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Pretace

In expositions of the elements of topology i1t 1s customary for homology to be
given a fundamental role. Since Poincaré, who laid the foundations of topo-
logy, homology theory has been regarded as the appropriate primary basis
for an introduction to the methods of algebraic topology. From homotopy
theory, on the other hand, only the fundamental group and covering-space
theory have traditionally been included among the basic initial concepts.
Essentially all elementary classical textbooks of topology (the best of which
1S, 1n the opinion of the present authors, Seifert and Threlfall’s 4 Textbook of
Topology) begin with the homology theory of one or another class of com-
plexes. Only at a later stage (and then still from a homological point of view)
do fibre-space theory and the general problem of classifying homotopy classes
of maps (homotopy theory) come in for consideration. However, methods
developed in investigating the topology of differentiable manifolds, and inten-
sively elaborated from the 1930s onwards (by Whitney and others), now
permit a wholesale reorganization of the standard exposition of the funda-
mentals of modern topology. In this new approach, which resembles more
that of classical analysis, these fundamentals turn out to consist primarily of
the elementary theory of smooth manifolds,f homotopy theory based on
these, and smooth fibre spaces. Furthermore, over the decade of the 1970s 1t
became clear that exactly this complex of topological ideas and methods were
proving to be fundamentally applicable in various areas of modern physics.
It was for these reasons that the present authors regarded as absolutely

1 Evidently the beginning ideas of topology, which can be traced back to Gauss, Riemann and
Poincaré, actually arose, historically speaking, in this order. However, at the time of Gauss and
Riemann, a correspondingly organized conceptual basis for a theory of topology was unrealizable.
It was Poincaré who, in creating the homology theory of simplicial complexes, was able to provide
a quite different, precise foundation for algebraic topology.
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essential material for a training in topology, in the first place precisely the
theory of smooth manifolds, homotopy theory, and fibre spaces, and 1ncor-
porated this subject matter in Part II of their textbook Modern Geometry. It
is assumed in the present text that the reader 1s acquainted with that material.

On the other hand, the solution of the more complex problems arising both
within topology itself (the computation of homotopy groups, the classification
of smooth manifolds, etc.) and in the numerous applications of the algebro-
topological machinery to algebraic geometry and complex analysis, requires
a very extensive elaboration of the methods of homology theory. There 1s in
the contemporary topological literature a complete lack of books from which
one might assimilate the complex of methods of homology theory useful in
applications within topology. It is part of the aim of the present book to
remedy this deficiency.

In expounding homology theory we have, wherever possible, striven to
avoid using the abstract terminology of homological algebra, in order that
the reader continually remain cognizant of the fact that cycles and boundaries,
and homologies between them, are after all concrete geometrical objects. In
a few places, for instance in the section devoted to spectral sequences, this
self-imposed restriction has inevitably led to certain defects of exposition.
However, it is our experience that the usual expositions of the machinery of
modern homological algebra lead to worse defects in the reader’s understand-
Ing, essentially because the geometric significance of the material is lost from
view. Certain fundamental methods of modern algebraic topology (notably
those associated with spectral sequences and cohomology operations) are
described without full justification, since this would have required a substan-
tial increase in the volume of material. It must be remembered that those
methods are based exclusively on the formal algebraic properties of the
algebraic entities with which they are concerned, and in no way involve their
explicit geometric prototypes whence they derive their raison d’étre. In the
final chapter of the book the methods of algebraic topology are applied to the
investigation of deep properties of characteristic classes and smooth structures
on manifilds. It is the intention of the authors that the present monograph
provide a path for the reader giving access to the contemporary topological
literature.

A large contribution to the final version of this book was made by the
editor, Victor Matveevich Bukhshtaber. Under his guidance several sections
were rewritten, and many of the proofs improved upon. We thank him for
carrying out this very considerable task.

Translator’s acknowledgements. Thanks are due to G. C. Burns and Abe
Shenitzer for much encouragement, to several of my colleagues (especially
Stan Kochman) for technical help, and to Eadie Henry for her advice, superb
typing, and forbearance.
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CHAPTER 1
Homology and Cohomology.
Computational Recipes

1. Cohomology Groups as Classes of Closed
Differential Forms. Their Homotopy Invariance

Among the most important of the homotopy invariants of a manifold are 1ts
homology and cohomology groups, which we have already encountered (in
§§19.3, 24.7, 25.5 of Part II), and which we shall now expound systematically.

There are several (equivalent) ways of defining the homology groups of a
manifold; to begin with we give the definition (of the cohomology groups) in
terms of differential forms on the manifold (as 1in §25.5 of Part II). Thus we
shall initially be considering closed difierential forms of rank k on our mani-
fold M" (where as usual the index n indicates the dimension of the manifold),

given locally by

w= ) @ ... dx" A~ Adx*  do=0. (1)

(Recall that a differential k-form i1s closed if dw = 0, and 1s exact if w = dw’

for some form w’ of rank k — 1, and also that d(dw’) = 0, so that the exact
forms figure among the closed ones (see §25.2 of Part I).)

1.1 Definition.T The kth cohomology group H*(M"; R) (actually a real vector
space) of a manifold M" is the quotient group of the group (vector space) of
all closed forms of rank k on M" by its subgroup (linear subspace) of exact

T In the sequel we shall give several different definitions of the homology and cohomology groups
with coefficients from various groups. In view of the fact that these definitions all yield essentially
the same concept (see §§6, 14 below), we shall refrain from introducing indices to indicate any
particular version of the concept as it arises in the various contexts.
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forms. Thus the elements of H*(M"; R) are the equivalence classes of closed
k-forms where two forms are taken as equivalent if they differ by an exact form:

W ~ W, means W, — W, =dw' (2)

The following result gives the simplest property of the (Oth) cohomology
groups.

1.2. Proposition. For any manifold M" the Oth cohomology group H°(M"; R) is
the vector space whose dimension q is equal to the number of connected com-
ponents of the manifold.

PROOF. A form of rank zero is just an ordinary scalar function f(x) on the
manifold. If such a form 1s closed, then df(x) =0, so that f(x) 1s locally
constant, and therefore constant on each connected component of the mani-
fold. Hence each closed O-form on M" can be identified with a sequence of g
constants, one for each of the g components of the manifold. In view of the
fact that there are no exact O-forms, the proposition now follows. []

Any smooth map f: M, - M, between manifolds determines a map
w > [ *(w), the “pullback”, of forms w on M, to forms f*(w) on M,, satis-

fyingdf *(w) = f*(dw) (see §§22.1,25.2 of Part I). Hence each such map f deter-
mines a map (in fact a homomorphism, or better still a linear transformation)

f*: H'(M3; R) > HY(M; R) (3)

between the cohomology groups (since under f* closed forms are sent to
closed forms, and exact to exact).

1.3. Theorem. Let f,: M, - M,, f,: M, - M, be two smooth maps of mani-
folds. If f, is homotopic to f, then the corresponding homomorphisms f* and
1.¥ of the cohomology groups, coincide:

=1 Hk(Mz; R) — Hk(M1; R).

PRrROOF. Let F: M, x I - M, be a smooth homotopy between f, and f,, where
Iistheintervall <t < 2,F(x, 1) = f;(x),and F(x, 2) = f,(x). In terms of local
co-ordinates on M, x I of the form (x', ..., x", t) = (x, t), where x', ..., x" are
local co-ordinates on M, any differential form Q of rank k on M, x I can be

written as
Q= Wy + Wy A dt, Q‘t=t0 — (Dl(to), (4)

where w, 1s a form of rank k which does not involve the differential dt (in the
sense that all of its components of the form

b

are identically zero), and w, 1s a form of rank (k — 1) with the same property.
Let w be any form of rank k on the manifold M,, and write F*(w) = Q =

i - 1 dxil A N dxikﬁl AN dt, il < 0 <L ik"'l’

1---
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w, + w, A dt, with w, and w, as just described, 1.e. given locally by

W,y = Z a;, i (x 1) dx't A -0 Adxter,
i1<...<ik_1

W, = Z bhjk(x, t) dle /AN AN dxjk.
J1<-' <Jk

We now define (locally) a form DQ of rank (k — 1) on the manifold M, x I,
by means of the formula

2
DQ= ) (J. ai, ..o, (X, 1) dt)dxi1 A A dxhe

i< <ip-; \J1

2
= (— 1)1 f w, dt. (5)

1

At this point we require a certain property of the form DQ, to establish which
we now interrupt our proof.

1.4. Lemma. The following formula holds (cf. the defining condition for an
“algebraic homotopy” in §2(5) below):

d(D(F*(w))) £ D(d(F*(w))) = f5f (@) — f¥(w). (6)

Proor. We shall show that in fact for any form Q on M, X I, the following

formula 1s valid:
dD(Q2) + D(dQ)) = Q|,=, — Q|,-;. (7)

To this end we calculate dDQ and DdQ, with Q = w; + w, A dt as before.
Locally we have (by definition of the operator d and its various properties—

see §25.2 of Part I)

dD() = Z Z (L axlk ! dt) dx? A dx't A o A dxhet,

Ly < <ig-y J
On the other hand
DdQ = D(dw,) + D(dw, A dt)
ob;. _ .
— D( Z Z Jk dyd A dxdt Ao A dxdx
J1<' <) q ax

b. . . .
+ Z 0 e de A dxt A cee A dx"‘)
j1<T<i Ot

+ D(. Z Z—qg—il——i'f-——l-dx" Adx't Ao A dxter A dt)

. 4
L 5 o

= Y (b (62 —b. ;(x1)dxit A A dxie 4 (— 1) dDQ

J1< " <Jk

= Q|—y — Qley + (— 1) dDQ,
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whence the desired formula (7). Putting Q = F*(w), so that Q|,-, = f;*(w),
Q|,-, = f{¥(w), formula (7) then yields (6), completing the proof of the lemma.

[]

We now return to the proof of the theorem. Let w be any closed form on
M, (so that dw = 0). Then, since dF*(w) = F*(dw) = 0, formula (6) yields

dDF*(w) = f3*(w) — fi*(w),

so that the difference of the forms f,*(w) and f*(w) 1s exact. Since this is
by definition equivalent to the statement that the homomorphisms
f*, f¥. H*M,; R)—> H*(M,; R) coincide, the proof of the theorem is
complete. []

Recall (from §17.4 of Part II) that two manifolds M,, M, are said to
be homotopically equivalent 1if there exist (smooth) maps f: M, - M, and
g: M, - M,, such that the composites gf: M, = M, and fg: M, —> M,
are homotopic to the respective identity maps

M,->M,; (xt>Xx), M,->M, (y—y).

(Thus, for example, Euclidean space R", as also the disc

D" — {i (xa)z < RZ},

1s homotopically equivalent to the one-point space, or what is equivalent, is
contractible (over 1itself to a point), meaning that the identity map R" —» R”
(x+— x) 1s homotopic to a constant map (R" — {0}).)

1.5. Theorem. Homotopically equivalent manifolds have isomorphic cohomo-
logy groups.

PrROOF. Let M,, M, be homotopically equivalent manifolds, and Ilet
f:M,>M,, g:M, > M, be maps satisfying the defining conditions (see
above) of homotopy equivalence. Consider the corresponding homo-
morphisms f*: H*(M,; R)» H*(M,; R) and g*: H*(M,; R) - H*(M,; R).
Since the maps fg and gf are homotopic to the appropriate identity maps,
it follows from Theorem 1.3 that the homomorphisms (fg)* = g*f* and
(gf )* = f *g* are actually the corresponding identity homomorphisms:

1 = g*f*: H(M,) > H(M,),
l = f*g*: H(M,) - H*(M,).

Hence f* and g* are (mutually inverse) isomorphisms, and the theorem is
proved. L]

Remark. This theorem suggests a way of extending the definition of the
cohomology groups to any topological space X with the property that there
is @ manifold M in which it can be embedded (M > X) which “contracts” to
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Figure 1

1t, in the sense that the inclusion map i: X — M 1s a homotopy equivalence
(sothat thereisamap f: M — X with the property that if and fi are homotopic
to the appropriate identity maps). For such spaces X we simply define

H*(X: R) = H*(M; R). (8)

Thus, for instance, the “figure eight”, while not a manifold, will now, according
to this definition, have the same cohomology groups as R*\{Q,, Q,}, the
plane with two points removed (see Figure 1).

1.6. Corollary. The cohomology groups of Euclidean space R" (and of the disc
D™) are isomorphic to those of a one-point space. Thus H*(R") is trivial for k > 0,
while H°(R") ~ R, the one-dimensional real vector space.

This fact leads almost immediately to the so-called “Poincaré lemma”:
Locally,i.e. in some neighbourhood of any point Q of a manifold M", every closed
form w (dw = 0) of rank > 0 is exact: w = dw'. To see this, we have merely to
choose as the neighbourhood any disc D" = {) &_; (x* — x3)* < &} with centre
0, wholly contained in some local co-ordinate neighbourhood (i.e. chart) of
the manifold, and then apply the conclusion of Corollary 1.6, to the effect that
H*(D") = 0 for k > 0.)

The reader will no doubt recall the case k = 1 of the Poincaré lemma from
courses in analysis: Given a 1-form w = f, dx* with dw =0 (i.e. df, /0x*' =
df;/0x* in local notation), we have w = dF where F(P) = |, f, dx*, the (path-
independent) line integral of the form along any smooth path in the disc from
a fixed point Q to the variable point P.

What are the cohomology groups of the circle S*?

1.7. Proposition. The cohomology groups of the circle S* are as follows:
HS'; R)=0 for k> 1;

9)
HY(S: R ~R;,  H°S':;R) ~R.

Proor. The triviality of the cohomology groups of S* for k > 1 is immediate
from the fact that dim S! = 1. That H°(S!) ~ R follows from Proposition 1.2
and the connectedness of S'. Thus we have only to show that H!(S") ~ R.
To this end we introduce on S the usual local co-ordinate ¢, where for all
integers n the numbers ¢ + 27n represent the same point of the circle as ¢. A
form of rank 1 is then given by w = a(¢@) do, where a(¢) 1s a periodic function
on R: a(e + 2n) = a(e). We always have dw = 0, again since dim S' = 1.
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When will w = a(p) dp be exact? Exactness in this context means precisely
that a(p) do = dF, where F is a periodic function, or equivalently that the
function defined by

F(p) = JW a(y) dyy + const.

O

is periodic of period 2= or, in yet other words, that |s: w = 0.
We see therefore that a 1-form w = a(p) de on S' is exact precisely if

jsl W = O, 1.€. j%n a((P) d(p = (0. Hence two 1-forms Wy = a((p) d(p and W, =
b(p) do determine the same cohomology class if and only if

2r 27
f Wy = f w,,  LE. J a(p)de = f b(p) do,
q1 g1 0 0

so that the cohomology classes are in (appropriate) one-to-one correspon-
dence with the possible values of such integrals, 1.e. with R. This completes
the proof. []

1.8. Corollary. The cohomology groups of the Euclidean plane with one point
removed R*\Q (or an annulus), being (by Theorem 1.5) isomorphic to those of
a circle, are as follows:

H®R\Q)=0, k>1;  HY(R*\Q)~ H°(R*\Q) ~ R. (10)

Remark. We indicate another method for calculating the first cohomology
group H'(S') of the circle. With each 1-form w(¢) = a(¢) d¢ on the circle, we
associate 1ts average @ (also a form) defined by

1 2T 2n
W =_— w((p+‘c)dr=—1—— a(p + 1) dt | do.
21 ), 27

O

1.9. Proposition. The forms w and @ are cohomologous.

ProoF. For each fixed t the form w(¢ + 1) 1s induced from w via the map
® + t— @ of the circle onto 1tself. Since such a map 1s homotopic to the
identity, we have (by Theorem 1.3) that w(¢p) ~ w(¢ + 7). For an arbitrary
Riemann sum for the form @ (as an integral) we shall therefore have

1 1
I Z (e + 1;)At; ~ w(fp)i}‘r‘ Z;: At; = w(o). (11)

l

Since any Riemann sum for @ 1s thus cohomologous to w, it follows that &
will also be cohomologous to w, as required. ]

Continuing with our remark, we note next that @ is given by

2

1 T
(@) = a do, where o = const. = o J. a(y) dy,

0
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1 2r 2n+¢@
() 57—[—[ f a(p + 1) d‘r] dp = 51-7;[ f a(y) dt/f] do

| | awav |do
T Jo

(Thus the form (@) 1s, as they say, “rotation-invariant”: &(¢ + ¢@,) = @(@).)
From this and the above proposition, we see that the correspondence w— @
essentially associates (in what is clearly an appropriate one-to-one manner) a
real number, namely «, with each 1-form w on the circle, whence H'(S') ~ R.
In the sequel we shall use a generalization of this method to calculate the

cohomology groups of compact homogeneous spaces.

since

1.10. Proposition. An orientable, closed, Riemannian manifold M" of dimension
n has non-trivial nth cohomology group H"(M").

PRrROOF. As usual we denote by Q the volume element on M ; thus locally
Q = \/\gl dx! A - A dx",

where g = det(g;;), (g;;) being the Riemannian metric with which we are
assuming our manifold endowed. If the local co-ordinates on the charts of M”
are all arranged to agree in orientation (1.e. so that the Jacobians of the
transition functions on the regions of overlap are all positive), then (see Part
I, §18.2) Q can be regarded as a difierential form of rank n on M", which can
therefore be integrated over M, yielding its volume |, Q > 0.

Since M" has dimension n and dQ2 has rank n + 1, we must of course have
dQ) = 0,1.e. Q1s closed. If 2 were in fact exact, say Q = dw, then by the general
Stokes formula (Part I, §26.3) we should have

J Q=j dw=f w =0, (12)
n n oM™

since by hypothesis M" i1s without boundary. Hence we have found a closed
n-form which 1s not exact (namely Q), whence the proposition. ]

Remark. It will be shown below (in §3) that on the other hand for every
non-orientable closed manifold M" (for example, M? = RP?, the projective
plane) the group H"(M"; R) is trivial. (Of course, the above proof fails for such
manifolds since the volume element does not behave like a differential form
under co-ordinate changes with negative Jacobian.)

For any manifold M" we write

H*(M) = Z H (M™), (13)

the direct sum of (all) the cohomology groups of M. The following proposition
shows that the wedge (or exterior) product of forms can be used to define a
“multiplicative” operation on H*(M), thereby turning it into a ring.
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1.11. Proposition. For any closed forms w,, w, on M", the forms w, A w, and
(w, + dw’) A w, are also closed, and moreover cohomologous.

PROOF. By Leibniz’ formula (see Part I, Theorem 25.2.4) we have
dw' A w,)=dw' A wy, + &' Adwy, =dw' A w,. (14)

Hence
(w; +dw') A w, =w; A W, +d(® A w,),

so that w, A w, and (w, + dw’) A w, are cohomologous, as required. (The
closure of w; A w, 1s immediate from Leibniz’ formula.) ]

In view of this proposition the exterior-product operation on H*(M)1s well
defined. It 1s easy to see that with this as i1ts multiplicative operation H*(M)
becomes a ring (in fact, an algebra), called the cohomology ring of the manifold
M". Note that if w, € H*(M"), w, € HY(M"), then w,w, € H?*4(M™"), and that
the multiplication in H*(M) is skew-commutative in the sense that (see Part
I, Lemma 18.3.1)

w,w, =(—1)w,w,. (15)

We shall now describe the geometric significance of the cohomology
groups. (More precise considerations will be left to later sections.)

Given any manifold M" we define “periods”, or “integrals over cycles”, of
any closed form w (of rank k) on M", as follows. As a preliminary, we define
a cycle in M" to be a pair (M*, f), where M* is any k-dimensional manifold
(of dimension equal to the rank of w) and f: M* - M" is any smooth map.

1.12. Definition. The period of a k-form w on M" with respect to a cycle (M*, f)
is the integral [y f*(w).

Let N**! be any oriented manifold-with-boundary. Its boundary oN**! =
M¥ say, is then a closed, oriented manifold (which may have several connected
components). We define a film (see Appendix 2 for an explanation of this
name) to be a map F: N**! - M" from the manifold-with-boundary N**! to
the manifold M™ under consideration.

1.13. Theorem

(i) The period of an exact form w on M" with respect to any cycle (M*, f) is
zero.

(i) The period of a closed form w on M" is zero with respect to any cycle (M*, f)
in M" which is the boundary of a film (N**!, F) (i.e. is such that M* =
6N"+1 and Fle = f)

PROOF. (1) Writing w = dw’, we have by the general Stokes formula

[Fo = kf*(dco’) =j d(f*w') = f*w' =0, (16)

Mk oMk
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where the last equality is a consequence of the fact that the manifold M* is

without boundary.
(i) Since M" is the boundary of N**! (with orientation induced from that
of N¥*1), and F|,x« = f, the general Stokes formula yields

f*w = J dF*(w) = J. F*(dw) = 0, (17)
Mk Nk+1 Nk+1
where 1n the last equality we have used the hypothesis dw = 0. ]

We note without proof the following important fact (a partial converse to
part (1) of the above theorem): If the period of a closed form is zero with respect
to every cycle, then the form is exact. (See §14 below.)

Example. For the n-dimensional sphere S" we have H*(S") = 0 for k # 0, n.

PROOF. For k > n it is trivial that H*(S") = 0, so we may assume 0 < k < n. If
(M¥, f)is any cycle in S” (where 0 < k < n), then by Sard’s theorem (Theorem
10.2.1 of Part II), there are certainly points of S" outside f(M*). If Q € S" is
such a point, then the cycle (M*, f) may be regarded as a cycle in S"\Q =~ R™.
Now, essentially by Poincaré’s lemma (see above), every closed form on R” is
exact, so that by Theorem 1.13(1) the period of every closed k-form with respect
to the cycle (M¥, f) is zero. Since the cycle (M*, ) was arbitrary, it follows
from the above-mentioned partial converse of Theorem 1.13(1) that every
closed k-form on S" is exact, whence (for 0 < k < n) H*(S") = 0. ]

This fact can also be established by means of an argument analogous to
that used above for calculating H'(S') (in the remark following Corollary 1.8):
one first shows that each cohomology class of closed k-forms on S” contains
a form w invariant under the group SO(n + 1) of (proper) 1sometries of S".
Such a form 1s of course determined by its components at a single point of
the sphere, and these components will be invariant under the stationary
group SO(n) < SO(n + 1) fixing that point (i.e. under the stabilizer of that
point). We leave it to the reader to deduce that if 0 < k < n then these
components must all be zero. (Consider to begin with the case of a 1-form on
S* >~ R*U {00} whose components at the origin of R* are rotation-invariant.)

We shall now show how an analogue of this method can be used for
calculating the cohomology groups of Lie groups and symmetric spaces.

Recall (from §6 of Part II) that a homogeneous space (see §5.1 of Part 1I)
M of a Lie group G, with 1sotropy group H, is said to be symmetric if there 1s
an involutory Lie automorphism of G, i.e. a Lie automorphism I: G = G such
that I* = 1 and I|4 = 1 (so that the automorphism I fixes H pointwise); it is
also required that all points fixed by I that are sufficiently close to the
identity element of G, should lie in the subgroup H. Corresponding to each
point x of such a manifold M there is then a naturally determined “symmetry”
s, of M, whose effect on an arbitrary point y of M is defined as follows: since
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G acts transitively on M we must have y = g(x) for some g € G; we set

sx(y) = 8x(g(x)) = 1(g)(x). (18)

It 1s easily verified that s_ 1s a well-defined self-diffeomorphism of M, and that
s = 1 and s,(x) = x. It is also not difficult to see that (s,),, the induced map
of the tangent space to M at x, is the reflection in the origin (cf. Definition
6.1.1 of Part 1I, in which this figured as a defining property of a symmetric
space).

Note that 1n particular every compact Lie group G is a symmetric space of
the group G x G, where the action of G x G on G i1s defined by

Ty my(x) = gxh™". (19)

Here the isotropy group H is the diagonal {(g, g)}, the involution I is given
by I(g, h) = (h, g), and the symmetry s, corresponding to the identity element

e of G 1s easily verified to be given by

s.(9) =9

Of particular importance among the differential forms on an arbitrary
homogeneous space of a Lie group G are those that are invariant under the
action of G, 1.e. satisfy g*w = wforall g € G.It1seasy to see that the differential
of such an invariant form 1s again invariant:

g*¥dw = d(g*w) = dw; (20)
and that the wedge product preserves invariance:
g¥ (@) A 0;) =g¥w, A gFw, = 01 A 0,

It follows that the set of all invariant forms on a homogeneous space M forms
a ring. It turns out that in the computation of the cohomology ring of any
homogeneous space of a compact, connected Lie group, the invariant forms
play an essential part. Indeed, if the homogeneous space 1s symmetric then 1ts
cohomology ring coincides (in essence) with its ring of invariant forms, that
1s the import of the following

1.14. Theorem. If M is a compact, symmetric space of a compact, connected
Lie group G, then:

(1) every invariant form on M is closed;
(1) every closed form on M is cohomologous to some invariant form; and
(111) no non-zero invariant form on M is cohomologous to zero.

PROOF. (1) Let w be any invariant form on M, of rank k say, and consider the
form s¥fw = @. We shall show first that @ also is invariant. From (18) it follows,
writing T, for the transformation of M determined by g € G, that for all x € M,
g € G,

5, T, = T,s.. 1)
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(To see this let y = T,(x) be any element of M; then on the one hand
Sx Tg(¥) = 5. Ty Ty (x) = 5, Tgp(X) = Tygny(X),
where the last equality 1s a consequence of (18), and on the other hand

TIng()’) = TIng I(x) = Tlg Ti(x) = Tl(gh)(x)-)

Hence

T1X0 = Trs¥w = (s, T)*w = s¥T ;0 = s¥fw = @,

where the third and fourth equalities come respectively from (21) and the
assumed invariance of w. Thus @ 1s invariant, as claimed.

Since the transformation s, induces the reflection in its origin of the tangent
space at the point x, it follows that ®|, = (— 1)*w|,. The forms w and & being
invariant under the action of G (which is transitive by definition of a homo-
geneous space), we infer that this equality must hold at every point of M, so
that 1n fact

o = (—1)w. (22)

It is then immediate that also dd = (—1)* dw. However, the forms dw
and do are also invariant and related by s* dw = do, so that the above

argument applied to them (in place of w and @) yields, since their rank 1s
k+ 1,

do = (— 1) dw.

From this and (22) we conclude that dw = 0, establishing statement (1) of the
theorem.

(1) Let w be any closed form on M:dw = 0. Since G 1s compact, an
invariant metric can be defined on it (see Part I, §24.4 and Part I1, §8.3). Such

a metric determines an invariant volume-element on G, which we shall denote
by du(g); thus, for all g, h € G,

du(hg) = du(g). (23)

We may suppose this volume element normalized so that the volume of the
whole group G 1s 1:

f du(g) = 1. (24)
G

This assumed, we define a form @, in terms of our arbitrary closed form w on
M, by

W = JA 1;*w du(g). (25)
G
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We claim that the form @ is invariant and cohomologous to w. Its invariance
follows directly by computing the form T,* @ for arbitrary h € G:

T,*& = j Ty du(g) = f Ty du(hg)
G G

) J I} w du(g') = &,
G

where in the second equality we have used (23), and 1n the third we have put
g’ = hg (such a change of variables being of course smooth and invertible).

It remains to show that the form @ i1s cohomologous to w. Observe first
that for each g € G, the map T, of the manifold M to itself 1s homotopic to the
identity map on M; for if g(t) is any curve in the group G joining the point g
to the identity element, then T, will serve as a homotopy of the desired kind.
(Remember that by hypothesis G i1s connected.) Hence by Theorem 1.3 the
forms T.*w and w are cohomologous: T*w ~ w. Consequently

W = j I*w du(g) ~ j wdu(g) = o J du(g) = o,
G G G

where in the last equality we have invoked (24). This completes the proof of
statement (11).

(111) We wish to show (finally) that a non-zero invariant form w on a
compact symmetric space is never cohomologous to zero. Recall first that on
the manifold M there can be defined a Riemannian metric (h;;) invariant under
the action of G (see Part II, §8.3), and also that in terms of such a metric one
can then define the operator * on forms w on M (see Part I, §19.3). Since the
rank of *w 1s equal to (dim M — rank w), this enables us to define 1n turn a
“scalar square” of w by setting

(w, W) = j W A * Q. (26)
M
This scalar 1s always positive (provided w # 0), since if in local co-ordinates
W= > a.  ;dx"" A Adxh
then
<CO, C[)) — J\w N\ k¥ = Jhiljl ...hikjkail_”ikajl_”jk\/ﬁ dxl /ANERERY AN dxn > O.

(27)

(Here as usual () denotes the matrix inverse to (h;), h = det(h;;), and n =
dim M)

In view of the invariance of the metric (h;;), the operator * commutes with
every operator 1 *, g € G. From this, together with the invariance of our form
w, we infer that the form *w 1s also invariant, and therefore, by virtue of the
already-established statement (1), 1s closed: d(x w) = 0.
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Suppose now that, contrary to statement (111), w 1s cohomologous to zero,
1.e. 1s exact: w = dw’ for some form w'. Then

dw' A *w)=do' A *ow+ 0 Ad(*w) =w A *.

Hence

(a),co>=JA a)/\*a)::-JA d(w' A *w) =0
M M

by Stokes’ theorem (since M is without boundary). However this contradicts
(27). This completes the proof of the theorem. ]

We now consider some examples.

Examples

(a) The torus T" = R"/T', where I' 1s the integral lattice in R" spanned by
n independent vectors, 1s a compact commutative Lie group, and can be
considered as a symmetric space of the Lie group R", or alternatively of 1tself.

Let x', ..., x" be Euclidean co-ordinates in R”. Each basic form
dx'' A -+ A dx"™ on R" is invariant under the action of R" on itself (i.e.
under translations), and therefore defines an invariant form on the torus T".
If, on the other hand, a form

w=a; . (x)dx"" A Adx™

i

on T" (in terms of local co-ordinates on T" induced from x', ..., x" on R") is
invariant, then clearly we must have for all y that

a; . . (x+y=a;.  ;(x)

1.e. that the coefficients of the form w are constant:

a. = Cconst.

ll"'ik

We deduce that the invariant forms on T" are just the linear combinations
with constant coefficients of exterior products of the forms dx’, ..., dx". From
Theorem 1.14 we therefore conclude that: The cohomology ring H*(T™") of the
torus T" is (isomorphic to) the free exterior algebra /\[e, ..., e,] with free
generators e, ..., e, (of degree 1). (Here e; denotes the cohomology class of
the form dx*)

(b) By way of a second example we examine the situation where the
manifold is actually a compact Lie group G (considered as a symmetric space
of the direct product G x G; see above). Here the invariant forms on G will
be those that are two-sided invariant in the sense of being unaffected by left
and right multiplicative by the elements of G.

We consider, to begin with, left-invariant 1-forms w on G which are vector-
valued (rather than scalar-valued), taking their values in the Lie algebra g of
the Lie group G. For an arbitrary Lie group G a vector-valued, left-invariant
1-form can be constructed as follows (and in fact every such 1-form arises in
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this way): the 1-form 1s of course determined by its value at each tangent vector
£ to G at each point g; the value we assign 1s that vector in the tangent space
to G at the identity (1.e. in the Lie algebra of G), obtained by translating ¢ back
to the identity, 1.e. by applying to it the left-translation operator (L,-:), (cf.
Part II, §25.1). In view of this construction we denote such a form w by
w = w(g) = g ' dg. (If G is a matrix Lie group then we shall have g = (g;),
dg = (dg; ), and w will literally be the matrix product g~! dg = (w;,), a matrix
whose entries are ordinary (scalar-valued) 1-forms.) It 1s immediate that a form
defined 1n this way 1s indeed left-invariant, i.e., in the above notation,

w(hg) = g~ h~'d(hg) = g™ dg = w(g). (28)

We now turn our attention to the ordinary (i.e. scalar-valued) forms on a
Lie group G. Let 6, ..., 8" form a basis for the vector space of scalar-valued
left-invariant 1-forms on G. (For a matrix Lie group G one may (essentially)
take as the 6' the elements of a maximal linearly independent subset of the set
of entries of the form w = (w;) = g~' dg. For instance, if G = SO(n), then the
Lie algebra g = so(n) consists of all skew-symmetric matrices, so thatw = (w;)
1s also skew-symmetric, and as a basis for the left-invariant 1-forms on SO(n)
we may take the w; withi < k.)

1.15. Lemma. The dimension N of the vector space of (scalar-valued) left-
invariant 1-forms on a Lie group is equal to the dimension of the group.

PROOF. It follows directly from the left-invariance that each left-invariant
l-form 1s completely determined by the values it takes on the tangent space
at the i1dentity of the group. Since such a form may clearly be constructed so
as to coincide at the identity with any element of the dual space of the tangent
space at the identity, the lemma follows. (]

Since as far as its vector-space structure is concerned, the Lie algebra of a
Lie group is the same as the tangent space at the identity of the group, we
deduce the

1.16. Corollary. The vector space of all left-invariant 1-forms on a Lie group
G is (naturally) isomorphic to the space q* of linear functionals on the Lie
algebra g of G.

1.17. Lemma. Every left-invariant k-form w on a Lie group G has the form

w= ) a ;0"A-AO% (29)

i1<...<ik

where the a; ., are constants (and the 0' form a basis for the space of
left-invariant 1-forms on G).
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Proor. By Lemma 1.16, at the identity e of G each k-form w (whether or not
it 1S Invariant) can be represented as

we)= ) a;. ;0" A AO%e) (30)
The invariance of the forms 6%, ..., 8" and o then implies that (30) holds at
every point g € G. []

1.18. Corollary. The algebra of left-invariant forms on a Lie group G is iso-
morphic to the exterior algebra /\[g*] generated by the space g* of linear
functionals on the Lie algebra g, i.e. to the algebra of skew-symmetric (or
“alternating”) multilinear maps on the Lie algebra q.

Since we are interested in the two-sided invariant forms on our Lie group
G, 1t 1s now appropriate to ask for those among the left-invariant forms on G
which are also right-invariant. Clearly, a left-invariant 1-form w on G will also
be invariant under a right translation y+— yh™! (y € G, g € G) if and only if it
is invariant under the inner automorphism y+ hyh™ ', ie. if w is invariant
under the operator Ad(h) (which as usual we shall sometimes also indicate by

the notation Ad(h): X — hXh™!, X € q). Hence we have

1.19. Lemma. A skew-symmetric multilinear map o(X 4, ..., X,;) belonging to
/A [g*] corresponds (as in the preceding corollary) to a two-sided invariant form
if and only if it is Ad-invariant, i.e.

ehX,h™, ..., hX;h™)=0(X,,..., X)) forall heQ. (31)

From Theorem 1.14 we immediately conclude that:

The cohomology ring of a connected, compact Lie group G is (naturally)
isomorphic to the ring /\;,,[a*] of Ad-invariant multilinear alternating maps
on the Lie algebra q.

We shall now indicate (by way of an application) how one can deduce from
this the non-triviality of H>(G) for a large class of Lie groups G. Thuslet { , )
denote the Killing form on the Lie algebra g of a Lie group G (see Definition
3.1.3 of Part II). We define a 3-linear map Q(X, Y, Z) on the Lie algebra g by
setting

QX,Y,Z)={[X,Y], 2. (32)

The skew-symmetry of this map in the variables X, Y, Z represents simply a
basic property of the Killing form (see Part 1, §24.4 or Part II, §6.4). Since,
moreover, Ad(h) is for each h € G a Lie algebra automorphism of g, so that in
particular

[hXh™', hYh™'] = h[X, Y]h!,

it follows that the 3-linear map Q is also Ad-invariant. Hence we can infer
immediately from the preceding statement the following
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1.20. Proposition. The group H>(G) is non-trivial for every compact Lie group
G for which the form Q defined by (32) is non-zero (and so in particular if the
Killing form of G is non-degenerate, i.e. for semisimple G; see the concluding
remark of §3.1 of Part II).

(Note in connexion with this proposition the fact that a compact Lie group
1s abelian if and only if 1its Lie algebra 1s commutative; see Part 11, Corollary

3.1.2)

(c) In this our third example, we take M once more to be a general
symmetric space of a Lie group G, with corresponding 1sotropy group H.
Fixing arbitrarilly on a point x of M, we obtain a corresponding map
p: G - M, defined by p(g) = T,(x). Using this map p, any form w given on the
manifold M can be pulled back to the form p*w on G. It follows from the
definition of the pullback operator (see Part 1, §22.1), that the form p*w takes
the value zero on the tangent space to the subgroup H (a closed, and therefore
Lie, subgroup of G). Since the map p sends each left coset gH of the 1sotropy
group to a single point of M, it follows also that the form p*w 1s invariant
under right translations by elements of H. If, furthermore, w 1s invariant under
the action of G on M, then the form p*w on G will be left-invariant, 1.e.
invariant under left translations by elements of G. Since right H-invariance
and left G-invariance of p*w are together equivalent to left G-invariance plus
invariance under inner automorphism of G determined by elements of H, and
since the correspondence w < p*w is an exterior-algebra 1somorphism, we
have as the upshot of the foregoing (together with Corollary 1.18) the following

1.21. Theorem. The ring of invariant differential forms on a homogeneous space
M of a group G, with isotropy group H, is isomorphic to the exterior algebra
Ninv [(8/D)*], the algebra of multilinear alternating maps on g which vanish
on the Lie algebra by of H, and are invariant under the operators Ad(h) for all

hin H.

Invoking Theorem 1.14 yet again we can now infer an 1somorphism be-
tween the cohomology ring of a (suitable) symmetric space and the exterior

algebra figuring in this result.

(d) In this our final example we compute (partially) the cohomology ring
of the n-dimensional complex projective space

CP"~ U(n + D)/U() x U(n)). (33)

Now since CP" is compact (see Part II, §2.2), and the group U(n + 1) is
compact (being identifiable with a closed surface in R*®**9%) and connected
(since U(n + 1)/U(n) = S*"*'), we have, once again by Theorem 1.14, that the
cohomology ring of CP" is isomorphic to the ring of differential forms on CP”
invariant under U(n + 1).

Let (2% ..., z") be, as usual, homogeneous co-ordinates on CP" (i.e. (n + 1)-
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tuples from C"*'\ {0}, where two (n + 1)-tuples are regarded as equivalent if
one is a (complex) multiple of the other), and consider in C"™' the real

difterential 2-form

= -% Y dz* A dz". (34)
k

It 1s straightforward to verify (directly from the fact that U(n + 1) preserves
the Hermitian scalar product; see Part I, §11.2) that the form Q on C"*! is
invariant under the action of U(n + 1). We shall now show thatasa U(n + 1)-
invariant 2-form on S*"*!, Q is the pullback of some (invariant) form w on
CP" i.e.that Q = p*w where p: $*""! — CP"is the natural projection. For this
1t clearly suflices to show that the form € 1s preserved by transformations of
S 71 of the form

z¥ - e'¢z" (dz* — e'*(dz* + iz* do)), 35)
Zk > e 0Zx (dz* — e7'°(dzZ* — iZ* do)).
Now since ) ;_oz*Z* = 1 on the sphere $*"*!, we have

Y (z¥dz* + Z* dz¥) =

Hence under the transformation (35) our form € transforms as follows:

%Zdzk/\d > Zdz AdZ*+idp A (2 dz* + Z* dz")

=—;-Zdz" A dz*.

Thus we have found an invariant 2-form w on CP". Its powers w* are all
non-zero for k < n, since the corresponding powers of ) are non-zero (verify
this!). We conclude that:

The cohomology algebra H*(CP") of the complex projective space CP"
contains as subalgebra the algebra of polynomials over C in the rank-2 form
w (which of course satisfies "' = 0).

(It follows from results to be established in §4 (see Example (g) there, and
also the first example in §7) that in fact there are no other elements of H*(CP").)

§2. The Homology Theory of Algebraic Complexes

2.1. Definition. An additively written abelian group C is called an (algebraic)
complex (chain or cochain complex) 1if:

(1) The group C is given in the form of a direct sum ) -, C, of subgroups
Ce, k=0,1,2, ..., whose indices are called the dimensions or degrees of

the corresponding summands. (A group given in this way 1s said to be
graded.)
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(i) There is prescribed a Z-linear operator (1.e. abelian group endomorphism)
0 on C, which satisfies 00 = 0, and which lowers the dimension of every
C, by 1 (1e. 0C, < C,_, for every k >0, and 0C, = 0), or raises the
dimension ofevery C, by 1 (i.e. 0C, = C, ). In the former case the elements
of C are termed chains, and 1n the latter cochains. (We shall sometimes
refer to ¢ as a “differential operator”™.)

2.2. Definition

(1) The k-dimensional homology group H,(C) of a chain complex (C, 0), 1s the
quotient group of the group Z, = Ker(d|¢, ) of k-dimensional cycles (1.e.
those elements of C, sent to 0 by 0) by its subgroup B, = Im(d|c, , ) =
0C, ., of boundaries (B, < Z,):

H,(C) = Z,/B,. (1)

(i) The k-dimensional cohomology group H*(C) of a cochain complex is the
quotient group of the group Z* = Ker(d|¢, ) of k-dimensional cocycles by
its subgroup B* = 0C,_, of coboundaries (B* = Z*):

H*(C) = Z*/B*. (2)

(1) The full homology group H_(C) (resp. full cohomology group H*(C)) 1s
then the direct sum H,(C) = ) ;s o Hi(C) (resp. H¥(C) = ) ;o H(C)).

Example

(a) With each manifold M" there 1s associated the cochain complex C =
Y k=0 Ci consisting of the (smooth) differential forms on M"; here C, is the
subgroup of all (smooth) k-forms on the manifold, and the operator
0: C, — C, ., 1s just the usual differential operator d on forms. The cohomol-
ogy groups of this complex were earlier called the cohomology groups of

the manifold M" (see Definition 1.1).

(b) On a Lie group, or more generally a symmetric space, there 1s defined
the complex of invariant differential forms (see the latter part of §1). Since,
essentially by Theorem 1.14(1), all such forms are closed, the operator 0 = d
1s 1n this situation trivial, i.e. the zero operator. From the full Theorem 1.14
it follows that, at least under certain conditions, the cohomology groups of
this complex are in essence the same as the cohomology groups of the complex
of all differential forms on the space.

We shall in the sequel meet with various further examples of complexes.

We resume our exposition with the definition of a homomorphism between
complexes. (In what follows we shall frequently state definitions and theorems
for chain complexes only, leaving it to the reader to formulate their cohomo-
logical duals.)



§2. The Homology Theory of Algebraic Complexes 19

2.3. Definition. Given two complexes (CV, 1) and (C®, 0®) (both chain
complexes or both cochain complexes) we calla homomorphism f: CY) —» C%
a homomorphism of complexes if 1t preserves the grading and commutes with
the differential operators:

fcycecc® for k=0,1,2,...; fo' = o¥f. (3)

2.4. Proposition. A homomorphism f of algebraic complexes induces homo-
morphisms (which we also denote by f) between the corresponding homology
groups

f: H(C?Y, o))y - H (CP, 0%), k=0,1,2,.... (4)

PROOF. It 1s easy to verify directly from (3) that for every k a homomorphism
of complexes maps k-cycles (i.e. elements of Z{") to k-cycles (i.e. into Z;*), and
k-boundaries (i.e. elements of B{") to k-boundaries (i.e. into B{*). It follows
that a homomorphism of complexes induces, for every k, a homomorphism
between the respective kth homology groups, as claimed. []

An important example is the following one. As we saw early on 1n §1, a
smooth map f: M — N between manifolds determines a map f * between the
corresponding complexes of differential forms on the manifolds, but in the

opposite sense:
f*: C(N)-> C(M).

Since this map 1s linear and commutes with the differential operator d (i.e.
f*dw = df *w for every form w) we conclude that f* is a homomorphism of
complexes in the sense of Definition 2.3.

2.5. Definition. Let f: CY) - C® and g: C'V) - C® be two homomorphisms
of algebraic complexes. We say that the homomorphisms f and g are (alge-
braically) homotopic if there exists an ordinary homomorphism D: C) — C®),
such that (cf. Lemma 1.4)

DOW + @D = f — g, (5)

We also impose on D the condition (natural in view of (5)) that if 0*) and 0%
“raise the grading” then D lowers i1t, and vice versa; thus either

D(G")= G2 or  D(GP) <= G (6)

2.6. Proposition. If f and g are homotopic maps (i.e. homomorphisms) from a
complex C") to a complex C'?, then the corresponding induced homomorphisms

of the homology groups coincide:
f = g: H(C', 00) — H(C™, 0), ()
PROOF. Let ¢, € C{V be an arbitrary k-cycle: 0'*'c, = 0. Then
fl(c) — g(c,) = DOVe;, + 0P D¢, = +0'®Dc,,

whence we see, in view of the second inclusion in (6), that f(c,) — g(c,) 1s a
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k-boundary, so that f(c,) ~ g(c;) in the homology group H,(C', 0'9). This
completes the prootf. ]

The reader may recall that a specific algebraic homotopy was used 1n the
proof of Theorem 1.3 concerning the homotopy invariance of induced maps
between the cohomology groups of manifolds. Further examples will appear

subsequently.
We shall now assume that the summands C, of a complex are finitely

generated.

2.7. Definition. Let b, denote the (torsion-free) rank of the group H,(C, 0) (1.e.
the number of infinite cyclic direct summands in a decomposition of the
abelian group H, as a direct product of cyclic groups). We call the alternating
sum

X(C,0) =) (—1yfrank H,= ) (—1)*b, (8)

k=0 k=0

(if 1t exists) the Euler characteristic of the complex (C, 0).

2.8. Proposition. The Euler characteristic of a complex (C, 0) is also given by

x(C,0) = ) (—1)rank C,. (9)
k=0
PROOF. Denote by z, the rank of the group Z, of k-cycles, and by f, the rank
of the group B, of k-boundaries. From the theory of finitely generated, free
abelian groups we have

by = 2 — P, P = rank Cyyy — Zp4q, (10)

where in the second equation we are assuming that we are dealing with a chain
complex, so that ¢ “lowers the grading”. Hence

bk — Zk + Zk+1 — I'al'lk Ck+1’

and therefore
Y (—be=2o+ Y (—1)** rank G4,

k=0 k=0

Since z, = rank C,, the proposition follows. (We leave it to the reader to carry
out the very similar proof when (C, 0) 1s a cochain complex.) ]

Given any (additively written) abelian group G and any complex C, we can
form the new complex C® G = ) ;50 C, ® G, called a complex with coeffi-
cients from G. (We remind the reader briefly of the definition of the tensor
product A ® B of two abelian groups A and B: The abelian group A ® B
consists of all possible finite sums ) a; ® b;, a; € A, b; € B (i.e. has the symbols
a®b, ae A, be B, as generators) with the following defining relations
imposed:

(a, +a,)®b=a,®b+a,®b,

(11)
a@ b, +b)=a®b, +a® b,.
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One immediately deduces from these the following useful relation: ma & b =
a ® mb for every integer m. (Thus A ® B 1s in general algebraic parlance the
“tensor product of the Z-modules A and B”.)

EXERCISE

Show that for every abelian group G we have G ® Z = G. Identify the tensor product
Z, ® Z, of two finite cyclic groups. Prove that the tensor product of any finite abelian
group with the group of reals (or even rationals) is zero.

We have yet to define appropriately the boundary operator on the complex
C ® G. If 0 denotes the boundary operator on C, we define the action of the
boundary operator on C ® G, also denoted by 0, as follows: For each of the
generators ¢, @ g, ¢, € G, g € G, we put

e, ® g) = 0¢, X g,

and then extend this action via linearity to the whole group C ® G. Clearly,
we shall then have 00 = 0, as required. We call the homology groups of the
complex C ® G the homology groups of C with coefficients from G, and denote

them by

(Thus the “ordinary” homology groups of C can now be i1dentified with the
homology groups of C with coefficients from Z.)

With G as before an additive abelian group, and (C, 0) a (chain) complex,
we now define its dual cochain complex C* to consist of the Z-linear maps (1.e.
homomorphisms) from C to G with the obvious addition; thus C* =
Hom(C, G) in the notation in general use in algebra. The group C* comes
with the natural grading

C*= ) C, (12)

k=20

where C¥ = Hom(C,, G), and with boundary operator 0* defined in terms of
0 by
0*: C,f—*C,fH, 0: Ck—i*Ck._l,

13
(0*x, ¢) = (x, dc); ce(C, xeC*¥ (13)

where (x, c) denotes the value in G taken by x € C* at c € C. It 1s immediate
that 0*0* = 0. The cohomology groups H*(C*, 0*) are usually denoted simply
by H*(C; G), and are called the cohomology groups of the chain complex C with
values in G.

Suppose now that G is the additive group of a field k (which might be, for
instance, any of the fields R, C or Q of real numbers, complex numbers or
rational numbers, respectively, or the finite field Z , of p elements, p prime) and
let C be a (chain) complex whose summands are finite-dimensional vector

spaces over K.
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2.9. Theorem. The vector spaces H*(C; k) and H,(C) are mutually dual; in
pariticular, they have the same dimension.

PrROOF. We shall assume that C 1s a chain complex, so that the operator 0
lowers dimension, and, as usual, leave the formulation and proof of the
cohomological counterpart of the theorem to the reader.

We first show that an element c* of C¥ is a k-cocycle in the complex C*
precisely if (c¥, B,) = 0, where B,(< C,) is the subspace of k-boundaries. Since
B, = 0C, ., each element of B, has the form dc, ., forsomec, ., € C,,,. Hence
a typical element of (c¥, B,) has the form

(Cka aCk+1) — (a*cka Ck+1) — 09

if ¢k is a cocycle. Conversely, if ¢* e C¥ is such that (c*, dc;,,) = 0 for all
i1 € Ciyiq, then (0%c*, C,.) = 0, whence d*c* = 0, i.e. ¢ is a cocycle.

We have thus established that each subspace Z* of cocycles of the complex
C* coincides with the subspace of C* consisting of those linear functionals
which vanish on B,. We may therefore identify Z* with the space of linear
functionals on C,/B,. Since each space C, is finite dimensional, so that (C})*
is naturally isomorphic to C,, the last statement but one can be dualized to
yield a natural identification of each space Z, of k-cycles of C with the space
of those linear functionals on C¥ which vanish on B, the space of k-
dimensional coboundaries of C*. This translates easily (via the natural 1so-
morphism C, ~ (C*)*) into the equivalent assertion that B* consists of just
those linear functionals on C, which vanish on Z,. Combining this with the
aforementioned identification of Z* with the space of linear functionals on
C,/B., we obtain finally a natural identification of Z*/B* = H*(C; k) with
Z,./B, = H,(C), which clearly fulfils the claim of the theorem. (]

We next define the tensor product C = C'Y ® C® of a pair of (chain)
complexes. We first recall for the reader the concept of the tensor product
A ® B of two vector spaces A and B over a field k, as the “tensor product over
the field k of 4 and B regraded as k-modules”; thus the vector space A & B 1s
once again generated, as an abelian group, by the symbolsa ® b, a € A, b € B,
subject to the relations (11) supplemented by Aa ® b = a ® Ab, where A is any
scalar. (Note that if the scalars come instead from Z, then we are back in the
case of the tensor product of abelian groups; see above.) Scalar multiplication
in A® B 1s then defined by A(a® b) = Aa® b. It follows readily that if
{a,,...,a,} and {b,, ..., b} are bases for 4 and B respectively, then the rs
elements a; ® b; form a basis for A ® B.

Returning to the tensor product C = CY ® C® (of abelian groups or

vector spaces, depending on the provenance of the scalars), we define the
grading of C by C = ) 5 o G, where

C,=(CY"®C?), = ¥ CH® C®, (14)

pt+q=k
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and the boundary operator by
eV ®@ci?)=0McP)® (P + (—1)PcP ® 0P c?. (15)
It 1s easy to verify that 00 = 0.

2.10. Theorem. For any pair C'Y), C® of (chain) complexes of vector spaces
over any field k (the casesk = R, C, Q, Z, being for us the important ones), the
homology groups of the tensor product satisfy

H(CV®C¥) = ¥ H,(CM)® H,(C?), (16)

p+q=k

i.e. there is a natural vector-space isomorphism between these spaces.

For the proof we need the following ancillary result:

2.11. Lemma. If C = ) .., C, is any chain complex of vector spaces over the
field k, then there is for each C, a “canonical” basis (X, ;, Yn i, hs1) On which
the operator 0 acts as follows:

6xn,i’ — yn*—l,i’ ayn,j — 03 ahn,l — V. (17)

PROOF. From (17) and the requirement that (x, ;, y, ;, h, ;) be a basis for C,, 1t
1s immediate that the y, ; will have to form a basis for the space B, of
n-boundaries, the h, ; a basis for a complement H, of B, in the space Z, of
n-cycles: Z, = B, ® H, (so that the h,, represent a basis for the homology
group H,(C)), and finally that the x, ; must form a basis for a complement X,
of Z,in C,ie. C,=X,®Z,=X,® B, ® H,. Starting at C, (for which
X, = 0),1t1s not difficult to construct bases of the desired kind using induction
on n. (Thus if bases satisfying (17) have already been chosen for C,, C,, ...,
C.-1, then as the basis elements x, ; for X, < C, choose any preimages under

0. C,— C,_, of the y,_, ;, and choose the basis elements y, ;for B, and h,, , for
H, arbitrarily.) []

PrROOF OF THE THEOREM. Choose canonical bases (x\", yi", hi") and
(x32, y$3, h{?) for the subspaces C!" and C!* respectively. (The second sub-
script index, enumerating the members of each basis, will be omitted.) From
these bases we construct as follows canonical bases for the subspaces C, =
) prq=k CV ® C? of C'V @ C®. The basis vectors for C; grouped first, i.e. the
non-cycles, spanning a complement in C, of the space of k-cycles, are given by

— +(1) 2). _1r.a 2 p—1 (1 (2)

Xpg = Xp @ xg%;  ap, =2[x,7 @ xg” + (=17 yp2y @ xg¥1 ], 18
— (1) 2). — 1 2

Xpg = Xp & h((j )a qu = (— l)ph;(, ' ® x; ),

where throughout (p, q) ranges over all ordered pairs of non-negative integers
satisfying p + q = k. The basis vectors for B, are defined by

— 1 2 +1 (1 2
bpq — y;-)l ® x¢(1+)1 — (=1 x;(, ’®y§ )

(19)
Ypg = yt(vl) & yc?); Ypq = yt(?l) & hc(JZ); 5pq = ht(?” ® y‘(lz),
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where (p, q) varies as before. We leave to the reader the verification of the
linear independence of the vectors in (18) and (19). It remains to specify basis
vectors for a complement of B, in Z,; the vectors of the form A} ® h{?,
p + g = k, clearly linearly independent of the vectors 1n (18) and (19), are the
ones we use for this purpose. Finally, we check that the operator 0 on C
(defined 1n (15)) acts 1n accordance with (17). From (15) and (17) (as 1t applies
to the canonical bases chosen for the C{"’ and C{») we calculate that

0Xpg = by g1, 00pg = Yp—1,95 0%pg = Vp—1,g> 0Ppg = Op,q-1;
0byy = 0Ypg = 0Vpg = 00, = a(ht(wl) ® hth)) =0,

so that the bases we have constructed (one for each C,) are indeed canonical.
Hence, by the parenthetical observation in the proof of Lemma 2.11, the
vectors hi" ® h'{® with p + q = k represent a basis for H,(C'""’ ® C'?), and
this 1s what we wished to prove. ]

§3. Simplicial Complexes. Their Homology and
Cohomology Groups. The Classification of
the Two-Dimensional Closed Surfaces

We now describe a different approach to the definition (and investigation) of
homology and cohomology groups, which considerably extends their field of
application.

A (closed) n-dimensional simplex (or n-simplex) in R*, k > n, is defined
inductively as follows: A 0-simplex is just a point [ a, |; a 1-simplex is a (closed)
straight-line segment [a,a, ]; a 2-dimensional simplex 1s a tnangle [ay0, a5 |
(including its interior); and a 3-dimensional simplex 1s a solid tetrahedron
[aoo 505 ] (see Figure 2). Proceeding inductively, if we have an n-dimensional
simplex ¢” = [aya, ..., ] already defined in R", then to construct from it an
(n + 1)-simplex we take any point o, ., outside the hyperplane R” < R**! and
join that point by means of straight-line segments to every point of ¢"; the
geometrical figure made up of the totality of the points on these line segments
is then an (n + 1)-simplex "' = [ogoy ... 0,41 ]

X,

%y
L) o b) LI C)
0-dimensional 1 -dimensional

> 8¢y
2-dimensional

3-dimensional

Figure 2. Simplexes.
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Alternatively, an n-dimensional simplex may be defined as the convex hull
of any n + 1 points in R*, k > n (called the vertices of the simplex), which are

not contained in any (n — 1)-dimensional hyperplane in R,

The boundary of an n-simplex [«,...a, ] determined by its vertices «,, ...,
a., 18 made up of the (n — 1)-simplexes (called (n — 1)-dimensional faces)
[ty ...00,_1 ], [@o0y... 0,50, ], ..., [®;...2,]; 1n other words, the ith face
Oy ' is the (n — 1)-simplex determined by all of the vertices «,, ..., a, but the
ith; 1t 1s the face “opposite” the vertex a;:

0'(;) = [ayg.. . ol | (1)

(where as usual the hat indicates that «; 1s understood as deleted). More
generally, the faces of dimensions (n — 1), (n —2), ..., 0, of our simplex
[«, ..., ] are (formally) obtained by deleting any 1, 2, ..., n vertices respectively.

3.1. Definition. The oriented boundary da” of a simplex ¢" = [a,...a, ] (Whose
points are given in the order indicated) 1s the following formal linear combina-
tion of its (n — 1)-dimensional faces:

0" = ofag...a] = ;O (— 1) [otg... 0.0 7] = ; (—1famt. @)

1=0

For example, for 0-, 1-, and 2-simplexes we have:
dlao] =0,
Olagay | = [ay] — [oo], (3)
Olaga 0, ] = [a;0,] — [ogx, ] + [2oaq ]
In the last case at least it 1s clear from Figure 2 that the faces (here “edges™)

enter with appropriate signs.

3.2. Lemma. For any n-dimensional simplex we have

00[a,...a. ] = 0. (4)

This tfollows essentially by direct calculation. For instance, in the case n = 2,
we have

Olaga o, ] =[ajay] — [apas] + [2oay ],
00Lotgy 921 = ([t — [2,1} = {[02] — [to1} + {[%, ] — [} = O

For general n the calculation 1s analogous: we have

00" = a(z (—1)'0‘(1) ) Z (—1)'80(,) :

where in this sum the face aj; * (obtained by omitting the vertices ; and «;)
occurs twice, namely in the expressions for the boundaries oaly ! and do(j ',
with opposite signs. []
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3.3. Definition. A simplicial complex 1s a collection of simplexes of arbitrary
dimensions with the following two properties:

(1) together with every simplex 1n the collection, all of its faces (of all dimen-
sions) are also in the collection;

(11) any two simplexes 1n the collection are either disjoint or intersect 1n a
single whole face (of some dimension). The dimension of a simplicial
complex 1s the largest (if there 1s a largest) of the dimensions of the
simplexes of which 1t 1s composed.

If the collection of simplexes is finite, we speak of a finite simplicial complex.
Given a simplicial complex M, we fix arbitrarily on an enumeration of its

vertices: a4y, ... . The r-dimensional simplexes of the complex are then taken
to be of the form [«; a; ...o; ]for certain subsets {«; , ..., a; } of size r of the
set of vertices, with the given ordering imposed. (Note that we shall usually
require of a simplicial complex that it have only a finite number of simplexes
of each dimension.)

Suppose now that we are also given an (arbitrary) abelian group G with
the group operation denoted by the addition symbol +. A chain of dimension
k with coefficients from G of the ssmplicial complex M 1s defined to be a formal
finite linear combination of the distinct k-simplexes of the complex, of the form

Cp = Zgiaia (5)

where the k-simplexes ag; have their vertices written in the order determined
by the prescribed ordering of the vertices of the complex, and the g; are
arbitrary elements of the group G. Addition of a pair of such k-chains is then
defined as follows: if ¢, = ) g;0;and ¢, = ) gio;, then ¢, + ¢, = ) (g; + gi)a;.
With this additive operation, the set of all k-chains clearly forms an abelian

group.
The (oriented) boundary dc, of a k-chain c, given by (5), 1s defined by the

formula

dc, = Z g;00;, (6)

where da; 1s given by (2). It 1s immediate from Lemma 3.2 that ddc, = 0. The
k-cycles of the simplicial complex M are now defined to be those k-chains ¢,
satisfying dc, = 0; they form a subgroup which we denote by Z,. The boundary
k-cycles are those that are “homologous to zero”, i.e. are of the form dc, . for
some (k + 1)-cycle ¢, ,; the group they comprise 1s denoted by B, (cf. the more
abstract analogues of these concepts introduced 1n the preceding section).

3.4. Definition (cf. Definition 2.2). The k-dimensional homology group
H,(M; G) of a simplicial complex M, with coefficients from G, is the quotient
of the group Z, of k-cycles by the subgroup B, of boundary k-cycles. (Thus we
say that two k-cycles c;, ¢, are homologous if in combination they form a
bounding k-cycle, i.e., more precisely, if ¢, — ¢, = dc,.,, for some (k + 1)-chain
cy+1 Of the complex M)
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The interesting cases are: G = Q, the additive rational numbers; G = C;
G=/72;, G=/Z, (the integers modulo 2), and more generally G = Z,, (the
integers modulo m) especially when m is prime, 1.e. Z,, 1s a field. When G = R
the homology group H.(M; R) 1s for every i a real vector space; 1its dimension
1s 1n this case called the ith Betti number of the simplicial complex M.

Given a finite simplicial complex M, we define its Euler characteristic y(M)
as follows: denoting by y; the number of i-simplexes 1n the complex M, we set

x(M) = Z (— l)i)’i- (7)
i=>0

The following result makes it easier to perceive the analogy between this

definition and the earlier one (Definition 2.7) for an algebraic complex with
coefficients from Z.

3.5. Theorem. Denoting by b, the dimension of the vector space H, (M ; R) (the
ith Betti number), we have

x(M)= > (== ) (=1)b. (8)

i1=>0 1=>0
Proor. It follows directly from the definition of an i-chain with coefficients
from R, that the group of i-chains of the simplicial complex M 1s a vector space
of dimension y;. This noted, the desired conclusion 1s obtained by imitating
the proof of Proposition 2.8 with the word “rank” replaced throughout by

“dimension” (and “free abelian group” by “vector space over R”).

Remark. In Part II, §15, the Euler characteristic y(M) (where M 1s now a
“triangulated” smooth manifold; see below) was defined (equivalently) as the
sum of the indices of the critical points of a smooth function on M (see also
Part 11, Theorem 15.2.7). We have now the option of computing y(M) instead
by homological means.

We now turn to the duals of the above concepts. We define a k-dimensional
cochain c* of a simplicial complex M to be a linear map from the group of
k-dimensional integral chains of M to a group G of coeflicients; in other words
a k-cochain associates with each k-simplex ¢ an element ¢*(o) of the group G,
and extends to all integral k-chains via linearity:

Ck(adl + baz) — ack(O'l) + bck(o'z), a, b € Z

Clearly the totality of k-cochains of M forms a group under addition of maps.
We next define the coboundary éc* of an arbitrary cochain c* to be the
(k + 1)-dimensional cochain given (on (k + 1)-simplexes) by

5c*(a) = c*(d0), 9)

where o i1s any (k + 1)-simplex. (Note that in §2 we used the alternative
notation 0* for the operator 0.) That 06 = 0 follows from 00 = 0:

60c*(o) = 6¢*(0a) = c*(0do) = 0.
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A k-dimensional cocycle of the complex M 1s, as might be expected, a k-cochain
c* for which éc* = 0, and a k-cocycle c* is cohomologous to zero if ¢* = 6c*™!
for some (k — 1)-cocycle c¢*7 2, i.e. if it is a coboundary.

3.6. Definition. The kth cohomology group H*(M; G) of a simplicial complex
M, with coefficients from G, 1s the quotient group of the group of k-cocycles
by the group of k-dimensional coboundaries. Thus ¢ ~ ¢} in the cohomology
group precisely if ¢ — c% has the form 6c¢*™7, i.e. is a coboundary.

The (algebraic) complex of cochains of the simplicial complex M 1s the dual
(in the sense of §2) of the (algebraic) complex of chains of M. Hence from
Theorem 2.9 we infer immediately the following result (pertaining to the case

where G is a field k).

3.7. Corollary. If M is a finite simplicial complex and k any field, then for each
i the vector spaces H,(M; k) and H'(M; k) have the same dimension.

We now consider in more detail the homology and cohomology of a
simplicial complex M when the group G of coefficients is Z,, (in particular, the
important case G = Z,, the field of p elements, p prime). Let x € H.(M; Z,,),
1.€. let x be (the coset of) a g-cycle, and let x be any integral g-chain such that
x = X(mod m). Then since x 1s a g-cycle we have dx = 0, or, in terms of the

integral chain Xx,
0X = mu Of U= —
m

for some integral (g — 1)-chain u. Any other integral g-cycle representing x
will have the form X + dy + mz for some integral chains y and z. Applying
the boundary operator to such a representative, we get

o(x + 0y + mz) = 0x + 00y + m0z = mu + moz,

so that the replacement x — X + Jy + mz entails u = 0x/m — u + 0z. Since
ou = 0 and 0z i1s a boundary we deduce that the “Bockstein homomorphism”

0,: H(M; Z,,) > H, (M, Z) (10)
1s well defined by

I%
X — —;—5—, where X (mod m) ~ xe H (M, Z,,).

One defines analogously the Bockstein homomorphisms between the mod m
and integral cohomology groups:

5.: H(M; Z,) —» Hi*\(M: 2). (11)

3.8. Proposition. For any element xe H(M;Z,), we have 0,x =0 in
H, (M; Z) if and only if x is obtained from an element y of H (M, Z) by
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reduction modulo m:

x=y(modm < 0,x=0.

(The analogous statement is valid for the corresponding cohomology groups of
M: For any x e HY(M; Z7,),

0;x=0 < x=y(modm) forsome ye HYM; 7))

PRrROOF. If x = y(mod m) where y € H (M ; Z), then we can represent x modulo
m by an integral g-cycle X, and then since 0x = 0, we have 0, x = dx/m = 0 1n
H,_,(M; Z2).

Conversely, if 0, x =0 1n H,_(M; Z), then for every integral g-chain X
representing x we must have that dx/m 1s a boundary, so that dx/m = 0z
for some integral chain z. If we then take y = X — mz, we get dy = 0 and
x = y (mod m), as required. This completes the proof. (]

From this result we see that knowledge of 0, (and 0, ) allows us to identify
in “mod m homology” (and cohomology) those cycles which come from
integral cycles via reduction modulo m. As a further application of the pro-
position we have the following fact: The image 0,H,(M; Z,,) in H,_ (M Z)
consists exactly of the m-torsion elements of H,_(M; Z), i.e. of those elements
u such that mu = 0. (This can be seen as follows: on the one hand, for any
element x of H (M; Z,,), we have m(0, x) = 0,(mx) = 0,(0) = 0. For the con-
verse, let v be an integral (¢ — 1)-cycle such that mv 1s homologous to zero 1n
H,_(M; Z), then mv = 0x for some integral g-chain x. Reducing modulo m
the coefficients 1n x, we obtain a g-chain x with coefficients in Z,, which, in
view of mv = 0X, satisfies 0x = 0, i.e. is a cycle. Hence v = 0x/m 1s the image
under J; of a g-cycle, namely x.)

Example. For M = RP? (triangulated as described below) and G = Z,, it
turns out that (see Proposition 3.11 below, and §4, Example (f))

H,(RP%;7Z,) ~ 7, ~ H,(RP?; Z).

Hence, in view of the preceding application of Proposition 3.8, the map
0,: H,(RP*;Z,) - H,(RP?; Z) must in fact be an isomorphism.

EXERCISE

Show that for every non-orientable manifold M" (triangulated—see below) the group
H (M"; Z,) contains a cycle [M"] = x (see Corollary 3.12 below) such that ¢, x has
order 2 in H,_,(M"; Z) (and so, 1in particular, d, x # 0). (For the coholomogy groups
of M" the analogous assertion is valid: There is an element u in H'(M"; Z,) such that

o, u has order 2 in H*(M"; Z).)

We turn now to the application of the above theory to an arbitrary

manifold M. Since the homology theory of simplicial complexes is essentially
combinatorial (or algebraic) we can apply it to any “triangulation” of M, that
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is, any subdivision (if such exists) of M into “smooth simplexes” in such a way
that it becomes, in essence, a simplicial complex.

Thus we define a smooth k-dimensional simplex ¢* to be a smooth embed-
ding of an ordinary k-simplex, together with some open neighbourhood of it
in R* into M. We then say that the manifold M" is triangulated if it is
subdivided into smooth simplexes in such a way as to form a simplicial
complex (of dimension n) (i.. if the smooth simplexes of the subdivision satisfy
the conditions (1) and (i1) of Definition 3.3).

Here are two important facts:

(1) The homology and cohomology groups of a triangulable manifold are
independent of the triangulation, and homotopically invariant (i.e. in-
variant under homotopy equivalences). (See §6 for the proof.)

(11) For G = R the simplicial cohomology groups of a manifold M determined
by any triangulation, coincide with the cohomology groups of M defined
(in §1) in terms of differential forms on M. (See the conclusion of §14.)

We now give some indication as to why the latter statement holds. To this
end, let ¢* be any smooth k-simplex of the (triangulated) manifold M, and let
w, be any differential form of rank k on M. We denote the integral of the form

w, over the simplex ¢* by {w,, 6*):
(o, %) = J Wy, (12)

Extending via linearity we then define {w, ¢, ), for any k-chain ¢, = ) ;r,0}
with real coefficients, by setting

Wy € ) = Z Fi J

g

Wy = J Wy, (13)

where the last equality constitutes the definition of the integral of the form w,
over the k-chain c,. From the general Stokes formula (see Part I, §26.3) it
follows that for any (k + 1)-chain ¢ we have

J dw, = f Wy, 1.€. {dwy, ¢)> = {wy, 0C). (14)
C Jc

Thus by means of (13) we can associate with each k-form w on M, a linear
functional on the space of k-chains of the triangulation of M. If ¢ and ¢ are
homologous k-cycles, say ¢ = ¢ + dc’, and w is closed, then in view of (14),

{w,c) ={w,¢) + {dw, c') = <w, ¢).

Furthermore, if w 1s exact, then 1t easily follows from (14) that {(w, ¢> = 0 for
every k-cycle c, so that exact k-forms are associated with the zero linear
functional on the space of k-cycles. We conclude that: For each k, equation
(13) determines a linear map from the space H*(M; R), defined in terms of the
closed k-forms on the manifold M, to the space of linear functionals on the
simplicial homology group H,(M; R).
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To obtain statement (1) in full, one needs of course to show that this linear
map 1n bijective, 1.€. that every linear functional on H,(M; R) can be expressed
as 1n (13), and that a closed but not exact k-form on M gives rise via (13) to a
non-zero linear functional on H, (M; R). We shall not however pursue this

further here.
Let M" be a closed, connected manifold. It 1s not difficult to see that in any

triangulation of M", ie. subdivision as an n-dimensional complex, each
(n — 1)-simplex 1s a face of precisely two n-simplexes; we exploit this fact in
proving the following three assertions.

3.9. Theorem. If M" is a closed and connected manifold of dimension n, admit-
ting a finite triangulation, then

Hn(Mn; ZZ) = ZZ
(where Z, is, as usual, the 2-element group of residues modulo 2).

PRrOOF. Clearly, a k-chain over Z, = {0, 1} is simply a finite sum of k-simplexes,
i.e. has the form ) ; 6, and furthermore the orientation of simplexes plays no
role in this case. Hence over Z, we have, for any k-simplex o*,

k
60”‘ — Z O'ik_l,
1=0

where the 67 ™',i =0, ..., k, are the faces of o*. If now z = ) ; ¢/ is the sum of
all the (finitely many) n-simplexes, then in the sum 0z = ) ;da", each (n — 1)-
simplex of the complex will occur exactly twice (by the remark immediately
preceding the statement of the theorem). Hence 0z = 0. Since z 1s (for similar
reasons and since M is connected) the only non-zero n-cycle, the theorem 1s

proved. []

For manifolds which are in addition orientable, we have the following
stronger result:

3.10. Proposition. For every closed, connected and orientable n-dimensional
manifold M" (admitting a finite triangulation), the nth homology group
H_(M"; G) is isomorphic to G for every abelian group G.

PROOF. Choose an orientation of the manifold, 1.e. at each point of M" choose
one of the two possible orientation classes of tangent frames in such a way
that the class varies continuously with the points (see Part II, §2.1). Orient the
n-simplexes 1n accordance with the chosen orientation of M". (This will
determine, up to cyclic permutations, an ordering of the vertices of each
n-simplex.) Then if two n-simplexes o] and ¢} intersect in an (n — 1)-simplex
o"~! (as depicted for the case n = 2 in Figure 3), that (n — 1)-simplex will occur
as a term 1n the boundaries dof and da; with opposite signs prefixed. Hence
the n-chain [ M"] = Zi o, In which all n-simplexes occur, each with coeflicient
1, will again be a cycle. It is easy to see (again by the connectedness assumption
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Figure 3

together with the remark preceding Theorem 3.9) that 1n fact the n-cycles are
just the chains of the form g[ M"], g € G. Since there are no n-dimensional
boundaries, the proposition follows. ]

3.11. Proposition. For every non-orientable, connected, closed, n-dimensional
manifold M" (admitting a finite triangulation) we have

H(M"7)=0, HM"Z,)~Z,

PRrROOF. We have already seen, in Theorem 3.9, that H,(M"; 7,) ~ 7Z,. We need
to show here, therefore, only that the nth integral homology group of M" 1s
zero. The connectedness assumption together with the remark preceding
Theorem 3.9 imply as before that every non-zero n-cycle has the form z =
AY ;of, where 4 is a non-zero integer, and the sum is over all n-simplexes
(suitably oriented). If two n-simplexes o] and o5 intersect in an (n — 1)-simplex,
then this simplex enters into the boundaries do; and do; with opposite signs
if and only if the simplexes o7 and o5 happen to agree in their orientations.
Hence 0z = 0 if and only if the orientations chosen on all n-simplexes agree,
1.. if and only if the manifold M" is oriented. This contradiction completes

the proof. L]

3.12. Corollary (cf. the exercise above). Let [M"] = ) ;07 denote the sum of
all n-simplexes of (some finite triangulation of ) a non-orientable manifold M"

(the “ fundamental class” of M"). Then [ M"] generates the group H ,(M"; 7 ,),
and in the group H,_,(M™"; Z) we have

0. [M"]#0, 23,[M"]=0.

We shall, for the remainder of this section, concentrate our attention on
2-dimensional smooth manifolds. We shall, to be more specific, be concerned
with the question as to whether such manifolds can be triangulated, and with
the problem of classifying them. We shall in fact show how to classify com-



§3. Simplicial Complexes. Their Homology and Cohomology Groups 33

pletely all connected, closed, 2-dimensional smooth manifolds. (Recall that
“closed” means “compact and without boundary”.)

3.13. Lemma. Every connected, closed, 2-dimensional smooth manifold M?
admits a finite triangulation, i.e. can be subdivided by means of smooth curves
into finitely many smooth triangles (smooth 2-simplexes) in such a way that any
two of these triangles intersect either not at all, or in a single common vertex
(O-face), or in a single common edge (1-dimensional face).

PROOF. By §9 of Part I, we may assume our manifold M? embedded in some
finite-dimensional Euclidean space, and then M? will have a Riemannian
metric induced on 1t by the Euclidean metric on that Euclidean space. There
then exists a (small) number ¢ > 0 such that whenever two points x, y € M?
are such that p(x, y) < ¢ (where p is the distance function on M? determined
by the induced Riemannian metric—see Part II, §1.2), there is a unique
shortest geodesic arc y, , in M? joining them (cf. Part I, §§29.2, 36.2). About
each point x of M? we can find an open neighbourhood N, of radius < ¢/2
diffeomorphic to an open disc, and then 1inside N, we can find a closed region
D, containing x, diffeomorphic to a closed disc, and with its boundary made
up of geodesic arcs of length < ¢ (verify this!). Since M? is compact we can
cover it with finitely many of these discs, say D,, ..., Dy. Clearly, each of these
discs can be finitely triangulated by means of geodesic arcs. On the regions of
overlap of two or more of the D, the geodesic arcs representing the edges of
their respective triangulations can intersect in at most finitely many points
(unless they coincide for all or part of their length); it follows that by admitting
finitely many additional points to the triangulations of the discs D;, we shall
obtain a finite triangulation of M2, as required. ]

Remark. In fact every differentiable manifold, and every 2- or 3-dimensional
(continuous, but not necessarily differentiable) manifold can be triangulated.
These results are more difficult, however, and we shall omit their proofs.

We now turn to the classification theorem for closed, connected 2-
manifolds. We shall show that, up to a diffeomorphism, every such manifold
1s a member of one of the following two series. The first series 1s made up of
the manifolds M, g =0, 1, 2, ..., the spheres-with-g-handles (or “orientable
closed surfaces of genus g”). These manifolds can be smoothly embedded 1n
R°> as surfaces; see Figure 4. As we saw in Part I1, §4.2, they arise in particular
as the Riemann surfaces of complex algebraic functions of the form
w = _-|;.\/ P.(z), where P,(z) is a polynomial without repeated roots; thus
the manifold in CP* whose points are the solutions (z, w) (in homogenized
form) of the equation w? = P,(z), is (essentially) diffecomorphic to M/ where
n=2g+1or2g+ 2

The members of the second series of manifolds M7, u=1, 2, ..., are
obtained as follows. From the sphere S*, u pairwise non-intersecting open
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1

Figure 4. The sphere-with-g-handles S* + (g) = M_ . (In the figure, g = 3.)

discs D? are removed, and then each of the resulting u holes is closed up by
identifying each pair of diametrically opposite points of its boundary (see
Figure 5(a)). (This process is called “attaching u Mobius bands to $*”, to
obtain a “sphere-with-u-crosscaps”.)

In particular, the surface M., is the real projective plane (Figure 5(b)),
and M7_, is the Klein bottle. (Recall that in Part II, §§16.2, 18.2, the Klein
bottle was defined as the orbit space of the action of a certain discrete group
of motions of the plane; that in this realization the Klein bottle is diffeomor-
phic to M?_, can be seen from Figure 5(c).)

A priori one might expect there to be an independent third “mixed” type
of surface, obtained by attaching g handles and u crosscaps to S°. However,
each such “mixed” type of surface 1s in fact already accounted for among the
M?. This can be seen as follows: Consider, to begin with, the surface obtained
by attaching a single handle and a single crosscap; by moving one end of the
handle until the circle S', in which it meets the sphere, is on the attached

S

(b)

Figure 5. (a) The manifold M7 = S* + (u) (where in the figure u = 4) obtained by
attaching u crosscaps (Mobius bands) to the sphere S*. (b) The real projective plane
M:_, = RP?. (c) The Klein bottle M;_,.
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Mobius band, then moving it once around the Mobius band and then off it,
the orientation of S! is reversed, so that the end of the handle is now attached
to the inside of the sphere (as in the Klein bottle; see Figure 5(c)). (Figure 6 1s
intended to indicate this process. Note that the handle does not actually meet
the sphere; that i1t seems to do so in the last of the four diagrams comprising
Figure 6, 1s a consequence of the fact that the Klein bottle 1s not embeddable
in R>.) Thus do we see that a sphere-with-one-handle-and-one-crosscap is
diffeomorphic to a Klein bottle-with-crosscap, and therefore, in view of Figure
7 (or, equivalently, Figure 5(c)) to the surface M?_;, the sphere-with-three-
crosscaps (see Figure 8). The upshot 1s that in the presence of at least one
crosscap, each handle can be replaced, via a diffeomorphism, by two crosscaps.

Having quelled this potential initial doubt, we shall now prove rigorously
that every closed, compact 2-manifold M~ is indeed accounted for in one or
the other of the infinite lists {M}}, {M}}.

Thus consider any such manifold M?; by Lemma 3.13 we may assume it
to be finitely triangulated. We make cuts in M? along every edge of the
triangulation, inscribing beforehand, however, the same i1dentifying letter on
both sides of each edge (1.e. on the two faces abutting at each edge), using

Figure 8
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- cll.

11 1]
Figure 9

different letters for different edges, and also indicating on those sides, by means
of arrows, an orientation of the edge (see Figure 9). Our manifold is in this
way transformed into a finite collection of triangles (1.e. 2-simplexes) with their
edges oriented, and labelled with letters in such a way that each letter which
occurs as a label, does so exactly twice, and then on edges of distinct triangles.
Clearly, the labelling and orientation of the edges of the triangles (without
regard to their shape or size) is enough to determine the original manifold M?2.

We now flatten out the triangles (and allow their size and shape to vary)
so that the following reverse process, of partial reconstruction of M?, can be
carried out. We begin with one triangle, attach to it in the prescribed way a
second, and then to the resulting polygon a third trigangle, and so on, always
adjusting the sizes and shapes of the triangles we are adjoining, so that the
resulting region i1s planar and simply-connected (also ensuring, of course, that
the edges where two triangles are joined coincide exactly). At the end of this
finite process we shall obtain a connected, simply-connected, planar polygon
W, whose edges are labelled with letters and oriented. Furthermore, in view
of the properties of the labelling of the edges of the triangles, each label
appearing on an edge of our polygon does so exactly twice. The polygon W
is called a fundamental polygon for M? (clearly not uniquely determined by
the original manifold M?). We now associate with the polygon W a word in
the letters of the labelling as follows: Starting from any vertex of W we trace
out its boundary in a fixed sense, and as we do so write down 1n turn the letters
labelling the edges we traverse, indexing them with exponent + 1 if the sense
in which we are tracing out the boundary agrees with the given orientation
of the edge, and otherwise with the exponent —1 (see the example depicted
in Figure 10).

In this way, with each closed, connected, smooth 2-manifold M? we can
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