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Preface

This 1s essentially a book on linear algebra. But the approach is somewhat
unusual in that we emphasise throughout the geometric aspect of the
subject. The material is suitable for a course on linear algebra for mathe-
matics majors at North American Universities in their junior or senior year
and at British Universities in their second or third year. However, in view
of the structure of undergraduate courses in the United States, it 1s very
possible that, at many institutions, the text may be found more suitable at
the beginning graduate level.

The book has two aims: to provide a basic course in linear algebra up
to, and including, modules over a principal ideal domain; and to explain
in rigorous language the intuitively familiar concepts of euclidean, affine,
and projective geometry and the relations between them. It is increasingly
recognised that linear algebra should be approached from a geometric
point of view. This applies not only to mathematics majors but also to
mathematically-oriented natural scientists and engineers.

The matenal in this book has been taught for many years at Queen
Mary College in the University of London and one of us has used portions
of 1t at the Umversity of Michigan and at Cornell University. It can be
covered adequately 1n a full one-year course. But suitable parts can also be
used for one-semester courses with either a geometric or a purely algebraic
flavor. We shall give below explicit and detailed suggestions on how this
can be done (in the “Guide to the Reader™).

The first chapter contains in fairly concise form the definition and most
elementary properties of a vector space. Chapter 2 then defines affine and
projective geometries in terms of vector spaces and establishes explicitly the
connexion between these two types of geometry. In Chapter 3, the idea of
isomorphism 1s carried over from vector spaces to affine and projective
geometries. In particular, we include a simple proof of the basic theorem of
projective geometry, in §3.5. This chapter 1s also the one in which systems
of linear equations make their first appearance (§3.3). They reappear in
increasingly sophisticated forms in §8§4.5 and 4.6.

Linear algebra proper i1s continued in Chapter 4 with the usual topics
centred on linear mappings. In this chapter the important concept of
duality in vector spaces 1s linked to the idea of dual geometries. In our
treatment of bilinear forms in Chapter 5 we take the theory up to, and
including, the classification of symmetric forms over the complex and real
fields. The geometric significance of bilinear forms in terms of quadrics is
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Preface

taken up 1in §85.5-5.7 Chapter 6 presents the clementary facts about
euchdean spaces (1.e., real vector spaces with a positive definite symmetric
form) and includes the simultancous reduction theory of a pair of symmet-
ric forms one of which i1s positive definite (§6 3); as well as the structure of
orthogonal transformations (§6.4). The final chapter gives the structure of
modules over a polynomuil ring (with coefficients in a field) and more
generally over a principal 1deal domain. This leads naturally to the solution
of the similarity problem for complex matrices and the classification of
collineations.

We presuppose very little mathematical knowledge at the outset. But the
student will find that the style changes to keep pace with his growing
mathematical maturity. We certainly do not expect this book to be read in
mathematical isolation. In fact, we have found that the material can be
taught most successfully if it is allowed to interact with a course on
“abstract algebra”.

At appropriate places in the text we have inserted remarks pointing the
way to further developments. But there are many more places where the
teacher himself may lead off in new directions. We mention some exam-
ples. §3.6 1s an obvious place at which to begin a further study of group
theory (and also incidentally, to introduce exact sequences). Chapter 6
leads naturally to elementary topology and infinite-dimensional Hilbert
spaces. Our notational use of & and £ (from Chapter 2 onwards) is
properly functorial and students should have their attention drawn to these
examples of functors. The definition of projective geometry does not
mention partially ordered sets or lattices but these concepts are there 1n all
but name.

We have taken the opportunity of this new edition to include alternative
proofs of some basic results (notably in §§5.2, 5.3) and to illustrate many
of the main geometric results by means of diagrams. Of course diagrams
are most helpful if drawn by the reader, but we hope that the ones given in
the text will help to motivate the results and that our hints on the drawing
of projective diagrams will encourage the reader to supply his own.

There are over 250 exercises. Very few of these are routine in nature. On
the contrary, we have tried to make the exercises shed further light on the
subject matter and to carry supplementary information. As a result, they
range from the trivial to the very difficult. We have thought 1t worthwhile
to add an appendix containing outline solutions to the more difficult
eXercises.

We are grateful to all our friends who helped (wittingly and unwittingly)
in the writing of this book. Our thanks go also to Paul Halmos for his
continuing interest in the book, an interest which has now resulted 1n the
appearance of this new edition.

K. W. Gruenberg
April 1977 A. J. Werr
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Guide to the Reader

This book can be used for hnear algebra courses involving varying
amounts of geometry. Apart from the obvious use of the whole book as a
one year course on algebra and linear geometry, here are some other
suggestions.

(A)

(B)

(B))

(B,)

(C)

One semester course in basic linear algebra

All of Chapter I.
§2.1 for the definition of coset and dimension of coset.

§3.3.
Chapter IV, but omitting §§4.2, 4.7, 4.8.

One semester course in linear geometry

Prerequisite: (A) above or any standard introduction to linear alge-
bra.

All of Chapter II.

§§3.1-3.4.
Then either (B,) or (B,) (or, of course, both if time allows):

§§4.7, 4.8.
Chapter V up to the end of Proposition 12 (p. 118).

§§5.1-5.4 (see Note 1, below; also Notes 2, 3. for saving time);
§5.6 but omutting Proposition 10; §5.7 to the end of Proposition 12.
$§6.1, 6.3, 6.4 to the “orientation™ paragraph on p. 144.

One year course in linear algebra

The matenial in (A) above.

Chapter V but omitting §§5.5-5.7.

Chapter VI but omitting the following: §6.1 from mid p. 127 (where
distance on a coset 1s defined); §6.2; §6.3 from Theorem 2 onwards;

1X



Guide to the Reader

§6.4 from nud p. 144 (where similarity classes of distances are
defined).

Chapter VII, but omitting §7.6.

Notes

1. §§5.1-5.3 can be read without reference to dual spaces. In particular,
the first proof of Proposition 4 (p. 93) and the first proof of Lemma
4 (p. 97) are then the ones to read.

2. The reader who 1s only interested in symmetric or skew-symmetric
bilinear forms can ignore the distinction between L and T. This
will simplify parts of §5.2, and in §5.3 the notion of orthosymmetry
and Proposition 6 can then be omitted.

3. In §5.3, the question of characteristic 2 arises naturally when skew-
symmetric forms are discussed. But the reader who wishes to assume
270 1n the fields he 1s using can omit the latter part of §5.3.



CHAPTER 1

Vector Spaces

There are at least two methods of defining the basic notions of geo-
metry. The one which appears more natural at first sight, and which
I8 in many ways more satistfactory from the logical point of view, is the
80 called synthetic approach. This begins by postulating objects such
as points, lines and planes and builds up the whole system of geometry
from certain axioms relating these objects. In order to progress beyond
a few trivial theorems, however, there must be sufficient axioms. Un-
fortunately, it is difficult to foresee the kind of axioms which are re-
quired in order to be able to prove what one regards as ‘‘fundamental”
theorems (such as Pappus’ Theorem and Desargues’ Theorem). This
method is very difficult as an introduction to the subject.

The second approach is to base the geometry on an algebraic founda-
tion. We favor this approach since it allows us to ‘““build in”’ enough
axioms about our geometry at the outset. The axioms of the synthetic
geometry now become theorems in our algebraic geometry. Moreover,
the interdependence of the algebraic and geometric ideas will be seen to
enrich both disciplines and to throw light on them both. (For an intro-
duction to the synthetic approach the reader may consult [4], [9].)

1.1 Sets

We shall not define the basic notion of set (or collection, or aggregate)
which we regard as intuitive. Further, we shall assume that the reader
is familiar with the simplest properties of the set Z of integers (positive,
negative and zero), the set Q of rational numbers, the set R of real
numbers, the set C of complex numbers and the set F, of integers
modulo a prime .

As a shorthand for the statement ‘““x is an element of the set 8§’ we
shall writex € §. If§ and 7' are two sets with the property that every
element of § is an element of 7', we write S< 7' and say ‘S is contained
in 7’ or that S is a subset of 7"’; equivalently, we also write 7'>.§ and
say ‘T contains §°. Note that according to this definition S=8. We

1



2 LINEAR GEOMETRY CHAP. 1

shall say that the sets S and T are equal, and write S=T', if S< T and
S>T. If the set S consists of the elements x,y,... then we write
S={z,y,...}. Thus, forexample,x € 8 if, and only if, {x} =8§. Strokes
through symbols usually give the negative: for example, #, ¢, ¢ stand
for, respectively, ‘“‘is not equal to”’, *“is not contained in’’, “is not an
element of .

If S and T are given sets then a mapping (or function) f of S into T is
a rule which associates to each element s in § a unique element sf in 7.
In these circumstances we shall often write f: § — T or f: 8 — 8f. The
element sf is called the image of the element s under f. (It is often also
written as f(8) or 8/ or f,, whichever is the most convenient notation for
the purpose at hand.) The set of all sf a8 8 varies in S is the 1mage of
S under f, or simply the image of f, and is denoted by Sf. If Sf=T then
we say that f is a mapping of S onto T'; if the images under f of any two
distinct elements of S are distinct clements of 7', then f is a one—one
mapping. (The above definition of mapping seems to involve the
undefined notion of “rule”. A more sophisticated definition can be
given in terms of the “graph’ of f which is the set of all ordered pairs
(s, sf) for s in 8. The definition can thus be thrown back on the bastc

concept of set.)
The notation sf for the image is particularly suitable if mappings are

to be combined ; more specifically, if f is a mapping of § into T and if g is
a mapping of 7' into U, then the product fg is the mapping of § into U
defined by the equation s(fg)=(sf)g. In other words fg stands for
“apply first f, then g”’. If one uses the functional notation, then (fg)(s)
=g(f(s)).

On the other hand, there 1s a situation in which the index notation f,
for the image is better than sf. This occurs when we are interested in
“listing’’ the elements of the image of § under f. It is then usual to
refer to S as the set of tndices, to call f, the s-term of f, to write f in the
alternative form (f,);.s and to call f a family rather than a mapping.
As s runs through the set 8 of indices the terms f; run through the
image of § under f. It is important to realize that some of the terms
will be repeated unless the mapping f is one—one.

If an arbitrary non-empty set § is given then we can always “list’’ the
elements of § by using the identity mapping 15, which sends eachelement
of § into itself.

We mention two familiar examples of this notation:

1. If I is the set of all positive integers, then (f,); . 18 & sequence.

2. If I is the finite set {1, 2, ..., n}, then (f),, 18 an n-tuple.

If we take note of the natural ordering of the integers, then the se-
quences and n-tuples above are called ordered sequences and ordered n-
tuples respeotively.
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DEFINITION. Suppose that (M,),.; i8 a family where each M, 1s itself
a set. We define the intersection ((M,:t € I) of this family to be the
set of all elements which belong to every M, (: € I): also, the union
U(M,.iel)is the set of all elements which belong to at least one of the
sets M, (1 € I). Observe that, for this definition to make sense, I cannot
be empty.

The intersection and union of the sets M,, ..., M, are usually denoted
byM,n..-nM,and M,V ... UM, respectively.

If we are simply given a (non-empty) set § whose elements M are
sets, then we index S8 by means of the identity mapping and use the
above definition. The intersection (Y(M: M e 8) is therefore the set of
all elements which belong to every set M in 8 and the union U(M: M €8)
is the set of all elements which belong to at least one set M in S.

EXERCISES

1. Let S, T be sets, f a mapping of S into 7', ¢ a mapping of 7 into S, and
denote by lg, 1, respectively, the identity mappings on § and 7. Prove
that (i) fg=15 implies that f is one-one; and (ii) gf=1, implies that f is
onto T'. Show that if (1) and (ii) hold, then g is uniquely determined by f.
(In this case we write g=f"! and call g the inverse of f.)

2. The population on an island is greater than the number of hairs on the
head of any one inhabitant. Show that if nobody is bald then at least
two people have the same number of hairs on their heads.

3. If f, g, h are mappings of S into 7', T into U, U into V, respectively, show
that (fg)h=f(gh).

1.2 Groups, Fields and Vector Spaces

We assume that the reader is to some extent familiar with the concept
of a vector in three dimensional euclidean space. He will know that
any two vectors can be added to give another vector and any vector can
be multiplied by a real number (or scalar) to give yet another vector.
The primary object of this book 1s to generalize these ideas and to study
many of their geometrical properties. In order to axiomatize the addi-
tion of vectors we introduce the concept of a group, and in order to
generalize the notion of scalar we define a general field. The reader who
i8 meeting these abstract ideas for the first time may find it helpful at the
beginning to replace the general field ¥ in our definition of a vector
space by the familiar field R of real numbers and to accept the other
axioms a8 a minimum set of sensible rules which allow the usual manipu-
lations with vectors and sealars.  The subgequent gections have more
geometrio and algebraio motivation and are not likely to cause the same

dithoulty.



4 LINEAR GEOMETRY CHAP. I

DEFINITION. Let G be a set together with a rule (called multiplica-
tzon) which associates to any two elements a, b in G a further element ab
in G (called the product of @ and b). If the following axioms are satisfied
then G is called a group:

G.1. (ab)c=a(bc) for all ¢, b, ¢ in G;

G.2. there exists a unique element 1 in G {called the :dentity) such
that al = la=a for all a in G;

G.3. for each element a in G there exists a unique element a~! in G
(called the inverse of a) such that aa~'=a~"la=1.

A subset of G which is itself a group (with respect to the same rule of
multiplication as G) is called a subgroup of G. Note that, in particular,
G is a subgroup of G and so also is {1}, called the trivial subgroup of G.

We shall see that the order of the elements a, b in the product ab is
important (see exercises 2, 3 below). This leads to a further definition.

DEFINITION. A group G is commulative (or abelian) if
G.4. ab=ba for all a, b In G.

It is only a matter of convenience to make use of the words “multipli-
cation’’, ‘“‘product”, “inverse’ and ‘‘identity’’ in the definition of a
group. Sometimes other terminologies and notations are more useful.
The most important alternative is to call the given rule “addition’’, and
to replace the product ab by the sum a + b, the identity 1 by the zero 0
and the inverse ¢ ~1 by the negative —a (minus a). When this notation
and terminology is used we shall speak of G as a group wunth respect to
addition ; while if that of our original definition is employed we shall say
that G is a group with respect to multiplication.

The following are important examples of groups:

1. The integers Z form a commutative group with respect to addition.
The set Z* of non-zero integers, however, 1s not a group with respect to
multiplication.

2. The sets Q, R, C, F, are commutative groups with respect to
addition. The set of non-zero elements in each of these sets is a commuta-
tive group with respect to multiplication.

3. If § is the set of all points in three dimensional euclidean space,
then the rotations about the lines through a fixed point O of § may be
regarded as mappings of § into S. These rotations form a group with
respect to (mapping) multiplication. (The rigorous definitions of these
concepts will be given in Chapter VI.)

4. The set of all permutations of a set § (i.e., all one—one mappings of
S onto §) is a group with respect to (mapping) multiplication.

DEFINITION. Let F be a set together with rules of addition and mul-
tiplication which associate to any two elements z, y in F a sum xr+y
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and a product 2y, both in #. Then F is called a field if the following
axioms are satisfied:

F.1. F is a commutative group with respect to addition;

F.2. the set F'* obtained from F by omitting the zero, i1s a commuta-
tive group with respect to multiplication;

F3. x(y+2)=ay+xzand (y+z)r=yx+2x forall z, y, 2 In F.

The fields that we shall mainly have in mind in this book are the
fields Q, R, C, F, listed in example 2 above.
We are now ready to define the basic object of our study.

DEerFINITION. Let F be a given field and V a set together with rules
of addition and multiplication which associate to any two elements a, b
in Vasuma+bin V, and to any two elements x in F, a in V a product
xa in V. Then V is called a vector spaee over the field F if the following
axioms hold:

V.1. V is a commutative group with respect to addition;

V.2. x(a+b)=xa + xb,

V.3. (x+ y)a=za+ ya,

V.4. (xy)a=x(ya),

V.5. la=a where 1 is the identity element of F,
forall z, yin F and all a, b in V.

We shall refer to the elements of V' as vectors and the elements of I as
scalars. The only notational distinction we shall make between vectors
and scalars is to denote the zero elements of V and F' by 0, and O res-
pectively. Since 0, =0, for all z in F and 0pa=0, for all ¢ in V (see
exercise 7 below) even this distinction will almost always be dropped
and 0y, O be written simply as 0.

The following examples show how ubiquitous vector spaces are In
mathematics. The first example is particularly important for our pur-
poses 1n this book.

1. Let F be a field and denote by F" the set of all n-tuples
(z, ..., ;) where x,,..., x,€¢ F. We define the following rules of
addition and multiplication:

(@1, - )+ (Y1, - -5 Yn) = (@1 +Y1, - ZTp+Yy),

X(Xyy o+ 0y Ty) = (X2, - -+, TX,)

forall z, z,,...,2,,vy,..., ¥, in F.
With these rules F™ is a vector space over F.

2 If F s asubfield of a fiold ¥, then & can be regarded as a vector
sprco over Foan the following way. & s alroady a group with respeot
to anddition and we define the product. of an element. a of K (a *'voctor’™)
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by an element x of ¥ (a ‘‘scalar’’} to be za, their ordinary product
as elements of E. It is important to note that the elements in #
now have two quite distinct parts to play: on the one hand, as ele-
ments of ¥, they are scalars; but on the other hand, as elements of the
containing field £, they are vectors.

We mention some special cases: F is always a vector space over F;
R is a vector space over Q; C is a vector space over R and also over Q.

3. The set F[X] of all polynomials in the indeterminate X with co-
efficients in the field F is a vector space over F.

4. The set of all Cauchy sequences with elements 1n Q is a vector
space over Q.

EXERCISES

1. Extend rule G.1 to show that parentheses are unnecessary in a product (or
sum) of any finite number of elements of a group.

2. Show that the rotation group of example 3 is not commutative.

3. Show that the permutation groups of example 4 are not commutative if §
contains more than two elements.

4. Show from the axioms that a field must contain at least two elements.
Write out the addition and multiplication tables for a field with just two
elements.

5. Let V be a vector space over the field F. Show that any finite linear
combination r.,a, +zx.a,+ -+ +x,a,=> ., xa,, where the z,’s are scalars
and the a,’s are vectors, can be written unambiguously without the use of
parentheses.

6. If a, b € V show that the equation v+ b=a has a unique solution » in V.
This solution is denoted by a—b.

7. Show that 0a=0, foralla in V and 20,, =0, forall x in /. Show further
that (—1)a= —a foreveryain V. (For the first equation use (0z+0z)a=
Ora and exercise 6.)

1.3 Subspaces

DEFINITION. A subset M of a vector space V over F is called a sub-
space of V if M is a vector space over # in its own right, but with respect
to the same addition and scalar multiplication as V.

(Observe that a vector space contains, by definition, a zero vector and
80 a subspace can never be empty. In order to check that a (non-
empty) subset M is a subspace, we need only verify that if a, b ¢ M and
xe F,thena+be M and xae M. (In ventving that M 18 a subgroup
of IV with respect to addition we use the tact that (- l)a= —a.)
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Our definition clearly ensures that V is a subspace (of itself). At the
other extreme, the set {0} is a subspace, called the zero subspace, and
we usually write this simply as 0. It is also clear that 0y is contained
in every subspace of V.

We shall base our construction of subspaces on the following simple

proposition.

PROPOSITION 1. The intersection of any family of subspaces of V 1s
again a subspace of V.

PROOF. Put M=\ (M,:1 € I). Since 0, € M, for each i, M is not
empty. Ifa,be M andxe F, then a+b € M, and xa € M, for each 12;
thus a +be M and xa € M.

DErFINITION. If S is any set of vectorsin V then we denote by [S] the
intersection of all the subspaces of V which contain §. (There is
always at least one subspace containing §, namely V itself, and so this
intersection is defined.) The subspace [S] is the “‘least’’ subspace con-
taining S, in the sense that if K is any subspace containing &, then K
contains [§]. We say that [S] is the subspace spanned (or generated)

by S.

This definition of {S] may be referred to as the definition ‘“‘from
above’. Provided that § is not empty there is an equivalent definition
“from below’: We form the set M of all (finite) linear combinations
r,8,+ --- +x.8, where x; € /' and s;€8. It is immediately seen that
M 18 a subspace of V; that M contains §; and, in fact, that any sub-
space K of I/ which contains § must contain all of M. Hence M =[8].

It might be expected that the union of several subspaces of ¥ would
be a subspace, but it is easily shown by means of examples that this is
not the case. We are thus led to the following definition.

DEFINITION. The sum (or join) of any family of subspaces is the sub-
space spanned by their union. In other words, the sum of the sub-
spaces M, (1t € I) 18 the least subspace containing them all. The sum
18 denoted by + (M;:2€ ) or simply +(M,;). The sum of subspaces
M,,...,M,is usually written M, + M,+ --- + M,.

DEeFINITION. If M N N =0 we call M + N the direct sum of M and N,
and write it as M @ N. More generally, the sum of the subspaces
M, (2 €I) is direct, and written D(M,: 1€ ) if, for each 5 in I, we
have + (M,:vel,v # )M, = 0.

Note that the condition above on the subspaces M, is stronger than
the mere requirement. that M, N M, = 0 for all 1 #j (sce exercise 7).
it ve M, @ - (0 M,, then » can be written uniguely in the form
v=m;+ :+- +m, wherem, e M fors=1,,,,,7r.
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EXERCISES

1. If M is a subspace of ¥V, show that the zero vector of M is the same as the
zero vector of V.

2. Show that the set of all polynomials f(X) in F[X] satistying f(z,)=0
(t=1,...,7) for given x,, ..., x, in F is a subspace of F[X]. Show that
the set of all polynomials of degree less than n (including the zero poly-
nomial) is a subspace of F[X].

3. If the mnelementsa,, (v=1,...,m;5=1,..., n) liein a field ¥, show that
the set of all solutions (x,,..., z,) In F* of the linear equations

Za”Xj=O (@.:l,...,m)
J=1

is a subspace of F".

4. Give precise meaning to the statement that M N N is the “‘greatest’ sub-
space of V contained in both M and N.

5. Give an example of two subspaces of a vector space whose union is not a
subspace.

6. Prove that v € M + N if, and only if, v can be expressed in the form m+n
where me M, ne N and

ve +(M,:1el) if,andonlyif, v=m, + .- -4+m,
for some ¢, in [ and m;, iIn M, (k=1,...,7).

7. Consider the following subsets of F2: M, consists of all (x, 0, 0); M, con-
sists of all (0, z, 0); and M, consists of all (x. x, y), wherezx, ye¢ F. Show
that M,, M,, M, are subspaces of F? which satisfy M, " M,=0 for all
1#); that FP=M,+ M,+ M,; but that F? is not the direct sum of M|,
M, M,

8. Prove the last statement made before these exercises.

9. If V is a vector space over F,, prove that every subgroup of V with
respect to addition is a subspace.

1.4 Dimension

The essentially geometrical character of a vector space will emerge as
we proceed. Our immediate task is to define the fundamental concept
of dimension; and we shall do this by using the even more primitive
notion of linear dependence.

DEFINITION. Iif S 1s a subset of a vector space V over a field F, then
we say that the vectors of S are linearly dependent if the zero vector of
V18 & non-trivial linear combination of distinet vectors in §:1.e., if there
exist scalars x,, ..., £, in F, not all 0, and distinet vectors ,, .. , &, in
S such that z,8,+ -+ +r8,=0. (In these circumstances we shall
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sometimes say that the set § is linearly dependent.) If the vectors of S
are not linearly dependent then they are linearly independent. The vec-
tor v is said to be linearly dependent on the vectors of 8 if v is a (finite)
linear combination of vectors in S.

The connexions between these three concepts are given in the follow-
Ing proposition.

ProposiTION 2. (1) If a,,...,a, where r=>2 are linearly dependent,
then one of the a, 1s linearly dependent on the rest.

(2) If by, ..., by are linearly independent, but v, b,,. . ., by are linearly
dependent, then v ts linearly dependent on b,,. .., b,.

PROOF. (l) Wearegiventhat x,a,+ --- +x,a,=0forsomezx,, ..., z,
in £, not all zero. Suppose that r,# 0; then we may multiply by z,~?
and express a; as a linear combination of the remaining a,’s.

(2) We are given zv+y,b;+ --- +yb,=0 for some =z, y,, ..., y, In
F, not all zero. Since b,, ..., b, are linearly independent, x cannot be
zero. We multiply by ! and express » as a linear combination of the
b,’s.

DEFINITION. A basis (or base) of a vector space V 1s a set of linearly
independent vectors in V which also span V.

DEFINITION. A vector space which can be spanned by a finite num-
ber of vectors is called finite dimensional; otherwise it is said to be

vn finile dimenswonal.

We shall contine our attention in almost all of this book to finite
dimensional vector spaces and, in fact, from Chapter 11 onwards we
make a convention to this effect. The reader will see, however, that
many of the results (and most of the definitions} do not need this

restriction.

ProprosiTION 3. Any finite dimensional vector space contains a basis.

PROOF. Supposethata,, ..., a,span V. Ifthese vectors are linearly
dependent and r > 2, then by Proposition 2 (1) one of these a, 1s inearly
dependent on the rest. If this vector 18 discarded then the rest still
span V.  (Continuing in this way we either arrive at a basis or at a
simgle vector a, where a 18 linearly dependent. ‘This means that a = 0.
Hence V=0 and | is spanned by the empty set.

All the remaiming results in this section depend directly on the follow-
ing fundamental result.

KxcenaNar Lemma, Ifay, ..., a,&pan Vand if by, ... b, are linearly
andependent tn V, then s r and, by renumbering the a;'s 1f necessary,
byy,.. ., 0,.8,,40...,a,8pan V.
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PROOF. We use induction on k to prove that b,, ..., b,,a,.,,...,a,
span V (so long as k<8). When k=0 this i1s given (in the sense that no
b,’s appear). Assume the statement for k=A— 1 and consider the case
k=h. Thenb,=y,b,+ - -+y,_,b,_,+xya,+ - +x,a,and the linear
independence of the b,’s ensures that at least one z; is non-zero. By
renumbering the vectors «,, .. ., «,, if necessary, we may suppose that
z, #0. Now we can solve for a, as an element of

[bl""’bh’ avh_l.l,. ] ..,ar] S M,

say, where M contains b,,...,b,_,,2,,4,..., @, and also «,. Hence
M=V, by the induction hypothesis. The result now follows by in-
duction.

THEOREM 1. Let V be a given finite dimensional vector space.

(1) Any two bases of V have the same number of elements.

(2) The following statements concerning the finite subsel S of V are
equivalent .

(i) S 18 a basis of V,

(i1) S 18 a minimal spanning set of V,

(iit) S 18 a maximal linearly independent set tn V.

(3) Any set of linearly independent vectors in V can be extended to give
a basis of V.

PROOF. (1) By the Exchange Lemma, if{a,,...,a,}and {b,, ..., b}
are bases of V, then s<r and r <s.

(2) If{b,,..., by} isa basis, then the inequality s < r of the Exchange
Lemma shows that this basis 1s @ minimal spanning set. Thus (1) im-
plies (ii). M {a,,. ., a,}is a basis, then this same inequality shows that
this basis i1s & maximal linearly independent set. Thus (1) implies (iii).
If S 1s a minimal spanning set, then by the proot of Proposition 3, §
must be linearly independent. This shows that (ii) implies (1). IFinally,
if § is a maximal linearly independent set, then by Proposition 2 (2), §
1s a spanning set, and so (iil) 1mplies (i).

(3) Suppose that {a,,...,a,} is a basis and b,, ..., b, are the given
linearly independent vectors. Then by the Exchange IL.emima, re-
numbering if neccessary, b,,...,b,, a,,,,...,a, span |I'. But this span-

ning set contains r vectors and so is a basis by part (2) of the theorem.

We are now in a posttion to give the promised definition of dimension.

DeriNITION. Let V be a finite dimensional vector space over the
ficld . The number of elements in a basis of V is the dimension of V'
(over F') and is written dimg}, or simply dim V' if the field of scalars &
1s understood.
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We have the following immediate corollaries of Theorem 1.

CorOLLARY 1. If K 18 a subspace of V, then any basis of K can be
extended to a basis of V.

COROLLARY 2. If K is a subspace of V then there always exists at
least one subspace M such that

MK =1.

The following result will have important applications in the geometry
which we introduce in the next chapter.

THEOREM 2. Let M and N be finite dimensional subspaces of a vector

space.
(1) If M< N, then dimM <dimN and dimM =dimN tmplies M= N.
(2) Both M+ N and MNN are finite dimensional and

dim (M + N)+dim (MNN)=dim M +dim N.

PROOF. Part (1) is an immediate consequence of Theorem 1. To
prove part (2), we may suppose, using Theorem 1, Corollary 1, that
{a,, ..., a} 18 a basis of MNN, {a,,...,a,,b,,...,0} is a basis of M
and that {a,,...,a,,¢;,...,¢} 18 a basis of N. It is clear that M+ N
s spanned by a,,...,a,, b,,..., b, ¢, ..., ¢ and it only remains to
prove that these vectors are linearly independent.

Suppose that

20+ + 2,0, +Y1by+ o FYbs 26+ - 26 = 0,

where the z,’s, y,’s and z,’s are in #. Thus, in an obvious shorthand,
we suppose that a+b+c¢=0. Then ¢= —(a+b) iIs an element of
MNN. But the ¢,'s and ¢,’s are linearly independent and so the z;’s
are zero. Now the @,’s and b,’s are linearly independent and so all the
x;'s and y,’s are zero.

EXERCISES

1. If a set S of vectors contains 0 then § is linearty dependent.

2. If a set S of vectors is linearly independent then so is every subset of S
(including, by convention, the empty set).

3. The vectorsv,, v,, ... are linearly independent if, and only if, v,, v,, . . ., v;
are linearly independent for all &£ > 0.

4. If S,, S,, 8, are three sets of vectors such that every element of S, is
linearly dependent on S, and every element of S, is linearly dependent on
S, then every clement of S a8 linearly dependent on S,.

5. Cheek thesets {1 =X, X(1—-X), 1 — X3}, {1, X, X3,...} for linear depen-
dence in FX].
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6. Prove that the vectors (1,0, 0), (0,1, 0), (0,0, 1), (1,1, 1) are linearly
dependent in F? but that any three of them are linearly independent.

7. Show that 1, * form a basis of C over R (where i?= —1). Prove also that
R 1s infinite dimensional over Q. (Hint: A finite dimensional vector
space over Q is enumerable.)

8. Show that 1, X, X?,... form a basis of F[X] over F.

9. Let ¢, be the n-tuple whose ¢-term is 1 and whose other terms are all 0
(t=1,...,n). Show that e,,..., e, form a basis of F*. We call this
the standard basis of F™.

10. Prove that a vector space V is finite dimensional if, and only if, there 1s a
finite maximum for the lengths k of all possible chains of subspaces

M03M1:"'3Mk

where M,_,# M, for each :1=1,...;k. Show further that if there is
such a maximum, then it is precisely dim V.

11. It {a,,...,a,} is a basis of V and if A, is the one-dimensional subspace

spanned by a, (t=1,...,n),then V=4,® - --- ® A4,.

12. Find an example which shows that the subspace M of Theorem 1,
Corollary 2, is not necessarily unique.

13. If ¥V is a finite dimensional vector space, prove that the sum M+ N is
direct if, and only if, dim (M + N)=dim M +dim N. More generally,
show that the sum M,+--.+ M, is direct if, and only if, we have
dm (M, +---+M,)=dim M,;+ ... +dim M,.

1.5 The Ground Field

If V is a vector space over a field F, then we often refer to F as the
ground field. It is clear that the definition of a vector space depends
on the particular field chosen as ground field. In the case where V has
finite dimension n over F we shall show that, as an abstract vector
space, V is effectively the same as the vector space F*. To be more
precise we need a definition.

DErFINITION. Let V and V' be two vector spaces over the same
field . A one-one mapping f of V onto V' which preserves addition
and multiplication by scalars is called an 1somorphism of V onto V.
If such an isomorphism exists then we say that V and V' are isomorphrc
or that V is 1somorphac to V'.

The mapping f satisfies the rules:

(1) (a+b)f=af+bf,

(2) (za)f=2(af)
foralla,bin V and all x in F.

THEOREM 3. If V and V' are vector spaces over F of finite dimension
n, then Vand V' are womorphic.  In particular, V and F" are isomorphic.
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PROOF. Let {a,,...,a,}and{a,’,..., a,’} be bases over F for } and
V', respectively. Then each » in V can be expressed uniquely in the
form

v = 20,4 - + T4,
where z,,...,x, € F. The mapping f which takes
r,a,+---+xa,in Vtoxa, "+ ---+z,a, in V’

satisfies conditions (1) and (2) above. 1t is clearly one-one and onto V”’
and so is an isomorphism of ¥V onto V.

We remark that the isomorphism constructed in the proof of Theorem
3 is by no means unique as it depends on our choice of bases for }V and V".

An important special property of the vector space F", not shared by
general vector spaces, 18 that /" has a built-in natural basis, the stan-
dard basis {e,,...,e,}, where ¢, is the n-tuple whose 2-term 1s 1 and
whose other terms are all 0 (cf. exercise 9 of the previous section).

When an ordered basis (a¢,,...,a,) of V is given there is a unique
isomorphism f of V onto F™ such that a,f=e¢, for :=1, ..., n, viz., the

mapping
1@+ o F Xy > (Xy, -, Ty).

Conversely, it an isomorphism f of V' onto F”" is given, then there 18 a
unique ordered basis (a,, ..., a,) of V such that a,f=e; for all 2. The
mapping f is a rule which associates to any vector v=x,a,+ - - - +x,a,
a coordinate row (x,, . . ., x,) and so we call f a coordinate system ot V. It
1s clear that there i1s a one-one correspondence between coordinate
systems f of V and ordered bases (a,, ..., a,) of V defined by the rule

fraiay 4 gy — @y, e ).

Theorem 3 deals with the relationship between finite dimensional
vector spaces over the same field. We must now mention briefly a
subtler question: what happens to a vector space if we restrict or extend
the ground field ?

It the field £ contains the field /' then any vector space V over £
can be regarded as a vector space over F, simply by ignoring the scalars
in £ which are not in F. Let us, for the moment, distinguish these
vector spaces by writing them as Vi, V. respectively. It 1s important
to note that, although V', and Vi consist of exactly the same vectors,
their dimenstons will usually be different. For example, if V. 18 a
vector space of dimension n over C, then the vector space V. obtained
by restricting the ground field to R an this way, has dunension 2z,

There s another method of restricting the ground field. If V', has
dimension # over £ then we may pick a basin {a,, ..., a,} of Vg The
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set of all vectors x,a,+ - - - + x,a,, where the z;’s belong to F 1s a vector
space U, over F of the same dimension n. This second method is in
fact more useful from our point of view, but it has the severe disadvan-
tage of not being unique. In particular, if V. is a non-zero vector space
over C, we shall not expect to be able to find a unique subset Uy of
“real vectors’ in V. The fact that we can do so for the vector space C*
itself is due to the circumstance that C* has a standard basis.

In our study of geometry we shall frequently be interested in vector
spaces over R and C. Let U be a given vector space of dimension »
over R, We now show how to construct, :n a unique way, a vector
space U, over C, also of dimension n, which contains an isomorphic
copy of U.

We recall that C is the set of all ordered pairs (z, y) where z, y € R,
subject to the rules

(xs y)+ (SB’, y!) - (SB—I—CB’, ?}'l‘y’),
(z, y)(=', ¥') = (xx' —yy', xy’ + yx'),

and that R is identified with the set of all ordered pairs (z, 0). We may
then write (0, 1) =12 and (x, y)=x +y.

We define U (, to be the set of all ordered pairs (a, b) where a, b € U,
subject to the rules

(@, b)+(a’, b’) = (a+a’, b+b"),
(x, y)(a, b) = (za—yb, zb + ya),

and we identify U with the set of all ordered pairs (a, 0) operated upon
by the scalars (x, 0). If we write (@, b) =a +1b, the second rule becomes

(r +1y¥a +1b) = ra—yb+1(xb + ya).

The reader will immediately verify that U (, 1s in fact a vector space
of dimension n over C. We shall refer to U, as the complexification

of U.

EXERCISES

1. The vector space V over Q spanned by 1, ¢ is a subspace of C, where C is
regarded as a vector space over Q. In fact, V is even a subfield of C.
(It is called the field of Gaussian numbers.)

2. Show that, in the notation used above, neither ¥V nor U is a subspace of
V. (E+#F).

3. Prove that an n-dimensional vector space over F, is finite and consists of
exactly p" elements. Show further that the number of distinct ordered
bases 15 (p"—1)(p"—p) - - (P"—p""'). How many distinct bases are
there ?



CHAPTER 11

Affine and Projective Geometry

NoTE: Except where we state the contrary, all vector spaces considered in
the remainder of this book are assumed to be finite dimenstonal.

2.1 Afhne Geometries

In this chapter we shall introduce two different (but closely related)
geometrical languages. The first of these, the language of afline geo-
metry, is the one which appeals most closely to our intuitive ideas of
geometry. In this language the subspaces of a vector space of dimen-
sions 0, 1 and 2 are called “‘points’’, “‘lines’’ and ‘‘planes”, respectively.
But we cannot limit these words to describe only subspaces: otherwise
V would have only one point, namely the zero subspace, and every line
and plane in | would contain this point. Our intuition suggests that
we introduce the concept of “translated’ subspace.

DeriNiTION, If a is any fixed vector in V and M is a subspace of V,
then a + .M denotes the set of all vectors @ + m where m runs through M,
and is called a translated subspace (or coset) in V.

For the sake of brevity we shall frequently use the word ‘‘coset’
rather than the more descriptive term “‘translated subspace™.

LEMMA 1.  The follourng statements are equivalent:
(1) a+ M=b+M;

(2) bea+ M,

(3) —a+be M.

PROOF. If a+ M=b+ M, then b=b+0eca+M. In other words,
—a+b=m for some m in M. Thus (1) implics (2) and (2) implies (3).

Ifnow —a+b=mc M, thenb+ M=(@@+m)+ M=a+(m+ M). But
any vector in m+ M is of the form m+m" where m, m’” ¢ M and so
m+ M c M. Similawely —m+ M < M, whichimpliesthat M < m+ M.
Henece M =m+ M and we have shown that (3) nmphies (1).

As an immediate consequence we see that if the cosets a+ W, b+ M
have any vector ¢ in common, then they comeide (with ¢ + M),
15
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LEMMA 2. Ifa+ M=b+ N then M=N.

PROOF. If a4+ M=b+ N, then b=04+0€ca+M and so a+ M=
b+ M by Lemma l. Thusb+ M =56+ N, from which the result follows.

We may thus say unambiguously that M is the subspace belonging to
the coset a + M.

We base our construction of cosets on the following result.

PROPOSITION 1. The intersection of any famaly of cosets in V 18 esther
a coset in V or 18 emply.

PROOF. Let (S));.; be a given family of cosets and suppose that
¢ e MNS,. By Lemma 1, each S, is of the form ¢+ M, where M, is the sub-
space belonging to S;. Thus NS, = (c + M;)=c + 1 M,, which is a coset
by Proposition 1 of Chapter 1 (p. 7).

DeriNiTION. The join of a family (S;),., of cosets in ¥V 1s the inter-
section of all the cosets in IV which contain every §;,. We denote this
join by J(8,:¢ € I), or simply by J(S)).

For two cosets we more often use the notation §;, J §,. Then clearly
(S;J85)J8;=8,J(8:JS3)=J(S,,8,,8;3). (Seealsoexercise 1, below.)

It follows from Proposition 1 that J(S,) is itself a coset in V and, of
course, J(8,) is the least coset in V containing every J§;.

Since a coset is a subspace if, and only if, it contains 0 (Lemma 1) we
see that the definitions we have given of the join of subspaces (p. 7)
and the join of cosets are consistent with cach other.

The join of the family (S;), as we have defined 1t, scems to depend on
the containing vector space V, but if § is any coset in IV which contains
every S,, t € I, then J(8)) 1s also the smallest coset in § contalning every
S;. Thus J(S;) could equally well be defined as the intersection of all
the cosets in S containing every S;, 1 € 1.

In view of Lemma 2 we may make the following definition.

DerFiNITiION. The dimension of the coset a + M is the dimension of
the subspace M and we write dim(a + M)=dim M.

DeriNITION. Let V be a vector space over ¥ and let § be a coset in
V. 'The set of all cosets in S is the affine geometry on § and will be deno-
ted by #(S). The dimension of (S), written dim &7(Y), 1s dim §.
The elements of 27 (S) of dimensions 0, 1, 2 are called points, lines, planes,
respectively, and the elements of .7 (S) of dimensionidim S — 1 are called
hyperplanes in .o/(8) (or sometimes hyperplanes in S).

[f the coset S 18 contained in the coset 7' then .o/(8) 18 said to be a
subgeometry ot /(T').
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We note that according to our definition of affine geometry the points
are scts, each consisting of just one vector. In other words, we distinguish
between a vector v and the point {#} that it determines. A little care
with the notation is required if the reader thinks in terms of the intui-
tive concept of ‘‘position vector of a point’’. It is also well to remember
that lines, as we have defined them, are not the same as ‘“‘segments’:
they do not need to be “produced’’ and do not require the qualifying
adjective ‘‘straight”.

We shall frequently use the familiar notation P, @, R, etc., for points,
but reserve O for the point {0,}. The line joining distinct points P,
() is written as PQ. We also use the adjectives “collinear’, “‘concur-
rent’’, “coplanar’, etc., in their usual sense.

The reader is encouraged to draw pictures or diagrams of the geo-
metrical configurations he encounters. These are often an invaluable
aid to thought but they must never, of course, be allowed to substitute

as a proof!

EXERCISES
1. Given cosets Sy, ..., S,, prove that every possible way of inserting paren-
theses in S, J - - -J S, gives the same result, namely J(S,, ..., §,).
2. If S is a coset, prove that [S], the subspace spanned by S, is precisely S J 0.
3. Let V be a vector space over a field F and Sa cosetin V. If a,,...,q, lie
in § and x,,..., x, are scalars such that x,+- - +x,=1, prove that

Ilal-{" ¢+ 0 +xra;,- ES-

4. If a non-empty subset S of ¥V has the property of exercise 3 for all r, show
that § 1s a coset in V.

5. If F has at least three elements and .S is a non-empty subset of V satistying
the condition of exercise 3 for r=2, show again that S is a coset. By con-
sidering &7 (F,2) show that this condition on the field F is necessary.

6. Prove that the set of all solutions (z. ¥, z) in R?® of the linear equations
X—-Y+Z=1, X+Y +2Z=2, is a coset in R° of dimension 1.

2.2 Affine Propositions of Incidence

In the previous chapter we found a simple relationship between the
dimensions of the intersection and join of two subspaces (Theorem 2 (2)).
In the case of cosets, however, the situation is comphicated by the tact
that their intersection may be empty. We have the following criterion.

PrRopPOSITION 2, Let S and T be cosels an V and M, N the subspaces
belonging to S, T respectively. Then S T s empty if, and only if,

dim(NJ T') = dim(M + N)+ 1.
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This result is an immediate consequence of the following two lemmas.

LEMMA 3. (a+ M)J (b+N)=a+[—a+b]+ M+ N.

PROOF. (a+ M)J (b+ N)is a coset containing a and b and so is of the
form a + P=056+ P for some subspace P (Lemma 1). Then P certainly
contains [ —a +b] (Lemma 1), and also M and N. But the join of
a+ M, b+ N is the least coset containing them both. Hence

P=[—-a+b]+M+N.

LEMMA 4. (a+M)N (b+ N) 18 not empty 1f, and only f, —a+b
belongs to M + N.

PROOF. We have a+m=>b+n if, and only if, —a+b=m—n.

In order to express the fundamental propositions of incidence in
affine geometry we need a more delicate notion than that ot empty
intersection. For example, in the intuitive three dimensional geometry
with which we are familiar, the join of two lines without common points
1s & plane if the lines are ‘“‘parallel” and is the whole space if the lines
are ‘‘skew’’.

DEFINITION. The cosets a + M, b+ N are said to be parallel if
M<c NorNc M
Note that our definition implies that a point is parallel to each coset.

It is clear from this definition that if the coset S is contained in the
coset T then § and T are parallel (argue as in the proof of Lemma 2).
On the other hand, if § and 7" are parallel and neither one contains the
other, then they have no points in common. For, if ce SN T then
S=c+M,T=c+Nandso M <« Nor N <« M impliesS < TorT < 8§,
respectively.

A convenient method of indicating in a diagram that two lines are
parallel is to draw them with arrow-heads (though the direction of the
arrows 1s immadterial).

S S

Figure 1. Parallel lines

The fundamental result which incorporates all the propositions of
imcidence in athne geometry can now be stated,
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P — it

THEOREM 1. Let S and T be cosets in the vector space V.
(1) If S < T, then dim S <dim T and dim S=dim 7’ implies S="T.
(2) If S N T s not empty, then

dim(SJ T)+dim(S N T) = dim S +dim T.

(3) Assuming S N T 18 not empty, S and T are parallel if, and only if,
one contains the other.
Assuming S N T is empty, S and T are parallel if, and only if,

dim(§J T) = max(dim S, dim T') + 1.

PROOF. Let M and N be the subspaces belonging to S and T respec-
tively.

In parts (1) and (2) we choose ¢ in SN T and then S = c+ M,
T'=c+N, SIJT =c+(M+N), SNT =c+(MnN N). Bothresults
now follow from Theorem 2 of Chapter I (p. 11).

We have already proved the first part of (3). On the assumption
that S N 7T is empty, Proposition 2 above and Theorem 2 (1) of Chapter
I show that dim(SJ T)=max(dim M, dim N)+1 if, and only if,
M+N=NorM+N=M,1e.,if,andonlyif, M <« Nor N <« M.

We now state the propositions of incidence in dimensions two and
three. There are, of course, propositions of incidence for affine geo-
metries of all dimensions and their proofs depend only on Theorem 1.
We shall merely establish here two of the following propositions and
leave the reader to prove the others.

Propositions of [ncrdence in o/ (V), where dim V =2,
2.1 The join of two distinct points is a line.
2.2 The intersection of two non-parallel lines is a pont.

Propositions of Incidence in Z(V), where dim V = 3.
3.1  The joun of two distinct points 18 a line.
3.2 The intersection of two non-parallel planes is a line.
3.3 The join of two lines with a pownt of intersection is a plane.
3.4 The intersection of two coplanar non-parallel lines is a point.
3.5 The join of lwo distinct parallel lines is a plane.
3.6 Thejoun of a point and a line not containing it is a plane.
3.7 The intersection of a plane and a line not parallel to it is a point.

PROOF OF 2.2: Let S, T be non-parallel lines in the affine plane .o/ (V).
Since S # T, dim (SJ T)>dim S =1 by Theorem 1 (1) (applied to S and
S J T, and henee dim(S 0 7) = 2 (beeause dim V= 2). Now S N 7T ecan-
not. be empty, otherwise N and 7' would be parallel by ‘Theorem 1 (3),
atid 40 by Theorem 1 (2) dim(S N T)=14+1-2=0.
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PROOF OF 3.5. I 8, T are distinct parallel lines, then SN T is
empty and dim(S J T}=max(1l, 1)+ 1=2.

We shall say that two lines § and 7 are skew if they have empty inter-
section and are not parallel. Thus, by 2.2, skew lines cannot be co-
planar.

EXERCISES

1. Show that the affine geometry /(F,%) has just four points and six lines
(parallel in pairs).

2. If §, T are skew lines in an affine geometry of dimension three, show that
therc is a unique plane Pg containing S and parallel to T, and a unique
plane P; containing 7 and parallel to S. Show also that Pg and P, are
parallel.

3. IS, T are two cosets and if K is the set of all xs+ yt where z, y are scalars
such that z+y=1,seSand t e T, show that K contains every line joining
a point of § to a point of 7. In the case of exercise 2 above, show that K
IS not a coset. (This explodes what looks like a plausible definition of the
join of cosets ‘“from below’.)

4. Ifa,,...,a, are vectors in V, prove that

Ja,,...,a,)=a,+[a,—a,;1=2, ..., 7].
Deduce that J(a,,...,a,) has dimension r—1 if, and only if, a,—a,,
1=2,..., 7, are linearly independent.

2.3 Afhne Isomorphisms

If S, T are cosets of the same dimension in a vector space V, then
there is an intuitively obvious sense in which the affine geometries
2 (8), & (T) are equivalent: any construction or result that is possible
in the one is automatically also valid in the other.

DerINITION. If A, A’ are affine geometries, and « 1s a one—one map-
ping of A onto A’ such that

S < T if, and only if, Sa € T«

for all 8, T in A, then « is called an tsomorphism of A onto A’. If such
an isomorphism exists, we say A, A’ are isomorphic (or that A is iso-
morphic to A’).

We may express the condition on « in the definition of isomorphism
by saying that e and a~?! preserve inclusion. But it our intuitive idea
of 1somorphism is correct then we shall expect an 1somorphism to pre-
serve not only imnclusions but also mtersections, joins, dimensions and
parallelism.  This we state more formally as follows.
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ProposITION 3. Let A, A’ be affine geomelries and o an i18omorphism
of A onto A",

If (S));e; 18 a family of elements of A, then

(1) (MS))a=(S;x) if (S, is not empty, and

(2) J(S)) = J(S,a).

Further,

(3) dim Sa=dim §, for each S in A, and

(4) the elements S, T of A are parallel if, and only if, Sa, T« are parallel.

PROOF. The coset NS, =C is the largest coset contained in every S|,
1 € I: this means that (' 1s the coset uniquely deterinined by the two
conditions (1) C < 8, for each 7 in I, and (it) it T < §, for cach ¢ in 1,
then 7' < ¢. It follows that C« is the largest coset contained in every
Sia,1€l, ie., Ca=()S,c. This has established (1). Part (2) follows
by a similar argument since J(S,) is the smallest coset containing every
S,1el.

For part (3) we consider chains of the form

C:OODOID...DOR:

where each C, is a coset and C,, ,#C, for :=0, ..., k—1. The length
of this chain is £ and one sees immediately from Theorem 1 (1) that the
length of the longest such chain is precisely dim C.

Part (4) is now a direct consequence of Theorem 1 (3) and parts (1),

(2) and (3).

We remark that the above proof serves also to show that the inter-
section and join of cosets, as well as coset dimension and parallelism
can all be expressed solely by the use of the inclusion relation < on

cosets.
There is an analogue for affine geometries of Theorem 3 of Chapter 1.

THEOREM 2. Any two affine geometries of the same dimensgion over the
same field are 1somorphic.

PROOF. Let A=9f(a+ M), A'=of(a'+ M') where a+ M,a"+ M’ are
coscts of the same dimension in vector spaces V, V. Theorem 3 of
(‘hapter I shows that there is an isomorphism f of M onto M’. 'The

mapping
a. T — (T—a)f+a',

where T € A, carries A onto A’ and has inverse mapping

a VT (T -a')f" ! +a,
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where T' € A”. Since « and o~ ! clearly preserve inclusion, « 18 an iso-
morphism of A onto A’. (We shall return to a study of these 1somor-
phisms in the next chapter.)

In view of this theorem we shall often speak of “affine geometry of
dimension n (over F)”.

Also, the fact that F**! contains cosets of dimension n which do not
contain 0 shows that we can find an isomorphic copy of any affine
geometry of dimension n over F in another afline geometry &/(V) and
so that the copy does not contain Oy.

There is an important point concerning our definition of isomorphism
for affine geometries which has so far remained in the background. To
say that A 18 an affine geometry means that A =7(S) for some coset §
in some vector space V over a field #'. If A’ is another affine geometry,
then A'=47(S’) where 8’ is a coset in a vector space V' over a field F’.
Even if A and A’ are isomorphic there is no a priori reason for F’ to
coincide with F. If, for example, dimy; V=dim . V' =1 and « is any
one—one mapping of ¥ onto F’, then o gives rise to an isomorphism of
(V) onto &Z(V'). We shall see in the next chapter (§ 3.5) that, in
higher dimensions, if .&/(V) and o/(V’) are isomorphic, then the fields
F and F' are not only related by a one—one correspondence but have
exactly the same algebraic structure.

2.4 Homogeneous Vectors

We shall prove some fundamental theorems of affine geometry by
means of what are called ‘“homogeneous vectors’. The method is
really one of the tools of projective geometry (to be introduced shortly),
but we hope that our present use of it will serve to pave the way for the
less familiar notions of projective geometry.

Let S be a plane in an affine geometry .o7(V) of dimension 3 over F,
and suppose S does not contain the zero vector 0,,. If Pisa point on S,
then any non-zero vector p in OF will be called a homogeneous vector for
P. In other words, OP=[p]. The mapping P — OP is a one-one
mapping of § onto the set of all lines through O not parallel to S.
Further, three points P, ¢, R ot § are collinear if, and only i, OP, 0Q,
OR are coplanar. This follows at once from the propositions of inci-
dence 3.2 and 3.6.

LEMMA 5. Guven three distinct collinear pornts P, @, B in S, a homo-
geneous vector p for P, and any two non-zero scalars x, y, then there exist
homogeneous vectors q, r for Q, R, respectively, such that p=xq+ yr.
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PROOF. If g4, r, are any homogeneous vectors for ¢, R then p, q,, 7,
are linearly dependent since OP, 0@, OR are coplanar. But g¢,, 7,
are linearly independent since 0@ # OR. Hence, by Proposition 2 (2)
of Chapter I (p. 9), p=1x¢9, + Yorc for some non-zero scalars x,, vy,.
We now put ¢=(2o/) g0 and r = (yo/y) 7.

Lemma 5 allows us to simplify the constants appearing in arguments
using homogeneous vectors.

DEeriniTION. If A, B, C are three non-collinear points then the con-
figuration consisting of these three points and their three joins is called
the triangle ABC.

We shall say that the two triangles 4 BC, A" B’'C’ are in perspective
from a point P if the seven points P, 4, B, C, A’, B’, (" are distinct and
if the three lines AA’, BB’, CC' are distinct and meet at P. We then
refer to P as the center of perspective of the triangles.

THEOREM 3. (DESARGUES’ THEOREM FOR THE AFFINE PLANE.) [f
ABC, A" B'C’ are two coplanar triangles in perspective from a point P, and
of the pawrs of corresponding sides intersect in points L, M, N, then L, M,
N are distinct and collinear and the line LM N 18 distinct from the six sides
of the triangles. (Cf. Figq. 2)

PROOF. We may assume that the plane § of the triangles 4ABC,
A’ B'C’ is contained in an affine geometry =/( V) but does not contain 0.

We choose any homogeneous vector p for P and use Lemma 5 to find
homogeneous vectors a, a’;0,b6";¢,c for A, A"; B, B ;C, C’, respectively
such that

a = p+a, b =p+b, ¢ = p+ec.

Then &' —c¢'=b—c=1, say, where [ # 0 since OB #0C. Now lies in the
planes OBC, OB'C" and so lies in the line O L where L= BC N B'(C’, i.e.,
[ 1s a homogeneous vector for L. Similarly ¢'—a¢'=c—a=mis a homo-
gencous vector for M, and a’' —b'=a—b=mn is a homogencous vector for
N. Butl+m+n=0and so OL, OM, ON are coplanar. This implies
that L, M, N are collinear. 1t follows at once from the linear inde-
pendence of a, b, ¢ that L, M, N are distinct and none of the points 4,
B, O lies on the line LMN.

The simplicity of this proof is due to the use of homogeneous vectors.
But this ts not the main reason for employing them. ‘Their real signi-
ficance is that their use in the proof points the way to further results
not icluded m the original version of the theorem,  For example, if
AA", BB, CC" are parallel instead of being concurrent, then we may
still tnke o non-zero vector pin the hine throngh ¢ parallel to A A7, B3,
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Figure 2

CC" and argue preciscly as before. In proving Lemma 5 we only used
the fact that OP, OQ, OR are coplanar. In this case we use the fact
that p, OA, OA’ are coplanar. The conclusion of the theorem is un-
altered. In these circumstances we shall still say thut the triangles are
In perspective.  This configuration is illustrated in Figure 3. We have
labelled the arrow-heads (of the parallel lines) with the letter P to
remind us that in the general configuration (cf. Fig. 2) these three lines
mecet in P.  Herc the point P has becen “pushed to infinity”.

Again, if BC is parallel to B'C" and (A 1s parallel to C"A’. there are
no pomnts L, M, but the non-zero vectors /, m. n exist just as before. 1In
this case [{], [m] are parallel to S and so [n], which lies in the plane of
[{] and [m] (since [ +m +n=0), is also parallel to S. This shows that
A B 1s parallel to A' 3",

The two results we have just deduced are important affine theorems
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Figure 3

which cannot be inferred directly from the affine form of Desargues’
Theorem. Their place will be clarified as soon as we establish the con-

nexion between affine and projective geometry.

THEOREM 4. (PApruUSs’ (AFFINE) THEOREM.) Two lriads of points
A, B, C; A', B, C' are taken on two distinct coplanar lines (possibly
parallel). If the intersections BC' N B'C,CA" " C'A, AB' N A'B are

points L, M, N, respectively, then L, M, N are collinear. (Cf. Fig. 4)

PROOF. We remark first that the points of a triad are, by definition,
distinct. [If the lines A BC, A’ B'C’ intersect in a point P, we shall as-
sume in our proof that the seven points P, A, B,C, A’, B’,(" are distinct.
But the reader will find it trivial to check that the theorem is also true
without this restriction.

The plane S containing A BC and A’ B’C" may be assumed to lie in an
affine geometry .o/( V) but not to contain 0.
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A ’ Bl’ Cf
Figure 4

In the case where ABC N A’ B'C’ is a point P, we choose a homo-
geneous vector p for P; otherwise we choose a non-zero vector p in the
line through O parallel to ABC, A’"B'C’. 1In either case we may then
find homogeneous vectors a, b, a’, b" for A, B, A’, B’ respectively so that
b=p+a and b'=p+a’ (Lemma 5). We may also find homogeneous
vectors ¢, ¢’ for C, (' respectively of the form c=p+zxa, ¢'=p+ya’,
where x, y are scalars.

Now p+a+a’=n, say, 1s a linear combination of ¢ and &', and also
of a’ and b (and therefore cannot be 0, since O4 £0B’). Hence n lies
in the planes OAB’, OA'B and is a homogeneous vector for N. Simi-
larly p + xa + ya'=m 1s a homogeneous vector for M. Finally,

xyn—m = x(y—1)b+ (x - 1)c,
and
yxn—-m = y(lx—1)b" + (y— 1)c.

Since xy =yx for all scalars z, y, it follows that [=xyn —m 1s a homo-
geneous vector for L. The linear dependence [ + m — ryn =0 shows that

OL, OM, ON are coplanar and thus L, M, N are collinear.

The method of proof gives the further result that if BC’ is parallel
to B'C and if CA4" is parallel to C' A4, then A B is parallel to A’B. (Draw

your own picture!)
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THEOREM 5. (THE HARMONIC CONSTRUCTION IN THE AFFINE PLANE.)
Grven two distinct points A, B in an affine plane S, and a point G on AB.
We choose any point C tn S but not on AB and also any point D on GC
distinct from G and C. If E=AD N BC, F=BDNCA and H=
EF N AB are points, then H 18 independent of the chowce of C and D.

PROOF. As before we assume that S is contained in an affine geo-
metry 2/(}) and does not contain 0,. We then take homogeneous
vectors, a, b. ¢, g for A, B, C, (@ respectively. Since 04, OB, OG are
coplanar we have g =xa + yb, for some scalars z, y. We may then take a
homogeneous vector d for D of the form ¢+ 2¢ =xa + yb + 2¢c, for some
scalar z. If we now put e=yh+2c=d—xa and f=xa+zc=d—yb, we
see immediatelv that e, f are non-zero vectors and arc homogeneous
vectors for E, F respectively. But then & =2xa —yb i1s a homogeneous
vector for H. Comparing ¢ and /& gives the result.

DEerFINITION. The point H of Theorem 5 is called the harmonic con-
jugate of G with respect to 4 and B. We also express the relationship
between the four points by saying that (4, B; (7, H) is a harmonic range.

Again we have a situation where the proof yields turther results. It
is assumed in the statement of Theorem 5 that the points £, F, H all
exist: i.e., that none of the line pairs AD, BC; AC, BD; EF, AB are
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parallel. But for certain choices of C and D some of these pairs may
indeed be parallel. Nevertheless, the vectors e, f, 2 always exist—
thus [e] is always the intersection of the planes O4A D, OBC, ete. Our
proof therefore yields a construction for H even in certain situations not
covered by the statement of the theorem. Let us interpret these cases
in geometrical language.

AN

D
Figure 6

Suppose that A D is parallel to BC but that BD N (A is a point F.
Then our proof supplies H as the intersection (if it exists) of 4B with
the line through F parallel to 4D (cf. I'ig. 6); similarly, if £ exists but
not F. The vector £ fails to give a point H on A B if, and only if, [ 2] 1s
the line through () parallel to 4 B.

To examine this construction in more detail 1t 1s convenient to
revert to the situation where a, b are the actual vectors (and not just
homogeneous vectors) for the points A, B.  In other words we assume
that A ={a} and B={b}. The points of A B arc then precisely all the
points of the form {xa + yb} where z,  belong to the underlying field ¥
and x +y =1 (cf. Lemma 3 (p. 18) in the case M =N =0). We refer to
{xa +yb}, where x+y =1, as the point dwiding A, B in the ratio y:zx.
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(Notice the inverted order of  and » in this ratio.) In particular, if
the underlying field contains 4, we refer to {3(a + b)} as the mid-point
of A, B.

Now suppose that G ={ra + yb} where r+ y=1. Then the harmonic
conjugate II ={h} is given by k= (za—yb)/(x —y) provided only that
x # 1. Thus every point G of 4 B, excluding the mid-point (if it exists),
possesses a unique harmonic conjugate H, and we have another classical
definition of the harmonic range in which “G and H divide 4, B inter-
nally and externally in the same ratio”’. Of course, the 1deas of “inter-
nal’’ and ‘“‘external’”’ do not make sense unless the field ¥ has some
notion of order and so it is only safe for us to use this notion of sub-
division if ¥ is Q or R.

It is tacitly assumed in Theorems 3, 4 and 5 that the affine geometries
in question contain enough points for the configurations they describe
to exist. An affine plane over F, contains only four points and so we
must obviously assume that the ground field contains at least three
elements. This will give enough points for all three theorems provided
we allow parallel lines. For the general cases we must assume that the

ground field contains at least four elements.

EXERCISES

. If H is the harmonic conjugate of G with respect to A, B we write
H=(A, B):G. Show then that G=(A4, B):H and also, if G#H, that
B=(G,H): A.

2. Show that (A, B): A=A and (4, B): B=B.
3. Prove that, in the notation of Theorem 5, G = H, if, and only if, 22y =0.

4. Prove that in an affine plane over F;, each line contains three distinct
points and that cach of these is the mid-point of the other two.

. Let 4 BC be a triangle in .o/(R?) and denote by A°, B’, C’, respectively, the
mid-points of B, C; C, A; A, B. Show that the “medians’” 44', BB’
CC" are concurrent. If the same configuration is taken in 27(F;*), show
that the medians arc parallel.

)

2.9 Projective Geometries

The incidence properties of affine geometry forcefully suggest that we
need some notion of “points at infinity”’. The gap is filled by a new
concept, that of projective geometry.

DerINITION. Let V be a vector space over F. The set of all sub-
spaces of V is the projective geometry on V and will be denoted by Z( V).
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The relationship hetween affine and projective geometries is stated
in Theorem 7, at the beginning of the next section. The reader is
urged to look now at the statement of that theorem and in particular at
part (6) since he will then appreciate the motivation for the following
definition.

DerFINITION. If M 1s a subspace of a vector space V, the projective
dimension of M 1s defined to be dim M —1 and will be denoted by
pdim M. The dimension of the geometry #(V), written pdim Z(V),
will be pdim V. The elements of (V) of projective dimensions 0, 1, 2
are called projective points, projective lines, projective planes, res-
pectively. An element of (V) of projective dimension pdim V —1 is
called a hyperplane in Z(V). (It is necessarily a hyperplane in I as pre-
viously defined, and also a subspace.)

If M is a subspace of V, then (M) is called a subgeometry of P(V).
I1. particular, if M is a projective point, then (M) consists only of the
two elements 0, M. Moreover, the point M is determined by any non-
zero vector m in M, r.e., [m]=M: such a vector is called a homogeneous
vector for M.

In many geometrical considerations there is a natural emphasis on
the concept of point. Curves and surfaces, for example, are usually
thought of as consisting of the points lying on them. In these circum-
stances the higher dimensional elements of our projective geometry, the
lines, planes, etc., are also considered as sets of points. To make
matters precise we introduce a definition.

DEeFINITION. The projective space determined by the projective
ceometry Z(V) is the set of all the projective points in 2(V).

Each non-zero element 7' of (V) gives rise to a subset of the projec-
tive space, namely the set of all projective points in 77. But the zero
subspace (of projective dimension — 1) contains no projective points
and hence yields the empty subset of projective space. Thus, for
example, if two projective lines M, N are such that M N N=0, then
M, N have no projective points in common. More generally, two
elements M, N of #(}J’) have no projective points in common if, and
only if, M N N =0, or equivalently, if, and only if, pdim (M N N)= —1.
Such clements of (V) are called skew.

Throughout the rest of this book, when it is clear from the context
that we are discussing projective geometry, we shall omit the adjective
“projective’’ before the words point, line and plane.

As in affine geometry, we shall frequently write P, @, R, etec. for
points; P@ for the line joining the distinet points P, Q; and use the



§ 2.5 AFFINBE AND PROJECTIVE GEOMETRY 31

familiar terms ‘“‘collinear’, ‘‘concurrent’’, ‘“‘coplanar’’, eto., in their
natural meaning.

For comparison with the affine case we state below the propositions
of incidence in projective geometries of dimensions two and three.

Propositions of Incidence in P(V), where pdim V = 2.
2.1 The j0tn of two distinct points is a line.
2.2  The inlersection of two distinct lines 18 @ pownt.

Propositions of Incidence in P(V), where pdim V = 3.
3.1 The join of two distinct points 18 a line.
3.2 The intersection of two distinct planes 1s a line.
3.3 The join of two distinct intersecting lines is a plane.
3.4 The intersection of two distinct coplanar lines 18 a point.
3.5 The join of a point and a line not containing it 18 a plane.
3.6 The wintersection of a plane and a line not contained in i1t 18 a pornt.

The reader will see at once that the statements of these propositions
are much simpler than those for the corresponding affine propositions
although, as we shall see (in § 2.6) the latter may be deduced from the
former. The proofs are also much simpler as they all follow from Theo-
rem 2 of Chapter I. For example, 2.2: We are given distinct lines
M and N so that pdim M =pdim N=1 and pdim(M + N)>1. Hence
pdim(M + N) = 2 and consequently

pdim(} N N) = pdim M +pdim N — pdim(M + N) = 0.

We have seen, in connexion with affine geometry, how to express
joins, intersections and dimensions of cosets by using only the inclusion
relation < on the cosets (see the remark immediately following Propo-
sition 3). The proofs of these results apply equally well when restricted
to subspaces. We conclude that sums, intersections and projective

dimensions of subspaces are all definable solely in terms of <.
The notion of an isomorphism of projective geometries is defined

exactly as for affine geometries:

DEFINITION. A one-one mapping 7 of a projective geometry P onto
a projective geometry P’ is called an isomorphism 1f 1t satisfies the con-
dition that

M < N if andonly if, Mn» < N=

forall M, Nin P. If such an isomorphism exists, we say that P and P’
are 1somorphic (or that P is 1somorphic to P’).

It 1s clear that an isomorphism of projective geometries preserves
intersections, sums and projective dimensions. There 1s again an
analogue of Theorem 3 of Chapter I.
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THEOREM 6. Any two projective geometries of the same dimension
over the same field are isomorphic.

For 1if f i1s an isomorphism of V onto V', then the mapping
m: M — Mf

1s clearly an isomorphism of (V) onto Z(V').

It follows that we may talk of ‘“‘projective geometry of dimension n
(over F)”.

EXERCISES

1. If Pis a point in a three dimensional projective geometry and L, M are

skew lines not containing P, prove that there exists a unique line through
P intersecting L and M.

2. It (V) is a four dimensional projective geometry and L, M, N are
mutually skew lines not lying in a hyperplane in 2(V), prove that L inter-
sects M + N in a point. Hence show that there is a unique line in (V)
intersecting L, M and M.

3. Let P be a point and L a line in a given projective geometry #(V). If P
does not lie on L show that @ — ’Q), where ¢ 1s a point of L, is a one-one
mapping of the points of L onto the lines in P+ L that go through P.

4. Prove that every line in #(F,°) has p+1 points on it. Deduce from this
that the total number of points in #(F,°%) is p>+p+ 1. How many lines
are there? (Use exercise 3.)

5. Let V be an n + 1-dimensional vector space over F,. If u, v are non-zero
vectors, write u ~ v whenever [u]=[v]. Prove that ~ is an equivalence re-
lation on the set of non-zero vectors and deduce that the number of
points in Z(V)is 1+p+ - +p".

6. Prove the following theorem in projective geometry of dimension 3, using
only the propositions of incidence: If ABC, A’B’C’ are two triangles, in
distinct planes, which are in perspective from a point P, then the pairs of
corresponding sides BC, B'C'; CA, C'A’; AB, A'B’ intersect in collinear
points.

2.6 The Embedding of Affine Geometry in Projective Geometry

The fundamental connexion between affine and projective geometry
18 given In

THEOREM 7. (THE EMBEDDING THEOREM.) If H 18 any hyperplane
in (1) and ¢ 18 any vector of V not in H, then the mapping

e: 8§ — (8]
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of A(c+ H) into P(V) has the follounng properties:

(1) @ @8 a one—one mapping,

(2) the image of L {c+ H) under ¢ 18 the subset A of (V) consnsting
of all subspaces of V which are not contained in H,

(3) 8 < T if, and only +f, [8] < [T] for all 8, T in A (c+ H);
of (S))ic; 18 a famaly of cosets in c+ H, then

(4) [MS]=M[8,] f M8, is not empty, and

(5) [Y(8)]= +[84];

(6) dim S =pdim [8] for all cosets S in c+ H;

(7) S and T are parallel wn o (c + H) if, and only if, one of the sub-
spaces [S] N H, [T] N H contains the other.

PROOF. (1) If S=a+ M e A (c+ H), then [S]=[a]+M and c+H =
a+ H (by Lemma 1). Hza+m=a+h, then (x—1)a=h—-m € H where
a¢ H (since c¢ H), and so x=1 and A=m. Hence [S]N (c+ H)=8.
This shows that the mapping ¢ i1s one—one and also, incidentally, that
the inverse of ¢ is the mapping Sp — (S¢) N (¢ + H).

(2) If P is a subspace of V not contained in H, then P+ H =1V,
since H 18 a hyperplane in V, and so

dim(P N H) = dim P+dim # —dim V = dim P —1.

In other words, P N H is a hyperplane in P.

Let ¢t be a vector in P, not in H. Then it follows immediately by
counting dimensions that P=[t]@® (PN H). Since H+[t]=V, 1t
follows in particular that c is of the form yt+ % and so ytec+ H. We
puta=ytand M =P N H. Then P=[a]+ M, wherea+ M € o (c+ H).
This shows that ¢ 1s onto A.

(3) If|S] < [T then[8]1 N (c+ H) < [T] N (c+ H), which is precisely
8 < T by the last remark in the proof of (1).

(4) If ee M8, then S;=¢e+ M, for each : in I. Hence

NS, = e+ MM, and thus [S|] = [e]+ M,
Further,
M[8] = N([e]l+ M) = [e]+M,,

tor if xze+my=ye+m;, then (x—yle=m;—m; € H, so that x=y and
mi — mj.

(5) [J(Sy)]=J(8;)J 0= J(8;J 0)= J([S;]), since each of these sub-
spaces is the least coset containing 0 and §; for each ¢ in I'; and

JIS:]) = +184,

as J and + are equivalent for subspaces.
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() If S=a+ M, then dim [S]=dim M +1,s8ince{a] " M =0. Hence
pdim [S]=dim §.

(7) If S=a+ M, then [S)N" H=M. For if xa +m=h we must have
x=0,m=h. The result now follows at once from the definition of
parallel cosets.

The above proof can easily be visualized in the case when dim V' =3.
Figure 7 illustrates the connexion between a point {a} of &/(c + H) and
its image [a] in Z(V); while Figure 8 shows the images of two parallel
lines.

c+ H

[a]

Figure 7

Theorem 7 illustrates a situation frequently encountered in geometry.
The set A is linked by a one—one mapping ¢ to the geometry o7 (c + H).
All the geometrical notions present in .27(c + H), such as inclusion, inter-
section, join, dimension and parallelism, can be carried over to A by
means of @. In this way A itself may be regarded as an affine geometry
and there are, in fact, many situations where it is more fruitful to focus
attention on A rather than on o/(c + H). We are thus led to the tollow-
ing definition.
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[81) = [a4]+ L

[az]+ L = [S,] —
N—,

Fwure 8

DEeFINITION. Let § be a coset in a vector space V over a field F. A
set A together with a one—one mapping @ of 27(S) onto A is called an
affine geometry.

There is an analogous generalization of projective geometry.

DerFINITION. Let V be a vector space over a ficld F. A set P to-
gether with a one—one mapping ¢ of Z(V) onto P is called a projective
geomelry.

The important thing to remember when one uses these generalized
geometries 1s that any geometrical statement for A or P must always be
interpreted in terms of the corresponding geometrical statement for
Z(S) or Z(V) by using the link ¢ or i, respectively. Of course, if A or

P, as sets, already have a geometrical structure in their own right, then
we must be careful not to confuse this with the one carried over from
(S) or (V) by the use of ¢ or .

Strictly speaking, neither &/ (§) nor 2(V) is a geometry in this general-
1zed sense.  But, naturally, they both become so 1f we use the identity
mapping as our link.
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The set A of Theorem 7 together with ¢ is thus an affine geometry.
But A, as a subset of :#(V), alrcady has some geometrical structure.
The language we introduced in #(V), and in particular the definition
of projective dimension, were chosen precisely so that the geomnetrical
structure of A, as a subset of Z(V'), fits exactly the structure carried over
by @ from o7 (c + H): this is the content of parts (3), (4), (5), (6) of Theo-
rem 7.

Now A, as a set, 18 determined once H is chosen: it is simply the set-
theoretical complement of Z(H)in (V). But the affine geometry on A
depends on . How does it change with ¢ ? Suppose ¢’ is another vec-
tor not in H and ¢’ the corresponding mapping S" — [S’] of (¢’ + H)
onto A. Then ¢'p~! 18 a one—one mapping of &7 (c¢’ + H) onto & (c + H)
and, by part (3) of Theorem 7, ¢'p ! 1s actually an isomorphism. Thus
the geometrical notions carried over to A by ¢ and ¢’ arc exactly the
same. Strictly speaking, the geometries (A, ¢) and (A, ¢') are distinct
but we may identify them and shall refer to A itself as the affine geometry
in P(V) determined by H.

There is no concept of parallelism in projective geometry but the ex-
istence of parallelism in A, as an affine geomnetry, enables us to introduce
a suggestive terminology to be used when discussing A as part of the pro-
jective geometry &(V). For any eclement M of (V) lying in A we
shall call M N H the hyperplane at infinity in M, or in Z(M). Obscrve
that H itself is the hyperplane at infinity in V (and only in V). For ex-
ample, if 4/ is a projective line not contained in H, then M N H is the
point at infinity in the line 37 : if ;V is a projective plane not contained in
H, then N N H is the line at infinity in the plane N.

Part (7) of Theorem 7 shows that the elements S¢, T'g of A are parallel
if, and only if, S¢ N H contains T'¢ N I{ or vice versa; in other words,
if, and only if, the hyperplane at infinity in S contains, or is contained
in, the hyperplane at infinity in T'¢. Thus, in particular, two lines
M, N are parallel in A if, and only if, as projective lines in #(1') they
have the same point at infinity; a line and plane are parallel in Aif and
only if, the point at infinity on the line lies on the line at infinity in the
plane.

To sum up then, we may say that projective geometry is ‘‘little more”’
than affine geometry. Theorem 7 allows us to use either kind of geo-
metry to study the other. For example, the reader may easily deduce
the propositions of incidence in A or ./ (c + H) from those in Z(V). 'T'his
procedure is more illuminating than the use of Theorem 1 and indeed
supersedes it; though, of course, Theorem 1 can now be deduced from
Theorem 2 of Chapter I (cf. exercise 2 below).

The link between projective and affine geometry also enables us to
draw pictures of projective configurations. Suppose that € is a con-
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figuration in a projective plane .2(V). We choose any projective hine
Il and take the ‘‘cross-scection” of € with ¢+ H (where, of course,
¢ ¢ 1I). 'T'his cross-section yields a picture of an affine configuration
which is actually the image of € under the mapping ¢~! of Theorem 7.
Different cross-sections may well give us picturcs that look quite
different, but they all represent the same projective configuration €.
We would naturally choose a picture in which as little as possible of € is
lost off the paper. For example, if € is the projective triangle 4 BC,
then the natural picture is Figure 9a, which is obtained by choosing If
not to contain A, B, or C. The other two pictures in Figure 9 illustrate

respectively the cases where H contains B (but not 4 or ') and when
H = BC.

A B A B A
B ] ] :
C B C C
(a) (b) (c)

Figure 9

As a more elaborate example, suppose ¢ 1s the plane projective
configuration shown in Figure 10a. If we choose the line £G to be the
line at infinity, then € becomes the affine configuration pictured in
Figure 10b (called a parallelogram).

E
A
A
B
D C G D

B
C
(a) (b}
Figure 10

EXERCISES

1. If 2(V) is a four-dimensional projective geometry, show that two planes
of 2(V) mayv intersect in a point. Hence show that, if A is the atfine
geometry in . 2(}V) determined by a hyperplane, two non-parallel planes in
A may have their complete intersection at infinity .
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2. Let A be the affine geometry in #(V) determined by a hyperplane. In-
terpret Theorem 1 for A and prove it using only Theorem 7 and Theorem 2

of Chapter I.

3. Determine the number of lines in an affine plane over the field F¥,. (Em-
bed the affine plane in a projective plane and use exercise 4 of § 2.5.)

2.7 The Fundamental Incidence Theorems of Projective Geometry

We shall now see that the theorems of Desargues and Pappus, as well
as the Harmonic Construction, are essentially projective theorems: the
statements are simpler than for the corresponding affine theorems, and
moreover (by taking the hyperplane at infinity appropriately), each pro-
jective theorem leads to several affine theorems, each of which would re-
quire separate treatment in affine geometry.

DEeFiNiTION. Let ABC, A’ B'C’ be two triangles whose six sides are
distinet. If L=BC N BC', M=CANC'A’", N=AB N A'B’ are dis-
tinct collinear points and the line LM N is distinct from the sides of the
triangles, we shall say that the triangles have LM N as axis of perspective.

THEOREM 8. (DESARGUES’ THEOREM AND CONVERSE.) The (ri-
angles A BC, A'B'C’ have a center of perspective P if, and only if, they
have an axis of perspective LMN .

Note that the planes A BC, A’ B'C" may, or may not, be distinct. The
direct part of the theorem is proved in essentially thc same way as
Theorem 3 (there being an obvious interpretation of l.emma 5 for pro-
jective geometry). |

The natural projective picture of Desargues’ configuration is that of
Figure 2. Observe that Figure 3 is obtained from this by taking P to
be at infinity. What is the affine picture we get by letting LM N be
the line at infinity ?

PROOF of the converse. Since L, M, N are distinct and collinear, we
may choose homogeneous vectors I, m, n for L, M, N, respectively, such
that [+ m+n=0 (Lemma 5). If we then choose a, b, ¢ for 4, B, C,
respectively, we find that

{ Y10 +2z,c
m = Zoa + 2,C
n = x3a + yab

and so (xq+x3)a + (¥3+¥,)b+ (2, +25)c=0.

But a, b, ¢ are linearly independent since 4, B, (' are not collinear,
and hence x, + 23 =y; +vy; =2, +2,=0. None of these scalars can vanish
because we have assumed that L M N is distinct from the stdes of the tri-
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angle A BC. Thus we can find homogeneous vectors (again denoted by
a,b,c)for A, B,C such that [=b—-c,m=c—a,n=a-0b.
Similarly we find a’, b', ¢’ for A, B’, (', respectively, such that

l=b-c',m=c—-a,n =a -0,

and therefore p=a—a'=b—-b"=c—c’#0 is a homogeneous vector for a
point Pon AA’, BB and CC’. Finally, 4A°, BB and CC’ are distinct
because we have assumed that the intersections BC N B'C’, ete., are
points.

THEOREM 9. (Parrus’ THEOREM.) If two triads of points, A, B, C;
A’, B, C" are taken on two distinct coplanar lines and the intersections
BC"NBC,CA'NC'A, AB "~ A'B are pownts L, M, N, respectively,
then L., M, N are collinear.

The proof follows exactly the same pattern as that of Theorem 4.
(Cf. Fig. 4.)

The above two theorems play a centrally important role in the syn-
thetic foundations of projective geometry. Desargues’ Theorem can
always be deduced in a three dimensional projective space from the
axioms of incidence 3.1-3.6 (p. 31), even if the planes of the triangles co-
incide (cf. exercise 3 below). On the other hand, there exist so called
non- Desarguesian projective planes in which the axioms 2.1 and 2.2 (p.
31) are satisfied but Desargues’ Theorem is nof true. Clearly, such a
non-Desarguesian plane cannot be embedded in any three dimensional
projective space.

In all the work we have done so far, with the exception of one point
in the proof of Pappus’ Theorem, we have not used the commutative
law of multiplication zy = yx in the ground field F. A set F with rules
of addition and multiplication satisfying all the axioms of a field, but
with the possible exception of the cominutative law ot multiplication,
is called a diviston ring. All our work on vector spaces and projective
seometrics can be extended to the case where #' is a division ring, and
all our theorems proved—except Pappus’ Theorem. The method we
used to establish Pappus’ Theorem shows at once that it is true (for
all configurations) in such a projective plane over a division ring if, and
only if, the division ring is in fact a field.

There are two considerably deeper results which we mention without
proof. The first is that Desargues’ Theorem is true in a projective plane
(defined synthetically by the propositions of incidence) if, and only if,
this projective plane is a projective plane over a division ring (defined
ilgebraically). T'he second is an algebraic theorem due to Wedderburn
which states that a diviston ring with only a finite number of elements
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1s a field. Combining these results gives a fascinating purely geometri-
cal theorem: The truth of Desargues’ Theorem in a finite projective
plane implies the truth of Pappus’ Theorem. (Consult [1], [6].)

THEOREM 10. (THE HarMONIC CONSTRUCTION.) Given two distinct
pownts A, B in a projective plane M and a point G on AB. We choose
any pownt C in M but not on A B and also any point I on GC distinct from
G and C. Then E=AD N BC, F=BDNCA and H=EF N AB are
pownts and H 18 independent of the choice of C and D.

The proof is almost identical to the one given for Theorem 5. (Cf.

Fig. 5.)

DEFINITION. The point H is called the harmonic conjugate of ¢ with
respect to A, B. We also say that (A, B; G, H) is a harmonic range.

For the harmonic construction in the projective plane it is no longer
necessary to assume that the ground field has more than two elements.
It is also clear that the exceptional cases where E, F or H {failed to
exist in the affine plane are not exceptions here.  Observe that, on the
affine line determined by choosing H as the point at intinity on A 3, the
mid-point of A, B— if it exists—1is the harmonic conjugate of H with
respect to A, B (cf. exercise 8, below).

The only subtle question remaining is the condition for a point GG to
coincide with its own harmonic conjugate. In fact ¢ = H if, and only
if, 2xy = 0 (exercise 3, § 2.4).

In an abstract field / we write 2 for the element 1 +1. Now it is
possible that 2=0 (e.g., in F,). A field in which 2 =0 is called a field of
characteristic 2.

We see that there are just two cases:

(1) if £ 1s a ficld of characteristic 2, then G = H for all G on A B;

(2) if £ is not a field of characteristic 2, then G= H only for G= A4 or
G=B. (For then 2xy=0 imples xy=0.)

DEFINITION. The configuration consisting of four coplanar points
A, B,C, D, no three of which are collincar, and their six joins, is said
to be a (complete) quadrangle. The points A, B. (", D are the verfices
and their joins are the sides of the quadrangle. The intersections of the
three pairs of opposite sides AD N BC=FE, BDNCA=F,CDN AB=
(7 are called the diagonal points. and they are the vertices of the diagonal
pownt triangle of the given quadrangle. (Cf. Fig. 10a.)

Our remarks above combine to give a proof of the following result.

THEOREM 11. (Fawo0’s THEOREM.) If P(V)1s a 2-dimensional pro-
geclive geometry over a field F, then the diagonal points of every complete
quadrangle in P(V) are collinear if, and only 1f, F has characteristic 2.
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We have seen above that the harmonic construction is valid in a pro-

jective geometry over the field F,. If the planes A BC, A’B'C’ in
Desargues’ Theorem (Theorem 8) are assumed to be distinct then there
is no need to restrict the ground field; but if we try to draw the config-
uration of Desargues’ Theorem in a projective plane over F,, then by
Fano’s Theorem one at least of the triads A, B, C; A’, B’, C" must be
collinear. Thus for the plane form of Desargues’ Theorem we must
assume that the ground field contains at least three elements.

EXERCISES

. If two tetrahedra 4,4,4,4,, B,B, B, B, are in perspective from a point

P then the six points of intersection 4,4, N B;B,=P,, 0<1<3<3, are
coplanar.

2. Deduce four different affine theorems from Theorem 8.

10.

. Given two coplanar triangles A BC, A'B'C’ in perspcctive from a point P.

Take any line through P not in the plane of the triangles and any points
@, R on this line so that P, (), R are distinct. Find a triangle A" B"C"" in
perspective with A BC from @ and in perspective with A'B'C’ from K.
Hence deduce Desargues’ Theorem for the given coplanar triangles by
using Desargues’ Theorem for non-coplanar triangles (cf. § 2.5, exercise 6).

. Let A,B,C,, 1=1, 2, 3, be three triangles, any two of which are in per-

spective, the center of perspective of A4,B,C; and A,B,C, being Fy,.
Assume P,,, P,;,, P,, are distinct collinear points and that 4,4,4,,
B,b,B,, C,C,C, are triangles. Prove that 4,B,C,, 1=1, 2, 3 have a
common axis of perspective L, and that any two of 4,4,4,, B,B,B;,
C',C,C; are In perspective, the three centers of perspective lying on L.

. By considering the triangles B’BN, C'CM show that the converse of

Desargues’ Theorem can be deduced from the direct theorem in the two-
dimensional case.

. Show that Pappus’ Theorem can be deduced from Desargues’ Theorem

in the case where the two triads are in perspective.

. Using the notations of Theorem 9 (Pappus’ Theorem) and assuming that

A, B,C, A, B, (' are distinct from P=ABC N A’'B'C’, prove that the
line LMN contains P if, and only if, AA’, BB’, CC’ are concurrent.

. Let A, B be distinct points on an affine line L. By embedding L in a

projective line, verify that there exists a point on L having no harmonic
conjugate with respect to 4, B if, and only if, the ground field is not of
characteristic 2.

. Draw a complete quadrangle and join the pairs of diagonal points. Mark

in all the harmonic ranges in your diagram.

Prove that the diagonals of a parallelogram bisect each other. (Cf.
Fig. 10b.)
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Isomorphisms

3.1 Affinities

It 8, §" are cosets in vector spaces V, V' over fields F', F’, respectively,
we shall often consider mappings f of § into §° with the following
property: for any coset 7 in §, the image set 7'f is a coset in §’. In
such a case the mapping

T —Tf

of &/(8) into .&7(S’) induced by f will be denoted by .o7( f).
Clearly, if f, g are two such mappings for which the product fg is
defined then

A (fg) = A (f)L(g).
It 1s important to note that f and .o/(f) are logically distinct: the
former acts on vectors and the latter acts on cosets. On the other hand

we see that f may be regained from 7( f) merely by restricting .o7( f) to
the cosets consisting of one vector: explicitly,

(v} (f) = {v'} if, and only if, of = v'.

Occasionally we shall find it convenient to write v &/(f) instead of
(v} (f).
If a 1s a vector in V then the translation
t,:v—v+a
induces a mapping

HAt,): T —T+a,

where T'1s a cosetin V. Weshall refer to o7 (¢,) as a translation in (V).
If S is a coset in V, the restrictions of {, and /(t,) to S and &Z(S), res-

pectively, will still be denoted by the same letters.

DErFINITION. If S=a+ M, §'=a"+ M’ are cosets in vector spaces
V, 1" over the same field ¥ and if ¢ is an isomorphism of the subspace
M onto the subspace M’, then a mapping of the form

'M(t—-a q ta')

will be called an affinity of &7(S) onto o7 (S’).
42
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It is obvious that an affinity is a particular kind of 1somorphism—in
fact, the isomorphism constructed in proving Theorem 2 of Chapter 11
(p. 21) was an affinity. We shall prove later that any isomorphism ot
affine geometries over different fields is as near to an affinity as one
could possibly expect (see Theorem 5). For affine geometries over the
same field, affinities are the most natural tsomorphisms to study.

Let us denote t_, g t, by A. 1f s is any vector 1n § then

h=1t_st_,9ts
=l_sgls_aw+a> Dy the linearity of g,
=1_59 Iy,
where 8' =(s—a)g+a’'=sh. It follows that
g=1tht_g.

But s was an arbitrary element of S and thus ¢ is uniquely determined
by .

When S is a subspace 1t 1s natural to choose s=0 and to express A
uniquely i the form g £, where s’ = 0A.

It is easy to verify that the product of two affinities, where defined,
is again an affinity. Forif a=.9 ({_ g t.) is an affinity of o/(S) onto
2Z(S’), then an affinity of o/(8') onto 27(8") can be written in the form
o' =(_¢ g tg) so that the product aa’ 1s /(¢_ g g't..).

In order to introduce coordinates in an affine geometry o7(S) it is
natural to attempt to use a basis in the underlying vector space V.
But even if the geometry .o7(8) contains the point O (corresponding to
the zero vector), there 18 no geometrical feature to distinguish this from

any other point and so there is no purely geometrical notion which
exactly corresponds to that of basis.

DErFINITION. Let A be an affine geometry of dimension n>1 and
let Py,..., P,, @ be n+1 points of A whose join has the maximum
dimension n. Then the ordered (n+ 1)-tuple (P,,..., P,, @) is called
a frame of reference for A, with origin Q.

We recall from Chapter I (p. 13) that the space F™ has a standard
basis {e,,...,e,} where e, 1s the ordered n-tuple (0,...,0,1, 0,..., 0)
with :-term equal to 1 and all the other terms equal to 0 (:=1,. .., »).
[f we denote the points {e,} by £, and the point {(0, ..., 0)} by O then
(Ey,. .., E,, O)is the standard frame of reference for .o/ (F™") with origin O.

The following result is a stronger form of Theorem 2 of Chapter 11.

Tueorem 1. [f (P,,..., P,,Q)and (P,,..., P, @) are frames of
reference for affine geometries A, A’, respectively, defined over the same
field, then there 18 a unique affinity o of A onto A’ such that P,a= P, for
t=1,...,nand Qa=Q".



44 LINEAR QEOMETRY CHAP. 111

PROOF. We may suppose that A=.o/(a+ M) and A'=f(a"+ M')
where a + M, ¢’ + M’ are cosets in vector spaces V, V', respectively,
over the same field. Let the points P,,..., P,, @, P,,..., P,, @
have vectors py, ..., 2, ¢, 2., ..., P, , ¢, respectively.

Any affinity a which satisfies Qa =)' is expressible in the form

o = (., 9t,)

where g is an isomorphism of M onto M'. If also P= P, for
v=1,...,nthengtakesp,—gintop,’—q fori1=1,...,n. By the defini-
tion of frames of reference, the vectors p,—q (¢t=1, ..., n) form a basis
of M and the vectorsp,"—¢q' (t=1,...,n)form a basis of M’ (cf. exercise 4
of § 2.2, p. 20). Thus by Theorem 3 of Chapter I (p. 12) there is one
and only one such isomorphism ¢ and so there is one and only one such

affinity a.

DeriNITION. If A is an affine geometry of dimension n over a field
F then an affinity « of A onto &/ (F™) is an affine coordinate system for A.

It 1s clear from Theorem 1 that there is a one-one correspondence
between the frames of reference (P,,..., P,, @) for A and the affine
coordinate systems o for A, given by

Poa=F (=1,...,n), Qo = 0.

This affinity « takes the point X ={q+ >x,(p,—q)} of A to the point
{(2q,...,2,)} of A (F™). We shall say that (x,,. .., x,) is the coordinate
row of X with respect to the given frame of reference (or, with respect
to the given affine coordinate system).

EXERCISES

1. If « is an affinity of &7(8) onto o7(S’) and 7' is a coset contained in S,
prove that the restriction of « to &7(7') is also an affinity.

2. Prove that the inverseof the affinity .o7(¢_, gt,.)isthe affinity &/(¢_,. g~ 1 ¢,).

3. Given a=#(t_,¢t,): L(a+M)— (a+ M), prove that the following
two properties are equivalent :
(1) S« is parallel to S for every coset S contained in a + M ;
(1) Ng= N for every subspace N of M.
(An affinity with either of these properties is called a dilatation. Cf. exercises
90f§3.2and 1 of § 3.4, where these mappings are discussed further.)

3.2 Projectivities

Let V and V' be two vector spaces over the same field. If fis a map-
ping of V into V' such that, for every subspace M of V, the image set Mf
1s always a subspace of V', then f induces a mapping

M — Mf
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of Z(V)into (V’). Wae shall denote this by &(f) and stress that, as in
the analogous affine case, f acts on vecotors while Z( f) acts on subspaces.

DEFINITION. If fis an isomorphism of V onto V' then Z(f) is called
a projectivity of (V) onto Z(V'). In particular, if V'=V, then 2(f)
is called a collineation of (V).

It is clear that if f and g are two mappings for which Z( f), #(g) and
the product fg are defined, then Z(fg) 1s also defined and

P(fg) = P())P(g).
Further, it 2(f) and £(g) are projectivities, so is 2(f)2(q).

A projectivity is clearly an isomorphism of the projective geometries.
We shall find in § 3.5 that the most general isomorphism of (V') onto
P(V’'), when the ground fields are distinct, 18 as close to being a pro-
jectivity as is possible (see Theorem 6).

If f is an isomorphism of V onto V' and z any non-zero scalar, then
g =zf 18 the isomorphism defined by the rule vg=z(»f) for all v in V.

ProprosITION 1. Two 1somorphisms f, g of V onto V' induce the same
projectivity P(f)= P(q) of, and only 1f, there exists a mon-zero scalar 2
such that g = zf.

PROOF. If g=2zf then Mf= Mg for any subspace M of V and so
P(f)=2(9).

Conversely, suppose that Z(f)=%(g), then ag=z,(af) where z, is a
non-zero scalar possibly depending on the vector a.

Assume first that V' =[a]. Then

(xa)g = x(ag)

= x(za(af))
(xz0)(f)
(zax)(af)

= z,(xa)f, for any x in F.

-

[n other words z,, =2, for any non-zero x in F.
Assume that dim V > 2. 1If a, b are linearly independent vectors in

V then af, bf are hinearly independent in 1, so the equation
(@ +b)g = ag +bg,
which 1s equivalent to
za+b(a+b)f = za(af) + zb(bf)a
yields

“a = %y = Zg4be
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If ¢ and b are linearly dependent we may use the above argument for
the one-dimensional case to show that z,=z2,. Alternatively, and this
argument has an application later (pp. 57, 122), we may find a vector
¢ in V not hinearly dependent on « or b, and deduce that z,=z., z, =2,
whence z,=2,. This establishes the result.

We turn now to the problem of introducing coordinates.

DerFiNITION. If P is a projective geometry of dimension n over the
field F then a projectivity = of P onto Z(F"*1) is a projective (or homo-
geneous) coordinate system for P.

We look for a frame of reference in P which will determine 7 uniquely.
[.et us write ¢, for the (n 4+ 1)-tuple (0,...,1,..., 0) with i-term equal
to 1 and all other termsequal to 0 (=0, ..., n). (Note that the i-term
1s 11 the (2 + 1) position here, since we number from 0 to n.) If A7 =[e,]
for :=0,..., n then the (ordered) (n +1)-tuple (4,, ..., A,) 1s often
called the (ordered) simplex of reference for the given coordinate sys-
tem .

Suppose that the simplex (A, ..., 4,) is given. We attempt to
reconstruct = as follows: Let a4, ..., ¢, be any homogeneous vectors
for A,, ..., 4,, respectively (i.e., [a,]= A, for =0, ..., n). Then there
15 a unique 1somorphism f of V onto F™*?! taking a, to e; for each z, and
the projectivity == 2(f) certainly takes A, to |e;] for each i. Unfor-
tunately there is an ambiguity in the choice of each «; (except in the
very speclal case where the ground field / has only two elements 0, 1),
because cach homogeneous vector may be multiplied by an arbitrary
non-zero scalar in ¥. When n=0 the ambiguity is ‘“‘absorbed” when
we take 2(f) (cf. Proposition 1). When n > 1, however, we need a
further point to “stiffen up’’ our simplex of reference.

DEFINITION. Let P be a projective geometry of dimension n=>1

and suppose that (A,,..., 4,. U') is an ordered (n + 2)-tuple of points
in P such that the sum (join) of every subset consisting of (n+1) of
these points is of the maximum dimension n. Then (4,,..., 4,, U)

is called a frame of reference for P with unit point U and simplex

(Aoa' tro An)

For example, in a 2-dimensional projective geometry any triangle
may be taken as triangle of reference, and any point, not on any of the
sides of the triangle, as unit point. In a three-dimensional projective
geometry we may take any tetrahedron as tetrahedron of reterence, and
any point, not on any of the faces, as unit point.

The ordered basis (a,. ... a,) of I’ is said to determine the frame of
reterence (4,,...,4,,U) for (V) if A,=[q,] for 1=0,...,n and
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U={a,+ --- +a,]. The standard basis of F"**? determines the stan-
dard frame of reference for P(F"*1), viz., (£, ..., E,, E) where E,=]e,]
for i=0,...,nand E=[(1, 1,..., 1)]

LEmMMA 1. Every frame of reference for P(V) 18 determined by at least
one ordered basis of V. Two ordered bases (ay, ..., a,), (by, ..., 0,) of V
determine the same frame of reference if, and only if, there exists a non-
zero scalar z such that b,=za, for 1=0, ..., n.

PROOF. Consider the frame of reference (A4,, ..., 4,, U). Let u be
a homogeneous vector for U (i.e.,[u]=U) and let ¢,,...,c, be any
homogeneous vectors for 4,, ..., 4,, respectively. Then (c,, ..., c,)
is an ordered basis of V and w=x,c,+ - +x,c, where x,#0 for
1=0,...,n It we put a,=x¢ then [a,]=4, (:=0,...,n) and
U=Qg+ *++ +0a,.

If (ag,...,a,), (b, ..., b,) determine the same frame of reference,
then b,=24a,(2=0,...,n) and by+---+b,=2(ag+ - - -+a,). Hence
2olo + * * - +2,8, =20y + - - - +2a, from which it follows, by the linear in-
dependence of a,, ..., a,, that z,=-..=2,=2.

TueorEM 2. If (4, ..., 4,,U), (4,,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>