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vi Preface

material from further chapters depending on the interests of the class and
the time available.

Our own experiences in learning have led us to take considerable trouble
to include a large number of examples and exercises; there are over 600 of
the latter. Exercises range from simple to moderately difficult, and include
results (often with hints) which are referred to later. As the subject devel-
ops, we encourage the reader to accept the invitation of becoming involved
in the process of discovery by working through these exercises. Keep in
mind Shakespeare’s advice: “Things done without example, in their issue
are to be fear’d” (King Henry the Eighth, 1.1.90).

Although it has been a very active field during the past 20 to 30 years,
no general introduction to permutation groups has appeared since H.
Wielandt’s influential book Finite Permutation Groups was published in
1964. This is a pity since the area is both interesting and accessible. Our
book makes no attempt to be encyclopedic and some choices have been a
little arbitrary, but we have tried to include topics indicative of the cur-
rent development of the subject. Each chapter ends with a short section of
notes and a selection of references to the extensive literature; again there
has been no attempt to be exhaustive and many important papers have
had to be omitted.

We have personally known a great deal of pleasure as our understanding
of this subject has grown. We hope that some of this pleasure is reflected
in the book, and will be evident to the reader. A book like this owes a clear
debt to the many mathematicians who have contributed to the subject;
especially Camille Jordan (whose Traité de substitutions et des équations
algébrigues was the first text book on the subject) and Helmut Wielandst,
but also, more personally, to Peter Neumann and Peter Cameron. We thank
Bill Kantor, Joachim Neubiiser and Laci Pyber who each read parts of an
early version of the manuscript and gave useful advice. Although we have
taken considerable care over the manuscript, we expect that inevitably
some errors will remain; if you find any, we should be grateful to hear from
you.

Finally, we thank our families who have continued to support and
encourage us in this project over a period of more than a decade.

Acknowledgement. The tables in Appendix B were originally published as
Tables 2, 3 and 4 of: John D. Dixon and Brian Mortimer, Primitive per-
mutation groups of degree less than 1000, Math. Proc. Cambridge Phil.
Soc. 103 (1988) 213-238. They are reprinted with permission of Cambridge
University Press.
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Notation

PG4(K), PG4(q)
St k,v)
Sym(92), Alt(2)
S’Vl? A’n,

FSym()
C,

Sp?m (K) y Sp2m<2)

PGUs(q), PSUs(q), PTU4(q)

S52(2%) and R(3%)

Mg, ..., Moy
Wig, .., Wag
fix(z), supp(z)
QfF Q)
Orb(K, A)
Graph(A)
GCD(m,n)
lz]

5]

Q\A

rsA

Fun(l', A)

Im (D), ker (D)

GLy(K), SLy(K), TLy(K)
AGL4(K), ASLy(K), ATLy(K)
PGL4(K), PSL4(K), PTLy(K)

natural numbers and integers

rational, real and complex numbers

field with g elements

vector space of dimension d over K

affine geometry over K and over F,

projective geometry over K and
over F,

Steiner system

symmetric and alternating groups on §2

symmetric and alternating groups
of degree n

finitary symmetric group

cyclic group of order n

linear groups over /<

affine groups over K

projective groups over K

symplectic groups over A

unitary groups over K

Suzuki and Ree groups

Mathieu groups

Witt geometries

set of fixed points and support of z

sets of k-subsets and k-tuples from Q

set of orbits of K on A

orbital graph

greatest common divisor of m and n

largest integer < z

cardinality of set .S

elements of {2 not in A

symmetric difference of I" and A

set of functions from I" to A

image and kernel of ®
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Aut(X)
Inn(G)
Out(G)

~— soc(G)

Ng(H)
Co(H)

<G N«G

G x HG™
G xH
Gwrr H
G.H,Gn
G:H

E—

e

automorphism group of X
inner automorphism group of G
outer automorphism group of G
socle of G

normalizer of H in G
centralizer of H in G

subgroup, normal subgroup
direct product, direct power
semidirect product

wreath product

an extension of G by H, by C,,
a split extension of G by H

1

The Basic Ideas

1.1 Symmetry

A cube is highly symmetric: there are many ways to rotate or reflect it so
that it moves onto itself. A cube with labeled vertices is shown in Fig. 1.1.
For example, we can rotate it by 90° about an axis through the centres of
opposite faces, or reflect it in the plane through a pair of opposite
edges. Each of these “symmetries” of the cube permutes the eight vertices
in a particular way, and knowing what happens to the vertices is enough to
tell us what the whole motion is. The symmetries of the cube thus corre-
spond to a subgroup of permutations of the set of vertices, and this group,
an algebraic object, records information about the geometric symmetries.
Turn now to an algebraic example. The polynomial X® — X + 1 is a
real polynomial with five distinct complex roots: one real and four nonreal.
As is well-known, nonreal roots of a real polynomial appear in pairs of
complex conjugates, so the action of complex conjugation leaves the real
root fixed and permutes the nonreal roots in pairs. More generally, any
automorphism of the field of complex numbers induces a permutation on
the set of roots, and the set of all such permutations forms a group which is
called the Galois group of the polynomial. Calculating Galois groups can
be quite difficult, but in the case of X3 — X + 1 it can be shown to be the
full symmetric group of all 120 permutations on the roots. On the other

FIGURE 1.1. A labeled cube.
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hand, the polynomial X® — 2 has a group of order 20 as its Galois group.
The algebraic symmetries of the polynomial described by the Galois group
are not at all obvious.

The development of the theory of permutations and permutation groups
over the last two centuries was originally motivated by use of permutation
groups as a tool for exploring geometrical, algebraic and combinatorial Sym-
metries. Naturally, the study of permutation groups gave rise to problems
of intrinsic interest beyond this initial focus on concrete symmetries, and
historically this led to the concept of an abstract group at the end of the
nineteenth century.

1.2 Symmetric Groups

Let © be an arbitrary nonempty set; we shall often refer to its elements as
points. A bijection (a one-to-one, onto mapping) of ) onto itself is called
a permutation of {2. The set of all permutations of Q forms a group, under
composition of mappings, called the symmetric group on . We shall denote
this group by Sym(Q) (other common notations are Sq and S, and write
Sn to denote the special group Sym(2) when n is a positive integer and
Q=1{1,2,...,n}. A permutation group is just a subgroup of a symmetric
group. If  and Q' are two nonempty sets of the same cardinality (that
is, there is a bijection a — o’ from  onto V') then the group Sym(Q) is
isomorphic to the group Sym(§Y') via the mapping z — 2’ defined by:

' takes o’ to ' when z takes a to §.

In particular, Sym(Q) = S, whenever |Q] = n.

Ezercises

1.2.1 Show in detail that the mapping described above does give an
isomorphism from Sym(Q) onto Sym(Q').

1.2.2 Prove that if  is finite and |Q| = 7, then [Sym(Q)| = nl.

1.2.3 (For those who know something about infinite cardinalities.) Show
that if 2 is infinite, then |Sym(Q)| = 2/%l. In particular, Sym(N) has
uncountably many elements when N is the set of natural numbers.

There are two common ways in which permutations are written (at least
for the finite case). First of all, the mapping z :  —  may be written
out explicitly in the form

T = Q. Q2 ... Qp

B B ... Ba
where the top row is some enumeration of the points of {2 and G; is the
image of a; under = for each i. The other notation is to write = as a

L2 dynunewrie Caoups I8

product of disjoint cycles. A permutation ¢ € Sym(f)) is called an r-
cycle (r = 1,2,...) if for r distinct points vy, v, ..., 7 of €, ¢ maps v;
onto vr1(i = 1,...,7 — 1), maps -y, onto 7, and leaves all other points

fixed; and c is called an wnfinite cycle if for some doubly 'mfinitev sequence
vi(t € Z), c maps y; onto ;41 for each ¢ and leaves all other points fixed.
The second common way to specify a permutation is to write z as a product
of disjoint cycles, where by disjoint we mean that no two cycles move a
common point (this product is only a formal product in the case that
Q is infinite). It is a general result (see Exercise 1.2.5 below) that every
permutation can be written in essentially one way in this form.

ExAMPLE 1.2.1. Let Q be the finite field of 7 elements consisting of
{0,1,...,6} with addition and multiplication taken modulo 7.‘Then the
mapping o — 4o + 1 defines a permutation of 2. This permutation can be
written

or as a product of disjoint cycles

(015)(2)(364) = (2)(015)(643) = ... = (015)(364)

ExaMPLE 1.2.2. Let Q@ = QQ (the rational numbers). Then the mapping
a +— 2qa is a permutation of 2. This permutation fixes the point 0, and the
remaining points lie in infinite cycles of the form

(...,a27% a27 % a, a2, a2?, .. ).

Our convention is to consider permutations as functions acting on the
right. This means that a product zy of permutations should be read as:
first apply z and then y (some authors follow the opposite convention). For
example, (142)(356)(4123) = (1)(2)(3564).

FEzxercises

1.2.4 Show that an r-cycle (@i ...q,) is equal to an s-cycle (f; ... 03s)
on the same set Q if and only if » = s and for some h we have
a;n = [; for each ¢ where the indices are taken modulo 7. Show
that two infinite cycles (...a_japay ...) and (...B_18001...) on
the same set are equal if and only if for some A, oy = G; for all 4.

1.2.5 Prove that each permutation z € Sym(§)) can be written as a prod-
uct of disjoint cycles. Show that this product is unique up to the
order in which the cycles appear in the product and the inclusion or
exclusion of 1-cycles (corresponding to the points left fixed by z).
[Hint: Two symbols, say o and §, will lie in the same cycle for z if
and only if some power of z maps « onto §. This latter condition
defines an equivalence relation on 2 and hence a partition of Q into

s
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disjoint subsets. Note that when () is infinite, £ may have infinite
cycles and may also have infinitely many cycles. In the latter case
the product as disjoint cycles has to be interpreted suitably.]

1.2.6 Suppose that = and y are permutations in Sym(Q), and that y =
cicz ... as a product of disjoint cycles. Show that 7 yz = cjc} . ..
where each cycle ¢; of y is replaced by a cycle ¢ of the same length
and each point in ¢; is replaced in ¢, by its image under z. Ir;
particular, if o is the image of «; under  then we have

2 e, o) = (..., o).

1.2.7 Show that two permutations z,y € Sym(f2) are conjugate in
Sym/(§2) if and only if they have the same number of cycles of each
type (including 1-cycles). Give an example of two infinite cycles in
Sym(N) which are not conjugate.

1.2.8 If the permutation z is a product of & disjoint cycles of finite lengths
may, ..., Mg, show that the order of z as a group element is the least
common multiple of these lengths. What is the largest order of an
element in Soo?

1.2.9 Find the cycle decomposition of the permutation induced by the
action of complex conjugation on the sct of roots of X® — X + 1.

1.2.10 Which permutations of the set Q := {X), X2, X3, X4} leave the
polynomial X7 + Xo — X3 — X, invariant? Find a polynomial in
these variables which is left invariant under all permutations in the
group (X1 X2X3X4), (X2X4)) but not by all of Sym/(£2).

1.2.11 For each 4, 2 < i < m, let L; = {(1,%),(2,%),..., (@ — 1,9), I}
where [ is the identity element of S,,. Show that each z € S, éan
be written uniquely as a product z = zsz3...2, with z; 6 L;.
(This is the basis for a technique to generate random elements of
5y with uniform distribution.)

1.2.12 Let s(n, k) denote the number of permutations in .S, which have
exactly & cycles (including 1-cycles). Show that '

dos(n k) XF = X(X+1) ... (X +n-1)
k=1
(The s(n, k) are known as “Stirling numbers of the first kind”.)

1.2.13 Let a(n, m) denote the number of permutations z € S, such that
z™ = 1 (with a(0, m) = 1). Show that

. a(n, m) xd
Z TX” = exp Z a

n=0 dlm

1.2.14 Find necessary and sufficient conditions on the pair 4, 7 in order that
(12...7), (i)} = Sn.
1.2.15 Show that for all 4, 1 < ¢ < n, ((23...n),(17)) = S,.

1.3. Group Actions )

19.16 Let n > 2, and let T be the set of all permutations in S, of the
form
b = H (i k—i) fork=3,4,...,n+1
1<i<k/2

(i) Show that T' generates Sy, and that each z € S, can be written
as a product of 2n — 3 or fewer elements from T.

(ii) (Unsolved problem) Find the least integer fn such that every
z € S, can be written as a product of at most fn elements from

T.

1.3 Group Actions

The examples described in Sect. 1.1 show how permutation groups are
induced by the action of groups of geometrical symmetries and field auto-
morphisms on specified sets. This idea of a group acting on a set can be
formalized as follows.

Let G be a group and 2 be a nonempty set, and suppose that for each
o € O and each z € G we have defined an element of Q dencted by o” (in
other words, (a, z) — o is a function of 2 x G into Q). Then we say that
this defines an action of G on Q (or G acts on Q) if we have:

(i) o' = a for all @ € Q (where 1 denotes the identity element of G); and
(ii) (a®)¥ = oV forall a € Qandallz,y € G.

Whenever we speak about a group acting on a set we shall implicitly
assume that the set is nonempty.

ExamPLE 1.3.1. The group of symmetries of the cube acts on a variety of
sets including: the set of eight vertices, the set of six faces; the set of twelve
edges, and the set of four principal diagonals. In each case properties (i)
and (ii) are readily verified.

EXAMPLE 1.3.2. Bvery subgroup G of Sym(§) acts naturally on £ where
o is simply the image of o under the permutation z. Except when explic-
itly stated otherwise, we shall assume that this is the action we are dealing
with whenever we have a group of permutations.

If a group G acts on a (nonempty) set 0, then to each element z € G we
can associate a mapping T of {2 into itself, namely, o — o®. The mapping
7 is a bijection since it has 7-1 as its inverse (using properties (i) and
(ii)); hence we have a mapping p : G s Sym(Q) given by p(z) = T.
Moreover, using (i) and (ii) again, we see that p is a group homomorphism
since for all & € © and all 2,y € G, the image of a under Ty is the same
as its image under the product T 7. In general, any homomorphism of G
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into Sym(Q) is called a (permutation) representation of G on . Hence,
we see that each action of G on 2 gives rise to a representation of G on .
Conversely, representations correspond to actions (see Exercise 1.3.1), so
we may think of group actions and permutation representations as different
ways of describing the same situation.

The following concepts related to a group action will be referred to re-
peatedly. The degree of an action (or a representation) is the size of Q.
The kernel of the action is the kernel (ker p) of the representation p; and
an action (or representation) is fasthful when ker p = 1. The “first homo-
morphism theorem” shows that, when the action is faithful, the image Im p
is isomorphic to G.

In some applications the relevant action is of the group acting on a set
directly related to the group itself, as the following examples illustrate.

ExaMPLE 1.3.3. (Cayley representation) For any group G we can take
Q := G and define an action by right multiplication: a® = ax with
a,az € Q and z € G. (Check that this is an action!). The corresponding
representation of G into Sym(G) is called the (right) regular representation.
It is faithful since the kernel

{z € G|a® =aforalacQ}

equals 1. This shows that every group is isomorphic to a permutation group.

ExAMPLE 1.3.4. (Action on right cosets) For any group G and any sub-
group H of G we can take I'y := {Ha | a € G} as the set of right
cosets of H in GG, and define an action of G on I'y by right multiplication:
(Ha)® := Haz with Ha, Haz € 'y and z € G. We denote the correspond-
ing representation of G on I'y by pg. Since Haz = Ha <= z € o~ 'Ha,
we have

ker py = ﬁ a 'Ha.
acG

In general, py is not faithful (see Exercise 1.3.3).

ExAMPLE 1.3.5. Suppose that G and H are both subgroups of a group
K and that G normalizes H. Then we can define an action of G on H by
conjugation: a® := z~'laz with a,z7'az € H and z € G. In this case the
kernel of the corresponding representation is the centralizer of H in G:

Co(H) ={zeG|ax==zaforalac H}.

The most common situation where this action occurs is when H = G or
H < @ (that is, H is a normal subgroup of G).

1.4. Orbits and Stabilizers 7

Ezxercises

1.3.1 Let p : G — Sym(§) be a representation of the group G on the sef
Q). Show that this defines an action of G on Q by setting o := ar(®)
for all @ € Q and z € G, and that p is the representation which
corresponds to this action. ‘

1.3.2 Explain why we do not usually get an action of a group G on 1t§elf
by defining a® := xa. Show, however, that a® := z~'a does give
an action of G on itself (called the left reqular representation of G.
Similarly, show how to define an action of a group on the set of left
cosets aH (a € G) of a subgroup H.

1.3.3 Show that the kernel of py in Example 1.3.4 is equal to the largest
normal subgroup of G contained in the subgroup H.

1.3.4 Use the previous exercise to prove that if G is a.group with a subgroup
H of finite index n, then G has a normal subgroup K contained in
H whose index in G is finite and divides n!. In particular, if H has
index 2 then H is normal in G.

1.3.5 Let G be a finite group, and let p be the smallest prime which divides
the order of G. If G has a subgroup H of index p, show that A must
be normal in G. In particular, in a finite p-group (that is, a group of
order p* for some prime p) any subgroup of index p is normal. [Hint:
Use the previous exercise.]

1.3.6 (Number theory application) Let p be a prime congruent to 1(mod 4),
and consider the set

Q= {(z,v,2) € N* | z° + 4yz = p}.
Show that the mapping

(z+22,2,y—a—2) Hfz<y—2z
sy )< Qy—zyz—y+z Hy—z<z<y
Yy Y

(z—2y,z—y+zy ifz>2

isa permufation of order 2 on § with exactly one fixed point. Con-
clude that the permutation (z,y,2) — (z,z,y) must also have at
least one fixed point, and so z% + 4y* = p for some z,y € N.

1.4 Orbits and Stabilizers

When a group G acts on a set {2, a typical point o is moved by elements
of G to various other points. The set of these images is called the orbit of
a under G, and we denote it by

QG = {ogg“|27€ G}

==

=
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A kind of dual role is played by the set of elements in G which fix a specified
point «. This is called the stabilizer of o in G and is denoted

Go={z€G|a” =al

‘The important properties of these objects are summarized in the following
theorem.

Theorem 1.4A. Suppose that G is a group acting on o set  and that
z,y € G and o, € Q. Then:
(i) Two orbits o and BC are either equal (as sets) or disjoint, so the set

of all orbits is a partition of ) into mutually disjoint subsets.

(i) The stabilizer Go 1s a subgroup of G and Gg = x7 Guz whenever
B = o®. Moreover, a® = oY <= Gaz = Guy.

(iii) (The orbit-stabilizer property) |a€| = |G : G4l for all @ € Q. In
particular, if G is finite then |a®| |Ga| = |G].

PrROOF. If § € o then § = a* for some u € G. Since uz runs over
the elements of G as z runs over G, 6 = {§* |z € G} = {a™® |z €
G} = a%. Hence, if o and B¢ have any element § in common, then
a% = §¢ = p% Since every clement o € § lics in at least one orbit
(namely, o), this proves (i).

Clearly 1 € G4, and whenever z,y € G, then zy~! € G,. Thus Gy is
a subgroup. If 8 = o then we also have:

y€Gg = a"=0a" = zyz7! € G,

and so z7'G,z = Gpg. Finally,

=a¥ = o =qa <= zy ' € Gy = Goz = GCGoy

a.’r
and so (i1) is proved. Now (ii1) follows immediately since (ii) shows that the
distinct points in o® are in bijective correspondence with the right cosets
of G, in G, and for finite groups |G : Gu| = |G|/ |G4l- O

A group G acting on a set 2 is said to be transitive on Q if it has only
one orbit, and so «® = Q for all a € Q. Equivalently, G is transitive if
for every pair of points «, 8 € 2 there exists z € G such that o* = .
A group which is not transitive is called intransitive. A group G acting
transitively on a set 2 is said to act regularly if G, = 1 for each o € Q
(equivalently, only the identity fixes any point). The previous theorem then
has the following immediate corollary.

Corollary 1.4A. Suppose that G is transitive in its action on the set §Q.
Then:

(i) The stabilizers Go (o € Q) form a single conjugacy class of subgroups
of G.
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(i) The indez |G : Go| = |9 for each a.
(iii) If G is finite then the action of G is regular <= |G| = |Q].

ExaMPLE 1.4.1. We illustrate these concepts by calculating the order of
the group G of symmetries of the cube (Sect.1.1). Consider the action of
G on the set Q of vertices labelled as in Fig. 1.1. If z denotes the rotation
of the cube through an angle of 90° around an axis through the midpoints
of the front and back faces, then the corresponding permutation Z induced
on  is (1342)(5786). A similar rotation y through a vertical axis induces
the permutation § = (1265)(3487). Thus the orbits of the subgroup (z)
are 1*) = {1,3,4,2} and 5% = {5,7,8,6} and, similarly, (y) has orbits
{1,2,6,5} and {3,4, 8,7}. Since G > (z, y), the group G itself has a single
orbit and so is transitive on 2. The orbit-stabilizer property now shows
that |G : G1| = |©] = 8.

Next consider the action of the subgroup G1. Any symmetry of the cube
which fixes vertex 1 must also fix the opposite vertex 8, and map the vertices
2, 3 and 5 amongst themselves. The rotation z of 120° about the axis
through vertices 1 and 8 induces the permutation z = (1)(253)(467)(8) =
(253)(467) on Q and lies in G1, so {2,5,3} is an orbit for G1. Thus the
stabilizer Gi2 of 2 in G; satisfies |G} : Gi2| = 3 by the orbit-stabilizer
property.

Finally, consider the stabilizer of two points Gi2. Each symmetry which
fixes vertices 1 and 2 must also fix vertices 7 and 8, and so G12 has a single
nontrivial element, namely a reflection w in the plane through vertices 1,
2, 7 and 8 which induces the permutation @ = (35)(46). Thus we conclude
that

‘G|: |GG1HG1 . G12HG12| :832248

ExaMPLE 1.4.2. Let G be a group and consider the conjugation action
of G on itself defined in Example 1.3.5. The orbits in this action are the
conjugacy classes where two elements a,b € G lie in the same conjugacy
class «= z~'az = b for some z € G. The stabilizer of an element a € G
is equal to the centralizer Cz(a) = {z € G | az = za}. The orbit-stabilizer
property shows that the size of the conjugacy class containing a is equal to
|G : Cc(a)|. In particular, if G is finite then every conjugacy class has size
dividing |G|.

Exercises

1.4.1 Let G be a group acting transitively on a set €}, H be a subgroup
of G and G, be a point stabilizer of G. Show that G = G, H <—
G = HG, <= H is transitive. In particular, the only transitive
subgroup of G containing G, is G itself. (This fact is frequently
useful.)



1.4.2 Show that the action of the group of symmetries of the cube on the
set of six faces of the cube is transitive, and deduce that the group
of symmetries has a subgroup of index 6.

1.4.3 Let H = G be the group of symmetries of the cube which fix vertex
1. What are the orbits of H on the set of 12 edges of the cube?

1.4.4 Calculate the order of the symmetry group of the regular dodecahe-
dron.

1.4.5 Let K be a group. Show that we can define an action of the direct
product K x K on the set K by: a(®¥) := z-lgy for all ¢ € K
and (z,y) € K x K. Show that this action is transitive and find the
stabilizer K. When is the action faithful?

1.4.6 Suppose that G is a group acting on the set  and H is a subgroup of
G, and let A be an orbit for H. Show that AT is an orbit for z—! Hz
for each z € G. If G is transitive on Q and H < G, show that every
orbit of A has the form A? for some z € G,

1.47 Let G be a group acting on a set 2 and let p be a prime. Suppose
that for each a € Q there is a p-element z € G such that « is the
only point fixed by z. If  is finite, show that G is transitive on Q;
and if Q is infinite, show that G has no finite orbit on . Find an
example of a group G with an intransitive action on a set  such that
for each o € § there is an element z € G of order 6 which has « as
its unique fixed point. [Hini: Take G = S3 x S3.]

Ezercises

The following exercises illustrate how permutation actions can be used to
prove some well-known theorems in the theory of abstract groups. Even if
you already know the results, you may find the techniques of interest.

1.4.8 If G is a finite p-group and G # 1, then its centre Z(G@) # 1.
[Hint: Use Example 1.4.2 and note that the size of each nontrivial
conjugacy class is a multiple of p.]

1.4.9 Generalize Exercise 1.4.8 to show that if G is a finite p-group and
1# H <G, then HN Z(G) # 1.

1.4.10 If G is a finite p-group and H is a proper subgroup, show that the
normalizer Ng(H) of H in G properly contains H. In particular,
every maximal subgroup of G is normal in G and has index p. [Hint:
Use Exercise 1.4.8.]

1.4.11 Let p be a prime, and let G be a finite group of order p*m where
p [ m. Show that G has a subgroup of order p* (a Sylow p-subgroup).
[Hint: Consider the action by right multiplication of G on the set
of all subsets of G of p* elements. Show that p does not divide | 1,
and so some orbit has length > 1 and not divisible by p. If T lies

in this orbit, then the stabilizer G; < G and has order divisible by

p*, s0 we can apply induction.]

1.4.12 Let G be a finite group with a Sylow p-subgroup P. If Q is any
p-subgroup of G, show that for some z € & we have Q < z71Pg.
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In particular, any two Sylow p-subgroups of G are conjugate in G.
[Hint: Consider the action of G on the set of right cosets of P in
G (Example 1.3.4). Since p does not divide |G : P|, Q must have
some orbit of length not divisible by p, and so ¢ has an orbit of
length 1. Thus for some z € G, Pz@Q = Px.]

1.4.13 The number of Sylow p-subgroups of a finite group G is congruent
to 1 modulo p. [Hint: Let Q be the set of all Sylow p-subgroups, and
let P be one of these. Then P acts on {2 by conjugation, and its
nontrivial orbits have lengths which are multiples of p because P is
a p-group. Show that the only orbit of length 1 is {P}.]

1.4.14 (The “Frattini argument”) Let G be a group with a finite normal
subgroup K and let P be a Sylow p-subgroup of K. Show that
KNg(P) = G. [Hint: G acts by conjugation on the set of Sylow
p-subgroups of K, and K is transitive in this action (Why?).]

1.4.15 Let G be a finite group and K < G. If there is no proper subgroup
H of G such that G = K'H, then show that K Is nilpotent. [Hint:
Recall that a finite group is nilpotent when it is a direct product of
Sylow subgroups. Use the previous exercise.]

1.4.16 Let  be the set of all n x n matrices over a field ' and let G =
GL,(F)x GL,(F) where GL,(F) is the group of all n x n invertible
matrices over I

(i) Show that there is an action of G on Q defined by a(®¥) :=
zTay (a,2%ay € Q and (z,y) € G) where 27 denotes the
transpose of z.

(i) Show that G has exactly n + 1 orbits on 2 and describe these.

(iii) For a suitably chosen point a from each orbit, describe G,,.
[Hint: This exercise is related to well known facts in elementary
linear algebra.]

1.4.17 If G is a transitive permutation group of degree p*m (p prime), and
P is a Sylow p-subgroup of G, then each orbit of P has length at
least p*.

1.4.18 Let G be a permutation group of degree n, and suppose that each
z # 1 in G has at most & cycles. If n > k2, show that G acts
faithfully on each of its orbits, and that these orbits all have prime
lengths. Hence show that G is either cyclic of prime order or non-
abelian of order pg for distinct primes p and gq. [Hiné: Show that
p? > n for each prime p dividing |G| ]

1.5 Blocks and Primitivity

Consider again the symmetry group G of the cube (Fig. 1.1) acting on the
set of eight vertices. Since each symmetry preserves distances, the pairs
{1,8}, {2,7}, {3,6}, and {4,5} which correspond to the long diagonals
must be permuted amongst themselves by the elements of G; in other words,
G acts on the set ¥ of these four pairs. For example, if z is the rotatiou
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through 90° around the axis through the centres of the faces at the front
and the back of the cube, then {1,8}* = {3,6},{2,7}* = {1,8},{3,6}° =
{4,5} and {4,5}*® = {2, 7}. Since reflection in the centre of the cube leaves
each of these pairs fixed, the action of G on ¥ is not faithful.

FExercise

1.5.1 Show that the image of the corresponding representation of G is the
full symmetric group Sy.

The phenomenon described above for the symmetries of the cube plays
an important role in analysis of group actions and permutation groups. We
shall formalize this idea below. In what follows we shall extend the action
of G on § to subsets of Q by defining I'* := {y* | v € I'} foreach I" C Q.

Let G be a group acting transitively on a set Q. A nonempty subset A of
Q is called a block for G if for each z € G either A* = A or AN A = {.

EXAMPLE 1.5.1. Every group acting transitively on Q has Q and the sin-
gletons {a} (o € Q) as blocks; these are called the trivial blocks. Any other
block is called nontrivial. A block which is minimal in the set of all blocks
of size > 1 is called a minimal block.

EXAMPLE 1.5.2. In the example at the beginning of this section, the group
of symmetries of the cube acting on the set of vertices has the blocks
{1,8},{2,7}, {3,6} and {4, 5} which are clearly minimal blocks. The sets
{1,4,6,7} and {2, 3, 5, 8} are also (non-minimal) blocks. Can you find other
nontrivial blocks?

ExAMPLE 1.5.3. If G acts transitively on 2, and A and I" are blocks for
G containing a common point, then A N T is also a block for G. More,
generally, any intersection of blocks containing a common point is again a
block.

Fzxercise

1.5.2 Show that the cyclic group ((123456)) acting on {1, 2, 3,4, 5,6} has
exactly five nontrivial blocks.

The importance of blocks arises from the following observation. Suppose
that G acts transitively on £ and that A is a block for G. Put & = {A7 |
z € G}. Then the sets in 2 form a partition of 2 and each element of ¥ is
a block for G (see Exercise 1.5.3); we call ¥ the system of blocks containing
A. Now G acts on ¥ in an obvious way, and this new action may give useful
information about G provided A is not a trivial block.

Let G be a group which acts transitively on a set Q2. We say that the
group is primitive if G has no nontrivial blocks on §2; otherwise G is called
imprimitive. Note that we only use the terms “primitive” and “imprimitive”
with reference to a transitive group.

s PSS, 13 v g

1.5. Blocks and Primitivity 13

Ezercises

1.5.3 Show that the system of blocks 3 defined above forms a partition of
2 and that each of its elements is a block for G. Describe the action
of G on ¥ in the cases where A is a trivial block.

1.5.4 If G is a group acting on a set  then a G-congruence on § is anl¢
equivalence relation & on 2 with the property that

axf = o ~f3° forallz e G.

Show that if G acts transitively on Q and ~ is a G-congruence, then
the equivalence classes of ~ form a system of blocks for G. Conversely,
if % is a system of blocks for G, then the elements of % are the equiv-
alence classes for a G-congruence on (2. What are the G-congruences
which correspond to the trivial blocks?

1.5.5 (Separation property) Suppose that G is a group acting transitively
on a set { with at least two points, and that A is a nonempty subset
of §2. Show that A is not a block <= for each pair of distinct points
a, f € () there exists z € G such that exactly one of @ and 3 lies
in A®. In the case that G is finite, show that the condition can be
strengthened to: @ € A% but 8 ¢ A® for some z € G.

To describe the relation between blocks and subgroups we shall require
the following notation which extends the notation for a point-stabilizer.
Suppose G is a group acting on a set 2, and A € Q. Then the pointwise
stabilizer of A in G is

Gy ={z€G|§ =6 foralde A}
and the setwise stabilizer of A in G is
G{A} ={z e G| A" = A}.
It is readily seen that Giay and G(a) are both subgroups of G and that
G(ay<9Gyay. Note that Gy = G(a) = G for each o € Q. More generally,
for a finite set A = {a1, ..., ax} we shall often write Gay,...,o 10 place of

G(a)- (You should be warned that many authors use different notations for
these subgroups.)

Frercises

1.5.6 If G acts transitively on 2, and A is a block for G, show that Gy
acts transitively on A.

5.7 Let G < Sym(Q2) be a transitive group and let I' and A be finite
subsets of Q2. Suppose that G (ry and G(a) act primitively on @\ I’
and Q2 \ A, respectively, and G = (G(ry, G(a))- Show that the group
G is primitive.

Theorem 1.5A. Let G be a group which acts transitively on a set 2, and
let € Q. Let B be the set of all blocks A for G with a € A, and let
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S denote the set of all subgroups H of G with G, < H. Then there is a
bijection ¥ of B onto S given by ¥(A) = G(a} whose inverse mapping ©
is given by ®(H) = o . The mapping U is order-preserving in the sense
that if A,T € Bthen A CT <= T(A) < ¥(T).

Remark. Briefly: the partially ordered set (53, C) is order-isomorphic with
the partially ordered set (S, <).

PrROOF. We first show that ¥ maps B3 into S. Let A € B. Then = € G,
implies that & € AN A%, and so A = A because A is a block. This shows
that each © € G, lies in Gyay. Hence Gyay 2 G4 for all A € B and so ¥
maps 5 into S.

We next show that & maps S into B. Let H be a subgroup of G with
G, < H Put A = o, and let z € G. Clearly A®* = Aifz € H,
and we claim that A® N A = 0 otherwise. Indeed if AN A s ), then
there exist uw,v € H such that a%® = o¥. Then uazv™' € Gg, and so
z € ulGev C H. Thus A°NA = () whenever z ¢ H, and so A is a block
which contains «, and therefore lies in 5. Thus ® maps S into B. Moreover,
since A is an orbit for Gya(see Exercise 1.5.6), the composite mapping of
¥ followed by ® is the identity on 5.

To prove that ® and ¥ are inverses it remains to show that the composite
of ® followed by ¥ is the identity on S. Let H € S, and put A = ®(H) =
aff. The previous paragraph shows that if z € G, then A® = A <= z €
H. Thus H = Gay as required. This completes the proof that ® is the
inverse of V.

The statement that ¥ is order-preserving now follows at once. Indeed
Giay < Gyry implies that the orbits of @ under these groups (namely, A
and I') satisfy A C I". Conversely, if A C T, then ¢ € G{a; implies that
I'*NT # ¢ and hence € Gry because I' is a block. Thus A C T implies
that Gyay < Gyr}. This shows that ¥ is order-preserving, and the theorem
is proved. O

This theorem leads immediately to the following important result.

Corollary 1.5A. Let G be a group acting transitively on a set  with at
least two points. Then G is primitive <=> each point stabilizer G, is a
mazimal subgroup of G.

Since the point stabilizers of a transitive group are all conjugate (see
Corollary 1.4A), one of the point stabilizers is maximal only when all of the
point stabilizers are maximal. In particular, a regular permutation group
is primitive if and only if it has prime degree.
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Exercises
1.5.8 Find all blocks containing 1 for the group
G = ((123456), (26)(35)) < Sg.

Identify the corresponding subgroups of G containing G .
1.5.9 If A is a block for a group G and o € A, show that A is a union of
orbits for G,. (This is often useful in looking for blocks.)

1.5.10 Let A be a nontrivial block for a group G acting on Q. If Gyay acts
imprimitively on A (see Exercise 1.5.6), and has a block I', show
that I is also a block for G. In particular, A is a minimal block (sce
Example 1.5.1) for G <= G’{A} is primitive on A.

1.5.11 Let z € Sym(Z) be the translation defined by ¢* := i + 1 for all
i € Z, the integers. Show that the blocks for (z) containing 0 are
precisely the sets of the form kZ where k& € Z. In particular, (z) has
no minimal blocks.

1.5.12 Suppose that G is a group acting on a set 2 with the property that
for any two ordered pairs (¢, §) and (v, 6) with a # B and v # &6
there exists z € G such that & = v and §% = § (such a group is
called 2-transitive). Show that G is primitive.

1.5.13 Let F be a field and let G < Sym(F) cousist of all permutations
of the form & — af + § with o, 0 € F and a # 0. Show that G
is 2-transitive on F. (We shall give more examples of 2-transitive
groups in the next chapter and look at them in detail in Chap. 7.)

1.5.14 Let G < S,. If G has r orbits, show that G can be generated by a
set of at most n — r elements. In particular, cvery permutation group
of degree n can be generated by a set of at most n — 1 elemeunts.
Give examples of permutation groups of degree 2m which cannot be
generated by fewer than m elements (m = 1,2,...).

ExXaMpPLE 1.5.4. Let 7 be the infinite trivalent tree. By this we mean that
7T is a graph with a countably infinite set of vertices, each vertex is joined
by an edge to exactly three other vertices, and the graph has no cycles. (If
you are unfamiliar with graphs, you might like to look in Chap. 2 for the
appropriate definitions.)

If you start at any vertex of 7 then the tree grows out along three edges
each of which splits into two and so on. A fragment of the tree is displayed
in Fig. 1.2. Any two trees constructed in this way will be isomorphic.

Let A denote the set of all permutations of the vertex set §2 of 7 which
preserve the structure of the tree in the sense that if z € Sym(Q), then
x € A <= two vertices «, § are joined by an edge in 7 if and only if a®
and 8% are joined by an edge; A is called the automorphism group of 7.
Since the graph looks the same from each vertex, A acts transitively on €.
This action is not primitive because €2 can be partitioned into two nontrivial
blocks A and A’ (see Exercise 1.5.15). However, these are minimal blocks

e,

P



-

" Voo Lhe teewie Tdeas

FIGURE 1.2. A fragment of the trivalent tree.

for 4, and so G := Ay, acts primitively on A. (See Exercises 1.5.16 and
1.5.17 for further details.)

Fzercises

1.5.15 Define the distance d(a, 3) between two vertices in the trivalent tree
T to be the number of edges in the shortest path from « to 3. Show
that:

() if d(e, B) = d(, B') then there exists z € A such that o” = o
and f* = f§';

(ii) the vertex set { can be partitioned into two subsets A and A’
such that the distance between any pair of vertices in the same
subsct is even;

(iii) the sets A and A’ are blocks for A4.

1.5.16 Using the notation of the previous exercise show that A and A
are the only nontrivial blocks for 4, and hence that G = A(a;
acts primitively on A by Exercise 1.5.10. [Hint: For any pair of
distinct vertices (@, 3) there exists z € A such that o” = «a and
d(f, 5*) = 2, thus every nontrivial block contains a pair of points
with distance 2.]

1.5.17 With the notation of the previous exercise show that if & € A then
the orbits of G on A are finite with lengths 1, 6,24, .. ..

1.5.18 Let F be a field, let Q be the set of all nonzero vectors in the vector
space F?, and let G = GL3(F) be the group of all invertible 3 x 3
matrices over F. Consider the action of G on Q by right (matrix)
multiplication: % = uz (v € Q,z € G). Show that:

(i) the action is transitive and faithful;

(ii) the set A consisting of those vectors in {2 whose first two entries
are 0 is a block; and

(ii) Gya} has exactly two orbits on the system of blocks containing

(This example will be generalized in Sect. 2.8.)
1.5.19 Suppose that the group G acts transitively on Q and that I' and
A are finite subsets of Q with |I'| < |A|. If Gy and Ga) act
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transitively on @\ " and €\ A, respectively, show that I'* C A for
some z € (G. Does the result remain true if I and A are infinite?

1.5.20 Let G be a solvable transitive subgroup of S,,, and suppose that n
can be written as a product of d prime factors. Then G contains
a transitive subgroup with at most d generators. [Hint: If G is im-
primitive, then G > H > G, for some subgroup H. By induction
there exist subgroups L, Ly with di and dy = d — dj generators,
respectively, such that G = HL; and H = GqL2. Now (L1, Lo)
requires at most d generators.|

1.5.21 Use the preceding exercise to show that every transitive permutation
group of prime power degree p* contains a k-generator transitive
p-subgroup.

1.5.22 Let G < Sym(f) be a finite primitive group and suppose that G,
has a nontrivial orbit of length d. Show that each subgroup H with
1 < H < G, also has a nontrivial orbit of length < d.

1.6 Permutation Representations and Normal
Subgroups

Let G be a group acting on a set Q. A subset I' of Q is invariant (or more
specifically G-invariant) if T® =T for all z € G. Clearly T is G-invariant
<= T is a union of orbits of G. In the case that I' is G-invariant we can
consider the restriction of the action of G to I' and obtain an action of G on
I'. We use the notation = — z' to denote the representation corresponding
to this action on T (so z¥ € Sym(T) is the permutation of I" associated with
the group element z), and write GT := {z' | z € G}. The representation
z — z! is a homomorphism of G onto GT with kernel G(ry, and so by the
“first isomorphism theorem” we have G/G ) = G

The first theorem of this section describes the relation between the orbits
of a group and the orbits of a normal subgroup. To state the result we need
one further definition. Two permutation groups, say G < Sym(Q) and
H < Sym(Q) are called permutation isomorphic if there exists a bijection
A — © and a group isomorphism ¢ : G — H such that

AMa®) = Me)?@® foralla e Qand z € G.

Essentially, this means that the groups are “the same” except for the
labelling of the points.

ExaMPLE 1.6.1. Suppose that G is a group acting imprimitively on a set
Q, that H is a normal subgroup of G and that X is a system of blocks
for G. If A, A’ € %, then H® < Sym(A) and H> < Sym(A') are per-
mutation isomorphic. Indeed, since ¥ is a system of blocks we know that
A’ = A° for some ¢ € G, and then we can define a bijection A of A



onto A’ by A(§) := 6°. Now we claim that we can define an isomorphism
Y HA — H2 by ¢(z?) := (¢ 'ze)?'. First, ¢ is well-defined and injec-
tive since for all z,y € H we have 22 = y® «—= azy~' ¢ Hipny =
cHzy e € Hay & (clme)® = (c7lyc)® because A = A®.
Second, 9 is surjective since ¢c"'He = H. Finally, since y(z2y>) =
D((y)?) = (€ Hay)e)® = (T'ze)¥ (e Tlye)d = Pla)p(y®) for all
z,y € H, we conclude that 9 is an isomorphism as claimed. It is now easy
to verify that A and % define the required permutation isomorphism.

FExercises

1.6.1 If G and H are both subgroups of Sym()), show that they are
permutation isomorphic if and only if they are conjugate in Sym(£2).

1.6.2 In Example 1.6.1, show that it is possible that the kernels of the
actions of H on A and on A’ are different.

The theorem is stated for the case of a transitive group G, but if G is
not transitive then the result can be applied to the restriction of the action
of GG to each of the orbits of G.

-

Theorem 1.6A. Let G be a group acting transitively on a set §1, and
H <aG. Then:
(i} the orbits of H form a system of blocks for G
(i) if A and A’ are two H-orbits then H® and H® are permutation
isomorphic;
(iii) if any point in § is fized by all elements of H, then H lies in the
kernel of the action on Q;
(iv) the group H has at most |G : H| orbits, and if the index |G : H| is
finite then the number of orbits of H divides |G : H|;
(v) if G acts primitively on §) then either H is transitive or H lies in the
kernel of the action.

Proor. (i) Let A be an orbit for H, and put
Y= {A% |z e G}

Since H is normal, each A% is an orbit for H (by Exercise 1.4.6), and
because G is transitive the union of these orbits is the whole of 2. Thus
every orbit of H appears in X, and ¥ is a system of blocks for G.

(ii) This follows from (i) and Example 1.6.1.

(iii) If H fixes a point, then it has an orbit of length 1 and so by (i) all
of its orbits have length 1; hence H lies in the kernel of the action.

(iv) This follows at once from (i) since all blocks in a system of blocks
have the same size.

(v) This also follows at once from (i) since primitivity implies that the
blocks must be trivial. O
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In reference to (iii) just mentioned, it is useful to introduce the following
notation. Suppose that the group G acts on a set € and let T be a subset
of G. Then we define the support and set of fized points of T' by

supp(T) := {a € Q| a® # « for at least one z € T'}
and
ix(T) ={aeQ|a® =a forallz € T}.

In cases where there may be ambiguity we use suppq(7") and fixq(7T) to
emphasize the set involved. Note that §2 is the disjoint union of these two
sets. The most important cases are when T is a singleton (and we write
supp(z) and fix(z) in place of supp(T) and fix(7")), and when T is a sub-
group of G. When I' C Q) it is often convenient to identify Sym(I") with
the subgroup of Sym(Q) consisting of all z € Sym(Q) with supp(z) C I'.

FEzercises

1.6.3 If G acts transitively on Q and o € Q, show that |[Ng(G,) : Go| =
|fix(Ga)l.

1.6.4 Suppose that G is a transitive subgroup of S, and that H < G has
k conjugates in G. If GCD(k,n) = 1, show that Ng(H) is transitive
and that hence all orbits of H have the same length. [Hint: If A and
B are subgroups of relatively prime index in a finite group C, then
C =AB = BA|

1.6.5 Let G be a transitive subgroup of Sym () and let « € Q. Show that
fix(G.) is a block for G. In particular, if G is primitive, then either
fix(Ga) = {a} or else G, = 1 and G has finite prime degree.

1.6.6 Let F'Sym(Q) be the set of elements in Sym(Q) which have finite sup-
port. Show that F.Sym(Q) is a primitive normal subgroup of Sym(2),
and is a proper subgroup whenever Q is infinite. (FSym() is called
the finitary symmetric group on Q. Of course, FSym(Q2) = Sym(Q)
when 2 is finite).

1.6.7 If z,y € Sym(Q2) and I" := supp(z) Nsupp(y), show that supp(z, y] C
L UI* UrY In particular, if |I'| = 1, show that [z,y] is a 3-cycle.
([z,y] == 71y lzy is the commutator of z and y.)

One important normal subgroup in every symmetric group is the alter-
nating subgroup Alt(Q) (or A, if @ = {1,2,...,n}). Indeed as we shall
see later, when n # 4, the only normal subgroups of S,, are 1, 4,, and S,,.
In order to define Alt(£2) we first have to define what we mean by odd and
even permutations.

Let z be an element of the finitary symmetric group FSym() (see
Exercise 1.6.6 above). Then z has finite support, and so it has only a finite
number of nontrivial cycles of finite length and none of infinite length. Let
miy, ..., Mg be the lengths of the nontrivial cycles, and define

Az):=(my — 1)+ ...+ (mg — 1) = |supp(z)| — &
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If A(z) is even we call z an even permutation, and if A(z) is odd, we call
z an odd permutation. When  is infinite only permutations with finite
support are classified in this way.

Lemma 1.6A. The mapping x — (=1)M®) is a group homomorphism
of FSym(8) into the multiplicative group {1, —1}. It is surjective when
|2 > 2.

ProOF. From the identities
(12...r)(1'2"...8"HAY) = (12...7172' ... &)
and
(12...712 ... 8)(11) = (12...m) (172" ... &)
we see that for any z € FSym(Q) and any 2-cycle (af) we have
Mz(af)) = Mz) —1or AMz) +1

depending on whether or not o and £ lie in the same cycle of z. (In checking
this, note that o or § may possibly lie in 1-cycles of z.)

Since A(y) = 0 only when y is the identity element I, we deduce:

(i) there exist 2-cycles (c;3;) (i = 1,...,m) with m = A(z) such that
z(a1f) ... (@mBm) = I and so z can be written as a product of A(z) 2-
cycles: (mBm) - - . (@181) (which are usually not disjoint);

(ii) if  can be written as a product (7161) . .. (7a0n) of n 2-cycles, then
Z(Ynbn) .- - (M) = I and so wehave A(z) = e, +...+e =n  (mod 2)
for some €; = 41.

These two observations show that every z € FSym () can be written as
a product of 2-cycles, and that however this is done the number of 2-cycles
required is either always odd or always even, depending on whether \(z)
is odd or even. In particular, for all z,y € FSym(Q) we have

Mzy) = Mz) + AMy) (mod 2)

and so z — (—1)**) is a homomorphism into {1, —1} as required. This
homomorphism is surjective whenever FSym(f) contains a 2-cycle. O

pYE3

We define Alt(2) to be the kernel of the homomorphism defined in
Lemma 1.6A. Thus Alt(Q2) @ F'Sym(Q) and Alt(Q) is a proper subgroup
of index 2 in F'Sym()) except in the case where |2] = 1. In particular,
A, a8, for all n.

FExercises

1.6.8 Show that FSym(Q) can be generated by the set of all 2-cycles in
Sym(Q) and that Alt(2) can be generated by the set of all 3-cycles.
1.6.9 Show that S, is generated by the set of (n — 1) 2-cycles: (12),
(13)...., (In). Give a similar set of (n — 2) 3-cycles which generates

A,

TP A e
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1.6.10 Consider the action of S, on the set of all polynomials with integer
coefficients in the variables X, ..., X, given by

FOX - Xn)® = f(Xr, o X ) Whellm=<11/ Z)

Define
B(X),. .., Xp) = H(Xi - X;).

i<j
Show that that A, is the stabilizer of the point ®.

1.6.11 Let G be a finite group of order 2tm where £ > 1 and m is odd.
If G contains an element of order 2¢, show that G has a normal
subgroup of order m. [Hint: First show that the image of the regular
representation of G contains a odd permutation, and hence G has a
normal subgroup of index 2.]

1.6.12 If G is a primitive subgroup of Ss,, where m is odd, show that G
contains a subgroup of order 4.

In comparing actions (and representations) of a group G, we find that
some are “essentially the same” and differ only in the labelling of the points
of the sets involved. In other cases the actions are clearly different. For
example, the automorphism group A of the trivalent tree 7 (Example 1.5.4)
acts in a natural way on the set of edges of the tree as well as on the set
of vertices, but these actions are distinct since the stabilizer of a vertex
has orbits of lengths 1, 3,6, 12, . .. on the vertices while the stabilizer of an
edge has orbits of lengths 1,4, 8,16, ... on the edges. On the other hand,
it is not at all clear whether the representations of a group G on the set
of left cosets and on the set of right cosets of a subgroup H (see Example
1.3.4 and Exercise 1.3.2) are really different or not.

Let p: G — Sym() and o : G — Sym(T") be two permutation repre-
sentations of a group G. These representations are equivalent if 2 and T’
have the same cardinality and there is a bijection A :  — I" such that

M) = (Ma)*® forall o € Qand z € G.

We say that two actions of G are equivalent when the corresponding rep-
resentations are equivalent. This definition should be compared with the
definition of permutation isomorphism given above (see Exercise 1.6.17).

In the case that Q = T" the bijection A will be a permutation of 2 and
so for some ¢ € Sym(Q2) we have A(a) = a°. Thus in this case the two
representations are equivalent if and only if for some ¢ € Sym(2) we have
o(z) = ctp(z)cfor all z € G.

When the two actions are transitive there is a simple criterion for deciding
whether or not they are equivalent.

Lemma 1.6B. Suppose that the group G acts transitively on the two sets
Q and I', and let H be a stabilizer of a point in the first action. Then the



actions are equivalent <—=> H 1is the stabilizer of some point in the second
action.

PROOF. Let p : G — Sym(Q) and 0 : G — Sym(T') be the represen-
tations of G which correspond to the given actions. Then, for some point
o € 0, the subgroup H = {z € G | a?® = a}. If there is an equiv-
alence of the two representations given by a bijection A : £ — I', then
@ = o == AMa) = Ma”®) = (Ma))?®), and so H is also the
stabilizer of the point A(a) in the second action.

Conversely, suppose that H is also the stabilizer of a point 8 in the
second action, so z € H = af® =a <= B8 = 3. We claim that
we can define a bijection A : £ — T by

M@ = 7@ forall z € G.

To do this we first have to show that A is well-defined, namely, if a”(®) =
@) then the value defined for A must be the same. This is true because
P = V) = gyl € H <= (7 = oW Second, A is
defined for all points in 2 because the representation p is transitive, and
similarly ) is surjective because o is transitive. Finally, A is injective because
aP@ = oP) = golz) = ,Bo(y)', and so A is a bijection from 2 onto I'.
Now for each v € Q there exists a € G such that v = «”(@) | and so for
each z € G we have

AP) = A(@#9)) = 71 = (57)7E) = (A(@)7®) = A()°)

which proves that the two representations.are equivalent. O

Lemma 1.6B enables us — at least in theory — to describe up to equiva-
lence all transitive permutation representations of a given group G. Indeed,
if H is a subgroup of G, then Example 1.3.4 shows that the action of G on
the set I'y of right cosets of H gives a representation py of G in which the
point stabilizers are just the conjugates of H in G (z~!H is the stabilizer
of the point Hz € I'gy). Thus Lemma 1.6A shows that every transitive
representation of G is equivalent to pg for some H < G, and that py and
px are equivalent exactly when H and K are conjugate in . Hence the
transitive representations of G are given up to equivalence by the represen-
tations py as H runs over a set of representatives of the conjugacy classes
of subgroups of G.

EXAMPLE 1.6.2. Let G = S3. Then a complete set of representatives
of the conjugacy classes of subgroups of G is given by: 1, ((12)), ((123))
and S3. These give transitive representations of G of degrees 6,3,2 and 1,
respectively, where the first two are faithful. This shows, for example, that
if S3 acts faithfully on a set of size 8 then it must have either an orbit of
size 6, or one or two orbits of size 3, and the remaining orbits are of sizes
1 or 2.
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Ezercises

1.6.13 Show that if H is a subgroup of a group G, then the action of G on
the set of right cosets of H and the action of G on the set of left
cosets of H (see Exercise 1.3.2) are equivalent.

1.6.14 The group of symmetries of the cube acts on the set of 12 edges of

the cube and on the set of 12 diagonals in the faces of the cube. Are
these two actions equivalent?

1.6.15 Find up to equivalence all the transitive representations of Sy.

1.6.16 Let G be a group acting on a set 2, and let « € G. Suppose that i
is a transitive normal subgroup K of G and that K, = 1. Show that
the action of G, on 2 and the action of G, on K by conjugation
(Example 1.3.5) are equivalent.

1.6.17 Show that Sg has two inequivalent transitive representations of
degree 6 but the images of the representations are permutation
isomorphic.

An intransitive group G < Sym(9) may have different actions on dif-
ferent orbits and the groups induced on these orbits may be interrelated
in intricate ways. In certain situations, however, we can reconstruct G in a
simple way, from the groups G induces on its orbits on (.

Recall that when A C ) we may identify Sym(A) with the sub-
group of Sym(Q)) consisting of the elements whose support lies in A. If
{A1,...,An} is a partition of 2, and each A; is G-invariant for some
G < Sym(Q), then this identification enables us to write z = 2! - - zfmn
forallz € G. Thus G < G2+ .- GAm = G2 x - - x G®. The following
theorem gives a useful criterion for equality to hold when m = 2.

Theorem 1.6C. Suppose that G < Sym(Q) and that A # 0,Q is a G-
invariant subset of Q. PutT' := Q\ A. If G® and G* have no nontrivial
homomorphic image in common then G = G x GT.

PrOOF. The homomorphism z — z® of G into Sym(A) has kernel H; :=
G(a) and image H := G®. Similarly, z +— z' has kernel K, = Gy and
image K := GT. Since H = G/H; and K = G/K,; have the common
homomorphic image G/H; K1, the hypothesis implies that G = H; K;.
But then H = G* = (H1K,)® = K, and K = G' = (H,K,)T = H;.
Therefore G = HK = H x K as asserted. O

Exercises

1.6.18 Suppose that the group G acts transitively on two sets I' and A of
size n. Show that these actions are equivalent if and only if G has
an orbit of length n in its induced action on I" x A.

1.6.19 Show that no transitive subgroup of Ss has an elementary abelian
2-group as a point stabilizer.
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1.6.20 Let 4 = [a(4, 7)] be an invertible n x n matrix over a field, and sup-
pose that group G has two actions p and ¢ on .th.e set {1, 2, e ,n}
such that for each z € G : a(i"(z),j"(z)) = Oi(‘L,j).fOI‘ all i J- Sh(?w
that the two actions have the same number of orblts..If G is cyclic,
show that they also have the same nurnber of fixed points. However,

i i t equivalent.
show that in general the two actions are no . .

1.6.291 Show that every transitive group of degree p? (p prime) contains a

regular subgroup.

1.7 Orbits and Fixed Points

There is a simple relationship between the numb(.er of orbits ofa ﬁ1?1teAg1“oilzlz
acting on a finite set and the number of fixed points of'1ts elgmeptsB v(\lz e
range of applications in counting problems anc‘l con1b1natorlc§ Ls tase o
elaborations of this relationship. The theorem 1t§elf has a lo”n'g hIS ory nd
is often referred to (inaccurately) as the “Burnside Lemma”; the simple

version is the following result.

Theorem 1.7A (Cauchy-Frobenius Lemma). Let G be a finite group
acting on a finite set . Then G has m orbits on §) where

m |G| = Y Ifix(z)].
zeG

e B 3 t
Proor. Consider the set F = {a,z) € x Gla®= a},.weﬁhaﬂgc‘suif
the number of elements of F in two ways. First, suppose that the orbits

G are Q1, ..., m. Then, using the orbit-stabilizer property, we have
3 S \GJ = N 1G] = m|G|.
EESI TS 9p oY Roll
i=1l a€fl, i=1 acfl, 7
Second,

|7l = fix(@)l-

zeC

O
The result follows.

Since |fix(z)| remains constant on each conjugacy class of G, the relation
in Theorem 1.7A can be rewritten as

k
m |Gl =Y |Cil [fix(w:)]

where Cy, Ca, . . ., Cx are the conjugacy classes of G and z; 1s & represen-
tative of C;. This form is often simpler in calculations.

PU—-—
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Ezxercises

1.7.1 If G is a transitive subgroup of .5, show that

S lfx(a) = |G| and Y

zelG Py

fix(a)* = r |C]

when the point stabilizers of G have r orbits.

1.7.2 If G is a transitive subgroup of S, show that G has at least n — 1
elements each of which fixes no point. Conclude that if G is any finite
group, and H is a subgroup of index n in G, then G has at least n —1
elements which are not conjugate to elements in H.

1.7.3 Give an example of a transitive permutation group of infinite degree
in which every element has infinitely many fixed points.

1.7.4 Show that the average number of k-cycles for an element in .5, is
equal to 1/k.

1.7.5 Suppose that G is a finite group with k& conjugacy classes. Show that
the number of ordered pairs (z,vy) of elements from G such that
zy = yz is equal to k |G|. [Hint: Let G act on itself by conjugation.]

1.7.6 Let C denote a conjugacy class on a finite group G. If G acts transi-

tively on §2, show that |fix(z)| |C] = |G N C||Q] foralla € Q, z €
C.

A common instance of Theorem 1.7A arises when §2 is a set of functions
and the group acts on one or both of the underlying sets. Let I and A be
two finite nonempty sets, and let Q := Fun(A, T') be the set of all functions
of A into I'. We may think of the elements of I" as colours and each function
¢ in Fun(A, T') as a colouring of the points of A; specifically, ¢ colours the
point « with colour ¢(c).

For example, consider the case where A is the set of six faces of a cube and
I’ = {red, white, blue}. Then Fun(A, I') represents the set of all colourings
of the faces of the cube by the three colours. Two such colourings may be
considered indistinguishable if the cube with one of these colourings can
be mapped into the cube with the other colouring via a rotation of the
cube; this is equivalent to saying that the two colourings lie in the same
orbit of Fun(A,I') under the action of the group of rotations on A. In
general, whenever a group G acts on the set A, then G has a corresponding
action on Fun(A,T") with ¢° defined by ¢%(a) := ¢(a® ) for all ¢ €
Fun(A,T), z € G and a € A. We shall see this action again in Sect. 2.6
when we discuss wreath products.

FExercise

1.7.7 Show that the definition of ¢* just given does define an action of G

on Fun(A,T') and explain why 2! rather than z must be introduced
on the right hand side.

The proof of the following result is left as an exercise (Exercise 1.7.8).



Corollary 1.7A. Let A andT be finite nonempty sets and let G be a finite
group acting on A. For each z € G, let c(z) denote the number of cycles
(including cycles of length 1) which © has in its action on A. Then the

number of orbits of G acting on Fun(AT') is

5 2 I

LTl

ExaMpLE 1.7.1. (Counting Unlabeled Graphs.) How many graphs are
there with n vertices and a single edge? If the vertices are distinguish-
able, or labeled, there are (3) choices for the position of the edge giving
(g‘) distinct graphs. If, on the other hand, the vertices are indistinguishable
or unlabeled then there is only one such graph, an edge and n — 2 iso-
lated vertices. This distinction between labeled and unlabeled graphs has
a dramatic impact on the complexity of counting the graphs on n vertices.

A graph on a set A of n vertices is completely determined by its set & of

T

edges where an edge is a subset of size 2 from A. Since A has (2) subsets

of size 2, there are 2(3) possible choices for ¥; this gives the number of
labeled graphs on n vertices. The corresponding problem of counting the
unlabeled graphs on n vertices is more subtle.

Let A2} denote the set of all subsets of size 2 from A and let T' := {0, 1}.
Then the set of labeled graphs on the vertex set A may be identified with
the set Fun(A{2} ') where ¢ € Fun(A{?} T') corresponds to the graph
whose set of edges consists of the elements of A{?} which ¢ maps onto
1. The symmetric group G := Sym(A) acts on A2} in a natural way
and hence acts on Fun(A{2} T") as described above. Two graphs on A
are indistinguishable as unlabeled graphs precisely when the corresponding
functions lie in the same orbit of G. Thus, if we take A = {1,2,...,n}, then
Corollary 1.7A shows that the number of unlabeled graphs on n vertices is
precisely

i' S oo

n:
z€Sym(A)

where ¢(z) is the number of cycles of z acting on A{2},

FExercises

1.7.8 Prove Corollary 1.7A.

1.7.9 State and prove the corresponding theorem when, as well as the
group G acting on A, we have a group H acting on the set T making
some sets of colours indistinguishable. (For example, in cases where
we are only interested in using the mapping ¢ to partition A, but do
not wish to label the partitions, A will be the full symmetric group
Sym(T)).
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1.7.10 Show that k(k* + 1)(k? + 4)/10 indistinguishable circular necklaces
can be made from five beads if beads of & different colours are avail-
able. Assume that two necklaces are indistinguishable if one can
be obtained from the other using a cyclic permutation or a flip.
Generalize to the case of necklaces with n beads.

1.7.11 Declare two colourings of a cube to be indistinguishable if one can
be obtained from the other by a rotation of the cube. How may
indistinguishable ways are there to colour a cube in k colours? What
is the answer to the corresponding problem if we permit arbitrary
symmetries (including reflections) of the cube?

1.7.12 Let G be a finite group acting on a finite nonempty set €2, and
suppose that G has m orbits: Q1,Qs, ..., Q. The following algo-
rithm can be used to select a random element ¢ from § in such
a way that the probability that o lies in Q; is 1/m (independent
of the orbit). For example, it can be used to choose an unlabeled
graph uniformly at random from the set of all unlabeled graphs on
n vertices.

Step 0: For each conjugacy class C of G, pick an element T, and
compute

- [Cllfix(zc)l

p(C) Tel

Since ) p(C) = 1 by Theorem 1.7A, this gives a probability
distribution defined on the set of conjugacy classes of G.
Clearly p(C) is independent of the choice of z¢, and p(C) =
0 if elements of C have no fixed points.
Step 1: Choose a conjugacy class C according to the probability
distribution given by Step 0.
Step 2: Choose « uniformly at random from fix(z¢).
Show that, for each orbit ; of G, the probability that « lies in
; is equal to 1/m.
1.7.13 Let G be a finite group acting on a set Q of size n, and let f : G — C
be a class function (that is, f(z) = f(y) whenever z and y lie in the
same conjugacy class of (7). Show that for each o € 2 we have:

D f@) lix@)| =n > fy).

el vEG,

(Since [fix(z)| and the constant functions are class functions this
exercise generalizes Exercise 1.7.1.)

1.7.14 Let G be a finite transitive group of order g and degree n. Suppose
the point stabilizers of G have r orbits. Show that the number of
elements of G which fix at least one point lies between g/r and
(n—7r)g/(n—1)+ 1.
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1.8 Some Examples from the Early History of
Permutation Groups

The original development of groups began with the study of permutation
groups, and even before that permutations had arisen in work of Lagrange
in 1770 on the algebraic solution of polynomial equations. By the middle
of the 19th century there was a well-developed theory of groups of per-
mutations due in a large part to Camille Jordan and his book “Iraité
des Substitutions et des Equations Algébriques” (1870) which in turn was
based on the papers left by Evariste Galois in 1832. Again, the primary
motivation of Jordan was what is now called “Galois theory”.

The classical problem in the algebraic study of polynomial equations
was to determine the roots of a polynomial in terms of an algebraic for-
mula involving the coefficients. Early mathematicians sought a formula or
algorithm which constructed these roots explicitly using rational opera-
tions (addition, subtraction, multiplication and division) and extraction of
kth roots. The paradigm for this “solution by radicals” was the familiar
formula for quadratic equations which had been known to the Babyloni-
ans, and by the end of the 16th century similar formulae had been derived
for cubic and quartic equations. Joseph Louis Lagrange in his 1770 paper
also showed how particular polynomials of higher degree had solutions by
radicals, but the question of whether all polynomials of the 5th degree had
solutions of this form remained open until the beginning of the 19th cen-
tury. At that point it was shown by Paolo Ruffini in 1802 and Niels Abel in
1826 that no such general solution could be found. The final achievement of
this period was due to Galois who associated a permutation group to each
polynomial and showed that the structure of the group indicated whether
or not the polynomial could be solved by radicals.

Galois’ results were based on Lagrange’s 1770 paper. In that paper La-
grange had made a thorough analysis of the known algorithms for solving
polynomials of degree up to 4, and showed how they relied in various ways
on finding “resolvent” polynomials. These latter polynomials can be con-
structed effectively from the original polynomials and have the property
that the roots of the original polynomials can be determined from the
roots of the resolvent. To be useful, the resolvent must either be easy to
solve itself, or be amenable to further reduction. In the case of cubic and
quartic polynomials the resolvents are of degrees 2 and 3, respectively, but
Lagrange noted that, for polynomials of degree greater than 4, the degrees
of the resolvents are larger than the degrees of the original polynomials.
The process of constructing resolvents described below is essentially the
method using permutations which Lagrange introduced.

Consider a set of n variables {X,..., X, }. The symmetric group S,
acts on this set by permuting the subscripts, and we can extend this action
of S, to an action on the set of polynomials in the variables in a natural
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way. For example, if z = (12)(34) € Sy and & = X, X5 — X5X4, then
$* = Xo Xy — X1 X3 = —®. The orbit of ® under the full symmetric group
S4 consists of the six polynomials:

Lagrange referred to these six polynomials as the values of . The orbit-
stabilizer property tells us that the stabilizer of @ in Sy has order 4.

Frercises

1.8.1 Find the “values” of the following polynomials in X7, ..., Xs:
(i) X +X2+X3+X4+X5;
(i) Xy
(111) X, +2X, + 3Xs +4X4 + 5X5;
(iv) Hi<j(Xi - X;);
(V) Xl + XQ + 3X3 + 4X4 + 5X5
1.8.2 Show that no polynomial in 5 variables has exactly 3, 4 or 8 values.

In general, let ® be a polynomial in X, ..., X, with k values, () =
®,...,®% ) Then the resolvent is a polynomial in X1, ..., X, and Z given
by

k

.
W2)=1](Z-29) = hi(X1,..., X,) 2",
j=0

=1

Since the ®® form an orbit under Sy, the polynomial A is invariant
under an arbitrary permutation of Xi,...,X,. Thus each polynomial
hij(X1,...,X,) is symmetric in X7,..., X, and so can be written as a
polynomial in the elementary symmetric functions of these variables (the
“symmetric function theorem”). If f(X) is a polynomial of degree n with
roots ri, ..., Ty, then the elementary symmetric functions of these roots
can be expressed in simple terms in the coefficients of f(X). Hence, if we
substitute ry,...,7, for X1,..., X, in the expression for A(Z) we obtain
a polynomial in Z whose coefficients can be effectively calculated from the
coefficients of f(X). Moreover, if ® has been chosen carefully, then it may
happen that we can solve the polynomial h(Z) and be able to compute
the roots r1,...,r, from the roots ‘I>(1)(r1, ), ., B (ri,...,7n)
of h(2).

It was using these methods of resolvents that Ruffini and Abel were
able to give proofs that there is no solution by radicals for equations of
degree greater than 4 (Ruffini’s proof was not complete). The subsidiary
problem of determining what number of values were possible for suitable
polynomials of n variables, and finding such polynomials, continued to play
an important role in the development of permutation groups in the 19th
century.



FEzxercises

1.8.3 If n is a multiple of an odd prime p, show that a polynomial in n
variables has at least p values.

1.8.4 (Solution of the cubic) Let f(X) be a real cubic polynomial with
roots 1, ra, 73, and consider the polynomial

b = (X] + wXs + w2X3)3

where w is a complex cube root of 1 with w # 1. Show:

(1) © lies in an orbit of length 2 under S, say {®, ®*}; and

(i) the roots of f(X) can be calculated from the coefficients of f(X)
and the numbers ®(ry,re,73) and ®*(ry, r2, r3) using rational
operations and extraction of cube roots.

After the work of Ruffini and Abel there remained the question of decid-
ing whether a particular polynomial could be solved using radicals. This
problem was solved — at least in principal — by Galois in 1830. To each
polynomial f(X) with distinct roots 71, . .., r, Galois associated a permu-
tation group on the set of roots (now called the “Galois group” of f(X)),
and the structure of this group determines whether or not f(X) can be
solved by radicals. In modern terms we begin with a field K containing the
coefficients of f(X) and adjoin the roots to obtain a splitting field L. The
field automorphisms of L which fix every element of K form a finite group
G which acts on the set of roots. The permutations of {r1, ..., 7} induced
by the elements of G constitute the Galois group of f(X). Of course Galois
worked without the language of fields and automorphisms so his original
definition has quite a different ring to it.

The relation between the Galois group and the Lagrange resolvent is as
follows. Suppose we can find a polynomial ¢ over KX such that each of the

roots 7; can be written as a polynomial (over K) in ¢t := ®(ry, ..., 7).
In modern terms this means that K(ry,...,7r,) = K(¢). Then for each
z € S, we define t* := ®(rys,...7, ) where ¢/ := 1% for each i. We can

then construct the resolvent (a polynomial of degree n! over K):

9(Z) = H (Z —t%).

€Sy

Now factor g(Z) over K and determine an irreducible factor g;(Z) which
has ¢ as a root. Suppose that G is the Galois group for f(X). Then ¢,(Z)
has degree |G|, and the roots of g;(Z) are precisely ¢* for z € G.

It is interesting to note that permutations were used in the study of
algebraic equations long before there was a clear definition of a group. The
point is that the basic concepts of transitivity, primitivity and closure under
conjugation are meaningful for sets of permutations whether or not these
sets are closed under multiplication.

Many of the basic concepts introduced in this chapter can be traced back
to work of Augustin-Louis Cauchy in the first half of the 19th century.

LY INotes 3

Galois’ work remained unread for many years after his tragic death in 1832
at the age of 21. His seminal papers were eventually published by Joseph
Liouville in 1846, and then in the 1860s Jordan wrote his influential book
which developed Galois’ ideas on permutation groups and fields in a form
which was easily available to his contemporaries. At that point there was
a clear concept of permutation group, a well-developed theory, a rich and
growing supply of examples, and applications of the theory in a number of
different branches of mathematics. Jordan’s name will appear frequently in
the chapters which follow.

1.9 Notes

Many books on general group theory contain useful sections dealing with
basic results from permutation groups, or chapters on special topics in this
area. Books which we have found useful include: Biggs and White (1979),
Burnside (1911), Carmichael (1937), Hall (1957), Huppert (1967), W.R.
Scott (1964), and Tsuzuku (1982). In addition, there are more special-
ized texts which deal with specific topics in permutation groups such as:
Cameron (1990), Huppert and Blackburn (1982b), Neumann et al. (1994),
Passman (1968) and Wielandt (1964). We shall refer to these later.

The earliest text on permutation groups is C. Jordan’s Traité de substi-
tutions et des équations algébraiques [Jordan (1870)] which was reprinted
in 1957 and so is available in many libraries. Another classical book of
more than historic interest, with several chapters on permutation groups,
is Burnside (1911); this has also been reprinted. With a few notable ex-
ceptions, group theory was largely ignored during much of the first half
of this century (Burnside’s contributions to group theory are hardly men-
tioned in his mathematical obituary), but interest was rejuvenated in the
1950s. The Wielandt book (1964) (originally appearing as a set of notes in
German in 1955) presented classical results on finite permutation groups
in modern language as well as Wielandt’s own work. This book has since
remained the standard reference to finite permutation groups; notation in-
troduced by Wielandt is now commonly used, and the book has strongly
influenced the development of the area. Later lecture notes by Wielandt on
infinite permutation groups [Wielandt (1960b)], permutation groups and
invariant relations [Wielandt (1969)] and permutation groups and subnor-
mal subgroups [Wielandt (1971a) and (1971b)] circulated informally, but
were not so widely available. Fortunately, these lecture notes have now been
reprinted in Wielandt (1994).

The material of Chapter 1 is classical, with the exception of some of the
exercises.

» Exercise 1.2.16: There is an extensive literature on the “pancake flipping
problem”. See, for example, Gates and Papadimitriou (1979).
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sect. 1.3 The problem of faithful representations is disc i

ussed in E 7
and Praeger (1988). i Basdomn
Exercise 1.3.6: See Zagier (1990).
Exercise 1.4.11: See Wielandt (1959).

* BExercise 1.4.18: See Shalev (1994).

Exercises 1.5.20-21: See Sheppard and Wiegold (1963), Neumann and
Vaughan-Lee (1977) and Kovacs and Newman (1988) for related work.

* Exercise 1.6.20: See Brauer (1941).
* Theorem 1.7A: The provenance of this result is discussed in Neumann

(1979). Expositions of the generalized version introduced in Pélya (1937)
appear in many books on combinatorics. See also Foulkes (1963), Read
(1968), and Kerber (1986). 1963) R
Exercise 1.7.2: Using the classification of finite simple groups, it has been
shown that each nontrivial finite transitive group contains a fixed point
free ellement of prime power order [see Fein et al (1981)]
Exercise 1.7.12: See Dixon and Wilf (1983).

Exercise 1.7.14: See Cameron and Cohen (1992).
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Examples and Constructions

In order to understand the development of a subject it is helpful to have
available a wide range of examples. The aim of the present chapter is to pro-
vide such examples and to give some general constructions of permutation
groups which we shall use in later chapters.

2.1 Actions on k-tuples and Subsets

We begin with some easy constructions which allow us to generate new
examples of group actions from old ones. Let G be a group acting on a set
Q, and let QF (k > 1) denote the k-th cartesian power of . Then G acts on
QF in a natural way, namely: (o, ..., ag)* = (a2, ..., af) for allz € G.
Moreover, the subset of Q¥ consisting of k-tuples of distinct points is clearly
G-invariant for every choice of G and k; we shall denote this subset by Q).

Note that when 2 is finite with || = n, we have ‘Q(’“)[ =nl/(n — k)L

EXAMPLE 2.1.1. Consider the action of Sy on Q® where Q := {1, 2, 3, 4}.
This action has degree 4!/2! = 12. In the corresponding representation the
only nontrivial elements of Sy which fix a point in Q2 are the 2-cycles.
For example, using the notation a8 to denote an element (o, §) € Q2 we
have

(12) — (12,21)(13, 23)(31, 32)(14, 24)(41, 42).

If G is a group acting on a set 2 and k is an integer with 1 < k£ < |,
then we say G is k-transitive if G is transitive on Q*). We say that G is
highly transitive if £ is infinite and G is k-transitive for all integers & > 1.

FExercises

2.1.1 If G is a group acting on {2, show that G is transitive if and only if G
is I-transitive. Moreover, if & > 1, show that G is (k — 1)-transitive
whenever G is k-transitive.

22



2.1.2 If G is a finite k-transitive group of degree n, show that |G| is divisible
by n(n —1)...(n —k+1).

2.1.3 Show that G acts k-transitively on (0 (where & < [Q]) <= G is
(k — 1)-transitive and, for any (k — 1)-subset A C , the group G(a)
acts transitively on Q2 \ A.

2.1.4 Show that Sym(Q) is k-transitive for all positive integers & < |Q]. If
G < S, , show that G is (n — 2)-transitive <= A4, < G.

2.1.5 Show that Al¢(Q) is highly transitive whenever 2 is infinite.

2.1.6 Suppose G is k-transitive for some k£ > 2, and N is a nontrivial
normal subgroup of G. Show that IV is (k—1)-transitive. In particular,
if G is highly transitive, then so is V.

It is interesting to observe that finite multiply transitive groups arose
very early in the history of permutation groups. In particular, Evariste
Galois constructed a family of 3-transitive groups in 1830 (see Sect. 2.8). In
1861-1873 Emile Mathieu discovered a series of multiply transitive groups
which are now named after him, including 5-transitive groups of degrees 12
and 24; we shall describe these in Chap. 6. Mathieu’s remarkable groups
are now known to be quite exceptional, and their discovery led to what has
turned out to be a dead-end in permutation groups — the study of finite
multiply transitive groups of high transitivity. In fact the classification of
finite simple groups shows that except for the Mathieu groups (and the
trivial examples of A4, and S,) no finite permutation groups are more
than 3-transitive. We shall not prove this, but we shall prove some slightly
weaker results in the chapters to follow. For an infinite class of finite 3-
transitive groups see Sect. 2.8. In contrast to the finite case there seems to
be a rich class of highly transitive groups of infinite degree. See Chap. 7 for
more details on multiply transitive groups and Chap. 9 for further infinite
examples.

A second kind of easily constructed action of G is its action on the set of
all subsets of @ via I'* := {¥* | v € I'} for each I' C Q and z € G. Again
it is easy to see that all subsets of a given size constitute a G-invariant
set in this action. We shall use the notation Q{*} to denote the set of all
k-subsets (that is, subsets of size k) of Q for k = 1,2,.... If  is finite of
size m, then [QF}| = (7) for 1 < k < n. A group G acting on a set Q2 is
called k-homogeneous if it is transitive on the set Q¥ (1 < k < Q). We
call G highly homogeneous if §2 is infinite and G is k-homogeneous for each
integer k£ > 1. A few results on k-homogeneous groups are presented here;
a more complete discussion is deferred to Sect. 9.5.

Clearly k-transitive implies k-homogeneous; we can be a little more pre-
cise. If A = {61,...,6;} is a k-subset of 2, then the stabilizer of the
“point” A in the action of G on Q*} is the setwise stabilizer Giay- The
pointwise stabilizer G is the stabilizer of the “point” (8, ..., k) in the
action of G on Q). As we saw in Sect. 1.6, the representation of Giay
associated with its action on A defines a homomorphism z — z2 of Giay

- D e e see s waspos wt sl GECEL I UL RILLEILUD o

into Sym(A) = S with kernel Ga) , and so the factor group Gyay}/Ga,
is isomorphic to a subgroup of Si. See Sect. 9.5 for further discussion of
homogeneous groups.

ExaMpPLE 2.1.2. Consider the action of S, on 02 where @ =
{1,2,...,n} and n > 3. Since S, is n-transitive on (2, this action is tran-
sitive. Consider the stabilizer H in S, of the subset {1,2} € 02} The
group H has 3 orbits consisting of {1,2}; {1, a}, {2, a} for all o #* 1,2;
and {a, B} for all o, B 5 1,2. These orbits have lengths 1,2(n — 2) and
(n — 2)(n — 3)/2, respectively. Now any nontrivial block for the action of
S, on Q2! which contains the point {1,2} must also contain one of the
other orbits of H (see Exercise 1.5.9). However, a simple argument shows
that for n # 4 such a block must also contain the other orbit (see Exercise
2.1.8), and so the action of S, on Q2 s primitive. By the orbit-stabilizer
property, H is a subgroup of index n(n — 1)/2 in S, and H is maximal by
Corollary 1.5A.

Fzercises

2.1.7 In the example above show that 2(n — 2) + 1 < (n — 2)(n - 3)/2
for n > 8, and that the left hand side never divides the right hand
side in this range. Deduce that, except in the case n = 4, any block
which contains two of the orbits of H must also coutain the third.
Hence show G acts primitively on Q2 for all n > 3 except n = 4.

2.1.8 For which values of n is the action of S, on Q3! primitive?

2.1.9 If G acts on a set 2 of size n, show that G is k-homogeneous <= G
is (n — k)-homogeneous.

2.1.10 Show that if G is a 2-homogeneous group of degree > 2 then G is
primitive. Give an example where G is not 2-transitive.

2.1.11 Suppose that G is a 2-homogeneous subgroup of S, with n > 3.
Show that a point stabilizer of G has at most three orbits, and that
G is 2-transitive if G’ has even order.

2.2 Automorphism Groups of Algebraic Structures

Permutation groups frequently arise “in nature” as groups of permutations
of various kinds of mathematical objects which preserve the underlying
structure of the object in a suitable sense. We mentioned some geometrical
examples in Chap. 1, and now turn to some classes of algebraic structures.

ExAMPLE 2.2.1. (Automorphisms of common algebraic structures). Let G
be a group and consider the set of all permutations z of G which preserve
the group operation in the sense that

(ab)® = a®b® foralla,bc G
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(the product of the images equals the image of the product). This set is
obviously a subgroup of Sym(G) and is denoted by Aut(G); its elements
are called automorphisms (or more specifically group automorphisms) of G.
Similarly, if V' is a vector space over some field ', then the automorphisms
of V are the permutations z of V' which preserve the vector space operations
on V in the sense that

(u+v)®* =u®+2v* and (Au)® = ”

for all u,v € V, and A € F. In this case the term “invertible linear trans-
formation” is commonly used in place of “automorphism” and the group
Aut(V) of all automorphisms is usually denoted by GL(V'), the general lin-
ear group on V. Another example of this type is the automorphism group
of a ring R with unity 1; this consists of all permutations = of R which pre-
serve both addition and multiplication in R and also map the distinguished
element 1 onto itself:

(a+b)" =a® +0b%, (ab)” =a"b® and 17 =1

for all a,b € R. In general, when a group acts on an algebraic structure,
we shall say that the action preserves the structure if the elements of the
group act as automorphisms.

EXAMPLE 2.2.2. Let K be a normal subgroup of the group G and consider
the conjugation action of G on K given by u* := z 7 uz (v € K,z € G);
the kernel is the centralizer C(K). This action preserves the group struc-
ture of K, and so the image of the corresponding representation lies in
Aut(K). Hence by the “first isomorphism theorem” G/Cg(K) is isomor-
phic to a subgroup of Aut(K). In the particular case where K = G then
Ca(@) = Z(G), the centre of G, and the automorphisms induced by con-
jugation by elements of G are called inner automorphisms. Thus the group
Ton(G) of inner automorphisms of G is isomorphic to G/Z(G).

Ezercises

2.2.1 If a group G acts on an algebraic structure A (such as a group, vector
space or a ring) so as to preserve the structure, and T is any subset
of G, show that fix(T) is a substructure of A (such as a subgroup,
subspace or subring).

2.2.2 If (z) is a finite cyclic group of order n show that

Aut((z)) = {ox | 1 <k <mand GCD(k,n) =1}

where oy, : z° — 2 for each 4. What is the automorphism group in
the case that (z) is infinite? [Note: GCD(k, n) denotes the greatest
common divisor of k£ and n.]
2.2.3 Let R := Z/nZ be the ring of integers modulo n. Calculate Aut(R).
2.2.4 Show that for each of the rings Z, Q@ and R the automorphism group
is trivial, but the automorphism group of C is not. [Hint: f o, J € R,
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then o < 8 < a + & = (3 for some ¢ € R; use this to show that
each automorphism of R preserves the ordering of R. In the case of C
it can be shown that Aut(C) is uncountably infinite, but this is quite
difficult.]

2.2.5 If G is a finite p-group which acts on another finite p-group H #1
preserving the group structure, show that fix(G) # 1. In particular,
if G is a finite p-group acts on a finite-dimensional vector space V
over a finite field of characteristic p, then there exists v # 0 in V
which is fixed by every € G.

EXAMPLE 2.2.3. (Automorphisms of ordered sets) If {2 is a set with a
partial (or total) ordering <, then the order-automorphisms of (2, <) are

the permutations z of {2 which preserve the ordering in the sense:
a* < = a<lp

for all a, B € Q. We shall denote the group of all order-automorphisms of
(2, <) by Aut(Q, <),

Ezercises

2.2.6 If (Q, <) is a finite totally ordered set, show that Aut(€, <) is trivial.

2.2.7 Show that Aut(Z, <) (with the usual ordering) is an infinite cyclic
group. What is Aut(Z,| ) in the case that | is the partial ordering
defined by: m | n <= m divides n?

2.2.8 Show that G := Aut(Q, <) (with the usual ordering) is a highly
homogeneous subgroup of Sym(Q), but G is not 2-transitive. Prove
that Gy = G x G for each a € Q. (See also Exercise 7.1.2.)

2.2.9 (For those who know some topology) Let T be a topological space.
We define a permutation f of the underlying set of T' to be an au-
tomorphism of T if it preserves the topology of T in the sense that
whenever U is a subset of T

Ul is open <= U is open.
Show that f is an automorphism <= fis a homeomorphism

(that is, a bijection of T' onto itself such that both f and f~* are
continuous).

2.3 Graphs

Graphs come in two principal types: directed graphs and nondirected
graphs. We shall refer to directed graphs as digraphs and use the term graph
to refer to nondirected graphs. The following is a list of formal definitions.

A digraph G is a pair (V, E) of sets V (of vertices or “nodes”) and E (of
edges) where E C V' x V; the digraph G is said to be finite if V' is finite,



and otherwise is infinite. An edge (o, 8) € FE is said to join o to 8, and
B is adjacent to a; note that edges of the form («, o} are permitted. The
out-degree of a is the number of vertices # which are adjacent to «, and
the in-degree of « is the number of vertices £ to which « is adjacent. If a
and  are vertices of a digraph G, then a directed path in G from o to 5 of
length d is a list of d + 1 vertices

060206,041,-..,04(1:,6

such that (a;-1,a;) € E for i = 1,...,d. If we only assume that either
(ai—1, ;) or (e, ;1) lies in E, then the path is called undirected. The
path is called simple if the vertices o, a1, ..., aq are distinct with the
possible exception that cg may equal agq. A circuitin G is a path of length
d > 1 in which the first and last vertices are equal: ag = .

A graph is a digraph with no edges of the form (a, o) and with the
property that (a, ) € E implies (8,a) € E. In a graph the in-degree
and out-degree of a given vertex are equal and are referred to as the de-
gree. A graph is connected if for all a, 8 € V there is a path from « to
B. (In a graph we clearly do not have to distinguish between directed and
nondirected paths, but for digraphs there are two corresponding notions:
strongly connected and weakly connected. See Sect. 3.2). A tree is a con-
nected graph with no simple circuits of length greater than 2 (no graph has
a circuit of length 1, but every edge (c, ) gives rise to a circuit @, 8, @ of
length 2).

It is often convenient to use simple diagrams to represent graphs: vertices
are represented as points, and edges are represented by lines joining the
points. In the case of a digraph which is not a graph, an edge (¢, 3) is
represented by a line with an arrow from the point representing o to the
point representing .

Ezercises

2.3.1 If G is a connected graph with uncountably many vertices, show that
at least one vertex has infinite degree.

232 If ¢ = (V, E) is a finite connected graph, show that |V| < |E| + 1,
and that equality holds exactly when G is a tree.

Now suppose that G is a group acting on the vertex set V of a digraph
G = (V, E). Then we can define an action of G on V x V by (a,8)* =
(a®, 8%) for all (o, 8) € V x V and £ € G. We shall say that G preserves
the adjacency structure of G if % = E for all z € G (and so G also acts on
Eif E # (). The set of all permutations of V which preserve the adjacency
structure of G forms a group called the automorphism group of G; it is
denoted by Aut(G).

Ezercises

2.3.3 Show that the automorphism group of the graph in Fig. 2.1(a) has
order 20. Is its action on the vertex set primitive? [Hint: First show

234

2.3.5

2.3.6

2.3.7
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FIGURE 2.1.

that the automorphism group is transitive on the vertex set and
then examine the stabilizer of a point.|

The graph in Fig. 2.1(b), known as the Petersen graph, has many
interesting properties. Show that its automorphism group A has
order 120 and that A acts primitively on the set of vertices. Show
that the stabilizer of a vertex has 3 orbits, of lengths 1, 3 and 6,
respectively. Is the action of 4 on the set of edges primitive?
Consider the automorphism group of the graph in Fig. 2.2. What
can you say about the actions of this group on the set of 14 vertices
and on the set of 21 edges?

Consider the digraph with vertex set Z and edge set {(i,i+1) | 7 €
7}. Is the automorphism group primitive?

Let n > 3. Consider the graph G whose vertex set V' is the set of
all 2-cycles (af) in Sy, and where two distinct vertices are adjacent
exactly when they commute. Show that Aut(G) is a primitive but

13 4
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FIGURE 2.2.
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FIGURE 2.3. The Cayley graph for the free group on generators s, t.

not 2-transitive group on V if n 4, and = i
n > 2. [Hint: Compare with Exam;éle 2.1.2] that Aulg) = o
2.3.8 Is the graph constructed in the previous exercise for n = §
isomorphic to the Petersen graph [Fig. 2.1(b)]? -
2.3.9 1f 7 is a finite tree, show that either Aut(7) fixes some vertex o
or there is an edge (3, v) such that each = ¢ Aut(7) fixes (3, v) 01’~
[ maps (&, ) onto its reverse (v, B). 7
2.3.10 Lgt G be a group and R be a subset of G. Consider the graph
with vertex set G whose edge set consists of all pairs (a, ra) (apE
G, € RUR™Y: we call this the Cayley graph and deI)lote it by
Cayley(G, R). Fig. 2.3 displays a fragment of a particular Cayley
graph. Prove that Cayley(G, R) is connected <«— R generates G
iigw thfatG Autgs(']ayl(eg(G, R)) contains the right regular represen—'
ion o n Sym(G). Sketch =
o (123)}:/' ) Cayley(G, R) where G = Sy and
2.3.11 Let R be a subset of a group G and suppose that R N R~1 — )

Show that Cayley(G, R) is a tree j
, <= G is a free gro i
a set of free generators for G. sroup and fis

2.4 Relations

Yiou will be familiar With a variety of relations, such as: congruence mod-
u‘z m on the set Z; linear dependence between & vectors in R™; a partial
ordering such as containment (C) on the set of subsets of a fixed set; and
)

numerous others. We can describe all such relations set-theoretically in a
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rather bland way as follows. For each integer » > 1, an r-ary relation on a
set 2 is asubset A € Q" where Q" = Q2 x .. x  (r times). Strictly speaking,
the relations just defined are finitary relations. It is also possible to define
infinitary relations in an analogous way, but in what follows “relation” will
always refer to the finitary relations defined above. Tt is common to use
the terms unary, binary and ternary to refer to the cases 1-ary, 2-ary and
3-ary, respectively.

ExaMPLE 2.4.1. The usual ordering on R is a binary relation given by
A= {(e,f) € R? | a < ).

EXAMPLE 2.4.2. The relation “linearly dependent for & vectors” on a vec-
tor space V is a k-ary relation given by a set which consists simply of
k-tuples of linearly dependent vectors.

EXAMPLE 2.4.3. If ¢ : I' —  is a function “in k variables” from a subset
T C QF into 2, then there is a canonical (k + 1)-ary relation (the “graph”
of ¢) associated with ¢, namely,

{(al)' - ,aka¢(a17' s )ak)> i (ala’ ' '7a}€) € F}
Clearly this relation completely defines ¢ (including its domain I" ). Do not

confuse this meaning of “graph” with the graphs considered in the previous
section.

EXAMPLE 2.4.4. A special case of the last relation is where ¢ is the binary
operation on a group G; the associated ternary relation on G is

{(x.y,2y) | z,y € G}.
‘We also have the binary relation
{(m1m—l) ‘ T & G}

corresponding to inversion, and the unary relation {1} which specifies the
identity of the group.

FExercise

2.4.1 Specify all the operations in a vector space V over a field F in terms
of relations on V. [Hint: To express scalar multiplication you will
need one relation for each scalar.]

We can use relations to define permutation groups. Let R be a set of
relations on a nonempty set . Now Sym(f) acts (componentwise) on QF
for each k, so we can consider the set G of all permutations of {2 which
map each of the relations in R onto itself. It is easily seen that G is a
subgroup of Sym(§2); G is called the group of R-preserving permutations
of Q, or the automorphism group of the relational structure (Q; R), and is



denoted by Aut(Q; R). For instance, in Example 2.2.3 and Exercises 2.2.7
and 2.2.8 we looked at the automorphism groups of various order relations.
The automorphism group of a graph is just the automorphism group of a
relational structure on the set of vertices where we have a single binary
relation p with (o, 8) € p <= {o, (3} is an edge. Similarly a group &
preserves various operations on (2 if it preserves the associated relations; for
an algebraic structure such as a group, the permutations of the underlying
set which preserve the relations are the usual automorphisms discussed in
Qect. 2.2. There is a more detailed discussion of relational structures in
Sect. 9.5 and 9.6.

EXAMPLE 2.4.5. Let H be a group, and let I' be the ternary relation on H
associated with the group operation (see Example 2.4.4). If G is the group
of permutations of H which preserve I', then

z €@ = zc Sym(H)andI* =T.

However I'® = T implies that (u®,v®, (uwv)*) € I for all u,v € H, and
so u*v® = (uwv)® for all u,v € H. Hence each z € G is an automorphism
of the group H. The converse is easy to verify, and so G consists of exactly
the group automorphisms of H.

Ezxercise

2.4.2 The Fano plane F is represented in Fig. 2.4. The plane consists of
seven “points” (labelled 1 to 7 in the figure) and seven “lines” each
of which is a triple of points (in the diagram these correspond to the
triples which lie on straight lines and the triple {2,4, 6} on the circle).
Three points are collinear if they lie on the same line. The automor-
phism group Aut(F) of the Fano plane consists of all permutations
of the points which preserve the relation of collinearity. Find a set of
generators for Aut(F) and show that |[Aut(7)| = 168. Is the action

FIGURE 2.4. The Fano plane

et el bty “ted

of Aut(F) on the set of points equivalent to its action on the set of
lines?

Conversely, if a group G acts on a set §2, each of its orbits on QF defines
a relation preserved by G. Thus every permutation group is contained in
the automorphism group of a relational structure; in general it is not the
full automorphism group of this structure. A subgroup G of Sym(Q) is
called closed if it is the automorphism group of some set of relations on £2;
and it is called k-closed (k = 1,2,...) if it is the automorphism group of
some set of k-ary relations. In many situations these groups possess useful
properties which are not shared by all permutation groups.

Exercises

2.4.3 1If  is finite, show that every subgroup of Sym(Q) is closed.

2.4.4 Describe all 1-closed permutation groups.

2.4.5 Let G be a subgroup of Sym(£2) and let Gy denote the intersection
of all 2-closed subgroups of Sym(2) which contain G (we call the
subgroup Gy the 2-closure of G). Show that Gq is a subgroup of
Sym(Q) and that:

(i) if G is finite then so is Gy;
(i) U each element in & has finite odd ovder, then so does cach
element of Gg;
(iil) if G is abelian, then so is Go;
(iv) if G is a p-group, then so is Gy.

2.4.6 If G is a closed subgroup of Sym(Q) and H < @, show that the cen-
tralizer Co(H) is closed, but that, in general, the normalizer Ng(H)
is not closed. Is N (H) closed when H is closed?

The idea of closure defined above can be related to a topological con-
struction as follows. Consider the symmetric group S := Sym(N). Let S(¢)
denote the pointwise stabilizer of the set {0,1,...,4 — 1} for¢=0,1,....
We define the distance d(z, y) between two distinct permutations z,y in S
to be 27% where k is the greatest integer such that zy~! and yz~' both lie
in S(k) and we put d(z, z) = 0.

Ezercises

2.4.7 Show that for all z,y,z € S:
(i) dlz,y) =0 <= z=y;
(i) d(z,y) = d(y, z);
(il) d(z,y) < max{d(z, z), d(y, z)}.

Thus (5, d) is a metric space; indeed, (iii) is a strong form of the
triangle inequality and shows that we have an wltrametric. Show
that the functions (z,y) — zy and z + 2! are continuous, with
respect to this metric, on S x S and S, respectively.

2.4.8 Show that any Cauchy convergent sequence in (.59, d) converges, and
so (S, d) is a complete metric space.
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2.4.9 Shoyv tbat a.SL1bgr<.)up G of Sym(N) is closed in the sense described
earlier in this section if and only if it is closed as a subset of the

metric space (5, d).

2.4.10 (F01 those who know some topology.) Let S := Sym(Q) for an
arbitrary set Q, and consider the topology on S obtained by taking

as a basis of open sets all sets of the form zS Ay NS Ay

A a finite subset of ). When Q = N, shov(vAchat E0?1)15 i(swtlelei::rllcel
topology as that induced by the metric in Exercise 2.4.7, and prove
that the analogues of Exercises 2.4.7 and 2.4.9 hold in %he general
case. (If Q is uncountably infinite, then it can be shown that the
topology on this space is not induced by any metric.)

2.5 Semidirect Products

The wre.ath product constructions which we shall consider in the next
two sections are of fundamental importance in the study of permutation
groups. However, to understand those constructions we must first look at
the simpler construction of semidirect products.

Tlle notion of a semidirect product of two groups generalizes the idea, of
a dyect product. Let H and K be groups and suppose that we have an
action of H on K which respects the group structure on K so for each
x € H the mapping w + u® is an automorphism of K. Put )

G={(v,2) |ue K z¢c H)}
and define a product on @ by

(,2) (v, ) = (w® ", zy)
for all (u,z), (v,y) € G.

Ezercise

2.5.1 Check that this product is associative, and hence show that G is

a group under this operation with identity element (1,1) and with
(w,2) 7 = ()L, o) |
It is readily seen that G contains subgroups H* := {(1,z) | z ¢ H} and
K* == {(u,1) | u € K} which are isomorphic to H anci K, respectivel
and that G = K*H* and K* N H* = 1. Moreover, K* is nor7ma1 in G an}(fi’
the way that H* acts on K™ by conjugation reflects the original action of

H on K, namely,
(L2) ™ (u, 1)(1,2) = (u*, 1)
forallz € H and u € K.

We call G the semidirect product of K by H and shall use the notation

K % H to denote G. Of course the semidirect product depends implicitly

e
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on the action of H on K even though the action is not specified in the
notation. Clearly |G| = |H| |K]|.

Ezercises N

2.5.2 Show that the direct product K x H is a particular case of the
semidirect product.

2.5.3 Suppose that G is a group and K and H are subgroups with K «
G, G = KH and KN H = 1. Show that G is isomorphic to K x H
where the implied action of H on K is the conjugation action in G.
(G is called a split extension of K by H, so every split extension is
isomorphic to a corresponding semidirect product.)

2.5.4 Let G be a split extension of a subgroup H and normal subgroup
K. Consider the action of G (by right multiplication) on the set of
right cosets of H. Show that the image of K in this representation is
a regular permutation group.

2.5.5 Suppose that G < Sym(Q) and let o € . If G has a regular normal
subgroup K, show that G is a split extension of K and G,. (The
natural action of G, on 2 is equivalent to the conjugation action of
Gq on K by Exercise 1.6.16.)

2.5.6 Let K be a regular subgroup of Sym(f2), and let C' and N, respec-
tively, denote the centralizer and normalizer of K in Sym(Q) (N is
called the holomorph of K). Show that C is a regular subgroup iso-
morphic to K and that N/C = Aut(K). (In principle, one way in
which we could compute the automorphism group is to construct the
regular representation of the group in question and then apply this
result. In practice, this does not seem to be very useful.)

2.5.7 Calculate the holomorphs for the cyclic group of order 4, for the
noncyclic group of order 4 and for Ss.

2.5.8 Let G < Sym() have a regular normal subgroup R and let a € Q.
Show that G is primitive <= no proper nontrivial subgroup of R
is normalized by G,.

2.5.9 Let K be a nonabelian group and put G = K x K. Consider the
action of G on K given by u(®¥ := z7luy (u € K, (z,y) € G).
Show that the normal subgroups K x 1 and 1 x K both act regularly,
and that the action of G is primitive exactly when K is simple.

2.6 Wreath Products and Imprimitive Groups

The notion of a wreath product arises very naturally in the study of
imprimitive groups. For example, let & be a partition of a set £ into equal-
sized subsets. Then the group G of automorphisms of ¥ consists of all
z € Sym(Q) with the property that if A C () then

AeY «= A*c T
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Clearly, G also acts on . If we define B to be the kernel of this latter
action, then it is easy to see that B is isomorphic to the direct product
of [E] copies of Sym(A) where A € I, and that G & B x Sym(Z)
where Sym(X) acts on B by permuting the components of the elements
of B in a natural way. This gives a fairly simple description of G. More
generally, if H is an imprimitive group which has ¥ as a system of blocks,
then H < G, and so H will also decompose, although the details of the
decomposition are generally much more complicated for H than those for
G. The wreath product constriiction which we now consider is a refinement
of the construction we have just made for G.

If T and A are nonempty sets then we write Fun(I*, A) to denote the set
of all functions from I" into A. In the case that K is a group, we can turn
Fun(T, K) into a group by defining a product “pointwise”:

(fg)(v) :== f(v)g(y) forall f,g € Fun(T', K) and vy € T

where the product on the right is in K. In the case that I' is finite of
size m, say I’ = {71,...,¥m}, then the group Fun(T', K) is isomorphic
to K™ (a direct product of m copies of K) via the isomorphism f
(FOr)s s FCm))-

Let K and H be groups and suppose H acts on the nonempty set I
Then the wreath product of K by H with respect to this action is defined
to be the semidirect product Fun(T', K') » H where H acts on the group
Fun(T', K) via

F2(y) = f(4*7) forall f € Fun(l,K),y € T and z € H.
We denote this group by K wrr H, and call the subgroup
B:={(f,1) | f € Fun(T, K)} = Fun(T, K)

the base group of the wreath product.
Again, it is helpful to look at the case where I' is finite, say I' =
{1,2,...,m}. In this case we can identify the base group B with the direct

product K x ... x K (m factors), and the action of H on B corresponds
to permuting the components:
= 1 ... m
(1, ..oy um)® = (W1ry ... Upy) whenz = (1, m’)

for all (u,...,un) € B and z € H. Clearly, |K wrr H| = |[K|™ |H|.

FEzercises

2.6.1 Verify that the definition of f* does give an action of H on Fun(T', K)
which respects the group structure. (Why has it been necessary to
introduce z 7! into the definition rather than z7)

2.6.2 Let G < Sym(Q) be an imprimitive group and let & = {I'; | ¢ € I}
be a system of blocks for G. Let H denote the kernel of the action
of G on %, and let K be the subgroup of Sym(§) consisting of all

2.6. Wreath Products and Imprimitive Groups 17

z € Sym(Q) such that 'Y € T for each 4 € I. Show that K ==
Sym(T) wry Sym(I) where || = T for each ¢ € I, and so G can
be embedded in Sym(T') wr; Sym(I) in such a way that A consists
of the set of elements of G which are mapped into the base group.

263 If G < Sym(Q) is an imprimitive subgroup which is maximal
in the sense that it is not contained in any larger imprimitive
group, show that G is isomorphic to a wreath product of the form
Sym(T") wry Sym(I) where G has a system of blocks indexed by [
and each block has size |T'|.

2.6.4 Show that the group G considered in the preceding exercise is actually
a maximal subgroup of Sym(€2) in the case () is finite and |/| and |I'|
are at least 2. Is this also true when 2 is infinite?

In the special case of a wreath product where the group H acts regularly
on itself, we write K wr H in place of K wrg H; this is called the stan-
dard wreath product. This particular wreath product has a useful property
described in the following theorem.

Theorem 2.6A (Universal embedding theorem). Let G be an arbitrary
group with a normal subgroup N, and put K := G/N. Then there is an
embedding ¢ : G — N wr K such that ¢ maps N onto Im ¢ N B where B
is the base group of N wr K. (Thus N wr K contains an isomorphic copy
of every extension G of N by K.)

PrROOF. Let 9 : G — K be a homomorphism of G onto K with kernel V.
Let T := {t,, | u € K} be a set of right coset representatives of N in G
such that ¢(t,) = u for each v € K. If ¢ € G, then ¢(t,z) = Yt )p(z) =
wp(z) and so tul/‘t;:,)(x) € N. Thus for each € G we can define a function
f: K — N by

folu) = tuztyy ., forallu € K
and put

¢(z) = (fz,%(z)) € N wr K.

We claim that this defines an embedding ¢ of G into N wr K with the
required properties.
First, ¢ is a homomorphism. Indeed, if z,y € G, then

$(2)p(y) = (fo£,Y @ ¥(zy))

because 1 is a homomorphism. On the other hand, for all u € K, we have

f.’cjt,.l(u)tuﬂ)(my) - tu-T»Z/ = {fu:(u).émj:(u:)}:I/
= fo(w) £y (u(2))tuy 2)w(y)
= f.’E (u’)fyw(m)—] (u>t'u.-l,b(.7;y)

=
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and so fg, = f, y( " Hence

$2)3() = (fay, Y(zy)) = P(zy)

zs(;)equirfd. S(ejcond, ker ¢ 1: 1 because o(z) =1 implies that f, = 1 and
= 1, and so z = ¢; Jo(Dt1y) = 1. Finall ies in T
Y(z) = 1, and this happens exactly (W)hen x € N.  ola) s in B Wheé

Ezercise

6 5 Suppoie that G 1S an Xtensmn of a normal Subgroup N b a group
, an that LY can b mbedded it1
K 75 d vV ca e e as a trar sitive Subgroup in
S’ym(A) ShOW that G can be embedded as an imprimitive SubUI‘OLllp
=]

Exorc:

impr‘i‘j;?gjz zrgf an% 5.6.5 shoxiv how wreath products arise in the study of
Ps. Lhey can also be used t o . ’

Properties as we now show. 0 construct groups with specific

Consider the wreath
product G := K wrpr H. If K
we can define an action of G on A x I' by ekson v set 4, then

o) ~f u g
(6, 7)) = SR ) forall (§,7) e AxT
where (f, u) € Fun(T, K) % H =K wr H.

Ezercises

Tar o T . X
2.6.6 \Le11f5 that t.hlb 15 an action of G on A x I, and that it is faithf 1
2.6.7 1?:>' the action of K on A is [aithiul. J e
.6. rove the associativity pr s
Lo Y property: if we also have g group L acting on

(Kwrr HY wrpy L ~ K wrrxa (H wry L)

with the appropriate action of & wra LonT x A

BX A 2.6 The

o \rL:/“leV.L 2() L. (The Sylow p-subgroups of a fnite Symmetric group)
: ,JE [Annt Py and let‘C’ be a cyclic group of order p acting regularly on
}1,3 se of size p: Define recursively: P, = (0 acting on A: a;d Py =
ua; L :wfiAdeaCtlflg on A™ for m > 2. Thus P, has order ’p“(m) V\:?ﬁer;
s fnn ]/:I,(In,) = p,u(hm = 1) + 1; so simple induction shows that
L (p—m ) é)N ; ) /( (ﬁ ~) )1) Since P,, acts faithfully on A™ this shows that

) = Oym(A™)) contain i i is |

wreath o B s a subgroup 1somorphic to this iterated

On the other hand. s : ;
g and, suppose tha : S ra ) .
the base p: bp at 18 a positive integer, and write n to

n= oy :
=N+ mp+ ..+ m‘.pl‘ where 0 < n,; <« p for each 3
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Then it follows from Exercise 2.6.8 below that the Sylow p-subgroups of
Sy, have order p*(™ where
v(n) =m +nz(p® —1)/(p— 1) + ... + (" = 1)/(p — 1).

Thus we can construct a Sylow p-subgroup for S,, as follows. Partition
the set {1,2,...,n} into ng subsets of size 1, n; subsets of size p, ..., ng
subsets of size p®. For each of the subsets of size p™ (m = 1,...,k) apply
the iterated wreath product construction above to obtain a subgroup of
order p#(™) in S, whose support is this subset of size p™. Then the direct
product of all the subgroups obtained in this way is a group of order p”

where
h=> nnp(m) =Y nn@E™ -1)/(p—1) = v(n)

and so we have a Sylow p-subgroup of S,.
‘We illustrate this construction in the case where n = 15 and p = 3. Since

n = 2-3+ 132 we partition the points into the subsets {1, 2, 3}, {4, 5,6}
and {7,8,...,15}. For the first two of these subsets we can construct sub-

groups of order 3, for example, ((1 2 3)) and {(4 5 6)). For the last set we
construct a wreath product of a group of order 3 by a group of order 3, for

example, the split extension

{((789),(10 11 12), (13 14 15))((7 10 13)(8 11 14)(9 12 15))
which has order 3%. Since these three subgroups have mutually disjoint
supports, the subgroup which they generate is their direct product. It is a
Sylow 3-subgroup (of order 35) for Sis.

Ezercises
2.6.8 Let n be a positive integer and p a prime. Suppose that

n=n0+n1p+...+nkpk where 0 < n; < p for each 4.
Show that the largest power of p which divides n! is (") where

k 2 k

~|n (p* — 1) (p* - 1) n

vin) = — | =n1+Ne — +...t+ng < .
") é[pJ T ) -1 p-1

2.6.9 Construct a Sylow 2-subgroup for Si4.

2.6.10 Show that the iterated wreath product P, defined above can be

generated by m elements.

2.7 Primitive Wreath Products

The construction in the previous section showed how wreath products arise
as imprimitive groups. Wreath products also play an important role in the
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study of primitive permutation groups. They will be central to our work in
Chap. 4.

We first outline the general idea. Let H and K be groups acting on sets
T" and A, respectively. Then Fun(I', K) is isomorphic to the direct product
of |T'| copies of K and as such acts in a natural way on the Cartesian
product  of |I'| copies of A. We also have H acting on {2 in a natural
way (by permuting the components). These two actions can be combined
to give an action of K wrr H = Fun(T, K) x H on {2, but we have to
be careful to make the two actions compatible. As we shall see, the action
is primitive under certain mild conditions. The details of the construction
are as follows.

Put Q := Fun(T', A) and W := K wrr H = Fun(T', K) x H; we want
to define an action of W on Q. For each ¢ € Q and each (f,z) € W we
define ¢*) by putting

¢(f,2)(7) = qﬁ(ryz_l)f(”r ) for each v € T.

Clearly ¢V = ¢, and (£, z)(g,y) = (f¢* , zy) in W. Thus to prove that

we have an action it remains to show that ¢(/®)(@¥) = $(f9" =) for all
¢ € Qand all (f,z),(g,y) € W. However, on one hand, we have

¢(f,m)(9,y) (v*Y) = ¢(f.$)(7$)9(7":) = d)(y)f(“*)g("'m)

while on the other
ST ) (o) Z 4 F 8 () 2 gy f0l)

and so replacing v by v(my)_l gives the required identity. This action of
K wrp H on Q is called the product action of the wreath product.

It is easily verified that the product action of W := K wrp H is faithful
exactly when the given actions of H and K are both faithful. The degree
1Q| of W equals |A|'"™!; this is clear if A and T' are finite, and it can also
be proved in the infinite cases. The next lemma gives a simple criterion for
this action to be primitive. Recall that a group K is both primitive and
regular only when K is a cyclic group of prime order.

Lemma 2.7TA. Suppose that H and K are nontrivial groups acting on the
sets I' and A, respectively. Then the wreath product W = K wrp H is
primitive in the product action on Q := Fun(I', A) if and only if:
(i) K acts primitively but not regularly on A; and
(ii) T is finite and H acts transitively on T.
PRroOF. Let B be the base group of W and put

Hy:={(1,z) e W |z € H}

so W is the split extension BHy. Fix § € A, and define ¢5 € Q by ¢s(7) :=
6 for all v. Then

L:={(f,z) € W | f(7) € Ks for all 7}

SeietnHuItve vwrealh Froducts Ol

is t.he st.ab'il.izer. in W of the point ¢s. It follows from Corollary 1.5A that
W is primitive if and only if W is transitive and [ is a maximal subgrou
of W. SO

Wg ﬁrst prove the necessity of conditions (i) and (ii). First, if H is not
transitive and ¥ is an orbit of H in I', then

M = {(f1) e B| J(v) € K5 forally e =}

is a. subgrou.p .Of B which is normalized by H, and L < M Hy < W: thus
W is not primitive. On the other hand, if I" is infinite, and we define

By :={(f,1) e B | f has finite support on I

'then BQ < Wand L < LBy < W, so W is not primitive. Similarly, if K is
Intransitive with an orbit IT then

{(fiz) € W[ f(v) € K5 forally e 1)

is a spbgroup of W lying strictly between L and W, and so again W is not
primitive. In the case where K is transitive but imprimitive there exists R
such that K5 < R < K, and then the subgroup

{(fiz) e W | fOy) € R for al) v}

lies strictly between Z and W. Finally, in the case where K is recular the
subgroup )

D={f1) € B|f(7) = f(+') forally,v'}

}s norma.lized by Hy and then L < DHy < W. Thus in all these cases W
1s not primitive. This proves the necessity of couditions (i) and (i1). »

.C()_llyersely, suppose that (i) and (ii) hold; we want to show that W is
primitive. Clearly B, and hence W, is transitive. Thus it is enough to show
that L < M < W implies that M = W. Since W = BHy = BL we
have M. = (M N B)L. Therefore M N B > [, M B and so, for some
there exists (£, 1) € M N B with f(v0) € Ks. Since K is primitive and not,
regular, K5 = Ny (Kj5) (see Exercise 2.7.1) and so for some u € K we have
f0o) " uf(10) & Ks. Define g € Fun(T, H) by 9(%) = wand g(y) := 1
for all v # 5. Then A = [f, 9] € ML where h(v0) = [f(v) ul € KK;
and h(y) = 1 for all ¥ # ,. Since K is primitive, K is maxi;nal and so
K = (Ks, h(v)); therefore M contains the subgroup ’

B(v) ={(f,1) e B [ f(v) =1 forall v # Yol

However, i‘t is readily seen that (1, z)B(v)(1,z)"! = B(vp). Since Hy <
M and 'H 1s transitive on I" we conclude that B (7) < Lforally € T. Since
I is finite we conclude that .

B=][B(v <M

~yerl
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and so M = BHy = W as required. This shows that conditions (i) and (ii)
are also sufficient. 0O

Erercises

2.7.1 Show that a primitive group G is not regular if and only if a point
stabilizer G, equals its normalizer Ne(Gy).

2.7.2 Find (up to equivalence) all primitive representations of S3 wr Sy.
Note that not all of them are of the form described in Lemma 2.7A.

2.7.3 Let H < Sym(T') and K < Sym(A) where A is finite, and consider
the product action of G := H wra K on Q := Fun(T", A). Suppose
that  has m orbits on T. Show that G has 715' > serx M) orbits
on {2 where x(z) denotes the number of cycles of z. (See also BExercise
1.7.9.)

2.8 Affine and Projective Groups

The affine and projective groups constitute two interrelated infinite families
of permutation groups. The groups arise naturally from affine and projec-
tive geometries and can also be defined algebraically. Since the geometry
does not enter strongly into the smallest members of each family we shall
begin with an algebraic introduction to these 1-dimensional groups.

If the underlying set on which we are acting is a field, then sets of per-
mutations of certain natural types form subgroups of the symmetric group.
Historically, these examples of permutation groups arose quite early in the
subject; the first examples were given by Evariste Galois in 1830.

Let F be a field. Then it is straightforward to verify that the set A of all
permutations of F of the form

tap 1§ = 2+ (o, € F and a # 0)

constitutes a subgroup of Sym(F) (check this!) which is called the 1-
dimensional affine group over F and is denoted by AGL,(F). In the special
case where F' is a fiuite field of order ¢, say, we have |AGL, (F)| = qlg—-1).
In this case, the notation AGL;(q) is often used in place of AGL;(F); there
Is no real ambiguity since all finite fields of the same order are isomorphic
(see for example Lang (1993) Chap. V, Sect. 5).

FEzercises

2.8.1 Verify the claims made above for AGL{(F). Show that the set of
translations t15 (8 € F) forms a transitive normal abelian subgroup
T of AGL\(F), and that AGL,(F) is a split extension of T by an
abelian subgroup. Show that AGL, (F) itself is 2-transitive.

2.8.2 We may generalize the construction of AGL{(F) by replacing the
field F' by a general (possibly noncommutative) ring R with unity.

e
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We define AGL,(R) to consist of all permutations of Sym(R) of the
form & — af + [ with o, 8 € R where « is a unit in R. What results
from the previous exercise remain valid for AGL1(R)?

We now adjoin a new element (which we shall denote by co ) to F' to
obtain a set  := F U {oo} , and identify Sym(F) with the stabilizer f)f
oo in Sym(2). Then we can define a transitive extension G of AGL,(F) in
Sym () in the sense that G is transitive on  and G, = AGL1(F). The
group G consists of all fractional linear mappings of the form

tagys i € agi? with o, 8,7,6 € Fand ad — 0y # 0
7

with the convention that tngys(c0) = ay™! and tapgys(—6771) = .

FEzxercises

2.8.3 Show that with these rules for dealing with oo the fractional linear
mappings are well-defined permutations of 2.

2.8.4 Show that G is indeed a transitive subgroup of Sym(Q) with G =
AGL1(F), and Gooo = T (the group of translations). Conclude.tbat
G is 3-transitive and that the stabilizer of every three points is trivial.

2.8.5 What is the order of G when F is a finite field of order ¢7

2.8.6 If F is a finite field and ~ is a primitive element for F', show that
AGL, (F) = <t11, t70> and G = <t11, ty0, t0110>. (Recall that every fi-
nite field has a primitive element, namely, an element which generates
the multiplicative group of nonzero elements of F'; see for example
Lang (1993) Chap. V, Sect. 5.)

2.8.7 Show that the mapping

{g g} = taﬁ”ré
defines a homomorphism of the general linear group G.Ly(F) onto
G whose kernel Z consists of the scalar matrices (@ = § # 0 and
B =~ =0). Hence G = GLy(F)/Z. (The latter group is called the
projective general linear group of degree 2 over F' and is denoted by
PGLy(F).

2.8.8 The g2r(c>u2))PGL2(F) has a normal subgroup PSLQ(F)' =SLy(F)Z/Z
(the projective special linear group) where SLo(F) is the group Qf
all matrices in GLo(F) with determinant 1. For which ﬁeld.s is it
true that PGLy(F) = PSLo(F)? (The groups PSLy(F), which are
sometimes denoted Lo (F), are especially interesting because they are
nonabelian simple groups except for the cases where |F'| = 2 or 3.)

2.8.9 Define A to be the set of all permutations of F of the form £ —
&% where o € Aut(F), the group of all fleld automorphisms of F'.
Show that A is a subgroup of Sym(F) isomorphic to Aut(F) which
normalizes both AGL; (F') and G, and that the subgroups AGL, (F)A



and GA are both split extensions. (In the case when F' is finite of
characteristic p and order p*, it is known that Aut(F') is a cyclic group
of order k generated by the “Frobenius automorphism” § + &7, see
for example Lang (1993) Chap. V, Sect. 5.)

The higher dimensional affine and projective groups are automorphism
groups of affine and projective geometries. The affine geometry AGd(Fc)i
consists of points and affine subspaces constructed from the vector space F
of row vectors of dimension d over the field F. The points of the geometry
are simply the vectors of F'¢. The affine subspaces are the translates of the
vector subspaces of F¢. Thus if S is a k-dimensional subspace of F'¢ then

S+pB:={a+p|laecsS}

is an affine subspace of dimension k for every 8 € F¢. Of course, if
B € (S + B) then S+ = S + p. For example, AG,(R) consists of all
points of R? together with the straight lines in R? as affine subspaces. What
we have done, in fact, is neglect all metric considerations from R? and re-
tain only the incidence structure, that is, the information concerning which
points are on which lines. An automorphism of the affine space AG4(F)
is a permutation of the set of points which maps cach affine subspace to
an affine subspace (of the same dimension). In other words, an affine au-
tomorphism is a permutation of the points that preserves, or respects, the
affine geometry.

An affine transformation is an affine automorphism of an especially sim-
ple form. For each linear transformation a € GLy4(F) and vector v € Fe
we define the affine transformation t, , : F¢ — F¢ by

taw U ua + .

Each of these mappings t,, is an automorphism of the affine geometry
AG4(F). The set of all t,,, (a € GLg(F), v € F?) forms the affine group
AGL4(F) of dimension d > 1 over F. It is easy to verify that AGLy(F)isa
9-transitive subgroup of Sym(F<¢). The group AGL4(F") is a split extension
of a regular normal subgroup 7', consisting of the translations ¢y » (v e F),
by a subgroup isomorphic to GLa(F).

Purther affine automorphisms are derived from the automorphisms of the
field F. For each field automorphism ¢ € Aut(F) there is a permutation of
F4 defined by t, : u — u° where o acts componentwise on the vector u.
The mappings t, (¢ € Aut(F)) form a subgroup of Sym(F?) isomorphic
to Aut(F). This subgroup together with AGL4(F) generates the group
AT Lg(F) of affine semilinear transformations. The elements of ATLg(F)
are precisely the permutations of F' of the form:

tawe st u’a+v

where a € GLg(F), v € F4, and ¢ € Aut(F). When d > 2, it turns
out that the group Al Lg(F) is the full automorphism group of the affine
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geometry AG4(F) (see Exercises 2.8.10 and 2.8.12 below). In the cases
where Aut(F) = 1 (for example if |F| is a prime or if F = R or Q), we
have AT'Lq(F) = AGL4(F).

Frercises

2.8.10 Let S be a k-dimensional affine subspace in F¢. Show that S% is an
affine subspace of dimension k for each z € AT L4(F).

2.8.11 An affine basis for AG4(F) isaset B = {ap,...,aq} of d+1 points
with the property that B is not contained in any (d — 1)-dimensional
affine subspace. Show that the affine group AGL4(F') acts regularly
on the set of affine bases of AG4(F).

2.8.12 Let d > 2 and let € Sym(F?), so that z is a permutation of the
points of AG4(F). Suppose that there is an integer k with 1 < k <
d, such that, for every k-dimensional affine subspace S of F'¢, the
image S® is an affine subspace of dimension k.

(i) Show that for every ¢ with 1 < ¢ < d, z maps every {-
dimensional affine subspace of F'¢ onto an ¢-dimensional affine
subspace.

(if) Show that for some a and v the permutation t, . fixes the ori-
gin and the d standard basis vectors (1,...,0),---,(0,...,1).

(i) Show that the permutation zt, , of part (ii) equals ¢, for some
o € Aut(F). Deduce that z € AT Ly(F). (Note: this last part
is somewhat more involved than the others. See Snapper and
Troyer (1989) Prop. 84.1.)

The group AGL4(F') has several important classes of subgroups. A
typical element t,, € AGL4(F) is defined by a linear transformation
a € GL4(F) and a vector v. By insisting that the determinant of a be
1 we get the affine special linear group:

ASLy(F) i= {ta, € AGL4(F) | deta = 1}.

Thus ASL4(F) contains the translations 7" as a regular normal subgroup
and the stabilizer of a point is isomorphic to the special linear group
SL4(F). If d > 2 then ASL4(F) acts 2-transitively on the set of points
of AG4(F").

Another family of subgroups of the affine group is determined by the
subfields of F'. Let K be a subfield of F' with finite index & = [F : K].
Then F is a k-dimensional vector space over K. Thus every F-vector space
is also a K-vector space and any F-linear transformation is also K-linear.
Specifically this means that F¢ is isomorphic to K*? as a K-vector space
and that GLg(F) is isomorphic to a subgroup of GLy4(K). The trans-

Jation group of an affine space is isomorphic to the additive group of the

underlying vector space. Thus the identification of F'¢ and K*? as K-vector
spaces leads to an identification of the translation groups on AG4(F) and
AGq(K). Therefore points of the affine spaces AG4(F') and AGq(K) can
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be identified in such a way that the group AGL4(F) is identified with a
subgroup of the affine group AGLyq(K). In the finite case, AGL,,(q) con-
tains a subgroup isomorphic to AGL,(¢®) whenever m = rs. In particular,
the general linear group GL.,(q) contains a subgroup isomorphic to the
group GL1(g™) which is just the (cyclic) multiplicitive group of a finite
field. These subgroups are explored further in Exercises 4.6.6 and 4.6.7.

The finite affine groups AGLg4(gq) occupy an important position in the
classification of finite primitive groups. As we shall see in Chap. 4, if G
is a finite primitive group containing a regular normal abelian subgroup,
then G is a subgroup of an affine group, and the regular normal subgroup
of GG acts as translations of the affine space. For example, if G is primitive
and solvable, then it is of this form. Sect. 4.6 is devoted to the study of
primitive groups with an abelian regular normal subgroup.

Ezercises

2.8.13 Suppose that F' is a field and that d > 2. Show that:
(i) ASL4(F) is 2-transitive on the set of points of AG4(F).
(i1) ASL4(2) = AGL4(2) is 3-transitive on the set of points of
AG4(2).

2.8.14 Show that for any d > 1 and any field F', the affine group AGLy4(F)
contains a sharply 2-transitive subgroup (that is, a subgroup H
which is 2-transitive and such that H,g = 1 for any two points
o, B).

2.8.15 Calculate the orders and indices and sketch the subgroup lattice for
subgroups of the form AGL,,(F) (with F' a field of characteristic
p) that are contained in the group AGL,2(p) for an odd prime p.
Add to your lattice the groups ASL,,(F) and ATL,,(F) that are
contained in the group AGL12(p).

The projective general linear group PGL4(F') and projective special linear
group PSLy4(F) of dimension d over a fleld F' are defined to be the quo-
tient groups GL(F)/Z and SLq(F)Z/Z, respectively, where Z consists of
all scalar matrices ol in GL4(F). When d = 2, the group PGL4(F) is
isomorphic to the group of linear fractional mappings (see Exercise 2.8.7).
These definitions specify the projective groups as abstract groups but do
not indicate a natural permutation action. For d > 3 such a natural action
for the groups PG L4(F) is provided by the projective geometry PG4_1(F)
of dimension d — 1 over the field F' which we describe below. We construct
this geometry by using the linear action of the general linear group GL4(F).

The group GLy(F) acts on the set F'¢ of row vectors by right multiplica-
tion and has two orbits, namely {0}, and the set 2 = F¢\ {0} of nonzero
vectors. Its action on  is not primitive. There is a system A of blocks, for
GLy(F), where two vectors of €2 lie in the same block if and only if each is
a scalar multiple of the other. A typical block in A consists of all nonzero
scalar multiples of a given vector in €2; we shall call this block a (projec-
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tive) “point”, and we shall use [a1, ..., ag) to denote the point contaiging
the nonzero vector (a, ..., aq). We define A to be the set of the points
of the projective geometry PGg—1(F). Since A is a system of blocks for
GL4(F), the general linear group has a permutation action on the set of
projective points. The kernel of this action is the group of scalars Z, and
so the image of the action on A is GLa(F)/Z = PGLa(F). Thus PGLy4(F)
acts faithfully as a permutation group on A.

Define A := {[a1, ..., aq) € A | ag = 0} (the set of “points at infinity™).
Then the setwise stabilizer Ga) consists of the images of those elements
in GLy4(F) having block matrix form

{a, O] where a € GLg-1(F),v € F* ' and a € F with o # 0.
voa

If we identify the vectors in ¢~ with points in PG4-1(F") via the mapping
(a1, -y a-1) — o, .- @d-1, 1]

then it may be verified that the setwise stabilizer Gyay in its action on
A\ A is permutation isomorphic to the affine group AGLq_1(F) acting
on the set of points of AG4—1(F). Morover, the action induced by Gay
on A is equivalent to the action of PGLg_1(F) on the the set of points of
projective space PGq—a(F).

Exercises

2.8.16 Verify the statements of the preceding paragraph. N

2.8.17 If d > 2, show that PGLg(F) is 2-transitive but not 3-transitive on
the set of projective points points A.

9.8.18 Describe a typical element of the pointwise stabilizer G(ay of the
set A of points at infinity. Describe the action of this group on the
complement of A.

So far we have specified the points of the projective geometry PGy_1(F)
as the 1-dimensional vector subspaces of F 4 To complete the geometry we
define the projective subspaces to be the nonzero vector subspaces of Fd If
T is a vector subspace of F'¢, then X contains the 1-dimensionalo subspace
spanned by any of its elements so 3. determines a set of ‘projectlve pomt.s
(by containment). The projective dimension of a projective subspace % is
defined to be one less than its vector space dimension.

Consider, for example, the lowest dimension subspaces. Let II denote the
set of 2-dimensional subspaces of F®. Then the elements of II determine
lines in our geometry (note how we have dropped down a dimension)l. A
point P € PGy_1(F) lies on a line £ € 11 when P C £, and a set of points
is said to be “collinear” if the points are all on the same line. The automor-
phism group Aut(PGg_1(F)) of this geometry is the group of permutatiogs
of the points of PGy_1(F) which preserve the relation of collinearity. This
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automorphism group acts in a natural way on the set II of lines and also
on the set of k-dimensional subspaces for any k.

In the action of GL4(F) described above it is clear that each element
of GLy(F) induces an automorphism of PGy_1(F'), and so PGLd(F? is
embedded in Aut(PG4_1(F)). It is also clear that any field automorphism
o of F' induces an automorphism of PG4_;(F') via

[a1a~"1ad] — [airﬂﬁag}

The group generated by these two types of automorphisms is called the
projective semilinear group and is denoted PT'L4(F'). One can show that
PTLy4(F) is the full automorphism group of PG4_;(F) for d > 3 (see for
example Artin (1988) Theorem 2.26 or Samuel (1988) Theorem 7).

Ezercises

2.8.19 A set of d + 1 points in PGy (F) is a basis if no subset of d of
the points is contained in a projective subspace of dimension d — 2.
Show that the group PGL4(F') acts regularly on the set of bases of
PGg4-1. (This is one modern form of the “Fundamental Theorem of
Projective Geometry”.)

2.8.20 Let z be a permutation of the set of points of PG4(F). If z preserves
collinearity, show it must also map each projective subspace to a
projective subspace of the same dimension. .

2.8.21 Show that SL4(F) acts transitively on the set II of projective lines
and also on the set of all triangles (that is, triples of non-collinear
points) in PG4_1(F) (for d > 3). In particular the group PSLg4(F)
is 2-transitive on the points of PG4_1(F").

2.8.22 Show how to identify the Fano plane (Exercise 2.4.2) with PG2(2).
Hence show that the automorphism group of the Fano plane is
isomorphic to PGL3(2) = PSL3(2).

2.8.23 Suppose that F'is a finite field of order q.

(i) Show that PG4_1(q) has (¢* — 1)/(g — 1) points.

(ii) Show that PG4_;(g) has |TI| = (¢%~1)(¢% 1 ~1)/(¢*—~1)(¢—1)
lines.

(iii) Deduce that PGL3(q) has two subgroups of index ¢ + ¢ + 1
which are not conjugate. .

2.8.24 Consider the projective plane PGo(F). Show that any two points
lie on a unique line and any two lines intersect in a unique point.
In particular, the theory of projective planes lacks any concept of

parallel lines.

2.9 The Transitive Groups of Degree at Most 7

In the preceding sections we have discussed a variety of constructions for
permutation groups. We shall now apply these ideas to give a census of
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transitive groups of small degrees up to permutation isomorphism. In cach
case we leave aside the alternating and symmetric groups of the given degree
as “improper” groups.

There are no proper transitive subgroups ol S,, for 7 < 3, aud for n = 4
it is a simple exercise to show that up to permutation isomorphism (that is,
conjugacy in S,) there are only three: the cyclic group ((1234)), the non-
cyclic group ((12)(34), (13)(24)) and the Sylow 2-subgroup ((1234), (13)).
In discussing the case n = 5 we shall find the following lemma useful.

Lemma 2.9A. Lein > 5. IfG < S, and G # Ay or Sy, then|S,, : G| >
n.

PrOOF. The proof depends on a result which we shall prove in Chap. 3 (see
Corollary 3.3A) namely, that when n > 5 the only normal subgroups of S,
are 1, A, and S,,. Now, Example 1.3.4 shows that there is a representation
of Sy, as a transitive group of degree d := |Sn + G| acting on the set of right
cosets of G in S,,, and that the kernel of the representation is contained
in G. Since G does not contain A, we conclude that the representation
Is faithful, and so S, is isomorphic to a subgroup of S;. Hence d > n as
asserted. O

Now consider a “proper” transitive subgroup G of Ss. Then the index of
a point stabilizer of G in G is 5, so |G| = 5k for some integer k. By Lemma
2.9A, 5k < 120/5 and so k < 4. Thus by the Sylow theorems (sec Exercise
1.4.13) we conclude that there is a unique (normal) Sylow 5-subgroup P of
G of order 5. Without loss in generality we may take P = ((12345)). Tt is
now easy to show that the normalizer of P in S5 is N := (P, (2354)) which
has order 20, and so there are just three possible choices for G (of orders
5,10 and 20, respectively).

FEzercises

2.9.1 Check that every proper transitive subgroup of Sy is conjugate to one
of the three groups listed above.

2.9.2 Show that the normalizer N of the cyclic subgroup C' := {(12...7n))
in Sy, is a split extension of C' by

H:={ur €S, |1<k<nand GCD(k,n) = 1}

where uy @ i — ki mod n. (GCD(k, n) denotes the greatest common
divisor of k and n.)

2.9.3 Verify that each proper transitive subgroup of S5 is conjugate to one
of the three groups just described.

We now turn to the transitive groups of degree 6. In this case the enumer-
ation is considerably more challenging since up to permutation isomorphism
there are 14 proper transitive groups of this degree (given in Table 2.1) in
addition to the two improper groups Ag and Sg. We shall describe each of

REt

s



e

s

%
e

Loonainples and constrietions

TaBLE 2.1. The Proper Transitive Groups of Degrees 4, 5, 6

and 7

Order Description Generators
Degree 4
T4.1 4 Cy (1234)
T4.2 4 Oy x Cy (12)(34), (13)(24)
T4.3 8 OQ wro CQ (1234), (12)
Degree 5
T5.1 5 Cs (12345)
T5.2 10  ASLy(5) (12345), (25)(34)
T5.3 20 AGL4(5) (12345), (2354)
Degree 6
T6.1 6 Cs (123456)
T6.2 6 Ss (12)(34)(56), (135)(246)
T6.3 12 Dis (123456), (16)(25)(34)
T6.4 48 Sy wrz Ss (123)(456), (12)(45)(14)
T6.5 24 AgnNT6.4 (123)(456), (12)(45), (14)(25)
T6.6 24 Sy (123)(456), (1542)
T6.7 12 AgN'T6.6 (123)(456), (14)(25)
T6.9 72 Sswry Cy (123), (12), (14)(25)(36)
T6.10 36 AgNT6.9 (123), (1542)(36)
T6.11 36 3222 (123), (12)(45), (14)(25)(36)
T6.12 18 Cs5wrg Cy (123), (14)(25)(36)
T6.13 120 PGLy(5) (01234), (0co)(14)(1243)
T6.14 60  PSLy(5) (01234), (000)(14)
Degree 7
T7.1 7 Cy (1234567)
T7.2 14 C7 -2 (1234567), (27)(36)(45)
T7.3 21 ASLy(7) (1234567), (235)(476)
T7.4 42 AGLA(7) (1234567), (243756)
T7.5 168 PGL3(2) (1234567), (23)(47)

these groups and then at the end give some indication how to check that
we have a full list.

First of all there are the regular groups. These correspond to the regular
representations of the groups of order 6, so there are two of them: a cyclic
group and a group isomorphic to S3 (T6.1 and T6.2 in the table). Next there
is a variety of groups which we can obtain by the constructions described
earlier in this chapter.

Since the binomial coefficient (3) = 6, the action of S; on 2-sets has
degree 6 (see Example 2.1.2). Relabelling the points gives an imprimitive
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subgroup of order 24 in S5 (T6.6). It can be seen that this group has
blocks of size 2, and its action on a system of these blocks is like the
symmetric group of degree 3. The even permutations in the subgroup T6.6
form another transitive group T6.7 of order 12.

Transitive groups of degree 6 also arise as automorphism groups of suf-
ficiently symmetric structures, in particular, of suitable graphs. In order
that the automorphism group of a graph should be transitive (on the set of
vertices) it is certainly necessary for each vertex to have the same degree.
It can be verified that the automorphism groups of each of the graphs in
Fig. 2.5 is indeed transitive.

Ezercise

2.9.4 Show that these are the only graphs with six vertices and transitive
automorphism groups in which each vertex has degree 1 or 2. Ex-
plain why, for our purposes, it is enough to look at graphs where the
common degree of the vertices is at most half the number of vertices.

In the case of the first graph we find that the automorphism group is
the dihedral group (z,y) of order 12 where z = (123456),y = (16)(25)(34)
and y~lzy = z~! (T6.3); it contains T6.1 and has blocks both of size 2
and size 3. The automorphism group of the second graph is generated by
(123)(456), (12)(45) and (14) (T6.4). The stabilizer of 1 is easily seen to
be of order 8 and so the group has order 6 - 8 = 48 by the orbit-stabilizer
property. The sets {1,4},{2,5} and {3, 6} form a system of blocks and
since | Sy wrsy S3| = 236 = 48 (with the natural action of S3), we conclude
that T6.4 is permutation isomorphic to Sz wrs S3 (see Exercise 2.6.2).
The even permutations in the group T6.4 constitute a proper transitive
subgroup T6.5. The group T6.4 also contains another transitive subgroup,
T6.8, of order 2% - 3 = 24 obtained by replacing the group Ss in Sy wrs S3
by its cyclic subgroup of order 3; T6.8 can be generated by (123)(456) and
(14).

(a) (b) ()

FIGURE 2.5.
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Ezercise

2.9.5 All the groups T6.5, T6.6 and T6.8 are imprimitive groups of order
24 and degree 6 with blocks of size 2. However, show that they are

not permutation isomorphic.

The automorphism group of the third graph is generated by (123),
(12) and (14)(25)(36), and can be seen to be permutation isomorphic
to Sy wry Sp with the natural action of Sy (T6.9). It therefore has or-
der 62 - 2 = 72. Moreover, group T6.9 has two nonisomorphic transitive
subgroups of index 2 and order 36, namely, the group T6.10 of all even per-
musations in T6.9, and the group T6.11 generated by the elements (123),
(12)(45) and (14)(25)(36). The latter subgroup also contains a transitive
subgroup T6.12 generated by (123) and (14)(25)(36) which is isomorphic
to a subgroup of the wreath product S3 wry So where Sy is replaced by a
cyclic group of order 3. This latter group is also the automorphism group of
the digraph obtained by modifying the graph so that each of the triangles
is a directed cycle.

The remaining proper transitive groups of degree 6 are primitive groups,
namely the projective linear groups PGL2(5) and PSLy(5) of orders 120
and 60 respectively (see Sect. 2.8). These groups appear as T6.13 and T6.14
in the table, and in terms of their natural symbols 0,1,2,3,4 and oo these
groups can be generated by the functions: £ +— £+ 1,& +— 1/€ and £ — 2¢;
and £ — §' +1,& — 1/€ and £ — —¢, respectively.

This completes the list of the 14 proper transitive groups of degree 6.
We shall not prove that these are indeed the only groups, but in Exercise
2.9.8 we shall give an indication how one might try to do this. While this
case study is an illuminating exercise, it should be realized that degree 6 is
too small to be generic, and the list is rather atypical. For example, in our
list the largest imprimitive group T6.9 is small compared with primitive
group T6.13. As we shall see later (Chap. 5), this can only happen for
small degrees; for larger degrees, the proper primitive groups have very

small orders compared to the largest imprimitive groups.

Table 2.1 also lists the five proper transitive groups of degree 7. These
are simpler to obtain and are left as an exercise.

Ezercises

2.9.6 Identify the transitive groups from the table which are isomorphic
to the images of the following actions of the symmetry group G of
the cube:

(i) The action of G on the set of six faces of the cube;
(ii) The action of G on the set of six pairs of opposite edges (this
action is not faithful);
(ili) The action of the subgroup of the rotations in G on the faces.
2.9.7 Identify the following transitive groups among those in the table:
(i) The automorphism group of the graph in Fig. 2.6.

Z.1U. Notes LS

FIGURE 2.6.

(i) The permutation group induced by the symmetry group of the
icosahedron on the set of six pairs of opposite vertices.
2.9.8 Let G be a proper transitive subgroup of Ss. Prove:
(i) If G contains a 5-cycle, then G is 2-transitive and has order 60
or 120;
(ii) If G contains a 3-cycle but no 9-cycle, then the support of the
3-cycle is a block for G,
(iii) If G contains no 3- or 9-cycle, then its point stabilizer is a
2-group and G has a block of size 2.
(This exercise is a first step in showing that the groups in our
_table‘ form a complete list. In particular, it shows that either @
1s primitive of order 60 or 120, or G is imprimitive. In the latter
case GG is permutation isomorphic to a subgroup of S3 wry Sy or
of Sy wry S3, 50 this case requires an analysis of the transitive
subgroups of these latter groups.)
2.9.9 ?rove that PSLy(5) = Ag. [Hint: Find a permutation representa-
tion of degree 5 of the former group. |
2.9.10 Show that PGLy(5) 2 Ss.
2.9.11 Verify that Table 2.1 gives all the proper transitive permutation
groups of degree 7.

2.10 Notes

¢ Exercise 2.2.8: A lot is known about automorphism groups ol ordered
sets; see, for example, Droste (1985) and references there. For related
results see Lauchli and Neumann (1988).

* Exercise 2.3.10: Cayley graphs were introduced as “colour graphs” by A
Cayley in 1878: see Burnside (1911) §304 for further historical details .

° Exercise 2.3.11: See Sect. 9.2 for related results. .

® Exerc.ise 2.4.5: See Wielandst (1969). See also Liebeck et al. (1988b)

* Exercises 2.4.7-10: See Maurer (1955) and Karrass and Solitar (1956)
Combpleteness of (S, d) as a metric space permits use of the Baire category;
theorem; see, for example, Cameron (1990) Sect. 2.4 and Dixon (1990)

® Se(-:ts‘ 2.6 and 2.7: Various forms of the wreath product construction a,r;e
quite old, going back at least to G. Frobenius at the end of the 19th
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century (as groups of “monomial i
trices”). Th
; ; ial ma € Name appears to h
n;e;g}lfn;crrlog;cic;%y Cj\ Pélya in the 1930s and became stalildard (Zerx?:’ie
S. A general wreath product constructi .
143 ) - » 7 tl
n.complzte product”) was introduced in a series of papers C{)f}l, (LcalIl(eiotf'e
ine and M. Krasner around 1948; see below for specific refi : ’
also P. Hall (1962). e See
: gheorem 2.6A: See Kaloujnine and Krasner (1948).
Siﬁiflfoigj u Cit.ee Kaloujnine (1948); P.M. Neumann informs us that a
lon appears i
e B oons ey D I a paper of Cauchy. For related results,
® (Ij;zmmﬂa 2.TA: Part of t.he “folk-lore”, and stated without proof in
N I‘I}lvelclc’l (lQ?la). According to P.M. Neumann, a special case was proved
y W. lanning at the beginning of this century.
o gxerase 2.7.3: See Seager (1988).
¢ wect. 2.8: For general reference to
: the affine and project;
. gor example, Artin (1957) or Snapper and Troyer ?199/’ 1?. e gronps see,
ect. 2.9: At the end of the 19th century many papers were published

él;élél% o]errl 30Q trzlmsiltive groups of degree 12. See also Burnside (1911)
which mistakenly includes some i
66 (3 . groups of degree 8 whic}
primitive). More reliable lists of primit; : (sivine
primitive and transitive ivi
generators and structural information) I oo, 1 St
Stane (1970) imuioict : 1ave appeared since, including
groups of degree < 20), Butler and MecK
I - o a 1
g?ll;s;m\ffe; groupls of d}fgree < 11), and Short’ (1992) (solvable p};u(mgt?fg
ol degree less than 256). Although these Ij
or Royle (1087, o1 g e lists have been extended
: e, Ro f)]; they soon become quite unwield t
?lancg, the libraries of primitive and transitive groups in they C(Srrzl;itz};
a:gebra systems MAGMA and GAP now provide the most reliable and

extensive sources. In Appendix B i
. we . o
roups of degree < Lok glve a summary list of the brimitive
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The Action of a Permutation
Group

3.1 Introduction

The next three chapters are primarily devoted to studying primitive groups.
Primitive groups play an important role as building blocks, particularly in
the study of finite permutation groups. Frequently, we can carry out a series
of reductions: from the general case to the transitive case by examining the
action of the group on its orbits and its point stabilizers, and then from the
transitive imprimitive case to the primitive case by studying the action of
the group on sets of blocks and the block stabilizers. Eventually, at least for
finite permutation groups, this reduces the original question to one about
primitive groups. Of course, this is rarely the whole problem; generally we
must then retrace the process, fitting the information back together as we
reconstruct the original group, and often this is very complicated. Still, the
crux of many problems in finite permutation groups lies in the study of the
primitive case.

A large part of this chapter develops combinatorial methods to study
the action of the point stabilizer of a transitive group, methods which
are especially effective for primitive groups. In Chap. 4 we apply more
direct group theoretic methods which enable us to describe the subgroup
structure of finite primitive groups in greater detail. These latter methods
have turned out to be very powerful when combined with the classification
of finite simple groups. In Chap. 5, combinatorial techniques are used to
give bounds on the orders of primitive groups.

Any subgroup of Sym(§) which contains Al¢(2) is primitive (provided
| > 2), but such a subgroup is quite atypical as a primitive group; we
call such subgroups improper primitive groups. The remaining primitive
subgroups of Sym(1) are called proper, and it is these in which we are
interested. Typically, as we shall see in Theorem 3.3B and Chap. 5, the
proper primitive groups have very small orders compared with the order of
the symmetric group. They are also quite rare. As Table 3.1 suggests, the
number P(n) of proper permutation groups of degree n (up to permutation
isomorphism) grows slowly and irregularly. Indeed, it is a consequence of the
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TaBLE 3.1. Number of Proper Primitive Groups of Degree n

n= 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Pln)= 3 2 559 7 6 4 7 2 4 208 2 6 2

classification of finite simple groups that there are infinitely many values of
n (namely, n = 3,4, 34, 39,486, .. .) for which P(n) = 0; for these degrees,
only the alternating and symmetric groups are primitive [see Cameron et
al. (1982)]. A complete list of primitive groups of degree less than 1000 is
given in Appendix B.

The following example is a typical illustration of the relative sizes of the
intransitive, imprimitive and proper primitive subgroups of the symmetric
group (see Sect. 5.2). In Sig, the largest intransitive subgroup has index
16, and the next largest has index 120. On the other hand, the largest im-
primitive subgroup of Si¢ has index 6435, and the largest proper primitive
subgroup has index 64864800.

Ezercise

3.1.1 Construct the subgroups of Sig referred to in the last paragraph.
[Hint: The first two are stabilizers of a point and of a 2-element
subset. The largest imprimitive subgroup has blocks of size 8, and
the primitive subgroup is permutation isomorphic to AGLy(4).]

3.2 Orbits of the Stabilizer

As we saw earlier (see Sect. 2.3), graphs and digraphs can often be used to
define interesting groups. As a first step in our analysis of primitive groups
we shall show how an arbitrary transitive permutation group can be seen
to act as a group of automorphisms of a digraph.

Throughout this section G will denote a group acting transitively on a
set . For such a group we can construct a natural family of digraphs on
which G acts (preserving the incidence structures). We begin with the usual
action of G on the cartesian product £2 x Q. The orbits of G on this set are
called the orbitals of G on ). The least interesting of these is the orbital
Ay = {(o, @) | @ € Q}; the other orbitals are called . For each orbital A
there is an orbital, denoted A*, where («, 3) € A* if and only (3, ) € A.
Clearly, (A*)* = A. An orbital is self-paired if A* = A; for example, the
diagonal orbital is self-paired.

Now for each orbital A of G we define the digraph Graph(A) with vertex
set € and edge set A. For the diagonal orbital Aj, the Graph(A;) is just
a digraph with a loop at each vertex, but for the other orbitals Graph(A)
is a digraph without loops. The digraph Graph(A*) for the paired orbital

L N R I PO T N O R PP v

is obtained from Graph(A) by reversing the directions of the edges, and A
is self-paired if and only if the digrapli Graph(A) is a graph. Because A is
G-invariant, G acts on Graph(A) preserving the adjacency structure. The
simple exercises below illustrate these concepts.

Ezercises

3.2.1 Consider the two groups H = ((12345)) and K = ((12345), (25)(34)).
Sketch the digraphs for the four nondiagonal orbitals of H and for
the two nondiagonal orbitals of K.

3.2.2 The symmetry group of the cube acting on the set of 8 vertices
(see Example 1.4.1) has three nondiagonal orbitals. Sketch the
corresponding digraphs.

3.2.3 Consider the group A of automorphisms of the infinite trivalent
tree 7 described in Example 1.5.4. Let d(a, ) denote the distance
in 7 between two vertices o and (. Show that the set A, =
{(a, B) | d(c, B) = k} is an orbital for each k > 0.

3.2.4 Consider the action of degree 10 of S5 on the set of 2-subsets of
{1,2,3,4,5}. Show that there are three orbitals and sketch the di-
graphs for the two nondiagonal orbitals. Do these digraphs look
familiar?

3.2.56 Show that an orbital A for a transitive group G is self-paired if and
only if there exists (o, f) € A and x € G such that z interchanges o
and 8. If G is finite, show that every nondiagonal self-paired orbital
has even length, and show that G has odd order if and only if no
nondiagonal orbital is self-paired.

There is a close relationship between the orbitals of G and the orbits
of the point stabilizers of G. Recall that, since we are assuming that G
acts transitively on €2, the point stabilizers are conjugate in G by Corollary
1.4A. For each orbital A of G and each a € 2, we define

Ala) :={B € Q| (a,B8) € A}

which is the set of vertices in Graph(A) which lie on an edge from a. It
is now easy to verify that the mapping A — A(x) is a bijection from the
set of orbitals of G onto the set of orbits of G, with the diagonal orbital
mapping onto the trivial orbit {a}. In particular, the number of orbitals is
equal to the number of orbits of G,; this number is called the rank of G.
An orbit of G, for any a € Q is called a suborbit of G, and if A and A*
are paired orbitals, then A(«) and A*(a) are called paired suborbits. Note
that if z € G and a® = 3, then A(a)® = A(f), which gives a canonical
mapping from the set of orbits of G, onto the set of orbits for Gy, that is,
A(f) is independent of the choice of z.

FEzxercises

3.2.6 Verify the statements in the preceding paragraph.

Ee
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3.2.7 Assuming that G is transitive on 2, show that |A(a)| [Q] = |A[ for
each orbital A. In particular, |A(a)| = |A*(a)| if Q is finite.

3.2.8 Let 2 = [, be the finite field with ¢ elements and suppose that g is
odd. Let G be the group of all permutations of the form £ — a4+
with a, 8 € F, where « is a nonzero square in F,. Show that G has
two nondiagonal orbitals of the same size. Are they paired?

3.2.9 Let G = AGL,(Q) and ¢t € G bedefined by t : £ — £+ 1. Consider
the action of G by right multiplication on the set I'y of right cosets
of H := (T) in G. Show that G has paired suborbits of different
sizes (contrast with Exercise 3.2.7).

3.2.10 Consider the action of SL2(Q) by right multiplication on the set
of right cosets of the subgroup SL2(Z) in SL2(Q). Show that each
suborbit in this action is finite. Is the action primitive?

3.2.11 Let G be a transitive permutation group of degree n where 7 is odd.
Show that G has odd order if and only if each suborbit has odd
length.

We now show how to characterize primitivity in terms of the digraphs
Graph(A). In general, let G be a digraph. A sequence wvg,v1, ..., Vm of
vertices is called a directed path of length m from vy to v, if there is an
edge in G from v; to w4y for ¢ = 0,...,m — 1. The sequence is called an
undirected path if, for each ¢, there is an edge from v; to v;4; or an edge
from v;1; to v;. We say that G is connected if for every pair of vertices u
and v there is an undirected path from u to v, and G is strongly connected
if this path can always be chosen to be directed.

ExampLie 3.2.1. Let G = (x) be an infinite cyclic group acting on Z by
o =« L Then A = {(«, v + 1) | @ € Z} is an orbital for G, and
Graph(A) has the form:

—_ -1 01 2 — ...

This digraph is connected, but not strongly connected.
The following theorem gives another characterization of primitivity.

Theorem 3.2A. Let G be a group acting transitively on a set . Then G

acts primitively if and only if Graph(4A) is connected for each nondiagonal
orbital A.

PRrROOF. First suppose that Graph(A) is connected for each nondiagonal
orbital of G. Let I' € Q2 be a block for G containing at least two points, say
a and 3. Let A be the orbital for G containing (¢, ). We want to show
that v € T for each v € Q. Indeed, since Graph(A) is connected, there is
an undirected path @ = ay, ..., ar = v in Graph(A), and we shall show
by induction that o; € I for ¢ = 0,1,...k. This is true for : = 0, so
suppose 4 > 0 and that o;_, € T". Since (@;_1, ;) € A U A*, there exists
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r € G such that (o®, %) = (@i—1, Q) OF (i, 0ti—1)- Beca,usl_e: l:mlls a 1;103121;
i i : IT=I"andsoq; €1l. 108D
d contains either a® or 8%, therefore ] o
:lrlle induction step, and we conclude that v € T for each ~y in €. Hence
i imitive.
has no proper blocks and so 18 primi . .
a“Convlz)rsclejly, suppose that there is a nondlago.nal orbital Ad sucth};)at.
Graph(A) is not connected. Consider the relation = deﬁn‘e Ci)n h(Ayg.
a=f <> there exists an undirected path frgm atof in hr‘ap r
Thi—s is easily seen to be a G-congruence (see Exercise 154), which is prope
since Graph(A) is not connected. Hence G is not primitive.

In general, the graphs Graph(A) in Theorem 32tA alre not étr;ngsi@:nocs;@—/
, ting transitively on
nected. We shall say that a group actius s sirong
itive i i trongly connected lor
‘ f the orbital graphs Graph(A) are s cted
i:ﬂﬁgzﬁm orbital A. Theorem 3.2A shows that a strongly primitive groui];;
is certainly primitive, but the following example shows that the converse

not true.

EXAMPLE 3.2.2. Let G = Aut(Q, <) be the group of permutatGio}rlxs of((@)
2.2, : !
which preserve the usual ordering S{ ((seeﬁ?xerggs \2252 .{;l;h;;ld L a;aired

1 = € 1o
diagonal orbitals, namely, A = {(a, -
g?ll)litlalgA*. Clearly, Graph(A) and Graph(A*) are both connectedz butt are
not strongly connected. Hence G is primitive, but not strongly primitive.

. s -
The following lemma gives criteria for a primitive gro’?p tlc; llglev isttyr’?nagni1
iti ' i i for finite groups " Pprl
i - In particular, it shows that te g ity” a
I‘)‘:?Z:rtlg;rimigvity” are,equivalent. Another criterion for strong primitivity

is given in Exercise 3.2.12.

Lemma 3.2A. Let G be a group acting pnmm.vely on 1.
(i) Graph(A) is strongly cormectgd fOf a nondmgon;}zf ;jbztaAdzgrigEdﬁh
Graph(A) contains a nontrivial directed cycle (tha 131,)
Qp, 01y - - - Qi U1 Graph(A) with co = @m and m > . t.s o with
(i) If for each pair of distinct points o and (3 there (Z}ajzs el
a cycle of finite length containing both o and (3, then
e. A 4 .
(iit) Ilz?g%tis periodic (in particular, if G 8 finite), then G is strongly

primitive.

Remark. Part (i) of the lemma. can also be interpretgd as saying1 ttl'lat
Graph(A.) s not strongly connected if and only if the (G-invariant) relation
p on ) given by:

apf & thereisa directed path in Graph(A) from & to 3

is a partial ordering.



ProoOF. (i) It is clear that Graph(A) is strongly connected if and only if
every pair of distinct points lie on a directed cycle, so one implication is
trivial. On the other hand, suppose that Graph(A) contains at least one
nontrivial cycle. Consider the binary relation = on Q given by: o = f <
a = for o and 4 lie on a nontrivial directed circuit in Graph(A). This is
easily seen to be a G-congruence on ) and, because G acts primitively, the
congruence classes must be either singletons or ) itself (see Exercise 1.5.4).
Since Graph(A) contains a nontrivial directed cycle, the congruence classes
cannot all be singletons, and so o = f3 for all o and 3. Hence Graph(A) is
strongly connected as required.

(ii) We have to show that Graph(A) is strongly connected for each non-
diagonal orbit A. Choose (&, 8) € A, and z € G such that z has a cycle
of finite length containing & and §. Then some power y og Z maps o onto
3, and y™ fixes o for some m > 1. Thus o, 8 = ¥, ¥ ,..., 0¥ =«
is a nontrivial directed cycle in Graph(A), and so Graph(A) is strongly
connected by (i).

(iii) Follows immediately from (ii) (we can choose z so that o* =
because G is transitive). O
Exercises

3.2.12 Suppose that the group G acts transitively on Q and let G, be a
point stabilizer. Show that G is strongly primitive if and only if
there is no subset 7' with the properties G, CT'C Gand TT C T
(in other words, G, is a maximal subsemigroup of G). (Compare
with Lemma 1.5A.)

3.2.13 Let G be a finite primitive group with a suborbit of length 2. Show
that G is finite, that each point stabilizer has order 2, and that G
has prime degree. Hence show that G is a dihedral group. [Hint:
Look at the digraph for the corresponding orbital.]

3.2.14 Use Theorem 3.2A and Lemma 3.2A to describe an algorithm which
you could use to decide whether a finite permutation group is
primitive (assurne that the group is defined by a set of generating
permutations). What information can you get about blocks in the
case that Graph(A) is not connected for some nondiagonal orbital
A7 (See Sect. 3.6.)

Theorem 3.2A uses each of the orbitals separately, but we can ob-
tain more powerful results by combining the orbitals and the digraphs
Graph(A). We define the colour graph G of the transitive group G to be
a labeled digraph with vertex set  and full edge set 2 x {2 where each
edge (o, B) is labeled with a “colour” identifying the orbital from which
it comes. Clearly G acts on the set of vertices of G in such a way as to
preserve the colours of all the edges. This leads us to introduce a binary
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operation o on the set of all sets of edges of G. Let &, T" € Q x , then
Lol:={(a,8) | (a,7) € £ and (v,0) € I for some vy € 2} .

Thus ¥ o I' is the set of all edges (o, ) in G such that there is a path
of length 2 from « to § whose edges are from X and T, respectively. The
operation o is assoclative, and we can define “powers” by

£ .= A, (the diagonal orbital) and * = o s®*1 for kg > 1.
Also, for any set & of edges and any o € {2, we shall write
S(a) = {6 € Q| (0, 8) € T}

and so X(a) consists of all heads of directed edges in 3 with their tails at
o. These constructions are applied in the next theorem.

Theorem 3.2B. Let G be a group acting transitively on the set €.
(1) Let X and A be subsets of 2 x Q, and suppose that A is G-invariant.
Then |Z o Ale)| < |Z(a)] |[A@)] for all o € Q.
(ii) Suppose that G is primitive and A is a nondiagonal orbital for G, and
put I' ;= AUA*. Then | Js, I'%) = Q x Q; and, if G has finite rank

r, then it is sufficient to take the union over all k < r— 1. Moreover, if

Graph(A) is strongly connected, then the same conclusion holds with
I replaced by A.

(i) If G is prumitive wilh finile rank v and some suborbil has finite length
m > 1, then Q is finite and |Q] < 1 +m+ - +m" L.

Proor. (i) Clearly, (ZoA)(a) = U"/EE(A’) A(7y). On the other hand, for all
z € G, AMa)” = A(a®) because A is G-invariant, and so |[A(y)| = |A()]
for all v € Q by the transitivity of . The result now follows.

(ii) Since (o, 3) € T'®) <= there is a nondirected path of length &
from « to B in Graph(A), the first assertion of (ii) follows at once from
Theorem 3.2A. Now define ®(s) = |y, -, ['*) and consider the chain of
subsets ®(0) C ®(1) € ®(2) C....If &(¢) = ®{t—1) for some t > 1, then
M) C o(t—1)o" € B(t), and so d(¢t+ 1) = &(¢). Hence, by induction,
we have ®(s) = ®(t — 1) for all s > ¢ and so ®(t — 1) = Q x Q. On the
other hand, each orbital of G is contained in some A(*) because the latter
are G-invariant sets whose union is  x  and the former is an orbit for G
on this set. Thus, if G has rank 7, then at most 7 of the sets ®(s) can differ
from one another. In particular, ®(r — 1) = 2 x Q as asserted. A similar
argument applies (with I" replaced by A) in the case where Graph(A) is
strongly connected.

(iii) Let A be an orbital for G with |A(a)| = m; since m > 1, A is non-
diagonal. We shall first show that Graph(A) must be strongly connected.
Indeed, for each a € , define Q[a] to be the set of all v € Q for which there
is a directed path in Graph(A) from « to . The argument in (ii) above

oo,

i
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shows that Qo] = yepo,. A¥) (@), and so Qo] is finite by the finiteness
of Aa). Since Q[a]® = Q[a®], the transitivity of G shows that [Q[q]| is
independent of «, while |2[a]] > 1 because |A(e)| > 1. Choose 8 # « in
Q[a], and note that Q8] C Q[a] by the definition of 2{a]. Since the two
sets have the same finite size, therefore Qo] = Q[F]. Thus a € Q[F] and
B € Q[al, so there is a directed cycle in Graph(A) passing through « and
B. Hence Graph(A) is strongly connected by Lemma 3.24(7).

Finally (ii) applies to conclude that Qo] = Q, and so | <

2o<k<r A(k)(a)‘ <1l4+m+---4+m by (i). O

In the case of a finite transitive permutation group G of degree n, the list
of subdegrees (the lengths of the orbits of one of the point stabilizers) is an
invariant of G. We shall denote them in increasing order: n; = 1,no,...,n,
where 7 is the rank of G. Note that, if G is primitive and not regular of
prime degree, then n; > 1 for all i > 1 (see Exercise 1.6.5).

FEzxercises

3.2.15 Show that S7 acting on the set of 3-subsets of {1,2,...,7} has
degree 35 and rank 4 with subdegrees 1,4,12,18.

3.2.16 Using the notation above, show that if either n; > n/2, or n; > n/4
and the corresponding orbital A; is not self-paired, then any two

vertices in Graph(A;) can be joined by a nondirected path of length
< 2.

Lemma 3.2B. Let G be a finite primitive permutation subgroup of
Sym(Q) of degree n and rank v > 2 with subdegrees ny = 1 < ng <
. < n,. Assume that G is not reqular. Then
(1) Ti41 < 7’),7;(712 — 1) fO’(‘ all i > 2,’
(ii) the largest subdegree m,. has a nontrivial factor in common with n; for

eachi1=2,...1r —1;
(iil) of k of the subdegrees na, ..., n._1 are pairwise relatively prime then
r > 2k,

PROOF. (i) When G is a finite we can refine the arguments of Theorem
3.2B (iii) as follows. Fix « € Q, and order the orbitals Ay, ..., A, such
that |A;(a)| = n; for each ¢. To simplify notation, set A := A, and let A*
be its paired orbital. The set A o A* is G-invariant and consists of all pairs
(a, B) such that (o, ), (B,7) € A for some . Moreover, A o A* contains
a nondiagonal orbital because ny > 1.

Now consider paths in the colour graph of G which start at a and have
the form: o = ag,01,...,ar with each edge (i, @;+1) in either A or
A* depending on whether 4 is even or odd. We shall call such a path an
“alternating path” of length k. Since A o A* contains a nondiagonal orbit,

Theorem 3.2B (ii) shows that for each 8 € Q there is an alternating path
from « to S.

3.9, Orbits of the Stabilizer TS

Suppose that 2 < 1 < 71; We want to ShOW that ns1 < m(tng - ll.vléiei
be the shortest length of a minimal alternating path from & to som ereex
3 for which (o, B) € Ajand j > i. Fi?{ such a patlr.l, a ?kao, o1, - - .), ekAt
3, and note that k > 2 because J %kz. By dt(?e(t(ih;f:sz W}; éf;, 2ki_sleven iS

’ me t < 4. Now suppose that k is o )
erfafggous with A replaced by A"‘f).gn the colotlcl)r ng;raphﬁ;iljzz ‘(z;i :32 :igzst
out of ag_1 from A, and one of these goes k2

i ; ch that (ap—1,7) € A On the other
Ef;g ng -203 izoelxnga’—yoriitl&cjo(ri)aisnling 3, an&l there-is an alternati.ng pith.
of ler’lgt}jl k from « to each point 8* € Aj(a) Wlt&l T EGGaarglgdvzz C;;

— o®,af,...,af 1, B Now of € Ay(a) forall z € (a,—l) o can
only take [A¢(a)| = ny values. Hence (3% can take at m;stTgt nrgoofs e
Thus nip1 < nj = ne(ng —1) < nina — 1) as require 2 - eT%e ofs of parts
(i) and (iii) are left to Exercises 3.2.18, 3.2.19 and 3.2.20.

these exercises are actually quite general and apply to infinite groups as

O
well.

Ezercises

3.2.17 Calculate the rank and subdegrees for the following groups: .
- (i) The wreath product Sm wT S, with the product action o
degree m?; ‘
(ii) Swm acting on the set of 2-sets of degree m(né - 1)/2;
ing i imitively of degree m=;
i) S wr Sy acting imprimitively ol deg
((iv% Tnﬁe subgroup of the group in (iii) given by Do, wr S where
Da,n is a dihedral group of order 2m acting transitively. .
m =) .
3.9.18 If the group G acts transitively on two finite sets- r anc(l; A V;‘ )(:sz
- sizes are relatively prime, show that the natural action of G on
is also transitive. o A
3.2.19 Let G be a transitive group on a set {2 Iagl((i ;xi a pdo1TIth in \%&;Ttare
- i i = a)| an =
and T be orbitals of G for which m : . | are
i i i Show that Aol is an orbita
‘te and relatively prime with m <n at
ffi(;lrlg ?hat k= |A o I(a)| is also finite and divides mn, and that
k> rz If m > 1 and G is primitive, show that & > . 1
3.2.20 Us‘e the previous exercise to show that, f(};l(;l a ﬁmﬁe, nonr(l)rﬁtgrl‘llv?;i
- imit] i -est subdegree has a
tive permutation group, the larges Te
?;éﬁlr 1'1r1 cl?ommon with each of the other nontr1v1a} gubdegrees. In
particular, if the group has k relatively prime nontrivial subdegrees,
3 X k
then its rank is at least 2°. ‘ o
3.2.21 Lee‘zcnp be an odd prime. Show that there is no primitive group of
degree p + 1 and rank 3. ] .
3.2.22 Sh%)w that a primitive group of degree 6, 8 or 12 must be 2-transitive

The previous results are basically combinatorial. The- follovvlpg reSl;lt
gives a group theoretic restriction on the structure of a point stabilizer ot a



primitive group acting on a suborbit. Recall that S is a section of a group
G if for some subgroups H and K of G we have K <« H and H/K = S.

Theorem 3.2C. Suppose that G is a finite primitive subgroup of Sym(§2).
Let o € Q and let T be a nontrivial orbit of G,. Then every simple section
of G is isomorphic to a section of the group GL which G, induces on T.
In particular, each composition factor of G is isomorphic to a section of
GL.

Proor. We first show that if 1 < H < G, and § € T then, for some
z € G,z Hz fixes o but does not fix 8. Indeed, put A := fix(H) and
note that A # Q because H # 1. If § &€ A we can take z = 1, so assume
[ € A. Now because G is primitive, A is not a block for G and so for some
r € G we have a € A® = fix(z7'Hz) and § ¢ A% (see Exercise 1.5.5).
Now suppose that S is a simple group which is isomorphic to a section
of Go. Choose H < G, which is minimal with respect to the condition
that S = H/K for some K < H. Since S is simple, K is a maximal nor-
mal subgroup of H, and so if N < H and N is not contained in K, then
S~ H/K =NK/K = N/(NnNK). Thus, by the choice of H we conclude
that K contains all proper normal subgroups of H, and so every nontriv-
ial homomorphic image of H contains a section isomorphic to S. On the
other hand, from what we showed at the beginning of this proof, there
exists ¢ € G such that z7'Hz < G, and (z7'Hz)' # 1. The restric-
tion GL of G, to I' contains (z~'Hz)" and so has a section isomorphic to
(z7'Hz)/(z71Kz) & S, and the theorem is proved. O

Corollary 3.2A. IfG is a finite, nonregular, primitive group and T # {a}
is an orbit of a point stabilizer G, then:

(i) each prime dividing |G| also divides |GS|;

(ii) Ga is solvable whenever GL is solvable.

For further results along these lines see Sect. 4.4. This section concludes
with an application of Corollary 3.2A on the support of a Sylow p-subgroup.
It is an interesting example of how reduction to the primitive case is used.

Theorem 3.2D. Let G < Sym(Q) be a transitive group of degree n, and
let P be a Sylow p-subgroup of G. If P # 1 then [fix(P)| < n/2.

PrOOF. The result is true for n < 3, so we can proceed by induction.
Assume n > 3 and P # 1. We consider two cases.

First, suppose that G is primitive. We may assume that P fixes at
least one point, say «, since otherwise the assertion is trivially true. Let
0 = {a}, Qq, ..., 2, be the orbits of G, of lengths n; = 1,n,,...,n,,
respectively. Since 1 # P < G,, Corollary 3.2A (i) shows that P acts
nontrivially on each of the orbits €; (¢ > 1), and hence by induction

[fix(P) N Q| < (n; — 1)/2 for each i > 1. Hence

\ﬁX(P)'Sl—[—an;l _ (TL‘*;"+2) <
i=2 -

o3

We claim that equality cannot hold in this inequality. Indeed, p /' n=
|G : Go| because P is a Sylow p-subgroup of G and P < G,. However, D
does divide [supp(P)| = n — [fix(P)| because each orbit of P has p-power
length, and so |fix(P)| # n/2. Thus |ix(P)| < n/2 when G is primitive.
Now suppose that G is imprimitive, and let & := {Aj, ..., Apt be a
system of m blocks each of size d, say, where n = md and 1 < d < n. Let
K be the kernel of the action of G on ¥. Since A; is a block, P < Giay
whenever A; N fix(P) # 0, and therefore P must fix (setwise) at least
fix(P)| /d of the blocks in . If P is not contained in K, then P acts
nontrivially on ¥ and induction shows that |fix(P)| /d < m/2, and hence
[fix(P)| < n/2 as required. On the other hand, suppose that P < K. Since
the induced groups K4 (i = 1,...,m) are isomorphic, each must have
order divisible by p. If A; C fix(P), then A; C fx(u~'Pu) for all u € K,
and so all the Sylow p-subgroups of K would act trivially on A; which is
impossible. Thus P acts nontrivially on each of the m blocks A;, and so
induction shows that |fix(P)| < md/2 = n/2 as required. This proves the
theorem. L

Ezercises

3.2.23 Let G be the image of the (primitive) action of Sg on the set of
3-sets of {1,2,...,8}. Using the fact that A5 is simple, show that
As is a composition factor for a point stabilizer Gy, of G, but not a
composition factor of G, for some nontrivial orbit of I" of G. (This
shows that we cannot replace “section” by “composition factor” in
Theorem 3.2C.)

3.2.24 If G is a finite primitive group with subdegrees 1 =n; < ng < ... <
Ny, show that p < ny for each prime p dividing n; (1 = 3,...,r).

3.2.25 Let G be a finite primitive group with a subdegree equal to a prime
p. Show that p divides |G| but p? does not. [Hint: choose an orbital
A of G such that |[A(a)| = p, and let # € A(a). Use induction to
show that each of the sets A(a), A o A*(a), A o A* o Ala) is
fixed pointwise by any p-subgroup of G.z.]

3.2.26 Let G be a primitive, but not 2-transitive, group of degree 10.

(1) Show that G has rank 3 and subdegrees 1, 3 and 6.
(ii) If A is the orbital corresponding to the subdegree 3, show that
Graph(A) is isomorphic to the Petersen graph (Exercise 2.3.4).
(iii) Conclude that G is permutation isomorphic to As or S5 acting
on 2-sets of {1,2,3,4,5].

3.2.27 Suppose that G acts as a transitive group with point stabilizer H.

Show that G has rank r in this action if and only if there are elements
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Yy € G for i = 1,...,7 such that G is the disjoint union of the
double cosets

G =) HyH.
i=1

In particular, G is 2-transitive if and only if G = HUH yH for some
y € G. '

3.2.28 Let F be a finite field with an odd number of elements. Let G be
the digraph with vertex set F where (, §) is an edge <= o — Ié}
Is a nonzero square in F. Show that Aut(G) acts transitively on F,
and find its rank and order.

3.2.29 Show that every primitive group of degree 20 is 2-transitive.

3.3 Minimal Degree and Bases

A basis is a very important and useful tool in studying vector spaces and
linear transformations. In particular, every linear transformation is com-
pletely determined by how it acts on a basis. An analogous idea is useful in
the study of permutation groups. Let G be a group acting on the set 2. A
subset ¥ of 2 is called a base for G if G(s) = 1; in other words the identity
is the only element of G which fixes every element in %.

FEzxercises

3.3.1 Suppose G is a group acting on Q and & C Q. Show that the following
are equivalent:
(i) 2 is a base for G;
(i) £¥ is a base for G for all z € G;
(i) for allz,y € G, (o = o for all @ € ) implies (z = y);
(iv) N supp(z) # 0 for all 2 # 1 in G.
3.3.2 If G is a finite permutation group of degree n and a smallest base for
G has size b, show that 2° < |G| <n(n —1)...(n — b+ 1) < n’.

If a group G acting on a set 2 has nontrivial elements with finite support,
we define the minimal degree of G to be the minimum of |supp(z)| for all
z € G,z # 1. Exercise 3.3.1 suggests that in cases where the minimal
degree is small, the bases of G must be large. An extreme case is S,, which
has minimal degree 2 and whose smallest base has size n — 1.

Exercises

3.3.3 Consider the affine group AGL4(F) acting on F¢ where F = F, is
the finite field with ¢ elements (see Sect. 2.8). The degree of this
action is ¢*. Show that the minimal degree is g% (g — 1), and the
size of the smallest base is d + 1.
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3.3.4 Find the minimal degrees and minimum base sizes for the following

groups:

(i) Anpj;

(i1} the wreath product Sz wr S, with the imprimitive action of
degree dr;

(iil} the wreath product Sg wr S, with the product action of degree
dr;

(iv) the 3-transitive action of PGL,(F) on PG1(F), the set of “lines”
of F?, where F' = F, is the finite field with ¢ elements (see Sect.
2.8).

3.3.5 Let m > 5 and consider the action of S, on the set of 2-sets of
{1,2,...,m}. This action is primitive of degree n := m(m — 1)/2.
Show that the minimal degree is 2m — 4 and that there is a base of
size [2m/3]. (The latter is less than /n if m > 10.)

3.3.6 Suppose that G is a (possibly infinite) primitive group. If G contains
an element z with |supp(z)] = m and z has s nontrivial disjoint
cycles, show that G has rank at most m — s+ 1. In particular, if G has
minimal degree m then G has rank at most m. Give examples to show
that this is not necessarily true for transitive groups. [Hint: Choose
a € supp(z), and note that G = (z, G,) because G is primitive.]

Exercises 3.3.4 (i) and (ii) gives examples of transitive groups of arbitrar-
ily large degree with small minimal degree. Notice however that in none
of these cases are the groups properly primitive (that is, primitive and
distinct from the alternating and symmetric groups of same degree). This
is no accident, as Theorem 3.3C shows. In fact one of the main results of
Chap. 5 will give a lower bound on the minimal degree of a proper primitive
group in terms of the degree of the group. As a first modest step we exam-
ine groups with minimal degree 2 or 3. Recall that the finitary symmetric
group F'Sym(Q) consists of all permutations of 2 with finite support (see
Exercise 1.6.6). In the arguments below we shall be frequently calculating
expressions of the type ¥y *zy and 27 'y~ lzy (recall Exercise 1.2.6).

Theorem 3.3A. Let G be a primitive subgroup of Sym(§2).

(i) If G contains a 3-cycle, then G > Alt(Q).

(ii) If G contains a 2-cycle, then G > FSym(Q). In particular, if Q is
finite, then G = Sym(Q).

Proor. (i) If A C Q, then we shall identify Alt(A) with the subgroup
of Alt(QY) consisting of all elements which fix 2 \ A pointwise. Let A be
a maximal subset of 2 with the property that G > Alt(A) (the proof
that such a subset exists when (2 is infinite requires Zorn’s Lemma or an
equivalent transfinite argument). By hypothesis |A| > 3, and we want to
show that A = {). Suppose that A # Q.

Since G is primitive, A is not a block for G, and so there exists z € G
such that A N A% #£ § or A. First suppose that A N A% contains only one
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element, say c. Since £ Alt(A)z = Alt(A%), and G > Alt(A)j thgref(_);"f
there are 3-cycles of the form y = (aB) ancll z = (abn) 1nh w1tll
B,y € Aand 6,1 € A” Then G contains 2yl = (afé) wit exa%ct?/
t\;/o points in A. On the other hand, if A N A® contains at l?.ast. tmg)xpom s,
say o and 3, then choose § e AT\ A.ISince a,@ :nq (SAall lie in g again
ins a 3-cycle (af8) with exactly two pomnts 1 4.

G%Cilrjsllist w ::y (aéé)ﬁe) G with o, 8 € A and § & A,.ar.ld put Fh ::
A U {8}. We claim that G > Alt(T). Since G 2 Alt(A), it 11Ls enzu%h (;
show that v € G for all u € Alt(T") with 6 # 6. Since € := 5 € ,d ﬁerS
exists v € Alt(A) such that ¢ = f, and then ?w'(aﬂé) e Alt(I) Z’HH ;cz,e
§. This implies that uv(cf6) and v(a36) both lie in G and sohu teA ] ge) °
G > Alt(T") contrary to the maximality of A. This shows that & =
re%Iilil)r%jlearly we may assume that [ > 3. Suppose G .contalns GEhe 2}-lcgzhc:z
(eB). Then {c, B} is not a block for G, and so there exists z € G suc that
{a, B} N {a, B} has size 1. Relabelling if nlecessary we can assuine(gﬂ |
(o B} = (o} with 7 £ . Now (af)a™ (eB)z = (aB)(e) = (oY)
lies in G, so G > Alt(Q) by (i)- But (af) is an odd permutation an °
G > ((af), Alt(Q)) = FSym(Q).

As an immediate application of this theorem we show that Alg(ﬂ? is
a (nonabelian) simple group when |Q| > 5. We remark thafc Alt( ) is la
simple (cyclic) group when || = 2 or 3, and that Alt($2) is not simple
when |Q| = 4.

Corollary 3.3A. If[Q] > 5, then Alt(82) is simple.

PROOF. Put A := Alt(Q) with [Q] = 5. Suppose we .hfav.e NaAand N # 1;

then N is transitive by Theorem 1.6A and the primitivity of Alt((). S:mcg

N < A the minimal degree m of N is at least 3. Our ﬁ;st step is to

pro;e th’at m = 3. Every element of finite support has finite order, andf

so we can choose an element u € N of prime order, say P, anii4 a,ilho

the nontrivial cycles of u have length p. V\{eé obserl\;e tkllztt _1{ z )Ge ,N (;E

= [ute™? = y Hauz Hu T (zT ue .

the commutator y = [u~'e7lu,z] = u :

particular, if ~supp(u‘1a:’1u) N supp(g;)| = 1, then N contains a 3-cycle

by Exercise 1.6.7. Consider three special cases:

}("1) If p > 3, then u has a cycle (afySe . ..) of length at least 5. Take

— (afé), and then y = (B87) € N.

(ii) :IEf P (:ﬁS,) and w is not a 3-cycle, then u has at least two 3-cycles
(afy)(6€b) . . .. Take = (aB6), and then y = (B6v) € N. - :

(i) Ifp = 2, thenu hasat least two 2-cycles (af)(y8) - . .. Takez = (af),
and then vy = (af)(v6) € N.

Tt follows from (i) and (ii) that m = 3 if p > 2. In the case p = 2, (iii)
shows that u can be chosen in the form (aB)(v6)(€) - - -; taking T = (arye)

3.3 Minimal Degree and Bases 3y

in this case gives y = (afB¢) € N. Thus in all cases m = 3 as asscrted, and
N contains a 3-cycle z.

Finally, since A is 3-transitive, 7 '2z runs over the set of all 3-cycles
of A as z runs over A; hence N contains all 3-cycles. This implies that N
has no nontrivial blocks, and so N is primitive (see Exercise 1.5.5). Thus
N = A by the theorem. This shows that A has no proper nontrivial normal
subgroups, and so A is simple. o

As another application of the theorem we shall prove a clagsical result on
the size of a base for a primitive group due to Bochert (1889). The bound
is crude but frequently useful. See Chapter 5 for better bounds.

Theorem 3.3B. Let G < Sym(Q) be a proper primitive group of finite
degree n. Then G has a base of size at most n/2, and so |G| < n(n —

) (n—[n/2] +1).

Proor. It is enough to prove the hArst statement: the bound on the order
of G then follows from Exercise 3.3.2.

Let G be a primitive subgroup of Sym(Q), and let ¥ be a hasc for &
of minimal size. Suppose that |Z| > n/2; we shall show that G > Alt(Q).
Indeed, || > n/2 implies that A := Q\ X is not a base by the minimality
of ¥. Thus there exists z # 1 in G with support disjoint from A (see
Exercise 3.3.1), and so supp(z) C £. Choose a € supp(z). Since &\ {«a}
is not a base for G by the choice of ¥, there exists y # 1 in G such that

supp(y) € O\ (BN {a}) = AU {a}.

Since X is a base, supp(y)NE # 0, and so & € supp(y). Therefore supp(z)N
supp(y) = {a}, and so G contains a 3-cycle by Exercise 1.6.7. Hence G >
Alt(Q) by Theorem 3.3A. Thus we conclude that if G is a proper primitiv

group then |E| < n/2 as asserted. -

Table 3.2 compares the maximal order M(n) of a proper primitive group
of degree n with the Bochert bound B(n) given by the last theorem.

Our next immediate objective is to prove a relationship between de-
gree, minimum base size and minimal degree which holds for any transitive

TABLE 3.2. The Orders of Primitive Groups and Bochert’s
Bound

n= 5 6 7 8 9 10 11 12

M(n) = 20 120 168 1344 1512 1440 7920 95040
B(n) = 20 120 210 1680 3024 30240 55440 665280
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group. If the group involved is finite, then there is a simple counting argu-
went to prove this result (see Exercise 3.3.7), but the general case needs a
different approach.

Exercise

3.3.7 Let G be transitive subgroup of Sym(Q2) where Q is finite, and sup-
pose that the minimal base size of G is b and the minimal degree
is m. Show that || < bm. [Hint: Let & be a base of minimal size
and let A be the support of an element of minimal degree. Show
that |[2* N A| > 1 for all z € G and that, for each o € 2, there
are exactly [Z| |G| /n values of z € G such that o € X%. Hence
AISG] /0= S peq |25 N Al 2 |G

To deal with the general case we begin with a result due to B.H. Neumann
(1954).

Lemma 3.3A. Let G be an arbitrary group and let H; (i =1,...,m) be
subgroups of G. If G is a union of left cosets

(3.1) G = O Hiz;
i=1

for some elements z; € G, then |G : H;| < m for at least one i.

Proor. Without loss in generality we may suppose that the union in (3.1)
is “irredundant”, that is, no proper subset of the set of cosets H;z; (1 =
1,...,m) has its union equal to G. We shall first show that under this
assumption all H; have finite index in G.

We proceed by induction on the number of distinct H;. If all H; are equal
then the assertion is clearly true, so suppose that at least two are different,
and let one of these subgroups be denoted by K. Since we are assuming the
union in (3.1) is irredundant, some coset Ku of K in G does not appear in
(3.1). Then

. Ku C U{Hﬂq | H; # K}

and using this we can replace each term Hj;z; in (3.1) which has H; = K
by a union of a finite number of cosets in the H; which are different from
K. The inductive hypothesis then shows that all H; distinct from K have
finite index in G. Since K was chosen arbitrarily from among the H;, this
shows that |G : H;| is finite for all 7.

Since all H; have finite index in G, there exists N < G of finite index in
G with N < H; for all i (see Exercise 3.3.8 below). If we write T, := Nux;,
then (3.1) shows that

m

G/N = | J(Hi/N)z;

t=1
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and so
|G N| <> |H;: N|.
=1
Hence for the value of j for which |H; : N| is largest we have |G : H;| =
|G/N : H;/N| < m as required. O

FExercises

3.3.8 Let H; (i = 1,...,m) be subgroups of finite index in a group G. Show
that G has a normal subgroup of finite index which is contained in
every H;. [Hint: Consider the action of G by right multiplication on
the set of all right cosets of the H;.]

3.3.9 Under the hypothesis of Lemma 3.3.A and assuming that the union
in (3.1) is irredundant, show that |G : NH;| < ml.

Exercise 3.3.1 shows that a base ¥ for a group G has a nonempty inter-
section with the support of every nontrivial element. The following theorem
is concerned with this sort of situation in a general setting.

Theorem 3.3C. Let G < Sym(Q) and suppose that T and A are finite
subsets of Q of sizes m and n, respectively. If I* N A # @ for allz € G,
then at least one point of T' lies in an orbit of G of length < mn.

PROOF. For each v € T and each § € AN~“ we choose 2,5 € G mapping
v to &. Then the hypothesis shows that every z € G lies in at least one of
the cosets G,x~s. Since there are at most mn of these cosets, Lemma 3.3A
now shows that for some v € T' we have |G : G| < mn, and so the orbit
~% has length < mn as required. O

FEzxercises

3.3.10 For any positive integers m, n find a transitive group G of degree
mn on a set ) and subsets A and I of sizes m and 7, respectively,
such that T N A # ( for all z € G. [Hint: Choose I' and A as
blocks for G']

3.3.11 Show that the following natural analogue of Theorem 3.3C is false:
“If G < Sym(f) and A, T are countably infinite subsets of §2 such
that I N A # 0 for all z € G, then G has an orbit which is
of at most countable length.” [Hint: Let G = Alt(£2) where €2 is
uncountable.]

3.3.12 Give an example of a group G which is a union of a countable number
of proper subgroups but which does not have any proper subgroup
of countable index.

Corollary 3.3B. Let G be a transitive subgroup of Sym(Q). If G has finite
manimal degree m and a finite base of size b, then §2 is finite and |Qf < bm.



PROOF. Let A := supp(z) for some z € G with |A] = m, and let T be a
base of size b. Then ¥* N A # {) for all z € G by Exercise 3.3.1. The result

now follows from Theorem 3.3C and the transitivity of G. 0

FEzxercise

3.3.13 Give an example to show that the conclusion of Corollary 3.3B may
be false if G is not assumed to be transitive.

We are now in a position to prove a theorem due to Jordan (1871) on
the minimal degree of proper primitive permutation groups. The case where
the minimal degree is 2 or 3 has been dealt with in Theorem 3.3A.

Theorem 3.3D. For each integer m > 4 there exists a constant Bm Such
that if G is a proper primitive subgroup of Sym(Q) and G contains an
element z with |supp(2)| = m, then | < Bm; and if G is 2-transitive,
then Q] < 1+ (m —1)2. In particular, if ) is infinite, then every primitive
subgroup of Sym(Q) containing a nontrivial element of FSym(2) must
contain Alt(Q).

PROOF. Choose a € supp(z) and put A := supp(z) \ {a}. We first note
that AZ N A # @ for all z € G,. Indeed, otherwise supp(z~lzz) and
supp(z) have exactly one point in common and G contains a 3-cycle (see
Exercise 1.6.7); this is impossible by Theorem 3.3A because G does not
contain Alt(2). Theorem 3.3C now shows that G, has an orbit T # {a}
of length £ < (m — 1)2. On the other hand the rank 7 of G is at most m
by Exercise 3.3.6. Thus Theorem 3.2B (iii) shows that

QS 14+ L+ 2+ + 07 < < (m—1)*™

This proves the first statement with £, = (m — 1)?™.
In the case where G is 2-transitive, then 7 = 2, and so the estimate above

gives [Q| < 1+ (m — 1)? as asserted. O

The proof above shows that we can take B, = (m — 1)?™, but this is a
very crude estimate. Similarly the estimate for the 2-transitive case is quite
crude. Much better bounds are obtained later in Chap. 5.

The following example due to Jordan (1875) shows how it is possible to
strengthen these estimates in the case where m = 4.

ExampLE 3.3.1. We shall show that if G < S, is a primitive group with
minimal degree 4, then n < 8. We shall leave the cases n = 9,10 and
11 as an exercise (Exercise 3.3.14), and obtain a contradiction under the
assumption that n > 12. Since the square of a 4-cycle is of type 2% (that
is, a product of two 2-cycles), the group G contains an element of type 22,
and so we may suppose that v := (12)(34) € G. Since 4 is the minimal
degree, G is proper primitive and Exercise 3.3.6 shows that G has rank 2

T Srmeeisiiinm GCLEIUC AU Laaned [e18)

or 3. Theorem 3.3D shows that (@ cannot be 2-transitive because n > 10
and so G has rank 3. Let the orbits of Gy be {1},T and A, of 1;:1’1g£lls 1 c
and d, respectively. Again the condition opn n and Lemma, 3.2B (i) sho,w
that ¢ and d are both at least 4. .

Slnce' G = (G, u) by the primitivity of G, neither I" nor A can contain
a nontrivial orbit of u. Hence, relabeling the points and orbits if necessary.
we may assume 2,3 € Tand 4 € A. Put h :— |G1] and define ’

Bap :={z € G| o = B} for e, B € {23, 4}.

For .ev,‘ach pair (e, 3), either Bag is empty or it is a coset of the point
stab}llzer G14 In G1. Hence the orbit-stabilizer theorem shows that {B ] =
h/c if a,,.B € {2,3},|Ba4| = h/d, and the other Bagp are empty. i
.We claim that the union of the Bop is equal to G1. Indeed, suppose that
Y 1s an element of G not lying in any B,g. Then supp(u) N sﬁpp(y‘luy) =
{1}, apd so G contains a 3-cycle by Exercise 1.6.7, contradicting the as-
sumption that G has minimal degree 4. In particular, since ¢ > 4 d>4
and ¢ + d > 11, the inequality 7 T

h = |UBeg| <> [Bag| = % +§

shows that ¢ = 4.

F 1nall){, we shpxy that the case ¢ = 4 is impossible. In this case Gl <
Sym(T) is transitive of degree 4, and so is either Sym(T), Alt(T), a dihe-
dral group of order 8, or an elementary abelian 2-group of order 4. In the
res;;Le/ctlve cases, we can verify that |Byy N Bss| = |Gra3| = h/24 h/12, h/8
or h/4, and that B3 N Bay| = 2h/24, h/12,2h/8 ’ i

24,1/12,2h/8 or h/4. Th
,BQQ N B44I > 1, we have / / 5 e

h = ’UBQE‘ < Z ]Baﬁ] = [Baa N B3| — [Bys N Bya| — 1

dh b 3n
st a5 L

IN

Since ¢ = 4, this implies that d < 8. Since ¢ + d > 11, this means that

d = 7, but then Lemma 3.2B (ii) shows th is is i i
, . at this is
and 7 are relatively prime. possible because 4

Exercises

3.3.14 Suppose that G < Sp 18 a primitive group of rank 3 with a subdegree
3. If G contains an element of type 22, show that 1 = 7 or 10 Isgthe
group uniquely determined in each cage? (See also Exercise 3 2.26.)
3.3.15 Let G be a primitive group of degree 7 and of minimal deg.’re“e 4

Show that n is not equal to 9, 10 or 11. Fi
< ) . Find all
groups when n < 8. examples of such
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Pl Aetion of o Permtstion Group
We conclude this section with one further theorem of Jordan which is
often useful in discussing finite primitive groups. It is a specidl case of a

general class of results which will be discussed later in Sect. 7.4.

Theorem 3.3E. Let G < Sym(Q) be a primitive group which contains a
cycle z of prime length p. Then either G > Alt(Q) or || < p + 2.

Proor. Theorems 3.3D and 3.3A show that the result holds if either O
is infinite or p = 2 or 3. So suppose that Q is finite of size n and p > 5,
and assume that n > p + 3; we must show that G > Alt(Q). As a first
step we shall show that G is 2-transitive and that, for each o € Q, G, acts
primitively on Q \ {«}.

Consider the set S consisting of all I' € Q such that I # Q and G
acts primitively on I'. Then & # §§ because supp(z) € S, and Exercise
3.3.16 shows that: if A, T € S with ANT # § and AUT % Q, then
AUT € S. Let A be a maximal element of S containing supp(z); we
claim that |A| = n — 1. Indeed, since G is primitive, then there exists
y € G such that AY N A = § or A. Clearly, AY € S, so the observation
above shows that AY U A = Q by the maximality of A. This implies that
n < 2|A]. Now, suppose that § € ©\ A. Then for all z € G5, ANA* # ()
because |A| > n/2, and § ¢ A U A?) so the observation above shows that
AUA? € §. Thus the maximality of A shows that A = A% for all z € Gs.
Since G is primitive, G5 is a maximal subgroup of G, and so Gs = Giay-
Since this is trite for all points § € 2\ A, and the point stabilizers of G are
distinct maximal subgroups (G is clearly not regular), therefore 2\ A = {6}
as claimed.

This shows that G is 2-transitive, and that Gs, and hence every one-
point stabilizer of G, acts primitively on its support. We can now proceed
by induction on n. If n > p + 4 then the induction hypothesis applied
to Gs and o shows that G > Alt(Q2\ {6}); hence G5 contains a 3-cycle,
and so G > Alt(2) by Theorem 3.3A. Thus consider the one remaining
base case where n = p + 3. Since p > 3, P := (z) is a Sylow p-subgroup
of G. Put N := Ng(P), and note that & := fix(P) is N-invariant since
I = fix(P*) = fix(P) for all u € N.

We claim that N* = Sym(X) = S3. Indeed otherwise, Ny = Ny for
two distinct points o, § € L. However N, and N,g are the normalizers
of P in G and Gug, respectively. Hence the Sylow theorems (Exercises
1.4.12 and 1.4.13) and the 2-transitivity of G give the contradiction:

1=1|Ga: Nyl = |G’a : Gaﬁ‘ ‘Ga,@ : Na,3| =n—-1 (mod p).

This shows that N* = Sym(Z ) as claimed.

Finally, N acts by conjugation on P; the kernel of this action is ¢ :=
Ce(P) and the image of this action lies in Aut(P). Because P is cyclic,
Aut(P) is abelian (Exercise 2.2.2), and so N’ < C. Now a simple calcu-
lation shows that C*"\E = (z), and C* > (N')T contains a 2-cycle from
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above. Choose y € C such that y* is a 2-cycle. Then \* ¢ (z) and
p # 2, s0 yP is a 2-cycle in C. This shows that G contains a 2-cycle, and
so G > Alt(2) by Theorem 3.3A. O

FEzercises

3.3.16 Let H and K be subgroups of Sym(f)) with supports A and T,
respectively. If each of H and K acts primitively on its support, and
ANT # §, show that (H, K) acts primitively on A UT.

3.3.17 Let C be the centralizer of a cycle z in Sym/(Q). If z has support
A, show that C* = (z). [Hint: Use Exercise 1.2.6.]

3.3.18 Show that the order of a proper primitive group of degree 19 cannot
be divisible by 7. [Hint: If the Sylow 7-subgroup is nontrivial, show
that its centralizer contains a 5-cycle.]

3.4 Frobenius Groups

A Frobenius group is a transitive permutation group which is not regular,
but in which only the identity has more than one fixed point. Historically,
finite Frobenius groups have played an important role in many areas in
finite group theory, including the analysis of 2-transitive groups and finite
simple groups. The present section gives a survey of some of the properties
of these groups. Unfortunately, proofs of the basic structure theorems of
finite Frobenius groups must be omitted because they require techniques
such as character theory which would require a major diversion from our
central theme.

ExAMPLE 3.4.1. Let U denote a subgroup of the group of units of a field
F. Then the set G consisting of all permutations of F' of the form

tag €+ P withacU g€ F
is a Frobenius group where the point stabilizer of 0 is
Go={tas | €U} =U.

The elements of G which fix no points, together with the identity, are
the translations t15 : £ — & 4+ . These translations constitute a normal

subgroup K 2 (F,+) of G.

Let G < Sym(Q) be a Frobenius group. Then G, N Gz = 1 for any two
distinct points «, 8 in 2, and so we say that the conjugacy class of stabiliz-
ers is a trivial intersection set (TI-set). The stabilizer G, acts regularly on
each of its orbits on 2\ {a}. When (2 is finite, this implies that |G| divides
[€2] — 1 and so G is quite a small subgroup of Sym(Q). An important role
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in the analysis of a Frobenius group is played by the set
(3.2) K={zecG|z=1lor fix(z) = 0}

consisting of the identity and the elements of G not in any point stabilizer
(the fized point free elements). In the example above Kisa nf)rmzi.l subgroup
of G, and as we shall see later this is always true when G is finite but not

when G is infinite.

Ezercises

Let G < Sym(Q) be a Frobenius group with the set K defined as in (3.2).

3.4.1 Show that for each u # 1 in K, Ce(u) € K; and for each z # 1lin
Ga,Ca(z) < Ga. '
3.4.2 Show that the following are equivalent:
i) K is a subgroup of G; o .
((11) for some o & §, distinct elements of K lie in distinct right

G 4-cosets; . o ‘
(iii) for all a € €, distinct elements of K lie in distinct right Go-
cosets.
(iv) for all o, 8 € €2 there is at most one element z € K such that
a® = f.

3.4.3 Suppose—that n := Q)| < co. Show that each element in K has order
dividing n, and that |[K| = n. N

3.4.4 Suppose that K is a subgroup of G. Show that K must be a norma.
subgroup. If § is finite, show that K is regular.

The structure of finite Frobenius groups has been described in major
theorems of G. Frobenius, H. Zassenhaus and J .G. Thompson. Howevgr,
since the proofs of these theorems would lead us too far away from th'e main
theme of this book, they will be omitted. The interested reader will find
expositions in the books of Huppert (1967), Passman (1968), and Tsuzuku
(1982). The key result, part (i) below, is due to Frobenius (1902) and was
an early triumph for techniques using character theory from the theory of
linear representations. There is still no more elementary proof known.v Part
(ii) is from Zassenhaus (1936) while part (iii) is from Thompson (1959).

Structure Theorem for Finite Frobenius Groups. Let G be a finite
Frobenius group, Go be a point stabilizer, and let

K:={zeCG|z=1or fix(z) =0}

(i) K is a subgroup of G (and so normal and regular by Ezercise 3.4,4).
(ii) For each odd prime p, the Sylow p-subgroups of G’?z are cyclzc., and
the Sylow 2-subgroups are either cyclic or quaternion. If Gy s not
solvable, then it has ezactly one nonabelian composition factor, namely
As.
(iii) K s a nilpotent group.

IO N R S el \XAULA’Jn (&N]
FEzxercises

3.4.5 Show that a primitive permutation group with abelian point stabi-
lizers is either regular of prime degree or a Frobenius group.

3.4.6 Let G be a finite primitive permutation group with abelian point
stabilizers. Use part (i) of the Structure Theorem to show that G
has a regular normal elementary abelian p-subgroup for some prime
p. [Hint: Exercise 1.4.14 may be helpful] (It is also known that a
finite primitive group with a nilpotent point stabilizer is solvable if
the Sylow 2-subgroup of the stabilizer is nilpotent of class at most 2.
See Janko (1964).)

3.4.7 If G is a finite group which contains a maximal subgroup M which
is abelian, show that G is solvable and that G(®) (the third term in
the derived series) equals 1.

The following two theorems give elementary proofs of parts of the Struc-
ture Theorem stated above in some special cases. Other special cases are
considered in Burnside (1911, Sect. 134), Griin (1945) and Shaw (1952).
Frobenius’ theorem has been generalized in Wielandt (1958).

Theorem 3.4A. Let G < Sym(2) be a finite Frobenius group of degree
n, and let K be the set defined by (5.2). If G, has even order, then K is
a regular normal abelian subgroup of G and G has exzactly one element of
order 2.

ProOF. Since G, has even order it contains an element of order 2. Let T
be the G-conjugacy class containing this element. Since the point stabilizers
of G are conjugate and disjoint, each of the n point stabilizers contains at
least one element from T and |T'| > n. Consider the cycle decomposition
of an element ¢ € T: ¢ has one cycle of length 1 and (n — 1)/2 cycles of
length 2. Since no nontrivial element of G has more than one fixed point,
no two elements from G can contain the same 2-cycle. There are exactly
n(n — 1)/2 2-cycles in Sym(f2), and so we conclude that |T| (n — 1)/2 <
n(n — 1)/2 and hence |T'| < n. But |T| > n from above, so |[T'| = n, and
every 2-cycle occurs in one of the elements of T. In particular, each point
stabilizer contains exactly one element from 7', and T contains all elements
of order 2 in G.

We now claim that st € K whenever s,t € T. Suppose the contrary.
Then fix(st) = {B} for some § € Q and some distinct elements s and ¢
from K. Then 8¢ = st = % and so either (36°) = (64%) is a 2-cycle
appearing in both s and ¢, or 8% = ' = 8 (and so s,t € Gg). However,
as we have seen above, neither of these cases is possible, and so we have a
contradiction. Thus we conclude that st € K as claimed.

Fix t € T. Then Tt C K, and since both sets have size n we conclude
that Tt = K. In particular, 1 € K and KK~ C 7T C K,so K is a
subgroup; by Exercise 3.4.4 it is therefore a regular normal subgroup of G.

)
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Finally, because each w € K has the form u = st (s € T), we therefore
have t~!ut = st = u~! for each v € K. But this means that for all
u,v € K, wv = ¢t uw)"t = t7 (v~ u"!)t = vu. Hence K is abelian,
and the proof is completed. |

Theorem 3.4B. Let G < Sym(Q2) be a 2-transitive Frobenius group, and
let K be the set defined by (3.2). Suppose that either: (i) G is finite; or (ii)
the point stabilizers Go are abelian. Then K is a regular normal abelian
subgroup of G in which each nontrivial element has the same order.

Remark. A 2-transitive Frobenius group is also known as a sharply 2-
transitive group; further information about these groups is presented in
Sect. 7.6. With respect to hypothesis (ii), we recall that Exercise 3.4.5
shows that a 2-transitive group with abelian point stabilizers is necessarily
a Frobenius group.

PRrROOF. (i) Put n := |[Q2]. Then |K| = n and |G| divides n — 1, and hence
|G| = n— 1 because G is 2-transitive. Suppose that u 7 1 lies in K. Then
Ce(u) C K (see Exercise 3.4.1) and so |G : Cg(u)| > n — 1. Hence u has
at least » — 1 conjugates in G. On the other hand, each conjugate of u is
clearly a nontrivial element from K, so we conclude that: Co(u) = K; u
has n — 1 conjugates in G; and these conjugates are precisely the nontrivial
elements of K. Thus we have shown that K is a subgroup, each element
of K lies in the centre of X, and all elements of K are conjugate. This
can only happen when K is an elementary abelian p-group. Finally K is
regular and normal by Exercise 3.4.4.

(ii) Let T be the set of all elements of order 2 in G. We claim that for
every pair o, of distinct points there is a unique t € T which maps
a onto (. Indeed, 2-transitivity implies that there exists ¢ € G such
that (o, 8)' = (B, ). Since G is a Frobenius group and ¢* fixes both
a and G, we conclude that t° = 1 (and ¢ # 1); thus ¢ € 7. On the
other hand, if s € T and o® = 3, then 8° = « and so st™! fixes two
points and so must equal 1. Thus ¢ is the unique element of 7" mapping «o
onto .

Next note that if s,¢ € T and neither fixes «, then there exists z € G,
such that z7lsz = ¢. Indeed, by 2-transitivity we can choose z € G,
such that (o, @®)® = (a, ). Then z7'sz € T and maps « onto a; hence
z~ sz = ¢ by the uniqueness proved above.

Also, there is at most one element of 7" in each G,. For suppose that
s,t € TN Gy Then from above there exists z € Gg with 8 # « such that
z7 sz = t, and s0 &® = o°% = . Since ¢ only fixes one point, o = %,
and hence z fixes both « and 8. Thus z = 1, and s = ¢ as claimed.

Suppose now that z is any element of K and let § := «®. From what
we have proved, there is a unique ¢ € T such that o®® = «. Then zt € G,
so 0 # [%*. We claim that either z = ¢ or 2t € T. Suppose that zt # 1.
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There is a unique element s € T such that (8,571 = (B, 5). Then
wts € Gp and if s € G then wts fixes 2 points and hence.mt =scT.
So suppose that s & G- As we have shown above, there is an element
z € (G4 such that »—lgz = t. But zt and z are in G which is abelian,
by hypothesis. Thus ztsz = wtzt = zz. So f*° = B*ts* = f* and the
element z € K has the fixed point 4%, a contradiction. Therefore s € G4
and zt = s € T.

Suppose that K is not a subgroup. Then Exercise 3.4.2 shows that thére
must exist distinct nontrivial z,y € K such that zy~! € Gq. Then, with
B := o® = oY there is a unique element ¢t € T such that 8% = «. The
argument above shows that either z =y = t or else zt and yt are each
elements of T' N Gy, contrary to what we have shown above. |

If G is a 2-transitive Frobenius group with abelian stabiliz.ers G, as
considered in part (ii) of Theorem 3.4B, then G is a one-dimensional affine
group AGL1(F) over some (commutative) field F' (see Corollary 7.64).

FExercises

The object of this set of exercises is the construction of. a finite Frobenius
group with a nonabelian regular normal subgroup; part (iii) of the Structure
Theorem for Finite Frobenius Groups, shows that the subgroup must be
nilpotent. Let g be a prime power and n be an odd integer, an.d let F bg
a field of order ¢™. Put  := F x F. Since the group of units of F' is
cyclic of order ¢™ — 1, it contains a unique (cyclic) subgroup U of order
(¢ — 1)/(g — 1). Let o be the automorphism of F defined by o(§) =

gq(n-)—l)/E .

3.4.8 Forall a, 8 € F, define gag : (§,7) — (€ +a,n+ f+Ea(a)). Show
that each gop is a permutation of ©, and that the set K of all such
permutations is a regular subgroup of Sym/(Q).

3.4.9 For each v € U, define A, : (€,1) = (¥€,70(7)n). Show that each
h., is a permutation of Q, and the set H of all such permutations 1s
a subgroup of Sym(€) which normalizes K.

34.10 Show that G := K H is a Frobenius group with a nonabelian regular
normal subgroup K. (The case ¢ = 2 gives a Frobenius group of
degree 22" and order 2°™(2" — 1) which occurs as the point stabilizer
of a 2-transitive group called the Suzuki group Sz(2™); this group
is discussed further in Sect. 7.7.)

FEzercises

The object of this set of exercises is to give a construction of a finite Frobe-
nius group with a nonsolvable point stabilizer; part (ii) of the Structgre
Theorem for Finite Frobenius Groups shows that As is the only nonabelian
composition factor which can arise. Let F' be a finite field whose charac-
teristic is not 2, 3 or 5 and such that for some «, § € F we have a? = —1



and 3?2 + 8 = 1. Consider the subgroup H of SLy(F') generated by

z = [:i H,?/: {2 ;J andz:~[_o1 PIJ

3.4.11 Show that a field of size 29 has the required properties.
3.4.12 Show that z3 = ¢y® = 1, and that (zy)*® = z. Hence prove that
3.4.13 Let G be the group of all permutations of F? of the form

Ty~ys ¢ (§ 77) = (faﬁ)“ + (73 6)

where v € H and ~, 8 € F. Show that G is a Frobenius group whose
point stabilizers are isomorphic to H.

The structure theorem for finite Frobenius groups which is stated above
does not carry over to infinite Frobenius groups. The following examples
show how badly it fails. Let G < Sym(£) be an infinite Frobenius group
and let K := {z € G | z =1 or fix(z) = 0}.

ExAMPLE 3.4.2. (An example where K is not a subgroup) Let F' be the
free group on generators z,y and put z := [z,y]. If w € F, then wlzw €
H := (z) occurs only if w € H (see Exercise 3.4.14). Let € be the set of
subgroups conjugate to H in F. Then F acts faithfully (and transitively) on
) by conjugation; let G = F be the image of this action. By the observation
above, each w # 1 in the point stabilizer Fiy lies in H and so cannot fix any
other point of . Thus G is a Frobenius group. On the other hand, every
conjugate of H is contained in the derived group F, and so K contains all
elements in G \ G'. Since K # G, this shows that K is not a subgroup of
G.

EXAMPLE 3.4.3. (An example where K = 1) For sufficiently large primes
p, the Burnside groups B(m, p) with m > 2 are infinite simple groups in
which every proper nontrivial subgroup has order p, and all subgroups of
order p are conjugate [see Adian (1979)]. Let G be the image of such a
group acting by conjugation on the set  of its subgroups of order p. Then
G is a Frobenius group in which there are no fixed-point-free elements.

EXAMPLE 3.4.4. (An example where K is a regular normal subgroup, but
K is not nilpotent) Let S be a group and consider the set 7" of all doubly
infinite sequences {s;}icz with s; € S with all but a finite number of s;
equal to 1. This is a group under componentwise multiplication. Let K be
the image of the regular representation of 7' in Sym(Q) where Q = T.
Since z : {s;} > {siy1} defines an automorphism of T', the element z
lies in the normalizer of K in Sym(f)) (compare with Exercise 2.5.6); we
define G := (K, z). The point stabilizer G; equals (z), and it is clear that
each nonidentity element of {z) has 1 as its unique fixed point. Thus G is
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a Frobenius group. The nontrivial elements of K are precisely the fixed-
point-free elements of G. Moreover K is a regular normal subgroup which
is not nilpotent provided S is not nilpotent.

Ezercises

3.4.14 Let I be a free group on generators z and y. If w # 1 is in F,
show that the normalizer N of (w) in F' is equal to the centralizer
of (w). If w := [z,y], show that N = (w). (Note that if w = z?
then N # (w).)

3.4.15 Show that the group G in Example 3.4.3 is not 2-transitive. Is it
primitive?

3.4.16 Show that the group G in Example 3.4.4 is not primitive. Does it
have minimal blocks of imprimitivity?

3.5 Permutation Groups Which Contain a Regular
Subgroup

A permutation group which contains a regular subgroup is clearly transi-
tive. Conversely, a subgroup I? of a transitive group G is regular if and only
if G = GoR = RG, and RN G, = 1 for each point stabilizer G,. Thus
the existence of a regular subgroup for G implies a group structure on a
particular set R of coset representatives for a point stabilizer. This extra
structure can be used to derive some useful theorems about such groups.
The earliest of these theorems was due to W. Burnside who considered
transitive groups of prime degree. If G is a transitive group of prime degree
p, then G necessarily contains a p-cycle, and this p-cycle generates a regular
subgroup which is a Sylow p-subgroup of G. Burnside proved that either
G is 2-transitive or G has a normal Sylow p-subgroup. Burnside’s original
proof used character theory, but a number of other proofs have since been
discovered. At the end of this section we shall give a proof, due to I. Schur,
of Burnside’s result.

FEzercise

3.5.1 Let G be a transitive permutation group of prime degree p. Show
that the following are equivalent:
(i) G is solvable;
(ii) G has a normal Sylow p-subgroup; and
(iil) G is permutation isomorphic to a subgroup of the affine group
AGL4(p) (see Sect. 2.8).

If G is a permutation group containing a normal regular subgroup R,
then G is contained in the holomorph of R (see Exercise 2.5.6) and in some
sense is “known”. The more interesting case is where R is not normal. A

e



ey

e~

s

02 3. I'he Actiou of a Permutation Group

striking examnple where G is infinite is given by the automorphism group
of the countable universal graph (see Chap. 9) which has 2%¢ conjugacy
classes of regular subgroups. The following construction gives examples of
finite groups with nonnormal regular cyclic subgroups.

EXAMPLE 3.5.1. Let E be field with ¢% elements where ¢ is a prime power
and d > 1. The group of units of E is a cyclic group generated by some
element v, say. The field £ contains a subfield F of size ¢, and F is a vector
space of dimension d over F. Consider the group G := GLr(E) = GLy(F)
of all invertible F-linear transformations of E into itself. Then G acts on
the set Q := £\ {0}, and the element u : £ — £v of order ¢ — 1 in G
generates a subgroup R which acts regularly on . It is readily seen that
R is not normal in G. The action of G on © is not primitive. The set Q of
lines is a system of blocks, and the image G of the action of G on Q is the
projective group PGLp(E) = PGL4(q) (see Sect. 2.8). The image R of R
in this action is again a regular cyclic subgroup (sometimes called a Singer
cycle). In this case G is a 2-transitive group.

In Example 3.5.1 we gave two types of groups containing a nonnormal
regular cyclic subgroup: an imprimitive group and a 2-transitive group. As
we shall see (Theorems 3.5A and Corollary 3.5B), these are essentially the
only two possibilities; any finite primitive group containing a nonnormal
regular cyclic subgroup must be 2-transitive.

Our study of groups with regular subgroups begins with the following
observation. Suppose that G < Sym(Q) has a regular subgroup R, and let
G be a point stabilizer of G. Then R is a set of right coset representatives
of G, in G, and so there exists a uniquely determined function ¢ : G —
Sym(R) such that Gou?®) = Guuz for all u € R and z € G. A simple
calculation shows that ¢ defines a permutation isomorphism of G onto a
subgroup of Sym(R).

FEzercise

3.5.2 Show that ¢ defines a permutation isomorphism of G onto Im(¢).
Moreover, u#(*) = uz whenever both u and z lie in R, so ¢(R) is the
image of the regular representation of R in Sym(R).

A consequence of the observation above is that, in studying permutation
groups with regular subgroups, it is enough to lock at subgroups of Symi(R)
which contain the image of the regular representation of E. We can exploit
this extra group structure on the underlying set R by using a group ring.
Let H be a finite group and F be an arbitrary field, and consider the set
F[H] of all formal sums . 5 Auwu with coefficients A, € F. Addition and
multiplication are defined on F[H] by

Z Ayt + Z MU = Z ()‘u + .U'u)u

uweH wE Il weH
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and
(Z )\uu> <Z ,uuu> = Z v,u  where v, = Z Apfhy=1g-
ueH ueH uEH vEH

Under these operations F[H] is a ring (see Exercise 3.5.3 below) whose
group of units contains a copy of H; we identify the element v in I with
the ring element },c Aut where Ay, = 1 when u = v and A, = .O
otherwise. Since F[H| contains a copy {Al | A € F'} of F, the ring F[H] is
also a vector space of dimension |H| over F'; indeed it is an F-algebra. We
call F[H] the group ring of H over F.

Ezercise

3.5.3 Show that F[H] is indeed a ring with these operations, and that F[H ]
is a vector space over F' with the set of elements of H as a basis.

In the case that R is a finite group and the group G acts on R, we can
extend the action of G on R to an action on the group ring F[R] via:

(= a) = Y o)
uER u€ER
This action of G is linear in the sense that it respects the vector space prop-
erties of F[R] although it does not, in general, respect the multiplication
in F[R].

We define the support of ¢ == > g Mt € F[R] by

supp(c) := {u € R| Ay # 0} C R.

Clearly, supp(c) is invariant under z € G whenever ¢ is fixed by z (the
converse is not usually true). .

In our computations below we shall frequently use the followmg.elg
mentary fact. Suppose that S is a ring with unity 1 with characteristic
p for some prime p (so 1 + 14 ... + 1(p summands? = pl equals
0 in S). Then, whenever ai,...,ax € S commute pairwise, we have

(a1 +...+a)P =a + ...+ a

Ezercise
3.5.4 Prove the previous statement. [Hint: I'irst prove that p divides each
of the binomial coefficients (¥) for i =1,...,p — 1]

Suppose that R is a finite group and that the group G < Sym(R) con-
tains the regular representation of R. Let F be an arbitrary field and let
C(G,) denote the set of fixed points of Gy in I [R]. The next lemma shows
that this subset of the group ring is actually a subring. The ring C(Gy),
sometimes called a Schur ring, plays a central role in the analysis to follow.
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Lemma 3.5A. Suppose that R is a finite group and that G < Sym(R).

Let Ay = {1}, Dg, ..., A, be the orbils in R of the point stabilizer Gy.

Then:

(i) C(G1) is a vector subspace of F[R], and the elements c; := 3 e, U
fori=1,...,r form an F-basis for C(G1);

(i) C(Gh) is a subring (and hence o subalgebra) of F[R].

ProOF. (i) Let ¢ := Y ,cp duu. Then ¢ € C(G1) = ¢ = ¢ for all
z € Gy <= Xy = A, whenever u and v lie in the same G, -orbit <= ¢
is an F-linear combination of ci,...,¢c,. Since the ¢; are clearly linearly
independent, the result follows.

(ii) We begin by proving the following identity:

(3.3) If I' C R is Gi-invariant, then (T'u)® = I'u” for allu € R, z € G1.

Indeed, Giuz = G1u® and so, for some y € G, we have uz = yu®. Hence
for all v € T' we have G1(vu)® = Giv(uz) = Gioyu® = G1vYu®, and hence
(vu)® = vYu®. Since T is G;-invariant, v¥ runs over ' as v runs over I,
and therefore (Tw)* = I'u® as claimed.

Now C(G) is a vector space with a basis c1,..., ¢ by (i), so to prove
that C(G4) is a ring it is enough to show that c;c; € C(G1) for all 4 and j.
Fix £ € G;. Then (3.3) shows that (A;u)* = A;u® for all u € Ay; hence
summing over A; gives (c;u)® = c;u*. Now summing over all u € A; gives
(e;¢5)® = cicj since u® runs over A; as u runs over Aj;. This is true for
each z € G and so cc; is fixed by G as required. O

FEzercise

3.5.5 Show that for any two Gi-invariant subsets I', A of R, the subset
T'A is also Gj-invariant.

Lemma 3.5B. Under the hypothesis of Lemma 3.5A suppose that R has

order n, and that G contains the image of the reqular representation of R.
For each integer k, define A;(k) = {uf |u € A} fori=1,...,r

(i) G is a primitive group <= for each ¢ € C(G1) the subgroup
{(supp(c)) of R generated by the support of c is either 1 or R.

(ii) If R is abelian, and k is relatively prime to n, then the mapping A; —
A;(k) defines a permutation of the set of Gy-orbits in K.

(iii) Suppose that G is primitive, R is abelian, and p is a prime dividing
n. Let T be a Gy-invariant subset of R, and put ¢ := ), . u € F[R]
where F is a field of characteristic p. Then ¢® = ml where m is the
number of elements u € I' with uP = 1.

PROOF. (i) The blocks containing 1 for the regular representation of R
(acting on R) are just the subgroups of R. Hence I' € R is a block contain-
ing 1 for G if and only if I is a subgroup of R and is G;-invariant. Thus, if
G is imprimitive, then there exists a subgroup I' such that 1 < T' < R
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and that I' is Gi-invariant. In this case, ¢ = v ¢ C(G)) and
(supp(c)) = I' # 1 or R. Conversely, suppose there exists ¢ € C(Gy)
with support A such that I' := (A) # 1 or R; then ' = U?_ A’ and so T
is Gh-invariant by Exercise 3.5.5. Thus I" is a G;-invariant subgroup of R,
and so G is imprimitive.

(i) We shall first prove the result when & = p is a prime with p [ n
Choose F' = F,, as the field with p elements. Then the remarks preceding
Lemma 3.5A show that ¢f = )7 - uP for each 7 because R is abelian,
and no two terms in the sum are equal because p | |R]. Now A;(p) =
supp(c?) € C(G1) by Lemma 3.5A(ii). Since p / n, the mapping v — u?
is a bijection of R onto itself, so A;(p) (¢ = 1,...,r) is a partition of R
into r (nonempty) G1-invariant subsets. Since G| has 7 orbits on R, these
subsets must be precisely the orbits of G;. This proves the result in the
special case where k = p is prime.

For the general case, choose m > 0 with m = & 1110d n. Then successive
applications of the special case above to the prime factors of m shows that
A; — Ni(m)(= A;(k)) is a permutation of the orbits of Gy.

(iii) Since I' is G;-invariant, ¢ € C(Gy). Also, by the remark preceding
Lemma 3.5A, ¢? = 3" _~uP. Since p divides |R| and R is abelian, the
index of (supp(c?)) in R is divisible by p. Now (i) and the primitivity of G
show that supp(c?) C {1}, and ¢? = ml as asserted. o

Theorem 3.5A. Let G be a permutation group of degree n containing a
regular subgroup R. Suppose that R s abelian and has a cyclic Sylow p-
subgroup for some prime p with p < n. Then G 1is either imprimitive or
2-transitive.

PROOF. As we noted at the beginning of this section, it is enough to con-
sider the case where G is a subgroup of Sym(R) containing the image of the
regular representation of R. By hypothesis, R is abelian and has a unique
subgroup P of order p. We shall assume that G is primitive, and prove that
the orbits of Gy on R are {1} and R\ {1} (so G is 2-transitive). We do this
by a series of calculations in the group ring IF,[R].

We first show that each Gi-orbit I' € R contains at least one element
from P, and that the subset I' \ P of remaining elements is a union of
complete cosets of P. To prove this, consider ¢ := ), . u € Fp[R]. Then
¢ € C(G1) and Lemma 3.5B (iii) shows that ¢® = 3} _u? = [ N P|1.
This shows that, if w € '\ P (so u? # 1), then the number of elements
v € I' such that v» = %P must be a multiple of p. Since R is abelian,
v =P = (vul)? =1 <= wvu! € P;hence u € '\ P implies
that the whole coset Pu C I'. This shows that I'\ P is a union of complete
cosets of P. We now show that I' 1 P # . Indeed, otherwise, I itself is
a complete union of cosets of P, and so P C H := {u € R | Tu =T}.
Clearly H is a (nontrivial) subgroup of R, and H is G;-invariant by (3.3).
Now Lemma 3.5B (i) shows that H = R because we are assuming G is
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primitive. But this implies that R = 'R = I' which is impossible because
there are at least two G1-orbits in R. Hence I' N P 5 () as asserted.

Now suppose that G is not 2-transitive. Then there exists a G;-orbit
I not containing 1 such that m := ' N P| < (p — 1)/2, and m > 0 by
what we have just proved. Define a := > crnpu, b := >, cpu, and
¢ = ,er ©in Fp[R]. Then, from what we have just proved, ¢ = a + bd
where d € F,[R] is a sum of certain coset representatives for P in R.
Moreover, if v € P, then Pv = P, and so bv = b; hence ab = mb and
b> = |P|b = 0. Since ¢ — ml € C(G}), therefore e := (c — m1)? € C(G,)
by Lemma 3.5A (ii). On the other hand

e=(a —ml+bd)? = (a—-ml)?+20a—mlbd + b°d*> = (a — ml)?

which shows that supp(e) C P. Since P # R by hypothesis, and G is
primitive, Lemma 3.5B (i) shows that supp(e) C {1}; hence (a—~m1)? = Al
for some A € F,. But the condition m = [T’ P| < (p — 1)/2 shows that
the coefficient in (a — m1)? = a® — 2ma + m?1 of each u # 1 from T'N P
must be nonzero. Thus we conclude that ' P C {1}. Since 1 ¢ T" by the
choice of I', we arrive at a contradiction to the fact that m = [I' N P| > 0.
This contradiction shows that G must be 2-transitive as claimed. O

Erercise

3.5.6 Show that cvery finite clementary abelian p-greup is isomorphic to a
regular subgroup of some primitive group which is not 2-transitive.

A group B is called a B-group (after Burnside) if a primitive group
containing a regular subgroup isomorphic to B is necessarily 2-transitive;
Theorem 3.5A describes one class of B-groups. In fact B-groups are quite
common. It was shown by Cameron et al. (1982) that for “most” values of
n the only primitive subgroups of S,, are A,, and S,,; for these values of n,
any group of order n is trivially a B-group. On the other hand, Exercise
3.5.6 shows that finite elementary abelian p-groups are not B-groups, and
Exercise 4.7.11 will show that the direct product of six copies of As is not
a B-group. For infinite groups, Cameron and Johnson (1987) have given
quite general constructions of primitive groups which contain a prescribed
countable regular subgroup and which are not 2-transitive.

‘We now turn to the original case considered by Burnside where the group
has prime degree p. In this case it is more convenient to take the set on
which G acts as the field F,,: G < Sym(F,) and R < G is the image of the
regular representation of the additive group (Fp, +).

Now permutations of F,, are just functions with domain and range equal
to IF,,, so consider the set F of all functions of F,, into itself. Since each of the
p points in F,, has p potential images, | 7| = pP. One way to construct ele-
ments of F is to use polynomial functions. Each polynomial f(X) € Fy[X]
defines a function £ — f(€) in F, and two polynomials f(X) and g(X)
define the same function if and only if f(X) = ¢(X) mod X? — X (see
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Exercise 3.5.7). In particular, each polynomial function is represented by
a unique polynomial of degree < p. This means that there are exactly pP
different polynomial functions, and so each element of £ is, in fact, a poly-
nomial function (see also Exercise 3.5.8). In particular, each permutation
in Sym(F,) can be represented by exactly one polynomial of degree < p.
Group multiplication is represented by composition followed by reduction
modulo X? — X (take care with the order of composition)

Ezercises
Let F be a finite field with ¢ elements.

3.5.7 Show that X? — X = [] . »(X — @). Use this to show that two
polynomials f(X) and g(X) over F define the same polynomial
function of F into itself if and only if f(X) = g(X)(modX? — X)
[Hint: Every unit in F has order dividing ¢ — 1]

3.5.8 (Lagrange interpolation) Let ¢ be an arbitrary function from F
into itself. Show that f(X) := — >acr Ola) % is the unique
polynomial of degree < ¢ such that f(a) = ¢(a) forall o € F.

3.5.9 (L.E. Dickson’s criterion) Show that a polynomial f(X) € FIX]
represents a permutation of F if and only if f(X) has a unique root
in F' and, for each integer m with 1 < m < ¢—1 and GCD(m, q) =
1, the polynomial f(X)™ is congruent mod X9 — X to a polynomial
of degree < g—1. (There is a considerable literature on “permutation
polynomials”.)

3.5.10 (Taylor expansion) Suppose that f(X) € F[X] has degree d < p =
char F'. Show that

Y? yd
X +Y) = f(X)+ YO (X) + ?f@) (X)+ ...+ ?ﬂd) (X)

where f(*)(X) denotes the formal ith derivative of F(X). (Ifd > p,

the formula needs modification since then we cannot divide by d! in
F)

With these ideas in hand, we are in a position to prove Burnside’s
theorem.

Theorem 3.5B. Let G be a subgroup of Sym(F,) containing the p-cycle
uy :§— &+ 1. Then G is either 2-transitive or G < AGL, (p).

PROOF. The hypothesis is equivalent to the condition that G contains the
regular representation B = {u, | o € F,} of (Fp, +) where ug : £ —
£ 4+ a. As we have seen above, each element of (7 can be represented by a
polynomial of degree < p, and the elements of AGL, (p) are precisely the
permutations represented by polynomials of degree < 1. Thus, assuming
that G is not 2-transitive, we have to show that each element of G is
represented by a polynomial of degree at most 1.



Let ' be the orbit containing 1 for the point stabilizer Gy (recall that G
is acting on the additive group (F,, +)). Translating to additive notation,
Lemma 3.5B (ii) shows that kT is also an orbit for Gg for each integer k
relatively prime to p; hence ol is an orbit for all @ # 0 in F,. In particular,
this shows that I' is closed under multiplication, and so I' is a subgroup of
the group of units of F,, and the other orbits of Gy are just the cosets of
T in this group of units. Because G is not 2-transitive, h := |I'| is a proper
divisor of p — 1, and so h < p/2. On the other hand, because G contains a
p-cycle, it is primitive. If G is regular, then certainly G < AGL1(p), so we
may assume G is not regular and hence h > 1 (Exercise 1.6.5).

We next note two simple facts which we shall need. Firstly, let z € Gg
and « € F,,. Suppose that a® = §, and put y := uaa:ugl. Then y maps

féta (4+a) = [+ -F=(+a) —a”

Thus 0¥ = 0;s0 y € Gy and permutes the elements of I' among themselves.
Secondly, since the group of units of a finite field is cyclic, I" is also a cyclic
group, generated by <y, say. Hence, for each integer r, we have

h—1 rh
: = =0 ithfr
(3.4) Zg'r = Z’Y‘LT = { <71'_1) 1
e = h if Afr

Now consider a fixed z € Gy, and let f(X) € F,[X] be the polynomial
of degree d < p such that £* = f(£) for all £ € F,. We shall show that
d=1

The element y above permutes the elements of I, so for each o € F,, and
each r > 0:

STHE+ )T =D {fE+a) = fla)+ fl@)} =D {E+ fla).

£er ger cerl

This relationship between polynomial functions gives an identity between
polynomials when the degrees are small enough. Specifically

Zf(§ +X)" = Z{ﬁ + f(X)}" whenever dr = deg f(X)" < p.

ger fey

Now applying the binomial theorem and using (3.4) gives

(35) > f(é+ X)" = hf(X)" provided 1 <r < handdr <p.
§er

On the other hand, we can expand any polynomial g(X) of degree k < p
over Fp in a Taylor series:

g€+ X) = gO(X) + g (X) + ... + 5P (X) /k!

- s g UL ]

where g()(X) /il is a polynomial of degree k — i (see Exercise 3.5.10).
Therefore, putting g,(X) := f(X)", equations (3.5) and (3.4) yield

h Z ¢ (X)/(hi)! = hgr(X) provided dr < pand 1 < r < h.
0<i<dr/h

Since the polynomials gﬁhi)(X ) are linearly independent over F, for i =

0,...,|dr/h], we deduce from this last equation that
(3.6) dr <pand 1l <7 <h together imply that dr/h < 1.

Finally, taking 7 = 1 in (3.6) we see that d < h. Then, choosing » > 1
such that d(r — 1) < h < dr, we have dr < h 4+ d < p because h < p/2.
Since dr/h > 1, (3.6) shows that » > h. This implies that d(h — 1) < h.
Since A > 1, d = 1 as required. O

Since a transitive permutation group of prime degree p contains a p-cycle,
we get the following immediate corollary (see Exercise 3.5.1).

Corollary 3.5B. Every transitive permutation group of prime degree p is
either 2-transitive or is solvable with a regular normal Sylow p-subgroup.

As early as 1832, E. Galois showed that the groups PSLy(p) have per-
mutation representations of degree p when p = 5,7 and 11, and in 1861 E.
Mathieu discovered his important multiply transitive groups which include
two groups of prime degree. Using the classification of finite simple groups,
it is possible to obtain a complete list of the finite 2-transitive permutation
groups (see Sect. 7.7), and hence the transitive groups of prime degree. The
classification implies that any transitive group of prime degree p must be
one of the following:

(i) the symmetric group S, or the alternating group A,;
(i) a subgroup of AGL,(p);
(ili) a permutation representation of PSLy(11) of degree 11;
(iv) one of the Mathieu groups Mi; or Mas of degree 11 or 23, respectively;
(v) a projective group G with PSL4(q) < G < PI'L4(q) of degree p =
(¢ =1)/(g-1).

Two of the examples of Galois (PSLz(p) with p = 5 and 7) are concealed
in this list: PSLy(5) & As, and PSLy(7) = PSL3(2). The Mathieu groups
are discussed in Chap. 6. The action in (iii) is described in Example 7.5.2. It
is conjectured that there are infinitely many primes p of the form described
in (v) (for example, every Mersenne prime has this form), but this has not
been proved.

FExercises

3.5.11 Let ¢ = ™ be a power of a prime r. Show that necessary conditions
for (¢ — 1)/(q — 1) to be prime are: d is prime, d / ¢ — 1, and m is
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a power of d. Use this to find all the primes p < 100 for which there
are groups of the type (v) just described.

3.5.12 Let G < S, have odd order. If G contains an n-cycle, show that G
is solvable.

3.6 Computing in Permutation Groups

The object of this section is to give a short outline of some techniques which
are used in computing with permutation groups. Most of these techniques
have been developed over the past 30 years, and are used, for example,
by systems such as GAP, MAGMA (which incorporates the earlier Systerﬁ
CAYLEY), MAPLE and MATHEMATICA to carry out computations in
group theory. We shall outline the mathematical ideas behind these pro-
grams, but not give details of their implementation. Although the latter
details are essential for efficient implementation and are often of interest in
themselves, they lie outside the objectives of this book. Anyone seriously
interested in carrying out computations with permutation groups should
investigate the availability of one of the systems referred to above, partic-
ularly one of GAP or MAGMA which are dedicated to computations in
group theory and related areas.

Given a permutation group G < Sym(£2) on a finite set 2, some natural
questions which arise are:

e Order Problem: what is the order of G7

e Membership Problem: given z € Sym/(Q), decide whether z € G.

e Orbit Problem: what are the orbits of G7

Block Problem: is G primitive? If not, find a nontrivial block for G.

A brief thought about these problems immediately raises the question as
to how the group G is to be described. In mathematical problems, permuta-
tion groups may be described in many different ways, but in computational
work it turns out that it is important to have a uniform description, and
this is frequently chosen to be a set W of permutations generating G. In
cases where an alternative description is given, for example, a definition of
G as the automorphism group of a geometric structure, a preliminary step
is carried out to construct a set of permutations generating G.

From here on we assume that G < Sym(Q2) and that W is a set of
generators of G. Of the questions posed above, the easiest to deal with
turn out to be those dealing with orbits and blocks.

(A) Computing Orbits

Consider the digraph G whose vertex set is {2 and whose edges are precisely
the pairs (o, a®) for all @ € Q and all z € W with a # a®. The orbits
of G are the sets of vertices of the (weakly) connected components of this
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graph. In computing the orbits, one starts with the partition of the vertex
set into subsets of size 1. Edges are then calculated one by one, and at each
step two parts of the partition are merged into a single part if they are
joined by the edge which has been generated. The final partition gives the
partition of § into orbits.

For later purposes we note that, with very little extra computation, it
is possible, while computing the orbits, to generate for each orbit a repre-
sentative v and a subset U € G such that each element in the orbit has a
unique representation in the form v* (u € U).

(B) Computing Blocks

In order to check for primitivity and to calculate blocks, we proceed as
follows. Let «, 8 be distinct points in €. Consider the digraph G with
vertex set € and with edges consisting of pairs (o, 8)* (z € ). Note that
this edge set is the smallest set of pairs which contains (o, B) and is closed
under the action of the elements of W (since G is finite, every element
in G is a product of elements from W). The calculation of the (weakly)
connected components of G is similar to the corresponding calculation for
orbits. The set of vertices in the connected component of G which contains
the vertex a is the smallest block for G containing v and § (Exercise 3.6.1).
In particular, if this calculation is carried out for fixed o and all § # «, we
shall either determine that G is primitive (the graph is connected for each
B ), or else find the minimal nontrivial blocks containing c.

(C) Bases and Strong Generating Sets

Many computations dealing with permutations groups use bases and a
special type of generating set called a strong generating set. We shall first
describe what a strong generating set is, and how a base and strong gener-
ating set can be used to solve problems such as the Order Problem and the
Membership Problem. Later we shall explain how they can be computed.
Recall that a base for G is a subset A C  such that G(a) = 1. For
computational purposes we shall assume that the points of the base are
ordered, say, 61, 8a, - . ., 64. We then define a chain of subgroups of G:

G=GO)>G1) >...>Gd)=1

where G(i) = G(i — 1), fori =1,...,d. A strong generating set U for G
with respect to this ordered basis is a subset of G such that UM G(1) is a set
of generators for G(i) (1 = 0,1,... ,d). In the present discussion we shall
only be interested in a special form of strong generating set where U =
UE_,U; and U is a set of right coset representatives for G(i) in G(i — 1) for
i=1,2,...d—1.In addition to the sets U, we shall assume that, for each 1,
we also know the orbit A; of & in G(i — 1) and the bijective correspondence
A; — U; given by o — u;(a) where oo = 6§Li(a) . If we have this information
then clearly the Order Problem is solved since |G| = Hf?:l |A;].



The Membership Problem is solved as follows. Let z € Sym(£). We
recursively define z; by

2o =2 and & =2 qu(6) 7)€ GE) fori=1,2,...

Lr—1

as long as 1 < d and 6, € A;. This process is called stripping. If the
stripping process stops before i reaches d, then clearly ¢ G. On the other
hand, if 7 reaches d then

Tz = ud(ézd"l)"lud_l(ézif)_l .. .ul(éfo)_l e G.

Thus the Membership Problem is solved, and if z € G we have expressed
z as a product of elements from our strong generating set U. We also note
that if the stripping process stops at index ¢ < d (and so z ¢ G), we
obtain an element z; which fixes 61,...,6; and is contained in the group
<G,z >.

(D) Schreier Generating Sets

The construction of a generating set U of the kind described above is based
on a theorem due to O. Schreier.

Theorem 3.6A. Let H be a subgroup of a finite group G and let T be a
set of right coset representatives for H in G. Assume that 1 € T and define
the mapping ¥ : G — T by Hx = H(z) (so ¢ chooses the correct coset
representative of Hzx from T). If W is a set of generators of G, then

Vo= {twp(tw)' |z € W,t € T}
1s a set of generators for H.

PROOF. Since Htw = Hiy(tw) by the definition of ¢, we have V C H.
Thus it is enough to show that each y € H can be written as a product of
elements from V. Since W generates G, and G is finite, we can write y =
wqwy - - - Wy, for some w; € W and some m > 0. Then, taking tp =1 € T,
we have

y = towiws - - - Wm = (towrt] ) (trwaty D) - (Eme 1 Wit Vem

where t; 1= ¥(t;_qw;) for i = 1,2, ..., m. BEach factor ti_lwiti_l € V, and
tm € HNT since V C H and y € H. Hence t,, = tp = 1, and so y has
been expressed as a product of elements from V as required. O

(E) Constructing a Base and Strong Generating Set for G

The process proceeds recursively. At a general step we have computed
a partial base &1, ..., 8,1, and for the corresponding subgroups G(0) >
G(1)... > G(i — 1) we have the orbits Ay,...,A;_; and the sets of right
coset representatives U, . .., U;_; with bijective correspondences between
Ajand U; (7 =1,...,¢—1). We shall also have a generating set W;_; for
G(i — 1). If W;—1 = 0 then we are finished, so assume that W;_; # 0; we
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want to calculate &;, A;, U; and W;. Choose 6, to lie in the support of some
element of W;_1, and use the technique for computing orbits described in
(A) to calculate the orbit A; of & under G(i - 1), a set U, of right coset
representatives for G(7) = G(i — 1),,, and the bijective correspondence
between A; and U; described there. Now use W;_; and U; and the Schreier
Theorem to compute a set W of generators for G(4). In practice, this is the
trickiest part, since if care is not taken the sizes of the generating sets grow
very quickly (Schreier’s Theorem gives a set of |[W;_ | |U;| generators). This
problem is alleviated by calculating the Schreier generators one by one, and
discarding those which already lie in the group generated by the previously
calculated generators. This requires solution of the membership problem
for this smaller group and is done (recursively!) by working with a base
and strong generating set for the subgroup of G(i) which is generated up
to that point.

FEzercises

3.6.1 Prove that the algorithm in (B) does indeed produce the smallest
blocks containing the point .

3.6.2 Suppose that you are given two transitive permutation representa-
tions of a finite group G, specificd by giving tlie images of a sct of
generators of G. Describe an algorithm to determine whether the two
representations are equivalent.

3.6.3 Carry out the construction described in (E) for the group G =
((12), (123), (14)(25)(36)) and hence find its order.

3.6.4 Given a strong generating set U for G of the form described in
(E), explain how to generate random elements of G with a uniform
distribution. (Compare with Exercise 1.2.11).

3.6.5 (Computing coset representatives for G in Sym(Q))

(i) If A C T, describe an explicit set V of right coset representatives
for Sym(A) x Sym(T \ A) in Sym(T).

(i) In general, suppose that G < Sym()) and that we have a base
{61,...,64} and strong generating set for G. Assuine the no-
tation of (E), and define partitions Ilg, ..., Iy of © as follows,
starting with [Ty := {Q}. For1 = 1,2,...,d —~ 1
(a) show that each part of IT;_; is G(¢ — 1)-invariant, so there

is one part, say I';, which contains A;

(b) define II; as the refinement of II;_; obtained by replacing
the part T'; by the three parts: {6;}, &; \ {6} and T; \ A;
(excluding empty subsets);

(c) use (1) to construct a set V; of right coset representatives
for Sym(A;) x Sym(T; \ 4;) in Sym(T;).

(i) With the notation of (ii), show that G has a set of right coset
representatives in Sym(Q) of the form V*V;V,_; ...V, where
V* = [lren, Sym(T).

i,
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3.6.6 (Selecting conjugacy classes of Sy, at random) Consider the followin
process of choosing a list (n1,m2,...) of positive integers whose sungl
is ﬁr.st n1 is chosen so that it is equally likely to be any integer
in the interval [1,n]; then ny is chosen so that it is equally likel
to be any integer in the interval 1,n — ny); and, in general, n, i}s’
chosen so that it is equally likely to be any integer in the irzte;val
ln—n — . .- ni—1]. This process is continued until 7, +nq + - - -
k= m, and we then stop. We associate the final list (1, ny ng)
W'ltlh-the conjugacy class of S, consisting of elements é)f ,5" . ‘\;vino:e
disjoint cycles have lengths ny, no, . .. , k. Prove that the prgbability

of obtaining a specific conjugacy class is proportional to the size of
the class.

3.7 Notes

® Sect. 1.3.2: An early use of grapls to analyze permutation groups ap-

pears in Higman (1964) and Sims (1967). We have used the exposit; ’

of Neumann (1977) in this section. peen

Theorem 3.2A: See Higinan (1967).

® Exercise 3.2.12: The distinction between primitive and strongly primitive
ggggs)(which applies only to infinite groups) was introducedoin Wielandt

Py AT ¢ P
i};iiiz;nn 3(.12;3775;1.@ Lemma 3.2B: These are classical; the proofs follow

¢ Exercises 3.2.19-20: See Woeiss (1935).

¢ Theorem 3.2C: See Wiclandt (1964).

® Theorem 3.2D: See Pracger (1977) and (1979).

® Exercise 3.2.29: See Neumann (1977).

o Sgct, 3.3: The concept of minimal degree is classical, but the explicit idea
of a'base seems to have introduced in Sims (1970). Most results in this
section are classical and were known to Jordan,

¢ Theorem 3.3B: See Bochert (1889).

¢ Lemma 3.3A: See Neumann (1954) and Tomkinson (1987)

® Theorem 3.3C: See Birch et al. (1976) and Neumann (1976)

e Thfaorems 3.3D and 3.3E: Also theorems of Jordan. Since “mény” permu-
tations in S, have a power which is a, prime cycle or has small support
th‘esg t.heorems help to explain why “most” elements do not lie in pro er,
prl.m.ltlve subgroups. This idea is exploited in Dixon (1969), Bovey ei)nd
Williamson (1978), Bovey (1980) and Babai (1989). See Lieb(;ck and Sax]
(1985a) for a far-reaching generalization of Theorem 3.3E.

® S.ect. 3.4: The theorem of Frobenius (1902) showing that a finite Frobe-
nius group has a regular normal subgroup was one of the earliest successes
of the theory of linear representations, and still no more elementary roof
available. Special cases of the result were known before then (see} ]§urn—
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side (1911) §134), and “elementary” cases have been found since then
(see the remarks before Theorem 3.4A). The structure of the stabilizer
of a finite Frobenius group was determined by Zassenhaus (1936) in the
context of finite groups which act fixed point free. Finally, Thompson
(1959) showed that every finite group with a fixed point free automor-
phism of prime order is nilpotent, and so showed that the Frobenius
kernel is nilpotent. These results are developed in full in Passman (1968)
(see also Huppert (1967) V §7-§8).

® Exercise 3.4.6-7: See Janko (1964) and Herstein (1958).

® Theorem 3.4A: See Burnside (1911) §134.

® Theorem 3.4B: Part (i) is due to Jordan (1872). For (ii) see Tits (1952).

e Examples 3.4.2-4: See Collins (1990).

® Sect. 3.5: These are classical results. We have used the method of Schur
(1933) (“S-rings”) as developed by Wielandt (1964) in this section.

¢ Lemmas 3.5A: and 3.5B See Wielandt (1964) and (1969).

¢ Theorem 3.5A: This is a generalization by Wielandt (1935) of earlier
theorems of Burnside and Schur. See also Wielandt (1964).

e Exercise 3.5.9: Lidl and Muller (1993) gives a survey of results on
permutation polynomials.

® Theorem 3.53: This is the original theorem of W. Burnside. Its many
proofs include: a proof using representation theory (see Burnside (1911)
§251 and many books dealing with representation theory), a proof using
module theory (see Wielandt (1969) Chap. 3 or Passman (1968) Theorem
7.3), and a proof using finite geometries (see Dress et al. (1992)). We have
chosen a proof due to Schur (1908) since it is quite direct. For related
results, see Bercov (1965), Neumann (1972) and (1974), Klemm (1975)
and (1977) and Levingston (1978).

e Exercise 3.5.12: See Itd (1992).

e Sect. 3.6: Computational methods in permutation groups have developed
over the last 25-30 years beginning with early work of C. C. Sims who
introduced the concept of base and strong generating set around 1970.
Part of the discussion in this section is based on an unpublished report
by Atkinson (1989). There is now a considerable literature on this topic,
of which the following is a random sample: Bannai and Iwasaki (1974),
Blaha (1992), Butler and Cannon (1982), Ivanov et al. (1983), Jerrum
(1986), Knuth (1991), Leon (1980) and (1984),Luks (1987), Neumann
(1987), Sims (1970) and (1978). Hoffmann (1982) contains an analysis of
some of the theoretical problems of such computations, and conference
proceedings of Atkinson (1984) and Finkelstein and Kantor (1993) in-
clude several papers of interest in this area. The book of Sims (1994) is
of related interest.

s Exercise 3.6.5: See Dixon and Majeed (1988).



4

The Structure of a Primitive
Group

4.1 Introduction

In this chapter our focus changes from the com.binator-ial and rmghthio—
retic representations of permutation groups con51dered_ in the 1&:3’?1(: ap.ei
to more direct group theoretic analysis of the groups involved. l he po1§
stabilizers of a primitive group form a conjugacy class of maximal dsu ;C
groups, so classification of primitive groups is closgly re.latecl to z.x stu ylgd
maximal subgroups. Although some of the results in this chgpfcm gre vali
for infinite groups, the central theorems will app?y Qr}ly to ﬁnlte' groups.d

It turns out that the key to analyzing finite prlrmtwg groups is to study
the socle, which is the subgroup generated by the H%ll’lll’nfll nozmalfs'ulf-
groups (see Sect. 4.3). In general, the SOf:le of a finite group ! as fairly
transparent structure: it is a nontrivial dlre_ct product of simple groups.
When G is a finite primitive group, these simple groups are all 1son.10tr—
phic, and we can describe in some detail how the socle Is embedded 1111 0
G. The O’Nan—-Scott Theorem (Theorem 4.1A) summarizes these results.
Combined with the classification of finite simple groups, this 'theorem.has
proved to be a very powerful tool in answering some long-standing questions
about finite permutation groups (see Sect. 4.8). ' _—

In studying this chapter there is a danger of being overcome by the
technicalities necessary even to give precise statements.of the malr% resul‘;s.
It may be useful, therefore, to keep in mind the following summary of the
principal theorem (see also Sect. 4.8).

Theorem 4.1A (O’Nan-Scott Theorem). Let G‘ be a finite primitive group
of degree n, and let H be the socle of G. Then either . o
(a) H is a regular elementary abelian p-group for some prime p, 7;155 (—
|H|, and G is isomorphic to a subgroup of the affine group m(D);
(b) ;17: is isomorphic to a direct power T™ of a nonabelian simple group T
and one of the following holds:
(i) m =1 and G is isomorphic to a subgroup of Aut(T);
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(ii) m > 2 and G is q group of “diagonal type” with n — et

(i) m > 2 and for some proper dimsor d of m and some promitive
group U with o socle isomorphic to TV, G s womorplac to a
subgroup of the wreath product [J wr Sym(m/d) with the “product
action”, and n = ™% ywhere ¢ s the degree of U,

(iv) m > 6, H is reguiar, and n — .

ro B2

Groups of “diagonal type” and wreath products with the “product ac-
tion” are discussed in Sect. 4.5. More detailed statements and proofs of the
various parts of Theorem 4.1A are found in Sect. 4.6 and 4.7 (the nonreg-
ular and regular socles, respectively). The earlier sections of this chapter
give a careful description of the centralizer and normalizer of a transitive
subgroup in the symmetric group, the basic facts about socles, and a little
about subnormal subgroups and composition factors.

In the special case of a 2-transitive group, Theorem 4.1A has a much
simpler form.

Theorem 4.1B. The socie of a finite 2-transitive group is either a regular
elementary abelian b-group, or a nonregular nonabelian simple group.

This result was originally proved by W. Burnside (see Burnside (1911)
§154, Th. XIII), and was an early forerunmer of the O'Nan Scott Theo-
rem. In Sect. 4.8 we will see that primitive group comiug under parts

(b)(ii),(b)(iii) or (b) (iv) of Theorem 4.1A must have rank at least 3, thus
proving Theorem 4.1B.

4.2 Centralizers and Normalizers in the Symmetric
Group

Suppose that G is a transitive subgroup of Sym((Q) {(we are not restricting
{2 to be finite). In this section we shall look at the centralizer and normalizer
of G'in Sym(f). The results are basic, and will be used repeatedly in the

subsequent analysis of primitive groups. We begin with two exercises which
illustrate some of the Important ideas.

Ezercises

4.2.1 Let C be the centralizer in Sym(Q) of the subgroup G < Sym(Q).
Show that for each point & € Q the orbit o€ is contained in fix(G,,).
4.2.2 Let G be a nontrivial group and consider two ways in which G can
act on itself:
(i) (Right multiplication) p : G — Sym(G) defined by ¢#(®) .= az;
and
(ii) (Left multiplication) A : G — Sym(G) defined by ¢*®) .— -1,
(see Example 1.3.4 and Exercise 1.3.2)

o
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Show that the images ol p and A centralize each other, and that for
some ¢ of order 2 in Sym(G) we have t7' p(G)t = MG).

We can generalize the last exercise as follows. Fix a subgroup H of the
group (. Then G acts by right multiplication on the set Ty of right cosets of
/1. Barlier we denoted this permutation representation by pg (see Example
1.3.4), but here we shall simply denote it by p. If we restrict our att_ention
to the normalizer X := Ng(H), then there is a second action A of K on
I'fr given by left multiplication; namely, (Ha)*(®) = z=1(Ha) = Hza.
The lemnma below examines the relationship between the images p(G) and
AI). ‘

We say that a group G acts semiregularly on a set 2 if G acts on  in
such a way that the identity is the only element with any fixed points; in
other words, G, = 1 for all & € §. In particular, a group is regular if and
only if it is both semiregular and transitive.

Lemma 4.2A. Let G be a group with a subgroup H, and put K := Ng(H).
Let Ty denote the set of mght cosets of H in G, and let p and A denote
the mght and left actions of G and K. respectively, on I'fy as defined above.
Then.

(1) ker A = H and AN(K) is semiregular;

(i) The centralizer C of p(G) in Sym(Tx) equals A(K);

(ii) H € T'y has the same orbit under A\(K) as under p(K); .

(iv) If M(K) 1is transitive, then K = G, and A(G) and p(G) are conjugate

in Sym(Ty).
Proor. (i) Clearly & '"Ha = Ha for alla € G <= =z € H <=
@ 'Ho = Ha lor some o € G. Thus ker A = H, and the point stabilizer of
each point Ha € Ty under the action A is H.
(ii) First, note that if # € G and y € K, then for each a € G

(Ha)?AY) = Hy lag = (Ha) ¥)e(E)

and so p(z)A(y) = A(y)p(z). Thus AMK) < C.
Conversely, suppose that z € C and that H* = Hc, say. Then for each
a€ G

(Ha)* = HA®* = g#(®) = Hea.

In particular, for each a € H, we have Hc = (Ha)* = Hca. Thus ¢ €
Na(H) = K, and z = A¢™?). This shows that C' < A(K) and completes
the proof of (ii). ‘

(iii) In both cases the orbit of H is the set of right cosets of H in K.

(iv) If A(K) is transitive, then (iil) shows that each coset Hz (2 € G)
has the form H?®¥) = Hy for some y € K. Hence G = K = Ng(H) and so
H aG. Thus we can define a permutation ¢ € Sym(g) by (Ha)t := Ha™1;
the point is that when H < G this mapping is well-defined. Now verify that
W\ (2)t = p(z) for all z € G. O
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Using this lemma we can analyze the centralizer of a transitive group.

Theorem 4.2A. Let G be a transitive subgroup of Sym(Q), and o a point
in 2. Let C be the centralizer of G in Sym(Q). Then.
(i) C is semiregular, and C = Ne(Go)/Go (so |C| = |fix(Gy)| by

Ezercise 1.6.3);

(i) C is transitive if and only if G is regqular;

(iii) if C is transitive, then it is conjugate to G in Sym(Q) and hence C
18 regular;

(iv) C =1 if and only if G is self-normalizing in G (that is, Na(G,) =
Ga);

(v) if G is abelian, then C = G;

(Vi) if G is primitive and nonabelian, then C = 1.

PrOOF. We apply the preceding lemma with H = Ga. Since G and p(G)
are then permutation isomorphic, the lemma shows that ¢ is permutation
isomorphic to A(K) where K = Ng(G,). Thus (i) follows from Lemma
4.2A (i), and (iv) follows from (i).

Using Lemma 4.2A (iii) and (iv) we now observe that C is transitive if
and only if p(K) is transitive, and that in the latter case C is conjugate to
G in Sym(£). Since p(K) is permutation isomorphic to K, and K > G,
this shows that C is transitive if and only if X = @. But K = G holds
exactly when G, <G, and this is equivalent to G, = 1 and G being regular.
Hence (ii) and (iii) follow.

If G is abelian, then C' > @, and so (iii) shows that C' = G, this proves
(v). Finally, in the case that G is primitive, G, is a maximal subgroup of
G. Hence, if G is also nonabelian, then G, must be its own normalizer in
G. Thus (vi) follows from (iv). O

Ezercises

4.2.3 Find the centralizer of G = ((123456), (26)(35)) in S.

4.2.4 Let C be the centralizer of an intransitive group G in Sym(Q). Show
that the orbits of G on 0 are equivalence classes for a C-congruence.
Moreover, if A and I" are G-orbits, then there exists ¢ € C such that
A¢ = T if and only if the actions of G on A and T are equivalent.
In particular, the union of all G-orbits of a fixed size is a C-invariant
subset of Q.

4.2.5 (Continuation) Let X be the set of orbits of G and suppose that the
action of (G on each of its orbits is equivalent to its action on a set
A. Show that C' = Cy wrr Sym(T') where Gy is the centralizer in
Sym(A) of the subgroup GA.

4.2.6 Let T C Sym(Q) and let C be the centralizer of 7. If o € Q, show

that (T') is regular if and only if, for each ¢ € T there exists ¢ € c
with ot = ac.
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4.9.7 Show that the centralizer in Sym/(§2) of a semiregular subgroup of
Sym(Q) is transitive. ) :

4.2.8 Suppose that H is a nontrivial and nonregular.r'lormal subgroup
a primitive group G. Show that each point stabll%zer f)f H is its own
normalizer in G, and that H has a trivial centralizer in G.

We shall now consider the normalizers of transitive groups. Let G beQa
transitive subgroup of Sym(€). Then the normal.lzer N of G in Sym( )
acts naturally on the set G by conjugation; this gives a homomorphism

¥ N — Aut(G) where ¥(z):ur— z  uz.
Since ker ¥ is the centralizer of G in Sym/(Q), the previous theoremﬂsh;zs
that ¥ is injective exactly when Ng(Ga) = G, for ead‘l o .E . .I \Ire
following characterization of the automorphisms of G Whl.Ch hf’ in Im
will be useful in the classification theorems developed later in this chapter.

Theorem 4.2B. Let G be a transitive subgroup of Sym/(§Y) and let a € €2
If U is the homomorphism defined above, and 0 € Aut(G), then

o eIm¥ <« (Ga.)° 1sapoint stabilizer for G.

PrOOF. Let 0 € Im ¥, so o = ¥(z) for some T € N. The[rfl (_G’g;)” fO:r
- Gz = Gp where § = o”. Conversely, suppose that (Ga) = gf "
some 8 € . Then the two transitive permutatlop representatloncs; of

into Sym(Q)) given by  — T and z — z° are equivalent because Gg 1sQa
point stabilizer for each of them. This means that for some ? € Sym(Q)

we have ot = tz° for all ¢ € G. Clearly t € N. Hence 0 = ¥(t) € Im ¥

O
as required.

In the special case when G is regular, N is the holomorph of G (see
Exercise 2.5.6). We then have the following result.

Corollary 4.2B. IfG is regular, then Im ¥ = Aut(G). In this case N. ‘E
Aut(@), and N is isomorphic to the semidirect product G x Aut(G) with

the natural action of Aut(G) on G.

PrOOF. Since G is regular, therefore Ga =1, and so Im ¥ = Aut(G) by
the theorem. The centralizer C' of G in S ym(Q) is regular and isomorphic to
G by Theorem 4.2A, and therefore N = CN, with GQ.N and CN Ny 2;— 1
Hence Aut(G) = Im¥ = N/ker ¥ = N/C = Ng. Finally, becauieG is
regular and normal in NV, therefore G N N, = 1 and N = GN, = >é
Aut(G).

Exercises

4.2.9 In the context of Theorem 4.2B give an example of a transitive group
G for which Im ¥ is not all of Aut(G).

.3 The Socle [

4.2.10 Calculate the normalizer of a Sylow p-subgroup in S,.

4.211 Let n > 1 and let Q = Z/nZ (the ring of integers modulo ). Let
H be the set of all mappings of §) into itself of the form: & +— r£ + 5
where r, s € Z/nZ and the integers in the congruence class 1 are
relatively prime to n. Show that H is a subgroup of Sym(Q), and
that H is the holomorph of a cyclic group of order n.

4.2.12 (Continuation) Enumerate all the transitive subgroups of H.

4.2,13 Show that the holomorph of a group G is primitive if and only if G
has no characteristic subgroups apart from 1 and G.

4.2.14 If the holomorph of a group G is 2-transitive, show that all nontriv-
ial elements of G' have the same order. In particular, if G is finite,
show that G is an elementary abelian p-group for some prime p
(each nontrivial element has order p). (The case for infinite groups
is more complicated since it is known that there exist infinite non-
abelian simple groups in which every pair ol nontrivial elements are
conjugate. See Higman et al. (1949).)

4.2.15 Show that the affine group AGL,(p) is the holomorph of the
elementary abelian p-group of order p®.

4.2.16 Give an example of two nonisomorphic finite groups which have
isomorphic holomorphs.

4.2.17 Let G be a finite permutation group containing a regular normal
subgroup K. If H < G and A := fix(H) # ), show that (Cq(H) N
K)4 is regular in Sym(A).

4.3 The Socle

The major theme of this chapter is the analysis of a finite primitive group
in terms of its socle. This section defines the socle and describes the form
that it can take in a finite primitive group.

A minimal normal subgroup of a nontrivial group G is a normal subgroup
K s 1 of G which does not contain properly any other nontrivial normal
subgroup of G. For example, a simple group has itself as its only minimal
normal subgroup, while an infinite cyclic group has no minimal normal
subgroup. The socle of a group G is the subgroup generated by the set of
all minimal normal subgroups of G; it is denoted by soc(G). By the usual
convention, soc(G) = 1 if G has no minimal normal subgroups.

Since the set of all minimal normal subgroups of G is mapped into itself
by every automorphism of G, the socle soc(G) is a characteristic subgroup of
G. Every nontrivial finite group has at least one minimal normal subgroup
so has a nontrivial socle.

FEzercises

4.3.1 Find the socle of Sy4.
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4.3.2 Let G be the multiplicative group consisting of all complex numbers
z which are roots of unity (so 2™ = 1 for some n > 0 depending on
z). Find soc(G).

4.3.3 If G is a finite p-group, show that soc(G) is contained in the centre
Z(G).

4.3.4 If G is a direct product of a finite number of simple groups, show
that G = soc(G). Is this still true for a direct product of an infinite
number of simple groups?

4.3.5 If I is the free group on two generators, show that soc(F) = 1.

‘We now turn to our analysis of the socle for a finite group. Although the
socle of a group is defined simply as the subgroup generated by the set of
minimal normal subgroups, the following theorem shows that it is actually
a direct product of some or all of these normal subgroups.

Theorem 4.3A. Let G be a nontrivial finite group.
(1) If X is @ manimal normal subgroup of G, and L is any normal subgroup
of G, then either K < L or (K, L) = K x L.
(i1) There exist minimal normal subgroups K, ..., Km of G such that
soc(G) = Ky x ... x K.
(iil) Bwery minimal normal subgroup K of G is a direct product If =

T, x -+ x Ty where the Ty are simple normal subgroups of K which
are conjugate under G.
(iv) If the subgroups K, in (i) are oll nonabelian, then K, ..., K are

the only minimal normal subgroups of G. Similarly, if the T; in ()
are nonabehan, then these are the only minimal normal subgroups of
.
Proor. (i) Since K N L <G the minimality of I shows that either K < L
or £ " L = 1. In the latter case (K, L) = KL = K x L because both K
and L arc normal.

(ii) Because G is finite we can find a set S = {K;, ..., K,,} of minimal
uormal subgroups of G which is maximal with respect to the property that
the subgroup H generated by S is a direct product K; X - x K. It
remains to show that H = soc(G); this will follow if we show that H
containg all miniinal normal subgroups of G. Let K be a minimal normal
subgroup of G. Then (i) shows that either X' < H or (K, H) = K x H. The
latter is impossible by the choice of §. Hence H contains every minimal
normal subgroup of G as required.

(ii1) Let T be a minimal normal subgroup of K. Then the conjugates
21Tz of T under elements z € G are also minimal normal subgroups

of K. Choose a set {T1,...,Ty} of these conjugates which is maximal
with respect to the property that L := (T3, ...,T}) is a direct product
Ty x - x Tj. Then using an argument analogous to that in (ii) we see

that L contains all of the conjugates of T' under G, and so L < G. Since
I I < K and K is a minimal normal subgroup of G of K, we conclude
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that K = L = Ty x --- x T%. Finally, for each T;, the normal subgroups
of T; are clearly normal in K, so the minimality of T; shows that it must
be a simple group.

(iv) Suppose that G has a minimal normal subgroup K which is distinct
from the K; (¢ = 1,...,m). Then (i) shows that K centralizes each of
the K; and so K < Z(soc(G)). However, if each K, is nonabelian, then
Z(K;) = 1 by (iii). This implies that Z(soc(G)) = 1 and so K = 1
contrary to the choice of K. O

Corollary 4.3A. Every minimal normal subgroup of a finite group is ei-
ther an elementary abelian p-group for some prime p, or its centre is equal
to 1.

ProOF. This follows at once from part (iii). O

We shall use the following technical lemma in applications of Theorem
4.3A.

Lemma 4.3A. Let Ty, ..., T, be simple nonabelian groups. Suppose that
H is a group with distinct normal subgroups K1, . . ., Km such that H/K; =
T for eachi and N K; = 1. Then H =Ty x - x Ty,

PrOOF. Proceed by induction on m. The result is clear for m = 1,
suppose that m > 1. Put
m—1
K* = () Ki H = H/K" and K == K; [ K* fori=1,...,m—
i=1
Since H*/K} = H/K, = T;, induction shows that H* =T} x -+ x Tpp_1.
In particular, it follows from Exercise 4.3.6 below that H* has only m — 1
maximal normal subgroups, and so H % H* by the hypothesis on H. Thus
K* % 1 but K* N K,, = 1 by hypothesis. Since H/K,, is simple, K., is a
maximal normal subgroup of H, and so H = K*K,,, = K* x Kp,. Since
K* = H/K,, = Ty, and K,, & H/K* = H*, therefore H = Ty X - -+ x Ty
as required. i O

Exercises

4.3.6 Suppose that G = Ty x -+ x T, is a direct product of a finite
number of nonabelian simple groups 7;. Show that these are the only
minimal normal subgroups of G, and that G has exactly m maximal
normal subgroups, namely, the centralizers Cg(T}) (1 = 1,...,m).

4.3.7 (Continuation) What can you say if exactly one of the T}’s is an
abelian simple group?

4.3.8 Show that there are exactly (p™ — 1)/(p — 1) minimal normal sub-
groups in an elementary abelian p-group of order p™. How many
maximal normal subgroups does this group have?
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4.3.9 Suppose that 7" is a nonabelian simple group. Show tl%at _fo}: each
iriteger k> 1, Aut(T*) = Aut(T) wrr Sym(I") where |T| E;Lh .
4.3.10 Determine the minimal normal subgroups of the.group A d(% )
and express each of them as a direct product of .snn'ple groups.dirl
this to show that the condition that 7" be nonabelian in the preceding
i nnot be omitted.
4.3.11 i);irgs;fg H be nontrivial finite groups. Is.it always trge Elﬁatb;}:
' socle of the wreath product W := G wr H is contained in the

group of W7

We now apply these general results on socles to the special case olf iofirrlrllz
primitive group. As we know from Thfaqrem l.fﬁA_, every nontrlv;e; nowma
subgroup of a primitive group is transltw(?,. ?.‘hls imposes severe
on the minimal normal subgroups of a primitive group.

Theorem 4.3B. If G is a finite primitive subgroup othyﬁgQ),l an;f l;i'sis
X . tly one of the following holds:
mal normal subgroup of G, then ezactly '
a(TiT;W]L"Zor some prime p and some integer d, K is a regular elementary
abelian group of order p%, and soc(G) = K.: CG(I{) ; N S
(i1) K s a regular nonabelian group, Cg(K) is o minimal norm o
group of G which 1s permutation isomorphic to K, and soc( =
K x CG(G');
(iil) K s nonabelian, Co(K) = 1 and soc(G) = K.

Remark. Note that in case (iii) K may or may not be regulaf»r.GIn czsiersl
(i) and (iii) the socle is the unique min.imal pgrmal subgrtl)up bo rOl,l a;n(see
case (il) G has exactly two (isomorphic) minimal normal su g.,:j T}}l)eorem
Theorem 4.3A (iv)). Affine groups give examples of case (i), an peorem
4.7A shows that these (and their subgroups) are the or%ly (ixampab.ehan
instance of case (ii} is given in Exercise 2.5.9, and any simple non

primitive group gives an example of case (iii).

PrOOF. Put C := Cg(K). Since C <« G, either C = 1.or C is traéls}itg;
Since K is transitive, Theorem 4.2A shows that C is semiregular, an | sr °
either C' = 1 or C is regular; in the latter casg C is the ful'l centrla 1z‘Ehen
K in Sym(Q), and so is permutation isomorphlc‘to K. If C is regu ag, the
it must be a minimal normal subgroup of G since any proper slu I o ;j
of C is intransitive. Theorem 4.3A (i) shoxys that every minima noil e
subgroup of G distinct from K is contained in C . Thus mhaltI: lfaseg vieK v
soc(@) = KC which equals K or K x C depending on whether C' <
nOItIQO = 1, then we have case (iii); and, if C = K,'then Kis acm?él;ail a};ldche
have case (i) by the Corollary 4.3A. In the remaining case so c

and we have case (ii).
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Corollary 4.3B. If G is a finite primitive group, then H = soc(G) 1s a

direct product of isomorphic simple groups. If N denotes the normalizer of

H in the symmetric group, then H is a minimal normal subgroup of N.

Moreover, if H is not regular, then it 1s the only minavmal normal subgroup
of N.

PROOF. The first statement follows immediately in case (i), and follows
from Theorem 4.3A in cases (ii) and (iii). Consider the second statemens.
Since G < N, we know that N is primitive, and A < . In cases (i) and
(i) # = K is minimal normal in G and hence also minimal normal in
N. In the case (i) C = Cg(K) is permutation isomorphic to K, and so
C = t71Kt for some t & Sym(Q). Then ¢t LKt centralizes K, and so
t7'Ct = t2K¢% is contained in K Dbecause it centralizes £ !¢ — c;
thus comparing orders gives t7*Ct = K. This shows that K and C are
interchanged under conjugation by ¢. Since H = K x (7 in case (ii), we
conclude that ¢ € IV and H is a minimal normal subgroup of NV as asserted.

Finally, suppose that H is not regular, and apply the theorem to the
primitive group N and its minimal normal subgroup /. Clearly, only case
(iii) can apply, and so I — soc(NV) is the unique minimal normal subgroup
of N. 0

Ezercises

4.3.12 Show that each maximal primitive subgroup of S, hag a unique
minimal normal subgroup.

4.3.13 Let H be the socle of a primitive subgroup of Sy, and let NV denote
the normalizer of & in Sp. If H is not regular, and G is a primitive
subgroup of S, such that A& < G < N, show that soc(G) = H.
Give an example to show that this need not be true if & is regular.

4.3.14 Show that a permutation group of degree n with 4 orbits has at
most 4(n — k)/3 factors in its composition series. Moreover, this

bound can be attained by a transitive group when n is a power of
4,

4.4 Subnormal Subgroups and Primitive Groups

The present section digresses from the main theme of this chapter to discuss
the subnormal structure of the point stabilizers of a finite primitive group.
This material will not be needed in the proof of the O’Nan—Scott Theorem,
but it will be used in later chapters.

Recall that a subgroup H of a group G is subnormal in G if there is a
finite chain of subgroups H = Hj « Hi<...aHy =G from H to G where
each H; is normal in Hiiq (but not necessarily in G). In a finite group,
a subgroup is subnormal exactly when it appears in some composition
series, so it is natural that subnormal subgroups arise in the study of the

)
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composition factors of a finite group.. It is casily seen that a subnormal
subgroup of G is also subnormal in every subgroup L of G in which it
is contained. Clearly, every normal subgroup of G is subnormal, but, in
peneral, a subnormal subgroup need not be norwal (see Exercise 4.4.1).

Lemma 4.4A. If G is a finite group, then soc(G) < Ng(H) for each
subnormal subgroup H of G.

Proor. The result is certainly true if G = H, so we proceed by induction
on |G : H| and assume H < G. We have to show that each minimal normal
subgroup I of G is contained in Ng(H).

Since H is subnormal, there exists <G with H < L < G. By Theorem
4.3A (i) we know that either K < L or (K, L) = K x L. In the latter case
K < Ca(H) < Ng(H) and the result is true; so suppose K < L. Then
there exists a minimal normal subgroup T of [ with T < K. For each
¢ € G.z 'Tz is a minimal normal subgroup of z=1Lz = L, so induction
chows that v~ Tz < Np(H) < Ng(H). Since K is a minimal normal
subgroup of G, K = (z='Tz | z € G), and so K < Ng(H). This proves
the lemma. 0

The proof of the following lemma uses the elementary fact that if A and
3 are subgroups of any group G, then: AB = BA — AB is a subgroup.

Lemma 4.4B. Let H be a subgroup of finile indez in o group G. If
He- Hz = o 'HzH for allz € G, then H 1s subnormal in G.

Proor. Proceed by induction on |G H|. If H <G, then the conclusion
certainly holds, so suppose that H # z~}Hux for some & € G and put
K = Hz~'Haz. Now |G : K| < |G : H|, and the hypothesis on H clearly
implies that Ky 'Ky = y 'KyK for ally € G. Therefore, by the in-
duction hypothesis, K is subnormal in G. Moreover, z € K; otherwise,
| € Hz 'H. and that implies z € H contrary to the choice of z. Thus
K : H| < |G : H|, and so we can apply the inductive hypothesis to the
pair K, H to conclude that H is subnormal in K. Since K is subnormal in
G, this shows H is subnormal in G as asserted. O

Lemma 4.4C. Let H be a subnormal subgroup of a finite group G, and
consider the smallest normal subgroup M = (z"'Hz | ¢ € G) of G
containing H.

(i) Each composition factor of M 1s isomorphic to a composition factor
of H, and each simple homomorphic image of M 1is isomorphic to a
homomorphac image of H.

(ii) If K is @ subnormal subgroup of G with no homomorphic image
isomorphic to a compositon factor of H, then H < Ng(K).

ProoF. (i) We proceed by induction on |M : H|. Theresultis trivial when
M = . so suppose that M > H. Then H is not normal in G, and we
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hz‘we a chain H = Hy < Hy; ... <4 Hy = G of distinct subgroups of G
with d > 2. Let k& be the smallest index for which Hy is not contained in
Ng(H), and choose z € Hy \ Ng(H). Then H and z~*Hz are both normal
subgroups of Hy_1, and so L := Hz 'Hz < Hy_;. Now L < M and is a
subnormal subgroup of G properly containing H. Since M is the smallest
normal subgroup of G containing L, the inductive hypothesis shows that
each composition factor of M is a composition factor of L, and each simple
homomorphic image of M is a homomorphic image of L. On the other hand
Hkl_l < Ng(H) by the choice of k, so H « L and L/H m‘le/(Hf';
z” H z). Thus, by the Jordan-Hélder Theorem, every composition factor
of L is a composition factor of H. Similarly, if N < L and L/N is simple
then not both H and 2! Hz are contained in N; hence, either H/(H NN )7
or :?.‘le/(m‘le N N) is isomorphic to L/N. This proves (i).

‘(11) It is enough to consider the case where G = MK and show that in
thls. case K < G. Suppose that K is not normal in G. Then an argument
similar to that given in (i) shows that for some z € G, L := Kz 1Kz

is subnormal in G and K is a proper normal subgroup of L. T
. Then L =
LNMK = (LNnM)K, and so - .

(4.1) e Kz/(KNe 'Kz) 2 L/K = (LN M)/(LNMnNK).

Since L is subnormal in G, L N M is subnormal in M, and so (4.1) shows
that 71Kz (and hence K) has a simple homomorphic image isomorphic
to some congposition factor of M. But then (i) shows that K has a simple
homomorphic image isomorphic to some composition factor of H contrary
to the hypothesis on K. Thus K < G and (ii) is proved. 0

‘We now come to the main theorem of this section. If G is a finite primitive
subgroup of Sym(Q) and I is a nontrivial orbit of G, then Theorem 3.2C
ShOWS that each composition factor of G, is isomorphic to a sectionl of
the induced group GL. Part (iii) of the theorem that follows extends this
analysis to the stabilizer of two points «, 5 € 2. Let A be the orbital for
G containing the pair (@, 3), and let A* be its paired orbital (see Section
32). Then T' = A(a) = % and A = A*(B) = a®% are G,p-invariant
sets. Moreover, I" and A have the same length. *

Tl;e?)rem 4.4A. Let G < Sym(Q) be a finite primitive group, and let
fo! .
(1) Go contains no nontrivial subnormal subgroup of G.

(1) If & C Q s a ym’on of orbits for G, which contains one orbit from
each pair of paired orbits (including the self-paired orbits), then G
acts faithfully on 3. ’ °

(iii) Let o and B be distinct points in Q, and put T := A% and A := %5
Then each composition factor of Gapg 18 @ ) 0 '

g 18 isomorphic to a 1)

factor of either (Gag)' or (GQE)A.Q g rompestiion



1is 4. LLIE DULIULLULY UL @ 4 1llivs s o waswaap

PrOOF. (i) Let H be a subnormal subgroup of G contained in Gg, and let
K be any minimal normal subgroup of G. Then G = KG,, because G is

primitive, and K normalizes H by Lemma 4.4A. Hence
M:=(z7'Hz |z € Gy) = (y 'Hy |y € G) < G.
Since M < G, M = 1 by the transitivity of G. Hence H = 1 as asserted.

(i) Let K = Gy € G, be the kernel of the action of G on B. First
note that if A and A* are paired orbitals for G, and =z € G then:
a® € Ala) <= (a,0") €A

= (az_l,oz) €A

= o € A*(a).
Thus the hypothesis on ¥ implies that, for each z € G, at least one of
o® or o® ' lies in ¥. Since K fixes each point in ¥, this shows that for
each z € G at least one of Kz~ ! or z~' Kz is contained in G,. However
KaGy,and 27 (KzKao Yz = 27 KoK, s0o Kz 'Kz = 7Kz K for all
z € G. Now Lemma 4.4B shows that K is subnormal in G, and so K =1
by (i).
(iii) The result is trivial if G is regular, so suppose that G is not regular.
Put H = Gy, K := Ggand L := H N K = Gug, and note that L # 1
and G = (H, K). Consider the condition:

(4.2) some simple homomorphic image of U is a composition factor

of LY or L®

for subnormal subgroups U of L. If (4.2) holds for all nontrivial subnormal
subgroups of L, then we can choose successive terms L = Lg, L1,...,Lg =
1 in a composition series for L such that L;_1/L; is isomorphic to a com-
position factor of L¥ or L2 for each 7. The Jordan—Hdlder Theorem then
shows that every composition factor of L is isomorphic to a composition
factor of L¥ or L® as required. On the other hand, suppose that (4.2) does
not hold for some nontrivial subnormal subgroup of L, and choose U # 1
as a counterexample of maximal order; we shall show that this leads to a
contradiction.

Since (4.2) fails to hold for U, U must lie in the kernel of the homomor-
phism z — ¥ of L onto LY. Therefore U < Ly = Hry<Hry = H, and
so Lemma 4.4C (i) and the maximality of U show that U <« H. A similar
argument shows that U < K. Hence we conclude that 1 # U a(H, K) = G
which is impossible because G is transitive and U < H = G,. Thus (4.2)

holds for all nontrivial subnormal subgroups U of L, and the theorem is
proved. O

FEzercises

4.4.1 Find a subnormal subgroup of Sy which is not normal.
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4.4.2 Let H be a subnormal subgroup of a finite group G
(i) If soc(G) < H, show that soc(G) < soc(H). .
(ii) Show that soc(H) <soc(G)'.
(iii) Give an example to show that soc(H) need not be contained
in soc(G).

4.4.3 Show that the conclusion of Lemma 4.4C (i) need not be true if H
is not subnormal.

4.4.4 With the notation of Theorem 4.4A give an example where (G )F
and (Gg)® are not isomorphic. -

4.4.5 Under the hypothesis of Theorem 4.4A show that Gag = 1if (G)F
and (G3)® are both regular, i )

4.4.6 Under the hypothesis of Theorem 4.4A show that, if I' (and hence
A) has length d, then each prime p dividing |Ga@‘ satisfies p < d
(Thi's gives an alternative solution to Exercise 3.2.25.) ‘

4.4.7 If G is a finite primitive group whose point stabilizer G, has an orbit
A such that (Ga)® has prime order P, show that G is a Frobenius
group of order pg” for some prime ¢ # p and some r > 1,

4.4.8 If G is a finite primitive group with a regular normal suTagroup show
that the point stabilizers act faithfully on each of their non:crivial
orbits.

4.4.9 Suppose that a point stabilizer G, of a finite primitive group G
has a nontrivial centre Z (Ga). Show that Gy acts faithfully on oC»
when@er B € supp(Z(Gy,)). [Hint: The kernel of the action of @
on this orbit is normalized by Z (Ga)] ’

4.4.10 Let G be a finite primitive group with point stabilizer G,. If there
18 an orbit A of Gy, for which (G4)2 has order 4, show tﬁat Gisa
Frobenius group.

4.4.11 Show that, for any finite primitive group with a suborbit of length
3, the point stabilizers have order dividing 3 - 24. ;

4.4.12 .If G < Sym(Q) is an infinite primitive group with a finite nontriv-
ial suborbit, show that all suborbits of G are finite and that is
countable.

4.4.13 Shgw that part (ii) of Theorem 4.4A fails for infinite groups
[Hmt." Let G = Aut(Q, <).] (Part (i) also fails, but this is moré

" complicated.) l

4.5 Constructions of Primitive Groups with
Nonregular Socles

We? continue to analyze the structure of a, finite primitive group G in terms
of its spcle H. As we saw in Corollary 4.3B the socle of a finite primitive
group is a direct product of isomorphic simple groups. When I is regu-
lar, G is contained in the holomorph of H, and we shall deal with t%is

s
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situation later (see Sect. 4.7). In the present section we shall look at the
case where H is not regular. Because G is primitive, we know that H is
necessarily transitive, and in particular H cannot be abelian. This section
deals with two general constructions of finitec primitive permutation groups
whose socles are nonregular.

Let H = T1 x -+ x T, be a direct product of m isomorphic copies
of a finite nonabelian simple group 7. Our objective is to embed H as a
nonregular transitive subgroup in some symmetric group Sym(Q) in such
a way that the normalizer N of H in the symmetric group is primitive.
Then N and certain subgroups G with H < G < N will give examples of
primitive groups which have H as a nonregular socle. We shall see in the
next section that the constructions which we describe below give essentially
all the primitive groups which have H as a nonregular socle when m > 1.

One of these constructions is already available directly from the product
action of a wreath product (Sect. 2.7). Start with any transitive, nonreg-
ular representation of T'; without loss in generality we may assume T is
a transitive, nonregular subgroup of Sym(A), say. Let M be the normal-
izer of T in Sym(A), and put I' := {1,...,m}. Then the wreath product
W = M wrr Sym(T) acts faithfully on the set Fun(T, A) of all functions
of T" into A with the product action. According to Theorem 2.74A, the image
of this action is primitive exactly when M is primitive.

To simplify the notation we identify Fun(I", A) with the Cartesian power
A™via f — (f(1),..., f(m)), and identify W with its image in Sym(A™).
We also identify H with the natural subgroup 737 X --- x T, of the base
group M| x --- x My, of W where the T; are permutation isomorphic and
T = Ty 9 M; for each i. Note that all orbits of M; have size |A| and are of
the form

{61} x -+ x {8im1} X A X {81} x -+ X {m}

and that these are also orbits for T3. Moreover, the actions of M; (and
of T;) on these different orbits are all equivalent. In general, if we fix
(61,...,6m) € A™, then the stabilizer of this point in A has the form
Ry % --- x R, where, for each i, R; < T; is the stabilizer of §; in the action
of T, on A. Since H acts transitively on A™, its point stabilizers are all
conjugate, and so every point stabilizer of A has the form

'Rt withw; € Ty fori=1,...,m.

ul ' Ryugp X e X g,
Lemma 4.5A. With the notation above, suppose that the normalizer N
of H in Sym(A™) is primitive. Then N is equal to the wreath product W.

Proor. Clearly W < N, so it is enough to show that for each z € N
we have z € W. Let ¥ := {T),...,T,,}. Since T is a nonabelian simple
group, Theorem 4.3A (iv) shows that I is the set of all minimal normal
subgroups of A, and hence W and N both act on & by conjugation. It is
also clear that W induces the full symmetric group on X, and so for some
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y € W we have z := zy~! € N acting trivially on X. In particular, each
T; is normalized by z.

Since z normalizes H, conjugation by z must permute the point stabiliz-
ers of A amongst themselves. Since z acts trivially on X, this shows that
conjugation by z must map each R; onto a Tj-conjugate of itself. But the
T;-conjugates of R; are the point stabilizers of T; in its action on each of
the orbits of T;. Therefore Theorem 4.2B shows that the automorphism
of T; induced by conjugation under z is also induced by some element of
M;. Hence for some element t € My x --- x M,, < W, the element zt~!

centralizes H = T7 X - -- x Tp,. Since N is primitive and H is not regular,
Theorem 4.3B shows that Cy(H) = 1. Therefore z = 2y = ty € W as
required. ]

The second general construction of a primitive group with nonregular
socle also comes from the product action of a wreath product, but rather
more indirectly. In this construction, take the simple nonabelian group T°
as a regular subgroup of Sym(A) and again put I' := {1, ..., m}. Consider
the wreath product W := T wrr S, in its product action on A™. Theorem
2.7A shows that W does not act primitively on A™ because T is regular,
and indeed there is a fairly obvious W-congruence on A™ defined as follows.
Let C be the centralizer of T in Sym(A); so C is also regular, and C = T
by Theorem 4.2A. Now C acts on A™ by (61,...,6m)¢ = (65,...,685).
This action commutes with the action of the base group of W since C
centralizes T' and commutes with the top group S, since the same element
of C acts on each component. Hence (61, . ..,0,)% = (61, ..., 6m)?¢ for all
ce Cywe Wand(61,...,0m) € A™. Thus the set  of all C-orbits in A™
is a set of blocks for W (see Exercise 4.5.1). We shall write [61,...,6m] €
to denote the block containing (61, ..., 8,). The corresponding action of
the base group 7™ on € is called the diagonal action of T™.

Since T is regular on A, we can identify A with T, so that the action
of T is right multiplication: §* = 6z for all z € T and 6 € A = T. The
action of the centralizer C' is then left multiplication by the inverse: §¢ =

c™'6. The C-orbit [61, .. ., 6m] consists of all points (c716y, ..., ¢ 6y,) for
¢ € C. These m-tuples are identified to a single point in ; the m-tuples
(61,...,6m—1,1) may be taken as representatives, for example. With this

identification, the base group 7™ of W acts by right multiplication while
the top group S,, permutes the components. It may be helpful to think of
the construction of £2 “geometrically” as the analogue of the construction of

a projective space from a vector space. The block [6y, .. ., 6] corresponds
to the “I1-dimensional subspace” through the “point” (61, ..., 6 ) (see Sect.
2.8).

Ezercises

4.5.1 Suppose that G is a transitive subgroup of Sym(I') and that C' <
Sym(T') centralizes G. Show that the C-orbits form a set of blocks
for G.
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4.5.2 With the notation above, show that W acts faithfully on Q
4.5.3 Show that the point stabilizer of [6,...,8] in W consists of all

elements of W of the form (u, ..., u)s where u € Ts and s € Sy,.

4.5.4 Show that the diagonal action of W contains regular (but not normal)
subgroups.

The product group Aut(T)™ acts on A™ = T™ with the ele-
T ™ _
ment (71,...,7m) taking (61,...,6m) to (67%,...,60™). Irf this per
mutation induces an action on 2 then for any ¢ € T we have
[(c=6)™, ..., (¢ m)™] = [6]",...,67]. This requires that all 7; be

equal. On the other hand, each automorphism 7 € Aut(7") acts‘ as a per-
mutation of Q by [61,...,6n.]" = [67,...,67,] In fact, th'e: action of th;
base group 7™ already induces all of the inner automorphisms. Indeed, i
7 € Aut(T) is conjugation by z € T then

(61, 0m]” = [z 602, ..., 27 6,01]
= [6133, ey 6mz]
= [61, ..., 6m]".

Note also that this action of Aut(7T") commutes with the action of S,,. The
next lemma shows that W can be extended by Out(T) = Aut(T)/ Inn(T)
to obtain the full normalizer of the diagonal action of T in Sym(2). We
shall write S as the image of Sy, and H as the image of the base group of the
wreath product W in the action of W on ) described above (Exercise 4.5.2
above shows that this action is faithful). In particular, H = T1 x -+ X T,
where each T; is isomorphic to 7.

Lemma 4.5B (Diagonal type). With the notation above, let N be the
normalizer of H in Sym(Q), so W = HS < N. Then N/HS = Qut(T).

PRroOOF. Since T is a nonabelian simple group, the diagonal subgroup
Di={{t,...,t) | teT}=T

of T™ is self-normalizing in T™. Therefore the point stabilizers of the.(;.)er-
mutation isomorphic) group H (see Exercise 4.5.3) are also self-normalizing.
In particular, H has a trivial centralizer in Sym(&'l) by Theore.m 4.2A
(iv). By Theorem 4.2B, the automorphisms of H induced by f:onjuga’glf)n
by elements of N are precisely those which permgte the point stabiliz-
ers of H among themselves. Thus N is isomorphic to the group A mof
automorphisms of 7™ which map D onto one of its conjugates in 7.
Since T' is a nonabelian simple group, Aut(T™) =2 Aut(T) wrp Sp Wll:;l‘e
= {1,...,m} (Exercise 4.3.9). Using this representation of Aut(7™),

we see that if 71,..., 7, € Aut(T) and s € S, then

-1
o= (1,...,Tm)§ € A < forsomecc T™, D = ¢ *De.

i
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Thus o € A4 exactly when there are elements (1), .. ., c(m) € T such that
for each z € T there exists y € T, satisfying

Ti

T = C(i”)*lyc(is) for each 3.

But this implies that for all 5 and e Tin] € Inn(T), and so all the 7;
lie in the same coset of Inn(T). Thus we can define a mapping ¥ : 4 —
Aut(T)/Inn(T) = Out(T) such that U(o) is the coset of Inn(T) which
contains all 7;. It is easy to verify that ¥ is a homomorphism of A onto
Out(T), and its kernel is K :— Inn(T) wrp S,,. Moreover, K is isomor-
phic to T wrr S, because Inn(T) = T for a simple nonabelian group 7.
Finally, N acting by conjugation on H = T™ induces the subgroup A of
automorphisms of 7™ and in this correspondenice HS induces K. Hence
N/HS = AJK = Out(T) as asserted. O

We shall say that G is a group of diagonal type if G is a subgroup of
the normalizer N of H in Sym(§) such that G contains the base group
H=Tx - -xT, (so, by Lemma, 4.5B, G is contained in an extension of the
wreath product T" wrr S,, by Out(7") where T is a Anite nonabelian simple
group). The analysis above shows that the point stabilizer G,, is isomorphic
to a subgroup of Aut(7T) x S, containing the group Inn(T) = 7. The groups
Ty, ..., T, arc the only minimal normal subgroups of H by Theorcin 4.3A
and H < G, and so G acts by conjugation on the set, {Tv,..., 7).}, The
following theorem characterizes those groups of diagonal type which are
primitive.

Theorem 4.5A. With the notation above, G is a primitive subgroup of

Sym(Q) exactly when either

(i) m=2;or

(ii) m > 3, and the action of G by conjugation on the set {T, ..., T} of
minimal normal subgroups of H is primitive.

In particular, the full normalizer N of the base group B is primitive for all
m > 2.

PROOF. As before put I := {1,.. -;m}, and let V := Aut(T) wrp S,,.
The proof of Lemma 4.5B shows that N is isomorphic to

Aw={(r,...,Tm)s eV | § € Sy, and all 7; lie in same Inn(T)-coset }
and that under this isomorphism H maps onto
Bi={(r,...,7)1 €V | each 7, € Inn(T)}
and one of the point stabilizers of N maps onto
C={(r,....,1)seV]re Aut(T) and s € S,,} .

Let L be the corresponding image of G. Then I, N corresponds to a point
stabilizer of . Therefore Exercise 4.5.5 shows that G is primitive if and

iy,
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ouly if there is no subgroup M of B such that
(4.3) BNC <M< B and M is normalized by L N C.

Finally, let
5= {S € Sm | (7—1,~~-,Tm)8 S L}

It is easy to verify that S is permutation isomorphic to the image of the
action of G on {T1,... , T }. Thus to prove the theorem it is enough to
show that no subgroup M of B satisfies conditions (4.3) if and only if either
() m =2, 0r (ii) m > 3 and S is a primitive subgroup of S,,,.

First, suppose that m > 3 and that S is not primitive. Then there is a
nontrivial S-congruence, say =, on I'. Define

M:={(n,...,7u)1€B|n= 7; whenever ¢ = 5} .

Then it is straightforward to verify that M is a subgroup of B satisfying
conditions (4.3). Therefore conditions (i) and (ii) are necessary. .

Second, suppose that A/ is a subgroup which satisfies conditions (4.3).
Consider the projections m; : M — Inn(T") defined by (. .. s Tm) T
Each 7, is a homomorphism, and Im m; = Inn(T) = T since BN C < M.
Let M; := ker ;. If all the subgroups M; were distinct, then Lemma—ﬁl.BA
would show that |M| = |T|™ contrary to the hypothesis that M < B. On
the other hand, if all the M; were equal, then [M| = |Inn(T)| contrary to
the hypothesis that B N C < M. Hence we have a nontrivial equivalence
relation = defined on I" by

1=75 <— M; = ]ij.

We claim that this is an S-congruence. Indeed, A = BC and so L =
B(L N C). Thus, if s € S, then there exists ¢ := (0,...,0)s € LNC for
some o € Aut(T"). Then (4.3) shows that for each z := (11, ,Tm) €M
we have

=1 -1 ~1 . .
z" 2z = (0" 10, ..., 0 o) € M where i = 45,

Therefore z € My <= gz lzz ¢ M; and, in particular, M; = M; —
M;: = Mj:. Thus each s € S preserves the relation =. Since = is nontrivial,
this shows that £k > 3 and S is not primitive. Hence the existence of a
subgroup M satisfying (4.3) implies that neither (i) nor (if) holds.

The last statement of the theorem now follows from Lemma 4.5B. This
completes the proof of the theorem. O

Ezercises

4.5.5 Suppose that G < Sym(Q) and that H is a transitive subgroup of
G. Let o € Q. Show that G is primitive if and only if there is no
subgroup M of H such that H, < M < Hand M is normalized by
Go. (This generalizes Exercise 2.5.8.)
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4.5.6 Let T be a finite nonabelian simple group acting regularly on a
set A, and let U := ((1234)) < Sym(T') where T' := {1, 2, 3,4}.
With the notation of Theorem 4.5A we know that the group G :=
T wrp U acts imprimitively on Q (where |Q| = |A[]°). Find an
explicit nontrivial G-congruence on .

4.5.7 Show that a finite group of diagonal type is never 2-transitive.

4.5.8 Suppose T is a nonabelian simple group, and let N* denote the set
of all permutations of T of the form a — z~'a’y where z,y € T
and ¢ € Aut(7). Show that N* is a group which is permutation
isomorphic to the group /N defined in Lemma 4.5B in the case m =
2.

4.5.9 Tt is known that there exist infinite simple groups in which every
two nonidentity elements are conjugate [see Higman et al. (1949)].
Suppose that T is such a group, and consider the group N* defined
in Exercise 4.5.8. Show that N* is 2-transitive. (This shows that the
condition “finite” cannot be dropped in Exercise 4.5.7.)

4.5.10 Let H = T™ where T is a finite nonabelian simple group, and let =;
denote the projection of H onto the ith factor. Suppose that H acts
transitively on a set ¥ such that a point stabilizer H, = T and, for
each i, m;(H,) # 1. Show that the action of H on ¥ is equivalent to
the diagonal action of H. [Hint: m;(H,) = T because Hy is simple.]

4.6 Finite Primitive Groups with Nonregular Socles

The socle H of a finite primitive group G is, according to Theorem 4.3C,
either regular or else is the unique minimal normal subgroup of G. Section
4.7 deals with the case of a regular socle, while this section is devoted to the
nonregular case. The main result is Theorem 4.6A which is the nonregular
case of the O’Nan-Scott Theorem. In essence this theorem says that if the
socle H is nonregular, then the primitive group G is either contained in
the normalizer of a nonabelian simple group or else G is obtained from a
primitive group of smaller degree via the product or diagonal constructions
described in Sect. 4.3.

Corollary 4.3B shows that the socle H is always a direct product of copies
of some simple group 7T'; this group 7" will be called the socle type of G (so
the socle type is determined up to isomorphism). As we observed before,
since H < G and G is primitive, H is transitive, so G has nonabelian socle
type whenever H is not regular.

Theorem 4.6A. Let G be a finite primitive group with a nonregular socle
and socle type T. Then G 1is permutation isomorphic to one of the following
kinds of groups:

(1) a primitive group U with soc(U) = T
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(il) a primitive group U of diagonal type as described in Lemma 4.58 with
soc(U) = T™ for some m > 2 (and degree |T|™");

(iii) a primitive subgroup of a wreath product U wrr Sym(T) with the
product action and [T'| > 1, where U is a primitive nonregular group
of one of the types (i) or (ii).

Since H := soc(G) is nonregular, the centralizer Co(H) = 1 in all
cases (Theorem 4.3B), and so the conjugation action of G on H gives an
embedding of G into Aut(H ). In particular, classification of groups of type
(i) reduces to the study of primitive permutation representations of groups
G with T 2 Inn(T) < G < Aut(T) for a finite simple group T; a group G
of this kind is called almost simple. This reduces in turn to the classification
of almost simple groups and their maximal subgroups. Groups of types (ii)
and (iii) have nonsimple socles and are generally distinguished as having
small orders with respect to their degrees.

PrROOF OF THEOREM 4.6A. Let Q be the set on which G acts, and
consider the normalizer N of H in Sym(§). Since G < N, therefore N is
also primitive. Since G has socle type T', we know that H 2 T} x --- x Tp,
for some m > 1 where each T; = T'. If m = 1, then we have case (i). Thus
we can suppose that m > 2, and proceed by induction on m.

Let m; : H — T; denote the projection of H onto the direct factor T;.
Let H, be a point stabilizer of H, and put R; := m(H,) < T;. Since
H is a normal subgroup of a primitive group, it is transitive on £ and
so N = N,H. Moreover, N acts transitively on the set {T1,..., Ty} by
conjugation (Theorem 4.3A), and therefore N, also acts transitively on
this set. Since H, = H N N, <4 N, the definition of m; shows that, for all
u € Hy and x € N, we have

(4.4) 7 (u)z = mj(z  uz) whenever 7 Tz = Tj.
In particular, if z € Ny, then 7'T;z = T; implies that 27 *R;z = R;.
Thus the subgroups Rj,..., R, are conjugate under N,, and so the

subgroup K := R; X ... X R,, is normalized by N, (see Fig. 4.1). By the
definition of R; we have H, < K < H. We consider two cases according
to whether R; is or is not a proper subgroup of 7.

Case 1: Ry < Ty

In this case H, < K < H. Since K is normalized by N,, and N is
primitive, therefore Ny K = N, or N. But N, K = N implies that K is a
normal subgroup of NV; since H is minimal normal in N by Corollary 4.3C
and K < H, this is impossible, Hence N, K = N,, and so H, = K =
Rl X oo X Rm.

Fix an isomorphism of T} onto 7" and let R be the corresponding image
of R;. It follows from condition (4.4) that there is an isomorphism of each
T; onto T such that R; maps onto R. Choose a transitive permutation

0. DHLVe FULULLVe Groups witl Nouregular Socles L27
Sym (1)
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G
H=Tix...xTnp

K=R{x ..

FIGURE 4.1. Subgroup lattice

representation of T' on a set A, say, for which R is the stabilizer of a point 6,
say. Then T acts transitively and faithfully on A™ via the product action;
we shall identify T™ with its image in Sym(A™). The point stabilizer in 7™
of (6,...,6) is R™, and it is clear that there is an isomorphism of H onto
T™ such that H, maps onto R™. Hence T™ < Sym(A™) is permutation
isomorphic to H < Sym(). Lemma 4.5A now shows that the normalizer
N of H in Sym(f2) is permutation isomorphic to a wreath product of the
form M wrr S,, where I := {1,...,m} and M is the normalizer of T in
Sym(A). Because N is primitive, Lemma 2.7A shows that M must also be
primitive. Since R # 1, T is not regular and 7' < soc(M). Since soc(M)
is not regular, it is the unique minimal normal subgroup of M (Corollary
4.3B), s0 T = soc(M). This shows that M is a primitive group of the type
described in (i), and hence G is permutation isomorphic to a group of the
kind described in (iii). This completes the proof of the theorem in this case.

Case 2: Ry =T}

In this case the (conjugate) R; equal T} for all 5. Thus H, is a subdirect
product of H = T3 X - - - X T}y, but not equal to H. Put K; := H, N kerm;
for each i, and note that H,/K; = m(Hg) = T;. Reindexing, if necessary,

we may suppose that K3, ..., Ky, say, are distinct, and every other K is
equal to one of these. In particular, K3 N - N K, = 1. Lemma 4.3A now
shows that H, = V4 x -+ x V, where each Vi 2 T, and d < m because

He < H. We divide the remaining argument into two subcases.

Subcase 2': Ry =Ty andd = 1

In this case there is an isomorphism ¥ : T — H, and the compos-
ite mappings ¥; := m o ¥ : T — T} are also isomorphisms. Hence
(t1, -y tm) = Uy (ty) - - U, (tm) is an isomorphism of T™ onto H which

.

i,

oty
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maps the diagonal group
D:={{...,t)|teT}

of T onto H, (compare with Exercise 4.5.10). Hence H is permuta-
tion isomorphic to the base group of the wreath product considered in
Lemma 4.5B. Since G normalizes H, the group G is therefore permutation
isomorphic to a group of diagonal type (ii).

Subcase 2”: Ry =Ty andd > 1

In this final case we shall show that G is a group of type (iii). We have
H=T1x - xThand Hy = Vi x- - xVywithT; 2 V; 2 T for all { and
J. We shall first show how the set of m factors of H can be partitioned into
d blocks such that, for some group U having diagonal action, the direct
product of the subgroups in each of the d blocks is isomorphic to soc(U).

‘We begin by noting that the subgroups V; are the unique minimal normal
subgroups of H,, and

Lj = Ca(V;) =[[Vi forj=1,....d

iy
are the unique maximal normal subgroups of H, (see Exercise 4.3.6). On
the other hand, since w;(H,) = T; is a simple group, therefore K; =

H, Nkerw; is a maximal normal subgroup of H, for each i. Thus we can
define a partition {Aq, ..., Aq} of B :={T1,..., T} by

T, e Ay & K,=1Lj

Note that each A; is nonempty since N K; = 1 while the intersection of
any proper subfamily of the L;’s is not 1. Define U; as the product of the
subgroups in A; for j = 1,...,d. Clearly H = U; x --- x Uy. Moreover
U; N Hy, = Vj since, if v € H,, then

zel; <= m(z)=1forall T; ¢A; < ze(|Ly=V,
ket j

As we just noted, /V, acts transitively by conjugation on 3. On the other
hand, it follows from condition (4.4) that, if € N, then 2 'K;z = Ky
whenever z7'Tyz = Ty. Thus {Ay,..., Ay} is a set of blocks for this ac-
tion. In particular, this shows that: {Uy,..., Uz} is a class of subgroups
conjugate under N, each set A; has size s := m/d, and |U;| = |T'.
Let A; be the orbit of U; which contains a for 1 = 1,...,d. Since the
U, are conjugate under N,, there exist elements z; € N, such that
U, = xi—llei and A; = A% for each © where A = A;. Thus the
groups U, are all permutation isomorphic to U := U; < Sym(A), and
Al = Uy : Uy N Hy| = |Uy : V| = TS

Since V := V| is equal to Uy, and m;(V) = T; for each T; € A;, Exercise
4.5.10 shows that the action of U on A is equivalent to the diagonal action.
Lot M Dbe the normalizer of U in Sym(A); then Theorem 4.5A shows that
M is a primitive group of the type described in (ii). Finally, define W :=
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Sym ()
W=M wr Sym(Z)
NOQ—
GOQO—>

H=U;x...xUj Q—>Q U= soc(W)

Ha:VIX N XVd

FIGURE 4.2. Subgroup lattice: subcase 2"

M wrs Sym(Z) (see Fig. 4.2). Since the normalizer N of H = Uy x -+ - x Uy
in Sym(Q) contains G, it is primitive; therefore Lemma 4.5A shows that
W is permutation isomorphic to V. Thus we conclude that G has the form
described in part (iii), and the proof of the theorem is complete. 0

The classification for the case of a nonregular socle which we have just
completed can be summarized in a different way. We have shown that when
the socle of a primitive group G is nonregular, then we can build the action
of soc(G) by first taking a direct power U = T of a simple group T" with a
transitive action (s = 1) or a diagonal action (s > 2), and then combining
d copies of U with a product action. More precisely,

soc(G) = T*4 a G < [(T wr Ss) ... Out(T)] wr Sa.
The case of a regular socle is addressed in the next section.

Ezercises

4.6.1 Under what conditions is soc(G) primitive in Theorem 4.6A7

4.6.2 The Feit-Thompson Theorem [Feit and Thompson (1963)] states that
every group of odd order is solvable. Using this theorem, show that
if G is a finite primitive group of odd degree, then soc(G) is either
simple or regular.

One natural question which arises is: when is the socle of a finite prim-
itive group primitive? The question is easily answered when the socle is
regular. The following example shows what may happen when the socle is
nonregular and nonprimitive.

ExAMPLE 4.6.1. We introduced the Fano plane and its automorphism
group PSL3(2) in Exercises 2.4.2 and 2.8.12. PSL;(2) is a simple group
of order 168 which acts 2-transitively on the set of 7 points of the Fano
plane and also on the set of 7 lines. Thus PSL3(2) acts transitively on the
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FIGURE 4.3. The Fano plane: point and line coordinates

set A of 21 incident point-line pairs (called “fags”) and on the set I' of 28
nonincident point-line pairs (called “antiflags”). Both of these actions are
imprimitive (see Exercise 4.6.3).

Let Fy be the field of 2 elements. Then the points of the Fano plane can
be labelled, as in Fig. 4.3, with the seven triples of coordinates from F»
which are not all zero. The lines can be similarly labelled with triples
[z, y, 2] in such a way that the point (a, b, c) is incident with [z, y, 2] exactly
when az + by + ¢z = 0. (These are just the homogeneous coordinates for
this projective plane.) Define a mapping 7 (a “correlation”) on the set of
all points and all lines of the Fano plane by requiring 7 to interchange
each point (a, b, c) with the corresponding line [a, b, c]. Because T preserves
incidence, it acts as a pérmutation on each of the sets A and I', and so
the group L := (PSL3(2),7) acts transitively on both A and I'. As the
exercises below show, L acts primitively on both A and T, but its socle is
nonregular and nonprimitive.

FEzercises

4.6.3 Show that PSL3(2) acts imprimitively on each of A and T', and that
in each case there are exactly two nontrivial congruences.

4.6.4 Show that PSL3(2) is the socle of L, and that L acts primitively and
faithfully on both A and T'.

4.6.5 (Continuation) Show that L has rank 4 on A, and rank 5 on I'.

4.7 Primitive Groups with Regular Socles

In the preceding section we characterized finite primitive groups with non-
regular socles. Here we will consider the case of a primitive group with a
regular socle.

Let G be a finite primitive subgroup of Sym(£1) whose socle H is regular,
and let N be the normalizer of H in Sym(£2). As before, we have H = T™
for some simple group 7' and some integer m > 1, and H < G < N. Since
N is the holomorph of H, Corollary 4.2B shows that N = H =« Aut(H);
more precisely, a point stabilizer N, of N acting on {2 is permutation
isomorphic to Aut(H) acting naturally on H, and N = HN, with H N
N, = 1. Similarly, G = HG,. We also note that G acts irreducibly on H
in the sense that the only subgroups of H which are mapped into themselves
under conjugation by G, are 1 and H; indeed, if 1 < K < H and K is
normalized by G, then G, < KG, < G contrary to the maximality of
G-

There are two quite distinct cases which have to be handled separately
depending on whether H is abelian or nonabelian. If H is abelian, then
Theorem 4.3B shows that H is an elementary abelian p-group for some
prime p, the centralizer C < N of H is equal to H and soc(N) = H =
C' = soc(G). As we shall see below, in this case our characterization reduces
to a problem in linear algebra.

On the other hand, if H is nonabelian, then C' is also regular with C' = H,
but soc(N) = H x C # soc(G) and G N C = 1 (see Theorem 4.3B). The
normalizer N is primitive of diagonal type. Consider the homomorphism
¥ : N — Aut(H) induced by the conjugation action of N on H. Clearly
U(N,) = Aut(H) because N is the holomorph of H, ker ¥ = C, and HC
is the preimage of Inn(H) under ¥. Since HCNG = H{CNG) = H, we
conclude that ¥(G,) NInn(H) = 1. Thus G, is isomorphic to a subgroup
of Out(H) = Aut(H)/Inn(H). Writing H = T™ where T is a nonabelian
simple group, Exercise 4.3.9 shows that

Out(H) = (Aut(T) wrr Sp,) / Inn(T)™ = Out(T) wrr Sy,

where I' = {1,...,m}. As we shall see in Theorem 4.7B, this condition
on G is quite severe, and for some choices of T" and m there are no
corresponding primitive groups.

Exercises

4.7.1 Let K and H be arbitrary groups, and suppose that K acts faith-
fully and irreducibly as a group of automorphisms of H, and that no
nontrivial element of K acts as an inner automorphism of H. Show
that G acts faithfully and primitively by right multiplication on the
set of right cosets of K and that H is the socle of G := H = K. (Of
course, in the finite case, this can only happen when H is a direct
product of simple groups.)

4.7.2 (Continuation) Suppose K and L are subgroups of Aut(H) and both
act irreducibly on H. Show that the corresponding groups H x K
and H x L are permutation isomorphic exactly when K and L are
conjugate in Aut(H).

e
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4.7.3 (Continuation) Show that the action of G on the sct of right cosets of
K is equivalent to the action of G on H defined by: a(®%) .— (au)®
where a € H and (u,z) € H x K.

4.74 Let H be an elementary abelian p-group of order p* for some prime
p. Show that Aut(H) = GLk(p), the general linear group of all in-
vertible & x k matrices over the field F, of p elements. [Hint: H is
isomorphic to the additive group of a k-dimensional vector space V
over I, Show that Aut(V,+) is equal to the group GL(V) of all
invertible linear transformations on V]

The next result follows immediately from the discussion above and
Exercises 4.7.1 and 4.7.4.

Theorem 4.TA. Let G be a finite primitive group with an abelian socle
(which is necessarily regular). Then G has degree p* for some prime p and
some k > 1. If V is a vector space of dimension k over the field B, with
D elements, then there is a subgroup K < GL(V) acting irreducibly on V
and an isomorphism of G onto V x K in which a pownt stabilizer of G
maps onto K.

In particular, it follows that (up to permutation isomorphism) the affine
group AGLy(p) described in Sect. 2.8 is the unique maximal primitive
group of degree p* with abelian socle. Since quite a lot is known about the
irreducible subgroups of GL(V), Theorem 4.7A and Exercises 4.7.2 and
4.7.3 give a recipe for constructing the corresponding primitive groups for
small degrees. Some references at given at the end of the chapter.

Fxercises

4.7.5 Find all irreducible subgroups of GL2(3) and GLy(5) up to conjugacy,
and use this information to find all primitive groups of degrees 32 and
52 with abelian socles.

4.7.6 Let E and F be finite fields with |B| = |F|™. Show that GL,(E)
is isomorphic to. an irreducible subgroup of GLpyn(F). In partic-
ular, GL,,(F) contains an irreducible subgroup isomorphic to the
multiplicative group of E.

4.7.7 Let ¢ = p™ be a power of the prime p. Since the multiplicative group
of any finite field is cyclic, the preceding exercise shows that GLy(q)
has an irreducible cyclic subgroup A of order ¢ — 1. Show that the
subgroup of order ¢ + 1 in A is also irreducible.

4.7.8 Suppose that m > 1 is an integer, and p and 7 are primes such that r
divides p™ — 1 but r does not divide p* — 1 for 1 < k < m. Show that
G Ly (p) has an irreducible cyclic subgroup of order . (A theorem of
K. Zsigmondy shows that a prime r satisfying these conditions exists
Eor all p and m except for p = 3 and m = 2: see for example Liineburg
1981).)
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We finally turn to the case where the primitive group has a nonabelian
regular socle. To obtain more precise results here we shall appeal to the
“Schreier Conjecture” made by O. Schreier in 1926:

for every finite simple group T,
Ouwt(T) = Aut(T)/ Inn(T) is solvable.

To date this conjecture has only been proved using the classification of
finite simple groups (see Appendix A} and a case-by-case examination of
the various classes of simple groups. Actually, the classfication shows that
much more is true: in many cases the group of outer automorphisms of
a finite simple group is cyclic or even trivial, and in all cases it has a
normal series of the form: A <« B < C' where A is abelian, B/A is cyclic and
C/B = I,Sg or Sg.

Theorem 4.7B (Assuming the Schreier Conjecture for T). Let G <
Sym(§1) be a finite primitive group with a regular nonabelian socle H =
Ty x -+ x Ty, where each of the factors T; is isomorphic to a finite non-
abelian simple group T and m > 1. Let G, be a point stabilizer of G. Then
the following hold.

(i) G. has no nontrivial solvable normal subgroup.

(ii) The action of Go by conjugation on the set {11, ..., Tn} (see Theo-
rem 4.84) is transitive and faithful, so G4 is isomorphic to a transitive
subgroup of Sm.

(iil) In the action of G4 defined in (i), the stabilizer Ng, (11) of Th
contains a composition factor tsomorphic to T .

(iv) The integer m must be large enough so that T is isomorphic to a
section of Sp—1. In particular, m > 6 for all T'.

Proor. (i) Suppose that G, had a nontrivial normal solvable subgroup.
Then Theorem 4.3A shows that G, has a minimal normal subgroup P
which is an elementary abelian p-subgroup for some prime p. Because G4
is maximal in G, therefore Ng(P) = G4 and so, in particular, Cy(P) = 1.
Thus, in the action of P by conjugation on A, {1} is the only orbit of length
1. Since every nontrivial orbit of P has length divisible by p, we conclude
that p divides |H| — 1, and p does not divide |H].

On the other hand, if ¢ is a prime dividing |H|, then the number n, of
Sylow g-subgroups of H divides |H| and so p does not divide ng. Now P
acts on the set of Sylow g-subgroups of H by conjugation; since p does not
divide ng, at least one of the orbits in this action has length 1. Thus we
conclude that some Sylow g-subgroup @ of H is normalized by P. We claim
that @ is the only Sylow g-subgroup normalized of H by P. Indeed, suppose
that P also normalizes u~'Qu for some v € H. Then P and uPu~! are
both Sylow p-subgroups in Ny p(Q). Thus, for some v € H N Nyp(Q), we
have vuPu™'v~! = P, and so vu € G, N H = 1. Hence u € Nyp(Q), and
so u™'Qu = Q. This shows that @Q is the unique Sylow g-subgroup of H
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normalized by P. Therefore 2~' Pz = P implies 27 'Qz = Q, and so Q is
normalized by G,. Hence H = () because G, acts irreducibily on A. This
contradicts the hypothesis that H is a product of nonabelian simple groups.
Thus G, has no nontrivial normal abelian subgroup, and (i) is proved.

(ii) G, acts by conjugation on the set {T%,...,T,,} because these are
the only minimal normal subgroups of H by Theorem 4.3A. Let K be
the kernel of this action. As we noted at the beginning of this section,
the action of conjugation of G on H defines an embedding ¥ of G, into
Aut(H) such that ¥(Go) NInn(H) = 1. Then K = U(K) < Aut(Ty) x
ox Aut(Thy,) with U(K)N(Inn(Ty) x - - - x Inn(T),)) = 1. Since Out(T;) =
Aut(T;)/ Inn(T;) is solvable by the Schreier Conjecture for T, K must also
be solvable, and so K = 1 by (i). This shows that the given action of G,
on {T4,...,Twm} is faithful, and it is transitive because G4 acts irreducibly
on H. Thus G, is isomorphic to a transitive subgroup of S,,.

(iii) Put L := Ng(Th) and C := Cg(T1). Since Tp X + -+ x Ty, < C we
have H < Th'C and L = HL, = T\ L,C. Note that L, is the stabilizer in
G of the point T in the action described in (ii).

Put K = L,C. If K = L, then T & HC/C <« L/C = L,C/C =
Lo /(Lo N C) and the conclusion of (iii) follows. It remains to consider the
case where K < L.

Suppose that K < L, and choose M maximal in L such that K <
M < L. Put U; := M Nn7T; and note that L, normalizes U;; we claim
that Uy = 1. Indeed, since L, is the stabilizer of T} in the action in (ii),
Ga = Ujcjem Lazi where 27 Tz = T; for i = 1,..., m. Hence, putting
U; := mi_lUlsci, we see that Uy X -+ x Uy, is a subgroup of H which is
normalized by G,. Since G is primitive, G, acts irreducibly on H, and so
Uy x---xU,, =1or H. Hence U; = 1 or T1. The latter alternative cannot
hold because if T} < M then H < TvC < M so HL, =L < M < L. So
Ui = M NT; =1 as claimed.

Now, since K < M, wehave M = M NTh K = (M NT1)K = K, and
so M = K. Thus K is maximal in L, L = Th' K, Ty <L and T1 N K = 1.
Consider the action of L by right multiplication on the set of right cosets
of X in L, and let L denote the image of this action. Since C' < K and
is normal in L, the point stabilizer K of L is a homomorphic image of

K/C = L,C/C = Lo/(Ly N C). Moreover, L is primitive because K

is maximal in L, and the image T'; of 77 is a regular normal subgroup

isomorphic to T. Now Theorem 4.3B shows that soc(L) is either Tj or
T\ x Ci where C; 22 Ty. In the former case we are in the situation of the
present theorem with m = 1; (ii) shows that this is impossible because a
primitive nonabelian group cannot be regular. In the latter case, the point
stabilizer K of L must contain a normal subgroup isomorphic to C7 because
T is regular. Since K is a homomorphic image of L, this implies that L,
contains a composition factor isomorphic to 7" as required. This completes
the second case.
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(iv) This follows immediately from (i) and the fact that Sy has no simple
nonabelian sections. o

An alternative approach to describing finite primitive groups with non-
abelian vegular socles is through the construction of the twisted wreath
product first introduced in Neumann (1963). The construction of the twisted
wreath product in general may be explained as follows.

Let T and K be arbitrary groups and let L be a subgroup of K together
with a specified homomorphism ¢ : L — Aut(T). Let R be a set of left coset
representatives for L in K. Recall that the set Fun(K, T) of all functions
f+ K — T is a group under pointwise multiplication (see Sect. 2.6). We
can define an action of K on Fun(K, T preserving this group operation via
[2(z) == f(zz) (f € Fun(K,T),z,z € K). Now define H C Fun(K,T)
to consist of all f € Fun(K,T) such that f(zy) = f(z)*® for all z € K
and y € L. It is readily verified that H is a subgroup of Fun(K, T) which
Is invariant under the action of K and, moreover, the restriction mapping
f = f |r is an isomorphism of H onto Fun(R, T) (see Exercises 4.7.9 and
4.7.10 below). In particular, if |R| = |K : L| = m, say, this shows that
H = T™. Thus we can define the semidirect product G = H x K. This is
called the twisted wreath product with respect to the data (T, K, ), and
may be compared with the wreath product defined in Sect. 2.6.

Ezercises

4.7.9 With the notation above show that H is a subgroup of Fun(X, T)
and that there is an action of K on H preserving the group operation
given by f®(2) = f(zz) (z,2 € K and f, f* € H).
4.7.10 (Continuation) Show that the restriction mapping f — / |r is an
?sﬂf)[morphism of H onto Fun(R, T) and that Fun(R, T) = 7™ when
=m,.

It can be shown that any finite primitive group with a regular nonabelian
socle of the form T (T simple) is isomorphic to a twisted wreath product
(T, K, o) where |K : L| = m and ¢ : [ — Aut(T) has Im ¢ > Inn(T)
(see Liebeck et al. 1988a). However, there seems to be no known simple
necessary and sufficient conditions on T, K and ¢ for this twisted wreath
product to satisfy the criteria of Exercise 4.7.1 and hence represent a fi-
nite primitive group. The following lemma gives a useful, easily applicable
sufficient condition.

Lemma 4.7A. Let T be a finite nonabelian simple group, and K < S,
be a primitive permutation group with point stabilizer L. Suppose that ¢ :
L — Aut(T) is @ homomorphism such that Im ¢ > Inn(T), but Im ¢ is not
a homomorphic image of K. Then the twisted wreath product G = H x K
defined above using the data (T, K, ) satisfies the conditions of Ezercise

waiin
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4.7.1. Thus G is isomorphic to a primitive group with reqular socle T™ and
point stabilizer isomorphic to K.

PrROOF. Let R be a set of left coset representatives of L in K with
1 € R. We shall first show that no nontrivial z € K induces an inner
automorphism of H. Indeed, since L is a point stabilizer of K, therefore
ﬂTERrLT“l =1, and so ¢ & rLr~* for some » € R. This implies that
ar = sy for some y € L and s € R with s # r. Now, since the restric-
tion f — f |g is an isomorphism of H onto Fun(R,T), we can choose
f € H such that f(r) = 1 and f(s) # 1. Then for each g € H we have
g ) f(r)g(r) = 1 while f(zr) = f(sy) = f(s)?¥) # 1, which shows
that the action of z on H is not an inner automorphism. Thus no nontriv-
ial element of K induces an inner automorphism on H and, in particular,
K acts faithfully on H.

It remains to show that K acts irreducibly on H. Let M be a minimal K-
invariant subgroup of H with M > 1; we have to show that M = H. For
each r € R we have the homomorphism 7, : M — T given by f — f(r).
Taking z = rs~! we have f(r) = f*(s) forany f € M andr,s € R. Since
M is K-invariant, this shows that Im 7, = Imm, for all 7 and s. Let Ty
denote this common image, and note that Ty # 1 because M # 1. Taking
z = ryr~', we have f(r)?W) = f(ry) = f(ar) = fo(r) € To forally € L
and r € R. Since Im ¢ > Inn(7"), this shows that 1 # To<T andso Ty =T
by the simplicity of T'. To prove that M = T (and hence M = H), it is
enough to show that the kernels of the =, are distinct (see Lemma 4.3A).

Suppose on the contrary that ker m, = ker 7y = Mpy, say for some r # s
where Mg < M. Let f € Mp. Then taking z = ryr~! with y € L, we
have f2(r) = f(ry) = f(r)?®¥) = 1. Similarly, taking z = sr—! we find
that f%(r) = f(s) = 1. Thus M is invariant under (rLr~1, sr~1), and the
latter equals K because L is maximal in K. Now the choice of M shows
that My = 1, and so kerm; = 1 and M = Imm; = T. The image of
the action ¢ of K on M is contained in Aut(M) because K preserves the
group operation. Since f¥(1) = f(1)?®) for all f € M and y € L, the
image of 1 restricted to L is isomorphic to Im¢ and contains Inn(M).
Because L contains no nontrivial normal subgroup of X, we conclude that
1 is not faithful, and so the maximality of L in K shows that K = (ker ¢))L.
But then K/ kert¢ = Im1 = (L) = Im ¢ which contradicts one of the
hypotheses of the lemma. Thus the mappings - have distinct kernels, and
H is irreducible as claimed. This completes the proof of the lemma. O

Ezercises

4.7.11 Show that there exist primitive groups which have regular socles
isomorphic to (A5)™ for m = 6, 21 and 56. Does there exist one
when m = 77

4.7.12 Show that for any finite simple group 7' there is a primitive group
with a regular socle isomorphic to 7171,
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4.7.13 Let K be a simple normal subgroup of a finite group G with G' = G.
Assuming the Schreier Conjecture, show that G = K x Ce(K).

4.8 Applications of the O’Nan-Scott Theorem

The main focus of this chapter has been the proof of the O’Nan—Scott
Theorem, Theorem 4.1A. Since the argument was spread over several sec-
tions, the overall picture may have been obscured. In this final section we
shall summarize this important result and describe a few of its significant
applications.

A finite primitive group G has a socle H = T™ which is the direct
product of m copies of some simple group T (Corollary 4.3B). The analysis
then divides into two cases depending on whether or not H is regular. Let
n denote the degree of G.

If the socle H is regular then one of the following cases holds.

(i) Affine type: H is an elementary abelian p-group, n = p™, and G is
a subgroup of the affine group AG Ly, (p) containing the translations.
The stabilizer G, is an irreducible subgroup of GLm(p) (Theorem
47A).

(ii) Regular nonabelian type: H and T' are nonabelian, n = |T|™, m > 6
and the group G can be constructed as a twisted wreath product. The
stabilizer Gy, is tightly constrained and in particular is isomorphic to a
transitive subgroup of Sy, whose point stabilizers have a composition
factor isomorphic to 7" (Theorem 4.7B).

If the socle H is not regular then H is nonabelian and one of the following
cases holds (Theorem 4.6A).

(iii) Almost simple type: H is simple and G < Aut(H); G/H is solvable
by the Schreier Conjecture.

(iv) Diagonal type: H = T™ withm > 2, n = /7™ " and G is a subgroup
of & wreath product with the diagonal action. The stabilizer satisfies
Inn(T) < Go < Aut(T) x Sr, and has a primitive action of degree m.
(See Lemma 4.5B.)

(v) Product type: H =T™ with m = rs and s > 1. There is a primitive,
nonregular group U with socle 7" and of type (iii) or (iv) such that G
is isomorphic to a subgroup of the wreath product U wr Ss with the
product action. The degree of G is n = (d)® where d is the degeee of
U.

With the O’Nan-Scott Theorem available, a problem about a finite prim-
itive group G can be broken up into these five cases. In a typical situation,
we can deal with the case of a regular normal subgroup in a straightfor-
ward way. If G is of diagonal type we have a detailed description of the
action, while if G is of product type a strong inductive setup is available.



So often a problem can be reduced to the case of a group G of almost
simple type. At this point we turn to the large body of detailed knowledge
available about finite simple groups. In particular, using the classification
of finite simple groups, we can consider the separate types of finite simple
group as possible socles for G. Of course, in a particular problem any or
all of these steps may be nontrivial, but the O’Nan—Scott Theorem does
provide an effective framework for using detailed information about finite
simple groups to answer significant questions about finite primitve groups.
The rest of this section sketches a few of the results obtained by using the
O’Nan-Scott Theorem. For further discussion see, for example, Cameron
(1981a) and Praeger (1990).

(A) Listing Primitive Groups

The analysis of primitive groups in terms of their socles provides a natural
approach to listing the primitive groups. For example, Appendix B con-
tains a list of all the primitive groups of degree less than 1000. Taking a
more general approach, Liebeck and Saxl (1985b) list all primitive groups
of odd degree. These lists were constructed in the following way. If G is
primitive on 2 then the socle H is transitive and H < G < Sym({2). Each
list item is essentially a transitive action for a particular socle H along
with information about the structure of G, and the normalizer of H in
Sym(€). In Dixon and Mortimer (1988) such a list item is called a cohort
of groups. The permutation groups in one cohort all have the same socle
with a specified action. There are 762 cohorts of proper primitive groups
of degree less than 1000.

A primitive group G has a socle H = T for some simple group 7. If
H is abelian then G, is an irreducible subgroup of GL,,(p) and we do not
explore this case any further. In the case of a nonabelian regular socle,
the degree of G is |T'|™ where m > 6. Since the order of a nonabelian
simple group is even and at least 60, the degree of G is even and at least
60°% > 1000. Thus neither of the lists includes any primitive groups of this
type. The degree of a group G of diagonal type is also a power IT!m_l of
the order of a nonabelian simple group and hence is even. The primitive
groups of this type with degrees less than 1000 have m = 2 and T =
As, Ag, PSLy(7), PSLy(8), or PSLy(11).

If G is of product type then the degree of G is a power d*, with k& > 2,
where d is the degree of some other primitive group U. The group G has
odd degree when U has odd degree. The condition d* < 1000 requires
k=3and d < 10, or £ = 2 and d < 32. Thus the groups of product
type give an inductive class of examples in each list. There are 74 cohorts
of groups with socles of this type and degree less than 1000.

The largest class of examples on both lists consists of the groups with
a simple nonabelian socle. For these groups, we need information about
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the maximal subgroups of the almost simple groups. Concerted efforts by
a number of mathematicians over the past century have provided enough
information to deal with this case.

(B) Degree and Rank

The O’Nan—-Scott Theorem shows that a primitive group which is not of
almost simple type has a degree which is a power of the order of a finite
simple group or a nontrivial power d* of the degree d of some other primitive
group. Thus the degrees that actually occur for proper primitive groups are
a relatively sparse set of natural numbers. There are 486 degrees n < 1000
such that the only primitive groups of degree n are A4,, and S,,. Let E be
the set of all n for which there is a proper primitive group of degree n.
Then FE is the union of the following sets:

Ey := {p| p prime,p > 5};

Ey:={m*|m>2k>2mk >4}

B3 := {n | there is a nonabelian simple group of order n};

Ey = {d | there is a proper primitive group G of degree d whose socle is
simple and nonabelian }.

The density of each of these sets can be estimated. The sets By and B,
involve only properties of the integers and we only need the orders of the
finite simple groups to deal with set F3. On the other hand, many detailed
facts about finite simple groups are required to estimate the density of the
set Fy4. Calculating these densities, Cameron et al. (1982) obtained the
following asymptotic estimate for the density of E. Let 7(z) denote the
number of prime numbers p < z.

Theorem 4.8A. If e(z) is the number of degrees n < z such that there is
a proper primative group of degree n then

1
elz) = 2n(z) + (1 + V2)z 2 +O( r ) . .
log log =

As another example of the reduction of a problem to the almost simple
case, consider the question of rank. Suppose that G is a primitive permu-
tation group with a nonabelian socle H = T™ with 1" simple. Then the
rank 7 of G satisfies 7 > m + 1. This follows from the bound in Exercise
4.8.1if G has product type or from Exercise 4.8.2 if H is regular. A similar
bound for groups of diagonal type is proved in Cameron (1981a).

When studying a 2-transitive group G, these lower bounds on the rank
show that either G is almost simple, or else G is an affine group; this proves
Theorem 4.1B. (See also Exercise 4.5.7.) The analysis then shifts, on the
one hand, to examining the 2-transitive actions of the almost simple groups
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and, on the other hand, to determining the subgroups of GL,(p) that act
transitively on the set of nonzero vectors in the underlying vector space. In
this way, the finite 2-transitive groups have been completely determined;
see Sect. 7.7 for a more detailed discussion.

(C) The Sims Conjecture

Suppose that G is a primitive group of degree n acting on a set . The
subdegrees of G are the lengths of the orbits of the stabilizer G,,. Consider
the primitive groups with a given subdegree d > 1. For a fixed d there is no
immediate bound on the degree n of G. For example, for any prime p the
dihedral group Dsg, has a representation as a primitive permutation group
of degree p with a subdegree d = 2. On the other hand, as we saw, for
example, in Sect. 3.2 and 4.4, a small subdegree does strongly restrict the
structure of ¢,,. Following his investigation of the cases d = 3 and d = 4,
C. Sims was lead to conjecture the following theorem (see Exercise 4.4.11).
It was finally proved using the O’Nan-Scott Theorem and the classification
of finite simple groups [see Cameron et al. (1983)].

Theorem 4.8B. There is a function f such that if G is a finite primitive
group with a suborbit of length d > 1 then the pointwise stabilizers have
order at most f(d).

The simplest case in proving the Sims Conjecture is when ( is a primitive
group with a regular socle H. We can identify  with the elements of A
in such a way that G, acts on H by conjugation in the same way it acts
on §2. Since G is primitive there are no nontrivial G,-invariant subgroups
of H. Thus the group generated by the elements of H in any nontrivial
orbit of G, is H itself. In particular, G, acts faithfully on each of its orbits
and hence has order at most d!. This establishes the result in the case of a
regular socle.

If G is of diagonal type then an analysis of the action itself, without
using specfic properties of the simple group T', shows that |Ga| < (d1)4+!
in this case. If G is a primitive group of product type then G is permutation
isomorphic to a subgroup of a wreath product of the form U wr S, where
U is primitive o a set A and is of almost simple or diagonal type. Suppose
6 € A. Then it can be shown that |Ga| < |U5|d d!. Thus if we assume
that there is an increasing function 2(d) making Theorem 4.8B true for all
groups G with a simple socle then we can define a function f(d) that will
work for all primitive groups. The proof of Theorem 4.8B is then completed
by dealing with the almost simple case and using key results of Thompson
(1970) and Wielandt (1971a) about the subgroup structure of G,. This
is the most complicated part of the proof and uses specific information
about various simple groups. The function f(d) can be taken of the form
exp(d*o(d)) though this is not best possible.
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Exercises

4.8.1 Suppose that G is a primitive subgroup of the wreath product
U wr S, where U is a primtive group with rank ro. Show that the
rank of G is at least (T'L’J“bb‘l) > b+ 1.

4.8.2 Suppose that G is primitive with a nonabelian regular socle H = T™.
Show that G has rank at least m + 1.

4.9 Notes

e Theorem 4.1B; This result is an early precursor of the O’Nan—Scott The-
orem which appears in Burnside (1911) §154 with a proof based on the
Frobenius Theorem (see Sect. 7.2). The O’Nan—Scott Theorem (Theo-
rem 4.1A) itself was announced at the Santa Cruz Conference on Finite
Groups in 1979 by M. O’Nan and L.L. Scott [see Scott (1980)] in a
slightly incomplete form which is repeated in Cameron (1981a). A proof
of part of this theorem appears in Hoffmann (1982), but the first com-
plete published proofs appear in Buekenhout (1988) and Liebeck et al.
(1988a). For related papers, see Aschbacher and Scott (1985), Kovécs
(1986) and (1989), and Baddeley (1993).

o Sect. 4.2: This material is classical.

o Exercise 4.2.14: The construction of an infinite group with two con-

jugacy classes (the group is necessarily torsion-free) is based on the

HNN-construction of Higman et al. (1949). This construction is also given

in Rotman (1995), Exercise 12.63 and in Cohen (1989) Prop. 38 (and the

following comment there).

Exercise 4.2.16: See Mills (1953).

Corollary 4.2B: See Wiclandt (1967a) for a related result.

Exercise 4.2.17: See Neumann (1987).

Sect. 4.3: The word “socle” is an architectural term which refers to a

support beneath the base of a column. Material of this section is classical.

e Exercise 4.3.14: See Fisher (1975).

Sect. 4.4: The theory of subnormal subgroups is extensive [see Lennox

and Stonehewer (1986)]; and many of the basic results are due to

Wielandt [see Wielandt (1971a), (1971b) and (1994)]. Some of the ex-

ercises at the end of this section deal with special cases of “Sim’s

Conjecture”; see Sect. 4.8 for further details.

Lemma 4.4B: See Szep (1953).

Theorem 4.4A: See Wielandt (1962), (1971a).

Exercise 4.4.4: See Goldschmidt and Scott (1978).

Exercise 4.4.9: See Knapp (1981).

Exercise 4.4.11: See Sims (1967) and Wong (1967).

e Sect. 4.5: See Kovacs (1989) for further details about primitive wreath
products.
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e Theorem 4.7A: Abelian socles seem to be quite different from nonabelian
socles, and different techniques are required to analyze them. Sh'ort
(1992) describes very clearly a general method of constructing the prim-
itive groups with abelian socles; the general ideas go back to Jord;.m.
Dornhoff (1969), Foulser (1969), and Seager (1987) and (1988) d'e:;?ﬂ W'.lth
finite solvable primitive groups of low rank, following the classification
by Huppert (1957) of finite 2-transitive solvable groups. Liebeck (1986)
classifies the primitive affine groups of rank 3. _

e Exercise 4.7.8: Zsigmondy's Theorem is a useful theorem worth knowing.
Proofs can be found in Liineberg (1981) and in Liineberg (1980) Theorem
6.2. See also Huppert and Blackburn (1982a).

e Sect. 4.8: Much has been done to compute primitive groups of small de-
gree. See for example, Cooperstein (1978), Kantor (1979), .and Pogoreloy
(1980). The list of primitive groups in Dixon and Mortuner (1988) is
reprinted as Appendix B to this book [see also II'in and Takmakov
(1986)]. o

For other applications of the classification of finite simple groups to
permutation groups, see Kantor (1985a), (1985b) and (1987); Kantor and
Liebler (1982); Liebeck (1984b); Liebeck and Saxl (1985a), (1986) and
(1991); and Liebeck et al. (1987) and (1988b).
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5

Bounds on Orders of Permutation
Groups

The theme of the present chapter is use of combinatorial methods to bound
the order of various classes of subgroups of the finite symmetric groups.
Typically we find that, excluding A, and S, themselves, the larger sub-
groups of S, are either intransitive or imprimitive (Theorem 5.2B). On the
other hand, the proper primitive groups are all quite small; we shall show
that a proper primitive group of degree n that is not 2-transitive has order
at most exp(4+/(n)(log n)?) (Theorem 5.3A) while a proper 2-transitive
group of degree n has order at most exp(72(logn)?) (Theorem 5.6A). To
obtain these results we are naturally led to a study of the orders of elements
and properties of bases and minimal degrees.

5.1 Orders of Elements

We begin by looking at the orders of the simplest subgroups: the cyclic
subgroups. Our object in this section is to give a lower bound to the largest
order of an element in the alternating group A, . It might seem more natural
to look instead at the orders of elements in the symmetric group. Actually
the results for the two groups are very closely linked (see Exercise 5.1.5),
but for technical reasons we are more interested in the alternating group.
The result is essentially a theorem in elementary number theory, and it
begins with an estimate, made by P.L. Chebyshev in 1852, of the number
theoretic function

6%(z) = Z log p

2<p<z

for real positive z. Here, and for the rest of this section, p runs over the
primes and log denotes the natural logarithm.

Lemma 5.1A. 6*(2) > z/2 for all z > 11.

i
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PRrooF. The result can be verified directly for small values of z (see Exer-
cise 5.1.1 below), so we suppose that z > 1270. It is enough to show that
6*(2n) > n + 1 for all integers n > 635, since then

05 (2) > 0°(2 |2/2]) > |2/2) + 1> z/2.

We shall proceed by induction on n. Put m = (277) with n > 635. Then
m is the value of the largest of the 2n + 1 binomial coefficients in the
expansion of (1 + 1)?*, and is also larger than the sum of the first and
last coefficients. Hence we get the lower bound 22" /2n < m. On the other
hand, we can obtain an upper bound for m as follows. The largest power
of a prime p which divides n! is p® where e = Y 1o, |n/p'| (see Exercise
2.6.8). Therefore

logm = Z 5(p) logp

p<2n

5<p>:=§{ﬁ—ﬂ‘2[§”'

It is readily verified that for any real number ¢ > 0 we have [2{] = 2 [{] or
2 |£] + 1, so each of the terms in the sum for §(p) is either 0 or 1. Since all
the terms are 0 when p’ > 2n, there are at most | (log 2n)/(log p)| nonzero
terms. Therefore

where

5(p) <1 when Von < p < 2n,
§(p) logp < log2n whenp < Von.
Using these estimmates and the inequality m > 22" /2n obtained above:
onlog 2 — log 2n < logm < 6*(2n) — 6*(V2n) 4+ v2nlog 2n
which shows that
0°(2n) —n—1> (2log2 - 1)n — (1 + V2n) log 2n + 6*(v2n) — 1.

Now 6*(1/2n) > /2n/2 by induction, and so elementary estimates show
that the right hand side of the inequality above is greater than 0 (see
Exercise 5.1.2 below). Thus 6*(2n) > n + 1 and the induction step is
proved. This proves the theorem. O

FEzercises

5.1.1 Verify the values of #* in Table 5.1 and use it to prove that 6" (z) >
z/2 for 11 < z < 1270.

5.1.2 Prove that the right hand side in the last displayed inequality in
the proof above is greater than 0 for all n > 635. [Hint: Replace
6*(v/2n) by the lower bound \/m, and show that the derivative of

the resulting expression with respect to n is positive for n > 635.]
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TABLE 5.1. Selected Values of 6*(p)

11 13 19 29 43 71 113 211 383 709

p:
*(p)= 71 9.6 154 219 364 60.9 1064 1932 358.1 678.9

Tt is known that 6*(z)/z — 1 as z — co. This fact is one form of the
“Prime Number Theorem”. A better known form of this theorem is that

the number of primes less than z is asymptotic to z/ log z [see for example,
Apostol (1976)].

Theorem 5.1A. Ifn > 7, then A, contains an element of order greater

than exp / $nlogn.

PrOOF. Suppose that pi,...,p, are distinct odd primes such that p; +
-+« + pr < n. Then A, contains an element whose nontrivial cycles have
lengths py, . . ., p, and whose order is therefore p; - - - p.. Thus it is enough
to show (with the notation above) that there exists a real number z such
that

1
Z p<n and 60*(2)* > anogn.
2<pLlz

The small cases are easily verified (see Exercise 5.1.3 below) so we shall
assume that n > 22. Put F(z) := z/ log z. Elementary calculus shows that
F is an increasing function for z > e, and so

Y p= > F(p)logp < F(2)6%(2).

2<p<z 2<p<z

Hence we shall choose z so that FI(2)0*(z) = n.If z < 11, then F(2)0*(z) <
11 log(3:5-7)/log 11 < 22; thus our assumption on n implies that z > 11.
By Lemma 5.1A we know that z < 26*(z), and so:

n = 20*(z)/log z < 20" (2)?/log 26" (2) = F(467(2)?).
However, we also have
F(nlogn) = (nlogn)/(logn + loglog n) < n.

Since F' is an increasing function this shows that nlogn < 4 6*(2)? as
required. This proves the theorem. O

Ezercises

5.1.3 Use the values in Table 5.2 to show that Theorem 5.1A holds when
7 <n <26
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TABLE 5.2.

n= 7 11 17 26

expy/fnlogn = 6.33 13.04 32.14 099.68

5.1.4 Show that if h,, is the maximum order of an element in S,,, then there
is an element with this order such that the lengths of its nontrivial
cycles are prime powers for distinct primes.

5.1.5 Show that the maximum order of an element in A4, lies between h,,
and h, /2. .

5.1.6 Calculate h,, for all n < 30. Can you find a general algorithm for

computing h,7?

In contrast to the last theorem, the next result gives an upper bound on
the order of an element in the case where the group has relatively large

minimal degree.

Theorem 5.1B. Let G < Sym(Q) be a permutation group of degree n
and minimal degree m. Then each element of G has order at most n™/™.

PRrOOF. Let z € G have order h. Suppose that p is a prime and that
p® (e > 1) is the largest power of p dividing h. Then z"/? is a product_ of
p-cycles, and o € supp(z"/?) if and only if the cycle of = which contains
a has length divisible by p°. Thus the sum of the lengths of the c.ycles of
z whose lengths are divisible by p® is at least m by the hypothesis on G.
This is the crucial observation which leads to the proof of the theorem.

Factor h = q1 - - - g5 where the ¢; are nontrivial powers of distinct pl*irpes,
and let hi,...,h; denote the lengths of the disjoint cycles of z. For i =
1,...,sand j = 1,...,t, we shall write ¢ || j <= ¢; | h;. Then from
the observation above we have m < Jilld h; for each 4, and evidently we
also have Zmuj log g; < log h; for each ;. Hence

s 1
mlogh <) loggi y hy = h;y_loga
=1 j=1

guillg i)l g
and so
¢ t
mlogh < Z hjlog h; < Z hjlogn = nlogn
j=1 =1
Thus h < n™'™ as asserted. O
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5.2 Subgroups of Small Index in Finite Alternating
and Symmetric Groups

An early observation in the theory of permutation groups was that, apart
from A, each proper subgroup of S,, has index at least 7. When n # 6 the
subgroups of index n in S, are exactly the stabilizers of a point (Sg also
has a second conjugacy class of subgroups of index 6). More generally, for
each k with 1 < k < 125, Sy has intransitive maximal subgroups of index
(@ isomorphic to S x S,_i. The intersections of these subgroups with
Ay, are subgroups of index (Z) in A,. In fact, with a few well described
exceptions, any subgroup of A, with an index less than ( f ) must be

intransitive and contain a substantial portion of one of the subgroups just
described. This is the content of the following theorem.

Theorem 5.2A. Let A := Alt(Q) where n = IQ > 5,, and let v be an
integer with 1 < r < n/2. Suppose that G < A has index |A: G| < (?)
Then one of the following holds:
(i) for some A C Q with Al < 7 we have Apy £G < Ay
(i) n = 2m is even, G is imprimitive with two blocks of size m, and
A2 Gl = 5(1); or
(ili) one of siz ezceptional cases hold where:
(a) G is imprimitive on 0 and (n, r, |A:Gl) = (6,3,15) ;
(b) G s primitive on Q and (n,r, |A - G|, G) = (5,2,6,5:2),
(6,2,6,PSLy(5)), (7,2,15,PSLy(2)), (8,2,15,AG Ls(2)),
or (9,4,120,PT L4(8)).

Remark. In case (i) G contains the alternating group Aay = Alt(Q2\ A)
of degree n — r 4+ 1, and in case (ii) G contains two alternating groups of
degree n/2 = n — r. In part (iii) of the theorem, the groups are listed only
with the minimum r for which they satisfy the hypotheses of the theorem.

The proof uses the following elementary combinatorial lemma,

Lemma 5.2A. Letn > 6 and put m = [n/2]. Then:
(i) For each divisort of n with 3 < ¢ < n/2 we have

{(n/O)1} 1! < mi(n — m)y,

(ii) For each integert > 3 and any integers ny, ..., ny such that 0 < n; <
o <n <0/2 and Y. ny; = n we have

nyl- gt 1 1
T - <z
mi(n—m)l = n—m ~ 4

T
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Proor. (i) Fix t > 3 and put n = kt > 6. Define

mi(n — m)!

(khtt!

We shall show, using induction on k, that 5(k) > 1forallk > 2ift > 3and
for all k > 3ift = 3. Since t! > 2¢ for ¢ > 3, we have 8(2) = (¢!)2/2%! > 1
for t > 3 and B(3) = 4I5!/(31)33! > 1 for t = 3. Now consider how (k)
changes as & is increased by 1 and ¢ is left fixed. There will be ¢t new factors
introduced in the numerator, each greater than or equal to m + 1, and
t new factors equal to & + 1 introduced into the denominator. Hence for
k> 2

B(k) =

pk+1)  (m+1)
k) ~— (k+1)

because k& = n/t < n/3. Thus induction shows that S(k) > 1 for all
required values of k.

(il) For any integers r and s greater than 0 we have (HT'S) > (T'{S), and
so rlst < 1l(r + s — 1)!. Using this latter inequality it is easy to see that
the numerator of the expression on the left hand side of the inequality in
(ii) attains its maximum value (for fixed n and t) when

21

n=...=Ms=1m_1=n—-m-1t+2 and n; =m.
Since t > 3
min —m)l/ml(n—m —-t+2)l>n-m >4

and so the required inequality follows. O

PROOF OF THEOREM 5.2A. Suppose that G is a group satisfying the
hypotheses of the theorem, and that case (i) does not hold. Put A :=
|A: Gland m = |n/2], and note that (*) > (7) holds forr = 0,1,...,n.

First, if G is primitive, and G # A, then by Bochert’s Theorem (Theorem
3.3B) we have h > 3 [(n + 1)/2|!. When n > 15 or n = 13, this implies
that A > (") (see Exercise 5.2.1) which is contrary to hypothesis. Hence,
if G is primitive, then either n < 12, n = 14 or G = A (and so (i) holds
with A = (). An examination of the primitive groups of degrees up to 12
and of degree 14 yields the list of exceptional primitive groups given in part
(iii) of the theorem (Exercise 5.2.3-5.2.6).

Now suppose that G is not primitive (and (ii) does not hold). Then
we claim that either n < 6, or G is intransitive. Indeed, suppose that
G is transitive, and that G has ¢ blocks of imprimitivity of size n/t with
2 <t < n/2. Then G is isomorphic to a subgroup of even permutations in
a wreath product of order {(n/t)!}'! (see Exercise 2.6.2). Thus

()2 G
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Ift = 2 (and so n is even), this inequality implies that h = 3 (™) which
is the case listed in (ii) of the theorem. On the other hand, if ¢ > 3, then

Lemma 5.2A (i) shows that n < 6, and an examination of Table 2.1 gives

ion li in (ii i d that if
i imiti xception listed in (iii). In particular, we have prove .
e grot C ¢ ") in the alternating

a transitive group G of degree n has index less than % ( m :
group, then either G = A (case (1)) or G is one of the exceptional groups
" ;alblseie(ligr'nains the case where G is intransitive. Again we leave the case
n < 6 as an exercise (Exercise 5.2.5) and assume that n > 6. We first show
that G has an orbit of length greater than m. Suppose the contrary. If G has
an orbit T' of length exactly m, G < A(ry, and so |A: G| = 'A : A{F}\ 2
(™) contrary to hypothesis. On the other hand, suppose the orbits of
thve lengths n1, ..., n; which are all less than m (so f > 3). Theln 1151.rl£g1
Lemma 5.2A (i) we conclude that |G| < nyl-- ~'ntn! < tml(n—-m), vvh}t;:.t
again contradicts the condition that |4 : G| < (m> Thus G has an orbi

th s > m > 3. . A
r’l%?gnoef 1Aen:g: Q\T and H := Gy = A = Alt(T); our object f
to show that H = Aa). Put b = |A(ay + H|. Since |A: G||G: H]l ;
}A : A(A)l \A(A) : H{, and G/H = GA < Sym(A), vve.hawehh(?u1 - s)t.ha;%
(n!/s!)h'. Thus, if we put ¢ := |s/2], then the hypothesis on h shows

— g)ls! n — g)ls! (n — §)ltl(s — t)! (s)

hig(n n!) h<(£z—m§‘.?n—!:—(n—m)!m! t)

Hence Lemma 5.2A (ii) yields

1 s 1 /s
! < = .
s n-m(t) - 4(15)
Now induction applied to H acting on T shows that one of th_ree things
can happen: (i) there exists an H-invariant subse.t“)j C T with IE\F <
s/2 such that Aauz) < H; (i) B = 3(5); or (i) s < 9, and H" is

2 \¢
one of the exceptional groups listed in the theorem. The second of these
possibilities cannot hold b

ecause of the bound on h’ given above. Also, sirice

> (n+ 1)/2] > (s +2)/2], the bounds for h' given above also
:hownzh;t i‘z’( is :t 131/0545 3, 5,L(8, 14 and 25 for s = 5,6,7,8and 9, respectweg.
Thus H is not one of the exceptional cases in (iii). Therefore we concluh.e
that (i) holds, and so HO\E > A™E; and since [\ &| > s/2 > 2,t 13
shows that I\ & is an orbit of H. However.,' G acts transmlv.el‘y on ]f‘_,~ ar;
H = Gy 4 G, so the lengths of the OI‘bH-JS of H on I’ <.11v1de s —Tkl |
(Theorem 1.6B). Therefore ¥ = 0, and T itself is an orbit for H. Thus

Any=H < G < A(ay and the proof of the theorem is complete. O

Corollary 5.2A. Let Q be a finite set of sizen > 9, am’ s be an inte-
ger satisfying n/2 < s < n. IfG < A = Alt(Q) has index |A : G| <



min { W (Lﬂ72J>} then G has a unigue orbit T such that [T| > n/2 and
G(ry induces either the alternating or symmetric group on I

PROOF. The hypotheses of the Theorem 5.2A hold and the cases (ii) and
(iii) have been excluded. Thus G satisfies (i) with 7 = n — s. We take
I' = Q\ A; then [T| > s + 1 and Gy contains Aa)y which acts as the
alternating group on I'. O

FEzercises

5.2.1 Show that 3 |(n+1)/2]! > (|,/,) for all n > 15 and for n = 13.

5.2.2 Show that the intransitive subgroups Sy X S,_x < S, are maximal
forl <k < L%J

5.2.3 Use the list of groups of degree 7 given in Table 2.1 to show that
the only primitive groups of degree 8 or 9 which are exceptional in
Theorems 5.2A or 5.2B are those listed.

5.2.4 (Continuation) Using Theorems 3.3B and 3.3E show that there is no
exceptional primitive group of degree 14.

5.2.5 (Continuation) Show that there is no exceptional primitive group of
degree 10. [Hint: It is enough to show that there is no proper primitive
group G < Sym() of degree 10 and order g > 1 (51)? = 7200.
Suppose the contrary. Note that Theorem 3.3E implies that neither 7
nor 52 divides g. Since 7 | 210 = |Q{4}’, G does not act transitively
on 2%}, and so there exists A € Q{4 such that h := ,G : G{A}| <
210/2. Since h | g, this implies that A < 96, and so H := Ga)
has order at least 7200/96 = 75. Put I := Q \ A. Since G has no
nontrivial element whose support has size < 4 (see Sect. 3.3), Hry =
1, and so H = HT. Now Table 2.1 shows that H'' = PGLz(5), Ag
or Sg; and in each case HT contains a 5-cycle. If 2 € H is chosen so
that @l is a 5-cycle, then some power of & is a 5-cycle in H because
5 does not divide the order of 2. This contradicts Theorem 3.3E.]

5.2.6 (Continuation) Give similar proofs to show that there are no
exceptional primitive groups of degree 11 or 12.

A result similar to Theorem 5.2A holds for the finite symmetric groups.
If G is a subgroup of S, for some n and |S, : G| < (7) for some r < n/2
then |4, : GNA,| < (;‘) and Theorem 5.2A applies to G N A,,. However
some new exceptional cases arise. We leave the proof as an exercise.

Theorem 5.2B. Let S := Sym(Q) and A := Alt(Q) where n := [Q] > 5,
and let v be an integer with 1 < r < n/2. Suppose that G < S has indezx
IS : G| < (Z) Then one of the following holds:
(i) for some A C Q with |A| < r we have Aay < G < Siay;
(i) n = 2m s even, G 1is imprimitive with two blocks of size m, and
IS:Gl=4(2); or
(iii) one of siz exceptional cases hold where:

e
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(8) G is tmprimitive with blocks of size 2 on Q and (n,r,|S : G|) =
(6,8,15) ;

(b) G is primitive on  and (n,r,|S . G|, G) = (5,2,6,5:4),
(6,2,6,PGLy(5)), (6,2,12,PSLy(5)), (7,3,30,PSL3(2)),
or {8,8,80,AGL3(2)).

Remark. In part (iii) of the theorem, the groups are listed only with the
minimum 7 for which they satisfy the hypotheses of the theorem.

Ezercise

5.2.7 Starting with the remarks preceeding Theorem 5.2B, complete the
proof of the theorem.
5.2.8 Show that each maximal subgroup of the symmetric group S :=
Sym(€2) of finite degree n is either primitive or one of the following:
(i) (intransitive) the set stabilizer S¢a)for some subset A C Q with
1 < |A] < n/2;or
(i) (imprimitive) the subgroup S[II] consisting of all permutations
which preserve a partition IT = {Ay, ..., Ay} of Q into parts of
size n/m with 1 < m < n. )
Conversely, show that each of the subgroups in (i) and (ii) is max-
imal in S. (The case where S is an infinite symmetric group is much
more complicated; some information is given in Chapter 8.)
5.2.9 (Continuation) State and prove the analogous result for the alternat-

ing group.

5.3 The Order of a Simply Primitive Group

Among the main theorems of this chapter are bounds due to Babai (1981)
and (1982) (and refined by L. Pyber) on the order of a proper primitive
group. We deal separately with the case where the group is 2-transitive
and where it is simply primitive (that is, primitive, but not 2-transitive).
In this section we focus on the simply primitive case.

The following notation will be fixed for the rest of this section. Let G <
Sym(2) be a transitive group of finite degree n. Let Aj,..., A, be the
orbitals of G where A, is the diagonal orbital, and A} denotes the orbital
paired with the orbital A; (see Section 3.2).

Since G is transitive on £, the length n; of the suborbit A;(«) is in-
dependent of the choice of & € 2. We shall assume that the orbitals are
ordered so that 1 = n3 < mng < ... < n,. If o, B and v lie in Q, then we
shall say that v discriminates between « and S if (o, ) and (8, 7) lie in
different orbitals; in this case we shall use the notation (a, v) # (5,7). We
shall write

Vop ={7€ Q| (e,7) # (B,7)}

i,

smay
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and call this the discriminating set for o and . Clearly ¥op = Vpq, and
Voo = 0. If @ # B then ¥4 contains at least two elements, namely a and

Exercises

531 If 2 C Qand £ N W,p # 0 for all pairs of distinct points o and B,
show that ¥ is a base for G.

5.3.2 Show that the value of “I’aﬂ only depends on the orbital A; to which
(o, B) belongs.

5.3.3 If G is regular of degree n, show that each discriminating set Wog
with a # [ has size n.

We define d(G) to be the minimum of |\I’ag| taken over all pairs of
distinct points a and 3. If G is 2-transitive (r = 2), then |¥op| = 2 for all
pairs of distinct o and 3, and hence d(G) = 2; the discriminating sets are
not very interesting in this case. If G is regular, then d(G) = n. Our first
result shows how the invariant d(G) is related to the minimal degree and
the size of a base for G.

Lemma 5.3A. Let G be a transitive group of degree n, and put d := d(G).
Then:

(1) The minimal degree of G is at least d; and

(ii) G has a base of size at most n(2logn — log 2)/d.

Proor. (i) Let z 5 1 and choose o, § € Q) such that a® = 8 # «. Then
no v € ¥,p is fixed by z, and so |supp(z)| > |\Ifag| > d.

(ii) Tt is cnough to show that if s is an integer such that 0 < 8 < n and
1o s-subset of 2 is a base lor G, then s < n(2logn — log 2)/d. Consider
the set Q1) of all subsets of size s, and for each ordered pair (¢, 8) define
Xap on QUsH by putting xap(2) = 1if XN Wap = 0, and xap(XZ) =0
otherwise.

Now define m = 5, Xag(Z) where the sum is over all & € Qlsh and
all (o, 8) € Q®. We shall estimate m in two different ways under the
assumption that no element of 045} is a base for G.

First, if we sum Xop(2) over & € Q) for a fixed pair (e, §), we see
that this sum is equal to the number of ways of choosing an s-subset from
Q\ Wgap. Since | Wog |> d whenever o # £, this shows that

mgn(nn(”‘*d).

S

Second, we fix £ and sum over (o, 8) € Q2 Since T is not a base for G
by hypothesis, there is at least one pair (o, 8) such that SNTup =0 (see
Exercise 5.3.1 above). For this pair we have xas(Z) = Xga(%) = 1. Since
this is true for each ¥ € Q{} we have
=2 (n> .
s

m > 2 ‘Q{S}
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Combining these two inequalities for m we get

oy T (1-4) - mes D0,

k=n—s+1 k (S)

Hence n?(1 — d/n)® > 2, and so
d
2logn — % > 2logn + slog <1— E) > log 2.
n

Thus, if there is no base of size s for G, then s < n(2logn — log 2)/d. This
proves (ii). O

We now turn to estimating d(G) for a primitive group G of rank r > 2.
This will lead to the main theorem on the size of a base and the minimal
degree of a simply primitive permutation group. Before stating the lemma
we introduce some further notation. Let G; = Graph(4;) be the digraph
for the orbital A;, and recall that, for a finite primitive group G, the graph
G, is strongly connected when 7 > 1 (see Lemma 3.2A). We also define G;
to be the (nondirected) graph on the vertex set {2 with an edge between
o and B <= either (@, ) or (B, ) lies in A;. When G is primitive and
i > 1, the graph G; is connected, and we can define diam(i) to be the
diameter of G; (that is, the greatest distance between any pair of vertices
in G;). We shall use d; to denote |‘I'ag‘ when (a, 8) € A;; by Exercise 5.3.2
this is independent of the choice of (a, 3).

Lemuma 5.3B. Suppose that G is a finite primitive group of degree n and
rank r > 2. Then d(G) > /n/2.

Proor. We use the notation established above. We first show that, for
all @, 8 € Q and each ¢ > 1, there exists at least one v € Q such that
(8,7) € A; and (e, B) # (a, ). Indeed, let T be the orbit of 5 under G,.
Since G is a finite primitive group and ¢ > 1, the graph G, is strongly
connected and so there is a directed path in G; from any point in T" to a
point not in I'. Somewhere along such a path there will exist consecutive
vertices, say 3’ and 7/, such that 8/ € I', v € I" and (8,7') € A;. Since
T is a G,-orbit, there exists z € G, such that 8 = (8')*. If we define
v := (7')%, then (B,7) € A and (o, B) # (a, ) because (a, §') # (o, '),
which gives what we required.
We shall now prove that

(5.1) nd; >n foralli>1.

Indeed, count the number m of triples (¢, 8,v) with (8,v) € 4A; and
(o, B) # (o, ) in two ways. First, summing over (8,v) € A; we get m =
|A;| d; = nynd;. Second, summing over (e, 8) € Q x 2, and using the result
established above, gives m > n?. Now (5.1) follows.
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We next show that
(5.2) if (& B) € 4y, and o and f are distance ¢ in G;, then d; < td;.

1 ider ’Everticesa:ao,al,“.,at:ﬁon‘
To show this, consider the sequence 0 =B«
a path from o to 3 of length t in G;. If v € Q, t}gn (a,) # (B, ) implies
i . ce
(o, ) # (agt1,7y) for some L with 0 < k <t Hen
t—1
\I/aﬁ _C_ U \I’akak.‘_y
k=0
Thus d; < td; and (5.2) is proved.
As our last preliminary result we show that

(5.3) there exists k > 1 such that dx > Jn .

Suppose the contrary. Then (5.1) shows that ns > n/d; ZQ\/E i(l)rtha;lé
i > 1. Now for each v € 2, the number of pairs (o, 8) € £ x {suc

(a, ) # (B,7) is equal to

-
m::ng——g n%:flg CALVE
i=1

i<
Thus
m= ini(”# ni) > Z\/"f_l(n —n) > (r—2nyn = nvn.
i=1 i=2

2
Since there is a total of nm points lying in the sets ¥ap (e, B) € Qf(_))j,?}\z:
conclude that for some («, ) we have |\I!a[3! > nm/n(@ -1) >dvn.
contradicts our assumption that all d; < /n, and (5.3) is proxffe : Lion
Finally, to prove the lemma we must show that d; > /1/2 30r adm(5 2).
In the case that diam(é) = 2, this follows at once from (5.3) gnt ,e 3
On the other hand, if diam(i) > 3, then choose o and § at distanc ;
in G;. Then, for each v € Q lying at distance exactly 1 t;;om %h(zlrs i,f
exactly one of (o, 7) and (B,7) lies in Ay U A;‘-‘, and so ’yd 65 ng.ve Obt;‘m
(o, B) € Aj, say, then d; > 2n;. Now applying (5..2) an (5. e obtain
d? > did;/3 = 9d;ni/3 > 2n/3, and so di > /n/2 in this case as .

Combining these results gives the desired bound on the index of a simply
primitive permutation group.

Theorem 5.3A. Let G be a permutation group of degree m which is
imits - itive. Then
primitive but not 2-transt ‘ '
(i) The minimal degree of G is greater than Vn/2;
(i) G has a base ¥ with 12| < 4y/nlogn;
(iii) |G| < exp(4v/n(log n)?).

Proor. (i) Immediate from the last two lemmas.

il
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(ii) The last two lemmas show that G has a base & with |2| < n(2logn -
log 2)/(y/n/2) < 4/nlogn.

(iil) For any base ¥ of G we have

Gl <nn-1)- (n—|Z +1) < exp(|Z|logn)

and so (iil) follows from (ii). C
Ezercise

5.3.4 Consider the action of Sym(Q) on Q{?} where [Q| = m > 4. Show
that the image G of this action is a primitive group of degree n := (')
which is not 2-transitive, that G has minimal degree < 2v/2n, that

the smallest base of G has size greater than

1 —= .
5 {\/n/Q - 1/10gn}
and that
IG| > exp(V2nlog v2n — V2n).

5.4 The Minimal Degree of a 2-transitive Group

We have already seen that a finite 2-transitive group of degree n which does
not contain the alternating group has minimal degree at least /i — 1 + 1
(Theorem 3.3D). Our object in the present section is to present better
bounds due to Bochert (1897).

Theorem 5.4A. Lei G be a 2-transitive group of degree n which does not
contain the alternating group, and suppose that G has minimal degree m.
Then we have the following lower bounds for m:

Q) m>vVn—1+1>n foraln;

(i) m > n/8 for all n;
(iii) m > n/4 for alln > 216.

Part (i) follows from the comment above. The proof of parts (ii) and
(iii) will proceed from a series of lemmas. In these lemmas we shall assume
that G < Sym(§) is 2-transitive with || = n, and that G has minimal
degree m > 3 since a 2-transitive group with minimal degree 2 or 3 is the
symmetric or the alternating group, respectively (see Theorem 3.3A). Fix
an element u € G with support ' of size m, and define

T:={z¢eqG|uz tuz] # 1}
where, as usual, [y, z] := y "'z 7 yz. Put ¢t := |T] and g := |G|.

Lemma 5.4A. With the notation above:
i) INT* > m/3 for all z € T}
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(11) if 27 ug @ Giry thenz € T;
(iil) t/g > 2m(n — m)/n(n — 1).

PROOF. (i) Since A :=I'nre = supp(u) M supp(z~luz), Exercise 1.6.7
shows that -

supp([u, z7'ua]) € A U A U A® ‘U
‘Sincg all the sets on the right hand side have the same size, [u & lug) # 1
implies that [A| > m/3 by the definition of m. )

(ii) If # € T, then 2~ 'uz centralizes %, and hence the support T' of v is
mapped into itself by z~lyz.

(ili) Fix @ € T and put 8 := a" € I Since G is 2-transitive there
are exactly g/n(n — 1) elements in G which map (o, 8) € Q3 on,to any
specified pair in Q2 In particular, there is a total of 2gm(n —m)/n(n—1)
elements z € G such that exactly one of the points a®, 6% lies in T. Since

N T us T 33
(a®)® ™ = B% it follows from (ii) that each such z lies in T, and so we
get the required lower bound on t/g. O

Le‘mr?a 5.4B. For each z € G we put ¢, = L' N T=|. Then:
(i) > 2 wecCe = = (the “mean value” of ¢z);

() § Ceeq calea = 1) = mlmol?,
1 m? m? n—m)?
(i) g ZzEG(Cw - T)z = #1»])) (the “variance” of ¢z).
Proor. (i) Clearly, S ¢, = |A1| where
Ay = {(a, z) ETxG|a”eT}.

Transitivity of G shows that for fixed o, 8 € I, there are exactly |G| =
g/n elements of » € G such that a® — B. Since |T'| = m, this shows CEhat
|A1] = m?g/n and so (i) follows. 7

(i) Similarly, 3" cy(c, — 1) = [Az| where

Ag = {(a,ﬁ,x)eI‘xI‘xG[ax,,B”’EPanda;é,@}.

SiI}CG G acts transitively on (), for any two pairs (o, 8), (7, §) € I'® there
exist exactl}g |Gag| = g/n(n—1) elements z € G such that (o, 8)* = (v, 6).
Because [I( ' = m(m— 1), this shows that |Ay| = m2(m — 1)%g/n(n — 1)
as required.

(iif) Put ¢ := m2/n. Then using (i) and (ii) we have:

Z(Cl' —c)? = }:ci — gc?
B mZ(m_l)Z mz 4
‘“"{W o 3}

_ gmi(n —m)?
n%(n — 1)

and the lemma is proved. O
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PROOF OF THEOREM 5.4A. It remains to establish parts (ii) and (iii).
We shall use the notation just introduced. If m > n/3 then there is nothing
to prove, so suppose that m < n/3. By Lemma 5.4A we know that when
z € T then ¢; > m/3 and so ¢; — m?/n > m/3 — m?/n > 0. Thus by
Lemma 5.4B (iii)

2 2
MZEZ@—WZ—Q) Zz<z§__ﬁ> |
n?(n — 1) 9 = n g n
Then using Lemma 5.4A (iii) and simplifying we get

(5.4) n(n—m)ZZm(% —m>2,

Now substitute m = An/3, and note that A > 3/+/n by part (i) of the
theorem. The inequality (5.4) becomes

(5.5) n < f(A) with —?’ﬁ <A<l
where

ooy 9B —p)

Ju) = 2u(1 — )’

Elementary calculus shows that f has a unique minimum value in the
interval (0,1) at the point g := (9 — v/57)/4 = 0.3625 . ... We claim that
A > pg for all n. In fact, (i) implies that, for all n < 78:

m o 3“”—”“’1) > 3OVTTHY _ arsg  w3/8 > g

A =

n - 78
so consider the case where n > 78. We can rewrite inequality (5.5) as
9(3 - \)
N < 2T
2nA(1 ) < .Y

and note that the two functions p +— (1l — p) and p — (3 — p)/(1 — p)
are both increasing on the interval [3/+/n, uo]- Hence A < g implies

3 3 9(3 — o)
() (- ) < Toi

This shows that 6/n — 18 < 37.237... and so n < 84. Thus the only
possible cases for which A < g can occur satisfy 79 < n < 84. However
(i) shows that if 79 < n < 81, then m > 9 and so A = 3m/n > 30/81 =
0.3703 ... > pg. Similarly, if 82 < n < 84, then m > 10 and so A >
33/84 = 0.3928 ... > po. This proves that A > pg in all cases.

The proofs of (ii) and (iii) now follow easily. To prove (ii), we must show
that A > 3/8 for all n. However, since the function f in the inequality
(5.5) is increasing on (pg, 1), and since A > up from above, it follows from
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inequality (5.5) that A < 3/8 implies that n < f(3/8) = 80.64. We saw
above that A > 3/8 for all n < 78, and so the only remaining cases to
consider are n = 79 and 80. But (i) again shows that m > 9 for all n > 66,
and so A = 3m/n > 30/80 = 3/8 for n = 79 or 80. This proves (ii).

The proof of (iii) is similar. We have to show that A > 3/4 for alln > 2186,
and this follows from inequality (5.5) since f(3/4) = 216. O

Ezercises

5.4.1 Prove, under the hypothesis of Theorem 5.4A, that for each 8 > 1
there exists ng such that m > n/3 — 6/n whenever n > ng.

5.4.2 Show that there exists a constant ¢cg > 0 such that, if G is a proper
2-transitive permutation group of degree m, then every element of G
has order < con?. [Hint: Use Theorem 5.1B.]

5.4.3 Show that there exists a constant ¢; > 0 such that, if G is a
proper 2-transitive permutation group of degree n, then the largest
k for which Ay is isomorphic to a section of G is bounded by
k < ci(logn)?/(loglogn). In particular, if G is k-transitive of de-
gree n then k must satisfy this inequality. [Hint: Use Theorem 5.1A
and the preceding exercise. A stronger result will be proved in Sect.
5.5.]

EXAMPLE 5.4.1. The affine group AGL4(q) acts as a permutation group
on the affine space of dimension d over a field of ¢ elements. The fixed points
of each € AGL4(q) form an affine subspace. Thus the maximum number
of fixed points of a nonidentity element of AGL4(q) is ¢%~!. Since there
are nonidentity transformations fixing a hyperplane pointwise, the minimal
degree of AGLq4(g) is m = ¢* — ¢*~" = (1 — $)n where n := ¢* is the
degree. In particular if ¢ = 2 then m = n/2. Some transitive subgroups of
GLg4(q), such as the symplectic groups Spa(q), also contain elements fixing
a hyperplane pointwise and so give further examples of 2-transitive groups
with m = n/2.

EXAMPLE 5.4.2. The groups AI'L4(g) and PT'L4(g) may contain permu-
tations, induced by field automorphisms, with fixed point sets that are not
subspaces over F, but rather subgeometries defined over a subfield. Usu-
ally these fixed point sets are smaller than a hyperplane, but there are
interesting exceptional cases. For example, the group PGLy(q) is sharply
3-transitive of degree ¢ + 1 and so has minimum degree ¢ — 1. If ¢ = p2
where p is prime, then there is a permutation in PI'Ly(q) fixing p® + 1
points. The group PGL3(4) has degree 21 in its action on the projective
plane PG (4); the maximum number of fixed points of a nontrivial element
is 5 but the field automorphism induces a permutation that fixes a Fano
subplane of 7 points. These permutations will resurface in Chap. 6.

0.9 Lne alernating LHTOUD A5 & DCCLIOI OF at UCITiLaLLion Crroup Lo

EXAMPLE 5.4.3. The symplectic groups Spyq(2), for d > 2, have two
distinct 2-transitive permutation representations with degrees n~ = 2 -
4971 941 gnd pt = 9. 44-1 4 gd-1 respectively (see Sect. 7.7). In each
case there are involutions that fix 4%~! points and the minimal degrees
of the two representations of Spyg(2) are m~ = 491 — 24-1 gnd m+ —

44=1 4 9d=1 Gince
me_ L, 1
nt 2 2¢ £ 1

the minimal degree is slightly less than half the points in the action of
degree n~ and slightly more than half the points in the other case.

5.5 The Alternating Group as a Section of a
Permutation Group

The theorems of the present section give further lower bounds for the
minimal degree of a permutation group. Theorem 5.5A shows that any
permutation group which has a section isomorphic to Ay, for a large value
of k must have a relatively large degree or a small minimal degree. The-
orem 5.5B applies this result to 2-transitive groups. The argument of this
section originated with work of Wielandt (1934) on k-transitive groups.
Since a k-transitive group has a section isomorphic to Ay, Theorem 5.5B
shows that a proper k-transitive group of degree n has k < 6logn. (In fact
the classification of finite simple groups shows that k < 6; see Sect. 7.3).
In Theorem 5.6B, we will use Theorem 5.5B to bound the order of a finite
multiply transitive group.

We begin by looking at a special class of groups which have specified
sections. Let G and U be arbitrary groups. We say that G is a preimage
of U with kernel K, if K <« G and G/K = U; and say that G is a minimal
pl:eémage of U if G is a preimage but no proper subgroup of G is a preimage
of U.

Lemma 5.5A. IfU and G are finite groups, and G is a minimal preimage
of U with kernel K then the following hold.
(i) fH <G and HK = G, then H = G.
(ii) K 1s nilpotent.
(iti) If U is simple, then each proper normal subgroup M of G is contained
in K, and G/M is also a minimal preimage of U.
(iv) Suppose G < H and N < H. If U is simple and H/N has no section
isomorphic to U, then G < N.

PROOF. (i) Since H/(H N K) = G/K = U, the minimality of G shows
that H = G.
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(ii) A finite group is nilpotent if and only if each of its Sylow subgroups
is normal. Let P be a Sylow subgroup of K. Then the Frattini argument
(see Exercise 1.4.14) shows that G = Ng(P)K, and so G = Ng(P) by (i).
Hence P <« K, and the result follows.

(ii) Suppose that M < G and M is not contained in K. Since U = G/K
is simple, M K /K must equal G/K, and so M = G by (i). This proves the
first statement, and the second follows easily.

(iv) If G is not contained in N, then G/(GN N) = GN/N is a preimage
of U by (iii) contrary to the hypothesis on H/N. O

In the following lemma we use the notation A(k) to denote the minimum
positive integer d such that for some field F' the group GL4(F) has a
finite subgroup with Ay as a quotient. Using methods concerned with linear
groups, we shall show in Sect. 5.7 that (2k — 4)/3 < AMk) < k- 1. In
anticipation, we use these bounds in the proofs below.

Lemma 5.5B. Let t > 5 and consider a group H with a subgroup M
which is a minimal preimage of A,. Suppose that H acts on a set £ such
that Q is an orbit for some solvable normal subgroup K of H. If || < 228,
then M lies in the kernel of this action.

PROOF. First consider the special case where |2] > 1 and H acts primi-
tively on Q. Let H and K denote the images of H and X, respectively, in
this action, and let /V denote the kernel of the action. Since K acts tran-
sitively on , the primitive group H < Sym(Q) has a nontrivial solvable
normal subgroup X. Thus, by Corollary 4.3B and Theorem 4.6A, soc(H)
is a regular elementary abelian p-subgroup for some prime p, |Q| = p¢ for
some d > 1, and each point stabilizer H, is isomorphic to a subgroup
of GL4(p). Since H = H,K, we have a normal series H > KN > N & 1
where H/K N is isomorphic to a section of GL(d,p) and KN/N is solv-
able. However, 2¢ < p? = |Q| < 2*() by hypothesis, so by the definition
of A(f) there is no section of GLy4(p) which is isomorphic to A;. Hence
M < N by Lemuna 5.5A (iv). This proves the result in the case where H
acts primitively.

Now consider the general case. The result is trivial if || = 1, so
we shall assume [} > 1 and proceed by induction on |§2]. Choose
Y ={A,...,A,} as a system of minimal blocks for H (m > 1). Since

K acts transitively on ¥ and |E] < [, induction shows that M lies in
the kernel of the action of A on ¥; hence M < H; := Hya,y for each i.
Consider a fixed 4, and choose o € A;. Then H = H,K by the transitivity
of K, and H, < H; because A; is a block, so H; = H,(K N H;). Now H;
acts primitively on A; because A; is a minimal block (see Exercise 1.5.10),
H; has a solvable normal subgroup K N H; acting transitively on A;, and
M < H;. Therefore, applying the special case proved above, we conclude
that M lies in the kernel of this action, namely, M < Ha,y. Since this is
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true for each ¢, we have shown that M fixes every point in Q and so lies in
the kernel of the action on 2 as asserted. O

The next lemma gives a crucial step in the proof of our main theorem.

Lemma 5.5C. Let G be a minimal preimage of A, and fiz a surjective
homomorphism ¢ : G — Ay with K := kery. Choose M < G minimal
such that Y(M) = As < Ag. Now suppose that k > 10 and s is an integer

such that k/2 < s < k, and define c(k, s) := (5;1 (g)—l. Then, whenever
G acts transitively on a set Q of size n < min{ (), %(Lk];u)’ M+

each element of M fizes at least c(k, s)n points in 2.

Proor. Let & := {Ay,..., A} be the set of orbits for K on . Since
K < G and G is transitive on 2, ¥ is a system of blocks for G and |A;| =
n/m for each i. Put H; := Gya,;. Then, by Lemma 5.5A (i), K is a
transitive solvable subgroup of H;. Since £ > 9 and

[Ak s 9(Hi)| = |G- Hi| =m < n < mm{(lz)’ % (Uc];%)}

Corollary 5.2A shows that there exists ¢ > s + 1 such that ¢(H;) has a
unique orbit J; € {1,2,...,k} of length ¢ and Al¢(J;) < ¥(H;). Choose
M, < H; minimal with respect to the condition that ¥(M;) = Alt(J;); so
M; is a minimal preimage of A,. Since |A;| < n < 26+ < 228 Lemma
5.5B applied to H; in its action on A; shows that M; < Ga,)-

Now consider the set 7 := {¢ | 1 < i < mand {1,2,3,4,5} C J;}. The
definition of M as a minimal preimage of As shows that M < M;K <
GayK for all i € I, and because Ga,)K/G(a,) is nilpotent by Lemma
5.5A (ii), this shows that M < G(a,) by Lemma 5.5A (iv). Hence we
conclude that A; C fix(M) for each ¢ € I, and so each element in M fixes
at least 3,/ [Ai] = (n/m) |I| points in Q.

To complete the proof it remains to show that |I| > c(k, s)m. How-
ever, transitivity of G on ¥ and of ¥(G) = Aj on the set of t-subsets of
{1,2,...,k} shows that each t-subset J of {1,2,...,k} occurs the same

number of times, say d times, as a J;. Hence m = || = d(fj while
1) = a(s=3). Thus 7] fm = (525 (5) 7 = ()() = elk,t=1) > o(k, s)
as required. O

To obtain the bounds we are after, we need some elementary estimates
of some binomial coefficients.

Lemma 5.5D. Let k and s be positive integers with k > 2 and s < k.
Suppose that p is chosen so that s/(k+ 1) < p < (s+1)/(k+1). Then

p(l = p) k+1 k k41 1
- < < ] - - _
kr1 P S\s) =F where p pt (1 — p)(=w)
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PROOF. Let t > 0 and consider the binomial expansion of (1 4 )*. For
two successive terms in this expansion we have

l?ti< ,k = ﬂ,gt
7 — \t+1 k—1

and so (¥)¢* is the largest term whenever s/(k—s+1) <t < (s+ 1)/(k—s).
The hypothesis on p shows that these latter inequalities hold if we put
t = p/(1 — p). Now the sum of the terms is (1 + t)F = (1 - p)~F, and
there are k + 1 terms altogether, so we conclude that

Nk
QE:'L%— < <}:>NS(1 -w° < (1- F‘)-k-

Since p(l — p)pFtt < pmi(1 = p)~(E=9) < pFth, the stated inequalities

follow. O

Theorem 5.5A. Let G be a permutation group of degree n which contains
o section isomorphic to Ay for some k > 10. Suppose that G has minimal
degree at least wn where w < 0.4. Thenn = (};) for any s < k such that

(s + 1)s(s — 1)(s — 2)(s — 3)

W D=k -HE-4) Lo

C(k, 5) =

In particular, if we define s = |p(k + 1) where p 1= Y1 — w, thenn >
(%) for this value of s.

PROOF. Let Q be the set on which G is acting. The hypothesis on G shows
that G contains a minimal preimage H of Ay, and Lemma 5.5A (iil) shows
that the image of the action of H on each of its nontrivial orbits is also a
minimal preimage of Aj. Since G has minimal degree at least w [©2] on &,
the same must be true for H, so we conclude that the image of H on some
nontrivial orbit T' has minimal degree at least w IT|. Thus, since n = T,
it is enough to prove the theorem in the special case where G is a minimal
preimage of Ay and G is a transitive permutation group.

Next note that c(k,s) < {(s + 1)/k}°, and so the condition on c(k, 3)
implies that s + 1 > (V1 - w)k = pk. The hypothesis that w < 04
shows that p > ¥0.6 = 0.9028. .. and so min{(*), % (LkI;ZJ)’ A} =
(’;) by Exercises 5.5.1 and 5.5.2. We can now apply Lemma 5.5C and the
hypothesis on c(k, ) to conclude that n cannot be less than (';) . This proves
the main assertion.

Finally, if s := |[p(k + 1)), then s +1 —17 > pk +1) —i > pk —1)
for 0 < i < 4, because p > 0.8; hence e(k,s) > p5 =1 — w. Thus the
hypotheses are satisfied for this choice of s. O

=4 . R -3 .
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Ezxercises

k \
5.5.1 Show that (s) < %(Lkl;féj) whenever 2(k + 1)/3 < s < k. [Hint:

Comp&re (];) with the preceding binomial coefficient.]

5.5.2 Using ;che fact that A(s + 1) > (2s — 2)/3 (see Theorem 5.7A), show
that (S) < 22+ whenever k > 10 and 0.9k < s < k. [Hint: Use
Lemma 5.5D and the fact that p is decreasing as v increases in the
range 0.5 < pu < 1.]

Theorem 5.5B. Let G be a proper 2-transitive permutation group of
degree n > 216. If G contains a section isomorphic to Ak, then k < 6logn.

PrROOF. First note that the result is trivial if £ < 32 since logn > 5.37 for
alln > 216, so we can suppose that k > 33. Since G is 2-transitive and n >
216, Theorem 5.4A shows that the minimal degree is at least n/4. Applyir;g
Theorem 5.5A then shows that n > (’;) where ;1 = V’/B—/él = 0.9440 ... and
s = |u(k +1)]. Now Lemma 5.5D shows that (¥) > allop) pkdl gy

p=1.2405.... Hence v o

logn > (k+1) log p-+log L= B o [goygs  loglE+ 1) 27261

E+1 — k k '
This shows tha? logn > k/6 for all & > 160. The remaining cases are
settled by applying Theorem 5.5A to various ranges of k with s chosen so

that c(k, — . . ’
theorefn, s) > 1 — 1/4 (see Table 5.3). This completes the proof of t}ﬁ

TABLE 5.3.

Range of k s Minimum value Minimum value
of c(k, ) of 1 log (¥)
33<kE<39 k-2 0.8484 ... 0.1694 ...
40<k<63 k-3 0.7628 . .. 0.1680. ..
64 < k<87 k-4 0.7802. .. 0.1679...
8<k<112 k-5 0.7880. .. 0.1670. ..
113 <k<136 k-6 0.7941 . .. 0.1675. ..
137 < k<161 k-7 0.7966 . . . 0.1671...

.
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Exercise
5.5.3 Verify the information in Table 5.3. [Hint: For a fixed value of i,

e(k,k — 1) is an increasing function of k, and log (kIL) — k/6 is a
decreasing function of k provided k > 7i.

5.6 Bases and Orders of 2-transitive Groups
The following general combinatorial result is useful in a variety of contexts.

Lemma 5.6A. Letn, d andt be positive integers. Let 2 be a set of size

n, and suppose that F is a family of subsets of Q0 such that each v € Q lies

in exactly t subsets from F. Then

(i) for each T' C Q) there exists A € F such that [T'N A| < |T]|A] /n;

(ii) f each A € F has at least d elements, then for each real ¢ > 1 there
exists a subfamily F, C F such that |F.| < (nlogc)/d + 1 and

U Al > <1~ l)n
JAY VIR ¢

PROOF. (i) Let F(v) denote the set of A € F with v € A, and note that
|F(7)| = ¢t by hypothesis. Then

SImnAl =Y 1F ) =t

ACF vyel

In particular, substituting €2 for " gives
> 1Al =tn.
AeF

Hence, for general I', we have

er = 3 ERfharz B S
AeF AEF

for some A* € F, and (i) follows.
(i) Define subsets I'g, I'1,... of Q as follows. Put I’y := 0. For each
7 > 0 we use (i) to choose A; € F such that

T A < Tif Al /n

and put ;41 := I;UA; and g; := |T;]. Clearly g;v1 > g; aslongasI'; # Q.
We claim that if we stop at the index & where gx > (1 — 1/c)n > gr—1
then k < (nlogc)/d+ 1. Since the latter inequality is trivial for k = 1, we
can suppose that k > 2. The choice of A; shows that for each 4

n—giv1 <n— g — A <1~ %) < (n - g) <1‘ g)

e
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Since gg = 0 and k > 2, this shows that

k=1
d —dk—1
Egn—gk_lgn(l——> <nexp{———< )}
c n n

Therefore — log ¢ = log(1/c) < —d(k — 1)/n and the result is proved. O

Lemma 5.6B. Suppose that G < Sym(Q) has degree n > 2 and that
k > 5. If G does not have a section isomorphic to Ay, then there exists
A C Q with |A] < 2k such that every orbit of G(a) has length less than
0.63n.

PROOF. Suppose that no such set A exists. To simplify notation, put b :=
0.63. Then we can define a sequence of subgroups G(i) (i = 0,...,2k)
of G such that G(0) = G and, for each i > 1, the group G(4) is a point
stabilizer of G(i — 1) with |G(i — 1) : G(i)] = bn (choose the point to lie
in the largest orbit of G(i — 1)). Then G(2k) = G(a) for some subset A
of size 2k, and |G : G(AA > (bn)?*. On the other hand, considering the
action of G on the set Q12F} of 2k-subsets, we have

16+ Gral < 29 = (5)

and so

-1 2k 12k
' n 2% _ (2k)I n?® b | b2k

Now the restriction map gives a homomorphism of

G{A} — Sym(A) = Sop

with kernel G(a) and image H := G{AA} = G(a}/G(a)- By the hypothesis
on G, the group H cannot contain a subgroup isomorphic to Ak. Since
k > 4, this implies that the index of H in Sym(A) is at least (2:) by
Theorem 5.2B. Therefore

(2k)!

28y

(%)
As we saw in the proof of Lemma 5.1A, (3%) > 22k /2k. Using this together
with the last two inequalities for ‘G{ ay Gy A)i we conclude that (2b)%* <
2k. Since (2k)1/2% < 1010 < 126 = 2b for all k > 5, this gives a

contradiction. Thus there exists a set A for which Gy} has all its orbits
of size < bn, and the lemma is proved. O

|H| = |Gay : Gyl <
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Lemma 5.6C. Let G < Sym(Q2) be 2-transitive of degree n > 6, and let
b be a constant with 0 < b < 1.
(i) If there ezists a set £ C Q such that Gz) has no orbit of length > bn,

then G has a base of size at most

2
1 13 (3.
{l_b ogn + }I |

(ii) If k > 5 and G does not have a section isomorphic to Ay, then G has
a base of size at most 12k logn.

ProorF. (i) Let
A = {(a, B) € 0 | @, 0 lie in distinct G (x)-orbits }
Then the hypothesis on G(x) shows that

Al 2> (1 —b)n=(1-bmn’
acQ)
Consider the family F of sets A% indexed by z € G. Because G is 2-
transitive, each pair (o, 8) € Q%) lies in the same number of sets in F and
so we can apply Lemma 5.6A (i) with ¢ = n?. We conclude that there is
a subset 7 C G with

n(n —1) logec 2
— 4 1<
@ _bmz TS To0

|T| < logn +1

such that | J,.p A% = Q). Since
(o, B) € AT = @, f lie in distinct G (ge«)-orbits

we conclude that T' := | J, . X% is a base for G with

2
1 1 .
F<{1_bogn+ }IE\

This proves (i).
(ii) Lemma 5.6B shows that the hypotheses of part (i) hold with |Z| = 2k
and b = 0.63. Hence we can find a base of size at most

2
— 1 12k 1
2k{0-37 logn + } < ogmn

since logn > log6 > 1.79. O

Theorem 5.6A. If G is a proper 2-transitive subgroup of degree n, then
G has a base of size at most 72(logn)?. Hence the order of G is at most

exp{72 (logn)%}.

Proor. The result is trivially true for n < 216, so we can suppose
n > 216. Then from Theorem 5.5B, G does not have Ay as a section if

] FHC ATLCTIALHIE WOl as a Dechion ol a Lianear Carotip L

k > 6logmn. Hence part (ii) of the precceding lemma gives the desired
conclusion. ]

Since (logn)? grows more slowly than /7 we can combine Theorems
5.6A and 5.3A to get the following bound valid for any proper primitive

group.

Theorem 5.6B. There exists a constant ¢ > 0 such that every proper
primitive group of degree n has order at most exp{c'\/n(logn)?}.

Tt is possible, but not very enlightening, to make an estimate of the value
of . It is certainly much too large to be useful for moderate degrees, say
less than a million. There is an alternative bound known for the order
of a proper primitive group of degree n, namely 4™. This is poorer as an
asymptotic bound but has the advantage of being valid for all degrees. The
proof of this result which is due to Wielandt (1969) and Praeger and Saxl
(1980) is quite different from the proofs given above; it is less combinatorial
and uses more of the group structure.

However neither of these results really describes the true picture, and
Liebeck (1984b) has used the classification of finite simple groups to prove
the following.

Theorem 5.6C (Assuming the classification of finite simple groups). Let

G be a primitive group of degree n. Then there is a constant b > 0 (which

can be taken to be 9/(log 2)) such that at least one of the following holds:

(i) there are positive integers d, k and m such that G has a socle which
is permutation isomorphic to A%, where the action of A,, is equivalent
to its action on k-element subsets of {1,...,m} and n = (’g)d,' or

(it) G has a base of size less than blog n and so has minimal degree greater
than n/(blogn) and order less than exp(b(logn)?).

Ezercises

5.6.1 Show that AGL4(2) has a base of size approximately (logn)/(log 2)
so the bounds in part (ii) of the theorem above are within a constant
factor of being best-possible.

5.6.2 Let G be a finite group acting transitively on a finite set £ of size
n > 3, and fix ¢ € Q. Show that for some integer ¢ < (logn +
loglogn)/log2 + 1 there exist elements z,,...,z; € G such that
each point in 2 has the form «® where 2 = z7' ... zj* with¢; € {0, 1}
for each 7. In particular (taking the action as right multiplication on
G), there is a set of ¢ generators zy,...,z; of G such that each
element z € G has the form described. [Hint: Apply Lemma 5.6A.]
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5.7 The Alternating Group as a Section of a Linear
Group

The present section is devoted to obtaining a lower bound on the dimension
d of the general linear groups G Lg(F') which contain finite preimages of Ag.
This is necessary to complete the proofs of Sect. 5.5. We begin with some
general results. Recall that a group is locally finite if every finitely generated
subgroup is finite. In particular, finite groups and infinite abelian p-groups
are locally finite.

Lemma 5.7A. If G is a finite p-group which acts as a group of
automorphisms on a locally finite p-group H # 1, then fixg(G) # {1}.

ProoOF. Take any u # 1 in H, and define K := {(u* | z € G). Then
K is a finite nontrivial p-subgroup of H by the hypotheses and K is G-
invariant. Since the nontrivial orbits of G all have lengths divisible by p,
the set fixx (G) of fixed points on K satisfies

[fcxc(G)| = K| =0 (mod p).
Since 1 € fixx(G), we conclude that |ixy(G)| > |fixgx(G)| = p. O

Suppose that G acts as a group of automorphisms of H and that H has
a finite chain of subgroups

(5.6) H=Hy>H >...>H, = 1.

Then we say that G stabilizes the chain (5.6) if for each 4, 1 < i < r, we
have: (i) H; is G-invariant, and (ii) for all w € H;_1, Hu = H;u” for all
z €G.

Lemma 5.78.

(1) Suppose that 8 is a p-element in Aut(H) for some prime p, and (6)
stabilizes the chain (5.6). If H contains no nontrivial p-element, then
g =1. :

(ii) Let G be a minimal preimage of Ax (k > 5), and suppose that H is
a group in which every nontrivial element either has infinite order or
has q-power order for some fized prime q. If G acts on H as a group of
automorphisms and G stabilizes the chain (5.6), then G acts trivially
on H.

PROOF. (i) The result is clearly true if » < 1, so proceed by induction on
7, and assume r > 1. Since H, is invariant under 6, the group (8) acts
as a group of automorphisms on H; and hence 8 acts trivially on Hy by
induction. Now for each u € H, there exists z € H such that v¥ = zu,
and hence u? = z'ufori = 1,2, ....If § has order m, then this shows that

m

u = z™u, and so z™ = 1. Since m is a power of p, z must be a p-element,
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and so z = 1 by the hypothesis on H. Hence v =wuforallue H,and so
0=1.

(i1) Choose any prime p < k with p # ¢. Let z € G be a p-element which
maps onto a nontrivial p-element of Ax. Now (i) shows that the kernel of
the action of G on H contains z, hence the kernel is G by Lemma 5.5A. O

We shall require some elementary results from linear algebra. Let F' be
an algebraically closed field and let V' be a d-dimensional vector space over
F. Let End(V) denote the ring of all F-linear transformations (or endomor-
phisms) of V' into itself; recall that this is also a vector space of dimension
d? over F. The invertible linear transformations in End(V') form the group
GL(V). A linear transformation ¢ € End(V) is called diagonalizable if ¢
has a diagonal matrix relative to some basis for V. The following results
are well known (see, for example, Hoffman and Kunze (1971) Sect. 6.4 and
6.5).

Lemma 5.7C.

(i) t € End(V) is diagonalizable <= the minimal polynomial m(X) for
¢ has distinct roots. In particular, if t* = 1, then m(X) | X™ — 1.
If char F = 0 or char F = q¢ > 0 but ¢ | n, then GCD(X"™ —
1,nX™ 1) = 1, and so X™ — 1 has distinct roots. Thus in this case
t" = 1 implies that t 1is diagonalizable.

(ii) If T is a set of diagonalizable linear transformations which commute
with one another, then there is a basis for V. over which allt € T have
diagonal matrices simultaneously.

FEzercises

5.7.1 Let G be a subgroup of GL(V') over the field F.
(i) If t € End(V) commutes with every element of G, then ker ¢ and
Im ¢ are G-invariant subspaces of V.
(ii) If the only G-invariant subspaces are V and 0, and F' is alge-
braically closed, then Z(G) consists of scalar matrices of the
form (1.
(i) If char F = p # 0, then 1 is the only p-element in GL(V) which
is a scalar.
[Hint: In the second part, if z € Z(G), consider z — (1 where  is
an eigenvalue ¢ for z. For the third part use the fact that (X —1)F =
X?" — 1 over any field of characteristic p.]
5.7.2 Let G be any group, and for each € G define

Ce(z) =={y € G| [z,y] € Z(G)}.

Prove that C%(z) is a subgroup of G and that y ~— [z, y] is a homo-

morphism from C§(z) into Z(G) with kernel Cg(z). In particular,
Ck(z)/Cg(z) is abelian.
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5.7.3 Show that there is no field for which SLy(F) contailns a finite preim-
age G of Ag. [Hint: If char F # 3 then every finite 3-subgroup 19f
SLo(F) is cyclic, while if char " =3 then the elements of order 2 lie
in the centre, and so G would have an element of order 12] .

57.4 Show that there is no field for which SL3(F) contains a finite
preimage G of Az.

We define A(k) to be the smallest positive integer d for which there gmsgs
a field F such that GL4(F') contains a finite preimage G of Ag. 811115)(13
arguments show that A(k) < k—1 for all k > 2, an.d Fhat‘A(Q) = /\(3) tTat
and \(4) = A(5) = 2. Obviously there is no r.estnctlon in assungmg dlon
F is algebraically closed. Our object is to obtain a general lower boun

MEk).
Theorem 5.7A. Forallk > 2, Mk) > (2k — 4)/3.

A major part of the proof of this theorem is the proof of the following

lemma.

Lemma 5.7D. Let & > 5, and let d = Mk). Then there exists an
algebraically closed field F and a finite subgroup G of SLy(F) such that:

i is irreducible as a linear group; .

((13 g(g) is a group of scalars (1 (with ¢ € F) and its order divides d;
(iii) if char F =p >0, then p | 1Z(G)|;

(iv) G/Z(G) & Ak
PROOF. The definition of d shows that there exists an algebraically closed
feld F such that GLg(F) contains a finite preimage G of Ag. We choose
F and G so that G has smallest possible order; 1.et K be the kernel of
this preimage. Note that G must be a minimal preimage of Ay and heI{c.e
@' = G because k > 5. Since det(z~ly tzy) = 1 forall 2,y € G, this

< SL4(F).
Sh%z: t%;at:G Fé d:rgot)e the underlying vector space. Since GL(V)h =
GL4(F), we can identify G wit(h) it(s i)mage in GL(V). We shall now show
i he conditions (i)—(iv). '

tha(f) GSlSlgngsi:Stiat W is a G-invariant S}lbspace. Then G stab-ih_zelzf the
subgroup chain V.2 W 20 of (V,+). Since G d(?eé not act trivially 03
V, Lemma 5.7B (ii) shows that G does not act trivially on both W an,
V/W, and so, by Lemma 5.5A (iii) and the choice of G , must act falthf\.{ll}i
on one of these. Now the minimality of d shows(f,)hat either W or V/W has

i ion d. and so W = 0 or V. This proves (1). 4
dlr?i?)nSSIior?ce ’G acts irreducibly on V, Exercise 5.7.1 shows that Z (GP)‘ 1sIa
group of scalars. Thus Z(G) < {¢1] ¢% = 1} because G < SLg(F). In

articular, | Z(G)| divides d. -
v Eiii) Supp,ose that char F = p > 0, and let P be a Sylow p-subgroup of

K. Since P acts on the locally finite p-group (V,+) as a group of automor-
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phisms, Lemma 5.7A shows that W := fixy (P) # 0. Since P is the unique
Sylow p-subgroup of K by Lemma 5.5A (ii), therefore P < G. Hence W is
a G-invariant subspace, and so W = V by the irreducibility of G. Hence
fixy(P) = V, and so P = 1. This shows that p / |K/|. Since Z(G) < K,
(iii) follows.

(iv) We have to show that K = Z(G). Suppose that this is false. Since
K is nilpotent by Lemma 5.5A (ii), there exists a subgroup M of K
such that M/Z(G) is a minimal normal subgroup of G/Z(G) contained
in Z(K/Z(G)). Then M/Z(G) is an elementary abelian group of order ¢,
say, for some prime ¢g. We claim that » < d.

First, if M < Z(K), then M is abelian and, as we saw in the proof of
(iii) above, the order of K is relatively prime to the characteristic of £ if
the latter is nonzero. Since F' is algebraically closed and A is abelian, we
can find a basis of V' over which all elements of M correspond to diagonal
matrices by Lemma 5.7C (ii). Each finite subgroup of the multiplicative
group of any fleld is cyclic (see, for example Lang (1993) IV §1), so we
have an embedding of M into a direct product of (at most) d cyclic groups.
Hence M itself is generated by at most d elements, and so the same is true
for the homomorphic image M/Z(G). Hence r < d in this case.

Second, if M is not contained in Z(K), then M N Z(K) = Z(G) by the
minimality of M. Choose elements x, ..., Z,, from M to form an F-basis
of the subspace of End(V) spanned by M (so m < d?). The elements of
this basis lie in different cosets of Z(G) because Z(G) consists of scalars; we
shall show that in fact they form a set of coset representatives for Z(G) in
M. Indeed, if this were not true then we could choose y € M such that no
z; lies in the coset Z(G)y. Then y = > A\;z; for some unique A; € F, and
sol = Nzt Since z;y 7! does not lie in Z(G), it is not contained in
Z(K) and so we can choose z; € K which does not commute with z;y7*.
Since M/Z(G) < Z(K/Z(G)) and Z(G) consists of scalars, this shows that
there exist (;; € F such that

[y ', 2] = (y1 and (u#1 forij=1,...,m.

Thus, for each j, we have

1= Z;l].Zj = Z /\izflziy‘lzj = Z/\igijziy_l-
The linear independence of the z; now shows that A;(;; = A; for each
j, and so A; = 0 because (;; # 1. This implies y = 0, and we have a

contradiction. Hence 1, ...,z is a set of coset representatives for Z(G)
in M and so

EP>m=|M:2Q)|=q >2

which shows that r < d in this case as well.

Thus we have shown that M/Z(G) is a vector space of dimension < d
over the fleld with ¢ elements. Since the kernel of G acting on this space (by
conjugation) contains M, Lemma 5.5A (iii) and the minimality of |G| in
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the choice of G shows that G must act trivially on this space. Now, Lemma
5.7 (ii) shows that G acts trivially on the Sylow g-subgroup of M, and so
M < Z(G) contrary to hypothesis. This shows that Z(G) must be all of
I{ ag claimed. 0

Proor or THEOREM 5.7A. We proceed by induction on k. The cases
where k£ < 7 are dealt with in Exercises 5.7.3 and 5.7.4, so suppose k > 8.
Let d := A(k), and let G < SLy(F) be a group satisfying the conditions
(i)=(iv) of Lemma 5.7D for a suitable field F'. Since k > 8, we have d > 4
by Exercise 5.7.4. Let ¢ denote a homomorphism of G onto A, and choose
z in a Sylow 3-subgroup of G such that ¢(z) = (123) € A,. With the
notation of Exercise 5.7.2

Cilz)/2(G) = Ca,((123)) = ((123)) x Aj_3

(
and C¢(z)/Ca(z) is abelian, so C := Cg(z) has a section isomorphic to
the simple group Ai_3 (recall that & — 3 > 5 because k > 8). Let H be a
minimal preimage of Ay_3 in C.

PtV i= FLIFV = Vy >V, > Vy... > V. = 0 is any chain of
C-invariant subspaces, then H must act nontrivially on at least one of the
factor spaces V;_,/V;, since otherwise H would not act faithfully on V by
Lemma 5.7B (ii). Thus, if we can prove that there exists a chain of C-
invariant subspaces in which successive quotient spaces all have dimension
< d — 2, then induction shows that d — 2 > {2(k — 3) — 4}/3 and hence
d > (2k — 4)/3 as required. To complete the proof we consider two cases.

First, suppose that char F' # 3. In this case z is diagonalizable. Since
each eigeuspace of z is C-invariant (Exercise 5.7.1), it is enough to show
that x does not have an eigenspace of dimension d— 1. Suppose the contrary;
then z corresponds to a diagonal matrix of the form diag(e, g,...,5).
Choose y € G such that ¢(y) = (12)(45) € Ai. Then the conjugate
y~'ay of x has the form z?¢ because ¢(y *zy) = ¢(z)? and the ele-
ments of Z(G) are scalars. Thus the diagonal matrix for z is similar to
diag(a?¢, B%¢, ..., #%¢). and so the diagonal entries of the two matrices
must match after possible reordering. Since d > 2, this can only happen if
a = &?Cand B = F%¢. Hence a = ¢~! = 3, which is impossible because z
does not lie in Z(G). Hence every eigenspace for z has dimension < d — 2
and the proof is completed in this case.

Second, suppose that char /7 = 3. In this case 3 [/ |Z(G)| by Lemma
5.7D, and so z is an element of order 3 in G. Thus the minimal polynomial
for z divides X* — 1 = (X — 1)® (compare with Exercise 5.7.1). Hence all
the ecigenvalues of z equal 1, and the blocks in the Jordan canonical form
for 2 have one of the three forms:

110
[1], {é ﬂ or |0 1 1
0 0 1
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A simple calculation shows that the dimension of W := ker(z — 1) is equal
to the number of Jordan blocks, and so is at least 2 (since d > 4) and at
most d — 1. Since W is C-invariant the only case we have to consider is
when dim W = d — 1, and this occurs only when z has one block of size
2 and all other blocks of size 1. In this case we see that U := Im(z — 1)
is a C-invariant subspace of dimension 1 contained in W, and so the chain
V > W > U > 0 fulfills our requirements.

Thus we have proved the induction step in all cases, and hence completed
the proof of the theorem. O

5.8 Small Subgroups of 5,

The following theorem is an application of some of the results obtained in
this chapter to show that many interesting classes of groups always appear
as small subgroups of Sy,.

Theorem 5.8A. Let C be a nonempty class of finite groups with the prop-
erty that whenever G € C then every subgroup and homomorphic image of
G lies in C. (Briefly: C is closed under taking subgroups and homomorphic
images.) Suppose that C does not contain every finite group. Then there
erists ¢ > 1 such that for alln > 1:

(5.7) if G < Sn and G € C, then |G| < ™1

PrOOF. Since C does not contain every finite group and is closed under
taking isomorphisms and subgroups, there exists m such that 4,, & C.
Choose ¢y > 1 such that (5.7) holds with ¢ = ¢p for all n < m. Now
choose mg > m such that (5.7) holds with ¢ = ¢y whenever G is primitive
and n > ng. This is possible because the choice of m and the hypothesis on
C ensures that G must be a proper primitive subgroup of S, when n > ng,
and so Theorem 5.6B applies. Finally choose ¢ > ¢g so that (5.7) holds for
all n < ng. We claim (5.7) now holds for all values of n.

Indeed, (5.7) holds when G is primitive by the choice of ¢, and also for
small values of n, so we can proceed by induction on n assuming that G
is either imprimitive or intransitive. If G < §,, is imprimitive, then there
exists d | m with 1 < d < n such that G can be embedded in a wreath
product of the form H wr K where H < §,,/4 is isomorphic to a subgroup
of G and K < Sy is isomorphic to a factor group of G (Exercise 2.6.2).
Thus the hypothesis on C together with the induction hypothesis implies
that

|G| < ‘H‘d ‘K‘ < C(n/dfl)dcd—l — c’n-—l
as required. On the other hand, if G < 3, is intransitive, a similar argu-

ment shows that G can be embedded in a direct product H x K where
H<S;and K < S,,_gforsomedwithl <d<n-—1,and H and K are
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homomorphic images of G. Then the hypothesis on C and the induction hy-
pothesis show that |G| < |H||K| < ¢*1e™ 4 < ¢"7*, so the induction
step is proved in this case too. This proves the theorem. O

Ezercises

5.8.1 Suppose that in addition to the hypothesis of the theorem, we assume
that C is closed under taking direct products, and that C contains a
nontrivial group. Show that in this case there exists ¢’ > 1 such that,
for infinitely many values of n, there exists G < S, with G € C such
that |G| > (¢/)*~!. Hence there exists some ¢ > 1 such that (5.7)
holds for all n > 1 and such that, for each ¢’ with 1 < ¢/ < ¢, there
exists infinitely many n for which (5.7) fails to hold if ¢ is replaced
by ¢'.

5.8.2 Show that every abelian subgroup of S, has order at most ¢™ where
¢ = 343 = 1.44225 . .. and that this bound is reached whenever n is
a multiple of 3.

5.8.3 Find a similar bound for the nilpotent subgroups of S,.

5.8.4 Suppose that in addition to the hypothesis of the theorem we assume
that C is closed under forming extensions (that is, if N <« G with

N € C and G/N € C, then G € C). Prove that there exist ¢ > 1
such that (5.7) holds for all n > 1, with the bound exact for infinitely
many n.

5.8.5 Prove that every subgroup G < S, of odd order has its order bounded
by 3("=1/2 and that this bound is exact whenever n is a power of 3.
[Hint: If G is primitive, the point stabilizer G, acts faithfully on a
set of size (n — 1)/2 (see Theorem 4.4A (ii)).]

In the special case where C is the class of solvable groups, we can make
the conclusion of Theorem 5.8A more precise.

Theorem 5.8B. Let ¢ := 24Y/3 = 2.8845.... Then, for every permuta-
tion group G of degree n, the product of the orders of the abelian factors
in a composition series for G is at most c" . In particular, the solvable
subgroups of Sy, have order at most ¢ 1.

Proor. We shall first prove the result in the special case where G is solv-
able. It is easy to check that the result is true for n < 4 (the bound is exact
for n = 1 and n = 4), so we shall proceed by induction on n, and assume
n > 4. We consider three cases.

(i) If G is intransitive with an orbit of length d, say, with 1 < d < n,
then G is isomorphic to a subgroup of S4 x S,—g4. Thus, by induction,
1G‘ < Cd—lcn~d*1 < cn—1.

(if) If G is imprimitive, then there exists d | n with 1 < d < n and
m := n/d such that G is isomorphic to a subgroup of the wreath product
Sa wr S, with the natural action of 9,,. Then induction shows that |G| <

(Cdfl)mcm—l =t
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hagng)nlgftb@l.ls p‘rimitiw.e7 then T; =p* sayisa power of some prime p, G
-, ehan socle of order p*, and Gy is 1somorphic to some Subgrc;up
of GLk(p) (see Theorem 4.6A). Hence

G =" 1Cal < P @" = )" —p) - (oF — ph-1) < i1
Now

(k+1)logn = logpnlogn/logp < log 2nlog n/ log 2.

A simple calculus argument shows that the last expression is less than
}()n ~1) 'log ¢ whenever n > 16; so nf+1 < gn=1 o, ) > 16 and the 1'equir;d
lounmd‘ is proYed for these values of n. Direct verification shows that the
atter inequality also holds for each prime power n = p*F with 5 < 5, < 13
f})lcceé)t fo;n = 8. Fmally, forn =8, |G| < 8 |GL3(2)| = 1344 < ;7, and so
the boun 'holds for all degrees. This completes the proof of the theorem
in the special case where G is solvable.
OfI(\iTow consmler' the case where G < Sy is a general permutation group
egree n. It is enough to consider the case where G is chosen so that

Xe clain.1 that in this case G is solvable. Indeed, if G is not solvable then
1ere exist norma} s.ubgroups H and K of G such that: K& < H G)/H is
80 v;ble, and H/K s a'nonabelian chief factor of @ (and hgnce7a direct
é);gguct of Fo;;;l;(ehan simple groups). Let P/K be a nontrivial Sylow p
roup of A/K. Then the Frattini argume 1t (Exerci ;
et o v NI R g/ nt (bxercise 1.4.14) shows
‘ = Ng/(P/K). Now K < N and N/i has
szﬁoment N/(N NH) = G/H. Hence the product of the orders/of th;
P éan lclzglmlp]\o[slmmlrlG f]acgors of NV is as great as the corresponding product
while < - Since this contradicts the choj f ’
that G must be solvable Thus th ocinl s e oncude
. e bounds for the special i
general case, and the theorem is proved. P case pply in th;

Erercises

5.8.6 Show that the b i er i i
T ound in the theorem above is attained for groups of
5.8.7 tS)how that every solvable subgroup of S, has its derived length ¢(G)
ounded by' [blog n| where b = 5/(2log3) = 2.27559 . . . ;nd that
this bound is best possible whenever n is g power of 9. 7

9.9 Notes

° ;];lheolrelin 5.}A and Exgrcises 5.1.4-6: It is shown in Landau (1909) §61
at log i, is asymptotic to vnlognasn — co. See also Nicolas (196")
Miller (1987) and Massias et a]. (1989). >

® Theorem 5.1B: See Babai and Seress (1987).
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Theorems 5.2A and 5.2B: See Liebeck (1983b) and Jordan (1870) 68-75.
Exercise 5.2.8: See also Sect. 8.5.

Lemmas 5.3A and 5.3B: See Babai (1980) and (1981).

Theorem 5.3A: See Babai (1981).

Theorem 5.4A and Lemma 5.4B: See Bochert (1897).

Exercise 5.4.3: Known to Jordan. See also Babai and Seress (1987).
Sect. 5.5: This section is based on Wielandt (1934). Theorem 5.5B gives
a logarithmic bound on the degree of transitivity of a finite permutation
group; this was the original aim of Wielandt (1934). All significantly
better bounds on degree of transitivity use (directly or indirectly) the
classification of finite simple groups; see Sect. 7.3.

Lemma 5.6A and Exercise 5.6.2: See Babai and Erdds (1982).

Lemma 5.6B, Lemma 5.6C and Theorem 5.6A: See Pyber (1993a) and
(1995) which are based on Babai (1982). Babail gives a weaker version of
Theorem 5.6B. For related results see Pyber (1993b).

Wielandt (1969) proves that the order of a simply primitive group of
degree n is at most 24™. Praeger and Saxl (1980) improved this bound
to 4", and showed that it holds for all proper primitive groups of degree
n. (The proof, however, is very computational, and not all the details
are spelled out.) The Wielandt-Praeger—Saxl bound is useful because
it is nontrivial even for relatively small values of n, in contrast to the
asymptotically better bounds of Theorems 5.3A and 5.6A. For related
bounds for transitive groups see Liebeck (1982) and (1984a).

Sect. 5.7: The whole object of this section is to prove the inequality of
Theorem 5.7A and so complete the proof of Theorem 5.5B. The bound
which we obtain is not tight. Indeed, Lemma 5.7D shows that A(k) is
the minimal degree of a projective linear representation of Ay, and using
information about these representations [see Hoffrnan and Humphreys
(1992)] it can be shown that A(k) > k — 2.

Theorem 5.8A: Using the Wielandt-Praeger-Saxl bound discussed above,
Babai et al. (1982) proves that if £ > 6 and G < S,, has no section
isomorphic to Ay, then |G| < k™.

Exercise 5.8.5: See Alspach (1968) for a purely combinatorial proof.
Theorem 5.8B: See Dixon (1967) for the solvable case. See also Palfy
(1982).

6

The Mathieu Groups and Steiner
Systems

6.1 The Mathieu Groups

The five Mathieu groups, My, Mya, Myy, Moz and My, are a truly re-
markable set of finite groups. These groups were first described in papers
of Emile Mathieu (1861, 1873), and are the only finite 4- and 5-transitive
groups which are not alternating or symmetric. Moreover, all five of the
Mathieu groups are simple, and constitute the earliest known examples of
sporadic simple groups (simple groups not belonging to an infinite family).
The five Mathieu groups are all subgroups of Myy. In recent decades, Moy
has been used to construct exceptionally tight packings of spheres in R24
which in turn have led to a number of further sporadic finite simple groups
[see Thompson (1983)].

The group M is sharply 5-transitive of degree 12, which means that
each 5-point stabilizer is the identity. The group M;; as a point sta-
bilizer of Mio; so My in turn is sharply 4-transitive on 11 points.
Indeed the stabilizer of a point in Mj; is a group, sometimes called
Mo, which is isomorphic to Ag - 2. The group M;; also has an ex-
ceptional 3-transitive permutation action on 12 points with the point
stabilizers isomorphic to PSLy(11). Thus PSLy(11) has both its natu-
ral 2-transitive action of degree 12 and an exceptional 2-transitive action
of degree 11.

The group My, is 5-transitive of degree 24 with Mpy3 as a one-point
stabilizer and My, as a two-point stabilizer; so these latter groups are 4-
and 3-transitive, respectively. The point stabilizers in My, are isomorphic to
PSL3(4) in its natural 2-transitive action on the 21 points of the projective
plane of order 4 (see Section 2.8). It so happens that we can partition the
set £ of points on which Moy acts into two sets of size 12, = ZUT, so
that the setwise stabilizer (M24){E} induces the group Mi, on each of the
sets 2 and I". Moreover, if « is a point of I, then the copy of Mi; fixing &
in the action on I induces the 3-transitive action of M; 1, mentioned above,
on the complementary set I". The stabilizer in M1 of a point B € T'is a
copy of PSL,(11).

177
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The main objective of the present chapter is to construct these groups
and their permutation actions. Our approach is concrete and constructive.
We build, for each permutation action, an appropri@te geometry pregerved
by the group where these geometries are nested 1n31de‘ one another in the
same manner as the groups. Our strategy is to start with the smallest and
build successively larger geometries and groups. Initially, the small Majch—
ieu groups (My; and Mis) are handled separately from the la.rge Mathlfeu
groups (Mag, Mas and May), but at the end we .shall explain hoW Mo
is embedded inside My4 and identify the 3-transitive degree 1? action for
M. (This latter action is also constructed by different means in Example
7.5.2.) However, the first step is to define and develop the type of geometry
we use in these constructions.

Fzercises

6.1.1 Prove that the Mathieu groups are simple using the fact that
PSLy(11) and PSL3(4) are both simple. [Hint: Use Theorem 7.2B
on normal subgroups of multiply transitive groups.]

6.1.2 Show that if G is transitive of prime degree p and |G| = p-m - k
where m > 1, m = 1modp and k is a prime with £ < p then

G is simple. Hence, use the facts that |Moy3| = 23.- 40320 - 11 and
|Mi1) = 11 - 144 - 5 to show that these groups are simple.

6.2 Steiner Systems

We have already seen examples of permutation groups as agtorporphmm
groups of a structure such as a graph, affine space or prOJlectlve'space
(see Sections 2.3, 2.8). Here we define a general class of cor.nbln'atorlal ge-
ometries whose automorphism groups have turned out to yield interesting
permutation groups. o . . .

In an affine or projective space each pair of points is contam(?d in a unique
line; it is this “geometric” property which we seek to generalize.

Definition. A Steiner system S = S(Q,B) is a finite set Q of points
together with a set B of subsets of € called blocks such that, for some
integers k and t, each block in B has size k, and each subset of {2 of size ¢
lies in exactly one block from 5.

We call S an S(t, k, v) Steiner system where v := |Q]. The parameters
are assumed to satisfy t < k < v to eliminate trivial examples.

It is important that this use of the term “block” should not be‘ confusgd
with the earlier use in reference to imprimitive groups. The tern.nnology is
too well established to change, but confusion will be minimized in our case
since the groups dealt with in this chapter will be multiply transitive, so
blocks of imprimitivity will not arise.

Ve WVCLIIGE DY DL Ly

An automorphism of a Steiner system S(, B) is a permutation of
which permutes the blocks among themselves. Many interesting permuta-
tion groups, not least the Mathieu groups, arise as automorphism groups
of Steiner systems. This gives a means of constructing the groups as well as
a concrete tool to study the structure of the groups. The study of Steincy
systems and other combinatorial geometries is a lively area of combina-
torics quite apart from its role in permutation groups. See, for example,
Cameron and van Lint (1991), Hughes and Piper (1985), Beth et al. (1993).
The following examples give some idea of the ways in which automorphism
groups of Steiner systems arise. The affine and projective groups were in-
troduced in Section 2.8 and the other groups mentioned in the examples
are discussed later in Section 7.7.

EXAMPLE 6.2.1. (Affine space as a Steiner system). Take € to be the vector
space of dimension d over the field Fy for some prime power g. Take the
set B of blocks to be the affine lines of the space, that is, the translates of
1-dimensional subspaces. Then there are v = ¢ points in the space and
each block has k = ¢ points on it. Any two distinet points are joined by
a unique line so lie together in Jjust one block. Thus we have an S(2,q,¢%)
Steiner system. The group AT Lg(q) (see Section 2.8) is the automorphism
group of this Steiner system.

EXAMPLE 6.2.2. (Projective space as a Steiner system) Take © to be the
set of 1-dimensional subspaces of a vector space of dimension d+ 1 over
the field F, for some prime power q. Take the 2-dimensional subspaces as
the set B of blocks. Then there are v — (¢*** — 1)/(¢ — 1) points and
each block contains exactly k = ¢ + 1 points. Two points correspond to
two 1-dimensional subspaces, so together they span a single 2-dimensional
subspace. Thus every pair of distinct points lies in g unique block. Hence
the projective space of dimension d is an example of an S(2,¢9+1,v) Steiner
system where v = (¢! — 1)/(q — 1). The group PT'Lg11(g) (see Section
2.8) is the automorphism group of this Steiner system.

EXAMPLE 6.2.3. In any affine space three distinct points define a plane
unless they are collinear. If the field of scalars is F 2 then three points cannot
be collinear since lines contain only two points. Therefore the points and
planes of AG4(2) form an § (3,4, 2%) Steiner system with the 3-transitive
automorphism group AGL,(2).

EXAMPLE 6.2.4. An inversive plane is an S(3,m + 1, m? + 1) Steiner
system. For each prime power q there is a classical example of an inversive
plane with m = ¢ on which PGLy(q) acts as an automorphism group. If
s is odd there is also an inversive plane, with m = 23, having the Suzuki

group Sz(2°) as a simple 2-transitive automorphism group. See Sect. 7.7
for further details.
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EXAMPLE. 6.2.5 A unital is an S(2,m + 1,m® + 1) Steiner system. If m
is an odd prime power then there is a classical unital with 2-transitive
automorphism group PGUs(m). For each odd s there is also a unital with
m = 3° which admits the Ree group R(3°) as a simple 2-transitive group
of automorphisms. See Sect. 7.7 for further details.

EXAMPLE. 6.2.6 The previous examples forin infinite families. There are
also many examples of Steiner systems which occur in isolation or form
part of a small finite collection. Fot example, there are (up to isomorphism)
16 S(2,4, 25) Steiner systems with non-trivial automorphism groups [see
Kramer, Magliveras and Mathon (1989)]. See also Exercise 6.2.5.

The basic parameters of a Steiner system are the numbers v, k, t and the
number b := |B| of blocks. Given any point ¢, we can count the number
of blocks containing « as follows. We can choose t — 1 further points from
Q in (Y7]) ways, and so this is the number of t-subsets which contain
o. Similarly, any block (of size k) which contains o has (¥7]) t-subsets
containing «. Since each t-subset lies in a unique block, we conclude that
there are exactly 7 := (“~1)/(¥7}) blocks containing «; in particular, r is
independent of the point a.. A similar argument shows that more generally,
if 1 < ¢ < ¢, then the number A; of blocks which contain a specified i-subset

of points is independent of the subset chosen and is given by

(D) w—dw—i-1)---(v—t+1)
=y k=R -i-1) - (k-t+ 1)

L—i

Ai =

fori=1,...,t.

In the proof of the next theorem we shall need the concept of an inci-
dence matriz for a Steiner system S(€2, B). This is a matrix whose rows
are indexed by the set Q and whose columns are indexed by B (in some
ordering), and whose (o, B)-th entry is 1 if @ € B and 0 otherwise.

Theorem 6.2A. Let'S be an S(t, k,v) Steiner system with b blocks such
that each point lies in exactly v blocks. Then:
(i) bk = vr;
(i) r = w=1Dw-2)(v—t+1)
(k—1)k-2)-(k—-t+1)’
(iii) (Fisher’s inequality) v < b and k < r.

PRrROOF. (i) We count, in two ways, the number m of pairs (a, B) such that
the point « is contained in the block B. There are b choices for B and then
k choices for a point inside; thus m = bk. On the other hand, there are v
ways to choose « and then r choices for a block containing «; thus m = vr.
This proves (i)

(i1) This follows at once from the calculations above (r = \;).
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(iii) This part requires a more sophisticated argument. Lg’o A‘ be the
incidence matrix for S. Then the definition of Steiner system implies that

r o1 1
aat o | BT
11 ... r

The determinant of the v X v matrix AAT is (v +7 — 1)(r — 1)V (see
Exercise 6.2.2 below), and this is nonzero because r = 2. T.hus the v x b
matrix A must have rank v. Therefore v < b, and then (i) shows that

k<. O

It follows from this theorem that we can calculate b and.r from v, k
and ¢, and this explains why these parameters are not mentlon.ed‘ in our
notation S(t,k,v). The theorem also shows that phere are restrictions on
the triples which can appear as the parameters of a Steln(?r system; more
generally, v, k and t must be such that each of the expressions for )\Z is an
integer. There seems to be no simple necessary and sufﬁcmntlcondltlon to
characterize the triples (v, k, t) for which a Steiner system exists.

Exercises
6.2.1 Show that the parameters of an S(t, k,v) Steiner system satisfy v >

t+ Dk —-t+ 1).
6.2.2 Show that an n x n matrix of the form

a; + ¢ a a)
an as+c¢ ... ao
an, An ... GntTC

has determinant ¢"~*(c + a1 + -+ + an)- .
6.2.3 Prove the following properties of a Steiner system with parameters
(2, k,v): . e
1) If b > v thenv > £°.
((11% The following are equivalent: (a) v = k2 (b)r=k+1 (c)
b= k(k + 1); (d) if o is a point not 1 a block.B, then there is
a unique block which contains & and does not mters.e_ct B. .
(i) In the situation of part (ii), the blocks can be partitioned into
k + 1 “parallel classes” each consisting of k blocks stTch that the
blocks in a given parallel class are disjoint. (A Steiner system
with this property is called an affine plane.) o
6.2.4 An S(2,n+1,n%+n+1) Steiner system is called a projective plane

of order 7. . ok
(i) Suppose that P is a projective plane of order n, and L is a block.
Show that if L and all the points on it are removed, then the
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resulting system of points and blocks is an affine plane (as in
Exercise 6.2.3).

(i) Conversly, suppose that A is an affine plane of order n. Show
that there is a projective plane P of order n and a block L of
P such that the removal of L and all its points from P leaves
A. Moreover, any two projective planes with this property are
isomorphic.

(iif) Show that in a projective plane any two blocks meet in a unique
point.

‘We are concerned here with Steiner systems as geometries on which per-
mutation groups can act. An automorphism group of a Steiner system acts
on both the points and the blocks. These two actions are linked in subtle
ways as shown in the following theorem.

Theorem 6.2B. Let S = S(Q, B) be a Steiner system and suppose that
G is a group of automorphisms of S. Then:
(i) G has at least as many orbits on B as on 2.
(ii) If G acts transitively on both B and on 1, then the rank of G acting
on B is at least as great as the rank of G acting on §2.

Remark. Part (i) applied with G = 1 gives Fisher’s Inequality (Theorem
6.2A(iii)).

PRrOOF. (i) Suppose that 1, Qs, ..., Q, are the orbits of G on £, and set
n; = |Qy|. Similarly, let By, Ba, ..., B; denote the orbits of G on B. We
have to show that s < .

Since we are working with orbits, it makes sense to define c¢;; as the
number of points in §2; which lie in any given block in By, and to define
dki as the number of blocks in By which contain a given point of Q; (i =
1,...,sand k = 1,...,t). The point is, these numbers are independent of
the particular block or the particular point chosen.

Fix ¢ and 7 and consider the set

T .= {(a,B,ﬁ) EQ,‘XBXQJ"OC,,BGB}.

We count the number of elements of T" in two ways. If we first pick § € €,
and then B € By with § € B, and finally o € ; N B, then this gives

\T| = Z njdkjcik.
k

Alternatively, if we first pick o € Q; and § € ;, and then choose the block
B containing these points, then (using the definition of A; given above) we
obtain

|T‘ _ 77.7;(77,1; — l))\g +ng Ay ifi = 7
- 'TL.L'TLj)\Q if 4 i‘é _7 ’
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tEl}lqléating these two expressions for |T| and dividing through by n; shows
a

Zcikdkj = { (m = Dhat A ili =y
A niAz ifisj "

Defining the matrices C' := [¢;;] and D := [di;], this last set of relations
can be written:

(n1 — 1))\2 + A; 9 Ag A 1 Ao
cp - 77,2.)\2 (77,2 - 1))\2 + /\1 . 712/\2
Ng Ay g Ao (ns — 1)Ag 41 )

Now Exercise 6.2.2 shows that det(CD) = (A — M) O = A vAg)
because )" n; = v. Thus CD is nonsingular and so the s X ¢ matrix C has
rank s; hence s < ¢ as required.

(i) Fix o € Qand B ¢ B, and let m be the number of orbits of & acting
on © x B. Then by the transitivity of G on Q and B, m is equal to both
the number of orbits of G, on B and to the number of orbits of Gipyon
Now the rank of G acting on Q equals the number of orbits of Ga}acting;
on Q,‘a,nd hence is at most m by part (i). On the other hand the rank of
G acting on B is equal to the number of orbits of G|y acting on B, and
again part (i) shows that this is at least m. This proves (ii). . (]

Lzercises

6.2.5 Sh.ow that if an (2, 4, 25) Steiner system has an automorphism of
prime order p then p = 2, 3, 5 or 7. The number of fixed points of
such an automorphism is: 1 or 5 ifp=21ordifp=30 if p=5;

and4ifp =7,

6.2.6 Consider an S(t, k,v) Steiner system and let B = {oq,..., a;} be
a block. For 0 < 5 <4 < k, let 1;; denote the number of bl)ocks B’
for which B' N {ay, ..., ai} = {a,...,a;}. For example, with the

usual notat.ion, Koo = b and py; = r. The numbers tij form what is
called the intersection triangle of the system.
(i) Prove that i = (Y5 /(*) and that py; = 4, ;. — 4. .
ol j < g t—i t—z) Hij = Hi-1,5 — pi 51 for
(if) Writing the intersection triangle in the form
Hoo

10 K11
H20 H21 122
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the triangle for an S(5, 6, 12) Steiner system is

132
66 66
30 36 30
12 18 18 12
4 8 10 8 4
1 3 5 5 3 1
1 0 3 2 3 0 1

Use this triangle to show that in such a Steiner system the com-
plement of a block is also a block. (In Section 6.4 we shall show
that there is a unique Steiner system with these parameters.)

(iii) Construct the intersection triangle for the S(5, 8, 24) Steiner sys-
tem and use it to show that two blocks of this Steiner system
cannot intersect in exactly 1 or 3 points.

6.2.7 The intersection triangle of the previous problem can be extended
to any set X = {ai1,...,ay,} of points in the Steiner system with
m > k if we know the values of p;; for ¢ < m. Consider an S(3, 4, 10)
Steiner system. Construct the intersection triangle corresponding to a
set X of five points containing no block. Use the intersection triangle

to show that the complement of X also fails to contain a complete
block.

Suppose that S = S(Q, B) is an S(t, k, v) Steiner system. For any point o
of S, we can form a new Steiner system S, = S(Q', B’} where Q' := Q\ {a}
and B := {B\{«a} | B € Band a € B}. The Steiner system S, is called
the contraction of S at @ and is an S(t — 1,k — 1,v — 1) Steiner system.
The contraction S, is also sometimes called the derived or restricted Steiner
system. This formation of the contraction of a Steiner system is a basic tool
which we shall use frequently in this chapter; it is analogous to working
with a point stabilizer in a group. We shall also speak of S as being an
extension of S,. While contraction of a Steiner system is always possible,
it is rare to find an extension of a given Steiner system. In order to extend
an S(t, k,v) Steiner system .S, a new set of blocks each with k + 1 points
must be found. The new set of blocks must have the property that any set
of ¢ + 1 points of S not contained in a block of S is in exactly one new
block. In this chapter construction of extensions of Steiner systems is a
major theme, but you should note that the sequences of extensions which
we build here are highly exceptional.

The following exercises develop some basic ideas used repeatedly in later
sections.

FEzercises

6.2.8 An inversive plane was defined in Example 6.2.4 as an S(3,m +
1,2 + 1) Steiner system. Show that the contraction of an inversive
plane is an affine plane (as defined in Exercise 6.2.3).
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6.2.9 Suppose that G is an automorphism group of a Steiner system S
and that « is a point of 5. Show that G, is an automorphism group
of the contraction Sy .

6.2.10 Suppose that a Steiner system S has an extension S* obtained by
adding the point & and the new set S of blocks. Show that a group
H of automorphisms of S is also a group of automorphisms of S* if
and only if H leaves § invariant in its induced action on the subsets
of the points of S.

6.2.11 Let S be an S(t, k, v) Steiner system and S* be an extension of S ob-
tained by adding a new point « to each of the blocks of S and adding
some new set S of blocks. Suppose that S is determined uniquely
(up to isomorphism) by its parameters and that any two possible
choices for the set S are conjugate under some automorphism of
S. Prove that Aut(S*) is transitive on the points of .5*, and that
Aut(S*), (as a permutation group acting on the points of S) is the
largest subgroup of Aut(S) which leaves the set S invariant.

6.3 The Extension of AGy(3)

The Mathieu groups will be constructed by building Steiner systems
which have the required groups as their automorphism groups. The first
Steiner system to look at is the affine geometry AG2(3). We have al-
ready seen in Example 6.2.1 that, with lines as blocks, this geometry is
an S(2,3,9) Steiner system. In fact, we shall see that this Steiner sys-
tem can be extended three times to produce systems with parameters
S(3,4,10), S(4,5,11) and S(5, 6, 12) with the small Mathieu groups as the
corresponding automorphism groups. The new blocks to be added at each
stage will be subsets of the affine plane AG2(3), so we shall begin with a
detailed study of the geometry of this finite plane.

The affine plane AG2(3) is the set of nine points in the 2-dimensional
vector space over the field F3 = {0, 1,2}. To simplify notation we shall
write 44 in place of (3,7) (1,7 € {0, 1,2}) for the elements of AG2(3). Each
of the 12 lines of AG2(3) contains exactly three points, and every pair of
points lies on a unique line. We can partition these 12 lines into four classes,
each consisting of three parallel lines, namely:

00 01 02 00 10 20 00 11 22 0012 21
101112 011121 01 12 20 01 10 22
20 21 22 02 12 22 02 10 21 02 11 20

Exercises

6.3.1 Show that in AG(3) there are: (i) 72 triangles, (i) 54 quadrangles
(sets of four points with no three collinear), (iii) 4 triangles in each
quadrangle, and (iv) 3 quadrangles containing a given triangle.
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6.3.2 Show that the automorphism group of AG>(3) induces Sy on the set
of 4 parallel classes. .
6.3.3 Show that every set of five points in AG2(3) contains at least one

quadrangle.

Theorem 6.3A. Up to isomorphism, AGo(3) is the unigue S(2,3,9)
Steiner system.

ProoF. Consider any S(2,3,9) Steiner system S. In anticipation of the
result, we shall refer to its blocks as “lines”. We have seen (Exercise 6.2.3
with & = 3) that the lines of S can be partitioned into 4 parallel classes.
Pick one parallel class and write down its lines as three rows. Rearrange the
points in the rows so that the columns form the lines of a second parallel
class. Finally, by perhaps interchanging the last two rows we can assume
that the diagonal points also form a line of S. Thus we can assume that
seven of the 12 lines of S can be displayed as in Fig. 6.1. There are five
more lines needed to complete the Steiner system. However, taking any
two points not already joined by a line, there is exactly one way to chgose
the third point on this line. Therefore, there is a unique S(2, 3, 9) Steiner
system. O

We want to extend AG2(3) to an S(3, 4, 10) Steiner system (to be called
Wio) by adding a new point o and defining appropriate new bl.oc':ks. The
Steiner system Wig will have b = 30 blocks, 7 = 12 blocks containing each
point, and each triple of points will be contained in a unique block. As
discussed in the last section, the blocks of Wig containing o will have the
form AU {a} where A is a line of AG2(3). These twelve block; AU {a} cover
all triples which include « as well as all collinear triples of points of AG2(3).
The remaining blocks must cover the triangles of AG2(3) once each. The
required blocks of Wig consist of all sets of four points from AG’Q’(B) of
which no three are collinear (since the collinear triples are already in the
blocks A U {a}). Thus we are looking for a set of 18 = 30 — 12 quadrangles
to cover the 72 triangles of AG2(3) once each. We shall show that thfare are
exactly three such sets of 18 quadrangles and these three sets partition the
set of all 54 quadrangles of AG3(3).

N

FIGURE 6.1.
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We need to make a careful study of the quadrangles of AG5(3). Since
the automorphism group of AG2(3) is transitive on quadrangles (Ex-
ercise 2.8.11), it is sufficient to look at one particular quadrangle, say
{00, 01, 10, 11}. For each quadrangle = there are six lines Jjoining its four
points in pairs; we call these the lines of the quadrangle. Since each line of
AG4(3) lies in one of the four parallel classes, we see that to each quadran-
gle Z we can associate a pair {z,y} of parallel classes such that these are
the classes that each contain two of the six lines of =. We shall say that =
has type {z,y}.

'

Exercise

6.3.4 Consider any quadrilateral = of AG4o(3).

(i) Show that there is a unique point § outside of = which lies on
two distinct lines of Z. (This point is called the diagonal point
of the quadrilateral.)

(ii) Show that there is a, unique quadrilateral 2* disjoint from = and
that = and Z* have the same diagonal point.

(iii) If the parallel classes of AG3(3) are a,b,c,d and E has type
{a, b}, show that 2* has type {c, d}.

(iv) If 2 is a quadrangle of type {a, b}, and v is a point outside =
such that the only quadrangles contained in = U {~} are of type
{a, b} or {c,d}, show that + is the diagonal point of =.

The set {a, b, c,d} of four parallel classes of AG2(3) can be partitioned
in three different ways into a pair of 2-subsets, namely: ab | cd, ac | bd
and ad | bc. Taking the partition ab | cd as an example we can form the
set 5y of all quadrangles of AG5(3) which either have type {a, b} or type
{c,d}. This gives three sets of quadrangles (which we denote S;, S, and
S3), one for each partition, and each quadrangle belongs to exactly one of
these sets. Since the automorphism group of AG5(3) acts like Sy on the set
of parallel classes (see Exercise 6.3.2), each of these sets contains 18 of the
54 quadrangles of AG5(3).

Theorem 6.3B. Fach set S = Si(6=1,2,3) has the property:
(6.1) each triangle of AG5(3) is in a unique quadrangle from S.
Conversely, these are the only sets of 18 quadrangles with this property.

PROOF. We first show that each 8y has the property (6.1). By symmetry it
is enough to consider the case where S; corresponds to the partition ab | ed.
Consider any triangle T. The three sides of T are in different parallel classes
and so one parallel class, say d, is not represented. When 7 is completed to
a quadrangle by adding a point 7, the three lines through 7 will all lie in
different parallel classes. Thus the class d cannot be represented twice by
the lines of this quadrangle, and so T is not contained in any quadrangle
of type {c,d}. On the other hand, there is a unique quadrangle of type

pre—y
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{a, b} containing 7. Indeed we can enumerate the vertices of T as p, o and
7, say, where the line through p and o is in class a, and the line through
p and 7 is in class b. Then the (unique) line of class @ through 7 and the
line of class b through o intersect at a point 7, and =2 := {o, p, 7, 7} is the
unique quadrilateral of type {a, b} containing 7. As we noted above, no
quadrangle containing T" has type {¢, d}, so = is the unique quadrilateral
in &; which contains T. This proves that the sets S; have property (6.1).

To prove the converse, let S be a set of 18 quadrangles satisfying (6.1).
For each set {c, p} of distinct points we define Q(c,7) to be the set of
all quadrangles in AG»(3) which contain these points. In particular, we
can enumerate the nine quadrangles in Q(00, 01) (by their two additional
points) as follows:

= 010,115 =5 :10,12; =5 :10,21; =4 : 11,12; =5 : 11, 20;

e 0 12,225 =270 20,215 Zg 0 20,22; =g : 21,22,

Since there are six triangles which contain the points 00 and 01 and each
quadrangle contains four triangles, condition (6.1) shows that S must
contain exactly three of these quadrangles. It is now straightforward to
see that this leaves only three possibilities for & N Q(00,01), namely:
{81, 26, 27}, {22, 55, Z9 } or {E3, Z4, Eg}. Moreover, in each of these cases,
SN Q00,01) € & for some ¢ (1 < ¢ < 3). Since AGLy(3) acts 2-
transitively on AGo(3) and leaves the condition (6.1) invariant, this implies
the following more gencral fact: For each set {0, p} of distinct points there
exists ¢ such that SN Q(a, p) C S;. It remains to show that ¢ is independent
of {0, p}.

Now suppose that {0, p} and {d’, o'} are both sets of distinct points with
SN Qo,p) € S and SN Q(d’,p') C Siv; we claim that ¢ = i'. Indeed
we can choose triangles T and T” such that {0, p} C T, {d’,p'} € T’ and
|T'NT’'| = 2. Let = and Z’ be the quadrangles in S containing 7" and 717,
respectively. Then = € S; and Z' € S while both these quadrangles are
coutained in S N Q(T"NT") C S;, say. Hence ¢ = j = ¢’ as required.

This proves that S C S for some 4, and so the second part of the theorem
is proved. |

Corollary 6.3A. All Steiner systems which are one-point extensions of
AG+(3) are isomorphic.

PRrROOF. It follows from the theorem that when we extend AG2(3) by
adding a point ¢, the 18 blocks which do not contain « can be chosen
in just three different ways; namely, as one of the sets Sy, Sy or S3. The
automorphism group AGL2(3) of AG2(3) induces Sy on the set of 4 parallel
classes (see Exercise 6.3.2), and hence induces S3 on the set of 3 partitions
{ab | cd, ac| bd. ad | be}. Thus AGLo(3) acts transitively on {Sy, Sa, Sz},

and so all the one-point extensions of AG»(3) are isomorphic. O
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Theorem 6.3C. Up to isomorphism, there is a unique S(3,4,10) Steiner
system which we shall denote by Wig. Its automorphism group Aut(Wig)
18 3-transitive on the set of points of Wig and has order 10 -9 -8 - 2.

Proor. Consider an S(3,4,10) Steiner system W and a point o of W.
When we contract W at « by removing o and all the blocks not containing
it, we end up with an 5(2, 3,9) Steiner system. By Theorem 6.3A, there
is only one such geometry, namely AG3(3). Hence by Corollary 6.3A, W is
determined up to isomorphism and we shall denote it by Whp.

If @ and 8 are two points of Wi, then the contractions obtained by
deleting o and (3, respectively, are isomorphic under a mapping ¢ which
takes the blocks not containing « (a set S; of 18 quadrangles) to the blocks
not containing 5. We can extend ¢ to all of Wio by mapping o to 5 to
obtain an automorphism of Wig. This shows that Aut(Wyp) is transitive.
Now the stabilizer of a point in Aut(Wiq) is isomorphic to the subgroup of
AG Ly(3) which fixes one of the sets S;, say S;. This latter subgroup is just
the stabilizer of the partition ab | cd of the four parallel classes, and so it is
a subgroup of index 3 in AGL4(3). Since the order of AGLy(3) is9-8-6, we
have [(Aut(Wig))a| = 9-8-2 and |Aut(Wig)| = 10+ 9 - 8- 2. The stabilizer
in AGL,(3) of the partition ab | ¢d is 2-transitive on the points of AG>(3)
(Exercise 6.3.5 below), so Aut(Whg) is 3-transitive as asserted. O

FEzercise

6.3.5 Let H be the stabilizer in AGL2(3) of the partition ab | cd. Show
that the stabilizer H, ;) in H of the pair {a, b} has index 2 and is
sharply 2-transitive on the points of AG>(3). [Hint: The group T of
translations in AGL,(3) fixes all parallel classes.]

The group Aut(Wio) has a subgroup of index 2 which is called Mg
(although, strictly, Mig is not a Mathieu group). The group Mip is a
sharply 3-transitive group which is isomorphic to a proper subgroup of
PG Ly(9) containing PSLo(9). The point stabilizer (M1g)x is the stabilizer
in AGL+(3) of all three sets S, Sz, S3. The group My will appear later as
the pointwise stabilizer in Mjs of a pair of points.

6.4 The Mathieu Groups M7; and M

In this section we shall extend the Steiner system Wiy to an S(4,5,11)
Steiner system which we denote Wj;, and then extend again to an
S(5,6,12) Steiner system called Wiz. These W;, as well as the Steiner
systems associated with the large Mathieu groups, are called Witt geome-
tries. The methods used will build on the previous section but, in fact, all
of the hard work has already been done there.
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First assume that we have an S(4, 5, 11) Steiner system W and select two
points ¢, # in W. Then the contractions of W at « and 3, respectively, are
both (3, 4, 10) Steiner systems, so by Theorem 6.3C they are isomorphic,
and each is an extension of AG2(3) of the sort constructed in Section 6.3.
We may assume that the set of points in W is just the set of points in
AG2(3) together with @ and 8. Then the blocks of W containing a and
are of the following forms: A U {«, 8} where A is a line of AG>(3); ZU {a}
where Z is a quadrangle in Sy; and Z U {8} where Z is a quadrangle in S;
(where Sy and S are sets of quadrangles of the type defined in the last
section).

It remains to describe the set of those blocks of W which contain neither
a nor B (and so are contained in AG3(3)). First recall that any set of five
points in AG2(3) contains a quadrangle (see Exercise 6.3.3), so each of the
remaining blocks must contain a quadrangle from S3. On the other hand,
since each set of four points lies in exactly one block, none of these blocks
contains a quadrangle from S; or Sz, and so Exercise 6.3.4 (iv) shows that
each of the blocks of W disjoint from {c, 8} has the form Z U {§} where
Z € S3 and 6 is the diagonal point of =.

Below we shall show how to reverse this argument to prove the existence
of an S(4, 5, 11) Steiner system.

Theorem 6.4A. Up to isomorphism there is o unique S(4,5,11) Steiner
system which we shall denote by Wh1, and write My := Aut(Wi1). The
group My is sharply 4-transitive on the set of points of W11 and has order
11-10-9-8.

PrOOF. We begin by constructing an S(4, 5, 11) Steiner system W using
the observations made above. Let Q2 := AG2(3) U {a, 8} (where o and
are new points not in AG2(3)) be the set of points of W. Define the set B
of blocks to consist of all sets of the form:

(i) AU {«, B} where A is a line of AG5(3);

(ii) E U {a} where & € Sy;
(ii) = U {B} where E € Sy; or
(iv) E U {6} where E € S; and § is the diagonal point of =.

In particular, there are exactly 18 blocks of each of the types (ii)—(iv),
and 12 of type (i), so |B| = 66.

We must show that 3 is a set of blocks for an S(4, 5, 11) Steiner system;
that is, that each set of four points from W lies in exactly one block. Since
|B] = (141)/(2), it is enough to show that each set of four points is in at
least one block. It is clear that any set of four points of W which includes
a or (3 lies in a block from B, and also that any quadrangle in AG2(3) lies
in a block. Thus it remains to show that when U is a set of four points in
AG(3, 2) containing a line A, then U also lies in a block from B (necessarily
of type (iv)). Without loss in generality, assume that S5 corresponds to the
partition ab | cd and that A lies in parallel class a. If 7 is the point of U
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pot on A, then we choose p ¢ U such that the line A’ through 7 and p is
in parallel class b; note that A’ C U/ U {p}. Finally, let 6 be the intersection
of A and A" and let = be the complement of {6} in U U {p}. Then = is a
guadrangle of type {c, d} with diagonal point 7, and so UU {6} = ZU {4}
is a block of type (iv) containing U. Thus W = S(Q, B) is an S(4,5,11)
Steiner system as asserted. o
The uniqueness of an S(4, 5, 11) Steiner system and the transitivity of its
automorphism group now follows as in the proof of Theorem 6.3C and Ex-
ercise 6.2.10. We call this Steiner system Wi, and define M7, := Aut(Wyy).
Finally the subgroup (Mh1)ap leaves invariant each of the sets S and S,
and hence also Ss. Thus (]\/fll)aﬁ has index 6 in AGL5(3) and so has order)
9 - 8 and is sharply 2-transitive (Exercise 6.3.4). Therefore My is sharply
4-transitive with order 11-10-9 - 8. O

So far we have constructed two successive extensions of the affine plane
AG(3). We can make one more extension by adding a further point. Before
constructing this system we examine what properties it must have.

Our analysis of AG>5(3) told us that there are three sets Sy, Sy, S5 of
quadrangles each of which covers the triangles of AG5(3) exa,ctly,onc:.e. For
each of the sets S;, we construct the set C; consisting of subsets of AG>(3)
of the form & U {6} where & € S; and 6 is the diagonal point of =. Now
suppose that W is an 5(5, 6, 12) Steiner system containing points o, 8 and
7. Since an S(4,5,11) Steiner system is unique up to isomorphism, each
of the one-point contractions of W by «, 3 and 7, respectively c’an be
constructed as in Theorem 6.4A using the sets S; and C;. Thus: we can
assume that the set Q of points of W is AG2(3) U {e, 8,7}, and that the
blocks which contain at least one of a, f and v have the for;n:

(i) AU {a, B,~} where A is a line of AG5(3)
ii) 2U {8, v} where Z is a quadrangle in Sy;
iii) Z U {a,~} where = is a quadrangle in S,;
iv) EU {o, B} where = is a quadrangle in Ss;
(v) RU {a} where R is in Cy;

(vi) RU {8} where R is in Cy: or

(vil) RU {v} where R is in Cs.

)
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The blocks disjoint from {a, B, v} cannot contain any of the five element
subsets in the C;, and so do not contain a quadrangle with its diagonal
point. A simple argument shows that this means that all blocks disjoint
from {e, B, v} are of the form:

(vili) a union of two distinct parallel lines in AG,(3).

We note that there are 12 sets listed in (i), 18 of each of the types (ii)—

‘(gllﬂ_, zir31c21 12 of type (viii). Thus the set B of all these blocks has size

sy
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Theorem 6.3B. Up to isomorphism, there is a unique S(5,6,12) Steiner
system which we call Wia. The automorphism group Mo := Aut(Wiz) has
order 12 - 11 - 10 - 9 - 8 and is sharply 5-transitive on the points of Wi,.

Proor. The argument is similar to those already used to construct Wiy
and Wi; and their automorphism groups. We have shown that there is at
most one way to extend W, to an S(5, 6,12) Steiner system Wis, and the
verification that (i)-(viii) do indeed define a set of blocks for an S(5, 6,12)
Steiner system follows that given in the proof of Theorem 6.3A. The first
part of our theorem then follows. Now the affine group AGLy(3) permutes
the new blocks of type (viil) in a single orbit, so (Miz), is all of M.
Then the transitivity of the automorphism group Miq of W15 is immediate
by the uniqueness of W;; and the fact that AGL2(3) induces S3 on both
{S1, 82, S3} and on {Cy, C2,C3}. Finally, the sharp 5-transitivity of Mi,
(and hence the order) follows from the sharp 4-transitivity of M. O

FEzercises

6.4.1 Show that Aut(Wig) has a normal subgroup of index 2 isomorphic
to SGA
6.4.2 Show that the stabilizer M;p of 2 points in M2 has index 2 in
Aut(Whp).
6.4.3 Let B be a block of Wy5. Show
(i) The complement B’ of B is also a block. [Hint: Use Exercise
6.2.6.]
(i1) The setwise stabilizer of B in Wi induces Sg on B.
(i) An involution in Wi which fixes four points of B acts as
the product of three 2-cycles on B’. (This exhibits the outer
automorphism of Sg; see Section 8.2.)

6.5 The Geometry of PGo(4)

We shall now turn to the construction of the large Mathieu groups. In this
case, instead of starting from AG2(3), we begin with the projective plane
PGy(4).

A finite projective plane is, by definition, an S(2,n + 1,n% + n + 1)
Steiner system. Exercise 6.2.3 shows that not only are any two points of
a projective plane in a unique block, but any two blocks meet in a unique
point. It is this property which makes these finite planes similar to the
classical (infinite) projective plane. In this section, we shall make a detailed
study of the projective plane of order n = 4. This is a Steiner system with
21 points and 21 blocks which we shall refer to as lines. We shall establish
in Theorem 6.6A that there is only one projective plane of order 4 so it
will suffice to work with a concrete representation using coordinates.

S—
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In coordinate form, we represent the points of PG3(4) by nonzero vectors
(z,y, z) of dimension 3 over the field Fy of four elements. Two vectors
denote the same (projective) point exactly when they are scalar multiples
of one another. In other words, the points of PG2(4) are identified with the
lines through the origin in the vector space. We can give a standard list of
representations of the points by: (0,0, 1), (0, 1,v) and (1, u,v) where u and
v run over IFy. Every point is represented by exactly one of these vectors.
The lines (= blocks) of PG2(4) are represented in a similar manner (up to
nonzero scalar multiples) and are written [a, b, ¢] with a, b,c € F4 not all
zero. A point (z, y, z) lies on the line [a, b, ¢] if and only if az + by +cz = 0.

More generally, we can define PG, (F) over any field (or division ring)
F', where the “points” are the 1l-dimensional subspaces in the (n + 1)-
dimensional space over F' and the “lines” are the 2-dimensional subspaces.
A point 7 is on a line A when m C A. Refer to Section 2.8 for further
details.

FEzxercises

6.5.1 Consider the triangle in PG5(4) with vertices (1,0,0), (0,1,0) and
(0,0,1). Show that the point (z,y, z) lies on one of the sides of this
triangle if and only if at least one of z, y, z is non-zero. (The sides of
the triangle are just the lines going through pairs of vertices.)

6.5.2 Let F be a field and K be a subfield. Show that PG, (K) can be
embedded inside PG> (F) as a subset of the points and of the lines.

6.5.3 Show that there are exactly five points in PG2(4) which lie on the
conic X% + Y Z = 0; that is, points (z, 3, ) such that 22 + yz = 0.
(Note that this makes sense only because the polynomial is homoge-
neous. The homogeneity ensures that two representations of the same
point both satisfy the condition or neither does.) Show that no three
of these points are collinear. In fact, we can add the point (1,0,0) and
the resulting set of six points still has no collinear triples. (Such a set
is called a hyperoval.)

The group PGL3(4) was defined in Section 2.8; here we review the con-
struction. It is the group induced by the group of the 3 x 3 invertible
matrices M acting by matrix multiplication on the points and lines of
PG5 (4) according to:

(z,y,2) = (z,y,2)M and [a,b,c] — [a,b, J(m—HT,

A straightforward calculation shows that permutations defined by M on the
sets of points and lines constitute an automorphism of PG2(4), and that
M induces the trivial automorphism if and only if it is a scalar matrix.
Thus PGL3(4) = GL3(4)/K where K is the subgroup of scalar matrices
in GL3(4). Note that K is isomorphic to the multiplicative group of units
of Fy, so it is cyclic of order 3.
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The general linear group GL3(4) has a subgroup SL3(4) formed by th.e
matrices of determinant 1. Since we are working over Fy and SL3(4) is
the kernel of the mapping M — det M, thercfore SL3(4) has index 3 in
GL3(4) and all scalar matrices lie in SL3(4). Thus the.group PSL3(4)
induced by SLs(4) on the projective plane has index 3 in PGL3(4) and
order 20,160 = 26 - 3%-5- 7. _

Fach field automorphism o of Fy induces another type of automorphism
go of PG(4) defined by

(@,,2) — (@°,y°,27) and la,b,c] = [a%, b7, "]

The group generated by PGL3(4) and the aut.om(.)rphisms go (0 6
Aut(Fy)) is the full automorphism group of the projective plane PG2(4); it
is denoted PT'L3(4). Since Aut(Fy) has order 2 (the only nontrivial auto-
morphism maps = — ), the quotient group PI'L3(4)/ PGL3(4) has order
9. We denote by PSLs(4) the subgroup of PT'L3(4) generated by PSL3(4)
and the field automorphisms, and again we have P%:L3(4)/PSL3(4) of
order 2, while PT'L(3,4)/P¥L3(4) has order 3.

FExercise

6.5.4 Let I and A denote the sets of 21 points and 21 lines, respectivel){, of
PG,(4). Define a mapping ¢ on ITU A which interchanges the points
and lines by ¢ : (z,¥,2) < [z,¥,2].

(i) Show that ¢ preserves incidence. . o

(ii) Let C be the set of permutations ITU A which preserve incidence
and either leave IT and A invariant or interchange 11 and A. Show
that C is the subgroup of Sym(II U A) generated by ¢ and all
permutations induced by PT L3(4). (In fact, C = Aut(PSL3(4)).

In the rest of this section we shall write G := PGL3(4) and S =
PSL3(4). By an ordered quadrangle we shall mean an ordered set of four
points such that no three are collinear. For any field K, the group }?GLg (K)
acts regularly on the set of ordered quadrangles of the proqectlve glane
PGy (K). This fact is the case d = 3 of Exercise 2.8.19 and is som(itlmes
referred to as the “Fundamental Theorem of Projective Geometry”. For
easy reference, we shall record the special case of interest in a theorem.

Theorem 6.5A. PGL3(4) acts regularly on the set of ordered quadrangles
of PGs(4).

Proor. See Exercise 2.8.19. d

One consequence of Theorem 6.5A is that all quadrangles in PG (4) are
isomorphic to the standard one: £ = {(1,0, 0),(0,1,0),(0,0,1), (1,1, 1)}
The six sides of = meet in pairs in the three points (0,1,1), (1,0,1) and
(1,1,0) called the diagonal points of the quadrangle. In PG2(4) it happens
that these three diagonal points are collinear, lying on the line [1,1,1]. Thus
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the quadrangle = together with its three diagonal points defines a set of
seven points and seven lines, namely:

(1,0,0),(0,1,0),(0,0,1), (1,1,1), (0,1,1), (1,0,1), (1,1,0) and
[1.0,0],[0,1,0],[0,0,1], [1,1,1],[0, 1,1, 1,0, 1], [1,1, 0].

These lines and points form a projective plane which is essentially PG2(2).
Each of the points lies on three lines and each line contains exactly three
of the points. Moreover, two points of the set are joined by one of the lines
and every two lines meet at a point of the set. (You are urged to draw a
diagram.) This configuration is called a Fano subplane. By Theorem 6.5A
every quadrangle in PG3(4) defines a unique Fano subplane by adding its
three diagonal points. The name Fano subplane specifically denotes the
projective plane with seven points. In the context under consideration such
a subplane is also a Baer subplane (a subplane of order m in a projective
plane of order m?), and some authors refer to these planes by this name.
It should also be noted that the phenomenon of collinear diagonal points
which holds in PG2(4) depends on the fact that the underlying field has
characteristic 2.

Ezercises

6.5.5 Show that each line of PG5(4) meets a given Fano subplane in either
1 or 3 points. What similar statement can you make about the points
of PG5(4) and the lines of a Fano subplane?

6.5.6 Show that if P is a set of seven points of PG3(4) with the property
that every line of PG5(4) meets P in 1 or 3 points, then P is a Fano
subplane.

Returning to the quadrangle =, we shall construct a different type of
subset containing =. As we saw above, there are six lines joining pairs of
points of Z, and each of these lines contains one of the diagonal points.
Since each line of PG»(4) has five points, there are 12 points on the lines
of Z which are not in the Fano subplane defined by =. These 12 points
together with the points of the Fano subplane make a total of 19 points.
Therefore there are exactly two points of PGy(4) (namely, (1,w,w?) and
(1,w?, w) where w € Fy satisfies w? + w + 1 = 0) which are not on any
line of the Fano subplane of =. The set formed by = and these two points
is called a hyperoval. It follows from Theorem 6.5A that each quadrangle
is contained in a unique hyperoval.

Exercises

6.5.7 Show that the two points added to a quadrangle = to make a
hyperoval are on the line joining the diagonal points.

6.5.8 Show that PGa(4) has 168 hyperovals and 360 Fano subplanes.

6.5.9 Show that a set of six points of PG4(4) is a hyperoval if and only
if it does not contain three collinear points.
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6.5.10 Show that each line of PG, (4) meets a given hyperoval in 0 or 2
points.

6.5.11 Show that a nontrivial automorphism of a projective plane which
fixes every point of some line has at most one fixed point not on
that line.

6.5.12 Show that any nontrivial element of PGL3(4) which fixes all points
m some quadrangle Z has order 2, and that it induces a, 2-cycle on
the hyperoval of .

6.5.13 Show that if A is a hyperoval in PG, (4) then

(1) PGL3(4)(a) acts faithfully on the six points of A.

(i) PGL3(4)(a} = PSL3(4)(ay and induces Ag on A. [Hint: Use
Theorem 6.5A and the fact that Ag is the only sharply 4-
transitive subgroup of Sg.]

(ili) PTL3(4)(a}y = PEL3(4)(ay and induces Sg on A.

6.5.14 Consider a hyperoval A in PGy(4).

(1) Show that exactly six lines of PG, (4) are disjoint from A.

(11) Show that PGL3(4) induces Sg on these 6 lines.

(iil) Use (ii) to show that Sg has an outer automorphism.
(iv) Show that this automorphism also induces an outer automor-
phism of Ag.

The group G = PGLj(4) is transitive on quadrangles and each quad-
rangle is contained in a unique hyperoval and a unique Fano subplane.
Hence G is transitive on both the set of hyperovals and the set of Fano
subplanes. The situation for the subgroup S = PSL3(4) is somewhat dif-
ferent. We have Siay = Gay for cach hyperoval A (Exercise 6.5.13), and
S has index 3 in G, so S permutes the set of hyperovals in three orbits
of equal size. What about the Fano subplanes? Each Fano subplane & is
a copy of PG2(2). The group PGL3(2) acts regularly on the set of quad-
rangles of PG2(2) (Exercise 2.8.19). Note that since the underlying field
only has two elements, PGL3(2) = PSL3(2). Since any automorphism of
® which fixes a quadrangle pointwise must be the identity, this shows that
Aut(P) = PSL(3,2). Now PSL3(2) can be identified with the subgroup of
S consisting of elements induced by 3 x 3 matrices over Fy. Thus, the sta-
bilizer S{4} of ® induces the full automorphism group of this plane. Since
Ge) acts faithfully on @, it follows that & {3} = S{e). Hence S permutes
the set of Fano subplanes in three orbits.

Theorem 6.5B.
(i) PSL3(4) acting on the set of 168 hyperovals of PG5(4) has three
orbits, each consisting of 56 hyperovals.
(it) PSL3(4) acting on the set of 960 Fano subplanes of PG5(4) has three
orbits, each consisting of 120 subplanes.
(i) If Ay and Ay are hyperovals, each with four points in common with

a particular Fano subplane ® then A1 and Ao are i the same orbit
under PSLs(4).
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(iv) PTL3(4) induces a cyclic permutation on the orbits of hyperovals of
PSL3(4), and the stabilizer is of any orbit is PSL3(4).

ProoF. For (i) and (ii), the only point not covered in the preceding dis-
cussion is the counting of the hyperovals and Fano subplanes. This is
straightforward since each hyperoval and each Fano subplane is uniquely
specified by any of its quadrangles (see Exercise 6.5.8).

To prove (iii) we note that, for ¢ = 1, 2, the set A; N @ is a quadrangle
in ® and determines the hyperoval A;. Since S} induces PG L3(2) on &
and so is transitive on the quadrangles of ®, some element z € S{3) maps
A1 NP to Ay N®. Then A; = As, and so the two hyperovals lie in the
same PSL4(3)-orbit.

Part (iv) follows from the fact that the quotient group PI'L3(4)/PSLs(4)
is cyclic of order 6. O

Theorem 6.5B(iii) shows that the hyperovals which have a quadrangle
in common with some Fano subplane from a particular PSL3(4)-orbit of
Fano subplanes all lie in a single PSL3(4)-orbit. Therefore we can la-
bel the PSLz(4)-orbits H,, Hz, Hs of hyperovals and the PSL3(4)-orbits
Fi, Fo, F3 of Fano subplanes such that, if A € H; and ® € F;, then
[AN®| < 3if and only if ¢ # j. This correspondence will be useful in
constructing the Steiner systems of the next section.

6.6 The Extension of PG2(4) and the Group My

In this section we construct an S(3, 6, 22) Steiner system which is an ex-
tension of the projective plane PG5(4). The construction is similar to that
of Sections 6.3 and 6.4. The first step is to show that the projective plane
PG5(4) is determined uniquely by its parameters.

Theorem 6.6A. PGy(4) is the only S(2,5,21) Steiner system.

PRrOOF. If we remove a line and all its points from an S(2, 5, 21) Steiner
system, we get an affine plane A with parameters S(2, 4, 16). Moreover it is
enough to show that there is a unique S(2, 4, 16) Steiner system (Exercise
6.2.4). So let A be any S(2,4, 16) Steiner system and note that the 20 lines
of A are divided into five parallel classes of which we distinguish two as
{T'1,..., T4} and {A1,...,As}. The other 12 lines of A will be denoted
Ay, ..., A Forjy =1,...,12 and 4,k = 1,...,4 we define ¢;; := k if
the point of intersection of Ax and I'; lies on A;. Then, for each 7, the
list 215, t25,t3;, t4; is a permutation of 1,2,3,4 and so each column of the
4 x 12 matrix T := [t;;] contains each of the entries 1,2,3,4 exactly once.
Moreover, T does not contain a minor of the form [z Z] since this would
correspond to two points being joined by two different lines. Thus, without
loss in generality, we can assume that we have labelled the lines in the
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parallel classes and the lines in the list Ay, ..., Ajp so that part of the
matrix T looks like:

11 2 2 2 3 3 3 4 4 4

3413 41 2 41 2 3

O I R R

To finish the proof it is enough to show that there is only one way to

complete the matrix 7" with the properties noted above. We leave this as a

simple exercise. O

We now want to show that the projective plane PG5(4) can be extended
to an S(3,6,22) Steiner system Wh, by adding a new point «. Some of
the blocks of Wap will be obtained by adjoining o to each of the lines of
PG5 (4). In addition we must define some new blocks consisting of six points
from PG5(4). The new Steiner system will have the property that every
triple of points in Was lies in a unique block. The triples which include «
lie in blocks of the form A U {a} where A is a line of PG2(4). These blocks
also cover the triples of collinear points in PG2(4). Thus the new blocks
must be defined in such a way that they exactly cover the triangles (triples
of noncollinear points) of PG2(4). Recall that we showed at the end of
Section 6.5, that the group PSL3(4) has three orbits on hyperovals. The
following theorem says that each of the PSLz(4)-orbits of hyperovals has
this property so an extension of PG5(4) does exist.

Theorem 6.6B. Let H; be one of the three S-orbits of hyperovals in
PGo(4) where § := PSL3(4). Then every triangle of PG2(4) is contained
in a unique hyperoval of H;.

ProOOF. First we observe that S is transitive on the set of ordered triangles
of PG2(4). Indeed, for any triangle from PG5(4), the homogeneous coordi-
nates of the three points are linearly independent vectors, and so there is a
matrix M mapping these three vectors to the vectors (1,0,0), (0,1,0), (0,0,1)
representing the vertices of the “standard triangle”. Now, if we define N as
the diagonal matrix diag(1, 1, det(M)~?), then N maps each of the latter
vectors into a scalar multiple of itself. Thus M N induces a mapping of the
given triangle onto the standard triangle and det(MN) = 1. This shows
that S is transitive on the set of triangles. Since S is also transitive on Hj,
there is a number m such that each triangle is contained in exactly m hy-
perovals from H; (sce Exercise 6.6.1). Consider the set K of quadruples of
the form (p, o, 7, A) where {p, o, 7} is a triangle and {p,o,7} C A € H;.
If we count |K| in two ways we find that 21 -20-16-m = 56 -6 -5 - 4.
Hence m = 1 and H,; covers each triangle exactly once as asserted. O
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Ezercise

6.6.1 Let G be a group acting on a finite set ) and suppose that S; € {7}
and S, C QUs} with r < 5. If G acts transitively on both S a—nd S
§how that there exist integers m and n such that each r-subset in 52 7
is contained in exactly m s-subsets from Sz, and that each s—subse%
in S contains exactly n r-subsets from 8.

We now turn to the uniqueness of the S(3, 6, 22) Steiner system. Let
W be an S(3, 6, 22) Steiner system. The contraction of W at a point .is an
S5(2, 5, 21) Steiner system, and so is isomorphic to PG5(4) (Theorem 6 6A)
Thus, without loss in generality, we may assume that ~VV is an extensi;)n of
PG5 (4) by a point a. Then the blocks of W containing « are of the form
A U.{a} whgre A'is a line of PG(4), and these blocks contain all triples of
collinear points from PG, (4). Therefore the blocks of W not, containing o
are sets consisting of six points of PG3(4) in which no three are collinearl
thus they are hyperovals (see Exercise 6.5.9). We want to show that the set’
;l{ of bloiks ‘(7)\/1:‘3/ r}1lot containing o is in fact one of the PSL‘;(zi.)—orbits of

yperovals. With this in mind urther iled i i
ot Do b ey we collect some further detailed information

Theorem 6.6C.
(1) FEach pa'z'r of pO‘L"(Lt.S‘ of PG2(4) is in 12 hyperovals in PG,y (4).
(i) Each triangle of points of PG2(4) is in thiee hyperovals, one from
) each PSL3(4)-orbit H,. ‘
(iii) }f‘olr any hgperoval A and t'wo points p,o € A, there are three
yperovals in PGo(4) whose intersection with A is exactly {p,c}.

PROOF. (i) Let p and o be distinct points of PG5(4). There are 18:9 ways
to f:omplete {p,c} to a quadrangle, and each of these quadrangles 2h'es in a
unique hyperoval (see Section 6.5). On the other hand, each hyperoval con-
taining {p, o'} is counted % times in this.process. Thu; there are 182 — 19
hyperovals containing the pair {p, 0o} e

(ii) A counting argument similar to (i) shows that each triangle lies in
three hyperovals. The proof that it lies in one hyperoval from each of the
PSL3(4)-orbits follows from Exercise 6.6.1 and the fact that. for each orbit
’Hi,.fome triangle lies in a hyperoval from H;. ,

(iii) Consider a, hyperoval A and two points p,o € A. By (ii) exactly
12 hyperovals contain p and 0. On the other hand there are four ways to
c.om.plete {p, o} to atriangle in A, and (ii) shows that each of these triangles
lies in two hyperovals apart from A. Since two hyperovals can intersect in
fant most three points, there are exactly 11 — 4.2 = 3 hyperovals which
intersect A in exactly {p, o}. IC*I

We are now in a position to establi ;
sh the
Steiner system. uniqueness of the 5(3, 6, 22)
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Theorem 6.6D. Up to isomorphism, there is a unique S(3, 6, 22) Steiner
system which we denote by Wao. The automorphism group Aut(Was) acts
3-transitively on the points of Waa.

ProoOF. Most of the work has already been done. To prove the existence
of such a Steiner system we start with PG2(4), add a new point «, and
new blocks H; where H; is a PSLs(4)-orbit of hyperovals. Then Theorem
6.6B shows that we have an S(3, 6, 22) Steiner system.

We now prove uniqueness. Consider an arbitrary S(3, 6, 22) Steiner sys-
tem W and choose one of its points «. The contraction of W at « is an
S(2,5,21) Steiner system, so by Theorem 6.6A we may assume that this
contraction is PG2(4). Then the blocks A not containing « form a set  of
56 hyperovals in PG2(4) which cover each triangle exactly once. To show
that W is isomorphic to Wao we shall show that H = H; for some 7 = 1,2
or 3.

Suppose that A is a hyperoval from H. Using only the property that H
is a set of hyperovals covering each triangle once, we shall show that for
any two points p, 0 € A, there are three hyperovals in H which intersect A
in exactly these points. Indeed, the points p, o lie in 16 triangles, and each
of these triangles lies in a unique hyperoval of H. Since each hyperoval of
'H containing p, ¢ is counted four times in this process, there are 16/4 = 4
hyperovals in H containing p, o. Each hyperoval in H intersects A in at
most two points, so there are 4 — 1 = 3 hyperovals in H intersecting A in
exactly the set {p, o} as claimed.

Since H; also covers each triangle exactly once, then the argument in
the preceding paragraph shows that similarly if A is a hyperoval from H;,
then there are three hyperovals of H; whose intersection with A equals
{p, o}. If A lies in both H and H;, then these three hyperovals must be the
same since, according to Theorem 6.6C, there are only three hyperovals in
PG5 (4) which intersect A in exactly the set {p, o}. Now there are 15 ways
to choose a pair of points from A, and each choice determines three hyper-
ovals which are shared by 7 and ;. Thus we have shown that whenever H
and one of the H; have a hyperoval in common, then they have at least at
least 45 hyperovals in common. Since 7 contains a total of 56 hyperovals,
and the H; are disjoint, we conclude that H must equal one of the H; as
claimed. Finally, Aut(PG2(4)) acts transitively on {H;, Hz2, Hs} (Theorem
6.5B) so all three possibilities generate isomorphic extensions. Thus W is
isomorphic to Was.

Transitivity of Aut(Was) now follows as before, from the uniqueness of
the construction. The stabilizer of a point (Aut(Wa2)), must fix one of the
PSLj(4)-orbits H; and so equals PSL3(4) (Theorem 6.5B). Since PSL3(4)
is 2-transitive on PGy (4), therefore Aut(W,3) is 3-transitive on the points
of Wy,. This completes the proof. ad

The Mathieu group Mss is a subgroup of Aut(Wss) with index 2. It is
simplest to construct Myy from the largest Mathieu group May, as we shall

S
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do in the next section, but already we can see its action here. Th
: , 8 . The group
(Aut(Wa2)),, is PXL3(4) while (M) = PSL3(4) ¢

FErercises

6.6.2 Calculate the intersection triangle for Wo, (Exercise 6.2.5). Show that
two blocks of Way intersect in 0 or 2 points.

6.6.3 Prove that Aut(Was) is transitive on the 77 blocks of Was and has
rank 3.

6.7 The Mathieu Groups Mys and My,

The Steiner system W, can be extended twice more, each time in a unique
way. In Section 6.5 we showed that PSLs (4) acting on PG5(4) has three
orbits ), Ha, Hs of hyperovals and three orbits F1, Fa, F3 of Fano sub-
planes. Label these orbits so that the hyperovals in H; are the hyperovals
generated by the quadrangles in the Fano subplanes in 7;. Adding two new
points «, 3 to PG5 (4), define four types of blocks of Wy; as follows:

(i) AU {a, B} for each line A of PGy (4);
(ii) A U {a} for each hyperoval A € H,;
(iif) AU {B} for each hyperoval A € Ho;
(iv) @ for each Fano plane ® € 7.

Theorem 6.7A. With these blocks Was is an 5(4,7,23) Steiner system.

Proor. We must check that any set of four points lies in exactly one of
the b710cks defined above. There are 253 blocks of size 7 and 23 points. Since
253(;) = (%), it is enough to show that each set of four points is covered at
least once. Let IT be a set of four points. If either v or 3 lies in II, then we can
apply arguments similar to those used in Theorem 6.6D to show that there
is a block of type (i), (ii) or (iii) containing II. On the other hand, suppose
that IT contains only points from PG, (4). If these points are collinear then
they lie in a block of type (). fdisa quadrangle then it lies in a unique
hyperoval A. So if IT is not in a block of type (ii) or type (iii) then A is in
Hsz and II is in a unique Fano subplane ® ¢ F3 and so is a block of type
(iv). Finally, suppose that IT consists of three collinear points «, 3, vy and a
point 4 not on this line. The triangle {«, 3, 6} is in a unique hyperoval of
Ha (Theorem 6.6B). The line through v and § meets the hyperoval again at
some point ¢ (Exercise 6.5.10). The quadrangle {a, 3,6, ¢} is contained in
& unique Fano subplane ® which by the construction must lie in F3. Since
7 Is a diagonal point of this quadrangle, IT is contained in ® and hence lies
in a block of type (iv). This completes the proof. O

Now suppose that W is any S(4, 7, 23) Steiner system. I'ts contraction at a
point « is a copy of the unique S(3, 6, 22)-design constructed in Section 6.6.
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Thus taking two points ¢, G of W, the blocks containing at least one of these
points are essentially as described in (i),(ii) and (iii) of the construction of
Way. There remain 120 further blocks to be identified which cover exactly
once each of the sets of four points not already covered by a block of type
(i),(ii) or (iii). We shall repeatedly use the fact that when W is contracted
twice, at any two points, the result is the projective plane PGa(4).

Theorem 6.78B. Up to isomorphism there is a unique S(4,7,23) Steiner
system Was. Its autornorphism group Maog := Aut(Was) is 4-transitive on
the points of Was.

ProoF. We have seen in Theorem 6.7A that an S(4, 7, 23) Steiner system
Whas exists, so it remains to show that every S(4,7, 23) Steiner system W
is isomorphic to Wags.

By the preceding discussion we may assume that W is an extension
of PG5(4) by two new points «, 5. The blocks of W then consist of: (i)
A U {a, B} for each line A of PGy(4); (ii) A U {a} for each hyperoval
A € Hy; (iii) AU {8} for each hyperoval A € Hs; and (iv) 120 further
blocks each of which consists of seven points from PG(4) such that each
of these blocks has at most three points in common with each of the blocks
of types (i)—(iil) and with each of the other blocks of type (iv). We shall
denote the set of blocks of type (iv) by F. It remains to show that F = F3
(see the definition of Was).

First, we show that each block ® in F is a Fano subplane of PG5(4).
To see this, take two points p, o of ® and let A be the line of PGa(4)
through p and o. As noted above, ® and A cannot have more than 3 points
in common. The contraction W, , is a replica of PG(4) and the two sets
P\ {p,o} and AU {e, 8} \ {p, o} are lines in this projective plane. Hence
these sets have a point 7 in common, and so ® and A have the three points
p,o, T in common. Thus ® is a set of seven points in PG5(4) with the
property that any line meeting the set in more than one point meets it in
three points. Therefore ® is a Fano subplane by Exercise 6.5.6.

To complete the proof, we must show that the set F of Fano subplanes
is actually the set F3. Take ® € F and let Z be a quadrangle in . Then
= is in a unique hyperoval A, and A cannot be in H; or Ho since ® has
at most three points in common with the hyperovals in these sets. Thus
A € Hz and ® € F3. Since F and F3 each contain 120 Fano subplanes we
conclude that F = Fs.

Thus the design Whs is unique up to isomorphism. As before we can
use the uniqueness of Was3, and the fact that Aut(PG2(4)) acts transi-
tively on the two sets {H1, Ha, Ha} and {F1, Fo, F3} to show that Mz :=
Aut(Was) is transitive on the points of Was. The stabilizer Aut(Waz)aps
fixes each of the sets H;, Ho and F3, and so it contains PSLg(4) since
these sets are PSL3(4)-orbits. Finally since PSL3(4) is 2-transitive, Mo
is 4-transitive. a
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Fzxercises

6.7.1 The two point stabilizer (Ma3),p is PSLs (4). The order of Mas is
23-22-21-20-16 - 4.

6.7.2 The setwise stabilizer (Ma3) (4,4 acts on the projective plane PG5 (4).
Describe this action.

The last and largest of the Mathieu groups is Ms4 which acts as the group
of automorphisms of the unique S5(5, 8, 24) Steiner system Way. In many
ways this is a remarkable group and it contains the other Mathieu groups
as subgroups in natural ways. We shall construct Way as an extension of
Was so we shall think of Wy, as PG2(4) with three new points o, 3, v
added. This Steiner system has 759 blocks where those which include any
of the new points are built from lines, hyperovals and Fano subplanes of
PG5 (4). There is a set M of 210 further blocks, each of which is a set of
eight points of PG2(4) and which contains at most four points in common
with any line, hyperoval or Fano subplane of PGy(4). We shall show that
the blocks ¥ € M are precisely those sets of points which lie on a pair of
lines of PG2(4) when we omit the point of intersection. With this in mind
we establish the following result.

Lemma 6.7A. Suppose that = is a set of eight poinis of PG4o(4) such that
any line of PGa(4) which meets 3 in at least three points actually meets ¥
in four points. Then there exist two lines Ay and Ay of PGy(4) such that
L= (A1 UAQ) \ (Al ﬂAz).

PROOF. A subset of PG'(4) with no collinear triples has at most six points.
Thus X contains three points on some line Aj, and hence four points on
A;1, by the hypothesis on T.

Let Ao be the line joining two points of &\ A;. We claim that the point
o of intersection of A; and A, lies outside of ¥. Suppose the contrary. Then
Ay would also contain four points of ¥. This would leave one point u of
Y not on A; or A. There are three lines of PG5(4) joining p to points of
A\ {o}. At least two of these lines intersect Ay in a point of 3. Thus these
lines contain three points of ¥ and so, by hypothesis, contain four points
of ¥. This would imply that £ has more than eight points contrary to
hypothesis. Thus we have shown that every line A, which joins two points
of £\ Ay intersects A; in the point 7 of A; which is not in 23; hence the
four points of ¥\ A; are collinear. This proves the lemma. O

Theorem 6.7C. Up to isomorphism, there is a unigue S5(5,8,24) Steiner
system Woy. Its automorphism group Moy = Aut(Way) 1s 5-transitive on
the points of Woy.

PROOF. We construct Wp from PGy(4) by adding three new points
o, 3,7. Let M denote the set of all eight-point subsets of PGy(4) con-
sisting of the points on a pair of lines of PGs(4) excluding the point of

ey
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intersection. Thus |[M| = (221) = 210. Also the PSL3(4)-orbits of hyper-
planes and Fano subplanes, namely H; and F; (¢ = 1, 2, 3), are defined as
before.

‘We define the blocks of Woy as follows:

(i) AU {a,pB,~} for each line A of PG5(4);
(ii) A U {e, B} for each hyperoval A € H;
(i) A U {a,~} for each hyperoval A € Ha;
(iv) AU {B,~} for each hyperoval A € Ha;
(v) ® U {a} for each Fano plane ® € Fy;
(vi) @ U{g} for each Fano plane ® € F3;

(vil) ® U {v} for each Fano plane & € Fs;
(viil) ¥ where & € M.

This defines a total of 759 blocks and in order to prove that this set of
blocks defines Woy as an S(5, 8, 24) Steiner system we must show that each
subset of five points from W4 lies in exactly one of these blocks. Since
(254) = 759(2), it is enough to show that each set of five points lies in at
least one block. The proof that we have defined a Steiner system as claimed
is now similar to the earlier proofs and is left as an exercise (Exercise 6.7.3).

Finally, let Mgy := Aut(Ws4). As in previous arguments we see that
Moy is transitive. Moreover, since /M is invariant under Aut(PG2(4)), it is
certainly invariant under PSL3(4). Thus {Ma4)q is the full automorphism
group of Was. Since Mag is 4-transitive, Ma4 must be 5-transitive. O

The setwise stabilizer (Maq) (e« 3} is the full automorphism group of Waa.
The Mathieu group Moz is the subgroup (Maq)aps of index 2.

Sowme of the information about the Mathicu groups and their Steiner
systems is summarized in Tables 6.1 and 6.2.

Fzercises

6.7.3 Show that each set of five points of Wa, is contained in at least one
of the blocks defined in (i)—(viii) in the proof of Theorem 6.7C.

TabLE 6.1. The Mathieu Groups

group degree transitivity rank on blocks order

Mg 10 3 24.32.5

My, 11 4 4, primitive 24.32.5.11
My 12 5 3, on pairs 20.3%.5.11
Moo 22 3 3, primitive 27.32.5.7-11
Mo 23 4 3, primitive 27.32.5.7-11-23
Moy 24 5 4, primitive 210. 33 . 5.7.11.23
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TABLE 6.2. The Steiner Systems of the Mathieu

Groups
Steiner parameters number automorphism
system of blocks group
Wio (3,4,10) 30 My - 2
Wi (4,5,11) 66 My
Wia (5,6,12) 132 Mo
Waa (3,6,22) 77 Myy - 2
Was (4,7,23) 253 Mo
Waa (5,8,24) 759 Moy

6.7.4 Show that the set stabilizer (]\/[24){A} of a block A of the Steiner
system Woy induces Alt(A) on A. Describe the action of this stabilizer
on the complementary set of 16 points.

6.7.5 Show that any two distinct blocks of Way intersect in either 0, 2 or 4
points.

6.8 The Geometry of Woy

The Steiner system Wy has a rich geometry. Inside this geometry we are
able to identify not only the Steiner systems Wy, and Wa3 but also the
Steiner systems Wi, and Wis. By locating the Steiner system Wi, it is
possible to identify a 3-transitive action of M;; of degree 12. Moving in the
other direction to larger combinatorial structures, the geometry of Wo, has
been used to construct the Golay binary codes and also the Leech lattice
in R%4,

We shall begin our detailed study of the geometry of Wo, with a lemma
concerning the blocks. Recall that the symmetric difference of two sets &
and A is

oA ={alacZUMagInAlL

Lemma 6.8A. Consider the Steiner system Woy.

(1) Two blocks intersect in 0, 2 or 4 points.

(1) If two blocks intersect in four points then their symmetric difference is
a block.

ProOF. (i) This is Exercise 6.7.5. It follows either from the concrete con-
struction of Wy in the last section or by calculating the intersection triangle
from the parameters (Exercise 6.2.5).

(ii) Suppose that £, and ¥, are blocks with $; N £, = {a, 3,7, 6}.
Contraction of Way at «, 5, v gives a copy of PG5 (4) with the blocks £,, &5
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represented as lines A;, Ao through §. Then according to our construction
of Way, the set (A; U Ag) \ {6} is a block and it is also the symmetric

difference 1 © Xy, O

Two distinct blocks cannot contain more than four points in common.
Thus the blocks which contain a given set of four points partition the
remaining 20 points of Way into five sets of size four. In particular any set
of four points is in exactly five blocks.

Lemma 6.8B. Let X be a set of four points and I1 be a block disjoint from
3. Then in the set F of five blocks containing ¥ either:
(i) two of these blocks meet II in four points and three are disjoint from
II; or
(i) four of the blocks meet II in two points and one is disjoint from IL.

PRrROOF. As we noted above, every two blocks in F intersect exactly in X.
Suppose some block A; € F meets II in four points. Then, by Theorem
6.8A, Ap := A; © 11 € F and A, also meets II in four points. If another
block from F intersected II nontrivially, it would share at least one point
with A; or A, which is impossible. Thus the other three blocks in F are
disjoint from II. This is case (i).

Now suppose that no block in F meets IT in four points. Then by Lemma
6.8A all the blocks in F intersect IT in 0 or 2 points. Since for each o € 11
there is a unique block containing ¥ U {a}, there are exactly four blocks
in F which intersect IT in two points. This is case (ii). O

If two blocks A, Ay of Woy meet in two points then their symmetric
difference A; 6 A, is a set of 12 points which we call a dodecad. A remark-
able fact is that the stabilizer of a dodecad I in M4 induces the Mathieu
group Mi5 on I'. This means that all five of the Mathieu groups live inside
Moyy. The following result takes us part of the way toward establishing this
claim.

Lemma 6.8C. Let I' be a dodecad of Way and suppose that A is a block
which meets T in at least five points. Then:

(i) the block A meets the dodecad I in exactly siz points; and

(i) there is a unique block A* such that T = A & A*.

PrOOF. Since blocks intersect in an even number of points, a block must
intersect a symmetric difference of blocks in an even number of points.
Thus, if a block A meets I" in at least five points, it must meet T" in six or
eight points. So to establish part (i) it is enough to show that a dodecad
cannot contain a block.

We can write the dodecad I' in the form II; & Il, with blocks II; and
II3; note that II; N Il; contains two points. Suppose that I' contained a
block A. Then A would intersect each of II; and Il in four points. Since
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Y = ANTL and II; are disjoint, and II; is a block containing ¥ and
intersecting Il in two points, Lemma 6.7B shows that no block which
contains ¥ can intersect Il in four points. Since |A N1l = 4 we reach a
contradiction. Thus every block which neets I' in at least five points must
intersect I' in exactly six points. This proves (i).

Now suppose that A meets I' in exactly six points. Then with perhaps a
change in the roles of IT; and II, we can assume that A meets [I; in four
points, and so A g II; is also a block by Lemma 6.8A. This block meets
IT; in four points; namely, the two points of A N Il and the two points of
Iy N IIo. Thus Lemma 6.8A shows that A* := (A & II;) & Iy is a block
and A* 3 A =T (see Exercise 6.8.1). 3

Ezxercises

6.8.1 Show that the symmetric difference operation & is commutative and
associative, and for any sets A, [" we have ([ 2 A) & A) =1
6.8.2 Consider the set FE of matrices of the form:

1 0 0
a 1 0 where «, § € Fy.
g 0 1

Show that £ is an elementary abelian subgroup of SLs(4) which
fixes each point on the line [1,0,0] and acts regularly on the set
of points of PG3(4) which are not on this line. Deduce that the
pointwise stabilizer (Mz4)a of a block A of Way acts regularly on
the complement of the block.

6.8.3 Show that the pointwise stabilizer (Maa)y of a dodecad I is trivial.

6.8.4 Show that Way has 16 - 7 - 23 = 2576 dodecads.

6.8.5 Is the complement of a dodecad in Way also a dodecad?

Since every set of five points of a dodecad I' is contained in a unique block
of W2y, we can define a Steiner system whose point set is I and whose blocks
are the 6-element subsets of I" obtained by intersecting I" with blocks of
W24 (Lemma 6.8C). According to Theorem 2.3B this S(5,6,12) Steiner
system must be isomorphic to Wig.

Theorem 6.8A. May acts transitively on the set of all dodecads of Wy,
and for any dodecad T" the setwise stabilizer (Mz4)(ry is isomorphic to M.

Proor. We have just noted that the stabilizer (May)¢ry is an automor-
phism group of an S(5,6,12) Steiner system with I’ as point set. Since
(M34)(ry acts faithful on I' (Exercise 6.8.3), (Mag)ry is isomorphic to a
subgroup H of Mijs. The index ,M24 : (M24){1"}, equals the number of
dodecads lying in the orbit of I' under May,, and so is at most 2576 by
Exercise 6.8.4. However, |Ma4| / [Miz| = 2576, and so we conclude that
’MM : (M24){1"}| = 2576. Hence there is a single orbit of dodecads under
Moy, and (]\/124){1“} = H = M, as required. o]

s,
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In Section 6.5, we constructed the group M2 as the last in a series
of transitive extensions and now we have just used the uniqueness of the
S(5, 6,12) Steiner system Wi to identify the group M2 as a subgroup of
Mo4. An alternative approach to the Mathieu groups is possible by defining
M, to be the setwise stabilizer of a dodecad I' in Maq, and then showing
that Mis is 5-transitive on I'. See the following exercise.

Ezercises

6.8.6 Let I be a dodecad of Way, and let (@1, ..., as) and (B, ..., Ps) be
any two sequences of five distinct points from I'. Show that there is an
clement z € H = (Mag)ry such that (a, ..., as)® = (B1,...,0s)
[Hint: Since Maq is 5-transitive there exists z € Mag such that
(o, ...,a5)® = (B1,-.-,0s), so it is enough to show that there
exists y € Myy such that y fixes (B1,...,0s) and 2y € H. First
show that there exist blocks &; (i = 1,2,3) of Way such that
{ar, ... a5} © 5,0 = 51 © X2 and ' = £; © 23, and that the
blocks Y3 and £ each meet £y in two points outside of {Br,. .., Ps).
Finally apply Exercise 6.7.4.]

6.8.7 Let T be a dodecad and write ' = A © A* where A and A" are
blocks of Way, and put H := (Mag){r). Show that Hiay induces the
full symmetric group on each of the 6-point sets ANTand A*NT,
but that these actions are not equivalent.

There is one further exceptional multiply transitive permutation action
hidden inside May. If I' is a dodecad then the complement of I' is again a
dodecad T'*. If we take o € I, then the stabilizer (Mi2)q is the Mathieu
group M7, in its natural (4-transitive) action on I'\ {a}. This group M
also acts on the 12 points of I'*. The remarkable fact is that M, is 3-
transitive in this action. The geometry preserved by this 3-transitive action
is not a Steiner system but a block design with blocks of size 6 in which
any 3 points are together in exactly 2 blocks. This degree 12 action of Mi;
is constructed, by a different method, in Example 7.5.2.

FErercises

6.8.8 The following are some of the maximal subgroups of Moy described
in its action on Wag. (The group Ma4 has nine conjugacy classes of
maximal subgroups in all.)

(i) The stabilizer of 1 point (Ma3).
(ii) The setwise stabilizer of 2 points (Mas : 2).
(iii) The setwise stabilizer of 3 points (P5Ls (4) : E3).
(iv) The stabilizer of a block (2 - As).
(v) The stabilizer of a complementary pair of dodecads (M2 : 2).

6.8.9 Show that the stabilizer, in May, of a block induces Ag on the block
and the kernel of this action induces an elementary abelian regular
group on the 16 points of the complement. Hence prove that Ag =
PSL4(2).
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6.8.10 Mathieu’s definitions: [taken from Carmichael (1937)]:
(i) M1 = {(s,t) and My5 = (s, ¢, u) where

s=(01234567809 10),
t=(4539)(10726),
uw = (011)(1 10)(2 5)(3 7)(4 8)(6 9).
(ii) Mag = (a,b) and Maoy = {(a, b, c) where
a=(012345 ... 2122),
b= (2169 68)(43 1213 18)(10 11 22 7 17)
(20 15 14 19 21),

c = (023)(1 22)(2 11)(3 15)(4 17)(5 9)(6 19)(7 13)
(8 20)(10 16)(12 21)(18 14).

6.9 Notes

The Mathieu groups appeared first in Mathieu (1861) and Mathieu (1873)
as part of a systematic study of multiply transitive groups. They were
recognized as simple groups three decades later: Mj; by Cole (1894),
Mg, Maa, Maz and Ma,s by Miller (1899) and (1900). Steiner systems have
a history going back to the early nineteenth century. The development
of the Steiner systems for the Mathieu groups is presented in Carmichael
(1937), Witt (1938a) and (1938b). Our presentation here owes a debt to
Liineburg (1969). There are many constructions known for these groups.
A few are mentioned below; there are more in Conway and Sloane (1988)
and the references given in Conway et al. (1985).

¢ The Witt geometries W15 and Way can be constructed using the natural
actions of the groups PSL,(11) and PSL4(23); the other geometries and
groups are then defined from these. See Beth et al. (1993).

e Transitive extensions as presented in Sect. 7.4 can be used. See Rot-
man (1995) (who then derives the Witt geometries from the groups) and
Passman (1968).

¢ The Golay code is the unique twelve dimensional subspace of F3% in
which the minimum number of nonzero coordinates in a nonzero vector
is 8. The Mathieu group Moy is the group of coordinate permutations
that leave this subspace invariant. See Cameron and van Lint (1991),
Conway (1971).

e R.T. Curtis has developed a remarkable method for computing the blocks
of Wy4. His Miracle Octad Generator is described in Curtis (1976) and
Conway (1984).

* Exercise 6.1.2: See Chapman (1995).
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Multiply Transitive Groups

7.1 Introduction

A permutation group G acting on a set {2 is k-transitive if any k-tuple of
distinct points can be mapped, by some element of G, to any other k-tuple
of distinct points. Clearly a k-transitive group is also (k — 1)-transitive.
A group is called multiply transitive if it is at least 2-trapsitive. We have
already seen some examples of multiply transitive groups such as the alter-
nating and symmetric groups, the affine groups AGL4(F) and projective
groups PGL4(F) (see Sect. 2.8), and the Mathieu groups (Chap. 6).

A 2-transitive group is necessarily primitive. In our analysis of finite
primitive groups in Chap. 4 we showed that the socle of a finite 2-transitive
group is either elementary abelian and regular, or primitive and simple
(Theorem 4.1B). Historically, this result has implications working in two
directions. On the one hand, much energy has been expended in this century
looking for new finite 2-transitive groups, since any new 2-transitive non-
affine group would have a new simple group as its socle. On the other
hand, the classification: of finite simple groups leads to a classification of
the finite 2-transitive groups via a determination of the primitive actions of
the simple groups. The complete list of finite 2-transitive groups (8 infinite
families and 10 isolated groups) is presented in Sect. 7.7.

The landscape of the infinite case is quite different. On the one hand there
are infinite analogues of some of the finite groups. For example, there are
various symmetric groups (see Chap. 8), and affine and projective groups
can be defined over infinite fields or with infinite dimensions. These exam-
ples retain much of the structure of their finite counterparts, but infinite
multiply transitive groups can also exhibit behaviour that is just not possi-
ble for a finite group, such as the nontrivial highly transitive groups. New
methods, including ideas from model theory in logic, have been employed
recently in an attempt to understand these infinite groups.

By definition, G acts k-transitively on  if and only if it acts transitively
on Q%); so in this case the stabilizers (G, of k distinct points are conju-
gate in G. We say that G is sharply k-transitive if each of these k-point
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stabilizers equals 1, or equivalently, if G acts regularly on Q%) In partic-
ular, 1-transitive and sharply 1-transitive are equivalent to tranéitive and
regular, respectively. If k > 1, then clearly G is k-transitive if and only if
G is (k - 1)-transitive and each of the (conjugate) (k — 1)-point stabilizers
is 'trans1tive on the set of remaining points; we say that G is k-primitive if
this action of the (k — 1)-point stabilizers is primitive.

Ezercises

7.1.1 Let Homeo(R) denote the set of “homeomorphisms” of R, that is
the set of all bijections z of R onto itself for which z a.nd’ z7! are,
both continuous (such a mapping is called bicontinuous). Show that
Homeo(R) is a subgroup of Sym(R), and that a permutation z lies
in Homeo(R) if and only if 7 is monotonic (order preserving or order
reversing). [Hint: Use the intermediate value theorem.]

7.1.2 Let G be the set of all monotonic permutations in Sym(Q). Show
that G is 2-transitive but not 3-transitive. (See also Exercise 2.2.8.)

The following exercise deals with the group Homeo(Q) of homeomor-
phisms of @ consisting of all bicontinuous mappings of Q onto itself.

Because Q is disconnected, Homeo(Q) has a much richer structure than
Homeo(R).

Ezercises

7.1.3 Show that every monotonic permutation of @ lies in Homeo((Q).

7.1.4 Suppose that [ and J are ally two nonempty intervals of Q whose
end points are either irrational or infinite. Show that there is a
bicontinuous mapping of I onto J.

7.1.5 Suppose that Q is partitioned into a finite set of intervals I, .. ]
whose end points are irrational or infinite. Suppose § , 7' ié ?x
permutation of {1,2,...,n}, and that for each ¢ there is a bicon-
tinuous mapping 2y I; — Iy Let z be the permutation of Q
whose restriction to 7; is equal to z; (i = 1,... ,m). Show that
z € Homeo(Q). 4

7.1.6 Show that Homeo(Q) is highly transitive.

In this chapter we shall develop some basic results on multiply transitive
groups, and look at some special classes of these groups. The following
elementary result will be frequently used.

Lemma 7.1A (Jordan—Witt Lemma). Let G < Sym(Q) be k-transitive
for some k > 1, and let A be q subset of Q with |A| = k. Put H := @ A
and suppose that K < H has the property: @

for each x € G such that z~ ' Kz < H

(7.1)
there exists y € H such that o~ Ko — Y Ky,

et

i,

=,

iy

ey
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Let T := ix(K) 2 A, and put N := Ng(K). Then T is N-invariant, and
N acts k-transitively on T

Remark. Two natural cases where condition (7.1) holds are when K = H
and (for H finite) when K is a Sylow subgroup of H.

PROOF. Foreachy € 'andz € N, (K =75 = {y*}, and so y* €I

This proves that I is N-invariant. N
N ogv since G is k-transitive, in order to prove that N acts k-transitively
)

on I it is enough to show that:

for each z € G such that AT CT

(7.2) there exists z € N such that 2z} acts trivially on A.

: -1
However, A® C T implies that Kz~ ! acts trivially on A, and_slo K s_clKS
H. Thus by condition (7.1) there exists ¥ < H such that zKz™" =Y yC,!
and so z := ya satisfies the condition (7.2).

Ezercises

The following series of exercises leads to a geineralization of the chlrda,ﬁzl
Witt Lemma. Suppose that G is a group acting on a set 2, € i}, a
H < G with a € A = fix(H). Put K = Ng(H) and

2= {z 'Hz |z € G and z 'Hz < Ga}-
We consider the actions of K on A and of G (by conjugation) on 2.

717 Pt W = {z € Gl a® € A}. Show that W is the union of a
h set A of complete double cosets of the form GoyK, and that X =
zHz |z € Wh
7.1.8 éhow that thére is a bijection @ of ./l\) onto the set Orb(K,A) of
orbits of K on A given by ®(D) := a”. ‘
71.9 Show that there is a bijection ¥ of A onto the set Orb(Ga, X) of

orbits of G, on £ given by
(D) = {zHz ' |z € D}.

7.1.10 Show that the number of (right) Ga-cosets in D is equal to |<I>(D)\};
. and the number of (left) K-cosets in D is equal to |¥(D)| for eac

D e A
71.11 Hence prove: there is a bijection O of Orb(Ga, =) onto Orb(X, A)

Ga
such that when G is finite we have |No(L) : Neg, (L)| = l@(L )\
for each L € Z.

.
paq
‘L')

2
S

[N
=
(]
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7.2 Normal Subgroups kc
A

We begin our study of normal subgroups of multiply transitive groups with N&3°

the case of a regular normal subgroup. We have met this situation before;

Theorem 4.3B and Sect. 4.6 describe the regular normal subgroups of finite

primitive groups. In the present case finiteness is not needed for the initial

part of this analysis. Suppose that G is a transitive group acting on the

set 2 and that H is a regular normal subgroup of G. Then the action

of the stabilizer G, on {1 is equivalent to its action on H by conjugation

(see Exercise 1.6.16), and so, if G is multiply transitive, the non-identity

elements of H form a single conjugacy class under the action of G,. This

places a severe restriction on H. The case where G is 2-primitive is studied

in the following theorem. Exercises 7.2.3 and 7.2.4 below address the case

of a 2-transitive but not a 2-primitive group.

b
"

W

Theorem 7.2A. Suppose that G < Sym(Q) is 2-primitive with |Q] > 4.
If G has a regular normal subgroup H, then H is an elementary abelian
2-group of order |]. Moreover, if || > 5, then G is not 3-primitive.

PrOOF. Fix a € Q. Then K := G, is primitive on Q \ {a} by definition

. of 2-primitivity. As noted above, the action of K on 2 is equivalent to the

action by conjugation of X on H, and so in the latter action K is primitive
on the set H# of nontrivial elements of H. For each z € H¥, the set
B := {z,27'} is a block for K, and so primitivity shows that B = H#
or |B| = 1. Since |H| > 3, this shows that each element in H# has order
2. Thus H is an elementary abelian 2-group (see Exercise 7.2.1 below).
Finally, suppose |[2] > 4 and consider the action of K on the set of ordered
pairs (H#)(?). The group H has a proper subgroup A of order 4. Let B be
the set of all pairs (z,y) such that A = (z,vy). Then |B| = 6 and B is a
proper block for the action of K on (H#)?) and so K is not 2-primitive
on H#. Thus G is not 3-primitive on Q. O

In the last theorem we can identify the normal elementary abelian sub-
group with the additive group of a vector space over the field Fs. So the
group G is acting as an affine group containing the translations and the
stabilizer Gg is a (possibly infinite dimensional) linear group over Fs.

Ezercises

7.2.1 Show that a group in which each nontrivial element has order 2 is an
elementary abelian 2-group. [Hint: If 22 = y? = 1 then 271y lay =
(zy)*]

7.2.2 Find all 2-primitive subgroups of S, for n < 4.

7.2.3 Show that, if G is a finite 2-transitive group with a regular normal
subgroup H, then H is an elementary abelian p-group for some prime
P.
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7.2.4 The result of the previous exercise is no longer true if G is not assumed
to be finite. For example, let S be an infinite group in which all
nontrivial elements are conjugate [see Higman et al. (1949)]. Take G
as the image in Sym(S) of S x S acting on S by

a®? = s7lat fora € S and (s,t) € S x S,

Show that G is 2-transitive and has two regular normal subgroups iso-
morphic to the simple group S. (This type of action is also considered
in Exercises 1.4.5, 4.4.7 and 4.4.8.)

We know that a nontrivial normal subgroup of a primitive group is tran-
sitive (Theorem 1.6A). The following is an analogous result for k-primitive

groups.

Theorem 7.2B. Let G < Sym(Q) be a k-primitive group for some integer
k> 2 and |Q| > 6, and let H be a nontrivial normal subgroup of G. Then
either

(i) H is k-transitive; or

(ii) &k = 2 and H is a regular elementary abelian 2-group.

PROOF. Since G is primitive, H is certainly transitive. Fix o € . Then
K := G4 is (k — 1)-primitive on ' := Q\ {a}, and M := H, < K.

If £k = 2, then K is primitive on €, and so either M is trivial or M _\

is transitive on . In the former case, H is regular, and hence, by the
previous theorem, the subgroup H is an elementary abelian 2-group. In
the latter case, H is 2-transitive. This proves the assertion for & = 2.
Now suppose & > 3 and proceed by induction. Theorem 7.2A shows that
H is not regular and so M # 1. Thus, since K is (k — 1)-primitive on
', induction shows that M is either regular or (k — 1)-transitive on .
In the latter case H is k-transitive and we are finished, so it remains to
prove that M is not regular. Suppose that M is regular, so H is sharply
2-transitive. Choose 8 € Q' and put L := Gup and Q' == Q \ {«,f}.
Then L is (k — 2)-primitive on . Because H is sharply 2-transitive, there
exists a unique z € H such that (a, 3)* = (8, ), and since 22 fixes (a, f)
therefore z2 = 1. For each = € L, the commutator z "'z~ 'zz lies in H and
fixes (a, ), so it is also 1. Hence z centralizes L and so the orbits of (z) on
Q" form a system of blocks for L acting on ". However the orbits of (2)
all have lengths 1 or 2 and at most one has length | (because H is sharply
2-transitive). Since || > 4, this contradicts the primitivity of L on Q.
Hence M is not regular and the induction step is proved. ad

Corollary 7.2A. A nontrivial normal subgroup of a highly transitive group
is highly transitive.

In general a nontrivial normal subgroup of a transitive group need not be
transitive, but Exercise 1.4.6 shows that at least it is true that the orbits

[ —

7.2. Normal Subgroups 215

of the normal subgroup all have the same length. This leads to the concept
of half-transitivity which we shall use below in our analysis of nonreeular
normal subgroups of 2-transitive groups. -
. We_ say that a nontrivial group G acting on a set 2 acts 1 /2-transitivel
if all its orbits on £ have the same length. For each integer & > 1. we sa)gf/
that.G acts (k + 1/2)-transitively on Q if G is k-transitive and;acil of the
(conjugate) k-point stabilizers Ga, ...\ 18 1/2-transitive.

Obviously

(k + 1/2)-transitivity = k-transitivity = (k — 1/2)-transitivity

fo? e'ach ilzteger ;c )2 L. In general, however, it is not true that a group con-

aming a (k + 1/2)-transitive group is necessarily al iti
so (k + 1/2)-

(see Exercise 7.2.7 below). v (h ) el

Ezercises

7.2.5 Let G < Sym(§2) be 2-transitive, and suppose that H is a nontrivial
normal subgroup of G. Show that H is either regular or 3/2-transitive

7.2.6 Let G < Sym(Q) be 3-transitive, and suppose that H is a nontriviai
normal subgroup of G. Show that H is either regular, 5/2-transitive
or strictly 2-transitive. :

7.2.7 Give an example of a permutation group G which is not 3 /2-transitive
but which has a normal 3/2-transitive subgroup. [Hint: G may be
taken as a semidirect product of a regular normal elementary abelian
subgroup of order 9 and a group of order 4|

728 I G is a 1/2-transitive group of degree n, show that |G| divides 7.

If H is a pgnregular normal subgroup of a 2-transitive group G, then
a po1.n‘t stabilizer H, is nontrivial and normal in G, and so H ié 3/2-
transitive by Exercise 1.4.6. Is 4 primitive? To answer this question we
§ha}] use the concept of a minimal block: A Is a minimal block for G, if A
is a block for G containing at least two points, and no other block Wi‘th at
least two points is properly contained in A. Every finite transitive grou .
of degree at least 2 posesses minimal blocks, but an infinite imprimitivz
group may not.

Ezercise

7.2.9 Sivek an example of an infinite imprimitive group with no minimal
ocks.

Tbeorem 72C Suppose that G is a 2-transitie subgroup of Sym/(Q)
with @ nontrivial imprimitive normal subgroup H. If H has a minimal block

then Hop = 1 for every pawr of distin j
) ctpoints o, 8 € Q. (Thus H 1
reqular or a Frobenjus group.) (Thus H 15 cither

PROOF. Let A be a minimal block for H. Since H « G, A’ is a minimal
block for H for each 1 ¢ G, let B be the set of all such blocks. Since G is

e
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9-transitive, every pair of distinct points o, 3 lies in at least one block in
B. On the other hand if Ay, A, were distinct blocks in B containing o and
3, then A3 N Az would be a nontrivial block for H properly contained in
A; and this contradicts the minimality of A;. Hence for each pair «, B of
distinct points contained in 2, there is exactly one block in 53 containing
both these points. (This shows that B is set of blocks for a Steiner system
on 0 as discussed in Sect. 6.2).

Each block T' containing « is fixed setwise by H,. Thus Hap fixes all
blocks in B which contain a or 3. Let Ag be the block in B which contains
a and A, and suppose that v € ©\ Ag. Then there exist distinct blocks
A1, A, € B such that {a, v} € A and {§,7} € Az, and so A NAy =
{7}. Thus H,g fixes every point not lying in Ag. Finally, since A #
there is a block Az € B with Ag M Az = 0. Since Hqp fixes all points in
As, the argument above shows that it also fixes all points outside of As,
and so Hopg = 1 as asserted. O

Exercise

7.2.10 Let G = AGLq(F) < Sym(F?) for some field F' and some integer
d > 1. Let H be the normal subgroup consisting of the elements of
the form v — A + a where A # 0 is an element of F' and a € Fe.
Show that the blocks in B which occur in the proof above are exactly
the lines in the affine space.

Theorem 7.2D. Let G < Sym(Q) be an infinite 2-transitive group, and
suppose that H < G has finite indez. Then H is primitive.

PrROOF. Every subgroup of finite index in G contains a subgroup of finite
index which is normal in G (see Exercise 1.3.4), and so it is enough to
prove the result under the assumption that H is normal. Thus suppose
that H < G. Since G is 2-transitive, and H # 1, therefore H is transitive
and G = GoH. Thus |Ga : Ho| = |GoH : H| = |G : HJ, and so H, is a
normal subgroup of finite index in Gq. Since Gy is transitive on €\ {a},
H,, las only a finite number of orbits on €\ {a}, all of which are infinite
(Theorem 1.6A).

Now suppose that F is imprimitive. If A is a block for H containing
«, then A is Hg-invariant. Since H, has only a finite number of orbits,
this shows that there are only finitely many blocks for H containing a. In
particular, H has a minimal block A containing c. Let B := {A® |z € G}
Then it follows from the proof of Theorem 7.2C that any two blocks in B
meet in at most one point and any two points are in a unique block. Choose
a block ' € 3 that is disjoint from A, say some other block from the same
system. Then each v € I' determines a distinct block A, meeting A in
{a} and I"in {v}. Since I is infinite, this implies that H has infinitely many
distinet blocks containing «, contrary to what we showed above. Thus H
is primitive as claimed. [
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For finite groups we have a stronger result (Theorem 4.1B) which we
proved using the O’Nan—Scott Theorem in Chap. 4. We give here a brief
alternative proof based on the structure of finite Frobenius groups. Note
that the two conclusions of the theorem are not exclusive since both include
the case where soc(G) is cyclic of prime order.

Theorem 7.2E (= Theorem 4.1B). Let G < Sym()) be a finite
2-transitive group. Then soc(G) is either

(i) primitive and simple; or

(ii) regular and elementary abelian.

PRrROOF. Put H := soc(G). If H is not primitive, then Theorem 7.2.A shows
that either H is regular, or H is a Frobenius group (Sect. 3.4). In the for-
mer case H is elementary abelian (see Exercise 7.2.3) and so (ii) holds.
The latter case cannot hold since the structure theorem for finite frobenius
groups (Sect. 3.4) shows that a finite Frobenius group has a proper non-
trivial characteristic subgroup which is impossible for the socle of a finite
primitive group (see Corollary 4.3B). This settles the imprimitive case.
Now suppose that H is primitive but not regular. Then H is 3/2-
transitive because H <« G (Exercise 7.2.5). By Theorem 4.3B, a finite
primitive group either has a unique minimal normal subgroup, or it has
exactly two minimal normal subgroups which are nonabelian, regular and
isomorphic to one another. Since H is its own socle, it is a direct product
of simple groups. Thus either H is simple or H = S x T where S and
T are isomorphic simple, nonabelian, regular subgroups. However, in the
latter case |[H| = |Q\2 which i not possible since the 3/2-transitivity of H
implies that |H| has a factor in common with || — 1. Thus H is simple
and the proof of the theorem is complete. O

The final theorem of this section strengthens Theorem 7.2E (Theorem
4.1B) in a special case.

Theorem 7.2F. Suppose that G is a 2-transitive subgroup of Sym(§2)
of degree 2m where m > 1 is odd. Then soc(G) is a simple 2-transitive
subgroup.

PRrOOF. Indeed, since 2m is not a prime power, the previous theorem shows
that H := soc(G) is primitive, simple and nonabelian. It follows from
Exercise 1.6.12 that |H| is divisible by 4. Let « and /3 be distinct points in
Q. To prove that H is 2-transitive it is enough to show that G4 = HoGap,
since then H, acts transitively on ' := Q \ {a}. Since H, <4 G4, the
group H, acts 1/2-transitively on €', and so |Ha : Hag‘ divides 2m — 1.
Thus, H,g contains a Sylow 2-subgroup, say P, of H,, and P # 1 because
|H| is a multiple of 4. The Frattini argument (Exercise 1.4.14) shows that
Go = Hy(NNGy) where N := Ng(P). Since [H : H,| = 2m, any Sylow 2-
subgroup @ of H containing P satisfies |Q : P| = 2, and therefore @ < N.
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On the other hand the Jordan-Witt Lemma (Lemma 7.1A) shows that
N leaves I' := fix(P) invariant and acts 2-transitively on this set. Since
|Q| | |G| we have @ # 1. Thus Q* has order 2, and is a Sylow 2-subgroup
of the 2-transitive group NT. Hence its degree || = 2m — [supp(P)] has
the form 2n where n is odd. Applying Exercise 1.6.12 to NT shows that this
is impossible unless [I'| = 2. Hence I = ix(P) = {«, 8}, and so NN G, <
Gop. This shows that Go = Ho (N N Gy) = HyaGap as required. O

7.3 Limits to Multiple Transitivity

It is a consequence of the classification of finite simple groups that a fi-
nite permutation group which does not contain the alternating group is
at most 5-transitive. Except for the alternating and symmetric groups,
the only finite groups which are 4- or 5-transitive are the Mathieu groups
M1, Mo, M3 and May. The proof of this strong statement involves a case-
by-case analysis of the finite simple groups. We shall be content here with
a weaker result due to Wielandt (1960a) which shows that the Schreier
Conjecture implies that every proper finite multiply transitive group is at
most 7-transitive. (Note that the proof of the Schreier Conjecture also uses
the “classification”.) H. Nagao and M. Suzuki have shown how to reduce
the bound in the theorem from 7 to 6 by a similar argument. The story is
quite different for infinite permutation groups. For example, Homeo(Q) is
highly transitive (Exercise 7.1.6), and we shall see later that, for each k,
there are infinite groups that are k- but not (k + 1)-transitive.

Recall that the Schreier conjecture states that the outer automorphism
group of any finite simple group is solvable (see Appendix A).

Theorem 7.3A (Assuming the Schreier Conjecture). Let G < Sym(()
be an 8-transitive group of finite degree. Then G > Alt(§2).

PrOOF. Clearly we can assume that [ > 8. Fix A C Q with |A] = 5,
and put I' := © \ A. Define N := Ng(G(a)) and H := soc(Ga)) where
H 4 N because the socle of a group is a characteristic subgroup. Since
A = fix(G(a)), the Jordan-Witt Lemma (Lemma 7.1A) shows that NV acts
5-transitively on A; hence N2 = Sym(A). Because G(a) acts 2-transitively
on its support I', Theorem 4.1B shows that H is either a simple group
(possibly of prime order) acting primitively on I, or H is an elementary

abelian p-group of order > p? (for some prime p) acting regularly on T'. We ]

consider these two possibilities.

Suppose that H is simple, and put C := Cn(H). The action of N on H
by conjugation defines a homomorphism ¢ : N — Aut(H) whose kernel
is C. Moreover, we have ¢(H) = Inn(H), and so N/CH = ¢(N)/y(H)
is solvable by the Schreier Conjecture. Since N& = Sym(A), we conclude
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that
Alt(A) < (CH)Y® = C® < Sym(A)

because Alt(A) is simple and nonabelian. On the other hand, since H acts
primitively on its support I', Theorem 4.3B shows that ct = HV or 1
depending on whether H' is regular (of prime order p, say) or not. Since
| > 2, we conclude that in either case C' and C* have no common
pontrivial homomorphic image. Hence C = CF x C? by Theorem 1.6C,
which shows that C' (and hence G) contains a 3-cycle from Alt(A). Since G
is primitive, Theorem 3.3A now shows that G > Alt(9), and the theorem
is proved in this case. Note that up to this point of the proof we have only
used the hypothesis that G is 7-transitive, and that [ > 7.

Now suppose that H is regular on I'. Since G is 8-transitive, N T s 3-
transitive, and so by Theorem 7.2A, H = H I is an elementary abelian
9-group and hence |T'| = 2° for some integer s > 1. Now choose v € I, and
put G* := G,. Since G* is 7-transitive on Q' := Q\ {v}, the argument
above (with G* in place of G) shows that either G* > Alt(Q') (and hence
G > Alt(Q)), or H* := soc(G*) is an elementary abelian p-group of order
> p? which acts regularly on I \ {}. However the latter cannot hold
since it implies that 2° — 1 = |['| — 1 = p” for some integer 7 > 1 which is
impossible by Exercise 7.3.1 below. Hence we have proved that G > Alt(Q)
in this case as well. O

Ezercises

7.3.1 Show that if p is a prime and p” = 2° £ 1, for positive integers 7 and
s, then either r = 1 or p = 3, r = 2. [Hint: First show that if ris
odd then the second factor in (p” +1) = (p£1)(p" > F...+ 1) must
be odd. Also (p% — 1) = (p* — 1)(p* + 1) and p** +1 = 2 mod 4 for p
odd.] (More generally, it is true that the only solution to p” = ¢° —1
with p, ¢ primes and 7, s integers > 1is 2% = 3% — 1.)

7.3.2 Show that the only finite solvable permutation group which is 3-
primitive is the symmetric group of degree 4.

7.4 Jordan Groups

Let G be a group acting on a set Q. We say I' C 2 is a Jordan set and
its complement A := Q\ T a Jordan complement if [I'| > 1 and G(a)
acts transitively on I' (the case A = () is permitted). If G is k-transitive
on Q, every subset A of size < k is a Jordan complement; in such a case
we say I' and A are smproper, and otherwise they are proper. A group G
acting on € is a Jordan group if it is transitive and has at least one proper
Jordan complement. These groups fit naturally into the study of multiply

L)
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trausitive groups siuce a primitive Jordan group with a finite proper Jordan
complement is always 2-transitive (see Theorem 7.4A).

Frercises

7.4.1 Let G := AGL4(F) be the affine group acting on the d-dimensional
vector space } := F¢ over the field F. If d > 2, show that every
affine subspace of dimension < d in Q2 is a Jordan complement.

7.4.2 Let G := PGL441(F) be the projective linear group acting on the set
Q = PGy(F). If d > 3, show that any proper projective subspace of
Q) is a Jordan complement.

7.4.3 Let G := Aut(Q, <) be the group of order preserving permutations of
the rational numbers. Show that G is primitive, but not 2-transitive,
and that every open interval I' is a Jordan set on which G(q\r) acts
primitively.

The finite Jordan groups have been completely classified using the clas-
sification of finite simple groups; except for a small handful of exceptional
groups, the finite Jordan groups are closely related to the groups described
in Exercises 7.4.1 and 7.4.2 above (with F' finite). However the theory of
finite Jordan groups which we develop here is quite elementary. Essentially
it is due to Jordan and others in the last century. We shall present these re-
sults for Jordan groups under the hypothesis that the Jordan complement
is finite. Jordan groups with infinite Jordan complements, such as the ex-
ample in Exercise 7.4.3 above, must be handled by a different approach.
There is a growing collection of recent results that deal with this case; see
the notes at the end of the chapter.

The theory of Jordan groups has a geometrical Aavour. We have seen in
the exercises above that the Jordan complements of the affine and projec-
tive groups are the geometric subspaces. In general the finite proper Jordan
complements of a primitive group behave like subspaces.

Let G be a group acting transitively on a set . The properties
established in the following exercises will be used repeatedly.

FEzercises

7.4.4 If A is a Jordan complement for G then, for each z € G, the set A"
is also a Jordan complement.
7.4.5 If A’ and A are Jordan complements for G and A U A’ # Q, then
AN A’ is also a Jordan complement. [Hint: G(ana+y contains both
G(A) and G(A/).}
Let G be a group which acts transitively on the set 2. A J-flag for G is
a finite chain of distinct finite Jordan complements A; for G of the form

w:AQCAICCAk

with the property that whenever A is a Jordan complement for G with
A1 €A CA; then A = A;_y or A;. Note that [\ Ag| > 1 by the
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definition of Jordan complement. In the extreme case that A\ A =1
for all ¢ < 74, then G is (J + 1)-transitive. We also note that for each
<k D=0\ A CLLC AL\ A is a J-flag for Ga,) acting on 2\ A;.
Clearly, if # = Ag € Ay C ... C Ay is a J-flag, then §§ = A C AT C
... C A} is also a J-flag for each = € @; thus G acts on the set of J-flags.
Our first results show how a Jordan group acts on the set of its J-flags.

Lemma 7.4A. Suppose that the group G acts transitively on ).

(1) If A and A are finite Jordan complements for G with [A] < |A'], then
A® C A for some z € G.

(i) fl=AcC AL C...CAxand0 = 0 CA} C...C A, are two
J-flags for G with |Ay| = ]Az,}, then k = £ and for some z € G we
have A} = A? for each 1.

PROOF. (i) By hypothesis A’ # Q, so take a ¢ A’. Since G is transitive
and A # Q, there exists y € G such that o & AY, and so AY U A #£ Q.
Hence, if we choose £ € G such that A® N A’ is as large as possible, then
ATUA" #£ Q) and so A* N A/ is a Jordan complement by Exercise 7.4.5.
We claim that A" C A’. Indeed, otherwise there exists 8 e A®\ A’ and
(since |A’[ > |A|) also some v € A’ \ A®. Since 3, € Q \ (A* N A’) and
A% N A’ is a Jordan complement, there exists z € G(a=nary which maps g3
onto . But then

A®NA = (A" N A C A% A

while v = (7 lies in the second of these sets but not the first. This implies
that [A® N A'| < |A% N A’|, contrary to the choice of #. Thus A® c A
as required.

(ii) We proceed by induction on |A|. The result is true for A — 0, so
suppose A # (. Then k and £ are both at least 1, and it follows from (i)
that for some y € G either A} C Af or AY D Al. By the properties of a
J-flag this implies that A; = A}. Now

b=A7\AL c...cA¥\ A}
and
D=A1\A] C...C A\ A

are J-flags for G a1y acting on Q \ Af. Hence induction shows that k = ¢
and that for some z € G(a,) we have (AL \ A}) = (AVZ \ A}) for each
¢ 2 1. The result now follows with z = yz. O

If G is an imprimitive Jordan group then the blocks of imprimitivity and
the Jordan complements must fit together in a particular way. This is useful
even for primitive Jordan groups since these groups are generally built up

from smaller degree imprimitive Jordan groups. This is the content of the
following lemma..
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Lemma 7.4B. Let G be a group acting transitively on Q.

(i) Suppose that G is imprimitive and that B is a system of nontrivial
blocks for G. If G has a Jordan complement A then, either there exist
a blockT' € B such that A UT = Q, or else A is a union of some
subset B' of blocks from B with |B\ B'| > 1. Moreover, in the latter
case B’ is a Jordan complement for G acting on B.

(i) If A’ C A are two Jordan complements for G with |A\ A'] < |2\ A
then, for any system B of nontrivial blocks for G a+y acting on 2\ A/,
the set A\ A’ is a union of blocks from 5.

(iil) If G is primitive and A’ C A are consecutive terms in a J-flag for G,
then A := A\ A’ is a block for the action of Gary acting on Q\ A/,
and 2\ A is a union of at least two blocks from the corresponding
system of blocks.

PROOF. (i) If A is not a union of blocks from B, then there exists a block
I" € B such that ANT # 0 or I'. Since Gy, is transitive on Q \ A, this
shows that I' 2 Q \ A as asserted. Now suppose that A UT # Q for every
T’ € B. Then A is a union of a subset 8’ of blocks from B with [B\ 5’| > 1.
In the action of G on B we clearly have Gy > G(a), and so Gsry acts
transitively on B \ B’; this shows that B’ is a Jordan complement.

(ii) This follows immediately from (i) applied to G(ary acting on 2\ A’
since the condition on | \ A| shows that \ A is not contained in a block
of B.

(iii) Put A := A\ A’. We first show that |A| < |2\ A|. This is im-
mediately true if 2 is infinite, and so suppose that € is finite. Since G is
primitive, £ \ A is not a block for G and so there exists z € G such that
Y= ANA* # A and A UA® # Q. By Exercise 7.4.5, ¥ is a Jordan
complement for G properly contained in A, and so by Lemma 7.4A (ii) we
conclude that ¥ C A’ for some y € G. Thus |Z] < |A’| and so

Al = [AN A < AN = (AT UA)\ Al < [Q\ A

which proves our claim.

We now show that A is a block for G'¢a+} acting on 2\ A’. Suppose the
contrary. Then there exists z € Gas} such that A N A® # A or (. Since
A = AUAwehave A’ C ANA® C A, and |A U A% = |A U A% < |Q| by
the assertion which we just proved. Exercise 7.4.5 now shows that ANAZ is
a Jordan complement for GG, and it lies properly between A’ and A contrary
to the choice of A’. Thus we conclude that A is a block for Ga+y; since
[A] < |92\ A, (ii) is proved. O

With this collection of technical details in hand we can proceed to a
remarkable series of criteria for multiple transitivity for Jordan groups
obtained by Jordan (1871).

Theorem 7.4A. Let G be a group acting primitively on Q2.
(1) If G has a finite nonempty Jordan complement then G is 2-transitive.

. O el Lot L4

(ii) If‘G—f has a finite Jordan complement A such that G(a) has no non-
trivial blocks of size less than |A] on Q \ A, then G is (1A +
1)-transitive.

(iti) If G has two finite Jordan complements A’ C A with [A\ A =1
then G is (|A]| 4+ 1)-transitive.

ProoF. (i) Let § = Ag C A; C ... C Ay be a J-flag for G of length
k > 0. Then applying Lemma 7.4B (ii) to the pair § C A, shows that A,
is a block for G, and hence |A;| = 1. This implies that G is 2-transitive.

(i) We proceed by induction on |A|. The result is true for A = § so
suppose that A s {J. We first show that if A’ C A are consecutive terms in
a J-flag for G, then [A\ A’| = 1. This is true if A’ = {J by (i), so suppose
that A" # 0. Put A ;= A\ A’ and note that |A| < |A|. Then Lemma 7.4B
(if) shows A is a block for G{a} acting on Q\ A’ and that Q \ A is a union
of a set of at least two of the blocks conjugate to A. Since Gy < Gian
these latter blocks must also be blocks for G(a) and hence must be of size
1 by the hypothesis on G(4). Thus |A| = 1 as claimed. Now AN A =1
and so Gy acts 2-transitively (and hence primitively) on Q2 \ A’. Since
|A] = |A’[ + 1, induction now shows that G is |Al-transitive. Finally, since
G(a) is transitive on O \ A, the group G is (JA| + 1)-transitive.

(iif) By the argument in (ii), G(a+) acts 2-transitively (and hence primi-
tively) on @\ A’. Thus by (ii), G is |A|-transitive. Since G(a) is transitive,
G is (JA] + 1)-transitive. O

FEzercises

7.4.6 Suppose that G is a group acting primitively on a set Q and A is a fi-
nite Jordan complement. If G(a) is an abelian group whose nontrivial
clements all have order > |A|, show that G is (|A| + 1)-transitive.

7.4.7 Let G be a primitive Jordan group on a set Q which has a finite
proper Jordan complement. Show that the minimal proper Jordan
sets for G form the blocks of a Steiner system on which G acts.

Let G be a primitive Jordan group with a J-flagl = Ag € A; C ...
Ag. If G is t-transitive then the increments A= A\ Ay, are singletons
for i = 1,...,t — 1. If G is not (¢ + 1)-transitive then the remaining
increments A; have at least two elements and A; is a block of imprimitivity
for G(a,_,) on @\ A;_;. The definition of Jordan group places a condition
on the pointwise stabilizer of a Jordan complement A;. In fact, the setwise
stabilizer G{AL} induces a transitive action on A; itself and G{A,«} s a
Jordan group on A; with Jflagh = Ag c AL © ... C JAVER We show
this in the following lemma.

Lemma 7.4C. Let G be a group acting primitively on  and let

@:AOCAlc..‘CAk

be a J-flag for G with k > 1. Then:
(i) For each i < k, Gia,y N Ga,) acts transitively on Ay \ AL

s,
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(11) [f \Ak \ Ak—ll > 1 then §) = Ay C A C...C Ap_1 s a J—ﬁag for

the group Gia,) acting on Ag.
(i) Let |Ax| > t. Then G is t-transitive on Q if and only if G{a,y acts
t-transitively on Ag.

Proof. (i) Put A := Ag and A" := A The idea is to apply the Jordan-
Witt Lemma (Lemma 7.1A) to the transitive action of Giary on 2\ A
Since A D A’ we have Ga) < G(an- The normalizer of G(a) in G(ay
is Giay N Gan and the fixed point set of Giay N G(an in its action on
0\ A’ is exactly A\ A’. Moreover, for any z € G with A’ C A®, the
set A%\ A’ is a Jordan complement for G(a+y and so, by Lemma 7.4A (i),
there exists y € G(as) such that A® \ A" = (A\ A")Y. Equivalently, for all
z € G,2 *Gayz < G(ary implies that 271Gz = y~1G(ayy for some
y € Giary- Now the Jordan-Witt Lemma shows that Giay N G(ary acts
transitively on A\ A’ as asserted.

(if) Since |Ag \ Ag] > 1 for all i <k, (i) shows that each of these A; is
a Jordan complement for Gia, acting on Ag. It remains to show that if
A is a Jordan complement for G(a, and A, € A C A, for some i <k,
then A = A;_1 or A;. Indeed, the hypotheses show that G{a,) N G (a) acts
transitively on Ay \ A and that G(a,) acts transitively on €2\ A;. Since
these two orbits intersect nontrivially and have union Q\ A, we conclude
that G(a)(which contains both Gia,} NGa) and Ga,}) acts transitively
on 2\ A. Hence Ais a Jordan complement for G, and so A = Ay or A
by the definition of a J-flag.

(iii) Tt is clear that G is t-transitive if and only if whenever § = Ag C
Ay C ... C AgisaJ-flag for G with |Ax] > ¢ we have k > ¢ and |Aq| =4
fori=0,1,...,t— 1. Thus the assertion follows immediately from (i) or
Theorein 7.4A (iii) depending on whether or not Ak \ Ago1] > 1. O

We now have a detailed picture of the structure of a J-flag & = Ap C
A, C ... C Apfora Jordan group G. If G is t—transitive but not (¢t +
1)—transitive, then the sets in the series grow one point at a time up to
A,_,. After this point the increments A; := A; \ A;—1 grow in size by at
least a factor of 2 at each step. This follows by applying Lemma 7.4B (iii)
to the (2-transitive) action of Gia,.,) O Aiy1. We see that A; is a block
for Ga,_,y and [Aiy1| = |Agg1 \ A;] > 2|Ag]. For the affine and projective
groups the J-flags are formed by the geometric subspaces increasing by one
dimension at cach step. In the case of the 3-transitive group AGLy4(2) the
Jordan complement A; has 2°~! points so the increments increase by a
factor of exactly 2 each time for ¢ > 2.

The following theorem, proved by B. Marggraff in 1889, applies the ideas
developed so far.

Theorem 7.4B. Let G be a group acting primitively on a finite set Q of
size n, and suppose that G has a Jordan complement of size m where m 2>
n/2. Then G is 3-transitive, and moreover, if m > n/2 then G > Alt(Q).

ot men i gk
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PROOF“. ‘We proceed by induction on n to show that G is 3-transitive. The

result is easily verified if n < 4, so suppose that n > 4. Let § = Ay C

ﬁl C ... C Ay be a J-flag for G with |A;] = m. By Lemma 7.4B (i) we
ave

1 1
B\ Bk-1] = 5 QN Bkl = 5 (n —m).

If |Ag \ Ag—1] = 1, then G is (m + 1)-transitive by Theorem 7.44, so
suppose that {Ag \ Ag_1] > 1. Then from the inequality above and the
hypothesis on m we have

‘ 1 1 1

Beal2m = (n—m)= sm+ 3(2m—n)> %m: % A4
Hence by Lemma 7.4C (ii) and the induction hypothesis, G(a,; acts
3-transitively on Ay, and so Lemma 7.4C (ili) shows that G kis also
3-transitive.

Now suppose that m > n/2. We leave the case where n < 7 as an
exercise, and so we assurne m > 5. An induction similar to the one above
shows that we may conclude that H := G{A .} restricted to Ay contains
Alt(Ag). Thus the derived group H' restricted to Ay is equal to the simple
group Alt(Ar), and H’ restricted to Q \ Ag has no homomorphic image
isomorphic to Alt(Ax) because m > n — m. Hence the kernel of the action
of H on Q\ Ay induces Alt(Ag) on Ay by Theorem 1.4B. Thus G > H' >
Alt(Ag) and this shows that G contains a 3-cycle. Since G is pri_mitive—
Theorem 3.3.A now shows that G > Alt(2) as asserted. D,

FExercises

7.4.8 Complete the proof of the theorem above for n < 7.

7.4.9 In the case that m = n/2 and G is a proper primitive group in
Marggraff’s Theorem, show that there exists d such that n = 2¢ and
G < AGL4(2) [Hint: Show that there are proper Jordan complements
of size 4. Pick one point to be 0 and make  into a vector space
by defining the sum « + S to be the fourth point in the Jordan
complement of order 4 containing 0, c, 5]

Using the classification of finite simple groups, a precise description of
the finite primitive Jordan groups has been obtained; since such a group is
2-transitive it is a matter of checking the list of finite multiply transitive
groups (see Sect. 7.7). If G is a finite primitive Jordan group acting on a
set §2 then one of the following cases applies.

(i) Q is the affine space AG4(¢) of dimension d over the field F, and
ASLy(q) < G < AT'Lg(q) for some d > 2 and prime power q.
(i) Q is the projective space PG4(g) of dimension d over the field F, and
PSLg11(g) < G < PU'Lysr(q) for some d > 2 and prime power g.
(iii) © is the affine space AG4(2) of dimension 4 over the field F; and
G < AGL4(2) is an extension of the group of translations by 4. The
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group G is 3-transitive and has the 2-dimensional affine subspaces as
Jordan complements with 4 points.

(iv) £ is the projective space PG3(2) of dimension 3 over the field Fy and
G < PGL3(2) is the stabilizer of a point in the group described in
iii).

(v) g is one of the large Mathieu groups Maz, Aut(May), Moz and
Moy acting on the corresponding Steiner system. The proper Jordan
complements are the blocks of the Steiner systems.

The final part of this section is devoted to some classical results on special
types of Jordan groups. In particular we consider primitive groups of finite
degree that contain a cycle of prime power length. With this in mind we
next prove a more general theorem that again goes back to the work of
Jordan (1871). Some of the situations where the theorem can be applied
are explored in the exercises that follow it.

Theorem 7.4C. Let G be a group acting primitively on £ with a finite
Jordan complement A. Suppose that H := G () acts (transitively) on Q\ A
such that for each integer d with 1 < d < |A| there is at most one system of
imprimitivity for H whose blocks have size d. Then G is (JA|+1)-transitive.

ProoF. We proceed by induction on m := |A|. We know that G is 2-
transitive by Theorem 7.4A so the result is true if m < 1. Suppose that
m > 1.

First suppose that G is 3-transitive. Then for o € A the group Gy is 2-
transitive on Q\ {a} with a Jordan complement A\ {a} and (Ga)(a\{a}) =
H, so induction shows that G is |A|-transitive and hence G is (|A| +
1)-transitive.

Thus we may suppose that G is not 3-transitive and m > 1 and produce
a contradiction. In particular, 2m < || by Theorem 7.4B. Moreover, if

f=AgCA C...C A=A

is a J-flag for G ending in A, then |A;| = 1 and |A; \ A;—;| > 1 for all
i > 1 by Lemma 7.4B.

We claim that £ = 2. Put K := G(ay_,) and consider the action of K on
2\ Ag_1; we claim that K satisfies the same hypothesis as H does. That
is, if B and B’ are two systems of nontrivial blocks of the same size d for the
action of K on Q\ Ag_; then B = 3. Lemma 7.4B (ii) shows that A\ Ag
is a union of blocks (from either system) so d < [A\ Ax_1| < |A[. Also
there are blocks ¥ € B and ¥’ € B with ©,%' € 2\ A. Then ¥ and ¥/
are blocks for ' < K acting on Q \ A, and so the hypothesis on H shows
that ¥ and ¥’ are conjugate under H, and hence B = B’. This shows that
K satisfies the same hypothesis as H, and so we can apply induction to
conclude that G is (|Ag_1] + 1)-transitive. Since G is not 3-transitive, this
means that [Ag_1| < landsok < 2. Ifk < 1thenm < 1 contrary to
hypothesis, and so k = 2.

o1 Jordan Lroups 22(

This shows that G has a J-flag of the form § C {«} C A. Now observe
that, for all z € G, AU A" # Q (because 2m < |2] ), and so & := ANA*
is a Jordan complement by Lemma 7.4A. Thus £ = (, A or {y} for some
v € A. Moreover, if & = {7}, then I := A%\ {y} C Q\ A is a block
for the action of H on Q \ A; indeed, for each z € H = Ga), we have
A" N A® D {y}andsoI* NI =0 or I.

Finally, since GG is 2-transitive, we can choose z,y € G such that

A®NA={a},AYNA ={F} and AN AY = {v}

for distinct points «, § and 7y (choose z and y so that o = o, % ¢ A and
o = v € A* \ A). Then A%\ {a} and AV \ {{} are finite blocks of size
|A] — 1 for H acting on Q2 \ A, and so by the hypothesis on A they must
lie in the same system of imprimitivity for . However,

AT\ {a}) N (AY\ {B}) = {7} # 1
and so these two blocks must be equal. Thus

A%\ {a} = A\ {6} = {7}

which shows that |A\ {a}| = 1, and then Theorem 7.4A (iii) shows
that G is 3-transitive, a contradiction. This completes the proof of the
theorem. rl

An alternative argument, using ideas from Sect. 6.2, can be given for the
end of this proof. Start at the point where we know that G has a J-flag of
the form 0 C {a} C A. We claim that the images of A under G form the
blocks for a Steiner system. Since G is 2-transitive any two points are in
the same number of blocks and since the intersection of any two of these
blocks is a Jordan complement for G, two points are in a unique block.
The blocks meeting A in any fixed point form a system of imprimitivity
for H on 2\ A. So if we take points o, 0 € A and v ¢ A the blocks of the
Steiner system through «, -y and through g, v define two different systems
of imprimitivity for 4 of the same size d. This is contrary to hypothesis.

Exercises

7.4.10 Show that the condition on H in Theorem 7.4C is equivalent to: if
K and K3 are subgroups of the same index d in H with 1 < d < |A]
and these subgroups have a common fixed point on 2\ A, then K;
and K are conjugate in H.

74.11 If G is a group acting primitively on a set 2 and G contains a
cycle z # 1 with a finite number ¢ of fixed points, show that G is
(t 4+ 1)-transitive.

7.4.12 Suppose that G is a proper primitive group containing a cycle z # 1
with a finite number of fixed points. Show that Cq(z) = (z). [Hint:
Show that otherwise there exists w # 1 in G such that supp(w) N

o,

e,
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supp(z) = 0. Then Exercise 7.4.11 shows that [w, z] is a 3-cycle for
some z € G]

7.4.13 Suppose that G is a proper primitive group of degree n containing
a cycle z of length m > 1. Show that m > (n —m)!+ 1 in all cases,
and that m > 2(n — m)! when m is even. [Hint: Put A := fix(z),
H = Ga}, K = Gn) and C := {y~lzy | y € H}. Show that
m|C| = B = (n— m)! K]

Lemma 7.4D. Let N < Sym(T') be a transitive group of degree p* with
a normal Sylow p-subgroup P, and suppose that P contains a cycle z of
length p*. Then the derived group N' < P.

PROOF. We shall proceed by induction on the degree. The result is true for
k = 1 since in this case P = (z) is a regular normal subgroup of order p and
N < AGL:(p) (see Exercise 3.5.1). So suppose that k > 1. Let Z := Z(P);
this is a nontrivial normal subgroup of N (since the centre of a p-group is a
nontrivial characteristic subgroup and P<N). Since (z) is a regular abelian
group, it is self-centralizing in Sym(I") (Theorem 4.2A) and, in particular,
Z < {(z). Note that N normalizes Z and so N/Cn(Z) is isomorphic to
a subgroup of Aut(Z). Since Z is cyclic, Aut(Z) is abelian (see Exercise
2.2.2) and so the derived group N' < On(Z). Let & := {I'1,..., s} be
the set of orbits of Z (with A < p* because Z # 1).

Now suppose that y is a p’-element of N'. We have to show that y = 1.
Since N acts transitively on ¥ and z acts as an h-cycle on X, we can apply
induction on the degree to conclude that y acts trivially on 2. Thus Y =T
for each 4. However, if ~ lies in the Z-orbit I'; then 4¥ = 7* for some z € Z
whicl implies that v¥" = ~#" for all integers 7 because y € N’ < Cn(Z).
Thus y acts as a p-element on I';. Since y is a p'-element this implies that
y acts trivially on each I';. Hence y = 1 as required. 0

The following result generalizes Theorem 3.3E.

Theorem 7.4D. Let G be a proper primitive group of finite degree. If G
contains a pF-cycle © for some k > 1, then x has at most 2 fized points if
p # 3, and at most 8 fized points if p = 3.

PROOF. Suppose that G is acting on the set €2 of size n. Put A =
fix(z), t == |A| and let P be a Sylow p-subgroup of G(a) containing z.
Exercise 7.4.11 shows that G is (¢ 4+ 1)-transitive. Since A = fix P, the
Jordan-Witt Lemma (Lemma 7.1A) shows that N := Ng(P) < Ga} and
N acts t-transitively on A; in other words, N2 is Sym(A). Thus (N)A =
Alt(A). On the other hand, putting T' := Q \ A, Lemma 7.4D shows that
(N is a p-group. If p # 3 and ¢ > 3, then we could choose z € N’ such
that z2 is a 3-cycle, and z' has order p”, say. Then z?" is a 3-cycle lying in
N, which is impossible by Theorem 3.3A. Hence when p # 3, ¢ is at most
2. Similarly, if p = 3 aud ¢ > 4, then we could choose z € N’ such that
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z® is a permutation of cycle type 2%, and again a suitable p-power of z
gives a permutation of type 22 lying in N’. On the other hand, the degree
n =t + 3% > 13 because G cannot contain a 3-cycle, so this possibility is
ruled out by Example 3.3.1. Hence, when p = 3, ¢ is at most 3. This proves
the theorem. O

The possible exception in the case p = 3 does not actually occur. Indeed
the proof above shows that if the p*-cycle has ¢ fixed points then G is (t+1)-
transitive. But the classification of finite simple groups shows that there
are no proper 6-transitive groups and the only proper 4- and 5-transtive
groups are the Mathieu groups, of degrees 11, 12, 23 and 24, none of which
contains a cycle of length 3% (k > 1).

In fact, suppose that G is a primitive group of degree ¢ + p* containing
a pF-cycle. If t = 0 then G must be 2-transitive or a subgroup of AG L1 (p)
(see Theorems 3.5A and 3.5B). If t > 0 then G is 2-transitive by Theorem
7.4A. Using the classification of 2-transitive finite groups (see Sect. 7.7) it
can be shown that one of the following situations arises:

(i) t=0,k=1,G < AGL1(p);
(11) t =0,G < PT'Ly(q) where p* = ‘7;_"11 for some prime power ¢;
(iii) ¢t = 0,G = PSLy(11) of degree 11, My of degree 11 or Moz of degree
23;
(iv) t = 1, AGL1(2%) < G < AGL4(2) where 2¢ = 1 + p* and G is
3-transitive;
(v) t =1,p = 2,2 + 1 = ¢ is a Fermat prime and G = AGL;(q);
(vi) t=1,p =2,k =3 and G < AGL,(3) of degree 9;
(vii) t = 1, G = M, of degree 12, M2 of degree 12 or Moy of degree 24;
(viii) t = 2,p = 2,2% + 1 = ¢ is a Fermat prime and G = PGLy(q);
(ix) t =2,p=2,2F +1=23% G = PGLy(9) or PT'Ly(9).

Consult Exercise 7.3.1 for more insight into the prime arithmetic in parts
(iv), (v), (viii) and (ix).

7.5 Transitive Extensions

If G is k-transitive on a set §) then the stabilizer G, is (k — 1)-transitive
on  \ {a}. The idea of a transitive extension is to reverse this process.
We start with a group H < Sym(f2) and pick a new point w ¢ €, and
attempt to construct a group G acting transitively on the set 2* = QU {w}
such that the stabilizer G, is the original group H. In this case, we call
G a transitive extension of the permutation group H. Clearly if H is k-
transitive on Q then G is (k + 1)-transitive on Q*. Transitive extensions
are rare in the finite case, since the new group G is multiply transitive
and so is one of a slender family of groups. Working the other way around,
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every multiply transive group G arises from some group H by transitive
extension. Using the classification of finite 2-transitive groups in Sect. 7.7,
questions about the existence or nonexistence of a transitive extension of
a finite group H can be easily answered by scanning the list. On the other
hand, results on transitive extensions formed an important part of the work
leading up to the classification, so it seems appropriate to look at some of
these more elementary results.

In this section we establish a criterion for the existence of a transitive
extension of a transitive group H and apply this criterion to the construc-
tion of some exceptional 2-transitive groups. We then present a sample
nonexistence theorem [due to Zassenhaus (1935)] which shows that most of
the groups PSL4(q), in their natural action on the points of the projective
space PGy_1(q), fail to have transitive extensions.

As a first step, recall the following classical result expressing the rank of
a permutation group in terms of double cosets (Exercise 3.2.27). Suppose
that the group G is transitive on a set {2 and that « € Q. Then G has rank
r on 2 if and only if for some y1,...,vy,—1 € G the group G is the disjoint
union of r (G4, G,)-double cosets:

G =G, UGGo - UGqyr-1Ga.

If the orbits of G, are Ag = {a}, A1,..., A, then we can label the
suborbits so that the double coset G4y;Go consists of the elements of G
taking « to a point in A;.

Suppose that H is k-transitive on £ and set Q" = QU {w} where w ¢ Q.
If x € Sym(Q2*) is any element that does not fix w, then G = (H, z) will
certainly be (k + 1)-transitive, but will usually contain Alt(Q*). In other
words, unless we choose = with care, the stabilizer G,, will be strictly larger
than H. Theorem 7.5A gives a sufficient condition for the existence of a
transitive extension of a group H.

Theorem 7.5A. Let H < Sym(Q) be a transitive group of rank r. Fiz
a € Qand let yo = 1,51,...,Y-—1 be a set of representatives for the
(Hy, Hy)-double cosets in H. Now choose a point w not in  and put
O = QU{w}, and let z € Sym(Q*) withw € supp(z). Then G := (H, )
18 a transitive extension of H whenever the following conditions hold:

(i) z% € H;

(ii) zyz € HoH fori=1,...,7r —1; and
(i) zHyz = H,.

Remark. Exercise 7.5.1 shows that every transitive extension can be
constructed in this way (with an arbitrary set of representatives for the
(He, Hy)-double cosets) provided z is chosen appropriately.

Proor. Put K := H U HzH. We shall first show that K is a subgroup
of Sym(2*). Indeed, (i) shows that K is closed under taking inverses, so
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it is enough to show that KK C K. However, from (iii) and (ii) we have
T Hyy; Hyz ' = HyoywH, C HxH for each 4 > 1, and so by (i) and
(iii):
cHy =g 'He ' = 2 'Hex ' U | J 2 ' HoyiHoz ™) € HU HzH = K.
. i>1

Hence KK C HU HxHxzH C HKH = K as required. Thus K is a
subgroup and so G = (H,z) = HU HzH.

Finally, G, = H since w is fixed by H but not by any element in HzH.
Thus G is a transitive extension of H. O

ExAMPLE 7.5.1. The symmetric group G := S, can be constructed as
a transitive extension of H := S,_; taking z := (n — 1 n), K := Sp_s
and double coset representative y := (n — 2 n — 1). Conditions (1)—(iii) of
Theorem 7.5A are easily verified.

EXAMPLE 7.5.2. Our second example is less trivial. Let A := {a, 8,7, 6, €}
and consider the action of 4 := Alt(A) on Q := A{2}. We label the ten
elements of 2 as follows:

o 1 2 3 4 5 6 7 8 9
be aec af Py 6 ay B ve ba e

and calculate the images of some particular elements of A under this action:

(afy) — = (197)(235)(486)
(By)(e6) — b= (18)(25)(49)(67)
(af)(e6) — ¢ = (16)(35)(47)(89)
(@8)(By) — y1 = (01)(24)(56)(79)
(abd)(Be) + y2 = (02)(16)(37)(45)

Then H := (b,y1) = A and Hy = {a,b) = Ss. The orbits of Hy are
{0},{1,4,6,7,8,9} and {2,3,5}, and so 1,y; and y, form a set of repre-
sentatives for the (Hy, Hg)-double cosets in H. Let co be a point not in £,
and define z := (000)(35)(48)(79). Then it is straightforward to verify that
conditions (i)-(iil) of Theorem 7.5A are satisfied for G := (H, z) (observe
that (zy1)® = 1 and (zy2)® = ¢). Thus G is a 2-transitive group of degree
11 and order 11 - 10 - 6.

A further extension is possible in this case. Add a new point w and
define z := (woo)(18)(47)(69), and note that 1, = are representatives of the
(H, H)-double cosets in G. Again, it is easy to check that Theorem 7.5A
applies to show that F' := (G, z) is a transitive extension of G, and so F'
is a 3-transitive group of degree 12 and order 12 - 11 - 10 - 6.

The two groups G and F' are sporadic examples of multiply transitive
groups; they do not form part of an infinite family. We have met both of
the groups earlier in other circumstances. The group G is isomorphic to
PSLy(11), a group with a natural 2-transitive representation of degree 12.

Py

o



st

P

252 7. Multipty Transitive Groups

The permutation representation of PSL(11) of degree 11 constructed here
is one of the exceptional actions of prime degree discussed at the end of
Sect. 3.5. The 3-transitive group F' is isomorphic to the Mathieu group
Mi;. Recall that the Mathieu group Mps acts on an S(5,8,24) Steiner
system. At the end of Chap. 6, it is mentioned that the stabilizer H in
Moy of the symmetric difference I' of two blocks that meet in two points is
isomorphic to the group Mi2. If @ € I' then H, = M;; and the action of
this copy of Mi; on the complement of the block T is the action we have
just constructed under the name F'.

There is something of the rabbit-out-of-the-hat about constructing a mul-
tiply transitive group by transitive extension. Once the special permutation
z is defined, it is simple to check the conditions and build the group. The
hard part is finding permutations that work.

FEzxercises

7.5.1 Suppose that G < Sym(Q*) is a 2-transitive group, H := G,
is a point stabilizer of GG, and H, is a point stabilizer of H. Let
1,91, .-,Yr—1 be any set of representatives for the (H,, Hy)-double
cosets in H, and choose z € G such that z interchanges w and a
(this is possible because G is 2-transitive). Show that the conditions
(1)—-(iii) of Theorem 7.5A are satisfied.

7.5.2 Show that the “Klein 4-group” H := ((12)(34), (13)(24)) has no
transitive extension.

7.5.3 Let 2 = {0,1,...,7,8} and define the following permutations of this

set:
a = (083)(174)(265) b := (012)(345)(678)
c:= (0)(1823)(4765)  d := (0)(1624)(3587).
(1) Show that T := (a,b) is a regular elementary abelian group

of order 9 and that H := {(a,b,¢,d) is a sharply 2-transitive
subgroup of AGL2(3) whose stabilizer Hy = {c, d) is a quaternion
group of order 8.

(i) Add a new point co to obtain * = QU {cc}, and define
z = (c00)(1)(2)(38)(45)(67). Use Theorem 7.5A to show that
the group G = H U HzH is a sharply 3-transitive group of
degree 10 with stabilzer H.

(In fact, G = Mg the stabilizer of a point in the Mathieu group

M11. We know that there are two more successive transitive exten-

sions possible from the group G = Mjg just constructed. The next

exercise explores the first of these.)
7.5.4 Let G = Mg be the group constructed in Exercise 7.5.3, and let w

be a new point not in *. Define the permutation

z = (wo0)(0)(1)(2)(36)(48)(57)
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Use z to construct a transiti i
. nsitive extension of G. (Thj ion i
iomorohie 1o 3. ) (This extension is

7.5.5 In Exercise 7.5.3, the regular subgroup 7' can be identified with th
vec'tor space 3 in such a way that the stabilizer Hy = (¢, d) acts ae
a linear group. Show that if ¢ and b are taken as a basis’, then thz
matrices representing ¢ and d are { ? ‘OlJ and [ ; _11 J, respectively
Note that ¢2 = ¢2 corresponds to a scalar matrix. |

7.5.6 Lfet T = {a, B, 0 d,¢,(}. Then Alt(T") induces an action on the set
of partitions of I" into two sets of size 3. There are 10 such partitions
that we label with the elements of O — {0,..., 8,00} as follows:

oo oafy | e 4 aye )
0 afé | ye¢ 5 ¢ oy [‘ 555
L afe | y6¢ 6 1 abe | py¢
25 afiC ] e T ab | Pre
ot arb [ Bl 8 ¢ aeC| B

Retaining the notation of Exercise 7.5.3, this identification defines an

embedding & : Ai#(T * . .
B we ha (I') — Sym(9*). Show that under this mapping

(afy) - a
(6e¢) — b
(alBe)(v8) — ¢
(aB)(v6) — =

Hence show thgt Mg has a subgroup of index 2 isomorphic to A4
(However Mg is not isomorphic to Sg.) >

As well as being able to construct transitive extensions, it is also valy-
able tq know that some particular group H does not hav’e any transi’cil-f1
extenswps. One approach is to use Exercise 7.5.1 to prove that there are
no .trar.lsmive extensions by showing that there are no appropriate elemente
sgt1sfy1ng these conditions of Theorem 7.5A. Other arguments have be :
tglvep overT tihe geallrs to show that certain groups fail to have transitive ein-
ensions. The final portion hi i i i
it . e epgroupS'Of this section applies some of these ideas to
' We have seen in Chap. 6 that the group PSL3(4) has a transitive exten-
sion to the Mathieu group Mas and that the latter group can be extended
th(?e n_lore in succesion to produce Moz and Myy. On the other hand, the
projective group P.SLy(2) is isomorphic to the linear group G'L,4(2) sc; the
affine group AGL4(2) is a transitive extension of PSL,(2). We will show
glsatL tl(m)si are the on‘ly two cases in which the natural permutation action of

a\q) has a transitive extension, The key observations are that PSLy(q)

Is a Jordan group and that a transitive extension of a Jordan group is ag

a Jordan group. ain
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Lemma 7.5A. Suppose that H is a t-transitive Jordan group acting on

a set (2 and that G is o transitive extension of H acting on the set Q* =

QU {w}. Suppose that H has a proper Jordan complement A of size k, and

that any set of t points of §) is contained in exactly A complements of this

size. Let v :=|Q] and T := A U {w}. Then

(i) the set I is a Jordan complement for G on Q*;

(ii) the group induced on T by Gry is a transitive extension of the group
induced on A by Hiay;

(i) any t + 1 points of Q* are in exactly A Jordan complements for G of
size k + 1;

(iv) the number b of Jordan complements of size k + 1 for G is

e+ D -1 (v -t +1)
o k+DR)E-1) - (k—t+1)

ProoF. Parts (i), (ii) and (iii) are straightforward applications of Lemmas
74A and 7.4C. Part (iv) follows directly from (iii). O

éuppose that the Jordan group H has a proper Jordan complement A
and that H AA does not have a transitive extension; then Lemma 7.5B
shows that H does not have a transitive extension either. This idea is used
in the following theorem.

Theorem 7.5B. Let d > 3. If the group PSL4(q) in its natural action on
PG4-1(q) has a transitive extension then either ¢ = 2 ord = 3 and ¢ = 4.

PRrROOF. For the group H := PSL4(q) the Jordan complements are the
proper subspaces of PG4_1(q). Lemma 7.5A shows that it will be enough

to prove that PSL3(g) does not have a transitive extension for ¢ # 2,4

and that PSL4(4) does not have a transitive extension.

First consider the case where d = 3, and suppose that H has a transitive
extension G. The geometry of the projective plane PGsy(q) is an S(2,q +
1,¢% 4+ q + 1) Steiner system. Lemma 7.5A (iv) applies with v = ¢ + ¢ +
1, £k = ¢+ 1 and A = 1, so the number b of complements of size k + 1 for
Gis
CHa+2)@+et+)@®+a) (P H+a+2)(@° +g+1)

(¢+2)(g+ 1)q (a+2) '

This number must be an integer. Since GCD(q? 4 ¢+ 2, ¢+ 2) = GCD(¢+
2,4) and GCD(¢?> + ¢+ 1,q + 2) = GCD(g + 2, 3), the group G can exist
only when ¢ is a prime power such that ¢+ 2 divides 12. Therefore P.SL3(q)
can have a transitive extension only if ¢ = 2 or 4.

Now consider the group H := PSL,4(4) acting on the 85 points of £ :=
PG3(4) and suppose that G is a transitive extension. The group H has
Jordan complements A which are planes in the space €. In this case it
is more convenient to work with these planes rather than the lines. Each

po
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pair of points of 2 is in the same number \ := g + 1 = 5 of planes and
each plane has k := ¢> + ¢ + 1 = 21 points (so the planes form a 2-
(@ +P+a+1,2+q+1, g+ 1) design). By Lemma 7.5A (iv), the group

G would have b ;= %%if—gd—s Jordan complements of size 22. Since b is not
an integer, PSLy(4) does not have a transitive extension if d > 4. This
completes the proof of the theorem. O

The basic idea used in the preceeding theorem is that a transitive exten-
sion of an automorphism group of a combinatorial geometry should also
act on a tightly related geometry. We proved this in the case of a Jordan
group and then showed that the extended geometry fails to exist. The same
approach works to show that the Mathieu group Ms4 and the affine groups
AGLy(q) (d > 3) have no transitive extensions (see Exercises 7.5.8, 7.5.9).
Since there do exist S(3,¢ +1,¢? + 1) and S(3,¢ + 1, ¢> + 1) Steiner sys-
tems (see Examples 6.2.4 and 6.2.5), the analogous method must work with
the planes in the affine case and fails entirely for extensions of AGL,(q).
The argument developed here can be extended to certain other groups; see
Hughes (1965) and Liineburg (1969).

FEzercises

7.5.7 Complete the proof of Lemma 7.5A.
7.5.8 Show that the Mathieu group Mass does not have a transitive
extension.
7.5.9 Show that the affine group AGL4(q) does not have a transitive
extension if d > 3. [Hint: Apply Lemma 7.5A with A a plane.]
7.5.10 Show that the groups AGL4(2) are the only transitive extensions of
PGLy(2). [Hint: Use Exercise 7.4.9.]

7.6 Sharply k-transitive Groups

In this section we consider permutation groups which are sharply k-
transitive. Recall that a group G < Sym(Q) is sharply k-transitive if it
acts regularly on the set Q%) of k-tuples of distinct elements of ). Alter-
natively, G is sharply k-transitive if it is k-transitive and the identity is the
only element of G' with more than & — 1 fixed points. Trivially S is sharply
k-transitive and Ay is sharply (k — 2)-transitive, so to avoid these cases we
shall require the condition that [ > & + 2.

Sharply k-transitive groups have been studied for a long time. A classical
result of Jordan (1873) runs as follows.

Theorem 7.6A. Let G be a sharply k-transitive group of finite degree
dwithd >k +2 > 5. Then either k = 4,d = 11 and G = My, or
k=5,d=12 and G = Mi,.

.
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Much later, Tits (1952) showed that there are no infinite sharply k-
transitive groups if £k > 4. Both of these results are subsumed by the
following theorem of Hall (1954).

Theorem 7.6B. Let G be a 4-transitive group such that the stabilizer of
4 points is a finite group of odd order. Then G is finite and G is one of
Sy, Ss, Ag, A7 or My, in its natural permutation representation.

Finally, Yoshizawa (1979) showed, more generally, that there are no
infinite 4-transitive groups in which the stabilizer of 4 points is finite.

FEzercise

7.6.1 Use Theorem 7.6B to show that there are no sharply k-transitive
groups when k > 4 except those listed in Theorem 7.6A.

As a consequence of these theorems, interest in sharply k-transitive
groups is restricted to the cases & = 2 or 3. A construction of a general class
of sharply 2-transitive groups and a list of seven exceptional groups were
described by Dickson (1905). Zassenhaus (1936) showed that these are the
only finite sharply 2-transitive groups. Zassenhaus also showed that there
are exactly two infinite families of finite sharply 3-transitive groups. So far
no complete description of the infinite sharply 2- and 3-transitive groups
is known. In this section we describe some algebraic constructions used to
study sharply 2- and 3-transitive groups.

We first. consider the sharply 2-transitive groups. The 1-dimensional
affine group AGL([7) over any field F' is sharply 2-transitive group
in its natural action on AG,(F). Dickson generalized this example by
generalizing the concept of a field.

A near field is a set F with at least two elements 0 and 1 and with two
binary operations + and - such that:

NF1: (F,+) is an abelian group with identity 0 (we denote the inverse of
« under + by —o and use F# to denote the set of nonzero elements
of F);

NF2: (F'#,.) is a group with identity 1 (we denote the inverse of ¢ in this
group by a™!),and o - 0 =0 -a =0 for all @ € F}

NF3: there is a one-sided distributive law: (¢ + 8) -y =« -y + [ - for
all o, 8,y € F.

EXAMPLE 7.6.1. Every field (or even division ring) is a near field. Con-
versely, a near field is a field exactly in the case that the operations + and
- are both commutative.

ExXaMPLE 7.6.2. An important class of near fields was described in 1905
by L. E. Dickson. These near fields are now called Dickson near fields (or
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sometimes regular near fields). With seven exceptions, they include all finite
near fields.

Let (D, +, -) be a division ring and let ¢ : D# — Aut(D) be a mapping
from the group of units of D to the automorphism group of D. We require
that ¢ satisfy the condition

(7.3) ¢(a®® . 8) = ¢()$(8) for all o, B € D¥.
We then define a new multiplication ® on D# by
a®f = a® - for all o, B € D¥*.
The condition (7.3) implies the identity ¢(a © 8) = ¢(a) ¢(8) and from
this it is straightforward to check that (D, +, ®) is a near field.

Concrete examples of Dickson near fields can easily be given in the finite
case. Let ¢ be a prime power and n be a positive integer such that: each
prime that divides n also divides ¢ — 1; and n # Omod 4 if ¢ = 1 mod 4.
These conditions ensure that n divides (¢" —1)/(¢—1) and that the integers
-1 -1 " -1
q - 1 b q _ 1 b *

) q _ 1
form a complete residue system modulo n (see, for example, Liineburg
(1981), Th. 6.4). Let F' := Fyn and let w be a generator of the cyclic group
F# of units. Since n divides the order of F# F# has a subgroup H := = (w")
of index n. For ¢ = 1,..., n, define v, := w(q ~1/(a=1)_ Then the elements
v (G =1,...,n) form a complete system of coset representatives for H.
Consider the automorphism 71§ — £90f F and define ¢ : F — Aut(F)
by setting ¢(§) := 7° if £ is in the coset Hv;. One can readily check that
¢ satisfies the condition (7.3). Let &,7 be elements of F# with ¢(¢) = ¢
and ¢(n) = 79. So ¢ = av; and n = Bv; for someaﬂ € H. Then H
is a characteristic qubgroup of I'#, 50 ,505(77577 =a” fy ﬂfy] € Hyl' v5. We
want to show that 47"y, is in the coset H Yits. But 47 y; is w raised to the
exponent

(qv:_1> j+qj—1 _qi+j_qj+qj,1 gt o

g—1 g—1  g¢g-1 g—-1  g-1
Thus ¢ satisfies the condition (7.3) and we have constructed a near field.

Any near field can be used to construct a sharply 2-transitive group in
a way that generalizes the construction of affine groups. Let F' be a near
field and take 2 = F. Let G* be the set of all permutations of £ of the
form & — {6+ o (e € F, B € F#), and K* be the subset of permutations
defined by mappings £ — £ + a. A simple calculation shows that: G* is a
sharply 2-transitive group, K* is a regular normal subgroup of G*, and the
point stabilizers of G* are isomorphic to (F#,-).

This construction of sharply 2-transitive groups containing a normal
abelian subgroup is quite general, as the next theorem shows.
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Theorem 7.6C. Let 2] > 2 and let G < Sym(Q) be a sharply 2-
transitive group which possesses a reqular normal abelian subgroup K. Then
there exists a near field F such that G is permutation isomorphic to the
group G* defined in the construction above.

PrROOF. Take F' := 2 and fix two arbitrary elements of £ which we de-
note by 0 and 1. We shall use a,b,c, ... to represent elements of G and
0,1, ,,...to represent elements of F'. We then define binary operations
+ and - on F as follows. Since K is regular, there is a bijection of K onto Q
given by a +— 0%. The operation + on F is defined by: 0% 4 0° = 0°¢ where
¢ = ab in K. Then a — 0% defines an isomorphism from K onto (F,+).
Since the point stabilizer Gy acts regularly on F'# := F'\ {0} , we can sim-
ilarly define - on F# so that a + 12 is an isomorphism of G onto (F7#, ).
We also define a -0 = 0-a = 0 for all @ € F. Then (NF1) and (NF2)
are satisfied and it remains to show that (NF3) holds. We first establish an
identity: for alla € K and b € G we have b~lab € K and 0%-1° = b tab,
Indeed, if a = 1 then b~lab=1s00% -1 =0 -1 =0 = Qb tab, Suppose
a # 1. Then there exists a unique ¢ € Gy such that 0% = 1°. This implies
that 0% - 1% = 1¢. 1% = 1¢ = 0% = (b '% because b € Go. Now it is
easily seen that (NF3) : (a+08) -y = a-v+ v, holds whenever at least
one variable is 0. On the other hand, suppose that v ¢ 0. Then there are
a,b € K and ¢ € Gy with a = 0%, 8 = 0%, v = 1°. Now the identity just
proved shows that

(@+B) 7= (0%+0" 1°=0%.1° =g ob
— D(C_lac)(c_lbc) —0%.1¢ + Ob 1 = o v+ ,B .

Thus F with the operations + and - forms a near field.

Finally, we show that G is the group of all permutations of the form
& — £ -3+ a By construction, the permutations in K are defined by
mappings £ — & + a where o € F and the permutations in G are defined
by mappings of the form ¢ — ¢ - 8 where 8 € F#. Since K is a regular
normal subgroup of G every element x of G can be written z = ba where
a € K and b € Gy. Thus z is a permutation of the form £ — € - S+«
with @ € F and 8 € Gp. Since G is 2-transitive all permutations of this
form are in G. O

Combining Theorem 3.4B, Example 7.6.1 and the previous theorem we
get the following characterization.

Corollary 7.6A.

(i) Every finite, sharply 2-transitive group G is permutation isomorphic
to a group G* obtained from a finite near field by the construction
described above.

e R e
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(i) For every (possibly infinite) sharply 2-transitive group whose point sta-
bilizers are abelian there ezists a field F such that G is permutation
isomorphic to the affine group AGL,(F) < Sym(F).

The Dickson near fields, defined in Example 7.6.2, give examples of finite
sharply 2-transitive groups contained in the group AI'L;(q). Apart from
these examples there are, up to permutation isomorphism, seven further
finite sharply 2-transitive groups G. In each case G contains the group of
translations of a vector space F g and is contained in the group AGLy(p)
where p = 5,7, 11, 23, 29 or 59 (there are two examples with p = 11). The
stabilizers G for the exceptional groups are described in Table 7.1 where
the given matrices generate Gy as a subgroup of GLs(p). In the first four
cases, the groups are solvable. In the remaining cases the group Gy has the
form 2 - As x C where C is cyclic of order 1, 7 or 29, and so is not solvable.

FEzercise

7.6.2 Let L be the subgroup of SL(2,11) generated by the matrices a
and b listed in item V above. Show that L acts regularly on the set
of nonzero vectors in the underlying vector space over IF 11. Hence
construct a finite sharply 2-transitive permutation group of degree
121 which has a nonsolvable point stabilizer.

TaBLE 7.1.  Generators for the Stabilizers of the
Exceptional Finite Sharply 2-transitive Groups
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Theorem 7.6C and its corollary raises the natural question: when does
an infinite sharply 2-transitive group G < Sym(Q) have a regular nor-
mal abelian subgroup? Since a sharply 2-transitive group is a Frobenius
group, results which we obtained for Frobenius groups (Sect. 3.4) apply. In
particular, it is easy to show (Exercise 3.4.2) that, for a Frobenius group,
K:={ze€G|z=1or fix(z) = 0} is a (normal) subgroup of G if and
only if for some o € 2, the elements of K lie in distinct right cosets of Gg.

As Example 3.4.3 shows, for a general Frobenius group it is possible
that K may be the identity group. However, with the added condition of
2-transitivity we have the following result (see also Theorem 3.4B).

Theorem 7.6D. Let G < Sym(2) be a sharply 2-transitive group, and

put K :={z € G|z =1 orfix(z) =0} Then:

(i) G has a unique conjugacy class T of elements of order 2, and each
point stabilizer G, contains at most one element of T';

(ii) If for some a the elements of K lie in distinct right cosets of G then
K is a reqular normal abelian subgroup of G.

ProOF. (i) We first show that for any pair (a, 8) of distinct points of €,
there exists an element of order 2 which interchanges o and S. Indeed by
the hypothesis on G, there is a unique element ¢ such that (o, 8)* = (8, o).
Since t? fixes both « and 3, therefore ¢ has order 2 as required. Now let T
denote the conjugacy class of ¢ in G. Suppose that s € G also has order
2, and that v and § are any pair of points interchanged by s. Then we can
choose z € G such that (a, 8)* = (v,6), and s~1z7*¢z fixes both v and
§. Thus s 'z 'z = 1 and so s = 27 'tz € T. This shows that T is the
unique conjugacy class of elements of order 2 in G.

Now suppose that s,t € T both lie in G, and pick § # o. Then v :=
B3° # Band § ;= B¢ # B. Choose z € G such that (8,8)* = (8,7). Then
the argument above shows that s = z7l¢z. Since fix(s) = fix(t) = {o},
this means that z fixes o as well as 3, and so z = 1. Thus s = ¢, and G,
does not contain more than one element from 7.

(ii) We first show that cither K contains an element of T or else TT" C K.
Indeed, if K contains no element from 7, then (i) shows that each point
stabilizer G, contains exactly one element from 7. In the latter case, any
two elements ¢, s € T have unique fixed points a # (, respectively, say,
and we have to show that st € K. Assume the contrary. Then st also
has a unique fixed point «, say. Since s !(st)s = ts = (st)!, we have
(v} = fx(st) = fix((st)™') = (fix(st))® = {¥°}. Thus s fixes 7. Hence
« = «. Similarly ¢ fixes vy, and so 8 = ~. Hence s,t € G, and so s = ¢ by
(i) which is contrary to the assumption that st ¢ K. Thus we have shown
that either K contains an element from T, or 7T C K. In particular,
K # 1.

Now the hypothesis on K shows that K is a (nontrivial) subgroup of G,
and hence K <G (Excrcise 3.4.2). Since G is primitive and X is normal, K
must be transitive. Since the point stabilizers of K are trivial, this shows
that A is a regular normal subgroup of G.
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We finally show that K is abelian. First consider the case where K con-
tains an element of T'. Since T is a conjugacy class, and K is normal, this
implies that 7' C K. However, the 2-transitivity of G shows that G, acts
transitively by conjugation on the set K# of nonidentity elements of K
(Exercise 2.5.5), and so K# = T. Thus K is a group of exponent 2, and
hence an elementary abelian 2-group.

There remains the case where 7T C K. We claim that in this case K =
tT for each t € T'. Indeed, suppose that « is the unique fixed point of . For
each  # 1 in K, we can choose s € T such that « and o are interchanged
by s (see the proof of (i)). Then tsz~! € K and fixes a, so tsz™! = 1 and
z = ts € tT. This proves that TT C K C tT, and so K = tT as claimed.
Now fix t € T and consider conjugation by ¢t on K. For each z € K we have
s € T such that z = ts and then t7lat = t7ltst = st = s71t71 = g~ 1,
Hence conjugation by t inverts the elements of K. In particular, for all
z,y € K we have zy = ¢t~ !(zy)~ 't = (¢t ly~ 1) (t "1z~ 't) = yz. Thus K
is abelian in this case as well. O

FExercises

An automorphism 7 of a group K is fized point free if 7 # x for all z # 1.

7.6.3 Let K be a finite group with a fixed point free automorphism 7 of
order 2. Show that K is abelian. [Hint: Show that each u € K has
the form z7127 and hence u” = u™1.]

7.6.4 Let K be an infinite group with a fixed point free automorphism 7 of
order 2. Suppose that for each x € K there is a unique y € K such
that y? = z. Show that K is abelian. [Hint: Show that y? = z™1z"
implies y = 1]

7.6.5 Use Exercise 7.6.4 to show that, in the definition of a near field, the
commutativity of the group (F, +) in (NF1) can be deduced from the
other axioms.

Exercise 7.6.5 shows that the axioms for a near field are at least formally
stronger than necessary to define a sharply 2-transitive group. The axioms
can be weakened further to define a near domain. A near domain is a set
F with two binary operations + and - satisfying the following conditions.

ND1: (F,+) has the properties:
(i) there is a zero element 0 such that 0 + o = o + 0 = « for all
a € F;
(i) a+8=0=F+a=0fralageF,
(iii) in each equation o + 8 = <y any two of the elements determines
the third.
ND2: (F#,-) is a group where F7# is the set of nonzero elements of F.
ND3: a-0=0-a=0fral ackF.
ND4: For all , B € F there is an element &, 5 € F# such that o + (8 +
7) = (a+ﬁ)+6aﬂ e
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These conditions are sufficient to define a sharply 2-transitive group (EX—
ercise 7.6.6). A near domain is a near field when the additive structure is
a group. The generalization may be formal rather than real: a ﬁn.ite near
domain is a near field and it is not known if there are any infinite near
domains that are not near fields.

Ezercise

7.6.6 Show that if F' is a near domain then the mappings & — £ B+alac
F,3 € F#) form a sharply 2-transitive group on the set F'.

We now consider sharply k-transitive groups with k& > 3. As noted at
the begining of this section, Jordan and Tits showed that, apart from the
alternating and symmetric groups, M, and M, are the only sharply 4-
and 5-transitive groups. On the other hand, there are two easily constructfed
infinite families of sharply 3-transitive groups of both finite and inﬁn?te
degrees. Zassenhaus (1936) showed that these two families include all finite
sharply 3-transitive groups. The families can be described as follows. .

First of all there is the projective general linear group PGLy(F) acting
on the projective line PG1(F) for an arbitrary field F'. As we noted in Sect.
2.8, this group is permutation isomorphic to the group G of all fractional
linear mappings of the form

tapys 1 & aé:? with &, 8,7,6 € F and a6 — By # 0
Y

acting on the set Q := F' U {co}. Note that two of these mappings, tagys
and to/pys, are equal if and only if the vector (o, 03,7,8) is a nonzero
scalar multiple of (a, 8,7, 6). It is readily seen that G is 2-transitive on €2,
that Geo consists of the mappings § — af +/ (o, B € F with o # 0), Fmd
that Geeo consists of the mappings § — af (a € F with o # 0). Slpce
Goop acts regularly on Q\ {co, 0}, this shows that G is sharply 3-transitive.
In the case that F is a finite field of order g, G has order (g + alg = 1).
The construction above works for all fields. For some fields it is possible
to define a “twisted” version of the construction to obtain a second family
of sharply 3-transitive groups. Suppose that F has the properties: F hag a
field automorphism @ of order 2; and not every element in the multiplicative
group F# of units of F' is a square. Then F# has at least one %roper
subgroup, say A, such that A contains all the squares in F'# and A' =A
(for example, take A as just the set of squares). Consider the mappings

“l ifab—preA

e 16 o8 fab—fy ¢ A
on Q = F U {0} (we extend 6 to Q2 by defining oo = c0). A calculation
similar to that just given shows that the set of all sagys (a, 8,7, 6 € F with
ab — By # 0) forms a group G(A4, §) which is 3-transitive on Q (Exercise

T
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7.6.7). The following examples are cases where the underlying field has the
appropriate properties.

ExaMPLE 7.6.3. If F is a finite field of size ¢, then F' has the appropriate
properties only in the case that ¢ is a square (so |Aut(F')| is even) and ¢
is odd (so the squares form a subgroup of index 2 in the group of units).
Conversely, suppose that ¢ is an odd prime power, and that g is a square,
say ¢ = r2. Then we can take F' := F,, 6 : ¢ — ¢” and A as the set of
all nonzero squares in F'. Then the construction above gives a sharply 3-
transitive group of order (¢g+1)g(¢g— 1) which is not permutation isomorphic
to PGLa(q) acting on  (see Exercise 7.6.8).

EXAMPLE 7.6.4. Let F := Q[i] be the field obtained by adjoining the
complex square root of 1 to the rational field. Then complex conjugation
gives an automorphism 6 of order 2 for F. For each (rational) prime p, and
for each & # 0 in F' define v,(a) to be the exponent of p in the canonical
factorization of the rational number \a[g. Let II be any nonempty set of
primes. Then An = {a € F | a # 0,vp(a) even for all p € II} is
a subgroup of the group of units of F which is obviously fixed by 6 and
contains all the squares. The construction above gives a sharply 3-transitive
group G(Ar, 0) acting on PG;(F) = F U {co}.

ExXAMPLE 7.6.5. Let F := K(X) be the field of all rational functions over
an arbitrary field K. Each nonzero f € F has the form f;/f, for some
polynomials f1, fo in K[X]; we define v(f) := deg fi — deg fo and put
A:={f € F|f+#0andv(f) even }. Then A is a subgroup of index 2 in
the group of units of F. There are several ways to define an automorphism
8 of order 2 for F' mapping A onto itself. Two examples are:

(1) 6 fixes every element of K and maps X — 1 — X;

3

(ii) @ fixes X and acts as an automorphism of order 2 on K.

FEzercises

7.6.7 Show that the group G(A4, 8) defined in the “twisted” version of the
construction is sharply 3-transitive on Q@ = F U {co}.
7.6.8 For a € F#, let 24 1= 84010 € (G(4, 0))oc0-
(i) Show that z.zs # zgre whenever o € A and § ¢ A.
(i) Hence show that G(A4,#) is not permutation isomorphic to
PGLy(F) acting on PG1(F).

7.7 The Finite 2-transitive Groups

This is a largely expository section in which we shall describe the com-
plete list of finite 2-transitive groups, although we shall not prove that

it
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this list is complete. We know from Theorem 4.1B that the socle of any
finite 2-transitive group is either elementary abelian or else a primitive
simple group, and this explains the direct relationship between classifying
finite 2-transitive groups and classifying finite simple groups. A detailed
examination of possible cases was carried out by a number of different
mathematicians in anticipation of the classification of finite simple groups,
and led to the results described here.

There are eight infinite families of finite 2-transitive groups. These in-
clude the familiar cases of the alternating, symmetric, affine and projective
groups (in their natural actions). The less familiar ones are groups of Lie
type: the symplectic groups Spam (2), the Suzuki groups Sz(q), the unitary
groups PGU;(q?), and the Ree groups R(q). The symplectic groups each
have two distinct 2-transitive actions. Bach of the groups from the other
three classes is 2-transitive on the set of points in its action on an appro-
priate Steiner system. In addition to these eight infinite families, there are
ten exceptional (sporadic) examples of 2-transitive groups. We describe all
these groups in more detail below.

Alternating and symmetric groups

These are the trivial examples. In their natural actions, Sy is d-transitive
and A, is (d — 2)-transitive. In only a few cases, covered below, are they
2-transitive in any other action (see Exercise 7.7.1).

Fzercise
7.7.1 If n > 7, show that neither A, nor S, has a 2-transitive representa-

tion of degree > n. [Hint: If G acts on 2, and C is a conjugacy class
for G, then o is G,-invariant for any o € Q]

Affine groups

A 2-transitive group with abelian socles is permiitation isomorphic to a
subgroup of AT'L(q) for some d and ¢, and has degree ¢¢. Conversely, a
subgroup G < ATl'Ly(q) is 2-transitive if and only if the point stabilizer
Go < T'Ly(q) acts transitively on the set of nonzero vectors in the underly-
ing vector space. The 2-transitive solvable groups have been determined by
Huppert (1957), and the 2-transitive nonsolvable affine groups have been
determined by Hering (1974) [see also Huppert and Blackburn (1982) XII
§7.5]. Bach of the latter has a unique nonabelian composition factor. There
are three infinite families of examples :

(i) SLa(q) < Go < T'Ly(g);
(ii) Spa(q) < Go < T'Lg(q); and
(il}) Go = Ga(2™) < TLg(2™).

In addition there is a small number of sporadic examples of dimensions
2, 4 and 6. Some of these appear in Sect. 7.6 as sharply 2-transitive groups.

e
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Projective groups PSLy(q)

The projective groups are defined in Sect. 2.8

- g . 2.8. The group PSI, h
faithful ?—trans1t1ve action of degree (¢¢ — 1)/(¢g — 1) Ol:;l Q :i(qJ)DGj?q?
lgor, equivalently, on the set of 1-dimensional subspaces of F,). Apart
rom the cases (d, q) = (2,2) or (2,3), PSL4(q) is a nonabelian simple
g‘rro:pd. bTh; Icl;ozm(al)lzer of PSLy(q) in Sym(€) is PI'Ly(q) which is gen-
erated by a(q) together with the permutati i
ntomorghions 08 permutations induced by the field

In the case d =2, PGLy(q) is sharply 3-transitive of degree ¢ + 1, and
80 PT'Ly(q) is also 3-transitive. Note that PSLy(q) = PGLy(q) if q is even
but thatpjzill?f;)]) ha;index)Z In PGLy(q) when q is odd. Also, as abstract
groups, 2(4) = PSLy(5) & A5, PSL,(7) ~ p ’ =
ondd PALA(2 5 2(7) SL3(2), PSLy(9) = A

The symplectic groups Spon, (2)

Let F be an arbitrary fleld, m > 1 a fixed integer, and let V := F2™ We
define two block matrices over F of the form .

10 1 0 1
e.—[o O} and f::{;1 OJ:e—eT

where 91‘ and 1 denote the m x m zero and identity matrices, respectively,
(and e denot.es'the transpose of e). Then Sps,, (F) is the subgroup o%
ﬁGLQm (F) consisting of all matrices z such that zfz™ = f. When F is &

nite field of size ¢, it is known that |S | 1™ (¢

) y4 F = qm ; b -
Ta‘ylor (1974” { I Qm( )1 q Hz:l (q 1) [See
. . . Onl

Associated w1thTf is the/Symmetric bilinear form w:VxV — Fdefined
by ¢(u,v) = ufv . If the characteristic of F is not 2, then there is a natu-
ral way to associate a quadratic form to every bilinear form. N amely, using

a suitable scaling, we can take the quadratic form 6 to be §(u) := 1 o(u, u);
and ¢ can be recovered from 6 by use of the “polarization identitzy” Y
(7.4) o(u,v) = 0(u + v) - f(u) - O(v) forallu,v eV

Thus, when char F' # 2 there is a one-to-one correspondence between
blllnear forms and quadratic forms. If char F — 2 (which is the case we are
1r.1t.erested in), this correspondence no longer exists, and often, for a general
.blhne.ar form, there will be no quadratic form satisfying thé polarization
identity. For the bilinear function ¢ defined above, however, it can be easil

verified that, in characteristic 2, the quadratic form § = 907('“) = ueuT (:y

ueTuT) satisfies condition (7.4).

VNOW suppose char F' = 2 and consider the set ) of al] functions @ ;
; I F' such that (;*lg)nd%tion (7.4) is satisfied for our particular bilinear
orm ¢(u,v) = ufvT. Since B0 € 0, we have 4 ¢ Q, if and only if the
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function \ := § — 8 satisfies AM(u +v) = A(u) + A(v) for all u,v € V (and
so A is a homomorphism of the group (V, +) into (F, +)).

From now on we specialize to the case where F' = Fy. Then each group
homomorphism of (V, +) into (F, +) is an F-linear transformation, and so
has the form A(u) = uc’ for some ¢ € V. Since f is invertible we can
replace ¢T by faT, and so conclude that Q = {6 | a € V} where

(7.5) 0o (u) = weu® + ufat = Oo(u) + oy, a).

For later purposes note that, since F' = Ty, therefore f=e+e" and the
values of 8, and ¢ are always 0 or 1. .

Now put G := Spom(2) (= Spam(F2)). Since G acts on V and leaves f
invariant, the definition of Q shows that G also acts in a natural way on
where for € G and 8 € Q we have 6% (u) := 8(uz 1) (see Sect. 2.6). Our
object is to show that {2 can be partitioned into two G-invariant subsets
such that G acts 2-transitively on each of these sets.

We begin by defining the transvections to : V. — V given by ut, =
u + ¢(u, a)a for each a € V. It is readily seen that each t, lies in G, that
t2'= t,, and that 27 1t,z = tes for all z € G (see Exercise 7.7.5). Using
equation (7.4) and the fact that ¢(u,c) = 0 or 1, we have the identity

(7.6) 6% (u) = Ba(ut;?) = alu+ p(u, c)c) = Oa(w) + (Ba(c) + D(u, ).

Lemma 7.7A.
(i) For all a,c € V we have

Htc . 9(1 Zf ea(C) = l
& =\ Oppe ifbalc)=0"

(ii) For all a,b € V there is at most one ¢ € V such that t. maps s onto
0,. Such a c exists if and only if 6o(a) = 0o(b) (and then c = a +b).

PROOF. (i) When ,(c) = 1, this follows immediately from equations (7.5)
and (7.6). When 6,(c) = 0, we have 0% (u) = 0a(u) + ¢(u,c) = Oo(u) +
o(u, a) + p(u,c) = 00(”) + o(u,a + c) = 0a+6(u)'

(ii) Tt follows at once from (i) that there is at most one c such that .
maps 8, onto 0p; namely, ¢ = a + b. Moreover, this value of ¢ has the
required property if and only if 6.(a + b) = 0. However, using equation
(7.4) and the fact that ¢(a, a) is always 0, we have

0a(a + b) = 0,(a) + a(b) + @(a,b) = Oo(a) + Ho(b)
and so the result follows. |
We now define H := (t, | a € V) < G. Exercise 7.7.5 shows that H is

normal in G. It is known that @ = G = H whenever m > 3, but we shall
not need that fact here [see Taylor (1974)].

i i o
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Corollary 7.7A. H has two orbits on 0, namely
Qf = {0, | p(a) =0} and Q := {0a | Bo(a) =1}

with |QF] = 2771(2™ + 1) and |Q=| = 2m=}(2™ — 1). These are also
orbits for G = Spa,,,(2).

PrROOF. The first assertion follows at once from part (i) of the lemma
and Exercise 7.7.6. The second assertion follows from the observation that
otherwise G would be transitive, and this is impossible because the orbits
of the normal subgroup H have different sizes (Theorem 1.6A). O

Our main theorem will show that H (and hence G) acts 2-transitively
on each of these orbits. We isolate part of the argument in the following
lemma. For each nonzero vector a € V and € € Fy we define L{a,¢) = {v €
V| w(v,a) = €}. Thus L{aq, €) is an affine subspace of dimension 2m — 1 in
V.If a,...,a; are linearly independent, then the conditions ¢(v, a;) = ¢;
(z = 1,...,k) are equivalent to a system of k linear equations of rank k
on the entries of V. Hence, by elementary linear algebra, ﬂ:f:l L(a;, &) =
U + wyq for some subspace U of dimension 2m — k in V and some wy € V.
‘We have wg = 0 when all ¢; = 0.

Lemma 7.7B. Let m > 3. Then 8y is nol constant on L{a, ;) N L(b, €2)
whenever a and b are distinct elements in 'V and €1, €5 € Fy.

PRrROOF. Since Iy has only two elements, a # b implies that a and b are lin-
early independent. Hence U := L(a, 0) N L(b, 0) is a subspace of dimension
2m — 2 > 2 in V| and so contains an element ¢ which is linearly indepen-
dent of a and b. Thus there exists w € L(a, 1) N L(b, e2) M L(c, €3) for any
€3 € Fqo. By the choice of ¢, both w and w + ¢ lie in L{a, 1) N L(b, €2). On
the other hand, 0p(w + ¢) = p(w) + Oo(c) + ©(w, ¢) = bo(w) + Oo(c) + €3.
Hence we can choose €3 = 8g{c) + 1 to ensure that 6y (w + ¢) # 6 (w). This
proves the lemma. O

Theorem 7.7A. Spap,(2) acts 2-transitively on each of the orbits QF and
Q™ for each m > 2.

PrOOF. We shall prove the theorem only for mm > 3. The case where m = 2
is left as an exercise (see Exercises 7.7.7 and 7.7.8).

We know that QT and Q™ are both orbits for G (and H), so it is enough
to show that H acts 2-transitively on each of them. Equivalently, we shall
show that, if € € Fo, and a,b,c € V satisfy 0g(a) = 0p(b) = bp(c) = ¢,
then there is an element = € H which maps 8, onto 8, leaving 6, fixed (this
shows that the point stabilizer of 8, in H is transitive on the remaining
points of the orbit containing 6.). More precisely, we shall show that under
these hypotheses on a, b and ¢, there exists w € 2 such that:

(7.7) Oo(w) =€ and bla+w)=0.(b+w)=1.
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Then Lemma 7.7A(ii) shows that 2 = ta1wtbrw lr-xas the requ.ired property.

It remains to show that there exists w satisfying (7.7). First note that
O.(a+w) = bc(a) + 0.(w) + o(w, a) = y(a) + Op(w) + ¢(a,c) + p(w, c) +
e(w, @), with a similar expansion for 8.(b + w). Therefore the conditions
(7.7) are equivalent to

(7.8) w(w,a+c) =1+ pla,c),p(w,b+c) =1+ p(b,c) and fh(w) = e

Finally, the set of w € V satisfying the first two equations in (7.8) is sim}lil)é
Lia+c¢,1+¢(a,¢)) N L+ ¢, 1+ @b, c)), and Lemma 7.7B s.hovv?E al
By is not constant on this set. Thus, whatevfer value € takes, there exists 1&
satisfying all the conditions of (7.8) as required.

FEzercises

7.7.2 Show that Spa(F') = SLy(F) for any field F.
7.7.3 For any field F’, prove that all matrices of the form

{“01 o (1) H or H ﬂ with b = bT
a

3

(where all blocks are m x m over F') lie in Spa., (F). Characterize
more precisely the elements of Spa, (F).

In the remaining exercises it is assumed that F' = Fy, G = Sp2,,(2) and
H is the subgroup generated by transvections.

7.7.4 Show that each function # in Q can be written as a quadratic form

7.7.5 éﬁgjvntiat:ﬁiﬁh acVandalzc G, t, hazorder 2 and z 'tz =

7.7.6 tSa}i;vfont}I:a?;t‘zi}Clzlz;)ft}'lseéittaerids }givso;%thfv: siz.es 2m=1(2™ + 1) and
m—1(om _ - ivelv.

7.7.7 %Vherfgm = ;?’si;)sxietcﬁ;:eg = Spy(2) “:QJ Se, and H =2 Ag.

;;2 1;}112‘;3 gllelti?xf(;l? c(ac{ﬁ;in tzhz,c iiee Tgro_up‘G acts faithfully on each of
the orbits Q7 and Q.

Unitary groups, Us(q)

Let ¢ be a power of a prime and let K = Fo. Denoteqby V the
3-dimensional vector space over K. The mapping o : & — €7 is an au-
tomorphism of K and ¢? = 1. This automorphism of order 2 allows ucs1
to define a hermitian form ¢ : V x V' — K. Thus, for all u,v € Z/ aIll1
a,8 € K we have p(au, fv) = af? ¢(u,v) and ;p(u, v) = (v, u)l. Tse
unitary group GUs(q) is the subgroup of GL3(g*) that preier\ffs fgp. ﬁ
h € GL3(¢?) is an element of GUs(q) < p(u,v) = np(u U ) for a
u,v € V. The group GUs(q) induces an action on the 1-dimensional sub-
spaces of V; the induced group is the projective unitary group, PGUs(q),
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a subgroup of the projective general linear group PGL3(q%). The group
PGUs(g) has a subgroup PSUs(q) = PGUs(g) N PSL3(g?) and can be
extended to a group PI'Us (2) by adding the field automorphisms (by anal-
ogy with the group PI'L(¢?%)). In fact, PSUs(q) is a proper subgroup of
PGU3(q) only if 3 divides g +1, in which case the index is 3. If q > 2 then
the group PSUs(g) is simple.

Any vector u € V such that o(u,u) = 0 is called isotropic. Clearly,
the elements of PGUs(q) leave the set of isotropic vectors invariant. Every
scalar multiple of an isotropic vector is again isotropic so the set of 1-
dimensional subspaces ) = {(w) | e(u,u) = 0} is invariant under the
action of PGUs(q) (actually it is invariant under all of PT'L3(q)). This is
the action of interest; the group PSUs(q) is 2-transitive on the set Q.

By taking a specific bilinear form % we can describe this 2-transitive
action in more detail. Let ¢ = (€1,62,8&3), v = (M1, m2,m3) be variables
defined on V. Using £+ € = €9 to denote the automorphism of order 2,
we take o(u, v) = &75 4 &7 + 272 1t is straightforward to calculate that
for this choice of bilinear form the set of 1-dimensional isotropic subspaces

is
="UL00}U{{((«,8,1)) |a+a+ 8 =000 c Fg2}.
Thus |©2] = ¢% + 1.
We can also give a simple description of some of the elements of the
group G = PGUz(q) corresponding to this choice of bilinear form. Define

1 —F «a v 0 0
tog= (0 1 [ andh,s= |0 § o
0 0 1 0 0 7!

These define elements of G, to which we give the same names, if o, 8, v, §
are elements of Fy2 and also 66 = 1, Y#0,a+a@+ 8 = 0. There are q°
matrices of the type ¢, 5 and (g2 — 1)(g+1) of type h 6. Let ¢; = (1,0,0)
and e3 = (0,0, 1). Then the stabilizer G e,y of the subspace spanned by e;
consists of the elements represented as 2 — "y sta,s (Where 66 = 1, v +#0,
@+ @+ fB = 0). The set T — {tas | @+ @+ BB = 0} is a normal
subgoup of Gle,) acting regularly on 0 \ {{e1)}. Since there are elements
of G’ that do not fix (e;) (Exercise 7.7 -10), it follows that G is 2-transitive.
Since the matrices ta,p clearly have determinant 1, the group PSUs(q) is
similarly 2-transitive on . The stabilizer in & U of the two points (e;) and
(ea) of Q is GUlerytes) = {has | v # 0,66 = 1}. The element h., s is a
scalar matrix, and hence acts trivially on Q, if v = § and 66 = 1. Thus the
group Ge y(c,y has order ¢2 — 1.
The unitary group Us (g) acts as a group of automorphisms of a cer-
tain combinatorial geometry. As points of this geometry we take the set
{2 of 1-dimensional isotropic subspaces. A plane containing more than one

{ isotropic subspace must contain 7 + 1 such subspaces (Exercise 7.7.12);

these sets of points are the blocks of the geometry. This system of points
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and blocks is an S(2,q + 1, ¢ + 1) Steiner system. Such a Steiner system
is called a unital.

For further details on the unitary groups see O’Nan (1973) and Taylor
(1974) and (1992).

Ezercises

7.7.10 For the particular choice of bilinear form above, find an element of
PSU3(q) that does not fix < e; >.

7711 Definet:V — V by t:v— v+ ap(v,u) - u where a + @ = 0 and
u is isotropic. Show that ¢ is an element of GU3(q). Such an element
is called a unitary transvection; these elements generate PSU;(q) if
q > 2.

7.7.12

(i) Suppose that u, v are isotropic and that o(u,v) = 1. Show that
the vector u + aw is isotropic <= a+a = 0.
(ii) Show that there are ¢ + 1 solutions of @ + @ = o + a? = 0in

Fp.

Suzuki groups

The group Suzuki group Sz(g), which is also called 2Bs(q), is defined when
g = 22™+1 is an odd power of two. The group has order (¢°+1)¢*(¢—1) and
is simple if ¢ > 2. (The group Sz(2) = AGL:(5).) It is an automorphism

group of an S(3, ¢ + 1, g% + 1) Steiner system (an inversive plane of order

q). The group Sz(q) is 2-transitive on the g% + 1 points and a stabilizer of
two points is cyclic. Let K := F,. To define the group Sz(g) we consider
the automorphism o € Aut(K) defined by o:§ — €2 Since g = 22m*,
o2 is the Frobenius automorphism & — &2,

Define Q := {(m1,72,73) € K* | m3 = mma2 + 7?2 + 9§} U {co}. Thus
Q] = ¢ +1.Fora, B, s € K with x # 0, define the following permutations
of Q2 fixing co:

tag: (M,m2,m3) — (M + a,m2 + b+ a%m,
ns + ab—+ a2 + b7 + anz + a” 'y + by
Thie - (7717 T2, 773) = (“inlv ﬂg+17727 K'a+2?73)

Finally, define the involution w fixing & by

M2 M 1)
w: ) ) A Ty oy f0r773750a
(Th 772 773) <773 73 T3
oo < (0,0,0)

The Suzuki group Sz(q) is the group generated by w and all ¢4 g, ns. The
stabilizer of co is §2(¢)eo = (ta,s M | @, 0,k € K,k # 0). The stabilizer
of the two points co and (0, 0, 0) is the cyclic group (n. | £ € K#). The
subgroup T = (tap | @, 8 € K) is a Sylow 2-subgroup and is a normal
subgroup of Sz(q)e acting regularly on €\ {co}. Since w does not fix
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oo it follows that Sz(g) is 2-transitive on 2. For complete details on the
definition and structure of the Suzuki groups see Suzuki (1960) and (1962),
Tits (1960) and (1962) or Liineburg (1980).

Fzercises

7.7.13 Assuming that the set of permutations 7' = {t,p5 | o, 0 € K} is
closed under composition, show that 7" is transitive on 0\ {oo} and
is normalized by 7, for all ¥ € K#.

7.7.14 Show that the permutation t, 3 # 1 has order 4 if @ # 0 and has
order 2 if a = 0.

Ree groups

The Ree groups can be defined in a way that parallels the description of the
Suzuki groups above. The Ree group R(q), which is also called 2Gz(q), is
defined when ¢ = 3?1 is an odd power of 3 and has order (¢3+1)¢%(¢—1).
The group R(q) is simple if ¢ > 3; the group R(3) = PXL,(8) has a normal
subgroup of index 3. The group R(g) acts as an automorphism group of an
S(2, ¢+ 1,¢* + 1) Steiner system (a unital of order ¢). R(q) is 2-transitive
on the ¢ + 1 points and the stabilizer of two points is cyclic. Let K := Fy.
To define the group R(q) we use an automorphism o € Aut(K) defined by
o & — &7 Since ¢ = 32+1, 52 is the Frobenius automorphism ¢ — &27

The set £ of points on which R(g) acts consists of co and the set of
sixtuples (11, 72, N3, A1, A2, Ag) with 01, 72,73 € K and

Ay = nine — mms + 03 - nf T
2043

Az =n{ng —ng +mns + n2ns — 0’
o+1

Az = mng — nf ine + 0y ny + ning ~ ng ot

- "7§ +m
Thus || = ¢ + 1. For «, 8,7,k € K with k # 0, define the following
permutations of £ fixing co:
ta,ayt (M1, M2, M3, A1, Az, Ag) —
(m +a,mz+ B+ am,ms +y—am+Pm — oy,
Tt (11, M2, M35 A1y A2, Ag) =
(Enla I€o+l'f]2, KZU+27']3, E0+3A1, I€20—+3)\2, K/2(r+4)\3)‘
(The missing formulas in the definition of ¢, g are long and can be calcu-

lated from the formulas given and the fact that ¢y 5. leaves Q invariant.)
Finally, define the involution w fixing Q by

A2 =Ay omg e = 1)

\ M2, ,)\ ’)\ 7)\ — -, YV ) y v, T
(M1, M2, M3, A1, Az, Az) ( Az A3 As T Az T Az T Ag
for A3 5= 0 and

s — (0,0,0.0,0,0).

sy
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The Ree group R2(q) is the group generated by w and all ¢, g, 7. The sta-
bilizer of co is R(q)oo = (ta,g,y, 1 | & 0,7, & € K,k # 0). The stabilizer
of the two points oc and (0, 0, 0) is the cyclic group (n, | k € K#). The
subgroup T := (ta6~ | @, B € K) is a Sylow 3-subgroup and is a normal
subgroup of R(¢)e acting regularly on Q2 \ {oo}. Since w does not fix co
it follows that R{q) is 2-transitive on ). For more details on the definition
and structure of the Ree groups see Tits (1960), Ree (1961) or Huppert
and Blackburn (1982).

The previous 2-transitive groups all fell into infinite classes. The
remaining ten groups are the sporadic 2-transitive groups.

Mathieu groups

The five Mathieu groups were constructed in Chap. 6. The groups M2 and
Moy are the only nontrivial finite 5-transitive groups while M) and Mas
are the only nontrivial finite 4-transitive groups.

PSLz(ll) and ]lel

We showed in Chap. 6 that the 24 points on which May acts can be parti-

tioned into two sets A, I’ of 12 points each such that the set stabilizer of A
is the Mathieu group Mj2. The stabilizer in this latter group of a point in A
is isomorphic to M1, and acts 3-transitively on the 12 points of I'. The point
stabilizer in this action of degree 12 is PSL2(11) acting 2-transitively on
11 points. These actions were also constructed, using transitive extensions,
in Example 7.5.2.

A7 < PGL4(2)

The 3-dimensional projective space PG3(2) has 15 points and admits the
automorphism group PGLy(2). It was shown in Exercise 6.8.10 that As &
PSLy(2). Therefore there is a subgroup G of PSL4(2) of index 8 isomorphic
to A7. It happens that this subgroup G acts 2-transitively on the 15 points.

FEzercises

7.7 15 Prove that the subgroup G = A7 of PSLa(4) acts 2-transitively on
PG5(2).

7.7.16 (Continuation) Show that a subgroup of A7 isomorphic to Ag is
transitive on PG3(2).

The Higman—Sims group

The Higman-Sims group H.S is one of the sporadic finite simple groups; it
has order 44,352,000 (see Appendix A). The group HS can be described as
the automorphism group of a combinatorial geometry consisting of a set {2
of 176 points and a set I' of 176 quadrics such that each quadric consists of
50 points and each point is in 50 quadrics. Each pair of points (respectively,
quadrics) is incident with exactly 14 quadrics (respectively points) giving

A At e S 3 e e A 52 D
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a symmetric 2-(176,50,14) design. The group H.S is 2-transitive in its ac-
tion on 2 and has an equivalent 2-transitive action on I'. This particular
combinatorial geometry can be constructed from the Witt geometry Way
(see Chap. 6); for details see Higman (1969) or Smith (1976).

The Higman—Sims group also has a rank 3 permutation action on a set

. of 100 points. The Higman—Sims graph H is a graph with 100 vertices

built from the Witt geometry Way for the Mathieu group Mass. The ver-
tex set of H consists of the 22 points and the 77 blocks of Way as well
as one additional vertex w. The vertex w is joined in H to each point of
Wi, each point of Was is joined to each of the blocks of Waq that contain
the point, and two blocks of Waq are joined when they are disjoint. Each
vertex of the resulting graph has degree 22. Clearly Maso acts as an auto-
morphism group of H fixing w. The full automorphism group of H is the
automorphism group H.S.2 of the Higman—Sims group. For further details
see Higman and Sims (1968), Biggs and White (1979), or Beth et al. (1993).

The Conway group Cog

The group Cos is a sporadic simple group of order 2'0-37.5%.7.11.23 =
495,766,656,000. It is closely related to the Higman—Sims group but is most
naturally defined using a different combinatorial structure. A lattice in R™
is a subset consisting of all integral linear combinations of some basis of
R™. The automorphisms of the lattice are the linear transformations of R™
that fix the lattice setwise. The Leech Lattice A is a particular, and quite
exceptional, 24-dimensional lattice which can be constructed using the Witt
geometry Waoy, the S(2,8,24) Steiner system constructed in Chap. 6. Many
interesting groups occur as subgroups of Aut(A) fixing particular types or
configurations of vectors in A. In particular, the group Cogz is the stabilizer
of a vector of “type 3”. This group has a 2-transitive action of degree 276
also derived from the lattice. The stabilizer of a point in this action is
MecL : 2, the automorphism group of the McLaughlin group which is also
a sporadic simple group. Furthermore, C'og has a subgroup isomorphic to
the Higman—Sims group HS which has two orbits: one of length 100, the
other of length 176. The actions of H.S on these two orbits are the rank 3
and the 2-transitive actions described above. Details of these constructions
can be found in Conway (1969) and (1971), Conway and Sloane (1988),

and Thompson (1983).

7.8 Notes

* Exercises 7.1.3-6: Homeo(Q) has been extensively studied. See, for
example, Neumann (1985b), Mekler (1986) and Mekler et al.(1993).
¢ Lemma 7.1A: This is classical. See Wielandt (1964).
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e Bxercises 7.1.7-7.1.11: See Alperin (1965).

e Theorems 7.2A and 7.2B: Versions of these theorems were known to
Jordan. See Wielandt and Huppert (1958) and Wielandt (1974).

o Exercises 7.2.5-7.2.8: See Wielandt (1964) Sect. 12.

Theorems 7.2C and 7.2D: See Cameron (1981b).

Sect. 7.2: The proof of Theorem 4.1B given here is from Burnside (1911).

Theorem 7.2F: See Aschbacher (1972).

Theorem 7.3A: See Wielandt (1960a). The improved result due to Nagao

and Suzuki appears in Huppert and Blackburn (1982) §XIL.4.

Sect. 7.4: Much of this section is classical, at least in the finite case. Our

presentation uses Neumann (1985a); the latter also includes some of the

history of the development of these results. Prior to the classification of

finite simple groups, Hall (1962) and Kantor (1969) and (1974) classified

some particular classes of finite Jordan groups. Using the classification

of finite simple groups, S.A. Adeleke and P.M. Neumann classify infinite

Jordan groups which are not highly transitive [see Neumann (1985a)].

See also Cameron (1990) and Liebeck (1983).

Exercise 7.4.11: See Levingston and Taylor (1976).

Exercises 7.4.12-13: See Williamson (1973).

Lemma 7.4D and Theorem 7.4D: See Neumann (1975b). See also

Levingston (1978).

Theorem 7.5A: Often ascribed to Witt, but appears in this form in

Manning (1921). .

Exercises 7.5.3-6: See Witt (1938a). See also Biggs and White (1979)

and Rotman (1995).

Theorem 7.5B: See Zassenhaus (1935).

Sect. 7.6: Further details about the finite case may be found in Passman

(1968) and Huppert and Blackburn (1982). For the infinite case see Kerby
(1974) and Grindhofer (1989).

¢ Exercises 7.6.3-5: See B.H. Neumann (1940).
e Examples 7.6.3-5: See Karzel (1965) or Kerby (1974).
Sect. 7.7: The following are relevant: Cameron (1972) and (1981a), Curtis

et al. (1976), G. Higman (1969), Huppert (1957), Mortimer (1980), Ree
(1964) and Wielandt (1967a).

8

The Structure of the Symmetric
Groups

The present chapter studies the symmetric groups with particular cipha-
sis on the infinite case. Of course we know that every group is isomorphic
to a subgroup of some symmetric group (for example, via its regular per-
mutation representation), so one might suppose that it is not possible to
say much useful about the symmetric groups unless we know a great deal
about groups in general. However this is not true. There are certain facts
which are available without a detailed knowledge of all of the subgroups,
much in the same way that we have useful results about the set of real
numbers without knowing detailed facts about individual real numbers.
This chapter starts with the complete description of all normal subgroups
of Sym(£2), and then shows that (with notable exception of degree 6) the
automorphisms of Sym () are all inner. We then look at the subgroups of
the “small” subgroup FSym(£2), and (at the other extreme) the subgroups
of small index in Sym(2) and maximal subgroups of the symmetric group.
Since we shall be especially interested in the case where ) is infinite, this
chapter requires a little more familiarity with set theoretic arguments and
elementary results in cardinal arithmetic than previous chapters.

8.1 The Normal Structure of Sym(Q)

In Sect. 3.3 we showed that, when § is finite and [2| > 5, then the only
normal subgroups of Sym(Q) are 1, Alt(Q) and Sym (). In the present
section we are going to look at the normal subgroups of Sym(§2) when
Q is infinite. In this case we already know of one other normal subgroup,
namely the finitary symmetric groups FSym(1), consisting of all elements
of Sym() with finite support. There is a natural generalization of this
construction as follows.

Let ¢ be an infinite cardinal. Then for any nonempty set {2 we define

Sym(Q, ¢) := {z € Sym() | |supp(z)| < c}.
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Furercise

8.1.1 Show that Sym(Q,c) is a normal subgroup of Sym((2) for every

infinite cardinal c. When ¢ = ¥g (the smallest infinite cardinal),
then Sym(Q, Ro) = FSym(Q), and Sym(Q, c) = Sym(§?) whenever
c > |Qf

The primary object of this section is to prove the following theorem
which shows that the only normal subgroups of Sym(Q) are the obvious
ones. The result is due to Baer (1934).

Theorem 8.1A. Let 0 be any set with |Q| > 4. Then the normal sub-
groups of Sym(Q) are precisely: 1, Alt(S), Sym/(Q) and the subgroups of
the form Sym(Q, c) with ¥y < ¢ < [Q.

FEzxercises

8.1.2 Find all normal subgroups of Sy, for n = 1,2,3 and 4. [Hint: In the
respective cases there are 1, 2, 3 and 4 normal subgroups.|

8.1.3 Show that Sym(Q,c) has order || for ¢ = No and order Q¢ for
N[) <c < lQ‘

8.1.4 If ¢ is an infinite subgroup of FSym(Q), show that for each o € €
we have |G| = |G|.

The proof of Theorem 8.1A is based on three lemmas.

Lemma 8.1A. For each z € Sym(Q) there ezisty, z € Sym(§2) such that
2 = yz,y2 = 22 = 1 and supp(y) U supp(z) C supp(z).

PROOF. It is enough to prove the result for each of the disjoint cycles of
2. In the case of a finite cycle we may consider, without loss in generality,
a cycle of the form (1 2...n). Define

yi=({12m)22m-1)...(mm+1),
z:=(22m)(32m —1)...(m m+ 2), and
w:=(12m+1)(22m)...(mm+2).

Then yz = (1 2...2m) and yw = (1 2...2m + 1), so the case of a finite

cycle is settled. On the other hand an infinite cycle (... —1012.. .) can
be written as the product yz where:

y:=(01)(-12)(-23)...,and

2= (02)(—13)(-24).
This proves the lemma. O

Lemma 8.1B. Let N a Sym(Q) and suppose that some z € N has
lsupp(z)| = a > Wy. Then for each infinite cardinal b < a there exists
y'€ N of order 2 unth b 2-cycles and at least b fized points.
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PrROOF. We first define an element z € Sym()) with the same cycle struc-
ture as z (so z is conjugate to z in Sym(Q)), such that supp(z) = supp(z),
and zz has exactly b 2-cycles (and perhaps nontrivial cycles of other
lengths). We do this as follows:

(1) For each finite cycle u = (@jaz ... ay,) of length > 4 in x there will be
a corresponding cycle v = (aq@ianas ...} in 2 with the same support.
Note that wv contains the 2-cycle (a;a3).

(ii) For each infinite cycle u = (...a-japa;...) in z there will be
a corresponding infinite cycle v in z with the same support where
each block qa;a;q1a4i4204:43 in u has been replaced by the block
Q45 4+-3CQi+1041 +204;. The product wv has infinitely many 2-cycles of
the form (og;0ui42).

(ii) Partition the 2-cycles of z into pairs; if there is an odd one left over
then z will include that 2-cycle. For each pair u = (aja2)(asas) of
2-cycles in z, there will be a pair v = (aa3)(agas) of 2-cycles in z.
Note that uv is a product of two 2-cycles.

(iv) Finally, partition the 3-cycles of z into pairs; if there is an odd
one left over then z will include that 3-cycle. For each pair v =
(arazaz)(agasag) of 3-cycles in z, there will be a pair v =
(arasas)(agagag) of 3-cycles in z. Note that uv is again a product of
two 2-cycles.

It is now evident that z has the properties claimed. Since z is conjugate
to z in Sym(Q), z € N, and so w := zz € N is an element with exactly b
2-cycles (and perhaps other nontrivial cycles).

Finally, form b pairs of 2-cycles from the 2-cycles in w leaving b 2-cycles
unpaired. Define t € Sym(Q) to be a permutation with the same cycle
structure as w (and so ¢ also lies in N) in the following way. For each of the
pairs u = (ajaz)(aszaq) of 2-cycles in w, ¢t has the pair v = (a1a3)(a2ay)
of 2-cycles; and for every other cycle r in w there is the cycle =% in ¢. Then
y .= wt has precisely b 2-cycles and its other cycles all have length 1. O

Lemma 8.1C. Let N be a nontrivial normal subgroup of Sym(Q)) where
I > 4. Then either N = Alt(Q2) or N > Sym(£, No).

Proor. First recall that any nontrivial normal subgroup of the highly
transitive group S := Sym(, Rg) is also highly transitive and hence prim-
itive (Corollary 7.2A). Thus Theorem 3.3A shows that either SN N =1
or SNN > Alt(Q2). We must show that the former is impossible, and that
in the latter case either N = Alt(Q2) or N > §.

First suppose that N < S. Then SN N = N # 1 and so N > Alt(Q).
Since | : Alt(Q)| = 2, this shows that N = Alt(Q) or S as required. On
the other hand, if NV is not contained in S, then N contains an element
of infinite support. Thus by Lemma 8.1B there exists y € N such that y
has Ry 2-cycles and infinitely many fixed points. Let o and 3 be distinct
fixed points of y. Then y and z := y(e3) have the same number of 2-cycles
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and the same number of fixed points, and so are conjugate in Sym/(Q)
(Exercise 1.2.7). Thus z € N and so (aff) = y~'2 € N. Therefore N >
(Alt(Q), (ef)) = S in this case. O

PrOOF OF THEOREM 8.1A. Let N < Sym(f2) and suppose that N # 1
or Alt(§). Then Lemma 8.1C shows that N > Sym(£2, Rg). Let b be the
least cardinal such that |supp(z)| < bforallz € N. Then N < Sym(Q, b)
and we want to show that N = Sym(Q, b). By Lemma 8.1A it is enough
to show that each element y € Sym(Q,b) with order 2 lies in N, and
since N > Sym(£, No) it is enough to do this when a := |supp(y)| > No.
Since a < b, the definition of b shows that there exists z € N with
¢ := |supp(z)| > a, and then Lemma 8.1B shows that there exists z € N
of order 2 with a 2-cycles and || 1-cycles. This means that z is conjugate
to y in Sym(Q) provided they have the same number of fixed points (=
1-cycles). Since || > a, the only case in which the numbers of fixed points
can differ is when a = || and |fix(y)| < |[fix(z)| = a. In this case there
is a permutation ¢ € Sym(§2) which maps supp(z) into supp(y) in such a
way that 2-cycles are mapped onto 2-cycles. Then all the 2-cycles in t 'zt
appear as 2-cycles in y, but there are a 2-cycles in y which do not appear
as 2-cycles in ¢t~'2¢ (the support of the latter cycles lies in fix(z)!). Hence
w = yt~ 'zt has exactly a 2-cycles and a 1-cycles which means that w (and
hence y) is conjugate to an element in N. Thus in either case y is conjugate
to an element in N. Since N < Sym(Q), this implies y € N as required.
This proves the theorem. O

FEzercises

8.1.5 Let ¢ be an infinite cardinal. Show that two elements z,y €
Sym(S2, ¢) are conjugate in Sym () if and only if they are conjugate
in Sym(, ¢). Deduce that every normal subgroup of Sym({, c) is
normal in Sym().

8.1.6 Let a be an arbitrary infinite cardinal, and let b be the least
cardinal with a < b. Show that for any set @ with || > a,
Sym(Q, b)/Sym(Q, a) is a simple group.

8.1.7 Show that any nontrivial factor group Sym(Q, a)/Sym(£2, b) has
elements of infinite order.

8.1.8 Prove that no two distinct normal subgroups of Sym(Q2) are isomor-
phic. Moreover, if M < Sym(Q2) and N <« Sym(A) with M =2 N # 1,

then Q] = |A|.
8.1.9 Show that every group is isomorphic to a subgroup of some simple
group.

8.1.10 Find necessary and sufficient conditions on the cycle lengths of two
permutations in Sym()) in order that they should be conjugate
under an element of Alt(Q2). In particular, show that each conjugacy
class of F'Sym(Q) contained in Alt(?) is either a conjugacy class of
Alt(Q), or a union of two conjugacy classes.
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8.2 The Automorphisms of Sym(Q)

Theorem 8.1A shows that Sym(£)) has a rather rigid normal structure with
a single chain of normal subgroups, so it is not too surprising that the au-
tomorphisms of Sym(§2) are quite tightly controlled as well. As we shall see
below, except for the notable exception when || = 6, the automorphisms
of Sym(Q) are all inner. In the infinite case, these theorems are due to
Schreier and Ulam (1936). We begin with a slightly more general result.

Theorem 8.2A. Let |Q > 6. Suppose that G satisfies Alt(Q) < G <
Sym(Q), and let N be the normalizer of G in Sym(SY). Then for each

automorphism ¢ of G there exists y € N such that z° = y~lzy for all
z € G. In particular, every automorphism of Sym(Q) is inner.
The theorem remains true for || < 6, but is false for || = 6. (See

Exercises 8.2.2-8.2.5.) The proof of the theorem will be based on two
lemmas.

Lemma 8.2A. Under the hypotheses of the theorem, ¢ maps Alt(Q) onto
itself and so its restriction to Alt(Q) is an automorphism of Alt(QY). More-
over, if C 18 the conjugacy class consisting of all §-cycles in Alt(QY) then
c*=C.

PrOOF. Put A := Alt(Q). Since |Q] > 4, A is simple and the same is true
of A?®. Since A and A? are both normal in G, AN A% is normal in both 4
and A%, and so either AN A? =1 or A = A®. The former case could only
happen if A? centralized A. Since the centralizer of A in Sym(Q) is trivial
(see Exercise 8.2.1), we conclude that A = A?, and so the restriction of ¢
to A is an automorphism of A. It remains to show that C = C?.

We begin with a characterization: C is the unique conjugacy class of A
consisting of elements of order 3 such that for all z, y € C, zy has order 1, 2,
3 or 5. (The latter fact follows from the calculations (123)(145) = (12345),
(123)(124) = (14)(23) and (123)(214) = (234).) Since it is easy to see that
C? is also a conjugacy class of A, it is enough to show that C is the only
conjugacy class with these properties. Let C’ be another conjugacy class of
A consisting of elements of order 3 with C’ # C. Then each element in C"
contains at least two 3-cycles. Since || > 7 by hypothesis, the calculation

(137)(254) ... (253)(467) ... = (123456 ...) ...
shows that there are two elements z,y € C' such that zy has order at least

6. Thus C? # C’, and the lemma is proved. (i

Lemma 8.2B. Under the hypotheses of the theorem, if i is an automor-
phism of G which fizes each element of Alt(QY), then + is the identity
map.

e,

ey

N



awan

stz

e,

[

Ry

200 o. T'he Structure of the Symmetric Groups

Proor. Let y € G. Then for cach z € Alt(Q), we have y~'zy € Alt(Q)
and so y~lzy = (y~'zy)¥ = (y¥)"lzy¥. Thus y¥y~! centralizes Alt(Q).
Since [2| > 3, the centralizer of Alt(2) is trivial, and so y¥ = y for all
y € G. (]

PROOF OF THEOREM 8.2A. For each pair of distinct points o, f € Q
define

L(a, ) = {(afv) € C | v € @\ {e, B}}.

Then the calculations in the proof of Lemma 8.2A show that S := L(a, §)
is maximal as a subset of C satisfying the condition

(8.1) ifz,y € S and © # y, then zy has order 2.

The same calculations show that, conversely, if S is a subset of C' which
satisfies (8.1) and contains (af7y), then S is a subset of L(a, 8), L(3,7)
or L(v, ). Thus L(a, ) (o, f € Q and a # B) are the unique maximal
subsets of C' with the property (8.1). Since the property (8.1) is invariant
under automorphisms of Alt((2), Lemma 8.2A shows that the sets L(a, §)
are permuted amongst themselves by ¢. In particular, if we fix o and §
with o # f3, then there exist o and 8" with o/ # ' such that L(a, 8)? =
L, 3).

Now define y € Sym(Q) by: a¥ = o/, 8Y = ', and v¥ = 4’ such that
(afy)? = (o/B'Y) for all ¥ # « or fB. Let 9 be the homomorphism of
G into Sym(Q) defined by z¥ := yz?y~!. Then, for all v # o or 3 we
have (afy)? = (aB7), so 1 fixes each element of L(w, 8). Since L(w, )
generates Alt(§2) (see Exercise 1.6.8), we conclude that ¢ acts trivially on
Alt(Q) and so 9 is the identity on G by Lemma 8.2B. Thus z? = y~lzy
for all z € G. In particular, this shows that ¥y € N, and the theorem is
proved. O

FExercises

8.2.1 Show that the centralizer of Alt(Q) in Sym(Q) is trivial if |Q] > 3.

8.2.2 Show that Theorem 8.2A remains true when [Q| < 6. [Hint: For
|2] = 4 or 5, show that the conclusions of the two lemmas remain
true.]

8.2.3 Show that ((12345), (2354)) is a subgroup of index 6 in S, and hence
that Ss has a faithful transitive permutation representation of degree
6 in which each element of order 3 is fixed point free.

8.2.4 From Exercise 8.2.3 it follows that Ss has two conjugacy classes of
subgroups isomorphic to Ss: a class of transitive subgroups and a
class of intransitive subgroups. Show that there is an automorphism
of Ss which interchanges these two classes (and hence cannot be an
inner automorphism). ’

8.2.5 Show that Aut(Ss)/Inn(Ss) has order 2.
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8.3 Subgroups of F'Sym(Q)

The present section considers some of the properties of the finitary sym-
metric group FSym()) when Q is infinite. We begin with the following
crucial observation. Theorem 3.3D shows that every primitive subgroup of
Sym(§2) which contains a nontrivial element of finite support must con-
tain all of Alt(£2). Since |FSym(Q) : Alt(Q2)| = 2, we obtain the following
lemma.

Lemma 8.3A. If Q is infinite, Alt(Q) and FSym(Q) are the only
primitive subgroups of FSym(Q).

Consider now an imprimitive subgroup G of FSym(Q). If A is proper
block for G, then there exists z € G such that A N A* = @, and so
A C supp(z). Since the latter is finite, this shows that each proper block
of G is finite. There are then two cases which may arise:

(i) G has a maximal proper block A (so @ is the only other block
containing A);

(ii) G has no maximal proper block and so there exists an infinite strictly
ascending sequence of finite blocks

(8.2) AL CAyC...CALC....

In case (i) we shall say that G is almost primitive and in case (ii) we
shall say that G is totally imprimitive. This terminology comes from P. M.
Neumann (1975a).

Lemma 8.3B. Let Q be an infinite set, and let G be a subgroup of
FSym(Q).

(i) Suppose that G is almost primitive, and A is ¢ mazimal proper block
for G. Let & := {A® | ¢ € G} be the corresponding system of blocks
for G. Then the image of the action of G on % is either Alt(X) or
FSym(X). (Note that |Z| = | because |A| is finite.)

(i1) If G is totally imprimitive with a strictly ascending sequence (8.2) of
blocks, then Q is a countable set and G = | J Gk where G < G 1is the
subgroup which fizes setwise each of the blocks A} (u € G).

(iii) If G is transitive, then G has a normal subgroup K in which each
simple section is finite and such that G/K = 1, Alt(Q) or FSym(Q).

PrROOF. (i) G acts transitively on ¥ and, if T is a block for G on ¥ with
A € T, then the union of the blocks in I forms a block for G on {2 containing
A. By the maximality of A, this means that G acts primitively on 3.
Because G < F'Sym((2), the image of the action on ¥ lies in FSym(Z),

1 and so the result follows from Lemma 8.3A.

(i1) Since |J A is a block for G and is not finite, therefore Q = |JAy.
Since the Ay are all finite, this shows that € is countable. Moreover, each
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z € G has finite support, therefore supp(z) C Ay for some k. Since Ay
is a block, this implies that, for each u € G, either supp(z) C AY or
supp(z) N A} = {; hence z € Gi. This proves (ii).

(iii) If G is primitive, take K = 1. If G is almost primitive, then let
K be the kernel of the action of G on ¥ defined above and note that
FSym(Z) = FSym(Q). If G is totally imprimitive, take K = G. O

Lemma 8.3C. Let H a4 G < FSym(§Y) for an infinite set Q.
(i) If all orbits of H are infinite, then G' < H.
(i) If G is transitive, then G’ is contained in every subgroup of finite indez
in G and the centre Z(G) of G equals 1.

PrOOF. (i) Let z,y € G and put A := supp(z) Usupp(y). Since A is finite
and each orbit of H is infinite, Lemma 3.3B shows that there exists u € H
such that A N A% = 0. Put w = [z, u|[y, u][(zy) !, u]. Since H <« G we
have w € H. The elements v~ zu, v *yu and u™'zyu all have supports
lying in A*, so they commute with both z and y. Hence
w = (¢7 'y ey) (T ew) (u T yu) (u Ty~
Thus [z,y] € H for all z,y € G, and so G' < H.
(ii) If H < G has finite index, then Exercise 1.3.4 shows that there
is a normal subgroup K of finite index in G such that X < H. Then
Theorem 1.6A shows that each orbit of K is infinite because G is transitive
of infinite degree; hence (i) shows that G’ < K < H. Finally, if z € Z(G),
then supp(z) is a finite G-invariant subset of {2, and so by the transitivity
of G, supp(z) = 0 and z = 1. This shows that Z(G) = 1. O

temly) = [z, 9.

A group G is called an FC-group if each conjugacy class of elements is
finite (or, equivalently, if |G : Cg(z)| is finite for each z € G). A group G is
residually finite if for each nontrivial element x there is a homomorphism ¢
of G onto a finite group with ¢(z) # 1. Since any subgroup of finite index
in G contains a subgroup of finite index which is normal in G (see Exercise
1.3.4), G is residually finite exactly when for each z # 1 in G there is a
subgroup K of finite index in G such that z ¢ K.

Lemma 8.3D. Let G < FSym(Q). Then the following are equivalent:
(i) Ewvery orbit of G is finite;

(if) G is an FC-group;

(1) G is residually finite.

ProOOF. (i) = (ii) Suppose that each orbit of G is finite. Then, for each
2 € G there is a finite G-invariant subset A such that supp(z) € A. The
number of conjugates of z in G is then clearly bounded by the number of
conjugates of z2 in Sym(A). This shows that G is an FC-group.

(ii) = (iii) Suppose that G is an FC-group. Let = # 1 be an element of
G.lf ¢ ¢ Z(G), then there exists y € G with z ¢ Cu(y), and Ce(y) has
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finite index by (ii}. On the other hand, if z € Z(G), then A := supp(z) is
a finite G-invariant set, and so G(a)is a subgroup of finite index in G not
containing x. This shows that G is residually finite.

(iii) = (i) Suppose that G is residually finite, and let I be an orbit for
G. If T is infinite, then G'is also residually finite and so Lemma 8.3C (ii)
shows that (GT)" = 1. But then Z(G') = G* contrary to Lemma 8.3C (ii).
Hence the orbits for G must all be finite. This completes the proof. O

Fzercises

8.3.1 Define the subsets Tx(k = 1,2,....) of F'Sym(N) by

{(01), (23), (45), .. .}
{(02)(13), (46)(57), .. .}

T;Z
TQI

|

where in general T} consists of all elements of the form

ok=1_
Tpm = H (i + n2% i 4+ n2k 4 2871,
2=0

for n = 0,1,.... Let G be the union of the subgroups G :=
(T1,...,Tg) for k =1,2,.... Show that:
(i) for each k, G < G, and Gj41/Gy is an elementary abelian 2-
group;
(ii) all finitely generated subgroups of G are finite 2-groups;
(i) G is transitive.

8.3.2 Let p be a prime, and define G to be the r{_lultiplicative group consist-
ing of all complex numbers z such that 27 = 1 for some k£ > 1. Show
that G has no nontrivial representation as a finitary permutation
group.

8.3.3 Suppose that H <« N « G < F'Sym(Q) for some infinite set 2. If all
orbits of N are infinite, show that H < G.

We now consider the class X of groups G with the property that ev-
ery (not necessarily faithful) representation of G as a group of finitary
permutations has all of its orbits finite. Every finite group lies in X. If
G € X, then each factor group G/N € X. Since the class of FC-groups
is clearly closed under taking factor groups, it follows from Lemma 8.3D
that every FC-group lies in X. In general, G € X does not imply that each
subgroup H € X. Indeed, Sym(N) € X (see Exercise 8.3.4 below), but
FSym(N) ¢ X.

Ezercise

8.3.4 Show that Sym(N) € X. [Hint: Use Theorem 8. 1A and Lemma 8.3B]
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As noted above, X is not closed under taking subgroups, but, as the next
lemma shows, & is closed under forming extensions.

Lemma 8.3E.

(i) If HaG < FSym(Q) with H # 1 and G/H € X, then H is transitive
on every infinite orbit of G.

(ii) If N « K and both N and K/N lie in X, then K € X.

Proor. (i) It is enough to consider the case where {2 is infinite and G is
transitive; we have to show that H is also transitive. Suppose the contrary.
Then G is imprimitive and the set ¥ of orbits of H form a system of
nontrivial blocks for G. Since all proper blocks for G are finite by Lemma
8.3B, ¥ is infinite. Consider the action of G on 2. This action gives a
homomorphism of G onto a transitive subgroup of F'Sym(Z) with a kernel
K. Thus G/K ¢ X. Clearly H < K, and therefore G/H cannot lie in X.
This contradicts the hypothesis on H. Hence H must be transitive.

(i) Let ¢ : K — FSym() be any representation as a group of finitary
permutations. Since o(K)/o(N) is a homomorphic image of K/N we have
o(K)/o(N) € X. Therefore applying (i) to o(N) < o(K) < FSym() we
see that o(N) is transitive on cvery infinite orbit of ¢(K). Since N € X,
this implies that o(K) has no infinite orbits. Since this is true for every
finitary representation o of K, we have K € X. O

The next theorem gives examples of further classes of groups in X. A
group G has finite exponent if for some integer m > 1 we have 2™ =1 for
all z € G. A group G is hyperceniral if every factor group G/N # 1 has a
nontrivial centre Z(G/N). A finite group is hypercentral exactly when it is
nilpotent, but infinite hypercentral groups can be much more complicated
[see, for example, Robinson (1972)].

Theorem 8.3A. All groups in the following classes lie in X:
(1) groups of finite exponent;

(ii) hypercentral groups;

(ili) solvable groups.

PROOF. (i) Since the class of groups of finite exponent is closed under
taking homomorphic images, it is enough to show that if G < FSym(Q)
is an infinite transitive group, then G contains elements of arbitrarily large
orders. This is true if G is almost primitive by Lemma 8.3B since the
infinite alternating group contains elements of arbitrarily large order. Thus
it remains to consider the totally imprimitive case.

We shall proceed by induction on n to show that every infinite, transitive,
totally imprimitive group G < FSym(?) has an element with a cycle of
length > n. This is clearly true for n = 1, so suppose that n > 1. Choose
z # 1in G. Then G has a finite block A such that supp(z) C A (Lemma
8.3B). Let £ be the system of blocks A% (z € (). Since A is finite, &
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is infinite, and G acts as a totally imprimitive group on . Hence by the
induction hypothesis, there exists ¥ € G whose action on ¥ contains a
cycle of length A > n. Since G is transitive on ¥ we may choose y so
that A, A¥, ..., AY""" are all distinct. If a € supp(z) C A, then an easy
induction on % shows that

aew)’ = (oz‘”)yi €AY fori= 1,2,...,m— 1.

In particular, the cycles in zy and y which contain o have length at least
n. However, at least one of these cycles must have length greater than n,
since otherwise from above we have

o = o T = (cf”)yﬂ_1 =a”
which contradicts the choice of a € supp(z). This proves the induction
step and so the result is proved.

(il) Again, since the class of hypercentral groups is closed under taking
homomorphic images, it is enough to show that if G < FSym(Q) is a
transitive, hypercentral group, then £2 is finite. But this follows from Lemma
8.3C (ii) because a nontrivial hypercentral group has a nontrivial centre.

(iii) Since abelian groups are hypercentral, (ii) and Lemma 8.3E show
that every solvable group lies in . O

Corollary 8.3A. Let G < FSym(Q) be an infinite transitive group. Then
G’ is the unique minimal normal transitive subgroup of G. In particular,
G' = G" (so G' is perfect).

Proor. Lemma 8.3D shows that every transitive normal subgroup con-
tains G’. Since G/G’ € X by the theorem, G’ is transitive by Lemma 8.3E.
It now follows that G”(= (G’)’) is also transitive. Since G” is a normal
subgroup of G which is contained in G’, therefore G” = G'. O

FEzercise

8.3.5 We say that a group G is residually-X if for each nontrivial z € G
there exists K <G such that ¢ ¢ K and G/K € X. If G < FSym(Q)
and G is residually— X', show that all orbits of GG are finite, and hence
that G is residually finite.

8.4 Subgroups of Small Index in Sym(2)

We have seen in Sect. 5.2 that a subgroup of “small index” in .Sy, namely,
of index less than % (LnT/Lz J)’ either contains A, or is intransitive (with a few
exceptions for small 7). In the theorem below we consider the analogous
theorem in the case where the symmetric group has countably infinite de-
gree. The case where the degree is uncountable is also interesting although
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we shall not consider it here; the analogous results are dependent on the
validity of the “Generalized Continuum Hypothesis”.

Theorem 8.4A. Let Q be countably infinite and put S := Sym(Q). Then
for any subgroup G of S the following conditions are equivalent:

() |S: G| < 2l

(ii) for some finite subset A C Q, S(ay < G < S(ay;

(iii) S = FSym(N)G.

The proof of the theorem will be based on two lemmas. In the arguments
below we shall use the concept of a “moiety” (a term used in a legal sense
for a half share): a moiety of an infinite set ) is a subset I" such that
IT| = |2\ T|. It is important to observe that, for any subsets I',IY C Q
with [T'] = |IV| and |Q \ T'| = |\ IV|, there exists z € Sym() such that
IV = T'%; in particular, Sym(Q) acts transitively on the set of moieties of
Q. The first lemma is a classical result of W. Sierpinski proved in 1928.

Lemma 8.4A. Let ) be a countable set. Then there exists a family F of
moteties of  such that:

() |F] = 2! and

(ii) for any two distinct T, T in F, T NI is finite.

Proor. Without any loss in generality we may take 2 = Q. Then for
each real number r we choose an infinite sequence {a., } of distinct rationals
which converges to r, and define I',. to be the set {a,, | n =1,2,...}. It is
now easily verified that F := {I', | r € R} is a family of moieties satisfying
(i) and (ii). O

Asusual, if ¥ C ), then we identify Sym(X) with the pointwise stabilizer
of O\ 3 in Sym(Q).

Lemma 8.4B. Let I'y and 'y be subsets of an arbitrary set 0 such that
‘1—‘1 ﬂr2| = |P1’ S |F2| Then

(Sym(T'1), Sym(T2)) = Sym(I; U Ty).

Proor. IfI'; is a finite set, then the hypotheses imply that I'; Ny = T'y,
and so the result is trivial; hence suppose that I'; is infinite. Put A :=
I''NTy and & := T UTy. Let z € Sym(E). Since A* C ¥ and A is
infinite, there is some ¢ such that |A® NT;| = |A|. Choose a subset & of
A so that ®* is a moiety of A® N T, and note that ® is also a moiety of
A. Then |®| = |®*%} and I'; \ ®| = |Ty| = |T; \ ®%|, and so there exists
y € Sym(T;) such that (T; \ &)Y = I'; \ @ and v®¥ =  for all v € ®.
Now by the hypothesis on A, |I'1 \ Al < |A| = |®|. Hence, for some
z € Sym(I'1), we have (T'; \ A)* C ®, and so I'1 \ A C fix(zzyz~1). This
shows that zzy2~! € Sym(I'z), and so z € (Sym(I'y), Sym(T'3)). Thus we
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have shown that
(Sym(T1), Sym(T2)) > Sym(T'1 U Ty).

The reverse inequality is trivial, so the lemma is proved. O

PROOF OF THEOREM 8.4A. Since |[FSym(Q)| = ] < 2/€l it is clear
that (iil) implies (i). On the other hand, if A is a finite subset of 2, then
for each z € S there exists y € FSym(Q) such that y 'z € S(ay; hence
S = FSym(2)S(a). This shows that (ii) implies (iii). It remains to show
that (i) implies (ii).

We shall first show that there is a moiety & in {2 such that Sym(X) < G.
Since 2 and  x 2 have the same cardinality, we can write {2 as a union
of a countably infinite family {3; | ¢ € N} of infinite subsets which are
pairwise disjoint. Write S; := Sym(%;), and define

T:={zxeS|ZFf=% foralli}.
Now, if G; < S; denotes the restriction of GNT to X;, then GNT < [, Gy,

and so
[[1Si: Gl =]]IT:Gil<|T:GNT| <|S: G| <2

K3 K

Since 2] = N, this implies that |S; : G;| = 1 for all but a finite number
of values of 1. If we choose j such that S; = G, and put ¥ := ¥;, then
G{xy acts as the full symmetric group on ¥. This implies that, whenever
u € GNSym(T) and z € Sym(3), then for some v € G we have 27 uz =
v luw € G N Sym(X%); hence G N Sym(%) a Sym(T). Since

|Sym(Z) : Sym(Z) NG| < [S: G| < 2I%

and |Sym(E) : FSym(Z)| = 2/, it follows from Theorem 8.1A that G' N
Sym(X) = Sym(%). Hence Sym(¥) < G as required.

Now let F be a family of moieties of & which satisfies conditions (i) and
(ii) of Lemma 8.4A. Since each I" € F is a moisty of Q, we can choose an
element z(I") of order 2 in S such that

z(I') € S\ry and  z(T) interchanges T" and Q \ .

Since |F| > |S : G|, there exist distinct I';IY € F such that z :=
z(D)z(l')"! = z(l)z(l') € G. Put ¥’ := %, and note that £ = O\
@)= and B = (Q\T*M)? = Q\I*T), Hence SN/ = Q\(Tur)=@)
and S U Y = Q\ (I nI)=@).

In particular, £ N ¥’ contains (2 \ £)*™) because I',TV C %, and so
¥ N Y is infinite. Since Sym(Z) and Sym(Z’) = 27 1Sym(T)z both lie
in G, we conclude from Lemma 8.4B that Sym(X U X') C G. On the
other hand, A’ := (I' N I")*@T) is finite by the construction of F, and
Siary = Sym (% U X'), so we conclude that Sy C G for the finite subset
A

=
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Finally, choose A to be a smallest finite subset of 2 such that Siay C G.
Then for each z € G we have Sym(Q \ A%) = z71Sym(Q \ A)z < G,
and so Lemma 8.4B shows that G > (Sym(Q \ A), Sym(Q2 \ A%)) =
Sym(Q\ (A N A%)). Thus, for all z € G, A = A* by the minimality of A.
Hence G < S;a}, and the proof of the theorem is complete. O

Ezercises

8.4.1 Let S := Sym(€, c) where § is an infinite set and c is an infinite car-
dinal. Show that S{a} is a maximal subgroup of S for each nonempty
finite subset A of Q.

8.4.2 Show that there exists a proper subgroup of Sym(N) which acts
transitively on the set of moieties of N.

8.4.3 Show that Sym(N) contains a free subgroup of rank 2%°.

8.5 Maximal Subgroups of the Symmetric Groups

It follows from Exercise 5.2.8 that the maximal subgroups M of .S, fall into
three classes:

(1) (intransitive) M is the set stabilizer of some set of size m with 1 <
m < n/2, and so is isomorphic to Sy, X Sp—m;

(1) (imprimitive) M is the stabilizer of some partition of {1,2,...,n}
into m equal parts of sizc k with 1 < m < n, and so is isomorphic to
the wreath product Sy wr S,, in its imprimitive action; or

(ii) (primitive) M = A, or else is a proper primitive group (and so has
“small” order).

It is easily shown that any subgroup in class (i) or (ii) is maximal in S,
(Exercise 5.2.8), but it is much harder to decide which of the subgroups in
(iii) are maximal. In Liebeck et al. (1987), the O’'Nan-Scott Theorem (The-
orem 4.1A) and the classification of finite simple groups are used to identify
precisely which of the proper primitive subgroups of S,, are maximal in S,
(orin A,). For example, if n = k™ (k > 2, m > 2), then the subgroups of
S, which are permutation isomorphic to Sy wr S,, in its product action
(see Lemma 4.5A) are maximal. Similarly, for any nonabelian simple group
T,and n = |T|™", the group T - (Out(T) x S,,) is maximal in S, or 4,
in its diagonal action (see Lemma 4.5B), and the affine group AGL4(p) is
isomorphic to a primitive maximal subgroup of S, when 1 = p¢ (p prime,
d>2).

The situation for infinite symmetric groups is more complicated, and it
seems unlikely that there is any satisfactory description of the maximal
subgroups in this case. The remaining theorems in this chapter give some
recent results along these lines and hint at the complexity of this problem.
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Ezercises

8.5.1 When is AGL:(F) maximal in Sym(F) (where F is a field)?

8.5.2 In general an infinite group need not have any maximal subgroup.
Show that the abelian group (Q, +) has no maximal subgroup.

8.5.3 Let H be a subgroup of an infinite group G, and suppose that G can
be generated by H and a finite set of additional elements. Show that
G has at least one maximal subgroup containing H. [Hint: This will
require a transfinite argument such as the use of Zorn’s Lemma..]

We begin with some simple lemmas. In the following we shall say that a
moiety I' of Q is full for some subgroup G < Sym(Q) if Gir) induces the
full symmetric group Sym(I') in its action on T

Lemma 8.5A. Let Q be an arbitrary infinite set, and let G < § =

Sym(Q). Then:

(1) LetT' and A be moieties of Q such that T := I' N A has size |Q| and
Q=TUA.IfT and A are both full for G, then G = S.

(ii) If G # S, and at least one moiety of Q is full for G, then there ezists
z € § such that S = (G, z), and so G is contained in a mazimal
subgroup of S.

PROOF. (i) Since G is full on T', there exists € Gr) such that fixp(z) =
r \ =0 \ A. Then z € G(p\z) QG{F\E} = G{A}, and |SuppA(£E)| = ’A‘
because suppa(z) 2 L and |5 = |2|. Now Theorem 8.1A shows that z2 is
not contained in any proper normal subgroup of Sym(A). Since G is full on
A, therefore Giay = Grypy = Ga\a) = Sym(A). Hence Sym(A) < G.
A similar argument shows that Sym(T') < G, and so G = S by Lemma
8.4B.

(ii) Let I be a moiety of  on which G is full. Choose a moiety A of
{2 such that T' N A is a moiety of @ and I' U A = (. .Since Sym(f) is
transitive on the set of moieties of {2, there exists z € Sym(f) such that
A =T?. Now I' and A are both full for (G, z) and so (G, z) = S by part
(i). Finally, Exercise 8.5.3 shows that this implies that & is contained in a
maximal subgroup of S. O

We next consider chains of subgroups in Sym/(2). By a chain of subgroups
in a group G we shall mean a family {H,}xea of (distinct) subgroups of G
indexed by a totally ordered set A such that Hy < H, whenever A\, u € A
and A < p. The length of the chain is simply the cardinality of A. We are
interested in bounds on the lengths of chains of subgroups in the symmetric
groups.

If Q is finite of size n, say, then the length of every chain of subgroups in
Sym(§) is trivially bounded by (log n!)/(log 2) ~ (nlogn)/(log 2). A more
careful argument shows that the length is bounded by a constant multiple
of 7, and this bound has been made sharp; Cameron et al. (1989).
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FEzercises

8.5.4 Show that there exists a constant C > 0 such that every chain
of subgroups in S, has length at most Cn. [Hint: Let M be the
largest subgroup not containing A, in the chain. If M is primitive,
use Theorem 5.6B, and otherwise apply induction on degree.]

8.5.5 Show that, whenever n > 1 is a power of 2, there is a chain of proper
subgroups in S, of length (3n — 4)/2.

The situtation for the infinite symmetric groups appears to be quite
different.

Theorem 8.5A. Let S := Sym(Q) where Q is infinite. If {Hx}xea 15 @
chain of proper subgroups of S such that Jycp Hx = S. Then:

(i) |A] > 19|; and

(ii) for some p € A, FSym(Q) < Hy, and so H,, 1s highly transitive.

PROOF. (i) The proof is a nice example of a diagonal argument. We shall
first show that no Hy can be full on any moiety. Indeed, otherwise, Lemma
8.5A (ii) shows that S = (H,,z) for some p € A and some z € S. Then
z € H, for some v, and so S < (H,, H,) = Huyax(u,) contrary to the
hypothesis that the H) are proper subgroups. Therefore, no H) is full on
a moiety of Q. Now suppose that |A| < |]. Then there exists a partition
{Qx | A € A} of Q into moieties, and we can choose z) € Sym ()
such that z, is not induced by any element of (Hx){n,} acting on Q.
Let z € Sym(f) be the permutation which maps each Q2 onto itself, and
whose restriction to Qy equals zx. Then z is not contained in any of the
Hy, and so | Jycp Hx # S contrary to hypothesis. Thus [A] > |9].

(ii) |[F'Sym(Q)| = |Q| (see Exercise 8.1.3), so there exists a subset A CA
of cardinality || such that FSym(Q) € [J,ea H», and (i) shows that
the latter is not equal to S. Thus there exists i € A such that H, is not
contained in any Hy (A € A’). Since the subgroups form a chain, this means
that Hy < H, for all A € A/, and so F'Sym(§2) < H,, as required. O

FEzercise

8.5.6 Show that any group G which is not finitely generated can be written
as a union of a chain of proper subgroups.

Theorem 8.5B. Let Q be infinite, and ¢ > Rg. Put S := Sym(Q, c).
Q) If H < S and S = FSym(QU)H, then there is a finite subset A C
such that S(A) < HKL S{A}.
(ii) If M is a mazimal subgroup of S, then either M contains FSym(§)
(and so is highly transitive), or M = Siay for some nonempty finite
subset A of Q.
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Remark. Every subgroup of the form S;a} with A nonempty and finite
is maximal in S; see Exercise 8.4.1.

Proor. Put § := Sym(Q,c) and F = FSym(Q), and suppose that
S = FH(= HF) for some H < S. We shall proceed by a series of steps.

(a) We shall first show that H N F' # 1. Assume, on the contrary, that
HnNF = 1. Since ¢ > Np, we can choose z € S such that x has exactly
25=1 cycles of length 2% (k = 1,2,...) and all other cycles of length 1. Since
the 2™th power of a 2%-cycle is a product of 2 disjoint cycles of length
2k~ (for 0 < m < k), it is possible to choose x,, € S such that zz;;2" is
a product of a finite number of cycles of lengths 2% with k < m. Thus, for
each m > 1, there exists z,, € S such that 22 € Fz. By the hypothesis
on H we can choose y and y,, in H such that z € Fy and z,,, € Fym, and
then y2 € Fy for each m. Since we are assuming that H N F = 1, we
conclude that y = y2". However, 27 'y € F. So supp(z~'y) is finite, and
hence there exists 7 > 1 such that y has cycles of length 2" (in fact this
will be true for all sufficiently large r). Then y = y2,  implies that g, has
a cycle of length 2™+ and so ¥ has at least 2™ cycles of length 2". Since
this is true for each m, we conclude that y has infinitely many 2"-cycles,
which is impossible because supp(z~1y) is finite. Thus the assumption that
H N F =1 has led to a contradiction; so H N F' = 1 as claimed.

(b) Now comnsider the case where H is transitive. We shall show that in
this case H = S.

First suppose that A is an infinite subset of Q with Q \ A also infinite.
Since S acts transitively on the set of all countable subsets of 2, there exists
z € S such that ANA® and A\ AZ are both infinite. By hypothesis, z = yu
where u € F and y € H. Then A® \ supp(u) € AY € A% Usupp(u). Since
supp(w) is finite, this shows that A N AY and A \ AY are both infinite, and
so A is not a block for H. Hence H has no proper infinite blocks.

On the other hand, H cannot have a system of nontrivial finite blocks.
Indeed, otherwise, let A; (1 = 1,2,...) be countably many distinct blocks
from such a system. Then there exists z € S such that, for each 7, A;NA? #
A; or ). Now z = yu with y € H and «w € F. Since v has finite support,
this implies that A¥ = AY for infinitely many 7, and then the choice of =
gives a contradiction. This shows that H has no system of (finite or infinite)
nontrivial blocks, and so H is primitive.

Finally, since H is primitive and F N H # 1 by (i), Theorem 3.3D shows
that Alt(Q) < H.Hence |S: H| = |FH : H = |F: FN H| < 2, and so
H «S. Thus H = S by Theorem 8.1A.

(c) Finally, consider the general case. Choose z € S as a permutation
with infinitely many cycles of infinite length. Then there exists y € H such
that supp(z~ly) is finite, and so y must also have cycles of infinite length.
In particular, H has an orbit I" of infinite length. The argument in (b) now
shows that if  \ I" were also infinite, then there would exist ¥y € H such
that I\ I'? is infinite. Since I is an orbit for H, this is impossible, and so

e,
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we conclude that A := Q\ T' is finite. Now H = Hay < S{ay, and so
Siay = S{ay N FH = FayH. Since A is finite, the subgroup FlayHny
has finite index in S(ay & Sym(T, c). Thus Exercise 1.3.4, Theorem 8.1A
and Exercise 8.1.5 show that Fia)yHa) = S(a). Now applying (b) shows
that Hiay = S(a), and so Say < H < S(a3 as required.

(i) If M does not contain FSym(Q), then S = FSym(Q)M. The result
now follows from (i). O

Theorem 8.5B (ii) shows that the infinite symmetric groups have no im-
primitive maximal subgroups. Tt also shows that the (intransitive) subgroup
Sta} is not a maximal subgroup of § when both A and {2\ A are infinite.
The problem of describing all maximal subgroups of S remains open at this
time. We conclude with a construction which provides one further class of
maximal subgroups.

EXAMPLE 8.5.1. Let A be an infinite subset of §2 such that |A| < ||, and
put S := Sym(Q). Then the almost stabilizer A := {x € S| |A S A*| <
|Al} is a maximal subgroup of S. (We are using & to denote symmetric
difference of the two subsets.)

Indeed, clearly A is a subgroup of S and A # S. In order to show that Ais
maximal, we have to show that, for each z & S\ A, G := (A, z) = S. Since
r & AJA © A% = |A] so, replacing 2 by 27! if necessary, we may assume
that |A\ A*] = |A]. Since [A* N A| < |A| = |A\ A| and [A®\ A] <
Al < |9\ (A UA*)|, and the sets A* N A and A” \ A are disjoint, we
can find z € Syay < A such that (A" N A)* € A\ A% and (A" \ A)* C
Q\(AUA®). Then A NA* = ), and soy := zzz ™' € G has the property
that AYNA = 0. Put T := Q\ A. Since Sym(T') = Say £ A < G, wealso
have Sym(TY) = Siasy < G. Moreover, TUTY = Q\ (AN AY) = Q, and
LNTY = Q\ (AU AY) has size |Q]. Thus G > (Sym(T), Sym((I¥)) = S
by Lemma 8.4B. Since this is true for every z € S\ A, therefore A is a
maximal subgroup of S as asserted.

Ezercises

8.5.7 Let Q be an infinite set and ¢ be an infinite cardinal. If G < Sym(fQ)
and there exists T' C Q such that |Q\T'| < ¢ and T is full for G,
show that Sym(2) = Sym(Q, ¢)G.

8.5.8 Let Q be infinite and A be a moiety of 2. Let A denote the almost sta-
blizer of A in Sym(§2). Show that there is a unique proper subgroup
M of Sym(§) such that A < M, and describe this subgroup.

8.5.9 Let Q be infinite of cardinality ¢, and let n > 1 be an integer. Let II
be a partition of Q into subsets of size n, and define S} to be the
subgroup of S := Sym () consisting of all elements of S which act on
11 by permnuting the subsets in II. Show that M = Sym(S, ¢)Sqn is
a proper subgroup of S. [Hint: Show that M is the “almost stabilizer”
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of II in the sense that: z € M <= {A ¢ Il | A® ¢ TI} has

% cardinality < e.] (It has been proved by H.D. Macpherson that M is
1

a maximal subgroup of S; see Brazil et al. (1994).)

8.6 Notes

| » Exercise 8.1.8: See Karrass and Solitar (1956).

| o Exercises 8.2.3-5: See Rotman (1995) Theorem 7.7.

| ¢ Lemmas 8.3B and 8.3C: See Neumann (1975a) and (1976). See also Segal
(1974).

“ o Lemma 8.3D and Exercise 8.3.1: See Wiegold (1974).

o Exercise 8.3.2: See Neumann (1976).

i e Theorem 8.3A: See Wiegold (1974). Part (i) is due to D. Giorgetti;

see Neumann (1975a) where it is shown that every group satisfying a

nontrivial law lies in X

i @ Theorem 8.4A: First announced without proof in Semmes (1981). Re-
discovered and proved in Dixon et al. (1986). See also Evans (1986) and
(1987) and Shelah and Thomas (1989).

* Exercise 8.4.2: See Stoller (1963).

¢ Exercise 8.4.3: See de Bruijn (1957).

Sect. 8.5: Further papers relevant to Sect. 8.5 include: Shelah and Thomas

1 (1988) and (1989), MacPherson and Praeger (1990), and Baumgartner

I et al (1993).

i o Exercises 8.5.4-5: See Babai (1986) and Cameron et al. (1989) for the

precise bound.

Theorems 8.5A and 8.5B: See MacPherson and Neumann (1990).

* Example 8.5.1: See Ball (1966).

Exercise 8.5.7: The converse is proved in MacPherson and Neumann

(1990) Theorem 1.2.

1 o Exercise 8.5.9: See Ball (1966) and Brazil et al. (1994).
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Examples and Applications of
Infinite Permutation Groups

The object of this chapter is to give a selection of examples of infinite
permutation groups, and a few of the ways in which permuta’glon’ groups can
be used in a more general context. For example, we give a criterion of Serre
for a group to be free which leads to a classic theorem on free groups due to
J. Nielson and O. Schreier, and give a construction due to N. D. Gupta and
9. Sidki of an infinite p-group which is finitely generated. What makes these
constructions manageable is that the underlying set on which the groups act
have certain relational structures. The most symmetric of these structures
(the ones with the largest automorphism groups) are thfe hOI.nogene(?us
structures; of these the countable universal graph is an especially interesting
and well-studied example.

9.1 The Construction of a Finitely Generated Infinite
p-group

In 1902 W. Burnside proposed the following question. Suppose that e apd
n are fixed positive integers. Is it true that every group of expone.nt e which
can be generated by 7 elements is of finite order? If so, can this order be
bounded by a function of n and e? (Recall that a group G has exponent e
ifze =1foralz € G.) .

This problem has turned out to be very deep. Although a lot is now
known about finitely generated groups of finite exponent (now known as
Burnside groups), there are still very hard open questions.

Let F,, be the free group on n generators and let R, denote the nor-
mal subgroup of Fy, which is generated by the set {z° | x € F,}. Then
B(n,e) := Fu/Rn. is called the free n-generator Burnside group of ex-
ponent e. If G is any group of exponent e which can be generated by n
elements, then by general properties of free groups, there is a homomoF-
phism ¢ of F,, onto G, and evidently Rn,e < ker ¢. Thus G = F,,/ ker ¢ is
a homomorphic image of the free n-generator B(n,e).
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Burnside’s questions may then be refined to: Is B(n,e) finite (for speci-
fied n and e); and do the finite homomorphic images of B(n, e) have orders
bounded by a function of n and e? These are known as the Burnside
Problems: the General and Restricted Burnside Problems, respectively. Of
course, if there is a positive answer to the General Problem, then that
immediately gives a positive answer to the Restricted Problem.

It has been shown that B(n,e) is finite for some small values of e: for
e < 3 by Burnside in 1902, for e = 4 by Sanov in 1940 and for e = 6
by Hall in 1958. Then, in 1968, there appeared a long and intricate proof
by Novikov and Adian (1968) which showed that B(n,e) is infinite for
all n > 2, provided e is sufficiently large and odd (the result had been
announced nine years earlier). A less precise, but technically simpler proof
of this result was given by Ol’shanskii (1982). Since then some results
about the case where e is even have also been proved. However, there
are still many cases where the General Burnside Problem has not been
settled; for example, it is not known whether or not B(2,5) is finite. [See
Adian(1979)].

On the other hand, in 1956, P. Hall and G. Higman showed that
the answer to the Restricted Burnside Problem is always positive pro-
vided that it is positive whenever e is a prime power (actually their
proof required a property of finite simple groups which is a consequence
of the later classification of finite simple groups). A complete positive
solution of the Restricted Burnside Problem was finally obtained after
A1l Kostrikin settled the case of prime exponent in 1959, and Zel-
manov (1991a) and (1991b) settled the case of general prime power
exponent.

These results are all very deep. A simpler, but still interesting question,
is whether there exist infinite finitely generated groups in which each ele-
ment has p-power order for some fixed prime p, but where the orders of the
elements are not assumed to be bounded. Of course, the result of Novikov
and Adian shows that B(n, p) is an example of such a group for any suffi-
ciently large prime p. However, much more elementary examples exist. The
carliest example is due to Golod (1964), and a simple construction of a
2-group with this property was given by Grigorchuk (1980). The construc-
tion which we give here is due to Gupta and Sidki (1983) and applies to all
primes.

Our objective is to construct an infinite p-group which is generated by
two permutations of an appropriate set. We shall go through the con-
struction in detail for the case where p is an odd prime, and leave the
modifications necessary for p = 2 to the exercises.

Let p be a fixed odd prime, and let £ denote the set of all (finite) strings
of the symbols Z/pZ which we shall write {0, 1,...,p~1}. Thus, for p = 3,
typical strings might look like: 10220 or 000210222, as well as the empty
string of length 0. Writing 0" to denote the string consisting of r zeros
(r > 0), we define two permutations ¢ and z on ) as follows.

-
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(i) For any string of the form iw : (iw)* := (i + 1)w. In other words, if
the string starts with 4 followed by a substring w (possibly of length
0), then ¢ changes the first symbol to (i + 1) and leaves the rest of the
string unchanged. The empty string is left fixed by ¢.

(ii) For any string of the form 0"ijw with 4 #£0: (0Tijw)? = 07i(1 + jlw.
In other words, z changes the first symbol following the first nonzero
symbol, and leaves all other symbols unchanged; the empty string and
strings entirely of zeros or of zeros followed by one nonzero symbol are
left fixed by z.

Note that both ¢ and z leave the lengths of strings invariant, so all orbits
of (¢, z) are finite.

Theorem 9.1A. The group G = (t, z) is an infinite group in which each
element has order a power of p.

PROOF. We shall prove the result for the case where p is odd and leave the
modifications necessary for the case p = 2 as an exercise (Exercise 9.1.3).

First observe that it follows at once from the definitions that z and t each
have order p. Define § = {s5 ==t "2t" [ h=0,1,...,p ~ 1} € G, and
put H := (S). The subsets O := {kw | w € Q) (k=0,1,...,p— 1) are
H-invariant and form a partition of ; in particular, ¢ ¢ H and so H # G.
Since it is clear that H < G and that G = (H,t), we conclude that G/H
has order p.

A simple calculation shows that for any string kw € Q% we have:

(9.1) (kw)®" equals kw” if k = h and equals kwt ™" otherwise.

Thus the restriction of H to Qp contains the permutations Ow +— Ow® and
Ow — Owt, and so contains a copy of G. Since H < G, this implies that G
must be infinite.

We now turn to the proof that each element of G has p-power order. We
know that H = (S) <« G, G = (H,t), and that ¢ and each of the elements
in S has order p. Thus each z € G can be written in at least one way in

the form
(92) T = tusz‘] - ‘Sim

where m is chosen as small as possible and 0 < u < p. We shall proceed
by induction on m to prove that z is a p-element. Since ¢ has order p, z is
a p-element when m = 0. Thus suppose that m > 0, and that the result
is true for all elements z which can be expressed in the form (9.2) with a
product of fewer than m of the s;. We consider two cases.

First suppose that v = 0. In this case € H and so it leaves each
§; invariant. Moreover, (9.1) shows that for each string kw € §; we have
(kw)® = kw® where w has the form ts;, - 5, when n of the ip m the
product for z are equal to k. Thus, if the subscripts i, in (9.2) are not all
equal, then induction shows that, for each k, the restriction of = to O is

ittt
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a p-element, and so z is a p-element. On the other hand, if all 5, have the
same value, say ¢, then £ = s; and so z has order dividing p. This proves
the induction step in the case v = 0.

The other possibility is that 0 < u < p. In this case put y :=s;, - - - 84,,,-
Then !

P = (ty)P = P . t—u(;D—l)ytu(:D—l) oy = Uyt tQuyt—zu oy

since tp. = 1. Since p / u, the exponents u, 2u, ..., 0 which appear in the
expression above for z? correspond to a full set of residue classes modulo
p. Now

T, 4—=T __ 4T o 4~T 4T 4—T T -7
t ’yt =1 S“t t Smt Seet Simf} = 8484y """ Siyy

where the indices in the product on the right should be read modulo p.
Hence zP can be written as a product of pm terms of the form s; (0 <
1 < p). Since the exponents u, 2, . . ., 0 correspond to a full set of residu_e
classes modulo p, each s; occurs as a factor exactly m times. We now apply
(9.1) to see that for each k we have: (kw)® = kw" where w (depending
on k) is a product consisting of pm factors which are either powers of ¢ or
equal to z. Moreover, z occurs as a factor exactly m times and the total
power to which ¢ occursis v ;= m(1+2+4---+p—1) = m(p — 1)p/2. By
using identities of the form s;t" = t"s;4, (indices taken modulo p), we can
rewrite this product for w in the form w = tVs;; 85, - - - 55, Where t¥ =1
because p | v (this is where the fact that p is odd is used). Now the first
case of the proof of the induction step applies, and we can conclude that w
has p-power order. Since this is true for each k, we conclude that zP, and
hence z itself, is a p-element. This completes the proof of the induction
step in the second case, and the theorem is proved. O

FEzercises

9.1.1 Show that the orders of the elements in G are not bounded (so G is
not a homomorphic image of a Burnside group).

9.1.2 Show that G is residually finite.

9.1.3 The construction above does not work for p = 2 (why?). To obtain the
corresponding theorem for p = 2, take 2 as the set of all finite strings
over Z/4Z. Define t as above, but modify the definition of z as follows:
for any string of the form 0"4jw with 7 # 0 : (0"ijw)® := 07i(7 + j)w
if i =1 or 3, and (072jw)* = 0" 2jw.

9.2 Groups Acting on Trees
Recall that a ¢ree is a connected graph with no nontrivial circuits (see

S.ection 2.3). Alternatively, a graph 7 is a tree if for every pair a, 8 of ver-
tices there exists a unique simple path from « to § in 7 a finite sequence
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o= ap,a1,...,0 = 0 of distinct vertices such that each of the k consec-
utive pairs o, @41 of vertices are adjacent in 7. In the latter case we shall
write d(a, ) := k, and say that o and § have distance k in 7. It may be
immediately verified that d defines a metric on the set 2 of vertices of 7.
For subsets I" and A of Q and a point ¢, d(a, A) will denote the minimum
distance from « to A, and d(I", A) will denote the minimum distance from
a point in " and to a point in A.

If 7 is a finite tree then the automorphism group of 7 either fixes a vertex
or interchanges two adjacent vertices (see Exercise 9.2.4); the groups which
arise are not particularly interesting. We shall be considering infinite trees,
but often assume that the tree is locally finite, namely, that each vertex
has finite degree. An infinite, locally finite tree has countably many vertices
(see Exercise 2.3.1).

Ezercises

9.2.1 Show that if 7 is a tree with vertex set {2, then the group Aut(7) of
permutations of 2 which preserve the graph structure is also the set
of all permutations of €2 which preserve the distance d defined above.

9.2.2 Describe all trees with at most 5 vertices, and calculate the
automorphism group for each of these trees.

9.2.3 Define an relation on the vertives of atree 7 by a = § <= d(a, ()
is even. Show that this is an equivalence relation and that it is
invariant under every automorphism of the tree.

9.2.4 Let 7 be a finite tree with vertex set 2. Define the function f on the
vertices by f(a) = > 5. d(a, B). Show that f takes its minimum
value either at a unique vertex or at two adjacent vertices. Hence
prove that Aut(7) fixes a vertex or an edge. (Alternatively, this vertex
or edge is the “centre” of every longest path in the tree.)

9.2.5 Suppose that 7 is a tree with an automorphism z of order 2. Show
that z either fixes a vertex or interchanges two adjacent vertices.
[Hint: If @ # &, then z maps the unique path from a to a® onto
itself.]

If F'is a free group on a set R then the Cayley graph T := Cayley(F, R) is
a tree (see Exercise 2.3.11). Each vertex has degree IR UR? |, and so if |R]
(the rank of G) is finite, then 7 locally finite. The action of F' on the vertex
set ' of 7 by right multiplication preserves the adjacency property, and so
we can embed F' into Aut(7) (see Exercise 2.3.10). It is easily seen, that
in this action only the trivial element fixes a vertex or reverses an edge
of T. Our first result, due to J.P. Serre, shows that this latter property
characterizes free groups.

To clarify the statement of the theorem we shall say that a group G
acting as a group of automorphisms on a tree 7 acts freely if the only
element of G to fix a vertex or reverse an edge of 7 is the trivial element.
Exercise 9.2.5 shows that if a group acts freely on a tree then the group
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cannot contain an element of order 2. The following theorem gives a much
stronger statement. Serre’s original proof shows that the conclusion remains
true when the hypothesis of “locally finite” is dropped.

Theorem 9.2A. Any group which acts freely on a locally finite tree is a
free group.

Proor. Let G be a group acting freely on a locally finite tree 7, and let
§2 be the set of vertices of 7. Fix a vertex w € Q. Since 7 is locally finite,
there are only finitely many vertices at any given distance from w. Thus
there exists an enumeration wy = w, wy, ws, ... of Q such that d(w,wy) <
d(w, wiy1) for all k. We define I' C 2 recursively by the conditions: w =
wo € I'; and, for each § > 1, wy € T if and only if wy is adjacent to one
of the points w; € T" with j < k, but does not lie in the G-orbit of any of
these points. In particular, the subgraph induced on I is connected, and so
is a subtree of 7.

The construction of I' shows that I' does not contain more than one
point from each G-orbit in . We claim, in fact, that T' contains exactly
one vertex from each G-orbit, and that each G-orbit A is represented by a
point § € I satisfying d(w, §) = d(w, A). We shall prove this by induction
on m = d(w,A). The claim is true for m = 0 since then A = w% and
w = w, € I'. Therefore suppose that A is an orbit with m = dlw,A) >0
and that the claim holds for all orbits with smaller distance to w. Choose
a € A with d(w, @) = m. Then « is adjacent to some vertex 8, say, with
d(w, B) = m — 1. By induction, there exists z € G such that 4% € I" and
d(w, 5*) < d(w, B). Then o® is adjacent to 5% and

m = dw,A) < d(w,a®) < d(w, %) +1 < dw,B) +1=m.

Hence d(w, a®) = d(w,A). Suppose a® = wy, in the enumeration of .
Since o® is adjacent to 8% and §% € T, the construction of I" shows that
wg € T'N A unless wy € ' A for some j < k. In the latter case
dw,A) £ d(w,w;) < d(w,wy) by the enumeration of . Thus in either
case I' contains a representative of A at minimum distance from w. This
proves the induction step, and the claim is proved.

We next note that I'* NIV = () whenever z,y € G are distinct. Indeed, if
I#NTY 2 B, then there exist 7,8 € T such that v* = 6v. Since I contains
only one point from each orbit, this shows that § = ~, and so zy~* € Gj.
But G acts freely on 7', so must have z = y. Thus the sets I'* (z € G) are
pairwise disjoint. Since I" is a set of representatives of G-orbits on €2, this
shows that the family of sets I'* (z € G) is a partition of Q.

Now define T := {t € G | d(I',T*) = 1} = TL. Since G acts freely, G
contains no elements of order two, so we can write 7' = RU R~} as a union
of disjoint sets. We shall show that R is a set of free generators for G. To
do this we must show that R generates G, and that there are no nontrivial
relations between the elements of R.



E—

e—

o

20U U Lxinpdes aod Appheations ol fufinte Perinutation Groups

To show that R generates G we proceed to show that each z € G lies
in (T') = (R) by induction on m := d(I',T*). If m = 0, then T N T% # {),
and so £ = 1 from above. On the other hand, if m > 0, then for some
o €  we have d(I',a) = 1 and d(a,I"®) = m — 1. Then for some ¢t € T
we have a € It and d(I", ") = d(I'*,I*) < m — 1. Hence zt~* € (T)
by induction, and so we conclude that z € (T') as required.

Finally we show that the elements in R satisfy no nontrivial relations.
Otherwise, for some n > 2, there would be a product tyts - - -t, = 1 with
each t, € T and such that fytpy1 # 1 for 1 < £ < n and t,t; # L
Put @ == tg...t, (1 < k < n) and z,41 = 1. Then ("%, T%+1) =
d(I't*,T) = 1 for each k, and so there is a path in 7 of the form:

Lot En o= ’
W "_w,Hn;UJ )Hn——hw I’Hn_g,”.,]:[l’w]

where Tl is a list of points such that I, w®* is a path in the subtree I'**
from a vertex in this subtree adjacent to w®+! to the vertex w® . Since
ZTpe1 = 21 = 1, this gives a circuit in 7, which is impossible because 7 is
a tree. Hence there are no nontrivial relations between the elements of R,
and so we have proved that R is a set of free generators for G. This proves

the theorem. O

Corollary 9.2A. [f F is a free group of finile rank, then every subgroup
of F is also free (possibly of infinite rank).

PRrRoOOF. Suppose that R is a sel of free generators for 7. As we noted
above, Cayley(F, R) is a locally finite tree on which &' (and hence every
subgroup of ) acts [reely. Now the theorem applies. O

Again the result is true without the hypothesis of finite rank. Moreover,
it can be shown that if F is {ree of rank », then any subgroup of index h
in £ has rank A(r - 1) + 1 [sce Serre (1980)]. We use this fact in the next
sectiol.

We now consider move geueral actions ol groups on trees. To do this we
introduce the concept of a line iu a graph. The standard line is the tree
with vertex set Z such that ¢, j € Z are adjacent if and only if |1 — j| = 1.
Similarly the standard half~line is the tree with the same adjacency rule on
the vertex set N. More generally, a line (respectively, half-line) in a graph
G is a subset A of vertices of G such that the subgraph induced on A is
isoinorphic to the standard line (half-line).

A translation of a graph G along a line A is an automorphism z of G which
fixes A setwise. In the case that G is a tree and d is the corresponding metric,
then m := d(a, o) is constant for o € A (see Exercise 9.2.7 below). In
this case we say that 2 is a translation by m along A, and z is a nontrivial
translation if m > 0.

We shall say that a vertex v iu a tree lies between vertices o and [ if v
lies ou the siuple path from o to 3.

Ezxercises
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this contradicts the hypothesis that o lies between o and §%. Bence we
conclude that the «, are all distinct as required, and (i) is proved.

(i1) Suppose that z is a translation by m > 0 along a line A and also a
translation along a different line A’. Since A and A’ are orbits for z, they
are necessarily disjoint, so d(A, A’) > 0. Choose o € A and § € A’ such
that d(a, 8) = d(A,A’). Except for a and §, the vertices on the simple
path from 3 to o must all lie outside of A U A’. The simple path from o to
o lies in A (see Exercise 9.2.6), and so there is a simple path from g to a®
passing through o on which 3 is the only vertex in A’. However, a similar
argument shows that there is a simple path from 8 to a® passing through
3% on which the only vertex in A is @®. Since these two paths must be the
same, we must have o = a® contrary to the hypothesis that m > 0. This
proves (ii). O

This lemma forms the basis of the following classification of automor-
phisms of trees due to Tits (1970).

Theorem 9.2B. Let T be a tree. Then each automorphism x of T satisfies
ezxactly one of the following conditions:
(i) T := fix(z) # 0 and the induced subgraph on T is a subtree;
(i) z interchanges a pair of adjacent vertices in 7 ;
(iii) z is a translation by m along some line A with m > 0, and d(a, a®) >
m for all o & A.

PRrROOF. It is evident that if (iii) holds then neither (i) nor (ii) can hold.
On the other hand, suppose that z fixes a vertex -, and that o and g are
adjacent vertices in 7. Using Exercise 9.2.8, we may assume, without loss
in generality, that A3 lies between « and v, and hence d(a, v) = 1+ d(5, 7).
Since x preserves the metric d, this shows that = cannot interchange o and
B. Hence if (i) holds, then (ii) does not. This shows that at most one of
the conditions (i)—(iii) can hold for each z € Aut(7). We now show that
at least one will hold.

First note that, if & and 8 are two fixed points in 7, then the simple
path from & to § is mapped under z again onto a simple path from « to
(. By the uniqueness of this path, each of the points on the path must be
fixed by z. This shows that if fix(z) # 0, then the subgraph induced on
the fixed points is connected and hence a subtree (and so (i) holds).

Now assume that z € Aut(7) has no fixed points and does not inter-
change any pair of adjacent vertices. Then neither (i) nor (ii) holds; we
must prove that (iii) holds. Choose a vertex & such that m = d(a, o®) is
as small as possible, and let @ = aq, @1, ..., am = @® be the simple path
from o to a® in 7. Since z has no fixed point, m > 0, and so we can define
8 := a1 # a. Since d(3, %) > m by the choice of &, % cannot lie between
B and a®. On the other hand, d(a®, %) = d(a, 8) = 1, so Exercise 9.2.8
shows that o” lies between § and *. Now Lemma 9.2A applies and we

conclude that x s a translation by m along some line A containing o and
B. Finally, by the choice of m, d(v.v¥) > m for all vertices v: so it remains
to show that d(vy,~*) = m implies v € A. However. if d(y,v*) = m, then
the argument above with «y in place of « shows that z is a translation along
some line A’ containing . Now Lemma 9.2A (ii) shows that A’ = A, and
so v € A as required. This completes the proof of the theorem. O

Ezercises

9.2.12 Give an example of a translation z 7 1 of a tree which leaves more
than one line invariant.

9.2.13 Suppose that z and y are automorphisms of a tree 7, and that each
interchanges a pair of adjacent vertices. If these pairs are disjoint,
show that zy is a translation.

The set of vertices of degree 1, the leaves, of a tree is nvariant under
the automorphism group of the tree. An infinite tree may also contain
lines (or half-lines) which do not have terminal vertices. In a certain sense,
the extremites of lines of a trec also constitute an invariant set. Define
an equivalence relation on hall-lines by taking hall-lines A and Ay to be
equivalent if the intersection A} M Ag is also a half-line. So half-lines are
equivalent il they are eventually the sanie sequence of vertices. An end is an
equivalence class of half-lines under this relation. The full automorphism
group of 7 induces a permutation action on the set A(7) of ends of 7.

The group induced on the ends of 7 can have interesting propertics. For
each & > 2, therc is an essentially unique tree 7, which has a countable
vertex set and such that every vertex has degree & (Exercise 9.2.14). 73
is the countable k-reqular tree. (The tree 73 was introdnced in Example
1.5.4.) The set of ends Ay := A(7,) is uncountable and the group induced
on Ay by Gy = Aut(7;) is faithful and 3-transitive but not 4-transitive
(Exercises 9.2.18 and 9.2.19). It can be shown that, if & # m then G is
not isomorphic to G, [see Znoiko (1977) and Maller (1991)].

Ezercises
Let &£ > 2.

9.2.14 Show that there exists a countably infinite tree 7 in which each
vertex has degree %, and that any two such trees are isomorphic.

9.2.15 If U and V are finite subtrees of 7; and ¢ : &/ — V is an iso-
morphism, show that there exists ¢ € Aut(7;) such that ¢ is the
restriction of 9 to I{. In particular, Aut(7;) acts transitively on both
the vertex set and the set of edges of 7.

9.2.16 Show that Aut(7x) acts imprimitively on the vertex set  with two
blocks 2; and 5, say, where @ and S lie in the same block if and
only if d(a, ) is even; and that Aut(7){q,; acts primitively on each
of the blocks.
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9.2.17 Suppose that B, By are two distinct ends of a tree 7. Show that
there is a unique line A in 7 such that the two half-lines derived
from splitting A at any vertex lie one in By and the other in Bs.
(Thus any two distinct ends are “joined” by a line of 7))

9.2.18 Suppose that 7 is a tree in which every vertex has degree at least
3. Show that the set A(7) of ends is uncountable.

9.2.19 Show that the automorphism group Gy, of the k-regular graph 7
acts faithfully on the set Ay of ends and is 3-transitive but not
4-transitive.

9.2.20 Describe the orbits of Gy on the set of 4-sets from Ay.

9.3 Highly Transitive Free Subgroups of the
Symmetric Group

A finitely generated group has at most countably infinite order. Hence a
transitive, finitely generated permutation group has either finite or count-
ably infinite degree. We might wonder whether it is possible for a finitely
generated group of countable degree to be highly transitive. In fact, it turns
out that, in a suitable sense, almost all finitely generated groups of count-
able degree are both highly transitive and free [Dixon (1990)]. We shall not
prove that here, but shall give a construction due to McDonough (1977) of
a specific example of such a group.

ExaMPLE 9.3.1. We shall first construct a group G = (z,y) < Sym(Z)
which is both highly transitive and free of rank 2. We shall then show how
to derive further examples of highly transitive free groups of other ranks.

Let z be defined by o® := a+1 for all @ € Z, and let y be an infinite cycle
in Sym(Z) with support N. We shall prove that under these conditions: (i)
G is always highly transitive; and (ii) for a suitable choice of y, G is free of
rank 2. )

To prove (i) we first note that z™yz™™ is a cycle with support £, :=
{a € Z | & > —n}. Then a simple induction on n shows that G, :=
(y,zyz™t, ..., z"yz~") is (n + 1)-transitive on Q, forn = 0,1, .. .. Since
each finite subset of Z is contained in all but a finite number of the €,
with n > 0, and G,, < G, it follows that G is k-transitive for each k > 1.
Hence G is highly transitive. This proves (i).

To prove (ii) we have to construct y so that = and y satisfy no nontrivial
relation. Let R denote the set of all 2k-tuples

(93) (r17517"'7rk55k>

of nonzero integers 7, s; with & > 1. Then = and y are free generators for
G provided each of the words w(ry, s1, ..., g, Sk) 1= xTySt . gTRySE g
not equal to 1 (every relation is reducible to one of this type). Suppose that

sk e ke il
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(r1,81,-..,7k, 8x) € R, and put M := 3 |s;| +1. For each o € N and any
integer r # 0, we define A(a, r, M) to be the list o, @ + M, ..., a + rM if
r>0,andtobe a+ |r|M,a+ (Jr| - 1)M,...,a if r < 0. Then for any

ai € N we define recursively a; 11 := a;+|r;| M+s; (i = 1, ..., k). By the
choice of M, a1 < ap < ... < agy1, and Alai, 7, M) (1 = 1,...,k) are
disjoint lists of integers > «;. If each of the lists A(a;, ri, M) G =1,...,k)

appears as consecutive elements in the cycle y, then y™z® maps «; onto
@11, and so w(ry, s1,..., 7k, Sk) Maps oy onto ag41 # ai. In particular,
for any such cycle, the word w(ry, s1,..., 7%, sk) # 1.

It is now clear how to construct the cycle y so that z and y satisfy no
nontrivial relation. The set R of elements of the form (9.3) is countable,
and so we can enumerate these elements. Then, successively, for each ele-
ment of R we construct lists A(a, r, M) as above, such that all of the lists
constructed are mutually disjoint, and so that infinitely many points in N
do not occur in any of the lists. Finally we concatenate the lists A(a, 7, M)
on the right, and list the remaining points from N on the left, to obtain
an infinite cycle y with support N. From what we have proved above, each
word w(ry, s1,...,7%, Sk) # 1, and so z and y are free generators for G.
This proves (ii).

This gives a construction of a highly transitive free group of rank 2. To
construct examples of other highly transitive free groups we can proceed
as follows. First note that any nontrivial normal subgroup of G is also
highly transitive (see Corollary 7.2A). Now by the universal property for
free groups, there exists a homomorphism of the free group G onto every
group which can be generated by at most two elements. Hence, mapping
G (for example) onto a cyclic group shows that G has nontrivial normal
subgroups of index h for each finite & and also of infinite index. It is known
that any subgroup of (finite or infinite) index h in a free group of rank
7 is free of rank h(r — 1) + 1 (see Rotman (1995) Theorem 12.25). Since
G is free of rank 2, this shows that G contains a highly transitive normal
subgroup of rank h + 1 for each finite A > 1, and also a highly transitive
normal subgroup of countably infinite rank.

The exercises that follow give an alternative way to construct highly
transitive free groups of countably infinite rank.

FEzxercises

9.3.1 Suppose G < Sym(2) and N is a normal subgroup of G such that
G/N is a free group of countably infinite rank. If N is highly transi-
tive, show that there exists a highly transitive subgroup H < G such
that G = HN and H N N = 1. Note that, since H = G/N, H is
also free of countable rank. [Hint: Let Nz;(1 = 1,2,...) be a set of
free generators for G/N. Show that you can choose u; € N such that
H = (uz; | ©=1,2,...) is highly transitive.]
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9.3.2 Take G := K - FSym(N) where K < Sym(N) is a regular repre-
sentation of the free group of countable rank. The previous exercise
shows that G contains & subgroup H which is highly transitive and
free of countable rank. Show that each nontrivial element of A has
only a finite number of fixed points.

9.4 Homogeneous Groups

A group G acting in a set 2 induces an action on the set Q¥ of k element
subsets of , for all k& > 1. The group G is k-homogeneous if its action
on Q*} is transitive. An infinite group is highly homogeneous if it is k-
homogeneous for all integers k > 1. Clearly any k-transitive group is k-
homogeneous. Also if G is k-homogeneous of finite degree n then G is
also (n — k)-homogeneous. These ideas were introduced in Sect. 2.1; we
look at them more closely here. In the finite case, with a small number of
well described exceptions, a k-homogeneous group is actually k-transitive
(see Theorem 9.4B). In the infinite case, the property of k-homogeneity is
distinct from k-transitivity, and interesting new examples arise.

ExAMPLE 9.4.1. Letz:=(1234567)and vy := (235)(476). Note that
ylzy = 22 Let G = (z,y) < S¢. Then |G| = 21 so G is clearly not 2-
transitive. However, G is 2-homogeneous. To see this note first that for any
pair of distinct points «, 8 there exists z € G such that {a, 5} = {1,~}
for some . If v € {2,3,5} then {a, B}*¥" = {1,2} for some %; otherwise,
{a, B}?¥'® = {1,2} for some j. Thus G has a single orbit on 2-sets. For the
general situation, see Exercise 2.1.11.

ExaMPLE 9.4.2. Let G = Aut(Q, <) be the group of all order preserving
automorphisms of the rationals. Then G is highly homogeneous but is not
2-transitive (see Exercise 2.2.8). The group H of all permutations that pre-
serve or reverse the order on Q contains G, so is again highly homogeneous;
it is 2-transitive but not 3-transitive on @ (Exercise 7.1.2). The group H
can be described as the group of permutations preserving a ternary between
relation B on Q where B is defined by

(a,8,7) € B +— f<a<yory<a<f

ExaMPLE 9.4.3. Let Q be the points on the unit circle, and let G be
the group of all permutations of {2 that preserve the separation relation S
where (o, 8,7,6) € S when a shortest path from « to 8 along the circle
runs through exactly one of v and §. The group preserving this relation
is highly homogeneous and 3-transitive but not 4-transtive. We can make
this an example of countable degree by replacing 2 by the set of all roots
of unity.

9.4. Homogeneous Groups 287
Ezercises

9.4.1 Verify the assertions of Examples 9.4.2 and 9.4.3.

9.4.2 Let Q be the set of complex roots of unity and S be the separation
relation. Fix one point a and define a relation R on Q \ {a} by
B,7,6) € R <= (o, 8,7,6) € S. Show that Q \ {a} with this
relation is isomorphic to @@ with the between relation.

9.4.3 Let G = Aut(Q, <) be the full automorphism group of a totally
ordered set (2, <). If G is 2-homogeneous, show that Q is infinite
and G is highly homogeneous.

9.4.4 Under the hypotheses of Exercise 9.4.4, show that (£, <) is dense.

9.4.5 Show that the group PGL,(8) in its action on the projective line
PG1(8) is k-homogeneous for each k = 1,.. ., 9.

Taking a more general setting for the moment, we consider the action
of G on k-sets. Denote by fr = fx(G) the number of orbits of G on §{¥},
The first theorem establishes the remarkable fact that the series fi, fo, ...
is monotonic (up to |©2| /2 in the finite case). Since G is k-homogeneous if
and only if f = 1, it follows that a k-homogeneous group is also (k — 1)-
homogeneous. In particular, a 2-homogenous group is always transitive. The
proof we give comes from Cameron (1976) and is based on the following
lemma.

Let I' and A be nonempty sets and suppose that A € I' x A has the
property:

(9.4) forall 6 € A, theset {y € I' | (,6) € A} is finite.

Let Fun(l', @) and Fun(A, Q) denote the vector spaces over Q consisting
of all functions from I" and A, respectively, to Q. The proof of Theorem
9.4A makes use of the Q-linear transformation § : Fun(I', Q) — Fun(A, Q)
given by

6 = 3 )

(7,6)eA

where f € Fun(T, Q), f% € Fun(A,Q), § € A and v € I.

Lemma 9.4A. Let G be a group which acts on both T and A and leaves
A invariant. If the mapping 0 is injective then the number of orbits of G
on I' is no greater than the number of orbits of G on A.

Proor. Let V C Fun(I',Q) and W C Fun(A, Q) denote the subspaces
of functions constant on the orbits of G. Another way to say this is that
f € Vif and only if f(y) = f(+®) for all z € G and similarly for W.
Thus the dimensions of V' and W are the numbers of orbits of G on the
sets ' and A respectively. Now since A is G-invariant, the transformation
¢ maps V' into W. Hence, if 6 is injective dim (V) < dim(W) and the result
follows. 0

T TR IR

o



]

“

mmy

e wf

[o—

- exannpres ancd Applications of Infinite Permutation Groups

Theorem 9.4A. Let G be a group acting on a set 1.

(1) If k and m are integers such that 0 Ssm < kandk+m < |Qf then
G has at least as many orbits on U} as it has on Q{™}

(ii) If G is k-homogeneous and 0 < 2k < | +1 then G is m-homogeneous
for all m with 0 < m < k. In particular, G 1s transitive.

PROOF. (i) We shall apply Lemma 9.4A to T = Q{™} and A = Q¥ and
A= {(T, S)| T eqm™ el andT C S}.

Clearly, the property (9.4) defined above holds for A, so (i) follows from
Lemma, 9.4A provided we can show that the corresponding linear transfor-
mation @ has kernel 0. Equivalently, we must show that if f is a function
from Q{™} into Q, then the condition:

(9.5) 3

TEQ{""}, TCS

f(T) =0 foral§c Qi*

implies that f = 0.
We prove this implication as follows. Suppose that condition (9.5) holds.
For any finite subsets R, S of Q with B C S we define

9(R,S) = >, f@).

TeQlm) | RCTCS

Observe that g has the following two properties:

(a) g(#h,S) = 0 for all S with |[S] > k. Indeed this is true when |S| = k by

(9.5), and the general case, when |S| = n, say, follows from the easy
identity:

(Hows= > o1

TCS, |T|=k

(b) for any a € Q, g(R, S) =g(R\{a},S) ~g(R\ {a}, S\ {a}) since the
left hand side is a sum of f(7") over just those m-sets 7" which contain
R\ {a} and are not disjoint from {a}.

Now a simple induction on |R| using properties (a) and (b) shows that
9(R, S) = 0 whenever R C S and |S \ R| > k. In particular, if T € Q{m}
then for any S € Q{**™} such that T C S, we have f(T) =g(T,S) =0.
Thus f = 0 and (i) is proved.

(ii) This follows immediately from (i) and the fact that a 1-homogeneous
group is transitive. O

FEzrercises

9.4.6 Suppose that G acts k-homogeneously on Q and that 1 < m < k
with & +m < [©2]. Let I' and A be subsets of Q of sizes k and m
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respectively. Show that Giry has at least as many orbits on I' as
G(ay has on A.

9.4.7 Under the hypotheses of the previous exercise, show that if m > 2
and Ga} acts trivially on A then G ry also acts trivially on I,

In the- case of finite groups, there is a close relationship between multi-
ply homogeneous groups and multiply transitive groups, as the following
theorem [due to Livingstone and Wagner(1965) and Kantor (1972)] shows.

Theorem 9.4B. Suppose that the group G is k-homogeneous on a finite
set Q where 2 < k < |Q|/2. Then G is (k — 1)-transitive and, with the
following exceptions, G is k-transitve:

(i) k=2, ASL1(q) < G < A¥XL1(¢), g =3 (mod 4);
(i) k=3, PSLa(q) < G < PXIL1(q), ¢ =3 (mod 4);
(i) k = 3, G = AGL,(8), ATL1(8), AT Ly (3

)

8), ATL1(32);
(iv) k = 4, G = PGLy(8), PT'Ly(8), PT'Ly(32).

By contrast, in the infinite case, there are groups that are highly ho-
mogeneous but are not 2-transitive (Exercises 2.2.8 and 7.1.2). The highly
homogeneous groups which are not highly transitive have been classified
by Cameron (1976) as follows (compare with Examples 9.4.2 and 9.4.3).

Theorem 9.4C. Suppose that the group G has a highly homogeneous ac-
tion on a set Q and that, for some k, the group G is k-transitive but not
k + 1-transitive. Then k < 3 and there is a relation p on  which is either
a linear or a circular order such that every element of G either preserves
or reverses p.

We will not give proofs of these last two theorems, but will instead
prove a theorem that is a special case of each. The result is due to J.P.J.
MecDermott.

Theorem 9.4D. Let G be a 8-homogeneous group acting on a set Q with
|2| > 5. Then, either G is 2-transitive or § is infinite and there exists a
total order < on Q such that G < Aut(Q, <).

PROOF. Theorem 9.4A shows that G is 2-homogeneous. Assume that G is
not 2-transitive. Then G has exactly three orbitals: the diagonal consisting
of all pairs (o, &) with a € Q and two paired orbitals I' and A where, for
distinct points o, 8 €  one of the pairs (a, 8), (8, ) lies in I' and the
other lies in A. Since || > 4, there exist distinct points ag, Gy and vy in Q
such that (o, fy) and (ag, Yo) lie in the same orbital, say A. Interchanging
Bo and 7y if necessary, we may also assume that (g, 7o) € A.

We now define the relation < on Q@ by ¢ < f <= (e,8) € A (and
a<f = a< fora=/0). The relation < is clearly preserved by G
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and we claim that it is a total ordering on Q. It is clear that we never have
a < a so < is irreflexive. As noted above, if a, 8 €  are distinct then
exactly one of (e, £), (0, ) lies in A, hence either « < B or § < o and
not both. It remains to show that < is transitive.

Let «, B, be distinct points of  with @ < [ and 8 < ~. Then, by 3-
homogeneity, there is an element = € G such that {e, 8, v}® = {ao, Bo, 10}
Also by the choice of ag, Gy and ¢ we have ap < Bo, So < 7o and g < 7.
Since G preserves the relation <, we have o® = «ap, % = By and ¥* = 7o.
But then a < 7 since a9 < 79. Thus < is transitive and so < is a total
order as asserted.

Finally, a finite total order has a trivial automorphism group (why?) and
so {2 is infinite. This completes the proof of the theorem. O

Theorem 9.4A shows that every 2-homogeneous group is transitive, and
Theorem 9.4B (i) lists the only finite 2-homogeneous groups which are not
2-transitive (they are all of odd order by Exercise 2.2.22 and so solvable).
On the other hand, Theorem 9.4D shows us that every finite 3-homogeneous
group is 2-transitive. Thus the characterization given in Theorem 9.4B (ii)-
(iv) of finite k-homogeneous groups which are not k-transitive (k > 3) could
be deduced from the list of 2-transitive groups of Sect. 7.7. Note, however,
that Theorem 9.4B predates the classification of finite simple groups, so
the original proof of this theorem did not follow these lines.

9.5 Automorphisms of Relational Structures

Recall that an n-ary relation (n > 0) on a set ) is simply a subset of the
Cartesian product Q™ = Q2 x -+ x Q. We commonly refer to 1-ary, 2-ary
and 3-ary relations as unary, binary and ternary relations, respectively. A
relational structure is simply a set {2 together with a family of relations on
Q. This terminology was introduced in Sect. 2.4. In this section we give a
construction which uses a class of finite relational structures (of a particular
sort) to construct a countable relational structure with a large, and usually
interesting, automorphism group.

In order to compare relational structures we introduce the “type” of a
structure. Let A be a (possibly infinite) set, and associate to each A € A a
nonnegative integer ny. Then a relational structure of type (nx)rea is a set
2 together with an indexed family R = (px)rca where py is an ny-relation
on §2. We denote the relational structure by (£2; R) or (©2; (pa)aca). We
shall call this structure finite or countable when §) is, respectively, finite or
countably infinite.

ExAMPLE 9.5.1. A digraph can be represented as a relational structure of
type (2). We take 2 as the set of vertices and |A| = 1, and the set of edges
is the unique relation p C Q2.
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EXAMPLE 9.5.2. A partially order set (€, <) can also be represented as
a relational structure of type (2). In this case the relation p = {(a, f) €
02| a<p}

EXAMPLE 9.5.3. A ring (R, +,-) with unity 1 can be represented as a
relational structure of type (1, 3, 3). We take § = R and the three relations:
p1 = {1} € O py = {(a,b,¢c) € R* | a+b=c}and ps = {(a,;b,¢) €
R3 | ab = c}.

Of course, in the last two examples, only part of the algebraic structure
is reflected in terms of the relational structure. Further axioms are needed
to ensure that we have a partial ordering or a ring.

ExXAMPLE 9.5.4. If S = (Q;R) is any relational structure and A is an
subset of §, then we have the substructure U = (A; Ra) of the same type
where R4 is defined by restriction to A. Specifically, if R = (pa}aea, then
Ra = {p))ren where p := py N A™. Note that, in Example 9.5.3 above,
the substructures are not necessarily subrings.

Now suppose that & = (Q; (pa)rea) and &' = (5 (p))ren) are rela-
tional structures of the same type. Then an embedding ¢ : & — &' is an
injective mapping ¢ : § — ' which “preserves” the relations; specifically,
such that for each A € A:

(al, ey aﬂ,,\) S P — (d)(al): LI 7¢(a71,\)) € Pi\

The image of the embedding is the substructure of S" defined on the set
$(Q). A bijective embedding is an isomorphism, and in this case it easily
verified that the inverse mapping ¢~ : Q' — 2 defines an isomorphism
from S’ to S. As usual, when S = &', these isomorphisms are call auto-
morphisms of S, and the set of all automorphisms forms a group Aut(S)
under composition.

Exercise

9.5.1 Consider the examples above of partially ordered sets and rings with
unity which are represented as relational structures. Suppose that ¢ is
an isomorphism between two relational structures of type (2). If one
of these structures is a partially ordered set, show that the relation for
the other is also a partial ordering, and that ¢ is an order-preserving
map between the sets. State and prove a similar result for rings with
unity.

We are interested in relational structures S for which Aut(S) is large; in
other words, where S has a high degree of symmetry. A relational structure
S is called homogeneous if for each embedding ¢ of a finite substructure U
of S into S there exists 1) € Aut(S) such that ¢ equals the restriction ¥y

ne
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of 4 o U In other words, any embedding of a finite substructure of § into
S can be extended to an automorphism of S. The term “homogeneous”
comes from model theory in logic. It has no relation to its use where we
refer to “k-homogeneous” and “highly-homogeneous” permutation groups.
Fortunately, the two uses do not often conflict, but you should be on your
guard, as in the next example.

EXAMPLE 9.5.5. The relational structure S = (Q, <) is homogeneous.
Indeed, a finite substructure is essentially an ordered set of rationals
T < 72 < ... < 7y for some k. So an embedding of this finite sub-
structure is a mapping ¢ : 7, — s; where the 8; are rationals such that
S1 < 82 < ... < sg We can extend ¢ to an order preserving permuta-
tion of Q by mapping the interval (rs,7541) to the interval (84, 8541) by
a linear function, say, and mapping (=00,71) to (—o0, 51) and (rk, 00) to
(8k, c0) by translations. Since every embedding of a finite substructure can
be extended to an automorphism, the relational structure is homogeneous.
(Aut(Q, <) is also highly homogeneous in the sense of Sect. 2.1 and 9.4).

We shall give a construction and further examples of countable homoge-
neous relational structures with interesting automorphism groups below,
but first we prove a simple criterion for recognizing when a countable
relational structure is homogeneous.

Let S and 7 be two relational structures of the same type. We shall say
that the one-point eztension property holds for S into 7 when:

(IPX) if U C V are finite substructures of S where V contains one more

point than U/ does, then each embedding of U/ into 7 can be extended
to an embedding of V into 7.

We now have the following useful result.
Theorem 9.5A. Let S and S’ be two countable relational structures of
the same type, and suppose.that (1PX) holds for S into S' and also holds
for &' into S. Then, for each embedding ¢ of o finite substructure U of S

into §', there exists an isomorphism Y : S — S such that the restriction
Yu = ¢. In particular (take U = 0),S is isomorphic to S'.

We get an immediate corollary (take S = &),

Corollary 9.5A. IfS is a countable relational structure and (1PX) holds
for S into itself then S is a homogeneous relational structure.

FErercise

9.5.2 If S is any homogeneous relational structure, show that (1PX) holds
for S into itself.
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Proor orF THEOREM 9.5A. Write S = (&, (pA)A.e,\) and §" =
(V, (P\)aea). By hypothesis, each of these structures is /countable'z; let
a; (1 € N) and o (: € N) be enumerations of 0 .and ), respectlvgly.
The construction of the isomorphism ¢ will be carried out by extending
the definition of ¢ one point at a time using (1PX). However the construc;
tion is a little complicated because we need to use a “back and fort‘h
argument to ensure that finally every point of S’ is an image of some point
fS.

° {ife proceed recursively to define two chains of finite substructures:

UpClUy CUsC...inS and Uy CU CUyC ... inS
and embeddings:
br Uy — S and ¢} U, — S fork=0,1,...
These will satisfy the following conditions:

i = U and = ¢;
(53 ZZ is the imaq;‘oe of ‘:Z)k and ¢y o ¢} is the identity on U (.jc > 0); '
(iii) Uy and U, each contain one more poin’F than Uy, and U;_;, ¢x is an
extension of ¢,_1, and ¢} is an extension of ¢}, (k > }), /
(iv) The points ag, ..., a, all lie in Us,,, and the points af, ..., al, all
lie in U1 (K = 2m or 2m + 1).

The construction proceeds as follows. For k = 0 W(? take Up = U and
take U as the image of ¢o = ¢. Then (i), (ii) and (iv) are.samsﬁed for
k = 0. Now suppose that £ > 0 and that (ii)-(iv) are satisfied for all
smaller values of the index. o

If K = 2m is even, then we go “forth”. Define Uy by adjoining «; to
Ur_1 where ¢; is the point of smallest index in 2 which dogs not alregdy
lie in Up_1. It follows from (iv) (for & = 2m — 2), th?.t i > m. Slnc?
(1PX) holds for S into &, there exists a one-point ext/ensmn ok : Z/{;‘C )
of ¢pp_1 : Ux_1 — &’. Denote the image of ¢y ‘by U,. Thgn ¢k gives an
isomorphism of Uy onto U;. Let ¢} denote the inverse. It is now easy to
check that (ii)—(iv) hold for k = 2m. ) .

On the other hand, if kK = 2m + 1 is odd, then we go “l?ack .'In t}’us case
define U}, by adjoining to Uf,_, the point o of smallest index in Q' which
is not in U}, . Then proceed analogously to the case Wl.’leI‘GjC is even, but
with the roles of S and &’ reversed. Once again properties (ii)—(iv) can be
proved to hold. A

This describes the construction. Having made the cogstructlon we define
Y : S — & by putting ¥(a) = ¢r(a) whenever qbk(a.)..ls\ defined. The fac.t
that ¢ is an extension of ¢; whenever k > j (see (iii)), shows that this
definition is consistent, and (iv) shows that 1 is defined for all & € Q. N(.)W
(iv) also shows that every finite subset of 2 is contained ‘in all but a ﬁnlt?
numbper of Uy. In particular, for all &, 8 € Q the condition ¥(a) = L/)(@
implies that ¢x(a) = ¢x(F) for some k > 0, and so @ = fB; thus % is
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injective. Similarly, for all A ¢ A, and 4, . ..
lying in Uy, for some k > 0 and so

By G 8, we have By, .., B,

(Biy. - PBny) € pr =
(’d’(ﬂl)a e :¢(,Bn,A)) = ((f)k(,@l), Ce

Thus %) is embedding of S into &’. Since 1 is surjective by (iv), we conclude
that 1 is an isomorphism as asserted. O

, $x(Bn,)) € P

Ezercises

9.5.3 Consider (Q, <) with the usual ordering. Use Theorem 9.5A to show

that Aut(Q, <) is k-homogeneous for each k > 1.

9.5.4 Show that a countable totally ordered set (2, <’) is order-isomorphic
with (Q, <) if and only if:

(i) the ordering is dense (for any pair of distinct points «, 8 €
with o <’ 3 there exists v # « or 8 such that a <’ v <’ ),
and

(if) € has no largest or smallest element.

For example, (Q, <) is order-isomorphic to the set of all rationals
of the form m/2™ (m € Z,n € N) with the usual ordering.
9.5.5 Let 7 be a tree with vertex set 2. Show that 7 can be defined as

a relational structure with a single ternary relation p C Q3 where

(e, B,7) € pif and only if 3 lies on the unique shortest path from «

toyin 7.

Theorem 9.5A, Corollary 9.5A and Exercise 9.5.2 together show that a
countable homogeneous relational structure of a given type is determined,
up to isomorphism, by the isomorphism classes of its finite substructures.
The theorem below [due to R. Fraissé (1954)] gives a useful criterion for
the existence of homogeneous structures with specified classes of finite
substructures.

Let S be a class of relational structures of a given type 7. We say that
S is closed under amalgamation if: whenever U, V1, Vs € S, and (1 and
o are embeddings of U into V; and V,, respectively, there exists W € S,
and embeddings 17 and 5 of Vi and Vs, respectively, into W such that
P1(p1(u)) = a(d2(u)) for all u € Y. We call W an amalgamation of V;
and VQ.

Theorem 9.5B. Suppose thatS is a class of finite relational structures of
a fized type 7, and that:
(i) S is closed under isomorphism;
(ii) S is closed under taking substructures;
(i) S contains only countably many nonisomorphic structures; and
(iv) S is closed under amalgamation.
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Then there casts o counlably wfuile homogencous steucture Hoof Lype
T such that a finile struclure R of lype T is isomorphac Lo o substructure
of H if and only if R € S.

ProoOF. We shall show how to construct a countable relational structure
H of type 7 such that: each finite substructure of 7 lies in §; each structure
in S is isomorphic to a finite substructure of ; and (1.PX) holds for H
into itself. Then Corollary 9.5A shows that H is homogeneous as required.

Since all structures in S are finite, it follows from (iii) that there exists
a countable family of pairs (U4;,V;) (¢ € N) from S such that: ¢ C Vs
and |V;| = |[U;| -+ 1; and, each pair (U, V) from S with |V| = |U| + 1 is
isomorphic to exactly one of the pairs in this family. Using this we shall
construct a chain Hg € H1; € Ho ... in S such that each structure of size
< n in S is isomorphic to a substructure of M,,. The union of this chain
will be the required structure .

Take Hy = (. Assume that n > 0, and that we have already constructed
H,, € S; to construct H,.1 we proceed as follows. Since H,, is finite there
are only finitely many embeddings I; — H,,, and by induction these include
embeddings for all Uf; of size n. We also have the embeddings U; — Vi,
so by a series of successive amalgamations (and use of (iv) and (i)) we
obtain Hpy1 € S with H,41 2 H, such that each embedding of the form
U; = H,, € H,y1 can be extended to an embedding V; — H,,4+1. A simple
induction argument (using (ii)), shows that every structure of size < n + 1
in S is isomorphic to a substructure of H,4;, and that (1PX) holds for
Hp+1 into itself for pairs (U, V) when [U| < n.

Finally define " := J,,~o Hn (with the induced relational structure). It
is then straightforward to verify that H has the properties asserted. |

ExXAMPLE 9.5.6. (An infinite group which is (k — 1)- but not k-transitive)
A k-hypergraph consists of a set ) (of vertices) together with a set £ C Qik}
of hyperedges. Alternatively, the k-hypergraph can be defined via a k-ary
relation p on Q where (a1,...,0%) € p <= {a1,...,ax} € E. A 2-
hypergraph is simply a graph. Fix k£ > 2, and let S be the class of all finite
k-hypergraphs. It is easy to verify that the conditions of Theorem 9.5B hold
for S (see Exercise 9.5.6), and so there exists a (unique) countable homo-
geneous k-hypergraph M. Put G := Aut(™). Then G is not k-transitive,
because G preserves k-hyperedges of H. On the other hand, any two k-
hypergraphs of size k — 1 are isomorphic because they have no hyperedges,
and so G is (k — 1)-transitive by the homogeneity of 7 (Theorem 9.5A).

Ezercises

9.5.6 Show that the hypotheses of Theorem 9.5B hold for the class of
k- hypergraphs. [Hint: To prove (iv) note that if V; and V, are k-
hypergraphs, and U = Vi N Vs, then the union of Vi and Vs forms
a k-hypergraph which is an amalgamation of ¢/ — Vy and /7 7
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9.5.7 A graph is triangle-free if it does not contain a set of three pairwise
adjacent points. Show that the class T of all triangle-free finite graphs
satisfies the four conditions of Theorem 9.5B, and hence there exists
a countable homogeneous triangle-free graph.

9.5.8 Define the infinite graph G as the disjoint union of a countable num-
ber of complete graphs each on its own set of m vertices. Show that
G is a homogeneous graph. Describe the finite subgraphs of G.

9.6 The Universal Graph

In their study of random graphs in 1963, P. Erdds and A. Rényi noted
a peculiar fact: if a graph with a countable number of vertices is chosen
“at random”, then with probability 1 we always obtain the same graph
(up to isomorphism). They called this graph the universal graph, and it
turns out to be an interesting example of a homogeneous relational struc-
ture with an interesting automorphism group. The automorphism group
of the universal graph is primitive but not 2-transitive while the group
of automorphisms and anti-automorphisms is 2-transitive. The group of
almost-automorphisms (see Exercise 9.6.11) is highly transitive. In the con-
text of the last section, the universal graph is a countable homogeneous
structure.

We shall explain the result of Erdés and Rényi below, but shall first
introduce what turns out to be a characterization of this graph. This is the
universal property for an infinite graph G:

(UP) For every pair I', A of disjoint finite sets of vertices of G there exists
a vertex « of G such that « is adjacent to every vertex in I' and is
not adjacent to any vertex in A,

ExAMPLE 9.6.1. Counsider the graph ¢ with vertex set N in which two
vertices m and n with m < n are adjacent if and only if in the binary
expansion n = 281 £ 22 ... 1 2k (0 < Ky < kg < ... < k) we have
k; = m for some 7. Then G satisfies (UP). Indeed, let I' and A be disjoint
finite subsets of N, and let d € N be a strict upper bound for I' U A. Then

ni= Y ep 28429 ¢ TUA is adjacent to each vertex in I' and not adjacent
to any vertex in A.

For alternative constructions of graphs which satisfy (UP), see Example
9.6.2 and Exercise 9.6.4, as well as Theorem 9.6B.

Theorem 9.6A. Any two countable graphs which satisfy (UP) are isomor-

phic. Furthermore, any such graph is homogeneous (as a relational structure
with a single binary relation).
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ProOF. By Theorem 9.5A and its Corollary, it is enough to show tl}at
whenever two countable graphs G and G’ satisfy (UP) then the condition
(1PX) given in Sect. 9.5 holds for G into g'. ‘ ‘
Suppose that ¢ : U — G’ is an embedding of a finite subgraph of G into
G', and that U is extended to V by adding a further vertex o of G. T}.len
we can use (UP) to extend ¢ to an embedding ¢* : Y — G by ch(?osmg
¢*(c) such that: for each vertex B of U, ¢*(a) is adjacent to #(8) if and
only if a is adjacent to §in G. O

A countable graph which satisfies (UP) is called a universal gmph.. As
the last theorem shows, the universal graph is unique up to isomorphism.
The universal property can often be used to give rather simple proofs of
facts about the universal graph.

EXAMPLE 9.6.2. The automorphism group of a countable universal graph
contains an element which is a fixed point free cycle on the set of Yertices.
Indeed, consider the set GRC of all graphs § with vertex.set Z which have
automorphism groups containing the cycle @ — a+ 1. It is enough to show
that GRC contains a universal graph. Let

®(G) := {a € Z | @ > 0 and o adjacent to 0in G}.

Then ®(G) completely determines the edges of G : (a, B) is an t?dg(? in G if
and only if |a — B| € ®(G). Conversely, given any set @ of p‘osmlve integers
there is a unique graph G in GRC with $(G) = ®. This gives a bijection
between GRC and the set of all sets of positive integers. We shall.show
that there is a graph in GRC which is universal by constructing a suitable
@ recursively. ‘
Enumerate the (countably many) pairs (Tk, Ak) (k =1,2,...)of ﬁ.n.lte
disjoint subsets of Z. Now construct a sequence of finite sets <.I>k of positive
integers (k = 1,2,...) as follows. At step 1, choose any integer & o4
I, UA;, and put @1 := {|8 — a1 | B € T1}. In general, at step k (k > 2),
choose an integer oy, such that |8 — ag| > |y — o for all BelU A'k and
all v € T; UA, with i < k, and set @ = {|8 —aul [ f € I'c}. Finally,
take @ as the union of all @, and take § € GRC such that ®(G) = ®. It
follows from the construction that G satisfies the universal property (UP);
indeed, for T' = I'y and A = A we can take o = . |

The construction above shows that the automorphism group of the count-
able universal graph contains a transitive cycle. In fact, it has been shown
by Cameron that the latter group contains 280 conjugacy classes of such
cycles. Truss (1985) has determined the cycle structures of all elements of
the automorphism group of the universal graph, and has proved that the
group is simple.
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FExercises

9.6.1 Show that every finite and every countable graph can be embed-
ded into the countable universal graph (in the sense of relational
structures).

9.6.2 Show that a tree 7 with a countable number of vertices is isomorphic
to a spanning tree for the countable universal graph if and only if the
tree has the property that for each finite set A of vertices of 7" there
exists a vertex o € A which is not adjacent in 7 to any vertex in A.
Give an example of a countable tree which fails to have this property.

9.6.3 If (UP) holds for a graph G, show that for any given I and A there
are infinitely many vertices o to satisfy (UP) for I and A.

9.6.4 (For those who know some number theory) Let Q = {5,13,17,...}
be the set of all primes of the form 4k + 1, and consider the graph
with vertex set {2 where vertices p and g are adjacent if and only if p
is a quadratic residue (mod g). Show that this graph satisfies (UP).

9.6.5 Show that there are uncountably many isomorphism classes of
countable graphs.

In contrast to the last exercise, we now show that in a suitable sense
“almost all” (labelled) graphs on a countable vertex set are isomorphic to
the universal graph. In order to make this statement precise we have to
put a measure on the set GR(Q) of graphs on a fixed countable vertex set
0. Let {2} be the set of 2-subsets of vertices. Then for each graph G with
vertex set {2 there corresponds the set £(G) € Q{?} consisting of all pairs of
adjacent vertices. The mapping ¢ — E(G) is a bijection from GR(?) onto
the set of all subsets of {2}, Since Q is countable, {2} is also countable.
Thus we can fix an enumeration of 22}, and then define a mapping from
GR(Q) onto the interval [0,1] via G — > o, €:,(G)/2" where €;(G) equals 1
if the vertices in the ith 2-subset of {2} are adjacent in G, and equals 0
otherwise. This latter mapping is no longer injective. Two different binary
expansions can represent the same real number, and this happens exactly
when one of them ends in infinitgly many zeros and the other in infinitely
many ones; for example, .10000 ... = .01111. ... However, no point in [0,]]
is the image of more than two graphs.

Theorem 9.6B. Under the mapping GR(Q) — [0,1] defined above, the
image of the set of graphs which are not universal has (Lebesgue) measure
0 in [0, 1].

PrOOF. For each pair I', A of disjoint finite subsets of ), and each a €
Q\ (T'U A), we define J(T', A, @) to be the image in [0,1] of the set of
graphs for which the condition in (UP) fails to hold, and put J(T', A) :=
manFuA J(T', A, a). Then the image of the set of all graphs which are not
universal is Jp o J(I', A). It is a standard result of measure theory that a
countable union of sets of measure 0 is also of measure 0. On the other hand,
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since {2 is countable, the number of pairs I, A of disjoint finite subsets of
§2 is also countable. Thus it is enough to show that J(T', A) has measure 0
for every pair T, A.

To do this we first note that, for any specified list ¢, €3, ..., ¢, from
{0, 1}, the measure of the set of points £ € [0, 1] whose first h binary digits
are €1, €s,...,€, is exactly 27" From this it is easily seen by a simple
summation that, for any k distinct indices 41, %2, ..., %,, the measure of
the set of points whose binary digits at these places have specified values
is also 27*. More generally, if we permit m, different sequences of binary
values at the places 41, 4o, ..., 1, and mq different sequences of values at
a disjoint list of places ji, 7o, . .., jk, then the corresponding set of points
¢ has measure (m;27")(m227%).

Now let I' and A be a fixed pair of disjoint finite sets, and enumerate
the remaining points in € : a, g, .. .. Define 1, to be the measure of
Mz, J(T, A, a;) 2 J(T, A). We complete the proof by showing that i, —
0asn — oco. A graph § maps into J(T', A, «;) if and only if G does not have
specified edges or nonedges between |I'| + |A| particular pairs of vertices.
This translates into the condition that £ € J(T', A, a;) if and only if € does
not have specified binary digits at |I'| + |A| particular places. Hence, from
above, J(T', A, ;) has measure 1 — 2~IT1=IA1 If 4 £ 5. then the places
specified for J(T', A, o;) and J(I', A, o;) are disjoint. Thus induction on n
shows that i, = 1 (1 — 27017121 = (1 — 2=IT1=1AD"  This shows that
i, tends to 0 as n — oo, and so the theorem is proved. -

The previous theorem shows that, in a certain sense, “almost all” count-
able graphs are universal. We can sometimes use this theorem to show that
the universal graph has a specified property P by proving that the set of
graphs in GR(Q)) with property P corresponds to a set of nonzero measure
in [0,1].

Exercises

In the following exercises, ¢ denotes the countable universal graph on the
vertex set 2, and G := Aut(G).

9.6.6 Show that G is isomorphic to any graph obtained from G by removing
or adding a finite number of edges, or by deleting a finite number
of vertices and the associated edges.

9.6.7 Show that G is primitive but not 2-transitive on Q. Show that G is
a subgroup of index 2 in a group which is 2-transitive on €.

9.6.8 Show that |G| = 2%o.

9.6.9 Show that the stabilizer G,, of any vertex « is isomorphic to G x G.
9.6.10 Prove that the only element of finite support in G is the identity.
9.6.11 Let AAut(G) denote the group of “almost automorphisms” of G; that

is, the permutations in Sym(£) which preserve the edge relation of
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G for all but a finite number of vertex pairs. Show that AAut(G) is
a highly transitive group containing G.

9.6.12 If the set Q of vertices of ¢ is partitioned into a finite number of
subsets, show that the subgraph induced on at least one of these
subsets is isomorphic to §.

9.6.13 (Universal digraph) Adapt the property (UP) to digraphs. Show
that countable digraphs satisfying this property exist, are unique
up to isomorphism and are homogeneous. What other properties
of the universal graph correspond to analogous properties of this
universal digraph?

9.7 Notes

e Sect. 9.1: For general references to the Burnside Problem see Aidian
(1979), Kostrikin (1990), Zelmanov (1991b) and Vaughan-Lee (1993).
An elementary exposition of Golod (1964) is given in Fischer and Struik
(1968).

® Theorem 9.1A: See Gupta (1989).

e Sect. 9.2: For general references to the material in this section see Serre
(1980), Cohen (1989) and Cameron (1990).

® Theorem 9.2A: See Biggs (1989).

e Exercise 9.2.10: This result is known in combinatorics as “Konig's
Lemma” (due to D. Kénig in 1936).

e Lemma 9.2A and Theorem 9.2B: See Tits (1970).

» Sect. 9.3: For related papers see Adeleke (1988), Dixon (1990), Glass and
McCleary (1991), Gunhouse (1992) and Hickin (1992).

» Exercises 9.3.1-2: See Cameron (1987).

e Exercises 9.4.3—-4: See Cameron (1976).

e Theorem 9.4A: This theorem has an extensive history. Early proofs are
due to Brown (1959), Livingstone and Wagner (1965) and Bercov and
Hobby (1970). We have used the proof from Cameron (1976). See also
Cameron (1978), (1981c), (1983a), (1983b) and (1990) page 53, Kantor
(1972), Pouzet (1976) and Wielandt (1967b).

e Theorem 9.4B: See Livingstone and Wagner (1965) and Kantor (1972).
See also Huppert and Blackburn (1982b).

* Exercises 9.4.7-8: See Cameron (1976).

¢ Theorem 9.4C: See Cameron (1976).

¢ Theorem 9.4D: This is an unpublished result of J.P.J McDermott; see
Cameron (1990) Sect. 3.4.

® Sect. 9.5: For a general reference to this material see Cameron (1990).

e Theorem 9.5B: See Fraissé (1954).

e Exercise 9.5.4: This is a classical result of G. Cantor.

e Sect. 9.6: The universal graph was originally defined in Erdés and Rényi
(1963). In our exposition we have used Cameron (1990) as well as un-
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published lecture notes of Cameron. Related papers included: Lachlan
and Woodrow (1980), Mekler et al (1993), and Truss (1985), (1989) and
(1991).

o Exercise 9.6.11: See Truss (1989) and (1991).

o Theorem 9.7B: See Erdos and Rényi (1963).



Appendix A

Classification of Finite Simple
Groups

Every finite group can be built up of simple groups through successive ex-
tensions. The abelian simple groups are the groups of prime order. The
finite nonabelian simple groups are broadly classified as: (i) the alternat-
ing groups A, (n > 5); (ii) the simple groups of Lie type; and (iii) the
sporadic simple groups. The Classification of Finite Simple Groups is the
claim (based on many thousands of pages of research papers by dozens
of mathematicians) that the only finite nonabelian simple groups are the
presently known groups in classes (i)—(iil). The Classification was formally
announced in Gorenstein (1979). Gorenstein et al (1994) is the first in a
series of volumes from a project, presently under way, to present a coherent
and accessible proof of the Classification.

The alternating groups are, of course, well understood. We briefly
describe below the groups of Lie type and the 26 sporadic groups.

The Simple Groups of Lie Type

There are five families of classical finite simple groups of Lie type, each
of which is obtained by factoring a suitable linear group by its centre (a
group of scalars). These are the families of (projective) special linear groups,
unitary groups, symplectic groups, and two families of orthogonal groups.

In Table A.1, ¢ denotes a order of finite field and so is a prime power,
and d represents the order of the centre which has been factored out. The
groups are denoted by a common abbreviated notation where PSL,(q)
is denoted by L,(¢), PSpam(g) by Sam(q), etc. (see Appendix B). We
have L2(2) = S3, L2(3> = A4, L2(4> = L2(5> = A5, L2(7> = L3(2>,
Lz(g) = As, L4(2) = Ag, 54(2) = ‘96) U4(2) = 54(3), and U3(2) is solvable.
With these exceptions the groups listed in Table A.1 are nonisomorphic
nonabelian simple groups which are not isomorphic to alternating groups.

In addition to these families of classical groups, there are nine further
families of groups of Lie type, parameterized by the prime power g, each
of which is derived from a Lie algebra of specific dimension. With the
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TABLE A.1.  The Simple Groups of Lie Type

Name Symbol Order
Linear L,(q) DT (¢ - 1)/d
where d = GCD(n, ¢ — 1), n > 2
Unitary Un(q) VI, (6 — (—=1)7)/d
where d = GCD(n, ¢+ 1), n > 2
Symplectic s, (q) i 17, (g% ~1)/d

where d = GCD(2,q — 1), m > 3

¢ 172 (¢~ 1)/d
where d = GCD(2,¢ —~ 1), m > 2

Orthogonal  Os,, 11 (q)

Orthogonal g (gm — ) Hfl—ll(qzi ~1)/d
where d = GCD(4,¢™ ~¢), m > 4,e = %1

notation introduced by C. Chevalley and R. Steinberg these are denoted:
G2(a), Fu(a), Bs(q), Be(q), Bs(q), *Ba(q) (¢ = 22™+3), 2D,(q), 2Ga(q)
gq = 32"F9) 2Fi(q) (¢ = 2%+, and *Es(q). The groups in the family
ng are known as Suzuki groups, and the groups in the families >G5 and
Fy are known as Ree groups after their discoverers. Finally, there is the
single exceptional group 2F;(2)" which is known as Tits’ group.

Work of Chevalley in 1955 and of Steinberg in 1959 showed that all
groups of Lie type can be defined and analyzed, more or less uniformly, by
using the underlying Lie algebra structure. In particular, their groups of
outer automorphisms can be constructed; these are all solvable and quite
small [see Conway et al (1985)].

The Sporadic Simple Groups

These are the finite simple groups which do not fall into infinite families.
Twenty six of them are known, and according to the Classification these
are the only finite nonabelian simple groups which are not alternating or of
Lie type. The five Mathieu groups were discovered in the middle of the last
century, but the other sporadic simple groups where all discovered between
1964 and 1975. Table A.2 lists these groups with their orders and the date
when the group was discovered (or predicted to exist). There are many in-
teresting relations between these groups. In particular, the Mathieu g?roup
Myy contains all of the smaller Mathien groups, and the Monster M con-
tains (as sections) many of the other sporadic groups. The group of outer
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TasLe A.2. The Sporadic Simple Groups

Name 7 Symbol Order Date
Mathieu My 24.3%2.5.11 1861
Mathieu My 20.3%.5.11 1861
Mathieu My 27.3%2.5.7.11 1873
Mathieu Mss  27.32.5.7-11-923 1873
Mathieu My, 219.3%3.5.7.11.93 1873
Janko J1 25.3.5.7-11-19 1964
Hall-Janko Jo 27.3%.52.7 1967
Suzuki Suz  21%.37.5%2.7.11.13 1967
Higman-Sims  HS 2°.32.53.7.11 1967
McLaughlin McL 27.35.5%.7.11 1967
Conway Cos  210.37.53.7.11.93 1968
Conway Cop 2'8.30.5%.7.11.23 1968
Conway Cop  221.39.5%.72.11.13.93 1968
Janko J3 27.35.5.17- 19 1968
Fischer Figg  217.39.5%2.7.11.13 1968
Held He 21033 .52 .73 .17 1969
Fischer Fipg  218.313.52.7.11.13.17.23 1969
Fischer Fig,  2%1.3%.52.73.11.13.17.23.29 1969
Lyons Ly 28.37.56.7.11-31-37-67 1971
Rudvalis Ru  21.3%3.5%.7.13.29 1972
O’Nan O'N 29.31.5.73.11.19-31 1973
Harada—Norton HN 214.36.56.7.11.19 1974
Thompson Th 2% .310.5%.72.13.19.31 1974
Baby Monster B 241 . 313 5672 .11 .13 . 1975
17 -19-23-31 - 47

Monster M 246.320 .59 .76 112 . 133 . 17. 1975
19-23-29-31-41-47.59 .71

Janko Ju 221.3%.5.7.11%2.23.29-31.37-43 1975

automorphisms for each of the groups on this list has order at most 2, thus
completing the verification of the Schreier Conjecture.

For further information about the classification, see Gorenstein (1979)
and (1982), and Gorenstein et al (1994). Conway and Sloane (1988) and
Conway et al (1985) give details about the sporadic groups. Thompson
(1983) describes some of the history of the discovery of the sporadic groups.
An interesting account of the 19th century search for finite simple groups
can be found in Silvestri (1979).

Appendix B

The Primitive Permutation Groups
of Degree Less than 1000

This appendix gives a list of all proper primitive permutation groups of
degree less than 1000. Such a list is of interest in illustrating in concrete
form the kinds of primitive groups which arise, in suggesting conjectures
about primitive groups, and settling small exceptional cases which often
occur in proofs. Earlier lists (of varying completeness and accuracy) of
primitive groups of degree n have been published by Jordan (1872) for
n < 17, by Burnside (1897) for n < 8, by Manning (in a long series of
papers that appeared between 1906 and 1929) for n < 15, by Sims (1970)
for n < 20 and by Pogorelov (1980) for n < 50. At about the same time as
the list presented here originally appearing in Dixon and Mortimer (1988),
a list covering the same range was published by II'in and Takmakov (1986).

The permutation groups in the list are collected into cohorts where all
groups in a cohort have the same socle and this socle has the same action
in each group of the cohort. Thus an item in the list consists of a transitive
action for a group H, the socle, on a set {2 and the normalizer N of H in
Sym(Q) where NV acts primitively on It may happen that H itself is not
primitive or that soc(V) # H.

Consider, as an example, the entry for the simple group T' = PSLy(7) &
PSL3(2) listed under type B in Table B.2. There are four cohorts. There
are two primitive actions with socle T'. Considering T as PSLy(7) there is
a natural 2-transitive action of degree 8 with stabilizers isomorphic to 7:3.
The image of T in Sg has index 2 in its normalizer (which is isomorphic to
PGLy(7)), as indicated by the entry H.2 in this row. Taking T as PSL3(2)
there is a natural 2-transitive action of degree 7 on the Fano plane PG (2)
with stabilizers isomorphic to Sy. The image of T in S7 is self normalizing,
indicated by the entry H in this row. As described in Example 4.6.1, T" also
has imprimitive actions of degrees 21 and 28 (on the flags and antiflags of
PG5(2)) and there is a group T.2 & PGLo(7) which is primitive in both
cases. These actions are recorded with first entry PSLy(7).2, the smallest
primitive group containing the socle with this action.

The socle H is a direct power of some simple group 7. The various
possiblities are that the socle is simple, composite with product action,
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composite with diagonal action or regular. We assign each of the cohorts
to a type as in Table B.1 Each cohort of Types A-H has a simple socle.
Some simple groups could appear under more than one of these headings;
each is assigned to the earliest valid type. Tables B.2, B.3 and B.4 do not
include the affine groups. In addition to the cohorts listed in these tables,
there is a cohort of affine groups for each degree which is a prime power
¥ (k > 1); the socle is a regular elementary abelian p-group of order
p*, and the normalizer is AT'Ly(p) (see Sect. 2.8). All solvable primitive
permutation groups are affine. Short (1992) lists the solvable primitive
groups of degree less than 256 and discusses the general construction of
primitive affine groups. Theorem 4.7B shows that there are no primitive
groups with a regular nonabelian socle and degree less than 60° > 1000.

Tables B.2 and B.3 list¢ the proper primitive groups of degree less than
1000 by socle. Table B.4 lists the cohorts by degree. A typical entry in
Table B.4 is 136 : AB2E?F which records the fact that there are five
cohorts of primitive groups of degree 136 of types A, B, F and F' with two
each of types B and F. Using this information, the cohorts themselves can
be located in Table B.2.

There are 762 cohorts of proper primitive groups of degree less than 1000.
There are 355 degrees listed in Table B.4. There are a further 158 degrees
not listed which are prime powers greater than 3. For these degrees only
type K affine cohorts arise. The remaining 486 degrees less than 1000 have
only improper primitive groups.

Considerable detailed information about the subgroups and automor-
phisms of the finite simple groups is required to construct the tables. This
kind of information has been accumulating for more than a century as
a result of the efforts of a number of mathematicians. In particular, we

TaBLE B.1. Types of Cohorts of Primitive Groups

Type Socles Number of
Cohorts
A Alternating groups 77
B PSLy(q) 240
C  PSL,(q),n >2 56
D Unitary groups 34
E  Symplectic groups 28
£ Orthogonal groups 13
G Other groups of Lie type 7
H  Sporadic simple groups 38
I Composite socles: product action 74
J  Composite socles: diagonal action 5
K Regular abelian groups 190
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acknowledge the importance of Conway ct al. (1985) as a major source
of useful data. Tables B.2 and B.3 use an abbreviated notation for the
classical groups: L,(q) = PSLn(q), Sn(q) = Spn(q), Unl¢) = PSU.(q),
On(q) = PSO,(q) and D,, denotes the dihedral group of order n. Other
symbols refer to other groups of Lie type and the sporadic groups (see
Appendix A). For further details see Conway et al (1985) and Dixon and
Mortimer (1988).



309

roups of Degree Less than 1000

Al
x

Appendix B.

Appendix B Groups of Degree Less than 1000

[FACR

¥ CH z: (g x Euy) (&) MmO BT S wS e MY
g TH g-ug (&) mo  ‘Gr S w S er My
g ¢H g ('Y x V) qTL g=0 ¥
9 TH z: (8y x ) 262
g TH g (v x 8Y) c6¥
iz TH ¢ (o7 x oY) T9%
% TH z (g x ) 027
¢ H org 99 ¢=m0 vy
9 TH Z: 8y x %) 9%
g TH z: (v x ty) 0ge
y ¢H (e x ) 991
g TH 65 ag g=mo "V
L TH 59 1 4G S¥6
g TH z: (v x %) 012
g TH v (5V x V) 921
i TH z: (g xy) 021
¢ TH 8¢ cp ¢=1mo
01 < TH VYT L 0%8
g TH LAY 082
g TH z: ("W x ) 921
g H ¢ (8)e7 071
i TH g (g x %) 78
£ ¢H s 9€ ¢=10 ¥
g CH ¢ (2)f1 0T
g CH AR GoT1 8¢ =78y
iz TH z: (g x9y) 9¢g
¢ TH (Es x £9) : 42 ¢g
€ TH 9% 8T
z H (2)¥T « 42 Gl z=mQ 8y
) TH 9: . 0g1 Lo =7ty
i TH z: (g xy) e
¢ TH 3 17
z H (L)° G1 Z =10 ‘v
g T H oLy 37
i T H 0%y 9¢ (:8)°THd = T
¢ S =C¢H £ GT
4 O H ¥ e 01 6 =10 (;£)¢7 =%
£ TH £g 0T .
z TH 0l 9 z=10 9y
Aqosbm [eINYRU BT} wq%iux& sdnois) Surjeurs)[y "y odAT,
H@Nﬂdap‘@ﬂ .WN QHUOm @ﬂa U Qw .U QSOH@
@ﬂumo qum ,HO H@NE@EHOZ .Hwﬁﬁﬂdum ®®HM®Q o\ﬁﬁﬁgﬂnﬂ

<

‘pa1st] j0u are sdnoid surge oY) pue U}/ Jo UOIIDR [RINJRU OYJ, 9204

sa[00g odurtg :9100G Aq Pajsi] sdNoIr) SAIULIJ

)

1

e

I B
i
4 1

‘7 g @1av,

e



e

.

=

Z H 5y T ¢ =m0 (11)%7
4 9OH TLT gl vhe 9=m0 (gL)%7
0L < ¢H v 086
TH g (L)eT QLT
Z CH i) 0 2= MO (;L)e7
iZ TH Ta 12
g TH - T 8¢ ¢ (L)eT
z TH ) 8
z H v L =m0 (g)t7 = (L)°7
g rx2)H AR 929 pxg =m0 (,0)°7
Z 9H 29 T ¢S 921 9 =m0 (8)°%7
1T ¢ H veq gze
6 O H 9z 00¢g
i TH g (9)eT 9
4 O H T .6 92 26 =m0 (,8)%7
Z (9xg)H $9€ ¢ o€ 0€L 9xg=mQ (48)°%7T
z 0T H 12T © o€ iad 0T =m0 (%7
VH o (8)eT 69€
4 rxo)H 0% : 3¢ 28 P Xg =m0 (,8)°%
01 < 9 H (€)o7 =7y 618
L 9H ke 8L
9 9 H 8ot 18¢
e 9H €1 ¢ ¢& 8% 9 =m0 (¢8)°%7
é 6 H 116 ¢ ¢ e1g 6 =m0 (42)%T
z SH GGT g0 162 g =m0 (g2)%7
4 L'H LT 2 62T L=mQ (,2)°7
9H (g2)eT 028
4 9H €9 © g 9 9=mQ (42)%1
g SH 2744 826
id S H 97 96¥
4 GH 1€ 1 ¢ ee ¢=mQ (q2)%7
g VH 07 9¢1
id VH veq 071
id VH (20)%1 89
z VH QT © 40 LT v =m0 (;2)%7
e eH Yiq 9¢
z &H 817 %
g eH LT 6 ¢ =m0 (¢0)%7
(b)eT ‘sdnoiry eanosfoig g odL7,
IOZI[RULIOU H 9[00s o1} o ur 5 dnoi3
9} JO ueyY JO ISZI[RULION IezI[Iqe)s§ 99139(] QAT)TUITI J

(ponuyuon) g @IV,



TH g/(1—4d):d I+d g=m0 266>d> Ly (4T
ZH e 96
TH waq €06
TH 12 €F 4 z =m0 (ev)?T
TH o 198
TH afe) 028
zH 0g: ¥ 47 z=m0 ()1
TH €T €0L
TH 88T 999
TH 8T ¢ L€ 8¢ z=m0 (L8)*1
g vg 029
TH e 96¥
TH 4764 17
o Sy 8T
oH ol : 1€ € z=mo (1£)%1
ZH 827 oy
TH e 90¥
o Sy €02
z TH ¥1: 6T 0€ z =m0 (62)°T
01 < TH e 9.%
01 < H ver €G¢
1< H vg €62
’ 4 CH 11 €2 i ¢ =m0 (£2)*1
01 < TH Vg G8T z(61)%7
11 TH 8q 061
01 TH e TLT
ig H v LG
¢ v 661 0¢ ¢=10 (61)°7
01 TH q €eT
6 TH 8L(7 9¢eT
8 H g z01
z TH 8 L1 81 z=1m0 (L1)%7
8 TH a7 16
8 TH a%es 16
L TH i 8L
ré TH 9:¢1 il =m0 (e1)°7
TH g (11)%7 129
e CH 09 : 11 44 26 =m0 (;11)%71
L TH 027 99
9 TH S 4 ¢ (11)%1
9 TH el g
ré TH G 1T 1
I9ZI[RWIIOU [ 9[00S 8y} o ul 5 dnoid
9] JO JuRY JO ISZI[RULION IOZI[IqRIS 90139(] QATITUILIJ
(ponunuoy) 7' @14V,
) )
T | = IS = ] pEEE



310

Ciroups of egree Less than (000

APPCIULN 1.

APPENAIX 15, UIoups Ul ERIee Lesh viall 1UVu

514

I { i = | { I I T
ﬂ\
g TH ¢ ()Tt g t0 9y ¢ ()7
£ H ((€)®T x £9) : g GqT
4 H (@)"T : 42 €3 z =m0 (2)¢7
z 8T H ((z8)eT < T) : o8 028 Sa xg=m0 (,£)"7
z eH (2)¢TD ¢ 4T 8¢ 9=1m0 ()"
z TH e (L)ETe ol 00% 2 =mO (L)'
¢ vH.  t(9%7 x(9)%7)C 4S5 908
4 v H Q)87 + ¢S 991 8 =mO (97
¢ TH e((7)%T x (3)?T) 1 gz 1G€
z TH (P)ETD : gT 8 =m0 (,20)"7T
O H (¢ x7sg) : .t 028 g ()T
g 2O H e("y x W)z e 0eT
¢ TH ¢: (@) LTT
z TH (£)7 : (& 0¥ 0 =m0 (¢)"7
g (b)eTxd (D)eTD  pod I+b+ b 165 ,d =06 (D)7
ig O H T 48 pugl 016 (88T
z TH (:8)%T1D : 48 16 2 =m0 (,8)¢7
i 9H Tzl gyel LS9 g (g7
Z &H ((¢2)%T % L)t 4T 9 9=mQ ()7
i 8 H (8aq <€) : %L 957 o (L)ET
é oH 2 (L)FTIT LS ¢g =mo (L7
9 < TH AN GLL
i TH Prdln 98T o (9T
6 H (8)%TD 48 1€ ¢c=mo (9)¢7
8 T H £ 9¢€
iz NI H T p120 GOT (rome ydeis) ¢ (,2)¢7
01 < ST H exXg:) 096 (z0)eTOd = €(;2)¢7
g Rt oy 08¢
i O H (L)eT 021
¢ G H k4 96 ,
Z 9 H Sy ¢ 43 12 e =mQ  (;)¢7
9 TH ¢ ST AR
i TH 87 418 z8 g (e)eT
o1 < TH S 762
9 TH grer 2l
z TH VST 1 L€ e1 =m0 ()7
g < u‘(b)¥7 ‘sdnoixy sanyoelorg "0 adAT,
4 TH o/(1— ) 4 T+, ;2=m0 ‘I1e>d> g1 (,d)°7
IOZI[eWLIOU  [J 8[00S 9y} o ur 5 dnois
oY} JO ury JO ISZI[RULION IaZI[Iqe)S 901389(] OAT)TUIILJ

(penunquop) g g @IV

=
i



3 ¢ O H 7 (29)%T * 48 94L ¢ =10 (8)"N
; g v H e (42)%T * & 4S v =10 (52)'n
: g T H OV 4T 296
v ST H (€)en oS
g ST H ST e 08¢
; € O H ¢ ()T 291
W ¢ O H @)"n 971
% ¢ ST H (;£)%T © 48 48! sg =m0 (€)'n
: ¢ TH ¢ ("V x )T ap
w, € TH TSt oy
¢ TH T 0v
e TH og 9€
; € TH (7)eT : 42 13 =m0 ()"
2 ¢ VH 08 * p+2€ 084 y =10 (¢£)%
- z (¢s x €)' H 1% g4eC s t¢ x ¢ =m0 (¢8)%N
, z CH 8%  girl vhe z=mo (LN
6 TH g (L) 0S2 7 (9)en
9 S H Y4 qzs
v TH 0Ty GLT
Z 5 H 8¢ o418 921
g CH Ly 08 8 =10 (90
9 T H €S 1 .S 9T¥
g VH Y X g 807
z VH T ¢ p4gl g9 v =10 (;2)¢n
i TH €S ¥ €9
id TH S €9
¢ TH (L)er 9¢
z TH 8 1€ 87 t=m0 (€)%
sdnoxn) Arejrun " 9dAT,
(4 H (@87 : g2 18 ¢=m0 (g)67
Z q (@)1 .2 lefd ¢ =m0 (2)%7
z H ()%7 * 42 L2l ¢z =mQo ()47
Z TH (€)%7 : ¢ v9¢ & =mO (£)%7
¢ H ((2)r7 x (2)%7) * g2 169
Z g (2)97 + T €9 ¢ =m0 (2)7
- z H (6)r71O .8 182 z =m0 (9)¢7
z ZH (;2)"1D t g2 Ve 20 =m0 (;2)%7
z g ()7 ¢ 1zl ¢z =m0 (£)%7
g TH z (@)1 96%
I9Z{[eW10U H 9008 a1 D ul » dnouis
o1 JO yURY JO IOZI[BULION LoZIIge1g 92139(] AW 4

(penugguop) g g ITEVL




319

Groups of Degree Less than 1000

Appendix B.

Groups ot Degree Less than 1000

Appendix B.

318

r i { T R A | O i
( {
g TH By 1 gT ge1
€ TH (2)% 03T s =m0 (2)fo
(42)*%5 = (42) 1720 “(b)7n = (b) °0 ‘(B)¥7 = (b) 20
(B)rs = (B)50 ‘(cb)*1 = (b) 20 “(B)o1 x (B)o7 = () JO!(B)eT = (B)E() :a30p
sdnoix) reuo3oyyr() -1 odL7,
z H z: (@)% 826
z H z: (@)% 96% I=mo (g)0g
e H (2)% .2 667
4 H z:(@)fo 9¢T
4 H z: ()20 0Z1 1=m0 (g)%¢
£ ¢H ((8)7s x2) + 4Te 798 ¢=1mo (€)%
9 H g (8)%r 096
g H 9 x &g 9¢e
g H (Bs x £9) @ [gg] c1g
i H (2)6T : o2 geT
g H ¢ (8)tn 02T
€ H 9 o7 €9
z H 8¢ 9¢
4 H ¢ (@)n 8¢ I =10 (g)%
€ O H 2 ((6)°7 x7) : ot 028
€ O H ((6)2T x 8) « (7€) 028 28 =10 (87
¢ 9H ((8)%7 x 1)t 47 G8S 9=m0 (g2)%s
¢ TH z((L)TT x€) ¢l 00¥
¢ TH (L)1 % 9) t . ha 00¥% z=1m0 (L)'s
i TH g (v x V)¢ 43
4 TH g (c8)eT 00€
€ TH T (%Y X 7) * g8 91
¢ TH (57 x %) 1 4408 9e1 ¢z =m0 (9)%s
8 v H T (€1 prel X 40) it , 7 (c2)"s
¢ TH z:(5v x %y) 9¢T
¢ TH ¢ (;0)%T 0z1
¢ TH (v x€): T g8 v =10 (,2)%S
(@)'n = (£)7s 9 = (g)¥s ‘(b)e1 = (b)Tg 220N
mgsoHU onoardwAg o odAT,
id 6 H (¥)87 * 4 168
g 55 H (@)1 ¢4t €69
g 8y (@)n 7.9 &g =m0 (2)n
€ “H (Y X €) * 5132 162
¢ TH (@) *x ¢ 9.1
£ CH VT g6t 9110 69T ¢=mo (2)én
I9ZI[RWLIOU  Ff 9[00S 8y} D ur 5 dnoid
9] JO Yuey JO IDZI[RULION I9ZIIqe)S 90135(] QAT J
(panuyuoy) g g @1av,

e



321

roups il begree Less tuan LUU0

G

Appendix B.

L

ot e LIUDD L

Nep o

9 TH (11)%7 2.9
G TH Oty 919
g TH (@)¥T © g2 0
i TH G139 167
s H Ly 9.1
€ TH W i 4T L2
e TH m)eT e z=1m0 @
q H (11)°7 99¢ [=1mo I
01 < CH ST 4418 088
iz TH ()T i) T
8 TH CUT ¢ L g6¥
L CH ES" i iC 67
L TH 55 X g 96¢
g H ISR 0%
iz TH (11)e7 il
€ H T ot 99
ré H Uy 4 g =1m0 oW
8 H £S5 87 691
iZ H g 99
g H aJi qq
z H (t1)%7 1
4 H Oty 11 T=mQ 'y
sdnoixr) odurg orperodg -y od4A7T,
v eH (8)¢7 : o0 618 g=m0 (8)'ds
g TH er 91 =m0 (;2)®
v H ¢ (g)eT 8LE
1 H ST (48 X L he) v
€ H ¢ (e)n 1€ ¢=m0 (&)%
6 eH prel 09G
z eH L etz g9 g =m0 (¢2)%89
odAT, oI Jo sdnoix) 1)) ©) odAT,
g TH ¢ (e)1 8LE
€ ¢H g (8)7S ¢ o8 79¢
€ TH ¢ (e)e 1€ (€)*0
e TH (¢)8s 878
e TH (2) %0 5 S6¥ c=m0 (2)%0
€ ¢H (@) f0 g Pres
€ ¢H (¢)8s 96% z=m0 (@%0
iz TH (€ % (2)¥T) ¢ g4eC Y)
g TH (¢)os 9¢1
e TH (@) o2 611 =m0 (g)%0
i TH % 096
I9ZI[BULIOU H 7208 o} o ur 9] dnois
wﬂu mo Md.mﬁ wo Hm_N:,mE.HOZ H@Nwﬁﬁdpm mmmmwg m(ﬁﬁdhﬁ&

P

e

(panuyuon) 'z g A9V




322 Appendix B. Groups of Degree Less than 1000 Appendix B. Groups of Degree Less than 1000 323

TaBLE B.3. Primitive Groups Listed by Socle: Composite Socles

Rank of the
Normalizer

Primitive Group G Degree

Type 1. Composite Socles: Product Action, Theorem 4.1A case b(iil)

:E ; A, x An, 5<n <31 7129 3

igmﬂmwl\ NMm MM MmN Nm S A i Ap X A, 5<n <8 (g)‘ 6

5 5 _ Ap X Ay x Apy, 5<n <9 n? 6

S | As x As 36 3

‘-‘6‘ : AG X AG 100 3

= E N C\! C\]' [a B e ] 0! C\]. X

’ga Connn SREE W WRE g o A§><A§><A5 e 5

5 S As x As x Ag x Ag 625 10

“ Lo(q) x La(a), T<q=p*<29,¢#9 (¢ +1) 3

) Lo(7) % Lo(7) x Ly(7) 343 6

N PR R S NP ' 512 6

iz 2 %gw * x §€ O g‘@ § a. = 3 (L2(7) x Lo(7)).22 441 10

gEIRAT g T EN e TSh R s ! 784 15

@ I, | La(8) x La(8) 784 3

® L3(3) X L3(3) 169 3

& O 0w ™o m O © © D W © [ 441 3

> |8838% "BBE 88 X8R B 8 e oo ]

= Ls(2) x Ls(2) 961 3

Us(3) x Us(3) 784 3

Ua(2) x Ug(2) 729 6

36(2) X 55(2) 784 3

%\ M11 X ]V[11 121 3

Elgow 144 3

§ "é % My X Mo 144 3

8 = 8 — ~ — o M22 X Mzg 484 3

S I | I oy - Moz % Mas 529 3

o g 3 E E & E ' Mag X May 576 3
E O . . . S Type J. Composite Socles: Diagonal Action, Theorem 4.1A case b(ii)

g 5 = m S SIS | As x As 60 4

} A()‘ X AG 360 5

' Lo(8) x Lo(8) 504 5

Ly(11) x Ly(11) 660 6
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