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Pretace

Polynomials pervade mathematics, and much that is beautiful in mathe-
matics is related to polynomials. Virtually every branch of mathematics,
from algebraic number theory and algebraic geometry to applied analy-
sis, Fourier analysis, and computer science, has its corpus of theory arising
from the study of polynomials. Historically, questions relating to polyno-
mials, for example, the solution of polynomial equations, gave rise to some
of the most important problems of the day. The subject is now much too
large to attempt an encyclopedic coverage.

The body of material we choose to explore concerns primarily polyno-
mials as they arise in analysis, and the techniques of the book are primarily
analytic. While the connecting thread is the polynomial, this is an analysis
book. The polynomials and rational functions we are concerned with are
almost exclusively of a single variable.

We assume at most a senior undergraduate familiarity with real and
complex analysis (indeed in most places much less is required). However,
the material is often tersely presented, with much mathematics explored
in the exercises, some of which are quite hard, many of which are supplied
with copious hints, some with complete proots. Well over halt the material
in the book i1s presented in the exercises. The reader is encouraged to at
least browse through these. We have been much influenced by Podlya and
SzegO’s classic “Problems and Theorems in Analysis” in our approach to
the exercises. (Though unlike Pdlya and Szegd we chose to incorporate the
hints with the exercises.)
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The book i1s mostly self-contained. The text, without the exercises, pro-
vides an introduction to the material, but much of the richness is reserved
for the exercises. We have attempted to highlight the parts of the theory
and the techniques we find most attractive. So, for example, Muntz’s lovely
characterization of when the span of a set of monomaials is dense i1s explored
in some detail. This result epitomizes the best of the subject: an attractive
and nontrivial result with several attractive and nontrivial proofs.

There are excellent books on orthogonal polynomials, Chebyshev poly-
nomials, Chebyshev systems, and the geometry ot polynomials, to name but
a few of the topics we cover, and it is not our intent to rewrite any of these.
Of necessity and taste, some of this material is presented, and we have at-
tempted to provide some access to these bodies of mathematics. Much ot
the material in the later chapters is recent and cannot be tfound in book
form elsewhere.

Students who wish to study from this book are encouraged to sample
widely from the exercises. This is definitely “hands on” material. There
1s too much material for a single semester graduate course, though such
a course may be based on Sections 1.1 through 5.1, plus a selection from
later sections and appendices. Most of the material atter Section 5.1 may
be read independently.

Not all objects labeled with “E” are exercises. Some are examples.
Sometimes no question is asked because none is intended. Occasionally
exercises include a statement like, “tor a proot see ... ”; this is usually an
indication that the reader is not expected to provide a prootf.

Some of the exercises are long because they present a body of material.
Examples of this include E.11 of Section 2.1 on the transfinite diameter ot
a set and E.11 of Section 2.3 on the solvability of the moment problem.
Some of the exercises are quite technical. Some of the technical exercises,
like E.4 of Section 2.4, are included, in detail, because they present results
that are hard to access elsewhere.
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1

Introduction and Basic Properties

Overview

The most basic and important theorem concerning polynomials is the Fun-
damental Theorem of Algebra. This theorem, which tells us that every
polynomial factors completely over the complex numbers, is the starting
point for this book. Some of the intricate relationships between the loca-
tion of the zeros of a polynomial and its coeflicients are explored in Section
2. The equally intricate relationships between the zeros of a polynomial and
the zeros of its derivative or integral are the subject of Section 1.3. This
chapter serves as a general introduction to the body of theory known as the
geometry of polynomials. Highlights ot this chapter include the Fundamen-
tal Theorem of Algebra, the Enestrom-Kakeya theorem, Lucas’ theorem,
and Walsh’s two-circle theorem.

1.1 Polynomials and Rational Functions

The focus for this book is the polynomial of a single variable. This is an
extended notion of the polynomial, as we will see later, but the most im-
portant examples are the algebraic and trigonometric polynomials, which
we now define. The complex (n + 1)-dimensional vector space of algebraic
polynomials of degree at most n with complex coeflicients is denoted by

Pr.
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2 1. Introduction and Basic Properties

If C denotes the set of complex numbers, then

k=0

(1.1.1) P = {p :p(z) = Zakzk, ap € C} .

When we restrict our attention to polynomials with real coefficients we will
use the notation

(1.1.2) Pp = {p :p(z) = Zakzk, ap € ii} ,

k=0

where R is the set of real numbers. Rational functions of type (m,n) with
complex coeflicients are then defined by

(113) Rf,cnm p— {g D € meq - 7)7(;,} ;

while their real cousins are denoted by

z—j:pEPm,qepn}-

(1.1.4) R 1= {q

The distinction between the real and complex cases 1s particularly impor-
tant for rational functions (see E.4).

The set of trigonometric polynomials 7.° is defined by

(1.1.5) T = {t : 1(0) = Z are™ ay € C} .

k=—n

A real trigonometric polynomial of degree at most n is an element of 7. ¢
taking only real values on the real line. We denote by 7,, the set of all real
trigonometric polynomials of degree at most n. Other characterizations of
T, are given in E.9. Note that if z := e, then an arbitrary element of T°
is of the form

2N
(1.1.6) Y bz, b eC
k=0

and so many properties of trigonometric polynomials reduce to the study
of algebraic polynomials of twice the degree on the unit circle in C.

The most basic theorem of this book, and arguably the most basic
nonelementary theorem of mathematics, is the Fundamental Theorem of

Algebra. It says that a polynomial of exact degree n (that is, an element
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of P\'P¢_,) has exactly n complex zeros counted according to their mul-
tiplicities.

Theorem 1.1.1 (Fundamental Theorem of Algebra). If

T

p(2) ::Zaizi, a; € C, a, #0,

i=0
then there exist oy, s, ... o, € C such that
T
p(z) = ay, H (z — ;).

1=1

Here the multiplicity of the zero at «; is the number of times it is
repeated. So, for example,

(z — 1)°(z +1)°

i1s a polynomial of degree 5 with a zero of multiplicity 3 at 1 and with a
zero of multiplicity 2 at —:. The polynomial

T

p(2) ::Zaizi, a; € C, a, #0

i=0
1s called monic if its leading coefficient a,, equals 1. There are many proots
of the Fundamental Theorem of Algebra based on elementary properties
of complex functions (see Theorem 1.2.1 and E.4 of Section 1.2). We will
explore this theorem more substantially in the next section of this chapter.

Comments, Exercises, and Examples.

The importance of the solution of polynomial equations in the history of
mathematics is hard to overestimate. The Greeks ot the classical period un-
derstood quadratic equations (at least when both roots were positive) but
could not solve cubics. The explicit solutions ot the cubic and quartic equa-
tions in the sixteenth century were due to Niccolo Tartaglia (ca 1500-1557),
Ludovico Ferrari (1522-1565), and Scipione del Ferro (ca 1465-1526) and
were popularized by the publication in 1545 of the “Ars Magna” of Giro-
lamo Cardano (1501-1576). The exact priorities are not entirely clear, but
del Ferro probably has the strongest claim on the solution of the cubic.
These discoveries gave western mathematics an enormous boost in part
because they represented one of the first really major improvements on
Greek mathematics. The impossibility of finding the zeros of a polynomial
of degree at least 5, in general, by a formula containing additions, subtrac-
tions, multiplications, divisions, and radicals would await Niels Henrik Abel
(1802-1829) and his 1824 publication of “On the Algebraic Resolution of
Equations.” Indeed, so much algebra, including Galois theory, analysis, and
particularly complex analysis, is born out of these ideas that it is hard to
imagine how the flow of mathematics might have proceeded without these
issues being raised. For further history, see Boyer [68].
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E.1 Explicit Solutions.

a] Quadratic Equations. Verify that the quadratic polynomial xz* + bz + ¢
has zeros at

—b— /b2 — 4c —b+ Vb2 — 4c
2 ’ 2 |

b] Cubic Equations. Verify that the cubic polynomial z° + bx + ¢ has
7Zeros at

oo (), ()

where
B 3| —C | \/(32 | b3
“=\V 2 " V1 97
and
3] —C (32 b3
b=\ 4 27

c¢] Show that an arbitrary cubic polynomial, z° + az® + bz + ¢, can be
transformed into a cubic polynomial as in part b| by a transformation x —

exr + f.

d] Observe that if the polynomial x° + bx + ¢ has three distinct real zeros,
then a and 3 are necessarily nonreal and hence 4b° + 27¢* is negative. So,
in this simplest of cases one is forced to deal with complex numbers (which
was a serious technical problem in the sixteenth century).

e] Quartic Equations. The quartic polynomial z* + az’® + bx* + cx + d
has zeros at

where

y 1s any root of the resolvent cubic

y® — by” + (ac + 4d)y — a°d + 4bd — ¢* |,

and
3a? 4dab — 8¢ — a’
— 2 _92h+
a?/B \/ 4 R 4R y R#()?
while
3a?
Oz,ﬁ:\/4 2b:|:2\/y2—4d, R=0.

These unwieldy equations are quite usetul in conjunction with any symbolic
manipulation package.
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E.2 Newton’s Identities. Write

(z—a)(z—a2) - (x—an) =2" —c12" '+ ez — -+ (=1)"¢c, .

The coefficients ¢; are, by definition, the elementary symmetric functions
in the variables a4, ... , ap.

a| For positive integers k, let

k k k
Skj::::(ll '+'CY2 _F vt _F Ckn;.

Prove that

k—1
st = (=) ke + (=1)F Y (=1)c—js;,  k<n

j=1

and

k—1
sp = (—1)Ft! (—1)cr—;s;, k>n.
1=k—n

Here, and in what tollows, an empty sum is understood to be 0.

A polynomial of n variables is a function that is a polynomial in each
of its variables. A symmetric polynomial of n variables is a polynomial of
n variables that is invariant under any permutation of the variables.

b| Show by induction that any symmetric polynomial in n variables (with
integer coefficients) may be written uniquely as a polynomial (with integer
coefficients) in the elementary symmetric functions fi, fo,... , fn.

Hint: For a symmetric polynomial f in n variables, let
O'(f)Z:(I/17]/27...,I/n), V1>7/22"'>7/n>0
if

1 Vo Vn
_ a1 QX2 X n
f(xhx?a“' 75(;?’1)_ E : E : § : Caq,an,...,a,t1 Lo " dpy

a1=0 ao=0 o, =0

and ¢y, ... v, # 0. If

O'(f):(l/l,l/g,...,l/n) and O'(g):(;l,ﬁg,...,ﬁn),

then let o(f) < o(g) if v; < v, for each j with a strict inequality for at least
one index. This gives a (partial) well ordering of symmetric polynomials in
n variables, that is, every set of symmetric polynomials in n variables has

a minimal element. Now use induction on o(f). (]
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c| Show that

(1 +2x/5

)k%O (mod 1).

(By convergence to zero (mod 1) we mean that the quantity approaches
integral values.)

Hint: Consider the integers

k
Sk ::o/f—I—QzQ,

where X1 .= %(1 + \/g) and N9 = %(1 — \/5) L]
d| Find another algebraic integer a with the property that

a® -0 (mod1).

Such numbers are called Salem numbers (see Salem [63]). It is an open
problem whether any nonalgebraic numbers a > 1 satisfy o — 0 (mod 1).

E.3 Norms on P,. P, is a vector space ot dimension n + 1 over R. Hence
P,, equipped with any norm 1s isomorphic to the Euclidean vector space
R"*T1 | and these norms are equivalent to each other. Similarly, P¢ is a
vector space of dimension n 4 1 over C. Hence Py equipped with any norm
is isomorphic to the Euclidean vector space C*™! . so these norms are also
equivalent to each other. Let

(2’

po(z) =Y arz®,  ap €R.
k=0

Some common norms on P, and P: are

HPHA .— Sup \p(x)\ supremum norm
rEA
=||p|| L. (A) Lo, norm
1/p
|pllL,a) := ( / p(t)|" dt) Ly, norm, p > 1
A
P, :=max{|ay|} l~, nOTM
k

n 1/p
1|1, = (Z \ak\p) [, norm, p > 1.

In the first case A must contain n + 1 distinct points. In the second case A
must have positive measure.
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a| Conclude that there exist constants C7, Cs, and C3 depending only on
n so that

HPIH[—1,1] < ClHPH[—1,1] ;

for every p € PS¢, and, in particular, for every p € P,.

These inequalities will be revisited in detail in later chapters, where
precise estimates are given in terms of n.

b| Show that there exist extremal polynomials for each of the above in-
equalities. That is, for example,

HP,H[—1,1]
sup
0£peP, |IPll[=1,1]

1s achieved.

E.4 On 'R, ..

a| Rn.m is not a vector space because it is not closed under addition.

b| Partial Fraction Decomposition. Let 7, ,, € R}, ,, be of the form

p(x)

/
HZL:1 (T — ay, )

Then there 1s a unique representation of the form

, p € P, «p distinct, p(ag) #0.

/
m  Mmiy

Tn,m(x) = q(z) + Z Z kg - qe P, ., ap.; € C

k=1 j=1 (z —ar)?

(if m > n, then PS__ is meant to be {0}).

Hint: Consider the type and dimension of expressions of the above form. O

c| Show that if
Fnm € R

N, )

then
Re(rn’m(-)) - Rn—l—m,Qm .

This is an important observation because in some problems a rational func-
tion in ‘R{ .~ can behave more like an element of Rs, 2, than R, .
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E.5 Horner’s Rule.
a| We have

(2’

Z a;x" = (- ((anx + Ap_1)T + apn_2)x + --- +a1)x + ag .
i=0

S50 every polynomial of degree n can be evaluated by using at most n ad-
ditions and n multiplications. (The converse is clearly not true; consider

")

b| Show that every rational function of type (n — 1,n) can be put in a
form so that it can be evaluated by using n divisions and n additions.

E.6 Lagrange Interpolation. Let z; and y; be arbitrary complex numbers
except that the z; must be distinct (z; # 2z;, for ¢ # 7). Let

Ik (2) := H,,i_o’#k( ) , k=0,1,....,n.

[Lico,izk (2 — 2i)

a| Show that there exists a unique p € PS that takes n + 1 specified values
at n + 1 specified points, that is,

p(zi) = i, . =0,1,...,n.

This p € P¢ is of the form

p(z) = 3 ule(2)
k=0

and 1s called the Lagrange interpolation polynomial.

If all the z; and y; are real, then this unique interpolation polynomial
1S in P,,.
b| Let

and
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c| An Error Estimate. Assume that the points z; € |a,b], 1 =0,1,... ,n,
are distinct and f € C""![a,b] (that is, f is an n + 1 times continuously
differentiable real-valued function on |a,b|). Let p € P, be the Lagrange
interpolation polynomial satistying

p(zi) = f(z:), i=0,1,...,n.
Show that for every x € |a, b| there is a point £ € (a, b) so that

1

f#) =p(@) = gy 17 (O wia).
Hence |
Hf _pH[a,,b] < (’TL I 1)' Hf(n_l_l)H[a,b] HwH[a,b] -

Hint: Choose A so that ¢ := f — p — Aw vanishes at x, that is,

A= (f(z) = px))/w(z).

Then repeated applications of Rolle’s theorem yield that
ot = f(ntl) _ N(p + 1)
has a zero £ in (a,b). (]

E.7 Hermite Interpolation.

a| Letz; € C, ¢+ =1,2,...k, bedistinct. Let m;, 1 = 1,2, ... ,k, be positive

integers with n 4 1 := Zlemz-, and let

yi,j€C7 i:1727"'7k7 j:()a]-a---ami_l

be fixed. Show that there is a unique p € P;, called the Hermaite interpola-
tion polynomial, so that

p(j)(zi):yz’,j; 1 =1,2,... ,k, 17=0,1,... ,m; —1.

If all the z; and y; ; are real, then this unique interpolation polynomial is
iIl Pn_]_.

Hint: Use induction on n. ]

b| Assume that the points z; € |a,b| are distinct and f € C"|a,b|. Let
p € Pn—1 be the Hermite interpolation polynomial satisfying

p(ZZ):f(J)(ZZ)a 7;:1727"'7k7 j:()ala"'ami_]--

Show that for every x € |a, b] there is a point £ € (a, b) so that
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f(@) = plx) = — F (€ w(w

with )
w(x) := H(x — ;)"
i=1
Hence |
Hf _pH[a,,b] < m Hf(n)H[a,,b] HwH[a,b] -
Hint: Follow the hint given for E.6 c]. ]

Polynomial interpolation and related topics are studied thoroughly in
Davis [75]; Lorentz, Jetter, and Riemenschneider [83]; and Szabados and
Vértesi [92].

E.8 On the Zeros of a p € P,,. Show that if p € P,,, then the nonreal
zeros of p form conjugate pairs (that is, if z is a zero of p, then so is 2).

E.9 Factorization of Trigonometric Polynomaials.

a| Show that t € 7, (ort € 77) if and only if ¢ is of the form

t(z) = ag + Z(ak coskz + by sinkz) , ag,br € R (or C).
k=1
b| Show that if t € 7,\7,_1, then there are numbers z;, 2o, ... , 22, and

0 # ¢ € C such that

2n
2 — Z;
t(z) =c || sn o
0=l =
J=1
Show also that the nonreal zeros z; of ¢ form conjugate pairs.

E.10 Newton Interpolation and Integer-Valued Polynomials. Let A* f(x)
be defined inductively by

Af(x) = f(z), Af(x)=Af(z):=f(z+1) - f(z)

and

AL f () .= AAY f(z), k=1,2,....
Let

(i) N x(x—l)--];fx—k+1)-

a| Show that (ﬁ) 1s a polynomial of degree £ that takes integer values at
all integers.
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b| Let f be an m times differentiable function on |a,a + m|. Show that
there is a £ € (a,a + m) such that

A™ f(a) = f"™(€).
c| Show that if p € P¢, then
k=0
d| Suppose p € P¢ is integer-valued at all integers. Show that
= T
o

k=0

for some integers ag,aq,...,a,. Note that this characterizes such polyno-
mials.

e|] Show that if p € P¢ takes integer values at n 4+ 1 consecutive integers,
then p takes integer values at every integer.

f| Suppose ¢ € R and n° is an integer for every n € N. Use part b| to show
that ¢ 1s a nonnegative integer.

1.2 The Fundamental Theorem of Algebra

The following theorem is a quantitative version of the Fundamental Theo-
rem of Algebra due to Cauchy [1829|. We offer a proof that does not assume
the Fundamental Theorem of Algebra, but does require some elementary
complex analysis.

Theorem 1.2.1. The polynomaal
p(z) == a,z" + U124+ +ag € P, a, # 0

has exactly n zeros. These all lie in the open disk of radius r centered at

the origin, where
A

r: =14+ max .
0<k<n—1 |a,

Proof. We may suppose that ag # 0, or we may first divide by z* for some
k. Now observe that
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g(x) := |ao| + |ar]|z + - + |ap—1[z" 7" — |an|z"

satisfies g(0) > 0 and lim g(x) = —oo. So by the intermediate value the-
XL —> OO

orem, g has a zero in (0,00) (which is, on considering (g(x)/x™)', in fact
unique). Let s be this zero. Then for |z| > s,

(1.2.1) p(z) —anz"| <lag| + |a1z|+ -+ + \an_lz”_l\ < lanz"|.

This, by Rouché’s theorem (see E.1), shows that p(z) and a, 2" have exactly
the same number of zeros, namely, n, in any disk of radius greater than s.

It remains to observe that if x > r, then g(x) < 0 so s < r. Indeed,
a n—1
< n | _1 k k—n
o< (1 (g ) S

1
< |lap|x" (—1 + ( max X ) )
k=0,... , n—1 |(ay r— 1

for

[

The exact relationship between the coefficients of a polynomial and the
location of its zeros is very complicated. Of course, the more information
we have about the coeflicients, the better the results we can hope for. The
following pretty theorem emphasizes this:

Theorem 1.2.2 (Enestrom-Kakeya). If

p(z) = a,2 " + a,n_lz”_l + - 1 Qg

with
ap > a1 > --->a, >0,

then all the zeros of p lie outside the open unit disk.

Proof. Consider
(1 —2)p(z) =ap+ (a1 —ag)z+ -+ (an — apn_1)2" — anz
Then
(L= 2)p(2)] 2 a0 — [(ao — a1)|z[ + -+ + (an—1 — an)|2|" + anl2[""7].

Since ap — arpy+1 > 0, the right-hand expression above decreases as |z| in-
creases. Thus, for |z| < 1,

‘(1 — Z)p(Z)‘ > g — [(CLO — al) i (afn—l — a,n) +an] — O,

and the result follows. ]
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Corollary 1.2.3. Suppose
p(z) = a,z + a,n_lz”_l + -+ 4 Qg

with ap > 0 for each k. Then all the zeros of p lie in the annulus

A A

r{ :=  min <l|z|] < max =:7s.
k=0,... n—1 AQp11 k=0,... . n—1 Qp41
Proof. Apply Theorem 1.2.2 to p(ri12z) and z"p(rs/z). (]

This is a theme with many variations, some of which are explored in
the exercises.

Theorem 1.2.4. Suppose p > 1,qg > 1, and p~' + ¢~ ' = 1. Then the poly-
nomial h € PS of the form

h(z) =apz" +an_12"" " +---+ag, a, 7 0

has all its zeros in the disk {z € C: |z| < r}, where

Proof. See E.6. ]

Comments, Exercises, and Examples.

The Fundamental Theorem of Algebra appears to have been given its name
by Gauss, although the result was familiar long before; it resisted rigorous
proof by d’Alembert (1740), Euler (1749), and Lagrange (1772). It was more
commonly formulated as a real theorem, namely: every real polynomial fac-
tors completely into real linear or quadratic factors. (This is an essential
result for the integration of rational functions.) Girard has a claim to pri-
ority of formulation. In his “Invention Nouvelle en L’Algebra” of 1629 he
wrote “every equation of degree n has as many solutions as the exponent
of the highest term.” Gauss gave the first satistactory proof in 1799 in his
doctoral dissertation, and he gave three more prootfs during his lifetime. His
first proot, while titled “A new proof that every rational integral function ot
one variable can be resolved into real factors of the first or second degree,”
was In fact the first more-or-less satistactory proof. Gauss’ first proof is a
geometric argument that the real and imaginary parts of a polynomial, u
and v, have the property that the curves u = 0 and v = 0 intersect, and by
modern standards has some topological problems. His third proot of 1816
amounts to showing that
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p'(2)
/\z\—fr p(Z) e

must vanish if p has no roots, which leads to a contradiction and is a
genuinely analytic proof (see Boyer [68], Burton [85|, and Gauss [1866]).

An almost purely algebraic proof using (Galois theory, but based on
ideas of Legendre, may be found in Stewart [73].

The “geometry of polynomials” is extensively studied in Marden |66
and Walsh [50|, where most of the results of the section and much more
may be accessed. See also Barbeau [89] and Pdlya and Szegd |76].

Theorem 1.2.2 is due to Kakeya [12]. It is a special case of Corollary
1.2.3, due to Enestrom [1893]. The Enestrom-Kakeya theorem and related
matters are studied thoroughly in Anderson, Saff, and Varga [79]| and [81]
and in Varga and Wu Wen-da (85|, and a number of interesting properties
are explored. For example, it is shown in the first of the above papers that
the zeros of all p satistying the assumption of Corollary 1.2.3 are dense in
the annulus {z € C:r; < |z| < ra}.

E.1 Basic Theorems in Complex Analysis. We collect a few ot the basic

theorems of complex analysis that we need. (Proofs may be found in any
complex variables text such as Ahlfors [53] or Ash [71].)

a| Cauchy’s Integral Formula. Let D, := {z € C : |z| < r}. Suppose f

1s analytic on D, and continuous on the closure D, of D,. Let 0D, denote
the boundary ot D,. Then

0= f(t)dt .
oD,
L[
f(Z)—QWZ\ADTt_Zdt, ZED?")

and

F () = / W) . e,
9,

2 Jop (t—2) Tt

Unless otherwise specified, integration on a simple closed curve is taken
anticlockwise. (We may replace 0D, and D, by any simple closed curve
and its interior, respectively, though for most of our applications circles

suffice.)

b| Rouché’s Theorem. Suppose f and g are analytic inside and on a
simple closed path v (for most purposes we may use v a circle). If

f(2) = g(2)] < [f(2)]

for every z € 7y, then f and g have the same number of zeros inside -y
(counting multiplicities).
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A tunction analytic on C is called entire.

c| Liouville’s Theorem. A bounded entire function is constant.

d] Maximum Principle. An analytic function on an open set U C C
assumes i1ts maximum modulus on the boundary. Moreover, if f is analytic
and takes at least two distinct values on an open connected set U C C, then

f(z)] <sup|f(z)], =z€U.

zelU

e| Unicity Theorem. Suppose f and g are analytic on an open connected

set U. Suppose f and g agree on S, where S 1s an infinite compact subset
of U, then f and g agree everywhere on U.

E.2 Division.

al| Suppose p is a polynomial of degree n and p(a) = 0. Then there exists
a polynomial g of degree n — 1 such that

p(z) = (z — a)q(x) .
Hint: Consider the usual division algorithm for polynomials. ]

b| A polynomial of degree n has at most n roots.

This is the easier part of the Fundamental Theorem of Algebra. The remain-
ing content is that every nonconstant polynomial has at least one complex
root.

The next exercise develops the basic complex analysis tools mostly tfor
polynomials on circles. The point of this exercise is to note that the proots
in this case are particularly straightforward.

E.3 Polynomial Complex Analysis.

a| Deduce Cauchy’s integral formula for polynomials on circles.

Hint: Integrate z™ on 0D,.. ]
b] If p(z) = a,]],_,(2—a;), then the number of indices i for which |a;| < r

15 1 ,
| / p'(z) ds
271 8D, P(Z)

provided no «; lies on 0D,..
Hint: We have

and
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c| Deduce Rouché’s theorem from part b| for polynomials f and g given
by their factorizations, and for circles ~.

Hint: Let h:=14+(g— f)/f. So fh = g and

L[ g@, 1 [ f), 1 [ N
2 /aD,,.,. 9z) " 2mi Jop, 72 T 2w /aD,,q h(z)

Show that the last integral is zero by expanding h~! and applying b]. O
d] Deduce E.1 c| and E.1 d] from E.1 a.

e| Observe that the unicity theorem can be sharpened for polynomials as
follows. If p,q € P and p(z) = q(z) for n + 1 distinct values of z € C, then
p and ¢ are identical, that is, p(z) = q(z) for every z € C. Equivalently, a
polynomial p € P¢ is either identically O or has at most n zeros. (This is
trivial from the Fundamental Theorem of Algebra, but as in E.2, it does
not require it.)

E.4 The Fundamental Theorem of Algebra. FEvery nonconstant polyno-
meal has at least one complex zero.

Prove this directly from Liouville’s theorem.

E.5 Pellet’s Theorem. Suppose a, # 0, |ap+1|+ -+ |an| >0, and

g(x) := |ao| + |ar]z + - +[ap_1]2P 7" — |ap|2? + [apia[z?T + -+ |an|2"

has exactly two positive zeros s1 < so. Then
f(z) = a,2 + a,n_lz”_l + T+ Ao € 72,2

has exactly p zeros in the disk {z € C : |z]| < s1} and no zeros in the annulus
1z € C:s1 < |z] < 82},

Proof. Let s1 <t < so. Then ¢g(t) < 0, that is,

Now apply Rouché’s theorem to the tunctions

S

F(z) :=apz" and G(2):=) a;2".
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E.6 Proof of Theorem 1.2.4.
a| Holder’s inequality (see E.7 of Section 2.2) asserts that

n n 1/p n 1/q
Z lapby| < (Z \ak\p) (Z \bk‘q) v
k=1 k=1 k=1

where p~t +¢ ' =1 and p > 1. So if

p(z) :=a,z" A, 12" -+ ag € P
then
n—1 n—1 1/p n—1 1/(_]
S Jaull= 1 < (z \ak\p) (z W)
k=1 k=0 k=0
b| Thus, for |z| > 1,
n—1
p(2)| > |anl|2]" = Y  |ax]|z|*
k=0
n—1 p\ VP n—1 e\ M4
A} &
> la,llz|" {1 — —
>l 1= (S]] ) (S 6

n—1 q D 1/p 1
n k
> Janllz]" 4 1= (Z an ) (|2]¢ — 1)1/a

k=0

c/] When is the last expression positive?

E.7 The Number of Positive Zeros of a Polynomial. Suppose

1

p(z) = Z a7’

j=0

has m positive real roots. Then

aol + ar |+ - + \an\)

V |aoan|

This result is due to Schur though the proot more or less follows Erdos and
Turan [50]. It requires using Miintz’s theorem from Chapter 4.

m~ < 2nlog (

a| Suppose

T

p(z) = ap H (2 — rpe'r)

k=1



18 1. Introduction and Basic Properties

and

Note that for |z| =1,
2o

7|
Use this to deduce that

2
2 * o
‘Q(Z)‘Q < ‘p(Z)‘ < ‘G’O‘_I_‘a’l‘_l_ +‘a’n‘
\/\aoan\

whenever |z| = 1.

b| Since p has m positive real roots ¢ has m roots at 1. Use the change of
variables x := z + z~! applied to 2"q(z"1)qg(z) to show that

S mi 1 \Ym(,nmm bn—m— n—m—1 o b b 2 B
> ?giriH(z )" (2 + 12 + o401z + bo)ll7). =11
> ?111}} |z ("™ + Crm1x" T o+ Co)| [0,4]

Cl
= 4" min ||z™ (2" + dp—p—12" 7T 4 -+ dix + do)||jo 11

{dr }

> il
— 2N 7

\/27?, T 1(n—|—m)

where the last inequality follows by E.2 c| of Section 4.2.
c| Show that

4?’1
| > m?
Og (\/2n - 1(ni”m)) =

and finish the proot of the main result.

1.3 Zeros of the Derivative

The most basic and important theorem linking the zeros ot the derivative of
a polynomial to the zeros of the polynomial is variously attributed to GGauss,
Lucas, Grace, and others, but is usually called Lucas’ theorem [1874]|.

Theorem 1.3.1 (Lucas’ Theorem). Let p € P.. All the zeros of p' are con-
tained i the closed convex hull of the set of zeros of p.

The proot of this theorem follows immediately tfrom the following
lemma by considering the intersection of the halfplanes containing the con-
vex hull of the zeros of p.
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Lemma 1.3.2. Let p € 'P:. If p has all its zeros wn a closed halfplane, then
p,, also has all its zeros in the same closed halfplane.

Proof. On consideration of the eftect of the transtormation z — az + [, by
which any closed halfplane may be mapped to H; := {z : Re(z) < 0}, it
suffices to prove the lemma under the assumption that p has all its zeros in
H;. If p has all its zeros in H;, then

p'(z) ~— 1 —
=3 | cH, .
r—q © Yk o |

But if z € H, := {z € C: Re(z) > 0}, then

1 _
c H, tforeach «ai € Hy,
< — [
and it follows that
—~ 1
S en,
1 < — (N
In particular,
—~ 1
) 0,
1 < — X[
which finishes the prootf. []

There 1s a sharpening of Lucas’ theorem for real polynomials formu-
lated by Jensen. We need to introduce the notion of Jensen circles for a
polynomial p € P,,. For p € P,, the nonreal roots of p come in conjugate
pairs. For each such pair, a + 10, a« — 13, form the circle centered at o with
radius |3|. So this circle centered on the z-axis at a has a+1¢5 and a—i on
the opposite ends ot its perpendicular diameter. The collection of all such
circles are called the Jensen circles for p.

Theorem 1.3.3 (Jensen’s Theorem). Let p € P,. Each nonreal zero of p'
lies in or on some Jensen circle for p.

The proof, which is similar to the proot of Lucas’ theorem, is left for
the reader as LE.3.

We state the following pretty generalization of Lucas’ theorem due to
Walsh [21|. The proof is left as E.4. Proofs can also be found in Marden

66| and Polya and Szego [76].
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Theorem 1.3.4 (Walsh’s Two-Circle Theorem). Suppose p € PS has all its

n zeros in the disk D1 with center c1 and radius r1. Suppose q € P:  has
all 1ts m zeros in the disk Do with center co and radius ro. Then

a| All the zeros of (pq)' lie in D1 U Dy U D3, where D3 s the disk with
center c3 and radius r3 given by

nNCoy + MCq nro + Mmnrq

C3 .= : 'y .=
n—+m n—+m

b| Suppose (n #m). Then all the zeros of (p/q)’ lie in D1 U D5 U D3, where
D3 1s the disk with center cs3 and radius r3 given by

nNco> — Maecq nro + 1Mry

C3 — : rs —
n—m n — m|

Comments, Exercises, and Examples.

Lucas proved his theorem in 1874, although it is an easy and obvious con-
sequence of an earlier result of Gauss. Jensen’s theorem is formulated in
Jensen [13]| and proved in Walsh [20]. Much more concerning the geometry
of zeros of the derivative can be found in Marden [66].

E.1 A Remark on Lucas’ Theorem. Show that p’' € PS¢ has a zero a on
the boundary of the convex hull of the zeros of p if and only if « is a multiple
zero of p.

E.2 Laguerre’s Theorem. Suppose p € PS has all its zeros in a disk D.
Let ( € C. Let w be any zero of

q(z) :=np(z) + (¢ = 2)p'(2)
(q 1s called the polar derivative of p with respect to ().
a| If ( ¢ D, then w lies in D.

Hint: Consider r(z) := p(z)(z — ()™", where p has all its zeros in D and
(& D. Then

r(z) P | n

r(z)  plz) (-2
and if g(w) = 0 with w ¢ D, then r'(w) = 0. Now observe that r is of the

form |
r(z):3<z_<), s e P, ,

where s'((w — {)~!) = 0. Note that ¢ ¢ D implies that
D:={(z=¢""':2¢e D}

1s a disk. Then s has all its zeros in lé and so does s’ by Lucas’ theorem.
However, w € D implies (w — ()"t € D, so s'((w — ()~ 1) # 0, a contradic-
tion. []

b| If p(w) # 0, then any circle through w and ( either passes through all
the zeros of p,, or separates them.
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E.3 Proof of Jensen’s Theorem. Prove Theorem 1.3.3.

Hint: Suppose p € P,, \ P,,—1 and denote the zeros of p by z1,22,..., 2z,

Then
p'(z) 1
N Z 2 — 2.

k=1

It z;. = ap + 18 with ag, 5 € R, and z = ¢ 4+ 1y with z,y € R, then

Im( : + : )
r+1y —oap —10r T +1y— o+ 105
—2y((z — ag)® +y° — B})
(x —ar)? + (y — Br)?) - ((x — ar)? + (y + Br)?)

and so outside all the Jensen circles and off the z-axis,

ol (1)) - s 0

E.4 Proof of Walsh’s Theorem. Prove Theorem 1.3.4.
a| Prove Theorem 1.3.4 al.
Hint: Let zg be a zero of p'q + ¢'p outside Dy and D>. Let

mq(zo)
q'(20)

np(zo)
p'(20)

Cl = 20 and CQ = 20

(p'(z0) # 0 and ¢'(z9) # 0 by Lucas’ theorem). Observe that (; € D, and
CQ C D2 by E.Q, and

nCe + md |

<0 —
n -+ m

b| Prove Theorem 1.3.4 b]|.

Hint: Proceed as in the hint to part a], starting from a zero zy of p'q — ¢'p
outside D1 and DQ. []

c| If in Theorem 1.3.4 a| Dy, D5, and D3 are disjoint, then D; contains
n — 1 zeros, Dy contains m — 1 zeros, and D3 contains 1 zero of (pgq)’.

Hint: By a continuity argument we may reduce the general case to the case
where p(z) = (z —¢1)™ and ¢(2) = (2 — ¢c2)™. (]

d| If in Theorem 1.3.4 b| n = m and D, and D, are disjoint, then Dy U D>
contains all the zeros of (p/q)’.
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E.5 Real Zeros and Poles.

a| If all the zeros of p € P,, are real, then all the zeros of p/ are also real.

b| Suppose all the zeros of both p € P, and q € P,, are real, and all the
zeros of p, are smaller than any of the zeros of ¢,,. Show that all the zeros
of (p/q)' are real.

Hint: Consider the graph of

(p/q)" D

(p/q) P

q
q

Define W (p), the Wronskian of p, by

c| Prove that if p € P,, has only distinct real zeros, then W (p) has no real
ZEeros.

In Craven, Csordas, and Smith [87| it is conjectured that, for p € P,
the number of real zeros of W (p)/p* does not exceed the number of nonreal
zeros of p (a question they attribute to Gauss).

d| Let p € P,. Show that any real zero of W (p) lies in or on a Jensen
circle ot p.

Proof. See Dilcher [91]. ]
e| Show that Lucas’ theorem does not hold for rational functions.
Hint: Consider r(z) = z/(a* — x7). (]

The next exercise is a weak form of Descartes’ rule of signs.

E.6 Positive Zeros of Muntz Polynomials. Suppose 99 < 01 < -+ < 9,
and

f(x) := aor’® + ajz’t + - - +anz(:5”, ar € K.

Show that either f = 0 or f has at most n zeros in (0, c0).

Hint: Proceed by induction on n. (]
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E.7 Apolar Polynomials and Szego’s Theorem. Two polynomials

f(z) : = zn:a,k (Z)xk an # 0

k=0

and

& n
g(zz:)::Zbk<k)a:k, b £ O
k=0
are called apolar it

zn:(—nkakbn_k (Z) — 0.

k=0

a| A Theorem of Grace (02]. Suppose that f and g are apolar polynomials.
If f has all its zeros in a (closed or open) disk D, then g has at least one
zero in D.

Hint: Let aq,a9,... ,a, and b1, Bs,..., 3, denote the zeros of f and g,
respectively. Suppose that the zeros of g are all outside D. Let

fi(z) :=nf(x) + (61 —z)f (z)
and for k =2,3,... .n, let

fr(@) == —k+1)fr-1(2) + (Br — ) fi ().
Then, by E.2, each f; has all its zeros in D. Now compute

Fr1(Bn) = % ((Z) aoby, — G) by + -+ (=1)" (Z) anbo) — 0,

where the vanishing follows by apolarity. This is a contradiction. (]

b| If f and g are apolar, then the closed convex hull of the zeros of f
intersects the closed convex hull of the zeros of g.

c| A Theorem of Szego (22]|. Suppose

k=0
& n
o@) =3 b (})a* b A0,

k=0

and .
n
h([L’) L= Z a,kbk (k) .”L‘k :
k=0

Suppose f has all its zeros in a closed disk D, and g has zeros Bq,... ,By.

Then all the zeros of h are of the form B;~; with v; € D.
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Hint: Suppose 0 is a zero of h. Then

Za,kbk (Z)(Sk = 0.

k=0

So the polynomial

r(z) = i(—m (Z) by oF

is apolar to f, and thus has a zero a in D. But then a = —9/3; for some 7
since r(x) = xz"g(—0/x). (]

E.8 Zeros of the Integral. Suppose p € P, \ Pn—1 has all its zeros in
D, :={ze€C:|z| <1}.

a| Show that the polynomial g defined by ¢(z) := fow p(t) dt has all its
zeros in Dy := {2 € C: |z] < 2}.

Hint: Apply E.7 c|. Take

Then

Note that g(x) = (n+ 1)tz ((1 + )" — 1) has all its zeros in Dy. O
b| Show that

L tm—l tm_g t1
Q(.’l?) .= / / / t e / p(t) dt dtl t e dtm_g dtm_l
0 0 0 O

has all its zeros in Ef,«m’n ={2€ C:|z| <rmn}, where r,, , < m + 1 is
the zero of
i’: (m + n) "
X
— \m + k

with the largest modulus. Note that ¢ is the mth integral of p normalized
so that the constants of integration are all zero.

Proof. See Borwein, Chen, and Dilcher [95]. ]



1.3 Zeros of the Derivative 25

E.9 Grace’s Complex Version of Rolle’s Theorem. Suppose o and 5 are
zeros of p € Pp \ Pn—1. Then p' has at least one zero in the disk

D(ec,r) ={ze€C:|lz—c| <r},

where

o+
. — d e t — .
C 5 arn r 9 CO -

Hint: Assume, without loss of generality, that o = —1 and 5 = 1. Let

n—1 n—1
p'(x) = Z apz”, thatis, p(z)=c+ Z a Zjll .

k=0 k=0

Apply E.7 al|. Note that
SRTUEYS N
S0
flz) =(=-1D)"—-(z+1)"

and p’' are apolar. O

E.10 Corollaries of Szego’s Theorem. Suppose

() := (’8) ag + G) Az 4+ (Z) 02"
g(z) = (8) b + G) brz+ -+ (Z) by 2™ |

(f (g (f
h(Z) .= (O) aobo + (1) alblz veo (n) anbnz”

with anb, # 0.

a| If f has all its zeros in a convex set S containing 0 and g has all its
zeros in |—1,0]|, then h has all its roots in S.

b| If f and g have all their zeros in |—1,0]|, then so does h.

and

E.11 Another Corollary of Szego’s Theorem. If Z apz” has all its zeros

in Dy :={z € C: |z| <1}, then so does Z kn . In particular, Z —
LE—0 (k) L—0 (k)

has all its zeros in D;.

The results of the next exercise were first proved by M. Riesz (see, for
example, Mignotte |92]) and were rediscovered by Walker [93].
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E.12 Consecutive Zeros of p' for p € P,, with Real Zeros. For a polyno-

mial
11

pie)=J[(z—a), a1<ar< - <a,, n>2

By Rolle’s theorem

n—1
p,('r):n]:[(x_ﬁi)a a1<ﬁ1<062<52<“'<ﬁn_1<05n.

i=1

al] Suppose n > 3. Prove that A(p) < A(p').

QOutline. It is required to show that g, — 8,1 > A(p) for each j > 2. Let
2 < 7 <n be fixed. Since

we have
= 1
— (Bj—1 — i) (Bj — )

()

= 0.

Now let u; :== a; —0;_1, v; := B; —a;. Also for each ¢, let d; := a; — a4,
e; .= ajy; — ;. T'hen the above can be rewritten as

— 1 1 n—j |
; (di — Uj)(di + vj) | (_uj?)j) | ; (6i n Uj)(ei — vj) — (.
Define
Fly) = ; (di —u)(d; +v) T ; (e - u)(e; —0)

Note that F' is increasing in each variable (0 < u < dy, 0 < v < e1) and
observe that

F(ujvvj) = 1.

To prove the result, it suffices to show that if v and v are nonnegative
numbers satisfying v + v = A(p), then F(u,v) < 1.
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Now show that

J—1 n—Jj
1 1
Fu,v) <uv +
. (Z @ =l = & e —o)(er - v>)
J—1 n—Jj
UV 1 1 1 1

< _ _

— A(p) (; (dz‘—u dz‘+1—u)+;<€i—v €i+1—?}))
. Uv 1 . 1 o v 11 <1

Alp) \di —u  e1—v) — Alp) \v  u/) =
whenever u and v are nonnegative numbers satisfying u + v = A(p). (]

b| Suppose n > 3 and v € R. Show that A(p’ — vp) has only real zeros
and A(p' —vp) > A(p).

c| What happens when p has only real zeros but they are not necessarily
distinct?

E.13 Fejér’s Theorem on the Zeros of Muntz Polynomials. The following
pretty results of Fejér may also be found in Pdélya and Szegd |76]:

Suppose that (Ag)72, is an increasing sequence of nonnegative integers
with AO = ().

a| Let

(L’

p(z) 1= Za,kz)"“ , a, € C, apay #0.

k=0

Then p has at least one zero zg € C so that

\z\<< A2 Az -+ Ap )1/)\1 ag |
T= 00 = A3 = A1) - O — A1) a |

Outline. We say that z; € C is not less than zo € C if |25| < |z1]. Studying
q(z) := z*p(2~1), we need to show that the largest zero of

T
q(2) = apz™" + Z QxR
k=1

1s not less than

()\2 — )\1)()\3 — )\1) e ()\n _ )\1) 1/ A1 a 1/A1
o3 -\, aq :

We prove this statement by induction on n. The statement is obviously true
for n = 1. Now assume that the statement is true for n — 1. It follows from
Lucas’ theorem that if q is a polynomial with complex coefficients, then the
largest zero of ¢’ is not greater than the largest zero of q.
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By the above corollary of Lucas’ theorem, it is sufficient to prove that
the largest zero of

n—1
Z)\n_l—)\n—l—lql(z) _ Anaoz)\n_l + Z(An - Ak)asz)\n_l_)\k
k=1

1s not less than

((Az ) (s = A (g m))”’“ ar |

A2 A3 - Ap ao
However, this 1s true by the inductive hypothesis. (]
b| Suppose
O
f(z) = Zakz)"“ , ap € C
k=0

is an entire function so that > ,_, 1/\; < oo, that is, the entire function
f satisfies the Fejér gap condition. Show that there is a zg € C so that

f(z0) = 0.
Hint: Use part al. (]
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Some Special Polynomials

Overview

Chebyshev polynomials are introduced and their central role in problems in
the uniform norm on |—1, 1| is explored. Sequences of orthogonal functions
are then examined in some generality, although our primary interest is in
orthogonal polynomials (and rational functions). The third section of this
chapter 1s concerned with orthogonal polynomials; it introduces the most
classical of these. These polynomials satisfy many extremal properties, sim-
ilar to those of the Chebyshev polynomials, but with respect to (weighted)
Lo norms. The final section of the chapter deals with polynomials with
positive coeflicients in various bases.

2.1 Chebyshev Polynomials

The ubiquitous Chebyshev polynomials lie at the heart of many analytic
problems, particularly problems in C|a,b|, the space of real-valued con-

tinuous functions equipped with the uniform (supremum) norm, || - ||f4 5.
Throughout this book, for any real- or complex-valued function f defined
on |a, b,

| flljap := sup |f(z)].

rc<la,b

Printer: Opaque this
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The Chebyshev polynomials are defined by

T, (x) : = cos(n arccos ), r e |—1,1],
(2.1.1) :%((w—l—\/xQ—l)”—l—(x—\/x?—l)”), z € C,
[n/2] o
— % ,;) (—1)" (/:'(nli 2]:))!! (2z)" 2k, z e C.

These elementary equivalences are left for the reader (see E.1). The nth
Chebyshev polynomial has the following equioscillation property on [—1,1]|.
There exist n + 1 points (; € [—1,1] with -1 =(, < (.1 < - < (o =1
so that

(2.1.2)  T.(¢) =D)" Tl = (D)7,  j=0,1,...,n.

In other words T), € P,, takes the values %||T},||[_1,1) with alternating sign
the maximum possible number of times on [—1,1]|. (These extreme points
are just the points cos(kn/n), k =0,1,...,n.) The Chebyshev polynomial
T, satisfies the following extremal property:

Theorem 2.1.1. We have

21—n

y

: n B — 21_nTn B —
din 2" — p()|l—11) = | l(-1.1

where the minimum is uniquely attained by p(z) = 2™ — 21 "T,,(x).

Proof. Observe that, while the minimum is taken over P:_,, we need only

consider p € P, _1, since taking the real part of ap € PS_, can only improve
the estimate. From the above formulas for 7, we have

217" T, () = 2™ + s(x), s € Pp_1.
Now suppose there exists g € P,,_1 with
(2.1.3 " — (@)l < 2"

Then
21" (x) — (2" — q(x)) = s(zx) + q(x) € Py

changes sign between any two consecutive extrema of 7,,, hence it has at
least n zeros in (—1, 1), and thus it must vanish identically. This contradicts
(2.1.3), and we are done up to proving uniqueness (this is left as E.2). O
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Comments, Exercises, and Examples.

The Chebyshev polynomials 77, are named after the versatile Russian math-
ematician, P. L. Chebyshev (1821-1894). The T comes from the spelling
Tchebychef (or some such variant; there are many in the literature). A
wealth of information on these polynomials may be found in Rivlin [90].
Throughout later sections of this book the Chebyshev polynomials will
keep recurring. The initial exercises explore elementary properties ot the
Chebyshev polynomials.

Erdos [39] proved that for ¢t € 7,, with ||t||r < 1, the length of the graph
of t on [0, 27| is the longest if and only if ¢ is of the form ¢#(8) = cos(nf + a)
with some a € R (see E.6). He conjectured that for any p € P, with
1pllj—=1,11 £ 1, the maximum arc length is attained by the nth Chebyshev
polynomial T),. This is proved in Bojanov [82b|. Kristiansen |[79] also claims
a proof. In E.9 the reducibility of 7}, is considered, and in E.11 the basic
properties of the transfinite diameter are established.

E.1 Basic Properties.

a| Establish the equivalence of the three representations of 7, given in
equation (2.1.1).

Hint: cosnf = £[(cosf + isin@)™ + ((cosf — isinh)"]. To get the third

representation, use E.3 b]. (]

b| The zeros of T, are precisely the points

2k—1
Tp = COS < 2n)w, Ek=1,2,....,n.

c| The extrema of T},(x) in |[—1, 1| are precisely the points

Ck:(:os’” k=0,1,....n.

n
d| Observe that the zeros of T}, and T},. 1 interlace, as do the extrema.

E.2 Uniqueness of the Minimum in Theorem 2.1.1. Prove the uniqueness
of the minimum in Theorem 2.1.1.

Hint: Assume that ¢q € P._, and
" — gl < 2"

Then
h(z) :=2'7""T,(2) — Re(z"™ — q(z))

defines a polynomial from P,_; on R having at least n zeros (counted
according to their multiplicities). Thus

217", () = Re(z" — q(x)), r € R,
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which, together with the previous inequality, implies that g(x) is real when-
ever 1, (x) = £1. Now E.6 of Section 1.1 (Lagrange interpolation) yields
that g has real coeflicients. Hence

207" (x) = 2™ — q(x) r € R.

E.3 Further Properties of 7,.
a| Composition. Show that T,,,,(z) = T, (T}, (x)).
b| Three-Term Recursion. Show that

T,(x) =2xT,,_1(x) —Th_s(x), n=23,....

c| Verify that

To(x) =1

T (x) =x

Ty(x) = 22° — 1

Ts(x) = 4z° — 3z

Ty(z) = 8z* — 8z + 1
Ts(z) = 162° — 202> + 5z .

Note that 1), is even for n even and odd for n odd.

d] Another Formula for 7,,. Show that T, (z) = cosh(ncosh™" (z)) for
every x € R\ [—1, 1].

e| Differential Equation. Show that

(1 — 2T/ (z) — 2T (2) + n*T,(x) = 0.

f| An Identity. Show that

Tﬁ+1(33) T, _1(x)

1., — .
(az) 2n + 2 2N — 2

g| Orthogonality. Show that

Hint: Set £ = cosf and sum. O]
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i| Another Representation of 7,,. Show that

T, (z) = Lan ( 272) p" 2k (g2 — 1)k

k=0
j| Another Identity. Show that

Tn(5(x+2z7Y) =35 +27").

E.4 Approximation to z”* on [0, 1].

a| Let T (x) = T,(2z — 1) be the nth Chebyshev polynomial shifted to
the interval |0, 1|. Suppose

Tr(z) =) bpa.
k=0

Show that for each £ =0,1,... ,n,

(2’

. k . B _1
i?é% |27 - Z ci®’ |[jo,1] = 110, T llj0,1] -
7=0
7k

Hint: Proceed as in the proot of Theorem 2.1.1 and use E.6 of Section 1.3.
L]

b| Why does this not hold for 7T}, on |[—1,1]|7

E.5 A Composition Characterization. Suppose (p,)S, is a sequence of

polynomials of degree n and for all positive integers n and m

Pn © Pm — Pn-m -
Then there exists a linear transformation w(x) = ax + 8 so that
wop,ow T =a", n=12,...

Or

wop,ow L =1T,. n=12,....

This result is due to Block and Thielman [51]. The proof outlined in this
exercise follows Rivlin [90].
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a| Let

Q(l’) .— Qo T aA1& @256‘2, a2 75 0, and v(x) = —

v (q(v(x))) =27 + ¢ with c:=agas + (a1/2) — (a3 /4) .

b] Let g(x) = ag + a1z + asx®, as # 0. Then there is at most one
polynomial p,, of degree exactly n so that

Pn(q(z)) = q(pn(x)).

C
n—1:7

Hint: By a] we may assume ¢(x) = z* + c¢. Now suppose r, s € PS\P
r(z® +c) =r*(z) +c

and

from which we deduce, by comparing degrees on both sides, that n = 0.
(Note that the above conditions imply r and s monic.) (]

c| Finish the proof of the initial statement of this exercise.

This is a special case of a more general theorem of Ritt [23] that classifies
all rational functions r and s that commute in the sense that ros =sor.

d| Another Composition Characterization. Suppose p € P,, has the prop-
erty that the closure of the set

[, := {zEC:p[k](z):O for some k£ =1,2,...}

is the interval [—1, 1|, where pkl is the kth iterate of p, that is.

k—1]

p[l] = p and p[k] :ZpOp[ for k=2,3,....

Then p(x) = 71}, (x).
e| Let

rn(z) = tan(ntan™" (x)) .

Show that r, is a rational function in R, ,, and observe that

'y OTm — T'nom -
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E.6 Trigonometric Polynomials of Longest Arc Length. Theorem 5.1.3
(Bernstein-Szego6 inequality) asserts that

t'(0)” +n°t(0) < n’[ltl|g

for every ¢t € 7,, and 6 € R. Use this to prove the following result of Erdos.
For t € 7, with ||t||lrg < 1, the length of the graph of ¢ on |0,2x]| is the
longest if and only if it is of the form #(8) = cos(nf + «) for some a € R.

Hint: Suppose t € T, with [|t||[g = 1. Let s(f) := cosnf. If

—1 < t(@l) — 8(92) <1
holds, then by the Bernstein-Szego inequality (see also E.5 of Section 5.1)

#(01)] < n(l—12(01))"? =n(1 — s*(62))"/* = |5'(62)].

and if equality holds for one pair of 61, 6>, then it holds for all pairs, and
t(#) = cos(nb + ) for some o € R. Suppose t,,(0) Z cos(nf + «). Let 7 and
o be monotone arcs of the graphs of y = #(f) and y = s(8), respectively,
with endpoints of each having the same ordinates y; and y». Let |7| and |o]
be the length of 7 and o, respectively, and let || and |o,| be the length of
the projection of 7 and o, respectively, on the xz-axis. Show tha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>