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This book was written expressly to serve as a textbook for a one- or
two-semester introductory graduate course in functional analysis. Its (soon
to be published) companion volume, Operators on Hilbert Space, 1s 1n-
tended to be used as a textbook for a subsequent course in operator theory.
In writing these books we have naturally been concerned with the level of
preparation of the potential reader, and, roughly speaking, we suppose him
to be famihiar with the approximate equivalent of a one-semester course 1n
each of the following areas: linear algebra, general topology, complex
analysis, and measure theory. Experience has taught us, however, that such
a sequence of courses inevitably fails to treat certain topics that are
important in the study of functional analysis and operator theory. For
example, tensor products are frequently not discussed 1n a first course 1n
linear algebra. Likewise for the topics of convergence of nets and the Baire
category theorem in a course in topology, and the connections between
measure and topology in a course in measure theory. For this reason we
have chosen to devote the first ten chapters of this volume (entitled Part I)
to topics of a preliminary nature. In other words, Part I summarizes in
considerable detail what a student should (and eventually must) know 1n
order to study functional analysis and operator theory successfully. The
presence of this extensive review of the prerequisite material means that a
student who 1s not familiar with one or more of the four basic courses
mentioned above may still successfully read this book by making liberal
use of Part I. Indeed, it should be said that perhaps the only critical
prerequisite for a profitable reading of this book is a certain mathematical
maturity, which, for our purposes, may be taken to mean the ability to
follow and construct e-6 arguments, a level of maturity that any talented
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student who has had a good course in advanced calculus will have
attained.

In keeping with our pedagogical intent in writing this book, we have
provided both examples and exercises in copious supply. Indeed, every
chapter contairis a number of illuminating examples and is followed by a
collection of problems. (Some problems appear as simple assertions of
fact; in such cases the student is expected to provide a proof of the stated
fact.) In this connection we observe that the problem sets constitute an
integral part of the book, and that the student must study them along with
the text. Working problems is very important in the study of mathematics
in general, of course, for that is how mathematics is learned, but in this
textbook it is particularly important because many topics of interest are
first introduced in the problems. Not infrequently the solution of a
problem depends in part on material in one or more preceding problems, a
fact that instructors should bear in mind when assigning problems to a

class.
While, as noted, this book 1s intended to serve as a textbook for a

course, it i1s our hope that the wealth of carefully chosen examples and
problems, together with the very explicit summary of prerequisite material
in Part I, will enable it to be useful as well to the interested student who
wishes to study functional analysis individually.

An instructor who plans to use this book as a textbook in a course has
several options depending on the time available to him and the level of
preparation of his students. He may wish to begin, for example, by
devoting some weeks to the study of various chapters 1n Part I. Whether he
does this or not, time limitations may make it impossible for him to treat
all of Part Il in one semester. With this in mind, we suggest the following
abbreviated syllabus for a somewhat shorter course of study.

Chapter 11: Read entire text; omit Problems L-Q and U-Y.

Chapter 12: Read entire text; omit Problems R-Y.

Chapter 13: Read entire text; omit Problems S-T.

Chapter 14: Omit the material on Frechét spaces, viz., Examples H-L
and Proposition 14.9; omit Problems Q-W.

Chapter 15: Omit all text after Theorem 15.11; omit Problems O-X.

Chapter 16: Omit the material on dual pairs, viz., everything after
Proposition 16.12; omit Problems O-X.

Chapter 17: Read entire text; omit Problems T-Y.

Chapter 18: Omit the material on approximation theory, viz., everything
after Example D; omit Problems V-W.

Chapter 19: Omit.

In the writing of this book no systematic effort has been made to
attribute results or to assign historical priorities.

The notation and terminology used throughout the book are in essen-
tial agreement with those to be found in contemporary (American)
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textbooks. In particular, the symbols N, Z, R, and C will consistently
represent the systems of positive integers, integers, real numbers, and
complex numbers, respectively. We have also found it convenient to
reserve the symbol N, for the system of nonnegative integers.

Finally, there 1s one basic convention in force throughout the book: A/
vector spaces that appear herein are either real or complex. If nothing is said
about the scalar field of a vector space under discussion, it is automatically
assumed to be complex.

ARLEN BROWN
CARL PEARCY
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PART 1
PRELIMINARIES




Set theory

We shall assume the reader to be familiar with the elements of set theory.
Nonetheless, we begin with a review of certain set-theoretic fundamentals,
largely to fix notation and terminology. (Readers wishing to improve their
acquaintance with set theory, or to pursue in greater depth any of the topics
touched on below, might consult [31] or [34]; another excellent source for
most topics is [ 10].) For one thing, at the most elementary level, we reserve
certain symbols throughout the book for several important sets. The system
of positive integers is denoted by N, the system of nonnhegative integers by
N,, the system of all integers by Z, the real number system by R, and the
complex number system by C. The empty set 1s denoted by ¢, and if X and
Y are any two sets, the set-theoretic difference {x € X : x ¢ Y} 1s denoted by
X\ 'Y and the symmetric difterence (X\Y) U (Y\X) by XV Y. Moreover,
if f 1s a mapping of X into Y (notation: f: X - Y) and 4 < X and
B — Y, then f(A) will denote the set {f(x):x€ A} and f~'(B) the set
{xe X : f(x) € B}.

The reader 1s also assumed to be familiar with the notion of a partially
ordered set. In this context our terminology and notation are quite standard.
Thus if X = (X, <) is a partially ordered set, then an element x, of X 1is
maximal [ minimal] 1n X if there exists no element x of X such that x > x,
[x < x,]. Likewise, if E 1s a subset of a partially ordered set X and if x, 1s an
element of X such that x < x, for every x 1n E, then x is an upper bound of E.
If the set of upper bounds of E in X 1s nonempty, then E 1s bounded above in X.
If, in addition, the set of upper bounds of E possesses a least element, then that
least upper bound is also called the supremum of E and is denoted by sup E.
Dually E 1s bounded below if the set of lower bounds of E in X 1s nonempty ; if,
in addition, the set of lower bounds of E possesses a greatest element, then that
greatest lower bound 1s called the infimum of E (notation: inf E). A subset of a

3



| Set theory

partially ordered set is bounded 1if 1t 1s bounded both above and below. For
finite subsets {x, ..., x,} of a partially ordered set X we shall also write
x; Vv x,forsup{x;,...,x,}and x; A --+ A x,forinf{x,,..., x,}. If X
has the property that x v yand x A y exist for every pair of elements x and y
of X, then X 1s a lattice. If, more generally, every subset of X has both a supre-
mum and an infimum, then X is a complete lattice. A mapping f of one partially
ordered set into another i1s monotone increasing [ decreasing] it x < y implies
fx) < f)[f(x) = f(y)] and is strictly monotone increasing [ decreasing |
if x < yimplies f(x) < f(y) | f(x) > f(y)]. A mapping f of a set X into a
partially ordered set Y is bounded | above, below] if its range f(X) is bounded
|above, below] in Y.

Example A. The system R of real numbers is a lattice (in its usual ordering).
Indeed, we have

svit=z[s+t+|s—t|]
and

sAt=z3[s+1t—|s—t|]

for every pair of real numbers s and t. If ¢ is a real number the numberst v 0
and —(t A 0) are called the positive and negative parts of t, and are denoted
by t* and ¢, respectively. Note that ™ and ¢t~ are nonnegative and satisfy
the conditions

tT +t
tT — 1t~

],
g

for every real number t.

Example B. Every bounded nonempty subset of R has a supremum and an
infimum 1n R (this 1s, in effect, one formulation of the Dedekind postulate; a
lattice with this property is said to be boundedly complete). It follows that every
closed interval [a,b] (={t € R:a <t < b}) is a complete lattice. While R
itself 1s not a complete lattice, 1t 1s very useful to imbed R 1n a complete lattice.
Todo this we simply introduce two new “numbers,” + co and — 0, and define
— o0 < +00 and also —o0 <t < + o0 for every t in R. The enlarged set
Ru{+0o}u{—00} 1s called the extended real number system and will
consistently be denoted by R". It is clear that R* is a simply ordered complete
lattice, and that if E is a subset of R that is not bounded above [below] in R,
then sup E = + oo [inf E = — 0] in R*. We make a partial extension of the
operation of addition to R" by defining

t + (o) =(£©)+t= £
for every real number ¢, and

(+0) + (o) = + .
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Subtraction is also extended analogously to R*, but the symbols
(x0) + (+00) and (Fo0) — (£0)

remain undefined. Similarly we define

+ o0, t >0,
t(+00) = (Fo0) =40, t =0,
Foo, t <O,

for every real number ¢, and write
(roo)(£0) =+ and (F£o0)(F0)= —0.

Likewise, just as for ordinary real numbers, if t 1s an extended real number
wewritet™ =t v 0,t” = —(t A 0),and |t] =t + t~. When the extended
real number system 1s employed, the ordinary real numbers, that is, the
elements of R itself, are called finite (real) numbers.

Example C (The Banach-Knaster-Tarski Lemma). Let X be a complete
lattice, and let @ be a monotone increasing mapping of X into itself. If we set
A={xe X:p(x) < x},thenitisatonceclearthat ¢(4) = A.Letx, = inf A4,
and suppose x € 4. Then x, < x and therefore ¢(x,) < ¢(x) < x. Thus
»(x,) 1s a lower bound of A, whence it follows that ¢(x,) < x,, SO X, 1S
itself an element of 4. But then ¢(x,) € 4, so x, < @(x,). Thus we see that
»(xo) = x,, and we have proved the following result: 4 monotone increasing

mapping of a complete lattice into itself possesses a fixed point.

In this book the axiom of choice is used without apology or explanation,
and 1s usually employed 1n the following form.

Zorn’s lemma. Let X be a partially ordered set, and suppose that every simply
ordered subset of X is bounded above. Then X possesses a maximal element.

If {X,},cr 1s any family of sets indexed by an index set I', then the
(Cartesian or set-theoretic) product of the family {X,} will be denoted by
| l,er X,. The set | [,.r X, consists of all indexed families {x,},.rr where
x, € X, foreachyinI'. The projectionn, is the mappingdefined by r, ({x,}) =
x, for each element {x,} in | |,.r X,.

A nonempty partially ordered set A = (A, <) 1s a directed set if, for every
pair of elements A; and 4, of A, there exists an element A of Asuchthat4;, < 4
and A, < A. If A 1s a directed set and f 1s a mapping of A into a set Y, then
fisanetin Y. A net f will usually (but not always) be written as an indexed
family {y,};.A, Where y, = f(4), A € A. As will be seen (Chapter 3), nets
play the role of generalized sequences in many situations. If {x,}, .. 1s a net
In a set X, I 1s another directed set, and N i1s a function mapping I into A,
then {xy,}.,r 1S also a net in X. If N has the property that for every 4, in A,
there exists an index y, in I' such that N(y) > 4, for every y > y,, then the
net {Xye,}yer 18 called a subnet of {x;} ;.
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The reader is also assumed to be familiar with the concept of a well-ordered
set and with the notions of cardinal and ordinal numbers. The cardinal
number of a set E will be denoted by card E. The smallest infinite cardinal
number will be denoted by X, the cardinal number of the continuum by X.
Thus card N = card N, = card Z = NX,, while card R = card C = X. We
shall also use the well-ordering principle, by which we mean the following
fact.

Zermelo’s theorem. For any set X there exists a well-ordering of X. Equiv-
alently, for any cardinal number c there exists an ordinal number o such that
¢ = card «.

Finally, the reader i1s assumed to be familiar with the elementary arithmetic
properties of cardinal and ordinal numbers. In particular, we shall use the

fact that
N0 = NFo = 2%0 = R,

as well as the fact that if o 1s an ordinal number, and if W(a) denotes the
ordinal number segment consisting of all ordinal numbers £ such that ¢ < «a,
then the ordinal number of the well-ordered set W(a) is « and card W(a) =
card a.

PROBLEMS

A. Let X and Y be sets, and suppose given a mapping f of some subset B of X into Y.
If A is a subset of B, then the restriction of f to A 1s the mapping f|A of 4 into
Y defined by (f|4)(x) = f(x) for every x in A. If f and g are mappings of subsets
A and B of X, respectively, into Y, and if f 1s the restriction of g to 4, then g 1s
an extension of f. (This requires, of course, that A be a subset of B.) We write f < g
to indicate that f is a restriction of g. Show that this relation is a partial ordering

on the collection .# of all mappings of subsets of X into Y.

B. A partially ordered set X i1s said to be simply ordered or linearly ordered if for every
pair of elements x, y of X it is the case that either x < y or y < x. Show that a simply

ordered set 1s a lattice, and therefore (if nonempty) a directed set.

C. If I is an index set, X 1s a partially ordered set, and if f and g are mappings of I
into X, we write f < g to mean that f(y) < g(y) for every y in I'. Show that this
relation is a partial ordering on the set of mappings of I' into X. More generally, the
same definition introduces a partial ordering on every Cartesian product Il =
| |,er X, of partially ordered sets. Show that if each X , 1s a [complete] lattice, then
ITis a [complete] lattice. In particular, the set of all [extended ] real-valued functions

on a set I is a [complete] lattice.

D. Suppose that ¥ 1s a nonempty collection of real-valued functions on a set X
with the property that f + g, f — g, and f/2 belong to ¥ whenever f and g do.
Show that & 1s a function lattice (1.e.,that f v gand f A g belong to ¥ whenever
f and g do; cf. Problem C) if and only if | f | belongs to & whenever f does. Show,
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similarly, that .# is a function latticeifand onlyif f " = f v Oand f~ = —(f A 0)
belong to ¥ whenever f does. (The functions f™ and f~ are the positive and
negative parts of f, respectively.)

. Let X be a fixed set. For each subset A of X, the characteristic function of A is that

function y 4 which takes the value 1 at every point of 4 and the value O at every point
of X\A. If A and B are subsets of X, then ¥ -5 = x4 A X5 = ¥4xg and ¥ 5 =
X4 V xg. Furthermore, A < B if and only if ¥, < x5, and ¥, = ¥4 + x5 If and
only if A and B are disjoint.

. Let {A4,} and {B,} be two similarly indexed families of subsets of a set X. Verify

that both
(Lg A),)\(Lg B,,) and (Q Ay)\((] By)

are subsets of | |, (4,\B,). Verify, likewise, that

a)s(Us) w (14)(n5)

are subsets of | |, (4, V B,).

. Let a and b be real numbers with a < b. By a partition of the closed interval [a, b]
1S meant a finite sequence a =ty <t; <---<t,=b. lf ? = {5}/, and 2 =
it;}i= are two partitions of [a, b], then 2 1s finer than 2 (notation: 2 < 2) if every
number s; 1n £ also appears in 2. Show that the set of all partitions of [a, b] forms
a directed set under the relation of refinement. Is this directed set a lattice? If
P = {s;}/L, 1s a partition of [ a, b], then the mesh of 2 1s by definition the maximum
..m (8; — 5;—1). Show that the mesh is a monotone decreasing net on
the directed set of partitions of [ a, b].

. Let f be a bounded real-valued function on the interval [ a, b], let Z = {s;}/., be a
partition of [a, b}, let M; be the supremum of f on the ith subinterval of 2 : M; =
sup{f(t):s;,_; <t <s;},and set M, = Y " . M(s; — s;_,). Then {M,} is a net,
called the net of upper Darboux sums of the function f. Show that the net {M,} is
monotone decreasing. Dually, if one employs the infimum m; of f on the ith sub-
interval instead of M,;, one obtains the net {m,} of lower Darboux sums of f. Show

that the net {m,} 1s monotone increasing.

Let f be a function, real or complex, defined on the real interval [a, b]. An interesting
and useful net associated with f and indexed by the directed set of all partitions
of the interval [a, b] is defined by setting

() = Z | f () — f(sic1)l,

where Z = {s;}!-,. The number v(Z2) 1s called the variation of f over Z. Show that
the net {v(£)} 1s monotone increasing. The function f 1s said to be of bounded
variationon [ a, b] if the net {v(£)} 1s bounded (above), and 1n this case the supremum
sup, (2) 1s called the total variation of f over [a, b], and 1s denoted by V =
V(f;a, b). Show that if f and g are both of bounded variation on [a, b] and Ais a

complex number, then V(f 4+ g;a,b) < V(f;a,b) + V(g;a,b) and V(Af; a, b) =

7
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A V(f;a, b). (A complex-valued function f on [a, b] may be thought of as a kind
of curve in C. Consequently a function f that 1s of bounded variation on [a, b] 1s
also sometimes said to be rectifiable, and the total variation V(f; a, b) is called the

length of f.)

(1) Let f be a real-valued function on a closed interval [a, b]. We define two nets
of nonnegative real numbers associated with f and indexed by the directed set

of partitions of [ a, b] by writing

v (2) = Z Lf(s:) — f(Si—l):'+a v_(2) = '—21[f(8i) — f(si-1)]™

(Ex. A), where 2 = {s;}/-,. The numbers v,(Z2) and v_(2) are called the
positive and negative variations of f over 2, respectively. Show that the nets
{v4(2)} and {v_(2)} are both monotone increasing, and that f 1s of bounded
variation on [a, b] if and only if both of the nets {v,.(2)} and {v_(2)} are
bounded (above). Show also that if f is of bounded variation on [a, b], and
if we define V.(f; a, b) = sup, v.(2) and V_(f; a, b) = sup, v_(£), then

V(f,a,b) =V,.(f;a,b) + V_(f,a,b)
and

fb) = fla) = Vi(f;a,b) = V_(f;ab)

The numbers V,(f;a,b) and V_(f;a, b) are called the positive and negative
variations of f over [a, b}, respectively.

(1) Verify that a complex-valued function f on [a, b] is of bounded variation on
la, b] when and only when both Re f and Im f are, and that, when this i1s

the case, we have

V(Re f;a,b) v V(Im f;a,b) < V(f;a,b) < V(Re f;a,b) + V (Im f; a, b).

K. Let f beafunction of bounded variation on the interval [a, b1, and let ¢ be a number

such thata < ¢ < b. Verify that V(f; a, b) = V(f;a,c) + V(f; ¢, b),and conclude
that if we define V(t) = V(f;a,t), a <t <b, then V 1s a monotone increasing
function of t. Show similarly that, when f is real-valued, the functions £, (¢) =
V.(f;a,t)and f_(t) = V_(f; a,t) are also monotone increasing. Use Problem J

to show that
V="Ffi+f and f=f,~(f-— f@) (1)

The functions f, and f_ are known as the positive and negative variations of f,
respectively. The expression for f in (1) 1s known as the Jordan decomposition of f.

If X is an arbitrary set then a collection 2 of subsets of X 1s called a partition of X
if| | 2 = X,ie.,if #covers X, and if the sets in £ are pairwise disjoint. (In the event
that X 1s a closed interval of real numbers there are two distinct notions of partition
that have now been introduced, viz., the one¢ in this problem and the one 1n Problem

G. At no time will this slight ambiguity give rise to any misunderstanding,)

(1) If 2 and 2’ are two partitions of X, then £’ is said to be finer than 2, or to
refine 2 (and 2 is said to be coarser than ', notation: 2 < 2') if every set in
?' s a subset of some set in 2. Show that 2 < 2’ if and only if every set E in &
is partitioned by the subcollection of 2’ consisting of the sets in &’ contained
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in E. Show also that the collection of all partitions of X 1s a directed set with

respect to the partial ordering <.
(n) If {E,, ..., E,} 1s a finite collection of subsets of a set X, then the partition of X
determined by {E,, ..., E } consists of the collection of all sets of the form

A NN A,

where each A, 1s either E; or X\ E;. (There are 2" such sequences {44, ..., 4,},
but the number of sets in the partition may be smaller, of course.) Equivalently,

the partition determined by {E,, ..., E,} 1s the coarsest partition of X that
partitions each of thesets E;, i = 1, ..., n. Show that if s 1s a function of the form

n
S = ZaiXEla
i=1

where E,, ..., E, are subsets of X and a,, ..., a, are complex numbers (such
a function is called a simple function on X), then s 1s constant on each set F
in the partition of X determined by {E,, ..., E,} and the value f of s on the
set F 1s given by the formula

pr = Z &; .

FCE,

M. If I' is an arbitrary set, then the collection & of all finite subsets of I' 1s a directed
set under the inclusion ordering. Let {4 }..r be a family of complex numbers

indexed by I', and for each D in 2 define o, = ) ,.p 4,. Then {op}pco is a net
directed by 2, called the net of finite sums of the given family {4,}, .r. Show that the
net {0p}pe o 1S monotone increasing if the numbers A, are all nonnegative.

N. Thesets N and N, are directed sets in their usual ordering. Hence infinite sequences
{x,}* ;and {x,}> , of points in a space X are also nets in X. Moreover, every sub-
sequence of a sequence is a subnet of that sequence. Give an example of a subnet
of an infinite sequence that 1s not a subsequence.

O. If A, and A, are directed sets, then the Cartesian product A; x A, 1s also directed
when ordered, as in Problem C, by defining (4, 4,) < (4], 45) to mean that 4; < A]
and A, < A5. Show that if {x,. }, .4, 1S a net indexed by A, then

xul_h) — xll, AIEAlﬁ AZEAz,

defines a subnet {x;, ;,} indexed by A; x A,.

P. Let X be a partially ordered set. A subset X’ of X is cofinal in X 1f for every x 1n
X there exists x’ in X’ such that x < x'. We shall say that X is countably determined
if it possesses a countable cofinal subset. Show that if A is a countably determined

Q0O

directed set, then there exists a monotone increasing sequence {4,},~; In A such
that for any A in A there is a positive integer n such that A, > A for all k > n. Give
an example of a directed set that is countably determined and an example of one

that 1s not.

Q. If X and Y are two sets then card X is defined to be less than or equal to card Y
if there exists a one-to-one mapping of X into Y. Use Zorn’s lemma to show that if
X # & then it is also the case that card X < card Y if and only if there exists a
mapping of Y onto X. (Hint: See Problem A.)
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(Cantor-Bernstein Theorem) Let X and Y be sets, let ¢ be a one-to-one mapping
of X into Y, and let ¥ be a one-to-one mapping of Y into X. Use Example C to
show that the mapping

D(A4) = X\y(Y\o(4))

of the power class Z on X into itself possesses a fixed point. (By the power class
on X we mean the collection of all subsets of X.) Use this fact to show that there

exists a one-to-one mapping of X onto Y, and conclude that if ¢, and c, are any two
cardinal numbers such that ¢; < ¢, and ¢, < ¢y, thenc; = ¢,.

If X is any set and if & denotes the power class on X, then card & > card X. (Hint:
Suppose there exists a mapping @ of X onto Z. Set A = {x e X :x ¢ ¢(x)}, and
let x, be an element of X for which ¢(x,) = A.)

(i) If ¢ is an infinite cardinal number, then ¥X,c¢ = ¢. (Hint: It suffices to show that
¢ = Ny b for any one cardinal number b because of the associativity of multi-
plication of cardinal numbers. Let X be a set with card X = ¢, consider the
collection of all disjoint collections of countably infinite subsets of X, and employ
Zorn’s lemma.) Conclude that if ¢ and d are any two cardinal numbers, one of
which at least is infinite, then ¢ 4+ d = ¢ v d, the larger of the two. More gener-
ally, the sum of any finite collection of cardinal numbers, one of which at least is
infinite, coincides with the largest number in the collection.

(i1) If c is an infinite cardinal number, then, in fact, ¢* = ¢. (Hint: Let X be a set with
card X = ¢, and consider the collection € of all those mappings f of a subset of
X mto X x X with the property that, if A4 i1s the domain of £, then f 1s a one-to-
one mapping of A onto A x A. Use Zorn’s lemma to show that % contains a
maximal element f, with respect to extension (Prob. A). Then use (1) to prove that
if A, 1s the domain of f,, and 1if the desired conclusion i1s false, then X\ A4,
contains a subset 4; with card 4; = card A4,. Finally, use (1) again to show that
there exists in 4 an extension f; of f, to the domain 4, U A4,, a contradiction.)
Conclude that if ¢ and d are any two cardinal numbers, one of which at least is
infinite, then c¢d = ¢ v d. More generally, the product of any finite collection
of cardinal numbers, one of which at least 1s infinite, coincides with the largest
number 1n the collection.

(Principle of Transfinite Induction) Let p( ) be a predicate that is either true or
false for every ordinal number 1n some ordinal number segment W(a). Suppose
(1) p(0) is true, (i1) if p(&) is true and if £ + 1 < «, then p(¢ + 1) is true, and (i) if 4
1s a limit ordinal less than a, and if p(¢) is true for every ¢ in W(A), then p(4) is true.
(By definition, a limit ordinal 1s a nonzero ordinal number that does not possess
an immediate predecessor, i.e., that cannot be written 1n the form o 4+ 1.) Show
that p(¢) 1s true for every ¢ in W(a). (Hint: If this were not the case, then the set
consisting of those ordinal numbers ¢ in W(a) such that p(¢) is false would possess
a smallest element.) Show also that an alternate formulation of this principle is
the following: If Q is a subset of W(a) with the property that W(¢) < Q implies
¢ € Q forevery ¢ in W(a), then Q = W(w).

(Principle of Transfinite Definition) The principle of transfinite induction can also
be employed to give definitions. Let A be a limit ordinal, let G be an arbitrary set,
and let g, be a fixed element of G. Suppose that for each ¢ # 0 in W(A) there exists
a rule R; that associates with each mapping f : W(S) — G a unique element Rx( f)
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of G. Show that there exists a unique mapping F : W(A) — G such that F(0) = g, and
such that F(¢) = RAF|W(¢)) for each ¢, 0 < ¢ < A. (Hint: Consider the subset
of W(A) consisting of 0 and all of those ordinal numbers #, 0 < n < A, with the
property that there exists a unique mapping F, : W(n) — G such that F,(0) = g,
and such that F,(C) = R«F,| W(<)) for all nonzero ¢ in W(n). We speak here only
of defining a function, but since practically everything in mathematics may be
construed to be a function in one way or another, this formulation of the principle
1s adequate.)

. If ¢ 1s an infinite cardinal number, then there is a first, or smallest, ordinal number «
such that card o« = ¢. This ordinal number is called the initial number of ¢. Thus w,
the smallest infinite ordinal number, is the initial number of X,. The first non-
countable ordinal number, i.e., the initial number of the smallest cardinal number
exceeding N, 1s customarily denoted by Q. Thus the initial segment W (Q) coincides
with the set of all countable ordinal numbers. Show that every countable subset
of W(Q) is bounded in W(Q). In other words, show that if M 1s any countable set of
ordinal numbers such that card a < ¥, for every a in M, then there exists an ordinal
number f# such that card f < ¥, and such that o < f§ for every a« in M. (Hint:
If M were cofinal in W(Q) (Prob. P), we would have W(Q) = | ),y W().) Thus
if {C,}3% 1s any infinite sequence of ordinal numbers in W(Q), then sup, ¢, < Q.
Show in the converse direction that if 4 is an arbitrary limit ordinal in W(Q), then
there exists an increasing sequence {¢,};~, such that A = sup, £,. Show finally

that if z(¢) is an arbitrary monotone increasing integer-valued function defined
on W(Q), then there exists an ordinal number o, in W(Q) such that z(¢) 1s constant

on the tail W(Q)\W(ay).
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Linear algebra

We shall assume that the reader is familiar with the rudiments of linear
algebra. In particular, he should be acquainted with the notion of a linear
space, or vector space, and the elementary concepts associated with linear
spaces. In this chapter we review these ideas, partially to fix terminology
and notation. (An exception is our treatment of algebraic tensor products
at the end of the chapter: we do not assume any prior knowledge of this subject
on the part of the reader.) Readers wishing to improve their acquaintance
with any part of linear algebra, or to pursue 1n greater depth any of the topics
touched on below, might consult [38]: another excellent source 1s [32].

To begin with, all of the linear spaces in this book are either real or complex

(that 1s, the field of scalars 1s either R or (). Furthermore, the following
convention will be in force throughout the book: If nothing is said about the

scalar field of a vector space under discussion, the vector space is automatically
assumed to be complex.

If & 1s a (real or complex) linear space, and if M, and M, are arbitrary
subsets of &, we shall write M; + M, for the set of sums

{xl +x2:xiEMi,i= 1,2}

More generally, if {M.}..r 1s an arbitrary indexed family of subsets of &,
we write ) .. M, for the set of all sums of the form ) ,.r x, where x, = 0
except for some finite set of indices, and x,, € M, whenever x,, # 0. In partic-
ular,if {M,, ..., M,} is a finite sequence of subsetsof &, then M; + --- + M,
denotes the set of sums x; + --- + x,, where x; € M;,i = 1, ..., n. Similarly,
if A denotes a set of scalars and M a set of vectors in &, we shall write AM
for the set {ax:0€ A, x € M}.

Let & be a real or complex linear space. An element x of & 1s a linear
combination of vectors y,, ..., y,1n & 1f there exist scalars o, . .., &, such that

12
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Xx=0,y, + -+ a,y,. A nonempty subset .# of & 1s a linear manifold
in & (or a linear submanifold of &) if, for every pair of vectors x, y in .# and
every pair of scalars «, f, the linear combination ax + By belongs to .. If A4
i1s a linear submanifold of & then it is easily seen that every linear combination
of vectors 1n .# belongs to .#. Among the linear submanifolds of & are the
space & 1tself and the trivial submanifold (0) consisting of the single vector O.
If #/ and A" are linear manifolds in &, then the sum .# + A" is also a linear
manifold in &; more generally, if {# },.r 1s an indexed family of linear
manifolds in &, then ) , .. is a linear manifold in &. For any set M of vectors
in & there exists a smallest linear manifold .# in & that contains M. If M = {7,
then . = (0); otherwise . consists of all linear combinations of elements of
M. We say that £ is generated (algebraically) by M, or that M 1s an (algebraic)
system of generators for Z.

Analogously, an element x of & is a convex combination of vectors
Vi, .., y, In & if there exist nonnegative real numbers s, ..., s, such that
s; +:--+s,=1and such that x =s,y; + - + s, y,. A subset C of & is
convex 1, for every pair of vectors x and y in C and every pair of nonnegative
real numbers s and t such that s + t = 1, the convex combination sx + ty
belongs to C. It 1s not difficult to show that if C is convex then every convex
combination of vectors in C belongs to C. (A complex linear space becomes
a real linear space if one simply declines to multiply by any but real scalars.
Clearly a subset C of a complex linear space & 1s convex if and only if C
1s convex 1n & when & is regarded as a real linear space.) For any set M of
vectors in & there exists a smallest convex set C 1n & that contains M. This
convex set consists of all convex combinations of elements of M, and is called
the convex hull of M. The convex hull ¢ = o(x, y) of a doubleton {x, y}
1s called the line segment joining x and y, and x and y are said to be the
endpoints of 6. The line segment o(x, y) clearly consists of the set of vectors
{sx + (1 —s)y:0 <s < 1}. According to the above definition, a set C 1is
convex if and only if C contains the line segment joining any two vectors
in C. By a line in & 1s meant any set of the form L = {x + sy:s € R}, where
x,y €& and y # 0. (The set L 1s known, more precisely, as the line through x
along y.) If x,; and x, are distinct vectors in & then there exists a unique line
joining x, and x, (that 1s, containing both x, and x,), and this line coincides
with the set {sx, + (1 — s)x,:s € R}. Thus the line joining x, and x, contains
the line segment joining them.

A nonempty finite set of vectors J = {x,,..., x,} in a (real or complex)
vector space & 1s linearly independent if the only way in which 0 can
be expressed as a linear combination 0 =o;x; +--- + o,x, 1s with
oo, = -+ =0, = 0. An arbitrary subset J of & is linearly independent if
every nonempty finite subset of J is linearly independent. A linearly inde-
pendent set of vectors in & that 1s at the same time a system of generators
for & is a Hamel basis for &. Every (real or complex) vector space has a Hamel
basis (Prob. A). If {x,},.r is an indexed Hamel basis for a (real or complex)
linear space &, then for each vector y in & there exists a uniquely determined

13
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indexed family of scalars {4,},.r such that A, = O for all but a finite number
of indices and such that y = ) .. 4,x,. The scalars A, are called the co-
ordinates of y with respect to the basis {x,}. If X and Y are any two Hamel
bases for &, then card X = card Y (Prob. B). The common cardinal number
of all the Hamel bases for & 1s the Hamel dimension of &. Linear spaces, both
real and complex, that have finite Hamel dimension are finite dimensional,
and those that do not have finite Hamel dimension are infinite dimensional.
A Hamel basis for a finite dimensional space & 1s simply called a basis for &,
and the Hamel dimension of & is known as the dimension of & and 1s denoted
by dim &. The vector space (0) consisting of the vector O alone is finite
dimensional and has dimension O.

Example A. Let X be an arbitrary set, and let # denote the linear space of
all those mappings f of X into C with the property that f vanishes everywhere
on the complement of some finite subset of X. (The subset of X on which
f 1s nonzero may vary with f; addition, and multiplication by scalars, are
defined pointwise on X.) If for each x in X we denote by e, the element of #
such that e (x) = 1 while e,(y) = O for all y # x, then {e,}..x 1s a Hamel
basis for #. If, as 1s customary, we simply i1dentify each x in X with the
associated vector e, , then X itself becomes a Hamel basis for & . In this linear
space, known as the free linear space generated by X, the vectors are formal
linear combinations

n
ol; X;
J—

l

of elements of X.

If {€,},.r 1s an indexed family of linear spaces, all over the same scalar
field (either C or R), then the set of all indexed families {x,} .r, where
x, € &, for each index y in I', forms a linear space & under the operations
{x,} +1y,} = ix, + y,} and a{x,} = {ax,}. This linear space is called the
full algebraic direct sum of the family {&.}, and will be denoted by ) ., . + &,.
If all of the spaces &, coincide with a single vector space #, then the full
algebraic direct sum & is called the direct sum of card I copies of & indexed
by I'. If the index set I' is the finite set {1, ..., n} we write the elements of &
in the form (x,...,x,) and write & =&, + --- + &,. In this case & 1s
called simply the (linear space) direct sum of the spaces &;. The Hamel
dimension of the full algebraic direct sum )., + &, is ), d,, where d,
denotes the Hamel dimension of &,, y e (Prob. F). In particular, if
&,,..., 6, are finite dimensional, and if § =&, + --- + é,, then dim & =
dimé, + -+ dim é,,.

Example B. The familiar linear space [ real linear space] of all complex [real]
n-tuples may be viewed as the direct sum of n copies of C|R]. Henceforth

14
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this space will be denoted by C"[R"]. The n-tuples e; = (0;1, ..., 04,), | =

1, ..., n (where by definition 0;; is the Kronecker delta
0, i+
5ij — { l ?&].
I, i=},

for all integers i, j), constitute a basis for C"[ R"] sometimes called the natural
basis. Clearly C"[ R"] 1s n-dimensional.

Example C. For any pair of positive integers m and n we shall denote by
Com. ol R, »] the collection of all complex [real] m x n matrices. We assume
the reader to be familiar with the rudiments of matrix theory; in particular
we take it as known that C,, [R,, ,] 1s a vector space [real vector space]
with respect to the usual linear operations. If we think of each m x n matrix
as composed of its n columns, then 1t 1s natural to identify C,, , with the direct
sum of n copies of C™; if we think of each m X n matrix as composed of its
m rows, then it i1s natural to identify C,, , with the direct sum of m copies
of C". The linear space C,, ,[R,, ,] also possesses a natural basis, namely,
the system of matrices {E, ;}i— -, Where E, , = (¢:') and &f;' = 6,0 for
,k=1,...,mandj,l =1,...,n Clearly C, ,[R,, ,] 1s mn-dimensional.

Example D. The direct sum of X, copies of C indexed by N, is the vector
space of all complex sequences {o,};>,. In the sequel this space will be
denoted by (4). The subset consisting of all the bounded sequences in (9)
1s a linear manifold in (4) which we shall denote by (#:). Similarly the
collections of all convergent sequences and all null sequences (sequences
converging to zero) form linear submanifolds of (4) (and of (#2)). We denote
these spaces by (¢) and (¢,), respectively.

Example E. The collection of all complex-valued functions [real-valued
functions] on an arbitrary set X is a complex linear space [real linear space |
with respect to the pointwise linear operations

(f +9)(x) = f(x) + g(x) and (af)(x) = af(x), x € X, « € C[R].

(This space can also be viewed as the full algebraic direct sum of card X
copies of C[ R] indexed by X.) Whenever (as in Example A or in the following
example) we refer to a “linear space [real linear space] of functions” on a
set X, it 1s always some linear submanifold of this space that is meant.

Example F. Suppose given a (real or complex) linear space &. A scalar-
valued function f defined on & is a linear functional on & if f(ax + fy) =
of (x) + Bf(y) for all vectors x, y in & and all scalars o, . It is a triviality to
verify that a linear combination of linear functionals on & is again a linear
functional on &, and hence that the collection of all linear functionals on &
forms a linear submanifold of the space of all scalar-valued functions on é&.
The linear space of all linear functionals on & (which 1s real or complex
according as & 1s real or complex) will be called the full algebraic dual of é&.

15



2 Linear algebra

If & 1s a (real or complex) linear space, and if .# is a linear submanifold of
&, then the relation ~ on & defined by setting x ~ y if x 1s congruent to y
modulo ./, that is, if x — y € .#, is an equivalence relation on &. The equiv-
alence class [x] = x + .# of a vector x will be called the coset of x modulo
A . The set of all cosets [x] modulo .# 1s turned into a new linear space by
the definitions [x] + [y] = [x + y]and a[x] = [ax]. This space, denoted by
& /.M, 1s the quotient space of & modulo .#, and the transformation = of & onto
& /M detined by n(x) = [x] is the natural projection of & onto &/.4 .

If & 1s a real vector space, the complexification & of & is the complex
vector space consisting of the Cartesian product of & with itself with addition
defined by (x4, y{) + (x5, ¥,) = (x; + x5, ¥; + y,) and multiplication by
a complex scalar o = s + it defined by a(x, y) = (sx — ty, tx + sy). Thus C
1s the complexification of R. If the mapping x — (x, 0) is used to identify &
with a real linear manifold in & ™ regarded as a real space, then, since i(x, 0) =
(0, x), every vector in & has a unique expression of the form x + iy, where x
and y belongto &. (Recall that a complex linear space may always be regarded
as a real space simply by refusing to multiply by any but real scalars.)

Example G. If X is a Hamel basis for a real linear space &, and if, as above,
we 1dentify & with the real submanifold & x (0) of the complexification &,
then X is also a basis for & . Thus the Hamel dimension of the complex
space & is the same as that of the real space &. On the other hand, if &
1s regarded as a real space, then the union of the two sets

X ={x,0:xeX} and X = {0, x):x€e X}

is a Hamel basis for & 7. Thus, in particular, if the dimension of & is n, then
the dimension of & regarded as a real space is 2n. More generally, if & is
any (complex) linear space of dimension n, then & has dimension 2n when
regarded as a real space.

Example H. If % 1s a complex linear space of complex-valued functions
on a set X and if & i denotes the set of all real functions in %, then it 1s clear
that & is a real linear space, and that the complexification (% i)™ may be
identified with the linear submanifold of & consisting of functions of the
torm f + ig, f, g € # k. This submanifold, however, does not coincide with
Z ,1n general. Indeed it is readily seen that a necessary and sufficient condition
for this to be so is that & contain the complex conjugate f of each function
f 1n &, a condition that is customarily expressed by saying that & is self-
conjugate. Thus we may, and frequently shall, identify a self-conjugate
linear space of functions % with the complexification of the real linear space
of real-valued functions in #.

If # 1s a self-conjugate linear space of complex-valued functions on a set X,
and if ¢ is a linear functional defined on &%, then ¢ is said to be self-conjugate

if o(f) = o(f)forevery function fin & . We observe that ¢ is self-conjugate if
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and only if the restriction ¢|.% g 1s a real linear functional on & or, equiv-

alently, if and only if @(Re f) = Re o(f)|o(Im f) = Im o(f)] for every
finZ.

Example 1. If ¢ and b are real numbers, a < b, we shall denote by é((a, b)) =
%'°)((a, b)) the collection of all continuous complex-valued functions on the
open interval (a, b) (={t € R:a < t < b}). Clearly €((a, b)) is a linear space.
Similarly one sees, using the rules of elementary calculus, that the collection
€™ ((a, b)) of n times continuously differentiable functions on (a, b), i.e.,
the collection of those functions f on (a, b) with the property that the nth
derivative £ exists and is continuous on (a, b), is a linear space. If0 < m < n,
then €")((a, b)) is a linear submanifold of €™ ((a, b)). Likewise, if €\ ((a, b))
denotes the collection of real-valued functions in €\"((a, b)), then €\ ((a, b))
is a real vector space, and €™ ((a, b)) is the complexification of €' ((a, b)).
If 2[Z5] denotes the space of polynomial functions [real polynomial
functions] on (a, b), then #[Zg] is a linear submanifold of €"™((a, b))
[€9((a, b))] for every n.

Example J. To define analogs of the spaces of Example I for functions on a
closed 1nterval, special arrangements must be made regarding the end-
points of the interval. We shall say that a (complex-valued) function f on a
closed interval |a, b] (a < b) 1s continuously difterentiable on that interval if
(1) f is differentiable on the open interval (a, b), (i1) the one-sided derivatives
f'.(a) and f'_(b) exist, and (111) the function

f’+(a), I = a,
f'(t) =1 f'(t), a<t<hbh,
f—(b), t=b,

is continuous on [a, b]. We then declare €([a, b]) = €'°’([a, b]) to be the
linear space of all continuous functions on [q, b], and define €™ ([a, b])
inductively for positive integers n by setting €"([a, b]) equal to the collection
of all those continuously differentiable functions f with the property that
1" belongs to €~ ')([a, b]). Here again it is clear that each €"™([qa, b]) is a
vector space, that €"([a, b]) is a linear submanifold of €"™([a, b]) when
and only when m < n, and that, if €([a, b]) denotes the set of real-valued
functions in €™ ([a, b]), then €&)([a, b]) is a real vector space and €"([a, b])
is the complexification of €;'([a, b]).

If & and & are linear spaces over the same scalar field, and if T'is a mapping

defined on & and taking its values in &, then T 1s a linear transformation of &
into & provided T(ax + py) = aTx + BTy for all x, y in & and all scalars

o, p. (When & = & we refer to T as a linear transformation on &. A linear
transformation of a linear space & into its scalar field is a linear functional

on & (Ex. F).) Whether or not T maps & onto %, the range of T is a linear
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submanifold of # which we denote consistently by #(T). Likewise, the kernel
or null space of T, that 1s, the set of vectors mapped into O by T, 1s a linear
manifold in & that will be denoted throughout the book by (7).

Example K. For any vector space & and any fixed scalar a the mapping
X — ox, X € &, 1s a linear transformation on & which we consistently denote

by a or, when necessary in order to avoid confusion, by a,. In particular,
the 1dentity mapping 1 and zero mapping O are linear transformations.

Example L. Let & be a linear space, and let .# be a linear submanifold of &.
Then the natural projection n of & onto the quotient space &/.# is a linear
transformation. Moreover, if T 1s any linear transformation of & 1nto a linear
space %, then there exists a linear transformation T : &/.# — &% such that
T = Tonif and only if # = #(T). (Briefly: linear transformations T on &

with T(.#) = (0) can be factored through & /.4 .)

Example M. If & is a real linear space and T 1s a linear transformation of & into
a complex linear space & (regarded as a real space), then

T (x +iy)=Tx +iTy

defines a linear transformation of the complexification &* into &#. The
linear transformation T ™ is called the complexification of T.

If & and & are linear spaces over the same scalar field, and if T is a one-to-

one linear transformation of & into & (that 1s, if 4 (T) = (0)), then the set-
theoretic inverse of T 1s also a linear transformation (of £(T) onto &).
If in addition #(T) = %, then T is a linear space isomorphism of & onto & .
Two linear spaces are isomorphic if there exists a linear space isomorphism

of one onto the other.

Example N. If & 1s an n-dimensional linear space |[real linear space] and

X = {xy, ..., X,} 1s an ordered basis for &, then the mapping
Zaixi = TR
1=1

that assigns to each vector in & its n-tuple of coordinates with respect to X

1s a linear space isomorphism of & onto C"[R" . If Y = {y,, ..., y,} 1s some
other ordered basis for & then there exist unique scalars =;; such that

n
.)Cj: Znijy,-, ]=1,,n
1=1

The n x n matrix P = (m;;) is the change of basis matrix (for changing from
the basis Y to the basis X). If " is the isomorphism of & onto C"[ R"] that
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assigns to each vector in & its n-tuple of coordinates with respect to Y,

and 1f (a, ..., o,) denotes an arbitrary element of C"[R"], then
X X; = Zai Z iV = Z ( Tckiai) Vi
1 =1 1=1 k=1 k=1 \i=1

Thus #'(x) = (B4, ..., B,) can be computed in terms of ©n(x) = (ay, ..., )
by means of the formula

n

ﬁi:ZnijO(j, i:l,...,n.

J=1

If & and & are linear spaces over the same scalar field, and if S and T are
two linear transformations of & into &, then the sum S + T is defined by
pointwise addition: (S + T)x = Sx + Tx for all x in &. Likewise, for a
scalar a, the mapping aS is defined by (aS)x = a(Sx) for all x in &. Clearly
S + T and oS are also linear transformations of & into %#. Moreover,
these definitions turn the set of all linear transformations of & into & into
a new linear space—the full space of linear transformations of & into & . The
zero element of this linear space is the linear transformation O defined by
Ox = 0 for all x in &. (The full space of linear transformations of & into its
scalar field coincides with the full algebraic dual of & (Ex. F).)

Suppose now that &, #, and ¢ are all vector spaces over the same scalar
field. Let T be a linear transformation of & into # and let S be a linear
transformation of & into ¢. Then the composition S o T 1s a linear transfor-
mation of & into ¢ called the product of S and T and denoted by ST. The
multiplication of linear transformations satisfies the following relations

whenever the various products are defined:

(1) R(ST) = (RS)T.
(i) RS+ T) = RS + RT;(R + S)T = RT + ST. (1)
(1) (ST) = (aS)T = S(aT).

In particular, if R, S, and T denote linear transformations of a linear space &
into 1tself, then all of these products are defined, and the relations (1) hold

without exception.
Conditions (1) are the main ingredients in the definition of the concept of a
linear algebra, a notion that is of considerable importance in functional

analysis.

Definition. A vector space [real vector space] .o/ on which 1s given a product
satisfying the conditions

(1) x(yz) = (xy)z,
() x(y +2) =xy + xz;(x + y)z = xz + yz,

(1) axy) = (ax)y = x(ay),
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for all elements x, y, z of &/ and all scalars a 1s an (associative, linear)
algebra [real algebra]. If x and y are elements of &/ such that xy = yx,
then x and y commute. The collection of all elements of ./ that commute
with every element of <7 is the center of o7, and if the center of .27 coincides
with o7, then o 1s a commutative or abelian algebra. If o/ possesses an
element 1 such that 1x = x1 = x for every x in &/, then 1 is the identity
or unit of 27 (such an element i1s obviously unique if it exists, and must
belong to the center of &¢), and ./ is said to be a unital algebra [real
algebra] or an algebra with identity or unit. If .27 1s a unital algebra [real
algebra]| with identity 1, and if 4 is a scalar, we shall simply write A for Al
when no confusion can result. Likewise, if x 1s an element of .7, then an
element y of o7 is the inverse of x in o/ if xy = yx = 1. (The inverse of an
element x is obviously unique if it exists, and is denoted by x~'.) An
element of o7 that possesses an inverse in .7 1s said to be invertible (in 7).
If x i1s an invertible element of .o/, and if x and y commute, then it is
readily seen that x~! and y also commute (x™'(xy)x~!' = yx~ ' while
x '(yx)x~!' = x~'y). Thus the inverse x~' not only commutes with x,
it also commutes with every element of .o/ that commutes with x. Such
an element of .7, that is, one that commutes with every element of .o/
that commutes with x, is said to doubly commute with x.

Thus the full space of linear transformations on a linear space [real

linear space] is a unital algebra [real algebra] in which the transtormation 1

1S

the identity element. Another important example of a unital algebra

[ real algebra] is the system C, ,[R, ,] of all complex [real] n x n matrices.
(The product in this algebra is the customary row by column multiplication;
see Problem H.) The identity in C, ,[R, ,] is the identity matrix 1 = (9;;),
where, as usual, 0;; denotes the Kronecker delta (Ex. B). If 4 is a scalar the
scalar matrix A1 will be denoted by 4. We recall that if 4 is an element of the
algebra C, , and if there exists a matrix B such that either AB = 1 or B4 = 1,
then A is invertible and B = A~ ! (see Problems G and M).

On the algebra C, , of n X n matrices there are two important complex-

valued functions. The first of these 1s the trace of an n x n matrix 4 = (o;;),
defined as

tr A = ) o;
i=1

the second is the determinant, defined as

det A = Z (S8N 0)A14(1) * * * Olno(n)s

where the sum is taken over all permutations o of the set {1, ..., n}. The
main properties of the trace that we shall need are the readily verified facts
that tr is linear and that tr(4AB) = tr(BA). The central fact concerning
determinants is that A — det A4 is a homomorphism (as defined in Problem L)
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of the algebra C, , onto C with the property that det 4 # O when and only

when A 1s invertible in C, ..

If A = («;;) 1s a matrix in C,, , (for arbitrary m, n), then the transpose of A
(denoted by A') is the n x m matrix (f;;) defined by B;; = a;,i=1,...,n;
j=1,..., m. Furthermore the adjoint of A (denoted by 4*) 1s the n x m
matrix (y;;) defined by y;; =a;;,, i=1,...,n;j=1,...,m. (If A 1s a real
matrix, then A' = A*.) A real n x n matrix A with the property that 4 = A’
1S symmetric; a complex n x n matrix 4 with the property that 4 = A* is
Hermitian (or self-adjoint). A complex n x n matrix N with the property that
NN* = N*N 1s said to be normal; such a matrix U with the additional
property that UU* = U*U = 1 1s unitary.

Suppose now that & and & are finite-dimensional linear spaces of
dimension n and m, respectively,and let X = {x,,...,x,}and Y = {y{,..., V,u}
be ordered bases in & and %, respectively. If T is a linear transformation of &

Into %, then the equations

ij: Zaijyis j=19"'9n9 (2)
1=1

define an m X n matrix

called the matrix of T with respect to X and Y. (When & = & and X = Y,
this matrix is called the matrix of T with respect to X.) The correspondence
T < (o;;) between linear transtormations of & into # and m x n complex

matrices established by (2) is a linear space i1somorphism between the full
space of linear transformations of & into # and the linear space C,, , of all

complex m x n matrices. Moreover, when & = % and X = Y, the corre-
spondence T < (a;;) 1s an algebra i1somorphism as well; see Problems

L and M.
Let A be the matrix of a linear transformation T :& — & with respect

to the ordered bases X and Y, and suppose that X' and Y’ are new ordered
bases in the spaces & and #, respectively. If B denotes the matrix of T with
respect to X' and Y’, then straightforward calculation shows that

B = QAP"!

where P and Q denote the change of basis matrices for changing from the
bases X' and Y’ to the bases X and Y, respectively. (See Example N; we here
employ the obvious fact that an n X n matrix i1s invertible if and only if it can
be viewed as a change of basis matrix.) In particular, if A4 1s the matrix of a
linear transformation 7 on & with respect to X, and if B 1s the matrix of T with
respect to X', then

B = PAP . (3)
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Two n x n matrices 4 and B that are related as in (3) for some (invertible)
n X n matrix P are said to be similar. From what has been said 1t 1s clear
that two n X n matrices are similar if and only if they can be taken to be the
matrices of some one linear transformation with respect to suitably chosen
ordered bases for an n-dimensional vector space. It 1s also clear that similarity
1s an equivalence relation on C, ,,.

Thus far we have considered only functions of one variable, but we shall
also be interested in certain kinds of functions of two or more variables.
Suppose that &, &, and ¢ are (real or complex) linear spaces over the same
scalar field, and let ¢ = ¢(x, y) be a mapping defined on the direct sum
& + & and taking values in . If for each fixed y, in & the function ¢(x, y,)
1s a linear transformation of & into ¢, and, for each fixed x, in &, @(x,, y)1s a
linear transformation of & into ¥, then ¢ 1s a bilinear transformation of
& + % into 4. If the space ¥ is the scalar field, then ¢ is a bilinear functional
on & 4 &#. If, in addition, & = &, then ¢ 1s a bilinear functional on &.
The set of all bilinear transformations of & 4 % into ¥ is a linear space with
linear operations defined pointwise. In particular, the set of all bilinear
functionals on & is a linear space.

When & and & are complex, there is a notion closely related to that of a
bilinear functional on & 4 & that we shall have occasion to use. A mapping
V& + # — C 1s said to be a sesquilinear functional on & + ZF if Y(x, y,)
is a linear functional on & for each y, in % and ¥(x,, y) is a linear functional
on & for each x, in &. (Another way to state the second of these conditions
is to say that y(x,, oy, + By,) is equal to ay(x,, y,) + B¥(x,, y,) for all
complex numbers «, f and all vectors y,, y, in & ; such a functional is said
to be conjugate linear.) When & = &, is called a sesquilinear functional on
é. A sesquilinear functional ¥ on & is said to be symmetric if y(x, y) = Y(y, x)
for all x, yin é.

We close this chapter with an account of tensor products of linear spaces.
No prior knowledge of this topic is assumed on the part of the reader. If &
and & are any two linear spaces over the same scalar field, we may form the
free linear space J generated by the set-theoretic product & x &, that is,
the space of all formal linear combinations ) !, A(x;, y;) of pairsin & x &
(see Example A). Let # denote the linear manifold in J generated by all
differences of the form

(x; + x3,9) —(x1, ) — (x2, ) and (x,y; + y;) — (x, y1) — (x, y2)
together with all differences of the form

(Ax,y) — Mx,y) and (x,Ay) — A(x, y)

where x, x,;, and x, denote arbitrary vectors in &, y, y,, and y, arbitrary
vectors in %, and A an arbitrary scalar. Our interest focuses on the quotient
space J /R, which is called the algebraic tensor product of & and &, and 1is
denoted by & x &#. (If & and & are complex [real] vector spaces, then
& x Z 1s a complex [real] vector space.) If x belongs to & and y belongs to
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%, then the pair (x, y), regarded as an element of 7, projects onto an element
of & x & which we denote by x ® y. Elements of & x & of the form x & y
are sald to be decomposable. The mapping of & + % into & x &# that
carries (x, y) to x ® y will be denoted by p. From the definition of #Z we
see that the following relations hold for all vectors x, x; and x, 1n &, all
vectors y, y;, and y, in &, and all scalars A:

(1) (X1 +X)®y=x, 8y + x, ® ),
(11) X® (Y, +y2)=x®y; + x®y,, and (4)
(111) AX)®y=Ax®Yy) =x & (4y).

According to the definition, the decomposable elements of & x # form
an algebraic system of generators for & x & . By condition (111) of (4) we
see that, in fact, the general element of & x .# can be written (in various ways)
as a sum of decomposables: t = Y"_, x; ® y;. The central facts about
algebraic tensor products are readily established.

Proposition 2.1. The mapping p of & + & into & x & is bilinear, and the
range of p generates & x % . Moreover, if @ is any bilinear transformation
of & + & into a linear space 9, then there exists a unique linear transfor-
mation @ of & X & into G such that @ = @ o p (briefly: bilinear mappings
on & + & can be factored through & x %).

ProOOF. 1t is clear from (4) and the definition that p i1s a bilinear transforma-
tion, and it has just been observed that every element of & x & can be
written (not uniquely) as a finite sum of decomposable elements. Thus the
range of p generates & x % algebraically, so ¢ 1s unique if 1t exists. With

respect to existence we observe that any mapping of & + & 1nto a linear
space % possesses a unique linear extension to J (Prob. E). Since ¢ 1is
bilinear, this extension annihilates the linear submanifold £, and con-

sequently can be factored through & x % (Example L). L]

Definition. Suppose T;: &; — #;1s a linear transformation, i = 1, 2. Then the
mapping (x, x,) = T1x; ® T, x,, x; € &;,i = 1, 2, 1s a bilinear mapping
of & + &, into &, x % ,. Consequently, according to the foregoing
result, there exists a unique linear transformation 7:6, x &, > %, x &%,
satisfying the condition T(x; ® x,) = T;x; ® T,x, for all x; in &,
i = 1, 2. We shall call T the algebraic tensor product of T; and T, and
write T =T, x T,.

Proposition 2.1 has an important and useful counterpart that provides
a categorical characterization of the algebraic tensor product.

Proposition 2.2. Let & and % be complex |real] linear spaces and suppose
given a pair (9, 6), where % is a complex |real]| linear space and o is a
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bilinear transformation of & + & into 9. Suppose also that the following
conditions are satisfied:

(1) The range of o generates 4 algebraically,

(ii) If ¢ is any bilinear transformation of & + % into a complex |real]
linear space A, then there exists a linear transformation T:94 — A
such that ¢ = T o 0.

Then there exists a linear isomorphism ® of ¥ onto & X & such that
® oo = p. (The isomorphism @ is unique by virtue of (1) and coincides,
in fact, with the result of applying (11) to p.)

PrROOF. We simply define @ to be the result of factoring p through ¢ as in
(i1), and denote by W the result of factoring o through & x . It is clear that
® and Y are mutually inverse mappings on the ranges of o and p, respectively,
and since the range of ¢ generates 4 and the range of p generates 6 x #,
it follows that ® and ¥ are, in fact, mutually inverse linear isomorphisms

between 4 and & x %. L]

Example O. Let & and & be linear spaces, and let ¥ and .# be linear mani-
folds in & and &, respectively. It is obvious that if we set p, = p|(Z + )
where p 1s as above, then p, 1s a bilinear mapping of ¥ + 4 into & x &.
Moreover, if we denote by ¢ the linear submanifold of & x & generated by
o(& + .#), then the pair (9, p,) satisfies the conditions of Proposition 2.2.
Indeed, if ¢, 1s a bilinear mapping of ¥ + .# into a linear space #, let
¢ denote a bilinear extension of ¢, to & + % (Prob. Q). If  denotes the
result of factoring ¢ through & x %#,andif weset T = ¢|%, then T 1s a linear
transformation of ¢4 into # and we have ¢, = T o p,. Hence the result i of
factoring p, through & x .# is a linear isomorphism of ¥ x .# onto the
linear manifold ¥ in & x &. It is readily verified that if x and y are vectors
in ¥ and .#, respectively, and if (x ® y), denotes (for the moment) the
corresponding element of ¥ x #, then (x ® y)y) =x @y In é X Z.
Throughout this book, whenever tensor products are under discussion, we shall
use the canonical isomorphism 1 to identify £ x .M/ with the linear manifold

G = (L x M)in& x F.

Let & and & be linear spaces over the same scalar field, and let ¢t =
Yi7_, x; ® y; be an element of & x F. If {e,, ..., e,} is a basis for a linear
manifold in & containing all of the vectors x,, ..., x, and 1if

S
xi———Zlijej, i:I,...,r,
J=1

then

o &
|

M- 1D
I

|
1 =
‘:‘:}
®
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R
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This calculation shows that, when representing an element of & x &
in the form ) ; x; ® y;, we may always arrange for the x;’s (or the y;’s) to be
linearly independent. In this connection the following result is important.

Proposition 2.3. Let & and & be linear spaces over the same scalar field, let
X be asubset of &,let Y beasubsetof #,andletT = {x® y:xe X,ye Y}.
If X and Y generate & and %, respectively, then T generates & x &
If X and Y are each linearly independent, then T is linearly independent
in& x &. Finally, if X and Y are Hamel bases for & and &, respectively,
Then T is a Hamel basis for & x & .

PRrOOF. The first assertion is obvious, and is included here only for complete-
ness, while the third assertion is an immediate consequence of the first two.
Thus the proof comes down to showing that T is linearly independent when
X and Y are, and here it 1s clearly enough to treat the case in which X and Y
are nonempty finite sets. Suppose, then, that X = {x,,...,x,,} and Y =
{y1, ..., Vot are linearly independent, and let ¥ and .# denote the linear
manifolds generated by X and Y, respectively. For each vector x = ) ™| a;x;
in¥%andy=)"_, B;y;in .4, we define the m x n matrix

(P(X,y)=(diﬁj), i=19"'9m9j=19"'9n9

and observe that ¢ is a bilinear mapping of ¥ 4 .# into the linear space
C,. .. Moreover, if ¢ denotes the result of factoring ¢ through ¥ x .,
then |

@(xl®yj):EUa i:ls"'amajzla"'ana

where E;; denotes the matrix with a one in the (i, j) position and all other
entries equal to zero (cf. Example C). Since the matrices E;; are linearly

independent in C,, ,, it is clear that the products x; ® y; are linearly inde-
pendentin & x &, and the proposition follows. (We here use our convention
that it 1s a matter of indifference whether x; ® y;1s regarded as an element of

P x Moré x F.) L]

Corollary 2.4. The Hamel dimension of & x & is the product of the Hamel
dimensions of & and & .

It is easy to see how the above definitions should be modified so as to
cover algebraic tensor products of the form &, x --- x &,, and likewise
how Propositions 2.1, 2.2, and 2.3 are to be generalized so as to cover this
more general case. Details are left to the interested reader.

PROBLEMS

A. The union of a nested collection of linearly independent sets 1n a (real or complex)
linear space & i1s again linearly independent. Use this fact and Zorn’s lemma to

show that there exists a maximal linearly independent set in &. Show also that a
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maximal linearly independent set in & 1s a Hamel basis for &. (The empty set (J1sa
Hamel basis for (0).) Show similarly that if M 1s an arbitrary subset of & and J an
arbitrary linearly independent subset of M, and if # denotes the linear submanifold
of & generated by M, then there exists a Hamel basis X for # suchthatJ < X < M.

B. (1) Let X ={x{,...,x,} and Y = {y,,..., y,} be linearly independent sets of
vectors 1n a (real or complex) vector space &, and suppose X 1s contained 1n the
submanifold .# of & that 1s generated by Y. Show that m < n and that 1t 1s
possible to select a set Z of exactly n-m vectors from Y so that X u Z 1s also
a basis for .#. (In particular, then, if m = n, the set X 1s itself a basis for ./Z.)
Conclude that if a vector space & possesses a finite basis, then any two bases for
& contain the same number of vectors, and that, if dim & = n, then & 1s itself the
only n-dimensional submanifold of &. (Hint: The heart of the matter 1s that if a
vector x belongs to .#, and if in the expression x = ) '_; 4;y; some 4; # 0,
then the set Y consisting of x and {y;:i # i,} is linearly independent, and is
therefore another basis for .Z.)

(11) Let & be an infinite dimensional linear space (real or complex), and suppose
given two (infinite) Hamel bases X and Y for &. If x 1s any nonzero vector
belonging to X, then there exist (unique) vectors y;, ..., y, 1n Y and (unique)
nonzero scalars Ay, ..., 4, such that x = A4;y; +--- + 4,y,. (The vectors y,
and scalars 4; vary with x, of course.) Let E, denote the set {y,, ..., y,}. Show
that Y = | ),.x E., and show that this implies that card Y < N, card X
Finally, show that card X = card Y (and hence that the definition of Hamel
dimension makes sense). (Hint: Cf. Problems 1R and 1T.)

C. If ./ 1salinear manifold in a (real or complex) vector space & and A" is another linear
manifold in & such that #/ " A = (0)and # + A = &, then A" 1S a complement
of /. Show that every linear manifold .# in & has a complement. (Hint: Use a
Hamel basis.)

D. Let & and & be linear spaces, and let T be a linear transformation of some linear
submanifold .# of & into %#. Show that there exists a linear transformation T of
& into & such that T = T|.#. (Hint: Use a Hamel basis or Problem C.)

E. Let & and % be linear spaces, and let ¢ be a mapping of a subset M of & into .
Show that there exists a linear transformation T:& — % such that ¢ = T|M it
and only if ¢ “respects” all linear dependencies in M, that 1s, if and only if

m  A;x; = Owith x,, ..., x, in M implies that ) ™ ; 4,¢(x;) = 0. Show also that
such a linear transformation T is uniquely determined by ¢ on the linear sub-
manifold of & generated by M. (Hint: The stated condition ensures that if

Zaixi = Zﬁj)’ja then Zai(p(xi) = ZB;“P()’;‘)
i=1 j=1 i=1 j=1

whenever x4, ..., X,, and y4, ..., y, are vectors in M.) In particular, if X 1s a Hamel
basis for &, and 1if ¢ 1s an arbitrary mapping of X into &, then ¢ possesses a unique
linear extension to &. Conclude that two linear spaces are isomorphic if and only
if they have the same Hamel dimension.

F. (i) Let {&,},.r be an indexed family of vector spaces, let & denote the full algebraic
direct sum & = ) , 4+ &, and for each index y, let .#, denote the set of those

elements {x,} of & such that x, = 0 for all y # y,. Verify that .#,_1s a linear
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manifold in & and that the mapping 7, obtained by restricting to .#, the
projection w, of & onto &, 1s an isomorphism of .#, onto &, . (This iso-

morphism i1s frequently used to identify &, with its counterpart .#, .) Show
also that the indexed family of submanifolds {.# .}, . has the following prop-

erties:
(a) N M, =€,
Y
(b) ’-%}' a ‘-%}” — (O)a y # ’J)’-

Use this observation to prove that the Hamel dimension of & is the sum ) , d,
where d, denotes the Hamel dimension of &, y e I'. (Hint: If X, 1s a Hamel
basis for .#,, y € I', then the sets X, are pairwise disjoint, and U}, X, 1s a Hamel
basis for &. Recall that the cardinal number of the union of a disjoint collection
of sets is the sum of the cardinal numbers of the sets 1n the collection.)

(1) An indexed family {.#,},.r of linear submanifolds of a linear space & 1s said
to form an internal direct sum decomposition of & 1f (a) and (b) of (1) are satisfied.
Thus, according to (i), to every (external) full algebraic direct sumé& = ) , 4+ &,
there corresponds a similarly indexed internal direct sum decomposition
{AM,} of &, where each ./, 1s isomorphic to &, in a natural way. Show, conversely,
that if {.#,} 1s any internal direct sum decomposition of a linear space &, then
there exists a unique isomorphism of & onto the (external) direct sum ) ., 4 .#,
that agrees with 7,7 on each linear submanifold ...

G. If T'isalinear transformation of a linear space & 1nto a linear space %, and if its range
A(T) 1s inite dimensional, then dim £(T) 1s called the rank of T (notation: rank 7).
Likewise, if the null space S (T) 1s finite dimensional, them dim 4 (T) is the
nullity of T. Show that if & 1s finite dimensional, then for an arbitrary linear trans-
formation T:& — % we have

(rank T) + (nullity of T) = dim é&.

Conclude that if S is a linear transformation on an n-dimensional linear space &,
then S is invertible if either .Z°(S) = (0) or Z(S) = &, 1.e., if either the nullity of S
vanishes or the rank of S equals n. Show finally that if there exists a linear trans-
formation R on & such that RS = 1 or SR = 1, then S is invertible and R = S~ 1.

H. If A = (o;;) 1s an m x n matrix and B = (f8;;) an n x p matrix, then the product AB
is the m x p matrix (y;;), where y;; = )i aubijy i=1,....,m; j=1,...,p.
(This operation is, for obvious reasons, known as “row by column ” multiplication.)
In particular, the product of any two matrices in C,, , 1s defined, and this product
turns C,, , 1nto an algebra.

(1) Suppose that X = {x;,...,x,} and Y = {y;,..., y,} are ordered bases for
the linear spaces & and %, respectively, and that B i1s the matrix of a linear
transformation T:& — &% with respect to X and Y. Verity that if (ay, ..., a))
1s the p-tuple of coordinates of a vector x with respect to the basis X and
(B, ..., p,) the n-tuple of coordinates of Tx with respect to Y, then

P *y
=5 1}
br o,
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(n) Let Z = {z4, ..., z,; be an ordered basis for a third linear space ¢, and let 4
be the matrix of a linear transtormation S: % — % with respect to Y and Z.
Verify that AB 1s the matrix of ST with respect to the bases X and Z.

() If A = (a;;) 1s an element of C,, ,, and if for each x = (¢4, ..., ¢,) in C" we set
ITx=y=(ny,...,Nn,, where

N1 C1
=4 :}

Mo Cr
then the mapping T of C" into C™ 1s a linear transformation. We shall refer to
this as the linear transformation defined by the matrix A. Verify that this
assignment of a linear transformation to each m x n matrix is a linear space
1somorphism between C,, , and the full space of linear transformations of C”
into C™. In the same spirit, verify that if & and % are, respectively, n- and m-
dimensional, and if X and Y are any ordered bases for & and &, respectively,

then the correspondence pairing each linear transformation T of & into %
with the matrix of T with respect to X and Y 1s a linear space isomorphism
between the full space of linear transformations of & into &% and C,, . If 4
1s an m x n matrix, and if T denotes the linear transformation of C" into C™
defined by A, then A is the matrix of T with respect to the natural bases in C”

and C" (Ex. B).

By the rank of an m x n matrix A (notation: rank A) is meant the maximal number
of linearly independent columns in A (that is, the number of elements in a maximal
linearly independent set of columns; the columns of A are here viewed as elements
of C™). Show that if T 1s a linear transformation of an n-dimensional linear space &
into an m-dimensional linear space &, and 1if A4 is the matrix of T with respect to
ordered bases for & and &, then rank A = rank T. Conclude that an n x n matrix
A 1s invertible if and only if rank A = n. (Hint: See Problem G.)

Let o/ be a (real or complex) algebra. A linear manifold & 1n o/ that is closed under
multiplication is a subalgebra of /. If & has the additional property that for every
s1n & and x in &7, sx belongs to <[ xs belongs to 7], then & is a right [left] ideal
In &. If & 1s both a left and a right ideal, then % is a two-sided ideal, or, more
simply, an ideal in o/. Show that if & 1s a two-sided ideal in &7, then the quotient
vector space //< equipped with the product [x][y] = [xy] forms an algebra.
This algebra o/ /% is called the quotient algebra of o modulo & .

Show that the vector space (¢) of Example D forms a unital algebra with respect
to the product {«,} {B,} = {2,B,}. Show that the linear manifolds (»=), (¢), and (¢,)

are subalgebras of (4), and that (¢,) 1s an 1deal in (»=).

Let o/ and £ be algebras over the same scalar field, and suppose that ¢ is a linear
transformation of & into 4 such that ¢ preserves products (1.€., such that @(xy) =
o(x)p(y) for every pair x, y of elements of /). Then ¢ 1s called an (algebra) homo-
morphism of & into 4. If ¢ is a vector space isomorphism of .o/ onto 4 that is also
an algebra homomorphism, then ¢ 1s an algebra isomorphism of &/ onto %4, and 1if
such an 1somorphism exists, &/ and & are said to be isomorphic (as) algebras.

(1) Let ¢ be a linear transformation of &/ into 4, and let X = {x,} be a Hamel
basis for &/ (regarded as a linear space). Verify that ¢ 1s an algebra homo-



2 Linear algebra

morphism if and only if ¢(x, x..) = @(x,)e(x,.) for every pair x,, x,, of elements
of the basis X.

(i1) Verify that if # is an ideal in &7, then the natural projection © of &/ onto the
quotient algebra «//¢ 1s a homomorphism with kernel # (see Problem J for
definitions). Show in the converse direction that if ¢ 1s an arbitrary homo-
morphism of &/ into 4, then the kernel £ () is an ideal in &/, the range Z(¢)
1s a subalgebra of 4, and the result of factoring ¢ through the ideal ()
(Ex. L) is an algebra isomorphism of the quotient algebra «// % (@) onto Z(o).

(ii1) Suppose &/ is an algebra with identity 1, and let 2 denote the algebra of all
complex polynomials p(4d) = ay + ;4 + --- + a,A". Show that for each
element x of .o/ there exists a unique homomorphism ¢, of 2 into &/ satistying
the conditions ¢ (1) = 1 and ¢ (A) = x. (Hint: The sequence {1, 4, A%, ...}
constitutes a Hamel basis for #2; use (1).) The image ¢,(p) of a polynomial p
under the homomorphism ¢, is denoted by p(x), and 1s referred to as the result
of evaluating p at x. Show that for an arbitrary polynomial p the element p(x)
doubly commutes with x, 1.e., that p(x) commutes with every element y of .o/
that commutes with x. Verify that an analogous construction exists, even when
2/ does not possess a unit, provided the algebra £ 1s replaced by the ideal £,
consisting of all polynomials having zero constant term, and discuss the case
of a real algebra.

(iv) Show in the same vein that if 2 denotes the linear algebra of all polynomials
p(44, ..., 4,) in n indeterminates, and if x,, ..., x, denote elements of &/ that
commute in pairs, then there exists a unique homomorphism of 2™ into &/
that assigns the identity 1 in &/ to the polynomial 1 and x;to 4;,,i=1,..., n.
The image of p(4,, ..., 4,) under this homomorphism i1s also referred to as the
result of evaluating p at (x,, ..., x,), and 1s denoted by p(x,, ..., Xx,).

(v) Show that if & and % are vector spaces and # 1s a linear space 1somorphism
of & onto &, then ¢o(T) = nTn~' defines an algebra isomorphism ¢ of the
full space of linear transformations on & onto the full space of linear transforma-
tions on % . (The 1somorphism ¢ 1s said to be spatially implemented by n.)

. If & is an n-dimensional linear space, then, as noted in Example N, for each ordered
basis X = {x,,..., x,} for & the mapping

n

Y Aix; B Ay, ..., Ay,

1=1

which assigns to each vector in & its n-tuple of coordinates with respect to the
basis X, is a linear space isomorphism of & onto C". Show similarly that the mapping
 that assigns to each linear transformation T on & its matrix with respect to X 1s
an algebra isomorphism of the algebra of linear transformations on & onto the
matrix algebra C, ,. Show, in the same vein, that if 0 denotes the mapping assigning
to each matrix 4 in C, , the linear transformation on C" defined by A (Prob. H (ii1)),
then o is an algebra isomorphism of C, , onto the algebra of all linear transforma-
tions on C". Show, finally, that if ¢ = d oy, then o(T) = nTn~* for every linear
transformation T on &, in other words, that ¢ 1s the isomorphism spatially imple-
mented by # (Prob. L (v)). (Thus if the 1somorphism o 1s used to 1dentify the algebra
of linear transformations on C" with C, ,, then y may be said to be spatially imple-
mented.)
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N.

30

Show that if 4 and B are similarn x n matrices thentr A = tr Band det A = det B.
Use this fact to conclude that if T 1s a linear transformation on an n-dimensional
vector space &, then we may define (unambiguously)

trT=trA and det T = det A,

where A denotes the matrix of T with respect to any ordered basis for &, and verify
that det T ¢ 0 when and only when T i1s invertible. (Hint: Recall that det is a
homomorphism of C, , onto C with the property that det 4 = 0 if and only if A

1s not 1nvertible.)

. If T 1s a linear transformation on a vector space &, and if there exists a complex

number A and a nonzero vector x in & such that Tx = Ax, then A is an eigenvalue
of T, and x 1s an eigenvector of T associated with the eigenvalue A. The set
\ye&: Ty = Ay} is a linear manifold in & called the eigenspace associated with A.
Show that every linear transformation on a finite dimensional vector space has an
eigenvalue. (Hint: Apply the fundamental theorem of algebra to the characteristic

equation det(A — T) = 0.)

Show that if T 1s a linear transformation on an n-dimensional linear space &, then
there is an ordered basis X = {x4,..., x,} for & such that the matrix 4 = («;))
of T with respect to X 1s in upper triangular form (that 1s, o;; = O whenever i > j).
(Hint: According to the preceding problem there is a basis {yy, ..., y,} for & such
that Ty; = Ay, for some complex number A. Let (8;;)] ;—; be the matrix of T with
respect to this basis, let .# denote the linear manifold generated by the vectors
{y2, ..., Vut, and let & denote the linear manifold consisting of the scalar multiples
of y;. The submatrix (f;;); =, 1s the matrix of a linear transformation S on .#
with the property that, for every x in #, Tx — Sx belongs to #. Use induction.)
Show also that if the matrix 4 of T is in upper triangular form, then the diagonal

entries o;; of A4 are precisely the eigenvalues of T.

Let &, %, and ¢ be linear spaces, let .# and A" be linear submanifolds of & and %,
respectively, and let ¢ be a bilinear transformation of # + A" into 4. Show that ¢
can be extended to a bilinear transformation of & + & nto 9. (Hint: Recall

Problem D.)

Let &, %, and ¢ be linear spaces, let M and N be subsets of & and %, respectively,
and let ¢, be a mapping of the Cartesian product M x N into 4. Show that neces-
sary and suflicient conditions for the existence of a bilinear transformation ¢ of

¢ + &% nto 4 with the property that ¢|(M x N) = ¢, are

(1) if xq, ..., x,1s any finite subset of M and if
Z OCixi — 0, thCIl Z Otl (p()(xi) y) emmoon O
i=1 i=1

for every y in N, and

(1) 1if {y,, ..., y,} 1s any finite subset of N and if

Zﬁiyi = 0, then Zﬂi‘ﬂo(xa y) =0
i=1 i=1

for every x iIn M.
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(Hint: Use Hamel bases (Prob. A). Note that, according to Problem E, these con-
ditions may be paraphrased as follows: For each y, in N the mapping x — @,(x, y,)
admits a linear extension to &, and for each x, in M the mapping y — @,(x,, »)
admits a linear extension to £.)

Let & be a linear space, let G be a system of algebraic generators for &, and let
be a mapping of G x G into C. Show that a necessary and sufficient condition for

the existence of a sesquilinear functional Y on & with the property that y(x, y) =
Vo(x, y) for all x, y in G is that if {xq,..., x,} 1s any finite subset of G and if
Z?=1 A;x; = 0, then Z?=1 Aio(xi, y) = 0 and Z?=1 Aio(y, x;) = 0 for every y
in G. (This condition can be paraphrased as follows: For each y, in G the mappings
x = Yo(x, ¥o) and x = ¥,(y,, x) can be extended to linear functionals on &. It would
be easy, of course, to state a more general version of this result, along the lines
of the preceding problem, but we will have no need for such generality.) Show also
that ¥ 1s uniquely determined by ¥, when it exists, and that ¥ 1s symmetric if and

only if Y, has the property that y,(x, y) = Yy ,(y, x) for all x, y in G.

Show that there exists a “natural” isomorphism between the algebraic tensor
product C™ x C" and the space C,, , of m x n matrices. (Hint: For each x =
(& ooy Cmand y = (14, ...,1,) InC" let a(x, y) be the matrix (¢;7;) and set
4 = C,, ,1n Proposition 2.2.)

. Let & and & be linear spaces,and lett = ) '_; x; ® y; be an element of the algebraic
tensor product & x %. Show that if the vectors x; are linearly independent, then
the vectors y; are uniquely determined by ¢ (and, similarly, the vectors x; are uniquely
determined by ¢t when the vectors y; are linearly independent). Conclude that if
xedé and y € #, then x @ y = 0 when and only when one of the vectors x or y
1s 0, and, likewise, that if x, x" are vectors in & and y, y’ vectorsin %, and if x ® y =
x' ® y # 0, then there exists a scalar A such that x = Ax’ and y’ = Ay.
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General topology

In this chapter we briefly review the basic facts about general topology that
will be used 1n this book. We omit many of the most basic definitions, and
some of the proofs. (The topic of convergence of nets, by contrast, 1s treated
in full detail.) For definitions of terms used below without definition, and for
proofs of theorems stated without proof, the reader 1s referred to any textbook
on general topology, e.g., [40], [11], or [20]. To begin with, the terms
topology, topological space, open set, closed set, interior, closure, boundary,
and neighborhood, will be used without explanation, and the various relations
between these notions will be assumed known. The interior of a set 4 in a
topological space will be denoted by A4°, the closure of A by A7, and the
boundary of 4 by 0A.

Other terms and concepts with which the reader will be assumed to be
familiar are topological base and subbase and the first and second axioms
of countability (cf. Problem A). In connection with the notion of a base
for a topology the following fact, whose verification is routine, is frequently

useful.

Proposition 3.1. A collection 4 of subsets of a set X forms a base for a topology
on X if and only if every point of X lies in some element of % (briefly:
if 4 covers X) and the intersection of every pair of sets belonging to %
is a union of sets belonging to %. (The only property that a collection &
of subsets of X must possess in order to be a subbase for a topology on X

is that it cover X.)

Example A. The collection of all open intervals (a, b), where a, be R and
a < b, is a base for the usual topology on R. Similarly, the collection of all

32
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open cells, 1.e., the collection of all products of open intervals
(a19 bl) X oo X (ans bn)

1s a base for the usual topology on R". A base for the usual topology on the
complex plane C is given by the set of all open discs

D.(x) ={AeC:|la — A| <r},

where « 1s a point of C and r 1s a positive number. Similarly, the collection
of all products of open discs

Drl(al) X o X Drn(an)

1s a base for the usual topology on C". Since all of (the real and imaginary parts
of) the parameters employed in defining these various bases may be restricted

to assume only rational values, the spaces in this example all satisfy the
second axiom of countability.

Example B. Let X be a simply ordered set containing at least two elements.
For each a in X let

L,={xeX:x<a} and R,= {xe X :x > a}.

Then the collection & = {L,:ae X} U {R,:a€ X} 1s a subbase for a
topology on X called the order topology. A base for the order topology is
givenby ¥ U{R,nL,:a,be X,a < b}. Theset R, n L,,a < b, is called an
open interval and 1s sometimes denoted by (a, b), just as when X is the system
of real numbers. The order topology on R is the usual topology on R. Another
situation in which the order topology 1s important arises when X is a segment
W (a) of ordinal numbers. In particular, if 4 is a limit ordinal, then a base
for the order topology on W(A) is given by the collection of sets of the form

{eW):a <& < B}, wherea < f < A.

A subset A of a topological space X is itself a topological space, called
a subspace of X, when A 1s given its relative topology. This 1s the topology on 4
consisting of all sets of the form A N U, where U 1s an open set in X. Whenever
a subset 4 of a topological space is regarded as a topological space, the
topology on A4 is always understood to be the relative topology unless the
contrary is expressly stipulated.

A set A in topological space X is dense in X if A~ = X. The space X 1s
separable if it possesses a countable dense subset; every topological space
that satisfies the second axiom of countability 1s separable.

Example C. We topologize the extended real number system R* (Ex. 1B)
by giving it its order topology. Note that this has the eftect of making R
a dense open subspace of R*.
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Recall that if X and Y are topological spaces, if f 1s a mapping of X into
Y, and if x, € X, then f is continuous at x, if for every neighborhood W of
f(xo) 1n Y there 1s a neighborhood V of x, in X such that f(V) < W, more-
over, f 1s continuous 1f 1t 1s continuous at every point of X. A mapping
f : X — Yis continuous if and only if f ~'(U) is open in X for every open set
U in Y, or, equivalently, if and only if f = '(F) is closed in X for every closed
set F in Y. A mapping f: X — Y with the property that f(U) is open in Y
whenever U is open in X 1s an open mapping. Likewise, f 1s a homeomorphism
of X onto Y if f is a one-to-one mapping of X onto Y such that both f and
f~ ! are continuous, i.e., such that f is both continuous and open. Two
topological spaces are homeomorphic if there exists a homeomorphism of
one of them onto the other.

Example D. If X i1s any topological space, then the collection of continuous
complex-valued functions on X will be denoted by é(X), and the collection
of continuous real-valued functions on X by € R(X). It 1s clear that €(X)
| € r(X)] is a unital linear algebra [real linear algebra] with respect to the
usual operations of pointwise addition and multiplication. The space € (X)
1s the complexification of €x(X). If 4 1s an arbitrary subset of X, then the
set of all functions in ¥(X) that vanish on A 1s an 1deal in €(X). If ¢ 1s a
homeomorphism of a topological space X onto a topological space Y, then
the mapping f — f o @ 1s an algebra 1somorphism of é(Y) onto %(X)
called the isomorphism induced by .

Example E. Let U denote a nonempty open subset of R”. If f 1s a complex-
valued function on U, then there are many degrees of smoothness that f may
possess beyond mere continuity. Recall that a function f on U 1s k times
continuously differentiable on U 1if all of the kth order partial derivatives
o“f /oxT -+ - 0x'" (my + -+ + m, = k) exist and are continuous on U. The
collection of all k times continuously difterentiable complex-valued functions
on U will be denoted by ¥*¥(U), the collection of real-valued functions in
€(U) by €R(U). (To form the partial derivative df /0x; of a complex-valued
function f we simply difterentiate the real and imaginary parts:

of _0Ref 0Imf
6x-“ 0x ; l 0x .

J J

).
J
It is, once again, easily seen that ¥*(U) [€R(U)] is a unital algebra [real
algebra], and that €*¥)(U) is the complexification of €¥R(U).

A topological space X is [countably] compact 1f from every [countable]
open covering of X it is possible to extract a finite subcovering. A subset 4 of
a topological space X 1s compact if 1t is compact 1n 1ts relative topology.
Equivalently, A is compact if and only if from every open covering of A by
open subsets of X it is possible to extract a finite covering. Countable
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compactness implies compactness in spaces satisfying the second axiom of
countability.

Example F (Heine-Borel Theorem). Every closed interval [«¢, 6] in R 1s
compact. Indeed, if % 1s an arbitrary open covering of [a, o], if T denotes
the set of those numbers ¢ in [a, b] with the property that the subinterval
[a, 1] 1s covered by some finite number of sets in #, and if ¢, = sup 7, then
it1seasy toseethatf, > aand ¢, e T. But¢, < bisimpossible,so[a, b] = T.

More generally, a subset K of R" 1s compact if and only if K 1s closed and
1Is contained in some closed cell {a,;,b,] X -+ X [a,, b,]. This theorem,
known as the Heine—Borel theorem, 1s an easy consequence of Proposition 3.2,
Theorem 3.15 below, and the just established fact that closed intervals are
compact.

A topological space X 1s a Hausdorff space if every two distinct points in X
have disjoint neighborhoods. A major role is played in modern analysis by
compact Hausdorft spaces, and the following two propositions concerning
such spaces are frequently useful. (The proofs of both propositions are
elementary. Other facts of basic importance pertaining to compact Hausdorft
spaces are stated in Propositions 3.4, 3.14, and Theorem 3.15.)

Proposition 3.2. A subspace A of a compact Hausdorff space X is itself a
compact Hausdorff space if and only if A is closed in X.

Proposition 3.3. If f is a continuous mapping of a |[countably] compact

topological space X onto a topological space Y, then Y is [countably]
compact. If f is a continuous one-to-one mapping of a compact space X onto
a Hausdorff space Y, then f is a homeomorphism.

A Hausdorft space X 1s called regular if for every closed set F in X and
every point x in X \ F there are disjoint open sets U and V such that x e U
and F < V. A Hausdorfl space X is normal if for each pair of disjoint closed
sets E and F 1n X there are disjoint open sets U and V such that E < U
and F < V. Equivalently, a Hausdorft space X i1s normal if and only if for
every closed set F and open set U in X such that F < U there exists an open
set Vsuchthat F <« V < V'~ < U. The facts we shall need concerning normal
spaces are the following. (The proof of Proposition 3.4 is quite elementary;
see Problem C. Proposition 3.5 is another matter altogether; no really easy
proof 1s known except in special cases; see Problem 4D.)

Proposition 3.4. Every compact Hausdorff space is normal.

Proposition 3.5 (Urysohn’s Lemma). If E and F are disjoint closed subsets
of a normal space X, then there exists a continuous function f : X — [0, 1]
such that f is identically zero on E and identically one on F, i.e., such that

F<Jf < Xx\E-
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Example G. Let X be a normal topological space, and suppose given a finite
open covering {U,,...,U,} of X. If F=X\(U,v---0vU,_;), then F

1S a closed set contained in U,, and there exists an open set V such that
FcVcV™ < U, Using this observation and an obvious induction

argument, one verifies without difficulty the following important fact:

If {Uy, ..., U,} is any finite open covering of a normal space X, then there
exists a corresponding closed covering {F., ..., F,} of X such that F; = U,
i=1,...,n.

Suppose now, once again, that {U,,..., U,} 1s an open covering of X,
andlet {F,, ..., F,} beaclosed coveringof X suchthatF, < U;,i=1,...,n.
By Urysohn’s lemma there exists, foreachi = 1, ..., n,a continuous mapping

fiof X 1into [0, 1] with the property that yp < f; < v, . It f = f1 +--- + f,,
then f > 1 on X. Hence if we define g; = f;/f, then the continuous functions
{g;, ..., 9, satisfy the following conditions:

g, +---+9g,=1 and 0<g; < yy, i=1,..., n

Such a system of functions 1s customarily called a partition of unity on X
subordinate to the given open covering {U,, ..., U,}.

Suppose now that F is a closed set in X and that {U,,..., U,} is a given
open covering of F. Set U, = X\F, and let {g,, 9, ..., 9,} be a partition of
unity of X subordinate to the open covering {U,, Uy,..., U,}. Then the
system of functions {g,, ..., g,} possesses the following properties:

1) 0<gi<yuv,i=1...,m,
() fg=9g,+---+g9g,,then0 <g <1onJX,
(111) g(x) = 1 for every x 1n F.

Such a system 1is also frequently called a partition of unity subordinate to the
given sequence {U,, ..., U,}.

Iffor each point x 1n a Hausdorfl space X and for each neighborhood V of x
there exists a continuous function f : X — [0, 1] such that f(x) = 1 and f is
identically zero on X'\ V, then X is said to be completely regular. It is obvious
that every completely regular space is regular, and, according to Urysohn’s
lemma, every normal space 1s completely regular.

A topological space X is connected if 1t is not possible to express X as the
union of two disjoint nonempty open [closed]| subsets. Equivalently, a
topological space X 1s connected if and only if the only closed-open (i.e.,
both closed and open) subsets of X are (J and X itself. Still another formula-
tion is the following: X 1s connected if A = X and 04 = J imply A = & or
A = X. A subset of a topological space is connected if it is connected as a
subspace. It 1s easily seen that if C is a connected subset of a topological space
X, then C™ 1s also connected. Another important property of connected
sets 1s given in the following proposition.

Proposition 3.6. If C is connected subset of a topological space X, and if A
is a subset of X suchthat C N 0A = J, then either C < Aor Cn A = .
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PROOF. fC ndA = Jand xeC N A, then xe A°. Thus Cn A = C n A°
1s open relative to C. Since 4 and X \ A have the same boundary, this shows
that C\ 4 1s also open relative to C. Thus C = (C n A) U (C\ A4) expresses C
as the union of two disjoint relatively open subsets, one of which must be
empty. L]

Example H. A collection € of subsets of a set X is said to be chained if for
any two sets C,, C, in € there is a finite sequence {D,, ..., D,} of sets in €
suchthatD,_,. n D, # J,i=1,...,n,and suchthat D, = C,and D, = C;.
Suppose given a chained collection € of connected subsets of a topological
space X, let E denote the union of the sets in €, and let 4 be a closed-open
subset of E. Then 04 = ¢J 1in the subspace E. Thus if C 1s a connected subset
of E, then either C " A = Jor C < A.In particular, this is true of each of the
setsin 6. Thus if A # ¢, then A contains some one of the sets in €. But then,
since € 1s chained, it is seen at once that 4 must contain every set in €. Thus
A = E, and we have proved that E 1s connected.

Example 1. Every interval or ray in R, open, closed, or half-open (including
the space R itself), 1s connected. To see this we note first that if I is either
an interval or a ray (or R), then the closed subintervals of 7 form a chained
collection of subsets of I that covers I (Ex. H). Thus it suffices to verify that
every closed interval [a, b]| 1s connected. Suppose U 1s a relatively open subset
of [a, b| such that a € U and such that V = [a, b]\ U is also relatively open
in [a,b]. Let T={tela,b]:[a,t] = U} and set t, =sup T. Then
a <ty < b, and the assumption that t, € V' leads at once to a contradiction
of the definition of t,. Hence t, € U, and 1t follows that ¢, 1s also an element of
T. On the other hand, the assumption ¢, < b likewise leads to a contradiction
of the definition of t,. Thust, = band U = [a, b].

Each point x in a topological space X is contained in a unique largest
connected subset of X, called the (connected) component of x. (It 1s clear from
Example H that the union of all the connected subsets of X that contain x is
connected, so this union is the component of x.) The component of any one
point i1s also the component of every other point it contains, and is accordingly
also referred to as a (connected) component of X. The components of a
topological space are closed sets, since their closures are also connected.

Proposition 3.7. If E is an arbitrary subset of the real line R, then the following
conditions are equivalent:

(1) E is connected,
(m) If a,be E,and if a < ¢ < b, then c € E,
(1) E is either an interval (open, closed, or half-open), or a ray (open or
closed), or the entire real line R.
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If U is an open subset of R, then U can be expressed uniquely as a countable
union of pairwise disjoint nonempty open intervals, and these intervals are
the connected components of U.

PRrOOF. That (111) implies (1) was proved in Example I, while the proof that (11)
implies (111) amounts to nothing more than a careful consideration of cases.
Finally, to show that (1) implies (i1) we note that (—o00,c) U (¢, +00) 1s a
disconnection of the set R\ {c} obtained by removing a single point ¢ from R.
Hence if C 1s a connected subset of R that does not contain ¢, then either
Cc(—oo,c)or C < (c, +00).

To prove the last assertion of the proposition we observe that, since U is
open, every nonopen interval that is contained 1in U 1s contained 1n an open
interval contained in U. It follows from this that the connected components
of U are all open intervals. That no disjoint collection of nonempty open
intervals can be uncountable follows from the fact that R satisfies the second
axiom of countability. To complete the proof it suffices to observe that if
{1,} 1s a disjoint (countable) collection of nonempty open intervals such
that U = | ), I,,, and if V is a connected component of U that meets some one

I, then neither endpoint of I, can belong to V, and therefore V = I, (Prop.
3.6). ]

If X 1s a connected space and f : X — Y is a continuous mapping, then
f(X)1s a connected set in Y. Thus, in particular, if f 1s a continuous mapping
of a closed interval [a, b] into Y, then the range of f is connected in Y. Such
a mapping 1s called an arc in Y, and [a, b] 1s the parameter interval of the
arc f. If f(a) = y, and f(b) = y,, then the arc f 1s said to join y, to y,. If
for every pair of points y, and y, in Y there exists an arc joining y, to y;,
then Y is said to be arcwise connected. An arcwise connected space 1s clearly
connected.

Proposition 3.8. If U is a connected open subset of R", then U is arcwise
connected.

PROOF. We may assume U to be nonempty. Let x, be a point of U, and denote
by V the set of those points x in U such that there exists an arc in U joining
xo to x. If x € Vand if W is an open cell in R” containing x and contained
in U (Ex. A), then x can clearly be joined to every point of W by an arc in W.
Hence W < V, and i1t follows that V' 1s an open set.

Suppose now that y, € U n 0V, and let W, be an open cell containing y,,
and contained 1n U. Then there exists a point x of V' belonging to W;, and
since x can be joined to y, by an arc in W, it follows that y, € V, which 1s
impossible since V is open. Thus U n oV = ¢, and therefore V = U by
Proposition 3.6. L]

The structure of the most general open subset of R 1s set forth in
Proposition 3.7. In the topology of the plane matters are not quite so simple,
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but there are some useful things that can be said. (In this discussion we speak
of the complex plane C, but the following facts are equally valid for the real
plane R?, which may be identified with C via the standard homeomorphism
s + it « (s, t).) We begin by recalling that a domain in C i1s a nonempty
connected open subset of C.

Proposition 3.9. Every open subset U of C is uniquely expressible as a countable
union of disjoint domains, and these domains are the components of U.

PRrROOF. The empty set 1s the empty union of domains. If U is a nonempty open
set 1n C, and 1if A, 1s an element of some component U, of U. then (Ex. A)
there is an open disc D,(4,) about A, (r > 0) such that D(4,) = U. Since
discs are (arcwise) connected, it is clear that D (4,) = U,, and hence that the
components of U are open. That no collection of disjoint open sets in € can be
uncountable is clear from the fact that C satisfies the second axiom of count-
ability. To complete the proof it suffices to observe that if {U,} 1s a disjoint
(countable) collection of nonempty domains such that U = | J, U,, and if
V' is a connected component of U that meets someone U,,then V N 0U, = ),

and therefore V = U, (Prop. 3.6). L]

If K is a compact subset of C, then K is bounded, that 1s, there exists a
disc Dg(0) large enough so that K < Dg(0)~, and since V = C\Dg(0)"
1s (arcwise) connected, 1t follows that V' 1s entirely contained in some one of
the components of C\ K. Hence all of the components of C\ K except this one
are contained 1n Dg(0), and are therefore bounded.

Definition. If K 1s a compact subset of C then there 1s exactly one unbounded
component of C\ K. The other components of C\ K (if any) are called the
holes of (or 1n) K.

Proposition 3.10. Let K be a compact subset of C, and suppose L is a compact
subset of C such that K < L and such that 0L < K. Then L consists of the
union of K and some of the holes of K. In particular, if K has no holes, then

L = K.

PROOF. According to Proposition 3.6 each component of C\K is either
contained in L or disjoint from L. In particular, the unbounded component
of C\ K is disjoint from L since L is bounded. L]

In any deep study of plane topology an important role is played by the
Jordan curve theorem. In this connection we shall employ the following

terminology.

Definition. A Jordan loop or Jordan curve is an arc y in C defined on a real
parameter interval [a, b] (a < b) such that y(a) = y(b) and such that y
is one-to-one and never equal to y(a) on the open interval (a, b). It is
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easily seen (Prop. 3.3) that the range J of a Jordan loop y 1s compact and
could equally well be characterized as a homeomorphic image in C of the
unit circle. We shall also refer to the range of a Jordan loop as a Jordan
loop or Jordan curve when that 1s convenient. In the event that a Jordan
curve J is a simple polygon in C (as defined in elementary geometry) we
say that J 1s a Jordan polygon.

A Jordan domain in C 1s a domain whose (entire) boundary consists
of the union of a finite number of pairwise disjoint Jordan curves. The
closure of a Jordan domain 1s, therefore, the union of the domain and
the various Jordan curves constituting its boundary. Such a closed set is
known as a Jordan region.

The following result 1s the central fact concerning the topology of the plane;

an elementary proof can be found in [66; pp. 100-104].

Theorem 3.11 (Jordan Curve Theorem). If J is a Jordan curve in C, then the

open set C\J is the union of exactly two components, each of which is a
Jordan domain having J for its entire boundary.

Definition. If J 1s the range of a Jordan loop 7y, then the bounded component

of C\J (that is, the hole in J), i1s called the interior domain of J, and 1s
denoted by Int(y) or Int(J). The unbounded component of C\J is the
exterior domain of J and 1s denoted by Ext(y) or Ext(J).

Proposition 3.12. Let U be an open subset of C, and let K be a compact subset

of U. Then there exists a finite set Ay, ..., A, of Jordan domains such that
the corresponding Jordan regions R; = A7 are pairwise disjoint, and such
that

KcAv---UA, and R, u---UR, <= U.

Moreover, it is possible to arrange matters so that each of the boundaries
OA,; is the disjoint union of a finite number of disjoint Jordan polygons.

We shall have no occasion to refer to this fact until Chapter 5. At that time, in connection
with some related material, we sketch a proof of Proposition 3.12. (See Problem 5K.)

Using Proposition 3.12 together with the Jordan curve theorem, it is

not difficult to determine the structure of the most general Jordan domain.

Proposition 3.13. If J,, ..., J, are Jordan loops that are mutually exterior
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In pairs, that is, are so situated that J; = Ext(J;),i # j,i,j = 1,...,n,and
if R, = (Int(J,) ,i=1,...,n,then the complement C\(R; U ---UR,)is
an unbounded Jordan domain with boundary J, v --- 0 J,. Conversely,
every unbounded Jordan domain is of this form. If J,,J4,...,J, are
Jordan curves such that J, ..., J, are mutually exterior in pairs, and such
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that Ji - Int(.]o), ] = 1, A (* and !f Ri — (Int(.],-))_, ] = 1, R (2 then
Int(J)O\N(R; v ---UR,) is a bounded Jordan domain with boundary
JouJ,u---0uJ,. Conversely, every bounded Jordan domain is of this

form.

A topological space is totally disconnected if its connected components are
all singletons, i.e., if its one-point subsets are the only nonempty connected
subsets that it possesses. The discrete topology on a set X 1s the topology
consisting of all the subsets of X'; a set X together with the discrete topology
on X is a discrete (topological) space. Such spaces are obviously totally dis-
connected. Here 1s a less trivial example of a totally disconnected space.

Example J. Let %, denote the singleton {[0, 1]}, 1.e., the set whose sole
element is the unit interval, and, for each positive integer n, let &, denote the
set of closed intervals obtained by removing the middle open third of each
of the intervals 1n the set &, _ .. (Thus %, 1s a set of disjoint closed intervals
I, ..., 1, ,n.) If for each nonnegative integer n we write

—m 7772
Fn— Ua/fn—In’IU"‘UIn,zn,

then

C=(F,

n=0

1s the Cantor set. For each interval I, ; in &, let us write C, ; = I, ; n C.
The set C, ; 1s closed and 1s also open relative to C (for an open interval
slightly larger than I, ; meets C in the same set). Let ¢ be a point in C, and let
a and b be any real numbers such that a < ¢ < b. If n1s chosen large enough
so that 1/3" < (¢c —a) A (b — ¢), and 1f I, ; denotes that interval in #,
that contains ¢, then C, ; < (a, b) n C. Thus the system of sets C,, ; constitutes
a base of closed-open subsets for the (relative) topology on C. From this it 1s
clear that C 1s totally disconnected.

It 1s no accident that the Cantor set possesses a base of closed-open sets.
In fact, the following result is valid (cf. Problem F).

Proposition 3.14. If C denotes a connected component of a compact Hausdorff
space X,and if U isany open set in X containing C, then there exists a closed-
open set E in X such that C < E < U. In particular, if X is a totally dis-
connected compact Hausdorff space, then the closed-open subsets of X
constitute a base for the topology on X.

It 1s frequently useful to consider two topologies on the same set X. If &
and 4 are two topologies on X, and if every open set in & 1s also in

(briefly: if ¥ = 7)), then  is said to be finer than &, or to refine &, and &
1s said to be coarser than < . This relation between topologies on X is
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obviously a partial ordering (as noted, it is just another name for the inclusion
ordering), and in this ordering the collection of all topologies on X becomes
a complete lattice (Prob. G). In particular, there is a finest topology on X
and a coarsest topology. The finest topology on X i1s clearly the discrete
topology introduced above; the coarsest topology on X is the two-element
topology { X, &}, sometimes known as the indiscrete topology.

Example K. If X 1s a simply ordered set, the collection of all sets L, =
ixe X:x < a}, ae X, together with the whole space X, is a base for a
topology 9, on X known as the left ray topology on X. Similarly, the
collection of all sets R, = {x € X :x > a}, a € X, together with X, is a base
for a topology 7, on X known as the right ray topology on X. The infimum
I, NI ,=9,nT,1s easily seen to coincide with the indiscrete topology
on X. The supremum 7, v 4 ,contains allrays L, and R,, a € X, and there-
fore coincides with the order topology on X (assuming that X is not a
singleton; see Example B).

This construction is of particular importance when X = R. If Z denotes
an arbitrary topological space and f is a real-valued function defined on Z,
then f 1s continuous at a point z, of Z when R 1s equipped with the left-ray
topology 7, if and only if the following condition is satisfied: For every posi-
tive number ¢ there exists a neighborhood V of z, such that f(z) < f(z,) + ¢
for every z 1n V. This situation 1s expressed by saying that f 1s upper semi-
continuous at z,. Dually, f 1s lower semi-continuous at z, i f 1s continuous at
zo When R 1s equipped with the right-ray topology .7 ., which is equivalent to
the following: For every positive number & there exists a neighborhood V' of
zo such that f(z) > f(z,) — efor every z in V. A real-valued function f on a
topological space Z is upper [lower] semi-continuous if it is upper [lower ]
semi-continuous at every point z of Z, 1.e., if f 1S continuous as a mapping
of Z into R equipped with the topology 7 ,| 7, ]. Note that f is upper [ lower ]
semi-continuous on Z if and only if the inverse 1image under f of every open
ray to the left [right] in R is open in Z, or, equivalently, if and only if the
inverse image of every closed ray to the right [left] in R 1s closed in Z.

If X is a set and if f is a mapping of X into some topological space Y, then
the collection of all inverse images f~'(U) of open sets U in Y forms a
topology on X, called the topology inversely induced by f (or, when no
confusion can result, the topology induced by f). The topology inversely
induced by f may also be described as the coarsest topology on X making
f continuous. If U is merely allowed to run over a base [subbase] for the
topology on Y, then the inverse images f~ '(U) provide a base [subbase]

for the inversely induced topology on X.

Example L. Let X be a topological space, and let 4 be a subset of X. If we

take for f the inclusion mapping of A into X (f(x) = x for all x in A), then
the topology inversely induced on A by f is the relative topology on A.
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A more sophisticated version of the above construction goes as follows.

Definition. Let X be a set, and for each y in an index set I let f, be a mapping
of X into a topological space Y,. Then the coarsest topology on X making
all of the mappings f, continuous is the topology inversely induced on X
by the family { f.},.r. (That such a topology always exists 1s an immediate
consequence of Problem G. When no confusion is possible, this topology
will simply be said to be induced by the family { f.}.)

If {f,} 1s a family of mappings of a set X into a family {Y} of topological
spaces, as in the foregoing definition, and if  denotes the topology induced
on X by the family { f,}, then it 1s clear that a subbase for J is given by the
collection of all sets of the form f '(U), where U is an open set in Y, and y
runs through I'. (More generally, if, for each index y, &, is a subbase for the
topology on Y., then the set of all inverse images f, (W), We &,.yeT,
constitutes a subbase for 7 .) Consequently a base for J 1s given by the
collection of all sets of the form

fy—ll(Ul)m”'mf)’—nl(Un) (1)

where each U; is an open set in Y, (which may be required to belong to a
specified base for Y, ) and {y,,...,y,} 1s an arbitrary finite subset of I".

Example M. Let { .} .r be an indexed family of topologies on a set X,
and for each index y let Y, and f, denote, respectively, the topological space
consisting of X equipped with the topology ., and the i1dentity mapping
on X regarded as a mapping of X onto Y,. Then the topology inversely
induced on X by the family {f },.r coincides with the supremum 7 of the
given family of topologies (Prob. G). Consequently a base for 4 1s given by
the collection of all sets of the form U, n---n U,, where U, belongs to
I,,i=1,...,n and {y, ..., 7,} denotes an arbitrary finite subset of I"
(Each U; may also be required to belong to a prescribed base for 7, .)

Example N. If {Y } . 1s an arbitrary indexed family of topological spaces,
and if X = ||, Y,, then the product topology on X is the topology inversely
induced by the family {n,} of projections. Thus a base for the product
topology on X is given by the collection of all products | |, U,, where U,
1S an open subset of Y, for all indices y, and where U, = Y, except for a finite
number of indices. In the event that the index set I is {1,...,n}, it 1s
customary to write Y; x --- x Y for the product of the topological spaces
1Y;}i-, equipped with the product topology. (A base for this topology is
given by the collection of all products U, x --- x U,, where U, is an open
subsetof Y;,i = 1,..., n.) Similarly, if X and Y are topological spaces, their
product 1s denoted by X x Y and is understood to be equipped with the
product topology. Indeed, whenever a product of topological spaces is
regarded as a topological space, it is the product topology that is understood
to be in use unless the contrary is expressly stipulated.
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Concerning products of topological spaces the following fact is of primary
importance. (See Problem T for a sketch of a proof.)

Theorem 3.15 (Tihonov's Theorem). An arbitrary product of compact
Hausdorff spaces is a compact Hausdorff space.

In the more classical parts of general topology, in particular in the study
of metric spaces, a very considerable role is played by infinite sequences.
Unfortunately sequences cannot play this central role in an arbitrary
topological space. It turns out, however, that the concept of a net, defined
in Chapter 1, serves as a natural generalization of the concept of an infinite
sequence. The following discussion does not assume any prior knowledge of
nets on the part of the reader other than a familiarity with the relevant

material in Chapter 1 (see p. 5ft.).

Definition. If X 1s a topological space, then a net {x;},.o In X 1s said to
converge to a point x, in X and x, 1s said to be the limit of the net {x,}
(notation: lim; x, = x, or x; — x,) If for every neighborhood V of x,
there exists an index A, depending on V, such that x, € V for every
A in A such that 4 > 4,.

Since the system N of positive integers and the system N, of nonnegative
Integers are directed sets in the natural ordering, infinite sequences may be
viewed as a very special, albeit very important, kind of net. Thus the foregoing
definition serves to define convergence for an infinite sequence of points
In an arbitrary topological space.

Example O. Let X be a simply ordered set containing at least two elements,
and let {x,;},.o be a monotone increasing net in X. Then {x,} converges
in the order topology on X (Ex. B) if and only if sup, 5 x, exists, and, if this
supremum does exist, then

llm X, = SUP X .
A A

In particular, a monotone increasing net of real numbers is convergent
in R 1f and only if 1t 1s bounded above in R. Similarly, an arbitrary monotone
increasing net of extended real numbers is convergent in R®. (Analogous
remarks apply to decreasing nets.)

Example P. If a and b are real numbers with a < b, then the open interval
(a, b) 1s a directed set in the natural ordering of the real numbers. If f 1s a
mapping of (a, b) into a topological space X, and if f converges as a net
indexed by the directed set (a, b), then the limit is the limit of f as t tends to b

from below and is denoted by lim,;, f(¢) or by f(b—). Similarly, if f converges
as a net indexed by the set (a, b) in the inverse ordering of R, then the limit
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1s known as the limit of f as t tends to a from above and 1s denoted by
lim,,, f(t) or by f(a+). (The inverse ordering of R is the ordering < defined
by setting s < t when and only when ¢ < s. It is clear that an open interval
1s directed 1n this new ordering as well as in the natural ordering.)

Example Q. Let {4,}, . be an indexed family of complex numbers, and let
{0} pe o denote the net of finite sums of the given family {4,} (Prob. 1M).
If the net {op}pco 1s convergent in C to a limit o, then the family {4} is
said to be summable, o is called the sum of the indexed family {4,}, and we

write
o= ) A,
vel
Similarly, if {¢,},.r 1s an indexed family of extended real numbers such that
-0 <t, < +00 [—-00 <t, < +00] for every index y (Ex. 1B), and if the
net {sp}p.o Of finite sums converges to a limit s in the topological space
R* (Ex. C), then s is called the sum of the indexed family {t,} and we write
s= )t
vel
(Note that when s = + 00 we do not say that the family {¢,} 1s summable.)
An indexed family {t,} of nonnegative real numbers 1s summable in R 1f
and only if the net of finite sums is bounded above in R, and always possesses
a sum in R* (Ex. O). An indexed family {t¢.}..r of nonnegative extended
real numbers satisfies the condition

Dt = 400

vel

ifand only if either some ¢, = + oo or the net of finite sums fails to be bounded
above 1n R.

In the event that the index family is N (or N), 1.e., when we start with a
sequence {4}, of complex numbers, care must be taken to distinguish
between the indexed sum ) , .y 4, and the sum of the infinite series ) ;% 4,.
Indeed, it is readily verified that the sequence {4,};>; 1s summable as an
indexed family with sum ¢ if and only if the infinite series ) % ; 4, converges
unconditionally to o. (Recall that an infinite series ) >, 4, of complex
numbers 1s unconditionally convergent if it converges to a sum o that is
unchanged by permuting the sequence {4,}>; and that a series 1s un-
conditionally convergent if and only if it is absolutely convergent.) In the
same context, if {¢,}°; 1s a sequence of extended real numbers such that
—0 <t, < +0 [—0 <Lt,< +o0] for every n, then the sequence
{t,}s_ has sum s as an indexed family in R" if and only if the series ) 3>, ¢,
converges unconditionally to s, 1.e., possesses a sum s that 1s unchanged by
permuting the sequence {t,}-,. (We define s to be the sum of an infinite
series ) ;2 t, of extended real numbers if the sequence {)7_, t;}2°, of
partial sums converges to s in R".) Like observations apply, of course, when

the index family 1s N,.
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One unpleasant property that a topological space X may have 1s that a
net in X can converge to more than one point. In fact, if X is not a Hausdorft
space, then there always exist nets in X that converge to two different
points (Prob. K). Fortunately, all of the topological spaces that play any
significant role in this book are Hausdorfl, and in such spaces this pathology
cannot occur.

Proposition 3.16. If X is a Hausdorff space, then no net in X converges to more
than one point.

PROOF. If x and y are distinct points of X, then there are neighborhoods U
and V of x and y, respectively, such that U and Vare disjoint. Now suppose
that {z,},.A 1s a net in X that converges to both x and y. Then there exist
indices A, and 4, in A such that z, € U for all A > A; and such that z, € V for
all A > A,. Let A, be an index in A such that A, > 4;,4,. Thenz, e UN Y,
which is impossible. [ ]

The following propositions, valid in the most general topological space,
characterize closure and continuity in terms of nets.

Proposition 3.17. A point x, in a topological space X belongs to the closure
of a subset M of X if and only if there exists a net in M that converges
to xo. Consequently a set U in X is open if and only if no net in X\ U con-
verges to a limit lying in U.

Proposition 3.18. 4 mapping f of a topological space X into a topological
space Y is continuous at a point xy of X if and only if, for every net {x;};ca
in X converging to x,, the net { f(x;)},ca converges in Y to f(x,).

As has been noted, the preceding results are generalizations of familiar facts about
sequences In metric spaces. It 1s worth pointing out that the possibility of describing
closure and continuity 1n a topological space by means of the special nets that are
sequences has nothing to do with the metrizability of that space, but rather with the
first axiom of countability (Prob. I).

The proofs of Propositions 3.17 and 3.18 depend upon the following
considerations: If the set .4°(x) consisting of all the neighborhoods of any
one point x 1n a topological space X 1s ordered by the inverse inclusion
ordering, in other words if we write V' < V" whenever V and V' are neighbor-
hoods of x such that VV = V', then A4"(x) becomes a directed set. (Indeed,
if ¥V, and V, belong to A4"(x), then V; n V, is a neighborhood of x that is
contained 1n both V; and V,.) Whenever A4"(x) 1s regarded as a directed set,
it 1s this ordering that is understood.

PROOF OF PROPOSITION 3.17. Suppose first that there exists a net {x,} in M
that converges to x,. Then every neighborhood of x, contains elements of
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that net, and therefore meets M. Thus x,, 1s in the closure of M. On the other
hand, if x, 1s in M ~, then for each neighborhood V of x in A4"(x) there exists
a point x = xy such that x, belongsto V n M. The indexed family {xy}y c 4
thus obtained is a net lying in M and directed by 4"(x). Since this net clearly
converges to x,, the proof is complete. []

PROOF OF PROPOSITION 3.18. Suppose first that fis continuous at x,, and let
{x,} be a net in X that converges to x,. For any neighborhood V of f(x,)
In Y, there exist a neighborhood W of x, such that f(W) < V and an index
Aw such that x, € Wforall A > A,. Then, of course, f(x;) € Vforall A > Ay,
and the net { f(x;)} converges to f(x,). On the other hand, if f 1s discon-
tinuous at x,, then there exists a neighborhood V' of f(x,) such that no
member W of the directed set A47(x) satisfies the condition f(W) < V.
Hence for every W in A4"(x) there exists a point xy, 1n W such that f(xy) ¢ V.
Clearly the net {xy } w4 (x) thus obtained converges to x,, but equally clearly
the net { f (xw)}w < dOes not converge to f(x,). L]

Corollary 3.19. If X and Y are topological spaces and f is a one-to-one mapping
of X onto Y, then fis a homeomorphism of X onto Y if and only if an arbitrary
net {x,} in X converges to a limit x, when and only when the net {f(x;)}
converges in Y to the limit f (x,). In particular, if & and I are two topologies
on the same set X, then & = 7 if and only if an arbitrary net {x,} in X con-
verges to a limit x, with respect to the topology & when and only when {x,}
converges to x, with respect to the topology 7 .

The following results are also frequently useful.

Proposition 3.20. If { f.},.r is a family of mappings f,: X — Y, of a set X into
topological spaces Y,, then a net {x,} in X converges to a limit x in the
topology inversely induced on X by the given family of mappings if and only
if the net { f.(x;)} converges in Y, to f,(xq) for every index y. In particular,
a net {x,} in the product | |, Y, of an indexed family of topological spaces
converges to a limit x, if and only if it converges to x, “ coordinatewise,”
i.e., if and only if {m.(x;)} converges to m.(x,) for every index . Similarly,
if 17 .} is an indexed family of topologies on a set X, then a net {x,} in X
converges to a limit x, with respect to the supremum sup, J , of the family
{7 ,}if and only if {x,} tends to x, with respect to each of the topologies 7 .

ProOF. Since the mappings f, are continuous on X with respect to the
topology they induce, it follows from Proposition 3.18 that lim; x; = x,
implies lim; f(x;) = f,(x,) for every y. Suppose, in the other direction,
that the latter condition is satisfied, and let V' be a neighborhood of x, 1n the
topology inversely induced by the family { f,}. Since sets of the form (1)
constitute a base for this topology, there exist indices y,, ..., y, and open
subsets U; of ¥, ,i=1,...,n, such that

xoefy_ll(Ul)m---mf},_nl(Un)c V.
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Since f, (xo) € U; and f,(x;) = f,(xo), i = 1,..., n, there exist indices 4,
such that f, (x;) € U;for all A > 4;,i = 1,...,n. If 4, is an index such that
A< Ao, i=1,...,nand if A > Ay, then f, (x;) € U; foreveryi =1,...,n.
Therefore x, € V for all A > A,. The last two assertions of the proposition
follow by virtue of Examples M and N. [ ]

Corollary 3.21. If {f,},cr is an indexed family of mappings f,: X — Y,
of a set X into topological spaces Y,, and if g is a mapping of a topological
space Z into X, then g is continuous with respect to the topology inversely
induced on X by the family { f.} if and only if f, o g is continuous for each
index v. In particular, a mapping g of a topological space Z into a product
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