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Preface

This book arose from a course taught for several years at the Univer-
sity of Evry- Val d’Essonne. It is meant primarily for graduate students
in mathematics. To make it into a useful tool, appropriate to their knowl-
edge level, prerequisites have been reduced to a minimum: essentially, basic
concepts of topology of metric spaces and in particular of normed spaces
(convergence of sequences, continuity, compactness, completeness), of “ab-
stract” integration theory with respect to a measure (especially Lebesgue
measure), and of differential calculus in several variables.

The book may also help more advanced students and researchers perfect
their knowledge of certain topics. The index and the relative independence
of the chapters should make this type of usage easy.

The important role played by exercises is one of the distinguishing fea-
tures of this work. The exercises are very numerous and written in detail,
with hints that should allow the reader to overcome any difficulty. Answers
that do not appear in the statements are collected at the ¢nd of the volume.

There are also many simple application exercises to test the reader’s
understanding of the text, and exercises containing examples and coun-
terexamples, applications of the main results from the text, or digressions
to introduce new concepts and present important applications. Thus the
text and the exercises are intimately connected and complement each other.

Functional analysis is a vast domain, which we could not hope to cover
exhaustively, the more so since there are already excellent treatiscs on the
subject. Therefore we have tried to limit ourselves to results that do not
require advanced topological tools: all the material covered requires no
more than metric spaces and sequences. No recourse is made to topological
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vector spaces in general, or even to locally convex spaces or Fréchet spaces.
The Baire and Banach-Steinhaus theorems are covered and used only in
some exercises. In particular, we have not included the “great” theorems of
functional analysis, such as the Open Mapping Theorem, the Closed Graph
Theorem, or the Hahn-Banach theorem. Similarly, Fourier transforms are
dealt with only superficially, in exercises. Our guiding idea has been to
limit the text proper to those results for which we could state significant
applications within reasonable limits.

This work is divided into a prologue and three parts.

The prologue gathers together fundamentals results about the use of
sequences and, more generally, of countability in analysis. It dwells on the
notion of separability and on the diagonal procedure for the extraction of
subsequences.

Part I is devoted to the description and main properties of fundamental
function spaces and their duals. It covers successively spaces of continuous
functions, functional integration theory (Daniell integration) and Radon
measures, Hilbert spaces and LP spaces.

Part II covers the theory of operators. We dwell particularly on spectral
properties and on the theory of compact operators. Operators not every-
where defined are not discussed.

Finally, Part III is an introduction to the theory of distributions (not in-
cluding Fourier transformation of distributions, which is nonetheless an im-
portant topic). Differentiation and convolution of distributions are studied
in a fair amount of detail. We introduce explicitly the notion of a fundamen-
tal solution of a differential operator, and give the classical examples and
their consequences. In particular, several regularity results, notably those
concerning the Sobolev spaces W1?(R?), are stated and proved. Finally, in
the last chapter, we study the Laplace operator on a bounded subset of R:
the Dirichlet problem, spectra, etc. Numerous results from the preceding
chapters are used in Part III, showing their usefulness.

Prerequisites. We summarize here the main post-calculus concepts and re-
sults whose knowledge is assumed in this work.

- Topology of metric spaces: elementary notions: convergence of sequences,
lim sup and lim inf, continuity, compactness (in particular the Borel-
Lebesgue defining property and the Bolzano- Weierstrass property), and
completeness.

— Banach spaces: finite-dimensional normed spaces, absolute convergence
of series, the extension theorem for continuous linear maps with values
in a Banach space.

- Measure theory: measure spaces, construction of the integral, the Mono-
tone Convergence and Dominated Convergence Theorems, the definition
and elementary properties of L? spaces (particularly the Holder and
Minkowski inequalities, completeness of L?, the fact that convergence
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of a sequence in L? implies the convergence of a subsequence almost
everywhere), Fubini’s Theorem, the Lebesgue integral.

- Differential calculus: the derivative of a function with values in a Banach
space, the Mean Value Theorem.

These results can be found in the following references, among others: For
the topology and normed spaces, Chapters 3 and 5 of J. Dieudonné’s Foun-
dations of Modern Analysis (Academic Press, 1960); for the integration
theory, Chapters 1, 2, 3, and 7 of W. Rudin’s Real and Complez Analysis,
McGraw-Hill; for the differential calculus, Chapters 2 and 3 of H. Cartan’s
Cours de calcul différentiel (translated as Differential Calculus, Hermann).

We are thankful to Silvio Levy for his translation and for the opportunity
to correct here certain errors present in the French original.

We thankfully welcome remarks and suggestions from readers. Please send
them by email to hirsch@lami.univ-evry.fr or lacombe@lami.univ-evry.fr.

Francis Hirsch
Gilles Lacombe
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Notation

If A is a subset of X, we denote by A¢ the complement of Ain X.fAC X
and B C X, we set A\ B = AN B°. The characteristic function of a subset
A of X is denoted by 1 4. It is defined by

_Jl1 fz€A,
@) ={, frgA

N, Z, Q, and R represent the nonnegative integers, the integers, the
rationals, and the reals. If E is one of these sets, we write E* = E \ {0}.
We also write R* = {z € R : = > 0}. If a € R we write a* = max(0,a)
and a~ = — min(a,0).

C denotes the complex numbers. As usual, if 2 € C, we denote by Z the
complex conjugate of z, and by Re z and Im z the real and imaginary parts
of 2.

If f is a function from a set X into R and if a € R, we write {f > a} =
{z € X : f(z) > a}. We define similarly the sets {f < a}, {f > a},
{f < a}, etc.

As usual, a number z € R is positive if z > 0, and negative if 2 < 0.
However, for the sake of brevity in certain statements, we adopt the con-
vention that a real-valued function f is positive if it takes only nonnegative
values (including zerc), and we denote this fact by f > 0.

Let (X, d) be a metric space. If A is a subset of X, we denote by A and
A the closure and interior of A. If 7 € X, we write ¥(z) for the set of
neighborhoods of z (that is, subsets of X whose interior contains z). We
set

B(z,r) = {y€ X :d(z,y) <1}, B(z,r)={y€ X:d(z,y) <r}.
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(We do not necessarily have B(z,r) = B(z,r), but this equality does hold
if, for example, X is a normed space with the associated metric.) If X is a
normed vector space with norm || - ||, the closed unit ball of X is

B(X)={z e X :|lzll <1}.

When no ambiguity is possible, we write B instead of B(X). If A is a subset
of X, the diameter of A is

d(A) = sup d(z,y).

z,y€

If AC X and B C X, the distance between A and B is

d(A,B) = (z'y;ggx s d(z,y),

and d(z, A) = d({z},A) for z € X.

We set K = R or C. All vector spaces are over one or the other K. If
E is a vector space and A is a subset of E, we denote by [A4] the vector
subspace generated by A. If E is a vector space, A, B are subsets of E, and
AeK,wewrite A+ B={z+y:z€ A, y€ B}and AMA={Az:z € A}.

Lebesgue measure over R?, considered as a measure on the Borel sets of
R?, is denoted by A4. We also use the notations dA\4(z) = dr = dz, ...dzq4.
We omit the dimension subscript d if there is no danger of confusion.

If z € RY, the euclidean norm of z is denoted by |z|.



Prologue: Sequences

Sequences play a key role in analysis. In this preliminary chapter we collect
various relevant results about sequences.

1 Countability

This first section approaches sequences from a set-theoretical viewpoint.
A set X is countably infinite if there is a bijection ¢ from N onto X
that is, if we can order X as a sequence:

X ={p(0),9(2),...,0(n),...},

where p(n) # ¢(p) if n # p. The bijection ¢ can also be denoted by means
of subscripts: p(n) = z,,. In this case

X ={20,21,..,Zn,...} = {Zn}nen.

A set is countable if it is finite or countably infinite.

Ezamples
1. N is clearly countably infinite. So is Z: we can write Z as the sequence
Z=1{0,1,-1,2,-2,3,-3,...,n,-n,...}.

Clearly, there can be no order-preserving bijection between N and Z.
2. The set N? is countable. For we can establish a bijection ¢ : N = N2
by setting, for every p > 0 and every n € [p(p+1)/2, (p+1)(p+2)/2),

o(n) = (n_ p(p2+ l)’ p(p2+3) _n)_
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This complicated expression means simply that we are enumerating N*
by listing consecutively the finite sets A, = {(g,7) € N*: g+r = p}, each
in increasing order of the first coordinate:

2 S ~ ~
N*% = {(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), ...}

We see that explicitly writing down a bijection between N and a count-
able set X is often not at all illuminating. Fortunately, it is usually unnec-
essary as well, if the goal is to prove the countability of X. One generally
uses instead results such as the ones we are about to state.

Proposition 1.1 A nonempty set X is countable if and only if there is a
surjection from N onto X.

Proof. If X is countably infinite there is a bijection, and thus a surjection,
from N to X. If X is finite with n > 1 elements, there is a bijection
¢ :{1,...,n} = X. This can be arbitrarily extended to a bijection from N
to X.

Conversely, suppose there is a surjection ¢ : N - X and that X is
infinite. Define recursively a sequence (n,), € N by setting ng = 0 and

npy1 = min{n : p(n) ¢ {p(no),p(m1),...,p(np)}} forpeN.

This sequence is well-defined because X is infinite; by construction, the
map p — @(n,) is a bijection from N to X. O

Corollary 1.2 If X is countable and there erists a surjection from X to
Y, then Y is countable.

Indeed, the composition of two surjections is surjective.
Corollary 1.3 Every subset of a countable set is countable.
Indeed, if Y C X, it is clear that there is a surjection from X to Y.

Corollary 1.4 IfY is countable and there exists an injection from X to
Y, then X is countable.

Proof. An injection f : X — Y defines a bijection from X to f(X). If
Y is countable, so is f(X), by the preceding corollary. Therefore X is
countable. 0

Corollary 1.5 A set X is countable if and only if there is an injection
from X to N.

Another important result about the preservation of countability is this:

Proposition 1.6 If the sets X, Xs,..., X, are countable, the Cartesian
product X = X, x X3 x --- x X, is countable.
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Proof. 1t is enough to prove the result for n = 2 and use induction. Suppose
that X; and X, are countable, and let f;, fo be surjections from N to
X1, X2 (whose existence is given by Proposition 1.1). The map (n,,nz) —
(£1(n1), f2(n2)) is then a surjection from N? to X. Since N? is countable,
the proposition follows by Corollary 1.2. a

We conclude with a result about countable unions of countable sets:

Proposition 1.7 Let (X;)ics be a family of countable sets, indezed by a
countable set I. The set X = |J X; is countable.

iel
Proof. If, for each i € I, we take a surjection f; : N — X, the map
f: I xN = X defined by f(i,n) = fi(n) is a surjection. But I x N is
countable. a

Note that a countable product of countable sets is not necessarily count-
able; see Example 5 below.

Ezamples and counterezamples

1. Q is countable. Indeed, the map f : Z x N* — Q defined by f(n,p) =
n/p is surjective and Z x N* is countable.

2. The sets N", Q", Z", and (Q + iQ)" are countable (see Proposition
1.6).

3. R is not countable. For assume it were; then so would be the subset
[0, 1], that is, we would have [0, 1] = {z, }nen. We could then construct a
sequence of subintervals I, = [a,, by] of [0, 1] satisfying these properties,
for all n € N:

Ins1 C Iy Ta @I, d(I,)=3""

The construction is a simple recursive one: for n = 0 we choose Iy
as one of the intervals [0, 3], [2,1], subject to the condition zo ¢ Io;
likewise, if I, = [an,bn] has been constructed, we choose I+, as one
of the intervals [an, an +37"7!), [bn —37""!, b,), not containing zp4,.
By construction, (,cn In = {z}, where z is the common limit of the
increasing sequence (a,) and of the decreasing sequence (b,,). Clearly,
z € [0,1], but = # z, for all n € N, which contradicts the assumption
that [0,1] = {zn}nen-
More generally, any complete space without an isolated point is un-
countable; see, for example, Exercise 6 on page 16.
Note also that if R were countable it would have Lebesgue measure zero,
which is not the case.

4. The set 2(N) of subsets of N is uncountable. Indeed, suppose there is
a bijection ¢ : N - #(N), and set

A={neN:n¢yp(n)}e P(N).
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Prologue: Sequences

Since ¢ is a surjection, A has at least one inverse image a under . We
now see that a cannot be an element of A, since by the definition of A
this would imply a ¢ y(a) = A, nor can it be an element of N \ A, since
this would imply a € ¢(a) and hence a € A. This contradiction proves
the desired result.

This same reasoning can be used to prove that, if X is any set, there can
be no surjection from X to 2 (X). This is called Cantor’s Theorem.
The set € = {0,1}" of functions N — {0,1} (sequences with values
in {0,1}) is uncountable. Indeed, the map from (N) into € that as-
sociates to each subset A of N the characteristic function 1,4 is clearly
bijective; its inverse is the map that associates to each function ¢ : N —
{0,1} the subset A of N defined by A = {n € N: p(n) = 1}.

We remark that €, and thus also $(N), is in bijection with R (see
Exercise 3 on the next page).

. The set R\ Q of irrational numbers is uncountable; otherwise R would

be countable.

The set 2;(N) of finite subsets of N is countable; indeed, we can define
a surjection f from {0} UJ,en- NP (which is countable by Proposition
1.7) onto 2¢(N), by setting

fO =@ and f(ny,...,np) ={ny,...,np} forallpeN".

. The set Q[X] of polynomials in one indeterminate over Q is countable,

because there is a surjective map from |J,¢n. QP (which is countable
by Proposition 1.7) onto Q[X], defined by

fla,. @) =@ + QX+ +gpXPL.

We can show in an analogous way that the set Q[X,..., Xy] of poly-
nomials in n indeterminates over Q is countable.

If o is a family of nonempty, pairwise disjoint, open intervals in R,
then & is countable. Indeed, let ¢ be a bijection from N onto Q. For
J € &, let n(J) be the first integer n for which p(n) € J. The map
2/ — N that associates n(J) to J is clearly injective, so & is countable
by Corollary 1.5.

Ezercises

1.

2.

Which, if any, of the following sets are countable?

a. The set of sequences of integers.

b. The set of sequences of integers that are zero after a certain point.

c. The set of sequences of integers that are constant after a certain
point.

Let A be an infinite set and B a countable set. Prove that there is a

bijection between A and AU B.
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5.
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Let ¢ = {0,1}".
a. Let f : € — [0,2] be the function defined by
+o00
z
f@) =2 5
n=0

Prove that f is surjective and that every element of [0,2] has at
most two inverse images under f. Find the set D of elements of [0, 2]
that have two inverse images under f; prove that D and f~!(D) are
countably infinite.

b. Construct a bijection between € and [0, 2], then a bijection between
¥ and R.

. Let X be a connected metric space that contains at least two points.

Prove that there exists an injection from [0, 1] into X. Deduce that X
is not countable.

Hint. Let z and y be distinct points of X. Prove, that, for every r €
[0, d(z,y)], the set

Sr={te X :d(z,t) =r}

is nonempty.
Let A be a subset of R such that, for every z € A, there exists n > 0
with (z, £ + n7) N A = @. Prove that A is countable.
Hint. Let z and y be distinct points of A. Prove that, given n,& > 0, if
the intervals (z, z + 1) and (y, y + €) do not intersect A, they do not
intersect one another.
Let f be an increasing function from I to R, where I is an open,
nonempty interval of R. Let S be the set of discontinuity points of
f.Ifz € I, denote by f(z4) and f(z_) the right and left limits of f at
z (they exist since f is monotone).
a. Provethat S={z € I: f(z_) < f(z+)}
b. For z € S, write I, = (f(z-), f(z4)). By considering the family
(Iz)zes, prove that S is countable.
c. Conversely, let S = {z,}nen be a countable subset of I. Prove that
there exists an increasing function whose set of points of discontinu-
ity is exactly S.
Hint. Put f(z) = ::(’,2""1[,,_&00)(3:).

. More generally, a function on a nonempty, open interval I of R and

taking values in a normed space is said to be regulated if it has a left
and a right limit at each point of I. Let I be a regulated function from
ItoR.

a. Let J be a compact interval contained in I. For € > 0, write
Je = {z € J:max(|f(z4) - f()], 1f(2) - f(z-)]) > e}.
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Prove that J, has no cluster point.
Hint. Prove that at a cluster point of J. the function f cannot have
both a right and a left limit.

b. Deduce that J, is finite.

C.

Deduce that the number of points z € I where the function f is
discontinuous is countable.

8. Let A and B be countable dense subsets of (0,1). We want to construct
a strictly increasing bijection from A onto B.

a.

9. A

a.

Suppose first that A is the set
A={p279:p,q€e N*, p<29}.

i. Prove that A is countable and that, if z is an element of A, there
exists a unique pair (p,q) of integers such that £ = p2~9, with
g € N* and p < 29 odd.
ii. Write B = {z, : n € N} and define the map f : A — B induc-
tively, as follows:
- For g =1, set f(3) = o.
~ Suppose the values f(p2~*) have been chosen for 1 < k < ¢
and 1 < p < 29. We then define f(p2-971), for p < 29*! odd,
by setting f(p2-9"!) = z,,, where

n=min{m€N:f(I;;|l)<x’" <‘f(1;‘;:"l)}

(by convention, we have set f(0) =0 and f(1) = 1).

Prove that f(z) is well-defined for all z € A; then prove that

f is a strictly increasing bijection from A onto B.
ili. Deduce from this the case of arbitrary A.
bit of set theory
Let I be an infinite set. The goal of this exercise is to prove, using
the axiom of choice, that there exists a bijection from I to I x N.
Recall that a total order relation < on a set I is called a well-ordering
if every nonempty subset of I has a least element for the order <.
Recall also that every set can be well-ordered; this assertion, called
Zermelo’s aziom, is equivalent to the axioin of choice. Let < be a
well-ordering on I. The least element of I is denoted by 0. If z € I,
denote by = + 1 the successor of z, that is, the element of I defined
hy

z+1=min{yel:y>z}.

Thus, every element of I, except possibly one, has a successor. A
nonzero element of I that is not the successor of an element of I is
called a limit element. If z is an element of I, we define (if possible)
an element z + n, for integer n, by inductively setting z + (n+ 1) =
(z+n)+1.
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i. An example: suppose in this setting that I = N? and that < is
the lezicographical order on N2:

(n,m) < (n',m') <= (n<n)or (n=n"and m <m).

Check that this is a well-ordering. If (n,m) € I, determine
(n,m) + 1. What are the limit elements of I?

iil. Let € I. Prove that z can be written in a unique way as
z =2’ +n, where n € N and z’ is 0 or a limit element.

iii. Let ¢ be a bijection from N x N onto N. Define a map F from
I x N to I by F(z,m) = z’ + p(n,m), where z = &’ + n is the
decomposition given in the preceding item. Prove that F is a
bijection.

b. Let X be a set and A a subset of X. Suppose there exists an injection
i: X - A. We wish to show that there is a bijection between X
and A.

i. A subset Z of X is said to be closed (with respect to 1) if i{(Z) C
Z. If Z is any subset of X, the closure Z of Z is the smallest
closed subset of X containing Z. Prove that Z is well-defined for
every Z C X.

ii. Set Z = X\ A. Let ¢ : X — X be the map defined by

_fi(z) ifzeZ,
'p(z)_{x ifze X\Z

Prove that ¥ is a bijection from X onto A.

c. Cantor-Bernstein Theorem. Let X and Y be sets. Suppose there is
an injection f : X — Y and an injection g : Y — X. Prove that
there is a bijection between X and Y. (Note that this result does
not require the axiom of choice.)

Hint. fog is an injection from Y to f(X), and the latter is a subset
of Y.

d. Let X and Y be sets. Suppose there is a surjection f : X - Y and
a surjection g : Y — X. Prove that there is a bijection between X
and Y. (You can use the preceding result. Here it is necessary to use
the axiom of choice.)

e. Let I be an infinite set, let (J;)ic; be a family of pairwise disjoint
and nonempty countable sets, and set J = | J;¢; Ji- Prove that there
exists a bijection between I and J.

2 Separability

We consider here a type of “topological countability” property, called sepa-
rability. A metric space (X, d) is called separable if it contains a countable
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dense subset; that is, if there is a sequence of points (z,) of X such that
for all z € X and € > 0, there is n € N such that d(zn,z) <e.

It is easy to check that this condition is satisfied if and only if every
nonempty open subset of X contains at least one point from the sequence
(zn). Thus, the notion of separability is topological: it does not depend on
the metric d except insofar as d determines the family of open sets (the
topology) of X.

Ezamples

1. Every finite-dimensional normed space is separable. Recall that on a
finite-dimensional vector space, all norms are equivalent, that is, they
determine the same topology. This reduces the problem to that of R"
or C". But it is clear that Q" is dense in R", and that (Q + iQ)" is
dense in C".

2. Compact metric spaces
Proposition 2.1 Every compact metric space is separable.

Proof. If n is a strictly positive integer, the union of the balls B(z, 1),
over ¢ € X, covers X. By the Borel-Lebesgue property, X can be
covered by a finite number of such balls: X = U;-';l B(z},1). It is
then clear that the set

D={a:;-':n€N‘, 1<j<Jn}
is dense in X. (]

3. o-compact metric spaces. A metric space is said to be o-compact if it
is the union of a countable family of compact sets.
For example, every finite-dimensional normed space is o-compact. In-
deed, in such a space E any bounded closed set is compact, and E =
Unen B(0,n). It will turn out later, as a consequence of the theorems of
Riesz (page 49) and of Baire (page 22) that infinite-dimensional Banach
spaces are no longer o-compact; nonetheless, they can be separable.

Proposition 2.2 Every o-compact metric space is separable.
This is an immediate consequence of Propositions 2.1 and 1.7.

Proposition 2.3 If X is a separable metric space and Y is a subset of
X, then Y is separable (in the induced metric).

Proof. Let (zn) be a dense sequence in X. Set
% = {(n,p) € Nx N": B(zn,1/p)NY # }.
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For each (n,p) € %, choose a point ,, , of B(zn,1/p)NY. We show that the
family D = {z, p, (n,p) € %} (which is certainly countable) is dense in Y.
To do this, choose z € Y and € > 0. Let p be an integer such that 1/p < £/2;
clearly there exists an integer n € N such that d(z,z,) < 1/p. But then
z € B(zn,1/p) NY; therefore (n,p) €  and d(z,znp) < 2/p <. a

Ezample. The set R \ Q of irrational numbers, - with the usual metric, is
separable. This can be seen either by applying the preceding proposition,
or by observing that the set D = {gv2: ¢ € Q} is dense in R\ Q.

By reasoning as in Example 9 on page 4, one demonstrates the following
proposition:

Proposition 2.4 In a separable metric space, every family of pairwise
disjoint nonempty open sets is countable.

We will now restrict ourselves to the case of normed spaces. The metric
will always be the one induced by the norm.

A subset D of a normed vector space E is said to be fundamental if
it generates a dense subspace of E, that is, if, for every z € E and every
€ > 0 there is a finite subset {z1,...,Z,} of D and scalars A},..., A\, € K

such that n
T — E Aj(tj
i=1

Proposition 2.5 A normed space is separable if and only if it contains a
countable fundamental family of vectors.

<E.

Proof. The condition is certainly necessary, since a dense family of vectors
is fundamental. Conversely, let D be a countable fundamental family of
vectors in a normed space E. Let 2 be the set of linear combinations of
elements of D with coefficients in the field Q = Q (if K = R) or Q +iQ
(if K = C). Then 2 is dense in E, because its closure contains the closure
of the vector space generated by D, which is E. On the other hand, 2 is
countable, because it is the image of the countable set |J,cn.(Q™ x D")
under the map f defined by

FOb - A B1, e Tn) = Y A O
j=1

Remark. Recall that in a normed space any finite-dimensional subspace is
closed, since it is complete. It follows that a family of vectors whose span
is finite-dimensional (in particular, a finite famiiy) is fundamental if and
only if its span is the whole space.

A free and fundamental family of vectors in a normed space E is called
a topological basis for E.
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Proposition 2.6 A normed space is separable if and only if it has a count-
able topological basis.

Proof. The “if” part follows immediately froin the preceding proposition.
To prove the converse, it is enough to consider an infinite-diniensional
normed space E. By the preceding proposition, E has a fundamental se-
quence (z,). Now define by induction

ng = min{n € N : z,, # 0}
and, for every p € N,
npsr =min{n € N: z, & [Tno,...,Zn,)}.

Since E is infinite-dimensional by assumption, the sequence (n,) is well-
defined (see the preceding remark). By construction, the family (z,,)pen
is free and generates the same subspace as (z,)nen. Therefore it is funda-
mental. a

Ezercises

1. Let X be a metric space. We say that a family of open sets (U;)i¢s of
X is a basis of open sets (or open basis) of X if, for every nonempty
open subset U of X and for every z € U, there exists i € I such that
zeU;,CU.

a. Let % be an open basis of X. Prove that any open set U in X is the
union of the elements of % contained in U.

b. Prove that X is separable if and only if it has a countable open basis.
Hint. If (z,) is a dense sequence in X, the family

(B(zn’ 1/(p+1)))n.p€N

is an open basis of X. Conversely, if (U,,) is an open basis of X, any
sequence (z,) with the property that z, € U, for every n is dense
in X.
2. Let X be a separable metric space.

a. Prove that there is an injection from X into R.
Hint. Let (V,)nen be a countable basis of open sets of X (see the
preceding exercise). Consider the map from X into £(N) that takes
z€Xto{neN:zeV,}.

b. Prove that there is an injection from the set % of open sets of X
into R.
Hint. Prove the injectivity of the map U — £(N) that associates
to each open set U in X theset {ne N:V, Cc U}.

3. Let X be a separable metric space.
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a. Let f: X — R be a function, and let M be the set of points of X
where f has a local extremum. Prove that f(M) is countable.
Hint. Let M* be the set of points of X where f has a local maximum
and let  be a countable open basis of X (see Exercise 1). Prove
that there is an injection from f(M*) into %.

b. Prove that a continuous function f : R — R that has a local ex-
tremum at every point is constant.

. Lindeldf’s Theorem. Prove that a metric space X is separable if and

only if every open cover of X (that is, every family of open sets whose

union is X) has a countable subcover (that is, some countable subset of
the cover is still a cover).

Hint. “Only if”: Let (V;) be a countable basis of open sets of X (see

Exercise 1) and let (U;)ic; be an open cover of X. Taken € N. If V,, is

contained in some Uj, choose an element i(n) of I such that V;, C Uj();

otherwise, choose i(n) € I arbitrarily. Prove that the family (Uj(,))nen
covers X . For the converse, one can work as in the proof of Proposition

2.1.

. Let X be a separable metric space and let  be an uncountable family

of open sets in X. Prove that there exists a point of X that belongs to

uncountably many elements of % .

. Theorem of Cantor and Bendizon. Let X be a separable metric space.

Prove that there is a closed subset E of X, with no isolated points, and

a countable subset D of X such that X = EUD and END = @.

Hint. One can choose for E the set of points of X that have no countable

neighborhood.

. Let p > 1 be a real number. Denote by £ the set of complex sequences

a = (an) such that the series ) |an|P converges. Give €? the norm

ot = (2 lanl”)l/p-

neN

Also, denote by £*° the set of bounded complex sequences, with the
norm

llallo = sup |an].
nenN

Finally, denote by ¢y the subset of £ consisting of sequences that tend

to 0.

a. Prove that ¢ and ¢ are Banach spaces.

b. What is the closure in €*° of the set of almost-zero sequences (those
that have only finitely many nonzero terms)?

c. What is the closure of ¢P in £*°7

d. Prove that cg, with the norm || - ||, is a separable Banach space.

e. Prove that ¢P is separable.
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f. Prove that £* is not separable.
Hint. Check that {0,1}N C £ and that, if , 3 are distinct elements
of {0,1}V, then [|a — Blloc = 1. Then use Proposition 2.4 and the
fact that {0,1}" is uncountable.

g. Prove that the set of convergent sequences, with the || - || norm, is
a separable Banach space.

8. Let I be aset. If f : I — [0,+00) is a map, denote by .., f(i) the
supremum of the set of all finite sums of the form ) .., f(i), where
J C I is finite.

a. Prove that, if }_,c; f(i) < +oo, theset J = {i € I : f(i) # 0} is
countable.
Hint. Check that J = |J,.5o En, where, for each positive integer n,
weset E, ={iel: f(i) > 1/n}.

b. Let p > 1 be a real number. Denote by ¢P(I) the vector space con-
sisting of functions f : I — C such that } .., |f(i)[? < +oo. We
define on ¢°(I) a map || - ||, by setting

£l = (Zlf(i)l")l/p-

i€l

Prove that || - |, is a norm, for which ¢°(I) is a Banach space.
c. Prove that ¢P(I) is separable if and only if I is countable.

3 The Diagonal Procedure

In this section we introduce a method for passing to subsequences, called
the diagonal procedure, and present some of its applications. Recall that a
subsequence of a given sequence (Z, )nen is a sequence of the form (z,, )ken,
where (ni)ken is a strictly increasing sequence of integers. Such a sequence
k — n; can also be considered as a strictly increasing function ¢ : N = N.
The subsequence (z,,) can then be written (T,(x))keN- Since the function
@ is uniquely determined by its image A = @(N) (for n € N, the value of
@(n) is the (n + 1)-st term of A in the usual order of N), the subsequence
(T4 (k) )ken is determined by the infinite set A; we can denote it by (Zn)nea-
We will use all three notations in the sequel.

Theorem 3.1 Let (X,,d,)peN be a sequence of metric spaces, and, for
every p € N, let (Zn p)nen be a sequence in X,. If, for every p € N, the set
{zn,p: n € N} is relatively compact in X, there ezists a strictly increasing
function ¢ : N = N such that for every p € N the sequence (Ty(n),p)neN
converges in X.

Recall that a subset Y of a metric space X is called relatively compact
in X if there exists a compact K of X such that Y C K, or, equivalently,
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if the closure of Y in X is compact. In terms of sequences, Y is relatively
compact if and only if every sequence in Y has a subsequence that converges
in X (though the limit may not be in Y).

The remarkable part of the theorem is that the function ¢ that defines
the different subsequences does not depend on p.

Proof. Thanks to the assumption of relative compactness, one can induc-
tively construct a decreasing subsequence (A,,) of infinite subsets of N such
that, for every p € N, the sequence (Zn,p)nca, converges in X,. The diag-
onal procedure consists in defining the map ¢ by setting

¢(p) = the (p + 1)-st element of Ap.

Thus @(p+ 1) is strictly greater than the (p+ 1)-st element of Apy.;, which
in turn is greater than the (p + 1)-st element of A,, which is ¢(p). Thus ¢
is strictly increasing. Moreover, for every p € N the sequence (Z,(n),p)n>p
is a subsequence of the sequence (Tn,p)nca,, because, if n > p, we have
¢(n) € An C Ap. Therefore the sequence (Z,(n),p)neN converges. (]

Consider again a sequence (Xp,dp)pen of metric spaces (where d, is the

metric on X,). Put
x =[] x»
peN

recall that this product is the set of sequences z = (zp)pen such that
Zp € X, for each p € N. It is easy to check that the expression

+00
d(z,y) = 22" min(dp(zp, yp), 1)
p=0

defines a metric d on X; this is called the product distance on X. For
this metric, a sequence (2" ),en of points in X converges to a point z € X
if and only if lim, o 2 = z, for every p € N.

If the metric spaces (Xj,,dp) are all equal to the same space (Y,4), we
write X = YN, Then X is the set of sequences in X, or, what is the same,
the set of maps from N into Y, with the metric of pointwise convergence.

One can then rephrase Theorem 3.1 as follows:

Corollary 3.2 (Tychonoff’s Theorem) If (X,)pen is a sequence of com-
pact metric spaces and X = HpeN X, is the product space (with the product
distance), X is compact.

This follows immediately from the definition of the product metric, from
Theorem 3.1, and from the characterization of compact sets by the Bolzano-
Weierstrass property.
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Ezample. The space € = {0,1}", with the product distance

400
d(z,y) = 22_"|zn = ¥nl,

n=0

is compact. It is easy to see that the map ¥ — [0, 1] defined by

+00
f(z)=2 z 3"z,

n=0

is a continuous injection, whose image is the Cantor set (which is therefore
homeomorphic to ¥).

Precompactness

We now give another application of the diagonal procedure. We start with a
definition. A subset A of a metric space is precompact if, for every € > 0,
there are finitely many subsets A, Az,...,A, of A, each of diameter at
most ¢, such that A = J]_, A;.

Remarks

1. Clearly, every precompact subset is bounded. The converse is false, as
can be seen from the example of the unit ball in an infinite-dimensional
normed vector space (compare Theorem 1.1 on page 49). Precompact
sets are also called totally bounded.

2. Unlike relative compactness, which is a relative property, precompact-

ness involves only the intrinsic (induced) metric of the subspace.

Unlike compactness, precompactness is not a topological notion. It de-

pends crucially on the metric; see Exercise 2 below, for example.

Each of the following two properties is equivalent to the precompactness

of a subset A of a metric space X:

L

Lo

- For every € > 0 there exist finitely many points z,,...,z, of A such
that A C Uj_, B(z;j,¢€).

- For every € > 0 there exist finitely many points z,,...,z, of X such
that A c U}, B(z;,¢).

The proof is elementary.

Theorem 3.3 Let X be a metric space. Every relatively compact subset
of X is precompact. The converse is true if X is complete.

Proof. The first statement follows directly from the definitions, from the
Borel-Lebesgue property of compact sets, and from the fact that A C X
implies A C U, x B(x,¢) for every € > 0.
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Now suppose that X is complete and that A C X is precompact. Let
(zn)nen be a sequence of points in A. To prove that it has a convergent
subsequence, it is enough to find a Cauchy subsequence. For every p € N,
let A7,..., AR, be subsets of A of diameter at most 1/(p+ 1) and covering

3
A. We will construct by induction a decreasing sequence (Bp)pen of infinite
subsets of N such that, for every p € N, there is an integer j < N,, for which
{zp}peB, C A?-

Construction of By: since all terms of the sequence (z,)nen (of which
there are infinitely many) are contained in A, which is the union of the
finitely many sets AY,..., A}, there is at least one of these sets, say A},
containing infinitely many terms x,. (This is the pigeonhole principle.) We
then set By = {n€ N : z, € A} }.

To construct By, from By, the idea is the same: the terms of the sub-
sequence (Tn)neB, are all contained in the union of the finitely many sets
A",’+ L A’,’v': i ,; therefore at least one of the sets contains infinitely many
terms of the subsequence. We define By, as the set of indices of these
terms.

Having constructed the B,, we define a strictly increasing function ¢ :
N — N by setting

¢(p) = the (p + 1)-st element of B,.

Then, for every p € N and every integer n > p, we have ¢(n) € B,. By the
construction of the By, we see that

1
d(zv(n)a $¢(n:)) < m for all n,n’ > p.

Thus the sequence (z,(n)) is a Cauchy sequence. a

Ezercises

1. Let (Xp,dp)pen be a sequence of nonempty metric spaces, and let X be
the product space with the product metric.
a. Prove that (X,d) is separable if and only if each space (X,,dp) is
separable.
b. If n € N, z € X and r > 0, write

U(z,n,7) = {y € X : dp(zp,yp) < r for all p < n},

and define Z = {U(z,n,r): € X,ne N, r > 0}.
i. Show that all the sets U(z,n,r) are open in X.

ii. Take £ € X and r > 0. Prove that if 0 < p < r/2, there exists
an integer n € N such that z € U(z,n, p) C B(z, 7).

iii. Show that % is a basis of open sets of X (see Exercise 1 on
page 10).



16

Prologue: Sequences
iv. Let D be a dense subset of (X, d). Prove that the set
Up = {U(z,n,1/q):z€ D,neN, g€ N*}
is a basis of open sets of X. Prove that, if D is infinite, there

exists a surjection from D onto %p.
Hint. When D is uncountable, one must use Exercise 9a on

page 6.

2. If z and y are real numbers, we write d(z,y) = |z — y| and d(z,y) =
|arctan z — arctany|. Prove that § is a metric on R equivalent to the
usual metric d; that is, the two metrics define the same open sets. Show
that (R, d) is precompact, but (R, d) is not.

Prove that every precompact metric space is separable.

Prove that a metric space X is precompact if and only if every sequence
of elements in X has a Cauchy subsequence.

Helly’s Theorem. Let (f,) be a sequence of increasing functions from a

nonempty interval I C R into R, such that for every z € I the sequence
(fn(z)) is bounded.

L

5.

a.

b.

C.

d.

Prove that there is a subsequence (f,(n))nen such that, for every
z € Q N1, the sequence (f,(n)(Z))nen converges. For such values of
z, set 9() = limp 00 fyo(n)(Z)-

Extend g to all of I by setting, for z € I\ Q,

9(z) =sup{g(y) :y € QNI and y < z}.

Prove that g(z) is well-defined for all z € I and that the function g
is increasing on I.

Let C be the set of points of I where g is continuous. We know from
Exercise 6 on page 5 that the set D = I'\ C is countable. Prove that,
for every z € C, the sequence (f,(n)(z)) converges toward g(z).
Hint. Let z € C. Prove that, if y,z € QNI with y < z < z, we have

9(v) < liminf (fo(m)(2)) < limsup(fym)()) < 9(2)-

Using the diagonal procedure again, prove that there exists a subse-
quence (f,(y(n))) such that, for every z€ I, the sequence ( fow(ny (@)
converges.

Let X be a complete metric space, nonempty and with no isolated
points. We will show that X contains a subset that is homeomorphic
to the set € = {0,1}" with the product distance.

i. Let B be an open ball in X with radius r > 0. Prove that there
exist disjoint closed balls B, and B, of positive radii at most
r/2, and both contained in B.



3 The Diagonal Procedure 17

ii. Let ¥ = ,.en- {0,1}" be the set of finite sequences of 0s and 1s.
Let u = (ug,u1,...,un-1) € {0,1}* and v = (vo,v1,...,Up-1) €
{0,1}™ be elements of €p. We say that u is an initial segment
of v if n <m and u; = v; for all 1 < n. We say that u and v are
incompatible if u is not an initial segment of v and v is not an
initial segment of u.

Prove that one can construct a map u — B, that associates to
every u € % a closed ball B, of X, of positive radius, satisfying
these properties:
— If u is an initial segment of v, then B, C B,.
- If u and v are incompatible, B, N B, = @.
~ If u has length n, the radius of B, is at most 27 ™.
Hint. One can start by defining B(g) and B, then work by
induction on the length of the finite sequences: suppose the B,,
have been constructed for all sequences u of length at most n,
and give a procedure for constructing the B, for sequences u of
length n + 1.

iii. If a € €, define the set

Xo = U B

u€bo
«u an initial segment of a

(Naturally, we say that a finite sequence (ug,...,un-1) is an
initial segment of a if u; = a; for all i < n.) Prove that X,
contains a single point, which we denote z,.
iv. Prove that the map z : & — z4 is a continuous (and even Lip-
schitz) injection from ¥ into X.
v. Deduce that ¥ and z(¥) are homeomorphic.
b. Prove that every complete separable space is either countable or in
bijection with R. In particular, this is the case for every closed subset
of R.
Hint. One can use Exercise 2 on page 10, the Cantor-Bendixon The-
orem (Exercise 6 on page 11), Exercise 3 on page 5, and Exercise 9b
on page 7.
7. Prove that the space € = {0,1}", with the product distance, is homeo-
morphic to € x €.
Hint. One can show that the map

(Zn)nen — ((zzn)neN, (12n+1)neN)

is a continuous bijection between ¥ and € x €.

8. Let A be a subset of a normed vector space E. Prove that A is pre-
compact if and only if A is bounded and, for every € > 0, there exists
a finite-dimensional vector subspace F, of E such that d(z, F.) < ¢ for
all z € A.
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9. Let E be a normed space.

a. Let A be a nonempty subset of E. Prove that there is a (unique)
smallest closed convex set containing A. This set is called the closed
convez hull of A, and we will denote it by ¢(A).

b. Let A be a precompact subset of E.

i. Set M = sup,¢, ||lz|| and, for every € > 0, define a subset of E,
A.={z € E:|z|| < M and d(z, F;) < €},

where F; is a finite-dimensional vector space such that d(z, F;) <
€ for every z € A (see Exercise 8). Prove that, for every € > 0,
the set A, is a closed convex set containing A.
if. Set Ag = no«q A,. Prove that the set A is convex, closed,
and precompact. (Use Exercise 8.)
iii. Deduce that ¢(A) is precompact.
c. Suppose that E is a Banach space. Prove that if A is a relatively
compact subset of E, then ¢(A) is compact.

4 Bounded Sequences of Continuous Linear Maps

We now use the denseness and separability results given earlier, together
with consequences of the diagonal procedure, to study bounded sequences
of continuous linear maps. We start with some notation.

Notation. Let E and F be normed vector spaces over the same field K.
We denote by L(E, F) the space of continuous linear maps from E to F.
In general, we use the same symbol | - || for the norms on E, on F and on
L(E, F). The latter norm assigns to T € L(E, F) the number

ITH| = sup{iTz|| : € E and ||z|| < 1}.

Recall that, if F is a Banach space, so is L(E, F'). We use also the following
notations: L(E) = L(E, E), and E' = L(E,K); we call E’ the topological
dual of E.

Recall also that in a normed space E, a subset A is said to be bounded
if it is contained in a ball; that is, if the set of norms of elements of A is
bounded.

The first proposition deals with the case where F is a Banach space.

Proposition 4.1 Consider a normed space E, a fundamental family D
in E, and a Banach space F. Consider also a bounded sequence (Tn)nen of
elements of L(E, F). If, for every x € D, the sequence (T,x)nen converges
in F, there erxists an operator T € L(E, F) such that

nll’llloo Tox =Tz for every z € E.
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Proof. Let M > 0 be such that || T,|| < M for all n € N. It is clear
that the sequence (T,z) converges for any element z of the vector space
(D] generated by D. Now take z € E and € > 0. Since D is a fundamental
family, there exists y € [D] such that ||z—y|| < €/(3M). The sequence (T,y)
converges; therefore there is a positive integer N such that | Ty — Tpy|l <
€/3 for all n,p > N. By the triangle inequality we deduce that, for any
n,p> N,

ITaz — Tpzl| < Taz — Tayll + | Tny — Tpyll + | Tpy — Tpzll < e.

Thus (T,z) is a Cauchy sequence in F, and therefore convergent. For every
z € E we then set Tz = lim,,_,o0 Tnz. The map T thus defined is certainly
linear, and, since ||T'z|| < M||z]| for all z € E, it is also continuous. a

Corollary 4.2 (Banach—Alaoglu) Let E be a separable normed space.
For every bounded sequence (T, )nen in E’, there are a subsequence (T, )keN
and a continuous linear form T € E’ such that

lim T,,z =Tz forallz€E.
k—o0
Warning: the sequence (T,,) does not necessarily converge in E’; that
is, [|Tn, — T'|| does not in general tend toward 0.

Proof. Choose M > 0such that ||T,|| < M for every n € N, and let (zp)pen
be a dense sequence in E. For every positive integer p, we have

[Tazyp| < M||zp|| for alln e N.

Therefore the set {T,zp}nen is relatively compact in K. By Theorem 3.1,
there exists a subsequence (T,,) such that, for every p, the sequence of
images (T, Zp),cy converges in K. Now apply Proposition 4.1. )

This is not necessarily true if E is not separable; see, for example, Exer-
cise 3 below.
A weaker result than Proposition 4.1 holds when F is any normed space:

Proposition 4.8 Consider normed spaces E and F, a fundamental set
D in E, a bounded sequence (T,) in L(E,F) and a map T € L(E, F). If
the sequence (T, z) converges toward Tz for every point z € D, it does also
for everyz € E.

Proof. By taking differences we can suppose that T = 0. Set

M = sup | T,||
neN

and take z € E. For every y € D], we have
ITazll < Mllz - yll + I Tayll-
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Since Ty — 0, we get limsup,,_,, [|Taz|| £ M||z—y||. This holds for every
y € (D), and (D] is dense in E; therefore

lim ||Thz| =0. (]
n—o00

FEzercises

1. Consider normed spaces E and F, a bounded sequence (T,)nen in
L(E,F), and an element T € L(E, F). Prove that, if lim;_, 40 Tnz =
Tz for every z € E, the limit is uniform on any compact subset of E.

2. Consider a normed space E, a Banach space F, and a bounded sequence
(Tn)nen in L(E, F). Prove that the set of points £ € E for which the
sequence (T, z) converges is a closed vector subspace of E.

3. Consider the space E = ¢ of Exercise 7 on page 11. Prove that the
sequence (T,,) of E’ defined by T,(z) = z, has no pointwise convergent
subsequence in E.

4. Let E be a separable normed vector space, and let (z,)pen be a dense
sequence in E. Denote by B the unit ball of E’, that is,

B={Te€ E':|T(z)| < ||zl for all z € E}.

For T and S elements of B, we define the real number

d(T,S) = 30:02"’ min(|T(z,) — S(zp)], 1).

=0

a. Prove that d is a metric on B. If (T,) is a sequence of elements of B
and if T € B, prove that

d(Th,T) 50 < Tu(z) > T(z)foralzekE.

b. Prove that the metric space (B, d) is compact.

5. Riemann integral of Banach-space valued functions. Let [a, b] be an in-
terval in R and let E be a Banach space. We want to define the integral
of a continuous function and, more generally, of a regulated function
from [a, ] into E.

a. Integral of staircase functions. A staircase function from [a,b] to E
is one for which there is a subdivision zg =a < z; <:-- < zZp = b
of [a,b] and vectors vy,...,vn_) in E such that, for every i <n —1
and every z € (z;,Zi41), we have f(z) = v;. The integral of such a
function f over [a, b] is defined by

b n-1
1) = [ 1@z = Y (zins - 2.

=0
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We denote by & the vector space of all staircase functions on |[a, b),
with the uniform norm: || fljc = sup.¢(q) Il f(z)l]. Check that I is
a continuous linear map fromn & to E, with norm b — a. Check also
that, if f € &, Chasles’s relation holds for arbitrary a, 8,7 € [a, b]:

B ¥ B8
dr = dz dz,
[ 1@a= [ r@a+ [ s
where, by convention, we set
[1@a=-["1@a >

Prove that a function from [a,b] to E is regulated (Exercise 7 on
page 5) if and only if it is the uniform limit of a sequence of staircase
functions.

Hint. “Only if” part: Let f be a regulated function from [a, ] to E,
and choose € > 0. Prove that there is a subdivision a = 9 < 7; <
+++ < Zp = bof [a,d] such that, for every i and every z,y € (x4, Zi41),
we have ||f(z) — f(y)|| < e. Deduce the existence of a staircase
function g such that || f(z) — g(z)|| < € for every z € [a, b)].

“If” part: Since E is complete, f has a left limit at a point z if and
only if, for every € > 0, there exists > 0 such that || f(y)— f(2)|| < ¢
for all y,2 € (z — 1, z).

i. Let #([a,b], E) be the space of bounded functions from [a, b]
into E, with the uniform norm: || f|loc = sup,¢(a,4 Il f(z)||- Prove
that #p((a, ], E) is a Banach space.

ii. Let & be the set of regulated functions from [a, b] into E. Prove
that # is a closed subspace of %([a,b], E). Thus, # with the
uniform norm is a Banach space.

. Integral of a regulated function. Prove that I can be uniquely ex-

tended into a continuous linear map J on all of #, of norm b ~ a.
(One can use the theorem of extension of Banach-space-valued con-
tinuous linear maps.) For every f € %, the image of f under the
map is of course denoted by

b
J(f) = / f(z) de.

. Check that Chasles’s relation (see item (a)) holds for all regulated

functions. Check also that, if F is a continuous linear form on E and
if f € #, then F o f is a regulated function from [a, ] into K, and
that

b
FUI(f)) = ] F(f(z)) dz.
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f. Prove that, for every function f in %,

"/b s s [ @ da

g. If A = (zo,...,z,) is a subdivision of [a, ], and if £ = (&,...,&n-1)
is such that &, € [zj,Zj4.] for 0 < j <n -1, we set

n-—1
S(A&)(f) = Y f(&5) (@i — z5).

=0

Prove that, if (A?,£P) is a sequence of subdivisions whose maximal
step size tends to 0, and if f is any function in %, then S(AP, £P)(f)

converges to f: f(z)dz.

Hint. One can start with the case of a staircase function f, then use
Proposition 4.3.

The Baire and Banach-Steinhaus Theorems. Let X be any metric space.
Two players, Pierre and Paul, play the following “game of Choguet”:
Pierre chooses a nonempty open set U, in X, then Paul chooses a
nonempty open set V) inside U, then Pierre chooses a nonempty open
set U, inside V;, and so on. At the end of the game, the two players
have defined two decreasing sequences (Uy) and (V;,) of nonempty open
sets such that

Up 2V, 2Up41 foreveryneN.

Note that ),y Un = M,en Va; we denote this set by U. Pierre wins
if U is empty, and Paul wins if U is nonempty. We say that one of the
players has a winning strategy if he has a method that allows him to
win whatever his opponent does. Therefore, the two players cannot both
have a winning strategy; a priori, it is possible that neither does.

a. Prove that, if X has a nonempty open set O that is a countable
union of closed sets F,, with empty interior, Pierre was a winning
strategy.

Hint. Pierre starts with U; = O and responds to each choice V,, of
Paul’s with V,, \ F,,.

b. Prove that, if X is complete, Paul has a winning strategy.

Hint. If (F,) is a decreasing sequence of closed sets in X whose
diameter tends to 0, the intersection of the F,, is nonempty.

c. Application: Baire’s Theorem. Let X be a complete space. Prove
that an open set of X cannot be the union of a countable family of
closed sets with empty interior.

d. Corollary: The Banach-Steinhaus Theorem. Consider a Banach space
E, a normed vector space F, and a family (T,,)nen of elements of



4 Bounded Sequences of Continuous Linear Maps 23

L(E, F) such that, for every z € E, the set {||Ta(z)|| : n € N} is
bounded. Prove that {||T,| : n € N} is bounded.
Hint. Show that there exists k € N such that the set

Fi = {z € E: |Tua(z)|| < k for all n € N}

has nonempty interior, and therefore contains some open ball B(a, r);
then show that, for every n € N,

1
ITall < 7 sup WTm(a)l + &)

e. Prove that an infinite-dimensional Banach space cannot have a count-
able generating set. For example, R[X] cannot be made into a Ba-
nach space.

Hint. If this were not the case, the space would be a countable union
of closed sets with empty interiors.

f. Let (T,) be a sequence of continuous linear operators from a Banach
space E into a normed vector space F, having the property that,
for every z € E, the sequence (T,(z)) converges. Prove that the
map T : E — F defined by T(z) = limp_y00 Tn(z) is linear and
continuous.

g. i. Let f be a function from R to R. Prove that the set of points
where f is continuous is a Gs-set in R, that is, a countable in-
tersection of open sets in R.

Hint. Define, for each n € N*, the set C, consisting of points
z € R for which there exists an open set V containing z and
such that [f(y) — f(z)| < 1/n for all y, z € V. Prove that the sets
C,, are open.

ii. Prove that QQ is not a G5 in R.
Hint. If it were, R would be a countable union of closed sets with
empty interior.

iii. Prove that there is no function from R to R that is continuous
at every point of Q and discontinuous everywhere else.

iv. Prove that there exist functions from R to R that are discontin-
uous at every point of Q and continuous everywhere else.
Hint. Use Exercise 6c on page 5. More directly, if {Zn}nen is an
enumeration of Q, the function f defined by f(z) =0ifz ¢ Q
and f(z,) = 1/(n+1) for every n € N has the desired properties.

7. An invariant metric on a vector space E is a metric d on E such that

d(z,y) =d(z—y,0) forallz,ycE.

If d is an invariant metric on E, we set |z| = d(z,0) for z € E. (Note
that the map |- | thus defined is not necessarily a norm on E.) A vector
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space with an invariant metric d is said to have Property (F) if the

metric space (E,d) is complete and, for every k € K, the map z — kz

is continuous from E to E. For example, every Banach space with the

norm-induced metric has Property (F).

Let E be a vector space having an invariant metric with Property (F).

Let F be a normed vector space, with norm || - ||

a. Let H be a family of continuous linear maps from E to F such that,
for every x € E, the set {T(z)}ren is bounded. Prove that, for every
€ > 0, there exists § > 0 such that

IT(z)|| <e forall z € E with |z| < 4 and for all T € H;

in other words, lim;_,¢ T(z) = 0 uniformly in T € H.
Hint. Take € > 0 and, for each k € N*, set

Fi={z€ E:|T(z/k)|| <eforall Te H}.

Using Baire’s Theorem (Exercise 6), prove that at least one of the
Fy, say Fy,, contains an open ball B(a, ). Then use the fact that Fy,
is a symmetric convex set (symmetry here means that —Fi, = Fi,)
and the continuity of the map = — 2koz.

b. Let (T,) be a sequence of continuous linear maps from E to F such
that, for every z € E, the sequence (T,(z)) converges. Prove that
the map from E to F defined by

T(z) = lim_Tn(a)

is linear and continuous. (This generalizes Exercise 6f above.)

We will be able to apply this result to sequences in 9.(X) (Exercise
10 on page 92) or in L?, for 1 < p < oo (Exercise 12 on page 168).
See also Exercises 1 on page 147 and 1 on page 163.
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The Space of Continuous Functions
on a Compact Set

Introduction and Notation

We will consider throughout this chapter a compact, nonempty metric space
(X,d), and we will study the K-vector space (for K = R,C) of continu-
ous functions from X to K, which we denote by CX(X), or simply C(X)
when no confusion is likely. We give C(X) a commutative multiplication
operation: for f,g € C(X) the product fg is defined by

(f9)(z) = f(z)g(z) forall z € X.

The constant function 1 is the unity element for this multiplication. We
say that C(X) is a commutative algebra with unity.
The space CR(X) also has an order relation <, defined by

f<g < f(z) <g(z) for all z € X

it is only a partial order, of course. For any f,g € C®(X), there exist a
least upper bound and a greatest lower bound for f and g:

sup(f, 9)(z) = max(f(z),9(z))
inf(f, g)(z) = min(f(z), 9(z))

That the functions thus defined are continuous can be seen, for example,
from the following equalities:

sup(f,g) =3(f+g+If—-gl), inf(f,9)=3(f+g9-1f-gl).

} for all z € X.
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We denote by C*(X) the set of continuous functions from X to R*. If
f € CR(X), we write f* = sup(f,0) and f~ = —inf(f,0) (note that we
use the same symbol for a constant function and its value). We therefore
have

@) =@, ff@=0@), f=f+-f, fl=fr+f"

1 Generalities

We give C(X) the uniform norm over X, denoted by || - || and defined by
1fl = max | £ ()]

The corresponding topology is called the topology of uniform conver-
gence, since a sequence in C(X) converges to f € C(X) in this norm if
and only if it converges uniformly to f on X.

Clearly, |Ifgll < lIfll gl and [[If]]| = | f]| for all f,g € C(X).
Proposition 1.1 C(X) is a separable Banach space.

Proof. The reader can check that C(X) is a Banach space. We show sepa-
rability. Since X is precompact, for every n € N* there exist finitely many

points z7,...,z}% of X such that X = U;v;l B(z},1/n). We therefore set,
for j < Ny,

(1/n - d(z,z7))*
N (1/n—d(z,2p))*

From the choice of the points z7, we see that the denominator does not
vanish for any = € X. Therefore, ¢, ; € C*(X),

¥n,j(z) =

Nn
th,.,j =1, and  ¢nj(z) =0 ifd(z,z])>1/n.
i=1

The set {¢n,; : n € N* and 1 < j < N, } is certainly countable. We will
show that it is a fundamental family in C(X); this suffices by Proposi-
tion 2.5 on page 9.

Take f € C(X) and € > 0. Since X is compact, the function f is uni-
formly continuous on X. Take n > 0 such that, for all z,y € X with
d(z,y) < n, we have |f(z) — f(y)] < €. Let n € N be such that 1/n < 1.
For every z € X,

Na Nn
f(@) =Y f@)ens(@)| = D (f(@) - £(&}))n.i(=)
j=1 j=1

Nn
< 3" |£(@) - £&})] ens(2)-

i=1
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Since y,; vanishes outside the ball B(z7,1/n), and so outside B(z7},7), we
see that, for every z € X,

If(z) - f(z?)l ‘Pn,j(z) < €¢n.j(z)-
Thus, for every z € X,

Nn
F(@) =Y f(@)en,i(z)
j=1

Nn
S € Z wnvj(z) =¢&.
j=

It follows that

<e,

Nn
I
i=1
which concludes the proof. O

We recall a sufficient criterion for uniform convergence (and therefore
convergence in C(X)) that is often convenient:

Proposition 1.2 (Dini’s Lemma) Let (fn)nen be an increasing sequence
in CR(X) (this means that f, < fn41 for all n). If the sequence (f,) con-
verges pointwise to a function f € C(X), it also converges uniformly to f.

Proof. Take € > 0. For every n € N we set Q, = {z € X : fo(z) >
f(z) — €}. Clearly, (92,) is an increasing sequence of open subsets in X
whose union is X. By the Borel-Lebesgue property, there is an integer N
such that 0y = X, so that fx(z) > f(z) — ¢ for all z € X. Thus, for every
integer n > N, we have f(z) — e < fn(z) < f(z) for all z € X. This proves
that ||f — foll <e. O

Remarks

1. Clearly, one can replace “increasing” by “decreasing” in the statement
of Dini’s Lemma.

2. The assumption that the pointwise limit f is continuous is essential. For
example, the decreasing sequence (f,) of continuous functions on [0, 1]
given by fn(z) = z" converges pointwise, but not uniformly, on [0,1].

Ezample. Define by induction on n a sequence of polynomial functions
(Pn) on [—1,1], as follows:

PO = 0’
Proy1(z) = Pa(z) + 3(z® — P3(z)) forallneN.

We check that, for every n € N, we have 0 < P,(z) < Pn+1(z) < |z for all
z € [—-1,1]. For n = 0 this is clear; suppose by induction that it is true for
some n > 0. Then, for all z € [-1,1],

0 < Pry1(7) < Paya(z) = |2 = (|z] = Py (2)) (1= 3(j2| + Prs1(2))) < l2l.
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Then the sequence (P,)nen is increasing and bounded, and therefore it
converges pointwise to a function f. For z € [—1,1], we see that 0 <
f(z) < |z| and f%(z) = 2%, by taking to the limit the defining recursive
relation of the P,. Therefore f(z) = |z|, and Dini’s Lemma applies. This
proves that the polynomial sequence (P,) converges uniformly to |z} on
(-1,1].

We will generalize this result in the next section, demonstrating that
every continuous function in [—1,1] is the uniform limit of a sequence of
polynomial functions (Weierstrass’s Theorem).

Ezercises

1. Show that there exists a sequence (Pn)nen in L(C(X)) such that, for
all n € N, the map P, has finite rank (that is, P,(C(X)) is a finite-
dimensional vector space), has norm 1, is positive (that is, P,(f) > 0
for all f > 0), and satisfies

nlibTooPnf = f for all f € C(X).

2. Let p be a bounded, strictly increasing continuous function from R to
R. Set p(—o0) = limz_,_ oo p(z) and p(+00) = limz, 400 p(z). Also set
X = [—00,+00] = R U {—00, +00}, and define a map d,, : X2 = R by
do(z,y) = |p(:t) - p(y)|. Prove that d,, is a metric on X, that the metric
space (X, dp) is compact, that d,, induces on R the usual topology, that
R is dense in (X,d;,), and that (R,dp) is precompact. Prove also that
the topology thus defined on X (that is, the family of open sets defined
by dp) does not depend on p.

8. Let (fn)nen+ be a sequence of continuous functions on R* defined by

(1-z/n)* ifz<n,
0 if z > n.

i) = {

Prove that the sequence (f,) converges uniformly in [0,+00) to the
function f : z — e™%.
Hint. Extend the functions f, to have the value 1 on [-00,0] and
the value 0 at +o0o. Then apply Dini’s Lemma in the compact space
[—00, +00] introduced in Exercise 2.

4. A generalization of Dini’s Lemma. Consider a compact metric space
X, and elements f and {fn}nen of C(X). Assume that there exists a
constant C > 0 such that

I[f = fo+al SCIf - fp| forallp,geN.

Prove that if the sequence (f,) converges pointwise to f, it converges
uniformly to f. (One can look at the proof of Dini’s Lemma for inspi-
ration.)
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5. Ideals in C(X). Let X be a compact metric space and J an ideal in
the ring (C(X),+, -). Denote by Z the set of points z in X such that
g(z) =0for all g € J.

a. Prove that, if Z is empty, J contains a function g such that g(z) > 0
for all z € X. Deduce that J = C(X).

b. For a € X, set J;, = {g € C(X) : g(a) = 0}. Prove that J, is
a maximal ideal; that is, the only ideal that strictly contains J, is
C(X).

c. Conversely, prove that, if J is a maximal ideal, there is a unique
point a of X such that J = J,.

d. Prove that J = {f € C(X): f(z) =0 for all z € Z}.

Hint. Let f € C(X) vanish everywhere in Z. To find an element of
J that is 2e-close to f, one can do this:

i. Let K be the set of points z of X for which {f(z)| > €. Prove
that there exists g € J such that g(z) > 0 for all z € K and
g9(z) >0 forall z € X.

ii. Prove that, for all large enough n, the function f, defined by

_¢ 9
fn —fl+ng

is in J, and that ||f, — f]] < 2¢.

2 The Stone-Weierstrass Theorems

We now state denseness criteria for the subspaces of C(X). These criteria
are consequences of this fundamental lemma.

Lemma 2.1 Suppose X has at least two elements. Let H be a subset of
CR(X) satisfying these two conditions:

a. For all u,v € H, the functions sup(u,v) and inf(u,v) also le in H.
b. If z),z2 are distinct points in X and a),a; are real numbers, there
exists u € H such that u(z,) = ay and u(z2) = az.

Then H is dense in CR(X).

Proof. Take f € CR(X) and € > 0. We want to find an element of H that
is e-close to f. First fix € X. By assumption b, for every y # z there
exists uy € H such that uy(z) = f(z) and uy(y) = f(y).

For y # z, set Oy = {2’ € X : uy(z') > f(«') — €}. This is an open
set that contains y and z; therefore X = U#z O,.. By the Borel-Lebesgue
property, X can be covered by finitely many sets Oy: X = |J]_, O,,, with
y; # « for all j. Now set v; = sup(uy,,...,%,, ). A simple inductive argu-
ment, using assumption a, shows that v, € H. On the other hand,

v.(z) = f(z) and v (z') > f(z') —eforall 2 € X.
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Now make z vary and set, for each z € X,
N, ={z' € X :v,(z') < f(z') +€}.

Thus Q. is an open subset of X containing z; a new application of the
Borel-Lebesgue property allows us to choose finitely many points z,, ...,z
of X such that Q,,...,Q;, cover X. Finally, set v = inf(vz,,...,vz,).
Thenve Hand f —e<v < f+¢; thatis, ||f —v[| <e. ]

A subset H of C(X) is called separating if, for any two distinct points
z,y of X, there exists h € H with h(z) # h(y). A subset H of CR(X) is
called a lattice if, for any f,g € H, the functions sup(f,g) and inf(f,g)
also lie in H. Notice that a vector subspace of C®(X) is a lattice if and
only if, for every element h of H, the function |h| is in H as well (the “only
if” part follows from the relation |h| = sup(h,0) — inf(k,0), and the “if”
part from equations (*) on page 27).

We can then deduce from Lemma 2.1 the following theorem:

Theorem 2.2 If H is a separating vector subspace of C®(X) that is a
lattice and contains the constants, then H is dense in CR(X).

Proof. If X has a single element, the result is clear. Suppose X has at least
two elements; we just need to check assumption b of the lemma. Let z, and
z2 be distinct elements of X. Since H is separating, there exists h € H such
that h(z,) # h(z2). If a; and a3 are real numbers, the system of equations

{/\h(zn) tu=a
Ah(z2) + p = a2

clearly has a unique solution (\,u) € R%. For such (), pu), we see that
(A + p)(z1) = ay and (Ah + p)(z2) = ag; moreover, \h + pu € H, since H
is a vector space containing constants. a

Ezxample. Let H be the set of Lipschitz functions from X to R, that
is, the set of functions h from X to R for which there is a constant C >
0 (depending on h) such that Ih(z) - h(y)l < Cd(z,y) for all (z,y) €
X2. Such a C is called a Lipschitz constant for h, and h is said to be
C-Lipschitz. Clearly, H is a vector subspace of CR(X) containing the
constant functions. H is also a lattice: the absolute value of a Lipschitz
function is Lipschitz as well, since

| 1h(2)l = Ih@)I] < |h(z) - h(y)]-

Finally, H is separating since, for z # y, the function h : z — d(z,2) is
Lipschitz with constant 1 and satisfies 0 = h(z) # h(y). Therefore H is
dense in CR(X).
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We now deduce from Theorem 2.2 another denseness criterion, where the
assumption that H is a lattice is replaced by an assumption of closedness
under multiplication. More precisely, we assume we have a vector subspace
H of C(X) that is a subalgebra of C(X); this means that fg € H for
f.9 € H. Since fg = 3((f + 9)* — f2 — ¢), this condition is equivalent to
H being a vector space such that the square of every element of H is in H.

Theorem 2.3 (Stone—Weierstrass Theorem, real case) Every sepa-
rating subalgebra of CR(X) containing the constant functions is dense in
CR(X).

Proof. If H is a separating subalgebra of CR(X) containing the constants,
so is its closure H. Therefore it suffices to show that H is a lattice and to
apply Theorem 2.2. Thus, let f be a nonzero element of H. We saw in the
example on page 29 that there exists a sequence (P,) of polynomials over
R that converges uniformly on [—1, 1] to the function z — |z|. But then the
sequence of functions (Pn(f/|| f||)) converges uniformly to |f|/| f||, so | f| is
the uniform limit of the sequence (|| f|| Pa(f/|IfI))- Since H is a subalgebra
of CR(X), all terms in this sequence are in H; therefore so is their uniform
limit |f]. This shows that H is a lattice. m]

Ezxzamples

1. The set of Lipschitz functions from X to R satisfies the assumptions of
Theorem 2.3.

2. Suppose X is a compact subset of R?, and let H be the set of polynomial
functions (in d variables) from X to R:

H={z~ P(z): PeR[X,,..., Xd]}.

Clearly, H is a subalgebra of CR(X) containing the constants; on the
other hand, if z and y are distinct points in X, they differ in at least
one component: for example, z; # y;. But then the polynomial X; takes
digerent values at = and at y. Thus H is separating and hence dense in
CR(X).

In the particular case where d = 1 and X is a compact interval [a, b]
in R, this result is known as Weierstrass’s Theorem. In fact, there
are several explicit methods to associate to an element f € CR ([a,b])
a sequence of polynomials (P,) that converges uniformly to f on [a, b];
see, for example, Exercises 3 and 2 below.

Note that, as a consequence of Weierstrass’s Theorem, the set of mono-
mials {1,z,2%,...,z",...}, considered as functions on [a,b] (for a < b)
forms a topological basis of C([a,b]). (We thus recover, in particular,
the fact that C®([a, b]) is separable.)

Remark. In the preceding theorem, one cannot replace CR(X) by C€(X),
as the following example shows. Set U = {z € C : |2| = 1}, and let H be
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the set of polynomial functions from U in C:
H = {z~ P(z2): P € C[X]}.

H is certainly a separating subalgebra of C€(U) (the function Z : z — z is
an element of H, and Z(z) # Z(2') if z # 2'), and it contains the constants.
But H is not dense in C¢(U). Indeed, since

2r
/ e™e?dh =0
0
for every n € N, we get
2%
h(e*)e®dd = 0
o

for all h € H. By taking uniform limits, we conclude that the same equality
holds for h € H. On the other hand, the function Z : 2 — Z is an element
of CC(U), yet

2x - .
Z(e*)e*dd = 2r.

Thus Z ¢ H, and H is not dense in CC(U).

Thus, in the complex case an additional assumption is necessary. We will
suppose in this case that the subset H of C€(X) is self-conjugate; this
means that h € H implies h € H, where the conjugate h of h is defined by
h(z) = h(z).

Theorem 2.4 (Stone—Weierstrass Theorem, complex case) Every
separating subalgebra H of C€(X) that is self-conjugate and contains the
constant functions is dense in C¢(X).

Proof. Set Hp = {h € H : h(z) € Rforallz € X}. Clearly, Hp is a
subalgebra of CR(X) containing the constants. Now, if f € H, the real
and imaginary parts of f lie in Hg, since H is self-conjugate and Re f =
(F+£)/2,Im f = (f — f)/(2i). If z, and z; are distinct points in X, there
exists by assumption h € H such that h(z,) # h(z2). Therefore there exists
g € Hg such that g(z,) # g(z2): just take g = Reh or g = Im h as needed.
It follows that Hy is separating, hence dense in CR(X), by Theorem 2.3.
Since C¢(X) = C®(X) +iC®(X) and H contains Hg + i Hg, the proof is
complete. O

Ezamples

1. The set of Lipschitz functions from X to C is dense in CC(X).

2. If X is compact in RY, the set of functions from X to C defined by
complex polynomials in d variables is dense in C€(X). In particular, if
[a,b] (with a < b) is a compact interval in R, the set of restrictions to
[a,d] of the monomials 1,z,z2,...,z",... forms a topological basis of

C€([a, b]).
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3. If X is a compact set in C¢, the set H defined by
H-= {ZGX'—)P(z,f) :PGC[xl,...,Xd,Yl,...,Yd]}

is dense in CC(X).
In the particular case whered =1and X =U = {2€C: |2| = 1}, we
see that H is the vector space generated by the functions Z? : z — 2P,
with p € Z. Indeed, if z € U we have z = z~1. Thus, the family (27)pez
(which is clearly free) is a topological basis of C€ (U).

4. Let CX. be the set of continuous functions from R to K that are periodic
of period 27, with the uniform norm on R, namely,

If = max|f()] = max |f(z)]-

z€(0,2x]

Lemma 2.5 The map from C®(U) to CS, that associates to ¢ €
CC(U) the function f given by f(0) = p(e®) for every real 8 is a sur-
Jective isometry.

Proof. Only the surjectivity requires proof. For z € U, denote by arg 2
some real number such that e!*8* = 2. We know that arg z is defined
modulo 27 and that there exist choices of arg z that vary continuously
in the neighborhood of a given point (for example, if zo € U and z € U
with |z — 29| < 1, we can take arg z = arg 20+ Arccos Re(2/z)). Thus,
if f € CE,, the function ¢ defined by ¢(z) = f(argz) is well-defined
and continuous in U, and f(8) = ¢(e*) for all 8 € R. a

It follows from the preceding example that the family (en)nez of ele-
ments of C%, defined by e,(8) = €' is a topological basis of CS,. By
taking the real and imaginary parts of the functions e,,, we deduce that
the set B = {1} U {cn, 8n }neN, With c,(z) = cosnz and s,(z) = sinnz,
forms a topological basis of C¥,, and thus also of C,. A linear combi-
nation of functions of B is called a trigonometric polynomial.

Note that one can explicitly determine a sequence of trigonometric poly-
nomials that converges toward a given function f € CX. (see Exercise 2
below).

5. Let X and Y be compact metric spaces. We denote by C(X)®C(Y) the
vector subspace of C(X x Y) generated by the functions f®g : (z,y) —
f(z)g(y) with f € C(X) and g € C(Y). 1t is clear that C(X)®C(Y) is
a subalgebra of C(X x Y) containing the constants and, when K = C,
self-conjugate. It is also separating: if (z1,%1) # (z2,¥2) we have, say,
Z) # 2, and then the function d(-,z,) ® 1: (z,y) — d(z,z,) (where d
is the metric on X) is an element of C(X) ® C(Y) separating (z1,y1)
and (z2,¥2). Thus C(X)® C(Y) is dense in C(X x Y).
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FEzercises

1. Let D be a dense subset of CR(X). Prove that, for all f € CR(X), there
exists an increasing sequence of elements of D that converges uniformly
to f.
Hint. For each positive integer n, prove that there is an element f, of
Dsuchthat f -2 "< f, < f—2"""1,
2. Dirac sequences
a. Let (pn)neN be a sequence of continuous functions from R™ to R,
with nonnegative values, and satisfying these properties:
~ Jgm ¥n(x)dz = 1 for every integer n.
- For every € > 0, limp,_, 4 oo flzl?. «Pn(z)dz = 0, where | - | denotes
a norm on R".

Let f be a bounded, continuous function on R™. Prove that the

sequence (pn * f) converges to f uniformly on every compact subset
of R™. Recall that ¢, * f is defined by

s D@ = [ o fe-ndu= [ onle- 11w

b. For eachn € N, set ¢, = f_'l(l —z2)"dz, and let ¢, be the function
from R to R defined by

1-z2)n ifjJz| <1,
on(T) = {( z?)*/cn if |z| =
0 otherwise.

i. Prove that the sequence () satisfies the hypotheses of part a.
ii. Deduce that every continuous function on [0,1] is the uniform
limit on [0, 1] of a sequence of polynomial functions.
Hint. Deal first with the case of a function f satisfying f(0) =
f(1) = 0, by showing that, if f is the extension of f having
the value 0 outside [0, 1], then ¢, * f coincides in [0,1] with a
polynomial function.
c. Fejér’s Theorem. Let f be a continuous function from R to C, peri-
odic of period 27. Let D,, and K, be the functions defined by

n m-—1
Daz)= 3. ™, Kn(@)=— Y Dala)
k=-n n=0

If h,g € C3,, we write

heg@ = o [ - y)ol)dy

-x

(this equals g * h(z)).
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i. Prove that K,(2k7) = n for k € Z and that, for all z ¢ 27Z,

1 —cosnx

Kn(=z) = n(l —cosz)’

0
Show also that % Kn(z)dz =1 and that, for all ¢ € (0,7),

o

nllgl(’o/; Kyn(z)dz = 0.

ii. Prove that the sequence of functions (K * f) converges uniformly
to f on R.

iii. Express D, * f, then K, * f, in terms of the partial sums S,, of
the Fourier series of f, which, as we recall, are given by

S . 1o
Sa(z) = Z cxe™®,  with ¢ = g/:w ft)e e,

k=-n

iv. Deduce that every continuous function periodic of period 27 is
the uniform limit of a sequence of trigonometric polynomials.

3. Another demonstration of Weierstrass’s Theorem: Bernstein polynomi-

als. The functions in this exercise are real-valued (K = R).

a. Korovkin’s Theorem. For i € N, we denote by X* the element of
C([0,1]) defined by Xi(z) = z*. We also set 1 = X? and X = X'.
Let (T,) be a sequence of positive elements in L(C([0, 1])) (positivity
here means that f > 0 implies T,,(f) > 0, or again that f < ¢
implies T, (f) < Tn(g)). Assume that, for i = 0,1, 2, the sequence of
functions (T, (X*))nen converges to X* uniformly on [0, 1]. We want
to show that, for all f € C([0,1]), the sequence (T,f) converges
uniformly to f on [0, 1].

i. Let f be a continuous function on [0, 1]. Define the modulus of
uniform continuity of f as the function wy : R** — R* whose

value at n > 0 is
wr(m) = sup |f(z)- f(y)
(:»y)elo'l]’
Jz—yl<n

Check that wy(n) is well-defined for all n > 0, and that wy(n)
tends to 0 as 7 tends to 0. Now fix n > 0.

ji. Prove that, for all z,y € [0, 1],

|f(z) - f(y)l <wy(n) +2(z - y)? ",',fz—“

(One can deal separately with the cases |z—y| <nand |z—y|>1.)
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iii. If z,y € [0,1), set g,(z) = (z — y)?. Prove that, if z,y € [0,1],
we have, for every n € N,

(Taf)(@) - F@)Ta(1)(@)] < wy(n)Ta(1)(z) + 2121 "f 1l

Tngv)($)~

iv. Set hn(z) = (Tng:)(z). Prove that the sequence of functions (hy,)
converges uniformly to 0 in [0, 1].
Hint. Tngo(z) = (TaX? — 2XT, X + X?T,1)(z).

v. Deduce that limsup, , o [|Tnf — fl| < wy(n). Wrap up the
proof.

b. Let f be a function from [0, 1] to R. For every integer n > 1, define

the polynomial B, (f) by

Ba(N@) = Y CEf(E)ta — 2t

=0

i. Prove that
Ba(xf) = xBu(f) + XX prp),

where Bj (f) represents the derivative of the polynomial By, (f).
ii. Compute By (1), B,(X), and B,(X?2) for every n € N.

iii. Prove that, for every f € C([0,1]), the sequence (Bn(f)) con-

verges uniformly to f.

Another proof of Fejér’s Theorem

a.

Let (T,) be a sequence of positive elements of L(CR. ) (see Exercise 3a
for the definition of positivity) such that the sequence of functions
(Ta(f))nen converges to f uniformly on R when f is each of the
three functions £ — 1, £ — cosz, and z — sinz. Prove that, for all
f € CR,, the sequence (T}, f) converges uniformly to f.

Hint. Argue as in Exercise 3a, considering the interval [—, 7] and
replacing (z — y)?/n* by (1 — cos(z—y))/(1 — cosn).

. Let (K,) be the sequence of functions defined in Exercise 2c. Take

f € CR . Derive from the preceding question another proof that the
sequence (K, * f) converges uniformly to f on R.

Let X be a compact interval in R and let H be the set of elements of
C(X) defined by polynomial functions with integer coefficients.

a.

Prove that, if X and Z intersect, H is not dense in C(X).

From now on in this exercise we assume that X C (0,1). We denote by
(pn) the strictly increasing sequence of prime numbers and by (P,) the
sequence of elements of C(X) defined by

Pp(z) =1-2zP - (1 - z)P~.



b.

C.

d.
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Prove that, for every integer n, the function P,/p, is an element of
H, and that 1/P, belongs to H.

Prove that, for every k € Z°, the constant function z — 1/k is an
element of H. (You might start with the case of k prime.)

Deduce that H is dense in C(X).

. Equidistributed sequences and Weyl’s Criterion

a.

e.

Let E be the vector space generated by the functions from [0, 1] to
C of the form 1, 4. Prove that every continuous function from [0, 1)
to C is the uniform limit of functions in E.

. A sequence (up)pen of points in [0,1] is called equidistriduted if, for

every [a,b] C [0,1],

lim Card{p < n:u, € [a,}]} =b-
n—-+oo n+1

Prove that, if (up)pen is an equidistributed sequence of points in
[0,1]) and f : R — C is any continuous function periodic of period 1,

then .
i, -3 o) = [ SOk
n—oon+1 =0 0

Hint. Check that this is true if f € E, then use denseness (compare
Proposition 4.3 on page 19).

a.

. Prove the converse.

Hint. One might start by showing that, if [a,b] C [0,1] and € > 0,
there exist continuous functions f and g from [0,1] to R such that
f(0) = £(1), g(0) = 9(1), f < {5y < g and

1
/D (9(t) - F(8) dt < e.

Deduce that a sequence (up)pen of points in [0, 1] is equidistributed
if and only if, for every A € N*, the Weyl criterion is satisfied:

: 1 = 2xAup _
dm e e =
p=0
Ezample. Take a € R\ Q and, for every p € N, set up, = {pa} =

pa — |pa), where |pa] denotes the integer part of pa. Prove that
the sequence (u,) is equidistributed.

. Same question with the sequence (u,) defined by u, = {p*}, where

a € (0,1).

Hint. Consider I, = [['€****"dz, for ) a fixed positive integer.
Prove, by change of variables and integration by parts, that I, =
O(n'~®). Next show that

n
I, - Z Prii2t o(n®).
p=0
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7. Particular cases of the Tietze Extension Theorem

a. Let Y be a metric space and X a nonempty compact subset of Y.

Denote by Cy(Y') the vector space consisting of continuous, bounded
functions from Y to K, with the norm defined by

£l = sup|f(y)|-
yeyY

On C(X) we take the uniform norm, also denoted by ||-||. Now
consider the linear map & : Cp(Y) — C(X) defined by restriction to
X: ®(f) = fix for every f € Cy(Y).

i. Prove that Cj,(Y') is a Banach space.

ii. Prove that, if f € Cy(Y), there exists f € Cy(Y) such that

&(f) = &(f) and ||f]| = [|(f)]-
Hint. If ®(f) # 0, one can choose

7=x (i Ievl,

where x : K — K is defined by x(z) = z/max(|z|, 1).
iii. Prove that im ® is dense in C(X).
Hint. Use the Stone-Weierstrass Theorem.
iv. Let g be an element of C(X) that is the uniform limit of a se-
quence (®(fn)).
A. Prove that one can assume, after passing to a subsequence if
necessary, that ||®(fa+1) — ®(fn)|| < 27" for every n.
B. Forn € N, choose hy, € Cyp(Y') such that ®(hp)=®(fn—fn-1)
and ||hn|l = ||®(fa — fa-1)|| (where f_, = 0 by convention).
The existence of the h,, was proved in ii above. Prove that
the series 3> o hn converges in Cp(Y'). Denote its sum by h.
C. Prove that ®(h) =
v. Deduce from the preceding facts that every function g € C(X)
can be extended to a function f € Cp(Y) such that ||f|| = ||gl|-

b. Let (Y,d) be a metric space and let A be a nonempty subset of Y.

Let f be a Lipschitz function from A to R, with Lipschitz constant
C. Set
gly) = tirela(f(z) +Cd(z,y)) forallyeY.

Prove that g is a Lipschitz extension of f, also with constant C.

8. Stone-Weierstrass Theorem in R. We denote by CX (R) (or Cp(R)) the

space of continuous functions f from R to K such that

z-!irlloo ) = z-l-il-{l-loo fa) =

We give this space the uniform norm: ||f|| = sup,cg|f(z)|. We again
denote by U the set of complex numbers of absolute value 1, which is
compact in the metric induced from C.
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a. i. Prove that Cy(R) is a Banach space.

ii. Define a map ¢ from R onto U\{~1} by setting () = e? Arctanz
Prove that ¢ is a homeomorphism between R and U\ {-1}, the
inverse homeomorphism being 1(z) = tan(} Arg z), where Arg 2
denotes the argument of z in the interval (—m, ). Check that
lim; 400 9(2) = limgy o0 () = —1.

iii. Prove that a function f on R belongs to Co(R) if and only if the
function f defined on U by

f(¥(2)) ifz# -1,
f)= { if z =1,

belongs to C(U). Prove that the map f — f defines an isometry
between Co(R) and the set of elements of C(U) that vanish at
-1.
b. i. Let H be a vector subspace of Co(R) satisfying these conditions:
A. f2cHforall feH.
B. If z and y are distinct points of R, there exists f € H such
that f(z) # f(y).
C. For any z € R, there exists f € H such that f(z) # 0.
D. In the complex case, H is self-conjugate (that is, f € H
implies f € H).
Prove that H is dense in Co(R).
Hint. Apply Stone-Weierstrass to the compact space U and to
the set H consisting of functions of the form f+a,with fe H
and e € K.
ii. Conversely, prove that every dense subset H of Cy(R) satisfies
conditions B and C above.
c. If a € C\ R, we set g,(z) = (a + z)~'. Prove that the family
{Pa}acc\r i8 fundamental in C§ (R).
Hint. Prove first that @2 = limy_,o(ps — @a+h)/h in the sense of
convergence in Co(R). Deduce that the closure of the vector space
generated by the o, satisfies conditions A-D of part b above.
d. Let H be the set of functions from R to R of the form z — e""P(z),
with P € R[X].

i. TakereNandae(O 1). For n € N and z € R, set R,(z) =
e~ z"‘*"a"/n' Prove that the sequence of functions (R,) con-
verges uniformly on R to the zero function.

Hint. Prove that if u, = sup,cg|Rn(z)|, then

Jim (tn+1/un) = a.
ii. Deduce that the function f,, : z — e~(1+9)="z" belongs to H.

Hint. One can use Taylor’s formula with integral remainder to
approximate e by polynomials.
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iii. Prove that the function g, , :  — e~(140)’2% 27 belongs to H.
Hint. Write gor = (1 + a)™"/2fs (V1T +az) and use part ii
twice.

iv. Applying the facts above to @ = /2 — 1, show that H is dense
in C}(R).

e. Denote by CK(R) or C.(R) the set of continuous functions f from
R to K that vanish outside a compact interval in R (that depends
on f). We assume in the sequel that K = C.

i. Prove that C.(R) is dense in Co(R). (Use part b above or give a
direct proof.)

ii. For ¢ € C.(R), set

b(z) = /R eV(y) dy.

Prove that ¢ € Co(R).

Hint. Show first that, if a < b, the function z — | : eZvdy lies
in Co(R). Then approximate ¢ by staircase functions.

iii. If p, ¥ € C.(R), define
(0% 9)(z) = [R oz - 1)Y()dy.

Prove that ¢ * 1 € C.(R) and that @ * ¢ = p 9.
iv. Deduce that the set {¢},ec.(r) is dense in Co(R).
Hint. To check conditions B and C, one can compute the integral
fo+°° e'*¥e~Vdy and approximate the function
y— 1(0.+m)(y)e-y
in L'(dy) by functions in C.(R).

3 Ascoli’s Theorem

In this section we present a criterion of relative compactness in C(X).
Let zo be a point of X. A subset H of C(X) is called equicontinuous
at zy if, for all € > 0, there exists n > 0 such that

|h(a:) — h(zo)| <& forall h € H and all z € X with d(z,z0) < 7.

H is called equicontinuous if it is equicontinuous at every point of X. It
is called uniformly equicontinuous if, for all ¢ > 0, there exists n > 0
such that

|h(a:) - h(y)| <e forall h€ H and all z,y € X with d(z,y) < 7.

Since X has been assumed compact, these two notions are in fact equiva-
lent:
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Proposition 3.1 A subset of C(X) is equicontinuous if and only if it is
uniformly equicontinuous.

Proof. 1t is enough to show necessity. Let H be an equicontinuous subset
of C(X), and let € > 0 be a real number. By assumption, for every z € X
there exists 7z > 0 such that |h(y) - h(z)| < €¢/2 whenever h € H and
d(z,y) < nz- By the Borel-Lebesgue property, we can choose finitely many
points xy, ..., Z, such that the balls B(z;, 7z,/2) cover X. Now let 1) be the
smallest of the 7;/2, and let z and y be points in X such that d(z,y) < .
Choosing j such that z € B(z;,7z,/2), we see that z,y € B(z;,1z,), s0

[h(y) = h(z)| < |R(y) - h(z;)| + |h(z) — h(z;)| <€ forallhe H. O

Ezamples

1. Every finite subset of C(X) is equicontinuous.

2. Every subset of an equicontinuous set is equicontinuous.

3. A finite union of equicontinuous sets is equicontinuous.

4. Any uniformly convergent sequence of functions in C(X) consitutes an
equicontinuous set (exercise).

5. If C is a positive real number, the set of C-Lipschitz functions from X
to K is equicontinuous.

Proposition 3.2 Let (f,) be an eguicontinuous sequence in C(X) and
let D be a dense subset of X. If, for all £ € D, the sequence of numbers
(fa(z)) converges, the sequence of functions (f») converges uniformly to a
function f € C(X).

(Compare this result with Proposition 4.1 on page 18.)

Proof. 1t suffices to show that (f,) is a Cauchy sequence in C(X). To do
this, take € > 0. By assumption, there exists n > 0 such that, whenever

d(z,y) <,
|fa(z) — fa(y)| <€/5 forallneN.

Since X is precompact, il can be covered by finitely many balls of radius 7:

X = U;=o B(zj,mn). Since D is dense, each ball B(z;,n) contains at least

one point y; from D. Since, by assumption, the sequences (fn(y;))neN

are Cauchy sequences, there exists a positive integer N such that, for any

integer j <,

|fa(s) — fo(ys)| < /5 foralln,p>N.

Now let z be a point in X, and let j be an integer such that z € B(z;, ).

Then, for n,p> N,

|£a (@)~ fo(2)| < |fal@)— fal5)|+ | Fa (W5) = Fu(@5)| + | Falws) — Fous)]
+|fp(yj)'fp(zj)l+pr(z)‘fp(zj)l <e.

Thus, ||fa — fpll < € for all n,p > N, and (f,) is a Cauchy sequence. O



4 1. The Space of Continuous Functions on a Compact Set

We deduce from this our main result:

Theorem 3.3 (Ascoli) A subset of C(X) is relatively compact in C(X)
if and only if it is bounded and equicontinuous.

Proof. For the “only if” part, let H be a relatively compact subset of C(X).
Then H is certainly bounded; this is true in any metric space. We must
show it is equicontinuous. Fix € > 0. Since H is precompact, we can choose
finitely many elements fo, ..., fr in H such that the balls B(f;,&/3) cover
H. Since the finite family (f;);<, is uniformly equicontinuous, there exists
n > 0 such that |f;(z) — fj(y)|—< €/3 for all j < r, whenever d(z,y) < 7.
It follows that, if f € H and d(z,y) < 70, then

1£(=) - f)] < 1£(@) - @)+ |£i(=) = £@)| + £ ) - Fw)| <,

where j is chosen so that || f — f;|| < €/3. This shows that H is equicontin-
uous.

For the converse, suppose H is bounded and equicontinuous. X is com-
pact, hence separable. Thus it contains a countable dense subset D. Let
(fn) be a sequence in H. For every point z in D, the sequence of numbers
(fa(z))nen is bounded by supjc g l|Al|; thus, by Theorem 3.1 on page 12,
there exists a subsequence (fn, ),y Such that (fn,(2)),cy converges for all
z € D. By Proposition 3.2, we deduce that the sequence (fn, )xeN converges
in C(X). a

Remark. The preceding proof also shows that, if H is an equicontinuous
subset of C(X), the following properties are equivalent:

~ H is bounded.
~ There is a dense subset D of X such that, for all £ € D, the set
{f(z)}sen is a bounded subset of K.

(This equivalence can also be proved directly.)

Ezample. Consider compact metric spaces X and Y, an element K of
C(X xY), and a Borel measure u on Y having finite mass (u(Y) < +00).
We define a linear operator T from C(Y) to C(X) by setting

Tf(z) = /;/ K(z,y)f(y)du(y) forall fe C(Y)and z € X.

Recall that B(C(Y')) denotes the closed unit ball in C(Y):

B(C(Y)) = {feC): Ifl < 1}.

Proposition 3.4 The image under T of the closed unit ball of C(Y) is a
relatively compact subset of C(X).
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We say that T is a compact operator from C(Y) to C(X) (see Chap-
ter 6).

Proof. 1t is clear that T(B(C(Y))) is bounded by

M= pu(Y K(z,)|.
( )(,,J{?}‘xx" (z,9)|

On the other hand, K is uniformly continuous on X x Y; in particular, for
all ¢, there exists 1 > 0 such that

|K(z1,y)~K(zg,y)| <e forall ye€Y and z;,z2 € X with d(z),z3) < 7.

Thus, for all f € B(C(Y)), we have |[Tf(z1) — Tf(z2)| < u(Y)e. There-
fore the subset T(B(C(Y))) of C(X) is equicontinuous, and we can apply
Ascoli’s Theorem. 0

FEzxercises

1. For each n € N, let f, be the function from [0,1] to R defined by
fa(z) = ™. At what points in the interval [0, 1] is the family {fn}nen
equicontinuous?

2. a. Let X be a metric space and (f,) a sequence in C(X). Prove that, if
{fa}nen is equicontinuous at a point z of X, for any sequence (zn)
of X that converges to z the sequence (fn(z) — fn(zn)) converges
to 0.

b. Set fn(z) = sinnz. Prove that {f,}nen is not equicontinuous at any
point = of R.
Hint. Consider the sequence (z,) defined by z, = z + 7/(2n).

3. Let X be a compact metric space. Prove that, if H is an equicontinuous
subset of C(X), the closure H of H in C(X) is equicontinuous.

4. Let X be a compact metric space, and let H be an equicontinuous family
of elements of C(X).

a. Prove that the set of points z of X such that the set {f(z): f € H}
is bounded is open and closed.

b. Assume that X is connected. Prove that, if there exists a point z € X
for which {f(z) : f € H} is bounded, H is a relatively compact

subset of C(X).
5. a. For a € (0,1), let C*([0,1]) be the set of functions f from [0,1] to
R such that |f( Y= £ )l
= 182) ~ 7l
\fla = o<og<t B 9l°
z#y

is finite (such an f is called a Holder function of exponent a). As
usual, we denote by |- || the uniform norm.
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1. The Space of Continuous Functions on a Compact Set
i. Prove that C2([0,1]), with the norm ||:||a = |-|a + |||, is &
Banach space.

ii. Prove that B(C®([0,1])), the closed unit ball in C*([0,1]), is a
compact subset of C([0,1]).

iii. Suppose1 >8> a > 0.
A. Take f € CP([0,1]). Prove that, for all n > 0,

|fla < max(flsn°%, 2|Iflln~°).

Deduce that, if (f,) is a bounded sequence in C? that con-
verges uniformly to f € CP, then || f, — flla = 0.
B. Deduce that B(C?([0,1])) is compact in C2([0,1]).
b. Let m be a nonnegative integer. We give C™ ([0, 1]) the norm defined
by

m
fllm = sup |fB)(z)|.
17lm =3 sup |F©)
i. Prove that with this norm C™([0, 1]) is a Banach space.

ii. Prove that if m and n are nonnegative integers such that m > n,
then B(C™([0,1])) is a relatively compact subset of C™([0,1]).
(You might start withm = 1 and n = 0.) Is the ball B(C™([0,1]))
closed in C™([0,1]) ?

c. Take m € N and a € (0,1). Denote by C™*2([0,1]) the vector
space consisting of functions of C™([0, 1]) whose m-th derivative is
an element of C([0,1]), and define on this vector space a norm

Il - llm+a by setting || fllm+a = | fllm + |f(m)|a-
i. Prove that C™*2([0,1]), with the norm || - |m+a, is a Banach
space.
ii. Take p,q € R such that ¢ > p > 0. Prove that B(C?([0,1])) is a
relatively compact subset of C?([0, 1)).
Ascoli’s Theorem in R
a. Let f, be the function defined for all £ € R by

_ [ min(l,n/z) ifz#0,
f"(z)—{l if z = 0.

Prove that the subset {fn}nen of Co(R) is bounded and equicontin-
uous (see Exercise 8 on page 40 for the definition of Co(R)), but the
sequence (fn) has no uniformly convergent subsequence.
Hint. The sequence (fn) converges pointwise but not uniformly to
the constant function 1.

b. Let H be a subset of Cy(R). Prove that H is relatively compact in
Co(R) if and only if it is bounded and equicontinuous at every point
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of R and satisfies that condition that for any £ > 0 there exists A > 0
such that

|h(z)| <& forall h € H and z € R with |z| > A.

Hint. Use Ascoli’s Theorem in the space C(U) (refer again to Exer-

cise 8 on page 40).
7. A particular case of Peano’s Theorem. Let f be a continuous function
from [0,1] x R to R for which there exists a constant M > 0 such that

|f(z,t)] < M(1+]|z|) forallte[0,1]and z €R.

a. Let n be a positive integer. We define points z7, for 0 < j < n, by
setting z3 = 0 and

1 .
z;'+1=z;'+;f(%,z;') for0<j<n-1.

i. Prove that |z}| < (1+ M/n)f —1<eM -1for0<j<n.

ii. Let ¢, be the continuous function on [0, 1] that is affine on each
interval [j/n, (j+1)/n] and satisfies @n(j/n) = 27 for 0 < j <
n. That is, for 0 < j <n—1and t € [j/n, (j+1)/n] we have

oot =23+ (= 1)1 (% 23).

Prove that for s,t € [0, 1] we have |@n(t) — pn(s)| < MeM|t—s].
iii. For s € [0, 1], set

n-1

Yn(8) = D Ly/m, Gr1ym)(8) f (% “’"(%))'

=0

t
Prove that ¢,(t) = / Yn(s)ds for all t € [0,1].
0

b. i. Show that there exists a subsequence (ipn, )ken that converges
uniformly on [0, 1] to a function ¢ € C([0,1]).
ii. Prove that the sequence (¥n, )xen converges uniformly on [0, 1)
to f(s,¢(s)).
iii. Deduce that p(t) = f(: f(s,¢(s)) ds for all t € [0,1]; then prove
that ¢ is of class C! on [0, 1] and satisfies the differential equation

¢'(t) = f(t,p(t)) forallte(01],
¢(0) =0.

Is the ¢ constructed above the only one that satisfies these con-
ditions?

(+)
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8. Let X be a compact metric space and H a subset of C(X).

a. Suppose H is relatively compact. Prove that for all € > 0 there exist
constants C > 0 and B > 0 such that d(f, Lg) < ¢ for all f € H,
where L2 denotes the set of C-Lipschitz functions on X with uniform
norm at most B, and d is the metric associated with the same norm.
Hint. Use the fact that Lipschitz functions are dense in C(X).

b. Show the converse.

Hint. Prove that LZ is precompact, and finally that so is H.
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Locally Compact Spaces
and Radon Measures

In this chapter we study a representation, in terms of measures, of positive
linear forms on spaces of continuous functions; this representation leads to a
description of the topological dual of such spaces. It is useful in applications
to consider functions defined on metric spaces somewhat more general than
compact spaces, namely, locally compact ones.

1 Locally Compact Spaces

A metric space (X,d) is called locally compact if every point in X has
a compact neighborhood; equivalently, if for every z € X there exists a
compact K of X whose interior contains z; equivalently, if for every z € X
there exists r > 0 such that the closed ball B(z,r) is compact. Local
compactness is clearly a topological notion.

Any compact space is obviously locally compact. The spaces R? and
C¢, for d > 1, and more generally all normed spaces of finite nonzero
dimension yield a first example of locally compact but noncompact spaces.
The famous theorem of F. Riesz states that, conversely, the only locally
compact normed spaces are those of finite dimension:

Theorem 1.1 (F. Riesz) Let X be a normed space, with open unit ball
B and closed unit ball B. The following properties are equivalent:

i. X is finite-dimensional.
ii. X s locally compact.
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iii. B is compact.
iv. B is precompact.

Proof. Property i implies ii because closed balls in a finite-dimensional
normed space are compact. If ii is true, there exists r > 0 such that
B(0,r) = rB is compact; this implies iii. That iii implies iv is obvious.
Thus the only nontrivial part of the theorem is iv = i.

Suppose that B is precompact. Then there is a finite subset A of X such
that

Bc |JB(z.3)=4+}B
TE€EA

Let Y be the (finite-dimensional) vector space generated by A; then B C
Y + 2-!B. One can easily show by induction that, for any integer n > 1,
we have B C Y + 27 "B, and therefore

Bc ()(Y +27"B).

n2>1

In particular, if z € B, there exists foralln > 1ay, € Y such that
[lz—yn] < 2~". We deduce that B C Y. Since Y is finite-dimensional, hence
complete, hence closed in X, it follows that B C Y and, by homogeneity,
X=Y. a

We remark that any space with the discrete metric (defined by d(z,y) = 1
if z # y and d(z, z) = 0) is locally compact.

Here is a simple but important consequence of the definition of local
compactness.

Proposition 1.2 If X is a locally compact space, there exists for every
z € X and for every neighborhood V of z a real number r > 0 such that
B(z,r) is compact and B(z,r) C V.

Proof. Just choose r = min(r’,r"), where r’ and r” are such that B(z,r')
is compact and B(z,r") C V. a

Corollary 1.3 Let X be locally compact. If O is open in X and F is
closed in X, the intersection Y = ONF (with the induced metric) is locally
compact.

Proof. Take z € Y. By the preceding proposition, there exists r > 0 such
that B(z,r) is compact and contained in Q. Then B(z,r)NY = B(z,r)NF
is compact. O

In particular, every open set in a finite-dimensional normed space is
locally compact.
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Corollary 1.4 Consider a locally compact space X, a compact subset K
of X, and open subsets O,,...,0O, of X covering K. There erist compact
sets Ky, ..., Ky with K; C O; for each j and such that

n
K C U kj.
j=1
Proof. By Proposition 1.2, for all points z of K there exists j € {1,...,n}

and a compact set K, such that z € K. Cc K, C Oj. By the Borel—
Lebesgue property, K can be covered by finitely many of these interiors:

P
K c |J K.

=1

Now set K; = UK.‘co, K, for 1 < j < n. Then

p
UKjDU U &..=Jk=. o k;

j=1 K., CO; =1
and, sure enough, K; C O;. a
The next result is about the separability of locally compact spaces.

Proposition 1.5 Let X be a locally compact space. The following prop-
erties are equivalent:

i. X is separable.
ii. X is o-compact.
ili. There exists a sequence (K,) of compact sets covering X and such that
K, C Kn+1 for alln € N.

Proof. Tt is clear that iii implies ii. The implication ii = i is a particular
case of Proposition 2.2 on page 8.

Now suppose that X is separable and let (z,,) be a sequence dense in
X. Set A = {(n,p) € N x N*: B(zn,1/p) is compact}; we will show that
the family & = (B(2n,1/p))(n,p)ca covers X. Take z € X and let r > 0
be such that B(z,r) is compact. Then take p € N* such that 1/p < r/2
and n € N such that d(z,z,) < 1/p. One sees that z € B(z,,1/p) C
B(z,2/p) c B(z,r). Therefore B(z,,1/p) is compact and z belongs to
some element of #. This shows that i implies ii.

Finally, we show that ii implies iii. Suppose that X is o-compact and
let (Ln) be a sequence of compact sets that cover X. We construct the
sequence (K») by induction, as follows: set Ko = Lo and, for n > 1, choose
K, such K,,_, U L,,_, C K, (using Corollary 1.4). o

A sequence (K;,) of compact sets that covers X and satisfies K, C I'(,..H
for all n is said to exhaust X.
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Proposition 1.6 Let (K,) be a sequence of compact sets that ezhausts a
metric space X. For every compact K of X there ezists an integer n such
that K C Ky.

Proof. The open sets K, cover K. By the Borel-Lebesgue property, K is

in fact contained in a finite union of sets Kn: but Uj<n K5 = K. O

Continuous Functions on a Metric Space

We now introduce various spaces of continuous functions on a metric space
(X,d).

We denote by CX(X), or simply by Cy(X), the vector space over K con-
sisting of bounded continuous functions f : X — K; recall that f being
bounded means that sup,¢ x|f(z)| < +00. We give C¥(X) the uniform
norm (or norm of uniform convergence), defined by

L1l = sup|f(=)|-
zeX

With this norm, CX (X) is a Banach space.

We say that a function f : X - K tends to zero at infinity if for all
€ > 0 there exists a compact subset K of X such that |f(z)| < ¢ for all
z ¢ K. We denote by CX(X) or Co(X) the vector space over K consisting
of continuous functions X — K that tend to 0 at infinity. It is easy to
check that Cp(X) is a closed subspace of Cp(X); therefore Co(X) with the
uniform norm forms a Banach space.

We remark that Dini’s Lemma (Proposition 1.2 on page 29) can be gen-
eralized to C& (X):

Proposition 1.7 Let (fo)nen be an increasing sequence in CX(X), con-
verging pointwise to a function f € CX(X). Then (fn) converges uniformly
to f.

Proof. We show that the sequence (g,,) defined by g, = f — fn converges
uniformly to 0. Given £ > 0, there exists a compact K such that go(z) < €
for all z ¢ K. By Dini’s Lemma, there exists an integer n such that g, (z) <
€ for all z € K. Since the sequence (g,,) is decreasing, this implies that for
all p > n and all z € X we have 0 < g,(z) <e. O

The support of a function f : X — K, denoted Supp f, is the clo-
sure of the set {z € X : f(z) # 0}. Thus Supp f is the complement of
the largest open set where f vanishes, this latter set being of course the
interior of f~!({0}). We denote by CX(X) or C.(X) the vector space over
K consisting of the functions X — K having compact support. Clearly
C.(X) is a vector subspace of Co(X), but not in general a closed one;
see Corollary 1.9 below, for example. Naturally, if X is compact we have
Ce(X) = Co(X) = Cp(X) = C(X).
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Finally, we denote by C;f (X), Cg (X), and C}(X) the subsets of C}(X),
CR(X), and CR(X) consisting of functlons that take only positive values

Proposition 1.8 (Partitions of unity) Let X be locally compact. If K
is a compact subset of X and O,,...,0, are open subsets of X that cover
K, there ezist functions ¢, ...,pn in CR(X) such that 0 < p; < 1 and
Supp; C O; for each j and

n
Y vi@ =1 forallzeKk.
i=1

Proof. Let K,,...,K, be the compact sets whose existence is granted by
Corollary 1.4. We just have to set, for z € X,

d(z, X\ K;)
pj(z) = = —.
d(z’ K) +zk=] d(za X\Kk)
In particular, Suppy; C K; C O;. O

A family (¢4, . . ., pn) satisfying the conditions of the proposition is called
a partition of unity on K subordinate to the open cover O,,...,0,.

Corollary 1.9 If X is locally compact, C.(X) is dense in Co(X).

Proof. Take f € Co(X) and € > 0. Let K be a compact such that |f(z)| < ¢
for all z ¢ K. Applying Proposition 1.8 with n = 1 and O, = X, we find a
@ € CR(X) such that 0 < 9 < 1 and ¢ = 1 on K. Then fyp € C¢(X) and
If - fell <e. O

Corollary 1.10 Let X be locally compact and separable and let O be open
in X . There ezists an increasing sequence () of functions in C}(X), each
with support contained in O, and such that lim,,_, o, pn(z) = 1o(z) for all
ze X.

Proof. O is a locally compact separable space, by Corollary 1.3 above and
Proposition 2.3 on page 8. By Proposition 1.5 there exists a sequence of
compact sets (Ky,) such that K, C K,,.“ for all n and U,‘EN K, = O.
By Proposition 1.8 there exists for each n a map ¢, € CR(X) such that
0 < 9n <1, pnlk. =1, and Supp ¢, C Kn41. The sequence (pn) clearly
satisfies the desired conditions. a

To conclude this section, we observe that Cp(X) is a algebra with unity,
that C.(X) and Co(X) are subalgebras of Cy(X) (without unity if X is not
compact), and that C}t(X), CR(X) and CR(X) are also lattices.
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Ezercises

1. a. Let X be a metric space. Prove that, if there exists a real number
r > 0 such that all closed balls of radius 7 in X are compact, then
X is complete.

b. Find a locally compact metric space X such that, for all z € X,
there is a compact closed ball of center z that is noncompact.

c. Find a locally compact metric space that is not complete.

d. Find a complete metric space that is not locally compact.

2. a. Let (X,d;) and (X2,d;) be locally compact metric spaces. Prove
that X, x X3, together with the product metric given by d(z,y) =
d\(z1,11) + da(z2,¥2), is locally compact.

b. Let ((Xp, d,,)) pen be a sequence of locally compact, nonempty met-
ric spaces, and set X = HpeN Xp, with the product metric d (see
page 13).

i. Take £ € X and r € (0,1]. Prove that if n and n' are integers
satisfying 27" <7 < 2"", then

ln-[{a:,,} X H Xp C B(z,r) C f[ By(zp,2Pr) x H Xp,

p=0 p>n p=0 p>n’

where By(-,-) and B(-,-) represent open balls in (Xp,dp) and
(X, d), respectively.
ii. Prove that (X, d) is locally compact if and only if all but a finite
number of factors (Xp,dp) are compact.
3. Let X be a metric space and Y a subset of X.

a. Prove that B(z,r)NY C B(z,r)NY forallz € Y and r > 0. Deduce
that, if B(z,r) NY is compact, then B(z,7r)NY CY.

b. Suppose that Y, with the induced metric, is locally compact. Show
that there exists an open subset O of X such that Y = ONY. This
gives a converse for Corollary 1.3.

4. Show that an infinite-dimensional Banach space cannot be o-compact.

Hint. Use Baire’s Theorem (Exercise 6 on page 22).

5. a. Prove that every metric space that can be exhausted by a sequence
of compact sets is locally compact.

b. Find a o-compact metric space that is not locally compact.

6. Baire’s Theorem, continued. Let X be a metric space. Recall from Ex-
ercise 6 on page 22 the game of Choquet between Pierre and Paul.

a. Prove that Paul has a winning strategy if X is locally compact.
Deduce that in X no open set can be a union of a countable family
of closed sets with empty interior.

Hint. The intersection of a decreasing sequence of nonempty com-
pact sets cannot be empty.
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b. Take X = R\ Q, with the usual metric. Prove that X is neither

complete nor locally compact (you can use Exercise 3 above, for ex-
ample), but that Paul nonetheless has a winning strategy, so Baire’s
Theorem is valid in X.
Hint. Take an enumeration of the rationals, say Q = {ry}nen. Show
that, whenever Pierre plays U, Paul can respond with V,, = I, \ Q,
where I,, is a nonempty open interval in R such that I, \ Q C Uy,
d(I,) < 1/n,and r, ¢ I,.

Alezandroff compactification. Let (X, d) be a separable and locally com-

pact metric space. Set X = X U {oo} where oo is a point that does not

belong to X . We wish to define on X a metric that extends the topology
of X and that makes X compact. To do this, let (V;)nen be a countable
basis of open sets in X (see Exercise 1 on page 10), and put

% = {(p,q) € N®: V, C V and V, is compact }.

This set is countable; let % = {(Pn,qn)}nen be an enumeration of it.
For each n, let ¢, be an element of C.(X) such that 0 < ¢, < 1
everywhere and ¢, =1 on V},,, and whose support is contained in V.
Put @, (00) = 0. Then, for z,y € X, define

+00
o(z,y) = Z 2 " l‘Pn(z) - ‘Pn(y)l'

n=0

a. Prove that § is a metric on X.

b. Let (z;)jen be a sequence in X. Prove that limj_, 400 0(Zj,00) = 0
if and only if, for any compact K in X, there is an integer J such
that z; ¢ K for j > J. (In this case we say that the sequence (z;)
tends to infinity.)

c. Let (z;)jen be a sequence in X and z a point in X. Prove that
limj_, 400 d(zj, ) = 0 if and only if limj_, ;o §(z;, ) = 0. Together
with the preceding result, this shows that the convergence of se-
quences in X, and therefore the topology of (X, §), does not depend
on the choice of d and 4.

d. Prove that (X,4) is a compact metric space.

e. Prove that X is compact if and only if oo is an isolated point of X.

f. We now suppose that X = R?. Prove that X is homeomorphic to
Sa, the (euclidean) unit sphere in R%*!, that is,

d+1
Sa = {z e R sz = l},

i=1

with the distance induced by the euclidean norm in R4*!,
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9.

10

11.
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Hint. Use stereographic projection, the map ¢ : S¢ — deﬁned by
¢(0,...,0,1) = 0o and

p(z) = (L) for z # (0,...,0,1).
1<j<d

1—-z441

g. Prove that Co(X) can be identified with the space of continuous
functions on X that vanish at co.

h. Deduce that Co(X) is separable.

i. Prove that the Stone-Weierstrass Theorem, stated in Exercise 8b on
page 41 for R, generalizes to the case where R is replaced by X.

j. Ascoli’s Theorem in Co(X). Prove that a subset H of Co(X) is rel-
atively compact in Co(X) if and only if it is bounded and equicon-
tinuous and satisfies the condition that for every € > 0 there exists
a compact subset K of X such that |h(z)] < e for every z € X \ K
and every h € H.

Let X be a locally compact space. Prove that X is separable if and only

if Co(X) contains a function taking positive values everywhere.

Hint. X is separable if and only if it is o-compact.

Let (X,d) be a metric space.

a. Prove that Cp(X) and Co(X), with the uniform norm, are Banach

spaces.

Prove that X is compact if and only if every continuous function

from X into R is bounded.

Hint. Show that, if X is not compact, there exists a sequence (zp)nen

in X having no convergent subsequence and a sequence (rp)nen of

positive real numbers tending toward 0 and such that the balls

B(zn,r,) are pairwise disjoint. Then consider ZneN nyn, where

¥n(z) = (1 - d(z»zn)/rn)+~

c. Prove that Cy(X) is separable if and only if X is compact.

Hint. Suppose that X is not compact and define, for each a €
{0,1}", a function f, by setting fo = ¥, cn @nn, Where the ¢n
are as in part b. Prove that f, € Cy(X) and that ||fo — fgll = 1 if
a # (. Then use Proposition 2.4 on page 9. (Side question: Among
the functions f,, how many have compact support?)

Tietze Extension Theorem, continued. Let X be a locally compact

space, K a compact subset of X, and f a continuous function K — K.

Prove that there exits a function f € C.(X) such that flx = f and

171 = maxeex |f(a)].

Hint. Use Exercise 7 on page 40 and Proposition 1.8 above.

Extend the result of Exercise 1 on page 30 to the case where X is

separable and locally compact and C(X) is replaced by Co(X).

Hint. One can use Exercise 7 to reduce the problem to the one covered

by the original result.

b
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12. Topology of uniform convergence on compact sets. Let X be a separa-
ble, locally compact metric space and (K,) an exhausting sequence of
compact sets of X. Let C(X) be the vector space consisting of continu-
ous functions from X into K. For each element f of C(X) define a real
number ¢(f) as

+o00

a(f) =Y 2 " min(1, | fllx.),

n=0

where || - || k., represents the uniform norm on K,.

a.
b.

f.

Prove that the map d: (f, g) — q(f—g) is a metric on C(X).

Let (fi)ren be a sequence of elements of C(X) and let f be an
element of C(X). Prove that (f) converges to f uniformly on every
compact of X if and only if limg_, 100 d(fi, f) = 0.

. Prove that the metric space (C(X),d) is complete.

For n € N, let (¢n,p)pen be a dense sequence in C(K,, ). We know by
Exercise 10 above that we can extend each ¢, , to a function @, , €
Cc(X). Prove that the family (Bn,p)(n,p)enz is dense in (C(X), d).

. Deduce that the metric space (C(X), d) is separable and that C.(X)

is dense in (C(X),d).
Deduce that (Cy(X),d) and (Co(X),d) are complete if and only if
X is compact (see Exercise 9b above).

. Ascoli’s Theorem in C(X). Let H be a subset of C(X). Prove that

H is relatively compact in (C(X),d) if and only if it satisfies the
following conditions:

- H is equicontinuous at every point of X.

- For every point z of X, the set {h(z)}xren is bounded.
Hint. Carry out the diagonal procedure using Ascoli’s Theorem on
each compact K,.

2 Daniell’s Theorem

This section approaches integration from a functional point of view. We as-
sume the reader is familiar with the set-theoretical approach to integration,
where a measure is defined as a g-additive function on sets.

Notation. Let X be any nonempty set. We denote by # the vector space
over R consisting of all functions from X to R. This space, with the usual
order relation, is a lattice: If f and g are elements of .#,

(sup(f, 9))(z) = max(f(z),9(z)) and (inf(f,9))(z) = min(f(z),9(z))-

If (f») is a sequence in & and f is an element of &, we write f, * f to
mean that the sequence (f,,) is increasing and converges pointwise to f;
the meaning of f, \, f is analogous.
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As before, we use the same symbol for a constant function and its value.

If m is a measure on a o-algebra of X, we denote by .#! (m) the subspace
of & consisting of m-integrable functions. As usual, we denote by L!(m)
the quotient vector space of #!(m) by the equivalence relation given by
equality m-almost everywhere, endowed with the norm defined by || f|| =
J |fldm (we use the same symbol f for an equivalence class and one of its
representatives). The normed space L!(m) is then a Banach space.

During the remainder of this section, we consider a vector subspace L of
& that is a lattice (this is equivalent to saying that f € L implies |f| € L)
and satisfies the following condition:

There ezists a sequence () in L such that ¢, /1. (*)

We will denote by o(L) the o-algebra generated by L, that is, the smallest
o-algebra of X that makes all elements of L measurable. Finally, let .Z be
the set of functions from X to R that are o(L)-measurable.

Lemma 2.1 & is the smallest subset of F that contains L and is closed
under pointwise convergence (the latter condition means that the pointwise
limit of any sequence in .Z is also in .Z).

Proof. 1t is clear that a minimal set satisfying these conditions exists. Call
it 4.

~ B is a vector subspace of F and a lattice, and it contains the constants.

Proof. If A € R, the set {f € & : A\f € $B} contains L and is closed
under pointwise convergence, so it contains . Therefore f € £ and
A€ Rimply Af € 8.

Similarly, for every g € L, the set {f € & : f + g € #} contains B,
so the sum of an element of L and one of & is in 4. Using the same
reasoning again we deduce from this that, for every f € 4, the set
{h€ ZF: f+he B} contains B. Thus the sum of two elements of B
is in 4, and 4 is a vector space.

Since L is a lattice we see by considering the set {f € & : |f|] € 8B}
that 4 is a lattice as well. That 4 contains 1 and therefore all constants
follows from condition (x). O

- We now show that 8 = #. Set J = {A C X : 14 € #}. By the
preceding paragraphs, J is a g-algebra. If f € L and a € R, the charac-
teristic function of the set {f > a} is the pointwise limit of the sequence
(inf(n(f-a)*, 1)), and so belongs to #, and {f > a} € Z. Thus the
elements of L are J-measurable, which implies that o(L) C 7; in other
words, 14 € % for A € o(L). Since every o(L)-measurable function is
the pointwise limit of o(L)-measurable piecewise constant functions, we
deduce that £ C # and, by the minimality of 4, that £ = 8. O
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Ezample. Let X be a metric space. Recall that the Borel o-algebra of
X is the smallest o-algebra of X that contains all open sets of X, and that
the corresponding measurable functions are called Borel functions.

Proposition 2.2 If X is a metric space, the set of Borel functions from
X to R is the smallest subset of F that contains all continuous functions
from X to R and is closed under pointwise convergence.

Proof. Let L be the set of continuous functions from X to R. Then L
is a lattice and satisfies (%), since 1 € L. On the other hand, let # be
the Borel o-algebra of X. Certainly every continuous function on X is -
measurable, so (L) C #. Conversely, every open set U of X is contained
in o(L): to see this, note, for example, that U is the inverse image of the
open set R* under the continuous function f defined by f(z) = d(z,U*).
Thus & C o(L), which implies # = o(L). Now apply Lemma 2.1. O

Remark. One should not confuse % with the set of pointwise limits of
sequences in L, which is generally strictly smaller that -#. In the situation
of the preceding example, this smaller set is called the set of functions of
first Baire class: see Exercise 4.

The rest of this section is devoted to the proof of the following result:

Theorem 2.3 (Daniell) Let u be a linear form on L satisfying these
conditions:

1. p is positive, that is, if f € L satisfies f > 0 then u(f) > 0.
2. If a sequence (f,) in L satisfies fn \, 0, then lim, 400 s(fn) = 0.

Then there exists a unique measure m on the o-algebra o(L) such that
LC#\m) and u(f)= /fdm forall f € L.

Uniqueness of m. Suppose that two measures m; and m; satisfy the stated
properties. Let (¢,) be a sequence satisfying condition (x) on page 58. For
every n € N and every real A > 0, the set

{f ce: / inf(f+, Agn) dmy = / inf(f*, ,\<p,.)dm2}

equals .Z, by the minimality of .# (proved in Lemma 2.1) and the Domi-
nated Convergence Theorem. Making n go to infinity, then A, we conclude
by the Monotone Convergence Theorem that [ f*dm; = [ f* dm, for all
f € &. Therefore m; = m; on o(L). ]

Ezistence of m. The proof of existence is rather long and is carried out in
several steps. First of all, let % be the set of functions from X into R that
are pointwise limits of increasing sequences of elements of L. The measure
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m is constructed by first extending the linear form u to % (steps 1-3),
then to the space L' defined in step 6 below. Some properties of L! and of
p are established in step 7, allowing us to conclude the proof in step 8.

1. The set % contains the positive constants, is closed under addition and
multiplication by nonnegative reals, and for any pair (f,g) of elements
of %, we have sup(f,g) € % and inf(f,g) € %. Moreover % is closed
under pointwise convergence of increasing sequences.

Proof. Only the last assertion requires elaboration. Let (f,) be an in-
creasing sequence in % converging toward an element f of #. By
assumption, there exists, for any n € N, a sequence (gn,m)men in L
that is increasing and converges to f,. For each m € N, set h,, =
SUPg<n<m In,m- It is clear that (h,)men is an increasing sequence in L
and that gnm < hm < fm if m > n. Making m go to infinity in this
inequality, we get fp, < limp, 400 Am < f; then making n go to infinity,

we get h,, 7 f, which shows that f € . a

2. Let (fn) and (gn) be increasing sequences in L, converging pointwise to
elements f and g of %, respectively. If f < g, then
Jim p(fn) < lim  p(gn) < +oo.
Proof. By linearity and positivity, the linear form p is increasing on L
(f < g implies L(f) < L(g)). On the other hand, for each n € N, we
have inf(fn,gm) /* fa a8 m goes to infinity, 50 limm— o0 1 (inf(f, gm))
= u(fn), by assumption 2 of the theorem applied to the sequence

(fn - inf(fmgm))m- It follows that u(fn) < limm—ic0 #(gm) for all
n € N, and this shows the result. a

3. We extend p to % by setting u(f) = limp 400 u(fn), where f €
and (f,) is an increasing sequence in L that converges to f pointwise.
By step 2, u is well-defined and increasing on %, and it takes values
in (—o0, +00]. Moreover, u is additive (that is, u(f + g) = u(f) + u(g)
for f,g € ) and, for all f € % and every nonnegative real )\, we
have u(Af) = Au(f), with the usual convention 0-00 = 0. Now, if (f)
is an increasing sequence in % that converges to f € F pointwise,

p(f) = limpo 400 p(fn).

Proof. By step 1, f is in % . Using the same notation as in the proof of
that step, we can write

ulf) = Jim plhn) < lim_p(fm);

the reverse inequality is a consequence of the fact that u is increasing
in¥. a
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4. We now extend u to —% by setting u(—f) = —u(f) for f € %. This
gives no rise to inconsistencies: if f € % N (—%), then f+(—-f) =0
and therefore u(f) + u(—f) = 0 and u(f) = —u(—f). It is also clear
that

plg —h) =p(g) —p(h) ifge¥ andhe -%.
In particular, if g € % and h € —%, then h < g implies u(h) < u(g).

5. Let ¥ be the set consisting of elements f € % such that there exist
g € % and h € —% with u(g) and u(h) finite and h < f < g. For
f €Y, we put

p*(f) =inf{u(g):9€ % and g > f} €R,
pe(f) =sup{p(h):he€ ~% and h < f} €R.

The following properties follow easily from steps 3 and 4:
~ For every f € ¥ and every nonnegative real A we have u.(f) <
B (f), B*(=f) = —pa(f), 8*(Af) = M (f), and po(Af) = Apa(f).
- For every pair (f1, f2) of elements of ¥, we have p*(fi + f2) <
B*(f1) + p*(f2) and pa(fr + f2) 2 p*(f1) + pa(f2)-
— For every pair (f1, f2) of elements of ¥ such that f, < f2, we have
B*(fi) < p*(f2) and p, (f1) < pa(f2).

6. We extend p to the set L' = {f € ¥ : p*(f) = p.(f)} by putting
u(f) = u*(f) = pe(f), for f € L. This definition is clearly consistent
with the ones given in steps 3 and 4 for elements of % and —% . Note
that L! is a vector space containing L and that u is a positive linear
form on L!.

7. Some properties of L' and p
a. The vector space L' is a lattice.

Proof. Notice first that an element f of .# belongs to L! if and only
if for alle > 0 there exist g€ % and h€ —% suchthat h< f < g
and u(g) — p(h) = u(g - h) <e.
Now take f € L! and € > 0, and choose g € % and h € —% as
just described. Then g* and h~ are in %, and g~ and A* are in
—~4% ; furthermore, h* + g~ < |f| < A~ + g*. On the other hand,
u(h™ +g*) —p(h* +g7)=p(g-h)<e. o
b. Let (fn) be an increasing sequence in L' that converges pointwise to
a function f. In order that f € L', it is necessary and sufficient that
limp, 400 (fr) < +00 and that there be an element g of % such
that f < g. If this is the case, p(f) = limp 400 u(fn)-
Proof. The condition is clearly necessary; we show sufficiency. Since
f = fo, there exists h € —% such that u(h) is finite and h < f.
At the same time, po(f) > lim,—, 400 #(fn). Now take € > 0. There
exists a sequence (gn) in ¥ satisfying fo < go, u(g0) < u(fo) +¢/2
and, for all n € N*,

fn "fn—l Sg,. and p(gn) < l‘(fn _fn_l)_'_z-n—le.
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Set | = inf(¥ N 9p»9)- Then I € % by step 1; also, I > f and

+00
p) <Y p(gp) < lim p(fa) +e
p=0

(see step 3). It follows that f € ¥ and

u(f) = pe(f) = _lim p(fn). o

n—+o0o

c. Let (fn) be a sequence in L' converging pointwise to f. If there ezists
an element g of ¥ such that |fn| < g for alln € N, then f € L' and
u(f) = limpos 400 1(fn)-

Proof. Clearly f € ¥ and, for all n, the function h, defined by

hn = pEToo ngl:gp fe
belongs to ¥. Moreover, h, /~ f. We deduce, by an application of
7a and two of 7b, that f € L! and u(f) < liminfx— 400 #(fi). One
shows likewise that u(f) > limsup,._, . p#(fk)- a

d. Ifge L' and f € & satisfy0< f < g, then f € L.
Proof. Assume g € L! satisfies g > 0. The set

{fe#:inf(f*,g) e L'}

contains L, by steps 6 and 7a; by step T7c, it is closed under point-
wise convergence. Therefore it contains ¢, by Lemma 2.1. This im-
plies the desired result: if f € £ and 0 < f < g, then f = f* =
inf(f*,g) € L. O

Definition of the measure m. For A € o(L), we set m(A) = u(1,) if
14 € L! and m(A) = +oo otherwise. All that remains to do is prove
that m satisfies the properties stated in the theorem.

- o-additivity of m. If A and B are disjoint elements of o(L), there
are two possibilities: either 14 and 1p are both in L!, in which
case m(A U B) = m(A) + m(B); or one of 14 and 1p is not in
L!, in which case neither is 14up (by step 7d), and we still have
m(AU B) = m(A) + m(B). Now let (A,) be an increasing sequence
of elements of o(L), with union A. If all the 1,4, are in L', we have
limp,_, +00 m(An) = m(A) by step 7b; otherwise, by 7d, we have
14 ¢ L' and 14, ¢ L! for large enough n, and limp_, 400 m(An) =
+00 = m(A).

- Finally, take f € L'N.# with f > 0. The function f is the pointwise
limit of an increasing sequence of piecewise constant positive func-
tions that belong to .#, and so also to L! by step 7d. By applying
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the Monotone Convergence Theorem to the measure m and using
property 7b for u, we conclude that f € #!(m) and [ f dm = p(f),
and in fact that this equality holds for all f € L! N . and so for
f € L since L C L' N #. This proves Theorem 2.3. ]

The next proposition follows quickly from the preceding proof.

Proposition 2.4 Under the same assumptions and with the same nota-
tion as in Theorem 2.3, the space L is dense in the Banach space L'(m).

Proof. We maintain the same notation. It suffices to show that if A is in
o(L) and m(A) is finite then for every ¢ > 0 there exists an element ¢
of L such that u(]14a — ¢|) < &. If € > 0, there exists ¥ € % such that
14 < v and u(¥) < p(l4) + /2. Now let ¢ € L be such that ¢ < ¢ and
#(¥) < p(p) +¢€/2. Since |14 — | < (Y~ 14) + (¥ — ) and ¢ € L' by
step 7b, the desired result follows. a

Exercises

1. a. Let Q be a set and £ a o-algebra on Q (recall that the pair (2, X)
is then called a measure space). Let L be a vector subspace of the
space of real-valued X-measurable functions, such that L is a lattice,
o(L) = X, and L contains an increasing sequence that converges
pointwise to 1.

i. Let m; and m2 be measures on (2,X). Prove that, if L C
LY (my) N LY (m;) and [ fdmy = [ fdm, for all f € L, then
m) = my.

ii. Let m be a measure on (2,X) and h a complex-valued -mea-
surable function such that, for all f € L, the product fh is
in #'(m) and [ fhdm = 0. Prove that h vanishes m-almost

everywhere.
b. Assume that @ = R? and that T is the Borel a-algebra Let Q be
the set of subsets of R? of the form [a;,b1] X - X [aa, ba], With

a;,b; € R and a; < b;. A Borel function h from R to C is called
locally mtegmble if fc Ih(z)l dz < +oo for all C € Q, where dz is
Lebesgue measure on R%. Prove that if a locally integrable function
h : R? 5 C satisfies Joh(z)dz = 0 for all C € Q, it vanishes
dz-almost everywhere.
Hint. Prove that [ f(z)h(z)dz = 0 for all f € CR(RY).

c. Let m be a Borel measure on R and let h be an m-integrable Borel
function from R to C. Prove that if

/ e“Yh(y)dm(y) =0 for all z € R,

then h vanishes m-almost everywhere.
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Hint. Prove, using Fubini’s Theorem and Exercise 8e on page 42,
that [ f(y)h(y) dm(y) = 0 for all f € Co(R).

d. Prove likewise that, if m; and my are Borel measures of finite mass
on R such that

/ e dm, (y) = / e*Vdm,(y) forallz € R,

then m; = m,.
The monotone class theorem. Let Q be a set. A subset 7 of P() is
called a monotone class if it satisfies the following properties:
-Qed.
-UT,Se€e T andTC S,then S\T € 7.
- For every increasing sequence (T,)nen in 7, the set |, oy Tn is in
7.
Let 4 be a subset of () closed under finite intersections (this means
that the intersection of two elements of ¢ is in ¢). Show that the small-
est monotone class containing ¢ is closed under finite intersections, and
therefore is a o-algebra.
Hint. Use for inspiration the proof of Lemma 2.1 on page 58. More
precisely, denote by 7 the smallest monotone class containing ¢; show
first that the set of T € 7 such that TN A €  for all A € ¢ coincides
with 7.

. Let X be a locally compact and separable metric space.

a. Set L = CR(X). Prove that L satisfies the assumptions of this sec-
tion. In the sequel, as in the proof of Theorem 2.3, we will denote
by % the set of pointwise limits of increasing sequences in L.

b. Take f € %. Prove that f is lower semicontinuous (which means
that for all real a the set {f > a} is open) and that the set {f < 0}
is relatively compact.

c. Let f be a lower semicontinuous function from X to R taking non-
negative values.

i. Prove that, for all point z of X,

f(z)= sup o(z).
peECH(X)
"29)

ii. Let (K,) be a sequence of compact sets exhausting X. Prove that
for every n € N* there exists ¢, € C}(X) such that ¢, < f and
en(z) > f(z) —1/nfor all z € K.

iii. Prove that the sequence (y,) converges pointwise to f; then
prove that f € .

d. Let f be a lower semicontinuous function from X to R such that the
set K = {f < 0} is compact.
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i. Prove that f is bounded below.

ii. By reducing to the case treated in the preceding question, deduce
that f € %.
Hint. If K is nonempty, consider the function f + ¢, with ¢ €
C}(X) such that ¢ = —inf;¢x f(z) on K.
e. Deduce that N (-%) = CR(X).

4. Functions of first Baire class. A function from R to R is of first (Baire)
class if it is the pointwise limit of a sequence of continuous functions
from R to R. We denote by & the set of such functions. If f is a function
from R to R, we write ||f|| = sup,en|f(z)| (so ||f|| can be +00). We
say that a function f from R to R is F,,-measurable if, for every open
subset U of R, the set f~!(U) is an F,, that is, a union of countably
many closed subsets of R.

a. Prove that the uniform limit of a sequence of functions of first class
is a function of first class.
Hint. Let (f,) be a sequence of elements of & that converges uni-
formly to a function f. After passing to a subsequence if necessary,
we may assume that ||f — fn]| < 27" for every n € N. Thus f is the
uniform limit of the series of functions Y° n(fn — fn-1) (Where by
convention f_; = 0). Prove that there exists, for each integer n > 1,
a sequence (X )ren of continuous functions that converges pointwise
to fn — fn—1 and satisfies ||@%|| < 2~™*2 for all k € N. Then prove
that the sequence of functions (1) defined by

Yn =07 +93+---+¢p

converges pointwise to f — fq.
b. Prove that every function of first class is F,-measurable.
c. Prove that 4 is not closed under pointwise convergence.
Hint. Let (f;m)men be the sequence in & defined by

= Lk (] 2n
fm(z) nln’rinoooos(m. wz)°".

Prove that it converges pointwise to the function 1q; then use Exer-
cise 6g-ii on page 23 to show that 1g ¢ .
d. Let f be a function of first class from R to R.

i. Let (Un)nen be a basis of open sets of R (see Exercise 1 on
page 10) and, for each n € N, set A, = f~!(Uy,) \ Int(f~*(U,)).
Prove that all the A,, are F,’s having empty interior, and that
the set of points where f is not continuous is |J,cn An-

ii. Deduce that the set of points where f is continuous is a G5 (that
is, the complement of an F,) and is dense in R.
Hint. Use Baire’s Theorem, Exercise 6 on page 22.
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iii. Use this to give another proof that the function 1q is not of first
class.

Let (Uk)ken be a sequence of open sets in R and set G = [N,y Uk

Prove that there exists a function f of first class such that G =

f1({0}).

Hint. Prove that, for every k € N, there exists a continuous function

fx such that Uy = f;'(R*). Then, for k € N and r € R, set gk(z) =

limp_, 400 e~™/*(®. Prove that the function f = Shoe 27k g, satisfies

the desired conditions.

Let f be a bounded and F,-measurable function from R to R. We

wish to show that f is of first class. Choose (a,b) € R? such that

a < band f(R) C [a,b]. Choose also ¢ > 0 and a subdivision (ag = a,

ay,...,an =b) of [a,b] with step at most £ (this means that 0 <

a;i—ai-y <eforl <i<n)

i. Prove that, for each i € {1,...,n}, there exists f; € # such that

£71({0}) = {ai-1 £ f < a;}. In the sequel we will also write
fO = fn+l =1

ii. For each i € {1,...,n}, set
ei=I1s =16 a=2
‘ j=0 ! ‘ j=i+1 ! ' <p‘?+1/)..2

Prove that g; € 8. (Note that ¢? + ¢? is never zero.)

iii. Set g = ao + Y_;_,(a: — @i—1)g;. Prove that g € # and that
lg—fll <e.

iv. Prove that f € 4.

Prove that every F,-measurable function f is of first class.

Hint. If f is unbounded, consider f = (1 + e/)~!.

A function from R to R is of second (Baire) class if it is the pointwise
limit of a sequence of functions of first class. (Earlier we saw an
example of a function of second class that is not of first class). By
working as in the preceding questions, prove that a function f is of
second class if and only if the inverse image under f of every open
set in R is a countable union of Gs sets.

. Infinite product of measures, o-compact case. Let X = RV be the set
of sequences £ = (zp)nenN in R, endowed with the product distance

(defined on page 13). Consider a measure u on the Borel o-algebra

of R satisfying u(X) = 1 — in other words, a probability measure on R.

Denote by L the set of functions ¢ on X for which there exist an integer

n € N and a function f € CR(R™*!) such that p(z) = f(zo,.-.,Zn).

Define a linear form ® on L by setting, for ¢(z) = f(zo,...,Zn),

B(p) = /Ik (20,1 20) du(z0) .- du(z).
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a. Prove that ® is well-defined on L (note that the representation
¢(z) = f(zo,...,Zn) is not unique).
b. Prove that the set L satisfies the conditions of page 58.
c. Let #(X) be the Borel o-algebra of the space X.
i. Let D be a countable and dense subset of X, and let #p be
the basis of open sets of X defined in Exercise 1b on page 15
(with X, = R for all p). Prove that %p C o(L) and deduce that
PB(X) C o(L) (use Exercise 1a on page 10).
ii. Prove that all elements of L are continuous functions on X and
deduce that #(X) = o(L).
d. We wish to show that condition 2 of Daniell's Theorem is satisfied.
i. Take a € (0,1). Prove that, for all n € N, there exists a compact
Ky of R such that u(Ky,) > 1—a™*!. Then put K™ = [T7_, K;
and K = ;’__fz K;. Thus, for each n, the set K™ is compact in
R"*! and K is compact in X (by Tychonoff’s Theorem).
ii. Prove that, for all n € N,

a
/ IR!H-I\K(u) (Zo, ceey Zn) dﬂ(lo) e dp(z,,) S m.

Hint. Check that the set R™ \ K is contained in the union of
the sets (R\Ko) x R" !, R x (R\K)) x R""2, R? x (R\K3) x
R"™°, ...

iii. Let (px)ken be a decreasing sequence in L converging pointwise
to 0. Prove that, for all k € N,

a
1-a’

®(px) < sup pi(z) + llekll
z€K
where || - | denotes the uniform norm on X. Deduce that
lm_2o0) =0

(You might apply Dini’'s Lemma (see page 29) to the compact
space K, then make a vary.)

e. Show that there exists a unique probability measure v on X such
that

/R  J(@oye 70 dis@o) . dis(zn) = /x @0y, 2n) di(2),
for all n € N and f € CR(R™*!). This measure is denoted v = uN.

f. More generally, let (X,)nen be a sequence of o-compact metric
spaces, each X, having a probability measure p,. Prove that there
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exists a unique probability measure v on the space X = [],cn Xn
(endowed with the product distance) satisfying the equality

/ f(@or. ., Zn) dpto(z0) .. - diin(n) = / f(Zor..., ) dv(z)
X(n) X

for all n € N and f € CR(X™) (where X" = [T7_, X;).

3 Positive Radon Measures

In all of this section we consider a locally compact and separable metric
space X. We denote by $(X) the Borel g-algebra of X. A Borel measure
on X is a measure on #(X). If m is a Borel measure, the mass of m is, by
definition, m(X) = [dm < +00. The measure m is finite on compact
sets if m(K) is finite for every compact K of X.

Proposition 3.1 Let m be a Borel measure on X. There ezists a largest
open set O such that m(O) = 0.

The complement of this set is called the support of m, written Supp(m).

Proof. Let % be the set of all open sets 2 of X such that m(2) = 0. This
set is nonempty since it contains @. Set O = | Jqc 4 §O; this is an open set,
which we must prove has m-measure zero. If K is compact and contained in
O, it can be covered by finitely inany elements of % . Each of these elements
has measure zero, so m(K) = 0. But O is o-compact (being locally compact
and separable), so it too has measure zero, by the o-additivity of m. O

Ezamples

1. For a € X, the Dirac measure at a is the measure §, that assigns
the value 1 to a Borel set A if it contains the point a, and the value 0
otherwise. The support of 4, is clearly {a}.

2. Take X = R? and let Ad be Lebesgue measure on X (considered as a
Borel measure). Naturally, the support of Ay is RY.

3. Take g € C+(R%) and let m be the Borel measure on R? defined by
m(A) = [ glad)g, for any Borel set A. Clearly, every Borel function f
such that fg is Lebesgue-integrable is m-integrable, and

/fdm = /fgd/\d.

We now check that the support of m equals the support of g. Using the
continuity of g one shows easily that an open set 2 of R? has m-measure
zero if and only if g = 0 on Q; this is equivalent to @ C g~!({0}). In
the notation of Proposition 3.1, this implies that O = Int(g~'({0})), so
the support of m is the same as that of g.
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A positive Radon measure on X is a linear form on CR(X) that
assigns a nonnegative value to every f € CR(X) such that f > 0—in
short, a positive linear form on CR(X). We denote by 9M*(X) the set
of positive Radon measures. This set is clearly closed under addition and
multiplication by nonnegative scalars. On the other hand, by linearity, if
p € M*(X) and if f,g9 € CF(X) satisfy f < g, then u(f) < p(g). As an
immediate consequence we have:

Lemma 8.2 If u is a positive Radon measure on X,

|u(h)| < u(If) for all § € CR(X).

If K is compact in X, we denote by CK (X) (or by Ck (X)), if no confusion
can arise) the set of elements of C"(X ) whose support is contained in K.
Clearly CK (X)) is a subspace of CK(X), closed with respect to the uniform
norm || - || on C¥(X). Henceforth th%e spaces CK (X) will always be given
this Banach space structure induced from the one on Cf (X).

Proposition 3.3 Let u be a positive Radon measure on X. For every
compact set K in X, the restriction of u to CR(X) is continuous; that is,
there ezists a constant Cyx > 0 such that

[w(H)| < Cx lIfIl for all f € CR(X).
(We say that u is continuous on CR(X).)

Proof. Let K be compact in X. By Proposition 1.8 on page 53, there exists
YK € C*(X) such that 0 < px < 1 and px = 1 on K. Then, for all
f € CR(X), we have |f| < ||fll ¥k, and, by Lemma 3.2, |u(f)| < p(|f|) <
I £l £(ek). a

If m is a Borel measure on X finite on compact sets, one immediately
checks that the map u defined on CR(X) by

u(f) = /fdm for all f € CR(X)

is a positive Radon measure. The main theorem of this section states,
among other things, that all positive Radon measures on X arise in this
way:

Theorem 3.4 (Radon-Riesz) For every positive Radon measure y on
X there ezists a unique Borel measure m finite on compact sets and such
that

u(f) = / fdm for all f € CR(X).

The map pu — m thus defined is a bijection between M (X) and the set of
Borel measures finite on compact sets, and it commutes with addition and
multiplication by nonnegative scalars.
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Proof. This will follow as a particular case of Daniell’'s Theorem. Set
L = CR(X). This space satisfies the assumptions stated on page 58: in
particular, property (*) follows from Corollary 1.10 on page 53. Now take
p € M+ (X); we will show that assumption 2 of Theorem 2.3 is satisfied.
Let (fn) be a decreasing sequence in L approaching 0 pointwise. Each f,
has support contained in the compact set K = Supp fo. Thus, by Dini’s
Lemma, (f,) tends to 0 uniformly on K: in other words, f, — 0 in CR(X).
By Proposition 3.3, u(fn) = 0.

Next we check that o(L) = 4(X). Since every continuous function on X
is a Borel function, the smallest o-algebra that makes all elements of L mea-
surable is certainly contained in #(X); that is, o(L) C %(X). Conversely,
B(X) C o(L) because every open subset O of X is o(L)-measurable. In-
deed, with the notation of Corollary 1.10, an element z € X belongs to O
if and only if there exists n € N with ¢, (z) > 0. Thus O is the (countable)
union of the sets ;' ((0, +00)), which are ¢(L)-measurable since the func-
tions ¢, are elements of L. Therefore O is o(L)-measurable and we finally
conclude that o(L) = #(X).

Finally, we see that a Borel measure m on X is finite on compact sets if
and only if L C #"'(m). It now suffices to apply Theorem 2.3 to derive the
existence and uniqueness of m. The remaining statements of the theorem
are easy to check. a

In the sequel we will often identify a positive Radon measure u with
the Borel measure m it defines. In particular, we use £ (u) or £ (m)
interchangeably for the space of m-integrable K-valued Borel functions,
and Lk () or Ly (m) for the associated quotient Banach space. As usual,
we omit the subscript K if no confusion is possible. Similarly, we can write
Supp u for Suppm, etc.

As a consequence of the preceding proof and of Proposition 2.4, we get:

Proposition 3.5 Let u be a positive Radon measure. The space CR(X)
is dense in the Banach space Ly(p).

This of course implies that C(X) is dense in L{ (u).

We now look at positive linear forms on C}(X). Denote by 91!'}' (X) the
set of positive Radon measures u of finite mass. Note first that a positive
Radon measure u of finite mass can immediately be extended to a linear
form m, on CR(X); just set, for all f € C}(X),

mu(f) = [ 1

where, as announced earlier, we make no distinction between the Radon
measure and the Borel measure it defines. The linear form m, thus de-
fined makes sense (since every continuous function bounded over X is u-
integrable), and it is clearly continuous: its norm in the topological dual of
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CR(X) is at most u(X). The next proposition asserts essentially that this
process yields all positive linear forms on CR(X).

Proposition 8.8 For every positive linear form m on CR(X) there ezists
a unique positive Radon measure u of finite mass and such that m = m,,
or equivalently such that

m(f) = / fdu for all f € CR(X).

Thus the map p — m,, is a bijection between !Dt"’(X ) and the set of positive
linear forms on CR(X).

Proof. The uniqueness of u clearly follows from the inclusion of CR(X) in
CR(X). The important point is existence.

We first show that m is continuous. If not, there exists a sequence (f,)
in C}(X) such that, for all n, ||fu|]l <1 and |m(f,)| > n. By replacing f,
by |fal, we can assume that f, € C*(X ) (note that m(|fx[) > [m(fn)| > n
because m is positive). Now set f = 31 £, /n?; this function is in Cg (X)
because the series converges absolutely. But, for all integer N > 1,

m(f) 2 Z““’" >3 1

n=1

so m(f) = +00, an impossibility. It follows that m is continuous on C}(X).

Its restriction to CR(X) is a positive Radon measure u. Let () be an
increasing sequence in C} (X)) converging pointwise to 1. By the Monotone
Convergence Theorem,

Jau=tim_ [ondu=tim_mgn) < m,

where ||m|| is the norm of m in the topological dual of CX(X). Thus u has
finite mass and m,(f) = m(f) for all f € CR(X). Since CR(X) is dense in
CR(X) and since m,, and m are continuous, we get m = m,,. a

Remark. The preceding proof also shows that the mass u(X) of 4 equals
the norm of the linear form m,, in C§(X)'.

The rest of this section is devoted to examples.

3A Positive Radon Measures on R and the Stieltjes Integral

Let a be an increasing function from R to R. We will construct from a an
integral —in other words, a positive linear form f — [ f do —generalizing
the Riemann integral (which will correspond to the case a(z) = z).
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First fixa < b. For f € CR([a,b]) and A = {zp =a < z) < -+ <z, = b}
a subdivision of [a, b] with step §(A) = max;<j<n(z; — zj—1), e write

n-1
Sa(f) =Y (alzjn) - alz;)) el ]f (z)
=0 Ty ZTy+1
and .
Salf) = Y (alzs) - alz) _min  f(z).
]=0 31 Zr+1
One checks easily the inequalities
0 < Sa(f) = 6a(f) < (a(b) - 0t(a)) |<m\)lf( z) - f()],
vela'b]

80 limsa)—0(Sa(f) —Sa(f)) = 0 since f is uniformly continuous on [a, b).
Next, suppose A, and A; are subdivisions of [a, b] with A, C A, by which
we mean that every subdivision point of A, is a subdivision point of A,.
Then

eAl(f) < GAQ(.{) and SAz(f) < SAx(f)
It follows from all this that

supSa(f) = infSa(f) = lim Sa(f) = lim &a(f).

The common value of these four expressions is denoted by [ : f da. Thus,

b
/fda lim Zf(f: )(a(zj41) - alz;)),

6(A)—=0

uniformly with respect to sequences (§o, . . .,&n—1) such that &; € [z;, z;41)
for 0 < ] < n—1. We deduce that the map from C®([a, b)) to R defined by
- f fda is a positive linear form.

Ifa <b<cand f € CR([a,c]), Chasles’s relation is satisfied:

/:fda=/abfda+/bcfda.

Therefore, if f € CR(R), the expression f: f da does not depend on the
choice of an interval [a, b] containing the support of f. We denote this ex-
pression by [ f da. Thus, the map f — [ f da is a positive Radon measure
on R. The associated Borel measure finite on compact sets (Theorem 3.4)
is written da, and is called the Stieltjes measure associated with a.
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Lemma 3.7 Let a be an increasing function from R toR. If a and b are
real numbers with a < b, then

da((a,b]) = a(bs) — alas),
where a(a;) and a(by ) denote the right limits of a at a and b.

Proof. Let (pn)n>1 be a sequence in CR(X) such that 0 < ¢, < 1,05 =1
on [a+1/n, b—1/n), and ¢, =0on R\ [a + 1/(n+1), b — 1/(n+1)]. Then

a(b—%)—-a(a%—%) S/‘w“dasa(b_ﬁ—l)_a(a-’.n_-l—}-—l)'

By passing to the limit, we get
do((a, b)) = a(b-) — a(a4), (*)

where a(z.) is the left limit of a at z. This is true for any a and b with
a < b. Applying it to the terms of the sequences (a,), (b,) defined by
ap = b—1/n, b, = b+1/n and taking the limit, we deduce that da({b}) =
a(by) — a(b-), which, together with (), yields the desired relation. = O

This formula will allow us to demonstrate that, conversely, every positive
Radon measure on R is a Stieltjes measure.

Theorem 3.8 Let pu be a positive Radon measure on R. There ezists a
unique increasing right-continuous function a with a(0) = 0 and u = do.
Proof. Uniqueness is clear since, by the preceding discussion, if «a is right-
continuous and vanishes at 0, it is determined everywhere:

~p((z,0)) ifz<o,

a(z) =¢ 0 ifz=0,

p((0,z]) ifz>0.
Conversely, define a by these relations. Then a is right-continuous and
vanishes at 0. Also, for a < b we have a(b) — a(a) = u((a,d]) (one checks
the various possible situations of 0 with respect to a and b).

Now suppose f € C2 (R) is supported within [a, b], and let A = {z;}o<j<n
be a subdivision of [a,b]. Then

[rau- > J—"

j=0

and so, since p((zj, zj+1]) = a(zj1) — a(z;),

Salf) < / fdu < Salf).
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By taking the limit we deduce that

/fdu=/:fda=/fda,

which concludes the proof. ]

Remarks

1. By the same reasoning, if u is a positive Radon measure of finite mass on
R, there exists a unique increasing, bounded, right-continuous function
a such that lim,,_a(z) = 0 and u = da. It is given by a(z) =
#((—o00,z]). In this situation a is called the distribution function
of the measure u. For example, the distribution function of the Dirac
measure J, is Ya = 1[4, 400)-

2. Suppose a is an increasing function of class C' on R. Then

/ fda = / f(z)d(z)dz for all f € CR(R).

In short, da = o' dz.

Indeed, suppose f € CR(R) is supported within [a,b] and let A =
{zj}o<j<n be a subdivision of [a,}]. By the Mean Value Theorem, for
each j € {0,...,n—1} there exists §; € [z;, j+1] such that a(zjy1) —
a(z;) = o/ (§;)(zj4+1 — z;). Therefore

n—1 n-1
3 fE) (alzin) — alzy) = Y £(&) e (6) (@541 — 25)-
=0 =0

Now it is enough to use the definition of the Stieltjes integral and that
of the Riemann integral.

3B Surface Measure on Spheres in R?
For r > 0, we consider the sets

B,={zeR%:|z|<r}, S, ={zecR%:|z|=r}.
Here we will denote Lebesgue measure on R< simply by A

Theorem 3.9 There exists a unique family (0,),cp++ of positive Radon
measures on R? satisfying these conditions:

1. Suppo, C Sy for every r > 0.
2. For all f € C(R%) andr >0,

[1@ dontz) =4 / F(ru) doy ().
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3. Forall f ¢ C(R%) andr >0,

/B . f(z)dA(z) = /; r ( / f(z) dap(z)) dp.

We call o,., for each r > 0, the surface measure on S,.

Proof. Unigueness. If a family (or).cgp+- satisfies conditions 2 and 3, we
must have, for all f € C(R?),

d
i [ rooe| = [1wiw,

which determines uniquely the Radon measure o, and thus also the o,, by
condition 2. (Note that conditions 2 and 3 are enough to prove uniqueness,
so condition 1 is a consequence of 2 and 3.)

Existence. Let ¢ be the function from R¥* x S) to (R%)* defined by
¢(r,u) = ru. Then ¢ is a homeomorphism and ¢~'(z) = (|z|,z/|z|). If A
is a Borel set in S;, we write

A=0((0,1)x A) = {z € R*: 0 < |z| < 1 and z/|z] € A}.
A is a Borel set in R%. We then put
01(4) = d - A(A).

Visibly o, is a Borel measure of finite mass on S, and can also be regarded
as a Borel measure on R? with support contained in S,. Next we define,
for every Borel set A in S,

o.(A) = r gy (A/r).

Likewise, o, is a Borel measure supported within S,. The family (o,) thus
defined certainly satisfies conditions 1 and 2; we need only check 3.

Let A be a Borel set in S; and let r;,r2 be real numbers such that
0 < r; <ry. Then

A((fri, r2) x A)) = A(@((0,72) x A)) — A(@((0,71) x A))
= Ar24) = A(r A) = }d(rg — 9oy (4).

On the other hand,

/ ( [1eterrima@dan@)) do= [ onoaro= [ oA do

t r1

= 20f - rHar(A).



76 2. Locally Compact Spaces and Radon Measures

Therefore

1z 1a(Z) 040 = [ 1) ([ 14te101d0,(2)) do

and this for all Borel sets A4 of S, and for any r), r; with 0 < r} < ro. It
follows that if 0 < a < b we have, for all f € C([a,d]) and all g € C(S)),

[p(la.blxs,)(f®g)°‘p_ld’\ = _/:(/(f®g)°¢"d0p) dp.

Since C([a, b)) ®C(S)) is dense in C([a, b] x S1) (see Example 5 on page 35),
we obtain, for all f € C(p([a,b] x S1)),

/w([a,blxs,)fd’\ = /ab(/fdap) dp.

Since ¢([a,b] x $1) = By \ B, this proves condition 3. 0

Remarks

1. Since A is invariant under orthogonal linear transformations, so are the
or. In particular, the support of o, equals S;. In fact, up to a multiplica-
tive factor, o, is the unique measure supported within S, and invariant
under orthogonal transformations: see Exercise 17 below.

2. Property 3 generalizes to all positive Borel functions on R If f is such
a function, then

+o00 +o00
[ran= [T ([1ao)do= [ ([ 16001 001@))do < 4.
0 0
By taking f = 1p,, we obtain, in particular,

/do. = d-A(By);

this is the area of S). Indeed, by the preceding discussion,

XB) = [1ar= /01 p"-'(/do.(z)) dp=7 [dn(a)

Also, for any nonnegative Borel function k on R*,

/R« h(jz)) dz = (/do.) /o+°°p"-'h(p)dps +oo

since [ h(|pz|) do\(z) = h(p) [ do,.
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Ezercises

Unless otherwise stated, X is a locally compact separable metric space.

1. Let u be a positive Radon measure on X. Show that Suppyu is the
complement of the largest open subset O of X such that any function
f in C®(X) with support contained in O satisfies u(f) = 0.

2. Prove that Proposition 3.1 holds when X is any separable metric space,
not necessarily locally compact.

Hint. Use the existence of a countable basis of open sets (Exercise 1 on
page 10).

3. A particular case of the Vitali-Carathéodory Theorem. Let u be a posi-
tive Radon measure on X. Prove that for every u-integrable and bounded
function f from X to R and for all £ > 0, there exists an upper semi-
continuous function v and a lower semicontinuous function v such that
u < f <vand [(v—u)dp <. (We say that u is upper semicontinuous
if —u is lower semicontinuous.)

Hint. Go over the proof of Daniell’'s Theorem (page 59) and use the
result in Exercise 3 on page 64.

4. Let p be a positive Radon measure on X and take f € L} (u). Prove that

there exist u-integrable and lower semicontinuous functions f; and f_

with values in [0, +00], such that f = f; — f_ u-almost everywhere. (As

in the case of real-valued functions (Exercise 3 on page 64), a function

g with values in [—00,+00] is called lower semicontinuous if the set

{9 > a} is open for all @ € R.)

Hint. Show that there exists a sequence (¢,) in CR(R) that converges

to f in L} (1) and p-almost everywhere and such that p(|¢n — @n41 I) <

27" for all n € N. Then set fy = 9g + 3120 (pn+1 — ¢n)*t and f_ =

05 + Loaco(Pnt1 — #n) ™

Regularity of Radon measures. (This is a sequel to Exercise 3 on page 64.)

Let u be a positive Radon measure on X.

5

.

a. Prove that, for every Borel set A of X,
u(A) = inf { / hdu : h is lower semicontinuous and h > 1 A} .

b. Let A be a Borel set in X such that u(A) is finite.

i. Take € > 0. Let h be a lower semicontinuous function such that
h>14 and [hdpu < p(A) + €, and set

_ . #A) +e
U—{zex.h(z)>#(A)+2€}.

Prove that A C U and that u(U) < u(A) + 2¢.
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2.

ii.

iii.
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Deduce that
u(A) = inf{u(U) : U is open and U D A}.

Check that this is still true if u(A) = oo (this is obvious). A
measure u satisfying this equality for all Borel sets A is called
outer regular.

c. Let U be an open subset of X. Prove that

pu(U) = sup{u(K) : K is compact and K C U}.

Hint. U is o-compact.
d. Let A be a Borel set of finite measure u(A).

i.

ii.

iii.

ii.

Let € > 0. Justify the existence of:

- anopenset U in X containing A and such that u(U)<u(A)+e;

- an open set V in X containing U \ A and such that u(V) < 2¢;

- a compact set K in X contained in U and such that u(K) >
u(U) —e.

Finally, set C = K \ V. Prove that C C A and that u(C) >

u(A) - 3e.

Deduce that

u(A) = sup{u(K) : K is compact and K C A}.

Generalize to the case of an arbitrary Borel set A. A measure u
satisfying this equality for all Borel sets A is called inner regular.
Hint. By exhausting X with a sequence of compact sets, prove
that A is the union of an increasing sequence of Borel sets of
finite measure.

i. Prove that for every Borel set A of X and all € > 0 there exists

an open set U in X such that AC U and u(U \ A) <e.

Prove that for every Borel set A of X and all € > 0 there exists
an open set U and a closed set F in X suchthat FC ACU
and u(U\ F) <e.

Hint. Apply the preceding result to A and X \ A.

6. Lusin’s Theorem. Let m be a positive Radon measure on X.

a. Let f be a Borel function on X with values in [0,1]. Prove that,
for any open set O of finite measure and any € > 0, there exists a
compact K C O such that m(O \ K) < € and the restriction f|x is
continuous on K.

Hint. Use Proposition 3.5, Exercise 15 on page 155 and the fact that
m is inner regular (see Exercise 5d).

b. Extend the preceding result to all Borel functions f from X to K.
Hint. First reduce to the case where f takes values in R*, then
consider f = f/(1 + f).
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. Deduce that every Borel function f from X to K satisfies this prop-

erty:
(L) For every € > 0, there exists an open set w in X such that
m(w) < € and the restriction of f to X \ w is continuous.

Hint. Consider an increasing sequence (Oy)nen of relatively com-
pact open sets that covers X. For each n, there exists a compact
K, C O, for which m(O, \ K,) < €2™""! and f|k, is continuous.
Now set w = J,(On \ Ky»). Prove that (X \ w)N O, C K, for every
n; then conclude the proof.

. Show that a function f from X to K satisfies Property L if and only

if there exists a Borel function that equals f m-almost everywhere.
Hint. To prove sufficiently, use the fact that m is outer regular (Ex-
ercise 5b).

. Let pu be a positive Radon measure on X, with support F. Let f €

C:(X) be such that f(z) = 0 for all z € F. Prove that [ fdu = 0.
Let A = {an}n<n be a finite subset of X and u a positive Radon
measure on X. Prove that the support of u equals A if and only if u is
a linear combination of Dirac measures d,,, with positive coefficients.
Let A = {an} be a countable subset of X. For f € Cc(X) write

u(f) = 327 f(aw).
neN

Prove that u is a positive Radon measure on X whose support is the
closure of A.

. Let F be a closed subset of X. Prove that F is the support of a

continuous function f from X to R if and only if F coincides with
the closure of F.

. Let p be a positive Radon measure on X. We denote by £ (1)

the space of locally u-integrable functions on X, by which we mean
Borel functions 9 : X — K such that 1x ¢ € £(u) for any compact
K of X. (For example, every continuous function on X is locally pu-
integrable.) Fix a ¢ € %} (u) taking nonnegative values. For f €
C(X), write

u) = [vran

Prove that v is a positive Radon measure. Prove that

Suppv C {% # 0} N Supp p,

with equality if ¢ is continuous.

. For f € C.(R?), write

u(f) = /n f(z,2) d.
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Prove that v is a positive Radon measure on R? and determine its

support.
Is there a continuous function 3 on R? such that

v = [ Fenve dsdy

for all f € C.(R?%)?

. a. Let m be a positive linear form on C®(X). Show that there exists

a compact K in X such that any f € CR(X) that vanishes on K
satisfies m(f) = 0.
Hint. Exhaust X by a sequence (K,) of compact sets. Show that, if
there is no K as stated, there exists a sequence (f,) of elements of
C*(X) such that, for each n € N, the function f, vanishes on K,
and m(fy,) > 0. Then consider f = Y3 .y fa/m(fn)-

b. Let M} (X) be the set of positive Radon measures with compact
support. To every u € M} (X), associate the positive linear form m,,
on CR(X) defined by

mulf) = [fdu for f € C*(x).

Prove that the map p — m,, is a bijection between M7} (X) and the

set of positive linear forms on CR(X).

Hint. See the proof of Proposition 3.6 (page 71) for inspiration.
Vague convergence. We say that a sequence (un)nen of positive Radon
measures on X converges vaguely to u € M+ (X) if

un(f) = u(f) for all f € Ce(X).

a. An ezample. Let (an)neN be a sequence in X with no cluster point.
Prove that the sequence (d,, )nen converges vaguely to 0.
b. Another ezample. Suppose X = (0,1). Prove that the sequence (u,)

defined by
1 n-1
Hn = n Z Jk/n
k=1

converges vaguely to Lebesgue measure on (0, 1).

Let (un) be a sequence in M* (X)) such that, for all f € C}(X), the

sequence (pn(f)) converges. Prove that the sequence (i) is vaguely

convergent.

d. Let p be a positive Radon measure and A a relatively compact Borel
set whose boundary has u-measure zero. Prove that, if (un)nen is a
sequence in 9T (X) that converges vaguely to u, then

[

Jm_pn(4) = u(A).
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Hint. Show the existence of an increasing sequence in C}(X) that
converges pointwise to the characteristic function of A, and of a
decreasing sequence in C} (X) that converges pointwise to the char-
acteristic function of A. Then consider the lim sup and lim inf of the
sequence (pn(A)).

e. Let (u,) be a sequence in M*(X) such that

sup/fdp,. < 400 forall f € C}H(X).

(Check that this condition is satisfied if and only if sup,,cy pn(K) is
finite for every compact K of X.)

Prove that the sequence (u,) has a vaguely convergent subsequence.
Hint. Exhaust X by a sequence of compact sets (K,) and apply
Corollary 4.2 on page 19 to each of the separable Banach spaces
Ck,(X).

11. a. Let (f,) be a sequence of increasing functions from R to R such that
the series 3 fn converges pointwise on R to a function f. Prove that
the series Z"_o dfn converges vaguely to df (see Exercise 10).

Hint. Consider ¢ € C}(R), a compact interval [, b] in R containing
the support of ¢, and a subdivision {z;}o<j<n of [a,d]. Prove that,
for every integer I € N,

n-1 Ix
> e(z) (fas41) - £(z) = llell 3 (ful®) - fi@)
i=o k=I+1
I n-1
< E z: () (fr(zirr) = fe(z;))
k=0 j=0
n-1
< z o(z;) (f(zj41) — f(z5))-

=0

b. Ezample. Let (an) be a sequence in R and (c,,) a sequence in R* such
that 3/ cn < +00. Prove that the series of measures 3, -, cnda,
converges vaguely to a positive Radon measure whose distribution
function is f = 3% ¢, Y., where Y, = lig,,+00)-

12. Narrow convergence. We say that a sequenoe (4n)nen of positive Radon
measures of finite mass on X converges narrowly to u € M (X) if

Bn(f) = u(f) for all f € Co(X).

Every narrowly convergent sequence is vaguely convergent (Exercise 10).

a. A counterezample. Let (an)nen be a sequence in X with no cluster
point. Prove that the sequence (§;, Jnen does not converge narrowly
to 0.
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Let p be a positive Radon measure of finite mass and A a Borel
set whose boundary has u-measure zero. Prove that, if (g )nen is a
sequence in 931',”(X ) that converges narrowly to u, then

Jim pn(A) = p(A).

Hint. Work as in Exercise 10 above.

- Let (un) be a sequence in M} (X) and suppose p € M} (X). Prove

that the sequence (u,) converges narrowly to g if and only if it
converges vaguely to u and limy,_, 400 2n (X) = p(X).

Hint. For the “if” part, fix f € C;f (X) and £ > 0. Show that there
exists a function @ € C}(X) such that a <1 and [(1 — a)du <¢;
then write

un(f) = u(f) = pn(af) - p(af) + pa((1-a) f) = p((1-a)f).

Theorem of P. Lévy. If v is a positive Radon measure of finite mass
on R, we denote by © the function defined on R by

o(z) = / e du(t).

Let (un)nen be a sequence in 9} (R) and p an element of M} (R).
Prove that (u,,) converges narrowly to u if and only if the sequence
of functions (j,,) converges pointwise to .

Hint. Prove that if (ji,) converges pointwise to ji, then ([ dun) con-
verges to [ du and there exists a dense subspace H in C§ (R) such
that

n—+o00

lim /hdp,.:/hdy forallhe H

(see Exercise 8¢ on page 42). Conclude with Proposition 4.3 on
page 19.

Let u be a positive Radon measure on X. Suppose the support K
of u is compact. Show that there exists a sequence (u,) of Radon
measures of finite support contained in K that converges narrowly
to p (see Exercise 12).

Hint. Take n € N°. Construct a partition of K into finitely many
nonempty Borel sets (K p)p<p, of diameter at most 1/n. Then, for
each p < Py, choose a point z,, , in Ky, p and set

Hn = Z ﬂ(Kn.p)ézn,,-

p<Pa

Generalize to the case of any positive Radon measure of finite mass.

14. Let g be a Borel function on R taking nonnegative values and locally
integrable (see Exercise 1b on page 63). Let a be a real number. Consider
the function G on R defined by G(z) = [ g(t) dt.
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a. Prove that

/ £dG = / f(z)9(z)dz for all f € CR(R),

where dz is Lebesgue measure on R.

Hint. If [a, b} is an interval containing the support of f and {z;}o<;<n
is a subdivision of [a, b], and if we take for each j € {0,...,n—1} a
point &; € [z;, Zj41), then

n—1
(Zf(éj)l(z,..z,“](z))g(z) dz.

=0

n-1 5
3 1) (G(zia1) - Glzy)) = /

=0 @

Now use the Dominated Convergence Theorem.

b. Prove that the equality of the preceding question holds when f is
any positive Borel function.

Recall that f, e~*"dz = /7. For all real t > 0, put
+00
I'(t) =/ i le~*dz.
()

Let 34 be the area of the unit sphere in R?, that is, the mass of the
surface measure of the unit sphere in R%. Prove that sy = 27%/2/'(d/2).
Deduce the Lebesgue measure of the unit ball in R

Hint. Compute [, e~1*I"dz in two ways.

Let 0} be the surface measure of the unit sphere S, in R%.

a. Suppose d = 2. Prove that, for any Borel function f from R? to R¥,

/fdo, = 2’r,f(cos0, sin @) d4.
()

Hint. Use polar coordinates.
b. Suppose d = 3. Prove that, for any Borel function f from R3 to R*,

2% px/2

/fdal =/ f(cos 8 cos g, sinf cosp, sin ) cosp df dp.
0 -w/2

Hint. Use spherical coordinates.

Let o be a positive Radon measure on R? whose support is contained
in the unit sphere S). Assume ¢ is invariant under orthogonal linear
transformations; that is, for any orthogonal endomorphism O of R? and
any f € C(R?),

[105)d0t) = [5(@)do(a).
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Show that there exists a function h, from R* to C such that

/ e Vdo(y) = ho(lu|) for all u € R?,

where u - y is the scalar product of u and y in R%. We define h,,
analogously, starting from the surface measure o, on S;.
Prove that, for all t € R,

/ o (t]u]) do (u) = / o (tly]) do(y),

and so that h,(t) = hg,(t) (f da)/(fdol)
Deduce that fda

o=—o.
Jdor ™
Hint. Generalize to R? the result of Exercise 1d on page 64.

L8. Infinite product of measures, compact case. Consider the space

X =[0,1N= {z = (Zn)neN : Zn € [0,1] for all n € N},

and give it the product metric

oo
d(z,y) = 22_n|3n = ¥nl.

n=0

With this metric, X is compact, by Tychonoff’s Theorem. Consider also
a sequence (Mg )neN of probabitity measures— that is, Borel measures
of mass 1—on [0, 1].

b.

Show that, for each n € N, the function that maps z € X to z,, €
[0,1] is continuous (in fact, Lipschitz).
For n € N, denote by F, the set of functions from X to R of the
form
z > f(zo,...,2Zn),

with f € CR([0,1]"*!). Prove the following facts:

i. F, is a vector subspace of CR(X) for all n € N.

ii. Fj, C Fy4) foralln e N.

iii. F = U, Fn is a dense vector subspace of CR(X) with the
uniform norm | - ||.

. For each n, we define a linear form u, on F, by associating to the

element
9P3$'—’f(1‘0,---,$n)
of F, the real number

bn(p) = / . '/f(l‘o, ceey Zn) dmo(zo) . . . dmp(zy).
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Prove that, if ¢ € Fy,, then p,(p) = pa(p) for all p > n. Deduce the
existence of a linear form u on F such that

u(p) = pn(p) foralln e N and ¢ € F,.

Then show that, for ¢ € F, we have |u(p)| < [l¢]l and ¢ > 0 implies
K(y) 2 0.

d. Prove that the linear form u extends in a unique way to a positive
Radon measure on X.

e. More generally, let (X,,)nen be a sequence of compact metric spaces
and, for each n € N, let m,, be a probability measure on X,,. Let
X = [I,en Xn be the product space, with the product metric. By
working as in the preceding questions, prove that there exists a
unique probability measure u on X satisfying

/ F(@0- -, Zn) dmo(@0) ... din () = / F(0, .., 2n) du(z)
X(n) X

for all n € N and all f € CR(X™), where X™ = []7_, X;. (We
thus recover the result of Exercise 5 on page 66 in this particular
case.)

19. Haar measure on a compact abelian group. Let X be a compact metric
space having an abelian group structure. We assume that addition is
continuous as a map from X2 to X.

We denote by B the set of continuous linear forms on C®(X) of norm
at most 1. We recall from Exercise 4 on page 20 that B can be given a
metric d for which d(u,, ) — 0 if and only if

Jm pn(f) = () forall f € C(X),

and that the metric space (B, d) is compact. One can check that the set

P of positive Radon measures of mass 1 on X is a nonempty, convex,

closed subset of B, and that the topology induced by & on P is that of

vague convergence.

a. Markov-Kakutani Theorem. Let K be a nonempty, compact, convex
subset of (B, d).

i. Let ¢ be a continuous affine transformation from K to K (affine
means that for any (u,u’) € K? and any a € [0,1] we have
plap + (1~a)p') = ap(p) + (1 — a)p(u')). Prove that ¢ has
at least one fixed point in K —in other words, there is a point
A € K such that ¢(A) = A.

One can work as follows: Let 4 be any element of K and, for any
n €N, set

1 «—
un=———-§:so(u)-
"+li=o
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A. Check that u, € K for each n € N.

B. Let (1n,) be a subsequence of the sequence (un) that con-
verges (with respect to d) to A € K. Prove that, for each
integer k, we have (1 + ng) (¢(n,) — in.) € 2B.

C. Deduce that p(A) = A.

ii. Let J be a family of continuous affine transformations of K such
that any two elements of 4 commute. For each ¢ € Z denote
by F, the set of fixed points of .

A. Prove that all the F, are nonempty, compact, convex subsets
of (B,d).

B. Suppose J = {yp,¢'}. Prove that ¢'(F,) C F,. Deduce that
@ and ¢’ have a common fixed point.

C. Now make no assumption on J. Prove that all the elements
of Z have at least one common fixed point. (Start with &
finite, then use compactness.)

b. For p € M*(X) and z € X we denote by 7,1 the positive Radon

measure on X defined by 7-u(f) = [ f(z + y) du(y).

i. Prove that 7;(P) C P for all z € X. Deduce that there exists
# € P such that 7,u = p for all z € X.

ii. Prove that there exists a Borel measure p on X such that u(X)=1
and

/ £@&) du(t) = / f(@+8)du(t) forall f € C(X)and z € X.

We call 1 a Haar measure on X.

. Unigueness of Haar measure. Let u and v be Haar measures on X.

Prove that u = v.

Hint. Take f € C(X). Using Fubini’'s Theorem, compute in two
ways the integral

/ £(z +y) dp(z) du(y).

4 Real and Complex Radon Measures

The framework here is the same as in the previous section. A real Radon
measure on X is by definition a linear form u on CR(X) whose restriction
to each space C}'} (X), for K compact in X, is continuous; that is, such that
for any compact K of X there exists a real Cx > 0 such that

[u()] < Cklifll for all f € CR(X).
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We denote by MR(X) the set of real Radon measures. We also call the
elements of this set linear forms continuous on CR(X); for an equivalent
definition of this notion of continuity, see Exercise 5. By Proposition 3.3,
M*(X) C MR(X). Conversely, every real Radon measure is the difference
of two positive Radon measures:

Theorem 4.1 Let p be a real Radon measure on X. For each f € C}(X),

t
pu w*(f) =sup{u(g) : g € CI(X) and g < f},
p~(f) = —inf{u(g) : g € CS(X) and g < f}.
Then u* and p~ can be uniquely extended to positive Radon measures and
p=pt—p".
Proof
1. We first check that the definition of u* (f) given in the statement makes

sense. If f € C}(X) has support K, then for all g € C}(X) such that
9 < f we have g € CR(X), so

p(9) < |u(9)| < Ckligll < CklIfll-

Thus u*(f) is well-defined and 0 < u*(f) < Ck||f||. It is also clear
that for A real and nonnegative we have u*(A\f) = Aut(f).

2. The essential point is the additivity of u* on C}(X). Take f), f2 €
CX(X). That u*(fi + f2) = p*(f1) + ut(f2) will follow from the set
equality

{9eCH(X):9< hi + f2}
={9eC}X):g<Hi}+{9€CI(X):9< f2}.
One of the inclusions is obvious and the other can be checked quickly:
Suppose g € C}(X) satisfies g < f; + f2. Put g, = inf(g, f1) and
92 =9 — g1 =sup(0, g—f1). We see that 0 < g, < f1,0< g2 < f2, and
g9=0g9 +g2.
8. The same properties hold for 4~. On the other hand, if f € C}(X),
B (f) — u(f) = sup{u(g - f) : g € C¥(X) and g < f}
= —inf{u(f - g): g € CH(X) and g < f}
= —inf{u(h) : h € CZ (X) and h < f} = p™(f).

Therefore p(f) = p*(f) — u=(f)-
4. We now extend pu* and pu~ to CR(X) in the only possible way: Given

h € CR(X) we take f,g € C}(X) such that h = f — g (for example,
f=h* and g = h™). Since u* must be linear on CR(X), we must set

ut(h) = ut(f) - ut(9)
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This definition does not depend on the choice of a decomposition for A.
For if h = f' — g’ with f',¢’ > 0, then f + ¢’ = f' + g and, by the
additivity of u* on C¥(X), we have u*(f) —u*(9) = u*(f') — u*(g").
One can easily see that the u* defined in this way is indeed linear and
so belongs to M*(X). We extend u~ similarly, and we use item 3 to
show that p=put —pu~. 0

Remarks

1. The decomposition g = u* — u~ defined in Theorem 4.1 is minimal in
the following sense: If p = u; — up with py, us € M*(X), there exists a
positive Radon measure v on X such that gy = y*+vand y2 = u~ +v.
Indeed, it is clear, in view of the definition of u*, that u*(f) < u,(f) for
all f € C}(X). One easily deduces from this that the Radon measure
on X defined by v = u; — ut is positive. (And of course v = uz — u~
as well.)

2. Using the same construction, we obtain an analogous decomposition for
continuous linear forms on a normed space E that has an order relation
making it into a lattice and satisfying the following conditions, for all
f,g€ E and all A e R*™:

- 0< g < f implies ||g|| < IfII;
- f 20 implies Af > 0;
- f<gifandonlyifg— f>0.

A bounded real Radon measure on X is by definition a linear form
© on CR(X) continuous with respect to the uniform norm on CR(X); that
is, one for which there exists a constant C > 0 such that

lu(H)] < CIIfIl for all f € CE(X).

We denote by !Dt} (X) the set of bounded real Radon measures on X; this
is clearly a vector subspace of MR(X).

Since C®(X) is dense in the Banach space CX(X) with the uniform norm,
every bounded real Radon measure extends uniquely to a continuous linear
form on C§ (X); this allows us to identify 9%} (X) with the topological dual

of CR(X).

Proposition 4.2 FEvery bounded real Radon measure is the difference of
two positive Radon measures of finite mass. More precisely, if u € sm'}(x ),
the Radon measures u* and u~ defined in Theorem 4.1 have finite mass

and
lull = / dut + / du-,

where ||u|| is the norm of u in the dual of CR(X).
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Proof. We first see that, for any f € C}(X),

ut(f) +p=(f) =sup{u(g — h): g,h € C}(X) and g,h < f}
= sup{u(p) : ¢ € C¥(X) and |¢| < f}.
In particular, u*(f) + u=(f) < |lull [|fll. Applying this inequality to all

terms of an increasing sequence of functions in C} (X) that converges point-
wise to 1, we get [ dut + [du~ < ||u||. Conversely, if f € CR(X), then

[6(H)] = [ () = = ()] < w¥(UF1) + ™ () < ( / du* + / du‘)llfll-

(Here we used Lemma 3.2.) [m]

Remark. The decomposition u = u* —u~ with ut, u= € M+ (X) is unique
if we insist that ||u|| = fdu* + [du~. Indeed, if p = py — p2 is a second
decomposition of this form, the Radon measure v = gy — p* = p3 —p~ is
positive (see Remark 1 above) and [ du, + [duz = [dp* + [dp~+2 [dv.

Finally, we define complex Radon measures and bounded complex
Radon measures by substituting C for R in the preceding definitions.
We denote by 9€(X) and 97 (X) the corresponding spaces. In particu-
lar, 95 (X) can be identified with the topological dual of C§ (X). Since
CC(X) = CR(X) +iCR(X), a real Radon measure u gives rise in a unique
way to a complex Radon measure, which we also denote by u, as follows:

p(f) = p(Re f) +ip(Im f) for all f € CS(X).
Then MR (X) C MC(X) and MF(X) C MF(X). Actually,
ME(X) = MB(X) +iMB(X),  MF(X) = WMF(X) +iMF(X).
For, if u € ME(X), we define Re u by setting
Reu(f) = Re(u(f)) forall f € C(X),

and likewise for Im . Then 4 = Reu + iImpyu. Such a decompaosition is
unique.

For u € 9."'}()( ), we define the integral of a bounded Borel function f
on X as follows:
~-IfK=R,put [fdu=[fdu* - [fdu~.
- IfK=C,put [fdu=[fdRep)+iffd(Imp); that is,

[rau= [raReny- [raReny+i [ satmuy® ~s [ dttmpy-.

We define the Borel measure of a subset A of X as u(4) = [14du.
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FEzercises

Throughout this set of exercises, X is a locally compact separable metric

space.

1. Prove that MR (X), with the order relation defined by

u<v <= v-—peM(X),

is a lattice.

Hint. Show first that if 4 € MR(X) and we write |u| = ut + u~ in the
notation of Theorem 4.1, then |u| = sup(g, —u).

2. a.

Fix p € MK (X). Show that there exists a largest open set O such
that any f € CX(X) whose support is contained in O satisfies u(f) =
0. (Use partitions of unity.) The complement of this largest open set
is called the support of u and is denoted Supp u. By Exercise 1 on
page 77, this definition coincides with the one introduced earlier for
positive measures.

. Prove that if 4 € 9M®(X) then Suppu = Suppu* U Supp ™, in the

notation of Theorem 4.1, and that if 4 € M (X) then

Supp u = Supp(Re ) U Supp(Im p).

. Fix g € M*(X), and extend 4 to a linear form on CE(X). Prove

that [(f)] < u(|f]) for all f € CE(X).
Hint. Let a be a complex number of absolute value 1 such that
ap(f) = |u(f)|- Prove that |u(f)| = u(Re(al)).

. Let u be a bounded real Radon measure. By reasoning as in the

previous question, show that p has the same norm in the topological
duals of CX(X) and of C§ (X).

. Fix pu € MY (X). Prove that |u(A)| < ||u|l for any Borel set A of X.

Hint. In the case K = C, put v = (Reu)t + (Repu)™ + (Impu)* +
(Im p)~ and consider a sequence (fn)nen of Cc(X) that converges
to 14 in L!'(v) and such that 0 < f,, < 1 for all n € N. Prove that

1(A) = limy 400 p(fn) and wrap up.

4. Let u be a positive Radon measure on X and take ¢ € L!(u). Prove
that the relation

u = [fodu

defines a bounded Radon measure on X and that ||v|| = [ |¢|dp.
Hint. Let s be a function defined on X such that sy = || and s =0
on {¢ = 0}. Prove that, for all € > 0, there exists a g € C.(X) such
that [ |¢]|g — s|du < € and that, in addition, g can be chosen so that
lgll < 1. Now estimate [ |¢|dp — v(g).
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We say that a sequence (f,) in C.(X) converges in C.(X) to f € Cc(X)
if it converges uniformly to f and there exists a compact subset K
of X containing the support of every f,. Let u be a linear form on
CX(X). Prove that u € 9% (X) if and only if the image under u of
every sequence of functions in C.(X) that converges to 0 in C.(X) is a
sequence that converges to 0 in K.

. We say a sequence (i) in 9K (X) converges vaguely to u € ME(X) if

; K
Jm_pn(f) = u(f) for all f € CX(X).

a. Let (u,) be a sequence in 9% (X) such that, for all f € CX(X), the
sequence (p,. f )) converges. Prove that the sequence (u,) converges
vaguely.

Hint. Let (Kp) be a sequence of compact sets that exhausts X. Ap-
ply to each space C_(X) the result of Exercise 6f on page 23.

b. Let (1) be a sequence in 9(X) such that, for all f € C.(X),

[raum

Prove that the sequence (., ) has a vaguely convergent subsequence.
Hint. Work as in Exercise 10e on page 81, using the Banach-Stein-
haus Theorem (Exercise 6d on page 22).

We say that a sequence (u1,,) in M (X) converges weakly to u€ M, (X) if

sup < +00.

neN

,.P,Tm/fd"" = /fdp for all f € Co(X).
a. Let (un) be a sequence in My (X). Prove that a sufficient condition
for it to converge weakly is that, for all f € Cp(X), the sequence
(f f dpn)nen should converge.
Hint. Use Exercise 6f on page 23.
b. Prove that any bounded sequence (un) in 9Ms(X) (one for which
suppen [linll < +00) has a weakly convergent subsequence.
Hint. The space Co(X) is separable by Exercise 7h on page 56, so
it is enough to use the Banach-Alaoglu Theorem, page 19.
c. Prove that a sequence (un) in 9t;(X) converges weakly if and only
if it converges vaguely (see Exercise 6) and is bounded.
d. Find a sequence () in M‘}'(X ) that converges weakly but not nar-
rowly (see Exercise 12 on page 81).
Let H be a relatively compact subset of M;(X) (we identify this space
with the topological dual of Cy(X)). Prove that there exists a positive
Radon measure A of finite mass on X such that any A € $#(X) baving
A-measure zero also has u-measure zero for all 4 € H. (The measures
4 € H are then said to be absolutely continuous with respect to A.)
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Hint. Define A = 3 .n. 3i2, 27" *v(u?'), where the u} are elements
of H chosen so that, for every n € N*, the balls B(u}, 1/n), ...,
B(u? , 1/n) cover H, and where we write, for u € M;(X), v(u) =
p* +p” if K =R and v(p) = (Rep)* + (Rep)™ + (Imp)* + (Imp)~
if K = C. You might use Exercise 3c.
Prove that the topological dual of Cp(X) is separable if and only if X
is countable.
Hint. Prove that, if X = {z,}nen, the family {4, }nen is fundamental
in (Co(X))'. For the “only if” part, you might show that ||§, — &|| = 2
for any two distinct points a,b € X, and then use Proposition 2.4 on
page 9.
Give C(X) the metric d of uniform convergence on compact sets, defined
in Exercise 12 on page 57. Prove that the topological dual of (C(X), d)
can be identified with the space 9.(X) of Radon measures with com-
pact support (the support of a Radon measure was defined in Exercise
2 above).
Hint. Argue as in Exercise 9 on page 80.
Let L be a continuous linear form on Cp(X) and let (f,) be a bounded
sequence in Cp(X). Prove that if (f,) converges pointwise to f € Co(X)
then limn— 400 L(fn) = L(f)-
Hint. Use the Dominated Convergence Theorem.
Two Borel measures ), and p; of finite mass on X are called mutually
singular if there exists a Borel set A in X such that u,(A4) = u(X)
and p2(A) = 0. Let 4 be a bounded real Radon measure on X and let
p1 and e be positive Radon measures of finite mass on X such that
B = K1 — H2.
a. Assume that p; and pp are mutually singular. Prove that ||u|| =
p1(X) + pa(X).
Hint. Let ¢ > 0. Write ¢ = 14 — 1x\4. Prove that there exists a
function f € CR(X) such that ||f — @llL1(u,+us) < & Let f be the
function defined on X by

f@) = {

Check that f € CR(X), then show that u(f) > p1(X) + p2(X) — €.

Deduce that ||u|| > p#1(X) + p2(X). The opposite inequality is easy.
b. Prove the converse.

Hint. Suppose ||u|| = pu1(X) + p2(X). Let (fn) be a sequence of

elements of CR(X) such that u(f,) — ||u|| and |fa| < 1. Prove that

/ frdu = m(X), j Frdus =0,

Deduce the existence of a subsequence (f; ) that converges u,-
almost everywhere to 1 and uz-almost everywhere to 0. Conclude.

f(2) if | f(z)| <1,

sign f(z) otherwise.
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c. Let 4 be a bounded real Radon measure on X. Show that there
exists a unique pair (g;,p2) of mutually singular positive Radon
measures of finite mass such that u = u; — ug; show that u, = ut
and pp = p~.

Functions of bounded variation. Let f be a real-valued function on an

interval [a,b] of R. If A = {z;}0<j<n is a subdivision of [a, b], we write

n-1
V(£,8) = Y |f(z541) = f(z5));
=0
we also write V(f,a,b) = sup,V(f,A). We say that f is of bounded
variation on [a,b] if V(f, a,b) is finite. We say that a function f : R - R
is of bounded variation on R if the expression

V(f)= sup V(fa,b)
(a,b)ER?
a<b

is finite.

a. Let f be a monotone function on [a, b]. Prove that f is of bounded
variation on [a, b] and compute V(f,a,b).

b. Prove that the set BV (a,b) of functions of bounded variation on
[a,b] is & vector space and that f — V(f,a,b) is a seminorm on
BV (a,b). Prove that for f € BV (a,b) we have V(f,a,b) = 0 if and
only if f is constant on [a, b].

c. Let BVy(a,b) be the space of functions f of bounded variation on
[a,b] such that f(a) = 0. Prove that f — V(f,a,b) is a norm on
BVy(a, b) with respect to which this space is complete.

d. Take f € BV (a,b). Prove that for a < ¢ <d < e < b we have

i. V(f’ c’d) + V(f’ds e) = V(f’ca e),

ii. |f(c) - f(d)| < V(f,c,d).
Deduce that the functions z — V(f, a, :zl and z — V(f,a,z) — f(z)
are increasing functions from [a,b] to R™.

e. Take f € BV(a,b). Prove that if f is right-continuous at a point

¢ € [a,b), so is the function z — V(f,c,z). Likewise, if f is left-
continuous at ¢ € (a,b), so is z = V(f, ¢, z).
Hint. If z = V(f,c,z) is not right-continuous at c, there exists a
real number n > 0 such that V(f,c,z) > 7 for all z € (c,b]. Now
construct by induction a sequence (z,) such that, for all n € N,
¢ < Zp4 < zZp < b and V(f,Zn41,2Zn) > n; then deduce that
V(f,c,b) = +o00, which is absurd.

f. Prove that a function f from [a,}] to R is of bounded variation if
and only if there exist two increasing functions g and k from [a, b] to
R* such that f = g— h. Prove that if f is right-continuous at a point
c € [a,b), then g and h can be chosen to satisfy the same condition.
An analogous statement holds for left-continuous functions.
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We resume the notation and terminology of Exercise 13. Let f and g
be real- or complex-valued functions defined on an interval [a, ] of R.
If A = {z;}0<j<n is a subdivision of [a,b] and if ¢ = (co,...,Cn-1) is
such that ¢; € [z;,Zi41] for all i < n — 1, we write

n-1
Sa.c(f,9) = Y fe:)(9(zir1) — 9(zs))-

=0

If, as 6(A) approaches 0, the sequence (SA,C( f,9)) has a limit uniform

with respect to c, this limit is denoted by f fdg.

a. Prove that, if f is continuous and g is increasing, f fdg is well-
defined and coincides with the definition given on page 72. Prove
that, if g € BV (a, ), the linear form L on C([a, b]) defined by L(f) =
I, f dg is continuous and has norm at most V(g,a,d).

b. Integration by parts. Let f and g be real- or complex-valued functions
from [a,b] to R or C. Prove that f f dg is defined if and only if
f gdf is, and that in this case

b
/ fdg+ / adf = £(b)g(b) — f(a)g(a)

(use summation by parts on the finite sums Sa .(f, 9))-

c. Second Mean Value Theorem. Let f be an increasing function from
[a,) to R* and let g be a Lebesgue-integrable function from [a, b]
to R. Show that there exists £ € [a, b] such that

b b
/ f(t)g(t)dt = f(b) / g(t)dt.
a 3

This is called the Second Mean Value Theorem.
Hint. One can assume that f(a) = 0. Set G(z) = f: g(t)dt. Prove

that b b .
/c soaya=- [ rac= [oq.

d. Let f be a function of bounded variation on R. Suppose that f(z)
tends to 0 both as £ — 400 and as £ = —o00. Show that there exists
a constant C > 0 such that, for every nonzero real number ¢,

+00
f(l‘) e—-tt: dz] <

—00

ItI

We continue with the notation and terminology of Exercises 13 and 14.
A function f of bounded variation on R is called normalized if it is right-
continuous and lim,_,—o f(z) = 0. We denote by NBV(R) the vector
space consisting of normalized functions of bounded variation from R
to R.
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Prove that every element of NBV'(R) can be written as the difference
of two increasing and right-continuous functions that approach 0 at
)

. Prove that the map f — V/(f) is a norm on NBV (R).

If f € NBV(R), we define a linear form u; on Cp(R) by

pr(p) = lim P df for all p € Co(X).

Check that u; is well-defined, that u; € My(R), and that ||us) <

V(f), where ||us|| is the norm of uy in Co(R)'.

i. Suppose f,g € NBV (R) satisfy us = py. Prove that f = g.
Hint. Using part a above, prove that f(a) = py((~ 00, a]) for all
acR.

ii. Let f € NBV(R) be increasing. Prove that V(f) = ||us|l.

iii. Take f € NBV(R). Prove that there exist bounded, increasing,
right-continuous functions f; and f_ such that f = f, — f_ and
llurll = V(£+) + V(£-). Deduce that V(f) < flusll-

iv. Prove that the linear map L : f — py is a bijective isometry
from NBV(R) onto the topological dual of Co(R).

Prove that NBV(R) is a nonseparable Banach space. (That it is non-
separable is elementary: Consider the uncountable family consisting
of functions Y, = 1[5, 4 0), With a € R.)






3
Hilbert Spaces

This chapter is devoted to a class of normed spaces that is particularly
important in both theory and applications.

1 Definitions, Elementary Properties, Examples

In all of this chapter we consider a vector space E over K =R or C. A
scalar product on E is a map (|-) from E x E to K satisfying these
conditions:

a. For all y € E, the map (-|y) : E — K defined by z — (z|y) is linear.
b. - YK =R:forall z,y € E, (y|z) = (z|y) (symmetry).
- IK=C:forall z,y € E, (y|z) = (z|y) (skew-symmetry).
c. Forallz € E, (z|z) e RY.
d. For all z € E, (z|z) = 0 if and only if z = 0.

A map that satisfies the first three conditions but not necessarily the
fourth is called a scalar semiproduct.

A space E endowed with a scalar product is called a pre-Hilbert space
or scalar product space, further qualified as real if K = R or complex
if K = C. We leave out this qualification if no confusion is possible or if K
need not be specified.

Remark. Suppose (-|-) is a map from E x E to K that satisfies the first
two conditions in the definition of a scalar product. Fix z € E; if K = R,
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the map (z|-) : y — (z|y) is linear from E to R. If K = C, the same map
is skew-linear; that is, for all z,y,2 € E and all A\, € C,

(z| 2y + pz) = Az|y) + Az 2)-

Also, as a consequence of the first two conditions in the definition of a
scalar product, we have, for z,y € E:

-IfK=R:(z+ylz+y)=(z|z)+ @¥|y) +2(z|y).
-fK=C:(z+y|lz+y)=(z|z)+ (y]y) + 2Re(z|y).

Examples

1. Let E = R%. If ay,...,aq are nonnegative real numbers, the equation
(zly) = Zg=| a;r;y; defines on E a scalar semiproduct, which is a
scalar product if and only if all the a; are positive. If a; = 1 for all j,
this is called the euclidean scalar product, and E together with this
scalar product is called d-dimensional canonical euclidean space.
Similarly, if E = C? and a,...,aq are nonnegative reals, a scalar
semiproduct on E is defined by (z|y) = Z_‘::l a;z;jJ;, and this is a
scalar product if all the a; are positive. If a; = 1 for all j, this is called
the hermitian scalar product, and E together with this scalar prod-
uct is called d-dimensional canonical hermitian space.

2. Let X be a locally compact separable metric space, u a positive Radon
measure on X, and E = CX(X). The equations

(719 = [1@s@ duta) K =R,
(flg) = / £(2)3@) du(z) K = C

define on E a scalar semiproduct, which is a scalar product if and only
if Suppu = X.

3. Fix a > 0, and let E = CX be the set of continuous functions from R
to K periodic of period a. The equations

1 [ )
(19 =7 [ 1@ s K =R,
1 [ —_ .
(flo) = 5/0 f(@)g@ds ifK=C
define a scalar product on E.
4. Let m be a measure on a measure space (2,.¥) and let & = £Z(m) be

the space of .#-measurable functions f from €2 to K that are square-
integrable, that is, satisfy [|f|2dm < +oo. (That this is a vector space
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follows from the inequality |f + g2 < 2(/f{? +|g{2).) We give & a scalar
semiproduct by setting

(flg)=/fgdm ifK =R,
(flg)=/f§dm ifK = C.

This scalar semiproduct induces a scalar product on the space E =
L% (m) defined as the quotient of & by the relation of equality m-almost
everywhere.

An important particular case of the preceding situation is the following.
Let I be any set and let & = £ (I) be the discrete o-algebra on I —the
one containing all subsets of I. On the measure space (I, #) we take
the count measure m, defined by m(A) = Card(4) < +oo. (If I is
countable, one can regard it as a locally compact separable metric space
by giving it the discrete metric, defined by d(z,y) = 1 if z # y; then m
is a positive Radon measure on I.) We generally use subscript notation
for functions on I: thus £ = (z;)ies. If = takes nonnegative values, we
use the notation )., z; to denote [zdm < +0o. One easily checks

that
Zz; = sup z:r.- < 400,
icl JeZo(I) sy

where 2;(I) is the set of finite subsets of I. The space .£g(m) in this
case is denoted by £k (I) and, for every x € €k (I), we write Y .,z =
J zdm. Similarly, we write £(I) = #2(m). (See also Exercises 7 on
page 11 and 8 on page 12.)

Since the only set of m-measure zero is the empty set, we have L} (m) =
t,’( (I); thus this space has a scalar product structure defined by

@ly)=) =iy fK=R,
i€l

(zly) =) =9 fK=C.
i€l

We omit I from the notation when I = N.

Here is a fundamental property of scalar semiproducts.

Proposition 1.1 (Schwarz inequality) Let E be a vector space with a
scalar semiproduct (-|-). For every z,y € E,

I 9)I’< (1 2)(y y).

Proof. One can assume K=C. If z,y € E,

(z+tylz+ty) = (z|z) +2tRe(z|y) + (y|y) >0 forallteR.
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Consider the expression on the left-hand side of this inequality as a poly-
nomial in ¢, taking only nonnegative values. If (y|y) = 0, the polynomial
is at most of first degree and must be constant, so 0 = (Re(z|y))? <
(z]z)(yly) =0.If (y | y) # O, the polynomial is of second degree and must
have negative or zero discriminant; again (Re(z |y))? < (z|z)(y ] y).

Now let u be a complex number of absolute value 1 such that

|(z1y)| = u(z|y) = (uz|y) = Re(uz|y).
We see that |(z])|” < (uz|uz)(y|y) = (z|2)(y|y), sinceva=1. O

Corollary 1.2 Let E be a vector space with a scalar product (-|-). The
ezpression ||z|| = (z|z)"/? defines a norm on E.

Proof. It is enough to check the triangle inequality. We have
Iz + yli> = llzll* + llyll> + 2Re(z|y)
2
<zl + lyli® + 2l iyl = (=1l + Nyl)” 0

From now on, unless we specify otherwise, we will denote the scalar
product on any space E by (-|-), and the associated norm by | -|. For
example, if E = L?(m), as in Example 4 above,

1= f1se dm)l/z.

el = le‘-lz)m.

i€l

If E = (1),

Note that, in any scalar product space, the scalar product can be recov-
ered from the norm: If K = C, we have

Re(z|y) = 3 ((lz +yI)* = ll=ll* - ll9l*),
Im(z|y) = 3((llz +iyl)* - Iz - Iyl1?),
and in the real case the first of these equalities holds.

Corollary 1.3 Let E be a scalar product space. For every y € E, the
linear form @, = (-|y) is continuous and its norm in the topological dual
E' of E equals |ly||.

Proof. By the Schwarz inequality, |¢v(z)| < |lz|| lyl| for all z € E, so ¢, €
E’ and [lpyll < [lyll- At the same time, py(y) = ||yl so llpyll = llyll. O

Thus the map y — ¢, is an isometry from E to E’, linear if K = R and
skew-linear if K = C. We will see in Theorem 3.1 below that this isometry
is bijective if the space E is complete.
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Proposition 1.4 (Equality in the Schwarz inequality) Two vectors
z and y in a scalar product space satisfy |(z|y)| = |zl llyll if and only
if they are linearly dependent.

Proof. The “if” part is obvious. To show the converse, suppose for example
that K = C and that |(z|y)| = ||zl ly|l. Let £ be a complex number of

absolute value 1 such that Re(e(z | y)) = |(z|y)|. Then |||lzlly—¢]lyllz|]* =
0 (expand the square), so ||z|ly — ¢[lyflz = 0. a

An immediate, but useful, consequence of the definition of the norm in
a scalar product space is the parallelogram identity:

Proposition 1.5 If z and y are elements of a scalar product space,

2 2
z+y T -
+1=5 ”|| = (=l + yI1?)-

2

Orthogonality

Two elements z and y of a scalar product space E are orthogonal if
(z|y) = 0; in this case we write z L y. The orthogonality relation L thus
defined is of course symmetric. The orthogonal space to a subset A of
E is, by definition, the set AL consisting of points orthogonal to all the
elements of A. Thus, in the notation of Corollary 1.3,

At = n ker(py).
yeA

It follows that AL is a closed vector subspace of E. At the same time, z
belongs to AL if and only if A C ker ,; since ker ¢ is closed, this inclusion
is equivalent to [A] C ker ., where [A] is the span of A (the vector space
consisting of linear combinations of elements of A). Thus

At = ([A)*

Two subsets A and B of E are called orthogonal if z L y for any z € A
and y € B. The following relation between orthogonal vectors, called the
Pythagorean Theorem, is immediate:

Proposition 1.6 If z and y are orthogonal vectors in a scalar product
space, 2
lz+yl* = =l + lyll>-

This result extends by induction to a finite number of pairwise orthogonal
vectors i, .. ., Za: || ), 24| = £}, llz5l12.

A scalar product space that is complete with respect to the norm defined
by its scalar product is called a Hilbert space. . Here are the fundamental
examples:
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1. Every finite-dimensional scalar product space is a Hilbert space.
2. If m is a measure on a measure space (£, %), the space L?(m) with the
scalar product defined in Example 4 above is a Hilbert space.

In particular, the space ¢2(I) of Example 5 above is a Hilbert space, for
any set I. (This particular case is in fact the general case; see Theorem 4.4
below and Exercise 11 on page 133).

Ezercises

1. Let E be a normed vector space over C. Prove that the norm || - || comes
form a scalar product if and only if it satisfies the parallelogram identity:

iz +yl? + = — yli* = 2(llzl® + llyl?) for all (z,y) € E*.
Prove that in this case the scalar product that defines || - || is
@ly) = (= +9l? - e — l* +illz +iyll® = illz - iwll?). ()

Hint. To show sufficiency you might consider the map (- |-) defined by

(*) and prove successively that it satisfies these properties:

. (z|z) = ||z||* for all z € E.

. (z|y) = (y|z) for all (z,y) € E2.

. (z+y|z) =2(z|2/2) +2(y]| 2/2) for all (z,y,2) € E3.

. (z+y|z) = (z|z)+ (| 2) for all (z,y,2) € E3.

. (A\z|y) = Mz |y) for all (z,y) € E?> and A€ C.

2. Assume that (z,) and (y») are sequences contained in the unit ball of a
scalar product space, and that (z, | yn) — 1. Prove that ||zn, — ynl| — 0.

3. Let X be a compact metric space of infinite cardinality and let x4 be a
positive Radon measure on X, of support X. Give the space E = C(X)
the scalar product defined by (f|g) = [ fgdu.

a. Let a be a cluster point of X. Prove that there exists a sequence of
pairwise disjoint balls (B(an,&n))nenN such that limg 40 an = a.

b. Prove that, for every integer n € N, there exists a continuous func-
tion ¢, on X supported inside B(an,€n) and satisfying |pn| < 1 and
wn(an) = (-1)™

c. Prove that the series Y ¢n, converges pointwise, uniformly on com-
pact sets of X\ {a}, and in L2(u) to a continuous function on X\ {a}
that has no limit at the point a.

d. Deduce that E is not a Hilbert space.

4. Let Q be an open subset of C, considered with the euclidean metric.
We denote by H(?) the space of holomorphic functions on Q and by
H?(Q) the subspace of H(f) consisting of holomorphic functions f on
Q such that [ [;,|f(z +iy)|? dzdy < +00. We recall that H(f2) is closed

o o U
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in C(Q) with the metric of uniform convergence on compact sets of §2.
We give the space H(Q2) the scalar product defined by

(fl9) = //n f(z +iy) 3@ + W) dzdy.

a. Take f € H(R). Prove that, if B(z,7) C Q,
f) = ff,. S +inisay
Deduce that, if f € H2(Q2),

[fall < =11,

where || - || denotes the norm coming from the scalar product.
b. Prove that, if K is a compact contained in Q,

1
sup |£(2)| < =gy M1

for every f € H%(Q).
c. Prove that H?(Q) is a Hilbert space.

5. Let I be a set and = = (z;)ie; a family of points in K.

a. Suppose z € £y (I) and set £ = Y, ; =:. Prove the following property:
(P) For every £ > 0, there exists a finite subset K of I such that,

for any finite subset J of I containing K, |£ - et zi| <e.

b. Conversely, suppose there exists £ € K such that Property (P) is
satisfied. Prove that z € £, (1) and that £ = Y., z:.

Hint. Assume first that K = R. Setting I, = {i € I : z; > 0} and
I = I'\ I, show that under the assumption of Property (P) we have
Yien Ti<+ooand Y. (—zi) < 400 .

c. Suppose I is countably infinite. Prove that z € £k (I) if and only if,
for any bijection ¢ : N — I, the series En—o T, (n) converges. Prove
that in this case 342 Tom) = s i
Hint. To show that the condition is sufficient, reduce to the case
K = R. Then prove that if either series 3 ..} i or 3, 1, (—%:)
diverges (I; and I; being defined as above), there exists a bijection
@ : I - N such that the series 39 z,,(n) does not converge.

8. Hilbert cube. Take ¢ = (cn)nen € €2 and let C be the set of elements =
of €2 such that |z,| < |eq| for all n € N. Prove that C is compact.
Hint. Use Tychonoff’s Theorem.

7. If @ = (an)neN is a sequence of positive real numbers, we denote by
€2 the vector space consisting of sequences of complex numbers u =
(un)nen such that the series Y a,|u2| converges.
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a. Prove that the formula

(u,v) = Z Gnlnn

neN

defines a scalar product on £2.
b. Prove that the map

ia : (Un)n — (\/ﬁun),,

is a linear isometry from €2 onto ¢2. Deduce that €2 is a Hilbert
space.

c. Let a and b be sequences of positive real numbers. Prove that if the
sequence (a,/b,) tends to 0, the closed unit ball in £ is a compact
subset of £2.

Hint. Use Exercise 8 on page 17.
d. If s is a real number, we define on Z a measure p, by setting

us({n}) = (1 +n?)*/? forallneZ,

and we put H* = L?(u,). Prove that for r < s we have H* C H"
and the closed unit ball in H?® is a compact subset of H".

. Hilbert completion. Let & be a vector space with a scalar semiproduct

(-1-). Write p(z) = (z|z)"/2. By the Schwarz inequality, the map p
satisfies the triangle inequality: p(z + y) < p(z) + p(y) for all z,y € &.
In other words, p is a seminorm.

Consider the vector space & consisting of sequences (z,) that are Cauchy
with respect to p (that is, satisfy limy m—4+00 P(Tn — Zm) = 0). Define a
relation # on & by setting

(Tn) Z (yn) < nETmp(zn —yn)=0.

 is easily seen to be an equivalence relation compatible with the vector

space structure of . We denote by E the quotient vector space of & by

#, and by ® the canonical map from & to E (which associates to each

element of & its equivalence class modulo #).

a. Let z and y be elements of E. Prove that if ®((zn)) = z and
®((yn)) = v, the sequence ((Zn|yn))nen converges and its limit
depends only on z and y.

b. Prove that the equation ($((zn)) | 2((yn))) = limn—s+00(Zn | yn) de-
fines a scalar product on E. We denote by || - || the associated norm.

c. If z is an element of &, we denote by & the image under ® of the
constant sequence equal to z. Prove that the map from & to E
defined by = — £ is linear and that ||£|| = p(z) for all z € &.

d. Prove that the set Eg = {% : z € 8} is dense in E.
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e. Prove that E is a Hilbert space. (Show first that every sequence in
Ey that is Cauchy in the norm of E converges in E.)

The space E is called the Hilbert completion of €. Such a space is
unique in a sense to be made precise in the next question.

f. Let (E", (-|-)") be a Hilbert space such that there exists a linear map
L : & -+ E~ whose image is dense in E~and such that || L(z)||"= p(z)
for all z € &. Prove that there exists a surjective isometry H from
E onto E~ such that H(%) = L(z) forall z € &.

2 The Projection Theorem

One of the main tools that make Hilbert spaces interesting is the Projection
Theorem. We assume that E is a Hilbert space and we denote by (-|-) its
scalar product, by || - || its norm, and by d the metric defined by the norm.

Theorem 2.1 Let C be a nonempty, closed, convez subset of E. For every
point = of E, there exists a unigue point y of C such that

Iz - yll = d(z,C)-

This point, called the projection of z onto C and denoted by Pc(z), is
characterized by the following property:

yeC and Re(z-ylz—y) <0 forallzeC. (*)

Proof. Fix z € E. We first show the existence of the projection of z onto
C. By the definition of § = d(z, C), there exists a sequence (y) in C such
that

Iz ~ yall? $5’+% foralln > 1.
Applying the parallelogram identity to the vectors z — y, and z — yp, for
n,p 2 1, we obtain

2
+

2

Yn +,
- = 3(lz — yall? + llz - wpl1?).

2

Yn —Yp
2

A

Since C is convex, (yn + yp)/2 is in C, so §llyn — ypl? < 3(1/n +1/p),
which proves that (y,) is a Cauchy sequence in C and so converges to an
element y of C, which must certainly satisfy ||z — y||? = 6.

Now let y; and y. be points of C with ||z — y1|| = ||z — y3]| = 6. By
applying the parallelogram identity as before, we get ||y1 — y2]|? < 0, which
says that y; = y2. This shows that Pc(z) is unique.

Finally, we check that the point y = Po(z) satisfies property (). If z € C
and t € (0, 1], the point (1 — ¢)y + tz belongs to C (which is convex), so

llz = (1 - tyy — te||* > Iz - yl1%,
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or, after expansion,
t’lly - z||* + 2tRe(z — y |y — 2) 2 0.

Dividing by t and making ¢ approach 0, we get

Re(z —y|z-y) <0.
Conversely, suppose a point y of C satisfies (*). Then, for all z € C,

iz~ 2 = l(z - y) + (v — 2)|I?
=llz -yl +lly - 2l + 2Re(z — y |y - 2) 2 |z - yl%,

so y = Pe(z). a

Remarks

1. In the case K = R, the characterization (x) — where Re disappears --
says that Pc(z) is the unique point y of C such that, for all z € C, the
angle between the vectors z — y and z — y is at least 7 /2.

2. The conclusion of the theorem remains true if we suppose only that E
is a scalar product space and that the convex set C is complete with
respect to the induced metric — for example, if C is contained in a finite-
dimensional vector subspace of E. Indeed, this assumption suffices to
ensure that the sequence (y,) of the proof converges to a point of C.

Condition (x) allows us to show that Pc is a contraction, and therefore
continuous.

Proposition 2.2 Under the assumptions of Theorem 2.1,
||Pc(z1) - Pc(:cz)" <|lz1 —z2|| for all z,,z, € E
Proof. Set y, = Pc(x,) and y = Pc(z2). First,
Re(z1—z2|y1—y2) = Re(z1—y2 |41 —y2) +Re(y2 — 22 | 11 — 12)
= Re(z1 —y1 |11 —y2) + llv1 — 92l * + Re(y2 — 22 | 11 —12)
2> |lpn —2ll®

Thus, by the Schwarz inequality, ||y1 — y2l12 < llz1 — 2l |1 — 2|, and
finally |ly1 — 92|l < [lz1 — z2]. m]

We now consider projections onto vector subspaces of E.

Proposition 2.3 Let F be a closed vector subspace of E. Then Pr is a
linear operator from E onto F. If x € E, the image Pr(z) is the unique
element y € E such that

yeEF and z-yeFt.
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Proof. Condition (*) of Theorem 2.1 becomes
y€F and Re(z—y|z—y) <0 forallz€ F.

Now, if y € F and A € C*, the map z' — 2z = y + Az’ is a bijection from F
onto F. Condition (*) is therefore equivalent to

yeF and Re(Mz-y|z')) <0 forall2’ € Fand A€C,
and this in turn is obviously equivalent to
yeF and z-yeFt.
That Py is linear follows easily. O
Corollary 2.4 For every closed vector subspace F of E, we have
E=FeF!
and the projection operator on F associated with this direct sum is Pr.

Proof. For z € E, we can write z = Pp(z)+(z— Pr(z)) and, by Proposition
2.3, Pr(z) € F and z ~ Pr(z) € FL. On the other hand, if z € F N F4,
then (z|z) =0 and so z = 0. ]

Remark. Proposition 2.3 and Corollary 2.4 remain valid under the weaker
assumption that E is a scalar product space and F is complete in the
induced metric — in particular, if F is finite-dimensional (see Remark 2 on

page 106).

Under the preceding assumptions, Pr is called the orthogonal projec-
tion (operator) or orthogonal projector from E onto F. The image
Pg(z), for « € E, is the orthogonal projection of z onto F.

Corollary 2.5 For every vector subspace F of E,
E=FeF*.
In particular, F is dense in E if and only if F*+ = {0}.
Proof. Just recall that F+ = FL, )

This very useful denseness criterion is now applied, as an example, to
prove a result that will be generalized in the next chapter by other methods.

Proposition 2.6 Let u be a positive Radon measure on a locally compact,
separable metric space X. Then C.(X) is dense in L?(u).
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Proof. We write F = C.(X). If f is an element of FL, then [¢fdu =0
for all ¢ € C¢(X). Thus, for all p € CR(X),

/w(Ref)+ du = /w(Ref)‘ du,
[emptau= [otmn-an

By the uniqueness part of the Radon-Riesz Theorem (page 69), these equal-
ities hold for any nonnegative Borel function ¢. Applying them to the char-
acteristic functions of the sets {Re f > 0}, {Re f < 0}, {Im f > 0}, and
{Im f < 0}, we conclude that f = 0 u-almost everywhere; that is, f = 0 as
an element of L?(u). We finish by using Corollary 2.5. a

We conclude this section with an alternate form of Corollary 2.5.

Corollary 2.7 If E is a Hilbert space and F is a vector subspace of E,
then F = F1L,

Proof. Clearly F C F**. Therefore, since F- is closed, F C F++. On
the other hand, we have E = F @ FL and E = F1L @ FL. The result
follows immediately. a

Ezxercises

1. Let E be a Hilbert space.
a. Let C; and C; be nonempty, convex, closed subsets of E such that
C, C C,. Prove that, for all z € E,

|1Pe, (@) - Pey(@)|* < 2(d(z, C1)? - d(z, Cs)?).

Hint. Apply the parallelogram identity to the vectors £ — Pc,(z)
and z — Pg,(z).

b. Let (Cp) be an increasing sequence of nonempty, convex, closed sets
and let C be the closure of their union.

i. Prove that C is closed and convex.

ii. Prove that lim,_, 4+ Pc,(z) = Pc(z) for all z € E.
Hint. Start by showing that

Jlim_d(z,Cn) = d(,C).

c. Let (C,) be a decreasing sequence of nonempty, convex, closed sets
and let C be their intersection.

i. Prove that, if C is nonempty,

n!i’Too Pc, (z) = Pc(z) forallz € E.
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fi. Prove that, if C is empty,

lim d(z,Cn) =+o0c forallz€E.
n—4-00

(In particular, if one of the C,, is bounded, C is nonempty. This
result is false if we only assume E to be a Banach space: take,
for example, E = C(|0,1]) and C, = {f € E: |f| < 1, f(0) =1,
and f(z) =0 for all z > 1/n}.)

a. Let a be a nonzero element of a Hilbert space E. Prove that, for all

z€eE,
d(z, {a}.L) = (TIIH)I i
a

b. Take E = L2([0,1]) (see Example 2 on page 124) and let F be the
vector subspace of E defined by

Fz{feE:/OIf(z)d.z=0}.

Determine F1. Compute the distance to F of the element f of E
defined by f(z) = e*.

. Let m be a measure on a measure space (12, #) and let (A, )nen be a

sequence of measurable subsets of §2 that partitions . For every n € N
define

E, = {feL’(m):/ |f|dm=0}.
0\A,
Prove that the E, are pairwise orthogonal and that their union spans

a dense subspace in L?(m). For each n € N, write down explicitly the
orthogonal projection from L?(m) onto E,,.

. Let P be a continuous linear map from a Hilbert space E to itself.

a. Prove that P is an orthogonal projection (onto a closed subspace of
E) if and only if P2 = P and ||P|| < 1.
b. Prove that, if P is an orthogonal projection,

(Pz|y) = (z| Py) = (Pz|Py) forallz,y€ E.

Let coo be the set of sequences of complex numbers almost all of whose
terms are zero, endowed with the scalar product

(zly) = Zziﬂs-
ieN
Let f be the linear form on cog defined by
zi
f(z) = -

‘,eNz+l
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a. Prove that f is continuous.

b. Set F = ker f. Prove that F is a closed vector subspace strictly
contained in cgo and that F+ = {0}. (Thus the assumption that E
is complete cannot be omitted from the statement of Corollary 2.4.)

6. Let u be a positive Radon measure on a compact metric space X, with
support equal to X. Consider the scalar product space E = C(X) with
scalar product defined by (f|g) = [ fgdu. If A is a closed subset of X,
we write Eq = {f € C(X) : f(z) =0 for all z € A}.

Let A be a closed subset of X.

a. Prove that there exists an increasing sequence (f,) of functions in
E 4, each with support X \ A, that converges pointwise to 1x\4.

b. Prove that (Ea)* = Exz-

Hint. Prove that, if g € (Ea)t, then [1x\4lg[*dp = 0.

c. Take g € C(X). Prove that d(g, E4)? = [1alg|?du. Deduce that
E, is dense in E if and only if u(A) = 0. Prove also that g admits a
projection onto E4 if and only if it vanishes on the boundary of A.

d. Suppose X has no isolated points. Prove that there exists a closed
subset A of X with empty interior and such that p(A) > 0. Check
that, for such an A, (E4)* = {0} but E, is not dense in E.

Hint. If there exists a € X such that u({a}) > 0, one can take
A = {a}. Otherwise, consider a countable dense subset of X and use
the fact that u is regular (Exercise 5 on page 77).

7. Let m be a measure on a measure space (2, #). Suppose m is o-finite;
that is, 0 is a countable union of elements of # of finite m-measure.
Define L%(m)® L?(m) as the vector space generated by functions of the
form (z,y) — f(z)g(y), with f,g € L?(m). Prove that L?(m) ® L*(m)
is dense in L?(m x m).

Hint. Let (A,) be an increasing sequence of elements of # of finite

measure and covering ). Let F be an element of the orthogonal space

to L?(m) ® L*(m) in L?(m x m). Prove that, for all n € N, the set
consisting of all T € .# x & such that

/ / F(z,y) dm(z) dm(y) = 0
TA(AnxAn)

contains {A x B : A,B € £} and is a monotone class; this term is
defined in Exercise 2 on page 64. Deduce from the same exercise that
F=0.

8. The bipolar theorem. Let E be a complex (say) Hilbert space. If A is a
nonempty subset of E, the polar of A is defined as

A= {z € E:Re(z|y) <1 forall y € A}.

The set A% is called the bipolar of A.
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a. Prove that the polar of any nonempty subset of E is a closed convex
set containing 0.

b. Deduce that, if A is a nonempty subset of E, the closed convex hull
of AU {0} (see Exercise 9 on page 18) is contained in A%.

¢c. We now want to show the reverse inclusion. Let C be the closed
convex hull of AU {0} and take z € A%.

i. Prove that Re(z — Pc(z) | Pc(z)) > 0.
ii. Prove that, for all ¢ > 0,

1
€+ Re(z — Pc(z) | Pc(x))

(z- Pc(a:)) € A°.

Deduce that ||z — Pc(z)||? < ¢, and so that z € C.

d. Let A be a convex subset of E containing 0. Prove that A = A%,

e. Let A be a vector subspace of E. Prove that A = A1. (We thus
recover the equality A = A1L))

3 The Riesz Representation Theorem

We assume in this section that E is a Hilbert space. The Riesz Represen-
tation Theorem, which we now state, describes the topological dual of E.

Theorem 3.1 (Riesz) The map from E to E’ definedbyy — ¢y, = (-|y)
is a surjective isometry. In other words, given any continuous linear form
o on E, there erists a unique y € E such that

p(z) = (z|y) foralzekE,

and, furthermore, |lo|| = [lyll.

Proof. That this map is an isometry was seen in Corollary 1.3. We now
show it is surjective. Take ¢ € E’ such that ¢ # 0. We know from Corollary
2.4 that E = ker ¢ @ (ker p)L, since, ¢ being continuous, ker ¢ is closed.
Now, ¢ is a nonzero linear form, so ker ¢ has codimension 1. The space
(ker p)* therefore has dimension 1; it is generated by a vector e, which we
can choose to have norm 1. Set y = p(e)e if K = C,ory = p(e)e if K =R,
Then @y (e) = p(e) and ¢, = 0 on ker . It follows that ¢, and ¢ coincide
on (ker )1 and on kerp, so ¢ = @,. ()

We recall that this isometry is linear if K = R and skew-linear if K = C.
The rest of this section is devoted to some important applications of
Theorem 3.1.
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3A Continuous Linear Operators on a Hilbert Space

Recall that L(E) denotes the space of continuous linear maps (or operators)
from E to E. We use the same symbol for the norm in E and the associated
norm in L(E). We denote by I the identity on E.

Proposition 3.2 Given T € L(E), there ezists a unique operator T* €
L(E) such that

(Tzly) =(z|Ty) forallz,y€E.
Moreover, || T*|| = |IT|.
T* is called the adjoint of T.

Proof. Take y € E. The map ¢, oT : z — (Tz|y) is an element of E', so
by Theorem 3.1 there exists a unique element of E, which we denote by
T*y, such that

(Tz|y) =(z|T*y) forallze€ E;

moreover || T*y|| = |l¢y, o T|| < |lyll IT|l. The uniqueness of such a T*y
easily shows that T* is linear; at the same time, by the preceding mequallty,
IT*[| € IT||- Moreover, if z € E,

ITz|? = (Tz|Tz) = (z| T*Tz) < |lz|| |T*|| | Tzll,
which implies that ||Tz|| < ||z|| ||T*|l, and so that ||T|| < || T*||- a

The properties in the next proposition are easily deduced from the defi-
nition of the adjoint.

Proposition 3.3 The map from L(E) to itself defined by T — T* is
linear if K = R and skew-linear if K = C. It is also an isometry and
an involution (that is, T** = T for T € L(E)). We have I* = I and
(TS)* = S°T* for all T,S € L(E).

Ezxzamples

1. Take E = R? with the canonical euclidean structure. The space L(E)
can be identified with the space M4(R) of d x d matrices with real
entries. Then T* is the transpose of T. If E = C% with the canonical
hermitian structure, the space L(FE) can be identified with M4(C) and
T* is the conjugate of the transpose of T.

2. The next example can be regarded as an extension of the preceding one
to infinite dimension. Let m be a measure on a measure space ({2, &).
Suppose m is o-finite; that is, Q is a countable union of elements of &
of finite m-measure. This entails we can use Fubini’s Theorem. We place
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ourselves in the Hilbert space E = L?(m), and take K € L%(m x m). If
f € E, we define Tk f(z) for m-almost every z by

Tif(z) = / K(z,9) f(y) dm(y).

Since, by the Schwarz inequality,

./ (,/ |K(z,9)l|f (y)|dm(y))2dyn(z)
: / @l dmie) // |K (z, )| dm(z) dm(y) < +oo,

this expression defines an element Tk f of E such that

I1TecfI? < WA [[ 1K@ )] dma) dmiy),

which shows that Tk is a continuous linear operator on E whose norm is
at most the norm of K in L?(m x m). By Fubini’s Theorem, if f,g € E,
we have, in the case K = C,

@xsio = [10( [ ke i) dma))dm(y) = (£ | Tic-9),

where we have put K*(z,y) = K(y,z). Thus T = Tk.. Naturally, in
the case K = R, we get the same result with K*(z,y) = K(y, z).
The next property will be useful in the sequel.
Proposition 8.4 For every T € L(E), we have |TT*|| = |T*T| = ||IT||3.
Proof. Certainly ||T*T|| < [IT||2. On the other hand,
[Tz||? = (Tz|Tz) = (z| T*Tz) < ||=*IT"TI,

which shows that ||T||2 < ||T*T|. Therefore [|T*T|| = ||T||? and, applying
this result to T*, we get |TT*|| = ||T*||2 = ||T||% 0

An operator T € L(E) is called selfadjoint if T = T*. We also call
such operators symmetric if K = R and hermitian if K = C. By the
preceding proposition, if T is selfadjoint then || T2|| = |T||3.

Ezamples

1. For every operator T € L(E), TT* and T*T are selfadjoint.

2. In Example 2 on the preceding page, Tk is selfadjoint if and only if, for
(m xm)-almost every (z,y), we have K(z,y) = K(y,z) (if K =R) or
K(z,y) = K(y,z) (if K = C). This condition is clearly sufficient and it
is necessary by Exercise 7 on page 110.
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3. Every orthogonal projection operator is selfadjoint (see Exercise 4 on
page 109).

Note that, if T is a selfadjoint operator, (Tz|z) € R for all z € E. We
say that T € L(FE) is positive selfadjoint if

(Tz|z) eRY forallz € E.

Warmning! If E is a function space, this notion of positivity has nothing to
do with the condition f > 0 = T f > 0. In particular, in Example 2 above,
T is positive selfadjoint if, for all f € L%(m),

/ K(z,9) f(z) T() dm(z) dm(y) > 0,

and it is positive in the other sense if K > 0, which is altogether different.
One checks immediately that, for all T € L(E), the operators TT* and
T*T are positive selfadjoint.
The last result of this section gives another expression of the norm of a
selfadjoint operator.

Proposition 3.5 Assume E # {0}. For every selfadjoint operator T €
L(E),
IT|l = sup{|(Tz|z)| : z € E and ||z|| = 1}.

Proof. Let v be the right-hand side of the equality. Clearly v < ||T|| and,
forall z € E, ](Tzlz)| < 7v||z||%. Assume for example that K = C, and
take y,z € E and A € R. Then

[(T(y£A2) |ly£A2)| = |[(Ty|y) £2ARe(Ty| 2) + N*(Tz| 2)| < vlly £ Az|)>.
We deduce, by combining the two inequalities, that
4|M|Re(Ty | 2)| < v(lly + Azl® + lly — Azl|*) = 2v(llyll* + A*(1211%),

and this holds for any real \. We conclude that |R£(Ty|z)| < ~liyl =,
from the condition for a polynomial function on R of degree at most 2
to be nonnegative-valued. Now it is enough to choose 2 = Ty to obtain
ITyll < ~vllyll for all y € E, and hence || T|| < 7. O

3B Weak Convergence in a Hilbert Space
We say that a sequence (z,) in E converges weakly to z € E if

nl{rpm(zn |y) =(z|y) forallyeE.

In this case z is called the weak limit of the sequence (z,). Clearly a
sequence can have no more than one weak limit.
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One deduces immediately from the Schwarz inequality that a sequence
(zn) of E that converges to a point z of E in the sense of the norm of E (one
for which lim,,_, + ||Zn — z|| = 0) also converges weakly to z. The converse
is generally false. For example, it is easy to check that the sequence (z,)
in E = €2 defined by
1 if j =n,

(@n)s = {

converges weakly to 0, whereas ||z,|| = 1 for all n. For this reason we
sometimes call convergence in the sense of the norm strong convergence.

The next proposition pinpoints the relationship between weak and strong
convergence.

0 otherwise

Proposition 3.6 Let (z,,) be a sequence in E that converges weakly to .
Then

. >

lim inf ||z, ]| 2 ||]]-

Moreover, the following properties are equivalent:

1. The sequence (x,) converges (strongly) to z.
2. limsup,_, ;o [Izn]l < ||z}
8. limpo 400 [|Zall = Il

Proof. First,

llzl|? = (] 2n)| < ll<] lim inf [|za,

lim |
n—+0o

which proves the first statement. At the same time, ||z — z,||* = ||z||% +
lznll* - 2 Re(zs | z), s0

. . 2
limsup ||z — z,]|® < (limsup ||za )" - |2,

which yields the equivalence between 1 and 2. The equivalence between 2
and 3 follows immediately from the first statement. a

The Riesz Representation Theorem enables us to prove the following
version of the Banach-Alaoglu Theorem in a Hilbert space.

Theorem 3.7 Any bounded sequence in E has a weakly convergent sub-
sequence.

Proof. Suppose first that E is separable. Let (z,,) be a bounded sequence in
E. In the notation of Theorem 3.1, the Banach-Alaoglu Theorem (page 19)
applied to the sequence (y:,) guarantees the existence of a subsequence
(zn,) and of a ¢ € E’ such that

lim ¢n,(y) = ¢(y) forallyeE.
k—+o00
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By Theorem 3.1, there exists an element £ € E such that ¢ = ¢, which
proves the theorem in the separable case.

We turn to the general case. Let (z,) be a bounded sequence in E and
let F be the closure of the vector subspace of E spanned by {z,}nen. By
construction, this is a separable Hilbert space. The first part of the proof
says that there exists a subsequence (z,,) and a point z € F such that

lim (z,, |y) =(z|y) forallye F.
k—+o00

Since this equality obviously takes place also if y € F*, it suffices now to
apply Corollary 2.4. a

The fact that any continuous linear operator has an adjoint allows us to
prove the following property.

Proposition 3.8 Let (z,) be a sequence in E converging weakly to z.
Then, for all T € L(E), the sequence (Tz,) converges weakly to Tz.

Proof. For every y € E,

Jim (Tzal|y) = lim (za|Ty) = (zT"y) = (Tz|y). o

FEzercises

1. Theorem of Laz-Milgram. Galerkin approzimation. Let E be a real
Hilbert space and a a bilinear form on E. Assume that a is contin-
uous and coercive: this means that there exist constants C > 0 and
a > 0 such that

|la(z,y)| < Clizll llyll ~for all z,y € E,
a(z, ) > al|z|? forallz € E.

a. i. Show there exists a continuous linear operator T on E such that
a(z,y) = (Tz|y) forallz,y€ E.

ii. Prove that T(E) is dense in E.

iii. Provethat ||Tz| > al|z| for all z € E. Deduce that T is injective
and that T'(E) is closed.

iv. Deduce that T is an isomorphism from E onto itself.
b. Let L be a continuous linear form on E.

i. Deduce from the preceding questions that there exists a unique
u € E such that

a(u,y) = L(y) forallye E.
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ii. Now suppose that the bilinear form a is symmetric and define,
forz € E,
®(z) = }a(z,z) - L(x).

Prove that the point u is characterized by the condition

®(u) = ggEn ®(z).

c. We return to the notation and situation of question 1b-i. Let (E,) be
an increasing sequence of closed vector subspaces of £ whose union
is dense in E.

i. Prove that, for any integer n € N, there exists a unique u,, € E,
such that

a(un,y) = L(y) forally € E,.

Check, in particular, that if E,, has finite dimension d,,, determin-
ing u, reduces to solving a linear system of the form A,U, = Y;,,
where A, is an invertible d, x d, matrix, which, moreover, is
symmetric and positive definite if @ is symmetric.

ii. Prove that, for any n € N,

C
llu = un|l < —d(u, En).

Deduce that the sequence (u,) converges to u.
Hint. Take y € E,,. Prove that

a(u—Up, u—1uy) =a(u—tn, u—y)

and deduce that ajju — u,|| < Cllu - y||.
2. Lions-Stampacchia Theorem (symmetric case). Consider a real Hilbert
space E, a nonempty, closed, convex set C in E, a continuous and co-

ercive (Exercise 1) bilinear symmetric form a on E, and a continuous
linear form L on E. Let J be the function defined on E by

J(u) = a(u,u) — 2L(u) for allu € E.

Prove that there exists a unique ¢ € C such that J(c) < J(v) for all
v € C, and that c is characterized by the following condition:

a(c,v—c) 2 L(v—c) forallveC.

Hint. By the Lax—Milgram Theorem (Exercise 1), there exists a unique
element u of E such that a(u,v) = L(v) for all v € E. Check that
J(v) = a(v—u, v—u)—a(u,u), then work in the Hilbert space (E, a).

3. Reproducing kernels. Let X be a set and # the vector space of complex-
valued functions on X.
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a. Consider a vector subspace E of £ endowed with a Hilbert space
structure such that, for all z € X, the linear form defined on E by
f — f(z) is continuous.

i. Prove that there exists a unique function K from X? to C sat-
isfying these conditions:
- For all y € E, the function K(-,y): z — K(z,y) lies in E.
-~ For all f € E and y € X, we have (f| K(-,y)) = f(y).
We call K the reproducing kernel of E.
ii. Prove:
A. For all z,y € E, we have K(z,y) = K(y, z).
B. For all n € N°, all (&,...,&,) € C", and all (z,,...,z,) €

X", we have
n n
33 K(mi,zj)ée > 0.
i=1 j=1
iii. Prove that the family {K(-,y)}yex is fundamental in E.

b. Conversely, consider a function K from X?2 to C satisfying properties
A and B above.

i. Let & be the vector subspace of & spanned by {K(-,y)}yex-
Prove that the relation

(Z’\jK("zj) ZﬂkK('.uk)) =3 K(yk, ;)M
j=1 k=1

1=1k=1
defines a scalar semiproduct on &. Check, in particular, that this
expression does not depend on the representations involved.

ii. Let (E7,(-|-)") be the Hilbert completion of & and let L be the
associated canonical map from & to E~ (Exercise 8 on page 104).
Define an application ¥ : E~ — % by

¥(p)(z) = (¢| L(K(-,2)))-

Prove that ¥ is injective.

iii. Derive a Hilbert space structure for E = ¥(E~), with respect to
which K is the reproducing kernel.

c. Suppose X = R and fix a Borel measure u of finite mass on R. If
h € L?(u), denote by fj, the element of & defined by

falz) = / €“=h(t) du(t).

i. Prove that the map h — fj thus defined on L?(u) is injective
(see Exercise 1c on page 63).
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ii. Set E = {fx:h € L%(n)}. For h,k € L*(p), set

(f fi) = / hEdy.

Prove that E is a Hilbert space having as a reproducing kernel
the function K (z,y) = [ eV dpu(t).

d. Let Q be open in C. Prove that the Hilbert space H2(Q2) defined in
Exercise 4 on page 102 has a reproducing kernel. This is called the
Bergman kernel.

4. Let E be a Hilbert space over C, distinct from {0}. If T € L(E), write

n(T) = sup{|(Tz|z)| : |lz]| = 1}.
a. Prove that
n(T) < ||T|| < 2n(T) for all T € L(E). (*)

Hint. For the second inequality, draw inspiration from the proof of
Proposition 3.5 to show that, for every z,y € E and S € L(E),

[(Sz1y) + (Sy| )| < 2n(S) Izl Iyll.

Then set S = AT and y = ATz, were A is a complex number of
absolute value 1 such that A\2(T2z|z) € R*.

b. Prove that (x) would be false if E were a Hilbert space over R.

c. Prove that, if E has dimension at least 2, the constant 2 in (x) cannot
be replaced by a smaller real number.
Hint. Let u and v be orthogonal vectors in E, each of norm 1. Con-
sider the operator defined on E by

T(Au+pv+w) = v for all \,u € K and w € {u,v}*.

d. Prove that the map T — n(T) is a norm on L(E) equivalent to the
norm || -||.
5. Let E be a Hilbert space over C.
a. Take T € L(E). Prove that T is hermitian if and only if (Tz|z) € R
forallz € E.
Hint. In the notation of Exercise 4, T=T"* if and only if n(T—-T*)=0.
b. Deduce that an operator T on E is positive hermitian if and only if
(Tz|z) eR* forall z € E.
8. Let T be a positive selfadjoint operator on a Hilbert space E.
a. Prove that

|(Tz|9)|< (Tz|2)(Tyly) forallz,y € E.

Hint. Prove that (z,y) — (T'z|y) is a scalar semiproduct on E and
so satisfies the Schwarz inequality.
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b. Derive another proof of Proposition 3.5 in this case.

7. Let P be a continuous linear operator on a Hilbert space E. We assume
that P is a projection (P? = P). Prove that the following properties are
equivalent:

- P is an orthogonal projection operator.
- P is selfadjoint: P = P*.

- P is normal: PP* = P*P.

- (Pr|z) = ||Pz||* forall z € E.

8. Consider a Hilbert space E and an element T € L(E).

a. Prove that kerT* = (imT)*. Deduce that imT = (kerT*)*, then
that imT = E if and only if T* is injective.

b. Assume T is positive selfadjoint. Prove that an element z € E sat-
isfies Tz = 0 if and only if (Tz|z) = 0 (use Exercise 6a above).
Deduce that T is injective if and only if (Tz|z) > 0 for all  # 0.

9. An ergodic theorem. Consider a Hilbert space E and an element T €
L(E) such that ||T|| < 1.

a. Provethat an element z € E satisfies Tz = z ifand only if (Tz | z) =
llz)|2. (Use the fact that equality in the Schwarz inequality implies
collinearity.) Deduce that ker(I — T') = ker(I — T*).

b. Show that (im(I — T'))* = ker(I — T') (use Exercise 8a above) and
deduce that

E=kerI -T)®im(I - T).

c. Forn > 1, set
I+T+-.-+T"

n+1
Show that lim,—, 400 Tz = Pz for all £ € E, where P is the orthog-
onal projection onto ker(I — T).
Hint. Consider successively the cases = € ker(I - T), z € im(I - T),
and z € im(I — T). In this last case, you might use Proposition 4.3
on page 19.

10. Let E be a Hilbert space.

a. Prove that every weakly convergent sequence in E is bounded.
Hint. Use the Banach-Steinhaus Theorem (Exercise 6d on page 22).

b. Let (z,) and (yn) be sequences in E. Prove that if (z,) converges
weakly to z and (yn) converges strongly to y, the sequence ((zn | yn))
converges to (z|y). What if we suppose only that (y,) converges
weakly toy ?

11. Let (z,) be a sequence in a Hilbert space E. Prove that if, for all y €
E, the sequence ((zn|y)) is convergent, the sequence (z,) is weakly
convergent.

Hint. Use Exercise 6f on page 23.

T =
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12. Let K be a compact subset of a Hilbert space E. Prove that every
sequence in K that converges weakly also converges strongly.

13. Prove that in a finite-dimensional Hilbert space every weakly convergent
sequence is strongly convergent. You might give a direct proof, not using
Exercises 10 and 12.

14. Let D be a fundamental subset of a Hilbert space E. Prove that if (z,,) is
a bounded sequence in E and if limp_ 400 (Zn |¥) = (z|y) for all y € D,
then (z,) converges weakly to z. Prove that the assumption that (z,)
is bounded is necessary (see Exercise 10a above).

15. a. Let (z,) be a weakly convergent sequence in a Hilbert space and let
z be its weak limit. Prove that z lies in the closed convex hull of the
set {tn}neN.

Hint. Let C be the closed convex hull of the set {z,}nen. Prove that
z = Pez.

b. Let C be a convex subset of a Hilbert space E. Prove that C is closed
if and only if the weak limit of every weakly convergent sequence of
points in C is an element of C.

16. Banach-Saks Theorem.

a. Let (z,) be a sequence in a Hilbert space E converging weakly to
z € E. Prove that there exists a subsequence (z,,) such that the
sequence (yi) defined by

1
Ilk=7c'(3f'nx +Zn; + 0+ Zny)

converges (strongly) to z.
Hint. Reduce to the case where = 0. Then construct (by induction)
a strictly increasing sequence (n;) of integers such that, for all k > 2,

l(zm lznh)l < 1/k, I(-""nz lznn)l <1/k, ..., |(3m_1 |17m.)| <1/k.

Then use Exercise 10a.
b. Deduce another demonstration of the result of Exercise 15.

17. A particular case of the Browder Fized-Point Theorem. Let C be a
nonempty, convex, closed and bounded subset of a Hilbert space E.

a. Let T be a map from C to C such that
|IT(z) - T(w)|| <llz—yll for all z,y € C.
i. Let a be a point of C. For every n € N* and z € C, define
1 -1
Ta(e) = ~a+ "T T(z).
Show that there exists a unique point z,, € C such that T,,(z,) =

Zn.
Hint. The map T, is strictly contracting.
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ii. Let (zn,) be a weakly convergent subsequence of the sequence
(zn), tending to the weak limit z (see Theorem 3.7). Set y, =
z, —a and y = z — a. Prove that, for all n > 2,

2n -2
2n-1

"yn"2 < Re(yn | y)-

Deduce that the sequence (z,,) converges strongly to z, that
z € C, and that T'(z) = z.
iii. Prove that the set {x € C : T(z) = z} is convex, closed, and
nonempty.
Hint. To show convexity, take xo,z) € C such that T(z¢) = zo
and T'(z,) = z, and, for ¢ € [0, 1), set z; = tz; + (1 — t)zo. Prove
that
lzo — z1|| = ||T'(z¢) = 2o + ||z1 — T(z:)]|-
Using the case of equality in the Schwarz inequality, deduce that
T(x;) = z,.
b. Let Z be a family of maps from C to C such that
-ToS=SoTforall T,S € 7, and
- |IT@) -T@)||<llz-yll forall T € J and z,y € C.
Suppose also that E is separable. Show that there exists a point
z € C such that
T(z)==z forallT e 7.

Hint. Show first that there exists a metric that makes C compact;
then argue as in Exercise 19a on page 85.

Consider a nonempty, convex, closed and bounded subset C of a real
Hilbert space E, and a differentiable function J from E to R. Recall
that J is called convez on C if, for any pair (u,v) of points in C and
any 6 € [0,1],

J(0u + (1 - O)v) < 0J(u) + (1 - 0)J(v).

By definition, the gradient of J at u, denoted by VJ(u), is the element
of E that the Riesz Representation Theorem associates to the derivative
map J'(u).

a. Prove that J is convex on C if and only if, for all (u,v) € C?,

J(v) 2 J(u) + (VJ(u) |v - u).

In particular, deduce that, if J is convex, it is bounded below over
C.
b. Prove that if J is convex there exists at least one point u, € C such
that
J(u.) = JggJ(u).
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You might proceed in the following way: Let m be the infimum
on the right-hand side, and let (u,) be a sequence in C such that
limn..-).‘.m J(un) =m.
i. Prove that (u,) has a weakly convergent subsequence (uy, ).
ii. Let u, be the weak limit of (u,, ). Prove that u, € C (see Exer-
cise 15).
iii. Prove that J(u,) = m.

¢. Under the same hypotheses and with the same notation, prove that
the set Cp = {u. € C: J(u,) = m} is convex and closed. Prove also
that u € Cy if and only if (VJ(u)|v —u) >0 for all v € C.

d. An ezxample of a convez function. Take T € L(E) and ® € E’, and
set J(u) = (Tu|u) + ®(u). Prove that J is convex on E if and only
if the operator T + T™* is positive selfadjoint.

4 Hilbert Bases

We consider a scalar product space E. A family (X;)ies of elements of E
is called orthogonal if X; L X; whenever i # j. For such a family, the
Pythagorean Theorem implies that, for any finite subset J of I,

2

Yoxl =Y Xl

i€J i€J

Here is an immediate consequence of this:

Proposition 4.1 An orthogonal family that does not include the zero vec-
tor is free.

Proof. Let J be a finite subset of I and let (A;)jes be elements of K such
that 37, ; A; X; = 0. Then

SoAiX;

j€J

2

=Y INPIXIE =0,

Jj€J

which clearly implies that A\; = 0 for all j € J. a

An orthogonal family all of whose elements have norm 1 is called or-
thonormal. The preceding proposition shows that such a family is free.
A fundamental orthonormal family in F is called a Hilbert basis of E.
Thus a Hilbert basis is, in particular, a topological basis.

We give some fundamental examples.
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Ezamples

1.

Suppose a > 0 and let CX be the space of continuous functions periodic
of period a from R to K, with the scalar product defined on page 98.
For n € Z, we set
en(z) - e2i1mz/a'

It is straightforward to show that the family (en)nez is orthonormal in
Cf. As in the particular case of Example 4 on page 35, this family is
fundamental in CS with the uniform norm. Since the norm associated
with the scalar product never exceeds the uniform norm, the family
(én)nez is a Hilbert basis of the scalar product space CS. It follows
easily that the family

{l, \/icosg}:c, ﬁsin%ﬂz, \/‘Z’oos-—z, \/—sn—z, }

is a Hilbert basis of the scalar product space CX, for K =R or K = C.

. If Ais a Borel set in R, we denote by L?(A) the space L?(), A) associated

with the restriction of Lebesgue measure to the Borel sets of A. Let E =
L2((0,1)). Clearly L2((0,1)) = L%([0, 1)), since A({0}) = A({1}) = .
We now set e,(z) = €™, for n € Z and z € (0,1). Then (eq)nez is
an orthonormal family in LZ((0,1)). We also know, by Proposition 2.6
on page 107, that C.((0, l)) is dense in L2((0,1)). Now, C.((0,1)) can
be identified with a subspace of C), the space of continuous functions
periodic of period 1 (every element f of C.((0,1)) extends uniquely to a
continuous function periodic of period 1 on R), and every element of C,
is the uniform limit of a sequence of linear combinations of functions e,
extended to R by 1-periodicity (Example 4 on page 35). We deduce, by
comparing norms as in the preceding example, that the family (en)nez
is a Hilbert basis of L((0,1)). As before, it follows that

{1, V2cos2rz, V2sin2nz, ..., V2cos2mnz, V2sin2rnz, ...}

is a Hilbert basis of LZ((0,1)), for K=R or K =C.
More generally, if a,b € R and a < b, the family (f,)nez defined by

e2imnz/(b=a) for all z € (a,d)

fn(z) \/I_)_G

is a Hilbert basis of L2 ((a., b)). One can also, in an analogous way, obtain
a real Hilbert basis of L ((a,b)).

. Consider the space E = 82(1 ) of Example 5 on page 99. For j € I, we

define an element e; of E by setting e;(j) = 1 and e;(i) = 0 if ¢ # j.
The family (ej);jes is obviously orthonormal. We now show that it is
fundamental. To do this, take z € E and € > 0. By the definition of the
sum Y., |z:|?, there exists a finite subset J of I such that
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ol =Y lml - Y o lml <€
i€I\J i€l i€J

But then 2

T - szej = E |$¢|2 < 62.
j€J iel\J

Thus the family (e;)jes is a Hilbert basis of E.

The main properties of orthonormal families follow from the next propo-
sition, which is elementary.

Proposition 4.2 Let {¢;};cs be a finite orthonormal family in E, span-
ning the vector subspace F. For every x € E, the orthogonal projection
Pgp(z) of = onto F is given by

Pp(z) =) (z|e))e;.

jeJ

As a conseguence,

llz* =

2
+2|(z[ej)|2.

jeJ

- (z]es)e;

j€J

Proof. To prove the first statement, it is enough to show that the vec-
tor y = 3. ;(z|ej)e; satisfies the conditions characterizing Pr(z) (see
Proposition 2.3 and the remark on page 107). Now, it is clear that y € F
and that (z — y|e;j) = 0 for all j € J, which implies z — y € FL. The rest
of the theorem follows immediately from the Pythagorean Theorem. [

An important, though easy, first consequence is the Bessel inequality:
Proposition 4.3 Let (e;)ic; be an orthonormal family in E. For all z €
E, we have

2
Y lle)]” < llali®.
i€l
(In particular, the family ((z | e:))ser lies in €2(1).)
The next result characterizes the case of equality in the Bessel inequality.

Theorem 4.4 (Bessel-Parseval) Let (e;)ic; be an orthonormal family
in E. The following properties are equivalent:

1. The family (e;)icr is a Hilbert basis of E.
2. |lzl2 = e |(zle)|” for all z € E (Bessel equality).
8. (z]y) = Tier(zleq)(es|y) for all z,y € E.
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Thus, if (ei)icr is a Hilbert basis of E, the map from E to €3(I) defined
by x> ((z|e:))icr is a linear isometry. This isometry is surjective if and
only if E is a Hilbert space.

Proof

i. Assume property 1 holds. Then, for all z € E and all € > 0, there
exists a finite subset J of I such that the distance from z to the span
of {e;}jeu is at most €. By Proposition 4.2,

2 2
o llen” =Y |le)]” 2 Nzl -
jel j€J

By making € go to 0 and taking Bessel’s inequality into account, we

obtain 2.

ii. Conversely, suppose property 2 holds. Then, for all z € E and alle > 0,
there exists a finite subset J of I such that Zj€J|(z le;)|? 2 llz||? — €%
thus, by Proposition 4.2,

T - Z(zle,)ej

j€J

<e.

This shows that the family (e;)ies is fundamental, and so property 1.

iii. The equivalence between 2 and 3 can be derived immediately from the
expression of the scalar product in terms of the norm, valid for any
scalar product space (see the remark following Corollary 1.2).

iv. If the isometry is surjective, E is isometric to ¢2(I) and hence complete.

v. Finally, suppose E is a Hilbert space and let (z;):cs be an element of
(I). Set @ = Y, |z:|?. There exists then an increasing sequence (J,,)
of finite subsets of I such that, foralln € N, 3., |zi|* > a-2""
(we can assume that I is infinite, since the finite case is elementary).
Put up = 3., zie;. Then, if n < p,

lup ~uall® = - =l <27
i€Jp\Jn

Since E is complete, we deduce that the sequence (u,) converges to an
element z of E. But
z |z:]? = a.

1€UnJn
Hence, for any i ¢ J,, Jn, we have z; = 0 and

(z|e) = lim (un|e:)=0.

If i € |J, Jn, then (z]e;) = limp400(un | €;) = z;i. Thus (z]e;) = z;
for all ¢ € I, which proves the surjectivity of the isometry. a
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Remark. More precisely, steps i and ii of the proof show that, if (e;):es is
an orthonormal family in E, the equality

Izl =Y (=1 e

iel
characterizes those points z that belong to the closure of the span of the
family (e:)ic1.

We shall see that the inverse image of (z;);c; under the isometry E —
€3(I) of the preceding theorem can be considered as the sum Y-, z:e; in
a sense made precise in the following definition:

A family (X;)ies in a normed vector space E is called summable in E
if there exists X € E, called the sum of the family (X;).c1, satisfying the
following condition: For any ¢ > 0, there exists a finite subset J of I such

that
|x -y X
€K

< ¢ for any finite subset K C I containing J.

In this case we write

X = EX.

i€l

It is easy to see that the sum of a summable family is unique. Observe
that, in the case E = K, a family (z;);es is summable in K if and only
if (z:)ier € €k(I), and in this case the definition just given for the sum
coincides with the one given in Example 5 on page 99 (see Exercise 5 on
page 1 l Naturally, if I = N and if the family (X.).GN is summable, the
series 37 X; converges in E, with ¥,c; Xi = 3.1 Xi. The converse is
false, even for E = K: see Exercise 2 below.

Theorem 4.5 Let (e;)ic1 be a Hilbert basis of E. For any element z of E,
T = Z(z [e:)e;.
el
Proof. By Proposition 4.2, we know that, for any finite subset J of I,

2
2
- (zleg)es|| =lzl* =Y [(=zles)|".
jed jed
Now just apply the definitions and property 2 of Theorem 4.4. a

Ezample. Consider again the situation of Example 1 on page 124: the
space CS, with a Hilbert basis (e,) defined by e,(z) = e*. If f € C§,
and n € Z, set

2n

en(f) = (flen) = o= A f(z)e ™" dz.
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The sequence (¢, (f))nez is the sequence of complex Fourier coefficients
of f. Thus, for all f € CS,,

2%
5 | @l = S lenl.

nez

At the same time we have

f=Y cn(f)en (*)

nez

in the sense of summability in the space C§, with the norm associated
with the scalar product. Recall that in general the series of functions
Y nez ca(f)en does not converge uniformly to f; therefore equality ()
does not hold in general in C§, with the uniform norm. (It holds when f is
of class C?, for example; see Exercise 15 below). On the other hand, since
the scalar product space C§, is not complete, the isometry from C%, to
€%(Z) defined by f > (cn(f))nez is not surjective; hence not all elements
of £2(Z) are sequences of Fourier coefficients of continuous functions.

Complex Fourier coefficients can be defined analogously for functions
f € L%((0,1)), by setting c,(f) = fol f(z)e~%*n= dz (see Example 2 on
page 124). Bessel’s equality remains valid in this case, as does equality
(#) in the sense of the norm of L?((0,1)), which, unlike CS,, is complete.
Thus the isometry from L2((0,1)) to ¢2(Z) defined by f > (cn(f))nez is
surjective.

The rest of this section is devoted to the problem of existence and con-
struction of Hilbert bases.

Proposition 4.6 (Schmidt orthonormalization process) Suppose
that N € {1,2,3,...} U {+00} and let (fn)o<n<n be a free family in E.
There ezists an orthonormal family (en)o<n<n of E such that, for each
nonnegative integer n < N, the families (ep)o<p<n and (fp)o<p<n Span the
same vector subspace of E.

Such a family can be constructed by setting

1
eo=mfo

and, for0O<n< N -1,

ZTnt1 = fat1 — Pnfnyr and eny) = n+1,

—
IZn sl
where P, is the orthogonal projection onto the span of the family (fp)o<p<n-

Proof. We show that the sequence (en)nen defined in the statement satisfies
the desired conditions. First, since the family (f,) is assumed to be free, it
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is clear that z, # 0 for all n, and so that e, is defined for all n. Let E,
and F;, be the vector subspaces of E spanned by, respectively, (ep)o<p<n
and (fp)o<p<n. Trivially, Eg = Fy. Suppose that E, = F,, forn < N — 1.
Clearly en4+1 € Fuy1, 80 Eqyy C Fuyy. Moreover fnyy € Epyy, which
shows the reverse inclusion. Hence, E, = F,, for all 0 < n < N. At the
same time, for each n > 1 the vector e,y is, by construction, orthogonal
to Fy, and thus to E,,. Therefore the family (e,)o<n<n is orthonormal. O

Remark. The family (en)o<n<n can be recursively constructed using the
following algorithm:

zo = fo, €0 = z0/”'170",

n
Znt1 = fap1 = Z(fn+l|ej)eja ent1 = Zny1/[[Zntll
=0

(see Proposition 4.2).

Corollary 4.7 A scalar product space is separable if and only if it has a
countable Hilbert basis.

Proof. According to Proposition 2.6 on page 10, the condition is sufficient.
By the same proposition, separability implies the existence of a free and fun-
damental family (fn)nen. Applying the Schmidt orthonormalization pro-
cess to the family (fn) we obtain a family (e,) that is a Hilbert basis. O

Two scalar product spaces are called isometric if there exists a sur-
jective isometry from one onto the other. Theorem 4.4 has the following
consequence:

Corollary 4.8 An infinite-dimensional Hilbert space is separable if and
only if it is isometric to the Hilbert space £2.

FEzercises

1. Prove that every orthonormal sequence in a Hilbert space converges
weakly to 0.
2. Summable families in normed vector spaces. Let (X;)ies be a family in
a normed vector space E.
a. Suppose E is finite-dimensional. Show that (X;);c; is summable if
and only if 3,/ | Xqll < +o0.
Hint. Reduce to the case E = K and use Exercise 5 on page 103.
b. Make no assumptions on E, but suppose I is countably infinite.
i. Prove that, if the family (X;)ic; is summable with sum X, we
have, for any bijection ¢ from N onto I,

+00
X =Y Xym).

n=0
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ii. Suppose, conversely, that the series Z::(’, Xy (n) converges for
any bijection ¢ : N — I. Prove that the family (X;)ics is
suimnmable.

Hint. Let ¢ be a bijection from N onto I and set

+00
X=3 Xm
=0

Prove that, if 3., X; # X, there exists ¢ > 0 with the following
property: For any integer n € N, there exists a finite subset
A of {n, n+1, n+2,...} such that "2keA Xq,(k)|| > €. Deduce
the existence of a sequence (A,)nen of pairwise disjoint finite
subsets of N such that "ZkeA.. Xv(k)" > ¢ for every n € N,
then the existence of a bijection ¢ : N — I such that the series
Z::f, Xy(n) does not satisfy the Cauchy criterion and so does
not converge.

c. Suppose that E is a Hilbert space, I is arbitrary, and (X;)es is

an orthogonal family. Show that the family (X,)ies is summable if
and only if 3., IX:ll? < +0c. (You might draw inspiration from
the last part of the proof of Theorem 4.4.) Deduce that, in any
infinite-dimensional Hilbert space, there exists a summable sequence
(Xn)nen such that 3 cn | Xal|l is infinite. (In fact, the Dvoretzki-
Rogers Theorem asserts that there is such a sequence in any infinite-
dimensional Banach space. The next question presents another sim-
ple example of this situation.)

. Let X be an infinite metric space, and take E = Cp(X), with the

uniform norm, denoted || - |).

i. Show that there exists in X a sequence (B(a,., r,.)),,eN of pair-
wise disjoint nonempty open balls.

ii. Show that, for each integer n € N, there exists a continuous
nonnegative-valued function f, on X supported within B(a,,r,)
and having norm || f,|| = 1/(n + 1).

iii. Show that the sequence (fn)nen is summable in E and that the
series 3 n [ fnll diverges.

3. Let A be a subset of Z and let E4 be the vector subspace of L?([0,27])

defined by

2x
E4 = {f € L*([0,27])) : f(z)e ™ *dz =0 for alln e A}.
0

a. Show that E, is closed and determine a Hilbert basis of F,4.
b. What is the orthogonal complement of E4?
c. Write down explicitly the operator of orthogonal projection onto E 4.
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4. Legendre polynomials. If n is a nonnegative integer, we define a polyno-

5.

60

mial P, as
Pp(z) = 2"n' dz" (( ? - l)n)

a. Show that the family (v + J Pn)nen is a Hilbert basis of the space
L*([-1,1)).

b. Deduce an explicit expression for the orthogonal projection from
L%([-1,1]) onto the space R,,[X] of polynomial functions of degree
at most n.

Hermite polynomials. Consider the Hilbert space E = L?(u), where p

is the positive Radon measure defined on R by

uip) = 712—; /.l ¢(z)e™="?dz for all p € Cc(R).

a. Show that, for every n € N, there exists a unique polynomial P, of
degree n such that
d"
& {

b. Foreachn € N, set P, = P,/v/n!. Show that (P,) is an orthonormal
family in E.
c. i. Takey € C.(R). Show that there exists a sequence of polynomials
(Pn)nen such that

e"’/z) = (—l)"e“‘a/zf’,.(z).

—z%/8 —z3/8

lim p,(z)e™ " = p(z)e

n—+400

uniformly on R.
Hint. Use Exercise 8d on page 41 and perform a change of vari-
ables.
ii. Deduce that (pp)nen converges to ¢ in E.
d. Show that the family (P,) is a Hilbert basis for E.
Chebyshev polynomials. Let u be the positive Radon measure on [—1, 1]
defined by

np) = /_ll p()(1 - 2%)"2dz for all p € C([-1,1]).

For z € [-1,1], set To(z) = y/1/7 and
Tn(z) = /2/mcos(narccosz) for n > 1.

Show that, for every n € N, the function T;, is the restriction to [—1,1]
of a polynomial of degree n and that (T,)nen is a Hilbert basis for

L3(p).
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7. Laguerre polynomials. Let u be the positive Radon measure on R de-
fined by

+o00
u(p) = /o @(z)e =dz for all p € C.(RY).

For each n € N, set

a.

b.

e* d* | _
L,.(a:) = m@ (4 "':c").
Show that L,, is a polynomial of degree n for every n € N.
i. Compute the scalar product (X*|L,), for 0 < k < n, where

Xk .z 2k

ii. Deduce that (L,)nen is an orthonormal family in the space E =
L*(p).

Show that, if a is a nonnegative real number,

+00 +00 2 1
-azx - = .
Z(/o e %L (z)e dx) T

n=0

Deduce that the function f, : £ — e~ lies in the closure in E of
the vector space spanned by the sequence (L,).

Show that the family (fn)nen+ is fundamental in Co(R™Y). (Use
the Weierstrass Theorem and a change of variables, or the Stone-
Weierstrass Theorem in R*: see Exercise 7i on page 56.) Deduce
that (Lp)nen is a Hilbert basis for E.

8. Gaussian quadrature. Let u be a positive Radon measure on a compact
interval [a,b] in R (where a < b). Suppose the support of 4 is not finite.

Show that there exists a Hilbert basis (Pn)nen of L} (1) such that,
for every n € N, P, is the restriction to [a, b] of a real polynomial of
degree n.

. Show that, for n > 1, P, has n distinct roots in (a,b).

Hint. Using the fact that [ P,du = 0, show that P, has at least
one root of odd multiplicity in (a,b). Now let z),...,z, be the
roots of odd multiplicity of P, in (a,b). By considering the integral
J Pa(z)(z — 1) ... (z — z,) du(z), prove that r = n.

. Fixn > 1 and let z,,...,z, be the roots of P,.

i. Show that there exists a unique n-tuple (A,,..., A,) of real num-
bers such that, for every k € {0,...,n — 1},

/z" du(z) = z Azt
i=1
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ii. Show that, for every polynomial P of degree at most 2n — 1,

[Pas=3 are.
i=1

Hint. Write P = Q + RP,, where R and Q are polynomials of
degree at most n — 1.

iii. Show that, for every i € {1,...,n},

[T -2 duta) = 4] @s - 29*

J#i J#i

Deduce that A; > 0.
d. Now make n X?B/)and denote by z(") .,z¢™ the roots of P, and

by (A(") the coefficients determmed in the preceding ques-
tion. Show that for every continuous function f on [a, b],

[ 0= tim 540160,

Hint. Use Proposition 4.3 on page 19.

9. Let D be a dense subset and (e;)ies an orthonormal family in a scalar
product space E. Show that there exists a surjection from D onto I.
Deduce that any orthonormal family in a separable scalar product space
is countable.

10. Let & be the vector space spanned by the family of functions (e,)recr
from R to C defined by e.(z) = e'"=.

a. Show that, if f and g are elements of &, the value

(f19)= lim_— / f()9® dt

is well defined and that the bilinear form thus defined is a scalar
product on &.

b. Show that the family (e,)rer is a Hilbert basis of &, and that & is
not separable (see Exercise 9 above).

c. Let E be the Hilbert completion of & (Exercise 8 on page 104). Show
that the family (€,),cr (where we use the notation of Exercise 8 on
page 104) is a Hilbert basis of E, and deduce that there exists a
surjective isometry between E and £2(R).

11. Hilbert bases in an arbitrary Hilbert space

a. Let E be a scalar product space.
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i. Show that F contains a maximal orthonormal family (that is, an
orthonormal family that is not strictly contained in any other).
Hint. Use Zorn’s Lemma (which is apparently due to Kuratowski),
one of the various equivalent forms of the axiom of choice:

Let < be an order relation on a set &, satisfying the following
condition: Every subset of & that is totally ordered by < has an
upper bound. Then &/ has a mazimal element.

ii. Show that if E is a Hilbert space every maximal orthonormal
family is a Hilbert basis for E. (Use Corollary 2.5.) Thus, with
the axiom of choice, every Hilbert space has a Hilbert basis.

b. Let (e;)ics and (fj)jcs be Hilbert bases of a Hilbert space E.
i. For j € J we write I; = {i € I : (e;| f;) # 0}. Show that all the
sets [; are nonempty and countable and that I = {J,, I;.
ii. Deduce that there exists a bijection between I and J.
Hint. Use Exercise 9 on page 6.

c. Show that two Hilbert spaces are isometric if and only if there is a
bijection between their Hilbert bases. In particular, £2(I) and ¢2(J)
are isometric if and only if there exists a bijection between I and J.

Let ¢ € L?((0,1)) be such that o(t) + (t+3) = 0 for every t € (0,31).
Extend ¢ to a function periodic of period 1 on R (also denoted ). Then
set wo = 1 and, for every integer n > 1, set pn(t) = (2" 't). Show
that (¢n)nen is an orthogonal family in L2((0,1)).

Haar functions. Consider the family of functions (Hp)pen defined on
[0,1] by Ho=1and,forne Nand 1 <k < 2",

V2r ifze ((2k-2)27"Y, (2k - 1)27"7Y),
Hyrvieoa(2) = § -v27 ifze ((2k-1)27""), 2k x 27"71),
0 otherwise.

a. Show that (Hp)pen is an orthonormal family in L2([0, 1)).
b. Let f € L?([0,1]) be such that f, fHpdz = 0 for every p € N. Set
F(y) = [y f(z)dz.
i. Show that, for every n € N and for every integer k such that
1<k<27,

2k -2 2k -1 2k
—F(T‘T) +2F(W) - F(2_n-ﬁ) =0.
ii. Deduce that F = 0. (Note that F is continuous.)

iii. Deduce that f = 0, then that (Hp)pen is a Hilbert basis of
L?([0,1]).
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In the sequel we will write, for each integrable function f on [0,1]
and each pe N,

1 ) 4
fo= /o f@) Hy(z)dz,  sp()@) = 3 FyHa(a).
=0

For p € N, we denote by .#, the set of maximal open intervals on
which the functions Hy, with ¢ < p, are constant: f p=2"+ k— 1
withneNand 1<k <2",

P ’ ) .
on+1’ on+1 1<i<2k on+1 on+1 k1< i<2n

(Note that .7, has p + 1 elements.) Moreover, let F,, be the set of
functions defined on (0,1), constant on each interval I € #,, and
such that

f(@) = H(f(@s) + f(z-)) forallz e (0,1),

where f(z4) and f(z_-) are the right and left limits of f at . Show
that (Hg)e<p is an orthonormal basis of Fp,.

. Suppose f € L'([0,1)).

i. Take p € N. Denote by f* the element of F,, whose constant
value on each interval I € #, of length () is

1
5 /, f(z) dz.

Show that, for every nonnegative integer ¢ < p, we have fq = E.
Deduce that s,(f) = sp(f*).
ii. Deduce that, for every integer p € N and every interval I € %),

s,(f)(t):l—(lT) /I f@)dz foralltel.

. Let f € C®([0,1)).

i. Take p € N. Show that, for every I € %, there exists a point
z; € I such that

sp(f)(t) = f(z1) foralltel.

ii. Deduce that, for every p € N,

e (/)(&) - £(2)] <
sup{|f(z) — f)| : 7.y € [0,1], |z — y| < 2/p}.
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iii. Deduce that the series " f, H, converges uniformly to f in [0, 1].
14. Rademacher functions. For every integer n > 1 we define a function r,
on the interval [0, 1] by

1 ifze ((k—1)2"", k2-") with 0 < k < 2", k odd,
™(z) =q -1 ifze ((k—1)2", k2~™) with 2 < k < 2", k even,
0 otherwise.

Observe that r, = (1/v2n-1) 2:;;:_. Hp, where the H,, are the Haar

functions defined in Exercise 13.

a. Show that (r;)n>1 is an orthonormal family in L?([0,1]). Deduce
that, if (an) € €2, the series Y5, anTn converges in L2([0, 1]).

b. 1i. Prove that, if 8,,...,0. are-nonnegative integers whose sum is

p, we have o )
@) (B! ... (Ba) _
A B 2B =
ii. Let ay,...,a, be nonnegative integers and

1
I=/; i (z)...rg"(z) dz.

Show that I = 1 if all the a; are even and that I = 0 in any
other case.
Hint. Observe that, for every j > 1, we have r7 = 1 almost
everywhere; this allows us to reduce to the case where all the a;
equal O or 1.

iii. Let a1,...,an be real numbers and set s, = }_7_, a;r;. Show
that, for every p € N,

1 n P
/ 3n($)2”dx Spp( ag) .
0 =
c. Take (an) € ¢2 and let f be the sum in L?([0,1]) of the series
Y n>106nTn. Show that f € LP([0,1]) for every real p > 1.
d. Let F be the closure in L?([0, 1]) of the vector space spanned by the
sequence (Tp)p>1-
i. Let G be the vector space spanned by the functions f. : z — z7¢,
where € < % Show that the projection Pg. is injective on G.
Hint. Use part c above and the equality

Gn ( M L (o, 1])) = {0}.

p21

ii. Deduce that F1 has infinite dimension.
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iii. Show that, for any finite family (r,),<n in L2([0,1]), the family
(Ta)n>1 U () )n<n is not fundamental in L2([0, 1]).

15. Let f be a function of class C! from [0, 1] to C such that f(0) = f(1). For

n€Z, set c,(f) = fol f(z)e 2"z dz. Show that the series of functions

+o o cn(f)e?™ = converges uniformly on [0, 1). Then show that, for

evgr?—zoo €[0,1],
+00
f@)= Y calf)er™m=.

Hint. Show that c,(f’) = 2imnc,(f) and, using Bessel’s equality for f’,
deduce that

+00
Y lealf)] < +oo.
16. a. Let f be a function of class C! from [0, 1] to C such that £(0) = f(1).
Show that

[r@re-|[ real < & [1rele

and that equality takes place if and only if f is of the form f(z) =
A + pe?™® 4 pe~2" with A\, u,v € C.
Hint. Use Bessel's equality, considering the Hilbert basis of L2((0,1))
defined in Example 2 on page 124.

b. Let f be a function of class C! from [0, 1] to C. Show that

[lr@rfae-|[ rea] <& [Irera

and that equality takes place if and only if f is of the form f(z) =
A+ pcoswz, with A, u € C.
Hint. Argue as in the preceding question, considering the even func-
tion from [—1,1] to C that extends f.

c. Let f be a function of class C? from [0,1] to C such that f(0) =
f(1) = 0. Show that

1 1
flrefes s [irefe

and that equality takes place if and only if f is of the form f(z) =
Asinwz with A € C.

d. Wirtinger’s inequality. Let f be a function of class C! from [0,1] to
C such that f(0) = f(1) = 0. Show that

[rertes s [rote
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and that equality takes place if and only if f is of the form f(z) =
Asinnz, with A € C.
Hint. Extend f into an odd function.

7. Biorthogonal systems. Let E be a Hilbert space. We say that two se-
quences (fn)neN and (gn)nen in E form a biorthogonal system in E if,
for every i,5 € N, ¢

1 ifi=j,
(filg;) = {0 ifi# j.
Suppose that (en)nen is a Hilbert basis of E and that (fp)nen is a
sequence in E such that, for every finite sequence (an)n<n in K,

2 N

< 6? E |an|2s

n=0

N
Z an(en — fn)
n=0

where 6 is a real constant such that 0 <0 < 1.

a. Show that, for every f € E, the series 723 (f|en)(en — fn) con-
verges in E. Denote its limit by K f.

b. Show that the map K thus defined is a continuous linear operator
on E, of norm at most 6.

c. Set T = I — K. Show that Te,, = f, for each n € N, and that T has
a continuous inverse, which we denote by U.

d. For each n € N, set g, = U*e,,. Show that the sequences (fn)nen
and (gn)nen form a biorthogonal system in E.

e. Show that, for every f € E,

F=Y (flgn)fn=Y_ (£ f)gn-

neN neN

Deduce that the two families (fn)nen and (gn)nen are fundamental
in E.

f. Show that, for every f € E,

2 1/2
1 -8)Ifll < (2 1(F1 £a)] ) <@+,

neN

2 1/2
(1+0) 1]l < (2 1(£ 19w ) <=0 ).

neN

8. Suppose that E is a separable Hilbert space and let (e,) be a Hilbert
basis of E. For every pair (z,y) of points in the closed unit ball B of E,
set

d(z,y) = E ————l(z_:ni en)l .

n=0
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a. Show that d is a metric on B and that a sequence (z,) of points of

b.

B converges in (B,d) to a point z € B if and only if it converges
weakly to z.
Show that the metric space (B, d) is compact.

Gram matrices and Gram determinants. Let E be a scalar product space
over R. If z,,..., z, are elements of E, the Gram matriz of (z1,...,zp)
is by definition the p x p matrix G(z,,...,zp) whose (i, j) entry is a; j =
(23 | z;). The determinant of this matrix is called the Gram determinant
of the p-tuple (z),...,zp).

a.

b.

Show that the Gram determinant of a linearly dependent family of
vectors in E vanishes.

Suppose that the family (z,,...,zp) is free. Let {e,,...,ep} be an
orthonormal basis of the vector space spanned by {z,,...,z,}. Let
M = (m; ;) be the matrix of change of basis (thus z; = 3°F_, m je;
if 1 < j < p). Show that G(z1,...,7,) = MTM, where MT denotes
the transpose of M. Deduce that det G(z,,...,zp) > 0.

. Let {z1,...,zp} be a free family in E, spanning the subspace F.

Show that, for every z € E,

detG(z,z),...,Zp)

&(z,F) = detG(z,...,zp) ~

Hint. Let y be the orthogonal projection of z onto F. In the calcu-
lation of det G(z,z,,...,z;), replace z by (z — y) + y and use the
fact that the determinant depends linearly on the first column.
i. Let a1,...,ap be positive reals and A the p x p matrix whose
(4,7) entry is a, j = 1/(a;+a;). Show that

L (a- - ak)2
detA=2"7]| — o L I
:‘I;Il ) 19119 a; + ax
Hint. Work by induction.

ii. Suppose that E = L2((0,1)). For every nonnegative real num-
ber r, define an element f, of E by f.(z) = z". Let ry,...,1p
be pairwise distinct nonnegative reals and let F be the vector
space spanned by the functions f;,, ..., fr,. Show that, for every
integer n € N,

1 e n—rj 2
#(fn, F) = 2n+lj1;[l(n+r,-+l) '

20. Miintz's Theorem. Let (rp)pen be a strictly increasing sequence of non-
negative reals. For any real number r > 0, denote by f, the function
defined on [0,1] by f.(z) =z".
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a. Consider the space E = L?((0,1)) with its Hilbert space structure.

i. Show that the family (fr,)pen is fundamental in E if and only
if, for every integer n € N,

p—ligloo d(fn, Fp) =0,

where F, is the vector space spanned by (fr,)o<;j<p-
Hint. Start by showing that the family (fn)nen is fundamental.

ii. Show that the family (f,)pen is fundamental in E if and only if

E 1/rp = +00.

p21

Hint. Calculate log(d(fn, Fp)) using Exercise 19d-ii.

b. We now place ourselves in the space H = CR ([0, 1)), considered with
the uniform norm.
i. Suppose the family (fr,)pen is fundamental in H. Show that
szl 1/rp = +00.
ii. Conversely, suppose that szl 1/rp = 400,79 =0, and r; > 1.
A. Show that 3 -,1/(rp—1) = +00. Deduce that the space of
C! functions on [0, 1] vanishing at 0 is contained in the closure
of the vector subspace of H spanned by the family (f,,)pen- -
Hint. Let f be a C! function vanishing at 0. Approximate
f' in the space L2((0,1)) by linear combinations of functions
frp-t.
B. Deduce that the family (f,,)pen is fundamental in H.

'1. Hilbert-Schmidt operators. Let E be an infinite-dimensional separable
Hilbert space.

a. i. Let (en)nen and (fp)pen be Hilbert bases for E. Show that, for

T € L(E),
+o00 +o00
S ITenl® = Y_IT* £,lI% < +o0.
n=0 p=0

Deduce that

+o00 +o00
> ITeall? = Y IT SN2
p=0

n=0

We fix from now on a Hilbert basis (e, )nen for E and we denote
by J#(FE) the vector space consisting of T € L(E) such that the
expression || T||2 = (4% I Tenl|?)!/? is finite. Such a T is called

Hilbert-Schmidt operator on E.



4 Hilbert Bases 141

ii. Show that #°(E) # L(E) and that |T|| < ||T||2 for every T €
JH’(E). Show that |-]|2 is a norm on J#(E), with respect to
which J#(E) is a Hilbert space. This is called the Hilbert-Schmidt
norm.

Show that any element T in L(E) of finite rank (that is, such
that im T is finite-dimensional) is Hilbert-Schmidt.

Hint. Consider a Hilbert basis of E that is the union of a basis
of ker T and a basis of (ker T)*.

ili. Take T € JH#°(E). For n > 0, denote by P, the operator of
orthogonal projection onto the span of {e; : 0 < j < n}. Show
that, for every positive integer n, the composition TP, belongs
to J#(E), and that lim,,_, ;o ||T — TPy|l2 = 0. Deduce that the
set of operators of finite rank is dense in J°(E).

b. Suppose that E = L2(m), where m is a o-finite measure on a measure
space (R, #) (such that L2(m) is separable). Choose a Hilbert basis
(en)nen for E.

i. Show that the family (en p)n,pen defined by e,p =€, ® &, is a
Hilbert basis for L?(m xm). (Recall the notation (e, ®&p)(z,y) =
en(T)ep(y).)

Hint. See Exercise 7 on page 110.

ii. Consider K € L?(m x m), and let Tx be the operator from E to

E defined by

T f(z) = [ K(z,5)f(y)dm(y) for all f € E.

For (n,p) € N2, set

k'l.P = (K|en,p) = (TKeplen)’

where we use the same notation for the scalar products in L2(m)
and L%(m x m). Show that

1/2
Tt = ( 3 teasl?) " = 1Kl amsm
n,pEN
and so that Tx € J#°(E).
iii. Conversely, take T € J#(E). For n,p € N we write k,p =
(Tep | en).
A. Show that 3y |knpl|? < +o0.
B. Let K be the element of L?(m x m) defined by

K= E kn pen.p-
n,pEN

Show that T = Tk. Hence, the map K — Tk is a surjective
isometry from L?(m x m) onto J¢(L%(m)).






L? Spaces

1 Definitions and General Properties

We first establish the notation and definitions that we will use throughout
this chapter. The most basic results are recalled without proof; the reader
can consult, for example, the first part of Chapter 3 of W. Rudin’s Real
and Complez Analysis (McGraw-Hill).

We consider a measure space (X, #)-—that is, a pair consisting of
a set X and a o-algebra & —and a measure m on . For every real p
in the range 1 < p < 0o, we define £¢(m) as the space of F-measurable
functions f from X to K such that [ |f[Pdm < +00. We denote by £2°(m)
the space of #-measurable functions f from X to K for which there exists
a nonnegative real number M (depending on f) such that | f(z)l <M
m-almost everywhere. We can leave K and/or m out of the notation when
there is no danger of confusion.

By extension, a function f with values in K and defined m-almost every-
where on X is said to belong to .#f(m) if it equals m-almost everywhere
some function of £ (m) in the original sense.

In the study of these spaces .£?, an essential role is played by the Holder
inequality, a generalization of the Schwarz inequality (which corresponds
to the case p = p' = 2).

Theorem 1.1 (Hélder inequality) Suppose p,p’ € (1,00) satisfy

1

+]7=l

R~ R
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(We say that p and p’ are conjugate exponents.) If f € £? andg € £7,
the product fg lies in &' and

[isatam< ([ Ifl"dm)l/p( / |g|v'dm)"".

We define the vector space Lk (m) as the quotient vector space of £ (m)
by the equivalence relation # of equality m-almost everywhere (in other
words, we identify in LP functions that coincide m-almost everywhere). The
vector space L} (m) is a lattice. Except when explicitly stated otherwise,
our notation will not distinguish between an element of LP(m) and its
representatives in #?(m).

If f € Lg(m) with 1 < p < 00, we define

it = Ifl”dm)l/p;

| flloo = min{M >0:|f| < M m-almost everywhere}.

if f € L (m), we set

Obviously, these expressions do not depend on the representative chosen
for f. One can show that, for 1 < p < oo, the map || - ||, thus defined is a
norm on L (m).

By convention, 1 and oo are conjugate exponents. The Holder inequality
can be rephrased as follows:

Proposition 1.2 Letp and p’ ble conjugate exponents with 1 < p,p’ < oo.
For every f € Lk (m) and g € L{(m) we have fg € Lk(m) and

Ifglls < 1l fllp ligllp-

Ezample. In the remainder of this chapter, we will say simply that “m is
a Radon measure” to mean that X is a locally compact and separable
metric space, % is the Borel o-algebra on X, and m is a positive Radon
measure on X, considered as a Borel measure. In this situation, for every
f € Cy(X),

I1flloo = sup{|f(2)| : z € Suppm}.

Suppose moreover that the support of m equals X. Then ||fllec = |Ifll
for every function f € Cy(X), where | f||, as usual, is the uniform norm
of f on X. In other words, the map that associates to an element f of
Cp(X) (with the uniform norm) its class modulo % is an isometry (and
in particular an injection) from Cp(X) to L*°(m) (with the norm | - ||o0).
If f is a Borel function, there exists a greatest open set O of X such
that f(z) = 0 for m-almost every z of O (to see this, one might reason
as in the proof of Proposition 3.1 on page 68). The complement of O is
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called the essential support of f. If f is continuous, we see that the
essential support of f is exactly the support of f (thanks to the assumption
Suppm = X). Moreover, by definition, two Borel functions that coincide
almost everywhere have the same essential support. Hence we can define
without ambiguity the essential support of a class modulo % as the essential
support of any of its representatives. In the sequel, if f is a class of functions
modulo &, we will refer to the essential support of f as simply the support
of f, and we will denote it by Supp f as well.

One fundamental property of the L” spaces is completeness:

Theorem 1.3 (Riesz—Fischer) If1 < p < oo, the space L (m) with
the norm || - ||, is a Banach space.

Now suppose [ is a set, F = FP(I) is the discrete o-algebra on I, and m
is the count measure on I (Example 5 on page 99). Then the space L% (m)
(with X = I) is denoted by ¢P(I), or more simply by ¢ if I = N (eompa.re
Exercises 7 on page 11 and 8 on page 12). In this case,

1<p<qg<oo= €(I)C &I

and ||z||q < ||z||p for every z € £ ().
By contrast, when m has finite mass (m(X) < 00), the inclusions go in
the opposite direction:

1<p<g<oo = L(m)C Lg(m)

and, for every f € L} (m),

£l < 1£llq (m( X))(q—p)/qp

as can be checked using the Hélder inequality.
More generally, we have the following interpolation result:

Proposition 1.4 If f € L' N L™, then f € LP for every p € (1,00), and

£l < W12 1£1AS 2P,
In addition, if 1 < p < 0o, L' N L™ is dense in LP.

Proof. If f € L™ and 1 < p < oo, we clearly have |f|P < |f||IfIIE!
m-almost everywhere, which proves the first assertion of the proposition.
Now suppose that 1 < p < oo and that f € LP. Since |f|P is a positive
integrable function, there exists an increasing sequence (¢ )nen of positive,
integrable, piecewise constant functions that converges almost everywhere

to |f|7. Set
a@) = {{M@] @20
0 if f(z) =
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Then the sequence (acp:,/ P) is a sequence in L' N L™ that converges almost
everywhere to f, being bounded above in absolute value by |f|. By the
Dominated Convergence Theorem, this sequence converges to f in LP. O

Remark: denseness of piecewise constant functions in LP. The preceding
proof shows also that, if p € [1,+00), every positive element of LP is the
limit in LP? of an increasing sequence of positive, integrable, piecewise con-
stant functions. By taking linear combinations, we deduce that integrable
piecewise constant functions are dense in L? for p € [1,+00). Note that
this is false if p = oo and if m has infinite mass (see Exercise 8 below).
Nonetheless, one sees easily that every positive element f of L™ is the
limit in L* of an increasing sequence of (not necessarily integrable) posi-
tive piecewise constant functions. For example, one can take the sequence
(fn)nen defined by

2" -1
fa=M Y k27" L mi2-n<cp<miisn2-n}
k=0

with M = || f|lo. It follows that the set of piecewise constant functions is
dense in L™,

We now study other denseness results. We start with a convenient ele-
mentary lemma.

Lemma 1.5 For each nonnegative real a, define a map I, : K — K by
setting Ip(z) = 0 and

axr

Ma(z) = max(a, |z|)

ifa > 0.

Then, for every z € K, we have |IIy(z)| < min(a, |z|) and, if |z| < a, then
I (z) = . Moreover,

|Ma(z) ~Ma(y)| < |z -yl for allz,y € K.

Proof. 1t is clear that II, is exactly the projection map from the canonical
euclidean space R (or the canonical hermitian space C, as the case may
be) onto B(0,a). The claims made are then obvious; the last of them can
be seen as a particular case of Proposition 2.2 on page 106. a

The following theorem generalizes Proposition 2.6 on page 107, which
represents the case p = 2.

Theorem 1.8 If m is a Radon measure, the space C.(X) is dense in
LP(m) for 1 < p < +o0.
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Proof. The case p = 1 was proved in Chapter 2, Proposition 3.5 on page 70.
Suppose 1 < p < 00. By Proposition 1.4, it suffices to approximate f €
L'N L* in the sense of the | - ||, norm. Thus, fix f € L' N L and let (¢n)
be a sequence in C¢(X) that converges to f in L'. Set n = Iy (¢n),
using the notation of Lemma 1.5. Then ¢, € C.(X) and

f = %nlP < 1f = ¢l (21 flleo)” ™"

Now f = II4).. (f) and so, since by Lemma 1.5 the maps I, are contract-
ing,

|f = %al” < 1f - wal @1 fl)” ",
which proves the result. a

Remark. If m is a Radon measure of support X, the closure of C.(X) in
L*(m) is Co(X) (which is distinct from L>(m) if X is infinite).

Corollary 1.7 Ifm is a Radon measure, the space LP(m) is separable for
1<p<oo.

Proof. Let (K,) be a sequence of compact sets exhausting X. Since

Ce(X) = |J Ck.(X),
neN

it suffices, by the preceding theorem, to show that each Ck,, (X) is separable
with respect to the || - ||, norm. But Ck,(X) is separable with respect to
the uniform norm || ||, and |||, < || f]| m(Kn)'/? for every f € Ck, (X).
This proves the result. O

Remark. The assumption that X is separable is essential in Corollary 1.7.
For example, if I is an uncountable set, the space £P(I) is not separable,
by Exercise 8 on page 12.

Note also that the space L™ is not separable in general; see Exercise 10
below.

FEzxercises

We consider in these exercises a measure m on a measure space (X, #).

1. Spaces LP for 0 < p < 1. Take p € (0,1). Define the space L” as the set
of equivalence classes (with respect to equality m-almost everywhere)
of #-measurable functions f from X to K for which the expression

\flp = [ \fPdm

is finite.
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a. Show that L” is a vector space and that the formula d,(f, 9) = |f—gl,
defines on LP a metric that makes LP complete.
b. Suppose that X is an open set in R%, for d > 1, and that m is the
restriction to X of Lebesgue measure on RY.
i. Show that bounded Borel functions with compact support are
dense in (L?,d,).

ii. Let f be a bounded Borel function on X with compact support,
and suppose that r > 0. Show that f lies in the closed convex hull
&(B(0,r)) of the ball B(0,r) of LP (see Exercise 9 on page 18).
Hint. Let K be a parallelepiped in R® containing the support
of f. Write f in the form

1 n
== n lKi’
f n§ f

where (K;)1<i<n is a partition of K N X into n Borel subsets,
each of measure at most A(K)/n. Check that, for n large enough,
all the functions n f 1k, belong to B(0,r).
iii. Deduce that &(B(0,r)) = L? for every r > 0.
2. a. Let p, g, r be real numbers in [1, 00) satisfying 1/r = 1/p+1/q. Show
that, if f € L? and g € L9, then fg € L™ and

Ifgll= < 11 £llp llgllq-

b. Let f be an #-measurable function from X to K. Show that the set
J defined by

J= {pe [1,400) : 0 < /Ifl’dm< +oo}

is a (possibly empty) interval.
Hint. If r € [p,q] and f € LP N L9, introduce the real number z €
[0,1] such that 1/r = (z/p) + (1-z)/q.

c. Let (X, #) be R with its Borel o-algebra, and let m be Lebesgue
measure. For each p € [1,00), find an element of L? that belongs to
no other L9, for q # p.

d. Show that the map from J to R defined by

p-riog ([ frm)
is a convex function.

e. Show that, for every g € (1, 00),

L‘nL*c (| ¥

g<p<oco
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and that, for every f € LN L*®,
Jm_ 17l = 1o

Hint. Show that 0 < a < || f||oo implies a < liminfy ;o0 || il
8. Take p € (1,00) and let p' be the conjugate exponent of p. Let K
be a nonnegative-valued Borel function on (0,+00)? satisfying these
conditions:
- zK(zy,zz) = K(y, 2) for all z,y, 2 € (0, +00).
+00

- K(1,2)2""?Pdz = k < +o00.

0

+00 ,
a. Show that K(z,1)2z VP dz = k.
()

b. Show that the equation

+00
Tf(z) = /0 K(z9)f () dy

defines a continuous linear operator from LP((0,+00)) to itself, of
norm at most k.
Hint. First find an upper bound for |Tf(z)|, by writing

K(z,y) = K(z,y)"/? (%)l/"'K (z, )"/ (5)‘/ 4

and using the Holder inequality.
c. Suppose in addition that K(1,z) <1 for every z > 0. If ¢ > 0, set

+o00

ke = K(1,2)z~(ta/Pgz,
0

fe(@) = 1oy 2 0P g (2) = 1z 2~ HH/P,

Check that f. € L?((0,+00)) and g, € L ((0, 4+00)); then show that,
for every € < p/2p/,

+00

Tfe(2)ge(z) dz > (ke — 2(2')2€) | fellp | 9ell -

Deduce that ||T|| = k.

d. Show that the maps K defined by K(z,y) = 1/(z+y) and K(z,y) =
1/max(z,y) satisfy the assumptions above for every p € (1,+00).
Compute the norm of the operator T in these two cases. Recall that,

for a > 1,
/+°° dz T . x
= — sin —.
() [4] [4]

(See also Exercise 17 on page 228.)
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4. Let m and n be o-finite measures on measure spaces (X, #) and (Y,¥),
and let K be a nonnegative-valued function on X x Y, measurable with
respect to the product o-algebra &F x 4. Take r,s € [1,00) such that
8 < r. We wish to prove the following inequality:

(-/Y (/x K(z, y)'dm(z))r/‘ dn (y))l/r
< (/x( Y K(z, y)"dn(y))a/"dm(z))l/a(g oo .

a. Suppose that s =1 < r, that K is bounded, and that m and n have
finite mass. Put

o= [ ([ Kenin@) dnt) <-+oo,
b= /x (/Y K(z,y)'dn(y))l/rdm(z) < 4o00.

i. Show that

- / ( / K(z,y)( / K(z’,y)dm(z’))r-ldn(y)) dm(z).

ii. Applymg the Hoélder inequality to the integral over Y, prove that
a < ba'/"', where ' is the conjugate exponent of r.

iii. Deduce (*) in this case.

b. Show that (*) holds in general if s =1 <r.

c. For s arbitrary, reduce to the preceding case by setting K = K* and
F=r/s.

5. We suppose that m is o-finite and fix p € 1, +00).

a. Let g be a measurable function on X such that fg € L? for every
f € LP. Show that g € L.
Hint. Show that otherwise one can construct a sequence (Xyn)nen of
pairwise disjoint measurable subsets of X, each with finite positive
measure and such that |g| > 2" almost everywhere on X,,. Then
consider the function f defined by

f=Y 1x,.27"m(X,) """
neN
Show that f € LP and that fg ¢ L”.

b. For g € L™ we define a continuous operator T, on L? by Ty (f) = gf.
Let T be a continuous operator on L? that commutes with all the
Ty, for g € L*°. Show that there exists h € L™ such that T = Tj.
Hint. Construct a positive-valued function g such that g € LPN L.
Let h = T(g)/g. Show that T(f) = hf for every f € LP N L*; then
conclude.
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6. Suppose that m is o-finite. Let p and r be real numbers such that
1 £ r < p, and let g be a measurable function such that fg € L™ for
every f € LP.

a. Show that the map & : f — fg is continuous from L” to L".
Hint. Show that otherwise there exists a sequence (fn)n>1 of positive
functions of L? such that, for every n > 1, || fall, < 1 and || fag|l, > n.
Then prove, on the one hand, that the function h = 312 n-3f7 is
in L?/T and therefore that f = h!/" is in L?, and on the other hand
that fgg L".

b. Deduce that g € L9, where ¢ is given by 1/r=1/p+ 1/q.
Hint. Let (A,)nen be an increasing sequence of elements of & with
finite measure and such that |,y An = X. Put

gn = (inf(lgla")) 14,-

(f g:'.dm)l/r <toi( ggam)"’.

7. An ordered set (E, <) is called a conditionally complete lattice if every
nonempty subset of E that has an upper bound has a supremum (least
upper bound) in E, and every nonempty subset that has a lower bound
has an infimum in E.

We consider the space E = Lg, for 1 < p < 0o, with the natural order
defined by

Show that

f<g <<= f(z) < g(z) m-almost everywhere.

a. Suppose p = 1. Let & be a nonempty family in L} bounded above,
and let % be the set of its upper bounds.
i. Show that the expression a = inf{ [ fdm : f € %} is finite.
ii. Show that there exists a decreasing sequence (f,,) in % such that

n“l:Too / fndm=a.

Let f be the almost-everywhere limit of (f.). Show that f € ¥
and that [ fdm =a.

ifi. Deduce that f is the supremum of & in L}, and so that L,“ isa
conditionally complete lattice.
Hint. If g € %, show that [inf(f,g)dm = a and deduce that
f<g

b. Suppose that 1 < p < co. Show that L} is a conditionally complete

lattice.

Hint. If o is a nonempty family in L} bounded above, the set

{f|fIP=!: f € &} is contained in L}.



152 4. LP Spaces

c. i. Show that if m is o-finite LY is a conditionally complete lattice.

[l
[

Hint. Start by dealing with the case where m has finite mass
(then L™ C LY).

. Show that this result may be false if m is not o-finite.

Hint. Take two uncountable disjoint sets A and B. Let X be
their union, let & be the set of subsets of X that are countable
or have countable complement, let m be the count measure on
&, and set & = (1(5})zea-

d. Let E be the quotient of the space of #-measurable real functions
by the relation of equality m-almost everywhere. Give E the natural
order defined earlier. Show that, if m is o-finite, E is a conditionally
complete lattice.

Is the space of #-measurable real functions with the natural order
a conditionally complete lattice?
8. Prove that the set of integrable piecewise constant functions is dense in

L if and only if m has finite mass.

Hint. Take f = 1. If m has infinite mass, any integrable piecewise con-

stant function s lies at a distance ||3 — f||oo = 1 from f.

9. Prove that L' N L™ is dense in L™ if and only if m has finite mass.
10. Consider the following property:

(P) There exists an (infinite) sequence of #-measurable, pairwise dis-
joint subsets of X of positive measure.

a. Show that, if (P) is satisfied, L™ is not separable.

Hint. You can use as inspiration the £°° case in Exercise 7 on page 11.

b. Suppose (P) is not satisfied. Define an atom as any #-measurable
subset A of positive measure that does not contain any subset B € &
with m(B) > 0 and m(A\ B) > 0.

i. Show that every measurable subset of X with nonzero measure

e

contains at least one atom.
Hint. Consider the relation < defined on the set & of elements
of & of nonzero m-measure by

A<B < m(B\A)=0.

Apply Zorn’s Lemma (see Exercise 11 on page 133) to the or-
der relation induced by < on the quotient set &/, where = is
equality almost everywhere:

A~B < m(B\A)=m(A\B)=0 <> A<Band B<A.

You might show, in particular, that every totally ordered subset
of &/~ has a greatest element.

Show that there exists a finite sequence (Xn)n<n, of atoms such
that m(X \ U,<p, Xa) = 0 and

m(XaNXy,)=0 forn#m.
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iii. Show that every #-measurable function coincides m-almost ev-
erywhere with a linear combination of functions 1x,_, for n < nq.

c. Show the equivalence of the following properties:

i. (P) is not satisfied.
ii. L has finite dimension.
iii. L is separable.
iv. Every .#-measurable function belongs to .£>.

Let L be a vector subspace of Zg(m) N £g°(m) satisfying these hy-

potheses:

~ There exists an increasing sequence (,) in L that converges to 1
m-almost everywhere.

- The o-algebra o(L) generated by L equals &#.

- f?eLforall feL.

a. Give the space Lg(m) N Lg°(m) the norm || - || + || - [lo and denote
by L the closure of L in that space. Show that f € L implies |f| € L.
Deduce that |f| € L for all f € L.
Hint. Use the example on page 29 and argue as in the proof of
Theorem 2.3 on page 33.

b. Show that L is dense in L'(m).
Hint. Apply Proposition 2.4 on page 63.
. Deduce that L is dense in L{(m) for 1 < p < oo.
Hint. If f € LE(m), you might show that, for every n € N, the
function sup(mf (f,n0}), —nwp) can be approximated in L§ (m) by
a sequence in L.

Let m and p be o-finite measures on measurable spaces (X, #) and

(Y,4), and suppose p € (1, 00). We denote by LP(m) ® LP(u) the vector

subspace of LP(m x u) spanned by the functions (z,y) — f(z)g(y),

with f € LP(m) and g € LP(u). Show that LP(m) ® LP(u) is dense in

LP(m x p). This generalizes the result of Exercise 7 on page 110.

Hint. Apply the result of Exercise 11 above to the measure m x 4 and

the space L = (£ (m) N Zg°(m)) ® (L (1) N L (w)).

Assume m is o-finite.

a. Suppose the o-algebra & is separable, that is, generated by a count-
able family of subsets of X.

i. Show that there exists a countable family # of elements of &
satisfying these conditions:
- o(#) = &, where o(B) is the o-algebra generated by 4.
- ANnBe%forall ABe A
- m(A) < +oo for all A € #.
— There exists an increasing sequence of elements of £ whose
union equals X.
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ii. Show that the family {14}4c® is fundamental in LP, for 1 <
p < 00.
Hint. Apply Exercise 11 above.

iii. Deduce that, if 1 < p < 00, the space L” is separable.

iv. Show that, if X is a separable metric space, the Borel o-algebra
%B(X) is separable. Derive hence another proof for Corollary 1.7.

b. We say that a o-algebra & is almost separable if there exists a sep-
arable o-algebra &’ contained in & such that, for all A € &, there
exists B € &' with

m(A\ B) =m(B\ A) = 0.

i. Show that, if % is almost separable, the space L” is separable
for every p € [1, 00).
Hint. Use part a.

ii. Show that if there exists p € [1,00) such that L? is separable, &
is almost separable.

Hint. Consider the o-algebra generated by a sequence of ele-
ments of #? whose corresponding classes are dense in L”.

ili. Show that # is almost separable if and only if there exists a
sequence (A, )nen of measurable subsets of X of finite measure
such that the sequence (14, )nen is fundamental in L!.

iv. Let #; be the set of elements of # of finite measure, modulo
the relation of equality m-almost everywhere. If A, B € &y, we
write d(A,B) = m(AA B), where AAB = (AUB) \ (ANB).
Show that d makes #; into a complete metric space, separable
if and only if the o-algebra & is almost separable.

Hint. (&y,d) can be identified with the subset of L! consisting
of (classes of) characteristic functions of elements in &, with the
metric defined by the norm || - ||,.

|4. Assume p € [1,00).
a. Let 2 be the set of finite families (An)n<n, in & such that
- m(A, N Ap) =0if n #m, and
- 0 <m(A,) < oo for every n < ng.
If & = (An)n<n, is an element of P, we define an operator Ty on

L? by
1
Taf=), (m A,.fdm)lA"'

YISﬂo
Show that T, is a continuous linear operator on L”, of norm at
most 1.

b. If & and & are elements of P, write & C & if every element of #
is contained, apart from a set of measure zero, in an element of &,
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and if every element of & is, apart from a set of measure zero, the
union of the elements of # contained in it.

Let & = (An)n<n, be an element of £ and let f be a linear com-
bination of functions 14, , for n < ng. Show that, for every # € 2
such that & C 4, we have Tgf = f. Deduce that, for every € > 0
and every f € LP, there exists & € & such that

(BePand o CB)= |Taf - fll, <e.

Hint. Use the fact that the set of integrable piecewise constant func-
tions is dense in L” (see the remark on page 146).

c. Assume that m has finite mass and that there exists a sequence (4%,)
of 2 increasing with respect to C and such that % = {X}. Assume
also that J,,cn 2% generates # (you can check that there is such a
sequence if the o-algebra # is separable: see Exercise 13). Denote by
n the set of piecewise constant functions that are constant on each
element of &,. Show that (J,, #» is dense in L? for 1 < p < oo. (You
could use Exercise 11, for example). Deduce that, for every f € L?,
the sequence (T, f) converges to f in L”.

Ezample. Choose for X the interval [0, 1], for m the Lebesgue mea-
sure on X, and for # the Borel o-algebra of X. Find a sequence
() satisfying the conditions stated above.

15. We say that a sequence (fy)nen of F-measurable functions converges

in measure to a £ -measurable function f if, for every ¢ > 0,

m({z € X : |fa(z) - f(z)| > €}) — 0.

a. Assume p € [1,00).
i. Bienaymé-Chebyshev inequality. Take f € LP. Show that, for
every § > 0,

m({z € X : |f(z)| > 6}) < 577U S}

ii. Let (fn) be a sequence of elements of LP that converges in L? to
f € LP. Show that the sequence (f,) converges to f in measure.

b. Let (fn) be a sequence of measurable functions that converges in
measure to a measurable function f.

i. Show that there exists a subsequence (fy,) such that, for every
k€N,

m({z € X : |fa.(z) - f(z)| > 27%}) < 27%.
ii. For each k € N, let Z; be the subset of X defined by

Z=J {z € X :|fn,(x) - f(2)| > 27}

izk

Then set Z = [,y Zk- Prove that m(Z) = 0.
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iii. Deduce that the sequence (fn,) converges to f m-almost every-
where.

iv. Show also that, for every € > 0, there exists a measurable subset
A of X of measure at most € and such that the sequence (fy,)
converges uniformly to f on X \ A.

Hint. Choose A = Zj, with k large enough.

. Suppose m(X) < +o0o. Let (f,) be a sequence of measurable func-

tions that converges m-almost everywhere to a measurable function
f. Show that the sequence (f,) converges in measure to f.

Hint. Take € > 0. For each integer N € N, put
Ay ={z€ X : |fa(z) - f(z)| <eforalln> N}.

Show that there exists an integer N € N for which m(X \ Ay) <e¢,
and therefore that m(X \ A,) < ¢ for every n > N.

Deduce that, for every integer n > N,

m({z € E: |fu(z) — f(z)| > €}) <e.

L8. Suppose p € [1,00]. Let (fn)nen be a sequence in L” such that the series
Y nen Ifn = fas1llp converges. Show that the sequence (f,) converges
almost everywhere and in LP.

Hint. Suppose first that m(X) is finite and prove that in this case

[ E1a = fussldu < +o0.

neN

If m is arbitrary and p < oo, check that the set {z € X : fo(z) # 0
for some n € N} is o-finite.

L7.

Egquiintegrability. Assume p € [1,00). A subset J# of L? is called equi-
integrable of order p if for every € > 0 there exists § > 0 such that, for

every measurable subset A of X of m-measure at most 4,

/ |flPdm <e forall f € .
A
i. Show that every subset J# of L for which

lim | f|P dm =0 uniformly with respect to f€ # (%)
n2+ J{if1>n)

is equiintegrable of order p. Deduce that every finite subset of L?
is equiintegrable of order p.

Show that, conversely, every bounded subset J# of LP that is
equiintegrable of order p satisfies (*).
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ii. Take J# C L*. Suppose there exists an element g € LP, nonneg-
ative m-almost everywhere, such that, for every f € J#, we have
|f| £ g m-almost everywhere. Show that J is equiintegrable of
order p.

fii. Let (fn)nen be a sequence in L? that converges in LP to f. Show
that the family (f»)nen is equiintegrable of order p.
Hint. You might check that, if A is a measurable subset of X,

then
( /A falP dm)x/" <1If = fallp + ( /A P dm)l/p.

b. We now assume that m has finite mass.

i. Let (fn)nen be a sequence in LP and let f € LP. Show that
the sequence (fn)nen converges to f in L” if and only if these
conditions are satisfied:

- The sequence (fn)neN converges in measure to f (see Exercise
15 above for definition).
~ The family {f,}nen is equiintegrable of order p.

. Let (fn)nen be a sequence of elements of LP that converges in
measure to a function f. Assume that there exists g € L? such
that |fn| < |g| for every n € N. Show that f € L? and that the
sequence (fy,) converges to f in LP.

iii. Let (fn)nen be a bounded sequence in LP that converges almost
everywhere to a function f. Check that f € LP. Then show that,
for every real g € (1,p), we have limp_,o0 | fn — fllg = 0.
Hint. Note that if A is a measurable subset of X and if g € LP,
then [, |g|?dm < ||g||g m(A)!~9/>.

18. Uniformly convez spaces. A Banach space E is called uniformly convez

if it has this property:

If (z,,) and (yn) are sequences in the closed unit ball B(E) of E satisfying

|zn + ynll = 2, then ||z, — ynll = 0.

a. Show that every Hilbert space is uniformly convex.

b. Show that, for n > 2, the space R™ with the norm || - ||; or the norm
I - loo is not uniformly convex.

c. Let E be a uniformly convex space. Show that every nonempty con-
vex closed subset of E contains a unique point of minimal norm.

d. Let E be a uniformly convex space.

i. Let f be a linear form on E of norm 1 and let (z,) be a sequence
of elements of E of norm 1. Show that, if f(z,) — 1, the sequence
(zn) converges.

Hint. You might show that (z,) is a Cauchy sequence, using the
fact that f(z, + z,,) = 2 when n,m — +o0.

=
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ii. Deduce that the absolute value of any continuous linear form on
E attains its maximum in the closed unit ball of E.

e. Assume p € (1,00).
i. Show that

P P
z+y|PS |=l? + Iy] for all z,y € C. (*)
2 2
ii. Set D = {z € C: |z| < 1}. Show that the function ¢ defined on
D by |
_[1+2P
o) = 13T

is continuous from D to [0,2P~'] and that ¢(z) = 2P~! if and
only if z = 1. Deduce that, for every n > 0, there exists () > 0
such that, for every (z,y) € D? with [z —y| > n,

T+ypP _ |zIP + lylP

|22 < (- om) 22

ili. Take ¢ > 0 and let f and g be points in the closed unit ball of
L? such that ||f — gl > €. Set

E = {z € X :|f(z) - 9(z)| 2 €277 max(|f ()|, lg()]) }-

A. Show that / |f — glPdm < €P/2. Deduce that
X\E

|fIP +1glP
ACA N > —
/E 7 M2

(You might use (*) with z = f and y = —g.)
B. Show that
155201 <14 (o) 5

—2 <1-9¢ m _2p+l’

P

where § is as in part e-ii above.
Hint. Use (*) in X \ E and the conclusion of e-ii in E, taking
n=¢/22/P,
C. Deduce that L? is uniformly convex (Clarkson’s Theorem).
f. Let X be a metric space and give E = C(X) the uniform norm || ||.
Suppose that X contains a point a that is not isolated, and fix a
sequence (z,) of pairwise distinct points in X that converges to a.

For f € E, put
L(f) = S (-2)"f(@n).

neN
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i. Show that L is a continuous linear form on E of norm 2 and that
|L(f)] < 2 for all f € B(E).

ii. Set C = {f € E : L(f) = 2}. Show that C is a nonempty
closed convex set in E, that ||f|| > 1 for all f € C, and that

infrec £l = 1.

19. Suppose m is a Radon measure. If 1 < p < 0o, we denote by LY (m),
or, more simply, by L, the set of equivalence classes of functlons I
such that, for every compact K in X, the function 1k f lies in LP. We
denote by L? the set of elements of LP having compact support (the
support of an element of LP was defined on page 145).

a. Show that, if 1 < p < ¢ < oo, then L] _cC L} _and L2 C L?.

b. Find a metric d on Lf_ such that, for every sequence (fa)nen in L},
and every f € L}, _, the condition lim,, _, + o d(f, fn) = 0 is equivalent
to the condition that limp_, +00||1x (fn — f)||» = O for every compact
K of X. Show that L} _ is complete with this metric.

Hint. You might work as in Exercise 12 on page 57.
c. Show that the space L? is dense in L} _ with the metric d.

2 Duality

We consider again in this section a measure space (X, #) and a measure m
on #. We assume here that m is o-finite. We will determine, for 1 < p < o0,
the topological dual (LP)’ of the space L?.

So fix p € [1,+00) and let p’ be the conjugate exponent of p, so that
1/p+1/p’ = 1. Note first that every element g € L* defines a linear form
T, on LP, as follows:

Tyf = /fgdm for all f € L”. (*)

As an immediate consequence of the Holder inequality, the lmear form T,
is continuous and its norm in (LP)’ is at most that of g in L?'. We will show
that one obtains in this way all continuous linear forms on L”.

Theorem 2.1 If1 < p < oo, the linear map g — T, defined on L¥ by
(%) is a surjective isometry from LP onto (LP)'.

If p = p’ = 2, this is of course an immediate consequence of the Riesz
Representation Theorem (Theorem 3.1 on page 111) in the Hilbert space
L2. The basic scheme of the proof is to reduce the problem to this case.
This can easily be done if 1 < p < 2, but we will give a proof that is valid
for every p € [1,00), whose main idea goes back to J. von Neumann.

Proof. The proof of Theorem 2.1 will be carried out in several steps. The
crucial point is the following lemma.
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Lemma 2.2 Suppose m has finite mass. Let T be a continuous linear
form on L§. If T is positive (that is, if Tf > 0 for every f € L} such
that f > 0), there ezists a measurable function g > 0 such that, for every
fely,

fgeLy and Tf= /fgdm.
Proof. (All functions are assumed real-valued without further notice.) Since
the linear form T is positive, we can define on (X, #) a measure X of finite

mass by setting
AA)=T(14) forall Ae £. (*#)

That A is o-additive follows easily from the continuity and linearity of T
(using the Dominated Convergence Theorem, which is allowed because m
has finite mass). Then we set

v=A+m. 0)

Since T acts on classes of functions, we see that m(A) = 0 implies A(4) = 0;
thus, for A € &,

Y(A)=0 <> m(A)=0 = XA)=0.

Hence the linear form f — [ fd\ is well defined on L%(v) and we have, for
every f € L*(v),

l/fdz\' < (/lflzd,\)l/z (/\(X))I/2 < 1 lew) (/\(X))l/z.

By the Riesz Representation Theorem (Theorem 3.1 on page 111) applied
to the Hilbert space L?(v), there exists an element h in L?(v) such that

/fdA: /fhdu for all f € L?(v). 1)

In particular,

0< A({h<0}) =/ hdv <0,
{h<0}

which implies that A > 0 v-almost everywhere. Likewise,
AM{h21)) = / hdv > A({h > 1}) + m({h > 1}),
{h21}

which implies that b < 1 m-almost everywhere and so v-almost everywhere.
Hence we can choose a representative of h such that 0 < h(z) < 1 for every
zeX.
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Now let f be an m-integrable piecewise constant function. By (#), (1),
and (1),

Tf=/fdA=/fhdm+/fhdA.

At the same time, by approximating h with piecewise constant functions
and using the continuity of T', we see easily that [ fhd\ = T(fh). We
deduce that

T(f(1 - h)) = / fhdm.

Since this holds for every m-integrable piecewise constant f, it also holds
for every f € LP(m) such that f > 0 (use an increasing approximating
sequence; see the remark on page 146). Now let f € LP(m) be such that
f > 0. For every integer k, inf(f/(1—h), k)€ LP(m), so

T(inf(f, k(1—h))) = / mf( = k)hdm
By making k approach infinity and using again the continuity of T, we get

_[_Ih
Tf—/l_
Thus, g = h/(1 — h) serves our purposes. O

We now get, without having to assume that m has finite mass:

Lemma 2.8 IfT € (LP)', there ezists a measurable function g such that,
forall f € L?,

foeL' and Tf=/fgdm.

Proof. For f € LR, set T\f = Re(Tf) and T>f = Im(Tf). Then T, and
T; belong to (L})'. If Lemma 2.3 is true in the real case, we can apply it
to Ty and T> to obtain real functions g, and g,, and clearly the function
g = g1 +tg2 works for T. Therefore we can suppose we are in the real case.

In this case T can be written as the difference of two continuous and
positive linear forms on L (apply Remark 2 on page 88 to the lattice L}).
So we can in fact suppose that T is a positive continuous linear form on
L%, and we do so.

Since the measure m is o-finite, there exists a countable partition (K, ) of
X consisting of elements of & of finite measure. For each integer n, let m,
be the restriction of m to K,. If f € L§(my,), denote by f the extension
of f to X taking the value 0 on X \ K,. The linear form on L§(mn)
defined by f —» T(f) then satisfies on K, the hypotheses of Lemma 2.2.
Therefore there is a positive measurable function g, on K,, such that, for

all f € L§(my,),
f9n € Li(ma) and T(f)= / f9n drm
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Now let g be the measurable function on X whose restriction to each K,
is gn. If f € LB(m) and f > 0, we have f = 3.+ f1,., the series being

n=0
convergent in L} (m). By the continuity of T and monotone convergence in

the integral, we deduce that

+00 +00
TS =Y T k) =Y [ fodm= [fodm.

n=0 n=0
Thus g satisfies the necessary conditions. a

Lemma 2.4 With the notation of Lemma 2.3, we have ¢ € LP and
lglly < T\, where |- I}, is the norm in (LP)'.

Proof. Since the measure m is o-finite, there exists an increasing sequence
(An) of elements of # of finite measure that cover X.

1. Case p = 1. Suppose the conclusion of the lemma is false. Then the set
{lg] > IIT]I}} has positive measure, so there exists € > 0 such that the
set A = {|g| > IT||} + €} has positive measure. Let a be the function
that equals |g|/g on {g # 0} and 1 on {g = 0}. Then, on the one hand,

T(@lana,) = [ loldm (ITI; +€) m(4n Ay)
NAn

and, on the other,
T(alana,) < ITIIm(AN Ayg).

There certainly exists an integer n for which m(A N A,) > 0, so we
deduce that | T[|} + & < ||T||}, which is absurd.

2. Case 1 < p < . Define a as in the preceding case and, for n € N, set
B, = AnN{|g| <n} and f, = 1p,a|g|?’~}. Then, for every n,

1/p
[, 1o dm =71, <17, (/3 |g|"dm) ,

, 1/p
( [ e dm) <17l

whence we deduce the result by making n approach infinity. a

Thus we have proved the following fact: For every T € (L)’ there exists
g € L? such that
T=T, and |glly =Tl

The proof of Theorem 2.1 will be co'mplete if we show that the map
g — T, is injective. Suppose that g € L? and T, = 0. Defining a sequence
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(A,) and a function « as in the proof of Lemma 2.4, we see that, for every
n, the function g, = al,, is an element of L! N L™, and so

Tygn = /A lgldm = 0.

This proves that g = 0 m-almost everywhere. 0

Remark. Theorem 2.1 is false for p = co. In general, L! is not isometric to
the topological dual of L, only to a proper subset thereof. (On this topic,
see Exercises 3, 4, and 5 below.)

Ezxercises

In all the exercises, m denotes a o-finite measure on a measure space
(X, #).

1. Suppose that X is an open set in R? (with ¢ > 1) and that m is the
restriction to X of Lebesgue measure on R?. Fix p € (0,1). Let L be a
continuous linear map from L” to a normed vector space E, where we
have given L? the metric dp defined in Exercise 1 on page 147. Show
that L = 0. In particular, the topological dual of (L?,d,) is {0}.

Hint. Show that, for every ¢ > 0, the inverse image under L of the
closed ball B(0,¢) of E is a closed and convex neighborhood of 0 in LP.
Then use the result of Exercise 1 on page 147.

2. Set X = {0,1} and let v be the measure on £(X) defined by »({0}) = 1
and v({1}) = oo. Show that L™ (v) is not isometric to the dual of L'(v).

3. Recall from Exercise 7 on page 11 that ¢y stands for the subspace of £*°
consisting of sequences that tend to 0 at infinity. Show that the map
that associates to each element g of ¢! the linear form on ¢y defined by

Ty: frr Z fngn
neN
is a surjective isometry from £! onto cj.
4. A realization of the topological dual of £°(I). Let I be an infinite set.
Denote by A(I) the set of finitely additive functions p from FP(I) to
[0, +00), that is, those satisfying

u(AU B) = p(A) + p(B) — p(AnB) for all A, B € P(I)

and u(@) = 0.

a. Take p € A(I). Define a linear form L, on the set of piecewise con-
stant functions on I as follows: If g = ¥, gk14,, where (Ix)1<k<n
is a partition of I and g;,...,9, € K, put

Lu(9) =Y okn(lr).
k=1
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i. Check that L,(g) is well defined for every piecewise constant
function g and that |L,,(g)| < () ]|glloo-
ii. Show that L, can be uniquely extended to a positive continuous
linear form on £°°(I) of norm u(I), which we still denote by L,,.
b. Show that, for every positive linear form L on ¢°°(I), there is a
unique p € A(I) such that L = L,,.
c. Describe the topological dual of £°([).
d. i. If fe ¢'(I) and f > 0, define a map py on 2P (I) by setting

ur(A) = 3 £0).

i€A

Show that u; € A(I). Write down L,,, explicitly.

ii. It is a classical consequence of the axiom of choice that, given any
infinite set E, there is a finitely additive function 2(E) — {0,1}
that is not identically zero! and assigns to every finite subset of
E the value 0. Let p be such a function for the set I. Show that
there exists no f € €!(I) such that f > 0 and u = ps. Deduce
that there cannot be f € ¢!(I) such that

Lu(9) =) f(i)g(i) for all g € £=(I).
i€l

6. About the topological dual of L°. We say that a linear form T on L®(m)
satisfies Property (P) if, for every decreasing sequence (fy) of Lg’(m)
that converges m-almost everywhere to 0, the sequence (T f,,) converges
to 0.

a. Take g € L!(m). Define the linear form T, on L>(m) by setting

T,(f) = / fodm.

Show that T is continuous, that it has Property (P), and that its
norm in (L®(m))’ equals | g|},.

b. Consider a continuous and positive linear form T on L (m) that
has Property (P). Show that there exists a unique g > 0 in L'(m)
such that T = Tj,.

Hint. Define a measure X of finite mass on # by A(A) = T(14).
Then imitate the proof of Lemma 2.2, using the remark made on page
146 about the denseness of piecewise constant functions in L>(m).

c. Let T be a continuous linear form on LY (m) that satisfies Property

(P). Define T* and T~ according to the method of Theorem 4.1 on

tIf 4 is such a function, the set & = u~'({1}) is called an witrafilter on I.
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page 87 (see Remark 2 on page 88). Show that T+ and T~ belong
to (Lg’(m))’ and satisfy (P).

Hint. Let (f,) be an increasing sequence of positive functions in
L*°(m) that converges almost everywhere to f € L>°(m). Show that,
if g is #-measurable and 0 < g < f, then

T(g9) = lim T(inf(g, fa)) < liminf T*(fy).

Deduce that lim, 0 T (fn) = T*(f).

. Deduce from the facts above that the map from L!(m) to (L*°(m))’

defined by g — T, is an isometry whose image consists of those
elements of (L°°(m))’ that have Property (P).

8. The Radon-Nikodym Theorem

a.

Let v be a o-finite measure on & such that any A € & of m-
measure zero has v-measure zero. Show that there exists a positive
measurable function g such that

u(A)=/gdm for all A€ #.
A

Hint. Reduce to the case where v has finite mass. Then show that
the map f — [ fdv defined on L°(m) is a continuous linear form
satisfying Property (P) of Exercise 5, and use the result in the last
question of that exercise.

Show that this result remains true if we assume that m is a positive
Radon measure and v is a bounded complex Radon measure on X,
and do not require g to be positive, but merely in L}(m).

Hint. Apply the previous question to the positive measures (Rev)*,
(Rev)~, (Imv)*, and (Imv)~, defined according to the notation of
Theorem 4.1 on page 87 and the discussion on page 89.

7. Conditional ezpectation in LP. Let ' be a o-algebra contained in &
and let m’ be the restriction of m to #’. Suppose m’ is o-finite.

a.

b.

Suppose p € (1,00]. Show that, for every f € LP(m), there exists
a unique f € LP(m’) such that, for every element A of #’ of finite

measure,
/ fdm = / fam'.
A A

Hint. Let ;,)' be the conjugate exponent of p. Consider the linear
form on L? (m’) defined by g — [ gf dm and apply Theorem 2.1 on

page 159. _
Show that, for every f € L'(m), there exists a unique f € L}(m’)
such that, for every element A of ',

/Afdm=/;fdm’.
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Hint. Argue as in the preceding question, using Exercise 5d above
instead of Theorem 2.1.

Suppose p € [1,00]. Show that the map T, from LP(m) to LP(m')
defined by T(f) = f is linear and continuous, and that it satisfies
Il <1,

C

f20 = T,f >0,

and T,f = f for all f € LP(m’), where we have identified LP(m')
with a subspace of LP(m).

d. Show that T3 is the operator of orthogonal projection from L2?(m)

onto L%(m/).

Show that, if 1 < p,q < 00, then T, = Ty on LP(m) N L9(m). Thus

we can define an operator T on Upell. oo) LP (m) whose restriction to

each LP(m) is Tp,. We call T the operator of conditional ezpectation

given F'.

8. Suppose p, g € [1,00). Let T be a continuous linear map from LP((0, 1))
to L9((0,1)). Show that there exists a function K from (0, 1)? to K with
these properties: For every z € (0,1), the function y — K(z,y) lies in
£7((0,1)) (where p' is the conjugate exponent of p), and

e

/ “Ty)dy = [ K@) fw)dy forall f € L((0,1)) and z € (0,1).
0 0

9. Weak convergence in LP spaces. Examples. Let p € [1,00] and p’ be con-
jugate exponents. We say that a sequence (fn)nen in LP(m) converges
weakly to an element f of LP(m) if

lim / fogdm = / fgdm for all g € L7 (m).

To avoid confusion, when a sequence in LP(m) converges in the sense of

the LP(m) norm we will say here that it converges strongly in LP(m).t

a. Prove that every sequence in LP(m) that converges strongly also
converges weakly.

b. Show that a sequence (f,) in LP(m) converges weakly to f € LP(m)
if and only if it is bounded and,

~-ifp=1, lim /f,.dm:/fdm for all Ac &F;
n—++00 A A

tMore generally, a sequence (fn) in a normed vector space E is said to converge
weakly to f € E if, for every L € E’, the sequence (L fr) converges to Lf. A sequence
(Ln) in E' is said to converge weakly-x to L € E' if, for every f € E, the sequence
(Lnf) converges to Lf. The definition given in the text for LP spaces corresponds, in
the case p = oo, to weak-'t convergence in L, considered as the topological dual of L';
If 1 < p< oo, LP has L? as its dual, but L? can also be considered as the dual of LP
(Theorem 2.1). In this case, weak convergence and weak-* convergence coincide.
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-ifp> l’nETwAf"dm=Afdm for all A€ # with m(A) < oo.

Hint. Use the Banach-Steinhaus Theorem (Exercise 6 on page 22),
Proposition 4.3 on page 19, and the remark on page 146.

. Suppose that 1 < p < 0o. Show that a sequence (fy) in £ converges
weakly to f € € if and only if it is bounded and

nll;t.’l_loofn(i) = f(i) forallie N.

. Schur’s Lemma. Show that a sequence in £! converges weakly if and
only if it converges strongly (to the same limit).
Hint. Suppose otherwise.

i.

iii.

iv.

Show that there exists a sequence (f,,) of elements of £! of unit
norm that converges weakly to 0 and thus, in particular, such
that f,(i) — O for every i € N.

i. Construct by induction two strictly increasing sequences of in-

tegers (I;) and (n;) such that, for every integer j,

I

+00
Y, )<t and Y || <}

=0 i=l+1

Let h : N — K satisfy the following properties: If i is such that
Ii-y < i < Ij, then lh(i)l =1 and fp,(§)h(}) = lf,.,(i)l. Show
that, for every integer j,

I
S e RG) 2 E

i=I i-1+1
and deduce that
+00
3 fasGi)RG)| 2 &
=0
Deduce that the sequence (fy;) does not converge weakly to 0.

Finish the proof.

. Suppose that m is Lebesgue measure on the Borel o-algebra of R¢
and that 1 < p < co. Let f € LP vanish outside the unit ball of R¢
and have norm 1 in L?. For each n € N, set f,,(z) = n%? f(nz). Show
that the sequence (f5) is a sequence of norm 1 in L? that converges
almost everywhere and weakly (but not strongly) to 0 in LP.
Suppose m is Lebesgue measure on the interval (0,1). Show that the
sequence (f,) defined by f,(z) = €%**™* converges weakly (but not
strongly) to 0 in every LP, for 1 < p < oo, and that it does not
converge almost everywhere.

Hint. You might start with the case p=2 (see Exercise 1 on page 129).
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10.

11.

12.

Weak convergence in LP spaces, continued. Let p € (1,00] and p’ be

conjugate exponents.

a. Suppose LP(m) is separable (or, which is the same, that L!(m) is
separable: see Exercise 13b on page 154). Show that every bounded
sequence in LP(m) has a weakly convergent subsequence.

Hint. Argue as in the first part of the proof of Theorem 3.7 on
page 115.

b. Let (f,) be a bounded sequence in LP(m).

i. Show that there exists a o-algebra #’ that is separable (in the
sense of Exercise 13 on page 153), contained in #, and satisfies
these properties:

- For every n € N, f, has a #'-measurable representative.
- The restriction m’ of the measure m to #’ is o-finite.

ii. Pr9ve that, for every g € LP(m), there exists an element g’ €
LP(m') such that

/fgdm = /fg'dm' for all f € LP(m’).

Hint. Use the operator T,y defined in Exercise 7 on page 165.
iii. Show that the sequence (f,) has a weakly convergent subse-
quence in LP(m).
Hint. By Exercise 13 on page 153, the space L? (m') is separable.
Let (cn)nez be a sequence of complex numbers. Define functions S, and
K., by setting

n ) 1 m-1
Sn(z) = Z cre’ s, Kn(z) = ™ Z Sn(z).
k=-n n=0
Show that, if the sequence (Kj,) is bounded in LP((—w,n)), with 1 <
P < 0o, there exists an element f of LP((—w, 7)) such that

Cp = 1 f(z)e~™"*dz forallnecZ.
21 J

Hint. Extract from the sequence (K,) a subsequence that converges
weakly in LP((—m, 7)) (see Exercise 10). The weak limit of this subse-
quence can be used for f.

We assume that m is a Radon measure and use the notation and defi-
nitions of Exercise 19 on page 159. Fix p € [1,00) and denote by p’ the
conjugate exponent of p.

a. Forge L{.", denote by T the linear form on Lf, _ defined by

T,f = /fgdm.
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Show that this defines a linear isomorphism between L? and the
space (L}, )’ of continuous linear forms on L}, . (with the metric d).
Hint. To prove surjectivity, considerer a contnnuous linear form T
on Lf, . Show that there exists g € L? such that Tf = [ fgdm for
every f € LP. Then show that the support of g is compact, and finish
the proof.

b. A linear form T on L? is said to be continuous if, for every compact
K in X, the restriction of T to the space {f € L? : Supp f C K}
with the norm || ||, is continuous. We denote by (L?)' the set of
continuous linear forms on L2. If g € L,oc, we denote by T, the
linear form on L? defined by Tg f,= [ fgdm. Show that this defines
a linear momorphlsm between L;c and (L?)".

Hint. Take T € (L”)’ Show that, for every compact K, there exists
a unique gk € L’ supported within K and such that

T(kf) = /legxdm for all f € LP.

Then show that you can define g € Lf;c by setting 1x g = gk for all

K compact. Wrap up.
3. Assume that m(X) < +oo and that there exists a sequence (A, )nen of
measurable subsets of X such that the sequence (14, )nen is fundamen-
tal in L!(m) (see Exercise 13b on page 154). Show that the expression

=X 2| [ am
neN
defines a norm on L*°(m) and that the subsets of L>(m) bounded with
respect to the norm || - || are relatively compact with respect to |- |.
(Use Exercises 9 and 10.) Show that the space (L°(m), |- |) is complete
if and only if it has finite dimension.
Hint. Use Exercise 4 on page 54.

3 Convolution

Notation. In thls section, the measure space (X, #) under study will be
the space X = R? with its Borel o-algebra # = #(X), and the measure
will be Lebesgue measure m = A = dz, ...dz4.

If f is a function from R? to K, we denote by f the function on R?
defined by z — f(—z); moreover, if a € RY, we set 7.f(z) = f(z — a).
The function 7, f thus defined is called the translate of f by a. The maps
f+ f and f — 7,f are linear and preserve measurability. Since Lebesgue
measure is invariant under symmetries and translations, these operations
are also defined on equivalence classes of functions modulo sets of Lebesgue
measure zero.
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If £ is a function (or equivalence class of functions) and a,b € R, we
clearly have

Ta(nf) = T+, Taf = (1-af); of = [.

Proposition 3.1 If1 < p < oo, the family (75)acpe forms an abelian
group of isomeltries of LP.

If1<p< ooandf € LP, the map ®; from R? to L defined by
®;:a > 7.f is uniformly continuous.

Proof. The first assertion follows immediately from the remarks preceding
the theorem (in particular, from the translation invariance of ).

To prove the second assertion, since ||7af — T fllp = lI7Ta=6f — fllp, it i8
enough to show that ®; is contmuous at 0. Suppose first that f € C.(R%).
Then f is uniformly continuous on R? and so, if € > 0, there exists n > 0
such that |y — ¥'| < n implies |f(y) & )| < €. Hence, if |a| < n,

1/p
Irat = £l = [ 1162 - @) - sG@IP )
< e(A(a + Supp f) + A(Supp £))'/;

that is to say,
lIraf — fllp < €(22(Supp £))'’?,

showing that ®; is continuous at 0 in this case.

Now, if f is any element of L?, take a sequence (f,) in C-(R%) converging
to f in L? (see Theorem 1.6 on page 146). The continuity of ®; at 0 then
follows from the fact that the functions &, converge uniformly to ®; (since
@1, (a) — s(a)llp = Il fn = fllp)- a

When f € L™, the map a — 7,f from R? to L™ is continuous if and
only if f has a uniformly continuous representative; see Exercise 6 below.

Let p,p’ € [1,00] be conjugate exponents. If f € LP and g 6 L*, the
convolution of f and g is, by definition, the function f * g on R? defined

by

(F+9@ = [ 1z - o) dy.
For z € R?, the function in the iintegrand is indeed integrable, being the
product of r,f € L? and g € L¥. Thus f * g is well-defined as a function

on R?. Using the invariance of Lebesgue measure under translations and
symmetries, one checks easily that

frg=g+/.
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Proposition 3.2 , Let p, P’ € [1,00| be conjugate exponents and suppose
JF € LP and g € LP. Then f * g is uniformly continuous and bounded, and

I * glleo < Iflipllglly-

Moreover, if 1 < p < 00, we have limz|,+o0 f * 9(Z) = 0; the same is true
if p=1 and g has compact support.

Proof. The Hélder inequality yields

|(f % 9)(z) = (f * 9)(=')| < Il7=f — 7= fllpllgllyy for all z,2’ € RY;

the uniform continuity of f * g if p < oo follows because of Proposition 3.1.
If p = 0o, we have p’ = 1 and the property remains true since f*g = g=* f.

We also have ||f * gllo < [Ifllplgllpr» by the Holder inequality and the
fact that |7z fll, = ||f]l, for every z. This implies, in particular, that the
bilinear map (f, g) — f *g is continuous as a map from L? x L* to Cb(lt")
with the uniform norm. Suppose that f € C.(R?) and that g € L™ has
compact support. We claim that

Supp(f * g) C Supp f + Suppg;

indeed, Supp f + Supp g is compact and for z ¢ Supp f + Suppg we have
Supp(7: f) N Supp g = (z — Supp f) N Suppg = @, so (f * g)(z) = 0. Since
Supp f+Suppg is compact, we conclude that f*g € Cc(R?). The last claim
of the proposition follows, because C.(R?) is dense in LP for 1 < p < o0
and because the uniform limit of a sequence of continuous functions with
compact support tends to 0 at infinity. (]

We will now extend the definition of the convolution product. Let f and
g be (equivalence classes of) Borel functions. We say that f and g are
convolvable if, for almost every z € RY, the product (7 f)g lies in L. If
f and g are convolvable, the convolution of f and g is, by definition, the
equivalence class of functions f * g defined almost everywhere by

(f +9)() = [ f(z - v)9(y) dy.

Clearly, f and g are convolvable if and only if g and f are, and in this case
frg=g+f.

By reasoning as in the proof of Proposition 3.2, we obtain the following
property.

Proposition 3.3 If f and g are convolvable equivalence classes of func-
tions,

Supp(f * g) C Supp f + Suppg.
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In particular, if f or g has compact support, we have

Supp(f * g) C Supp f + Suppg
(since, if F is closed and K is compact, F + K is closed). Thus, the con-
volution of two classes of functions with compact support has compact

support.
The next theorem presents a sufficient criterion for the existence of the

convolution. As usual, we set 1/0c0 = 0.

Theorem 3.4 (Young’s inequality) Suppose that p,q € [1,00] satisfy
1/p+1/qg>1, and let r be defined by 1/r = 1/p+1/q—1. If f € L? and
g € L9, then f and g are convolvable, fxg € L™, and

If*gllr < lIfllpllglle-
Note that this applies, in particular,tor =p=¢q=1.

Proof

1. We can assume that r < 00, since r = 00 corresponds to the case g = p’
treated in Proposition 3.2. Moreover, r < oo implies p, ¢ < oo (if p = oo,
for example, then ¢ = 1 and r = 00). We can also assume that f > 0
and g > 0, by substituting |f| and |g| for f and g.

2. Consider first the case wherep =1, 1 < ¢ < 00, and r = ¢q. By applying
the Holder inequality to the measure m = f), we get

/g(z -y)f(yay < (/gq(z — @) dy)l/q (/f(y) dy)l—l/q

and

J(foe oo ([f o) fa)”

By Fubini’s Theorem and the translation invariance of Lebesgue mea-
sure, the right-hand side of this inequality equals ||g||3 || f]|{. We deduce
that g and f are convolvable, that g * f € L9, and that ||g * fll; <
llgllq I fllx. The case where ¢ =1, 1 < p < 0o, and r = p is analogous.
3. Finally, take the case 1 < p,g < oo, so that max(p,q) < r < oo. We
continue to suppose, without loss of generality, that f,g > 0. Then

fz-y)gWw) = 7"z — y)g" " (W) £~ P/"(z - y)g" " (y).

Using the Hélder inequality with the conjugate exponents r and r' =
r/(r—1), we obtain

[1@-nswa
< ( / fP(z - y)g(y) dy)l/r ( / ==z -9~ dy)

1-1/r
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In the second integral on the right-hand side, we use Hélder’s inequal-
ity with the conjugate exponents p(r—1)/(r—p) and g(r—1)/(r—q) (to
check conjugacy use the relation 1/r = 1/p+ 1/q — 1). We obtain

[ a-nitwas([ro du)'ﬁ’ (fow dy)ﬁ,
which finally leads to

[ ([tesistiran) ge < ([ rra-srotrdoas) ut5-= ot

The double integral in this expression equals || f||b |lgll§, once more by
Fubini’s Theorem. We deduce that f and g are convolvable, that fxg €

L, and that [|f * gll, < [|fllpllgllg- o

Proposition 3.5 Let p,q,r € [1,+00] be such that 1/p+1/q+1/r > 2.
IffeLP,ge L9, and h € L7, then fx(g*h) and (f * g) x h are well
defined and belong to L*, where s is given by1/s=1/p+1/q+1/r—-2. In
addition,

fr(grhy=(feg)sh
Proof. That f * (g * h) and (f = g) * h are well defined and belong to L*
follows from Theorem 3.4. Next,

(f+ (g h)(z) = / [ 1@ - vew - 2)h(z) dydz
- / f(z -y - 2)a(w)h(z) dydz = ((f + 9) » h) (=),

which concludes the proof. (As an exercise, the reader might justify these
formal calculations, especially the use of Fubini’s Theorem.) ]

Corollary 3.6 The operations + and * make L' into a commutative ring.

Proof. The convolution product is commutative and, by Theorem 3.4, L!
is closed under it. Proposition 3.5 says it is also associative. The rest is
obvious. O

In addition, L! is a Banach space and * is a bilinear map from L' x L!
to L! such that

If +glly < Ifliligh for all f,g € L.

We say that the convolution product makes L! into a commutative Ba-
nach algebra.
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Approzimations of Unity

The ring (L', +, *) has no unity (see Exercise 1 below). However, there are
entities that behave under convolution approximately like unity, in a sense
we now make precise.
By definition, an approximation of unity or Dirac sequence is any

sequence (¢n)nen in L! satisfying these properties:

~ For every n € N, we have ¢, > 0 and [ pn(z)dz = 1.

- For every € > 0,

lim en(z)dz =0.

n—+o00 {Iz|>€}
For example, one can start from any nonnegative-valued function ¢ € L!
such that [(z)dz =1, and set, forn > 1,
en(z) = ntp(nz).
A change of variables shows that [ ¢n(z)dz = 1; moreover,

f on(z)dz = / o(z) d,
{lz|>¢} {Iz|>ne}

and this last expression tends to 0 as n tends to infinity, by the Dominated
Convergence Theorem. (See also Exercise 2 on page 36.) If, in addition, ¢
is continuous and supported within B(0, 1), the sequence (y,) constructed
in this way is called a normal Dirac sequence.

The alternative name “approximation of unity” for Dirac sequences is
explained by the next proposition.

Proposition 3.7 Suppose p € [1,00) and let (pn)nen be a Dirac se-
guence. If f € LP, then
fron€L? and ||fxeallp <|Ifll, for everyn €N,
and
lim f*p,=f inlL".

n—+o00

Proof. That f * o, € LP and || f * pn||p < ||f|lp follows from Theorem 3.4.
Further, for almost every z,

1£(@) - (f % @n)(@)| < / 1£(2) - f(& - v)| only) dy

1/p

< ( J15@ - st - P ente) dy) ,

the latter inequality being a consequence of Holder’s inequality applied to
the measure ¢, (y) dy. We deduce that

1f = fopnlB < / 1 = 7y 1B on(y) dy.
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Now, for every € > 0, we can write

/ If — 7 fIBen(y) dy < sup ||f — 7 fIIB + (21IFllp)° / #n(y) dy,
lyl<e {lyl>€}

by breaking R into the disjoint union of {|y| < €} and {|y| > ¢}. It follows
that

limsup ||f — f * @nllp < sup [|f — 7, fllp.
n—+00 lyl<e

Now it suffices to apply Proposition 3.1. a

Remark. If we assume in addition that, for every n € N, the function
¢n lies in L™ and has compact support, Proposition 3.2 implies that
f*¢n € Co(R?) for every n € N. This happens, in particular, when (p,) is
a normal Dirac sequence. In this particular case, we see from the preceding
calculations that, for any p € [1,00), any f € L?, and any n € N,

Wf=F*enllp < sup IIf —7yfllp
Jyl<1/n

This will lead to a criterion of relative compactness in LP.

Relative Compactness in L?

Theorem 3.8 Suppose p € [1,00) and let H be a subset of LP. In order
for H to be relatively compact in LP, it is necessary and sufficient that the
following three properties be satisfied:

i. H is bounded in LP.

ii. lim |f(z)|” dz = 0 uniformly with respect to f € H.
R—+00 {jz|>R}

iii. lim,072f = f in L?, uniformly with respect to f € H.

Proof. Since LP is complete, H is relatively compact if and only if it is
precompact (Theorem 3.3 on page 14).

Suppose H is precompact. Takee > Q0 and let f,,..., fi be elements of LP
such that the balls B(f},¢),. .., B(fi,€) cover H. In particular, property i
of the theorem is satisfied. By the Dominated Convergence Theorem, there
exists Ry > 0 such that, for any R > Ry and any j € {1,...,k},

(fpere)” <o

thus, for any R > Ry and any f € H,

Y
(/ |f(z)|"dz) ’ < 2.
{lz|>R}
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Similarly, by Proposition 3.1, there exists n > 0 such that, for any a with
la| <nand any j € {1,...,k},

I7afs — fillp <€,
and so, for any a with |a| <nand any f € H,
Iraf = flip < 3e.

Thus, if H is precompact, properties i-iii of the theorem are satisfied.
Suppose, conversely, that those three properties are satisfied, and fix
€ > 0. By property ii, there exists R > 0 such that

(/{lzlm}l'f(x)lpdx)lhD <e forall f€H.

Let (pn) be a normal Dirac sequence. As we saw in the remark preceding
the theorem, we have, for any n > 1 and any f € L?,

lf = Ff*@nllp < sup [If =7y fllp
lyi<i/n

Hence, by property iii, there exists an integer N € N such that
If —fxenllp<e forall fe H.
Now, by Hélder’s inequality, for any z,z’ € R? we have
|(f * on)(z) = (f £ oN)(@)| S T2 f — T2 fllpllonlly  forall f € LP,

where p’ is the conjugate exponent of p; whereas the invariance properties
of the Lebesgue measure imply that

"Tzf - Tz’f"p =Tz f - f"P
Thus, for every f € H and every z,z’ € R?,
|(f = on) (@) — (f *on)(@")| < liTz—atf = Sfllpllonlly

and
|(f *on)(@)]| < Ifllpllenly-

Then it follows from assumptions i and iii and from the Ascoli Theorem
(page 44) that the subset of C(B(0, R)) consisting of the restrictions to
B(0, R) of the functions (continuous on R?) f « pn, with f € H, is rel-
atively compact and so precompact in C(B(0, R)). Hence there exists a
finite sequence (f,,..., fx) of elements of H such that, for every f € H,
there exists j € {1,...,k} such that

|(f *en)(2) = (f; * n)(2)]| < eX(B(O,R)™V? for all z € B(0, R),
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and s0

=g (f s (z)|v¢,)"’ - If,(z)l’dz)l/’

+Uf—feonlp+Ifi—fi*onlp

+A(B(0,R))'/? sup |(f+on)(z)- (f5+¢n)(2)|,
z€B(0,R)
this last result being obtained via the triangle inequality starting from

If = £l £ Ygzs>ry 1f1 + 1z > my 1 il
+|f=foonl+If; = firenl+yz<ry |f *on — fi* oN].

Pulling everything together we obtain || f — f;||, < 5¢, which shows that H
is precompact. a

Ezercises
1. a. Let (¢n)neN be a normal Dirac sequence. Show that (p,) converges
almost everywhere to 0. Deduce that it does not converge in L.
b. Deduce that the algebra L! does not have a unity; that is, there is
no element g of L! such that f+g = f forall f € L.
c. More generally, show that, if p € |1, 00], there is no element g of L’
such that f*g = f for all f € LP.
2. Hardy’s inequality. Let p € (1,00) and p’ be conjugate exponents. If f
is a function or equivalence class of functions on (0, +00), define f on
R by
f(z) = e/7f(e*).
Finally, if f € LP((0, +00)), define

Tf(z) = %Azf(t)& for z > 0.

a. Show that f € L?((0,+00)) if and only if f € LP(R) and that, in

this case, || fllLo((0,+00)) = I fllLom)-
b. Let g be the function defined on R by

9(z) = 7% 19, 00)(2).
Show that g € L!(R) and that, if f € LP((0, +00)), we have Tf =

f+g. Deduce that T is a continuous linear operator from LP((0, +00))
to itself, of norm at most p’.
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c. For n € N, let f, be the function defined on (0, +00) by

fa(t) = (nt) 7P 1y o) ().

Show that, for every n € N, we have f, € LP((0,+00)) and

| fall o0, +00)) = 1-

Show also that limp 400 |7 fnllL7((0,4+00)) = #/- Deduce that T has
norm p’. Show likewise that, for all z > 0, limy,_ 400 T fa(z) = 0.
(See also Exercise 17 on page 228.)
3. The convolution product in €P(Z). We say that two functions f and ¢
from Z to C are convolvable if

Y 1fn - k)| |g(k)] < 400 for all n € Z.
keZ

If this is the case, the convolution f * g is defined by

(f*g)n)=)_ f(n—k)g(k) forallneZ.

kez

a. Show that f and g are convolvable if and only if g and f are, and
that in this case fxg=g=* f.

b. Let p,q € [1,00] be such that 1/p+ 1/g > 1, and suppose f € £°(Z)
and g € €9(Z). Show that f and g are convolvable, that f*g € £7(Z),
where 1/r =1/p+1/q -1, and that || * gli- < ||fllp llglle.

c. Show that the normed space £!(Z) with the operation * is a com-
mutative Banach algebra with unity.

d. i, For m € Z, we denote by 6,, the function on Z defined by
O0m(n) =1 if n = m and é6,,(n) =0 otherwise. Show that, for
m,pEZ, 6m *0p = bmip.

ii. Let .# be the set of continuous linear forms & on £!(Z) that are
not identically zero and satisfy

®(f +g) = ®(f)®(g9) forall f,g € £'(Z).
Let U be the set of complex numbers of absolute value 1. If u€ U,
prove that the linear form defined on £}(Z) by
u(f) = Y ukf (k)
kez

belongs to .

iii. Show that the map u — &, thus defined is a bijection between
U and 4.
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Hint. If ® € .#, there exists @ € £°°(Z) such that
&(f) =Y f(k)p(k) for all f € £1(Z).
keZ

Now show, using part i, that p(n + m) = p(n)p(m) for every
n,m € Z; deduce that ¢ is of the form ¢(n) = u", with u € U.
4. We denote by - the scalar product on RY.
a. Riemann-Lebesgue Lemma. Show that, if f € L',

lim [ e=¢f(z)dz =0.

1€]—+00

Hint. Show that, if £ # 0,
F(f,6) = / =€ f(2) dz = - F(re¢ e -£).

Deduce that |2F(f,€)| < Ilf = Txe/ig2 fl1-
b. For f € L}, we define a map f by

j€) = / ¢=€f(z)dz for all £ € RY.

Prove that f € Co(R?) and that the uniform norm of f is at most

£l
c. Show that the map & : L' — Co(RY) defined by &(f) = fisa
continuous linear map and that

O(f xg) = d(f)®(g) forall f,ge L'

The map & is called a morphism of Banach algebras from (L!, )
to Co(R?) (where the latter space is considered with its ordinary
multiplication).
8. The spectrum of the algebra L'. The goal of this exercise is to charac-
terize the spectrum of the algebra L!, that is, the set .# of nonzero
continuous linear forms ® on L! such that

&(f xg) = B(f)®(g) forall f,ge L.

Once more we denote by - the scalar product on R¢.
a. Show that, for every £ € R?, the linear form ®¢ defined by

Be(f) = / ¢4 f(g)dz for all f € L}

belongs to .#.
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b. Let ¢ be a bounded continuous function from R to C, not identically
zero and such that

(s +1t) = p(s)p(t) for all 5,t € RY.

i. Show that (0) = 1.
fi. Show that, for every ¢ > 0,

t1+e ta+e
/ e / (s)ds = (/ ¥(8) da)gp(t) for all t € R%.
t) ta (0.]¢

Deduce that ¢ is of class C?, and then that
9 1) = 22(0)p(t) forallje{1,...,d} and ¢ € RE.
9t 9t

iii. Deduge that there exists £ € R? such that (t) = et for every
teR%
Hint. Set a; = (0p/8%,)(0). Show that the function t — p(t)e~%*
is constant.

c. Let ® be an element of .#.
i. Show that there exists ¢ € L* such that

8(f) = / f@)p(z)dz forall fe L.

ii. Show that, for every element f of L!,
&(1af) = ®(f)p(a) for almost every a € R%.
Hint. Show that, for every g € L?,

j 3(f)¢(a)g(a) da = B(f)B(g) = B(f + 9)

= [ ([ 1z - a1g(0)da) ote) do
= [#(r)ote)da.
iii. Deduce that ¢ has a representative in Cy(R?) (which we still
denote by ¢) satisfying
®(1of) = ®(f)p(a) forall f € L' and a € RY.
iv. Then show that
o(a +b) = p(a)p(b) for all a,b € R?

and deduce that there exists £ € R? such that o(t) = %'t for
every t € RY.
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d. Show that the map £ — ®; is a bijection between R? and 4.

6. Suppose f € L™.
a. Show that if f admits a uniformly continuous representative, the
map R? - L™ given by a — 7, f is continuous.
b. Conversely, suppose the map a — 7, f from R? to L™ is continuous.

i. Show that, for almost every z in RY,
|£@) — f@—9)| < Imyf — flloo for almost every y € RY.

Hint. Use Fubini’s Theorem.
ii. Let (¢n) be a Dirac sequence. Show that

1f = £ % @nlloo < [ 17uf = Flloo@n(y) dy.

Deduce that
nlggo If — £ *nlloc = 0.

iii. Show that f has a uniformly continuous representative.

7. Let (¢n)nen be a norma.l Dirac sequence. Show that, for every continu-
ous function f on R, the sequence (f *yn)neN converges to f uniformly
on every compact of R

8. Convolution semigroups. Consider a family (p;)icg+- of positive ele-
ments of L} satisfying these conditions:

- [pi(z)dz=1forallt>0.
- Dt4s =Py *p, for all t,s > 0.
- lim¢o f{lsl>e} pi(z)dz =0 for all £ > 0.
Such a family will be called a convolution semigroup in the sequel.
a. Suppose p € {1,00). For every f € L?, set P.f = p; * f. Show the
following facts:
i. For every t > 0, P, is a continuous linear map of norm 1 from
L? to LP.
ii. PP, = P,;, forall t,s > 0.
iii. im0 Pif = f in L? for all f € L*.
iv. For all f € L?, the map t — P, f from R** to L? is continuous.
b. The Gaussian semigroup. Show that the family (p;) defined by

—_e—lzt2t
satisfies the conditions for a convolution semigroup.
. —pd
Hint. Recall that ff::e *"dr = /x. To prove that p, * p, = py4s,
use the fact that Lebesgue measure is translation invariant.
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c. The Cauchy semigroup. Now assume that d = 1. Show that the
family (p.) defined by

@=Lt t_

)= e

satisfies the conditions for a convolution semigroup.

Hint. To show that p; * p, = pi4,, start by checking that
1 1 1

24+(x-y)? 2+y2  (22+(t+3)?)(z2+(t—3s)?)

N 2z(z—y)+(z2+s%-12) 2zy+(zz+t2—32))
t2+(z—y)? 82 +y? '

d. Suppose p = oo. Show that properties i and ii are still satisfied, and
that properties iii and iv are satisfied for f € L™ if and only if f has
a uniformly continuous representative.

e. Show that the result of part a is still true if L? is replaced everywhere
by the space Co(R?) with the uniform norm, or by the space C,, 5(R)
of uniformly continuous bounded functions with the uniform norm.

9. We adopt the definitions and notation of Exercise 19 on page 159, in
the special case where m is Lebesgue measure on R%.
a. i. Suppose p € [1,00) and let H be a subset of L? satisfying condi-
tions i and iii of Theorem 3.8. Show that H is relatively compact
in L}, _ with the metric d.
Hint. Revisit the proof of Theorem 3.8.
ii. Let p,q,r € [1,+00) be such that 1/r = 1/p+ 1/q — 1. Show
that, if G € LP, the set

{G+f:feLand|fl, <1}

is relatively compact in (L], ,d).

b. Let p,q,r € [1, +00) be such that 1/r = 1/p+1/g—1. Show that any
function f € LT can be convolved with any g € L%, and that for
such functions we have f+g € L] and Supp(f+*g) C Supp f+Suppg.

c. Show that, if p,p’ € 1, 00] are conjugate exponents, the convolution
of a function f € L?_ and a function g € L belongs to C(RY).

d. Suppose m € N* U{oo}. Show that, if f € L} _ and g is a function of
class C™ with compact support, f * g is of class C™ and, for every
(p1,...,pa) € N? such that [p| = py + -+ + pa < m, we have

vl _ olrlg
o a9 =1 (83:{'_‘ ...Ozﬂ‘)'

e. Show that this equation remains true if we assume that f € L} and
that g is of class C™ with arbitrary support.
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10. Compactness in P(I), for 0 < p < 0o. Let I be a set.
a. Suppose p € [1,00). Show that a subset H in £P(I) is relatively
compact if and only if it is bounded and there exists, for every £ > 0,
a finite subset J of I such that

Mlnsfllp<e forall feH.

(Compare with Theorem 3.8.)
Hint. Use Exercise 8 on page 17.

b. Suppose p € (0,1). Consider the space £°(I) with the metric d, de-
fined in Exercise 1 on page 147. Show that the result of the preceding
question remains valid if we replace || - ||, by |- |, = dp(-,0)-

Hint. Use Exercise 1a on page 148 to adapt the method above.
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Spectra,

1 Operators on Banach Spaces

We fix here a Banach space E over K = R or C, and we wish to study the
(noncommutative) Banach algebra L(FE) of continuous linear maps from E
to E, the product operation being composition. We use the same notation
| -]| for the norm on E and the associated norm on L(E), and we denote
by I the identity map on E. Thus, I is the unity of the algebra L(E). An
element T € L(E) is called invertible if it has an inverse in L(E); that is,
if there exists a continuous linear map S such that T'S = ST = I. Because
composition is associative, T has an inverse in L(E) if and only if it has
a right inverse (an element U such that TU = I) and a left inverse (an
element V such that VT = I) in L(E). Clearly, if T is invertible, it is
bijective and its inverse in L(E) is unique and equals the inverse map 7!,
Thus, for T € L(E), the following properties are equivalent:

- T is invertible.
- T is bijective and T~! is continuous.
- kerT = {0}, imT = E, and T"! is continuous.

In fact, the map inverse to a bijective continuous linear operator from E
onto E is always continuous; this follows directly from the Open Mapping
Theorem, itself a consequence of Baire’s Theorem (Exercise 6 on page 22).
We will not make use of this result here.

Finally, we note that, if T and S are invertible elements of L(E), the
composition T'S is also invertible and (7'S)~! = §~!T-1.
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We make the convention that 7% = I for T € L(E).

Proposition 1.1 The set £ of invertible elements in L(E) is an open
subset of L(E) containing I. The map T — T~ from £ to £ is continu-
ous.

More precisely, if To € £ and ||T — To|| < | Ty *||~!, then T € £ and

+00 +o00
T =) (I-T;'T)'T;' =) T3 (1 - TT; )"
n=0 n=0

Proof. Take Tp € #.

1. First,
I - T3 'T|| = | Ty "(To - T)I| < IT5 M1 IT - Tol|

and
I - TT3 ') = I(To - T)T5 || < IT - Toll 1T "I

Thus, if |T — To|| < |ITy '~ the series

+00 +o00
Y(I-T'T)"15" and Y T5'(I-TT5')"
=0 n=0

converge absolutely and so converge. At the same time, one easily sees
by induction that, for all n € N,

(I-T5'T)" Ty =T (1 - TT5 )" -
the equality is certainly true for n = 0 and, if it holds for n € N, we
have
(I-1'D)"' T = (1 - ' ) (T - T ' TT, )

=(I-T,'T)" T\ (I - TT )
=Ty (I -TTy )™

Thus, the two series are equal. Let S be their sum.

2. We check that S is indeed the inverse of T'.
ST = STo((Ty 'T - I) + 1)

+00 oo
=-SY(u-1;'T)"" + Y (-1 = 1.
n=0 =0

(These manipulations are justified because the product is a continuous
bilinear map from L(E)x L(FE) to L(FE) and because the series converge.)
Likewise,

TS = ((TTy' - 1)+ I)ToS

+00 oo
=-Y(u-1;)y""+ Y (I -TI ) = 1.
0

n=0 n=
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We fix here a Banach space E over K = R or C, and we wish to study the
(noncommutative) Banach algebra L(E) of continuous linear maps from E
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Il - || for the norm on E and the associated norm on L(E), and we denote
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Thus, for T € L(E), the following properties are equivalent:

- T is invertible.
- T is bijective and T~! is continuous.
- kerT = {0}, imT = E, and T! is continuous.

In fact, the map inverse to a bijective continuous linear operator from E
onto E is always continuous; this follows directly from the Open Mapping
Theorem, itself a consequence of Baire’s Theorem (Exercise 6 on page 22).
We will not make use of this result here.

Finally, we note that, if T and S are invertible elements of L(E), the
composition T'S is also invertible and (T'S)~! = §~!T-1.
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Conversely, if h € C?([0,1)) satisfies (1), the function f = h’ is a solution
of (#+). Now, it is easy to check that the differential equation (1) has as its
unique solution

ez/o\ z
h(z) = 5 / g(t)e /gt
0

Therefore (*+) is satisfied if and only if

1@ =3 (s + 5 [ st0ea),

whence we deduce that ) is a regular value of T and that

z/ z
(1-1)"9)@) = 3 (o) + 5= [ st at).

To summarize, ev(T) = @, o(T) = {0}, and p(T) =K\ {0}.

Proposition 1.2 Suppose T € L(E). The limit limp_o0 || T"||Y/™ exists
and
lim |T7/" = inf |T7'/".

n—+00 neN*

This value is denoted by r(T). Moreover, the spectrum o(T) is a compact
subset of K and
Al < 7(T) for all X € o(T).

In particular, we see that r(T') < ||T|| and so
Al S IT|| for all X € o(T).
Proof
1. Set a = infpene [|T7]|*/™. Certainly we have
a < liminf | T™|/".
n—++400
Take ¢ > 0 and let ng € N* be such that |T™||}/" < a + €. Given
n € N°, we can write, by dividing with remainder, n = p(n)no + q(n),
with p(n) € N, ¢g(n) € N and 0 < ¢(n) < no. Thus
T < TP T,

Since limp,_,4+00g(n)/n = 0 and lim,—, 400 P(n)/n = 1/ng, we deduce
that

limsup ||T™||}/™ < |T™||/" < a +e.

n—+400

This holds for all £ > 0, 50 limn_ 400 [T[|'/™ = a.
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2. The map A — (M —T) from K to L(E) is clearly continuous. Therefore,
by Proposition 1.1, p(T) is open and o(T) is closed. All that remains to
show is that o(T') is bounded by r(T').

3. Take )\ € K such that |A| > r(T), and consider r € (r(T), |Al). Since
r > r(T), there exists an integer no € N* such that

[T <™ for all n > ng.

The series 3720 A~"~1T™ converges absolutely in L(E) (since r < |A|)
and it is easy to see that

(M - T)(+f A‘"“T“) = (+2.° A‘"“T"‘) A\ -T)=

and so that A € p(T). Since this holds for all |A\| > r(T), the proof is
complete. a

We take up again the operator T on E = C([0,1]) defined by equation
(*) on page 189. Clearly, ||T|| = 1. On the other hand, an easy inductive
computation shows that, for every n € N°,

/@ = [ ‘”(n ":),' (),

so that ||T"| < 1/n!, which implies that r(T") = 0. Here, then, r(T) < ||T||.
For T € L(E) and X € p(T), write
RO\T)= (M -T)"".
Proposition 1.3 Suppose T € L(E). For all A\, € p(T), we have
R(A\,T) — R(p,T) = (6 = )R\, T)R(p, T) = (s — A)R(u, T) R(A, T).

(This is called the resolvent equation.) Moreover, the map A — R(A,T)
from the open subset p(T) of K to L(E) is differentiable and

d 2
aR(A, T)=—-(R(\T))".

Proof. First,

R(A\,T) - R(p,T) = R(\,T) ((”I -T)~- (M- T)) R(p,T)
= (4 - AR, T)R(n,T),

which proves the resolvent equation. In particular,

%(R(A +h,T) - RAT)) = RO\, T)R(A+h,T),
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with h € K* and A\, A+h € p(T). By the continuity of the map A — R(A,T)
(an immediate consequence of Proposition 1.1) and the continuity of the
product in L(E), we obtain

1 ;
lim =(R(\+h,T) - R, T)) = —(RO, T)),

which concludes the proof. O

‘We know that, if E is finite-dimensional, the spectrum of T can be empty
if K = R but not if K = C, since d’Alembert’s Theorem (the Fundamental
Theorem of Algebra) guarantees that the characteristic polynomial of T
has at least one complex root. We shall show that this is also the case in
infinite dimension.

Theorem 1.4 Suppose T € L(E). If K = C, the spectrum o(T) of T is
nonempty, and
r(T) = max {|A| : X € o(T)}.

In contrast, T may have no eigenvalues, even when K = C, as shown by
the example on page 189.

The real number r(T) is called the spectral radius of T
Proof

1. For z € p(T), set R, = R(z,T). By step 3 in the proof of Proposition
1.2, we know that |z| > r(T) implies that

400
R, = Zz"‘“T",

n=0
the series converging absolutely in L(E). We deduce that, for every
t € (r(T), +00),

+00
Rigio = Ze-i(n-f-l)ﬂt—n-lTn’

n=0

the series converging uniformly with respect to 8 € R in L(E). Multi-
plying by (te®®)P+!, with p € N, and integrating the result from 0 to
2w, we obtain, by the continuity of the Riemann integral with values in
L(E) (see Exercise 5 on page 20, for instance),

2% +00 2x
/ (te“Y* Rypo df = 3 / (¢e)P~"T™ df = 207",
0 0

n=0

Thus, for every p € N and t > r(T),

1 2%
T? = o7 ‘/; (tew)”lﬂuu db.
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2. We now prove that the spectrum of T is nonempty. Assume the contrary.
Applying the preceding equality in the case p = 0, we have

I= % /o " 4O, edd for all t > r(T).
But, if we suppose that p(T) = C, the function Jp given by
1 2%
Jolt) = 5- /0 te® R, i0df

is defined and continuous on [0, +00) and is of class C! on (0, +00);
moreover

(t) 7 / (te"R.,u)dB for all t > 0.
(In what concerns differentiation under the integral sign, the Riemann

integral of functions with values in a Banach space behaves as that of
scalar functions.) But

%(te"&,u) = e""%(zR,)

z=tel®
and

]
z=te'®

%(tew&,u) = ite' —(zR,)

since we saw in Proposition 1.3 that the map z — R, from p(T) to L(E)
is differentiable (holomorphic). Thus

dlo,, 1 [0 -
E(t)—m/o w(te Ruu)dO—o forallt > 0.

We deduce, using the Mean Value Theorem for Banach-space valued
functions, that Jo is constant on [0, +00), which cannot be the case
since Jo(0) = 0 and Jo(t) = I for t > r(T'). This contradiction shows
that o(T) is nonempty.

8. Set p = max{|A\] : A € o(T)}. We know by Proposition 1.2 that p <
r(T). Forn € N* and t > p, set

2%
Ja(t) = El; /o (£69)™+1 Ry dO.

As before, we see that dJ,,/dt = 0 on (p,+00). Thus J,(t) = T for
every t > p. Now write M; = max {||Reese]| : 8 € [0,27]}. Then

IT") < t**'M, for alln € N* and t > p,
which implies that r(T') < ¢ for every t > p, and so that r(T) < p. O
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Now fix T € L(E). To every polynomial P = ap+a1X +- - -+ 8, X" with
coefficients in K, we can associate the operator P(T') € L(E) defined by
P(T)=a¢l +a:T+---+a,T".
Clearly, for any A\, u € K and P, Q € K[X],
(AP +pQ)(T) = AP(T)+pQ(T), PQ(T)=P(T)QAT), UT)=

In other words, the map P — P(T) from K[X] to L(E) is a morphism of
algebras with unity. We will compare the spectrum of P(T) with the image
under P of the spectrum of T.

Theorem 1.5 (spectral image) IfT € L(E) and P € K[X], we have
P(o(T)) C o(P(T)),

with eguality if K = C.

Proof

1. Take A € K. Since A is a root of the polynomial P — P()), there exists
a polynomial Q) € K[X] such that P — P(A) = (X — A)Qx. Then

P(T) — PO = (T = ADQA(T) = Qa(T)(T - AI).
Suppose that P()\) ¢ o(P(T)), and set § = (P(\)I — P(T))~". Then
A =T)QA(T)S =SQA(T)M -T) =

showing that (AI — T') is invertible, with inverse SQx(T) = QA(T)S;
thus A ¢ o(T). Thus A € o(T) implies P()\) € o(P(T)), which is to say
P(o(T)) C o(P(T)).

2. Suppose that K = C and that P has degree at least 1 (if P is constant,
the result is trivial). Take u € o(P(T)). Write the polynomial P — u as
a product of factors of degree 1:

P-p=CX-X\)...(X =),
with C # 0. Then
P(T) - pl = C(T - MI)...(T = MI).

Since, by assumption, P(T') — ul is not invertible, one of the factors
T — A1 is not invertible. Then, for this value of j, we have A\; € a(T)
Since P(\;) = p, this shows that u € P(o(T)).

Remark. In most of this section, we haven't really needed the fact that
we are dealing with operators; all we’ve used is the structure of L(E) as
a Banach algebra with unity. These results extend to any Banach algebra
with unity.
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Ezercises

1. Let T be a continuous operator on a Banach space E. Show that the
inequality |A| > ||T|| implies

1

M-T) < —x.
e N

2. Let T be a continuous operator on a Banach space E and let (A;)nen
be a sequence in p(T') converging to A € K. Show that, if the sequence
(R(An,T)) is bounded in L(E), then A € p(T).

Hint. Show that the sequence (R(An,T)) converges in L(E). Let S be
its limit. Show that S\ - T)=(AI-T)S=1.

3. Let X be a metric space. Take E = Cp(X) and let T be a positive
operator on E (recall that this means that Tf > 0 for any f € E with
f20)

a. Show that |T'f| < T|f| for every f € E.
Hint. Take z € X and let a be a complex number of absolute value 1
such that |Tf(z)| = aT f(z). Show that a T f(z) = T(Re(af))(z).
b. Take XA € K such that |[A| > r(T'). Show that

IR T)|| < |R(UN, T
Hint. Show that, for every f € E,
|R(A\T) | < R(ALT)ISI-

c. Deduce that »(T) € o(T).
Hint. Take A € o(T) such that |A\| = r(T). Consider a sequence
(An)nen converging to A and such that |\,| > r(T) for every n € N.
Then use Exercise 2.

4. Let (Ap)nen be a sequence of complex numbers and p a real number in
the range [1, +00). Define an operator T on ¢ by setting

(Tu)(n) = Mpu(n) for all n € N.

a. Show that T is continuous if and only if the sequence ();) is bounded.
b. When T is continuous, compute its eigenvalues and spectrum.
5. Suppose p € [1,00|. Define an operator S on ¢? by setting

(Su)(n) =u(n+1) forallneN.

We call S the left shift.

a. If p < 0o, show that ev(S) = {A € K: [A| < 1}. If p = oo, show that
ev(S)={reK:|A <1}.

b. Deduce that o(S) = {A € K : |A\] < 1} in both cases.
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6. Spectrum of an isometry. Let E be a Banach space and T an isometry
of E (recall that this means T € L(E) and ||Tz| = ||z| for all z € E).
Set D={AeK:|\<1},C={AeK:|\=1},and D=DUC.

a. Show that ev(T) C C, that o(T) C D, and that, if A € D,
imAM-T)=E <= Xep(T).

b. Let (An)nen be a sequence in D N p(T) converging to A € D. Show
that A € p(T).

Hint. Show that |R(A,,T)|| < 1/(1 — |As|) for every n € N; then
use Exercise 2.

c. Show that D N p(T) is open and closed in D. Deduce that D N p(T')
is either empty or equal to D.

d. Show that the spectrum of T is either contained in C or equal to D.
Show that the first case occurs if and only if T is surjective.

e. Assume that E = (P, with p € [1,00], and that T is defined by
(T%)(0) =0 and

(Tu)(n) =u(n-1) forallne N*.

(T is called the right shift.) Show that the spectrum of T equals D,
and that T has no eigenvalues.

7. Spectrum of a projection. Let E be a Banach space and let P € L(E)
be such that P2 = P, P #0, and P # I. Show that ev(P) = o(P) =
{0,1}. (The converse holds if P is assumed hermitian: see Exercise 13
on page 212.)

8. Let S and T be continuous operators on a Banach space E.

a. Show that ST and TS have the same nonzero spectral values.
Hint. If U is the inverse of A\I — ST, consider V = I +TUS.

b. Show that, if S or T is invertible, then ¢(ST) = o(TS). What hap-
pens in the general case? (You might consider the operators S and
T introduced in Exercises 5 and 6e above.)

9. Let X be a compact metric space and take ¢ € C(X). Let T be the
operator defined on C(X) by

Tf=¢f forall feC(X).
Show that o(T) = ¢(X) and that
ev(T) = {A € K: {¢ = A} has nonempty interior}.

What if we consider T as an operator from LP(m) to itself, where m is
a positive Radon measure on X and p € [1, 00]?
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Let T be the operator defined on C([0, 1]) by
3 7(0) fz=0,
TH@ =3 r= s .
A \/_ﬁ dy ifz # 0.

Show that T is a continuous operator from C([0, 1]) to itself and that
[IT]| = x/2. Show that every point in the interval (0, /2] is an eigen-
value of T. Compute the spectral radius of T.

Suppose p € [1,00] and let S be the operator on LP((0,1)) defined by

1
Sf(z) = /o 24 f () dy.

Solve the equation

Af-Sf=g
for f, as a function of A € K* and g € LP((0,1)). Determine the eigen-
values and spectral values of S.
Hint. If Sf = \f, with f € L?((0,1)) and X € C*, then f is of the form
f(z) = az?.
Same questions for the operator T defined on L?((0,1)) by

1
Tf(z) = /o 2y(1 - z1) f(y) dy.

Spectrum of a finite-rank operator. Consider a Banach space E and an
element T € L(E) of finite rank, which means that the image of T is
finite-dimensional (see, for example, Exercises 11 and 12).

a. Set F =imT and let Tr be the operator on F given by restriction
of T to F. Clearly, Tr € L(F). Show that T and Tr have the same
nonzero eigenvalues.

b. Take A € K* and put S = AIp — Tr € L(F), where I is the identity
on F. Assume that S is invertible. Show that A € p(T').

Hint. Show that AI — T is injective. Then compute

(M =T)(I +8°'T)

and deduce that AJ — T is bijective and that its inverse is continuous.
c. i. Show that o(T) NK* =ev(T)NK".

ii. Show that, if E is infinite-dimensional, then 0 € ev(T').

iii. Show that o(T) = ev(T).
Let E be a Banach space and take T € L(E). Denote by F the closure
ofimT. If S € L(E) and S(F) C F, denote by Sr the element of L(F)
that is the restriction of S to F.
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a.

b.

C.

d.
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Suppose A € p(T). Show that R(A\, T)(F) C F and deduce that
A € p(Tr) and R(A, Tr) = (R(A,T))F.

Suppose A € p(Tr) \ {0}. Show that (A — T') is injective and that
(M =T)(I+ R(\,Tr)T) = M. Deduce that A € p(T) and that

ROT) = %(1 + R Tr)T).
Deduce from the preceding results that
o(T)NK* C o(Tr) C o(T).

Show directly that
r(T) = r(TF).

Hint. (Tp)* = (T™)F and T" = (Tg)""'T.

15. Volterra operators. Suppose K € C([0,1)2) and let T be the operator
on C([0,1]) defined by

b.
16. a.

T(f)(z) = /0 * K(z9)f ) dy.

Show that, for every positive integer n and every f € C([0,1]),

xn
n!’

T f(=)| < LI

where || - || is the uniform norm in C(|0,1]) and in C([0, 1]?).
Determine the spectral radius and then the spectrum of T'.
Let E be a Banach space endowed with an order relation < satisfying
these conditions:

- forany f,ge E, f<gifandonlyifg— f >0;

- forany f € E and A € RY, f > 0 implies Af > 0;

- for any f,g € E, 0< f < g implies || f|| < ||g]|-
(For example, all the function spaces studied in the preceding chap-
ters, such as LP, Cp(X), Co(X), and so on, have these properties
when given the natural order relation.) Let T € L(E) be a positive
operator (recall that this means Tf > 0 for all f € E with f > 0),
and suppose that A € R*. Show that, if there exists a nonzero ele-
ment f in E such that

f20 and Tf2Af,

then r(T) > A
Hint. Show that ||T"f|| > A*|| f|| for every n € N.
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b. Let ¢ be a continuous map from [0, 1] to [0,1] and K a continuous
map from [0, 1]2 to R*. Define an operator T € L(C[0, 1])) by setting

(z)
Tf(z) = /: K(z,3)f(y)dy for all £ € C((0,1]) and z € [0,1].

i. Prove that, if p(z) < z for every z € [0,1], then r(T) = 0 (see
Exercise 15).
ii. Suppose there is a point zo € (0,1) such that

K(zo,z0) >0 and ¢(zo) > zo.

Show that r(T) > 0.
Hint. By assumption, there exists § > 0 such that, for every
z,y € [0,1],

|z—20]<d and |y—z0|<d = K(z,y)=>6 and p(z)>z+4.
Now consider the element f in C([0,1]) defined by
f(z) = (6 — |z - =o|)*

and show that |z — zo| < & implies T'f(z) > §3/2. Deduce that
Tf > 8f/2.

17. Let T be a continuous operator on a Banach space E for which the
sequence (||T™(|)nen converges to 0. Show that I — T is invertible, that
the series Y} T™ is absolutely convergent in L(E), and that its sum
is(I-T)"L.

Hint. Show that r(T) < 1.

18. Consider a compact space X and a linear operator T on C(X). Assume
that T is positive (if f € C(X) satisfies f > 0, then T f > 0).

a. Show that T is continuous and that ||T|| = ||T1||, where the right-
hand side is the norm in C(X) of T1, the image under T of the
constant function 1 on X.

Now suppose that there exists a constant C > 0 such that, for all
n € N and all z € X, we have

0< Y (@) <.
=0

b. Show that, given any pair (p,q) of nonnegative integers, we have
T?*41 < C TP1. Show also that, for every point z in X, the sequence
((T™1)(z))nen converges to 0.

c. Deduce that the sequence of functions (T™1),eN converges uniformly
on X to 0. (You might use Exercise 4 on page 30.)
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d.

5. Spectra

o o]

n=o "1 converges ab-

Deduce that r(T') < 1 and that the series )
solutely in C(X) (see Exercise 17).

19. Let T be a continuous operator on a Banach space E. Show that, for
every € > 0, there exists § > 0 such that

20.

o(S)c {AeK:d(\o(T)) <€} forevery Se€ L(E) with |[T-S| <.

Hint. Set M = sup{||(AI = T)7 Y| : d(\, 0(T)) > e}. Show that M is
finite (see Exercise 1) and that § = 1/M works.

Approzimate eigenvalues. Let T be a continuous operator on a Banach
space E. By definition, and approzimate eigenvalue of T is any A € K
for which there exists a sequence (z,)nen of elements in E of norm 1
such that limy_ o0 TZn — Az, = 0. We denote by aev(T) the set of
approximate eigenvalues of T.

a.

C.

f.

Suppose A € K and write a(A) = infyz =, |Az — Tz||. Show that
A is an approximate eigenvalue of T if and only if a(A) = 0. Show
also that the map A — a()) from K to R™ is continuous (in fact,
1-Lipschitz).

. Show that aev(T) is compact and that

ev(T) C aev(T) C o(T). (*)

Show that aev(T) contains the boundary of o(T), that is, the set
o(T) N p(T). In particular, aev(T) is nonempty if K = C.
Hint. Use Exercise 2 above.
i. Suppose S € L(E) is not invertible. Show that, if there is C > 0
such that
lz|| < C||Sz|| forallz € E,

the image of S is not dense in E.

Hint. The assumption implies that the map = — Sz from E to
im S has a continuous inverse U. If im S is dense in E, then U
can be extended to a continuous linear map from E to E.

ii. Suppose that A € o(T). Show that, if im(Al — T) is dense in E,
then A is an approximate eigenvalue of T. Is the converse true?

. Suppose that T is an isometry (see Exercise 6 above). Show that

aev(T) =a(T)N{A e K: |\ =1}.

Hint. One inclusion is obvious. To prove the other, you might use
Exercise 6.
Find operators T for which the inclusions () are strict.

21. Continuous one-parameter groups. Let E be a Banach space.
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a. Suppose A € L(E). For t € R, put
+00 n
P(t) = exp(tA) = — A",
n!

n=0
Show the following facts:
A. P is a continuous function from R to L(E).
B. P(0) = I and P(t + s) = P(t)P(s) for all t,s € R.
C. P is of class C! and dP/dt = AP.

b. Conversely, consider a function P from R to L(FE) satisfying proper-
ties A and B above; we call the family (P(t)):cr a continuous/one-
parameter group of operators.

i. Show that there exists h € R** such that [’ P(s) ds is invertible.
Fix such an h for now on, and put

h -1
A=(P(h)-1) ( /0 P(s) ds) :
ii. Show that
h t+h
( / P(s) da) P(t) = P(s)ds for every t € R,
(i t

and deduce that P satisfies property C above.
iii. Compute

d
= (P(t) exp(~4))
and deduce that P(t) = exp(tA) for every t € R.

2 Operators in Hilbert Spaces

In this section, we consider the particular case where FE is a Hilbert space
not equal to {0}. We make heavy use of the results established in Section 3A
of Chapter 3 (pages 112 and following). To simplify the notation we assume
that K = C, but all results in this section remain true for K = R (see
Exercise 1 below). We first give a simple result that links the spectral
properties of an operator T € L(E) with those of its adjoint T, defined
on page 112,

Proposition 2.1 Suppose T € L(E). Then:

i. kerT = (imT")".
fi. mT = (ker T*)*.
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iti. T is invertible if and only if T* is, and in this case
(T*)! = (T7Y)".
Proof. For z € E, we have z € ker T if and only if
(Tz|y)=(z|T*y) =0 forally€E,

which proves the first assertion. The second is a consequence of the first,
in view of Corollary 2.7 on page 108 and of the equality T** = T'. Finally,
if T is invertible, we have TT~! = T-!T = I and, by Proposition 3.3
on page 112, (T~!)*T* = T*(T~!)* = I. Therefore T* is invertible and
(T*)"'=(T"1). a

The next result follows immediately.
Corollary 2.2 IfT € L(E), then
o(T*) ={A: A€ a(T)}.
If X € p(T), then X € p(T*) and
R\, T*) = (R(\,T))*.

In contrast, there is generally no relation between the eigenvalues of T
and those of T* (part ii of Proposition 2.1 allows us to say only that ) is
an eigenvalue of T* if and only if the image of Al — T is not dense). For
example, if E = €2 and T is the right shift of Exercise 6e on page 196,
defined by (T'u)(0) = 0 and

(Tu)(n) =u(n-1) forallne€N",

there are no eigenvalues. But it is easy to see that the adjoint of T is none
other than the left shift of Exercise 5 on page 195, defined by

(T*u)(r) =u(n+1) forallneN;

thus ev(T*) = {A € C: |\ < 1}.

Recall that an operator T € L(E) is called hermitian if it coincides with
its adjoint T°.
Proposition 2.8 The spectral radius and the norm of a hermitian oper-
ator on E coincide.

Proof. If T is hermitian, Proposition 3.4 on page 113 says that ||T?| =
IIT||?. Iterating this property, which we can do because the square of a
hermitian operator is hermitian, we obtain

IT*"|| = |IT|*" forallneN.
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We conclude that
= Bk 2"127" _
r(T) = lim [[T*]*" =TI,
gince the limit of the sequence (||T"]|*/")nen equals the limit of any of its
subsequences. a

We can now deduce immediately from Proposition 3.4 on page 113 the
following corollary:

Corollary 2.4 For T € L(E),
ITIl = Vr(TT*) = /r(T*T).

2A Spectral Properties of Hermitian Operators
Proposition 2.5 Every hermitian operator T on E has the following
properties:
i. The eigenvalues of T are real.
ii. For every A € C, we have im(AI — T) = (ker(AI — T))*.
ifii. The eigenspaces of T associated with distinct eigenvalues are orthogo-
nal.

Proof. Suppose that ) is an eigenvalue of T', and let z € E be an associated
nonzero eigenvector, so that Tz = Az and z # 0. Then

Mizli? = (Az|2) = (Tz|z).

Since the operator T is selfadjoint, we have (T'z|z) € R and so A € R,
which proves the first part of the proposition.

The second part is an immediate consequence of the equality imS =
(ker S*)*, valid for all S € L(E) by Proposition 2.1.

Finally, if A\ and u are distinct eigenvalues of T and if z and y are corre-
sponding eigenvectors, we have

Az|y) = (Tz|y) = (z| Ty) = n(z]y),
since u € R. Therefore (z|y) = 0. a

The next theorem states, in particular, that the spectrum of a hermitian
operator T is also contained in R.

Theorem 2.6 Let T be a hermitian operator on E. Put
m = inf {(Tz|z): z € E with ||z|| = 1},
M =sup{(Tz|z): z € E with |z|| = 1}.
Then o(T) C [m, M), m € o(T), and M € o(T).
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In other words, [m, M] is the smallest interval containing the spectrum
of T.

Proof

1. Take A € C and a nonzero element z in E. Then

et (- (35| ) o

Denote by d()) the distance from A to the interval [m, M]:

d(A) = min {|{A - ¢t| : t € [m, M]}.
Then, by the Schwarz inequality and the definition of m and M,
IAz — Tz|| |lz]| 2 |(Az - Tz|z)| 2 d(A) Izl
It follows that
Az — Tz|| > d(A) ||z|| forallz € E. (%)

Suppose that A ¢ [m, M]. Then d()\) > 0 and, by (%), Al —T is injective.
We now prove that im(AI — T) is closed. If (yn)nen is a sequence in
im(AI — T) converging to y € E, with y, = Az, — Tz, for each n,
equation () imnplies that (z,)nen is @ Cauchy sequence and so converges
to some z € E, which clearly satisfies \z—Tz = y. Thus y € im(A[-T).
We then deduce from Proposition 2.5 that

im(A — T) = (ker(A — T))*.

But, since A does not belong to [m, M] either, the operator A — T is
also injective. We deduce that AI — T is a bijection from E onto itself.
Since, by (), the inverse of this map is continuous (and has norm at
most 1/d())), we get A € p(T). Therefore o(T) C [m, M].

2. We prove, for example, that m € o(T). (That M € o(T) follows by
interchanging T and —T'.) Set S = T — mI. By the definition of m, S is
a positive hermitian operator. The map (z,y) — (Sz|y) is therefore a
scalar semiproduct on E. Applying the Schwarz inequality to this scalar
semiproduct, we get

I(.S':l:ly)l2 < (Sz|z)(Sy|y) forallz,ye€E. (*+)

At the same time, by the definition of m, there exists a sequence (Zp)neN
of elements in E of norm 1 such that lim,_, o0 (Szy | z,) = 0. By (*#),

“S“'nuz < (Szn | zn)l/z (Szzn | S*”:ﬂ)l/2 < (Sz, |zn)l/2 ”S"l/2 (|Sznll,
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so that

I1Szall < 1IS)'/2 (Szn | 2a)"/2,
which implies that lim,,_, +o Sz, = 0. If m were not a spectral value of
T, the operator S would be invertible in L(E) and ,, = §~!Sz,, would
tend to 0, which is absurd. Therefore m € o(T). a

Remark. The second part of this proof did not use the completeness of E.
Thus m and M are spectral values for any hermitian operator T, even if
the underlying space E is not complete. In particular, the spectrum of any
hermitian operator on any scalar product space is nonempty.

Suppose T is hermitian. Recall that ||T|| = max(|m/|, |M|) (see Proposi-
tion 3.5 on page 114), and that T is called positive hermitian if m > 0 (see
page 114). The next corollary is an immediate consequence of the preceding
results.

Corollary 2.7 A hermitian operator T on E is positive hermitian if and
only if its spectrum o(T) is contained in R*. If this is the case, ||T|| € o(T).

2B Operational Calculus on Hermitian Operators

We saw in Section 1 (page 194) that each element T in L(E) defines a
morphism of algebras P — P(T) from C[X] to L(E). Now, for T hermitian,
we will extend this morphism and define f(T') for every continuous complex-
valued map f defined on the spectrum of T'.

Let T be a hermitian operator on E. If P = ag+a, X +- - -+a, X" € C[X],
we write P=a9 + @ X +-+- +an X" and |P|? = PP

Proposition 2.8 For every P € C[X], we have (P(T))* = P(T) and
P(T)|| = P(t
1P = g [P0

Proof. The first assertion is an immediate consequence of the fact that
T is hermitian (see Proposition 3.3 on page 112). Next, for P € C[X],
Proposition 3.4 on page 113 gives

IP@)| = |\PT) Py = [|IPPT)| .
But, since |P|?(T) is positive hermitian,
NIPP(T)|| = max o(|PI*(T)),

by Corollary 2.7. By the Spectral Image Theorem (page 194), we have
o(|PI*(T)) = |P|*(o(T)), s0

1P = ( max PO,

which concludes the proof. g

IPP@) " =
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Theorem 2.9 The map P — P(T) defined earlier from C[X] to L(E)
eztends uniguely to a linear isometry f — f(T) from C(o(T)) to L(E).
Moreover:

i. (f9)(T) = £(T)g(T) for all f,g € C(a(T)).

il. (£(T))* = f(T) for all f € C(o(T)).
iii. o(f(T)) = f(o(T)) for all f € C(o(T)) (spectral image).

Proof

1.

Let II be the subset of C(o(T)) consisting of restrictions of polyno-
mial functions to o(T). By Proposition 2.8, two polynomials P and
Q that have the same restriction to o(T) must satisfy P(T) = Q(T),
since |P(T) — Q(T)|| = max;eq(7) |P(t) — Q(t)] = 0. Therefore the
map P — P(T) defines an isometry from II to L(E). By the Stone-
Weierstrass Theorem, I1 is dense in C(o(T')) (see Example 2 on page 34).
Using the fact that L(E) is a Banach space, we can apply the Extension
Theorem and extend this isometry in a unique way to a linear isometry
on C(o(T)), which must satisfy the first two properties of the theorem
since it extends a map that does.

. If X ¢ f(o(T)), the function 1/(A— f) is continuous on o(T'), and clearly

- @) = (525 )@

and A € p(f(T)) (the norm of the operator (AI — f(T))~! being the
inverse of the distance from A to f(o(T'))). Thus o(f(T)) C f(o(T)).

. Now take f € C®(o(T)), f > 0, with f(T) invertible. We wish to

show that 0 ¢ f(o(T)). Since o(f(T)) C f(o(T)) C R*, it follows that
—~1/n is a regular value of f(T') for any n € N*, and, by the preceding
discussion,

RE-1/m, fT) = (s ) @
Now, the function A — R(J, f(T')) is continuous on p{(f(T)), so
lim R(-1/n,f(T)) = R(0, f(T)) = —(f(T))~".

n—+4+00

At the same time, the map f — f(T) is isometric from C(o(T)) (con-
sidered with the uniform norm, still denoted by || - ||) to L(E); therefore

IR(=1/n, £(T))|| =

il

If f vanished anywhere in o(T), the value of | R(—1/n, f(T))|| would go
to infinity as n — 400, which is a contradiction. Therefore f does not
vanish on o(T'), which is to say 0 ¢ f(o(T)).
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4. Finally, take f € C(o(T)). Suppose that A € p(f(T')). Then the operator
AI- f(T) is invertible, as are its adjoint M - f(T) and hence the product
(M =£(T))(M - f(T)) = |A—f[*(T). Since |A\— f|? is a positive function,
we can apply step 3 to it. This implies that the function |A — f|? does
not vanish on o(T'); therefore the same is true of A — f. Thus shows that
A ¢ f(o(T)), and so that f(o(T)) C o(f(T)). o

Corollary 2.10 Let f be a continuous function from o(T) to C. The
operator f(T) is hermitian if and only if f is real-valued. It is positive
hermitian if and only if f > 0.

Proof. The first assertion follows from part ii of Theorem 2.9. The second
follows from part iii of the same theorem and from Corollary 2.7. a

Ezample. If T is a positive hermitian operator and if a € (0, +00), we can
define T, which is a positive hermitian operator. Then

ToT? = To+8 for all a, 8 > 0,
o(T*)={t*:teo(T)} forala>0.

Moreover, the map a — T is continuous from (0, +00) to L(E).

FEzercises

1. Let E be a real Hilbert space and T a symmetric operator on E.

a. Show that the proof of Theorem 2.6, and so also the theorem itself,
remain valid. Deduce that, if there is a constant C > 0 such that

(Tz|z) > C||z}|* forall z € E,

T is invertible.

b. Let P = X2+ aX + b be a real polynomial having no real roots.
Show that P(T) is invertible.

Hint. P can be written as P = (X +a)?+ %, witha € Rand 8> 0.
But then, for every z € E, we have (P(T)z | z) > 82|z 2.

c. Show that for any P € R[X]| we have P(o(T)) = o(P(T)). (Thus
the spectral image property is valid for symmetric operators when
K=R)

Hint. Imitate the proof of Theorem 1.5, using a factorization of the
polynomial P — y over R and the previous question.

d. Show that r(T) = ||T|| = max{|)| : X € o(T)}.

Hint. For the second equality, one might use part a of this exercise
and Proposition 3.5 on page 114.

e. Show that the results of Section 2B remain valid when K = R.

Hint. In view of parts a—d, one can use the same proofs.
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2. Let A and B be compleinentary orthogonal subspaces in a Hilbert space
E, and suppose T € L(FE). Assume that T leaves A and B invariant,
that is, T(A4) C A and T(B) C B. Show that

o(T) = o(Tja) Uo(Tip).

(You might show the corresponding equality involving the resolvent set.)
Ezample. Determine the spectrum of the operator T defined on ¢2 by

1+ (-1)"

(Tu)(n) = u(n +2) + 5

u(n) for alln € N.
(You might use Exercise 5 on page 195.)

3. Let E be a Hilbert space and take T € L(E). Denote by aev(T) the
set of approximate eigenvalues of T (see Exercise 20 on page 200). Also
put

i(T) = {(Tz|2): ||z|| = 1}.

a. Show that the spectrum of T equals aev(T) U {X : A € ev(T*)}. In
particular, o(T) = aev(T) if T is hermitian.
Hint. Use Exercise 20d-ii on page 200.

b. Show that aev(T) C i(T).

c. Deduce that o(T) C ¢(T). (This generalizes the first part of Theorem
2.6.)

d. Deduce that, if K = C,

r(T) < sup |(Tz|z)| < (T
llzli=1

4. Let E be a Hilbert space over C. An operator T on E is said to be
normal if TT* =T*T.

a. i. We assume (in this subitem only) that E = €. Let (An)nen

be a bounded sequence on C and let T be the operator on E

defined by
Tf(n) = Anf(n).

Show that T is normal. Recall from Exercise 4 on page 195 that
the spectrum of T equals the closure of the set {)\,}nen-

ii. Deduce that, if E is infinite-dimensional, every nonempty com-
pact subset of C is the spectrumn of a normal operator on E.
Hint. Use the previous result to handle the case where E is sep-
arable; then handle the general case using Exercise 2.

b. i. Let T € L(E). Show that T is normal if and only if ||Tz| =

||T*z]| for every x € E.

ii. Let T be a normal operator on E. Show that, for every A € C,

ker(AI — T) = ker(AI — T*).
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Deduce, in particular, that ) € ev(T) if and only if A € ev(T*).
Show also that eigenspaces of T associated with distinct eigen-
values are orthogonal. (Work as in the proof of Proposition 2.5.)
c. Let T be a normal operator on E.
i. Show that ||T|| = v(T).
Hint. Start by proving that r(TT*) < r(T)2.
ii. Deduce that
Tl = sup |(Tz|z)|.

(Use Exercise 3.)

5. Let T be a continuous operator on a separable Hilbert space. Show that
if T is hermitian it has countably many eigenvalues. Show that this
conclusion still holds if T is only assumed normal (see Exercise 4), but
not if we make no assumptions on T'.

6. Let (T,,) be a bounded sequence of positive hermitian operators on a
Hilbert space E satisfying, for every n € N, the condition T,,4; > T,
(that is, T4y — T, is positive hermitian). Set M = sup,¢p || Tl
a. Take n,m € N such that m < n. Show that T,, , =T, — T, is a

positive hermitian operator of norm at most M. Using equation (»#)
on page 204 with S = T, ,,, deduce that, for every z € E,

ITaz — Tnzll* < Ma((T,.zlz) - (Tm3|3)) Nzl
b. Deduce that for every z € E the sequence (T,z) converges and that
the map T defined by Tz = limp—, 400 Tnz i8 a positive hermitian

operator.
7. Define an operator T on the Hilbert space E = L?((0, +00)) by setting

Tf(z):/o ” f(”) T4y forall f € Eandz € (0, +00).

It was shown in Exercise 3 on page 149 that

+00 ,~1/2
||T||=/ L =
0 Z

a. Let L be the operator on E defined by
+00
Lf(z)= / e f(y)dy for all f € E and z € (0, +00).
0

L is called the Laplace transform operator on L?((0,+00)). Show
that L is a hermitian operator and that L? = T. Deduce that T is a
positive hermitian operator and that ||L|| = /7.
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Hint. To prove that L is continuous, one can write, for f € E
nonnegative-valued,

+o00 +00 ,
(Lf())* = /o eV f(y)dy /o eV f(y) dy'.

b. Show that im(T") C C((0, +00)) and deduce that 0 is a spectral value
of T. Show that 0 is not an eigenvalue of T. (Start by showing that
L is injective.)
c. Show that [0, 7] is the smallest interval containing the spectrum of
T (in fact the two sets coincide).
8. Let T be a hermitian operator on a Hilbert space E. For f € C®(o(T))
and g € C(f(o(T))), show that

(90 f)(T) = 9(f(T)).

In particular, if a, 4 > 0 and T is positive hermitian, (7°*)# = T4,

9. Ezplicit construction of the square root of a positive hermitian operator.
(This exercise is meant to be solved without recourse to the results
of Section 2B.) Let T be a positive hermitian operator on a Hilbert
space E.

a. Suppose in this item that ||T|| < 1, and consider the sequence of
hermitian operators (S,,) defined by Sp = 0 and

Say1 =3I -T+853) foralln>0.
i. Show by induction on n that 0 < S, < Sp41 < I for every

integer n € N, where U > V means that U — V is positive
hermitian.

Hint. Set U = I — T. Show by induction that, for every integer
n € N, the operators S,, and S,4+1 — S, can be expressed as
polynomials in U with positive coefficients.

ii. Deduce that there exists a positive hermitian operator S such
that lim, 40 Snz = Sz for every z € E. (Use Exercise 6
above.)

ili. Set R=1I— S. Show that R? = T.

iv. Show that R commutes with every operator on E that commutes
with T.

b. Now make no assumption on the norm of T. Show that there exists
a hermitian operator R such that R? = T and that commutes with
every operator that commutes with T'.

10. Let E be a Hilbert space.

a. Let T be a hermitian operator on E. Show that, if f € C(a(T)), the
operator f(T) commutes with every operator on E that commutes
with T.
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b. Uniqueness of the square root of a positive hermitian operator. Let
T be a positive hermitian operator on E and set R = T'/2. Let R’
be a positive hermitian operator such that (R')?2 = T.

i. Show that RR' = R'R.
ii. Let X and X’ be positive hermitian operators such that X? = R
and (X’)?2 = R'. Show that, for every z € E,

IXyl? + 1 X'yl> =0, where y = (R—R')z.

iii. Deduce that ||(R—R')z||> = 0 for every z € E, and so that
R=PR.
c. Let T and S be positive hermitian operators on E such that ST =
TS.
i. Show that ST is a positive hermitian operator.
Hint. One might introduce U = §'/2,
ii. Show that, if S < T (that is, if T — S is positive hermitian), then
S? < T2
Hint. Note that T2 — §? = (T+S)(T-S).
11. Polar decomposition. Let T be a continuous operator on a Hilbert space
E, and set P = (T*T)"/2.
a. Show that ker P = ker T and that im P = (ker T')*.
b. Show that there exists a unique operator U € L(E) such that
- |lUz| = ||z|| for every z € (ker T)*,
- Uz =0 for every z € ker T, and
-T=UP.
Hint. If z € im P and z = Pz, we must have Uz = Tz.
. Show that U*U is the orthogonal projection operator onto (ker T)L.
. Show that if T is normal (TT* = T*T), then UP = PU.
Hint. One can use the fact that an operator commutes with P? if
and only if it commutes with P (see Exercise 10a, for example).
e. Ezample. Determine the operators U and P when where E = L?(m)
(m being a measure on a measure space (X, .#)) and T is defined
by

& 0

Tf=af forall feE,

for a fixed a € L>™°(m).

12. Let T be a hermitian operator on a Hilbert space E. Show that every

isolated point of the spectrum of T is an eigenvalue of T

Hint. Let A be an isolated point of o(T'). Define a function f on o(T)

by
1 ift=A,

1)) = 0 otherwise.

Then f is continuous on o(T) and f(T') # 0. Show that (T—XI) f(T) =0
and conclude. (You can also prove that f(T') is the orthogonal projection
onto ker(T — AI).)
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13.

14.

15.

5. Spectra

Let T be a hermitian operator on a Hilbert space and suppose o(T) =
{0,1}. Show that T is an orthogonal projection operator.

Hint. The function f defined by f(z) = z?—z vanishes on the spectrum
of T.

Let m be a measure on a measure space (X, #) and take ¢ € Lg’(m).
Define an operator T on L?(m) by

Tu=u for all u € L3(m).

Determine the operator f(T'), for each continuous function f.

Spectral measure. Let T be a hermitian operator on a Hilbert space E

and set X = o(T).

a. Suppose u,v € E. Show that there exists a complex Radon measure
Buw on X such that

(f(T)u|v) = pup(f) forall f € C(X).

Show that, for every u € E, the measure u, ., i8 positive.
b. Let 2 be the space of bounded Borel functions on X, and suppose
f € #. Show that the map

o) > [Fdus

is a sesquilinear, skew-symmetric, continuous form on E. (Sesquilin-
ear means linear in the first argument and skew-linear in the second.)
Deduce that there exists a continuous operator on E, which we de-
note by f(T), such that

(f(T)u|v) = / fdiu forall uveE.

Check that || £(T)|| < sup_¢x |f(2)l-
Hint. Approximate f by a sequence of functions in C(X) bounded
by sup_¢ x |f(z)|; then use the Dominated Convergence Theorem.

c. Show that the map from % to L(FE) taking f to f(T) is a morphism
of algebras and that (f(T))* = f(T) for all f € 8.

d. Let (fa) be a bounded sequence in & that converges pointwise to a
function f. Show that lim, 400 fn(T')(u) = f(T')(u) for every u € E.
Hint. Show that limp_, 400 (|fn— fI?(T)(u) |u) = 0.

e. Suppose a € X and let f, be the restriction to X of the function
1(—c0,a]- Show that a < b implies fo(T') < fo(T) (this notation means
that fy(T) — f4(T) is positive hermitian). Show also that f,(T) and
fo(T) are orthogonal projection operators, as is fu(T) — fo(T) if
a<b
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Compact Operators

1 General Properties

Consider two normed spaces E and F over the same field K =R or C. As
usual, we denote by L(E, F) the space of continuous linear maps from E to
F, and use the same notation || - || for the norm in E, in F, and in L(E, F).
Thus, if T € L(E, F), we have |T|| = sup {||Tz|| : z € E with ||z|| < 1}.

We say that an element T in L(E, F) is a compact operator if the
image of the closed unit ball B(E) of E is a relatively compact subset of
F. We denote by ¥ (E, F) the set of compact operators from E to F, and
we write X (E) = X (E, E).

Clearly, an element T of L(E, F) is a compact operator if and only if the
image under T of every bounded subset of E is relatively compact in F.

Note that the Riesz Theorem (page 49) can be expressed as follows: The
identity map on E is a compact operator from E to E if and only if E is
finite-dimensional.

Ezamples

1. Every finite-rank operator T from E to F is compact. (Recall that an
operator is said to have finite rank if its image has finite dimension,
and infinite rank otherwise. The dimension of the image of a finite-rank
operator is called its rank.) Indeed, T maps B(E) to a bounded, and
therefore relatively compact, subset of imT. Since any compact set in
im T is compact in F, the image T(B(E)) is relatively compact in F.
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2. Consider compact metric spaces X and Y, a function K € C(X x Y),
and a (possibly complex) Radon measure ;1 on Y. We define an operator
Tk from C(Y) to C(X) by

Tef(@) = [K@»)f@)duts) forall f €C(Y) and z € X.

(In this situation the map K is called the kernel of the operator Tk.)
The operator Tk is compact: this was proved on page 44 when u is a
positive Radon measure, and the proof can be immediately adapted to
the case where u is not necessarily positive.

8. Let a and b be real numbers such that a < b, and suppose K € C([a, b)?).
Let a and 3 be continuous functions from [a, b] to [a, b]. For f € C([a, b))
and z € [a, b], we put

B(z)

Tf@ = [ K@fe)d.
a(z)

The operator T thus defined from C([a, b]) to itself is compact.

Proof. Let || K|| be the uniform norm of K. Then, for every f € C([a, b)),

1T < IKNNS-

Therefore T(B(E)) is a bounded subset of C([a, ]). On the other hand,
if 1,22 € [a,b] and f € C([a,}]),

|Tf(z1) — Tf(z2)]
<W£ll = (||K|| (18(z3) — B(z1)| + la(z2) — a(z1)])

+(b-a) sup |K(z1,y) - K(zg,y)|).
vE[a.b]

Since K is a uniformly continuous function on [, ]?, this shows that
T(B(E)) is an equicontinuous subset of C([a, b}). The result now follows
from the Ascoli Theorem (page 44). O

In particular, the integration operator
Tf@) = [ 1o

is a compact operator from C([0, 1]) to itself.

4, Other examples of compact operators have been seen in the exercises:
between Holder spaces (Exercise 5 on page 45), the map f — f from
C"([0,1]) to C9([0,1]), with ¢ > p > 0; and between discrete Sobolev
spaces (Exercise 7d on page 104), the map f — f from H* to H™ with
r<as.
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We now study certain closure properties of compact operators.
Proposition 1.1 ¥ (E, F) is a vector subspace of L(E, F).

Proof. Consider compact operators T and S from E to F and elements
A p € K. Then

(AT + uS)(B(E)) C AT(B(E)) + p S(B(E))-

But, if K, and K; are compact sets in F, the set AK) + uKj3, being the
image of the compact K x K, under the continuous map (z,y) = Az +puy,
is also compact. a

Proposition 1.2 Let R be a compact operator from E to F. If E, and
F, are normed spaces and if T € L(E\,E) and S € L(F, F\) are arbitrary,
the composition SRT is a compact operator from E, to F,.

Proof. Indeed,

SRT(B(E:)) c ||IT|| S(R(B(E))).
Since a continuous image of a compact set is compact, the result follows. O
Corollary 1.3 X¥(E) is a two-sided ideal of the algebra L(E).

Proposition 1.4 If F is complete, the limit in L(E, F) of every conver-
gent sequence of compact operators from E to F is a compact operator.
Proof. Let (T, )nen be a sequence of compact operators from E to F that
converges to T in L(E, F). By Theorem 3.3 on page 14, it suffices to show
that T(B(E)) is precompact. Choose € > 0 and let n € N be such that
||IT — T,|l < /3. We can cover T,(B(E)) with a finite number k of balls
B(T,f;,¢/3), where fi,..., f € B(E). Suppose f € B(E) and let j < k be
such that || T, f — Tn ;|| < €/3. By the triangle inequality, |Tf — T f;|| < €.
Therefore

k
T(B(E)) c | B(Tfy.¢),
J=1

and T(B(E)) is precompact. ]

The result of the proposition can fail if F is not complete: see Exercise
8 on page 222.

Since every finite-rank operator is compact, as we saw in Example 1 on
page 213, Proposition 1.4 has the following important consequence:

Corollary 1.5 If F is complete, every limit in L(E, F) of finite-rank op-
erators is a compact operator.

This provides a frequently useful criterion for proving that an operator
is compact.
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Ezamples

1.

2.

Let (X,#) and (Y,¥) be measure spaces endowed with o-finite mea-
sures m and u, respectively. Let p € [1,+00) and p’ be conjugate ex-
ponents, and suppose K € LP(m x u). We deﬁne an operator Tk from
LP (1) to LP(m) by setting, for every f € L?' (1) and m-almost every
z€ X,

Tif(z) = / K(z,3) () du(y).

(As in Example 2 on page 213, the map K is called the kernel of the
operator Tx.) Then Tk is a compact operator.

Proof. We use the same notation || - || for the norms in LP(m x u) and
in L(L? (1), L?(m)). We deduce easily from Hélder’s inequality and Fu-
bini’s Theorem that Tk is continuous and that

ITxll < K1 (%)

Suppose that K is an element of LP(m) ® LP(u), the vector subspace
of LP(m x p) spanned by the elements f ® g : (z,y) — f(z)g(y) for
f € LP(m) and g € LP(u); that is, suppose

k
K(z,y) =Y f5()9;(v)-
j=1

Then the image of T is contained in the span of the family {fi,..., fi},
80 Tk has finite rank.

Now, if K € LP(m x u) is arbitrary, K is the limit in LP(m x u) of a
sequence (K, )nen in LP(m) @ LP(u) (see Exercise 12 on page 153). But
then, by (*), the sequence (Tk, )nen converges to Tk, showing that Tk
is compact by Corollary 1.5. 0O

Notice that the compactness of the operator considered in Example 2
on page 213 could be proved by the same method, using Example 5 on
page 35.

Hilbert-Schmidt operators. Let E be an infinite-dimensional separable
Hilbert space. If (e, )nen is a Hilbert basis of E, we say that an operator
T e L(E) is a Hilbert—Schmidt operator if the series of numbers
En—o (| Ten||? converges. One can show (Exercise 21 on page 140) that
this definition does not depend on the Hilbert basis considered. Now
let P, be the orthogonal projection from E onto the span of the family
(ej)o<j<n. One can show that, if T is a Hilbert-Schmidt operator, the
sequence (TP, ),eN converges in L(E) to T (see Exercise 21 on page 140
again). Thus, every Hilbert-Schmidt operator is a compact operator.
In the case E = L?(m), where m is a o-finite measure on a measure space
(X, &) (still assuming E separable), the Hilbert-Schmidt operators on
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E are exactly the operators of the form Tk defined in the preceding
example, with K € L%(m x m) (see Exercise 21 on page 140 once more).

We observe that, for many (but not all) Banach spaces F, Corollary
1.5 has a converse: Every compact operator from E to F is the limit of a
sequence of operators of finite rank. See Exercise 24 on page 232.

1A Spectral Properties of Compact Operators

Consider again an arbitrary normed space E. We do not assume that E is
complete, but we use nonetheless the notions and notation introduced in
Chapter 5 (page 189): spectral values, regular values, eigenvalues, spectrum,
and so on.

Proposition 1.8 Let T be a compact operator from E to E.

1. The kernel of the operator I — T has finite dimension.
2. The image of I — T is closed.
8. The operator I — T is invertible in L(E) if and only if it is injective.

Proof
1. Write F = ker(I — T'). Then F is a closed subspace of E and

B(F) = T(B(F)) c T(B(E)) nF,

which is compact. By the Riesz Theorem (page 49), F is finite-dimen-
sional.
2. Take y € im(J — T) and let (z,) be a sequence in E such that

n-!ibToo(z" - T:L'n) =y
First case: the sequence (z,) is bounded. Since T is compact, we can
assume, by passing to a subsequence if necessary, that the sequence
(T'z,) converges to some point z € E. Then limp400Zn = ¥y + 2
and, by the continuity of T, we get z = T(y+2z), which implies that
y=(y+2)-T(y+z) €im(I -T).
Second case: the sequence (z,) is not bounded. For every n € N, set
dn = d(zy, ker(I — T)). Since ker(I — T) is finite-dimensional by part 1,
there exists a point z, € ker(I — T) such that ||z, — z,|| = dn (indeed,
the continuous function £ — d(z,,z) must achieve its minimum over
the nonempty compact set B(zn, ||znl|) N ker(I — T)).
If the sequence (d,,) is bounded, we can replace z,, by z, — z, to reduce
to the first case; thus y € im(I — T)).
Otherwise, by taking a subsequence, we can assume that the sequence
(dn)nen tends to +o0. Since the sequence ((z,. —z,.)/d,.) is bounded, we



218 6. Compact Operators

3.

can assume, again by passing to a subsequence, that T'((zn — 25)/dn)
converges to a point u € E (since T is compact). We deduce that
. —1 _ = . -1, _

wifeo e (En ~2m) =ut L dy =,
which implies two things: that Tu = u (by the continuity of T'), so that
u € ker(I — T); and that, for n large enough, ||z, — 2, — dnts|| < dn.
But this contradicts the definition of d,,. Therefore the sequence (d,) is
bounded and y € im(I — T'), which proves part 2.
We now assume that the operator I — T is injective. To prove its sur-
jectivity, we will use a general lemma.

Lemma 1.7 If F is a proper closed subspace of a normed vector space
G, there exists u € G such that ||u|| = 1 and d(u, F) > 1.

Proof. Take v € G\ F and set 6§ = d(v, F) > 0. Certainly there exists
w € F such that ||v — w|| < 28. Then the point u = |Jv — w|| ™! (v — w)
works: if z € F, we have

1 1
%=

proving the lemma. 0

lu—z|| = lv—wl|™ o~ w-lv-wlz| 2

We now argue by contradiction. Set E} = im(I — T') and suppose that
E, # E. For every n € N, set E,;, = im(I — T)" (and set By = E).
We show by induction that, for every n € N, the subspace E,, is closed,
En D Epyy, and E, # Epy,.

The claim holds for n = 0 by assumption. Suppose it holds for n € N.
Clearly, T(E,) C E,; thus T induces an operator T, € L(E,). The
set T,(B(E,)) is contained in T(B(E)) N E,, which is compact since
E, is closed. Therefore T,, is a compact operator on E,. Since E, ), =
(In — Tn)(Ey), where I, is the identity on E,, part 2 above applied to
T, implies that E,, is closed in E, and so in E. It is also clear that
Ent+1 D En42. Finally, because we assumed I — T to be injective, the
subspaces E,;, = (I — T)(E,) and En42 = (I — T)(En+1) cannot be
equal since E, # E, ;. This completes the induction step.

By applying Lemma 1.7, we now obtain a sequence (uy,)nen such that,
for every n € N,

Un € Eny lunll =1, and  dum, Enss) 2 §
Then, for n < m,
Tup — Ttm = tp — Vnm With vgm =Tty + (I — T)up € Epyy.
It follows that
ITtun — Tum|| > 3 for all n # m.
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Since every point of the sequence (s )nen lies in B(E), this contradicts
the relative compactness of T(B(E)) (no subsequence of (T'up)nen is a
Cauchy sequence). This contradiction proves that I — T is surjective.

There remains to show the continuity of (I — T')~!. Here again we argue
by contradiction, by assuming that there is a sequence (Z5)nen that does
not tend to 0 and such that lim,—,oo(Zn — TZ,) = 0 (this condition
is equivalent to (I — T')~! not being continuous at 0). By passing to
a subsequence if necessary, we can assume that ||z,|| > ¢, for every
n € N and a fixed £ > 0. Now put u, = z,/||Zs||. Since T is a compact
operator, we can assume, again by passing to a subsequence, that the
sequence (T'u,)nen converges to a point v € E. But then lim,_,o, uy =
v, which implies that ||v]| = 1 and, by the continuity of T', that v = Ty,
contradicting the injectivity of I — T. a

We can now state our main theorem, which shows that, as far as spectral
properties are concerned, compact operators behave almost like operators
of finite rank (see Exercise 13 on page 197).

Theorem 1.8 Let T be a compact operator from E to E.

1. If E is infinite-dimensional, 0 is a spectral value of T.

2. Every nonzero spectral value of T is an eigenvalue of T and has a finite-
dimensional associated eigenspace.

8. The spectrum of T is countable. If it is infinite, its nonzero elements
can be arranged in a sequence (An)nen such that, for alln € N,

[Ant1] € [An] and Jim =0

Proof

1. Suppose that 0 is not a spectral value of T. Then I = TT! is a com-
pact operator by Proposition 1.2. By the Riesz Theorem (page 49), this
implies that E is finite-dimensional.

2. Take A € K*. Then ) is an eigenvalue of T if and only if I — T/ is not
injective, and ker(A] — T) = ker(I — T/A). On the other hand, ) is a
spectral value of T if and only if I — T/ is not invertible in L(E). Thus
it suffices to apply Proposition 1.6 to prove assertion 2.

3. For assertion 3, it is enough to show that, for every € > 0, there is
only a finite number (perhaps 0) of spectral values A of T such that
|A] > €. Suppose, on the contrary, that, for a certain € > 0, there exists
a sequence (A, )nen of pairwise distinct spectral values of T such that
|An| > € for every n € N. By part 2, all the )\, are eigenvalues of T.
Thus there exists a sequence (e,) of elements of E of norm 1 such that
Ten = Anen for every n € N. Since the eigenvalues )\, are pairwise
distinct, it is easy to see (and it is a classical result) that the family
{en}nen is linearly independent. For each n € N, let E,, be the span of
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the n+1 first vectors ey, . .., e,. The sequence (E,)nen is then a strictly
increasing sequence of finite-dimensional spaces. By Lemma 1.7, there
exists a sequence (up)neN Of vectors of norm 1 such that, for every
integer n € N,

Un € Enyy and  d(un, En) > 3

(in fact, since E,. has finite dimension, we could replace 3 by 1 here).
Define v, = A;},un. The sequence (vn) is bounded by 1/e. Moreover,
if n>m,

Tvp, — Tom = Up — Un,m  With vy ;m = Tom + (M1 = T)up.

’\n+
But Tv,, € Eqnyy C Ep and (M1 I = T)(Ent1) C E,. Thus v, € E,
and ||Tvn—Tvpm|| > 1, contradicting the compactness of T (the sequence
(Vn)nen is bounded and its image under T has no Cauchy subsequence,
hence no convergent subsequence). a

Ezample. We now discuss a compact operator whose spectrum is count-
ably infinite, and we determine this spectrum explicitly. Consider the op-
erator T on the space C([0,1]) (with the uniform norm) defined by

-z

Tf(z) = A f(t)dt for all f € C([0,1]).

We know from Example 3 on page 214 that T is a compact operator. By
Theorem 1.8, zero is a spectral value of T, but clearly it is not an eigenvalue.
To determine the spectrum explicitly, it is enough to find the eigenvalues.
Let ) be an eigenvalue of T and let g € C([0, 1]) be a corresponding nonzero
eigenvector, so that

1-z
Ag(z) = ./o g(t)dt forall z € [0,1].

Since A is nonzero, g is necessarily of class C! in [0, 1]; moreover g(1) = 0
and
A (z) = -g(1-z) forallze€[0,1].

It follows that g is of class C? in [0,1] and that
9#0, g(1)=0, ¢'(0)=0, Ag'(1)=—9g(0), (%)
Ag"(z) = —g(z)/A for all z € [0,1]. (*%)
The solutions of the differential equation () satisfying ¢g’(0) = 0 are the
functions g(z) = Acos(z/\). In order for such a function to satisfy condi-
tions (*), it is necessary that cos(1/A) = 0 and sin(1/A) = 1, which is to
say 1/\ = n/2 + 2kn, with k € Z, or yet
1

= W—m, with k € Z.
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Conversely, if A = 1/(n/2 + 2kr) with k € Z, one easily checks that the
function g defined by g(z) = cos(z/)) is an eigenvector of T associated
with A. Thus

o(T) = {O}U{m:ke Z}.

We also see that all the eigenspaces of T have dimension 1 and that the
spectral radius of T is 2/m.

Ezercises

1.

2'

30

Let E be an infinite-dimensional Banach space and F any normed vector
space. Let T be an operator from E to F for which there exists a constant
a > 0 such that ||[Tz| > al|z| for every € E. Show that T is not
compact.

Let (An)nen be a sequence of complex numbers and let T be the operator
on £P (where p € [1,+00)) defined by

Tf(n) =M f(n) forall fef” andn e N.

We know from Exercise 4 on page 195 that T is continuous if and only
if the sequence (A, )nenN is bounded.
a. Show that T is compact if and only if limp— 400 An = 0.
Hint. You might use Exercise 10 on page 183, for example.
b. Suppose p = 2. Show that T is a Hilbert-Schmidt operator if and

only if
Z [An]? < +00.
neN

c. Let S be the right shift in £, where p € [1, +00) (see Exercise 6e on
page 196). Is S a compact operator?

d. Suppose that the sequence (A, )nen tends to 0. Determine the eigen-
values and the spectral values of T'S.

Let X be a compact metric space and suppose ¢ € C(X). Show that
the operator T on C(X) defined by Tf = ¢ f is compact if and only if
¢ vanishes on every cluster point of X.

Hint. Suppose that T is compact and that |¢(z)| > 0 at a point z € X.
Then there exists a closed neighborhood Y of = on which |¢| > 0. Show
that the restriction of T to C(Y') is an invertible compact operator in
L(C(Y)) (to show compactness you will probably need Tietze’s Exten-
sion Theorem, Exercise 7a on page 40). Deduce that Y is finite. For the
converse, use Ascoli’s Theorem, page 44.

Let P be a polynomial not vanishing at 0 and let T be a linear operator
on an infinite-dimensional normed space E. Assume P(T) = 0. Show
that T is not compact.
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5. Let E be a Hilbert space and suppose T € L(E). Show that T is a
compact operator if and only if T* is one.
Hint. Let (z,) be a bounded sequence in E. Put M = sup,, ||z,| and
define y, = T*z,, for each integer n. Show that, for every n,m € N,

lyn — llm"2 < 2M||Tyn — Tymll-

Deduce that T* is compact.

6. a. Let T be a continuous operator on a Hilbert space E. Show that T
is compact if and only if the image under T of every sequence in E
that converges weakly to 0 is a sequence that converges (strongly)
to 0.

Hint. For the “if” part, use Exercise 12 on page 121 and Proposition
3.8 on page 116. For the converse, use Theorem 3.7 on page 115.

b. Show that this result remains true if E = LP(m), where m is a o-
finite measure on a measure space (X, #) and p € (1, +00). (Weak
convergence in LP(m) was defined in Exercise 9 on page 166. You
can also use Exercise 10 on page 168.)

c. Show that this result is false if E = ¢!.

Hint. Use Exercise 9d on page 167.

7. Let p be a positive Radon measure on a compact metric space X, with
support equal to X. Suppose K € C(X x X). Fix p € [1,00) and denote
by E, the space C(X) with the norm induced by that of LP(u). Define
an operator T from E, to itself by

Tf(z) = / K(z,9)f(y)duly) for all z € X.

Show that T is compact, and deduce that the spectrum of T does not
depend on p.
8. Let E be the space C([0, 1)) with the norm || - || defined by

W lle = U£1+ 150,

where || - || denotes the uniform norm on [0, 1]. Let F be the same space
C'([0,1]) with the uniform norm on [0,1]. Let T be the operator from
E to F defined by

Tf=f forall feC'([0,1)).

a. Show that the norm of T equals 1.
b. Show that T is not compact.
c. Let (T,) be the sequence in L(E, F) defined by

Taf =Baf forall f€E,
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where B,, is the Bernstein operator defined in Exercise 3 on page 37.
Show that each T, has finite rank and that the sequence (T3) con-
verges to T in L(E, F).
Hint. Using the estimates from Exercise 3 on page 37, show that
IT - Tl < (2n)~/3.
d. Deduce that the hypothesis that F is complete cannot be omitted
from Proposition 1.4 or Corollary 1.5.
Suppose p € [1,00]. Define an operator T on the space LP([0,1]) by
setting
1-z

Tf(z) = f()dt for all f € L?([0,1]) and z € [0, 1].
(1]

Show that T is compact and determine its spectrum.

Hint. Notice that any eigenvector associated with a nonzero eigenvalue

must be a continuous map. Therefore the eigenvalues can be determined

as in the text; see page 220. (In particular, the spectrum of T does not

depend on p.)

I:etE‘an F be Banach spaces and let E and F be dense subspaces of

E and F, respectively. Consider a compact operator T from FE to F.

a. Show that T can be extended in a unique way to a continuous op-
erator T from E to F. Show that T is compact and that imT C F.
Deduce that T is also compact, when considered as an operator from
EtoF.

b. Assume E = F and E = F. Show that T and T have the same
nonzero eigenvalues and that the eigenspace associated with a given
nonzero eigenvalue is the same for T and T.

c. Apply this to Exercise 7 above in order to show that the study of
the spectrum of the operator T on E, is reducible to the study of a
compact operator T on Lr(u).

Let E be one of C([0,1]) or L?([0,1]), where p € [1, 00]. Determine the

spectrum of the operator T from E to itself defined by

1 z 1
7f(e) = [ minen)f@)dy = [ viwdy+a [ f@)ds.
z
Hint. Note that T is compact and that an eigenvector f of T associated
with a nonzero eigenvalue is a differentiable function and satisfies f(0) =

1) =0.
Let T be the linear operator on L?((0,1)) defined by

Tf(z) = /01 e >V f(y)dy for all f € L*((0,1)) and z € [0, 1].

a. Show that T is a compact hermitian operator and that ||T|| < 1.
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b. Suppose f € C([0,1]) and put g = T f. Show that g € C?([0,1]) and
that g(0) = ¢'(0), g(1) = —g'(1), and

g"(z) — g9(z) = —2f(z) forall z € [0,1].

c. Conversely, suppose g € C2([0, 1)) satisfies g(0) = ¢'(0) and g(1) =
—g'(1). Put f = —(g" — g)/2. Show that g =Tf.
Hint. Consider h =g —Tf.

d. Show that imT is dense in L?((0,1)) and deduce that 0 is not an
eigenvalue of T. Is 0 a spectral value of T?
Hint. For denseness, note that, by part c, im T contains the space
C2((0,1)) of C? functions with compact support in (0, 1).

e. Show that, if f € C([0,1]) and g =Tf, then

@110 =3 ([ (s@F +19@P) dz + o +1gOP).

Deduce that, for every f € L3((0,1)),
(Tf1£) = LTSI

f. Show that o(T) C [0, 1].
g. For A€ (0,1), set a) = /(2—X)/A. Show that X € o(T) if and only if

(1 — a3)sinay + 2a)cosa) = 0.
Deduce that o(T) = {0} U {\n}nen, where, for every n € N,

_—2_ An < _2_.
T+ /2 +nm)? © 1+ (nm)?’

A Sturm-Liouville problem. Suppose g € C([0,1]), and consider the
differential equation
®f) -af =g, (E)q

on the interval [0, 1], with boundary conditions
aof'(0) — a1 f(0) =0, Bof'(1)-5f(1)=0. (BC)

Here ¢ is a continuous function on [0,1] and p is a function of class

C? on [0,1] taking positive values only; in addition we assume that

(@0, 1) # (0,0) and (By, 1) # (0,0). By definition, a solution of the

problem (E), + (BC) is a function f of class C? on the interval [0, 1]

satisfying conditions (E), and (BC).

a. Suppose for now that the boundary value problem (E)o + (BC) has
only the trivial solution (identically zero).
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i. Take a nontrivial solution f) of (E)e with agf](0) —a; f1(0) =0
and a nontrivial solution f; of (E)o with Gy f3(1) — B1f2(1) = 0.
Justify the existence of f; and f; and prove that the expression

W = (fi(z) fa(z) - f1(=) f2(2)) p(2)

is constant and nonzero on [0,1].
ii. Define a function G on [0, 1)? by

_hWA()

_ w
D=1 fe)he
w

ifo<z<y<l,
ifo<y<z<l

(G is the Green’s function associated with the problem (E) +
(BC).) Let T be the operator from C([0,1]) to itself defined by

1
wm=memwm

Show that T is compact and that, if g € C([0,1]), the function
f = Tg is the unique solution of (E), + (BC).
iti. A. Show that im T equals the set of functions of class C? on [0, 1)
that satisfy (BC).
B. Take A € K*. Show that ker(A] -T') equals the set of solutions
on [0, 1] of the equation

@) - (@+A")y=0

that satisfy (BC). Deduce that ker(AJ — T') has dimension at
most 1.

b. Suppose that apa; = Gof) = 0, that q is nonnegative-valued, and
that, if a; = §; = 0, then ¢ is not identically zero. Show that the
problem (E)o + (BC) has only the trivial solution.

Hint. Let f be a solution of (E)o + (BC). Show that

1 1
/qmumva+/pmuwwa=a
0 0

c. Study the particular case p = 1, ¢ = 0, ap = B = 0. Write down
the corresponding function G. Compare with Exercise 11.
d. Suppose that ag = By = 0 and that g(z) > 0 for every z € (0,1).

i. Show that g > 0 implies —Tg > 0; thus —T is a positive operator.
Hint. Suppose g > 0 and write f = Tg. Check that f is real-
valued. Suppose next that there exists a point z € [0,1] such
that f(z) > 0, and work with a point of [0,1] where f achieves
its maximum.
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ii.

iii.

Deduce that G(z,y) < 0 for every (z,y) € [0,1)2.

Show that this remains true if we assume only that ¢ > 0.

Hint. Approximate q by ¢+ ¢ and prove that the kernel G, cor-
responding to ¢ + € converges to G.

14. A particular case of Krein-Rutman Theorem. Let X be a compact met-
ric space. Consider E = C€(X) and let T be a positive compact operator
from E to itself. We wish to show, among other things, that if T has
a positive spectral radius r(T'), it has a nonzero, nonnegative-valued
eigenvector associated with the eigenvalue A = r(T').

Denote by Et the set of f € E such that f > 0, and define E** =
E+\ {0}.
a. For f € E**, we put

r(f) = max{p € R* : pf < Tf}

and

r =sup{r(f): f € E**}.

Show that r is well defined and that r = r(T).
Hint. You might have to use Exercise 3a on page 195.
b. We suppose for now that if f € E** then Tf(z) > 0 for all z € X.

i.
ii.

jii.

iv.

Show that r > 0.
Show that there exists an element g € E** such that r = r(g).
Hint. Check that there exists a sequence (f,)nen of elements of
E** of norm 1 such that lim,,_, 4o 7(fn) = r and that, by passing
to a subsequence, one can assume that the sequence (T'fn)nen
converges to some element g of E. Show that g € E** and that
r(g) > r. Wrap up.
Show that Tg =rg.
Hint. Show that, if T'g # rg, we have rTg(z) < T(Tg)(z) for
every z; then finish.
We will show that the eigenspace E, associated with the eigen-
value r has dimension 1.
A. Show that, if h € E,., the functions (Re h)*, (Reh)™, (Imh)*,
and (Imh)~ belong to E,.
Hint. Work as in part b-iii. Observe that, for example,

T((Reh)*) 2 (T(Reh))* = r(Reh)*.

B. Let h € E, be such that A > 0. Show that there exists p > 0
such that h = pg.
Hint. Consider p = max{\ > 0: A\g < h}. If h — pg # 0,
we have h(z) — pg(z) > O for all z € X, which leads to a
contradiction.

C. Deduce that E, is spanned by g.
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c. Let u be a positive Radon measure on X, of support equal to X.

(Why is there such a measure?) For ¢ > 0, put T.f = Tf +¢ [ fdp.

i. Show that T, is a compact operator in E and that T, f(z) > 0
for every f € E** and z € X.

ii. Show that, if r > 0, there exists g € E** such that Tg = rg.
Hint. Let r. be the positive real number associated with T, and
take g. € E** of norm 1 and such that T.g, = r.g.. Show that
re > r; then that there exists a sequence (€5)nen approaching 0
and such that g., converges to g. (Observe that in this case the
eigenspace associated to r need not have dimension 1.)

Let m be a measure of finite mass on a measure space (X, #), and take
K € L*®(m x m). Show that, for every p,q € (1,+00), the operator
T defined from LP(m) to L%(m) by Tf(z) = [ K(z,y)f(y)dm(y) is
compact.

Hint. Use Example 1 on page 216 and the fact that, if s > r, the
canonical injection f — f from L*(m) to L"(m) is continuous.

Take p € [1,00]. Consider a o-finite measure m on a measure space
(X, #) and a map K : X2 — K that is measurable (with respect to the
product o-algebra on X?) and such that the expression

Cx = max(:gg J K@ dm), sup [, y)ldm(z))

is finite.
a. Show that the equation

Ticf(z) = / K(29) f(y) dm(y)

defines a continuous operator Tx from LP(m) to itself of norm at

most Ck.

Hint. Write |K(z,y)| = |K(z,y)|"/?|K(z,y)|"/", where p/ is the

conjugate exponent of p.

b. Suppose that m is Lebesgue measure on the Borel o-algebra of X =
[0,1] and that K(z,y) = |z ~ y|~2, with a € (0,1).
i. Check that K satisfies the assumptions of part a.

ii. For each n € N, set K,, = inf(K,n). Show that the operators
Tk, from LP([0,1]) to itself are compact.
Hint. Note that K, € C([0, 1)3).

iii. Show that, for every n € N*,

Cr-x. < —— p-0-a)a,
"Tl-a

iv. Deduce that the operator Tk from L”([0, 1]) to itself is compact.
(See also Exercise 21e below.)
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Two examples of noncompact kernel operators.

a. We consider the operator T defined on LP((0, +00)) in Exercise 3 on
page 149 and we maintain the assumptions and notation of part c of
that exercise. Set @, = €!/Pf,. Show that ||¢c|lp = 1,

lim [Tl = &,
and that, for every > 0,
lim Te(z) = 0.

Deduce that, unless T is the zero operator, it cannot be a compact
operator on LP((0, +00)).
b. Let T be the operator defined on LP((0, +00)), with p € (1,00), by

110 = 3 [ fwan

Using the last part of Exercise 2 on page 177, prove that T is not a
compact operator on LP((0, +00)).

For r € [0,1), we define an operator T, on the Hilbert space ¢2 by
(Tru)(n) = ru(n).

a. Show that T, is compact for any r € [0, 1) (see Exercise 2).
b. Consider a sequence (r,) in [0,1) converging to 1 and a bounded
sequence (u(™) in €2 converging weakly to u. Show that the sequence

(u(") -T,, u(")),, eN

converges weakly to 0.
Hint. Show first that, for every v € €2, the sequence (T}, v)nen con-
verges (strongly) to v in €2,

c. Deduce that, if T is a compact operator from ¢2 to itself, then

lim |TT, - T) = 0.
r—1-

Hint. Reason by contradiction and use Exercise 6a.
d. Show that, if T is a compact operator from €2 to itself, we have

r—1- r—1-

in L(€?).
Hint. Show first that lim,_,, - T,.T = T, using Exercise 1 on page 20.
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19. Hankel operators. For f € L>((0,1]), we set

20.

en(f) = /ol f(t)e~3*"tdt for all n € N.

We associate with f a linear map Ty on £2 by setting

+00

(Tru)®) = 3 u(n)cnsp(f) forallpeN.

n=0

a. Suppose u € £2. We denote by i the sum in L?([0,1]) of the series
+2 u(n)e=2*"t, Show that, for every integer p € N,

n=0

l N
T = [ reaeesma.

Deduce that the operator Ty from €2 to itself is continuous and that
its norm is at most || f||co-
b. Show that, if there exists N € N such that

cn(f)=0 foralln>N,

the operator T has finite rank. Deduce that, if f is continuous on
[0,1] and £(0) = f(1), then Ty is compact (as an operator from £2
to itself).

c. If f € L*°([0,1]) and r € [0, 1), put

+00
fr(t) = Z r"c,.(f)e""'"‘.
n=0
i. Show that this series converges uniformly, that f,. is continuous
on [0,1], and that f,(0) = £(1).
ii. Show that if Ty is compact we have

Jim [Ty, — Tyl = 0.

Hint. Use Exercise 18d.

iii. Show that, if Ty is compact, there exists a sequence (¢,) in the
span of the functions t ~» e?** (where k € N) such that the
sequence (T}, ) converges to Ty in L(£2).

Let E be a normed space having an order relation < compatible with
addition and multiplication by positive scalars, and such that, for all
f,9 € E, the condition 0 < f < g implies || f|| < |g]|- Suppose also that
the set of nonnegative elements is closed in E. (For example, all the
function spaces studied in the preceding chapters, such as L?, Cp(X),
and Cy(X), satisfy these properties when given the natural order.) Let
T be a positive compact operator on E (positive means that Tf > 0 for
all f € E such that f > 0), and suppose A € R**.
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a. Take h € E. Suppose that there exist elements fy and go of E such
that
Jo<go, Tfo>Afo+h, and Tgo < Ago+ h.

Show that the sequences (fn)nen and (gn)nen defined by

Tf,—h Tg, —h
fat1= f",\ and gn41 = g,.,\

for all n € N converge to two (not necessarily equal) solutions fo,
and go, of the equation

Tf=XA+h

satisfying fo < foo < goo < go- (In particular, if A = 0 and the
inequalities fo < 0 and go > 0 are not both true, A is an eigenvalue
of T. Compare with Exercise 16 on page 198.)

b. Take E = C([0,1]), define T by

Tf(z) = /olK(z,y)f(y) dy for all f € C([0,1]) and z € [0,1],

where K is a continuous map on [0, 1)? with values in [0, ], and let
k be an element of CR([0,1]) taking values in [0, 1]. Show that the
two sequences (f,) and (gn) defined as above with fo = 0, go = 2,
h = —k, and A = 1 converge to the unique solution f of the equation

1
1@ - [ K@nfa)d=ke) foralze)

21. Let X and Y be compact metric spaces.

a. Let p : y — p, be a map from Y to the space MX(X) of Radon
measures on X. Assume that u is weakly continuous in the following
sense: for every f € C(X), the map y — [ fdu, from Y to K is
continuous. (You might check that u is weakly continuous if and only
if it takes convergent sequences in Y to weakly convergent sequences
of measures on X; see exercise 7 on page 91.) For m € 9M(X), denote
by |[m]] the norm of m, considered as an element of the topological
dual of C(X).

i. Define |u| = sup,cy [luyll. Show that |u| < +oo.
Hint. Use the Banach-Steinhaus Theorem, page 22.

ii. Show that the equation
T.f(y) = -/f(z)dy,,(z) forall feC(X)andyeY

defines a continuous linear operator T, from C(X) to C(Y), of
norm |u|.
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b. Conversely, prove that, for every continuous linear operator T from
C(X) to C(Y), there exists a weakly continuous map u from Y to
M(X) such that T = T),.

c. Let u be a weakly continuous map from Y to 9%(X). Show that the
operator T, is compact if and only if 4 is continuous as a map from
Y to the Banach space M(X) = C(X)'.

Hint. Use Ascoli’s Theorem, page 44.

d. Let T be a continuous linear operator from C(X) to C(Y). Show
that T is compact if and only if there exists a map K from Y x X
to K and a positive Radon measure m on X such that

() Tf(y)= / K(y,2)f(z)dm(z) forall f € C(X)andy€Y,

the map K being required to satisfy the following conditions:
~ For every y € Y, the map K, : z — K(y, z) belongs to L!(m).
~ The map y — K, from Y to L'(m) is continuous.

Show also that, in this case,

171 = sup [1K(y.2)| dm(z).

Hint. For necessity, use Exercise 8 on page 91, then the Radon-
Nikodym Theorem (Exercise 6 on page 165), and Exercise 4 on

page 90.
e. Take a € (0,1). Show that the operator T from C([0,1]) to itself
defined by

1
Tf(z) = [0 Iz — 41~ £ (y) dy

is compact. Find its norm. (See also Exercise 16b above.)
22. Let X be a compact metric space and m a o-finite measure on a measure
space (2, #). Let p € (1,00) and p’ the conjugate exponent.
a. Let K be a function from X x Q to K satisfying these conditions:
(H1) For every z € X, the function K, : s — K(z,8) belongs to
L? (m).
(H2) The map z — K, takes convergent sequences in X to weakly
convergent sequences in LP (m).
(Weak convergence in L*' is defined in Exercise 9 on page 166.)
i. Check that (H2) is equivalent to the following property:
(H2)' For every f € L?, the map z — / K(z, 8) f(8) dm(s) from X
to K is continuous.
ii. Define |[K| = sup,¢x || Kz|ly>. Show that |K] is finite.
Hint. Consider (K;)zex as a family of continuous linear forms
on LP(m) and use the Banach-Steinhaus theorem, page 22.
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238.

24.

iii. For f € LP(m) and z € X, put

T f(z) = / K(z,5)f(s) dm(s).

Show that the linear operator Tx from LP(m) to C(X) thus
defined is continuous and has norm |K|.

b. Conversely, prove that, for every continuous linear operator from
LP(m) to C(X), there exists a function K from X x§ to K satisfying
conditions (H1) and (H2) and such that T = Tk.

Hint. Use Theorem 2.1 on page 159.

c. Let K be a function from X x §2 to K satisfying conditions (H1) and
(H2). Show that the operator Tk is compact if and only if the map
z —» K, from X to LP (m) is continuous.

Hint. Use Ascoli’s Theorem, page 44.

Let E be a normed space. Suppose there exists a sequence (P,)nen in

L(E) consisting of finite-rank operators of norm at most 1 and such

that lim,_, 400 Pnz = z for every z € E. (We know that this is the case

for E = Cp(X) when X is a locally compact separable metric space (see

Exercises 1 on page 30 and 11 on page 56), and also when E = LP(m),

if p € [1,4+00) and m is a measure of finite mass on a measure space

(X, #) whose o-algebra is separable (Exercise 14c on page 155).)

a. Show that E is separable.

b. Show that every separable scalar product space has the property
that we are assuming about E.

Hint. Let (es)nen be a Hilbert basis. Take for P, the projection
onto the finite-dimensional vector space spanned by (€;)i<n-

c. Show that every compact operator from a normed space F to E is
the limit in L(F, E) of a sequence of operators of finite rank.

Hint. If T is a compact operator from F to E, consider T, = P,T
and use Exercise 1 on page 20.

(This exercise generalizes the preceding one to the case of nonseparable

normed spaces.) A normed space E is said to have the approrimation

property if, for every compact K in E, there exists a sequence (P )nen in

L(F) consisting of operators of finite rank that converges to the identity

I uniformly on K; in symbols,

g WPez 2l =0

a. Let E be a normed space having this property. Show that every
compact operator from a normed space F to E is the limit in L(F, E)
of a sequence of finite-rank operators.

b. Show that every scalar product space satisfies the approximation
property.

Hint. If K is compact, the vector space spanned by K is separable.
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c. Show that, for every p € [1,+00) and every measure m on a measure
space (X, &), the space LP(m) has the approximation property.
Hint. For any integer n € N, a compact K in L?(m) can be covered
by finitely many balls B(fT',1/n), ..., B(f}.,1/n). Now apply the
result of Exercise 14b on page 154 to each f7'.

Let T be a compact operator on a normed space E. Let A be a nonzero

eigenvalue of T', and put S =T — Al

a. Show that, for every integer n,

ker " C ker ™!, S(kerS"*!) C kerS™, T(kerS™) C ker S™.

b. Deduce that there exists an integer n for which ker S™ = ker S"+!.
Hint. Assuming otherwise, prove that one can construct a sequence
(zn) such that, for every n,

zn €kerS™t,  |zall €1, d(zn,kerS™) > 1.

Show that for any two distinct integers m, n, we have || Tz, —Tzn| >
|A|/2, which is absurd.

In the sequel n will denote the smallest integer for which ker S* =

ker S®*1. This integer is called the indez of the eigenvalue A.

c. Show that ker S™ = ker S*** for every integer k € N.

d. Show that ker S™ and im S™ are closed and that ker S”Nim S™ = {0}.

e. Show that the restrictions of S and S™ to im S™ are invertible ele-
ments of L(im S™).

f. Deduce from the preceding results that E = ker S™ @ im S™ and
that the projection operators associated with this direct sum are
continuous. Show also that ker S™ is finite-dimensional.

g. Let u be an eigenvalue of T distinct from A, having index m. Show
that

ker(T — pI)™ C im(T — AI)™.
Hint. By Bezout’s Theorem, there exist polynomials P and Q such
that
P(T)(T - A)* + Q(T)(T - pI)™ = I.
h. Let (M) be the sequence of nonzero eigenvalues of T and (n;) the

sequence of their indexes. For n € N, denote by F, and H, the
vector subspaces of E defined by

n n
F, = zkel'(T— A)™, Hp= im( II (T - /\1-)"").
k=0 k=0
Show that F,, and H, are closed, that F,, is finite-dimensional, that
E = F, ® Hy,, and that the projection operators associated with this
direct sum are continuous.
Hint. Work by induction on n.
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2 Compact Selfadjoint Operators

A classical theorem of linear algebra says that any normal operator (one
that commutes with its adjoint) on a complex finite-dimensional Hilbert
space is diagonalizable with respect to an orthonormal basis. Here we will
see how this result generalizes to infinite dimension. We will restrict our
study to compact selfadjoint operators, but the results extend almost with-
out change to compact normal operators on a complex Hilbert space (see
Exercise 8 below). In contrast, the compactness assumption is essential.
For instance, one can easily check that the operator T on the Hilbert space
L?%([0,1)) defined by

Tf(z) = zf(z) for all f € L*([0,1])

is selfadjoint and has no eigenvalues.

In all of this section we consider a scalar product space E over K = R or
C and a compact selfadjoint operator T on E. Since we are not assuming
that E is complete, the general definition of the adjoint (page 112) does
not work; selfadjointness here means that

(Tz|y) = (x|Ty) forall z,y€ E.
Suppose that T has finite rank. Note that, for every z € E,
Tz=0 <> (Tz|y)=0forallye E <> =ze€(imT)';

thus kerT = (im T)* and, since im T is finite-dimensional, we have E =
imT & ker T (see Corollary 2.4 on page 107 and the remark after it). The
operator T then induces on the finite-dimensional space im T an invertible
selfadjoint operator whose eigenvalues equal the nonzero eigenvalues of T
(this much is clear). Using the standard diagonalization results for hermi-
tian and symmetric operators in finite dimension, we deduce that im T is
the orthogonal direct sum of the eigenspaces of T associated with nonzero
eigenvalues, and finally that

E= @ ker(\-T).
A€ev(T)

We now generalize this diagonalization property to the case where T is
any compact selfadjoint operator. We assume from now on that T does
not have finite rank. The argument is based on the following fundamental
lemina:

Lemma 2.1 Let S be a compact selfadjoint operator on a scalar product
space F not equal to {0}. Then S has at least one eigenvalue and

max {|)| : A € ev(S)} = || S|



2 Compact Selfadjoint Operators 235

Proof. Clearly, if A is an eigenvalue of S, then |[A| < ||S||. On the other
hand, we know from the remark following Theorem 2.6 on page 203 that
there exists a spectral value A of S such that |A\| = supy, -, |(Sz|z)|,
which equals ||S|| by Propesition 3.5 on page 114 (whose proof did not use
the completeness of E). We can assume S # 0 (else the result is trivial), so
A is nonzero and must be an eigenvalue, by Theorem 1.8 on page 219. O

Theorem 2.2 Let A be the set of eigenvalues of T. Write A* = A\ {0}
and, for each eigenvalue ), let E) be the eigenspace of T associated with .

- A is a countable, infinite, bounded subset of R whose only cluster point
is 0.

~ The eigenspace associated with any nonzero eigenvalue of T has finite
dimension.

- Eigenspaces of T associated with distinct eigenvalues are orthogonal.

— For each nonzero eigenvalue A of T, let Py be the orthogonal projection
operator onto E». Then

T= Y AP,

AEA*
in the sense of a summable family in L(E).

The definition of a summable family in a normed vector space was given
on page 127.

We remark also that the orthogonal projection onto a finite-dimensional
vector subspace of a scalar product space E is well defined, even when E
is not complete; see the remark following Corollary 2.4 on page 107.

Proof

1. That all eigenvalues are real and that eigenspaces associated with dis-
tinct eigenvalues are orthogonal comes from parts i and iii of Proposition
2.5 on page 203, whose proof did not use the completeness of E. That
eigenspaces associated with nonzero eigenvalues are finite-dimensional
comes from Theorem 1.8 on page 219.

2. We prove that A* is infinite. By Lemma 2.1, there exists an eigenvalue A
of T such that |A| = ||T||. Since T is nonzero (recall that T has infinite
rank), we deduce that A # 0 and so that A* is nonempty. Suppose
that T has finitely many nonzero eigenvalues: A* = {\,,...,Ax}. Set
G = @j., E», and F = G*. Since G is finite-dimensional, E = F & G
(once more by the remark following Corollary 2.4 on page 107). It is
clear that T(G) C G. Since T is selfadjoint, we quickly deduce that
T(F) C F. The operator T therefore induces an operator Tr from F
to itself, and we easily check that Tr is compact, because F is closed.
Naturally, Tr is a selfadjoint operator on F, and it is nonzero (Tr =0
would imply im T C G, contradicting the fact that T has infinite rank).
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By Lemma 2.1, Tr has a nonzero eigenvalue A. We see then that \ is
a nonzero eigenvalue of T distinct from all the A, for 1 < j < k, since
one of its associated eigenvectors lies in F and thus not in G. This is
a contradiction. It follows that A* is infinite and, by Theorem 1.8 on
page 219, A is countable and has 0 as its only cluster point.

Let J be a finite subset of A* and put G, = @,c,Ex and F, =
G’f. Arguing as above and using Lemma 2.1, we see that T induces
on F,; a compact selfadjoint operator T, whose norm equals || T, || =
MaXieev(Tr, ) |A]. Now observe that, as before, every eigenvalue A of
Ty, is an eigenvalue of T (this is clear) but does not belong to J,
since, by construction, F, intersects trivially all the eigenspaces E,,
for p € J. Therefore ev(Tr,) C A\ J. Conversely, if A € A\ J, the
orthogonality property of eigenspaces implies that Ey C G} = F,, so
A is an eigenvalue of Ty . Therefore ev(Tg,) = A\ J and

ITi, I = max. A

Meanwhile, the operator of orthogonal projection onto G is 3 ,¢; Pa.
Thus, for every z € E, we have z — Y, ., Prz € F; and

"T(z- ZP,@) T, (x—ZP,\a:) - P

AeJ AeJ AeJ

< max ||

AEA\J

By orthogonality and the Pythagorean Theorem, we have

z—Zsz

AeJ

< ll=ll,

so we conclude that

< max |\
AEA\J

”T -y TP,

AeJ
By the definition of Py, we have TPy = AP), so

T—Z,\P,\

AeJ

< max |\
AEA\J

Now take € > 0. Since 0 is the only cluster point of A, the set K of
eigenvalues A with absolute value at least ¢ is finite. But then, for every
finite subset J of A* containing K,

”T - Z AP,

AeJ

< max |A| < max || <e,
AEA\J AEA\K

which proves the third assertion of the theorem. ]
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Remark. More precisely, the preceding reasoning shows that, for every
finite subset J of A*,

< max ||
AEA\J

"7‘—-}E:Afﬂ

AeJ

Corollary 2.3 In the notation of Theorem 2.2,

imT = @ E.
AEA°

Proof. We know that Tz = Y, 1. APz for every z € E. It follows that

imT C @ E,, and hence imT C @ E\.
A€A* AEA®

On the other hand, if A € A*, we clearly have E) C imT, proving the
reverse inclusion. O

Theorem 2.2 and Corollary 2.3 can be expressed as follows:
Corollary 2.4

~ The space im T has a countable Hilbert basis (fn)nen consisting of eigen-
vectors of T associated with nonzero eigenvalues.
- The sequence (in)nen of eigenvalues associated with the vectors f, tends
to 0 and
Tz=)_ pn(z|fn)fa forallzeE.
nE€N

The Hilbert basis (f,) is obtained simply by taking the union of all
the finite Hilbert bases of the eigenspaces of T associated with nonzero
eigenvalues. Note that in the sequence (u,) each nonzero eigenvalue A of T
appears d) times, where d) is the dimension of the eigenspace associated
with E,.

The first assertion of Corollary 2.4 says in particular that

=) (z|fn)fn forallzeimT,
neN

which is to say:
Corollary 2.5 For every z € im7T,

z= :E: Pyx.

AEA*
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Corollary 2.6 Suppose that E is complete. Let Py be the operator of or-
thogonal projection onto Ey = kerT. Then

z=ZPx:c forallz e E
AEA

E=@E:.

Proof. Since T is selfadjoint, we have Ey = kerT = im T. Therefore, if E
is complete, E = Eq & im T by Corollary 2.4 on page 107. a

and

If, moreover, E is separable, so is ker T. Thus ker T has a countable
Hilbert basis, by Corollary 4.7 on page 129. Taking the union of such a
basis with the Hilbert basis of im T given by Corollary 2.4, we obtain the
following diagonalization resulit:

Corollary 2.7 If E is a separable Hilbert space, it has a Hilbert basis
consisting of eigenvectors of T.

This is still true if E is an arbitrary Hilbert space, but then we have to
use the axiom of choice in order to guarantee the existence of a Hilbert
basis for ker T and so for E (see Exercise 11 on page 133).

2A Operational Calculus and the Fredholm Equation

We assume here that E is complete and we consider a compact selfadjoint
operator T on E. If A is an eigenvalue of T, we denote as above by E) =
ker(AI —T) the eigenspace of T associated with A and by Py the orthogonal
projection onto Ej.

Let f be a bounded function on the set ev(T). We define an operator
f(T) on E by

fMz= Y f(APxz foralzekE.
Aeev(T)

Since the eigenspaces E) are pairwise orthogonal, we deduce from the Bessel
equality that

5@z’ = 3 W IPzI? and |z|2= Y (IPazll?,

A€ev(T) A€ev(T)

the second equality being a consequence of Corollary 2.6. We deduce that

= A)l-
el = sup 170
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Therefore, for a compact selfadjoint operator, the operational calculus thus
defined extends to all bounded functions the calculus defined on page 205
for continuous functions and in Exercise 15 on page 212 for bounded Borel
functions. In particular, if 4 € K* is not an eigenvalue of T', we have

WI-T)'z= ) (-N"'Pxz forallzeE. (%)
A€ev(T)

Suppose to the contrary that u is a nonzero eigenvalue of T (so u € R*).
Then im(pl — T) is closed, by Proposition 1.6 on page 217, and so equal
to E,}, by Proposition 2.1 on page 201 applied to the hermitian operator
uI—T. The operator T induces on E;l a compact hermitian operator whose
set of eigenvalues is ev(T) \ {u}, and we can apply () to this induced
operator. We deduce, for z € E,f, the following equivalence valid for all
J€ E,f':
pi—-Tyg=z << §= z (~A)"'Pz.
A€ev(T)
A#p

Next, if z € E and y € E, we can write y = §j + z, with §j € E; and
z € E,. It follows that uy — Ty = z if and only if there exists z € E, such

that
y=z+ E (u=AN)"'Pz.
A€ev(T)
A#p

To summarize, if we consider the Fredholm equation
py-Ty=z, (%%)
with g4 € K* and z € E, there are two possible cases:
- p is not an eigenvalue of T. Then the equation (*+) has a unique solution
v, given by
y= Y. (B-N)"'Paz.
A€ev(T)

—~ p is an eigenvalue of T. Then the equation (*x) has infinitely many
solutions if z € (ker(uI — T)) and no solutions otherwise. In the first
case, the solutions are given by

y=z+ Z (6= NPz,
A€ev(T)
A#p
with z € ker(ul — T).

This dichotomy is called the Fredholm Alternative Theorem. .
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2B Kernel Operators

We study here the particular case of the Hilbert space E = L?(m), where
m is a o-finite measure on a measure space (X, .#). Suppose in addition
that E is separable.

Consider a kernel K € L?(m x m) such that K(z,y) = K(y,z) for
(m x m)-almost every (z,y). The operator T = Tk associated to this kernel
by the equation

Tef(@) = [K(@,1) ) dmiy)

is a compact selfadjoint operator (see Examples 1 and 2 on page 216). If
A is a nonzero eigenvalue of T, let dy be the dimension of the eigenspace
associated with Ey = ker(AI — T'). We assume in the sequel that T does not
have finite rank and, as in Corollary 2.4, we denote by (f.)nen a Hilbert
basis of im 7' consisting of eigenvectors of T and by (in)nen the sequence
of corresponding (nonzero) eigenvalues.

Proposition 2.8 With the notation and hypotheses above,

400
J[ k@l dm@ dm) =3 p2 = ¥ ax.

n=0 A€ev(T)
A#0

Proof. Take u € ker T'. For almost every y, the function K, : z — K(z,y)
lies in E and

(Ky19) = [K(@.p)a(z) dm(z) = Taty) = .

The second of these equalities is true for almost every y: more precisely,
for every y not in a subset A, of X of measure zero, and which a priori
may depend on u. But, since E is separable, ker T is also separable. Let
(#n)nen be a dense subset of ker T. Then, for every y not belonging to
the set A = U, ¢y Au, Of measure zero, we have (K |u,) = 0 for every
n € N and, because of denseness, ( Ky, | 4) = 0 for every u € kerT'. It follows
that K, € (kerT)! = imT for almost every y. At the same time, for each

neN, . _

(Ku | fn) =T a(y) = tinfa(y) = ptnfn(y) (*)
for almost every y. We then deduce from the Bessel equality that, for almost
every y,

400
2
[IK@ulam@ =1 = S a6 =)
n=0
Now just integrate with respect to y to obtain the desired result. O

Remark. The preceding proposition is also a direct consequence of Exercise
21 on page 140.



2 Compact Selfadjoint Operators 241

We know from Exercise 7 on page 110 that the space L?(m) ® L?(m)
is dense in L2(m x m). From the preceding proof, we obtain an explicit
approximation of the kernel K by elements of L?(m) ® L?(m).

Proposition 2.9 We have

400
K(z,y) =Y snfa(2) Falw),

n=0
the series being convergent in L(m x m).

Proof. Set KN(z,y) = o #n fn(z) fa(y)- By equality (+) above, for al-
most every y, we have

400
Ky=Y tnfalv)fn

n=0
in the sense of convergence in L2(m). Thus, still by Bessel’s equality,

+o00

/ |K(z,9) - Kn(z,)f dm(z) = |(Kn)y - Kl = Y 12 |5

n=N+1
We deduce, integrating this equality with respect to y, that
400
IK - Knl*= Y ui
n=N+1
where | - || represents the norm in L?(m x m). This proves the result. O

Proposition 2.10 Suppose that ® : z — [|K(z,y)|* dm(y) belongs to
L®(m). Then, for every n € N, we have f, € L*(m) and

+00
=Y (f1fa)fn for every f €imT,

n=0
the convergence of the series taking place in L>°(m).

In particular, (f,) is a fundamental family in the space im T considered
with the norm of L®(m). Recall that the convergence in L?(m) of the
series 3720 (f | fn) fn and the fact that the sum equals f are consequences
of Corollary 2.4.

Proof. For every n € N we have

1
(o) = o / K (2,9) fa(y) dm(y).
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Therefore f, € L°°(m ) and || fulloo < p;;' VL, where L = ||®||0o. We show
that the series E"_O( f| fr) fn satisfies Cauchy s criterion on L>°(m). Let
f = Tg be an element of imT. For every n € N, (f|fa) = (Tg| fa) =

(91T fa) = pn(g] fr) Ik <1,

) fa(z)

l l
S (1 fa) fu(2)| =
n=k n=k

/2

s(gmmﬁYXZ%m@@,

by the Schwarz inequality. Now, by an earlier calculation (see equality (**)
on page 240), we have

Z)Anml—/mwylmmw<b

n=0

which finally implies that

l { L\1/2
S (| fu) s(zmmm)L%
n=k

oo n=k
which proves the result, since the series 3720 |(g| fn)|? converges by the
Bessel inequality and so satisfies Cauchy’s cntenon O

Ezample. An important special case in which the hypothesis of Proposi-
tion 2.10 is satisfied is when m is a Radon measure on a compact space X
and K is continuous on X x X. In this case, for every f € E, the image
Tf is a continuous function: indeed, if z,z’' € X,

|Tf(z) - Tf(z")| < sup |K (2,y) - K (=, y)| m(X) 21 |-

Thus it is enough to use the uniform continuity of K on the compact set
X x X. Therefore each f, is a continuous function and we deduce from
Proposition 2.10 that, if Suppm = X, we have

400
9= (gl fa)fn foreveryg=Tf€imT,
n=0

the series converging uniformly on X; that is, for every f € E,

+00
Tf= pnlf1fa)fn

n=0

(since (9| fz) = (Tf|fa) = (fITfa) = pa(f|fn)), the series converging
in the space C(X) considered with the uniform norm.
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FEzercises

1.

2.

Let E be a Hilbert space, (fn)nen an orthonormal family in E, and
(Bn)nen a real-valued sequence that tends to 0. Show that the equation

+o00
Tz=) pn(z|fa)fn forallzeE

n=0

defines on E a compact selfadjoint operator T. (Thus, the property
stated in Corollary 2.4 characterizes compact selfadjoint operators whose
rank is not finite.)

Let T be a compact selfadjoint operator on an infinite-dimensional
Hilbert space E. Let f be a continuous function on the set o(T'). Show
that f(T) is compact if and only if f(0) = 0. (In particular, if T is
positive, T'/2 is compact.)

Hint. For sufficiency use Exercise 1, for example.

. Let E be a scalar product space and T a compact selfadjoint operator

on E. Let A be a nonzero eigenvalue of T. Show that ker(A] — T) =
(im(M — T))*. Deduce that

ker(AI — T) nim(M - T) = {0},

then that ker(AI —T')? = ker(\I —T). This shows, in particular, that the
eigenvalue A has index 1 (see Exercise 25 on page 233), and therefore
that

E =ker(M - T)®im(M - T).

. Let T be the operator defined on L?([0, 1]) by

Tf(z) = /o f(v)dy.
a. Show that the adjoint of T is given by
1
T*f(z) = [ f(y)dy for all £ € L*([0, 1]).

b. Show that TT* is the operator T introduced in Exercise 11 on
page 223. Deduce the spectral radius of T, then the norm of T.

. Deduce from Exercise 11 on page 223 that

o1 .=
(2n+1)¢ 96’

n=0

then that
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6. Take E = L2([0,1]) and define a function K on [0,1]? by

1 fz+y<],

K(=zy) = {0 ifr+y>1.

a. Write down explicitly the operator T on E defined by the kernel
K. Check that T is the extension to L2([0,1]) of the operator on
C([0,1]) defined in the example on page 220.

b. Show that E = im 7. Use this to find a Hilbert basis consisting of
eigenvectors of T.

c. Deduce that, if g € C*([0,1]) and g(1) = 0, then

1
g9(z) =2 E ( /(; g(t) cos((%/2 + 2n=x)t) dt) cos((7/2 + 2n7)x)

neZ
=2 +§ (/l g(t) cos((2n + 1)nt/2) dt) cos((2n + 1)7z/2)
n=0 \J0 ,

the series converging uniformly on [0, 1].

(This result can be obtained using Section 2B above, or using the
theory of Fourier series by extending g to an even periodic function
of period 4 such that g(2 — z) = —g(z) for every z € [0,1].)

7. Let T be a compact selfadjoint operator on a Hilbert space E. For every
nonzero eigenvalue A of T, denote by P, the orthogonal projection onto
the eigenspace Ej = ker(A] — T'). Let z be an element of E. Show that
the equation

Ty==z (*)
has a solution if and only if z € (ker T)* and
2
IIPA:II < 400,
A€ev(T)
A#0

and that in this case all the solutions are given by

y=z2+ Y % with z € kerT.

A€ev(T)
A#0

8. Diagonalization of normal compact operators. Let E be a Hilbert space
over C. A continuous operator T on E is called normal if TT* =
T*T. You might recall, for subsequent use, the result of Exercise 4b
on page 208.

a. Let T be a normal compact operator on E. Show that T has at least
one eigenvalue A € C of absolute value ||T|.
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Hint. Put u = ||T*T|| = ||T||?. Show that u is an eigenvalue of
T°T, that the associated eigenspace F = ker(ul — T*T) is finite-
dimensional and is invariant under T and T*, and that T induces
on F a normal operator Tr. Then show that Tr has at least one
eigenvalue A and that [A]> = u. (Note that here the fact that the
base field is C is essential.)

b. Show that all the results of the preceding section, from page 234 to
the Fredholm Alternative Theorem, remain true without change for
a normal operator T (on a complex Hilbert space), with the only
exception that the eigenvalues of T need not be real in this case (see
Exercise 4a-ii on page 208).

c. Let T be a compact operator on E. Show that T is normal if and
only if

E= @ ke(AI-T),
A€ev(T)
the direct sum being orthogonal. (See also Exercise 1.)
d. An ezample. Let G be an element of L3([0,1]), and extend it to
a periodic function of period 1 on R. Consider the operator T on
L3([0,1]) defined by

1
Tf(z) = /0 G(z-y)f(y)dy forall f € L*(0,1]).

i. Show that T is a normal compact operator.
fi. Show that the eigenvalues of T are the Fourier coefficients of G,
namely, the numbers c,(G) defined for n € Z by

1
cn(G) = /o G(z)e~ %"= 4z,

Show that the corresponding eigenvectors are the vectors of the
Hilbert basis (en)nez defined by eq(z) = e3"*=,
iii. Show that, for every f € L3([0,1]),
Tf(@) = Y calG)en(f)e?™,
neN
the series converging uniformly (and absolutely) on [0, 1).

9. Let T be a compact selfadjoint operator on a separable Hilbert space
E. For each nonzero eigenvalue A of T, let dx be the dimension of the
associated eigenspace Ey = ker(Al — T). Show that T is a Hilbert-
Schmidt operator if and only if

Z d? < +00.
A€ev(T)
A#0

(See also Exercise 10.)
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10. Singular values of a compact operator. Let E be a Hilbert space and
suppose T € L(E). For each n € N, define a nonnegative real number
On (T) by

on(T) =inf {|IT — R|| : R € L(E), rank(R) < n}.

We know from Exercise 24 on page 232 that T is compact if and only if
the sequence (0n(T))nen tends to 0. In what follows, we suppose that
T is compact.
a. Show that the operator P = (T*T)'/? is selfadjoint and compact
(see Exercise 2).
We denote by (1, )nen the sequence of nonzero eigenvalues of P, in
decreasing order and counted with multiplicity (that is, each nonzero
eigenvalue A appears d times in the sequence (u,), where d), is the
dimension of ker(AI — P)). The entries of this sequence (u,) are
called the singular values of the operator T.
We denote by (fn)nen a Hilbert basis of im P such that, for every
z€E,

+o00
Pz =Y pn(z|fn)fn
n=0
(see Corollary 2.4). If T has finite rank N, we use the convention
that g, = 0 and f, =0, for n > N, the Hilbert basis of im P being
the finite family (fo,..., fn-1).
b. Check that, if T is selfadjoint, its singular values equal the absolute
values of the eigenvalues of T.
c. Schmidt decomposition of the operator T. Show that there exists an
orthonormal family (g, )ren in E such that

+o00

Tz = an(zlf,,)g,. forall z € E.

n=0

Hint. Put g, = Uf,, where U is the operator such that T = UP
defined in Exercise 11 on page 211.
d. i. Let R € L(E) be an operator of rank at most n. Show that

IT = Rll > pn-
Hint. If F,, is the vector space spanned by the family (f;)o<j<n,
check that F;, Nker R contains a nonzero element z; then show
that [|(T — R)z|| > pallz|.

ii. Allakhverdief’s Lemma. Deduce that

fn =0,(T) forallneN

and that, in the definition of o,(T), we can replace inf by min.
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e. Suppose from now on that F is separable and fix a Hilbert ba-
sis (en)nen of E. Denote by || T||x the (possibly infinite) Hilbert-
Schmidt norm of T, defined in Exercise 21 on page 140:

ITIE = D ITeall®.

neN

Show that
1T =Y on(T).

neN
In particular, T is a Hilbert-Schmidt operator if and only if

D oa(T)? < +oo.
neN

f. An operator T is called nuclear if

D" on(T) < +00.

neN

i. Show that, if T is the product of two Hilbert-Schmidt operators,
then T is nuclear.
Hint. If T = AB, where A and B are Hilbert-Schmidt operators,
prove that u, = (Bf, | A*gy) for every n € N.

ii. Conversely, prove that, if T is nuclear, it is the product of two
Hilbert-Schmidt operators.
Hint. Take the polar decomposition T = UP of T defined in
Exercise 11 on page 211, and show that T being nuclear implies
that UP'/2 and P'/2 are Hilbert-Schmidt operators.

11. Calculation of the eigenvalues: the Courant-Fischer formulas. Let E
be a Hilbert space distinct from {0} and let T be a compact positive
selfadjoint operator on E. Order the nonzero eigenvalues of T as ug >
) 2 -+ 2 pin 2 -+, where the number of times each eigenvalue appears
is the dimension of the associated eigenspace. For every p € N, denote
by ¥p the set of p-dimensional subspaces of E. The goal of this exercise
is to prove the formulas

. (Tz|z)
Un = min ax 2
We¥. zews\(o} |lz| (%)
. (Tz|2) "
Pn = max min

Wevayr zeW\{0} [z||2 °

(In this context, recall Proposition 3.5 on page 114.) Let (fn)nen be a
Hilbert basis of im T such that T'f, = u, f, for every n € N.
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12.

a. Show that, if F is a closed subspace of E distinct from {0}, there
exists an element z of F of norm 1 such that

(Tz|z)= sup (Tyly)
yEF, flyll=1
(In particular, we can replace max by sup in the first formula (+),.)
b. If n € N, let W, be the vector space spanned by fo,-.., fan—1 (With
Wo = {0}). Show that

(Tz|z)
max -———- =
zeWi\(0} [lz||?

Hint. Consider the restriction of T' to W.
c. Take W € ¥,. Show that W+ NW,,,, is distinct from {0} and that,
for every nonzero element z of Wy 41,

(Tz|z)
l=l> —

Deduce from these results the first equality (#),. (You should check
in particular that the minimum is attained by the space Wy,.)

d. Take W € ¥,41. Show that WNW is distinct from {0} and deduce
that there exists a nonzero element z of W such that

(Tz]z)
l=li? =

Then show the second equality (*),. (You should check in particular
that the maximum is attained by the space Wy 41.)

e. Application. Let S and T be compact positive selfadjoint operators
on E such that § < T (that is, T — S is positive selfadjoint). Show
that pn(S) < un(T) for every n € N.

Sturm-Liouville problem, continued. Let p be a function of class C! on

[0,1] taking positive values. Let ¢ be a continuous real-valued function

on [0, 1], and suppose o, €1 € {0,1}. For A € R, consider the differential

equation on [0, 1] given by

(7)Y - (g + Ny =0, (E,)
with boundary conditions
eoy(0) + (1 — €0)3'(0) =0, ey(1)+(1-e1)y’(1)=0.  (BC)

a. Suppose (in this item only) that g is positive-valued. Let Tp 4 be
the operator on C([0,1]) defined in Exercise 13 on page 224 and
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characterized by the fact that, for every g € C([0,1]), Tpqg is the
unique solution on [0, 1] of the equation

(') -qy=9

satisfying (BC). Show that T}, , is negative selfadjoint (that is, —Tp,q
is positive selfadjoint) and compact on the scalar product space
€ ([0, 1]) considered with the norm induced by L?([0, 1)).

. Take a > max_¢(o,1)(—g(z)). Show that the set A of real numbers A
for which (E») + (BC) has a non identically zero solution forms a
sequence (Ap)neN such that

B>X>M > > A >

and limp_, 400 An = —00 (more precisely, the series 313 (a — An)~2
converges). The constants \,, for n € N, are called critical values of
the problem (E,) + (BC).
Hint. We have A € A if and only if 1/(\ — a) is an eigenvalue of
Tp.e+a-
Show that, for every n € N, there exists a solution ¢, of (E,_)+(BC)
such that fol |@nl|3(t)dt = 1 and that ¢, is, up to a multiplicative
factor, the unique solution of (E,_) + (BC). Show that the family
(¢n)nen is a Hilbert basis of L?([0,1]) and that, if f € C%([0,1])
satisfies (BC), the series E::%(fw,.)qp,., where (-|-) is the scalar
product in L3([0, 1]), converges uniformly to f.
. Suppose that p = 1 and q = 0. Determine the sequences (\,) and
(ion) in the following cases:

i. €0=0, €, =0;

il. =0, =1;
iii. =1 = 1.
. Suppose g9 = €; = 1. Show that the function g does not take the
value 0 in the interval (0, 1), and that no other function ¢, has this
property.
Hint. Show first that o > 0 or o < 0, using Exercises 13d on
page 225 and 14 on page 226. Deduce that, if po(§) = 0 with § €
(0,1), we must have j(£) = 0 and therefore wo = 0, since ¢ is a
solution of (Ej,). But this is impossible.

. Legendre’s equation. Let E be the space C([—1, 1]) with the scalar prod-
uct induced by L3([-1,1]).
We define on E a kernel operator T by

1
Tf(z) = [ K(@ ) f0) d,
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where
K(zy) = { -%- —log2+ %log((l - y)(1+2)) ff -1<y<z,
31-log2+ilog((1+y)(1—2) if 1>y>z.
a. Show that T is a compact hermitian operator from E to itself.
b. Consider on [—1, 1] the differential equation

(1-2%)y) =g, (E,)

with g € E. By definition, a solution of (E,) is a function of class C'
on the interval [—1, 1] satisfying the equa.tlon (Eg) on [—1,1]. Show
that (E¢) has a solution in E if and only if f , 9(z) dz = 0 and that,
in this case, all solutions of (E4) are given by

y=Tg+C withC €K,

the function f = Tg being the unique solution of (Ey) such that

/_ 11 f(z)dz = 0.

c. Show that ker T equals the set of constant functions on [—1,1] and
that imT is the set of elements of E whose integral over [-1,1] is
zero.

d. Show that the operator —T is positive hermitian.

Hint. Check that, if g € E,

1
Tale)= - [ |Tay(@I* -2 ds.
e. Let (P,)nen be the sequence of Legendre polynomials defined in
Exercise 4 on page 131. Show that, for every n € N,
(1 -2*)P,) = —n(n+1)P,.

Use this to find the eigenvalues and eigenvectors of T. Derive another
proof that —T is positive hermitian.
14. About the zeros of a Bessel function. For k € N, the Bessel function Ji
is defined by

—-1)" 2 k+2n
o= L Cper

a. Consider on (0, 1] the differential equation

Y - 3y=o0. (*)
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i. Find all solutions of the form y = z*.
ii. Use this to find all solutions of (x).
iii. Prove that the only solution y of (+) satisfying

limy(z) =0 and y/(1)+ 3y(1) =0 (+#)

is the zero solution.
b. For z,t € (0, 1], define

K(z,t) = \/EGXP(—"OS(Z'/‘)U,

and set K(z,t) = 0 if z = 0 or t = 0. Define an operator T from
L?([0,1)) to itself by

Tj‘('.t):/ol K(z,t)f(t)dt for all z € [0,1].

Show that T is a compact hermitian operator.
c. Take f € C([0,1]) and set F = Tf.
i. Show that, for every z € (0,1],

£ 1
— p—1/2 3/2 3/2 -1/2
F(z)==z /o £3/2f(t)dt + T / =125 (t) dt
and that F(0) = 0. Deduce that F € C1([0, 1]), F'(0) = 0, and
F'(1)+ FQ)/2=0.
ii. Show that F € C2(]0, 1)) and that F satisfies on (0, 1] the equa-

tion
F" - 3z7%F = —2f. 6]
iii. Show that F is the unique function of class C? on (0, 1] satisfying
(++) and (1)

d. Deduce from all this that the image of T contains the space of func-
tions of class C? on (0,1) with compact support. Then show that
im T is dense in L?([0, 1]), then that T is injective.

e. Show that, if f € C([0,1]),

1 1 1
/ Tf(t)f@)dt=3|Tf)[ +1 / |@sy(e)| de+32 / t=2|Tf(t)| a.
0 0 0

Deduce that T is a positive hermitian operator.
f. Show that a real A > 0 is an eigenvalue of T if and only if the
equation
v+ (E-5)=0 (E,)
A 4x?
has a solution in (0,1] that does not vanish identically and that
satisfies (#=).
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. Take A > 0. Study the solutions y of (E) of the form y(z) = z* f(z),

where f has a power series expansion at 0. (Partial answer: a = %
and a = —1.) Deduce that (E,) has a unique (up to a multiplica-
tive factor) solution Hy such that lim,_,o Hy(z) = 0, and that this
solution is given by

Hx(z) = ' 0 (z/2/X).
Show that, for every z,
zJo(z) = zJi(z) + L1 (z).
Deduce that the eigenvalues of T are the numbers A > 0 for which

Jo(v2/X) =0.

Show that Jo has a sequence of positive roots
0<I‘O<I‘l<"‘<l‘n<"'

and that
+00 1

1
o

4
n=0 Hn

. Forn € N and z € [0,1], put wn(z) = z'/2J)(tnz). Show that

(¢n)nen is a fundamental orthogonal family in L2([0,1]) and that,
if f € C2((0,1)), there exist coefficients c,(f) such that the series
322 en(f)pn converges uniformly on [0, 1], with sum f.

Remark. An analogous study can be made of the zeros of the function

Jk, by considering the kernel
Ki(z,t) = vVt exp(—(k + 1) [log(z/t)]).

Approzimate calculation of an eigenvalue of a compact positive self-
adjoint operator. Let T be a compact selfadjoint operator in a Hilbert
space E satisfying the condition that (T'z|z) > O for every z # 0. Let
o be a nonzero element of E. For each n € N, we set

a.

| zn | _ (Zn41]zn)
T’ = Tz .2 °
lznall |zl

We wish to show that the sequences a, and (3, converge to the
inverse of an eigenvalue of T (the same for both sequences).
i. Show that 0 < a,, < B, and that the sequence (8y,) is decreasing.
ii. Let (fx)xen be a Hilbert basis of E consisting of eigenvectors
of T, and denote by uj the eigenvalue associated with fi; we
assume that the u; are arranged in nonincreasing order. Let ko
be the smallest integer k such that (zg | fx) # 0. Show that

Zn =T"Zo, Pn=

lim_||za|'/" = -

n—»+00
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Deduce that the sequence (8,)nen converges to 1/pup,.
Hint. Note that

hay 2
lzall? = 3 |(zo | T £
J=ko

iii. Show that a, > 1/uy, for every n € N. Deduce that the sequence
(@n)neN converges to 1/uk,.
b. Stopping criterion. Show that, for every integer n € N, there exists
an eigenvalue A of T such that

VB —a} 2

Hint. Observe that [|zn — @nZn+1[2 = (|Za+1][2(82 — a3) and use
Bessel’s equality.

1
an—x .
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7
Definitions and Examples

Distributions, as we shall see, are objects that generalize locally inte-
grable functions and Radon measures on RY. One of the main attractions
of the theory of distributions, apart from its unifying power, is the construc-
tion of an extension of the usual differential calculus in such a way that
every distribution is differentiable infinitely often. This theory has become
an essential tool, particularly in the study of partial differential equations.
It has also allowed the precise mathematical modeling of numerous physical
phenomena.

The fundamental idea of the theory is to define distributions by means
of their action on a space of functions, called test functions. Note that
this idea already appears in the definition of measures by Daniell’s method
(Chapter 2), and in particular in the definition of Radon measures.

In the first section of this chapter, we introduce the various test function
spaces. We will be working in an open subset 2 of R?. We will often omit
the symbol £ from the notation when 2 = RY.

1 Test Functions

1A Notation

- If m € N, &™(1) denotes the space of complex-valued functions on 2
of class C™, and &(1) the space of those of class C™. By convention,
£°(N) = C(N).
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- An element p € N? is called a multiindex. If p = (p.,...,pd) is a
multiindex, we define the length of p to be the sum |p| = p1 +--- + pd,
and we put p! = p,!...pa!. We give N the product order: if p and S
are two multiindices, wewritep<qifp) <q1,...,pd4 <qd-If p,g €N

and g < p, we put
P\_ ps\__ P
(q) ,I;[,( ) g -q)l’

where, as usual, (:; j) represents the binomial coefficient
5]

- If 1 £ j < d, we often use D; to denote 88
we write T3

p!
g;!(p; — g5)!

Then, if p is a multiindex,

al»l
oz ..o

The differentiation operator DP is also denoted by

DP=D¥...D% =

vl

ﬂ or 8£ .
By convention, D}’ (differentiation of order 0 with respect to any index)
is the identity map.
We see that each operator DP, where p € N9, acts on the spaces &m(N),
for |p| < m. We recall the following classical result:

Proposition 1.1 (Leibniz’s formula) Suppose f,g € §™(R). For
each multiindez p such that [p| < m,

Do) =3 (2)oe-ssprs.

- If K is a compact subset of R? contained in Q (equivalently, if K is a
compact subset of ) and if m € N, we write

R(Q) ={f € &™Q):Suppf C K}.

We observe that, since K is closed, the property Supp f C K is equiva-
lent to {f # 0} C K, or again to “f =0 on Q\ K”.
Denote by ¥ (2) the set of compact subsets of §. Put

@)= |J 279.
Kex (2)

In other words, 9™(QQ) is the space of functions of class C™ having
compact support in Q. In particular, 2°(Q2) = C.(R).
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Clearly, m’ > m implies 9™ () C 9™(R). Now put

29Q) =) 2™(9).

meN

Thus 9(0) is the space of functions of class C™ having compact support
in ; such functions are called test functions on . Finally, if K is a
compact subset of 2, we denote by 2k () the space of functions of
class C*™ having support contained in K:

(@) =) IRQ) = {f € £(Q): Suppf C K}.
meN

Thus

2= U 2«9).
Kex (Q)

Clearly, a function in 2™(Q2) or #(N2), when extended with the value 0
on R?\ Q. becomes an element of 2™(R%) or P(R?), respectively. Thus,
9™(0) and 9(R) can be considered as subspaces of 2™(R?) and 2(R?),
respectively. We will often make this identification without saying so ex-
plicitly. Conversely, an element f in 9™(R%) or 9(R?) belongs to all the
spaces 9™ (1) or 2(N) such that Q D Supp f.

1B Convergence in Function Spaces

We will not need to give the function spaces just introduced a precise
topological structure. It will suffice to define the notion of convergence of
sequences.

Convergence in 97 () and Dk (R)

Let K be a compact subset of 2. We say that a sequence (fn)nen in 22(2)
converges to f € 92(Q) in PP (N) if, for every multiindex p € N¢ such
that |p| < m, the sequence (DPf,)nen converges uniformly to DPf. An
analogous definition applies with the replacement of 2(2) by 2k (),
where now there is no restriction on the multiindex p € N°.

The convergence thus defined on 23 () clearly corresponds to conver-
gence in the norm || - ||(™ defined on 22 () by

I£K™ = 3= 10°5,

Ipism

where || - || denotes the uniform norm. In contrast, no norm on P () yields
the notion of convergence we have defined in that space.
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Convergence in 9™(2) and 9(N)

We say that a sequence (@p)nen in 2™(R2) converges to ¢ € 9™(Q) in
2™(Q) if there exists a compact subset K of Q such that

Suppp C K and Supppn CK forallneN

and such that the sequence (¢, )neN converges to ¢ in P (€2). An analogous
definition applies with the replacement of 2 (f2) and 2™(R2) by 2k ()
and 9(0).

Convergence in &™() and &()

We say that a sequence (fn)nen in £™(£2) converges to f € £&™(Q) if,
for every multiindex p such that |p| < m and for every compact K in Q,
the sequence (DP f,)nen converges to DPf uniformly on K. An analogous
definition applies with the replacement of £™(Q2) by &' (Q2), where now there
is no restriction on the multiindex p € N9.

For m = 0, the convergence in £°(f2) thus defined coincides with uniform
convergence on compact subsets (defined in Exercise 12 on page 57).

We remark that the definitions of convergence of sequences just made
extend immediately to families (¢, ), where A runs over a subset in R and
A =5 Ag, with Ag € [—00, +0].

It is possible to give the spaces D (), £™ (1), and 6'() complete metric
structures for which convergence of sequences coincides with the notions
just defined (see Exercise 7 on page 265). In contrast, one can show that
the convergence we have defined in 9™ (2) and 2() cannot come from a
metric structure.

In fact, the only topological notions that we will use in connection with
these function spaces are continuity and denseness, and these notions, in
the case of metric spaces, can always be expressed in terms of sequences. In
the sequel, denseness and continuity in the function spaces just introduced—
in particular, in 2™(Q) and P(N) —will be defined in terms of sequences.
For example, a subset H of 9™ (2) will be called dense in 9™(Q) if, for
every @ € 9™(RQ), there exists a sequence (pn)nenN in H converging to ¢
in 9™(Q). Likewise, a function F on 9(Q2) and taking values in a metric
space or in one of the spaces just introduced will be called continuous if, for
every sequence (n)neN in D(2) that converges to ¢ in 2(R), the sequence
(F(¢n))nenN converges to F(yp) in the space considered. One easily checks
that this is equivalent to saying that the restriction of F to each metric
space Pk (), where K is a compact subset of 2, is continuous.

For example, the canonical injection from 2™(Q) into £™(2) — that
is, the map that associates to each function ¢ € 2™ () the same ¢ consid-
ered as an element of £™(Q2) — is continuous. This means simply that every
sequence in 9™ () that converges in 9™ () also converges in £™(R) (to
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the same limit). Similarly, the canonical injections from #(2) into £(f2)
and into 2™(N2) are continuous.

1C  Smoothing

We start by showing the existence of nontrivial elements of 2 (recall our
convention that 9 = P(R?)). First take the function p on R defined by
e Vz ifz>0,

p(z)={0 ifz<0.

Then p € &(R). Indeed, one shows easily by induction that, for every
integer n € N, p is of class C" and p'™ is of the form

S (z) = {H,.(l/z)e“/‘ ffz >0,
0 ifz <0,
where H,, is a polynomial function.

Next, for z € R?, we set p(z) = p(1 — |z|?), where, as usual, |z| means
the canonical euclidean norm of z in R%: |z|? = 23 + - - - + z2. Finally, put
a = [p(z)dz > 0 and x = p/a. One then checks that the function x
satisfies the following properties:

x € PR%, x>0, /x(Z)dz =1, Suppx=B(0,1).

In particular, if we put xn(z) = néx(nz) for n € N*, the sequence (xn)neN-
is a normal Dirac sequence (see page 174) consisting of functions of class
C™. Such a sequence is also called a smoothing Dirac sequence.

Now fix a smoothing Dirac sequence (Xn).

Proposition 1.2 Assume ¢ € 9™, for some m € N. For every integer
n > 1, the convolution ¢ * X, belongs to P and

_ : m
nli’xfm¢p¢x,. =y in ™,
Proof. Since the functions ¢ and x, have compact support, so does ¢ * xn.
More precisely,

Supp(¢ * Xn) C Supp ¢+ Supp xn C Supp ¢+ B(0, 1/n) C Supp ¢+ B(0,1).

At the same time, a classical theorem about differentiation under the inte-
gral sign easily implies, on the one hand, that ¢ * x,, is of class C® and so
@ * Xn € 2, and, on the other, that DP(yp * x,,) = (DPy) * xn for [p| < m.
Now, since the support of x,, is contained in B(0,1/n) and [ xn(y)dy = 1,
we get

(D%9) » Xa(2) - (D°9)(z) = jw (D7) - Do)
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and

sup, |(DPg) # xn(z) — (DPp)(z)] <  sup |D®p(z) — DPy(z)|.

z,2€R?
|z~z|<1/n

Since DPy is uniformly continuous (being continuous and having compact
support), we deduce that the sequence (DP(@*xn))nen converges uniformly
to DPyp. O

Corollary 1.3 For every n € N, the space 2(0) is dense in I™(R). In
particular, 2(R) is dense in C.(R).

Proof. If p € 2™(R), we can consider ¢ as an element of 2™ (by extending
it with the value 0 on R¢\ Q). Now

Supp(¢ * xn) C Suppy + B(0, 1/n);

therefore Supp(@#*xn) C  for n large enough —say n.> 1/d(Supp ¢, R\ ).
Then, by the preceding proposition, ¢ * x, belongs to 2(2) for n large
enough, and limg, 400 @ * Xn = ¢ in 2™(Q). (]

Remark. The approximating sequence just constructed preserves positiv-
ity. Therefore, if ¢ is a positive element of 2™(2), there exists a se-
quence (n )nen of positive elements of 2(f2) that converges to ¢ in 2™ ()
(namely, pn = @ * xn).

1D C® Partitions of Unity

We now sharpen Proposition 1.8 on page 53 in the case of R

Proposition 1.4 If K is a compact subset of R? and Oy, ..., 0, are open
sets in R such that K C Uj 1 0j, there exist functions ¢,,...,pn in 9
such that

0<¢; <1 and Suppyp;C O; forje{l,...,n},
and such that 3°7_, ;(z) =1 for every z € K.

Proof. Set d = d(K,R%\0), with O = Uj-1 O; (the metric being the
canonical euclidean metric in R%). Set K’ = {z d(z,K) < d/2}. The set
K’ is compact and, since d > 0,

K' > {z:d(z,K) < d/2} D K.

Thus K ¢ K’ ¢ K' c O. By Proposition 1.8 on page 53, there exist
functions A,,..., A, in C, such that

0<h;j<1 and Supph;CcO; forje({l,...,n},
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and such that 37 - hj(z) = 1 for every z € K'. Define § = d(K, R\ K’),
; = d(Supp h;, R\0;) for 1 < j < n, and

€= 3min(§,m,..., 7).
Let x be the function defined on page 261 and let u be defined by

u(z) = e~ (z/e).
Then u € 2, u >0, [ u(z)dz = 1, and Suppu = B(0,¢).

For 1 < j < n, set ¢; = h; * u. Then y; is of class C™ (this follows
immediately from the theorem on differentiation under the integral sign)
and

Suppy; C Supph; + B(0,¢) C 0.
In particular, p; € 9. Moreover, 0 < ¢; < 1. Finally, if z € K and
y € B(0,¢), we have z — yeK'a.ndso

3" byl - p)utw) = )
j=1
Integrating we obtain
ng,(x)=/u(y)dy=l for all z € K. O
Jj=1

We deduce the following denseness resulit:
Proposition 1.5 The space 2(N) is dense in £(N) and in E™(N), for
everym € N.
Proof. Let (Kyn)nen be a sequence of compact subsets of 2 exhausting Q.
By the previous proposition, there exists, for every integer n € N, an ele-
ment @, € 2(N) such that

0<pn<1, pn=1o0n Kn, SupppnC Kpn4,.

If f € &), we have fp, € P(N) for every n € N. If K is a com-
pact subset of €, there exists N € N such that K C K N (see Proposi-
tion 1.6 on page 52); thus, for every n > N and every p € N9, we have
DP(fpn) = DPf on K. By the definition of convergence in £(2), we deduce
that lim,_,c0(fin) = f in £(N).

Using the same reasoning, one shows that 2™(f2) is dense in £™(R).
Moreover, as we saw in Corollary 1.3, 2(f2) is dense in 2™(f2). Thus every
element of 2™ () is the limit of a sequence of elements of 2(12) in the sense
of convergence in £™ () (since the canonical injection from 9™ () into
&™(1) is continuous: see page 260). This implies, finally, that 2(f) is dense
in £™(R) (because £™(N) is a metric space: see Exercise 7 below). a

Remark. This proof also shows that every positive element of £™(f2) (or
&(£2)) is the limit in £™(RN) (or in &(N), respectively) of a sequence of
positive elements of 2(0).
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FEzercises

Throughout the exercises, 2 stands for an open subset of R%. Many of the
exercises use the result of Exercise 1.

1. Taylor’s formula with integral remainder. Let f be an element of &™(£2)
(where n > 1) and let z € Q. Take h € R? such that [z,z+h] C Q.
Show that

f(z+h)=f(z) + }: ( Y Drf(z) h’)

Ipl=k

P(1 _ +\n-1
1)!/ Y DPf(z +th) hP(1 - )"t e,
Ipl=n
where, for p = (p1,...,pa) € N% and h = (hy,...,hq) € R?, we have
written
h? = A} ... A%
2. Take h € &(R). Show that the function f defined by

h(z) - hy)
z-y
can be extended by continuity to a function in £(R?).
If we assume merely that A € §™(R), with n > 1, how smooth is in
general the function obtained in this way?

8. Let h € &£(R) be such that h(0) = h’(0) = --- = A(™)(0) = 0. Show that
the function f(z) = z~"~'h(z) can be extended to an element of £(R).
What is the value of this new function at 0?

4. Take f € £(R%). Show that f satisfies

D?f(0) =0 for all p € N? with |p| <m
if and only if there exists a family (¢;) ;en¢, |jj=m+1 Of elements of &(R%)

such that
f@= Y o)

lil=m+1

f(z,9) =

(where 2¥ = z! ...z¥).
5. a. Let E be a closed subset of 2. Show that there exists a positive
function f € &() such that E = £~1(0).
You could work as follows:
i. First show the result assuming that E is the complement in
of an open ball (in the euclidean metric).
ii. Let (f,) be a countable family of functions in &(f2). Show that
there exist positive real numbers u,, such that the series of func-
tions Y un fn converges in &().
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iii. Wrap up using the fact that Q\ E is a countable union of open
balls.

b. Let E and F be disjoint closed subsets of {2. Show that there exists
a ﬁlmction fin &) such that 0 < f <1, E = f~1(0), and F =
Q).

Hint. Let ¢ and ¢ be positive functions in &(f2) such that ¢=1(0) =
E and ¢~1(0) = F. Check that f = ¢/+/? + ¢ satisfies the desired
conditions.

c. Let E be a closed subset of 2. Prove that E is the support of a
function in &(R) if and only if E equals (in 2) the closure of its
interior.

6. Borel’s Theorem. Let (a,) be an arbitrary sequence of complex numbers.
Show that there exists a function f € &(R) such that f(*)(0) = a; for
every integer k.

Some hints:

a. Let p € 2(R) be such that ¢ =1 in [-1,1]. For n € N, set

fa(@) = 2 2"0(pna).

Show that one can choose the s, in such a way that || f,]|(*~" < 2"
for every n > 1.

b. Show that the series ¥ f, converges to a function having the desired
property.

7. Topologizing spaces of smooth functions

a. Let K be a compact subset of 2 and take m € N. Show that the
space 2 () with the norm || - ||(™ is a Banach space.

b. If f,g9 € Pk (), define

d(f,9) = z 2™ min(|| f - g||™, 1).

m=0

Show that d is a complete metric on Pk () and that a sequence
converges in this metric if and only if it converges in 2k (f2) (in the
sense defined in the text).

c. Take m € N and let (K, )nen be an exhausting sequence of compact
subsets of 2 (see page 52). If f,g € £™(QQ), define

§(f,9) =Y 2~ min(l|f - gll’Y, 1),
n=0
with
A1 = 3 sup |D?f(a)|-

[pl<m €%
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10.

11.

12.

13.

Show that 4 is a complete metric on £™(2) and that a sequence
converges in this metric if and only if it converges in £™(2) (in the
sense defined in the text).

d. Same questions for the metric dg defined on &(€2) by

a(f,9) = Z 27" min(63 (£, 9), 1)

a. Let P be the lincar operator on 2™(f2) defined by
Pf(z) = ) ap(z)D"f(x),

Iplsm

where m < n and where each function a, belongs to &™~™(§2). Show
that P is a continuous operator from 2"(R2) to 2"~™(Q).

b. Suppose the functions a, lie in £(£2). Show that P defines a contin-
uous linear operator from 2(R2) to 2(R?) and from &(R2) to &(N).

. Suppose u € R? and ¢ € 9(R?). If h € R*, define an element ¢, of

2(R?) by setting

on(z) = £EF h:) —olz)

Show that the sequence (¢)/n)nene converges in Q(Rd). Find its limit.
Let ¢ € 2 be nonzero. If n € N*, set

en(z) = %tp(:l:/n) for z € R%.

Show that the sequence (pn)nen+ converges to 0 in 6 but not in 2.
Let Oy, ..., O, be open subsets of R% such that Q = U 1 Oj, and take
pE 9(9) Show that there exist functions ¢,,..., ¢, in Q(Q) satisfying

Suppyp; C O; forall j € {1,...,n}

and such that 2 =1 ¢ = . Check also that, if ¢ > 0, the functions ¢;

can be chosen to be positive.

a. Let f be a real-valued element of £™(f2) or &(R2). Show that there
exist positive-valued functions f), f2 in £™(Q) or £(N), respectively,
such that f = f; — fo.

Hint. Take fi = f2+1and f, = f2— f+ 1.

b. Show that analogous results hold for 2™(§2) and 2(f?) instead of
&™(Q) and £(N).

Suppose f € C(R) satisfies

/,f(:c)<p(2:) dz =0 forall p € 2(Q).

Show that f = 0.
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14. Let (O,);es be a locally finite relatively compact open cover of Q2; that
is. each O, is a relatively compact open subset of §2, the union U
equals (, a.nd for every compact K in §Q, the set {j € J : O, K # ,{}
is finite. Show that there exists a family (y¢,),es of elements of #(R%)
such that

Suppyp; CO, and 0< p, <1 foralljeJ

Y wi(z) =1 forallzen.

j€d
Hint. Let (K,)nen be an exhausting sequence of compact subsets of Q2
such that Ko = @. For each n € N*, put

Jn={j €J:0,N (Knsa\Kn_1) # 2}.

Consider a C*™ partition of unity (¢]);eJ, with respect to the compact
Kn+1\ Kn and to the finite open falmly {0; N (Kn+2\Kn- 1)}jed.- For
each j € |J,en- Jn, define

IR

neN,

neEN k€J,

where N; = {ne N*:j € J,,}.

2 Distributions

2A Definitions

By definition, a distribution on ) is a continuous linear form on 2(R2).
Thus, by what we saw in Section 1B, a linear form T on 2(f}) is a dis-
tribution if, for every sequence (¢n)nen that converges to 0 in P(f2), the
sequence (T(¢n))nen tends to 0 (in C); equivalently, if, for every compact
subset K of §, the restriction of T to the metric space 2 () defined
in Exercise 7 on page 265 is continuous. We denote by 2'(2) the set of
dastnbutlons on §; of course 2'(R) is a vector space.

If = R?, we will sometimes use the simplified notation 2’ = 9'(R%).
Also, if T is a distribution on 2 and ¢ € 9(§1), we denote by

T(p) = (T, )
the result of evaluating the distribution T at the test function (.
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Proposition 2.1 Let T be a linear form on 2(). Then T is a distribu-
tion on Q if and only if, for every compact K in Q, there ezist m € N and
C 2 0 such that

IT@)| < Clell™  for all p € Dk (D).

Proof. The “if” part follows easily from the definitions. Conversely, suppose
that the criterion is not satisfied. Then there exists a compact subset K of
Q and a sequence (¢n)neN in Pk () such that

|T(¢n)| > nll@all™ for every n € N.

For every n > 1, set
oo L
"= allpal™ o

Obviously, ¥, € Dk (2); moreover, for every m € N,
¥all™ < l9all™ < 1/n  for all n > m.

Thus the sequence (¥ )neN converges to 0 in D (). Now |T'(,)| 2> 1 for
every n € N, 80 the sequence (T'(¥,))nen does not converge to 0. Therefore
T is not distribution on €. a

Order of a distribution

A distribution T on {2 is said to have finite order if there exists an integer
m € N with the following property:

For any compact subset K of § there exists C > 0 such that *)
IT(¢)] < Clipll™ for all € Dk ().

In other words, T has finite order if the integer m that appears in Propo-
sition 2.1 can be made independent of the compact K C Q. If T has finite
order, the order of T is, by definition, the smallest integer m for which (*)
is satisfled.

2B First Examples
Locally integrable functions

Let L} () be the space of equivalence classes (with respect to Lebesgue
measure) of locally integrable functions f on §2; “locally integrable” means
that, for every compact subset K of Q, 1k f lies in L'(f2), the L'-space
corresponding to Lebesgue measure restricted to 2. (See Exercise 19 on
page 159.) If f € L] _(Q), we define a distribution [f] by

(10} = /n (@) f(z)dz for all p € D).
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One easily checks that _f] is a distribution of order 0 on : Given a compact
subset K of 11, just take C = f, 'f(z) dz in order to get the inequality in
(s). withm = 0.

Proposition 2.2 Two locally integrable functions on O define the same
distribution if and only if they comewde almost everywhere.

Proof. Take f € L} () such that {f] = 0. Because 9(Q) is dense in
C.(R) = 9°(9N) (Corollary 1.3), we see that

/0 §(z)fiz)de =0 forall g€ C.(Q).
Thus, for every g € Cf(ﬂ).
[ o(2)(Re f(z))* ds = [ o(x)(Re f(x)) " dr,
Q £1]
/ o) (Im f(z))* dr = / o(x)(Im f(2)) " dr.
O £1]

By the uniqueness part of the Radon-Riesz Theorem (page 69), these equal-
ities are valid for any positive Borel function g. Applying them to the
characteristic functions of the sets {Re f > 0}, {Re f < 0}, {lmj>0}and
{Im f < 0}, we deduce that f = 0 almost everywhere.

Thus, the map that associates to each f € Lhc(ﬂ)thedlstnbut)on If] €
#’'(0Q) is injective. By identifying f with [f], we can write L,“(ﬂ) c 9'(Q).
It is in this sense that distributions are “generalized functions”

ﬂomnowonwemllomltthehrachetsﬁmnthenotauonlflhemisno
danger of confusion, and we will normally not distinguish between a locally
integrable function and the distribution defined thereby.

Radon measures

More generally, every complex Radon measure 4 on 2 defines a distribution
T, as follows:

(T, ) = [ wdp for all p € (). (%)

By the very definition of a complex Radon measure, we see that the linear
form T thus defined is a distribution of order 0. Because $(Q) is dense
in C.(?) (Corollary 1.3), the map u — T defined in this way is injective.
Thus we can identify a Radon measure with the distribution it defines, and
we can write () C 2'(N).

If u is a positive Radon measure, the distribution T it defines is positive,
that is,

(T,p) >0 for any positive ¢ € 2(Q).

We now show the converse.
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Proposition 2.3 Every positive distribution has order 0.

Proof. Let T be a positive distribution on Q. Let K be a compact subset
of 2 and let p € 2(RN) be such that 0 < p <1 and p =1 on K. For every
@ € D (), we have |p| = |pp| < |l¢ll p, where @] denotes the uniform
norm of . If p is real-valued, this means that

~llellp < ¢ < el .

We then deduce from the linearity and the positivity of T that |T(p)| <
liell T(p). When we no longer assume ¢ to be real-valued, the decomposition
¢ = Reyp +ilmo leads to the inequality |T(p)| < 2T(p) |l¢ll, which proves
that T has order 0. (W]

We will see later, as a particular case of Proposition 3.1, that in fact every
distribution of order 0 can be obtained from a Radon measure by means of
(*) on the previous pages. Positive distributions then correspond exactly
to positive Radon measures: If a Radon measure  satisfies [ ¢ du > 0 for
every positive p € 2(2), the remark following Corollary 1.3 implies that
the same is true for every positive f € C.(S2).

Distributions of nonzero finite order

Let m be a positive integer. A simple example of a distribution of order m
on an arbitrary open set 2 is the distribution T defined by

(T,p) = (DPp)(a) for all p € P(Q),

where p is a multiindex of length m and a is any point of Q2. That T is
a distribution of order at most m follows directly from the definitions. To
prove that the order cannot be less than m, consider a function ¥ € 2(R%)
such that 1(0) = 1 and Supp ¥ C B(0,1). For every a > 0, put

¢a(2) = (z - a)*¥((z - a)/a),

where, for yy € RY, we have set y? = ¢*...y5¢. Since the support of @, is
contained in B(a,a), we see that, at least for a < ap < d(a, Rd\Q), we
have g, € 2(f2). Moreover, we deduce easily from Leibniz’s formula that,
first, (T, pa) = p! for every a > 0, and secondly, if ¢ is a multiindex of
length strictly less than m, then

(D%a)(z) = Y Crq(z ~a)’~"*" a "D ¢((z - a)/a),

r<q
so that the uniform norm of D%p,, when a < 1, satisfies

1D*%all < Cqal™~19l < Cqa,
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where the constant C; depends only on ¢ and on the chosen function . It
follows that
leall™V < Ca,

where the constant C depends only on 7. Since all the functions ¢, are
supported in the compact K = B(a, ap), this makes it impossible for con-
dition (*) on page 268 to hold with m replaced by m — 1. Therefore T has
order exactly m.

A distribution of infinite order
Let T be the linear form on 2(R) defined by

+00
(T, p) = ng(")(n) for all p € 2(R).

n=0

Since the intersection of any compact subset of R with N is finite, this sum
has only finitely many nonzero terms. Moreover, it is clear that, if K is a
compact subset of R and N = max(N N K'), we have

T, )| < llpll ™) for every p € Dx(R),

which proves that T is a distribution.

Now take m € N and set K = [m—3%, m+}]. For every ¢ € 9x(R),
we have (T, ) = (™ (m). It follows form the preceding example that the
smallest integer n for which there exists C > 0 with

T, ¢)| < Cllpl™  for all p € Dk (R)

is m. Thus the distribution T cannot have order less than m, and this for
every m € N. This means T has infinite order.

2C Restriction and Extension of a Distribution to an Open
Set

Let T be a distribution on  and let Q' be an open subset of Q2. We know
that 2(2') can be identified with a subspace of 2(2) (by extending each
function of 2(?') to Q with the value 0 on Q\ Q). Thus we can define the
restriction Tp of T to 2(Q'), which is certainly a distribution on ', called
the restriction of T to Q. Conversely, T is called an extension of Tj
to Q.

Remark. The expression “restriction of T to Q'” is an abuse of language,
since the domain of T is the set of test functions 2(2), and not ( itself. A
similar remark applies to “extension of Ty to 02”.
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2D Convergence of Sequences of Distributions
By definition, a sequence (T )nen in 2'(2) converges to T € 2'(R) if
m (T, ) = (T,p) forall p € D).

n—b+

Therefore this notion is a type of weak convergence.

This definition extends immediately to families (T)) in 2'(2), where A
ranges over a subset of R and tends to Ay € [—00, +00]. For example, when
we write lim.,0 T, = T in 9'(2) we mean that T,,T € 9'(Q2) and that

lim (Te, ) = (T,¢) for all p € F(D).

We now give an example of a distribution defined as a limit of distribu-
tions.

2E Principal Values

Consider the function z — 1/z from R to R. This function is clearly not
locally integrable on R, but it is on R*. We will see how we can extend to
R the distribution defined by this function on R*.

Proposition 2.4 For every ¢ € 9(R), the limit

T =tim [ #Dg *)

e—0+ {1z|>¢} z

ezists. The linear form T thus defined is a distribution of order 1 on R,
and is an eztension to R of the distribution [1/z] € 9'(R").

We call T the principal value of 1/z and denote it by pv(1/z).
Proof. Take ¢ € 2(R) and A > 0 such that Suppy C [-A4, A4]. If € < A,

9@ 4 - [ ) 4 p(z) :
/(|=|>e) z dx—/--A z d“’/, z &
- / T @) -0 4 /‘ o(@) = (0) .
. z

-A z

because 1/z is an odd function. Since (¢(z) — ¢(0))/z can be continuously
extended to the point 0 with the value ¢'(0), we get

o [ 2@ g _ / o) =e0),

e—0+ {1z|>¢€} T

At the same time, by the Mean Value Theorem,

A o(z) — (0
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This shows that equation () defines a distribution of order at most 1. On
the other hand, if ¢ € P(R*), there exists a real § > 0 such that ¢ =0 on

[~46,4], so

#(2) 4o ¢z) 4o [ #l2)
5%-/|3|>c} z /|z|>6} z dx—/' z ds.

This shows that pv(1/z) coincides with [1/z] on Z(R*). It remains to prove
that the distribution pv(1/z) has order 1, which will follow if we show that
it does not have order 0. For each integer n > 2, take ¥, € 2(R) such that
0< 9n <1, Suppy, C (0,1) and ¥, =1 on .[_1/“9 (n—1)/n]. Let ¢, be
the odd function that coincides with ¢, on R™. If K = [-1,1], we have
#n € Px(R), llonll =1, and

1
(PV(I/-‘E),%) = 2/0 ¢"T(z)dz > 2log(n — 1).
Thus there is no constant C > 0 such that
|(pv(1/2), )| < Cllgll for all p € Dk (R),
proving the desired result. a

Another calculation of a principal value is given in Exercise 7 on page 291.

2F Finite Parts

In the previous example we used the fact that the function 1/z is odd in or-
der to define the distribution pv(1/z) as the limit, when € tends to 0, of the
distribution defined on R by the locally integrable function 1(i;/5¢}(z)/z.
If we are dealing with a function that is not odd, this approximation pro-
cedure does not converge, and it is necessary to apply a correction, repre-
sented by a divergent term. This is called the method of finite parts, and
we will illustrate it with two examples.

We first introduce some notation that will often be useful. We define the
Heaviside function, denoted by Y, as the characteristic function of R*.
Thus, for z € R, we have Y(z) =0if c<0and Y(z) =1if 2 > 0.

Proposition 2.5 For every ¢ € 2(R), the limit

(T, ) = cl_i’r(x)l+ ( /‘ (z) ——dz + ¢(0) log e)

ezists. The linear form T thus defined is a distribution of order 1 on R,
called the finite part of Y (z)/z and denoted by fp(Y (z)/z).
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Proof. Take ¢ € 2(R) and A > 0 such that Suppy C [~ A, A]. Then

+o00 A _
-/zl @‘ﬁ”/“ Mdz+¢(0)10844—¢(0)10ge.
Thus

+00 A -
hm(/e @dx+cp(0)loge)=/o‘ Mdzﬂp(o)los&

e—0+

and this expression is bounded in absolute value by ||¢]|(*) max(4, |log A|),
by the Mean Value Theorem. It follows that fp(Y (z)/z) is indeed a distri-
bution of order at most 1.

For each integer n > 2, take ¢, € 2(R) suchthat 0 < ¥, < 1, Supp ¢, C
(0,1), and ¥, =1 on [1/n, (n—1)/n]. We see that

¥n € Do (R), l¥all =1, and (fp(Y(z)/z), ¥n) 2 log(n - 1),
which proves that fp(Y'(z)/z) is not of order 0, and so is of order 1. O

Other examples of finite parts on R will be given in Exercises 3 and 19.
Here is another example, this time on R?. Put r = {/z2? + y? and

Kl
22 " Gyt
Proposition 2.6 For every p € P(R?), the limit

A=

(T,p) = lim (// r~4pdzdy - 19(0,0)e2 + EA:p(O,O) loge)
e—0+ {r>e} 2
exists. The linear form T thus defined is a distribution of order 3 on R2.

T is called the finite part of 1/r* and is denoted by fp(1/r*). (Note
that the function 1/74 is not locally integrable on R2.)

Summary of proof. Take ¢ € P(R?) and A > 0 such that Suppy C
B(0, A). A quick calculation shows that

/-/(r>¢} :: dz dy
= ‘/‘/;AZ'Z!} r (’P(-‘t: y) — ¢(0,0) - zg—‘:(0,0) - yg—;(o, 0)
- (z_’ &¢0,0) +ay g 8”(0 0+ % f(o,O)))dzdy

2 9r?

- 7p(0,0)(A™? —e7%) + §A<P(0, 0) 108 re
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We then deduce from Taylor’s formula that the limit given in the statement
of the proposition exists and is bounded in absolute value by Callp||®,
with C4 > 0. Therefore the distribution thus defined has order at most 3.
It remains to show that it is not of order less than 3. (]

FExercises

1. Let 9®(R) be the set of real-valued elements of 2(R). A distribution T
on Q is called real if (T, ) € R for every p € 2X(1). Show that every
distribution 7" on 2 can be written in a unique way as T = T) + iT,
where T} and T3 are real distributions on 2.

Show that real distributions can be identified with continuous linear
forms on 2R(Q).

2. Let (z,)nen be a sequence of points in 2 having no cluster point in Q.
Show that the map defined by

(T,0) = Y (DP¢)(zn),

n=0

where each p,, is a multiindex, is a distribution. Compute its order.
3. Show that, for every function ¢ € 2(R), the limit as £ tends to 0 of

Rl
{ &€

21>} T2

exists, and that this defines a distribution (the finite part of 1/z2).
Determine its order.
4. Take f € C((RY)*).
a. Assume there exists a constant C > 0 and an integer n > 0 such
that, for every z € B(0,1) \ {0},

(o]
If(l’)l < E’F .

Show that f extends to a distribution of order at most n on R%.
Hint. Consider, for ¢ € 2(R%),

(T,p) = /{ oy @O /{ o (@@~ Pu@) e,

zI<

where P, is the sum of the terms of order at most n— 1 in the Taylor
series expansion of ¢ at 0.
b. Suppose that f is positive and that

zli_%|a:|"f(a:) =+o00 forallme€N.



276 7. Dehnitions and rxampies

5.

Show that there is no distribution on R? whose restriction to (R%)*
is f.

Hint. Take ¢ € 2(R?) supported in B(0,4) \ B(0,1) and such that
¢ =1o0n B(0,3) \ B(0,2). For n > 1, set

nd+l!
An = inf d =—— .
" B 0wl @ 2d en(@) = —e(nz)

Show that (¢n)nen- tends to 0 in 2(R?) and that

Jim_ [ £(2)¢a(a) do = +oo.
Let T be a distribution on Q such that every point in 2 has an open
neighborhood on which the restriction of T vanishes. Show that T = 0.
Hint. Take ¢ € 2(0). Cover the support of ¢ with finitely many sets
on which T vanishes; then use a C* partition of unity (or Exercise 11
on page 266).
Piecing distributions together. Let Q,,..., 2, be open sets in R? whose
union is Q. For each j € {1,...,n}, let T; be a distribution on ;. Sup-
pose that, for every pair of integers (i, j) € {1,...,n}?, the distributions
T; and Tj coincide on the open set ©; N(2;. We wish to show that there
is a unique distribution T on Q whose restriction to each Q; is Tj.
a. Using Exercise 5, prove that such a distribution T must be unique.
b. For each j € {1,...,n}, take p; € 2(;). Show that 3°7_, ; = C
implies }°7_,(Tj, ;) = 0.
Hint. Use a C™ partition of unity associated with the open sets ;.
1 < j < n, and with the compact K = |J}_, Supp p;.
c. Take ¢ € 2(R). Show that the expression

(T,0) = Y (T} 05)

=1

is independent of the choice of a family ¢,,..., ¢, such that

n
p; € 2(Qy) forallje{l,...,n} and <p=quj.
=1

Jj=

(The existence of such a family follows from Proposition 1.4; se¢
Exercise 11 on page 266.)

d. Show that the map T defined above is a distribution on © having
the desired properties.

e. Show that, if each distribution T} has order at most m, so does T.
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10.

11.

12.

13.
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Let  be open in R? and let (f,)nen be a sequence in L},.(). Show that,
if the sequence (f,) converges in L},.(?) to an element f in Li _(R), then
fn tends to f in 2'(). (Convergence in Lj () is defined in Exercise
19 on page 159.)

. Compute the limit of the sequence of distributions in R? defined by the

functions Ty (z) = n®x(nz), where x € L'(R9).

Compute the limit of the sequences of distributions on R defined by the
following functions:

a. T,(z) = sinnz;

b. T,(z) = (sinnz)/z;

c. Ty(z) = nsin(nz) 1{z>0);

d. Tu(z) = |z|="1/(2n).

Hint. For parts a, b, and ¢, you might use the Riemann-Lebesgue
Lemma (Exercise 4a on page 179) and/or integration by parts.

Study the convergence in 2’'(R*), then in 2'(R), of the sequence of
distributions

T, = Zak(Jl/k —8_1/k)
k=1

where (a,) is a sequence of complex numbers.
Show that the equation

+0
(T,0) = Y™ (1/n) for all ¢ € D((0, +00))
n=1

defines a distribution T on (0, +00) of infinite order, and that T cannot
be extended to R.

Find the limit in 2’(R%) as ¢ tends to 0 of the family (T.) defined by
1
T(z) = wacd L{jz)<e} (),

where wy is the volume of the unit ball in RC.
For z € R and N € N, write

N ine _ SIN((N + 3)z)
SN(I) = Z e = .MII(T;)

n=-N
a. Take ¢ € 2(R). Show that, for every p € Z,
(2p+1)n

lim Sn(z)p(z) dz = 2w p(2pr).
N—+o00 (2p-1)m
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14.

18.

16.

7. Definitions and Examples
Hint. Show that

(2p+1)x
/( Sn(2)p(z) dz

2p-1)x

x
= | Sn(z)(p(z + 2p7) - (2p7)) dz + 2mp(2p7);
-
then apply the Riemann-Lebesgue Lemma (Exercise 4a on page 179).
b. Deduce that the sequence of distributions ([Sn])nen converges in
2'(R) to 2w 3 pcz O2px, Where 82, is the Dirac measure at the point
2px.
Remark. One can show that the sequence ([Sn])nen (considered as
a sequence of Radon measures on R) does not converge vaguely (this
concept is defined in Exercise 6 on page 91). Compare with Exercise
1 on page 284.
Let (cn)nez be a family in C such that there exist C > 0 and ¥ > 0
satisfying
len] £ Cln|” for all n € Z°.
Show that the series Y, o, ca [e™*] converges in 2’(R) and that the
sum has finite order.
Hint. If ¢ € 2(R) with Suppy C [-A, A] (where A > 0), prove using
integration by parts that, for every r € N and n € Z*,

/ e""w(z)dxl < 240" jn|~".

Let (fn) be a sequence of functions in L?(2) and suppose f € L?(Q).

a. Show that, if the sequence (fn)nen converges weakly to f in the
Hilbert space L?(f2), it converges to f in 2'(R2).

b. Is the converse true? (You might consider, for instance, the open set
Q2 = (0,1) and the functions fn = nljy/n,2/n-)

c. Show that (fn)nen converges weakly to f in L2(2) if and only if it
is bounded in L?(R2) and converges to f in 9'(Q2).
Recall that every weakly convergent sequence is bounded in L?(Q);
see Exercise 10a on page 120 (this follows from Baire’s Theorem).
Hint. Show first that 2(R) is dense in L?(R).

Banach-Steinhaus Theorem in 9. Let Q be an open set in R%. Let (T;,)

be a sequence of distributions on Q such that, for every ¢ € (), the

sequence of numbers ((Ty,)) is bounded. We wish to show that, for

every compact K contained in 2, there exists an m € N and a real

constant C > 0 such that

[(T,.,(p)| <Cllell™ for all p € Dx(R) and n € N. (*)
To do this we define, for every & € N, a set
Fi = {p € Dk (Q) : |(Tn,9)| < k for all n € N}.
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a. Show that each F is closed in the metric space D (2) defined in
Exercise 7 on page 265. Deduce that, for at least one kp € N, the
set Fi, has nonempty interior. (Use Baire’s Theorem, Exercise 6 on
page 22.)

b. Show that each Fj is convex and symmetric with respect to 0 and
deduce that there exists r > 0 such that the ball B(0,r) (in 2x(f2))
is contained in Fy,.

c. Let me Nbesuchthat 3 27" < r/2, and set C = 4ko/r. Show
that m and C satisfy condition (x).

17. Let (T;,) be a sequence of distributions on € such that, for every ¢ €

2(52), the sequence of numbers ((T,, ¢)) converges. Show that, for any

t € (a,b), the linear form T on 2(N) defined by

(T,¢) = _lim_(Ta,¢)

is a distribution on 2.
Is it true that, if all the distributions T,, have order at most m, then so
does T?
Hint. Use Exercise 16.

18. Let (T¢)¢c(a,5) be a family of distributions on 2. Suppose that, for every
¢ € 2(9), the function t — (T}, ¢) is differentiable on (a, b). Show that,
for any t € (a,b), the linear form dT;/dt defined by

i, \ _d
(G e) = 3 Te) forallpe 5@)

is a distribution on 2.
Hint. Use Exercise 17.
19. Finite part of Y (z)/z°, for a € R*
a, Take m € N*. Prove that, for every ¢ € 2(R), the limit

(T,p) = lim (/:m%dz

e—0+
m-2 (k) 1 (m-1)
-y #*(0) + (O)IOgE)
i (m

—k=1)kl gm-k-1 ° (m-1)!

exists and that the linear form T thus defined is a distribution of
order (at most) m on R. This distribution is called the finite part of
Y (z)/z™, and is denoted fp(Y (z)/z™).

b. Take a € R* \ N. Let m be the integer such that m < a < m + 1.
Show that, for every ¢ € 2(R), the limit

) +00 m-1 (k) (0 1
(T,p) = lim (/e %E%).dz_go(afkii)k! ea—k-l)

e—0+
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exists and that the linear form T thus defined is a distribution of
order (at most) m on R. This distribution is called the finite part of
Y (z)/z*, and is denoted fp(Y (z)/z%).

20. Complete the proof of Proposition 2.6.

3 Complements

In this section, we study under what conditions a distribution can be ex-
tended to test function spaces larger than 2(2), namely 9™ (2) or &(12).
We will introduce to this effect the important notion of the support of a
distribution.

3A Distributions of Finite Order

The next proposition provides a characterization of distributions of finite
order.

Proposition 3.1 Let T be a distribution on Q and suppose m € N. A
necessary and sufficient condition for T to have order at most m is that T
can be extended to a continuous linear form on 2™(QR). The eztension is
then unique.

Proof. Suppose that T has order at most m. Property (*) on page 268 then
implies that T is continuous (and even uniformly continuous) on the space
P(N) regarded, topologically speaking, as a subspace of 2™(12). Since 2(R2)
is dense in 2™ (Q2) by Corollary 1.3, we can apply the theorem of extension
of continuous linear forms. This theorem applies a priori to continuous
linear forms on normed spaces, but we can reduce the problem to that
situation by considering the normed spaces 22 (2). Similarly, since 2(2)
is dense in 2™(12), this extension is unique.

In the other direction, it is clear from the definitions that the restriction
of a continuous linear form on 2™ () to 2(1N) is a distribution of order at
most m. a

Conversely, the restriction to 2(f2) of a continuous linear form on 2™ ()
is a distribution (since a sequence in 2(f2) that converges in 2(2) obvi-
ously converges in 9™(f2)), and it has order at most m by the preceding
reasoning. Thus we can identify the space of distributions of order at most
m on N with the space of continuous linear forms on 2™(Q), which we
denote by 2'™(f2). We will make this identification from now on, and for
T € 9"™(2) and ¢ € 9™(N) we will still denote by (T, ) the result of
evaluating T at ¢.

An important particular case, already discussed on page 270, is when
m = 0. Then 2°(R) = C.(RN) and the space 9'°(R) of distributions of
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order 0 can be identified with the space 9(f2) of complex Radon measures
on Q. Consequently, () = P'°(N) c P'(N) and, if ¢ € C.(N) and
b € M(N), we have

(1,9) = plp) = /spdn-

3B The Support of a Distribution

Let T be a distribution on 2. By definition, a domain of nullity of T is
an open set {)' contained in 2 and such that the restriction of T to Q' is
the zero distribution on Q'.

Proposition 3.2 Any distribution T on Q has a largest domain of nullity
.

The complement of this set, Q \ 2y, which is closed in 2, is called the
support of T and is denoted by Supp T

Proof. Let % be the set of domains of nullity of T, and let 2y = pcq O
be their union. It suffices to show that fly is itself a domain of nullity
of T. Take ¢ € 2(S) C 2(N). By the compactness of Suppy, there
exist finitely many elements wy, .. .,w, of % whose union contains Supp .
By Proposition 1.4, there exists a C™ partition of unity associated with
this open cover; that is, there exist functions ¢),...,pn, € 2 such that
0 < 95 <1 and Suppy; C wj for every j € {1,...,n} and such that
Yoie1 ¢5(z) =1 for every z € Supp . It follows that

2
n
=Y pp;
=1

Since each py; is supported in the domain of nullity wy, this implies that

(T,9) = Z (T, ¢‘PJ) =0.

=1
This proves that £y is indeed a domain of nullity of T, and by the con-
struction it is the largest such domain. a

The support of a complex Radon measure u on  was defined in Exer-
cise 2 on page 90. Since, for every open set O, the space 2(0O) is dense in
C.(O) (Corollary 1.3), one can check easily that this definition coincides
with the one just given for distributions.

3C Distributions with Compact Support
The next proposition characterizes distributions having compact support.
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Proposition 3.3 Let T be a distribution on 2. A necessary and sufficient
condition for the support of T to be compact is that T have an eztension
to a continuous linear form on £(Y). The extension is then unique.

Proof. Suppose first that the support of T is compact. Then there exists
a compact K in Q whose interior contains the support of T. It follows
from Proposition 1.4 that there exists p € 2(2) such that 0 < p <1 and
p(z) =1 for all z € K. We then set, for f € &(1),

T(f) = (T, fp).

It is clear that this does define a linear form T on £(£2). On the other hand,
if o € 2(N1), we have

Supp(p—pp) C R\ K C Q\SuppT,

so that
(T, ) = (T, pp) .

It follows that T is an extension of T to &(S).

Finally, if (f,) is a sequence in &(€2) that tends to 0 in &(), it is easy
to see from the definitions and fromn Leibniz’s formula that the sequence
(fnp) tends to 0 in 2(R2), so that

w g (T2 fup) = 0.

This proves that T is continuous on &(12).

Thus T has an extension T that is a continuous lincar form on &(Q).
Since 2(R) is dense in &(f), this extension is unique.

For the converse, assume that T can be extended to a continuous linear
form T on &(2). Let (K,).en be an exhausting sequence of compact sub-
sets of (). If the support of T is not compact, there exists, for every integer
n € N, an element ¢,, of () such that

Supppn C (R\ Kn) and (T,pn) #0

(by the definition of the support of T'). Dividing ¢, by (T, ¢n), if necessary,
we can assuine that

(T, pn) = 1.

Now, we claiin that the series Z::(’) pn converges in &(12). Indeed, if K
is a compact subset of 2, then K is contained in some Ky, for ng € N;
but, for every n > ng, we have ¢, = 0 on K,, and so on K, so the sum

::’0 n reduces to a finite sum on K, and this for every compact snbset
K of Q. So the sum converges in &(f2). By the continuity of T, it follows
that the serics 2:3 (T, n) converges, contradicting our assumption that
(T,n) =1. O
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Conversely, the restriction to 2(2) of a continuous linear form on &(f2)
is a distribution on Q (since a sequence in 2(2) that converges in 2(2)
also converges in £(2)), and this distribution has compact support by
the preceding results. Thus we can identify the space of distributions on
Q having compact support with the space of continuous linear forms on
8(R2), denoted by &'(2). We will make this identification from now on. In
particular, for T € 6'(Q2) and ¢ € &(RN), we will still write T'(p) as (T, ¢).

We remark also that a distribution on  with compact support can be
identified with an element of &’(R?) by setting

(T,¢) = (T, ) for all p € ERY). (+)

Indeed, if ¢ is in &(R?) the restriction Pin of ¢ to Q lies in £(N).

Proposition 3.4 Every distribution T with compact support in Q has
finite order. More precisely, there exists an integer m € N and a constant
C > 0 such that

(T, ¢)| < Cllpl™  for all p € D().

Proof. Let K be the support of T and let K’, K” be compact sets such
that

KcK cK'cK"cK"cq.

By Proposition 2.1, there exists a constant C > 0 and an integer m € N
such that

I(T1 ‘p)l < C"‘P"(m) for all @YE qu (Q)

By Proposition 1.4, there exists ¢ € 2 such that 0 < <1, 9 =1on K’
and Suppy C K”. If p € 2(R), then oy € Dk~ () and

Supp(p—p¥) C A\ K’ C Q\K.

Since the compact K is the support of T, it follows that there is a positive
constant C’ depending only on C, m and 9, and such that

(T, )| = (T, )| < Cllewll™ < C'llo]|™,

the last inequality being a consequence of Leibniz’s formula. O

Remark. One can easily deduce from the preceding results that, if T is
a distribution with compact support, there exists an integer m € N (any
integer not less than the order of T will do) such that T extends to a
continuous linear form on £™ (), and that this extension is unique.
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FEzercises

1. Let (Tn)nen be a sequence of positive Radon measures that converges in
2'(N) to a distribution T'. Show that T is a positive Radon measure and
that the sequence (T, )nen converges vaguely to T (this term is defined
in Exercise 6 on page 91). Compare with Exercise 13 on page 277.

2. Let T be a distribution on R™ and suppose ¢ € Z(R™) vanishes at every
point in the support of T. Does it follow that (T, ) = 0?

3. Let T be a distribution on Q with compact support K and order m, and
suppose ¢ € 2() satisfies the following property: For every multiindex
p of length at most m and every z in the support of T', we have D®p(z) =
0. We wish to prove that (T,¢) =0. Put K, = {z € R?:d(z,K) < e},
for e > 0.

a. Take > 0. By assumption, there exists a real number r,, > 0 such
that |DPy(z)| < 1, for every z € K, and every multiindex p of
length at most m. Show that, for every z € K., and every p € N¢
such that [p| < m,

|DPe(z)| < nd™~1Pld(z, K)™-1#!.

Hint. You might use reverse induction on n = |p|, applying at each
step the Mean Value Theorem on the segment [z,y], where y is a
point in K such that d(z, K) = d(z, y).

b. Suppose x € Q(Rd) has its support contained in B(0, 1) and satisfies
J x(z)dz = 1. Let x, be the element of 2(R?) defined by

Xe(z) =7 -/Ku x(2Y) dy.

Show the following facts:

i. For every € > 0, the support of x. is contained in Kj3.; moreover,
Xe = 1in K.
ii. For every multiindex p we have

1DPxe 9 < x| PDwq e~ 17,

where wq is the volume of the unit ball in R%.

c. Show that there exists a constant C > 0 (depending only on d and
m) such that, for every € < r,/3,

Ixewll™ < nC Ixl™.

(Use Leibniz’s formula.)
d. Show that there exists a constant C’ > 0 such that

|(T,9)] < nC"lIxII™.
Finish the proof.
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4. Structure of distributions with finite support

a. Let f), f2,..., fn and f be linear forms on a vector space E with the
property that, for every z € E,

h@) = fo(x)=-=falz)=0 = f(z)=0.

Show that there exist scalars c),...,c, such that f =c¢;f; +--- +
cnfn.
Hint. Let E, F, and G be vector spaces, f a linear map from FE to
G, and g a linear map from E to F such that kerg C ker f. Suppose
F is finite-dimensional. Then there exists a linear map h from F to
G such that f = hog. (Why?) Apply this result to F = C" and
9=fir-- fn)-

b. Let T be a distribution on an open subset 2 of R?, and suppose
Supp T = {0}. Show that T is given by

(T,p) = Z cpDPp(0) for all p € 9(),

lpl<m

for appropriate constants cp.
Hint. Use Exercise 3.

c. Determine likewise the general form of a distribution whose support
is finite.

5. Let (T, )nen be a sequence of distributions on an open subset 2 of RY.
We assume that the sequence (T) converges in 2'(2) and that the
supports of the distributions T,, are all contained in the same compact
K. Show that the orders of distributions T}, have a uniform upper bound
m € N.

Hint. Use the Banach-Steinhaus Theorem in 2'(f2), stated in Exercise
16 on page 278.
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Multiplication and Differentiation

We define in this chapter two important operations involving distributions.
Again we will be working with an open subset 0 of R®.

1 Multiplication

In this section we define the product of a distribution by a smooth function.
This definition arises from the following lemma.

Lemma 1.1 Suppose a € §(f2). The map ¢ — ayp from 2() to D(N)
is continuous. Likewise, if a € £™(N2), with m € N, the map ¢ — ayp from
P™(R) to 2™(N) is continuous.

In other words, if (¢n)neN i a sequence in 2(2) or 2™ (1) converging
to 0 in 2(2) or 2™ (), respectively, the same is true about the sequence
(a@n)nen-

Proof. The lemma follows immediately from Leibniz’s formula (page 258)

and from the fact that, if p, € 2(2), the support of ay, is contained in
the support of ¢y, ]

Thus we can define the product of a function and a distribution as follows:

Definition 1.2 If T € 2’(2) and a € §(2), the product distribution aT
on { is defined by setting

{aT,p) = (T,ayp) forall p € D(N).
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If T € 9'™(RN) and a € £™(), the product aT € 2'™(N) is defined by
(aT, ) = (T,ap) for all p € 2™(N).

(Recall that 2'™() is the set of continuous linear forms on the space
2™ (), which by Proposition 3.3 on page 282 can be identified with the
space of distributions of order at most m).

That aT really is a distribution follows from the preceding lemma: If
(¢n)neN is a sequence in P(2) or I™(1) that converges to 0, Lemma 1.1
implies that the sequence ((T', a@n))nen tends to 0 since T is a distribution.
Thus aT really is a continuous linear form on Z(f2) or 2™(£2), as the case
may be.

Obviously, if f € L} () and a € C(R), we have

alf] = [af].

In this sense, this multiplication extends the usual product of functions. We
will see in Exercise 1 below that this extension cannot be pushed further
to the case of the product of two arbitrary distributions without the loss of
the elementary algebraic properties of multiplication, such as associativity
and commutativity.

Remark. The definition immediately implies that if a € £(2) the linear
map T — aT from 2'(R) to 9'(N) is continuous, in the sense that, if
(Tw)nen converges to T in 9'(R2), then (aT,)neN converges to aT in 2'().

Proposition 1.3 With the notation introduced in Definition 1.2, we have
Supp(aT) C SuppaNSupp T
and, if B € £(R) (or B € £™(RN)), we have
a(fT) = (af)T.

Proof. The second claim is obvious. To show the first, take ¢ € 2(f).
If Suppy C 1\ Suppa, then ap = 0, so (aT,p) = 0. It follows that
Q \ Supp a is contained in 2\ Supp(aT'), so Supp{aT) C Suppa.

Now if Suppy C 2\ Supp T, then

Suppay C Suppy C 2\ Supp T,

which implies that (aT,y) = 0. Therefore Q \ Supp T is contained in 2\
Supp(aT), so Supp(aT) C Supp T. The result follows. (=]

The inclusion in the proposition may be strict. For example, if T = § is
the Dirac measure at 0 in R, and if a € C(R?) is such that (0) = 0 and
0 € Suppa (say a(z) = z), then aT = a(0)é = 0 and the support of aT
is empty, whereas Suppa N Supp T = {0}.
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Division of distributions is an important problem: If S € 2'(R?) and
a € £(N), is there a T € 2'(N) such that aT = S? Clearly, if a van-
ishes nowhere in (2, the product T = (1/a)S is the unique solution to the
problem, by the second part of Proposition 1.3. In the general case, the
restriction of T to the open set {z € R? : a(z) # 0} is uniquely defined
by the same equality, but the global problem may have infinitely many
solutions. Here is an example in dimension 1.

Proposition 1.4 For every S € 2'(R), there ezists T € 9'(R) such that
zT = S. If Ty is such that Ty = S, the set of solutions of the equation
zT =S equals {To + C6 : C € C}.

Proof. Take x € 2(R) such that x(0) = 1. To each ¢ € 2(R) we associate
@, defined by

1

#(@) = [ (=) - pO)x (1)) a2
One easily checks that ¢ € 9(R) and that the map ¢ — ¢ from P(R)
to 2(R) is continuous. Moreover, if z € R*, ¢(z) = (¢(z) — ¢(0)x(z))/z.

Now put
(T,p) = (S,¢) forall p € D(R).

Since ¢ — @ is continuous, T belongs to 2’'(R); since Tp = ¢, we get
zT =S.
Now take T € 2'(R) with zT = 0. If ¢ € 2(R), we have

0= <$T, ¢) = (T3 ¥ — SO(O)X) = <T’ (P) - (T’ X) <6) ¢) .
It follows that T = (T, x) . o

Here is a particular case.

Proposition 1.5 Suppose T € 2'(R). Then =T = 1 if and only if there
ezxists C € C such that T = pv(1/z) + CS.

Note that, in the equality zT = 1, the symbol 1 represents the constant
function equal to 1, identified with the distribution [1}, which is none other
than Lebesgue measure .

Proof. By Proposition 1.4, it suffices to show that zpv(1/z) = 1. To do
this, take ¢ € 2(R). By definition,

(zpv(1/z), ) = (pv(1/z), zp) = lim }(l/z)zsp(z)dz

=0+ {lz|>e
= [w@ydz = (o)

as we wished to show. a
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Ezercises

1. Show that it is impossible to define a multiplication operation on the
set 2'(R) that is at once associative, commutative and an extension of
the multiplication defined in the text.

Hint. Suppose there is such a multiplication and compute in two ways
the product =6 pv(1/z), where 4 is the Dirac measure at 0.

2. Consider an open set © in R? and elements a € £() and T € 2'(Q).
Assume that a = 1 on an open set that contains the support of T. Show
that oT =T.

3. Suppose T € 2'(R%), a € R, and m € N. Show that (z — a)PT =0 for
every multiindex p of length m + 1 if and only if T can be written as

(T,p) = Y cgD%(a) for all p € A(RY),

lgl<m

with ¢4 € C for |g] < m. (As might be expected, by (z — a)? we mean
the product (z;—a,)?...(xq4—aq)P.)

Hint. Show first that, if (x — a)PT = 0 for every multiindex p of length
m + 1, the support of T is contained in {a} and so is compact. Using
Taylor’s formula (Exercise 1 on page 264), prove then that, for every
¢ € I(RY),

(To) =3 Y DU(a)(T, (z-a)").

k=0 " |ql=k

4. Suppose S € Z2'(R),a € R, and m € N.
a. Choose x € 2(R) such that x(a) = 1 and x*)(a) = 0 for k €
{1,...,m}. Given ¢ € 2(R), define a function ¢ by

_ ¢(@) - (p(a)+¢' (a)(z—a)+- - -+(1/m!) '™ (a) (z—a)™ ) x(x)
- (z—a)m+!

é(z)

if £ # a, and extend it to £ = a by continuity. Show that the map
@ — @ from 2(R) to 2(R) is continuous (in the sense of sequences).
b. Show that the equality

(T, ) = (S,9)
defines a distribution on R that is a solution of the equation
(—a)™*'T =8

c. Determine all solutions of the equation (z — a)™+'T = §.
Hint. Use Exercise 3.
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. In each of the following cases, the question is to show the existence

in 2'(R) of solutions T for the equation fT = S, with S € 9'(R)
arbitrary, and to find the general form of the solutions in terms of a
particular solution Tp.

a. Suppose that f € &(R) and that f has a unique zero a € R, which

furthermore is of finite order; that is, there exists an integer m € N*
such that f(™)(a) # 0.
Hint. Let m be the smallest integer such that f(™)(a) # 0. The func-
tion g defined by g(z) = (z — a) "™ f(z) and extended by continuity
to £ = a belongs to &(R) and vanishes nowhere. Then fT = S if
and only if (z — a)™T = g~!S. Now apply Exercise 4.

b. Suppose that f € &(R), that the set of zeros of f has no cluster

point, and that each zero has finite order.
Hint. Let (Or)ren be a locally finite cover of R by bounded open
sets, each containing at most one zero of f. Write S in the form
S = Y 4N Sk, where Supp S C Oy for each k € N (see Exercise
14 on page 267). Solve the equation fT; = S for each k, using the
preceding case as inspiration.

a. Show that the distributions T on R such that T = Y are exactly
those of the form T = fp(Y (z)/z) + C§, for C € C.

b. More generally, prove that, for every m € N°*, the distributions
T on R such that z™T = Y are exactly those of the form T =
fp(Y (z)/z™)+ e ckd™, for cx € C (see Exercise 19 on page 279).

a. Prove that the equality

nx—¢ nr+w/2
(To, ) = lim Z(/ Mdm/ —"i(i)dz)
=0+ L= \Jnr_n/2 8inZ nnte  SINT

defines a distribution Tp of order 1 on R. (Tj is the principal value
of 1/sinz.)

b. Show that sinz Tp = 1 and deduce the general form of the solutions
of the equation sinz T = 1.

. Suppose T € 2'(2) and ¢ € 2(N) are such that, for every multiindex p

(of length equal to at most the order of T if T has finite order) and for
every z in the support of T, we have DPy(z) = 0. Show that (T, ¢) = 0.
Hint. Apply Exercise 3 on page 284 to the distribution S = xT', where
X is a test function that has the value 1 on an open set containing the

support of .

. Take T € 2’™(N) and a € &™(N) (or T € 2'(N) and a € &(N)).

Suppose that, for any p € N such that |[p| < m (or any p € N¢,
respectively), DPa vanishes on the support of T. Show that aT = 0.
(Use Exercise 8).

Let (K,)nen be an exhausting sequence of compact subsets of €. For
each n€ N, let p, € 2(N2) be such that 0< ¢, <1, ¢, =1o0n K,, and
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Supp ¢n C Knt1. Show that limp_, 400 T =T in 9'(R), for every T €
9'(Q). Deduce that 8'(R) is dense in 2’(R?) (in the sense of convergence
of sequences).

2 Differentiation

For p € N?, the differentiation operator of order p on 2’(f2) is defined as
follows: If T € 2(1), set

(DPT, ¢) = (-1)'P(T, DPy) for all p € D(Q).

Since the map D? : ¢ — DPyp from 2() to P(N) is continuous, the linear
form DPT thus defined on 2() is indeed a distribution. This map DP® is
also continuous as a map from 2™+P(Q) to 9™ (), which leads to the

following property:

Proposition 2.1 Suppose m € N. For every T € 2'™(RR), we have
DPT € 9'™HP/(Q) and

(DT, ¢) = (-1)"(T, D) for all p € F™*P(Q).

We also use the notation

ariT
DT = Dor = 82T,
or,ifd=1,
dT atT
=T =— mT = (m)=——
DT=T e D™"T =T e for m € N,

as for functions. Indeed, the differentiation operator defined above on 2(2)
extends ordinary differentiation of functions of class C!:

Proposition 2.2 Let m € N and p € N? satisfy |p| < m. If f € &™),

then
D*((f]) = [D*f).

In this equality, the first DP denotes differentiation in the sense of
distributions as defined above, and the second denotes ordinary differ-
entiation in the sense of functions.

The proposition is easily obtained by induction on |p| starting from the
case |p| = 1, which is a consequence of the following lemma.

Lemma 2.3 (Integration by parts) If f € £'(Q) and ¢ € 2'(Q),
then, for every j € {1,...,d},

[ Disods=- [ Do
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Proof. By Fubini’s Theorem, we can reduce to the case d = 1, to which
we apply the classical theorem of integration by parts, taking into account
that the support of ¢ is a compact subset of 2, so that the “boundary”
terms vanish. o

Ezamples
1. Take a € Q. The derivatives of the Dirac measure at a (denoted by J,
and defined by (84, ) = p(a)) are given by
(DP8,,9) = (—1)PIDPp(a) for all p € N

these distributions were studied on page 270. Thus, for every p € N, the
distribution DP§, has order [p|.

In particular, if @ = 0 (in which case we write § = ) and d = 1, we
have

8n,0) — (60,
@) = ~¢/(0) = - lim W02 =000 gy € (o)
It follows that
8= 'l.i_%— A in 9'(R).

2. The derivative in the sense of distributions of the Heaviside function Y
is the Dirac measure at 0: indeed, if ¢ € 2(R),

+00
(V'\p) = — /0 & (t) dt = (0),

where we have used, in calculating the integral, the fact that ¢ has
compact support. Therefore Y’ = 4.

8. The function z — log(|z|) is locally integrable on R and as such defines
a distribution. We compute its derivative in the sense of distributions.
If o € 9(R),

(s logiab], v) = - [ /@) 108(leh =
== Jim, [ ¢ os(iz)ds.

Integrating by parts, we deduce that

<% [log(Iz1)], ‘P) = —zl_i’r&(—tp(e) log & +¢(—¢) 1035_/“ p(z) da:) .

z|2e} T

Now, loge(¢(—€) — ¢(€)) tends to 0 as € tends to 0. Therefore

= flogah] = pv(3)-
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One shows likewise that

v -n(1)

The next proposition follows easily from the definitions.
Proposition 2.4 Suppose p € N¢.

1. The application T — DPT from 2'(Q) to D'(Y) is continuous in the
following sense: For every sequence (Tp)nen in 2'(2) that converges
to T in 2'(RN), the sequence (DPT,)neN in 2'(R) converges to DPT in
2'(Q).

2. For every T € 2'(R),

Supp(DPT) C SuppT.

We remark that the property of continuity extends immediately to fam-
ilies somewhat more general than sequences. For example, we deduce from
Example 1 above that

6” _ Iim JI — Jh'
h—0 h

in 2'(R).
Leibniz’s formula also generalizes without change:

Proposition 2.5 (Leibniz’s formula) Consider T € 9'(R2), a € £(Q),
and p € N®. Then

D*(aT) =Y (5 )D"“’aD"T.

q<p
This formula remains true for T € 9'™(Q) and a € £™IP(Q).

Proof. This is obvious if |p| = 0. Consider the case [p| = 1.If j € {1,...,d},
we have

(Dj(aT),¢)=—(aT,Djp)=—(T,aDjp) = —(T, Dj(ayp))+(T, (D;ja)p),

so that
(Dj(aT),¢) = ((D;ja)T + aD;T, p).

Thus Dj(aT) = aD;T + (Dja)T. From here the formula can be extended
by induction on |p| as in the case of functions. a

Remark. We will show in Chapter 9 (proposition 2.14 on page 334) that
2(R) is dense in 2’() (in the sense of sequences). The preceding propo-
sition then becomes a consequence of Leibniz’s formula for functions, to-
gether with the denseness result just mentioned and the continuity of the
operators of differentiation and of multiplication by a function.
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By Proposition 2.2, the first derivatives D;([f]), for j € {1,...,d}, of
a distribution defined by a function f € &!(R) correspond to continuous
functions on 2. We will show that, conversely, any distribution whose first
derivatives are defined by continuous functions corresponds to a function
in £1(N).

Theorem 2.8 Let T € 2'(). Suppose that there erists, for every j €
{1,...,d}, a function g; € C(Q) such that D;T = [g;]. Then there ezists
f € £1(Q) such that T = [f].

Proof

- Suppose first that the result has been proved for the case where 2 is an
open parallelepiped in R%:
d

Q = (a,b) = [[(a;,05).

=1

We derive the general case. Let 2 be any open set in R? and let T be
a distribution on Q for which there exists, for every j € {1,...,d}, a
function g; € C(R) such that D;T = [g;]. Let % be the set of open
parallelepipeds contained in Q. For every w € %, there exists f, €
&'(w) such that the restriction of T to w is [f,]. It is clear that, for
wy,we € % with w; Nw; # @, we have f,, = f,, on w;Nw,. Thus there
exists f € £'() such that, for every w € %, the restriction of f to w
is f,. It follows that every w € % is a domain of nullity for T — [f], in
the sense of Proposition 3.2 on page 281. By this same proposition, this
implies that the support of T — [f] is empty and so that T = [f].

Thus we can assume that we are in the case = (a,b). We argue by
induction on the dimension d.

- Case d = 1. Suppose T € 2'(RQ) satisfies T' = [g] with g € C((a,b)).
Let a € (a,b). The function G defined by G(z) = f g(t)dt belongs to
&'((a, b)) and satisfies [G]' = [g]. Therefore the dlstnbutlon S =T-[G]
satisfies S’ = 0. Now let x € 9((a,b)) be such that f x(z)dz = 1. We
define, for each ¢ € 9((a,b)), a function ¢ by setting

b
P(z) = o(z) - ( / o(t) dt) x(z) for all z € (a,b).
Then ¢ € 9((a, b)) and [” $(z) dz = 0. Therefore the function & defined
on (a,b) by .
2@ = [ s0a

satisfies ®(z) = 0 if z ¢ [min Supp &, max Supp@]. Thus ® € 2((a,b)).
Then
= (5',®) = —(5,%) = -(5,9),
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so that
b
(5,00 = [ o)dt (5.0 = ((Six), @) for all p € D((a,b).

Thus, if we set f = G + (S, x), we have f € &'((a,b)) and T = [f].

- Suppose the result has been proved for d > 1. For (a,b) = Hg: ll(aj,bj)
take T € 92'((a, b)) such that, for every j € {1, ..., d+1}, there exists
gj € C((a,b)) satisfying D;T = [g;]. Put

ZTd41

G(Z],...,Zd+])=/ gd+|($|,-..,1’d,t)dt,

a

where a € (ag+1, ba+1). Using Fubini’s Theorem and integration by
parts, one sees that Dg+1[G] = [ga+1]. The distribution S = T — [G]
then satisfies Dy, S = 0.

Take X € 9((aa+1,bas1)) such that [**! x(z)dz = 1. If ¢ € 2((a,b)),
define ¢ € 2((a,b)) by

ba+1

¢($|,...,.’Ed+|) = <p(:z:|,...,:1:4+|) — X($d+]) w(z.,...,zd,t)dt.
Qd +1

Then, for every (z),...,Z4) € H_‘;=l(a_,-,bj),

ba 41
/ &(z1y...,Ta,t)dt = 0.

Qd 41

Now set ans
®(z1,...,Tds1) =/ @(zy,...,zq,t)dt.

Q441

As in the case d = 1, we have ® € 2((a,b)) and
0= (D4+15,®) = —(S, Da+1®) = —(S, ),

so that
(E;’99) ::(Ei 9569 X)'
where we have used the notation
ba 41
P(zy,y. .., Zq) =/ o(zy,...,zq,t)dt
Qdy )

and
PR®x(Z1y. .., Tas1) = P(T1, ..., Ta) X(Ta+1)-

Consider the distribution U € 9’(Hj=l(a,~,bj)) defined by

U, 9) = (T, p®x) forall p € D([T}_,(a;,b5)).
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It is clear that the linear form U is indeed a distribution and that, if
j€e{1,...,d},

(D;U,¢) = —(T, (D;j¥) ® x) = —(T, D;j(¥ ® x))
= (D;T, ¥ ® x) = ([9;), ¥ ® x)

Consequently, if j € {1,...,d}, we have D;U = [§;], where

bd+1
@1(11,---,1%) =/ gj(zh""zdat)X(t)dt‘

ad 41

Thus U satisfies the induction hypothesis and there exists an element
u € &'([15-1(aj,b;)) such that U = [u]. Now, for p € 2((a,b)), we

have
(T! ¢) = <[G]a w) - <[G]’ ‘;7 ®X> + (U! ¢)
It follows that T = [f] with

f(zh"-:zd-f-l) basi

=G(z1,..-Tds1) — G(z,...,x4,t)x(t)dt + u(zy,...,T4).

Gd 41

Thus f € C((a,b)) and the derivative in the ordinary sense, 8f/8z4+1,
exists on (a, b) and equals g441. One shows similarly that the other par-
tial first derivatives of f in the ordinary sense exist and are continuous,
which implies that f € & ((a,b)). a

We deduce from this theorem an important uniqueness result.

Theorem 2.7 Let Q be a connected open subset of R? and suppose that
T 1is a distribution on Q such that D;T = 0 for every j € {1,...,d}. Then
T = C for some C € C.

Proof. By the preceding theorem, there exists f € £&'(2) such that T = [f]
and D;f = 0 in the ordinary sense, for all j € {1,...,d}. The result
follows. a

Working by induction starting from Theorem 2.6, we see also that, for
re€Nand T € 2'(), if DP(T) € C(9) for every multiindex p of length ,
then T € £7(RQ).

We will now study in more detail the case of dimension d = 1, starting
with a characterization of distributions whose derivative is locally inte-
grable.

Theorem 2.8 Suppose that §? is an open interval in R and that a € Q.
Let T € 2'(Q) and f € L}, (R). The following properties are equivalent:

i T = [f).
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ii. There ezists C € C such that T = [F), with F(z) = C + [ f(t)dt.

Functions of the form F(z) = C + f: f(t) dt as above are called abso-
lutely continuous on 2. Thus, a distribution has for derivative a locally
integrable function if and only if it “is” an absolutely continuous function.
Another way to say this is that, if f € L} (), the function F defined by
F(z) =C + [ f(t)dt is a primitive of f in the sense of distributions.

Proof. Suppose = (a,b). Take f € Lj, ((a,b)) and let F(z) = [7 f(t)dt.
Then, for every ¢ € 9((a, b)),

(FT.0) = - [ ") ( [ 1@ dt) de.

Therefore, by Fubini’s Theorem,
(IFT ) = / &'(2)f(t) de dz - f / ¢(2)f(t)dt dz
{a<z<t<a} {a<t<z<b}

a b
= [ eorwa+ [ ews0d= ().
Thus [F]' = [f] and the desired result follows from the uniqueness theorem
proved earlier (Theorem 2.7). O

Still in the case of an open interval Q = (a,b) in R, one can characterize
distributions whose derivative is positive—which is to say, by Proposition
2.3 on page 270, those whose derivative belongs to the space 9 ((a, b)) of
positive Radon measures on (a, b). Recall that, if a is an increasing function
on (a,b), we can associate to a a positive Radon measure on (a, b), namely
the Stieltjes measure da, and that we obtain in this way all elements of
9M+((a,b)). (We saw this in Section 3A of Chapter 2 (page 71) for the case
(a,b) = R, and it extends immediately to the case of an arbitrary open
interval (a,b).)

Theorem 2.9 Suppose that Q is an open interval in R, and that T €
P'(Q). If there exists an increasing function a on Q such that T = [a],
then T’ = da and therefore T’ is positive.

Conversely, if T’ is positive, there erists an increasing function a on Q
and a constant C € R such that T = [a +iC).

Proof. Set 2 = (a,b). Let a be an increasing function on (a,b). Take ¢ €
2(N) and let c,d be such that a < ¢ < d < b and the support of ¢ is
contained is [c,d]. For n € N* and k € {0,...,n}, set

zk=c+kd-c.
n
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Then, by definition,

[oda~ f pla)da(z) = lim_ Z»e(zk)(a(zm)-a(zk))

We perform a summation by parts. Since ¢(c) = ¢(d) = 0, we have

n-1 n
Z o(zi) (a(zksr) — a(zk)) = Za(tk)(v(tk-n) - p(zx)).

k=0 k=1

Consequently,

/¢d0=_n—;+ f“”"’(Zh:. ,z.)(-‘t)a(:k))

Using the Dominated Convergence Theorem, we obtain

[eda=- [¢@ate) s

(Recall that a(z,.) denotes the limit from the right of the function a at z.)
Now, a(z4) = a(z) except at a set of points z that is countable, and so of
Lebesgue measure zero (see Exercise 6 on page 5). Therefore

[eda=- [¢@at@a,

so da = [a]'. This proves the first part of the theorem.

Now suppose that T’ is positive. By Proposition 2.3 on page 270, T" is
a positive Radon measure on Q. By Theorem 3.8 on page 73 (applied to
rather than R), there exists an increasing function a such that T’ = da (we
may assume a is right continuous). Then, by the first part of this proof,
T’ = [a]'. Now it suffices to apply the uniqueness theorem (Theorem 2.7)
to obtain T = [a + C], for C € C. The desired result follows by replacing
a with a + ReC and C with ImC. O

Obviously, in the preceding theorem, we can assume that C = 0if T is
real —that is, if (T, ) € R for every real-valued ¢ € 2(Q).

We also see from Theorem 2.9 that every positive Radon measure of finite
mass u on R is the derivative in the sense of distributions of its distribution
function F, defined by F(z) = p((—o0, z]). Indeed, by Remark 1 on page 74,
we have u = dF. In particular, we recover the result that u = F'(z)dz if
F is of class C'.

The next theorem, applicable to a large class of functions of one vari-
able, links the derivative in the sense of distributions with the ordinary
derivative.
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Theorem 2.10 Suppose that ? is an open subset of R and that f is a
function on 2 for which there erist points ; < --- < z, in Q satisfying
these conditions:

- [ is of class C' on Q\ {z),...,zn}.
- For every j € {1,...,n}, f has right and left limits at z;, which we
denote by f(z;;) and f(z;-), respectively.
- The ordinary derivative f' of f, defined on Q\ {z,,...,z,}, belongs to
Ljc(9).
Then n
A1 =11+ Y (f(ie) = f(2-)) s,
i=1

Proof. Considering separately each of the connected components of (2, we
can assume that  is an open interval (a,b). Put o = a and z,4, = b.
Then, if ¢ € 2(12), we have

(Uf120) = —(Ifl ') = - Z ] f(t)p

or yet, integrating by parts (and setting ¢(a) = ¢(b) = 0),

(1 0) = Z ( [ eorwat st )—f((z,-ﬂ)_)w(z,-ﬂ))

- / o0 (W)t + Y pes) (Fass) — flzs ),
i=1

which concludes the proof. O
By induction on p € N*, we deduce the following corollary.

Corollary 2.11 Suppose that Q2 is an open subset of R and that f is a
Junction on Q for which there erist points £, < --- < z,, in 2 and an
integer p € N* satisfying these conditions:
- f is of class C? on Q\ {z1,...,Zn}.
- For every j € {1,...,n} and every integer k € {0,...,p—1}, the right
and left limits of f(¥) at z; ezist.
- The ordmary p-th derivative f(P) of f, defined on Q\ {z),...,Zn}, be-
longs to L} ().

Then

n p-1

[f]® = [f®)] +Z z (F®(zj4) - F®(; ))g(p—l k).

j=1 k=0
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Ezamples

The following examples are immediate applications of the two preceding
results.

1. Recall our notation z+ = max(0, z). Then [z*] =Y.

2. We also find that Y’ = 4. More generally, if Y, = 1jg,4o0), then Y; = 4.
3. [l=l/2])" =6.

4. Let f be a function of class C? on R. Then

-1
[Y £]® = [y ) + ,Z F®(0)5-1-0),

k=0

In dimension d > 2, Theorem 2.10 has the following partial generalization
(see also Exercise 15).

Theorem 2.12 Suppose that d > 2 and, if (z2,...,z4) € R?™}, write
Qz,....zs = {1 ER: (21, 22,...,24) € R}.
Let f € L} (Q) satisfy the following conditions:
- For almost every (z2,...,Z4) € R?"!, the map on Qz,,....zq defined by
1~ f(z1,22,...,24)

i8 continuous on Q,, . ., and of class C' ezcept at finitely many points
of Qz,,...,z4-
- The ordinary partial derivative 8f/0z,, defined almost everywhere on
Q, is an element of L ().
of
D\[f] = 8_:::1] .
Of course, an analogous result holds if we replace the subscript 1 by any
jie€{2...,d}.
Proof. Argue as in the proof of Theorem 2.10 and apply Fubini’s Theorem.
O

Ezamples

+) — 0 lf]#]"
1. Dy(a7) = {Y(z,) ifj=1.

2. Setr = |z| = \/2? +--- + 23 and B, = {z € R?: |z| < 1}. By Theorem
3.9 on page 74 and Remark 2 on page 76,

1
/ r%dz = 34/ rd-1"2 dr < 400,
B 0

where 84 is the area of the unit sphere in R? (84 = dwq, where wq =
A(B,) is the volume of B;). As a consequence:
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Proposition 2.13 The function = — =2 is locally integrable on R?
if and only if a < d.

Therefore we obtain, as a consequence of Theorem 2.12:
-Ifa<d-1land1<j<d,

1 T;
Dj(;) = —Q 1‘°+2 .

Ifd>2and1<j<d,

.
Dj(logr) = ;;— .

(The local integrability of the derivatives follows from the preceding

criterion and the fact that |z,] < r.)

FEzercises

1. Show that, for every distribution T on an open subset £ of R? and for

every i,j € {1,...,d},

D;D,T = D;DT.

2. a. For h € R%, let 7, be the operator on 2'(R?) defined by

(taT, ) = (T, o(- + h)).

If the distribution T is defined by a locally integrable function f,
what does 7, T correspond to?

Show that T
lim (0..08 75 —D,T
hy =0 hl

in 2'(RY).

. We say of a distribution T on R? that it does not depend on the

first variable (say) if 74, 0,..,00T = T for every h, € R. Show that
T does not depend on the first variable if and only if D, T = 0. (See
also Exercise 6 on page 324.)

Hint. For any function ¢ € 2(R?), find the derivative of the function
f defined on R by

f(h) = (Tny0,...00 T )

3. Let T be a distribution on R. Show that T is defined by a Lipschitz

function if and only if T’ € L™. (In particular, Lipschitz functions are
absolutely continuous.)

Hint. The “if" part follows from Theorem 2.8. To prove the “only if”
part, use the first part of Exercise 2, the duality L> = (L')’, and the
fact that 2 is dense in L'.
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4. Let T be a distribution on R? such that DPT = 0 for every multiindex
p of length m + 1. Show that T is defined by a polynomial function of
degree at most m.

Hint. Work by induction on m.

5. Let € be an open interval in R.

a. Show that, if f is an absolutely continuous function on Q and g €
&'(9), then gf is absolutely continuous on Q and [gf})’ = [¢'f + 9 f1),
where f, is the element of L} _(2) defined by [f]’ = [f1].

Hint. Write [gf] = g[f] and apply Leibniz’s formula.

b. Let g be an absolutely continuous function on Q2 and suppase g; €
L}, () satisfies [g] = [g1]. Show that there is a sequence (gn)nen in
&(Q) such that (g},) converges to g, in L} () and (gn) converges
to g in C(Q).

c. Deduce from this that, if f and g are absolutely continuous on 2, so
is fg. Write down [fg]’ in this case.

6. Show that the map defined on 2(R?) by

(T,p) = /R o(z,z)dz

8T
is a distribution. Find its support and its order, and compute oz, + gzl
7. a. Let a € R* \ N. Show that 2

£0(22) - o5 (2%)

b. Let m € N*. Show that
a. (Y(@)) _ Y(z) (=)™ <(m)
d;zfp(z’")__mfp(zm‘“ + o o™,

(The finite part of a function z — Y(z)/z®, where @ > 0, was
defined in Exercise 19 on page 279.)
c. Use this to find the successive derivatives of fp(Y (z)/z).
8. Compute the second derivative, in the sense of distributions on R, of
the function f defined by f(z) = max(1-|z|, 0).
9. We denote by o the surface measure of the unit sphere in R2. Recall
from Exercise 16 on page 83 that

27
/ pdo = / o(cosd, sin8)df for all p € Co(R?).
0

We set f(z,y) = max(1 — /22 + 32, 0) and

x(z,y) = {(z’ +9)"V? if0<a? +y2 <1,
’ 0 otherwise.
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a. Calculate 8f/9z and 8f/8y in the sense of distributions on R? (shov
in particular that these derivatives are functions).
b. Take ¢ € 2(R?) and set ¥(p,0) = p(pcosb, psinf). Show that

I o
(0,1)x(0,2x) o’

//{=’+y’<l} \/m (

= (A.ﬂ‘P)

c. Deduce that Af = 0 — x in the sense of distributions.
10. For r > 0, let o, be the surface measure of the sphere of center 0 anc
radius 7 in R%. Show that

2df 1 3
rl-l»rn')l'r r2 (sdr“ 10~ 6) =4
in 2'(RY).

Hint. Use the Taylor-Young formula and (after having proved them’
the equalities

/zjda,.=0, /z;zjda,.=0 if i # j, /z?da,.=fdgrd'“.

11. Let f be a real-valued function of class C? on R?, satisfying Af = 0.
a. For ¢ > 0, set g. = (€2 + f2)"/2. Compute Ag, and show that it is &
positive function.
b. Show that g, tends to |f| in 2'(R%) when ¢ tends to 0.
c. Show that there exists a positive Radon measure s on R such that
Al fl'l = p in 2'(R%). Show that the support of u is contained in
f70).
d. Determine u by direct calculation when d = 2 and f(z,y) = zy.
12. Let Q = (a,b) be an open interval in R.
a. Let f be a convex function on 2.
i. Show that, if ¢ € 2(R),

/"

. -2
" = lim h2(1he + T_np — 2
hl—»l 0+ (7 h )

) 8<p)
9 4422\ dza
31[ 1

in 2(R), where, if k € R, 1xp(z) = o(z — k).
ii. Deduce that [f]” is a positive Radon measure on 2.

b. Conversely, suppose that T is a distribution on © and that T” is
a positive Radon measure on 2. Show that there exists a convex
function f on 2 such that T — [f] is a first-degree polynomial with
coeflicients in C, and that we can assume this polynomial to be zerc
if T is real in the sense of Exercise 1 on page 275.

Hint. Check that, if a is an increasing function on 2 and if ¢ € ,
the function f defined by f(z) = [, : a(t) dt is convex.
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c. Deduce that a function f is a difference of two convex functions if
and only if it is continuous, real-valued, and [f]” is a Radon measure
on (a,b).
18. Let Q be an open interval in R. Show that a distribution 7" on 0 has
as its first derivative a Radon measure on £ if and only if there exists
a function a of bounded variation on every compact interval contained
in  (see Exercise 13 on page 93) such that T = [a]. (You might also
recall Exercise 15 on page 94.)
14. Let r € N. Show that

N

- ; (r)

Nl.i.'i'm Z n"e"* = 21(—1)'26,;,,.
n=-N p€EZ
Hint. Use Exercise 13 on page 277.

15. Let S; be the unit sphere in R? and let o) be its surface measure
(page 74). For z = (z;,...,24) € RY, write 7 = (z2,...,%4) € R4-!
and 7 = /1 - |Z]3.

a. Take ¢ € C(S)). Extend ¢ to the ball B, = {z € R%: |z| < 1} by
setting
VA A A N
o(e) = 5 ((1- Z)ot-7.)+ (1+ 2)ol.2)).
i. Show that the extended ¢ is continuous on B;.
fi. Show that, forr <1,

j o(z)dz = / (r? — 2%) V2 (0l ) + o(F, 5)) d,
B, {1ZI<r}

where B, = {z € R?: |z| < r}.
iii. Show that the map

rH/Brtp(z)dz

is left differentiable at the point 1, and find its left derivative.
Deduce that

/«’(z‘) dnle) = -/(lé|<x) = j).+ o(F:2) dz.

r

iv. Show the same result with & = (z,,...,Zj-1, Zj4+1,...,%d)-

b. For p > 0, let S, be the sphere of center 0 and radius p in R? and
let o, be its surface measure. Let f be an element of L} R?) whose



306

8. Multiplication and Differentiation

restriction to R%\ S, is of class C!. Take j € {1,...,d}, and assume
that (8f/z;) € LL (R?) and that, for every z € S, the limits
fi(z) = lim f(y), f2(z)= lim f(y)

Y-z y—-z
lvl>p lvl<e
exist.
i. Show that the functions f{ and f° are continuous on S,.
ii. Show that
of

Djif] = [a—z; + 28 - 2)o,.

Hint. Reduce to the case p = 1 by setting f,(z) = f(pz); then
use the representation of the measure o, given in part a.

iii. Use this result to compute Af in Exercise 9.

iv. State and prove a similar result when S, is replaced by a hyper-
plane in RY.

16. Consider in 2'(R) the equation

2zT' - T =4, (%)

where § is the Dirac measure at 0.

b.

For an arbitrary integer j > 1, express the distribution z6() in terms
of §U-1),

Determine the solutions of (*) whose support is {0}. (You might use
the result from Exercise 4 on page 285.)

. Let T be a solution of (*). Denote by U and V the restrictions

of T to (0,+00) and (—00,0), respectively. Thus U € 2'((0, +00))
and V € 9'((~00,0)). By computing (z~/2U)’ in 2'((0, +00)) and
((-=z)~"2VY in 2'((~00,0)), determine U and V.

. Show that, for every (), ) € R?, the distribution S defined by

S(z) = \VzY(z) + py/—zY (-2)

satisfies 225’ — S = 0.

. Deduce from this the general form of the solutions of ().

3 Fundamental Solutions of a Differential Operator

Let P be a complex polynomial of degree m in d indeterminates:

P(X)= Y apXP'... X5

IplSm
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The linear map

P(D)= Y q,D",
Ipl<sm
which is a linear combination of differentiation operators, is called a linear
differential operator of order m with constant coefficients on R?.
For example, if P(X) = X2 +---+ X3, the operator P(D) is exactly the
Laplacian on R%:

2 &
P(D)=A=j§@.

If P(D) is such an operator, we define a fundamental solution of P(D)
as any distribution E € 9'(R?) such that P(D)E = 4. This notion will play
an important role in the next chapter. For example, if d = 1, the Heaviside
function is a fundamental solution of the differential operator P(D) = D,
since Y’ = §. The next theorem shows that, if d = 1, every linear differential
operator with constant coefficients has a fundamental solution.

Theorem 8.1 Let P(X) = Y72 ya;X?, where m € N%, ay,...,am €C,
and a, # 0. Let ¢ be the solution on R of the differential equation

m
Eajgo(j) =0
i=0

such that o(™~1(0) = 1 and ©9)(0) = 0 for every j < m—2. Then E =
(1/am) Yy is a fundamental solution of P(D).

Proof. As a particular case of Example 4 on page 301, we have
Yel™ = [Yl™] +34,
Y] ® = [Y®] forall k < m-1,
so that
m m
P(D)E =a}! Zaj[Y¢]U) =a;! [ a,-Ytpm] +6=4. m]
i=0 3=0

Obviously, there is no uniqueness for fundamental solutions: two funda-
mental solutions differ by a solution of the associated differential equation.

We will now exhibit fundamental solutions of certain classical linear dif-
ferential operators.

3A The Laplacian
Consider the Laplace operator, or Laplacian, in dimension d:

d & d

J=1
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As before, we set r = |z|.
Theorem 3.2 Let E be the distribution on R? defined by
-E=r/2ifd=1,

1 .
- E= %logr ifd =2,
_1 1
sa(d — 2) rd-2

Then AE = 4.

- E= ifd> 3.

Proof. The case d = 1 was dealt with in Example 3 on page 301.

Case d = 2. Suppose d = 2 and let f(z) = logr. Since the first deriva-
tives of the function f do not satisfy the hypotheses of Theorem 2.12, we
cannot use that theorem directly to compute the Laplacian in the sense of
distributions. For this reason we approximate in 2'(R?) the distribution
[f] by a family ([fc]) of distributions defined by functions whose Laplacian
we can compute by applying Theorem 2.12 to the functions f, and to their
first-order derivatives. We then obtain the Laplacian A[f] by passing to
the limit.
Thus we define, for € € (0, 1), a function f. by

log r if r > ¢,
ar?+b ifr<e,

) = {

where a. and b, are real numbers chosen so that the function f, is of class
C" on RZ; that is, so that

1
a.e? +b. =loge and 2a.c = p
Thus
1 _1 1
aE—-z—E—z-, bE_oge-E.
Now, if r < ¢,
1 1 T\2 1 1
laer? + be| = log; + 5(1 - (E) ) < log; + 3

We deduce that, for every = € R?,
|fe(2)] < |logr| + 3;
thus, by the Dominated Convergence Theorem,
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in 2'(R?). At the same time, for j = 1,2,

z;/r? ifr>e,
z;/e? ifr<e.

Dif) = {

This function D; f, satisfies, by construction, the hypotheses of Theorem
2.12. We deduce that D?[f,] = [g§], with

oi(a) = "—2—2'.—: ifr>e,
1/¢2 ifr<e.
Therefore 9
Alfe] = 22 18-

An elementary calculation shows that

. 1
lim —3 150,y =9

in 2'(R?); thus, by continuity in 2’(R?) of the operator A,
Alf) = 2r,

which proves our result since E = f/(2~).

Case d = 3. We work as in the previous case. For € > 0, set

r2—d if r > e,
aer? +b ifr<e,

fe(2) = {

where a, and b, are real numbers chosen so that the function f, is of class
C! on Rd; that is, so that (one concludes after some calculations),

Ge = 2;‘1 _d, b‘ = éez_d
2
Thus d d—2 )
acr? + b, = 274 (5 - %(E) ) )

which implies that
0< fe(z) < grz“’.

Thus, by the Dominated Convergence Theorem, lim,_,o[fe] = [f] in 2'(RY),
with f(z) = 72~%. A calculation similar to the one carried out in the case
d = 2 yields

Alfe] = d(2 - d)e 150,
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Now,

2‘-‘3) wde‘ 13(0") =4

in 9'(R?); therefore, by the continuity of A,

A[f] = dwq(2 - d)é.
Since dwq = 34 and E = —f/(s4(d — 2)), the result follows. a

8B The Heat Operator
We now place ourselves in the space R%*! = R x R?, a generic point of
which will be denoted by (¢, z). For ¢ > 0, we define the heat operator ¥
by
o
— hd Cz —gj = E —cA.

Theorem 8.8 For (t,z) € R x RY, let

1
I'(t,z) = 1(0,400)(t) (aent)ir? e-lel/(4ct)
Then T € L} (R%!) and €T = § in 9'(R).

Proof. Fort > 0, we obtain, by applying the change of variables u = z/v/2ct
and then Fubini’s Theorem,

L T(t,2)dz = W /l e gy o (—\/1?_; /‘ =2 dz)d.

Since — / ~=/2gg = 1 (a classical result), we get

/‘I‘(t,z)dz= 1 forallt>0,
R

which in particular proves, by Fubini’s Theorem, that I' € L} (R%*"). Now
take p € P(R?*!). Then

<%r, ,,) - _/°+°°/“ ‘Zt—“’(t,z)r(t,z)adz

+00
_P—%/, /'l %(t,z)r(t,z)dtdz.
Integrating by parts, we get
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J
<a‘“’ *°>

= lim (/:00/;4 (t, z) aat—r(t,:c) dtdx + ./md (e, z)l (e, x) da:) (%)

e—0

But, if t > 0, we have I'(t,z) = t~4/2I'(1, z/V/t). Therefore, applying the
change of variables z = \/c u, we get

/ <p(e,x)F(e,a:)dz =/ ‘P(E,\/EU)F(I,U)d’M.
R4 R4

This expression tends to ¢(0) [ T'(1,u)du = ¢(0) as € tends to 0, by the
Dominated Convergence Theorem. Moreover, I is of class C*° on the com-
plement of the set {t = 0} x R%, and an elementary calculation shows that
AT/t = ¢ AT (in the classical sense) on the set {t > 0} x R therefore, if
>0,

/ p(t, ) 66—1; (t,z)dtdz = co(t,z)Ar(t,z)dt dz
{t>e} xRe {t>e} xR¢

= / cAp(t, z)I'(t, z) dt dz
{t>e} xR4
(again integrating by parts). Taking the limit, we deduce then from equality
(*) that
<%R¢>=MAR@+¢ML
and so that ¢T = 4. O

3C The Cauchy- Riemann Operator

The Cauchy—Riemann operator is important in the theory of holomor-
phic functions. It is denoted by 8/8z and is defined, for d = 2, by

9 _1(9 .0
9z 2\dz 9y)’

In the sequel, we use the notation z = z + iy.

Theorem 3.4 In 2'(R?),
o (1
g(ﬁ)_&

Proof. We follow a method analogous to the one used in the proof of The-
orem 3.2. For € > 0, put

1/z  if |z] > ¢,

z/e? if |z| <e.

fetean = {
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Then f. is continuous on R? and, by Theorem 2.12,

e ll=lod 5 1= load)

with
1 . i
-—= ifz] > ¢, - ifjz| > e,
— 2 _ z
ne@y)={ 7 gelzy)=§
ps if |2] < ¢ -a if |2| < €.
Thus
9z [ft] = e_g B(O.e)!

which tends to 74 in 9'(11’) when ¢ tends to 0. We have |f.(z,y)| < 1/|z],
so the Dominated Convergence Theorem implies that [f.] tends to [f] in
2'(R?), with f(z,y) = 1/z. Therefore

[f] rasre 08-[f¢]_“6

whence the result. O

Ezercises

1. Determine a fundamental solution of the differential operator defined
onR by P(D) = D? —2D - 3.

2. Let T be the distribution on R? defined by the characteristic function
of the set {(z,y) € R?:0 < y < z}. Show that

(;:2 aazay)T ’

3. Let E be the fundamental solution of the Laplacian given in Theorem
3.2. Define a function ® on (0, +00) by ®(r) = E(z) and put

E°(z) = {Q(r) if r > p,
o(p) ifr<p.
Show that
AEP = _];_ pl-d
84

where o, is the surface measure on the sphere of center 0 and radius p.
Derive another proof of Theorem 3.2.

Hint. Use Exercise 15b on page 305. In the case d = 3 (for example),
you might also use the following more elementary reasoning:
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a. Reduce to the case p = 1.
b. Take € € (0,1). Determine real numbers a,, b., and ¢, such that the
function &, defined by

1/t ift>1,
®.(t) = act? +bt+c. ifl-e<t<],
®.(1-¢) ifo<t<l-¢

is of class C'! on [0, +00).
Then show that the function ®, is decreasing and that ®, = 1+(g/2)
on [0, 1—¢].

c. Put E}(z) = ®.(r). Show that the function E} is of class C! on R?
and tgmt the family of distributions ([E}])c>0 tends to [—-4wE!] in
2'(R%).

d. Show that, for every ¢ > 0, A[E!| is a nonpositive-valued locally
integrable function that vanishes on the complement of the set {z €
R¥:1-e<r< 1}. Deduce that there exists a positive Radon
measure o such that A[E'] = 0.

e. Show that o is invariant under orthogonal transformations, that the
support of o is contained in the unit sphere S, in R3, and that
J do = 1. Deduce that o = 7, /(4r).

Hint. Use Exercise 17 on page 83.
4. Fundamental solution of A¥, for k € N*. We work in R%.

a. Show that, if m € N*, a € R, and 2m < a +d,

m-1 m

A™r® = ( [I(@- 2j)) ( [[@+d- 2j)) ro-m,
3=0 J=1

Deduce in particular that, if k > 2,

k

Ak—lrﬂk—d = (H(2-7 _ d))zk—l (k _ 1)!'.2—4.

i=2

b. Show that, if d is odd or d > 2k, there exists a constant Cf; (which
you should determine) such that

A*(Chr3k=d) = 6.

c. Similarly, show that, if d is even and d < 2k, there exists a constant
B} such that
A*(Bir¥*-dlogr) = 6.

Hint. In thecased =2 and k > 1,

A*-1 (2 logr) = 222 ((k — 1)!)’ logr + Ci.
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In the case d = 2d’ withd' > 2 and k > d,

—(d' - - k— A
Ak-(d x)(rzk dlogr) 92k— d“((d’ 2))'(k d)'r 2

and )
d'-1 r2 —
A C —— 0
It follows in each case that, if we put d = 2d',

(=n*-!
(k=11 (k—d) (@ -1

d. Deduce from the preceding calculations that, if 2k > d + 1, then A¥
has a fundamental solution of class C2k—4-1,

Fundamental solution of A + A in R3, for A € R. Denote by z =

(z1,z2,z3) a generic point in R? and, as usual, write r = |z|.

a. Take ¢ € C?([0,+00)) and set f(z) = ¢(r)/r.

i. Show that, if ¢(0) = 0, the derivatives D, f and D?f in 2'(R®),
for j € {1,2,3}, are locally integrable functions. Write them
down in terms of ¢, ¢’, and ¢”. Write down Af as well.

ii. Deduce an expression for Af in the general case.

Hint. Write f(z) = M + ¢(0) ;

b. Take A € R. Determine the fundamental solutions of the operator
A + X having the form E)(z) = ¢(r)/r. (Distinguish cases according
to the sign of \.)

c. Show that if A < 0 there exists a unique fundamental solution E)
such that limz|_, 400 Ex(z) = 0. Determine it. Show that this fun-
damental solution satisfies Ej(z) < 0 for all z € (R9)*.

d. Show that E) does not have constant sign if A > 0.

Fundamental solution of the wave operator on R?. Let E, be the distri-

bution on R? defined by the function

ftz) = 3 sy

2 9
(3t2 az)E'_5

Bj = (sq)7'2%7%

Show that

. Pundamental solution of the wave operator on R*. Denote by (t,z,y, 2)

a generic point in R%. If r > 0, denote by S, the sphere in R® of center
0 and radius r, and by o, its surface measure. For ¢ € 2(R*), write

- 1
¢(3s t) = W/S, ‘P(t,z, !/72) das(zsysz)

1

= <p(t sz, sy, 8z) doy(z,y, 2).
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# &8 8
Wmt,eA—a:’:2 8y3+8z’
a. Show that, for every ¢ € 2(R*),
Po &y ~ &p 20
=om M AT eatias

Hint. For the second equality, you might use the expression of the
Laplacian in spherical coordinates and Exercise 16b on page 83. Re-
call that, if we write

z=rcosfcosyp, y=rsinfcosy, z=rsing,

with 8 € (0,2x) and ¢ € (—7/2,7/2), the Laplacian of a function
f(z,y,2) = F(r,0,y) is given by

A —lg aF + 1 l co8 a_F +—l ﬂ
ar\" or r2cosy Oy ‘p&p ricos?p 663"

b. Show that the relation

+00
B = [ ot dt = [ "’ﬁ';‘:'l" du for all g € IRY)

defines a distribution E3 on R* (in fact, a positive Radon measure)
and that

BB & P\

o2 9x2 Py? 922 e
Hint. If v : (s,t) — v(s,t) is a function of class C? on R?, compute
the derivative of the univariate function h defined by

& &
h(t) = £ 5 (8,8) — £ 5-(8,8) = v(t, ).
c. Show that the support of E3 equals the set
{t,z,y,2) eR*: 2 =2 +3? + 2 and t > 0}.

8. Fundamental solution of the wave operator on R3. Denote by (t,z,y) a
generic point in R3, If r > 0, denote by S, the sphere in R? of center 0
and radius r, and by o, its surface measure.

a. Show that the relation

Eo=[ m(/ o) oz, ) ) de for all p € SE)

defines a distribution on R3 and that

Hint. Start by verifying that, for every compact subset K of R3, the
set Supp E3 N (K x R) is compact. Then use Exercise 7.
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b. Show that E; is given by the function

1 1
—_— i 2 2
E'z(t,z,y)={2ﬂ'\/—t’—z?—y2 > vaiaod,

0 otherwise.

Hint. Show that

2 2 2
(&,¢)=i£>)¢(vz +y‘+z 'z'y)dxdydz
z20

27 Vz2 + 2 + 22

and set z = /2 — 22 — 93,
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Convolution of Distributions

1 Tensor Product of Distributions

We start by proving two preliminary results, which are interesting in their
own right. In the sequel, d and d’ will denote mtegers great.er than or equal
to 1, while 2 and €’ will denote open sets in R? and RY

Theorem 1.1 (Differentiation inside the brackets) Let m € N and
reN.IfT € 2'™(R) and p € D™ (R x V'), the map on ' defined by
vy (T, (-,v)) (*)

belongs to 9" (Y') and, for every multiindez p € N% of length at most r,

ST o) = (T, 2ot ()

for every y € V.
IfT € 9'(R) andp € D(Ax'), the map defined in (*) belongs to 2(')
and the relation (xx) :svahdforallpeN

Proof. We carry out the proof in the case T € 2'™(R2), ¢ € 2™+ (A x N').
The other case is very similar.

Caser = 0. Take T € 2'™(2) and ¢ € P™(Q x N'), and let K and
K' be compact subsets of 2 and €', respectively, satisfying Suppy C
K x K'. Since, for every multiindex p of length at most m, the function
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(8'?l)/(8z®) is uniformly continuous (being continuous and having com-
pact support), and since all the functions ¢(-,y), with y € ', are sup-
ported within the same compact K, we see that, if (yn)neN i8 8 sequence
in Q' converging to y € ', the sequence of functions (¢(:,¥n))nen con-
verges to ¢(-,y) in 9™(R), so the sequence (T, ¢(-,¥n)))nen converges
to (T, (- ,y)). We deduce that the map y — (T, ¢(-,y)) is continuous on
€Y. Since its support is compact (being contained in K’), this map does
belong to C,(Q) = 2°(Y').

Caser = 1. Take T € 2'™() and p € 9™+ (Q x '), and again let K
and K’ be compact subsets of Q and ¥, respectively, satisfying Supp ¢ C
KxK’ For 1 < j < d, let ¢; be the j-th vector of the canonical basis of
RY .Takeye Q. If z € Q and t # 0, we have

sup

p(z, yttes) —p(z,y) B¢
oy (= y)| '€[0,t]

t

g;p (z, y+t'e;) - W(z, )|

Using the fact that 8¢/8y; is uniformly continuous, we easily deduce that
the family of functions

o(-, y+tes) —o(-,v)
t

converges in 9°(R2), as ¢ tends to 0, to (d¢(-,y))/(8y;). The reasoning
we have used here for ¢ can be repeated without change for the partial
derivatives (8/Ply)/(8zP), for |p| < m; therefore

o(-,y+tes) —o(,9)
t

converges to (8¢(-,y))/(8y;) in I™(R), as t tends to 0. It follows that
(Ta ‘p(' ) y+tej)) - (T1 ‘p(' ,y))
t

has the limit (T, (8¢(-,y))/(8y;)) as t tends to O; that is, the partial
derivative

é
E(Ts ‘P( * 1y))

exists and satisfies

——(T o(-,9)) = < By =—(- m))

moreover this is the case for every y € ' and every j € {1,...,d'}. Since
the maps y — (T, (8¢(-,y))/(8y;)) are continuous on ' (by the case
r = 0), this shows also that y — (T, ¢(-,y)) belongs to 9*(Q'), which
concludes the proof in the case r = 1.
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The general case follows from the two preceding ones by induction. O
Theorem 1.2 The vector space P(2) @ D(SV') spanned by the functions

f®9: (z,9) — f(z)9(y),
with f € D(N) and g € DY), is dense in B(Q x ).

Proof. We use a lemma that allows us to approximate the convolution by
means of a “discrete convolution”:

Lemma 1.8 Suppose g,y € D(R"). Fore > 0 and z € R", set

ge(z) =" Y o(z - ev)Y(ev).

vezr

Then g, € P(R"™), Suppg: C Suppy + Supp¥, and
limg. =p*y
in 9(R").

Proof. The function g, is defined by a finite sum whose number of terms
depends only on ¢ (since ¥ has compact support). Since each of these terms
is an element of P(R") and is supported within Supp ¢ + Supp ¢, the same
holds for g;. At the same time, for every p € N4,

DPg.(z) = €™ Z DPy(z — ev)y(ev).
vezn

Thus the result will be proved if we show that g, converges uniformly to
@ * ¢ (for then we will be able to apply the same result to DPyp and ¢
instead of ¢ and v).

Denote by || - || the uniform norm on R" and set N = maxzesuppy [|Zll-
By the Mean Value Theorem, there exists C > 0 such that, for every
z,y, €R",

le(z - ¥)¥(y) - w(z — ¥ )¥W)| < Cly-¥'ll-
For v € Z™, set
Q = [1 [se. (ws+1)e).

j=1

erv@= X[ ele-ve)d,

IWI<(N/e)+17 9
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so that
lorb@)-ge@)| < X / lo(z - 1) 9(y) - plz - veyw(ve)| dy
IvlIS(N/e)+1
SCe"“(2(-]€X+1)+1) <Ce (fore<l),
proving the result. (]

Now consider two smoothing sequences, (xn)neN and (Xn)nen, on R¢
and RY' 3 respectively. Clearly, (xn ® Xn)neN i8 a8 smoothing sequence on
R? x R?. Take @ € 2(Q x V). Then there exist compact sets K and K,
in © and compact sets K’ and K in ' such that Suppy C K x K’ and
KcK,K'C K' By Proposmon 1.2 on page 261, ¢ can be approximated
arbitrarily close, in the metric space Pk, xk (2 x '), by some function
@*(Xn®Xn), with n so large that K+Supp x, C K) and K’+Su pXn C K}
(where, as usual, we identify ¢ with an element of 2(R? x R?) by giving
it the value 0 outside Q x ’). By the lemma, ¢ * (xn ® Xn) can in turn be
approximated arbitrarily close, in the space D, x x; (2 x §¥'), by a function
of the form

e N xa(z — ev)Xn(y — D) p(ev, €D),
vezd, vezd’
which lies in Dk, () ® Dk;('). The result follows. O

By the same method or by induction, one shows that, if Q; is open
in R% for each j € {1,...,7}, then 9(R)) ® --- ® D(R,) is dense in
D (D x---x Q).

In what follows z will denote a generic point of R? and y a generic point
of RY. If T is a distribution on Q and if p € 9(81), we write, if there is a
risk of confusion in the space under consideration (22 or Q'),

(T’ ¢) = (Tz’ V’(-T))-

Likewise, if S is a distribution on §’ and if ¥ € 2(R’), we write (S,¢) =
(Slh '/’(!I))'

Proposition 1.4 Suppose T € 2'(N) and S € D'(V'). There ezists a
unique distribution on Qx ', denoted T®S and called the tensor product
of T and S, such that

(T®S, ¢®Y)=(T,¢)(S,9)
for all p € D(N) and Y € D(N'). Moreover, for every ¢ € (N x N'),
<T® S, ‘P) = (sz (Sy, o(=, y))) = (Sm (T2, o(z, y)))
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Proof. Uniqueness follows immediately from Theorem 1.2. For existence,
consider the linear map on 2(Q x ') defined by

@ = (Sy, (Tz, 9(z,¥))). (*)

This map is well defined, by Theorem 1.1. Let K, be a compact subset of
Q x ¥, and let K and K’ be compact subsets in Q and ¥, respectively,
such that K) C K x K’'. Take m,m’' € N and C,C’ > 0 such that

(T, )] < Cllgl™ for all p € D (R)

and ,
[(S,0)| < C'lipll™?  for all p € Pk+(KY)

(see Proposition 2.1 on page 268). Then, again by Theorem 1.1, there exists
a constant C” > 0 such that

[(Sus (Tzr (2, u)))]| < C"ll@™+™) for all p € Di, (R x X).

Thus, the linear map defined in (») is indeed a distribution on Q x Q'
satisfying the indicated condition, namely

(Sm (T, ‘P(z)'/’(y))) = <T1 ¥) (S, !ﬁ)

for all p € P(N) and Y € P(N'). One argues likewise for the expression
(T, (Sy,¢(z,y))), interchanging the roles of z and y. (]

We see simply that, if f and g are locally integrable functions on 2 and
¥, respectively, then [f]®[g] = [f ® g]. Similarly, the tensor product in the
sense of distributions of two complex Radon measures equals their tensor
product in the sense of measures. All of this follows from Fubini’s Theorem.

From the definition we see also that, if T and S are distributions on Q
and if p € 2(Q x Q) is such that p(z,y) = ¢(y, z) for every (z,y) € N x N,
then (TQ® S, ) = (SQT, ¢).

Proposition 1.5 Suppose T € 2'(N) and S € 2'(Y'). Then:

i. Supp(T ® S) = (Supp T) x (Supp S).
ii. Foranype N? and q€ N“',

BT ® ) = (88T) ® (94S).

Proof. If ¢ is supported within (2\ SuppT) x ¥, the support of ¢(-,y),
for every y € @, is contained in 2\ Supp T'. Therefore

(T® S, <P) = <Sya (Tza ¢(31 y))) =0.

It follows that the support of T ® S is contained in Supp T x §'; similarly,
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it is contained in §2 x Supp S, and so also in the intersection of these two
sets, which is Supp T x Supp S.

Conversely, if (z,y) € SuppT x Supp S and if (z,y) ¢ Supp(T ® S), let
O denote the complement of the support of T® S in Q x . Then there
exist open sets O) and O, containing = and y, respectively, and such that
O D O, x O,. By the definition of z and y, there exist ¢ € 2(0,) and
¥ € 2(02) such that (T,¢) # 0 and (S,y) # 0. But then ¢ ® ¥ € 2(0)
and (T ® S, ¢ ® ¥) # 0, which contradicts the definition of O. Therefore
Supp T x Supp S C Supp(T®S), and the first assertion of the theorem is
proved.

Next, if ¢ € 2(R2) and ¥ € 2('),
(8203(T ® ), p®@9) = (-1)PIH(T @ S, (82¢) ® (B3¥))
= (_l)lpl+|q| (T, a;w)(s,az¢)
= ((BET)®(8S), p@).

Now just apply the denseness theorem (Theorem 1.2) to obtain the second
part of the theorem. O

One can, in a completely analogous way, define the tensor product of
finitely many distributions. The tensor product thus constructed is asso-
ciative.

Ezercises
1. Suppose T € 2'™(f2) and S € 2'*('). Show that

T®Se 2™mQxQ),

and that in this situation the formulas in Proposition 1.4 are valid for
every ¢ € 9™+(Q x Q).

2. Show that, if T is a distribution on 2, the map S = T ® S from 2'(’)
to 2'(2x Q') is continuous (in the sense of sequences). Show also that, if
S is a distribution on ', the map T — T ® S from 2'(2) to 2’ (2 x ')
is continuous (in the sense of sequences).

3. Homogeneous distributions. Let € be an open set in R such that

ANcC N forall A>0.
If T € 2'() and A > 0, define a distribution T on Q2 by
(T, ) = AT, o(- /X)) for all p € ().

a. Determine T), if T € L} ().

1
loc



b.

C.

- 0

g

.

4. a.

C.
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A distribution T on 2 is said to be homogeneous of degree a € R if
T = AT forall A>0.

Show that a distribution T on 2 is homogeneous of degree a if and
only if it satisfies Fuler’s equation in 2'(QQ):

d
zszjT = aT.

=1

Hint. You might use Theorem 1.1 to compute the derivative of the
function A = (A\7%T, p).

Show that the only homogeneous distributions on R having support
{0} are those of the form A§*), with A € C* and k € N. Determine
their degrees.

Hint. Use Exercise 4 on page 285.

. Show that pv(1/z) is a homogeneous distribution on R and find its

degree. What about fp(Y (z)/z) ?

. Determine all homogeneous distributions of degree 0 on R.

Let T be a homogeneous distribution of degree a on 2 and S a
homogeneous distribution of degree 3 on 2. Show that T® S is a
homogeneous distribution of degree a + 3 on 2 x £¥'.

Show that the distribution (z2Y (z)) ® 4’ on R? is homogeneous; find
its degree and order.

If JC {1,2,...,d}, denote by Y the distribution defined by
YJ =Y1J®},2J®"‘®Y4J’

where Y;” = Y (the Heaviside function) if i € J and Y;/ = § other-
wise. What differential operator is Y/ a fundamental solution of?
Compute the p-th derivative of the function f defined by f(z) =
zPY (z). Deduce a fundamental solution of the one-variable differen-
tial operator DP?, for p € N.

Determine a fundamental solution E of the d-variable differential
operator DP, where p = (p),...,pd) € N4

If py = p3 = --- = pg = k with k > 2, prove that D? has a funda-
mental solution of class C*~2 in RY.

5. Show that the following relation defines a distribution T on R?:

T, =lim// ded for all ¢ € P(R?).
T = {izllvi>e}  TY ! peI®)

Show that T = pv(1/z) ® pv(1/y). What is the order of T?
Hint. Introduce ¢(z,y) — ¢(z,0) — ¢(0,y) + ¢(0,0).
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8. Distributions that do not depend on a certain variable. (See also Exercise
2 on page 302.) Let T be a distribution on R%, where d > 2.
a. Suppose that (8T)/(8z,) = 0.
i. Show that, for every ¥ € 2(R%™?), there exists a constant S(1)
such that

(T, p®¥) = S(¥) /.l p@)dz for all p € D(R).

Hint. Fix ¢ and prove that the linear form U defined on 2(R)
by
(U,p) = (T, p®¢) forall p € D(R)
is a distribution and that U’ = 0.
ii. Show that the map ¥ — S(¢) is a distribution on R%! and that

T=1®S.
Hint. Take x € 9(R) such that [ xdz = 1. Then
S(¥) =(T, x®¥).

b. Show that, conversely, if there exists S € 9’(Rd"') such that T =
1® S, then (8T)/(8z,) = 0.
7. Let T be a distribution on R?, where d > 2. Show that z;T = 0 if and
only if there exists S € 2'(R?™!) such that T =46 ® S.
Hint. Argue as in Exercise 6 and use Proposition 1.4 on page 289.

2 Convolution of Distributions

2A Convolution in &'

We define first the convolution product of distributions with compact sup-
port on RS

Let T and S be elements of &'(R%). We know from Proposition 1.5
that T ® S is a distribution on R? x R? with a compact support that
coincides with SuppT x SuppS. On the other hand, if ¢ € 2(R?), the
function defined on R? x R? by (z,y) — ¢(z + y) belongs to &(R? x RY).
Proposition 3.3 on page 282 then says that the bracket (T;®S,, ¢(z +¥))
is well-defined. Moreover, the map from 2(R%) to #(R? x RY) that takes
¢ € 9(R? to (z,y) — ¢(z + y) is clearly continuous. This leads to the
following definition:

Definition 2.1 If 7,5 € &'(R%), the convolution of T and S is the
distribution T * S defined by

(T8, ¢) = (T=®Sy, p(z+y)) for all p € B(RY).
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Proposition 2.2 IfT,S € &'(R%), then T+ S € &'(R%) and
Supp(T * S) C Supp T + Supp S.

The convolution product is a commutative and associative binary operation
in &'(R%), having & (the Dirac measure at 0) as a unity element. In other
words, the convolution product makes the space &'(R%) into a commutative
algebra with unity.
Proof. Let ¢ € D(RY). If z ¢ Suppy — Supp S, then

Suppy(z +-)NSupp S = (Suppy — z) NSupp S = 2,

80 (Sy,¢(z + y)) = 0. Thus, Supp(Sy,¢(- +y)) C Suppy — SuppS. It
follows that, if the support of T does not intersect Supp ¢ —Supp S, we have
{T'*S, ) =0 and therefore Supp(T'*S) C Supp T+Supp S. The rest of the
proposition follows immediately from the results proved in Section 1. 0O

As a consequence of Proposition 1.5, we have the following fundamental
property:
Proposition 2.3 IfT,S € &'(R%) and j € {1,...,d}, then

D;(T *S) = (DsT)« S =T * (D;S).

Obviously, this result extends to every differential operator P(D), of any

order: if T, S € &'(R?), then
P(D)T#*S)=(P(D)T)*«S=T=(P(D)S)

for every polynomial P with complex coefficients.

2B Convolution in 2’

One cannot hope to define a convolution product on all of 2’ that extends
the convolution product of functions, because, in general, two locally in-
tegrable functions are not convolvable: for example, 1 * 1 has no meaning.
We will define the convolution product in 2’ in case the supports satisfy a
condition that we now introduce.

Definition 2.4 We say that a family of closed subsets Fi, ..., F, of R?
satisfies condition (C) if, for every compact subset K of RY, the set

{,...,.s") e A x---xFp : 2' +--- + z" € K}
is a compact subset of (R%)".

Obviously, we could have written this condition with “bounded” instead
of “compact”.

Let’s first give some examples and simple properties. Most of the proofs
are left as exercises.
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l.

2.
3.

Suppose (Fi,...,Fy,) is a family of nonempty closed sets that satisfies
condition (C). Then every family of closed sets (F},.. Fp)r where 1 <
p<nand F; C F;for all j € {1,.. ,p},alsosatisﬁes(C)

Clearly, every family of compact subsets satisfies condition (C).

If (F,..., F,) satisfies condmon (C), 8o does the family (F;, . F,. ,L),
foreverycompacthR Indeed, imeacompactsubeetofR

{,....,2% 2" ) e Fyx+ - xFaxL : 2! +-- .+ 2" +z"*! € K}
c{@",...,.z")e Fix---xFy : 2" +-.-4+z" € K-L} x L,

and the set K — L is compact.
It follows by induction that a family of closed sets all or all but one of
which are compact satisfies property (C).

. Let F be a closed subset of R? containing a one-dimensional subspace

Ru of R%, where u # 0. Then the family (F, F) does not satisfy condition
(C). Indeed, the set

{(z*,z?) e Ru x Ru : z! + 22 = 0} = {(tu,—tu) : t € R}

is unbounded.

. If a,b € R, the family ((—0o0, a], [b, +00)) does not satisfy condition (C).

By Example 1 and because R D (—00, 0], neither does the pair (R,R*).
By contrast, for every a,,...,a, € R, the family

(a1, +00), ..., [an, +0))

satisfies (C). In particular, (R*,...,R*) satisfies (C). For a generaliza-
tion to dimension d, see Exercise 4 on page 335.

. If (Fy,...,F,) satisfies condition (C), the set Fy + --- + Fy is closed.

(Recall that, in general, the sum F; + F; of closed sets F, and F; need
not be closed.)

. If (F,..., F,) satisfies condition (C) and if (I, J) is a partition of the

set {1,...,n} (that is, INJ = @ and JUJ = {1,...,n}), then the
family (Fy, Fy) satisfies (C), with F; =}, Fi and F; = Y3, ; Fi.

The next step in the construction consists in extending the bracket. If

@ € &(R?), the expression (T, ) has 8o, far been defined only when T is a
distribution with compact support on R? (see Proposition 3.3 on page 282).
The next proposition allows us to extend this definition to the case where
Supp T N Supp ¢ is compact.

Proposition 2.5 Let  be open in R%. Let T € 2'() and ¢ € £(N) be
such that Supp T N Suppy is compact. Then, if p € P(N) is a function
taking the value 1 on an open set containing Supp T N Supp ¢, the value of
(T, pyp) does not depend on p.
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This value is denoted by (T, p).

Proof. Take p € 2(2) such that p = 0 on an open set containing Supp TN
Supp . Then the support of p is contained in the complement of Supp TN
Supp g, and therefore

Supp py C Supp ¢ N (R?\ (Supp TN Suppy)) = Supp N (R? \ Supp T),

which implies that (T, pp) = 0.
Consequently, if p and 5 are functions in 2(2) that coincide on an open
set containing Supp T’ N Supp p, we have (T, py) = (T, o). a

Naturally, if T € &'(2) and ¢ € &(R), we recover the meaning of the
brackets defined in Proposition 3.3 on page 282. If T € 2'(R?) and ¢ €
9D (), we recover the usual meaning of the brackets.

Note that we can define similarly the value of (T, ) for T € 2'™(Q2) and
p € &™(R) if Supp T N Supp p is compact.

We can now define the convolution product of a family of distributions
whose supports satisfy condition (C) of Definition 2.4. We will say from
now on that such a family of distributions itself satisfies condition (C).

Propaosition 2.6 Let (Ty,...,T,) be a family of distributions on R% sat-
isfying condition (C).
1. If p € D(R?), we define a function $ on (R%)™ by

o(z,...,z") = p(z' + -+ +2").

Then ¢ € &((R%)") and Supp(Ti® - -- ®T,) N Supp @ is compact. The
map defined on D(R®) by

(118 8Ty, p)

is a distribution on R?, denoted T *- - -+ T,, and called the convolution
ole,...,T,..

2. For eachl> 0, let py € D(R?) be such that py = 1 on B(0,1). For every
open bounded set Q in R®, there ezists a real number | > 0 such that
the restrictions of Ty *---* T, and of (o¢Ty) *---*(prTy) to N coincide
for every l' > 1. In particular,

T,t---#T,.=‘_l’i_lzlw(plT1)*"'*(PlTn)

in 9'(R%).

In the preceding statement we have pT; € &'(R%), so the convolution
(pT1) *---*(pTy,) is defined in the sense of Section 2A. Indeed, the pre-
ceding definition coincides with Definition 2.1 when all distributions have

compact support.
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Proof. Let Q be a bounded open set in R? and ¢ an element of 2(£2). We
know that Supp(T1 ®---®T,) = Supp T X - - - x Supp T, so

Supp(Ty ®---® T,,) NSupp @
c{(z",...,z") € SuppT) x --- x SuppTy, : z' +---+z" € Q}.

By condition (C), we deduce that Supp(T) ®- - -®T,) N Supp ¢ is a compact
subset of (R?)" contained in a compact Kq that depends only on £, not on
@. Thus, (T1 ®---® Ty, ) is well defined and coincides with (T; ® T,

(pl .- ®PI)¢) if Ko C (B(ox l))“’ NOW,

(® QT (m®--@m)¢) = (AT ® - @ pTy, ¥)
= ((aTh) *---* (uTn), 9)-

This shows that T; *---* T, is a distribution, and proves the second part
of the proposition as well. a

Wed now state the essential properties of the convolution product in
2'(R%).

Proposition 2.7 1. If (T, S) satisfies condition (C), then T+*S = S=*T.
2. If (Th,...,T,) satisfies (C), then

Supp(Ty *---*T,) C SuppT; + -+ Supp T,,.

8. 6xT=Tx4 for all T € 9'(R%).

Proof. The second part of Proposition 2.6 allows us, by passing to the limit,
to reduce the problem to the case of distributions with compact support,
for which these properties were stated in Proposition 2.2. The reasoning is
straightforward for the proof of parts 1 and 3. We spell it out for part 2.
If (Th,...,T,) satisfies (C), then, by property 6 on page 326, the set
F = SuppT; +---+ SuppT, is closed. On the other hand, if I > 0, we
have Supp(pT;) C SuppTj for every j € {1,...,d} (in the notation of
Proposition 2.6); thus, by Proposition 2. 2 Supp((p,Tl) ook (p;T')
F. We deduce that, for every ¢ € 9(R?) satisfying Supp¢ c R%\
Proposition 2.6 yields

(Ty*---*Ty, ) = ‘_l'i_l"_ﬂm«PITl) *- - (pTy), ‘P) =0.

Therefore Rd\ F is a domain of nullity of T} *- - - * T,,, which proves part 2
of the proposition. a

Proposition 2.8 (Contimdty) Let (Tp)nen be a sequence in 9'(RY),
and let T, S belong to 9'(R?). Suppose that the sequence (T,)neN converges
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to T in 9'(RY), that there ezists a closed set F m R such that Supp T, C F
for alln € N, and that (F, Supp S) satisfies (C). Then

lim T,«S=T+S
n— 400

in 9'(RY).

Proof. Take ¢ € P(R?%). As above, write $(z,y) = ¢(z + y). Since the
family (F, Supp S) satisfies (C), the intersection Supp@ N (F x Supp S) is
campact. Let p € P(R? x RY) satisfy p = 1 on an open set that contains
this compact. Then, by definition,

(Ta + S, ¢) = ((Ta)z, (Sy. P(z,9)$(2,1)))-
Since the map z — (S,, p(z,y)#(z,y)) belongs to P(R?), we deduce that
Jim (To +S,¢) = (Tz, (Sy, p(z,4)8(2,9))) = (T* S, ¢),
which is the desired result. o

Obviously, this result extends to families (Th), with A — Ag (where A
runs over a subset of R and A € [—00, 00)).
The next proposition explicitly defines the convolution product.

Proposition 2.9 Suppose (T, S) satisfies property (C). Then, for every
¢ € D(R?), the function p on R? defined by

@(z) = (Sy, p(z +))
belongs to é'(R"), the intersection Supp $ N Supp T ts compact, and

(T+8, ¢) = (T, @) = (Tz, (Sy, 0(z +¥)))-

Proof. Put K = {(z,y) € SuppT x SuppS : z+ y € Suppy}. Then the
support of ¢ is contained in Supp p—Supp S and (Supp ¢ —Supp S)NSupp T
is the projection of K on the first factor. Therefore Supp @ N SuppT is
compact. At the same time, if p; € P(R?) satisfies oy = 1 on B(0,1), the
function

pé:z = (Sy, m(z)e(z +y))

belongs to 2(R?), by Theorem 1.1. Therefore ¢ is of class C* on B(0,1)
for every ! > 0, which is to say that ¢ € &(RY).
At the same time, by Proposition 2.8,
(TS, ¢)= lim Lm (nT*pS, ¢)

{—++00 U/ ++00

= tim_ lim (T., p(z)(Sy, o (v)(z +9)))-

l»+00 '~
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Now, if B(0,1') D Supp ¢ — Supp p;, we have
Supp(p(z +-)) C B(0,l') for every z € Supp ;.
Therefore py (y)¢(z + y) = p(z + y). We deduce that
(T+S,¢) = lim (T, p(z)(Sy, p(z +))-
By definition, if B(0,!) D Supp @ N Supp T, then
(T, o(2)(Sys 0(z + ) = (T2, (Spr ol + 1)),
which proves the result. O

This result can be extended to the case where T € 2'™(R%), S €
2'"(R%), and p € 9™+"(R?); see Exercise 7 below.

Corollary 2.10 Let f and g be elements of L} (R?) whose supports sat-
isfy condition (C). Then f and g are convolvable in the sense of the defi-
nition on page 171; moreover f + g € L} (R?) and

(f]1+[g] = [f *g]

Proof. For every ¢ € 9(RY%),

/ / £ - v)| |s)| | ()| dzdy = / [ 17(@)] |9@)| |e(z +v)| dzdy

(because Lebesgue measure is invariant under translations); the term on the
right is finite because the supports of f and g satisfy condition (C). This
proves that f and g are convolvable and that f * g € L1 _(R?). Moreover,
if ¢ € 9(R?), we have

(1 sl o) = [ [ studete + ) dy) ao
by Fubini’s Theorem, and this quantity equals {[f] * [g], ¢) by Proposition
2.9. O

Proposition 2.11 (Associativity) Let (T\,T3,T3) be a family of distri-
butions on R? satisfying (C). The distributions (T} +T;)*Ts and Ty *(Ty*T3)
are well-defined and coincide.

Proof. By property 1 on page 326, the distributions T * T2 and T, * T3 are
well defined and, by Proposition 2.7,

Supp(T *T2) C Supp Ty +Supp T, Supp(T2*T3) C Supp T2+ Supp T;.

It follows then from properties 1 and 7 on page 326 that the distributions
(Ty * T3) « T3 and T * (T, * T3) are well defined.
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In view of this we obtain, by applying Proposition 2.8 several times,

(i*Ta)+ T3 = i lim WJim (pn Ty s i, T2) # o1y T,
where, for [ > 0, we have g; € 2(R%) and p; = 1 on B(0,). Because the
convolution product is associative in 6”(R%) (Proposition 2.2), we get

(o, Th # 1, T2) * p1s T3 = p1, Th * (01, T2 # 1y T3).
Then it suffices to use Proposition 2.8 several times again to obtain
(T] * Tz) * T3 = Tl * (Tz * T3). a

The same reasoning shows that, if (T},...,T,) satisfies (C), one can
compute the product T) * --- « T, by grouping the terms in any desired
way. On the contrary, if (T, T3, T3) does not satisfy (C), the distributions
(T) # T2) * T3 and T, * (T3 = T3) may both be defined but not be equal; see
Example 4 below.

Proposition 2.12 If (Th,...,T,) satisfies condition (C), we have
Di(Ty#---#T)=Ty % - T DT #Tiey15---x T,

Jorallj€{1,...,d} and k € {1,...,n}. This remains so if we replace D;
by an arbitrary differential operator of the form P(D).

Proof. Note first that Supp D;T; C Supp Tk, so the two sides in the equal-
ity above are well defined (see property 1 on page 326). By associativity
and commutativity, it suffices to show that, if (T, S) satisfies (C), then
Dy(T + S) = (D;T) #+ S. We already know this is so wher T and S have
compact support (Proposition 2.3 on page 325). The general case follows by
passing to the limit, using Proposition 2.8 and the continuity in 2’(R%) of
the map T — D,;T (as well as the formula for the derivative of a product):
Di(T+S)= lim lim Dj(pT *prS)

V=400 l-++00

= l'PbToo l—lbl-?-loo(p'DjT * p('S) + l'P’Too lll-?w((Djp‘)T * ppS)

= DJT * S,
where the latter equality comes from the fact that limy_, o (Do) T = 0.
a

Ezamples

1. Let P(D) be a linear differential operator with constant coefficients.
Then, for every T € 2'(R%),

P(D)T = (P(D)8) * T.
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uppose T € 9'(R%) and a € R%. The translate of T by a, denoted
y 7T, is the distribution defined by

(raT, ) = (T, 7-ap) for all p € 2'(R?),

here, for every function f, 7,f is the translate of f by a: that is,
2f(z) = f(z — a) (see page 169). One easily checks, using the in-
iance of Lebesgue measure under translations, that 7,(f] = (7o f] if

€ L} (R%).
Dne deduces immediately from the definitions that
ToT =0 *T.
In particular, if d = 1,
T =6#*T = lim §—5 «T
h=0 h

*ee equation (*) on page 293); equivalently,

T = fim L=

h—0

o» be the surface measure on the sphere in R? having center 0 and
jius r. In view of Example 1 above, we deduce from Exercise 10 on
304 that, for every distribution T on R4,

AT = lim 2—"(1' Ir —T).

r—=0+ 12 * sdrd“
Thus, if .
= T
T=T= pyw =

r every r > 0 (or at least for r sufficiently small), we have AT = 0.
this case we say that T is a harmonic distribution.) The converse
holds; see Exercise 1 on page 344.
e easily checks that (1*4’)*Y =0 and 1% (6’ +«Y) = 1, which shows
t the convolution product is in general not associative.

2C| Convolution of a Distribution with a Function

(T,
int

atisfies condition (C). Then T'x f € &(R?) and, for all z € RY, the
ection Supp f(z — - ) N Supp T is compact and

Pvrition 2.18 Consider T € 2'(R?) and f € &(R?), and suppose
) 8

T+ f(z) =(Ty, f(z - 9))-

t that in this case T * f € &7(RY).

Th:;remains true if T € 9'™(R%) and f € &™+"(RY) (with m,r € N),
[ A
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Proof. For each | > 0, we again fix an element p; of P(R?) equal to 1
on B(0,l). Take T € 9'™(R%) and f € &™*"(R?) (or T € 2'(R%) and
f € £(R%)), and suppose that (T, f) satisfies (C). For every compact subset
K of R, the set

K = {(z,y) € Supp f x SuppT : z+y € K}

is a compact subset of R? x R%. Denote by K’ its projection on the second
factor; then K’ is compact in R?. For everyz € K,

Supp(f(z—-))NSupp T = (z—Supp f)NSuppT
= {y € SuppT : 3z € Supp f such that y+2z = z}
CK'

Now take | > max;¢k |z| + maxye k- |y|. For every z € K, the function
y — pi(y)pi(z — y) equals 1 on an open that contains K’, so

(Ty, fl@-9)) = (Ty, sz~ y) f(z - y)) forallze K. (%)

Since the function (z,y) — pi(y)pi(z — y) f(z — y) lies in 2™+ (R? x R%)
(or 2(R? x R?), as the case may be), we deduce from Theorem 1.1 that the
function z — (T}, f(z — y)) is of class C™ (or C*®) in K. This reasoning is
valid for every compact subset K of R?, so the function belongs to &7 (R%)
(or £(R%)).

Now consider ¢ € 2(R?). By the definition of the convolution product
in & (RY),

((aT) * (uf), #) = (T )y, ((01f)zs p(z +9)))

= <Tw ou(y) / pu(z) f(z)p(z +y) dz)

= <T,,, o(y) /pt(z -y f(z - y)p(z) d$>
= (p(z) ® Ty, w)pi(z - y) f(z - ¥))
- / e(z)(Ty, p¥)pi(z - y) f(z ~ y)) de.

Now, applying equality () to the compact K = Supp ¢, we see that, for
1 large enough,

(Ty, mW)or(z — y) f(z —y)) = (T, f(z —-)) for all z € Suppy.
Therefore, making ! go to infinity, we obtain, by virtue of Proposition 2.6,

(T+f, o) = / o(@)(T, f(z - -))de,

which concludes the proof. a
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Remarks

1. In particular, consider a complex Radon measure s on R? and a ma‘i})
f € C(R?) such that (Supp u, Supp f) satisfies (C). Then u* f € C(R%)
" and

us f(z) = / f(z - y)duty) for all z € RP.

For an extension to the case f € L} (R%), see Exercise 10 below.

2. Teke T € 2'(R%) and f € &(R?) such that (T, f) satisfies (C), and recall
from page 169 the notation f, defined by f(z) = f(—z). By Proposition
2.13, (T, f) is well defined and

(T,f) =T £(0).
More generally, if T € 2'(R?), we define a distribution T by
(T, o) = (T,¢) forall p € P(RY).

Clearly, Supp T = — Supp T. Therefore, if (T, S) satisfies (C), so does
(T, 8). Moreover,
(T*+S)=T=*8.

This follows immediately from the definition of the convolution product
(Proposition 2.6) and from the obvious fact that (T® S) =T ® S.
As a consequence, by the associativity of the convolution product, we
conclude that, if (T, S) satisfies (C), we have, for every ¢ € 2(R?),

(T+S,0) =T*S*p(0)=T*(S*p)(0) =T *(5*¢)(0)
= (T, S+ ¢) = (T, (Sy, p(z +¥)))-

We thus recover Proposition 2.9.

We now give an application of Proposition 2.13 to the smoothing of
distributions.

Proposition 2.14 For every open € in R?, the set 2(Q) is dense in
P'(R). In other words, every distribution on Q is the limit in 9'(Q) of a
sequence of elements of 2(0).

Proof. Let Q be open in R?, and let (K,)nen be a sequence of compact
sets exhausting §. For every n € N, take @, € () such that ¢, = 1
on K,. Also let (Xn)nen be a smoothing sequence in R% and (Xpn )JneN 8
subsequence such that Supp ¢, + Supp xp,, C Q for every n € N.

Take T € 9'(R?) and write ¢, = (¢nT) * Xp,, for every integer n € N.
(The distribution ¢, T has compact support in  and so can be identified
with a distribution on R? with compact support, as explained on page 283;
see particularly Equation (+) on that page. Thus the convolution product
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(¢nT) * Xp, does make sense.) By Proposition 2.13 and our assumption
on the supports of ¢, and x,,, we have ¢, € (). We will show that
the sequence (¥n)neN converges in 2'(2) to T, and this will prove the
proposition.

To do this, take ¢ € 2(Q). By definition,

(Yn, ) = <Tm ¥n(z) / Xpn (W) (T + ) du> = (T, on (¥ * Xpn))-

Now, for n large enough, Supp(y * Xp,) C Suppy — Suppxp, C Kh, 50
#n (¥ * Xpa) = ¥ * Xp,, Whence

(Y, 0) = (T, 0 * Xp,)-

The sequence (¢ * Xp, )neN converges to ¢ in 2(), by Proposition 1.2
of page 261 applied to every m € N, since (Xn)neN is also a smoothing
sequence. Therefore the sequence (¢ )nen convergesto T in 2'(2). O

Remark. With the notation used in the preceding proof, we see that, for
a distribution T of order m and any ¢ € 2™(2), we have

Jim J o(z)¢n(z)dz = (T, ¢).
n
Ezercises

1. Compute 8, * §,, for z,y € R%.
2. Let P and Q be polynomials in d variables:

P(z) = Z a.z%, Q(z)= z baz®, where z = (z,...,24).

lal<p lal<q

Compute P(D)é » Q(D)é.
3. Prove assertions 1, 5, 6, and 7 on page 326.
4. Let F be a closed subset of R? containing 0 and such that AF C F for
all A € R*.
a. Show that (F, F) satisfies (C) if and only if F N (—F) = {0}.
b. Suppose that F N (—F) = {0} and that F + F C F. (For example,
F = (R*)4.) Show that, for every r > 1, the family (F, ..., F), where
F is repeated r times, satisfies (C).
5. Let L be the function defined on R? by L(z) = a-z with a € C% (where
the dot represents the canonical scalar product in C%).
a. If T and S are distributions satisfying (C), prove that
i. L(S*T)=(LS)*T + S*(LT), and
ii. eL(S*T) = (e~S) * (e T).
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b. Let P be a polynomial in d variables.
i. Find a polynomial Q such that, for every T € %',

eLP(D)T = Q(D)(e"T).

ii. Let E be a fundamental solution of P(D). Determine a funda-
mental solution of Q(D).

¢. Derive from thls and from Exercise 4 on page 323 a fundamental

solution of Hj:l(Dj — a;), where ay,...,aq4 € C.
6. a. Let P be a polynomial in d va.nables and T a distribution with

compact support. Show that T = P is a polynomial.
Hint. Use Exercise 4 on page 303 (or Proposition 2.13).

b. Find the limit in 9’'(R%) of the sequence of polynomials (P,) on R¢

defined by . "
T
Py(z )_W(I—T)

c. Deduce that every distribution with compact support is the limit in
2'(R%) of a sequence of polynomials.
7. Let m,n € N, and consider T € 9'™(R?) and S € 9'*(R?) such that
(T, S) satisfies (C). Show that T+ S € 9'™**(R?) and that

(T+S, ) = Tz, (Sy,p(z +y))) for all p € ™" (RY).

8. Convolution of measures
a. Show that, if 4 and v are complex Radon measures on R% whose
surports satisfy (C), the convolution 4 * v is a Radon measure on

v, ¢) = [ / o(z +y) du(z)dv(y) for all p € C.(RY).

(The double integral is defined by decomposing x4 and v into positive
measures: see page 89.)
Hint. See Exercise 7 withm =n =0.

b. Let ;1 and v be bounded complex Radon measures on R?. Show that
one can define u *v by the formula of the previous question and that
p *v is a bounded Radon measure.

c. Show that the space M (R?), with the convolution product * and
the norm of (Co(R"))' is a commutative Banach algebra with unity
and that L'(R%) is a closed subalgebra of it (without umty)

9. a. Show that, lf p is a Radon measure on R? and if ¢ € C.(R?), then
p* € C(RY).
Hint. See the first remark following Proposition 2.13.

b. Conversely, let T be a distribution on R? such that T * ¢ € C(R%)

for every p € C<(R%).
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i. Let (xn)nen be a smoothing sequence. Show that the sequence
(T * xn)nen converges vaguely in the sense of Exercise 6 on

page 91.
Hint. For every ¢ € C.(R%),

lim / (T + xa)(@)(z) dz = T » $(0).

n—400

ii. Deduce that T is a Radon measure.

10. Convolution of a measure with a locally integrable function. Suppose u

11.

is a complex Radon measure on R?, that f € L} _(R?), and that the
supports of s and f satisfy (C). Show that u * f € L} _(R?) and that

us flz) = [ f(z —y)du(y) for almost every =

(where the integral is defined by considering a particular Borel function

representing f).

a. Let L be a continuous linear map from 2(R%) to &(R?), commuting
with translations. Show that there exists a distribution T € 9'(R%)
such that

L(p) =T#*¢ forall p € D(RY).

(You might note that the equality (T, ) = (L())(0) must hold.)

b. Let L be a continuous linear map from 2(R%) to £(R?) commuting
with each differentiation D;, for 1 < j < d. Show that there exists a

distribution T € 9'(R?) such that
L(p) =T#*¢ for all p € D(RY).

Hint. You might show that L commutes with translations, as follows:
Take ¢ € 9 and u € RY, and let h be the function defined by

h(z) = (T2 L7z¢)(u) = (L7z0)(u + 2),

where 7:9(y) = ¥(y — z). Show that all partial derivatives D;h are
zero. Deduce that h is constant and finish the proof.

3 Applications

8A Primitives and Sobolev’s Theorem

The next proposition allows one to recover a distribution with compact
support from its first derivatives. Thus it is a formula for finding a primitive.
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Proposition 3.1 IfT € &'(R?), then

where v = |z| and sq is the area of the unit sphere in R

Proof. Let E be the fundamental solution of the Laplacian given in Theo-
rem 3.2 on page 308. A simple calculation using Theorem 2.12 on page 301
shows that

1 zj .
DJE_;r_d forallJG {l,...,d},

and this in any dimension d. At the same time, AE+T = T, since AE = 4.
Since T has compact support (so that (E, T') satisfies (C)), we deduce from
Proposition 2.12 that

d d
AE+xT =A(ExT) =) D}E+T)=)_ (D;E)*(D;T).
i=1 Jj=1
Therefore,
d
T =Y (D;E) * (D;T),
i=1
which yields the result. 0O

We now introduce the Sobolev spaces W' over R?, where 1 < p < o0. B}'
definition, the Sobolev space W!'P(R?) is the set of elements f € LP(R%)
for which, for every j € {1,...,d}, there exists g; € LP(R?) such that
Dj[f] = [g;]. In the sequel we will omit the brackets, writing simply D, f =
9

We define on the space W'P(R?) a norm || - ||,,p, as follows:

d
I1fllip = £l + D ID;fll, for all f € WhP(R?).

Jj=1
Here || - || is the norm on LP(RY).
Proposition 3.2 The norm || - ||, , makes W'?(R?) into a Banach space.

Proof. Let (fn)nen be a Cauchy sequence in W1P(R?). Since the space
L”(Rd) is complete, the sequences (f,), (D1 fn), --., (Dafr), which are
clearly Cauchy sequences in LP(R?), converge in L?(R?). Let f, g1, ..., 94
be their limits in LP(R?). Since 2(R?) is contained in LP(R?) (where p’
is the exponent conjugate to p), we deduce easily from Hoélder’s inequality
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that the same sequences also converge in 9’(R?). Since the operators D;
are continuous in 9’ (R‘), we deduce that

D,f:nngD,f,.=gj for1 <j<d,

by the uniqueness of the limit in 2’(R%). This shows that f € W1?(R%)
and that the sequence (f)neN converges to f in W1P(R9). O

Remark. The space W13(R?) is often denoted by H!(R?) and given the
equivalent norm || - ||z defined by

d 1/2
Wl = (ufu% +ZIlefII§) ,

=1

which comes from the scalar product defined by

—. d S ———
(f19)= [f@i@ s+ [ D5\ Da@ de

3=
Thus H!(R?) is a Hilbert space.

The next theorem says that, if p is finite, WP(R?) is continuously em-
beddable in some spaces L"(R?) with r > p, and that, if d < p < 00, it
is continuously embeddable in Co(R?) (“continuously embeddable” means
that WP is contained in each of the spaces considered and that the cor-
responding canonical injections are continuous).

Theorem 3.3 (Sobolev Injection Theorem) Suppose that p € [1, 0]
and that r satisfies

- r € [p, pd/(d-p)) ifp < d,
-re€po)ifp=d,
- r€poo] ifp>d.

Then WP(R%) C L"(R?) and there ezists Cyp > 0 such that
I£lls < Crpllfllip for all f € WHP(RY).

Moreover, ifd < p < 00, every element of W"”(Rd) has a representative in
Co(R?). Finally, every element in W (R%) has a uniformly continuous
representative.

Proof. Let v € 2(R?) be such that 7 = 1 in a neighborhood of 0. Since
|z;7=9] < r'-9, we have yz;r~% € L*(R%) for every a > 1 such that
a(d — 1) < d (see Proposition 2.13 on page 302), and so also for every
a € [1,d/(d-1)).
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Let E be the fundamental solution of the Laplacian given by Theorem
3.2 on page 308. Since 7E has compact support (so that (T,~E) satisfies
(C)), we deduce from Proposition 2.12 that

d d
T+ A(YE) = A(T *7E) = Y D}(T »1E) = Y _(D;T) » Ds(E).

J=1 j=1
Now,

d
A(YE) = (AY)E +2)_ DjyD;E +1AE (¥)
Jj=1
(Leibniz’s formula). Since AE = §, we get YAE = 4(0)§ = 4. Since E is
of class C* on R® \ {0} and since Ay and Djv vanish near 0, we deduce
from (+) that
n=A(YE) - 6 € 9(RY).

Similarly, we can show that, for each j € {1,...,d}, there exists an n; €
2(R?) such that

1 Zj
D;(1E) =13 + 73

We then get

d d
T=—T*n+ZD,T¢qj+-:—dZ(D,T):(7%). (%)
i=1 j=1

Suppose T € W'P(R%). Then T, D\T, ..., D4T € L? and we can
apply Young'’s inequality STheorem 3.4 on page 172) to equation (*+). We
conclude that T € L"(R®) for every r such that 1/p+ 1/a -1 = 1/r,
where 1 < a < p/(p—1) and a < d/(d-1). If p < d, we must have 1 <
a < d/(d-1), so that r € [p, pd/(d—p)) (with pd/(d—p) = 0 if p=d). If
p > d, we must have 1 < a < p/(p—1), so that r € [p,00]. In particular,
we can take a = p/(p—1) = p/, the conjugate exponent of p. The last part
of the theorem then follows from Proposition 3.2 on page 171. Finally, the
existence of constants C,, also follows from equation (++) and Young's
inequality.

3B Regularity

Let Q be open in R%. If p € [1, 00}, denote by Lf, () the set of equivalence
classes (with respect to Lebesgue measure) of functions on Q such that
1x f € LP(RN) for every compact K in 2.

Theorem 3.4 Let T be a distribution on an open set  in R%. Suppose
that p € [1,00| and that D;T € L}, () for every j € {1,...,d}.
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- Ifp<d, then T € L}, (Q) for every r € [p, pd/(d—p)).
-Ifp>d, thenTeC(Q)

If p = d, we interpret pd/(d—p) as oo.

Proof. Let K be a compact subset of @ and K’ a compact subset of
whose interior contains K. Let ¢ € 9(2) be such that ¢ = 1 on K.
Put = d(K, Q\K’) > 0 and let v € 9(R?) be such that v = 1 in a
neighborhood of 0 and Suppy C B(0, 9/2). If E is the fundamental solution
of the Laplacian provided by Theorem 3.2 on page 308 we saw in the proof
of Theorem 3.3 that there exist n,m,...,04 € Q(R ) such that

A(vE)=n+6, Dj(vE)=n; +- for all j € {1,...,d}.

1, z;

a4
Using formula (*#) from the previous page and replacing T by ¢T (consid-
ered as a distribution on R%: see page 283), we obtain

T =—(¢T)*n+ ZDJ(soT) *nj
=

d ' d
+ 5 @) (15) + 1 DM+ (1)
=1 P

By Proposition 2.13, (¢T) * 7 and the D;(¢T) * 1, for every j, belong
to 2(RY). At the same time,

Supp((Dj<p)T* (7%)) c (R4\K') + B(0,0/2) C (R*\ K).

Finally, oD;T € LP(R?). We then apply Young’s inequality (Theorem 3.4
on page 172) as in the proof of Theorem 3.3. We conclude that

Qx = R?\ (R\K') + B(0,0/2))

is an open set satisfying K C Qx C K’ and that the restriction of T to Qk
belongs to L™(k) if p < d and r € [p, pd/(p—d)) and to C(Qk) if p > d
Since this happens for every compact K, the theorem is proved.

Hypoelliptic Differential Operators

We now state another fairly general regularity criterion. We start with
a definition: If P is a polynomial over C, the linear differential operator
P(D) is said to be hypoelliptic if, for every open subset € of R and every
T € 2'(Q),
P(D)Te Q) = Te&N).

In particular, if P(D) is hypoelliptic, every solution in 2'(f2) of the partial
differential equation P(D)T = 0 is a function of class C*°, and so also a
solution in the ordinary sense.
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Theorem 3.5 Any differential operator with constant coefficients having
a fundamental solution whose restriction to R%\ {0} is a function of class
C™ is hypoelliptic.

Proof. The froof is analogous to that of Theorem 3.4. Let 2 be an open
subset of R” and let K, K’ be compact subsets of {2 such that K C K'.
Write 8 = d(K, R\K"). Let ¢ € 2(Q) have the value 1 on K’ and let
v € P(R?) have the value 1 on a neighborhood of 0; assume also that
Suppy C B(0,0/2). Finally, set

Qx = R?\ (R?\ K') + B(0,9/2)).

Then

KcQxCcK'.
Consider a differential operator P(D) having a fundamental solution E of
class C* on R%\ {0}. Let T € 9'(Q) be such that f = P(D)T € &().
By Leibniz’s formula,

P(D)(YE) =6 +n with n € 9(R%)

and
P(D)(¢T) = of +S with SuppS c (R%\ K').
Then
P(D)(YE*¢T) = ¢T +¢Txn=7E*pf +yE+ S,
that is,

¢T = —(pT)*n+vE*pof +vE * S.

Since n and ¢f belong to 2(R%), we deduce from Proposition 2.13 that
—(¢T)sn+vE*pf € 2(R?). On the other hand, Supp(YE+S) C R%\ Q.
We deduce that the restriction of T to 2k is of class C™. Since K is
arbitrary and Qg D K, this implies that T € £(2). O

Ezamples

The operators A, €, 8/0z (see Chapter 8), as well as A* for k > 2 (see
Exercise 4 on page 313), are hypoelliptic. In particular, a harmonic distri-
bution T on 0 is a harmonic function in the classical sense; a distribution T'
on an open subset  of R? such that 8T/8z = 0 is a holomorphic function
on .

If d = 1, every operator is hypoelliptic.

Conversely, note that, if E is a fundamental solution of a hypoelliptic
operator P(D), the restriction E of E to R?\ {0} is of class C*® (since
P(D)E = 0 € &R?\ {0})). This allows one to show that, for example, the

operator
& _&
9z ~ Byt
on R? is not hypoelliptic (see Exercise 6 on page 314).
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3C Fundamental solutions and Partial Differential Equations

The existence of a fundamental solution for a differential operator allows
one to find solutions of the corresponding partial differential equation if
the right-hand side is an operator with compact support.

Theorem 3.6 Consider a linear differential operator P(D) with cons-
tant coefficients, a fundamental solution E of P(D), and S € &'(R%). The
distribution To = E*S satisfies P(D)To = S. Moreover, the set of solutions
T € 2'(R%) of the equation

P(D)T =S

equals {T =Ty + U : U € 2'(R?) such that P(D)U = 0}.
Proof. If S € &'(R%), Proposition 2.12 yields

P(D)E*S)=P(D)ExS=6%S=S8.

Set U =T - E* 8. Clearly, P(D)T = S if and only if P(D)U = 0. ]

3D The Algebra 2.

We now consider the case d = 1 and write
2, ={T e 2'(R):SuppT C R*}.

Because (RY,...,R") satisfies condition (C), the convolution of two ele-
ments of 2/, is always defined and this operation makes % into a com-
mutative algebra with unity, by Propositions 2.7 and 2.11. We will apply
this fact to the resolution of linear differential equations with constant co-
efficients and continuous right-hand side.

Let P(D) = ag+a;D+---+a,n D™ be a linear differential operator with
constant coefficients such that m > 1 and a,, # 0. We know from Theo-
rem 3.1 on page 307 that P(D) has a fundamental solution E = (1/a,,)Yf,
where f is the solution on R of the differential equation P(D) f = 0 satisfy-
ing the conditions f(0) = f/(0) = --- = f(m=2(0) = 0 and f(™-1(0) = 1.
In particular, E € 2. It follows that P(D)d is invertible in the algebra
', and that its (necessarily unique) inverse is E. Thus, for every S € 2/,
there exists a unique distribution T € 2, such that P(D)T = S: namely,
T = E * S. If we take, for example, ¥y € C(R") (and extend it to R~ with
the value 0), and if we put

o(z) = { i /: f(z-y)¥(y)dy forz >0,

0 forz <0,
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then, in the sense of distributions,
P(D)p=1.

On the other hand, we know from the theory of differential equations that
the equation P(D)g = ¢ on R* has a unique solution g that satisfies the
conditions g(0) = ¢'(0) = --- = g(™~1(0) = 0. Extending g to (—oo,0|
with the value 0, we get as well P(D)g = ¢ in the sense of distributions.
We deduce, by identification, that

@)= [ " f(z - y)¥y)dy forallz>0.

Applying a similar reasoning to the case z < 0, we finally see that, for every
¥ € C(R), the unique solution g of the equation P(D)g = ¢ satisfying
9(0) = ¢'(0) = --- = g™~1)(0) = 0 is given by

o) = /0 " f(z - y)¥)dy forallz R

Ezercises
1. Harmonic functions and the mean value property. This exercise is a

continuation of Exercise 3 on page 312, whose notation we keep.
a. Show that E — E* € &'(R?) for every p > 0.
b. Deduce that, for every T € 9'(R%),

(E-EP)xAT =T -T*x —— (*)

pd—l
Show that, in particular, any harmonic function f on R? (that is,
any f € &#3(R?) satisfying Af = 0 in the ordinary sense) satisfies
the following mean value property:

f=Ffx* pdn"l’ for all p > 0.

(This is converse to the property of Example 3 on page 332.)
c. Applying (*) to the distribution T = E, prove that

EFP=Ex —— pd_l
2. Subharmonic distributions. A distribution is said to be subharmonic if
its Laplacian is a positive distribution. (For example, if f is a harmonic
real-valued function, | f| defines a subharmonic distribution: see Exercise
11 on page 304.)
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Characterize subharmonic distributions on R.
Hint. See Exercise 12 on page 304.

Show that a distribution T on R? is subharmonic if and only if, for
every p > 0, )
Tx* W: Op — T

is a positive distribution.

Hint. Sufficiency follows from Example 3 on page 332 and necessity
from equation (*) in Exercise 1.

Show that every subharmonic distribution can be represented by a
locally integrable function.

Hint. Revisit the proof of Theorem 3.5 and use Exercise 10 on
page 337.

Let f and g be locally integrable real functions on R, and assume
f and g are subharmonic (this means that the distributions [f] and
[9] are subharmonic). Show that sup(f, g) is subharmonic.

. Recall that a function f from R% to [—00,00] is said to be upper

semicontinuous if, for every a € R, the set {f < a} is open. Recall
also that the pointwise limit of a decreasing sequence of continu-
ous real functions is an upper semicontinuous function with values
in [—00,+00). Show that, if f is a subharmonic real-valued func-
tion, there exists an upper semicontinuous function f with values in
[—00, +00) such that f = f almost everywhere.

Hint. Take again the proof of Theorem 3.5 and note that there exists
a decreasing sequence in C,(R%) that converges pointwise to YE.

Harmonic functions and the mean value property, continued. We wish
to characterize harmonicity on an open set by the mean value property.
We fix an open subset Q of R% and f € C(Q), and keep the notation of
Exercise 1.

a.

Suppose that f is a harmonic function on Q. Take z € Q and p e
(0, d(z, R*\Q)). Take also ¢ > 0 such that ¢ < d(z, R4\Q) -
Denote by ¢ an element of C,(2) such that ¢ =1on B(z,p+ e),
and identify ¢f with an element of C.(R%).

i. Show that (E — E?) »x A(pf) = 0 on B(z,¢).

ii. Deduce that

of =pf* —= p,,_

on B(z,¢€). (Use part b of Exercise 1.)
iii. Show that f satisfies the following mean value property: For all
z € Q and all p € (0, d(z, R4\Q)), we have

f(z) = ;d—p%_—. / f(z — ) do,(y).

Hint. Use the first remark after Proposition 2.13 on page 332.
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b. Conversely, suppose that, for all z € Q and all p € (0, d(z, R4\Q)),
we have

1@) = [1@-vdo,).

Let K and K’ be compact subsets of Q such that K C K’, and take
@ € C(R) such that ¢ =1 on K’.
i. Show that

1
‘Pf'—"Pf‘Wap

on K if 0 < p < d(K, (R%\K’)). Deduce that Af = 0 in the
interior of K.
Hint. See Example 3 on page 332.

ii. Show that in this case f is a harmonic function on .

c. Show likewise that f is subharmomc (see Exercise 2) if and only if,
for all z €  and all p € (0, d(z,l! \Q)),

1@) < = [fe - doyto)

4. Show that, for every p € [1 400), the space W1P(R?) is separable and
P(R?) is dense in W ?(R%).

Hint. For separability, note that WP (Rd) is isometric to a subspace of
(LP(RY))4+1.

5. a. Show that if f € WH1(R), there exists an element g € L*(R) such
that [* o g(z)dz = 0 and [* wg(t)dt f(z) almost everywhere.
Deduce that f has a representative in Co(R). (By Theorem 3.3, this
is still true if f € WP(R) for 1 < p < ©.)

b. Show that there exists f € W12(R?) such that f ¢ L(R?).
Hint. Take f with compact support and equal to log(log(1/r)) in a
neighborhood of 0.

6. Let T be a distribution on an open Q of R%. Suppose that DPT €
L} .(Q) for every multiindex p of length d + 1. Show that T € C(R).
(Apply Theorem 3.4 d+1 times.) Deduce that if DPT € L} () for
every multiindex p € N¢, then T € £().

7. Let F be a closed subset of R? such that

AMFCF foralAeRY, Fn(-F)={0}, F+FCF.

Write 2% = {T € 2'(R%) : SuppT C F}. Show that the convolution
product makes 9} into a commutative algebra with unity. (See Exer-
cise 4 on page 335.)
8. Denote by Y(9 the function on R? defined by
Y (2) =Y(z,)...Y(zq)

Also set F = (R*)9, a closed set.
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a. i. Show that Y@ is a fundamental solution of the operator D, ... Dy
and that the support of Y9 is contained in F.

ii. Let @% be the space defined in Exercise 7. Show that, if S € 2,
there exists a unique T € P such that D, ... D4T = 8.

b. i. Let T be a distribution on R? supported within a + F, where
a € R%. Show that the convolution Y9 « T is well defined, that
Supp(Y@ + T) C a + F and that
A. if T € L} _(R?), then Y@ + T € C(R?);

B. if T is a Radon measure, then Y@ + T € L2 (R?) ;
C. if T is of order at most m with m > 1, then Y@ « T is a
distribution of order at most m — 1.
ii.Ifre N, set ' =YD s...a Y@ (YD appears r times).
Show that, if T is a distribution with compact support of order
at most m (with m > 0), then Y%, « T € C(RY).
c. Let T be a distribution on an open 2 of R? such that, for every

peN’,
1
maxpy <1 = DT € LL.(R).
Show that T € C().
Hint. Take p € P(). Show that D, ... Dg(¢T) € L'(R?) and use
parts a-i and b-i.

d. Let T be a distribution on an open  in R%. Suppose that T and its
derivatives of all orders have order at most m. Show that T € &(f).
Hint. Start by showing that T € C(f2) using parts a-i and b-ii; then
consider the derivatives of T.

9. Let J be a nonempty subset of {1,...,d} and set Dy = [],, Dj. Show
that D, is not hypoelliptic if d > 2.
Hint. Use Exercise 4 on page 323.
10. Local and global structures of a distribution.

a. Let T be a distribution with compact support of order £ on RY.

Show that there exists a continuous function f such that

Df+ZD§+2 . D:+2 [f] =T

Hint. Use Exercise 4 on page 323 or Exercise 8b-ii above.

b. Let T be a distribution on R%. Show that, for every compact subset K
of R, there exists a continuous function f and a multiindex p € N¢
such that T coincides with D?{f] on Pk .

c. Let T be a distribution on R®. Show that there exists a sequence
(Pn)nen of multiindices and a sequence (fn)nen of continuous func-
tions on R? such that

T=iD’"f,..
n=0
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Hint. Let (Q,)nen be a locally finite covering of R? by bounded
open sets and take a C™ partition of unity () subordinate to this
covering (see Exercise 14 on page 267). Apply the result of the first
part of this exercise to the distributions ¢, T'.
11. We work in R%, where d > 3.

a. Show that the only harmonic function that tends to 0 at infinity is
the zero function.
Hint. Use the mean value property from Exercise 1.

b. Takep € LP(R?) (this space was defined in Exercise 19 on page 159)
and let E be the fundamental solution of A. Show that the Poisson

equation
Af=¢

has a unique solution in Co(Rd), namely f = E « ¢. Show that f
is of class C! on R? and harmonic on R? \ Supp . Show that if, in
addition, Dy, ..., Dap € L®(R?), then ¢ € C,(R?), f € £2(RY),
and Af = ¢ in the ordinary sense.

12. Solve in 2 the following equation in T

(Y(z)sinz) «T = S,

where S € 92/,. Under what condition on S is the distribution T' defined
by a locally integrable function?

Hint. Find a differential operator of which Y (z)sinz is a fundamental
solution.
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The Laplacian on an Open Set

Conventions. In this whole chapter, © will denote an open subset of RY.
The elements of L} () will always be identified with the distributions
they define on €. Recall that, for every p € [1,00), LP(R2) C L} .(Q) C
2'(0). Differentiation operators should always be understood in the sense
of distributions, unless otherwise stated.

If f € L}, .(R), we denote by Vf the gradient of f:

Vf = (D:f,...,Daf).
If all derivatives D, f,..., Daf belong to L} (f2), we also write
d 1/2
vs1= (i)
j=1
If z = (z1,...,24) and y = (31, .. .,yd) are elements of C?, we write

d
zy=3 zy;
=1

1 The spaces H!(2) and H}(?)

The Sobolev spaces W!?(R?) over R® and in particular the space H!(R%) =
W12(R?), were defined in Chapter 9, on page 338. One can define in an
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analogous way the same spaces over an arbitrary open set 1. In particular,
H'(R) is the space consisting of elements f € L3(Q?) all of whose first
derivatives D, f,...,Dsf belong to L3(). This space is given the scalar
product (-,-) H\(QY) defined by

d
(19m = (19 + Y DsS 1 Dsg)ea = [ fade+ [ vf.Tgds.
i=1

The norms on the spaces L?(£?) and H'(f2) will be denoted by || - {|12(a)
and || |[#1 (), or simply by ||-[|L2 and ||- ||z if there is no danger of
confusion.

Imitating the proof of Proposition 3.2 on page 338 we obtain this result:
Proposition 1.1 The scalar product (- ,- )1 (q) makes H(R) into a Hil-
bert space.

In dimension d = 1, the Sobolev space H'(?) has certain particular

properties.
Proposition 1.2 Suppose that @ = (a,d), with —00 < a < b < +o0.
Every element f of H'() has a continuous representative on Q (still de-
noted by f) that has finite limits at a and b. Moreover, if a = —00, we have
limzq f(z) = 0; similarly, if b= +o00, we have lim,,4 f(z) = 0.

Proof. By Theorem 2.8 on page 297, every element of H'(2) has a contin-
uous representative f satisfying, for a € 2,

t
f(t) = f(a) +/ f'(u)du forallte Q. (%)

a
If, for example, b < 400, then L?((a,d)) C L}((a, b)), s0 f' € L}((a,b)).
Therefore f does have a finite limit at b. Similarly, f certainly has a finite

limit at a if @ > —o00.

Now suppose that b = +00. Multiplying equality (*) by f’(t) and inte-
grating the resulting equality between a and z, we conclude that, if z > a,

/ " 1010 dt = F@)(f@) - fla)) + / ; ( [ 1w du) £(t)de.
By Fubini’s Theorem,

/: (/a‘ f'(w) du) fl(t)dt= /-/['a.zl’ L{uge}f'(u) f'(t) du dt

1 o 1 .
=3 //[m]’ f'(u)f'(t)dudt = E(f(z) - f(@)*.

We deduce that
(z) = f(a) +2 /: FOF @) dt. ()



1 The spaces H!(Q?) and H3(2) 351

Since the two functions f and f’ belong to L3(f2), their product ff’ belongs
to L'(R2) by the Schwarz inequality; therefore, by (*+), f2 has a finite limit
at +00. Since f2 € L'(f), this limit can only be 0. The reasoning is similar
ifa=—o00. a

Remarks

1. If @ = R, we recover the inclusion H!(R) C Cp(R), which is a particular
case of the Sobolev Injection Theorem (Theorem 3.3 on page 339).

2. This result does not generalize to the case d > 2: if d > 2, there exist
elements of H!(R?) having no continuous representative (see Exercise 5
on page 346).

When  is a bounded interval in R, an interesting denseness result holds.

Proposition 1.3 Suppose that @ = (a,b), with —00 < a < b < +00.
Then C(8) is a dense subspace of H'(R2).

Proof. Clearly C'([a,d]) is a subspace of H!(R2). Consider an element of
H'(R), having a continuous representative f. By the preceding proposition
(and Theorem 2.8 on page 297), f has a continuous extension to [a, ] and

f(z) = f(a) + /z f'(t)dt for all z € [a, b).

Since C.(R) is dense in L?(2), the derivative f’ is the limit in L?(Q2) of a
sequence (@n)neN of elements of C.(2). For each n € N, set

@) = fla)+ [ " onlt)dt.

Clearly f, € C'([a,}]) and, for every z € [a, )],

b
£(2) - fal2)| < / 17(8) - ea(®)] dt < VE—a ||’ - onll o>

by the Schwarz inequality. Thus (fn)nen is a sequence in C!([a,d]) that
converges uniformly, and so in L?(f2), to the element f. Since, in addition,
fn = ¢n for every n, which implies that the sequence (f,,)nen converges to
f' in L%(Q2), we deduce that (f)nen converges to f in H(Q). (m]

The Space H}(R)

This denseness theorem of C!(f2) in H!(f) remains valid if  is a bounded
open subset of R? under an additional regularity assumption (for exam-
ple, that Q be “of class C!”). We will not use this result; instead we will
introduce a subspace of H'(f) in which 9(0) is dense, namely the space
H}(Q), which is by definition the closure of 2(Q) in H'(). The space
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H} (), with the scalar product (-, - )1, is a Hilbert space by construction,
being a closed subspace of the Hilbert space H'(f). In the case d = 1, the
relationship between H} () and H'(Q) is simple:

Proposition 1.4 IfQ = (a,b), with ~0co < a < b < +oo, then
Hg(Q) = H' () N Co(9).

In other words, H}(f2) consists of those elements of H'(2) whose con-
tinuous representative tends to 0 at the boundary of Q2 in [—o0, +00].

Proof. Consider an element of H}(R2) having f as its continuous represen-
tative and let (¢, )nen be a sequence in 2(9) that converges to f in H(f).
Since the sequence (i, )neN converges to f in L2(Q2), it has a subsequence
that converges to f almost everywhere. Replacing it by a subsequence if
necessary, we can suppose that there is a point a € Q such that the se-
quence (¢n(a))nen converges to f(a). Then, by the proof of Proposition
1.2 (and particularly by Equation (**), with f replaced by f — ¢,), we
have, for every z € Q,

|£(2) = ¢a(2)|® < |f(@)-pnla)|’ +2 Vzlf(t) — ()] |F/(t) — P (t)| at|,

which proves, by the Schwarz inequality, that the sequence (¢n)nen con-
verges uniformly to f on 2, and so that f € Cy().

At the same time, since C.(Q) is dense in L?(?) by Proposition 2.6
on page 107, since 2() is dense in C.(R2) = 2°(R) by Corollary 1.3 on
page 262, and since there is a continuous injection from C.(f) into L?(f)
(so that convergence in C,(f2) implies convergence in L%(2)), we deduce
that the space 2() is dense in L3(f).

Now consider f € H'(RQ)NCy(R). First suppose that —oo < a < b < +00.
Then, for every z € [a,b], we have f(z) = [ f'(t)dt and, in particular,
f f'(t)dt =0. Let (¥n)nen be a sequence in 2(2) that tends to f’ in L2(R),
and set A\, = fb ¥n(t)dt for n € N. Then

. — ! —-
Jim A, = /a F(t) dt = 0.
Take x € 2() such that f: x(t)dt = 1 and define ¢, by
on(@) = [ (n(®) - dox(v)
a
We then check that ¢, € 2(), that the sequence (¢!, )nen converges to
f' in L?(R), and that (pn)nen converges to f uniformly and so in L2(2).
Thus f € H}(R), which proves the desired result if Q is bounded.

Finally, suppose that, for example, a = —o0o0 and b < +00. Let (pp)neN
be a sequence in &((—o00,b)) such that, for every n € N, 0 < p, < 1,
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pn = lon [-n,b), pp = 00n (—oc0, —n—2|, and |g),| < 1. By the Dominated
Convergence Theorem, we see that, on the one hand, the sequence (pp, f)nen
converges to f in L?(Q2) and that, on the other, since (pnf) = A, f +
pnf', the sequence ((Pnf))nen tends to f' in L3(Q). Therefore (o f)neN
converges to f in H'(R2). Moreover, since (p,, f)(b) = 0 and (p, f)(z) = 0 for
z < —n—2, we can, by the result of the preceding paragraph, approximate
each p,f by elements of P((—n—-2, b)) in H'((-n-2,b)), and so also in
H!(R). Thus the result is proved in this case. The cases a > —00, b = +00,
and @ = —o0, b = +00 are analogous. 0O

Proposition 1.2 says that H!(R) C Co(R), so Proposition 1.4 implies that
H'(R) = H}(R). The next proposition shows that this remains true in all
dimensions. It is also clear from Proposition 1.4 that H'(2) # H}(Q) if Qis
an interval distinct from R. Intuitively, if 2 is a bounded open set in R?, the
elements of H}(R) are, as in the case d = 1, those elements of H!(f) that
“vanish on the boundary of Q”. In dimension 1, this expression makes sense
since the elements of H!(f2) have a continuous representative. In higher
dimensions, the elements of H'(Q2) are only defined almost everywhere,
so talking about their value on the boundary of 2, which generally has
measure zero, makes no sense a priori. Nonetheless, it is possible, if
is sufficiently regular, to define the value of an element of H!(Q) at the
boundary of 2. We will not do this; in this regard see Exercises 16, 17, and
18 below.

Proposition 1.5 The spaces H'(R%) and H}(R?) coincide.

Proof. We must show that 2(R%) is dense in H!(R?). Take ¢ € 2(R?) such
that £(0) = 1. For each n € N*, put £,(z) = £(z/n). If f € H'(R?), then
&.f € H'(R?) and, by the Dominated Convergence Theorem, the sequence
(énf)nen- converges to f in L2(R%). Moreover, for each j € {1,...,d},

Dy(nf)(@) = £a(@)D35(@) + = (Ds)(Z) £2)

s0, again by Dominated Convergence, the sequence (D;(&n f))neN converges
to D;f in L2(R%). Therefore the sequence (£nf)nen+ converges to f in
H'(R?). Consequently, the space H} (R“) consisting of elements of H!(R%)
with compact support is dense in H!(R®)

Now take f € H!(R?) and let (xn)neN be a smoothing sequence. Then,
for every n € N, the convolution f *xy, is a function of class C*™ on R? (this
follows from the theorems on differentiation under the summation sign)
whose support is contained in Supp f +Supp xn. Therefore f*x,, € 2(RY).
On the other hand, by Proposition 3.7 on page 174, the sequence (xn* f)neN
converges to f in L?(R?). Since, in addition, Dj(f * xn) = (D;f) * xn (by
Corollary 2.10 on page 330 and Proposition 2.12 on page 331), we again
deduce from Proposition 3.7 on page 174 that the sequence (D;(f *Xn))neN
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converges to D; f in L*(R%). It follows that (f * xn)nen converges to f in
H'(R?), which concludes the proof. (m]

The next inequality, applicable when 2 is bounded, will play an impor-
tant role later.

Proposition 1.6 (Poincaré inequality) If Q is a bounded open set in
R? (more generally, if one of the projections of Q on the coordinate azes
is bounded), there exists a constant C > 0 depending only on Q and such
that

lullea@y < C [IVulllyaqy for all u € Hy(Q).

If Q is bounded, we can take C = d(R).

Proof. By denseness, we just have to show the inequality for every u €
P(N), that is, for every u € D(R?) such that Suppu C Q. Suppose for
example that the projection on  onto the first factor is bounded, so there
exist real numbers A < B such that Q2 C [A, B] x R%"!, Since u is of class
1
ct, _—
u(z) = / —(t,z2,...,z4)dt for all z € N.
A Oz

It follows, by the Schwarz inequality, that

lu(z)|" <

(t Z2,...,24)dt for all z € .

Integrating this inequality over [4, B] x R%~! gives
lullza < (B — A)? | Drul|2a.
Since |Dyu| < |V, the result is proved. @]
It follows in particular that, if Q is a bounded open set, nonzero constant
functions belong to H'(2) but not to H}(R); thus H}(Q) # H(R).
The Poincaré inequality can be interpreted in the following way:

Corollary 1.7 Suppose that  is a bounded open set (more generally, that
one of the coordinate projections of 2 is bounded). The map

u > lull gya) = "‘V“'"u(n)

is a Hilbert norm on H} () equivalent to the norm || - || i1 (q).

Proof. If C is the constant that appears in the Poincaré inequality, we have,
for every u € H} (),

1198l < BuliEa) + 1198l 2, = el < @ +C)IVullaqy,
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which proves the equivalence between the two norms. At the same time,
we see that the norm ||u| yj3(q) is defined by the scalar product

d
(u]9)a3a) = 3, (Dyu| Dyv) L2y a
J=1

Proposition 1.8 For f € H}(R), set

r3 f onﬂ,
/= {o on R\ Q.

Then f € H'(R?) and the map that takes f to f is an isometry between
(H3Q), Il a1 (qy) and (H'(R?), || |12 @ey)-

Proof. If f € D(Q), we clearly have f € D(R®) and D;f = D;f for
j € {1,...,d}. Consequently, the map f — f is an isometry from 2(2),
with the norm | - | i11(q), into H'(R?). Since H'(R?) is complete, the ex-
tension theorem says that this isometry extends to an isometry f — f from
(H3(Q), I - a1 @y) to (H'(R?), || - Il 41 (rey)- Now, convergence in H! im-
plies convergence in L?, 80, if (¥n)nen i8 a sequence in 2(Q) converging to
f in H}(R), the sequence (@n)nen converges to f in L2(R?). Since it also
converges to f in H!(R?) (by the definition of f) and so also in L3(R%), it
follows that f = f, which concludes the proof. (m]

Lemma 1.9 For every u € H'(R?) and every h € R?,
Imvu = ullLs < [[I9ul| .2 1A
Proof. By Proposition 1.5, the space P(R?) is dense in H'(R%). Thus it
suffices to prove the property for u € @(R%). If u € P(R?), we have
1
u(z — h) —u(z) = —/ Vu(z — th) - hdt;
(]
thus, by the Schwarz inequality,
2 1
(@) - w@)l* < b [ Vufi(a - th) at.
(]
Now it suffices to integrate this inequality over R? using the fact that

Lebesgue measure is invariant under translations. (W]

We now derive from the preceding results an important compactness
theorem.

Theorem 1.10 (Rellich) If Q is a bounded open set, the canonical in-
jection u — u from H}(Q) into L*(Q) is a compact operator.
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In other words, every bounded sequence in H}(§2) has a convergent sub-
sequence in L?(12).

Proof. Since the map u — uq from L?(R?) to L*(R) is clearly continuous,
it suffices to prove that the map f ~ f from H}(Q) to L?*(R?) is a compact
operator (where f is as in Proposition 1.8). Let B be the closed unit ball
in H}(Q), and put B = {f :j € B}. By Proposition 1.8, B is contained in
the closed unit ball of H!(R?). We must show that B is relatively compact
in L2(R%). To do this, we use the criterion provided by Theorem 3.8 on
page 175 in the case p = 2.

Properties i and ii in the statement of that theorem are clearly satisfied
since, for every f € B, we have || f]|.2 <1 and

/ f@)Pdz=0
{iz|>R}

for every R > 0 such that  C B(0, R). On the other hand, B is contained
in the closed unit ball of H!(R?); thus, by Lemma 1.9,

lmf = Fll 2 < 14| forall f € B and h € R,

which proves property iii. (]

Ezercises
Here Q is still an open subset of RY.

1. Show that, if u € H'(R2) and v € H}(R), then
(Dju|v)La = —(u| Dyv)2 for j € {1,...,d}.

2. Let (un)neN be a sequence in H'(Q2) that converges in L?(f2) to an
element u € L2(Q2) and such that, for each j € {1,...,d}, the sequence
(Djun)nen converges in L?(R) to an element v; € L3(2). Show that
u € H'(R), that (un)nen converges to u in H'(Q), and that v; = Dju
for each j € {1,...,d}.

Hint. Show that (u,)nen is a Cauchy sequence in H!(Q2).

3. Let (un)nen be a bounded sequence in H!(f2) that converges in L3()
to u € L?(1). Show that u € H'(R2) and that there exists a subsequence
(%n, )ken such that

. Ungy + e+ Up, _
BT k1
in H(Q).
Hint. Use the Banach-Saks Theorem (Exercise 16 on page 121).
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. Let H!(9) be the set of elements of H'(f2) having compact support.

Prove that H!(€) is a dense subspace of H}(f2).

. Show that the canonical injection from H'!(R?) to L2(R?) is not com-

pact.

. Suppose u € H'(2). Show that there exists a sequence (up)nen in 2()

that converges to u in L?(2) and is such that, for every j € {1,...,d},

the sequence (Dju,)nen converges to D;u in LE (€2). (Convergence in
L% () was defined in Exercise 19 on page 159.)

. Suppose that 2 = (a,b) is a bounded interval in R. Show that the best

constant in the Poincaré inequality is (b—a)/7.

Hint. Use Wirtinger’s inequality, Exercise 16d on page 137.

. The Meyers -Serrin Theorem. Let ) be an open subset of R<. Show that

&(Q) N H(Q) is dense in H'(12).

Hint. Let (£2,);en be a family of relatively compact open subsets of Q

covering  and such that Qp = @ and Q; C 9,4, for every j € N.

Let (p;),en be a partition of unity relative to the family of open sets

(92,42 \ ;) en (see Exercise 14 on page 267). Finally, take a smoothing

sequence (Xn)nen on R?, an element v € H'(R), and & > 0. Show that,

for every j € N, there exists an integer n; € N such that

Supp(xn, *(9ju)) C Rjs2\Q; and ||(xa,*(9su)) — @t 1 gy <2777

Then consider v = Y.y Xn, * (pju).

. The Poincaré inequality in H'(€2). (This result generalizes Exeruse 16b
on page 137.) Suppose 2 is a bounded and convex open set in R<.

a. Show that the relation

Tf(z) = /n Iz — 414 £ (y) dy

defines a continuous linear operator T from L%(Q2) to L?(2).
Hint. Use the Young inequality in R (see page 172 and also Exercise
9b on page 182).

b. Takeu € C'()NL!(R), and put m(u /
Show that, for every z € (2, vol Q2

z)dz, § = d(Q).

1 4 1-d
Jua) ~ m(u)| < —=% /Q =~ 31"~ Vu(y)| dy.

Hint. Prove, then integrate with respect to y, the equality

lz=ul ¢ _y y—z )
— = 'Vu T+t dt.
w) - ulw) = ( b

|z -yl
z
Vu (:c + t—)\ dt) dz,
|2|

Deduce that

1 +oo
u(z) — m(u)| < (/
fuz) ) vol @ Ji ere:yz1<5) \Jo
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where Vu is extended with the value 0 outside 2. Then use Theorem
3.9 on page 74 twice.
c. Deduce the existence of a constant C > 0 such that

flu- m(u)"L,(m < C"IVul"L,m) forallue H'(N). (»)

Hint. Show this inequality for every u € C'(2) N H'(R), then argue
by denseness, using Exercise 8.
d. Show that the norm |- | defined on H(f) by

lu| = ‘ /,, u(z) dz

is equivalent to the norm || - || 1 ().
10. All functions considered here are real-valued.

a. Suppose u € H'(f2). Show that there exists a sequence (u,)neN in
2() that converges to u almost everywhere and in L2(f2) and is such
that, for every j € {1,...,d}, the sequence (Djun)nen converges to
Dyu in L2 () (see Exercise 6).

b. Let G € C'(R) satisfy

G0)=0, |G'(t))<M forallteR.
Show that, if u € H!(), then G o u € H'(f2) and
Dy(Gou) = (G' ou)Dju

for every j € {1,...,d}. In particular, ||G o |1 < M||u||s.
Hint. Take an approximating sequence (un)nenN Of u as in the first
part of this exercise. Show that (G o unp)nen converges to G o u in
L%(R2) and, for every j € {1,...,d}, the sequence whose general term
is Dj(G o ug) = (G’ 0 4,) Dyuy, converges to (G’ ou) Dyu in L} (R).

c. Show that, if G is as above and u € H}(R2), then G o u € H}(R).
Hint. Consider again the preceding proof and notice that, if v €
P(R), then G ov € H} () (see exercise 4).

11. All functions considered here are real-valued.

a. Show that, for every n € N, there exists a function G, € &(R) such

that |G, (t)] <1 for all t € R and

-1/2n ift< -1/n,
G"(t)={t / ift>0/

b. Suppose u € H!(). Show that u* € H'(Q) and that D;(ut) =
1(u>0) Dju for every j € {1,...,d}.
Hint. Compute the limits in L?(f2) of the sequence (G o t)nen and
of the sequences (D;(Gy © u))nen, for j € {1,...,d}, using Exercise
10 for the latter. Then use Exercise 2.

+[IVul]| L2q)
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c. Show that, if u € H'(R),
l{u=0)Dju=0 forje€ {1,...,d}.

Hint. Compute Dj(u~).
d. Let u € H}(Q2). Show that u* € H}(R).
Hint. Let (¢n)nen be a sequence in 2(f2) converging to u in H} ()
and almost everywhere. Then consider the sequence (Gp © ¥n)neN-
e. Assume either that u € H'(R) or that u € H}(2). Show that |u| €
HY() or |u| € H} (), respectively, and that

Djlu| = 1{u>0) Dju — 1{u<0yDju for j € {1,...,d}.

Deduce that |||ull],;: = llulls.
f. Show that H'(R2) and Hj(f2) are lattices.
12. All functions considered here are real-valued.
a. Let K be a compact subset of R of Lebesgue measure zero.
i. Show that there exists a sequence (¢n)nen in C(R) such that,
for every n € N, we have 0 < p, <1, ¢ 2 pn4+1 and
nll;tfoo wn(t) =1k(t) forteR.
fi. Take u € H'(f2) and suppose $n(z) = [ ¥n(t)dt. Show that,
for every n € N, ®, ou € H'(2), (B o u)neN converges to 0 in
HY(R), and

l(uex}D,u =0 forje {l,. . .,d}.
(This generalizes Exercise 11c.)

Hint. Use Exercises 2 and 10.

b. Show that, if A is a Borel set in R with measure zero and u € H'(2),
we have Vu = 0 almost everywhere on u~!(A).
Hint. Use the fact that the Radon measure u defined by

/(pdp = /(cpou) |[Vu|?dz for all p € C(R)

is regular (see Exercise 5 on page 77).
13. All functions considered here are real-valued.

a. Let G : R = R be a Lipschitz function with Lipschitz constant M
and satisfying G(0) = 0. Show that, if u € H'(f2), then Gou € H'(R2)
and |G o u||y < Mlu||g.

Hint. Approximate G by functions

Galz) = n( L O e - 01/,. G(t) dt)

and use Exercises 3 and 10.
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lﬂ Under the same assumptions on G, prove that u € Hj(Q) implies

Gou € H§(R).

Hint. Show first that u € 2(RQ) implies G o u € H}(R) (see Exer-
cise 4). Then use Exercise 3.

14. iow that, if f and g belong to H'(R2) N L>(R), so does the product
, and that

D;(fg9) = gD;f + fD;g forje{1,...,d}.

ow that if, in addition, f and g belong to H}(f2), so does fg.

nt. Using Exercise 10, prove first that, if h € H!(Q) N L>(R), then
€ H'(Q) and D;(h?) = 2hD;h (and similarly with H} () instead of
().

15. Show that every positive element of H}(f) is the limit in H'(2) of a
uence of positive elements of 2(2).

. If u is a positive element of H} (), there exists a sequence (¢n)neN
off real-valued elements of 2(f2) that converges to u in H'(2) and al-
everywhere. Show that there exists a sequence (Gp)nen in &(R)
that, for every n € N, we have 0 < G, <1 and

0 ift<0,
t—1/n ift>2/n.

Ga(t) = {

SBow that the sequence (G © ¥n)neN converges to u in H'(2) (use
Egercise 11c).

wish to show that Co(Q)NH!(Q) C H} (). Take u € CR(Q)NH(N)
let ¢ be a function of class C! on R such that ¢ =0on [-1,1] and
=1 on (—o00, —2) U (2, +00).

ad For n € N*, set u, = p(nu)u. Show that u, € H'(Q2) N C,(9N).
Hint. Use Exercise 10.

b Show that the sequence (un)nen converges to u in H().

Hint. Use Exercise 2.

cq Complete the proof.

Hint. Use Exercise 4.

te that this exercise yields another proof of the result in the one-
ifnensional case.)

17. ume that d = 2 and that

16.

a—~

Q={zeR?*:0<|z| < 1}.

¢ be an element of 2(R) such that ¢(t) = 1if |t| < 1/2and ¢(t) =0
if f| > 1. For n € N* and z € Q, put

un(z) = so(i’lﬂvl)sOGl log I—i'_l)
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and u(z) = ¢(2|z|). Show that u, € 2(f) for every n € N* and that
the sequence (un)nen converges to u in H'(R2). Deduce that

H3 ()N C(Q) & Co(9).

The trace theorem in a half-space. Assume that d > 2 and that Q =

(01

a.

e.

f.

+00) x R471,
Show that the space P({2) consisting of functions of class C* on {1
with compact support, is dense in H'(R).
Hint. Argue as in the proof of Proposition 1.5, choosing a smoothing
sequence (xn)neN consisting of elements of 2(—1Q).

2

)

. Take u € 9({2). Show that, for every z € R4,

+00
w0 < [ (1ol + | a0

Deduce that

"“(or : )"L:(gd—x) < "““H'(ﬂ)-

. Show that there exists a unique continuous linear map v, from H'(2)

to L2(R%") such that
You = u(0,-) for all u € 2(Q).

. Show that

Tou = u(0,-) for all u € C(Q) N H(Q).

Hint. Show that every element of C({})NH!(f2) can be approximated
in C(§1) and in H'() by a sequence of elements of 2({1).
Green’s formula in H'(). Suppose u,v € H'(?). Show that
(v, Dju)L:(Q) = —(D,v, u)Lz(n) for all j € {2, .o ,d}
and that
(v, D] u) L) = —(Dlv, u) L3(n) — (‘7014, 70”)[.’(!!“')-

Hint. Use the first part of the exercise.
i. If u € H'(R), denote by i the extension of u to R? having the
value 0 outside €. Show that, for every u € ker~o,

——

;o ou .
_j—a_zj fOtJG{la‘-wd}'
and so that & € H'(RY).

Hint. Use the preceding question.
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ii. Show that the space 2(f) is dense in ker g (with respect to the

norm || - || 1 (q))-
g. Deduce from these results that Hj(€2) = keryo and that

HYQ)nC®@) = {ue C@) N H(Q) : u(0,-) = 0}

(In this sense, we can say that HJ(f2) consists of those elements of
H'(R) that vanish on the boundary of €.)
19. The mazimum principle for the Laplacian in H'(2). Suppose that  is
bounded. All functions considered will be real-valued.
Ifu € H'(Q), we say that u < 0 on the boundary 9Q of Qif u* € H}(Q2).
(It was proved in Exercise 10 that u* € H'(Q) for every u € H'(R2).)
a. Show that, if u € C(Q)NH'(R) and u(z) < 0 for every z € 99, then
u < 0 on 99 in the sense defined above.
Hint. Use Exercise 16.
b. Take u € H'(R2). Show that, if Au > 0 (that is, if Au is a positive
distribution), we have

u(z) <supu for almost every z € 2,
an

where supgqu = inf{l € R : u — [ < 0 on 99}.

Hint. Take | € R such that v = (u — {)* € HJ(R). Using Exercise
10 show that Vv =0 on {u — ! < 0} and Vv = Vu on {u - > 0}.
Deduce that

1991y = [ V(2) - Vota)dz < 0

(using Exercise 15) and conclude the proof.
c. Take u € H'(f2). Show that Au = 0 implies

infu < u(z) <supu for almost every z € 2,
on a0

where infaq u = — supgq(—u).

d. Show that these results remain true if we replace the assumptions
Au > 0 and Au = 0 by, respectively, £u > 0 and Lu = 0, where
% is an elliptic homogeneous operator of order 2, that is, a linear
operator on H!(Q2) of the form

0 0
Lu= Z -_— (ai_j———u) )
1<i5<a 9% \ 702
with a;; € Lg() for 1 < ,j < d, satisfying the condition that

there exists a > 0 such that, for almost every = € Q,

Y aij(@)&g; > alél® forall € € RY.

1<i,j<d
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20. Suppose that € is a bounded interval in R. Show that the canonical
injection of H'(R) in C(R) is a compact operator. (This is a stronger
result than Rellich’s Theorem in this case.)

Hint. Show that, if u € H'(Q) and z,y € Q,

|u(z) - v(@)| < |z = yI"/2 lull .

(In other words, H'(f) injects continuously in C'/3({}), the space of
Holder functions of order 1/2 on {}; see Exercise 5 on page 45.) Then
use Ascoli’s Theorem or Exercise 5 on page 45.

21. Suppose that Q is a bounded open subset of R, Let (ts)nen be a se-
quence in H}(Q2). Suppose that the sequence (u,)nen converges weakly
in L3(Q) and that, for every j € {1,...,d}, the sequence (8u,/08Z;)neN
is bo;mded in L3(£2). Show that the sequence (4, )nen converges strongly
in L3(Q).

Hint. By Exercise 10a on page 120, the sequence (uy)nen is bounded
in H}(2). Then use Rellich’s Theorem and Exercise 12 on page 121.

2 The Dirichlet Problem

We consider a bounded open subset 2 of R%. The space H} (1) is from now
on given the Hilbert space structure defined by the scalar product

d
(®19)m = 3 (Dsu| Dyv)pagay = /n Vu-Vodz.
3=1

We denote by || - |3 the norm associated with this scalar product.
If f € L*(Q), a solution of the Dirichlet problem on § with right-
hand side f is, by definition, an element u of H}(R) such that

Au=f.

Classically, to impose a Dirichlet condition on the solution (in the ordi-
nary sense) of a partial differential equation over 2 means stipulating the
value of the solution on the boundary of . In the present context, the
condition u € H}(R) is of this type, since it amounts, in a sense already
discussed, to requiring that u “vanish on the boundary of ”.

The next proposition gives the so-called variational formulation of
the Dirichlet problem, which underlies the Galerkin-type algorithms for
numerical solution of the Dirichlet problem (see Exercise 1 on page 116).

Proposition 2.1 If f € L?(R), these statements are equivalent:
- u € H}(R) and Au = f.
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- u € H}(Q) and (u|v)gy = —(f|v)L2 forallve H(Q).

Proof. If f € L?(Q) and u € H}(R), we have the following chain of equiv-
alences:

Au=f = (Au,p) = (f|p)L2 for all p € 2(N)

d
<> Y (Dju|Dyp)pa = —(f|@)ra forall p € D(Q)

=1
< (ul@)yy = —(flo)L2 for all p € 2(Q).
The result follows because 2(2) is dense in H} (). O

This will allow us, in particular, to prove the existence and uniqueness
of the solution of the Dirichlet problem.

Theorem 2.2 For every f € L%(Q), the Dirichlet problem on Q with
right-hand side f has a unique solution u € H}(RY). The operator

A 2 L3(Q) - HY(Q)
f » u

thus defined is continuous and has norm at most C, the constant that ap-
pears in the Poincaré inequality (Proposition 1.6).

Proof. If f € L3(Q),
|(f1v)ea| S Clifllzallvllgg for all v € Hy(Q),

where C is the constant in the Poincaré inequality. Thus, the map L : v —
(v| f)12 is a continuous linear form on H}(R) of norm at most C||f| 2.
Therefore the existence and uniqueness of the solution u, together with the
inequality [lul| 4y < C||fllLa, follow immediately (in view of the preceding
proposition) from an application of Riesz’s Theorem (page 111) to the
Hilbert space H} (). a

The Dirichlet problem can also be interpreted as a minimization problem:

Proposition 2.3 Let f € L3(Q). For every v € H}(Q), put
Jr(0) = $(Ilvllmg)” + Re(f | v)a.
These statements are equivalent:

- u € H}(Q) and Au = f.
- u € Hy(Q) and Jy(u) = minye g3 (q) Jr(v)-
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Proof. Suppose h € H}(f2). Then

Jy(u+ h) = Jy(u) + Re((f | h)za + (u| h)ag) + (Inllmg) ™.
Therefore, by Proposition 2.1, Au = f implies that
Jp(u+h) = Jp(u) + 2(Ihllmg)® for all h € HY(R).
Thus J; attains its minimum on H}(R2) at u and only at u. a

We now study the spectral properties of the Laplacian on  with “Dirich-
let conditions”. More precisely, we will say that a complex number A is
an eigenvalue of the Dirichlet Laplacian if there exists a nonzero
u € H}() such that Au = Au. Such functions u are the eigenfunc-
tions associated with the eigenvalue A. The eigenspace associated with A
is the space of u € H}(f2) such that Au = lu.

Proposition 2.4 The operator

T : H) () = HN)
v +— u such that Au= —-v

is an injective, compact, positive selfadjoint operator on HJ(12).

Proof. Let J : u — u be the canonical injection from HJ(R2) into L3(2).
Then T = —A~! o J, so, by Proposition 1.2 on page 215, T is compact,
because A~! is continuous (Theorem 2.2) and J is compact (Rellich’s The-
orem, page 355).

On the other hand, if u € H}() and Tu = w, we have Aw = —u.
Therefore, by Proposition 2.1,

(Tu|v)gy = (u|v)La for all u,v € Hy (1),
which easily implies that T is selfadjoint, positive, and injective. a

It follows that we can apply to the operator T the results established in
Chapter 6 concerning the spectrum of compact selfadjoint operators. Now,
if A € C and u € H}(R) is nonzero, we have

Au=u < T(w) = —u <> (,\;eOandTu=—§u).

It follows that ) is an eigenvalue of the Dirichlet Laplacian if and only if
A #0and —1/) is an eigenvalue of T, and that in this case the associated
eigenfunctions are the same. Since T is not of finite rank (its image clearly
contains 2(2)), we deduce from Theorem 2.2 on page 235 and Corollary
2.7 on page 238 the following properties:
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Theorem 2.5 1. The set of eigenvalues of Dirichlet Laplacian on 2 forms
a sequence 0 > Ag > Ay > --- > Ay > .-+ tending to —o0.

2. The eigenspace associated with each eigenvalue A has finite dimension
dy.

8. Let (un)neN be the decreasing sequence of eigenvalues of the Dirichlet
Laplacian, where each eigenvalue )\ is repeated dy times. There ezists a
Hilbert basis (un)nen of H3() such that

Auy, = ppu, forallneN.

Remarks
1. By Proposition 2.1,

(un|v)Hy = —pn(un|v)La forallneNandve H)(Q).

In particular, (|luallz2)? = —1/py and (un|um)r2 = 0 if n # m. At
the same time, the space 2() is dense in L3(R) (see the proof of
Proposition 1.4), and a fortiori H}(f) is dense in L3(R2). Since conver-
gence in HJ () implies convergence in L3(R), the family (u,), which is
fundamental in HJ(R), is also fundamental in the closure of H}(R) in
L*(Q), namely in L*(Q). It follows that the sequence (y/—fin urSnﬁN is
a Hilbert basis for L3(Q2).

2. For every n € N, we have u, € &(f2) (see Exercise 8). Therefore u,
satisfies the equation Au,, = u,u, in the ordinary sense.

Using the sequence (un)nen and the eigenvalues (un)nen, we will now
describe the solutions of various partial differential problems with Dirichlet
conditions.

2A The Dirichlet Problem

Proposition 2.6 Suppose f € L3(0). The solution u of the Dirichlet
problem on Q with right-hand side f is given by

400
u= —Z(flun)b’“m
n=0
the series being convergent in HJ ().
Proof. By remark 1 above, (y/=fin tn)nen is a Hilbert basis of L?(), so

400
==Y un(f|tn)L2 tn,

n=0
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with convergence in L?(2). In particular,
+00

(1£122)* = 3" ~tn |(f 1 0m)1a]” < +00

n=0

and, since the sequence (—pq)neN i8 increasing and thus bounded below
by—#o>°,

+00
Y1 1un)ea|? < +o0.
n=0

Since the sequence (us)nen is a Hilbert basis for Hj (1), it follows that the
series

+00
v==2 (f|tn)L2tn
n=0

converges in Hj(2). Since convergence in H} () implies convergence in
L?(f), which in turn implies convergence in 2’(2), we deduce that, in
7'(),

+00
Av == pn(f | tn)L2 tn
n=0

(by the definition of the sequence pu,). Likewise

+o0
f==Y ta(f|un)p2 tm,
n=0

with convergence in 2'((2). It follows that Av = f and so that v = u, the
solution of the Dirichlet problem on 2 with right-hand side f. O

2B The Heat Problem
Proposition 2.7 Suppose f € H) (). There erists a unique function u
from (0, +00) to H}(R), differentiable in (0, +00) and satisfying the follow-
ing conditions:
- w(t) = Au(t) for all t > 0.
~ limeo u(t) = f in HA(Q).
This function u is given by
+00
u(t) = z (f 1 un)my etbry, forallt >0,
n=0

the series being convergent in H} (). If we write u(t)(z) = u(t, z), we have

8 L&
=-) =3 )|u=0 in 2'((0,+00) x Q).
(8t 12,:,33?)“ in 2'((0,+00) x Q)
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e function u is called the solution of the heat problem on 2 with
ini data f and Dirichlet conditions.

Pmﬁf. Suppose u satisfies the conditions of the statement. Then

2 (Iu(e)lzz)? = 2Re(u'(8)| u(0)) . = ~2(lu@ly)",

by Rroposition 2.1. It follows that the function ¢ — (J|u(t)||z2)? is decreas-
ing jnd, in particular, that

lu@llez < |fllL2 for all ¢ > 0.
Congequently, if f = 0, we have u(t) = O for all ¢ > 0, which proves

eness.
ing existence, it suffices to check that the given formula is good.
id is easy if we take into account that u, < po < 0 for every n. O

- of'(t) = Au(t) for allt € R.
0) = f and u'(0) = g.

sequences (Iln(f|“n)m)neN and (vV=pn (9|un)Hy)nen lie in £2,

-Z(COB(V t)(flun)m+‘/——8m(\/—t)(glun)uo)

n=0
for @l t € R, the series being convergent in HJ(S2).

. Let u satisfy the conditions of the statement. By Proposition 2.1,

2 (I @)122)" = 2Re(u"(8) | w'(2))
= —2Re(u(t) |¥/(t)) 5 = ——(llu(t)"m) :

It foows that the expression (||u’ ®)llL2)? + (Ilu(t)ll #3)? does not depend
on t.JIn particular, if f = g =0, we have u(t) =0 fort e R, which proves
uniq@eness.

The proof of existence, as in the previous example, is straightforward. O
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Here again, if we write u(t)(z) = u(t, ), we conclude that, under the as-

sumptions made in the existence part of Proposition 2.8, the given function
u is a solution in 2’(R x R?) of the equation

(%—i%)u=0.

i=1 2

Note that ( v 2—“") is the sequence of fundamental frequencies of the
wave u. * /neN

FEzercises
Unless otherwise stated, 2 is a bounded open subset of RY.
1. A generalized Dirichlet problem

a. Suppose f,g,...,9a are elements of L?(f2). Show that there exists
a unique element u in H}(R) such that

d
Au=f+)_ Djg;.

=1

Show that, in addition,

d
|||V“|||La(n) < ClfllLao) + Z llg;ll 2¢)»

=1

where C is the constant that appears in the Poincaré inequality for
the open set Q.

b. Suppose f € L?(R2) and g € H'(f). Show that there exists a unique
element u of H'(f) such that

Au=f and u-g€ Hy(R).
Show that, in addition,
“lv"‘”l[,?(n) < C"!"L’(ﬂ) + 2IIIVQI|IL2(Q)°

2. The Sturm-Liouville problem. All functions considered here will be real-
valued. Let a,b € R be such that a < b and let p and g be elements
of L*°((a,b)). Suppose that ¢ > 0 and that there exists a real number
a > 0 such that p > a.

a. Show that, for every f € L?((a,})), the equation
(') +qu=f (*)
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has a unique solution u in H}((a,b)), and that this solution mini-
mizes over H}((a,b)) the functional

=3[ ovtrenEe- [ e

Hint. Apply the Lax-Milgram Theorem (Exercise 1 on page 116) to
the space HJ((a,b)) and to the bilinear form

a(u,v) = (pu' |v') L2 + (qu|v) 2. (++)

. Show that the linear operator T from H{((a,b)) to H}((a,b)) that

maps each f € H}((a,b)) to the corresponding solution of (*) is a
compact, injective, positive selfadjoint operator on the Hilbert space
(H{((a,b)), a), where a is defined by (*x).

. Show that there exists a Hilbert basis (en)nen of (H}((a, b)), a) and

an increasing sequence (A, )nen of positive real numbers with limit
+o00 such that

—(pel)' + gen = Ape, foralln e N.
Show that the family (v, e,,)neN is a Hilbert basis for L2((a,b)).

. Show that, if p € C'([a,b]) and g € C([a, b]), we have e, € C?([a, b])

for every n € N. Compare Exercise 13 on page 224.

. Let ¥, be the set of p-dimensional subspaces of Hj((a, b)). Show that

b
(pf? +qf?) dz
An = min max =2 5
we’/n'&l IGW\{O} / fzd;r
a

(see Exercise 11 on page 247). Deduce that, if a, 3, <, and ¢ are real
numbers satisfying 0 < a < p < fand 0 < v < g < §, we have, for
every n € N,

7+a("‘"—“’)2 < < 5+5(M)2.

b—a b-a
Show that, in particular,
b
/ (pf"? +qf*)dz

0= lmin 5
feHg((a,b))\{0} /fzd:c
a

and that this generalizes Wirtinger’s inequality (Exercise 16d on
page 137).
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3. A more general elliptic problem of order 2. Take elements a; ; (for 1 <
i,j < d) and c in LP(RN), with c < 0. Let £ be the differential operator

defined by
8

7]
Lu= Z —(au—u) + cu.
1Sig<d oz; Oz;

Suppose that there exists a > 0 such that, for almost every z € Q,
Z a:5(2)&:&; > alél* for all £ € R?.

1<i,3<d

(In this case the operator .# is said to be strongly elliptic or uni-
formly elliptic.) We now restrict ourselves to real-valued functions.
a. Show that .Z is well defined as a linear operator from H}(Q) to
2'(Q).
b. Show that, for every f € L3(R), there exists a unique u € Hj ()
such that Lu = f.
Hint. Apply the Lax-Milgram Theorem (Exercise 1 on page 116) to
the space Hj(2) and to the bilinear form

a(v,w)= Y. (as,;Djv| Daw)ps — (cv|w)pa. (%)
1<i,5<d

c. Show that, if the matrix (a; ;(z)):; is symmetric, the solution u €
H}(Q) of the equation £u = f is characterized by a certain mini-
mization property.

d. Suppose that the matrix (a; j(z))s,; is symmetric. Show that the op-
erator T on H} () that maps f € H}(R) to the element Tf = u €
H}(Q) such that —%u = f is a compact, injective, positive selfad-
joint operator on the Hilbert space (H3(f2), a), where a is defined
by (#). Derive the existence of a Hilbert basis (un)nen of (H§ (), a)
and of a decreasing sequence (ftn)nen of negative real numbers with
limit —oo such that ZLu, = pnu, for every n € N. Deduce, in par-
ticular, that Propositions 2.6, 2.7, and 2.8 extend immediately to the
case where the Laplacian is replaced by the operator £ and (- |- )
is replaced by a.

e. Let ¥, be the set of p-dimensional subspaces of Hj(f). Show that,
for every n € N,

a(f, f)

Wlén';gﬂ few\{o0} "f"%z
(see Exercise 11 on page 247). Deduce that
(—n) 2 a(—pn(R)) foralln €N,

where (1n(2))nen is the sequence of eigenvalues of the Dirichlet
Laplacian on Q.

—Pn =



372 10. The Laplacian on an Open Set

4. A mized problem. We maintain the hypotheses and notation of Exer-
cise 3. Take elements b; € L(2) and let b be the bilinear form on
H'(R) defined by

b(u,v) = a(w,0) + [ Eb‘(z)  (2)o(2) d.

t=1

If f € L*(N), we consider the following problem (P),: Determine an
element u € H}(R) such that

b(u,v) = /;f(z)v(z)dz for all v € H}().

a. Interpret (P); as a partial differential problem in H}(Q).
b. i. Show that, for any £ > 0 and any real numbers a and 3,

af < ga + “ﬂz
ii. Derive the existence of a real number B > 0 such that, for every
€>0and u € H}(Q),
Be
/ S bia) 2 (2)u(e)de 2~ [IVull}aay — 5 N0l

=1

c. Deduce from this that, if the diameter of 2 is small enough, the form
b is coercive in H}(S2), so the problem (P); has a unique solution
for every f € L3(Q).

(We make no assumptions on the diameter of 2 in the remainder of the

exercise.)

d. Show that there exists a constant Ag > 0 such that the bilinear form
defined by

(u,v) — b(u,v) + Ao /n u(z)v(z)dz

is coercive on H} ().
e. Take f € L?(Q2). Explain why there is a unique u € Hj(R) such that
for every v € H} (),

b(u,v) + Ao ./n u(z)v(z)dz = L f(z)v(z)dz.

Then prove that the operator T from L3(R2) to L?(2) defined by
Tf = u is compact.
f. Let E be the vector space of solutions of (P)o.
i. Show that E is finite-dimensional.
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ii. Show that (P); has a unique solution for every element f €
L*(Q) if and only if E = {0}.
5. Neumann boundary conditions in dimension 1. We restrict ourselves to
real-valued functions. Suppose that Q = (a, b).
a. Show that, for every f € L?(R), there exists a unique u € H'(f2)
such that

b b
f (W'')(z) da+ / (u)(z) dz = / f(@)v(z)dz for all v € H'(R).

Hint. Use the Riesz Theorem in the Hilbert space H!(R).
b. Show that u is the element of H'(f2) that minimizes the functional

b
5w =3 [+ N@de - [ 1o
c. Check that, in this case, u' € H!(R2) and

v +u=f

d. Deduce that, for every v € H'(Q),

b b
/ o' (2)v/(z) dz = w'(b)o(b) — w'(a)(a) — / " (z)v(z) dz
(you might use Exercise 14 on page 360); then deduce that
u'(a) =u'(b) =0.

e. Show that, for every function f € L3(f), there exists a unique func-
tion u € C*([a, b]) such that

—-u"+u=f, u(a)=u'(b)=0,

and that if, in addition, f € C((a,b)), then u € C?((a, b)).
8. A variational problem with obstacles. We restrict ourselves to real-valued
functions. Fix f € L?(R2) and let x be a function on € such that the set

C = {u€ H}() : u > x almost everywhere}

is nonempty.
a. Show that there exists a unique u € C minimizing over C the func-
tional J defined by

J(v) = %Ilvllﬁ,‘; +(f|v)L2 forallveC.
Show that u is also characterized by the following conditions:
ueC,

u-V(v—u)de-—/{(v—u)dx forallveC.
Q Q

Hint. Use the Lions-Stampacchia Theorem, Exercise 2 on page 117.
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b. Now suppose that x € C(R2), u € C(f2), and u satisfies (*). Show

that u satisfies
u€eC,
—Au + f is a positive distribution on 2, (**)
—Au+ f=00nw={u>x}
Hint. Prove first the following facts:
i. foeP(N)and 9 >0, thenu+peC.
ii. If ¢ € P(w), there exists n > 0 such that u + tp € C for every
t € (-nn).

. Suppose that u,x € C(f) and that, D}u € L*(Q) for every j €

{1,...,d}. Show that, if u satisfies (+*), then u satisfies (*).

. Suppose in this part that u and x belong to Cp(f2) and that u satisfies

(»+). Let ve C.
i. Show that

/ Vu(z) - V(v — u)*(z)dz > —-/ f(z)(v-u)t(z)dz
n a

(see Exercise 15 on page 360).
ii. Show that

/ Vu-V(u-—v)tdz = / Vu-V(u - v)*dz,
1] w

Lf(u—v)*h:Lj(u—v)*ﬁ.

Hint. For the first equality, use Exercise 11 on page 358.

iii. Forn > 1, let w, = (u — v — (1/n))*. Show that w, belongs to
H} () and that the support of wy, is contained in the set {u—x >
1/n}. Deduce that (wn)), € H;(w), then that (u~v), € Hj(w)
(see Exercise 4 on page 357).

iv. Deduce that

/“'Vu‘V(u—v)'*dx:—/‘;f(u—v)*dz.

v. Conclude from the preceding results that u satisfies (*).

. Suppose again that u and x belong to Co(2) and that u satisfies

(#+). Let v € C be such that —Av + f is a positive distribution
on . Show that v > u. (Therefore, under the assumptions stated,
u is also characterized as the smallest element v € C such that
-Av+£20)

Hint. Show that A(u — v) is a positive distribution on w and that
u—v < 0 on 8w in the sense of Exercise 19 on page 362. Then deduce
from this exercise that v > u on w. Conclude the proof.
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Let 2, and 2, be disjoint open sets in R? and put Q = Q; UQN,. De-
termine the eigenvalues (A, (2)) and the eigenfunctions of the Dirichlet
Laplacian on 2 as a function of the eigenvalues (A, (£21)), (An(22)) and
of the eigenfunctions of the Dirichlet Laplacian on 2, and ;.

. Let (un)nen be the Hilbert basis of H) () defined in Theorem 2.5, con-

sisting of eigenfunctions of the Dirichlet Laplacian. Let (tn)nen be the
corresponding sequence of eigenvalues. Denote by E; the fundamental
solution of the operator A* defined in Exercise 4 on page 313. We recall
that, if 2k > d + 1, E; belongs to £2*-4-1(R?). Moreover, we denote
by 4, the function u, extended to R? with the value 0 outside 9.

a. Show that, if TP denotes the restriction of (g )*Ej * i to 2, then

Ak(up - T7) =0

in 2'(Q).
b. Using the fact that A* is hypoelliptic, prove that u, € £2k-4-1(Q)
if 2k > d + 1. Deduce that u, € &(Q).
Let A¢ be the first eigenvalue of the Dirichlet Laplacian (that is, the
smallest eigenvalue in absolute value). Show that {/—1/)g is the best
possible constant C in the Poincaré inequality.
We retain the notation of Theorem 2.5.
a. Show that

1
lellZaay < —:\;"’P"ilg(n) for all p € Hy(Q)
and that equality takes place if and only if

Ap = Aop.

Hint. Use the Bessel equality in the space HJ}(2) with the basis

(¥n)nen and in L?(R2) with the basis (y/—fn tn)neN-
b. Let E be the \o-eigenspace of the Dirichlet Laplacian on Q:

E = {p € Hy() : Ap = doyp}.

Let Eg be the set of real-valued elements of E. Show that |p| € Eg
for every p € Eg.
Hint. Use Exercise 11e on page 359.

c. Recall from Exercise 8 that the elements of E belong to &(f2). Take
¢ € Eg and let z € Q be such that ¢(z) = 0. Show that, if p <
d(z, R4\Q), then

/ le(z - y)| do,(y) =0,

where o, is the surface measure on the sphere of center 0 and radius
p in R%. Deduce that ¢ = 0 on B(z, d(z, R*\Q)).
Hint. Show that A(|¢|) < 0 and use Exercise 3c on page 346.
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d. Suppose that  is connected. Show that a nonzero element of E
cannot vanish anywhere on . Deduce that E has dimension 1 and
that E is generated by a strictly positive function on .

Show that no eigenfunction of the Dirichlet Laplacian associated
with an eigenvalue other than Ay can have positive values every-
where.

e. What happens to the results of the previous question when 2 is not
connected? (You might use Exercise 7 for inspiration.)

An asymptotic estimation of the eigenvalues of the Dirichlet Laplacian.

If Q is a bounded open set in R, denote by (i (£2))nen the decreasing

sequence of eigenvalues of the Dirichlet Laplacian on 2, each eigen-

value appearing as many times as the dimension of the corresponding
eigenspace. Denote by A(f2) = {un(2)}nen the set of eigenvalues of the

Dirichlet Laplacian on 1.

a. Suppose first that Q2 = (0,1)%, where 0 < I < +o0o0.

i.

ii.

iii.

iv.

Show that, for every p € (N*)¢, the real number

n? 2 2
dp= -0k + e+ 5)

lies in A(R).
Hint. Show that the function

d/2 d

o= () (72

is an eigenfunction corresponding to A,.

Show that A(R2) = {'\p}pe(N’)‘-

Hint. Show that the family {up}pe(n-)« is a fundamental or-
thonormal family in L3(12).

Let r > 0. Show that the number of points in the ball B(0,r) in
R? whose coordinates belong to N* is at least wy((r — vd)*+)92-4
mzd at most wqr42-9, where wy is the volume of the unit ball in
R

Deduce that, for every n € N,

d d
wafl l
—_ - - < —_ .
24(1:‘/""" ﬁ) _n+15‘.;.,,(21r |p,.|)

. Deduce that there exist constants a, 8 > 0 such that, for every

n€N,
—an?/4 < pn(Q) < -Pn?4.

(More precisely, jin(§) ~ —4x21~3w; ¥/4p2/d,)
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b. Let Q and ' be bounded open sets in R%. Show that, if @ C ', we
have
lun ()] < |#a(Q)| for allm € N.

Hint. Use Exercise 11 on page 247 and the fact that, using the
same proof of Proposition 1.8, we can isometrically inject Hj(2)
into H} ().

c. Show that, for every bounded open set  in R?, there exist two
constants ag, Oa > 0 such that

—aan?? < p,(Q) < —PBan*? foralln e N.
12. Let u : (0, +00) — Hj () be the solution of the heat problem
u'(t) = Au(t) forallt>0

with initial condition lim;,ou(t) = f in H}(Q2) (where f € H}()).
Show that, for every t > 0,

)]y < 1N ge=t,

where )¢ is the first eigenvalue of the Dirichlet Laplacian (the smallest
eigenvalue in absolute value).
13. Heat semigroup.
a. Suppose f € H}(2) and t > 0. Denote by P, f the value at ¢ of the
solution of the heat problem on 2 with initial data f and Dirichlet
conditions. Show that

+00
Pf =) e (f|vn)Lavn
n=0

with v, = /=, u, (in the notation of Theorem 2.5), the series
being convergent in L?(12).

b. Deduce that, for every t > 0, P, extends to a continuous linear
operator from L2(R2) to L?(f2) of norm at most e*#°. We denote this
operator again by P,.

c. Show the following facts:

- P4y = PP, forallt,s >0.
- lim,_o+ P.f = f in L%(Q) for all f € L%(Q).

d. Show that, if f € L2(), the limit lim,_,q+ (P, f — f)/t exists in L2(Q)
if and only if the series 370 u2|(f|va)L2|? converges. Show that,
if this is the case,

lim
t—0+

_ +00
AL 2 3 il on)iavn = A,

n=0






Answers to the Exercises

Prologue

- Page 4, Ez. 1. a. No. b. Yes. c. Yes.
- Page 5, Ezx. 3a. D is the set of dyadic numbers:

D={k2™":neN,keN,0<k<2"}.

- Page 7, Ez. 9a-i. If (n,m) € I, then (n,m) + 1 = (n, m+1). The limit points
of I are the elements (n,0), for n € N°.

Page 11, Ex. 7. b. co. c. co.

Chapter 1
- Page 30, Ez. 1. With the notation of the proof of Proposition 1.1,

Nn
Pa(f) = f(@))pn.s-
1=1

Page 37, Ex. 2c-iii. Dn x f = Sn, Ko f = (X2, $))/n.
- Page 38, Ex. 3b-ii. Bno(1) = 1, Bo(X) = X, and Ba.(X?) = X2+ X(1-X)/n.
- Page 45, Ez. 1. [0,1).
- Page 46, Ez. 5b-ii. If m > n, then B(C™(|0, 1])) is not closed in C"([0, 1]).
- Page 47, Ez. Tb-iii. Uniqueness does not hold in general, as can be seen from
the example f(z,t) = \/l-ﬂ. for which ¢(t) = 0 and ¢(t) = t?/4 are solutions.
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Chapter 2

Page 54, Ez. 1. b and c. (0,1). d. Any infinite-dimensional Banach space: for
example, C([0, 1]).

Page 54, Ez. 5b. The space R[X] with || P|| = max_¢(o,1) | P(z)].

Another example: Q.

Page 79, Ez. 8¢c. No. Suppv = {(z,z) : = € R}.

Page 91, Ez. 7d. X = R, pn = 6,, the Dirac measure at n.

Chapter 3

Page 109, Ez. 2b. F* consists of the constant functions on [0, 1]. For f(z) =
e®, we have d(f,F) = e~ 1.

Page 109, Ez. 3. The orthogonal projection onto E, is f — 14, f.

Page 120, Ez. 10b. Set E = ¢2 and let (zn)nen be the sequence defined in
Section 3B on page 115. It converges to 0 weakly and (z,|zs) = 1 for all n.
Page 130, Ez. 3. a. A Hilbert basis for E4 is given by {ep}p¢a, with ep(z) =
e'Pr,

b. Ej = EZ\A-

c. The orthogonal projection onto E4 is given by f — 3> o 4(f | ep)ep.

Page 131, Ez. 4b. f — 37_o(i + 3)(f| P;) P;.

Page 132, Ez. To-i. (X*,L,) =0 if k < n; (X", La) = (-1)"n!.

Chapter 4

Page 148, Ez. 2¢c. If p = 00, foo(z) = 1. If p € [1,00),

5o(@) = (I=l(tog? 2] + 1)) .

Page 149, Ez. 3d. If K(z,y) = 1/(z+y), then ||T|| = n/sin(x/p’).

If K(z,y) = 1/ max(z,y), then |T|| =p +p'.

Page 152, Ex. 7d. No — for example, if X has a non £ -measurable subset and
the singletons of X are .#-measurable.

Page 155, Er. 14c. Example: &, = {[k2™",(k+1)2" "] : k€ {0,...,2" —1}}.
Page 159, Ez. 19b. If (Kn)nen is a sequence of compact sets exhausting X,
one can give L{,  the metric d(f,g) = 312 27" inf(||1k, (f—9)llp, 1).

Page 164, Ez. 4c. (€°(I))’ can be identified with the vector space spanned
by the fa.mnly {LF}MGAU)‘

Chapter 5

Page 195, Ez. 4b. ev(T) = {X; : i € N} and o(T) = ev(T).

Page 196, Ez. 9. If T is considered as an operator on LP(m), then ev(T) =
{A e K:m({y = A}) >0} and o(T) = o(Suppm).

Page 197, Ez. 10. r(T) = n/2.

Page 197, Ez. 11. ev(S) = o(S) = {0,1/5}.

Page 197, Ez. 12. ev(T) = o(T) = {0, (4 + V31)/60, (4 — v/31)/60}.

Page 198, Ez. 15b. r(T) = 0, o(T) = {0}.
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Page 200, Ez. 20f. Let E = €7, p € [1,00] and T defined by (T'v)(0) = 0 and,
for n € N*, (Tu)(n) = u(n — 1). Then ev(T) = ev(T) = 2,
aev(T) ={r e K : |\ =1}, o(T)={reK: |\ <1}
Page 208, Ezx. 2. In the example,
oT)={AeK:|A\|<1}u{reK:|]xA-1]<1}.

Page 211, Ez. 11e. Pf = |a|f, Uf = 1{axo)(a/|a|) f-
Page 212, Ez. 14. f(T)u = (f o p)u.

Chapter 6

Page 221, Ez. 2. c. No. d. ev(T'S) = {0} if there exists n > 1 such that
An = 0; otherwise ev(T'S) = @. o(TS) = {0}.
Page 223, Ez. 11. o(T) = {0} U {((7/2) + kx)~2 : k € N}.
Page 224, Ex. 12d. Yes.
Page 227, Ez. 14c. One can take u = Y- .\ 27 "0z, , where (Zn)nen is a dense
sequence in X.
Page 243, Ez. 4b. r(TT") = 4/=%, ||IT|| = 2/x.
Page 244, Ez. 6b. The family (fn)nez, with fa(z) = V2 cos((7/2 + 2n7)z).
Page 249, Ex. 12d.
i. An = —n?n%, po =1, pn = V2cos(nrz)if n > 1;
. A= —((7/2) + n7)?, on = V2cos(((7/2) + n7)z);
iii. An = —(n+ 1)?72, . = V2sin((n + 1)7z).

Chapter 7

Page 264, Ez. 2. If h € &™(R), then f € &' (R?).

Page 264, Ez. 8. The value of f at 0 is A"+*1(0)/(n + 1)!.

Page 266, Ex. 9. limn_ 00 01/n = 2?:1 u; D, .

Page 275, Ez. 2. The order of T is sup,cy |Pnl.

Page 275, Ez. 8. Distribution of order 2.

Page 277, Ez. 8. ([ x(z) dz)é.

Page 277, Ez. 9. a. 0. b. (2 [ ®(sinz/z) dz)§ = 6. c and d. 6.

Page 277, Ex. 10. In 2'(R"*) there is convergence for any sequence (@n)nen.
In 2'(R) there is convergence if and only if the series 37> ax/k converges.
Page 277, Ezx. 12. 6.

Page 278, Ex. 15b. No.

Page 279, Ez. 17. If Q = R and T, = n(8,;, — d), then, for every n € N*, T,
is of order 0 and the limit ¢’ is of order 1.

Page 284, Ex. 2. No. Example: ¢(z) = z in a neighborhood of 0 and T = §'.
Page 285, Ez. 4c. If SuppT = {z,,...,z.}, then

(T.o) =Y Y cpiD(z;),

)=1|pl<m

where m is an upper bound for the order of T.
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Chapter 8

- Page 291, Ez. 7. T = To + Zkez CirOkx.

- Page 303, Ex. 6. SuppT = {(z,z), z € R}; T has order 0 and (8T')/(9z:) +
(8T)/(0z2) = 0

- Page 303, Ez. 7c.

A v @) = (-ymmitp (L)) - (Z:Jl)aw).

- Page 303, Ez. 8. 6, + 6, — 26.

- Page 304, Ez. 9a. (0f/0z) = —1(z24,2<yz(z® + y*)~1/2
(8f/8y) = —1 242yl + %)~ V2

- Page 304, Ex. 11. a. Age = €2((8f/dx)? + (8f /8y)?)(e* + f2) /2.

d. [odp=2[¢(0,y)lyldy + 2 [ ¢(z,0)|z| dz.

- Page 306, Ez. 15b-iv. Let H be a hyperplane and i a normal unit vector. We
set H* ={z+ti:zrc Handt>0}and H” = {c+tii:z € H and t < 0}.
Take j € {1,...,d} and let n; be the j-th component of 7. Finally, denote by
o Lebesgue measure on H (defined by introducing an orthonormal basis for
H). Let f € L},.(R?%) be such that the restriction to R\ H is of class C' and
such that (8f/dz,) € LL.(R?). Suppose also that

fr@) =, Jim f(y) and f-(&) = lm ()
exist at every point x of H. Then
D,if = (L] +natse - £21e

- Page 306, Ez. 16. a. £6) = —j60~Y . b. -§/3. c. U = Az'/%, V = p(-z)"/2
e.T=-(6/3)+ A\/zY(z) + pv/—zY(—1x).
- Page 312, Ez. 1. E(z) = (e** — e™*)Y(x)/4.

- Page 313, Ez. 4b. C§ = (s42*~(k = D)!TT5., (2 - d))—l
- Page 314, Ez. 5. a-i. D, f = ((¢'(r)/r) = (¢(r)/r*))(z;/r),
D2f d (7‘)12+(m_";(ﬂ) (1_3%)‘ Af=¢”(7‘).

r r? r3 r

a-it. Af = (" (r))/r) — d7wp(0)86.
b. If A > 0, then @(r) = —(1/47) cos VAr + Csin VAr.

If A =0, then p(r) = —(1/4n) + Cr.

If A < 0, then ¢(r) = —(1/4n) cosh V=Ar + Csinh vV=Ar.
c. Ex(z) = —e"/:x"/(41rr).

Chapter 9

Page 322, Ez. 8. a. Ta(z) = T(\z). c. The degree of §*) is —1 — k. d. The
degree of pv(1l/z) is —1. The distribution fp(Y(z)/z) is not homogeneous.
e. T = \Y(x) + pY (-z). g. (z*Y(z)) ® 8’ has order 1 and degree 0.
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Page 323, Ez. 4. a. Y’ is a fundamental solution of Dy = Il,e, D
b. D?(zPY (z)) = p'Y (). lfp > 1, then 2P~ 'Y (z)/(p - 1)' is a fundamental
solution of D?. ¢. E = E, ® - -- ® Eq with E,(z;) = :cp’ Y(:n:‘,)/(pJ = 1)tif
p;>land E, =6 ifp, =0.
Page 323, Ez. 5. T has order 2.
- Page 335, Ex. 1. 6; %8y = 624y.
Page 335, Ez. 2. P(D)é » Q(D)é = (PQ)(D)s.
- Page 335, Ez. 5. b-i. Q(X) = P(X\—ay, ..., Xa—ag). b-ii. e“E.
c. H;':l en %Y (x,).
Page 336, Ezx. 6b. The sequence (P,).en converges to 6.

- Page 345, Ez. 2a. They are the distributions associated with functions of the
form f + g, where f is a convex function on R and g an affine function with
values in C.

- Page 348, Ex. 12.T = S” + S. T is locally integrable if and only if S € C'(R)
and §’ is absolutely continuous on R.

Chapter 10
- Page 371, Ez. 8c. J(u) = min,e y1(q) J(v), with

Jw) =43 Y (a;iD;v|Dyv)pa - j(ev|v)p2 + (f1v) 2.

1<1,<d

Page 372, Ez. {a. u € H}(2) and

ai‘(tja )u+cu Zb.—u=

- Page 375, Ex. 7. If u € H}(Q), then Au = Au on Q if and only if, for i = 1 and
i =2,u, = un, € Hy(%) satisfies Au; = Ay, on Q,. Thercfore {An(2)}nen =
{'\n(Ql)}nEN U {/\n(Q2)}neN~

- Page 376, Ex. 10e. Suppose for example that Q is the disjoint union of two
open sets ©; and 2, and let A\o(€21) and Ao(€22) be the first eigenvalue of
the Dirichlet Laplacian on Q) and Q2, respectively. If Ao(£21) = Ao(22) (for
example, if {2, is a translate of ), then Ao = Ao(21) and E has dimension 2.
If [Ao(£22)] > |Ao(S1)]| (for example, if d = 1 and Q = (0,2) U (3,4)), then
Ao = Ao(S%1), E has dimension 1 and every element of E vanishes on Q3.

1<1,)<d
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Index

abelian group, 85
absolutely continuons
function, 298
measure, 91
adjoint operator, 112
affine transformation, 85
Alexandroff compactification, 55
algebra
Banach, see Banach algebra
with nnity, 27
Allakhverdief’s Lemina, 246
almost separable o-algebra, 154
almost-zero sequence, 11
approximate eigenvalue, 200, 208
approximation
of unity, 174
property, 232
area of unit sphere, 76, 83
Ascoli Theorem, 231, 232
in C(X), for X compact, 44
in C(X), for X locally compact, 57
in Co(R), 46
in Co(X), for X locally compact, 56
atom, 152
axiom of choice, 134, 164, 238

Baire class, 59, 65, 66
Baire's Theorem, 22, 24, 54, 65, 187
Banach

algebra, 173, 179, 194

space, vi
Banach Alaoglu Theorem, 19, 115
Banach -Saks Theorem, 121, 356
Banach Steinhans Theorem, 22, 120,

167, 230, 231, 278, 285

basis of open sets, 10
Bergman kernel, 119
Berustein

operator, 223

polynomials, 37
Bessel

equality, 125

function, 250

inequality, 125
Bessel Parseval Theorem, 125
Bienaymé-Chebyshev inequality, 155
biorthogonal system, 138
bipolar, 110
Bolzano Weierstrass property, vi
Borel

o-algebra, 59

function, 59
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measure, 68
set, 124
Theorem, 265
Borel-Lebesgue property, vi
bounded
function, 52
Radon measure
complex, 89
real, 88
set, 18
variation
function of, 93, 95
normalized function of, 94
on [a, b, 93
on R, 93
Browder Theorem, 121

C™, see smooth
C¥(X),C(X), 27
CK(R),Co(R), 40
Cct(X), 53
C&(X),Co(X), 52

ce ([0, 1]), for @ > 0, 45

cH(X), 53
Ch (X),Cs(X), 52
ct(x), 53
CX¥(X),Cc(X), 52
canonical
euclidean space, 98
hermitian space, 98
injection, 260
Cantor set, 14
Cantor’s Theorem, 4
Cantor -Bendixon Theorem, 11
Cantor-Bernstein Theorem, 7
Cauchy semigroup, 182
Cauchy-Riemann operator, 311
Chasles’s relation, 21, 72
Chebyshev
inequality, see Bienaymé-Chebyshev
polynomials, 131
choice, axiom of, see axiom of choice
Choquet, game of, 22, 54
Clarkson Theorem, 158
class, Baire, 59, 65, 66
closed
convex hull, 18, 111, 121

graph theorem, vi
coercive bilinear form, 116
commutative

algebra with unity, 27

Banach algebra, 173
compact

abelian group, 85

metric space, 8

operator, 45, 213
complete, conditionally, 151
complex

Fourier coefficients, 128

Radon measure, 89

scalar product space, 97
conditional expectation

operator of, 166
conditionally complete lattice, 151
conjugate exponent, 144
conjugation, invariance under, 34
connected metric space, 5, 45
continuous

measure, 69

on CR(X), linear form, 87

one-parameter group of operators,

201

convergence

in C¢(X), 91

in measure, 155

narrow, 81

of distributions, 272

of test functions, 259

strong, 115, 166

uniform on compact sets, 57

vague, 80, 91
weak
in L?, 166, 168

in a Hilbert space, 114
of Radon measures, 91
weak-x, 166
convex
function, 122, 304
hull, closed, 18, 111, 121
set, 18, 105, 108, 121, 122
uniformly, 157
convolution
in £7(Z), 178
of distributions, 324, 327
of functions, 170, 171
of measures, 336, 337



semigroup, 181, 182
convolvable, 171
count measure, 99
countable, 1
Courant-Fischer formulas, 247
critical value, 249

2(0), 2, 258
2r (), 2™(92), 2k (), 258
2'™(9), 280
d’Alembert’s Theorem, 192
Daniell’s Theorem, 59, 67, 70, 77
diagonal procedure, 12-14, 16, 18, 57
differential operator, 307

elliptic, 371
differentiation of distributions, 292
Dini’s Lemma, 29, 30, 67
Dirac

measure, 68, 74, 79

sequence, 36, 174, 261

normal, 174

Dirichlet

condition, 363, 368

Laplacian, 365

problem, 363
distribution, 267

differentiation of, 292

division of -s, 289

extension of, 271

function, 74, 299

positive, 269

product of, 287

restriction of, 271

translate of, 332
distributions

convolution of, 324, 327
division of distributions, 289
domain of nullity, 281
dual, see topological dual
Dvoretzki-Rogers Theorem, 130

£™(N), £(N), 257
&'(9), 283
eigenfunction, 365
eigenspace, 189, 365
eigenvalue, 189
approximate, 200
of the Dirichlet Laplacian, 365
elliptic differential operator, 362, 371

Index 389

equicontinuity
at a point, 42
uniform, 42
equidistributed sequence, 39
equiintegrable, 156
ergodic theorem, 120
essential support, 145
euclidean
scalar product, 98
space, 98
Euler’s equation, 323
exhaust, 51
expectation, conditional, 165
extension
of a distribution, 271
theorem for continuous linear maps
with values in a Banach space, vi

Fejér’s Theorem, 36, 38
finite
mass, 70, 145
on compact sets, 68
part, 273, 274, 279
rank operator, 213
spectrum, 197
finitely additive, 163
first Baire class, 59, 65
Fourier coefficients, 128
Fréchet space, vi
Fredholm
Alternative Theorem, 239
equation, 239
F, set, 65
F,-measurable, 65
Fubini’s Theorem, vii, 112
function, see under qualifier
fundamental
family, 9
solution of a differential operator,
307
theorem of algebra, 192

Galerkin approximation, 116, 363
game of Choquet, 22
Gaussian
quadrature, 132
semigroup, 181
Gs set, 23, 65
gradient, 122
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Gram determinant/matrix, 139
Gram -Schmidt, see Schimidt
Green's
formula, 361
function, 225
group of operators, one-parameter, 200

Haar

measure, 85, 86

system, 134
Hahn -Banach Theorem, vi
Hankel operator, 229
Hardy'’s inequality, 177
harmonic

distribution, 332, 342

function, 342, 344, 345
heat

operator, 310

problem, 368

semigroup, 377
Heaviside function, 273, 293, 307, 323
Helly’s Theorem, 16
Hermite polynomials, 131
hermitian

operator, 113

scalar product, 98

space, 98
Hilbert

basis, 123

completion, 105, 118, 133

cube, 103

space, 101
Hilbert-Schmidt

norm, 141, 247

operator, 140, 216, 221, 247
Holder

function, 45, 214, 363

inequality, vi, 143
holomorphic function, 102
homogeneous distribution, 322
hypoelliptic operator, 341

ideals in C(X), 31
incompatible, 17
index of an eigenvalue, 233
infinite

countable set, 1

product of measures, 66, 84
infinity, 52, 55

initial segment, 17

Injection Theorem, Sobolev’s, 339
inner regular, 78

integration by parts, 94, 292
invariant metric, 23

invertible operator, 187

isolated point of the spectrum, 211
isometric spaces, 129

isometry, spectrum of, 196

kernel of an operator, 214, 216
Korovkin'’s Theorem, 37
Krein—-Rutman Theorem, 226
Kuratowski, 134

L(E,F),L(E), 18
L'(m), 58
2£'(m), 58
Lroc(n), 79
L%(A), 124
£%(m), 98
£ (m), £P(m), 143
P, 11
P (1), e8(1), 12
(1), 62.(1), 99, 145
L% (m), LP(m), 144
Llpoc(m)' Lroc' 159
Laguerre polynomials, 132
Laplace transform, 209
Laplacian, 307

with Dirichlet conditions, 365
lattice, 32, 58, 88

conditionally complete, 151
Lax -Milgram Theorem, 116, 370, 371
Lebesgue integral, vii
left shift, 195
Legendre

equation, 249

polynomial, 131, 250
Leibniz’s formula, 258, 294
length of a multiindex, 258
Lévy’s Theorem, 82
lexicographical order, 7
Lindel6f’s Theorem, 11
linear form

on C}(X), 87
Lions- Stampacchia Thcorem, 117
Lipschitz

constant, 32



function, 32 34, 43
locally

compact, 49

convex, vi

integrable, 63, 79
lower semicontinuity, 64, 77
Lusin Theorem, 78

m*(X), 69
mr(X), 80
Wt;(x ), 70
ME(X), MF(X), 89
m.(X), 92
mr(X), 87
!m? (X), 88
mass, 68
maximal orthonormal family, 134
maximum principle, 362
mean value
property, 344, 345
theorem, vii, 74, 193, 272, 319
theorem, second, 94
nieasure
convergence in, 155
of finite mass, 145
of the unit ball, 83
space, 63, 143
metric, invariant, 23
Meyers- Serrin Theorem, 357
Minkowski inequality, vi
modnlus of uniform continuity, 37
monotone class, 64
morphisin of Banach algebras, 179
multiindex, 258
multiplication, see product
Miintz’s Theorem, 139
mutnally singnlar measnre, 92

narrow convergence, 81
Neumann conditions, 373
Neumann, J. von, 159
normal
Dirac sequence, 174, 261
operator, 120, 208, 211, 234, 244
normalized function of bounded
variation, 94
nuclear, 247

obstacle problem, 373

Index

one-parameter group, 200
open

basis, 10

mapping theorem, vi, 187
operator, see under qualifier
operators, space of, 112
order of a distribution, 268
orthogonal

family, 123

projection, 107

projector, 107

space, 101

subsets, 101

vectors, 101
orthonormal family, 123

maximal, 134
outer regular, 78

parallelogram identity, 101
partition of unity

Cc™, 262

continuous, 53
Peano’s Theorem, 47
periodic function, 98, 124
piecing distributions together, 276
Poincaré inequality, 354, 357
Poisson equation, 348
polar, 110

decomposition, 211, 246
polynomial

Chebyshev, 131

Hermite, 131

Laguerre, 132

Legendre, 131
positive

distribution, 269

function, ix

linear form, 59, 69, 160

operator, 30, 195, 225, 226

Radon measure, 69, 71, 77

of finite mass, 70

selfadjoint, 114
pre-Hilbert space, 97
precompact, 14
primitive of a distribution, 298
principal value, 272, 291
probability measure, 66
product

distance, 13

391
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of distribution by function, 287
of measures, infinite, 66, 84
projection, 105, 120
spectrum of, 196
theorem, 105
Pythagorean Theorem, 101

Rademacher system, 136
Radon measure, 71, 144

bounded real, 88

complex, 89

positive, 69, 77

positive of finite mass, 70

real, 86
Radon-Nikodym Theorem, 165
Radon-Riesz Theorem, 69
rank, 213
real

distribution, 275

Radon measure, 86, 88

scalar product space, 97
regular

measure, 78

value, 189
regulated function, 5, 21
relatively compact set, 12
Rellich Theorem, 355
reproducing kernel, 118
resolvent

equation, 191

set, 189

value, 189
restriction of a distribution, 271
Riemann integral, 20, 71
Riemann-Lebesgue Lemma, 179
Riesz Representation Theorem, 111
Riesz Theorem, 49, 213
Riesz-Fischer Theorem, 145
right shift, 196, 202, 221

scalar
product, 97
product space, 97
semiproduct, 97
Schmidt
decomposition, 246
orthonormalization process, 128
Schur’s Lemma, 167
Schwarz inequality, 99, 101, 143

second
Baire class, 66
mean value theorem, 94
self-conjugate, 34
selfadjoint operator, 113, 234
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