails. This is evident already in the case of A,
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where the proper closed sets are precisely the finite sets (so no two nonempty
open sets can be disjoint). The reader who is accustomed to spaces with good
separation properties must therefore exercise some care 1 reasoning about
the Zariski topology. For example, the DCC on closed sets (resulting from
Hilbert’s Basis Theorem) implies the ACC on open sets, or equivalently, the
maximal condition. This shows that A" 1s a compact space. But in the absence
of the Hausdorft property, one cannot use sequential convergence arguments
or the like; for this reason, one sometimes uses the term quasicompact in this
situation, reserving the term “compact” for compact Hausdorff spaces.

In a qualitative sense, all nonempty open sets in A” are “large” (think of
the complement of a curve in A® or of a surface in A?). Since a closed set
¥"(I) is the intersection of the zero sets of the various f(T) € I, a typical non-
empty open set can be written as the union of principal open sets—sets of
nonzeros of individual polynomials. These therefore form a basis for the
topology, but are still not very “small”. For example, GL(n, K) 1s the prin-
cipal open set in A" defined by the nonvanishing of det (T, i); GL(n, K) de-
notes here the group of all invertible n x n matrices over K.

1.3. Irreducible Components

In topology one often studies connectedness properties. But the union
of two 1ntersecting curves in A" is connected, while at the same time capable
of being analyzed further into “components.” This suggests a different em-
phasis, based on a somewhat different topological property. For use later
on, we formulate this in general terms.

Let X be a topological space. Then X is said to be lrredu(:lble if X cannot
be written as the union of two proper, nonempty, closed subsets. A subspace
Y of X is called irreducible if it 1s irreducible as a topological space (with
the induced topology). Notice that X is irreducible if and only if any two
nonempty open sets in X have nonempty intersection, or equivalently, any
nonempty open set 1s dense. Evidently an irreducible space is connected, but

not conversely.

Proposition A. Let X be a topological space. -
(a) A subspace Y of X is irreducible if and only if its closure Y is irreducible.
(b)If p: X — X' is a continuous map, and X is irreducible, then so is p(X).

Proof. (a) In view of the preceding remarks, Y 1s irreducible if and only
if the intersection of two open subsets of X, each meeting Y, also meets Y;
and similarly for Y. But an open set meets Y if and only if it meets Y.

(b) If U, V are open sets in X' which meet ¢(X), we have to show that
UV meets ¢(X) as well. But ¢~ Y(U), ¢~ (V) are (nonempty) open sets
in X, so they have nonempty intersection (X being irreducible), whose image
under ¢ liesin U n V n ¢(X).
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the distinct polynomial functions on X are in 1-1 correspondence with the
clements of the residue class ring K[ T]/.#(X). We denote this ring K[ X | and
call it the affine algebra of X (or the algebra of polynomial functions on X).
It is a finitely generated algebra over K, which is reduced (i.c., has no nonzero
nilpotent elements), in view of the fact that .#(X) is its own radical. When X
1s wrreductble, 1.e., when #(X) is a prime ideal (Proposition 1.3C), K[X ] is
an integral domain. So we may form its field of fractions, denoted K(X) and
called the field of rational functions on X. This is a finitely generated field
extension of K. Although we are sometimes compelled to work with reducible
varieties, we shall often be able to base our arguments on the irreducible case,
where the function field is an indispensable tool.

The affine algebra K| X | stands in the same relation to X as K[T] does
to A", With its aid we can begin to formulate a more intrinsic notion of
“affine variety”, thereby liberating X from the ambient space A". To begin
with, X 1s a noetherian topological space (in the Zariski topology), with basis
consisting of principal open subsets X , = {x € X|f(x) # 0} for fe K[X].
It 1s easy to see that the closed subsets of X correspond 1—1 with the radical
ideals of K[ X | (by adapting the Nullstellensatz from K[T] to K[T]/.#(X)),
the irreducible ones belonging to prime ideals. In particular, we find that
the points of X are in 1-1 correspondence with the maximal ideals of K[ X ],
or with the K-algebra homomorphisms K[X]— K. So X is in a sense re-
coverable from K[ X . |

Indeed, let R be an arbitrary reduced, finitely generated commutative alge-
braoverK,say R = K[ty, ..., t,] (the number n and this choice of generators
being nonunique). Then R is a homomorphic image of K[T,, ..., T,], which
is “universal” among the commutative, associative K-algebras on n gen-
erators. Moreover, the fact that R is reduced just says that the kernel of the
epimorphism sending T, to ¢; is a radical ideal I. So R is isomorphic to the
affine algebra of the variety X < A" defined by I. This points the way to an
equivalence of categories, to which we shall return shortly. One advantage
of this approach is that it enables us to give to any principal open subset X h
ofan irreducible affine variety X its own structure of affine variety (in an affine

space of higher dimension): Define R to be the subring of K(X) generated by °

K[ X | along with 1/f, and notice that R 1s automatically a (reduced) finitely
generated K-algebra. Moreover, the maximal ideals of R correspond 1-1
with therr intersections with K[ X'|, which are just the maximal ideals ex-
cluding /. In turn, the points of the affine variety defined by R correspond
naturally to the points of X .. What we have done, in effect, is to identify
points of X , € X < A" with points (x,, ..., x,, 1/f(x)) in A"*". |

Next let X < A", Y < A", be arbitrary affine varieties. By a morphism
@:X — Y we mean a mapping of the form ¢(x4, ..., x,) = (f1(x),..., ¥,.(x)),
where ¥; € K[ X |. Notice that a morphism X — Y is always induced by a
morphism A" — A™ (use any pre-images of the ; in K[A"] = K[T]), and that
a morphism X — A' is the same thing as a polynomial function on X.
A morphism ¢:X — Y is continuous for the Zariski topologies involved.

1.6. Projective Varieties 1

Indeed, if Z < Y is the set of zeros of polynomial functions f; on Y, then
o~ }(Z) is the set of zeros of the polynomial functions f; o ¢ on X.

With a morphism ¢:X — Y isassociated its comorphism ¢*: K[ Y | - K[ X ]
defined by o*( f) = fo ¢. It is obvious that the image of ¢* does lie in K| X |,
that ©* is a homomorphism of K-algebras, and that the usual functorial
properties hold: 1* = identity, (¢ o ¥)* = ¥* o @*. Moreover, knowledge of
o* is tantamount to knowledge of ¢: K[ Y| is generated (as K-algebra) by the
restrictions to Y of the coordinate functions T, ..., T,, on A™, call them ¢,,
and @ *(t;) is just the function i; used above to define ¢. This shows that every
K-algebra homomorphism K[ Y| — K[ X ] arises as the comorphism of some
morphism X — Y.

The preceding discussion establishes, in effect, a (contravariant) equiva-
lence between the category of affine K-algebras (with the K-algebra homomor-
phisms as morphisms) and the category of affine varieties (with morphisms
as defined above). This more intrinsic way to view affine varieties, cut loose
from specific embeddings in affine space, will be explored further in §2. The
“product” introduced in (1.4) turns out to be a categorical product, and cor-
responds in fact to the tensor product of K-algebras (which is known to be the

“coproduct” in the category of commutative rings).
Suppose ¢:X — Y is a morphism for which ¢(X) 1s dense in Y. Then

@* is injective (cf. Exercise 11 or (2.5) below). In particular, if X and Y are
irreducible, ¢* induces an embedding of K(Y) into K(X).

1.6. Projective Varieties

Geometers have long recognized the advantages of working in “projective
space”, where the behavior of loci at infinity can be put on an equal footing
with the behavior elsewhere. From the algebraic viewpoint, the theory of
projective varieties runs paraliel to that of atfine varieties, with homogeneous
polynomials taking the place of arbitrary polynomials. We shall give only a
brief introduction here, adequate for the later applications. In §2 the affine
and projective theories will be subsumed under an abstract theory of “vari-
eties”, while in §6 the “completeness” of projective varieties (analogous to
compactness) will be discussed systematically.

Projective n-space P" may be defined to be the set of equivalence classes
of K"™1 — (0, 0,..., 0)} relative to the equivalence relation:

(xﬂaxla"'nxn) ™ (yO&yla"'ayn)

if and only if there exists a € K* such that y; = ax; for all i. Intuitively, P"
is just the collection of all lines through the origin in K" ™', Sometimes it is
convenient, when working with a vector space V of dimension n + 1, to
identify the set of all 1-dimensional subspaces of V with P*; we write P(V)

for P” in this case.
Each point in P" can be described by homogeneous coordinates x,,

X{,...,X, Which are not unique but may be multiplied by any nonzero
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scalar. If a locus in P" 1s to be described by polynomial equations (in indeter-
minates X,, Xy, ..., X,), this nonuniqueness forces us to require that the
polynomials be homogeneous. Recall that f(X,, ..., X,) is homogeneous of
degree d if it is a linear combination of monomials XX’ -+ - X with
Y i; = d. Such a polynomial satisfies f(axq,...,ax,) = a*f(xg, ..., x,); in
particular, if 1t takes the value 0 for one set of homogeneous coordinates of
a point in P", it takes the value O for any other choice.

Now we can topologize P” by taking a closed set to be the common zeros
of a collection of homogeneous polynomials, or equally well of the ideal they
generate. Notice that the 1deal generated by some homogeneous polynomials
is a homogeneous ideal (i.e., contains the homogeneous parts of all its ele-
ments). It is a straightforward matter to define operators ¥", £, as in the
atfine case, thereby setting up an inclusion-reversing correspondence between
projective varieties (closed subsets of P") and homogeneous ideals. As in the
affine case, 1deals of the form .#(X) are radical ideals. There is a version here
of the Nullstellensatz, which requires only a minor adjustment. Namely, the
ideal I, generated by X,, ..., X, is proper, but clearly has no common zero
in P" (since the origin of K"’“l has been discarded). So we are led to the

following formulation, which the reader can easily verify using the affine
Nullstellensatz (1.1):

[ —

Proposition. The operators ¥, ¥ set up a [-1 inclusion-reversing cor-
respondence between the closed subsets of P" and the homogeneous radical
ideals of K[ X, . . . , X, | other than I,.

The discussion of irreducible components in (1.3) applies here as well.
In particular, the irreducible projective varieties belong to the homogeneous
prime 1deals (other than I,). |

As 1n the afline case, the principal open sets form a basis for the Zariski
topology on P” Certain of these are especially useful, because they are
naturally 1somorphic to affine n-space. (This provides a suggestive link with
the afine case, to be exploited in the general discussion of “varieties” in

§2.) Let U; be the set of points in P” having i homogeneous coordinate

nonzero. Then U; corresponds 1 -1 with the points of A", via (xy,..., x,)+—
X0 Xi—1 Xi+1 X . .
(;-, e ; : ; Ve —"). These quotients of homogeneous coordinates
: . : X
1 1 ! i

are called affine coordinates on U, (0 < i < n), Notice that the U, cover P".

The correspondence between U; and A" is not just set-theoretic: the
Zariski topologies also correspond. To see this, introduce indeterminates
Ty,...,T, To each polynomial f(T,..., T, we may associate a homo-
geneous polynomial X{®/ f(Xy/X,, ..., Xi /X Xis1/Xs, ..., X,/X;), where
deg. f 1s the largest degree of any monomial occurring in f(T). Thenif X < A"
1s the zero set of certain polynomials f(T), the image of X in U, is the inter-
section of U; with the zero set in P" of the corresponding “homogenized”
polynomials. In the reverse direction, let X < P" be the zero set of certain

1.7. Products of Projective Varicties 13
homogeneous polynomials f(X,, ..., X,). For each i, consider f(Xy/X,, ...,
X1 XKoo LXsw g /Xy o0 X /%) = g(Tq, ..o, Ty). Itis clear that X n U corre-

sponds to the zero set in A” of these polynomials g(T).
The main point of the preceding discussion is that a subset of P" is closed

if and only if its intersections with the affine open sets U, are all closed (U,
being identified canonically with A"). More generally, if X is closed in P”,
a subset Y of X is closed in X (or in P") if and only if all Y n U, are closed.
This “affine criterion™ will be put to good use immediately.

1.7. Products of Projective Varieties

Let X < P", Y © P" be two projective varieties. If there is to be a
“product” of X and Y, its underlying set ought to be the Cartesian product.
But this set cannot be straightforwardly identified with a subset of P* x P™,
due to the vagaries of homogencous coordinates. Instead, we must resort to
a more elaborate embedding. To this end, we map the Cartesian product
P" x P"into P9, whereg = (n + 1)(m + 1) — 1, by therecipe: o((xy, ..., X,),
(y(}: rrt ym)) — (xOyOrf oy X0Yms X1 Vo5 oo X1 Vms - - -5 XnVos - - -5 xnym)- Note
that this 1s unambiguous.

We want to show that the image of ¢ 1s closed in P4, using the affine cri-
terion developed 1n (1.6). Denote the homogeneous coordinates on P" by X;,
on P"by Y, andon P?by Z;;( 0 < i < n0<j<m)Let P}, P}, P be the
corresponding affine open subsets with affine coordinates S,, T U Evi-
dently ¢ maps P} x P7 into P}. For ease of notation, we treat just the
(typical) case i = j = 0. In affine coordinates, ¢ sends ((s{, . . ., 5.), (1, . . ., 1,,))
to (..., U, ...), where u,, = s, (k, £ = 1), up o = S, ug, = t,. So the image
in P%, 1s just the locus of the equations U, = U,,U,, (k, £ = 1). This shows
that the 1image of ¢ is closed, as asserted.

Moreover, 1t 1s easy to invert ¢ on each atfine open set such as P%,: Send
(..., U, .. )to((ulo,... Uno), (Ho1, Ugas - - - » Upm) ). SO ¢ actually induces 1so-
morphlsms of the athine products P} x P7 onto their images. This allows us
finally to deal with arbitrary closed sets X < P”, Y < P™ X is the union
of 1ts 1ntersections X; with the P, and each X; is closed in the affine space
P;; stmilarly for Y. Thanks to (1.4), X; x Y;1s closed in P} x P7} and hence
maps 1somorphically onto a closed subset of the afline open set (P} x P7)
in ¢ (P" x P™). It follows from the affine criterion (1.6) that ¢ (X x Y) is
closed in o (P" x P™), which in turn 1s closed in P4 To sum up:

Proposition. Themap @:P" x P™ — P"™*"7" Jefined above is a bijection
onto a closed subset. If X is closed in P" and Y is closed in P™, then (X X Y)
is closed in Prmntm, |

Thus the Cartesian product of two projective varieties can be identified
with another projective variety. Fortunately, the way in which this is done
turns out to conform well with the categorical notion of “product” (2.4).
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1.8. Flag Varieties

Some of the most interesting examples of projective varieties (from our
point of view) result from the following construction, which goes back to
Grassmann.

Let V be an n-dimenstional vector space over K, with exterior algebra AV
(the quotient of the tensor algebra on V' by the 1deal generated by all v & v,
v e V). Recall that AV 1s a finite dimensional graded algebra over K, with

ANV =K, A'V = V. Ifv,, ..., v,is an ordered basis of V, then the (:) wedge

(or exterior) products v;, A" A v, (iy < i, < < iy) form a basis of A?V.
Notice that A"V 1s 1-dimensional, i.e., the wedge product of an arbitrary basis
of V 1s well-determined up to a nonzero scalar multiple. If W is a subspace
of V, then AW may be identified canonically with a subspace of A?V.

The preceding remarks show that there is a map ¥ from the collection
® V) of all d-dimensional subspaces of V into P(AV), defined by sending a
subspace D to the point in projective space belonging to AD (d > 1). We
assert that ¥ 1s injective. Indeed, let D, D’ be two d-dimensional subspaces.

Choose a basis of V so that vy,...,v,; span D, while v,,...,v,,,_; span D’
Then v,A -+ Avzcannot be proportionaltov,A * <+ Av, 4 unlessr = 1,1.e.,
unless D = D',

In order to endow &, (V) with the structure of a projective variety, it now
suffices to check that the image of / is closed. Thanks to the affine criterion
(1.6), it is enough to do this on affine open sets which cover P(AV). (Of
course, the extreme cases d = 1,d = n, require no checking, since then ® (1)
is respectively P(V) or a point.)

Fix an ordered basis (v,...,v,) of V and the associated basis elements
v, A 0 Av;, of A*V. A typical affine open set U in P(A?V) then consists of
points whose homogeneous coordinate relative to (say) v A - -+ Av,; 1S non-
zero. Let us show that Im ¢ intersects this U in a closed subset. Set D, =
span of vy, . . ., v,. Clearly, (D) belongs to U if and only if the natural pro-
jection of V onto D, maps D isomorphically onto D,. In this case, the

inverse images of vq,...,v,; comprise a basis of D having the form: v; + x;(D),

where x;(D) = ) ;»4 a;;0;. (And this is the only basis of D having this form.)
The wedge product looks like:

UIA "t AUy + Z (VA - AX(DIA - Avy) A+ (%),
[<igd

where (*) involves basis vectors with two or more of v,...,v, omitted. Here
DIA T AX DA AUy = ) s a (VA o ADGA c 0 AD,), With v; substituted
for v;. Thus +a;(1 <i < d,d + 1 < j < n) may be recovered as the coeffi-
cient of the basis element v;A -+ AD;A -+ Avy AD; (v; omitted), in the wedge
product of the above basis of D. Furthermore, the coefficients in (%) are
obviously polynomial functions of the q;;, independent of D.

Conversely, 1f we prescribe the d(n — d) scalars q;; arbitrarily, it is clear
that the resulting vectors v; + x;(D) span a d-dlmensmnal subspace of V

1.8. Flag Varieties y

whose image under V lies in U. The upshot is that Im y N U consists of all
points with (affine} coordinates (... q;;. .., fila;;) . ..), where the g;; are arbi-
trary and the f, are polynomial functions on A“*~%). This set can be viewed
as the graph of a morphism from A“"~% into another affine space. As such,
it is closed in the Zariski product topology (cf. Exercise 8); and 1n turn
Im iy n U isclosed in U (cf. (1.4)).

The Grassmann varieties ® (V) lead us to other projective varieties, as
follows. A flag in V is, by definition, a chain 0 c V; - < V, =V of
subspaces of V, each properly included in the next. A full flag is one for
which k = dim V (i.e, dim V., /V; = 1). (V) denotes the collection of all
full flags of V. We want to give it the structure of projective variety (to be
called the flag variety of V).

Thanks to (1.7), it is possible to give the Cartesian product ® (V) x
G,(V) x -+ x G,(V) the structure of a projective variety. ¥(V') identifies in
an obvious way with a subset, which we need only show to be closed. To
avoid cumbersome notation, we just consider the product ® (V) x ®,, (V).
Once it is proved that the set S of pairs (D, D’) for which D < D’ is closed,
the reader should have no difficulty in completing the argument.

As before, we may fix a basis v,,..., v, of ¥, and consider the various
affine open subsets of P(AV), P(A*F lV) whose products cover the product
variety. We can limit our attention to pairs such as U, U’, where U is defined
as before relative to v4A -+ Avy, and U’ consists of points in P(A?" V) with
nonzero coordinate relative to v(A - -- AU+ 1. (The set S is already covered
by products of the form U x U’) If D (resp. D’) has image in U (resp. U'),
we get (as before) canonical bases: v; + x;(D), 1 < i< d;v; + (D), 1 <
i <d+ 1.Here x;(D) = Y ;o4 a;0;, V(D) = ). j>a+1 bijv;. A quick compu-
tation with these bases shows that D < D’ if and only if x;,(D) = y;(D’)
a; g+ 1(Var1 + Yar (D)) for 1 < i < d. This in turn translates into certain
polynomial conditions on the g;;, b;;, whence S intersects U x U’ 1n a
closed set.

Exercises

1. If I, J are ideals in K[ T, . .., T, ], recall that IJ is the ideal consisting of
all sums of products f(Mg(T)(f(T)e I, g(T) € J). Prove that ¥ (1J) =
v"(I ~ J). Show by example that IJ may be included properly in I n J.

2. Each radical ideal in K[T,, ..., T, ] is an intersection of prime ideals.

3. Any subspace of a noetherian topological space is also noetherian.

4. Let X be a noetherian topological space, Y a subspace having irreducible
components Y, . . ., Y,. Prove that the Y; are the irreducible components
of Y.

5. Find an open subset of A? which (with its given Zariski topology) cannot
be isomorphic to any affine variety. [ Delete the point (0, 0). ]

6. Show that a map between affine varieties which is continuous for the
Zariski topologies need not be a morphism. [Consider A* — A'.]




16 . | Algebraic Geometry

7. Prove that projection onto one of the coordinates defines a morphism
A" — A', which in general fails to send closed sets to closed sets.
8. The graph of a morphism X — Y (X, Y affine varieties) is closed in
X x Y. What if X, Y are projective varieties?
9. Complete the proof in (1.8) that (V') is closed in the product

®.(V) x - x B(V).

10. Show that every automorphism of A' (= bijective morphism whose
mverse 18 again a morphism) has the form: x > ax + b (a e K*, b e K).

11. It ¢: X — Y 1s a morphism of affine varieties for which ¢(X) is dense
in Y, then ¢*:K[ Y| — K[ X ] is injective.

12. Let X be an wrreducible affine variety, f € K(X). The set of points xe X
at which f 1s defined (i.e., f can be written as g/h, with g, h e K| X ] and
h(x) # 0)1s open.

Notes

Good references for the sort of algebraic geometry we require are
Dieudonné [ 14], Hartshorne [ 1], Mumford [3, Chapter I and Shafarevich

[1], [2].

2. Varieties

The notion of “prevariety” is introduced here, as a common generalization
of the notions of affine and projective variety. After defining morphisms and
products, we discuss in (2.5) the additional assumption (“Hausdorff axiom”)
which characterizes “varieties”.

2.1. Local Rings

A point on a projective variety has an open neighborhood which looks
just like an affine variety. It is this “local” behavior which suggests the correct
route to follow. There is an analogy with the theory of manifolds, where each

point has a neighborhood indistinguishable from an open set in euclidean

space. But the Zariski topology does not separate points in the ordinary way;
so our construction will lead (in the irreducible case) to a covering by affine
open sets which overlap a great deal.

To pinpoint the local behavior of an affine variety X, assume first that
X 1s irreducible, with function field K(X). Consider the rational functions f
which are defined at x € X, ie., for which there is an expression f = g/h
(g, h € K| X']) with h(x) # 0. One sees easily that these functions form a ring
0, including K[ X |, which we call the local ring of x on X. In fact, ¢.. results
from the construction described in (0.10) and is a “local ring” in the technical
sense: If R = K[ X |, P = #(x), then Rp = (... The unique maximal ideal 1,
of 0, consists of all rational functions representable as g/h (g, h € K[X]),
where g(x) = 0, h(x) # 0.

2.2. Prevarieties .

The local rings of an irreducible affine variety X actually determine K[ X |
(hence determine X), as the following proposition shows.

Proposition. Let X be anirreducible affine variety. Then K[ X | = () xex ¥

Proof. K[X]is evidently included in all @,. Conversely, let f € K(X) be
.1 all 0,. This means that for a given x, f = g/h for some g, h € K[ X ] such
that h(x) # 0. Of course, this representation of f is not unique. We consider
the ideal I generated by all possible denominators h, as x ranges over X. If
[ were a proper ideal in K[ X ], it would have a common zero (by the analogue
for X of the Nullstellensatz (1.1)), which is impossible. So I = K[ X |, allowing
us to write 1 = Y't;h;, with f = g,/h; for each i. Thus, /' = ) g;t; € K[X]. L

7.2. Prevarieties

Let X be an irreducible affine variety. To each (nonempty) open subset
U < X, we may associate the subring of K(X) consisting of functions which

are regular (or everywhere defined) on U:

Ox(U) = (] 0.

xelU

For example, Proposition 2.1 shows that Ox(X) = K[ X ] or, more generally,
that Ox(X ;) = K[X,] = K[X ], (since the local rings of points on the affine
variety X , coincide with those on X).

0 is an example of a sheaf of functions on X. For our purposes, a sheaf
of functions on a topological space X is a function % which assigns to each
open U = X aK-algebra ¥ (U) consisting of K-valued functions on U, subject
to two further requirements:

(S1) If U = V are two open sets, and f € F(V), then f|U € #(U).

(S2) Let U be an open set covered by open subsets U; (i running over
some index set I). Given f; € #(U,), suppose that f; agrees with f;on U; n U

for all i, j € I. Then there exists f € #(U) whose restriction to U, is f; (i € I).
If X is an arbitrary affine variety, with irreducible components X;, define

as follows a sheaf of functions on X which extends all 0y . For an open
neighborhood U of xe X, call /: U — K regular at x if there exist g, e K[X]
and an open ¥V < U containing x such that forall ye V, A(y) # 0 and f(y) =
g(»)/h(y). Then let O,(U) be the ring of functions which are regular at all

points of U. In particular, Oy (X) = K[X] (adapt the proof of Proposition 2 1).
In case X is an irreducible affine variety,” we can recover the local rings

0. as stalks of the sheaf Oy: The open sets containing a given point x form
an inverse system, relative to inclusion, and it is immediate that O, =
lim O,(U) (direct limit over these U), since in this case the direct limit 1s just

U . *
the union (in K(X)). (This suggests defining O, as such a direct limit when

X 1s not irreducible.)
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With the example P" 1n mind, we next define a prevariety X to be a
noetherian topological space, endowed with a sheaf 0 of K-valued functions,
such that X is the union of finitely many open subsets U, each isomorphic to
an affine variety when given the restricted sheaf of functions 04| U.. It is clear
how (5 induces a sheaf of functions on any open subset of X. The notion of
isomorphism between pairs (X, Oy ) and (Y, 0y) 1s also clear (cf. (2.3) below):
We require a homeomorphism X — Y which induces an isomorphism of
K-algebras 0y (V) — O, (U) for corresponding open sets U, V. The elements
of Uyx(U) are called the regular functions on U. The open sets U; above are
called affine open subsets of X. More generally, we give this name to any open
subset of X which, with its induced sheaf of functions, is isomorphic to an
affine variety. So the topology of X has a basis consisting of affine open sets
(coming from principal open subsets of affine varieties).

Let us see that X = P" qualifies as an 1rreducible prevariety, given the
Zariski topology and a covering by open subsets U, (each corresponding to
A"), as in (1.6). The sheaf Oy has to be defined so as to induce on U, the sheaf
canonically attached to A". But this is easy enough. First attach to x € U,
its local ring @, 1n K(A"); note that this is independent of the choice of U;
containing x. Then define O(U) = [},v O,, to get the desired sheaf on X.

Arbitrary projective varieties X < P" can be given an induced structure
of prevariety. This is true more generally for open or closed subsets of a
prevariety X, as follows. If U 1s open in X, then @y restricts to a sheaf of
functions on the (noetherian) space U, and U is a union of affine open
sets. If Z is closed in X, define @,(U) for an open subset U of Z to be the
set of functions f: U — K satisfying the condition: each xe U has an open
neighborhood ¥V in X such that f=g on UnV for some ge@,(V). A
covering of X by afline open sets induces a similar covering of Z, making Z
a prevariety.

Call a subset of a topological space locally closed if it is the intersection
of an open set and a closed set. We call the locally closed subsets of a pre-
variety X, with their induced sheaves of functions described above, the
subprevarieties of X. Actually, the cases of interest to us all turn out

to be obtainable as open subsets of projective varieties: these are called

quasiprojective varieties. But it is more natural to work in a slightly more
general framework.

Notice that when X is an irreducible prevariety, covered by affine open
sets U, the wrreducibility forces U; n U; to be nonempty. It follows that
U;, U; must have the same function field, which we call the function field
K(X) of X.

2.3. Morphisms

A mappmg ¢:X — Y (X, Y prevarieties) should be called a morphism
only 1f 1t respects the essential structure of X: its topology and its sheaf of
functions. So we impose the following two conditions:
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(M1) ¢ is continuous.

(M2) If V < Y is open and U = ¢~ *(V), then f o ¢ € Ox(U) whenever
f e UV).

It is easy to check that this definition is equivalent to the earlier one (1.5)
when X, Y are afline varieties. Evidently the restriction of a morphism to
a subprevariety is again a morphism. Note too that we get an obvious notion
of isomorphism for prevarieties.

Let us take a closer look at condition (M2). The assignment f > f o @
is a K-algebra homomorphism Oy(V) — Ox(¢~ *(V)), which we denote ¢*
and call the comorphism of ¢. (Strictly speaking, ¢* here ought to be denoted
@i or the like.) In case X, Y are irreducible and ¢(X) is dense in Y, the co-
morphism of ¢ can be thought of globally as a ring homomorphism K(Y) —
K(X), whose restriction to @y(V) has image in Ox{¢ ™ *(V)). Here ¢* is injec-
tive, enabling us to treat K(X) as a field extension of K(Y) (cf. the affine
case (1.5)).

What effect does a morphism ¢: X — Y have on local rings? Say X, Y are
irreducible with @(X) dense in Y, ¢™:K(Y) — K(X). Since 0, (x € X)) 1s Just
the union {( = direct limit in this case) of all O(U) (U an open neighborhood
of x), and similarly for @, (y € Y), it is clear that ¢™ maps 0, into O, (sending
M, into m,). Conversely, this condition (at least in the irreducible case)
could be used in place of (M2), since Ox(U) = [},cv ¥

It is important to be able to recognize when a mapping of prevarieties is
a morphism. For this we develop an affine criterion.

Proposition. Let ¢ . X — Y be a mapping (X, Y prevarieties). Suppose
there is a covering of Y by affine open sets V; (i € I, I a finite index set) and a
covering of X by open sets U;, such that:

(@) oU;) = Vidiel);

(b) f o @e OxU;) whenever f € Oy(V,;).

Then @ is a morphism.

Proof. First we reduce to the case in which all U, are also agffine: If U
1s an affine open subset of U;, then (b) shows that composing with ¢ sends
Oy(V;) = K[V;]into Ox(U) = K[U]. So it does no harm to replace U, by an
affine open covering (thereby enlarging the index set I).

Now the hypotheses insure that the restriction of ¢ to U; 1s a morphism
of afline varieties ¢,: U; — V;, since ¢, is completely determined by the K-
algebra homomorphism ¢@F:K|[V;]| —» K[U;] (cf. (1.5)). In particular, ¢; is
continuous. This makes 1t obvious that ¢ 1s continuous.

It remains to verify (M2). Takeanopenset V < Y,andlet U = ¢ ~Y(V). If
f € Oy(V), then (b) implies that f o € Ox(@ {V N V))).But o (V n V) o
UnNnU,so fopeOyUn U, foralliel. In turn, since U is the union of
the U n U, and since (y 1s a sheal, f o ¢ € Ox(U).




20 . | Algebraic Geometry

For the rest of this subsection we concentrate on irreducible prevarieties.
It is clear that a regular function f € Ox(X) defines a morphism X — A',
but of course a rational function need not be regular (cf. projective varieties!).
Nonetheless, given f € K(X), and given an affine covering {U;} of X, the
subset of U; where f is defined 1s open (Exercise 1.12), so the subset U of
X where f is defined is also open. Thus f induces a morphism U — A'. In
turn, the subset of U on which f # 0 is open and may be denoted X 5

Similarly, we can define " (f) = {xe X | f(x) = 0} for f € O x«(X), as in the -

affine case.

Two irreducible prevarieties X, Y may have function fields related by a
monomorphism ¢: K(Y) — K(X). We claim that ¢ induces a “partial mor-
phism”, 1.e., a morphism from a (nonempty) open subset of X into Y whose
comorphism is essentially o. Indeed, we may first replace X, Y by affine open
subsets; this has no effect on the function fields. Thus K(Y) is of the form
K(fis.-., fo), where K[ Y] = K[ f1,..., f,]- Set g; = o(f;) € K(X). Cut down
as above, to an open subset of X on which all g; are defined, then further to
an affine open set U for which all g; e K[ U ]. Now ¢ takes K[ Y] into K[ U],
so there 1s a unique morphism U — Y having this as comorphism.

Finally, we introduce the notion of birational morphism: ¢: X — Y is
birational if ¢* is an isomorphism of K(Y) onto K(X). Irreducible prevarieties
with 1somorphic function fields are called birationally equivalent; they need
not be isomorphic (cf. A" and P").

2.4. Products

For pairs of affine or projective varieties, we were able to give the same
type of structure to the cartesian product set (cf. (1.4), (1.7)). For arbitrary
prevarieties, the categorical notion of “product” is our surest guide. Given
objects X, Y, a product of X and Y consists of an object Z, together with
morphisms n,:Z - X, n,:Z — Y (projections), satisfying the universal
mapping property: For any object W and any morphisms ¢, :W — X,
@,: W — Y, there exists a unique morphism : W — Z such that 7y = o,
(i = 1, 2). The definition is constructed so as to insure the uniqueness of
the product, if 1t exists, but the existence has to be settled by a specific
construction.

For prevarieties X, Y, the underlying set of a product prevariety would
have to be the cartesian product: apply the universal property to morphisms
W — {x}, W — {y}, where W is a prevariety consisting of a single point, to
conclude that points of Z correspond bijectively to pairs (x, y). The construc-
tion 1n (1.7) suggests that we give X X Y the structure of a prevariety by
patching together products of various affine open subsets of X, Y. So we
begin by examining more closely the affine situation.

Proposition. Let X < A", Y < A™ be affine varieties, with R = K[ X],
S = K[Y]. Endow the cartesian product X x Y with the Zariski product
topology (1.4). Then:
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(a) X x Y, with the projections pri: X X ¥ - X andpry: X x ¥ = ¥,
is a product (in the categorical sense) of the prevarieties X, Y, and K[ X x V] =
R ®. S.

(b) If (x,y) € X x Y,0O,  is the localization of O, ®y O, at the (maximal)

idealm, ® 0, + 0, @ m,.

Proof. (a) First we pin down the affine algebra of X x Y, which by its
construction is a closed subset of A"™™. Via the projections, polynomial
functions on X, Y induce polynomial functions on X x Y. Assign to a pair
(g, h) € R x § the polynomial function f(x, y) = g(x)a(y) on X x Y. This
assignment is bilinear 1n each variable g, h, so 1t induces a K-algebra ho-
momorphism 6:R®x S - K| X x Y]. It is clear that each polynomial in
m -+ n indeterminates T,,...,T,, U;,..., U, can be expressed as a finite
sum of products g(T)h(U). This shows that ¢ 1s surjective (polynomial func-
tions on X x Y being the restrictions of polynomial functions on A™™").

To show that ¢ is injective, let f = ) ¢g; @ h; be sent to 0. We may
i=1

assume that f is written with » minimal. In case f # 0, we claim that r = 1.
Indeed, not all A, are O in this case, so we can fix some y € Y for which not
all h,(y) = 0. Since ) g;(x)h;(y) = 0 for all x e X, we get Y hi(y)g; = Oin R,
i.e., the g; are linearly dependent over K. If r > 1, we could reduce by one
the number of g; and get a contradiction to the minimality of . So » = 1.
Now the argument shows that g; = 0,s0 f = 0.

It remains to verify the universal mapping property for X x Y, Given a
prevariety W and morphisms ¢,: W - X, ¢,: W — Y, we have to construct
a suitable morphism : W — X x Y. There is a unique such mapping of sets
which makes ¢; = pr; o . To check that 1t 1s 2 morphism, we use the afhine
criterion (2.3). X x Y 1is afhine, so it just has to be seen that { pulls back
polynomial functions on X x Y to regular functions on W. K| X x Y] being
generated by the pullbacks of K| X |, K| Y| under pr;, and the ¢; being mor-
phisms by assumption, the conclusion follows.

(b) If X, Y are irreducible, sois X x Y (1.4); part (a) shows that R &, S
1s an integral domain, with fraction field isomorphic to K(X x Y). Now we
have inclusions R® S « 0, ® O, < O, - Since O, ,, is the localization of
R ® S at the ideal m, ,,, it is equally well the localization of ¢, ® @, at
its 1deal »» vanishing at (x, y). Evidently m, ® 0, + 0, ® m, < m. Con-
versely, let f = Y g, ® h; € m, with g, € O, h; € O,. If g{x) = a;, h(y) = b,
then f — Zaibi = Z(Qi — ;) ® h; + Zai ®h —blem, @O, + 0, ® m,.
This forces ) a;b; = 0 and concludes the proof.

The proposition shows that X x Y has intrinsic meaning in the category
of prevarieties, when X and Y are affine, independent of any particular
embeddings in affine space.

In order to treat the arbitrary prevarieties X, Y, we concentrate first on
the irreducible ones. To endow the cartesian product X x Y with the struc-
ture of prevariety, we have to specify a topology and a covering by affine
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open sets. For all affine open sets U = X, V < Y, and all finite sets of poly-
nomial functions f; on U, g; on V, we decree that the principal open sets
(U x V)g,,, should be basic open sets in X x Y. Notice that these sets do
form a basis for a topology, since the intersection of two of them 1s another
of the same type. Moreover, the description of the affine algebra of U x V
in part (a) of the proposition shows that the topology induced on U x V
coincides with the Zariski product topology there.

The function field of X x Y will have to be that of U x V, where
U c X,V < Y are affine open sets. Since K|U x V]| = K[U| ® K[ V], it
1s evident that K(U x V) can be described as the field of fractions of (the
integral domain!) K(U) @ K(V'). Call this field F. Part (b) of the proposition
forces us to define the local ring of (x, y) € X x Y to be the localization of
O, ® 0, at m, ® O, + O, ® m,. In turn, we get a sheaf of functions on
X x Y by assigning to each open set U the intersection of all 0, ., (x, y) e U.
(This agrees on each product of affine open sets with the affine product
already defined.) It 1s clear that X x Y thus acquires the structure of pre-
variety. Moreover, the set-theoretic projections onto X, Y are morphisms:
use the affine criterion (2.3).

To check the universal mapping property, let W be a prevariety, with
morphisms ¢: W — X, ¢,: W — Y. As before, there is a unique map of sets
W W — X x Y for which ¢; = pr; o . We appeal to the affine criterion (2.3)
to prove that ¥ 1s a morphism: By construction, products U x V of affine
opensetsin X, Y are affine open sets which cover X x Y.Open sets of the form
W' = o (U)o, (V) cover W, and the universal property of U x V
shows that the restriction of iy to W' is a morphism.

This takes care of the irreducible case. For arbitrary prevarieties X, Y,
having irreducible components X;, Y;, we form the prevarieties X; x Y; as
above. We then topologize X x Y by declaring that a set is open if and only
if 1ts 1ntersection with each X; x Y, 1s open. Finally, we endow X x Y with
a sheaf of functions as 1n (2.2). It 1s then a routine matter to verify that X x Y
is a categorical product. Therefore:

Theorem. Products exist in the category of prevarieties.

The reader should check that the construction of products of projective
varieties (1.7) 1s duplicated abstractly by the foregoing process. However, the
embedding 1n projective space specified in (1.7) is needed in order to see that
the resulting product 1s again projective.

2.5. Hausdorff Axiom

It 1s possible to concoct examples of prevarieties which are geometrically
pathological. For instance, let X be covered by two copies U, V of A', with

xe U equal to xe V except when x = 0 (“the affine line with a point
doubled”).

7.5. Hausdorff Axiom s

A prevariety X is called a variety if it satisfies the Hausdorff axiom:
The diagonal A(X) = {(x, x)|x € X} is closed in X x X. (In the category of
topological spaces, with X x X given the ordinary product topology, this
condition 1s equivalent to the usual Hausdorff separation axiom.) An equiva-
lent condition is this: (*) For morphisms ¢, : Y — X, Y any prevariety,
{ye Y[qo( y) = ¥(y)} is closed in Y. Indeed, by applying (*) to the situation

X x X % X, we get A(X) closed in X x X; in the other direction, use the

PI;
@ XY Pry

set-up ¥ = X x X 3 X, the inverse image of A(X) being {ye Y|op(y) =
()} "

The example above fails to pass the test (*), if we take the two maps
Al - U c X,A' > V < X, since A' — {0} is not closed in A'. On the other
hand, varieties do abound. |

Examples: (1) An affine variety is a variety. (The diagonal is clearly given

by polynomial conditions.)
(2) Subprevarieties of a variety are again varieties. These are therefore

called subvarieties.
(3) If X, Y are varieties, so1s X x Y.
(4) A projective variety is a variety. (This results from the following nice

criterion.)

Lemma. Let X be a prevariety, and assume that each pair x, y€ X lie in
some affine open subset of X. Then X is a variety.

Proof. Given a prevariety Y and morphisms ¢, ¥:Y - X, let Z =
{ye Y|p(y) = ¥(y)}. We have to show that Z is closed. If z€ Z, set x =
o(z), y = Y(z). By hypothesis, x and y lie in some affine open set V. Then
U= ¢ (V) iy~ (V) is an open neighborhood of z, which must meet Z.
But Zn U = {ye Ulp'(y) = y'(y)}, where ¢', y":U — V are the restric-
tions. Since V is a variety, Z n U is closed in U. This means that U — (Z n U)
is an open set not meeting Z, so in particular it cannot contain z. We conclude
that z € Z.

The following proposition shows why it is better to deal with varieties
than with prevarieties:

Proposition. Let Y be a variety, X any prevariety.

(a) If p: X — Y is a morphism, the graph T',, = {(x, ¢(x))|x € X } is closed
inX x Y.

(b) If @, : X — Y are morphisms which agree on a dense subset of X, then

¢ =Y.

Proof. (a) T, 1stheinverse image of A(Y) under the morphism X x ¥ —
Y x Y which sends (x, y} to (¢(x), y)).
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(b) The set {x € X|p(x) = y(x)} is closed in X since Y is a variety. It is
dense by assumption, so it coincides with X. |

In practice, we shall deal only with varieties in what follows: affine and
projective varieties, their subvarieties, their products.

Exercises

1. Show that the definition of “morphism” (2.3) agrees with that given for
affine varieties in (1.5).

2. If p:A' - A' is a birational morphism, then ¢ is necessarily an iso-
morphism.

3. Let char K = p > 0. Show that the assignment T, T? determines a
K-algebra monomorphism K[ T] — K[T], which is the comorphism of a
morphism ¢:A" — A" (called the Frobenius map). Describe ¢ explicitly.

4. Let X, Y be prevarieties. Prove that the projections X x Y — X,
X x Y — Y are open maps (i.e., send open sets to open sets). Must they
send closed sets to closed sets?

5. If X, Y are prevarieties, and W is open (resp. closed) in X, then W x Y
is open (resp. closed) in X x Y.

6. Prove that a topological space X is T, if and only if {(x, x)|x € X} is
closed in X x X (given the ordinary product topology).

7. Let @, ¥:Y - X be morphisms (X, Y prevarieties). Prove that {ye Y|
o(y) = Y(y)} is locally closed in Y. |

8. It Y 1s a prevariety for which Proposition 2.5 (a) (resp. (b)) holds for all
prevarieties X, then Y is a variety.

9. Let ¢: X — Y be a morphism of varieties. Prove that pr, induces an iso-

morphism of the graph I, = X x Y onto X.

Notes

We have followed Mumford [ 3,1§6]. The current terminology is “variety”
(resp. “separated variety”) in place of our “prevariety” (resp. “variety”); but
we prefer to follow the older usage, since all prevarieties we shall encounter
are in fact varieties.

3. Dimension

Intuitively, a point is O-dimensional, a curve 1-dimensional, a surface
2-dimensional. The object of this section is to give precise algebraic meaning
to the geometric notion of dimension. This in turn will allow us to describe
the behavior of varieties under morphisms, in the following section.

3.1. Dimension of a Variety

With an 1rreducible variety X is associated its field K(X) of rational
functions. As a finitely generated field extension of K, K(X) has finite tran-
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scendence degree over K (0.4), abbreviated tr. deg., K(X). This number is
called the dimension of X, written dim X. For example, dim A" = dim P" = ».
So the dimension measures the maximum number of algebraically indepen-
dent functions on X (or the number of “parameters” required to describe X).
In case X has more than one irreducible component,say X = X, v+ - U X,
it is reasonable to define dim X as max (dim X,).

Let X be 1rreducible. Since K(X) = K(U) for any affine open subset U,
dim X = dim U. Similarly, dim X = dim X ,for any f € K(X). For example,
GL(n, K) is the principal open subset of A™ defined by nonvanishing of the
determinant, so its dimension is n2.

.

Proposition. Let X, Y be irreducible varieties of respective dimension
m,n Thendim X x Y =m+ n

Proof. In view of the preceding remarks, we may as well assume that
X, Y are affine, with X < AP, Y < A% (The reader who prefers to avoid
embedding X and Y in affine spaces can proceed more intrinsically by using
the identtfication K[ X | ® K[ Y] = K[X x Y] (24).) If S,...,S, (resp.
Ty, ..., Ig) are the coordinates on A? (resp. A?), their restrictions s; {resp. t;)
generate K(X') (resp. K(Y)). From these generating sets we can extract tran-
scendence bases (0.4), say sy, ...,s,and t4,..., ¢, Itisclear that K(X x Y) =
K(S1, ..., Sp £1,...,t,) and that K(X x Y) is algebraic over the subfield
K(S1, .- -5 Sms L1s - - -, B). SO 1t suffices to show that the latter field is purely
transcendental over K. Suppose there is a polynomial relation f(sq, . . ., S,,
ty, ..., t,) = 0. Then for each fixed x = (x;,...,x,) = (s¢(x), ..., 5,(x)) e X,
the polynomial function f(x,,..., x,, t;,...,t,) vanishes on Y. The alge-
braic independence of the ¢; forces all coefficients g(x,, . . ., x,,) of the polyno-
mial f(x,,..., x,, Ty,...,T,) to be zero. In turn, each ¢(s;,...,s,) = 0
(since x € X was arbitrary), so the algebraic independence of the s; forces all
9S4, ...,S,) = 0. Finally, f(S;,...,S,,T,...,T,) = 0.

3.2. Dimension of a Subvariety

The following is a first step toward understanding how dimension varies
inside a given variety.

Proposition. Let X be an irreducible variety, Y a proper, closed, irre-
ducible subset. Thendim Y < dim X.

Proof. It 18 harmless to assume that X is affine, say of dimension d. Let
R = K[X], R = K[Y] = R/P (where P is a nonzero prime ideal of R). It is
clear that transcendence bases for K(X), K(Y) can already be found in R, R.
Suppose dim Y > d, and select algebraically independent elements X,, . . .,
X4 € R (images of x,, . . ., x, € R, which are clearly algebraically independent
as well). Let f € P be nonzero. Since dim X = 4, there must be a nontrivial
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polynomial relation g(f; x;,..., x5 = 0, where g(T,, T,..., T)eK[T].
Because f # 0, we may assume that T, does not divide all monomials in
g(To, T,..., Ty, 1, WT,, ..., T) =90, Ty, ..., T, is nonzero. Now
WXy, ..., Xy = 0, contradicting the independence of the X..

Define the codimension codimy Y of a subvariety Y of X to be dim X —
dim Y, |

Corollary. Let X be an irreducible affine variety, Y a closed irreducible
subset of codimension 1. Then Y is a component of ¥"(f) for some f € K[X].

Proof. By assumption, Y # X, so there is a nonzero f € K[ X | van-
ishing on Y. Then Y < ¥°(f) & X. Let Z be an irreducible component of
?(f) containing Y. The proposition says that dim Z < dim X, while dim
Y < dim Z, with equality only if Y = Z. Since codimy Y = 1, equality
must hold.

In the situation of the corollary, it is not usually possible to arrange that
Y be precisely 7' (f). However, this can be done when Y has codimension 1
in some affine space A", or more generally, when K[ X | is a unique factoriza-
tion domain (Exercise 6).

If subvarieties of codimension 1 (and hence, by induction, subvarieties
of all possible dimensions) are to exist, the corollary indicates the shape they
must have. We aim next for a converse to the corollary.

3.3. Dimension Theorem

The zero set in A" of a single nonscalar polynomial f(T,, ..., T,)is called
a hypersurface; its irreducible components are just the hypersurfaces defined
by the various irreducible factors of f(T). More generally, when X is an affine
variety, a nonzero nonunit fe K[ X | defines a hypersurface in X (whose
components are not so easy to characterize unless K| X | happens to be a

unique factorization domain). For example, SL(n, K) is a hypersurface in
GL(n, K), or in A", defined by det (T, i) =1

Proposition. All irreducible components of a hypersurface in A" have
codimension 1.

Proof. It suffices to look at the zero set X of an irreducible polynomial
p(T). We can assume that (say) T, actually occurs in p(T) (which is nonscalar
by assumption). Let t; be the restriction of T; to X, so K(X) = K(t4, ..., t,).
We claim that ¢4, . . ., t,_ are algebraically independent over K. Otherwise
there exists a nontrivial polynomial relation g(¢,,...,t,_;) = 0, whence
g(Ty, ..., T,—1) vanishes on X; but #(X) = (p(T)), forcing g(T) to be a
multiple of p(T). This is impossible, since T, occurs in p(T) but not in g(T).
We conclude that dim X > n—1, which must be an equality in view of
Proposition 3.2.
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We want to generalize this result to arbitrary affine varieties. Two tech-
nical tools are needed: Noether’s Normalization Lemma (0.7) and the norm
map Nes:E — F for a finite field extension E/F (0.5).

Theorem. Let X be an irreducible affine variety, 0 # fe K[ X | a nonunit,
Y an irreducible component of ¥ (f). Then Y has codimension 1 in X.

Proof. LetP = #(Y) c K[X ], andlet Y,,...., Y, be the components of
¥'(f) other than Y, P; = J(Y;). The Nullstellensatz (1.1) implies thaty/(f) =
PAnP,n -nP,.Choosege P, n---n P, — P (g exists, since Y 1S not
contained in ¥; v - -+ U Y)). Then X, i1s an (irreducible) affine variety having
the same dimension as X, and Y n X 1s precisely the zero set of f in X .
Since Y N X, 1s a principal open set in Y, 1t suflices to prove that its codi-
mension in X, 1s 1. So we might as well assume at the outset that ¥ = ¥7(f),
P = (/) _

Now we apply the Normalization Lemma (0.7) to the domain R = K[ X |:
R is integral over a subring S which is isomorphic to K[T,...,T,], d =
dim X. Let E = K(X), F = field of fractions of §; so E/F is finite. Notice that
N takes clements of R into S. Indeed, if & € R, then h satisfies a monic
polynomial equation over S, and by the definition of “norm”, N ,(h) is a
power of the constant term.

- Set fo=Ng(f)eS. Weclaim that foe P=+/(f). Say f*+a, f* 1+ +
a, =0 (a;€ S), with f, = (a,)™ (by the preceding paragraph). Then 0 = (f* +
alfk_l +taday b= (T o F amaf ) + fo,80 fyisan
R-multiple of f. -

If /(fo) denotes the radical of (fo) in S, what we have just shown implies
that /(fy) = P n S. The reverse inclusion also holds: Let g€ P n S, so in
particular, g € /(f) and g' = fhfor some [ € Z*, he R. Take norms to get
g = Nge(g') = Nep(f)Ng(h), where the first equality holds because
g€ S and the second because Ng, 1s multiplicative. As remarked earlier,
Nee(h) € S, so we conclude that a power of g is an S-multiple of £, as claimed.

Now we have replaced the prime ideal P = </(f) in R by the prime ideal
P n S = /(fy) in S. The advantage of this is that S is a unique factorization
domain. In particular, since the radical of (f;) is prime, it is very easy to see
that (up to a unit multiple) f; is just a power of an irreducible polynomial p,
whence P n § is just the principal ideal (p). It is clear that p is nonscalar.

If S is viewed as the affine algebra of A?, then P ~ S defines a hypersurface
in A%, which has codimension 1 (by the preceding proposition). This means
that the fraction field of S/(P n S) has transcendence degree d — 1 over K.
On the other hand, R integral over S clearly implies that R/P is integral over
S/(P n §), so the two fraction fields have equal transcendence degree. But the
fraction field of R/P is K(Y); therefore,dim ¥ = d — 1.

The theorem can easily be reformulated as an assertion about an arbitrary
irreducible variety X: If U is open in X, and O # fe (0x(U) is a nonunit, then
each irreducible component of the zero set of f in U has codimension 1 in X.
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(Deduce this from the theorem by cutting down to an affine open subset of
U which meets the irreducible component in question.)

3.4. Consequences

Theorem 3.3 guarantees that an n-dimensional Variety X has irreducible
closed subsets of all dimensions less than n. More precisely:

Corollary A. Let X be an irreducible variety, Y a closed irreducible sub-
set of codimension r = 1. Then there exist closed irreducible subsets Y, of codi-
mension l i<r,suchthat Yy o Y,o>---oY =Y.

o

Proof. It suffices to prove this for an affine open subset of X which
meets Y, so we may as well let X be affine. For r = 1, there is nothing to
prove. Proceed inductively. Since Y # X, there exists f # 0in #(Y),and Y
lies in some irreducible component Y; of 77(f). But Theorem 3.3 says that
codimy ¥; = 1.Byinduction, Y; has closed irreducible subsets of the required
type, going down to Y.

Another obvious induction yields:

Corollary B. Let X be an irreducible variety, fi, ..., f. € Ox(X). Then
each irreducible component of V' (f1, . . ., f.) has codimension at most r.

The inequality cannot be improved (e.g., let f; = f, = --- = £.). But we
can say something useful in the other direction, which accords with the geo-
metric 1dea that a surface (resp. curve, point) in 3-space should be definable
by one (resp. two, three) polynomial equations.

Corollary C. Let X be an irreducible affine variety, Y a closed irreducible

subset of codimensionr = 1. Then Y is a component of ¥"(f1, ..., f.) for some
choice of f; € K[ X ].

Proof. 1Itis easier to prove a more general statement : Given closed irre-
ducible subsets Y; o Y, > -+ o Y, with codimy Y; = i, there exist f; K[ X ]
such that all components of ¥'(f;, . . ., f;) have codimension ¢ in X and such
that ¥, is one of these components (1 < g < r). (This really is a more general
statement, thanks to Corollary A.)

The proof goes by induction on g (r being fixed). For g = 1, we appeal
first to Corollary 3.2 for the existence of f;, and then to Theorem 3.3 for the
fact that all components of ¥7( f;) have codimension 1.

Assume that f;,..., f,_{ have been found. Let Z, = Y_1.Z,,....2Z,be
the components of 7°(fi, ..., f,—1). Since each has codimension g — 1, none
can lie in Y,; so #(Z;) does not include #(Y,) (1 < i < m). The ideals .#(Z,)
being prime, it follows (0.9) that their union also does not include .# (Y,).
Choose f, vanishing on Y, but not vanishing identically on any Z,. If Z is

4.1. Fibres of a Morphism -

any component of 7°(f1,..., f,), then Z of course lies in one of the compo-
nents Z; of ¥ (f1,...,f,-1), as well as in ¥'(f,). Theorem 3.3 implies that
v (f,) N Z; has codimension 1 1n Z; (since f, does not vanish on Z;), hence
codimension g in X. On the other hand, Corollary B says that codimy Z < g.
So Z must have codimension precisely g. Since f, vanishes on Y, and ¥
has codimension g, we also conclude that Y, is one of the components of

V(f1s- s Ja)-

Exercises

1. A variety has dimension 0 if and only if it is a finite set of points.

2. Show that the dimension of the Grassmann variety ®,(¥V) of d-dimen-
sional subspaces of an n-dimensional vector space V (1.8) is d(n — d).
Try to determine the dimension of the flag variety §(V).

3. Let X be an arbitrary variety, Y a closed subset. Prove that dim Y <
dim X.

4, The dimension of an irreducible variety X is the largest d {for which

there exists a chain of (nonempty) closed irreducible subsets Xy, < X <

X, - < X; = X (all inclusions proper).

In a variety X, the closed irreducible sets satisfy ACC.

6. Let X be an irreducible affine variety for which K[ X ] is a unique fac-
torization domain, e.g., X = A". Prove that each closed subset Y of codi-
mension 1 has the form 77(f) for some f e K[ X]. [ Treat first the case:
Y irreducible. Show that minimal prime ideals of K[ X ] are principal. ]

N

Notes

The exposition here follows Mumford [ 3, I §7].

4. Morphisms

In the study of linear algebraic groups, two kinds of morphisms will be
especially prominent: group homomorphisms (which are simultaneously
required to be morphisms of varieties) and canonical maps G — G/H (where
the coset space has to be given a suitable structure of variety, not necessarily
affine). This section provides the essential tools for the study of these and
other morphisms. The proofs depend heavily on considerations of dimension.
As in §3, it 1s usually enough to treat irreducible varieties, which can often
(though not always) be assumed to be affine.

4.1. Fibres of a Morphism

By definition, the fibres of a morphism ¢:X — Y are the closed sets
®~(y), ye Y. (f @ were a group homomorphism, these would be cosets of
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Ker ¢.) We want to examine the dimensions of fibres and, in particular, to
prove that they are not “too small”. Of course, @~ }(y) is empty if y ¢ Im ¢,
so carc must be taken .in the formulation below. More generally, we shall
consider sets ¢~ (W), where W < Y is closed and irreducible.

It usually does no harm to replace Y by the closure of (X ); this facilitates
dimension comparisons. When X is irreducible and ¢(X) is dense in Y, we
say that ¢ is dominant. We could say the same when X is not irreducible, but
instead we reserve the term “dominant” for the following more special
situation: ¢ maps each component of X onto a dense subset of some com-
ponent of Y, and (X)) is dense in Y. Even when ¢ is dominant, the restriction
of ¢ to an irreducible component of ¢ ~Y(W) (W closed irreducible in Y)
certainly need not be dominant, viewed as a morphism from this component
to W. But when it 1s so, we say that the component in question dominates W.
One¢ other remark: When ¢: X — Y is dominant, X and Y irreducible, then
»* induces an mjection of K(Y) into K(X); in particular, dim X > dim Y.

Theorem. Let ¢: X — Y be a dominant morphism of irreducible varieties,
and set r = dim X — dim Y. Let W be a closed irreducible subset of Y. If Z
is an irreducible component of @~ Y(W) which dominates W, then dim Z >
dim W + r. In particular, if y € (X)), each component of @~ 1(y) has dimension
at least r.

Proof. I U is an afline open subset of Y which meets W, then U n W
1s dense in W. For comparison of dimensions, we could therefore replace
Y by U and X by the open subvariety ¢~ '(U). So we might as well assume
at the outset that Y 1s affine.

Let s = codimy W. According to Corollary C of (3.4), W is a compo-
nent of ¥ (f1,...,fy) for suitable f; € K| Y]. Setting g; = ¢*(f;) € Ox(X),
we conclude that Z lies in ¥ (g,..., g,). Since Z is irreducible, it lies in
some component Z, of this set. But W = ¢(Z), by assumption, while
o(Z2) < p(Zo) < V(f1,-.., f). W being a component of ¥(fi,..., f),
it follows that ¢(Z) = ¢(Z,) = W, whence Z, = ¢~ '(W). But Z is a com-
ponent of ¢~ (W), so Z = Z,. ie., Z is a component of ¥ (g,,...,g.).
Now Corollary B of (3.4) says that codimy Z < s. The theorem follows at
once.

In the situation of the theorem, we now know that (nonempty) fibres
of ¢ are not too small. Next we have to ask whether they can be “too big.”.
A simple geometric example helps to illustrate the possibilities: Define
¢:A%* > A® by ¢(x, y) = (xy, y). The image consists of the complement of
the “x-axis” along with the origin (0, 0). This is easily seen to be dense, so ¢
is dominant (though not surjective). If U is the principal open set in A2
defined by y # 0, then ¢ induces a bijection from U = ¢~ }(U) onto U,
which i1s even an 1somorphism of varieties. But the fibre ¢~ 1((0, 0)) is 1-

dimensional, consisting of all points (x, 0).

4.2. Finite Morphisms .

This example suggests that we look for an open set in the target variety
above which all fibres have the “correct” dimension: dim X — dim Y. But
if such an open set is to exist, it must lie in @(X). So the study of fibres of
o leads also to the study of the image of ¢. In preparation for the main the-
orem (4.3), we look briefly at a special type of morphism which turns out to

be surjective.

4.2. Finite Morphisms

Let ¢: X — Y be a morphism of affine varieties, If K[ X | is integral over
the subring ¢*K| Y ], we call ¢ finite. Notice that if X, Y are irreducible, and
if ¢ 1s also dominant, then K(X) is a finite algebraic extension of ¢*K(Y);
sodim X = dim Y. |

As a nonexample, take p(x, y) = (xy, y), discussed at the end of (4.1). Here
0*:K[S1, S;] = K[T4, T,] is injective and sends S, to T,T,, S, to T,. It is
easy to see that, e.g., T, fails to be integral over K[T,T,, T,]. But this also
follows from our next result.

Proposition. Let ¢:X — Y be a finite, dominant morphism of affine
varieties.

(@) If Z is closed in X, then o(Z) is closed in Y, and the restriction of ¢
to Z is finite. In particular, @ is surjective.

(b) Let X, Y be irreducible, with K| Y | integrally closed. If W is a closed
irreducible subset of Y, and Z is any component of ¢~ (W), then ¢(Z) = W.

Proof. LetR = K[X],S = K[Y]. Since ¢ is dominant, ¢* is injective;
we abuse notation by viewing S as a subring of R (of which R is an integral
extension by assumption). If I 1s an ideal of R, then R/I may be regarded
naturally as an extension of S/(I n S). This extension is clearly integral as well.

(@) Now let Z = ¥7(I) be closed in X, where I = #(Z). Then ¢ maps Z
into the zero set Z' of I' = I n S, which is a radical ideal of S (hence equal
to #(Z')). The corresponding affine algebras are R/I and S/I n S, so the
preceding remark shows that ¢:Z — Z’ i1s again finite (and dominant). It
suffices now to prove that any finite dominant morphism is surjective. If
y € Y, then to say that ¢(x) = y is just to say that ¢* sends the local ring of
y into that of x, or that ¢* sends the maximal ideal M’ of S vanishing at y
into the maximal ideal M of R vanishing at x. To show that ¢ is surjective,
we therefore have to show that M’ lies in some maximal ideal M of R (S still
being viewed as a subring of R). But this follows from the Going Up Theorem
(0.8), since R is integral over S.

(b) According to part (a), the restriction of ¢ to Z is again finite, so ¢(Z)
18 closed, irreducible. Now it suffices to show that dim Z = dim W. If
I = #(Z), I' = #(W), then I 1s a minimal prime ideal of R for which
I ~n§ o I' In turn, the Going Down Theorem (0.8) implies that I n S = [
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But as before, R/I is integral over S/I’, so the corresponding extension of
fields of fractions is algebraic and the dimensions coincide.

4.3. Image of a Morphism

Noether’s Normalization Lemma (0.7) says that a finitely generated
domain over K can be built up in two steps: a purely transcendental extension
followed by an integral extension. In order to deal with a pair of irreducible
affine varieties related by a dominant morphism ¢:X — Y, we have to
develop a relativized version of this.

Let S « R be two finitely generated domains over K, with respective
fields of fractions E = F. Denote by R’ the localization of R with respect to
the multiplicative system S* of nonzero elements of § (0.10). Of course, R’
still has F as field of fractions. On the other hand, R’ includes E and can thus
be viewed as a finitely generated E-algebra. The Normalization Lemma says
that R’ is integral over E[ x,, . . ., x, | for some x; € R’ which are algebraically
independent over E. It 1s clear that the x; can be chosen to lie in R (since
any denominators occurring are units in E). It 1s also clear that » = tr. deg. .F.

Now compare the integral extension E[ x4, ..., x,] © R’ with the exten-
sion S[x;,...,x,] = R. The latter need not be integral. But R is finitely
generated over S, and each generator satisfies a monic polynomial over
E[x,, ..., x,]. By choosing a suitable common denominator f € S, we can
therefore guarantee that R, is integral over S [x,..., x,] (R, S, the rings
of quotients gotten by allowing powers of f as denominators). This set-up
will be used to prove the following key theorem.

Theorem. Let ¢: X — Y be a dominant morphism of irreducible varieties,
r = dim X — dim Y. Then (a) Y has a nonempty open set U such that U <
o(X); (b) if all local rings of points of Y are integrally closed, we can choose
U in part (a) to have the property: if W < Y is an irreducible closed set which
meets U, and if Z is a component of ¢~ "(W) which meets ¢~ *(U), then dim
Z =dim W + r.

Proof. As in the proof of Theorem 4.1, it is harmless to replace Y by
an affine open subset. We can also assume that X is affine: If we have found
suitable open sets U; < Y for the restrictions of ¢ to finitely many affine
open sets X; which cover X, then U = [),U; clearly satisfies both (a) and (b).

Let R = K[X], S = K[Y]; view S as a subring of R via ¢* and use the
method described above to find x,, ..., x, € R, f € § such that R 1s integral
over S¢|xy, ..., X,], the latter being isomorphic to a polynomial ring over
S;. Now Ry, S, are the respective affine algebras of the principal open sets
X Ye(1.5);80 8] x4, ..., x,] may be viewed as the affine algebraof Y, x A"
The restriction of ¢ to X , can be factored as X, % Y, x A" % Y,, where i/ is
a finite morphism (and dominant). Set U = Y, and noticethat ¢~ '(U) = X ,.

Thanks to Proposition 4.2, ¥ 1s surjective, as is pry. Therefore U does lie
in ¢(X), proving (a). For (b), we may as welllet X = X, U = Y = Y, with
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the above factorization ¢ = pry o Y ( finite). The assumption on 10@3:1 rings
rorces K[Y] = S, to be integrally closed (2.1); so 5 Axy, ... x,] 18 also
integrally closed (0.6). If W is a closed irreducible subset of Y, Z any com-
ponent of o~ (W), then Z is a component of (W x A’) and therefore
maps onto W x A, with dim Z = dim y{Z) = dim W + 1 (4.2) (b}.

1t would actually be enough in (b) to assume that local rings are integrally
closed for points in a nonempty open set; this much turns out to be auto-
matically true: cf, (5.2) and (5.3).

For use in (21.1) we record explicitly an assertion which is contained in

the above proof when r = 0.

‘Corollary (of proof). Let ¢:X — Y be a bijective morphism of irreducible
parieties. Then dim X = dim Y and there exist affine open subsets U < X,
v < Y, such that o(U) = V and @|U is a finite morphism.

4.4. Constructible Sets

Part (a) of Theorem 4.3 can be used to characterize the image of an
arbitrary morphism. Recall that a subset of a topological space X 1s said to be
locally closed if it is the intersection of an open set with a closed set. Call a
finite union of locally closed sets constructible. (The constructible sets com-
prise the smallest collection of subsets of X containing all open and closed
sets. and closed under the boolean operations, cf. Exercise 3.) Note that a
constructible subset of a variety contains a dense open subset of its closure.

Theorem. Let ¢:X — Y be a morphism of varieties. Then ¢ maps con-
structible sets to constructible sets; in particular, p(X) is constructible.

Proof. A locally closed subset of X is itself a variety, so clearly it suffices
to prove that ¢(X) is constructible. In turn, we may as well assume that X,
Y are irreducible. Proceed by induction on dim Y, there being nothing to
prove when this is 0. By induction, we need only consider dominant ¢.

Choose an open subset U of Y contained in ¢(X), using Theorem 4.3(a).
Then the irreducible components Wi, ..., W, of Y — U have smaller dimen-
sion than Y (Proposition 3.2). The restrictions of ¢ to the various components
Z;; of ¢~ (W) then have images which are constructible in W, (by induction),
hence also constructible in Y. Therefore, ¢(X) is constructible, being the
union of U and the finitely many ¢(Z;;).

This theorem will be used repeatedly. Another fact, based on a similar
induction, will be handy in one later argument (5.2). It is called the "upper

semicontinuity of dimension”.

Proposition. Let ¢:X — Y be a dominant morphism of irreducible vari-
eties. For x € X, let ¢,(x) be the maximum dimension of any component of
0~ Yo(x)) containing x. Then for all ne 2%, {x € Xle,(x) = n} is closed
in X.
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Proof. Use induction on dim Y. Choose U < ¢(X) as in Theorem 4.3,
and set r = dim X — dim Y, E (¢) = {x € X|¢,(x) > n}. Theorem 4.1 im-
plies that &,(x) > r, so that E(¢) = X is closed whenever n < r. On the
other hand, Theorem 4.3 insures that E,(¢) = X — ¢~ Y(U) whenever n > .
Let Wi, ..., W, be the irreducible components of Y — U, Z, ; the various com-
ponents of ¢~ (W), ¢;;:Z;; > W, the restriction of ¢. Since dim W, < dim Y,
the mduction hypothesis says that E,(¢;;) is closed in Z, ;7 (hence in X). But
for n > r, E(¢) = |];,; Ef;;), a finite union of closed sets.

4.5. Open Morphisms

The example at the end of (4.1) shows that the image of an open set under
a morphism ¢ :X — Y need not be open. This is traceable to the fact that
not all components of ¢~ (W) (W closed, irreducible) need be of the same
dimension. Such behavior is essentially confined to the complement of an
open set in Y, thanks to Theorem 4.3 (b); so in a sufficiently “homogeneous”
situation, the hypothesis of the following theorem will be fulfilled.

Theorem. Let ¢: X — Y be a dominant morphism of irreducible varieties,
r = dim X — dim Y. Assume that for each closed irreducible subset W = Y

2

all irreducible components of ¢~ (W) have dimension r + dim W. Then o
maps open sets Lo open sets.

Proof. 'The hypothesis implies in particular that ¢ is surjective and that
all irreducible components of ¢~ (W) dominate W.

Let x € X and let U be any open neighborhood of x. We have to show
that ¢(x) = y lies in the interior of ¢(U) = V. Suppose not. Then y lies 1in
the closure of Y — V. Because V is constructible (Theorem 4.4), Y — V is
constructible. Thus y lies in the closure C of some locally closed set O ~ C
contained m Y — V (where O is open in Y and C can be assumed to be
irreducible, so that O n C is dense in C). By hypothesis, the irreducible
components of C' = ¢~ *(C) have equal dimension, and each dominates C.
So 0" = ¢~ }(0) meets each such component; O’ n ' is therefore dense in C'.
But0'n C' = ¢~ (O n C)liesin the closed set X — U, forcingC’' =« X — U.
Since x € C', this is absurd.

This theorem will be applied in §12 to the canonical map G — G/H,
where G is a linear algebraic group and H a closed subgroup (the homoge-
neous space G/H being given a suitable structure of variety).

4.6. Bijective Morphisms

When a morphism is bijective, there is no mystery about either its fibres
or its image. But its topological behavior and the effect of its comorphism
on functions can be quite subtle. Here we are concerned mainly with the
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jatter. The Frobenius map Al - Al X x? (where char K = p > 0), illus-
trates how inseparability can complicate tlze v»_rhole qu@si_:mn..(But even in
Characteristic: 0 one cannot assert that a bl_]eCt-IVEB morphism 18 an isomor-
phism, cf. Exercise 5.) The following theorem will be of great technical value
:n the study of homogeneous spaces in Chapter 1V.

Theorem. Let ¢:X — Y be a dominant, injective morphism of irreducible
sarieties. Then K(X) is a finite, purely inseparable extension of p*K(Y).

Proof. Since ¢ is dominant, ¢* is injective, SO we may identify K(Ij’)
with 0*K(Y). Theorem 4.3 implies that dim X = dim Y. Therefor'eﬁ K(X) 1s
2 finitely generated algebraic extension of K(Y), i.e., a finite extension.

The function fields do not change if we replace X, Y by nonempty open
subsets. As a first reduction, let F be the separable closure of K(Y) in If(X )
(= the set of elements of K(X) which are separable over K(Y) ). As a finitely
generated extension of K, F may be viewed as the function field of some
variety Z. Then the remarks m (2.3) allow us to factor. ¢ as the composite
of two (injective) morphisms X — Z, Z — Y, after cutting X , Z_.,‘ Y dmfvn tp
suitable open sets. It suffices then to prove that Z — Y is birational, 1.e., it
suffices to prove the theorem when K(X)/K(Y) is separable.

Let n = [K(X):K(Y)]. To show that n = 1, we shall find some ye ¥
whose fibre ¢~ !(y) has cardinality at least n.

The theorem of the primitive element allows us to choose a single genera-
tor  of K(X) over K(Y), whose minimal polynomial has the form p(T) =

n _ 1 L] - . -

™+ ) g;T' (g; € K(Y)). The separability further implies that f isnota root
i=0 |

of p'(T). Now X and Y may be replaced by open subsets so that the rational

functions f, g; (i.e., ¢*g;) are everywhere defined on X. We may also assume
that Y is affine, with g; € S = K[Y]. Then f is integral over §, so R = S_[ 1]
is integral over S. If U is an affine open subset of X, ¢* igduces 1.nclus1ons
S < R < K[U]. The ring R is an affine algebra in its own right, 5o 1t belongs
to some affine variety X', and the factorization of ¢* corresponds to
U — X’ — Y.But K(U) = K(X), while R has fraction field K(Y)(f) = K(X).
So it suffices to prove that the finite morphism ¥ : X’ — Y is birational. Unlike
@, this morphism might not be injective. But its restriction to a nonempty
open set must be so: The image of U in X’ contains a dense open set U’ (4.3),
and after deleting from it its intersection with the proper cl_osed subset
Y YW (X’ — U’)) we are left with fibres consisting of single points. In turn,
the image of this open set in Y contains a dense open subset V.

Now consider the fibre Y ~(y), y € Y. The point y corresponds to a K-
algebra homomorphism ¢,:S — K, while the various x € ¢~ *(y) correspond
to homomorphisms ¢,:R — K extending ¢,. Integrality of R over § already
guarantees at least one extension of ¢, (cf. (4.2)), but we need to be more
precise in order to get n distinct extensions.



36 | . | Algebraic Geometry

Since f is a root of p(T), f(x)is a root of the polynomial p,(T) gotten by

applying ¢ = ¢, to each coefficient. We claim that for suitable choice of V,
PT) has n distinct To0ts (i.e., is a separable polynomial over K). For this we
look at derivatives. Separability of p(T) over K(Y) implies that p(f) # 0.
Since f 1s integral over S, p'(f) is also; so there is a monic polynomial ¢(T) =
T" + Y hT (h; € S) of which p/(f) is a root (and we can assume that h, # 0,
since p'(f) # 0). Choose yeV for which ho(y) # 0. If Y(x) = v, the
choice of y clearly implies that p'(f)(x) # 0; in turn, f(x) cannot be a root
of p(T). This justifies our claim that p(T) is separable over K for & = Ep-
For each of the n roots a of p,(T), we can now construct a point x € i ~1( y)
such that f(x) = a, thus completing the proof. The problem is to extend &
to a homomorphism ¢':R — K for which £(f) = a. By a standard extension
theorem (0.8), this can be done provided we know that for each hWT)e S|T],
the condition h(f) = 0implies h,(a) = 0. But p(T) is the minimal polynomial
of f over K(Y), so h(f) = 0 yields i(T) = p(T)k(T) (k(T) a polynomial over
K(Y), hence over S since p(T) is monic and both A(T), p(T) e S[T]). From
pa) = 0 we get h(a) = 0, as required.

4.7. Birational Morphisms

A birational morphism need not be an isomorphism (cf. A! - P?! or the
example at the end of (4.1)); but it is not too far from being one.

Proposition. Let ¢:X — Y be a birational morphism (X, Y irreducible).

Then there is a nonempty open set U <= Y such that ¢ induces an isomorphism
of @~ 1(U) onto U.

Proof. It does no harm to assume that Y is affine; set § = K[Y]. Let
V' < X be any affine open set, R = K[V]. Consider W = o(X — V), all of
whose irreducible components have lower dimension than Y (since the
components of X — V are of smaller dimension than X, and dim X = dim Y).
W being a proper closed subset of Y, we can find 0 = f €8 such that f
vanishes on W, whence ¢~ '(Y,) = X,.; = V. Replacing Y by Y, and X by
X 4+, Wwe may therefore assume that both X and Y are affine, with respective
affine algebras R and S. By assumption, ¢* maps the field of fractions of S
isomorphically onto that of R. Let f;, ..., f, generate R over K, where 1; =

©*gi/9*h (g;, h € S). It is clear that ¢* maps the ring of quotients S, 1SO0mor-
phically onto R,,+,. So we choose U = Y, .

Exercises

1. 'The fibres of a finite morphism ¢: X - Y (X, Y affine) are all finite.

2. Exhibit a subset of A* which is constructible, but not locally closed.

3. The constructible subsets of a topological space X form the boolean
algebra generated by the open (or closed) subsets of X: the smallest
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collection containing all open sets, and closed under finite unions and

complements. | N | |
4. For the example in (4.1), verify Proposition 4.4 directly by finding the

sets E,(@). | |

5 Define ¢:A' —> A® by ¢(x) = (x*, x°). Verify that X = Im ¢ is closed in

| A2 and that @:A' — X is bijective, bicontinuous and birational, but not
an isomorphism.

Notes

(4.1)—(4.4) are based on Mumford (3, 1§8]. The proof of Theorem 4.5' is
adapted from Chevalley [10, V, V, Prop. 3], a §0mewhat more gpecwl
criterion for openness, adequate for our needs in §12, is developed in Steinberg
[13, appendix to 2.1 17]. The proof of Theorem 4.6 is adapted from Chevalley

(10, IL, V, Prop. 1 and Corollary .

5. Tangent Spaces

The tangent line to a curve at a given point is a good local afppljoximatlgnﬁ
whenever it is unambiguously defined, i.e., whenever the point in question
is not a double point, cusp point, or other singularnty. In th1s section we
develop an intrinsic algebraic notion of tangent space to a vartety at a pom:@
which in the case of an algebraic group will be seen in §9 to carry the addi-
tional structure of a Lie algebra. The idea is to linearize prob}ems and ther_cby
simplify them. For our purposes it will be enough to C(?IlSIdGr—l‘ those points
which lie on only one irreducible component of a variety. So we assume,
unless otherwise noted, that all varieties are irreducible.

5.1. Zariski Tangent Space

First we try to formulate geometrically the i1dea of “tang;nt space to a
variety X at a point x”. If X were a curve in A* defined by a single equation
f(T,, T,) = 0, we would describe the tangent (or tangents) at x = (x;, X;) as

., 0 of .
the locus of the linear polynomlal%(x)(ﬂ — X4q) T, (x}(T, — Xx,). This
1 . . .
locus consists of a straight line through x, unless both partial derivatives
vanish at x.

By analogy, suppose X <= A”is defined by polynomials f(T4, ..., T,). Set

d,f = Z‘l 5_{ (x)(T; — x;). Then write Tan(X), for the linear variety in A"

deﬁnedlf)y the vanishing of all d, f as f(T) ranges over J(X ).. It is easy to
see that for any finite set of generators of #(X), the corr.espondmg d, f gener-
ate the ideal of Tan(X), (Exercise 1); so this geometric tangent space may
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be computed exPlicitly'in some cases. Notice that the tangent space to a

linear variety (such as A" itself) is just the variety. |

~ If X is an arbitrary variety (not necessarily affine), we could choose an
embedding in some A" for an affine open neighborhood of x € X and thus
define Tan(X), as above. But this procedure is hardly intrinsic, since it
depends on the choices made. Instead, we look for an algebraic description
of the tangent space in terms of the local ring 0,

For the moment, let X < A” be affine, andlet M = # (x) be the maximal
1deal of R = K| X | vanishing at x. Since R/M can be identified with K, the
R/M-module M/M? is a vector space over K (finite dimensional, since M
s a finitely generated R-module). Now d, f, for arbitrary f(T) e K[T], can
be viewed as a linear function on A" (x being the “origin™), hence as a linear
function on the vector subspace Tan(X), of A”. Since all d, f(f(Me (X))
vanish on Tan{X), by definition, d, f is determined by the image of f(T) 1n
R = K[T]/#(X). We can therefore write d, f for f € R. Tt is evident that d,
becomes in this way a K-linear map from R to the dual space of Tan(X),.
It 1s surjective, because a linear function g on Tan(X), is the restriction of a
linear function on A" (origin at x), given by a linear polynomial f(T) whose
d, f 1s the given g.

Since R = K + M (vector space direct sum), and since d, (constant) = 0,
we may as well view d, as a map from M onto the dual space of Tan(X )y

We claim that Ker d, = M?. Suppose d, f (f € M) vanishes on Tan(X)., f

the image of some nonconstant f(T) € K[T]. By construction, d, f = Y ad, f
for some a; € K, fi(T) € #(X). Setting g(T) = f(T) — Zai fi(T), we see that d g
vanishes on all of A", i.e., is identically 0. Since f(T) was nonconstant, we may
assume that g(T) 1s also. Then g(T) must contain no linear term, ie., g(T)
belongs to the square of the ideal (T4, ..., T,). The image of this ideal in R
is M, and g(T) has the same image f in R as f(T), so we conclude that f € M?2,
as asserted.

This 1dentification of Tan(X), with the dual space (M/M?)* falls short of
giving an intrinsic notion of tangent space. But it is easy to pass to the local
ring (O, m,): Since O, = Ry, m, = MR,,, thereis a canonical 1Isomorphism
from the R/M-module M/M? onto the 0.,/ m..-module m,/mz, induced by
the inclusion R — R;, (0.10). We can therefore cut loose entirely from the
embedding of X in A" and define the tangent space 7 (X), of X at x to be
the dual vector space (m,/m2)* over K = ¢,/ m,. This definition makes
sense, of course, when X is an arbitrary irreducible variety (and even when
X 18 reducible, provided we take care with the definition of (.). As a matter
of notation, we use letters x, y, z...to denote elements of I (X),. (On a
blackboard, ordinary capital letters might be used.)

A slightly different view of the tangent space is useful in some contexts.
Define a point derivation 6:0, — K to be a map that behaves like a K-
derivation of ¢, followed by evaluation at x, i.e., § is to be a K-linear map
satisfying

(%) o(fg) = o(f) - g(x) + f(x)- é(g).
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It is cléar that the point derivations of O, form a vector space over K, call it
g.. We claim that 7, is naturally isomorphic to 7 (X),. Indeed, if f € 0, 1s
co;stam or belongs to m2, (*) shows that o(f) = O fqr 5.6 % .. Thereiore,
5 is completely determined by its efect on s, or _by its mduceq effect on
m./m2. This injects 9, into J (X),. In the other direction, a K-linear map

/m2 — K defines by composition with m, — 7,/ m; a K-linear mag
4. — K, which can be extended to 0, = K + m, by sending constants to U.
X 2

Then (*) is easy to check.

Qo there is a certain amount of flexibility in the way tangent spaces are

thought of. For example, the tangent space of A” (0:}' P") at a poin‘E X 18 geo-
metrically just A", viewed as a vector space with origin x; algebraically, the

of

tangent space is the set of point derivations ) a; T (x) of the local ring of x

in K(T15 - . &Tﬂ)'

When X is the disjoint union of irreducible components, or just when x
lies on a unique component Y, we can define 7 (X), to be 7 (Y}x. (Or we can
use the dual space of m,/m2, for a suitably defined local ring O, in the

general case.) | | |
Tangent spaces behave as expected relative to the formation of products:

Proposition. Let X, Y be (irreducible) varieties, x€ X, y€e Y. Then
TX X V) = T(X), D T(Y),.

Proof. This is obvious if we use the geometric description of tai}gent
spaces. In algebraic terms, the assertion follows from the fact that Oy, , 1s the
localization of ¢, ® @, at the maximal ideal m, ® 0, + 0, ® m,, ct.

Proposition 2.4.

5.2. Existence of Simple Poinfs

In the case of a curve in affine space, the space of tangents at a p0i1:1t has
(vector space) dimension 1 unless the point is “singula{”:, and then the d_1men-
sion goes up. We shall see shortly that dim 7 (X), = dlm X for any variety. If
equality holds, x is called a simple point of X. If all points of X are simple,
X is called smooth (or nonsingular ). o |

It is clear from the definition that A" and P" are smooth VaFIEEt?eS, and 1t
follows from Proposition 5.1 that the product of smo_oth varieiiles is smooth
(cf. Proposition 3.1). But it is not so clear that an arbltrary varlety POSSESSES
any simple points at all. Consider the special case of an 1r1.‘edu01'ble hyper—
surface X in A", where .#(X) is the ideal generated by a single irreducible

polynomial f(Ty,...,T,). Ifx = (x4, ..., x,) € X, the calculation in (5.1) shows
L oe Of
that Tan(X), is the zero set of the linear polynomial _Zl = (x(T; — x;).
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Since dim X = n — L it follows that x will be simple unless this poly-

of

nomial vanishes on A", ie., unless all partial derivatives vanish at x

(then dim Tan(X), = n). If char K = 0, this last condition cannot occur for
every x € X, else f(T) would be constant. The same 1s true when char K =

of
0T,
mn f(T) to be multiples of p, so that f(T) = g(T)* for some g(T), contrary to
the assumed irreducibility. Therefore X does have some simple points. In
fact, the argument shows that they form a (dense) open set. Using this we
can prove:

p > 0: simultaneous vanishing of all

on X would force all powers of T,

Theorem. Let X be any (irreducible) variety. Then dim 7(X), > dim X
Jor all x € X, with equality holding for x in some dense open subset.

Proof. K(X) is a separably generated extension of K (0.14), i.e., K(X) is a
separable algebraic extension of a subfield L = K(t,, ..., t,), the latter being
purely transcendental over K (d = dim X). The theorem of the primitive
element allows us to find a single generator f, of the extension K(X)/L. Let
f(To)eL|[T,] be its minimal polynomial. This defines a rational function

ST, Ty, o, TP EK(T,, Ty, ..., Ty), defined on an affine open subset of A%+ b

where its set of zeros Y is a hypersurface with function field K(Y) isomor-
phic to K(X). It follows from the remarks in (2.3) and Proposition 4.7
that some nonempty open sets in X and Y are isomorphic. The points
y€ Y where dim J(Y), = dim Y = d form a dense open subset of Y, so in
particular dim 7 (X), = dim X = d for all x in some dense open subset of X

Next we apply the “upper semicontinuity of dimension” (Proposition 4.4)
to get information about dim 7 (X), for arbitrary x € X. Here it is enough
to let X be an affine open neighborhood of x. So view X as a closed subset
of some A" and view all tangent spaces as linear subvarieties of A”. The pairs
(x, ¥)e X x A"for which ye Tan(X), are easily seen to form a closed subset T
of the product. Projection onto the first factor defines a morphism ¢: T — X,
whose fibre ¢~ '(x) has the dimension of 7(X),. For each m, X, = Ixe X
dim 7 (X), = m} is closed in X (4.4). But X, was seen above to be dense
in X,so X, = X.

5.3. Local Ring of a Simple Point

The mequality dim 7 (X), > dim X (5.2) may be interpreted as stating
that no fewer than dim X “local parameters” are required to determine x.
To make this idea precise, we need a general lemma.

Lemma. Let R be a noetherian local ring, with unique maximal ideal M.
Then M is generated as R-module by fi, ..., f, < M/M? is generated as
R/M-module by the images of f3, . . ., f,
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Proof. This 18 obvious in one direction. So let the images of the f,
generate M/M?, and let N be the R-submodule of M generated by fise vy fon
The finitely generated R-module M/N then satisfies: M(M/N) = M/N. Ac-
cording to Nakayama’s Lemma (0.11), M/N = 0,1e, M = N.

In particular, the minimal number of generators n of the ideal s, coincides
with the vector space dimension of m,/m2, or of its dual space 7 (X),.. When
x is a simple point, so that n» = dim X, such a minimal set of generators
fy,---»Ju 15 called a set of uniformising parameters at x. We clgir_n that
fis- - - Jo must be algebraically independent. It suffices to prove this in case
X is affine and the f; are regular functions generating .#(x). Look at the
morphism ¢: X — A" defined by @(y) = (fi(y), ..., f,(¥). If the f; are not
independent, the closure of the image of ¢ has dimension <#n, so by (4.1) all
components of the fibres are of positive dimension. But o Yo(x)) =
o 1(0) = {x}, which is a contradiction.

A further aspect of O, (x arbitrary) will be useful in (5.5) below. The powers
of m, can be taken as a fundamental system of neighborhoods of 0 for a
Hausdorfl topology (the m -adic topology) on @, (0.12). Then if the images
of fi,..., [, in m,/m3 span this vector space, the subring K[ f1,..., f.] is
dense in O,: Indeed, an arbitrary f € @, is congruent (mod m?2) to a poly-
nomial of degree <1 in the f;, then (mod m2) to a polynomial of degree
<2, and so on.

For a (noetherian) local ring (R, M), the Krull dimension of R is defined
to be the greatest length k of any chain0 > P, S P, & - & M = P, of prime
ideals. In the case of O, we observe that the Krull dimension is just dim X.
Indeed, we may assume that X is affine, so that ¢, = K[ X ],,. .#(x) being a
maximal ideal of K[ X'], it follows from the dimension theorem (cf. Exercise
3.4) that dim X 1s the length of a maximal chain of distinct prime ideals
between O and #(x). But the prime ideals of K| X | contained in #(x) cor-
respond 1-1 with the prime ideals of (...

A local ring (R, M) is called regular if its Krull dimension coincides with
the minimal number of generators of M (= dimg,;M/M?, by the lemma).
It 15 a general fact (0.12) that a regular local ring is an integral domain,
integrally closed (in its field of fractions). The discussion above establishes:

Theorem A. Let x € X be a simple point on the (irreducible) variety X.
Then O, is a regular local ring, hence is integrally closed in K(X).

With appreciably more labor, it can be shown that a regular local ring
is even a UFD. We shall need to know this only when dim X = 1, where it
18 easy to give a direct proof (Exercise 2).

The fact that the local ring of a simple point is integrally closed will enable
us to apply the following result in the study of homogeneous spaces (12.3).

theorem B. Let X be an irreducible variety, x € X a point whose local
ring O, is integrally closed, f € K(X) a function not in 0. Then there exists a
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 subvariety Y of X containing x, such that f" = 1/f € O, for some ye Y and
such that f' takes the value O on' Y whenever it is defined. |

Proof. Let R = 0,. Then I = {ge R|gf € R} is a proper ideal of R
(since f ¢ R by assumption), hence contained in m,. Let P = P,, P,, ..., P,
be the distinct minimal primes of I in R (these lie in ms,), cf. (0.13). For large
enough n, P"P - - Pf < I. For i > 1, it is clear that P, generates the unit
ideal 1 the local ring Rp = K(X), so that P"Rp = IR,. In particular, since
If « R, P'f = (If)Rp = Rp. Choose k > 0 as small as possible so that
P*f < Rp (then k > 0), and let g € P*"1f, g ¢ R, (then Py lies in Rp).

R being integrally closed (by hypothesis), Rp is also (0.10). Now g ¢ Rp,
so g cannot be integral over Rp. It follows (0.6) that multiplication by g
could not stabilize the finitely generated Rp-module PRy, ie., PRpg ¢ PR,
(although Pg = Rp). In other words, Pg generates the unit ideal in R, hence
contains a unit of Rp. Therefore 1/g € PRp; in fact, PR, = (1/g)R».

Now h = f/g* € fP*Rp = R, (by choice of k). Observe that % is a unit in
Rp: otherwise h e PRp = (1/g)Rp, or f/g*~ ! € Rp (contradicting the choice
of k). So 1/f = h™(1/g*) € PRp. If Y is the zero set of P (i.e., of the pullback
of P in the affine algebra of some affine open subset of X containing x), this
means that 1/f defines a rational function on Y and vanishes whenever

defined. Moreover, x € Y.

3.4. Differential of a Morphism

Let ¢: X — Y be a morphism of (irreducible) varieties. If x € X, y = o(x),
then ¢* maps (0,, m,) into (O,, m,). By composition with ¢*, a linear
function x on m,/m; therefore induces a linear function do.(x) on M,/ 1.
The resulting map do,:7(X), - J(Y), is evidently K-linear. We call it the
differential of ¢ at x.

Differentiation has the expected functorial properties: If 9: X — X is the
1dentity map,soisdo,. If p: X — Yandy: Y — Z are morphisms, with x € X,
Ppx) =ye Y, Y(y) = ze Z, then d(yy - ), = dy, - do,: T (X), - T(2Z),.

For computational purposes, an explicit recipe is sometimes useful. Say
X < A% Y < A", 50 ¢ 1s given by m coordinate functions ¢,(T,,..., T,). Let
x € X, y = ¢(x), and identify the respective tangent spaces with subspaces of
K", K™ This just identifies g = (a,, .. ., a,) € K* with the point derivation

0

oT;

0, — K induced by ) g;—— (followed by evaluation at x). Then do.(a) =

(b1, ..., by,), where b, = >, 2?:

One 1mportant example is provided by the determinant, where det:
GL(n, K) - GL(1, K) = A" is given by a single polynomial in n? indgter-
minates T;; (1 < i, j < n). Since GL(n, K) is an affine open subset of A", its
tangent space at each point is just K™, It is convenient to view this vector
space as the set M(n, K) of all n x n matrices. Then a quick calculation with

(x)a; (Exercise 3).
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the above formula for de, yields the result: d(det) (a) = i1 + Ayy + ¢ +
anm € M(1, K) = K. In other words, the differential of the determinant is the
trace.

A couple of other computations will be referred to later:

(1) If :A" —» A" is a linear map, then do, may be 1dentified with o,
if 7 (A"), 1s 1dentified with A",

(2) Let V'be an n-dimensional vector space over K, and let ¢: V — {0} -
P(V') be the canonical map, V' — {0} being viewed as an open subset of affine
n-space. Let O # v e V, and consider do,, where 7 (V — {0}), is identified
with V. If v 1s taken as a first basis vector, the map @ can be described in
corresponding atffine coordinates by ¢(x, ..., x,) = (X2/X1, X3/X1, .. o, X, /%)
It follows readily that the kernel of the linear map d, 18 precisely the subspace
Kv (and therefore do, is surjective, by comparison of dimensions).

(3) If Y 1s a subvariety of X, y € Y, then the inclusion map i:Y - X
induces a monomorphism di,: 7 (Y), - (X ),- SO we view the former as a
subspace of the latter.

5.5. Differential Criterion for Separability

A field extension E/F is said to be separable if either char F = 0, or else
charF = pand the p" powers of elements x, . . . , x, € E linearly independent
over F are again linearly independent over F (0.14). Extensions of a perfect
field are always separable; in particular, function fields of irreducible vari-
eties are separable over K. For finitely generated extensions of F, “separable”
is equivalent to “separably generated”. | |

For our purposes, the question of separability comes up in connection
with dominant morphisms ¢:X — Y of irreducible varieties. Here p*
identifies K(Y') with a subfield of K(X), over which K(X) 1s finitely generated
but not always separable. For example, the Frobenius map x> x? is a
bijective morphism A' — A’, whose comorphism maps K(A') = K(T) onto
the subfield K(T?) (cf. Theorem 4.6). If K(X)/@*K(Y) is separable, we call the
morphism ¢ separable. In characteristic 0, all morphisms are therefore
separable. For the time being let char K = p > 0.

T'o test for separability of a finitely generated field extension, we study
the behavior of derivations (0.15). If E/F is separably generated (= separable),
2 the vector space over L of F-derivations E — L (L some extension field of
E), then dim|, & = tr. deg.. E. Thus for an irreducible variety X, dim X =
dim, Der (K(X), L) for any extension L of K(X ). (Since all derivations vanish
on K = K, we can write Der in place of Der,.) Moreover, an extension E/F
1s separable if (and only if) all derivations F — L extend to derivations
E — L (L an extension of E). In case ¢:X — Y is a dominant morphism of
irreducible varieties, we may view K(Y) as a subfield of K(X) via ¢*. Say
n = dim X,d = dim Y, and consider the restriction map Der (K(X), K{(X)) -
Der (K(Y), K(X)). This will be surjective iff the kernel Dery .y, (K(X), K(X))
has dimension n — d over K(X). (In general, the dimension is > n — d.)
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Theorem. Let ¢:X — Y be a dominant morphism of irreducible varieties.
Suppose that x and @(x) = y are simple points. If do.:T(X), — T (Y), is
surjective, then ¢ is separable. |

Proof. We view K(Y) as a subfield of K(X), hence ¢, as a subring of
O.. 1t suffices to show that dim,y, Deryy, (K(X), K(X)) = n — d, where
n=dim X, d = dim Y. Since the dimension is > n — 4 in any case, we
have to show that any n — d + 1 K(Y)-derivations D, of K(X) are linearly
dependent over K(X). After multiplication by nonzero elements of K(X),
the Dy can be assumed to map @, into itself. Then it is obvious that D, maps
m, into m, ' (r = 1). This implies that D, is continuous at 0 for the . -adic
topology on ,, hence (being linear) is continuous everywhere.

Now the surjectivity of do, means that the transpose map m,/m> —
m./me 1s injective. Both x and y being simple, this allows us to extend a set
f1, - .., fg of uniformising parameters at y to such a set fi, ..., f, at x. The
resulting subring R = K| fy, ..., f,] of @, is a polynomial ring, dense in the
m,-adic topology on @,. The restrictions of the D, define derivations from
the polynomial ring S = K[ fy, 4, ..., f,] to K(X), or from the fraction field
F of S, whose transcendence degree over K is n — d. Separability of F/K
implies that the restrictions of the D, to F must be linearly dependent over
K(X). Thus ) gD, = 0 on S for some g, (not all 0), which can be taken to lie
in @,. This equation holds on the dense subring R of ¢, because the D,
vanish on f;, .. ., f; by assumption. Since the ms,-adic topology is Hausdorff
and the D, are continuous, the same equation holds on @, hence on K(X).

An explicit calculation based on the criterion in the theorem will be
carried out in (6.4). The theorem will later play an essential role in the study
of quotient morphisms (11.3).

Exercises

1. Let X be an affine variety, X < A™ If fi(T),..., f(T) generate #(X),
prove that d, f, ..., d.f, generate the ideal of Tan(X),, for xe X.
2. Letdim X = 1, x € X simple. Prove that ¢, is a UFD. [Show that, up
to umts, a generator of s, is the only irreducible element of @_, hence
that @, 1s a PID with unique nonzero prime ideal #s,.]
. Verity the formula for do, in (5.4).
4. The canonical morphism V' — {0} — P(V) is separable.

e

Notes

For Theorem B of (5.3), see Chevalley [8, exposé 8, lemme 1]. Theorem 5.5
has a converse, not needed here: If ¢ is separable, then do, is surjective for

some x (with x and ¢(x) simple points), indeed for all x in some nonempty
open set. See Borel [4, AG 17.3], Dieudonné [ 14, vol. 2, 6.4].
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6. Complete Varieties

The facts about completeness in (6.1) and (6.2) will play an important role
from §21 on, in the study of homogeneous spaces G/H which are projective
varieties. Some rather special observations about P are made in (6.3) and
(6.4),to be applied at a crucial stage of the structure theory of reductive groups

(25.3).

6.1. Basic Properties

A variety X is called complete if for all varieties Y, pr,: X x Y -» Yisa
closed map (i.e., sends closed sets to closed sets). The geometric meaning of
completeness is not made intuitively obvious by this definition, but a kind of
“compactness” 1s intended. Indeed, for nice enough Hausdorff spaces, the
criterion just stated (with X x Y given the ordinary product topology) is
equivalent to compactness.

Evidently a single point, viewed as a variety, 1s complete. It 1s also clear
that X is complete if and only if all its irreducible components are, and that
the auxiliary varieties Y in the definition can be taken to be irreducible (and
even affine) if a given variety X 1s to be tested for completeness. What is not
so clear 1s that “interesting” complete varieties exist. It will be shown 1n (6.2)
that projective varieties pass the test. On the other hand, not all varieties are
complete: The locus of the equation T,;T, = 1 in A’ x A! projects to a
nonclosed subset of A', so A! cannot be complete.

We assemble here a list of elementary facts about completeness, some of
which should remind the reader of properties enjoyed by compact Hausdorft

spaces.

Proposition. Let X, Y be varieties.

(a) If X is complete and Y is closed in X, then Y is complete.

(b) If X and Y are complete, then X x Y is complete.

(¢) If p: X — Y is a morphism and X is complete, then (X)) is closed and
complete.

(d) If Y is a complete subvariety of X, then Y is closed.

(e) If X is complete and affine, then dim X = 0.

(f) A complete quasiprojective variety is projective.

Proof. (a) (b) These follow at once from the definitions.

(¢) Since we are dealing with varieties, the graph of ¢ isclosedin X x Y
(2.5). Its image under pr, is ¢(X), which is closed because X is complete. To
test (X ) for completeness, we can assume Y = @(X). For any variety Z,
consider pry: X X Z - Z,pry:Y x Z - Z. If Wisclosedin Y x Z, then
pry(W) = pry{e x 1)~ YW) is closed in Z because X is complete.
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(d) Apply (¢) to the inclusion morphism ¥ — X.
~ (e) As remarked above, A' is not complete. In view of (c), the only
morphisms X — A’ from an irreducible complete variety X are the constant
maps. So a complete irreducible affine variety X satisfies K[| X | = K, forcing

X to be a point.
(f) This follows from (d).

6.2. Completeness of Projective Varieties
Theorem. Any projective variety is complete.

Proof. ThankstoProposition6.1(a),itisenoughtoshow thatpr,:P" x Y
— Y is closed, for any variety Y. We can even assume that Y is irreducible
and affine, with afline algebra R. The affine open sets U, = P? x Y cover
the product. If X,, ..., X, are homogeneous coordinates on P, then the
affine algebra of U; can be described as R; = R[X¢/X,, . . ., X,/ % |. (Xo/X,, . .
X,/X; are athine coordinates on P, as 1n (1.6).)

Take anyclosedset Zin P" x Y,and anypointye Y — pr,(Z). We want
to find a neighborhood of y in Y of the form Y, which is disjoint from pr,(Z).
This amountstofinding f € R, f ¢ M = .#(y), such that f vanishes on pr,(Z2),
1.€., such that the pullback of f in R; belongs to #(Z;)forall i, Z, = Z n U,
The existence of such f will follow from a version of Nakayama’s Lemma,
applied to a suitable R-module, which we now proceed to construct.

First, consider the polynomial ring S = R[X,, ..., X,]|, with natural
grading S = ) S,. We construct a homogeneous ideal I < S by letting I,
consist of all f(X,, ..., X,)€S,, such that f(X,/X;,..., X, /X,)e #(Z,) for
each i. |

Next fix i, and let f € #(Z;). We claim that multiplication by a sufficiently
high power of X; will take f into I. Indeed, if we view f as a polynomial in
Xo/Xi, -« Xu/X;, then X7 f becomes a homogeneous polynomial (of degree m)
mn X, ..., X, for large m. In turn, (X{"/X7)f € R; vanishes on Z; n U; =
Z; n U, while (X" !/X771)f vanishes at all points of Z; not in U,. Since j
is arbitrary, we conclude that X***f liesin I . ,.

Now Z; and P} x {y} are disjoint closed subsets of the affine variety U,,
so their 1deals #(Z;) and MR, generate the unit ideal R;. In particular, there
exists an equation 1 = f; + ) ;m;,g;;, where fie 4(Z;), m;e M, g;;€ R,
Thanks to the preceding paragraph, multiplication by a sufficiently high
power of X; takes f; into I. We can choose this power large enough to work
in these equations for all i, and to take all g;; into S as well. So we obtain:
Xi'el, + MS,, (for all i). Enlarging m even more, we can get all monomials
ofdegreemmX,, ..., X,tolieinl,, + MS,,. ThisimpliesthatS,, = I, + MS,,.

Now apply (0.11) to the finitely generated R-module S,,/I,,, which satisfies:
M(S,./1,) = S,/1, The conclusion is that there exists f € R, f ¢ M, such that
f annihilates S,,/I,,.. Thus fS,, < I,,;1nparticular, f X" € I,,, so that f vanishes
on pr,(Z).

*e

N
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6.3. Varieties Isomorphic to P

The local ring O, of a simple point on an irreducible variety X 1s an
-tegrally closed domain (Theorem 5.3 A). .This can easily b§ strengthem@
to the statement that @, is a UFD when dim X = 1 (Exercise 5.2). In ‘;thlS
case the maximal ideal s, 18 principal, therefore generated by an 1rred11f;1ble
element 4. Since O, — m,. consists of units, it is clear that g is (essentially)
the only irreducible element of @,. This implies that @, is a valuation ring,
ie., for each f e K(X), either fel, or else 1/fe0,. In@g&:c}, if f =g/h
(g, h € 0>), then we may assume that not both g, h are divisible by g; so
either g or his a unit in 0. |

Now specialize to the case in which K(X) = K(T), the function field of
Al or P!, and assume that all points of X are simple. The preceding discussion
shows that either T or 1/T belongs to each local ring 0,. It is an elementary
exercise to determine all the valuation rings in K(T) which include either
K[T] or K[1/T]: they are (aside from K(T)) precisely the local rings belonging
to the points of P' (Exercise 2). Notice too that there cannot be any proper
inclusions between pairs of these valuation rings.

Theorem. Let X be a smooth variety of dimension 1, and let ¢ P! — X
be a dominant morphism. Then X is isomorphic to P' (although ¢ need not

be an isomorphism).

Proof. Thanks to Proposition 6.1 (c), ¢ 1s surjective, and X 1s complete
(and irreducible). ¢* identifies K(X') with a subfield of K(PY) = K(T) having
transcendence degree 1 over K. According to Liiroth’s Theorem (0.4), every
such subfield of K(T) is isomorphic to K(T). So we identity K(X) with K(T)
and show that this, coupled with the completeness of X, forces X to be
isomorphic to P*.

Let £, g € K(X) correspond respectively to T, 1/T. As remarked above, the
fact that @, (x € X) is a valuation ring implies that either f € O, or g € O,;
when both f, g € 0,, we have f(x)g(x) = 1. The (open) subsets U, V of X
on which f, g are defined cover X. We can define a morphism U — P (resp.
V - P!) by sending x to the point whose homogeneous coordinates are
(f(x), D{(resp. (1, g(x)). Since f(x)g(x) = 1forx € U n V,these patch together
to yield a morphism ¥: X — P*(2.3).

Because X is complete, ¥ is surjective (Proposition 6.1 (c) ). By construc-
tion, ¥* is an isomorphism of function fields. To conclude that ¥ 1s an
isomorphism, it remains to show that y* maps local rings of P' isomorphi-
cally onto local rings of X. But, as remarked above, there are no proper
inclusions among the valuation rings of K(T) 1n question.

6.4. Automorphisms of P!

For use in (25.3), we have to determine the group Aut P' of automor-
phisms of the projective line. First we exhibit some particular automorphisms,
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induced by the natural action of GL(2, K) on the nonzero vectors in K2
We may view this action as a permutation of the lines (through the origin)
in K2, which is doubly transitive: Any pair of distinct lines may be sent to
any other pair of distinct lines, since GL(2, K) acts transitively on bases of
a0

0a | | |
action of PGL(2, K) = GL(2, K)/K*. Denote this group by G, and write the

, (a b) ab
1mmage of as .

K?%. The scalar matrices ( ) a € K*, leave lines stable, so we obtain an

cd cd
Now P! can be thought of as the set of all lines through the origin in
K2, a typical point of P! being written as * (x, y € K, not both 0), with
x| [ax -
= for all a e K*. So G acts on P' as a group of permutations:
Y1 L4y
ab|[x] [ by .
¢ o I by . Moreover, it 1s clear that each element of G defines
cd|ly| |ex+dy

an autc_)morphism of P! as variety.
Theorem. PGL(2, K) = Aut P!,

Proof. The idea is to characterize an automorphism of P' by its effect

0 1 1

on the triple (0, 1, o), where 0 = at 1 = o= ol (Here P! =

I — ] L

-~
A' U {0}, the points x corresponding to the points of the affine line.)

Define a map ¢:G—=P' x P' x P! by o(g) = (g(0), g(1), g(c0)), ie.,
ab bl [a+b]|[a [aO] [10
. If = 0 15 . th — — ’

E d_H(_dJ’ cidl __C_) ¢(g) = (0,1, c0), then g 0a] = |01
which implies that ¢ (being G-equivariant) is injective. If (x, y, z) is a triple of
distinct points of P!, we can find as follows an element of G sending (0,1, 00) to

(x, ¥, z). First use the double transitivity of G to send (x, y, z) into (0, , oo),
L

| U u"l0 U
where # 0, oo (and thus uv # 0). In turn, _, |sends | 0, , OO
v 0 vt 2
to (0, 1, o).

Now let ¢ be an arbitrary automorphism of P*. Then (a(0), 6(1), 6(c0))
is a triple of distinct points, which by the preceding argument has the form
(9(0), g(1), g(o0)) for some g € G. The automorphism t = ¢~ 'g therefore
fixes 0, 1, co. In particular, 7 restricts to an automorphism of A < P!. Such
an automorphism is easily seen to have the form: at-ra + s (r e K*, s € K),
cf. Exercise 1.10. Since 0, 1 are fixed, we conclude that t =1 and ¢ =
g€ aG.

The map ¢ mtroduced in the preceding proof turns out, under closer
scrutiny, to be a morphism (even an isomorphism) of affine varieties. GL(2, K)
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can of course be regarded as a principal open subset of A* and the orbit map
y:GL(Z,K) = Y = P! x P' x P! defined by y(g) = (4(0), g(1), g(c0)) is
clearly a morphism (Y = Im ¢). In Chapter IV we shall see how to regard
PGL(2, K) as a 3-dimensional affine variety, so that the canonical map
n:GL(2, K) - PGL(2, K) is a morphism (and so that ¢ 1S a morphism). The
factorization ¥y = ¢n will then imply that o is separable, provided we know
that y 1s. (This in turn will be seen in (12.4) to imply that ¢:PGL(2,K) > Y
is an 1somorphism of varieties.)

Let us use the differential criterion (5.5) to verify that ¥ is separable.
Evidently GL(2, K} is smooth (either as a principal open subset of A% or as
an “algebraic group” (7.1)). Since Y has a transitive group of automorphisms,
the fact (5.2) that some points are simple forces all points to be simple. So

we need only verify the surjectivity of (say) dyr,, where e = (1) ?) For this

we identify the tangent space at e with M(2, K) (i.e., A*)and apply the formula
of (5.4).

Recall (1.7)how P* x P! x P!isembeddedin P”.  sends (a Z) to( Z :
C

a+blla . ,

- all. , which has homogeneous coordinates (ab(a + b), ab(c + d),
be(a + b), _b(;(c + d), adla + b), ad(c + d), cd(a + b), cd(c + d)). Note that
W(e) belongs to the affine open set in P7 specified by nonvanishing of the 6*
coordinate. So in affine coordinates, ¥ is given in a neighborhood of e by

seven coordinate functions, e.g., ¥/ {(T{, T,, T3, T,) = To(Ty + Ty)/Ta(T5 + To).

The partial derivatives must then be evaluated at e. Set x = ((1) 8) , Y = (8 (1)),

00
Z = ( 0 1). A routine calculation (Exercise 3) shows that d, sends x to

0,0,0,0,1,0,0),yto (1,1,0,0,1,0,0), z to (0, 0, 0, 0, — 1,1, 1). The image
of dys, is therefore a 3-dimensional subspace of the 3-dimensional space
T (Y)yey Conclusion : y is separable. |

Once it is established in (12.4) that ¢ is an isomorphism, it will follow
that for any algebraic group H (7.1) acting on P!, there is a morphism
H — PGL(2, K) giving the action. Indeed, the effect of an automorphism of
P! on the triple (0, 1, co) completely determines the automorphism, as shown
above; so we have only to compose the orbit map H — Y with the inverse
of o.

Exercises

I. Must every dominant morphism P* — P! be an isomorphism?
2. Prove that a valuation ring R in K(T) which includes K| T] and is distinct

from K(T) must consist of all /(T)/g(T), where J(T), g(T) e K[T] are rela-
tively prime and where some fixed linear polynomial T — g does not
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divide g(T). Describe similarly the valuation rings which include K[1/T].
‘Show that no proper inclusions exist between pairs of such valuation
rings. . |

3. Verify the differential calculation at the end of (6.4).

Notes

The proof (due to Grothendieck) of Theorem 6.2 1s reproduced from
Mumford [ 3, 1 §9]. For some facts about curves which include Theorem 6.3,
consult Mumford [ 3, I11 §8, Theorem 5|. The discussion in (6.4) is taken from
Borel [4, 10.8]. Theorem 6.4 is a special case of the Fundamental Theorem of

Projective Geometry.

Chapter 11

fline Algebraic Groups

7. Basic Concepts and Examples

7.1. The Notion of Algebraic Group

Let G be a variety (irreducible or not) endowed with the structure of a
group. Ifthetwomaps u:G x G —» G, where u(x, y) = xy,and1:G — G, where
i(x) = x~ 1, are morphisms of varieties, we call G an algebraic group. The
reader who 1s familiar with the concept of “analytic group” will see here an
obvious parallel. But there i1s a subtle difference: G x G is here given the
Zariski topology rather than the product topology, so an algebraic group is
not a topological group (except in dimension 0). Indeed, G is T, without being
T, (except 1n dimension 0), while a T'; topological group is automatically 7,.

Translation by an element ye G (x> xy) 1s clearly an isomorphism of
varieties G — G, and therefore all gecometric properties at one point of G can
be transferred to any other point, by suitable choice of y. For example, since
G has simple points {5.2), all points must be simple: G is smooth.

There 1s an obvious notion of isomorphism: algebraic groups G and G’ are
called isomorphic if there exists an isomorphism of varieties ¢ : G — G’ which
1s simultaneously an isomorphism of groups. An automorphism of G is an
isomorphism of G onto G. An algebraic group whose underlying variety is
complete (6.1) 1s called an abelian variety. We shall not attempt to study
these here (see Notes below). Instead we always reserve the term “algebraic
group” for those groups whose underlying varieties are affine, unless the
contrary 1s expressly stated. With this convention in mind, we proceed to
list some examples.

The additive group G, is the affine line A* with group law u(x, y) = x + y
(S0 Ux) = —x, e = 0). The multiplicative group G, is the affine open subset
K* < A' with group law u(x, y) = xy (so #x) = x~ !, e = 1). Each of these
groups is wrreducible (as a variety) and 1-dimensional; after a substantial
amount of preparation, we shall eventually be able to prove that (up to
isomorphism) they are the only algebraic groups with these two properties
(320). Generalizing the additive group, we see that affine n-space A" has a
natural (additive) structure of algebraic group. In ¢ach of these examples the
underlying group is commutative.

Denote by GL{(n, K) the set of all n x n invertible matrices with entries
in K; this is a group under matrix multiplication, called the general linear
group. The set M(n, K) of alln x n matrices over K may be identified with A",
and GL(n, K) with the principal open subset defined by the nonvanishing of
the polynomial det. Viewed thus as an affine variety, GL(n, K) has its algebra
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of polynomial functmm generated by (the restrictions of) the n* coordinate
functions T;; along with 1/det(T; ;). The formulas for matrix multiplication
and inversion make 1t clear that GL(n, K) 1s an algebraic group. Notice
that G,, 1s the same thing as GL(1, K).

It 1s easy to construct further examples, based on the obvious fact that
a closed subgroup of an algebraic group is again an algebraic group. For
instance, the group T(n, K) of all upper triangular n x n matrices is the set
of zeros in GL(n, K) of the polynomials T;; (i > j), while the subgroup D(n, K)
(resp. U(n, K) ) consisting of diagonal matrices (resp. upper triangular matrices
with all diagonal entries 1) is closed for similar reasons. Notice that U(2, K)
1s naturally isomorphic to G,.

In another direction, given a (not necessarily associative) finite dimen-
sional algebra A, the group Aut ¥ of its algebra automorphisms may be
regarded as a subgroup of GL(n, K) by choosing a basis for ¥ (n = dim );
in fact, it 1s readily seen to be a closed subgroup (Exercise 3).

We mention finally that the direct product of two (or more) algebraic
groups, 1.€., the usual direct product of groups endowed with the Zariski
topology, 1s again an algebraic group. For example, D(n, K) may be viewed
as the direct product of n copies of G,,, while affine n-space may be viewed
as the direct product of n copies of G,,.

7.2. Some Classical Groups

We introduce next some families of linear groups which play a central
role in the theory to be developed in this book. The parameter £ is in each
case the dimension of the (closed) subgroup of diagonal matrices in the group

under discussion.
A,: The special linear group SL({ + 1, K) consists of the matrices of

determinant 1 in GL(£ + 1, K); it 1s clearly a group (because of the product
rule for det) and 1s closed (being the set of zeros of det(T;;) — 1). Since it is
defined by a single polynomzial, SL({ + 1, K)isa hypersurface in M(¢£ + 1, K)
(3.3), so its dimension is (£ + 1)* — 1 = {* + 2¢.

C, : The symplectic group Sp(2£, K) consists of all x e GL(2¢, K) satisfying
tx( OJ)x = ( OJ) where J = ( '1) ‘x = transpose of x. It is im-

—J0)" " \=yo) “\ )T R '
mediate that Sp(24, K) is a group. That 1t 1s closed follows from the fact that
the indicated equation imposes certain (mildly complicated) polynomial
conditions on x. In this case the dimension is difficult to compute directly.

B, : This 1s the special orthogonal group SO(2¢ + 1, K); if char K # 2, 1t

100

consists of all x e SL(2¢ + 1, K) which satisfy ‘xsx = s, where s = [00 J }.

0J0
Again 1t 1s easy to check that this condition defines a closed subgroup of

the general linear group.
D, : This is another special orthogonal group SO(2/, K), defined by the
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. . 0
same condition as B,, ‘xsx = s, where s is now ( 70 j) (if char K # 2).

The symplectic and special orthogonal groups arise geometrically as
groups of linear transformations preserving certain skew-symmetric (resp.

symmetric) bilinear forms. When char K = 2, special care has to be taken
with the definitions, cf. Dieudonné [13], Carter [1, Ch. 1].

7.3. Identity Component

Let G be an algebraic group. We assert that only one irreducible com-
ponent of G can pass through e. Indeed, let X,,..., X, be the distinct
components containing e. The image of the irreducible variety X; x --- x X,
(1.4) under the product morphism is an irreducible subset X, ' - X, of G,
which again contains e. So X --- X, lies in some X;. On the other hand,
each of the components Xy, ..., X,, clearly lies in X, - -- X,. This forces
m = 1. Denote by G° this unique irreducible component of e, and call it the
identity component of G.

Proposition. Let G be an algebraic group.

(a) G° is a normal subgroup of finite index in G, whose cosets are the
connected as well as irreducible components of G.

(b) Each closed subgroup of finite index in G contains G°.

Proof. (a) For each x € G°, x”'G” is an irreducible component of G
passing through e, so x™'G° = G°. Therefore, G° = (G°)~ ', and further,
G°G® = G°, i.e,, G° is a (closed) subgroup of G. For any x € G, xG°x ! is
also an irreducible component of G containing e, so xG°x~! = G° and G°
1s normal. Its (left or right) cosets are translates of G°, hence must also be
irreducible components of G; there can only be finitely many of them (G
being a noetherian space). Since they are disjoint, these are also the connected
components of G.

(b) If H is a closed subgroup of finite index in G, then each of its finitely
many left cosets is also closed and so is the union of those distinct from H.
As the complement of this closed set, H must be open. Therefore the left
cosets of H partition G° into a finite union of open sets; since G° is connected
and meets H, we get G° < H.

Henceforth we shall refer to an algebraic group G as connected when
G = G°, because the term “irreducible” has an entirely different meaning
in the context of linear groups or group representations.

Most of the groups encountered above are in fact connected, e.g., G, and
G,.. That GL(n, K) is connected follows from its being a principal open set in
an afline space. However, the connectedness of SL(n, K) and other classical
groups 1s not apparent from the definition alone, so a more indirect method
must be developed (7.5). While our main interest will be in connected alge-
braic groups, certain disconnected ones will be forced upon us (e.g., the group
of “monomial” matrices in GL(n, K), cf. Exercise 7).
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7.4, Subgroups and H@m@mmphisms

~ The following lemma is trivial but useful.

Lemma. Let U, V be two dense open subsets of an algebraic group G.
Then G =U-V.

Proof. Since inversion is a homeomorphism, ¥~ ! is again a dense open
set. So is its translate xV ! (for any given x € G). Therefore, U must meet
xV 1, forcing xe U - V.

We have already pointed out that a closed subgroup of an algebraic
group 1s again an algebraic group. What can be said about an arbitrary
subgroup?

Proposition A. Let H be a subgroup of the algebraic group G, H its
closure. |

(a) H is a subgroup of G.

(b) If H is constructible, then H = H.

Proof. (a) Inversion being a homeomorphism, it is clear that H !=
H~! = H. Similarly, translation by xe H is a homeomorphism, so xH =
xH = H,ie, HH < H Inturn,ifxe H Hx « H,so Hx = Hx = H. This
says that H is a group.

(b) If H is constructible, it contains a dense open subset U of H. Since
H is a group, by part (a), the lemma above shows that H = U- U <
H-H=H.

Corollary. Let A, B be closed subgroups of an algebraic group G. If B
normalizes A, then AB is a closed subgroup of G.

Proof. Since B — Ng(A), AB is a subgroup. As the image of 4 x B
under the product morphism G x G — G, it is constructible (4.4), therefore
closed, by part (b) of the proposition.

By definition, a morphism of algebraic groupsis a group homomorphism
¢:G — G’ which is also a morphism of varieties.

Proposition B. Let ¢:G — G’ be a morphism of algebraic groups. Then:
(a) Ker ¢ is a closed subgroup of G.

(b) Im ¢ is a closed subgroup of G'.

(c) o(G") = @(G)".

(d) dim G = dim Ker ¢ + dim Im o.

Proof. (a) ¢ 1s continuous and Ker ¢ is the inverse image of the closed
set {e}.

(b) @(G) 1s a subgroup of G'. It is also a constructible subset of G’ (4.4),
so 1t 1s closed by part (b) of Proposition A.

(c) ¢(G°) 1s closed (part (b)) and connected (= irreducible), hence lies
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in @{(G)°. Being of finite index in ¢(G}, it must equal ¢(G)°, thanks to Propo-
sition 7.3(b). |

(d) Theorem 4.3 implies that dim G — dim ¢(G) = dim ¢~ '(x) for some
(indeed, for “most”) x € ¢(G). But all fibres ¢~ '(x) have the dimension of
Ker ¢, so we are done.

A good example to keep in mind 1s det:GL(n, K) » GL(1,K) = G,,
which 18 evidently a morphism of algebraic groups. The image is G, the
kernel SL(n, K). From part (d) of the corollary we recover the fact that dim
SL(n, K) = n* — 1.

When the target group under a morphism is GL(#n, K), we say that ¢ is a
rational representation. In this connection, it is sometimes desirable to view
GL(V) as an algebraic group (VV = n-dimensional vector space over K). Since
a change of basis in K" corresponds to an inner automorphism x — yxy~*
in GL(n, K), the Zariski topology on GL(V) can be specified unambiguously
by an arbitrary choice of basis for V, identifying V with K".

7.5. Generation by Irreducible Subsets

It 1s essentially an exercise in linear algebra to show that SL(n, K) is
generated by subgroups Uj; (i # j), where U;; consists of all matrices with
1’s on the diagonal, arbitrary entry in the (i, j) position, and 0’s elsewhere.
(In the same spirit, U(n, K)is generated by those U;;for whichi < j.) Evidently
U;; 1s 1somorphic (as algebraic group) to G,, since multiplication of such
matrices just 1mnvolves addition of the (i, j) entries. Our next proposition,
based on the use of constructible sets in (7.4), allows us to deduce from the
connectedness of G, that SL(n, K) 1s connected. The same technique can of
course be applied to other groups. |

First, a definition. Given an arbitrary subset M of an algebraic group G,
denote by o/(M) the intersection of all closed subgroups of G containing M.
This 1s the smallest closed subgroup of G containing M ; we call it the group
closure of M. |

Proposition. Let G be an algebraic group, I an index set, ;:X, > G
(i€ I'}a family of morphisms from irreducible varieties X;, such thatec Y; = f,(X;)
foreachiel. Set M = ||t Y. Then:

(a) (M) is a connected subgroup of G.

(b) For some finite sequence a = (a(l),...,a(n))inl, L (M) =Y, Yo,
(e; = +1).

Proof. It 1s harmless to enlarge I so as to insure that the morphisms
x t= fi(x)~ ! from X, to G also occur. For each finite sequence a = (a(1), . . .,
a(n)) in I, set Y, = Y4 -+ Y, As the image of the irreducible variety
Xoy X -+ X Xy under the morphism f,4y X =+ X f,,, composed with
multiplication in G, Y, is constructible (4.4), and Y, is an irreducible variety
(1.3) passing through e. Using the maximal condition on irreducible closed
subsets of G°, we can therefore find a sequence a for which Y, is maximal.
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Given any two finite sequences b, ¢ in I, we claim that (*) L, ¥, = ¥, .,
where (b, c) 1s the longer sequence obtained by juxtaposition. The proof is in
two steps. For x €Y, the (continuous) map y I— yx sends Y, into Y, ., hence
Y, into Yy o, 1.8, Y, Y, © Y4 . In turn, x € Y, sends Y, into Y, ., hence Y.
as well.

Because Y, is maximal, and e lies in each Y,, (*) implies that

Y, ﬁﬂcf’(a,b)=ﬁ
for any b. Setting b = a, we have Y, stable under multiplication. Choosing
bsuchthat ¥, = Y, ! (cf first sentence of proof), we also have Y, stable under
inversion. Conclusion: Y, is a closed subgroup of G containing all ¥; (i € ),
so Y, = /(M), proving (a). Moreover, since Y, is constructible, Lemma 7.4
shows that Y, = Y, Y, = Y, ,, so the sequence (a, a) satisfies (b).

Corollary. Let G be an algebraic group, Y; (i € I) a family of closed con-
nected subgroups of G which generate G {as an abstract group). Then G is
connected.

The proposition itself (not just its corollary) will be of further use in (17.2)
when we consider the closure and connectedness properties of commutator
groups.

7.6. Hopf Algebras

An affine variety 1s completely determined by its affine algebra (1.5).
Therefore it is interesting to reformulate the axioms for an (affine) algebraic
group G as a set of conditions on the algebra 4 = K[G]. If e is viewed as
‘a morphism from a group of one element into G (K being the affine
algebral), then e*: 4 — K sends f— f(e). From u:G x G - G we obtain
pu*: A - A @ A, sending f — > g; ® h; if flxy) = Y g:(x)h(y). To1:G - G
corresponds 1*: 4 —» A, where (i*f)(x) = f(x~1). It is also useful to write
p:G — G for the constant morphism p(x) = e. Then p*:4 — A satisfies
(P*f)x) = fle). '

Now the group axioms for G (associative law, identity, inverses), as given
by the commutativity of the lefthand diagrams, translate into corresponding
conditions for (4, e*, u*, 1*, p*):

GxGxG 23 GxG ARARA 2 404
1xp Lu 1@ pxT T b
G x G > G AR A —fp A

G Pl , G x G A <% 404
lprr \ l,u 1®p¢1‘ \ TJ”*
G x G _— e AR A «—f A

G >l , G x G 4. "2 ARA

S ot St
G X G » > G AR A < A
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Notice that p* is the composite of e*: 4 — K and the natural inclusion K — A.
Therefore, to define a structure of algebraic group on the variety corresponding
to A, we need only specify maps e*, u*, 1* making the three diagrams commute.
(Then A becomes an example of a Hopf algebra with identity.)

It is instructive to write down the group law for some of our earlier
examples. G, has K| T] as affine algebra, so it is enough to say what the various
maps do to T:e™¥T) =0, p*M) = (TR + (1 X®T), *(T) = —T. G, has
K[T, T™'] as its affine algebra, and e¥(T) = 1, p*(M = TR T, 1*T) = T~ L.
For GL(n,K) we have A = K[T;{,Ty5,..., T, d™ '], d = det (T;;). Here
e*(Tij) = 045 u¥(Tyj) = Zh Tin @ Typ 15(Ty5) = (— 1) 77d™" det (Tro)r 2, s i (The
reader should verify these formulas.)

Exercises

—

. Prove that G, and G,, are not 1somorphic.
2. Show that T{n, K), D(n, K), U(n, K) have respective dimensions n(n + 1)/2,
n, nin — 1)/2.
3. Let A be a finite dimensional K-algebra. Prove that Aut 2 is a closed
subgroup of GL(2).
4. The only automorphisms of G,, (as algebraic group) are x — x, x = x "%,
while Aut G, = K*,
5. A closed subset of an algebraic group which contains e and is closed
under taking products is a subgroup of G.
6. G° is a characteristic subgroup of G, 1.e., stable under all automorphisms
of G. |
7. Let N < GL(n, K) be the group of monomial matrices, i.e., matrices having
precisely one nonzero entry in each row and each column. Prove that
N isaclosed subgroup of GL(1n, K), with N° = D(n, K)and [N:N°] = n!
| Note that the finite group N/N° is isomorphic to the symmetric group
Sy | |
8. Prove that T(n, K), D(n, K), U(n, K) are all connected.
9. In Proposition 7.5 (b), show that n can be taken to be <2 dim G.
10. Show by example that the subgroup of an algebraic group generated by
two non-irreducible closed subsets need not be closed. | Use the cyclic

| 1
subgroups of GL(2, C) generated by ( 0 ?) and (é D]

11. Let G be a connected algebraic group. Prove that any finite normal
subgroup H lies in the center Z(G) = {x e G|xy = yx for all ye G}.
| Consider the morphism G — H defined by x - xyx !, ye H.]

12. Define a morphism G x G x G x G - G x Gby u x p,and let X be
be the inverse image of the diagonal {(x, x)|x € G}. If G is connected,
prove that X is a closed irreducible subset of G x G x G x G. [Note
that(w, x, y, z) — (w, x, y) induces an isomorphism of X onto G x G x G.]
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MNotes

- The idea of (7.5) goes back to Chevalley [4,8§7]. For the theory of abelian
varieties consult Lang [2], Mumford [2], Weil [1]. '

8. Actions of Algebraic Groups on Varieties

In studying algebraic groups we shall very often exploit their actions on
themselves or on other naturally associated varieties. The present section
introduces most of the relevant machinery, and then uses some of 1t to prove
that every (affine) algebraic group is isomorphic to a closed subgroup of
some GL(n, K).

8.1. Group Actions

If G 1s an abstract group, X a set, we say that G acts on X if there 1s a
map ¢:G x X — X, denoted for brevity by ¢(x, y) = x . y, such that:

(Al) x{.(x,.y) =(x1x,).y for x;,€G,yeX;
(A2) e.y =y forall yelX.

These two conditions can also be construed as the requirement that ¢ induce
a group homomorphism from G to the symmetric group on X. The triple
(G, X, ¢) 1s sometimes called an algebraic transformation space.

Let G act on X. We say that G acts transitively if G . y = X for arbitrary
y € X. In any case, the set G. y 1s called the orbit of y; evidently the distinct
orbits under G form a partition of X, and G acts (transitively) on each orbit.
X¢ denotes the set of fixed points of G (i.e., the set of those y € X whose
G-orbit consists of y alone). In general, if y € X, we define the isotropy group
(or stabilizer) of ytobe G, = {x € G|x .y = y}. Itis clear that G, is a group.
Moreover, the orbit map G — G . y defined by xt— x . y induces a bijection
G/G, - G.y. In case z = x. y for some x € G, it is easy to check that the
isotropy groups G, and G, are conjugate: xG,x ' = G,.If H is any subgroup
of G, there is a natural transitive action of G on the left coset space G/H
(yH +— xyH), H being the isotropy group of the coset H. In view of the
preceding remarks, every transitive action of G has essentially this form.

Consider now some natural actions of G onitself. For xe G, yr->xyx~ ! =
Int x(y) defines an action by inner automorphisms, with corresponding
homomorphism G — Aut G. (Here the kernel is Z(G), the center of G, and
the image Int G is easily seen to be a normal subgroup of Aut G.) The orbit
of y is its conjugacy class, the isotropy group its centralizer Cg(y). The set of
fixed points is just Z(G).

G also acts-on itself as a group of left (resp. right) translations, via y — xy
(resp. y b= yx~1'). These actions are evidently transitive and the isotropy

groups trivial.
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8.2. Actions of Algebraic Groups

Let G be an algebraic group, X a variety. If we are given a morphism
0:G x X — X such that axioms (A1),(A2) of (8.1) are satisfied, we say that G
acts morphically on X (or just “acts”, if no confusion is possible). For example,
the actions of G on itself described above are clearly of this type. As 1n (8.1),
we have the notions of orbit, isotropy group, . . .. Another useful notion is
that of transporter: Trang(Y, Z) = {x€ G|x - Y < Z}, where Y and Z are
subsets of X. Finally, write Cy(Y) = ﬂ},e}' G,; this 1s the centralizer of Y in G.

Proposition. Let the algebraic group G act morphically on the variety X.
Let Y, Z be subsets of X, with Z closed.

(a) Trang(Y, Z) is a closed subset of G.

(b) For each y e X, G, is a closed subgroup of G, in particular, Cg(Y)
is closed.

(c) The fixed point set of x € G is closed in X ; in particular, X is closed.

(d) If G is connected, G stabilizes each irreducible component of X, hence
acts trivially on X in case X is finite.

Proof. For each ye X, the orbit map ¢,:G - X (xt>x-y) 1s the
composite of x I (x, y) and ¢; therefore it 1S a morphism. As y runs over
Y, the various inverse images ¢, '(Z) are closed in G (because Z is closed
in X) and Trang(Y, Z) is their intersection, whence (a). Since G, = Trang({ y},
{y}), G, is a closed subgroup of G, thanks to (a). In turn, C&(Y) = [),ey G,
so (b) follows. |

For (c), let x € G, and consider the morphism : X — X x X defined
by yt—(y, x * y). The fixed point set X* is precisely the inverse image under
W of the diagonal, which is closed (X being a variety (2.5)); (c) follows.

Finally, let G be connected. The stabilizer H in G of an irreducible com-
ponent of X 1s closed, thanks to part (a), and 1s a subgroup. Since G permutes

the finitely many components of X, H has finite index in G. Therefore
(Proposition 7.3 (b)) H = G. |

Corollary. Let G be an algebraic group, H a closed subgroup. Then
Ng(H) and C;(H) are closed subgroups, as is Co(x) for x € G.(Here Ng(H) =
{x € G|xHx™! = H}, the normalizer of H in G.)

Proof. For Cs(H) or Cg4(x) this results from part (b) of the proposition,
if we let G act on itself by inner automorphisms. For Ng(H) it results from
part (a) and the fact that Ng(H) = Trang(H, H). Indeed, the automorphism
Int y (y € G) maps H to a closed subgroup of G of the same dimension as H,
whose identity component is of index { H: H°|. So Int x maps H into H if
and only if 1t maps H onto H.

We shall frequently use the fact that normalizers, centralizers, and fixed
point sets are closed. Orbits, however, are often not closed (conjugacy classes
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in G, for example), cf. (8.3). below. It may be well to emphasize also that the
connectedness of normalizers and centralizers is not to be taken for granted.
Some of the most subtle arguments in later chapters will involve precisely
this question.

Suppose next that ¢:G — GL(V) 1s a (rational) representation of the
algebraic group G. If we identify V' with athine n-space (n = dim V), 1t 1s clear
that the recipe x. v = @(x)(v) (x € G, ve V) defines an action of G on V.
In this case we may call V' a (rational) G-module. For later reference we record
here some related notions and constructions.

Associated with ¢ 1s the dual or contragredient representation G - GL(V'*),
where V'* is the dual vector space. This i1s defined by the rule: (x. f)(v) =
f(x~!. v),where f € V* ve V,x € G. We have to write x~ ! in order to insure
that y.(x. f) = (yx). f. 1f dual bases for V, VV* are chosen, it becomes clear
at once that the dual representation really 1s a rational representation of G.

Next, consider a pair of representations ¢:G — GL(V), v: G — GL(W).
The tensor product space V & W has as basis all v; @ w; if v; (resp. w;) runs
over a basis of V (resp. W). We can make x € G act on V &® W by requiring
thatx . (v; ® w;) = (x.v;) ® (x.w;)and extending linearly. (Of course, there
is no need to choose bases, if we appeal directly to the universal property of
a tensor product.) It is clear that this defines a (rational) representation
G - GL(V ® W)

It is a standard fact that the vector space V* @ V identifies naturally
with the vector space End V, with f & v corresponding to the endomorphism
w = f(w)v of V. Therefore, a (rational) representation G — GL(V) induces an
action of G on End V, which is in fact the action sending ¢t € End V to xtx !
(x € G). The reader can check that a fixed point of G in End V is just a G-
module homomorphism V — V.

When G acts on two varieties X, Y, a morphism ¢:X — Y 1s called
G-equivariant provided ¢(z. x) = z. ¢(x) for all z € G, x € X. For example,
a subgroup G of GL(V') acts on 1tself by left multiplication as well as on V. If
v € V, the resulting orbit map G — V (sending z to z. v) i1s a G-equivariant
morphism. (Ci. also Exercise 6.)

8.3. Closed Orbits

Proposition. Let the algebraic group G act morphically on the (nonempty)
variety X. Then each orbit is a smooth, locally closed subset of X, whose bound-
ary is a union of orbits of strictly lower dimension. In particular, orbits of minimal
dimension are closed (so closed orbits exist).

Proof. Say Y = G. yisthe orbit of y € X. As the image of G under the
orbit map, Y is constructible (4.4), hence contains an open dense subset of Y.
But G acts transitively on Y (leaving Y stable), so Y is smooth and contains
a neighborhood in Y of each of its points, i.c.,. Y is open in Y. Therefore,
Y — Y is closed and of strictly lower dimension than Y. Being G-stable, this
boundary 1s just the union of other G-orbits.
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This proposition will be of great use later on. It comes into play when X
is not known 1 advance to have any points fixed by G.

R.4. Semidirect Products

An action of one group on another (as group automorphisms) permits
construction of a larger group. First recall the (abstract) group-theoretic
construction: When G acts (as a group of automorphisms) on N, the cartesian
product N x G becomes a group if we define (x4, y1)(x2, ¥5) = (x1(yy - X,),
y1y2). This 1s called a semidirect product and is denoted N X G. Of course,
the direct product N x G arises as a special case of this construction (when G
acts trivially on N). N is embedded as a normal subgroup via x> (x, e),
and G as a subgroup via y > (e, y), so that each element of N >} G may be
written uniquely in the form xy (x € N, y € G). The action of G on N is now
realized by inner automorphisms. This construction may be summarized by
an exact sequence (in which o 1s the canonical “section” just described, = the
projection onto the second factor):

e->NSNXGSG—e
g

How can we recognize a semidirect product? Given a group G’ with
subgroups N and G (N being normal), G acts on N by inner automorphisms,
allowing us to construct a semidirect product N X G. It is easy to check that
the homomorphism N X G — G’ defined by (x, y) = xy 1s an isomorphism
precisely when G' = NG and N n G = e.

This entire discussion can be carried over almost word-for-word to the
case of algebraic groups. If G, N are algebraic groups and G acts morphically
on N, then the variety N x G becomes an algebraic group N X G under the
above recipe, and the maps i, n, ¢ are morphisms of algebraic groups.

In the reverse direction, a given algebraic group G’, with closed subgroups
G and N (N being normal), will be identifiable in the above way with N X G
provided the natural morphism N X G — G'is an isomorphism of algebraic
groups. (For this it is not always enough that the morphism be an isomor-
phism of abstract groups.) Example: T(n, K) is easily seen to be the semi-
direct product (as algebraic group) of its subgroups D(n, K) and U(n, K),
the latter being normal (Exercise 2).

8.5. Translation of Functions

When an algebraic group G acts on an affine variety X (e.g., on itself),
we also obtain interesting linear actions of G on the affine algebra K[ X]
and certain of its finite dimensional subspaces. Namely, denote by 7, the
comorphism attached to the morphism yt—>x"1.y (xe G, ye X). So if
feK[X],yeX, (z.f)(v) = f(x~'. y). The inverse appears here in order to
insure that 7:G - GL(K[X]), where 1(x) = t,, is a group homomorphism.
We call 7, translation of functions by x. Notice that 7, is actually a K-algebra
automorphism of K[ X 1.
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For example, when X = G, G acts on itself by left (resp. right) translations
(8.1): y > xy (resp. y = yx~ ). The associated morphism introduced above
is then y+— x~ 'y (resp. y I— yx), and its comorphism A, (resp. p,) is called
left (resp. right) translation of functions by x:

A Np) = fix" ),
(o< )y) = flyx).

As above, 4:G - GL(K|G]) and p:G - GL(K[G]), where A(x) = A, and
p(x) = p,, are both group homomorphisms. Moreover, A, and p, obviously
commute (for each pair x, y € G). These operators will prove to be extremely
useful in what follows. As a sample, we use right translation to characterize

membership in a closed subgroup:

Lemma. Let H be a closed subgroup of an algebraic group G, I the ideal
of KLG] vanishing on H. Then H = {x € Glp(I) = I}.

Proof. Inonedirection,letxe H. If f eI, (p, f)(y) = f(yx) = 0 for all
y € H (since yx € H), so p, f € I. In the reverse direction, let p (I) = I. In

particular, 1if f € I, then p, f vanishes at e€ H, i.e,, f(x) = 0. So xe H.

8.6. Linearization of Affine Groups

It was observed in (7.1) that any closed subgroup of GL(n, K) is an (affine)
algebraic group. The converse is also true, as we shall see by constructing a
finite dimensional subspace of K[G] on which G acts by translations. First
we lay the groundwork.

Proposition. Let the algebraic group G act morphically on an affine
variety X, and let F be a finite dimensional subspace of K[ X ].
(a) There exists a finite dimensional subspace E of K[ X | including F which

is stable under all translations 1. (x € G).
(b) F itself is stable under all ©, (x € G) if and only if p*F < K[G] ®, F,

where ¢:G x X — X is given by o(x, y) = x~* . y.
Proof. (a) We may assume that F is the span of a single f € K[ X ] (and
“add up” the resulting spaces E afterward). Write (non-uniquely) ¢*f =

Y ®g:eKIG]@K[X]. For each xe G, ye X, (1.f)(y) = f(x '.y) =
> fix)g(y), whence 7,.f =) fi(x)g;. The functions g, therefore span a
finite dimensional subspace of K| X | which contains all translates of . So the
space E spanned by all 7, f does the trick.

(b) If *F < K[G] ® F, then the proof of part (a) shows that the func-
tions g; can be taken to liein F, i.e., F is stable under all 7, (x € G). Conversely,
let F be stable under translations, and extend a vector space basis { f;} of F to
a basis {fi} U {g;} f KIX]. If o*f = Y r, ®f; + Y5, ® g;, we have 1, f =
Y rx)f; + Y s;(x)g;. Since this belongs to F, the functions s; must vanish
identically on G (and hence be 0), i.e., p*F = K[G] ® F.
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Theorem. Let G be an (affine) algebraic group. Then G is isomorphic ro
a closed subgroup of some GL(n, K).

Proof. Choose generators f;, ., f, for the affine algebra K[G]. By
applying part (a) of the preceding proposition to the span F of the f;, we can
find a larger finite dimensional subspace E of K[G] stable under all right
translations p, (x € G). Changing notation, we may assume that fi,-, f,1sa
vector space basis of £ (and generates K[G]). If ¢: G x G - G is given by
@(x, y) = yx, use part (b) of the proposition to write @*f; = DM ® i,
where m;;€ K[G]. Then (p,f)(y) = fil(yx) = Y m;;(x)fi(y), whence p, f;, =
> my(x)f;. In other words, the matrix of p,|E (relative to the basis f;, ., 1)
is (m;;(x)). This shows that :G — GL(n, K), where y(x) = (m;{x)), is a
morphism of algebraic groups.

Notice that f(x) = fiex) = ) m;;(x)fi(e), or f; = ij(e)mij.'This shows
that the m,; also generate K[G]; in particular, ¥ is injective. Moreover, the
image group G' = Y(G) is closed in GL(n, K) (part (b) of Proposition 7.4 B).
To complete the proof, we therefore need only show that y is an isomorphism
of varieties. But the restrictions to G’ of the coordinate functions T, jare sent
by ¥* to the respective m;;, which were just shown to generate K[G]. So y*
is surjective, hence it identifies K[ G'] with K[G1. |

~ Just as Cayley’s theorem in group theory reduces the study of abstract
groups to that of permutation groups, this theorem reduces the study of
(affine) algebraic groups to that of linear groups. However, the “arbitrariness”
of the concrete representation chosen makes us prefer to remain mostly in
the general context. For our purposes, the theorem will be useful mainly as
a technical aid in certain proofs: we embed a given group into a general
linear group (as a closed subgroup) and then exploit the special properties
of matrices (e.g., behavior of eigenvalues). This procedure is hardly very
elegant, and could often be avoided, but it does make some of the proofs
more transparent.

In a sense, the action of G on K[ G ] by right translations already contains
all information about the linear representations of G. We shall exploit heavily
the passage from x to p, in the next chapter.

EXercises

G denotes an arbitrary algebraic group.

1. Let GL(n, K) act in the usual way on K" (identified with affine n-space).
Prove that there are precisely two orbits, one closed and one not.

2. Verify the assertion (8.4) that T(n, K) is the semidirect product of D(n, K)
and U(n, K).

3. K[G] is the union of finite dimensional subspaces stable under right
transiations by G.

4. Each finite dimensional subspace of K[G] lies in a finite dimensional
subspace stable under all 4, and p, (x € G).
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5. Show that the foﬂowing recipe defines {m A? the structure of (connected)

~algebraic group. Let char K = p > 0, and let g, r be powers of p. Define
(a,b) (¢, d) =(a+ ¢, b+ d+ ai). In case g # r, notice that this
group is not commutative. Try to find a closed subgroup of U(5, K)
isomorphic to this group.

6. GL(V) acts morphically on V' — {0} (viewed as an open set in affine
space) and on P(V). The canonical map V — {0} - P(V) is a G-equi-
variant morphism for any closed subgroup G of GL(V).

7. Let V be a G-module which is isomorphic to the G-module V* (8.2).
Prove that there exists a nondegenerate bilinear form f: V xV — K
which is invariant under G in the sense that f(x . v, x . w) = p(v, w) lor
allxe G,o,we V.,

8. In GL(n, K), the normalizer of D(n, K} is the group N of monomial
matrices (cf. Exercise 7.7).

Notes

For an intrinsic approach to affine algebraic groups, based on their Hopt
algebras rather than on their realizations as linear groups, see Hochschild [ 8 ].
For an introduction to affine group schemes, see Waterhouse [1].

Chapter 111
Lie Algebras

9. Lie Algebra of an Algebraic Group

9.1. Lie Algebras and Tangent Spaces

The object of this section is to attach to an algebraic group a Lie
algebra (in a suitably functorial way). For our purpose, a Lie algebra over
K is a subspace of an associative K-algebra which is closed under the bracket
operation [x, y] = xy — yx. An important example 1s the general linear
algebra gl(n, K), which is the associative algebra M(n, K) viewed as Lie alge-
bra. (This will turn out to be essentially the Lie algebra of GL(n, K).)

Let G be an algebraic group, A = K[G]. Recall (8.5) that G acts on 4
via left (resp. right) translation: (A, f)(y) = f(x~'y) (resp. (p. /) (y) = f(yx)).
The bracket of two derivations of A (meaning K-derivations) 1s again a
derivation; therefore, Der A4 is a Lie algebra. So is the subspace Z(G) =
{6 € Der A|04, = A,0 for all x € G} = space of left invariant derivations of
A, since the bracket of two derivations which commute with A, obviously
does likewise. We call .#(G) the Lie algebra of G.

Several natural questions arise at this point: (1) Is #(G) finite dimensional,
and if so, what is its dimension? (2) How does a morphism of algebraic
groups ¢:G — G’ relate the two Lie algebras Z£(G), £(G)? (3) How does
the structure of #(G) reflect the group structure of G? (4) If H 1s a closed
subgroup of G, how is Z(H) related to £(G)?

Considerable light can be cast on these matters by comparing £(G)
with the tangent space T (G), (5.1). Recall that 7(G), is identified with
F(G°),; it has the structure of a vector space over K, of dimension equal to
dim G (since e is a simple point (7.1)). We shall usually write g for 7 (G)..
Given a morphism ¢: G — G’ which sends e to e (e.g., a morphism of algebraic
groups), we obtain a linear map do,:g — ¢'. Differentiation has the functorial
properties (5.4): d(lg), =14, d @), = dy, o do.. We also know that 7(G),
may be described algebraically as the space of point derivations from the
local ring at e into K. But such derivations are already uniquely determined
by their effect on the subring A = K[G]. This suggests that we might pass
from £(G) to g by evaluating functions at e. Formally, we define a K-linear
map 6: £(G) — g by (00)(f) = (9f)(e) (0 € Z(G), f € A).

Theorem. Let G be an algebraic group, g = T (G),, L(G) as above. Then
6: Z(G) — q is a vector space isomorphism. In case ¢:G — G' is a morphism
of algebraic groups, do,.q — q is a homomorphism of Lie algebras (g, g
being given the bracket product of L(G), ZL(G')).

65
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The proof will be given in (9.2). Since that proof is rather formal, 1t may

be well to explain informally the underlying idea. If we follow any derivation
0:A — A by evaluation at x € G, we obtain a tangent vector at x. (So &
determines a “tangent vector field” on G, assigning to each point of G a
tangent vector.) Left invariance of d simply means that the tangent vector
at e determined by ¢ is “sent” (via left translations) to the various tangent
vectors at other points x determined by o. Therefore, 0 ought to be uniquely
determined by the tangent vector f — (0f)(e) (and any tangent vector at e
should give rise to such a 9).

The theorem answers questions (1) and (2) above. (Questions (3) and (4)
will also be dealt with shortly.) When ¢:G — G’ is a morphism of algebraic
groups, we shall write do 1n place of do,. Consider, for example, the inner
automorphism Int x (y) = xyx~ ' (x, y € G). Its differential d{Int x) will be
of great importance; we denote it by Ad x. According to the theorem, Ad x
1s an automorphism of the Lie algebra g: the invertibility follows from the
fact that (Ad x)(Ad x™%) = d(Int x)od(Int x™') = d(Int ¢) = 1. Indeed,
(Ad x){Ad y) = Ad xy, so Ad:G — Aut g <« GL(g) is a homomorphism (of
abstract groups), the adjoint representation of G.

It 1s interesting to compute explicitly the effect of Ad x on .#(G) (via the

identification 6). We claim that Ad x(6) = p,dp, . (This is reasonable: since
right and left translations commute, the right side is again in #£(G).) If
Ad x(6) = &', then by definition, (6'f)(e) = d(¢*f)(e) for all f € K[G], where
@ = Int x. This applies in particular to functions of the form p, f. But

O*(px fHY) = (pN)xyx™ 1) = f(xy) = (A f Ny, L&, @*(p,f) = A, f. Now
(0'p)(f)e) = oA f)e) = A,-(0f )e) (0 1s left invariant!) = (of)(x) =
0,.0( f)(e). This shows that 6’ = p.dp, !, as claimed.

9.2. Convolution

In order to prove Theorem 9.1, we construct a backward mapn:g — Z(G),
sending a tangent vector x to a derivation *x (called right convolution by X):

(f#x)(x) = x(1,-f)  (x€G, f € A)
It has to be checked first that =x really is a left invariant derivation of A.
Ifx,yeG, f,ge A, we have:

(fg=x)(x) = x(4,-(f9))
= X((Ae-1 f)4;-9))
= X{A,-1f)g(x) + fO)x(A,-:9)
= ((f*x)g + f(g*x))(x)

(so *x 1s a derivation, K-linearity being obvious), and

(A, (f#x))(x) = (f*x)(y~ ')
X(A-1,f)

X(A-1(4, 1))
((4y f)=x)(x)

(so xx 1s left invariant).
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Now it is clear that 7 is a K-linear map. To see that it is inverse to 4, we
must compute the two composites # - § and 8 o 7:

(f%0(0))(x) = O(0)(A,- )
= 0(A,-1f)e)
= A-2(0f )e)
= (of }(x)
(so for 0 € £(G), ( - 0)(S) = ), and

0x)(f) = (fx)(e)
= X(A,-:f)

= x(f)
(so for x € g, (6 - n)(x) = x).

It remains to show that if ¢:G - G is a morphism of algebraic
groups, then dg:g — ' preserves the bracket operation. For x, y € q, let
X' = do(x), y = do(y). Let ' ¢ KLG'] and write f = ¢*f", By definition,
DY) = (fray'sx)e) — (fax'sy)e) = X(f'sy) — y(f #X) =
X(@*(f'*y)) — y(o*(f'*x’)). On the other hand, do([x,y]) sends 1’ to
(fryxx}e) — (fexxy)(e) = x(fxy) — y(f*x). We claim that each term is
equal to the corresponding term in the preceding equation; for this it
suﬂices_ to prove that fxx = @*(f'xx’), ie., that (p*f Vex = @*(f'xdp(x)).
Each side is a function on G, so we test the values at x e G:(@p*f'*x)(x) =
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