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Pretface

Two of the most fundamental concepts in the theory of stochastic processes
are the Markov property and the martingale property.* This book 1s written
for readers who are acquainted with both of these ideas in the discrete-time
setting, and who now wish to explore stochastic processes in their continuous-
time context. It has been our goal to write a systematic and thorough exposi-
tion of this subject, leading in many instances to the frontiers of knowledge.
At the same time, we have endeavored to keep the mathematical prerequisites
as low as possible, namely, knowledge of measure-theoretic probability and
some familiarity with discrete-time processes. The vehicle we have chosen for
this task 1s Brownian motion, which we present as the canonical example of
both a Markov process and a martingale. We support this point of view by
showing how, by means of stochastic integration and random time change,
all continuous-path martingales and a multitude of continuous-path Markov
processes can be represented in terms of Brownian motion. This approach
forces us to leave aside those processes which do not have continuous paths.
Thus, the Poisson process is not a primary object of study, although 1t 1s
developed in Chapter 1 to be used as a tool when we later study passage times
and local time of Brownian motion.

The text is organized as follows: Chapter 1 presents the basic properties of
martingales, as they are used throughout the book. In particular, we generalize
from the discrete to the continuous-time context the martingale convergence
theorem, the optional sampling theorem, and the Doob—Meyer decomposi-
tion. The latter gives conditions under which a submartingale can be written

* According to M. Loéve, “martingales, Markov dependence and stationarity are the only three
dependence concepts so far isolated which are sufficiently general and sufficiently amenable to
investigation, yet with a great number of deep properties” (Ann. Probab. 1(1973), p. 6).
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as the sum of a martingale and an increasing process, and associates to every
martingale with continuous paths a “quadratic variation process.” This pro-

cess 1s instrumental in the construction of stochastic integrals with respect to
continuous martingales.

Chapter 2 contains three different constructions of Brownian motion,
as well as discussions of the Markov and strong Markov properties for
continuous-time processes. These properties are motivated by d-dimensional
Brownian motion, but are developed in complete generality. This chapter also
contains a careful discussion of the various filtrations commonly associated
with Brownian motion. In Section 2.8 the strong Markov property is applied
to a study of one-dimensional Brownian motion on a half-line, and on a
bounded interval with absorption and reflection at the endpoints. Many
densities involving first passage times, last exit times, absorbed Brownian
motion, and reflected Brownian motion are explicitly computed. Section 2.9
is devoted to a study of sample path properties of Brownian motion. Results
found 1in most texts on this subject are included, and 1n addition to these, a
complete proof of the Lévy modulus of continuity is provided.

The theory of stochastic integration with respect to continuous martingales
1s developed in Chapter 3. We follow a middle path between the original
constructions of stochastic integrals with respect to Brownian motion and the
more recent theory of stochastic integration with respect to right-continuous
martingales. By avoiding discontinuous martingales, we obviate the need to
introduce the concept of predictability and the associated, highly technical,
measure-theoretic machinery. On the other hand, it requires little extra effort
to consider integrals with respect to continuous martingales rather than
merely Brownian motion. The remainder of Chapter 3 i1s a testimony to the
power of this more general approach; in particular, it leads to strong theorems
concerning representations of continuous martingales in terms of Brownian
motion (Section 3.4). In Section 3.3 we develop the chain rule for stochastic
calculus, commonly known as Itd’s formula. The Girsanov Theorem of Sec-
tion 3.5 provides a method of changing probability measures so as to alter
the dnift of a stochastic process. It has become an indispensable method for
constructing solutions of stochastic differential equations (Section 5.3) and 1s
also very important in stochastic control (e.g., Section 5.8) and filtering. Local
time is introduced 1n Sections 3.6 and 3.7, and it is shown how this concept

leads to a generalization of the Itd formula to convex but not necessarily
differentiable functions.

Chapter 4 is a digression on the connections between Brownian motion,
Laplace’s equation, and the heat equation. Sharp existence and uniqueness
theorems for both these equations are provided by probabilistic methods;
applications to the computation of boundary crossing probabilities are dis-
cussed, and the formulas of Feynman and Kac are established.

Chapter 5 returns to our main theme of stochastic integration and differ-
ential equations. In this chapter, stochastic differential equations are driven
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by Brownian motion and the notions of strong and weak solutions are pre-
sented. The basic It0 theory for strong solutions and some of its ramifications,
including comparison and approximation results, are offered in Section 5.2,
whereas Section 5.3 studies weak solutions in the spirit of Yamada &
Watanabe. Essentially equivalent to the search for a weak solution is the
search for a solution to the “Martingale Problem” of Stroock & Varadhan.
In the context of this martingale problem, a full discussion of existence,
uniqueness, and the strong Markov property for solutions of stochastic difler-
ential equations is given in Section 5.4. For one-dimensional equations it 1s
possible to provide a complete characterization of solutions which exist only
up to an “explosion time,” and this is set forth in Section 3.5. This section also
presents the recent and quite striking results of Engelbert & Schmidt con-
cerning existence and uniqueness of solutions to one-dimensional equations.
This theory makes substantial use of the local time matenial of Sections 3.6,
3.7 and the martingale representation results of Subsections 3.4.A,B. By
analogy with Chapter 4, we discuss in Section 5.7 the connections between
solutions to stochastic differential equations and elliptic and parabolic partial
differential equations. Applications of many of the 1deas in Chapters 3 and 5
are contained in Section 3.8, where we discuss questions of option pricing
and optimal portfolio/consumption management. In particular, the Girsanov
theorem is used to remove the difference between average rates of return
of different stocks, a martingale representation result provides the optimal
portfolio process, and stochastic representations of solutions to partial differ-
ential equations allow us to recast the optimal portfolio and consumption
management problem in terms of two linear parabolic partial difierential
equations, for which explicit solutions are provided.

Chapter 6 1s for the most part derived from Paul Lévy’s profound study of
Brownian excursions. Lévy’s intuitive work has now been formalized by such
notions as filtrations, stopping times, and Poisson random measures, but the
remarkable fact remains that he was able, 40 years ago and working without
these tools, to penetrate into the fine structure of the Brownian path and to
inspire all the subsequent research on these matters until today. In the spirit
of Levy’'s work, we show 1n Section 6.2 that when one travels along the
Brownian path with a clock run by the local time, the number of excursions
away from the origin that one encounters, whose duration exceeds a specified
number, has a Poisson distribution. Lévy’s heuristic construction of Brownian
motion from its excursions has been made rigorous by other authors. We do
not attempt such a construction here, nor do we give a complete specification
of the distribution of Brownian excursions; in the interest of intelligibility, we
content ourselves with the specification of the distribution for the durations
of the excursions. Sections 6.3 and 6.4 derive distributions for functionals
of Brownian motion involving its local time; we present, in particular, a
Feynman—Kac result for the so-called “elastic” Brownian motion, the for-
mulas of D. Williams and H. Taylor, and the Ray—Knight description of
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Brownian local time. An application of this theory is given in Section 6.5,

where a one-dimensional stochastic control problem of the “bang-bang” type
1s solved.

The writing of this book has become for us a monumental undertaking
involving several-people, whose assistance we gratefully acknowledge. Fore-
most among these are the members of our families, Eleni, Dot, Andrea, and
Matthew, whose support, encouragement, and patience made the whole en-
deavor possible. Parts of the book grew out of notes on lectures given at
Columbia University over several years, and we owe much to the audiences
in those courses. The inclusion of several exercises, the approaches taken to
a number of theorems, and several citations of relevant literature resulted
from discussions and correspondence with F. Baldursson, A. Dvoretzky,
W. Fleming, O. Kallenberg, T. Kurtz, S. Lalley, J. Lehoczky, D. Stroock, and
M. Yor. We have also taken exercises from Mandl, Lanska & Vrkoc¢ (1978),
and Ethier & Kurtz (1986). As the project proceeded, G.-L. Xu, Z.-L. Ying,
and Th. Zariphopoulou read large portions of the manuscript and suggested
numerous corrections and improvements. Careful reading by Daniel Ocone
and Manfred Schal revealed minor errors in the first printing, and these have
been corrected. However, our greatest single debt of gratitude goes to Marc
Yor, who read much of the near-final draft and offered substantial mathemat-
1ical and editorial comments on it. The typing was done tirelessly, cheerfully,
and efficiently by Stella DeVito and Doodmatie Kalicharan; they have our
most sincere appreciation.

We are grateful to Sanjoy Mitter and Dimitri Bertsekas for extending
to us the invitation to spend the critical 1nitial year of this project at the
Massachusetts Institute of Technology. During that time the first four chap-
ters were essentially completed, and we were partially supported by the Army
Research Office under grant DAAG-299-84-K-0005. Additional financial sup-
port was provided by the National Science Foundation under grants DMS-
84-16736 and DMS-84-03166 and by the Air Force Office of Scientific Research
under grants AFOSR 82-0259, AFOSR 85-0360, and AFOSR 86-0203.

Ioannis Karatzas
Steven E. Shreve
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Suggestions for the Reader

We use a hierarchical numbering system for equations and statements. The
k-th equation 1n Section j of Chapter i is labeled (j.k) at the place where it
occurs and is cited as (j.k) within Chapter i, but as (i.j.k) outside Chapter i. A
definition, theorem, lemma, corollary, remark, problem, exercise, or solution
1s a “statement,” and the k-th statement in Section j of Chapter i is labeled j.k
Statement at the place where it occurs, and is cited as Statement jk within
Chapter i but as Statement i.j.k outside Chapter i.

This book 1s intended as a text and can be used in either a one-semester or
a two-semester course, or as a text for a special topic seminar. The accompany-
ing hgure shows dependences among sections, and in some cases among
subsections. In a one-semester course, we recommend inclusion of Chapter 1
and Sections 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, §2.9.A, B, E, Sections 3.2, 3.3, 5.1, 5.2,
and §5.6.A, C. This material provides the basic theory of stochastic integration,
including the It calculus and the basic existence and uniqueness results for
strong solutions of stochastic differential equations. It also contains matters
of interest in engineering applications, namely, Fisk—Stratonovich integrals
and approximation of stochastic differential equations in §3.3.A and 5.2.D,
and Gauss—Markov processes in §5.6.A. Progress through this material can
be accelerated by omitting the proof of the Doob—Meyer Decomposition
Theorem 1.4.10 and the proofs in §2.4.D. The statements of Theorem 1.4.10,
Theorem 2.4.20, Definition 2.4.21, and Remark 2.4.22 should, however, be
retained. If possible in a one-semester course, and certainly in a two-semester
course, one should include the topic of weak solutions of stochastic differential
equations. This is accomplished by covering §3.4.A, B, and Sections 3.5, 5.3,
and 5.4. Section 5.8 serves as an mtroduction to stochastic control, and so we
recommend adding §3.4.C, D, E, and Sections 5.7, and 5.8 if time permits. In
either a one- or two-semester course, Section 2.8 and part or all of Chapter 4
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may be included according to time and interest. The material on local time
and its applications in Sections 3.6, 3.7, 5.5, and in Chapter 6 would normally
be the subject of a special topic course with advanced students.

The text contains about 175 “problems” and over 100 “exercises.” The
former are assignments to the reader to fill in details or generalize a result,
and these are often quoted later in the text. We judge approximately two-
thirds of these problems to be nontrivial or of fundamental importance, and
solutions for such problems are provided at the end of each chapter. The
exercises are also often significant extensions of results developed in the
text, but these will not be needed later, except perhaps in the solution of
other exercises. Solutions for the exercises are not provided. There are some
exercises for which the solution we know violates the dependencies among
sections shown in the figure, but such violations are pointed out in the
offending exercises, usually in the form of a hint citing an earlier result.
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Frequently Used Notation

. General Notation

Let a and b be real numbers.
(1) £ means “is defined to be.”
(2) a A b 2 min{a, b}.
(3) a v b 2 max{a,b}.

) a* 2 max{a,0}.
(5) a~ 2 max{—a,0}.

II. Sets and Spaces

(1) Ng 2 {0,1,2,...5.
(2) O is the set of rational numbers.
(3) O is the set of nonnegative rational numbers.
(4) R is the d-dimensional Euclidean space; R' = R
(5) B, £ {xeR% ||x|| <r}(p. 240).
(6) (R)®) is the set of functions from [0, o) to R* (pp. 49, 76).
(7) C[0, o0)? is the subspace of (R*)!°*) consisting of continuous functions;
C[0, «0)! = C[0, «) (pp. 60, 64).
(8) D[O0, co0) is the subspace of R'®>*’ consisting of functions which are right
continuous and have left-limits (p. 409).
(9) C*(E), CX(E), CX(E): See Remark 4.1, p. 312.
(10) CV'%([0,T) x E),C"*((0, T) x E): See Remark 4.1, p. 312.
(11) &, (M), L*, L*(M): See pp. 130-131.
(12) P, P(M), P*, P*(M). See pp. 146-147.
(13) A ,(A5): The space of (continuous) square-integrable martingales (p. 30).
(14) #'°(.#<"°°). The space of (continuous) local martingales (p. 36).
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II1I. Functions

0; x¢A.
e T2t 5 0, x, ye R (p. 52).

1
\/ 27t
(4) p+(t;x,») = p(t; x,¥) £ plt; x, —y)t >0, x, ye R (p. 97).

(5) [t]| 1s the largest integer less than or equal to the real number t.

I1V. o-Fields

(1) 4(U). The smallest o-field containing all open sets of the topological
space U (p. 1).

(2) #,(C[0, o0)), B,(C[0, o©)?). See pp. 60, 307.

(3) a(¥%9): The smallest o-field containing the collection of sets 4.

(4) o(X,): The smallest o-field with respect to which the random variable X,
is measurable.

(5) o(X;;0 < s < t). The smallest o-field with respect to which the random
variable X, 1s measurable, Vse[0,t].

6) F* £ 0(X;;0<s<1),Z, 20l )is0Z): Seep. 3.

(7) Fu & ﬂs::-ﬁ Frver P & G(Us{tg:s): See p. 4.

(8) #;: The o-field of events determined prior to the stopping time T; see
p. 8.

(9) #r.: The o-field of events determined immediately after the optional
time T'; see p. 10.

(10) F ® 9 £ 6(A x B; Ac #, Be%}: The product o-field formed from the
g-fields & and 4.

V. Operations on Functions

d 72
1) A& ) s The Laplacian (p. 240).
1=1 i
(2) o/, o,: Second order differential operators; see pp. 281, 311.

V1. Operations on Processes

(1) 0,, O: Shift operator at the deterministic time s and the random time S;
see pp. 77, 83.
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(2) IM(X) £ |, X,dM,: The stochastic integral of X with respect to M. See
p. 141 for M e #5, X € £*(M); see p. 147 for M e .4 "°°, X € P*(M).

(3) M* £ max,.,.,|M,|: See p. 163 for M e .#"".
(4) (X): The quadratic variation process of X €.#, (p. 31) or Xe .#*"°

(p. 36).
(5) (X, Y): The cross-variation process of X, Y in .#, (p. 31) or in .4

(p. 36).
(6) | X, | X|: See p. 37 tor X € .

VI1I. Miscellaneous

(X,0) 2sup{|X,— X,;0<s<t<Tt—s<d}; Seep. 33.
(w,0) 2 max{|w(s) — w(@);0<s<t<Tt—s <d}: See p. 62.
- The closure of the set D = R%.

: The complement of the set D.

oD: The boundary of the set D = R

m
m
D
D

the set D < R? (p. 240).
(7) T, £ inf{t > 0; W, = b}: The first time the one-dimensional Brownian
motion W reaches the level be R (p. 79).
(8) I'y(t) £ {5 1,0.4),(W,)ds: The occupation time by Brownian motion of the
positive half-line (p. 273).
(9) P, - P: Weak convergence of the sequence of probability measures
{P,}>_, to the probability measure P (p. 60).
(10) X, 3 X:Convergence in distribution of the sequence of random variables
{ X, }n=1 to the random variable X (p. 61).
(11) P*: Probability measure corresponding to Brownian motion (p. 72) or a
Markov process (p. 74) with initial position x e R?.
(12) P*: Probability measure corresponding to Brownian motion (p. 72) or a
Markov process (p. 74) with initial distribution L.
3) NHE ANF: Collections of P#-negligible sets (p. 89).
4) I(o), Z(o): See pp. 331, 332.
5) 1,: The (d x d) identity matrix.
6) meas: Lebesgue measure on the real line (p. 105).






CHAPTER 1

Martingales, Stopping Times,
and Filtrations

1.1. Stochastic Processes and o-Fields

A stochastic process 1s a mathematical model for the occurrence, at each
moment after the initial time, of a random phenomenon. The randomness 1s
captured by the introduction of a measurable space (2, %), called the sample
space, on which probability measures can be placed. Thus, a stochastic process
is a collection of random variables X = {X,;0 <t < o} on (Q, %), which
take values 1n a second measurable space (S, %), called the state space. For
our purposes, the state space (S, &) will be the d-dimensional Euclidean space
equipped with the o-field of Borel sets, ie., S = RY, & = Z(R?), where Z(U)
will always be used to denote the smallest o-field containing all open sets of
a topological space U. The index t € [0, o0) of the random variables X, admits
a convenient interpretation as time.

For a fixed sample point w € €2, the function t+— X,(w); t = 0 is the sample
path (realization, trajectory) of the process X associated with w. It provides
the mathematical model for a random experiment whose outcome can be
observed continuously in time (e.g., the number of customers 1n a queue
observed and recorded over a period of time, the trajectory of a molecule
subjected to the random disturbances of its neighbors, the output of a com-
munications channel operating in noise).

Let us consider two stochastic processes X and Y defined on the same
probability space (2, #, P). When they are regarded as functions of ¢t and w,
we would say X and Y were the same if and only if X,(w) = Y(w)forallt > 0
and all w € Q. However, in the presence of the probability measure P, we could

weaken this requirement in at least three different ways to obtain three related
concepts of “sameness” between two processes. We list them here.
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1.1 Definition. Y is a modification of X if, for every t >0, we have
PIX,=Y]=1

1.2 Definition. X and Y have the same finite-dimensional distributions if, for
any integer n > 1, real numbers 0 <t, <t, < - <t, < o0, and A e H(R™),
we have:

P{(X,,....,X,)eA] = P[(Y;,,..., Y, Je A].

1.3 Definition. X and Y are called indistinguishable if almost all their sample
paths agree:

PIX,=Y;,;VO<t<oo]=1.

The third property 1s the strongest; it implies trivially the first one, which
in turn yields the second. On the other hand, two processes can be modifica-
tions of one another and yet have completely different sample paths. Here 1s
a standard example:

1.4 Example. Consider a positive random variable T with a continuous dis-
0O t#T
1, t=T
for every t > 0 we have P[Y, = X,] = P[T # t] = 1, but on the other hand:
PlY =X,;Vt>0] =0.

tribution, put X, = 0,and let ¥, = { } Y is a modification of X, since

A positive result in this direction is the following.

1.5 Problem. Let Y be a modification of X, and suppose that both processes
have a.s. right-continuous sample paths. Then X and Y are indistinguishable.

It does not make sense to ask whether Y is a modification of X, or whether
Y and X are indistinguishable, unless X and Y are defined on the same
probability space and have the same state space. However, if X and Y have
the same state space but are defined on different probability spaces, we can
ask whether they have the same finite-dimensional distributions.

1.2" Definition. Let X and Y be stochastic processes defined on probability
spaces (Q, #, P) and (Q, #, P), respectively, and having the same state space
(R?, #(R%)). X and Y have the same finite-dimensional distributions if, for any

integer n > 1, real numbers 0 <t, <t, <--<t, < oo, and A€ B(R"), we
have

PI(X,,,...,X, )e Al = P[(Y,,,..., Y, )e A].

Many processes, including d-dimensional Brownian motion, are defined in
terms of their finite-dimensional distributions irrespective of their probability
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space. Indeed, in Chapter 2 we will construct a standard d-dimensional
Brownian motion B on a canonical probability space and then state that
any process, on any probability space, which has state space (R?, Z(R?)) and
the same finite-dimensional distributions as B, 1s a standard d-dimensional
Brownian motion.

For technical reasons in the theory of Lebesgue integration, probability
measures are defined on o-fields and random variables are assumed to be
measurable with respect to these o-fields. Thus, implicit in the statement that
a random process X = {X,; 0 <t < o0} is a collection of (R?, #(R?))-valued
random variables on (Q, %), is the assumption that each X, is % /%(R%)-
measurable. However, X is really a function of the pair of variables (t, ), and
so, for technical reasons, 1t is often convenient to have some joint measurability
properties.

1.6 Definition. The stochastic process X is called measurable if, for every
A € B(R?), the set {(t, w); X,(w)e A} belongs to the product o-field #([0, o0)) ®
% : 1n other words, if the mapping

(t, w)— X, (w): ([0, o) x Q, #([0, 0)) ® F) — (R?, B(R?))

1S measurable.

It 1s an immediate consequence of Fubini’s theorem that the trajectories of
such a process are Borel-measurable functions of t € [0, o), and provided that
the components of X have defined expectations, then the same is true for the
function m(t) = EX,; here, E denotes expectation with respect to a probability

measure P on (2, #). Moreover, if X takes values in R and 7 1s a subinterval
of [0, oo) such that |; E| X,|dt < oo, then

EX, dt = EJ X, dt.

I

J | X,|dt < 00 as. P, and J
I

I

There 1s a very important, nontechnical reason to include o-fields in the
study of stochastic processes, and that is to keep track of information. The
temporal feature of a stochastic process suggests a flow of time, in which, at
every moment ¢t > 0, we can talk about a past, present, and future and can ask
how much an observer of the process knows about it at present, as com-
pared to how much he knew at some point in the past or will know at some
point in the future. We equip our sample space (€2, #) with a filtration,
L.e., a nondecreasing family {%; t > 0} of sub-o-fields of #: &, = £ = & for
0<s<t<oo. Weset £, =06(l J;>0F)

Given a stochastic process, the simplest choice of a filtration is that gen-
erated by the process itself, i.¢.,

FXLo(X;0<s5<0),

the smallest o-field with respect to which X, is measurable for every s e [0, t].
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We interpret A € #* to mean that by time ¢, an observer of X knows whether
or not A4 has occurred. The next two exercises illustrate this point.

1.7 Exercise. Let X be a process, every sample path of which is RCLL (i.e.,
right-continuous on [0, co) with finite left-hand /imits on (0, c0)). Let A be the
event that X is continuous on [0,¢t,). Show that Ae #.
1.8 Exercise. Let X be a process whose sample paths are RCLL almost surely,
and let A be the event that X is continuous on [0, t,). Show that A can fail to
bein £, but if {F; t > 0} is a filtration satisfying £* < #,,t > 0,and &,_is
complete under P, then A€ %, .

Let {#;t > 0} be a filtration. We define &_ £ o(| J,<, %) to be the o-field
of events strictly prior tot > 0and %, 2 ()5 %4, to be the o-field of events
immediately after t > 0. We decree #,_ £ #, and say that the filtration {Z,}
1s right- (left-)continuous if #, = #,, (resp., % = #,_) holds for every t > 0.

The concept of measurability for a stochastic process, introduced in Defini-
tion 1.6, is a rather weak one. The introduction of a filtration {£,} opens up
the possibility of more interesting and useful concepts.

1.9 Definition. The stochastic process X is adapted to the filtration { &} if, for
cacht > 0, X, is an #-measurable random vanable.

Obviously, every process X is adapted to {#”* }. Moreover, if X is adapted
to {#} and Y is a modification of X, then Y is also adapted to {#,} provided
that %, contains all the P-negligible sets in & . Note that this requirement 1s
not the same as saying that %, is complete, since some of the P-negligible sets
in # may not be in the completion of .%,.

1.10 Exercise. Let X be a process with every sample path LCRL (i.e., left-
continuous on (0, co) with finite right-hand limits on {0, c0)), and let 4 be the

event that X 1s continuous on [0,¢,]. Let X be adapted to a right-continuous
filtration {&}. Show that 4e &, .

1.11 Definition. The stochastic process X is called progressively measurable
with respect to the filtration {&} if, for each t > 0 and A4 e #(R?), the set
{(,w); 0 <s <t,weQ, X (w)e A} belongs to the product o-field £([0,t]) ®
#,;1n other words, if the mapping (s, w) — X (w): ([0,t] x Q, Z({0,t]) ® £,) -
(R?, Z(R%)) is measurable, for each t > 0.

The terminology here comes from Chung & Doob (1965), which is a basic
reference for this section and the next. Evidently, any progressively measurable
process 1s measurable and adapted; the following theorem of Chung & Doob
(1965) provides the extent to which the converse is true.
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1.12 Proposition. If the stochastic process X is measurable and adapted to the
filtration { &, }, then it has a progressively measurable modification.

The reader 1s referred to the book of Meyer (1966), p. 68, for the (lengthy,
and rather demanding) proof of this result. It will be used in this text only in
a tangential fashion. Nearly all processes of interest are either right- or left-
continuous, and for them the proof of a stronger result is easier and will now
be given.

1.13 Proposition. If the stochastic process X is adapted to the filtration {#,}
and every sample path is right-continuous or else every sample path is left-
continuous, then X is also progressively measurable with respect to {#,}.

PrROOF. We treat the case of right-continuity. Witht >0, n> 1, k=0, 1,
...,2"—1,and 0 < s < t, we define:

kt k+1
Xg")(ﬂ)) — X(k+1)t/2n(a)) fOI' "'2_"‘ < S S 2;1_"t,

as well as X (w) = Xo(w). The so-constructed map (s, w)— X™(w) from
[0,¢] x Q into R® is demonstrably %([0,t]) ® % -measurable. Besides, by
right-continuity we have: lim,_,  X{"(w)= X (w), V(s,w)e[0, ] x Q. There-
fore, the (limit) map (s, w)— X (w) is also Z([0, t]) ® & -measurable. ]

1.14 Remark. If the stochastic process X is right- or left-continuous, but

not necessarily adapted to {%,}, then the same argument shows that X is
measurable.

A random time T 1s an % -measurable random variable, with values in
L0, oo].

1.15 Definition. If X is a stochastic process and T i1s a random time, we define
the function X on the event {T < o0} by

X () £ Xp ().

If X (w)is defined for all we Q, then X; can also be defined on Q, by setting
Xr(w) 2 X (w)on {T = o0}.

1.16 Problem. If the process X is measurable and the random time T 1s finite,
then the function X ; is a random variable.

1.17 Problem. Let X be a measurable process and T a random time. Show
that the collection of all sets of the form { X ;e 4}; A € Z(R), together with the
set {T = oo}, forms a sub-o-field of #. We call this the o-field generated by X .
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We shall devote our next section to a very special and extremely useful class
of random times, called stopping times. These are of fundamental importance
in the study of stochastic processes, since they constitute our most effective
tool in the effort to “tame the continuum of time,” as Chung (1982) puts it.

1.2. Stopping Times

Let us keep in mind the interpretation of the parameter t as time, and of the
o-field %, as the accumulated information up to ¢. Let us also imagine that we
are interested in the occurrence of a certain phenomenon: an earthquake with
intensity above a certain level, a number of customers exceeding the safety
requirements of our facility, and so on. We are thus forced to pay particular
attention to the instant T(w) at which the phenomenon manifests itself for the
first time. It is quite intuitive then that the event {w; T(w) < t}, which occurs
1f and only if the phenomenon has appeared prior to (or at) time ¢, should be
part of the information accumulated by that time.
We can now formulate these heuristic considerations as follows:

2.1 Definition. Let us consider a measurable space (€2, #) equipped with a
filtration {4,}. A random time T is a stopping time of the filtration, if the event
{T <t} belongs to the o-field %, for every t > 0. A random time T is an
optional time of the filtration, if {T < t} e &, for every t > 0.

2.2 Problem. Let X be a stochastic process and T a stopping time of {#*}.
Suppose that for any w, ' €, we have X,(w) = X, (') for all te [0, T(w)] N
[0, c0). Show that T(w) = T(w').

2.3 Proposition. Every random time equal to a nonnegative constant is a stopping

time. Every stopping time is optional, and the two concepts coincide if the
filtration is right-continuous.

PROOF. The first statement i1s trivial; the second 1s based on the observation
{(T<t)=)2 {T<t—(1/n)}e, because if T is a stopping time, then
T <t—(1/n)}eF_1m S &% for n > 1. For the third claim, suppose that T
1s an optional time of the right-continuous filtration {£}. Since {T < t} =

(Veso{T <t + &}, we have {T < t}e %, for every t > 0 and every & > 0;
whence {T < t}e %, = &, [

2.4 Corollary. T is an optional time of the filtration {%,} if and only if it is a
stopping time of the (right-continuous!) filtration {%,, }.

2.5 Example. Consider a stochastic process X with right-continuous paths,
which is adapted to a filtration {#}. Consider a subset I' e Z(R?) of the state
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space of the process, and define the hitting time
Hi(w) = inf{t > 0; X,(w)eT}.
We employ the standard convention that the infimum of the empty set is

infinity.

2.6 Problem. If the set I' 1n Example 2.5 is open, show that H 1s an optional
time.

2.7 Problem. If the set I in Example 2.5 1s closed and the sample paths of the
process X are continuous, then Hy is a stopping time.

Let us establish some simple properties of stopping times.

2.8 Lemma. If T is optional and 0 is a positive constant, then T + 0 is a stopping
time.

PROOF. If 0 <t < O,then{T + 0 <t} = FeZ. If t > 0, then

{T+0<ty={T<t—-0jeFq4y: €% (]
29 Lemma. If T, S are stopping times, thensoare T A S, Tv S, T + S.

PROOF. The first two assertions are trivial. For the third, start with the decom-
position, valid for ¢t > O:

{T+S>t}={T=0,S>t}V{0<T<t, T+ S >t}
JU{T >t,S=0}u{T >1tS >0}

The first, third, and fourth events in this decomposition are in %, either

trivially or by virtue of Proposition 2.3. As for the second event, we rewrite
1t as:

) {t>T>r,S>t—r},

reQ?
O<r<i

where Q7 is the set of rational numbers in [0, oco). Membership in %, is now
obvious. L

2.10 Problem. Let T, S be optional times; then T + S is optional. It is a
stopping time, if one of the following conditions holds:

1) T>0,8>0;
(1) T > 0, T is a stopping time.

2.11 Lemma. Let {T,};_, be a sequence of optional times; then the random times

supT,, inf T,, lim T, lim T,

n>1 n>1 n— oo n—ao

are all optional. F urthermore, if the T,’s are stopping times, then so is sup,,-.,; T..
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PrROOF. Obvious, from Corollary 2.4 and from the identities

{sup ’I;,;<_r}=nd{7;gt} and {inf’]},<t}=6{']},<t}. [

n_>1 n>1 n=1

How can we measure the information accumulated up to a stopping time
T? In order to broach this question, let us suppose that an event A4 1s part of
this information, i.e., that the occurrence or nonoccurrence of A has been
decided by time 7. Now if by time t one observes the value of T, which can
happen only if T < ¢, then one must also be able to tell whether A has occurred.

In other words, A N {T <t} and A°n {T < t} must both be %,-measurable,
and this must be the case for any ¢ > 0. Since

AN{T <t} ={T <t} n(An{T < t}),

it is enough to check only that AN {T < t}e £, t = 0.

2.12 Definition. Let T be a stopping time of the filtration {%, }. The o-field %;

of events determined prior to the stopping time T consists of those events Ae #
for which AN {T <t} e %, for every t > 0.

2.13 Problem. Verify that %, is actually a o-field and T 1s &#-measurable.
Show that if T(w) = t for some constant t > 0 and every we (), then %, = %,.

2.14 Exercise. Let T be a stopping time and S a random time suchthat S > T
on Q. If S 1s #-measurable, then it is also a stopping time.

2.15 Lemma. For any two stopping times T and S, and for any A € ¥¢, we have
ANn{S < T}eP;. Inparticular, if S < T on (), we have ¥ < Fr.

PRrROOF. It 1s not hard to verify that, for every stopping time T and positive

constant t, T A t is an %,-measurable random variable. With this in mind, the
claim follows from the decomposition:

An{S<TIn{T<t} =[An{S <t} ]n{T<t}n{SAt<TAhA Lt}
which shows readily that the left-hand side 1s an event 1n %,. [ ]

2.16 Lemma. Let T and S be stopping times. Then F; . ¢ = F1 N Fs, and each
of the events

IT<SL{S<TL{T<SL{S<T},{T=S}
belongs to #; N %.

ProOF. For the first claim we notice from Lemma 2.15 that %, , ( © % N Zs.
In order to establish the opposite inclusion, let us take Ae %N %#; and
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observe that
AN{SAT<t}=An[{S<t}u{T <t}]
=[An{S<t}Ju[An{T <t} e £,

and therefore A e % , 7.

From Lemma 2.15 we have {S < T} e #;, and thus {S > T} € %;. On the
other hand, consider the stopping time R = S A T, which, again by virtue
of Lemma 2.15, is measurable with respect to %#;. Therefore, {S < T} =
{R < T} e %;. Interchanging the roles of S, T we see that {T > S}, {T < S}
belong to %, and thus we have shown that both these events belong to

Fr N . But then the same i1s true for their complements, and consequently
also for {S = T}. [

2.17 Problem. Let T, S be stopping times and Z an integrable random variable.
We have

(i) E[Z|%7] = E[Z| %, 1], P-as.on{T< S}
(1) ELE(Z|%r)|%s] = E[Z]| %5 7], P-as.

Now we can start to appreciate the usefulness of the concept of stopping
time 1n the study of stochastic processes.

2.18 Proposition. Let X = {X,, #,;0 <t < o} be a progressively measurable
process, and let T be a stopping time of the filtration {#,}. Then the
random variable X of Definition 1.15, defined on the set {T < o0} e %, is
Fr-measurable, and the “stopped process” { Xt .,, #;0 <t < o0} is progres-
sively measurable.

PROOF. For the first claim, one has to show that for any Be #(R?) and any
t > 0, the event { X e B} n {T < t} is in &,; but this event can also be written
intheform {X; ,,€ B} n{T < t}, and soitis sufficient to prove the progressive
measurability of the stopped process.

To this end, one observes that the mapping (s, w)— (T(w) A s,w)of [0,t] x €
into 1itself 1s #([0, t]) ® ZF-measurable. Besides, by the assumption of pro-
gressive measurability, the mapping

(s, w)—~ X(): ([0,£] x Q,B([0,t]) ® £#) - (R, B(R?))
1S measurable, and therefore the same is true for the composite mapping

(8, W) X7 A s(@): ([0,£] x Q,B([0,1]) ® #) — (R, B(R?)). ]

2.19 Problem. Under the same assumptions as in Proposition 2.18, and with
f(t,x): [0, 0) x R > R a bounded, #([0, o0)) ® #(R%)-measurable function,
show that the process Y, = | f(s, X;)ds; t > Ois progressively measurable with
respect to {#}, and Yy is an % -measurable random variable.
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2.20 Definition. Let T be an optional time of the filtration {#}. The o-field
Fr+ of events determined immediately after the optional time T consists of those
events A€ # for which An{T <t}e#, foreveryt > 0.

2.21 Problem. Verify that the class %, 1s indeed a o-field with respect to which
T is measurable, that it coincides with {Ae F; AN {T < t}e %, VYt > 0}, and
that if T is a stopping time (so that both %, Z.., are defined), then % € % ..

2.22 Problem. Verify that analogues of Lemmas 2.15 and 2.16 hold if T and
S are assumed to be optional and %, % and % , s are replaced by %, %,
and # 1 . )+, respectively. Prove that if S is an optional time and T 1s a positive
stopping time with S < T, and S < T on {S < o0}, then &, < Fr.

2.23 Problem. Show that if {T,}>., is a sequence of optional times and
T'=1nd,,, T,,then %, = [\, #r .. Besides,ifeach T, 1s a positive stopping
time and T < T, on {T < oo}, then we have 1, = [\ Zr.

2.24 Problem. Given an optional time T of the filtration {#,}, consider the
sequence { T, },-, of random times given by

T(w), on{w; T(w)= +o0}
L(w)= 4 k k— 1 k
Xt on {a); T < T(w) < 5;}

forn> 1,k > 1 Obviously T, > T,,, = T, for every n > 1. Show that each T,

1s a stopping time, that lim,_,., T, = T, and that for every Ae %, we have
An{T,=(k/2")} e Fn;n k > 1.

We close this section with a statement about the set of jumps for a stochastic
process whose sample paths do not admit discontinuities of the second kind.

2.25 Definition. A filtration {%,} is said to satisfy the usual conditions if it is
right-continuous and %, contains all the P-negligible events in % .

2.26 Proposition. If the process X has RCLL paths and is adapted to the
filtration { %,} which satisfies the usual conditions, then there exists a sequence
{ T, }-, of stopping times of {F,} which exhausts the jumps of X, i.e.,

(2.1)
{(t,w)e(0,0) x Q X () # X,-(0)} = | ) {(t,w)e[0, 0) x Q; T,(w) = t}.

The proof of this result is based on the powerful “section theorems” of the
general theory of processes. It can be found in Dellacherie (1972), p. 84, or
Elliott (1982), p. 61. Note that our definition of the terminology “{T,}=,
exhausts the jumps of X as set forth in (2.1) is a bit different from that found
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on p. 60 of Elliott (1982). However, the proofs in the cited references justify
our version of Proposition 2.26.

1.3. Continuous-Time Martingales

We assume in this section that the reader is familiar with the concept and
basic properties of martingales in discrete time. An excellent presentation of
this material can be found in Chung (1974, §9.3 and 9.4, pp. 319-341) and we
shall cite from this source frequently. Alternative references are Ash (1972) and
Billingsley (1979). The purpose of this section is to extend the discrete-time
results to continuous-time martingales.

The standard example of a continuous-time martingale is one-dimensional
Brownian motion. This process can be regarded as the continuous-time ver-
sion of the one-dimensional symmetric random walk, as we shall see in
Chapter 2. Since we have not yet introduced Brownian motion, we shall take
instead the compensated Poisson process as a continuing example developed
in the problems throughout this section. The compensated Poisson process is
a martingale which will serve us later in the construction of Poisson random
measures, a tool necessary for the treatment of passage and local times of
Brownian motion.

In this section we shall consider exclusively real-valued processes X =
{X;; 0 <t < o0} ona probability space (2, #, P), adapted to a given filtration
{#.} and such that E|X,| < oo holds for every t > 0.

3.1 Defimtion. The process { X;, %#; 0 < t < o0} 1s said to be a submartingale
(respectively, a supermartingale) if, for every 0 < s <t < 00, we have, a.s. P:
E(X,|#,) = X, (respectively, E(X,| %) < X)).

We shall say that {X,, %;0 <t < o0} is a martingale if it is both a sub-
martingale and a supermartingale.

3.2 Problem. Let T}, T,, ... be a sequence of independent, exponentially dis-
tributed random variables with parameter 4 > O:

P[T.edt]l = Ae *dt, t>0.

Let S =0and S, =) -, T;; n > 1. (We may think of S, as the time at which
the n-th customer arrives in a queue, and of the random variables T;,i = 1, 2,
... as the interarrival times.) Define a continuous-time, integer-valued RCLL
process

(3.1) N,=max{n>0;S,<t}; 0<t< 0.
(We may regard N, as the number of customers who arrive up to time t.)

(1) Show that for 0 < s <t we have
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P[Sy 41 > tIF ] =279, as P

(Hint: Choose Ae #" and a nonnegative integer n. Show that there
exists an event Aeo(Ty,...,T,)) such that An{N, =n} = An{N, = n},
and use the independence between T, ., and the pair (S,, 1,) to establish

J P[S,.; > t|FN])dP = e " 9P[A N {N, = n}])
Zr'\{Ns=n}
(11) Show that for 0 < s<t, N, — N, 1s a Poisson random variable with

parameter A(t — s), independent of £". (Hint: With Ae £ and n > 0 as
before, use the result in (i) to establish

J P[N, — N, < k|#]dP
AN{Ng=n}

(At — s)Y
!

Kk
= P[An{N,=n}]-) e 4
j=0
for every integer k > 0.)

3.3 Definition A Poisson process with intensity A > 0 is an adapted, integer-
valued RCLL process N = {N,, #,; 0 <t < o0} such that N, = 0 a.s., and for

0 <s <t N — N;isindependent of %, and is Poisson distributed with mean
At — s).

We have demonstrated in Problem 3.2 that the process N = {N,, #";

0 <t < oo} of(3.1)is Poisson. Given a Poisson process N with intensity 4, we
define the compensated Poisson process

M,2N —it,%#; 0<t< .
Note that the filtrations {#"} and {#"} agree.

3.4 Problem. Prove that a compensated Poisson process {M,, %;t > 0} is a
martingale.

3.5 Remark. The reader should notice the decomposition N, = M, + A, of
the (submartingale) Poisson process as the sum of the martingale M and the
increasing function 4, = At, t > 0. A general result along these lines, due to
P. A. Meyer, will be the object of the next section (Theorem 4.10).

A. Fundamental Inequalities

Consider a submartingale {X,; 0 <t < o0}, and an integrable, %, -measurable
random variable X ; we recall here that & = (| ), %). If we also have,
forevery 0 <t < oo,

E(X, %)= X, as.P,
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then we say that “{X,, %;0 <t < o0} is a submartingale with last element
X..”. We have a similar convention in the (super)martingale case.

A straightforward application of the conditional Jensen inequality (Chung
(1974), Thm. 9.1.4) yields the following result.

3.6 Proposition. Let {X,, %#,;0 <t < oo} be a martingale (respectively, sub-
martingale), and ¢: R - R a convex (respectively, convex nondecreasing) func-
tion, such that E|@(X,)| < oo holds for everyt > 0. Then {¢(X,), %;0 <t < 00}
is a submartingale.

The method used to prove Jensen’s inequality and Proposition 3.6 extends
to the vector situation of the next problem.

3.7 Problem. Let {X, = (X;",...,X\"), %;0 <t < o0} be a vector of mar-
tingales, and ¢: R? - R a convex function with E|¢(X,)| < co valid for every
t > 0. Then {¢(X,), %,; 0<t < oo} is a submartingale; in particular {| X,|i, #;
0 <t < oo} is a submartingale.

Let X = {X,;0 <t < o} be areal-valued stochastic process. Consider two
numbers a < f and a finite subset F of |0, c0). We define the number of up-

crossings Ug(a, B; X(w)) of the mterval [«, ] by the restricted sample path
{X,; te F} as follows. Set

T,(w) = min{te F; X,(w) < a},
and define recursively forj =1, 2, ...
gi(w) =min{t € F; t > 1{w), X,(w) > B},
T;+1(@) = min{t € F; t > g(w), X,(w) < a}.

The convention here is that the minimum of empty set 1s + 00, and we denote
by Ur(a, ; X (w)) the largest integer j for which ¢(w) < co. If I = [0, o0)1s not
necessarily finite, we define

Ui(o, B; X(w)) = sup{Ug(a, B; X(w)); F < I, F is finite}.

The number of downcrossings D,(a, f; X(w)) 1s defined similarly.
The following theorem extends to the continuous-time case certain well-
known results of discrete martingales.

3.8 Theorem. Let {X,, #,;0 <t < o0} be a submartingale whose every path is

right-continuous, let [0, t] be a subinterval of |0, o), and let « < f, A > 0 be
real numbers. We have the following results:

(1) First submartingale inequality:

).PI: SUp Xt > )-:I < E(X‘!+)

g<iI<<Tt
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(i) Second submartingale inequality:

gi<1t

A-P[ inf X, < —).] < E(X])— E(X,).

(ii1) Upcrossings and downcrossings inequalities:

E(X?) + |2 E(X, — a)*
(B-—)- 2 ED, (o B: X (@) < - :‘) .

(iv) Doob’s maximal inequality:

p p \*
E( sup Xt) < (__.....i_) E(X?), p>1,

gttt p_

provided X, > 0 a.s. P for everyt > 0, and E(X?) < o0.

(v) Regularity of the paths: Almost every sample path { X, (w);0 <t < o0} is
bounded on compact intervals; is free of discontinuities of the second kind,
i.e., admits left-hand limits everywhere on (0, c0); and its jumps are ex-
hausted by a sequence of stopping times (Proposition 2.26).

EU[a,t](aa Ba X(CO))

PRrOOF. Let the finite set F consist of ¢, 7, and a finite subset of [o, 1]~ Q.
We obtain from Theorem 9.4.1 of Chung (1974). uP[max,_r X, > u] < E(X_")
as well as: uP [mintLeF X, < —u] < E(X;) — E(X,). By considering an increas-
ing sequence { F, },—, of finite sets whose union is the whole of ([6,7] n Q) L
{6,7}, we may replace F by this union 1n the preceding mequalities. The
right-continuity of sample paths implies then uP[sup, <,<. X, > u] < E(X.")
and uPlinf, ., .. X, < —u] < E(X;) — E(X,). Finally, we let 4 7T A to obtain
(1) and (i1).

Being the limit of random variables of the form Up(a, f; X(w)) with finite
F, U, o(o B; X(w)) 1s measurable. We obtain (111), (iv) from Theorems 9.4.2,
9.5.4 in Chung (1974) (see also Meyer (1966), pp. 93-94). For (v), we note first
that the boundedness of (almost all) sample paths on the compact interval
L0, n], n > 1, follows directly from (1), (11); second, we consider the events

AT 2 {we Ug. al(d, B; X(@) =0}, n>1a<p
By virtue of (iii), these have zero probability, and the same is true for the union

) — )
A" = ) AV,
a<pf

a, feQ
which 1ncludes the set

{w eQ; lim X,(w) < lim X (w), for some t € [0, n]}.
sTt sTt

Consequently, for every w e Q\A"™, the left limit X,_(w) = lim,4, X (w) exists

for all 0 < t < n. This is true for every n > 1, so the preceding left limit exists

for every 0 < t < o0, we(| )i, A" ]
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3.9 Problem. Let N be a Poisson process with intensity 4.

(a) For any ¢ > 0,

. 1
lim P} sup (N, — As) > ¢ /At | < ——
{— 0o [05321( ) \/-:I C-\/zﬂ

(b) For any ¢ > 0,

__ 1
Iim P} inf (N,— 4As) < —c At:| < —F.
t— o0 |:O_gsg:_t \/_ c,,/27r

(c) For0 <o < 1, we have

N 2 4t/
E|: Sup (-—'—l) :|S_—r2—
T<t<T ! 4]

(Hint: Use Stirling’s approximation to show that lim,_,_ (1 /\/H)E (N,—At)" =

1//2x.)

3.10 Remark. From Problem 3.9 (a) and (b), we see that for each ¢ > 0, there
exists T, > O such that

P|:N >c\/1:|< 3- Vt>T
B L _c\/z_n’ -0

— -2
{

From this we can conclude the weak law of large number for Poisson pro-

cesses: (N,/t) — A, in probability as t — oc. In fact, by choosing ¢ = 2" and

T = 2"*! in Problem 3.9 (c) and using Cebysev’s inequality, one can show

N, 84
P[ sup  |—— 4 ZB:IS 29n
2nc g 2ntl & 2
for every n > 1, ¢ > 0. Then by a Borel-Cantelli argument (see Chung (1974),

[
Theorems 4.2.1, 4.2.2), we obtain the strong law of large numbers for Poisson
processes: lim,_,  (N,/t) = A, a.s. P.

The following result from the discrete-parameter theory will be used re-
peatedly in the sequel; it is contained in the proof of Theorem 9.4.7 in Chung
(1974), but 1t deserves to be singled out and reviewed.

3.11 Problem. Let {#,}>, be a decreasing sequence of sub-o-fields of # (ie.,
Foi1 €SF, < F,V¥n>1), and let {X,, %,;n > 1} be a backward submartin-
gale; 1e., E|X | < o0, X, is # -measurable, and E(X,|#,+,) = X, as. P, for
everyn > 1. Then! 2 lim,_ E(X,) > —oo implies that the sequence { X, } -,
1s uniformly integrable.

3.12 Remark. If {X,, #;0<t < w}isa submartingale and {t,};>, is a non-
increasing sequence of nonnegative numbers, then { X, , % _;n > 1} is a back-
ward submartingale.
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It was supposed in Theorem 3.8 that the submartingale X has right-
continuous sample paths. It is of interest to investigate conditions under
which we may assume this to be the case.

3.13 Theorem. Let X = {X,, %,;0 <t < oo} be a submartingale, and assume
the filtration { %,} satisfies the usual conditions. Then the process X has a right-
continuous modification if and only if the function t+— EX, from [0, ) to R is
right-continuous. If this right-continuous modification exists, it can be chosen so
as to be RCLL and adapted to {#,}, hence a submartingale with respect to { %, }.

The proof of Theorem 3.13 requires the following proposition, which we
establish first.

3.14 Proposition. Let X = {X,, #,;,0 <t < oo} be a submartingale. We have
the following:
(1) There is an event Q* € & with P(Q0*) = 1, such that for every w e Q¥*:

the limits X,,(w) 2 lim X (w), X,_ 2 lim X (w)

s<t sTt
se se

exist for all t > O (respectively, t > 0).
(11) The limits in (1) satisfy
E(X,. |%) as. PL,Vt > 0.
E(X,|#_)> X, as.P,Vt>0.

IV

(i) {X,,, %4+;0<t< o0} is a submam'ngale with P-almost every path
RCLL.

PROOF.

(1) We wish to imitate the proof of (v), Theorem 3.8, but because we have
not assumed right-continuity of sample paths, we may not use (i) of
Theorem 3.8 to argue that the events A} appearing in that proof have
probability zero. Thus, we alter the deﬁmtlon slightly by considering the
submartingale X evaluated only at rational times, and setting

A = {weQ; Ugp ino(® B; X(w) = 0}, n=>1,a<p,

AWM — U A(n)
a,BeQ

Then each Ay"; has probability zero, as does each A"™. The conclusions
follow readlly

(1) Let {t,},-, be a sequence of rational numbers 1n (¢, o), monotonically
decreasmg tot >0asn— 0. Then {X, , % ;n> 1} is a backward sub-
martingale, and the sequence {E(X, )},l , 18 decreasmg and bounded
below by E(X,). Problem 3.11 tells us that 1 X, }o-; 1sa uniformly integrable
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sequence. From the submartingale property we have | , X,dP < |, X, dP,
for every n > 1 and A4 € %,; uniform integrability renders almost sure into
L'-convergence (Chung (1974), Theorem 4.5.4), and by letting n - oo we
obtain |, X,dP < |, X, dP, for every A€ %, The first inequality in (ii)
follows.

Now take a sequence {t,}>, in (0, t) n Q, monotonically increasing to
t > (. According to the submartmgale property E[ X,|#, ] > X, as. We
may let n - oo and use Lévy’s theorem (Chung (1974), Theorem 9.4.8) to
obtain the second mequality 1n (11).

(ili) Take a monotone decreasing sequence {s,}>, of rational numbers, with
0 <5< s, <tholding for every n > 1, and lim,__ s, = s. According to
the first part of (11), E(X,+|%; ) = X; a.s. Letting n —» c0 and using Lévy’s
theorem again, we obtain the submartingale property E(X,.|%..) = X,

a.s. It 1s not difficult to show, using (i), that P-almost every patht— X,
is RCLL. L]

PRrROOF OF THEOREM 3.13. Assume that the function t — EX, 1s right-continuous;
we show that {X,,,%,; 0 < t < 0} as defined in Proposition 3.14 is a modifi-
cation of X. The former process is adapted because of the right-continuity of
{#}. Given t > 0, let {g,}, be a sequence of rational numbers with g, | t.
Then lim,_,, X, = X,,, as., and uniform integrability implies that EX,, =
lim,., EX, . By assumption, lim,, EX, = EX,, and Proposition 3.14 (1)
gives X,, > X, a.s. It follows that X,, = X,, a.s.

Conversely, suppose that {X,; 0 <t < oo} is a right-continuous modifica-
tion of X. Fix t > 0 and let {¢,};%; be a sequence of numbers with ¢, | t. We
have P[X, = X,, X, = X,. :n>1]=1 and lim,__ X, = X,, a.s. Therefore,
lim,,, X, = X, as, " and the uniform integrability of {X, }n=, implies that

EX, = lim,,_,w EX, . The right-continuity of the function t — EX, follows.
[

B. Convergence Results

For the remainder of this section, we deal only with right-continuous pro-
cesses, usually imposing no condition on the filtrations {%,}. Thus, the de-
scription right-continuous in phrases such as “right-continuous martingale”
refers to the sample paths and not the filtration. It will be obvious that the
assumption of right-continuity can be replaced in these results by the assump-
tion of right-continuity for P-almost every sample path.

3.15 Theorem (Submartingale Convergence). Let {X,, %;0 <t < o0} be a
right-continuous submartingale and assume C 2 sup,so E(X,") < 0. Then
X, (w) £ lim,,_ X,(w) exists for a.e. weQ, and E|X | < 0.

ProoF. From Theorem 3.8 (iii) we have for any n > 1 and real numbers a < f§:
EUg m(a, B; X(w)) < (E(X,) + |a])/( — «), and by letting n —» oo we obtain,
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thanks to the monotone convergence theorem:

C + |«
< —_—,
b —

EUo,x)(@, B; X(®))

The events A, g £ {0; Ujg (@ B; X(®)) = 0}, —o0 < a < f < o0, are thus
P-negligible, and the same is true for the event A = | J,<4 A, 3, which con-
tains the set {w; lim,, X, (@) > lim,,  X,(w)}. .Pel

Therefore, for every we Q\ A4, X _(w) = lim,_,, X,(w) exists. Moreover,

E|X,| = 2E(X}) — E(X,) < 2C — EX,

shows that the assumption sup,-. o E(X,") < o0 is equivalent to the apparently
stronger one sup, - E|X,| < oo, which in turn forces the integrability of X,
by Fatou’s lemma. (]

3.16 Problem. Let {X,, #;0 <t < oo} be a right-continuous, nonnegative
supermartingale; then X_(w)=Ilm,, X,(w) exists for P-ae. wel), and
{X,, #;0 <t < o0} is a supermartingale.

3.17 Definition. A right-continuous, nonnegative supermartingale {Z,, %;
0 <t < oo} withlim,, E(Z,) = O is called a potential.

Problem 3.16 guarantees that a potential {Z,, %,; 0 <t < o0} has a last
element Z_,and Z_ =0 a.s. P.

3.18 Exercise. Suppose that the filtration {%#,} satisfies the usual conditions.
Then every right-continuous, uniformly integrable supermartingale {X,, %;
0 <t < oo} admits the Riesz decomposition X, = M, + Z,, a.s. P, as the sum
of a right-continuous, uniformly integrable martingale {M,, #;0 <t < o}
and a potential {Z,, #,;0 <t < o0}.

3.19 Problem. The following three conditions are equivalent for a nonnegative,
right-continuous submartingale {X,, %;0 <t < o0}:

(a) 1t 1s a uniformly integrable family of random varnables;

(b) it converges in L', as t — o0;

(c) 1t converges P a.s. (as t — o0) to an integrable random variable X, such
that {X,, ;0 <t < o} is a submartingale.

Observe that the implications (a) = (b) = (¢) hold without the assumption of
nonnegativity.

3.20 Problem. The following four conditions are equivalent for a right-
continuous martingale { X, ;0 <t < o}

(a), (b) as in Problem 3.19;

(¢) 1t converges P a.s. (as t - o0) to an integrable random variable X_, such
that {X,, #; 0 <t < oo} is a martingale;
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(d) there exists an integrable random variable Y, such that X, = E(Y|#) a.s.
P, forevery t > 0.

Besides, if (d) holds and X is the random variable in (¢), then

E(Y|#,) =X, as.P.

3.21 Problem. Let {N,, %,;0 <t < oo} be a Poisson process with parameter
>0 ForueCandi=./—1, define the process

X, = exp[iuN, — it(e™ — 1)]; 0<t < .

(i) Show that {Re(X,), %;0 <t < w0}, {Im(X,), %;0 <t < oo} are martin-
gales.
(i) Consider X with u = —i. Does this martingale satisfy the equivalent con-

ditions of Problem 3.20?

C. The Optional Sampling Theorem

What can happen if one samples a martingale at random, instead of fixed,
times? For instance, if X, represents the fortune, at time ¢, of an indefatigable
gambler (who plays continuously!) engaged in a “fair” game, can he hope to
improve his expected fortune by judicious choice of the time to quit? If no
clairvoyance into the future is allowed (in other words, if our gambler is re-
stricted to quit at stopping times), and if there i1s any justice in the world, the
answer should be “no.” Doob’s optional sampling theorem tells us under what
conditions we can expect this to be true.

3.22 Theorem (Optional Sampling). Let {X,, %;0 <t < w} be a right-
continuous submartingale with a last element X, and let S < T be two optional
times of the filtration {%,}. We have

E(Xr|%s.) = X5 as. P.

If S is a stopping time, then % can replace %, above. In particular, EX; >
EX,, and for a martingale with a last element we have EXy = EX,.

PROOF. Consider the sequence of random times
S(w) if S(w)= 4+

S, (w) = —
@) % if k2"ISS(w)<

?a

and the similarly defined sequences {7, }. These were shown in Problem 2.24
to be stopping times. For every fixed integer n > 1, both §, and T, take
on a countable number of values and we also have 5, < 1,. Therefore, by
the “discrete” optional sampling Theorem 9.3.5 in Chung (1974) we have
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{4Xs dP < |, X1 dP for every Ae % , and a fortiori for every Ae %, =

©_1 Fs,, by virtue of Problem 2.23. If S is a stopping time, then § < S, implies
Fs S Fs_asin Lemma 2.15, and the preceding inequality also holds for every
Ae %s.

It is checked similarly that {X , % ; n > 1} is a backward submartingale,
with {E(X; )};=; decreasing and bounded below by E(X,). Therefore, the
sequence of random variables { X };>, is uniformly integrable (Problem 3.11),
and the same is of course true for { X7 };;. The process is right-continuous,
s0 X(w) = lim,,, X7 (w) and Xg(w) = lim,_,, X5 (@) hold for a.e. wefd
It follows from uniform integrability that X;, X are integrable, and that
(4 XsdP < [, X7dP holds for every Ae F,. []

3.23 Problem. Establish the optional sampling theorem for a right-continuous
submartingale {X,, %;0 <t < o} and optional times S < T under either of
the following two conditions:

(i) Tis abounded optional time (there exists a numbera > 0,suchthat T < a);
(ii) there exists an integrable random variable Y, such that X, < E(Y|%,) a.s.
P, foreveryt > 0.

3.24 Problem. Suppose that {X,, #,;0 <t < o0} is a right-continuous sub-
martingale and S < T are stopping times of {%,}. Then

1) {X7.. Z;0 <t < o0} is asubmartingale;
(i1) E[ X1 .,%s] > XA, as. P,forevery t = 0.

3.25 Problem. A submartingale of constant expectation, 1.e., with E(X,) =
E(X,) for every t > 0, 1s a martingale.

3.26 Problem. A right-continuous process X = {X,, %;0 <t < o0} with
E|X,| < 00; 0 <t < o0 1s a submartingale if and only if for every pair § < T
of bounded stopping times of the filtration {%} we have

(3.2) E(X;) > E(Xy).

3.27 Problem. Let T be a bounded stopping time of the filtration {%,}, which
satisfies the usual conditions, and define &%, = %,,,; t > 0. Then {FZ} also
satisfies the usual conditions.

(1) f X =1{X,, %,;0<t < w}is aright-continuous submartingale, then so
is X ={X,2X;,,— X7, %;,0<t< 0}

) f X ={X,,#,;0<t < w} is a right-continuous submartingale with
Xo=0, as. P, then X ={X,2X, 1,00, %;0<t< 0} is also a
submartingale.

3.28 Problem. Let Z = {Z,, #,;,0 <t < o0} be a continuous, nonnegative
martingale with Z_ 2 lim,,Z, = 0, a.s. P. Then foreverys > 0,b > 0
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1
0 :
>3

1
(11) P[sup Z, = b] = P[Z, = b]| + BE[ZSI{ZS{I,}].

t > s

3.29 Problem. Let {X,, %,;0 <t < o0} be a continuous, nonnegative super-
martingale and T = inf{t > 0; X, = 0}. Show that

Xr+:=0; 0<t<o holdsas.on{T < w}.

3.30 Exercise. Suppose that the filtration {4} satisfies the usual conditions
and let X' = {X{", £#,;0 <t < o0}, n > 1 be an increasing sequence of right-
continuous supermartingales, such that the random variable &, £ lim,_, X™
is nonnegative and integrable forevery 0 < t < oo. Then there existsan RCLL
supermartingale X = {X,, %,;0 <t < oo} which is a modification of the
process & = {¢,, ;0 <t < w0}.

1.4. The Doob-Meyer Decomposition

This section i1s devoted to the decomposition of certain submartingales as the
summation of a martingale and an increasing process (Theorem 4.10, already
presaged by Remark 3.5). We develop first the necessary discrete-time results.

4.1 Definition. Consider a probability space (2, #, P) and a random sequence

{A.}n-o adapted to the discrete filtration {£,}.,. The sequence is called in-
creasing, 1f for P-ae. weQ wehave ) = Ay(w) < A,(w) < ---,and E(A4,) < o©
holds for every n > 1.

An increasing sequence 1s called integrable if E(A,) < oo, where A =
lim,, A,. An arbitrary random sequence {&,};-, is called predictable for the
filtration { %, },-,, if for every n > 1 the random variable &, is &%, _,-measurable.
Note that if A ={A4,, %,;n=0,1,...} is predictable with E|A4,| < oo for
every n, and if {M,, %,;n=0,1,...} is a bounded martingale, then the mar-
tingale transform of A by M defined by

(4.1) =0 and Y, =) AM,—M_);, n=>1,
k=1

is itself a martingale. This martingale transform is the discrete-time version
of the stochastic integral with respect to a martingale, defined in Chapter 3.
A fundamental property of such integrals is that they are martingales when
parametrized by their upper limit of integration.

Let us recall from Chung (1974), Theorem 9.3.2 and Exercise 9.3.9, that any
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submartingale {X,, Z,;n=0,1,...} admits the Doob decomposition X, =
M, + A, as the summation of a martingale {M,, %#,} and an increasing
sequence {A4,, Z%,}. It suffices for this to take A, =0and 4,,, = A4, — X, +
E(X,+11%) = ) 1o LE(X3 41 %) — X, ], for n > 0. This increasing sequence
1s actually predictable, and with this proviso the Doob decomposition of a
submartingale 1s unique.

We shall try 1n this section to extend the Doob decomposition to suitable
continuous-time submartingales. In order to motivate the developments, let

us discuss the concept of predictability for stochastic sequences in some further
detail.

4.2 Definition. An increasing sequence {A
if for every bounded martingale {M,, %,

F,.n=0,1,...}is called natural
n=0,1,.. } we have

(4.2) E(M,A,) = E Z Mk—l(Ak '“ Ak«-—l), Vvn > 1.
k=1

A simple rewriting of (4.1) shows that an increasing sequence A 1s natural
if and only if the martingale transform Y = {Y,}; -, of 4 by every bounded
martingale M satisfies EY = 0, n > 0. It is clear then from our discussion of
martingale transforms that every predictable increasing sequence 1s natural.
We now prove the equivalence of these two concepts.

4.3 Proposition. An increasing random sequence A is predictable if and only if
it is natural.

PROOF. Suppose that A is natural and M is a bounded martingale. With
{Y, 13-, defined by (4.1), we have

E[A(M,— M,_)]=EY,—EY, , =0, n> 1.

It follows that

(4.3) E[M,{A, — E(A,|%,-1)}]1=E[M, — M,_)A,]
+ E[MH—I{AH — E(A,|#,-1)}]
— E[(M, — M, ,)E(A,|#,-1)] =

for every n > 1. Let us take an arbitrary but fixed integer n > 1, and show

that the random variable 4, is &,_,-measurable. Consider (4.3) for this fixed
integer, with the martingale M given by
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