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Pretace

This book consists of two parts, different 1n form but similar in spirit.
The first, which comprises chapters O through 9, is a revised and somewhat

enlarged version of the 1972 book Géoméirie Différentielle. The second
part, chapters 10 and 11, is an attempt to remedy the notorious absence in

the original book of any treatment of surfaces in three-space, an omission
all the more unforgivable in that surfaces are some of the most common
geometrical objects, not only in mathematics but in many branches of

physics.

Géoméirie Différentielle was based on a course I taught in Paris in 1969
70 and again 1n 1970-71. In designing this course I was decisively influ-
enced by a conversation with Serge Lang, and I let myself be guided by
three general ideas. First, to avoid making the statement and proof of
Stokes’ formula the climax of the course and running out of time before
any of its applications could be discussed. Second, to illustrate each new
notion with non-trivial examples, as soon as possible after its introduc-
tion. And finally, to familiarize geometry-oriented students with analysis
and analysis-oriented students with geometry, at least in what concerns
manifolds.

To achieve all of this in a reasonable amount of time, I had to leave out
a detailed review of differential calculus. The reader of this book should
have a good calculus background, including multivariable calculus and some
knowledge of forms in R™ (corresponding to pages 1-85 of [Spi65], for
example). A little integration theory also helps. For more details, see
chapter 0, where all of the necessary notions and results from calculus,
exterior algebra and integration theory have been collected for the reader’s

convenience.
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I confess that, in choosing the contents and style of Géométrie Différen-
tielle, I emphasized the esthetic side, trying to attract the reader with
theorems that are natural and simple to state, instead of providing an
exhaustive exposition of the fundamentals of differentiable manifolds. 1
also decided to include a larger number of global results, rather than giving
detailed proofs of local results.

More specifically, here are some of the contents of chapters 1 through 9:

—We start with a somewhat detailed treatment of differential equations,
not only because they are used in several parts of the book, but because
they tend to be given less an less weight in the curriculum, at least in
France.

—Submanifolds of R", although sometimes included in calculus courses,
are then presented in detail, to pave the way for abstract manifolds.

—Next we define abstract (differentiable) manifolds; they are the basic
stuff of differential geometry, and everything else in the book is built on
them.

—Five examples of manifolds are then given and resurface several times
along the book, thus serving as unifying threads: spheres, real projec-
tive spaces, tori, tubular neighborhoods of submanifolds of R™, and one-
dimensional manifolds, 1.e., curves. Tubular neighborhoods and normal
bundles, in particular, form a class of examples whose study is non-trivial
and illustrates a number of more or less refined techniques (chapters 2, 6,

7 and 9).

—Several 1mportant topics, for example, Morse theory and the classifi-
cation of compact surfaces, are discussed without proofs. These “cultural
digressions” are meant to give the reader a more complete picture of dif-
ferential geometry and how it relates with other subjects.

—Two chapters are devoted to curves; this i1s, in my opinion, justified,
because curves are the simplest of manifolds and the ones for which we
have the most complete results.

—The exercises consist of fairly concrete examples, except for a few that
ask the reader to prove an easy result stated in the text. They range from
very easy to very difficult. They are in large measure original, or at least
have not appeared in French books. To tackle the more difficult exercises

the reader can refer to [Spi79, vol. I] or [Die69|.

% % *

In deciding to add to the original book a treatment of surfaces, I faced a
dilemma: if I were to maintain the leisurely style of the first nine chapters, I
would have to limit myself to the basics or make the book far too long. This
1s especilally true because one cannot talk about surfaces in depth without
distinguishing between their intrinsic and extrinsic geometries. Once again
the desire to give the reader a global view prevailed, and the solution I
chose was to be much more terse and write only a kind of “travel guide,”
or extended cultural digression, omitting detalls and proofs. Given the
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abundance of good works on surfaces (see the introduction to chapter 10)
and the great number of references sprinkled throughout our material, I feel
that the interested reader will have no-difficulty in filling in the picture.

Chapter 10, then, covers the local theory of surfaces in R>, both intrinsic
(the metric) and extrinsic (the embedding in space). The intrinsic geometry
of surfaces, of course, is the simplest manifestation of riemannian geometry,
but I have resisted the temptation to talk about riemannian geometry in
higher dimension, even though the field has witnessed spectacular advances
In recent years.

Chapter 11 covers global properties of surfaces. In particular, we dis-
cuss the Gauss—-Bonnet formula, surfaces of constant or bounded curvature,
closed geodesics and the cut locus (part I, intrinsic questions); minimal sur-
faces, surfaces of constant mean curvature and Weingarten surfaces (part
I, extrinsic questions).

%K %K %K

The contents of this book can serve as a basis for several different courses:
a one-year junior- or senior-level course, a one-semester honors course with
emphasis on forms, a survey course on surfaces, or yet an elementary course
emphasizing chapters 8 and 9 on curves, which can stand more or less on
their own, together with section 7.6.

The reader who wants to go beyond the contents of this book will find
a number of references inside, especially in chapters 10 and 11, but here
are some general ones: [Mil63] is elementary, but a pleasure to read, as is
[IMil69], which covers not only Morse theory but many deep applications
to differential geometry; [Die69], [Ste64|, [Hic65] and [Hu69] cover much of
the same ground as as this book, with differences in emphasis; {War71| has
a good treatment of Lie groups, which are only mentioned in this work;
1Spi79], whose first volume largely overlaps with our chapters 1 to 9, goes
on for four more and is especially lucid in offering different approaches
to riemannian geometry and expounding its historical development; and
I KN@69| is the ultimate reference work.

I would like to thank Serge Lang for help in planning the contents of chap-
ters 0 to 9, the students and teaching assistants of the 1969-1970 and 1970-
1971 courses for their criticism, corrections and suggestions, F. Jabceuf for
writing up sections 7.7 and 9.8, J. Lafontaine for writing up numerous ex-
ercises and for the proof of the lemma in 9.5. For feedback on the two new
chapters I’m indebted to thank D. Bacry, J.-P. Bourguignon, J. Lafontaine
and J. Ferrand.

Finally, I would like to thank Silvio Levy for his accurate and quick
translation, and for pointing out several errors in the original. I would
also hike to thank Springer-Verlag for taking up the translation and the
publication of this book.

Marcel Berger
I.H.E.S, 1987
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CHAPTER O

Background

This chapter contains fundamental results from exterior al-
gebra, differential calculus and integration theory that will be
used in the sequel. The statements of these results have been
collected here so that the reader won’t have to hunt for them
in other books. Proofs are generally omitted; the reader is

referred to [Car71|, [Dix68| or [Gui69].



2 0. Background

0.0. Notation and Recap
0.0.1. Notation

0.0.2. Let X be a topological space. We denote by O(X) the set of open
subsets of X; by O,(X) the set of open subsets of X containing a point
z € X; and by O4(X) the set of open subsets of X containing a subset

A C X.

0.0.8. If X is a metric space, we let B(a,r) and B(a,r) be the open and
closed balls of radius r and center a. When X = R? we write By(0,1)
instead of B(0, 1).

0.0.4. If E and F are vector spaces over the same field, we let L(E; F) be
the vector space of continuous linear maps from E into F (if E and F have

finite dimension every linear map is continuous). If F' = R we write E*
instead of L(E;R); this space is called the dual of E and its elements are

continuous Ilinear forms on FE.

0.0.5. If X and Y are topological spaces we let C°(X;Y) be the set of
continuous maps from X into Y.

0.0.6. The algebra of continuous functions from X into R is denoted by

CO(X).

0.0.7. Recap

0.0.8. If X is a compact topological space, C°(X), with the norm of uni-
form convergence, is a complete topological space [Car71, 1.1.2, example 2.

0.0.9. A finite-dimensional vector or affine space over R has a canonical

topology, given by a norm. All norms are equivalent; in particular, we can
take any Euclidean norm [Car71, 1.1.6.2].

0.0.10. Example. If E and F are finite-dimensional vector spaces, so is
L(E; F): its dimension is equal to dim(E) - dim(F).
If E and F are normed vector spaces, L(E; F) has a canonical norm,

defined by
| £l = sup {[|f ()]l : ll=l| = 1}.

Then ||fog|| < ||f]|-|lg|l [Car71, equation 1.1.5.1], and L(E; F) is a Banach
space if F' is [Car71, theorem 1.1.4.2].
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0.0.11. If £ and F are isomorphic vector spaces, denote by Isom(FE; F)
the set of isomorphisms from £ to F'. Then

0.0.12 ¢ : Isom(E; F)> f +— f~' € Isom(F; E)

1s continuous for the norm defined 1n 0.0.10, as the reader should check
Car71, theorem 1.1.7.3].

0.0.13. Lipschitz and contracting maps [Car71, 1.4.4.1]

0.0.13.1. Definition. Let X and Y be metric spaces. Amap f: X — Y 1s
a k-Lipschitz map if there exists k € R such that

d(f (=), f(y)) < kd(=z,y)

for every z,y € X.
A map f: X — Y is locally Lipschitz if for every z € X there exists
V € O,(X) such that f|y is Lipschitz. A map f: X — Y is contracting if

it is k-Lipschitz with k < 1.

0.0.13.2. Theorem. If X 1s a complete metric space and t : X — X 1s
contracting, t has a unique fized point, that 1s, there exists a unique z such
that t(2) = 2. In addition, z = lim,_, o, t"(z) for every z € X. ]

0.1. Exterior Algebra
Let E be a vector space and E* = L(E;R) its dual.

0.1.1. We denote by A" E* the vector space of alternating r-linear forms
on F, that is, continuous maps a : £ — R linear in each variable and

satisfying

ey Ziyeo ey Zgyeo)=—0(eeey Zgyenny Tiy.. )

for every 1 <1 < 9 < r. One has A'E* = E*; by convention, A°E* = R.
If £ is n-dimensional, A" E* has dimension (':) if r < n and dimension O if
r > n [Dix68, 37.1.11]|.

Recall that, if f;,..., f, are linear forms on F, we define fi A---A f, €
ATE* by

0.1.2 (f1 /ANRIRIRIVAN f,-)(.’Bl, .o .,.’B,-) = Z €a-f1($a(1)) ¢ oo fr(zo(r))’

oES,

where §, 1s the symmetric group on r elements and €, = +1 depending on
whether o 1s an even or odd permutation.
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0.1.3. Basis for ATE*. Let {e;1,...,€,} be a basis for E and {ej,..., e}
the dual basis for E*. Let I = (33,...,%,) be an r-tuple such that

1 <1y <i2<---<z',._<_n.

The forms e; = e, A--- A€, as I ranges over all such n-tuples, form a

basis for A" E* [D1x68 37 1. 9]

0.1.4. Exterior product of alternating forms. Consider « € APE* and
B € ATE*. The exterior product a A B, an alternating (p + g)-linear form,
is defined as follows: let A be the subset of §,4, consisting of permutations
o such that

o(l)<o(2)<---<o(p) and o(p+1)<---<o(p+9).

Then
0.1.5

(@A B)(Z1,---) Zpra) = Y €0®(To(1)s -+ -1 To(p)) B(To(pt1)s - - > To(p+a))
o€ A

[Dix68, 37.2.5-11|. The exterior product is associative.

0.1.6. If € ATE*, we say that r is the degree of o, and write dega = r.
If a e ATE* and f € A’ E™ we have

0.1.7 BAa=(—1)desxdesly A 6.

Thus the exterior product makes the vector space

dim E
AE*= P A E

r=0

into an assoclative and anticommutative algebra.

0.1.8. Pullbacks. For f € L(E; F) we define f* € L(A"F*; A"E*) by

0.1.9 f*B(u1, ... u) = B(f(ua), .. , F(ur))

for every f € ATE™ and every u;,...,u, € E. One immediately sees that
0.1.10 F*(anB) = f*(a) A £*(A).

If fe L(E;F) and g € L(F;G) we have

0.1.11 (90 f)* = f*og".

0.1.12. For f € L(E; E) and f € A"E*, where n is the (finite) dimension
of £, we have

0.1.12.1 f*B = (det f)B.
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In fact, A" E* has dimension one, so f* is multiphication by a constant. If
(€1,...,€y,) 1s a basis for E and S is of form e} A --- A€} (the associated ),

we have
(£*B)(e1,---,en) = B(f(e1),-.., f(en)) = det f.
Since f*f = kS, the factor £k must be equal to det f.

0.1.13. Orientation. If £ has dimension n, the real vector space A" E*
has dimension one, so A" E* \ 0 has two connected components. An orienta-
tion for E 1s the choice of one of these two components.

Alternatively, consider on A" E* \ 0 the equivalence relation ~ given by

“a ~ B 1if there exists a strictly positive number k such that &« = k8.” The
set O(E) = (A"E* \ 0)/ ~ has two elements, and choosing an orientation

for E 1s the same as choosing one of these elements.

0.1.14. Definition. An n-form a € A"E*\ 0 is called positive if it belongs
to the element of O(FE) chosen as the orientation. A basis {e;,...,e,} for
E is called positive if for some (hence any) positive a € A"E™ \ 0 we have
a(el, . .,en) > 0.

Let E and F' be oriented n-dimensional vector spaces, and consider f &€
Isom(FE; F). We say that f preserves orientation if, for some (hence all)
positive 8 € A"E* \ 0, we have f*f positive.

If £ = F, saying that f preserves orientation is the same as saying that
det f > O; this follows from 0.1.12.1 and 0.1.13.

0.1.15. Exterior algebra over a Euclidean space

0.1.15.1. Let E be a Euclidean space, whose scalar product and norm we
denote by (- | -) and || - ||, respectively. We know that the dual E* of E is
canonically isomorphic to E via the map b: z+— {y— (z|y)} € E* and
its inverse f| : E* — E |Dix68, 35.4.6]. Thus the Euclidean structure of E

gives rise to a canonical Euclidean structure on E*. The spaces APE* also
inherit canonical Euclidean structures [Bou74, III.7, prop. 7|; in the cases
that will be treated in this book, namely, p = 2 and p = d = dim E, that

structure 1s explicitly defir ed as follows:

0.1.15.2. p = 2. It suffices to define the norm of products o A 8, where
a,f € E*. Set

la A BIIZ = [ll®1811° — (o | B)*.
If {e;} is an orthonormal basis for E, the dual basis {e} of E* is also
orthonormal, and, if

a=2a,—ef, ﬂ=§:ﬂief,
i i

we have
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0.1.15.8. p = d. Let {e;} be an orthonormal basis for E; every o € A%E*
can be written as kefA---Aej;. We define ||a|| = |k|]. We have to show that
|k| does not depend on the chosen orthonormal basis; but this follows from
0.1.12.1 ant the fact that the determinant of an orthogonal transformation

1s equal to %1.

0.1.15.4. We deduce from the previous paragraph that an oriented Euchd-
ean space E of dimension d has a canonical volume element A\g € A¢E*,
namely, the element of norm 1 belonging to the chosen connected compo-

nent of A2E* \ 0.

0.1.15.5. Definition. The form A g 1s called the canonical volume form of F.

Notice that Ag is also defined by the condition that Ag(e1,...,eq4) = 1
for every positive orthonormal basis {e1,...,eq4}.

0.1.15.6. Lemma. If {a;}i=1.... 4 s an arbitrary positive basis for E, we

have
Ae(ay,...,aq) = y/det((a; | a;)).

Proof. Let {e;}i=1....4 be an orthonormal positive basis for E, and let A
be the matrix whose column vectors are the a;’s in the basis {e;}. The
definition of matrix multiplication shows that ‘A A, where A denotes the
transpose of A, is just the matrix of scalar products ((a; | a;)). Thus

det((a; | a;)) = det(*AA) = det*A det A = (det A)2.
But
Ae(a1,...,aq4) = Ap(Aey,..., Aeg) = det AXg(es,...,eq) = det A,

as we wished to prove. L]

0.1.15.7. One can also define spaces APE, called the exterior powers of

a vector space [Bou74, II1.7.4]. In this book we will just need a skew-
symmetric map A: £ X E — R. We set, for z,y € E,

zAy=z Ay € A2E*,

and define A by A(z,y) = ||z A y||, using 0.1.15.2. For example, ||[zAy|| = 1
if {z,y} is an orthonormal basis; in general,

|z A yll? = lzlI?l9ll® - (= | 9)% = ) _(ziy; — z59:)°
1<
in an arbitrary orthonormal basis. .
0.1.16. Now assume that E is Euclidean, oriented, and three-dimensional.

Then Ag is the mixed product of three vectors, written just (z,y,2) =
Ae(z,y,2). By lemma 0.1.23, A determines an isomorphism o between
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A2E* and E; in the notation of 0.1.15.7 this gives rise to a map EXE — E
defined by

0.1.17 (z,y) — oz’ AY).

This map is called the cross product of two vectors z,y € E, and denoted
by z X y.

0.1.18. Contractions. Let E be a vector space and £ an element of F.
For every r > 1 we define a linear map cont(&) : A"E* — A"~ 1 E*, called a
contraction (by &), as follows:

(cont(f)(a))(fl, I fr—l) — a(fa 61’ ¢ ooy fr—l)

for every a € A"E* and &;,...,&,—1 € E. It is easily checked that cont(¢)
1s an antiderivation of AE* of degree —1, that is, for all a, 8 € AE™ we
have

0.1.20 cont(é)(a A B) = (cont(€)(a)) A B+ (—1)%® *a A (cont(€)(B)).

0.1.19

0.1.21. Use of coordinates. Let £ have dimension d, and fix a basis
{e1,...,eq} for E. Take a € A2E* and an element § = Zf___l ze; of K.
We have

(cont(€)(a))(e1;.--»8ir...,4) = (é T €5y €Ly ernyiyenns ed)

d
= Z(—l)i_lx,-a(el, R TIN ¥),
1=1

where €; means that e; is omitted. Since a € A2E*, there exists a scalar a
such that a = a(ef A --- Aej), and we have

d d
0.1.22  cont (Z &',-e,-) (a) = Z(—l)"‘lax,- e;N - ANE N Aey

t=1 1=1

Since the forms ejA---A&fA---Ae (¢ =1,...,d) form a basis for A*~! E*
(cf. 0.1.3), we deduce that:

0.1.23. Lemma. If « € AE* s non-zero, the map ¢ — cont(&)(a) s an
isomorphism between E and A®1E*. [

0.1.24. Densities

0.1.25. Definition. A density on a d-dimensional vector space F is a map
§ : E* — R such that § = || for some a € A®E* \ 0.
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0.1.26. Example. If E = R?, the density 6o = |Ag| = | det(-)| is called the
canonical density in R®. More generally, every Euclidean space E admits
a canonical density, denoted by ug and defined by ug = |Ag|, where Ag is
the canonical volume form for an arbitrary orientation of £. By 0.1.15.6
we have

0.1.27 pe(ai,...,aq) = det((a,- | a,'))

0.1.28. The set of densities on E will be denoted by Dens(E).

0.1.29. Elementary properties of densities

0.1.29.1. If6 and 6’ are densities on E, there exists a constant k > 0 such
that 6' = ké. []

0.1.29.2. If6,6' are densities on E and k, k' are non-negative constants not
both of which are zero, k6 + k'6' 1s a density on E. (]

0.1.29.8. Let E and F be vector spaces of same dimension d. Let § €
* Dens(F') and f € Isom(E; F). The map f*6 : E* — R, defined by

(£*6)(z1s...,24) = 6(f(z1,--.,2d))
Jor every z1,..., 24 € E, 15 a density on E.

Proof. If « € A2F* \ 0 is such that |a| = §, we have
(£*6)(z1,-..,2q) = 6(f(z1,-..,24))
a(f(z1,...,24))| = |(F*a)(z1,-- ., zd)],
so that f*§ is the density on E associated with f*a € A%E* \ O. [

0.1.29.4. Let E, F and G be vector spaces of same dimension, f : E — F
and g : FF — G 1somorphisms. If 6 1s a density on G, we have

(90 £)7(8) = (7o g7)(6). [
From 0.1.12.1 we deduce that
0.1.29.5. For f € Isom(E; E) and 6§ € Dens(E) we have f*(6) = |det(f)|6.
O
0.1.29.6. For dim(FE) = 1 densities are the same as norms.

Proof. A density is a map from E into R such that § = |a| for some
non-zero a € A'E* = E*. Thus

6(z) 20 and b(z)=042z=0

(since o # O implies that o is an isomorphism in dimension 1);
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5(Az) = |a(Az)| = |A||a(z)]| = |A|6(2);
6(z+ y) = |a(z+9)| = |a(z) + a(y)| < |a(z)| + |aly)| = 6(z) + 6(y).00

0.2. Differential Calculus

0.2.1. Definition. Let F and F be Banach spaces and U C E open. A
map f : U — F i1s called differentiable at z € U if there exists a linear map

f'(z) € L(E; F) such that
| 7(z + k) = £(z) = f'(z)(W)]| = o(l|l])

(where the notation o(||h||) means that the left-hand side approaches zero
faster than ||h||.) If f is differentiable at every z € U we say that f is
differentiable 1n U.

0.2.2. The map f'(z) is called the derivative of f at z.

0.2.3. The map f': U — L(FE; F) is called the derivative of f.

0.2.4. Remark. In the case of a function of a single real variable we
recover the elementary notion of the derivative: L(R;F) is canonically
isomorphic to F via the map 6 — 6(1), and consider f'(z)(1) is the ordinary
derivative.

0.2.5. Definition. Let F and F be Banach spaces and U C E open. A
map f : U — F is called continuously differentiable if it 1s differentiable

and its derivative f’ belongs to C’O(U; L(E; F))

We also say that f is (of class) C1. We denote by C*(U; F) the set of
C! maps on U, and we set C'(U) = C!(U;R).

0.2.6. Theorem. Let U be a convez open subset of a Banach space E, and
f:U — F a differentiable map such that ||f'(z)|| < k for every z € U.

Then f 1s k-Lipschitz (0.0.13.1).
Proof. See |Dix67, p. 351]. ]

0.2.7. Corollary. Any f € C*(U; F) 1s locally Lipschitz.

Proof. U is locally convex and f’, being continuous, is locally bounded. [

0.2.8. Operations on C! maps

0.2.8.1. Theorem. Let E, F and G be Banach spaces, U C E and V C F
open sets and f € C*(U; F) and g € C'(V;G) maps with f(U) C V. Then
go f € CY(U;Q), and, for every z € U, we have

(90 f)'(z) = ¢'(f(2)) © f'(=).
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Proof. See [Dix68, 47.3.1] or [Car71, theorem 1.2.2.1]. O]

0.2.8.2. If f and g are C* maps and A € R 1s a constant, f +g and \f are
C! maps. If multiplication makes sense in F, so 1s fg. L]

For example, every polynomial function is C*.

0.2.8.8. Any linear map f € L(E; F) 1s C', and satisfies f'(z) = f' for ev-
ery z € E. If we denote by L(FE, F;G) the space of continuous bilinear
maps from E X F into G, we have L(E,F;G) c CYE x F;QG), and
f'(z,y)(u,v) = f(z,v) + f(u,y) for every z,u € E and y,v € F [CarT7l,
theorem 1.2.4.3|. []

0.2.8.4. Let Fy,...,F,, be Banach spaces and p; the projection from Fy X
Fy x --- X F, into F;, Then f € C*(U;F; x --- X F,) if and only if
p;of € CL(U; F;) for everyt. In addition we have (p;o f)'(z) = pio (f'(z))
for every ¢ [Car71, theorem 1.2.5.1]. O

0.2.8.5. Let F,,...,E,, and F be Banach spaces. Consider an open set
UcO(E, x---xEy,)andamap f:U — F. If

({z1} X - X {£ic1} X B; X {zi41} X - - X {zm}) NU

1s a section of U parallel to E;, we identify the restriction of f to this section
(where only the ¢-th variable varies) with a map defined on a subset of E;.
If the derivative of that restriction with respect to z; exists, we denote it

by 0f/0z; (or fg , or f,., or D;f). Thus

af
9z, € L(E;; F),

and we have the following result:

0.2.8.6. Proposition. The map f 1s C! if and only of 3f /Oz; exists and 1s
continuous for all 1. In addition,

— J
0020807 f’(a) (hl’ ° o oy hm) — Z 32{. (a’) hi'
1=1 :
Proof. See [Car71, proposition 1.2.6.1]. O]

0.2.8.8. Particular case. Take £ = R™, F = R", U € O(E) and f €

C!(U; F) with components fi,..., f,, where each f; is a function of the m
variables z1,...,Z,,. Denoting by 0f;/3z,; the partial derivatives (in the
usual sense) of the components of f, we define the jacobian matrix of f at
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a to be the matrix

d f1 3 f1
5‘;;(0) - (a)
3fr:. 3ff:.
5;'1'(0) 3z, (a)

The jacobian matrix is sometimes denoted by f’(a) by abuse of notation.
In this particular case f € C*(U; F) if and only if 3f;/3z,; € C°(U;R)

for every 2 and 3.

0.2.8.9. Definition and notation. For f € C!(U; E) and U € O(E) the
jacobian of f, denoted by J(f), is the map

J(f): U >z det(f'(z)) € R.
For E = R™ we have J(f)(a) = det(f'(a)) (cf. 0.2.8.8).

0.2.9. Examples

0.2.9.1. Definition. A curve in U € O(E) is a pair (I,¢), where I C R
is an interval and ¢ € C'(I;U). The velocity of ¢ at t € I is the vector
¢'(t) € E (cf. 0.2.4).

Now take U € O(E) and f € C'(U; F). Given z € U and y € E, we
can calculate f’(z)(y) by using the velocity of a curve. Choose a curve
(I, #) in U such that 0 € I, ¢(0) = z and ¢'(0) = y. By 0.2.8.1 we have

(f o ¢)'(0) = f'(#(0)) o ¢'(0) = f'(z)(y), that is, f'(z)(y) is equal to the
velocity of the curve (I, f o ¢) at 0.
More rigorously, we should have written (cf. 0.2.4) ¢'(0)(1) = y and

(f 2 ¢)'(0)(1) = (f'(¢(0)) 0 ¢'(0)) (1) = f'(=)(v)-

0.2.9.2. Proposition. Let £ and F be 1somorphic Banach spaces, and ¢ :
Isom(E; F) — Isom(F; E) the map given by ¢(f) = f~1. The map ¢ s of

class C! and we have

#(f)(w) = —f " ouo st

Proof. We must first show that Isom(E; F) € O(L(E; F)). In finite di-

mension this is obvious since Isom(E;F) = det™*(R \ 0) and the map
f > det(f) is continuous for a fixed choice of bases.

In infinite dimension we must show that for ug € Isom(E; F) and u €
L(E; F) close enough to uy we have u € Isom(E; F), which is equivalent to
showing that u, ly Isom(E; E).

If f € L(E; E) satisfies || f|| < 1, the map 1 — f is invertible (its inverse
is Yo o f"). Setting ug'u=1— f we get f = ug'up — uy'u, whence

| £l < llug “lHllwo — wll,
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showing that uj; 'u (hence u) is invertible for ||ug — u|| < 1/[Jug || [Car71,
theorem 1.7.3].

To show differentiability, one can use the explicit formula for the inverse

of a matrix in finite dimension (cf. 0.2.8.2), or proceed as follows in arbitrary
dimension:

b(f+u)—d(f)+ ftouof =(f+u) =1+ flouof!
=(f+u)  (f+u)((f+u) ' = f1+flouo fH)
=(f+u) '(1-1-uvof'+uoft+uoflouof )
= (f-l-u)"l(uof'"l o'u,of"l),

whence

|6(f +u) —d(f)+ fF ouwo 7 < [I(F + w) 7 |NlwlPF )2

(cf. 0.0.10). But |[(f + »)~1|||]|f/~*||? is bounded for ||u| small enough, so
we get

|6(f +u) — $(£) + f oo £ = o(|lull)- u

0.2.10. Higher differentiability class. If f is C! on an openset U C E
and f': U — L(E; F) is its derivative, it makes sense to ask whether f’ is
differentiable, since L(E; F') is a Banach space (0.0.10).

0.2.11. Definition. If (f')'(z) € L(E; L(E;F)) exists for all z € U, we
say that f is twice differentiable and set f'(z) = (f')'(z). We say that f
is (of class)C? if f" € C°(U; L(E; L(E; F))).

0.2.12. Let E, F and G be Banach spaces. The space L(E, F;G) of con-

tinuous bilinear maps from E X F mmto G 1s 1somorphic to L(E;L(F; G’))
|Car71, 1.1.9]. u

This allows us to state the following result (see [Dix67, p. 356|, or [Car71,
theorem 1.5.1.1}):

0.2.13. Theorem (Schwarz). If f : U — F 1s twice differentiable at a
point a, the second derivative f"’(a) € L(E, E; F) is a symmetric bilinear
map, that 18, for every h,k € £ we have

(f"(a)h)k = (f"(a)k)h. u

0.2.13.1. Second derivative of a composition. The second derivative of a
composition of maps h o g i1s given by

(ke 9)"(2) = h"(g(2)) o (9'(2), 9'(2)) + h'(9(2))  9"(2).

This follows from 0.2.8.1 and 0.2.8.3 [Car71, equation 1.7.5.1].
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0.2.14. We define CP(U; F) analogously, as the set of p-times differentiable
maps, or maps of class CP. We also let

C®(U; F) = ﬂ CP(U; F)

be the set of maps of class C*°, or differentiable infinitely often.

0.2.15. Properties of maps of class C?. This section generalizes 0.2.9.

0.2.15.1. A composition of maps of class C? is of class CP.

0.2.15.2. If f,g € C?(U; F) and ) € R, the functions f + g, Ag and (when
it makes sense) fg are of class CP. Every polynomial map is C°.

0.2.15.8. The space L(E;,..., E,; F) of continuous n-linear functions is
contained in C*®°(E; X - -- X E,; F).

0.2.15.4. Amap f: U — F; x--- X F,, 18 of class C? if and only if each
component f; = p; o [ 1s.

0.2.15.5. Amap f:U — F, where U € O(E; X --- X E,), is of class C? if

and only 1if all its p-th order partial derivatives exist and are continuous.

0.2.15.6. The map ¢ : Isom(E; F) — Isom(F; E) defined by ¢(u) = u~! is

of class C*°.

Throughout this book objects will be of class C?, for p > 1, but the
value of p won’t always be explicitly mentioned.

0.2.16. Example: bump functions

0.2.16.1. Proposition. For every integer n and every real number 6 > O
there ezist maps Y € C°(R"; R) which equal 1 1n B(0,1) and vanish in
R" \ B(0,1+ §).

Proof. Consider the function ¢ : R — R defined by

~1 .
¢(t)={exp(m—:-_—t-)-) if a <t <,

0 otherwise.

It is well known (and the reader should check) that ¢ € C°(R;R). Inte-
grating ¢ and normalizing we get a function § € C*°(R) defined by

it is clear that 6(t) = O for t < a and ﬁ(t) = 1for t > b. Now take a = 1
and b = (1 + 6)%; the function n(t) = 1 — 6(t) is C*, equal to zero for
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t > (1 + 6)% and equal to 1 for ¢t < 1. Finally set ¥(z) = n(||z||?). Since
z +— ||z]|% is C*°, the function ¢ satisfies the desired conditions.

-1-8 -1

a b a b

Figure 0.2.16
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0.2.17. Diffeomorphisms and the inverse function theorem. The
proofs of the results quoted here can be found in [Dix68, §47.4 and 47.5],

except for 0.2.22, which is in [Car71, 1.4.2.1].

0.2.18. Definition. Let £ and F be Banach spaces, U C Eand V C F
open sets. A map f: U — V is called a CP diffeomorphism (p > 1) if f is
bijective and both f and f~! are of class CP.

0.2.19. Proposition. If f : U — V 1s a C? diffeomorphism, we have
f'(z) € Isom(E; F) and (]"(:z:))m1 = (1) (f(z)) for everyz € U.

Proof. Just differentiate f~1 o f = Idg and fo f~! = IdF, to get
(F~Y'(f(z)) o f'(z)=1dg  and  f(z)o(f ') (f(z)) =1dp. O

0.2.20. Definition. A map f : U — V (of class C? for p > 1) is regular
at z if f'(z) € Isom(E; F). It is regular in U if it is regular for every z € U.

0.2.21. Example. The map f: R* Xx R — R* defined by
f(p,0) = (pcosb, psinf)

(polar coordinates) is regular. Its jacobian matrix

¢ gy [ cosf —psind
fp,0) = (sinﬁ pcosﬁ)
has determinant p # 0. The map f is not a diffeomorphism (since it is
periodic in #), but its restriction to R* x |0, 27| is.
More generally, diffeomorphisms are regular, and regular maps are locally
diffeomorphisms:

0.2.22. Inverse function theorem [Car71,1.4.2.1|. LetU and V be open
subsets of Banach spaces E and F, respectively, and f € CP(U;V) a map
reqular at xo € U. There exists an open neighborhood U' C U of zg such
that the restriction of f to U' 1s a C? diffeomorphism from U’ onto f(U’).

[]

0.2.22.1. Even if f is everywhere regular it need not be injective (example
0.2.21).

0.2.23. Definition. Let £ and F be Banach spaces and U an open subset
of E. ACP map f : U — F is called an immersion at z if f'(z) is injective,
and a submersion if f'(z) is surjective.

The two fundamental theorems below express the fact that submersions
and 1immersions are locally, and up to diffeomorphisms of the domain or
the range, equivalent to surjective or injective linear maps. In other words,
the local behavior of the function is governed by its derivative.
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0.2.24. Theorem [Dix68, 47.5.3]. Let U C R™ be an open set and f :
U — R" a map of class CP, and assume f 13 an immersion at x. There
ezxist open sets V € Oy () (R") and U' € O,(U) and a C? diffeomorphism
g:V — g(V), where g(V) C R"™ 13 open, such that f(U') C V and
go flur coincides with the restriction to U’ of the canonical injection R™ £

R™ x {0}"~™ — R". []

0.2.25. Example. For m = 1 and n = 2 we have an arc of curve in R*:

Figure 0.2.25.1

0.2.25.1. Remark. The local charac-
ter of this statement, that is, the need
to restrict the domain, can be clearly
seen 1n the figure on the right: if there
1s a double point and U’ is too bag,
the composition g o f cannot be one-
to-one. Figure 0.2.25.2
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0.2.26. Theorem |[Dix68, 47.5.4]. Let U C R™ be an open set and f :
U— R"™ a map of class CP, and assume f 13 a submersion at . There

ezist an open set U' € O,(U) and a CP diffeomorphism g : U' — g(U’),
where g(U') C R™ 13 open, such that flyr = 7 o g|yr, where 7 : R — R™
13 the canonical projection.

O f(x)=m(g(x))

Figure 0.2.26

Theorem 0.2.26 allows one to solve the equation f(z) = f(z) in U'. The
solution is z € g~ 1(w~1(f(z))); but #~1(f(z)) is the intersection with
g(U’) of an (n—m)-dimensional affine subspace of R™, and g~ (7~ 1(f(z)))
is the image of this subspace (intersect g(U’)) under the diffeomorphism
g—!. This is the so-called implicit function theorem [Car71, 1.4.7.1].

0.3. Differential Forms

The definitions and notations in this section will be slightly modified in
chapter 5 (see 5.2.7).

0.3.1. Definition. Let £ be an n-dimensional vector space, where n is

finite, and U an open subset of E. A C? differential form of degree r,
or r-form, on U is a CP map o : U — ATE*. We denote by (_I_;(U) =
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CP(U; ATE*) the vector space of C? differential forms of degree r on U; we
also write {3"(U) when the differentiability class is not specified.

0.3.2. The vector space

1,(U) = @ »(U)

1S an assoclate, anticommutative algebra with the product defined by

(a A B)(z) = a(z) A B(z)
for every z € U.

0.3.3. Remark. We have Q)(U) = C?(U) = CP(U; R), since A°E* = R.

0.3.4. Example. Let U C E be an open set, where F is an n-dimensional
vector space, and fix a basis {€;,...,¢,} for E and the dual basis {ej,...,

e} for E*. Take f € C?(U) and a point z = (z1,...,z,) € U. The map

! - a *
z— f'(z) = Zai

'l.......

from U into A'E* is of class CP~1, so it belongs to Q_:,_I(E').

0.3.5. Expression in a basis. Consider a form a € Q7 (U). Since a(z) €
ATE* for z € U and the e} form a basis for A" E* (0.1.3), there exist scalars
a;,...i, () = ar(z) such that

a(z) = Z iy i (T)es A Nej .

141 < - <3, <n

0.3.5.1. Let’s define e} =¢j A---Ae; € 0 (R") (by abuse of notation)
as the constant map z — e:‘ ARRRRAY > Then we can write

0.3.6 o = Za,eI = Z Ciy..ir 6§ N A el

‘1< <'3r

and o € Q_(U) if and only if ay € C?(U) for every I.

0.3.7. Pullbacks

0.3.7.1. Proposition. Let U C E and V C F be open sets, f € CP{U;V)
with p> 1 a map and f€Q,_,(V) a form on V. The map f*f defined

on U by
(£*B)(=) = (f'(=))" (B(f(=)))

for x € U 18 an r-form of class p — 1. The map f*
1s hinear.

(V) = Q54 (U)

.._..p--
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Proof. One writes f*f : U — A"E™ as the appropriate composition of
maps [Car70, 1.2.8]; in particular, the map in 0.1.8 gives a map

L(E;F)> fw— f* € L(A"F*; A\TE™)
which is polynomial, hence C°. L]

0.3.7.2. Another proof consists in calculating in coordinates; this gives a
practical way to compute f*8.

Let {fi,..., fm} be a basis of F. We have
Bly) = Zﬂf(y)ﬁ
I

for every y € V, where By € CP~1(V). Thus, for z € U, we have

(F'(2))*B(f(=)) = (Bro )=)(f'())" f.

If fy =f; A--- N[ we have, for uy,...,u, € E:

(F' @A A ) (s ur)
= (fi AN AR (2)(ua), - . 0o F1(2) (ur))
= ((fi, o )@ A A(F7, 0 f) (@) (w1, .., ).
Each f; o f : U — R satisfies

(fi, o 1) (2) = £:,'('(=)),

and, since f; 1s linear and thus equal to its derivative, we get the formula

0.83.8 (f'(2))"B(f)(=) = D_ (B, o @) (ff0f)' A Alflof)

$1<---<t,

0.3.9. We have
fflat+B)=fat+ f'B,
fflanB)=fraA f*B.

Thus f* is an algebra homomorphism.

0.3.10. Remarks
0.8.10.1. If B Q._,(V) we have f*(8) = B o f.

0.3.10.2. If E = F and f(z) = b(z) e} A --- Ae}, where n is the dimension
of £, we have

FB(y) = aly) e A~ A e

fora = J(f)(bof), where J(f) is the jacobian of f € CP(U; E) (cf. 0.2.8.9).
This follows from 0.1.12.1. In other words, setting

0.3.10.3 wo=-¢€; A---Ae,
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(cf. 0.3.5), we get
0.3.10.4 f*(bwo) = (bo f)J(f)wo.

If E, F and G are finite-dimensional vector spaces, U C E, V C F and
W cGopensetsand f : U =V and g : V — W maps of class CP, we
have

0.3.10.5 (gof)*=f"og".

0.3.11. Densities on an open set. Notice that, if £ is a finite-dimen-
sional vector space, Dens(FE) is an open half-line; indeed, if we fix 6o €

Dens(FE), we have Dens(E) = R 6p, by 0.1.29.1. Thus the following defi-

nition makes sense:

0.3.11.1. Definition. A density of class CP on U € O(E) is a map § €
C?(U;Dens(E)). The set of such densities will be denoted by A_(U).

Once we’ve fixed 6§ € Dens(E), giving a density é is the same as giving
f € CP(U;R%) such that § = f8y. For example, if U € O(R?), we define
(and still denote by éy) the canonical density

U S z — 6y(z) = 6o € Dens(R%)
(see 0.2.16). And every § € A (U) will be of the form féo, with f €
C?(U;RY).

Following 0.1.29.3, 0.3.7 and 0.3.10.4, we define, for every f € CP(U; V)
and 6 € A,_,(V), where U C E and V C F' are open, the pullback

0.3.11.2 fféen, 1(U),

provided that f is regular. If E = F = R%, we have the formula

0.8.11.8 £*(b80) = (bo £)|I(f)|b0-

We also have
(gof)* — f# og*.

0.3.12. Exterior differentiation

0.3.12.0. Theorem. Let E be an n-dimensional real vector space andU C E

an open set. There exists a unique operator d : ﬂ_;(U) —+ _Q_;ti(U), for
=0,1,...,n— 1, such that:

(1) d 1s additive;

(ii) d(axAB)=daA B+ (—1)C>a A dp;

(iii) d(da) = 0;

(iv) df = f' for every f € Qp(U).

This operation 1s called exterior differentiation, and doa 1s called the exterior

derivative of c.
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Proof. We just have to calculate in coordinates as in 0.3.6. Any a € Q_(U)
can be written o = ), ae}, with ay € C?(U). If d is additive and satisfies

(ii) we must have
da = Zda;/\e? +Za1def.
I I

Now consider e7 = e;, \---Ae; , where I = (215...,2.). Since e;, denotes the
i-th coordinate function on E in the basis {e1,...,¢e,}, we get (e} )" = €],
(0.2.8.3), whence ¢] = de] , by (iv) and because the restriction of e, to U

belongs to _Qg(U ). Then dej, = 0 by (iii), and we’re left with

0.5.12.1 d(z a,-e}) =) do;Aef=) oA,
I I I

where a’ is defined as in 0.3.4.

This takes care of uniqueness. One can check directly that 0.3.12.1 satis-
fies (i), (ii) and (iv). As to (iii), it suffices to show that if f € ) (U) (with
p > 2) we have d(df) = 0. But

— 3f , —~ (< 9*f . '
d(z 323{ ei) - Z(Z 3a:,-6x,- ej) A T .

1=1 1=1 “y=1

and this 1s zero because e} A e = 0, e; Ne; = —e; Ae;, and, by Schwarz’s
theorem (0.2.13),
8% f A% f

Oz;0z; Oxz,;0z;

The operator d satisfies do f* = f* o d, that 1s, the following diagram
commutes:

[

r f* r
,(U) — Q5(V)
0.3.13 dl lvd
f*
Q71 (U) =—0.71 (V)

The expression given here for the exterior derivative resorts to the canonical

basis for A"E*. One can instead use the following intrinsic formula, which
is taken as a definition in [Car70, 1.2.3.1]:

0.3.14. Proposition. If « € 0 (U) and &o,..., ¢ are elements of E, we
have, for any z € U:

r

da(z)(€os---s &) = » (=1)'a’(z)(&:)(€0s- s Eis.n vy &),

1=0

where a'(z) denotes the derivative of & : U — A" E* and (&, ..., f,-, ooy &r)
stands for (60: v ooy 6:'—1: €£+la Gr)
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In fact, take @ = )_; are}; the map o : U — A"E™ has the a;’s for
coordinate functions, hence its derivative a'(z) is the linear map £ — A"E*
having for coordinate functions

n

z +— ap(z) = Z —(z)ex-

=1
Thus, for u € E, we have

#(e)(w) = P ai(a)w)e; = 32 (3 G i) )

I ‘k=1

in particular, since o'(z)(u) € A" E*, we have

a'(m)(&)(fo,---aéﬁ )Gr) Z(Z aaI x) ek(&i)) 6?(50,---,&':---,5’-)-

0y

On the other hand, consider da(z)(&o,...;&r). By 0.3.12.1 we have
da(z)(o, .-, &) = Y al(z) A ej(éoy-- -, &)
I

= Z((Z 201 1) Aet ) (Eor- s 60
-2 %

3$k
Now, if e = €;, A---Ae; , we have (0.1.2):

(ex Ne;, A---Aei)(o... &) = Z €otk(€a(0)) - - - €5, (Ea(r))-

o€ Sr41

ex N\ 61) (€oy-- - fr))-

Grouping together terms with same o(0) = ¢z, we get

r

(ex Aep)(€or-- &) =D _enl&) | D eoel (o)) --- i (Eo(r)

1=0 CESy41
c(0)=:s

Since o(0) t, the permutation o0 maps {1,...,r} onto {0,...,7 — 1,
t+1,...,r}. Consider the map 7 € §,4; defined by

) if 9 =0,
r(J)=y7-1 if1<75<y,
] if:+1<73<r.

We have (0 o 771)(z) = 0(0) = ¢, so that 0 0o 77! = 07! leaves ¢ fixed and
permutes the other indexes. Furthermore

e;, (6o(1)) - - e;. (€a(r)) = €5, (€0(0)) - - - €5, (€07 (r))>

where o'(2) does not appear on the right-hand side.
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Since €,07-1 = €o' = €x€,-1 and €,-1 = (—1)* (there being ¢ transposi-
tions), we get

D €o€i (Eo(n)) - €5 (€a(n) = (1) D eorel (€0(0) - - €F. (€o(r)),

O'GS,+1 a'GSr
c(0)=s

and
r

(erc A e;)(fo: R Gr) — Z(_l)ie;(gi)e;(fm R éi) O gr)a

1=0
whence the equality

n

da() (6o .. 61) = Z:O(—l)* (Z (30 220360 )eieor- s o)

k=1

— Z(_l)ia’(x)(gi)(fm ooy ét'a ooy f,.)

0.3.15. Continuous families of differential forms

0.3.15.1. Definition. A continuous, one-parameter family of r-forms of class
CPon U € O(FE) is a continuousmapa: J XU — A"E*, where J C Ris a
(not necessarily open) interval, satisfying the following conditions: for every
t € J, the map z — «a(t,z) is in CP(U; A" E*); and the p-the derivative of
z — a(t, z) is continuous on J X U.

This implies that the restriction a; = a|{:}xv, for every t € J, belongs

to 07(U).
0.3.15.2. Example. The definition is satisfied if « € C?(J x U; A"E*).

Now let a be a continuous, one-parameter family of r-forms of class C?

on U, defined for some interval J C R. Let a and b be in J, and a < b.
Since, for every z € U, the restriction a|ry () is continuous, we can define

b
0.3.15.8 / a(t, u) dt

as the ordinary integral of a function of one real variable with values in a
finite-dimensional vector space (0.4.7; here the range is A"E*). Thus we
can consider the map

. b
0.3.15.4 u - / a(t, u) dt
a

from U into A" E*; this map is denoted by f: o dt.

0.3.15.5. Proposition. The map f: a; dt taking u € U nto f:a(t, u) dt
belongs to 1 (U).

Proof. This follows by differentianting under the integral sign (see 0.4.8).
L]
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0.3.15.6. Lemma. Let o be a continuous, one-parameter family of r-forms
of class C', where r is less than the dimension of E. For every a,b € J we

have
b b
d([ dt) =/ day dt.

This equality makes sense because, since a; € 2 (U), the exterior deriva-
tive d(as) € QLT (U) is defined. Similarly, by 0.3.15.5, the map f: o dt is
in Q] (U), so d(f, dt) is also defined and belongs to 25+*(U).

Proof. Let &o,..., & be elements of E. By 0.3.14, we have

D (d(/;badt))(a:)(fo,...,fr)

_ ;(—-1)‘ ( / ' alt,2) dt);(&)(fo,---,éi,---,ﬁr):

where ( f: a(t, z) dt); is the derivative of

b
x H/ a(t, z) dt

with respect to z. By 0.4.8 and 0.4.7, we obtain

D = i(—l)‘ (/: g—g-(t, z) (&) dt) (£0r-- s &isennr &r)

£=0

= g(—”i(ﬁb %g_(t, z) (&) (€os- -5 Eiy - -y &) dt)
— /;b (g(—l)‘g—z—(t, x)(Ei)(Eo,...,f,-,...,f,.)) dt;

applying 0.3.14 and again 0.4.7, we get

D Lb(dat(x)(fo’ oy &) dt = (,L

concluding the proof. []

b

do dt) (3)(€0a ¢ o0y fr)a
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0.4. Integration

A systematic reference for the whole of this section in [Gui69).

The theory that we’ll need for manifolds is that of Radon measures. This
theory works for locally compact topological spaces X which are countable
unions of compact spaces. Some texts also require X to be metrizable,
in order for a certain lemma [Gui69, p. 37| to be true; but this lemma is
automatically true for manifolds (cf. 3.3.11.1).

We denote by K(X) the space of functions f € C?(X) having compact
support. A (Radon) measure on X is a positive linear form y on K(X)
|Gui69, 1.12.3]. The domain of definition of this form can be extended to
a space L'(X) D K(X), called the space of functions on X integrable for

u. This space will be denoted by
0.4.1 L'(X) = C*Y(X).

For f € C}**(X) we write

0.4.2

un= [ fu

0.4.3.1. On R" there is a canonical measure, called the Lebesgue measure
o [{Gui69, example on p. 10]. For f € K(R") the integral uo(f) coin-
cides with the ordinary (Riemann) integral. The Lebesgue measure is also

defined for U € O(R"™).

0.4.3.2. If uis a measure on X and a € C°(X; R, ), we can define a measure
ap by (ap)(f) = plaf). If f € C2HX) we have af € C;**(X) [Gui69,
1.11.1], and

[ 1w = [ @

0.4.4. Sets of measure zero. If u i1s a measure on X, one has the notion
of a subset of X of measure zero [Gui69, p. 10|. For the Lebesgue measure,
one can take the following criterion as a definition:

0.4.4.0. Definition. A set in R™ has gzero Lebesgue measure if it can be
covered by a countable family of cubes whose volumes add up to less than
e, for € arbitrarily small

0.4.4.1. Proposition (Gui69, p. 11|. A countable union of sets of measure
zero has measure zero as well. []

0.4.4.2. Proposition. The set R™ = R™ x {0} ¢ R", for m < n, has
Lebesgue measure zero in R™. In particular, U NR™ has measure zero for

any U € O(R"). []
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0.4.4.3. Proposition. Let a be a positive function on X and u a measure on
X. If A has u-measure zero, it has au-measure zero.

Proof. Write X as a countable union of compacts and apply 0.4.4.1 and
|Gui69, definition on p. 10|, together with the fact that continuous functions
are bounded on compact sets. L]

0.4.4.4. A property is said to hold u-almost everywhere (or just almost
everywhere) if it holds for all but a set of measure zero of points. We’ll

also talk about functions defined almost everywhere.

0.4.4.5. Proposition. Let U € O(R") and f € C*(U;R™). If A C U has
Lebesgue measure zero, so does f(A).

Proof. By 0.4.4.1 we can assume that A is contained in U’ Cc U, where U’
18 compact and U’ is convex. Let k be an upper bound for || f'|l in U’. By
0.2.6, f 1s k-Lipschitz; in particular, the image under f of a cube of volume
o 1n R™ will be contained in a cube of volume k™a, which proves the result

by 0.4.4.0. []

0.4.4.6. In particular, if U € O(R") f € C(U;R™) and n > m, the image
f (U ) has Lebesgue measure zero in R™. It suffices to consider the map
f:UxR" ™ — R" defined by f(a:, y) = f(z), since Ux{0} Cc R™xR"*™™

has measure zero.

0.4.5. If X and Y are spaces with measures u and v, respectively, we define
on X XY a canonical product measure yu ® v [Gui69, 1.7|. For instance,
if u, is the Lebesgue measure on R"™, we have p1pn = pm ® p, [Guib9,
example on page 19|. Product measures satisfy Fubini’s theorem:

0.4.5.1. Fubini’s theorem. If f € C,i:g,, (X XY) we have, for v-almost every
yey,

{z — f(z,9)} € CM(X).
Moreover, the function defined v-almost everywhere by y — fx flz,y)p s
in CI"Y(Y), and we have

nyfu®v=L(Lf(xay)u)V-

0.4.6. Change of variable formula. Consider U, V € O(R") and a

diffeomorphism f : U — V (0.2.18) Let J(f) be as in 0.2.8.9, and let uo be
the Lebesgue measure on R™. If a € Ci“t(V) we have

(a0 1)II(f)] € CL (D),

[

and

[U (a0 £)|I(f)|mo = [V fiwo.

Proof. See [Gui69, p. 33|. ]
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0.4.7. Vector-valued integrals. All of the above holds without change
for functions with values in a finite-dimensional vector space E. Let u be

a measure on the domain X, and E* the dual of E. We define C;**(X; E)
to be the space of f : X — FE such that

0.4.7.1 EofeCMY(X)  for every £ € E*.

If f CL“*(X; E) we define fx fu€ E by

0.4.7.2 5(/;{ fu) = /x(€° fu

for all £ € E*.
0.4.7.8. If {e;}i=1....n is a basis for E and f = (f1,..., fn) In that basis,

we have
/ fﬂ""(/ fim, .. / fnﬂ)

0.4.8. Differentiation under the integral sign

0.4.8.0. Theorem. Consider open sets U € O(R"™) and A € O(R®), and a
map U X A — E into a finite-dimensional normed vector space . Let u

be the Lebesgue measure on R"™, and assume that f satisfies the follourng
conditions:

(i) for any X € A, the map z — f(x,)) belongs to CP*(U; E);
(i) for any z € U the map A — f(z, A) 1s differentiable and 1ts derivative,
denoted by a)u 18 continuous on U X A;

(iii) there ezists h € C;*Y(U) such that

3f

(a:, A)” < h(zx)

for every .

Then:

(a) the map z+— $L(z, ) belongs to Cint(U; L(R?; E));
(b) the map A — F(X) = [, f(z, A)ps is differentiable;

(c) differentiation under the integral sign 1s allowed:

oF of
% = /;] 35 (% A) b
Proof. This follows from [Gui69, p. 26| by applying 0.2.8.6 and 0.2.8.7. []

0.4.8.1. Remark. Conditions (i) and (iii) are satisfied if, for instance, the
support of z — f(z, A) is contained in a compact subset of U independent

of A.
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0.4.8.2. Theorem 0.4.8.0 gives rise, by recurrence, to similar results in class
CP. There is also a result in class C°.

0.5. Exercises

0.5.1. Let E be a d-dimensional oriented Euclidean vector space. Show
that, for every p (0 < p < d), there exists a map

*: APE* — A PE*
characterized by the condition that

(*a)(zp41s .-+ Zd) = a(Z1,...,Tp)

for any positive orthonormal basis {e;};=1....4 and any o € APE*. Calcu-
late * o x as a function of d and p.

0.5.2. Let E be a Euclidean vector space and (- | -) the canonical scalar
product on E*. Show that, for every p (0 < p < d), the formula

lar A - A a2 = (det((a | @5)))°

defines a Euclidean structure on APE*, where det((c; | o J)) indicates the
determinant of the matrix whose elements are the (o; | a;).

0.5.3. Liouville’s theorem. The purpose of this exercise 1s to character-
ize the differentiable maps of R™ (n > 3) that are conformal, that is, whose
derivative 1s, at every point, an angle-preserving linear map.

0.5.3.1. Definitions. A linear map A : R™® — R" is called a similarity if
|Az|| = k||z|| for some real number k # 0 and all z € R"; it is easy to
see that A is a similarity if and only if A preserves angles. A differentiable
map f : U — R", where U is an open subset of R", is conformal if f'(z)
i1s a similarity for every z € U. It is an Inversion if there exists a point

¢c € R™\ U and a real number a # 0 such that

(@) = et =z (2= )

for z € U; ¢ and a are called the pole and power, respectively, of the
inversion [Ber87, section 10.8]. Finally, f is a hyperplane reflection if there
exists a hyperplane H C R"™ such that f(z) = 2p(z) — z, where p(z) is the
unique point in H whose distance to z 1s minimal.

0.5.3.2. Now assume that n > 3 and that f : U — R" is of class C° at

least. Show that f is a similiarity composed with one of: (a) a translation;
(b) a hyperplane reflection; (c) an inversion. Work in the following way (for
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details see [Ber87, 9.5.4]): show first that the function u(z) = || f'() ”_1
satisfies

LY O%u du \ °
— 0 f ' .’ — 3 —— — 2
0z;0z; ort 7 dx? g Z; (39:,-) P

for some constant p (the first two formulas say that Hessu = p|| - ||%,
cf. 4.2.2, and the last that ||Vu||? = 2pu). Deduce from this that, if u is
not a constant, it 1s of the form

u = 52(:5, — a;)?,
:

where the a; are constants. If u is a constant, show that we’re in case (a)
or (b); otherwise show that we’re in case (c).



CHAPTER 1

Differential Equations

Apart from their intrinsic interest and their relevance to me-
chanics and physics, differential equations are also studied as
an essential tool in differential geometry (see 7.2.3 and 8.6.13,
for example). We start by defining the notion of a differential
equation and that of a solution, and by reformulating these

concepts in terms of vector fields and integral eurves. In 1.2.6
we prove the local existence and uniqueness of integral curves.
We also discuss the problem of extending an integral curve into
a maximal one (section 1.3).

We continue by studying the behavior of solutions as a func-
tion of the initial condition or of parameters appearing in the
equation (1.2.7 and 1.4.7). This is carried out in two steps: first
we discuss vector fields, that is, differential equations z’ = f(z)
independent of time (section 1.2). Then we use a technical
trick to generalize to the case of equations z/ = f(z,t) (section
1.4).

In section 1.6 we discuss linear equations, which enjoy the
important property that their solutions exist over the whole
interval of definition of the equation. We also state without
proof some results which, although not used in the sequel, are
so fundamental that we feel we should include them, for the
sake of readers with no background in differential equations.
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1.1. Generalities

Let E be a real Banach space and ¢ a map from an open subset of R into
E. If ¢ is differentiable, its derivative ¢'(t) at ¢ is a linear map from R
into E, and thus of the form A — AV for some vector V C E (namely
V =¢'(t)(1), 1 € R). In this chapter we will identify the derivative ¢'(t)
with the corresponding vector V, that is, we will consider ¢'(E) as an
element of £/, and the map ¢’ as having values in E instead of L(R; F)
(cf. 0.2.4).

1.1.1. Definition. Let U C R X E be open and f: U — E a continuous
map. A solution of the first-order differential equation

d
— = f(=,¢)

1s any map ¢ : I — E, where I C R 1s an interval, such that ¢ 1s of class

C! and for every t € I we have (t,4(t)) € U and ¢'(t) = f(t, ¢(t)).

In fact it is enough to assume that ¢ is continuous, for then ¢’, being a
composition of continuous maps, will also be continuous.

In the case that £ = E; X --- X E,, 1s a product of real Banach spaces,
U 1s an open subset of R X £} X --- X E,, and f 1s a continuous map
from U into £, with components f; : U — E;, a solution of the equation
dz/dt = f(t,z) is an n-tuple of continuous maps ¢; : I — E;, where I C R
is an interval, such that for every t € I we have (t,¢1(t),...,¢n(t)) € U
and

$(t) = fi(t, di(t), ..., dn(?))-

Thus we have a system of n first-order equations in n unknowns, often
written

d:B,'
dt

=fi(t,xl3”-3$n) for 1 <1 < n.

1.1.2. Higher-order differential equations. Let F be a Banach space,
UCRXE"™ an open set and f : U — E a continuous map. An n-th order
differential equation 1s an equation of the form

f.il“.’__f ¢ az d" 'z
din T \"Pge o ggn-1 )

A solution of such an equation 1s a map ¢ : I — F, where I C R is an
interval, such that for every t € I we have (¢,¢(t),..., ¢ (t)) € U and

™ (t) = f(t, (2), ..., 6"V (1)),

Here again we have 1identified derivatives with vectors in F.
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1.1.3. Proposition. Every n-th order differential equation can be reduced
to a first-order equation.

dtn dt’ dit-1
equation, and set

—

n n—1
Proof. Let fi——a-:- = f (t, T, éﬁ : _c_i___a:_) be an n-th order differential

dz
E’E‘ = Z1,
dﬂ?l - - dz.’B
dt 2T 4
dxn_g . - d"""la:
R T

Solving the given differential equation is the same as determining C!' maps
d, 1, ..., ®dpn—1 from an interval I C R into E such that

¢'(t) = ¢1(t)
$1(t) = ¢2(¢)

8 a(t) = b ()
¢:‘_1(t) — f(t’ ¢(t)’ P1 (t)’ oo ¢n—1(t))'

Calling F': U — E™ the map with coordinate functions

fl(ta Il .. -axn) = X1

fn—l(ta L1y .- -axn) = In-—-1
fn(t, L1y e .,.’.Bn) _— f(t, L1y e .,a:n)

and setting X(t) = (z1,...,%,), we have reduced the problem to solving
the first-order differential equation

— = F(t, X(t)). O

Thus, from the theoretical point-of-view, only first-order equations need
concern us.
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1.2. Equations with Constant Coeflicients.
Existence of Local Solutions

Here we discuss differential equations of the form dz/dt = f(z), where f is
a continuous map from an open subset U C E into FE.

1.2.1. Definition. Let U C E be open. A vector field on U 1s a map
f:U—F.

In practice we represent vectors in a vector field as arrows from each
point = to the point z + f(z). This makes geometric sense, especially in
view of the notion of flows (see figure 1.2.2).

[T\
/1N \u

— g -—, ——
o ———

~—
\ ———

™~ '\
N

\
\

\

Figure 1.2.1

From now on we assume E 1s finite-dimensional.

If the vector field f 1s continuous, we can associate to 1t the differential
equation z’ = f(z).

1.2.2. Definition. A C? integral curve of a vector field f 1s a CP curve
(J,&) in U (0.2.9.1) such that 0 € J and o'(t) = f((t)) for every t € J.
An integral curve « is said to have initial condition z¢ if a(0) = zo.

1.2.2.1. Remark. We require that 0 € J just for convenience in the state-
ment of initial conditions, but this requirement is not essential. It’s possible
to work with arbitrary J and talk about an initial condition a(t) = z¢ for
teJ and zg € U.
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a(l)

Figure 1.2.2

1.2.3. Definition. Let f be a vector field on U. A local flow of f at zg
consists of a neighborhood U’ € U of zo, an open interval J containing 0
and a map a : J X U’ — U such that, for every z € U’, the restriction of
a to J X {z} is an integral curve with initial condition z.

1.2.4. Example. Let £ = R? and let U be the open triangle desermined
by the points O(0,0), A(8,0) and B(4,4). Consider the constant map
f : z+— e; taking every z € U into ¢; = (0, 1).

The differential equation dz/dt = e; can easily be integrated; the integral
curve initial condition zg 1s given by z = tey + zo, but the values of £ must
be such that the vector te; +zg is in U. Thus the integral curve with initial
condition z¢ = (4, 2) is the map a : |—2,2[ — U given by «(t) = tey +z¢. If
the initial condition is z; = (2, 1), the interval of definition of the integral
curve is |—1,5[. It is clear that for any point in U it is possible to find an
integral curve having that point as 1nitial condition.

1f\\
MA

Figure 1.2.4
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Consider again the point z9g = (4,2). Finding a local flow at z¢ is
the same as finding a neighborhood U’ of zy such that, for any y € U/,
the integral curve with 1nitial condition y 1s defined on some interval J
independent of y.

For example, if we take u’ to be the open ball of radius 1 centered at

zo, there exists a number b > 0 such that every integral curve with initial
condition in B(zg, 1) is defined at least on |—b,b[ = J. On the other hand

the ball U’ = B(zo,V2) is no good, since it contains points arbitrarily
close to the frontier of U, points whose integral curves are only defined on
intervals of the form | — &, ¢, or | — t3, €], for € arbitrarily small.

1.2.5. Remark. Clearly the existence of a local flow at z¢o defined on an
interval J does not prevent integral curves through points z € U’ from
being defined on intervals bigger than J. We thus have a problem of ex-

tensibility: see 1.6.1.

1.2.6. Theorem (existence and uniqueness of local flows). Let f be a
k-Lipschitz vector field on U, with k > 0. Let zo be a point in U, let a > O
be a number such that B(zo,2a) C U, and set | = SUD . B{(2,,2a) [ f(2)]-

For every b < inf(-‘}, -}c-) there exzists a unique local flow a at z¢ defined on
|—b,b| X B(zo,a) and continuous on the same set.
If £t = 0 the theorem is still valid (for 4 < a/l), but trivial. Indeed,

k-Lipschitz means (cf. 0.0.13.1) that for every z,z' € U we have

|£(z) — f(=)]| < kllz = 2']I;

if £k > 0, we get f(z) = constant = v. We’re back to example 1.2.4:

integral curves in B(zo,a) are given by ¢t +— tv + zo, for any ¢ such that
|tv + 29 — zo|| < a, that is, |t| < a/||v]|. But here ||v|| = L

Proof. We’re looking for a map af(t, z) such that ol(¢, z) = f(a(t,z)) and
(0, z) = z. This is equivalent to having

1.2.6.1 a(t, z) = fot f(a(y, z)) du + z.

We’re thus led to considering the map S, that associates to a the function
Sz(a) given by
t

1.2.6.2 Sz(a)(t) =z + f f(a(u)) du.

O

Solutions of 1.2.6.1 are fixed points of S,, that is, maps a such that S;(a) =
a. Thus S;(a) must have values in U, since so does a. Consider z €
B(zo, a) and the space M, of continuous functions a : [—b,b] — B(zo, 2a)
such that «(0) = z. We will show that b can be chosen in such a way
that S; maps M; into M,; thus S;(a), for o in M , will have image in
B(zg, 2a), hence in U.
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Give M, the norm of uniform convergence (this is why we’re working 1n
a compact interval [—b, b]—cf. 0.0.8). Since S;(«) is continuous on [—b, b|,
there remains to show that ||.S;(a)(t) — zo| < 2a. We have

[ (e du] <a+| [ (a4

Now u € [—b,b] implies a(u) € B(zo, 2a), whence || f(a(u))| < I, so that
|Sz()(t) — zo|| < @ + bl. If we choose b such that

1.2.6.3

”Sw(a)(t) = 930” < ||z — zo|| + < a-+

a

< -

b < 7

we will indeed have ||S,(a)(t) — zo|| < 2a, that is, S,(a) € M,. (Ifl =0,
there is no condition on b.)

Let us try to make S, contracting. To do this we must find an upper
bound for

|Sz(a) — Sz(B)|| = sup
|t|<b

[ #(atw) - £(8(a) do

< sup
t|<b

[ 15(etw) - 160 4

By assumption, f 1s a k-Lipschitz field, with &k > 0, so we have

[0 klla(u) — B(w)| du

Since ||a(u) — B(u)| < Isrfb”a(u) — B(u)|| = ||la — B, we have

| S2(e) — Sa(B)]| < sup
1<t

— kblla — B]|.

t
[ klla - pll

Then S, will be contracting, and we will be able to apply theorem 0.0.13.2,
if b satisfies

|Sz(e) — S2(8)]| < sup
£1<b

1.2.6.4 kb < 1.

Finally, considering conditions 1.2.6.3 and 1.2.6.4, we conclude that, for
b < Inf (-‘f—, ]1;), there corresponds to each z € B(z,a) a contracting map
Sz : Mz — Mz, and M, is a complete metric space, since [—b, b] is compact
and F is complete (0.0.8). Thus we can associate to each z the fixed point
of S;; this gives a map o : [—b, b] — B(zo, 2a) such that a;(0) = z and

in | — b, b[. We finally define a map o : |—b,b[ x B(zo,a) — B(zo,2a) Cc U
by setting a(t, z) = a,(t). The restriction of @ to |—b,b[ x {z} is the desired
integral curve a,. This gives a local flow at z,.
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We still have to check that this flow is continuous. For fixed z the map
a(t, z) is continuous with respect to t, but we have to study its continuity

with respect to ¢t and z simultaneously.

Take z,y € B(zo,a) and t,s € [—b,b]. We will show that if (¢, z) is close
to (s,y) the number ||a(t, z) — a(s,y)|| can be made arbitrarily small. We

have

la(t,2) - a(o, )] < (e 2) — o, )] + (e, 2) = afe, )|
Now ||at(t, z)|| = || f(«(t, z))|| <! implies
|a(t,2) — a(s, )| < Ut~ s]

(theorem 0.2.6). As for the other term, we have

x 8 alu, du — y — s , d
+/(; f( (u,z)) Yy /(; f(a(u y)) du

/(; “f(a(u, z)) — f(a(y, y))” du

“a(s, z) — a(s, y) “ =

<|lz—yl|l+

Set ||az — ay|| = sup ||a(u, z) — a(u,y)]||; since f is k-Lipschitz and |s| < b,
Ju|<b
we get

la(s, 2) — a(s, ¥)|| < llz — yll + kbllaz — oy
But this is true for every s € |—b, b[; thus

|az = ay|| < ||z — y|| + kb|laz — ay]|,
(1= kb)|az = ay|| < ||z -yl

Since kb < 1, we get ||a; — ay|| < ||z — y||/(1 — kb).
This completes the proof of continuity: for any z,y € B(zo,a) and
s,t € |—b, b| we have

1

“a(t’ :B) _ a(s’y) “ < llt_ 3' + 1 — kb

|z — y]l. O

1.2.7. Theorem. Any vector field f of class C? admits a unique local
flow, of class C?, at each point of 1ts domain.

Proof. Class C? implies differentiable and locally Lipschitz. Apply theorem
1.2.6 for the existence of a continuous local flow at every point. We will
not prove that this flow is of class C?: see [Lan69, chapter VI, §4]. [
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1.3. Global Uniqueness and Global Flows

Theorems 1.2.6 and 1.2.7 guarantee the existence of integral curves with
given 1nitial condition, under certain circumstances. It makes sense to

ask whether two integral curves with same initial condition coincide where
both are defined, and whether they can be extended to larger intervals of
definition. Uniqueness is assured by the next proposition; for extensibility,

see 1.6.1.

1.3.1. Proposition. Let f be a CP (or k-Lipschitz) vector field defined
on an open set U <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>