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Preface

This account i1s an introduction to mathematical knot theory, the theory of knots
and links of simple closed curves in three-dimensional space. Knots can be studied
at many levels and from many points of view. They can be admired as artifacts of
the decorative arts and crafts, or viewed as accessible intimations ot a geometrical
sophistication that may never be attained. The study of knots can be given some
motivation in terms of applications in molecular biology or by reference to paral-
lels 1n equilibrium statistical mechanics or quantum field theory. Here, however,
knot theory 1s considered as part of geometric topology. Motivation for such a
topological study of knots 1s meant to come from a curiosity to know how the ge-
ometry of three-dimensional space can be explored by knotting phenomena using
precise mathematics. The aim will be to find invariants that distinguish knots, to
investigate geometric properties of knots and to see something of the way they
interact with more adventurous three-dimensional topology. The book is based on
an expanded version of notes for a course for recent graduates in mathematics
given at the University of Cambridge; it 1s intended for others with a similar level
of mathematical understanding. In particular, a knowledge of the very basic i1deas
of the fundamental group and of a simple homology theory 1s assumed,; it 1s, after
all, more important to know about those topics than about the intricacies of knot
theory.

There are other works on knot theory written at this level; indeed most of them
are listed in the bibliography. However, the quantity of what may reasonably be
tcrmed mathematical knot theory has expanded enormously in recent years. Much
of the newly discovered material 1s not particularly difficult and has a right to be
included in an introduction. This makes some of the excellent established treatises
scem a little dated. However, concentrating entirely on developments of the past
decade gives a most misleading view of the subject. An attempt 1s made herc to
outline some of the highlights from throughout the twentieth century, with a little

bias towards recent discoveries.
The present size of the subject means that a choice of topics must be madc for

inclusion i any first course or book of rcasonable length. Such sclection must be
subjective. An attempt has been madce here to give the flavour and the results from
three or four matn technigues and not to become unduly enmeshed i any of them.
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Firstly, there is the three-manifold method of manipulating surfaces, using the
pattern of simple closed curves in which two surfaces intersect. This leads to the
theorem concerning the unique factorisation of knots into primes and to the theory
concerning the primeness of alternating diagrams. Combinatorics applied to knot
and link diagrams lcad (by way of the Kauffman bracket) to the Jones polynomial,
an invariant that 1s good, but not nfallible, at distinguishing different knots and
links. This mvarant also has apphications to the way diagrams of certain knots
might be drawn. Next, techmiques of elementary homology theory are used on the
e cychie cover of the complement of a link to lead to the “abelian’ invariants,
i particular (o the well known Alexander polynomial. That 1s reinforced by the
Associtton of that polynonnal mvariant with the Conway polynomial, as well as
by a study ot the fundamental group of a link’s complement. The use of (framed)
links to describe, by means of “surgery™, any closed orientable three-manifold 1s
cyplored. l‘np,L‘IIIL‘I‘ with the skem lhc()l'y of the Kauffman bracket, this 1dea leads
(o some Squantum™ mvartants for three-manifolds. A technique, belonging to a
more peneral theory of three-mantfolds, that will not be described 1s that of the
W. Tlaken's classification of knots. That technique gives a theoretical algorithm
which always decides 1f two knots arc or arce not the same. It 1s a/most impossible
to use 1t, but 1t 1s good to know 1t ¢xists [42].

One can take the view that the object of mathematics 1s to prove that certain
things are true. That object will here be pursucd. A declaration that something 1s
true, followed by copious calculations that produce no contradiction, should not
completely satisfy the intellect. However, even neglecting all logical or philosoph-
i1cal objections to this quest, there are genuine practical difficulties 1n attempting
to give a totally self-contained introduction to knot theory. To avoid pathological
possibilities, in which diagrams of links might have infinitely many crossings, it 1s
necessary to impose a piecewise linear or differential restriction on links. Then all
manoeuvres must preserve such structures, and the technicalities of a piecewise
linear or differential theory are needed. One needs, for example, to know that any
two-dimensional sphere, smoothly or piecewise linearly embedded in Euclidean
three-space, bounds a smooth or piecewise linear ball. This 1s the Schonflies theo-
rem; the existence of wild horned spheres shows it 1s not true without the technical
restrictions. What is needed, then, 1s a full development of the theory of piecewise
linear or differential manifolds at least up to dimension three. Laudable though
such an account might be, experience suggests that it is initially counter-productive
in the study of knot theory. Conversely, experience of knot theory can produce the
incentive to understand these geometric foundations at a later time. Thus some ba-
sic (1nturtively likely) results of piecewise linear theory will sometimes be quoted,
sometimes with a sketch of how they are proved. Perhaps here piecewise linear
theory has an advantage over differential theory, because up to dimension three,
simplexes are readily visualisable; but ditferential theory, if known, will answer
just as well. That apologia underpins the start ol the thcory. Significant direct
quotations of results have however also been made in the discussion of the fun-
damental group of a hnk complement. That topic has been treated extensively
clsewhere, so the remarks here are intended to be but somethimg of a hittle survey.
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Also quoted 1s R. C. Kirby’s theorem concerning moves between surgery links for
a three-manifold. Furthermore, at the end of a section extensions of a theory just
considered are sometimes outlined without detailed proof. Otherwise it 1s intended

(hat everything should be proved!

W. B. Raymond Lickorish
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A Beginning for Knot Theory

The mathematical theory of knots 1s intended to be a precise investigation into the
way that 1-dimensional “string” can lie in ordinary 3-dimensional space. A glance
at the diagrams on the pages that follow indicates the sort of complication that is
cnvisaged. Because the theory is intended to correspond to reality, it is important
that initial definitions, whilst being precise, exclude unwanted pathology both in
the things being studied and 1n the properties they might have. On the other hand,
obsessive concentration on basic geometric technology can deter progress. It can
initially be but tasted if it seem onerous. At its foundations, knot theory will here be
considered as a branch of topology. It 1s, at least initially, not a very sophisticated
application of topology, but it benefits from topological language and provides
some very accessible illustrations of the use of the fundamental group and of
homology groups.

As 1s customary, R” will denote n-dimensional Euclidean space and S" will
be the n-dimensional sphere. Thus S” is the unit sphere in R"*!, but it can be
regarded as being R” together with an extra point at infinity. There 1s a linear or
affine structure on IR”; 1t contains lines and planes and r-simplexes (r-dimensional
analogues of intervals, triangles and tetrahedra). S” can also be regarded as the
boundary of a standard (n + 1)-simplex, so that S§” 1s then triangulated with
the structure of a simplicial complex bounding a triangulated (n + 1)-ball B"*'.
Sometimes it seems more natural to describe B"*! as a disc; it is then denoted

Dn—H

Definition 1.1. A link L of m components is a subset of S°, or of R, that consists
of m disjoint, piecewise linear, simple closed curves. A link of one component 1s

a knot.

The piecewise linear condition means that the curves composing L are each
made up of a finite number of straight line segments placed end to end, “straight™
being in the linear structure of R* € R> U oo = §° or, alternatively, in the
structure of one of the 3-simplexcs that make up S? in a triangulation. In practice,
when drawimg diagrams of knots or links 1t 1s assumed that there are so very many
stratght line segments that the curves appear pretty well rounded. This insistence
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on having a finite number of straight line segments prevents a link from having an
infinite number of kinks, getting ever smaller as they converge to a point (those
links are called “wild”). An alternative way of avoiding wildness is to require that L
be a smooth 1-dimensional submanifold of the smooth 3-manifold S°. That leads
(o an cquivalent theory, but in these low dimensions simplexes are often easier
to manipulate than are sophisticated theorems of difterential manifolds. Thus a
piccewise linear condition applies to practically everything discussed here, but it
will be given as little emphasis as possible.

Definition 1.2. Links L, and L, in S? are equivalent if there is an orientation-
preserving piecewise linear homeomorphism h : S° — S° such that h(L|) =

(L7).

Here the piecewise linear condition means that after subdividing the simplexes
in each copy of S° into possibly very many smaller simplexes, & maps simplexes
to simplexes in a linear way. Soon, equivalent links will be regarded as being
the same link; 1n practice this causes no confusion. If the links are oriented or
their components are ordered, 2z may be required to preserve such attributes. It
1s a basic theorem of piecewise linear topology that such an 4 is isotopic to the
identity. This means there exist h, : §° — S’ fort € [0, 1] so that hy = 1
and iy, = h and (x,t) — (h,x,t) 1s a piecewise linear homeomorphism of
S3 x [0, 1] to itself. Thus certainly the whole of S° can be continuously distorted,
using the homeomorphism /4, at time 7, to move L to L,. An inept attempt to
define equivalence in terms of moving one subset until it becomes the other could
misguidedly permit knots to be pulled tighter and tighter until any complication
disappears at a single point. If L and L, are equivalent, theirr complements in
S° are, of course, homeomorphic 3-dimensional manifolds. Thus it is reasonable
to try to distinguish links by applying any topological invariant (for example, the
fundamental group) to such complements. Similarly, any facet of the extensive
theory of 3-dimensional manifolds can be applied to link complements; the theory
of knots and links forms a fundamental source of examples in 3-manifold theory. It
has recently been proved, at some length [37], that two knots with homeomorphic
oriented complements are equivalent; that 1s not true, in general, for links of more
than one component (a fairly easy exercise).

An elementary method of changing a link L in R to an equivalent link is to find
a planar triangle in R’ that intersects L in exactly one edge of the triangle, delete
that edge from L, and replace it by the other two edges of the triangle. See Figure
1.1. It can bc shown that if two links are equivalent, they differ by a finite sequence
of such moves or the inverses of such moves (replacc two edges of a triangle by
the other onc). This result will be assumed; any prool would have to pcnetrate the
tcchnicalitics of piecewise lincar theory (a proof can be found in | 17]).

Using such (possibly very small) moves, L can casily be changed so that it s
in general position with respect o the standard projection p 2 IR —  IR=. Tlere
this mcans that cach line segment of [, projects to a line segment in )R, that the
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Figure 1.1

projections of two such segments intersect 1in at most one point which for disjoint
segments 1s not an end point, and that no point belongs to the projections of three
segments. Given such a situation, the image of L in R together with “over and
under” information at the crossings 1s called a /ink diagram ot L. Of course, a
crossing 1s a point of intersection of the projections ot two line segments of L; the
“over and under” information refers to the relative heights above R? of the two
inverse images of a crossing. This information is always indicated 1n pictures by
breaks in the under-passing segments.

If L, and L, are equivalent, they are related by a sequence of triangle moves as
described above. After moving all the vertices of all the triangles by a very small
amount, it can be assumed that the projections of no three of the vertices lie on a
line in R? and the projections of no three edges pass through a single point. Then
each triangle projects to a triangle, and one can analyse the effect on link diagrams
of each triangle move. One of the more interesting possibilities 1s shown 1n Figure

1.2.

Figure 1.2

With a little caretul thought, 1t follows that any two diagrams of equivalent links
L, and L, are related by a sequence of Reidemeister moves and an orientation-
preserving homeomorphism of the plane. The Reidemeister moves are of three
types, shown below 1n Figure 1.3; each replaces a simple configuration of arcs and
crossings in a disc by another configuration. A move of Type I inserts or deletes a
“kink” 1n the diagram; moves of Type III preserve the number of crossings. Any
homeomorphism of the plane must, of course, preserve all crossing information.

~ /
_D~\_/ \v,--\l",_\-_‘: /\/\ ~A

Type | Type 11 Type 111

Iigure 1.3
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Figure 1.4

.0 DG L

Figure 1.5

The “moves” shown 1n Figure 1.4 can be seen (exercise) to be consequences of
the three types of Reirdemeister move.

If the point at infinity is added to R, so that all moves and diagrams are now
regarded as being in S*, then the “moves” of Figure 1.5 are combinations of
Reidemeister moves of types two and three only (an easy exercise). Diagrams
related by moves of Type Il and Type III only are sometimes said to be regularly
isotopic. It will always be assumed that S° and R’ are oriented. The components
of an n-component link can be oriented 1n 2" ways, and a choice of orientation,

indicated by arrows on a diagram, 1s extra information that may or may not be given.
If K 1s an oriented knot, the reverse of K——denoted r K—is the same knot as a set

but with the other orientation. Often K and rK are equivalent. If L is a link in S°
and p : S° — S° is an orientation-reversing piecewise linear homeomorphism,
then p (L) 1s a link called the obverse or reflection of L. Up to equivalence of p(L),
the choice of p is immaterial; o (L) is denoted L. Regarding S° as R® U 0o, one can
take p to be the map (x, y, z) — (x, y, —z), and then 1t 1s clear that a diagram for
L is the same as one for L but with all the over-passes changed to under-passes.
As will later become clear, sometimes L and L are equivalent, sometimes they are
not. There do exist oriented knots (the knot named 93, 1s an example) for which

K.rK, K and rK are four distinct oriented knots.
A knot K 1s said to be the unknot if it bounds an embedded piecewise linear

disc in S°. Triangle moves across the 2-simplexes of a triangulation of such a disc
show that the unknot 1s equivalent to the boundary of a single 2-simplex linearly
embedded in S°, and hence it has (as expected) a diagram with no crossing at all.
Two oriented knots K| and K, can be added together to form their sum K; + K>
by a method that corresponds to the intuitive 1dea of tying one and then the other
in the same piece of string; see Figure 1.6. More precisely, regard K| and K> as
being in distinct copies of S°, remove from each S* a (small) ball that meets the
grven knot in an unknotted spanning arc (one where the ball-arc pair 1s piccewisc
lincarly homcomorphic to the product of an interval with a disc-pomnt pair), and
then dentify together the resulting boundary spheres, and therr intersections with
the knots, so that all orientations match up. Some basie precewise hmear theory



A Beginning for Knot Theory 5

The Knot Table to Eight Crossings

3LE |.1.

2 N
& &
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shows that balls meeting the knots in unknotted spanning arcs are essentially
unique, so that the addition of oriented knots is (up to equivalence, of course) well
defined. It 1s immediate that this addition is commutative, and it is easily seen to
be associative. The unknot 1s a zero for this addition, but it will be seen a little later
that no knot other than the unknot has an additive inverse.

9O -

Figure 1.6

Definition 1.3. A knot K i1s a prime knot if it is not the unknot, and K = K, + K
implies that K; or K, 1s the unknot.

(Whereas “irreducible” might be a better term than “prime”, this is traditional
terminology, and 1t transpires that prime knots do have the usual algebraic property
of primeness.)

Fairly simple knots can be defined by drawing diagrams, and to refuse to do this
would be pedantic in the extreme. The crossing number of a knot is the minimal
number of crossings needed for a diagram of the knot. Table 1.1 i1s a table of
diagrams ot all knots with crossing number at most 8. There are 35 such knots.
Following traditional expediency, the unknot is omitted, only prime knots are
included and all/ orientations are neglected (so that each diagram represents one,
two or four oriented knots in oriented S> by means of the above operations r and p).
A notation such as “85” beside a diagram simply means that it shows the fifth knot
with crossing number 8 in a traditional ordering (begun in the nineteenth century
by P. G. Tait [1 18] and C. N. Little [92]). Such terminology and tables of diagrams
exist for knots up to eleven crossings. It 1s easy to tabulate knot diagrams and,
for low numbers of crossings, to be confident that a list 1s complete; the difficulty
comes 1n proving that the entries are prime and that the tabulation contains no
duplicates. This 1s accomplished by associating to a knot some “invariant”—a
well-defined mathematical entity such as a a number, a polynomial, or a group—
and proving the invariants are distinct. Many such invariants are discussed later.
Recent calculations by M. B. Thistlethwaite have produced the data in Table 1.2
for the number of prime knots (with the above conventions that neglect orientation)
for crossing number up to 15. The table has been checked by J. Hoste and J. Weeks
using totally independent methods from those of Thistlethwaite.

TABLE .2,
Crossing,

number 3 S 67 X Y | () | | | 2 [ 3 | 4 | 5
Number

ol knots 112 3 7 20 49 TOS NS Y60 QYRR 69T 28300
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The naming ot knots by means of traditional ordering 1s overwhelmed by the
(quantity of twelve-crossing knots. C. H. Dowker and Thistlethwaite [26] have
adapted Tait’s knot notation to produce a coding for knots that is suitable for a
computer. The method 1s as follows: Follow along a knot diagram from some
base point, allocating in order the integers 1, 2, 3, ... to the crossings as they
are reached. Each crossing receives two numbers, one from the over-pass strand,
one from the under-pass. At each crossing one of the numbers will be even and
the other odd. Thus an n-crossing diagram with a base point produces a pairing
between the first n odd numbers and the first # even numbers. An even number
s then decorated with a minus sign if the corresponding strand is an under-pass;
It 1t 1s an over-pass, it 1S undecorated. If the knot 1s prime, its diagram can easily
be reconstructed uniquely (neglecting orientations) from that pairing with signs.
'hus, specitying the signed even numbers in the order in which they correspond
(o the odd numbers 1, 3,5, ..., 2n — 1 specifies the knot up to reflection. Of
course, there 1s no unique such specification, but for a given n, there can be only
(initely many such ways of describing a knot. Selecting the lowest possible n and
the first description 1n a lexicographical ordering of the strings of even numbers
does give a canonical name for the (unoriented, prime) knot from which the knot
can be constructed. For example, the first four knots in the tables are given by the

notations

462, 4682, 481026, 681024.

The crossing number 1s an easily defined example of the 1dea of a knot invariant.
Knots with different crossing numbers cannot be equivalent. However, because it
Is defined in terms of a mimimum taken over the infinity of possible diagrams of
a knot, the crossing number 1s 1n general very difficult to calculate and use. The
unknotting number u(K) of aknot K 1s likewise a popular but intractable invariant;
it will be mentioned in Chapter 7. By definition, #(K') 1s the miimum number of
crossing changes (from “over” to “under” or vice versa) needed to change K to
the unknot, where the minimum 1s taken over all possible sets of crossing changes
in all possible diagrams of K. However, if intuitively K 1s thought of as a curve
moving around in S-, then (K ) is the minimum number of times that K must pass
through itself to achieve the unknot. This obvious measure of a knot’s complexity
is often hard to determine and use. In fact, knowledge of the unknotting number
of a knot might better be thought of as an end product of knot theory. If it has been
shown that K is not the unknot, but that one crossing change on some diagram

of K does give the unknot, then of course u(K) = 1. Thus, for example, 1t will
soon be clear that u(3,) = u(4,) = 1. However, at the time of writing, u#(8,¢) 1s
unknown (it 1s either 1 or 2). A discussion of the problem of finding unknotting
numbers and of many, many other problems in knot theory can be found in [67].
A glance at Table 1.1 shows that all the knots up to 8,3 have the property that
in the displayed diagrams, the “over” or ““‘under” nature of the crossings alternates
as onc travels along the knot. A knot s called alternating if 1t has such a diagram;
alternating knots do scem to have particularly plecasant properties. 1t will later be
seen that knots Ko, 8y and 8> are not alternatimg. The apparent preponderance
ol alternatinge knots s stmply a phenomenon of low crossmyg numbers. T ookimg af
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the given table, 1t 1s easy to imagine how various of its knots can be generalised to
torm infinite sets of knots by inserting extra crossings in a variety of ways. Further,

note that for either orientation, r(4)) =4 = 4, and r(3;) = 3: later it will be
seen that 3; # 3. Also 8;7 = 8-, but it is known that 8- %+ 1(817). A proof of
this last result 1s not easy; it follows from F. Bonahon’s “equivariant characteristic
variety theorem™ [14], and 1t was also proved by A. Kawauchi [63]; another proof
1s 1n [40]. The first examples of knots that differ from their reverses were those of
H. F. Trotter [125], which will be discussed in Chapter 11.

[t 1s usually much more relevant to consider various classes of knots and links
that have been found to be interesting, rather than to seek some list of all possible
knots. An example, which later will be featured often, is that of pretzel knots and
links. The pretzel link P(a,, as, ..., a,) 1s shown in Figure 1.7. Here the a; are
integers indicating the number of crossings in the various “tassels” of the diagram.
It a; 1s positive, the crossings are in the sense shown (the complete “tassel” has
a right-hand twist); 1f a; 1s negative, the crossings are in the opposite sense. As n
varies and different values are chosen for the a;, this gives an infinite collection of
links. Indeed, counting link components shows that it gives infinitely many links,
but various invariants will later be used to distinguish pretzel knots.

Figure 1.7

The upper two diagrams of Figure 1.8 show rational (or 2-bridge) knots or links,
denoted C(a,, as, ..., a,). Such a link has no more than two components. The
diagrams differ slightly 1n the way the various strands are joined at the right-hand
edge of the diagram; the first method 1s for odd », the second for even n. Again the
a; are integers, the sense of the crossings being as in the first diagram when all g;
are posittive (so that then the upper “tassels” twist to the left and the lower ones to
the right). For example, the second diagram shows C (4, 2, 3, —3). This notation,
devised by J. H. Conway [20], 1s chosen so that the link can be termed the “(p, g)
rational link” where the rational number g/ p has the repeated fraction expansion

({,

I turns out that different ways ol expressing ¢ /p as such a repeated fraction
always gave the same hink (though o link can cortespond to distinet rationals). For
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Cf\,’a\cl\,'\/ \/\f\?) C\:\ ool ,\l)

Figure 1.8

a (p, g) rational knot, | p| 1s an invariant of the knot—namely, its determinant (see
Chapter 9). An important property of a rational link 1s that it can be formed by
cluing together two trivial 2-string tangles. Such a tangle 1s a 3-ball containing
two standard (unknotted, unlinked) disjoint spanning arcs. Each arc meets the
boundary of 1ts ball at just its end points. The gluing process 1dentifies together
the boundaries of the balls to obtain S3, and to produce the link, it identifies the
[our ends of the arcs in one ball with the ends of those in the other. This can be
seen by considering a vertical line through one of the diagrams in Figure 1.8. The
line meets the link 1n four points. The diagram to one side of the line represents
two arcs 1n a ball and, forgetting the configuration on the other side of the line, the
Arcs untwist.

The remainder of Figure 1.8 shows how C(a,, as, ..., a,) can be regarded as
the boundary of n twisted bands “plumbed” together. If the a; 1n the expression
for g/ p as a repeated fraction are all even, then the union of these bands 1s an
orientable surface. The recipe for this plumbing can be encoded 1n a simple linear
graph, as shown, in which each vertex represents a twisted band and each edge a
plumbing. The boundary of a collection of bands plumbed according to the recipe
of a tree (a connected graph with no closed loop) is called an arborescent link.
(Conway called such a link “algebraic”.) If the tree has only one vertex incident
to more than two edges, the resulting link is a “Montesinos link”; the pretzel links
are simple examples. Arborescent links have been classified by Bonahon and L. C.
Siebenmann [ 15].

The ideas of braids and the braid group give a useful way of describing knots
and links. A braid of n strings 1s n oriented arcs traversing a box steadily from
the left to the right. The box will be depicted as a square or rectangle, and the
arcs will join n standard fixed points on the left edge to n such points on the right
cdge. Over-passes are indicated in the usual way. The arcs are required to meet
cach vertical line that meets the rectangle in precisely i points (the arcs can never
turn back i therr progress from lett to right). Two braids are the same 1f they
are ambient asotopie (that 1s, the strings can be “moved™ from one position to the
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other) while keeping their end points fixed. The standard generating element o; is
shown in Figure 1.9, as 1s the way of defining a product of braids by placing one
after another. Given any braid b, 1ts ends on the right edge may be joined to those
on the left edge, in the standard way shown, to produce the closed braid b that
represents a link in S*. Any braid can be written as a product of the o, and their
INVErses (oj‘] Is o; with the crossing switched), and 1t 1s a result discovered by J.
W. Alexander that any oriented link 1s the closure of some braid for some n. There
are moves (the Markov moves; see Chapter 16) that explain when two braids have
the same closure. More details can be found in [9] or [7]. The n-string braids form

a group B,, with respect to the above product; it has a presentation
(o1,02,...,0,-1; 0i0; =0;0; I [i — j|>2, 00,410/ = 0i410:0,41 ).

Figure 1.9 showsthebraidoyoy ...0,-1.1tb = (0107 ... 0,-1)", then b is called
the (n, m) torus link. It 1s a knot if n and m are coprime. This link can be drawn
on the standard (unknotted) torus in R> (just consider the n — 1 parallel strings of
0107 ...0,_ as being on the bottom of the torus, and the other string as looping
over the top of the torus).

-~
—
>

Figure 1.9

There are many methods of constructing complicated knots in easy stages. A
common process 1s that of the construction of a sarellite knot. Start with a knot K
in a solid torus 7. This is called a pattern. Lete : T — S° be an embedding so
that eT is a regular neighbourhood of a knot C in S°. Then eK is called a satellite
of C, and C 1s sometimes called a companion of ¢K . The process 1s illustrated in
Figure 1.10, where a satellite of the trefoil knot 3, is constructed. Note that 1f
K < T and C are given, there are still different possibilities for the satellite, for
T can be twisted as it embeds around C. A simple example of the construction 1s
provided by the sum K| + K> of two knots; the sum 1s a satellite of K| and of K>.
If K 1sa (p, g) torus knot on the boundary of T', then ¢ K 1s called the (p, g) cable

E—>

Figure 1.10
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Figure 1.11

inot about C provided e maps a longitude of T to a longitude of C (see Definition
1.6).

A crossing 1n a diagram of an oriented link can be allocated a sign; the crossing is
said to be positive or negative, or to have sign +1 or — 1. The standard convention 1s
shown 1n Figure 1.11. The convention uses orientations of both strands appearing
at the crossing and also the orientation of space. A positive crossing shows one
strand (either one) passing the other in the manner of a “right-hand screw”. Note
that, for a knot, the sign of a crossing does not depend on the knot orientation
chosen, for reversing orientations of both strands at a crossing leaves the sign

unchanged.

Definition 1.4. Suppose that L 1s a two-component oriented link with components
[., and L,. The linking number lk(L,, L) of L, and L, 1s half the sum of the
signs, 1n a diagram for L, of the crossings at which one strand 1s from L, and the

other 1s from L,.

Note at once that this 1s well defined, for any two diagrams for L are related by a
sequence of Reidemeister moves, and it 1s easy to see that the above definition 1s not
changed by such a move (a move of Type I causes no trouble, as it features strands
from only one component). The linking number 1s thus an invariant of oriented
two-component links. To be equivalent, two such links must certainly have the
same linking number. The definition given of linking number 1s symmetric:

Ik(Ly, Ly) = lk(Ly, Ly).

This definition of linking number is convenient for many purposes, but it should
not obscure the fact that linking numbers embody some elementary homology
theory. Suppose that K is a knot in S°. Then K has a regular neighbourhood N
that is a solid torus. (This is easy to believe, but, technically, the regular neigh-
bourhood is the simplicial neighbourhood of K in the second derived subdivision
of a triangulation of S” in which K- is a subcomplex.) The exterior X of K is the
closure of S° — N. Thus X is a connected 3-manifold, with boundary 9 X that is a
torus. This X has the same homotopy type as S* — K, X " N = 90X = dN and
X UN = S (Note the custom of using “d” to denote the boundary of an object.)

TR r . ’ . v} ; . - ;
Fheorem LS. Letr K be anoriented knot in (oriented) S°, and et X beits exterior:
[lhen HCX) s canonically isomorphic (o the inteecrs 7. gencrated by the class of
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a simple closed curve  in N that bounds a disc in N meeting K at one point. If
C is an oriented simple closed curve in X, then the homology class [C] € H\(X)
is \k(C, K). Further, H;(X) = H,(X) = 0.

PROOF. This result is true in any reasonable homology theory with integer co-
efficients; indeed, 1t follows at once from the relatively sophisticated theorem of
Alexander duality. The following proof uses the Mayer—Vietoris theorem, which
relates the homology of two spaces to that of their union and intersection. As it
has been assumed that all links are piecewise linearly embedded, 1t is convenient
to think of simplicial homology and to suppose that X and N are sub-complexes
of some triangulation of S°. Consider then the following Mayer—Vietoris exact
sequence for X and the solid torus N that intersect in their common torus boundary:

Hy(X) ® Hy(N) — H(S’) —> -
. —> Hy(X N N) — Hy(X) @ Hy(N) — Hy(§’) — - -
- — H(X NN) — Hi(X)® H(N) — H|(§’) — -

Now, H3(X)® H3(N) = 0. This is because any connected triangulated 3-manifold
with non-empty boundary deformation retracts to some 2-dimensional subcomplex
(just “remove” 3-simplexes one by one, starting at the boundary), and hence 1t has
zero 3-dimensional homology. The homology of the torus, the solid torus and the
3-sphere are all known as part of any elementary homology theory, so in the above
it 1s only H>(X) and H,(X) that are not known.

The groups H5(S>) and H,(X N N) arc both copies of Z. Recall that the Mayer—
Vietoris sequence comes from the corresponding short exact sequence of chain
complexes. A generator of H3(S?) is represented by the chain consisting of the
sum of all the 3-simplexes of S° coherently oriented. This pulls back to the sum of
the 3-simplexes in X plus those in N. That maps by the boundary (chain) map to
the sum of the 2-simplexes in d X plus those in d NV, and this in turn pulls back to the
sum of the (coherently oriented) 2-simplexes in X N N; this represents a generator
of H,(X N N). Thus inspection of the map in the sequence between H3(S?) and
H,(X N N) shows that a generator is sent to a generator, and hence the map 1s an
iIsomorphism. As H>(S?) = 0, the exactness implies that H>(X) & H,(N) = 0.

As Hy(S*) = 0 and H,(S?) = 0, the map from H/(X " N) = Z & Z to
H,(X)® H,(N)isanisomorphism. As H,(N) = Z,thisimpliesthat H,(X) = Z.
This 1somorphism Hy(X N N) — H,(X) & H,(N) 1s induced by the inclusion
maps of X N N into each of X and N. Suppose that 1 1s a non-separating simple
closed curve in X N N that bounds a disc in the solid torus N, oriented so that u
encircles K with aright-hand screw. Then u represents an element that 1s indivisible
(that1s, 1t 1s not the multiple of another element by a non-unit integer) in H (XN N);
of course, i represents zero in H,(N). Thus under the above 1somorphism, (] —
(1,0) e ZHZ = H|(X)D H\(N), for the image must still be indivisible, and this
can be taken to define the choice of identification of H(X) with 7. Examination
of the definttion of linking numbers i terms of signs ol crossings shows that €7 1s
homologous m X to lk(C", K)|y]. ||
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Note that, with the notation of the above proof, a unique element of H,(X N N)
must map to (0, 1), where the 1 € H,;(N) is represented by the oriented curve
k. As (0, 1) 1s indivisible, this class 1s represented by a simple closed curve X in
\' N N. This gives substance to the following definition:

Definition 1.6. Let K be an oriented knot in (oriented) S° with solid torus neigh-
bourhood N. A meridian i of K 1s a non-separating simple closed curve in dN
that bounds a disc in N. A longitude A of K 1s a simple closed curve in d NV that is
homologous to K in N and null-homologous in the exterior of K.

Note that A and u, the longitude and meridian, both have standard orientations
coming from orientations of K and S°, they are well defined up to homotopy in 9N
and their homology classes form a base for H, (0 N). The above ideas can easily
he extended to the following result for links of several components.

Theorem 1.7. Let L be an oriented link of n components in (oriented) S° and let X
he its exterior. Then Hy(X) = @ _, Z. Further, H\(X) is canonically isomorphic
(o @, Z generated by the homology classes of the meridians {i;) of the individual
components of L.

I’ROOF. The proof of this is just an adaptation of that of the previous theorem.
l{ere N is now a disjoint union of z solid tori. The map H3(S°) — H>(XNN)is the
map Z — P, Zthatsends 1to (1, 1, ..., 1), implying that H>(X) = €, _, Z
Now H\ (N N X) = &,, Z and HI(N) D, Z, and the map H;(N N X) —
H|(N) @ H,(X) 1s still an isomorphism, so H,(X) = €, Z. The argument about
the generators 1s as before. ]

[t C 1s an oriented simple closed curve in the exterior of the oriented link L,

the /inking number of C and L is defined by Ik(C, L) = ) . Ik(C, L;) where the
[., are the components of L. By Theorem 1.7, Ik(C, L) is the image of [C] €
H(X) = @, Z under the projection onto Z that maps each generator to 1.

Exercises

|. Show that the knot 4, is equivalent to its reverse and to its reflection.

2. A diagram of an oriented knot 1s shown on a screen by means of an overhead projector.
What knot appears on the screen if the transparency is turned over?

3. From the theory of the Reidemeister moves, prove that two diagrams in S* of the same
oriented knot in S* are equivalent, by Reidemeister moves of only Types Il and 11 | if
and only 1if the the sum of the signs of the crossings 1s the same for the two diagrams.

4. Attempta classificaton of links ol two components up (o six crossings, noting any pairs
of links 1 vour table that you have not yet proved to be distincet.
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10.

[ 1.
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. Show that any diagram of a knot K can be changed to a diagram of the unknot

by changing some of the crossings from “over” to “under”. How many changes are
necessary”?

Prove that the (p. ¢) torus knot, where p and ¢ are coprime, 1s equivalent to the (¢, p)
torus knot. How does it relate to the (p, —¢g) and (—p, —¢) torus knots?

Find descriptions of the knot 8y in the Dowker—Thistlethwaite notation, 1n the Conway
notation as a 2-bridge knot C(a,, a». a3, as) and also as a closed braid b.

. Prove that any 2-bridge knot is an alternating knot.

A knot diagram 1s said to be three-colourable it each segment of the diagram (from
one under-pass to the next) can be coloured red, blue or green so that all three colours
are used and at each crossing either one colour or all three colours appear. Show that
three-colourability 1s unchanged by Reidemeister moves. Deduce that the knot 3, i1s
indeed distinct from the unknot and that 3, and 4, are distinct. Generalise this idea
to n-colourability by labelling segments with integers so that at every crossing, the
over-pass 1s labelled with the average, modulo #, of the labels of the two segments on
either side.

Can n-colourability distinguish the Kinoshita—Terasaka knot (Figure 3.3) from the
unknot?

et X, and X, be the exteriors of two non-trivial knots K, and K,. Determine how a
homeomorphism /2 : X, — 9X, can be chosen so that the 3-manifold X, U, X, has

the same homology groups as S°.

Let M be a homology 3-sphere, that 1s, a 3-manitold with the same homology groups as
S-. Show that the linking number of a link of two disjoint oriented simple closed curves
in M can be defined in a way that gives the standard linking number when M = §S°.
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Seifert Surtaces and Knot
|‘actorisation

It will now be shown that any link in S° can be regarded as the boundary of some
<urface embedded in S°. Such surfaces can be used to study the link in different
ways. Here they are used to show that knots can be factorised into a sum of
prime knots. Later they will feature in the theory and calculation of the Alexander

polynomial.

Definition 2.1. A Seifert surface for an oriented link L in S° is a connected
compact oriented surface contained in S° that has L as its oriented boundary.

I-xamples of such surtaces are shown in Figure 2.1 and have been mentioned in
('hapter 1 for two-bridge knots. Of course, any embedding into S of a compact
connected oriented surface with non-empty boundary provides an example of a
link equipped with a Seifert surface. A surface i1s non-orientable if and only 1f 1t
contains a Mobius band. Some surface can be constructed with a given link as its
houndary 1n the following way: Colour black or white, in chessboard fashion, the
regions of §% that form the complement of a diagram of the link. Consider all the
icgions of one colour joined by “‘half-twisted” strips at the crossings. This 1s a
surface with the link as boundary, and 1t may well be orientable. However, it may
quite well be non-orientable for either one or both of the two colours. The usual
dragram of the knot 4, has both such surfaces non-orientable. Thus, although this
method may provide an excellent Seifert surface, a general method, such as that

ol Seifert which follows, 1s needed.

Figure 2.1
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K= ) =X

Figure 2.2

Theorem 2.2. Any oriented link in S° has a Seifert surface.

PROOF. Let D be an oriented diagram for the oriented link L and let D be D
modified as shown 1n Figure 2.2. D is the same as D except 1n a small neigh-
bourhood of each crossing where the crossing has been removed in the only way
compatible with the orientation. This D is just a disjoint union of oriented simple
closed curves in §2. Thus D is the boundary of the union of some disjoint discs all
on one side of (above) S%. Join these discs together with half-twisted strips at the
crossings. This torms an oriented surface with L as boundary; each disc gets an
orientation from the orientation of D, and the strips faithfully relay this orientation.
If this surtace 1s not connected, connect components together by removing small

discs and inserting long, thin tubes.

In the above proof, D was a collection of disjoint simple closed curves con-
structed from D. These curves are called the Seifert circuits ot D. The Seifert
circuits of the knot 8,9 are shown 1n Figure 2.3. A Seifert surface for this knot 1s

then constructed by adding three discs above the page and eight half-twisted strips
near the crossings to join the discs together.

(Fp

The proof of Theorem 2.2 gives a way of constructing a Seifert surface from a
diagram of the link. The surface that results may however not be the easiest for any
specific use. A surface coming from the chessboard colouring technique, or from
some partial use of it, may well seem more agreeable. The diagram of Figure 2.4
shows how, at least intuitively, a knot can have two very different Seifert surfaces;
the two thin circles can be joined by a tube after following along the narrow

(“knotted™) strip or after swallowing that part of the picture.

Figure 2.3

Definttion 2.3, The genus ¢(K) ol a knot K 1s defined by

e(K)  oun. {eenus (F) - Ias a Sedert sunbace tor K.
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Figure 2.4

llcre F' has one boundary component, so as an abstract surface it 1s a disc with a
number of “hollow handles” added. That number 1s its genus. More precisely, the
penus of Fis -:'5 (1 — x(F)), where x (F) is the Euler characteristic of F'. The Euler
characteristic in turn can be defined as the number of vertices minus the number
ol"edges plus the number of triangles in any triangulation of F. It does not seem
[0 be common to discuss the genus of a link, but there 1s no difficulty in extending
th¢ definition.

Note that it follows at once that K is the unknot if and only if 1t has genus 0. Also,
I K has a Seifert surface of genus 1 and K 1s known not to be the unknot, then
»(K') = 1. The proof of Theorem 2.2 constructs a Seifert surface F tor K from a
diagram D of K. If D has n crossings and s Seifert circuits, then x (F) = s — n,
wothat g(K) < 5(n —s + 1).

[t has already been noted that though it is easy to define numerical knot and link
imvariants by mmnimising some geometric phenomenon associated with i1t, often
such invariants are very hard to calculate and difhicult to use. The genus of a knot,
however, has a utility that arises from the following result of [115], which states

that knot genus 1s additive.

'heorem 2.4. For any two knots Ky and K>,
g(K) + Ky) = g(Ky) + g(K2) .

I’ROOF. Firstly, suppose that K, and K5, together with minimal genus Seitert
surfaces F; and F,, are situated far apart in S°. Each F; is a connected surface with
non-empty boundary, so elementary homology theory shows that Fy U F; does
not separate S°. Thus one can choose an arc o from a point in K to a point in K,
that meets F; U F5 at no other point and that intersects once a 2-sphere separating
K, from K,. The union of F; U F, with a “thin” strip around « (twisted to match
oricntations) gives a Seifert surface for K| + K, that has genus the sum of the

penera of Fy and F5>. Thus
g(K| + Ky) < g(Ky) + g(Kk2) .

Now supposc that F is a minimal genus Seifert surface for K, + K. Let X be
1 2-sphere, interseeting K|+ K> transverscly at two points, of the sort that occurs
m the definttion of Ky + K>, Thus X scparates K, - K> mto two arcs « and «o,
and o Bas any arc an Y joming the two pomts ol 2 (1 (K | Ky, then oy, U S
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and ay U B are copies of K| and K,. Now F and ¥ are surfaces in S°. Here it is
being assumed throughout that all such inclusions are piecewise linear (as usual,
“smooth™ 1s just as good). Thus each can be regarded as a sub-complex of some
triangulation of S°, and ¥ can be moved (by a general position argument, moving
“one vertex at a time”’) to a position in which 1t 1s transverse to the whole of F. (The
local situation 1s then modelled on the intersection of two planes, or half-planes,
placed in general position in 3-dimensional Euclidean space.) Thus, without loss
of generality, it may be assumed that F* N X 1s a 1-dimensional manifold which
must be a finite collection of simple closed curves and one arc B joining the points
of ¥ N (K, + K>). Each of these simple closed curves separates X 1nto two discs
(using the 2-dimensional Schonflies theorem), only one of which contains 8. Let
C be a simple closed curve of F N X that 1s innermost on ¥ — B. This means that
C bounds in % a disc D, the interior of which misses . Now use D to do surgery
on F' in the following way: Create a new surtface F from F by deleting from F a
small annular neighbourhood of C and replacing 1t by two discs, each a “parallel”
copy of D, one on either side of D. If C did not separate F, this F would be a
Seifert surface for K| + K5 of genus lower than that of F (since the surgery has
the effect of removing a hollow handle). As that is not possible, C separates F/,
and so F is disconnected. Consider the component of F that contains K| + K.
This 1s a surface of the same genus as F' but which meets % 1n fewer simple closed
curves (C, at least, has been eliminated). Repetition of this process yields a Seifert
surface F' for K, + K>, of the same genus as F', that intersects 2 only in 8. Thus
> separates F’ into two pieces which are Seifert surfaces for K| and K,. Hence

g(K)) + g(Ky) < g(Ky) + K»),

which, together with the preceding inequality, proves the result.

Corollary 2.5. No (non-trivial) knot has an additive inverse. That is, if K| + K>
is the unknot, then each of K| and K, is unknotted.

Corollary 2.6. If K is a non-trivial knot and )| K denotes the sum of n copies
of K, then if n £ m it follows that > | K # Y | K. There are, then, certainly
infinitely many distinct knots.

Corollary 2.7. A knot of genus 1 is prime.

Corollary 2.8. A knot can be expressed as a finite sum of prime knots.

IPROOF. If a knot 1s not prime, 1t can be expressed as the sum of two knots of
smallcr genus. Now usce induction on the genus.

[t will be worthwhile recalling now the following basic Schonflies theorem,
. .. . : : )
alrcady mentioned i the introduction. Frssentially, it states that S cannot knot
r
1n .S
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Theorem 2.9. Schonflies Theorem. Let e : S° — S° be any piecewise lincar
embedding. Then S° — eS* has two components, the closure of each of whiclh 1s a

piecewise linear ball.

No proof will be given here for this fundamental, non-trivial result (for a proof
see [81]). The piecewise linear condition has to be inserted, as there cxist the
famous “wild horned spheres” that are are examples of topological embceddings
e . $° —> §° for which the complementary components are not even siniply
connected.

The next result considers the difterent ways in which a knot might be expressed
as the sum of other knots. It 1s the basic result needed to show that the expression of
a knot as a sum of prime knots is essentially unique. The technique of its proof iy
consists of minimising the intersection of surfaces in S* that meet transverscly i
simple closed curves, but the procedure here 1s more sophisticated than in the prool
of Theorem 2.4. In the proot, use will be made of the idea of a ball-arc pair. Such
pair 1s just a 3-ball containing an arc which meets the ball’s boundary at just its two
end points. The pair 1s unknotted if 1t 1s pairwise homeomorphicto (D x [, » x ),
where » 1s a point 1n the 1nterior of the disc D and [ 1s a closed interval.

Theorem 2.10. Suppose that a knot K can be expressed as K = P + Q, where
P is a prime knot, and that K can also be expressed as K = K| + K,. Then either
(a) Ky = P + K| for some K|, and Q = K| + K3, or

(b) Ky = P + K, for some K5, and Q = K| + K.

PROOF. Let ¥ be a 2-sphere in S°, meeting K transversely at two points, that
demonstrates K as the sum K, + K5. The factorisation K = P + Q implies that
there is a 3-ball B contained in S° such that B N K is an arc o (with K intersccting
d B transversely at the two points d«) so that the ball-arc pair (B, «) beccomes, on
gluing a trivial ball-arc pair to its boundary, the pair (S, P). As in the proof of
Theorem 2.4, 1t may be assumed, after small movements of X, that X intersects 0 B
transversely in a union of simple closed curves disjoint from K. The immecdiate
aim will be to reduce X M 9 B. Note that if this intersection 1s empty, then 1S
contained in one of the two components of S? — ¥, and the result follows at oncc.

As X N K is two points, any oriented simple closed curve in 2 — K has linking
number zero or 1 with K. Amongst the components of X N 9B that have zero
linking number with K select a component that is innermost on X (with X N K
considered “outside”). Thiscomponentboundsadisc D C X, withDNaoB = a D).
Now d D bounds a disc D" C 9B with D'’ N K = ¢ (by linking numbers), though
D" N 2 may have many components (see Figure 2.5). By the Schonflies thcorem,
the sphere D U D" bounds a ball. “Moving” D’ across this ball to just the other side
of D changes B to a new position, with 2 M d B now having fcwer components than
beforc. As the new position of B differs from the old by the addition or subtraction
of a ball disjoint from K, the new (3, «) pair corresponds to 2 exactly as belore.
After repetition of this procedure, it may be assumed that cach component ol
2 (Y alB has hinkmp number L with K. (CThus, on cach of the spheres >oand o B,
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the components of X M d B look like lines of latitude encircling, as the two poles,
the two ntersection points with K.)

Figure 2.5

[f now X N B has a component that 1s a disc D, then D N K 1s one point, and as
P 1s prime, one side of D in B i1s a trivial ball-arc pair (see Figure 2.5). Removing
from B (a regular neighbourhood of) this trivial pair produces a new B with the
same properties as before but having fewer components of ¥ N B. Thus it may be
assumed that every component of X N B 1s an annulus.

Let A be an annulus component of ¥ N B. Then d A bounds an annulus A’ 1n
0 B and A may be chosen (furthest from o) sothat A" N X = dA’. Let M be the
part of B bounded by the torus A U A" and otherwise disjoint from X U 0B. Let
A be the closure of one of the components of 98 — A’. Then A 1s a disc, with 0 A
one of the components of A’, and A N K equal to a single point (though A N X
may have many components). This 1s 1llustrated schematically 1n Figure 2.6. Let
N (A) be a small regular neighbourhood of A in the closure of B — M. This should
be thought of as a thickening of A into B — M. The pair (N(A), N(A) Na)isa
trivial ball-arc pair. However, M U N(A) 1s a ball, because its boundary 1s a sphere,
and the fact that P is prime implies that the ball-arc pair (M U N(A), N(A) N «)
1s either trivial or a copy of the pair (B, «). If it 1s trivial (that 1s, when M 1s a solid
torus), B may be changed, as before, by removing (a neighbourhood of) this pair
to give a new B with fewer components of X N B. Otherwise, M 1s a copy of B less
a neighbourhood of «, and that 1s just the exterior of the knot P; 0 A corresponds
to a meridian of P. The closure of one of the complementary domains of ¥ in S?,

Iigure 2.6
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.1y that corresponding to K, contains M, and M N ¥ = A. The meridian A
hounds a disc in £ — A that meets K at one point. This means that P 1s a summand
ol Ky as required, so K = P 4 K, for some K.

In this last circumstance, remove the interior of M and replace it with a solid

otus ' x D?. Glue the boundary of the solid torus to M, and ensure that the
houndary of any meridional disc of S' x D~ is identified with a curve on M that
culs 9A at one point. Then (S' x D?) U N(A) is a ball, so B has been changed to
hecome a new ball B, and (B’, «) is a trivial ball-arc pair. The closure of S° — B is
unchanged; it is still a ball, so S* is changed to a new copy of S°. In that new copy,
(he knot has become Q and, viewed as being decomposed by X, it has become

/\;—I—Kz.ThUSQ:K{—!—Kz. ]

Corollary 2.11. Suppose that P is a prime knot and that P + Q = K| + K.
Suppose also that P = K. Then Q = K.

I'ROOF. By Theorem 2.10, there are two possibilities. The first 1s that for some
hi.P+ K =K, = Pand Q = K| + K,. But then the genus of K| must be
scro, so K 1s the unknot and so Q = K. The second possibility is that for some
hi, P+ K, = Ky,and Q = K, + K. Butthen 0 = K; + P = K.

I'heorem 2.12. Up fo ordering of summands, there is a unique expression for a
knot K as a finite sum of prime knots.

"ROOF. Suppose K = P+ P+ ---+P, =0+ 0r+ -+ O,, where
the P; and Q); are all prime. By the theorem, P, is a summand of O or of O, +
()3 + - - -+ Q,, and 1f the latter, then it 1s a summand of one of the Q; for j > 2,
by induction on n. Of course 1f Py is a summand of Q;, then P = Q;. By the
corollary, P; and Q, may then be cancelled from both sides of the equation, and
(he result follows by induction on m. Note that this induction starts when m = 0.
I'hen n = 0 because the unknot cannot be expressed as a sum of non-trivial knots

(again by consideration of genus). ]

The theorems of this chapter are intended to make 1t reasonable to restrict at-
(lention to prime knots in most circumstances. Certainly that 1s the tradition when

considering knot tabulation.

| 'xercises

|. Prove that a non-trivial torus knot 1s prime by considering the way in which a 2-sphere,
meeting the knot at two points, would cut the torus that contains the knot.

[

For a 2-bridge knot K there is a 2-sphere separating S into two balls, cach of which
intersects Ko two standard arcs. By considering how this sphere might intersect a
2-sphere mecting the knot at two pomts, prove that a non-trivial 2-brnidge knot 1s prime.
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3.

Chapter 2

The bridge number of a knot K in S’ is the least integer n for which there is an S?
separating S into two balls, each meeting K in n standard (unknotted and unlinked)
spanning arcs. Show that the sum of two 2-bridge knots is a 3-bridge knot.

. Suppose that F 1s a Seifert surface for an oriented knot K, and let C be an oriented

stimple closed curve contained in F' — K. Prove that lk(C, K) = 0.

. Prove that any knot may be changed to the unknot by a sequence of moves, each of

which changes four arcs contained in a ball from one of the following configurations
to the other.

| Think of the knot as the boundary of a non-orientable surface. ]
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