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In the introduction to the first volume of The Arithmetic of Elliptic Curves
(Springer-Verlag, 1986), I observed that “the theory of elliptic curves is
rich, varied, and amazingly vast,” and as a consequence, “many important
topics had to be omitted.” I included a brief introduction to ten additional
topics as an appendix to the first volume, with the tacit understanding that
eventually there might be a second volume containing the details. You are
now holding that second volume.

Unfortunately, it turned out that even those ten topics would not fit
into a single book, so I was forced to make some choices. The following
material is covered in this book:
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I. Elliptic and modular functions for the full modular group.
I1. Elliptic curves with complex multiplication.
~III. Elliptic surfaces and specialization theorems.
V. Néron models, Kodaira-Néron classification of special fibers,
" Tate’s algorithm, and Ogg’s conductor-discriminant formula.
V. Tate’s theory of g-curves over p-adic fields.
VI. Néron’s theory of canonical local height functions.

So what’s still missing? First and foremost is the theory of modular
curves of higher level and the associated modular parametrizations of ellip-
tic curves. There is little question that this is currently the hottest topic
in the theory of elliptic curves, but any adequate treatment would seem to
require (at least) an entire book of its own. (For a nice introduction, see
Knapp [1].) Other topics that I have left out in order to keep this book
at a manageable size include the description of the image of the £-adic
representation attached to an elliptic curve and local and global duality
theory. Thus, at best, this book covers approximately halt of the material
described in the appendix to the first volume. I apologize to those who may
feel disappointed, either at the incompleteness or at the choice ot particular
topics.

; In addition to the complete areas which have been omitted, there are
'“" several topics which might have been naturally included if space had been
available. These include a description of Iwasawa theory in Chapter I,
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vill Preface

the analytic theory of p-adic functions (rigid analysis) in Chapter V, and
Arakelov intersection theory in Chapter VI.

It has now been almost a decade since the first volume was written.
During that decade the already vast mathematical literature on elliptic
curves has continued to explode, with exciting new results appearing with
astonishing rapidity. Despite the many omissions detailed above, I am
hopetul that this book will prove useful, both for those who want to learn
about elliptic curves and for those who hope to advance the frontiers of our
knowledge. I offer all of you the best of luck in your explorations!

Computer Packages

There are several computer packages now available for performing compu-
tations on elliptic curves. PARI and SIMATH have many built-in elliptic
curve functions, there are packages available for commercial programs such
as Mathematica and Maple, and the author has written a small stand-alone
program which runs on Macintosh computers. Listed below are addresses,
current as ot March 1994, where these packages may be acquired via anony-
mous ftp.

PARI (includes many elliptic curve functions)
math.ucla.edu 128.97.4.254
megrez.ceremab.u-bordeaux.fr 147.210.16.17

(directory pub/pari)
(unix, mac, msdos, amiga versions available)

SIMATH (includes many elliptic curve functions)
ftp.math.orst.edu
ftp.math.uni-sb.de

apecs (arithmetic of plane elliptic curves, Maple package)
math.mecgill.ca 132.206.1.20

(directory pub/apecs) |

Elliptic Curve Calculator (Mathematica package)

Elliptic Curve Calculator (stand-alone Macintosh program )
gauss.math.brown.edu 128.148.194.40

(directory dist/EllipticCurve)

A description of many of the algorithms used for doing computations on
elliptic curves can be found in H. Cohen [1, Ch. 7] and Cremona [1].
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many results which are now considered “standard” have been presented as
such. In any case, I claim no originality for any of the unlabeled theorems
in this book, and apologize in advance to anyone who may feel slighted.
Sources which I found especially useful included the following:

Chapter I  Apostol [1], Lang [1,2,3], Serre [3], Shimura (1]
Chapter II Lang [1], Serre [6], Shimura [1]

Chapter IV Artin [1], Bosch-Liitkebohmert-Raynaud [1], Tate 2]
Chapter V. Robert [1], Tate [9]

Chapter VI Lang [3,4], Tate {3]
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unpublished manuscript (Tate [9]) containing the theory of g-curves over
complete fields. This material, some of which is taken verbatim from Prc?-
fessor Tate’s manuscript, forms the bulk of Chapter V, Section 3. In addi-
tion, the description of Tate’s algorithm in Chapter 1V, Section- 9, follo:ws
very closely Tate’s original exposition in (2], and I appreciate his allowing

me to include this material. o | |
Portions of this book were written while I was visiting the University

of Paris VII (1992), IHES (1992), Boston University (1993), and Hfa,rvard
(1994). 1 would like to thank everyone at these institutions for their hos-
pitality during my stay:. |
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Introduction

In the first volume of The Arithmetic of Elliptic Clurves, we pre-
sented the basic theory culminating in two fundamental global results,
the Mordell-Weil theorem on the finite generation of thé group of rational
points and Siegel’s theorem on the finiteness of the set of integral points.
This second volume continues our study of elliptic curves by presenting six
important, but somewhat more specialized, topics.

We begin in Chapter I with the theory of elliptic functions and modular
functions for the full modular group I'(1) == SL2(Z)/{£1}. We develop this
material in some detail, including the theory of Hecke operators and the L-
series associated to cusp forms for I'(1). Chapter II is devoted to the study
of elliptic curves with complex multiplication. The main theorem here
states that if K/Q is a quadratic imaginary field and if £/C is an elliptic
curve whose endomorphism ring is isomorphic to the ring of integers ot K,
then K (j(E)) is the Hilbert class field of K; and further, the maximal
abelian extension of K is generated by j(E) and the z-coordinates! of the
torsion points in E(C). This is analogous to the cyclotomic theory, where
the maximal abelian extension of Q is generated by the points of fnite
order in the multiplicative group C*. At the end of Chapter IT we show
that the L-series of an elliptic curve with complex multiplication is the
product of two Hecke L-series with Grossencharacter, thereby obtaining at
one stroke the analytic continuation and functional equation.

The common theme of Chapters III and IV is one-parameter families
of elliptic curves. Chapter IIT deals with the classical geometric case, where
the family is parametrized by a projective curve over a field of characteristic
zero. Such families are called elliptic surfaces. Thus an elliptic surface
consists of a curve C, a surface €, and a morphism 7 : € — C such that
almost every fiber 7% (¢) is an elliptic curve. The set of sections

{maps o : C — &€ such that moo(t) = t}

L

I 1f §(E) = 1728 or j(E) = 0, one has to use z° or z° instead of .
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2 Introduction

to an elliptic surface forms a group, and we prove an analogue of the
Mordell-Weil theorem which asserts that this group is (usually) finitely

generated. In the latter part of Chapter IIl we study canonical heights

and intersection theory on € and prove specialization theorems for both
the canonical height and the group of sections.

Chapter IV continues our study of one-parameter families of ellip-
tic curves in a more general setting. We replace the base curve C by a
scheme S = Spec R, where R is a discrete valuation ring. The generic fiber
of the arithmetic surface £ — S is an elliptic curve F defined over the
fraction field K of R, and its special fiber is a curve € (possibly singular,
reducible, or even non-reduced) defined over the residue field & of R. We
prove that if € — S is a minimal proper regular arithmetic surface whose
generic fiber is F, and if we write € for the part of € that is smooth over S,
then € is a group scheme over S and satisfies Néron’s universal mapping
property. In particular, F(K) = E(R); that is, every K-rational point on
the generic fiber E extends to an R-valued point of €. We also describe the
Kodaira-Neron classification of the possible configurations for the special
fiber € and give Tate’s algorithm for computing the special fiber. At the
end of Chapter IV we discuss the conductor of an elliptic curve and prove
(some cases of) Ogg’s formula relating the conductor, minimal discrimi-
nant, and number of components of C.

In Chapter V we return to the analytic theory of elliptic curves. We
begin with a brief review of the theory over C, which we then use to analyze
elliptic curves defined over R. But the main emphasis of Chapter V is on
elliptic curves defined over p-adic fields. Every elliptic curve E defined
over C is analytically isomorphic to C*/¢% for some ¢ € C*. Similarly,
Tate has shown that if E is defined over a p-adic field K and if the j-
invariant of £ is non-integral, then F is analytically isomorphic to K* /g%
for some ¢ € K*. (It may be necessary to replace K by a quadratic
extension.) Further, the isomorphism E(K) = K* /g% respects the action
of the Galois group Gg g, a fact which is extremely important for the
study of arithmetic questions. In Chapter V we describe Tate’s theory
of g-curves and give some applications.

The tinal chapter of this volume contains a brief exposition of the
theory of canonical local height functions. These local heights can be used
to decompose the global canonical height described in the first volume
AEC, VIII §9]. We prove the existence of canonical local heights and give
explicit formulas for them. Local heights are useful in studying some of the
more refined properties of the global height.

As with the first volume, this book is meant to be an introductory text,
albeit at an upper graduate level. For this reason we have occasionally made
simplitying assumptions. We mention in particular that in Chapter II we
restrict attention to elliptic curves whose ring of complex multiplications
Is integrally closed; in Chapter III we only consider elliptic surfaces over
fields of characteristic 0; and in Chapter IV we assume that all Dedekind
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Introduction 3

domains and discrete valuation rings have perfect residue fields. Possibly
it would be preferable not to make these assumptions, but we feel that the
loss of generality is more than made up for by the concomitant clarity of

the exposition.

Prerequisites

The main prerequisite for reading this book is some familiarity with the ba-
sic theory of elliptic curves as described, for example, in the first volume.
Beyond this, the prerequisites vary enormously from chapter to- chapter.
Chapter I requires little more than a first course in complex analysis. Chap-
ter IT uses class field theory in an essential way, so a brief summary of class
field theory has been included in (II §3). Chapter III requires various clas-
sical results from algebraic geometry, such as the theory of surtaces and
the theory of divisors on varieties. As always, summaries, references, and
examples are supplied as needed. |

Chapter IV is technically the most demanding chapter of the book.
The reader will need some acquaintance with the theory of schemes, such
as given in Hartshorne [1, Ch. II} or Eisenbud-Harris |[1]. But beyond that,
there are portions of Chapter IV, especially IV §6, which use advanced
techniques and concepts from modern algebraic geometry. We ham? .at-_-a
tempted to explain all of the main points, with varying degrees of precision
and reliance on intuition, but the reader who wants to fill in every detail
will face a non-trivial task. Finally, Chapters V and VI are basically self-
contained, although they do refer to earlier chapters. More precisely, the
interdependence of the chapters of this book is illustrated by the following

guide:

Ch. I1

/\
Ch. 1 > |Ch. VI Ch. III| ---+|Ch. IV

~ Ch. V 4

The dashed line connecting Chapter III to Chapter 1V is meant to indi(?ate
that although there are few explicit cross-references, mastery of the S}lb ject
matter of Chapter III will certainly help to illuminate the more difficult

material covered in Chapter 1V.

References and Exercises

The first volume of The Arithmetic of Elliptic Curves (Springer-Verlag,
1986) is denoted by [AEC], so for example [AEC, VIIL.6.7] is Them:em 6.7
in Chapter VIII of [AEC]. All other bibliographic references are given by
the author’s name followed by a reference number in square brackets, for
example Tate [7, theorem 5.1]. Cross-references within the same chapter
are given by number in parentheses, such as (3.7) or (4.5a). References
from within one chapter to another chapter or appendix are preceded- by
the appropriate Roman numeral or letter, as in (IV.6.1) or (A §3). Exercises
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4 Introduction

appear at the end of each chapter and are numbered consecutively, so, for
example, exercise 4.23 is the 23*¢ exercise at the end of Chapter IV.

Just as in the first volume, numerous exercises have been included at
the end of each chapter. The reader desiring to gain a real understanding of
the subject is urged to attempt as many as possible. Some of these exercises
are (special cases of) results which have appeared in the literature. A list
of comments and citations for the exercises will be found at the end of the
book. Exercises marked with a single asterisk are somewhat more difficult,
and two asterisks signal an unsolved problem.

Standard Notation
Throughout this book, we use the symbols

Z, Q, R, C, F,, and Z,

to represent the integers, rational numbers, real numbers, complex num-
bers, fleld with ¢ elements, and p-adic integers respectively. Further, if R
is any ring, then R* denotes the group of invertible elements of R; and if A
is an abelian group, then Alm| denotes the subgroup of A consisting of all

elements with order dividing m. A more complete list of notation will be
found at the end of the book.
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CHAPTER 1

Elliptic and Modular Functions

In most of our previous work in [AEC], the major theorems have been of
the form “Let E/K be an elliptic curve. Then E/K has such-and-such
a property.” In this chapter we will change our perspective and consider
the set of elliptic curves as a whole. We will take the collection of all
(isomorphism classes of) elliptic curves and make it into an algebraic curve,
a so-called modular curve. Then by studying functions and differential
forms on this modular curve, we will be able to make deductions about
elliptic curves. Further, the Fourier coefficients of these modular functions
and modular forms turn out to be extremely interesting in their own right,
especially from a number-theoretic viewpoint. We will be able to prove
some of their properties in the last part of the chapter.

This chapter thus has two main themes, each of which provides a
paradigm for major areas of current research in number theory and alge-
braic geometry. First, when studying a collection of algebraic varieties or
algebraic structures, one can often match the objects being studied (up
to isomorphism) with the points of some other algebraic variety, called a
moduli space. Then one can use techniques from algebraic geometry to
study the moduli space as a variety and thereby deduce facts about the
original collection of objects. A subtheme of this first main theme is that
the moduli space itself need not be a projective variety, so a first task is to
find a “natural” way to complete the moduli space.

Our second theme centers around the properties of functions and dit-
ferential forms on a moduli space. Using techniques from algebraic geom-
etry and complex analysis, one studies the dimensions of these spaces ot
modular functions and forms and also gives explicit Laurent, Fourler, and
product expansions. Next one uses the geometry of the objects to define
linear operators (called Hecke operators) on the space of modular forms,
and one shows that the Hecke operators satisfy certain relations. One then
takes a modular form which is a eigenfunction for the Hecke operators
and deduces that the Fourier coefficients of the modular form satisty the
same relations. Finally, one reinterprets all of these results by associating
an L-series to a modular form and showing that the L-series has an Fuler
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product expansion and and analytic continuation and that it satishies a
functional equation.

§1. The Modular Group

' Recall [AEC VI1.3.6] that a lattice A C C defines an elliptic curve E/C via
the complex analytic map

C/A—-%EA C):y2:4563—-—ggzn-—g3
2+ (p(z;A), 0 (25 4)).

| Here . . .

A) = —

L2 ) 2 T Z v ()2 w2
{.UEA

i w0

i | is the Weierstrass p-function relative to the lattice A. See |AEC VI§3|.
' Further, if A; and Ay are two lattices, then we have

En, /¢ Ea, if and only if A; and A; are homothetic.

See [AEC VI.4.1.1]. Recall A; and Ay are homothetic if there is a num-
ber ¢ € C* such that A1 = cAas. :

Thus the set of elliptic curves over C is intimately related to the set
of lattices in C, which we denote by L:

B

e

An Oriented Basis for the Lattice A
Figure 1.1

-

o
P ——

.

o Ep ey A=

L, = {lattices in C}. 3gf Since we only care about A up to homothety, we can normalize our
| basis by looking instead at

We let C* act on L by multiplication,

R

cA = {cw :w € A}. | iA:Zﬁ—I-Z. |
f; wp oW
Then the above discussion may be summarized by saying that there is an | o
‘njection Our choice of orientation implies that the imaginary part of w; /w2 satisfies
| L/CF o {elliptic curves defined over C}
) { C-isomorphism | Im(w /wz) >0,

According to the Uniformization Theorem for Elliptic Curves (stated : .
| but not proven in [AEC VL5.1]), this map is a bijection. One of our goals . which suggests looking at the upper halt-plane
in this chapter is to prove this fact (4.3). But first we will need to describe
the set L /C* more precisely. We will put a complex structure on L JC*,
and ultimately we will show that £/C* is isomorphic t0 C.

; Tet A € L. We can describe A by choosing a basis, say

o

SEIEEEy

Ty F e

H={r €C:Im(r) > 0}.

AL A P B s

We have just shown'that the natural map

—

-

A = Zwy + Zwa. " | H— L/C7,

o | . ‘ T N, =21+ Z
Switching w; and ws if necessary, we always assume that the pair (ws, W1)

gives a positive orientation. That is, the angle from w2 to wi 18 positive
| and between 0° and 180°. See Figure 1.1.)

BT R

ig surjective. It is not, however, injective. When do two 7’s give the same
lattice? We start with an easy calculation.

£ e Lo e e L R e

Pt
[
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Lemma 1.1. Leta, b, c.d
.+l 0, C, A & R; ' '
TeC, 7 ¢ R. Then Lemma 1.2. (a) Let A C C be a lattice, and let wi,ws and wy,w5 be two

oriented bases for A. Then
Im (m— T b) _ (ad — be) Im(r) Wy = aw + bws
¢T+d e +df2 wh = cwi + dws
2

for some matrix (i g) € SLa(Z).

(b) Let 1,7 € H. Then A, is homothetic to A, if and only if there is a

PROOF. Let 7 = st Multiplying numerator and denominator by ¢7 4
’ matrix

we find

a b ati + b
h th = :
(c d) e S1x(Z) such that To p—

ot +b _ {adt|? + (ad + be)s + bd} + {(ad — be)t)s
C d :
T T + d|? (c) Let A € C be a lattice. Then there is a ™ € H such that A is homothetic

to N = Z1 + 7.

PROOF. (a) This was done above.
(b) Using (a), we find that

) The amjbiguity In associating a 7 € H to a lattice A lies in chbosing an
oriented basis for A. Suppose that we take two oriented bases

A = Tt + T, = Zus) + Teot, A, is homothetic to A,
- | = Z1o + 7 = Zam + Za  for some a € C*,
en there are integers a, b, c, d,a’, b, ¢, d so that T2 = aQaT) + bo a b
e 42 : for some € Sla(Z),
, 1 = cam + da cd
W) = aw) + bws, W1 = a'wy + b'wh, at +b

/
3] ' | /
2 Cw1+dw§.

I
£
+
3

wWo

Substituting the left-hand €xpressions into the right-hand ones and using gzngrf;sely, fr +b)/(CT1 +d) et = end. Then again using (2),

e fact that w) and w; are R-linearly independent, we see that ol =Z(amy +b) + Z(er +d) =Zm +Z = A

a b a v
c d o
Further, using Lemma 1.1 (with 7
bases are oriented, we find that

1 0 Hence A,, and A,, are homothetic.
( ) . (c) Write A = w1 Z + woZ with an oriented basis and take 7 = w;/wa.

0 1

In view of Lemma 1.2(b), it is natural to define an action of SLy(Z}
on H as follows:

. r ~ o+ ¢
0 < Im ( ‘*’1) —Im ( ot +bw2) _ (ad — be) Im(wy /uwp) T ervad T ( d) € SLa(g) end T €N
cwy + dw 3
' 2 e(wn/ wz) + d| The fact that v7 is in H follows from Lemma 1.1, and the fact that this de-

fines a group action is an easy calculation. This action gives an equivalence
relation on the points of H, and Lemma 1.2(b) tells us what the cosets are.

There is a bijection

I

w1/wz) and the fact that our

B e L P M g

R i

e e S S S

F R S Y R
TR e e i

and so

ad — be > 0.

o

—
DR S e 4 g v e v

In other words, the matrix ( g 3) is in the special linear group over 7. SLy(Z)\H oReloSORe L /C,

FE T — A'T "

SR e e

e R e T
CEEER P

TR

We can actually do a little bit better, since the matrix

(c d) ESLz(Z)z{(’y 5) :a,ﬁ,v,éEZ,aé—ﬁry=1}, ~1 0
—1= ( 0 --—1)

L'his proves the first half of the following lemma.. acts trivially on H

TR B i e
;-Iﬁﬁ%ﬁ&;ﬁ%ﬁ&r:f.a}mﬁwﬁxWM?H%%ﬁﬁffkﬂﬁﬁ?ﬁﬁi‘ﬁﬁfxﬁi%fééi S

I ST -
?.:-': S Sl b i
&
F
|
b
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Definition. The modular group, denoted I'(1), is the quotient group

I'(1) = SL» (Z)/{::l}.

Although I'(1) is the quotient SLy(Z) /{£1}, we will generally just

write down matrices and leave it to the reader to remember that ('61 _(.) 1)

1s equal to (6 (1)) For an explanation of the notation I'(1), see exercise 1.6
where we define groups I'(V) for all integers N > 1.

Remark 1.3. Note that 41 are the only elements of SL2(Z) which fix H.
For suppose that v = (g’ 3) satisfies y7 = 7 for all 7 € H. This means
that

¢’ —(d—a)r—b=0 for all 7 € H,

from which we conclude that ¢ = b= 0 and ¢ = d. Hence v = *£1.

Remark 1.4. The group I'(1) contains two particularly important ele-
ments, which we will denote

0 —1 1 1
5= 1 0 )° b= 0 1
Their action on H is given by _1 _1 / 0 1 /5 1
S('T) = -—-l, T(t)=7+1. ' F and Some of Its I'(1)-Translates
- __ -
Figure 1.2
Notice also that the elements S and ST = (? “11) have finite order, (i) Re(7) = — % and 4T =74 1;
2 3 (ii) Re(7) = —%— and T =7—1;
2=(? 1y 1 ama sr=(0 -1 =1
1 0 I | o (iii) =1 and ~7=-1/T.
so I'(1) contains finite subgroups of order 2 and 3. (c) Let T € F, and let
| The next proposition provides us with a good description of the quo- I(1) = {’}’ e I'(1) 1 y7 = T}
tient space I'(1)\H. be the stabilizer of 7. Then
Proposition 1.5. Let ¥ C H be the set {1,8} ifT=14; |
| 17y = J {LST(ST?} if 7= p =278,
F={reH:|r[>1 and |Re(r)| <1}. VTVALTS (787} ifr = —p =S
1 {1} otherwise.
i See Figure 1.2 for a picture of F and some of its translates by elements
ié (()f I'(1).) ;ﬁff; Proor. (a) We prove something stronger. Let IV be the subgroup of I'(1)
z (a) Let 7 € H. Then there is a v € I'(1) such that yr € F. generated by S = ((1) _01) and T = ((1) %), and let 7 € H. We will prove
(b) Suppose that both T and YT are in F for some vy € I'(1), v # 1. Then that there is a ~ € I” such that 47 € F.
one of the following is true:
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For any v = (fg 3) € I'(1), Lemma 1.1 says that

- Im(7)
et + d|?2

Im(~y7)

Write 7 = s + it. Since £t > 0, it is clear that
et +d|* = (cs+d)* + (ct)? = 00 as |c| +|d| — oco.

Hence, for our fixed 7, there is a matrix v¢ € IV which mazimizes the
quantity Im(yo7). Next, since 7™7 = 7 4+ n, we can choose an integer n so
that

‘Re(T”fygT)| < —-12-

We set v = 1" and claim that v7 € 7.
Suppose to the contrary that v ¢ F. By construction, ]Re(fy’r)l < %,
so we must have |y7| < 1. But then

Im(S~vT) =

contradicting the choice of yo7 to maximize Im(yy7). This contradiction
shows that yr € F, which completes the proof of (a).

(b,c) We may assume that Im(y7) > Im(7), since otherwise we replace

the pair 7,47 by the pair ~T, 7“1(77). Writing v = (g’ 3) as usual, we

have
Im(7)

B leT + d|?’

Im(7) < Im(y7) so Jer+d| < 1.

Since Im(7) > /3, we must have |c| < 2/4/3, so |¢| < 1. Replacing ~
by —~ if necessary, it suffices to consider the cases ¢ =0 and ¢ = 1.

c=10
Then a =d=1 and y7 = 7 + b. Since

| Re(7)]| < 2 and | Re(y7)| = |Re(T + b)| < 2,

it follows that
b= 41 and

Re(7) = 13

e T

c=1

By assumption, |7| > 1 and |7 +d| < 1. Writing 7 = s+ ¢, this means that

1 < 5% 4t and (s+d)* +t* < 1;

SO
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1<s?+t2<1-2ds—d’=1-d(d+1)—d(2sF1).

Since d € Z, the quantity d(d % 1) is non-negative. Similarly since |s| < -
the quantity d(2s F 1) is non-negative for one of the choices of + /— sign.

We conclude that

rl=s*+t*=1 and d(2s+d)=0.

We now look at several subcases.
c=1,d=0

Then v = (‘f "61), and since |7} = 1, we have

L > |Re(y7)| =|Re(a — 77| =Ja—s|

Hence one of the following three cases holds:

GIO, ‘Sif—%} IT|= ? fY:S: "}/’T:—-l/?‘;
a =1, S = %: T=—p Y= TSa f}/(_ﬁ—)) = =P
&Z—l, 3:—%—, T =0 ’7:(ST)2: TP =P
c=1d=18=—%
Then 7 = p and vy = [‘f’a’zl),so
1 ot o
T=2a = :
7 p+1
Since y7 € F, this leads to two cases:
a=0, v=57, Yo = P
CL:]., :(%?): ’sz_ﬁ

c=1,d=-1,8=4%

Then 7= —p, v = (‘f "_G’_E 1), and vy = a + T, so just as in the previous

case there are two possibilities:

a =0,

a=-1, = (_11 .91): v(=p) = p.

The geometric description of the quotient space I'(1)\H provided by
Proposition 1.5 can be used to give a quick proof of the following purely

algebraic fact.
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Corollary 1.6. The modular group I'(1) is generated by the matrices

0 -1 1 1
S = (1 0 ) and I = ( 0 1) .
PrOOF. As in the proof of Proposition 1.5(a), we let IV be the subgroup

of I'(1) generated by S and 7. Fix some 7 in the interior F, such as 7 = 2t.
Let v € I'(1). From the proof of (1.5a) there is a ' € I'" such that +'(y7) €

F, Thus 7 is in the interior of F, and (v/+)7 is in F. We conclude from (1.5b) ~
that vy’ = 1. Therefore v = 4'~! € IV, which proves that I'" = I'(1). —
topological

Remark 1.6.1. It is in fact true that I'(1) is the free product of its sub-
groups (S) and (ST of orders 2 and 3. See exercise 1.1.

§2. The Modular Curve X (1)

The quotient space I'(1)\H classifies the set of lattices in C up to homoth-
ety. Proposition 1.5 provides a nice geometric description of I'(1)\H. The Figure 1.3
vertical sides of the fundamental domain F are identified by 7', and the
two arcs of the circle |7| = 1 are identified by S, as shown in Figure 1.3.
Making these identifications, we see that as a topological space, I'(1)\H
looks like a 2-sphere with one point missing. Our next tasks are to supply
that missing point, define a topology, and make the resulting surface into
a Riemann surface.

Rather than adding a single point to I'(1)\H, we will give a more gen- |
eral construction which is useful for generalizing the results of this chapter. I(c0) = {(% ?) c I’(l)} = (the subgroup of I'(1) generated by T').

Definition. The extended upper half-plane H* is the union of the upper
half-plane H and the Q-rational points of the projective line,

Lemma 2.1. (a)

(b) The stabilizer in I'(1) of co € H* is

| Tet [Z] € P1{Q) be any point in H* <  H. Since z and y are
homogeneous coordinates, we may assume that x,Y 5 )
One should think of P*(Q) as consisting of the rational points on the real Choose a,b € Z so that az + by = 1. Then
axis together with a point at infinity. The points in P*(Q) are called the | , o -
cusps of H*. = ( a b) c T(1) and Y=ol
There is a natural action of I'(1) on P*(Q) defined by -y 7 J1 L
a b\ |z — oz +by _ Therefore every point in H* ~ H is equivalent (under the action of I'(1))
c d Y | | CL T dy_ to 00O
| . _ ' a by 1 1 if and only if ¢ = 0. Hence (a, b) has the
(Here we use [;] to denote homogeneous coordinates for a point in Pl (Q).) (b) We have (C d) { 0] = { 0} 1I and only = U. cd
Thus I'(1) acts on the extended upper half-plane H*. We define form (6 %)

y(1)=D(1)\H and  X(1)=D(1)\H*.

The points in the complement X (1) . Y (1) are called the cusps of X(1).
We now show that X (1) has only one cusp and calculate its stabilizer.

Topologically, X (1) looks like a 2-sphere. To make this precise, m;e
need to describe a topology on X (1). We start by giving a topology for H™.
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Definition. The topology of H* is defined as follows. For T H, we take
. the usual open neighborhoods of 7 contained in H. For the cusp o0, we
:;;.f; take as a basis of open neighborhoods the sets
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§2. The Modular Curve X (1
Lemma 2.3. For any two points 71,72 € H*, let

T1,T2) ={y €' (1) : v = T},

and similarly, for any two subsets Uy, Uy C H*, let |

Up,U2) ={yeT'(1) :~U; NU; # 0}.

Then, for all 71,72 € H*, there exist open neighborhoods Uy, Us C H*
of 11, T2 respectively such that

’7'1}7'2 .

Ula U2

(In other words, if yU; and U, have a point in common, then necessar-

ily ym1 = 72.)

ROOF. For any o, 8 € I'(1) we have

aty, Bre) = BI(T, T a ! an al;, BUs) = BI(U;, Us a L.

-translates of 74 and 7».

It thus suffices to prove the lemma for any
Using (1.5a) and (2.1a), we may assume that

T1, T2 c F* IEFU{OO}

From (1.5) and (2.1), we have a good description of how I'(1) acts on H*
and F*, as illustrated in Figure 1.2. We consider three cases, depending on

{r €H:Im(7) > Kk} U {00} for every x > 0.

For a cusp 7 # oo, we take as a basis of open neighborhoods the sets

{the interior of a circle in H tangent to the real axis at TrU{T}.

See Figure 1.4.

Remark 2.2.1. For any cusp 15 # oo, Lemma 2.1(a says that there is
a transtormation v € I'(1) with 400 = 75. Then one easily checks that y
sends a set of the form {Im(7) > s} to the interior of a circle in H tangent
to the real axis at 75. (See exercise 1.2.) In other words, the fundamental
neighborhoods of co and of the finite cusps are sent one-to-another by the
elements of T'(1).

Remark 2.2.2. From the definition, it is clear that distinct points of H*
have disjoint neighborhoods. Hence H* is a HausdorfF space. It is also clear
from (2.2.1) that the elements of I'(1) define homeomorphisms of H*.

The next lemma will help us describe the topology on the quotient
space X(1) = \H*. It will also be used later to define a complex
structure on X (1). «

i

e d— g b RS

R
¢ = wrr

=LEH L

WA R A T e T

prd,

whether or not our points are at oo.

T, To €F
From (1.5) (or Figure 1.2) we see that I(F,JF) is finite; explicitly,
F) ={1,T,TS,TST,(TS)?, S, ST, STS, (ST)?,T~"}.
| et

= Interior ~vF ).

~eI(F,F)

1s finite, since

Then G is an open subset of H containing &. Further, 1(G, G

ERCIUFR PP F i

’.}/21 y ’71_1 .

Y1,72€1(F,F)

G,5) C YT, ¥ F

' v1,72 €I (F,F)

Crdma

i

Next we observe that if v € I(G,G) ~ I(11,T2), SO0 yv11 # T2, then we
can find open sets V,,, W., in H satisfying

y1€Vy, meW,, and V,NW, =40
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Let |
h=9n () 'V, U2=9n (] W,
~€I(G,9) el($,5
YT (T1,72) ’}'P;:' I ('(?'1 :T:z))

By construction, 71 € U; and m» € Us, so
I(1,m2) C I(U1,Us).
Suppose that they are not equal, say v € I(Uy,U2) . I(71,72). Then
~v € I(G,8) ~ I(r;,72), andso y€I(v 'V,,W,)=I(V,,W,)y.

But V‘,}, NW, =0,so 1 ¢ I(V,,W,). This contradiction shows the other
inclusion and completes the proof that I(r, ) = I(U, U2).

T]ES'F,T2=OO

Let U; be an open disk centered at 7;. As in the proof of Proposition 1.5,
we observe that the quantity

TEVL TEVL ICT + d‘2
vel() (¢ &)er)

is finite. (Note that if 7 = s+ ¢t € V1, then s and ¢ are bounded, so
2
lc7+d|? = (cs+d)°+(ct)? — 00 as |c|+]|d| — oo wuniformly in T € Uy.)

Now
Us = {7 € H:Im(r) > x} U {o0}

will be a neighborhood of co satistying
U1 NU; =0 for all v € T'(1).

Hence
I(UI,UQ) — @ = I(’T},’Tg).

T — To = OO
Let

Uso = {7 € H:Im(7) > 2} U {o0}.

From (1.5) (or Figure 1.2) we see that the only elements of I'(1) which
take some point in U, to another point in U, are powers of 1. Hence
from (2.1b) we conclude that

I(Uso,Uso) = {T* € T(1) : k € Z} = I{00,0).

| N‘ext we define a topology on X (1) and use Lemma 2.3 to show that
.:3( (1) Is a Hausdorff space. Note that this fact requires proof; it is not
immediate from the fact that H* is Hausdorfl. (See exercise 1.3.)

§2. The Modular Curve X (1) 19

Definition. Let
¢ : H* — T(1)\H* = X (1)

be the natural projection. The quotient topology on X (1) is defined by the
conditionthat U C X (1) is open if and only if »~1(U) is open. Equivalently,
'+ is the weakest topology for which ¢ is continuous. Note that ¢ is also an
open map, that is, it takes open sets to open sets. For if W C H* 1s open,

then so is
i ew) = U W
vel'(1)
Proposition 2.4. X(1) with its quotient topology is a compact Hausdorft
space.

PrOOF. We start by checking that X (1) is compact. Let {U;}icr be an
open cover of X (1). Then {Qb_l(Ui)}z‘eI is an open cover of H*. In par-
ticular, some ¢~ 1(U;) contains 0o, say 00 € ¢~1(U;,). By definition of the
topology on H*, there is a constant x > 0 so that

o~ (U;) 2 {r €H: Im(r) > k} U{oo}

[{ence the set F~ ¢~ (U, ) is compact (it is closed and bounded), so there
is a finite subcover

F ¢~ (Uy) C ¢ (Ui U--- U™ (Us).

Then Uy, U - -- U Uy, covers X(1).

Next we verify that X (1) is Hausdorfl. Let z1,Z2 € X (1) be distinct
voints, and let 7,72 € H* be points with ¢(7;) = z;. Then ym # T2 for
all v € T'(1), so in the notation of (2.3), I(11,72) = 0. From (2.3), there
are open neighborhoods U, Uz C H* of 74,72 satisfying I(U1,Uz2) = 0.

Then ¢(U1), p(Us) are disjoint neighborhoods of 71,72

Making X (1) into a compact Hausdorff space is a good start, but recall
that our ultimate goal is to give X (1) a complex structure. We recall what

t§115 means.

Definition. Let X be a topological space. A complex structure on X is
an open covering {U; }ier of X and homeomorphisms

¢h that each ¥;(U;) is an open subset of C and such that for all ¢,5 € {

iwh U;NU; # 0, the map

i ot 1 iU NU;) — (Ui 0 U;)

i hislomorphic. The map 1; 18 called a local parameter for the points in Us;.

= .
e =
i

‘A Riemann surface is a connected Hausdorff space which has a complex

-~ mifgeture defined on it.
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Theorem 2.5. The following defines a complex structure onOX (1) which
gives it the structure of a compact Riemann surface of genus U:

Let z € X(1), choose Tz € H* with ¢(1,) = z, and let U,. C H* be a
neighborhood of 7 satisfying

I(Uy,Uy) = I(7z).

(Such a U, exists from Temma 2.3 with 71 = 70 = 7, and Uz = U N Us.)

Then
I(Tsc)\Usc C X(l)

1 of X(1).
is a neighborhood of z, 50 {I(72)\Us } ¢ x ) 15 an open cover (1)

T F 00 |
Let r = #I(7;), and let g. be the holomorphic isomorphism

T_ng

gm:H——+{ZEC1lZI<1}, gm('?‘)z

T — Ty
Then the map
Vg - I(Tm)\Uaz — C, Ve ((ﬁ(’?‘)) = gz (T)T

is well defined and gives a local parameter at z.

xr = 00

We mayl take 7, = 00, so I(rz) = {T*}. Then

2T if (;'5(7") 7& 00,
Wy - I(’Tm)\Um — C, (12 (c;b('?‘)) — {g if p(1) = o0

is well defined and gives a local parameter at T.

Remark 2.5.1. If I(75) = {1}, then the natural map

b Uy — I(1)\Uz C X(1)

is already a homeomorphism, so

by =¢ 1 I(ma)\Uz — Us

is a local parameter at z. Thus the only real complication occurs when z

equals &(1), ¢(p), or ¢(0). (See also exercise 1.4.)

i

o

-:-__ B
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Remark 2.5.2. The following commutative diagrams. illustrate the defi-
nitions of the local parameters ¢, : I(7,)\U, — C.

U, 2 I(r)\U, U s Iz )\U,

\‘(g:r: J/'ﬁb:c Joo \‘ l¢m
c =% C o
T — T |
Z 74 oC,  Ogx ('T) — _5'3 T =00, Goo (7-) — 62'}'1"3‘?"
T — Ty

PROOF (of Theorem 2.5). We already know that X (1) is a compact Haus-
dorff space (2.4), and it is clearly connected due to the continuous surjec-
tion ¢ : H* — X(1). Further, an inspection of Figure 1.2 shows that X (1)
has genus 0. (For those who dislike such a visual argument, we will later
give an explicit map j : X(1) — P!(C). See (4.1) below. The interested
reader can check that our proof that j is analytic does not depend on the

a priori knowledge that X (1) has genus 0. Then the elementary argument
described in exercise 1.11 shows that § is bijective, hence an iIsomorphism.)
By construction, the set |

W(Usz) = I(Uy, Upg)\Uy = I(12)\Us

1s a neighborhood of z. We must verify that the maps
Yy I \U, — C

are well-defined homeomorphisms (onto their images) and that they satisfy
the compatibility conditions for a complex structure.

We begin with a lemma which shows that the function gz(7) behaves
nicely with respect to the transformations in I(7;)

Lemma 2.6. Letac H, let R:H — H be a holomorphic map with
R(a) = a, and let g(1) = (1 — a) /(T — @). Suppose further that

r times
,——/_N\
RO"'OR(T)zT

and that r > 1 is the smallest integer with this property. Then there is a
primitive r*-root of unity ¢ such that

g(RT) = ¢g(T) for all T € H.

PROOF. Note that g is an isomorphism

g:H—={zeC:|z] <1}
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with g(a) = 0, so the map

G=goRog t:{z€C:|z] <1} —{2eC: |z <1}

is a holomorphic automorphism of the unit disk with G(0) = 0. It follows

that G(z) = cz for some constant ¢ € C. (See, e.g., Ahlfors [1].) Since

the r-fold composition G o --- o G(z) = z and r is chosen minimally, we
conclude that ¢ is a primitive r**-root of unity.

We resume the proof of Theorem 2.5. Suppose first that z # oco. Note
that from (1.5), I(7;) is cyclic, say generated by R. Then (2.6) implies that

9= (RT) = Cg(7)

where ¢ is a primitive r*®-root of unity. Hence

for all 7 € H,

Yo (P(R7)) = go(RT)" = (" ga(T)" = 1z ((7)),

so 1, is well defined on the quotient I(7;)\Us.
Next we check that v, is injective. Let 7,72 € Uz. Then

e (9(71)) = V2 (P(72)) = 92(11)" = g2(T2)"

> ¢.(71) = C'9x(m2) for some 0 <z <1,
= g,(11) = g(R'72) forsome0<i<r,
e~ 7, = R'ry forsome 0 <1<,

= ¢(11) = P(72).

Hence 1), is injective. Finally, it is clear from the commutative diagram
given in (2.5.2) that both v, and ¢ ' are continuous, since the maps ¢, gz,
and z — 2" are all continuous and open. Therefore 1, is a homeomorphism.

The case z = oo is similar. From (2.1b) we know that I(co0) = {T*}
consists of the translations 7 — 7 + k for k € Z. Hence 9z (¢(7)) = ™"
is well defined and injective on the quotient I(00)\Us. And, as above, ¥g
and ¢! are continuous, since both ¢ and 7 — e?™'T gre continuous and
open. Hence 1), is a homeomorphism.

Tt remains to check compatibility. First let z,y € X (1) with z,y # oo.

Then
by 051 (2) = by 0 o (Ys06) H(2) = g 0 g5 (/7).

Now g, and g7! are holomorphic, so the only possible problgm wotild be
the appearance of fractional powers of z. Let ¢ be the primitive r,**-root
of unity such that g-(R.7) = (gz(7). Then using the fact that ¢ o~y = 0
for any v € I'(1), we find

grvogr ((2) =YyodoRa0g; (2) =dyopogy (2) =gy 095 (2)

TTTTTT

i A D R 2Ty
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It follows that g,¥ o g '(2) is a power series in 2™=, which proves that the
composition ¥, 01! (2) is holomorphic. (Note the importance of knowing
that ¢ is a primitive ry**-root of unity. )

By exactly the same computation, taking g..(7) = exp(2wir), the
function

Yoo 07 (2) = exp (2mig; ! (21/7))

is holomorphic.
Finally, we note that

gy (T +1) =y 0 poT(7) = Py 0 ¢(7) = g,¥ (7),
s0 g, (7) is a holomorphic function in the variable ¢ = e?™*". (Note T is

restricted to Uy N Ux; it 1s not allowed to tend toward i00.) Hence the
transition map

by 0 s (2) = 9y (2—1— log z)

T

_is holomorphic.
This completes the proof that the open sets I(7,;)\U; and the maps

Yzt I )\Uz — C

define a complex structure on X (1).

§3. Modular Functions

In the previous section we showed that the quotient space X (1) =T(1)\H*
has the structure of a Riemann surface of genus 0. It is natural to look at
the meromorphic functions on this Riemann surface.

Example 3.1. Recall that to each 7 € H we have associated a lattice A, =
ZT + Z and an elliptic curve C/A,. From Lemma 1.2(b) there is a well-
defined map (of sets) -
F'(H\H — C
T —  J(C/A;).

We will show later (4.1) that with the complex structure described in (2.5),
the j function is a meromorphic function on X(1) which gives a complex
analytic isomorphism
5 i X(1) = PHO).

- Every meromorphic function f on X(1) is thus a rational function
of 7, that is, f € C(j). In order to have a richer source of functions, we will
study functions on H that have “nice” transformation properties relative
to the action of I'(1) on H. Although these transformation properties may
look somewhat artificial at first, the corresponding functions actually define

differential forms on X (1), so they are in fact natural objects to study.
(See (3.5) below for further details.)
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Definition. Let k € Z, and let f (T) be a function on H. We say that f is

weakly modular of weight 2k (for T'(1)) if the following two conditions are
satisfied:

(i) f is meromorphic on H;

(i) f(y7) = (et +d)**f(r) for all v = (g’ 3) cI'(l), 7 € H.

Remark 3.2. Note that a function satisfying f(y7) = (et+d)* f(7) for an
odd integer « is necessarily the zero function, since taking v = ( _01 _01)
vields f(7) = —f(7r). This explains why we restrict attention to even
weights.

Remark 3.3. Since (1.6) says that I'(1) is generated by the two matri-
ces § = ((1) _01) and 1" = ((1) %), a meromorphic function f on H is weakly
modular of weight 2k if it satisfies the two identities

~1
flr+1) = f(r) and f (-—T—-) = T%f(’r).
From the first it follows that we can express f as a function of
g = 6271"2',7'}
and f will be meromorphic in the punctured disk
{g:0<|¢l <1}

Thus f has a Laurent expansion f in the variable ¢, or in other words, f
has a Fourier expansion:

Definition. With notation as in (3.3), f is said to be

o0
meromorphic at oo if f = E ang” for some integer ng,

n=—ryp
N o0
holomorphic at oo if f = Z ang’.
n=0

If f is meromorphic at oo, say f= O—noq ° - with a_,, # 0, then the
order of f at oo is

Ol‘dm(f) == Ordq:[}(f) = —T1.
It f is holomorphic at oo, its value at oo is defined to be
f(00) = (0) = aq.

Definition. A weakly modular function that is meromorphic at oo is called
a modular function.

."::'1':'-'-.::-:5'."-..'_-'-'_"-""-".;' il sl henEal O T s s PRI - C H
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Definition. A modular function that is everywhere holomoji“phic (i.e., ev-
erywhere on H and at co) is called a modular form. 1f in addition f(co) =0,
then f is called a cusp form.

Example 3.4.1. Let A be a lattice. The Fisenstein series

1
Gor(A) = D
weEA

w#0

is absolutely convergent for all integers k > 2. (See [AEC VI1.3.1].) For 7 €
H we let

Gor(7) = Gox(Ar) = 3 1

2k °
m,nEZ (mT T ‘TL)
(m,n)7#(0,0)

By inspection,

Gor(cA) = ¢~ **Gor(A)  for any c € C*,

whereas
ar + b 1 1
A — I — d — AT.
yr =L A L= ——(Z(ar +b) + Z(er + d)) = ——
Hence

Gor(v7) = Gor(Ayr) = Gax((c7 +d) ' A;)
= (e1 + d)**Gar (M) = (er + d)**Gar (7).

Thus G is weakly modular of weight 2k.

Proposition 3.4.2. Let k > 2 be an integer. The FEisenstein series Go
Is a modular form of weight 2k. Its value at oo is given by Gag(oc0) =
2¢(2k), where ((s) is the Riemann zeta function. (For the complete Fourier
expansion of Gy, see (7.1).)

PROOF. We have just shown that G9p is weakly modular, so it remains to
show that (G5 is holomorphic on H and at oo and to compute its value at oo.
Note that if 7 is in the fundamental domain F described in Proposition 1.5,
then

'mT + nl? = m?|7|* + 2mnRe(7) + n® > m? — mn + n? = |mp — n|°.

Hence the series obtained from Gor(7) by putting in absolute values is
dominated, term-by-term, by the series obtained from Gai(p) by putting
in absolute values. Therefore Go is holomorphic on F. But H is covered
by the I'(1)-translates of F, and Gaor(yT) = (e + d)?*Gar(T), so Gay, is
holomorphic on all of H.
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Next we look at the behavior of Gor(T) as T — 300. Since the series
for G converges uniformly, we can take the limit term-by-term. Terms
of the form (m7 + n)~2* with m # 0 will tend to zero, whereas the others

give n7%%, Hence

o0

. 1
"t

This shows that Gy, is holomorphic at oo and gives its value.

Example 3.4.3. It is customary to let

92(7) = 60Gy (T) and g3(T) = 140Gg(T).

(See [AEC VI.3.5.1].) The ( modular) discriminant is the function

A(T) = g2(7)° — 27g3(7)?.
It is a modular form of weight 12, since from (3.4.2) we know that G4(T)
and GGI(T) are modular forms of weights 4 and 6 respectively.
Using the well-known values (see (7.2) and (7.3.2))

4y ="" d ™
= — an H) = ——
90 ¢(6) 945’
we find that
471'4 871‘6

g2(00) = 120¢(4) =

g3(00) = 280¢(6) = A(o0) = 0.

3 27

iHence A(T) is a cusp form of weight 12. We will see below (3.10.2) that it
1s essentially the only one.

Remark 3.5. Let v = ( a 3) € SL2(Z), and let dT be the usual differential
form on H. Then

ct +d (cT + d)? o= (er +d)~dr.

Th'us at has “weight —2.” In particular, if f(7) is a modular function of
welght 2k, then the k-form

f(7) (dr)*

is I'(1)-invariant. It thus defines a k-form on the quotient space I'(1)\H, at

least away from the orbits of i and p, Where the complex structure is a bit
more complicated.

s _;:: 5:;_ ‘I‘g- -\x_:%% a2 ‘_ﬁﬁf . . ..I._. : .._-.-_.-.z_,;@%ﬁ-.-/q e LTI ‘%@‘;ﬁ?- . 1 . }&Wﬁﬁfﬁﬁil? L. _.:_:-;.._ }_?‘}":;:-Q-:Ei}i
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We will soon show that f(7) (d7)* actually defines a meromorphic k-
form on X(1). We begin with a brief digression concerning differential
forms on arbitrary Riemann surfaces. In particular, formula (3.6b) below
will be crucial in our determination of the space of modular forms of a

given weight,

Definition. Let X/C be a smooth projective curve, or, equivalently, a
compact Riemann surface. Recall that Qx is the C(X)-vector space of
differential 1-forms on X. (See |[AEC II §4].) The space of (meromor-
phic) k-forms on X is the k-fold tensor product

0% = Q?}k = Qx Qc(x) - c(x) 2x-

Q% is a 1-dimensional C(X)-vector space [AEC I1.4.2a]. Notice that if we

set QY = C(X), then € Q% has a natural structure as a graded C(X)-
k=0
algebra.
Let w € Q%, z € X, and choose a uniformizer ¢t € C(X) at z. Then

]

w = g(dt)*
for some function g € C(X). We define the order of w at x to be
ord,(w) = ord.(g).

It is independent of the choice of t. (If ¢’ is another uniformizer, then ap-
plying [AEC I1.4.3b] we find that dt/dt’ is holomorphic and non-vanishing
at z.) Just as with 1-forms, we define the divisor of w by

div(w) = Z ord;(w)(z) € Div(X);

rEX
we say that w is regular (or holomorphic) if

ord;(w) >0  forall z € X.

Proposition 3.6. Let X/C be a smooth projective curve of genus g,
let k > 1 be an integer, and let w € Q%.

(a) Let Kx be a canonical divisor on X [AEC II §4|. Then div(w) is
linearly equivalent to kK x.

(b)

deg(divw) = k(29 — 2).

PROOF. (a) Let n € Q3 be a non-zero 1-form with divisor div(n) = Kx.

Then
F=w/n" € 0% =C(X)
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is a function on X, so
div(w) = kdiv(n) + div(w/n") = kK x + div(F)

is linearly equivalent to kK x.
(b) From (a), deg(divw) = kdeg(Kx). Now apply the Riemann-Roch
theorem [AEC I1.5.4b|, which says that deg(Kx) = 29 — 2.

The next proposition gives the precise relationship between a modular
function f of weight k and the corresponding k-form f(7) (d7)*.

Proposition 3.7. Let f be a non-zero modular function of weight 2k.
(a) The k-form f(7) (d7)* on H descends to give a meromorphic k-form wy
on the Riemann surface X (1). In other words, there is a k-form wy € Q’;'((I )

such that
¢*(wy) = f(7) (d1)",

where ¢ : H— X (1) is the usual projection.
(b) Let z € X(1), and let 7, € H* with ¢(7,) = z. Then

ord,, (f) if z # ¢(1), p(p), p(00);
sordi(f) — 5k if z = ¢(i);

sord,(f) — 5k ifz = ¢(p);
ordeo(f) — k if £ = ¢(00).

ordg(wy) =

Remark 3.7.1. If f is a modular function, then it is easy to see that the
order of vanishing of f at 7 € H depends only on the I'(1)-equivalence class
of 7. The point is that since f(y7) = (er + d)**f(7) and ¢t + d # 0, we
have

ord,(f) = ord, (f oy ') = ord,-(f).

Thus the expression in (3.7b) really does not depend on the choice of the
representative 7.

PROOF. (a) As we have seen, the k-form f(7)(d7)" is invariant for the
action of I'(1) on H. We must show that for each z = ¢(7z) € X(1),
the k-form f(7) (d7)* descends locally around z to a meromorphic k-form
on X(1), and that it vanishes to the indicated order. Clearly, we will
need to use the description of the complex structure on X (1) provided by
Theorem 2.5. We consider two cases.

T # 00

Using the notation from (2.5), there is a commutative diagram

U, - ’ > I(Tsc)\Ua:
le o
C > C

z—rw=z"

LAk

il

S

HE
B
S
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which defines a local parameter

at . We write

z=g$(7)=::?, w=2z", and T=g, (2)=
£

z—1 "

so w == 2" is our local parameter.
Let R be a generator.of I(7;). Then from (2.6),

gz(RT) = Cg(r), andso  Rr=Rog;'(z)=g;"(¢2).

h

Here ¢ is some primitive r*®-root of unity.

Now

f(r) (dr)* = fg7(2)) (dgz ()"
= f(971(2)) g5 Y (2)F (d2)F

where F(2) = f(g7'(2))9z 1"(z)"" is a meromorphic function of z. Note
further that since g, is a local isomorphism, we have

ordr—r (f) = ord,—o(F).

We must show that F'(2) (dz)¥ is a meromorphic function of w = 2".
To do this, we use the fact (3.5) that f(7) (d7)* is T'(1)-invariant. This
implies

F(2) (d2)F = f(r) (dr)* = f(R7) (dR7)*
= f(9:"(¢2)) (doz " (¢2))" = F(¢2) (dC2)* = F(¢a)C* (da)"

In Harticular, the function 2*F(z) is invariant under the substitu-
tion z — (2. Since ( is a primitive r*-root of unity, it follows that

2PF(2) = Fi(2")

for some meromorphic function Fj(w). Hence

F(2) (d2)* = r~* 22D F(2) (d(27))F

=1 "2 TR (27) (d(zr))k = r~*w " Fy(w) (dw)",

which proves that f(7) (d7)* descends to a meromorphic k-form wy in a
neighborhood of z.



20 I. Elliptic and Modular Functions

Finally, we compute
ord,—,. f(7) = ord,—¢ F(z) = ord,—o 2 *F1(2") = —k + r ordy=0 F1(w);

ord, ws = ordy—o r~R*w P (w) = —k + ordy,—o 1 (w).

Eliminating ord,,—¢ F1(w) from these two equations yields

ord; ws = %ordq-m f — (1 - %) k.

It only remains to note that from (1.5),

[ 1 ifz 7 ¢(1), d(p),
r=< 2 ifz=¢(),
3 if z = ¢(p).

T = 00

Again using (2.5), we have a local parameter
byt I(00)\Uso — C,  ¥z(g(1)) = €*™"".

Let ¢ = e2™7 be the local parameter at co, and write f(7) = f(q) as
in (3.3). Since dr = (27ig)~ ! dg, we have

f(r) (dr)* = f(g)(2mig)~*(dg)*.

By definition, f is meromorphic at ¢ = 0, so f{7)(dr)* descends to a
meromorphic k-form wy in a neighborhood of co. Finally,

orde ws = ordy—o f(q)(2miq)™* = ordeo(f) — k.

Proposition 3.7 describes the local behavior of the k-form wy € Q% 15.

The Riemann-Roch theorem, specifically Proposition 3.6(b), gives a global

description of its degree. Combining these results, we obtain the following
important formula.

Corollary 3.8. Let f be a non-zero modular function of weight 2k.Then

1 1 k
5 ordi(£) + 5 ord,(f) + ordeo(£) + > * ord.(f) = ¢
TE;Q)\H
TFL, 0,00

(Here the sum is over any set of representatives for I'(1)\H* excluding the
equivalence classes containing i, p, and co.)

ProoOF. First note that from (3.7.1), the sum is independent of the choice
of representatives for I'(1)\H*. Let w; € Q% (1y be the k-form corresponding

.'in.

:.'..: O

::::

Bt

------

\\\\\\

S

---------

2 _,%,.
S
TR
CrEe
CHON
e
- -.!ér','"l
iy
e
Faa
‘:'uh.l
I‘M‘
;

§3. Modular Functions ol

to f(7) (dT)* as in Proposition 3.7. By the Riemann-Roch theorem (3.6b)
and the fact that X (1) has genus 0 (2.5), we find that

deg(divwy) = —2k.

On the other hand, (3.7) gives

deg(divwy) = (% ord; f — %k) + (% ord, f — %k)
+(ordes f—k)+ ) ord.(f).

rel(1)\H"
T#1%,0,00

Equating these two expressions for deg(divwy) gives the desired formula.

Using Corollary 3.8, we can give a good description of the space of all
modular forms of a given weight. We set the notation |

My, = {modular forms of weight 2k for I'(1)},

M3, = {cusp forms of weight 2k for I'(1)}.

Note that both My, and M3, are C-vector spaces.

Example 3.9. For all £ > 2, the Eisenstein series Gai(7) is in My, but
is not in M2.. The modular discriminant A(7) is in Mp,. See (3.4.2)
and (3.4.3).

Theorem 3.10. (a) For all integers k > 2,

Moy, =2 M3, + CGay.

(b) For all integers k, the map

Mak—12 — Mg,  fr— fA

is an isomorphism of C-vector spaces.
(c) The dimension of My as a C-vector space is given by

0 if k < 0

fk>0 k=1 '
din Mo — ifk >0, (mod 6);

+1 ifk >0,k #1(mod86).

| A O A
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(The square brackets denote greatest integer. For an alternative proof of (c) Table 1.1
using the Riemann-Roch theorem, see exercises 1.8 and 1.9.)

ord, f basis

. 0 - k ord; d,
PROOF. (a) By definition, My), is the kernel of the map f ord f T #1,0 for Moy,
Moy, __“%(Ca fl——-—“}f(OO), 1 @
so Moy /MY, has dimension at most 1. On the other hand, for k£ > 2, the 9 0 1 0 e
Eisenstein series Gy, is in Moy, and is not in Mg, (See (3.4.2).) Hence . ) : 4
> " 0 G6
D 1 1 0 G4Ge

(b) First we note that
Ga(p) = (p+ 1)*Ga(STp) = p°G(p) and Ge(i) = i°Ge(St) = —Gs (1),

which implies that G4(p) = 0 and Ge(4) = 0. Since G4 and G are modular
forms of weight 4 and 6 respectively (3.4.2), it follows from (3.8) that they
have no other zeros in I'(1)\H. In particular,

A(i) = (60G4(i))° — 27(140Ge(i))” = 2*3°5°7*Gi(i)* # 0,

so A(T) is not identically zero.
Thus A(7) is a non-zero modular form of weight 12 with A(oco) = 0.

It follows from (3.8) that
ordec(A) =1

and that A(7) # 0 for all 7 € H. (For an alternative proof that A(r) # 0
for all 7 € H, see [AEC VI1.3.6a].) Therefore 1/A has a simple pole at 0

and no other poles, so the map
Mgk — MQk—lQa
f e f/A

is well-defined. (The main point is that as long as f vanishes at o©o,
then f/A will still be holomorphic at 00.) This gives an inverse to the
map in (b), so M8, = Mog—12-
(c) If k < 0, then (3.8) implies immediately that My, = 0. (Note that all
of the terms in the left-hand sum are non-negative.) Similarly, if f € My,
then (3.8) says that f has no zeros on H*. Thus f gives a holomorphic
non-vanishing function on X (1). But X (1) is a compact Riemann surface,
so an analytic map [f,1] : X (1) — P!(C) is necessarily either constant or
surjective. Hence f is constant and My = C.

Next we use (3.8) to describe all functions f € Max for small values

of k. Note that for small values of k, the equation

1 ot 1 bt ¢ — k
2”3 G
will have very few solutions in non-negative integers a, b,c. For example,

if k = 1, there are no solutions. We compile the results in Table 1.1.

......

--------

B R B G R

Everything in Table 1.1 is clear except that the functions in the final
column actually form a basis. They are in My, from (3.4.2), so we need to
show that Mo has dimension 1. But if fi, fo € Mo, with 2 < k < 5, then
Table 1.1 shows that f; and f, have exactly the same zeros. Hence f1/f2 €
M, = C, which proves that dim(My) =1 for 2 < k < 5.

We have now verified (¢) for all integers £ < 5. On the other hand,
if k& > 0, then using (a) and (b) we find that

dim Mag412 = dim Mgy 1, +1  from (a)
= dim Mg + 1 from (b).

Thus the left-hand side of (¢) increases by 1 when k is replaced by & + 6.
Since the same is true of the right-hand side, an easy induction argument
completes the proof.

Example 3.10.1. Each of the vector spaces
MO:' Méh Mﬁ: MB: MlO: M14

has dimension 1. For example, since G4 € Mg and Gg € Msg, it follows
immediately that
Gg — CGE

for some constant ¢ € C. Letting 7 — 200 and using (3.4.2), we can even

compute
L% 3
4C(4)2 T
(See (7.2) for the calculation of {(8).) Similarly, Gio = 2G4Ge and G1q =
%GEGG. More generally, My, has a basis consisting of functions of the
form G3GE. (See exercise 1.10.) To appreciate the subtlety of identities
such as these, the reader might try to give a proof that Gg = %Gﬁ directly
from the series definition (3.4.1) of the Ggy’s.
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Example 3.10.2. Since Moy & M3, ., from (3.10b), the spaces
M?z: M?Gﬁ M?Ba MS?O? Mgz: Mgﬁ

also have dimension 1. In particular, up to multiplication by a constant,
there is only one cusp form of weight 12, namely A(7).

§4. Uniformization and Fields of Moduli

We begin by proving the Uniformization Theorem for elliptic curves, which
was stated but not proved in [AEC VIL5.1]. This theorem says that ev-
ery elliptic curve over C is parametrized by Weierstrass elliptic functions.
Our main tool will be Theorem 3.7(a), which says in particular that every
modular function of weight 0 defines a meromorphic function on the Rie-
mann surface X(1). For a more elementary, but less intrinsic, proof of the
Uniformization Theorem, see exercise 1.11.

Definition. The modular j-invariant j(7) is the function

N g2(7)*
7(7) = 1728 NOR

Thus j(7) is the j-invariant of the elliptic curve

Ep, : y? =42° — go(m)z — g3(7),
and E,_(C) has a parametrization using the Weierstrass o-function,

C/A; — EAT((C),
2 — (p(zA), 0 (zAr)).

(For details, see [AEC VI.3.6].)

Theorem 4.1. j(7) is a modular function of weight 0. It induces a
(complex analytic) isomorphism

i X(1) = PYC).

PROOF. From (2.4.2) and (2.4.3), both A(r) and go(7)% = 263353 Gy (7)°
are modular forms, and both have weight 12, so their quotient is a modular
function of weight 0. By (3.7a) with k& = 0, j defines a meromorphic
function on X(1). (N.B. This means that j is meromorphic relative to

.'_.!r':

e

L PRI :',:.: e i e T T A
e T
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the complex structure on X (1) described by (2.5).) Hence j gives a finite
complex-analytic map

j:X(1) — IPI((C).
Finally, we note that go(ico) = 120¢(4) # 0 (3.4.2) and A(ico) =
0 (3.4.3). Since A has weight 12, (3.8) implies that
orde A = 1.

Thus j has a simple pole at the cusp co € X (1) and no other poles on X(1),
so the map j : X(1) — PY(C) is an analytic map of degree 1 between
compact Riemann surfaces. It is therefore an isomorphism.

Corollary 4.2. Let f be a modular function of weight 0.

(a) The function f is a rational function of j, that is, f e C(j).

(b) If in addition f is holomorphic on H, then f is a polynomial function
of §, that is, f € Cl[j].

PROOF. (a) From (3.7a), f defines a meromorphic function on X (1), and
so by (4.1), f o j~! is a meromorphic function on PL(C). But the only
meromorphic functions on P*(C) are rational functions, so

foi l(t)=P(t)  forsome P(T) € C(T).

Substituting ¢ = j(z) with z € X (1) gives f(z) = P(j(z)).
(b) From (a), we know that f = P(j) for some rational function P(T') &
C(T). Suppose P is not a polynomial. Then there is a {0 € C such
that P(to) = oo. The isomorphism j : X(1) — P*(C) from (4.1) sends H
to C ¢ P(C), so we can find a 7o € H with j(70) = to. But then f(m0) =
P(j(r0)) = P(to) = oo, contradicting the assumption that f is holomorphic
on H. Hence P(T") must be a polynomial.

Corollary 4.3. (Uniformization Theorem For Elliptic Curves over C)
Let A, B € C satisfy 44 +27B* # 0. Then there is a unique lattice A C C
such that

go(A) = 60G4(A) = —4A  and  g3(A) = 140Ge(A) = —4B.

The map
C/AN — E :y*=2z°+Az+ B,

z  —  (p(zA), 30 (zA))

is a complex analytic isomorphisim.

ProOOF. Using Theorem 4.1, we can choose a 7 € H such that

4 A3
4A3 4 27B2°

i(r) = 1728
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Assume first that AB # 0. It follows from this and the definition of 7(7)
that

27 B2 - 1728 | — 27g3(T)? - ( B )2 (92(7’))3 _ 4
4A3 7(7) go(T)% g3(7) A
Let
o = 293 ET; and A=cal, =Zot + Z«
go\T
Then B2 ( )3
—4 ga\T
— = —4A
g2(A) = o “ga(As) A2g5(7)2 )
B3gy(T)°
— o~ = = —45.
g3 (A) & g3 (A'r) ASQ’S (’T)2

Similarly, if A = 0, then j(r) = 0 and ¢2(7) = 0, whereas it B = 0,
then j(r) = 1728 and g3(7) = 0. Hence in these two cases it suflices to
take A = aA, with

_sfg3{T) .4 _iz/gz('?') Ty
ad\/—-ﬂ.:B if A=0, and a=A\l" 7 if B=0.

This gives the existence of A. Since we will not need the uniqueness of A
in our subsequent work, we will leave this fact to the reader. (See ex-
ercise 1.12.) Finally, we note that the second part of Corollary 4.3 is
essentially a restatement of [AEC VI.3.6b].

We are now ready to relate the function j(7), defined as a meromor-
phic function on the Riemann surface X (1), to the j-invariant deﬁnec}
in [AEC III §1] which classifies isomorphism classes of elliptic curves. We

let

{elliptic curves defined over C}

chbe = C-isomorphism

Thus an element of ELL¢ is a C-isomorphism class of elliptic curves. We
also recall the notation

L = {lattices in C}
from §1. Much of our preceding discussion is summarized in the following

proposition.

Proposition 4.4. There are one-to-one correspondences between the
following four sets, given by the indicated maps:

eLLe —  LJC* — T()\H — C,
{Er} — {A}={A} — 7 — j7)
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Here A, = Z7 + Z, {Ep} denotes the C-isomorphism class of the elliptic
curve By : y? = 4z — go(A)z — g3(A), and {A} is the homothety class of
the lattice A.

PROOF. Since j(i00) = 00, the bijectivity of I'(1)\H L Cis (4.1). The
bijectivity of I'(1)\H — L /C* is (1.2bc). Finally, the injectivity of L/C* —
ELLe is [AEC 4.1.1] and the surjectivity is (4.3).

Let us describe in a bit more detail the bijective map
ELLe — C

given in Proposition 4.4. Let {E} € ELLc be an isomorphism class of
elliptic curves, and choose a Weierstrass equation
E:y*=z>+ Az + B

for some curve F in this class. Now take a basis 1,72 for the homology
group H; (E((C), Z), and compute the periods

/ dx / dx
Wy = — and Wy = —.
v Y vo Y

(See [AEC VI §1].) Switching wy and ws if necessary, we may assume that

Then evaluate the holomorphic function j(7) at 7 = 75.
Thus the map

Pyttt

B T T L T A N R S
= e e e S L B b T et e e 2 R e AL e D e T e R e e L T
B R A e T L

j:ELLe — C, {E} — j(1E)
involves two transcendental (i.e., non-algebraic) operations, namely the
computation of the periods w;,ws and the evaluation of the function j(7).

From this perspective, it seems unlikely that rationality properties of j(7g)
should have anything to do with rationality properties of E. To describe
the relationship that does exist, we make the following two definitions.

Definition. Let {F} € ELL¢, and let K C C. We say that K is a field
of definition for {E} if there is an elliptic curve Fy in the isomorphism
class {E'} such that Eq is defined over K. We say that K is a field of
modult for { £} if for all automorphisms o € Aut(C/Q),

E° € {L}

if and only if o acts trivially on K.

Note that the field of moduli exists and is unique, since by Galois

theory an equivalent definition is that the field of moduli is the fixed field
“of the group
. {a c Aut(C/Q) : E° € {E}}

< From the complex analytic viewpoint described above, it is not clear that
the number j({E}) should have any relationship to fields of definition and
moduli for {E}. Note that there are lots of bijections ELLe — C. For
example, ' ({E}) = e"j({E}) + e~ is also a bijection. But clearly, it is
not possible for both 5 and j’ to have good rationality properties.
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Proposition 4.5. Let {F} € ELLc.
(a) Q(j{{E})) is the field of moduli for {E}.
(b) Q (j({E})) is the minimal field of definition for {E}.

PRrROOF. The j-invariant j(E) of the elliptic curve
E : % =4z — go(r)z — g3(7)

18 5
g2(7&)

9(7E)* — 2793(7E)
so for any ¢ € Aut(C/Q),

J(E) = 1728 s> =j(re) = ({E}),

J(E7) = 3(E)°.
(a) From [AEC III.1.4b] we have
E° ¢ {E} if and only if  j(E7) = j(E).

Since j(E?) = j(FE)°, this shows that Q(j(E)) is the field of moduli
for {E}.
(b) We know from [AEC IIL.1.4bc] that there exists an elliptic curve ky
defined over Q(j(E)) with j(Eo) = j(E), and so satistying Fo = /¢ £ This
shows that Q(j(E)) is a field of definition for {E}.

On the other hand, if K is any field of definition for { E'}, let Eo/ K be
a curve in {F'} given by an equation

Ey: v»=z>+Az+B with A,BeK.
Then

443 -
4 A3 4 27B%

J(E) = 7(Eo) = 1728 K,

so Q(j(E)) C K.

Remark 4.6. The reader should note that the proof of Proposition 4.5 is
very elementary because we have explicit Weierstrass equations with which
to work. (This is how [AEC IIl.1.4bc] was proven.) For modular curves
of higher level the problem becomes considerably more diflicult, since one
cannot rely on explicit equations. (See Shimura [1, §6.7].) Finally, we
should mention that an analogous statement is false for abelian varieties of
higher dimension; the field of moduli for an isomorphism class of abelian
varieties need not be a field of definition.

-----

-----
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§5. Elliptic Functions Revisited

Let A C C be a lattice. Our fundamental elliptic function is the Weier-
strass p-function,

p(z; A) = :;5 + D ((z ——1w)2 sz) |

weA
w70

As we have seen [AEC VI §3|, p defines a meromorphic function on the
elliptic curve C/A. It has a pole of order 2 at 0 € C/A and no other poles.
We have also computed the Laurent series of g around z = 0 [AEC VI1.3.5a,

>0

1
p(z;A) = —5 + ;(% +1)Garr2(A) 2%,

valid for |z| less than the smallest non-zero vector in A.

Since p(z; A) has no residues, we can integrate it to find a new function
which will almost be periodic for the lattice A. Note, however, that when
we integrate the series for g(z; A) term-by-term, it is necessary to adjust
the constant of integration in each term so as to ensure convergence.

Proposition 5.1. (a) The series

1 1 1
C(z;A)z;—l— Z (z-——w "o cj;)

WEA
w=£0

is absolutely and uniformly convergent on compact subsets of C ~ A. It
defines a meromorphic function on C with simple poles on A and no other
poles. ((z;A) is called the Weierstrass (-function (associated to the lat-
tace A).

(b) The Laurent series for ( around z = 0 is

1 o0
((z;A) = P ;G%H(A)Z%H

PrOOF. (a) Let C C C~ A be a compact set, and let

e =inf{|z ~w|:2€C, we A} and M =sup{|z| : z € C}.

Since C is compact, we have € > 0 and M < oo.

Let z € C, and let w € A satisfy |w| > 2M. Then

2 2
1 1 2 z_l <2M

Z2—Ww W w2 w3 1 _ 2T w
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41
On the other hand, there are only finitely many terms in the sum with 0 < - where the number 7(w) is independent of z. The map
lw| < 2M, and for z € C those terms all satisfy '
11 z|_ 1 1 1 1 M n:h—C
_ | | 9] = _ | | 5 —= L | 9 _
Z—WwW W W 1z —w|  |w|  |w e |w| Wl is called the gquasi-period map associated to A. If w € A and w ¢ 2A,
Hence then n(w) is given by the formula
1 1 1 2 1 1 1 M M2 (w) = 2¢(Lw;
— | | < = = 4 | | _ n(w) = 2¢(zw; A).
Z T Z Z—w w W T e i Z (E |w| |w|2) Z |w]3
wEA wWEA weEA
w#0 O<|w|<2M w>2M

(¢c) The quasi-period map is a homomorphism of A into C.

We know [AEC VI1.3.1a] that the last series converges, which proves the (d) (Legendre Relation) Let A = Zw, + Zw; be a lattice with basis satis-
series defining ((z; A) converges absolutely and uniformly on C. fying Im(w; /wz) > 0. Then
It follows that ((z; A) is holomorphic on C \ A, and an inspection of

the series defining ¢ shows immediately that it has simple poles at each w1n(we) — wan(wy) = 27i.
point of A.
(b) Let z be a complex number such that |z| < |w| for all non-zero w € A. _
Then PRF)OF. (2) The series (5.1a) defining ¢ converges absolutely and uniformly,
1 1 " 1 1 , ?0 it can be differentiated term-by-term. The result is the defining series
| | — 1 — — or —¢.
Z—w W w? wlq_Z2 (b) P
1 k —C(z+w; Ay = —p(z+w;A) = —p(2: A) = — (2 A).
== (i_) | dz ) ( ) p(2; A) - (z; A)

k=2 Integrating, we find that the quantity
SO |

nw) = {(z +w; Ay — {(z;A)

I
N
s
|
N |
+
|
& | —
Pl
& x
S
.

wEA k=2 . .
A0 is independent of z. If, further, w ¢ 2A, then ¢ does not have a pole at ::%w.
| ) Putting z = —-%w and using the fact (evident from the defining series)
= - Z Grt1(A)z that ((—2z; A) = ~((2; A), we find in this case that n(w) = 2¢(5w; A).

(¢) We compute

This is the desired series once one notes that Gi(A) = 0 for odd k. !
M(w+w') = C(z+w +w; A) — (2 A)

— {g(z W w’;A) — C(z—l—w;l\)} -+ {C(Z—l-w;A) — C(z,A)}
= n(w’) +n(w).

Differentiating the series (5.1a), we see that {'(z; A) = —gp(z; A). Thus
the derivative of ((2; A) is periodic for the lattice A, so ( itself will have some
sort of “quasi-periodicity” property as explained in the following proposi-
tion.

(d) We integrate {(z; A) around a fundamental parallelogram offset slightly

Proposition 5.2. (a) For all z € C, 50 as not to contain points of A on its boundary. Thus let D be the region

‘fz; (2;A) = —p(z; A). D=tattwnttw;: 0<t,1 <1},

and let

(b} For allw € A and all z € C, 8D =Ly + Ly + Ls + L4

((z4+w;A) =((z;A) + n(w), be its boundary as illustrated in Figure 1.5.
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An Offset Fundamental Domain for C/A
Figure 1.5

" The only pole of ¢ in D is a simple pole of residue 1 at z=0. (Loo
at the series (5.1a) defining ¢.) Hence

: ((z; A} dz = 2m.
oD

On the other hand, using we get some cancellation when computin
the line integrals over opposite sides. Thus

1 0
zi A}y dz = / ((a + twa; wWo dt / ((a + wy + twa; wodt
0 1

Li+L3
1 1
— / C a -+ twsy; Wodt — a + two ) + Nlwi wad
0 0
Similarly,
Z, zZ = W2 )W1.
| Lo+Lg4
Theretore
Vi = C(z;A)dz = z; \) az = n(w2)wy — W1 )W2-
oD Li+Lo+La+Lg

5. Elliptic Functions Revisited

Remark 5.3. Let E/C be an elliptic curve given by a Weierstrass equa-
tion, and let

Z

Wg =
2y + a1 + as

be the associated invariant differential. The lattice A for F is the set of

periods
WE,
Y
where v runs over all closed paths on E(C). (Equivalently, v runs through
the cycles in H; ,4). See |AEC VI §11.) The classical name for an

everywhere holomorphic differential such as wg on a Riemann surface such
as E(C) is a differential of the first kind.

Similarly, a differential of the second kind is a meromorphic differential

with no residues (i.e., with no simple poles), and a differential of the third
kind 1s a meromorphic differential with at worst simple poles.

The differential

zzAN)dz = zwg

is thus a differential of the second kind on C/A, and its indefinite integral

18 the multi-valued function —((z; A). The indeterminacy in { is given by
the numbers

a+w
TWg = 2y Nydz = —((la+ w; A) + {{a;A) = —n(w
Y 47

where w = f,y wg is the period associated to the closed path ~.
In terms of our original Weierstrass equation, there is the period map

1 3 —“}(Ca f}/l__“}/wE: :
Y

whose image is the lattice A. Using this to identify A with the first ho-
mology of E(C), we see that the quasi-period map associates to a path the
negative of the corresponding period for the differential zwg:

n: H, , Zi) — C, v TWE.
Y

| The last function we want to examine is essentially the integral of (.
“To eliminate the indeterminacy caused by the simple poles of {, we take
the exponential of the integral. This leads to a familiar function which we
‘used in [AEC VI §3] to construct elliptic functions with a given divisor.

.
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Proposition 5.4. (a) The infinite product

Z ARV, sz
o(zA) =2 ] (1_5)6/ +(1/2)(z/w)

wWEA
w0

defines a holomorphic function on C with simple zeros on A and 1.:10 other
seros. It is called the Weierstrass o-function (associated to the lattice A).
(b)

d d?

Egloga(z;A) = ((2; M), d—zgloga(z;A) = —p(z; A).

(c) Forallz€ C and w € A,
o(z +w; A) = P(w)e" T2 o(z; A),

where 1 : A — C is the quasi-period map for A, and 1) is defined by

1 if w € 2A;

i A — {::1}, P(w) = { —1 ifw ¢ 2A.

ProoF. (a) This is a restatement of [AEC V1.3.3a.
(b) Taking the derivative of

gives the defining series (5.1a) for ¢, and then from (5.2a) we see that the
second derivative is —p. Note that the logarithms are locally well defined

up to the addition of a constant which disappears when we differentiate

2z
and also that we must take the principal branch of log (1 — ;) for almost

all w in order to ensure the convergence of the series.
(¢) From (b) and (5.2b),

d o(z + w;A)
— lo

dz o o(z; A)

= ((z+w; A) — {(z; A) = n(w),
S0
o(z +w;A) = Ce"%a(z;A)

for some constant C not depending on z. Note also that o is an odd
function, a fact that is clear from the product defining o.

We consider two cases. First, if w ¢ 2A, then o does not vanish at 3w.
Hence putting z = —%w glves

o (Lw;A) = Ce™ 270 (—fw; A) = —Ce 3" g (Lw; A),

S0
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(' = —-e%n(w)w‘

Next, if w € 2A, then o has a simple pole at -
rule yields

-lw. Using L’Hopital’s

Co—dn(w)w _ olz+w;A) o' (zw;A)

o(zA) o' (—iw;A) =1

Jim
Z——w/2

(Note that o’ is an even function, since o is odd.) Hence in this case we
find that

C = e% m{w)w

?

which completes the proof of (c).

Any elliptic function can be factored as a product of Weierstrass o-
_functions reflecting its zeros and poles. We give a general result and two
Important examples. To ease notation, since the lattice A is fixed
write o(z) and p(z) instead of o(z; A) and p(z; A).

Proposition 5.5. Let f(2) be a non-zero elliptic function for the lat-
tice A. Write the divisor of f as

, we will

div(f) = Z ni(a;)

Spad . -

B .- —
= B ez’

e AR ———
_-:,"\:_ulcL e

i S

e

i for some a; € C? and let

i=1
(See [AEC VI §2] for the definition of the divisor of an elliptic function.)
Then there is a constant ¢ € C* so that

Corollary 5.6.
) p(2) — pla) = a(zc:(rz;?zg)_z_ d
) p'(2) = Zgﬁ
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ProOOF (of Proposition 5.5). Let

T

. o(z) AT
g(z) = a(z—b)Ha(z_a%) .

=1

From [AEC V1.2.2¢] we know that b € A, so using (5.4c), we find that

o(2)
o(z —b)

L () (e 3D)

is holomorphic and non-vanishing on all of C. Since o(z) has simple zeros
on A and no other zeros, it follows that g has exactly the same zeros and’

poles as f. Hence f(z)/g(z) is everywhere holomorphic.
Next we verify that g is an elliptic function. Let w € A, and use (5.4c)

to write

O'(Z + w) L eBz
o

for certain constants A and B which depend on w but not on z. Then

g(z + w) o(z — b) o(z + w) - o'(z—}-w_-ai) i
Q(Z) O'(z—b+W) O'(Z) E( g'(z—-a,?;) )

T

e—B(Z—b) BBZ H (AEB(Z—G--;)) i

=1

B (b= 2niai) (AeBz)Em = 1.

|

The last equality follows from the definition of b and the fact [AEC VI.2.2b]

that the divisor of an elliptic function has degree 0.
This proves that g(z) is an elliptic function, and so f(z)/g(z) is an
everywhere holomorphic elliptic function. From [AEC V1.2.1] we conclude

that it is constant.

PrOOF (of Corollary 5.6). (a) Since ©o(z) is an even function of order 2,
we see immediately that the zeros of p(z) — p(a) are a and —a. Thus

div(p(z) — p(a)) = (—a) + (a) —2(0)-

Applying (5.5) we find

for some constant C. Multiplying by 2% and using

o(2)

2 _ - _
l%z w(z) =1 and l% . 1
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gives the value of C,

1 =Co(a)o(—a) = —Co(a)*.

(b) Divide (a) by z — a and let z — a. This yields

N g 0(z—a) o(z+a)
a) = — lim
o(a) z—a z—a o(2)2%0(a)?

Since ¢'(0) = 1, this is the desired result.

36. g-Expansions of Elliptic Functions

As we have seen in §8§1—4, it is often convenient to use normalized lattices
N, =7Z74+7 with 7 € H.

We then use the obvious notation

p(z;7), ((z;7), o(z;7)  for  p(z;Ar), {(zAr), o(z;A,).

We will soon see that p, ¢, and o are quite well behaved when considered
as functions of two variables- (z;7) € C x H.

Note that since 1 € A, the p function satisfies the relation

s

p(z+1;7) = p(z; 7).

This mea,nzs that it is possible to expand g as a Fourier series in the vari-
S miz . 3 :
able © = e“™**. Similarly, since A} = A,, the p function satisfies

p(z;7+1) = p(z; 7).

Th ' '
~ Lhus, as a function of 7, the p function should have a Fourier expansion
in terms of g = ™.

This idea can be formulated more imrinsically as follows. Let

U = uz — & and q — q'r — 62‘???:‘7'}

and let
q" = {e;gle ke Z}

be the. cyclic subgroup of C* generated by ¢q. Then there is a complex-
analytic isomorphism

2z u = e*™?,

C/A, — C*/q%,

e
S
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Note that this is an isomorphism of complex Lie groups, since it is clearly
a, homomorphism.

Our first step is to express g(z; T) as & power series in the variables u =
e2™? and g = e2™T  The quickest way to do this is to write down (by
magic?!?) the correct expression, and then verify that it gives the same
function as p(2; 7). We opt instead for a somewhat lengthier, but hopetully
more perspicuous, derivation.

Consider first the series

1 1 1
@(z:A)“;ﬁ+ Z (z—w)2 w2

defining p. How does it arise? From [AEC V1.2.3] we know that any non-
constant elliptic function must have at least two poles, so we look for a
meromorphic function F'(z) satistying

(i) F(z+w) = F(z) for all z € C, w € A;
(ii) F(z) has a double pole at each point in A and no other poles.

The simplest function with a double pole at w 18 (z —w)~?%. By aver-
aging over w € A, we find a series

F(z)zz (z__lw)z

WEA

which formally satisfies (i) and (ii}). The problem is that this series 18 not

absolutely convergent. However, by subtracting an appropriate constant

from each term, we can create a series which does converge and has the

desired properties. This is how we «discovered” p(z;A) in [AEC VI §3].
We apply the same principle to express o(z;7) as a function of v and ¢.

Exponentiating the conditions (i) and (ii), we look for a function F(u;q)

satisfying

(iil) F(q"u;q) = F(u; g) for all uw € C*, k € Z;

(iv) F(u;q) has a double pole at each u € ¢* and no other poles.

As above, we look for F’ to be an average

F(uyq) = ) fld"u)

nez

for some elementary function f. Such an £ will clearly satisfy the period-
icity condition (iii).

To obtain (iv), we need f(T) to have a double pole at T = 1. For
example, we might use f(T) = (1 — T)~2. But the series

1
Z (]_ _ qnu)Q

nez
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dtoes not converge, since |g| < 1. The terms with n — —oo are all right
since then ¢™ — co. But as n — o0, the n*® term goes to 1. |

In order to get convergence, we want f(T
? to have a d .
1 and also to Sa:tiSfy ( ) OIlble pOle at ' =

lim f(T)=0  and

T —o0

The simplest such function is f(T") = T'(1 T)—z :
. = — , which leads us t ‘
the function F'(u;q) in the following lemma. 5 to consider

Lemma 6.1. Let

Flujq) =Y 22

_ a2
= (1—q"u)
(a) The series defining F, considered as a function of z, converges abso-

lutely and uniformly on compact subsets of C . A...

(b) F is an elliptic function for the Iattice A
~. It has a doubl
each z € A, and no other poles. ouble pole at

(c) The Laurent series for F' around z = ( begins

]- ]. L
Flu;q) = e q
( q) (271—@')22;2 12 2 Z (1 — qn)2 + (powers of z).
PROOF. (a) Note that
q"u B g "yt
(1—g™u)? (1— g mu1)2

We use this identity to rewrite the t ' '
erms in F' having n < 0. This gi
alternative expression for F', ° CEE

w: _ U q'”"u, | o~ 1
e = iy 2 {(1 —qru)? (1 fvq*"**fu,—l)g } |

n>1

Now let C' C C ~ A, be a compact set. Then u = e?™# is bounded away

rom 0 and co uniformly for z € C. Since ¢ — 0 as n — 00, it follows that
here are constants ¢; and ¢y so that

q"u g"u !
(1 —qmu)2| | (1 — gru—1)?

<calg

forall z € C, n > co.
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Consider now one of the finitely many terms with n < ¢o. We know
that u # ¢™ for z € C, so the compactness of C ensures that

inf |1 — g"u™'| > 0.
z€C

Hence the terms with n < ¢z are also uniformly bounded. | |

(b) From (a), F is a holomorphic function on C ~ A, and lookling gt the
series defining F, it is clear that F' has a double pole at each point in A
Finally, since the transformations z — 2+ land z — 2+ T Cf)rrespond
to u = u and u — qu respectively, it is clear again from the series that F
is an elliptic function for the lattice A |

(¢) Note that u = ™ — 1 as z — . Hence the pole at z = 0 in the

series for F' comes from the term with n = 0. Now a little freshman calculus

yields

w e ] ! - (powers of z).

(I—u)? (1 - e2miz)? - (2miz)? 12

Hence using the alternative series for F' given above, we find

lim {F(u;q) (2;3.2,)2 1 112} ii_%{F(U;Q) (1 fu)z}

|

= o 1{(1—q“u)2 (1—gqru™)?
no
qn
=2) G
= (1 q")
2MLZ 2'11'?'.1'.

Theorem 6.2. Letu=e€ and g =€

T 1 q
@ s AR VR D oL

I
2 [
~
-
l
)
=
&
S’
o
ot
N

|
—
—
lu::;!3
Ll e
£
|
T
S
%l @
Qi
—_
[

n>0 n>1

1 q"
; iZjE: n\2
12 T4 (-

1 g"u(l + q"u)
'Z?T — T

S g u(l + ") Z u (1 + g u )

= n  na—133

s (1-g u (1—-qmu™)
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Remark 6.2.1. For | X| < 1 there is the elementary identity

(1—XX)2 =X’§"55 (1—:}}() =2 mX™

m>1

This is sometimes used to rewrite the final sum in (6.2a) as

(L T
Z(qun)z‘:LLmqmn:Z 1mq

—_— qm
n>1 n>lm>1 m>1

PROOF (of Theorem 6.2). (a) Let F(u;q) be as in (6.1). Consider the
function

1 1 q"

2Pz T) — Fu; q) - 2 -
(271)2 12 T; (1 —g™)?
From (6.1b) we see that this expression is an elliptic function for the lat-
tice A, which is holomorphic on C \ A.. Further, comparing the Laurent
series for F' given in (6.1¢) with the known Laurent series for p, we see that
it is also holomorphic at z = 0, and in fact it vanishes there. It thus repre-
sents an everywhere holomorphic elliptic function which vanishes at z = 0.
Applying [AEC VI1.2.1], we conclude that it is identically zero. This proves
the first equality in (a), and the second is an easy rearrangement of the

terms in the initial sum. (See the proof of (6.1a).)
d d
Apply — = 2miu— .
(b) Apply —— = 2miu—- to (a)

The next step is to find a g-expansion for ((z; T) analogous to (6.2).
By construction,

d
= ((57) = —plai7),

so we try integrating the series (6.2a) for p term-by-term. Proceeding
blindly, we find

q*u B g u du 1 1
1 — g™ 2dz o _ At \2 T . AT\
(1 — g™u) (1 —q™u)? 2wiu 2w (1 — q"u)

Unfortunately, the series
1

nEZ

is clearly divergent, the n'® term goes to 1 as n — oo. But just as in
the original definition of p, we can improve the convergence by adding a
constant onto each term.

The second expression for p in (6.2a) has the form

1

1 g™ u qru”
: — I { C 3
(271-?:)2 p(Z T) Z (1 _ qnu)f«l Z (1 . qnu—-l)Q 1

1 >0 n>1

where
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T

1 q
C,=Ci(g)=-—=—2) .

(We will soon identify C7 more precisely.) Now integrate:

1 1 1 du
L) = o [olan == [ Grmelsn T

27T U

_ q" U | g u"? | du
- /{Z (1—gmu)? 2. (1—qru1)? “1

n>0 n>1
1 __q'n,u—-l .
=_Z{1_qnu 1}__21__‘111“—1 271-?'013—}—02
n=>0 n2>1
B _qnu qnu—l .
o Z 1 — qnu { Z 1 — qfnu—-l 27”01'2 T 02
n >0 n>1

for some constant of integration Cy = Cz(g). Note that the last series is
absolutely and uniformly convergent on compact subsets of C \ A;, so it
defines & meromorphic function on C. (The proof is identical to the proof
of (6.1a).) Further, the (d/dz)-derivative of this series can be computed
term-by-term and agrees with the series (6.2a) for p. This proves that it
equals ¢ for some choice of Ca.

To find Oy, we compute the first few terms of the Laurent series
around z = 0. We already know (5.1b) that

((z;7) = % — G4(7)2° + higher powers of 2.

On the other hand, the pole at z = 0 (i.e., at u = 1) in the above g-series

comes from the n = 0 term, so we find

—u ___q'nu q'nu-——l |
| | 2m1C C
1 —u ;{1-—(3%; 1-—q’”u"’1} Mz + &2
>

vanishes at z =0 (u = 1)

621%3

=~ gz | C, + (powers of z)

1 1
= 5— -5 + Cq + (powers of z).

Since the Laurent series for ¢ has no constant term, we see that Cy = —3.
This proves part of the following theorem.

Theorem 6.3. Let ((z;7) be the Weierstrass (-function and n: A — C
the quasi-period homomorphism associated to A.

1 —q"u g u 1 1
n>1

271 — g™u —gtu~l  2m
>0 q q
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() (2;'5)2"(1):'1_ 1424y

q‘n
12 ~
= (1 —qn)*

ProoOr. Let

Y —q" U qu 1
n2>0 1 n>1" gru

1 T

Cilg) = 2) g _qqn)g.

We proved above that

1
by (2;7) = G(z;7) — 2miC4(q) — %

Now evaluate at z = 2. From (5.2b 1
. . , 5, T) = 1), F‘-u —
corresponds to u = e™ 2" ) C(z ) n(1) rther, z

the n = 0 term. Thus

1 n T
2 el ;Hq“ 2
Hence
1 1 1 1
- _ 4 _ . 1
i 1) = 3 (2) =G (5) — 2miCy(q) — 5 = ~2miC(g),
SO
C1(q) = L . a
1) =~y

53

1
= —1, so all of the terms in G(5;7) cancel excep%c

This completes the proof of both parts (a) and (b).

Finally, we integrate the series for {(z;7) and exponentiate to obtain

an important g-product expansion for o(z; ).
Theorem 6.4. The Weierstrass o-function has the product expansion

O-(z, 'T) o —__].-_.6%77(1)326_11'?:3(1 . u) H (]- —_ qn'u,)(]_ — qnu—l)

2 :
e el (1 ___. qn)z

where u = 2™ and ¢ = e2™7 a3 usual _
. ) and 1) 1s the ~ 1
associated to the period 1 € A, (L) quasi-period

PROOF. By construction,

o'(z;7) d

o(ar) — dz BT = =),
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Using (6.3a) and integrating gives

27T
—q"u du g"u~t  du / .
— { | 1)z —
7 >{) n>1
= Z log(1 — q"u) + Z log(l — ¢"u™") + %n(l)z‘? — iz + Cs.
72> {) n>1

We claim that the series will converge provided we use the principal branch

of the logarithm when evaluating log(1 — g™u) and log(1 — g”u—1). To see
this, note that for n sufficiently large we have |q"uT?!| < 3. So, for all but

finitely many n,

=1
llog(l _ qnuil)‘ — Z E(qnuil)k < 9 lqnu:lzll .
k=1

Hence the series will converge.
Exponentiating, we eliminate any ambiguity arising from the choice of

o, branch of the logarithm and obtain the product representation

It remains to find Cs. Recall that o was normalized by the condition

that o(z;7)/2 — 1 as 2 — 0. It is the n = 0 term in the product which
vanishes at z = 0, so we find

| lim Z&T)
z—{) Z
— lim ezn(ME st (1 - u) H(l —g"u)(1—q"u)
z—0 VA
w—r1 n=1
= eCs(—2mi) | [ (1 - ¢")*
n>1
Hence ) 1
Ca H
6 —
’ _ T 2?
271 et (1 -qm)

which gives the desired product formula for o(z; 7).
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F[‘he Eisenstein series Gox(7) is a modular function of weight 2k. It sat-
ISﬁ(::‘,S Gop (T +212 = Gk (T), so it has a Fourier expansion in terms of the
variable ¢ = e“™*7. In this section we will compute the Fourier series of Gop.

and gse it to deduce various properties of the Fourier expansions for A(r)
and j(1).

Proposition 7.1. Let k£ > 2. Then

Vs 2K
Gor(T) = 2¢(2k) 4 2((2]:?1)! Z:U,%—l(n)qna
T~ 1
where
((s) = Z glg and op(n) = de
n>1 dln

?fre respectively the Riemann (-function and the k**-power divisor func-
ion.

PROOF.
1
sz(T) —
mzn:EZ (mT . n)Qk‘
(m,n)#(0,0)
DESEED ) Pt
— | 2
2k y: Y: -
ncZ n m=1nc? (mT + n)Qk
n#0

The ﬁr,:q,t sum is just 2¢(2k). Notice that the rightmost (inner) sum is
clearly invariant under 7 +— 7+ 1. We now compute its Fourier expansion.

Lemma 7.1.1. Let k > 1 be an integer. Then for all 7 € H,

1 e .
Z (T - n)zk — (271.?,)219 Z 7,2]3—1621??.?"1'_

nez r=1

PROOF. Ignoring questions of convergence, we have a formal identity

1 1 d2k
Z = log(T +
— (T +n)?2* T; (2k — 1)! d?+7 8(7 +1)
1 4
2k = D) d%kr log H(T +n),

nc

E)f course, this product does not converge. But we do get convergence if we
factor an n out of each term. (Remember this is just a formal manipulation
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to see what the answer should be. Otherwise one might rightly object that
dividing by (oo!)? is a highly dubious procedure.) The product

e ’T2
T
-1 (1 H)ZTH(“;E)
nF0

converges to give a function that is holomorphic on C, has simple Z€ros
at each integer, and no other zeros. With this description, thfa reader jmll
undoubtedly recognize the usual product expansion for the sine function.

(See Ahlfors [1].) o ,
-
sin(wr) = 7T 1:[1 (1 — Eg) :

We now reverse our formal argument to produce a rigorous proof.
Starting with the product expansion of the sine function, we take the log-

arithmic derivative, yielding

1 —27
%—log(sin'm’)—- I Z >

2
T n<e — T
T neZ

1
n-—"T

]

S =
~+
N

S
+| L
-.]
S——”

Now taking (2k — 1) more derivatives, we find

2k SN Y SN S )
A2k log(sinr) = (2 — 1) T2k IZ((TL-I*T)% S (n—T)*

=1

(2k — 1)1 ) e +1T)%.

ncz

I

Next we compute the Fourier series of (a branch of ) log(sinmT). Writ-

ing 1 ' — LT 1 — LT
sin(nr) = — (™7 — € ) = 9 ¢ (L—e

211'*3'.7') }

we find (for 7 € H)
—log(—2i) — mir + log (1 — ™7}

Jog(sin )

. - = 1 2T T
—log(—21) — miT + ; e .
Differentiating 2k times (with k& > 1) yields

o0

d** . N2k, 2k—1 _2mirT
dng 1Og(81n ﬂ'q') — ;(271"3) T € .
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Equating this expression for d**log(sinn7)/d7?* with the expression ob-
tained above gives the desired result.

We resume the proof of Proposition 7.1. Applying (7.1.1) with m7 in
place of 7, we find

Gor(T) = 2¢(2k) + 2 5: y: (m7 _ll_ )2k

m=—1neczZ
— 2C(2k | ) 2TIrMNT
O Gy 2. ) e
m=1 r=1
(27T’5)2k o 2k—1 2mi
= 2¢(2k) + 2 minT,
C( ) ‘ (2}3 _ 1)[ 2;1 Z{JT €
n=1 rin

As is well known, ((2k) is a rational multiple of w2%. It is frequently
convenient to factor a m2* out of the Fourier series for Gof, yielding a series
with rational coefficients. We briefly recall the details concerning special
values of the Riemann (-function at even integers.

Definition. The Bernoulli numbers By are defined by the power series

expansion
o0 k
T T
= g B —.
et — 1 k!

k=0

For example, one easily computes

1 1 1
Bo=1,  Bi=-=, By=- = By=-——

1 1
and By =0 for all k > 1.

Be = — _
° 7 49’ 30’

For a longer table of By’s and the corresponding values of {(2k), see (A §1).
Proposition 7.2. For all integers k > 1,

o0 1 Vs 2k
n=1

PROOF. First we use the definition of the By’s to write

. 611'11:1: 6—11'?1:1: . )
mx cot(mz) = mix T — = M (1 { )

61?11:1: — g~ TIT 627?%':.{: —1
OO . o0 .
, 2miz)F Imix) 2k
:mx"'ZB’“( ki) :ZB%( )!
— ! P (2k)!
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Next we use the product expansion for sin(wz) already considered in the
proof of (7.1),

I
|
4
l

7 cot(mx)

1 1
Qi— 8-
g S—

— +

M)

-

A

AR

2 TM)e

S’

Ht\) ’ '

o 3‘&3
| [\ b2

~__
5

Comparing the two Laurent series for mx cot(mz) gives the desired result.

Remark 7.3.1. We can now define a normalized Eisenstein series Eo(T)

as the series
4k

Bai(r) =1- 5 Y oak-1(n)d"™

1>1

Using (7.1) and (7.2) we see that
ng(T) — QC(Q}C)EQ].;(T)

The fact that the Fax’s have leading coefficient 1 makes them particularly
easy to compare. For example, E? and Eg are both modular forms of
weight 8. Since Mg has dimension 1 from (3.10.1), we know that they are
multiples of one another. But since they are normalized, we see on COm-
paring their consta,ntterms that B = Fg. Equating Fourier coeflicients
cives the identity

T7— 1

o7(n) = o3(n) + 120 Z os3(m)as(n —m).

m=1
The reader will be able to construct many Imore identities of this sort.

Remark 7.3.2. We can also write g2(7) and gs(7) in terms of normalized
Eisenstein series:

(r) = 60Ga(r) = 120C(A)Es(r) = (2m)* 5= Falr)
s(r) = 140Gs(r) = 280(6)Es(r) = (2m)° 5= Fe(r).

These expressions are useful for computing the Fourier expansion of A(T)
and j(7), as explained in the next proposition.
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Proposition 7.4. (a) The modular discriminant has the Fourier expan-
sion
Alr) = 22 S r(n)g",
n>1

where T7(1) = 1 and 7(n) € Z for all n. The arithmeti ' s
: - etic funct
is called the Ramanujan 7-function. ionn = T(n)

(b) The modular j-function has the Fourier expansion

i(r) = é— + ) e(n)g",

>0

where c(n) € Z for all n.

PrOOF. (a) Using (7.3.2) we compute

A(7) = ga(7)® — 27gs(7)? = “on2_ (Eq(7)® — Eq(7)?).

We must show that every coefficient of E] — F? is divisi
— F? is divisible by 2°3% = 123
From (7.3.1) we have 4 y 123.

Ei(1) =1+ 240 Z os3(n)q” and  Fg(t)=1-504 Z ogs4(n)q™.

To ease notation, let us write

E4(’T) — 1+24OA and EG(’T) =1-50485.
Then

E4(1)° — Eg(1)?

(14 2404)° — (1 — 504B)?
= 122(5A + 7B) + 123(100A% — 147B? + 80004°).

It remains to show that every coefficient of 5A + 75 is divisible by 12
We have o

54+ 7B =Y (503(n) +Tos(n))q" =Y Y (5d° + 7d°)q",

and for any integer d,

rl'

d3(1 — d%) = 0(mod 4),
\. d*>(=1+ d*) = 0(mod 3).

5d° +7d° = d>(5 4+ 7d*) = «

Hence 5d° + 7d° = 0 (mod 12). This proves that

A(r) = (27)*? Z T(n)q"

n>1
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Remark 7.4.4. The values in (7.4.1) and (A §2) suggest that the c¢(n)’s
grow quite rapidly. This is indeed the case, as is clear from the following
asymptotic formula proven by Petersson [1] using the circle method of

for integers T(n). |
Finally, the coefficient of g 1s

(27)12 2 (50 0+ 705(1)) _ (2m) ' Hardy, Ramanujan, and Littlewood:
. . 3 — 3
3
12 AT/
so (1) = 1. | c(n) ~ Toni/A as n — 00.
(b) We use (a), (7.3.1), (7.3.2), and the definition of j(7) to compute
(2m)12 It also turns out that the ¢(n)’s are intimately connected with represen-
(7) 3 T E4('T)3 tations of the largest sporadic groups, in particular with the Fischer-Griess
j(1) = 172892 = 1728 ™ - monster group. See Conway [1] and Conway-Norton [1] for an interesting
(7) (27) Z 7(n)q account of this surprising connection.
n>1
3 Remark 7.4.5. Ramanujan’s 7-function also has many interesting prop-
(1 + 240 Z o 3(”)@“) erties. For example, we will later prove (10.7) that it satisfies the identities
g YT r(mn) = T(m)7(n)  if (m,n) =1,
n>2 (Pt = 7(p)7T(p®) —p 'T(p*')  for p prime and e > 1.
: s ? i this last expression gives a , _ , ,
Since the o 3(”) s and ; he T(?)l i_a; jg;l)nieg;f:ﬂ in’loigir coelif)ﬁcients.g These identities were conjectured by Ramanujan; the first proof was given
Laurent series of the form g q | by Mordell.

We will also prove (11.2) that the 7(n)’s grow much more slowly
than the ¢(n)’s. Precisely, we will show that there is a constant ¢ such
that |7(n)| < cnf for all n > 1. Another conjecture of Ramanujan, proven
by Deligne as a consequence of his proof of the Riemann hypothesis for
varieties over finite fields, says that one can do better.

Remark 7.4.1. Using the formulas developed in the proof of (7.4), it is
easy to compute the first few values of 7(n) and c(n). Thus

(2m) 12 A(7) = q — 24¢% +252¢° — 1472¢" + 4830¢° + - ,

§(7) = g1 + 744 + 196884q + 21493760¢" + - - - -

For a more extensive list, see (A §2).

Theorem 7.5. (Deligne [1,2])

IT(’”’)\ < og(n)ntt/? for alln > 1.
Remark 7.4.2. In the next section we will prove that A(T) has the prod-

uct expansion (Here og(n) is the number of divisors of n. For example, if n is prime,

A(r) = (2m)2q [J(1— ¢ then oo(n) = 2.)
T3>
= In the other direction, there is the following open conjecture of Lehmer.
This gives an alternative (but less elementary) proof of (7.4a)

! : Coniecture 7.6. (Lehmer |1
Remark 7.4.3. The c(n) coefficients of 4(7) have many interesting arith- jectur ( r [1])

metical properties. For example, Lehner [1,2] proved that they satisfy the

0 for all n > 1.
following divisibility conditions. (See also Apostel |1, Ch. 4].) T(n) # or all mn >

n=0 (mod 2°) = ¢(n) =0 (mod 93et+8),
n =0 (mod 3°) = e(n) = 0 (mod 3272,
n=0 (mod 5°) = ¢(n) = 0 (mod 5°71),
n=0 (mod 7¢) = ¢(n) = 0 (mod 7¢),
n=0 (mod 11°) = ¢(n) = 0 (mod 11°)
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§8. Jacobi’s Product Formula for A(T)

In this section we will prove Jacobi’s beautiful product expansion for the
modular discriminant A(T).

Theorem 8.1. (Jacobi)

A(r) = (m)2g [T (1 - )™

n>1

Remark 8.2. We will derive the product (8.1) directly from the definition
of A(7) and the product representation (6.4) for the Weierstrass o-function.
There are other methods which can be used to prove (8.1). For example, see
Serre [3, Ch. 7, Thm. 6] for a proof based on rearrangement of conditionally
convergent double series, and Apostel [1, Ch. 3, §2] or Siegel [1] for an
exposition of Siegel’s clever proof using residue calculations. The heart of

both of these proofs lies in first proving that the function

F(r)=q ][ -d")*
nn>1
satisfies
F(=1/7) = 7"F (7).

Since F' visibly satisfies

F(r+1)=F(T) and lim F(r)=0,

T—100

and since S and T generate the modular group I'(1), it follows that F'1s
a cusp form of weight 12. Hence F(7) /A(T) is a holomorphic modular
function of weight 0, so it is constant. Finally, letting 7 — 100, one easily
checks that this constant is (27) "2,

PRrROOF (of Theorem 8.1). By definition,
A(r) = go(7)* — 27g3(7)’
is the discriminant of the cubic polynomial

4X3 — gg(T)X — 93(’}") — 4(.'17 — 61)(58 - 62)(58 — 63).

But we know the roots of this polynomial from [AEC, V1.3.6], namely

1 T T+ 1
€1 = 5}’!' . €y = O 5,1’ , €3 — £ > T ) -
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Thus
A(T) = 16(61 — 82)2(61 —— 63)2(62 — 83)2.

Th(?, idea of our proof is to express A(7) in terms of special values of the
Weierstrass o-function and then use the product expansion (6.4) for o.
If we differentiate the equation

12

P~ =4(p —e1)(p —e2)(p —e3)

and divide by 2p’, we find

" =2(p—e1)(p —e2) +2(p —e1)(p — es) + 2(p — e2)(pp — €3).
Now if we evaluate successively at z = %, z = -g-, and z = — _21— 1, we see in

each case that only one of the three terms survives:
o (%,7) = 2(e1 — ez)(e1 — es),
(6
(5

Comparing these formulas with the expression for A(7), we write A(7) in
terms of values of p”,

A(T) = —2p" (%J) " (%,T) o' (Tgl,'r) .

Recall (5.6b) that we have expressed g’ in terms of the Weierstrass o-
function,

2(ex — e1)(eq — e3),

2(63 — 61)(83 — 82).

22,T)
"z,7) = 0 (22, .
' (2,7) (21}
Taking derivatives gives
/ !
@H(Z,T) — 20- (231’?2 { 40-(2Z1T)O- (Z,T)
O'(,Z,'T)- O'(Z,'T)E’
If we evaluate p” successively at z = %, %, T 1, the second term will

vanish, since o(z, ) has zeros at points in the lattice Z7 + Z. We obtain

W o' (w, T
@”(517)“‘ 2 (w )4 forw=1,7,7+ 1.
o (5,7)
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Combining this with the above formula expressing A in terms of ©”, we

find J’(l,T)a’(T,T)J’(T +1,7)

o (5.7 o (3m)o (7]

Now it’s time to use the product expansion (6.4) for o,

A1) =16

U
O-('Z! T) — €2 (]_ _ qfn,)?_, y

— . 1 — a™u)(1 — g™y~
1 1nzze—ﬂzz(1__u) H ( d )( q )
271 o1

where u = €2™* and q = €*™7 as usual. If we differentiate this prod-
uct and evaluate at z = 0, so at u = 1, the only term that remains is

the term that involves —g—(l — ) = —2miu. Further, at u = 1 the prod-
Z

uct J[](1 — q™u)(1 — g*u—1) /(1 — g™)?* collapses to 1. We thus find
o' (1,7) = ez,

and similarly

P
o' (1,7) = e%'rzq'_% and o'(t+1,7)= ez(T+1) q—%.

Next we use the product expansion of o to compute

8
7

4
1 1 __12_7? 4 1 q
J(ﬁ’T) ~ mi)t 2* | 11 1—qn |

n=>1

T 4 1 _1_7? 2 _3 1
—_ — T 1 — g2
0(2’7) e (1-¢*) 11

e (1—qm)°
N\ 8
1 1.2 1—q”"'§
= ——e2" g7 ,
(27e)4 !;[1 1 —q"
4
1 1 1o(ri1)2  — 1
U(T; ’T> = gegies (L)

1 1 2 1 + qﬂ"——
(271)4

Substituting the expressions tfor o' and o into the above formula for A,

we find after some cancellation
]

2 (1 - q")°
Alr) = @ r]a;Il (1+q)(1—q %) (1+¢"7)
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_ 12 (1—q")°
= (2m)7 ,}1 (T+g™)(1— g™ )

oo

12 (1 _ qn)2(1 . q2n)
(27) “q 1};{1 g
since ([[1 - g™ 1)([11—¢*) =1~ 0"

em2q [[(1—¢)**  since1—¢* = (1+4¢")(1—q").
n>1

I

In view of the exponent appearing in the product expansion for A(7),
it is natural to study the function obtained by taking 240 _roots.

Definition. The Dedekind n-function n(7) is defined by the product

for 7 € H, g = *™".

n(,.r) — 621?@'1'/24 H(l _ qn)

Warning. Do not confuse the Dedekind n-function with the quasi-period
map (5.2b) n: A — C. This may be especially confusing when A = A,
since then the symbol n(7) has two meanings, and it is quite possible for
both to appear in a single formula. For example,

(2)** (Dedekind ?7(’T))24 = A(7) = product of values of o(7),

and using the product expansion (6.4) for ¢ will give a formula involving the
quasi-period 1(1). Why, you may ask, do we continue to use this contusing
notation? Tradition!

Proposition 8.3. (a) The Dedekind n-function satisfies the identities

1

?’](’T -+ 1) — 62?1-?:/2477(7-)’ and (f, ( .

) = v/—iT (7).

Here we take the branch of v/ which is positive on the positive real axis.

(b)
A(r) = (2m)2n(r)>.

PrOOF. Note first that (b) is immediate from the definition of (7) and Ja-
cobi’s product formula (8.1) for A(7). Next, since the transtormation 7 +—
7 + 1 does not change g, we see from the definition of n(7) that

n(,T. + 1) — 6211‘?:(1'+1)/24 H(l . qn) _ 62ﬂi/24‘7](’?').
nn>1
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Finally, we know that A(7) is a modular form of weight 12, so

A (—1) = 12 A(7).

T

Using (b) and taking 24*"-roots shows that

7 (-—-1-) = ev/—iT ()

T

for some 24_root of unity €. Now evaluate at 7 = 1. Since —1 /1 =1, we
find that e = 1.

Remark 8.4. More generally, let

Taking the 24t"-root of (8.3b) and using the known transformation property
of A(1) shows that

() = PO/ iler & dyn(7)

for some integer ®(v) depending on <. For example, (8.3a) say's that ®(S) =
0 and ®(T) = 1. Note that although ®(v) is only defined modulo 24, we
can pin down a particular value for &(vy) by fixing a branch of log n(T),
setting

2-2%2@(7) = log n(y7) — logn(7r) + %log{—i(m +d)} ife>0

and requiring ®(—v) = ®(vy) if ¢ < 0.
For many purposes it is important to know precisely how 7 transforms.
The following theorem of Dedekind supplies the answer. First we need one

definition.

Definition. Let £ and y be relatively prime integers with y > 0. The
Dedekind sum s(z,y) is defined to be

y—1 . . -, -
Y AVE 1% 1
S($’y)=Z§(y y _5)’

j=1 -7

(The square brackets denote the greatest integer function.)
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Theorem 8.5. (Dedekind) Lety = (g’ 3) € SLy(Z) with ¢ > 0. The

Dedekind n-function satisfies the transformation formula

nyr) = 7024/ Ziler + dyn(r),

where «/~ is the branch of the square root which is positive on the positive
real axis, ®(v) is given by the formula

1 d
H() = = + = — 12
(7) s s(d, c),

and s(z,y) is the Dedekind sum defined above.

PRrROOF. Since we will not need this result, we omit the lengthy proof. The
interested reader might consult Apostel [1, Thm. 3.4] or Lang [2, Ch. IX].

Remark 8.6. Dedekind sums s(z,y) satisfy many interesting relations.
Of particular importance is Dedekind’s reciprocity law: Let z,y > 0 be
integers with ged(z,y) = 1. Then '

T
12s(z,y) + 12s(y, ) = — LA 3.
y £ XY

See Apostel [1, Thm. 3.7] or exercise 1.17. A good source for information
about Dedekind sums is Grosswald-Rademacher [1].

89. Hecke Operators

Let E/C be an elliptic curve. We have seen amply demonstrated in [AEC]
the importance of studying isogenies connecting our given elliptic curve £
with other elliptic curves. If E(C) = C/A for some lattice A € L, then an
isogeny E' — F of degree n corresponds to a sublattice A" C A of index n
by the natural map

C/N — C/A, Z— 2.

In keeping with our general philosophy in this chapter, rather than
focusing on a single isogeny, we instead consider the set of all isogenies
to E of degree n. Equivalently, we look at all sublattices of A of index n.
This is the same as studying degree n maps from F to other elliptic curves,
since we can always take the dual isogeny. In our situation, the dual isogeny
C/A — C/A’ is induced by the map z — nz. This leads to the notion of a
Hecke operator.
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Definition. For any set S, let Div(S) denote the divisor group of the set .5,
that is, the free abelian group generated by the elements of S,

Div(S) =P Z-s.

seES

A homomorphism T : Div(S) — Div(S) is called a correspondence on S:
Notice that a correspondence is determined by linearity once its values are
known on the elements of S.

Definition. Let n > 1 be an integer. The nt® Hecke operator T'(n) is the
correspondence on the set of lattices L whose value at a lattice A € L is

Tm)A= ) (N).
ACA
[A:A"]=n

If two lattices are homothetic, then they give the same elliptic curve.
This suggests that we should also look at the following homothety operator.

Definition. Let A € C*. The homothety operator Ry is the correspondence
on L whose value at a lattice A € L is i

RyA = A,

Since the T'(n)’s and the Ry’s are homomorphisms which map the
group Div(L) to itself, they can be composed with one another. The fol-
lowing fundamental calculation describes the algebra that they generate.

Theorem 9.1.
a) RyR,, = Ry,

( for all A\, u € C*.
(b)  RaT(n) =T(n)Rx
(

(

foral A e C*, n > 1.
c) T(mn) =T(m)T(n)
d) T(p°)T(p) = T(®"™) +pT(p* )Ry

for all m,n > 1 with ged(m,n) = 1.

for p prime, e > 1.

RyR,.(A) = Ry(pA) = ApA = Rau (D).

(b) This follows immediately from the definitions and from the fact that A’
is a sublattice of A of index n if and only if AA’ is a sublattice of AA of
index n. .

(¢) Let A” C A, where the superscript mn denotes the index. Since m
and n are relatively prime, the quotient A/A” has a unique decomposition

A/N =@, x @, with |®,,| =m and |®,| =n.
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It follows that there is a unique intermediate lattice A’ satisfying

T TL

A" C N CA,
namely
N={zxeA:mzeA})

Using this fact, it is now easy to verify (c).

D Y UED S WY

AT A A'CA A"CA!
= 3" T(m)() = T(m)( 3 (A’)) = T(m)T(n)A.
A'CA A'CA

e+
(d) Let A € L. For a given sublattice A’ C

integers defined by

G(A’):#{FA’CFEA} and b(A;):{l ifAprA,

0 if A ¢ pA.
Then
TEH)TA=D > A= 3 a)@),
réa AT VTN
T A= ), (),
-
T MRA= > (A= 3 b(A)A)
ArE o pE A

'(Note that pA has index p* in A.) The identity (d) we are trying to prove
1s thus reduced to verifying

e41

a(A)=1+pb(A) foral N’ E A

We consider two cases.
Case 1. A CpA, bN)=1

p
Let I' T A. ThenT' D pA D A, so a(A’) is increased by one for each
such I'. Hence

a(A)y=#{T:TCA}=p+1=1+pb(A).

A, let a(A’) and b(A’) be the

- —
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p
[Quick proof of the middle equality: The set of ]f" C A corresponds to
subgroups of A/pA = (Z/pZ)* of index p (or equivalently of ~:>rc:1e]1:'1 D).
These are the lines in A?(Z/pZ), so there are #PL(Z/pZ) = p+1 of them.

For a proof of a more general result, see (9.3) below |
Case 2. N ¢ pA, b(A")=0
Let I satisfy A’ c T & A. Note that pA C I'. We have inclusions

AN - I 2 A
0 C ANNpA — pA T pA
]
Not equal, Index 1[1:’:),,
since A’ ¢ pA. since I' C A.

But A/pA has order p?, so we conclude that the middle inclusion must be

litv. Therefore
an equality P A+ oA

p
Thus for a given A’ ¢ pA there is exactly one I' satistying ANcT CA

Hence |
a(A) =1=1+pb(/N).

Every T(n) is a polynomial in the T'(p)’s and Ry’s for

| —

Corollary 9.1.1. |
primes p. More precisely, the rings

Z[T(n), R, : nes,nz 1] and Z[T(p), Ry, :p prime]

are the same. This ring is called the Hecke algebra (of T'(1)). (Notice that
the Hecke algebra is a subring of the ring of correspondences

End(Div(L)) = { homomorphisms Div(L) — Div(L)}.)

ProOF. Factor n = p% ---pS. From (9.1a) and (9.1c) we find

R, = ﬁﬂgg and  T(n)=[[T ).

1=1

Finally, (9.1d) and an easy induction on e shows that T(p®) is a polynomial

in T'(p) and R,

Corollary 9.1.2. The Hecke algebra Z[T(n), R,:n€Z,n> 1] IS comn-

mutative. In particular,

T(m)T(n) =T(n)T(m)  forallm,n = 1.
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(Note that End(DiV(L)) is definitely not commutative.)

PROOF. From (9.1a,b,c), we are reduced to showing that 7'(p®) commutes
with T'(p/). This follows from (9.1.1), since both T'(p®) and T(p ) are
polynomials in T'(p) and R,, which commute from (9.1b).

Example 9.2. Using (9.1d), it is easy to illustrate (9.1.1) for small pow-
ers T'(p®). For example,

T(p*) = T(p)* — pR,,
T(p®) = T(p)® — 2R, T(p),
T(p*) = T(p)* — 3pR,T(p)* + szg.

For a general recursion, see exercise 1.19.

The Hecke operator T'(n) sends a lattice A to the sum of its sublattices

of index n. We now describe these sublattices more precisely. Let A € L,
and fix an oriented basis Zw; - Zwy for A. For any A’ E A, we choose an

oriented basis wi,w) for A’ and write
W] = awy + bws, Wy = cwy + dws,
with integers a, b, ¢, d. Then one easily checks that

a b

n:[A:A]:det(C g

)zad——bc.

Here’s a quick geometric proof of this fact. The linear transformation o =
(g 3) acting on the vector space R? 2 Rw; +Rws = C sends a fundamental

parallelogram D for C/A to a fundamental parallelogram for C/A’. Hence

Aresa of oD

[A:A]: Ares of D

= det(a).
Conversely, if ad — bc = n, then
N = Z(awy + bws) + Z(cwy + dws)

1s a sublattice of A of index n. We thus obtain a map

n

{a € Mx(Z) : det(a) = nyp — {A AN CA)
o= (f.; 3) — (M) = Z(aw: + bws) + Z(cw, + duws).
(Here M5(Z) is the ring of 2 x 2 matrices with integral coefficients.) Note

that c(A) depends on the choice of basis for A, although our notation does
not reflect this dependence.
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It is possible, of course, for different a’s to give the same sublattice.
According to (1.2), we have a(A) = o/(A) if and only if o = vo! for
some v € SLy(Z). Note that the basis for a(A) will be oriented if the basis
for A is, since (1.1) gives

- (aw1 + bWQ) (det ) Im(w1 /w2)

cwr+dwz) |c(w1/wz)+d|2 |

and det(a) = n > 1. This proves the first half of the next lemma, which
we state after setting some notation.

Notation. Let n > 1 be an integer. We define

|

’ b
Do = 3 ((cl d) EMQ(Z):ad_bC:”}’

\

Sn <(g‘ 3) EMZ(Z):adzn,a,d>0,ogb<d}.

\

Note that 8, is a finite subset of D,, having order

d—1
#on=2_ 2 1=01(n)

d|n b=0

Note also that SLo(Z) acts on D,, via multiplication: if v € SL2(Z) and o €
Dn, then det(ya) = n, so ya € Dy,

Lemma 9.3. Let A € L be a lattice given with a fixed oriented basis A =
Zwy + Ziws.
(a) There is a one-to-one correspondence

SLy(Z)\D,, &= (A aEag
a = (% 3) fp— CB(A) = Z(wal -+ bu)g) -+ Z(cw1 |- dwg)
(b) The natural inclusion 8, C Dy, induces a one-to-one correspondence

Sy, ¢ SLy(Z)\ Dy,

PrOOF. (a) This was proven during the discussion above.
(b) Let o = (g 3) c D,. We construct a v € SLa(Z) such that ya €

S,. Suppose first that ¢ # 0. Write the fraction —a/c in lowest terms,
say —a/c = §/r. Since r and s are relatively prime, we can find integers p
and g so that ps — gr = 1. Then

(ﬁ z) (fi 3) _ (S :) and (ﬁ g) € SL2(Z),
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S0 we are reduced to the case that ¢ =

may also assume that a,d > 0. Finall
the matrix

0. Replacing o by —q if necessary, we
y, for an appropriate choice of ¢ & Z,

(1 tN (1 b\ [a bitd
0 1 0 d/ \0O d
satisfies 0 < b+ td < d
onto SLy(Z)\D,.

Suppose now that a,a € 8§,
7= (2 2) in SLy(Z) such that

(a b): P g\(ad ¥\ _ [(adp bp+dq

0 d r oS 0 d /) \dar b’r——d"s)'
S.ince a’ # 0, the lower left-hand entry gives r
diagonal entries, we find

, 80 1t is in 8,. This proves that S, Surjects

have the same image. Thus there is a

= 0. Next, comparing

a=ap, d=d's D ad =1,

, S a,d,a’,d > 0.

It follows that p = s =1, and so q = ¢’ and d = d'. Finally, we have

b=b'+d'q  and (by assumption) 0< b b <d =d.

Hence |d'q| = [b —

b'| < d’, from which we _
Therefore o = o/, we conclude that ¢ = 0 and b = ¥'.

Proposition 9.4. Let A € £ pe & lattice,
oriented basis for A.

the formulas

and let A = Zwy + Zwy be an
Then the Hecke operator T'(n) is given explicitly by

T(n)A= Y (Z(aw, +bwz) + Zdwy) = 3 (a(A)).

ad=n,a>}1
0<b<d V&S

(The notation a(A) is as in (9.3a).)

PROOF. Immediate from (9-3), which says that the

. ' sublattices of A of
index n are precisely the lattices a(A) with o € 8,,. ;

Example 9.4.1. For primes P, (9.4) gives the formula

p—1

T(p)A = (Zpw; + Lwy) + Z(Z(wl + bws) + prg).
b=0
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§10. Hecke Operators Acting on Modular Forms

In the last section we described Hecke operators T'(n) which assign to a
lattice A € L a formal sum of lattices

T(n)A= )  (A),
A'CA
and we also gave homothety operators Ry defined by Rx(A) = AA. Letting
F : L — C be any function on the space of lattices, we define new

functions T'(n)F and RyF on L in the natural way,

(T(n)F)(A)= > F(A) and (R\F)(A)=F(A\A).
A’CA
We would like to define an action of 7'(n) on the space of modular

functions f of weight 2k. Unfortunately, a modular function f is not &
well-defined function on the space of lattices L; it is only a function on the

space of lattices with given bases:

However, we can use the fact that f is modular to comnstruct a function
on £ having a certain homogeneity property, as described in the following

proposition.

Proposition 10.1. There is a one-to-one correspondence
. lattice functions F' : L — C
} satisfying F(A\) = A2 F(A)
for all A € C*
f —  Fp(Zw + Zwy) = wz,_%f(wl/wg),

fr(r) = F(A) - F

weakly modular functions
f:H — C of weight 2k

Proor. First we check that F¢(A) depends only on A, and not on the
choice of an (oriented) basis for A. From (1.2a), any other oriented basis

has the form

(awy + bwa, cwy + dw2) for some (i’ 2) € SLy(Z);
SO
_ awy + bw
Fy ((awy + bw2)Z + (cwy + dwz)Z) = (cw1 + dwa) ™" f (cw-j + dwi)
W 2k /.
= (cwi + dwg) ™" (c—i"-— + d) f (_1_)
W2 Wao

= wEZkf (Ej—l-) — F}(Zwl -+ ng).

W2
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Next, it is clear that
Fr(AL) = Fy(Z w, + ZAws) = A\"2FFy(A).
Similarly, if v = (‘g 3) € SLy(Z), then

Ayr =(cT+d)™* (Z(G,T +b) + Z(cT + d)) = (et +d)"<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>