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Preface to the English Edition

ThlS Enghsh edltron could serve as a text for a first 'year graduate course on
drﬁ'erentlal geometry, as did for a long time the Chicago Notes of Chern
‘mentioned in the Preface to the Gerinan Edition. Suitable references for ordin-
ary ¢ drfferentlal equatlons are Hurewicz, W. Lectures on ordmary differential
equatzms MIT Press, Cambridge Mass., 1958, and for the topology of
surfaces Massey, Algebraic Topology, Sprmger—Verlag, New York, 1977.
Upon David Hoffman fell the difficult task of transforming the tightly
_constructed German text into one which would mesh well with the more
“relaxed format of the Graduate Texts in Mathematics series. There are some
elaratlons and several new ﬁgures have been added. I trust that the merits
,of the German edrtron have survived whereas at the same time the efforts of
David helped to elut;ldate the general conception of the Course where we
“tried to put Geometry before F ormallsm w1thout g1v1ng up mathemat1cal
v.rlgour L .- -
1 wrsh to thank Davrd for hrs work and hls enthusiasm durmg the whole
perlod of our collaboration. At the same time I would like to commend the
| ed_ltors of Springer-Verlag for their patience and good advice.
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From the Preface to the German Edition

\

This book has its origins in a one-semester course in differential geometry
which I have given many times at Gottingen, Mainz, and Bonn.

It is my intention that these lectures should offer an introduction to the
classical differential geometry of curves and surfaces, suitable for students
in their middle semester who have mastered the introductory courses. A
course such as this would be an alternative to other middle semester courses
such as complex function theory; abstract algebra, or algebraic topology.

For the most part, these lectures assume nothing more than a knowledge
of basic analyms real linear algebra, and euclidean geometry. It is only in
the last cha pters that a famlllanty with the topology of compact surfaces
~ would be useful. Nothmg is used that canno’t be found in Seifert and Threlfall’s

c]assxc textok of AR

table of contents Qf course 1t was necessary to make a selectlon from the
profusion of material that.could be presented at this level. For me it was clear
that the preferred topics were precise ly those which contributed to an under-
_ standmg of two-dimensional Riemannian geometry. Nonetheless, I think that

‘my lectures prowde a useful basis for the undcrstandmg of all the areas of
drﬂ”erentlal geometry. -
- The structure of these lectures 1nclud1ng the orgamzatlon of some of the
'_ proof s, has been greatly influenced by S. S. Chern’s lecture notes entitled
“ Differential Geometry, published in Chicago in 1954. Chern, in turn, was
.mﬂueneed by ‘'W. Blaschke’s ‘““Vorlesungen iiber Differentialgeometrie.”
‘Chern had studied’ with Blaschke in Hamburg between 1934 and 1936, and,
| nearly twenty years later, it was Blaschke who gave me strong support in my
career as a differential geometer.

.So as I take the privilege of dedlcatmg this book to Shung-shen ﬁern,

- would at the same time desire to honor the memory of W. Blaschke '

Bonn-Rétigen _ . Wilhelm Klinge: ber
January 1, 1972 o . . | ! ngen g
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Caleulus in Euclidean Space

Nepal

We w111 start w1th a brlef outlme of the essentxal facts about IR" and the vector'_ -
calculus L8 The reader famlhar with this sub_;ect may w1sh to begin with
Chapter 1 usmg thls chapter as the need arlses - -

0. 1 Euchdean Space

.As usual [R“ ls the ve"r---_-_"_”-i'?or space of all real n-ﬁtuples x = (xt,. i . x”') The '
scalar pmduet of twe elements x, y m R”' is glven by the formula '

@ |x|2=x,'r _-
T DI -13 derlved the trlangle mequah t y
for all x, y e R‘*‘

‘he distinguished bast: < n. The vector'-
B '_e, rs the n—tup!e w1ti_;';"_;-:f}:;}I_- m the 1th place and . in all the other places | B
- We shall also use R* to. denote the n-drmensrenal Euclzdean space. More_.

: precrsely, R’* is the Euchdean space with erlgm = (0, 0,...,0), and an

._-'__orthonermal basrs at thls pomt namely (e,) 1 <isn - B

1 Serne standard references for matenal m thlS chapter are Dleudonné J Faundanans |
: of Madem Analysis New York Academic Press, 1960. Edwards C. H Advanced .
Calculus of Several Varmbles New York: Academic Press 1973. Splvak M Calculus an
Mamfalds Readlng, Mass W. Benjamln 1966 e |



0 Calculus in Euclidean Space

The distance between two points x, y € R" will be denoted by d(x, y) and
defined by d(x, y) := |x — y|. Clearly d(x, y) = 0, (d(x, y) = 0 if and only
if x = y) and d(x, y) = d(», x). Also, the triangle inequality for the norm
implies the triangle inequality for the distance function,

d(x,2) < d(x,y) + d(»,2), x,y,z€R"

These three conditions satisfied by dimply that R", with d as distance function,
is a metric space.

The transformations of Euclidean space which preserve the Euclidean
structure, i.e., the metric preserving transformations of R", are called
isometries. One type of isometry is a translation: T, : R* — R" defined by
X+ X + Xx,, Where x, is a fixed element of R". Another type is an orthogonal
transformation:

R: R* — R*, R is linear and R(x)-R(y) = x-), x, y € R"

If an orthogonal motion is orientation preserving (i.e., the matrix whose
columns are Re,,..., Re,, i = 1,..., n, has determinant +1), it is a rotation.
An example of an orthogonal motion which is not a rotation is given by the
reflection

p: R*—> R"* X+> —X

when »n 1s odd.
Any isometry B of Euclidean space may be written

B: R* —> R, x> Rx + x,

where x, € R® and R is an orthogonal motion. In other words, every isometry
of Euclidean space consists of an orthogonal motion R, followed by a trans-
lation T,,. We will call R the orthogonal component of B. If R is a rotation
we will say that B is a congruence. If not, we will say that B is a symmetry.

0.2 The Topology of Euclidean Space

The distance function d allows us, in the usual way, to define the metric
topology on R". For x€ R" and € > 0, the e-ball centered at x is denoted
B.(x) and is defined by

B(x) :={yeR"|d(x,y) < €.

A set U < R” is called open if for every x € U there exists an € = e(x) > 0
such that B.(x) < U. A set ¥V < R" is closed if R*\ V is open. Given a set

W < R*, W denotes its interior, i.e., the set of all x € W for which there exists
some € > 0 with B.(x) < W. 7

A set U = R™is said to be a neighborhood of x, € R* if x, € U. A mapping
F: U— R" is continuous at x, if for every ¢ > 0 there exists a 6 > 0 such
that F(U N By(x)) = B.(Fx,). F is said to be continuous if it is continuous
at all xe U.

2



0.3 Differentiation in R"

Example Lmear functzons are contmuous

Let L be a lmear functlon ie., L(ax + by) = aL(x) + bL( y) for a, b € R,
x,yeR™ L may be written in terms of a matrix (af), 1 <i<n,1 <j<m,
where (L(x))’ >y ajxt. To show that Lis continuous, we use the Schwarz
1nequallt3t Wrttlng |L| for 3, (n’)2 ' '

|Lx12 z (2 azx*) < Z (Z (af)ﬂ) 2 (x*r = L1 =P

‘Therefore {Lx - onl ILI Ix — Xol. From thjs the continuity of L is
eas1ly seen. No;e It follows that isometries B: R® — R" are continuous: for
Bx — on = R(x — xo) R belng the orthogonal component of B, and R s
hnear S . - |

' 0 3 Dlﬁ'erentlatlon in IR" '

. Consrder the set L(R"’ R”‘) of linear transformatlons from R" to R™. This set
has a natural real vector-space structure of dimension n-m. Addition of two
hnear transfc}j}_ nations L,, L, is defined by adding in the range; (L; + Lg)x :=
x + Lgx. Sgalar multlpllcatlon by o € R is defined by (aL,)x := a(L,x).
In te-! 'ms of the matrices (a) which represent elements L € L(R", R™),
addition corrgsponds to the usual matrix addltlon and scalar multlpllcatlon
to multiplicatjon of matrices by scalars. T - -
“The bljec;‘-on of L(R"' R™) onto R" m glven by cons1der1n g the matrix
.. representatlop (af) of a lmear map L and 1dent1fy1ng (a?) with the vector
(al, WO DRI SR - Y 9 8 is norm-preserving. The norm |L|
agrees wnh the length (- norm) of its nnage vector in R*™, .

Let U < R* be an open set, and suppose F:U—R" 1s any continuous

__map F is sgld to be dzﬁ”erentzable at xo€ U 1f there ex1sts a linear mapping
- L L(F xg) € L(R"L R”‘) such that '

lnn |Fx — Fxo — L(x — xo)l

SR = 0.
o x._,,xo - Ix — xo|

It wﬂl be convement to denote by o(x) an arbltrary functlon with

- .x-—»o"l?l"“

',In terms of thls notatlon the equatlon above may be rewntten as
|Fx — Fxo — L(x — xo)l = o(x — xo) o
If such an L L(F xo) ex1sts it is unique. Suppose L and L’ are two such

| l1near mapplngs wrth the requlred propertles Then, using the trlangle
1nequahty,

) S
#



0 Calculus in Euclidean Space

(L — L)(x — xo)|] = |(L — L')(x — xo) + Fx — Fx + Fxo, — Fx,|
< |Fx — Fxo — L(x — x,)| + |Fx — Fxo — L'(x — xo)|

= o(x — Xg) + o{x — x3) = o(x — Xxp).

IA

Thus |(L — L") (x — x,)| is o(x — x,). In particular, if x — x, = re;, then

/2

r(z (al — aﬂ)z) = o(r).

Therefore, a} = ay’ for all i, j.

The unique linear map L = L(F, x,) is called the differential of F at x,,
which will also be denoted by dF,,, or simply dF.

If A is an arbitrary (not necessarily open) set in R*, a mapping F: A — R™
is said to be differentiable on A if there exists an open set U < R” containing
A and a mapping G: U — R" such that G|, = F, and G is differentiable at
each x, € U.

Examples of differentiable mappings

1. L: R*— R™, any linear map. dL, = L, for all x e R

2. B: R — R™, an isometry. dB, = R, the orthogonal component of B.

3. All the elementary functions encountered in calculus of one variable are
differentiable; polynomials, rational functions, trigonometric functions,
the exponential and logarithm.

4. The maps (x, y)> x-y from R* x R" into R and x+ |x|? from R" into R
are differentiable.

5. The familiar vector cross-product (x, y)—> x x y € R3, considered as a
map from R® x R?2 into RS, is differentiable. In terms of a basis for R®, if

X = (X1, X3, Xs) and y = (y1, Y2, Ya), then x x y = (Xa¥s — X3z, Xa)¥1 —
X1Y3s X1Ya — X2)1)- |

It is an eaSy exercise to prove that the composition of two dlﬁ'erentlable
mappings is differentiable.

A mapping F: U — R™, U open in R", is said to be contmuously differen-
tiable, or C?, if F is differentiable at each x € U and the map dF: U —
L(R", R™), given by x — dF,, 1s continuous.

A mapping F: U — R™, U < R"is said to be twice continuously differenti-
able, or C?, if dF. U— L(R", R™) is differentiable, and its derivative 1is
continuous.

In an analogous manner, we may define k-times continuously differentiable
mappings, or C* mappings. If fis k-times differentiable forany k = 1, 2,...,
fis said to be C* (read *“ C infinity’’). Sometimes we will refer to C ® mappings
as differentiable mappings when there is no possibility of confusion.

If U <« R™ V < R"are open sets and F: U — V' is a bijective, differentiable
function such that F~*: V-— U is also differentiable, then F is called a
diffeomorphism (between U and V). '

4



- 0.4 Tangen-t Space

If F: U— R™, U < R" is differentiable, then the m coordinate functions
F/(x!, ..., x") have partial derivatives 0F’/ox' = Fi with respect to each of
the n coordinates x*. From our definition of dF,,: R™ — R", it follows that
the matrix of this linear map is given by the matrix of first derivatives of F
at xo, (F1).,, the familiar Jacobian matrix. |

The differential d2F = d(dF) of the differentiable function dF: U—
L(R", R™) at the point x, € U has the following matrix representation: dF is
determined by the n-m real valued functions o0F’/ox'. Therefore d*F,, 1s
determined by the (m x n-m)-matrix (92F’/ox! 6bc")|,,‘,0 The row-index in this
notation is {{} and k is the column-mdex (The pairs {]} are ordered lexico-
graphlcally )

0.4 Tangent Spabe

The concept of a tangent space will play a fundamental role in our study of
differential geometry. For x, € R*, the tangent space of R* at x,, written
T,,_.OR“ or R%, is the n-dimensional vector-space whose elements consist of
pairs (x,, X) € {x,} x R". The vector-space structure is defined by means of the
bijection

TxOIR“ — R", (X0, x) > X,

”

le (xOs x) + (xO: y) = (xOs x + y) and a(xﬁa x) = (an ax)

Let U be a subset of R*. The tangent bundle of U, denoted TU is the
disjoint union of the tangent spaces T, ,R*, x, € U, together with the canonical
projection 7: TU — U, given by (xo, X) > xo. TU 1s in 1-1 correspondence
w1th Ux R® v1a the bljectlon

(xo, x) € T.R*< TU— (xo, x)e U x R“

In view of the generahzatlons we will make in subsequent chapters,
~ the interpretation of TU as the disjoint union of the tangent spaces T, R",
X0 € U, 1s preferable to that of TU as U x ‘R™. On the other hand, the
“interpretation of TU as U x R* shows that TU may be considered as a

subset of R* x R™ = R2", If U is open, then U x R*is also open in R2", so '

it is clear what it means for a function G: TU — R* to be continuous or
differentiable. We may now define the notion of the differential of a differenti-
able mapping F: U — R™ in terms of the tangent bundle.

~ Let U be an open set in R" and let F: U — R™ be a dlﬁ‘erentlable function.
For each x, e U we define the map TF,,: T, ,R" = TrnR™ by (o, X) >
(F(x,), dF,,(x)). The map TF: TU — TR™ is now defined by TF IT,,OR" L=

- TF,,. TF is called the differential of F.

A word about notation: If we identify Tx,R" with R" in the canonical way,
and likewise Tp.,R™ with R™, then mstead of TF,,: T, ,R* = Tg,,R™ we
write dF,: R“ — R™.



0 Calculus in Euclidean Space

0.5 Local Behavior of Differentiable Functions
(Injective and Surjective Functions)

We shall need to use the following basic theorem:

0.5.1 Theorem (Inverse function theorem). Let U be an open neighborhood of
0 € R". Suppose F: U — R" is a differentiable function with F(0) = 0 € R".
If dFy: R® — R" is bijective, then there is an open neighborhood U' < U
of O such that F|y.: U' — FU' is a diffeomorphism.

Such a function Fis said to be a Jocal diﬁ’eomorphz’sm (or, more precisely, a
local diffeomorphism at 0).

In order to state and prove an important consequence of the inverse func-
tion theorem, it is necessary to recall some facts about linear maps. A linear
map L: R — R™ is injective, or 1-1, if and only if ker L := {x € R" | Lx = 0}
= {0}. This is equivalent, in turn, to the requirement that R™ has a direct
sum decomposition R™ = R @ R"™~" (into subspaces of dlmenswn n and
m — n, respectively) such that L: R® — R’" is a bijection.

Similarly, a linear map L: R® — R™ is surjective, or onto, if and only if
n — m = dim ker L. This condition is equivalent to the existence of a direct
sum decomposition R* = R'™ @ R"*~™ into subspaces of dimension m and
n — m, respectively, such that R"*~™ = ker L and L|g»: R™— R™ is a -
bijection.

The next theorem shows that, locally, differentiable functions behave in a
manner analogous to linear maps, at least with respect to the injectivity and
surjectivity properties described above. -

0.5.2 Theorem (Local linearization of diﬁ'erentiabfe mappings). Let U be an
open neighborhood of 0 € R". Suppose F: U — R™ is a differentiable function
with F(0) = 0.

i) If TF,: TR — T,R™ is injective, then there exists a diffeomorphism g
of a neighborhood W of 0 € R™ onto a neighborhood g(W) of 0 € R™ such
that g o F is an injective linear map from some neighborhood of 0 € R
into R™. In fact, g o F(X1,..., %) = (X15..., X%, 0,...,0).

1) If TF,: T,R* — T,R™ is surjectwe there exzsts a dzﬁeomorphzsm h of
a neighborhood V of 0 € R" onto a neighborhood h(V) of 0 € R" such that
F o h is a surjective linear map from some neighborhood of 0 € R™ onto a
neighborhood of 0 € R™. Infact, Fo h(Xy, ..., Xy« -3 Xp) = (X1, « «, Xm).

Remark. The converse of each of the above statements is clearly true.
PROOF. 1) Suppose dF,: R* — R™ is injective. Write R™ = R’* @ R"™~" with
dFo(R") = R'™. Define §:R*"=R*"@PR™ *">R"=R*"@PR"™ ™ in a

neighborhood of 0 by v = (v, v")+— F(v') + (0, v"). Here the R’™ on the
left-hand side is identified with R". Clearly, dg, = dF, + id | R"™ ™,




0.6 Exercise

Therefore dg, is bijective and we may use the inverse function theorem
(0.5.1) to assert the existence of a local differentiable inverse g = g1

Since gog = id, go g | R™ =id | R™ locally, and thus goF(v) =
(v', 0).. This proves g o F is a linear injective function from a neighborhood
of 0in R*"into R* < R*@ R™ " = R™.

n) Suppose dF, : R* — R™ is surjective. Decomposing R" = R @ R"™~™ so
that dF, | R™:R'™— R™ is a bijection, define 4: R* = R @ R™ ™" —
R* = R™ (—1—) R"™™-™ in a nelghborhood of zero by v = (v v") > (Fv v").
Here we have identified R'™ on the right-hand side with R™. '

Since dhy = qF, | R'™ + id | R"*-™ is bijective, & has alocal inverse h = h~2.
Sincehoh = id locally, h(F(v',v"), v") = (v', v")and therefore Fo h(F(v',0"),0") =
F(v', v"). This means that F o & is given locally by the projection R* = R'™ @
R"™-™— R'™ onto the first m coordinates, which, of course, is linear and
surjective. B n

0.6 Exercise

Prove that any distance-preserving mapping B: R® — R" may be written in the form
- o Bx-—-Rx+xo, '

an orthogonal motlon followed by a translation.

L2



Curves

1.1 Definitions

1.1.1 Definitions. Let / = R be an interval. For our purposes, a (parametrized)
curve in R™ 1s a C* mapping c: I — R". ¢ will be said to be regular if for

all te 1, é(t) # 0.

Remarks. 1. If I is not an open interval, we need to make explicit what it
means for ¢ to be C=. There exists an open interval I* containing 7/ and a
C ® mapping c*: I* — R" such that ¢ = c*|I.

2. The variable ¢ € I is called the parameter of the curve.

. The tangent space R,, = T;,R of R at ¢, €/ has a distinguished basis
1 = (¢, 1). As an alternate notation we will sometimes write d/dt for
(26, 1) = 1.

4, If c: I— R" 1s a curve, the vector dc; (1) € Tc(to)R“ is well defined. Since
le(t) — c(ty) — de, (1)t — t,)| = o(t — t,), it follows immediately that
de, (1) = limy,, [c(t) — c(ty)]/(t — to) = E(2,), the derlvatlve of the R"-
valued function ¢(¢) at ¢, € 1.

Iy

1.1.2 Definitions. 1) A vector field along c: I — R" is a differentiable mapping
X: I — R" The vector X (¢), that is the value of X ata given ¢ € I, will be
thought of as lying in the copy of R™identified with T, ,R" (see Figure 1.1).

11) The tangent vector field of c¢: I — R" is the vector field along ¢: I — R*
given by ¢+ ¢(z).

1.1.3 Definition. Let c: I — R", &: I — R" be two curves. A diffeomorphism
¢: I — I such that é = co ¢ is called a parameter transformation or a

change of variables relating ¢ to ¢. The map ¢ is called orzentatzon preserving
if ¢' > 0.



1.1 Definitions

X (1) X

,,,{---r" _—

o .

| o -
Selt) | e

- Figurel 1'

Remark. Relatlonshrp by a parameter transformatlon is clearly an equ1va1ence

relation on the set of all curves m R". An equrvalence class of curves is called
an unparameterzzed curve.

1.1.4 Deﬁmtlons. i) The curve c(t) te I is sald to be parameterzzed by arc

~ length if |c(t)| 1. We wxll sometlmes refer to such a curve as a
 unit-speed curve. - '

- ii) The length of c 1s glven by the integral L(c) = f |c(t)| dt.

1) The 1ntegral E():= % f ¢(t)? dt is called the energy integral of c or,
- 31rnp1y, the energy of c. '

1.1.5 Proposrtlon. Ever y regular curve ¢: I — R* can be parameterized by arc

length. In other words, given a regular curve c I—-R" there is a change
of varzables é: J —> I such that |(c o ¢) (s)|

PROOF. The desrred equatlon for ¢ is |dc/ds| = |dc/dt| .|dé/ds| = 1. Define
s(t) = r |c(t )| dt’, to € I, and let .s'(t) = ¢~ 1(2). Since c is regular, ¢ exists

€2

| e, t<0

".--_.(a)' o o (b R
' Figure 1.2 (a) Helix; (b) cusp



1 Curves

and satisfies the desired equation. Clearly, c - ¢ is parameterized by arc
length. []

Examples

1. Straight line. For v, v, € R" let c(t) = tv + v,, t € R. The curve c(?) is
regular if and only if v # 0 and, in this case, is a straight line.

2. Circle and helix. c(t) = (acost,asint,bt), a,b,teR, a* + b* # 0.
When b = 0, ¢(¢) is a plane circle of radius a. When a = 0, ¢(z) is a
straight line. In general, c¢(z) is a helix. In all cases, ¢(¢) is a regular curve.

3. Parameterization of a cusp. The curve c(t) = (12, t%), te R, is regular
when ¢t # 0. The image of ¢(¢) is a cusp.

4, Another parameterization of a straight line. The curve c¢(t) = (¢3, t3),
t € R, is regular when ¢ # 0. The image of c¢(¢) is a straight line.

c(t),t>0
c(t),t <0

—1

Figure 1.3 Image of ¢

1.2 The Frenet Frame

1.2.1 Definition. Let c: I — R" be a curve. 1) A moving n-frame along c i1s a
collection of n differentiable mappings

eﬁ]—:»R”, ISiSn,

such that for all 1€, ¢,(t)-e,(t) = 3,;, where §,; = {}:12]}. Each e(t)
is a vector field along ¢, and ¢,(¢) is considered as a vector in T, R™.

ii) A moving n-frame is called a Frenet-n-frame, or simply Frenet frame,
if for all k, 1 < k < n, the kth derivative ¢®(¢) of c(¢) lies in the span
of the vectors e,(?), ..., e(t).

Remark. Not every curve possesses a Frenet-n-frame. Consider

(—e-120), ift<0
c:R—>R2  cft) =<(e"¥? e 1), ift > 0.
(0, 0), ift =20

Because the image of ¢ has a crease at (0, 0) it is impossible to find a differen-
tiable unit vector field e,(¢) along ¢ such that ¢(¢) = |¢(r)]es(2).

10



1.3 The Frenet Equations‘ '

/

1.2.2 Proposition (The existence and uniqueness of a distinguished Frenet-
frame). Let c:IeR" be a curve such that for all tel, the vectors
é(1), cAt), ..., " X(t) are linearly independent. Then there exz.s't.s' a
unique F. renet-frame with the following propertzes

i) For1 <k < n— 1 c(t),  , ¢®(t) and el(t), .. .5 €,(t) have the same
- orientation. ! -
ii) e, (2), .. e,,(t) has the posztwe orzentatzon

This frame is called the distinguished Frenet-frame.

Remark. Recall that two bases for a real vector space have the same orienta-
tion provided the linear transformation taking one basis into the other has
positive determinant. A basis for R" is positively oriented if it has the same
orientation as the canonical basis of R*. @ ’

Proor. We will use the Gram-Schmidt orthogonalization process. The
~ assumption that é(¢), é(z), . . . are linearly independent implies that ¢(z) # 0
and so we may set e,(t) = ¢(r)/|é(t)|. Suppose ey(t),. .., e;_1(t), j < n, are
defined. Let é,(t) be deﬁned by - '

e(t) - ’z @ er(r))ek(r) b o)

and let ¢/1) : = é}(t)llé}(t)l S

Clearly, the et), j < n, are. well deﬁned and satisfy the first assertion of
the theorem. Furthermore we may define e,(?) so that e,(¢),..., e,(¢t) has
positive orientation. The differentiability of e[r), j < n, is clear from its
definition. To see that e,(?) is differentiable, observe that each of the com-
ponents el(t),1 <i < n, of e,(t) may be expressed as the determinant of a
minor of rank (n — l) in the nx(n-— 1)-matr1x (ei()), 1 <i<n,
1 < ] <n- 1. o ' - O

1.3 The Frenet Equations o
1.3.1 Proposmon Let ¢(t), t € I, be a curve in R™ together with a moving frame
(ei(t)), l<i< n,te I Then the followmg equations for the derivatives hold:

__ __ «) = Z a,(t)e,(t)
. é(t) = Z “-’-ir(-t Jet),

 where o -
» S wu(t) = éi(t) e,(t) "".""wﬁ(t)
N If (e,(t )) zs the dzstmguzshed F renet frame deﬁned in (1.2.2),
*n al(t) = [e@®)], @) = 0 fori> 1,
and o . | ' w,,(t) =0 forj >i+ 1.

11



1 Curves

Proor. Equation (*) follows from differentiating e;(¢)-e,(t) = 9.

Equations (**) hold for distinguished Frenet-frames because the condition
that e,(¢) is a linear combination of ¢(z), . . ., ¢(¢) implies that é,(¢) is a linear
combination of ¢(z), ..., c¢*V(¢t) and hence of e,(¢), ..., ;.1(¢).

Remark. If w(t) denotes the one-parameter family of matrices (w,(?)), 1 < i,
j < n, we may write the n equations

é(1) = D wy(t)eft)

]
ds

é(t) = w(t)e(t),

where e(t) is the matrix whose rows are the vectors e,(t). Equation (*) then
says: w is skew-symmetric. If, in addition, (e,(¢)) 1s a distinguished Frenet-
frame, (**) implies that w is of the form

0 W19 0 ¢ o0 0

— Wi 0 Wag 0 . “ .o 0

0 — Wagg 0 W3a4 0 ¢ o 0

w = ] . .
0 .o 0 Wp-1,n

0 - 0 —Wp_1.n 0

The next proposition proves that these differential equations are invariant -
under isometries of R", and establishes how these equations transform under
a change of variables.

1.3.2 Proposition. 1) Let c: I— R" be a curve and B: R* — R" an isometry
of R" whose orthogonal component is R. Let ¢ = Bo c:I— R" and let
(eft)), i = 1,...,n, be a moving frame on c. Then (&(t)) := (Re(t)),
i=1,...,n,is a moving frame on ¢ and if &;(t) are the coefficients of
the associated Frenet equation for ¢, (é(t)), then

c@)| = [é()]

and @i () = wyy(2).

/

ii) Let ¢: I — R" and &: J — R™ be curves in R", related by the orientation-
preserving change of variables ¢. In other words, '

E=rcod, ¢(s)>0.

Let(e(t)),i =1,..., n, be a moving frame on c. Then (&(s)) = (e, > #(s)),
i =1,...,n, is a moving frame on C. If |C'(s)| # O, then

@y4(S) _ wi($(5))
1€’ |é(d(s))]

12



1.3 The Frenet Equations

- PROOF. 1) ﬁu(t) = @(1)-&(t) = Ré(t)-Reft) = é(1)-eft) = wy(t).

ails) () _ o) _ wyds)
D Fol = 5O 7 ~ CHN O [GRF® T e =

1.3.3 Deﬁmtmni. Let ¢: I — R* be a curve satisfying the conditions of (1.2.2),
and consider its distinguished Frenet-frame. The ith curvature of ¢,i = 1, 2,
..., n — 1, is the function " '

N . wu-u(t)
<0 3= sor

Note that for the distinguished Frenet-frame we may now write the
matrix w as

.

0 Kk, O 0
—x; 0 Ko 0
w= ¢l i —ka
0 ... —Kk,.g 0  Kp_3
0 ... _ —Kky_y O

Let us éstabllsh a simple fact about the cutvature functions, «;,, i < n — 1.
Namely: they are positive. Remember, we have only defined the Ky for curves
satlsfymg the nondegeneracy conditions of (1.2.2).

1.3.4 Proposition. Let x(t),1 < i < n — 1, be the curvature functions defined
in (1.3.3). Then k(1) > Oforl <i<n-2.
PROOF. By construction (in '(1 2.2)),

K

c"" z ae and e, = Z b.,c® with a >0
=1

(and sobk,c = agl >_ 0) for 1 < k < n — 1. Therefore for 1 <i<n -2,

\C'|Ki = W41 = 604y = byct*V.e 11 = byay,1,041 > 0. L]

- We now explore to what extent these curvature functions determine curves
satisfying the nondegeneracy conditions of (1.2.2).

1.3.5 Theorem. Let c:I— R" and & I— R" be two curves satisfying the
hypotheses @f (1.2.2), insuring the existence of a unique distinguished
Frenet-frame. Denote these Frenet-frames by (e/(t)) and (&(?)), respectwely,
1 < i < n. Suppose, relative to these frames, that x(t) = &(t), 1 < i <

n — 1, and assume |é(t)| = |é(2)|. Then there exists a unique isometry
B: R® — R" such that '

13



1 Curves

Furthermore, B is a congruence, its orthogonal component has determinant
+1 (a rotation).

PROOF. Fix t, € I. There 1s precisely one isometry B satisfying

Bc(tO) = 500)9
Re(t,) = &(to), 1 <i<n,

where R is the orthogonal component of B. Since both Frenet-frames are
positively oriented, R has determinant equal to +1.
From the hypotheses we have &;,(¢) = w(t), which implies

e(t) = Z w;(1)e)(t).

7
On the other hand,

Ré(t) = Z w;;(2)Re(?).

We see that &,(z) and Re,(t) satisfy the same system of linear differential
equations. Since they are equal at ¢ = #,, Rei(t) = é(¢) for all tel. In

particular, Ré(t) = |é(2)|Re(t) = |é(¢)|é,(¢) = é(¢). Thus

Bc(t) — Be(t,) = t Ré(t) dt = j | c(t) dt = &(t) — é(t,),

to to

which proves Bc(t) = ¢(t). _

To see that B is unique, let B’ be another isometry satisfying B’ o ¢ = €.
Then B’ must transform the distinguished Frenet-frame of ¢ into that of ¢.
In addition, B’ o ¢(t,) = ¢(¢t,), so B and B’ have the same translation com-
ponent and the same orthogonal component. Therefore B = B’. ]

1.3.6 Theorem (Existence of curves with prescribed curvature functions).
Let «,(s), . . ., x,_1(s) be differentiable functions defined on a neighborhood
OeR with x(s) > 0,1 <i < n— 2. Then there exists an interval I con-
taining 0 and a unit speed curve c: I — R" which satisfies the conditions of
(1.2.2) and whose ith curvature function is «(s), 1 <i <n - 1.

ProoF. Consider the matrix-valued function

0 k1(5) ‘e 0
—uiy(s) O
A(s) =
0 | Kn—-l(s)
O oo —Ky_q(5) O

and the linear system of differential equations X'(s) = A(s)- X(s), X(0) = Id,
where X(s) 1s an n x n matrix-valued function, Id 1s the » x »n identity
matrix and the multiplication is matrix multiplication. By standard results in
differential equations (e.g., Hurewicz, W. Lectures on ordinary differential

14



1.4 Plane Curves; Local Theory

equations. MIT Press, Cambridge, Mass. (1958) p. 28), there exists a solution
X (s) defined on some interval I containing 0 € R.

Since A(s) is skew-symmetric (CA(s) = —A(s)), CX(s)- X(s))" = “(A(s)-
X(s)) - X(s) + tX(s)-A(s)- X(s) = tX(s)-*A(s)- X(5) + *X(5) - A(s)- X(5)=0.
Thus tX(s)- X(s) is a constant matrix and must be equal to its value at s = 0,
namely the identity matrix. Therefore X (s) is an orthogonal matrix. Let 7'(s)
~ be the first column of X(s) and define

-~ e(s) - f: T(7)dr, sel,

the integration being done component-wise. One can now check directly that
¢(s) is a unit speed curve with distinguished Frenet frame X(s) and curvature
functions x(s), 1 <i<n-— 1. [

1.4 Plane Curves Local Theory

In thxs sectmn we will mvestlgate plane curves; c: I — R2. We will assume
throughout that é(t) # 0, i.e., c is regular. For plane curves this hypothesis
is equivalent to (1.2.2). Thus we may always construct the distinguished
Frenet-frame, and we shall always choose this frame as the moving 2-frame
on our curve ¢.

The Frenet equations of (1.3.1) for a plane curve are

é(8) = |é®)]en()
&\(t) = wia(t)eslt)
O a) = —eua),
or &(t) = |é(D)lex(t)

0= (_, 00 “30)eo

‘and there is only one curvature:

. @a(?)
k(t) 1= W

In the spemal case that [é(0)] = 1, c(t) = e,(¢) and
_ - () = &) = wya(t)ea(t) = «(t)eg(?),
so |«(2)| = |E(2)]. - |

The sign of «(¢) is positive (negatwe) when eg(t) and ¢(¢) make an acute
(obtuse) angle with each other.
Expressed graphically: () > 0 (x(t) < 0) means that e;(¢) points toward

the convex (concave) side of the curve ¢ at ¢(z).

15



1 Curves

Example. Graph of the sine
c(t) = (t,sint), forteR,
(1) < 0 for t € (0, =),
x(t) > 0 for t € (m, 27).

It 1s possible that «(¢) = 0. If, in addition, () # 0 (and hence the zero of «
is 1solated) c(¢) is called an inflection point of the curve. In the example above,
¢(0) and c¢(7r) are inflection points.

k>0

Figure 1.4 The sine curve

The curvature function for plane curves has the following geometric
interpretation: Fix some vector v of unit length. Define 6(¢) by

cos 0(t) = ey (2)-v,
sin 0(¢) = —ey(t)-v.

Thus 6(¢) 1s, up to a multiple of 2=, the angle from v to e,(¢) measured in the
positive direction. In a sufficiently small neighborhood of any parameter
value ¢, € 1, 6(¢) may be defined so that it is continuous. Doing this will also
make 0(¢) differentiable in that neighborhood. Clearly, 6(¢) is a well-defined
function, independent of the choices involved in defining 6(¢).

1.4.1 Proposition. Suppose 0(t) is locally defined as above. Then
. 0(1) = wia(t) = «(2)|(2)].
In the case that |é(t)| = 1, «(t) = 6(¢).

ProOOF. The proposition is an immediate consequence of differentiating the
defining equations for 6(z):

—sin 0(2)0() = wyg(t)ey(t) v = —sin 6(¢)w,5(2),
cos 6(2)6(t) = wyg(t)es(t) v = cos B(t)wy(t). 0’

1.4.2 Proposition (Characterization of straight lines). For plane curves, the

following conditions are equivalent.
1) k(t) =0 foralltel ,
11) There exists a parameterization of ¢ of the form

c(t) = (t — to)v + vy, where tye R, v,v,€R2 v # 0,

i.e., a straight line.

16



1.5 Space Curves

Proor. We may assume |é(¢)| = 1. If «(¢) = O then &) = 0. Therefore
c(t) = (t — t,)é(t,) + c(t,) for any ﬁxed to € I. Conversely, if c(t) =
(t — to)v + v, then, by assumptlon 1 |c(t)] lv|, and so |«(¢)| =
Ic(t)l =0 , - ]

1.4.3 Proposrtlon (Characterlzatlon of the crrcle) For plane curves, the
following condztzons are equwalent -
i) |«(t)] = 1/r = constant > 0. |
ii) ¢ is a piece of czrcular arce, i.e., there exzsts an xo e R2 with |c(t) — Xo| =
r = constant > 0 for all t I

PROOF. We may assume |c(t)|
The Frenet equatlons if we assume (i), look like

C(t) = 31(1') _
el(t) = e/rez(t) W1th € = +l or ¢ = —1

ez(t) = ""5/"31(‘)

Therefore (c(t) + erez(t)) = c(t) — el(t) = 0 Wthh 1mphes that c(z) +
ereg(t) = Xo, @ constant vector in R‘* Hence c(t) — xp = —erez(t), implying
le(t) — -xol2 r?, ‘which is (ii). -

Conversely, assume (n) We have (c(t) — Xo)* (c(t) — Xo) = r?, a constant.
Dlﬁ’erentlatmg ylelds 3 o

: C(t) (C(t) - xo) = 0.

Slnce c(t) = el(t) we have estabhshed that c(t) — xo is a multlple of ez(t)
Since we know 1ts length isr,

c(t) — xo = erez(t) ‘where € = +1
Dlﬁ‘erentlatlng thlS equatlon ylelds '

e =0 - e,-e..,,(z) - -er«-(r)ele)
Thus lx(t)l l/r [ =

- 1 5 Space Curves

In thlS sectlon we W1ll look at curves c: 1 — > R3. In order to use Frenet-frames
we assume that ¢(¢) and &(z) are linearly independent. By (1.2.2) we know
that under these condltlons a distinguished Frenet-frame exists. I

Remark. Note that we -have eXCIuded- straight lines from our consideration!

1.5.1 Definition. For a curve c: [ — R3, the curvatures ie3(t) and «(¢) defined

17



1 Curves

in (1.3.3) will be denoted «(¢) and =(¢) and called the ‘““curvature” and
“torsion”’ of ¢, respectively. Explicitly,

o(f) ;= el

|6(2)]

The Frenet equations, in matrix form, are

0 k(t) O
é(t) = |¢(1)| ( —«(t) 0 'T(t))e(f)-
0 —7(t) O

1.5.2 Proposition. If c(t) is parameterized by arc length, then

o(t) = |é(t)] and () = det(é(r), &(r), EE))/K3(2).

PROOF. We know that ¢é(¢) = e (t), ex(t) = ¢(2)/|¢(¢)|, and es(t) = e,(¢) X
ex(t) = ¢é(t) x ¢@)/|¢(@®)| (““x” denotes the cross-product in R®). Thus
k(t) = |é(t)|, which implies ¢(¢) = «(¢)ey(t). The Frenet equations imply

C(2) = r(t)ex(t) + w(t)é(t)
i(et) + KO- r(Des(t) + (F)es(t)]
r(2)ea(?) - ik?(t)ey(t) + x(t)r(t)es(t).

The equation for 7(¢) now follows directly from the equations for ¢(¢), ¢é(¢),
and ¢(¢) above. | ]

|

Remark. By (1.3.2), «(¢) and +(¢) are invariant with respect to isometries of
R® and orientation-preserving changes of variables.

Since ¢(¢) 1s a differentiable curve, we may write it in terms of its Taylor

series at ¢ = t,. Doing so, and using the Frenet equations as they appear in
(1.5.1) and (1.5.2), we get \

1.5.3 Proposition (Normal (local) representation for a space curve). Suppose
c: I — R® is a space curve parameterized by arc length, and let t, € I. Then

c(t) — c(ty) = ((t — 1) — (s —6t0)3 "2(’0)) e1(%o)

+ (S5 ) + 5 k09 eutr

+ ((t —-6 to)® K(to)'r(to)) es(to) + ot — 1,)°.

18



1.5 Space Curves

Fi gure 1.5

The proof follows from substltutlng the Frenet equatlons into the Taylor

series. : . | .
At to el the planes 1n F 1gure 1.5 have descrlptlve names:

(el, eg)-plane = osculatlng plane at c(ty).
(eg, ea)-plane = normal plane at c(to)
(e3, el) plane = rectlfylng plane at c(to)

Usmg Proposmon (1 5 3) we may wrlte down expans1ons for the pro_]ectlon
of c(t) onto these planes ' -

| l 5 4 Corollary Let c: [— R3 be a space curve parametrzzed by arc length and
let t, =0€l. Set ¢0) = ¢, 1 <i< 3 and x(0) = x, 7(0) = 7, #(0) =
K. Then the pro;ectwns of c(t) onto the
o ! osculatmg plane at c(t,)
< normal plane at c(t,)
(rectifying plane at c(to)

have T aylor expanszons at 0 of the form

'_ (t 523 x)+ o(t2)

2 3 3 |
(%-K + %-K,%KT) + o(t®)

. (t—-{jx E'EKT) + o(t°)
76" % )
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1 Curves

Remark. The osculating plane derives its name from the Latin osculari,
““to kiss.” It is the plane spanned by the first and second derivatives of c(¢)
at ¢, and may be thought of as the plane that fits best to ¢(¢) at c(¢,). Notice
that when ¢(¢) is projected onto this plane the result is, up to second order, the
graph of a parabola. ,

The normal plane is literally that; the unique plane normal to e,(?,), and
hence to ¢(z,), at c(z,). '

The rectifying plane is the plane perpendicular to the “curvature vector”
xe,. Projection onto this plane “straightens’’ or rectifies ¢(¢) in the sense that,
up to second order, the projected curve is a line.

-

(a) (b) (c)

Figure 1.6 Projection onto: (a) rectifying plane; (b) normal plane; (c) osculating
plane

1.6 Exercises

1.6.1 Determine the curvature of the ellipse (acos ¢, bsint), te R, ab # O.

1.6.2 Show that the curvature of a plane curve is in general given by the formula
det(é(t), é(t))
~ T JeP
1.6.3 Show that the curvature and torsion of a space curve are in general given
by the formulae |

«(t)

L x &)
“= Tlaor ,

(1) = det(é(e), é(t), ¢(2))
T @) < e

where x x y is the cross-product in R®.

1.6.4 i) Determine the curvature and torsion of the ‘““elliptical helix”’
(acost, bsint, ct), ab # 0, t € R.

ii) Use (1) to conclude that if a = b = 1 then « goes to zero as ¢ goes to
infinity. Does this make geometric sense ?
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Plane Curves: Global Theory

2.1 The Rotation Number

2.1.1 Definition. A curve c: I = [a, b] — R* is closed if there exists a curve
¢: R— R* with the fonowing properties: ¢ |'I = ¢ and, for all reR,
"'(t + w) = ¢&(t), where w = b — a.

- The number w is the period of c. The curve ¢ is said to be periodic with
perzod, w. Given a closed curve c, it is clear that its associated periodic
curve ¢ is unique. ' |

 Remark. An equlvalent deﬁmtlon of a closed curve is: a curve c: [a, b] — R™*

such that c(a) = c(b) and c(a) = c""(b) for all k > 0.

For later apphcatlons we use the followmg generahzatlon.

2. 1 2 Deﬁmtmn A pzecewzse smooth curve is a continuous functlon c:[a, b]—R":
together w1th a partluon '

a-bl'a0<bo—'a]_<' '<bk1'“ak<bk=ak+1=b

of [a, b] such that ¢, := ¢ | [a,, b,), 0 < j < k, is a differentiable curve.
The points c(a;) = c(b,-,) are called corners of c. We will use the followmg
termmology for p1ecew1se srnooth curves c: ¢ is

- regular if each ¢, is regular,
~ closed if c(a) = c(b)
simple closed if ¢ is closed and cl[a »1 1S one-to-one.

Given a regular curve c¢: I— R2?, there is an induced map e;: I — R?,
where e (f) = ¢(t)/|é(t)], the unit tangent vector. This is sometimes called
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2 Plane Curves: Global Theory

the tangent mapping, and its image lies in S = {x € R? | |x| = 1}. We begin
our study of the tangent mapping by 1ntroducmg a global version of the
function 6 considered in (1.4.1). '

2.1.3 Proposition. Let c: [a, b] — R? be a regular curve. Then there exists a
continuous, piecewise differentiable function 6: [a, b] — R such that

ex(t) = &()/|¢(t)| = (cos 6(2), sin 6(r)).
Moreover, the difference 0(b) — 0(a) is independent of the choice of 8.

PRrOOF. Choose a partition a = t, < t; < ... <t, = b fine enough to insure
that e,|y,_,.., lies entirely in some open semicircle of S!. This is clearly
possible since e, 1s continuous. Choose 6(a) satisfying the requirements of the
proposition. Then 6 1s uniquely determined on [a, #;] = [, ;] by the require-
ment that it be continuous. If @ is known on [¢,, #,_,], it has a unique con-
tinuous extension to [t,, #,]; namely, 6(¢;_,) is given and there is a unique
continuous function 0: [¢,_,, t;] = R, with 8(¢t,_,) = 6(¢,_,), satisfying the
requirements of the proposition. Using 6, we may extend 6 so that it is
continuous on [#,, ¢;]. By this procedure, 8 may be defined to be continuous
on [a, b].

The differentiability of 6 | [¢,_,, t,] follows from (1.4.1), or directly from the
differentiability of e; and the inverse trigonometric functions.

Finally, suppose 6 and ¢ are two functions satisfying the requirements of
the proposition. Then &(z) — 0(t) = 2#k(t), where k(z) is a continuous
integer valued function. This forces k(¢) to be a constant. Therefore

0(b) — 0(a) = ¢(b) — #(a).

The next proposition is a technical result which will allow us to associate
an ‘“angular”’ function 6 to a continuous mapping e: 7 — R2, T < R?, when
T 1s star-shaped.

2.1.4 Proposition. Let T < R? be star-shaped with respect to x,€T; i.e., if
x € T then the line segment xx, is also in T. Suppose e: T — S is a con-
tinuous function. Then there is a continuous function 6: T — R satisfying

e(x) = (cos 0(x), sin 6(x)).

Moreover, if 0 and 6 are two such functions, they must differ by a constant
multiple of 2.

PRrOOF. Choose 6(x,) to satisfy e(x,) = (cos 8(x,), sin 6(x,)). We may use the
procedure of the proof of (2.1.3) to determine @ uniquely on each ray Xx,x,
x € T, as a continuous function with initial value 0(x,). What remains to be
shown is that 8 is continuous at any y, € T. We may choose 6 > 0 such that
for any y' € Xoy0, |y — ¥'| < & implies that the angular separation between
e(y) and e(y’) 1s strictly less than #. Since X, , 1s compact and e is continuous,
such a 6 must exist.
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2.1 The Rotation Number

Given ¢ > 0, choose a neighborhood U of y, small enough to guarantee
U< By(y,) and ye U = |0(p) — 6(yo)| = 27k + €', where |¢’| < € and k
is some integer which depends on y. Continuity of e assures the existence of
such a set U. We will show k = 0, which implies the continuity of @ at y,.

Let yeU. Consider ¢(s) = 6(xo + s(¥ — xp)) — 0(xo + s(yo — Xo)),
0 < 5 < 1. ¢ 1s the difference between the values of 6 at corresponding points
on the line segments X,y and X;y,. ¢ 1s continuous since  is a continuous
function on each line segment.

Since |(xo + (¥ — Xxo)) — (xo + $(¥o — x) = [s(y — yo)| < 8, the
‘angular separatlon between (x, + s(¥ — x,)) and (x, + s(¥, — X)) can
never be equal to 7. Therefore |¢(s) — ¢(0)] < #. But $(0) = 0. Lets = 1, then

7> D) = |6(y) — (xo)| = |27k + €. |
This implies k = 0. ' " .

2.1.5 Definition. Let c: [0, w] — R2 be a piecewise smooth, regular, closed
curve. Let 0 = b_, = a, < b, = a, < ... <b, = w partition [0, w] into
intervals I, := [a,, b;] on which ¢, := ¢|,, are differentiable, 1 < j < k.
Let a;denote the oriented angle from ¢(b, ) : = é(b,_, —) to é(a,) : = é(a, +).

The oy, 1 < j < k are the exterior angles of c. We will require —7 < o; < 7.
The number

1 <, I <
= 3, 2, (6) = 0@) + 2. 3.,
is the rotation number of c.
Here the functions 6,: I, - R, 0 < j < k, are those defined in (2.1.3).

Remarks. If ¢ 1s a smooth closed curve, then all «, = 0 and
O(w) — 6(0)
2 '

The connection between n, and the winding number of ¢ as defined in
elementary camplex analysm 1s that n, is the winding number, w1th respect
to the origin, of the closed curve e,(2), t € [0 w].

n. =

EXAMPLES. 1) If c is the _' parameterization in the positive sense (counter-
clockwise) of a nondegenerate triangle, the three differentiable arcs, c,, of
which ¢ is composed, are line segments. Therefore 6, = constant and
>Pa1 a; = 2m. Hence n, = 1.

Similarly, if cisa parametenzatlon of a convex polygon, n, = +1.

ii) Let ¢ be a parameterization in the positive sense of the unit circle, which

makes m revolutions:

~ ¢(t) = (cos 2mt, sin 2=t), O0<t<m

Then n, = m.
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2 Plane Curves: Global Theory

Notice that, in the examples above, n, is an integer. The next proposition
establishes that »n, is always an integer, and that |n,| is lnvanant under
isometries of R™ and change of variables.

2.1.6 Proposition. The rotation number n, of a closed piecewise smooth curve
IS an integer. Moreover,

) =53 O] dt + -4

As a consequence of (*) (together with (1.3.2) and the change of variables
Jormula), n, is invariant under orientation-preserving change of variables or
congruences of R™. An orientation-reversing change of variables or a sym-
metry of R™ will change the sign of n,. '

PROOF. The formula defining », may be rewritten as

k

27n, = z (0;-1(b;-1) — ej(aj) + o),

J=0

where 6_, 1s interpreted as 6,.. By deﬁmtlon of o, (0,_,(b;-1) — 64a;) + «,)/2n
is an integer. By (1.4.1), 0,(¢) = «(¢)|é(¢)|. This implies (*).

2.2 The Umlaufsatz

The theorem we shall prove in this section is best known by its German name
“Umlaufsatz.” (Umlauf means ‘“‘rotation” in German; Umlaufzahl =
“rotation number,” Satz = “theorem.”)

2.2.1 Theorem (Umlaufsatz). Let c: I— R2? be a piecewise smooth, regular,
simple closed plane curve. Suppose the exterior angles o; of ¢ are never
equal to w in absolute value. Then n, = +1.

2.2.2 Corollary. Let c: I — R? be a smooth, regular, simple closed plane curve
with |¢é(t)| = 1. Then

]

o K'(t) dt = +1.

PROOF (due to H. Hopf)1

Step 1. We will first perform a change of variables of ¢ and an isometry
of R" in order to put ¢ in a particular form. (Recall that, by (2.1.6), |n.]
is Invariant.)

Let g be a straight line in R? which intersects the image of ¢. At least one
point p in the intersection of g with the image of ¢ will have the following

1 Hopf, H. Uber die Drehung der Tangenten und Sehnen ebener Kurven. Compositio
Math., 2, 50-62 (1935).
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2.2 The Umlaufsatz

property: a half-hne of g with endpomt p will have no other points in com-
mon with the i Image of c¢. By performing a slight translation of g, if necessary,
we can insure that p is not a corner of ¢ (the corners of ¢ are isolated). Thus,
without loss of generality, we may assume that there is a half-line, H, emana-
ting from a regular value, p, of ¢, and that H has no other points in common
with the image of ¢. Let A be the unit vector in the direction of H.

(0, w) (tw (W)

| +‘-h' o )

-~ (a)
Fi gure 2.1 (Adapted .f rom _Manfredo P. do Carmo, Dy‘ferentzal Geometry of Curves and
| Surfaces, Prentice-Hall, Inc., 1976, p. 396.)

~ Since ¢ is regular we may (re)parameterize ¢ by arc length: |é(2)| = 1.
We also requlre ¢(0) = c(w) = p. If necessary, translation and rotation of R*
yields ¢(0) = the origin and c(O) == el(O) = e, = (1, 0).
Step 2. Let 0 <a <...<a-; < wbe a partition of [0, w] such that c
" is smooth on each segment The corners of ¢ are the points ¢(a,), 0 < j < k.
Define -

T = ()R |0 <ty < 13 < W\(1 1) ER | 1y = 13 = a3,

The set 7 is star-shaped with respect to (0, w) (for definition, see (2.1.4)).
Let e: T— S be the mapping defined by

15(11), o | if t;, = t; # a,,
(1) =4O 1) =0, 0),
] o) = o)

~otherwise (¢,, t2) € T.

\e(t2) — C( 1)|

eis a continﬁous function (easy exercise). By Proposition (2.1.4), there exists
a continuous functlon 0: T—> R satlsfymg

(COS 0(t,, t2), sin 011, 12)) = e(ty, t2), (t1, 1) €T.
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2 Plane Curves: Global Theory

0 is determmed up to an integral multiple of 2». We choose 6 to satisfy
000, w) =

Step 3. We will show that 6(w, w) — 6(0,0) = +2#. For t €] 0, o[, 6(¢, w)
— 0(0, w) measures the angle between —e; and the unit vector

c(w) — c(t)
|c(w) — c(t)|

But e(z, w) can never be equal to —A. Therefore (¢, w) — 0(0, w) 1s always
less than 2#. So when ¢t = w, 8(w, w) — 600, w) = + .

Similarly, 6(0, ) — 6(0, 0), which represents the angle from e, to e(0, t),
i1s equal to 0 when ¢ = 0 and can never exceed 2n. Therefore as ¢t — w,
6(0, t) — 6(0, O) — +=. The sign here is the same as that of f(w, w) — 6(0, w).
Thus d(w, w) — 6(0,0) = Hw, w) — 6(0, w) + (0, w) — 6(0, 0) = + 27.

Step 4. Consider c(a,) = c(b;_,), a corner of ¢ with exterior angle «,. The
angle «, is equal to the angle between ¢(b,_,) and ¢(a;), measured in the
positive sense. Define

e(t, w) =

6(a,, a;) = lim 0(z, t) t > a,
—Pa,’
Q(bj 1s bj 1) — llm 9(1‘ t) [ < bj—l'
b3

Claim: a; = e(aj, aj) — 9(bj_1, bj-l)'

PrROOF. Let A be the triangle whose vertices are x_; := c(b;—; — €), X, =
c(b,_1) = c(a,;), x; := c(a; + ¢), where e satisfies b,_o < b,_, — e < b;_; +
e < b,. Assume that x_,, x,, x; orders the vertices of A in the positive sense.
Without loss of generality, A may be assumed to be nondegenerate. Let
sy, 0 < ayy; < m, be the angle at vertex x,;. Then 6(b;_,,a; + ¢) —
0b,_; — €, a; + €) = a; + 2wk, for some integer k,. If € 1s chosen small
enough, 0(b,_,,a, + ¢) — 0(t,a, + ¢),b; — € < t < b,;_,, cannot exceed 2,
so k; = 0. Similarly, 6(b,_, — ¢, a, + €) — 8(b;,_, — €, a;) = a_,. Therefore
0(a,,a, + €) — Ob;., — ,b,_,) =a; + a_y =7 — By, wWhere B, 1s the
angle at x,. As e >0, # — By — «,, the exterior angle of c(¢) at a;. This
proves the claim.

If x_,, xo, x, orients A in the negative direction, an analogous proof will
work.

Step 5. Conclusion of proof of theorem. By Steps 3 and 4, we may write

+ 27 = O(w, w) — 6(0, 0)
k-1 k—1 k-1
= B(w, w) — D Oa,a) + D (b1, b;-1) + ,Z o«; — 0(0, 0).
1=1 1 =]

Since 4(a;, a,) = 0(a,) and 0(b,_,, b;_,) = 6,b,-,) as defined 1n (2.1.5), the
right-hand side is 2#n.. Here we have w = b,, 0 = a,. This proves the
theorem. _

Step 6. Proof of corollary. The corollary follows immediately from the

theorem and (2.1.6). ]
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2.3 Convex Curves

__ ;_X'__: 1 = c(a, —e | - X1 = C(ai + ¢€)

- Figure 2.2

2. 3 Convex Curves o

2.3. 1 Deﬁmtlon. A regular plane curve c: I —> R2 is convex if, for all ¢, € I,
the curve lies entirely on one side of the tangent at ¢(z,). In other words,
for every to el one and only one of the followmg inequalities hold: -

(C(t ) — elto)- ez(to) 20, alltel
or . '
' _(c(t)' 1) eslt) <0, allzel

2.3.2 Theorem (A characterization of convex curves). Let c: I — R2? be a
simple closed regular plane curve. Then c is convex if and only if one of the
following conditions are true: _

R «(t) 20, alltel

or | '

:-:(t) < 0 . allteI

_ Remarks i) If one of the above conditions hold then an orientation-reversing
~ change of varrables will produce the other So, geometrically, they are

equlvalent
11) If ¢ is closed but not srmple, the theorem fails. For example, a trefoil

(pretzel curve) satisfies «(¢) = 0, but it is not convex.

Figure 2.3

PROOF. Step 1. We may assume, without loss of generality, that (after possibly
“a change of variables) |é(¢)| = 1. If we then consider the function 8: I — R,
defined in (2 | 3), we may assert that 6(¢t) = «(¢). This is proved in (1.4.1).
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2 Plane Curves: Global Theory

Step 2. Suppose c is convex. We will show that « does not change sign by
showing that 6(z) is weakly monotone. If 6(t') = 6(¢") and ¢’ < t” then 0 1s
constant on [z, t”].

First observe that since ¢ is simple, there must be at least one point ¢” where
6(t") = —6(t") = —0(t"). Using the convexity of c, it is possible to conclude
that two of the tangent lines to ¢ at the points ¢(¢’), ¢(¢”), c¢(¢”) must coincide.

Let p, = ¢(¢,) and p, = c(t,), t; < t,, denote these two points, and con-
sider the line segment p, p,. This line segment must lie entirely on the image of
¢. For suppose g is a point on p, p, which 1s not on the image of c. The line per-
pendicular to p; p; and through g intersects ¢ in at least two points and, since
c 1s convex, these points must lie on the same side of p,p,. Let r (resp. s)
be the points of intersection closest to (resp. furthest from) p; p.. Then r lies
in the interior of the triangle p, p,s. Consider the tangent line to ¢ at the
point . Whatever it 1s, there are points of ¢ on both sides of it, contradicting
the fact that ¢ is convex. Hence p;p; = {c(¢) | t; < t < t;}, which means
that 6(¢,) = 0(¢t) = 6(t;) for t € [ty, t;]. In particular, ¢; = ¢’ and ¢, = 1.
This concludes the proof of weak monotonicity. |

Step 3. Suppose ¢ is not convex. This means there exists a ¢, € I such
that ¢(¢) := (c(z) — c(2,))-ex(t,) changes sign. Let ¢, and 7_ (# ¢,) be values
of t € I where ¢(¢) assumes its maximum and minimum, respectively:

P(t-) < d(1p) =0 < ¢(3+)

Since $(1-) = 4(t,) = 0, ey(t,) and e,(¢_) = +e,(t;). Therefore at least
two of these vectors are equal. By reparameterizing, we may now assert that
there exist s,, 55, with s, = 0 < 5, < w and

e1(s1) = ey(sy).

But this means that 6(s;) — 6(s,) = 27k, k an integer, and 0(s; + w) —
0(s;) = 2nk’, k' an integer. By the Umlaufsatz, £ + k'’ = +1 and, since
0l10.s,7 and 0, »; are nonconstant functions, kk’ # 0. Therefore kk’ < O,
which means that «(¢) = 6(¢) must change sign (one of the “k’’s 1s positive,
the other negative). This completes the proof. L

We will now use this characterization of a convex curve to prove the well-
known four vertex theorem.

2.3.3 Definition. A vertex of a smooth plane curve c: I— R? is a critical

point of the curvature «: 7 — R in the interior f of 7, i.e., x(¢,) = 0, t, € I
If «(t) = const, t;, < t < t,, all these ¢ are vertices.

2.3.4 Theorem (Four vertex theorem). 4 convex, simple, closed smooth plane
curve has at least four vertices.

Remark. The theorem is true without the convexity hypothesis (although it is
harder to prove). -
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2.4 Exercises and Some Fufther Results

PROOF (due to G. Herglotz) 2

Step 1. Since «(t) has a maximum and a minimum on J, c(?) has at least
two vertices. Without loss of generality, we may assume that c is para-
meterized by arc length and that «(¢) has a minimum at ¢ = 0 and a maximum
at t,, 0 < t, < w, where I = [0, w]. After a suitable rotation, we may also
assume that the line through ¢(0) and c¢(z,) is the x-axis in the (x, y) plane, and
that, if c(z) = (x(2), y(1)), there exists at least one point f, 0 < f < ¢,, with
W) > 0.(fy(t) =0,0 <t < t,,thenk(t) = 0,0 < ¢t < t,, implyingx = 0
on /, an impossibility.) ' |

Step 2. Claim: c(0) and c(t,) are the only points of c on the x-axis. For if
c(t,) is another point of ¢ on the x-axis, the convexity of ¢ forces the tangent
line to c(t) at the middle point of ¢(0), c(z,), c(¢;) to pass through the other
two points. As in the proof of (2.32), this implies that the line segment
c(0)c(z,) lies entirely in the image of ¢, making x(0) = «(t,) = 0 This 1s
impossible since it would 1mply x(t) = 0on I

Step 3. Suppose c(t,) and c(O) are the only vertlces of ¢. Then

k(1) > 0 for t € [0, tO]
k() < 0 for te (2o, w].

This implies that x(t) y(t) > 0forte [0 ‘w]. Therefore

0

0 < j o O)(0) dt = — f )3 (0) dr,

using inte-gration by parts.
- Since ey(t) = ((2), (1)), é:(r) = w(t)ey(t) and ey(r) = (—y(2), X(2)), it
follows that X(¢) = —«(t)y(t). Therefore

0 <L x(t)y(t)d - -L ()7 (¢) dt -—J t) dt = 0.

This can only be true if () = 0, so we have arrived at a contradiction.
Step 4 (conclusion). We have ac_tua_lly shown that, under the hypotheses,
there must be another point ¢ where «(¢) changes sign, i.e., where « has a
relative extremum Relative extrema come m pairs; so there must be at least
four vertlces , - N

2.4 'Exercises and Some Further Results

2.4.1 A convex curve c: I — R? with x(t) # O0forall tel = [0, w] is smd to be

~ strictly convex.
Prove: If c is a closed, stnctly convex curve, then for every v € S there

exists a unique ¢ € I such that e;(¢) = v.

2 See Blaschke [A2], pp. 31-32, or Chern [A6], pp. 23-25.
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2 Plane Curves: Global Theory

2.4.2 By (2.4.1), for every point ¢(¢) on a closed, strictly convex curve ¢: [ — R2,

2.4.3

2.4.4

2.4.5

2.4.6

there is a unique point c(¢’) such that e;(¢) = —ey(¢’). c is said to have
constant width if d(c(t), c¢(t’)) = d, a constant.

Prove: The circumference of a closed, strictly convex curve of constant
width = d is equal to =d.

If a closed, strictly convex curve c¢ has exactly four vertices, then any circle
has at most four points of intersection with c.®

If a closed, strictly convex curve intersects a circle in 2n points, then it has
at least 2n vertices.®

The four vertex theorem can be derived from the following result concern-
ing closed curves ¢ in R® with no self-intersections. Suppose ¢ is strictly
convex, in the sense that through each point of ¢ there passes a plane
which has no other points in common with ¢. Then ¢ has at least four
points with stationary osculating plane; i.e., four points c(?) where_
7(t) = 0. For a proof of this result, see Barner.*

A closer look at our proof of the four vertex theorem will show that we
may actually claim a stronger result: a simple closed convex curve must
have either x = constant # 0 or a curvature function « with two relative
maxima and two relative minima. In the latter case, we may also require
that the values of x at the relative maxima be strictly greater than the
values of « at the relative minima. |

From this theorem we see that not every periodic «: [0, w] =R = 0
occurs as the curvature function of a closed convex curve c: I— R? It
turns out that the necessary restrictions on « given above are also suﬂiaent

Theorem (a converse to the four vertex theorem) (Gluck).® Let x: [0, w] —
R > 0 be a continuous, strictly positive, periodic function (x(0) = x(w))
which is either constant or has two maxima and two minima, the values of
« at the maxima being strictly greater than the values of « at the minima.
Then there exists a C2 curve ¢: [0, w] — R2 which is simple and closed and
whose curvature function is equal to «.

The four vertex theorem (2.3.4) has the following generalization: Let ¢
be a simple, closed, null-homotopic curve on M, an oriented surface with
a Riemannian metric of constant Gauss curvature. Then the geodesic
curvature of ¢ has at least four stationary points.

If M has variable, nonpositive Gauss curvature, a version of the four-
vertex theorem is still true with the same hypotheses as above, provided
one generalizes the notion of a vertex to mean a point of ¢ where ¢ may be
well approximated by a “circle of hyperbolic geometry.”” The meaning of
this approximation can be precisely defined. In case M has constant Gauss
curvature, the derivative of the geodesic curvature vanishes at these
generalized vertices (Thorbergsson).®

3 See Blaschke, Kreis, and Kugel [A4], p. 161.

¢ Barner, M. Uber die Mindestanzahl stitiondrer Schmiegebenen bei geschlossenen
strengkonvexen Raumkurven. Abh. Math. Sem. Univ.-Hamburg, 20, 196-215 (1956).

5 Gluck, H. The converse to the four vertex theorem. L’Enseignement Mathématique,
IIe Serie, Tome XVII, 3-4 (1971), pp. 295-309.

¢ Thorbergsson, G. Vierscheitelsatz auf Flichen. Marh. Z., 149, 47-56 (1976).
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2.4.7 By the Jordan curve theorem, a simple closed plane curve, ¢, divides the
plane into two disjoint regions, one of which is bounded. If L = length of
c and A4 = area of the bounded region, then L? — 474 = 0. Equality
holds if and only if c is a circle. This is the famous isoperimetric inequality
(proved in Chern [AS5], p. 23).”

A stronger form of this inequality exists for closed convex curves.® If ris
the radius of the largest disc lying inside the bounded region, or the radius
of the smallest disc containing the bounded region, then L? — 474 >
(A — =wr2)?/r2. For further developments, see Osserman.®

2.4.8 Consider the following problem. Given p, g € R? and X € T,R?, Y e T,R?,
unit vectors, find the curve of shortest length from p to g with initial
direction X and final direction Y. A solution does not always exist; let
p # gand X | Y. However, if the class of curves is restricted to those with
‘“average curvature’’ equal to or less than 1/r, r > 0, and C? (but possibly
not C?) curves are allowed, then a solution always exists. In fact, the
solution curves consist of circular arcs and line segments. Moreover, there
are, at most, three different arcs of this type on any solution curve. This

“result is due to L. E. Dubins,°

2.4.9 Corollary (2.2.2) of the Umlaufsatz can be generalized to closed curves
c:I— R" n = 3. Recall that, for n > 2, « > 0 for the curves we con-
- sidered in Section (1.5). The total curvature of ¢ is defined as

L
K(c) = f [0 d,

where c¢ is assumed to be parameterized by arc length.

Theorem (Fenchel 1), K(c¢) = 2=, with equality, if and only if ¢ is a con-
vex plane curve.
_ This theorem was generalized by Fary and Milnor.!3 They proved that
if ¢: I — R3 1s closed and knotted, then K(c) = 4n. A curve c is knotted
if no homeomorphism of R3 will move ¢ onto the unit circle in the (x, y)
plane. Equivalently, ¢ is knotted if it does not bound an embedded disc
in R3, -

7 An early proof of the isoperimetric inequality, although not one which completely
satisfies today’s mathematical standards, was given by J. Steiner: Steiner, J. Einfache
Beweise der isoperimetrischen Hauptsidtze. J. Reine Angew. Math. 18, 289-296 (1838).

® Bonneson, T. Les problémes des isopérimétres et des isépiphanes. Gauthier-Villars,
Paris, 1929. ' |
® Osserman, R. Isoperimetric and related inequalities. Proc. AMS Symp. in Pure and
Applied Math. XXV, Part 1, 207-215.

10 Dubnns, L. E. On curves of minimal length with constraint on average curvature and
prescribed initial and terminal positions and tangents. Amer.J. Math.,79, 497-516(1957).

11 Fenchel, W. Uber Krﬁmmung und Wendung geschlossener Raumkurven. Math. Ann.
101, 238-252 (1929). Cf. also Fenchel, W, On the differential geometry of closed space
curves. Bull. Amer. Math. Soc., 57, 44-54 (1951), or Chern [AS].

12 Fary, 1. Sur las courbure totale d’une courbe gauche faisant un noeud. Bull. Soc. Math.
France, 77, 128-138 (1949). Milnor, J. On the differential geometry of closed space
curves. Ann. of Math., 52, 248-257 (1950)
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2 Plane Curves: Global Theory

2.4.10 A proof of Fenchel’s theorem. i) Prove: Let c: I — R" be a closed curve
lying on S*~(r) = {xe R*| |x| = r}, i.e., |c(t)| = r, t € [0, w]. Sup-
pose ¢ does not lie in any open hemisphere of $"~1(r). Then the length

of ¢ is at least 2=r. (A simple proof of this is given by Horn2.) Using
this result,

ii1) Prove: Fenchel’s theorem (2.4.9).

13 Horn, R. A. On Fenchel’s theorem. Amer. Math. Monthly, 78, 380-381 (1971).
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~ Surfaces: local theory

3. 1 Deﬁmtlons

3.1.1 Deﬁmtlons. i) U will always denote an open set in R2. Points of U will

~ be denoted by u€ R? or by (u*, ) eR x R or (u,v)eR x R.
ii) A differentiable mapping f: U— R® such that df,: T,R? — T,,R®
- 1s Injective forallue U is a (parameterized) surface patch, or simply
~a surface. A mapping f satlsfymg this condition is called regular.

~ The u € U are called parameters of f. -
ii1) The two-dlmensmnal linear subspace df,(R2) < T,(,,,IR"" is called the
tangent space of f at u, and will be denoted by T.f. Elements of T, f

- are called tangem vectors (of f at u).

- 3.1, 2 Examples 1) f(u V) = xo + ux -+ vy, where x,y are linearly inde-
- pendent vectors in R The map f U — R3 parametenzes a piece of a
plane - o

'_ 11) U= D2 = {(u v)ERHu2 + 02 < 1} f(u,v) (u v, V1 — u? — v2)
The map f paraimeterlzes a hemlsphere.

_-Remark The natural bas15 e; = (1, O) ey = (0, 1) of T,R? ~ R2is mapped by
df, into a ‘basis of T.f. We shall write df,e; = (8ﬂ8u1)(u1 u?), df.eq =

(@frouyut, uf) or simply dfi(e) = fi, dfi(ea) = fur, where u = (u', u?).

These bas1s vectors of Tuo fc T,«(uo)W R3 are equal to the first partial
derlvatlves of f at (uo, uo) since

If (u) f (uo) - df uo(u — “o)l = 0(“ — ),
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3 Surfaces: Local Theory

this implies

lim_ 1%‘}1:——-’;:“9 _df(1,0)] = 0 withuy = (u, d), u = (&, u2)
ul-ul — Up | |

Therefore df,(1,0) = df,,e; is equal, in coordinates, to (2f/out)(ud, ud).

Similarly, df, (0, 1) = (f/ou®)(u}, ud).

3.1.3 Definition. Let f: U — R® be a surface. A change of variables of f is a
diffeomorphism ¢: V' < R%2 — U < R?, where V is an open set in R2, such
that d¢ always has rank = 2. If det(d¢) > 0, ¢ is orientation preserving.
The surface f := fo¢: V — R® is said to be related to f by the change of
variables ¢.

Remark. Relationship by change of variables defines an equivalence relation .
on the class of all surfaces. An equivalence class of mappings is called an
unparameterized surface.

3.1.4 Definition. A vector field along f = {f: U— R® is a differentiable
mapping X: U — RS, '
We think of a vector field X along f as taking values in the tangent space
of R® restricted to the surface f, i.e., X(u) € T,.,,R3. To make this explicit,
consider the map

X:U—>TR® given by urs (f(1), X(0)).

X is clearly a differentiable mapping and, for a given f, determines the
mapping X. Conversely, given a vector field X along a map f, we usually
interpret it as defining the corresponding map X.

3.1.5 Definition. A vector field X along /: U — R2 is

{tangential if (f(w), Xw)eT,fforallue U,
normal if (f(u), X(w)) € T,,,R3 is orthogonal to T, ffor all u e U.

For example, f,:(«) and f,2(u) are tangential vector fields along f. They
are sometimes called the coordinate vector fields. The vector field of
Jur(w) x f,2(u) (cross-product in R3) is a normal vector field along f. All
three are obviously differentiable.

3.1.6 Proposition. Every tangential vector field X along a surface f: U — R3
may be represented in the following form:

*) X(u) = a @) + aW)f.aw).

The real-valued functions a*(u) and a*(u) are differentiable and uniquely
determined. Conversely, a pair of differentiable functions a‘: U — R,
i = 1, 2, determines a unique tangential vector field of the form (*).

PROOF. The last statement is clear. Moreover, given X (), the functions a*(u)
and a*(u) are uniquely determined. What remains to be shown is that the

34



3.2 - The First Fundamental Form

a'(u) are drﬁ’erentlable To prove dlﬂ'erentrabrhty, take the inner product of

(*) with f(u) and fua(u): S
Za*(um S = X(u) S k=1,2.

Thls glves a system of llnear equatrons for al(u) az(u) The coefficients are
differentiable functions, and det(fy .f.1) # 0. By using Cramer’s rule, one
can see. that the a‘(u), z = 1 2, are dlﬁ'erentrable B

3.1.7 Deﬁmtlon Let ni= (ful X fuz)/ | fu x fu2]. The vector ﬁeld n is called
the (Gauss) unit normal field along f. The mapping n: U— S? < R® is
also referred to as the Gauss map. The moving 3- frame (fut, fu2, 1) 18
called the Gauss frame of the surface f U —> (RS,

Coord inate
- curves

Flgure 3 l The Gauss Frame at a pomt of f (Adapted from Manfredo P. do Carmo
| Dr{t'erentza! Geomeror of Cumes and Surfaces, Prentree-Hall I nc., 1976 p- 39)

N B ! frs is in general not an orthonormal frame.

3. 2 The Frrst Fundamental F orm
3 2 1 A qulck revrew of quadratlc forms o

. _'1 Let T be a real vector-space _
A symmetrzc bzlmear form or a quadratzc form is a map B:TxT—>R
satlsfymg -- -

B(X Y) B(Y X (symmetry)
. B(aX + bY Z) = aB(X Z ) + bB(Y Z) (bllmearlty)
Here a b e R and X Y, Z eT. B 18 posztwe deﬁmte if
- -"-_X#O::»B(XX)*SO '

Example The standard inner product in Euchdean space R",
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3 Surfaces: Local Theory

2. The matrix representation of B with respect to a basis e, 1 < i < n,of T
is the matrix

(&) := (Ble;, €))).

IfX=28e¢,Y=3, n’e;, then B(X, Y) = 3, ; &g, |

Suppose fi, 1 < k < n, is another basis of 7. Let (a¥) be the matrix
defined by e, = > aiifi,1 < i < n. If B( fs, f1) := hyy, theng,; = 5, a¥alh,,.
If G = (g), A = (a)), and H = (h}) these equations may be written in
matrix form:

G=A-H4, _ --

the dot denoting matrix multiplication.
3. Let L: S — T be a linear mapping between vector spaces S and 7. Suppose
B 1s a quadratic form on T. Then, for X, Y€ S,

oX,Y) := B(LX, LY)

defines a quadratic form on S. The form « is said to be induced by B via L.
If L is injective and B is positive definite, then « is positive definite. Suppose
X #0.Then LX # 0 and «(X, X) = B(LX,LX) > O.

-3.2.2 Definitions. i) Let f: U — R?® be a surface. Let € U. The inner product
on R® ~ T,,R® induces a quadratic form on T,f < T,,,R® ~ R3 by
restriction. This form is called the first fundamental form and is denoted
sometimes by g or g, and sometimes by 7 or I,

ii) The inner product on T,,,R® ~ R® composed with the linear map
df,: R? ~ T,R? - T,,R® ~ R® mduces a quadratic formon T, R2 which
is also called the first fundamental form. It is also denoted by g or 1,
and 1t will sometimes be written *“df-df.”

Remark. The linear bijection df,: T,R? ~ R2— R2 ~ T,f is clearly an
isometry with respect to the ﬁrst fundamental form, i.e.,

rdf.X,df.Y) =I1,(X,Y) for X,YeT,R2

Therefore, if we identify T,R? with T,f by means of df,, we may identify
these two definitions of the first fundamental form. Once more: For X and ¥
in T,R? I(X,Y) := df,X-df,Y. For Xand Yin T, f, I(X, Y) := X-Y.

3.2.3 Definition. The matrix representation of the first fundamental form,
with respect to the basis f,1, f,2, will be denoted by

(&) := (g(fut, [u¥))-

Sometimes we will use the notation E := g(f,1, f,1), F := g(fi1, f,2) =

g/ fu2), G = g(fu3, f,2) (Gauss’ notation). Here gy (u) = f,4u)-f,x(u).
By the definition of I on T,R? in (3.2.2), (g,,(w)) is also equal to the matrix
representation (I(e;, e)) of I with respect to the canonical basis e, e, of

T.R2,
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3.2 The First Fundamental Form

df,Y

X, Y) =df,X - df,Y

| ~
df
- o _ \
X, Y)=X"*Y
_ s
 Figure 3.2

3.2.4 Proposition. i) The first fundamental form I of a surface - U— R® is
positive definite. -

ii) I is differentiable, i.e., the coefficients of the matrix gu.: U— R are
differentiable. This is equivalent to the following condition: For any
X:U—R? Y: U~ R® tangential vector fields along f, the map
u— g (X)), Y(u)) is differentiable.

PrOOF. i) follows from (3.2.1, 3).
i) follows from the definition of gu() = fu(u) f(u) and from the last
statement of Propqsition_(B._l.é). _ ' ]

3.2.5 Proposition (Invariance of the first fundamental form). Let f: U — R?
be a surface.
i) Let B: R®— R® be an isometry. Then f := B o f is also a surface and
- 1(dBX, dBY) = I(X,Y) forall X,YeT.f.
ii) Let ¢: V — U be a change of variables and let f = fo ¢. Then
LG Y) = L(X,Y)  forall X,YeT.f = Towf
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3 Surfaces: Local Theory

and
I(X,Y) = I,,(dp X,ds ¥) forall X,Y e T,Re.

PROOF. 1) Suppose Bx = Rx + x,, where R is an orthogonal map. Then
dB = R. Therefore, if X,YeT,f, I, (RX,RY)= RX-RY = X.Y =

I(X,Y). ’
ii) Let X, YeT,R% Then I(X ¥)=df,X.df.Y = d&r, o dpX-df, o dp¥Y =
I(d$X, d$Y), where u = ¢(v). O

3.2.6 Corollary. Suppose the change of variables ¢ is given, in terms of coordi-
nates, by u* = u(v!, v?), i = 1,2. Then the fundamental matrix (g, of _
f = fe<¢is related to the Jundamental matrix (g;;) of f by |

. ou”* ou
£;(v) = ; 5o 57 8l $(0))-

PROOF. déé, = 3, (ou*/ov')e,, where (&) (respectively (e,)) is the canonical
basis of T,R? (respectively T,.,R2). The corollary follows by applying the
formula (3.2.5, (ii)) to X = ¢,, ¥ = ¢&,. Note: Since we know that dé,: T,R2? —
Ts»R? has the matrix representation (ou*/dv') (see Chapter 0), we may prove
the corollary by using (3.2.1, 2). Specifically, if A = (0u*/ov'), then (&) =
G = A-G-t4, where G = (g,). , O]

3.3 The Second Fundamental Form
3.3.1 Definition. Let f/: U — R® be a surface. The map
n: U— S2c RS, u—> n(u)

is called the Gauss map. In words, n maps u into the unit normal vector
n(u) to f at f(u). Each n(u) lies in T,,,R®. By using the canonical identifica-
tion of T,,R® with R3, we may consider n as a mapping from U to R®.

Remark. Since n(u) is a unit vector, n(u) € S2 < R3, where
S? ={xeR?| |x| = 1}.

3.3.2 Proposition. The image of dn,: T,R?® — T;,,R® lies in T, f < TR,

ProoF. dn,(T,R?) = span of n,, n,. Since n(u)-n(u) = 1, differentiation
yields n,((u)-n(u) = 0, i = 1, 2. This means n, € T,f. Here we have canonic-
ally identified T,,,R3® with T, R3. ]

'-E.

3.3.3 Proposition. The mapping
(X,Y)eT,R%? x T,R2+ —dnuX-dﬂYe R
is a symmetric bilinear form on T,R?2,

ProOF. Bilinearity is obvious. To prove symmetry, observe that, since
n-fy =0, | |
— Ny 'fu’ = n'f uty

= n"ftzz’ui = _nu"f;&" | | e
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3.3 The Second Fundamental Form

Figure 3.3 The Gauss map

3.3.4 Deﬁmtion. 1) The quadratlc form
' —dny-df,: TR’XTR2—>R

" is called the second fundamemal form of f at u, and is denoted by II
~(or IL,). -
ii) The lmear mappmg L := —dn, df : TJ — T f 1s ca_lled the

Wemgarten map.

Remarks. 1. II T,,fx TJ~+R¢anbewnttenasLXY1e,
' II(X,Y) = LX-Y for all X, YeT.f.

2. The matrix represcntatlon of II, with respect to the canonical basis {e;}
of T,R? and the associated basis {f} of T, fis

) i= Cef) = ().

Sometxmes we wﬂl use Gauss’ notation:

' ' L M hya hn) _
M N h21 h22 §
See section .- 3 7 for eXamples '

3.35 Deﬁnition The thzrd fundamental form of f at u is the symmetric bilinear

form glven by ,

(X, Y)eT R” x T,R?+> dn, X-dn,Y € R.
The thll‘d fundamental form is denoted by IIIu, IIT or dn-dn. If we want

- _to consider IH as a form on T,,ﬁ it is given by L, X-L,Y.
Proposition (3;2.5) for I has a counterpart for II:

'3.3.6 Proposition. 1] is invariant (in the sense of (3.2.5)) under congruences
of R® and orientation-preserving changes of variables.

_ - ' _ 39



3 Surfaces: Local Theory

PROOF. 1) Let Bx = Rx + x, be a congruence (det R = 1). Thenf = Bofisa
surface and f,¢ = dBf,s = Rf,s, fi = dBn. Therefore, if X, Ye T,f,

II(dBX,dBY) = —dii o df s (dBX)-dBY
=—dB(dn o df;{(X))-dBY = —dn o df;lX Y = II(X,Y).

\

1) Let ¢: V' — U be an orientation-preserving change of variables and f =
fo¢. Then fr = 5, f,4 0u*/0v*, and this implies that

i x Jir = % 1) det(2).

Therefore 7i = n o ¢, since det(ouw!/ov*) > 0. Thus, for X, Y € T, f, we have

I(X,Y) = —diodf "{(X)-Y = —dnodf ~Y(X)-Y = I, (X, Y)
and, for X, Y € T,R2, we have

(R, ¥7)=—dnodpR-dfdp¥ = 1I(dd %, dpT) with u = ¢(v). []

3.3.7 Examples

1. The sphere _
Jf(u, v) := (cos u-cos v, cos u-sin v, sin u), (u, v) € |—7/2, /2] x R.
The image of fis S2 minus the north and south poles: S2 — {0, 0, +1}
Ju = (—sin u cos v, —sin u sin v, cos u)
Jv» = (—cos u sin v, cos u cos v, 0)
E=fi=gn=1, F=f,f,=282=0, G =f} = gos = cos?u
(Ju X Jo) _

n(u, v) = AT 7l —(cos u cos v, cos u sin v, sin u)
= —f )
Il = —dn-df = df-df = I.
2. The torus

g(u,v) := ((a + b-cosu) cosv, (a + b -COS u) sin v, b-sin u),
O<b<a (u,v)eR x R.

gy = b(—sin v cos v, —sin u sin v, cos u)
= (a + b-cos u)(—sin v, cos v, 0)
gn=E=g3="0, g=F=g,g =0
8220 =G = g7 = (a + b-cos u)?

n(u, v) = —(cos u cos v, cos u sin v, sin ).
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3.3 The Second Fundamental Form

Thus for ue ]—-'u'/Z 1r/2[, n(u v) +f(u, v)"wherefis as 1n (1) above.
- 11 ---.—dn dg - df dg -
hn- L fu gu = b

_ .hrz—M fugv"l"f;gu""o
hgg N f.,g,,—-(a+bcosu)cosu

B d_et(hik) = b cos u(a + b cos u) ls :.

These three cases are the outs1de the top and bottom circle, and the in-
s1de, respectlvely ' - -

* Figure 34 Torus

3. Surfaces of revolutwn o o ,
- f(u, v) r= (h(u) cos v h(u) sin v, k(u))

where h“’2 + k"2 ;é 0, h # 0. The surface parametenzed by f is the surface
generated by revolvmg the curve (h(u) 0 k() about the z-axis

f h’2+k’2. fuf;""ol fu
4, Surfaces generated by one-parameter groups of isometries

A ane-parameter group of isometries of R® is a dlﬂ'erentlable mapping
y: R x R®— R® with the followmg propertles

The rnap v,: R® — R® given by x — y(t x), (¢, x)eR x RS, isan 1$ometry,
'yt ¥s = Y145 and yp = the identity. -
- It may be shown that possibly after a change of basis, any one-parameter -
group may be wrltten as -

'y(t x)—(xlcost+x srnt -x1s1nt+x €Os ¢, x3+bt)

e
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3 Surfaces: Local Theory

The orbit t € R — y(t, x) € R® of a point (x!, x2, x®) = x which does not
lie on the x3-axis is a helix (see Example 2 in 1.1). A generated surface 1s
a surface produced by a curve ¢(v), veJ, and a one-parameter group of
isometries y:

flu,v) = y(u,c@)), (@Wv)elxJ '

It is certainly possible that fis not a regular map, so one needs to assume
additional conditions to insure that f'is a surface. Some examples of generated
surfaces are the sphere, the torus, and, more generally, any surface of

revolution.
An example of a generated surface which is not a surface of revolution is

given by the helicoid. Let c(v) = (v, 0, 0), v € R, and let
wt,x) = (x*cost + x2sint, —x!sin ¢t + x* cost,x3 + bt), b#0,teR.
Then the generated surface
f(u, v) = Y(u, c(v)) = (v cos u, —v sin u, bu)
is in fact a surface in the sense of (3.1). Moreover:

fu. = (—vsinu, —v cos u, b) B2 4+ p2 0
f, = (cos u, —sin u, 0) By = ( 0 1)
(b sin u, b cos u, v) b(cos u, —sin u, 0)
TET T oy S (T
0 __—b '

. (B% + v2)11 B b i

iy = _bh ; n, = & T " r sin u,

G + )" —vcosu, b)

The helicoid may be thought of as the surface generated by a ray per-
pendicular to the z-axis which is rotating at a constant speed in the plane
parallel to the (x, y) plane and moving at a constant speed in the z-direction.

Figure 3.5 Helicoid
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3.4 Curves on Surfaces

3.4.1 Definition. Let f U-—> R? be a surface. By a curve on f we mean a
curve c¢: I— R® which can be wrltten in the form fou, where u: I—
UCRzlsacurvean o

The study of curves on surfaces will glve us a geometrlc mterpretatlon
of the first and second fundarnental forms o

34.2 Proposntlon Let ¢ = fou:l—>R3 be a curve on f Then
‘ i) = Z ulfs o u(t)
is a tangent vector to f at u(t) T he length of ¢é(t) is given by

Ic(t)l2 }; gu(u(t))u‘(t)u’(t)

' formula follows from the deﬁnltlon |c(t)]2 = <c(t) c(t)) []

-Remarks For a curve c(t) = fo u(t) on f, the arc-length parameter s(¢) is
uniquely determlned by the followmg formula_

 (ds , < didd
( ) IC(Z)l = 2 8i1 7, dt "Ji' — I(u’ u)'
The ﬁrst fundamental form may ‘be expressed in terms of this notation, as

Z g, dut du! = I(du, du).

The expression ds is called the line element of the surface f.

Suppose ¢ = fou: I— R® is a unit-speed curve on f: U — R® for which
é(2), é(t) are linearly independent. The curve c(¢) possesses a distinguished
Frenet-frame (e,(?), es(?), es(¢)) and the curvature of ¢ is defined by the
equation é,(¢) = x(t)ey(t) (see (1.5.1)). The relationship between the curvature
of ¢ and the second fundamental form of fis given by the following proposition.

3.4.3 Propo.sif:ion._ Let ¢ = fou be a curve which satisfies the hypotheses in
the above remark. Then

LI, €)= K(en(t)-eq(t)

withn(t) = n o-u'(t). ' '

Corollary (Meusnier’s theorem) Let 6(¢) € [0, 77/2] be the angle between the
normal to f and the osculating plane of c (i.e., 8 = J(n, e3)) Then

[IT(¢(2), é(2))| = () cos 8(¢).
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3 Surfaces: Local Theory

Consequently, if 60(t) < =/2,

(1) = HE®), €O))
cos 6(¢)
PROOF. II(é(t), ¢(2)) = —dn(u(t))-df(u(t)) = —n(t)-é(t). Since n(t)-é(t) = 0,
this implies

II(¢(2), €(2)) = n(2)-&(t) = w(t)n(t)- ex(t). O

Remark. For an arbitrary curve, the above results are not true.

3.4.4 Definitions. i) Let X e T, f, |X| = 1 be a unit tangent vector on a sur-
face f. The normal curvature in the direction + X is the number

(X) = (- X) := HI(X, X).

ii) Let ¢ = fou: I— R® be a unit-speed curve on f for which ¢, ¢ are
also linearly independent. Let (e,(¢)) be the distinguished Frenet-frame
of ¢ at t. If ey(t,) = +n(c(ty)), ¢ 1s said to lie in a normal section at
[ = to.

Remark. If II(X, X) # O for some X e T,f, then |«(X)| is equal to the
curvature «(z,) of a curve ¢ at ¢(¢,) = f o u(t,) which lies in a normal section
at t = t,. Of course, we assume that ¢(¢,) and ¢(¢,) are linearly independent.
By hypothesis, «(¢,) > 0. Therefore II(X, X) is positive or negative, depend-
ing on whether ey(?,) is equal to plus or minus n(u(¢,)) = the unit normal
vector to the surface at u(z,).

3.4.5 Examples. We will continue those examples introduced in (3.3.7).

1. The sphere. Clearly II = I and «(X) = 1 for all X. The requirement
that ¢(z) be a normal section at each point forces ¢(¢) to be a great circle.

2. The torus. Consider a typical meridian circle on the torus, e.g., c(?) =
g(t,0) =(a+ bcost,0,bsint). This is a circle with radius b, curvature
«(t) = 1/b, e,(t) = (—sint,0,cos t), ex(t) = —(cos ¢, 0, sin ¢).

Using the expression for n(u(t)) computed in (3.3.7), we see that n(u(t)) =
eo(t). Therefore «(e,(2)) = 1/b.

For the inner and outer equators of the torus,

c(t) = ((@a £ b)cost,(a + b)sint,0),
a simple computation will show
e,(t) = (—sint,cos t, 0)
es(t) = (—cos t, —sin t,,; 0)
«(t) = 1/(a + b)

N(t) - {:l:}(COS {, sin l, 0) = { ez(t) for u = 0,

—ey(t) foru = .
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3.5 Principal Curvature, Gauss Curvature, Mean Curvature

Therefore ,h
1

- a+b
de@) =4

“a-—0b

on inner equator,

on outer equator.

3.4.6 Definition. Let ¢: 71— R® be a space curve with the property that ¢(¢)
and c(t) are lmearly mdependent The osculatmg circleof cat t is the circle

itit as t', t" —t of the cn'cle passing through the points c(t’), c(t) and
c(t”). (Proof: exerc1se)

An

Figure 3.6 Osculating circle

The relationship between the local behavior of ¢(?) and the osculating circle
is given by the next proposition, a typical result of classical surface theory.

3.4.7 Proposition. Suppose f is a surface and X is a tangent vector at u, with
|X| = 1 and «(X) # 0. If ¢ = fouis a curve on f with (1)) = £ |é(t)| X,
then the osculating circle of c at t, is the intersection of the osculating plane
of c at t, with the sphere of radius 1/|«(X)| centered at f(u,) + n(uo)/<(X).

PrOOF. By Meusnier’s theorem, (3.4.3), 1/x(t,) = n(t,)- eq(o)/x(X), provided
e(t,)-n(t,) # 0. In other words, c(t,) + ea(o)/x(t,), which is the center of the
osculating circle, is equal to the projection of the vector n(z,)/«<(X) in the ey(¢,)
direction. _ . i

3.5 Principal Curvature, Gauss Curvature, and
- Mean Curvature

3.5.1 Definition. Let f; U— R® be a surface. Let
Sif i={XeT.f|I(X, X) =1}
denote the unit circle in T, f. A vector X, € S, f is said to be a ﬁrincipal
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3 Surfaces: Local Theory

direction if X, is a critical point of the function
XeSif—>x(X) = I1I(X, X)eR.

If X, is a principal direction, the value «(X,) is called a principal curvature
of f at u.

Note that if X 1s a principal direction, so is —X. There are always
at least two linearly independent principal directions, namely the values

of X where «(X) takes on a maximum and a minimum on the compact
set S, f.

The principal curvatures are characterized by the following proposition.

3.5.2 Proposition (Rodriguez). Let X € S1f. Then X is a principal direction
if and only if X is an eigenvector of the Weingarten map

L, =—dn,odf;*. T, f— T.f.
The associated eigenvalues are the principal curvatures.

PROOF. Suppose « is a principal curvature with associated principal direction
Xo, 1(X,, X,) = 1. Using the Lagrange multiplier rule,® we may assert that
d(Il — «I) = 0 at Xy, I(X,, X,) = 1. Since IT and I are both quadratic forms
and since the differential of any quadratic form 8 at a point X is given by
dagY = 28(X, Y), the above requirement is equivalent to

IH(Xe, Y) — l(Xe, Y) =0 I(X,, X,) =1, forally,
which in turn is equivalent to
L,Xo = kX, 1(Xo, Xo) = 1, k = II(X,, Xo) = K(Xo)-

Therefore X, is an eigenvector of L, with eigenvalue x. Conversely, let
X, be an eigenvector of L, w1th eigenvalue «. Then if X + €Y satisfies
I(Xo + GY Xo + EY)

II(XO + GY Xo -+ GY) — I(Xo, XO) — 2€II(X0, Y) + 62(. . .)

and 2el(X,, Y) + €€1(Y, Y) = 0.
Therefore 2I1(X,, Y) = 2«I(X,, Y) = '—KGI (Y,Y) and

II(Xy + €Y, Xo + €¥) — II(X,, Xo) = 0 + €(...).

The last equation clearly implies that X, is a critical point of «(X) on S1f,
1.e., X, is a principal direction. (]

3.5.3 Corollary. Either II is proportional to I (II = «I), in which case every
direction is a principal direction, or there exist exactly two (up to sign)
principal directions orthogonal to each other.

! See Edwards, C. H. Advanced Calculus of Several Variables. Academic Press, New
York, 1973, pp. 90-99.
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3.5 Principal Curvature, Gauss Curvature, Mean Curvature

PROOF. Let «,, x; be the largest and smallest principal curvatures, respectively.
If X, and X, are associated principal directions, then «,I(X;, X;) =
(X, X,) = kaI(X;, X2). Therefore either «; = kg, i€, « = const, and II
is proportional to J or x; > x5 and I(X;, X;) = 0. Suppose «, is any principal
curvature with principal direction X,. Then either 7(X,, X;) or I(X,, X3) = 0,
which implies that either X, = + X; or X, = + X,. ]

We will now use the principal curvatures to define two important functions.

3.5.4 Definition. Let /: U — R® be a surface. The Gauss curvature and the
mean curvature of f are the following two functions on U:

K@) := ky(u) o)  H(@u) := 3(c1() + xa(u)).

3.5.5 Proposition. i) The curvature functions K and H are determined by the
equation det(xid + dnodf ') = «* — 2Hk + K, where the left-hand
side is the characteristic polynomial x(L,) of the Weingarten map
L, = —dnodf;! in the variable x. Consequently, 2H(u) = TrL(u) and
K(u) = det L(u). -

ii) If (hy.) is the matrix representation of 11, (gy,) is the matrix representation
of I, and (g'*) is the inverse of (g.), then L, has the matrix representation

(*) (af) = (Z h;,g”‘).

' Consequently,

det 17,  det(h,(w))
det 7,  det(gyu(w))

2H(u) = Zk: hy (1) g"(u).

K(u) =

Note: From the representations for K and H, it follows that they are dif-
ferentiable functions. -

PROOF. 1) The principal curvatures «;, «, are solutions to x? — 2Hk + K = 0,
the characteristic equation of —dn o df ~*. Therefore x* — 2Hk + K =

(k¢ — K1)k — Kg).
ii) With respect to the standard basis of T, f,

—dnodf 1(f)) = —dn(e) = —ny = D difx.
| k
Taking the inner product with f,s:
hU == z a;cg ki
k

which implies (*). Now det(«d¥ — >, h,;2’%) = «2 — 2Hk + K (by (i)),
from which the expressions for H and X follow directly.
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3 Surfaces: Local Theory

It 1s reasonable to ask why the third fundamental form has not entered
directly into our study of curvature on surfaces. It turns out that the third
fundamental form is totally determined by the first and second funda-
mental forms. []

3.5.6 Proposition. 11 — 2HII + KI = 0.

PROOF. Let IV := (dn + «, df)-(dn + x5 df), where «,, k, are the principal
curvatures. Clearly,

IV = III — 2HII + KI.

But IV(X,, Y) = IV(Y, X,) = 0, where X, is a principal direction for «,,
i = 1, 2, and Y 1s arbitrary. Therefore IV = 0. . (]

Remark. This proposition is a special case of Cayley’s theorem: A linear
mapping L (in our case, the Weingarten map) satisfies y(L) = 0, where
x(x) = det(L — «(id)).

The various curvature functions we have been considering are invariant
under change of variables and isometries as the following theorem shows.

3.5.7 Theorem. Let f: U — R® be a surface and X € T, f a principal direction
with associated principal curvature « = «(X). Let K(u) and H(u) be the
Gauss and mean curvatures, respectively. -

i) If B: R®— R® is an isometry, then f := Bof is also a surface and
X:=dBXeT,f is a principal direction of f, #(X) = +x(X),
K@) = K(u), and B(u) = + H@). The signs are positive if B is a
congruence, negative if B is a symmetry.

ii) If ¢: V— U is a change of variables, then f := fo.¢ is a surface and
X := X is a principal direction of f and /(v) = +« o ¢(v), K(v) =
K o ¢(v), and H(v) = + H o $(v). The sign is positive if ¢ is orientation-
preserving, negative if ¢ is orientation-reversing. .

PrROOF. i) From the proof of (3.3.6) we see that 7i(u) = + dBn(u), the sign
depending on whether B is orientation-preserving or reversing. Therefore,

—diiodf X =F dBodnodf-*X = +xdBX = +«X.

This means that X is a principal direction with principal curvature
K = + k. |

ii) From the proof of (3.3.6) we see that 7i(v) = +n o ¢(v), the sign being
positive if detdé > 0, negative otherwise. Therefore —diiodf 1 X =
Fdnodf*X = +«X. This means that X = X is a principal direction
with associated principle curvature & = +«.

Remark. The Gauss curvature K is the only one of the curvature functions
which does not change sign under orientation-reversing isometries or change
of variables.
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3.6 Normal Form for a Surface, Special Coordinates

3.5.8 Examples. We continue the examples developed in (3.3.7) and (3.4.5).

1. On the sphere, x;, = kg =1, H = K = 1.

2. The torus. We compute af = —>,h;,;g"%, a=>b"1 a3 =a; =0,
a2 = cos u/(a + b cos u). Therefore x;, = a3 < ky = a} = b~1. Compare
this with (3.4.3). Also,

K = cos f_u/b(a + b cos u), H = (a + 2b cos u)/2b(a + b cos u).

The maximum «, = b~! is assumed by any principal direction, X, which
is tangential to a meridian circle: II(X, X) = «(X) = «,.

The minimum «, is not a constant function. It is positive on the outside
of the torus, i.e., when u e ]—=/2, #/2[. It 1s negative on the inside of the
torus, i.e., when u € Jn/2, 37/2{. Finally, «, = 0 on the top and bottom
latitude circles, 1.e., u = + /2.

Consequently, K > 0 on the outside of the torus, K < 0 on the inside of
the torus, and K = 0 on the top and bottom latitude circles.

3.5.9 Definition. Let f: U-— R® be a surface. A point u, € U 1s called an
umbilic if «,(uy) = xo(uy). If, in addition, «,(u,) = «3(uy) = 0, then u, 1s
sald to be a planar point.

3.5.10 Definition. A surface f: U — R® 1s said to be planar (resp. spherical)
if n(u) = constant (respectively, if there exists an x,€ R® such that
| f(w) — x,| = p, a positive constant).

3.5.11 Proposition. A surface consists entirely of umbilics if and only if it is
planar or spherical.

Proor. 1. If f is planar or spherical, then dn = O or df- (f — x,) = 0. The
latter condition implies that n = +(f — x)/|f — xo| = £(f — x0)/p.
Therefore dn = — « df, where « = 0 or « = constant = +1/p.

2. Let dn = —« df. Therefore n, = —«f,, n, = —«f,. Consequently, n,, =
—Kkyf, — Kfu = —xufy — Kfiu. Since f, and f, are linearly independent,
k, = k, = 0, S0 k = constant. If « = 0, dn = 0. Therefore n = constant
and fis planar. If « # 0, then ((n/x) + f), = ((n/x) + f), = 0. Therefore
(n/x) + f = x,, a constant vector. Consequently, | f — xo| = 1/|x| = p =
constant, so f 1s spherical. ' ]

3.6 Normal Form for a Surface,
Special Coordinates

In our investigation of curves we were able to analyze local behavior by
expressing the curve up to second order in terms of a Frenet-frame at a fixed
point (see (1.5.3)). Here is the analog for surfaces.

3.6.1 Proposition. Let f: U — R® be a surface, u, € U, {X,, X5} a basis of T, f,
and n, = n(u,) the unit normal at uy, which makes {X,, Xy, no} positively
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3 Surfaces: Local Theory

oriented. Then there is a change of variables ¢: V,— U, < U near u, with
$(0) = u, with the following properties: if f = fo ,

f@) — f(0) = v'X; + V2 X, + r(V)n,, v = (v, 02).
If X; = fu(uo), then v' = u' — uy + o(|lu — uol|) and rps(0) = hifu,).

PRrRoOF. Since {X;, X,, n} forms a basis in T,,,R%, we may write

JW) — f(uo) = v (W)X, + v*(u)X; + q(u)n,

for some functions v*(u), g(u) with v'(y,) = g(u,) = 0. The first order of
business is to find an inverse for v = (vl(u), v2(u)). Since

f u’(uO) = Z au‘ (uO)Xk’
((ov*/ou*)(u,)) is an invertible matrix. The inverse function theorem insures

the existence of a local inverse ¢ to v, defined in a neighborhood ¥, of 0.
This is the change of variables we seek. For, if f = fo ¢,

f(@ — f(0) = Z v'X; + r(v)n,, wherer = go ¢.

It is clearly seen that A,(0) = r,#0). If the X, happen to be f,(u,), then
(ov'/ou’)(u,) = &5 and ﬁu(o) = (0v'[ou’)(uo). Therefore (ﬁu(o)) = (hj(uo)). O

3.6.2 Definition. A surface f: U — R3 is

elliptic > 0
parabolic atwu,eUifdetll, is{=0

hyperbolic < 0.

Let us assume now that our surface f/: U — R3 is presented in the standard
form of (3.6.1) with X, = f,s. Since r(0) = r,«(0) = 0,

ru) = 5 Z h (O + of|u|?).

Consequently,

f6) = 10) = 3 uful) + 5 > hfOun(©) + oful?).

| 2]
We have “proved” the following result.

3.6.3 Proposition. If f is

elliptic
parabolic  (with II,, # 0) )
hyperbolic
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3.6 Normal Form for a Surface, Special Coordinates

at u,, then the surface represented by the second Taylor polynomial of f is an

elliptic paraboloid,
parabolic cylinder,
hyperbolic paraboloid.

This representation gives us a geometric picture of what the sign of the
Gauss curvature means, since its sign is the same as the sign of det I1.

(a)

(b)
Figure 3.7 (a) Elliptic point; (b) hyperbolic point

We now turn out attention to finding coordinates on a surface fitted to
vector fields that are given in advance. The basic tool is the following theorem.

3.6.4 Theorem. Suppose X, and X, are tangential vector fields on f: U — R3
which are linearly independent at each u € U. Then in a neighborhood U,
of each u, we can change variables, ¢: Vy— U,, so that fo¢ = f has
coordinate vector fields f, proportional to X,.

(This result is false for higher dimensional submanifolds of R™ and, more

generally, for any differentiable manifold of dimension >2. See Spivak
[A17], vol. 1, ch. 6.)

"Proor. 1. Consider the vector fields X,(v) = df ;! X,(u) defined for ue U.

Suppose we could find a change of variables n: U — ¥V, n(¥) = (v'(u), v%(u)),
for which ' '

(*) d'(X;) =0  dv*(X,) = 0.

Then in terms of canonical basis vector fields (&, &;) on V, dn(X.(x)) =
dvi(X,(u))é, + 0 and dn, (X)) = 0 + dv3(Xo(v))é,. Consequently, if
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¢ =n"1:¥V—U, then f = fo ¢ satisfies Jo. = df (&) = dfpy © dd,(8) =
a,(v) X;, where a,(v) = (dvi(Xi(¢(v))~*. Thus ¢ is the required change of
variables. Note that g,(v) is well defined, for if dvi(X(é(v)) = 0, then
dv}, = 0 since {X,, X,} are linearly independent and dv'(X,) = 0, i# j.
This contradicts the assumption that » = (v', v?) is a change of variables.

In order to complete the proof, it is necessary to establish the existence
of a pair of functions v'(u), v*(«), defined on some neighborhood of w,,
satisfying (*) with dv* # 0, i = 1, 2. This last condition will ensure that
n = (v!, v?) is a change of variables.

. Let {e;, e;} be the canonical basis vector fields on U and write Xi(u)

> 7.1 &M(u)e,. By the standard existence theorem for ordinary differential
equations, we may assert the existence, locally, of integral curves c,(s) of
X,(u). That is, for |s| sufficiently small, we may find curves c¢,(s), c,(s) in
V with ¢(0) = u, and ¢,(s) = X (c/(s)). We wish to solve (*) which is
equivalent to

1
) 28 + 222 ) = 0,
i 6 + 2% ¢3) = o

with the initial conditions v‘(c,(s)) = §. A standard result in partial

differential equations (see F. John, Partial Differential Equations, Springer-

Verlag, New York (1971), pp. 15-36) allows us to do this in a neighborhood

of u,, provided that for i) ¢,(s) and X,(c,(s)) are linearly independent and

for ii) ¢;(s) and X,(cy(s)) are linearly independent.

But ¢(s) = Xi(ci(s)), so these conditions are satisfied by hypothesis. Also,
= v¥(c(s)), i # j, implies that

1 = £ @e(s)) = d(E(s) = dA(Tcls)).

Therefore dv* # 0,i = 1, 2.

Remarks. 1) The function v'(u) (resp. v*(v)) is an integral of the differential

i1)

32

equation ¢é(s) = X;(c(s)) (resp. é(s) = Xa(c(s))). An integral of a dif-
ferential equation '

*) X(s) = f(x(s),s), xeU,

1s a differentiable function 4: U — R which is nonconstant on any open
set and which is constant on integral curves of (*). That 1s, h(x(s)) = const
or, equivalently, (d/ds)h(x(s)) = O. '

If U 1s simply connected, it is possible to find a globally defined change of
variables, ¢: V' — U, satisfying the previous theorem. Here is a brief
indication of the proof. The theorem gives a way of constructing these
coordinates locally near », by mapping (v!, v?) into (c,(v?), c5(v?)), where
¢, 1s the integral curve of X; beginning at c,(v'). This process may be
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continued to give a regular map from some domain V into U. The only
obstruction to getting a diffeomorphism is the possibility that the integral
curves of X; may intersect in two different points. Using simple connec-
tivity, one may show that this is impossible.

3.6.5 Definition. A regular curve ¢ = fo u: I— R3 on a surface f'is called a
line of curvature if ¢(t)/|¢(t)] is a principal direction for all ¢ € 1.

Remark. Let u, be a point where the principal curvatures are different (a non-
umbilic point). By the continuity of the principal curvature functions, we can
find a neighborhood of u, on which «,(1) < x,(u). Let X,(u), X,(x) denote
the associated principal directions. They may be chosen to be differentiable
vector fields for the following reason. Since «,(u), x,(u) are solutions to
det(dn, + « df,) = 0, they are differentiable. Since X,(u) = df;1X,(u) are
solutions to dn,X;(u) + «,(u) df,X,(u) = 0, they may be chosen to be dif-
ferentiable. Of course, they are linearly independent. An application of (3.6.4)
proves the following lemma.

3.6.6 Lemma. Let f: U— R® be a surface on which the principal curvatures
~are not equal at a point u,. Then there exists a neighborhood U, of u, and a

change of variables ¢: V, — U, such that the coordinate lines of f = fo ¢
are lines of curvature.

Such coordinates are called principal curvature coordinates. In principal
curvature coordinates, the Weingarten map will have the matrix representation

(Klgu 0 )
0 Ka2822

Conversely, using (3.5.5) which shows that this matnx 1s always equal to
(Cx hiug*’), Proposition 3.6.7 follows.

3.6.7 Proposition. If f: U — R® satisfies h,; = g,5 = 0, then f is a principal
curvature coordinate system.

We turn our attention now to another naturally occurring vector field on
a surface.

3.6.8 Definition. A vector X € S,}f = T,fis an asymptotic direction provided

I1(X, X) = 0. The notion of asymptotic direction has invariant geometric
meaning.

3.6.9 Proposition. Asymptotic directions are invariant under isometries and
change of variables.

This proposition is immediate from the properties of II described in
(3.3.6). Notice that X is an asymptotic direction if and only if —X is an
asymptotic direction. The existence of an asymptotic direction at u is
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3 Surfaces: Local Theory

equivalent to the requirement that «;, < 0, x; = 0. Therefore an asymptotic
direction exists at u if and only if K(u) < 0 (see 3.6.10 below).

3.6.10 Proposition. i) K < 0 if and only if there exists exactly two (up to sign)
asymptotic directions. '
ii) K(u) = 0and II, # O if and only if there exists exactly one (up to sign)
asymptotic direction.
iii) K(u) = 0 and II, = 0 (planar point) if and only zf all X e SLf are
asymptotic directions. '

PROOF. i) K < 0<detll < 0<II(X,X) = 0 has precisely two linearly
independent solutions, + X, with I(X, X) =

ii) K = 0 and IT # 0 means that one of the eigenvalues of II 1s zero, and
the other is equal to « # 0. If (X;, X3) is a basis of eigenvectors with
respect to 0, «, then for any X = (*X, + 32X, II(X, X) = «({?)°. There-
fore X, is the only principal direction. |

ii1) Is clear. -

3.6.11 Definition. A regular curve ¢ = fou:I— R® is an asymptotic line
provided ¢(¢)/|é(2)| is an asymptotic direction at u(¢) for all e . The
surface f: U — R® is presented in asymptotic coordinates near u, if the
coordinate lines are asymptotic lines in a neighborhood of w,.

3.6.12 Lemma. Suppose K(u,) < 0 on f: U— R3. Then there is an asymptotic
coordinate patch defined on some neighborhood of u,.

PrOOF. By continuity of the Gauss curvature, there exists a neighborhood of
u, on which K < 0. By (3.6.10, i), there exist two linearly independent
asymptotic vector fields X;, X, on some, possibly smaller, simply connected
neighborhood of #,. Now Theorem (3.6.4) completes the proof.

3.6.13 Examples. 1. For the torus (3.4.5), K < 0 on the inside. Thus on the
inside there exist precisely two asymptotic directions at each point.
2. On the sphere, no asymptotic directions exist at any point.

Remark. The reason for calling these directions asymptotic becomes clear
from the following observation. A regular curve c¢(¢) on the surface has zero
normal curvature at c(t), i.e., II(¢,¢) = 0<&(t)-nou(t) = 0= () e T, f.
So asymptotic lines have no normal component of acceleration. In particular,
if ¢(¢) is a straight line in R® which lies on the surface, ¢(t) = 0 and c is an
asymptotic curve.

3.7 Special Surfaces; Developable Surfaces

3.7.1 Definition. A triply orthogonal system of surfaces is a differentiable
map F: W — R3, defined on an open set W < R?, satisfying:

1) dFey vy Touv.mR2 = Trav,mR® 1s bijective for all (u, v, w)e W.
ii) F,-F, = F,-F, = F,-F, = 0.
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3.7 Special Surfaces; Developable Surfaces

Remark. The reason for calling such a map by this extraordinary name is
that at each p = (u,, vy, wo) € W, the three surfaces

(4, v) > F(u, v, wy)
| (U, W) > F(“Os v, W)
(u, wy— F(u, vy, w)

are mutually orthogonal. We will denote these surfaces by %o, f*o, and f*o,
respectively. They are regular by (1). -

Notice that by condition (ii), not only are the surfaces orthogonal, but
g2 = 0 on each of them. Furthermore, F, (u, v, wy) 1s normal to f*o at
(u, v, wy) (and the identical relation holds for the other two surfaces) and,

differentiating, _
(F 'Fv)w = (F -Fu)y = (F Fy)y = 0.

Therefore F,,-F, = F,,-F, = F,,-F, = 0, which means that hm =0on
each of the surfaces. By (3.6.7), we may conclude that

3.7.2 Proposition (Dupin). The coordinate curves on a surface in a triply
orthogonal system are lines of curvature.

3.7.3 An example. Second order confocal surfaces. Let 0 < ¢ < b < a and
consider the equation

x2 N 2 N 2

—1=0.
—p b—p a-p

P(p) =

p<¢C
For {c <p<b
b<p<a

an ellipsoid

the solution set of this equation is {a hyperboloid of one sheet
a hyperboloid of two sheets.

Let O = {(x,y,2)eR3| x > 0,y > 0, z > 0} be the positive quadrant.
Let W= ]—o00,c X ]Jc,b[ x ]b, a[ = R®.

Now we observe that for each (x, y, z) € O there exists a unique triple
(u, v, w) € W such that if p = u, (x, y, z) lies on an ellipsoid, if p = v, (x, y, 2)
lies on a hyperboloid of one sheet, and if p = w, (x, y, z) lies on a hyperboloid
of two sheets. To see this we simply consider the equations ¥(u) = ¢¥(v) =
Y(w) = 0 and solve for x, y, and z:

x2(u, v, w) = (¢ — u)c — v)(c — w)/(c — b)(c — a)
Y2, v,w) = (b — u)(b — v)(b — w)/(b — a)b — ¢)

z%(u, v, w) = (a — u)(a — v)(a — w)/(a — b)a — c¢).
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3 Surfaces: Local Theory

Figure 3.8 Confocal surfaces, second order

These formulae express x, y, and z uniquely as functions of («, v, w) in the
required domain W. Remember, x, y, and z are assumed to be strictly positive.
Now consider the map F: W — Q given by

(u, v, W)= (x(u, v, w), y(u, v, w), z(u, v, w)).

We claim that this is a triply orthogonal system. To see this we shall take
a geometric approach and show that the surfaces n,b(u) Y(v), and Y(w) are
regular and mutually orthogonal. Since

grad $(v) = 2(x/(c — v), /(b — v), zl(a — v)) # (0, 0, 0)
grad Y(w) = 2(x/(c — w), y/(b — w), z/(a — w)) # (0,0, 0)
grad (u) = 2(x/(c — u), y/(b — u), z/(a — u)) # (0, 0, 0),
we conclude that, for example,
grad (v)- grad $(w)
= 4(x*/(c — v)(c — w) + y*/(b — v)(b — w) + z%/(a — v)(@a — w)) =0
grad Y(v)? = 4(u — v)(w — v)/(a — v)(b — v)(c — v)
grad $(w)? = 4(u — w)v — w)/(a — w)(b — w)(c — w).

Here we use the above equations for x?, y%, z%. Regularity and orthogonality
are established by these formulae.

3.7.4 Definition. A surface f: U — R® is a ruled surface if every u, € U has a
neighborhood on which we may define a change of variables u = ¢(s, ¢)
so that '

S5, 8) = fod(s, 1) = sX(t) + c(2).
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Here X (¢) is a vector field along a curve ¢(¢) on f. The curves ¢ = constant
are lines in R® and are called generators of f. A curve s = constant is
called a directrix.

If, in addition, the normal vector field 7i(s, ) is a constant along
generators, i.e., fi, = 0, then f 1s called developable.

3.7.5 Proposition. 1) On a ruled surface, generators are asymptotic curves.
Consequently, K < 0.

11) A ruled surface, f, is developable <~
In (s, t)-parameters f is a linear combination of f, and f, <
K=0onf.

PROOF. 1) In (s, t)-parameters, f,, = 0. Therefore h,, = II(f,, [,) = —n,-f, =
n-fis = 0, and so K = —hiy/det(g;,) < 0.

ii) In (s, ¢)-parameters, we have shown in (i) that n,- f, = 0. Therefore if f(s, )
1S a ruled surface, ny,=0<n,-fi=n,-f;,=0<n-fi=0<nf, =
0<>hyp = 0 K = —hi,/det(g;) = 0. []

3.7.6 Examples of developable surfaces

1. Tangential developables. Consider a space curve c: I — R® with é(r), é(t)
linearly independent for all z. The surface f(s, t) = sé(z) + ¢(t), s # 0,
is called the tangential developable of c. Since f,; = ¢(t), it 1s a linear
combination of f; = ¢(¢) and f; = s¢(t) + ¢(2).

<%
/v

Figure 3.9 Tangential developable

2. Cylinder over a curve. Let c(t) be a plane curve and X, # 0 a vector not
lying in the plane of the curve. The surface f(s, t) = sX, + c(¢), a general-
ized cylinder, is a developable surface.

3. Cone. The surface f(s,¢) = sX() + x, s # 0, X(¢) and X(¢) linearly
independent, is a cone with vertex x. It is easily seen that fis a developable
surface.

Developable surfaces enter into the general theory of surfaces via the
following construction.
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3.7.7 Proposition (Existence of an osculating developable). Let c(t) = fo u(t)
be a regular curve on a surface f. Suppose Y(t) is a vector field along c(t)
tangential to f, satisfying II(¢(t), Y(t)) = O, and linearly independent of
é(t). Then g(s, t) = sY(t) + c(t) is a developable surface.

Proor. Easy: g = Y, n-gy =nY=—-nY=1(Y) = 0. u

Note that the surface f and the constructed developable surface g both
contain the curve c, and at each point of ¢ they have identical tangent planes.
We will exploit these facts in a very important geometric construction
(parallel translation) in (4.2.5) and (4.4.3). For the time being, we will be
content to carry out the construction explicitly in a simple case.

3.7.8 Example. On the sphere
f(u, v) = (cos u cos v, Cos u sin v, sin u), (u, v) € 1—7/2, n/2[ x R,

consider the latitude circle c(t) = f(u(z), v(t)), u(t) = a, v(t) = t/cos a,
a€l—u/2, w/2[, t/cos a € ]—m, =[. It follows that ¢é(t) = f,/cos a, so |é(¢)| = 1.
Let Y(¢) = f.(a, t/cos a) = (—sin a cos v(t), —sin a cos v(t), cos a). In (3.3.7)
we showed that I = — I and that f,,-f, = 0. Consequently, II(¢(t), Y(t)) = O,
which means g(s, 1) = sY(¢) + ¢(t) is an osculating developable surface.

Figure 3.10 Osculating cone

In the case a # 0, g(s, t) is a circular cone all of whose generators pass
through the point (0, 0, 1/sin ) when s = cot a. In the case a = 0, c(¢) 1s
the equator and g(s, ¢) is a right circular cylinder. -

We finish this section by looking more closely at surfaces with Gauss
curvature equal to zero. We have already shown in (3.7.5) that, in the class
of ruled surfaces, developable surfaces are precisely those with K = 0. The
question remains: are there surfaces with X = 0 which are not ruled and
hence not developable?

The answer is given locally by the following theorem.
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3.7 Special Surfaces; Developable Surfaces

3.7.9 Theorem. A surface f: U — R® without planar points is developable if and
only if K = 0.

Remark. Recall that f is planar at u, € U if II,, = 0. The theorem fails to be

true if the hypothesis of “‘no planar points” is dropped. An explicit counter-
example 1s constructed in (3.9.4).

Proor. If f is developable, we know by (3.7.5) that K = 0. Conversely, let
K = 0. The absence of planar points allows us to assert the existence of
unique (up to sign) mutually orthogonal principal curvature vector fields in
a neighborhood of each point u, (see (3.5.3)). Using (3.6.6), we may introduce
new coordinates (v, v*) on a neighborhood U, of u, such that the v'-coordi-
nate curves are integral curves of the principal curvature vector field corre-
sponding to the principal curvature «; = 0. Without loss of generality, we
may assume that (0, 0) — u,.

We change variables once more. Let (s, ) — (v(s), t), where v!(s) is the
inverse of the arc-length function along the curve f(v*, 0). Clearly, ov'(s)/ds # O.
Therefore f = fo ¢ is a new coordinatization defined in a neighborhood of
(0, 0) with ¢(0, 0) = 0. In this new coordinatization, both f(s, 0) and 7(0, t)
are parameterized by arc length. The vector £(0, 0) is a principal direction
corresponding to x; = 0.

Agreeing to write f(s, t) instead of f(s, t), let us show that f,, = 0. First
observe that ny, = —«  f, = 0, n, = —xof, # 0, f;-f; = 0, and f;-n, = 0. This
implies that f;-n = —f;-n, = 0, and therefore f,, is purely tangential. Now

futi = (=) furm = () oo = 0,

50 f5s 1s @ multiple of f;. But f,2(s, 0) = 1 and £;2(s, t) ; = 2f;-fa = —2fs-f; = O,
which implies f;*(s, t) = 1. Differentiating this equation, we see f;;-f, = O.
Therefore f,, = 0.

This means that the s-parameter curves are straight lines, parameterized
by arc length.

Letting c(t) = f(0, ¢), we see that f(s, t) = sX(t) + c(t), where X(¢) =
f«(0,¢). Thus f(s, t) is aruled surface with n, = 0, 1.e., a developable surface.

Remark. Even though we have shown that flat surfaces without planar points
are developable surfaces, we still have not completely described how a piece
of surface with K = 0 can look in R3. Even without admitting planar points,
one can patch together developable surfaces in a variety of ways, cf. Figure
3.11.

The following proposition shows that developable surfaces look basically
like those described in (3.7.6)

3.7.10 Proposition. Suppose f: U — R3 is a developable surface without planar
points. Then on an open dense set A < U, f is either a cylinder, a cone, or a
tangential developable.
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3 Surfaces: Local Theory

Figure 3.11 Some flat surfaces (Adapted from Manfredo P. do Carmo, Differential Geometry
| of Curves and Surfaces, Prentice-Hall, Inc., 1976, p. 409.)

ProoF. 1. By (3.7.9) we may assume that f can be written locally as f(s, t) =
sX(t) + c(t) for (s, t) within some neighborhood U = I x J of (0, 0),
withf, f; = 0,n,-f; = n-f,, = 0. Therefore X- (s X + ¢) = 0,¢é(¢t) = £(0,¢) # 0,
fi =X #0, and n-X = 0. The tangent space T, f is spanned by X(¢)
and é(¢), X(2)-é(t) = 0. Since X(t) e T, pfand X- X = 0, X(¢) = r(t)é(t)
for some real-valued differentiable function r(¢). -

2. Lett e I. Let I, be the set of ¢ € R satisfying one of the following properties.
a) There exists a neighborhood U(t,) of ¢, on which r(¢) = 0. ' ,
b) There exists a neighborhood U(¢,) of ¢, on which r(¢) = constant # O.
c) There exists a neighborhood U(t,) of ¢, on which r(¢) # 0and #(t) # 0.
By definition, I, < I is open. A moment’s reflection will show that I, 1s
also a dense subset of I. In fact I, is the union of the sets where r(¢) # 0
and 7(t) # 0 with the interior points of the set where 7(t) = 0. We will
now show that the cases (a), (b), and (c) correspond to a cylinder, a cone,
and a tangential developable, respectively. |

3. Suppose t, € I, satisfies (a). Then X(¢) = X, = constant, so f(s,t) =
sX, + ¢(t), a cylinder. Suppose ¢, € I, satisfies (b). Then X () — X(¢,) =
ro(c(t) — c(ty)). Therefore f(s, t) = ((s + 1)/ro)X(¢) + (c(to) — X(2o)/ro),
a cone with vertex (c(z,) — X(2,)/ro). Suppose ¢, € I, satisfies (c). Let
&) = —X(@)/r(t) + c(t). Then é = rX/r2, so ¢ is linearly independent
from ¢ since X and X are orthogonal. We may write c(t) = é(¢) +
X®/Ir@®) = é@) + r@e@)/r(t). If we let §=§(s, t) = sr3(t)/F(t) +
r(t)/F(t), we may write f(s,?) = f(3, t) = §é(t) + é(z), a tangential
developable. | [l

Remark. 1t is still not clear from (3.7.10) whether, for example, the local
coordinates expressing f as a cone, cylinder, or tangential developable, can
be extended along the generators (i.e., in the s-direction) to the boundary of f.

There is a strong global result concerning surfaces with K = 0. If f-U—R?®
is assumed to be geodesically complete (see (6.4.4) for the definition), then
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3.8 The Gauss and Codazzi-Mainardi Equations

any surface with K = 0 must be a generalized cylinder.? This result was first
proved by Pogorelov.? Note that it is not necessary to assume that f has no
planar points.

3.8 The Gauss and Codazzi-Mainardi Equations

Before we begin this section let us agree to abbreviate our notation for partial
derivatives. We will write ¢,, or occasionally ¢ ,, for o¢é/ou* = ¢,:. When
higher order partial derivatives occur, we will treat them in the same fashion,
writing ¢, for ¢, etc. The matrices (g, (%)) and (4, («)) will denote matrix
representations of the first and second fundamental forms with respect to the

standard basis {e;} of T,R? and {/;} of T, f. The inverse of (g;,) will be denoted
by (). '

3.8.1 Theorem /
(") fulw) = 3 THGE) + hun@),  m) == > hug™fi(u),

where

1
(**)_ I = 2 g f; = D) Z 87(8is.k + 8 — &ut.1):
) 1

where gi; ,, = 0gy,;/ou®.

3.8.2 Definition. The six functions I'i(¥) = I'k(») In (*) are called the
Christoffel symbols of the second kind. The functions

Dy = (g + Ciet — 8rt.s)
are called the Christoffel symbols of the first kind.

Remark. The expressions (*) and (**) express f;;, and », in terms of the Gauss
frame (f1, f2, n). Moreover, the coefficients can be expressed in terms of the

giks hika and gik.l'

Proor. 1. Since (f,(w), fo(w), n(u)) span T,,,R3 we may write f;; = fix =
21 T fi + ayn, where the coefficients are to be determined. By taking the

2 A generalized cylinder in R® is a surface, S, that may be described as follows: there
exists a curve c(t), c: R— R®, and a fixed direction »n such that f(s, ) = c(t) + sn,
f: R? — R3 is a global parameterization of S.

3 Pogorelov, A. W. Extension of the theorem of Gauss on the spherical image of surfaces
of bounded extrinsic curvature. Dokl. Akad. Nauk, 111, 945-947 (1956) (Russian).

Other proofs of this theorem were given by P. Hartman and L. Nirenberg ( 1959) and
J. J. Stoker (1969). A quite simple proof with a list of references on the topic may be
found in Massey, W. S. Surfaces of Gaussian curvature zero in Euclidean 3-space.
Tohoku Math. J. (2), 14, 73-74 (1962).
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3 Surfaces: Local Theory

inner product with n, we see that h,, = a,. By taking the inner product
with f,, we get

and therefore

Ty = Z 8'fu S5 = T
Furthermore,

() gise = oS = Jue S5 + S = Z Igiy + Z e gus

and cyclical permutation of the indices yields:

(B) 8ki,g = z Thsgu + Z I 8u
z z

(%) 81k = Z Tjigu + 2 i &15-
z z

The equations in (**) are equivalent to () — (8) + (¥).
2. The expression for n; = n,t follows from (3.5.5). B

3.8.3 Theorem (Integrability conditions). The equations fi;;. = fu; and ny; = ny
are equivalent to the following relations between gy, hy., &uxc,15 k.15 and I'}; .

) e Tk, + 2 (TUCR — Thlp) = S (b — hichi)g™
l
i1) Z Tishu — Z Cichiy + hije — hig,; = 0.
l

The equations (i) are called the Gauss equations, and the equations (i) the
Codazzi-Mainardi equations. '

Remark. The Gauss equations come from equating of the coefficients of f,, in
the equations f;;; = fix;. The Codazzi-Mainardi equations came from equating
the coefficients of 7 in the equations f;;; = fix;. Equating the coefficients of f,,
and nin n,; = n gives another derivation of the Codazzi-Mainardi equations.

ProOOF. 1. Let fi;. = Zm A% fm + Bipn. Using (3.8.1) (*), we may express
A} as | ,

e = L + Z TyTT Z hihin g™

Since AT, = AL, interchanging j and k and subtractlng proves (1).
2. Another application of (3.8.1) (*) enables us to write

Bij. = Z Tishe + his .
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3.8 The Gauss and Codazzi-Mainardi Equations

Sil‘lce Bijk — -Bikj’ thjS pI‘OVCS (ii).
3. Let

Ci§ = — (Z hug"‘) - Z hy g™y,

oJ

Using (**) to obtain an expression for I'%, and also the fact that
2 85 8k = “‘Z 8™ 8xi,1

(obtained by differentiating >, g™*g,; = 6") enables us to conclude that
Cij = Cﬂ This 18 equ1valen_t to (ll) ]

3.8.4 Definition. The curvature tensor of f is the collection of functions
Rupe = 2.m &mRij, 1 < i, j, k, I < 2, where

e i=Thy — Thy + 2 (LI — T4,  1<ij,k,m<2.

3.8.5 Lemma
-Rﬂjk = kijh)c: - hikhﬂ-

Consequently, -Riljk = “-Rﬂkj = — Rlijk = -Rjkil and the curvature tensor Ay
tOtally determined by R1212 = —R2112 = R2121 = —.R1221 = det(k,j); all
the other Ry, are equal to zero.

PROOF. An immediate consequence of (3.8.3, i). O]

The following theorem will show that the curvature tensor has a geometric
meaning in the sense that it is the coordinate expression of a multilinear map
from T,f x T,f x T,f x T,f into R which is independent of the choice of
coordinates. In contrast to this, the Christoffel symbols I'}; are not coordinate
independent.

3.8.6 Theorem. Let f: U — R® be a surface. Let
X=Z§‘ﬁa Y=Z7)lh Z=ZC%3 W:zw%,
§ l J k

be four tangential vector fields. Then the multilinear form
R:T,fx T, fx T, x T, [—R

given by R(X,Y,Z, W) = 3,1k Rusén'* has the following properties:
1) R(X,Y,Z, W)=—-R(Y,X,Z, W)=R(Y,X,W,Z)=R(Z, W, X,Y)
R(f;aﬁ’f;’fk) = Riljk
i1) R is linear in each variable.

iii) Let ¢: V — U be a change of variables and R,,,, be the curvature tensor
associated to f = fo¢. Then R(X,Y,Z, W) = R(X, Y, Z, W).
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3 Surfaces: Local Theory

Proor. 1. (1) and (ii) follow directly from (3.8.5) and the definition of R.
2. Writing ¢(v) = (v}, v?), u?(v?, v?)), we may write R in terms of R as
follows:

(*) Ryp = Rypppuiuiuiuf’, where ui' = out'/ovt, etc.
!lljl ’

This expression may be derived from (3.8.5) by plugging in the expres-
sion of Ay, in terms of Ay, (3.3.6):

hy = + Z hy jui uf .
7
If X =3, &% = 3,8 = 3. &ulf,, etc., then (*) implies that
Z -Riljk g‘ﬁlzjdik — Z Rypjoge fi'nl'cﬁwk». | -

illljlk i"l',j"k’

3.8.7 Theorema Egregium (Gauss).* The Gauss curvature K(u) can be com-

puted from the first fundamental form and its first and second partial
derivatives. More precisely,

K(u) = R;212(w)

 det(gu(w)
PROOF. R,,,, 1s defined in terms of (g;;) and its first and second partials by
(3.8.4). The formula for X is (3.5.5). Now use (3.8.5). . ]

The meaning of this *“‘celebrated theorem” of Gauss will be examined in
the next chapters where we will explore the intrinsic theory of surfaces.
Suffice it to say now that Gauss curvature, defined in terms of the second
fundamental form (which is dependent on how the surface sits in space), can
be computed from a knowledge of the first fundamental form and its partial
derivatives. The latter quantities can be computed, in principle, by a resident
of the surface, without knowledge of or reference to the shape of the surface
in R3.

To end this chapter, we will prove an analogue of the existence and
uniqueness theorem for curves in R*, (1.3.5) and (1.3.6).

3.8.8 Theorem (Fundamental theorem of sufface theory). Let U be an open,
simply-connected subset of R2. Suppose I, 11, are quadratic forms on T,R2,
u € U, whose coefficients (g,.(u)) and (h,(w)) are differentiable functions of u.

If 1, is positive definite and the Gauss and Codazzi-Mainardi equations
(3.8.3) are satisfied, then.

1) There exists a surface f: U —> R® whose first and second fundamental
forms are I, and 11,,.

* Gauss, C. F. Disquisitiones generales circas superficies curvas. Commentationes
societatis regiae scientiarum Gottingensis recentiores, 6, Gottingen, 1828.
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3.8 The Gauss and Codazzi-Mainardi Equations

ii) Any two surfaces f and f defined on U which have the same first and
second fundamental form differ by an isometry:

f = Bof, Banisometryof RS.

PROOF. 1. The existence of f. The structural equations of (3.8.1) may be
considered as a system of linear partial differential equations for the three
R°-valued functions f,(u), fa(#), n(x). The integrability conditions f; ;. = f; 1s,
ni,; = n;, are satisfied (this is the content of the Gauss and Codazzi equa-
tions). By a well-known theorem of differential equations (see Flanders [B8],
pp. 92-101, or Spivak [A15], Vol. I, ch. 6), there exists a unique solution to
this system satisfying any given initial conditions fi(u,) = X,, n(y,) = N,
where X;- X, = gulu,), X;-N = 0, IN| =1, and (X;, X,, N) is positively
oriented. ' '
Choose x, € R3, and let

f(w) = fu Zﬁ(u) dut + x,.

Since f1,2 = f3,1, this integral is independent of path and therefore f(u) is
well defined. We wish to show that fis the desired surface. Toward that end,
consider the functions f;-f(u), n-f(u), n-n(u). Because f; and n satisfy the
differential equations (3.8.1), we have

(ﬁf})k = Z Pik(f; f}) T 12 P}k(ﬁ f;) -+ huc(n fj) + hjk(n fi)a
(n-f) = _Z hag™*(fi-f3) + Z Ii(fi-n) + hy; (n-n),
(n-n); =—2 Z hy g*(fy - n).

It 1s easily seen that these differential equations would be satisfied if

Ji-f; = &y, n-f; =0, n-n = 1. Our functions agree with these functions at
u = u,, and therefore must be equal to these functions on U. Fromf; - f; = g,
we may conclude that f;, f, are linearly independent, which implies that £ is
indeed a surface. Furthermore, det(f, f2, n) > 0 when ¥ = u,, and since it
never equals zero, it must be positive everywhere on U. The second funda-
mental form of f'is determined by —n;, - f,.. Using the differential equations (*)
of (3.8.1) for which n and f, are solutions, we see that —n, - f,, = h,,. Therefore
f 1s the desired surface.
2. Uniqueness of f up to isometry. Suppose f and f are two solutions deter-
mined by the initial conditions x,, X3, X,, N and %, X, X,, N, respectively.
Since X;- X, = X;- X, X; N= X, N=0,N-N = N-N = 1, there exists a
unique isometry B such that

on = x~0, dBXoXi = K, deON = N.

Since both (X;, Xp, N) and (X,, X,, N) are positively oriented, B is a
congruence. '
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3 Surfaces: Local Theory

Since dBf,, dBn and f,, 7 satisfy the same system of differential equations
with the same initial conditions at ¥ = u,, it follows that dBf; = f,. Therefore

Bf(u) = Bf(uo) + f(u) — f(uo) = f(u). [

3.9 Exercises and Some Further Results

3.9.1 Surfaces of revolution with constant Gauss curvature. Consider a surface of
revolution given as in (3.3.7) by

f(u, v) = (h(u) cos v, h(u) sin v, k(u)).

Assume that A2 + k’2 = 1 and hence that k’'k" = —h"H’.
Prove: g1 = 1,212 = 0,822 = h% hys = —Kk'h” + K'Kk",h13 = 0, hog = hK’.
Therefore

_ (WK'K" — K'K'R) h”
- h h

K

The requirement that f have constant ‘Gauss curvature K, means that &
must satisfy |

h*(u) + Koh(u) = 0.

Conversely, a function A(u) satisfying this equation with A2 < 1 will
enable us to construct a surface of constant Gauss curvature K,.

Case (i). Ko = 0. Without loss of generality, A(u) = au + 5,0 < a < 1.
If a = 0, the surface of revolution is a right-circular cylinder. If 0 < a < 1,
the surface is a circular cone. If @ = 1, the generated surface is a piece of a

plane.

(a) (b) (c)
Figure 3.12 (a) Sphere; (b) spindle; (¢) bead

Case (ii). K, = 1. Without loss of generality, h(x) = a cos u, where
a > 0 and a®sin®u < 1. This implies that k(x) = [, VI — a®sin® ¢ dt.
When a = 1 we get a sphere, when 0 < a < 1 a spindle-like surface, and
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3.9.2

3.9 Exercises and Some Further Results

when a > 1 the surface looks like a column of water about to break into
beads.

Case (iii). Ko = —1. Then we may write A(u) = ae* + be™ Y, requiring
(ae* — be~*)? < 1. Consider the case where b = 1, a = 0. Then

h(u) = e %, k(u) =f V1 — e~ 2 dt, u = 0.
0

The curve (h(u), k(u)) in the (x, z) plane is the tractrix. It is characterized
by the fact that distance, along the tangent line to (A(w), k(u)), from
(h(u), k(u)) to the z-axis is always equal to 1. The surface of revolution
1s called the pseudosphere. It was an 1mportant example in the early history
of non-Euclidean geometry.

If ab # 0, then it can be shown that a = —b = ¢/2 or a = b = ¢/2.
In the first case the surface of rotation looks something like cones stacked
point to point and base to base. In the second case, the surface looks like
a horizontally fiuted column (see Figure 3.13).

ﬁ.,?

Ak Ak

F o
“

(a) (b) (c)

3.13 (a) The pseudosphere; (b) a pile of cones; (c) horizontally-fluted
column

Caustic surfaces.® Suppose f: U — R® is a surface whose principal curva-
tures «; and x5 are nonzero and unequal. Let (', %) be principal curvature
coordinates.

Prove: The functions b;(w) = f(u) + n(u)/x(u), i = 1, 2, are surfaces if
and only if x; 1x5 5 # 0. These surfaces are called the caustic surfaces of f.

If k1,1x2,0 = 0, fis called a canal surface. If «, ; = 0, then the u'-parameter
curves lie on circles of radius 1/x,. In this case, the surface f may be
represented as the boundary of the region swept out by a one-parameter
family of spheres.

5 See Strubecker [A15], Vol. 1I1.
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KA
N

Figure 3.14 Caustic surfaces

3.9.3 Weingarten surfaces.® A surface f: U — R®is called a Weingarten surface, ot
W-surface, provided there exists a function ¢: U— R with dp # 0 such
that the principal curvatures r (i) = xo(u) satisfy @(ri(), ka(u)) = 0.
For example, surfaces with H = constant or K = constant are W-surfaces.
Prove: i) On a W-surface, k3, 1k2,2 — K1,2Kk2,1 = 0.
ii) The ellipsoid of revolution,

f(u, v) = (a-cos u-cos v, a-cos u-sin v, b-sin u)

with 0 < a < b, is a W-surface satisfying «; = ck3.°
iii) A W-surface is not a canal surface if and only if its caustic
surfaces consist of asymptotic curves.

3.9.4 A surface with K = O which is not a developable surface.” We will show
the existence of a surface f: R x ]—1, 1[ — R® whose first and second

¢ There is a wealth of interesting results about Weingarten surfaces, due to Hilbert,
Chern, Hopf, Voss, and others. See, for example, Hopf, H. Uber Flichen mit einer
Relation zwischen der Hauptkriimmungen. Math. Nachr., 4, 232-249 (1951). See also
Hopf [A9] and [A10].

7 This example is due to E. Heintze
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fundamental forms satisfy

(guw) = (Ou)

(i) = (Puels, v)e= (@207,
where '

1 - u u2
1+ v) Pz = +_ (1 + v)¥ Paz = (1 + v)®

Pu -

and where the sign is the upper when # = 0 and the lower when u < 0.
We will then show that this surface has zero Gauss curvature but 1s

not a developable surface.

The A, are differentiable.

h11h22 — h%z = (). Therefore K = 0.

. h11,2 = h12,1, haz,1 = ’112.2-

From (2) and (3) one can easily prove that the first and second

fundamental forms satisfy the Gauss and Codazzi—-Mainardi equations.

By the fundamental theorem of surface theory (3.8.8), there exists a

surface f with the required first and second fundamental forms.

Moreover, fis unique up to an isometry of R,

5. The second fundamental form has been chosen so that the inverse
image of the generators of f in the set ¥ < 0 are the straight lines
through (0, 1). In the set # > 0, they are the straight lines through
(0, —1). The slope of these straight lines blows up as one moves through
(0, 0) on the u-axis.

6. The surface fis not a developable surface near (0, 0): there is no change

of variables ¢: V— U’ < U, (0,0)e U’, such that fo¢(s, t) =

sX(t) + c(t).

B

PROOF. Assume that such a ¢ exists. Without loss of generality, we may
assume ¢(0, 0) = (0, 0). Consider the lines parallel to the ¢-axis in V. They
must be mapped into the inverse images of the generators of f which are

- described in the previous section. Since each of these lines crosses the u-axis

exactly once, the inverse image under ¢ of the u-axis may be written in the
form (s, B(s)). If p: R2 — R? is the map (o, 7) — (g, B(c) + 7), the map
q5 = ¢ o p|p~ (V) is differentiable and é(o, 0) = (a(o), 0) for some differen-
tiable function a(o). This follows from the definition of p. Therefore $(o, T)
= (a(0), 0) + y(7)(|a(o)|, 1), where ¢(7) is a differentiable function with
v(0) = 0. The function 95(0, ) must have this form because ¢ maps
parallels to the 7-axis into the inverse images of the generators.

But 3(,51/60 = a'(o) + y(7)a’(o), the sign depending on the sign of a(o).
Since a(0) = 0 and a’(0) # 0, this function cannot be differentiable at any
point where y(7) # 0. Contradiction.

Show that the ellipsoid of (3.7.3) with p = up, = constant < c has exactly
four umbilics. In fact the umbilics are precisely the points x(uo, v, w),
w(uo, v, W), z(uo, v, w) on the ellipsoid where v = w = b. At these points,
the lines of curvature are degenerate and grad {(v), grad ¥(w) are not
defined.
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3.9.6 A surface f: U— R3® is called a minimal surface if H(u) = 0. The reason

3.9.7

3.9.8

Surfaces: Local Theory

Figure 3.15 Lines of curvature on an ellipsoid. Umbilics marked as dots

for this name is the fact that these are precisely the surfaces for which the
first variation of area vanishes. What does this mean?

Consider a family f<(u) = f(u) + ea(uw)n(u) of surfaces neighboring f.
Here € lies in an interval containing 0 and a: U — R is a smooth function.
For sufficiently small €, f€ is a regular surface and we may define its first
fundamental form. Up to terms of second order and higher in ¢, gf, =
gix — 2eahy, and the area element g€ = det(gf) = g(1 — ed4aH). Therefore

(0V g¢/0€)|c=0 = —2aH. The only way this can equal zero for all functions
a 1s for H to be identically zero. In (5.6) integration on a surface will be

discussed and the area of a surface f: U — R3 will be defined as f o Vg dut du.

Using standard techniques of advanced calculus (namely differentiation
under the integral sign and the divergence theorem), we may use the above
calculation to show that a surface is minimal (H = 0) if and only if given
any variation f<(u) = f(u) + ea(u)n(u) of f the area function A(e) =

IU Vg€ du' du® = “area of the surface S€” has a critical point at € = 0.

It is easy to see that the area of f cannot be a maximum among nearby
surfaces (introducing a pimple on the surface will increase the area).
Therefore f must be either a local minimum or some sort of inflection

point for the area function.®

k(u)), where

k(u) — b

h(u) = acosh( "

) (see (3.3.7)).

This surface is known as the catenoid.

Prove that the catenoid is the only surface of revolution which is also a
minimal surface.

One of the most interesting results in the global theory of minimal surfaces

1S Bernstein’s theorem: If f(u,v) = (#, v, z(u, v)) is a minimal surface
defined for all (¥, v) € R?, z must be a linear function. In other words, if a
minimal surface is the graph of a function defined on the whole plane,

then it 1s a plane.

8 See Strubecker [A15], Vol. III, p. 222 fI., or the references in footnote 10.
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3.9 Exercises and Some Further Results

Figure 3.16 Catenoid

The proof is not elementary, but it is interesting. It utilizes some tech-
niques from complex analysis (see (5.7.4)).°

3.9.9 The problem of Plateau.l® Given a simple, closed, rectifiable curve ¢ in R®,
find a minimal surface f: D — R® spanning c, i.e., if D is the open unit
disk, D its closure and S! = 2D its boundary, does there always exist a
continuous function f: D — R® such that f:= f| D is a minimal surface
and f|S!: S* — ¢ is a homeomorphism, i.e., a continuous, one-to-one
mapping onto ¢ with a continuous inverse ?

In 1930, T. Rado and J. Douglas independently answered this questlon in
the affirmative. Their solution was not only a minimal surface, but also had
minimum possible area among all surfaces f: D — R® which span the given
curve c. However, both Rado and Douglas had to admit surfaces with
possible isolated singularities. A singularity of a mapping f: D — R® is a
point u € D where df, has rank < 2. An isolated singularity is a singularity
which sits in some neighborhood of all whose points, except «, are not
singularities. Whether singularities actually occurred in the Douglas
solution to the Plateau problem was an open problem for forty years.
In 1970, Osserman was able to show that singularities did not occur in
the classical (Douglas) solution to the Plateau problem.!*

The behavior of f at the boundary of D was, up until recently, not well
understood. Hildebrandt1? was able to show that if c is differentiable, then

® There are many proofs of Bernstein’s theorem. One of the shortest is due to Nitsche,
J. C. C. Elementary proof of Bernstein’s theorem on minimal surfaces. Ann. of Math., 66,
543-544 (1957). For another treatment see Chern [AJ].

10 For a detailed presentation of the solution to the Plateau problem, see Courant, R.
Dirichlet’s Problem, Conformal Mappings and Minimal Surfaces. New York: Interscience
Publ., 1950. An excellent introduction to the theory of minimal surfaces in R" is Osser-
man, R. A Survey of Minimal Surfaces. New York: Van Nostrand Reinhold, 1969. A
compendium of the current knowledge about minimal surfaces can be found in Nitsche,
J. C. C. Vorlesungen Uber Minimalfldche, Springer-Verlag, 1975.

11 Osserman, R. A proof of regularity everywhere of the classical solution to Plateau’s
problem. Ann. of Math., 91, 550-569 (1970).

12 Hildebrandt, S. Boundary behavior of minimal surfaces. Arch. Rational Mech. Anal.,
- 35, 47-82 (1969).
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3 Surfaces: Local Theory

f: D — R3, the classical solution to the Plateau problem, is differentiable.
The dependence of f on c is still an open problem. For example, how many
minimal surfaces span a given curve ¢? What are necessary and sufficient
conditions on ¢ which insure the existence of a wmigue solution to the
Plateau problem? What conditions on ¢ will insure the existence of an
embedded solution, i.e., a solution given by a one-to-one mapplng f (see
Gulliver and Spruck 13)

One of the ways in which the Plateau problem has been generalized is
to seek surfaces of constant mean curvature, H = o = const, spanning a
given curve c¢. Even more generally, one might want the mean curvature H
to be specified as a function of position in R2. One seeks a surface f: D — R3
spanning ¢ such that H(u) = h(f(u)), where % is a real-valued function
defined on R®. These problems have physical interpretations just as the
Plateau problem does. Significant contributions to this subject have been
made by Heinz, Hildebrandt, Gulliver, Spruck, and others.4

*? Gulliver, R., and Spruck, J. On embedded minimal surfaces. Annals of Math., 103
(1976), 331-—347

14 Heinz, E. Uber die Existenz einer Fliche konstanter mittlerer Kriimmung bei vor-
gegebener Berandung. Math. Ann., 127, 258-287 (1954). A useful survey article is
Hildebrandt, S. Some recent contrlbutlons to Plateau’s problem, in Differentialgeometrie

im Grossen, W. Klingenberg, ed. Mannheim: Bibl. Inst., 1971.
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Intrinsic Geometry of Surfaces:
Local Theory

We are now going to concentrate on the properties of a surface f: U — R®
which are intrinsic in the sense that they are definable in terms of tangent
vectors to the surface and the first fundamental form and its derivatives. For
example, the length of a vector or the length of a curve on a surface are
“intrinsic quantities. The Gauss curvature and the curvature tensor are also
intrinsic since they may be defined in terms of the first fundamental form and
its derivatives. In contrast, the second fundamental form is not intrinsic.
It requires discussion of normal vector fields and cannot, in any case, be
reduced to the first fundamental form. Also, principal curvatures are not
intrinsic, even though their product, the Gauss curvature, is an intrinsic
quantity.

Our point of view will be to use the map f: U — R® to define the first
fundamental form as an inner product on T,R? ue U. We have done
this previously, but now want to emphasize it. Given X = >?_, a' 9f/ou’,
Y = S2_, W offou’ € T,R2, g (X, Y) = >2a'b! of/out-of]ow’. The first funda-
mental form in this description is an inner product defined on each T,R?. As
such, we will ultimately want to consider it as given and avoid further reference
to the mapping /. In fact, this will be the point of view of the next chapter, in
which Riemannian manifolds will be considered without reference to any
immersion. For now, we will hold on to the picture of f: U — R® as a surface
sitting in Euclidean three-space, using it as a transitional object.

The inner product g, on U < R? is not, in general, the standard
inner product on R2. One theme of this chapter will be to generalize
familiar properties of the standard inner product on R? to new inner prod-

ucts g,. Of particular interest will be those properties relating to vector
differentiation.
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4 Intrinsic Geometry of Surfaces: Local Theory

4.1 Vector Fields and Covariant Differentiation

The natural class of vector fields in the study of intrinsic differential geometry
of a surface f are the tangential vector fields. These correspond to velocity
vectors of paths on f(U). Given a curve u: I — U, it is clear that fouis a
curve on f(U). An application of the implicit function theorem, (0.5.2),
establishes the converse. Namely, given a regular curve ¢(¢) in R® such that
c(t) < f(U) for all ¢, then for any ¢, there exists a map u: I — U, defined on a
neighborhood of z,, such that fo # = c. As a consequence, all tangent vectors
to curves on f may be realized as the image under df of tangent vectors to U. °

Even if X 1s a tangential vector field, 0.X/ou' may not be tangential. This
partially motivates the next definition.

4.1.1 Definition. Let f: U— R® be a surface, ¢ = fou:I— R® a curve
on f, and X:7— R® a tangential vector field along ¢. For ue U, let
pr,: T,.,R® — T, f be orthogonal projection in the direction of the normal

vector n(u). For t €I, the covariant derivative (of X at t), denoted by
VX(t)/dt, 1s the vector field pr,g, o (dX/dt)(1).

4.1.2 The covariant derivative VX(¢z)/dt is a tangential vector field by
definition. Since dX(¢)/dt and pr,, are independent of the choice of coordi-

nates, so 1s VX (¢)/dt. In terms of a coordinate system (!, 4°) on U, we may
write X(¢) = 2, €(t)f.x o u(¢). Then using (3.8.1%),

T = (S + 3 ew (3T + hin) ) cur

It follows immediately that

* T =3 (84 3 EOwOT o)) e o o)

Conclusion: (VX/dt)(¢) is an intrinsic geometric quantity whose expression
in local coordinates involves the Christoffel symbols.

4.1.3 Lemma. If ¢: V — U is a change of variables, let T% and T'Y, be the
Christoffel symbols associated with f and f = fo ¢, respectively. They are
related by the following equation:

i o*u* ov' out ow ov'
r pq — 2

= — — — —I'},.
=~ OvP Ov? ou® T S Ov° vt ouk Y

PROOF. Let ¢ be given in coordinates by ' = u'(v). Then

oy’ . . o’
X= Zéﬂf'ﬁzflifuka SO gkr“zgra:r’ ujmzvqé%'
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- 4.1 Vector Fields and Covariant Differentiation

Using (*),
=SS e+ S ;’:‘:‘;;
-3e+ 3, E”ﬂ“(ai?;; - S o T ) |

S|F+ ZEem)p

Since this identity must hold for all ¥ and 9, the desired result follows.

4.1.4 Proposition. Let X (¢) be two tangential vector fields along c(t) = f o u(t).
Then -

26, Y0) = ¢(T52 v0)) + o X2, T2)

Proor. Using the product rule for differentiation,

dX@®)-Y(@®) _ dX(t) dY(t)
dt dt dt

But for YeT,f, Z-Y = (pr Z)-Y, where pr is projection onto T,f. The
proposition now follows from the definition of covariant differentiation. [

Y(t) + X(¢)-

Remark. If f(u,, us) = (u,, uy, 0), the surface represented is a piece of the
flat plane. Thus I'f; = 0, g(X, Y) = XY, and (*) tells us that in this case
covariant differentiation is ordinary differentiation. '

4.1.5 Let X be a tangential vector field along f: U — R°®. In coordinates we
may write X(u) = > £, fu(uw). If ¢(t) = fo u(t) is any curve on f through u,,
u(0) = u,, we may restrict X to u(¢) and define (VX o u(¢))/dt, which will have
a coordinate representation given by (*) in (4.1.2):

VX;tu(O) Z (g'g; (40) + Z f‘(uo)F?,(uo))uf(O) [ (Uo)

I,k

Notice that the dependence of (VX o u)/dt on u(t) involves only the point u,
and the value of the derivatives #/(0). Consequently, if Y is any tangent vector,
YeT,f, Y =2,9f(u), and c(t) = fou(t) 1s any curve with u(0) = wu,,
¢(0) = Y, then (VX o u(0))/dr will be a vector whose value is independent of
the choice of the curve ¢. We already know by (4.1.2) that (VX o #(0))/dt does
not depend upon the choice of coordinates on U. Therefore (VX o u(0))/dt
depends only on the value of Y € T, f, and from the form of (*) the depend-
ence 1s linear. :
These observations are summarized below.
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4 Intrinsic Geometry of Surfaces: Local Theory

Lemma. Let X be a tangential vector field on a surface f: U — R®. Then for
every u, € U we may define a linear map

VX: T, .f—T.,f

as follows: If Y = 2 v’f(u,), choose a curve c(t) = fo u(t) with u'(0) = u},
wW(0) = v/ (for example, let /(1) = u) + tn). Then VX(Y) = (VX o u(0))/d:.
The map V X is invariantly defined. In particular, VX (t,)/dt = VX (E(t,)).

4.1.6 Definition. Let X(«) be a tangential vector field on f.
1) VX 1s called the covariant differential of X. VX(Y) is the covariant
derivative of X in the direction Y.

11) The function u+ trace VX (u) from U to R is called the divergence
of X, written div X (u).

4.1.7 Observation. Using (4.1.5), we may express div X in coordinates:

diV X = Z Zi: + 2 gil-‘ik = \/— Z auk (\/égk)a

where g = det(g;,.). In the special case where f: U— R® is a linear and
injective map, f(U) is a piece of a plane and g, (u) = 3,;,, Therefore
I', = 0and div X = 3, 9£*/ou*. So we see that the divergence of a vector

field reduces to the usual notion of divergence when the surface is a piece
of a plane. Note: (VX o u(t))/dt = VX(fo u(t)).

4.2 Parallel Translation

4.2.1 Covariant differentiation on a surface generalizes ordinary differentia-
tion in the plane. We may now use covariant differentiation to define what it
means for vectors or vector fields to be parallel along a curve on a surface.
In the plane, a vector field X (¢) along a curve ¢(¢) is constant, or parallel, if its
value 1s constant; X(¢) = X, = constant. In other words, dX(¢)/dt = O.

Definition. Let ¢ = fo u be a curve on a surface f: U — R3. A vector field X
along c 1s parallel along ¢ provided VX(¢)/dt = 0.

4.2.2 It follows immediately from (4.1.4) that if X(¢) and Y (¢) are both
parallel vector fields along ¢, then g..,(X(¢), Y(¢)) is a constant.

Thus a parallel vector field must have constant length and the angle between
two parallel vector fields remains constant. Here, in analogy with Euclidean
space, the angle between two nonzero vectors X and Y is

g(X, Y)_
| X || Y]

@ = arc cos

4.2.3 Theorem. Let f: U — R® be a surface, and c(t) = fo u(t) a curve on f;
to < t < t;. Let u(ty) = up, u(ty) = uy. Then
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4.2 Parallel Translation

1) For every X, €T, f there exzsts a unique parallel vector field X(t) along
c with X(t,) = X,.
ii) The mapping |.: T,,f— T.. f, defined by X,— X(t.), is an isometry.

PROOF. Suppose X(¢) = > £(t)f, o u(t) is parallel along c¢. Then X(¢)
satisfies equation (*) of (4.1.2), namely

() + > WO out) =0, k=12
i,

But this linear system of two differential equations has a unique solution
&(t, £), with initial value £(¢', &) = ¢, for any ¢’ €1, t,]. The corre-
spondence (&%) (€(t, €)) is a linear bijection. Finally, we know from
(4.2.2) that this map is an isometry. [

Remark. The mapping ||. generalizes parallel translation in the plane (constant
vector fields). Given a vector X, at p in the plane, its parallel translation to
another point g will be independent of the path ¢ along which we parallel
translate. This is not true in general. We will soon see examples of surfaces
on which parallel translation is path-dependent. |

4.2.4 Technical lemma. Suppose we are in a coordinate system where g, = 0,

(orthogbnal coordinates). Then g* = 1/gy, I'li. = (108 V&) = &r,1/ 28k
and Pu = — &1,/ 28xs (I # k).

PROOF. It is easily seen that g = 1/g,,, 222 = 1/gs,, and g'? = 0. Therefore

gkk,b lf.] == ka
— &it, ks lf.] - lsk 7& L.

1
if = %gkk(guc it 8k — 8ijk) = ngk{

4.2.5 An example. The sphere. Using the coordinates developed 1n (3.3.7),
g1 = 1, g12 = 0, go2 = cos? u. An application of (4.2.4) yields

FII_P I‘I_FIZ— ’ P12=_tanu, F%2=COSlISinu.

Consider the curve c(z) = f(u(t), v(t)), where u(t) = a€ |—=/2, n/2[, v(t) =
t/cosa, 0 < t < 2w cos a (this is the same curve considered in (3.3.7), a
latitude circle). The differential equations for the components £'(¢), £%(¢) of
a parallel vector field along ¢ are

= 0.

£1(r) + £(t)sina =0,  £%(r) — £(t) —

cos? a

For the initial values (&}, £2) = (0, 1/cos a), these equations have the
unique solution

cos(tan at)
cosa

£1(t) = —sin(tan at), £(t) =

In this case we can give an interesting geometric interpretation of parallel
translation. In (3.7.7) we showed that the osculating developable to the
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4 Intrinsic Geometry of Surfaces: Local Theory

X (o)

Figure 4.1 Development of the osculating cone

sphere along the latitude circle ¢ was the tangential cone meeting the sphere
along ¢ (we will assume that a € ]0, »/2[, so this surface really is a cone).
Slitting the cone along the generator through ¢(0) and applying it to the plane,
we consider what happens to the latitude circle ¢(¢) under this transformation.
It becomes a circular arc of radius cot g and length 27 cos a. At ¢ = 0 the
tangent vector to this segment is X(0), and X (¢) is a parallel (constant) vector
field along this arc when considered as a vector field on the plane.

4.2.6 Definitions. Let c(¢) = fo u(t) be a curve on a surface f: U — R® with
é() # 0. ' -

1) The ordered pair of tangential vector fields e,(¢) := ¢(z)/|c(t)|, ea(2),

along c, where e (¢) satisfies |ex(2)| = 1, ex(2)-e,(t) = 0, and (e;(2), ex(?))

has the same orientation as (f,«(u(?)), f,2(u(2)), is called the Frenet frame

of c.
ii) x,(2) := ex(t)-((Vey(2))/dt)/|é(2)| is the geodesic curvature of c.

Remark. The Frenet frame of a curve ¢ on a surface generalizes the Frenet
frame of a plane curve (see (1.4)), and geodesic curvature generalizes the
curvature of a plane curve. It is easy to see that Frenet frames are unique.
Moreover, the Frenet frame along ¢ and the geodesic curvature of ¢ are
invariantly defined with respect to orientation-preserving change of variables.
If ¢(s) is a change of variables and é(s) = ¢ o (s), then Z,(s) = + x (t(5)),
the sign being the sign of dt/ds (see (1.3.2)). In the case that c¢(¢) is a unit-
speed curve, |é(t)] = 1, we have e;(z) = ¢(t) and Vi(r)/dt = x (t)ey(t).
Therefore «,(t) = + |VEé(t)/dt| (see (1.4)).

4.3 Geodesics

Continuing our study of geometric quantities on surfaces which generalize
familiar objects in the plane, we now investigate the analog of straight lines.

4.3.1 Definition. A curve ¢(t) = fo u(t) on a surface f: U— R® is a geodesic
if Vé(e)/dt = 0.
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4.3 Geodesics

4.3.2 Proposition (A characterization of geodesics). For a regular curve
c(t) = fou(t) on a surface f, the following conditions are equivalent.

1) «,(t) = 0.
ii) If s+ t(s) is a change of variable on c such that C(s) = co t(s) is a
unit-speed curve, then ¢(s) is a geodesic.

PROOF
k(t) = 0K, (s) =0 by (4.2.6)

Vé'(s)
ds

Remark. Proposition (4.3.2) is the generalization of (1.4.2), which charac-
terizes straight lines in the plane. Notice that it follows immediately from the
definition of a geodesic that |é(¢)| is a constant. Provided that |é(¢)| # O, this
means that geodesics are parameterized proportional to arc length. Proposi-
tion (4.3.2) says that a regular curve can be reparameterized to be a geodesic
if and only if «,(¢) = 0. Regular curves satisfying «,(¢) = O are sometlmes,
called pre-geodesics.

In the plane, where Vé(¢)/dt = dé(t)/dt, it follows that a curve c(¢) 1s a
geodesic if and only if ¢(t) = At + B for some constant vectors 4 and B.
Therefore c(¢) is a straight line provided c(¢) is regular (and hence 4 # 0).

— 0 by (4.2.6). O]

<

4.3.3 Proposition. Suppose c(t) = fo u(t) is a geodesic. If u(t) = (u'(t), u*(t)),
then ¢(t) = X, 4(t)f,* o u(t), and combining the equations V(t)/dt = O and
(4.1.2) (*), we see that u(t) must satisfy

(1) + > d (@) o u(t) = 0.
i,5

Conversely, if u(t) satisfies the above equation, ¢ = f o u(t) is a geodesic.

4.3.4 Theorem. Let Xe T, f be a tangent vector to a surface f. Then for
sufficiently small e > 0 there exists a unique geodesic c(t) = fou(t), |t| < e,
satisfying the initial conditions u(0) = u,y, ¢(0) = X

ProOF. This follows immediately from (4.3.3) and the existence and unique-
ness theorem for systems of ordinary differential equations, with initial

conditions #/(0) = u}, u'(0) = £, where X = 2, &f.«(uo). (1

4.3.5 An example. All the nonconstant geodesics on a sphere (f = f(u, v) of
(3.3.7)) are great circles. Recall that

f(u,v) = (cosu-cosv,cosu-sinv,sinu), (u,v)€]—n/2, w/2[ x R.

Since £, (u, v) = —f(u, v) = n(u,v), Vf,Jdu = 0. Consequently, the v =
constant curves, the meridians, are geodesics. Let co(#) be one of these
meridians with ¢,(0) = f(0, 0) and call é,(0) =

Now consider an arbitrary tangent vector X € Ty, .,/ If X = 0, the
geodesic with tangent vector X passing through f(u,, vo) 1s the constant
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4 Intrinsic Geometry of Surfaces: Local Theory

curve ¢(?) = f(uo, vo). If X # 0, we might as well assume that | X'| = 1, since
the geodesics through f(u,, v,) with initial conditions X or X/ | X| are different
parameterizations of the same curve.

Now there exists a rotation B of the sphere in R® such that B o ¢y(0) =
f(uy, vo) and TBX, = X. Since B leaves the first fundamental form invariant,
it must take geodesics into geodesics. Also B takes meridians into great
circles on the sphere. Consequently é(t) = Boc(?) is a geodesic on the
surface f = B o f with the initial conditions ¢(0) = f(u,, vy), ¢(0) = X. We
know c(z) 1s a great circle.

Of course, c(t) 1s a curve on the surface fand not on the surface f. In order
to conclude that all geodesics on f are great circles, it is now necessary to
show that there exists a change of variables ¢ defined on a neighborhood ¥,
of (u,, vo) with values in a neighborhood U of (0, 0) such that

S l Vo= Bofod.

‘Then c(t) = fo u(t) where u(t) = 610, t). We proceed as follows. Since f
1s regular there exists neighborhoods U, of (0, 0) and W, of f(0, 0) on the
sphere such that f: U, — W, is a diffeomorphism (see (0.5.2)). Restricting f
to a smaller neighborhood if necessary, we may assert that there is a neighbor-
hood V, of (uo, vo) such that f|V,: V, — B(W,) = Bo f(U,) is a diffeo-
morphism. Now let

¢ = (flUg)™ e B~ o (f|V,).
It is easy to check that ¢ has the required properties.

Coordinate systems in which some of the coordinate curves are geodesics
play an important part in computations as well as in qualitative results in
the differential geometry of surfaces.

4.3.6 Lemma (The existence of geodesic orthogonal coordinates). Let c(s) =

fouv(s), sel, be a curve on a surface f: V — R3. Fix s, € I and ¢'(s,) # 0.
Then there exists a change of variables ¢: U — V', where V' is an open
neighborhood of 1(s,) such that f = fo ¢ and u = ¢~1 o v satisfies:
1) The curve c(s) = fou(s), for |s — so| sufficiently small, is given by
ul =0, u? = . |
11) The curves u® = constant are geodesics parameterized by arc length.
The curves u' = constant meet these curves orthogonally. The segment
of any u? = constant geodesic between the curves u* = a and u* = b
has length b — a.
iii) The parameters u are an orthogonal coordinate system for f. That is,
g12 = 0. Moreover, g,, = 1 and, of course, go5 > 0. Conversely, if the
matrix of the first fundamental form satisfies

then (11) is valid.
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4.3 Geodesics

In the special case that the initial curve c(s) is a unit-speed geodesic,
8220, u?) = 1, 822,1(0, u?) = 0, and I'{(0, u®) = 0 for all i, j, k.

_ Geodesic lines
u2 = const.

Figure 4.2 Geodesic coordinates

4.3.7 Definition. Coordinates satisfying (i1) or (iii) above are called geodesic
coordinates (with respect to a curve u!' = constant). The curves u! =
constant are called parallel curves. If, in addition, the curve ' = 0 1s a
geodesic parameterized by arc length then these coordinates are sometimes
called Fermi coordinates, although they had already been considered by
Gauss.

ProoF (of Lemma 4.3.6). 1. Since ¢'(s,) # 0, we may assume, after possibly

restricting the domain of definition of ¢, that ¢'(s) # 0 for s e I. This being
done, we may assert the existence of the Frenet frame e,(s), e;(s). For each
se llet ¢(t, s) = fo (2, s) be the geodesic with ¢(0, s) = ¢(s) and (9¢/dt)(0, s) =
eo(s). Each of these geodesics is defined for 7 < ¢(s) and by shrinking the
domain of definition of c¢(s) again, if necessary, we may assume that there is

an ¢ > 0 such that (s) > ¢ for se /.

2. The mapping (¢, s) € (— €', €) x I+ (V'(t, 5), v*(¢, 5)) € V is differen-
tiable because the v'(¢, s) are solutions to the equation for geodesics and those
solutions depend smoothly on the initial conditions c(s), e5(s), which in turn
are differentiable in s. At the point (0, s,), the matrix of first derivatives of
this mapping (the Jacobian matrix) represents vectors which are mapped by
df into ex(s,) and c'(sy). Consequently, they are linearly independent. The
inverse function theorem, (0.5.1), implies that &(z, s) = (©'(¢, 5), v*(¢, 5)) 15
locally a change of variables.

3. At this point, let us change notation and write (¢!, 4®) instead of (¢, s).
Now (i) is immediate from the definition of v and w. Also the curves u? =
constant are unit-speed geodesics by definition. This implies that g,; = 1 and
also that

e + Z 'y, = 0 for ut = t, u® = constant.
i,7

Therefore I'l; = I'?; = 0. But

1
' =5 z gu(gll,l T 81,1 — 811,1) = g”gzl,l = ().
z :
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4 Intrinsic Geometry of Surfaces: Local Theory

Since g2 = —g,,/det(g,,), the equation above implies g;58511 = 0 or
3(g2,).. = 0. Since g,5(0, ¥*) = (inner product of e;(s) with ey(s) along
c(s)) = 0, it follows that g, = 0. Of course, g;5 = det(g;,,) > 0. This proves
(ii) and the first part of (iii). (To see that the curves #! = a and u* = b cut
off an arc of length b — a on any geodesic 4?2 = constant, simply observe
that »! = s is arc length on the curve u? = constant.) '

4. We now prove the second part of (iii). Suppose g;; = 1, g2 = 0, and
go > 0. By (4.2.4), I'};, = I'}; = 0. Therefore Vf,1/ou' = >, ' fit = 0. In
other words, the curves u#2 = constant are unit-speed geodesics cutting the
curves u! = constant orthogonally. Any one of the curves #' = constant may
serve as basis curve.

5. Suppose c(s) is a unit-speed geodesic. Then

Ve, Ve,

0 = £ (exs)-ea(s)) = koeq + —2oey = 22

Similarly, Ve,/ds-e, = 0 since e;-e; = 1. Consequently, Ve,/ds = 0. In
geodesic coordinates, e,(s) = f,: and we may apply (4.1.2) (*) with (¢, &) =
(1, 0). This yields

€.

I'1(0, 4?) = I'$,(0, u?) = 0.
By (4.2.4), I'?, = 1g%2g,, ;. Therefore g,;,(0, ¥*) = 0. Also, 2I'35(0, ¥*) =
822,2(0, u?)/gsa = 0 and 2I'32(0, 4?) = —g42,1(0, 4®)/g11 = 0. L]

4.3.8 Proposition. In geodesic coordinates, K(u) = —(V g22).11/V 822-

PROOF. By (4.3.6) and (4.2.4), T}, = I'l; = T}, = 0 and I'%, = (log Vgz) 1.
Therefore

K = Ria1a __ 322F11 2 — 822121 + g2a(I'11'3s — I'I'3))

g22 822
_ _ 2 _ _ (Vgas)
= —(log Vg22),11 — ((log Vga2)1) Vo -

If one writes (V gs2) 11 + K(V'ga2) = 0, this turns into a differential equation

for vV gqo(12, u3). It will be used below, e.g., in the proofs of (4.4.2) and
(4.4.6). Cf. also example (3.9.1).

4.3.9 Theorem. Let f: U — R® be a surface in geodesic coordinates. Then a
geodesic of the form

c={c@®) :=ft,u3) | 1o < t < 1}
is shorter than any curve b = {b(s) := fou(s) | 5o < § < 851} from p, =
f(to, ug) to py = f(t1, U3): '

L(b) = L(c).
PROOF
L®) = [ VG F g o doXP P ds = [ ] ds = () — s
= tlo"" lo = L(C). ’ L]
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4.4 Surfaces of Constant Curvature
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Figure 4.3 A curve in a geodesic coordinate system
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Remark. The geodesic u2 = u2 in a geodesic coordinate system is said to be
embedded in a field of geodesics. In the previous theorem we compared the
length of such a geodesic ¢ with a curve b which lies within such a field. If ¢
‘and b have the same end points, then L(b) > L(c). If b does not lie in a field
of geodesics, then it is possible that L(b) < L(c). For example, consider a
region on the unit sphere of (3.3.7), namely '

f(u, v) = (cos u-cos v, cos u-sin v, sin u), lu| < =/4, |v] < =/2.

Using (4.3.5) we see that (u, v) are actually geodesic coordinates based on the
curve v = 0. However, we may add to this region a patch of surface which
meets this piece of a sphere smoothly and joins a neighborhood of 10, —#/2]
to a neighborhood of ]0, +#/2[ around the back in such a way that it contains
a curve b of length approximately 2 which, of course, is strictly less than =.
But = 1s the length of the geodesic ¢(z) = f(0,¢), —n/2 < t < =/2.

+
J

S
Figure 4.4

4.4 Surfaces of Constant Curvature

4.4.1 Definition. Two surfaces f: U— R® and f* ¥V — R® are isometric if
there exists a diffeomorphism ¢: V' — U such that

_ Zodd X, dpY) = §,(X, Y)
forallveVand X, YeT,R2

Remark. The map ¢ is called an isometry. 1t is a diffeomorphism which does
not stretch the length of vectors or change angles. It is clear that isometry is
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4 Intrinsic Geometry of Surfaces: Local Theory

an equivalence relation between surfaces, and that the definition involves only

the intrinsic geometry of a surface. If ¢: V——> U is an isometry, then for
all X, YeT,f,

Lo df o db o A1 X, df o db o df 1Y) = §(X, Y).

To check whether a map ¢ is an isometry, it is only necessary to verify

that g,.,(déf, ddf)) = 8./, f;) = &,,. This is because g and # are bilinear and
the coordinate vectors form a basis at each point.

An example. The cylinder f(u,v) = (h(u), k(u), v) with A2 + k'2 = 1,
(u,v) eI x R, is isometric to the strip in the plane defined by f(u, v) =
4,v,00eR°% (u,v) el x R.Themap¢ = id: I x R— I x Risanisometry,

g = Ji-Jx = O = G

Both the cylinder and the plane have zero Gauss curvature. The following
theorem will show that this condition characterizes all surfaces which are
(locally) isometric to the plane; in other words, all surfaces which may be
mapped diffeomorphically onto a piece of the plane without any stretching.

4.4.2 Theorem. Let f: U— R® be a surface. The following conditions are
equivalent.

1) K(u) = 0.
11) There exist local coordinates in which g, = §,..
ii1) Parallel translation is independent of path.
1v) The surface fis locally isometric to an open set of the Euclidean plane R2.

Remark. As usual, the use of the word ‘“local’’ means that the statements
hold true for a sufficiently small simply connected neighborhood of any point
u € U. In fact, the theorem fails *“globally”’; the conditions are not equivalent
in the large. For example, consider the doubly covered annulus

2 2
f(u’v)=(:;2__\/27+—— ) 0<a<u?+ 12 <hb.
u u? + v?

Certainly K = 0, but (ii) and (iv) fail globally.

PROOF. 0. Notice that (ii) and (iv) are clearly equivalent. _
1. (1) = (ii). By using (4.3.6), we may assume that f'is presented locally in
geodesic coordinates based on a geodesic; so-called Fermi coordinates. The

assumption that K = 0 implies that (Vgy,) 11 = O (see (4.3.8)). Therefore

(V/g22) 1 is a function of the second coordinate only. But since g,5 1(0, u%) = 0
in geodesic coordinates, it follows that g,, ; = 0. Since g45(0, u2) = 1, it
must be that g,, = 1.
In geodesic coordinates, g;; = 1 and g,;, = 0. Therefore g, = §,,..
2. (11) = (). Given (ii) it follows from the coordinate formula for parallel

translation, (4.1.2)(*), that parallel translation on f is identical to parallel
translation in the plane, and (iii) is true in the plane.
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4.4 Surfaces of Constant Curvature

3 (iii) = (iv). Let (1, u?) be geodesic parallel coordinates based on a geodesic
(0, #?). We wish to show that the curves (ug, #*) are also geodesics. Consider

the unit vector a = e2/ V g22(ug, 0) € T(y1.0)R?. Since the curve u? = 0 1s a
geodesic and e, is perpendicular to it, the parallel translation of a along #® = 0
to the point (0, 0) must be a unit vector perpendicular to uw? = 0 at (0, 0).

Therefore it is e;/V g22(0, 0). Since u* = 0 is a unit-speed geodesic, the parallel
translate of e,/ V g42(0, 0) along this curve is simply the tangent vector to this

curve. Its value at u2 is e,/V g,4(0, #2). Now parallel translation of this vector
along u? = u? to (u}, ud) preserves orthogonality and length, so the parallel
translate of e,/ @(O, u?) at (ug, ud) is e,/ Vgoo(ud, ud).

Since we are assuming that parallel translation is independent of path,
the parallel translate of a along #' = u} at the point (ug, ¥3) must be

e/ V go0(ul, u2). Therefore e;/V/ gz5 is a parallel vector field along u' = ug.
This means that #* = u} is a geodesic. Even more, it means that go,(ug, ©°)
is a constant function of #2. Using the geodesic equation of (4.3.3), it follows
that T, = 0. By (4.24), T'lys = —g901/2¢::. Therefore gy (u?, ug) =
2-2(0, u2) = 1, since g,, is a constant function.

In geodesic parallel coordinates, g,; = 1 and g,, = 0, so we now have
shown that g, = &,,, and (iv) follows from step 0 above.

4. (iv) = (i). K is invariant under change of variables. So if f 1s 1sometric
to the plane, then K = 0. L]

4.4.3 We will now give a geometric interpretation of parallel vector fields
along a curve ¢ = fou on a surface f. In (3.7.7), we defined the osculating
developable of a surface, and in (3.7.8) and (4.2.5) an example was given
which used the osculating developable to interpret parallel translation on the
sphere. We will now do this in general. Of course, the osculating developable
is not an intrinsic geometric object on a surface, so for the moment we are
leaving the realm of intrinsic differential geometry.

Lemma. Let c¢(t) = fo u(t) be a curve on a surface f. Suppose the osculating
developable of f along c(t) is given by n

g(s, 1) = sY(t) + c(2).

If X(¢) is a tangential vector field on f along c(t), then X(t) is also a
tangential vector field on g along c(t) = g(0, t). Furthermore, X(t) is
parallel along ¢, considered as a curve on f, if and only if X(t) is parallel
along ¢, considered as a curve on g.

4.4.4 Corollary. The developable surface g is locally isometric to the plane.
Therefore X (t) is parallel along c(t) if and only if X(t) is parallel along
c(t) in the Euclidean sense when considered as a vector field along a curve
in the plane.
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4 Intrinsic Geometry of Surfaces: Local Theory

PrROOF. Along c¢(¢) the tangent spaces of f and g agree: T,uf = T ng.
Therefore VX/dt = pr dX/dt 1s the covariant derivative of X along c¢(¢) on
both fand g. This proves the lemma. The corollary now follows from (4.4.2)
and the fact that g has zero Gauss curvature. N

4.4.5 Examples of surfaces with constant Gauss curvature

1. The Euclidean plane: f(u, v) = (u, v, 0) has K = 0.

2. The sphere of radiusr > O: f* = (r-cos u-cos v, r-cos u-sin v, r-sin u) has
curvature K = 1/r2. To see this consider geodesic coordinates 4 = ur,
U = v based on the equator ¥ = 0. Since the equator 1s a geodesic, these
are Fermi coordinates. Let f(#, ) = f"(éi/r, ¥). An easy calculation shows
that

~ . . i
811 =f%=1, 812=f1'f2=03 g22=f3:r20052(_)s |

r

and (4.3.8) allows us to calculate K = —(Vga2) 11/ V822 = 1/r2.
3. The “pseudosphere” of (3.9.1) which is the surface of revolution gener-
ated by a tractrix:

f(u, v) = (h(u) cos v, h(w) sin v, k(1))

with
) = re=vr, k() = f Vi—e®d, r>0,

fi=h*+k?=1 fi-fa=0, [fi=Hn.
These are geodesic parallel coordinates and, by (4.3.8), K = —1/r>.

4.4.6 Proposition. Suppose [ is a surface with Gauss curvature K = K, a
constant. Then in Fermi coordinates

ds? = du’ + cos?(V Kyu) dv?.
Here cos(V Kyu) is interpreted as cosh(V — Kyu) when K, < 0.

Proor. By (4.3.7), g,; = 1 and g,, = 0, so in Fermi coordinates based on
a geodesic u = 0,

ds? = du? + g, dv?

with g42,(0,v) = 1 and g.,,(0,v) = 0. We may assume K, # 0, since the
case K, = 0 follows immediately from (4.4.2). By (4.3.8), (Vga2) 11 +

K,V gso = 0. With the given initial conditions, this equation has the unique
solution '

V' 822 = COS(V Kou). ]
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4.5 Example and Exercises

We will now use this ‘“normal” form for the line element ds? on a surface
of constant Gauss curvature to generalize (4.4.2).

4.4.7 Theorem. Suppose f: U— R® and f: U— R® are two surfaces with
constant Gauss curvature. The surfaces f and f have the same constant
Gauss curvature if and only if they are locally isometric. Under these
conditions, given unit vectors X, € T, f and X, € T,, f, there exists a neigh-
borhood U, of uy and V, of vy and an isometry ¢. Vo — U, with ¢(vy) = up
and dp o df 2 X, = df ' X,.

PrOOF. 1. Suppose f and f have the same constant Gauss curvature. Given
uo € U (resp. vo € V) and X, € T, f a unit vector (resp. X, € T, f), letc(t) =
fou(t) (resp. é(t) = fov(t)) be the unit-speed geodesic with », = #(0) and
¢(0) = X, (resp. v, = v(0) and ¢é(0) = X,). Introduce Fermi coordinates
(u, v) near u, based upon the geodesic ¢ (resp. (#, 7) near v, based upon the
geodesic ¢). The points f(u,) and f(v,) correspond to the coordinate (0, 0).
By (4.4.6), the line elements of f and f are in exactly the same form, which
means that the local diffeomorphism induced by letting ¥ = # and v = ¥ 1s
a local isometry.

2. Suppose f and f are locally isometric. Then K(u,) = K(v,) for every
u, € U and v, € V. f and f have the same constant Gauss curvature. ]

4.5 Examples and Exercises

4.5.1 The geodesics On a surface of revolution.! Let f be a surface of revolution as
defined in (3.3.7, 3). We will consider those surfaces given in the special form:

f(u, v) = (r(u) cos v, r(u) sin v, u), r > 0.

Recall this is the surface generated by rotating the curve (r(u), 0, u) about
the z-axis. The curves v = v, = constant are called meridians. They are
geodesics. The curves ¥ = uy = constant are called parallel circles. They
are circles of radius equal to r(uo).

Let T°f denote the collection of nonzero tangent vectors on f. If X e T,
define 6(X) to be the angle between X and the parallel circle u = wuy (here

X € Tewg,vpf); 1.€.,
0(X) := arc cos(X-f,(uo, vo)/| X |r(uo)).
The mapping
Q: T — R,

defined by X > r(u,) cos 8(X), determines almost all the geodesics on f.
Prove the following theorem due to Clairaut: A curve ¢(z) = f(u(t), v(t))
on f which satisfies u(t) # O is a pre-geodesic if and only if ®(c(¢)) 1s a
constant. (This theorem, which expresses the conservation of the angular
momentum P, is a special case of a more general result about surfaces
which may be expressed in local coordinates whose line element has a
specific form (Liouville line element). See (5.7.5).)

1 See Darboux [A6], Volume III, Book 6, Chapter 1.
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4 Intrinsic Geometry of Surfaces: LLocal Theory

Clairaut’s theorem enables us to give a qualitative description of the
geodesics on a surface of revolution. To simplify matters, let us assume that
the surface f possesses an “equator.’”’ By this we mean that r(#) < r(0) with
equality if and only if « = 0, and for every 4. > 0 in the domain of defini-
tion there exists a unique ¥_ < 0 such that r(u,) = r(u-). In other words,
to every northern latitude circle there corresponds exactly one southern
latitude circle and conversely. This boils down to an assumption about the
shape of the meridian curve; in particular, r(¥) must have a strict local
maximum at # = 0.

Let 6, be an angle small enough to insure the existence of a pair u ., u-
in the u-parameter interval such that r(0) cos 0y = r(u,) = r(u-).

Show: (i) There exists a geodesic which (a) cuts the equator at an angle
of 6,, (b) crosses every parallel circle ¥ = constant foru_ < u < u,, (c) lies
entirely in the region of the surface of revolution with ¥u_ < ¥ < u,, and
(d) meets the parallel circles ¥ = 4, and ¥ = u_ tangentially.

Since rotation, u— u, v—>v + vy, 1S an isometry of a surface of rev-
olution, the above result characterizes every geodesic which crosses the
equator at a sufficiently shallow angle.

(ii) The equator itself is a geodesic. More generally, on any surface of
revolution a parallel circle ¥ = uy = constant is a geodesic if and only if

r ’(UO) = ().

4.5.2 Examples of surfaces of revolution with an equator.’ The surfaces of revolu-

tion with constant curvature K = 1 of (3.9.1, ii) all have equators of length
27ra. By using the fact that these surfaces are locally isometric to the sphere
of constant curvature K = 1 (for which a = 1), show: (i) If aisirrational, a
geodesic which crosses the equator making a sufficiently small angle 6,
(small enough so that the geodesic is defined for all values of ¢, see (4.5.1))
will never close up smoothly. Consequently, the equator is an isolated
closed geodesic. (ii) If a is rational, i.e., a = p/q with p and g relatively prime,
then all geodesics which cross the equator making a sufficiently small angle
6, # 0 must be smoothly closed curves of length 27q. Consequently, any
small perturbation of the initial conditions defining the equatorial geodesic
will be the initial conditions of a closed geodesic.

1 See Darboux [A6], Volume III, Book 6, Chapter 1.
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Two-Dimensional
Riemannian Geometry

In the previous chapter, we considered the intrinsic geometry of a surface
f: U— R®. Many geometric properties of surfaces were presented in terms of
the open set U, together with the positive definite inner product g, on each
T,R? (i.e., in terms of the first fundamental form). The geometric properties
were those invariant under change of variable.

We did, however, continue to distinguish between surfaces which were
isometric but not congruent. For example, we made a distinction between the
cylinder and the plane in (4.4). The cylinder is locally isometric to the plane,
but there does not exist an isometry of R® which maps the plane into the
cylinder, even locally. This distinction is not an intrinsic one, and involves
reference to the ambient space R® and to the respective mappings which
define the plane and the cylinder.

In this chapter, we will make two important generalizations of the notion
of a surface. First, a (local) surface will be defined to be an open set U < R?,
together with a positive definite inner product g, on each T,R2. The inner
product is not required to be derived from some f: U — R3. It is only required
to be differentiable as a function of u € U. Second, the idea of a manifold will
be introduced. A two-dimensional manifold is a topological space which,
locally, is homeomorphic to an open set in R2. For example, each point on the
sphere S2 in R? has a neighborhood homeomorphic to an open set in R?, but
the entire manifold S2 does not have this property. We will want to consider
manifolds on which a positive definite inner product is defined at each point,
i.e., Riemannian manifolds. |
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5 Two-Dimensional Riemannian Geometry

J.1 Local Riemannian Geometry

Let S(2) denote the set of all real symmetric, positive definite 2 x 2 matrices
(8ix). An element of S(2) corresponds to the matrix representation of a
positive definite quadratic form on the vector space R? (see (3.2.1)). As a set,
S'(2) may be considered an open subset of the three-dimensional space of all
2 x 2 symmetric matrices, and as such we may speak of differentiable maps
from R? into S(2), meaning that the induced map from R2 to R3 is differen-
tiable.

5.1.1 Definitions. i) Let U be an open subset of R2. A Riemannian metric on U
1s a differentiable map

g: U— S(Q).

Notation: We will denote a Riemannian metric on U by (U, g).

If (U, g) and (V, &) are two sets with Riemannian metrics, they are
equivalent 1if they are isometric. In other words, they are equivalent if
there exists a diffeomorphism ¢: V' — U such that

LooddX,dpY) = g(X,Y) forall X,YeT,R2and allve V.

If (U, g) and (V, &) are equivalent via an orientation-preserving diffeo-
‘morphism ¢ (det dé > 0), they are said to be positively equivalent.
11) A (local) surface with Riemannian metric is an equivalence class of sets
with Riemannian metric. _ .
A (local) oriented surface with Riemannian metric is a class of sets
with a Riemannian metric which are positively equivalent.
We will use M to denote one of these equivalence classes. In general,
M will be written in terms of one of the (U, g) and we will call (U, g) a
coordinate system of M. The elements of U will correspond to points of
M and these points will be denoted by the letters p, g, r,

Remark. If f: U — R® is a surface in the sense of Chapters 3 and 4, it defines
a surface with a Riemannian metric, namelv the equivalence class of (U, g)
with g, = I,,.

We will now prove that all the geometric objects of Chapter 4, which may
be defined in terms of the Riemannian metric g, = I, and which are invariant
under change of variables, may be generalized to geometrlc objects on a
surface with Riemannian metric. To wit: -

5.1.2 Lemma. Let M be a surface with a Riemannian metric. Let (U, g) be a
coordinate system for M.
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5.1 Local Riemannian Geometry

i) Let ¢ be a curve on M, represented by u(t), to < t < t,. Then the
length of ¢, L(c), and the energy of ¢, E(c), defined by

L(c) := J;tl J g ou() ()i (t) dt

EQ =3[ > gucu@yit)ie) dr

to 1.k

are invariantly defined.
i1) Define the Chrzstoﬁ”el symbols T't; by

I'f 1= 2 Z 8" (&u,s + &u.s — 811.1)
z

and the covariant derivative of the basis vector fields e(u) by

Vet(u) o
o’ z Iy ou e, (u), 1 <i,j,k <2

If X is a vector field on M, the covariant differential VX, and the
divergence div X, may be defined as follows. In terms of the coordinates
(U, g), X may be written as >, £*(u)e,(u). Then VX: T,R* — T, R? is
the linear transformation corresponding to the matrix

x@h = (552 + 3 e@rtou)

(see (4.1.5)) and

v X = _ 1 S0 \re
div X = trace VX = v Z o (Vgé),
where g = det(g,,). (Compare with (4.1.7, 1)).
All of these quantities are invariantly defined.
iii) The covariant derivative VX (t)/dt of a vector field X(t) along a curve

c(t) in M may be defined in terms of a coordinate system (U, g) by
using the formula (4.1.2(*)). Let X(t) = > £(t)e, o u(t). Then

Vf;’( 2 - 2 (ék(t) * ,z,: SO ”(’))ek o u(t).

Using this definition, we may now speak of parallel vector fields X(t)
along c(t), i.e., vector fields satisfying VX(t)/dt =

iv) The Frenet frame of a regular curve c(t) on an orientable surface M is
definable exactly as in (4.2.6).

v) Geodesics as in (4.3.1).

vi) The curvature tensor, defined on (U, g) as in (3.8.4), is coordinate
invariant. It is given by

V V V V
Ruse = 8\ 5k 0 @ ~ 5 o & &
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> Two-Dimensional Riemannian Geometry

vii) The Gauss curvature K is invariantly defined. With respect to (U, g),
it is K = R,z q/det(gy,).

PrROOF. The above definitions involve tangent vectors, curves, and the
Riemannian metric, all of which may be expressed in terms of a local coordi-
nate system, (U, g). What needs to be verified is that these definitions are
independent of choice of coordinate system. |
1. Suppose ¢: (V, &) — (U, g) is an isometry. This means that
ou® ou'

FOEDR RO

From this it is clear that length and energy are invariant under change of
coordinates.

2. To show that the expression (4.1.2(*)) for the covariant derivative is
coordinate invariant, it suffices to verify the transformation law (4.1.3) for the
Christoffel symbols. This may be done by direct calculation. If such a calcula-
tion is not to your taste, here is an alternate proof. First express §,, and I'%,
in terms of g, and I'j,. Now consider (4.1.3) as an identity in which the I'¥,
appear linearly, with coefficients of the form ou!/ov?, 02u'/ov?ov® and their
products.

We now claim that, given u, € U, there is a surface f: U — R® such that
the g,,(u,) and I'{j(u,), defined by f, agree with those given by the Riemannian
metric on U at u,. We have already verified (4.1.3) for surfaces f: U — R®, and
the identity will then follow in the Riemannian case.

- To prove the claim, observe first that it is certainly possible to construct

an f with the required g;,(#,). We may then introduce a change of variables
¢: (v*, v*) > (u?, u?) with ou*/ov* = 8F at uy, and (0%u*/ou? ou')(u,) arbitrary.
Using the trarsformation law for the Christoffel symbols, (4.1.3), it follows
that for an appropriate choice of ¢ the mapping f = fo ¢ will have the
required Christoffel symbols. .

From this (11) and therefore (iii)—(vii) follow all the quantities are param-
eter-invariant. The only loose end is the invariance of R;;,,, but this follows
directly from the definition of R, . , 0O

Before continuing with our general development of the subject of surfaces
with a Riemannian metric, let us pause to consider a very important example.

5.1.3 The hyperbolic plane (the Poincaré half-plane) H?2.

The surface HY is the set U := {(u,v) € R%2|v > 0}, together with the
Riemannian metric ds? := (r2du® + r? dv?)/v?, r > 0 (see (3.4.2)). Recall
that this notation for the metric is equivalent to g, = (r2/v?)s,,..

Introduce geodesic coordinates based on a horizontal line v = v, > 0 as
follows: u = ¥, v = exp(—4/r), (&, ) e R x R. Computing (g,.), using the
transformation law for the first fundamental form under change of variables,
we get g1, = 1, 812 = 0, 22 = r?exp(2ii/r). Therefore, by (4.3.8), K =
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(— \/?22) 11/V82s =—1/r2. The hyperbolic plane H? has constant Gaus.s'
curvature equal to —1/r?.

Notice that the line element ds? of H? in the (u, v) coordinates is equal to
the Euclidean line element du? + dv? multiplied by a function, i.e., 1t 1is
proportional to the Euclidean line element. Because of this, angles measured

in the Euclidean upper half-plane are equal to angles measured in the metric
of H2.

Remark. Given two surfaces with Riemannian metric (U, g) and (U, ), a
mapping ¢: U— U is conformal if §,.,,(dd(X), dp(Y)) = Muw)g.(X, Y) for
all X, Ye TU. Here A: U — R is a real strictly positive differentiable function.
It 1s straightforward to prove that if ¢ is conformal, ¢ preserves angles. In
the above example, the identity is a conformal mapping.

The hyperbolic plane provides a negative answer to a very natural question
that may have already occurred to the astute reader. Is it true that every
surface with Riemannian metric (U, g) can be realized as a surface f: U — R3?
(That is, the metric induced by the mapping f is isometric to g.) In 1901,
David Hilbert proved that H? cannot be realized as a surface in R®.! None-
theless, each point p € H? has a neighborhood V which may be realized as
a surface f: ¥V — R®. In fact, we have all but proved this already. The pseudo-
sphere of (4.4.5) is a surface in R® with constant negative Gauss curvature
—1/r2. But Theorem 4.4.7 says any two such surfaces of the same constant
Gauss curvature are locally isometric.

There is not a globally defined isometry, however. Briefly, HZ? is simply
connected and complete (for precise definitions, see (6.6.2) and (6.4.4),
respectively) and the pseudosphere is neither. Any global isometry would

preserve these properties. A proof of Hilbert’s nonexistence theorem may be
found in Hopf [A11] or do Carmo [AZ8].

5.1.4 A brief word about transformation groups. Let E be a set and G a group.
The group G acts on E as a transformation group if there exists a mapping
G x E— E; (g, x)+> gx such that

(£2182)x = g1(g2X)

and
ex = x, Wwhere e € G 1s the identity element.

For each ge G, the map g: E— E; x+— gx is a bijection since g1 is its inverse.
Of course, a group G may act on a set £ in more than one way.

An action of G on E i1s transitive provided that for each pair x;, xo € G
there exists a g € G such that gx; = x,.

Given x € E, the isotropy subgroup G, is the set of all g € G such that
gx = x. It is easy to check that G, is in fact a subgroup.

1 Hilbert, D. Uber Flichen von konstanter Gausscher Kriimmung. Trans. Amer. Math.
Soc. 2, 87-99 (1901). For further references, see Nirenberg [A12].
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5.1:.5 Definition. SL(2, R), the special linear group in dimension 2, 1s the group
~ of all real (2 x 2)-matrices with determinant = 1.

We may define an action of SL(2, R) on H7? as follows. First introduce
the complex variable z = u + iv. The points («, v) in the upper half-plane
correspond to z = u + iv, v > 0. Given g = (§3) € SL(2, R), let gz =
(az + b)/(cz + d).

Figure 5.1 Geodesic circles in the Poincaré half-plane
It is easy to verify that (g, z) > gz is an action of SL(2, R) on H?. In fact:

5.1.6 Proposition. The group SL(2, R) acts as a group of isometries on H?.
Moreover, the action is transitive (even stronger, given any two unit tangent
vectors to H2, there exists a g € SL(2, R) such that dg maps one into the
other). The isotropy subgroup of any point of H? is isomorphic to SO(2),
the group of rotations of the Euclidean plane. '

PROOF. 1. Let u + iv = z and (az + b)/(cz + d) = Z. If we write dz dz
for du? + dv?, the line element for H? at z may be written ds?(z) =
—4r?2 dz dz)(z — 2)2. (Recall Z = u — iv). An easy calculation shows that
d? = d((az + b)/(cz + d)) = dz/(cz + d)? and therefore ds?(z) = ds*(Z).
This means that z+> Z is an 1sometry.

2. If z=1i, then Z =@ + i0 = (ai + b)/(ci + d) = (bd + ac)/(c*> + d?) +
i(1/(c® + d?)). Now, given any (&, #) with § > 0, there exists a g = (£ 3),
with ad — bc = 1, such that g maps (0, 1) into (#, 7). Namely, let d = 0,
¢ = 1/V?, a=d/VD, and b = — v/?. Therefore SL(2, R) acts transitively
on H?2. ' _

3. The isotropy group of z = i is the group of all matrices (¢ g) with bd +
ac =0, ¢2+4+d?2 =1, and ad — bc = 1. This implies that, for some
$€[0,2n),a =d = cospand b = —c = sin ¢. Conversely, given ¢ € [0, 27],

| cos¢ —sin ¢
(sin $  COS c;‘»)
is an element of the isotropy group of z = i. Therefore SL(2, R); = SO(2],
i.e., the isotropy group of SL(2, R) at i 1s SO(2).
The isotropy groups of any z and z’ are conjugate to one another. For,

if ge SL(2, R) takes z to gz = z/, then G, = gG,g~*. Therefore all
isotropy groups of this action are isomorphic to SO(2). Combining this
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result with (2) above also proves that SL(2 R) acts transitively on the unit
tangent vectors of H?2. ]

5.1.7 The geodesics on H? are, modulo parameterization, circles or straight
lines (in the Euclidean sense) which meet the boundary v = 0 orthogonally.
To prove this it is sufficient to establish the result in the case r = 1, since
the identity map from H? to H? is a homothetic transformation with
constant = r (i.e., a conformal map with A(#) = r). Such a map must preserve
geodesics. (Proof: exercise.)

In H2 g, = 1/v?, g5 =0, and go, = 1/v2. Therefore T'}; = 'z =
'?, =0 and I'?, = — T2, = —TI'}; = 1/v. The differential equations for
geodesics, (4.3.3), can therefore be written in the form

2u0 L u? — p?

i — — = 0, U+ = (.
v v

If 2 = 0, then u = constant. In this case the geodesic is a line orthogonal
tov = 0. '

If # # 0, the first equation implies that In(i/v?) = constant and therefore
u = cv? # 0 for some constant c¢. Similarly, the second equation implies
2 + 2 = bv? > 0 for some constant b. Combining these two equations gives
(dv/du)? = ?/u® = b/c*v? — 1. Therefore (v — a)® + v® = b/c* for some
constant a. This is a circle with center on v = 0. Hence the circle meets v = 0
orthogonally.

5.2 The Tangent Bundle and the Exponential Map

The notion of the tangent bundle TU of U < R? was introduced 1n (0.4). We
recall briefly some notation and basic facts. First, # = ny: TU — U denotes
the projection. The inverse image =~ () of u is precisely T,R2. The canonical
identification TU ~ U x R? allows us to define a differentiable structure on
TU (i.e., as a subset of R*) and therefore it makes sense to speak of differenti-
able functions f: TU — R or differentiable mappings X: U — TU.

Suppose now that (U, g) and (V, &) are two coordinate systems for a

surface M. There must be an isometry ¢: V' — U, that is, a diffeomorphism
with g(dé, dp) = g(_, ). The tangential of ¢,

_ Td: TV —TU,
must also be a diffefomorphism (for definition, see (0.4)). Moreover, T¢ 1s

compatible with the projections; 7y o T¢ = ¢ o my. Also, T¢|T,R? maps T,R?
onto T,.,R? isometrically. Using this we may make the following definitions.

5.2.1 Definitions. Let M be a surface with a Riemannian metric.
i) Let (V,£) and (U, g) be representations of M and ¢: V— U an
isometry. We will say that X, e T,R?> < TV is equivalent to X, €
T, R2 < TU provided Té(v, X,) = (u, X,),1.e.,$(v) = uand dé, X, = X,,.
A tangent vector to M is an equivalence class of such vectors.

95



5 Two-Dimensional Riemannian Geometry

ii) Every tangent vector X to M determines an element of M. If X is
represented by (v, X,) € T,R* < TU, the point p € M represented by
u € U1s called the base point of the tangent vector X. The base point of
X 1s defined independently of choice of coordinate systems.

ii) The tangent bundle of M, denoted by TM, is the set of all tangent
vectors of M, together with the map »: TM — M which maps X € TM
to its base point. If U is a representative of M, TU together with
7y TU — U is called a representation of TM. The tangent bundle TM
of M has a natural differentiable structure inherited from the differen-
tiable structure of its representatives. This differentiable structure is
clearly independent of the choice of representative.

1v) The inverse image =~ 1(p) of a point p € M under the bundle projection
w: TM — M 1s called the tangent space of M at p. Notation: T,M.
The space T,M consists of precisely those vectors in TM with base
point equal to p. If TM is represented by TU and p is represented by «,
T,M i1s represented by T,R2. Via this identification, T,M has the
structure of a two-dimensional real vector space with a positive
definite inner product g, defined by g,.

v) Given X € TM, the norm of X, |X]|, is defined by |X| := |X,| :=

Vg.(X., X.,), where X, € T,R? is a representative of X.

vi) Let e > 0. By B.M we will mean the set of all X € TM with | X| < e.
The set B, < TM 1s an open set because, in a representation TU,
B.M is represented by the set of all X, with | X,| < e. This set is the
inverse image of the open interval ]—e¢, €[ under the continuous func-
tion v: TU — R that carries X, into | X,|.

Remark. For each pe M, B.M N T, M is the open disc B(0) centered at the
origin in T, M. Let X € T, M. Given a sufficiently small ¢ > 0 (¢ depends on X),
there exists a unique geodesic c¢(¢), |t| < ¢, in M with ¢(0) = X (this follows
from (4.3.4)). We shall denote this geodesic by cy.

We now want to use this fact in order to construct a map from B.(0) onto a
neighborhood of pin M. To be precise, the map we will use is X € B.(0) — cx(1).
Even more, we would like to do this simultaneously for all p € M in a suffi-
ciently small neighborhood of a point p, € M.

S.2.2 Lemma. Let M be a surface with a Riemannian metric and let p, € M.
Then there exists an open neighborhood M, of p, and an € = €(p,) > 0 such

that the map B.M, — M given by X — cx(1) is defined and differentiable.
Consequently, if rXe€ My and |X| < ¢, then tX, 0 < t < 1, gets mapped
into a geodesic cx(t).

ProoOF. 1. We will do everything in a coordinate system (U, g) of M. The
point p, will be represented by wu,.
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2. The differential equations (4.3.3) (*) for a geodesic can be written in the
form

ik = v¥, vF = —Z v/ T'E(u).
.9
Let u(t; u, X), v(t; u, X) be the solution of these equations which have
the initial value (4, X) € U x R? ~ TU when ¢ = 0. Applying well-known
theorems of the theory of ordinary differential equations (see Hurewicz,
Lectures on Ordinary Differential Equations, M.I.T. Press, 1958), there
exists a neighborhood W = ]—20, 20[ x B5s(u,) x B;(0) of (0,%,,0)eR X
U x R? on which the map ®: W — U x R?2 given by

- (tu, X)) (u(t; u, X), v(t; u, X))

is differentiable. Here B¢ denotes the disk of radius p in the Euclidean
metric.

3. Since B§(u,) is relatively compact in U, there exists a y > 0 such that, for
every u € Bi(u,), X - X = (x} + x3) < v*g.(X, X).
Set € = nf/y, and define U, = Bi(u,). From the differential equations
above, it follows that for 8 # 0 the following identities hold: |

u(t; u, X) = u(t0, u, X/0), v(t; u, X) = 6v(t0; u, X/0).
Now [t] < 2 < |t8] < 26 and, if g,(X, X) < €,
(X/0)-(X/0) < y*gu(X]0, X/0) < y*€°[6% = n°.
Therefore @ is defined and differentiable on ]—2, 2[ x Be U,, where
B.U; = {XeTU, | gax(X, X) < €%}

4. Let uy be the representative of cx in (U, g). Suppose X € B.U,. Since
ux(t) = u(t, 7X, X), the map X — ux(1) is differentiable. Since ux(t) =
u(t, X, X) = u(l, 7w X, tX) = u;x(1), the set {tX|0 < ¢ < 1} is mapped
onto {ux(t) |0 <t < 1} ]

Figure 5.2

5.2.3 Definition. The map
.BEMO‘—)'M; X CX(I)

is called the exponential map and is usually denoted by “‘exp.” The open
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sets M, and B.M, corresponding to a given point p, € M are defined in
(5.2.2), where the existence and smoothness of exp is proved.

Remark. The name exponential mapping comes from the theory of Lie
groups. In the simplest possible case, the map T,R*-> R* given by 7+~ €' is
a map from the tangent space T,R* of the multiplicative group R* of positive
reals (which we may identify with the additive group R) into R*.

5.2.4 Lemma. Let M be a surface with Riemannian metric. Let p, € M. Then
Do has a neighborhood My < M such that, for some ¢ > 0, the map

m X exp: B.My— M x M defined by X+ (=X, exp X)

is an injective diffeomorphism (in other words, a diffeomorphism from B.M,
onto an open subset of M x M).

PROOF. First translate the claim into a statement for a local coordinate system
(U, g). Let u, € U be a representative of p,. The map = x exp: B.Uy— U x U
exists and is differentiable by (5.2.2). Using (0.5.1), it will suffice to show that
the differential of # x exp is injective at (u,, 0). Toward that end, consider the
curve (¥, + tX,, tX) in B .U,. This curve passes through (u,, 0) when ¢ = 0.
What 1s its image in M x M under = x exp? Using the notation of (5.2.2),
we see thatitis (uy + tX,, u(2; ug + tX,, X)). Thisis because u(l; u, + tX,, tX)
= u(t; up + tXo, X). Thus d(m x exp)u, o0 Xo» X) = (Xo, X + X,), and
therefore d(= x exp).,.o) 1S injective. (]

As an easy corollary of this lemma, we have the following:

5.2.5 Theorem. Let p, be a point on M, a surface with a Riemannian metric.
Then there exists a neighborhood My < M of p, and a p = p(p,) > 0 such
that:

1) Any two points q, r € My may be joined by a unique geodesic c,, = c(t),
0<t<l,oflength < p.
11) The map My, x My, — TM given by (q, r)— ¢,(0) is differentiable.
111) For every qe€ M, the map exp,: B,(0) < T,M — M is an injective
diffeomorphism (a diffeo onto an open subset of M).

PrRoOF. Let (U, g) be a coordinate system for M. Let u, € U. Choose p and
Uy 3 uy as in (5.2.4), making

m X exp: B,Uy—> U x U

an injective diffeomorphism. Choose U, containing u, small enough so that
(= x exp)(B,Uy) = U, x U,. Therefore

(m x exp)~t: Uy x Uy— B,Uyq

1s an injective diffeomorphism. What does this mean? Given v and w in Uy,
(m x exp) (v, w) = XeT,R? is a tangent vector and wux(¢), 0 < ¢ < 1,
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represents a geodesic of length = |X| < p. Moreover, cx(?) joins v to w.
This proves (1) and (ii). (Why is cx(¢) “unique” ?)

Since exp, B,(0) = pro(w x exp | B,Uy N T, R?®),where pr: U x U—- U
is projection onto the second factor, (111) follows. ]

5.2.6 Definition. Let M be a surface with Riemannian metric. Suppose p > 0
is such that exp, restricted to B,(0) = T,M is an injective difffomorphism
from B,(0) into M. Then the image of B,(0) is called the p-disc with center
p. It is denoted by B,(p). '

The set B,(p) = exp, B,(0) consists of precisely those points in M
which may be joined to p by a geodesic of length less than p. (We know
that every point in B,(p) may be joined to p by a geodesic of length < p.
The converse follows from (5.3.4), below.)

5.3 Geodesic Polar Coordinates

5.3.1 Definition. Let M be a surface with a Riemannian metric. Let pe M
be a point in M and let p > 0 be such that B,(p) is a p-disk with center at p.
Let {e,(p), eo(p)} be an orthonormal basis of T,M.

i) The coordinate system ¢: B,(0) < T,M = R?> — B,(p), defined by
(v1, v?) — exp,(3; v'ei(p)), is known as (Riemannian) normal coordinates.
ii) Geodesic polar (or simply polar) coordinates on B,(p) are the coordinates

$:10, p[ x R— B,(p) — {p}: (r, )= exp,(r cos fe;(p) + r sin fey(p)).

The curves r = constant are called geodesic circles centered at p.

Geod. circle

Geod. line
rd

Figure 5.3 Geodesic polar coordinates

Remarks. 1) Riemannian normal coordinates may be defined with respect to
coordinate system (U, g) as follows. Let u, € U be a representative of p.
Choose {e;(u,), e2(u,)} an orthonormal basis of T, ,R? with respect to the
metric g,,. Define ¢é: B,(0) —> B,(u,) by (v', v?)> exp,(vie; + vey).
Clearly ¢ is a diffeomorphism. Let g(_, ») := g(dé, d$) be the induced
metric on B,(0). Then (B,(0), £) is a Riemannian coordinate system for
B ,(0). '
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i1) In order to make geodesic polar coordinates into a coordinate system in
the usual sense, the & variable must be restricted to lie in an open interval
of length < 2#. For example,

$:10, o[ x ]—m, n[ — B,(uo) — {—pte,;0 < t < 1},

We have to remove an entire radius.

5.3.2 Proposition (Gauss-Lemma).2 Polar coordinates are geodesic coordinates
based on a geodesic circle.

PROOF. Let (U, g) be a coordinate system on M. As in the remark above, we

may define

¢:V:i=]-p, p[ X ]=m, 7[ - B,(u,)
(v1, v?) — exp, (1! cos v2e, + v! sin v2e;) =: (ut, u?).

We shall show that this is a geodesic coordinate system when v* > 0. To
do this we shall use (4.3.6 (iii)), which means we must show that in these
coordinates §;; = 1, §1, = 0, and g3, > 0. Now consider

on V. Since u*(0, v?) = uf = constant for k = 1, 2, §,,(0, v2) = 0. Fixing
v? = p§and letting v* = ¢t € ] —p, p[ vary parameterizes a unit-speed geodesic.
Therefore §,;, = 1 and, for v* > 0, I'}; = I'?, = 0. By definition of I'?,,

ng(zgil-l — &11,1) = 28%8n,, = 0.
{

But g%? = g,,/det(g;) # 0, which means that g,,, = 0 for »* > 0 and
therefore for v > 0 by continuity. &,,(0, v?) = 0 implies that §,, = 0. [

Our first application of the fact that geodesic polar coordinates are
geodesic coordinates will be to show that geodesics have length minimizing
properties analogous to those of straight lines in the plane, at least locally.

3.3.3 Definitions. On a surface M with Riemannian metric,
1) acurvec = c(t), 7, < t < t,, from p, = ¢(t,) to g = c(t,) is minimizing
if, for any curve b = b(s), s < § < 5,4, from p, = b(s,) to p; = b(s,),
L(b) = L(c);
ii) a curve ¢ = ¢(t), te I, on M is locally minimizing if, for every t, € I,
there exists a closed interval I, < I containing ¢, as interior point and
on which c/I, is minimizing.

5.3.4 Theorem. Let B,(p) be a p-disk centered at p € M.
1) For every q € B,(p), the geodesic ¢ = c,, = ¢(t), 0 < t < 1, defined in
(3.2.5), is minimizing.

2 See footnote 12 of Chapter 6.
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ii) If b = b(s), 5o < § < 8y, is any other curve from p = b(s,) to q = b(s,),
then L(b) > L(c) with equality if and only if there exists a diffeomorphism
t: [so, 1] = [0, 1] with dt/ds = 0 and b(s) = c(t(s)).

PROOF. 1. Without loss of generality ¢ # p and L(c) = ro > 0.

2.

4.

5.

We may further assume that given any comparison curve b(s), So < § < $3,
then b(s) s p for s > s,. Introduce geodesic polar coordinates (5.3.1 (1))
on B,(p) — {p}. Here (r, 0) €10, p[ x R, and we may arrange it so that

0(c(z)) = 0. ' |

. Suppose b(s) € B,(p) for all se [sy, 5;]. As in (2.1.3) one proves the

existence of differentiable functions 8: [so, 5] — R and r: [so, 51] = 10, pl
such that

b(s) = exp,(r(s) cos 0(s)e; + r(s) sin 6(s)es)
(this may also be proved directly). It follows that for e > O sufficiently small,

S

L | [so + e sl]) = Vr'(s)? + g220°(s)?ds = r(sy) — r(so + €)

SotE€

= L(c) — r(s, + e).
Since r(s, + €) — 0 as e — 0, L(b) = L(c).

Figure 5.4 Geodesics are locally minimizing

Suppose b(s) leaves the set B,(p). This means that there exists an s; < 53
such that b|[so, sa] < B,(p) and L(c) < r(sz) < p. Therefore L(b) =
r(s;) > L(c).

Suppose L(b) = L(c). Looking at the inequality in (3), we see that the
only way to get equality is for 6°(s) = Oand r'(s) 2 0. Therefore 6(s) = 0.
Letting #(s) = r(s)/ro, where ro = L(c), produces the required change of
parameter. []

5.3.5 Theorem (A characterization of geodesics). 4 curve b = b(s), S <

s < sy, on M is locally minimizing if and only if there exists a smooth
mapping t: [so, 1] [0, 1] with dt/ds = O such that b(s) = c(t(s)), where
¢ is a geodesic.

PROOF. By (5.3.4), b is locally minimizing implies that b is locally of the form
c(t(s)). Conversely, (5.2.5) and (5.3.4) together show that geodesics are
locally minimizing, since length remains unchanged under a change of
parameters s+—> ¢(s) with dt/ds = O. [1
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5.4 Jacobi Fields

S.4.1 Definition. Let ¢ = ¢(¢), 0 < ¢ < a, be a unit-speed geodesic on M. A
vector field Y (¢) along c is a Jacobi field provided g.a(C(?), Y()) = 0, i.e.,
Y 1s orthogonal to ¢, and

* T2 (@) + Ko ot)Y(t) = O

This definition is clearly coordinate invariant, i.e., independent of the
choice of a coordinate system (U, g) on M. It will be useful to have (*)
expressed in terms of the Frenet frame e (), ex(¢) on c. We may write
Y(2) = ya(t)es(t) for some smooth function y(¢). Then (*) is equivalent to

J(t) + Ko c(t)y(t) = 0.
Thus follows since V'ey(¢)/dt! = 0. As a further consequence of this,

g €0, T52) = oo i), 502et) + 310 T20) = 0

5.4.2 Proposition. Let c(t) be a unit-speed geodesic (|¢(t)| = 1). Given
Ao, a1 € R, there exists a unique Jacobi field Y (t) = y(t)ey(t) with 0) = ao,

¥(0) = a,. - . L]

This follows directly from the ex1stence and umqueness theorem for
ordinary differential equations.

5.4.3 Lemma (How to produce a Jacobi field). Let c¢(¢), 0 < ¢t < a, be a
geodesic with |é(t)| = 1 and call ¢(0) = p. Let &(t) denote the segment
1¢(0), 0 < ¢ < a, in the tangent space T,M. Let A € T,M be a vector or-
thogonal to ¢(0). Then

Y(2) := (d expp)ee(tA) € TouM

is a Jacobi field along c(t). Moreover, Y(t) satisfies the initial conditions
Y(0) = 0and VY/dt(0) = A. (Here we consider tA as an element of Tz ,M,
via the canonical identification.) Since a Jacobi field Y(t) is completely

determined by the initial conditions Y(0), (VY/dt)(0), every Jacobi field Y (¢)
with Y(0) = 0 may be written in the above form. -

PROOF. 1. Without loss of generality we may assume that 4 # 0. Furthermore,
solutions to the Jacobi equation (*) form a vector space; in particular, if
Y(t) is a Jacobi field so is a-Y(¢), a € R. Therefore we may assume that
4] = 1. -

2. Consider the orthonormal basis {e;(p), es(p)} = {¢(0), 4} in T,M. For
sufficiently small 8, ¢ > 0, we will define ¢: [0, a + 8[ x ]—e, e[ — M by

(r, 0) > exp,(r cos 8 e,(p) + r sin Bey(p)).
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Figure 5.5 Generation of a Jacobi field by variation through geodesics

For sufficiently small r > 0, this is a polar coordinate system centered at p.
We need to show that there exists 8 > 0 and € > 0 so that ¢ 1s defined.
Notice that ¢(z, 0) is defined for # € [0, a]; in fact, ¢(¢, 0) = c(¢). Moreover,
#([0, a], 0) is compact. If U < T,M is the domain of definition of exp,, then
¢([0, a], 0) lies in exp,(U), an open set. The existence of the required € > 0
and 8 > 0 now follow from the compactness of &([0, a], 0).

Let {e,(¢), ex(t)} be the Frenet frame along c(z) with {e;(0), ex(0)} =
{e,(p), es(p)}. We consider the (¢, 8) coordinate having coordinate basis
{e.(t, 0), ex(t, 0)}). Now Y(t) = (64/00)(t, 0) = dé(es(t, 0)), so if we write
Y(t) = y(t)ey(t), then y(¢)? = | Y(¢)|% Wherever ¢ is a coordinate system,
its first fundamental form (g,;) must have g,5(¢, 0) = p(¢)?. In fact, ¢ will be a
coordinate system in a neighborhood of any point (z, 0) where y(¢) # 0, 1.e.,
where Y () # 0. On such a neighborhood, we have geodesic polar coordinates
and hence, by (5.3.2), geodesic coordinates. This allows us to use the formula
for Gauss curvature:
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of (4.3.8), where we consider (¢, §) = (u', 4®). Since ga,(t, 0) = y(¢)% the
above formula implies that at least for ¢ € f where y(¢) # 0,

(*) () + Ko c()y(t) = 0.

How do we handle the points where y(¢t) = Y(¢) = 0? Such points must
be isolated: for if 7, were a nonisolated point of this set, then Y (¢,) would be
the unique Jacobi field with Y(¢,) = VY(¢,)/dt = 0, 1.e., Y(¢) = 0, con-
tradicting the fact that VY (0)/dt = 4 # 0. Now y(¢) is defined and differenti-
able for all r and satisfies (*) except at isolated points. It follows by continuity
of y(¢) that y(¢) satisfies the equation (*) everywhere.

3. We now calculate (VY/dt)(0). Letting (¢, 6) = (%, u?), the geodesic
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¢(t) 1s representable as ¢ou, where uw'(¢) =1t #%(t) =0, and Y(¢) =
dé(ex(u'(), u?(2))) = dq‘:(t(a/@uz)) = t(0¢{ou?)(t, 0). Using (4.1.2),
Y_;f (0) = 11m o (t) = hm (ez(t, 0) + Z tI's e (2, O)). = e,(0)

=32(P)= . . | []

Remark. It follows from (3) of the proof that in geodesic polar coordinates,

(u', u?) = (t, ) exp,(t cos Oe; + tsin fe;), Vgaolt, 6,) is equal to the
length of the unique Jacobi field Y (¢) along y, (z) = exp,(¢cos fye; + ¢ sin 6ye,)

with Y(0) = 0 and (VY/dt)(0) = —sin 6,e; + cos ,e..

5.4.4 Proposition. Let Y(t) = y(t)es(t) be a Jacobi field along c(t) with

W0) = 0, y(0) = 1. Then we have the following Taylor series expanszon for
y(it)att = 0:

Wt) =t — Ko c(0)- £E+

Proor. Immediate from the differential equation

y+ Koc(t) y() = 0. N

We now use this proposition to prove several interesting results about the
geometry of M near p. We assume B,(p) is an embedded geodesic disk.

5.4.5 Proposition. i) Let L(r) be the length of a geodesic circle SX(p) of radius
rin B,(p). Then we have the following Taylor expansion for L(r)atr = 0:

3
L(r) = 2ar — 217K(p)-% +....

it) Let A(r) be the area of the r-disk B,(p) centered at p, r < p. Then we
have the following Taylor expansion for A(r) at r = 0O:

4

A(r) = mr® — 7K(p)-T5 4
Remark. The notion of the area of a subset of M is defined in (5.6.6).

As an immediate corollary of (5.4.5) we get a striking theorem which
relates Gauss curvature to the deviation of the geometric functions L(r) and
A(r) on a surface M from the corresponding Euclidean quantities. '

5.4.6 Theorem. Let L(r) and A(r) be defined as in (5.4.5). Then
K(p) = lim 2L = EO) 3 _ 1 — A(r) 12

r—0 r3 (s r—0 r4 o™

PROOF of (5.4.5). Let {el(p) ex(p)} be an orthonormal basis of T,M. The
unit circle in T,M is b(s) = cos s-e,(p) + sin s-ex(p), and the geodesic
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5.5 Manifolds

circles S}(p) may be expressed as c(s) = exp, rb(s), 0 < s < 2m. Using
(5.4.3) we may interpret ¢'(s) = (d expp),.g(s,rb (s) as the value at ¢t = r of
the Jacobi field Y(z; s) = (d exp, )5, tb'(s) along exp, th(s), 0 < t < r. Since
|6'(s)| = 1, (5.4.4) implies that |Y(r; s)| = r — K(p)-r3/6 + ... for r small.
Therefore

L) = [ 1¥e,5)lds = |

0

and

A(B(p)) = f:f:n Y1, 5)| ds dt = forf:u (z - K&+ ) ds dt,

which proves the proposition. O

5.5 Manifolds

We will now introduce the second generalization of the idea of a surface. Up
to now, we have required a surface to be representable in terms of one single
coordinate system (U, g). This restriction will now be dropped. It will now
be possible to treat, for example, the entire sphere S2 in R? as a surface. Until
now, we have had to consider only a part of $2, e.g., $2? minus half of a great
circle as in (3.3.7).

- Furthermore, it will be useful to allow our generalized surfaces to have
arbitrary dimension, and not restrict them to dimension 2. We have already
seen that investigating surfaces of dimension 2 leads to the introduction of
the tangent bundle, a four-dimensional object.

3.5.1 Definitions. 1) A topological manifold M of dimension n is a Hausdorff
‘topological space with a countable basis such that there exists a
family of homeomorphisms {u,: M, — U, < R"},., from open sets
M,< M to open sets U, < R* and | J, M, = M. These homeo-
morphisms will usually be denoted by (u,, M,), and they are called
coordinate systems or charts for M. The collection (u,, M‘:,,),,b,,,E 4 1s called
a (topological) atlas for M.
11) An atlas (u,, M,).c. 1s a differentiable atlas if, for every (e, B)e A x A,
- thehomeomorphism ugo (4, | M, N M) :u (M, O Mg)—ug(MzN M,)
is a diffeomorphism.
1) Two atlases (u,, My).ea and (u,., M), <4 are equivalent if the union
of these atlases is a differentiable atlas. |
1v) A differentiable manifold is a topological manifold together with an
equivalence class of differentiable atlases.

Remark. For the case n = dim M = 2, a manifold is also called a surface.
These will be the focus of our study.
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It is clear that (iii) defines an equivalence relation. For two equivalent
atlases (Uy, M )yea aDd (4o, My )grcar €VETY Ugougl, (a,a’)€A X A" 1s 2
diffefomorphism. Note: From now on, when we speak of an atlas we will always
mean a differentiable atlas. '
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Figure 5.6 Change of coordinates

The concept of differentiable manifold allows us to define what it means
for a function F: M — N between differentiable manifolds to be a differenti-

able function.

T— —_—

5.5.2 Definition. Suppose M and N are differentiable manifolds and F: M — N
is a continuous function. Then F is differentiable if, for atlases (#,, My)qsea

of M and (vg, Ng)ses Of N, the function
vgo o Ug ' UMy N F_I(NB)) — Up(Np)

is differentiable for all (¢, B)e A X B.
This definition is independent of the choice of atlases as one may readily

see from the equality

0 0 Fougt = (o5 0 05%) o 05 0 Fouz?) o (t o ).

ExaMPLE. A curve c:I— M is differentiable provided: for every chart
(u,, M), c|(INc(M,) is represented by a differentiable function
C.:.telnc (M, — u(M,). We consider I as a one-dimensional differen-

tiable manifold with atlas consisting of the single chart (id, ).

5.5.3 Some examples of (differentiable) surfaces and manifolds

1. The sphere M = S2(0) = {(x, y,2) e R® | x® + y® + z% = r?} with the
topology induced from R3, Since it is a subset of R®, M is Hausdorff and has
a countable basis of open sets. We may define an atlas consisting of two charts,

fu,, M.}, {u_, M_}, as follows:
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M+=M“{(O:Os_r)}s M_=M—'{(0,0,I’)}

- rx ry
u+(x, Vs Z) o ((I‘ -4 z)’ (i‘ + Z))

rx ry

u—(x, Y Z) = ((I‘ — Z)’ (r — Z)) =. (6, 77)-

The maps », and u_ are stereographic projections from the south and
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