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Dedicated to the memory of my parents:

Douglas McDonald Bridges and Allison Hogq



Sweet Analytics, tis thou hast ravished me.

FausTus (Marlowe)

The stone which the builders refused is become the head stone
of the corner.

PSALM CXVIII, 22.

...from so sitmple a beginning endless forms most beautiful and
most wonderful have been, and are being, evolved.

THE ORIGIN OF SPECIES (Darwin)



Pretface

The core ot this book, Chapters 3 through 5, presents a course on metric,
normed, and Hilbert spaces at the senior/graduate level. The motivation for
each of these chapters is the generalisation of a particular attribute of the
Euclidean space R": in Chapter 3, that attribute is distance; in Chapter 4,
length; and in Chapter 5, inner product. In addition to the standard topics
that, arguably, should form part of the armoury of any graduate student
in mathematics, physics, mathematical economics, theoretical statistics,...,
this part of the book contains many results and exercises that are seldom
found in texts on analysis at this level. Examples of the latter are Wong’s
Theorem (3.3.12) showing that the Lebesgue covering property is equivalent
to the uniform continuity property, and Motzkin’s result (5.2.2) that a
nonempty closed subset of Euclidean space has the unique closest point
property if and only if it is convex.

The sad reality today is that, perceiving them as one ot the harder parts
of their mathematical studies, students contrive to avoid analysis courses at
almost any cost, in particular that of their own educational and technical
deprivation. Many universities have at times capitulated to the negative
demand of students for analysis courses and have seriously watered down
their expectations of students in that area. As a result, mathematics ma-
jors are graduating, sometimes with high honours, with little exposure to
anything but a rudimentary course or two on real and complex analysis,
often without even an introduction to the Lebesgue integral.

For that reason, and also in order to provide a reterence for material
that 1s used in later chapters, 1 chose to begin this book with a long
chapter providing a fast—paced course ot real analysis, covering conver-
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gence of sequences and series, continuity, differentiability, and (Riemann
and Riemann—Stieltjes) integration. The inclusion of that chapter means
that the prerequisite for the book is reduced to the usual undergraduate
sequence of courses on calculus. (One—variable calculus would suffice, in
theory, but a lack of exposure to more advanced calculus courses would in-
dicate a lack of the mathematical maturity that is the hidden prerequisite
for most senior/graduate courses.)

Chapter 2 is designed to show that the subject of differentiation does
not end with the material taught in calculus courses, and to introduce the
Lebesgue integral. Starting with the Vitali Covering Theorem, the chap-
ter develops a theory ot differentiation almost everywhere that underpins a
beautiful approach to the Lebesgue integral due to F. Riesz [39|. One minor
disadvantage of Riesz’s approach is that, in order to handle multivariate
integrals, it requires the theory of set—valued derivatives, a topic sufficiently
involved and far from my intended route through elementary analysis that
I chose to omit it altogether. The only place where this might be regarded
as a serious omission is at the end ot the chapter on Hilbert space, where
I require classical vector integration to investigate the existence of weak
solutions to the Dirichlet Problem in three—dimensional Euclidean space;
since that investigation is only outlined, it seemed justifiable to rely only
on the reader’s presumed acquaintance with elementary vector calculus.
Certainly, one—dimensional integration is all that is needed for a sound in-

troduction to the L, spaces of functional analysis, which appear in Chapter
4

Chapters 1 and 2 form Part I (Real Analysis) of the book; Part II (Ab-

stract Analysis) comprises the remaining chapters and the appendices. I
have already summarised the material covered in Chapters 3 through 5.
Chapter 6, the final one, introduces functional analysis, starting with the
Hahn—-Banach Theorem and the consequent separation theorems. As well
as the common elementary applications of the Hahn—Banach Theorem, I
have 1ncluded some deeper ones 1n duality theory. The chapter ends with
the Baire Category Theorem, the Open Mapping Theorem, and their con-
sequences. Here most of the applications are standard, although one or two
unusual ones are included as exercises.

T'he book has a preliminary section dealing with background material
needed in the main text, and three appendices. The first appendix de-
scribes Bishop’s construction of the real number line and the subsequent
development of its basic algebraic and order properties; the second deals
briefly with axioms of choice and Zorn’s Lemma; and the third shows how
some of the material in the chapters—in particular, Minkowski’s Separation
Theorem——can be used in the theory of Pareto optimality and competitive
equilibria in mathematical economics. Part of my motivation in writing
Appendix C was to indicate that “mathematical economics” is a tar deeper
subject than is suggested by the undergraduate texts on calculus and linear
algebra that are published under that title.
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I have tried, wherever possible, to present proois so that they translate
mutatis mutandis into their counterparts in a more abstract setting, such
as that of a metric space (for results in Chapter 1) or a topological space
(for results in Chapter 3). On the other hand, some results first appear
as exercises in one context before reappearing as theorems in another: one
example of this is the Uniform Continuity Theorem, which first appears as’
Exercise (1.4.8:8) in the context of a compact interval of R, and which is
proved later, as Corollary (3.3.13), in the more general setting of a compact
metric space. I hope that this procedure ot double exposure will enable
students to grasp the material more firmly.

T'he text covers just over 300 pages, but the book 1s, in a sense, much
larger, since it contains nearly 750 exercises, which can be classified into at
least the following, not necessarily exclusive, types:

e applications and extensions of the main propositions and theorems:

e results that fill in gaps in proofs or that prepare for proois later in
the book;

e pointers towards new branches of the subject;

e deep and difficult challenges tor the very best students.

The instructor will have a wide choice of exercises to set the students as
assignments or test questions. Whichever ones are set, as with the learning
of any branch of mathematics it is essential that the student attempt as
many exercises as the constraints ot time, energy, and ability permit.

It is important for the instructor/student to realise that many of the
exercises—especially in Chapters 1 and 2—deal with results, sometimes
major ones, that are needed later in the book. Such an exercise may not
clearly identify itself when it first appears; if it is not attempted then, it
will provide revision and reinforcement of that material when the student
needs to tackle it later. It would have been unreasonable of me to have
included major results as exercises without some guidelines for the solution
of the nonroutine ones; in fact, a significant proportion of the exercises ot
all types come with some such guideline, even if only a hint.

Although Chapters 3 through 6 make numerous references to Chapters 1
and 2, I have tried to make it easy for the reader to tackle the later chapters
without ploughing through the first two. In this way the book can be used
as a text for a semester course on metric, normed, and Hilbert spaces. (If

" A reference of the form Proposition (a.b.c) is to Proposition ¢ in Section b of
Chapter a; one to Exercise (a.b.c: d) is to the dth exercise in the set of exercises
with reference number (a.b.c); and one to (B3) is to the 3rd result in Appendix
B. Within each section, displays that require reterence indicators are numbered
in sequence: (1),(2),.... The counter for this numbering is reset at the start of
a new section.
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Chapter 2 is not covered, the instructor may need to omit material that
depends on familiarity with the Lebesgue integral—in particular Section 4
of Chapter 4.) Chapter 6 could be included to round off an introductory
course on functional analysis.

Chapter 1 could be used on its own as a second course on real analysis
(following the typical advanced calculus course that introduces formal no-
tions of convergence and continuity); it could also be used as a first course
for senior students who have not previously encountered rigorous analysis.
Chapters 1 and 2 together would make a good course on real variables, in
preparation for either the material in Chapters 3 through 5 or a course on
measure theory. The whole book could be used for a sequence of courses
starting with real analysis and culminating in an introduction to functional
analysis.

I have drawn on the resource provided by many excellent existing texts
cited in the bibliography, as well as some original papers (notably [39], in
which Riesz introduced the development of the Lebesgue integral used in
Chapter 2). My first drafts were prepared using the 1% Scientific Word
Processing System; the final version was produced by converting the drafts
to TkX and then using Scientific Word. Both T° and Scientific Word are
products of TCI Software Research, Inc.

I am grateful to the tollowing people who have helped me in the
preparation of this book:

— Patrick Er, who first suggested that I offer a course in analysis for
economists, which mutated into the regular analysis course from
which the book eventually emerged;

— the students in my analysis classes from 1990 to 1996, who suifered
various slowly improving drafts;

— (ris Calude, Nick Dudley Ward, Mark Schroder, Alfred Seeger, Doru
Stetanescu, and Wang Yuchuan, who read and commented on parts
of the book;

— the wondertully patient and cooperative stafl at Springer—Verlag;

— my wife and children, for their patience (in more than one sense).

It is right and proper for me here to acknowledge my unspoken debt of
oratitude to my parents. This book really began 35 years ago, when, with
their somewhat mystified support and encouragement, I was beginning my
love affair with mathematics and in particular with analysis. It is sad that
they did not live to see 1ts completion.

Douglas Bridges
28 January 1997
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Introduction

We may our ends by our beginnings know.
OF PRUDENCE (Sir John Denham)

What we now call analysis grew out ot the calculus of Newton and Leib-
niz, was developed throughout the eighteenth century (notably by Eu-
ler), and slowly became logically sound (rigorous) through the work of
Gauss, Cauchy, Riemann, Weierstrass, Lebesgue, and many others in the
nineteenth and early twentieth centuries.

Roughly, analysis may be characterised as the study of limiting pro-
cesses within mathematics. These processes traditionally include the con-
vergence of infinite sequences and series, continuity, differentiation, and
integration, on the real number line R ; but 1n the last 100 years analysis
has moved far from the one— or finite—dimensional setting, to the extent
that it now deals largely with limiting processes in infinite—dimensional
spaces equipped with structures that produce meaningftul abstractions ot
such notions as limit and continuous. Far from being merely the tantasti-
cal delight of mathematicians, these infinite-dimensional abstractions have
served both to clarity phenomena whose true nature is often obscured by the
peculiar structure of R, and to provide foundations for quantum physics,
equilibrium economics, numerical approximation—indeed, a host of areas ot
pure and applied mathematics. So important is analysis that it 1s no exag-
geration to describe as seriously deficient any honours graduate in physics,
mathematics, or theoretical economics who has not had good exposure to
at least the fundamentals of metric, normed, and Hilbert space theory, it
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not the next step, in which metric notions all but disappear in the turther
abstraction of topological spaces.

Like many students of mathematics, even very good ones, you may find
it hard to see the point of analysis, in which intuition often seems sacri-
ficed to the demon of rigour. Is our intuition—algebraic, arithmetic, and
geometric—not a sufficiently good guide to mathematical reality in most
cases? Alas, it is not, as is illustrated by considering the differentiability ot
functions. (We are assuming here that you are familiar with the derivative
from elementary calculus courses.)

When you first met the derivative, you probably thought that any contin-
uous (real-valued) function—that is, loosely, one with an unbroken graph—
on an interval of R has a derivative at all points of its domain; in other
words, 1ts graph has a tangent everywhere. Once you came across simple
examples, like the absolute value function x — |z|, of functions whose
oraphs are unbroken but have no tangent at some point, it would have
been natural to conjecture that if the graph were unbroken, then it had a
tangent at all but a finite number of points. If you were really smart, you
might even have produced an example of a continuous function, made up
of lots of spikes, which was not differentiable at any of a sequence of points.
This 1s about as far as intuition can go. But, as Weierstrass showed in the
last century, and as you are invited to demonstrate in Exercise (1.5.1:2),
there exist continuous functions on R whose derivative does not exist any-
where. Even this is not the end of the story: in a technical sense discussed
in Chapter 6, most continuous functions on R are nowhere differentiable!
Here, then, is a dramatic failure ot our intuition. We could give examples ot
many others, all of which highlight the need for the sort of caretul analysis
that is the subject of this book.

Of course, analysis i1s not primarily concerned with pathological exam-
ples such as Weierstrass’s one of a continuous, nowhere difterentiable func-
tion. Its main aim is to build up a body of concepts, theorems, and proots
that describe a large part of the mathematical world (roughly, the contin-
uous part) and are well suited to the mathematical demands of physicists,
economists, statisticians, and others. The central chapters ot this book,
Chapters 3 through 5, give you an introduction to some ot the fundamental
concepts and results of modern analysis. The earlier chapters serve either as
a background reference for the later ones or, if you have not studied much
real analysis before, as a rapid introduction to that topic, in preparation
for the rest of the book. The final chapter introduces some of the main
themes of functional analysis, the study of continuous linear mappings on
infinite—dimensional spaces.

Having understood Chapters 3 through 6, you should be in a position to
appreciate such other jewels of modern analysis as

e abstract measure spaces, integration, and probability theory:;
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e approximation theory, in which complicated types of functions are
approximated by more tractable ones such as polynomials of fixed
maximum degree;

e spectral theory of linear operators on a Hilbert space, generalising
the theory of eigenvalues and eigenvectors of matrices:;

e analysis of one and several complex variables:
e duality theory in topological vector spaces;

e Haar measure and duality on locally compact groups, and the
associated abstract generalisation of the Fourier transform;

e ("— and von Neumann algebras of operators on a Hilbert space,
providing rigorous foundations for quantum mechanics;

e the theory of partial differential equations and the related potential
problems of classical physics;

e the calculus of variations and optimisation theory:.

These, however, are the subjects of other books. The time has come to
begin this one by outlining the background material needed in the main
chapters.

Throughout this book, we assume familiarity with the tundamentals of
informal set theory, as found in [20|. We use the following notation for sets
of numbers.

{0,1,2,...}.
{1,2,3,...}.

{0, —11—22 .}
{_:% m, nEN n;é()}

The set of natural numbers: N
The set of positive integers: N7
The set of integers: Z
The set of rational numbers: Q

For the purposes of this preliminary section only, we accept as given the
algebraic and order properties of the set R of real numbers, even though
these are not introduced formally until Chapter 1.

When the rule and domain describing a function f : A — B are known
or clearly understood, we may denote f by

r— f(x).

Note that we use the arrow — as in “the function f : A — B”, and the
barred arrow — as in “the function z — 2° on R”.

We regard two functions with the same rule but different domains as
different tunctions. In fact, we define two tunctions f and ¢ to be equal it
and only if
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e they have the same domain and

e f(x) = g(x) for each x in that domain.

Thus the function = — 2 with domain N is not the same as the function

r — z* with domain R. When considering a rule that defines a function,
we usually take the domain of the function as the set of all objects x (or
at least all z of the type we wish to consider) to which the rule can be
applied. For example, if we are working in the context of R, we consider
the domain of the function x — 1/(x — 1) to be the set consisting of all
real numbers other than 1.

We sometimes give explicit definitions of functions by cases. For example,

0 1if x 1s rational

fla) =

1 1if 2 1s irrational

defines a function f : R — {0, 1}.

A sequence 1s just a special kind of function: namely, one of the form
n — x, with domain N7: x,, is then called the nth term of the sequence.
We denote by (x,,)52, or (x1,x2,...), or even just (x, ), the sequence whose
nth term is z,. (Of course, n is a dummy variable here; so, for example,
(xr) is the same sequence as (x,).) If all the terms of (z,,) belong to a set
X, we refer to (x,,) as a sequence in X. We also apply the word “sequence”,
and notations such as (x,)>2,,, to a mapping n — x, whose domain has
the form {n € Z : n > v} for some integer v.

A subsequence of (x,) is a sequence of the form

(ajnk;)zozl — (ajnl s LmgyLngy -)a

where ny < no < ng < ---. More generally, if f is a one—one mapping of N
into itself, we write (z¢(,))ne1, Or even just (xs(y)), to denote the sequence
whose nth term 1s x;(,). This enables us, in Section 2 of Chapter 1, to
make sense of an expression like Zzozl T ¢(pn), denoting a rearrangement of
the infinite series > "~ x,.

By a finite sequence we mean an ordered n—tuple (x1,...,x,), where n
1S any positive integer.

A nonempty set X is said to be countable, or to have countably many
elements, if it is the range of a sequence. Note that a nonempty finite set
1s countable according to this definition. An infinite countable set is said
to be countably infinite. We regard the empty set as being both finite and
countable. A set that is not countable is said to be uncountable, and to

have uncountably many elements.

Let f,g be mappings from subsets of a set X into a set Y, where Y
1s equipped with a binary operation <. We introduce the corresponding
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pointwise operation < on f and g by setting

(fCg)(x) = f(x)Cg(x)

whenever f(x) and g(x) are both defined. Thus, taking Y = R, we see that
the (pointwise) sum of f and g is given by

(f +9)(@) = flz) + g(2)

if f(x) and g(x) are both defined; and that the (pointwise) quotient of f

and ¢ 1s given by
(f/9)(x) = f(z)/g9(x)

if f(z) and g(x) are defined and g(z) # 0. If X = N7, so that f = (z,)
and g = (y, ) are sequences, then we also speak of termwise operations; for
example, the termwise product of f and g is the sequence (x,y,)5.

Pointwise operations extend in the obvious ways to finitely many func-
tions. In the case of a sequence ( f, )22, of functions with values in a normed
space (see Chapter 4), once we have introduced the notion of a series in a
normed space, we Interpret Zf;l f, 1n the obvious way.

By a family of elements of a set X we mean a mapping A — x) of a set
L, called the index set for the family, into X. We also denote such a family
by () - - A tamily with index set N7 is, of course, a sequence. By a

subfamily of a family (x ) we mean a family () where J C L.

AeL AeJ

[f (S )\, is a family of sets, we write
) Sy={2:IneL (ze8))},
el
ﬂ S)\:{.CC:\V/)\EL(QZ‘ES)\)},
el

and we call (] el 5y and () el 5y, respectively, the wunion and the
intersection of the family (5y)y\.; -
We need some information about order relations on a set. (For fuller
information about orders in general see Chapter 1 of |9].)
A binary relation R on a set X 1is said to be

o reflexive it
Va € X (aRa);

o irreflexive it
Va € X (not(aRa));

o symmetric if

Va,b € X (aRb= bRa);
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o asymmetric it

Va,b € X (aRb = not(bRa));
e antisymmetric it

Va,b € X ((aRb and bRa) = a = b);

e transitive it

Va,b,c € X ((aRa and bRc) = aRc);

o f{otal i
Va,b € X (aRb or bRa).

We use = to represent a reflexive relation, and > to represent an irreflex-
ive one. The notation a < b (respectively, a < b) is equivalent to b > a
(respectively, b > a). When dealing with the usual order relations on the
real line R, we use the standard symbols >, >, <, < instead of =, >, <, <,
respectively.

A binary relation R on a set X 1is said to be

e a preorder if it is reflexive and transitive;

e an equivalence relation if it is a symmetric preorder (in which case X
1s partitioned into disjoint equivalence classes, each equivalence class
consisting of elements that are related under R, and the set of these
equivalence classes, written X/ R, is called the quotient set for R);

e a partial order if it 1s an antisymmetric preorder;
e a total order if it 1s a total partial order;

e a strict partial order if it is asymmetric and transitive—or, equiva-
lently, if it 1s irreflexive and transitive.

If R is a partial order on X, we call the pair (X, R) —or, when there is
no risk ot contusion, just the set X itself—a partially ordered set.

With each preorder = on X we assoclate a strict partial order > and an
equivalence relation ~ on X, defined as follows.

r >y if and only if x>y and not(y > x);
r~y itandonlyit x>y andy> .

If > is a total order, we have the Law of Trichotomy:

)

Ve,y,z€ X (x >yorx=yorx~<y).
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Let S be a nonempty subset of a partially ordered set (X, >>). An element
B € X is called an upper bound, or majorant, of S (relative to =) if B = x
for all x € S. If there exist upper bounds of S, then we say that S is bounded
above, or majorised. An element B € X 1is called a least upper bound, or
supremum, of S if the following two conditions are satisfied.

— B is an upper bound of S;

— if B’ is an upper bound of S, then B’ = B.

Note that S has at most one supremum: for if B, B’ are suprema of S, then
B’ = B »= B’ and so B’ = B, by the antisymmetry of »= . If the supremum
of S exists, we denote it by sup S. We also denote it by

sup x;, maxyS, max x;, or r1VIoV- -V,
1<i<n l<isn

if $={x1,...,2,} is a finite set, and by

0O
sup r, Or \/ ]
n>1

n=1

if S ={x1,x2,...} is a countable set; we use similar notations without fur-
ther comment. An upper bound of S that belongs to S is called a mazimum
element ot S, and is then a least upper bound of S. The maximum element,
if it exists, of S is also called the largest, or greatest, element of S.

An element b € X is called a lower bound, or minorant, of S (relative to
=) if x >= b for all x € S. If there exist lower bounds of S, then we say that
S 1s bounded below, or minorised. An element b € X 1is called a greatest
lower bound, or infimum, ot S if the following two conditions are satisfied.

— b 1s a lower bound of S

— 1f b’ is a lower bound of S, then b = b’.

S has at most one infimum, which we denote by inf S. When describing
infima, we also use such notations as

int x;, minS, min xz;, or x1 Ao A---ANx,
1<i<n 1<i<n

if $ ={xq,...,x,} is a finite set, and

o0
int x,, or /\ T
n>1

_ n=1

if S ={x1,20,...} is a countable set. A lower bound of S that belongs to
S 1s called a minimum element of S, and is a greatest lower bound of 5.
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The minimum element, if it exists, of S is also called the smallest, or least,
element of S.

T'he usual partial order > on R gives rise to important operations on
functions. If f, g are real-valued functions, we write f > g (or g < f) to
indicate that f(x) > g(x) for all x common to the domains of f and g.
Regarding V and A as binary operations on R, we define the corresponding
functions f V g and f A g as special cases of the notion f<g previously
introduced. By extension of these ideas, if (f,,)52; is a sequence of real—
valued functions, then the functions \/__, f, and A _, f, are defined by

whenever the right—hand sides of these equations make sense.
Now let f be a mapping of a set X into the partially ordered set (R, >).
We say that f is bounded above on X it

F(X) = {f(z) : 2 € X}

is bounded above as a subset of Y. We call sup f(X), if it exists, the supre-
mum of f on X, and we denote it by sup f, sup,..y f(2), or, in the case
where X is a finite set, max f. We also use obvious variations on these nota-
tions, such as sup, -, f(n) when X = N7. We adopt analogous definitions
and notations for bounded below on X, infimum of f, inf f, and min f.

Finally, let f be a mapping of a partially ordered set (X, ) into the
partially ordered set (R, >). We say that f is

— increasing if f(x) > f(2’) whenever x = x’;
— strictly increasing if f(x) > f(2’) whenever x >~ z’;
f(x") whenever x > x’; and

— decreasing if f(x) <

— strictly decreasing if f(x) < f(x’) whenever x > a2’

Note that we use “increasing” and “strictly increasing” where some authors
would use “nondecreasing” and “increasing”’, respectively.
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Real Analysis



1
Analysis on the Real Line

1 will a round unvarnish’d tale deliver...
OTHELLO, Act 1, Scene 3

In this chapter we provide a self—contained development of analysis on the real
number line. We begin with an axiomatic presentation of R, from which we de-
velop the elementary properties of exponential and logarithmic functions. We
then discuss the convergence of sequences and series, paying particular atten-
tion to applications of the completeness of R. Section 3 introduces open and
closed sets, and lays the groundwork for later abstraction in the context of a
metric space. Section 4 deals with limits and continuity of real—valued functions;
the Heine—Borel-Lebesgue and Bolzano—Weierstrass theorems prepare us for the
general, and extremely usetul, notion of compactness, which is discussed in Chap-
ter 3. The final section deals with the differential and integral calculus, a subject
that is reviewed from a more advanced standpoint in Chapter 2.

1.1 The Real Number Line

Although it is possible to construct the real number line R from N using
elementary properties of sets and functions, in order to take us quickly
to the heart of real analysis we relegate such a construction to Appendix
A and instead present a set of axioms suflicient to characterise R. These
axioms fall into three categories: the first introduces the algebra of real
numbers; the remaining two are concerned with the ordering on R.
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Axiom R1. R s a field—that is, there exist

a binary operation (x,y) — x + y of addition on R,

a binary operation (x,y) — xy of multiplication® on R,
distinguished elements 0 (zero) and 1 (one) of R, with 0 # 1,
a unary operation x — —x (negation) on R, and

a unary operation x +— x~ 1 of reciprocation, or inversion, on R\ {0}

such that for all z,vy, 2z € R,

r+y=Yy+a,
(@+y)+z=a+(y+2),
0+ 2 = x,
r+ (—x) =0,
LY = YL,

(xy) z = x (yz) ,
x(y + z) = vy + 2z,
lr =z, and
zr ' =1if x #0.

Of course, we also denote ™+ by = or 1/x.

Axioms R2. R is endowed with a total partial order > (greater than
or equal to), and hence an associated strict partial order > (greater than),

such that

e ifx >y, thenx+ 2>y + 2z, and

e if + >0 and y > 0, then xy > 0.

Axiom R3. The least—upper—bound principle: i a nonempty subset S of
R is bounded above relative to the relation >, then it has a (unique) least
upper bound.

The elements of R are called real numbers. We say that a real number
T 1S

e positive it x > 0,

e negative it —x > 0, and

'For clarity, we sometimes write x - y or = X y for the product xy.
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e nonnegative it x > 0.

We denote the set of positive real numbers by R™. and the set of
nonnegative real numbers by R°™T.

Many of the fundamental arithmetic and order properties of R are imme-
diate consequences of results in the elementary theories of fields and partial
orders, respectively. A number of these, illustrating the interplay between
the algebra and the ordering on R, are given in the next set of exercises.”

(1.1.1) Exercises

Prove each of the following statements, where x,y,x;,y; (1 <t < n) are
real numbers.

1 If x; > y; for each 4, then >~ x; > > "y, If also xp > y; for
some k, then Y " x; > > " . ;.

2 x>yitandonlyif x +2 > y+ z for all z € R ; this remains true
with each instance of > replaced by one of > .

3 It x; > 0 for each 7 and Z?:la:i:O, then x1 =20 =---=2x, = 0.

.4 The tollowing are equivalent: t >y, x —y >0, —y > —2, 0 > y — x;
these equivalences also hold with > replaced everywhere by > .

D Itx >y and z >0, then xz > yz.

6 Itx>0andy >0, thenzy >0;if x >0and 0 >y, then 0 > zy; if
0> x and 0 > vy, then xy > 0; and these results hold with > replaced
everywhere by >.

7 22 >0, and z° =0 if and only if z = 0.

8 Ifx>0,then 7! >0;and if x < 0, then 27! < 0.
9 x>yit and only it xz > yz for all z > 0.

10 z >y >0ifandonlyif y= ! > 271 > 0.

.11 max{xz,y} > 0 if and only if x > 0 or y > 0; max{z,y} > 0 if and
only it x > 0 or y > 0.

.12 min{z,y} > 0 if and only if x > 0 and y > 0; min{z,y} > 0 if and
only if x > 0 and y > 0.

“If you are comfortable with the elementary field and order properties of R,
then you can safely omit Exercises (1.1.1) and (1.1.2).
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.13 The mapping

0 itn =20
n— nl = l+1+---+1 ifn>1
N———
n terms

from N into R is one-one and preserves order, addition, and
multiplication.

We use this mapping to identify N with the subset {nl:n € N} of
R. In turn, we then identify a negative integer n with — (—n) 1, and
a rational number m/n with the real number mn~!. We make these
identifications without further comment.

14 If S is a nonempty majorised set of integers, then m = sup S is an
integer. (Assume the contrary and obtain integers n,n’ such that
m—1<n<n <m.)

.15 There exists n € Z such that n — 1 < x < n. (If x > 0, apply the
least—upper—bound principle to S ={k € Z : k < x}.)

16 If z > 0 and y > 0. then there exists n € N such that nx > .
(Consider {k € N : kx <y} .)

T'his important property i1s sometimes introduced as an axiom, the
Axiom of Archimedes.

.17 z > 0 if and only if there exists a positive integer n > z!.

.18 z >0 if and only if x > —1/n for all positive integers n.

.19 Q is order dense in R—that is, if x < y, then there exists ¢ € Q such
that x < ¢ < y. (Reduce to the case y > 0. Choose in turn integers
n>1/(y —x) and k > ny, and let m be the least integer such that
y < m/n. Show that x < (m —1)/n < y.)

.20 If S and T are nonempty majorised sets of positive numbers, then

sup{st:se S, teT}=supS xsupT.

.21 The following are equivalent conditions on nonempty subsets X and

Y of R.

(i) z<yforallz € X and y €Y.
(i1) There exists 7 € Rsuchthat x <7 <y forallz € X and y €Y.
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FEach real number x has a corresponding absolute value, defined as
r| = max{z,—x}.

(1.1.2) Exercises

Prove each of the following statements about real numbers x, v, €.
.1 |x| >0, and |x| =0 if and only if z = 0.
x| < ¢ if and only if —e <z <-e.

x| < eif and only if —e <z < ¢.

AW N

r = 0 if and only if either |x| < € for each ¢ > 0 or else |z| < ¢ for
each ¢ > 0.

D |z +y| < x| + |y| (triangle tnequality).
6 |z —y| > [lz] = |yl

7 oy = 2]yl

5o far we have not indicated how usetul the least—upper—bound principle
1s. In fact, it is not only useful, but essential: the field Q of rational numbers,
with its usual ordering >, satisfies all the properties listed in axioms R1
and R2, so we need something more to distinguish R from Q. Moreover,
without the least—upper—bound principle or some property equivalent to it,
we cannot even prove that a positive real number has a square root.

We now sketch how the least—upper—bound principle enables us to define
a” for any a > 0 and any r € R. When n is an integer, a" is defined as in
elementary algebra. So our first real task is to define a™/™ when m and n
are nonzero integers; this we do by setting

™™ =sup{z € R: 2" <a™}. (1)

Of course, we are using the least—upper—bound principle here, so we must
ensure that the set on the right—hand side of (1) is both nonempty and
bounded above. To prove that it is nonempty, we use the Axiom of
Archime— des (Exercise (1.1.1:16)) to find a positive integer k such that
ka™ > 1; then k"a™ > ka™ > 1, so (1/k)™ < a™. On the other hand, as

(I1+a™)*>14+nam >a™ itn>1, and

T
1 m m '
(1) >1-na™>am ifn<-1

the set in question is bounded above (by 1 + a™ in the first case, and by
1/ (1 +a™) in the second). Hence a™/™ exists.

Our first result enables us to prove some basic properties of a™/™.
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(1.1.3) Lemma. Let a > 0 and s be real numbers, and m,n positive
integers such that s™ < a". Then there exists t € R such that s < t and
"< a

Proof. Using Exercise (1.1.1: 16), choose a positive integer N such that
0 < N~ < min {1, 27" (1 + [s]) " (a™ — 3”)} .

Writing t = s + N~ ! and using the binomial theorem, we have

as we required.

m/n

Taking s = 0 in this lemma, we see that a > (. The lemma also

enables us to prove that
(am/n) — ™. (2)

For if (am/’”’)n < a™, then, by Lemma (1.1.3), there exists t > a™/™ such

that t" < a™, which contradicts the definition of a™/": on the other hand,
that same definition ensures that (a™/ ”)n < a™ and hence that (2) holds.

Using (2) and methods familiar from elementary algebra courses, we can
now prove the usual laws of indices,

a a’ = TS

a”
(@) =a"",

when the indices r, s are rational.
We next extend the definition of a” to cover all r € R. To begin with,
we consider the case a > 1, when we define

a" =sup{a?:qeQ,qg<r}. (3)
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It is left as an exercise to show that the set on the right—hand side of (3)
1s nonempty and bounded above, and that if r is rational, this definition
ogives a” the same value as the one given by our earlier definition. We can
now prove the laws of indices for arbitrary r,s € R. Taking the first law
as an 1llustration, we observe that if u, v are rational numbers with v < r
and v < s, then u+ v <r + s, so

auav _ au—l—fu S CLT_I_S.
By Exercise (1.1.1:20),

a"a® =sup{a®:u e Q,u<r}xsupi{a’:veqQ,v<s}
=sup{a‘a :u,v € Q,u<r v<s}
Sa'r—l—s-

On the other hand, if ¢ € Q and g < r+ s, then we choose rational numbers
u,v with u <r, v <s,and ¢ =u+ v : to do so, we use Exercise (1.1.1:19)
to find v € Q with ¢ — s < v < r and we then set v = g — u. We have

a? = a¥"' = a%a’ < a’"a’.

Hence

a7 =sup{a?:qc Q,qg<r+s}<aa’,

and therefore a"a® = a" 5.
It remains to define

(a‘l)_r f0<a<l1

1 ita=1

and to verify—routinely—that the laws of indices hold in these cases also.

(1.1.4) Exercises

.1 Let a>1 and let r € R. Prove that {a9:q € Q, ¢ < r} is nonempty
and bounded above. Prove also that if r = m/n for integers m, n with
n # 0, then definitions (1) and (3) give the same value for a”.

.2 Prove that if 0 < a # 1 and a” = 1, then x = 0. (Consider first the
case where a > 1, and note that if ¢ € Q and a9 < 1, then ¢ <0.)

.3 Let a >0 and x > y. Prove that it a > 1, then a® > a¥; and that it
a < 1, then a* < a?.

.4 Prove that if a > 0, then for each x > 0 there exists a unique y € R
such that a¥ = x. (First take a > 1 and x > 1. Write a = 1 4t and,
by expanding (1 + t)", compute n € NT such that ¢” > z. Then
consider {q € Q : a? < x}.)
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.5 Let f be a strictly increasing mapping of R onto R™ such that f (0) =
1 and f(x+y) = f(x)f(y). Prove that f(x) = a®, wherea = f(1) > 1.
(First prove that f(q) = a? for all rational q.)

If a > 0, Exercise (1.1.4:4) allows us to define log,, the logarithmic
function with base a, as follows. For each x > 0,

y =log, x if and only if a” = x.

This function has domain R™ and maps RT onto R. From the laws of
indices we easily deduce the laws of logarithms:

log, vy = log, x + log,, vy,
log, (") =rlog, =,

log, x = log, a X log, x, where b > 0.

Anticipating the theory ot convergence of series from the next section,
we 1ntroduce the number
O
1
e=D
=0

and call log, the natural logarithmic function on R™. It is customary to
denote log, by either log or In.

(1.1.5) Exercises

.1 Prove the laws of logarithms.

.2 Prove that if @ > 1, then the function log, is strictly increasing; and
that if 0 < a < 1, then log, is strictly decreasing.

.3 Let a > 1, and let f be an increasing mapping of R™ into R such
that f(a) =1 and f(xy) = f(x) + f(y). Prove that f(x) = log, x.

For convenience, we collect here the definitions of the various types of
interval in R.

The open intervals are the sets ot the following forms, where a, b are real
numbers with a < b :

(a,b) ={xr € R:a <z <b},
(a,00) ={z € R:a <z},
(—o0,b) ={r € R :2x < b},
)
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The closed intervals are the sets of the tollowing forms, where a, b are real
numbers with a < b :

a,bl={z € R:a <z <D},
a,0) ={r € R:a <z},
(—o0,bl ={xr e R:x <b}.

By convention, R 1s regarded as both an open interval and a closed interval.
The remaining types of interval are:

half open on the left:  (a,b]
half open on the right: |a,b)

{reR:a<z< b},
{reR:a<zx<b}.

Intervals of the form |a,b|, (a,b), |a,b), or (a,b|, where a,b € R, are said
to be finite or bounded, and to have left endpoint a, right endpoint b, and
length b — a. Intervals of the remaining types are called infinite and are
said to have length oco. The length of any interval I is denoted by |I|. A
bounded closed interval in R 1s also called a compact interval.

Finally, we define the complex numbers to be the elements of the set
C = R x R, with the usual equality and with algebraic operations of
addition and multiplication defined, respectively, by the equations

(z,y) + (2", y) =(x+ 2",y +y),
) = (e’ — gy’ xy’ + 2'y).

Then x — (x,0) is a one—one mapping of R onto the set C x {0} and is
used to 1dentity R with that subset of C. With this identification, we have
i = —1, where i is the complex number (0,1); so the complex number
(x,y) can be identified with the expression x + iy. The real numbers x and
y are then called the real and imaginary parts of z = (x,y), respectively,

and we write

The conjugate of z is

>K

2" = (x,—y) =x — 1y,

and the modulus of z 1s

2| = Va2 4y,

In the remainder of this book we assume the basic properties of the real
and complex numbers such as those found in the foregoing exercises.
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1.2 Sequences and Series

Although often relegated to a minor role in courses on real analysis, the
theory ot convergence of sequences and series in R provides both a model
for more abstract convergence theories such as those in our later chapters,
and many important examples.

It is convenient to introduce here two useful expressions about properties
of positive integers. Let P(m,n) be a property applicable to pairs (m,n) of
positive integers. If there exists N such that P(m, n) holds for all m,n > N,
then we say that P(m,n) holds for all sufficiently large m and n. We
interpret similarly the statement P(n) holds for all sufficiently large n,
where P(n) is a property applicable to positive integers n. On the other
hand, if for each positive integer ¢ there exists a positive integer 7 > 1 such
that P(j) holds, then we say that P(n) holds for infinitely many values of
n.

We say that a sequence® (a,,) of real numbers converges to a real number
a, called the limit of (a,), if for each € > 0 there exists a positive integer
N, depending on €, such that |a —a,| < ¢ whenever n > N. Thus (a,)
converges to a if and only if for each ¢ > 0 we have |a — a,| < ¢ for all
sufficiently large n. In that case we write

lim a, = a
11— OO

OrI
ap, — Q@ as N — 00,

and we also say that a,, tends to a as n — 0.
On the other hand, we say that (a,,) diverges to oo, and we write

A, — OO as N — 00,

it for each K > 0 we have a,, > K for all sufficiently large n. If for each
K > 0 we have a,, < —K for all sufficiently large n, then we say that (a,)
diverges to —oo, and we write

a, — —00 as n — oQ.

(1.2.1) Exercises

.1 Prove that if (a,) converges to both a and a’, then a = a’. (Show
that |a — a’| < € for each € > 0. This exercise justifies the use of the
definite article in the phrase “the limit of (a,)”.)

*We can extend the definitions of convergence and divergence of sequences in
the obvious ways to cover families of the form (an)n>,, where v € Z; all that
matters is that a, be defined for all sufficiently large positive integers n. This
observation makes sense of the last part of Proposition (1.2.2), where we discuss
the limit of a quotient of two sequences.
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.2 Let ¢ > 0. Prove that (a,) converges to a if and only if for each
e > 0 there exists a positive integer /N, depending on €, such that

a— an| < ce foralln > N.

.3 Prove that if a sequence (a,,) converges to a limit, then it is bounded,
in the sense that there exists ¢ > 0 such that |a,,| < ¢ for all n.

4 Let r € R, and let (a,) be a convergent sequence in R such that
lim,,_,~ a, > r. Prove that a,, > r for all sufliciently large n.

.5 Let r € R, and let (a,) be a convergent sequence in R such that
a, > r for all sufficiently large n. Prove that lim,,_, ., a,, > 7.

.6 Prove that if (a,) diverges to infinity and (b,,) converges to a limit
b € R, then the sequence (a,, + b,,) diverges to infinity.

The process of taking limits of sequences preserves the basic operations
of arithmetic.

(1.2.2) Proposition. Let (a,) and (b,) be sequences of real numbers
converging to limits a and b, respectively. Then as n — oo,

a, + b, — a -+ 0,
an, — b, — a —0b,
a,b,, — ab,
max {a.,, b, } — max{a,b},
min{a,,b,} — min{a,b}, and
a,| — |al.

If also b #~ 0, then b, # 0 for all sufficiently large n, and a, /b, — a/b as
n — CCQ.

Proof. We prove only the last statement, leaving the other cases to
Exercise (1.2.3:1).

Assume that b # 0. Then, by Exercise (1.2.1:4), there exists Ny such that
b,| > 3 |b], and therefore a,, /b, is defined, for all n > Ny. Given € > 0,
choose N > Ny such that |a, —a| < ¢ and |b, — b| < € for all n > N. For

all such n we have

an a| |bay — aby|
bn O] |ba| D)
b(a, —a)+ a(b— by,)|
= >
5 0]

)

<267 (|| |arn — a| + |a| |b—by]|)
2

<26 ~(Ja| + |0])e.
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The result now follows from Exercise (1.2.1:2).

(1.2.3) Exercises

.1 Prove the remaining parts of Proposition (1.2.2).

.2 Prove that it £k > 2 and v > 1 are integers, then

(1 llf)k_l > % and (1 }f)y(k_l) > V.

Hence prove that if 0 < |r| < 1, then ™ — 0 as n — oo. (Given
e > 0, first choose v such that 1/v < e. Then choose k such that

T > 14 kL)
.3 Prove that if »r > 1, then r* — o0 as n — oc.

.4 Prove that it a > 1, then log, n — oo as n — oc.

.5 Prove that if r = lim, .a,, then » = limg . a,, for any
subsequence (@, )72, of (ay).

.6 Let (a,) be a sequence of real numbers such that the subsequences
(a2n, )21 and (a2p11)52 1 both converge to the limit [. Prove that (a,,)

converges to (.

.7 Let (a,) be a sequence in R. Prove that if the three subsequences
(a2n), (a2n11), and (as,) are convergent, then so is (ay).

.8 Give an example of a sequence (a,,) of real numbers with the following
properties.

(i) (ap) is not convergent;

(ii) for each k > 2 the subsequence (ar, )52 is convergent.

(Split your definition of a,, into two cases—one when n is prime, the
other when n is composite.)

When we apply notions such as bounded above, supremum, and infimum
to a sequence (s, ) of real numbers, we are really applying them to the set
{sn :n > 1} of terms of the sequence. Thus the supremum (respectively,
infimum) of a majorised (respectively, minorised) sequence (s,,) is denoted
by sup,,~ Sn, Or just sup s, (respectively, inf,,~1 s, or just inf s, ).

The next result, known as the monotone sequence principle, is a powerful
tool for proving the existence of limits.

(1.2.4) Proposition. An increasing majorised sequence of real numbers
converges to its least upper bound; a decreasing minorised sequence of real

numbers converges to 1ts greatest lower bound.
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Proof. Let (s,) be an increasing majorised sequence of real numbers, and
s 1ts least upper bound. For each € > 0, since s — ¢ 1s not an upper bound

of (s

n), there exists N such that sy > s —¢. But (s,) is both increasing

and bounded above by s; so for all n > N we have s — ¢ < s5,, < s and

therefore |s — s,| < €. Since ¢ > 0 is arbitrary, it follows that s, — s as
n — OQ.

The case of a decreasing minorised sequence is left as an exercise.

(1.2.5) Exercises

.1

.2

Prove the second part of the last proposition in two ways.

Prove that an increasing sequence of nonnegative real numbers
diverges to infinity if and only if it is not bounded above.

Let a > 1 and x > 0. Prove that there exists an integer m such
that a™ < x < a™*!. (First take x > 1, and consider the sequence

(@" )=o)

Discuss the convergence of the sequence (a,) defined by a,i1 =
\/Tan, where a; and r are positive numbers.

Prove that if 0 < a and k£ € N, then lim,,_,,, "*/a = 1. (First

consider the case where K = 0 and 0 < a < 1. Apply the monotone
sequence principle to show that the sequence ({/a) _, converges to

a limit /. By considering the subsequence ( %/a), show that v/{ = [.)

Prove that if (a,) is a sequence of positive numbers such that

Un41

[ = hm
1 —> OO an

exists, then lim,,_, ., /a,, = [. By considering the sequence
1,a,ab,a®b, a’b”, a’b*,a’b", . . .,

where a, b are distinct positive numbers, show that the converse is
false.

Prove that if n > 2, then (n + 1)® < n"tl. Use this to

show that [ = lim,,_.,, /n exists. By considering the subsequence
(2{”/ Qn) 20:1, prove that [ = 1. Hence show that if ¢ > 1, then

lim,, (n_l log, n) — (.

Prove that the sequence ((1 + n_l) )n , 1s convergent. (An interest-
ing proof of this result, based on the well-known inequality involving
arithmetic and geometric means, is found in |32].)
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.9 Let (a,) be a sequence of real numbers. If (a,,) is bounded above,
then its upper limit, or limit superior, is defined to be

lim sup a,, = 1]f;f1 SUP{ @y Ay i1y Gyt 2y - - -}
n_

if the infimum on the right exists. Prove that a real number s equals

lim sup a,, it and only if for each € > 0,

— a, < s+ ¢ for all sufficiently large n, and

— a, > s — ¢ for infinitely many values of n.

Prove also that

limsup a, = lim sup{a,,ani1,anio,...}.
1L —> OO

.10 If (a,) is bounded below, then its lower limit, or limit inferior, is
defined to be

liminf a,, = supinf{a,,ani1,an1o,...}
n>1

if the supremum on the right exists. Establish necessary and sufficient
conditions for a real number [ to equal lim inf a,,.

.11 Prove that a,, > a € R as n — oo if and only if

limint a,, = a = lim sup a,,.

A sequence (5,)>2; of subsets of R is said to be nested, or descending,

if S1 D 53 D 53 D -+ . We make good use of the following nested intervals
principle.

(1.2.6) Proposition. The intersection of a nested sequence of closed
intervals in R 1s nonempty.

Proof. Let (|a,,b,|) be a nested sequence of closed intervals in R. Then

a1 < Ap < Apt1 < Opp1 < 0 < 0y (1)

for each n. By Proposition (1.2.4), (a,,) converges to its least upper bound
a, and (b,) converges to its greatest lower bound b. It follows from the
inequalities (1) and Exercise (1.2.1:5) that a < b. So for each n, a, < a <
b < b,, and therefore a € |a,,b,|.

The following elementary lemma leads to simple proots of several
important results in analysis.

(1.2.7) Lemma. If (a,) is a sequence of real numbers, then at least one

of the following holds.
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(i) (ay,) has a constant subsequence;
(i1) (ay) has a strictly increasing subsequence;

(iii) (ay,) has a strictly decreasing subsequence.

Proof. Suppose that (a,) contains no constant subsequence, and con-
sider the set

S={neN":Vk>n (a, > ax)}.

If S is bounded, then there exists /N such that
Vn>N3dk >n (ax > ay),

and a simple inductive construction produces positive integers N < nj <
ng < --- such that a,,,, > a,, for each k. Ii, on the other hand, 5 is
unbounded, then we can compute ny < ng < --- such that a,, > ap, , for
each k. In that case, since (a,, )7°; contains no constant subsequence, for
each k there exists j > k such that a,, > a,;; it is now straighttorward to
construct a strictly decreasing subsequence of (a,, ).

(1.2.8) Corollary. A bounded sequence of real numbers has a convergent
subsequence.

Proof. This follows from Lemma (1.2.7) and the monotone sequence
principle.

A sequence (a,,) of real numbers is called a Cauchy sequence if for each
e > 0 there exists a positive integer IV, depending on ¢, such that |a,,—a,| <

e tor all m,n > V.

(1.2.9) Exercises

.1 Prove that a convergent sequence of real numbers is a Cauchy
sequence.

.2 Prove that a Cauchy sequence is bounded.

.3 Prove that if a Cauchy sequence (a,) has a subsequence that
converges to a limit a € R, then (a,,) converges to a.

.4 Let (a,) be a bounded sequence each of whose convergent subse-
quences converges to the same limit. Prove that (a,) converges to
that limit. (cf. Exercises (1.2.3:6 and 7). By Corollary (1.2.8), there
is a subsequence (a,, ) that converges to a limit [. Suppose that (a,,)
does not converge to [, and derive a contradiction.)
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One of the most important results in convergence theory says that not
only does a Cauchy sequence of real numbers appear to converge, in that
1ts terms get closer and closer to each other as their indices increase, but
1t actually does converge.

A subset S of R is said to be complete if each Cauchy sequence in S
converges to a limit that belongs to S.

(1.2.10) Theorem. R is complete.

Proof. Let (a,) be a Cauchy sequence in R. Then (a,) is bounded,
by Exercise (1.2.9:2). It follows from Corollary (1.2.8) that (a,) has a
convergent subsequence; so (a,) converges, by Exercise (1.2.9:3).

(1.2.11) Exercises

.1 Find an alternative proof of the completeness of R. (Given a Cauchy
sequence (a,) in R, consider lim inf a,,.)

.2 Show that if, in the system of axioms for R, the least—upper—
bound principle is replaced by the Axiom of Archimedes (Exercise
(1.1.1:16)), then the nested intervals principle is equivalent to the

completeness of R. Can you spot where you have used the Axiom of
Archimedes?

.3 Under the conditions of the preceding exercise, show that the least—
upper—bound principle follows from the completeness of R. (Assum-
ing that R is complete, consider a nonempty majorised subset S of
R. Choose s1 € S and by € B, where B is the set of upper bounds
of S. Construct a sequence (s, ) in S and a sequence (b, ) in B such
that

Sn<3n 1<bn 1<bn

and
0 < bn—l—l — Sn+1 < %(bn o Sn)

Prove that 0 < b, — b,, <2 ""%(by — s1) whenever m > n, that (s,)
and (b,,) converge to the same limit b, and that b = sup S.)

.4 Prove Cantor’s Theorem: if (a,) is a sequence of real numbers, then
in any closed interval of R with positive length there exists a real
number x such that x # a,, for each n. (For each x € R and each
nonempty S C R, define the distance from x to S to be the real
number

p(x,S) =inf{|lz —s| : s € §}.

First prove the following lemma. If I = |a,b| is a closed interval
with positive length, and .Jq,.Js, J3 are the left, middle, and right
closed thirds of I, then for each real number z either p(x, J;) > 0
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or p(x,J3) > 0. Use this lemma to construct an appropriate nested
sequence of closed intervals.

This argument is a refined version of the “diagonal argument” first
used by Cantor. An interesting analysis of Cantor’s proot, and of the
misinterpretation of that proof over the years, is found in [19].)

.5 Prove that R\Q is order dense in R.

The study of infinite series, a major part of analysis in the eighteenth
and nineteenth centuries (see |27]), still provides interesting illustrations of
the completeness of R.

Let (a,,)>2; be a sequence of real numbers. The real number

k
Sl — E Uy
n=—1

is called the kth partial sum of the series > | a,. Formally, we define
the series Y "~ | a, with nth term a, to be the sequence (s1,s2,...) of its
partial sums. The sum of that series is the limit s of the sequence (s,), if
that limit exists, in which case we say that the series is convergent, or that
1t converges to s, and we write

OO
E Ay, — S
n—=—1

We use analogous notations and definitions for the series associated with
a family (a,)>2, of real numbers indexed by {n € Z : n > v}, where v is
an integer, and for the series ) " a, associated with a family (a,) .7
indexed by Z. We commonly write Y a, for the series  ~ a,, when it
is clear that the indexing of the terms of the series starts with v.

The completeness of R is used in the justification ot various tests for the
convergence of infinite series. These tests are usetul because they enable us
to prove certain series convergent without finding explicit values for their
sums. For example, a number of convergence tests easily show that the
series » "~ n~“ is convergent; but it is considerably harder to show that
the sum of this series is actually 7°/6 (Exercise (5.2.12: 7); see also [31]).

We begin with the comparison test.

(1.2.12) Proposition. If> °" . b, is a convergent series of nonnegative
terms, and if 0 < a,, < by, for each n, then Y " a, converges.

Proof. Let b be the sum of the series > ", b,,. Then for each N we have

N N+1 N+41
D an< ) an< ) by <b,
n=1 n=1 n=1
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so the partial sums of Zzozl a, form an increasing majorised sequence. It
follows from the monotone sequence principle that Z;O:l @,, COnverges.

(1.2.13) Proposition. If (a,) is a decreasing sequence of positive num-

bers converging to 0, then the alternating series » °~  (—1)" La, converges

(Leibniz’s alternating series test).

Proof. For each k let

k
n=1
'Then
Sok+2 — Sok = G2k+1 — A2k+2 = U
and

a1 — S = (a2 —az) + ... + (a2k—2 — a2x—1) + a2 > 0.
So the sequence (s2r )72 is increasing and bounded above; whence, by the

monotone sequence principle, it converges to its least upper bound s. Now,

|5 — 52m—|—1| — |5 — S2m af2m—|—1| < |3 — 32m| - A2m1-1-

Also, both |s — so,,| and ao,, 11 converge to 0 as m — oo. It follows that if
e > 0, then |s — s9,,| < € and |s — S9,, 11| < € for all sufficiently large m.
Hence Y >~ (—1)""'a, converges to s, by Exercise (1.2.3:6).

(1.2.14) Exercises

.1 Prove that if the series ) a, converges, then lim, ., a, = 0. By
considering Y >~ . 1/y/n, or otherwise, show that the converse is false.

.2 Prove the comparison test using the completeness of R, instead ot
the least—upper—bound principle.

.3 A series of nonnegative terms is said to dwverge if the corresponding
sequence (s,) of partial sums diverges to infinity. Prove the limit

comparison test: If (a,) and (b,,) are sequences of positive numbers

such that .
lim — =1> 0,

nN—2>0C0 n,

then either » a, and » b, both converge or else they both diverge.

.4 Prove that if |r| < 1, then the geometric series > "~ ,r™ converges
and has sum 1/ (1 — r). What happens to the series if |r| > 17

.5 Let b > 2 be an integer, and = € |0,1]. Show that there exists a
sequence (a,) of integers such that
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(i) 0 <a, < b for each n, and
(i) z=>"", apb™".

Show that this sequence (a,,) is uniquely determined by x unless there
exist k,n € N such that x = kb™", in which case there are exactly
two such sequences.

Conversely, show that if (a,) is a sequence of integers satisfying

(i), then > "~ a,b™™ converges to a sum z in [0,1]. (The series

> ", apb™™ is called the b—ary expansion of x, or the expansion of x

relative to the base b. It b = 2, the series is the binary expansion ot
x, and if b = 10, it is the decimal expansion.)

.6 Prove that

(i) Y07, 1/nP is divergent if p < 1;
(i1) >° . (—1)"/n is convergent.

n=—1

(For (i), first prove the divergence of > "~ . 1/n by considering the
N
partial sums 2727;1 1/nfor N=1,2,....)
.7 Prove that the series

1, 1, 1+ 4 .0 1 1 4 o014 1 4 1 4 . ..
9 ' 19 ' 29 89 ' 90 ' 91 99 ' 109 ' 119 ’

where each term contains the digit 9, diverges; and that the series
l+54+3+-+5+s5+-+ig+s5+-,

where no term contains the digit 9, converges. (Thus the divergent
series Y >~ . 1/n can be turned into a convergent one by weeding out
all the terms that contain the digit 9. For a discussion of this and
related matters, see |3|.)

.8 Prove that if p > 2, then the series > "~ 1/n? is convergent.

.9 Prove d’Alembert’s ratio test: let » a, be a series of positive terms

such that
Un+1

[ = lim
1 —> OO CL,n

exists; then )  a, converges if [ < 1, and diverges if [ > 1. (In the
first case, choose r € (I,1) and N such that 0 < a,,4+1 < ra, for all
n > N.)

Give examples where [ = 1 and (i) )  a, converges, (ii) ) a, diverges.
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.10 Prove that > "~ 1/n! converges and has sum < 3. Show also that
T T
1 3 1\" 1
Z k! 2N < (1 ' n) < Z k!
k=0 k=0

for all n > 3, and hence prove that lim,,_ ~ (1 + n_l)n => " 1/nl

.11 Prove Cauchy’s root test: let » a, be a series of positive terms, and

[ = lim sup Vay,:

then » a, converges if [ < 1, and diverges if [ > 1.

.12 Discuss the convergence of the series

What does this series and Exercise (1.2.5: 6) tell you about the relative
strengths of the ratio test and the root test?

.13 Let (a,) be a decreasing sequence of nonnegative real numbers, and

for each NN let

N N
SN = E Ay, IN = i 2" aon .

Show that

(ii) if m > 2%, then s, > 3tn.

(i) if m < 2%, then s,, < ty, and

Hence prove that > "~ a, converges if and only if ) ", 2"agn
converges.

.14 Use the preceding exercise to show that >~ . 1/nP converges if and
only if p > 1 (cf. Exercises (1.2.14: 6 and 8)).

.15 Let (a,)°", and (b,)°2, be sequences of real numbers, and for each

N write Sy = ZQLO a,. ohow that if £ > 7, then

k k—1
> anby =Y Sp(by —bpi1) + Sk — Sj—1b;.
n=j

n=j
Now suppose that

(i) there exists M > 0 such that |S,,| < M for all n,

(ii) b, > b,41 for each n, and



1.2 Sequences and Series 31
(iii) lim,,_ oo b, = 0.

Prove that if £ > 3, then Zk apby| < 2Mb;, and hence that

=)

> o anby, converges. Use this result to give another proof of
Leibniz’s alternating series test.

A series )  a, of real numbers is said to be absolutely convergent it )  |a,,
1S convergent.

(1.2.15) Proposition. An absolutely convergent series is convergent.

Proof. Let ) a, be absolutely convergent. Since the partial sums of
Y |a,| form a Cauchy sequence, for each € > 0 there exists /N such that

Kk J k
2 lan =) lanl| = > lan] <e
n=1 n=1 n=y

whenever £ > 7 > N. For such 7 and k£ we have

k 7
E Uy — E Un
n—=—1 n=1

k

k
Zan < Z a,| < e€.
n=j

n=y

Thus the partial sums of ) a, form a Cauchy sequence; whence ) a, is
convergent, by the completeness of R.

The case p = 1 of Example (1.2.14:6) shows that the converse of
Proposition (1.2.15) is false.

By a power series we mean a series of the form ZZO:() an,x", where the
coefficients a,, € R. Such a series always converges for £ = 0, but it may
converge for nonzero values of x. Its radius of convergence is defined to be

X0
sup {r >0 : Z a,x" converges whenever |x| < r}

n=0

if this supremum exists, and oo otherwise; and its interval of convergence
1s the largest interval I such that the power series converges tor all z € 1.
[t is an immediate consequence of Exercise (1.2.16:10) that every power
series has both a radius and an interval of convergence.

(1.2.16) Exercises

.1 Find an alternative proof of Proposition (1.2.15).

.2 Prove that the series >~ nr™ converges absolutely if —1 < r < 1.
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Let » a,, > b, be convergent series of nonnegative terms, with sums
a, b, respectively, and let

Up = G110y + a2by_1 4+ -+ + ap_102 + a,by.
Prove that
N N N N
n=1 n=1 n=1 n=1

and hence that »  wu, converges to the sum ab ( Cauchy’s theorem on
the multiplication of series). Extend this result to the case where the
terms a,, may not be nonnegative but » a,, is absolutely convergent.

(Writing

S

|
]2
§CT‘

|
Sy
|
N
~
S

Ok

show that
N N N
Zun — bzaﬂn T ZakﬁN—ka
n=1 n=1 k=0

and hence that ij:o arBn_r — 0as N — 00.)

Show that Zoo_l (—1)" /\/'n, + 1 converges, but that the product (as

in the preceding exercise) of this series with itself does not converge.

Prove that the exponential series

0 aj‘n
exp(x) = Z ol
n=0

converges absolutely for all x € R. Then prove that
exp(x +y) = exp(z) exp(y).

Prove that exp(z) = e*, where e = exp(1). (Use Exercise (1.1.4:5).)

Show that
N

1 3
0<e=D 1 (N 1 1)

n=0

for each NV, and hence calculate e with an error at most 107°.

Prove that e is irrational. (Suppose that e = p/q, where p
and g are positive integers. Choose N > max{q,3}, show that
N> o~ niil/n! is an integer, and use the inequality from the
preceding exercise to deduce a contradiction.)
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Show that
: T\
e’ = lim (1 + —)

N—> 00 Tl

for each x € R. (First take > 0. Expand s,, = (1 + 2/n)" using the
binomial theorem, and use the monotone sequence principle.)

For each n define

Yn =1+ % | é - ,}L log n
Show that

1+n_1

1)n—l—1

e<(1ln < e

for each n, and hence that the sequence (7,) is decreasing and
bounded below. It tollows from the monotone sequence principle that
Euler’s constant

v = lhm v,

nN—>00

exists. Show that

— (=)
D ="2Nn — v +log?2

n=—1

and hence that

N
—1\" 1
E (—1) = log 2.
T

n—=—1

(cf. Exercise (1.2.14:6).)

Let 7 > 0. Prove that if » "~ ja,z™ converges for x = r, then it
converges absolutely whenever || < r; and that if this power series

diverges for x = r, then it diverges whenever |x| > r. (For the first
part, show that there exists M > 0 such that |a,z"| < M |x/r|" for
all n.)

Find the radius of convergence and the interval of convergence for
> g™
Find the radius of convergence and the interval of convergence for

Zz,o:o(_l)nafn/n-

Suppose that a,, # 0 for all n, and that

. U1
lim =
n—oo | a,

Show that if [ = 0, then Y "~ a,z™ converges for all x € R; and that
if [ # 0, then the series has radius of convergence 1/I.
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.14 Let (a,)>2, be a bounded sequence of real numbers, and let

| = limsup {/|ay|.

Show that if [ = 0, then ZZO:O an,x™ converges for all x € R; and that
if [ #£ 0, then the series has radius of convergence 1/I.

.15 Prove that if ({/|a,]) is an unbounded sequence, then the power

. 0
series » ~~ . a,x" only converges for x = 0.

.16 Prove that the power series

o0 o0
E AT, E na,xz" ', and E

‘N —|— 1
n=0 n=1

have the same radius of convergence. Need they have the same interval
of convergence?

By a rearrangement of an infinite series >~ an we mean a series of
the form >~ | as(,) where f is a permutation of N (that is, a one—one

mapping of N™ onto itself). A theorem first proved by Riemann shows
that if » a, is a convergent, but not absolutely convergent, series of real
numbers, then for each real number s there exists a rearrangement of »  a,,
that converges to s. The second exercise in the next set leads you through
a proot of this remarkable result.

(1.2.17) Exercises

.1 Prove that if » a, is absolutely convergent, with sum s, then any

rearrangement of > a,, converges to s. (Given a permutation f of N
and a positive number ¢, choose N such that > 7 L1 |an| <e. Then
choose M > N such that {1,2,...,N} C {f(1),f(2),...,f(M)}.
Show that Y " arm) — S| < 25 for all m > M.)

Let >~ | a, be an infinite series of real numbers that converges but is
not absolutely convergent. For each n define a,, = max{a,,0}, a, =
min {a,,0}. Prove that the partial sums of the series > "~ . a" and
> -_, a, form increasing unbounded sequences. Now let s be any real
number Let ng and mg both equal 0, and let ny be the least positive
integer such that

a;rJra;Jr---Jra;Z > 8.

Show how to construct strictly increasing sequences (ng),_, and
(mg),_q of positive integers such that for each N > 0,

N—1

Z ((a;’bl_k—l-l T _I_a’;l’b_kJrl) T (a;'lk+1 T _I_a’;’bszrl)) < S
k=0
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and

N—1 _ _
k=0 ((a’;’ﬂ“ +..,+a;:k+1) ™ (amk“ +---+amk+1))

+ +
(a/nN_|_1 e CLnN_I_l) > S.
Hence obtain a rearrangement of Z,Zozl a, that converges to s.

.3 Let s be the sum of the series > "~ (—1)""'/n. Show that the series

1 1,1 1 1,1 1 1,
2 4 "3 76 8 T"5 10 12

1

converges to % log 2.

1.3 Open and Closed Subsets of the Line

In this section we introduce the fundamental topological notions of “open
set” and “closed set” in R, notions that readily generalise in later, more
abstract contexts.

A subset A of R is said to be open (in R) if to each x € A there
corresponds r > 0 such that the open interval (z — r, z + r) is contained in
A —or, equivalently, such that y € A whenever |z — y| < 7.

(1.3.1) Exercises

.1 Prove that R itself, the empty set (), and all open intervals are open
subsets of R.

.2 Give an example of a sequence of open subsets of R whose intersection
1S not open.

The first result in this section describes the two tundamental properties
of open sets.

(1.3.2) Proposition. The union of any family of open sets is open. The
intersection of any finite family of open sets is open.

Proof. Let (A;);cr be any family of open sets. If  belongs to the union
U of this family, then x € A; for some 7. As A; is open, there exists r > 0
such that

(x —r,x+1r)C A; CU.

Hence U 1s open.
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Now let Aq,..., A, be finitely many open sets, and consider any x in
their intersection. For each 7, since x € A; and A; is open, there exists
r; > 0 such that y € A; whenever |z — y| < r;. Let

r=min{ry,...,r,} > 0.

If |x —y| < r, then y € A; for each i, so y € [)._; A;. Hence [),_, A; is
open.

In view of Exercise (1.3.1:2), we cannot drop the word “finite” from the
hypothesis of the second part of Proposition (1.3.2).

Our next aim is to characterise open sets in R; to achieve this, we first
characterise intervals.

A nonempty subset S of R is said to have the intermediate value property
if (a,b) C S whenever a € S, b € S, and a < b. Of course, as we show in
Section 4, this notion is connected with the Intermediate Value Theorem
of elementary calculus.

(1.3.3) Proposition. A subset S of R has the intermediate value
property if and only if it 1s an interval.

Proof. It is clear that every interval in R has the intermediate value
property. Conversely, suppose that S C R has that property. Assume, to
begin with, that S is bounded, and let a be its infimum and b its supremum.
Note that x ¢ S if either x < a or x > b. If a and b both belong to S, then
by the intermediate value property, so does every point of |a, b|; whence
S =la,bl. If a € S and b ¢ S, consider any x such that a < x < b. By
the definition of “supremum”, there exists s € .S such that a < x < s; the
intermediate value property now ensures that x € S; whence S = |a,b).
Similarly, if a ¢ S and b € S, then S = (a, b|. The remaining cases are left
as exercises.

(1.3.4) Exercises

.1 Prove that a nonempty open subset of R with the intermediate value
property 1s an open interval.

.2 Complete the proof of Proposition (1.3.3) in the remaining cases.

.3 Let I,J be open intervals with nonempty intersection. Prove that
I UJ and I N J are open intervals.

(1.3.5) Lemma. A nonempty family of pairwise—disjoint open intervals
of R s countable.

Proof. Let F be a nonempty family of pairwise—disjoint open intervals
in R, and note that, by Exercise (1.1.1:19), each of these intervals contains
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a rational number. The Axiom of Choice (see Appendix B) ensures that
there is a function f : F — Q such that f(I) € I for each I € F. Since the
sets in F are pairwise disjoint, f is one—one and so has an inverse function
g mapping f(F) onto F. As Q is countable and f(F) C Q, there exists a
mapping h of N™ onto f(F); the composite function g o h then maps N7
onto F, which is theretore countable.

(1.3.6) Proposition. A nonempty subset of R is open if and only if it
1S the uniton of a sequence of pairwise—disjoint open intervals.

Proof. It follows from Proposition (1.3.2) and Exercise (1.3.1: 1) that the
union of any tamily of open intervals is an open set. Conversely, given a
nonempty open subset S of R, define a binary relation ~ on S by setting
r ~ y if and only if there exists an open interval I C S such that z,y €
I. Then ~ 1s an equivalence relation: it is straightforward to prove the
reflexivity and symmetry of ~, and its transitivity follows from Exercise
(1.3.4: 3). Clearly, the equivalence class  of x under ~ is a union of open
intervals and is therefore an open set. Consider points y, 2 € £ and a real
number ¢ with y < ¢t < z. Choosing open intervals [,,, [, C S such that
z,y € I, and =,z € I,, we see from Exercise (1.3.4:3) that I, U I, is an
open interval; so t € (y,z) C I, U I,, and therefore either x,t € I, C S or
else x,t € I, C S. Hence x has the intermediate value property. It follows
from Exercise (1.3.4:1) that & is an open interval. Since any two distinct
equivalence classes under ~ are disjoint, we now see that

S=|)
reS

is a union of pairwise—disjoint open intervals. Reference to Lemma (1.3.5)
completes the prootf.

A real number x 1s an nterior point of a set S C R if there exists r > 0
such that (x —r, x+1r) C S. The set of all interior points of S is called the
intertor of S, and is written S°. By a neighbourhood ot x we mean a set
contalning x 1n 1ts 1nterior.

(1.3.7) Exercises

.1 Let S be a nonempty open subset of R, and for each x € S consider
the sets

U, ={teR:(x,t) C S},
L,={seR:(s,x) CS}.

Let @ = infL,, b = supU,, and I, = (a,b), where a = —oc if L,
1s not bounded below, and b = oo if U, is not bounded above. Give
another proof of Proposition (1.3.6) by showing that ([;),cs is a
family of disjoint open intervals whose union is S.
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.2 Prove that the interior of an open, closed, or half open interval with
endpoints a and b, where a < b, is the open interval (a, b).

.3 Show that (5°)° = S°.

.4 Prove that S° is the largest open set contained in S —in other words,
that

(i) S° is open and S° C §;
(ii) if A is open and A C S, then A C 5°.
.5 Prove that S is open it and only if S C S°.

.6 Prove that S° is the union of the open sets contained in S.

.t Prove that

(i) it S € T, then S° C T°;
(i) (SNT)°e=8°NT".

.8 Prove that U is a neighbourhood of x € R if and only if there is an
open set A such that r € A C U.

Let x be a real number, and S a subset of R. We call x a cluster point
of S if each neighbourhood of x has a nonempty intersection with 5; or,
equivalently, if for each € > 0 there exists y € S such that |x — y| < . The

closure of S (in R) is the set of all cluster points of .S, and is denoted by
S or S™. S is said to be closed if S = 8S.

(1.3.8) Exercises

1 Is Q closed in R” Is it open in R

.2 Show that the closure of any interval with endpoints a and b, where
a < b, is the closed interval |a, b].

.3 Show that (?) — 9.

.4 Prove that S is the smallest closed set containing S —in other words,
that

(i) S is closed and S C S;
(ii) if A is closed and S C A, then S C A.

.5 Prove that S is closed if and only if S C S.

.6 Prove that S is the intersection of the closed sets containing S.
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.7 Prove the following.

(i) If S C T, then S C T}
(ii) SUT =SUT.

.8 Prove that

(i) the complement of S° is the closure of R\S;
(i) the complement of S is the interior of R\/S.

.9 The boundary, or frontier, of a set S C R is the intersection of the

closures of S and R\ S. Describe the boundary of each of the following
sets: R, 0, (a,b] (where a < b), Q.

.10 Prove that a belongs to the boundary of S\{a} if and only if a &

S\{a}.

.11 Let C be the Cantor set—that is, the subset of |0, 1| consisting of all
numbers that have a ternary (base 3) expansion » ", a,3~" with
an € 10,2} for each n. Prove that

(i) if a,b are two numbers in C' that differ in their mth ternary
places, then |a — b| > 37";

(ii) C'is a closed subset of R;

(iii) C' has an empty interior.

What is the boundary of C7

(1.3.9) Proposition. S is closed if and only if R\S is open.

Proof. Suppose that S is closed, and consider any x € R\S. Since S = S,
x 1s not a cluster point of S; so there exists a neighbourhood U of x that
is disjoint from S. By Exercise (1.3.7:8), there is an open set A such that
reACU. Then ANS =10, so AC R\S; whence, by Exercise (1.3.7:8),
R\ S is a neighbourhood of x, and therefore x € (R\S)°. Since x is any
element of R\S, we conclude that R\.S is open.

Conversely, suppose that R\ S is open. Then by Exercise (1.3.7:8), R\S
is a neighbourhood of each of its points. Since R\S is disjoint from S, it

follows that no point of R\S is in the closure of S. Thus if x € S, then

v ¢ R\S and so x € S. Hence S C S, and therefore, by Exercise (1.3.8:5),
S is closed.

(1.3.10) Proposition. The intersection of a family of closed sets 1is
closed. The union of a finite family of closed sets is closed.



40 1. Analysis on the Real Line

Proof. Let (C});cr be any family of closed sets, and for each 7 let A; be
the complement of ;. Then

ﬂ C; = R\(U Aq).

el el

Since, by Proposition (1.3.9), each A; is open, Proposition (1.3.2) shows
that [ J,.; A: is open; whence, again by Proposition (1.3.9), its complement
1s closed. This completes the first part of the proof; the second is left as an
exercise.

(1.3.11) Exercises

.1 Complete the proof of Proposition (1.3.10).

.2 Give an example of a sequence of closed sets whose union is not
closed.

Which subsets of R are both open and closed” Before answering this
question, we prove a simple lemma.

(1.3.12) Lemma. IfT is a nonempty open subset of R that is bounded
above (respectively, below), then supT & T (respectively, infT' ¢ T').

Proof. Consider, for example, the case where 1" is bounded above. Sup-
pose that M = sup T belongs to T'. Since 1" is open, (M —r,M +1r) C T
for some r > 0. Hence M + %r c I, which 1s absurd as M + %r > sup 1.
Hence, in fact, M ¢ T.

(1.3.13) Proposition. R and 0 are the only subsets of R that are both
open and closed in R.

Proof. Exercise (1.3.1:1) and Proposition (1.3.9) show that R and () are
both open and closed in R. Let S be a nonempty set that is both open and
closed, and note that, by Proposition (1.3.9), R\.S is also both open and
closed. Suppose R\ S is nonempty. Choosing a € S and b € R\ S, we have
either a < b or a > b. Without loss of generality we take the former case,
so that

T={xec R\S:z>a}

is nonempty and bounded below. By Proposition (1.3.2), 1" is also open,
being the intersection of the open sets (a,o00) and R\S. Let m = infT.
Since S is open, there exists » > 0 such that (a — r,a + r) C S; whence
m > a+r > a. Since, by Lemma (1.3.12), m € T, it follows that m ¢ R\S
and theretore that m € 5. But S is open, so there exists ¢ > 0 such that
(m —e,m + e) C S; this is impossible, since the definition of “infimum”
ensures that there exists ¢ € R\S such that ¢ < m + ¢. This contradiction
shows that R\ S is empty; whence S = R.
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1.4 Limits and Continuity

Let I be an interval in R, a a point of the closure of I, and f a real-valued
function whose domain includes I but not necessarily a. A real number [ is
called the limit of f(x) as x tends to a in I, or the limit of f at a (relative
to I), if to each € > 0 there corresponds 0 > 0 such that |f(x) —[| < ¢
whenever x € [ and 0 < |x — a| < 0. We then write

flx) >lasx —a, zel

Or

lim f(x) =1

r—a,xel

and we say that f(x) tends to [ as x tends to a through values in I.
The following are the most important cases ot this definition.

e a € [°:1n this case we use the simpler notations
fl(x) >lasx—a

and

lim f(x) = L.

Xr—0a

e | = (c,a) for some ¢ < a (where ¢ could be —o0): in this case we call [
the left-hand limit of f as x tends to a; we say that f(x) tends to [l as
x tends to a from the left (or from below); and we use the notations

fl(x) >lasx—a

and

fla™) = lim f(z)=1I.

r—>a

e /| = (a,b) for some b > a (where b could be o0): in this case we call
[ the right—hand limit of f as x tends to a; we say that f(x) tends
to | as x tends to a from the right (or from above); and we use the
notations

flz) > lasz —a”

and
fla™) = lim f(x)=1.
r—a™T
We stress that although, in our definition of “limit”, f(x) is defined for
all x in I that are distinct from but sufficiently close to a, f(a) need not
be defined. For example, in elementary calculus courses we learn that
SN @

lim — ]
r—0 T
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even though (sinx) /x is not defined at x = 0.

(1.4.1) Proposition. Iflim, ., .7 f(x) =1 and limy_,q 1 f(x) =1,
then | = 1.

Proof. Given € > 0, choose 0f, 0, > 0 such that
— ifrxeland 0 < |z —a| <df, then |f(z) — ] <e/2, and
— ifxeland 0 < | —al <dg, then |f(z) —1l'| <e/2.

Setting 6 = min{d¢,d,}, consider any = € I such that 0 < |z —a| < §. We
have

L=V < [f(z) =l +[f(z) =V <5+ 5=e
Since € > 0 is arbitrary, it follows from Exercise (1.1.2:4) that [ = [’.

(1.4.2) Proposition. Iflim, ., .c7 f(z) =1 and lim,_ 4 2c7 g(x) = m,
then as x — a through values in 1,

max { f(x),g(x)} — max{l,m},
min{ f(x),g(x)} — min{l, m},
f@)] — .
If also m # 0, then
fle) 1

lim — —.
r—a,rEel g(a;') 144

Proof. See Exercise (1.4.3:3).

(1.4.3) Exercises

.1 Define precisely what it means to say that f(x) does not converge to
any litmit as x tends to a through values in I. In other words, give the
formal negation of the definition of “convergent”.

.2 Let the function f be defined in an interval whose interior con-
tains a. Prove that lim,_,, f(x) = [ if and only if lim,_,,+ f(x) and
lim,_,,- f(x) exist and equal [.

.3 Prove Proposition (1.4.2).

.4 Use the definition of “limit” to prove that lim . g p(z) = p(a)
for any polynomial function p and any a € R.
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.5 Let p, g be polynomial functions, and a a real number such that g(a)

0. Prove that

wo P@) _ pla)

w%a,xER Q(ZIS') Q(a’) |

.6 Prove that lim,_,, »cs f(x) = [ if and only if for each sequence (a,)
of elements of I that converges to a, the sequence (f(a,)) converges
to [. (For “only if”, use a proof by contradiction.)

.7 Suppose that lim,_,, .5 f(x) > r. Prove that there exists 6 > 0 such
that if x € I and 0 < |z — a| < 9, then f(xz) > r.

.8 Let f be a real-valued function whose domain includes an interval
of the form (s,00), and let [ € R. We say that f(x) tends to [ as
xr tends to oo it to each ¢ > 0 there corresponds K > 0 such that
f(x) — | < ¢ whenever x > K; we then write

flx) >l asx — o

Or

lim f(z) =1I.

X —> 00

Convince yourself that analogues of Propositions (1.4.1) and (1.4.2)
hold for limits as x tends to oc.

Define the notion f(x) tends to | as x tends to —oo, written
f(x) > lasx — —oc

Or

lim f(x)=I,

X—>— 0O

and convince yourself that analogues of Propositions (1.4.1) and
(1.4.2) hold for this notion also.

.9 Formulate definitions ot the following notions, where /I is an interval.

r) — o0 as £ — a through values in /.

=

> —00 as * — a through values in 1.

® /-—-\\
®  —
 —

— OO asS I — OCQ.

— OO asS r — —OQ.

=
=

<

r —OC0 as T — OQ.

=

P g
=

r —OO as & — —OQ.

prmd

AN
 —
 —
i
e e’ e e g e

(Vi

.10 Prove that it a > 1, then a* — 0 as  — —o0, and a® — oo as
r — o0o. What happens to a” as * — +oo when 0 < a < 17 (Note
Exercise (1.2.3:3).)

L
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.11 Prove that if @ > 1, then log, * — 0 as x —+ —o0, and log, x — o0 as
r — 0o. What happens to log, x as * = oo it 0 < a < 17

.12 Let f be a real-valued function, and, where appropriate, define

inf,~osup{f(x):0<|x—& <r},
inf,wosup{f(z):0<xz—& <r},
inf,wosup{f(z):0<&—x<r}.

im,_, ¢+ sup f(z)
lim,_,¢— sup f(x)

For example, in order that lim, _,¢— sup f(x) be defined, it is necessary
that f be defined and bounded* on some interval of the form (£ —r, £),
where r > 0. Prove the following.

(a) limyesup f(x) < M if and only if for each € > 0 there exists
6 > 0 such that f(z) < M + ¢ whenever 0 < |z — &| < 6.

(b) limg,_,¢sup f(z) > M if and only if for each pair of positive
numbers €, § there exists x such that 0 < |z — &| < d and f(z) >
M — €.

Formulate appropriate definitions of the quantities lim,_,¢ inf f(x),
lim, ¢+ inf f(x), and lim,_,— inf f(x). Prove that

(c¢) limy,_,¢inf f(z) < lim,_,¢sup f(x), and these two numbers are
equal if and only if [ = lim,_,¢ f(x) exists, in which case the
numbers equal (.

An important special case of the notion of a limit occurs when the
function f is defined at the point a that we are approaching.

A function f defined in some neighbourhood of a is said to be continuous
at a if f(x) — f(a) as x — a; in other words, if for each € > 0 there exists
6 > 0 such that |f(x) — f(a)| < € whenever |x — a| < §. We also say that

1 1S

e continuous on the left at a if f is defined on the interval (a —r, a| for
some r > 0 and

fla™) = lim f(z) = f(a);

r—a

e continuous on the right at a if f is defined on the interval |a, a + r)
for some r > 0 and

f(a™) = lim f(z)= f(a):

r—aqT

By allowing the lim sup quantities to take the values +00, in a sense that is
made precise in Section 3.1, we can remove the restriction that f be bounded
near &.
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o continuous on the interval I if lim, ; 5 f(x) = f(t) for each t € I.

Note that the last definition takes care of the one—sided continuity of f at
those endpoints of 7, if any, that belong to I.

If f is defined in a neighbourhood of a but is not continuous at a, we say
that f has a discontinuity, or is discontinuous, at a.

(1.4.4) Proposition. Let the real-valued functions f and g be continu-
ous at a. Then f+g, f—g, fg, max{f, g}, min{f, g}, and |f| are contin-
wous at a. If also g(x) # 0 for all x in some neighbourhood of a, then f/g
1S continuous at a.

Proof. This is a simple consequence of Proposition (1.4.2).

(1.4.5) Exercises

.1

Let f be defined on a neighbourhood of a. Prove that f is continuous
at a if and only if it is continuous on both the left and the right at a.

Give the details of the proof of Proposition (1.4.4). Extend this result
to deal with continuity on an interval I.

Prove that a polynomial function is continuous on R.

Let p, ¢ be polynomial functions, and a a real number such that g(a) #
0. Prove that the rational function p/q is continuous at a.

Let f be continuous at a, and let g be continuous at f(a). Prove that
the composite function g o f is continuous at a.

Prove that f is continuous at the point a € R it and only if f is
sequentially continuous at a, in the sense that f(a,) — f(a) whenever
(ay) is a sequence of points of the domain of f that converges to a.

Let f be defined in an interval (a — r, a + r) where r > 0. The
osctllation of f at a 1s

w(fya) = limsup i f(z) — f(y) s 2,y € (@~ 0, a+d)},

Prove that f is continuous at a if and only if w(f,a) = 0.

Let f be an increasing function on |a, b|. Prove that f(£™) exists for
each £ € (a, b, and that f({™) exists for each £ € [a, b). By considering
the sets

{w € (a,):|fa®) — f(z7)| > L},

with n a positive integer, prove that the set of points of |a, b| at which
f has a discontinuity is either empty or countable.
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Let qo,q1,... be a one—one enumeration of QM |0,1|, and for each
r € |0, 1] define
T(x) ={ne N:q, <2x}.

Define a mapping f : [0,1] — R by

0 it x =0
f(x) =
DoneT(x) 2 ¢ U0 <x <1
Prove that

(i) f is strictly increasing,
(ii) f is continuous at each irrational point of |0, 1], and

(iii) f is discontinuous at each rational point of |0, 1].

Let (f,)>2, be a sequence of functions on an interval I, and suppose

that there exists a convergent series Z;O:l M,, of nonnegative terms
such that |f,(x)| < M, for each z € I and each n. Prove that for

each € > 0 there exists /NV such that 0 < Zizj_|_1 frn(x)| < € whenever

k> j > N and x € I. Hence prove that f(z) = > ", fn(x) defines

a function on I ( Weierstrass’s M —test). Prove also that if each f,, is
continuous on [/, then so is f.

(Give two proots that exp 1s a continuous tunction on R.

Prove that if a > 0, then the tunction x — a” is continuous on R.
(Note that a* = exp(xloga).)

Prove that if a > 0, then the function x — log, x is continuous on R.
(First take the case a > 1. Given x > 0 and £ > 0, choose a positive
integer n > 1/¢, and then § € (0, z) such that (x + J) /z < a'/™ and
(z —08) /x> a /™)

Prove that the functions sin and cos, defined by

O0 (_1)nx2n—l—1

SiInx = ,
nz::O (2n +1)!
o (—1)" 2T

cosr = ) (—D)"

n=0 (QNJ!
are (well defined and) continuous on R.

Let I be the interval of convergence of the power series f(x) =
ZZO:O anx'. Prove that f is continuous on /.

Prove that if > "~ a, is a convergent series, then
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(i) > _,apx™ converges for all x € (—1,1), and

(ii) for each € > 0 there exists 0 € (0,1) such that if 1 —o <2 <1,

then
OO OO
n=0 n=0

Thus lim,_,1- Y "~ qapx™ = > "~ an (Abel’s Limit Theorem). (For
(ii), note that

o0 o0
E Ay, — E 1 A
n=0 n=0

A\
&
N
o
\
=
-

n—=—~0
0O o0
+ E Q| + E QX

for each N. Use Exercise (1.2.14:15) to handle the last term on the
right.)

.17 Let Z,ZO:O Ay, Z;,O:o b,, be convergent series with sums a, b, respec-
tively, and let

Up — aflbn T CLan—l Tt T af’n—le T anbl-

Prove that if Y " u,, converges, then its sum is ab. (For —1 < z <1
set f(x) = > " qanz™ and g(z) = > "_, byx™. Then use Exercises
(1.2.16:10), (1.2.16: 3), and (1.4.5:16).)

This is the full form ot Cauchy’s theorem on the multiplication of
series, and should be compared with Exercise (1.2.16:3).

Deeper results about continuity—indeed, many results in real-variable
theory—depend on two fundamental properties of the real line, described
In our next two theorems.

By a cover of a subset S of R we mean a tamily (/ of subsets of R such
that S C | JU; we then say that S is covered by U and that U covers S. If
also each U € U is an open subset of R, we reter to 4 as an open cover ot
S (in R). By a subcover of a cover U of S we mean a family F C U that
covers S; it also F is a finite family, then it is called a finite subcover of U.

Although there exist shorter proofs of the next theorem (see the next set
of exercises), the one we present is adapted to prove a more general result

(Theorem (3.3.9)) in Chapter 3.

(1.4.6) The Heine—Borel-Lebesgue Theorem. Fuvery open cover of
a compact interval I in R contains a finite subcover of I.
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Proof. Suppose there exists an open cover U of I that contains no finite
subcover of I. Either the closed right half of I or the closed left half (or
both) cannot be covered by a finite subfamily of ¢/: otherwise each half, and
theretore [ itself, would be covered by a finite subfamily. Let /; be a closed
half of I that is not covered by a finite subtamily of /. In turn, at least
one closed half, say I», of I; cannot be covered by a finite subfamily of U/.
Carrying on in this way, we construct a nested sequence I D [; D Is D ---
of closed subintervals of I such that for each n,

(a) |I,| =27 |I| and
(b) no finite subfamily of U/ covers I,,.

By the nested intervals principle (1.2.6), there exists a point & € ﬂ;o:l I, .
Clearly & € I, so there exists U € U such that &€ € U. Since U is open, there
exists r > 0 such that if |z — &| < r, then x € U. Using (a), we can find N
such that if x € Iy, then |z — &| < r and therefore x € U; thus Iy C U.
This contradicts (b).

A real number a is called a ltmit point of a subset S of R if each neigh-
bourhood of a intersects S\{a}; or, equivalently, if for each ¢ > 0 there
exists x € S with 0 < |x — a| < e. By a limit point of a sequence (a,,) we
mean a limit point of the set {aq,as,...} of terms of the sequence.

A nonempty subset A of R is said to have the Bolzano—Weierstrass
property it each infinite subset S ot A has a limit point belonging to A.

(1.4.7) The Bolzano—Weierstrass Theorem. FEvery compact interval
in R has the Bolzano—Weierstrass property.

Proof. Let I be a compact interval, and S an infinite subset of 1. By
Corollary (1.2.8), any infinite sequence of distinct points of S contains a

convergent subsequence; the limit of that subsequence is a limit point of .S
in the closed set I.

(1.4.8) Exercises

.1 Let X be a subset of R with the Bolzano—Weierstrass property, and
let (x,) be a sequence of points in X. Show that there exists a
subsequence of (x,) that converges to a limit in X. (Note Lemma

(1.2.7).)

.2 Fill in the details of the following alternative proof of the Heine—
Borel-Lebesgue Theorem. Let {/ be an open cover of the compact
interval I = |a, b|, and define

A=A{x € 1l:|a,x| is covered by finitely many elements of U} .

Then A is nonempty (it contains a) and is bounded above; let £ =
sup A. Suppose that & # b, and derive a contradiction.
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.3 Fill in the details of the following alternative proof of the Bolzano—
Weilerstrass Theorem. Suppose the theorem is false; so there exist a
compact interval I and an infinite subset S of I such that no limit
point ot S belongs to I. Construct a nested sequence I D I; D Iy D ---
of closed subintervals ot I such that tor each n,

(a) |In| =277 |1},
(b) S NI, is an infinite set, and
(¢) S NI, has no limit points in I,,.

Let &€ € (),_; In, and show that £ is a limit point of S. (This is
one of the commonest proois of the Bolzano—Weierstrass Theorem in
textbooks.)

.4 Here is a sketch of yet another proot of the Bolzano—Weierstrass The-
orem for you to complete. Let I be a compact interval, and S an
infinite subset of I; then the supremum of the set

A={xel:S5N(—o0,x) is finite or empty}
1s a limit point of S in 1.

.5 Let S be a subset of R with the Bolzano—Weierstrass property. Prove
that S is closed and bounded. (For boundedness, use a proof by
contradiction.)

.6 Show that the Bolzano—Weierstrass Theorem can be proved as a con-
sequence of the Heine-Borel-Lebesgue Theorem. (Let I be a compact
interval in R, assume the Heine—Borel-Lebesgue Theorem (1.4.6),
and suppose that there exists an infinite subset S of I that has no
limit point in I. First show that for each s € S there exists r, > 0
such that SN (s —rg, s+1rs) ={s}.)

7 Let f be areal-valued function defined on an interval /. We say that f
1s uniformly continuous on I if to each € > 0 there corresponds 0 > 0
such that |f(z) — f(2’)| < € whenever x,2" € I and |z — 2'| < 0.
Show that a uniformly continuous function is continuous. Give an
example of I and f such that f is continuous, but not uniformly
continuous, on /.

.8 Use the Heine—Borel-Lebesgue Theorem to prove the Uniform Con-
tinutty Theorem: a continuous real-valued function f on a compact
interval I C R is uniformly continuous. (For each ¢ > 0 and each
r € I, choose 6, > 0 such that if 2" € I and |x — 2’| < 20, then
f(x) — f(2")] < €/2. The intervals (z — d,,x + d,) form an open
cover of I.)



50 1. Analysis on the Real Line

.9  Prove the Uniform Continuity Theorem (see the previous exercise) us-
ing the Bolzano—Weierstrass Theorem. (If f : I — R is not uniformly
continuous, then there exists o« > 0 with the following property: for
each n € N there exist Ty, Yn € I such that |x,, —y,| < 1/n and

The proof of the following result about boundedness of real-valued
functions 1illustrates well the application of the Heine—Borel-Lebesgue
T'heorem.

(1.4.9) Theorem. A continuous real-valued function f on a compact
interval I 1s bounded; moreover, f attains its bounds wn the sense that

there exist points £,n of I such that f(&§) =int f and f(n) = sup f.

Proof. Foreach x € I choose 0, > 0 such thatifz’ € [ and |z — 2’| < 0,
then |f(x) — f(2’)| < 1. The intervals (x — 0,2 + d,), where x € I, form
an open cover of I. By Theorem (1.4.6), there exist finitely many points
x1,...,xxn of I such that

N
I C U (Qj‘k — 5%,3:,% —I—Cka) .
k=1

Let
C = ]_—|—maX{|f(.fl§'1)|,,|f(Zl?N)|},

and consider any point x € I. Choosing k such that x € (xy — 04, , T+ 04, ),
we have

f(2)] < | f(x) — flag)| + | f(2k)]
<1+ |f(zk)
< ¢,

so f 1s bounded on I.

Now write
m=int f, M =supf.

Suppose that f(x) # M, and therefore f(x) < M, for all x € I. Then
r+— 1/(M — f(z)) is a continuous mapping of I into R™, by Proposition
(1.4.4), and so, by the first part of this proof, has a supremum G > 0. For
each x € [ we then have M — f(x) > 1/G and therefore f(z) < M —1/G.

This contradicts our choice of M as the supremum of f.

(1.4.10) Exercises

.1 Prove both parts of Theorem (1.4.9) using the Bolzano—Weierstrass
Theorem and contradiction arguments.
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.2 Let f be a continuous function on R such that f(x) — oo as x — +o0.
Prove that there exists £ € R such that f(x) > f(&) for all z € R.

.3 Let f be a continuous function on R such that f(x) — 0 as z — +oc.
Prove that f is both bounded and uniformly continuous.

(1.4.11) The Intermediate Value Theorem. If f is a continuous
real-valued function on an interval I, then f(I) has the intermediate value

property (page 36).

Proof. Let a,b be points of I, and y a real number such that f(a) <y <
f(b); without loss of generality assume that a < b. Then

S =1w € la,b]: f(r) <y;

is nonempty (it contains a) and bounded above by b, so £ = sup S exists.
Note that & < b and that (£,b] C I. We show that f(£) = y. To this
end, suppose first that f(£) < y. Then, by Exercise (1.4.3:7), there exists
0 € (0, b—¢&) such that if x € I and |x — £| < ), then f(x) < y; in particular,
f(z) <y for all x € (&, £+ §), which contradicts the definition of £ as the
supremum of S. Thus f(£) > y.

Now suppose that f(£) > y; then £ > a. By another application of
Exercise (1.4.3:7), there exists 0’ € (0, — a) such that if £ —¢" <2z <&,
then f(x) > y. This is impossible, since, by the definition of “supremum”,
there exist points x of (a, &) arbitrarily close to & with f(x) < y. Hence

f(&) <y, and therefore f(&) = yv.

(1.4.12) Corollary. Let f be a continuous real-valued function on a
compact interval I, and let m = inf f, M = sup f. Then f(I) = |m, M|.

Proof. Use Theorems (1.4.9) and (1.4.11).

(1.4.13) Exercises

.1 Fill in the details of the following common proot of the Interme-
diate Value Theorem. Let f(a) < y < f(b), write ag = a, by =
b, co = %(ao + by ), and assume without loss of generality that a < b.
If f(cg) = y, there is nothing to prove and we stop our construc-
tion. Otherwise, by repeated interval-halving, we construct points
ao, bo, Co, U7, bl, Cl,... such that

— either f(c,) = 0 for some n and the construction stops,

— or else the construction proceeds ad infinitum, a, < api1 <

bn—l—l < bna f(aﬂn) <Y, f(bn) > Y, Cp = %(aﬂn T bn)a and

O<bn—an:(%)n(b—a).
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Choosing = € (. _;[@n, by], we now show that f(x) = 0.

Use the Intermediate Value Theorem to prove that if 6 > 0 and n is
an odd positive integer, then 6 has an nth root—that is, there exists
r € R such that »™ = b. (Of course, this result also follows from our
definition of a® in Section 1; but it is instructive to see how it can be
derived by other means, such as the Intermediate Value Theorem.)

Show that any polynomial equation
" +a,_ 12"+ +ax+ag=0

of odd degree n, with coefiicients a € R, has at least one real
solution.

What can you say about a function f that is continuous on |0, 1| and
assumes only rational values?

Let f, g be continuous functions on |0, 1| such that f(z) € |0, 1] for all
z, g(0) = 0, and g(1) = 1. Show that f(x) = g(x) for some x € |0, 1].

Prove that there is no continuous tunction f : R — R that assumes
each real value exactly twice.

Let f be continuous and one-one on an interval I; then f(/) is an
interval, by Corollary (1.4.12). Prove that

(i) either f is strictly increasing on I or else f is strictly decreasing
on /;

(ii) if a € I°, then f(a) € f(I)°;
(iii) f~! is continuous on f(I).

(For (iii), show that f is sequentially continuous at each point of
f(I). You will need Corollary (1.2.8), Exercise (1.4.5:6), and Exercise

(1.2.9: 4).)

Although the Intermediate Value Theorem has many applications, espe-
cially in the solution of equations, none of its proofs provides an algorithm
for constructing the point x with f(z) = y. This claim may come as a
surprise: for is not the interval-halving proof in Exercise (1.4.13:1) algo-
rithmic? Alas, it is not: for, as any good computer scientist knows, there
1s no algorithm that enables us to decide, for given real numbers y and z,
whether y = z or y # z. (For further discussion of these matters, see the

Prolog of |5|, and pages 65—66 of [§].)
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1.5 Calculus

In this section we cover the fundamentals of the differential and integral
calculus of functions of one real variable. We do so rapidly, leaving many
details to the exercises, on the assumption that you will have seen much of
the material in elementary calculus courses.

Let I be an interval in R, xg a point of I, and f a real-valued function
whose domain includes /. We say that f is

o differentiable on the left at xq it its left-hand derivative at xq,

oo o fe) = fwo) .. flwo+h)— f(xo)
f(%)_wl_lf?g T — To _hlin([)l— h

y

ex1sts:

o differentiable on the right at xo it its right-hand derivative at xo,

(@) = lim flx) — flwo) lim f(@o + h) — f(@o)

Y

ex1sts:

o differentiable at xg if x¢ 1s an interior point of I and the derivative of
f at L0,

£(x0) = lim flx) — flwo) lim flxo + h) — f(@o)

x—xro T — Tg h—0 h ’

ex1sts.

It follows from Exercise (1.4.3:2) that f is differentiable at an interior point
ro of its domain if and only if f’(x5) and f/(xg) exist and are equal, in
which case their common value is f'(xg).

We say that f is differentiable on the interval I it it is

— differentiable at each interior point of I,

— differentiable on the right at the left endpoint of / if that point belongs
to I, and

— differentiable on the left at the right endpoint of I if that point belongs
to 1.

Higher—order derivatives of f are defined inductively, as follows.

f(o) — fa

f(l) — f,7

f& ==

f(?)) __ f/// __ (f//)/,
FOAD — (f(Y (g > 3),
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If the nth derivative f™)(z) exists, then f is said to be n—times dif-
ferentiable at x; it f (”)(a:) exists for each positive integer n, then f is
sald to be infinitely differentiable at x. Definitions of notions such as nth
right—hand derivative, n—times differentiable on an interval, and nfinitely
differentiable on an interval are tormulated analogously.

(1.5.1) Exercises

.1 Prove that it f is differentiable at xg, then it is continuous at xg. Give
an example of a function f : R — R such that f/(07) and f/(0™)
both exist but f is not continuous at O.

.2 For each x € R write
p(x,Z) =inf{|lz —n|:n € Z}

and

— p(10"x, Z
n=>0

Prove that f is continuous, but nowhere differentiable, on R. (For
continuity use Exercise (1.4.5:10). To show that f is not differen-
tiable at x, 1t 1s enough to take 0 < x < 1. Let 0.d1d> ... be a deci-
mal expansion of x, the terminating expansion it there is one. Define
hi to be —107" if ap = 4 or 9, and 10™% otherwise, and consider

hy (f(@+ hy) — f(x)) )
This example is due to van der Waerden [54|. Weierstrass, in a lecture

to the Berlin Academy in 1872, gave the first example of a continuous,
nowhere differentiable function: namely,

f(x) = f: a” cos(b"mx),
n=1

where 0 < a < 1, b is an odd positive integer, and ab > 1 + 37/2; for

a discussion of a special case of Weierstrass’s example, see 28|, pages
38—41.

.3 Prove that if f is differentiable at x, then

oy o fl@+h)— f(z—k)
)= h,llelglm h -+ k |

Give an example of a function f where limy_.o ((f(h) — f(—h)) /2h)
exists but f is not differentiable at O.

4 Let f(x) = 2z, where n is an integer. Using the definition of
“differentiable”, prove that f’(z) = na™ ! for all x € R.
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.5 Let f and g be differentiable at a. Prove that f+g, f—g, cf (c € R),
and fg are differentiable at a, and that

(f +9)(a) = f'(a)+g'(a),
(f —9)'(a) = f'(a) — g'(a),
(cf) (a) = cf'(a),
(fg9)' (a) = f(a)g'(a) + f'(a)g(a).

.6 Under the conditions of the last exercise, suppose also that g(a) # 0.
Give two proofs that f/g is differentiable at a, and that

.7 Using the exponential series, prove that exp’(0) = 1. Hence prove
that exp’(x) = exp(x) for all z € R.

Our next proposition, the Chain Rule, is possibly the most troublesome
result of elementary calculus.

(1.5.2) Proposition. If f is differentiable at a, and g is differentiable
at f(a), then go f is differentiable at a, and

(g0 f) (a) =g (f(a))- f'(a).
Proof. Setting b = f(a), define

g(u) —g(b) .
- — it u # b
h(u) =
q'(b) if u = 0.

For all x # a in some neighbourhood of a we have

o @) =90 @) _ 0 . S0 = (@)

L — d L — d

(1)

(Note that in verifying this identity, we must consider the possibility that
f(x) = f(a).) Since g is differentiable at b, h is continuous at b. Moreover,
f is differentiable, and therefore (by Exercise (1.5.1:1)) continuous, at a;
so h o f is continuous at a, by Exercise (1.4.5:5). Hence

lim (ho f)(x) - lim flo) = fla)

X—>Q r—ra X — d

= (ho f)(a)- f'(a)
=g'(b) f'(a).

r—>a

i (10 £) (2)
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The result now follows immediately from (1).

(1.5.3) Proposition. Let I be an open interval, f a one—one continuous
function on I, and a € I, such that f'(a) exists and is nonzero. Then the
inverse function f~1 is differentiable at f(a), and

(F71) (f(a) =

f'(a)

Proof. Note that J = f(I) is an interval, by Theorem (1.4.11) and
Proposition (1.3.3); moreover, by Exercise (1.4.13:7), f(a) is an interior

point of J and f~! is continuous on J. Let (y,,) be any sequence in J\{ f(a)}
that converges to f(a), and write z,, = f~(y,); then z,, # a and

lim = (z,) = f~'(f(a) = a.

nN—> 00

Since f is one—one, it follows that

f(x;) : i(a) £ 0);
whence
i S ) = (@) o an—a ]
n— 00 Un — f(CL) 1n—>00 f(ajn) — f(CL) f’(CL) |

The desired conclusion now follows from Exercise (1.4.3:6).

(1.5.4) Exercises

.1 Prove that log'(x) = 1/x for each x > 0.

.2 Let f(x) = x", where r € R. Prove that f/'(x) = rz"~!. (Note that
r" = exp(rlogx).)

.3 Let f be a strictly increasing function on an interval I, and let a be
a point of I such that f/(a™) exists and is nonzero. Prove that the
inverse function f~! is differentiable on the right at f(a), and that

1 / + _ ]_
57 (@) = gy
.4 Let f be continuous on the compact interval I = |a,b| and differ-

entiable on (a,b). Prove that if £ € (a,b) and f(&¢) = inf f, then
f'(&) = 0. Hence prove that if f(a) = f(b), then there exists £ € (a, b)
such that f'(&) = 0 (Rolle’s Theorem).
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Let f be continuous on the compact interval |a, b| and n—times differ-
entiable on (a, b). Suppose that there exist n 4 1 distinct points x of

(a,b) at which f(2) = 0. Show that f(™)(z) =0 for some z € (a,b).

Use Rolle’s Theorem to prove the Mean Value Theorem: it f is con-
tinuous on the compact interval |a, b| and differentiable on (a, b), then

there exists £ € (a, b) such that f(b) — f(a) = f'(£)(b— a).

Let f be differentiable on an interval /. Prove that

(i) if f'(xz) > 0 for all z € I, then f is increasing on I;
(ii) if f'(x) > 0 for all x € I, then f is strictly increasing on I;
(iii) if f'(x) =0 for all x € I, then f is constant on 1.

Let f be differentiable on an interval I, with f'(x) # 0 for all x € I.
Prove that f is one—one, and that either f'(z) > 0 for all x € I or
else f'(x) <0 for all z € I.

Prove that if f is differentiable on an interval I, then the range of f’
has the intermediate value property on I. (Let f'(x1) <y < f'(x2),
consider g(x) = f(x) — yx, and use the preceding exercise.)

Prove Cauchy’s Mean Value Theorem: if f, g are continuous on |a, b
and differentiable on (a, b), then there exists £ € (a, b) such that

(f(b) — f(a)) g'(§) = (g(b) — g(a)) f'(§)-
(Consider the function x — (f(b) — f(a)) g(x) — (g(b) — g(a)) f(x).)

Let f,g be continuous on |a, b| and differentiable on (a,b), let o €
a,b|, and suppose that

(i) g'(x) # 0<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>