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Preface

This book arose from a course taught for several years at the Univer-
sity of Evey- Val d'Essonne. It is meant primarily for graduate students
in mathematics. To make it into a useful tool, appropriate to their knowl-
edge level, prerequisites have been reduced to a minimum: essentially, basic
concepts of topology of metric spaces and in particular of normed spaces
(convergence of sequences, continuity, compactness, completeness), of "ab-
stract" integration theory with respect to a measure (especially Lebesgue
measure), and of differential calculus in several variables.

The book may also help more advanced students and researchers perfect
their knowledge of certain topics. The index and the relative independence
of the chapters should make this type of usage easy.

The important role played by exercises is one of the distinguishing fea-
tures of this work. The exercises are very numerous and written in detail,
with hints that should allow the reader to overcome any difficulty. Answers
that do not appear in the statements are collected at the end of the volume.

There are also many simple application exercises to test the reader's
understanding of the text, and exercises containing examples and coun-
terexamples, applications of the main results from the text, or digressions
to introduce new concepts and present important applications. Thus the
text and the exercises are intimately connected and complement each other.

Functional analysis is a vast domain, which we could not hope to cover
exhaustively, the more so since there are already excellent treatises on the
subject. Therefore we have tried to limit ourselves to results that do not
require advanced topological tools: all the material covered requires no
more than metric spaces and sequences. No recourse is made to topological
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vector spaces in general, or even to locally convex spaces or Frechet spaces.
The Baire and Banach-Steinhaus theorems are covered and used only in
some exercises. In particular, we have not included the "great" theorems of
functional analysis, such as the Open Mapping Theorem, the Closed Graph
Theorem, or the Hahn-Banach theorem. Similarly, Fourier transforms are
dealt with only superficially, in exercises. Our guiding idea has been to
limit the text proper to those results for which we could state significant
applications within reasonable limits.

This work is divided into a prologue and three parts.
The prologue gathers together fundamentals results about the use of

sequences and, more generally, of countability in analysis. It dwells on the
notion of separability and on the diagonal procedure for the extraction of
subsequences.

Part I is devoted to the description and main properties of fundamental
function spaces and their duals. It covers successively spaces of continuous
functions, functional integration theory (Daniell integration) and Radon
measures, Hilbert spaces and LP spaces.

Part II covers the theory of operators. We dwell particularly on spectral
properties and on the theory of compact operators. Operators not every-
where defined are not discussed.

Finally, Part III is an introduction to the theory of distributions (not in-
cluding Fourier transformation of distributions, which is nonetheless an im-
portant topic). Differentiation and convolution of distributions are studied
in a fair amount of detail. We introduce explicitly the notion of a fundamen-
tal solution of a differential operator, and give the classical examples and
their consequences. In particular, several regularity results, notably those
concerning the Sobolev spaces W 1'p(Rd), are stated and proved. Finally, in
the last chapter, we study the Laplace operator on a bounded subset of Rd:
the Dirichlet problem, spectra, etc. Numerous results from the preceding
chapters are used in Part III, showing their usefulness.
Prerequisites. We summarize here the main post-calculus concepts and re-
sults whose knowledge is assumed in this work.

- Topology of metric spaces: elementary notions: convergence of sequences,
lim sup and lim inf, continuity, compactness (in particular the Borel-
Lebesgue defining property and the Bolzano-Weierstrass property), and
completeness.

- Banach spaces: finite-dimensional normed spaces, absolute convergence
of series, the extension theorem for continuous linear maps with values
in a Banach space.

- Measure theory: measure spaces, construction of the integral, the Mono-
tone Convergence and Dominated Convergence Theorems, the definition
and elementary properties of LP spaces (particularly the Holder and
Minkowski inequalities, completeness of LP, the fact that convergence
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of a sequence in LP implies the convergence of a subsequence almost
everywhere), Fubini's Theorem, the Lebesgue integral.

- Differential calculus: the derivative of a function with values in a Banach
space, the Mean Value Theorem.

These results can be found in the following references, among others: For
the topology and normed spaces, Chapters 3 and 5 of J. Dieudonne's Foun-
dations of Modern Analysis (Academic Press, 1960); for the integration
theory, Chapters 1, 2, 3, and 7 of W. Rudin's Real and Complex Analysis,
McGraw-Hill; for the differential calculus, Chapters 2 and 3 of H. Cartan's
Cours de calcul diferentiel (translated as Differential Calculus, Hermann).

We are thankful to Silvio Levy for his translation and for the opportunity
to correct here certain errors present in the French original.

We thankfully welcome remarks and suggestions from readers. Please send
them by email to hirsch@lami.univ-evey.fr or lacombe@lami.univ-evey.fr.

Francis Hirsch
Gilles Lacombe
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Notation

If A is a subset of X, we denote by A' the complement of A in X. If A C X
and B C X, we set A \ B = Aft Bc. The characteristic function of a subset
A of X is denoted by t A. It is defined by

la(x) 11 if x E A,
0 ifxfA.

N, Z, Q, and R represent the nonnegative integers, the integers, the
rationals, and the reals. If E is one of these sets, we write E* = E \ {0}.
We also write R+ = {x E R : x > 0}. If a E It we write a+ = max(O,a)
and a" = - mina, 0).

C denotes the complex numbers. As usual, if x E C, we denote by z the
complex conjugate of x, and by Re z and Im z the real and imaginary parts
of X.

If f is a function from a set X into R and if a E It, we write if > a}
{x E X : f (x) > a}. We define similarly the sets (f < a}, If > a},
if < a}, etc_

As usual, a number x E R is positive if x > 0, and negative if x < 0.
However, for the sake of brevity in certain statements, we adopt the con-
vention that a real-valued function f is positive if it takes only nonnegative
values (including zero), and we denote this fact by f > 0.

Let (X, d) be a metric apace. If A is a subset of X, we denote by A and
A the closure and interior of A. If x E X, we write 71x) for the set of
neighborhoods of x (that is, subsets of X whose interior contains x). We
set

B(x, r) = (y 6 X : d(x, y) < r), B(x, r) = {y E X : d(x, y) < r}.
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(We do not necessarily have B(x, r) = B(x, r), but this equality does hold
if, for example, X is a normed space with the associated metric.) If X is a
normed vector space with norm 11.11, the closed unit ball of X is

B(X) = {x E X : 1IxII < 1}.

When no ambiguity is possible, we write B instead of B(X). If A is a subset
of X, the diameter of A is

d(A) = sup d(x, y).
x,yE A

If A C X and B C X, the distance between A and B is

d(A, B) = inf d(x, y),
(x,y)EAxB

and d(x, A) = d({x}, A) for x E X.
We set K = l or C. All vector spaces are over one or the other K. If

E is a vector space and A is a subset of E, we denote by [A] the vector
subspace generated by A. If E is a vector space, A, B are subsets of E, and
)EK,wewriteA+B={x+y:xEA,yEBland AA={Ax:xEA}.

Lebesgue measure over Rd, considered as a measure on the Borel sets of
Rd, is denoted by Ad. We also use the notations dAd(x) = dx = dxl ... dxd.
We omit the dimension subscript d if there is no danger of confusion.

dIf x E R, the euclidean norm of x is denoted by jxi.



Prologue: Sequences

Sequences play a key role in analysis. In this preliminary chapter we collect
various relevant results about sequences.

1 Countability

This first section approaches sequences from a set-theoretical viewpoint.
A set X is countably infinite if there is a bijection cp from N onto X;

that is, if we can order X as a sequence:

X = {cp(O),cp(1),...,cp(n),...},

where W(n) # W(p) if n # p. The bijection V can also be denoted by means
of subscripts: W(n) = xn. In this case

X = {xo,xl) ...,xn,...} _ {xn}nEN

A set is countable if it is finite or countably infinite.

Examples

1. N is clearly countably infinite. So is Z: we can write Z as the sequence

Z = {0,1,-1,2,-2,3,-3,...,n,-n,...}.

Clearly, there can be no order-preserving bijection between N and Z.
2. The set N2 is countable. For we can establish a bijection V : N -3 N2

by setting, for every p > 0 and every n E [p(p+ 1)/2, (p+ 1) (p+ 2)/2),

p(p+1), p(p + 3)<p(n) = (n -
2 2

-ni.
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This complicated expression means simply that we are enumerating N2
by listing consecutively the finite sets Ap = {(q, r) E N2 : q+r = p}, each
in increasing order of the first coordinate:

N2 = { (0, ), (0,1) ), (0, 2), (1,1), (2, 0), (0, 3), (1, 2), ... }.

We see that explicitly writing down a bijection between N and a count-
able set X is often not at all illuminating. Fortunately, it is usually unnec-
essary as well, if the goal is to prove the countability of X. One generally
uses instead results such as the ones we are about to state.

Proposition 1.1 A nonempty set X is countable if and only if there is a
surjection from N onto X.

Proof. If X is countably infinite there is a bijection, and thus a surjection,
from N to X. If X is finite with n > 1 elements, there is a bijection
ep : { 1, ... , n} - X. This can be arbitrarily extended to a bijection from N
to X.

Conversely, suppose there is a surjection W : N -* X and that X is
infinite. Define recursively a sequence (np)p E N by setting no = 0 and

np+ = min{n : W(n) V {W(no), cp(n1 ), ... , cp(np)} } for p E N.

This sequence is well-defined because X is infinite; by construction, the
map p H W(np) is a bijection from N to X.

Corollary 1.2 If X is countable and there exists a surjection from X to
Y, then Y is countable.

Indeed, the composition of two surjections is surjective.

Corollary 1.3 Every subset of a countable set is countable.

Indeed, if Y C X, it is clear that there is a surjection from X to Y.

Corollary 1.4 If Y is countable and there exists an injection from X to
Y, then X is countable.

Proof. An injection f : X -+ Y defines a bijection from X to f(X). If
Y is countable, so is f (X), by the preceding corollary. Therefore X is
countable.

Corollary 1.5 A set X is countable if and only if there is an injection
fromX to N.

Another important result about the preservation of countability is this:

Proposition 1.6 If the sets X1, X2,..., X,, are countable, the Cartesian
product X = X1 X X2 x x Xn is countable.
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Proof. It is enough to prove the result for n = 2 and use induction. Suppose
that Xl and X2 are countable, and let fl, f2 be surjections from N to
X1, X2 (whose existence is given by Proposition 1.1). The map (nl,n2) H
(fl(nl), f2(n2)) is then a surjection from N2 to X. Since N2 is countable,
the proposition follows by Corollary 1.2.

We conclude with a result about countable unions of countable sets:

Proposition 1.7 Let (Xi)iE, be a family of countable sets, indexed by a
countable set I. The set X = U Xi is countable.

iEI

Proof. If, for each i E I, we take a surjection fi : N -p Xi, the map
f : I x N -* X defined by f (i, n) = fi(n) is a surjection. But I x N is
countable.

Note that a countable product of countable sets is not necessarily count-
able; see Example 5 below.

Examples and counterexamples

1. Q is countable. Indeed, the map f : Z x N* - Q defined by f (n, p) _
n/p is surjective and Z x N` is countable.

2. The sets Nn, Qn, Z", and (Q + iQ)n are countable (see Proposition
1.6).

3. R is not countable. For assume it were; then so would be the subset
[0, 1], that is, we would have [0, 11 = {xn}nEN We could then construct a
sequence of subintervals In = [an, bn] of [0, 1] satisfying these properties,
for ailnE N:

In+i C In, X. V In, d(In) = 3-n-1

The construction is a simple recursive one: for n = 0 we choose to
as one of the intervals [0, 1], [1, 1], subject to the condition xo V Io;

3 3
likewise, if In = [an, bn] has been constructed, we choose In+l as one
of the intervals [an, an +3-n-1], [bn - 3-n-1, bn], not containing xn+1
By construction, ' InEN In = {x}, where x is the common limit of the
increasing sequence (an) and of the decreasing sequence (bn). Clearly,
x E [0, 11, but x # xn for all n E N, which contradicts the assumption
that [0,1] = {xn}nEN
More generally, any complete space without an isolated point is un-
countable; see, for example, Exercise 6 on page 16.
Note also that if R were countable it would have Lebesgue measure zero,
which is not the case.

4. The set 9(N) of subsets of N is uncountable. Indeed, suppose there is
a bijection N -* 9(N), and set

A = {nEN:ncp(n)}E9(N).
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Since V is a surjection, A has at least one inverse image a under W. We
now see that a cannot be an element of A, since by the definition of A
this would imply a V V(a) = A, nor can it be an element of N \ A, since
this would imply a E V(a) and hence a E A. This contradiction proves
the desired result.
This same reasoning can be used to prove that, if X is any set, there can
be no surjection from X to .9(X). This is called Cantor's Theorem.

5. The set i ' = {0,1 IN of functions N - {0,1 } (sequences with values
in {O, 1}) is uncountable. Indeed, the map from .9(N) into `' that as-
sociates to each subset A of N the characteristic function 1A is clearly
bijective; its inverse is the map that associates to each function w : N -4
{0,1)thesubset AofNdefined byA={nEN:cp(n)=1}.
We remark that W, and thus also 9(N), is in bijection with R (see
Exercise 3 on the next page).

6. The set R \ Q of irrational numbers is uncountable; otherwise R would
be countable.

7. The set .91(N) of finite subsets of N is countable; indeed, we can define
a surjection f from {0} U UPEN NP (which is countable by Proposition
1.7) onto .f (N), by setting

f(0)=0 and f(n1,...,np)={n1,...,n9} forallpEN*.

8. The set Q[XJ of polynomials in one indeterminate over Q is countable,
because there is a surjective map from UPEN QP (which is countable
by Proposition 1.7) onto Q[XJ, defined by

f(Q1,...,gp) =q1 +q2X +...+gpXP-1.

We can show in an analogous way that the set Q [X 1, ... , of poly-
nomials in n indeterminates over Q is countable.

9. If .v0 is a family of nonempty, pairwise disjoint, open intervals in R,
then 0 is countable. Indeed, let cp be a bijection from N onto Q. For
J E W, let n(J) be the first integer n for which W(n) E J. The map
0 - N that associates n(J) to J is clearly injective, so 0 is countable
by Corollary 1.5.

Exercises

1. Which, if any, of the following sets are countable?
a. The set of sequences of integers.
b. The set of sequences of integers that are zero after a certain point.
c. The set of sequences of integers that are constant after a certain

point.
2. Let A be an infinite set and B a countable set. Prove that there is a

bijection between A and A U B.
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3. Let 5W = {0,1}N.

a. Let f : S ' -> [0,2] be the function defined by

+00

f(x) = _
rr xn

n=0

Prove that f is surjective and that every element of [0, 2] has at
most two inverse images under f . Find the set D of elements of 10, 2)
that have two inverse images under f ; prove that D and f -I (D) are
countably infinite.

b. Construct a bijection between `' and [0, 21, then a bijection between
`' and R.

4. Let X be a connected metric space that contains at least two points.
Prove that there exists an injection from [0, 1] into X. Deduce that X
is not countable.
Hint. Let x and y be distinct points of X. Prove, that, for every r E
[0, d(x, y)], the set

Sr = {t E X : d(x,t) = r}

is nonempty.
5. Let A be a subset of R such that, for every x E A, there exists n > 0

with (x, x + rl) fl A = 0. Prove that A is countable.
Hint. Let x and y be distinct points of A. Prove that, given tl, e > 0, if
the intervals (x, x + rl) and (y, y + e) do not intersect A, they do not
intersect one another.

6. Let f be an increasing function from I to R, where I is an open,
nonempty interval of R. Let S be the set of discontinuity points of
f . If x E I, denote by f (x+) and f (x-) the right and left limits off at
x (they exist since f is monotone).
a. Prove that S = {x E I : f (x_) < f (x+)}.
b. For X E S, write Iy = (f (x_), f (x+)). By considering the family

(I=)=ES, prove that S is countable.
c. Conversely, let S = {xn}nEN be a countable subset of I. Prove that

there exists an increasing function whose set of points of discontinu-
ity is exactly S.
Hint. Put f (x) = E+o 2-n 1ix +oo)(X).

7. More generally, a function on a nonempty, open interval I of R and
taking values in a normed space is said to be regulated if it has a left
and a right limit at each point of I. Let I be a regulated function from
ItoR.
a. Let J be a compact interval contained in I. For e > 0, write

JE = {x E J : max(If (x+) - f (x)I, If (x) - f(x-)I) > e}.
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Prove that JE has no cluster point.
Hint. Prove that at a cluster point of JE the function f cannot have
both a right and a left limit.

b. Deduce that Je is finite.
c. Deduce that the number of points x E I where the function f is

discontinuous is countable.
8. Let A and B be countable dense subsets of (0, 1). We want to construct

a strictly increasing bijection from A onto B.
a. Suppose first that A is the set

A = {p2-1:p,gE N*,p<2q}.
i. Prove that A is countable and that, if x is an element of A, there

exists a unique pair (p, q) of integers such that x = p2-q, with

q E N' and p < 2q odd.
ii. Write B = {x : n E N} and define the map f : A - B induc-

tively, as follows:
-Forq=1,setf(i)=xo.
- Suppose the values f(p2-'k) have been chosen for 1 < k < q

and 1 < p < 2q. We then define f (p2-q- 1), for p < 2q+I odd,
by setting f (p2-q- u) = x,,, where

rn=min{mEN:f\2q 1+i)<xm<i()}
(by convention, we have set f(0) = 0 and f(1) = 1).
Prove that f (x) is well-defined for all x E A; then prove that
f is a strictly increasing bijection from A onto B.

iii. Deduce from this the case of arbitrary A.
9. A bit of set theory

a. Let I be an infinite set. The goal of this exercise is to prove, using
the axiom of choice, that there exists a bijection from I to I x N.
Recall that a total order relation < on a set I is called a well-ordering
if every nonempty subset of I has a least element for the order <.
Recall also that every set can be well-ordered; this assertion, called
Zermelo's axiom, is equivalent to the axiom of choice. Let < be a
well-ordering on I. The least element of I is denoted by 0. If x E I,
denote by x + I the successor of x, that is, the element of I defined
by

x+1=min{yEI:y>x}.
Thus, every element of I, except possibly one, has a successor. A
nonzero element of I that is not the successor of an element of I is
called a limit element. If x is an element of I, we define (if possible)
an element x + n, for integer n, by inductively setting x + (n + 1) _
(x+n)+1.
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i. An example: suppose in this setting that I = N2 and that < is
the lexicographical order on N2:

(n, m) < (n', m') (n < n) or (n = n' and m < m').

Check that this is a well-ordering. If (n, m) E I, determine
(n, m) + 1. What are the limit elements of I?

ii. Let X E I. Prove that x can be written in a unique way as
x = x' + n, where n E N and x' is 0 or a limit element.

iii. Let i' be a bijection from N x N onto N. Define a map F from
I x N to I by F(x, m) = x' + cp(n, m), where x = x' + n is the
decomposition given in the preceding item. Prove that F is a
bijection.

b. Let X be a set and A a subset of X. Suppose there exists an injection
i : X -4 A. We wish to show that there is a bijection between X
and A.
i. A subset Z of X is said to be closed (with respect to i) if i(Z) C

Z. If Z is any subset of X, the closure 2 of Z is the smallest
closed subset of X containing Z. Prove that Z is well-defined for
every Z C X.

ii. Set Z = X \ A. Let : X -> X be the map defined by

O(x)
i(x) if x E Z,
x ifxEX\Z.

Prove that is a bijection from X onto A.
c. Cantor-Bernstein Theorem. Let X and Y be sets. Suppose there is

an injection f : X -4 Y and an injection g : Y -* X. Prove that
there is a bijection between X and Y. (Note that this result does
not require the axiom of choice.)
Hint. fog is an injection from Y to f (X), and the latter is a subset
of Y.

d. Let X and Y be sets. Suppose there is a surjection f : X -+ Y and
a surjection g : Y -i X. Prove that there is a bijection between X
and Y. (You can use the preceding result. Here it is necessary to use
the axiom of choice.)

e. Let I be an infinite set, let (Ji)iEJ be a family of pairwise disjoint
and nonempty countable sets, and set J = UiEI Ji. Prove that there
exists a bijection between I and J.

2 Separability

We consider here a type of "topological countability" property, called repa-
rability. A metric space (X, d) is called separable if it contains a countable
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dense subset; that is, if there is a sequence of points (x") of X such that

for all x E X and e > 0, there is n E N such that d(x", x) < e.

It is easy to check that this condition is satisfied if and only if every
nonempty open subset of X contains at least one point from the sequence
(x,,). Thus, the notion of separability is topological: it does not depend on
the metric d except insofar as d determines the family of open sets (the
topology) of X.

Examples

1. Every finite-dimensional normed space is separable. Recall that on a
finite-dimensional vector space, all norms are equivalent, that is, they
determine the same topology. This reduces the problem to that of R"
or C". But it is clear that Q' is dense in R', and that (Q + iQ)" is
dense in C".

2. Compact metric spaces

Proposition 2.1 Every compact metric space is separable.

Proof. If n is a strictly positive integer, the union of the balls B(x, n),
over x E X, covers X. By the Borel-Lebesgue property, X can be
covered by a finite number of such balls: X = 1 B (x , n) . It is
then clear that the set

D={xjn:nEN', 1<j<J,i}

is dense in X.

3. a-compact metric spaces. A metric space is said to be o-compact if it
is the union of a countable family of compact sets.
For example, every finite-dimensional normed space is a-compact. In-
deed, in such a space E any bounded closed set is compact, and E =
U"EN B(O, n). It will turn out later, as a consequence of the theorems of
Riesz (page 49) and of Baire (page 22) that infinite-dimensional Banach
spaces are no longer a-compact; nonetheless, they can be separable.

Proposition 2.2 Every or-compact metric space is separable.

This is an immediate consequence of Propositions 2.1 and 1.7.

Proposition 2.3 If X is a separable metric space and Y is a subset of
X, then Y is separable (in the induced metric).

Proof. Let (x") be a dense sequence in X. Set

V ={(n,p)ENxN':B(x",1/p)nY0 a}.
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For each (n, p) E `W, choose a point xn p of B(xn,1/p)f1Y. We show that the
family D = {xn,p, (n, p) E VI (which is certainly countable) is dense in Y.
To do this, choose x E Y and c > 0. Let p be an integer such that 1/p < e/2;
clearly there exists an integer n E N such that d(x, xn) < 1/p. But then
x E B(xn, l/p) fl Y; therefore (n,p) E V and d(x, xn,p) < 2/p < e.

Example. The set R \ Q of irrational numbers,, with the usual metric, is
separable. This can be seen either by applying the preceding proposition,
or b y observing that the set D = { q / : q E Q } is dense in R \ Q.

By reasoning as in Example 9 on page 4, one demonstrates the following
proposition:

Proposition 2.4 In a separable metric space, every family of pairwise
disjoint nonempty open sets is countable.

We will now restrict ourselves to the case of normed spaces. The metric
will always be the one induced by the norm.

A subset D of a normed vector space E is said to be fundamental if
it generates a dense subspace of E, that is, if, for every x E E and every
e > 0 there is a finite subset {x1,.. . , x,,} of D and scalars AI,.. .,A, E K
such that

Hz - J-1
Ajxj 11 < e.

Proposition 2.5 A normed space is separable if and only if it contains a
countable fundamental family of vectors.

Proof. The condition is certainly necessary, since a dense family of vectors
is fundamental. Conversely, let D be a countable fundamental family of
vectors in a normed space E. Let 9 be the set of linear combinations of
elements of D with coefficients in the field Q = Q (if K = R) or Q + iQ
(if K = C). Then 9 is dense in E, because its closure contains the closure
of the vector space generated by D, which is E. On the other hand, 9 is
countable, because it is the image of the countable set UnEN.(Qn x Dn)
under the map f defined by

n
f (A1i ..., An, xl, ... , xn) Ajxj.

J-1

Remark. Recall that in a normed space any finite-dimensional subspace is
closed, since it is complete. It follows that a family of vectors whose span
is finite-dimensional (in particular, a finite family) is fundamental if and
only if its span is the whole space.

A free and fundamental family of vectors in a normed space E is called
a topological basis for E.
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Proposition 2.6 A normed space is separable if and only if it has a count-
able topological basis.

Proof. The "if" part follows immediately from the preceding proposition.
To prove the converse, it is enough to consider an infinite-dimensional
normed space E. By the preceding proposition, E has a fundamental se-
quence (xn). Now define by induction

no=min{nEN:x,, j4 0}

and, for every p E N,

n,+i = min{n E N : x,, V

Since E is infinite-dimensional by assumption, the sequence (np) is well-
defined (see the preceding remark). By construction, the family (xn,)pEN
is free and generates the same subspace as (xn )nEN Therefore it is funda-
mental. 0

Exercises

1. Let X be a metric space. We say that a family of open sets (U1)iE1 of
X is a basis of open sets (or open basis) of X if, for every nonempty
open subset U of X and for every x E U, there exists i E I such that
xEU,CU.
a. Let V be an open basis of X. Prove that any open set U in X is the

union of the elements of °!l contained in U.
b. Prove that X is separable if and only if it has a countable open basis.

Hint. If (x,) is a dense sequence in X, the family

(B(xn, 1/(p+1)))n,PEN

is an open basis of X. Conversely, if (U,,) is an open basis of X, any
sequence (xn) with the property that xn E Un for every n is dense
in X.

2. Let X he a separable metric space.
a. Prove that there is an injection from X into R.

Hint. Let (Vn)nEN be a countable basis of open sets of X (see the
preceding exercise). Consider the map from X into Y(N) that takes
x E X to {rtEN:xEVn}.

b. Prove that there is an injection from the set ' / of open sets of X
into R.
Hint. Prove the injectivity of the map U -+ that associates
to each open set U in X the set {n E N : Vn C U}.

3. Let X be a separable metric space.
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a. Let f : X -- R be a function, and let M be the set of points of X
where f has a local extremum. Prove that f (M) is countable.
Hint. Let M+ be the set of points of X where f has a local maximum
and let 'W be a countable open basis of X (see Exercise 1). Prove
that there is an injection from f (M+) into V.

b. Prove that a continuous function f : R -* R that has a local ex-
tremum at every point is constant.

4. Lindelof's Theorem. Prove that a metric space X is separable if and
only if every open cover of X (that is, every family of open sets whose
union is X) has a countable subcover (that is, some countable subset of
the cover is still a cover).
Hint. "Only if": Let (Vn) be a countable basis of open sets of X (see
Exercise 1) and let (U;){EI be an open cover of X. Take n E N. If Vn is
contained in some U;, choose an element i(n) of I such that Vn C U1(n);
otherwise, choose i(n) E I arbitrarily. Prove that the family (Ui(n))nEN
covers X. For the converse, one can work as in the proof of Proposition
2.1.

5. Let X be a separable metric space and let V be an uncountable family
of open sets in X. Prove that there exists a point of X that belongs to
uncountably many elements of V.

6. Theorem of Cantor and Bendixon. Let X be a separable metric space.
Prove that there is a closed subset E of X, with no isolated points, and
a countable subset D of X such that X= E U D and E fl D = 0.
Hint. One can choose for E the set of points of X that have no countable
neighborhood.

7. Let p > 1 be a real number. Denote by Pp the set of complex sequences
a = (an) such that the series >2 Ian 1P converges. Give Pp the norm

r 1/p

Ilallp = 1 lamp)
nEN

Also, denote by P°O the set of bounded complex sequences, with the
norm

Ilall. = sup lank
nEN

Finally, denote by co the subset of P°O consisting of sequences that tend
to 0.
a. Prove that Pp and t' are Banach spaces.
b. What is the closure in P°O of the set of almost-zero sequences (those

that have only finitely many nonzero terms)?
c. What is the closure of Pp in P°O?
d. Prove that co, with the norm is a separable Banach space.
e. Prove that Pp is separable.
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f. Prove that 11 is not separable.
Hint. Check that {0,1 IN C P.°O and that, if a, Q are distinct elements
of {0,1}N, then Ila - $lloo = 1. Then use Proposition 2.4 and the
fact that {0,1}N is uncountable.

g. Prove that the set of convergent sequences, with the II . Iloo norm, is
a separable Banach space.

8. Let I be a set. If f : I - (0, +oo) is a map, denote by EiEI f (i) the
supremum of the set of all finite sums of the form E,EJ f (i), where
J C I is finite.
a. Prove that, if E E, f (i) < +oo, the set J = {i E I : f (i) : 0} is

countable.
Hint. Check that J = Un>o E, where, for each positive integer n,
we set En={iEI: f(i)>1/n}.

b. Let p > 1 be a real number. Denote by QP(I) the vector space con-
sisting of functions f : I -+ C such that EiE/ If (i)Ip < +00. We
define on tP(I) a map II . Ilp by setting

IlfIlp= (>f(i)P
iEl

)1/p

Prove that II . Ilp is a norm, for which IP(I) is a Banach space.
c. Prove that LP(I) is separable if and only if I is countable.

3 The Diagonal Procedure

In this section we introduce a method for passing to subsequences, called
the diagonal procedure, and present some of its applications. Recall that a
subsequence of a given sequence (xn)nEN is a sequence of the form (xn,, )kEN,
where (nk)kEN is a strictly increasing sequence of integers. Such a sequence
k H nk can also be considered as a strictly increasing function w : N - N.
The subsequence (xn,,) can then be written (xp(k))kEN Since the function
V is uniquely determined by its image A = W(N) (for n E N, the value of
W(n) is the (n + 1)-st term of A in the usual order of N), the subsequence
(X,p(k) )kEN is determined by the infinite set A; we can denote it by (xn)nEA
We will use all three notations in the sequel.

Theorem 3.1 Let (XP, dp)pEN be a sequence of metric spaces, and, for
every p E N, let (xn,p)nEN be a sequence in Xp. If, for every p E N, the set
{xn,p : n E N} is relatively compact in Xp, there exists a strictly increasing
function co : N -4 N such that for every p E N the sequence (xp(n),p)nEN
converges in Xp.

Recall that a subset Y of a metric space X is called relatively compact
in X if there exists a compact K of X such that Y C K, or, equivalently,
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if the closure of Y in X is compact. In terms of sequences, Y is relatively
compact if and only if every sequence in Y has a subsequence that converges
in X (though the limit may not be in Y).

The remarkable part of the theorem is that the function 'P that defines
the different subsequences does not depend on p.

Proof. Thanks to the assumption of relative compactness, one can induc-
tively construct a decreasing subsequence (A,,) of infinite subsets of N such
that, for every p E N, the sequence (xn,p)nEA, converges in Xp. The diag-
onal procedure consists in defining the map cp by setting

W(p) = the (p + 1)-st element of Ay.

Thus cp(p+ 1) is strictly greater than the (p+ 1)-st element of Ap+1, which
in turn is greater than the (p + 1)-st element of Ap, which is ap(p). Thus cp
is strictly increasing. Moreover, for every p E N the sequence (xpini,y)n>p
is a subsequence of the sequence (xn,p)nEAp, because, if n > p, we have
W(n) E A. c Ap. Therefore the sequence (x,,(n),p)nEN converges. O

Consider again a sequence (Xp, dp)pEN of metric spaces (where dp is the
metric on Xp). Put

X = fj XP;
pEN

recall that this product is the set of sequences x = (xp)pEN such that

xp E Xp for each p E N. It is easy to check that the expression

+00

d(x, y) = E 2_p min(dp(xp, yp), 1)
P=O

defines a metric d on X; this is called the product distance on X. For
this metric, a sequence (x')nEN of points in X converges to a point x E X
if and only if limn xp = xp for every p E N.

If the metric spaces (Xp, dp) are all equal to the same space (Y, d), we
write X = YN. Then X is the set of sequences in X, or, what is the same,
the set of maps from N into Y, with the metric of pointwise convergence.

One can then rephrase Theorem 3.1 as follows:

Corollary 3.2 (Tychonoff's Theorem) If (Xp)pEN is a sequence of com-
pact metric spaces and X = HpEN XP is the product space (with the product
distance), X is compact.

This follows immediately from the definition of the product metric, from
Theorem 3.1, and from the characterization of compact sets by the Boizano-
Weierstrass property.
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Example. The space '(= {0,1 }n, with the product distance

+m
d(x,y) = >2-nlxn -Yn1,

n=0

is compact. It is easy to see that the map 5 ' -+ (0, 1J defined by

+w
f(x) = 21: 3-n- -lxn

n=0

is a continuous injection, whose image is the Cantor set (which is therefore
homeomorphic to it').

Precompactness

We now give another application of the diagonal procedure. We start with a
definition. A subset A of a metric space is precompact if, for every e > 0,
there are finitely many subsets A1i A2, ... , An of A, each of diameter at
most e, such that A = U =1 A3 .

Remarks

1. Clearly, every precompact subset is bounded. The converse is false, as
can be seen from the example of the unit ball in an infinite-dimensional
normed vector space (compare Theorem 1.1 on page 49). Precompact
sets are also called totally bounded.

2. Unlike relative compactness, which is a relative property, precompact-
ness involves only the intrinsic (induced) metric of the subspace.

3. Unlike compactness, precompactness is not a topological notion. It de-
pends crucially on the metric; see Exercise 2 below, for example.

4. Each of the following two properties is equivalent to the precompactness
of a subset A of a metric space X:
- For every e > 0 there exist finitely many points x1i ... , xn of A such

that A C Uj=1 B(x3,e).
- For every e > 0 there exist finitely many points xl,... , xn of X such

that A C U 1 B(x3, e).

The proof is elementary.

Theorem 3.3 Let X be a metric space. Every relatively compact subset
of X is precompact. The converse is true if X is complete.

Proof. The first statement follows directly from the definitions, from the
Borel-Lebesgue property of compact sets, and from the fact that A C X
implies A C U:Ex B(x, e) for every e > 0.
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Now suppose that X is complete and that A C X is precompact. Let
(xn)fEN be a sequence of points in A. To prove that it has a convergent
subsequence, it is enough to find a Cauchy subsequence. For every p E N,
let Ap, ... , A be subsets of A of diameter at most 11(p+ 1) and covering
A. We will construct by induction a decreasing sequence (Bp)pEN of infinite
subsets of N such that, for every p E N, there is an integer j < Np for which
{xp}pEB, c AP.

Construction of Bo: since all terms of the sequence (xn)fEN (of which
there are infinitely many) are contained in A, which is the union of the
finitely many sets A°, ... , ANo, there is at least one of these sets, say A o,
containing infinitely many terms x,,. (This is the pigeonhole principle.) We
then set Bo= x,, E Aa}.

To construct Bp+l from Bp, the idea is the same: the terms of the sub-
sequence (xn)fEB, are all contained in the union of the finitely many sets
AP1, ... , AN 1

; therefore at least one of the sets contains infinitely many
terms of the subsequence. We define Bp+1 as the set of indices of these
terms.

Having constructed the Bp, we define a strictly increasing function Sp :
N -> N by setting

W(p) = the (p + 1)-st element of Bp.

Then, for every p E N and every integer n > p, we have W(n) E Bp. By the
construction of the Bp, we see that

d(xpinl, x,,,ln.l) <
p

+ 1 for all n, n' > p.

Thus the sequence (xw(n)) is a Cauchy sequence.

Exercises

1. Let (Xp, dp)pEN be a sequence of nonempty metric spaces, and let X be
the product space with the product metric.
a. Prove that (X, d) is separable if and only if each space (X,, dp) is

separable.
b. IfnEN,xEXandr>O,write

U(x, n, r) = {y E X : dp(xp, yp) < r for all p S n}

and define 9l={U(x,n,r):xEX,nEN,r>0}.
i. Show that all the sets U(x, n, r) are open in X.

ii. Take x E X and r > 0. Prove that if 0 < p < r/2, there exists
an integer n E N such that x E U(x, n, p) C B(x, r).

iii. Show that 0& is a basis of open sets of X (see Exercise 1 on
page 10).
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iv. Let D be a dense subset of (X, d). Prove that the set

IPID={U(x,n,l/q):xED,nEN,gEN'}

is a basis of open sets of X. Prove that, if D is infinite, there
exists a surjection from D onto TID.
Hint. When D is uncountable, one must use Exercise 9a on
page 6.

2. If x and y are real numbers, we write d(x, y) = Ix - yi and 5(x, y) _
iarctan x - arctan yi. Prove that b is a metric on R equivalent to the
usual metric d; that is, the two metrics define the same open sets. Show
that (R, 5) is precompact, but (R, d) is not.

3. Prove that every precompact metric space is separable.
4. Prove that a metric space X is precompact if and only if every sequence

of elements in X has a Cauchy subsequence.
5. Helly's Theorem. Let (f,,) be a sequence of increasing functions from a

nonempty interval I C R into R, such that for every x E I the sequence
(fn(x)) is bounded.
a. Prove that there is a subsequence (f,(n))nEN such that, for every

x E Q nI, the sequence (f,,(n)(x))fEN converges. For such values of
x, set g(x) = limn fo(n)(x).

b. Extend g to all of I by setting, for x E I \ Q,

g(x)=sup{g(y):yEQnIandy<x}.

Prove that g(x) is well-defined for all x E I and that the function g
is increasing on I.

c. Let C be the set of points of I where g is continuous. We know from
Exercise 6 on page 5 that the set D = I \ C is countable. Prove that,
for every x E C, the sequence (f,(n)(x)) converges toward g(x).
Hint. Let X E C. Prove that, if y, z E Q n I with y < x < z, we have

g(y) < lnm nf(f ,(n)(x)) < limsup(f ,(n)(x)) <_ 9(z)
n-+oo

d. Using the diagonal procedure again, prove that there exists a subse-
quence (f,,OO(n))) such that, for every xE I, the sequence (f,0(VO))(x))
converges.

6. a. Let X be a complete metric space, nonempty and with no isolated
points. We will show that X contains a subset that is homeomorphic
to the set ' = {O, 1}N with the product distance.

i. Let B be an open ball in X with radius r > 0. Prove that there
exist disjoint closed balls Bl and B2, of positive radii at most
r/2, and both contained in B.
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ii. Let Wo = UnEN {0,1}' be the set of finite sequences of Os and Is.
Let u = (UO3 ui, ... , un_ 1) E {0, 1}n and v = (vo, vi, ... , vm_1) E
{0,1 }'n be elements of 5i°o. We say that u is an initial segment
ofv ifn<mandu1=vi foralli<n. We say thatuandvare
incompatible if u is not an initial segment of v and v is not an
initial segment of u.
Prove that one can construct a map u ti Bu that associates to
every u E Wo a closed ball Bu of X, of positive radius, satisfying
these properties:
- If u is an initial segment of v, then By C Bu.
- If u and v are incompatible, Bu n B,, = 0.
- If u has length n, the radius of Bu is at most 2-n.
Hint. One can start by defining B(o) and B(i), then work by
induction on the length of the finite sequences: suppose the Bu
have been constructed for all sequences u of length at most n,
and give a procedure for constructing the Bu for sequences u of
length n + 1.

iii. If a E W, define the set

X. = U Bu.
uE` O

u an initial segment of a

(Naturally, we say that a finite sequence (uo,... , un_i) is an
initial segment of a if ui = ai for all i < n.) Prove that Xa
contains a single point, which we denote xa.

iv. Prove that the map x : a xa is a continuous (and even Lip-
schitz) injection from `C into X.

v. Deduce that W and x(') are homeomorphic.
b. Prove that every complete separable space is either countable or in

bijection with R. In particular, this is the case for every closed subset
of R.
Hint. One can use Exercise 2 on page 10, the Cantor-Bendixon The-
orem (Exercise 6 on page 11), Exercise 3 on page 5, and Exercise 9b
on page 7.

7. Prove that the space '6 = {0,1) N, with the product distance, is homeo-
morphic to `C x W.
Hint. One can show that the map

(xn)nEN -'> ((x2n)nEN, (x2n+1)nEN)

is a continuous bijection between SC and ' x W.
8. Let A be a subset of a normed vector space E. Prove that A is pre-

compact if and only if A is bounded and, for every e > 0, there exists
a finite-dimensional vector subspace Fe of E such that d(x, Fe) < e for
allzEA.
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9. Let E be a normed space.
a. Let A be a nonempty subset of E. Prove that there is a (unique)

smallest closed convex set containing A. This set is called the closed
convex hull of A, and we will denote it by E(A).

b. Let A be a precompact subset of E.
i. Set M = supXEA IIxII and, for every e > 0, define a subset of E,

Af={xEE:IIxii<Mand d(x,FE)<e},

where F. is a finite-dimensional vector space such that d(x, Fe) <
E for every x E A (see Exercise 8). Prove that, for every E > 0,
the set AE is a closed convex set containing A.

ii. Set Ao = n,<,<, A. Prove that the set Ao is convex, closed,
and precompact. (Use Exercise 8.)

iii. Deduce that E(A) is precompact.
c. Suppose that E is a Banach space. Prove that if A is a relatively

compact subset of E, then e(A) is compact.

4 Bounded Sequences of Continuous Linear Maps

We now use the denseness and separability results given earlier, together
with consequences of the diagonal procedure, to study bounded sequences
of continuous linear maps. We start with some notation.

Notation. Let E and F be normed vector spaces over the same field K.
We denote by L(E, F) the space of continuous linear maps from E to F.
In general, we use the same symbol II - II for the norms on E, on F and on
L(E, F). The latter norm assigns to T E L(E, F) the number

IITII = sup{IITxjj : x E E and IIxII S 1}.

Recall that, if F is a Banach space, so is L(E, F). We use also the following
notations: L(E) = L(E, E), and E' = L(E, K); we call E' the topological
dual of E.

Recall also that in a normed space E, a subset A is said to be bounded
if it is contained in a ball; that is, if the set of norms of elements of A is
bounded.

The first proposition deals with the case where F is a Banach space.

Proposition 4.1 Consider a normed space E, a fundamental family D
in E, and a Banach space F. Consider also a bounded sequence (Tn),,EN of
elements of L(E, F). If, for every x E D, the sequence (T,, x)nEN converges
in F, there exists an operator T E L(E, F) such that

lim Tnx = Tx for every x E E.
n i+oo
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Proof. Let M > 0 be such that IITnII < M for all n E N. It is clear
that the sequence (Tnx) converges for any element x of the vector space
[D] generated by D. Now take x E E and e > 0. Since D is a fundamental
family, there exists y E [D] such that IIx-yII <_ a/(3M). The sequence (Tny)
converges; therefore there is a positive integer N such that IITny - TpyII <-
e/3 for all n, p > N. By the triangle inequality we deduce that, for any
n,p> N,

IITnx - TpxII S IITnx - TnyII + IITn?/-TpyII +IITpy - TpxII < E.

Thus (Tnx) is a Cauchy sequence in F, and therefore convergent. For every
x E E we then set Tx = limn, Tnx. The map T thus defined is certainly
linear, and, since IITxII < MxII for all x E E, it is also continuous.

Corollary 4.2 (Banach-Alaoglu) Let E be a separable nonmed space.
For every bounded sequence (Tn)nEN in E', there are a subsequence (Tnw)kEN
and a continuous linear form T E E' such that

lim Tn,kx = Tx for all x E E.
k-oo

Warning: the sequence (Tn.) does not necessarily converge in E'; that
is, IITnx - TII does not in general tend toward 0.

Proof. Choose M > 0 such that IITnII < M for every n E N, and let (xp)pEN
be a dense sequence in E. For every positive integer p, we have

ITnxpl <_MIIxpII for allnEN.

Therefore the set {Tnxp}nEN is relatively compact in K. By Theorem 3.1,
there exists a subsequence (Tn,,) such that, for every p, the sequence of
images (Tn,,xp)kEN converges in K. Now apply Proposition 4.1.

This is not necessarily true if E is not separable; see, for example, Exer-
cise 3 below.

A weaker result than Proposition 4.1 holds when F is any normed space:

Proposition 4.3 Consider nonmed spaces E and F, a fundamental set
D in E, a bounded sequence (Tn) in L(E, F) and a map T E L(E, F). If
the sequence (Tnx) converges toward Tx for every point x E D, it does also
for every x E E.

Proof. By taking differences we can suppose that T = 0. Set

M = sup IITnII
nEN

and take x E E. For every y E [D], we have

IITxII <- MII x - yII + IITnyil.
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SinceTny -+0, we get limsup,,,,,. IITnxII <_ MIIx-yII This holds for every
y E [D], and [D] is dense in E; therefore

m IITnxII = 0.

Exercises

1. Consider normed spaces E and F, a bounded sequence (Tn)fEN in

L(E, F), and an element T E L(E, F). Prove that, if limner+oo Tnx =
Tx for every x E E, the limit is uniform on any compact subset of E.

2. Consider a normed space E, a Banach space F, and a bounded sequence
(Tn)nEN in L(E, F). Prove that the set of points x E E for which the
sequence (Tnx) converges is a closed vector subspace of E.

3. Consider the space E = e°O of Exercise 7 on page 11. Prove that the
sequence (Tn) of E' defined by Tn(x) = xn has no pointwise convergent
subsequence in E.

4. Let E be a separable normed vector space, and let (xp)pEN be a dense
sequence in E. Denote by B the unit ball of E', that is,

B = {T E E': IT(x)I:IIxii for all xE E}.

For T and S elements of B, we define the real number

+ao
d(T,S) _ >2-pmin(IT(xp) - S(xp)I, 1).

P=O

a. Prove that d is a metric on B. If (Tn) is a sequence of elements of B
and if T E B, prove that

d(Tn,T) -* 0 T,,(x) -> T(x) for all x E E.

b. Prove that the metric space (B, d) is compact.
5. Riemann integral of Banach-space valued functions. Let [a, b] be an in-

terval in R and let E be a Banach space. We want to define the integral
of a continuous function and, more generally, of a regulated function
from [a, b] into E.
a. Integral of staircase functions. A staircase function from [a, b] to E

is one f o r which there is a subdivision x0 = a < x1 < < x , = b
of [a, b] and vectors v1,.. . , vn_ 1 in E such that, for every i < n - 1
and every x E (xi, xi+i ), we have f (x) = vi. The integral of such a
function f over [a, b] is defined by

b n-1

I(f) = I f(x)dx = j(xi+1 - xi)vi
i=0
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We denote by 6 the vector space of all staircase functions on [a, b],
with the uniform norm: I[ f II- = SUNC[a b] I[ f (x)II. Check that I is
a continuous linear map from 6' to E, with norm b - a. Check also
that, if f E 4', Chasles's relation holds for arbitrary a, 0, ry E [a, b]:

J
A f(x) dx =

J ry f (x) dx +
J

R f(x) dx,

a a ry

where, by convention, we setjVjUifu>v.
b. Prove that a function from [a, b] to E is regulated (Exercise 7 on

page 5) if and only if it is the uniform limit of a sequence of staircase
functions.
Hint. "Only if" part: Let f be a regulated function from [a, b] to E,
and choose e > 0. Prove that there is a subdivision a = x0 < xl <

< xn = b of [a, b] such that, for every i and every x, y E (x{, x{+1),
we have I[ f (x) - f (y) [I < e. Deduce the existence of a staircase
function g such that 11f (x) - g(x) II < E for every x E [a, b].
"If" part: Since E is complete, f has a left limit at a point z if and
only if, for every e > 0, there exists rl > 0 such that II f (y) -f (z) II < E
for ally,zE(x-rl,x).

c. i. Let . b([a, b], E) be the space of bounded functions from [a, b]
into E, with the uniform norm: IIfII0 = SUPXE(a,b) IIf(x)II Prove
that . b([a, b], E) is a Banach space.

ii. Let .9 be the set of regulated functions from [a, b] into E. Prove
that .9 is a closed subspace of 9b([a,b], E). Thus, 9 with the
uniform norm is a Banach space.

d. Integral of a regulated function. Prove that I can be uniquely ex-
tended into a continuous linear map J on all of .9, of norm b - a.
(One can use the theorem of extension of Banach-space-valued con-
tinuous linear maps.) For every f E 9, the image of f under the
map is of course denoted by

rb
J(f) = J f(x)dx.

a

e. Check that Chasles's relation (see item (a)) holds for all regulated
functions. Check also that, if F is a continuous linear form on E and
if f E .., then F o f is a regulated function from [a, b] into K, and
that

b (f (x)) dx.F(J(f)) = fa F
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f. Prove that, for every function f in .9,

DLt f(x)dxll
<

jbllf
(x)II dx.

g. If A = (xo, ... , x,,) is a subdivision of [a, b], and if f = ({o, ... {n-1)
is such that 1;1 E [xj, xj+I I for 0 < j < n - 1, we set

n-1

S(A, )(f)
=

EMi)(xj+I -x,)
J=O

Prove that, if (OP, P) is a sequence of subdivisions whose maximal
step size tends to 0, and if f is any function in .9, then S(O&, l:P) (f )
converges to fa f (x) dx.
Hint. One can start with the case of a staircase function f, then use
Proposition 4.3.

6. The Baire and Banach-Steinhaus Theorems. Let X be any metric space.
Two players, Pierre and Paul, play the following "game of Choquet":
Pierre chooses a nonempty open set UI in X, then Paul chooses a
nonempty open set VI inside U1, then Pierre chooses a nonempty open
set U2 inside V1, and so on. At the end of the game, the two players
have defined two decreasing sequences (Un) and (Vn) of nonempty open
sets such that

UnVn?UU+i for every nEN.

Note that I 'nEN Un = ' InEN Vn; we denote this set by U. Pierre wins
if U is empty, and Paul wins if U is nonempty. We say that one of the
players has a winning strategy if he has a method that allows him to
win whatever his opponent does. Therefore, the two players cannot both
have a winning strategy; a priori, it is possible that neither does.
a. Prove that, if X has a nonempty open set 0 that is a countable

union of closed sets Fn with empty interior, Pierre was a winning
strategy.
Hint. Pierre starts with UI = 0 and responds to each choice Vn of
Paul's with Vn \ Fn.

b. Prove that, if X is complete, Paul has a winning strategy.
Hint. If (Fn) is a decreasing sequence of closed sets in X whose
diameter tends to 0, the intersection of the Fn is nonempty.

c. Application: Baire's Theorem. Let X be a complete space. Prove
that an open set of X cannot be the union of a countable family of
closed sets with empty interior.

d. Corollary: The Banach-Steinhaus Theorem. Consider a Banach space
E, a normed vector space F, and a family (Tn)nEN of elements of
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L(E, F) such that, for every x E E, the set {IITT(x)II : n E N} is
bounded. Prove that { IITn II : n E N} is bounded.
Hint. Show that there exists k E N such that the set

Fk={XEE:IITf(x)II <kforall nEN}

has nonempty interior, and therefore contains some open bail B(a, r);
then show that, for every n E N,

IITnII <- 1 { sup IITm(a)II + k
r mEN

e. Prove that an infinite-dimensional Banach space cannot have a count-
able generating set. For example, R[XJ cannot be made into a Bar
nach space.
Hint. If this were not the case, the space would be a countable union
of closed sets with empty interiors.

f. Let (Tn) be a sequence of continuous linear operators from a Banach
space E into a normed vector space F, having the property that,
for every x E E, the sequence (Tn(x)) converges. Prove that the
map T : E - F defined by T(x) = lim, Tn(x) is linear and
continuous.

g. 1. Let f be a function from R to R. Prove that the set of points
where f is continuous is a G,5-set in R, that is, a countable in-
tersection of open sets in R.
Hint. Define, for each n E N', the set Cn consisting of points
x E R for which there exists an open set V containing x and
such that If (y) - f (z) I < 1/n for all y, z E V. Prove that the sets
Cn are open.

Ii. Prove that Q is not a G6 in R.
Hint. If it were, R would be a countable union of closed sets with
empty interior.

iii. Prove that there is no function from R to R that is continuous
at every point of Q and discontinuous everywhere else.

iv. Prove that there exist functions from R to R that are discontin-
uous at every point of Q and continuous everywhere else.
Hint. Use Exercise 6c on page 5. More directly, if {xn}nEN is an
enumeration of Q, the function f defined by f (x) = 0 if x ¢ Q
and f (xn) = 1/(n+1) for every n E N has the desired properties.

7. An invariant metric on a vector space E is a metric d on E such that

d(x, y) = d(x-y, 0) for all x, y E E.

If d is an invariant metric on E, we set IxI = d(x, 0) for x E E. (Note
that the map I I thus defined is not necessarily a norm on E.) A vector
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space with an invariant metric d is said to have Property (F) if the
metric space (E, d) is complete and, for every k E K, the map x H kx
is continuous from E to E. For example, every Banach space with the
norm-induced metric has Property (F).
Let E be a vector space having an invariant metric with Property (F).
Let F be a normed vector space, with norm II - II

a. Let H be a family of continuous linear maps from E to F such that,
for every x E E, the set {T (x) }TE H is bounded. Prove that, for every
e > 0, there exists 6 > 0 such that

IIT(x)II<e for allxEEwithlxl<bandforallTEH;

in other words, limo T(x) = 0 uniformly in T E H.
Hint. Take e > 0 and, for each k E N*, set

Fk={xEE:IIT(x/k)II<efor all TEH}.

Using Baire's Theorem (Exercise 6), prove that at least one of the
Fk, say Fka, contains an open ball B(a, r). Then use the fact that Fko
is a symmetric convex set (symmetry here means that -Fko = F )
and the continuity of the map x'-+ 2kox.

b. Let be a sequence of continuous linear maps from E to F such
that, for every x E E, the sequence converges. Prove that
the map from E to F defined by

T(x) = lim
fl -4+00

is linear and continuous. (This generalizes Exercise 6f above.)
We will be able to apply this result to sequences in 911,(X) (Exercise
10 on page 92) or in LP, for 1 < p < oo (Exercise 12 on page 168).
See also Exercises 1 on page 147 and 1 on page 163.
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The Space of Continuous Functions
on a Compact Set

Introduction and Notation

We will consider throughout this chapter a compact, nonempty metric space
(X, d), and we will study the K-vector space (for K = R, C) of continu-
ous functions from X to K, which we denote by CK (X ), or simply C(X)
when no confusion is likely. We give C(X) a commutative multiplication
operation: for f, g E C(X) the product f g is defined by

(fg)(x) = f (x)g(x) for all x E X.

The constant function 1 is the unity element for this multiplication. We
say that C(X) is a commutative algebra with unity.

The space CR (X) also has an order relation < , defined by

f < g f (x) < g(x) for all x E X;

it is only a partial order, of course. For any f, g E CR (X), there exist a
least upper bound and a greatest lower bound for f and g:

sup(f, g) (x) = max(f (x), g(x))
for all x E X.

inf(f,g)(x) = min(f(x),g(x))

That the functions thus defined are continuous can be seen, for example,
from the following equalities:

sup(f,9) = 2(f +9+ If -9I)+ inf(f,9) = i(f +g- If -9I) (*)
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We denote by C+(X) the set of continuous functions from X to R+. If
f E CR (X), we write f + = sup(f, 0) and f - = - inf (f, 0) (note that we
use the same symbol for a constant function and its value). We therefore
have

f+(x) = (f(x))+, f -W = (f(x)) , f = f+ -f-, IfI =f+ +f-.

1 Generalities

We give C(X) the uniform norm over X, denoted by II ' II and defined by

IIf1I = maXx If(x)I

The corresponding topology is called the topology of uniform conver-
gence, since a sequence in C(X) converges to f E C(X) in this norm if
and only if it converges uniformly to f on X.

Clearly, IlfgII <- I l f 1 1 IIgII and 1 1 1 1 1
111 = IIfII for all f,g E C(X).

Proposition 1.1 C(X) is a separable Banach space.

Proof. The reader can check that C(X) is a Banach space. We show sepa-
rability. Since X is precompact, for every n E N' there exist finitely many
points xi , ... , xN" of X such that X = UN "1 B(xn,1/n). We therefore set,
for j < Nn,

_ (1/((n1 - d(x, xn))
+

Vn,jW () Ek ll /n - d(x, xk))+

From the choice of the points xjn, we see that the denominator does not
vanish for any x E X. Therefore, Wn,j E C+(X),

N"

EVn,j = 1, and cOn,1(x) = 0 if d(x,xjn) > 1/n.
j=1

The set {tpn,j : n E N' and 1 < j < Nn} is certainly countable. We will
show that it is a fundamental family in C(X); this suffices by Proposi-
tion 2.5 on page 9.

Take f E C(X) and e > 0. Since X is compact, the function f is uni-
formly continuous on X. Take 'i > 0 such that, for all x, y E X with
d(x, y) < ri, we have If (x) - f (y) I < e. Let n E N be such that 1/n < ri.
For every x E X,

N"

f(x) - I: f(xj)cn,j(x)

N"

>(f (x) - f (xj))cn,j(x)
j=1 I Ij=1

N.

1 If(s) - f (xj) I Vn,j (x)'
j=1
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Since tpn,j vanishes outside the ball B(x,, I/n), and so outside B(x,,17), we
see that, for every x E X,

1f (x) - f (xi) I V.,7 (x) < EWn,7 (x)'

Thus, for every x E X,

N. N
f (x) - E f (xj) Wnj (x) I 5 e E Wn,i (x) = e.

?=1 J=1

It follows that N
Il f - E f(x; )Wn,j D << E,

which concludes the proof. 0
We recall a sufficient criterion for uniform convergence (and therefore

convergence in C(X)) that is often convenient:

Proposition 1.2 (Dini's Lemma) Let (fn)nEN be an increasing sequence
in CR(X) (this means that fn < fn+l for all n). If the sequence (fn) con-
verges pointwise to a function f E C(X ), it also converges uniformly to f.

Proof. Take e > 0. For every n E N we set Q. = {x E X : fn(x) >
f (x) - e}. Clearly, (On) is an increasing sequence of open subsets in X
whose union is X. By the Borel-Lebesgue property, there is an integer N
such that ON = X, so that fN(x) > f (x) - e for all x E X. Thus, for every
integer n > N, we have f (x) - e < fn(x) < f (x) for all x E X. This proves
that Ilf - f.11 <- e. 0
Remarks

1. Clearly, one can replace "increasing" by "decreasing" in the statement
of Dini's Lemma.

2. The assumption that the pointwise limit f is continuous is essential. For
example, the decreasing sequence (fn) of continuous functions on (0,1]
given by fn(x) = x" converges pointwise, but not uniformly, on [0,1].

Example. Define by induction on n a sequence of polynomial functions
(Pn) on [-1, 1], as follows:

PO=0,
Pn+i(x) = Pn(x) + 2(x2 -- PP(x)) for all n E N.

We check that, for every n E N, we have 0 < Pn(x) < Pn+1(x) < IxI for all
x E [-1, 1]. For n = 0 this is clear; suppose by induction that it is true for
some n > 0. Then, for all x E [-1,1],

0 <Pn+1(x) <_ Pn+2(x) = IxI-(IxI-Pn+1(x))(I-I(IxI+Pn+i(x))) S IxI.
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Then the sequence (Pn)nEN is increasing and bounded, and therefore it
converges pointwise to a function f. For X E [-1, 1], we see that 0 <
f (x) < IxI and f2(x) = x2, by taking to the limit the defining recursive
relation of the P. Therefore f (x) = IxI, and Dini's Lemma applies. This
proves that the polynomial sequence (Pn) converges uniformly to IxI on
[-1,1).

We will generalize this result in the next section, demonstrating that
every continuous function in [-1, 1J is the uniform limit of a sequence of
polynomial functions (Weierstrass's Theorem).

Exercises

1. Show that there exists a sequence (Pf)fEN in L(C(X)) such that, for
all n E N, the map Pn has finite rank (that is, P,,(C(X)) is a finite-
dimensional vector space), has norm 1, is positive (that is, Pn (f) > 0
for all f > 0), and satisfies

lim Pn f = f for all f E C(X ).
n4+oo

2. Let p be a bounded, strictly increasing continuous function from R to
R. Set p(-oo) = limx-+- p(x) and p(+oo) = limxi+,o p(x). Also set
X = [-oo, +ooJ = R U {-oo, +oo}, and define a map dp : X2 - R by
dp(x, y) = I p(x) - p(y)I. Prove that dp is a metric on X, that the metric
space (X, dp) is compact, that dp induces on R the usual topology, that
R is dense in (X, dp), and that (R, dp) is precompact. Prove also that
the topology thus defined on X (that is, the family of open sets defined
by dp) does not depend on p.

3. Let (fn)nEN be a sequence of continuous functions on R+ defined by

fn(x) =
r (1 - x/n)n if x < n,

0 ifx>n.
Prove that the sequence (fn) converges uniformly in [0, +oo) to the
function f : x i-+ e-x.
Hint. Extend the functions f,, to have the value 1 on [-oo, 0J and
the value 0 at +oo. Then apply Dini's Lemma in the compact space
[-00, +ooj introduced in Exercise 2.

4. A generalization of Dini's Lemma. Consider a compact metric space
X, and elements f and { fn}nEN of C(X). Assume that there exists a
constant C > 0 such that

If-fp+gl <-C'If-fpl forallp,qEN.

Prove that if the sequence (fn) converges pointwise to f, it converges
uniformly to f . (One can look at the proof of Dini's Lemma for inspi-
ration.)
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5. Ideals in C(X). Let X be a compact metric space and J an ideal in
the ring (C(X), +, ). Denote by Z the set of points x in X such that
g(x) = 0 for all 9 E J.
a. Prove that, if Z is empty, J contains a function g such that g(x) > 0

for all x E X. Deduce that J = C(X).
b. For a E X, set Ja = {g E C(X) : g(a) = 0}. Prove that J. is

a maximal ideal; that is, the only ideal that strictly contains J. is
C(X).

c. Conversely, prove that, if J is a maximal ideal, there is a unique
point aofX such that J=Ja.

d. Prove that j = {f E C(X) : f (x) = 0 for all x E Z}.
Hint. Let f E C(X) vanish everywhere in Z. To find an element of
J that is 2s-close to f, one can do this:
i. Let K be the set of points x of X for which if (x) I > E. Prove

that there exists g E J such that g(x) > 0 for all x E K and
g(x)>0for all aEX.

U. Prove that, for all large enough n, the function f,, defined by
ngfnf1+ng

is in J, and that f11 <2s.

2 The Stone-Weierstrass Theorems

We now state denseness criteria for the subspaces of C(X ). These criteria
are consequences of this fundamental lemma:

Lemma 2.1 Suppose X has at least two elements. Let H be a subset of
O (X) satisfying these two conditions:

a. For all u, v E H, the functions sup(u, v) and inf(u, v) also he in H.
b. If XI, x2 are distinct points in X and al, a2 are real numbers, there

exists u E H such that u(xi) = al and u(x2) = a2.

Then H is dense in CR (X) .

Proof. Take f E CR (X) and e > 0. We want to find an element of H that
is c-close to f. First fix x E X. By assumption b, for every y 36 x there
exists uy E H such that uy(x) = f (x) and uy(y) = f (y).

For y 0 x, set Oy = {x' E X : uy(x') > f (x') - c}. This is an open
set that contains y and x; therefore X = Uy#x Oy. By the Borel-Lebesgue
property, X can be covered by finitely many sets Oy: X = u,-1 Oy,, with
yj 34 x for all j. Now set v. = sup(uy..... uyr). A simple inductive argu-
ment, using assumption a, shows that vx E H. On the other hand,

v. (x) = f (x) and vx(x) > f (x') - 6 for all x' E X.
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Now make x vary and set, for each x E X,

n., = {X' E X : vx(x) < f (x') + E}.

Thus Sty is an open subset of X containing x; a new application of the
Borel-Lebesgue property allows us to choose finitely many points x1, . . . , xp
of X such that Sty, , ... , StxP cover X. Finally, set v = inf (v, , ... , vxp ).
Then v E H and f - e < v < f + e; that is, 11f - vJI < e.

A subset H of C(X) is called separating if, for any two distinct points
x, y of X, there exists h E H with h(x) # h(y). A subset H of CR (X) is
called a lattice if, for any f, g E H, the functions sup(f, g) and inf(f, g)
also he in H. Notice that a vector subspace of CR(X) is a lattice if and
only if, for every element h of H, the function I h I is in H as well (the "only
if" part follows from the relation IhI = sup(h,0) - inf(h,0), and the "if"
part from equations (s) on page 27).

We can then deduce from Lemma 2.1 the following theorem:

Theorem 2.2 If H is a separating vector subspace of CR (X) that is a
lattice and contains the constants, then H is dense in CR (X).

Proof. If X has a single element, the result is clear. Suppose X has at least
two elements; we just need to check assumption b of the lemma. Let x1 and
x2 be distinct elements of X. Since H is separating, there exists h E H such
that h(xi) 0 h(x2). If a1 and a2 are real numbers, the system of equations

Ah(x1) +µ = ai
t Ah(x2) +,U = a2

clearly has a unique solution (A, p) E R2. For such (1i,µ), we see that
(Ah + µ)(x1) = al and (Ah + µ)(x2) = a2i moreover, Ah +,a E H, since H
is a vector space containing constants.

Example. Let H be the set of Lipschitz functions from X to R, that
is, the set of functions h from X to R for which there is a constant C >
0 (depending on h) such that I h(x) - h(y)I < Cd(x,y) for all (x, y) E
X2. Such a C is called a Lipschitz constant for h, and h is said to be
C-Lipschitz. Clearly, H is a vector subspace of CR (X) containing the
constant functions. H is also a lattice: the absolute value of a Lipschitz
function is Lipschitz as well, since

I Ih(x)I - Ih(y)I I <- Ih(x) - h(y)I.

Finally, H is separating since, for x 34 y, the function h : z ti d(x, z) is
Lipschitz with constant 1 and satisfies 0 = h(x) # h(y). Therefore H is
dense in CR (X).
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We now deduce from Theorem 2.2 another denseness criterion, where the
assumption that H is a lattice is replaced by an assumption of closedness
under multiplication. More precisely, we assume we have a vector subspace
H of C(X) that is a subalgebra of C(X ); this means that f g E H for
f, g E H. Since fg =

i
((f + g)2 - f2 - g2), this condition is equivalent to

H being a vector space such that the square of every element of H is in H.

Theorem 2.3 (Stone-Weierstrass Theorem, real case) Every sepa-
rating subalgebra of CR(X) containing the constant functions is dense in
CR(X).

Proof. If H is a separating subalgebra of CR (X) containing the constants,
so is its closure H. Therefore it suffices to show that H is a lattice and to
apply Theorem 2.2. Thus, let f be a nonzero element of H. We saw in the
example on page 29 that there exists a sequence (Pn) of polynomials over
R that converges uniformly on [-1,1] to the function x - IxI. But then the
sequence of functions (P (f /IIf ID) converges uniformly to If I/IIf II , so If I is
the uniform limit of the sequence (IIf II Pn(f/IIf II)). Since ft is a subalgebra
of CR (X), all terms in this sequence are in H; therefore so is their uniform
limit if I. This shows that H is a lattice.

Examples

1. The set of Lipschitz functions from X to R satisfies the assumptions of
Theorem 2.3.

2. Suppose X is a compact subset of Rd, and let H be the set of polynomial
functions (in d variables) from X to R:

H= {xHP(x):PERIX1i...,Xd]}.

Clearly, H is a subalgebra of CI (X) containing the constants; on the
other hand, if x and y are distinct points in X, they differ in at least
one component: for example, xj 96 yj. But then the polynomial X j takes
different values at x and at y. Thus H is separating and hence dense in
CR(X).
In the particular case where d = 1 and X is a compact interval [a, b]
in R, this result is known as Weierstrass's Theorem. In fact, there
are several explicit methods to associate to an element f E CR ([a, b])
a sequence of polynomials (Pn) that converges uniformly to f on [a, b];
see, for example, Exercises 3 and 2 below.
Note that, as a consequence of Weierstrass's Theorem, the set of mono-
mials 11 1 x, x2, ... , xn.... }, considered as functions on [a, b] (for a < b)
forms a topological basis of C([a, b]). (We thus recover, in particular,
the fact that CR ([a, b]) is separable.)

Remark. In the preceding theorem, one cannot replace CR (X) by CC(X ),
as the following example shows. Set U = {z E C : IzI = 1), and let H be
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the set of polynomial functions from U in C:

H={z 4P(z):PEC[X]}.
H is certainly a separating subalgebra of Cc (U) (the function Z : z H z is
an element of H, and Z(z) 0 Z(z') if z # z'), and it contains the constants.
But H is not dense in Cc (U). Indeed, since

1
einee'9dO = 0

2n

for every n E N, we get

10
h(e`0)eied9 = 0

2,r

for all h E H. By taking uniform limits, we conclude that the same equality
holds for h E H. On the other hand, the function Z : z H z is an element
of Cc(U), yet 2,r

0

Thus Z H, and H is not dense in Cc(U).

Thus, in the complex case an additional assumption is necessary. We will
suppose in this case that the subset H of Cc (X) is self-conjugate; this
means that h E H implies h E H, where the conjugate h of h is defined by
h(x) = h(x).

Theorem 2.4 (Stone-Weierstrass Theorem, complex case) Every
separating subalgebra H of Cc (X) that is self-conjugate and contains the
constant functions is dense in Cc (X),

Proof. Set HR = {h E H : h(x) E R for all x E X}. Clearly, HR is a
subalgebra of CR(X) containing the constants. Now, if f E H, the real
and imaginary parts of f lie in HR, since H is self-conjugate and Ref =
(f + f)/2, Im f = (f - f)/(2i). If xl and x2 are distinct points in X, there
exists by assumption h E H such that h(xi) # h(x2). Therefore there exists
g E HR such that g(xi) 0 g(x2): just take g = Reh or g = Imh as needed.
It follows that HR is separating, hence dense in CR (X), by Theorem 2.3.
Since Cc (X) = CI (X) + iCR (X) and H contains HR + iHR, the proof is
complete. 0
Examples

1. The set of Lipschitz functions from X to C is dense in Cc (X).
2. If X is compact in R' , the set of functions from X to C defined by

complex polynomials in d variables is dense in Cc (X). In particular, if
[a, b] (with a < b) is a compact interval in R, the set of restrictions to
[a, b] of the monomials 1, x, x2, ... , xn, ... forms a topological basis of
CC([a,bl)
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3. If X is a compact set in Cd, the set H defined by

H= {zEX HP(z,2):PEC[X1i...,Xd,Y1,...,Yd]}

is dense in Cc (X).
In the particular case where d = 1 and X = U = {z E C : IzI = 1}, we
see that H is the vector space generated by the functions ZP : z --+ zP,
with p E Z. Indeed, if z E U we have 2 = z-1. Thus, the family (ZP)PEz
(which is clearly free) is a topological basis of Cc (U).

4. Let C2 be the set of continuous functions from R to K that are periodic
of period 27r, with the uniform norm on R, namely,

IIfII=mEaRxlf(x)J=xmax If(x)I.

Lemma 2.5 The map from Cc(U) to CZ,,, that associates to cp E
Cc(U) the function f given by f (B) = cp(eie) for every real 0 is a sur-
jective isometry.

Proof. Only the surjectivity requires proof. For z E U, denote by arg z
some real number such that e` arg Z = z. We know that arg z is defined
modulo 27r and that there exist choices of arg z that vary continuously
in the neighborhood of a given point (for example, if zo E U and z E U
with Iz - zo I < 1, we can take arg z = arg zo + Arccos Re(z/zo)). Thus,
if f E CC,r, the function w defined by W(z) = f (arg z) is well-defined
and continuous in U, and f (0) = cp(eie) for all 0 E R. 0

It follows from the preceding example that the family (e,a)iiEZ of ele-
ments of C& defined by e,,(0) = emo is a topological basis of C. By
taking the real and imaginary parts of the functions e, we deduce that
the set B = {1} U {c,+, s,l}fEN, with cn(x) = cosnx and sn(x) = sinnx,
forms a topological basis of C2 , and thus also of C. A linear combi-
nation of functions of B is called a trigonometric polynomial.
Note that one can explicitly determine a sequence of trigonometric poly-
nomials that converges toward a given function f E Cz (see Exercise 2
below).

5. Let X and Y be compact metric spaces. We denote by C(X)®C(Y) the
vector subspace of C(X x Y) generated by the functions f ® g : (x, y) .-+
f (x) g(y) with f E C(X) and g E C(Y). It is clear that C(X) ® C(Y) is
a subalgebra of C(X x Y) containing the constants and, when K = C,
self-conjugate. It is also separating: if (xl, y1) 0 (X2,y2) we have, say,
x1 0 x2, and then the function d(-, x1) ®1 : (x, y) H d(x, x1) (where d
is the metric on X) is an element of C(X) ® C(Y) separating (x1, y1)
and (x2i y2). Thus C(X) ® C(Y) is dense in C(X x Y).
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Exercises

1. Let D be a dense subset of Ca (X) - Prove that, for all f E CR (X), there
exists an increasing sequence of elements of D that converges uniformly
to f.
Hint. For each positive integer n, prove that there is an element fn of
D such that f - 2-n < fn < f - 2-n-1.

2. Dirac sequences
a. Let (Wn)nEN be a sequence of continuous functions from R' to R,

with nonnegative values, and satisfying these properties:

fR- Wn (x) dx = 1 for every integer n.
For every e > 0, limn,+oo fjxl>Etpn(x)dx = 0, where I I denotes
a norm on Rn.

Let f be a bounded, continuous function on R. Prove that the
sequence (,n * f) converges to f uniformly on every compact subset
of Rm. Recall that Wn * f is defined by

(Wn * f)(x) = j con(y)f (x - y) dv = J m Wn(x - Of (y) dy
m fli

b. For each n E N, set en = f 11(1- xz) n dx, and let Wn be the function
from R to R defined by

Wn(x) =
(1 - x2)"/cn if IxI < 1,

10 otherwise.

i. Prove that the sequence (tpn) satisfies the hypotheses of part a.
ii. Deduce that every continuous function on [0, 1] is the uniform

limit on [0, 1] of a sequence of polynomial functions.
Hint. Deal first with the case of a function f satisfying f (0) _
f (1) = 0, by showing that, if f is the extension of f having
the value 0 outside [0, 1], then Vn * f coincides in [0, 11 with a
polynomial function.

c. Fejer's Theorem. Let f be a continuous function from R to C, peri-
odic of period 27r. Let Dn and Kn be the functions defined by

n 1 m-I
Dn(x) = L eikx, Km(x) = - Dn(x)

k=-n m' n=0

If h,g E C2,,, we write

h * g(x) =
27t

jx h(x - y)g(y) dy

(this equals g * h(x)).
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i. Prove that Kn(2k7r) = n for k E Z and that, for all x ¢ 2irZ,

Kn(x) = 1 - cosnx
n(1 - coax)'

jShow also that K(x) dx = 1 and that, for all e E (0, Tr),
R

I Rlim J Kn(x) dx = 0.
e

ii. Prove that the sequence of functions (Kn *f) converges uniformly
to f on R.

W. Express Dn * f, then Kn * f, in terms of the partial sums S,, of
the Fourier series of f, which, as we recall, are given by

nSn(x) =

k ckeAx,

k=-n

!R
with ck = ZI J f (t)e- ktdt.

iv. Deduce that every continuous function periodic of period 27r is
the uniform limit of a sequence of trigonometric polynomials.

3. Another demonstration of Weierstrass's Theorem: Bernstein polynomi-
als. The functions in this exercise are real-valued (K = R).
a. Korovkin's Theorem. For i E N, we denote by X' the element of

C([0,1]) defined by X'(x) = x. We also set 1 = X° and X = X'.
Let (Tn) be a sequence of positive elements in L(C([0,1])) (positivity
here means that f > 0 implies T,,(f) > 0, or again that f < g
implies Tn(f) < Tn(g)). Assume that, for i = 0, 1, 2, the sequence of
functions (T,(X`))nEN converges to X' uniformly on [0,1]. We want
to show that, for all f E C([0,1]), the sequence (Tnf) converges
uniformly to f on [0, 1).

i. Let f be a continuous function on [0,1]. Define the modulus of
uniform continuity of f as the function w f : R+* -a R+ whose
value at n > 0 is

wf (ri) = sup If (x) - f (y)
(x,y)E [0,112

l x-v[<<q

Check that wf(77) is well-defined for all n > 0, and that wf(17)
tends to0asr/tends to0.Nowfix 71 > 0.

H. Prove that, for all x, ,y E (0,1],

If(T) -'f(y)1 <wf(17)+2(x-y)2( I

(One can deal separately with the cases I x-yl < q and Ix-y{ > n.)
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iii. If X, Y E [0,1], set gy(x) = (x - y)2. Prove that, if x, y E [0,1],
we have, for every n E N,

(Tnf)(x) - f (y)Tn(1)(x)j < w1(,1)Tn(1)(x) + 2 IIfII (Tn9y)(x)
17

2

iv. Set hn(x) _ (Tngx)(x). Prove that the sequence of functions (hn)
converges uniformly to 0 in [0, 11.
Hint. Tngx(x) = (T X2 - 2XTnX +X2 Tnl)(x).

v. Deduce that lim supn,+. II Tnf - f II S w f (77). Wrap up the
proof

b. Let f be a function from [0, 11 to R. For every integer n > 1, define
the polynomial Bn (f) by

Bn(f)(x) _ Cnf(n)xk(1 - x)n-k.
k=0

i. Prove that

Bn(Xf) = XBn(f) +
X (in

X) Bn(f),

where Bn(f) represents the derivative of the polynomial Bn (f ).
ii. Compute Bn(1), Bn(X), and Bn(X2) for every n E N.

iii. Prove that, for every f E Q0, 11), the sequence (Bn(f)) con-
verges uniformly to f.

Another proof of Fejer's Theorem
a. Let (Tn) be a sequence of positive elements of L(Cz) (see Exercise 3a

for the definition of positivity) such that the sequence of functions
(Tn(f ))nEN converges to f uniformly on R when f is each of the
three functions x H 1, x H cos x, and x H sin x. Prove that, for all
f E C2,,, the sequence (Tnf) converges uniformly to f.
Hint. Argue as in Exercise 3a, considering the interval [-7r, r] and
replacing (x - y)2/rf2 by (1 - cos(x-y))/(1 - COs,,).

b. Let (Kn) be the sequence of functions defined in Exercise 2c. Take
f E Cz . Derive from the preceding question another proof that the
sequence (Kn * f) converges uniformly to f on R.

Let X be a compact interval in R and let H be the set of elements of
C(X) defined by polynomial functions with integer coefficients.
a. Prove that, if X and Z intersect, H is not dense in C(X).
From now on in this exercise we assume that X C (0, 1). We denote by
(pn) the strictly increasing sequence of prime numbers and by (Pn) the
sequence of elements of C(X) defined by

Pn(x) = 1 - xP" - (1 - x)P".
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b. Prove that, for every integer n, the function Pn/pn is an element of
H, and that 1/Pn belongs to H.

c. Prove that, for every k E Z`, the constant function x H 1/k is an
element of H. (You might start with the case of k prime.)

d. Deduce that H is dense in C(X).
6. Equidistributed sequences and Weyl's Criterion

a. Let E be the vector space generated by the functions from [0,1] to
C of the form 1IQ,bl. Prove that every continuous function from (0,1]
to C is the uniform limit of functions in E.

b. A sequence (up)pEN of points in [0,11 is called equidistributed if, for
every [a, b] C [0,11,

lim
Card{p < n : up E [a, b] } = b- a

n-++oo n + 1
Prove that, if (up)pEN is an equidistributed sequence of points in
[0,11 and f : R -p C is any continuous function periodic of period 1,
then

tim 1 > f (up) = / f (t) dt.
ri + 1

v-0
0

Hint. Check that this is true if f E E, then use denseness (compare
Proposition 4.3 on page 19).

c. Prove the converse.
Hint. One might start by showing that, if [a, b] C [0,11 and e > 0,
there exist continuous functions f and g from [0,1] to R such that
f(0) = f(1), g(0) = g(1), f < 1ja,bj < g and

10
(g(t) - f (t)) dt < e.

d. Deduce that a sequence (up)pEN of points in [0,11 is equidistributed
if and only if, for every A E N*, the Weyl criterion is satisfied:

1 n
lim e2ixa" = 0.

n-too n + 1
0

e. Example. Take a E R \ Q and, for every p E N, set up = {pa} _
pa - [pal, where [pal denotes the integer part of pa. Prove that
the sequence (up) is equidistributed.

f. Same question with the sequence (up) defined by up = {p°}, where
a E (0, 1).
Hint. Consider In = fn e2ir dx, for A a fixed positive integer.
Prove, by change of variables and integration by parts, that In =
O(nl'Q). Next show that

n

In - E ear' 0(n°).
0



40 1. The Space of Continuous Functions on a Compact Set

7. Particular cases of the Tietze Extension Theorem
a. Let Y be a metric space and X a nonempty compact subset of Y.

Denote by Cb(Y) the vector space consisting of continuous, bounded
functions from Y to K, with the norm defined by

11f 11 = supif(y)I
yEY

On C(X) we take the uniform norm, also denoted by II ' II Now
consider the linear map 4) : Cb(Y) -- C(X) defined by restriction to
X: 4)(f) = fix for every f E Cb(Y).
i. Prove that Cb(Y) is a Banach space.
ii. Prove that, if f E Cb(Y), there exists f E Cb(Y) such that

4)(f) = 4)(f) and 11111 = II-t(f)II.
Hint. If 4)(f) 54 0, one can choose

f -
X : K -a K is defined by X(x) = x/max(IxI,1).

iii. Prove that im 4) is dense in C(X ).
Hint. Use the Stone-Weierstrass Theorem.

iv. Let g be an element of C(X) that is the uniform limit of a se-
quence (4'(fn)).
A. Prove that one can assume, after passing to a subsequence if

necessary, that IIfi(fn+i) - t(fn)II < 2-n for every n.
B. For n E N, choose hn E Cb(Y) such that 4)(hn)=4)(fn- fn-i)

and IIhnII = II'(fn - fn-')II (where f-, = 0 by convention).
The existence of the hn was proved in ii above. Prove that
the series E 0 hn converges in Cb(Y). Denote its sum by h.

C. Prove that 4)(h) = g.
v. Deduce from the preceding facts that every function g E C(X)

can be extended to a function f E Cb(Y) such that IIf II = IIghI.
b. Let (Y, d) be a metric space and let A be a nonempty subset of Y.

Let f be a Lipschitz function from A to R, with Lipschitz constant
C. Set

g(y) inf (f (x) + Cd(x, y)) for all y E Y..EA

Prove that g is a Lipschitz extension of f, also with constant C.
8. Stone-Weierstrass Theorem in R. We denote by Co (R) (or Co(R)) the

space of continuous functions f from R to K such that

lim f (x) = lim f (x) = 0.
X- +-00 z-,+oo

We give this space the uniform norm: U11 = sup R I f(x)I. We again
denote by U the set of complex numbers of absolute value 1, which is
compact in the metric induced from C.
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a. i. Prove that Co(R) is a Banach space.
H. Define a map W from R onto U\{-1} by setting cp(x) = e2: ^"`' z

Prove that cp is a homeomorphism between R and U \ {-1}, the
inverse homeomorphism being tb(z) = tan(! Arg z), where Arg z
denotes the argument of z in the interval (-7r, 7r). Check that
limx,+, W(x) = limx_,_, W(x) = -1.

iii. Prove that a function f on R belongs to Co(R) if and only if the
function f defined on U by

f(z) f if z 0 -1,
0 ifz=-1,

belongs to C(U). Prove that the map f .-+ f defines an isometry
between Co(R) and the set of elements of C(U) that vanish at
-1.

b. i. Let H be a vector subspace of Co(R) satisfying these conditions:
A. f2 EHforallf EH.
B. If x and y are distinct points of R, there exists f E H such

that f(x) # f(y).
C. For any x E R, there exists f E H such that f (x) 0 0.
D. In the complex case, H is self-conjugate (that is, f E H

implies f E H).
Prove that H is dense in Co(R).
Hint. Apply Stone-Weierstrass to the compact space U and to
the set H consisting of functions of the form f + a, with f E H
and a E K.

U. Conversely, prove that every dense subset H of C0(R) satisfies
conditions B and C above.

c. If a E C \ R, we set tpa(x) = (a + x)-1. Prove that the family
{spa}QEC\R is fundamental in Co (R).
Hint. Prove first that cp. = limh--o(Wa - Spa+h)/h in the sense of
convergence in Co(R). Deduce that the closure of the vector space
generated by the Wa satisfies conditions A-D of part b above.

d. Let H be the set of functions from R to R of the form x y e-x2P(x),
with P E R(XJ.
i. Take rENandaE(0,1).FornENandxER,setRn(x)=

e-Z2 x2n+ran/nL Prove that the sequence of functions (Rn) con-
verges uniformly on R to the zero function.
Hint. Prove that if un = supxERIRn(x)I, then

Jimo(u+1/un) = a.n +0

ii. Deduce that the function fa,r : x'-+ e-(1+a)x2xr belongs to H.
Hint. One can use Taylor's formula with integral remainder to
approximate a-axe by polynomials.
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iii. Prove that the function ga,,.: x - e-(1+a)2z2xr belongs to H.
Hint. Write ga,,. _ (1 + a)-r/2fa,r( 1 T ax) and use part ii
twice.

iv. Applying the facts above to a = - 1, show that H is dense
in Co (R).

e. Denote by CK(R) or Cc(R) the set of continuous functions f from
R to K that vanish outside a compact interval in R (that depends
on f). We assume in the sequel that K = C.
i. Prove that CS(R) is dense in C0(R). (Use part b above or give a

direct proof.)
ii. For V E CS(R), set

" "v
o(y) dy.O(x) = fR e

Prove that cp E Co(R).
Hint. Show first that, if a < b, the function x H fa e' Ydy lies
in C0(R). Then approximate cp by staircase functions.

iii. If gyp, b E CS(R), define

(x - y)ib(y)dy(V * O(x) = fR W

iv.

Prove that V * z/i E CS(R) and that V * -0 = V i/i.
Deduce that the set {cp} is dense in Co(R).
Hint. To check conditions B and C, one can compute the integral
f O° e-"

0'
'e-vdy and approximate the function

y" 1(o.+oo)(y)e-1

in L1(dy) by functions in CS(R).

3 Ascoli's Theorem

In this section we present a criterion of relative compactness in C(X ).
Let xo be a point of X. A subset H of C(X) is called equicontinuous

at xo if, for all c > 0, there exists n > 0 such that

h(x) - h(xo)I < e for all h E H and all x E X with d(x, xo) < ri.

H is called equicontinuous if it is equicontinuous at every point of X. It
is called uniformly equicontinuous if, for all E > 0, there exists q > 0
such that

Ih(x)-h(y)I<e for allhEHandallx,yEXwithd(x,y)<ri.
Since X has been assumed compact, these two notions are in fact equiva-
lent:
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Proposition 3.1 A subset of C(X) is equicontinuous if and only if it is
uniformly equicontinuous.

Proof. It is enough to show necessity. Let H be an equicontinuous subset
of C(X ), and let e > 0 be a real number. By assumption, for every x E X
there exists % > 0 such that I h(y) - h(x) I < e/2 whenever h E H and
d(x, y) < 17x. By the Borel-Lebesgue property, we can choose finitely many
points X1,.. . , x,. such that the balls B(xj, %, /2) cover X. Now let n be the
smallest of the /2, and let x and y be points in X such that d(x, y) < 17.
Choosing j such that x E B(xj, rlys /2), we see that x, y E B(x j, j7.,), so

Ih(y) - h(x)I < Ih(y) - h(xj)I + Ih(x) - h(xj)I < e for all h E H.

Examples

1. Every finite subset of C(X) is equicontinuous.
2. Every subset of an equicontinuous set is equicontinuous.
3. A finite union of equicontinuous sets is equicontinuous.
4. Any uniformly convergent sequence of functions in C(X) consitutes an

equicontinuous set (exercise).
5. If C is a positive real number, the set of C-Lipschitz functions from X

to K is equicontinuous.

Proposition 3.2 Let (f,,) be an equicontinuous sequence in C(X) and
let D be a dense subset of X. If, for all x E D, the sequence of numbers
(fn(x)) converges, the sequence of functions (fn) converges uniformly to a
function f E C(X ).

(Compare this result with Proposition 4.1 on page 18.)

Proof. It suffices to show that (fn) is a Cauchy sequence in C(X). To do
this, take e > 0. By assumption, there exists i > 0 such that, whenever
d(x, y) < q,

I fn(x) - fn(y)I < e/5 for all n E N.

Since X is precompact, it can be covered by finitely many balls of radius rl:
X = U f=o B(x j, n). Since D is dense, each ball B(x j, rl) contains at least
one point yj from D. Since, by assumption, the sequences (fn(yj))nEN
are Cauchy sequences, there exists a positive integer N such that, for any
integer j < r,

Ifn(yj) - fp(yj)I < e/5 for all n,p > N.

Now let x be a point in X, and let j be an integer such that x E B(xj, 77).
Then, for n, p > N,

I fn(x)-fp(x)I I fn(x)-fn(xj)I +Ifn(y.7)-fn(xj)I +Ifn(yj)-fP(yj)I
+I fP(yj)-fP(xj)I +I fP(x)-fP(xj)I < e.

Thus, li fn - fell < e for all n,p > N, and (fn) is a Cauchy sequence.
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We deduce from this our main result:

Theorem 3.3 (Ascoli) A subset of C(X) is relatively compact in C(X)
if and only if it is bounded and equicontinuous.

Proof. For the "only if" part, let H be a relatively compact subset of C(X ).
Then H is certainly bounded; this is true in any metric space. We must
show it is equicontinuous. Fix e > 0. Since H is precompact, we can choose
finitely many elements fo,... , fr in H such that the balls B(f3, e/3) cover
H. Since the finite family (f )J<,. is uniformly equicontinuous, there exists
77 > 0 such that I fi(x) - f3(y)r< e/3 for all j < r, whenever d(x,y) < q.
It follows that, if f E H and d(x, y) < q, then

If (x) -f(y) I < If (x) - f,(x)I + Ifi(x) - fi(y)I + If,(y) - f(y)I <C,

where j is chosen so that 11 f - fj 11 < e/3. This shows that H is equicontin-
uous.

For the converse, suppose H is bounded and equicontinuous. X is com-
pact, hence separable. Thus it contains a countable dense subset D. Let
(f,,) be a sequence in H. For every point x in D, the sequence of numbers

is bounded by SUPhEH IIhil; thus, by Theorem 3.1 on page 12,
there exists a subsequence (fnk)kEN such that (f,,,,(x))kEN converges for all
x E D. By Proposition 3.2, we deduce that the sequence (f,,JkEN converges
in C(X ). 0

Remark. The preceding proof also shows that, if H is an equicontinuous
subset of C(X ), the following properties are equivalent:

- H is bounded.
- There is a dense subset D of X such that, for all x E D, the set

If (x)}fEH is a bounded subset of K.

(This equivalence can also be proved directly.)

Example. Consider compact metric spaces X and Y, an element K of
C(X x Y), and a Borel measure p on Y having finite mass (µ(Y) < +oo).
We define a linear operator T from C(Y) to C(X) by setting

T f (x) =
Jr

K(x, y) f (y) du(y) for all f E C(Y) and x E X.

Recall that B(C(Y)) denotes the closed unit ball in C(Y):

B(C(Y)) = {f E C(Y) :11111 < 1}.

Proposition 3.4 The image under T of the closed unit ball of C(Y) is a
relatively compact subset of C(X).
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We say that T is a compact operator from C(Y) to C(X) (see Chap-
ter 6).

Proof. It is clear that T(B(C(Y))) is bounded by

M = u(Y) (x,v)max
X Y

IK(x, y) I -

On the other hand, K is uniformly continuous on X x Y; in particular, for
all e, there exists n > 0 such that

I K(xi , y) - K(x2i y) I < e for ally E Y and x1, x2 EX with d(xl, x2) <17-

Thus, for all f E f3(C(Y)), we have I T f (xl) - T f (X2)1 < u(Y)e. There-
fore the subset T(B(C(Y))) of C(X) is equicontinuous, and we can apply
Ascoli's Theorem. 0

Exercises

1. For each n E N, let fn be the function from [0,11 to R defined by
fn(x) = x". At what points in the interval [0, 11 is the family { fn}nEN
equicontinuous?

2. a. Let X be a metric space and (fn) a sequence in C(X). Prove that, if
{ fn}nEN is equicontinuous at a point x of X, for any sequence (xn)
of X that converges to x the sequence (fn(x) - fn(xn)) converges
to 0.

b. Set f,, (x) = sinnx. Prove that {fn}nEN is not equicontinuous at any
point x of R.
Hint. Consider the sequence (xn) defined by xn = x + N/(2n).

3. Let X be a compact metric space. Prove that, if H is an equicontinuous
subset of C(X), the closure H of H in C(X) is equicontinuous.

4. Let X be a compact metric space, and let H be an equicontinuous family
of elements of C(X ).
a. Prove that the set of points x of X such that the set { f (x) : f E H}

is bounded is open and closed.
b. Assume that X is connected. Prove that, if there exists a point x E X

for which { f (x) : f E H} is bounded, H is a relatively compact
subset of C(X).

5. a. For a E (0,1), let C°([0,11) be the set of functions f from [0, 11 to
R such that

if Ia = sup If(--) - f (01
0<x,y<1 Ix - yIa

x96Y

is finite (such an f is called a Holder function of exponent a). As
usual, we denote by 11 - 11 the uniform norm.
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i. Prove that C°([0,1]), with the norm II II° = I I° + II II, is a
Banach space.

H. Prove that B(C°([0,1])), the closed unit ball in C°([0,1]), is a
compact subset of C([O,1]).

iii. Suppose 1 > ,Q > a > 0.
A. Take f E Cp([0,1]). Prove that, for all rj > 0,

If l° S max(IfIanO-°, 21lf11 77-°)

Deduce that, if (fn) is a bounded sequence in CO that con-
verges uniformly to f E CO, then Ilfn - f IIQ --> 0.

B. Deduce that . ( C ( [ 0 , 1])) is compact in C°((0, 1J).

b. Let m be a nonnegative integer. We give Cm([0,1]) the norm defined
by

m
IIfUIr = 1: sup I f(k)(x)I.

k=0 xE10,11

i. Prove that with this norm Cm([0,11) is a Banach space.
ii. Prove that if m and n are nonnegative integers such that m > n,

then B(Cm([0,1])) is a relatively compact subset of Cn([O,11).
(You might start with m = 1 and n = 0.) Is the ball B(Cm([0,1]))
closed in Cn([0,1]) ?

c. Take m E N and a E (0,1). Denote by C'n+°([0,1]) the vector
space consisting of functions of Cm((0,1]) whose m-th derivative is
an element of C°([0,1]), and define on this vector space a norm
II - Ilm+° by setting IllIIm+° = Ilfllm + If(m)I°
I. Prove that Cm+°([0,1]), with the norm II - Ilm+a, is a Banach

space.
ii. T a k e p,q E R such that q > p > 0. Prove that . (CQ([O,1])) is a

relatively compact subset of CP([0,1]).

6. Ascoli's Theorem in R
a. Let fn be the function defined for all x E R by

fn(x) _ min(1, n/x) if x 0,

1 ifx=0.
Prove that the subset { fn}nEN of C0(R) is bounded and equicontin-
uous (see Exercise 8 on page 40 for the definition of C0(R)), but the
sequence (fn) has no uniformly convergent subsequence.
Hint. The sequence (fn) converges pointwise but not uniformly to
the constant function 1.

b. Let H be a subset of C0(R). Prove that H is relatively compact in
C0(R) if and only if it is bounded and equicontinuous at every point
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of R and satisfies that condition that for any e > 0 there exists A > 0
such that

Ih(x)I <e for all hEHandxERwith IxI>A.

Hint. Use Ascoli's Theorem in the space C(U) (refer again to Exer-
cise 8 on page 40).

7. A particular case of Peano's Theorem. Let f be a continuous function
from [0,11 x R to R for which there exists a constant M > 0 such that

I f (x, t)I < M(1 + IxI) for all t E [0,1] and x E R.

a. Let n be a positive integer. We define points x7 , for 0 < j < n, by
setting xo = 0 and

x,n+xJ+ for0<j<n-1.

i. Prove that Ix? < (1 + M/n)J - 1 < em - 1 for 0 < j:5 n.
ii. Let tpn be the continuous function on [0,1] that is af$ne on each

interval [j/n, (j+1)/n] and satisfies cpn(j/n) = xJ for 0:5 j <
n. That is, for 0 < j < n - 1 and t E [j/n, (j+1)/n] we have

cpn(t)=xn +(t-I)f(j,Xn)

Prove that for 8,t E [0,11 we have Icpn(t) - cpn(s)I < McMIt - sl.
iii. For s E [0, 11, set

n-1
/'Y'n(S) _ 1U/n.(9+1)/n)(s)f (n' con(n)).

f=e

rove that w(t) =, (s) ds for all t E [0, 1].jP

b. i. Show that there exists a subsequence (cpn,, )kEN that converges
uniformly on [0,1] to a function cp E C([0,11).

ii. Prove that the sequence (0nk)kE1q converges uniformly on [0,1)
to f (s, cp(s)).

iii. Deduce that W(t) = fa f (s, cp(s)) ds for all t E [0, 1]; then prove
that cp is of class C' on [0,1] and satisfies the differential equation

f cP'(t) = f (t, W(t))
W(O) = 0.

for all t E [0,1],
(*)

Is the cw constructed above the only one that satisfies these con-
ditions?
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8. Let X be a compact metric space and H a subset of C(X).
a. Suppose H is relatively compact. Prove that for all e > 0 there exist

constants C > 0 and B > 0 such that d(f, Lc) < e for all f E H,
where Lc denotes the set of C-Lipschitz functions on X with uniform
norm at most B, and d is the metric associated with the same norm.
Hint. Use the fact that Lipschitz functions are dense in C(X).

b. Show the converse.
Hint. Prove that Lr is precompact, and finally that so is H.
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Locally Compact Spaces
and Radon Measures

In this chapter we study a representation, in terms of measures, of positive
linear forms on spaces of continuous functions; this representation leads to a
description of the topological dual of such spaces. It is useful in applications
to consider functions defined on metric spaces somewhat more general than
compact spaces, namely, locally compact ones.

1 Locally Compact Spaces

A metric space (X, d) is called locally compact if every point in X has
a compact neighborhood; equivalently, if for every x E X there exists a
compact K of X whose interior contains x; equivalently, if for every x E X
there exists r > 0 such that the closed ball B(x, r) is compact. Local
compactness is clearly a topological notion.

Any compact space is obviously locally compact. The spaces Rd and
Cd, for d > 1, and more generally all normed spaces of finite nonzero
dimension yield a first example of locally compact but noncompact spaces.
The famous theorem of F. R.iesz states that, conversely, the only locally
compact normed spaces are those of finite dimension:

Theorem 1.1 (F. Riesz) Let X be a normed space, with open unit ball
B and closed unit ball B. The following properties are equivalent:

i. X is finite-dimensional.
ii. X is locally compact.
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iii. B is compact.
iv. B is precompact.

Proof. Property i implies ii because closed balls in a finite-dimensional
normed space are compact. If ii is true, there exists r > 0 such that
[3(0,r) = rB is compact; this implies iii. That iii implies iv is obvious.
Thus the only nontrivial part of the theorem is iv i.

Suppose that B is precompact. Then there is a finite subset A of X such
that

BC UB(x,1)=A+ZB.
xE A

Let Y be the (finite-dimensional) vector space generated by A; then B C
Y + 2-1B. One can easily show by induction that, for any integer n > 1,
we have B C Y + 2-nB, and therefore

BC n(Y+2-nB).
n>1

In particular, if x E B, there exists for all n > 1 a yn E Y such that
II x-yn II < 2-n. We deduce that B C Y. Since Y is finite-dimensional, hence
complete, hence closed in X, it follows that B C Y and, by homogeneity,
X = Y.

We remark that any space with the discrete metric (defined by d(x, y) = I
if x 54 y and d(x, x) = 0) is locally compact.

Here is a simple but important consequence of the definition of local
compactness.

Proposition 1.2 If X is a locally compact space, there exists for every
x E X and for every neighborhood V of x a real number r > 0 such that
B(x, r) is compact and B(x, r) C V.

Proof. Just choose r = min(r', r"), where r' and r" are such that B(x, r')
is compact and B(x, r") C V.

Corollary 1.3 Let X be locally compact. If 0 is open in X and F is
closed in X, the intersection Y = On F (with the induced metric) is locally
compact.

Proof. Take x E Y. By the preceding proposition, there exists r > 0 such
that B(x,r) is compact and contained in O. Then B(x, r) flY = B(x, r) fl F
is compact.

In particular, every open set in a finite-dimensional normed space is
locally compact.
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Corollary 1.4 Consider a locally compact space X, a compact subset K
of X, and open subsets 01,..., o, of X covering K. There exist compact
sets Kl,... , Kn with Kj C Oj for each j and such that

n

KCUK,.
j=1

Proof. By Proposition 1.2, for all points x of K there exists j E { 1, ... , n}
and a compact set Kx such that x E Kx C Kx C Oj. By the Borel-
Lebesgue property, K can be covered by finitely many of these interiors:

P

KC UKx;.
i=1

Now set Kj = UK.{ coj Kx; for 1 < j < n. Then

n n p

UKj U U Kx;=UKx,JK;
j=1 j=1 KatcOf i=1

and, sure enough, Kj C Oj.

The next result is about the separability of locally compact spaces.

Proposition 1.5 Let X be a locally compact space. The following prop-
erties are equivalent:

i. X is separable.
ii. X is a-compact.

iii. There exists a sequence (Ku) of compact sets covering X and such that
KKCKn+l forallnEN.

Proof. It is clear that iii implies ii. The implication ii i is a particular
case of Proposition 2.2 on page 8.

Now suppose that X is separable and let (xn) be a sequence dense in
X. Set A = {(n, p) E N x N* : B(xn,1/p) is compact}; we will show that
the family JF = (B(xn,1/p))(n,p)EA covers X. Take x E X and let r > 0
be such that B(x, r) is compact. Then take p E N' such that 1/p < r/2
and n E N such that d(x, xn) < 1/p. One sees that x E B(xn,1/p) C
B(x, 2/p) C B(x, r). Therefore B(xn, l/p) is compact and x belongs to
some element of .9. This shows that i implies ii.

Finally, we show that ii implies iii. Suppose that X is a-compact and
let (Ln) be a sequence of compact sets that cover X. We construct the
sequence (Kn) by induction, as follows: set K0 = Lo and, for n > 1, choose
Kn such Kn_1 U Ln_1 C Kn (using Corollary 1.4).

A sequence (Kn) of compact sets that covers X and satisfies Kn C Kn+1
for all n is said to exhaust X.
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Proposition 1.6 Let (K,,) be a sequence of compact sets that exhausts a
metric space X. For every compact K of X there exists an integer n such
that K C Kn.

Proof. The open sets Kn cover K. By the Borel-Lebesgue property, K is
in fact contained in a finite union of sets Kn: but U,<,, K, = Kn.

Continuous Functions on a Metric Space
We now introduce various spaces of continuous functions on a metric space
(X, d).

We denote by Cb (X), or simply by Cb (X), the vector space over K con-
sisting of bounded continuous functions f : X -a K; recall that f being
bounded means that supyEX I f (x) I < +oo. We give Cb (X) the uniform
norm (or norm of uniform convergence), defined by

Ilfll = sup If(x)I.
zEX

With this norm, Cb (X) is a Banach space.
We say that a function f : X -a K tends to zero at infinity if for all

e > 0 there exists a compact subset K of X such that If (x) I < e for all
x V K. We denote by Ca (X) or Co (X) the vector space over K consisting
of continuous functions X - K that tend to 0 at infinity. It is easy to
check that Co(X) is a closed subspace of Cb(X); therefore C0(X) with the
uniform norm forms a Banach space.

We remark that Dini's Lemma (Proposition 1.2 on page 29) can be gen-
eralized to Co (X):

Proposition 1.7 Let (fn)fEN be an increasing sequence in Co (X), con-
verging pointurise to a function f E Co (X). Then (fn) converges uniformly
to f.

Proof. We show that the sequence (gn) defined by gn = f - fn converges
uniformly to 0. Given e > 0, there exists a compact K such that go(x) < e
for all x K. By Dini's Lemma, there exists an integer n such that gn(x) <
e for all x E K. Since the sequence (gn) is decreasing, this implies that for
all p > n and all x E X we have 0 < gp(x) < e.

The support of a function f : X -a K, denoted Supp f , is the clo-
sure of the set {x E X : f (x) 54 0}. Thus Supp f is the complement of
the largest open set where f vanishes, this latter set being of course the
interior of f -1({0}). We denote by CK (X) or C,(X) the vector space over
K consisting of the functions X -+ K having compact support. Clearly
C,,(X) is a vector subspace of C0(X), but not in general a closed one;
see Corollary 1.9 below, for example. Naturally, if X is compact we have
CC(X) = Co(X) = Cb(X) = C(X).
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Finally, we denote by Cb (X ), Co (X ), and CC (X) the subsets of Cb (X ),
Co (X), and CR (X) consisting of functions that take only positive values.

Proposition 1.8 (Partitions of unity) Let X be locally compact. If K
is a compact subset of X and 01,..., On are open subsets of X that cover
K, there exist functions c1, ... , Wn in CR (X) such that 0 < Wj < 1 and
Supp wj C Oj for each j and

n
E cpj (x) = 1 for all x E K.
j=1

Proof. Let K1,. .. , Kn be the compact sets whose existence is granted by
Corollary 1.4. We just have to set, for x E X,

d(x,X\Kj)
Wi(x) = d(x,K)+Ek=1d(x,X\Kk)

In particular, SuppVj C Kj C O.

A family (cpl, ... , cpn) satisfying the conditions of the proposition is called
a partition of unity on K subordinate to the open cover 01,..., 0,,.

Corollary 1.9 If X is locally compact, CC(X) is dense in C0(X).

Proof. Take f E Co(X) and e > 0. Let K be a compact such that If (x) I < e
for all x V K. Applying Proposition 1.8 with n = 1 and 01 = X, we find a
WE C(X) such that 0< ,< landcp=ionK.Then fWECc (X) and
IIf - fWII < C.

Corollary 1.10 Let X be locally compact and separable and let 0 be open
in X. There exists an increasing sequence (cpn) of functions in CC (X ), each
with support contained in 0, and such that limn,+,,. tpn(x) = 10(x) for all
xEX.

Proof. 0 is a locally compact separable space, by Corollary 1.3 above and
Proposition 2.3 on page 8. By Proposition 1.5 there exists a sequence of
compact sets (Kn) such that Kn C Kn+1 for all n and WEN K = 0.
By Proposition 1.8 there exists for each n a map cpn E CR (X) such that
0 < Wn < 1, WnIK, = 1, and Suppcpn C Kn+1. The sequence (Wn) clearly
satisfies the desired conditions.

To conclude this section, we observe that Cb(X) is a algebra with unity,
that C,,(X) and Co(X) are subalgebras of Cb(X) (without unity if X is not
compact), and that CC (X ), Co (X) and CR (X) are also lattices.
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Exercises

1. a. Let X be a metric space. Prove that, if there exists a real number
r > 0 such that all closed balls of radius r in X are compact, then
X is complete.

b. Find a locally compact metric space X such that, for all x E X,
there is a compact closed ball of center x that is noncompact.

c. Find a locally compact metric space that is not complete.
d. Find a complete metric space that is not locally compact.

2. a. Let (X1, dl) and (X2, d2) be locally compact metric spaces. Prove
that X 1 x X2, together with the product metric given by d(x, y) _
dl (xi, yl) + d2 (x2, y2), is locally compact.

b. Let ((XP+dp))PEN be a sequence of locally compact, nonempty met-
ric spaces, and set X = 11PEN Xp, with the product metric d (see
page 13).

i. Take X E X and r E (0, 1]. Prove that if n and n' are integers
satisfying 2-1 < r < 2-n', then

n n'
fl{xp} x H Xp C B(x, r) C II Bp(xp, 2Pr) x fi Xp,
P=o p>n P=o p>n'

where B,(-, ) and B(., ) represent open balls in (Xp, dp) and
(X, d), respectively.

H. Prove that (X, d) is locally compact if and only if all but a finite
number of factors (Xp, dp) are compact.

3. Let X be a metric space and Y a subset of X.
a. Prove that B(x, r)flY C B(x, r) fl Y for all x E Y and r > 0. Deduce

that, if B(x, r) fl Y is compact, then B(x, r) fl Y c Y.
b. Suppose that Y, with the induced metric, is locally compact. Show

that there exists an open subset 0 of X such that Y = 0 fl Y. This
gives a converse for Corollary 1.3.

4. Show that an infinite-dimensional Banach space cannot be a-compact.
Hint. Use Baire's Theorem (Exercise 6 on page 22).

5. a. Prove that every metric space that can be exhausted by a sequence
of compact sets is locally compact.

b. Find a a-compact metric space that is not locally compact.
6. Baire's Theorem, continued. Let X be a metric space. Recall from Ex-

ercise 6 on page 22 the game of Choquet between Pierre and Paul.
a. Prove that Paul has a winning strategy if X is locally compact.

Deduce that in X no open set can be a union of a countable family
of closed sets with empty interior.
Hint. The intersection of a decreasing sequence of nonempty com-
pact sets cannot be empty.
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b. Take X = R \ Q, with the usual metric. Prove that X is neither
complete nor locally compact (you can use Exercise 3 above, for ex-
ample), but that Paul nonetheless has a winning strategy, so Baire's
Theorem is valid in X.
Hint. Take an enumeration of the rationals, say Q = {rn}nEN. Show
that, whenever Pierre plays Un, Paul can respond with Vn = In \ Q,
where In is a nonempty open interval in R such that in \ Q C Un,
d(In) < 1/n, and rn it In.

7. Alexandrof compactification. Let (X, d) be a separable and locally com-
pact metric space. Set X = X U {oo}, where oo is a point that does not
belong to X. We wish to define on X a metric that extends the topology
of X and that makes X compact. To do this, let (Vf)nEN be a countable
basis of open sets in X (see Exercise 1 on page 10), and put

V = {(p,q) E N2 : Vp C V. and Vp is compact }.

This set is countable; let V = {(p,2,gn)}nEN be an enumeration of it.
For each n, let con be an element of Cc(X) such that 0 < <pn < 1
everywhere and tpn = 1 on and whose support is contained in VQ .
Put con(o0) = 0. Then, for x, y E X, define

+oo

8(x, y) _ E 2-n IWn(x) - pn(y)I.
n=0

a. Prove that 6 is a metric on X.
b. Let (xj)jEN be a sequence in X. Prove that 1imj,+,,. 6(xj,oo) = 0

if and only if, for any compact K in X, there is an integer J such
that xj K for j > J. (In this case we say that the sequence (xj)
tends to infinity.)

c. Let (xj)jEN be a sequence in X and x a point in X. Prove that
limj,+oo d(x j, x) = 0 if and only if limj,+oo 8(x j, x) = 0. Together
with the preceding result, this shows that the convergence of se-
quences in k, and therefore the topology of (X, 6), does not depend
on the choice of d and 6.

d. Prove that (X, 6) is a compact metric space.
e. Prove that X is compact if and only if oo is an isolated point of X.
f. We now suppose that X = Rd. Prove that X is homeomorphic to

Sd, the (euclidean) unit sphere in Rd+1' that is,

d+1

Sd={xERd+l:Exi =1},
l i=1

with the distance induced by the euclidean norm in Rd+1
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Hint. Use stereographic projection, the map w : Sd -> P defined by
cp(0,... , 0,1) = ooand

WW =
/
I xJ ) for x :h (0,...,0,1).

1 - xd+1 1<j<d

g. Prove that Co(X) can be identified with the space of continuous
functions on k that vanish at oo.

h. Deduce that Co(X) is separable.
i. Prove that the Stone-Weierstrass Theorem, stated in Exercise 8b on

page 41 for R, generalizes to the case where R is replaced by X.
j. Ascoli's Theorem in C0(X). Prove that a subset H of Co(X) is rel-

atively compact in Co(X) if and only if it is bounded and equicon-
tinuous and satisfies the condition that for every e > 0 there exists
a compact subset K of X such that Ih(x)I < e for every x E X \ K
and every h E H.

8. Let X be a locally compact space. Prove that X is separable if and only
if Co(X) contains a function taking positive values everywhere.
Hint. X is separable if and only if it is a-compact.

9. Let (X, d) be a metric space.
a. Prove that Cb(X) and C0(X), with the uniform norm, are Banach

spaces.
b. Prove that X is compact if and only if every continuous function

from X into R is bounded.
Hint. Show that, if X is not compact, there exists a sequence (xn)fEN
in X having no convergent subsequence and a sequence Of

positive real numbers tending toward 0 and such that the balls
are pairwise disjoint. Then consider E ENnWn, where

V,, (x) = (1 -
c. Prove that Cb(X) is separable if and only if X is compact.

Hint. Suppose that X is not compact and define, for each a E
{0,1}N, a function f,, by setting fa = EDEN ancpn, where the cpn
are as in part b. Prove that f,, E Cb(X) and that 11f,, - 1011 = 1 if
a # p. Then use Proposition 2.4 on page 9. (Side question: Among
the functions f1,, how many have compact support?)

10. Tietze Extension Theorem, continued. Let X be a locally compact
space, K a compact subset of X, and f a continuous function K -> K.
Prove that there exits a function f E CC(X) such that AK = f and
11111 = maxxEK If(x)I
Hint. Use Exercise 7 on page 40 and Proposition 1.8 above.

11. Extend the result of Exercise 1 on page 30 to the case where X is
separable and locally compact and C(X) is replaced by Co (X ).
Hint. One can use Exercise 7 to reduce the problem to the one covered
by the original result.
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12. Topology of uniform convergence on compact sets. Let X be a separa-
ble, locally compact metric space and (K,,) an exhausting sequence of
compact sets of X. Let C(X) be the vector space consisting of continu-
ous functions from X into K. For each element f of C(X) define a real
number q(f) as

too
q(f) = >2-"min(1,

II IIK,. represents the uniform norm on Kn.
a. Prove that the map d : (f, g) -+ q(f -g) is a metric on C(X ).
b. Let (fk)kEN be a sequence of elements of C(X) and let f be an

element of C(X ). Prove that (fk) converges to f uniformly on every
compact of X if and only if limk-, +oo d(fk, f) = 0.

c. Prove that the metric space (C(X), d) is complete.
d. For n E N, let (cpn,p)pEN be a dense sequence in C(K,,). We know by

Exercise 10 above that we can extend each cpn,p to a function tpn,p E
Cc(X). Prove that the family (01,p)(1,p)EN2 is dense in (C(X), d).

e. Deduce that the metric space (C(X ), d) is separable and that Cc (X)
is dense in (C(X),d).

f. Deduce that (Cb(X), d) and (Co(X ), d) are complete if and only if
X is compact (see Exercise 9b above).

g. Ascoli's Theorem in C(X). Let H be a subset of C(X). Prove that
H is relatively compact in (C(X), d) if and only if it satisfies the
following conditions:

- H is equicontinuous at every point of X.
- For every point x of X, the set {h(x)}hEH is bounded.

Hint. Carry out the diagonal procedure using Ascoli's Theorem on
each compact Kn.

2 Daniell's Theorem

This section approaches integration from a functional point of view. We as-
sume the reader is familiar with the set-theoretical approach to integration,
where a measure is defined as a a-additive function on sets.

Notation. Let X be any nonempty set. We denote by IF the vector space
over R consisting of all functions from X to R. This space, with the usual
order relation, is a lattice: If f and g are elements of 5,

(sup(f,9))(x) = max(f(x),9(x)) and (inf(f,g))(x) = min(f(x),g(x)).

If (fn) is a sequence in Jr and f is an element of 5, we write fn / f to
mean that the sequence (fn) is increasing and converges pointwise to f;
the meaning of fn \ f is analogous.
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As before, we use the same symbol for a constant function and its value.
If m is a measure on a a-algebra of X, we denote by 2' (m) the subspace

of F consisting of m-integrable functions. As usual, we denote by L' (m)
the quotient vector space of 2'(m) by the equivalence relation given by
equality m-almost everywhere, endowed with the norm defined by 11111 =
f If I dm (we use the same symbol f for an equivalence class and one of its
representatives). The normed space L' (m) is then a Banach space.

During the remainder of this section, we consider a vector subspace L of
. that is a lattice (this is equivalent to saying that f E L implies If I E L)
and satisfies the following condition:

There exists a sequence (p,,) in L such that cpn / 1. (*)

We will denote by o(L) the a-algebra generated by L, that is, the smallest
a-algebra of X that makes all elements of L measurable. Finally, let 2 be
the set of functions from X to R that are a(L)-measurable.

Lemma 2.1 2 is the smallest subset of Jr that contains L and is closed
under pointwise convergence (the latter condition means that the pointwise
limit of any sequence in 2 is also in 2).

Proof. It is clear that a minimal set satisfying these conditions exists. Call
it..
- . is a vector subspace of . ' and a lattice, and it contains the constants.

Proof If A E R, the set { f E 9 : of E .} contains L and is closed
under pointwise convergence, so it contains .. Therefore f E . and
AERimply \f E..
Similarly, for every g E L, the set If E Jr : f + g E .} contains .,
so the sum of an element of L and one of . is in R. Using the same
reasoning again we deduce from this that, for every f E ., the set
{h E 9 : f + h E .} contains .. Thus the sum of two elements of .
is in ., and . is a vector space.
Since L is a lattice we see by considering the set If E 9 : If I E .}
that. is a lattice as well. That. contains 1 and therefore all constants
follows from condition (*).

- We now show that . = Y. Set J = {A C X : IA E .}. By the
preceding paragraphs, .% is a a-algebra. If f E L and a E R, the charac-
teristic function of the set If > a} is the pointwise limit of the sequence
(inf(n(f -a)', 1)), and so belongs to ., and If > a} E.T. Thus the
elements of L are .l-measurable, which implies that a(L) C T; in other
words, 1A E . for A E a(L). Since every a(L)-measurable function is
the pointwise limit of a(L)-measurable piecewise constant functions, we
deduce that 2 C . and, by the minimality of ., that 2 = ..
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Example. Let X be a metric space. Recall that the Borel a-algebra of
X is the smallest a-algebra of X that contains all open sets of X, and that
the corresponding measurable functions are called Borel functions.

Proposition 2.2 If X is a metric space, the set of Borel functions from
X to R is the smallest subset of .9' that contains all continuous functions
from X to R and is closed under pointwise convergence.

Proof. Let L be the set of continuous functions from X to R. Then L
is a lattice and satisfies (*), since 1 E L. On the other hand, let . be
the Borel o-algebra of X. Certainly every continuous function on X is .-
measurable, so o(L) c .. Conversely, every open set U of X is contained
in a(L): to see this, note, for example, that U is the inverse image of the
open set R` under the continuous function f defined by f (x) = d(x, U').
Thus . C a(L), which implies . = a(L). Now apply Lemma 2.1. 0
Remark. One should not confuse 2 with the set of pointwise limits of
sequences in L, which is generally strictly smaller that Y. In the situation
of the preceding example, this smaller set is called the set of functions of
first Baire class: see Exercise 4.

The rest of this section is devoted to the proof of the following result:

Theorem 2.3 (Daniell) Let it be a linear form on L satisfying these
conditions:

1. A is positive, that is, if f E L satisfies f > 0 then µ(f) > 0.
2. If a sequence (fn) in L satisfies fn \, 0, then p(fn) = 0.

Then there exists a unique measure m on the o-algebra o(L) such that

L C 21(m) and µ(f) = if dm for all f E L.

Uniqueness of m. Suppose that two measures ml and m2 satisfy the stated
properties. Let (cpn) be a sequence satisfying condition (*) on page 58. For
every n E N and every real A > 0, the set

Jinf(f+An)dm2}if E.2°: Jinf(f+An)dmi =

equals ., by the minimality of 2 (proved in Lemma 2.1) and the Domi-
nated Convergence Theorem. Making n go to infinity, then A, we conclude
by the Monotone Convergence Theorem that f f + dml = f f + dm2 for all
f E Y. Therefore mi = m2 on o(L). 0
Existence of m. The proof of existence is rather long and is carried out in
several steps. First of all, let V be the set of functions from X into R that
are pointwise limits of increasing sequences of elements of L. The measure
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m is constructed by first extending the linear form µ to V (steps 1-3),
then to the space L' defined in step 6 below. Some properties of L' and of
p are established in step 7, allowing us to conclude the proof in step 8.

1. The set °Il contains the positive constants, is closed under addition and
multiplication by nonnegative reals, and for any pair (f, g) of elements
of °1l, we have sup(f, g) E V and inf(f, g) E 'Pl. Moreover 'P1 is closed
under pointwise convergence of increasing sequences.

Proof. Only the last assertion requires elaboration. Let (f,,) be an in-
creasing sequence in °Pl converging toward an element f of Jr. By
assumption, there exists, for any n E N, a sequence (gn,m)mEN in L
that is increasing and converges to fn. For each m E N, set hm =
supo<n<_m gn,m It is clear that (h,n)mEN is an increasing sequence in L
and that gn,,n < h,n < An if m > n. Making m go to infinity in this
inequality, we get fn < h,n < f; then making n go to infinity,
we get h,n / f , which shows that f E 'Pl.

2. Let (fn) and (gn) be increasing sequences in L, converging pointwise to
elements f and g of °ll, respectively. If f < g, then

lim µ(fn) < lim µ(gn) < +00-
n 1+oo n-+oo

Proof By linearity and positivity, the linear form p is increasing on L
(f < g implies L(f) < L(g)). On the other hand, for each n E N, we
have inf (fn, gm) J' fn as m goes to infinity, so lim,,+oo µ(inf(fn, gm))
= µ(fn), by assumption 2 of the theorem applied to the sequence
(fn - inf(fn,gm))m It follows that µ(fn) < lim,n_++ooµ(gm) for all
n E N, and this shows the result.

3. We extend µ to 'l by setting p(f) =limner+ µ(fn), where f E °1l
and (fn) is an increasing sequence in L that converges to f pointwise.
By step 2, µ is well-defined and increasing on V, and it takes values
in (-oo, +oo). Moreover, µ is additive (that is, µ(f + g) = µ(f) + µ(g)
for f, g E P1) and, for all f E 'Pl and every nonnegative real A, we
have µ(A f) = Ap(f), with the usual convention 0. Now, if (fn)
is an increasing sequence in P1 that converges to f E 9 pointwise,
µ(f) = limn-,+oo p(fn)

Proof. By step 1, f is in V. Using the same notation as in the proof of
that step, we can write

u(fm);µ(f) = mllim u(hm) <
M-++00

the reverse inequality is a consequence of the fact that µ is increasing
in V.
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4. We now extend p to -'P1 by setting p(- f) _ -IL(f) for f E V. This
gives no rise to inconsistencies: if f E 'P1 fl (-'P1), then f + (-f) = 0
and therefore p(f) + p(- f) = 0 and p(f) _ -p(-f). It is also clear
that

µ(9 - h) = p(g) - p(h) if 9 E 'Pl and h E -fl.
In particular, if g E 9l and h E -'1, then h < g implies p(h) < p(g).

5. Let 'Y be the set consisting of elements f E 9 such that there exist
g E 91 and h E -91 with p(g) and p(h) finite and h < f < g. For
f E 'Y', we put

p*(f)=inf{p(g):gE°ll andg> f}ER,
p.(f) = sup{p(h) : h E -`P/ and h < f} E R.

The following properties follow easily from steps 3 and 4:
- For every f E I' and every nonnegative real A we have p, (f) _<

p*(f), p*(-f) = -p*(f), p*(Af) = Ap*(f), and p*(Af) = Au.(f)
- For every pair (fl, f2) of elements of 3', we have µ'(f1 + f2) <

pf(f1) + p*(f2) and p. (f, + f2) ? p*(fl) + A-(f2)

-

- For every pair (fl, f2) of elements of 7' such that fl < f2, we have
p' (fl) < p* (f2) and p* (fl) :5 u* (f2).

6. We extend p to the set L 1 = if E 'A' : p* (f) = p, (f) } by putting
p(f) = p* (f) = p, (f ), for f E L'. This definition is clearly consistent
with the ones given in steps 3 and 4 for elements of 91 and -W. Note
that L1 is a vector space containing L and that p is a positive linear
form on V.

7. Some properties of L1 and p
a. The vector space L1 is a lattice.

Proof. Notice first that an element f of 9 belongs to Ll if and only
if for all e>0there exist gE9 andhE -'Plsuchthath< f <g
and p(9) - p(h) = p(9 - h) < e.
Now take f E L1 and e > 0, and choose g E 'l and h E -O& as
just described. Then g+ and h- are in 9, and g- and h+ are in
-91; furthermore, h+ + g- < If I < h- + g+. On the other hand,
p(h + 9+) - p(h+ + g-) = p(9 - h) < e.

b. Let (fn) be an increasing sequence in L1 that converges pointvwise to
a function f . In order that f E L 1, it is necessary and sufficient that
limn,+oo p(fn) < +oo and that then be an element g of 'Pl such
that f < g. If this is the case, p(f) = limn. +oo p(fn).
Proof. The condition is clearly necessary; we show sufficiency. Since
f > fo, there exists h E -'l such that p(h) is finite and h < f.
At the same time, p. (f) _> limni+,,. p(fn). Now take e > 0. There
exists a sequence (g,,) in'Pl satisfying fo <- go, p(go) <- p(fo) + e/2
and, for all n E N*,

fn - fn-1 < 9n and p(9n) <- p(fn - fn-1) + 2-n-le.
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Set I = inf (EPEN gP, g). Then I E °l! by step 1; also, l > f and

+00

p(1) < >) (gP) < nl+im,µ(fn) +E

p=a

(see step 3). It follows that f E Y and

p*(f) = p'(f) = lim p(fn)n++oo

c. Let (fn) be a sequence in L' converging pointwise to f . If there exists
an element g of V such that I fns < g for all n E N, then f E L' and
p(f) = A(fn)-
Proof. Clearly f E V and, for all n, the function hn defined by

hn = lim inf fkp-++00 n<k<p

belongs to 'Y. Moreover, hn / f. We deduce, by an application of
7a and two of 7b, that f E L' and p(f) < lim infk-++0 p(fk). One
shows likewise that p(f) > lim supk,+oo p(fk).

d. If g E L' and f E 2 satisfy 0< f< g, then f E Ll.
Proof. Assume g E L1 satisfies g > 0. The set

{f E9:inf(f+,g)EL1}

contains L, by steps 6 and 7a; by step 7c, it is closed under point-
wise convergence. Therefore it contains 2, by Lemma 2.1. This im-
plies the desired result: if f E -0 and 0 < f < g, then f = f + _
inf(f+,g) E L'.

Definition of the measure m. For A E o(L), we set m(A) = p(1A) if
1A E L1 and m(A) = +oo otherwise. All that remains to do is prove
that m satisfies the properties stated in the theorem.
- o-additivity of m. If A and B are disjoint elements of o(L), there

are two possibilities: either 1A and 1B are both in L', in which
case m(A U B) = m(A) + m(B); or one of 1A and 1B is not in
L', in which case neither is 1AUB (by step 7d), and we still have
m(A U B) = m(A) + m(B). Now let (An) be an increasing sequence
of elements of o(L), with union A. If all the 1A., are in L', we have
limn,+ m(A,,) = m(A) by step 7b; otherwise, by 7d, we have
1A V L1 and IA,. L1 for large enough n, and limn..,+,om(A,,)
+oo = m(A).

- Finally, take f E L1 n2 with f > 0. The function f is the pointwise
limit of an increasing sequence of piecewise constant positive func-
tions that belong to 2, and so also to L' by step 7d. By applying



2 Daniell's Theorem 63

the Monotone Convergence Theorem to the measure m and using
property 7b for p, we conclude that f E 2' (m) and f f dm = µ(f),
and in fact that this equality holds for all f E L' n 2 and so for
f E L since L C L' n Y. This proves Theorem 2.3.

The next proposition follows quickly from the preceding proof.

Proposition 2.4 Under the same assumptions and with the same nota-
tion as in Theorem 2.3, the space L is dense in the Banach space L' (m).

Proof. We maintain the same notation. It suffices to show that if A is in
a(L) and m(A) is finite then for every e > 0 there exists an element rp
of L such that tc(11A - WI) < e. If e > 0, there exists v/i E 'W such that
IA < 10 and p(r') < (1A) + e/2. Now let cp E L be such that ip < y/' and
µ('+') !5 µ(S') + E/2. Since I1A - (v1 <- (0 - 1A) + (P - W) and t E L' by
step 7b, the desired result follows.

Exercises

1. a. Let Cl be a set and E a a-algebra on Cl (recall that the pair (Cl, E)
is then called a measure space). Let L be a vector subspace of the
space of real-valued E-measurable functions, such that L is a lattice,
a(L) = E, and L contains an increasing sequence that converges
pointwise to 1.

i. Let ml and m2 be measures on (Cl, E). Prove that, if L C
2'(ml) fl 2'(m2) and f f dml = f f dm2 for all f E L, then
ml =M2-

ii. Let m be a measure on (fl, E) and h a complex-valued E-mea-
surable function such that, for all f E L, the product f h is
in SP' (m) and f f h dm = 0. Prove that h vanishes rn-almost
everywhere.

b. Assume that Cl = Rd and that E is the Borel a-algebra. Let Q be
the set of subsets of Rd of the form (al, bl] x x lad, bd], with
aJ, bJ E R and aj < bj. A Borel function h from Rd to C is called
locally integrable if fc Ih(x)I dx < +oo for all C E Q, where dx is
Lebesgue measure on Rd. Prove that if a locally integrable function
h : Rd -+ C satisfies fc h(x) dx = 0 for all C E Q, it vanishes
dx-almost everywhere.
Hint. Prove that f f (x) h(x) dx = 0 for all f E CR (Rd)

c. Let m be a Borel measure on R and let h be an m-integrable Borel
function from R to C. Prove that if

JexYh(y)drn(y)=0 forallxER,

then h vanishes m-almost everywhere.



64 2. Locally Compact Spaces and Radon Measures

Hint. Prove, using Fubini's Theorem and Exercise 8e on page 42,
that f f (y)h(y) dm(y) = 0 for all f E Co(R).

d. Prove likewise that, if mi and m2 are Borel measures of finite mass
on R such that

J e`'Y dml (y) = J e'xsdrn2 (y) for all x E R,

then ml = M2-
2. The monotone class theorem. Let S2 be a set. A subset 9 of Y (fl) is

called a monotone class if it satisfies the following properties:
SlE9.
IfT,SE9andTCS,then S\TE9.
For every increasing sequence (Tn)nEN in 9, the set UnEN Tn is in
9.

Let I be a subset of .9(e) closed under finite intersections (this means
that the intersection of two elements of ci is in 9). Show that the small-
est monotone class containing 9 is closed under finite intersections, and
therefore is a a-algebra.
Hint. Use for inspiration the proof of Lemma 2.1 on page 58. More
precisely, denote by 9 the smallest monotone class containing c9; show
first that the set of T E 9 such that T fl A E 9 for all A E 9 coincides
with T.

3. Let X be a locally compact and separable metric space.
a. Set L = CR (X ). Prove that L satisfies the assumptions of this sec-

tion. In the sequel, as in the proof of Theorem 2.3, we will denote
by °I/ the set of pointwise limits of increasing sequences in L.

b. Take f E V. Prove that f is lower semicontinuous (which means
that for all real a the set If > a} is open) and that the set If < 0}
is relatively compact.

c. Let f be a lower semicontinuous function from X to R taking non-
negative values.

i. Prove that, for all point x of X,

f (x) = sup V(x).
(X)

W<f

ii. Let (K,,) be a sequence of compact sets exhausting X. Prove that
for every n E N' there exists 'p,, E CC (X) such that SOn < f and
cpn(x) > f(x) - 1/n for all x E Kn.

W. Prove that the sequence (tp,,) converges pointwise to f ; then
prove that f E W.

d. Let f be a lower semicontinuous function from X to R such that the
set K = If < 0} is compact.
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i. Prove that f is bounded below.
H. By reducing to the case treated in the preceding question, deduce

that f E V.
Hint. If K is nonempty, consider the function f + cp, with cp E
C,, (X) such that V = - infxEx AX) on K.

e. Deduce that V fl (-61!) = CR(X).
4. Functions of first Baire class. A function from R to R is of first (Baire)

class if it is the pointwise limit of a sequence of continuous functions
from R to R. We denote by . the set of such functions. If f is a function
from R to R, we write IIfII = supXERIf(x)I (so IIf1I can be +oo). We
say that a function f from R to R is F0-measurable if, for every open
subset U of R, the set f -1(U) is an F0, that is, a union of countably
many closed subsets of R.
a. Prove that the uniform limit of a sequence of functions of first class

is a function of first class.
Hint. Let (fn) be a sequence of elements of W that converges uni-
formly to a function f. After passing to a subsequence if necessary,
we may assume that 11f - fn II < 2-n for every n E N. Thus f is the
uniform limit of the series of functions EnEN(fn - fn-1) (where by
convention f-1 = 0). Prove that there exists, for each integer n > 1,
a sequence (Wnk)kEN of continuous functions that converges pointwise
to fn - fn-1 and satisfies II(pnII < 2-n+2 for all k E N. Then prove
that the sequence of functions (on) defined by

)n=p1+2 "'+n
converges pointwise to f - fo.

b. Prove that every function of first class is F0-measurable.
c. Prove that 9 is not closed under pointwise convergence.

Hint. Let (fm)mEN be the sequence in . defined by

fm(x) = lira cos(m! 7rx)2n
n 4+00

Prove that it converges pointwise to the function 10; then use Exer-
cise 6g-ii on page 23 to show that 1Q V R.

d. Let f be a function of first class from R to R.

I. Let (Un)nEN be a basis of open sets of R (see Exercise 1 on
page 10) and, for each n E N, set An = f-1(Un)\Int(f-1(Un)).
Prove that all the An are FQ's having empty interior, and that
the set of points where f is not continuous is UnEN An.

ii. Deduce that the set of points where f is continuous is a Ga (that
is, the complement of an F0) and is dense in R.
Hint. Use Baire's Theorem, Exercise 6 on page 22.
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iii. Use this to give another proof that the function 1Q is not of first
class.

e. Let (Uk)kEN be a sequence of open sets in R and set G= nkEN Uk.
Prove that there exists a function f of first class such that G =
f-1({0}).
Hint. Prove that, for every k E N, there exists a continuous function
fk such that Uk = fk I(R'). Then, for k E N and x E R, set gk(x) =
limn,+oo e-nfk(x). Prove that the function f = F,k o 2-kgk satisfies
the desired conditions.

f. Let f be a bounded and F,-measurable function from R to R. We
wish to show that f is of first class. Choose (a, b) E R2 such that
a < b and f (R) C [a, b]. Choose also e > 0 and a subdivision (a0 = a,
a1, . . . , an = b) of [a, b] with step at most a (this means that 0 <
ai - ai_ 1 < e for l < i < n).
i. Prove that, for each i E { 1, ... , n}, there exists fi E Y such that

fi I({0}) _ {ai_1 < f < ai}. In the sequel we will also write
f0=fn+1=I-

ii. For each i c { 1, ... , n}, set

i-1 n+1

Wi = H fj, ti = H fj,
j=0 j=i+1

2

9i
'Pi=

gyp;

Prove that 9i E R. (Note that cpi + ii; is never zero.)
iii. Set g = ao + E 1(a, - ai_1)gi. Prove that g E R and that

]Ig- fD <e.
iv. Prove that f E 5d.

g. Prove that every F,-measurable function f is of first class.
Hint. If f is unbounded, consider f = (1 + ef)-1.

h. A function from R to R is of second (Baire) class if it is the pointwise
limit of a sequence of functions of first class. (Earlier we saw an
example of a function of second class that is not of first class). By
working as in the preceding questions, prove that a function f is of
second class if and only if the inverse image under f of every open
set in R is a countable union of G6 sets.

5. Infinite product of measures, o-compact case. Let X = RN be the set
of sequences x = (xn)nEN in R, endowed with the product distance
(defined on page 13). Consider a measure p on the Borel o-algebra
of R satisfying µ(X) = 1 - in other words, a probability measure on R.
Denote by L the set of functions W on X for which there exist an integer
n E N and a function f E Cb (Rn+1) such that v(x) = A X0, ... , xn).
Define a linear form f on L by setting, for W(x) = f (xo,... , xn ),

f(v) = fRn+ I
P X0, ... , xn) dµ(x0) ... dµ(xn)-
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a. Prove that 4) is well-defined on L (note that the representation
(p(x) = f (xo, . . . , xn) is not unique).

b. Prove that the set L satisfies the conditions of page 58.
c. Let R(X) be the Borel a-algebra of the space X.

i. Let D be a countable and dense subset of X, and let I&D be
the basis of open sets of X defined in Exercise lb on page 15
(with Xp = R for all p). Prove that I&D C a(L) and deduce that
R(X) C a(L) (use Exercise la on page 10).

ii. Prove that all elements of L are continuous functions on X and
deduce that V(X) = a(L).

d. We wish to show that condition 2 of Daniell's Theorem is satisfied.

i. Take a E (0, 1). Prove that, for all n E N, there exists a compact
Kn of R such that p(Kn) > 1 -an+l. Then put K(n) = H o K1
and K = jl o K,. Thus, for each n, the set K(n) is compact in
Rn+1 and K is compact in X (by Tychonoff's Theorem).

ii. Prove that, for all n E N,

J
1R.,+'\K(-) (x0' ... , xn) d1L(x0) ... dµ(xn) < 1 a a

Hint. Check that the set Rn \ K(n) is contained in the union of
the sets (R\Ko) x Rn-1, R x (R\Kl) x Rn-2, R2 x (R\K2) x
Rn-3 ...

iii. Let (Wk)kEN be a decreasing sequence in L converging pointwise
to 0. Prove that, for all k E N,

4)(Vk) !5 SUP 4k(X) + IIWklI 1 a a'
sE K

where 11.11 denotes the uniform norm on X. Deduce that

lim t(Wk) = 0.

(You might apply Dini's Lemma (see page 29) to the compact
space K, then make a vary.)

e. Show that there exists a unique probability measure v on X such
that

JR-1- f (x0' ... , xn) dA(xo) ... dµ(xn) = Jf(xo...x)dv(x),

for all n E N and f E Cb (Rn+1) This measure is denoted v =,O.
f. More generally, let (Xn)nEN be a sequence of a-compact metric

spaces, each Xn having a probability measure An. Prove that there
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exists a unique probability measure v on the space X = 11nEN X
(endowed with the product distance) satisfying the equality

JX(")
f(xo,...,x)dµ0(xo)...d(x) = f(x0,...,x)dv(x)

forallnENandfECb(X")) (where X")=iln0XX).

3 Positive Radon Measures

In all of this section we consider a locally compact and separable metric
space X. We denote by ,V(X) the Borel a-algebra of X. A Borel measure
on X is a measure on Y(X ). If m is a Borel measure, the mass of m is, by
definition, m(X) = f dm < +oo. The measure m is finite on compact
sets if m(K) is finite for every compact K of X.

Proposition 3.1 Let m be a Borel measure on X. There exists a largest
open set 0 such that in(O) = 0.

The complement of this set is called the support of m, written Supp(m).

Proof. Let LW be the set of all open sets 1 of X such that m(11) = 0. This
set is nonempty since it contains 0. Set 0 = Un 5! 0; this is an open set,
which we must prove has m-measure zero. If K is compact and contained in
0, it can be covered by finitely many elements of V. Each of these elements
has measure zero, so m(K) = 0. But 0 is o-compact (being locally compact
and separable), so it too has measure zero, by the o-additivity of m. 0

Examples

1. For a E X, the Dirac measure at a is the measure ba that assigns
the value 1 to a Borel set A if it contains the point a, and the value 0
otherwise. The support of ba is clearly {a}.

2. Take X = Rd and let Ad be Lebesgue measure on X (considered as a
Borel measure). Naturally, the support of Ad is Rd.

3. Take g E C+(Rd) and let m be the Borel measure on Rd defined by
m(A) = f g 1 A dAd, for any Borel set A. Clearly, every Borel function f
such that f g is Lebesgue-integrable is m-integrable, and

Jfdm = ff9dAd.

We now check that the support of m equals the support of g. Using the
continuity of g one shows easily that an open set 0 of Rd has m-measure
zero if and only if g = 0 on 11; this is equivalent to fl C g-'({O}). In
the notation of Proposition 3.1, this implies that 0 = Int(g' ({0})), so
the support of m is the same as that of g.
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A positive Radon measure on X is a linear form on CR (X) that
assigns a nonnegative value to every f E CI (X) such that f > 0- in
short, a positive linear form on CR (X). We denote by 9X+(X) the set
of positive Radon measures. This set is clearly closed under addition and
multiplication by nonnegative scalars. On the other hand, by linearity, if
p E 9X+ (X) and if f, g E CR (X) satisfy f < g, then p(f) < p(g). As an
immediate consequence we have:

Lemma 3.2 If p is a positive Radon measure on X,

(p(f)I <_ p(If1) for all f E CR(X).

If K is compact in X, we denote by CK (X) (or by CK (X), if no confusion
can arise) the set of elements of CK (X) whose support is contained in K.
Clearly CK (X) is a subspace of Cb (X ), closed with respect to the uniform
norm II II on Cb (X). Henceforth these spaces CK (X) will always be given
this Banach space structure induced from the one on Cb (X)_

Proposition 3.3 Let p be a positive Radon measure on X. For every
compact set K in X, the restriction of p to CK(X) is continuous; that is,
there exists a constant CK > 0 such that

Ip(f)IsCKIIfII forallfECK(X).

(We say that p is continuous on CR(X).)

Proof. Let K be compact in X. By Proposition 1.8 on page 53, there exists
WK E CC (X) such that 0 < WK < 1 and WK = 1 on K. Then, for all
f E CK (X ), we have If I <_ If II WK, and, by Lemma 3.2, I A(f )I <_ p(I f I) <_
IIf1I p(coK)

If m is a Borel measure on X finite on compact sets, one immediately
checks that the map p defined on Cct (X) by

µ(f) =for all f ECR(X)

is a positive Radon measure. The main theorem of this section states,
among other things, that all positive Radon measures on X arise in this
way:

Theorem 3.4 (Radon-Riesz) For every positive Radon measure p on
X there exists a unique Borel measure m finite on compact sets and such
that

p(f)=Jfdm for all f ECR(X).

The map p H m thus defined is a bijection between 9)I+(X) and the set of
Borel measures finite on compact sets, and it commutes with addition and
multiplication by nonnegative scalars.
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Proof. This will follow as a particular case of Daniell's Theorem. Set
L = CR (X ). This space satisfies the assumptions stated on page 58: in
particular, property (*) follows from Corollary 1.10 on page 53. Now take
it E OR+(X); we will show that assumption 2 of Theorem 2.3 is satisfied.
Let be a decreasing sequence in L approaching 0 pointwise. Each fn
has support contained in the compact set K = Supp fo. Thus, by Dini's
Lemma, (f,,) tends to 0 uniformly on K: in other words, f,, - 0 in CK (X ).
By Proposition 3.3, p(f,,) -+ 0.

Next we check that a(L) _ 69(X). Since every continuous function on X
is a Borel function, the smallest a-algebra that makes all elements of L mea-
surable is certainly contained in 66(X); that is, a(L) C R (X). Conversely,
R(X) C a(L) because every open subset 0 of X is a(L)-measurable. In-
deed, with the notation of Corollary 1.10, an element x E X belongs to 0
if and only if there exists n E N with cp,i(x) > 0. Thus 0 is the (countable)
union of the sets <pn 1 ((0, +oo)), which are a(L)-measurable since the func-
tions Wn are elements of L. Therefore 0 is a(L)-measurable and we finally
conclude that a(L) = .5d(X ).

Finally, we see that a Borel measure m on X is finite on compact sets if
and only if L C 2' (m). It now suffices to apply Theorem 2.3 to derive the
existence and uniqueness of m. The remaining statements of the theorem
are easy to check.

In the sequel we will often identify a positive Radon measure p with
the Borel measure m it defines. In particular, we use 2 (p) or SfK(m)
interchangeably for the space of m-integrable K-valued Borel functions,
and LK (p) or LK (m) for the associated quotient Banach space. As usual,
we omit the subscript K if no confusion is possible. Similarly, we can write
Supp p for Supp m, etc.

As a consequence of the preceding proof and of Proposition 2.4, we get:

Proposition 3.5 Let p be a positive Radon measure. The space C(X)
is dense in the Banach space LR(p).

This of course implies that CC (X) is dense in Li(p).

We now look at positive linear forms on Ca (X ). Denote by W1I (X) the
set of positive Radon measures p of finite mass. Note first that a positive
Radon measure p of finite mass can immediately be extended to a linear
form mJ, on Co (X); just set, for all f E Co (X),

mµ(f)=1fdJA,

where, as announced earlier, we make no distinction between the Radon
measure and the Borel measure it defines. The linear form mN thus de-
fined makes sense (since every continuous function bounded over X is p-
integrable), and it is clearly continuous: its norm in the topological dual of



3 Positive Radon Measures 71

Co (X) is at most 1L(X) - The next proposition asserts essentially that this
process yields all positive linear forms on Co (X) -

Proposition 3.6 For every positive linear form m on Co (X) there exists
a unique positive Radon measure p of finite mass and such that m = mµ,
or equivalently such that

m(f)= Jfdu for all f ECC(X).

Thus the map µ H mo is a bijection between filf (X) and the set of positive
linear forms on Co (X).

Proof. The uniqueness of u clearly follows from the inclusion of CR (X) in
Co (X). The important point is existence.

We first show that m is continuous. If not, there exists a sequence (fn)
in Co (X) such that, for all n, IIfnII <_ 1 and Im(fn)I > n. By replacing fn
by I fnl, we can assume that fn E CO '(X) (note that m(Ifnl) > Im(fn)I > n
because m is positive). Now set f = E, ° i fn/n2; this function is in Co (X)
because the series converges absolutely. But, for all integer N > 1,

>
M(fn) >

[N

MW 2 (
n=1 n=1 n

so m(f) _ +oo, an impossibility. It follows that m is continuous on Co (X).
Its restriction to CR(X) is a positive Radon measure p. Let (tpn) be an

increasing sequence in Q+, (X) converging pointwise to 1. By the Monotone
Convergence Theorem,

Jd= lim J pn d= lim m() < IImII,
n++oo

where IImII is the norm of m in the topological dual of Co (X). Thus p has
finite mass and mµ(f) = m(f) for all f E CR (X). Since CR (X) is dense in
Co (X) and since mµ and m are continuous, we get m = mµ. 0

Remark. The preceding proof also shows that the mass µ(X) of it equals
the norm of the linear form mµ in Co (X)'.

The rest of this section is devoted to examples.

3A Positive Radon Measures on R and the Stieltjes Integral

Let a be an increasing function from R to R. We will construct from a an
integral - in other words, a positive linear form f H f f da -generalizing
the Riemann integral (which will correspond to the case a(x) = x).
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First fix a<b.Forf
a subdivision of [a,b] with step 8(0) = maxi<j<n(xj - xj_1), we write

n-1

SA(f) = > (a(xj+1) - a(xj)) .,,may .,J f (x)
j=o

and
n-1

6n (f) _ : (a(xj+1) - a(x.,)) min f (x).

One

xE Jx xj+, J

One checks easily the inequalities

0 < Sn(f) - 6 (f) < (a(b) - a(a))
Ix-vlax

f(x) - f(y)I,
x,yEJa,bJ

so lim6(o)_+0 (SS(f) - 60(f )) = 0 since f is uniformly continuous on [a, b].
Next, suppose 01 and O2 are subdivisions of [a, b] with 01 C O2, by which
we mean that every subdivision point of 01 is a subdivision point of a2.
Then

nyn,(f) < 6n2(f) and St2(f) < SS,(f)
It follows from all this that

sup CSp(f) = infSS(f) = lim So(f) = lim CA(f).a o 6(A)-+0 6(0)-,0

The common value of these four expressions is denoted by fa f da. Thus,

b n-1

fa

uniformly with respect to sequences such that t j E [xj, xj+1]
for 0 bi < n - 1. We deduce that the map from CR ([a, b]) to R defined by
f " fa f da is a positive linear form.

If a < b < c and f E CR ([a, c]), Chasles's relation is satisfied:

jc
=

jb f da+ fb C fda.

Therefore, if f E CR(R), the expression fa' f da does not depend on the
choice of an interval (a, b] containing the support of f . We denote this ex-
pression by f f da. Thus, the map f H f f da is a positive Radon measure
on R. The associated Borel measure finite on compact sets (Theorem 3.4)
is written da, and is called the Stieltjes measure associated with a.
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Lemma 3.7 Let a be an increasing function from R to R. If a and b are
real numbers with a < b, then

da((a, b]) = a(b+) - a(a+),

where a(a+) and a(b+) denote the right limits of a at a and b.

Proof. Let (Wn)n>1 be a sequence in C'(X) such that 0 < con < 1, tpn = 1
on [a+1/n, b-1/n], and Wn = 0 on R \ [a + 1/(n+l), b - 1/(n+1)]. Then

a(b-n)-a(a+n)< f tondo<a(b n+1)-a(a+n+ll.

By passing to the limit, we get

da((a, b)) = a(b-) - a(a+), (*)

where a(x_) is the left limit of a at x. This is true for any a and b with
a < b. Applying it to the terms of the sequences (an), (bn) defined by
an = b-1/n, bn = b+1/n and taking the limit, we deduce that da({b}) =
a(b+) - a(b_), which, together with (*), yields the desired relation. 0

This formula will allow us to demonstrate that, conversely, every positive
Radon measure on R is a Stieltjes measure.

Theorem 3.8 Let p be a positive Radon measure on R. There exists a
unique increasing right-continuous function a with a(O) = 0 and p = da.

Proof. Uniqueness is clear since, by the preceding discussion, if a is right-
continuous and vanishes at 0, it is determined everywhere:

-11 ((x, 0])

a(x) = 0

A ((0, x])

ifx<0,
if x = 0,
ifx>0.

Conversely, define a by these relations. Then a is right-continuous and
vanishes at 0. Also, for a < b we have a(b) - a(a) = p((a,b]) (one checks
the various possible situations of 0 with respect to a and b).

Now suppose f E C' (R) is supported within [a, b], and let A= {x j }o<j<n
be a subdivision of [a, b]. Then

n-1

Jfd= > ffj=o

and so, sincep((xi, xj+1]) = a(xj+1) - a(xj),

6 (f)< Jfd S(f).
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By taking the limit we deduce that

J fdp=I'fda=Ifda,

which concludes the proof.

Remarks

1. By the same reasoning, if u is a positive Radon measure of finite mass on
R, there exists a unique increasing, bounded, right-continuous function
a such that limt__ao a(x) = 0 and µ = da. It is given by a(x) =
µ((-oo,x[). In this situation a is called the distribution function
of the measure /2. For example, the distribution function of the Dirac
measure as is Y. = 1(a,+oo)

2. Suppose a is an increasing function of class C' on R. Then

Jfda = Jf(x)o'(x)dx for all f E CR (R).

In short, da = a' dx.
Indeed, suppose f E R(R) is supported within [a,b] and let 0 =
{x2 }o<j<n be a subdivision of [a, b]. By the Mean Value Theorem, for
each j E 10,...,n-11 there exists E,, E [xj, xi+i ] such that a(x j+i) -
a(xj) = a'(t:l)(x1+i - xj). Therefore

n-1 n-1

f (a(xi+i) - 0,(x,))
=

E f (fi) a (0 (xi+i - x.i)
i=o i=o

Now it is enough to use the definition of the Stieltjes integral and that
of the Riemann integral.

3B Surface Measure on Spheres in Rd

For r > 0, we consider the sets

Br={xERd:lxl <r}, Sr={xERd:jxI=r}.

Here we will denote Lebesgue measure on Rd simply by A.

Theorem 3.9 There exists a unique family (or)rER+. of positive Radon
measures on Rd satisfying these conditions:

1. Supp or C Sr for every r > 0.
2. For all f E C(Rd) and r > 0,

Jf(X)dA7r(X) = rd-i Jf(ru)&.(u)
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3. For all f E C(Rd) and r > 0,

IB f (x) d,\(x) = I
r(ff(x) dop(x)) dp.

r o

We call 0r, for each r > 0, the surface measure on Sr.

Proof. Uniqueness. If a family (ar)rER+. satisfies conditions 2 and 3, we
must have, for all f E C(Rd),

d f
f (x) d,\(x) I = Jf(u)dai(u),

dr B, r=i

which determines uniquely the Radon measure of and thus also the ar, by
condition 2. (Note that conditions 2 and 3 are enough to prove uniqueness,
so condition 1 is a consequence of 2 and 3.)

Existence. Let w be the function from R+* x S1 to (Rd)* defined by
<p(r,u) = ru. Then cp is a homeomorphism and cp-1(x) = (IxI,x/jxI). If A
is a Borel set in S1, we write

A=cp((0,1)xA)={xERd:0<Ixj <1andx/jxj EA}.

A is a Borel set in Rd. We then put

al (A) = d A(A).

Visibly of is a Borel measure of finite mass on S1, and can also be regarded
as a Borel measure on Rd with support contained in S1. Next we define,
for every Borel set A in Sr,

or(A) = rd-1o1(A/r).

Likewise, ar is a Borel measure supported within Sr. The family (a,.) thus
defined certainly satisfies conditions 1 and 2; we need only check 3.

Let A be a Borel set in S1 and let r1, r2 be real numbers such that
0 < rl < r2. Then

A(V([ri,r2) x A)) = A(V((O,r2) x A)) - A(V((O,ri) x A))

= A(r2A) - A(r1A) = d(r2d - ri)oi(A).

On the other hand,

J
dp =

I'
op(pA)dp = J r d-ioi(A) dp

I t

d
- ri)ai(A).= d(r2
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Therefore

f 1lr,,r2)(1xD IA (jj) dA(x) = ,l
l(r,,rz)(P) (f 1A(x/P) do (x)) dP,

and this for all Borel sets A of SI and for any r1, r2 with 0 < r1 < r2. It
follows that if 0 < a < b we have, for all f E C([a, b]) and all g E C(SI),

f (f ® g) o P-'d.\ =
jb

(J (f 9) o w(la,bl

x S,)

Since C([a, b]) ®C(SI) is dense in C([a, b] x SI) (see Example 5 on page 35),
we obtain, for all f E C(cp([a, b] x S1)),

Lla,bl x S)

fda_jb(j)dP

Since W ([a, b] x SI) = Bb \ Ba, this proves condition 3. 0

Remarks

1. Since A is invariant under orthogonal linear transformations, so are the
ar. In particular, the support of ar equals Sr. In fact, up to a multiplica-
tive factor, ar is the unique measure supported within Sr and invariant
under orthogonal transformations: see Exercise 17 below.

2. Property 3 generalizes to all positive Borel functions on Rd: If f is such
a function, then

ffdA = f°°(Jf dap) dP = jd_1
(ff (Px) da1(x)) dp < +oo.

By ta king f = 1B we obtain, in particular,

f dal = d A(BI );

this is the area of S. Indeed, by the preceding discussion,

A(BI) = f f dA = f pd-1(f dal (x)) dp =
d

JdC'i(x).
J o

Also, for any nonnegative Borel function h on R+,

h(IxI) dx = (f ) Pd_ I h(P)dp < +ooJd j00
ince f h(jpxI) da1(x) = h(p) f dol.s



3 Positive Radon Measures 77

Exercises

Unless otherwise stated, X is a locally compact separable metric space.

1. Let p be a positive Radon measure on X. Show that Suppp is the
complement of the largest open subset 0 of X such that any function
f in CR(X) with support contained in 0 satisfies µ(f) = 0.

2. Prove that Proposition 3.1 holds when X is any separable metric space,
not necessarily locally compact.
Hint. Use the existence of a countable basis of open sets (Exercise 1 on
page 10).

3. A particular case of the Vitali-Caratheodory Theorem. Let p be a posi-
tive Radon measure on X. Prove that for everyµ-integrable and bounded
function f from X to R and for all c > 0, there exists an upper semi-
continuous function u and a lower semicontinuous function v such that
u < f < v and f (v - u) dp < e. (We say that u is upper semicontinuous
if -u is lower semicontinuous.)
Hint. Go over the proof of Daniell's Theorem (page 59) and use the
result in Exercise 3 on page 64.

4. Let it be a positive Radon measure on X and take f E LR (p). Prove that
there exist p-integrable and lower semicontinuous functions f+ and f_
with values in [0, +oo), such that f = f+ - f- µ-almost everywhere. (As
in the case of real-valued functions (Exercise 3 on page 64), a function
g with values in [-oo, +oo] is called lower semicontinuous if the set
{g>a} is open for allaER.)
Hint. Show that there exists a sequence (con) in CR(R) that converges
to f in LR (p) and µ-almost everywhere and such that l` (con - cpn+i I) <
2-n for all n E N. Then set f+ = coo + En a(Vn+1 - Wn)+ and f_ _
W0 + En 0(Wn+l - fin)

5. Regularity of Radon measures. (This is a sequel to Exercise 3 on page 64.)
Let p be a positive Radon measure on X.

a. Prove that, for every Borel set A of X,

p(A) = inf {JhdP : h is lower semicontinuous and h > 1A } .

b. Let A be a Borel set in X such that µ(A) is finite.

i. Take e > 0. Let h be a lower semicontinuous function such that
h > 1A and f h dp < µ(A) + e, and set

U= EX:h(x)> u(A)+eIx µ(A)+2e

Prove that A C U and that µ(U) < µ(A) + 2e.
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ii. Deduce that

µ(A) = inf{µ(U) : U is open and U D A}.

iii. Check that this is still true if p(A) = oo (this is obvious). A
measure p satisfying this equality for all Borel sets A is called
outer regular.

c. Let U be an open subset of X. Prove that

µ(U) = sup{µ(K) : K is compact and K C U}.

Hint. U is a-compact.
d. Let A be a Borel set of finite measure µ(A).

i. Let e > 0. Justify the existence of-
- an open set U in X containing A and such that µ(U) <p(A)+e;
- an open set V in X containing U\A and such that u(V) < 2e;
- a compact set K in X contained in U and such that u(K) >

µ(U) - e.
Finally, set C = K \ V. Prove that C C A and that µ(C) >
p(A) - 3e.

ii. Deduce that

µ(A) = sup{µ(K) : K is compact and K C A}.

iii. Generalize to the case of an arbitrary Borel set A. A measure p
satisfying this equality for all Borel sets A is called inner regular.
Hint. By exhausting X with a sequence of compact sets, prove
that A is the union of an increasing sequence of Borel sets of
finite measure.

e. i. Prove that for every Borel set A of X and all e > 0 there exists
an open set U in X such that A C U and µ(U \ A) < e.

ii. Prove that for every Borel set A of X and all e > 0 there exists
an open set U and a closed set F in X such that F C A C U
and u(U\F) <e.
Hint. Apply the preceding result to A and X \ A.

6. Lusin's Theorem. Let m be a positive Radon measure on X.
a. Let f be a Borel function on X with values in 10, 11. Prove that,

for any open set 0 of finite measure and any e > 0, there exists a
compact K C 0 such that m(O \ K) < e and the restriction f etc is
continuous on K.
Hint. Use Proposition 3.5, Exercise 15 on page 155 and the fact that
m is inner regular (see Exercise 5d).

b. Extend the preceding result to all Borel functions f from X to K.
Hint. First reduce to the case where f takes values in R', then
consider 1 = f /(1 + f ).
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c. Deduce that every Borel function f from X to K satisfies this prop-
erty:
(L) For every e > 0, there exists an open set w in X such that

m(w) < c and the restriction of f to X \ w is continuous.
Hint. Consider an increasing sequence (On)nEN of relatively com-
pact open sets that covers X. For each n, there exists a compact
Kn C On for which m(On \ K1t) < e2-n-' and f IK. is continuous.
Now set w = Un(O1 \ Kn). Prove that (X \ w) n O C Kn for every
n; then conclude the proof.

d. Show that a function f from X to K satisfies Property L if and only
if there exists a Borel function that equals f rn-almost everywhere.
Hint. To prove sufficiently, use the fact that m is outer regular (Ex-
ercise 5b).

7. a. Let it be a positive Radon measure on X, with support F. Let f E
CC(X) be such that f (x) = 0 for all x E F. Prove that f f dp = 0.

b. Let A = {an}n<N be a finite subset of X and p a positive Radon
measure on X. Prove that the support of a equals A if and only if p is
a linear combination of Dirac measures ba with positive coefficients.

c. Let A = {an} be a countable subset of X. For f E Cc (X) write

p(f) = E 2-nf(an).
nEN

Prove that p is a positive Radon measure on X whose support is the
closure of A.

8. a. Let F be a closed subset of X. Prove that F is the support of a
continuous function f from X to R if and only if F coincides with
the closure of F.

b. Let p be a positive Radon measure on X. W e denote b y 2 (p)
the space of locally p-integrable functions on X, by which we mean
Borel functions t : X -+ K such that 1K>Ji E 2'(p) for any compact
K of X. (For example, every continuous function on X is locally p-
integrable.) Fix a Eli E Yi(p) taking nonnegative values. For f E
CC(X), write

i(f) =J4'fd.
Prove that v is a positive Radon measure. Prove that

Supp v c {ip 0} n Supp p,

with equality if 0 is continuous.
c. For f E CC(R2), write

v(f) = jf(xx)dz.
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Prove that v is a positive Radon measure on R2 and determine its
support.
Is there a continuous function ip on R2 such that

v(f) = JR2 f (x, y) dx dy

for all f E Cc(R2)?
9. a. Let m be a positive linear form on CR (X ). Show that there exists

a compact K in X such that any f E CR (X) that vanishes on K
satisfies m(f) = 0.
Hint. Exhaust X by a sequence (Kn) of compact sets. Show that, if
there is no K as stated, there exists a sequence (fn) of elements of
C+(X) such that, for each n E N, the function fn vanishes on Kn
and m(fn) > 0. Then consider f = EnEN fn/m(fn)

b. Let 0+(X) be the set of positive Radon measures with compact
support. To every p E 931 (X), associate the positive linear form mµ
on CR (X) defined by

Jfdm,,(f)=µ f or f ECR(X).

Prove that the map p ,-> m,, is a bijection between 9X+(X) and the
set of positive linear forms on CR (X).
Hint. See the proof of Proposition 3.6 (page 71) for inspiration.

LO. Vague convergence. We say that a sequence (pn)nEN of positive Radon
measures on X converges vaguely to p E 911+(X) if

An(f) -+µ(f) for all f E Cc(X).

a. An example. Let (an)nEN be a sequence in X with no cluster point.
Prove that the sequence (San )nEN converges vaguely to 0.

b. Another example. Suppose X = (0, 1). Prove that the sequence (An)
defined by

n-1
An = n E 6k/n

k=1

converges vaguely to Lebesgue measure on (0, 1).
c. Let (µn) be a sequence in 9X+ (X) such that, for all f E CC (X), the

sequence (An(f )) converges. Prove that the sequence (pn) is vaguely
convergent.

d. Let p be a positive Radon measure and A a relatively compact Borel
set whose boundary has p-measure zero. Prove that, if (µn)nEN is a
sequence in 9A+ (X) that converges vaguely to p, then

n iim pµn(A) = µ(A).
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Hint. Show the existence of an increasing sequence in CC (X) that
converges pointwise to the characteristic function of A, and of a
decreasing sequence in Q+ (X) that converges pointwise to the char-
acteristic function of A. Then consider the lim sup and lim inf of the
sequence (pn(A)).

e. Let (pn) be a sequence in )1t+(X) such that

sup
1

f dpn < +oo for all f E CC (X).
nEN

(Check that this condition is satisfied if and only if supnEN pn(K) is
finite for every compact K of X.)
Prove that the sequence (pn) has a vaguely convergent subsequence.
Hint. Exhaust X by a sequence of compact sets (Kr) and apply
Corollary 4.2 on page 19 to each of the separable Banach spaces
Cx,,(X).

11. a. Let (fn) be a sequence of increasing functions from R to R such that
the series E fn converges pointwise on R to a function f . Prove that
the series En o dfn converges vaguely to df (see Exercise 10).
Hint. Consider cp E Cc (R), a compact interval [a, b) in R containing
the support of gyp, and a subdivision {xj}o<j<n of [a, b]. Prove that,
for every integer I E N,

n-1 +00

w(xj)(f(xj+l) -f(xi)) - II 'II (fk (b) - fk (a))
j=0 k=1+1

I n-i
>2 p(xj)(fk(xj+1) - fk(xj))

k=0 j=0
n-1

>2 (xj)(f(xj+i) - f(xj)).
j=o

b. Example. Let (an) be a sequence in R and (cn) a sequence in R+ such
that EnEN en < +oo. Prove that the series of measures &>o cnA ,
converges vaguely to a positive Radon measure whose distribution
function is f = F,n o cnYan, where Ya = l

12. Narrow convergence. We say that a sequence (pn)nEN of positive Radon
measures of finite mass on X converges narrowly top E fit j (X) if

An(f) - p(f) for all f E Cb(X).

Every narrowly convergent sequence is vaguely convergent (Exercise 10).
a. A counterexample. Let (an)nEN be a sequence in X with no cluster

point. Prove that the sequence (d )nEN does not converge narrowly
to 0.
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b. Let p be a positive Radon measure of finite mass and A a Bore]
set whose boundary has p-measure zero. Prove that, if (pn)nEN is a
sequence in fit f (X) that converges narrowly to p, then

lim A. (A) = p(A).
n-f+00

Hint. Work as in Exercise 10 above.
c. Let (An) be a sequence in'9Rj (X) and suppose y E9ltl (X). Prove

that the sequence (An) converges narrowly to p if and only if it
converges vaguely to it and limn..+0 An (X) = AV) -
Hint. For the "if" part, fix f E Cb (X) and e > 0. Show that there
exists a function a E Cc (X) such that a < 1 and f (1 - a) dp < e;
then write

An(f) - p(f) = pn(af) - p(af) + pn((1-a) f) - p((1-a) f).

d. Theorem of P. Levy. If v is a positive Radon measure of finite mass
on R, we denote by i the function defined on R by

v(x) _ Je%txdv(t).

Let (pn)nEN be a sequence in 9R f (R) and pan element of T? f+ (R).
Prove that (An) converges narrowly to p if and only if the sequence
of functions converges pointwise to A.
Hint. Prove that if (µn) converges pointwise to ft, then (f dpn) con-
verges to f dp and there exists a dense subspace H in Co (R) such
that

lim f h dpn =
1
fh dp for all h E H

n-++00J

(see Exercise 8e on page 42). Conclude with Proposition 4.3 on
page 19.

13. a. Let p be a positive Radon measure on X. Suppose the support K
of it is compact. Show that there exists a sequence (An) of Radon
measures of finite support contained in K that converges narrowly
to p (see Exercise 12).
Hint. Take n E N'. Construct a partition of K into finitely many
nonempty Borel sets (Kn,P)P<p of diameter at most 1/n. Then, for
each p < PN, choose a point xn,p in Kn,p and set

An = E p(Kn,P)bx...y-
P<_Pn

b. Generalize to the case of any positive Radon measure of finite mass.
14. Let g be a Borel function on R taking nonnegative values and locally

integrable (see Exercise lb on page 63). Let a be a real number. Consider
the function G on R defined by G(x) = fQ g(t) dt.
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a. Prove that

ffdG = ff (x)g(x) dx for all f E

where dx isLebesgue measure on R.
Hint. If [a, b] is an interval containing the support off and {xj }o<j<n
is a subdivision of [a, b], and if we take for each j E {0, ... , n - 1} a
point tj E [xj, xj+1[, then

n-1 b n-i
f(tj)(G(xj+1)-G(xj))= f f(tj)g(x)dx.
j=0 a j=0

Now use the Dominated Convergence Theorem.
b. Prove that the equality of the preceding question holds when f is

any positive Borel function.
15. Recall that fR a-x'dx = f. For all real t > 0, put

+oo

r(t) = f xt-to-xdx.
0

Let 8d be the area of the unit sphere in Rd, that is, the mass of the
surface measure of the unit sphere in Rd. Prove that 8d = 2ird/2/r(d/2).
Deduce the Lebesgue measure of the unit ball in Rd.
Hint. Compute fkd e-1112dx in two ways.

16. Let a1 be the surface measure of the unit sphere S1 in Rd.
a. Suppose d = 2. Prove that, for any Borel function f from R2 to R+,

2A

if da1 = f f (cos 0, sin 0) d9.
0

Hint. Use polar coordinates.
b. Suppose d = 3. Prove that, for any Borel function f from R3 to R+,

r2A A/2
if dal =

J
fA/2 f (cos 0 cos W, sin 0 cos gyp, sin W) cos d9 &,p.

o

Hint. Use spherical coordinates.
17. Let a be a positive Radon measure on Rd whose support is contained

in the unit sphere Si. Assume a is invariant under orthogonal linear
transformations; that is, for any orthogonal endomorphism 0 of Rd and
any f E C(Rd),

Jf(Ox) da(x) = Jf(x) da(x).
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a. Show that there exists a function ho from R+ to C such that

J e'u-da(y) = h,(IuI) for all u E Rd,

where u y is the scalar product of u and y in Rd. We define h
analogously, starting from the surface measure al on S1.

b. Prove that, for all t //E R+,

r
J ha(tiu[)da,(u) J= h.,(tiyi)do,(1l),

and so that h,(t) = h (t) (f do,) (f dvl).
c. Deduce that

Hint. Generalize to Rd the result of Exercise id on page 64.
L8. Infinite product of measures, compact case. Consider the space

X=[0,11N={x=(xn)nEN:x,,E[0,1)forallnEN),

and give it the product metric
00

d(x, y) = E 2-nIxn - YnI.
n=0

With this metric, X is compact, by Tychonoff's Theorem. Consider also
a sequence (mn)fEN of probabitity measures-that is, Borel measures
of mass 1-on [0,1].
a. Show that, for each n E N, the function that maps x E X to xn E

[0, 11 is continuous (in fact, Lipschitz).
b. For n E N, denote by Fn the set of functions from X to R of the

form
x H f (x0, ... , xn),

with f E CR ([0,1]n+1). Prove the following facts:

i. Fn is a vector subspace of CR(X) for all n E N.
H. Fn C Fn+1 for all n E N.

iii. F = UnEN Fn is a dense vector subspace of CR(X) with the
uniform norm [1.1[.

c. For each n, we define a linear form An on Fn by associating to the
element

V:xH f(x0,...,xn)
of Fn the real number

An ((P) = 1... rf(x0...... n) dmo(xo)...dmn(xn)
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Prove that, if V E F, then pp(w) = An(W) for all p > n. Deduce the
existence of a linear form p on F such that

p(ip)=pn(S,) for all n E N and W EFn-

Then show that, for <p E F, we have I p(<p) I < II w1I and w > 0 implies
p('p) ? 0.

d. Prove that the linear form p extends in a unique way to a positive
Radon measure on X.

e. More generally, let (Xn)nEN be a sequence of compact metric spaces
and, for each n E N, let mn be a probability measure on X, . Let
X = 11nEN Xn be the product space, with the product metric. By
working as in the preceding questions, prove that there exists a
unique probability measure p on X satisfying)

f(x0i...,xn)dmo(xo)...dmn(xn)=1 f(xo ...,xn)dA(x)f (^) X

for all n E N and all f E CR(X(n)), where X(n) = [In_o X1. (We
thus recover the result of Exercise 5 on page 66 in this particular
case.)

19. Haar measure on a compact abelian group. Let X be a compact metric
space having an abelian group structure. We assume that addition is
continuous as a map from X2 to X.
We denote by B the set of continuous linear forms on CR(X) of norm
at most 1. We recall from Exercise 4 on page 20 that B can be given a
metric d for which d(pn, p) -+ 0 if and only if

p(f) for all f E C(X),

and that the metric space (B, d) is compact. One can check that the set
P of positive Radon measures of mass 1 on X is a nonempty, convex,
closed subset of B, and that the topology induced by d on P is that of
vague convergence.
a. Markov-Kakutani Theorem. Let K be a nonempty, compact, convex

subset of (B, d).
i. Let +p be a continuous affine transformation from K to K (affine

means that for any (p, p') E K2 and any a E 10, 11 we have
W(ap + (1-a)p') = ap(p) + (1 - a)cp(p')). Prove that cp has
at least one fixed point in K - in other words, there is a point
A E K such that W(A) = A.
One can work as follows: Let p be any element of K and, for any
n EN, set

n

An n+1 Wi(p)
i=O



86 2. Locally Compact Spaces and Radon Measures

A. Check that it, E K for each n E N.
B. Let (µ,,,,) be a subsequence of the sequence (p,,) that con-

verges (with respect to d) to A E K. Prove that, for each
integer k, we have (1 + nk) (Apn,,) - E 2B.

C. Deduce that W(A) = A.
ii. Let if be a family of continuous affine transformations of K such

that any two elements of if commute. For each cp E if denote
by Fp the set of fixed points of V.
A. Prove that all the F, are nonempty, compact, convex subsets

of (B, d).
B. Suppose if = (cp,tp'). Prove that cp'(Fw) C F,,. Deduce that

,p and cp' have a common fixed point.
C. Now make no assumption on if. Prove that all the elements

of if have at least one common fixed point. (Start with T
finite, then use compactness.)

b. For p E 9A+ (X) and x E X we denote by Tx.u the positive Radon
measure on X defined by T,,µ(f) = f f (x + y) dp(y).

i. Prove that rx(P) C P for all x E X. Deduce that there exists
JA EPsuch that rxµ=pfor all xEX.

ii. Prove that there exists a Borel measure p on X such that 1A(X)=1
and

f f(t) dp(t) =Jf(x + t) dp(t) for all f E C(X) and X E X.

We call p a Haar measure on X.

c. Uniqueness of Haar measure. Let p and v be Haar measures on X.
Prove that it = v.
Hint. Take f E C(X). Using Fubini's Theorem, compute in two
ways the integral

JJf(x + y) du(x) dv(y).

4 Real and Complex Radon Measures

The framework here is the same as in the previous section. A real Radon
measure on X is by definition a linear form p on CR (X) whose restriction
to each space CK (X), for K compact in X, is continuous; that is, such that
for any compact K of X there exists a real CK > 0 such that

I A(f) I < CK II f II for all f E CK (X ).
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We denote by 9RR(X) the set of real Radon measures. We also call the
elements of this set linear forms continuous on C R (X ); for an equivalent
definition of this notion of continuity, see Exercise 5. By Proposition 3.3,
9)t+(X) C DlR(X). Conversely, every real Radon measure is the difference
of two positive Radon measures:

Theorem 4.1 Let it be a real Radon measure on X. For each f E Cc (X),
put

µ+(f) = sup{µ(g) : g E Cc(X) and g < f },

µ-(f)=-inf{µ(g):gECc (X) and g< f}.
Then µ+ and µ- can be uniquely extended to positive Radon measures and
µ=µ+-µ .

Proof

1. We first check that the definition of µ+(f) given in the statement makes
sense. If f E C,,+(X) has support K, then for all g E Cc (X) such that
g<f we havegECK(X),so

11(g):5 11401:5 CKI191I <-CKIIf11.

Thus µ+ (f) is well-defined and 0 < µ+ (f) < CK 11 f I I . It is also clear
that for A real and nonnegative we have µ+(Af) = Aµ+( f)

2. The essential point is the additivity of µ+ on CC (X). Take fl, f2 E
C. (X). That µ+(f1 + f2) = µ+(fl) +µ+(f2) will follow from the set
equality

{gECC(X):g<-f1+f2}
={gEC,(X):g<f1}+{gECC(X):gSf2}.

One of the inclusions is obvious and the other can be checked quickly:
Suppose g E Cc (X) satisfies g < f, + f2. Put g1 = inf (g, fl) and
92 = 9 - 9i = sup(0, g-f,). We see that 0 < g1 < fl, 0 < g2 S f2, and
9=91+92

3. The same properties hold for µ-. On the other hand, if f E CC (X),

µ+(f) - µ(f) = sup{µ(9 - f) : g E CC (X) andg < f)
=-inf{µ(f-g):gEC.,+(X) and g:5 f}
=-inf{µ(h):hECc+(X) andh< f}=µ-(f).

Therefore µ(f) = µ+(f) - µ- (f ).
4. We now extend µ+ and µ- to CR (X) in the only possible way: Given

h E Cc' (X) we take f, g E Cc (X) such that h = f - g (for example,
f = h+ and g = h-). Since µ+ must be linear on C' (X), we must set

µ+(h) = µ+(f) - µ+(9)
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This definition does not depend on the choice of a decomposition for h.
For if h = f - g' with f', g' > 0, then f + g' = f + g and, by the
additivity of µ+ on C,1 (X), we have µ+(f) - µ+(g) = A+ (f) - p+(g').

One can easily see that the µ+ defined in this way is indeed linear and
so belongs to fit+(X). We extend µ- similarly, and we use item 3 to
show that p = µ+ - µ-. 0

Remarks

1. The decomposition p = µ+ -A- defined in Theorem 4.1 is minimal in
the following sense: If p = At - 112 with µl, 112 E fit+(X ), there exists a
positive Radon measure v on X such that pi = µ++v and p2 = µ-+v.
Indeed, it is clear, in view of the definition of p+, that µ+(f) < Al(f) for
all f E CC (X). One easily deduces from this that the Radon measure
on X defined by v = p - µ+ is positive. (And of course v = µ2 - 14
as well.)

2. Using the same construction, we obtain an analogous decomposition for
continuous linear forms on a normed space E that has an order relation
making it into a lattice and satisfying the following conditions, for all
f, g E E and all,\ ER+':
- 0< g:5 f implies IIgII 5 11f 11;
- f > 0 implies A f > 0;
- f <gifandonlyifg- f >0.

A bounded real Radon measure on X is by definition a linear form
µ on CR (X) continuous with respect to the uniform norm on CR (X ); that
is, one for which there exists a constant C > 0 such that

IA(f)I <CIIfII for all f ECR(X).

We denote by fit f (X) the set of bounded real Radon measures on X; this
is clearly a vector subspace of WIR (X).

Since Ca (X) is dense in the Banach space Co (X) with the uniform norm,
every bounded real Radon measure extends uniquely to a continuous linear
form on Co (X); this allows us to identify 9)1 f (X) with the topological dual
of COR (X).

Proposition 4.2 Every bounded real Radon measure is the difference of
two positive Radon measures of finite mass. More precisely, if p E fit f (X),
the Radon measures µ+ and p- defined in Theorem 4.1 have finite mass
and

IItII=Idµ++Idµ-,

where IIAII is the norm of p in the dual of Co (X).
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Proof. We first see that, for any f E Cc+, (X),

p+(f)+µ-(f)= sup{p(g-h): g,hECCC.+(X) and 9, h!5 f)

(X) and ICI 5 f }.= Sup {µ((v) : V E Cr'

In particular, p+(f) + p -(f) <_ II1II Ilf II. Applying this inequality to all
terms of an increasing sequence of functions in Cc+, (X) that converges point-
wise to 1, we get f dµ+ + f dµ- <- IIpII Conversely, if f E CR(X), then

Iµ(f)1 = Iµ+(f)-li-(f)I <-A+(Ifl)+It-(IfI) < (J dµ++ Jd_) Ill ii.

(Here we used Lemma 3.2.) 0
Remark. The decomposition p = µ+ -p- with p+, µ- E fit+(X) is unique
if we insist that IIpII = fdµ+ + f dµ-. Indeed, if p = µl - p2 is a second
decomposition of this form, the Radon measure v = Al - µ+ = A2 - µ- is
positive (see Remark 1 above) and f dµ1 +f dµ2 = f dµ+ + f dic- +2 f dv.

Finally, we define complex Radon measures and bounded complex
Radon measures by substituting C for R in the preceding definitions.
We denote by 9J1c (X) and 97l f (X) the corresponding spaces. In particu-
lar, 971 f (X) can be identified with the topological dual of Co (X). Since
C.C (X) = CR (X) + iCR (X), a real Radon measure p gives rise in a unique
way to a complex Radon measure, which we also denote by p, as follows:

µ(f)=IA(Ref)+ilt(Imf) for all f ECC (X).

Then MR (X) C 9lic (X) and 9)1 f (X) C fii f (X). Actually,

9Jtc(X)=9)IR(X)+i97IR(X), :V[f(X)=9Jtf(X)+iDtj(X).

For, if p E Xtc (X), we define Rep by setting

Re p(f) = Re(A(f )) for all f E CR (X),

and likewise for Im A. Then A = Rep + i Imp. Such a decomposition is
unique.

For A E Wtf(X), we define the integral of a bounded Borel function f
on X as follows:

- IfK=R,put f fdp= f fdµ+- f fdµ-.
- If K = C, put f f dp = f f d(Re µ) + if f rd(Imp); that is,

r
if dp = If d(Re lb)+ -If d(Re p)- +i / f d(Im A) + - i if d(Im

We define the Borel measure of a subset A of X as µ(A) = f 1A dµ.
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Exercises

Throughout this set of exercises, X is a locally compact separable metric
space.

1. Prove that 9lR(X), with the order relation defined by

p<v e v-AE9R+(X),
is a lattice.

Hint. Show first that if p E 9R' (X) and we write ItLI = p+ +.a- in the
notation of Theorem 4.1, then IµI = sup(p, -p).

2. a. Fix U E 9)lK (X). Show that there exists a largest open set 0 such
that any f E CK (X) whose support is contained in 0 satisfies p(f) =
0. (Use partitions of unity.) The complement of this largest open set
is called the support of p and is denoted Suppp. By Exercise 1 on
page 77, this definition coincides with the one introduced earlier for
positive measures.

b. Prove that if u E 9)1R (X) then Suppp = Suppµ+ U Suppµ-, in the
notation of Theorem 4.1, and that if p E 9)l' (X) then

Suppµ = Supp(Rep) U Supp(Imp).

3. a. Fix p E fit+(X), and extend µ to a linear form on C (X). Prove
that Ip(f)I < p(I fI) for all f E C (X).
Hint. Let a be a complex number of absolute value 1 such that
aµ(f) = Ip(f)I. Prove that lµ(f)I =µ(Re(af)).

b. Let p be a bounded real Radon measure. By reasoning as in the
previous question, show that µ has the same norm in the topological
duals of Co (X) and of Co (X).

c. Fix p E 9RI (X). Prove that I p(A)I < IIpII for any Borel set A of X.
Hint. In the case K = C, put v = (Re p)+ + (Rep)- + (Im p)+ +
(Imp)- and consider a sequence (fn)nEN of Cc(X) that converges
to 1A in L'(v) and such that 0 < fn < 1 for all n E N. Prove that
p(A) = limn,+. A(fn) and wrap up.

4. Let p be a positive Radon measure on X and take ?k E L' (p). Prove
that the relation

v(f) = Jfbdp

defines a bounded Radon measure on X and that IIvDI = f IipI dp.
Hint. Let s be a function defined on X such that sip = IipI and s = 0
on {O = 01. Prove that, for all e > 0, there exists a g E CC(X) such
that f I0I Ig - al dp 5 e and that, in addition, g can be chosen so that
IIgfl < 1. Now estimate f IipI du - v(g).
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5. We say that a sequence (fn) in CC(X) converges in QX) to f E C'(X)
if it converges uniformly to f and there exists a compact subset K
of X containing the support of every fn. Let p be a linear form on
CK(X). Prove that p E 9R(X) if and only if the image under p of
every sequence of functions in CC(X) that converges to 0 in CC(X) is a
sequence that converges to 0 in K.

6. We say a sequence (µn) in OK (X) converges vaguely to µ E WIK (X) if

lim An(f) = p(f) for all f E CK(X).
n-++oo

a. Let (An) be a sequence in 9HK (X) such that, for all f E CK (X), the
sequence (An (f)) converges. Prove that the sequence (µn) converges
vaguely.
Hint. Let (Kr) be a sequence of compact sets that exhausts X. Ap-
ply to each space CK,, (X) the result of Exercise 6f on page 23.

b. Let (pn) be a sequence in Wl(X) such that, for all f E CC(X ),

sup
if f dµn I < +00.

N

Prove that the sequence (µn) has a vaguely convergent subsequence.
Hint. Work as in Exercise 10e on page 81, using the Banach-Stein-
haus Theorem (Exercise 6d on page 22).

7. We say that a sequence (µn) in fit j (X) converges weakly to it E Of (X) if

lim J f dµn = Jfdµ for all f E Co(X ).
n++oo

a. Let (µn) be a sequence in Of (X). Prove that a sufficient condition
for it to converge weakly is that, for all f E Co(X), the sequence
(f f dpn)nEN should converge.
Hint. Use Exercise 6f on page 23.

b. Prove that any bounded sequence (µn) in 9Xf(X) (one for which
supnEN IlµnII < +oo) has a weakly convergent subsequence.
Hint. The space Co(X) is separable by Exercise 7h on page 56, so
it is enough to use the Banach-Alaoglu Theorem, page 19.

c. Prove that a sequence (µn) in fit f(X) converges weakly if and only
if it converges vaguely (see Exercise 6) and is bounded.

d. Find a sequence (An) in Mt.+(X) that converges weakly but not nar-
rowly (see Exercise 12 on page 81).

8. Let H be a relatively compact subset of Of (X) (we identify this space
with the topological dual of Co(X)). Prove that there exists a positive
Radon measure .\ of finite mass on X such that any A E R(X) having
.1-measure zero also has p-measure zero for all µ E H. (The measures
A E H are then said to be absolutely continuous with respect to A.)
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Hint. Define .1 = E EN E'=12-n-'v(p ), where the p; are elements
of H chosen so that, for every n E N', the balls B(pi, 1/n), ... ,
B(p 1/n) cover H, and where we write, for p E Of (X), v(p) _
A+ + p- if K = R and v(p) = (Rep)+ + (Rep)- + (Imp)+ + (Imp)
if K = C. You might use Exercise 3c.

9. Prove that the topological dual of Co(X) is separable if and only if X
is countable.
Hint. Prove that, if X = {xn}nEN, the family {8x }nEN is fundamental
in (Co(X))'. For the "only if" part, you might show that Ilbo - abII = 2
for any two distinct points a, b E X, and then use Proposition 2.4 on
page 9.

10. Give C(X) the metric d of uniform convergence on compact sets, defined
in Exercise 12 on page 57. Prove that the topological dual of (C(X), d)
can be identified with the space O ,(X) of Radon measures with com-
pact support (the support of a Radon measure was defined in Exercise
2 above).
Hint. Argue as in Exercise 9 on page 80.

11. Let L be a continuous linear form on Co(X) and let (fn) be a bounded
sequence in Co(X). Prove that if (fn) converges pointwise to f E Co(X)
then limn+oo L(fn) = L(f).
Hint. Use the Dominated Convergence Theorem.

12. Two Borel measures p1 and P2 of finite mass on X are called mutually
singular if there exists a Borel set A in X such that p1(A) = u1(X)
and µ2(A) = 0. Let p be a bounded real Radon measure on X and let
p1 and 02 be positive Radon measures of finite mass on X such that
P=p1 -A2-
a. Assume that p1 and P2 are mutually singular. Prove that IIpII =

p1(X) + p2(X)
Hint. Let e > 0. Write ' = 1A - 1X\A. Prove that there exists a
function f E CR(X) such that If - (P11 L-(,.,+".) <_ E. Let f be the
function defined on X by

f(x) _ {f (x) if If(x)I < 1,
sign f (x) otherwise.

Check that f E CR(X), then show that p(f) > p1(X) + p2(X) - e.
Deduce that IIpII ? Al (X) + p2(X ). The opposite inequality is easy.

b. Prove the converse.
Hint. Suppose IIpII = µ1(X) + p2(X). Let (f,) be a sequence of
elements of R(X) such that p(fn) -> IIpII and Ifn1 <- 1. Prove that

Jfdi ->p1(X), Jfd2 -->0-

Deduce the existence of a subsequence (f,+,,) that converges p1-
almost everywhere to 1 and p2-almost everywhere to 0. Conclude.
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c. Let p be a bounded real Radon measure on X. Show that there
exists a unique pair (pr, p2) of mutually singular positive Radon
measures of finite mass such that p = µ1 - p2i show that µl = p+

and P2 = /I--
13. Functions of bounded variation. Let f be a real-valued function on an

interval [a, b] of R. If A = (X j }05j<n is a subdivision of [a, b], we write

n-1
V (f1 A) = lr I f (xj+i) - f (xj) I;

j-0
we also write V (f , a, b) = supo V (f , A). We say that f is of bounded
variation on [a, b] if V (f, a, b) is finite. We say that a function f : R -+ R
is of bounded variation on R if the expression

V(f) = sup V(f,a,b)
(a,b)ER2

a<6

is finite.
a. Let f be a monotone function on [a, b]. Prove that f is of bounded

variation on [a, bJ and compute V (f , a, b).
b. Prove that the set BV(a, b) of functions of bounded variation on

[a, b] is a vector space and that f H V (f, a, b) is a seminorm on
BV(a, b). Prove that for f E BV(a, b) we have V (f, a, b) = 0 if and
only if f is constant on [a, b].

c. Let BVo(a,b) be the space of functions f of bounded variation on
[a, b] such that f (a) = 0. Prove that f t- V(f, a, b) is a norm on
BVo(a,b) with respect to which this space is complete.

d. Take f E BV (a, b). Prove that for a < c < d < e < b we have
I. V(f,c,d)+V(f,c,e) =V(f,c,e),
ii. If (c) - f(d)I < V(f,c,d).
Deduce that the functions x H V (f , a, x} and x V (f, a, x) - f (x)
are increasing functions from [a, b] to R+.

e. Take f E BV(a, b). Prove that if f is right-continuous at a point
c E [a, b), so is the function x H V (f, c, x). Likewise, if f is left-
continuous at c E (a, b], so is x H V (f, c, x).
Hint. If x H V (f, c, x) is not right-continuous at c, there exists a
real number n > 0 such that V (f, c, x) > rl for all x E (c, b]. Now
construct by induction a sequence (xn) such that, for all n E N,
c < xn+i < xn < b and V (f, xn+l, xn) > 7J; then deduce that
V (f, c, b) = +oo, which is absurd.

f. Prove that a function f from [a, b] to R is of bounded variation if
and only if there exist two increasing functions g and h from [a, b] to
R+ such that f = g - h. Prove that if f is right-continuous at a point
c E [a, b), then g and h can be chosen to satisfy the same condition.
An analogous statement holds for left-continuous functions.
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14. We resume the notation and terminology of Exercise 13. Let f and g
be real- or complex-valued functions defined on an interval [a, b] of R.
If 0 = {xj }o<j<n is a subdivision of [a, b] and if c = (co,... , cn_ 1) is
such that cj E [xi, x;+1 ] for all i < n - 1, we write

n-1

SAALg) = Ef(4)(g(xi+1) -g(xi))-
i=0

If, as b(O) approaches 0, the sequence (So,c(f,g)) has a limit uniform
with respect to c, this limit is denoted by fa f dg.
a. Prove that, if f is continuous and g is increasing, fa f dg is well-

defined and coincides with the definition given on page 72. Prove
that, if g E BV(a, b), the linear form L on C([a, b]) defined by L(f) _
fnb f dg is continuous and has norm at most V (g, a, b).

b. Integration by parts. Let f and g be real- or complex-valued functions
from [a, b] to R or C. Prove that fa f dg is defined if and only if
f b

a g cf is, and that in this case

nfbfdg+ f bgdf = f(b)g(b) - f(a)g(a)
a

(use summation by parts on the finite sums So,,(f,g)).
c. Second Mean Value Theorem. Let f be an increasing function from

[a, b] to R+ and let g be a Lebesgue-integrable function from [a, b]
to R. Show that there exists t; E [a, b] such that

f b f (t)g(t) dt = f (b) f b g(t) dt.
a F

This is called the Second Mean Value Theorem.
Hint. One can assume that f (a) = 0. Set G(x) = fy g(t) dt. Prove
that

a

b b rbf f(t)g(t)dt=-f fdG=1 Gdf.
a a

d. Let f be a function of bounded variation on R. Suppose that f (x)
tends to 0 both as x -a +oo and as x -+ -oo. Show that there exists
a constant C > 0 such that, for every nonzero real number t,

f+°° f(x)e-<<:dxI < C
Ft, -

15. We continue with the notation and terminology of Exercises 13 and 14.
A function f of bounded variation on R is called normalized if it is right-
continuous and limx,_00 f(x) = 0. We denote by NBV(R) the vector
space consisting of normalized functions of bounded variation from R
to R.
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a. Prove that every element of NBV(R) can be written as the difference
of two increasing and right-continuous functions that approach 0 at
-00.

b. Prove that the map f H V (f) is a norm on NBV(R).
c. If f E NBV(R), we define a linear form 14f on Co(R) by

µAcp) = lim Ta cp df for all W E Co(X).

Check that p f is well-defined, that l if E Of (R), and that Ilpf II (
V (f ), where II µf II is the norm of u f in Co(R)'.

i. Suppose f,g E NBV(R) satisfy p f = Aq. Prove that f = g.
Hint. Using part a above, prove that f (a) = p f ((-oo, a]) for all
aER.

ii. Let f E NBV(R) be increasing. Prove that V (f) = II of II
iii. Take f E NBV(R). Prove that there exist bounded, increasing,

right-continuous functions f+ and f_ such that f = f+ - f_ and
IIifII = V(f+) +V(f_). Deduce that V(f) < IIµf1I.

iv. Prove that the linear map L : f H p f is a bijective Isometry
from NBV(R) onto the topological dual of C0(R).

d. Prove that NBV(R) is a nonseparable Banach space. (That it is non-
separable is elementary: Consider the uncountable family consisting
of functions Ya = 1Ia,+oo), with a E R.)





3
Hilbert Spaces

This chapter is devoted to a class of normed spaces that is particularly
important in both theory and applications.

1 Definitions, Elementary Properties, Examples

In all of this chapter we consider a vector space E over K = R or C. A
scalar product on E is a map ( I ) from E x E to K satisfying these
conditions:

a. For all y E E, the map ( I y) : E -i K defined by x -* (x I y) is linear.
b. - If K = R: for all x, y E E, (y I x) = (x I y) (symmetry)-

- If K = C: for all x, y E E, (y l x) = (x l y) (skew-symmetry).
c. For all x E E, (x I x) E R+.
d. For allxEE, (x x) = 0 if and only if x =0.

A map that satisfies the first three conditions but not necessarily the
fourth is called a scalar semiproduct.

A space E endowed with a scalar product is called a pre-Hilbert space
or scalar product space, further qualified as real if K = R or complex
if K = C. We leave out this qualification if no confusion is possible or if K
need not be specified.

Remark. Suppose (- j - ) is a map from E x E to K that satisfies the first
two conditions in the definition of a scalar product. Fix x E E; if K = R,
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the map (x I ) : y '-a (x I y) is linear from E to R. If K = C, the same map
is skew-linear; that is, for all x, y, z E E and all A, p E C,

(xl ay +µz) = a(xI y)+j(xl z)

Also, as a consequence of the first two conditions in the definition of a
scalar product, we have, for x, y E E:

- IfK=R: (x+yx+y)=(xx)+(yy)+2(xIy).
- If]K=C: (x+ylx+y)=(xlx)+(yly)+2Re(xIy).

Examples

1. Let E = Rd. If a1,. .. , ad are nonnegative real numbers, the equation
(x I y) = ajxjyj defines on E a scalar semiproduct, which is a
scalar product if and only if all the a3 are positive. If aj = 1 for all j,
this is called the euclidean scalar product, and E together with this
scalar product is called d-dimensional canonical euclidean space.
Similarly, if E = Cd and a1,. .. , ad are nonnegative reals, a scalar
semiproduct on E is defined by (x I y) _ =1 ajxjy and this is a
scalar product if all the aj are positive. If aj = 1 for all j, this is called
the hermitian scalar product, and E together with this scalar prod-
uct is called d-dimensional canonical hermitian space.

2. Let X be a locally compact separable metric space, p a positive Radon
measure on X, and E = CK (X ). The equations

(f 19) = Jf(x)9(x) dp(x) if K = R,

(f 19) = Jf(x)9(x) du(x) if K = C

define on E a scalar semiproduct, which is a scalar product if and only
if Supp p = X.

3. Fix a > 0, and let E = Ca be the set of continuous functions from R
to K periodic of period a. The equations

(f 19) = a
ff(x) g(x) dx if 1K = R,

(f 19) = a fa

f (x)9(x) dx if 1K = C
0

define a scalar product on E.
4. Let m be a measure on a measure space (fl, fl and let 2' (m) be

the space of .' Jr-measurable functions f from fl to K that are square-
integrable, that is, satisfy f If I2 dm < +oo. (That this is a vector space
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follows from the inequality If +g12 <_ 2(If 12 + Ig12).) We give 8 a scalar
semiproduct by setting

(flg)= ffgdm ifK=R,

(flg)= ffgdm ifK=C.

This scalar semiproduct induces a scalar product on the space E _
LK (m) defined as the quotient of 9 by the relation of equality rn-almost
everywhere.

5. An important particular case of the preceding situation is the following.
Let I be any set and let .9' = Y (I) be the discrete or-algebra on I -the
one containing all subsets of I. On the measure space (I, ,V') we take
the count measure m, defined by m(A) = Card(A) < +oo. (If I is
countable, one can regard it as a locally compact separable metric space
by giving it the discrete metric, defined by d(x, y) = 1 if x # y; then m
is a positive Radon measure on I.) We generally use subscript notation
for functions on I: thus x = (xi);EI. If x takes nonnegative values, we
use the notation ;E1 x; to denote f x dm < +oo. One easily checks
that

xi = sup r x; < +00,
iEI JE. jr(I) {EJ

where Pf(I) is the set of finite subsets of I. The space .'K(m) in this
case is denoted by t' (I) and, for every x E t' (I), we write ae1 x; _
f x dm. Similarly, we write t2K (I) = ZK (m). (See also Exercises 7 on
page 11 and 8 on page 12.)
Since the only set of m-measure zero is the empty set, we have LK (rn) _
tK(I); thus this space has a scalar product structure defined by

(x l y) = xiyi if K = R,
iE 1

(xIy)=Exi9i ifK=C.
iE 1

We omit I from the notation when I = N.

Here is a fundamental property of scalar semiproducts.

Proposition 1.1 (Schwarz inequality) Let E be a vector space with a
scalar semiproduct (- I ). For every x, y E E,

I(x1y)I2< (xI x)(yl y)

Proof One can assume K = C. If x, y E E,

(x+tyIx+ty)=(x1x)+2tRe(xIy)+t2(y1y)>o foralltER.
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Consider the expression on the left-hand side of this inequality as a poly-
nomial in t, taking only nonnegative values. If (y I y) = 0, the polynomial
is at most of first degree and must be constant, so 0 = (Re(x I y))2 _<
(x I x)(y I y) = 0. If (y I y) 0, the polynomial is of second degree and must
have negative or zero discriminant; again (Re(x I y))2 < (x I x)(y y).

Now let u be a complex number of absolute value 1 such that

J (x I y) l = u(x I y) = (ux I y) = Re(ux I v)

We see that I (X
I

Y)12
< (ux I ux)(y I y) = (x I x) (y I y), since uu = 1.

Corollary 1.2 Let E be a vector space with a scalar product ( I ). The
expression IIxII = (x I x)'/2 defines a norm on E.

Proof. It is enough to check the triangle inequality. We have

IIx + v112 =
IIXI12 + IIv112 + 2 Re(x I y)

<_ IIXI12 + IIvII2 + 2IIxll IIxII = (IIxII + IIyII)2.

From now on, unless we specify otherwise, we will denote the scalar
product on any space E by (- I ), and the associated norm by II . II For
example, if E = L2(m), as in Example 4 above,

IIxII = (Juil2dm)i/2.

If E = P2 (I),

1/2

IIxII = ( Ix=I2)
IEl

Note that, in any scalar product space, the scalar product can be recov-
ered from the norm: If K = C, we have

Re(x I y) =
2

((IIx + VIl)2 -
IIXI12

- IIv112)

Im(x I v) =
2

((IIx + iv11)2 - IIXI12 - IIviI2),

and in the real case the first of these equalities holds.

Corollary 1.3 Let E be a scalar product space. For every y E E, the
linear form cpy = (- I y) is continuous and its norm in the topological dual
E' of E equals Ilyll

Proof. By the Schwarz inequality, I Wy(x)I < IIxII Ilvii for all x E E, so spy E
E' and ll,yll<_IIxII. At the same time, cpy(y)=IIyII2,soIIWyII=IIxII.

Thus the map y y Wy is an isometry from E to E', linear if K = R and
skew-linear if K = C. We will see in Theorem 3.1 below that this isometry
is bijective if the space E is complete.
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Proposition 1.4 (Equality in the Schwarz Inequality) Two vectors
x and y in a scalar product space satisfy I(x I y)I = IIxII 11vU if and only
if they are linearly dependent.

Proof. The "if" part is obvious. To show the converse, suppose for example
that K = C and that I(x I y) I = IIxII IIxII Let e be a compiex number of
absolute value 1 such that R.e(e(x I y)) = I(x I y)I. Then II IIxIIy-EIIYIIxII2 =
0 (expand the square), so IIxIIy - ellyllx = 0. 0

An immediate, but useful, consequence of the definition of the norm in
a scalar product space is the parallelogram identity:

Proposition 1.5 If x and y are elements of a scalar product space,

11X+
2

yII2+IIx-yi12

I(IIxII2+IIyI12)

Orthogonality

Two elements x and y of a scalar product space E are orthogonal if
(x I y) = 0; in this case we write x 1 y. The orthogonality relation 1 thus
defined is of course symmetric. The orthogonal space to a subset A of
E is, by definition, the set Ai consisting of points orthogonal to all the
elements of A. Thus, in the notation of Corollary 1.3,

Al = n ker(9pv).
yEA

It follows that Al is a closed vector subspace of E. At the same time, x
belongs to Al if and only if A c ker cps; since kerW. is closed, this inclusion
is equivalent to [A] C ker cps, where [A] is the span of A (the vector space
consisting of linear combinations of elements of A). Thus

A' = ([Al)'.
Two subsets A and B of E are called orthogonal if x l y for any x E A
and y E B. The following relation between orthogonal vectors, called the
Pythagorean Theorem, is immediate:

Proposition 1.6 If x and y are orthogonal vectors in a scalar product
space,

IIx + y112 = IIxII2 + IIyI12-

This result extends by induction to a finite number of pairwise orthogonal
vectors Xi, ... , xn: II E i

X,112 = E i Ilxf ll2.
A scalar product space that is complete with respect to the norm defined

by its scalar product is called a Hilbert space. . Here are the fundamental
examples:
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1. Every finite-dimensional scalar product space is a Hilbert space.
2. If m is a measure on a measure space ((1, J fl, the space L2(m) with the

scalar product defined in Example 4 above is a Hilbert space.

In particular, the space t2(J) of Example 5 above is a Hilbert space, for
any set I. (This particular case is in fact the general case; see Theorem 4.4
below and Exercise 11 on page 133).

Exercises

1. Let E be a normed vector space over C. Prove that the norm II ' II comes
form a scalar product if and only if it satisfies the parallelogram identity:

IIx + vII2 + IIx - vII2 = 2(IIxlI2 + IIvll2) for all (x, y) E E2.

Prove that in this case the scalar product that defines II ' II is

(xIy)=.1(IIx+vII2-IIx-vII2+illx+ivll2-illx-iyil2) (*)

Hint. To show sufficiency you might consider the map (- I ) defined by
(*) and prove successively that it satisfies these properties:
a. (xIx)=IIx1I2forallxEE.
b. (xIy)=(v Ix) forall(x,y)EE2.
c. (x+yIz)=2(xIz/2)+2(yIz/2) for all(x,y,z)EE3.
d. (x+ylz)=(xlz)+(ylz)forall(x,y,z)EE3.
e. (Ax I v) = A(x I y) for all (x, y) E E2 and A E C.

2. Assume that (xn) and (yn) are sequences contained in the unit ball of a
scalar product space, and that (xn I yn) -} 1. Prove that Ilxn - y" 11 -4 0.

3. Let X be a compact metric space of infinite cardinality and let p be a
positive Radon measure on X, of support X. Give the space E = C(X)
the scalar product defined by (f I g) = f f g dµ.
a. Let a be a cluster point of X. Prove that there exists a sequence of

pairwise disjoint balls (B(an, en))nEN such that limn_++oo an = a.
b. Prove that, for every integer n E N, there exists a continuous func-

tion cpn on X supported inside B(an, En) and satisfying JVn I < 1 and
Wn(an) _ (-1)n.

c. Prove that the series E cpn converges pointwise, uniformly on com-
pact sets of X \(a}, and in L2(µ) to a continuous function on X \ {a}
that has no limit at the point a.

d. Deduce that E is not a Hilbert space.
4. Let ft be an open subset of C, considered with the euclidean metric.

We denote by H(f1) the space of holomorphic functions on ft and by
H2(fl) the subspace of H(ft) consisting of holomorphic functions f on
H such that f fn 1 f (x + iy) I2 dx dy < +oo. We recall that H(O) is closed
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in C(1) with the metric of uniform convergence on compact sets of R.
We give the space H2(fl) the scalar product defined by

(f 1g) = Jjf(x+iy)g(x+iv)dxdv.

a. Take f E H(1). Prove that, if B(xo, r) C fl,

f (xo) _ -r2 f (x +
iy) dx dy.

Deduce that, if f E H2(1),

if(xo)I <r IIf1I,

where II II denotes the norm coming from the scalar product.
b. Prove that, if K is a compact contained in f,

EJ(lf(z)l rd(K, C\f 1) IIfIi

for every f E H2(fl).
c. Prove that H2(fl) is a Hilbert space.

5. Let I be a set and x = (xi)iEl a family of points in K.
a. Suppose X E 8K (I} and set _ EiEI xi. Prove the following property:

(P) For every e > 0, there exists a finite subset K of I such that,
for any finite subset J of I containing K, It - EiE.I xi I < e.

b. Conversely, suppose there exists i; E K such that Property (P) is
satisfied. Prove that x E f' (I) and that _ &EI xi.
Hint. Assume first that K = R. Setting II = {i E I : xi > 0} and
12++= I\ I,, show that under the assumption of Property (P) we have
E EI, xi < +00 and EiEz2(-xi) < +00 .

c. Suppose I is countably infinite. Prove that x E fly (I) if and only if,
for any bijection cp : N -3 I, the series F,n o converges. Prove
that in this case Ea o x,(,,) = EiEI X.
Hint. To show that the condition is sufficient, reduce to the case
K = R. Then prove that if either series E1EI, xi or EiE
diverges (I, and 12 being defined as above), there exists a bijection
w : I -* N such that the series En +='O xv(n) does not converge.

6. Hilbert cube. Take c = (cn)nEN E 12 and let C be the set of elements x
of 12 such that Ixnl < for all n E N. Prove that C is compact.
Hint. Use Tychonoff's Theorem.

7. If a = (an)nEN is a sequence of positive real numbers, we denote by
to the vector space consisting of sequences of complex numbers u =
(un)fEN such that the series E an Iun I converges.
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a. Prove that the formula

(u,v) = 1] anunvn
nEN

defines a scalar product on ta.
b. Prove that the map

i.: (un)n'-! Man Un)n

is a linear isometry from tQ onto t2. Deduce that tQ is a Hilbert
space.

c. Let a and b be sequences of positive real numbers. Prove that if the
sequence (an/bn) tends to 0, the closed unit ball in tb is a compact
subset of tQ.
Hint. Use Exercise 8 on page 17.

d. Ifs is a real number, we define on Z a measure µ" by setting

µ"({n})=(1+n2)"/2 for allnEZ,

and we put H" = L2 (µ" ). Prove that for r < s we have H" c H''
and the closed unit ball in H" is a compact subset of H''.

8. Hilbert completion. Let e be a vector space with a scalar semiproduct
(- I ). Write p(x) = (x I x)1/2. By the Schwarz inequality, the map p
satisfies the triangle inequality: p(x + y) <- p(x) + p(y) for all x, y E 8.
In other words, p is a seminorm.
Consider the vector space 8 consisting of sequences (xn) that are Cauchy
with respect to p (that is, satisfy limn,m_,+oo p(xn - xm) = 0). Define a
relation 9 on 8 by setting

(xn). (yn) nl1 p(xn - yn) = 0.

Y is easily seen to be an equivalence relation compatible with the vector
space structure of 8. We denote by E the quotient vector space of c' by
Y., and by 4 the canonical map from 8 to E (which associates to each
element of 8 its equivalence class modulo.9).
a. Let x and y be elements of E. Prove that if 4b((xn)) = x and

y, the sequence ((xn I Yn))nEN converges and its limit
depends only on x and y.

b. Prove that the equation (4 ((xn)) I $((yn))) = limn,+oo(xn I yn) de-
fines a scalar product on E. We denote by 11 II the associated norm.

c. If x is an element of 8, we denote by i the image under 4 of the
constant sequence equal to x. Prove that the map from 8 to E
defined by x H i is linear and that 11111 = p(x) for all x E 8.

d. Prove that the set Eo = {i : x E 8} is dense in E.
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e. Prove that E is a Hilbert space. (Show first that every sequence in
E0 that is Cauchy in the norm of E converges in E.)
The space E is called the Hilbert completion of 1. Such a space is
unique in a sense to be made precise in the next question.

f. Let (E-, (- I )-) be a Hilbert space such that there exists a linear map
L : -+ E` whose image is dense in E`and such that IIL(x)II`= p(x)
for all x E Prove that there exists a surjective isometry H from
E onto E" such that H(x) = L(x) for all x E t.

2 The Projection Theorem

One of the main tools that make Hilbert spaces interesting is the Projection
Theorem. We assume that E is a Hilbert space and we denote by (- I - ) its
scalar product, by II II its norm, and by d the metric defined by the norm.

Theorem 2.1 Let C be a nonempty, closed, convex subset of E. For every
point x of E, there exists a unique point y of C such that

IIx - yll = d(x, C).

This point, called the projection of x onto C and denoted by Pc(x), is
characterized by the following property:

yEC and Re(x-ylz-y)<0 forallzEC. (*)

Proof. Fix X E E. We first show the existence of the projection of x onto
C. By the definition of 5 = d(x, C), there exists a sequence (yn) in C such
that

IIx-,-112582+ 1 for all n> 1.
n

Applying the parallelogram identity to the vectors x - yn and z - yr for
n, p > 1, we obtain

lix-Yn+Y,.112+11Yn2ypll2= z(IIx-yn112+IIx-yr112)

Since C is convex, (yn + y,)/2 is in C, so 4Ilyn - y,I12 S '(1/n + 1/p),
which proves that (yn) is a Cauchy sequence in C and so converges to an
element y of C, which must certainly satisfy IIx - y112 = 62.

Now let yl and y2 be points of C with IIx - yell = IIx -1/211 = 8. By
applying the parallelogram identity as before, we get Ilyl - y21I2 <_ 0, which
says that y, = y2. This shows that Pc(x) is unique.

Finally, we check that the point y = Pc(x) satisfies property (*). If z E C
and t E (0,1], the point (1 - t)y + tz belongs to C (which is convex), so

IIx-(1-t)y-tzII2 > llx-1/112,
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or, after expansion,

t211y-2112+2tRe(x-yIy-z) > 0.

Dividing by t and making t approach 0, we get

Re(x-yIz-y)<0.
Conversely, suppose a point y of C satisfies (*). Then, for all z E C,

IIx-x112 =11(x -y)+(y-z)112
= I1x-y112+IIy-z112+2Re(x-yIy-z)? IIx-y112,

soy = Pc(x)-

Remarks

1. In the case K = R, the characterization (*) ---where Re disappears --
says that Pc(x) is the unique point y of C such that, for all z E C, the
angle between the vectors x - y and z - y is at least 7r/2.

2. The conclusion of the theorem remains true if we suppose only that E
is a scalar product space and that the convex set C is complete with
respect to the induced metric - for example, if C is contained in a finite-
dimensional vector subspace of E. Indeed, this assumption suffices to
ensure that the sequence (y,,) of the proof converges to a point of C.

Condition (*) allows us to show that Pc is a contraction, and therefore
continuous.

Proposition 2.2 Under the assumptions of Theorem 2.1,

IIPc(x1) - Pc(x2)II < 11x1 - x2li for all x,, x2 E E

Proof. Set y1 = Pc(x1) and Y2 = Pc(x2). First,

Re(x1- x21 y1- y2) = Re(x, - y21 y1- y2) +Re(y2 - x21 y, - y2)

= Re(x1-y, I y, -y2)+IIy, -y2112+Re(y2-x2 I y, -y2)

> 11y1-Y2112.

Thus, by the Schwarz inequality, IIy1 - 112112 < Iix, - x211 IIy, - 11211, and
finally 11111 -11211 5 11x1 - x211-

We now consider projections onto vector subspaces of E.

Proposition 2.3 Let F be a closed vector subspace of E. Then PF is a
linear operator from E onto F. If x E E, the image PF(x) is the unique
element y E E such that

yEF and x-yEF1.
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Proof. Condition (*) of Theorem 2.1 becomes

yEF and Re(x-ylz-y)<0 forallzEF.

Now, if y E F and A E C', the map z' H z = y + Az' is a bijection from F
onto F. Condition (*) is therefore equivalent to

yEF and Re(A(x - y I z')) <0 forallz'EFandAEC,

and this in turn is obviously equivalent to

yEF and x-yEF1.

That PF is linear follows easily.

Corollary 2.4 For every closed vector subspace F of E, we have

E=FE6F1

and the projection operator on F associated with this direct sum is PF.

Proof. For x E E, we can write x = PF(x)+(x-PF(x)) and, by Proposition
2.3, PF(x) E F and x -- PF(x) E F1. On the other hand, if x E F fl F1,
then (xlx) =Oandsox =0.

Remark. Proposition 2.3 and Corollary 2.4 remain valid under the weaker
assumption that E is a scalar product space and F is complete in the
induced metric -in particular, if F is finite-dimensional (see Remark 2 on
page 106).

Under the preceding assumptions, PF is called the orthogonal projec-
tion (operator) or orthogonal projector from E onto F. The image
PF(x), for x E E, is the orthogonal projection of x onto F.

Corollary 2.5 For every vector subspace F of E,

E=FEBF1.

In particular, F is dense in E if and only if F1 = {0}.

Proof. Just recall that F1 = P. 0

This very useful denseness criterion is now applied, as an example, to
prove a result that will be generalized in the next chapter by other methods.

Proposition 2.6 Let µ be a positive Radon measure on a locally compact,
separable metric space X. Then CC(X) is dense in L2(11).
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Proof. We write F = CC (X ). If f is an element of Fl, then f cp f dµ = 0
for all cp E C,,(X). Thus, for all V E CR(X),

J
V(Ref)+dµ=Jco(Pi2f)dP,Jco(f)+dP

= Jco(ImfYdIh.

By the uniqueness part of the Radon-R.iesz Theorem (page 69), these equal-
ities hold for any nonnegative Borel function W. Applying them to the char-
acteristic functions of the sets {Ref > 0}, {Ref < 0}, {Im f > 0}, and
{Ira f < 0}, we conclude that f = 0 µ-almost everywhere; that is, f = 0 as
an element of L2(µ). We finish by using Corollary 2.5.

We conclude this section with an alternate form of Corollary 2.5.

Corollary 2.7 If E is a Hilbert space and F is a vector subspace of E,
then P = F11

Proof. Clearly F C F11. Therefore, since F11 is closed, P C F11. On
the other hand, we have E = P ® F1 and E = F11- ® Fl. The result
follows immediately.

Exercises

1. Let E be a Hilbert space.
a. Let C, and C2 be nonempty, convex, closed subsets of E such that

C, C C2. Prove that, for all x E E,

11Pc,(x) - Pc,(x)112 < 2(d(x,Cl)2 - d(x,C2)2).

Hint. Apply the parallelogram identity to the vectors x - Pc, (x)
and X - Pc,(x).

b. Let (Cn) be an increasing sequence of nonempty, convex, closed sets
and let C be the closure of their union.
i. Prove that C is closed and convex.

ii. Prove that limn,+oo PC.. (x) = PP(x) for all x E E.
Hint. Start by showing that

lim d(x, Cn) = d(x, C).
n-,+oo

c. Let (Cn) be a decreasing sequence of nonempty, convex, closed sets
and let C be their intersection.
i. Prove that, if C is nonempty,

lim forallxEE.n-+oo
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Ii. Prove that, if C is empty,

lim d(x, Cn) _ +oo for all x E E.

(In particular, if one of the Cn is bounded, C is nonempty. This
result is false if we only assume E to be a Banach space: take,
for example, E = C([0,1]) and Cn = if E E : If 1:5 1, f (0) = 1,
and f (x) = 0 for all x > 1/n}.)

2. a. Let a be a nonzero element of a Hilbert space E. Prove that, for all
x E E,

d(x, {a}1) _ (I )IIIaII

b. Take E = L2([0,1]) (see Example 2 on page 124) and let F be the
vector subspace of E defined by

I
i 1

F= { f EE: 10 f(x)dx=0}.
ll 0 111

Determine F. Compute the distance to F of the element f of E
defined by f(z) = ex.

3. Let m be a measure on a measure space (0,.r) and let (AJ"EN be a
sequence of measurable subsets of fl that partitions Cl. For every n E N
define

En={f EL2(m): j IfIdm=01.
.\A.,

Prove that the En are pairwise orthogonal and that their union spans
a dense subspace in La(m). For each n E N, write down explicitly the
orthogonal projection from La(m) onto En.

4. Let P be a continuous linear map from a Hilbert space E to itself.
a. Prove that P is an orthogonal projection (onto a closed subspace of

E) if and only if Pa=Pared IIPII 51.
b. Prove that, if P is an orthogonal projection,

(PxIy)=(zIPy)=(PxIPy) forallx,yE E.

5. Let coo be the set of sequences of complex numbers almost all of whose
terms are zero, endowed with the scalar product

(x I Y) = E xivi.
iEN

Let f be the linear form on coo defined by

f(x)
x.

iEN
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a. Prove that f is continuous.
b. Set F = ker f . Prove that F is a closed vector subspace strictly

contained in coo and that F1 = {0}. (Thus the assumption that E
is complete cannot be omitted from the statement of Corollary 2.4.)

6. Let p be a positive Radon measure on a compact metric space X, with
support equal to X. Consider the scalar product space E = C(X) with
scalar product defined by (f I g) = f f g dp. If A is a closed subset of X,
we write EA = (f EC(X): f(x)=0forallxEA}.
Let A be a closed subset of X.
a. Prove that there exists an increasing sequence of functions in

EA, each with support X \ A, that converges pointwise to 1x\A
b. Prove that (EA)' = EX\A

Hint. Prove that, if g E (EA)1, then f 1x\A 1912 dp = 0.
c. Take 9 E C(X). Prove that d(g, EA)2 = f 1 A 1g12 dp. Deduce that

EA is dense in E if and only if p(A) = 0. Prove also that g admits a
projection onto EA if and only if it vanishes on the boundary of A.

d. Suppose X has no isolated points. Prove that there exists a closed
subset A of X with empty interior and such that p(A) > 0. Check
that, for such an A, (EA)1 = {0} but EA is not dense in E.
Hint. If there exists a E X such that p({a}) > 0, one can take
A = {a}. Otherwise, consider a countable dense subset of X and use
the fact that p is regular (Exercise 5 on page 77).

7. Let m be a measure on a measure space (fI, 9). Suppose m is a-finite;
that is, SZ is a countable union of elements of .l of finite m-measure.
Define L2(m)®L2(m) as the vector space generated by functions of the
form (x, y) H f (x) g(y), with f, g E L2(m). Prove that L2(m) ® L2(m)
is dense in L2(m x m).
Hint. Let (An) be an increasing sequence of elements of .' of finite
measure and covering Sl. Let F be an element of the orthogonal space
to L2(m) ® L2(m) in L2(m x m). Prove that, for all n E N, the set
consisting of all T E ..9 x .9 such that

JJT(A xA)
F(x, y) dm (x) dm(y) = 0

contains {A x B : A, B E F) and is a monotone class; this term is
defined in Exercise 2 on page 64. Deduce from the same exercise that
F=0.

8. The bipolar theorem. Let E be a complex (say) Hilbert space. If A is a
nonempty subset of E, the polar of A is defined as

A°= Ix EE:Re(xIy)<1for all yEA}.

The set A00 is called the bipolar of A.
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a. Prove that the polar of any nonempty subset of E is a closed convex
set containing 0.

b. Deduce that, if A is a nonempty subset of E, the closed convex hull
of A U {0} (see Exercise 9 on page 18) is contained in A00.

c. We now want to show the reverse inclusion. Let C be the closed
convex hull of A U {0} and take x c A00.

i. Prove that Re(x - Pc(x) I Pc(x)) > 0.
ii. Prove that, for all e > 0,

1

e+Re(x-Pc(x)I Pc(x))
(x - Pc(x)) E A°.

Deduce that lix - Pc(x)II2 < e, and so that x E C.

d. Let A be a convex subset of E containing 0. Prove that A = A00.
e. Let A be a vector subspace of E. Prove that A° = Al. (We thus

recover the equality A = A".)

3 The R.iesz Representation Theorem

We assume in this section that E is a Hilbert space. The Riesz Represen-
tation Theorem, which we now state, describes the topological dual of E.

Theorem 3.1 (Riesz) The map from E to E' defined by y -a cpy = (- I y)
is a surjective isometry. In other words, given any continuous linear form
cp on E, there exists a unique y E E such that

W(x) = (x I y) for all x E E,

and, furthermore, IIVII = Ilyll.

Proof. That this map is an isometry was seen in Corollary 1.3. We now
show it is surjective. Take cp E E' such that cp 0 0. We know from Corollary
2.4 that E = ker <p ® (ker W) -L, since, cp being continuous, ker cp is closed.
Now, cp is a nonzero linear form, so ker cp has codimension 1. The space
(ker cp)1 therefore has dimension 1; it is generated by a vector e, which we
can choose to have norm 1. Set y = V(e) a if K = C, or y = cp(e) a if K = R.
Then W. (e) = <p(e) and W. = 0 on ker W. It follows that cpy and cp coincide
on (kerep)1 and on kercp, so cp = cpy, 0

We recall that this isometry is linear if K = R and skew-linear if K = C.
The rest of this section is devoted to some important applications of

Theorem 3.1.
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3A Continuous Linear Operators on a Hilbert Space

Recall that L(E) denotes the space of continuous linear maps (or operators)
from E to E. We use the same symbol for the norm in E and the associated
norm in L(E). We denote by I the identity on E.

Proposition 3.2 Given T E L(E), there exists a unique operator T' E
L(E) such that

(TxIy)=(xIT'y) forallx,yEE.

Moreover, IITII = IITII.

T* is called the adjoint of T.

Proof. Take y E E. The map W. o T : x H (Tx I y) is an element of E', so
by Theorem 3.1 there exists a unique element of E, which we denote by
T'y, such that

(TxIy)=(xIT'y) for allxEE;

moreover IIT'yhi = II `pv ° TII : IIxII IITII. The uniqueness of such a T'y
easily shows that T' is linear; at the same time, by the preceding inequality,
IITII <_ IITII Moreover, if x E E,

IITxhI2 = (Tx I Tx) = (x I IIxII IITII IITxhi,

which implies that IITxll <_ IIxII IITII, and so that IITII <_ IIT'II. 0

The properties in the next proposition are easily deduced from the defi-
nition of the adjoint.

Proposition 3.3 The map from L(E) to itself defined by T '- T' is
linear if K = R and skew-linear if K = C. It is also an isometry and
an involution (that is, T" = T for T E L(E)). We have I' = I and
(TS)' = S'T' for all T, S E L(E).

Examples

1. Take E = Rd with the canonical euclidean structure. The space L(E)
can be identified with the space Md(R) of d x d matrices with real
entries. Then T' is the transpose of T. If E = Cd with the canonical
hermitian structure, the space L(E) can be identified with Md(C) and
T' is the conjugate of the transpose of T.

2. The next example can be regarded as an extension of the preceding one
to infinite dimension. Let m be a measure on a measure space (Il,
Suppose m is a-finite; that is, Il is a countable union of elements of S
of finite m-measure. This entails we can use Fubini's Theorem. We place
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ourselves in the Hilbert space E = L2(m), and take K E L2(m x m). If
f E E, we define TK f (x) for rn-almost every x by

TKf(x) = JK(z,v)f(v)drn(v).

Since, by the Schwarz inequality,

2

f (JIicx ,v) I If (y) I dm(y)) dm(x)

< JIf(v)Idm(Y) /JIK(x,y)I2dm(x)dm(y) < +oo,

this expression defines an element TKf of E such that

IITKf H12 <_ IIf112 111K(x, y) 12 dm(x) dm(y),

which shows that TK is a continuous linear operator on E whose norm is
at most the norm of K in L2(m x m). By Fubini's Theorem, if f, g E E,
we have, in the case K = C,

(TKf 19) = /1(v) (f K(x, v)9(x) dm(x) } dm(y) = (f I TK- 9),

where we have put K*(x,y) = K(y,x). Thus Tk = TK.. Naturally, in
the case K = R, we get the same result with K* (x, y) = K(y, x).

The next property will be useful in the sequel.

Proposition 3.4 For everyT E L(E), we have IITT*II = IIT*TII = IITII2

Proof. Certainly IIT*TII <_ IITII2. On the other hand,

IITxII2 = (Tx I Tx) _ (x I T*Tx) < IIxJI2IIT*TII,

which shows that IITII2 < IIT*TII. Therefore IIT*TII = IITII2 and, applying
this result to T*, we get IITT*II = IIT*II2 = IITII2. D

An operator T E L(E) is called selffadjoint if T = T*. We also call
such operators symmetric if K = R and hermitian if K = C. By the
preceding proposition, if T is selfadjoint then IIT211 = IITII2.

Examples

1. For every operator T E L(E), TT* and T*T are selfadjoint.
2. In Example 2 on the preceding page, TK is selfadjoint if and only if, for

(m x m)-almost every (x, y), we have K(x, y) = K(y, x) (if K = R) or
K(x, y) = K(y, x) (if K = C). This condition is clearly sufficient and it
is necessary by Exercise 7 on page 110.
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3. Every orthogonal projection operator is selfadjoint (see Exercise 4 on
page 109).

Note that, if T is a selfadjoint operator, (Tx I x) E R for all x E E. We
say that T E L(E) is positive selfadjoint if

(Tx I x) E R+ for all x E E.

Warning! If E is a function space, this notion of positivity has nothing to
do with the condition f > 0 T f _> 0. In particular, in Example 2 above,
TK is positive selfaJJK(xy)f(x)f(Y)dm(x)dm(Y)djoint if, for all f E L2(m),

> 0,

and it is positive in the other sense if K > 0, which is altogether different.
One checks immediately that, for all T E L(E), the operators TT' and

T*T are positive selfadjoint.
The last result of this section gives another expression of the norm of a

selfadjoint operator.

Proposition 3.5 Assume E 34 {0}. For every selfadjoint operator T E
L(E),

IITII = sup{I(Tx I x)I : x E E and IIxII =1}.

Proof. Let y be the right-hand side of the equality. Clearly ry <_ IITII and,
for all x E E, I (Tx I x) I < 'y IIxII2 Assume for example that K = C, and
take y, z E E and A E R. Then

I (T(y ± Az) I y ± \z) I = I(TyIy)±2ARe(Tylz)+A2(TzIz)I 7lly±Azll2.

We deduce, by combining the two inequalities, that

4 IAI IRe(Ty I z)I < 7 (IIy + \zII2 + Ily - \zII2) = 2'r (IIyII2 + \2IIZI12),

and this holds for any real A. We conclude that IRe(Ty I z)I < 7llyll IIzII,
from the condition for a polynomial function on R of degree at most 2
to be nonnegative-valued. Now it is enough to choose z = Ty to obtain
IITyll <- 7IIyII for all y E E, and hence IITII <- 7.

3B Weak Convergence in a Hilbert Space

We say that a sequence (xn) in E converges weakly to x E E if

lim (xn I y) _ (x I y) for all y E E.
n-)+oo

In this case x is called the weak limit of the sequence (xn). Clearly a
sequence can have no more than one weak limit.
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One deduces immediately from the Schwarz inequality that a sequence
(xn) of E that converges to a point x of E in the sense of the norm of E (one
for which limn-,+oo Ilxn - xll = 0) also converges weakly to x. The converse
is generally false. For example, it is easy to check that the sequence (xn)
in E = t2 defined by

(xn)j
1 if j = n,

= 0 otherwise
converges weakly to 0, whereas Ilxnll = 1 for all n. For this reason we
sometimes call convergence in the sense of the norm strong convergence.

The next proposition pinpoints the relationship between weak and strong
convergence.

Proposition 3.6 Let (xn) be a sequence in E that converges weakly to x.
Then

liminf Ilxnll ? IIxII-n-*+oo

Moreover, the following properties are equivalent:

1. The sequence (xn) converges (strongly) to x.
2. limsupn.+oo Ilxnll <- 114-
3. limn.+oo Ilxnll = 114-

Proof. First,

IIxII2 = lim I (xlxn)I < IIxII liminfllxnll,
n-++oo n-++oo

which proves the first statement. At the same time, Ilx - xnll2 = IIxII2 +
Ilxn II2 - 2 Re(xn I x), so

limsupllx-xn1I2 <- (limsuPllxnll)2 - IIx1I2,
n-++oo n-4+00

which yields the equivalence between 1 and 2. The equivalence between 2
and 3 follows immediately from the first statement.

The Riesz Representation Theorem enables us to prove the following
version of the Banach-Alaoglu Theorem in a Hilbert space.

Theorem 3.7 Any bounded sequence in E has a weakly convergent sub-
sequence.

Proof. Suppose first that E is separable. Let (xn) be a bounded sequence in
E. In the notation of Theorem 3.1, the Banach-Alaoglu Theorem (page 19)
applied to the sequence (cpz,,) guarantees the existence of a subsequence
(xn,,) and of a tp E E' such that

lim cpnk (y) = co(y) for all y E E.
k-*+oo
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By Theorem 3.1, there exists an element x E E such that cw = cpzf which
proves the theorem in the separable case.

We turn to the general case. Let (x,,) be a bounded sequence in E and
let F be the closure of the vector subspace of E spanned by {xn},,EN. By
construction, this is a separable Hilbert space. The first part of the proof
says that there exists a subsequence (xn,,) and a point x E F such that

lim (xn4 I y) = (x I y) for all y E F.

Since this equality obviously takes place also if y E F1, it suffices now to
apply Corollary 2.4.

The fact that any continuous linear operator has an adjoint allows us to
prove the following property.

Proposition 3.8 Let (xn) be a sequence in E converging weakly to x.
Then, for all T E L(E), the sequence (Tx,,) converges weakly to Tx.

Proof. For every y E E,

lim (Txn I y) = lim (xlT*y) _ (Tx I y).n-++oo n-++oo

Exercises

1. Theorem of Lax-Milgram. Galerkin approximation. Let E be a real
Hilbert space and a a bilinear form on E. Assume that a is contin-
uous and coercive: this means that there exist constants C > 0 and
a > 0 such that

l a(x, y) I <_ CIIxil IIyII

a(x,x) > allxll'
for all x, y E E,
for allxEE.

a. i. Show there exists a continuous linear operator T on E such that

a(x, y) = (Tx I y) for all x, y E E.

ii. Prove that T (E) is dense in E.
Iii. Prove that IITxII ? afIxII for all x E E. Deduce that T is injective

and that T(E) is closed.
Iv. Deduce that T is an isomorphism from E onto itself.

b. Let L be a continuous linear form on E.
i. Deduce from the preceding questions that there exists a unique

u E E such that

a(u, y) = L(y) for all y E E.
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ii. Now suppose that the bilinear form a is symmetric and define,
for x E E,

I(x) = 2a(x, x) - L(x).

Prove that the point u is characterized by the condition

$(u) = min -t(x).

c. We return to the notation and situation of question lb-i. Let (En) be
an increasing sequence of closed vector subspaces of E whose union
is dense in E.
i. Prove that, for any integer n E N, there exists a unique u,, E En

such that
a(un,y)=L(y) for allyEEn.

Check, in particular, that if En has finite dimension 4, determin-
ing un reduces to solving a linear system of the form AnUn = Yn,
where An is an invertible do x do matrix, which, moreover, is
symmetric and positive definite if a is symmetric.

H. Prove that, for any n E N,

Ou - uII <- a d(u,En).

Deduce that the sequence (un) converges to u.
Hint. Take y E En. Prove that

a(u - un, u - un) = a(u - un, u - y)

and deduce that allu - unII 5 Cllu - Y11-
2. Lions-Stampacchia Theorem (symmetric case). Consider a real Hilbert

space E, a nonempty, closed, convex set C in E, a continuous and co-
ercive (Exercise 1) bilinear symmetric form a on E, and a continuous
linear form L on E. Let J be the function defined on E by

J(u) = a(u, u) - 2L(u) for all u E E.

Prove that there exists a unique c E C such that J(c) < J(v) for all

v E C, and that c is characterized by the following condition:

a(c,v-c)>L(v-c) forallvEC.

Hint. By the Lax-Milgram Theorem (Exercise 1), there exists a unique
element u of E such that a(u, v) = L(v) for all v E E. Check that
J(v) = a(v - u, v - u) - a(u, u), then work in the Hilbert space (E, a).

3. Reproducing kernels. Let X be a set and .$ the vector space of complex-
valued functions on X.
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a. Consider a vector subspace E of Jr' endowed with a Hilbert space
structure such that, for all x E X, the linear form defined on E by
f H f (x) is continuous.

i. Prove that there exists a unique function K from X' to C sat-
isfying these conditions:
- For all y E E, the function K( , y) : x '-a K(x, y) lies in E.
- For all f E E and Y E X, we have (f I K(., y)) = f (y).

We call K the reproducing kernel of E.
ii. Prove:

A. For all x, y E E, we have K(x, y) = K(y, x).
B. For all n E N', all E Cn, and all E

Xn, we have
[nom [n

LomL K(xi, xj)&tj >_ 0.
i=1 j=1

iii. Prove that the family {K( , y)}yEX is fundamental in E.
b. Conversely, consider a function K from X2 to C satisfying properties

A and B above.

i. Let e be the vector subspace of 9 spanned by {K( y)}yEX.
Prove that the relation

E1kK(.,yk)) = E E K(yk, xj)AjAk` AjK(',xj) I
/\j=1 k=1 1=1 k=

defines a scalar semiproduct on e. Check, in particular, that this
expression does not depend on the representations involved,

ii. Let (E-, (- I )-) be the Hilbert completion of .9 and let L be the
associated canonical map from 6' to E- (Exercise 8 on page 104).
Define an application ' : E- -> by

T(W)(x) = (W I

Prove that 41 is injective.
iii. Derive a Hilbert space structure for E = with respect to

which K is the reproducing kernel.

c. Suppose X = R and fix a Borel measure µ of finite mass on R. If
h E L2(µ), denote by fh the element of Jr defined by

fh(x) = Je$txh(t)d,i(t).

i. Prove that the map h H fh thus defined on L2(µ) is injective
(see Exercise lc on page 63).
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ii. Set E = {fh : h E L2(µ)}. For h, k E L2(µ), set

(.fh I fk) =
r
J hkdo.

Prove that E is a Hilbert space having as a reproducing kernel
the function K(x,y) = f eu(x-v) dp(t).

d. Let Sl be open in C. Prove that the Hilbert space H2(11) defined in
Exercise 4 on page 102 has a reproducing kernel. This is called the
Bergman kernel.

4. Let E be a Hilbert space over C, distinct from {0}. If T E L(E), write

n(T) =sup(I(TxIx)I : Ilxll = 1).

a. Prove that

n(T) <- IITII s 2n(T) for all T E L(E). (*)

Hint. For the second inequality, draw inspiration from the proof of
Proposition 3.5 to show that, for every x, y E E and S E L(E),

I (Sx I y) + (Sy I x)I < 2n(S) IIxII IIxII

Then set S = AT and y = ATx, were A is a complex number of
absolute value 1 such that A2(T2x I X) E R+.

b. Prove that (*) would be false if E were a Hilbert space over R.
c. Prove that, if E has dimension at least 2, the constant 2 in (*) cannot

be replaced by a smaller real number.
Hint. Let u and v be orthogonal vectors in E, each of norm 1. Con-
sider the operator defined on E by

T(Au+µv+w)=Av forallA,FzEKandwE{u,v}l.

d. Prove that the map T H n(T) is a norm on L(E) equivalent to the
norm 1 1-1 1 .

5. Let E be a Hilbert space over C.
a. Take T E L(E). Prove that T is hermitian if and only if (Tx I x) E R

for all x E E.
Hint. In the notation of Exercise 4, T =T' if and only if n(T-T') = 0.

b. Deduce that an operator T on E is positive hermitian if and only if
(Txlx) ER+ for allxE E.

6. Let T be a positive selfadjoint operator on a Hilbert space E.
a. Prove that

I (Tx I Y)I2< (Tx l x)(Ty l y) for all x, y E E.

Hint. Prove that (x, y) -+ (Tx I y) is a scalar semiproduct on E and
so satisfies the Schwarz inequality.
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b. Derive another proof of Proposition 3.5 in this case.
7. Let P be a continuous linear operator on a Hilbert space E. We assume

that P is a projection (P2 = P). Prove that the following properties are
equivalent:

P is an orthogonal projection operator.
P is selfadjoint: P = P.

- P is normal: PP' = P' P.
- (Px I X) = IIPxII2 for all x E E.

8. Consider a Hilbert space E and an element T E L(E).
a. Prove that ker T' = (im T)1. Deduce that im T = (ker T' )1, then

that im T = E if and only if T` is injective.
b. Assume T is positive selfadjoint. Prove that an element x E E sat-

isfies Tx = 0 if and only if (Tx I x) = 0 (use Exercise 6a above).
Deduce that T is injective if and only if (Tx I x) > 0 for all x # 0.

9. An ergodic theorem. Consider a Hilbert space E and an element T E
L(E) such that IITII < 1.
a. Prove that an element x E E satisfies Tx = x if and only if (Tx I x) _

11x112. (Use the fact that equality in the Schwarz inequality implies
collinearity.) Deduce that ker(I - T) = ker(I - T').

b. Show that (im(I - T))1 = ker(I - T) (use Exercise 8a above) and
deduce that

E = ker(I - T) ® im(I - T).

c. For n > 1, set
7,n-

n+1
Show that limn--,+,o Tnx = Px for all x E E, where P is the orthog-
onal projection onto ker(I - T).
Hint. Consider successively the cases x E ker(I - T), x E im(I - T),
and x E im(I - T). In this last case, you might use Proposition 4.3
on page 19.

10. Let E be a Hilbert space.
a. Prove that every weakly convergent sequence in E is bounded.

Hint. Use the Banach-Steinhaus Theorem (Exercise 6d on page 22).
b. Let (xn) and (yn) be sequences in E. Prove that if (xn) converges

weakly to x and (yn) converges strongly to y, the sequence ((xn I yn))
converges to (x I y). What if we suppose only that (yn) converges
weakly to y ?

11. Let (xn) be a sequence in a Hilbert space E. Prove that if, for all y E
E, the sequence ((xn I y)) is convergent, the sequence (xn) is weakly
convergent.
Hint. Use Exercise 6f on page 23.
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12. Let K be a compact subset of a Hilbert space E. Prove that every

sequence in K that converges weakly also converges strongly.
13. Prove that in a finite-dimensional Hilbert space every weakly convergent

sequence is strongly convergent. You might give a direct proof, not using
Exercises 10 and 12.

14. Let D be a fundamental subset of a Hilbert space E. Prove that if (xn) is
a bounded sequence in E and if I y) = (x I y) for all y E D,
then (xn) converges weakly to x. Prove that the assumption that (xn)
is bounded is necessary (see Exercise 10a above).

15. a. Let (xn) be a weakly convergent sequence in a Hilbert space and let
x be its weak limit. Prove that x lies in the closed convex hull of the
set {xn}nEN
Hint. Let C be the closed convex hull of the set {xn}nEN. Prove that
x=Pox.

b. Let C be a convex subset of a Hilbert space E. Prove that C is closed
if and only if the weak limit of every weakly convergent sequence of
points in C is an element of C.

16. Banach-Saks Theorem.
a. Let (xn) be a sequence in a Hilbert space E converging weakly to

x E E. Prove that there exists a subsequence (xn,k) such that the
sequence (yk) defined by

Ilk =
1

k
(xnt + x, + ... + xnk )

converges (strongly) to x.
Hint. Reduce to the case where x = 0. Then construct (by induction)
a strictly increasing sequence (nk) of integers such that, for all k > 2,

I(xn, I xnk)I < Ilk, I(xn2 I xnk)I < Ilk, ..., I(xnk-, I xnk)I < Ilk.

Then use Exercise 10a.
b. Deduce another demonstration of the result of Exercise 15.

17. A particular case of the Browder Fixed-Point Theorem. Let C be a
nonempty, convex, closed and bounded subset of a Hilbert space E.
a. Let T be a map from C to C such that

IIT(x)-T(y)II <lix-yIl forallx,yEC.

i. Let a be a point of C. For every n E N* and x E C, define

Tn(x) =
1 a + n - 1

T(x)
n n

Show that there exists a unique point X. E C such that Tn(xn) =
xn.
Hint. The map Tn is strictly contracting.
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ii. Let (x,,,,) be a weakly convergent subsequence of the sequence
(xn), tending to the weak limit x (see Theorem 3.7). Set y, =
xn - aandy=x - a. Prove that, foralln>2,

IIyn1I2 <
2n - 2 Re(yn

I y)2n- 1

Deduce that the sequence (xn,,) converges strongly to x, that
x E C, and that T(x) = x.

iii. Prove that the set {x E C : T(x) = x} is convex, closed, and
nonempty.
Hint. To show convexity, take xo, xi E C such that T(xo) = xo
and T(xl) = xl and, for t E 10,11, set xt = txl +(1 - t)xo. Prove
that

Ilxo - xi II = IIT(xt) - xoll + Ilxt - T(xt)ll
Using the case of equality in the Schwarz inequality, deduce that
T(xt) = xt.

b. Let 9 be a family of maps from C to C such that
- T o S = S o T for allT,SE 9, and
- II T(x) - T(y)II < lix - yll for all T E 9 and x, y E C.

Suppose also that E is separable. Show that there exists a point
x E C such that

T(x) = x for all T E.9.

Hint. Show first that there exists a metric that makes C compact;
then argue as in Exercise 19a on page 85.

Consider a nonempty, convex, closed and bounded subset C of a real
Hilbert space E, and a differentiable function J from E to R. Recall
that J is called convex on C if, for any pair (u, v) of points in C and
any 9 E [0, 1),

J(9u + (1 - 9)v) < OJ(u) + (1 - 9)J(v).

By definition, the gradient of J at u, denoted by VJ(u), is the element
of E that the Riesz Representation Theorem associates to the derivative
map J'(u).
a. Prove that J is convex on C if and only if, for all (u, v) E C2,

J(v) > J(u) + (VJ(u) I v - u).

In particular, deduce that, if J is convex, it is bounded below over
C.

b. Prove that if J is convex there exists at least one point U. E C such
that

J(u.)
unf

J(u).
C-C
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You might proceed in the following way: Let m be the infimum
on the right-hand side, and let be a sequence in C such that
lim,,....,+o, m.

i. Prove that has a weakly convergent subsequence (u,,,,).

ii. Let u. be the weak limit of (u,,,, ). Prove that U. E C (see Exer-
cise 15).

iii. Prove that J(u.) = m.
c. Under the same hypotheses and with the same notation, prove that

the set Co = {u. E C : J(u.) = m} is convex and closed. Prove also
that uECoifandonly if(CVJ(u)Iv-u)>0forallvEC.

d. An example of a convex function. Take T E L(E) and 4D E E', and
set J(u) = (Tu I u) + Prove that J is convex on E if and only
if the operator T + T' is positive selfadjoint.

4 Hilbert Bases

We consider a scalar product space E. A family (X;);Ej of elements of E
is called orthogonal if X, I Xj whenever i A j. For such a family, the
Pythagorean Theorem implies that, for any finite subset J of I,

a-Xsll = :IIX;II2.
iEjII

Here is an immediate consequence of this:

Proposition 4.1 An orthogonal family that does not include the zero vec-
tor is free.

Proof. Let J be a finite subset of I and let (Aj)jEJ be elements of K such
that EjE J A j X j= 0. Then

':AjX'll-
1: IAjI2IIXjII2 =0,

2
jEJ jEJ

which clearly implies that Aj = 0 for all j E J. 0

An orthogonal family all of whose elements have norm 1 is called or-
thonormal. The preceding proposition shows that such a family is free.
A fundamental orthonormal family in E is called a Hilbert basis of E.
Thus a Hilbert basis is, in particular, a topological basis.

We give some fundamental examples.
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Examples

1. Suppose a > 0 and let CQ be the space of continuous functions periodic
of period a from R to K, with the scalar product defined on page 98.
For n E Z, we set

en(x) = e2itrnz/a

It is straightforward to show that the family (en)fEZ is orthonormal in
C. C. As in the particular case of Example 4 on page 35, this family is
fundamental in Ca with the uniform norm. Since the norm associated
with the scalar product never exceeds the uniform norm, the family
(en)nEZ is a Hilbert basis of the scalar product space C. C. It follows
easily that the family

27r 27r 27rn 21rn{1, fcos-x, fsin-x, ..., fcos-x, V2sin-x, ...}
a a a a

is a Hilbert basis of the scalar product space Ca , for K = R or K = C.
2. If A is a Borel set in R, we denote by L2(A) the space L2(A, A) associated

with the restriction of Lebesgue measure to the Borel sets of A. Let E =
L2((0,1)). Clearly L2((0,1)) = L2([0,1]), since \({0}) = A({1}) = 0.
We now set en(x) = e2i'"nz, for n E Z and x E (0, 1). Then is
an orthonormal family in L2 ((0,1)). We also know, by Proposition 2.6
on page 107, that CC((0,1)) is dense in L2((0,1)). Now, CC((0,1)) can
be identified with a subspace of C1, the space of continuous functions
periodic of period 1 (every element f of CC((0,1)) extends uniquely to a
continuous function periodic of period 1 on R), and every element of C1
is the uniform limit of a sequence of linear combinations of functions en
extended to R by 1-periodicity (Example 4 on page 35). We deduce, by
comparing norms as in the preceding example, that the family (en)fEZ
is a Hilbert basis of LC2 ((0, 1)). As before, it follows that

{ 1, f cos 27rx, f sin 2irx, ... , V cos 2irnx, v sin 21rnx, ... }

is a Hilbert basis of L2 ((0,1)), for K =R or K = C.
More generally, if a, b E R and a < b, the family (fn)nEZ defined by

1 2ixnx/(b-a)
f n (x) = b- a

e for all x E (a, b)

is a Hilbert basis of LC ((a, b)). One can also, in an analogous way, obtain
a real Hilbert basis of L2 ((a, b)).

3. Consider the space E = l2(I) of Example 5 on page 99. For j E I, we
define an element ej of E by setting ej(j) = 1 and e,(i) = 0 if i ¢ j.
The family (ej)jE f is obviously orthonormal. We now show that it is
fundamental. To do this, take x E E and e > 0. By the definition of the
sum ELEI Ixi12, there exists a finite subset J of I such that
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But then

Ixil2 = Ix42 - Ix42 << e2.
iEI\J iEl iEJ

2

<6
Ilx I:xjej11 iEI\Jjej

The main properties of orthonormal families follow from the next propo-
sition, which is elementary.

Proposition 4.2 Let {ej}jEJ be a finite orthonormal family in E, span-
ning the vector subspace F. For every x E E, the orthogonal prajection
Pp(x) of x onto F is given by

PF(x) = 1: (x I ej)ej.
jEJ

As a consequence,

Ilxll2 = Il x-1: (xl ej)ej11 +1: I(xI ej)I2Z

jEJ JEJ

Prof. To prove the first statement, it is enough to show that the vec-
tor y = EjE J(x I ej) ej satisfies the conditions characterizing PF(x) (see
Proposition 2.3 and the remark on page 107). Now, it is clear that y E F
and that (x - y I ej) = 0 for all j E J, which implies x - y E Fl. The rest
of the theorem follows immediately from the Pythagorean Theorem.

An important, though easy, first consequence is the Bessel inequality:

Proposition 4.3 Let (ei)iEI be an orthonormal family in E. For all x E
E, we have

1: I(xlei)12

<- IIxll2.
iEI

(In particular, the family ((x I ei))iEi lies in £2(I).)

The next result characterizes the case of equality in the Bessel inequality.

Theorem 4.4 (Bessel-Parseval) Let (ei)iE/ be an orthonormal family
in E. The following properties are equivalent:

1. The family (ei)1Ej is a Hilbert basis of E.

2. IIx112 = E EI I(x I ei)I2 for all x E E (Bessel equality).

3. (x I Y) = EiEl (x I ei)(ei I v) for all x, y E E.
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Thus, if (ei )iE I is a Hilbert basis of E, the map from E to £2 (1) defined
by x H ((x I ei))iEI is a linear isometry. This isometry is surjective if and
only if E is a Hilbert space.

Proof

i. Assume property 1 holds. Then, for all x E E and all e > 0, there
exists a finite subset J of I such that the distance from x to the span
of {ej }jEJ is at most E. By Proposition 4.2,

,I(xIej)I2 > j:I(xlej)I2 Ilxl12-e2.
jEl jEJ

By making a go to 0 and taking Bessel's inequality into account, we
obtain 2.

ii. Conversely, suppose property 2 holds. Then, for all x E E and all e > 0,
there exists a finite subset J of I such that EJEJ I (x I e j)

I2 > IIx112 -6 2
thus, by Proposition 4.2,

x-E(xI e,)ej11 <e.
jEJ

This shows that the family (ei)iEl is fundamental, and so property 1.
iii. The equivalence between 2 and 3 can be derived immediately from the

expression of the scalar product in terms of the norm, valid for any
scalar product space (see the remark following Corollary 1.2).

iv. If the isometry is surjective, E is isometric to e2 (I) and hence complete.
v. Finally, suppose E is a Hilbert space and let (xi)iEI be an element of

£2(I). Set a = E$El 1x42. There exists then an increasing sequence (Jn)
of finite subsets of I such that, for all n E N, ESEJ., Ixil2 > a - 2-n
(we can assume that I is infinite, since the finite case is elementary).
Put un = EiEJ xiei. Then, if n < p,

Ilup - unll2 = > Ixil2 < 2-n.
iEJp\J

Since E is complete, we deduce that the sequence (un) converges to an
element x of E. But

Ixil2=a.
iE U.,.J

Hence, for any i Un Jn, we have xi = 0 and

(x I ei) = lim (un I ei) = 0-
n ++oo

If i E Un J, , then (x I ei) = limn+, (un I ei) = xi. Thus (x I ei) = xi
for all i E I, which proves the surjectivity of the isometry. 0
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Remark. More precisely, steps i and ii of the proof show that, if (ei)iE, is
an orthonormal family in E, the equality

IIx112 I(x I ei)I2

iE r

characterizes those points x that belong to the closure of the span of the
family (ei)iE,.

We shall see that the inverse image of (xi)iEf under the isometry E -+
l2(I) of the preceding theorem can be considered as the sum LEI xiei in
a sense made precise in the following definition:

A family (Xi)iEr in a normed vector space E is called summable in E
if there exists X E E, called the sum of the family (Xi)iEJ, satisfying the
following condition: For any e > 0, there exists a finite subset J of I such
that

IIX - E Xil1 < e for any finite subset K C I containing J.
II {EK

In this case we write
X = Ex'.

iE I

It is easy to see that the sum of a summable family is unique. Observe
that, in the case E = K, a family (xi)iEI is summable in K if and only
if (x1)iE, E t' (I), and in this case the definition just given for the sum
coincides with the one given in Example 5 on page 99 (see Exercise 5 on
page 103). Naturally, if I = N and if the family (Xi)iEN is summable, the
series r,i o Xi converges in E, with EiEJ Xi = E o Xi. The converse is
false, even for E = K: see Exercise 2 below.

Theorem 4.5 Let (ei)iE, be a Hilbert basis of E. For any element x of E,

x = (x I ei)ei.
iEI

Proof. By Proposition 4.2, we know that, for any finite subset J of I,
2

Hz
- r̀: (x I e!)ej II = IIx112 - I(x I e,) I2.

JEJ JEJ

Now just apply the definitions and property 2 of Theorem 4.4. 0
Example. Consider again the situation of Example 1 on page 124: the
space G2* with a Hilbert basis (en) defined by en(x) = et"". If f E Cr2
andnEZ,set

cn(f) _ (f I en) = - " f(x)e_'
dx.

27r
0



128 3. Hilbert Spaces

The sequence (cn(f ))nEZ is the sequence of complex Fourier coefficients
of f. Thus, for all f E C2x,

1 zxlf(x)I2dx

2x o
_, Icn(f)l2.

nEZ

At the same time we have

f = E cn(f )en (*)
nEZ

in the sense of summability in the space Czw with the norm associated
with the scalar product. Recall that in general the series of functions
EfEZ c++(f)en does not converge uniformly to f; therefore equality (*)
does not hold in general in C2& with the uniform norm. (It holds when f is
of class C', for example; see Exercise 15 below). On the other hand, since
the scalar product space C2x is not complete, the isometry from C2ir to
t2(Z) defined by f H (cn (f ))nEZ is not surjective; hence not all elements
of t2(Z) are sequences of Fourier coefficients of continuous functions.

Complex Fourier coefficients can be defined analogously for functions
f E L2((0,1)), by setting cn(f) = fo f(x)e-2i*nxdx (see Example 2 on
page 124). Bessel's equality remains valid in this case, as does equality
(*) in the sense of the norm of L2((0,1)), which, unlike C2w, is complete.
Thus the isometry from L2((0,1)) to t2(Z) defined by f H is
surjective.

The rest of this section is devoted to the problem of existence and con-
struction of Hilbert bases.

Proposition 4.6 (Schmidt orthonormalization process) Suppose
that N E {1,2,3,. ..} U {+oo} and let (fn)o<n<N be a free family in E.
There exists an orthonormal family (en)o<n<N of E such that, for each
nonnegative integer n < N, the families (ep)o<p<n and (fp)o<p<n span the
same vector subspace of E.

Such a family can be constructed by setting

e0 Ilfoll fo

and, for0<n<N-1,

xn+1 = fn+1 - Pnfn+l and en+1 =
1

n+111
xn+1,

F
where Pn is the orthogonal projection onto the span of the family (fp)o<p<n.

Proof. We show that the sequence (en)nEN defined in the statement satisfies
the desired conditions. First, since the family (fn) is assumed to be free, it
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is clear that x,, 0 for all n, and so that en is defined for all n. Let En
and Fn be the vector subspaces of E spanned by, respectively, (ep)o<p<n
and (fp)o<p<n Trivially, Eo = Fo. Suppose that E. = F. for n < N - 1.
Clearly e,a+l E Fn+1, so E.+1 C F.+1. Moreover fn+l E En+l, which
shows the reverse inclusion. Hence, En = Fn for all 0 < n < N. At the
same time, for each n > 1 the vector en+1 is, by construction, orthogonal
to Fn and thus to En. Therefore the family (en)o<n<N is orthonormal. 0

Remark. The family (en)o<n<N can be recursively constructed using the
following algorithm:

xo = fo, eo = xo/llxoll'
n

xn+1 = fn+1 -E(fn+llaf)e en+1 = xn+l/llxn+lll
f=0

(see Proposition 4.2).

Corollary 4.7 A scalar product space is separable if and only if it has a
countable Hilbert basis.

Proof. According to Proposition 2.6 on page 10, the condition is sufficient.
By the same proposition, separability implies the existence of a free and fun-
damental family (fn)-EN. Applying the Schmidt orthonormalization pro-
cess to the family (fn) we obtain a family (en) that is a Hilbert basis. 0

Two scalar product spaces are called isometric if there exists a sur-
jective isometry from one onto the other. Theorem 4.4 has the following
consequence:

Corollary 4.8 An infinite-dimensional Hilbert space is separable if and
only if it is isometric to the Hilbert space P.

Exercises

1. Prove that every orthonormal sequence in a Hilbert space converges
weakly to 0.

2. Summable families in normed vector spaces. Let (Xj){EI be a family in
a normed vector space E.
a. Suppose E is finite-dimensional. Show that (X,), , is summable if

and only if E$EI 11 X{ ll < +oo.
Hint. Reduce to the case E = K and use Exercise 5 on page 103.

b. Make no assumptions on E, but suppose I is countably infinite.
i. Prove that, if the family (X,),E, is summable with sum X, we

have, for any bijection V from N onto I,
+oo

X = E Xw(n).
n=0
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ii. Suppose, conversely, that the series >n o X,,(,,) converges for
any bijection V : N -* I. Prove that the family (X;);EI is
sumniable.
Hint. Let cp be a bijection from N onto I and set

+oo

X = Xv(n)-
n=0

Prove that, if &E I X; X, there exists E > 0 with the following
property: For any integer n E N, there exists a finite subset
A of {n, n+1, n+2,...} such that IIEkEAXp(k)II > E. Deduce
the existence of a sequence (An)nEN of pairwise disjoint finite
subsets of N such that II EkEA., X,v(k) II ? e for every n E N,
then the existence of a bijection ' : N -> I such that the series
En =000 X,p(n) does not satisfy the Cauchy criterion and so does
not converge.

c. Suppose that E is a Hilbert space, I is arbitrary, and (X;);E is
an orthogonal family. Show that the family (X,);Ej is summable if
and only if >iE, IIXill' < +oo. (You might draw inspiration from
the last part of the proof of Theorem 4.4.) Deduce that, in any
infinite-dimensional Hilbert space, there exists a summable sequence
(Xn)nEN such that EnEN IIXnfl is infinite. (In fact, the Dvoretzki-
Rogers Theorem asserts that there is such a sequence in any infinite-
dimensional Banach space. The next question presents another sim-
ple example of this situation.)

d. Let X be an infinite metric space, and take E = Cb(X), with the
uniform norm, denoted II II

i. Show that there exists in X a sequence (B(an, rn))nEN of pair-
wise disjoint nonempty open balls.

ii. Show that, for each integer n E N, there exists a continuous
nonnegative-valued function f,, on X supported within B(an, rn)
and having norm 11f, ,11 = 1/(n + 1).

iii. Show that the sequence (fn)nEN is summable in E and that the
series EnEN IIfnil diverges.

3. Let A be a subset of Z and let EA be the vector subspace of L2((0, 27r))
defined by

2,.

EA = If E L2([O,2ir1) : f f(x)e-in'dx = 0 for all it E A.
o JJJ

a. Show that EA is closed and determine a Hilbert basis of EA.
b. What is the orthogonal complement of EA?
c. Write down explicitly the operator of orthogonal projection onto EA.



4 Hilbert Bases 131

4. Legendre polynomials. If n is a nonnegative integer, we define a polyno-
mial Pn as

Pn(x) 2n7b! an
((x2 - 1)n).

a. Show that the family ( n + z Pf)nEN is a Hilbert basis of the space
L2([-1, 1]).

b. Deduce an explicit expression for the orthogonal projection from
L2(f -1, 1]) onto the space Rn[X] of polynomial functions of degree
at most n.

5. Hermite polynomials. Consider the Hilbert space E = L2(µ), where µ
is the positive Radon measure defined on R by

AM = 1 r cp(x)e--2/2dx for all cp E CS(R).
27r Jet

a. Show that, for every n E N, there exists a unique polynomial P,, of
degree n such that

n

(e_ss/2) = (-1)ne-x'/2Pn(x)

b. For each n E N, set Pn = Pn/ ni . Show that (Pn) is an orthonormal
family in E.

c. i. Take cp E CS(R). Show that there exists a sequence of polynomials
(pn)nEN such that

lim
pn(x)e_2Z/8

= V(x)e-'
2/8

n-r+oo

uniformly on R.
Hint. Use Exercise 8d on page 41 and perform a change of vari-
ables.

ii. Deduce that (Pn)nEN converges to cp in E.
d. Show that the family (Pn) is a Hilbert basis for E.

6. Chebyshev polynomials. Let µ be the positive Radon measure on [-1,1]
defined by

p(cp) =
J

cp(x)(l - x2)-t/2dx for all cp E C([-1,1J).

For X E [-1,1], set To(x) = 1/7r and

Tn(x) = 2/ir cos(n arccos x) for n > 1.

Show that, for every n E N, the function Tn is the restriction to [-1, 1]
of a polynomial of degree n and that (TT)nEN is a Hilbert basis for
L2(µ).
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7. Laguerre polynomials. Let p be the positive Radon measure on R+ de-
fined by

+00
p(cp) = f cp(x)e-x dx for all cp E

0

For each n E N, set

a. Show that Ln is a polynomial of degree n for every n E N.
b. i. Compute the scalar product (Xk I Ln), for 0 < k < n, where

Xk : x H xk.
ii. Deduce that (Ln)fEN is an orthonormal family in the space E _

L2 (p)
c. Show that, if a is a nonnegative real number,

+00

I f e-QzLn(x)e-xdx) =
1

`0 2a + 1

Deduce that the function f,, : x -+ a-ex lies in the closure in E of
the vector space spanned by the sequence (Ln).

d. Show that the family (fn)nEN is fundamental in C0(R+). (Use
the Weierstrass Theorem and a change of variables, or the Stone-
Weierstrass Theorem in R+: see Exercise 7i on page 56.) Deduce
that (L,,)nEN is a Hilbert basis for E.

8. Gaussian quadrature. Let µ be a positive Radon measure on a compact
interval [a, b] in R (where a < b). Suppose the support of µ is not finite.
a. Show that there exists a Hilbert basis (Pn)nEN of LR(p) such that,

for every n E N, Pn is the restriction to [a, b] of a real polynomial of
degree n.

b. Show that, for n > 1, Pn has n distinct roots in (a, b).
Hint. Using the fact that f Pn dµ = 0, show that Pn has at least
one root of odd multiplicity in (a, b). Now let x1,.. . , x,. be the
roots of odd multiplicity of Pn in (a, b). By considering the integral
f Pn(x)(x-x1)...(x-x,.)dµ(x), prove that r=n.

c. Fix n > 1 and let xl, ... , xn be the roots of Pn.
i. Show that there exists a unique n-tuple (A1,.. . , An) of real num-

bers such that, for every k E {0,...,n- 1),

n

J
xk dp(x) = E Aixk

i=1
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ii. Show that, for every polynomial P of degree at most 2n - 1,

J Pdp = EAiP(xi).
i

Hint. Write P = Q + RPn, where R and Q are polynomials of
degree at most n - 1.

iii. Show that, for every i E { 1, ... , n},

f
J

ll(x - xj)adµ(x) = Ai II(xi - xj)'.
.l

i&i joi

Deduce that Ai > 0.

d. Now make n vary and denote by xl"), ... , xn" the roots of P,, and
by (Ar, , A,u,") the coefficients determined in the preceding ques-
tion. Show that, for every continuous function f on [a, b),

J f dµ n-hiITlloo
A!n) f (x;").

Hint. Use Proposition 4.3 on page 19.

9. Let D be a dense subset and (ei)iE, an orthonormal family in a scalar
product space E. Show that there exists a surjection from D onto I.
Deduce that any orthonormal family in a separable scalar product space
is countable.

10. Let 9 be the vector space spanned by the family of functions (er)rER
from R to C defined by er(x) = eirx
a. Show that, if f and g are elements of 9, the value

f (t) g(t) dt(f I g) = lim 1 fTTi+oo 2T

is well defined and that the bilinear form thus defined is a scalar
product on e.

b. Show that the family (er)rER is a Hilbert basis of 9, and that 9 is
not separable (see Exercise 9 above).

c. Let E be the Hilbert completion of 8 (Exercise 8 on page 104). Show
that the family (er)rER (where we use the notation of Exercise 8 on
page 104) is a Hilbert basis of E, and deduce that there exists a
surjective isometry between E and II(R).

11. Hilbert bases in an arbitrary Hilbert space

a. Let E be a scalar product space.
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i. Show that E contains a maximal orthonormal family (that is, an
orthonormal family that is not strictly contained in any other).
Hint. Use Zorn's Lemma (which is apparently due to Kuratowski),
one of the various equivalent forms of the axiom of choice:
Let be an order relation on a set W, satisfying the following
condition: Every subset of W that is totally ordered by -< has an
upper bound. Then W has a maximal element.

R. Show that if E is a Hilbert space every maximal orthonormal
family is a Hilbert basis for E. (Use Corollary 2.5.) Thus, with
the axiom of choice, every Hilbert space has a Hilbert basis.

b. Let (e; )iE t and (fj)JEJ be Hilbert bases of a Hilbert space E.

i. For j E J we write I1 = {i E I : (e1 I fj) # 0}. Show that all the
sets II are nonempty and countable and that I = U,7EJ I1

ii. Deduce that there exists a bijection between I and J.
Hint. Use Exercise 9 on page 6.

c. Show that two Hilbert spaces are isometric if and only if there is a
bijection between their Hilbert bases. In particular, e2(I) and 12(J)
are isometric if and only if there exists a bijection between I and J.

12. Let w E L2((0,1)) be such that W(t) + W(t+Z) = 0 for every t E (0,
z
).

Extend cp to a function periodic of period 1 on R (also denoted gyp). Then
set Wo = 1 and, for every integer n > 1, set cw"(t) = W(21-1t). Show
that (Vn)nEN is an orthogonal family in L2((0,1)).

13. Haar functions. Consider the family of functions (Hp)pEN defined on
[0,11 by H0=l and, fornENand1<k<2",

2n if x E ((2k - 2)2-n-1, (2k - 1)2-n-1),
H2..+k-1(x) _ - 2n if x E ((2k - 1)2-n-1, 2k X 2-n-1),

0 otherwise.

a. Show that (Hp)PEN is an orthonormal family in L2([0,1]).

b. Let f E L2 ([0,1 ]) be such that f o f Hp dx = 0 for every p E N. Set
F(y) = fo f (x) dx.
i. Show that, for every n E N and for every integer k such that

1<k<2",

12k - 22k-1 2k
-F 2n+1 + 2F 2n+1 - F n1 = 0.

ii. Deduce that F = 0. (Note that F is continuous.)
iii. Deduce that f = 0, then that (Hp)pEN is a Hilbert basis of

L2([0,1])



4 Hilbert Bases 135

In the sequel we will write, for each integrable function f on [0,11
and each p E N,

!1 p
fP = J f(x)HP(x) , 3A(f)(x) _ >fgHq(x)

q=0

c. For p E N, we denote by gyp the set of maximal open intervals on
which the functions Hg, with q < p, are constant: If p = 2" + k - 1
with nENand1<k<2n,

. J\j 7 /JU 1(2(j -1) nP=
2n+1 2n+1 2n+1 2n+11<j<2k

(Note that 9p has p + 1 elements.) Moreover, let Fp be the set of
functions defined on (0,1), constant on each interval I E -0p, and
such that

f(x)= Z(f(x+)+f(x_)) for allxE(0,1),

where f (x+) and f (x_) are the right and left limits off at x. Show
that (Hq)g<p is an orthonormal basis of Fp.

d. Suppose f E L1([0,11).
i. Take p E N. Denote by f * the element of Fp whose constant

value on each interval I E Jp of length 1(I) is

1 f (x) dx.
1(I)

Show that, for every nonnegative integer q < p, we have fq = fq .

Deduce that sp(f) = sp(f *).
ii. Deduce that, for every integer p E N and every interval I E 4,

8P(f)(t) =
l(I)

f f(x) dx for all tEI.

e. Let f E CR([O,1]).

L Take p E N. Show that, for every I E .gyp, there exists a point
xi E I such that

8p(f)(t) = f(xi) for all t E I.

ii. Deduce that, for every p E N,

xmax I sp(f)(x) - f(x)I <
sup{ I f (x) - f (y)I : x, y E [0,11, [x - yI < 2/p}.
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iii. Deduce that the series E ffH4 converges uniformly to f in [0,1].
14. Rademacher functions. For every integer n > 1 we define a function rn

on the interval [0, 1] by

rn(x) _
1

-1
0

if x E ((k - 1)2-n, k2-n) with 2
: 5 k : 5

< k < 2n, k even,
0 otherwise.

Observe that rn = (1/ 2n-1) F2"- I-, Hp, where the Hp are the Haar
functions defined in Exercise 13.
a. Show that (rn)n>1 is an orthonormal family in L2([0,1]). Deduce

that, if (an) E £2, the series L+n>1 anrn converges in L2([0,1]).
b. i. Prove that, if are nonnegative integers whose sum is

p, we have
(2p)! (/3)! ... (an)! < pp.

p! (2/31)! ... (20n)! -

ii. Let a1, ... , an be nonnegative integers and

fI= / 1 ri' (x) ... rn° (x) dx.
0

Show that I = 1 if all the aj are even and that I = 0 in any
other case.
Hint. Observe that, for every j > 1, we have rJ2 = 1 almost
everywhere; this allows us to reduce to the case where all the aj
equal 0 or 1.

iii. Let a1,... , an be real numbers and set sn = E 1 ajrj. Show
that, for every p E N,

j
IP.

f
n

an(x)2"dx < pp( n>2a
j=1 I

c. Take (an) E 12 and let f be the sum in L2([0,1]) of the series
En>1 anrn. Show that f E Lp([0,1]) for every real p > 1.

d. Let F be the closure in L2([0,11) of the vector space spanned by the
sequence (rn)n>1.

i. Let G be the vector space spanned by the functions fE : x H x-E,
where e < 2. Show that the projection PFD is injective on G.
Hint. Use part c above and the equality

Gn` nL3'([0,1])I={0}.
p>1 /

ii. Deduce that F-3- has infinite dimension.
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iii. Show that, for any finite family (r;,)n<N in L2([0,1]), the family
,),:5N is not fundamental in L2([O,1]).(rn),,>1 U (r'

15. Let f be a function of class C' from [0,1] to C such that f (0) = f (1). For
n E Z, set c,=(f) = fo f (x) a-2{Rnx dx. Show that the series of functions
En_°Ooo c Me 2arn= converges uniformly on [0,1]. Then show that, for
every x E [0' 11,

+oo

f (x) = cn (f)e2ixnz

n=-oo

Hint. Show that 2iirnc,a(f) and, using Bessel's equality for f',
deduce that

+00

Ien(f)I < +00-
n=-00

16. a. Let f be a function of class C' from [0,1] to C such that f (0) = f (1).
Show that

1

f0

If(x)I2dx-IJOIf(x)dxl2 < 4-2 j'If,(X)I2dX

and that equality takes place if and only if f is of the form f (x) _
A+ pe2'*x + ve-2c'xx, with A, p, v E C.
Hint. Use Bessel's equality, considering the Hilbert basis of L2((0,1))
defined in Example 2 on page 124.

b. Let f be a function of class C' from [0,1] to C. Show that

f0l 10
ff(x)dxi2 <

2
jIf'(x)I2thr

and that equality takes place if and only if f is of the form f (x) _
A + p cos irx, with A, µ E C.
Hint. Argue as in the preceding question, considering the even func-
tion from [-1, 1] to C that extends f.

c. Let f be a function of class C2 from [0,1] to C such that f (0) _
f (1) = 0. Show that

fo'

I f'(x)I2dx < I L
iI

f"(x)12dx

and that equality takes place if and only if f is of the form f (z) _
A sin irx with A E C.

d. Wirtinger's inequality. Let f be a function of class C' from [0,1] to
C such that f (0) = f (1) = 0. Show that

j'If(X)I2dX < 2 L1f1)I2dz
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and that equality takes place if and only if f is of the form f (x) _
A sin ax, with A E C.
Hint. Extend f into an odd function.

7. Biorthogonal systems. Let E be a Hilbert space. We say that two se-
quences (fn)nEN and (9n)nEN in E form a biorthogonal system in E if,
for every i, j E N,

i ifi=j,
I if i. j.

Suppose that (en)nEN is a Hilbert basis of E and that (fn)nEN is a
sequence in E such that, for every finite sequence (an)n<N in K,

N

2

N

Il an(en - fn) II < 92 Ian
n=O

n I2,

where 0 is a real constant such that 0 < 0 < 1.
a. Show that, for every f E E, the series En o (f I en)(en - fn) con-

verges in E. Denote its limit by K f .
b. Show that the map K thus defined is a continuous linear operator

on E, of norm at most 0.
c. Set T = I - K. Show that Ten = fn for each n E Ni, and that T has

a continuous inverse, which we denote by U.
d. For each n E N, set gn = U'en. Show that the sequences (fn)nEN

and (9n)nEN form a biorthogonal system in E.
e. Show that, for every f E E,

f = L. (f 19n)fn = (f l fn)9n
nEN nEN

Deduce that the two families (fn)nEN and (9n)nEN are fundamental
in E.

f. Show that, for every f E E,

1/2

0 -0)Ilf11 <- I(f Ifn)I2) <-
(1+0) If,,,

nEN

) <
(1 +OrI lIfll <- (1: I(f I9n)I2

1/2

(1 - B)-'IIfII
nE N

8. Suppose that E is a separable Hilbert space and let (en) be a Hilbert
basis of E. For every pair (x, y) of points in the closed unit ball B of E,
set

ao I(x-ylen)I
d(x,y) _ 2n

n=0
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a. Show that d is a metric on B and that a sequence (x,,) of points of
B converges in (B, d) to a point x E B if and only if it converges
weakly to x.

b. Show that the metric space (B, d) is compact.
19. Gram matrices and Gram determinants. Let E be a scalar product space

over R. If x1, ..., xp are elements of E, the Gram matrix of (x1,... , xp)
is by definition the p x p matrix G(x 1, ... , xp) whose (i,j) entry is ai,j =
(xi I xj ). The determinant of this matrix is called the Gram determinant
of the p-tuple (x1, ... , xp).
a. Show that the Gram determinant of a linearly dependent family of

vectors in E vanishes.
b. Suppose that the family (x1,. .. , xp) is free. Let {e1,.. . , ep} be an

orthonormal basis of the vector space spanned by {x1,. .. , xp}. Let
M = (mi,j) be the matrix of change of basis (thus xj = E 1 mi,jei
if 1 < j < P). Show that G(xl, ... , xp) = MT M, where MT denotes
the transpose of M. Deduce that det G(xl,... , xp) > 0.

c. Let {z1,. .. , xp} be a free family in E, spanning the subspace F.
Show that, for every x E E,

d2(x,F) - detG(x,xi,...,xp)
detG(xi,...,xp)

Hint. Let y be the orthogonal projection of x onto F. In the calcu-
lation of det G(x, x1, ... , xp), replace x by (x - y) + y and use the
fact that the determinant depends linearly on the first column.

d. i. Let a1, ... , ap be positive reals and A the p x p matrix whose
(i,j) entry is a,,j = 1/(ai+aj). Show that

detA=2-pf H I a?-ak)
j=1 a 1<j<k<p \a'+ak

Hint. Work by induction.
ii. Suppose that E = L2((0,1)). For every nonnegative real num-

ber r, define an element f,. of E by f,(x) = Zr. Let r1i... , rp
be pairwise distinct nonnegative reals and let F be the vector
space spanned by the functions f...... f,,. Show that, for every
integer n E N,

d2(fn,F,) = 1 j n-rj
2n+1 11 (n+rj+1)j=1

20. Miintz's Theorem. Let (rp)pEN be a strictly increasing sequence of non-
negative reals. For any real number r > 0, denote by f,. the function
defined on [0, 11 by f, (X) = x' .
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a. Consider the space E = L2((0,1)) with its Hilbert space structure.

L Show that the family (frp)pEN is fundamental in E if and only
if, for every integer n E N,

lim d(fn, Fp) = 0,
P- ++00

where Fp is the vector space spanned by (fr, )o<j<p
Hint. Start by showing that the family (fn)nEN is fundamental.

ii. Show that the family (fry)pEN is fundamental in E if and only if

1: 1/rp = +oo.
p>1

Hint. Calculate log(d(fn, Fp)) using Exercise 19d-ii.

b. We now place ourselves in the space H = CR([0,1]), considered with
the uniform norm.

i. Suppose the family (fry )pEN is fundamental in H. Show that
Ep>1 1 /rP = +00.

ii. Conversely, suppose that Ep>1 1/rp = +oo, ro = 0, and r1 > 1.
A. Show that Ep>21/(rp-1) = +oo. Deduce that the space of

C' functions on [0,11 vanishing at 0 is contained in the closure
of the vector subspace of H spanned by the family (frp)pEN .

Hint. Let f be a C1 function vanishing at 0. Approximate
f in the space L2((0' 1)) by linear combinations of functions
frp-1

B. Deduce that the family (frp)pEN is fundamental in H.

11. Hilbert-Schmidt operators. Let E be an infinite-dimensional separable
Hilbert space.

a. i. Let (en)nEN and (fp)pEN be Hilbert bases for E. Show that, for
T E L(E),

+00 +00

IITenII2 = IIT'f,II2 < +00.
n=0 p=0

Deduce that
+00 +00

IITenII2 IITfp112.
n=0 p=0

We fix from now on a Hilbert basis (en)fEN for E and we denote
by .3l°(E) the vector space consisting of T E L(E) such that the
expression IITII2 = (En o IITenhI2)1/2 is finite. Such a T is called
Hilbert-Schmidt operator on E.
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ii. Show that .F°(E) L(E) and that IITII <_ IITII2 for every T E
Jt°(E). Show that II.112 is a norm on Jt°(E), with respect to
which Jr(E) is a Hilbert space. This is called the Hilbert-Schmidt
norm.
Show that any element T in L(E) of finite rank (that is, such
that im T is finite-dimensional) is Hilbert-Schmidt.
Hint. Consider a Hilbert basis of E that is the union of a basis
of ker T and a basis of (ker T)1.

iii. Take T E _4E°(E). For n > 0, denote by Pn the operator of
orthogonal projection onto the span of {e j : 0 < j < n}. Show
that, for every positive integer n, the composition TPn belongs
to ..1°(E), and that limn-++oo II T - TPn 112 = 0. Deduce that the
set of operators of finite rank is dense in Jt°(E).

b. Suppose that E = L2 (m), where m is a or-finite measure on a measure
space (52,.9) (such that L2(m) is separable). Choose a Hilbert basis
(en)nEN for E.
i. Show that the family (en,p)n,pEN defined by en,p = en ® ep is a

Hilbert basis for L2 (m x m). (Recall the notation (e n ®ep) (x, y) _

en(x) ep(y) )
Hint. See Exercise 7 on page 110.

ii. Consider K E L2(m x m), and let TK be the operator from E to
E defined by

JK(sy)f(y)dm(v)TK f (x) for all f E E.

For (n, p) E N2, set

kn,p = (K I en,p) = (TKep I en),

where we use the same notation for the scalar products in L2(m)
and L2(m x m). Show that

1/2

IITKII2 = (, Ikn,pI2) = IIKIIL2(mxm),
n,pEN

and so that TK E .(E).
iii. Conversely, take T E Jt°(E). For n, p E N we write kn,p =

(Tep I en)-
A. Show that Ef,PEN Ikn,pI2 < +00.
B. Let K be the element of L2(m x m) defined by

K = E kn,pen,p.
n,PEN

Show that T = TK. Hence, the map K H TK is a surjective
isometry from L2(m x m) onto .)°(L 2(m)).





4
Spaces

1 Definitions and General Properties

We first establish the notation and definitions that we will use throughout
this chapter. The most basic results are recalled without proof; the reader
can consult, for example, the first part of Chapter 3 of W. Rudin's Real
and Complex Analysis (McGraw-Hill).

We consider a measure space (X, F) -that is, a pair consisting of
a set X and a o-algebra F -and a measure m on F. For every real p
in the range 1 < p < oo, we define 22 (m) as the space of .0'-measurable
functions f from X to K such that f If Ipdm < +oo. We denote by YK (m)
the space of F-measurable functions f from X to K for which there exists
a nonnegative real number M (depending on f) such that , f (z) < M
rn-almost everywhere. We can leave K and/or m out of the notation when
there is no danger of confusion.

By extension, a function f with values in K and defined m-almost every-
where on X is said to belong to 2K (m) if it equals m-almost everywhere
some function of 2K (m) in the original sense.

In the study of these spaces 2p, an essential role is played by the Holder
inequality, a generalization of the Schwarz inequality (which corresponds
to the case p = p' = 2).

Theorem 1.1 (Holder inequality) Suppose p, p' E (1, oo) satisfy

1 1

P
=1.
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(We say that p and p' are conjugate exponents.) If f E 2p and g E 2P',
the product f g lies in 21 and

(fIfI1'dm)
1/pr `1/p'f Ifgldm<( IIpdm)

We define the vector space LK(m) as the quotient vector space of 2K (m)
by the equivalence relation 9 of equality m-almost everywhere (in other
words, we identify in LP functions that coincide m-almost everywhere). The
vector space LR (m) is a lattice. Except when explicitly stated otherwise,
our notation will not distinguish between an element of LP(m) and its
representatives in 2P(m).

If f E LP(m)(m) with 1 < p < oo, we define

1/p

Ilfllp = (f IfIpdm) ;

if f E LK (m), we set

Ilfll o = min{M > 0 : If I < M m-almost everywhere}.

Obviously, these expressions do not depend on the representative chosen
for f. One can show that, for 1 < p:5 oo, the map II . Ilp thus defined is a
norm on LK (m).

By convention, 1 and oo are conjugate exponents. The Holder inequality
can be rephrased as follows:

Proposition 1.2 Let p and p' be conjugate exponents with 1 < p, p' < oo.
For every f E LP (m) and g E Lt (m) we have f g E LK (m) and

IIfgII1 <_ Ilf lip IIgII '.

Example. In the remainder of this chapter, we will say simply that "m is
a Radon measure" to mean that X is a locally compact and separable
metric space, 9 is the Borel a-algebra on X, and m is a positive Radon
measure on X, considered as a Borel measure. In this situation, for every
f E Cb(X),

Ilf11. = sup{If(x)I : x E Suppm}.

Suppose moreover that the support of m equals X. Then IIf 110 = Ilf II
for every function f E Cb(X), where 11f Il, as usual, is the uniform norm
of f on X. In other words, the map that associates to an element f of
Cb(X) (with the uniform norm) its class modulo .9 is an isometry (and
in particular an injection) from Cb(X) to L°°(m) (with the norm II.1100).

If f is a Borel function, there exists a greatest open set 0 of X such
that f (x) = 0 for m-almost every x of 0 (to see this, one might reason
as in the proof of Proposition 3.1 on page 68). The complement of 0 is
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called the essential support of f. If f is continuous, we see that the
essential support off is exactly the support off (thanks to the assumption
Supp m = X). Moreover, by definition, two Borel functions that coincide
almost everywhere have the same essential support. Hence we can define
without ambiguity the essential support of a class modulo . as the essential
support of any of its representatives. In the sequel, if f is a class of functions
modulo R, we will refer to the essential support off as simply the support
of f , and we will denote it by Supp f as well.

One fundamental property of the LP spaces is completeness:

Theorem 1.3 (Riesz-Fischer) If 1 < p < oo, the space LK (m) with
the norm II lip is a Banach space.

Now suppose I is a set, Jr = Y (I) is the discrete o-algebra on I, and m
is the count measure on I (Example 5 on page 99). Then the space LK(m)
(with X = I) is denoted by £P(I), or more simply by IP if I = N (compare
Exercises 7 on page 11 and 8 on page 12). In this case,

1 < p:5 q:5 oo 9K(I) C SK(I)

and IIxII, <_ IIxIIP for every x E'K(I).
By contrast, when m has finite mass (m(X) < oo), the inclusions go in

the opposite direction:

1 < p:5 q < oo LK (m) C LK (m)

and, for every f E LK (m),

IIflip <
IIfIIq(m(X))(9-P)I4P'

as can be checked using the Holder inequality.
More generally, we have the following interpolation result:

Proposition 1.4 If f E L' n L°°, then f E LP for every p E (1, oo), and

IIflip <- IIfII1`PIIfiI 11P

In addition, if 1 < p < oo, L1 n L°O is dense in LP.

Proof. If f E L°° and 1 < p < oo, we clearly have If I P < If I IIf IIP 1
rn-almost everywhere, which proves the first assertion of the proposition.

Now suppose that 1 < p < oo and that f E LP. Since If IP is a positive
integrable function, there exists an increasing sequence ((Pn)nEN of positive,
integrable, piecewise constant functions that converges almost everywhere
to If I P. Set

a(x) = f (x)/ If (x) I if f (x) 540,
10 if f (x) = 0.
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Then the sequence (app;/ )) is a sequence in L1 fl L°° that converges almost
everywhere to f, being bounded above in absolute value by if I. By the
Dominated Convergence Theorem, this sequence converges to f in LP. 0

Remark: denseness of piecewise constant functions in LP. The preceding
proof shows also that, if p E (1, +oo), every positive element of LP is the
limit in LP of an increasing sequence of positive, integrable, piecewise con-
stant functions. By taking linear combinations, we deduce that integrable
piecewise constant functions are dense in LP for p E 11, +oo). Note that
this is false if p = oo and if m has infinite mass (see Exercise 8 below).
Nonetheless, one sees easily that every positive element f of L°O is the
limit in L°° of an increasing sequence of (not necessarily integrable) posi-
tive piecewise constant functions. For example, one can take the sequence
(fn)nEN defined by

2n-1
fn = M k2-n 1{Mk2-n<f<M(k+1)2-n},

k=0

with M = Ilf lI, It follows that the set of piecewise constant functions is
dense in L.

We now study other denseness results. We start with a convenient ele-
mentary lemma.

Lemma 1.5 For each nonnegative real a, define a map fla : K -+ K by
setting 110(x) = 0 and

Ha (x) _
ax

if a > 0.
max(a, IxI)

Then, for every x E K, we have IHa(x)l < min(a, IxI) and, if IxI < a, then
fla(x) = x. Moreover,

la(x) - R0(y)I <_ Ix - yI for all x, y E K.

Proof. It is clear that fla is exactly the projection map from the canonical
euclidean space R (or the canonical hermitian space C, as the case may
be) onto B(0, a). The claims made are then obvious; the last of them can
be seen as a particular case of Proposition 2.2 on page 106. 0

The following theorem generalizes Proposition 2.6 on page 107, which
represents the case p = 2.

Theorem 1.6 If m is a Radon measure, the space CC(X) is dense in
LP(m) for 1 < p < +oo.
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Proof. The case p = 1 was proved in Chapter 2, Proposition 3.5 on page 70.
Suppose 1 < p < oo. By Proposition 1.4, it suffices to approximate f E
L' n L°° in the sense of the 11 - IIP norm. Thus, fix f E L' n LOO and let (W,)
be a sequence in C°(X) that converges to f in L'. Set v/i,,, = 11I1f11.(Wn),
using the notation of Lemma 1.5. Then -0n E CC(X) and

If -O.IP < If - WnI(2IIfIIo°)P-'.

Now f = IIP f1I. (f) and so, since by Lemma 1.5 the maps IL are contract-
ing,

If - ,SIP <_ If -
vnI(2IIfII.)P-',

which proves the result.

Remark. If m is a Radon measure of support X, the closure of CC(X) in
LOO(m) is Co(X) (which is distinct from L°°(m) if X is infinite).

Corollary 1.7 If m is a Radon measure, the space LP(m) is separable for
1<p<00.

Proof. Let (Kn) be a sequence of compact sets exhausting X. Since

C, (X) = U
nEN

it suffices, by the preceding theorem, to show that each CK (X) is separable
with respect to the 11 . IIP norm. But CK.. (X) is separable with respect to
the uniform norm II II, and IIf IIP <_ IIf II m(K,,)'/P for every f E CK, (X).
This proves the result.

Remark. The assumption that X is separable is essential in Corollary 1.7.
For example, if I is an uncountable set, the space tp(I) is not separable,
by Exercise 8 on page 12.

Note also that the space L°O is not separable in general; see Exercise 10
below.

Exercises

We consider in these exercises a measure m on a measure space

1. Spaces LP for 0 < p < 1. Take p E (0, 1). Define the space LP as the set
of equivalence classes (with respect to equality m-almost everywhere)
of F-measurable functions f from X to K for which the expression

VIP = f IflPdm

is finite.
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a. Show that LP is a vector space and that the formula dp(f, g) = If -9Ip
defines on LP a metric that makes LP complete.

b. Suppose that X is an open set in Rd, for d > 1, and that m is the
restriction to X of Lebesgue measure on Rd.

i. Show that bounded Borel functions with compact support are
dense in (LP, dp).

ii. Let f be a bounded Borel function on X with compact support,
and suppose that r > 0. Show that f lies in the closed convex hull
e(B(0, r)) of the ball B(0, r) of LP (see Exercise 9 on page 18).
Hint. Let K be a parallelepiped in Rd containing the support
of f. Write f in the form

1 °
f = n >nf 1K;,

i=1

where (K1)1<1<n is a partition of K n X into n Borel subsets,
each of measure at most A(K)/n. Check that, for n large enough,
all the functions n f 1K, belong to B(0, r).

iii. Deduce that e(B(0, r)) = Lp for every r > 0.
2. a. Let p, q, r be real numbers in [1, oc) satisfying 1/r = 1/p+1/q. Show

that, if f E LP and g E Lq, then f9 E Lr and

IIf9Iir <- IIf IIp 11911q-

b. Let f be an function from X to K. Show that the set
J defined by

1
J= {

(pE
(1, +00) : 0<

r
j IfIpdm<+oo}

is a (possibly empty) interval. II

11

Hint. If r E [p, q] and f E LP n Lq, introduce the real number x E
[0,1] such that 1/r = (x/p) + (1-x)/q.

c. Let (X,,0') be R with its Borel o-algebra, and let m be Lebesgue
measure. For each p E [1, ooJ, find an element of LP that belongs to
no other Lq, for q 3& p.

d. Show that the map from J to R defined by

p H log \J If I pdm)

is a convex function.
e. Show that, for every q E [1, oo),

LgnL°O c n LP
q<p<oo
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and that, for every f E Lq n L°°,

Ill H = llfII.

Hint. Show that 0 < a < Ilf 11... implies a < lim infp,,,. 11f Ilp
S. Take p E (1,0o) and let p' be the conjugate exponent of p. Let K

be a nonnegative-valued Borel function on (0, +00)2 satisfying these
conditions:
- xK(xy, xz) = K(y, z) for all x, y, z E (0, +oo).

r+
J K(1, x)z-1/pdx = k < +oo.

0
!+00

a. Show that 1 K(z,1)z-1/p'dz = k.
JJJo

b. Show that the equation

Tf (x)
=+00

+ K(x, y) f (y) dy
0

defines a continuous linear operator from LP((0, +oo)) to itself, of
norm at most k.
Hint. First find an upper bound for IT f(x) 1, by writing

K(x, y) = K(x, y)1/P (x)1" K(x,11)1/p' (x)
1/pp'

Y

and using the Holder inequality.
c. Suppose in addition that K(1, z) < 1 for every z > 0. Ifs > 0, set

r+00
kt = J K(l,z)z-(l+r)/pdz,

0

fe(x) = 1(=>1} x-(1+t)/p, ge(x) = 1(z>1} x-(1+e)/p

Check that f, E LP((O, +oo)) and gt E Lp'((0, +oo)); then show that,
for every s < p/2p',

1+00
Tft(x)ge(x)dx > (kt - 2(p')26)IIfeI1p11gt11p,

0

Deduce that IITII = k.
d. Show that the maps K defined by K(x, y) = 1 /(x+y) and K(x, y) _

1/max(x,y) satisfy the assumptions above for every p E (1, +00).
Compute the norm of the operator T in these two cases. Recall that,
for a> 1,

/+°° dx = VJ -sin-.
0 1+xa a a

(See also Exercise 17 on page 228.)
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4. Let m and n be or-finite measures on measure spaces (X, 9) and (Y, 9),
and let K be a nonnegative-valued function on X x Y, measurable with
respect to the product a-algebra 9 x 9. Take r, 8 E [1, oo) such that
s < r. We wish to prove the following inequality:

1r/a \1/r
K(x, y)8 dm(x) I dn(?/) I

< CJ CJ K(x,Y)rdn(Y))a/rdm(x)\
11/a(<

+oo). (*)( (
X Y

a. Suppose that s = 1 < r, that K is bounded, and that m and n have
finite mass. Put

r

Ix
a = / (K(x,y) dm(x)) r dn(y) < +oo,

Y \
r / `

b =
J

`
J

K(x, y)rdn(y))
1/r

dm(x) < +oo.
X \ Y

i. Show that

) dn(y)) dm(x).
a = J UY K(x, V) YX K(x,y)dm(x')r

1

ii. Applying the Holder inequality to the integral over Y, prove that
a < ba1/r , where r' is the conjugate exponent of r.

iii. Deduce (*) in this case.
b. Show that (*) holds in general if s = 1 < r.
c. For s arbitrary, reduce to the preceding case by setting k = Ka and

r` = r/s.
5. We suppose that m is a-finite and fix p E [1, +oo).

a. Let g be a measurable function on X such that f g E LP for every
f E LP. Show that g E L°°.
Hint. Show that otherwise one can construct a sequence (Xf)nEN of
pairwise disjoint measurable subsets of X, each with finite positive
measure and such that 191 > 2n almost everywhere on X. Then
consider the function f defined by

f = E 1X 2-nm(Xn)-1/P
nEN

Show that f E LP and that fg ¢ LP.
b. For g E L°O we define a continuous operator T9 on LP by T9 (f) = g f.

Let T be a continuous operator on LP that commutes with all the
T9, for g E L°O. Show that there exists h E L°° such that T = Th.
Hint. Construct a positive-valued function g such that g E LP f LI.
Let h = T (9)1g. Show that T (f) = h f for every f E LP fl L°°; then
conclude.
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6. Suppose that m is o -finite. Let p and r be real numbers such that
1 < r < p, and let g be a measurable function such that f g E Lr for
every f E LP.
a. Show that the map it: f H fg is continuous from LP to L'.

Hint. Show that otherwise there exists a sequence (fn)n>1 of positive
functions of LP such that, for every n > 1, IIfnIIp < 1 and IIfn91ir > n.
Then prove, on the one hand, that the function h = En' n-2 fn is
in Lp/r and therefore that f = h'/r is in L", and on the other hand
that f g ¢ Lr.

b. Deduce that g E LQ, where q is given by 1/r = 1/p+ 1/q.
Hint. Let (An)nEN be an increasing sequence of Cements of F with
finite measure and such that UnEN An = X. Put

9n = (inf(I9I, n)) IA,,.

Show that
1/r `1/p

(J9dm) <I4II(J 9dm f

7. An ordered set (E, is called d a conditionally complete lattice if every
nonempty subset of E that has an upper bound has a supremum (least
upper bound) in E, and every nonempty subset that has a lower bound
has an infimum in E.
We consider the space E = L", for 1 < p:5 oo, with the natural order
defined by

f < g f_-s f (x) < g(x) m-almost everywhere.

a. Suppose p = 1. Let ii be a nonempty family in LR bounded above,
and let V be the set of its upper bounds.
i. Show that the expression a = inf {f f dm : f E `l' } is finite.

ii. Show that there exists a decreasing sequence (fn) in * such that

lim / fn dm = a.
n-a+oo

Let f be the almost-everywhere limit of (fn). Show that f E V
and that f f dm = a.

ill. Deduce that f is the supremum of 0 in LR, and so that Ls is a
conditionally complete lattice.
Hint. If g E V, show that f inf (f, g) dm = a and deduce that
f <g-

b. Suppose that 1 < p < oo. Show that LR is a conditionally complete
lattice.
Hint. If srd is a nonempty family in L°a bounded above, the set
If Iflp-1 : f E d} is contained in LR.
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c. i. Show that if m is or-finite Ll is a conditionally complete lattice.
Hint. Start by dealing with the case where m has finite mass
(then LOO C L').

ii. Show that this result may be false if m is not a-finite.
Hint. Take two uncountable disjoint sets A and B. Let X be
their union, let 9 be the set of subsets of X that are countable
or have countable complement, let m be the count measure on
9, and set 0 _ (1())XEA

d. Let E be the quotient of the space of s-measurable real functions
by the relation of equality m-almost everywhere. Give E the natural
order defined earlier. Show that, if m is a-finite, E is a conditionally
complete lattice.
Is the space of 9-measurable real functions with the natural order
a conditionally complete lattice?

8. Prove that the set of integrable piecewise constant functions is dense in
Ll if and only if m has finite mass.
Hint. Take f = 1. If m has infinite mass, any integrable piecewise con-
stant function s lies at a distance 11s - f 11 > 1 from f.

9. Prove that L' n L°° is dense in Ll if and only if m has finite mass.
10. Consider the following property:

(P) There exists an (infinite) sequence of .f-measurable, pairwise dis-
joint subsets of X of positive measure.

a. Show that, if (P) is satisfied, Ll is not separable.
Hint. You can use as inspiration the e°O case in Exercise 7 on page 11.

b. Suppose (P) is not satisfied. Define an atom as any .''-measurable
subset A of positive measure that does not contain any subset B E 9
with m(B) > 0 and m(A \ B) > 0.

i. Show that every measurable subset of X with nonzero measure
contains at least one atom.
Hint. Consider the relation < defined on the set d of elements
of .$ of nonzero rn-measure by

A<B r-* m(B\A)=O.
Apply Zorn's Lemma (see Exercise 11 on page 133) to the or-
der relation induced by < on the quotient set d ., where is
equality almost everywhere:

A^-B r--> m(B\A)=m(A\B)=0 A<BandB<A.
You might show, in particular, that every totally ordered subset
of 0jti has a greatest element.

H. Show that there exists a finite sequence (Xn)n<, of atoms such
that m(X \ U,,<no 0 and

forn0m.
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W. Show that every .%-measurable function coincides rn-almost ev-
erywhere with a linear combination of functions 1X,,, for n < no.

c. Show the equivalence of the following properties:
i. (P) is not satisfied.

ii. LO0 has finite dimension.
iil. LOO is separable.
iv. Every F-measurable function belongs to 2O°.

11. Let L be a vector subspace of APR (m) fl 2R (m) satisfying these hy-
potheses:
- There exists an increasing sequence (cpn) in L that converges to 1

in-almost everywhere.
- The o-algebra o(L) generated by L equals Sr.
- f2ELforallf EL.

a. Give the space LI (m) fl Lr(m) the norm Q + 1!°o and denote
by L the closure of L in that space. Show that f E L implies If I E L.
Deduce that If E L for all f E L.
Hint. Use the example on page 29 and argue as in the proof of
Theorem 2.3 on page 33.

b. Show that L is dense in L' (m).
Hint. Apply Proposition 2.4 on page 63.

c. Deduce that L is dense in LP (m) for 1 < p < oo.
Hint. If f E La (m), you might show that, for every n E N, the
function sup (inf (f, n<p. ), -npn) can be approximated in LPR (in) by
a sequence in L.

12. Let in and p be or-finite measures on measurable spaces (X, .9) and
(Y, q), and suppose p E (1, oo). We denote by LP(m) ® LP(p) the vector
subspace of LP(m x p) spanned by the functions (x, y) H f (x)g(y),
with f E LP(m) and g E LP(p). Show that LP(m) ® LP(p) is dense in
LP(m x p). This generalizes the result of Exercise 7 on page 110.
Hint. Apply the result of Exercise 11 above to the measure in x p and
the space L = (.SeR(m) fl 2R (m)) ® (2j(p) n YR (p))

13. Assume in is o-finite.
a. Suppose the o-algebra .9T is separable, that is, generated by a count-

able family of subsets of X.
I. Show that there exists a countable family 9 of elements of F

satisfying these conditions:
- o(t) = 9, where o(.) is the a-algebra generated by .4.
- Af1BE5dforallA,BER.
- m(A) < +oo for all A E R.
- There exists an increasing sequence of elements of . whose

union equals X.
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H. Show that the family {lA}AE. is fundamental in LP, for 1 <
p<00.
Hint. Apply Exercise 11 above.

Hi. Deduce that, if 1 < p < oo, the space LP is separable.
iv. Show that, if X is a separable metric space, the Borel a-algebra

R(X) is separable. Derive hence another proof for Corollary 1.7.

b. We say that a a-algebra..9' is almost separable if there exists a sep-
arable a-algebra 5' contained in .1F such that, for all A E 9, there
exists B E .' with

m(A \ B) = m(B \ A) = 0.

i. Show that, if Jr is almost separable, the space LP is separable
for every p E [1,00).
Hint. Use part a.

ii. Show that if there exists p E 11, oo) such that LP is separable, . '
is almost separable.
Hint. Consider the a-algebra generated by a sequence of ele-
ments of 2P whose corresponding classes are dense in LP.

iii. Show that Jr is almost separable if and only if there exists a
sequence (An)nEN of measurable subsets of X of finite measure
such that the sequence is fundamental in V.

iv. Let 5f be the set of elements of 9 of finite measure, modulo
the relation of equality m-almost everywhere. If A, B E 5f, we
write d(A,B) = m(AAB), where A A B = (AUB) \ (AflB).
Show that d makes 5f into a complete metric space, separable
if and only if the a-algebra 9 is almost separable.
Hint. (5f, d) can be identified with the subset of L' consisting
of (classes of) characteristic functions of elements in Jr, with the
metric defined by the norm [I iii.

14. Assume p E [1,00).
a. Let Y be the set of finite families (An)n<no in 9 such that

- m(AnflA*n)=0 if n# m, and
- 0 <m(An) <oo for every n < no.

If W = (An)n<_n0 is an element of Y, we define an operator Td on
LP by

Turf = l 1 f f dm 1 A .

n<no
m(An) /

Show that T& is a continuous linear operator on LP, of norm at
most 1.

b. If at and .4 are elements of Y, write 0 C M if every element of .4
is contained, apart from a set of measure zero, in an element of d,
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and if every element of W is, apart from a set of measure zero, the
union of the elements of 9 contained in it.
Let n0 = (A,,),,<, be an element of 9 and let f be a linear com-
bination of functions 1A,,, for n < no. Show that, for every 9 E 9
such that W C 9, we have T5e f = f . Deduce that, for every e > 0
and every f E LP, there exists 0 E 9 such that

(..E9and WE:R)=* IITTf - fIlp<e.
Hint. Use the fact that the set of integrable piecewise constant func-
tions is dense in L" (see the remark on page 146).

c. Assume that m has finite mass and that there exists a sequence (&0n)
of 9 increasing with respect to C and such that Wo = {X}. Assume
also that WEN on generates 9 (you can check that there is such a
sequence if the a-algebra F is separable: see Exercise 13). Denote by
.Son the set of piecewise constant functions that are constant on each
element of din. Show that Un Yn is dense in LP for I <_ p < oo. (You
could use Exercise 11, for example). Deduce that, for every f E La,
the sequence (Td f) converges to f in II.
Example. Choose for X the interval [0,1], for m the Lebesgue mea-
sure on X, and for 9 the Borel v-algebra of X. Find a sequence
(s fn) satisfying the conditions stated above.

15. We say that a sequence (fn)nEN of F-measurable functions converges
in measure to a F-measurable function f if, for every e > 0,

m({x E X : I fn(x) - f (x)l > e}) -+ 0.

a. Assume p E 11, oo).

L Bienaymc-Chebyshev inequality. Take f E L. Show that, for
every b > 0,

m({x E X : If (x)I > S}) < b-PlI f 11p,

ii. Let (fn) be a sequence of elements of L" that converges in L" to
f E L". Show that the sequence (fn) converges to f in measure.

b. Let (fn) be a sequence of measurable functions that converges in
measure to a measurable function f.

i. Show that there exists a subsequence such that, for every
kEN,

m({x E X : I fnr(x) - f(x)I > 2-k}) < 2-k.

ii. For each k E N, let Zk be the subset of X defined by

Zk = U {x E X : I fnj(x) - f(x)I >
2-j}.

j>k

Then set z =' IkEN Zk. Prove that m(Z) = 0.
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iii. Deduce that the sequence (f, ) converges to f m-almost every-
where.

iv. Show also that, for every e > 0, there exists a measurable subset
A of X of measure at most a and such that the sequence (f n,, )
converges uniformly to f on X \ A.
Hint. Choose A = Zk, with k large enough.

c. Suppose m(X) < +oo. Let (fn) be a sequence of measurable func-
tions that converges m-almost everywhere to a measurable function
f. Show that the sequence (fn) converges in measure to f.
Hint. Take e > 0. For each integer N E N, put

AN = {xeX:Ifn(x)-f(x)I <e for all n > N}.

Show that there exists an integer N E N for which m(X \ AN) < e,
and therefore that m(X \ An) < e for every n > N.
Deduce that, for every integer n > N,

m({x E E : I fn(x) - f (x)I > e}) < C.

16. Suppose p E [1, oo]. Let (fn)nEN be a sequence in LP such that the series
EnEN Ilfn - fn+iIlp converges. Show that the sequence (fn) converges
almost everywhere and in LP.
Hint. Suppose first that m(X) is finite and prove that in this case

J F, Ifn - fn+1I dµ < +oo.
nEN

If m is arbitrary and p < oo, check that the set {x E X : fn(x) 0
for some n E N} is or-finite.

17. Equiintegrability. Assume p E [1, oo). A subset 3t° of LP is called equi-
integrable of order p if for every e > 0 there exists 6 > 0 such that, for
every measurable subset A of X of rn-measure at most b,

for all f E. °.

a. i. Show that every subset .fir of LP for which

lim J I f (P dm = 0 uniformly with respect to f E Je (*)
Ill>nl

is equiintegrable of order p. Deduce that every finite subset of LP
is equiintegrable of order p.
Show that, conversely, every bounded subset Ji° of LP that is
equiintegrable of order p satisfies (*).
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ii. Take Jr C I.P. Suppose there exists an element g E LP, nonneg-
ative rn-almost everywhere, such that, for every f E Jr, we have
If 1:5 g m-almost everywhere. Show that Jr is equiintegrable of
order p.

iii. Let U101104 be a sequence in LP that converges in LP to f. Show
that the family (fn)fEN is equiintegrable of order p.
Hint. You might check that, if A is a measurable subset of X,
then

1/p r 11/p(jIfI"dm) <IIf-fnIIP+(JAIfIPdm) .

b. We now assume that m has finite mass.
L Let (fn)nEN be a sequence in LP and let f E LP. Show that

the sequence (fn)fEN converges to f in LP if and only if these
conditions are satisfied:

The sequence (fn)nEN converges in measure to f (see Exercise
15 above for definition).

- The family { fn}nEN is equiintegrable of order p.
ii. Let (fn)nEN be a sequence of elements of LP that converges in

measure to a function f. Assume that there exists g E LP such
that IfnI < IgI for every n E N. Show that f E LP and that the
sequence (fn) converges to f in LP.

iii. Let (fn)nEN be a bounded sequence in LP that converges almost
everywhere to a function f. Check that f E LP. Then show that,
for every real q E [l, p), we have Ilfn - f II Q = 0.
Hint. Note that if A is a measurable subset of X and if g E LP,
then fA IgI°dm < IIgIIpm(A)1-9/P.

18. Uniformly convex spaces. A Banach space E is called uniformly convex
if it has this property:
If (xn) and (yn) are sequences in the closed unit ball B(E) of E satisfying
Ilxn + ynll -+ 2, then Ilxn - vnII -+ 0.
a. Show that every Hilbert space is uniformly convex.
b. Show that, for n > 2, the space Rn with the norm II II1 or the norm

11 II.., is not uniformly convex.
c. Let E be a uniformly convex space. Show that every nonempty con-

vex closed subset of E contains a unique point of minimal norm.
d. Let E be a uniformly convex space.

I. Let f be a linear form on E of norm 1 and let (xn) be a sequence
of elements of E of norm 1. Show that, if f (xn) -+ 1, the sequence
(xn) converges.
Hint. You might show that (xn) is a Cauchy sequence, using the
fact that f (xn + x,n) -+ 2 when n, m +oo.
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ii. Deduce that the absolute value of any continuous linear form on
E attains its maximum in the closed unit ball of E.

e. Assume p E (1,00).
i. Show that

Ix2ilP<
IxIP+IyIP forallx,yEC.

2
(*)

ii. Set D = {z E C : IzI < 1}. Show that the function W defined on
D by

Pl+z
(z) = 1 + IzIP

is continuous from D to [0,2P-1] and that So(z) = 2P-1 if and
only if z = 1. Deduce that, for every r) > 0, there exists S(rl) > 0
such that, for every (x, y) E D2 with Ix - yI > rl,

x+yr' < (1-6(i)) IxIP+IyIP
2 2

iii. Take e > 0 and let f and g be points in the closed unit ball of
LP such that Ilf - gIIP > e. Set

E = {x E XJ : If(x) -9(x)I > e2-21pmax(If(x)I,I9(x)I)}.

A. Show that \E if - glpdm < ep/2. Deduce that

f IfIP+I9Ip> sp
E 2

dm
2.2P

(You might use (*) with x = f and y = -g.)
B. Show that

+g P<1-b e
"'+1II 2 IIP \22/P/ 2Pwhere

6 is as in part e-ii above.
Hint. Use (*) in X \ E and the conclusion of e-ii in E, taking
il = e/22/p.

C. Deduce that L' is uniformly convex (Clarkson's Theorem).
f. Let X be a metric space and give E = Cb(X) the uniform norm II ' 11.

Suppose that X contains a point a that is not isolated, and fix a
sequence (xn) of pairwise distinct points in X that converges to a.
For f E E, put

nEN
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i. Show that L is a continuous linear form on E of norm 2 and that
JL(f) I < 2 for all f E B(E).

ii. Set C = (f E E : L(f) = 2}. Show that C is a nonempty
dosed convex set in E, that 11f 11 > 1 for all f E C, and that
,nf fEC 11111= 1-

19. Suppose m is a Radon measure. If 1 < p < oo, we denote by L(m),
or, more simply, by L ', the set of equivalence classes of functions f
such that, for every compact K in X, the function 1K f lies in U. We
denote by L' the set of elements of LP having compact support (the
support of an element of LP was defined on page 145).
a. Show that, if 1 < p < q < oo, then L a C LP and L4 C L .
b. Find a metric d on LP such that, for every sequence (fn)nEN in L oc

and every f E L P, the condition limner+. d(f, fn) = 0 is equivalent
to the condition that lim,-,+,,111 K (fn - f) 11p = 0 for every compact
K of X. Show that L « is complete with this metric.
Hint. You might work as in Exercise 12 on page 57.

c. Show that the space LP, is dense in L oc with the metric d.

2 Duality

We consider again in this section a measure space (X, .$) and a measure m
on 9. We assume here that m is o-finite. We will determine, for 1:5 p < oo,
the topological dual (Lu)' of the space U.

So fix p E (1, +oo) and let p' be the conjugate exponent of p, so that
1 /p + 1 /p' = 1. Note first that every element g E LP' defines a linear form
T. on LP, as follows:

Tgf= (fgdm forallfEL'. (*)

As an immediate consequence of the Holder inequality, the linear form T9
is continuous and its norm in (L')' is at most that of g in LP'. We will show
that one obtains in this way all continuous linear forms on U.

Theorem 2.1 If 1 < p < oo, the linear map g H T. defined on LP' by
(*) is a surjective isometry from 1? onto (1)')'.

If p = p' = 2, this is of course an immediate consequence of the Riesz
Representation Theorem (Theorem 3.1 on page 111) in the Hilbert space
L2. The basic scheme of the proof is to reduce the problem to this case.
This can easily be done if 1 < p < 2, but we will give a proof that is valid
for every p E [1, oo), whose main idea goes back to J. von Neumann.

Proof. The proof of Theorem 2.1 will be carried out in several steps. The
crucial point is the following lemma.
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Lemma 2.2 Suppose m has finite mass. Let T be a continuous linear
form on L. If T is positive (that is, if T f > 0 for every f E LR such
that f _> 0), there exists a measurable function g > 0 such that, for every
f E LR,

f g E LR and T f= ff g dm.

Proof. (All functions are assumed real-valued without further notice.) Since
the linear form T is positive, we can define on (X,.9) a measure A of finite
mass by setting

A(A) = T(1 A) for all A E 9. (**)

That A is o-additive follows easily from the continuity and linearity of T
(using the Dominated Convergence Theorem, which is allowed because m
has finite mass). Then we set

v=A+m. (t)

Since T acts on classes of functions, we see that m(A) = 0 implies A(A) = 0;
thus, for A E F,

v(A) = 0 a m(A) = 0 A(A) = 0.

Hence the linear form f ti f f dA is well defined on L2(v) and we have, for
every f E L2(v),

JfdA l <
(Jf2dA)1/2

(A(X)) 1/2 <_ IIf IIL2(r) (A(X))1/2.

By the Riesz Representation Theorem (Theorem 3.1 on page 111) applied
to the Hilbert space L2(v), there exists an element h in L2(v) such that

JfdA = Jfh dv for all f EL 2 (V). ($)

In particular,

0<A({h<0})= fh<o) hdv<0,

which implies that h > 0 v-almost everywhere. Likewise,

A({h > 1}) = f hdv > A({h > 1}) + m({h > 1}),
{h>1}

which implies that h < 1 m-almost everywhere and so v-almost everywhere.
Hence we can choose a representative of h such that 0 < h(x) < 1 for every
xEX.
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Now let f be an m-integrable piecewise constant function. By (**), ($),
and (t),

JidA JfhdA.Tf = = Phdm+At
the same time, by approximating h with piecewise constant functions

and using the continuity of T, we see easily that f f h dA = T(fh). We
deduce that

Jfhdm.T(f(1-h))=

Since this holds for every m-integrable piecewise constant f, it also holds
for every f E LP(m) such that f > 0 (use an increasing approximating
sequence; see the remark on page 146). Now let f E LP(m) be such that
f > 0. For every integer k, inf(f/(1-h), k)E LP(m), so

T(inf(f, k(1-h))) = / inf(j f h, k)hdm.

By making k approach infinity and using again the continuity of T, we get

Tf =1 1fhhdm.

Thus, g = h/(1 - h) serves our purposes.

We now get, without having to assume that m has finite mass:

Lemma 2.3 If T E (LP)', there exists a measurable function g such that,
for all f E LP,

fgEL' and Tf= /fgdm.

Proof. For f E L, set Tl f = Re(Tf) and T2f = Im(T f ). Then Ti and
T2 belong to (LR)'. If Lemma 2.3 is true in the real case, we can apply it
to Tl and T2 to obtain real functions g1 and g2, and clearly the function
9 = 91 + i92 works for T. Therefore we can suppose we are in the real case.

In this case T can be written as the difference of two continuous and
positive linear forms on LPa (apply Remark 2 on page 88 to the lattice La).
So we can in fact suppose that T is a positive continuous linear form on
Ls, and we do so.

Since the measure m is o-finite, there exists a countable partition (Kn) of
X consisting of elements of 9 of finite measure. For each integer n, let mn
be the restriction of m to K,,. If f E Lg(m,,), denote by f the extension
of f to X taking the value 0 on X \ Kn. The linear form on Lg(m,,)
defined by f H T(f) then satisfies on Kn the hypotheses of Lemma 2.2.
Therefore there is a positive measurable function g,, on Kn such that, for
all f E LR (inn),

fgn E 4 (mn) and T(f) = Jig,, dmn
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Now let g be the measurable function on X whose restriction to each Kn
is g,,. If f E LR(m) and f > 0, we have f = En o f 1K., the series being
convergent in LR (m). By the continuity of T and monotone convergence in
the integral, we deduce that

+"'0

+oo

Jf9dm.Tf=E T(f1K.,)=fgdm=
n=0 n=0 K

Thus g satisfies the necessary conditions.

Lemma 2.4 With the notation of Lemma 2.3, we have g E LP and
IIgIIp' < IITIIp, where II IIp is the norm in (LP)'.

Proof. Since the measure m is a-finite, there exists an increasing sequence
(An) of elements of .$ of finite measure that cover X.

1. Case p = 1. Suppose the conclusion of the lemma is false. Then the set
{IgI > IITII'} has positive measure, so there exists e > 0 such that the
set A = {IgI > IITII' + E} has positive measure. Let a be the function
that equals IgI/g on {g # 0) and 1 on (g = 0). Then, on the one hand,

T(alAnA.,) = J I91 dm > (IITII' + e) m(A n An)
nA

and, on the other,

IITII'm(An An).

There certainly exists an integer n for which m(A n An) > 0, so we
deduce that 11 T11' + e 5 IITII', which is absurd.

2. Case 1 < p < oo. Define a as in the preceding case and, for n E N, set
Bn = An n {I9I 5 n} and fn = Then, for every n,

jBft I9I°dm=Tfn <_ IITIIp (
so

\1/p
1f 191Pdm/e

1/p'

(f 19lpdm) S IITIIp,
B

whence we deduce the result by making n approach infinity.

Thus we have proved the following fact: For every T E (LP)' there exists
g E LP' such that

T = T9 and 11911p, = IITIIp

The proof of Theorem 2.1 will be complete if we show that the map
g H T. is injective. Suppose that g E LP' and T. = 0. Defining a sequence
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(An) and a function a as in the proof of Lemma 2.4, we see that, for every
n, the function gn = a l A. is an element of L' fl L°°, and so

jgldm=0.Tg9n= j
A

This proves that g = 0 rn-almost everywhere. 0
Remark. Theorem 2.1 is false for p = oo. In general, L' is not isometric to
the topological dual of L°°, only to a proper subset thereof. (On this topic,
see Exercises 3, 4, and 5 below.)

Exercises

In all the exercises, m denotes a o-finite measure on a measure space
(X, .5r).

1. Suppose that X is an open set in Rd (with d > 1) and that m is the
restriction to X of Lebesgue measure on Rd. Fix p E (0,1). Let L be a
continuous linear map from LP to a normed vector space E, where we
have given LP the metric dp defined in Exercise 1 on page 147. Show
that L = 0. In particular, the topological dual of (1/, di,) is {0}.
Hint. Show that, for every e > 0, the inverse image under L of the
closed ball B(0, e) of E is a closed and convex neighborhood of 0 in LP.
Then use the result of Exercise 1 on page 147.

2. Set X = {0, 1} and let v be the measure on 9(X) defined by v({0}) = 1
and v({1}) = oo. Show that L°°(v) is not isometric to the dual of L'(v).

3. Recall from Exercise 7 on page 11 that co stands for the subspace of l°°
consisting of sequences that tend to 0 at infinity. Show that the map
that associates to each element g of £' the linear form on co defined by

T9:fH>fngn
nEN

is a surjective isometry from l' onto cc.
4. A realization of the topological dual of t-(1). Let I be an infinite set.

Denote by A(I) the set of finitely additive functions µ from 9(I) to
[0, +oo), that is, those satisfying

µ(A U B) = µ(A) + µ(B) - µ(A n B) for all A, B E 9(1)

and µ(O)=0.
a. Take p E A(I). Define a linear form L. on the set of piecewise con-

stant functions on I as follows: If g = r,k_1 gkl1,,, where (Ik)r<k<n
is a partition of I and g1i ... , gn E K, put

n

Lµ(9)
=

EgkP(Ik)
k=1
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i. Check that 4,(g) is well defined for every piecewise constant
function g and that IL, (g)I S p(I)jjglI.

ii. Show that Lµ can be uniquely extended to a positive continuous
linear form on £°O(I) of norm p(I), which we still denote by L;,.

b. Show that, for every positive linear form L on £°O(I), there is a
unique p E A(I) such that L = L.

c. Describe the topological dual of £°O(I).
d. i. If f E £'(I) and f > 0, define a map pI on Y(I) by setting

pj(A) = Ef(i)
iEA

Show that pf E A(I). Write down L;,f explicitly.
ii. It is a classical consequence of the axiom of choice that, given any

infinite set E, there is a finitely additive function .6w(E) -a {0,1 }
that is not identically zerot and assigns to every finite subset of
E the value 0. Let p be such a function for the set I. Show that
there exists no f E t' (I) such that f > 0 and p = p f. Deduce
that there cannot be f E el (I) such that

L,,(g) = E f (i)g(i) for all g E e°O(I).
iEI

5. About the topological dual of L'. We say that a linear form Ton L°O(m)
satisfies Property (P) if, for every decreasing sequence of LR°°(m)
that converges m-almost everywhere to 0, the sequence (T converges
to 0.

a. Take g E L1(m). Define the linear form T9 on L°O(m) by setting

T9(f) = Jf9dm.

Show that T. is continuous, that it has Property (P), and that its
norm in (L°O(m))' equals IlgUU'.

b. Consider a continuous and positive linear form T on LR (m) that
has Property (P). Show that there exists a unique g > 0 in L1(m)
such that T = Ty.
Hint. Define a measure A of finite mass on 5 by \(A) = T(1A).
Then imitate the proof of Lemma 2.2, using the remark made on page
146 about the denseness of piecewise constant functions in L°O(m).

c. Let T be a continuous linear form on LR (m) that satisfies Property
(P). Define T+ and T- according to the method of Theorem 4.1 on

tlf 14 is such a function, the set 'W = p'(111) is called an ultrafdter on I.
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page 87 (see Remark 2 on page 88). Show that T+ and T- belong
to (L f (m))' and satisfy (P).
Hint. Let (f,,) be an increasing sequence of positive functions in
L°°(m) that converges almost everywhere to f E LOO (m). Show that,
if g is F-measurable and 0 < g < f , then

T(9) = nlim 0T(inf(9efn)) < hm nfT+(fn)
4 n-+

Deduce that limn-ioo T+(fn) = T+(f ).
d. Deduce from the facts above that the map from L1(m) to (L°O(m))'

defined by g H T9 is an isometry whose image consists of those
elements of (LOO(m))' that have Property (P).

6. The Radon-Nikodym Theorem
a. Let v be a o-finite measure on Jr such that any A E 9 of rn-

measure zero has v-measure zero. Show that there exists a positive
measurable function g such

r
that

v(A) _ / g dm for all A E F.
JA

Hint. Reduce to the case where v has finite mass. Then show that
the map f -+ f f dv defined on LOO(m) is a continuous linear form
satisfying Property (P) of Exercise 5, and use the result in the last
question of that exercise.

b. Show that this result remains true if we assume that m is a positive
Radon measure and v is a bounded complex Radon measure on X,
and do not require g to be positive, but merely in L1(m).
Hint. Apply the previous question to the positive measures (Re v)+,
(Rev)-, (Im Y)+, and (Im v) -, defined according to the notation of
Theorem 4.1 on page 87 and the discussion on page 89.

7. Conditional expectation in L. Let 9' be a a-algebra contained in 9
and let m' be the restriction of m to F'. Suppose m' is a-finite.
a. Suppose p E (1, oo]. Show that, for every f E LP(m), there exists

a unique f E LP(m') such that, for every element A of F' of finite
measure,

jfdm= f/din'.

Hint. Let p' be the conjugate exponent of p. Consider the linear
form on Lp (m') defined by g ' f g f dm and apply Theorem 2.1 on
page 159.

b. Show that, for every f E L1(m), there exists a unique f E L1(m')
such that, for every element A of F'',

I fdm= f fdm'.
A A
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Hint. Argue as in the preceding question, using Exercise 5d above
instead of Theorem 2.1.

c. Suppose p E [1, oo]. Show that the map T. from LP(m) to LP(m')
defined by T(f) = f is linear and continuous, and that it satisfies
I]TPI) < 1,

f ? 0 = Tp f > 0,
and Tpf = f for all f E LP(m'), where we have identified LP(m')
with a subspace of LP(m).

d. Show that T2 is the operator of orthogonal projection from L2 (m)
onto L2(m').

e. Show that, if 1 < p, q < oo, then T. = T. on LP(m) fl L9 (m). Thus
we can define an operator T on UpEli,., LP(m) whose restriction to
each LP(m) is Tp. We call T the operator of conditional expectation
given _92'.

S. Suppose p, q E 11, oo). Let T be a continuous linear map from LP((0,1))
to L9((0,1)). Show that there exists a function K from (0,1)2 to K with
these properties: For every x E (0, 1), the function y'- K(x, y) lies in
-Fp ((0,1)) (where p' is the conjugate exponent of p), and

Jo

xTf (y) dy = / 1K (x, y) f (y) dy for all f E LP((0,1)) and x E (0,1).
Jo

9. Weak convergence in LP spaces. Examples. Let p E [1, oo] and p' be con-
jugate exponents. We say that a sequence (fn)nEN in LP(m) converges
weakly to an element f of LP(m) if

lim Jfn9dm = Jfgdm for all g E Lp (m).
n-++oo

To avoid confusion, when a sequence in LP(m) converges in the sense of
the LP(m) norm we will say here that it converges strongly in LP(m).t
a. Prove that every sequence in LP(m) that converges strongly also

converges weakly.
b. Show that a sequence (fn) in LP(m) converges weakly to f E LP(m)

if and only if it is bounded and,,

- if p =1, lim / fn dm = J f dm for all A E
n+too JA A

t More generally, a sequence (fn) in a normed vector space E is said to converge
weakly to f E E if, for every L E E', the sequence (Lfn) converges to Lf. A sequence
(La) in E' is said to converge weakly-* to L E E' if, for every f E E, the sequence
(Lnf) converges to Lf. The definition given in the text for La spaces corresponds, in
the case p = oo, to weak-c convergence in L°O, considered as the topological dual of L'.
If 1 < p < oo, LP has LP as its dual, but LP can also be considered as the dual of LP'
(Theorem 2.1). In this case, weak convergence and weak-* convergence coincide.
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- if p > 1, lim / fn dm = J f dm for all A E Jr with m(A) < oo.
n ++00 JA A

Hint. Use the Banach-Steinhaus Theorem (Exercise 6 on page 22),
Proposition 4.3 on page 19, and the remark on page 146.

c. Suppose that 1 < p <_ oo. Show that a sequence (fn) in P converges
weakly to f E P if and only if it is bounded and

lim fn(i) = f (i) for all i E N.
n++oo

d. Schur's Lemma. Show that a sequence in l1 converges weakly if and
only if it converges strongly (to the same limit).
Hint. Suppose otherwise.

i. Show that there exists a sequence (fn) of elements of t' of unit
norm that converges weakly to 0 and thus, in particular, such
that fn(i) -+ 0 for every i E N.

H. Construct by induction two strictly increasing sequences of in-
tegers (Ij) and (n f) such that, for every integer j,

Ifn, (:)I < 5 and
i=o

+oo

E Ifn;(i)!<5.
i=y+1

iii. Let h : N -+ K satisfy the following properties: If i is such that
Is-1 < i < Ij, then Ih(i)I = 1 and fn,(i)h(i) = Ifn,(i)I. Show
that, for every integer j,

fn, (i)h'(i) >_ 5'

and deduce that
+oo

Lfn,(a)h(i) >
i=0

iv. Deduce that the sequence (fn;) does not converge weakly to 0.
Finish the proof.

e. Suppose that m is Lebesgue measure on the Borel o-algebra of Rd
and that 1 < p:5 oo. Let f E LP vanish outside the unit ball of Rd
and have norm 1 in U. For each n E N, set fn (x) = nd/p f (nx). Show
that the sequence (fn) is a sequence of norm 1 in LP that converges
almost everywhere and weakly (but not strongly) to 0 in LP.

f. Suppose m is Lebesgue measure on the interval (0,1). Show that the
sequence (fn) defined by fn(x) = e2ianx converges weakly (but not
strongly) to 0 in every LP, for 1 < p < oo, and that it does not
converge almost everywhere.
Hint. You might start with the case p= 2 (see Exercise 1 on page 129).



168 4. La Spaces

10. Weak convergence in LP spaces, continued. Let p E (1, ool and p' be
conjugate exponents.
a. Suppose LP'(m) is separable (or, which is the same, that LI(m) is

separable: see Exercise 13b on page 154). Show that every bounded
sequence in LP(m) has a weakly convergent subsequence.
Hint. Argue as in the first part of the proof of Theorem 3.7 on
page 115.

b. Let (fn) be a bounded sequence in LP(m).
i. Show that there exists a o-algebra .9'' that is separable (in the

sense of Exercise 13 on page 153), contained in S, and satisfies
these properties:
- For every n E N, fn has a Y'-measurable representative.

The restriction m' of the measure m to Y' is o-finite.
ii. Prove that, for every g E LP '(m), there exists an element g' E

LP'(m') such that

Jfgdm = Jf' dm' for all f E LP(m').

Hint. Use the operator Ty defined in Exercise 7 on page 165.
iii. Show that the sequence (fn) has a weakly convergent subse-

quence in LP(m).
Hint. By Exercise 13 on page 153, the space LP (m') is separable.

11. Let (Cn)fEz be a sequence of complex numbers. Define functions Sn and
K,n by setting

n m-I
Sn(x) = E ckeikx, K n(x) E S (x)

k=-n m n=0

Show that, if the sequence (Kn) is bounded in LP((-7r, 7r)), with 1 <
p < oo, there exists an element f of LP((-ir,7r)) such that

1 "cn = - f(x)e-tt dx for all n E Z.27r -
Hint. Extract from the sequence (Kn) a subsequence that converges
weakly in LP((-7r, ir)) (see Exercise 10). The weak limit of this subse-
quence can be used for f.

12. We assume that m is a Radon measure and use the notation and defi-
nitions of Exercise 19 on page 159. Fix p E [1, oo) and denote by p' the
conjugate exponent of p.
a. For g E LP, denote by T9 the linear form on L oc defined by

T9f = Jfgdm.
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Show that this defines a linear isomorphism between LP,' and the
space (Lip,,,j' of continuous linear forms on L oc (with the metric d).
Hint. To prove surjectivity, considerer a continuous linear form T
on L a. Show that there exists g E LPG such that T f = f f g dm for
every f E I.P. Then show that the support of g is compact, and finish
the proof.

b. A linear form T on LP is said to be continuous if, for every compact
K in X, the restriction of T to the space {f E LP : Suppf C K)
with the norm II I'P is continuous. We denote by (LP)' the set of
continuous linear forms on LP.- If g E L P, we denote by T9 the
linear form on LP defined by T9 f - f f g dm. Show that this defines
a linear isomorphism between LL' and (LP )'.
Hint. Take T E (LP- )'. Show that, for every compact K, there exists
a unique 9K E LC', supported within K and such that

T(lKf) = / 1K fgK dm for all f E LP.

Then show that you can define g E 4 by setting 1 K9 = 9K for all
K compact. Wrap up.

13. Assume that m(X) < +oo and that there exists a sequence (An)nEN of
measurable subsets of X such that the sequence (1A )nEN is fundamen-
tal in L1(m) (see Exercise 13b on page 154). Show that the expression

fdmIfI = 2-n j

defines a norm on LOO (m) and that the subsets of L( m) bounded with
respect to the norm 11 II,O are relatively compact with respect to I 1.

(Use Exercises 9 and 10.) Show that the space (L°O(m), I I) is complete
if and only if it has finite dimension.
Hint. Use Exercise 4 on page 54.

3 Convolution

Notation. In this section, the measure space (X, F) under study will be
the space X = Rd with its Borel o-algebra 9 = R(X ), and the measure
will be Lebesgue measure m = .1= dxl ... dxd.

If f is a function from Rd to K, we denote by I the function on Rd
defined by x i-+ f (-x); moreover, if a E Rd, we set Ta f (x) = f (x - a).
The function -ra f thus defined is called the translate off by a. The maps
f '-a f and f H Ta f are linear and preserve measurability. Since Lebesgue
measure is invariant under symmetries and translations, these operations
are also defined on equivalence classes of functions modulo sets of Lebesgue
measure zero.
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If f is a function (or equivalence class of functions) and a, b E Rd, we
clearly have

ra(Tbf) = Tafbf, TJ = (T-.f), Tof = f.

Proposition 3.1 If 1 < p < oo, the family (Ta)aERa forms an abelian
group of isometries of V.

If 1 < p < oo and f E LP, the map -fj from Rd to Lp defined by
Of : a *- ra f is uniformly continuous.

Proof. The first assertion follows immediately from the remarks preceding
the theorem (in particular, from the translation invariance of A).

To prove the second assertion, since I]Ta f - Tb f llp = IITa-bf - f IIp, it is
enough to show that 4i f is continuous at 0. Suppose first that f E C,,(Rd).
Then f is uniformly continuous on Rd and so, if e > 0, there exists r) > 0
such that Iii - y'l < q implies If (y) - f (y')I < e. Hence, if lal < n,

1/p

IITaf - flip = (Jif(x - a) - f(x)Ipdx)

< e (A(a + Supp f) + A(Supp f))'/p;

that is to say,

IITaf - f llp << a (2A(Supp f))1/p,

showing that Of is continuous at 0 in this case.
Now, if f is any element of LP, take a sequence (fn) in C,,(Rd) converging

to f in LP (see Theorem 1.6 on page 146). The continuity of 4'j at 0 then
follows from the fact that the functions Of.. converge uniformly to fif (since
Il,Dt..(a) - 411(a) lip = Ilfn - fllp).

When f E LOO, the map a -* ra f from Rd to LOO is continuous if and
only if f has a uniformly continuous representative; see Exercise 6 below.

Let p, p' E I1, oo] be conjugate exponents. If f E LP and g E Lu', the
convolution of f and g is, by definition, the function f * g on Rd defined
by

(f * g)(x) = Jf(x - y)g(y) dy.

For x E Rd, the function in the integrand is indeed integrable, being the
product of TX! E LP and g E IPA. Thus f * g is well-defined as a function
on Rd. Using the invariance of Lebesgue measure under translations and
symmetries, one checks easily that

f*g=g*f.
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Proposition 3.2 Let p,p' E [1,00] be conjugate exponents and suppose
f E LP and g E LP". Then f * g is uniformly continuous and bounded, and

IIf *91100 s IIlIIPI19IIP,

Moreover, if 1 < p < oo, we have f * g(x) = 0; the same is true
if p = 1 and g has compact support.

Proof. The Holder inequality yields

I (f * 9)(x) - (f * 9)(x')I II Tif - T=,fllP 11911P, for all x,x' E Rd

the uniform continuity off * g if p < oo follows because of Proposition 3.1.
If p = oo, we have p' = 1 and the property remains true since f * g = g * f.

We also have IIf * 91100 <- IIf IIP II9IIP,, by the Holder inequality and the
fact that IIT:jfl, = IIf IIP for every x. This implies, in particular, that the
bilinear map (f, 9) H f * g is continuous as a map from LP x La to Cb(Rd)
with the uniform norm. Suppose that f E CC(Rd) and that g E L°O has
compact support. We claim that

Supp(f * g) C Supp f + Suppg;

indeed, Supp f + Suppg is compact and for x V Supp f + Suppg we have
Supp(TZ f) fl Suppg = (x - Supp f) n Suppg = 0, so (f * g)(x) = 0. Since
Supp f +Suppg is compact, we conclude that f *g E C,,(Rd). The last claim
of the proposition follows, because CC(Rd) is dense in LP for 1 < p < 00
and because the uniform limit of a sequence of continuous functions with
compact support tends to 0 at infinity. 0

We will now extend the definition of the convolution product. Let f and
g be (equivalence classes of) Borel functions. We say that f and g are
convolvable if, for almost every x E Rd, the product (Tr J )g lies in V. If
f and g are convolvable, the convolution of f and g is, by definition, the
equivalence class of functions f * g defined almost everywhere by

(f * 9)(x) = Jf(x - y)9(y) dy.

Clearly, f and g are convolvable if and only if g and f are, and in this case
f *9=9*f

By reasoning as in the proof of Proposition 3.2, we obtain the following
property.

Proposition 3.3 If f and g are convolvable equivalence classes of func-
tions,

Supp(f * 9) C Supp f + Suppg
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In particular, if f or g has compact support, we have

Supp(f * g) C Supp f + Supp g

(since, if F is closed and K is compact, F + K is closed). Thus, the con-
volution of two classes of functions with compact support has compact
support.

The next theorem presents a sufficient criterion for the existence of the
convolution. As usual, we set 1/00 = 0.

Theorem 3.4 (Young's inequality) Suppose that p, q E [1, oo] satisfy
1/p+ 1/q > 1, and let r be defined by 1/r = 1/p+ 1/q - 1. If f E LP and
9 E Lq, then f and g are convolvable, f* g E Lr, and

Ill * 9IIr < if IiP II9IIq

Note that this applies, in particular, to r = p = q = 1.

Proof

1. We can assume that r < oo, since r = oo corresponds to the case q = p'
treated in Proposition 3.2. Moreover, r < oo implies p, q < oo (if p = oo,
for example, then q = 1 and r = oo). We can also assume that f > 0
and g > 0, by substituting If I and I9I for f and g.

2. Consider first the case where p = 1, 1 < q < oo, and r = q. By applying
the Holder inequality to the measure m = f,\, we get

J 9(x - y)f(y) dy < (J 91(x - y)f(y)
dY)11q

(/1(v)
dy)1-11q

and

J
(J9(x_Y)f(Y)dY)"dx < (/Jg(x_v)/(v)dYdx) (Jf(v)dv)" '

By Fubini's Theorem and the translation invariance of Lebesgue mea-
sure, the right-hand side of this inequality equals II9II$ IIf II i. We deduce
that g and f are convolvable, that g * f E Lq, and that IIg * fIIq <
II9IIq IIf 11 1. The case where q = 1, 1 < p < oo, and r = p is analogous.

3. Finally, take the case 1 < p, q < oo, so that max(p, q) < r < oo. We
continue to suppose, without loss of generality, that f, g > 0. Then

f(x - v)9(v) = fPlr(x - v)9q/r(y)f1-P/r(x - v)91-q/r(v)
Using the Holder inequality with the conjugate exponents r and r' _
r/(r-1), we obtain

Jf(x - y)9(y)dy

<
}1/r 1 1/r(Jx - v)9q(y) dy) (Jf(x - Y)gM_J

(y) dy)
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In the second integral on the right-band side, we use Holder's inequal-
ity with the conjugate exponents p(r-1)/(r-p) and q(r-1)/(r-q) (to
check conjugacy use the relation 1/r = 1/p+ 1/q - 1). We obtain

if " (x - y)9' (y) dy < (Jr'() dy)
( g

(y) dy)
T ,

which finally leads to

/'
J

(Jix_ygy)dy)r

dx < (JJP(x_v)1() dxdy Ilfllp ° IIgIl; .

The double integral in this expression equals IIf IIpI1911q, once more by
Fubini's Theorem. We deduce that f and g are convolvable, that f * g E
L*, and that If * 91I,. S IIf IIp 119119

Proposition 3.5 Let p, q, r E [1, +oo] be such that 1/p + 1/q + 1/r > 2.
If f E LP, g E La, and h E L'', then f * (g * h) and (f * g) * h are well
defined and belong to L", where s is given by 1/s = 1/p+ 1/q+ 1/r - 2. In
addition,

f*(g*h)=(f*g)*h.
Proof. That f * (g * h) and (f * g) * h are well defined and belong to L°
follows from Theorem 3.4. Next,

(f *(g*h))(x)=JJf(x - y)g(y - z)h(z)dydz

= JJf(a - y - z)9(y)h(z) dydz = ((f * 9) * h)(x),

which concludes the proof. (As an exercise, the reader might justify these
formal calculations, especially the use of Fubini's Theorem.)

Corollary 3.6 The operations + and * make L' into a commutative ring.

Proof The convolution product is commutative and, by Theorem 3.4, L1
is closed under it. Proposition 3.5 says it is also associative. The rest is
obvious.

In addition, L' is a Banach space and * is a bilinear map from L1 x L1
to L1 such that

Ill *9111 <- IIf111119111 for all f,9 E L'.

We say that the convolution product makes L' into a commutative Ba-
nach algebra.
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Approximations of Unity

The ring (L', +, *) has no unity (see Exercise 1 below). However, there are
entities that behave under convolution approximately like unity, in a sense
we now make precise.

By definition, an approximation of unity or Dirac sequence is any
sequence (Wn)nEN in L' satisfying these properties:

- For every n E N, we have V,, > 0 and f cpn(x) dx = 1.
- For every e > 0,

r
lim

J
Wn(x) dx = 0.

n ++oo {IsI>e}

For example, one can start from any nonnegative-valued function cp E L'
such that f W(x) dx = 1, and set, for n >/1,

W.(x) = ndcp(nx)

A change of variables shows that f cpn(x)dx = 1; moreover,

J con(x) dx = J
w(x) dx,

IxI>e} {IzI>ne}

and this last expression tends to 0 as n tends to infinity, by the Dominated
Convergence Theorem. (See also Exercise 2 on page 36.) If, in addition, cP
is continuous and supported within B(0,1), the sequence (WO constructed
in this way is called a normal Dirac sequence.

The alternative name "approximation of unity" for Dirac sequences is
explained by the next proposition.

Proposition 3.7 Suppose p E [1, oo) and let (cpn)nEN be a Dirac se-
quence. If f E LP, then

f * W. E Lp and Ilf * cPn Ilp < 11f lip for every n E N,

and

lira f * Wn = f in LP.
n ++oo

Proof. That f * Wn E LP and If * cpn Ilp 5 IIf lip follows from Theorem 3.4.
Further, for almost every x,

t/I1(x) - (f * cpn)(x) I : f If(x) - f(x - Y) I con(Y) dy

< (JIfx_/cx_YIcanYdY)1/p,

the latter inequality being a consequence of Holder's inequality applied to
the measure V,, (y) dy. We deduce that

Ilf-f*cnllp<_ fiii - TYfiIpcpn(y)dy
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Now, for every e > 0, we can write

f Ilf - Tvf II pWn(y) dy < sup IIf - Tvf Ilp + (2IIf IIp)p f(y)
I vI <e Ivl>e}

by breaking Rd into the disjoint union of {Iyl < e} and {Iyl > e}. It follows
that

lim sup If - f *W. lip S sup Ill -TvfIIp
n-4+oo IvI <e

Now it suffices to apply Proposition 3.1. 0
Remark. If we assume in addition that, for every n E N, the function
Vn lies in L°° and has compact support, Proposition 3.2 implies that
f * cn E Co(Rd) for every n E N. This happens, in particular, when (tpn) is
a normal Dirac sequence. In this particular case, we see from the preceding
calculations that, for any p E [1, cc), any f E L", and any n E N,

IIf - f*conllps sup IIf -TvfIIp.
Ivl<1/n

This will lead to a criterion of relative compactness in LP.

Relative Compactness in U'

Theorem 3.8 Suppose p E [1, oo) and let H be a subset of L. In order
for H to be relatively compact in LP, it is necessary and suBicient that the
following three properties be satisfied.

i. H is bounded in LP.

ii. lim J If (x) I p dx = 0 uniformly with respect to f E H.
ixl>R}

iii. lim.,o TQ f = f in LP, uniformly with respect to f E H.

Proof. Since LP is complete, H is relatively compact if and only if it is
precompact (Theorem 3.3 on page 14).

Suppose H is precompact. Takes > 0 and let fl,..., fk be elements of LP
such that the balls B(f 1i c),. .., B(fk, e) cover H. In particular, property i
of the theorem is satisfied. By the Dominated Convergence Theorem, there
exists Ro > 0 such that, for any R > Ro and any j E {1, ... , k},

If,(x)Ipdx
I/p

< e;f
{Ixl>R}

thus, for any R > Ro and any f E H,

`(f If(x)Ipdx

1/p
l < 2s.

{IzI>R}
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Similarly, by Proposition 3.1, there exists rl > 0 such that, for any a with
lal < n and any j E {1,...,k},

11Taf;-flip<E,

and so, for any a with lal < n and any f E H,

IITaf - flip < 3e

Thus, if H is precompact, properties i-iii of the theorem are satisfied.
Suppose, conversely, that those three properties are satisfied, and fix

e > 0. By property ii, there exists R > 0 such that

r
If (x) I pdx

1/p

) < e for all f E H.(j
!!!(IzI>R)

Let (p,,) be a normal Dirac sequence. As we saw in the remark preceding
the theorem, we have, for any n > 1 and any f E L",

Ill - f * Wnllp < SUP Ill - ryf ll p
IYI<1/n

Hence, by property iii, there exists an integer N E N such that

Ilf - f*WNIIp<e for all f EH.

Now, by Holder's inequality, for any x, x' E Rd we have

1(f * coN)(x) - (f * lpN)(X )I < IITxf -Tx'fllpllwNIId for all f E L",

where p' is the conjugate exponent of p; whereas the invariance properties
of the Lebesgue measure imply that

11T-j

-'r-411P = 1ITz-x'f - flip.

Thus, for every f E H and every x, x' E Rd,

1(f * SPN)(x) - (f * IPN)(x )I < iITx-x'f - flip II4N Ilp'

and

I (f * ccN)(x) I < IIf ilp II'PN lip-

Then it follows from assumptions i and iii and from the Ascoli Theorem
(page 44) that the subset of C(B(0, R)) consisting of the restrictions to
B(0, R) of the functions (continuous on Rd) f * WN, with f E H, is rel-
atively compact and so precompact in C(B(0, R)). Hence there exists a
finite sequence (f 1, ... , fk) of elements of H such that, for every f E H,
there exists j E { 1, ... , k} such that

I (f * (PN)(x) - (f1 *'PN)(x)I 5 EA(B(0, R))-'/p for all x E 11(0, R),
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) + (J
Ifj(x)Ipdx)1/p

Ilf - fjllp < (>R f(x)Ipdx
i/p

}

+Ilf-f*<PNIlp+Iifj-fj*WNIIp

R))'/' SUP 1(1 *'PN)(x) - (fj * (PN)(x)I ,
zE B(O,R)

this last result being obtained via the triangle inequality starting from

If - f,I < 1(1.1>R) IfI + 1{1x1>R}Ifjl

+If -f *SONI+Ifj-fj*(ONI+1(I:[<R}If *WN-fj*4ONI

Pulling everything together we obtain 11f - fj lip < Se, which shows that H
is precompact. 0

Exercises
1. a. Let ('pn)nEN be a normal Dirac sequence. Show that (Wn) converges

almost everywhere to 0. Deduce that it does not converge in L'.
b. Deduce that the algebra L' does not have a unity; that is, there is

no element g of L' such that f * g = f for all f E L'.
c. More generally, show that, if p E [1, oo[, there is no element g of L'

such that f *g = f for all f E LP.
2. Hardy's inequatitg. Let P E (1, oo) and p' be conjugate exponents. If f

is a function or equivalence class of functions on (0, +oo), define f on
R by

A--) = e=/p f(e=).

Finally, if f E Lp((0, +oo)), define

f (t) dt for z> 0.TAX) _ 1
10"

a. Show that f E Lp((0, +oo)) if and only if f E L'(R) and that, in
this case, IIfIIu((O,+ao)) = II/IIv(a)

b. Let g be the function defined on R by

g(x) = e-""1[O.+oo)(x)-

Show that g E L' (R) and that, if f E Lp((0, +oo)), we have T f =
j *g. Deduce that T is a continuous linear operator from LP((O, +oo))
to itself, of norm at most p'.
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c. For n E N, let fn be the function defined on (0, +oo) by

fn(t) =

Show that, for every n E N, we have fn E LP((O, +00)) and

IIfniILP((o,+oo)) = 1.

Show also that limn-++oo p'. Deduce that T has
norm p'. Show likewise that, for all x > 0, limn.i+,o TA (x) = 0.
(See also Exercise 17 on page 228.)

3. The convolution product in PP(Z). We say that two functions f and g
from Z to C are convolvable if

If (n - k)) Ig(k)I < +oo for all n E Z.F
kEZ

If this is the case, the convolution f * g is defined by

(f * 9)(n) _ f (n - k)g(k) for all n E Z.
kEZ

a. Show that f and g are convolvable if and only if g and f are, and
that in this case f * g = g * f.

b. Let p, q E [1, 001 be such that 1/p + 1/q > 1, and suppose f E LP(Z)
and g E £ (Z). Show that f and g are convolvable, that f *g E £T(Z),
where 1/r =1/p+ 1/q - 1, and that IIf * 911,- < IIf Ilp 11911q.

c. Show that the normed space 1' (Z) with the operation * is a com-
mutative Banach algebra with unity.

d. 1. For m E Z, we denote by dm the function on Z defined by
Sm(n) = 1 if n = in and am(n) = 0 otherwise. Show that, for
M, p E Z, 6m * by = bm+p

H. Let .49 be the set of continuous linear forms $ on £'(Z) that are
not identically zero and satisfy

4(f *g) = 4'(f)`i'(g) for all f9 E t'(Z)

Let U be the set of complex numbers of absolute value 1. If u E U,
prove that the linear form defined on t'(Z) by

4Pu(f) = Eukf(k)
kEZ

belongs to ..f.
iii. Show that the map u H fi4 thus defined is a bijection between

U and A.
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Hint. If 4'E 41, there exists cp E too(Z) such that

E f (k) W(k) for all f E t' (Z).
kEZ

Now show, using part i, that Sp(n + m) = V(n)V(m) for every
n, m E Z; deduce that Sp is of the form W(n) = un, with u E U.

4. We denote by the scalar product on Rd.
a. Riemann-Lebesgue Lemma. Show that, if f E L',

lim J a tf(x)dx=0.

Hint. Show that, if t j4 0,

f e 'ff(x)dx =

Deduce that I2F(f,t)I <- elf - Ill.

b. For f E LI, we define a map f by

f (1;) = f et`{f (x) dx for all £ E Rd.

Prove that f E Co(Rd) and that the uniform norm off is at most
IIfIII-

c. Show that the map 4' : LI -> Co(Rd) defined by 4'(f) = f is a
continuous linear map and that

4'(f * g) _ `k(f)4'(9) for all f, g E Lt.

The map I is called a morphism of Banach algebras from (L', *)
to C0(Rd) (where the latter space is considered with its ordinary
multiplication).

5. The spectrum of the algebra L'. The goal of this exercise is to charac-
terize the spectrum of the algebra L1, that is, the set 4' of nonzero
continuous linear forms 4 on Ll such that

''(f * g) = 4'(f)4'(g) for all f, g E L'.

Once more we denote by the scalar product on Rd.
a. Show that, for every E Rd, the linear form 4' defined by

4' (f) = Jf()dx for all f E L'

belongs to W.
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b. Let wp be a bounded continuous function from Rd to C, not identically
zero and such that

cp(s + t) = cp(s)cp(t) for all 8, t E Rd.

i. Show that W(0) = 1.
ii. Show that, for every e > 0,

ft

t1+E td+E

,
... fd T(8)ds = r(s)da)7(t) for alltERd.

Deduce that w is of class C', and then that

(t) = L(O)W(t) for all j E {1, ... , d} and t E Rd.

iii. Deduce that there exists E Rd such that W(t) = e'a't for every
t E Rd.
Hint. Set aj _ (8W/8ti)(0). Show that the function t H cp(t)e-a-t

is constant.
c. Let 4D be an element of 4.

i. Show that there existsff(x)p(x)dxW E L°° such that

1W) = for all f E L1.

ii. Show that, for every element f of L',

fi(ra f) = -O(f)w(a) for almost every a E Rd.

Hint. Show that, for every g E L',

J (f)(a)g(a) da = O(f)O(9) = 1(f * 9)

= I (J.rx - a)9(a) da l w(x) dx

= J+(raf)9(a)da.

iii. Deduce that cp has a representative in Cb(Rd) (which we still
denote by /p) satisfying

0(7-a f) = 4(f) sp(a) for all f E L' and a E Rd.

iv. Then show that

W(a + b) = lp(a)lp(b) for all a, b E Rd

and deduce that there exists E Rd such that W(t) = e'a't for
every t E R.d
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d. Show that the map C H -tt is a bijection between Rd and W.
6. Suppose f E L°O.

a. Show that, if f admits a uniformly continuous representative, the
map Rd -> L°° given by a '-p Ta f is continuous.

b. Conversely, suppose the map a H Ta f from Rd to LOO is continuous.

I. Show that, for almost every x in Rd,

If (x) - f (x - y) I < Iliry f - f II. for almost every y E Rd.

Hint. Use Fubini's Theorem.
H. Let (cpn) be a Dirac sequence. Show that

Ill -f *cPnIII / IIr -fIIoown(y)dy

Deduce that
lim IIf-f*Wnlloo=0.

iii. Show that f has a uniformly continuous representative.
7. Let (Wn)nEN be a normal Dirac sequence. Show that, for every continu-

ous function f on Rd, the sequence (f * cpn )nEN converges to f uniformly
on every compact of Rd.

8. Convolution semigroups. Consider a family (pt)tER+. of positive ele-
ments of L' satisfying these conditions:
- f pt(x) dx = 1 for all t > 0.

- pt+a = pt * p, for all t, s > 0.
- limt.,o f{Ixl>C} pt(x) dx = 0 for all E > 0.

Such a family will be called a convolution semigroup in the sequel.
a. Suppose P E (1, oo). For every f E LP, set Pt f = pt * f . Show the

following facts:

i. For every t > 0, Pt is a continuous linear map of norm 1 from
LP to LP.

ii. PtP8= Pt+3for all t, s > 0.
iii. lime-+o Pt f =fin LP for all f E I.P.
iv. For all f E LP, the map t H Pt f from R+* to LP is continuous.

b. The Gaussian semigroup. Show that the family (pt) defined by

pt(x) = 1 e-IxP/zt
(21rt)d/2

satisfies the conditions for a convolution semigroup.
Hint. Recall that f +. a-x'dx = OF. To prove that pt * p, = pt+
use the fact that Lebesgue measure is translation invariant.
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c. The Cauchy semigroup. Now assume that d = 1. Show that the
family (pt) defined by

1 t
Pt (x) = a t2 + x2

satisfies the conditions for a convolution semigroup.
Hint. To show that pt * Ps = Pt+s, start by checking that

1 1 1

t2+(x-y)2 s2+y2 (x2+(t+6)2)(x2+(t-s)2)

x
(2x(x-y)+(x2+s2-t2)

+
2xy+(x2+t2-s2)

t2+(x-y)2 82+y2

d. Suppose p = oo. Show that properties i and ii are still satisfied, and
that properties iii and iv are satisfied for f E LO° if and only if f has
a uniformly continuous representative.

e. Show that the result of part a is still true if LP is replaced everywhere
by the space CO(Rd) with the uniform norm, or by the space CC,b(Rd)
of uniformly continuous bounded functions with the uniform norm.

9. We adopt the definitions and notation of Exercise 19 on page 159, in
the special case where m is Lebesgue measure on Rd.
a. L Suppose p E (1, oo) and let H be a subset of LP satisfying condi-

tions i and iii of Theorem 3.8. Show that H is relatively compact
in L « with the metric d.
Hint. Revisit the proof of Theorem 3.8.

ii. Let p, q, r E 11, +oo) be such that 1/r = 1/p + 1/q - 1. Show
that, if G E LP, the set

{G*f:fEL'andllflla<<1}

is relatively compact in (LI , d).
b. Let p, q, r E (1, +oo) be such that 1/r= 1/p+ 1/q-1. Show that any

function f E LPG can be convolved with any g E L9, and that for
such functions we have f *g E Lja and Supp(f *g) C Supp f +Supp g.

c. Show that, if p, p' E [1, oo] are conjugate exponents, the convolution
of a function f E L « and a function g E LP belongs to C(Rd).

d. Suppose M E N' U {oo}. Show that, if f E Lip and g is a function of
class C'° with compact support, f * g is of class C' and, for every
(pi, Pd) E Nd such that IpI = pi + + pd < m, we have

IPI IPI9

8x;'a.. 8xd' (f * g) = f * (8x... 8xdd)

e. Show that this equation remains true if we assume that f E LI and
that g is of class C'n with arbitrary support.
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10. Compactness in P(I), for 0 < p < oo. Let I be a set.
a. Suppose P E [1, oo). Show that a subset H in P(I) is relatively

compact if and only if it is bounded and there exists, for everye > 0,
a finite subset J of I such that

(ill\Jf JJp < e for all f E H.

(Compare with Theorem 3.8.)
Hint. Use Exercise 8 on page 17.

b. Suppose p E (0,1). Consider the space N(I) with the metric dp de-
fined in Exercise I on page 147. Show that the result of the preceding
question remains valid if we replace JJ JJp by l . Jp = 4(-, 0).
Hint. Use Exercise in on page 148 to adapt the method above.
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Spectra

1 Operators on Banach Spaces

We fix here a Banach space E over K = R or C, and we wish to study the
(noncommutative) Banach algebra L(E) of continuous linear maps from E
to E, the product operation being composition. We use the same notation
II - II for the norm on E and the associated norm on L(E), and we denote
by I the identity map on E. Thus, I is the unity of the algebra L(E). An
element T E L(E) is called invertible if it has an inverse in L(E); that is,
if there exists a continuous linear map S such that TS = ST =1. Because
composition is associative, T has an inverse in L(E) if and only if it has
a right inverse (an element U such that TU = I) and a left inverse (an
element V such that VT = I) in L(E). Clearly, if T is invertible, it is
bijective and its inverse in L(E) is unique and equals the inverse map T.
Thus, for T E L(E), the following properties are equivalent:

- T is invertible.
- T is bijective and T-1 is continuous.
- ker T = {0}, im T = E, and T-1 is continuous.

In fact, the map inverse to a bijective continuous linear operator from E
onto E is always continuous; this follows directly from the Open Mapping
Theorem, itself a consequence of Baire's Theorem (Exercise 6 on page 22).
We will not make use of this result here.

Finally, we note that, if T and S are invertible elements of L(E), the
composition TS is also invertible and (TS)-1 = S-1T_1.
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We make the convention that T° = I for T E L(E).

Proposition 1.1 The set .0 of invertible elements in L(E) is an open
subset of L(E) containing I. The map T H T-' from .0 to 5 is continu-
ous.

More precisely, if To E 5 and lI T - To II < II To then T E 5 and
+oo +oo

T-' = >(I - T o 'T) nTo ' = 1: To ' (I - TTo )n.

n=0 n=0

Proof. Take To E

1. First,
III - To'TII = IITo'(To -T)II < IITo'II IIT - Toll

and

III - TTo'II = II(To-T)T°'II < IIT - Toll IITo'II
Thus, if IIT - Toll < IITo ' lL', the series

+00

1: (I -T, 'T)'To' and
n=O

+00

1: Tp1 (1-TT, ')n

n=O

converge absolutely and so converge. At the same time, one easily sees
by induction that, for all n E N,

(I -Tp'T)nTp' =Tp'(I -TTp')n
the equality is certainly true for n = 0 and, if it holds for n E N, we
have

(I -To'T)n+'To' = (I -To'T)n(To' -To'TTo')
= (I -To'T)nTo'(I -TTa')
=T0'(I -TTp i)n+t.

Thus, the two series are equal. Let S be their sum.
2. We check that S is indeed the inverse of T.

ST =STo((To'T-I)+I)
+00 +00

= -E (I -To'T)n+' +E(I -To'T)n = I.
n=0 n=0

(These manipulations are justified because the product is a continuous
bilinear map from L(E) x L(E) to L(E) and because the series converge.)
Likewise,

TS = ((TTo ' - I) + 1)T°S
+00 +00

=-E(I-TTo 1)n+'+

LE(I-TTo')n=1.
n=0 n=O
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(noncommutative) Banach algebra L(E) of continuous linear maps from E
to E, the product operation being composition. We use the same notation
11.1( for the norm on E and the associated norm on L(E), and we denote
by I the identity map on E. Thus, I is the unity of the algebra L(E). An
element T E L(E) is called invertible if it has an inverse in L(E); that is,
if there exists a continuous linear map S such that TS = ST = I. Because
composition is associative, T has an inverse in L(E) if and only if it has
a right inverse (an element U such that TU = I) and a left inverse (an
element V such that VT = I) in L(E). Clearly, if T is invertible, it is
bijective and its inverse in L(E) is unique and equals the inverse map T.
Thus, for T E L(E), the following properties are equivalent:

- T is invertible.

- T is bijective and T-1 is continuous.
- ker T = {0}, im T = E, and T-1 is continuous.

In fact, the map inverse to a bijective continuous linear operator from E
onto E is always continuous; this follows directly from the Open Mapping
Theorem, itself a consequence of Baire's Theorem (Exercise 6 on page 22).
We will not make use of this result here.

Finally, we note that, if T and S are invertible elements of L(E), the
composition TS is also invertible and (TS)-1 = S-1T-1.
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Conversely, if h E C' ([0,1J) satisfies (t), the function f = h' is a solution
of (**). Now, it is easy to check that the differential equation (t) has as its
unique solution

h(x) =
e

J
9(t) a-t/a dt.

0

Therefore (**) is satisfied if and only if

z/a

AX) _ (9(.T) +
e fz9(t) e-i/adt)

0

whence we deduce that A is a regular value of T and that

z
((Al - T)-'9)(x) (g(x) +

ez/a- f g(t)e-°/adt).

To summarize, ev(T) = 0, a(T) = {0}, and p(T) = K \ {0}. /
Proposition 1.2 Suppose T E L(E). The limit lim"-.. IIT"II1/" exists
and

m IITII'/" = inf IITII'/"

This value is denoted by r(T). Moreover, the spectrum o(T) is a compact
subset of K and

IAl <-r(T) forallAEo(T).

In particular, we see that r(T) < IITII and so

IAI <- IITII for all A E a(T).

Proof

1. Set a = mf"EN IIT"II'/". Certainly we have

a:5 liminf IITII'/".

Tike e > 0 and let no E N' be such that IIT"°II1/"0 <- a + e. Given
n E N', we can write, by dividing with remainder, n = p(n)no + q(n),
with p(n) E N, q(n) E N and 0:5 q(n) < no. Thus

117-11 ,5 IIT"°II'(", IITII°(")

Since q(n)/n = 0 and p(n)/n = 1/no, we deduce
that

limsup llT"II'/" <- IIT°II'/"° <- a+e.
n-,+oo

This holds for all e > 0, so limn_++oo IIT"II'/" = a.
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2. The map A .-+ (Al - T) from K to L(E) is clearly continuous. Therefore,
by Proposition 1.1, p(T) is open and o(T) is closed. All that remains to
show is that a(T) is bounded by r(T).

3. Take A E K such that IAI > r(T), and consider r E (r(T), Al).ISince
r > r(T), there exists an integer no E N' such that

IIT" II < rn for alln > no.

The series 'n o
A-n-'Tn converges absolutely in L(E) (since r < Al)Iand

it is easy to see that

+00 +00

(AI - T) ( E A-n-'r) = (A_n_1rh)p -T) = I,
\ J

and so that A E p(T). Since this holds for all IAI > r(T), the proof is
complete.

We take up again the operator T on E = C([O,1)) defined by equation
(*) on page 189. Clearly, IITII = 1. On the other hand, an easy inductive
computation shows that, for every n E N',

T" f(x) = / r (, - t)n- F
f (t) dt,

o o
(n -1)!

so that IIT"II <- 1/n!, which implies that r(T) = 0. Here, then, r(T) < IITII.
For T E L(E) and A E p(T), write

R(A,T) = (AI -T)-'.

Proposition 1.3 Suppose T E L(E). For all A, is E p(T), we have

R(A,T) - R(p,T) = (p - A) R(A, T)R(p, T) = (p - A)R(p,T)R(A,T).

(This is called the resolvent equation.) Moreover, the map A H R(A, T)
from the open subset p(T) of K to L(E) is differentiable and

dR(A,T) _ -(R(A,T))2.

Proof. First,

R(A, T) - R(p, T) = R(A,T)((pI - T) - (AI -T))R(p,T)
= (p - A)R(A,T)R(p,T),

which proves the resolvent equation. In particular,

h (R(A + is, T) - R(A, T)) = -R(A, T)R(A + is, T),
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with h E K' and A, A+h E p(T). By the continuity of the map ,\ H R(A, T)
(an immediate consequence of Proposition 1.1) and the continuity of the
product in L(E), we obtain

limo (R(A+h,T) - R(,\, T)) _ -(R(A,T))2,

which concludes the proof.

We know that, if E is finite dimensional, the spectrum of T can be empty
if K = R but not if K = C, since d'Alembert's Theorem (the Fundamental
Theorem of Algebra) guarantees that the characteristic polynomial of T
has at least one complex root. We shall show that this is also the case in
infinite dimension.

Theorem 1.4 Suppose T E L(E). If K = C, the spectrum or(T) of T is
nonempty, and

r(T)=max{IAj :AEo(T)}.

In contrast, T may have no eigenvalues, even when K = C, as shown by
the example on page 189.

The real number r(T) is called the spectral radius of T.

Proof

1. For z E p(T), set RE = R(z, T). By step 3 in the proof of Proposition
1.2, we know that Izi > r(T) implies that

+00

R,g = E z-n-1T,n'
n=0

the series converging absolutely in L(E). We deduce that, for every
t E (r(T), +oo),

+00R. = E e-f(n+i)et-n-IT+n,
n=0

the series converging uniformly with respect to 9 ER in L(E). Multi-
plying by (teie)P*'1, with p E N, and integrating the result from 0 to
27r, we obtain, by the continuity of the Riemann integral with values in
L(E) (seer Exercise 5 on page 20, for instance),

J0

2w +00 2x
(te's) '1Riefe d9 = E f (te'°)P-nTnd9

= 27rTP.
n=0 0

Thus, for every p E N and t > r(T),

YA

1'
2rr

j(te9)PRte.d9.
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2. We now prove that the spectrum of T is nonempty. Assume the contrary.
Applying the preceding equality in the case p = 0, we have

12,12 tefeRte'. do for all t > r(T).

But, if we suppose that p(T) = C, the function Jo given by

zx
Jo(t)

2a

j
te'BRte+.d9

0

is defined and continuous on [0, +oo) and is of class C' on (0, +oo);
moreover

z
sx

Jo (t) = 2 (te0Rtei.) dO for all t > 0.

(In what concerns differentiation under the integral sign, the Riemann
integral of functions with values in a Banach space behaves as that of
scalar functions.) But

0 (te'BRteu) = eiedz (zR.) I:ated

and

(te'eRteu) = ite'B±(zRs)L ,

te'f
since we saw in Proposition 1.3 that the map z H Rt from p(T) to L(E)
is differentiable (holomorphic). Thus

'8B (te°Rei.)d9 = 0 for all t > 0.
2w

dto (t) 21 10

We deduce, using the Mean Value Theorem for Banach-space valued
functions, that JO is constant on [0, +oo), which cannot be the case
since Jo(O) = 0 and Jo(t) = I for t > r(T). This contradiction shows
that o(T) is nonempty.

3. Set p = max{IAI : A E o(T)}. We know by Proposition 1.2 that p <
r(T). FornEN' and t > p, set

AM I fo
4x(t,,O)n+l

Dte,. de.

As before, we see that dJn/dt = 0 on (p,+oo). Thus J,(t) = Tn for
every t > p. Now write Mt = max { 11 14.,# II : 0 E [0, 2w] }. Then

IIT"II <to+'Mt for all nE N' andt>p,

which implies that r(T) < t for every t > p, and so that r(T) < p. 0
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Now fix T E L(E). To every polynomial P = ao+a1X+ +aX" with
coefficients in K, we can associate the operator P(T) E L(E) defined by

P(T)

Clearly, for any A, p E K and P, Q E K[X ],

(AP+iQ)(T) = AP(T) +1Q(T), PQ(T) = P(T)Q(T), 1(T) = I.

In other words, the map P -4 P(T) from K[X] to L(E) is a morphism of
algebras with unity. We will compare the spectrum of P(T) with the image
under P of the spectrum of T.

Theorem 1.5 (spectral image) If T E L(E) and P E K[X], we have

P(a(T)) C a(P(T)),

with equality if K = C.

Proof

1. Take A E K. Since A is a root of the polynomial P - P(A), there exists
a polynomial Qa E K[X] such that P - P(A) = (X -,\)Q.\. Then

P(T) - P(A) I = (T - AI)Qa(T) = QA(T)(T - AI).

Suppose that P(A) V a(P(T)), and set S = (P(A)I - P(T))-1. Then

(AI - T)Qa(T)S = SQA(T)(AI - T) = I,

showing that (Al - T) is invertible, with inverse SQA(T) = QA(T)S;
thus A V a(T). Thus A E a(T) implies P(A) E a(P(T)), which is to say
P(o(T)) C a(P(T)).

2. Suppose that K = C and that P has degree at least 1 (if P is constant,
the result is trivial). Take µ E a(P(T)). Write the polynomial P - p as
a product of factors of degree 1:

P-µ=C(X -A,)...(X-A"),
with C 96 0. Then

P(T)-µI =C(T-AlI)...(T-Anl).
Since, by assumption, P(T) - ael is not invertible, one of the factors
T - A1I is not invertible. Then, for this value of j, we have Al E a(T).
Since P(A1) = µ, this shows that p E P(a(T)). 0

Remark. In most of this section, we haven't really needed the fact that
we are dealing with operators; all we've used is the structure of L(E) as
a Banach algebra with unity. These results extend to any Banach algebra
with unity.
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Exercises

1. Let T be a continuous operator on a Banach space E. Show that the
inequality IAA > 1ITIJ implies

II (AI - T)-'11 s
1

JAI JJTJJ'

2. Let T be a continuous operator on a Banach space E and let (Af)nEN
be a sequence in p(T) converging to A E K. Show that, if the sequence
(R(An,T)) is bounded in L(E), then A E p(T).
Hint. Show that the sequence (R(An,T)) converges in L(E). Let S be
its limit. Show that S(AI - T) = (AI - T)S =1.

3. Let X be a metric space. Take E = Cb(X) and let T be a positive
operator on E (recall that this means that T f > 0 for any f E E with
f>0.)
a. Show that IT f 1:5 TIf I for every f E E.

Hint. Take X E X and let a be a complex number of absolute value 1
such that ITf(x)I = aTf(x). Show that aTf(x) =T(Re(af))(x).

b. Take A E K such that (AI > r(T). Show that

IIR(A,T)II < IIR(lAJ,T)II.

Hint. Show that, for every f E E,

IR(A, T) f I < R (JAI, T) If 1.

c. Deduce that r(T) E Q(T).
Hint. Take A E Q(T) such that IAA = r(T). Consider a sequence
(An)nEN converging to A and such that JAnl > r(T) for every n E N.
Then use Exercise 2.

4. Let (An )nEN be a sequence of complex numbers and p a real number in
the range [1, +oo). Define an operator T on £ by setting

(Tu)(n) = Anu(n) for all n E N.

a. Show that T is continuous if and only if the sequence (An) is bounded.
b. When T is continuous, compute its eigenvalues and spectrum.

5. Suppose p E [1, oo]. Define an operator S on t by setting

(Su)(n) = u(n + 1) forallnEN.

We call S the left shift.
a. If p < oo, show that ev(S) _ {A E IK : CAI < 1}. If p = oo, show that

ev(S)_{AEK:IAA<1}.
b. Deduce that o(S) = {A E IK : JAI < 1} in both cases.
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6. Spectrum of an isometry. Let E be a Banach space and T an isometry
of E (recall that this means T E L(E) and IITxII = IIxii for all x E E).
SetD={AEIK:IAI<1},C={AEK:IAI= 1}, andD=DUC.
a. Show that ev(T) C C, that Q(T) C D, and that, if A E D,

im(AI - T) = E A E p(T).

b. Let (An)nEN be a sequence in D fl p(T) converging to A E D. Show
that A E p(T).
Hint. Show that II R(An, T) II < 1/(1 - I An I) for every n E N; then
use Exercise 2.

c. Show that D n p(T) is open and closed in D. Deduce that D fl p(T)
is either empty or equal to D.

d. Show that the spectrum of T is either contained in C or equal to D.
Show that the first case occurs if and only if T is surjective.

e. Assume that E = Pp, with p c [1, oo], and that T is defined by
(Tu)(0) = 0 and

(Tu)(n) = u(n - 1) for all n E N.

(T is called the right shift.) Show that the spectrum of T equals D,
and that T has no eigenvalues.

7. Spectrum of a projection. Let E be a Banach space and let P E L(E)
be such that p2 = P, P 54 0, and P # I. Show that ev(P) = a (P) =
{O, 1}. (The converse holds if P is assumed hermitian: see Exercise 13
on page 212.)

8. Let S and T be continuous operators on a Banach space E.
a. Show that ST and TS have the same nonzero spectral values.

Hint. If U is the inverse of AI - ST, consider V = I + T US.
b. Show that, if S or T is invertible, then or(ST) = o(TS). What hap-

pens in the general case? (You might consider the operators S and
T introduced in Exercises 5 and 6e above.)

9. Let X be a compact metric space and take V E C(X). Let T be the
operator defined on C(X) by

T f= W f for all f E C(X).

Show that a(T) = c,(X) and that

ev(T) = {A E K : {gyp = Al has nonempty interior}.

What if we consider T as an operator from LP(m) to itself, where m is
a positive Radon measure on X and p E [1, oo]?
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10. Let T be the operator defined on C([0,11) by

2 AM if x 0,

T(f)(x)
f(Y) dg ifx0.

0 x2 - 0

Show that T is a continuous operator from C([0,11) to itself and that
1ITh = it/2. Show that every point in the interval (O, r/21 is an eigen-
value of T. Compute the spectral radius of T.

11. Suppose P E [1, oo] and let S be the operator on LP((0,1)) defined by

Sf (x) = f x2y2f (?I) dy
0

Solve the equation
Af - Sf = g

for f, as a function of A E K' and g E LP((0,1)). Determine the eigen-
values and spectral values of S.
Hint. If Sf = Af, with f E LP((0,1)) and A E C', then f is of the form
f(x) = ax'.

12. Same questions for the operator T defined on LP((0,1)) by

1 y(1 - xy)f(y)dyTf(x) = fo x

13. Spectrum of a finite-rank operator. Consider a Banach space E and an
element T E L(E) of finite rank, which means that the image of T is
finite-dimensional (see, for example, Exercises 11 and 12).
a. Set F = im T and let TF be the operator on F given by restriction

of T to F. Clearly, TF E L(F). Show that T and Tp have the same
nonzero eigenvalues.

b. Take A E K' and put S = AIF -TF E L(F), where IF is the identity
on F. Assume that S is invertible. Show that A E p(T).
Hint. Show that AI - T is injective. Then compute

(Al - T) (I + S-1T)

and deduce that Al - T is bijective and that its inverse is continuous.
c. I. Show that a(T) f1 K' = ev(T) fl K'.

H. Show that, if E is infinite dimensional, then 0 E ev(T).
W. Show that a(T) = ev(T).

14. Let E be a Banach space and take T E L(E). Denote by F the closure
of im T. If S E L(E) and S(F) C F, denote by SF the element of L(F)
that Is the restriction of S to F.
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a. Suppose A E p(T). Show that R(A, T)(F) C F and deduce that
A E p(TF) and R(A,TF) = (R(A,T))F.

b. Suppose A E p(TF) \ {0}. Show that (AI - T) is injective and that
(AI - T)(1 + R(A,TF)T) = AI. Deduce that A E p(T) and that

R(A,T) _ (I + R(A, TF) T).

c. Deduce from the preceding results that

o(T) n K' c o(TF) c o(T).

d. Show directly that
r(T) = r(TF).

Hint. (TF )" = (T") F and T" = (TF )tt-1 T.
15. Volterra operators. Suppose K E C([0,1]2) and let T be the operator

on C([O,1 ]) defined by

T(f)(x) = 1 x K(x, y)f(y) dy.
0

a. Show that, for every positive integer n and every f E C([0,1]),

17-f (X)I II f II II K II"
W!

where II - II is the uniform norm in li([O,1]) and in C([0,112).
b. Determine the spectral radius and then the spectrum of T.

16. a. Let E be a Banach space endowed with an order relation < satisfying
these conditions:

- for any f , g E E, f !5g if and only if g - f > O;
- for any f EEandAER+, f >0 implies Af >0;
- for any f, g E E, 0 < f < g implies III II 5 IIghI

(For example, all the function spaces studied in the preceding chap-
ters, such as LP, Cb(X), Co(X), and so on, have these properties
when given the natural order relation.) Let T E L(E) be a positive
operator (recall that this means T f > 0 for all f E E with f > 0),
and suppose that A E R+. Show that, if there exists a nonzero ele-
ment f in E such that

f>0 and Tf>Af,
then r(T) > A.

Hint. Show that II T"f II ? A" II III for every n E N.
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b. Let (p be a continuous map from [0,1] to [0,1] and K a continuous
map from [0,112 to R+. Define an operator T E L(C[0,1J)) by setting

TAX) = j Zi K(x, p) f (y) dy for all f E C([0,1]) and X E 10, 11.
0

I. Prove that, if W(x) < x for every x E [0,1], then r(T) = 0 (see
Exercise 15).

ii. Suppose there is a point xo E (0,1) such that

K(xo, xo) > 0 and v(xo) > X.

Show that r(T) > 0.
Hint. By assumption, there exists b > 0 such that, for every
x, y E [0,1],

Ix-xol <b and Iy-xoI <b K(x,y)>b and p(x)>x+b.

Now consider the element f in C([0,1]) defined by

f (x) _ (b - IX - X01),

and show that Ix - xoI < b implies T f (x) > 63/2. Deduce that
Tf>b2f/2.

17. Let T be a continuous operator on a Banach space E for which the
sequence (IIT"II)fEN converges to 0. Show that I - T is invertible, that
the series E. +Z T" is absolutely convergent in L(E), and that its sum
is(I-T)-1.
Hint. Show that r(T) < 1.

18. Consider a compact space X and a linear operator T on C(X ). Assume
that T is positive (if f E C(X) satisfies f > 0, then T f > 0).
a. Show that T is continuous and that IITII = IIT1II, where the right-

hand side is the norm in C(X) of T1, the image under T of the
constant function 1 on X.
Now suppose that there exists a constant C >- 0 such that, for all
nENand all xE X, we have

0 < >2(Tf1)(x) < C.

J=O

b. Show that, given any pair (p, q) of nonnegative integers, we have
TP+91 < C M. Show also that, for every point x in X, the sequence
((T"1)(x))"EN converges to 0.

c. Deduce that the sequence of functions (T"1)"EN converges uniformly
on X to 0. (You might use Exercise 4 on page 30.)
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d. Deduce that r(T) < 1 and that the series E', Tnl converges ab-
solutely in C(X) (see Exercise 17).

19. Let T be a continuous operator on a Banach space E. Show that, for
every e > 0, there exists 6 > 0 such that

o(S) C {A E K : d(A, o(T)) < e} for every SE L(E) with IIT- SII < 6.

Hint. Set M = sup {11 (AI - T)-III : d(A, a(T)) > e}. Show that M is
finite (see Exercise 1) and that 6 = 1/M works.

20. Approximate eigenvalues. Let T be a continuous operator on a Banach
space E. By definition, and approximate eigenvalue of T is any A E K
for which there exists a sequence (xn)nEN of elements in E of norm 1
such that limn,+, Txn - Axn = 0. We denote by aev(T) the set of
approximate eigenvalues of T.

a. Suppose A E K and write a(A) = infli=11=1 IIAx - TxI1 Show that
A is an approximate eigenvalue of T if and only if a(A) = 0. Show
also that the map A a(A) from K to R+ is continuous (in fact,
1-Lipschitz).

b. Show that aev(T) is compact and that

ev(T) C aev(T) C o(T). (*)

c. Show that aev(T) contains the boundary of o(T), that is, the set
o(T) fl p(T). In particular, aev(T) is nonempty if K = C.
Hint. Use Exercise 2 above.

d. i. Suppose S E L(E) is not invertible. Show that, if there is C > 0
such that

IIxII <CIISxI1 for allxEE,

the image of S is not dense in E.
Hint. The assumption implies that the map x -a Sx from E to
im S has a continuous inverse U. If im S is dense in E, then U
can be extended to a continuous linear map from E to E.

H. Suppose that A E o(T). Show that, if im(AI - T) is dense in E,
then A is an approximate eigenvalue of T. Is the converse true?

e. Suppose that T is an isometry (see Exercise 6 above). Show that

aev(T) = o(T) fl {A E 1K : JAI = 1}.

Hint. One inclusion is obvious. To prove the other, you might use
Exercise 6.

f. Find operators T for which the inclusions (*) are strict.
21. Continuous one-parameter groups. Let E be a Banach space.
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a. Suppose A E L(E). For t E R, put

to+00

E A".P(t)
=

exp(tA) =
W1

n=O

Show the following facts:

A. P is a continuous function from R to L(E).
B. P(O) = I and P(t + a) = P(t) P(s) for all t, ,s E R.
C. P is of class C' and dP/dt = AP.

b. Conversely, consider a function P from R to L(E) satisfying proper-
ties A and B above; we call the family (P(t))LER a continuous!one-
parameter group of operators.

i. Show that there exists h E R+' such that fh P(s) ds is invertible.
Fix such an h for now on, and put

hA = (P(h) - I) (Jo

C /
h

P(a) daj P(t) _
+h

P(a) ds for every t E R,
o it

and deduce that P satisfies property C above.
ill. Compute

(P(t) exp(-tA))

and deduce that P(t) = exp(tA) for every t E R.

2 Operators in Hilbert Spaces

In this section, we consider the particular case where E is a Hilbert space
not equal to {0}. We make heavy use of the results established in Section 3A
of Chapter 3 (pages 112 and following). To simplify the notation we assume
that K = C, but all results in this section remain true for K = R (see
Exercise 1 below). We first give a simple result that links the spectral
properties of an operator T E L(E) with those of its adjoint T', defined
on page 112.

Proposition 2.1 Suppose T E L(E). Then:

i. kerT = (imT')l.
ii. imT= (kerT')l.
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iii. T is invertible if and only if T' is, and in this case

(T')-' = (T-')'.
Proof. For X E E, we have x E ker T if and only if

(Txly)=(xIT'y)=0 forallyEE,

which proves the first assertion. The second is a consequence of the first,
in view of Corollary 2.7 on page 108 and of the equality T" = T. Finally,
if T is invertible, we have TT-1 = T-1T = I and, by Proposition 3.3
on page 112, (T -1)'T' = T' (T -1)' = I. Therefore T' is invertible and

(T')-' = (T-')'.
The next result follows immediately.

Corollary 2.2 If T E L(E), then

a(T')={.:AEa(T)}.

If A E p(T ), then A E p(T') and

R(a,T') = (R(A,T))'.

In contrast, there is generally no relation between the eigenvalues of T
and those of T' (part ii of Proposition 2.1 allows us to say only that A is
an eigenvalue of T' if and only if the image of XI - T is not dense). For
example, if E = 12 and T is the right shift of Exercise 6e on page 196,
defined by (Tu)(0) = 0 and

(Tu)(n) = u(n - 1) for all n E N',

there are no eigenvalues. But it is easy to see that the adjoint of T is none
other than the left shift of Exercise 5 on page 195, defined by

(T'u)(n) = u(n + 1) for all n E N;

thus ev(T) = {A E C : IAI < 1}.
Recall that an operator T E L(E) is called hermitian if it coincides with

its adjoint T'.

Proposition 2.3 The spectral radius and the norm of a hermitian oper-
ator on E coincide.

Proof. If T is hermitian, Proposition 3.4 on page 113 says that IIT2II =
IITII'. Iterating this property, which we can do because the square of a
hermitian operator is hermitian, we obtain

IITs"II = IITII2" for all n E N.
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We conclude that

r(T) = Urn 1IT2"112 " = IITII,

since the limit of the sequence (IITnlll1n)fEN equals the limit of any of its
subsequences. 0

We can now deduce immediately from Proposition 3.4 on page 113 the
following corollary:

Corollary 2.4 For T E L(E),

IITII =

2A Spectral Properties of Hermitian Operators
Proposition 2.5 Every hermitian operator T on E has the following
properties-,

I. The eigenvalues of T are real.
U. For every A E C, we have im(AI - T) = (ker(AI - T))'.

iii. The eigenspaces of T associated with distinct eigenvalues are orthogo-
nal.

Proof. Suppose that A is an eigenvalue of T, and let x E E be an associated
nonzero eigenvector, so that Tx = Ax and x # 0. Then

AIIxII2=(AxIx)=(TxIx).

Since the operator T is selfadjoint, we have (Tx I X) E R and so A E It,
which proves the first part of the proposition.

The second part is an immediate consequence of the equality lira =
(kerS-)l, valid for all S E L(E) by Proposition 2.1.

Finally, if A and µ are distinct eigenvalues of T and if x and y are corre-
sponding eigenvectors, we have

A(x I y) = (Tx l y) = (x I Ty) = p(x I y),

since p E It. Therefore (x I y) = 0. 0
The next theorem states, in particular, that the spectrum of a hermitian

operator T is also contained in It.

Theorem 2.6 Let T be a hermitian operator on E. Put

m= inf{(Txlx):xEEwith llxll=1},
M=sup{(TxI x):xEEwith llxll=1}.

Then o(T) C (m, MJ, M E v(T), and M E o(T).
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In other words, [m, MI is the smallest interval containing the spectrum
of T.

Proof

1. Take A E C and a nonzero element x in E. Then

(Ax-Tx I x) = I A - (T(f-1)
I Ilxll

))11x112.

Denote by d(A) the distance from A to the interval [m, MI:

d(A) = min {IA - tI : t E [m, MJ}.

Then, by the Schwarz inequality and the definition of m and M,

IIAx - TxII IIxII ? I (Ax - Tx I x)I ? d(A)11x112.

It follows that

IIAx-TxII?d(A)IIxII forallxEE. (*)

Suppose that A V [m, MI. Then d(A) > 0 and, by (*), Al -T is injective.
We now prove that im(AI - T) is closed. If (yn)fEN is a sequence in
im(AI - T) converging to y E E, with yn = Ax, - Tx,, for each n,
equation (*) implies that (xn)nEN is a Cauchy sequence and so converges
to some x E E, which clearly satisfies Ax-Tx = y. Thus y E im(AI-T).
We then deduce from Proposition 2.5 that

im(AI - T) = (ker(aI - T))1.

But, since \ does not belong to [m, MJ either, the operator XI - T is
also injective. We deduce that AI - T is a bijection from E onto itself.
Since, by (*), the inverse of this map is continuous (and has norm at
most 1/d(A)), we get A E p(T). Therefore a(T) C [m, MJ.

2. We prove, for example, that m E a(T). (That M E a(T) follows by
interchanging T and -T.) Set S = T - ml. By the definition of m, S is
a positive hermitian operator. The map (x, y) H (Sx I y) is therefore a
scalar semiproduct on E. Applying the Schwarz inequality to this scalar
semiproduct, we get

I (Sx 1
Y)12

< (Sx I x)(SY I y) for all x, y E E. (**)

At the same time, by the definition of m, there exists a sequence (xn)nEN
of elements in E of norm I such that limner+,.(Sxn I xn) = 0. By (**),

IISxnII2 < (Sxn I xn)1/2(S2xn I Sxn)1/2 < (Sxn I xn)1/211SII1/2IISxnII,
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so that
IISxn1I s 11 S11 112 (Sxn I x")1/2,

which implies that limn,+ao Sxn = 0. If m were not a spectral value of
T, the operator S would be invertible in L(E) and xn = S-1Sxn would
tend to 0, which is absurd. Therefore m E a(T).

Remark. The second part of this proof did not use the completeness of E.
Thus m and M are spectral values for any hermitian operator T, even if
the underlying space E is not complete. In particular, the spectrum of any
hermitian operator on any scalar product space is nonempty.

Suppose T is hermitian. Recall that IITII = max(Imi, IMI) (see Proposi-
tion 3.5 on page 114), and that T is called positive hermitian if m > 0 (see
page 114). The next corollary is an immediate consequence of the preceding
results.

Corollary 2.7 A hermitian operator T on E is positive hermitian if and
only if its spectrum a(T) is contained in R. If this is the case, IITII E a(T).

2B Operational Calculus on Hermitian Operators

We saw in Section 1 (page 194) that each element T in L(E) defines a
morphism of algebras P H P(T) from C[X] to L(E). Now, for T hermitian,
we will extend this morphism and define f (T) for every continuous complex-
valued map f defined on the spectrum of T.

Let T be a hermitian operator on E. If P = ao+a1X+ - +aX" E C[X],
we write and IPI2 =PP.

Proposition 2.8 For every P E C[X], we have (P(T))' = P(T) and

11P(T)II = eE``) I P(t) I .

Proof. The first assertion is an immediate consequence of the fact that
T is hermitian (see Proposition 3.3 on page 112). Next, for P E C[X],
Proposition 3.4 on page 113 gives

IIP(T)II = IIP(T)P(T)*II1/2 = IIIPI2(T)II1/2.

But, since IPI2(T) is positive hermitian,

IIIPI2(T)II = maxa(IPI2(T)),

by Corollary 2.7. By the Spectral Image Theorem (page 194), we have
a(IPI2(T)) = IPI2(a(T)), so

which concludes the proof.
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Theorem 2.9 The map P - P(T) defined earlier from C[X[ to L(E)
extends uniquely to a linear isometry f H f (T) from C(a(T)) to L(E).
Moreover:

I. (f9) (T) = f(T)9(T) for all f,9 E C(a(T))
ii. (f(T))' = f(T) for all f E C(o(T)).
Hi. o(f(T)) = f(o(T)) for all f E C(a(T)) (spectral image).

Proof

1. Let II be the subset of C(a(T)) consisting of restrictions of polyno-
mial functions to a(T). By Proposition 2.8, two polynomials P and
Q that have the same restriction to a(T) must satisfy P(T) = Q(T),
since IIP(T) - Q(T)II = maxtE,(T) JP(t) - Q(t)I = 0. Therefore the
map P H P(T) defines an isometry from II to L(E). By the Stone-
Weierstrass Theorem, n is dense in C(a(T)) (see Example 2 on page 34).
Using the fact that L(E) is a Banach space, we can apply the Extension
Theorem and extend this isometry in a unique way to a linear isometry
on C(o(T)), which must satisfy the first two properties of the theorem
since it extends a map that does.

2. If A V f (a(T)), the function 1/(A- f) is continuous on o(T), and clearly

(Al - f(T))-1 = (A 1 f)(T)

and A E p(f (T)) (the norm of the operator (AI - f (T))'' being the
inverse of the distance from A to f (a(T))). Thus a(f (T)) C f (a(T)).

3. Now take f E Ca(a(T)), f > 0, with f(T) invertible. We wish to
show that 0 V f (a(T)). Since o(f (T)) C f (a(T)) c R+, it follows that
-1/n is a regular value of f (T) for any n E N', and, by the preceding
discussion,

- f J (T).R(-1/n, f (T)) = (_I/'
//

Now, the function A + R(A, f (T)) is continuous on p(f (T)), so

lim R(-1/n, f (T)) = R(O, f (T)) _ -(f (T))-I++00

At the same time, the map f - f (T) is isometric from C(a(T)) (con-
sidered with the uniform norm, still denoted by II II) to L(E); therefore

IIR(-1/n, f (T))II = II -1 1 II/n - f

If f vanished anywhere in o(T), the value of IIR(-1/n, f (T))II would go
to infinity as n -a +oo, which is a contradiction. Therefore f does not
vanish on a(T), which is to say 0 f f (a(T)).
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4. Finally, take f E C(a(T)). Suppose that A E p(f (T)). Then the operator
)J-f(T) is invertible, as are its adjoint AI-I(T) and hence the product
(AI - f (T))(JJ- I (T)) = I A- f I2(T). Since IA- f I2 is a positive function,
we can apply step 3 to it. This implies that the function IA - f I2 does
not vanish on a(T ); therefore the same is true of A - f . Thus shows that
A V f (a(T)), and so that f (a(T)) C a(f (T)).

Corollary 2.10 Let f be a continuous function from a(T) to C. The
operator f (T) is hermitian if and only if f is real-valued. It is positive
hermitian if and only if f > 0.

Proof. The first assertion follows from part ii of Theorem 2.9. The second
follows from part iii of the same theorem and from Corollary 2.7.

Example. If T is a positive hermitian operator and if a E (0, +00), we can
define Ta, which is a positive hermitian operator. Then

TaT$=Ta+9 foralla,,l3>0,
a(Ta)={ta:tEo,(T)} for all a>0.

Moreover, the map a Ta is continuous from (0, +oo) to L(E).

Exercises

1. Let E be a real Hilbert space and T a symmetric operator on E.
a. Show that the proof of Theorem 2.6, and so also the theorem itself,

remain valid. Deduce that, if there is a constant C > 0 such that

(Tx I x) - CIIxII2 for all xE E,

T is invertible.
b. Let P = X2 + aX + b be a real polynomial having no real roots.

Show that P(T) is invertible.
Hint. p Can bewritten asp = (X +a)2+(32, with a E R and # > 0.
But then, for every x E E, we have (P(T)x I x) > 13211x112.

c. Show that for any P E R[X] we have P(a(T)) = a(P(T)). (Thus
the spectral image property is valid for symmetric operators when
K = R.)
Hint. Imitate the proof of Theorem 1.5, using a factorization of the
polynomial P - it over R and the previous question.

d. Show that r(T) =1ITII = max{IAI : A E a(T)I.
Hint. For the second equality, one might use part a of this exercise
and Proposition 3.5 on page 114.

e. Show that the results of Section 2B remain valid when K = R.
Hint. In view of parts a-d, one can use the same proofs.
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2. Let A and B be complementary orthogonal subspaces in a Hilbert space
E, and suppose T E L(E). Assume that T leaves A and B invariant,
that is, T(A) C A and T(B) C B. Show that

a(T) = 01T IA) U a(TI B)

(You might show the corresponding equality involving the resolvent set.)
Example. Determine the spectrum of the operator T defined on e2 by

(Tu)(n) = u(n + 2) + 1 + 2 1)n u(n) for all n E N.

(You might use Exercise 5 on page 195.)
3. Let E be a Hilbert space and take T E L(E). Denote by aev(T) the

set of approximate eigenvalues of T (see Exercise 20 on page 200). Also
put

i(T) = {(TxIx):IIxii=1}.
a. Show that the spectrum of T equals aev(T) U A E ev(T*)}. In

particular, a(T) = aev(T) if T is hermitian.
Hint. Use Exercise 20d-ii on page 200.

b. Show that aev(T) C i(T).
c. Deduce that a(T) C i(T). (This generalizes the first part of Theorem

2.6.)
d. Deduce that, if K = C,

r(T) < sup I(Tx I x)I <_ IITII.
II=11=l

4. Let E be a Hilbert space over C. An operator T on E is said to be
normal if TT* = T'T.
a. i. We assume (in this subitem only) that E = 22. Let (J1n)nEN

be a bounded sequence on C and let T be the operator on E
defined by

T.f (n) = Anf (n).

Show that T is normal. Recall from Exercise 4 on page 195 that
the spectrum of T equals the closure of the set {)1n}nEN.

ii. Deduce that, if E is infinite-dimensional, every nonempty com-
pact subset of C is the spectrum of a normal operator on E.
Hint. Use the previous result to handle the case where E is sep-
arable; then handle the general case using Exercise 2.

b. i. Let T E L(E). Show that T is normal if and only if IlTxll =
IIT*xII for every x E E.

ii. Let T be a normal operator on E. Show that, for every A E C,

ker(AI - T) = ker(ai - T*).
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Deduce, in particular, that A E ev(T) if and only if J1 E ev(T').
Show also that eigenspaces of T associated with distinct eigen-
values are orthogonal. (Work as in the proof of Proposition 2.5.)

c. Let T be a normal operator on E.
1. Show that IITII = r(T).

Hint. Start by proving that r(TT') < r(T)2.
ii. Deduce that

IITII = sup I (Tx 1:01-
11--0=1

(Use Exercise 3.)

5. Let T be a continuous operator on a separable Hilbert space. Show that
if T is hermitian it has countably many eigenvalues. Show that this
conclusion still holds if T is only assumed normal (see Exercise 4), but
not if we make no assumptions on T.

6. Let (Tn) be a bounded sequence of positive hermitian operators on a
Hilbert space E satisfying, for every n E N, the condition Tn+r > T.
(that is, Tn+i - T, is positive hermitian). Set M = supnEN IITII.
a. Take n, m E N such that m < n. Show that Tn,m = Tn - Tm is a

positive hermitian operator of norm at most M. Using equation (**)
on page 204 with S = Tn,,n, deduce that, for every x E E,

II Tnx - TmxII4 < M3l(T x I x) - (Tmx I x)) IITII'.

b. Deduce that for every x E E the sequence (Tnx) converges and that
the map T defined by Tx = limn,+oo Tnx is a positive hermitian
operator.

7. Define an operator T on the Hilbert space E = L2((0, +oo)) by setting

T f (x) = / + z +p! dy for all f E E and X E (0, +oo).
0

It was shown in Exercise 3 on page 149 that

+00 Z-1/2
IITII=1 l+zdz -a.

0

a. Let L be the operator on E defined by

r+00
L f (x) = / e'"vf (y) dy for all f E E and X E (0, +oo).

0

L is called the Laplace transform operator on L'((0,+oo)). Show
that L is a hermitlan operator and that L2 = T. Deduce that T is a
positive hermitian operator and that IILII = vrw-
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Hint. To prove that L is continuous, one can write, for f E E
nonnegative-valued,

(Lf (x))2 =
0+oo a-If

(U) dy /
+00 e-sv

f (y') dy'.
0 0

b. Show that im(T) c C((0, +oo)) and deduce that 0 is a spectral value
of T. Show that 0 is not an eigenvalue of T. (Start by showing that
L is injective.)

c. Show that [0, ir] is the smallest interval containing the spectrum of
T (in fact the two sets coincide).

8. Let T be a hermitian operator on a Hilbert space E. For f E CR(o(T))
and g E C(f (o(T))), show that

(g c f)(T) = g(f(T)).

In particular, if a, Q > 0 and T is positive hermitian, (T°)p = Tom.
9. Explicit construction of the square root of a positive hermitian operator.

(This exercise is meant to be solved without recourse to the results
of Section 2B.) Let T be a positive hermitian operator on a Hilbert
space E.
a. Suppose in this item that IITII <- 1, and consider the sequence of

hermitian operators (Sn) defined by So = 0 and

Sn+i=z(I-T+Sn) foralln>0.
I. Show by induction on n that 0 < Sn < Sn+i 5 I for every

integer n E N, where U ? V means that U - V is positive
hermitian.
Hint. Set U = I - T. Show by induction that, for every integer
n E N, the operators Sn and Sn+i - S. can be expressed as
polynomials in U with positive coefficients.

ii. Deduce that there exists a positive hermitian operator S such
that limn,+oo Snx = Sx for every x E E. (Use Exercise 6
above.)

iii. Set R = I - S. Show that RI = T.
iv. Show that R commutes with every operator on E that commutes

with T.
b. Now make no assumption on the norm of T. Show that there exists

a hermitian operator R such that R2 = T and that commutes with
every operator that commutes with T.

10. Let E be a Hilbert space.
a. Let T be a hermitian operator on E. Show that, if f E C(o(T)), the

operator f (T) commutes with every operator on E that commutes
with T.
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b. Uniqueness of the square root of a positive hermitian operator. Let
T be a positive hermitian operator on E and set R = T'/2 Let R'
be a positive hermitian operator such that (R')2 = T.

i. Show that RR' = R'R.
ii. Let X and X' be positive hermitian operators such that X2 = R

and (X')2 = R'. Show that, for every x E E,

IIXyII2 + IIX'y112 = 0, where y = (R-R')x.

iii. Deduce that JI(R-R')xJJ2 = 0 for every x E E, and so that
R=R'.

c. Let T and S be positive hermitian operators on E such that ST =
TS.

i. Show that ST is a positive hermitian operator.
Hint. One might introduce U = S't2.

ii. Show that, if S < T (that is, if T - S is positive hermitian), then
S2 _<T2.
Hint. Note that 72 - S2 = (T+S)(T-S).

11. Polar decomposition. Let T be a continuous operator on a Hilbert space
E, and set P = (T`T)1/2.

a. Show that ker P = ker T and that im (ker T)1.
b. Show that there exists a unique operator U E L(E) such that

- IIUxII = IIxII for every x E (kerT)l,
- Ux = 0 for every x E ker T, and
- T=UP.

Hint. If x E im P and x = Pz, we must have Ux = Tz.
c. Show that U*U is the orthogonal projection operator onto (kerT)
d. Show that if T is normal (TT' = T*T), then UP = PU.

Hint. One can use the fact that an operator commutes with p2 if
and only if it commutes with P (see Exercise 10a, for example).

e. Example. Determine the operators U and P when where E = L2(m)
(m being a measure on a measure space (X,.9')) and T is defined
by

Tf=af for all fEE,
for a fixed a E L°O(m).

12. Let T be a hermitian operator on a Hilbert space E. Show that every
isolated point of the spectrum of T is an eigenvalue of T.
Hint. Let A be an isolated point of o(T). Define a function f on o(T)
by

f(t)= J1 ift=A,
l0 otherwise.

Then f is continuous on o(T) and f (T) # 0. Show that (T-AI) f (T) = 0
and conclude. (You can also prove that f (T) is the orthogonal projection
onto ker(T - AI).)



212 5. Spectra

13. Let T be a hermitian operator on a Hilbert space and suppose Q(T) _
{0, 1). Show that T is an orthogonal projection operator.
Hint. The function f defined by f (x) = x2-x vanishes on the spectrum
of T.

14. Let m be a measure on a measure space (X,9) and take W E LR°O(m).
Define an operator T on L2(m) by

Tu=<pu foralluEL2(m).

Determine the operator f (T), for each continuous function f.
15. Spectral measure. Let T be a hermitian operator on a Hilbert space E

and set X = o(T).
a. Suppose u, v E E. Show that there exists a complex Radon measure

Et,,,,, on X such that

(f(T)uIv)=IA.,,,(f) for all f EC(X).

Show that, for every u E E, the measure µ,,,u is positive.
b. Let .9 be the space of bounded Borel functions on X, and suppose

f E .4. Show that the map

(u, v) 'a Ji dµ,,,,,

is a sesquilinear, skew-symmetric, continuous form on E. (Sesquilin-
ear means linear in the first argument and skew-linear in the second.)
Deduce that there exists a continuous operator on E, which we de-
note by f (T), such that

(f (T)u I v) = Jfd.v for all u, v E E.

Check that IIf(T)II <- supsEx If
Hint. Approximate f by a sequence of functions in C(X) bounded
by sup:Ex If(x)I; then use the Dominated Convergence Theorem.

c. Show that the map from 0 to L(E) taking f to f (T) is a morphism
of algebras and that (f (T))' = I (T) for all f E R.

d. Let be a bounded sequence in 0 that converges pointwise to a
function f . Show that limns+ f (T)(u) for every u E E.
Hint. Show that limn...,+o, (I f,.-f I2(T)(u) I u) = 0.

e. Suppose a E X and let f. be the restriction to X of the function
Show that a < b implies f0(T) < fb(T) (this notation means

that fb(T) - f0(T) is positive hermitian). Show also that f,(T) and
fb(T) are orthogonal projection operators, as is fb(T) - f0(T) if
a<b.
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Compact Operators

1 General Properties

Consider two normed spaces E and F over the same field K = R or C. As
usual, we denote by L(E, F) the space of continuous linear maps from E to
F, and use the same notation II II for the norm in E, in F, and in L(E, F).
Thus, if T E L(E, F), we have IITII = sup {IITxII : x E E with IIxII 5 1}.

We say that an element T in L(E, F) is a compact operator if the
image of the closed unit ball B(E) of E is a relatively compact subset of
F. We denote by 2'(E, F) the set of compact operators from E to F, and
we write .X'(E) = X(E, E).

Clearly, an element T of L(E, F) is a compact operator if and only if the
image under T of every bounded subset of E is relatively compact in F.

Note that the Riesz Theorem (page 49) can be expressed as follows: The
identity map on E is a compact operator from E to E if and only if E is
finite-dimensional.

Examples

1. Every finite-rank operator T from E to F is compact. (Recall that an
operator is said to have finite rank if its image has finite dimension,
and infinite rank otherwise. The dimension of the image of a finite-rank
operator is called its rank.) Indeed, T maps B(E) to a bounded, and
therefore relatively compact, subset of im T. Since any compact set in
im T is compact in F, the image T(B(E)) is relatively compact in F.
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2. Consider compact metric spaces X and Y, a function K E C(X x Y),
and a (possibly complex) Radon measure p on Y. We define an operator
TK from C(Y) to C(X) by

TK f (x) = JK(x y ) f (y) dp(y) for all f E C(Y) and x E X.

(In this situation the map K is called the kernel of the operator TK.)
The operator TK is compact: this was proved on page 44 when it is a
positive Radon measure, and the proof can be immediately adapted to
the case where p is not necessarily positive.

3. Let a and b be real numbers such that a < b, and suppose K E C([a, b]2).
Let a and Q be continuous functions from (a, b] to [a, b]. For f E C([a, bJ)
and x E [a, b], we put

O(x)
T f (x) = j K(x, y) f (y) dy.

,lo(x)

The operator T thus defined from C([a, b]) to itself is compact.

Proof. Let IIKII be the uniform norm of K. Then, for every f E C([a, bJ),

IITfII <- IIKII Ilf11-

Therefore T(B(E)) is a bounded subset of C([a, b]). On the other hand,
if xl, x2 E [a, b] and f E C([a, b]),

ITf(xi) -Tf(x2)I

< Ilf1I X IIKII (I0(x2) - Xxi)I + Ia02) - a001)
+ (b - a) sup I K(xi, y) - K(x2, y) I).

vE la,bl

Since K is a uniformly continuous function on [a, b]2, this shows that
T(B(E)) is an equicontinuous subset of C([a, b]). The result now follows
from the Ascoli Theorem (page 44). 0
In particular, the integration operator

Tf(x) = J f(t)dt
0

is a compact operator from C([0,1]) to itself.
4. Other examples of compact operators have been seen in the exercises:

between Holder spaces (Exercise 5 on page 45), the map f H f from
CP f0,11) to Cq([O,1]), with q > p > 0; and between discrete Sobolev
spaces (Exercise 7d on page 104), the map f y f from H to H" with
r<a.
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We now study certain closure properties of compact operators.

Proposition 1.1 .Xf(E, F) is a vector subspace of L(E, F).

Proof. Consider compact operators T and S from E to F and elements
A,1&EK.Then

(AT + pS)(B(E)) C
AT(B(E))T

+ p S(U(E)).

But, if Kl and K2 are compact sets in F, the set AKl + juK3i being the
image of the compact KI x K2 under the continuous map (x, y) H Ax+py,
is also compact.

Proposition 1.2 Let R be a compact operator from E to F. If El and
Fi are normed spaces and if T E L(Ej, E) and S E L(F, Fl) are arbitrary,
the composition SRT is a compact operator from El to Fl.

Proof Indeed,
SRT(B(El)) C IITII S(R(B(E))).

Since a continuous image of a compact set is compact, the result follows.

Corollary 1.3 X(E) is a two-sided ideal of the algebra L(E).

Proposition 1.4 If F is complete, the limit in L(E, F) of every conver-
gent sequence of compact operators from E to F is a compact operator.

Proof. Let (Tn)nEN be a sequence of compact operators from E to F that
converges to T in L(E, F). By Theorem 3.3 on page 14, it suffices to show
that T(B(E)) is precompact. Choose e > 0 and let n E N be such that
IIT - TnhI < e/3. We can cover Tn(B(E)) with a finite number k of balls
B(T, fj, a/3), where fl,.. -, fk E B(E). Suppose f E B(E) and let j < k be
such that IITnf -Tnfrll < e/3. By the triangle inequality, IITf -Tfj1I < £.
Therefore

k

T(B(E)) C U B(Tfj,c),
j=1

and T(B(E)) is precompact.

The result of the proposition can fail if F is not complete: see Exercise
8 on page 222.

Since every finite-rank operator is compact, as we saw in Example 1 on
page 213, Proposition 1.4 has the following important consequence:

Corollary 1.5 If F is complete, every limit in L(E, F) of finite-rank op-
erators is a compact operator.

This provides a frequently useful criterion for proving that an operator
is compact.
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Examples

1. Let (X,.fl and (Y, l) be measure spaces endowed with or-finite mea-
sures m and µ, respectively. Let p E [1, +oo) and p' be conjugate ex-
ponents, and suppose K E LP(m x u). We define an operator TK from
LP'(µ) to LP(m) by setting, for every f E LP'(p) and rn-almost every
x E X,

TKf (x) = fK(z,y)f(y)d1z(y).

(As in Example 2 on page 213, the map K is called the kernel of the
operator TK.) Then TK is a compact operator.

Proof. We use the same notation II . II for the norms in LP(m x p) and
in L(LP'(p), LP(m)). We deduce easily from Holder's inequality and Fu-
bini's Theorem that TK is continuous and that

IITKII <- IIKII (*)

Suppose that K is an element of LP(m) 0 LP(p), the vector subspace
of LP(m x p) spanned by the elements f ®g : (x, y) '-+ f (x)g(y) for
f E LP(m) and g E LP(p); that is, suppose

K(x,y) = F'fJ(x)9j(y)
J=1

Then the image of TK is contained in the span of the family {f,. .. , fk },
so TK has finite rank.
Now, if K E LP(m x µ) is arbitrary, K is the limit in LP(m x p) of a
sequence (Kf)fEN in LP(m) 0 LP(r) (see Exercise 12 on page 153). But
then, by (*), the sequence (TK, )nEN converges to TK, showing that TK
is compact by Corollary 1.5. O

Notice that the compactness of the operator considered in Example 2
on page 213 could be proved by the same method, using Example 5 on
page 35.

2. Hilbert-Schmidt operators. Let E be an infinite-dimensional separable
Hilbert space. If (en)fEN is a Hilbert basis of E, we say that an operator
T E L(E) is a Hilbert-Schnnidt operator if the series of numbers
En o IITenII2 converges. One can show (Exercise 21 on page 140) that
this definition does not depend on the Hilbert basis considered. Now
let P. be the orthogonal projection from E onto the span of the family
(ej)o<j<n One can show that, if T is a Hilbert-Schmidt operator, the
sequence (TPf)fEN converges in L(E) to T (see Exercise 21 on page 140
again). Thus, every Hilbert-Schmidt operator is a compact operator.
In the case E = Ls (m), where m is a or-finite measure on a measure space
(X, .9) (still assuming E separable), the Hilbert-Schmidt operators on
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E are exactly the operators of the form TK defined in the preceding
example, with K E L2 (M x m) (see Exercise 21 on page 140 once more).

We observe that, for many (but not all) Banach spaces F, Corollary
1.5 has a converse: Every compact operator from E to F is the limit of a
sequence of operators of finite rank. See Exercise 24 on page 232.

1A Spectral Properties of Compact Operators

Consider again an arbitrary normed space E. We do not assume that E is
complete, but we use nonetheless the notions and notation introduced in
Chapter 5 (page 189): spectral values, regular values, eigenvalues, spectrum,
and so on.

Proposition 1.6 Let T be a compact operator from E to E.

1. The kernel of the operator I - T has finite dimension.
2. The image of I - T is closed
3. The operator I - T is invertible in L(E) if and only if it is injective.

Proof

1. Write F = ker(I - T). Then F is a closed subspace of E and

B(F) = T(B(F)) c T(B(E)) n F,

which is compact. By the Riesz Theorem (page 49), F is finite-dimen-
sional.

2. Take y E im(I - T) and let (x,) be a sequence in E such that

lira (xn - Tx,,) = y.

First case: the sequence (x,,) is bounded. Since T is compact, we can
assume, by passing to a subsequence if necessary, that the sequence
(Tx,,) converges to some point z E E. Then limn.i+oo x,, = y + z
and, by the continuity of T, we get z = T(y+z), which implies that
y = (y+z) - T(y+z) E im(I - T).
Second case: the sequence (xn) is not bounded. For every n E N, set
4 = d(xn, ker(I - T)). Since ker(I - T) is finite-dimensional by part 1,
there exists a point zn E ker(I - T) such that IIxn - z,IJ = 4 (indeed,
the continuous function x H d(xn, x) must achieve its minimum over
the nonempty compact set B(xn, fixnll) n ker(I - T)).
If the sequence (dn) is bounded, we can replace xn by xn - zn to reduce
to the first case; thus y E im(I - T).
Otherwise, by taking a subsequence, we can assume that the sequence
(dn),EN tends to +oo. Since the sequence ((xn -zn)/dn) is bounded, we
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can assume, again by passing to a subsequence, that T((xn - zn)/dn)
converges to a point u E E (since T is compact). We deduce that

n rn do 1(xn - zn) = u +
n

Jim do 1y = u,

which implies two things: that Tu = u (by the continuity of T), so that
u E ker(I - T); and that, for n large enough, Ilxn - zn - dull < dn.
But this contradicts the definition of dn. Therefore the sequence (dn) is
bounded and y E im(I - T), which proves part 2.

3. We now assume that the operator I - T is injective. To prove its sur-
jectivity, we will use a general lemma.

Lemma 1.7 If F is a proper closed subspace of a nonmed vector space
G, there exists u E G such that Ilull =1 and d(u, F) > .1

Proof. Take v E G \ F and set b = d(v, F) > 0. Certainly there exists
w E F such that llv - wll < 26. Then the point u = llv - wll'1(v - w)
works: if z E F, we have

IIu-zll = IIv-w11-lily-w-llv-wllzll > 1 6=
26

proving the lemma.

We now argue by contradiction. Set E1 = im(I - T) and suppose that
E1 0- E. For every n E N, set En = im(I - T)n (and set E0 = E).
We show by induction that, for every n E N, the subspace En is closed,
En :) &+,, and En 96 E.+,.
The claim holds for n = 0 by assumption. Suppose it holds for n E N.
Clearly, T(En) C En; thus T induces operator Tn E L(En). The
set Tn(B(EE)) is contained in T(B(E)) fl En, which is compact since
En is closed. Therefore Tn is a compact operator on En. Since En+1 =
(In - Tn)(En), where In is the identity on En, part 2 above applied to
Tn implies that En+1 is closed in En and so in E. It is also clear that
En+1 D En+2. Finally, because we assumed I - T to be injective, the
subspaces En+1 = (I - T)(En) and En+2 = (I - T)(EE+1) cannot be
equal since E,, # En+1. This completes the induction step.
By applying Lemma 1.7, we now obtain a sequence ('un)nEN such that,
for every n E N,

un E En, II un II = 1, and d(un, En+1) >- 12Then,

for n < m,

Tun - Turn = un - vn,,n with vn,,n = Turn + (I - T)un E En+1

It follows that

IITun - TumII > I for all n31 m.
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Since every point of the sequence (u lies in D(E), this contradicts
the relative compactness of T($(E)) (no subsequence of (Tu is a
Cauchy sequence). This contradiction proves that I - T is surjective.
There remains to show the continuity of (I -T)-1. Here again we argue
by contradiction, by assuming that there is a sequence (x.)-04 that does
not tend to 0 and such that lim,,...,+,o(x - Tx,,) = 0 (this condition
is equivalent to (I - T)-1 not being continuous at 0). By passing to
a subsequence if necessary, we can assume that JJxn II > e, for every
n E N and a fixed e > 0. Now put u = Since T is a compact
operator, we can assume, again by passing to a subsequence, that the
sequence (Tu converges to a point v E E. But then u =
v, which implies that IIvJJ = 1 and, by the continuity of T, that v = Tv,
contradicting the injectivity of I - T.

We can now state our main theorem, which shows that, as far as spectral
properties are concerned, compact operators behave almost like operators
of finite rank (see Exercise 13 on page 197).

Theorem 1.8 Let T be a compact operator from E to E.

1. If E is infinite-dimensional, 0 is a spectral value of T.
2. Every nonzero spectral value of T is an eigenvaiue of T and has a finite-

dimensional associated eigenspace.
3. The spectrum of T is countable. If it is infinite, its nonzero elements

can be arranged in a sequence (A such that, for all n E N,

IAn+II <- IAnI and n A =0.

Proof

1. Suppose that 0 is not a spectral value of T. Then I = TT'1 is a com-
pact operator by Proposition 1.2. By the Riesz Theorem (page 49), this
implies that E is finite-dimensional.

2. Take A E K'. Then A is an eigenvalue of T if and only if I - T/A is not
injective, and ker(AI - T) = ker(I - T/A). On the other hand, A is a
spectral value of T if and only if I - T/A is not invertible in L(E). Thus
it suffices to apply Proposition 1.6 to prove assertion 2.

3. For assertion 3, it is enough to show that, for every e > 0, there is
only a finite number (perhaps 0) of spectral values A of T such that
JAI > e. Suppose, on the contrary, that, for a certain e > 0, there exists
a sequence of pairwise distinct spectral values of T such that
IA,,I > e for every n E N. By part 2, all the A are eigenvalues of T.
Thus there exists a sequence (e,,) of elements of E of norm 1 such that
Ten = for every n E N. Since the eigenvalues A are pairwise
distinct, it is easy to see (and it is a classical result) that the family

is linearly independent. For each n E N, let E be the span of
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the n+ 1 first vectors e0,. .. , en. The sequence (En)nEN is then a strictly
increasing sequence of finite-dimensional spaces. By Lemma 1.7, there
exists a sequence (un)nEN of vectors of norm 1 such that, for every
integer n E N,

un E En+1 and d(un, En) > 2

(in fact, since En has finite dimension, we could replace i by 1 here).
Define vn = )n+lun. The sequence (vn) is bounded by 1/e. Moreover,
ifn>rn,

Tvn - Tv,n = un - Vn,m with vn,,n = Tv n +
1

(An+1I - T)un.
An+l

But Tv,n E E,n+1 C En and (An+lI-T)(En+1) C En. Thus Vn,,n E En
and IITvn-Tv,ni[ > 2, contradicting the compactness of T (the sequence
(vn)nEN is bounded and its image under T has no Cauchy subsequence,
hence no convergent subsequence).

Example. We now discuss a compact operator whose spectrum is count-
ably infinite, and we determine this spectrum explicitly. Consider the op-
erator T on the space C([0,1]) (with the uniform norm) defined by

Tf(x) =1-xf(t)dt for all f E C([0,1]).
10

We know from Example 3 on page 214 that T is a compact operator. By
Theorem 1.8, zero is a spectral value of T, but clearly it is not an eigenvalue.
To determine the spectrum explicitly, it is enough to find the eigenvalues.
Let A be an eigenvalue of T and let g E C([0,1]) be a corresponding nonzero
eigenvector, so that

x

fo

1-

Ag(x) = g(t) dt for all x E [0,1].

Since A is nonzero, g is necessarily of class C1 in [0, 1]; moreover g(1) = 0
and

Ag'(x) = -g(1 - x) for all x E [0, 11.

It follows that g is of class C2 in (0, 1] and that

g 0, g(1) = 0, g'(0) = 0, )ig'(1) = -g(0),

Ag"(x) = -g(x)/A for all x E 10, 1].

The solutions of the differential equation (**) satisfying g'(0) = 0 are the
functions g(x) = Acos(x/a). In order for such a function to satisfy condi-
tions (*), it is necessary that cos(1/A) = 0 and sin(1/A) = 1, which is to
say 1/A = 7r/2 + 2kir, with k E Z, or yet

_ 1

7r/2 + 2k7r'
with k c Z.
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Conversely, if A = 1/(7r/2 + 2kir) with k E Z, one easily checks that the
function g defined by g(x) = cos(x/A) is an eigenvector of T associated
with A. Thus

a(T) = 10} u
l,r/2 + 2k7r : k E Z}.

We also see that all the eigenspaces of T have dimension 1 and that the
spectral radius of T is 2/7r.

Exercises

1. Let E be an infinite-dimensional Banach space and F any normed vector
space. Let T be an operator from E to F for which there exists a constant
a > 0 such that I I Tx II ? a I I x II for every x E E. Show that T is not
compact.

2. Let be a sequence of complex numbers and let T be the operator
on jP (where p E [1, +oo)) defined by

Tf(n)=Anf(n) for all f EeandnEN.

We know from Exercise 4 on page 195 that T is continuous if and only
if the sequence (An)nEN is bounded.
a. Show that T is compact if and only if limner+oo An = 0.

Hint. You might use Exercise 10 on page 183, for example.
b. Suppose p = 2. Show that T is a Hilbert-Schmidt operator if and

only if

E 1,\n l2 < +00.
nEN

c. Let S be the right shift in t, where p E [1, +oo) (see Exercise 6e on
page 196). Is S a compact operator?

d. Suppose that the sequence (An)nEN tends to 0. Determine the eigen-
values and the spectral values of TS.

3. Let X be a compact metric space and suppose W E C(X). Show that
the operator T on C(X) defined by T f = tpf is compact if and only if
cp vanishes on every cluster point of X.
Hint. Suppose that T is compact and that I p(x) I > 0 at a point x E X.
Then there exists a closed neighborhood Y of x on which J<pI > 0. Show
that the restriction of T to C(Y) is an invertible compact operator in
L(C(Y)) (to show compactness you will probably need Tietze's Exten-
sion Theorem, Exercise 7a on page 40). Deduce that Y is finite. For the
converse, use Ascolis Theorem, page 44.

4. Let P be a polynomial not vanishing at 0 and let T be a linear operator
on an infinite-dimensional normed space E. Assume P(T) = 0. Show
that T is not compact.



222 6. Compact Operators

5. Let E be a Hilbert space and suppose T E L(E). Show that T is a
compact operator if and only if T' is one.
Hint. Let (xn) be a bounded sequence in E. Put M = supra (Ixn II and
define y,, = T'xn for each integer n. Show that, for every n, m E N,

IIVn - Vm112 <- 2MIITVn -TVmII

Deduce that T is compact.
6. a. Let T be a continuous operator on a Hilbert space E. Show that T

is compact if and only if the image under T of every sequence in E
that converges weakly to 0 is a sequence that converges (strongly)
to 0.
Hint. For the "if" part, use Exercise 12 on page 121 and Proposition
3.8 on page 116. For the converse, use Theorem 3.7 on page 115.

b. Show that this result remains true if E = LP(m), where m is a a-
finite measure on a measure space (X, $) and p E (1, +oo). (Weak
convergence in LP(m) was defined in Exercise 9 on page 166. You
can also use Exercise 10 on page 168.)

c. Show that this result is false if E =11.
Hint. Use Exercise 9d on page 167.

7. Let p be a positive Radon measure on a compact metric space X, with
support equal to X. Suppose K E C(X x X). Fix P E [1, oo) and denote
by Ep the space C(X) with the norm induced by that of LP(p). Define
an operator T from Ep to itself by

T f (x) = / K(x, y) f (y) dp(y) for all x E X.

Show that T is compact, and deduce that the spectrum of T does not
depend on p.

8. Let E be the space C'(10,11) with the norm II . IIE defined by

IIf1IE = IIfII + Ilf'II,

where II II denotes the uniform norm on [0,11. Let F be the same space
C' ([0,11) with the uniform norm on 10, 11. Let T be the operator from
E to F defined by

Tf=f forallfEC'([0,1[).

a. Show that the norm of T equals 1.
b. Show that T is not compact.
c. Let (Tn) be the sequence in L(E, F) defined by

T. f = Bn f for all f E E,
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where B,, is the Bernstein operator defined in Exercise 3 on page 37.
Show that each T has finite rank and that the sequence (Ta) con-
verges to T in L(E, F).
Hint. Using the estimates from Exercise 3 on page 37, show that
PIT - TnII < (2n)-1/3.

d. Deduce that the hypothesis that F is complete cannot be omitted
from Proposition 1.4 or Corollary 1.5.

9. Suppose p E 11, oo). Define an operator T on the space LP([O,1)) by
setting

T f (x)
=1-y

f (t) dt for all f E Lp([O,11) and x e [0, 11.
10

Show that T is compact and determine its spectrum.
Hint. Notice that any eigenvector associated with a nonzero eigenvalue
must be a continuous map. Therefore the eigenvalues can be determined
as in the text; see page 220. (In particular, the spectrum of T does not
depend on p.)

10. Let E and F be Banach spaces and let E and F be dense subspaces of
E and F, respectively. Consider a compact operator T from E to F.
a. Show that T can be extended in a unique way to a continuous op-

erator t from k to F. Show that t is compact and that imT C F.
Deduce that t is also compact, when considered as an operator from
EtoF.

b. Assume E = F and E = F. Show that T and t have the same
nonzero eigenvalues and that the eigenspace associated with a given
nonzero eigenvalue is the same for T and T.

c. Apply this to Exercise 7 above in order to show that the study of
the spectrum of the operator T on Ep is reducible to the study of a
compact operator t on LP(p).

11. Let E be one of C([0,1]) or La([0,11), where p E 11, oo). Determine the
spectrum of the operator T from E to itself defined by

Tf(x) = fmit(x, y)f(y)dy = f yf(y)dy+x f f(y)dy
0 s

Hint.Note that T is compact and that an eigenvector f of T associated
with a nonzero eigenvalue is a differentiable function and satisfies f (0) _
f'(1) = 0.

12. Let T be the linear operator on L2((0,1)) defined by

T f (x) = f e-'=-y1 f (y) dy for all f E L2((0,1)) and X E [0,1).
10

a. Show that T is a compact hermitian operator and that IITII < 1.
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b. Suppose f E C([0,1]) and put g = T f. Show that g E Ca([0,1]) and
that g(0) = 9'(0), g(1) = -g'(1), and

9"(x)-g(x)=-2f(x) for allxE [0,11.

c. Conversely, suppose g E C2([0,11) satisfies g(O) = g'(0) and g(1) _
-g'(1). Put f = -(g" - g)/2. Show that g = T f.
Hint. Consider h = g - T f .

d. Show that imT is dense in L2((0,1)) and deduce that 0 is not an
eigenvalue of T. Is 0 a spectral value of T?
Hint. For denseness, note that, by part c, im T contains the space
CR(0,1)) of C2 functions with compact support in (0,1).

e. Show that, if f E C([0,11) and g = T f, then

9(x)IZ + I9'(x)I2) dx + 19(1)12 + I9(0)I1)(I(Tf If) = 2 (j1
Deduce that, for every f E L2((0,1)),

(Tf I f)? 2IITf112.

f. Show that o(T) C [0,11.
g. For A E (0,11, set as = (2-A)/A. Show that A E o(T) if and only if

(1 - aa) sin as + 2a,\ cos as = 0.

Deduce that o(T) = {0} U where, for every n E N,

1 + (ir/2 + nir)2 An 1 + (n7r)

13. A Stutwn-Liouville problem. Suppose g E C([0,11), and consider the
differential equation

(Pf')' - of = g, (E)g

on the interval [0,11, with boundary conditions

aof'(0) - aif(0) = 0, A0f'(1) - 13if(1) = 0. (BC)

Here q is a continuous function on [0, 1J and p is a function of class
C1 on [0,1] taking positive values only; in addition we assume that
(ao, a1) 0 (0, 0) and (po, 01) 76 (0, 0). By definition, a solution of the
problem (E)g + (BC) is a function f of class C2 on the interval [0,11
satisfying conditions (E)g and (BC).
a. Suppose for now that the boundary value problem (E)o + (BC) has

only the trivial solution (identically zero).
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1. Take a nontrivial solution f, of (E)o with ao f i (0) - al f, (0) = 0
and a nontrivial solution f2 of (E)o with pof2'(1) -,Ol f2(1) = 0.
Justify the existence of f1 and fz and prove that the expression

W = (fi(x)fa(x) - fl(x)fa(x))p(x)

is constant and nonzero on [0, 11.
H. Define a function G on [0,112 by

_ f2(y)fl(x) if 0 < x < < 1 ,v
-fl(Y)f2(X)G(x, Y) =

W

if 0< y < x < 1..
W

(G is the Green's function associated with the problem (E) +
(BC).) Let T be the operator from C([O,1)) to itself defined by

T f (x) = f G(x, v) f (v) dy.
0

Show that T is compact and that, if g E C([0,1]), the function
f = Tg is the unique solution of (E)9 + (BC).

Iii. A. Show that im T equals the set of functions of class 0 on [0,1]
that satisfy (BC).

B. Take A E K*. Show that ker(AI-T) equals the set of solutions
on [0,1] of the equation

(pv')'-(q+A-1)v=0
that satisfy (BC). Deduce that ker(AI - T) has dimension at
most 1.

b. Suppose that anal = pop, = 0, that q is nonnegative-valued, and
that, if a1 = f31 = 0, then q is not identically zero. Show that the
problem (E)o + (BC) has only the trivial solution.
Hint. Let f be a solution of (E)o + (BC). Show that

01q(t) If(t)I2dt + flp(t) If'(t)12dt = 0.
0 0

c. Study the particular case p = 1, q = 0, ao = /31 = 0. Write down
the corresponding function G. Compare with Exercise 11.

d. Suppose that ao = /30 = 0 and that q(x) > 0 for every x E (0,1).
i. Show that g >- 0 implies -Tg 2! 0; thus -T is a positive operator.

Hint. Suppose g > 0 and write f = Tg. Check that f is real-
valued. Suppose next that there exists a point x E [0,1] such
that f (x) > 0, and work with a point of (0,1) where f achieves
its maximum.
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ii. Deduce that G(x, y) < 0 for every (x, y) E [0,1]2.
all. Show that this remains true if we assume only that q > 0.

Hint. Approximate q by q + e and prove that the kernel GE cor-
responding to q + e converges to G.

14. A particular case of Krein-Rutman Theorem. Let X be a compact met-
ric space. Consider E = Cc (X) and let T be a positive compact operator
from E to itself. We wish to show, among other things, that if T has
a positive spectral radius r(T), it has a nonzero, nonnegative-valued
eigenvector associated with the eigenvalue A = r(T).
Denote by E+ the set of f E E such that f > 0, and define E+' _
E+ \ {0}.
a. For f E E+', we put

r(f) = max{p E R+: pf <Tf}

and
r = sup{r(f) : f E E+' }.

Show that r is well defined and that r = r(T).
Hint. You might have to use Exercise 3a on page 195.

b. We suppose for now that if f E E+' then T f (x) > 0 for all x E X.
I. Show that r > 0.

ii. Show that there exists an element g E E+' such that r = r(g).
Hint. Check that there exists a sequence (fn)nEN of elements of
E+' of norm 1 such that limns+ r(fn) = r and that, by passing
to a subsequence, one can assume that the sequence (Tfn)nEN
converges to some element g of E. Show that g E E+' and that
r(g) > r. Wrap up.

iii. Show that Tg = rg.
Hint. Show that, if Tg 74 rg, we have rTg(x) < T(Tg)(x) for
every x; then finish.

iv. We will show that the eigenspace E,. associated with the eigen-
value r has dimension 1.
A. Show that, if h E E,., the functions (Re h)+, (Re h)', (Im h)+,

and (Im h)- belong to E,..
Hint. Work as in part b-iii. Observe that, for example,

T((Re h)+) >- (T(Re h))+ = r(Re h)+.

B. Let h E Er be such that h ? 0. Show that there exists p > 0
such that h = pg.
Hint. Consider p=max{A>0:Ag<h}. If h-pg#0,
we have h(x) - pg(x) > 0 for all x E X, which leads to a
contradiction.

C. Deduce that E, is spanned by g.
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c. Let u be a positive Radon measure on X, of support equal to X.
(Why is there such a measure?) For e > 0, put Te f = T f + e f f dµ.
I. Show that TE is a compact operator in E and that TE f (x) > 0

for every f EE+' andxEX.
ii. Show that, if r > 0, there exists g E E+' such that Tg = rg.

Hint. Let re be the positive real number associated with Te and
take ge E E+' of norm 1 and such that Tege = rg,. Show that
re > r; then that there exists a sequence (En)fE1s approaching 0
and such that ge converges to g. (Observe that in this case the
eigenspace associated to r need not have dimension 1.)

15. Let m be a measure of finite mass on a measure space (X, F), and take
K E LOO (m x m). Show that, for every p, q E (1, +oo), the operator
T defined from LP(m) to L°(m) by T f (x) = f K(x, y) f (y) dm(y) is
compact.
Hint. Use Example 1 on page 216 and the fact that, if s > r, the
canonical injection f -* f from Ls(m) to L''(m) is continuous.

16. Take P E [1, oo]. Consider a v-finite measure m on a measure space
(X, 9) and a map K : X2 -> K that is measurable (with respect to the
product o-algebra on X2) and such that the expression

CK = max(sup
J I K(x, y)I dm(y), sup J I K(x, y)I dm(x)

xEX yEX

is finite.
a. Show that the equation

TKf (x) = fK(xv)f(v)dm(v)

defines a continuous operator TK from LP(m) to itself of norm at
most CK.
Hint. Write IK(x,y)I = IK(x,y)I11aIK(x,y)I11a', where p' is the
conjugate exponent of p.

b. Suppose that m is Lebesgue measure on the Borel u-algebra of X =
[0,1] and that K(x, y) = Ix - y1-°, with a E (0,1).
i. Check that K satisfies the assumptions of part a.

H. For each n E N, set Kn = inf(K, n). Show that the operators
TK from La([0,11) to itself are compact.
Hint. Note that K. E C([0,1]2).

iii. Show that, for every n E N*,

CK-K < 2
1

a

iv. Deduce that the operator TK from La([0,11) to itself is compact.
(See also Exercise 21e below.)
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17. Two examples of noncompact kernel operators.
a. We consider the operator T defined on LP((O, +oo)) in Exercise 3 on

page 149 and we maintain the assumptions and notation of part c of
that exercise. Set cpE = e'/Pff. Show that IIVEIIp = 1,

lim
E O IIT7'EIIp = k,

and that, for every x > 0,

lim Tcpe(x) = 0.
E-+0

Deduce that, unless T is the zero operator, it cannot be a compact
operator on LP((0, +oo)).

b. Let T be the operator defined on LP((0, +oo)), with p E (1, oo), by

Tf(x) = x ff( !)dy

Using the last part of Exercise 2 on page 177, prove that T is not a
compact operator on LP((O, +oo)).

18. For r E [0, 1), we define an operator Tr on the Hilbert space e2 by

(Tru)(n) = rnu(n).

a. Show that Tr is compact for any r E [0, 1) (see Exercise 2).
b. Consider a sequence (rn) in [0, 1) converging to 1 and a bounded

sequence (u(n)) in t2 converging weakly to u. Show that the sequence

(u(n) - Tr,f(n))nEN

converges weakly to 0.
Hint. Show first that, for every v E e2, the sequence con-
verges (strongly) to v in e2.

c. Deduce that, if T is a compact operator from e2 to itself, then

lim IITTr - TII = 0.
r +I-

Hint. Reason by contradiction and use Exercise 6a.
d. Show that, if T is a compact operator from e2 to itself, we have

lim TrT = lim TrTTr = T
r-41-

in L(e2).
Hint. Show first that limy, 1 - TT = T, using Exercise 1 on page 20.
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19. Hankel operators. For f E LOOQO, 1]), we set

1c (f) = J f (t)e-a{*ne dt for all n E N.
0

We associate with f a linear map Tj on l9 by setting

+°°
(Tju)(p) = >2 u(n)cn+p(f) for allp E N.

n=0

a. Suppose u E 19. We denote by u the sum in L2([O,11) of the series
E . Show that, for every integer p E N,

n
ou(n)e-zt*nt

I

(Tju)(p) = ff(t)u(t)e_2h1tdt.

Deduce that the operator TI from 9 to itself is continuous and that
its norm is at most 11f II°O.

b. Show that, if there exists N E N such that

c (f) = 0 for all n > N,

the operator Tj has finite rank. Deduce that, if f is continuous on
[0,1] and f (0) = f (1), then Tj is compact (as an operator from 9
to itself).

c. If f E L°O ([0,11) and r E [0,1), put

A-

+00

(t) _ E rn cn (f)esi*ntf
n=0

i. Show that this series converges uniformly, that Jr is continuous
on [0, 11, and that f,.(0) = f,.(1).

H. Show that if Tj is compact we have

lim IITjr-Tj[I=0.
r +I-

Hint. Use Exercise 18d.
W. Show that, if Tj is compact, there exists a sequence ((p,,) in the

span of the functions t y e21*kt (where k E N) such that the
sequence converges to Tj in L(la).

20. Let E be a normed space having an order relation < compatible with
addition and multiplication by positive scalars, and such that, for all
f,9 E E, the condition 0 < f < g implies 11f II <_ IIgIl Suppose also that
the set of nonnegative elements is closed in E. (For example, all the
function spaces studied in the preceding chapters, such as LP, Cb(X),
and Co(X), satisfy these properties when given the natural order.) Let
T be a positive compact operator on E (positive means that T f > 0 for
all f E E such that f > 0), and suppose ) E R+*.
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a. Take h E E. Suppose that there exist elements fo and go of E such
that

fo 5 go, T fo ? Afo + h, and Tgo < ago + h.

Show that the sequences (fn)nEN and (gn)fEN defined by

nn
fn+1 = and 9n+1 =

- h Tg - hTf
A

for all n E N converge to two (not necessarily equal) solutions f,,.
and g,,. of the equation

Tf =Af+h

satisfying fo < f. < g. <- go- (In particular, if h = 0 and the
inequalities fo < 0 and go > 0 are not both true, A is an eigenvalue
of T. Compare with Exercise 16 on page 198.)

b. Take E = C([0,1) ), define T by

T f (x) = J K(x, y) f (y) dy for all f E C([0,1]) and X E [0,1],1

0

where K is a continuous map on [0,1]2 with values in [0, 2], and let
k be an element of CR([0,1]) taking values in [0, 1]. Show that the
two sequences (fn) and (g,) defined as above with fo = 0, go = 2,
h = -k, and A = 1 converge to the unique solution f of the equation

1f (x) - / K(x, y) f (y) dy = k(x) for all x E [0,1].
0

21. Let X and Y be compact metric spaces.
a. Let µ : y H it,, be a map from Y to the space W1K (X) of Radon

measures on X. Assume that µ is weakly continuous in the following
sense: for every f E C(X ), the map y H f f dµy from Y to K is
continuous. (You might check that µ is weakly continuous if and only
if it takes convergent sequences in Y to weakly convergent sequences
of measures on X; see exercise 7 on page 91.) For m E 9R(X), denote
by IImlI the norm of m, considered as an element of the topological
dual of C(X).

I. Define 1111 = supYEy 11AY11. Show that 1111 < +oo.
Hint. Use the Banach-Steinhaus Theorem, page 22.

ii. Show that the equation

Tof(y) = Jf(x)dPv(x) for all f E C(X) and y E Y

defines a continuous linear operator T. from C(X) to C(Y), of
norm Iµ1.
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b. Conversely, prove that, for every continuous linear operator T from
C(X) to C(Y), there exists a weakly continuous map p from Y to
931(X) such that T = Tµ.

c. Let is be a weakly continuous map from Y to 9)1(X). Show that the
operator T. is compact if and only if is is continuous as a map from
Y to the Banach space 931(X) = C(X)'.
Hint. Use Ascoli's Theorem, page 44.

d. Let T be a continuous linear operator from C(X) to C(Y). Show
that T is compact if and only if there exists a map K from Y x X
to K and a positive Radon measure m on X such that

(*) TAY) = JK(v,x)f(x)dm(x) for all f E C(X) and y E Y,

the map K being required to satisfy the following conditions:
- For every y E Y, the map Ky : x H K(y,x) belongs to L'(m).
- The map y " K. from Y to L'(m) is continuous.

Show also that, in this case,

IITII = sup
yEY!

I K(y, x)Jdm(x).

Hint. For necessity, use Exercise 8 on page 91, then the Radon-
Nikodjrm Theorem (Exercise 6 on page 165), and Exercise 4 on
page 90.

e. Take a E (0, 1). Show that the operator T from Q10, 1)) to itself
defined by

1Tf(x) =
J Ix-yI-of(v)dv

0

is compact. Find its norm. (See also Exercise 16b above.)
22. Let X be a compact metric space and m a o-finite measure on a measure

space (1l, $). Let p E (1, oo) and p' the conjugate exponent.
a. Let K be a function from X x Sl to K satisfying these conditions:
(Hl) For every x E X, the function K.: a '-+ K(z, a) belongs to

LP'(m).
(H2) The map x H K. takes convergent sequences in X to weakly

convergent sequences in L?'(m).
(Weak convergence in LP' is defined in Exercise 9 on page 166.)
I. Check that (H2) is equivalent to the following property:

(H2)' For every f E LP, the map x H / K(x, s) f (a) dm(a) from X
to K is continuous. .J1

ii. Define IKI = supXEX IIK hId. Show that IKI is finite.
Hint. Consider (K=).Ex as a family of continuous linear forms
on LP(m) and use the Banach-Steinhaus theorem, page 22.
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iii. For f E LP(m) and X E X, put

TKf (x) = JK(x, a) f (8) dm(s)

Show that the linear operator TK from LP(m) to C(X) thus
defined is continuous and has norm IKI.

b. Conversely, prove that, for every continuous linear operator from
LP(m) to C(X), there exists a function K from X x fI to K satisfying
conditions (H1) and (H2) and such that T = TK.
Hint. Use Theorem 2.1 on page 159.

c. Let K be a function from X x iZ to K satisfying conditions (HI) and
(H2). Show that the operator TK is compact if and only if the map
x -4 K= from X to LP (m) is continuous.
Hint. Use Ascoli's Theorem, page 44.

23. Let E be a normed space. Suppose there exists a sequence (Pn)nEN in
L(E) consisting of finite-rank operators of norm at most 1 and such
that limn.+oo Pnx = x for every x E E. (We know that this is the case
for E = Co(X) when X is a locally compact separable metric space (see
Exercises 1 on page 30 and 11 on page 56), and also when E = LP(m),
if p E [1, +oo) and m is a measure of finite mass on a measure space
(X, Sr) whose u-algebra is separable (Exercise 14c on page 155).)
a. Show that E is separable.
b. Show that every separable scalar product space has the property

that we are assuming about E.
Hint. Let (en)fEN be a Hilbert basis. Take for P. the projection
onto the finite-dimensional vector space spanned by (ei)i<n.

c. Show that every compact operator from a normed space F to E is
the limit in L(F, E) of a sequence of operators of finite rank.
Hint. If T is a compact operator from F to E, consider T. =
and use Exercise 1 on page 20.

24. (This exercise generalizes the preceding one to the case of nonseparable
normed spaces.) A normed space E is said to have the approximation
property if, for every compact K in E, there exists a sequence (Pn)nEN in
L(E) consisting of operators of finite rank that converges to the identity
I uniformly on K; in symbols,

lim sup 1IPnx - X11 = 0-
n ++oo=E K

a. Let E be a normed space having this property. Show that every
compact operator from a normed space F to E is the limit in L(F, E)
of a sequence of finite-rank operators.

b. Show that every scalar product space satisfies the approximation
property.
Hint. If K is compact, the vector space spanned by K is separable.
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c. Show that, for every p E [1, +oo) and every measure m on a measure
space (X, 9), the space LP(m) has the approximation property.
Hint. For any integer n E N, a compact K in LP(m) can be covered
by finitely many balls B(f i ,1/n), .... l/n). Now apply the
result of Exercise 14b on page 154 to each fl.

25. Let T be a compact operator on a normed space E. Let A be a nonzero
eigenvalue of T, and put S = T - Al.
a. Show that, for every integer n,

ker S" C ker S"+', S(ker S"+i) C ker S", T(ker S") C ker S".

b. Deduce that there exists an integer n for which ker S" = ker S"+i
Hint. Assuming otherwise, prove that one can construct a sequence
(xn) such that, for every n,

xn E kerS"+1, Ilxnll < 1, d(x",ker S") > Z.

Show that for any two distinct integers m, n, we have IlTxn-Tx,nll >
IAI/2, which is absurd.

In the sequel n will denote the smallest integer for which ker S" _
ker S"+' . This integer is called the index of the eigenvalue A.
c. Show that ker Sn = ker S"+k for every integer k E N.
d. Show that ker S" and im S" are closed and that ker S" nim S" = {0}.
e. Show that the restrictions of S and S" to im S" are invertible ele-

ments of L(imS").
f. Deduce from the preceding results that E = ker S" ® im S" and

that the projection operators associated with this direct sum are
continuous. Show also that ker S" is finite-dimensional.

g. Let uc be an eigenvalue of T distinct from A, having index m. Show
that

ker(T -,uI)' 9 im(T - Al)".
Hint. By Bezout's Theorem, there exist polynomials P and Q such
that

P(T)(T - Al)" + Q(T)(T - µI)' = I.
h. Let (Ak) be the sequence of nonzero eigenvalues of T and (nk) the

sequence of their indexes. For n E N, denote by Fn and H" the
vector subspaces of E defined by

Hn=iml 11 (T-Ak)"k).
k=0 \ k=0

Show that Fn and H, are closed, that Fn is finite-dimensional, that
E = Fn ® Hn, and that the projection operators associated with this
direct sum are continuous.
Hint. Work by induction on n.
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2 Compact Selfadjoint Operators

A classical theorem of linear algebra says that any normal operator (one
that commutes with its adjoint) on a complex finite-dimensional Hilbert
space is diagonalizable with respect to an orthonormal basis. Here we will
see how this result generalizes to infinite dimension. We will restrict our
study to compact selfadjoint operators, but the results extend almost with-
out change to compact normal operators on a complex Hilbert space (see
Exercise 8 below). In contrast, the compactness assumption is essential.
For instance, one can easily check that the operator T on the Hilbert space
L2([0, 11) defined by

Tf(x) =xf(x) for all f E L2([0,1))

is selfadjoint and has no eigenvalues.
In all of this section we consider a scalar product space E over K = R or

C and a compact selfadjoint operator T on E. Since we are not assuming
that E is complete, the general definition of the adjoint (page 112) does
not work; selfadjointness here means that

(Tx I y) = (x I Ty) for all x, y E E.

Suppose that T has finite rank. Note that, for every x E E,

Tx = 0 b (Tx I y) = 0 for all y E E 4--* xE(imT)1;

thus kerT = (im T)1 and, since im T is finite-dimensional, we have E _
im T ® ker T (see Corollary 2.4 on page 107 and the remark after it). The
operator T then induces on the finite-dimensional space im T an invertible
selfadjoint operator whose eigenvalues equal the nonzero eigenvalues of T
(this much is clear). Using the standard diagonalization results for hermi-
tian and symmetric operators in finite dimension, we deduce that im T is
the orthogonal direct sum of the eigenspaces of T associated with nonzero
eigenvalues, and finally that

E = ® ker(A1 - T).
AEev(T)

We now generalize this diagonalization property to the case where T is
any compact selfadjoint operator. We assume from now on that T does
not have finite rank. The argument is based on the following fundamental
lemma:

Lemma 2.1 Let S be a compact selfadjoint operator on a scalar product
space F not equal to {0}. Then S has at least one eigenvalue and

max{I)I:AEev(S)}=IISII.
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Proof. Clearly, if A is an eigenvalue of S, then JAI <_ IISII. On the other
hand, we know from the remark following Theorem 2.6 on page 203 that
there exists a spectral value A of S such that JAI = sups.,,=1 I(SxIa)I,
which equals IISII by Proposition 3.5 on page 114 (whose proof did not use
the completeness of E). We can assume S 0 (else the result is trivial), so
A is nonzero and must be an eigenvalue, by Theorem 1.8 on page 219. 0

Theorem 2.2 Let A be the set of eigenvalues of T. Write A' = A \ {0}
and, for each eigenvalue A, let E,, be the eigenspace of T associated with A.

- A is a countable, infinite, bounded subset of R whose only cluster point
is0.

- The eigenspace associated with any nonzero eigenvalue of T has finite
dimension.

- Eigenspaces of T associated with distinct eigenvalues are orthogonal.
- For each nonzero eigenvalue A of T, let Pa be the orthogonal projection

operator onto EA,. Then

T = E APa,
AEA

in the sense of a summable family in L(E).

The definition of a summable family in a normed vector space was given
on page 127.

We remark also that the orthogonal projection onto a finite-dimensional
vector subspace of a scalar product space E is well defined, even when E
is not complete; see the remark following Corollary 2.4 on page 107.

Proof

1. That all eigenvalues are real and that eigenspaces associated with dis-
tinct eigenvalues are orthogonal comes from parts i and iii of Proposition
2.5 on page 203, whose proof did not use the completeness of E. That
eigenspaces associated with nonzero eigenvalues are finite-dimensional
comes from Theorem 1.8 on page 219.

2. We prove that A' is infinite. By Lemma 2.1, there exists an eigenvalue A
of T such that JAI = IITII. Since T is nonzero (recall that T has infinite
rank), we deduce that A 0 and so that A' is nonempty. Suppose
that T has finitely many nonzero eigenvalues: A' = JAI,-, Akl- Set
G = ®J-1 &3. and F = Gl. Since G is finite-dimensional, E = F ® G
(once more by the remark following Corollary 2.4 on page 107). It is
clear that T(G) C G. Since T is selfadjoint, we quickly deduce that
T(F) C F. The operator T therefore induces an operator TF from F
to itself, and we easily check that TF is compact, because F is closed.
Naturally, TF is a selfadjoint operator on F, and it is nonzero (TF = 0
would imply im T C G, contradicting the fact that T has infinite rank).
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By Lemma 2.1, TF has a nonzero eigenvalue A. We see then that A is
a nonzero eigenvalue of T distinct from all the Aj, for 1 < j < k, since
one of its associated eigenvectors lies in F and thus not in G. This is
a contradiction. It follows that At is infinite and, by Theorem 1.8 on
page 219, A is countable and has 0 as its only cluster point.

3. Let J be a finite subset of A* and put GJ = ®aEJ Ea and FJ =
G. Arguing as above and using Lemma 2.1, we see that T induces
on FJ a compact selfadjoint operator TF, whose norm equals II TF, II =
maxAEeV(T ) IAI. Now observe that, as before, every eigenvalue A of
TF., is an eigenvalue of T (this is clear) but does not belong to J,
since, by construction, FJ intersects trivially all the eigenspaces E.,
for u E J. Therefore ev(TFF) C A \ J. Conversely, if A E A \ J, the
orthogonality property of eigenspaces implies that EA C G-L = FJ, so
A is an eigenvalue of TFJ. Therefore ev(TF,,) = A \ J and

IITF,II = max JAI.A\J

Meanwhile, the operator of orthogonal projection onto GJ is >aEJ PA.
Thus, for every x E E, we have x - EAEJ Pax E FJ and

Ia
P,\x/ II = IITFJ(x_PAx)OaF ` 11x Paxll Am IAI.

AE J

By orthogonality and the Pythagorean Theorem, we have

11X- Paxll < II'Il,
AEJ

so we conclude that

IIT

XE

TP.\ < max JAI.
J 11

AE

By the definition of PA, we have TPA = APA, so

11T -
E APall

< mAaa\x JAI.

aEJ

Now take e > 0. Since 0 is the only cluster point of A, the set K of
eigenvalues A with absolute value at least e is finite. But then, for every
finite subset J of A* containing K,

IIT - E APB, < max JAI < max JAI < e,
aEJ II AEA\J AEA\K

which proves the third assertion of the theorem.
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Remark. More precisely, the preceding reasoning shows that, for every
finite subset J of At,

J

II

max Al.
IIT-AEAPA

<

imT= ®E.\.
AEA'

Proof. We know that Tx = EAEA APAx for every x E E. It follows that

im T C ® EA, and hence im T C ® EA.
AEA AEA'

On the other hand, if A E At, we clearly have EA C im T, proving the
reverse inclusion. O

Theorem 2.2 and Corollary 2.3 can be expressed as follows:

Corollary 2.4

- The space im T has a countable Hilbert basis (fn)fEN consisting of eigen-
vectors of T associated with nonzero eigenvalues.

- The sequence (An)nEN of eigenvalues associated with the vectors fn tends
to 0 and

Tx = E An(x l fn) fn for all x E E.
nEN

The Hilbert basis (fn) is obtained simply by taking the union of all
the finite Hilbert bases of the eigenspaces of T associated with nonzero
eigenvalues. Note that in the sequence (µn) each nonzero eigenvalue A of T
appears dA times, where dA is the dimension of the eigenspace associated
with EA.

The first assertion of Corollary 2.4 says in particular that

x= E(xIfn)fn forallxEimT,
nEN

which is to say:

Corollary 2.5 For every x E im T,

X = PAZ.
AEA*
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Corollary 2.6 Suppose that E is complete. Let P0 be the operator of or-
thogonal projection onto E0 = ker T. Then

x=1: PAx for all xEE
AEA

and

E=SEA.
aEA

Proof. Since T is selfadjoint, we have E0 = ker T = im Tl . Therefpre, if E
is complete, E = Eo ® im T by Corollary 2.4 on page 107.

If, moreover, E is separable, so is ker T. Thus ker T has a countable
Hilbert basis, by Corollary 4.7 on page 129. Taking the union of such a
basis with the Hilbert basis of im T given by Corollary 2.4, we obtain the
following diagonalization result:

Corollary 2.7 If E is a separable Hilbert space, it has a Hilbert basis
consisting of eigenvectors of T.

This is still true if E is an arbitrary Hilbert space, but then we have to
use the axiom of choice in order to guarantee the existence of a Hilbert
basis for ker T and so for E (see Exercise 11 on page 133).

2A Operational Calculus and the Fredholm Equation

We assume here that E is complete and we consider a compact selfadjoint
operator T on E. If A is an eigenvalue of T, we denote as above by EA =
ker(AI - T) the eigenspace of T associated with A and by Pa the orthogonal
projection onto Ea.

Let f be a bounded function on the set ev(T). We define an operator
f(T) on E by

f(T)x= 1: f(A)PAx forallxEE.
AEev(T)

Since the eigenspaces EA are pairwise orthogonal, we deduce from the Bessel
equality that

IIf(T)xII2 = If(A)1211PAx112 and IIx112 = IIPAzIl2,
AEev(T) AEev(T)

the second equality being a consequence of Corollary 2.6. We deduce that

IIf (T)II =
AEevp) If(A)I.
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Therefore, for a compact selfadjoint operator, the operational calculus thus
defined extends to all bounded functions the calculus defined on page 205
for continuous functions and in Exercise 15 on page 212 for bounded Borel
functions. In particular, if p E K* is not an eigenvalue of T, we have

(µI--T)-lx= >2 (p-A)-'PAx forallxEE.
AEev(T)

(*)

Suppose to the contrary that p is a nonzero eigenvalue of T (so p E R* ).
Then im(pI - T) is closed, by Proposition 1.6 on page 217, and so equal
to E; ,L, by Proposition 2.1 on page 201 applied to the hermitian operator
pI -T. The operator T induces on Eµ a compact hermitian operator whose
set of eigenvalues is ev(T) \ {p}, and we can apply (*) to this induced
operator. We deduce, for x E Eµ , the following equivalence valid for all
yEEML:

A# - TU=x f = > (µ-- \)-,Pax.
AEev(T)

A#v&

Next, if x E Eµ and y E E, we can write y = y + z, with j E Eµ and
z E E. It follows that Ay - Ty = x if and only if there exists z E E. such
that

y=z+ > (p-A)-IPAx.
AEev(T)

A0A

To summarize, if we consider the Fredhoim equation

py - Ty=x, (**)

with p E K* and X E E, there are two possible cases:

- p is not an eigenvalue of T. Then the equation (**) has a unique solution
y, given by

y = c` (µ - a)-,Pax.

AEev(T)

- p is an eigenvalue of T. Then the equation (**) has infinitely many
solutions if x E (ker(pI - T))1 and no solutions otherwise. In the first
case, the solutions are given by

y=z+ (µ-\)-'PAx,
AEev(T)

AiAP

with z E ker(pI - T).

This dichotomy is called the Fredhoim Alternative Theorem. .
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2B Kernel Operators
We study here the particular case of the Hilbert space E = L2(m), where
m is a o,-finite measure on a measure space (X,.$). Suppose in addition
that E is separable.

Consider a kernel K E L2(m x m) such that K(x, y) = K(y, x) for
(m x m)-almost every (x, y). The operator T = TK associated to this kernel
by the equation

TKI(x) = JK(xy)f(y)dm(y)

is a compact selfadjoint operator (see Examples 1 and 2 on page 216). If
A is a nonzero eigenvalue of T, let dA be the dimension of the eigenspace
associated with EA = ker(AI - T). We assume in the sequel that T does not
have finite rank and, as in Corollary 2.4, we denote by (fn)nEN a Hilbert
basis of iT consisting of eigenvectors of T and by (p,,)nEN the sequence
of corresponding (nonzero) eigenvalues.

Proposition 2.8 With the notation and hypotheses above,

/JIK(x,y)I2dm(x)dm(y) _ µn = dAa2
n=0 AEev(T)

A00

Proof. Take u E ker T. For almost every y, the function K. : x H K(x, y)
lies in E and

(Ky I u) = JK(xi y)u(x) dm(x) = Tu(y) = 0.

The second of these equalities is true for almost every y: more precisely,
for every y not in a subset A of X of measure zero, and which a priori
may depend on u. But, since E is separable, kerT is also separable. Let
(un)nEN be a dense subset of kerT. Then, for every y not belonging to
the set A = UnEN A,,,, of measure zero, we have (K. I u,) = 0 for every
n E N and, because of denseness, (Kt, I u) = 0 for every u E ker T. It follows
that K. E (ker T)1 = im T for almost every V. At the same time, for each

_n E N,
(KY I fn) = i J-(t') = µnfn(y) = 1Mfn(v) (*)

for almost every y. We then deduce from the Bessel equality that, for almost
every y,

+ao

n=0

Now just integrate with respect to y to obtain the desired result.

Remark. The preceding proposition is also a direct consequence of Exercise
21 on page 140.
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We know from Exercise 7 on page 110 that the space L2(m) ® L2(m)
is dense in Ls(m x m). From the preceding proof, we obtain an explicit
approximation of the kernel K by elements of L2(m) ® L2(m).

Proposition 2.9 We have

_+"'0

K(x,y) = Eµnfn(x)fn(y)'
n=0

the series being convergent in Ls(m x m).

Proof. Set KN(x,y) = E 0iznfn(x)fn(y) By equality (*) above, for al-
most every y, we have

+oo t
KU = F,IUnfn(y)fn

n=o

in the sense of convergence in L2(m). Thus, still by Bessel's equality,

+00F
J

IK(x,y) - KN(x,y)I dm(x) = II(KN)v - Kv112_ n I

fn(U)12.
n=N+1

We deduce, integrating this equality with respect to y, that

+00

IIK-KNII2= lin+
n=N+1

where II II represents the norm in Ls(m x m). This proves the result. 0

Proposition 2.10 Suppose that + : x f I K(x, y)12 dm(y) belongs to
L°°(m). Then, for every n E N, we have fn E LOD(m) and

+00 t t t tf = E(J I f.)J JOT every f E imT,
n=0

the convergence of the series taking place in L°O(m).

In particular, (fn) is a fundamental family in the space im T considered
with the norm of L°D(m). Recall that the convergence in L2(m) of the
series E+' (f I fn) fn and the fact that the sum equals f are consequences
of Corollary 2.4.

Proof. For every n E N we have

fo(x) = 1 J
K(x,y)fn(y)dn'+(y)
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Therefore fn E LOO(m) and Ilfnll0o < µn1, where L = IIuII We show
that the series En o(f I fn) fn satisfies Cauchy's criterion on LO0(m). Let
f = Tg be an element of imT. For every n E N, (f I fn) = (TgI fn) _
(9ITfn) _An(9Ifn) Ifk<1,

(f I fn)fn(x)I pn(9I fn)fn(x)
n=k n=k

1

I(9lfn)I2/ \

)1/2 (+00

nlfn(x)I2)
1/2

< 1 E
n=k n-0

by the Schwarz inequality. Now, by an earlier calculation (see equality (**)
on page 240), we have

+o0
2 JIK(x,y)I2dm(y) < LIfn()I = ,

n=0

which finally implies that

1
(f I fn)fnlloo I(9I

fn)I211/2L112

n=k n=k

which proves the result, since the series En 0 I(g I fn) 12 converges by the
Bessel inequality and so satisfies Cauchy's criterion.

Example. An important special case in which the hypothesis of Proposi-
tion 2.10 is satisfied is when m is a Radon measure on a compact space X
and K is continuous on X x X. In this case, for every f E E, the image
T f is a continuous function: indeed, if x, x' E X,

ITf(x) - Tf(x')I <- sup I K(x,y) - K(x',y)I m(X)1/2IIfII
VEX

Thus it is enough to use the uniform continuity of K on the compact set
X x X. Therefore each fn is a continuous function and we deduce from
Proposition 2.10 that, if Supp m = X, we have

+00

9=1: (9I fn)fn forevery g=Tf EimT,
n=0

the series converging uniformly on X; that is, for every f E E,

+o0

Tf = 1:An(f l fn) fn
n=0

(since (g I fn) = (Tf I fn) = (f I Tfn) = An (f I fn)), the series converging
in the space C(X) considered with the uniform norm.
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Exercises

1. Let E be a Hilbert space, (fn)nEN an orthonormal family in E, and
(µn),,EN a real-valued sequence that tends to 0. Show that the equation

+'m
Tx=Eµn(xIfn)fn forallxEE

n=0

defines on E a compact selfadjoint operator T. (Thus, the property
stated in Corollary 2.4 characterizes compact selfadjoint operators whose
rank is not finite.)

2. Let T be a compact selfadjoint operator on an infinite-dimensional
Hilbert space E. Let f be a continuous function on the set a(T). Show
that f (T) is compact if and only if f (O) = 0. (In particular, if T is
positive, Tl"2 is compact.)
Hint. For sufficiency use Exercise 1, for example.

3. Let E be a scalar product space and T a compact selfadjoint operator
on E. Let A be a nonzero eigenvalue of T. Show that ker(Af - T) _
(im(Af - T)). Deduce that

ker(>J - T) n im(Af - T) = {0},

then that ker(AI-T)2 = ker(AI-T). This shows, in particular, that the
eigenvalue A has index 1 (see Exercise 25 on page 233), and therefore
that

E = ker(AI - T) 0 im(AI - T).

4. Let T be the operator defined on Ls((0,11) by

Tf(x)=jf(v)dsi.

a. Show that the adjoint of T is given by

Tf (x) = L'1(v11 for all f E Ls((O,1]).

b. Show that TT' is the operator T introduced in Exercise 11 on
page 223. Deduce the spectral radius of TT', then the norm of T.

5. Deduce from Exercise 11 on page 223 that

+00 1 41 (2n+1)4 96'

then that
+00 1 jr4

L/ n4 = U(1
n=1
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6. Take E=L 2([0'IJ) and define a function K on [0,1]2 by

11 ifx+y-1,
K(x, y) =

0 if x + y > 1.

a. Write down explicitly the operator T on E defined by the kernel
K. Check that T is the extension to L2([0,1]) of the operator on
C([0,1]) defined in the example on page 220.

b. Show that E _. Use this to find a Hilbert basis consisting of
eigenvectors of T.

c. Deduce that, if g E C1([0,11) and g(1) = 0, then

1g(x) = 2 E (f g(t) cos((7r/2 + 2n7r)t)dt) coe((w/2 + 2nir)x)
0

+00

= 2 E (f 1 g(t) cos((2n + 1)lrtt/2) dt) cos((2n + 1)irx/2),
0

the series converging uniformly on [0,1].
(This result can be obtained using Section 2B above, or using the
theory of Fourier series by extending g to an even periodic function
of period 4 such that g(2 - x) = -g(x) for every x E 10, 11.)

7. Let T be a compact selfadjoint operator on a Hilbert space E. For every
nonzero eigenvalue A of T, denote by PA the orthogonal projection onto
the eigenspace EA = ker(Al - T). Let x be an element of E. Show that
the equation

Ty=x
has a solution if and only if x E (ker T)1 and

IIPAxll2 < +oo,]2
AEev(T)
A#0

and that in this case all the solutions are given by

y = z + with z E ker T.
AEev(T)

A#0

(*)

8. Diagonalization of normal compact operators. Let E be a Hilbert space
over C. A continuous operator T on E is called normal if TT* =
T*T. You might recall, for subsequent use, the result of Exercise 4b
on page 208.
a. Let T be a normal compact operator on E. Show that T has at least

one eigenvalue A E C of absolute value IITII.
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Hint. Put µ = IIT'TII = IITII2 Show that p is an eigenvalue of
TOT, that the associated eigenspace F = ker(pI - TOT) is finite-
dimensional and is invariant under T and TO, and that T induces
on F a normal operator TF. Then show that TF has at least one
eigenvalue A and that IA12 = p. (Note that here the fact that the
base field is C is essential.)

b. Show that all the results of the preceding section, from page 234 to
the Fredholm Alternative Theorem, remain true without change for
a normal operator T (on a complex Hilbert space), with the only
exception that the eigenvalues of T need not be real in this case (see
Exercise 4a-ii on page 208).

c. Let T be a compact operator on E. Show that T is normal if and
only if

E = ® ker(AI - T),
AEev(T')

the direct sum being orthogonal. (See also Exercise 1.)
d. An example. Let G be an element of L2([0,11), and extend it to

a periodic function of period 1 on R. Consider the operator T on
L2([0,1]) defined by

1T f (x) = / G(x - y) f (y) dy for all f E L2([0,1]).
0

1. Show that T is a normal compact operator.
fl. Show that the eigenvalues of T are the Fourier coefficients of G,

namely, the numbers cn(G) defined for n E Z by

(x) a-2:nxs dx.c (G) =
fo

G

Show that the corresponding eigenvectors are the vectors of the
Hilbert basis (en)fEz defined by en(x) = e21nss.

11i. Show that, for every f E L2([0,1]),

Tf(x) _ en(G)c.(f )e2ix.as

nEN

the series converging uniformly (and absolutely) on [0,1].
9. Let T be a compact selfadjoint operator on a separable Hilbert space

E. For each nonzero eigenvalue k of T, let dA be the dimension of the
associated eigenspace Ex = ker(AI - T). Show that T is a Hilbert-
Schmidt operator if and only if

E dA2 < +oo.
AEev(T)
A#0

(See also Exercise 10.)
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10. Singular values of a compact operator. Let E be a Hilbert space and
suppose T E L(E). For each n E N, define a nonnegative real number
an (T) by

an(T) = inf {IIT - RII : R E L(E), rank(R) < n}.

We know from Exercise 24 on page 232 that T is compact if and only if
the sequence (aa(T))fEN tends to 0. In what follows, we suppose that
T is compact.
a. Show that the operator P = (T'T)1/2 is selfadjoint and compact

(see Exercise 2).
We denote by (µn)nEN the sequence of nonzero eigenvalues of P, in
decreasing order and counted with multiplicity (that is, each nonzero
eigenvalue A appears dA times in the sequence (µn), where dA is the
dimension of ker(AI - P)). The entries of this sequence (µn) are
called the singular values of the operator T.
We denote by (fn)nEN a Hilbert basis of im P such that, for every
xEE,

+0
Px = Eµn(xI fn) A

n=0

(see Corollary 2.4). If T has finite rank N, we use the convention
that µn = 0 and fn = 0, for n > N, the Hilbert basis of im P being
the finite family (fo,... , fN_ 1)

b. Check that, if T is selfadjoint, its singular values equal the absolute
values of the eigenvalues of T.

c. Schmidt decomposition of the operator T. Show that there exists an
orthonormal family (gn)nEN in E such that

+00

Tx = 1:µn(xI fn)gn for all x E E.
n=0

Hint. Put gn = Ufn, where U is the operator such that T = UP
defined in Exercise 11 on page 211.

d. i. Let R E L(E) be an operator of rank at most n. Show that
IIT-RII>µn.
Hint. If Fn is the vector space spanned by the family (fj)0<j<n,
check that Fn fl ker R contains a nonzero element x; then show
that II(T - R)xII > /AnIIxIl.

ii. Allakhverdief's Lemma. Deduce that

µn=an(T) for all n E N

and that, in the definition of an(T), we can replace inf by min.
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e. Suppose from now on that E is separable and fix a Hilbert ba-
sis (en)fEN of E. Denote by IITIIH the (possibly infinite) Hilbert-
Schmidt norm of T, defined in Exercise 21 on page 140:

IITII22

= F IITenII2.
nEN

Show that

IITIIH = EQn(T)2.
nEN

In particular, T is a Hilbert-Schmidt operator if and only if

1: on(T)2 < +00.
nEN

f. An operator T is called nuclear if

E on (T) < +oo.
nEN

i. Show that, if T is the product of two Hilbert-Schmidt operators,
then T is nuclear.
Hint. If T = AB, where A and B are Hilbert-Schmidt operators,
prove that An = (Bfn I A'gn) for every n E N.

ii. Conversely, prove that, if T is nuclear, it is the product of two
Hilbert-Schmidt operators.
Hint. Take the polar decomposition T = UP of T defined in
Exercise 11 on page 211, and show that T being nuclear implies
that UP1 /2 and p1/2 are Hilbert-Schmidt operators.

11. Calculation of the eigenvalues: the Courant-Fischer formulas. Let E
be a Hilbert space distinct from {0} and let T be a compact positive
selfadjoint operator on E. Order the nonzero eigenvalues of T as µo >
µl ? ... ? An > , where the number of times each eigenvalue appears
is the dimension of the associated eigenspace. For every p E N, denote
by 'Yp the set of p-dimensional subspaces of E. The goal of this exercise
is to prove the formulas

(TxIx)An__
WEmin

1'n xEW \{0} 11x112

(Tx I x)
Wm , xEW\(O} IIxII2

Hn

(In this context, recall Proposition 3.5 on page 114.) Let (fn)-EN be a
Hilbert basis of im T such that T fn = An in for every n E N.
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a. Show that, if F is a closed subspace of E distinct from {0}, there
exists an element x of F of norm 1 such that

(Tx I x) = sup (TY I v)
5EF, Nnll=1

(In particular, we can replace max by sup in the first formula (*),,.)
b. If n E N, let W be the vector space spanned by fo, ... , fn_ 1 (with

Wo = {0}). Show that

max (Tx I x) _ /tn
IIxI['

Hint. Consider the restriction of T to W.
c. Take W E y'n. Show that W-L f1 W,,+1 is distinct from {0} and that,

for every nonzero element x of Wn+1,

(T x
I x) > µn.

IIxII'

Deduce from these results the first equality (*)n. (You should check
in particular that the minimum is attained by the space Wn.)

d. Take W E X,+1 Show that Wf1W is distinct from {0} and deduce
that there exists a nonzero element x of W such that

(Tx I x) <
IIxII2 -

Then show the second equality Mn- (You should check in particular
that the maximum is attained by the space W,,+1.)

e. Application. Let S and T be compact positive selfadjoint operators
on E such that S < T (that is, T - S is positive selfadjoint). Show
that p, (S) < An (T) for every n E N.

12. Sturm-Liouville problem, continued. Let p be a function of class C' on
[0,1] taking positive values. Let q be a continuous real-valued function
on [0, 11, and suppose co, e, E JO, 1). For A E R, consider the differential
equation on [0, 1] given by

(py')' - (q + A)y = 0, (EX)

with boundary conditions

coy(o) + (1 - eo)y'(0) = 0, e1U(1) + (1 - ei)y'(1) = 0. (BC)

a. Suppose (in this item only) that q is positive-valued. Let Tp,q be
the operator on C([0,11) defined in Exercise 13 on page 224 and
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characterized by the fact that, for every g E C([O,11), Tp,gg is the
unique solution on 10,11 of the equation

(pll')'-qll=g

satisfying (BC). Show that Tp,q is negative selfadjoint (that is, -Tp,q
is positive selfadjoint) and compact on the scalar product space
C([0,11) considered with the norm induced by L2([0,11).

b. Take a > max=E(o,jJ(-q(x)). Show that the set A of real numbers A
for which (Ea) + (BC) has a non identically zero solution forms a
sequence (An)nEN such that

a>Ao>A1>...>An>...

and limn,+oo An = -oo (more precisely, the series o(a - An)-2
converges). The constants An, for n E N, are called critical values of
the problem (Ex) + (BC).
Hint. We have A E A if and only if 1/(A - a) is an eigenvalue of

c. Show that, for every n E N, there exists a solution Wn of
such that fo j<pn1s(t)dt = 1 and that Wn is, up to a multiplicative
factor, the unique solution of (BC). Show that the family
(Vn)nEN is a Hilbert basis of L2([0,11) and that, if f E C2([0,1])
satisfies (BC), the series =o (f I cQn)'Pn, where ( [ ) is the scalar
product in L2([0,1]), converges uniformly to I.

d. Suppose that p = 1 and q = 0. Determine the sequences (An) and
(,pn) in the following cases:

i.EO=0,e1=0;
H. CO = 0, El = 1;

HI. Eo=1, E1=1.
e. Suppose Co = sl = 1. Show that the function Wo does not take the

value 0 in the interval (0,1), and that no other function on has this
property.
Hint. Show first that Wo >- 0 or (po <- 0, using Exercises 13d on
page 225 and 14 on page 226. Deduce that, if Spo({) = 0 with f E
(0,1), we must have o(t) = 0 and therefore (po = 0, since jpo is a
solution of (Eao). But this is impossible.

13. Legendre's equation. Let E be the space C([-1, 1]) with the scalar prod-
uct induced by L2([-1,11).
We define on E a kernel operator T by

Tf(x) = J 1 K(x,y)f(y)dy,
1
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where

2 - log2 +
2

log((1 - y)(1 + x)} if -1 < y<x,
K(x, y) = i to 2 + i 1 1 + 1 - x if 1 > > x.

a. Show that T is a compact hermitian operator from E to itself.
b. Consider on [-1,1] the differential equation

((1 - x2)y')' = 9, (E9)

with g E E. By definition, a solution of (E9) is a function of class C'
on the interval [-1,1] satisfying the equation (E9) on [-1,1]. Show
that (E9) has a solution in E if and only if f 11 g(x) dx = 0 and that,
in this case, all solutions of (E9) are given by

y = Tg + C with C E K,

the function f = Tg being the unique solution of (E9) such that

f(x)dx=0.

c. Show that ker T equals the set of constant functions on [-1,1] and
that imT is the set of elements of E whose integral over [-1,1] is
zero.

d. Show that the operator -T is positive hermitian.
Hint. Check that, if g E E,

(T919) = - j,I(Tg)l(x)12(1
1 - x 2) dx.

e. Let (Pn)nEN be the sequence of Legendre polynomials defined in

Exercise 4 on page 131. Show that, for every n E N,

((1 - x2)Pn}' = -n(n + 1)Pn.

Use this to find the eigenvalues and eigenvectors of T. Derive another
proof that -T is positive hermitian.

14. About the zeros of a Bessel function. For k E N, the Bessel function Jk
is defined by

+00 (-1)n(x/2)k+2n
Jk(x) =E n!(n + k)!

n=0

a. Consider on (0, 11 the differential equation

x2y" - 3El = 0.P (*)



2 Compact Selfadjoint Operators 251

i. Find all solutions of the form y = xr'.
ii. Use this to find all solutions of (*).

iii. Prove that the only solution y of (*) satisfying

lira y(x) = 0 and y'(1) + zy(1) = 0 **)

is the zero solution.
b. For x, t E (0, 11, define

K(x,t) = vexp(-Ilog(x/t)I),

and set K(x, t) = 0 if x = 0 or t = 0. Define an operator T from
L2([0,11) to itself by

IT f (x) = J
K(x, t) f (t) dt for all z E [0,1].

0

Show that T is a compact hermitian operator.
c. Take f E C([0,1]) and set F = T f.

i. Show that, for every z E (0,1],

F(z) = x_1/2

10,7

t3/2f(t) dt + x3/2 / t-112f(t) dt1

z

and that F(0) = 0. Deduce that F E C'([0,1)), F'(0) = 0, and
F'(1) + F(1)/2 = 0.

u. Show that F E C2Q0,1J) and that F satisfies on (0,1J the equa-
tion

F" - 4x-2F = -2f. (f)
W. Show that F is the unique function of class C2 on (0,11 satisfying

(**) and (t).
d. Deduce from all this that the image of T contains the space of func-

tions of class C2 on (0,1) with compact support. Then show that
imT is dense in L2([0,1]), then that T is injective.

e. Show that, if f E C([0,1]),

I';
1Tf(t)f(t)dt=;ITf(1)j2+1 f lI(Tf)'(t)12dt+8 ft_2ITf(t)I2dt.

Deduce that T is a positive hermitian operator.
f. Show that a real A > 0 is an eigenvalue of T if and only if the

equation
2 3

Y
.1 4x21

Y=O (EA)

has a solution in (0, 1] that does not vanish identically and that
satisfies (**).
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g. Take,\ > 0. Study the solutions y of (EA) of the form y(x) = x° f (x),
where f has a power series expansion at 0. (Partial answer: a = 2
and a = - 2.) Deduce that (E,\) has a unique (up to a multiplica-
tive factor) solution Ha such that lim1-,0 HA(x) = 0, and that this
solution is given by

H,\ (X) = x112J1(x 21

h. Show that, for every x,

xJo (x) = xJ; (x) + JI (x).

Deduce that the eigenvalues of T are the numbers \ > 0 for which
Jo( 2/J\) = 0.

i. Show that Jo has a sequence of positive roots

0<µ0 <IL1 <... </Ln <...

and that
+00

1 1-=32
n=o n 32

j. For n E N and X E [0, 1], put tpn(x) = x1/2J1(µnx). Show that
(Vn)nEN is a fundamental orthogonal family in L2([0,1]) and that,
if f E C,,2((0,1)), there exist coefficients cn(f) such that the series
1n o cn (f) cpn converges uniformly on [0, 11, with sum f .
Remark. An analogous study can be made of the zeros of the function
Jk, by considering the kernel

Kk(x,t) = xt exp(-(k+ 1)

15. Approximate calculation of an eigenvalue of a compact positive self-
adjoint operator. Let T be a compact selfadjoint operator in a Hilbert
space E satisfying the condition that (Tx I x) > 0 for every x 0 0. Let
xo be a nonzero element of E. For each n E N, we set

xn = Tnx0, Qn =
I1xnll , an = (xn+Ilxn)

IIxn+1 II IIxn+1 112

a. We wish to show that the sequences an and Rn converge to the
inverse of an eigenvalue of T (the same for both sequences).
i. Show that 0 < an < 3n and that the sequence (flu) is decreasing.

ii. Let (fk)kEN be a Hilbert basis of E consisting of eigenvectors
of T, and denote by µk the eigenvalue associated with fk; we
assume that the µk are arranged in nonincreasing order. Let k0
be the smallest integer k such that (xo I fk) # 0. Show that

lim 11Xn11 = ILko.n-+oo
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Deduce that the sequence converges to 1/lj+,o.
Hint. Note that

+00
r sIIxnII' _ I (xo ITnf1)1'.

1-ho

iii. Show that an > 1/ph for every n E N. Deduce that the sequence
(an)fEN converges to 1/µk.-b.

Stopping criterion. Show that, for every integer n E N, there exists
an eigenvalue A of T such that

a 1( -an> Ian - .

Hint. Observe that Ilxn - anxn+llla = Ilxn41'((3 - a) and use
Bessel's equality.
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DISTRIBUTIONS





7
Definitions and Examples

Distributions, as we shall see, are objects that generalize locally inte-
grable functions and Radon measures on Rd. One of the main attractions
of the theory of distributions, apart from its unifying power, is the construc-
tion of an extension of the usual differential calculus in such a way that
every distribution is differentiable infinitely often. This theory has become
an essential tool, particularly in the study of partial differential equations.
It has also allowed the precise mathematical modeling of numerous physical
phenomena

The fundamental idea of the theory is to define distributions by means
of their action on a space of functions, called test functions. Note that
this idea already appears in the definition of measures by Daniell's method
(Chapter 2), and in particular in the definition of Radon measures.

In the first section of this chapter, we introduce the various test function
spaces. We will be working in an open subset f2 of Rd. We will often omit
the symbol 0 from the notation when f2 = Rd.

1 Test Functions

1A Notation

- If m E N, 9"'(ft) denotes the space of complex-valued functions on ft
of class C, and .9(0) the space of those of class COO. By convention,
J°(A) = C(A).



258 7. Definitions and Examples

- An element p E Nd is called a multiindex. If p = (pl,... , pd) is a
multiindex, we define the length of p to be the sum I I = pl + . + pd,
and we put p! = pl!... pd! . We give Nd the product order: if p and
are two multiindices, we write p:5 q if pi < qi, ..., pd :5 qd. If p, q E N
and q < p, we put

r
= H

\d

( }\q/q/ q! (p !
q)!,

where, as usual, pi represents the binomial coefficient Pj
q1 8 qj!(pj - qj)!

- If 1 < j < d, we often use Dj to denote . Then, if p is a multiindex,
8xwe write j

DP = DPI" Ddd =
OXP' ... axad

The differentiation operator DP is also denoted by

8xp
or 8=.

By convention, D f (differentiation of order 0 with respect to any index)
is the identity map.
We see that each operator DP, where p E Nd, acts on the spaces em(ft),
for IpI < m. We recall the following classical result:

Proposition 1.1 (Leibniz's formula) Suppose f,g E A"(11). For
each multiindex p such that IpI < m,

DP(fg) = E (;)j,,-qjjg.
q<p

- If K is a compact subset of Rd contained in ft (equivalently, if K is a
compact subset of Cl) and if m E N, we write

9K (St) = {f E 8' (0) : Supp f C K}.

W e observe that, since K is closed, the property Supp f C K is equiva-
lent to { f # 0} C K, or again to "f = 0 on ft \ K".
Denote by X(fl) the set of compact subsets of fl. Put

-9m(n) = U -9K (n)-
KE.%(ft)

In other words, 97"(fl) is the space of functions of class C' having
compact support in fl. In particular, 9°(f2) = CC(fl).
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Clearly, m' > m implies 9"(0) C 9'(0). Now put

9(sl) = n 9m(sl).
mEN

Thus (Cl)9is the space of functions of class COO having compact support
in 11; such functions are called test functions on fl. Finally, if K is a
compact subset of fl, we denote by 9K(fl) the space of functions of
class C°D having support contained in K:

9K(C1) = n 9K(0) = {f E -e(fl) : Suppf C K}.
mEN

Thus

9(0) = U 9K(n).
KE.*'(a)

Clearly, a function in 9'"(0) or 9(0), when extended with the value 0
on Rd \ M. becomes an element of 9m(Rd) or 9(Rd), respectively. Thus,
.9' (fl) and 9(fl) can be considered as subspaces of 9'"(Rd) and .9(Rd),

respectively. We will often make this identification without saying so ex-
plicitly. Conversely, an element f in 9m(Rd) or 9(Rd) belongs to all the
spaces 9'(fl) or 9(fl) such that fl D Suppf.

1B Convergence in Function Spaces

We will not need to give the function spaces just introduced a precise
topological structure. It will suffice to define the notion of convergence of
sequences.

Convergence in 9K"(0) and 9K(fl)

Let K be a compact subset of fl. We say that a sequence (fn)nEN in 9K (i2)
converges to f E 9K (fl) in 9K (fl) if, for every multiindex p E Nd such
that IpI < m, the sequence (Dp fn)nEN converges uniformly to Dp f . An
analogous definition applies with the replacement of 9K (fl) by 9K (fl),
where now there is no restriction on the multiindex p E Nd.

The convergence thus defined on 9K (fl) clearly corresponds to conver-
gence in the norm defined on 9K (fl) by

Ilf ll(m) = 2 IIDPf 11,

1P1<-

where 11 - II denotes the uniform norm. In contrast, no norm on 9K(fl) yields
the notion of convergence we have defined in that space.
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Convergence in 9m(11) and!?(f))

We say that a sequence (,pn)nEN in 9'(fl) converges to (p E 9m(fl) in
9m(fl) if there exists a compact subset K of fl such that

SupprpcK and SuppWncK for all nEN

and such that the sequence (Vn)nEN converges to tp in 9K (fl). An analogous
definition applies with the replacement of 9K (fl) and 9m(fl) by 9K (fl)
and 9(fl).

Convergence in orn(fl) and or(fl)

We say that a sequence (fn)nEN in d"'(fl) converges to f E d"n(fl) if,
for every muitiindex p such that IpI < m and for every compact K in fl,
the sequence (Dpfn)nEN converges to DPf uniformly on K. An analogous
definition applies with the replacement of A'(fl) by B(fl), where now there
is no restriction on the multiindex p E Nd.

For m = 0, the convergence in 0(fl) thus defined coincides with uniform
convergence on compact subsets (defined in Exercise 12 on page 57).

We remark that the definitions of convergence of sequences just made
extend immediately to families (cps), where A runs over a subset in R and
A - Aei with Ao E [-oo, +oo].

It is possible to give the spaces 9K (fl), ' (fl), and 1(f)) complete metric
structures for which convergence of sequences coincides with the notions
just defined (see Exercise 7 on page 265). In contrast, one can show that
the convergence we have defined in 91(ft) and 9(fl) cannot come from a
metric structure.

In fact, the only topological notions that we will use in connection with
these function spaces are continuity and denseness, and these notions, in
the case of metric spaces, can always be expressed in terms of sequences. In
the sequel, denseness and continuity in the function spaces just introduced-
in particular, in 9m(fl) and 9(fl)-will be defined in terms of sequences.
For example, a subset H of 9" (fl) will be called dense in 9m(fl) if, for
every cp E 9m(il), there exists a sequence (Wn)nEN in H converging to cp
in 9' (fl). Likewise, a function F on 9(t2) and taking values in a metric
space or in one of the spaces just introduced will be called continuous if, for
every sequence (Wn)nEN in 9(fl) that converges to Sp in 9(fl), the sequence
(F(cpn))fEN converges to fl(p) in the space considered. One easily checks
that this is equivalent to saying that the restriction of F to each metric
space 9K (0), where K is a compact subset of fl, is continuous.

For example, the canonical injection from 9m(fl) into A" (0) -that
is, the map that associates to each function w E 9m(f1) the same W consid-
ered as an element of J"n (fl) - is continuous. This means simply that every
sequence in 91(fl) that converges in 9m(A) also converges in 91n(Q) (to
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the same limit). Similarly, the canonical injections from 9(Q) into 8(fl)
and into .91(fl) are continuous.

1 C Smoothing
We start by showing the existence of nontrivial elements of 9 (recall our
convention that 9 = 9(Rd)). First take the function p on R defined by

e-1/z if x > 0,
P(x) - 0 if x < 0.

Then p E 8(R). Indeed, one shows easily by induction that, for every
integer n E N, p is of class C" and p(") is of the form

_ H"(1/x)e-1/z if x > 0,
0 if x < 0,

where H" is a polynomial function.
Next, for x E Rd, we set W(x) = p(1 - 1x12), where, as usual, lxi means

the canonical euclidean norm of x in Rd: 1x12 = xi + + xd. Finally, put
a = f W(x) dx > 0 and X = p/a. One then checks that the function X
satisfies the following properties:

X E 9(Rd), X > 0, = 1, Supp X = B(0,1).

In particular, if we put X,,(x) = ndX(nx) for n E N*, the sequence (X")nEN
is a normal Dirac sequence (see page 174) consisting of functions of class
C°°. Such a sequence is also called a smoothing Dirac sequence.

Now fix a smoothing Dirac sequence (Xe).

Proposition 1.2 Assume W E 9'", for some m E N. For every integer
n > 1, the convolution cp * Xn belongs to 9 and

lim.
n Sp * X. = 9 in 9'.

Proof. Since the functions rp and Xn have compact support, so does V * X".
More precisely,

Supp((p*Xn) C Suppcp+Supp X. C Suppcp+$(0,1/n) C SuppW+B(0,1).

At the same time, a classical theorem about differentiation under the inte-
gral sign easily implies, on the one hand, that V * X. is of class C°D and so
V * Xn E 9, and, on the other, that DA(,p * Xn) = (DASD) * Xn for IpI < m.
Now, since the support of Xn is contained in ft, 1/n) and f Xn(y) dy = 1,
we get

(DA(D) * X. (z) - (DAp)(x) = f (DA'P(x - y) - DASD(x))xn(y)dy
vI<1/n
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and

Sup I(DDW) * x. (x) - (D" )(x)I < sup ID"w(z) - DPV(x)I.
zERd z,zERd

Ix-zI<1/n

Since Dpcp is uniformly continuous (being continuous and having compact
support), we deduce that the sequence (DP(V*X,,))fEN converges uniformly
to DPW.

Corollary 1.3 For every n E N, the space 9(f2) is dense in 9'(0). In
particular, 2((I) is dense in C,(ft).

Proof. If tQ E 9m(SZ), we can consider cp as an element of 9m (by extending
it with the value 0 on Rd \ [I). Now

Supp(W * xn) C SuppW +,&(0, I/n);

therefore Supp(W*Xn) C n for n large enough-say n> 1/d(SuppW, Rd\R).
Then, by the preceding proposition, cp * Xn belongs to 9(f2) for n large
enough, and limner+oo W * Xn = W in!?"' (fl).

Remark. The approximating sequence just constructed preserves positiv-
ity. Therefore, if W is a positive element of 9M(fl), there exists a se-
quence (Vn)nEN of positive elements of 9(11) that converges to W in 9'"(f1)
(namely, !pn = W * X.)-

1D C°° Partitions of Unity
We now sharpen Proposition 1.8 on page 53 in the case of Rd.

Proposition 1.4 If K is a compact subset of Rd and 01,..., O" are open
sets in Rd such that K C U 1 Oj, there exist functions in 9
such that

0 < Wj < 1 and Suppcpj C Oj for j E {1,...,n},

and such that 1:,n., sp j (x) = 1 for every x E K.

Proof. Set d = d(K, Rd\O), with 0 = U..1 Oj (the metric being the
canonical euclidean metric in Rd). Set K' = {x : d(x, K) < d/2}. The set
K' is compact and, since d > 0,

K'D{x:d(x,K)<d/2}DK.

Thus K c K' c K' c 0. By Proposition 1.8 on page 53, there exist
functions hl,..., hn in CC such that

0 <hj<1 and SupphjCOj for jE{1,...,n},
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and such that E" , hj(x) = 1 for every x E K'. Define 6 = d(K, Rd\k'),
rlj = d(Supp h j,) a\Oj) for 1 < j < n, and

e = 2 min(61 1117 ... inn)

Let X be the function defined on page 261 and let u be defined by

u(x) = '--d XWE).
Then U E 9, u > 0, f u(x) dx = 1, and Supp u = B(0, e).

For 1 < j < n, set Wj = hj * u. Then W j is of class C°° (this follows
immediately from the theorem on differentiation under the integral sign)
and

Suppcpj C Supphj + F3(0, e) C Oj.
In particular, (p j E 9. Moreover, 0 < rpj < 1. Finally, if x E K and
yEB(0,e),wehave x-yEK'andso

n

E hj(x - y)u(y) = u(y)-

J=1

Integrating we obtain

EW1(x) = Ju(v)dv = 1 for all x E K.

We deduce the following denseness result:

Proposition 1.5 The space 9(12) is dense in 6'(Q) and in 8n'(fl), for
every mEN.
Proof. Let (K")"EN be a sequence of compact subsets of St exhausting Q.
By the previous proposition, there exists, for every integer n E N, an ele-
ment Pn E 9(fl) such that

0:5Wn<1, tpn=1 on K", Suppp"CKn+i
If f E 8(Q), we have f Wn E 9(Q) for every n E N. If K is a com-
pact subset of fl, there exists N E N such that K C K,v (see Proposi-
tion 1.6 on page 52); thus, for every n > N and every p E Nd, we have
DP(f rpn) = DP f on K. By the definition of convergence in 6'(1l), we deduce
that limn-.+OO(fWf) = f in 8(Q).

Using the same reasoning, one shows that 91(fl) is dense in 61(fl).
Moreover, as we saw in Corollary 1.3, 9(11) is dense in 9''(Sl). Thus every
element of 91 (Sl) is the limit of a sequence of elements of 9(Q) in the sense
of convergence in 6"(S2) (since the canonical injection from 91(Q) into
6''n(11) is continuous: see page 260). This implies, finally, that 9(fl) is dense
in "(R) (because 6"n(fl) is a metric space: see Exercise 7 below).

Remark. This proof also shows that every positive element of 6""(Q) (or
8((1)) is the limit in 9"(0) (or in 8(Sl), respectively) of a sequence of
positive elements of 9(Sl).
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Exercises

Throughout the exercises, Cl stands for an open subset of Rd. Many of the
exercises use the result of Exercise 1.

1. Taylor's formula with integral remainder. Let f be an element of 1' (fl)
(where n > 1) and let x E ft. Take h E Rd such that [x, x+h] C Cl.
Show that

n-1f (X
+ h) =

f (X)

+ (ki E DPf(x) hP/k=1 I PI =k

1

+ (n 1 1)! 1
I>

DPf (x + th) hP(1- t)n-1 dt,

where, for p = (pl, ... , pd) E Nd and h = (hl, ... , hd) E Rd, we have
written

hP = hi'... hd
2. Take h E 1(R). Show that the function f defined by

h(x) - h(y)
f(x+y) = x-y

can be extended by continuity to a function in 1(R2).
If we assume merely that h E ""(R), with n > 1, how smooth is in
general the function obtained in this way?

3. Let h E of (R) be such that h(O) = h'(0) = ... = h(n)(0) = 0. Show that
the function f (x) = x-"-1h(x) can be extended to an element of 8(R).
What is the value of this new function at 0?

4. Take f E 1(R d). Show that f satisfies

DP f (0) = 0 for all p E Nd with IpI < m

if and only if there exists a family (VJ)9EN', III=m+1 of elements of d'(Rd)
such that

AT) _ iP1(x)xj
IJI="++1

(where xf = xi' ...a ).
5. a. Let E be a closed subset of fl. Show that there exists a positive

function f E 1(St) such that E = f -1(0).
You could work as follows:

I. First show the result assuming that E is the complement in fa
of an open ball (in the euclidean metric).

ii. Let (f") be a countable family of functions in 1(C). Show that
there exist positive real numbers pn such that the series of func-
tions E µnfn converges in ?((t).
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iii. Wrap up using the fact that fl \ E is a countable union of open
balls.

b. Let E and F be disjoint closed subsets of f2. Show that there exists
a function f in 8(12) such that 0 < f < 1, E = f (0), and F =
f-'(1).
Hint. Let . and ip be positive functions in C(Q) such that p-' (0) =
E and tP-' (0) = F. Check that f = Sp/ 9;F -++P2 satisfies the desired
conditions.

c. Let E be a closed subset of C. Prove that E is the support of a
function in 8(S2) if and only if E equals (in 11) the closure of its
interior.

6. Borel's Theorem. Let (an) be an arbitrary sequence of complex numbers.
Show that there exists a function f E B(R) such that f(k)(0) = ak for
every integer k.
Some hints:
a. Let cp E 9(R) be such that ip = 1 in [-1,11. For n E N, set

fn(x) = n xnSo(unx)

Show that one can choose the jz,+ in such a way that Ilfnll(n-1) <- 2-n
for every n > 1.

b. Show that the series E fn converges to a function having the desired
property.

7. Topologizing spaces of smooth functions
a. Let K be a compact subset of 12 and take m E N. Show that the

space 9K (12) with the norm II Il im) is a Banach space.
b. If f, g E 9K (S2), define

d(f,g) = E 2-mmin(IIf-9II(m), 11).00

M=0

Show that d is a complete metric on 9K (12) and that a sequence
converges in this metric if and only if it converges in 9K(12) (in the
sense defined in the text).

c. Take m E N and let (Kn)nEN be an exhausting sequence of compact
subsets of 12 (see page 52). If f,g E Bm(12), define

00

o (f,9) _ 2-n min(IIf - 9IIKm),1),
n=o

with
11f 11(K-,) = Sup ID'/(x)I

IPI<m zEK
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Show that bn is a complete metric on gm(fl) and that a sequence
converges in this metric if and only if it converges in 8°"'(fl) (in the
sense defined in the text).

d. Same questions for the metric So defined on e(fl) by

an(f,9) 2-m min(Sn (f,9), 1).
M=0

8. a. Let P be the linear operator on 9"(0) defined by

Pf (x) = r, a3(x)DP f(x),
(Pi <m

where m < n and where each function a, belongs to en-m(fl). Show
that P is a continuous operator from 9"p) to 9n-m(f )

b. Suppose the functions aP lie in C(12). Show that P defines a contin-
uous linear operator from 9(fl) to 9(1k) and from 9(fl) to &0(1k).

9. Suppose it E Rd and cp E 9(Rd). If h E R', define an element cph of
9(Rd) by setting

PhW =
So(x + hu) - v(x)

h

Show that the sequence (W1/n)nEN converges in 9(Rd). Find its limit.
10. Let V E 9 be nonzero. If n E N*, set

0"(x) = - p(x/n) for x E Rd.

Show that the sequence (Vn)nEN converges to 0 in efi but not in 9.
11. Let 01,..., O, be open subsets of Rd such that Sl = U 1 Off, and take

W E 9(12). Show that there exist functions cpl,... , SOn in 9(1Z) satisfying

Supp cp,, C O,, for all j E { 1, ... , n}

and such that cps = cp. Check also that, if cp > 0, the functions <pj
can be chosen to be positive.

12. a. Let f be a real-valued element of 8"'(1Z) or e (fl). Show that there
exist positive-valued functions fl, f2 in 8'"(fl) or 8(12), respectively,
such that f = ft - f2.
Hint. Take f 1 =f2+1 and f2 = f 2 - f +1.

b. Show that analogous results hold for and 9(0) instead of
8'(11) and 8(1k).

13. Suppose f E C(k)Jf(x)cc(x)satisfies

dx = 0 for all E 9(11).

Show that f = 0.
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14. Let (O, ),E J be a locally finite relatively compact open cover of 0; that
is. each O, is a relatively compact open subset of Cl. the union U E J O,
equals fl, and, for every compact K in f1, the set (jEJ : O, n A # 0(}
is finite. Show that there exists a family Gp,)JEJ of elements of 9(R )
such that

Suppipj C 0, and 0< gyp, < 1 for all j E J

and

1: cpj(x)=1 forallxEfl.
jEJ

Hint. Let (Kf)fEN be an exhausting sequence of compact subsets of Cl
such that Ko = 0. For each n E N', put

J. = {j E J : O, ri (k.+2\Kn-I) 0}.

Consider a COD partition of unity (%°, )jEJ with respect to the compact
Kn+i \Kn and to the finite open family {Oj fl (k.+2\K,,-I)}jEJ For
each j E UfEN. Jn, define

1: Vi
nEN,0j

(pk
nEN kEJ

where N,= In EN':jEJn}.

2 Distributions

2A Definitions

By definition, a distribution on Cl is a continuous linear form on 9(0).
Thus, by what we saw in Section 1B, a linear form T on (Cl)9is a dis-
tribution if, for every sequence (cpn)nEN that converges to 0 in 9(l), the
sequence (T(Wn))nEN tends to 0 (in C); equivalently, if, for every compact
subset K of Cl, the restriction of T to the metric space 9K (fl) defined
in Exercise 7 on page 265 is continuous. We denote by 9'(fl) the set of
distributions on fl; of course 9'(fl) is a vector space.

If 11 = Rd, we willsometimes use the simplified notation 9' = 9'(Rd).
Also, if T is a distribution on Cl and V E (Cl),9we denote by

T(,P) _ (T,v)

the result of evaluating the distribution T at the test function V.
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Proposition 2.1 Let T be a linear form on 9(0). Then T is a distribu-
tion on 0 if and only if, for every compact K in 0, there exist m E N and
C > 0 such that

IT(,p)I < CII,PII(-) for all p E 9K(ft).

Proof. The "if" part follows easily from the definitions. Conversely, suppose
that the criterion is not satisfied. Then there exists a compact subset K of
f1 and a sequence (cpn)fEN in 9K(l) such that

IT(con)I > n IiWnll(n) for everyn E N.

For every n>1,set
1

Wn =
n IlVnll(n)

Wn-

Obviously, 0, E 9K(f1); moreover, for every m E N,

II+6nII(m < II'+Dnll(n) <_ 1/n for all n > m.

Thus the sequence (Pn)nEN converges to 0 in 9K (11). Now IT(i/in)I > 1 for
every n E N, so the sequence (T(Q)nEN does not converge to 0. Therefore
T is not distribution on f1. 0

Order of a distribution

A distribution T on 11 is said to have finite order if there exists an integer
m E N with the following property:

For any compact subset K of ft there exists C > 0 such that
IT(,p)I < Cllsoll(m) for allcp E 9K(ft). (')

In other words, T has finite order if the integer m that appears in Propo-
sition 2.1 can be made independent of the compact K C A. If T has finite
order, the order of T is, by definition, the smallest integer m for which (s)
is satisfied.

2B First Examples
Locally integrable functions

Let be the space of equivalence classes (with respect to Lebesgue
measure) of locally integrable functions f on Cl; "locally integrable" means
that, for every compact subset K of Cl, 1Kf lies in L'(fl), the L'-space
corresponding to Lebesgue measure restricted to ft. (See Exercise 19 on
page 159.) If f E L' (fl),

fn

we define a distribution If] by

(IfJ,W)= cp(x)f(x)dx forallWE 9(ft).



One easily checles that ; f is a distribution of onkc 0 on fk Givea a compact
subset K of n, just take C = fKC 'f(s) ds in order to get the inequality iu

with m=0.

Proposition 2.2 The (orally fwwtwns on A dirfias the
abation if and only if they ewe abnost everywhere.

Pt»of_ Take f E L,(il) such that [fj = 0. Because 9(i)) is demos in
CC(fl) = 9°(n) (Corollary 1.3), we see that

10
9(r)f(x)da=0 for augE C1(it).

Thus, for every' g E Cf(ft).

9(.r)(Ref(=))+dr = f 9(.r)(Ref(.r)) dr,

9(=) (ham f(=))+ds = j9(x)(Irnf(x)) Sr.

By the uniqueness part of the Radon-Riesz Theorem (page 69), these equal-
ities are valid for any positive Bowel function g. Applying them to the
characteristic functions of the sets {Ref > 0}, {Ref < 0}, (Im f > 0) and
{Im f < 0}, we deduce that f = 0 almost everywhere. 0

Thus, the map that associates to each f E LL(fl) the distribution If) E
9'(f)) is injective. By identifying f with [f), we can write LL (ft) C 9'(A).
It is in this sense that distributions are "generalized functions".

From now on we will omit the brackets from the notation if there is no
danger of confusion, and we will normally not distinguish between a locally
integrable function and the distribution defined thereby.

Radon measums

More generally, every complex Radon measure p on it defines a distribution
T, as follows:

(T, P) = J cpdp for all'P E 9(S)). (s)

By the very definition of a complex Radon measure, we see that the linear
form T thus defined is a distribution of order 0. Because 9(f)) is dense
in CC(f)) (Corollary 1.3), the map is H T defined in this way is in jective.
Thus we can identify a Radon measure with the distribution it defines, and
we can write 03t(fl) C 9'(f)).

If p is a positive Radon measure, the distribution T it defines is positive,
that is,

(T, gyp) > 0 for any positive V E 9(S)).

We now show the converse.
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Proposition 2.3 Every positive distribution has order 0.

Proof. Let T be a positive distribution on ft. Let K be a compact subset
of ft and let pE9(ft)be such that 0<p<1and p=Ion K.For every
w E 9x(ft), we have Iw! = Iwpl s IIwIIp, where IlwlI denotes the uniform
norm of W. If w is real-valued, this means that

-Ilwllp< -wsllwllp.

We then deduce from the linearity and the positivity of T that IT(w)l <
IIwII T(p). When we no longer assume w to be real-valued, the decomposition
p = Re W + i Im w leads to the inequality IT(w) I s 2T(p) II wII, which proves
that T has order 0.

We will see later, as a particular case of Proposition 3.1, that in fact every
distribution of order 0 can be obtained from a Radon measure by means of
(*) on the previous pages. Positive distributions then correspond exactly
to positive Radon measures: If a Radon measure p satisfies f wdµ > 0 for
every positive w E 9(ft), the remark following Corollary 1.3 implies that
the same is true for every positive f E Cc(l).

Distributions of nonzero finite order

Let m be a positive integer. A simple example of a distribution of order in
on an arbitrary open, set ft is the distribution T defined by

(T,w) = for all <p E 9(11),

where p is a multiindex of length m and a is any point of ft. That T is
a distribution of order at most m follows directly from the definitions. To
prove that the order cannot be less than m, consider a function r' E 9(Rd)
such that r'(0) = 1 and Suppa/i C B(0,1). For every a > 0, put

wa(x) = (x - a)" ((x - a)/a),

where, for y E Rd, we have set yP = yi' ... yd °. Since the support of wpQ is
contained in B(a, a), we see that, at least for a < ao < d(a, Rd \11), we
have W. E 9(f1). Moreover, we deduce easily from Leibniz's formula that,
first, (T, V.) = pt for every a > 0, and secondly, if q is a multiindex of
length strictly less than in, then

(Dgw0)(x) = E Cr,q (x - a)r-q+r a-Ir1D' '((x - a)/a),
r<q

so that the uniform norm of Dqw., when a < 1, satisfies

IlDgwall <- Cgalvl-lql < Cqa,
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where the constant C. depends only on q and on the chosen function 0. It
follows that

11'PaI1tm-`l < Ca,

where the constant C depends only on ii. Since all the functions cc are
supported in the compact K = B(a, ao), this makes it impossible for con-
dition (*) on page 268 to hold with m replaced by m - 1. Therefore T has
order exactly m.

A distribution of infinite order

Let T be the linear form on 9(R) defined by

+00

(T, gyp) = cp(n)(n) for all cP E 9(R).
n=o

Since the intersection of any compact subset of R with N is finite, this sum
has only finitely many nonzero terms. Moreover, it is clear that, if K is a
compact subset of R and N = max(N fl K), we have

I(T, cp)I
< 11c, ,p1(N) for every W E 9K(R),

which proves that T is a distribution.
Now take m E N and set K = [m-2, m+2]. For every W E 9K(R),

we have (T, W) = V(m) (m). It follows form the preceding example that the
smallest integer n for which there exists C > 0 with

(T, gyp) I < C11W11i°l for all cw E 9K(R)

is m. Thus the distribution T cannot have order less than m, and this for
every m E N. This means T has infinite order.

2C Restriction and Extension of a Distribution to an Open
Set

Let T be a distribution on St and let 11' be an open subset of Q. We know
that 9(fl') can be identified with a subspace of 9(Sl) (by extending each
function of 9(SZ') to SZ with the value 0 on Sl \ Cl'). Thus we can define the
restriction To of T to which is certainly a distribution on Cl', called
the restriction of T to Cl'. Conversely, T is called an extension of To
to Cl.

Remark. The expression "restriction of T to Cl'" is an abuse of language,
since the domain of T is the set of test functions (Cl),9and not Cl itself. A
similar remark applies to "extension of To to Cl".
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2D Convergence of Sequences of Distributions

By definition, a sequence (Tf)nEN in 9'(ll) converges to T E 9'(fl) if

lim (Tn, <p) = (T, So) for all cp E 9(f1).
n4+m

Therefore this notion is a type of weak convergence.
This definition extends immediately to families (TX,) in where x

ranges over a subset of R and tends to Ao E [-oo, +oo]. For example, when
we write lime,oTe = Tin 9'(0) we mean that Te,T E 9'(tZ) and that

el (TE, gyp) = (T, W) for all W E 9(fa).

We now give an example of a distribution defined as a limit of distribu-
tions.

2E Principal Values
Consider the function x y 1/x from R to R. This function is clearly not
locally integrable on R, but it is on V. We will see how we can extend to
R the distribution defined by this function on V.

Proposition 2.4 For every w E 9(R), the limit

4,1>'I40+
'P(x)

X (*)

exists. The linear form T thus defined is a distribution of order 1 on R,
and is an extension to R of the distribution I1/x] E 9'(R').

We call T the principal value of 1/x and denote it by pv(1/x).

Proof. Take W E 9(R) and A > 0 such that Supp(p C [-A, A]. If e < A,

Exx) - 1--A xx) dx + JeA x dZ

= r-` w(x) - WP(0) dx + IA
W(x) - W(0) dx,J A x x

because 1/x is an odd function. Since (Wp(x) - Wp(0)) /x can be continuously
extended to the point 0 with the value 9'(O), /we get

lim
P(X)

dx = rA (\x) - W(0) dr.
e- O+ 1J{I1I>e} X f A x

At the same time, by the Mean Value Theorem,

fA
A sa(x) - w(°) dxl < 2AIIWII(`).

x
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This shows that equation (s) defines a distribution of order at most 1. On
the other hand, if cp E 9(R`), there exists a real b > 0 such that P = 0 on
[-b, b), so

lim r (x) dx (x) dx = f dx.
s+0+ J($xI>s} x x a. X

This shows that pv(1/x) coincides with [1/x) on 9(R'). It remains to prove
that the distribution pv(1/x) has order 1, which will follow if we show that
it does not have order 0. For each integer n > 2, take 0, E 9(R) such that
0 < *fr,i < 1, SuppOn C (0,1) and ryn = 1 on [1/n, (n-1)/n). Let W. be
the odd function that coincides with on on R}. If K = [-1,1), we have
SPn E 9K(R), Jlwn11 = 1, and

(pv(1/x),Wn) = 2f1*- mix) dx > 2log(n -1).

Thus there is no constant C > 0 such that

I(pv(1/x),cp)I 5 CIIs'II for all W E 9K(R),

proving the desired result. 0

Another calculation of a principal value is given in Exercise 7 on page 291.

2F Finite Parts
In the previous example we used the fact that the function 1/x is odd in or-
der to define the distribution pv(1/x) as the limit, when a tends to 0, of the
distribution defined on R by the locally integrable function 1{lyl>s}(x)/x.
If we are dealing with a function that is not odd, this approximation pro-
cedure does not converge, and it is necessary to apply a correction, repre-
sented by a divergent term. This is called the method of finite parts, and
we will illustrate it with two examples.

We first introduce some notation that will often be useful. We define the
Heaviside function, denoted by Y, as the characteristic function of R+.
Thus, forxER,wehave Y(x)=0ifx<0andY(x)=1 ifx>0.

Proposition 2.5 For every cP E 9(R), the limit

(T"P) = slim
+00 V(x) d x +w(0) l o gf ,

X

exists. The linear form T thus defined is a distribution of order 1 on R,
called the finite part of Y(x)lx and denoted by fp(Y(x)/x).
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Proof. Take cp E 9(R) and A > 0 such that Suppcp c [-A, A]. Then

l +°° W(x)
= jA

so(x) - sa(0) dx + sv(0) log A - W(o) loge.
x x

Thus

Urn

e (f +
v x

l o g

=
J

" `°(x) y 'P(O) dx + W(o) log A,
e o

and this expression is bounded in absolute value by IIsPII{1} max(A, IlogAI),
by the Mean Value Theorem. It follows that fp(Y(x)/x) is indeed a distri-
bution of order at most 1.

For each integer n > 2, take On E 9(R) such that 0 < 0. :5 1, Supp On C
(0,1), and ,n = 1 on [1/n, (n-1)/n]. We see that

1Pn E 9(o,ij(R), 1104=1, and (fp(Y(x)/x), r/,,,) > 1og(n- 1),

which proves that fp(Y(x)/x) is not of order 0, and so is of order 1. 0
Other examples of finite parts on R will be given in Exercises 3 and 19.

Here is another example, this time on R2. Put r = x2 + y2 and

82 L92

TX2 9y2

Proposition 2.6 For every w E 9(R2), the limit

(T, SP) = eli o
\J J

r^4 So dx dy - 0)e-2 + 2 A<p(o, 0) log e
{r>e}

exists. The linear form T thus defined is a distribution of order 3 on R2.

T is called the finite part of 1/r4 and is denoted by fp(1/r4). (Note
that the function 1/r4 is not locally integrable on R2.)

Summary of proof. Take W E 9(R2) and A > 0 such that Supp(p C
B(0, A). A quick calculation shows that

± dx dy
Jfr?e} r4

= AA>r>e) r-4 (so(x, y) - ,(0, 0) - x S° (0, 0) y e (0, 0)
ax ey

- (2 a2 (0, 0) + xy fl(0,0) + 2 0y2

(0,0))
) dx dy

- rrW(0, 0) (A's - e-2) +

2

0) log
A

.
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We then deduce from Taylor's formula that the limit given in the statement
of the proposition exists and is bounded in absolute value by CAIIVII(3),
with CA > 0. Therefore the distribution thus defined has order at most 3.
It remains to show that it is not of order less than 3. 0

Exercises

1. Let 91(S1) be the set of real-valued elements of I(S2). A distribution T
on SZ is called read if (T, W) E R for every V E ° a (S2). Show that every
distribution T on 12 can be written in a unique way as T = TI + iT2,
where TI and T2 are real distributions on Q.
Show that real distributions can be identified with continuous linear
forms on .9R (fl).

2. Let be a sequence of points in f2 having no cluster point in fl.
Show that the map defined by

00

(T, w) _ E (Dt'°W)(xn),
n=0

where each pn is a multiindex, is a distribution. Compute its order.
3. Show that, for every function w E 9(R), the limit as e tends to 0 of

f W(X) dx - 2 W(0)
{1xI>e} X

2 e

exists, and that this defines a distribution (the finite part of 1/x2).
Determine its order.

4. Take f E C((Rd)')
a. Assume there exists a constant C > 0 and an integer n > 0 such

that, for every x E B(0,1) \ {0},

If(x)I <jc .

Show that f extends to a distribution of order at most n on Rd.
Hint. Consider, for W E 9(Rd),

(T, c0) = J f (x)co(x) dx + f f (x) (cp(x) - Pn(x)) dx,

where Pn is the sum of the terms of order at most n -1 in the Taylor
series expansion of cw at 0.

b. Suppose that f is positive and that

z mIxlnf(x)=+oo forallnEN.
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Show that there is no distribution on Rd whose restriction to (Rd)*
is f.
Hint. Take V E 9(Rd) supported in B(0, 4) \,&(O, 1) and such that
V = 1 on f3(0,3) \ B(0, 2). For n > 1, set

nd+1
A,, = inf f (x) and Wn(x) = W(nx)

SEB(0,3/n)\B(0,2/n) An

Show that (Wn)nEN tends to 0 in -9(Rd) and that

nl+l+°o
Jf(x) Wn(X) dx = +00.

5. Let T be a distribution on Il such that every point in fl has an open
neighborhood on which the restriction of T vanishes. Show that T = 0.
Hint. Take 1P E 2(0). Cover the support of cp with finitely many sets
on which T vanishes; then use a C°° partition of unity (or Exercise 11
on page 266).

6. Piecing distributions together. Let St 1, ... , On be open sets in Rd whose
union is Il. For each j E { 1, ... , n}, let Tj be a distribution on f1 j. Sup-
pose that, for every pair of integers (i, j) E { 1, ... , n)2, the distributions
Ti and Tj coincide on the open set 1Zi n Slj. We wish to show that there
is a unique distribution T on ft whose restriction to each ftj is Tj.
a. Using Exercise 5, prove that such a distribution T must be unique.
b. For each j E { 1, ... , n}, take fpj E 2(f1j ). Show that E

1
W - = Cj= 3

implies E 1(Tj, cpj) = 0.
Hint. Use a CO° partition of unity associated with the open sets ftj.
1 < j < n, and with the compact K = U 1 Supp cpj.

c. Take cp E 2(f ). Show that the expression

n(T"P)

_>(Tj,Wj)
j=1

is independent of the choice of a family SQ1, ... , cpn such that

n

Wj E !?(Stj) for all j E {1,...,n} and cw = I:Wj.

j=1

(The existence of such a family follows from Proposition 1.4; se(
Exercise 11 on page 266.)

d. Show that the map T defined above is a distribution on ft having
the desired properties.

e. Show that, if each distribution Tj has order at most m, so does T.
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7. Let S1 be open in Rd and let (fn)nEN be a sequence in Show that,
if the sequence (fn) converges in LI c(n) to an element fin LI (Q), then10 10C

0C(11) is defined in Exercisefn tends to f in 9'(1l). (Convergence in L1'
19 on page 159.)

8. Compute the limit of the sequence of distributions in Rd defined by the
functions Tn(x) = ndX(nx), where X E L1(Rd).

9. Compute the limit of the sequences of distributions on R defined by the
following functions:

a. Tn (x) = sin nx;
b. Tn(x) = (sinnx)/x;
c. T,,(x) = nsin(nx) 1(.,>o};

d. Tn(x) = IxI*-1/(2n).

Hint. For parts a, b, and c, you might use the Riemann-Lebesgue
Lemma (Exercise 4a on page 179) and/or integration by parts.

10. Study the convergence in I'(R'), then in 3'(R), of the sequence of
distributions

n

Tn = E ak (51/k - 5-1/k),
k=1

where (an) is a sequence of complex numbers.
11. Show that the equation

(n)(1/n)
n=1

for all W E -9((0, +oo))

defines a distribution T on (0, +oo) of infinite order, and that T cannot
be extended to R.

12. Find the limit in 2'(Rd) as e tends to 0 of the family (Ti) defined by

() 1

where wd is the volume of the unit ball in Rd
13. For x E R and N E N, write

N

SN(x) = P:n= _ sin((N + i)x)L sin(x/2)n=-N

a. Take W E 9(R). Show that, for every p E Z,

(2p+1)7r

lim
/

SN(x)cp(x)dx = 21r (2prr).
(2p-1)7r
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Hint. Show that
(2p+ 1)x

SN(x)co(x) dx
(2p-1)x

= J x SN (x) (cp(x + 21w) - W(2pw)) dx + 27rcp(2px);
R

then apply the Riemann-Lebesgue Lemma (Exercise 4a on page 179).
b. Deduce that the sequence of distributions ([SN])NEN converges in

9'(R) to 21r FpEZ b2p, where o2p is the Dirac measure at the point
2p7r.
Remark. One can show that the sequence ([SN])NEN (considered as
a sequence of Radon measures on R) does not converge vaguely (this
concept is defined in Exercise 6 on page 91). Compare with Exercise
1 on page 284.

14. Let (cn)fEZ be a family in C such that there exist C > 0 and ry > 0
satisfying

IcnI<CInI*I forallnEZ'.
Show that the series EnEZ c,+ [ei"x] converges in 9'(R) and that the
sum has finite order.
Hint. If cp E 9(R) with Supp cp C [-A, A] (where A > 0), prove using
integration by parts that, for every r E N and n E Z',

JeM3p(x)dx < 2A I] wwII*nI.

15. Let (fn) be a sequence of functions in L2(S1) and suppose f E L2(Sl).
a. Show that, if the sequence (fn)nEN converges weakly to f in the

Hilbert space L2(1l), it converges to f in 9'(fl).
b. Is the converse true? (You might consider, for instance, the open set

SZ = (0,1) and the functions fn = nlil/n,2/ni.)
c. Show that (fn), p converges weakly to f in L2(fl) if and only if it

is bounded in L2(0) and converges to f in 9'(i1).
Recall that every weakly convergent sequence is bounded in L2(Sl);
see Exercise 10a on page 120 (this follows from Baire's Theorem).
Hint. Show first that 9(1) is dense in L2(fl).

16. Banach-Steinhaus Theorem in 9'. Let it be an open set in Rd. Let (Tn)
be a sequence of distributions on D such that, for every cp E .9(Q), the
sequence of numbers ((Tn, cc)) is bounded. We wish to show that, for
every compact K contained in fl, there exists an m E N and a real
constant C > 0 such that

I(Tn, cp)I < C11VII(') for all Sp E 9K (fl) and n E N.

To do this we define, for every k E N, a set

F k = {cp E 9 K : I(Tn,(p)1 < k for all n E N).

(s)
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a. Show that each Fk is closed in the metric space 9K (it) defined in
Exercise 7 on page 265. Deduce that, for at least one ko E N, the
set Fko has nonempty interior. (Use Baire's Theorem, Exercise 6 on
page 22.)

b. Show that each Fk is convex and symmetric with respect to 0 and
deduce that there exists r > 0 such that the ball B(0, r) (in 9K(S2))
is contained in F.

c. Let in E N be such that En>m 2-n < r/2, and set C = 4ko/r. Show
that m and C satisfy condition (*).

17. Let be a sequence of distributions on ft such that, for every Sp E
!?(fl), the sequence of numbers ((T,,, <p)) converges. Show that, for any
t E (a, b), the linear form T on 9(fl) defined by

(T, gyp) = n i n (Tn,'p)

is a distribution on fl.
Is it true that, if all the distributions T,, have order at most in, then so
does T?
Hint. Use Exercise 16.

18. Let (Tt)tE(Q,b) be a family of distributions on 0. Suppose that, for every
V E the function t '- (Ti, gyp) is differentiable on (a, b). Show that,
for any t E (a, b), the linear form dTt/dt defined by

d
(Tt, ip) for all V E 9(f2)

is a distribution on il.
Hint. Use Exercise 17.

19. Finite part of Y(x)/x°, for a E R+
a. Take M E N. Prove that, for every V E 9(R), the limit

(T,'P) lim
+

(
I

+oo x(x) d

\`
m

e

ip(k)(0)
1 +

rp(m-1)(0)
logE

(m - k -1)k! em-k-1 (m - 1)!

exists and that the linear form T thus defined is a distribution of
order (at most) m on R. This distribution is called the finite part of
Y(x)/x'", and is denoted fp(Y(x)/xm).

b. Take a E R+ \ N. Let m be the integer such that m < a < m + 1.
Show that, for every V E 9(R), the limit

(T, W) = lim r- `p(x) dx -' ONO) 1

e-,o+ k, x° k4 ?a--- k -1)kI a°-k-1
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exists and that the linear form T thus defined is a distribution of
order (at most) m on it. This distribution is called the finite part of
Y(x)/x', and is denoted fp(Y(x)/x°).

20. Complete the proof of Proposition 2.6.

3 Complements

In this section, we study under what conditions a distribution can be ex-
tended to test function spaces larger than 9(fl), namely 9"`(l) or 1(0).
We will introduce to this effect the important notion of the support of a
distribution.

3A Distributions of Finite Order
The next proposition provides a characterization of distributions of finite
order.

Proposition 3.1 Let T be a distribution on Cl and suppose m E N. A
necessary and sufficient condition for T to have order at most m is that T
can be extended to a continuous linear form on 91n (0). The extension is
then unique.

Prof. Suppose that T has order at most m. Property (*) on page 268 then
implies that T is continuous (and even uniformly continuous) on the space
9(fl) regarded, topologically speaking, as a subspace of 9"' (fl). Since 9(fl)
is dense in 9m (fl) by Corollary 1.3, we can apply the theorem of extension
of continuous linear forms. This theorem applies a priori to continuous
linear forms on normed spaces, but we can reduce the problem to that
situation by considering the normed spaces 9K (fl). Similarly, since (Cl)9is

dense in this extension is unique.
In the other direction, it is clear from the definitions that the restriction

of a continuous linear form on "(Cl)9'to 9(fl) is a distribution of order at
most M. 0

Conversely, the restriction to (Cl)9of a continuous linear form on 9"'(fl)
is a distribution (since a sequence in 9(fl) that converges in (Cl)9obvi-
ously converges in 9"'(ft)), and it has order at most m by the preceding
reasoning. Thus we can identify the space of distributions of order at most
m on fl with the space of continuous linear forms on 9m(fl), which we
denote by 9?m(fl). We will make this identification from now on, and for
T E 9'm(fl) and V E "(Cl)9'we will still denote by (T, gyp) the result of
evaluating T at (p.

An important particular case, already discussed on page 270, is when
m = 0. Then 9°(11) = CC(fl) and the space 9'0(fl) of distributions of
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order 0 can be identified with the space 9R(f2) of complex Radon measures
on 11. Consequently, 9R(1l) = 9'0(12) C V(fl) and, if lp E CC(fl) and
pEWI(fl),wehave

(p, S,) = AM = Jcod.

SB The Support of a Distribution
Let T be a distribution on A. By definition, a domain of nullity of T is
an open set 12' contained in Cl and such that the restriction of T to Cl' is
the zero distribution on Cl'.

Proposition 3.2 Any distribution T on Cl has a largest domain of nullity
no.

The complement of this set, 11 \ flo, which is closed in Cl, is called the
support of T and is denoted by Supp T.

Prof. Let ?l be the set of domains of nullity of T, and let flo = UoEw O
be their union. It suffices to show that flo is itself a domain of nullity
of T. Take V E 9(flo) C (Cl).9By the compactness of SuppW, there
exist finitely many elements w1, ... , wn of * whose union contains Supp (p.
By Proposition 1.4, there exists a C°° partition of unity associated with
this open cover; that is, there exist functions 'P1,... , Vn E 9 such that
0 < v j < 1 and Supp wf C wJ for every j E {1,. .. , n} and such that
E,=1 Wj(x) = 1 for every x E Suppcp. It follows that

n

j=1

Since each (pip f is supported in the domain of nullity wj, this implies that

n

(T, W) M, (m) =0.

This proves that no is indeed a domain of nullity of T, and by the con-
struction it is the largest such domain.

The support of a complex Radon measure it on C was defined in Exer-
cise 2 on page 90. Since, for every open set 0, the space 9(0) is dense in
C°(O) (Corollary 1.3), one can check easily that this definition coincides
with the one just given for distributions.

3C Distributions with Compact Support
The next proposition characterizes distributions having compact support.



282 7. Definitions and Examples

Proposition 3.3 Let T be a distribution on Il. A necessary and sufficient
condition for the support of T to be compact is that T have an extension
to a continuous linear form on e([1). The extension is then unique.

Proof. Suppose first that the support of T is compact. Then there exists
a compact K in SZ whose interior contains the support of T. It follows
from Proposition 1.4 that there exists p E -9(fl) such that 0 < p < 1 and
p(x) = I for all x E K. We then set, for f E 8(fl),

T(f) = (T,fp)

It is clear that this does define a linear form t on eta(fl). On the other hand,
if W E 9(fl), we have

Supp(cp-cpp) c fl\K C n\SuppT,

so that
(T, W) = (T, Wp)

It follows that t is an extension of T to e(n).
Finally, if (f,,) is a sequence in e(II) that tends to 0 in e(fl), it is easy

to see from the definitions and from Leibniz's formula that the sequence
(fnp) tends to 0 in Y(fl), so that

lim (T, flip) = 0.R-,+ao

This proves that t is continuous on o(f1).
Thus T has an extension t that is a continuous linear form on e(1?).

Since 2(1) is dense in 9'(0), this extension is unique.
For the converse, assume that T can be extended to a continuous linear

form t on 8(fl). Let (Kn)nEti be an exhausting sequence of compact sub-
sets of fl. If the support of T is not compact, there exists, for every integer
n E N, an element cp of 9(11) such that

Supp tpn C (11 \ Kn) and (T, pn) 0 0

(by the definition of the support of T). Dividing cpn by (T, cpn), if necessary,
we can assume that

(T, W,i) = 1.

Now. we claim that the series E+00 cpn converges in 8(11). Indeed, if K
is a compact subset of 1, then K is contained in some Kno, for no E N;
but, for every n > no, we have (p,, = 0 on Kn0 and so on K, so the sum

:,, o cpn reduces to a finite sum on K, and this for every compact subset
K of fl. So the sum converges in t? (Q). By the continuity of T, it follows
that the series E,+io (T, tp,,) converges, contradicting our assumption that
(T,W,,)=1. 0
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Conversely, the restriction to 9(f2) of a continuous linear form on 9(fl)
is a distribution on 0 (since a sequence in 9(f2) that converges in 9(fl)
also converges in and this distribution has compact support by
the preceding results. Thus we can identify the space of distributions on
0 having compact support with the space of continuous linear forms on
8(f1), denoted by B'(fl). We will make this identification from now on. In
particular, for T E 8'(ft) and V E B(fl), we will still write T(<,) as (T,tp).

We remark also that a distribution on Cl with compact support can be
identified with an element of 8'(Rd) by setting

(T, gyp) _ (T, Wjn) for all p E t(R'). (*)

Indeed, if ip is in e(Rd) the restriction iP10 of rp to f1 lies in 1(f2).

Proposition 3.4 Every distribution T with compact support in f2 has
finite order. More precisely, there exists an integer m E N and a constant
C > 0 such that

I (T, W) I <- C II WII (m) for alt cp E 9(C).

Proof. Let K be the support of T and let K', K" be compact sets such
that

KCK'cK'c*"CK"C0.
By Proposition 2.1, there exists a constant C > 0 and an integer m E N
such that

I(T, V)I < C IIWII(m) for all WE 9x.,(f1).

By Proposition 1.4, there exists 0 E 9 such that 0 < 0 < 1, r/' = 1 on K'
and Supp% C K". If W E 9(f2), then cpt/' E and

Supp(,p-Spt/i) C i2\IC' C fl\K.

Since the compact K is the support of T, it follows that there is a positive
constant C' depending only on C, m and r', and such that

I(T,w)I = I(T, V)I < CII'POII(m) <- C'IIwII("),

the last inequality being a consequence of Leibniz's formula. 0

Remark. One can easily deduce from the preceding results that, if T is
a distribution with compact support, there exists an integer m E N (any
integer not less than the order of T will do) such that T extends to a
continuous linear form on A"(C), and that this extension is unique.
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Exercises

1. Let (T,,),,EN be a sequence of positive Radon measures that converges in
9'(f2) to a distribution T. Show that T is a positive Radon measure and
that the sequence (T")"EN converges vaguely to T (this term is defined
in Exercise 6 on page 91). Compare with Exercise 13 on page 277.

2. Let T be a distribution on R" and suppose W E 9(R") vanishes at every
point in the support of T. Does it follow that (T, gyp) = 0?

3. Let T be a distribution on fl with compact support K and order m, and
suppose cp E 9(fl) satisfies the following property: For every multiindex
p of length at most m and every x in the support of T, we have D' Sp(z) _
0. We wish to prove that (T, (p) = 0. Put K. = {x E Rd : d(z, K) < e},
fore>0.
a. Take'i > 0. By assumption, there exists a real number r,, > 0 such

that I DPw(x) I < rl, for every x E Kr,, and every multiindex p of
length at most m. Show that, for every x E Kro and every p E Nd
such that IpI < m,

I DPc (x)I < nd'"-IPI d(z, K)--IPI.

Hint. You might use reverse induction on n = IpI, applying at each
step the Mean Value Theorem on the segment Ix, y], where y is a
point in K such that d(z, K) = d(x, y).

b. Suppose X E 9(Rd) has its support contained in B(0,1) and satisfies
f x(x) dx = 1. Let Xc be the element of 9(Rd) defined by

Xe(x) = e-d /' X/x - ) dy
x,. l e J

Show the following facts:
i. For every e > 0, the support of x, is contained in K&; moreover,

xE=1 in K..
li. For every multiindex p we have

IIDPX.11(o) <- IIxII0PDWdE-1P1,

where wd is the volume of the unit ball in Rd.
c. Show that there exists a constant C > 0 (depending only on d and

m) such that, for every e < rq/3,

IIX gCIIXII(m).

(Use Leibniz's formula.)
d. Show that there exists a constant C > 0 such that

I (T,(v)I <_ »C'IIXII(m).

Finish the proof.



3 Complements 285

4. Structure of distributions with finite support
a. Let fl, f2, ... , fn and f be linear forms on a vector space E with the

property that, for every x E E,

fl (x) = f2 (X) = ... = fn(x) = O f (x) = 0.

Show that there exist scalars c1, ... , cn such that f = clfl + +
en fn
Hint. Let E, F, and G be vector spaces, f a linear map from E to
G, and g a linear map from E to F such that ker g C ker f . Suppose
F is finite-dimensional. Then there exists a linear map h from F to
G such that f = h o g. (Why?) Apply this result to F = Cn and

g = (fl,...,fn)
b. Let T be a distribution on an open subset 1 of Rd, and suppose

Supp T = {0}. Show that T is given by

(T, W) = E cPDPCp(O) for all cp E 9(0),
IPI<m

for appropriate constants c,.
Hint. Use Exercise 3.

c. Determine likewise the general form of a distribution whose support
is finite.

5. Let (Tn)nEN be a sequence of distributions on an open subset fl of Rd.
We assume that the sequence (Tn) converges in 2'(ft) and that the
supports of the distributions Tn are all contained in the same compact
K. Show that the orders of distributions Tn have a uniform upper bound
mEN.
Hint. Use the Banach-Steinhaus Theorem in Y(Q), stated in Exercise
16 on page 278.
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Multiplication and Differentiation

We define in this chapter two important operations involving distributions.
Again we will be working with an open subset ft of Rd.

1 Multiplication

In this section we define the product of a distribution by a smooth function.
This definition arises from the following lemma.

Lemma 1.1 Suppose a E (fl). The map Sp - a(p from 9(fl) to 9(fE)
is continuous. Likewise, if a E with m E N, the map cp H app from
91"(f2) to 9' (fl) is continuous.

In Other words, if ((pn)nEN is a sequence in 9(t) or 91(f2) converging
to 0 in 9(fl) or 91(l), respectively, the same is true about the sequence
(apn)nEN

Proof. The lemma follows immediately from Leibniz's formula (page 258)
and from the fact that, if Vn E 9(fl), the support of acpn is contained in
the support of Vn.

Thus we can define the product of a function and a distribution as follows:

Definition 1.2 If T E 9'(f1) and a E 9(fl), the product distribution aT
on f2 is defined by setting

(aT, cp) = (T, aip) for all <p E 9(ft).
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If T E 91"(ft) and a E gm(Sl), the product aT E 9"(fl) is defined by

(aT,,p) _ (T, app) for all rp E 9m(i2).

(Recall that 9'"(12) is the set of continuous linear forms on the space
"(Cl),9which by Proposition 3.3 on page 282 can be identified with the

space of distributions of order at most m).
That aT really is a distribution follows from the preceding lemma: If

(<pn)nEN is a sequence in (Cl)9or 9'm(fl) that converges to 0, Lemma 1.1
implies that the sequence ((T, apn)),,EN tends to 0 since T is a distribution.
Thus aT really is a continuous linear form on 9(f1) or as the case
may be.

Obviously, if f E L1 (12) and a E C(12), we have

a[f] = [af]

In this sense, this multiplication extends the usual product of functions. We
will see in Exercise 1 below that this extension cannot be pushed further
to the case of the product of two arbitrary distributions without the loss of
the elementary algebraic properties of multiplication, such as associativity
and commutativity.

Remark. The definition immediately implies that if a E (Cl)4fthe linear
map T '- aT from '(Cl)9to '(Cl)9is continuous, in the sense that, if
(Tn)nEN converges to Tin 9'(1l), then (aTn)nEN converges to aT in '(Cl).9Proposition

1.3 With the notation introduced in Definition 1.2, we have

Supp(aT) C Supp a fl Supp T

and, if 0 E 9(0) (or 0 E d""(S2)), we have

a(Q2') = (afl)T.

Proof. The second claim is obvious. To show the first, take cp E 9(f).
If Supp rp C 12 \ Suppa, then a(p = 0, so (aT, So) = 0. It follows that
A \ Suppa is contained in Cl \ Supp(aT), so Supp(aT) C Suppa.

Now if Supp cp C fl \ SuppT, then

Suppaw C SuppV C Sl\ Supp T,

which implies that (aT, gyp) = 0. Therefore Cl \ SuppT is contained in Cl \
Supp(aT), so Supp(aT) C SuppT. The result follows. 0

The inclusion in the proposition may be strict. For example, if T = 6 is
the Dirac measure at 0 in Rd, and if a E C(Rd) is such that a(0) = 0 and
0 E Suppa (say a(x) = x), then aT = a(0)6 = 0 and the support of aT
is empty, whereas Suppa fl Supp T = {0}.
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Division of distributions is an important problem: If S E 9'(f2) and
a E I((1), is there a T E 9'(!t) such that aT = S? Clearly, if a van-
ishes nowhere in 11, the product T = (1/a)S is the unique solution to the
problem, by the second part of Proposition 1.3. In the general case, the
restriction of T to the open set {x E Rd : a(x) 36 0} is uniquely defined
by the same equality, but the global problem may have infinitely many
solutions. Here is an example in dimension 1.

Proposition 1.4 For every S E 9'(R), there exists T E 9'(R) such that
xT = S. If To is such that xTo = S, the set of solutions of the equation
xT=S equals {To+CB:CEC}.

Proof. Take X E 9(R) such that X(0) = 1. To each cp E 9(R) we associate
cp, defined by

cp(x) =
Jo

(cP'(tx) - co(0)X'(tx)) dt.

One easily checks that cP E 9(R) and that the map cp ,-> 5p from 9(R)
to 9(R) is continuous. Moreover, if x E R*, O(x) = (cp(x) - cp(0)X(x))/x.
Now put

(T,) _ (S, cp) for all cp E 9(R).

Since cp -> cp is continuous, T belongs to 9'(R); since icp = gyp, we get
xT = S.

Now take T E 9'(R) with xT = 0. If W E 9(R), we have

0 = (xT, cP) = (T, 'P - c'(0) X) = (T, cP) - T, X) (b, cP)

It follows that T = (T, X) 6.

Here is a particular case.

Proposition 1.5 Suppose T E 9'(R). Then xT = 1 if and only if there
exists C E C such that T = pv(1/x) + Ct.

Note that, in the equality xT = 1, the symbol 1 represents the constant
function equal to 1, identified with the distribution [1], which is none other
than Lebesgue measure A.

Proof. By Proposition 1.4, it suffices to show that xpv(1/x) = 1. To do
this, take cP E 9(R). By definition,

(xPv(1/x),<P) _ (Pv(1/x), xcp) = lim J (1/x)x(p(x)dx

J w(x) dx = ([1l, W),

as we wished to show.
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Exercises

1. Show that it is impossible to define a multiplication operation on the
set 2'(R) that is at once associative, commutative and an extension of
the multiplication defined in the text.
Hint. Suppose there is such a multiplication and compute in two ways
the product x6pv(1/x), where 6 is the Dirac measure at 0.

2. Consider an open set 1 in Rd and elements a E c (f1) and T E 9'(fl).
Assume that a = 1 on an open set that contains the support of T. Show
that aT = T.

3. Suppose T E 9'(Rd), a E Rd, and M E N. Show that (x - a)PT = 0 for
every multiindex p of length m + 1 if and only if T can be written as

(T, cp) = >2 cgDgcp(a) for all V E 9(Rd),
IgISm

with eq E C for Iq) < m. (As might be expected, by (x - a)P we mean
the product (xi-al)P' ... (xd-ad)Pd.)
Hint. Show first that, if (x - a)PT = 0 for every multiindex p of length
m + 1, the support of T is contained in {a} and so is compact. Using
Taylor's formula (Exercise 1 on page 264), prove then that, for every
+6 E .(Rd),

(T,`p) _ It >2 DIW(a) (T, (x-a)").
k=O Iqi=k

4. Suppose S E 9'(R), a E R, and m r= N.
a. Choose X E &3(R) such that X(a) = 1 and Xlkl(a) = 0 for k E

{ 1, ... , m}. Given cp E 9(R), define a function 0 by

Ax) =
(x) - (v(a)+'P'(a)(x-a)+...+(1/ml)W("`)(a) (x-a)m) X(x)

(x-a)m+l

if x 0 a, and extend it to x = a by continuity. Show that the map
cp H cp from !(R) to f3(R) is continuous (in the sense of sequences).

b. Show that the equality

(T, co) = (S, 0)

defines a distribution on R that is a solution of the equation

(x - a)m+1T = S.

c. Determine all solutions of the equation (x - a)m+'T = S.
Hint. Use Exercise 3.
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5. In each of the following cases, the question is to show the existence
in 9'(R) of solutions T for the equation fT = S, with S E 9'(R)
arbitrary, and to find the general form of the solutions in terms of a
particular solution To.
a. Suppose that f E 8(R) and that f has a unique zero a E R, which

furthermore is of finite order; that is, there exists an integer m E N'
such that f(m)(a) # 0.
Hint. Let m be the smallest integer such that f (m) (a) 0. The func-
tion g defined by g(x) = (x - a)-n` f (x) and extended by continuity
to x = a belongs to d'(R) and vanishes nowhere. Then f T = S if
and only if (x - a)mT = 9'S. Now apply Exercise 4.

b. Suppose that f E 8(R), that the set of zeros of f has no cluster
point, and that each zero has finite order.
Hint. Let (Ok)kEN be a locally finite cover of R by bounded open
sets, each containing at most one zero of f. Write S in the form
S = EkEN Sk, where SuppSk C Ok for each k E N (see Exercise
14 on page 267). Solve the equation f Tk = Sk for each k, using the
preceding case as inspiration.

6. a. Show that the distributions T on R such that xT = Y are exactly
those of the form T = fp(Y(x)/x) + C6, for C E C.

b. More generally, prove that, for every m E N', the distributions
T on R such that x'"T = Y are exactly those of the form T =
fp(Y(x)/xm)+E of ck8(k), for ck E C (see Exercise 19 on page 279).

7. a. Prove that the equality

Uw-,,/2

nx-e
(To,'P) = lim d:0+

nEZ
sinx

``n,,+a/2
V(x)

n,r+E in x

defines a distribution To of order 1 on R. (To is the principal value
of 1 /sin x. )

b. Show that sin x To = 1 and deduce the general form of the solutions
of the equation sinx T = 1.

8. Suppose T E 9'(Sl) and V E 9(1) are such that, for every multiindex p
(of length equal to at most the order of T if T has finite order) and for
every x in the support of T, we have Dpcp(x) = 0. Show that (T, cp) = 0.
Hint. Apply Exercise 3 on page 284 to the distribution S = XT, where
X is a test function that has the value 1 on an open set containing the
support of cp.

9. Take T E 9"(1l) and a E 9'n(fl) (or T E 9'(1) and a E 8(11)).
Suppose that, for any p E Nd such that IpI < m (or any p E Nd,
respectively), Dpa vanishes on the support of T. Show that aT = 0.
(Use Exercise 8).

10. Let (Kn)nEN be an exhausting sequence of compact subsets of Il. For
each n E N, let On E 9(11) be such that 0 < Wn < 1, cpn =1 on Kn, and
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Supp W" C Show that lim"-,+,,,pT = T in 9'(f 1), for every T E
Deduce that 91(fl) is dense in 9'(ft) (in the sense of convergence

of sequences).

2 Differentiation

For p E Nd, the differentiation operator of order p on 9'(fl) is defined as
follows: If T E 9(12), set

(DPT, gyp) = (-1)IPI (T, DPW) for all V E 9(1)).

Since the map DP : V,-+ DPW from 9(12) to 9(12) is continuous, the linear
form DPT thus defined on 9(f1) is indeed a distribution. This map DP is
also continuous as a map from 9'"+IPI((1) to 9m(f)), which leads to the
following property:

Proposition 2.1 Suppose m E N. For every T E 9"(l), we have
DPT E 9'-+IPI (0) and

(DPT, W) = (-1)IPI(T, DPV) for alb W E 9'"+IPI(f2).

We also use the notation

BIPIT

DPT = -- =
O T,

8
or, if d = 1,

DT=T'= , D""T=Ti"`i=dxm formEN,

as for functions. Indeed, the differentiation operator defined above on 9(11)
extends ordinary differentiation of functions of class Cl:

Proposition 2.2 Let m E N and p E Nd satisfy IpI < m. If f E ""(l),
then

DP([fl) = [DPfJ.

In this equality, the first DP denotes differentiation in the sense of
distributions as defined above, and the second denotes ordinary differ-
entiation in the sense of functions.

The proposition is easily obtained by induction on IpI starting from the
case IPI = 1, which is a consequence of the following lemma.

Lemma 2.3 (Integration by parts) If f E 11(12) and V E 91(12),
then, for every j E (1, ... , d),

in
= - in f DJfpdx.
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Proof. By Fubini's Theorem, we can reduce to the case d = 1, to which
we apply the classical theorem of integration by parts, taking into account
that the support of <p is a compact subset of 12, so that the "boundary"
terms vanish. 0

Examples

1. Take a E B. The derivatives of the Dirac measure at a (denoted by as
and defined by (o, ,,p) = p(a)) are given by

(DP6a,,p) = (_1)IPIDPw(a) for allp E Nd;

these distributions were studied on page 270. Thus, for every p E N, the
distribution DPBa has order Ipl.
In particular, if a = 0 (in which case we write 6 = 80) and d = 1, we
have

(0) =
h m

(ah, A h (a0, W) for all V E 2(I)).

It follows that

a' = lo-ahh
b in 9'(n).

h

2. The derivative in the sense of distributions of the Heaviside function Y
is the Dirac measure at 0: indeed, if cP E 2(R),

+00

(Y', W)
10

,'(t)
dt = w(o),

where we have used, in calculating the integral, the fact that cp has
compact support. Therefore Y' = J.

3. The function x H log(IxI) is locally integrable on R and as such defines
a distribution. We compute its derivative in the sense of distributions.
If cp E cI(R),

dx [log(Ixl)], ,) _ -
J

W'(x) log(I xI) dx

W'(x) log(Ixl) dx.- lim
juxl>e)+0+

Integrating by parts, we deduce that

\dx [1og(IxI)], gyp)=-eu I -'p(e) loge- (P(x) dx).\
Now, loge(w(-E) - ap(e)) tends to 0 as a tends to 0. Therefore

[log(IxI)] = pv(!).
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One shows likewise that

jj[Ylogx] =fp(YXx)}.

The next proposition follows easily from the definitions.

Proposition 2.4 Suppose p E Nd.

1. The application T H DpT from 9'(t) to 9'(l) is continuous in the
following sense: For every sequence (Tn)nEN in 9'(f) that converges
to T in 9'(f), the sequence (DpTn)nEN in 9'(1Z) converges to DpT in

2. For every T E 2'(S2),

Supp(DpT) C SuppT.

We remark that the property of continuity extends immediately to fam-
ilies somewhat more general than sequences. For example, we deduce from
Example I above that 6"=hm8'-ah,

h-+O h
in 9'(R).

Leibniz's formula also generalizes without change:

Proposition 2.5 (Leibnlz's formula) Consider T E a E 4"(1),
and p E Nd. Then

D'(aT) = 1 (P) Dp-9a D9T.

q<p q

This formula remains true for T E 9"n(() and a E -9-+IPI(Q).

P r o o f . This is obvious if IpI = 0. Consider the case IpI = 1. If j E (1, ... , d),
we have

(D j (aT), v) (aT, DjW) _ -(T, aD jip) = -(T, D j(ap))+(T, (D ja),p),

so that
(Dj(aT), w) = ((Dja)T + aDjT, W).

Thus Dj(aT) = aDjT + (Dja)T. From here the formula can be extended
by induction on IpI as in the case of functions. 0
Remark. We will show in Chapter 9 (proposition 2.14 on page 334) that
9(Sl) is dense in 9'(f) (in the sense of sequences). The preceding propo-
sition then becomes a consequence of Leibniz's formula for functions, to-
gether with the denseness result just mentioned and the continuity of the
operators of differentiation and of multiplication by a function.
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By Proposition 2.2, the first derivatives Di ([ f ] ), for j E {1, ... , d}, of
a distribution defined by a function f E 6°1(52) correspond to continuous
functions on Cl. We will show that, conversely, any distribution whose first
derivatives are defined by continuous functions corresponds to a function
in 8' (52).

Theorem 2.6 Let T E 9'(52). Suppose that there exists, for every j E
{1,...,d}, a function gi E C(C) such that D3T = [gi]. Then there exists
f E 81(52) such that T = [f].

Proof

- Suppose first that the result has been proved for the case where Cl is an
open parallelepiped in Rd:

d

52 = (a,b) _ fj (ai,bi)
i=1

We derive the general case. Let Cl be any open set in Rd and let T be
a distribution on Cl for which there exists, for every j E { 1, . . . , d}, a
function gi E C(52) such that D1T = [gi]. Let 'P! be the set of open
parallelepipeds contained in Cl. For every w E 'P1, there exists f,,, E
8'(w) such that the restriction of T to w is [fW]. It is clear that, for
W1, W2 E '& with wl fl w2 34 0, we have f,,,, = ,,,s on wl fl w2. Thus there
exists f E 6x1(52) such that, for every w E q', the restriction off to w
is f,,,. It follows that every w E'P! is a domain of nullity for T - [1] , in
the sense of Proposition 3.2 on page 281. By this same proposition, this
implies that the support of T - [f]is empty and so that T = [/].
Thus we can assume that we are in the case Cl = (a, b). We argue by
induction on the dimension d.

- Case d = 1. Suppose T E '(Cl)9satisfies T' = [g] with g E C((a, b)).
Let a E (a, b). The function G defined by G(x) = f. g(t) dt belongs to
P ((a, b)) and satisfies [G]' = [g]. Therefore the distribution S = T - [G]
satisfies S' = 0. Now let X E 9((a, b)) be such that fa X(x) dx = 1. We
define, for each cp E 9((a, b)), a function cp by setting

bAX) = W(x) - I j w(t) dt) X(x) for all x E (a, b).
a /

Then 0 E 9((a, b)) and fa O(x) dx = 0. Therefore the function 4' defined
on (a, b) by

4'(x) =
J

0(t) dt
a

satisfies 4'(x) = 0 if x [min Supp cp, max Supp cp]. Thus fi E 9((a, b)).
Then

0 = (S', 4') _ -(S, 4') _ -(S, cP),
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so that
b

(S, cp) = f IP(t) dt (S, X) = ((S, X), cp) for all cP E 1((a, b)).
a

Thus, if we set f = G + (S, X), we have f E if' ((a, b)) and T = If].
- Suppose the result has been proved for d > 1. For (a, b) = n1±i (aa, bj)

take T E 2'((a,b)) such that, for every j E {1, ..., d+1}, there exists
gj E C((a, b)) satisfying D3T = [g,]. Put

xd+1
G(xl,...,xd+1) =

1.
gd+1(X1,.... xd,tdt,

where a E (ad+l, bd+l). Using Fubini's Theorem and integration by
parts, one sees that Dd+1[G] = [gd+l]. The distribution S = T - [G]
then satisfies Dd+1S = 0.
Take X E l((ad+l,bd+1)) such that f'bd" X(x)dx = 1. If Ip E 2((a,b)),
define cp E .9((a, b)) by

ad+1

bd+i

1(x1,...,xd+1) = V(xl,...,xd+1) - X(xd+1) J p(xl,...,xd,t)dt.
JJJad41

Then, for every (xl, ... , xd) E jid_ 1(aj, bj),

f bd+ I

J P(xl,...,xd,t)dt = 0.
ad+1

Now set
rxd4I

t(xl,...,xd+1) c(xl,...,xd,t)dt.
ad+1

As in the case d = 1, we have t E I((a,b)) and

0 = (Dd+IS, $) = -(S, Dd+1F) = -(S, 0),

so that
(S,A =(S,0 ®X),

where we have used the notation

and

bd+I

Axl,...,xd) =
J

P(x1,...,xd,t)dt
ad41

®X(xl,...,xd+1) = c(xl,...,xd)X(xd+l)
(aj, by)) defined byConsider the distribution U E 9'(11d

(U, -0) = (T, '+l0 ® X) for all V, E
_9

bi ))
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It is clear that the linear form U is indeed a distribution and that, if
j E {1,...,d},

(D, U, b) = -(T, (Dj?,) ®X) _ -(T, Dj(t/ ®X))
= (DJT, 00 (9 X) = ([9,], r' (9 X).

Consequently, if j E { 1, ... , d}, we haveDjU = [§j], where

rbd+1
g3(x1i...,xd) = / 9,(x1,...,xd,t)X(t)dt.

Qd+1

Thus U satisfies the induction hypothesis and there exists an element
u E 611(rld=I(aj,bj)) such that U = Jul. Now, for cc E .9((a, b)), we
have

(T, p) = ([Cl, V) - ([G], x) + (U, w)

It follows that T = [f ] with

f(xl,. .,xd+1)
1

C(x1, ... , xd+1)
jbd+

G(xl, ... , xd, t)X(t) dt + u(xl, ... , xd).
d+1

Thus f E C((a, b)) and the derivative in the ordinary sense, of/axd+1,
exists on (a, b) and equals gd+1. One shows similarly that the other par-
tial first derivatives of f in the ordinary sense exist and are continuous,
which implies that f E 9" ((a, b)). 0

We deduce from this theorem an important uniqueness result.

Theorem 2.7 Let 1 be a connected open subset of Rd and suppose that
T is a distribution on Sl such that DjT = 0 for every j E {1, ... , d}. Then
T = C for some C E C.

Proof. By the preceding theorem, there exists f E el (fl) such that T = [ f ]
and Dj f = 0 in the ordinary sense, for all j E {1, ... , d}. The result
follows. 0

Working by induction starting from Theorem 2.6, we see also that, for
r E N and T E if DP(T) E C(Sl) for every multiindex p of length r,
then T E gr(Sl).

We will now study in more detail the case of dimension d = 1, starting
with a characterization of distributions whose derivative is locally inte-
grable.

Theorem 2.8 Suppose that f? is an open interval in R and that a E Q.
Let T E V(fl) and f E LiaC(St). The following properties are equivalent:

L T' _ [f].
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ii. There exists C E C such that T = [F], with F(x) = C + fQ f (t) dt.

Functions of the form F(x) = C + fa f (t) dt as above are called abso-
lutely continuous on Cl. Thus, a distribution has for derivative a locally
integrable function if and only if it "is" an absolutely continuous function.
Another way to say this is that, if f E L' (f2), the function F defined by
F(x) = C + fQ f (t) dt is a primitive of f in the sense of distributions.

Proof Suppose 0 = (a, b). Take f E L L((a, b)) and let F(x) = fQ f (t) dt.
Then, for every cp E 9((a, b)),

([F]','P) _ -
J

b

V(x) (LZ f (t) dt) dx.

Therefore, by Fubini's Theorem,

r r
([FJ', gyp) _ SP'(x) f (t) dt dx - / f cp'(x) f (t) dt dx

{a<z<t<a} ff J{a<t<x<b}

= J a co(t) f (t)
dt+

J b w(t) f (t)
dt=

([f ]+ cp).
a a

Thus [Fj' = [/J and the desired result follows from the uniqueness theorem
proved earlier (Theorem 2.7). 0

Still in the case of an open interval fl = (a, b) in R, one can characterize
distributions whose derivative is positive-which is to say, by Proposition
2.3 on page 270, those whose derivative belongs to the space 9X+ ((a, b)) of
positive Radon measures on (a, b). Recall that, if a is an increasing function
on (a, b), we can associate to a a positive Radon measure on (a, b), namely
the Stieltjes measure da, and that we obtain in this way all elements of
M+ ((a, b)). (We saw this in Section 3A of Chapter 2 (page 71) for the case
(a, b) = R, and it extends immediately to the case of an arbitrary open
interval (a, b).)

Theorem 2.9 Suppose that fl is an open interval in R, and that T E
9'(fl). If there exists an increasing function a on fl such that T = [a],
then T' = da and therefore T' is positive.

Conversely, if T' is positive, there exists an increasing function a on Cl
and a constant C E R such that T = [a + iC].

Proof. Set Cl = (a, b). Let a be an increasing function on (a, b). Take V E
(Cl)9and let c, d be such that a < c < d < b and the support of V is

contained is [c, d]. For n E N' and k E 10,..., n}, set

d-cxk=c+k .
n
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Then, by definition,

n-1
f W da = f d cp(x) da(x) = lim F,1P(xk) (a(Xk+1) - a(xk)).
J n ++a)

k=0

We perform a summation by parts. Since V(c) = V(d) = 0, we have

n-1 n

<p(xk)(a(xk+1) - a(xk)) = F, a(xk)('p(xk-1) - cp(xk)).
k=0 k=1

Consequently,

J wda = -
Jim n l

n 'p(x)lI k=1

Using the Dominated Convergence Theorem, we obtain

J ,da= - f p'(x)a(x+)dx.

(Recall that a(x+) denotes the limit from the right of the function a at x.)
Now, a(x+) = a(x) except at a set of points x that is countable, and so of
Lebesgue measure zero (see Exercise 6 on page 5). Therefore

f cp da = - f cp'(x)a(x) dx,

so da = [a]'. This proves the first part of the theorem.
Now suppose that T' is positive. By Proposition 2.3 on page 270, ' is

a positive Radon measure on f2. By Theorem 3.8 on page 73 (applied to R
rather than R), there exists an increasing function a such that ' = da (we
may assume a is right continuous). Then, by the first part of this proof,
T' = [a]'. Now it suffices to apply the uniqueness theorem (Theorem 2.7)
to obtain T = [a + C], for C E C. The desired result follows by replacing
a with a + Re C and C with Im C.

Obviously, in the preceding theorem, we can assume that C = 0 if T is
real-that is, if (T,cp) E R for every real-valued cp E 9(fl).

We also see from Theorem 2.9 that every positive Radon measure of finite
mass ,a on R is the derivative in the sense of distributions of its distribution
function F, defined by F(x) = µ((-oo, x)). Indeed, by Remark 1 on page 74,
we have µ = dF. In particular, we recover the result that p = F'(x) dx if
F is of class C'.

The next theorem, applicable to a large class of functions of one vari-
able, links the derivative in the sense of distributions with the ordinary
derivative.
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Theorem 2.10 Suppose that Cl is an open subset of R and that f is a
function on Cl for which there exist points x, < < xn in Cl satisfying
these conditions:

- f is of class CI on 0 \ {xl,...,xn}.
- For every j E 11, ... , n}, f has right and left limits at xj, which we

denote by f (xj+) and f (xj_ ), respectively.
- The ordinary derivative f' of f, defined on S2 \ {x,, ... , xn }, belongs to

Livc(1l)

Then
n

(fl' _ (f'] + E (f(xj+) - f(xj-))a,,.
j=1

Proof. Considering separately each of the connected components of fl, we
can assume that Cl is an open interval (a, b). Put xo = a and xn+1 = b.
Then, if w E 2(Cl), we have

n X3+1

((fl', w) _ -(If] ') _ E f(t)w(t) dt,
j=0 1.3

or yet, integrating by parts (and setting W(a) = W(b) = 0),

((A', w) = E Q x w(t)f'(t) dt + f (xj+)w(xj) - f ((xj+l)-)w(xj+1))
,

= Jcp(t)f'(t) dt + Ec(xj)(f(xj+) - f(xj-)),
j=1

which concludes the proof. 0
By induction on p E N*, we deduce the following corollary.

Corollary 2.11 Suppose that Cl is an open subset of R and that f is a
function on Cl for which there exist points x1 < ... < xn in Cl and an
integer p E N satisfying these conditions:

f is of class CP on Cl \ {xl,...,xn).
- For every j E {1,. .. , n} and every integer k E (0,...,p-1j, the right

and left limits of f (k) at xj exist.
- The ordinary p-th derivative f(P) of f , defined on Cl \ {x, , ... , xn }, be-

longs to L' (0).

Then

n p-I[f](P)
=

[f(P)(
+ (f(k)(xj+) - f(k)(xj_))t5(P-1-k).

j=1 k=0
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Examples

The following examples are immediate applications of the two preceding
results.

1. Recall our notation x+ = max(0, x). Then (x+]' = Y.
2. We also find that Y' = b. More generally, if Y. = 1(a,+ao), then Ya = J.-
3. []xl/2]" = 6.
4. Let f be a function of class CP on R. Then

p-1
[YAW = [yf(P)) + E f(k)(0)b(P-1-k).

k=0

In dimension d > 2, Theorem 2.10 has the following partial generalization
(see also Exercise 15).

Theorem 2.12 Suppose that d > 2 and, if (x2i ... , xd) E Rd-1, write

= {x1 E R : (x1, x2, ... , xd) E fl}.

Let f E LiaC(11) satisfy the following conditions:

- For almost every (x2i ... , xd) E Rd-1, the map on defined by

x1 H Jp (x1, x2, ... , xd)

is continuous on 11z,...... , and of class C1 except at finitely many points
Of nxs,--.,xd .

- The ordinary partial derivative Of/8x1, defined almost everywhere on
Il, is an element of L' (11).

Then

D1[f] =
8x1[Of[].

Of course, an analogous result holds if we replace the subscript 1 by any
j E {2,...,d}.

Proof. Argue as in the proof of Theorem 2.10 and apply Fubini's Theorem.
0

Examples
0 if Y-' 11. Df(xi)={Y (x1) ifj=1.

2. Set r = IxI = %/x-r,+- . + xd and B1 = {x E Rd : I XI < 11. By Theorem
3.9 on page 74 and Remark 2 on page 76,

dx sd rd-1-dr < +00,j
where ad is the area of the unit sphere in Rd (8d = dwd, where Wd =
A(B1) is the volume of B1). As a consequence:
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Proposition 2.13 The function x ,-> r_Q is locally integrable on Rd
if and only if a < d.

Therefore we obtain, as a consequence of Theorem 2.12:
-If a<d-1and 1<j<d,

1 x?D
-

_ -a
rf+2

Ifd>2and 1 < j <d,

D (log r
xZ

(The local integrability of the derivatives follows from the preceding
criterion and the fact that Ix.1 < r.)

Exercises

1. Show that, for every distribution T on an open subset 11 of Rd and for
every i,j E {1,...,d},

DZD,T = D3DZT.

2. a. For h E Rd, let Th be the operator on o'(Rd) defined by

(rhT,'P) = (T, p( + h)).

If the distribution T is defined by a locally integrable function
what does rhT correspond to?
Show that

lm11r(h,o....o)T-T =-D1T
hi + h,

f,

in 9'(Rd).

b. We say of a distribution T on Rd that it does not depend on the
first variable (say) if r(h,,O.....o)T = T for every h1 E R. Show that
T does not depend on the first variable if and only if D1T = 0. (See
also Exercise 6 on page 324.)
Hint. For any function cp E I(R"), find the derivative of the function
f defined on R by

f(h1) = (r(h,.o....,o)T, P)-

3. Let T be a distribution on R. Show that T is defined by a Lipschitz
function if and only if T' E L. (In particular, Lipschitz functions are
absolutely continuous.)
Hint. The "if" part follows from Theorem 2.8. To prove the "only if"
part, use the first part of Exercise 2, the duality L°° = (L 1)', and the
fact that 9 is dense in L'.
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4. Let T be a distribution on Rd such that DDT = 0 for every multiindex
p of length m + 1. Show that T is defined by a polynomial function of
degree at most m.
Hint. Work by induction on m.

5. Let fZ be an open interval in R.
a. Show that, if f is an absolutely continuous function on fl and g E

-el (fl), then g f is absolutely continuous on ft and [9 f j' _ [g'f +gf1 ],

where f, is the element of L' (l) defined by
Hint. Write [g f ] = g[f] and apply Leibniz's formula.

b. Let g be an absolutely continuous function on 11 and suppose gi E
L' (fl) satisfies [g]' = [gl]. Show that there is a sequence (9n)nEN in
8'(f2) such that (g') converges to 9' in and converges
toginC(f1).

c. Deduce from this that, if f and g are absolutely continuous on fl, so
is f g. Write down [19]' in this case.

6. Show that the map defined on .9(R2) by

(T, cp) =
J

cp(x, x) dxI,
is a distribution. Find its support and its order, and compute 8 +

8T
57--

7. a. Let a E R+ \ N. Show that

d
fpl x(Q) I = -afpXXI)

\
(Y(+Idx -

b. Let M E N. Show

that\\\ ///

fp 1 K(x) J = -m fp ( Y(X) + ( )m bi"'i.m / m+l /
1

(The finite part of a function x F- Y(x)/xa, where a > 0, was
defined in Exercise 19 on page 279.)

c. Use this to find the successive derivatives of fp(Y(x)/x).
8. Compute the second derivative, in the sense of distributions on R, of

the function f defined by f(x) = max(1-jxj, 0).
9. We denote by o the surface measure of the unit sphere in R2. Recall

from Exercise 16 on page 83 that

fo

2A

code = cp(cos8, sin9)d9 for all p E CC(R2).
J

We set f (x, y) = max(1 - %lx2 -+y2, 0) and

X(x, y) =
(x2 + y2)' 1/2 if 0 < x2 + y2 < 1,
0 otherwise.
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a. Calculate 8f/8x and 8f/8y in the sense of distributions on R2 (shov
in particular that these derivatives are functions).

b. Take V E 1(R2) and set rl (p,0) = cp(pcos0, psin9). Show that

e0
papau

JA0,1)x(0,2x) 49P

f 1 Rx + ya dx dg
ff(X2+y2<1} x2 + y2 Oy

= (Of, co)

c. Deduce that A f = o - X in the sense of distributions.
10. For r > 0, let or be the surface measure of the sphere of center 0 an(

radius r in Rd. Show that

lim
2d 1 or - S = 08
r2 sdrd-1

in .9'(Rd).

Hint. Use the Taylor-Young formula and (after having proved them;
the equalities

= 0, = 0 if i j, JXdA7r = d rd+t

11. Let f be a real-valued function of class C2 on Rd, satisfying £ f = 0.
a. For E > 0, set g£ = (e2 + f2)1/2. Compute Ogf and show that it is e

positive function.
b. Show that gE tends to If I in .9'(R d) when a tends to 0.
c. Show that there exists a positive Radon measure it on Rd such that

oI If I = it in .9'(Rd). Show that the support of µ is contained in
f -1(0).

d. Determine It by direct calculation when d = 2 and f (x, y) = xy.
12. Let ft = (a, b) be an open interval in R.

a. Let f be a convex function on ft.
i. Show that, if cp E 9(R),

gyp" = lim h-2(rhW + r-hW - 2iP)
h-+O+

in l(R), where, if k c R, rkcp(x) = <p(x - k).
ii. Deduce that [ f ]" is a positive Radon measure on 11.

b. Conversely, suppose that T is a distribution on 1 and that T" u
a positive Radon measure on ft. Show that there exists a convex
function f on ft such that T - If] is a first-degree polynomial with
coefficients in C, and that we can assume this polynomial to be zerc
if T is real in the sense of Exercise 1 on page 275.
Hint. Check that, if a is an increasing function on ft and if c E ft,
the function f defined by f (x) = fc' a(t) dt is convex.
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c. Deduce that a function f is a difference of two convex functions if
and only if it is continuous, real-valued, and [f]" is a Radon measure
on (a, b).

13. Let 0 be an open interval in R. Show that a distribution T on fl has
as its first derivative a Radon measure on f2 if and only if there exists
a function a of bounded variation on every compact interval contained
in 0 (see Exercise 13 on page 93) such that T = [a]. (You might also
recall Exercise 15 on page 94.)

14. Let r E N. Show that

N

lim nreinm = 2x(-i)' > 52.

N-'+aon=-N pEZ

Hint. Use Exercise 13 on page 277.
15. Let Sl be the unit sphere in Rd and let al be its surface measure

(page 74). For x = (x1, ... , xd) E Rd, write ii = (X2 i ... , xd) E Rd-1

and r= i-l1I2.
a. Take rp E C(Sl). Extend rp to the ball Bj = {x E Rd : IxI < 1} by

setting

rP(x) =
Z

((1 - f) (P(-f;, 2) + (1 + fl) rP(T, z))

I. Show that the extended rp is continuous on BI.
ii. Show that, for r < 1,

1 p(x) dx =
J (r2 - 1112) `12 ((P(-r, x) + r,(r, x)) di,

B,. {IsI<rl

where Br = {x E Rd : IxI < r}.
iii. Show that the map

x) dxr - 'Br (

is left differentiable at the point 1, and find its left derivative.
Deduce that

J
4P(x) dal (x) =

J
(P(-f, x) + gp(i , x) dz.

iv. Show the same result with 2 = (x1, ... , x j_ i111+1t ... , xd).

b. For p > 0, let S. be the sphere of center 0 and radius p in Rd and
let a. be its surface measure. Let f be an element of L' (Rd) whose
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restriction to Rd \ SP is of class C1. Take j E { 1, ... , d}, and assume
that (8f/8x,,) EL I(Rd) and that, for every x E SP, the limits

f+ (x) = f (y), f_f (x) = lim f (v)-4z V-+z
IvI>P IvI<P

exist.

i. Show that the functions f'' and f_f are continuous on SP.
ii. Show that

f lDi]f] = I. jJ + P
(f+- f? )a,.

Hint. Reduce to the case p = 1 by setting f p(x) = f(px); then
use the representation of the measure of given in part a.

ill. Use this result to compute A f in Exercise 9.
iv. State and prove a similar result when SP is replaced by a hyper-

plane in Rd.

16. Consider in 9'(R) the equation

2xT' - T = 8, (*)

where 6 is the Dirac measure at 0.
a. For an arbitrary integer j > 1, express the distribution x6() in terms

of 6(j-1).
b. Determine the solutions of (*) whose support is {0}. (You might use

the result from Exercise 4 on page 285.)
c. Let T be a solution of (*). Denote by U and V the restrictions

of T to (0, +oo) and (-oo, 0), respectively. Thus U E 9'((0, +oo))
and V E 9'((-oo, 0)). By computing (x 1/2U)' in 9'((0, +00)) and
((-x)"1/2V)' in 9'((-oo,0)), determine U and V.

d. Show that, for every (A, µ) E R2, the distribution S defined by

S(x) = A xY(x) + µ -xY(-x)

satisfies 2xS' - S = 0.
e. Deduce from this the general form of the solutions of (*).

3 Fundamental Solutions of a Differential Operator

Let P be a complex polynomial of degree rn in d indeterminates:

P(X) _ E apXl'.Xa°.
Ipi <m
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The linear map
P(D) = E aPDP,

API<m

which is a linear combination of differentiation operators, is called a linear
differential operator of order m with constant coefficients on Rd.

For example, if P(X) = X? + +Xa, the operator P(D) is exactly the
Laplacian on Rd:

P(D) = A = >
j=1 8 '

If P(D) is such an operator, we define a fundamental solution of P(D)
as any distribution E E .9'(Rd) such that P(D) E = S. This notion will play
an important role in the next chapter. For example, if d = 1, the Heaviside
function is a fundamental solution of the differential operator P(D) = D,
since Y' = J. The next theorem shows that, if d = 1, every linear differential
operator with constant coefficients has a fundamental solution.

Theorem 3.1 Let P(X) _ r,o ajX', where m E N', as,. .. , an E C,
and an 0 0. Let cP be the solution on R of the differential equation

m

Eajcp(j1 = 0
j=o

such that cp(m-1)(0) = 1 and cw(j1(0) = 0 for every j < m-2. Then E _
(1/am)Ycp is a fundamental solution of P(D).

Proof. As a particular case of Example 4 on page 301, we have

[yc,J(m) = [yWP(m)] + b,

[Ycp](k) = [yc,(k)] for all k < m-1,

so that

P(D)E=amt>aj[Yso](1) =a,,,1[ >2aiYcp(J)] +b=a. 0
j=o J=O J

Obviously, there is no uniqueness for fundamental solutions: two funda-
mental solutions differ by a solution of the associated differential equation.

We will now exhibit fundamental solutions of certain classical linear dif-
ferential operators.

3A The Laplacian

Consider the Laplace operator, or Laplacian, in dimension d:

d & d

A D;
j=1 j=1
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As before, we set r = IxI.

Theorem 3.2 Let E be the distribution on Rd defined by

- E=r/2 ifd= 1,

E= I logr ifd=2,

E=-gd(d-2) rd-2 ifd>3.

Then AE = 6.

Proof. The case d = 1 was dealt with in Example 3 on page 301.

Case d = 2. Suppose d = 2 and let f (x) = log r. Since the first deriva-
tives of the function f do not satisfy the hypotheses of Theorem 2.12, we
cannot use that theorem directly to compute the Laplacian in the sense of
distributions. For this reason we approximate in 3'(1R2) the distribution
If I by a family ([ fe]) of distributions defined by functions whose Laplacian
we can compute by applying Theorem 2.12 to the functions fe and to their
first-order derivatives. We then obtain the Laplacian A[f] by passing to
the limit.

Thus we define, for e E (0, 1), a function fe by

fe(x) -
(logr ifr > e,

aer2 + be ifr < e,

where ae and be are real numbers chosen so that the function f, is of class
C' on R2; that is, so that

aee2 + be = loge and 2aee = 1

Thus
ae=

2E2,
be=loge - 2.

Now, if r < E,

l2laer2+bei=log1+2
(r) <logI+Z.

We deduce that, for every x E R2,

Iff(x)l < Ilogrl + 2;

thus, by the Dominated Convergence Theorem,

E
[fe, = If 111
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in 9'(R2). At the same time, for j = 1, 2,

x; /r2 ifr > e,
DsfE(x) x f/ez ifr < e.

This function Duff satisfies, by construction, the hypotheses of Theorem
2.12. We deduce that DJ [fe] = [9g ), with

z

a -2x4 ifr>e,
91(x) = r r

1/e2 ifr < e.

Therefore

AV-] =
2
j 1B(o El.

An elementary calculation shows that

1
I m ;ez 1a(0.E) = b

in 9'(R2); thus, by continuity in 9'(R2) of the operator 0,

o[f] = 21r6,

which proves our result since E = f /(21r).

Case d = 3. We work as in the previous case. Fore > 0, set

fe(x) _ ! rz-d ifr > e,
la£r2+bf ifr<c,

where aE and be are real numbers chosen so that the function fE is of class
C' on Rd; that is, so that (one concludes after some calculations),

aE = 2
2

de-d
' bE = id

E
2-d.

Thus

which implies that

sera+be=ez-d( d22\Elz),

0 < fe(x) < d rz-d

Thus, by the Dominated Convergence Theorem, lime,o[feJ = [f] in 9'(Rd),
with f (x) = rz-d. A calculation similar to the one carried out in the case
d = 2 yields

0[f,] = d(2 - d),-dlB(o E).
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Now,

lim.
1

E
Wded

lgio,o = b

in 9'(Rd); therefore, by the continuity of A,

o[f] = dwd(2 - d)b.

Since dwd = ad and E = - f /(sd(d - 2)), the result follows.

3B The Heat Operator
We now place ourselves in the space Rd" = R x Rd, a generic point of
which will be denoted by (t, x). For c > 0, we define the heat operator Y
by

,= a-
d 82

a
8t E C0.

8x j 8t

Theorem 3.3 For (t, x) E R x Rd, let

r(t, x) = l(o,+oo)(t) (4cift)d/2
-IzI2/(4ct).

Then r E L (Rd+i) and wr = & in V(Rd+i).

Proof. Fort > 0, we obtain, by applying the change of variables u = x/ 2d
and then Fubini's Theorem,

r
s r(t, x) dx = (2d/2

J a e-I"I'/2 du = \ 2 - Jet e- '/2 dr

Since 1 J e-12/2dx = 1 (a classical result), we get
2a R

JR'forall t>0,

which in particular proves, by Pabini's Theorem, that r E LL(Rd+'). Now

take (p E 9(Rd+1). Then

(+°°J Sip
(t, x)r(t, x) dt dx

l+0
lim I I, (t, x)r(t, x) dt dx.

e R

Integrating by parts, we get



3 Fundamental Solutions of a Differential Operator 311

= I m(f j s w(t, x) or (t, x) dt dx + f d P(e x)r(e, x) dx) (*)
E R R

But, if t > 0, we have r(t,x) = t-d/2 r(1, x/f ). Therefore, applying the
change of variables x = f u, we get

f d
w(e, x)r(e, x) dx = f

d
w(,-, u) r(1, u) du.

This expression tends to cp(0) f r(1, u) du = W(0) as a tends to 0, by the
Dominated Convergence Theorem. Moreover, r is of class C° on the com-
plement of the set {t = 0) x Rd, and an elementary calculation shows that
8r/8t = cir (in the classical sense) on the set {t > 0} x Rd; therefore, if
e>0,

4w(t, x)
or

(t, x) dt dx = cv(t, x)Or(t, x) dt dx
>0 xRd at jt>E}xRd

x)r(t, x) dt dxJL>E} xRd

(again integrating by parts). Taking the limit, we deduce then from equality
(*) that

C5iar,
w) = c (or, (P) + w(o),

and so that ''r = S. 0

3C The Cauchy-Riemann Operator
The Cauchy-Riemann operator is important in the theory of holomor-
phic functions. It is denoted by 8/82 and is defined, for d = 2, by

a __1 a a
82 2 8x + 8y

In the sequel, we use the notation z = x + iy.

Theorem 3.4 In 2'(R2),

82( z) a'

Proof. We follow a method analogous to the one used in the proof of The-
orem 3.2. For e > 0, put

( 1/z if IzI > e,
Y = z/E2 if IzI <E

x' t
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Then fe is continuous on R2 and, by Theorem 2.12,

e IM - [sl,el,
8U

If.] = [92.e],

with

1 iifIzI >e - if]z]>e,
gl.e(x,y) _

z2
,

z
92,e (x, y) = i

1if IxI < e; - if ]z]<e.
e2 72

Thus

8z [fe] = E lam.),

which tends to orb in 9'(R2) when a tends to 0. We have I fe(x, y)] < 1/]z],
so the Dominated Convergence Theorem implies that [fe] tends to [f] in
9'(R2), with f (x, y) = 1/z. Therefore

8z [f] = Uo 8z [fe] = 1r6'

whence the result. 0

Exercises

1. Determine a fundamental solution of the differential operator defined
on R by P(D) = D2 - 2D - 3.

2. Let T be the distribution on R2 defined by the characteristic function
of the set {(.T, V) E R2 :0:5 y:5 x}. Show that

-+
08y)T=b.

3. Let E be the fundamental solution of the Laplacian given in Theorem
3.2. Define a function 1' on (0, +oo) by fi(r) = E(x) and put

_ 4(r) ifr>p,
E°(x) - gy(p) if r < p.

Show that

AE,* = 1 pl-dav,
8d

where a. is the surface measure on the sphere of center 0 and radius p.
Derive another proof of Theorem 3.2.
Hint. Use Exercise 15b on page 305. In the case d = 3 (for example),
you might also use the following more elementary reasoning:
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a. Reduce to the case p = 1.
b. Take C E (0,1). Determine real numbers a,, bei and cf such that the

function 4kf defined by

1/t if t> 1,
4(t)= a,t2+bt+cc if1-a<t<1,

4e(1-e) if 0<t<1-e
is of class C' on [0, +oo).
Then show that the function I' is decreasing and that 4 = 1 + (e/2)
on [0, 1-el.

c. Put Ef(x) = 4,(r). Show that the function E' is of class C' on R3
and that the family of distributions ([Efl)Q>o tends to [-4irE1[ in
9'(R3).

d. Show that, for every e > 0, n[EE1 is a nonpositive-valued locally
integrable function that vanishes on the complement of the set (x E
R3 : 1 - e < r < 1}. Deduce that there exists a positive Radon
measure a such that A[E'J = o,.

e. Show that o is invariant under orthogonal transformations, that the
support of a is contained in the unit sphere S, in R3, and that
f da = 1. Deduce that a = Q1/(4ir).
Hint. Use Exercise 17 on page 83.

4. Fundamental solution of tk, fork E N. We work in Rd.
a. Show that, if m E N', a E R, and 2m < a + d,

/m-1 m

2j)\ ('(a + d - 2j)) rQ-2m.

j=o j=1

Deduce in particular that, if k > 2,

k
,&k-1r2k-d = (H(2? - d)) 2k-1(k - 1)!r2-d.

`j=2

b. Show that, if d is odd or d > 2k, there exists a constant Cd (which
you should determine) such that

k(Cdkr2k-d) = 6.

c. Similarly, show that, if d is even and d:5 2k, there exists a constant
Bd such that

ak(Bdkr2k-d logr) = 6.

Hint. In the case d = 2 and k > 1,

Ak-1(r2k-2 logr) = 22k-2((k -1)!)2logr+Ck.
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In the case d = 2d with d'>2andk>d',

Ok-(d'-1)(r2k-d logr) = 22k-d+l (k - 1)! (k - d')! r-2(d - 2)!

and
Ad'-1r-2 = 1 -1 a'

dd

It follows in each case that, if we put d = 2d,

Bd = (8d)-122-2k

(k-1)!(k-d')!(d'- 1)!'
d. Deduce from the preceding calculations that, if 2k > d + 1, then Ok

has a fundamental solution of class C2k-d-1

5. Fundamental solution of A + 0 in R3, for A E R. Denote by x =
(X1, x2, x3) a generic point in R3 and, as usual, write r = IxI.
a. Take cp E C2([O,+oo)) and set f(x) = cp(r)/r.

i. Show that, if V(O) = 0, the derivatives D,, f and DD f in -9'(R3),
for j E { 1, 2, 3}, are locally integrable functions. Write them
down in terms of cp, cp', and cp". Write down A f as well.

ii. Deduce an expression for A f in the general case.

Hint. Write f (x) = `p(r)
V(O)

+ V(O) r.r
b. Take A E R. Determine the fundamental solutions of the operator

A + A having the form E, %(x) = cp(r)/r. (Distinguish cases according
to the sign of A.)

c. Show that if A < 0 there exists a unique fundamental solution Ea
such that EA(x) = 0. Determine it. Show that this fun-
damental solution satisfies EA(x) < 0 for all x E (Rd)*.

d. Show that EA does not have constant sign if A > 0.
6. Fundamental solution of the wave operator on R2. Let El be the distri-

bution on R2 defined by the function

At' X) = 2 1{t>Ixl}
Show that

a2

C
-

02

El = b.at2 axe /
7. Fundamental solution of the wave operator on R4. Denote by (t, x, y, z)

a generic point in R4. If r > 0, denote by Sr the sphere in R3 of center
0 and radius r, and by a,. its surface measure. For co E I(R4), write

1

cP(s, t) = 47rs2(t, x, y, z) e(x, y, z)j
=

4
cp(t,sx,sy,sz)do1(x,y,z).

a is,
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Write O=Bx2+03+8z
.

a. Show that, for every w E 9(R4),

&s - &s and O%O = 8
820

2 + a 0a
Hint. For the second equality, you might use the expression of the
Laplacian in spherical coordinates and Exercise 16b on page 83. Re-
call that, if we write

x = r cos 9 cos cp, y = r sin 9 cos V, z = r sin rp,

with 0 E (0,21r) and SP E (-lr/2,x/2), the Laplacian of a function
f (x, y, z) = F(r, 9,,p) is given by

f= 1 8 (r2 0F\ 1 8 (cos'P 8F\ + 1 02Fr
8r 8r J + r con p 8Sp 8<p J r2 cos2 ,p 892

b. Show that they relation j''(EEi gyp) = 1
+00

to (t, t) dt = sdu for all E

defines a distribution E3 on
R4(in

fact, a positive Radon measure)
and that

8' 02 _ 02 02
Es=b.8t 8x W2 - 8z ,

Hint. If v : (a, t) H v(s, t) is a function of class C2 on R2, compute
the derivative of the univariate function h defined by

(t, t) - v(t, t).h(t) = t (t, t) - t
as

c. Show that the support of E3 equals the set

{(t,x,y,z)ER4:t2=x2+y2+ z2 andt>0).
8. Fundamental solution of the wave operator on R3. Denote by (t, x, y) a

generic point in R3. If r > 0, denote by S, the Sphere in R3 of Center 0
and radius r, and by o, its surface measure.
a. Show that the relation

+oo l

US,
(E2, gyp) =

J
V(t, x, y) do: (x, y, z)dt for all p E 9(R3)

o 4;t

defines a distribution on R3 and that
8' 02 8'

F12l =a.C 0t2 - axz - ay3 /
Hint. Start by verifying that, for every Compact subset K of R3, the
set SuppE3 f1 (K x R) is compact. Then use Exercise 7.
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b. Show that E2 is given by the function

1 1
if t > x2 + y2,

F.2 {t, x, y} = 27r is - xs - ya

0 otherwise.

Hint. Show that

p( x2 + y2 + z2, x, y)
dx d y(Ea, 2 (:>O) x2 + y2 + Z2 y

and set z = t2-x2 - y2.



9
Convolution of Distributions

1 Tensor Product of Distributions

We start by proving two preliminary results, which are interesting in their
own right. In the sequel, d and d' will denote integers greater than or equal
to 1, while 0 and f1' will denote open sets in Rd and R.

Theorem 1.1 (Differentiation inside the brackets) Let m E N and
r E N. If T E 9'I(f1) and cp E 9'"+r(fl x tt'), the map on it' defined by

yi-+(T,A ,y)) (*)

belongs to 9''(C?) and, for every multiindex p E Nd' of length at most r,

81n1
(T, (T'

for every y E W.
If T E 9'(f1) and V E 9(f1 x W), the map defined in (*) belongs to 9(ft')

and the relation (**) is valid for all p E Nd'.

Proof. We carry out the proof in the case T E 9''' (fl), E 9'"+'(f1 x ft').
The other case is very similar.

Case r = 0. Take T E 9"n(fl) and W E 91"(l x IT), and let K and
K' be compact subsets of 0 and Ii', respectively, satisfying Supp<p C
K x K'. Since, for every multiindex p of length at most m, the function
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(81 PI (p)/(8XP) is uniformly continuous (being continuous and having com-
pact support), and since all the functions W(-,y), with y E Cl', are sup-
ported within the same compact K, we see that, if (Yn)nEN is a sequence
in fl' converging to y E Cl', the sequence of functions (w( , yn))nEN con-
verges to <p( , y) in 9m(fl), so the sequence ((T, wp( , yn)))nEN converges
to y)). We deduce that the map y H (T, p(-, y)) is continuous on
Cl'. Since its support is compact (being contained in K'), this map does
belong to Cc(fl') = 90(SZ').

Case r = 1. Take T E Vm(A) and V E 9m+1(0 x il'), and again let K
and K' be compact subsets of Cl and fl', respectively, satisfying Supp io C
K x K'. For 1 < j < d, let e l be the j-th vector of the canonical basis of
R".Take yE0'.IfxECandt 0, we have

I W(x, y+tej)-w(x,y) - 8'P I

I 8 I
t 8y f (x, y) t,E[o] 8llj

(x, y+t'ef) Ovj {x, y)

Using the fact that 840/8yj is uniformly continuous, we easily deduce that
the family of functions

t

converges in 9°(Sl), as t tends to 0, to (&p( , y))/(8tj). The reasoning
we have used here for cp can be repeated without change for the partial
derivatives (8I PI gyp)/(8xp), for IpI < m; therefore

t
converges to y))/(8yj) in 9"'(!2), as t tends to 0. It follows that

(T, w(- , y+tej)) - (T,'p( , y))
t

has the limit (T, (O p( , y))/(8yj)) as t tends to 0; that is, the partial
derivative

exists and satisfies
(T,

a
(T, (T' a P(-,Y) ;

moreover this is the case for every y E Cl' and every j E {1, ... , d'}. Since
the maps y -4 (T, (8rp( , y))/{8y j )) are continuous on W (by the case
r = 0), this shows also that y t- (T, y)) belongs to which
concludes the proof in the case r = 1.
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The general case follows from the two preceding ones by induction. 0

Theorem 1.2 The vector space 9(fl) ®9(fl') spanned by the functions

f ®g : (x, y) -f (x)g(y),

with f r: 9(fl) and g E 9(fV), is dense in 9(1l x (1').

Proof. We use a lemma that allows us to approximate the convolution by
means of a "discrete convolution":

Lemma 1.3 Suppose W, IP E 9(R"). Fore > 0 and x E R", set

9e(x) = e" W(x -
vEZ'

Then 9e E 9(R"), Supp ge c Supp W + Supp tP, and

=W*rtlim

in 9(R").

Proof. The function ge is defined by a finite sum whose number of terms
depends only on e (since 0 has compact support). Since each of these terms
is an element of 9(R") and is supported within SuppW+Supp 0, the same
holds for ge. At the same time, for every p E Nd,

D'ge(x) = e" E DPW(x - ev)ti(ev).
VC-Z"

Thus the result will be proved if we show that ge converges uniformly to
W * 0 (for then we will be able to apply the same result to DPW and 10
instead of W and 0).

Denote by II II the uniform norm on R" and set N = IIxII
By the Mean Value Theorem, there exists C > 0 such that, for every
x, y, y' E Rn,

I W(-- ._ y)+G(y) - W(x - 00(01 5 CII y - Y'11-

For V E Zn, set
n

Q; [vie, (vj+l)e).
j=1

Then

(P * '(x) _ >2 1 W(x - y)+'(y) dy,
IIvII:5(N/e)+1 Rt
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so that

I40*?(x)-9e(x)I < E 1
IP(x-v)+G(v)-IP(x-vc)O(ve)I dy

II 'HI (N/e)+1

< CEn+1(2(N +1) +1) < C'e (fore < 1),
/

proving the result. 0
Now consider two smoothing sequences, (Xn)nEN and (Xn)nEN, on Rd

and Rd', respectively. Clearly, (Xn ®Xn).EN is a smoothing sequence on
Rd x R(t Take W E (Cl9x Cl'). Then there exist compact sets K and K1
in fl and compact sets K' and Ki in Cl' such that Supp cp C K x K' and
K C K1, K' C K. By Proposition 1.2 on page 261, V can be approximated
arbitrarily close, in the metric space 9K, .,K, (fl x Cl'), by some function
cp*(Xn®Xn), with n so large that K+SuppXn C K1 and K'+Supp in C KI
(where, as usual, we identify Sp with an element of 9(Rd x R ) by giving
it the value 0 outside fl x W). By the lemma, cp * U. ®Xn) can in turn be
approximated arbitrarily close, in the space 9K1 x K; (Cl x Cl'), by a function
of the form

Ed+d' F, Xn(x - EV)Xn(v - EY)tp(Ev,EY),
vEZ°, GEZd'

which lies in 9K, (Cl) 0 9Ki (Cl'). The result follows. 0

By the same method or by induction, one shows that, if f2 j is open
in Rd, for each j E (1, ... , r}, then 9(nj) ® ®9(St,.) is dense in

(fl, x ... x ft,.).
In what follows x will denote a generic point of Rd and y a generic point

of Rd. If T is a distribution on Cl and if V E (Cl),9we write, if there is a
risk of confusion in the space under consideration (f) or Cl'),

(T,0 = (T.,Ax))
Likewise, if S is a distribution on Cl' and if I# E (Cl'),9we write (S,
(Sr, +G(v)).

Proposition 1.4 Suppose T E '(Cl)9and S E '(Cl').9There exists a
unique distribution on fl x Cl', denoted T®S and called the tensor product
of T and S, such that

(T ®S, (p ®+G) = (T, W) (S, +b)

for all V E (Cl)9and ' E (Cl').9Moreover, for ever y jp E 9(C) x S2'),

(T 0 S,' p) = (Ti, (So, p(x,V))) = (St, (Ti, V(x,y)))
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Proof. Uniqueness follows immediately from Theorem 1.2. For existence,
consider the linear map on 9(0 x 12') defined by

' H (Sy, (Ti, W(x, U))) (')

This map is well defined, by Theorem 1.1. Let Kl be a compact subset of
12 x 1E', and let K and K' be compact subsets in 12 and S2', respectively,
such that Ki c K x K'. Take m, m' E N and C, C' > 0 such that

I(T,w)I < CIIVII(m) for all rp E 9K(n)

and

(S,gyp)I <C'IIwjI("`) for allcpE9K,(W)

(see Proposition 2.1 on page 268). Then, again by Theorem 1.1, there exists
a constant C" > 0 such that

(S,, (T:,so(x,y)))I for allw E 9K,(Sl X 11').

Thus, the linear map defined in (s) is indeed a distribution on 12 x 12'
satisfying the indicated condition, namely

(SY, (T.,Ax)0(v))) = (T, P) (S, 0)

for all W E 9(12) and 1P E One argues likewise for the expression
(Ti, (Sy, W(x, y))), interchanging the roles of x and y. 0

We see simply that, if f and g are locally integrable functions on 12 and
12', respectively, then If) ®[g[ = If ®g). Similarly, the tensor product in the
sense of distributions of two complex Radon measures equals their tensor
product in the sense of measures. All of this follows from Fubini's Theorem.

From the definition we see also that, if T and S are distributions on 12
and if W E 9(12 x R) is such that W(x, y) = W(y, x) for every (x, y) E 12 x12,
then (TO S, tp) _ (S ®T, gyp).

Proposition 1.5 Suppose T E 9'(fl) and S E 9'(Sl'). Then:

i. Supp(T ®S) = (Supp T) x (Supp S).
ii. For any p E Nd and q E Nd,

8;8y(T (9 S) _ (8e T) 0 (8O S).

Proof. If <p is supported within (f2\ SuppT) x W, the support of W(-, y),
for every y E 12', is contained in 11 \ Supp T. Therefore

(T ® S, w) = (Sy, (Ti, '(x, y))) = 0.

It follows that the support of To S is contained in Supp T x 12'; similarly,
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it is contained in Sl x Supp S, and so also in the intersection of these two
sets, which is Supp T x Supp S.

Conversely, if (x, y) E Supp T x Supp S and if (x, y) V Supp(T ® S), let
O denote the complement of the support of T ® S in it x W. Then there
exist open sets 01 and 02 containing x and y, respectively, and such that
0 01 x 02. By the definition of x and y, there exist cp E 9(01) and
0 E 9(02) such that (T, W) # 0 and (S, 0) 0. But then cp 0 V) E 9(0)
and (T ® S, cp (9 ?P) # 0, which contradicts the definition of 0. Therefore
Supp T x Supp S C Supp(T®S), and the first assertion of the theorem is
proved.

Next, if cp E 9(Sl) and 0 E 9(I'),

.yq (T 0 S), (-1)Inl+I'I (T ® S, (O w) 0 (11p))(O O

(-1)IP1+I4I(T,.cp)(S,O i4k)

_ ((o T)®(oS), WOO)-

Now just apply the denseness theorem (Theorem 1.2) to obtain the second
part of the theorem.

One can, in a completely analogous way, define the tensor product of
finitely many distributions. The tensor product thus constructed is asso-
ciative.

Exercises

1. Suppose T E 9 m(Sl) and S E 9'n(Sl'). Show that

T ®S E 9""+n(Sl x Sl'),

and that in this situation the formulas in Proposition 1.4 are valid for
every cp E 97"+n(fl x fl,).

2. Show that, if T is a distribution on Sl, the map S -+ To S from 9'(Sl')
to 2'(f2 x 1') is continuous (in the sense of sequences). Show also that, if
S is a distribution on Sl', the map T H T ®S from 9'(1l) to 9'(fl x Si')
is continuous (in the sense of sequences).

3. Homogeneous distributions. Let Si be an open set in Rd such that

ASlCSl for allA>0.

If T E 9'(0) and A > 0, define a distribution TA on Si by

(TA, cp) = a-d(T, c ( IA)) for all W E 9(Sl).

a. Determine TA if T E L10C(Sl).
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b. A distribution Ton fl is said to be homogeneous of degree a E R if

TA=PT for allA>0.

Show that a distribution T on SZ is homogeneous of degree a if and
only if it satisfies Eider's equation in

d

ExjD.IT = aT.
i_i

Hint. You might use Theorem 1.1 to compute the derivative of the
function A y (A-° TA, gyp).

c. Show that the only homogeneous distributions on R having support
{0} are those of the form AP), with A E C' and k E N. Determine
their degrees.
Hint. Use Exercise 4 on page 285.

d. Show that pv(1/x) is a homogeneous distribution on R and find its
degree. What about fp(Y(x)/x) ?

e. Determine all homogeneous distributions of degree 0 on R.
f. Let T be a homogeneous distribution of degree a on Cl and S a

homogeneous distribution of degree 3 on Cl'. Show that T ® S is a
homogeneous distribution of degree a +,0 on 11 x Cl'.

g. Show that the distribution (x2Y(x))®b' on R2 is homogeneous; find
its degree and order.

4. a. If J C {1, 2,..., d}, denote by YJ the distribution defined by

yJ=yJ®y2 ®...®yd

where Y;' = Y (the Heaviside function) if i E J and Ys' = b other-
wise. What differential operator is YJ a fundamental solution of?

b. Compute the p-th derivative of the function f defined by f (x)
xPY(x). Deduce a fundamental solution of the one-variable differen-
tial operator DP, for p E N.

c. Determine a fundamental solution E of the d-variable differential
operator DP, where p = (pi, ... , pd) E Nd.
If pi = p2 = ' ' = pd = k with k > 2, prove that DP has a funda-
mental solution of class Ck-2 in Rd.

5. Show that the following relation defines a distribution T on R2:

(T, (P) = lim
V(x' 1l) dxdy for all VE 9(R2).

Y
Show that T = pv(1/x) ® pv(l/y). What is the order of T?
Hint. Introduce cp(x, y) - cp(x, 0) - W(0, y) + W(0, 0).
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6. Distributions that do not depend on a certain variable. (See also Exercise
2 on page 302.) Let T be a distribution on Rd, where d > 2.
a. Suppose that (8T)/(8x1) = 0.

i. Show that, for every,0 E 9(Rd-1), there exists a constant
such that

(T, W(9,0) = S(*) ISR V(x) dx for all w E 9(R).

Hint. Fix t/i and prove that the linear form U defined on 9(R)
by

(U, cp) = (T, cp®t,b) for all cp E 9(R)

is a distribution and that U' = 0.
ii. Show that the map tai H S(0) is a distribution on Rd-1 and that

T=1®S.
Hint. Take X E 9(R) such that f X dx = 1. Then

S(10) = (T, X ®r')

b. Show that, conversely, if there exists S E 9'(Rd-1) such that T =
1®S, then (8T)/(8x1) = 0.

7. Let T be a distribution on Rd, where d ? 2. Show that x1T = 0 if and
only if there exists S E 9'(Rd-1) such that T = 6 ®S.
Hint. Argue as in Exercise 6 and use Proposition 1.4 on page 289.

2 Convolution of Distributions

2A Convolution in s'
We define first the convolution product of distributions with compact sup-
port on Rd.

Let T and S be elements of We know from Proposition 1.5
that T 0 S is a distribution on R x Rd with a compact support that
coincides with SuppT x Supp S. On the other hand, if p E 9(Rd), the
function defined on Rd x R by (x, y) H (p(x + y) belongs to 8(Rd x Rd).
Proposition 3.3 on page 282 then says that the bracket (T.0SV, (p(x + y))
is well-defined. Moreover, the map from 9(Rd) to 8(Rd x Rd) that takes
W E 9(Rd) to (x, y) H W(x + y) is clearly continuous. This leads to the
following definition:

Definition 2.1 If TS E 8'(Rd), the convolution of T and S is the
distribution T * S defined by

(T * S, (p) = (Tz®Sy, V(x+y)) for all V E 9(Rd).
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Proposition 2.2 If T, S E 8'(R' ), then T * S E df'(Rd) and

Supp(T * S) C Supp T + Supp S.

The convolution product is a commutative and associative binary operation
in 8'(W'), having 6 (the Dirac measure at 0) as a unity element. In other
words, the convolution product makes the space 9'(Rd) into a commutative
algebra with unity.

Proof. Let V E 9(Rd). If x f Supp cP - Supp S, then

Supp cp(x + ) fl Supp S = (Supp cp - x) fl Supp S = 0,

so (Sy, V(x + y)) = 0. Thus, Supp (Sy, ,p( + y)) C Supp W - SuppS. It
follows that, if the support of T does not intersect Supp Sp- Supp S, we have
(T * S, cp) = O and therefore Supp(T*S) C Supp T+Supp S. The rest of the
proposition follows immediately from the results proved in Section 1. 0

As a consequence of Proposition 1.5, we have the following fundamental
property:

Proposition 2.3 If T, S E r(Rd) and j E t 1, ... , d}, then

D3(T*S) = (DjT)*S=T*(DDS).

Obviously, this result extends to every differential operator P(D), of any
order: if T,S E 9'(Rd), then

P(D)(T * S) = (P(D)T) * S = T * (P(D)S)

for every polynomial P with complex coefficients.

2B Convolution in 2'
One cannot hope to define a convolution product on all of 9' that extends
the convolution product of functions, because, in general, two locally in-
tegrable functions are not convolvable: for example, 1 * 1 has no meaning.
We will define the convolution product in 9' in case the supports satisfy a
condition that we now introduce.

Definition 2.4 We say that a family of closed subsets Fi,... , Fn of Rd
satisfies condition (C) if, for every compact subset K of Rd, the set

I(xl,....X")EF1

is a compact subset of (Rd)n.

Obviously, we could have written this condition with "bounded" instead
of "compact".

Let's first give some examples and simple properties. Most of the proofs
are left as exercises.
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1. Suppose (Fl,..., Fn) is a family of nonempty closed sets that satisfies
condition (C). Then every family of closed sets Fy), where 1 <
p < n and Fj C Fj for all j E (1, ... , p}, also satisfies (C).

2. Clearly, every family of compact subsets satisfies condition (C).
3. If (Fi, ... , F,,) satisfies condition (C), so does the family (Fl,. .. , Fn, L),

for every compact L in Rd. Indeed, if K is a compact subset of Rd,

{(x1,...,xn,xn+1) E Fi x...xFnxL : x1+...+x°+xn+1 E K}l
L,

and the set K - L is compact.
It follows by induction that a family of closed sets all or all but one of
which are compact satisfies property (C).

4. Let F be a closed subset of Rd containing a one-dimensional subspace
Ru of Rd, where u 36 0. Then the family (F, F) does not satisfy condition
(C). Indeed, the set

{(x1, x') E Ru x Ru : x1 + x3 = 0} _ {(tu, -tu) : t E R}

is unbounded.
5. If a, b E R, the family ((-oo, a], [b, +oo)) does not satisfy condition (C).

By Example 2 and because R D (-oo, 0], neither does the pair (R, R+).
By contrast, for every ai, ... , an E R, the family

([ai, +oo), ..., (an, +oo))

satisfies (C). In particular, (Rt..., R+) satisfies (C). For a generaliza-
tion to dimension d, see Exercise 4 on page 335.

6. If (F1,. .. , Fn) satisfies condition (C), the set Fi + + Fn is closed.
(Recall that, in general, the sum Fi + F2 of closed sets F1 and F2 need
not be closed.)

7. If (Fi, ... , Fn) satisfies condition (C) and if (I, J) is a partition of the
set { I,-, n} (that is, I n J = 0 and I u J = { 1, ... , n}), then the
family (Fl, Fj) satisfies (C), with F, = EkE, Ft and Fj = EkEJ Fk.

The next step in the construction consists in extending the bracket. If
'p E e(Rd), the expression (T, 'p) has so far been defined only when T is a
distribution with compact support on Rd (see Proposition 3.3 on page 282).
The next proposition allows us to extend this definition to the case where
Supp T n Supp W is compact.

Proposition 2.5 Let fI be open in Rd. Let T E 9'(f2) and 'p E O(fl) be
such that SuppT n SuppW is compact. Then, if p E (Cl)9is a function
taking the value 1 on an open set containing Supp T n Supp cp, the value of
(T, p'p) does not depend on p.
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This value is denoted by (T, ap).

Proof. Take p E 9(S2) such that p = 0 on an open set containing SuppTfl
Supp W. Then the support of p is contained in the complement of Supp T f l
Supp ip, and therefore

Supp pip c Supp V fl (Rd \ (Supp Tfl Supp <p)) = Supp V n (Rd \ Supp T),

which implies that (T, pcp) = 0.
Consequently, if p and p are functions in 9(11) that coincide on an open

set containing Supp T fl Supp gyp, we have (T, pip) = (T, pip). 0
Naturally, if T E d'(fl) and jp E B(1), we recover the meaning of the

brackets defined in Proposition 3.3 on page 282. If T E 9'(1) and p E
9(f2), we recover the usual meaning of the brackets.

Note that we can define similarly the value of (T, gyp) for T E 9'"' (f l) and
V E An(fl) if Supp T f1 Supp W is compact.

We can now define the convolution product of a family of distributions
whose supports satisfy condition (C) of Definition 2.4. We will say from
now on that such a family of distributions itself satisfies condition (C).

Proposition 2.6 Let (T1,. .. , Tn) be a family of distributions on Rd sat-
isfying condition (C).

1. If tp E 9(Rd), we define a function ip on (Rd)" by

1Y(21...... n) =
p(xl +...+n).

Then 0 E g((Rd)") and Supp(Ti®... ®Tn) n Supprp is compact. The
map defined on 9(Rd) by

(p y (Tl ®... OT., 0)

is a distribution on Rd, denoted T1 * . . *Tn and called the convolution
of T1,..., Tn.

2. For each l > 0, let pi E 99Rd) be such that pi =1 on B(0, l). For every
open bounded set Il in R , there exists a real number l > 0 such that
the restrictions of T1 * * Tn and of (pl,Ti) * .. * (pl,T.) to St coincide
for every l' >_ 1. In particular,

T1 *...*Tn = lim (P1T1)*...*(PIT.)
1-4+00

in !?'(Rd).

In the preceding statement we have pjTj E 4'(R d), so the convolution
(PjTi) * . . * (p1Tn) is defined in the sense of Section 2A. Indeed, the pre-
ceding definition coincides with Definition 2.1 when all distributions have
compact support.
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Proof. Let fZ be a bounded open set in Rd and SP an element of 9(1). We
know that SuppTl ® . ®Tn) = Supp T1 x . . x SuppTn, so

Supp(T1® ®Tn) fl Supp o

By condition (C), we deduce that Supp(T1® ®Tn) fl Supp cp is a compact
subset of (Rd)n contained in a compact Ko that depends only on fl, not on
<p. Thus, (T1®... ®Tn, 0) is well defined and coincides with (Ti ® . ®Tn,

if Ko C (B(0, 1))n. Now,

(T3 ®... ®Tn, (PI ®... ®PI )'P) (P1Ti ®... 0 ATn, 0)

_ ((P1Ti) * ... * (P1T0, <P).

This shows that T1 * ... * Tn is a distribution, and proves the second part
of the proposition as well. 0

We now state the essential properties of the convolution product in
9'(Rd).

Proposition 2.7 1. If (T, S) satisfies condition (C), then T * S = S * T.
2. If (T1i ... , Tn) satisfies (C), then

SuppTl * ... * Tn) C Supp Ti + ... + SuppTn.

3. 6*T =T*6 for allT E 9'(Rd).

Proof. The second part of Proposition 2.6 allows us, by passing to the limit,
to reduce the problem to the case of distributions with compact support,
for which these properties were stated in Proposition 2.2. The reasoning is
straightforward for the proof of parts 1 and 3. We spell it out for part 2.

If (T1,. .. , T,,) satisfies (C), then, by property 6 on page 326, the set
F = Supp Ti + + Supp T,, is closed. On the other hand, if l > 0, we
have Supp(p1Tj) C Supp Tj for every j E {1,...,d} (in the notation of
Proposition 2.6); thus, by Proposition 2.2, Supp((PpTi) * * (ply C
F. We deduce that, for every w E 9(Rd) satisfying Supp V C R \ F,
Proposition 2.6 yields

(Ti * ... * Tn, P) = Jim ((PITT) * ... * (PIT.), cP) = 0.

Therefore Rd \ F is a domain of nullity of T1 * * Tn, which proves part 2
of the proposition. 0

Proposition 2.8 (Continuity) Let (TT)nEN be a sequence in 9'(Rd),
and let T, S belong to 9'(R d). Suppose that the sequence (Tn)nEN converges
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to T in 9'(Rd), that there exists a closed set F m Rd such that SuppT. C F
for all n E N, and that (F, Supp S) satisfies (C). Then

tins Tn*S=T*S
n-++o0

in V (Rd).

Proof. Take- E 9(Rd). As above, write cp(x, y) = {p(z + y). Since the
family (F, Supp S) satisfies (C), the intersection Supp o n (F x Supp S) is
c ompact. Let p E 9(Rd x Rd) satisfy p = 1 on an open set that contains
this compact. Then, by definition,

(Tn * S, gyp) = ((T.)., (Sy,A(x,y)Az,Y)))

Since the map z r- (Sr, p(x, y) O(x, y)) belongs to 9(Rd), we deduce that

lim (T. * S, gyp) = (Ti, (Sy, p(x, y)w(x, y))) = (T * S, gyp),n-,+00

which is the desired result.

Obviously, this result extends to families (Ta), with A -* A0 (where A
runs over a subset of R and Ap E [-oo, ool).

The next proposition explicitly defines the convolution product.

Proposition 2.9 Suppose (T, S) satisfies property (C). Then., for every
w E 9(Rd), the function c on R defined by

Ax) = (Sy, V(z + y))

belongs to of (Rd), the intersection Supprp n Supp T is compact, and

(T * S, co) = (T,,P) = (Ti, (S,. o(x + y))).

Proof. Put K = {(x, y) E SuppT x Supp S : x + y E SuppP}. Then the
support of cp is contained in Supp p -Supp S and (Supp W -Supp S)nSupp T
is the projection of K on the first factor. There ore Supp'P n Supp T is
compact. At the same time, if pi E 9(R d) satisfies pi = I on B(0,1), the
function

Pz x H (Sy, At(x OX + y))

belongs to 9(R d), by Theorem I.I. Therefore 0 is of class C, on B(0,1)
for every 1>0,which istosaythat rpEoi(R ).

At the same time, by Proposition 2.8,

(T * S, ip) = i tim
1,

tim (piT * pr,S, ,p)

tim litn (T*, pi(x)(Sy, y)}).
1'-++oo
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Now, if B(0, P) D Supp W - Supp pei we have

Supp(,p(x + )) C B(0, l') for everyx E Supppp.

Therefore pl, (y),p(x + y) = v(x + y). We deduce that

(T * S, gyp) = e lir(TT, PI(x)(Sv, 4(x + y))).

By definition, if B(0,1) D Supp 0 n Supp T, then

(Ti, Pp (x) (SY, co(x + y))) = (Ti, (Sy, w(x + y))),

which proves the result.

This result can be extended to the case where T E 9'm(Rd), S E
9'n(Rd), and Sp E 9m+n(Rd); see Exercise 7 below.

Corollary 2.10 Let f and .9 be elements of LL(Rd) whose supports sat-
isfy condition (C). Then f and g are convolvable in the sense of the defi-
nition on page 171; moreover f * g E Li0(Rd) and

]f] * [9] _ If * 9]

Proof. For every V E 9(Rd),

Jfiicx - y)I lg(y)I Iw(x)I dxdy = fJIf(x)II9(y)IIjp(x+y)Idxdy

(because Lebesgue measure is invariant under translations); the term on the
right is finite because the supports of f and g satisfy condition (C). This
proves that f and g are convolvable and that f * g E LL(Rd). Moreover,
if Sp E 9(Rd), we have

[f * 9], (p) = /1(z) (Jo(v)(z + y) dy) dx

by Fubini's Theorem, and this quantity equals (V] * [g], jp) by Proposition
2.9.

Proposition 2.11 (Associativity) Let (T1i T2, T3) be a family of distri-
butions on Rd satisfying (C). The distributions (Tl*T2)*T3 andTl*(T2*T3)
are well-defined and coincide.

Proof. By property 1 on page 326, the distributions Tl * T2 and T2 * T3 are
well defined and, by Proposition 2.7,

Supp(Ti*T2) C SuppTj+Supp T2, Supp(T2*T3) C Supp T2+Supp T3.

It follows then from properties 1 and 7 on page 326 that the distributions
(T1 * T2) * T3 and Tl * (T2 * T3) are well defined.
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In view of this we obtain, by applying Proposition 2.8 several times,

(TI * T2) * T3 = lira lira lira (pt,T1 * Pl,T2) * P13T3,
It ++00Iz-i+oo 13-4+00

where, for 1 > 0, we have pi E 9(Rd) and pt = 1 on B(0,1). Because the
convolution product is associative in 4fl(Rd) (Proposition 2.2), we get

(PI,Ti * P12T2) * P13T3 = PhT1 * (A. T2 * PI.T3)

Then it suffices to use Proposition 2.8 several times again to obtain

(T1 * T2) * T3 = Ti * (T2 * T3). 0

The same reasoning shows that, if (T1,. .. , satisfies (C), one can
compute the product T1 * .. * T by grouping the terms in any desired
way. On the contrary, if (T1,T3,T3) does not satisfy (C), the distributions
(Tl * T3) * T3 and Ti * (T2 * T3) may both be defined but not be equal; see
Example 4 below.

Proposition 2.12 If (TI, ... , satisfies condition (C), we have

Dj(T1...*Tn)=T1*...*Tt-I *DjTI,*Tk+, *...*T

for all j E { 1, ... , d} and k E { 1, ... , n}. This remains so if we replace D j
by an arbitrary differential operator of the form P(D).

Proof. Note first that Supp DJTk C Supp Tk, so the two sides in the equal-
ity above are well defined (see property 1 on page 326). By associativity
and commutativity, it suffices to show that, if (T, S) satisfies (C), then
Dj(T * S) = (DjT) * S. We already know this is so whet T and S have
compact support (Proposition 2.3 on page 325). The general case follows by
passing to the limit, using Proposition 2.8 and the continuity in 9'(R") of
the map T H DjT (as well as the formula for the derivative of a product):

D j (T * S) =1,+tim00
l Dj (PIT * PI. S)

= lira lira (PnDjT * pl,S) + lira lira ((Djpi)T * p S)
11 ++0o

=D1T*S,

where the latter equality comes from the fact that limb+,p(Djpl)T = 0.
0

Examples

1. Let P(D) be a linear differential operator with constant coefficients.
Then, for every T E 9'(Rd),

P(D)T = (P(D)b) * T.



3371 9. Convolution of Distributions

2. uppose T E Y(Rd) and a E Rd. The translate of T by a, denoted
y r0T, is the distribution defined by

(raT, cp) _ (T,r-acp) for all W E 9'(Rd),

Ivhere, for every function f, ra f is the translate of f by a: that is,
af (x) = f (x - a) (see page 169). One easily checks, using the in-

ce of Lebesgue measure under translations, that T0[f] = [ra f) if
E L' (Rd).

ne deduces immediately from the definitions that

raT=aa*T.

in particular, if d = 1,

T''=6'*T=Urn
b-6h*T

h-+O h

equation (*) on page 293); equivalently,

T-rhT
T' = lim

h:-;b h

3. IA.0r be the surface measure on the sphere in Rd having center 0 and
us r. In view of Example 1 above, we deduce from Exercise 10 on

lisp 304 that, for every distribution T on Rd

2d/
or,AT = r oli

r2
1 T * sdrd-1 - T .

Thus, if
T-T* ar

Sdrd-1

r every r > 0 (or at least for r sufficiently small), we have AT = 0.
this case we say that T is a harmonic distribution.) The converse
holds; see Exercise 1 on page 344.

4. ne easily checks that (1 * b') * Y = 0 and 1 * (b' * Y) = 1, which shows
at the convolution product is in general not associative.

2C Convolution of a Distribution with a Function
P ition 2.13 Consider T E .9'(Rd) and f E 9'(Rd), and suppose
(T, satisfies condition (C). Then T * f E e(Rd) and, for all x E Rd, the
int ection Supp f (x - - ) n Supp T is compact and

T * f (x) _ (Ty, f (x - y))

Th' remains true if T E )'"(Rd) and f E td""+r(Rd) (with m,r E N),
ex t that in this case T * f E ofr(Rd).
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Proof. For each 1 > 0, we again fix an element pi of 9(Rd) equal to 1
on B(O,Q. Take T E @'m (R

)

and f E g""+r(Rd) (or T E 9'(Rd) and
f E 4'(R )), and suppose that (T, f) satisfies (C). For every compact subset
K of Rd, the set

K= {(x, y) E Supp f x SuppT : x+ y E K}

is a compact subset of Rd x Rd. Denote by K' its projection on the second
factor; then K' is compact in Rd. For every x E K,

Supp(f(x ))nSuppT = (x - Supp f)nSuppT
= {y E SuppT : 3z E Suppf such that y+z = x}
C K'.

Now take 1 > maxZEK !x) + max,EK. lyl. For every x E K, the function
y'-+ pz(y)P,(x - y) equals 1 on an open that contains K', so

(TI, f (x-y)) = (Ty, pi(y)Pt(x - y) f (x - y)) for all x E K. (*)

Since the function (x, y) H Pi (Y) PI (x - y) f (x - y) lies in .9-+r (Rd x Rd)

(or 9(Rd x Rd), as the case may be), we deduce from Theorem 1.1 that the
function x ti (Tv, f (x - y)) is of class Cr (or C°O) in K. This reasoning is
valid for every compact subset K of Rd, so the function belongs to e,- (Rd)
(or 8(Rd)).

Now consider P E 9(Rd). By the definition of the convolution product
in 8'(Rd),

((PIT) * (Pif ), W) = ((pzT )v, ((Ptf )x, co(x + y)))

_ (T., P1(Y) JPi(x)f(x)w(x + y) dx)

= (Tv, Pz(y)I Pt(x-y)f(x-y)w(x)dx

= (w(x) ® Ti,, PI (y)PI(x - y) f (x - y))

=
J

(P(x)(T., P1(y)Pi(x - y)f(x - y)) dz.

Now, applying equality (*) to the compact K = Suppcp, we see that, for
1 large enough,

(Tv, pi(y)Pt(x - y) f (x - y)) = (T, f (x - )) for all x E Supp cp.

Therefore, making I go to infinity, we obtain, by virtue of Proposition 2.6,

(T * f, co) = J W(x) (T, f (x - . )) dx,

which concludes the proof.
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Remarks

1. In particular, consider a complex Radon measure p on Rd and a ma
f E C(Rd) such that (Suppp, Suppf) satisfies (C). Then p* f E C(R )
and

p * AS) = if (x - y) dµ(p) for all x E Rd.

For an extension to the case f E LL(Rd), see Exercise 10 below.
2. Take T E @'(R d) and f E g(Rd) such that (T, f) satisfies (C), and recall

from page 169 the notation f, defined by J(x) = f (-x). By Proposition
2.13, (T, f) is well defined and

(T, J) = T * f (0).

More generally, if T E 9'(Rd), we define a distribution t by

( ', cp) = (T, 0) for all cp E 9(Rd).

Clearly, Supp ' = - Supp T. Therefore, if (T, S) satisfies (C), so does
(fi, 9). Moreover,

(T*S)=fi*$.
This follows immediately from the definition of the convolution product
(Proposition 2.6) and from the obvious fact that (T ® S) = t ®S.
As a consequence, by the associativity of the convolution product, we
conclude that, if (T, S) satisfies (C), we have, for every cp E 9(Rd),

(T*S,(p)T*S*0(0)=T*(S*0)(0)=T*($*Sp)(0)
_ (T, $ * cp) = (Ti, (SY, SP(x + tl))).

We thus recover Proposition 2.9.

We now give an application of Proposition 2.13 to the smoothing of
distributions.

Proposition 2.14 For every open Q in Rd, the set 9(Q) is dense in
In other words, every distribution on Cl is the limit in 9'(f2) of a

sequence of elements of 9(11).

Proof. Let fl be open in Rd, and let (Kf)nEN be a sequence of compact
sets exhausting Cl. For every n E N, take cpn E 9(Q) such that Spn = 1
on K. Also let (Xn)nEN be a smoothing sequence in Rd and (Xp.,)nEN a
subsequence such that Supp cpn + Supp Xy.. C f l for every n E N.

Take T E 9'(Q) and write 0. = (tpnT) * Xp. for every integer n E N.
(The distribution W .T has compact support in Cl and so can be identified
with a distribution on Rd with compact support, as explained on page 283;
see particularly Equation (*) on that page. Thus the convolution product
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(cffT) * xp does make sense.) By Proposition 2.13 and our assumption
on the supports of cp and xp,, we have t,b E 9(&1). We will show that
the sequence (tPn),,EN converges in V(fl) to T, and this will prove the
proposition.

To do this, take ep E 9(f2). By definition,

(0., 0 = (i.'x, sO,a(x)I (T,'pnop *Xp.,))-

Now, for n large enough, Supp(cp * Xpj C Supp cP - Supp xp C K,ti, so
tpn (W * Xp..) ='p * Xp , whence

(0n, SP) = (T, V *

The sequence (gyp * converges to SP in 9(t)), by Proposition 1.2
of page 261 applied to every m E N, since (Xn)nEN is also a smoothing
sequence. Therefore the sequence (?A,)nEN converges to T in 9'(t)). 0
Remark. With the notation used in the preceding proof, we see that, for
a distribution T of order m and any cp E 9f"(t)), we have

lim 1 'p(x)9fin(x) dx = (T, gyp).n-4+o , n

Exercises

1. Compute 8x * 8,,, for x, y E Rd.
2. Let P and Q be polynomials in d variables:

P(x) = a«xa, Q(x) = E bax°, where x =--(XI, . , xd).
IQI<_p Ia1<4

Compute P(D)8 * Q(D)6.
3. Prove assertions 1, 5, 6, and 7 on page 326.
4. Let F be a closed subset of Rd containing 0 and such that AF C F for

allAER+.
a. Show that (F, F) satisfies (C) if and only if F n (-F) = {0}.
b. Suppose that F fl (-F) = {0} and that F + F C F. (For example,

F = (R+)d.) Show that, for every r > 1, the family (F,. .. , F), where
F is repeated r times, satisfies (C).

5. Let L be the function defined on Rd by L(x) = a x with a E Cd (where
the dot represents the canonical scalar product in Cd).
a. If T and S are distributions satisfying (C), prove that

i. L(S * T) = (LS) * T + S * (LT), and
ii. eL(S * T) = (eLS) * (eLT).
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b. Let P be a polynomial in d variables.
i. Find a polynomial Q such that, for every T E 9',

eLP(D)T = Q(D)(e`T).

ii. Let E be a fundamental solution of P(D). Determine a funda-
mental solution of Q(D).

c. Derive from this and from Exercise 4 on page 323 a fundamental
solution of rj f=, (D j - al), where al,. - ., ad E C.

6. a. Let P be a polynomial in d variables and T a distribution with
compact support. Show that T * P is a polynomial.
Hint. Use Exercise 4 on page 303 (or Proposition 2.13).

b. Find the limit in V(Rd) of the sequence of polynomials (P") on Rd
defined by

\nd

\

Ixl2

Jf,

Pn(x) _ 1 n //

c. Deduce that every distribution with compact support is the limit in
9'(Rd) of a sequence of polynomials.

7. Let m,n E N, and consider T E 9'm(Rd) and S E 9'n(Rd) such that
(T, S) satisfies (C). Show that T * S E 9'-+n(Rd) and that

(T * S, (p) = (Ti, (S., w(x + v))) for all V E 9m+"(Rd).

8. Convolution of measures
a. Show that, if p and v are complex Radon measures on Rd whose

supports satisfy (C), the convolution p * v is a Radon measure on
Rd and

(!p * v, rp) = fJco(x + y) dp(x) dv(y) for allrp E C.(Rd).

(The double integral is defined by decomposing p and v into positive
measures: see page 89.)
Hint. See Exercise 7 with m = n = 0.

b. Let p and v be bounded complex Radon measures on Rd. Show that
one can define is * v by the formula of the previous question and that
is * v is a bounded Radon measure.

c. Show that the space Of (Rd), with the convolution product * and
the norm of (Co(Rd))', is a commutative Banach algebra with unity
and that L1(Rd) is a closed subalgebra of it (without unity).

9. a. Show that, if p is a Radon measure on Rd and if (p E CC(Rd), then
p * Wp E C(R

d).

Hint. See the first remark following Proposition 2.13.
b. Conversely, let T be a distribution on Rd such that T * W E C(Rd)

for every W E Cc(Rd).



i. Let (Xn)nEN be a smoothing sequence. Show that the sequence
(T * Xn)nEP1 converges vaguely in the sense of Exercise 6 on
page 91.
Hint. For every W E Qc(Rd),

n
lim J(T * Xn)(x)'(x) dx = T * Sb(0)

H. Deduce that T is a Radon measure.

10. Convolution of a measure with a locally integrable function. Suppose p
is a complex Radon measure on Rd, that f E L' (Rd), and that the
supports of p and f satisfy (C). Show that p * f E LL(Rd) and that

is* f (x) = (f (x - y) dp(y) for almost every x

(where the integral is .delldefined by considering a particular Borel function
representing f).

11. a. Let L be a continuous linear map from 9(Rd) to g(Rd), commuting
with translations. Show that there exists a distribution T E 9'(Rd)
such that

L(W) = T * rp for all rp E 9(Rd).

(You might note that the equality (L(o)) (0) must hold.)
b. Let L be a continuous linear map from .9(R d) to t(Rd) commuting

with each differentiation DI, for 1 < j < d. Show that there exists a
distribution T E !?'(R d) such that

L(W) = T * cp for all V E .9(R d).

Hint. You might show that L commutes with translations, as follows:
Take rp E 9 and u E Rd, and let h be the function defined by

h(x) = (r_.Lrzip)(u) = (Lry(p)(u + x),

where rsO(y) = iP(y - x). Show that all partial derivatives Dfh are
zero. Deduce that h is constant and finish the proof.

3 Applications

3A Primitives and Sobolev's Theorem

The next proposition allows one to recover a distribution with compact
support from its first derivatives. Thus it is a formula for finding a primitive.
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Proposition 3.1 If T E oo'(Rd), then

d

T 3dE(T)*DjT,

=1

where r = IxJ and sd is the area of the unit sphere in Rd.

Proof. Let E be the fundamental solution of the Laplacian given in Theo-
rem 3.2 on page 308. A simple calculation using Theorem 2.12 on page 301
shows that

D;E= 1 Xd for all j E {1,...,d},
9d rd

and this in any dimension d. At the same time, DE * T = T, since DE = 8.
Since T has compact support (so that (E, T) satisfies (C)), we deduce from
Proposition 2.12 that

d d

AE*T=A(E*T)_1: Dj2(E*T)_E(DGE)*(DST).
j=1 j=1

Therefore,
d

T = E (D3E) * (D?T),
i=1

which yields the result. 0
We now introduce the Sobolev spaces W 1,p over Rd, where 1 < p < oo. By

definition, the Sobolev space W1.p(Rd) is the set of elements f E LP(Rd)
for which, for every j E { 1, ... , d}, there exists g? E LP(Rd) such that
Dj [f J = [g; J. In the sequel we will omit the brackets, writing simply D3 f =
9i.

We define on the space WP(Rd) a norm II II 1,p, as follows:

d

11A 1,p = II.flip+E IID;flip for all f E W 1'p(Rd).
.1=1

Here II I1, is the norm on Lp(Rd).

Proposition 3.2 The norm II II 1,p makes W 1 "p(Rd) into a Banach space.

Proof. Let (fn)nEN be a Cauchy sequence in W1.p(Rd). Since the space
LP(Rd) is complete, the sequences (fn), (Dlfn), ..., (Ddfn), which are
clearly Cauchy sequences in LP(Rd), converge in LP(Rd). Let f, 91, ... , 9d
be their limits in Lp(Rd). Since 91(Rd) is contained in LP' (Rd) (where p'
is the exponent conjugate to p), we deduce easily from Holder's inequality
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that the same sequences also converge in 9'(Rd). Since the operators Dj
are continuous in 9'(Rd), we deduce that

Djf =ri1lm Djf =9j for 1 < j <d,
4+00

by the uniqueness of the limit in 9'(R d). This shows that f E W1.P(Rd)
and that the sequence converges to f in W1.1(Rd).

Remark. The space W1.2(Rd) is often denoted by H1(Rd) and given the
equivalent norm II 11H, defined by

d 1/2

U11 H, _ (II/IIs + L IIDjfII2)
j=1

which comes from the scalar product defined by

d

(f 19) =Jf(x)Jdx+JDjf(x)Di9(x)dx.
J=1

Thus H1(Rd) is a Hilbert space.

The next theorem says that, if p is finite, W1.P(Rd) is continuously em-
beddable in some spaces Lr(Rd) with r > p, and that, if d < p < oo, it
is continuously embeddable in Co(Rd) ("continuously embeddable" means
that W 1,P is contained in each of the spaces considered and that the cor-
responding canonical injections are continuous).

Theorem 3.3 (Sobolev Injection Theorem) Suppose that p E [1,00]
and that r satisfies

- r E [p, pol (d-p)) if p < d,
- r E [p, oo) if p = d,
- rE [p,oo] ifp>d.

Then W 1.P(Rd) C Lr(Rd) and there exists C,.,,, >- 0 such that

11f 11,- < Cr,PIlfII1,p for all f E W1.P(Rd).

Moreover, if d < p < oo, every element of W 1,P(Rd) has a representative in
Co(Rd). Finally, every element in W""OO(Rd) has a uniformly continuous
representative.

Proof. Let y E 9(Rd) be such that ry = 1 in a neighborhood of 0. Since
Ixjr dl < ri-d, we have 7xjr-d E L°(Rd) for every a > 1 such that
a(d - 1) < d (see Proposition 2.13 on page 302), and so also for every
a E [1, d/(d-1)).
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Let E be the fundamental solution of the Laplacian given by Theorem
3.2 on page 308. Since yE has compact support (so that (T, yE) satisfies
(C)), we deduce from Proposition 2.12 that

d d

T * 0(yE) = 0(T * -yE) = E D f (T * ryE) = E(DjT) * Ds(7E).
J=1 j=1

Now,
d

0(yE) = (Ay)E + 2 E D jyDjE + yAE (*)
J-1

(Leibniz's formula). Since AE = 6, we get ryAE = y(0)6 = b. Since E is
of class COD on R \ {0} and since and Djy vanish near 0, we deduce
from (*) that

n = n(yE) - S E -9(Rd).

Similarly, we can show that, for each j E (1,... , d}, there exists an pj E
9(Rd) such that

We then get

D J = rij
1 xj

T=-T*r1+DtT*nj+sdF (DjT)*ly! (**)j=1 j=1

Suppose T E W 1,P(Rd). Then T, D1T, ..., DdT E LP and we can
apply Young's inequality Theorem 3.4 on page 172) to equation (**). We
conclude that T E Lr(R ) for every r such that 1/p + 1/a - 1 = 1/r,
where 1 < a < p/(p-1) and a < d/(d-1). If p < d, we must have 1 <
a < d/(d-1), so that r E [p, pd/(d-p)) (with pd/(d-p) = oo if p = d). If
p > d, we must have 1 < a < p/(p-1), so that r E [p, oo]. In particular,
we can take a = p/(p-1) = p', the conjugate exponent of p. The last part
of the theorem then follows from Proposition 3.2 on page 171. Finally, the
existence of constants Cr,,, also follows from equation (**) and Young's
inequality. 0

3B Regularity
Let fZ be open in Rd. If P E [1, oo], denote by Li(ft) the set of equivalence
classes (with respect to Lebesgue measure) of functions on fi such that
1Kf E LP(l) for every compact K in it.

Theorem 3.4 Let T be a distribution on an open set 12 in Rd. Suppose
that p E [1, oo] and that D IT E L,a(SZ) for every j E { 1, ... , d}.
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- If p< d, then T E (0) for every r E [p, pd/(d-p)).
- If p > d, then T E C(Sl).

If p = d, we interpret pd/(d-p) as oo.

Proof. Let K be a compact subset of fl and K' a compact subset of Sl
whose interior contains K. Let cp E 9(0) be such that cp = 1 on K'.
Put a = d(K, Sl\K') > 0 and let y E 9(Rd) be such that y = 1 in a
neighborhood of 0 and Supp y C B(0, 0/2). If E is the fundamental solution
of the Laplacian provided by Theorem 3.2 on page 308, we saw in the proof
of Theorem 3.3 that there exist n, nl, ... , nd E 9(Rd) such that

(y ) = n + 6, D yE + 1y
xj

for all E 1 d}.

Using formula (**) from the previous page and replacing T by cpT (consid-
ered as a distribution on Rd: see page 283), we obtain

d

vT = -(WT) * n+>2Dj(4PT) * n;
J=1

1 d 1 d
+ gd >((D,ico)T) *

(yxjX)
+ sd >(cOD1T) *

J=1 j=1

By Proposition 2.13, (cT) * n and the Di(WT) * nf, for every j, belong
to 9(Rd). At the same time,

Supp1 (Dfcp)T * (yLj) I C (Rd\k') + B(0, a/2) c (Rd \ K).

Finally, cpD,,T E LP(Rd). We then apply Young's inequality (Theorem 3.4
on page 172) as in the proof of Theorem 3.3. We conclude that

RK = Rd \ ((Rd\k,) + B(0, 0/2))

is an open set satisfying K C S1K C K' and that the restriction of T to 11K
belongs to Lr(S1K) if p:5 d and r E [p, pd/(p-d)) and to C(OK) if p > d.
Since this happens for every compact K, the theorem is proved.

Hypoelliptic Differential Operators

We now state another fairly general regularity criterion. We start with
a definition: If P is a polynomial over C, the linear differential operator
P(D) is said to be hypoelliptic if, for every open subset f) of Rd and every
T E 9'(c),

P(D)T E 6(1l) = T E 8(Sl).
In particular, if P(D) is hypoelliptic, every solution in 9'(1l) of the partial
differential equation P(D)T = 0 is a function of class Cu', and so also a
solution in the ordinary sense.
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Theorem 3.5 Any differential operator with constant coefficients having
a fundamental solution whose restriction to Rd \ {0} is a function of class
C°O is hypoelliptic.

Proof. The proof is analogous to that of Theorem 3.4. Let f2 be an open
subset of R and let K, K' be compact subsets of fl such that K C K'.
Write D = d(K, Rd\K'). Let cp E 9(fl) have the value 1 on K' and let
y E 9(Rd) have the value 1 on a neighborhood of 0; assume also that
Supp y c B(0, */2). Finally, set

nK = Rd \ ((Rd \ K') + B(0, 0/2)).

Then
KCOKCK'.

Consider a differential operator P(D) having a fundamental solution E of
class C°° on Rd \ {0}. Let T E 9'(f2) be such that f = P(D)T E B(A).
By Leibniz's formula,

P(D)(yE) = b + q with tJ E 9(R d)

and

P(D) (,pT) = cof + S with SuppS C (Rd
Then

P(D)(yE * coT) = cpT +,pT * ti = yE *,pf + yE * S,

that is,
VT =-(cpT)*tl+7E*cof+yE*S.

Since t7 and V f belong to 9(Rd), we deduce from Proposition 2.13 that
-(VT)*tf+yE*,pf E 9(Rd). On the other hand, Supp(yE*S) C Rd\f2K.
We deduce that the restriction of T to fZK is of class Coo. Since K is
arbitrary and f2K D K, this implies that T E 9(0). 0

Examples

The operators A, if, 8/81 (see Chapter 8), as well as &k for k > 2 (see
Exercise 4 on page 313), are hypoelliptic. In particular, a harmonic distri-
bution Ton Cl is a harmonic function in the classical sense; a distribution T
on an open subset Cl of R2 such that 8T/81= 0 is a holomorphic function
on Cl.

If d = 1, every operator is hypoelliptic.
Conversely, note that, if E is -a fundamental solution of a hypoelliptic

operator P(D), the restriction E of E to Rd \ {0} is of class Coo (since
P(D)E = 0 E B(Rd \ {0})). This allows one to show that, for example, the
operator

02 02

8x2 8y2

on R2 is not hypoelliptic (see Exercise 6 on page 314).
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3C Fundamental solutions and Partial Differential Equations
The existence of a fundamental solution for a differential operator allows
one to find solutions of the corresponding partial differential equation if
the right-hand side is an operator with compact support.

Theorem 3.6 Consider a linear differential operator P(D) with cons-
tant coefficients, a fundamental solution E of P(D), and S E e'(Rd). The
distribution To = E*S satisfies P(D)To = S. Moreover, the set of solutions
T E -9'(Rd) of the equation

P(D)T = S

equals {T = To + U : U E .9'(R d) such that P(D)U = 0}.

Proof. If S E 8'(Rd), Proposition 2.12 yields

P(D)(E*S) = P(D)E*S= 6*S=S.

Set U = T - E * S. Clearly, P(D)T = S if and only if P(D)U = 0. 0

3D The Algebra .11'.

We now consider the case d = 1 and write

.9+= {TE9'(R):SuppTCR+}.

Because (R+, .... R+) satisfies condition (C), the convolution of two ele-
ments of -9+ is always defined and this operation makes -9+ into a com-
mutative algebra with unity, by Propositions 2.7 and 2.11. We will apply
this fact to the resolution of linear differential equations with constant co-
efficients and continuous right-hand side.

Let P(D) = ao + a 1 D + + a,,, Dm be a linear differential operator with
constant coefficients such that m > 1 and a,,, # 0. We know from Theo-
rem 3.1 on page 307 that P(D) has a fundamental solution E = (1/am)Yf,
where f is the solution on R of the differential equation P(D) f = 0 satisfy-
ing the conditions f (0) = f'(0) = ... = f (m-2)(0) = 0 and f(m-1)(0) = 1.
In particular, E E .9+. It follows that P(D)b is invertible in the algebra
!9+ and that its (necessarily unique) inverse is E. Thus, for every S E -+,
there exists a unique distribution T E 2+ such that P(D)T = S: namely,
T = E * S. If we take, for example, O E C(R+) (and extend it to R- with
the value 0), and if we put

1
x

J f (x - y)V)(y) dy forx > 0,

0 forx < 0,



344 9. Convolution of Distributions

then, in the sense of distributions,

P(D)cp = b.

On the other hand, we know from the theory of differential equations that
the equation P(D)g = t(i on R+ has a unique solution g that satisfies the
conditions g(O) = g'(0) = ... = g("`-1)(O) = 0. Extending g to (-oo,0]
with the value 0, we get as well P(D)g = sG in the sense of distributions.
We deduce, by identification, that

g(x) = -' f f (x - y),O(y) dy for all x > 0.

Applying a similar reasoning to the case x < 0, we finally see that, for every
i' 1E C(R), the unique solution g of the equation P(D)g = t/i satisfying
g(0)=g'(0)_...=g(ii-1)(0)=0 is given by

0g(x) = Mn11
J

x f (x - y)0(y) dy for all x E R.

Exercises

1. Harmonic functions and the mean value property. This exercise is a
continuation of Exercise 3 on page 312, whose notation we keep.
a. Show that E - EP E 9'(Rd) for every p > 0.
b. Deduce that, for every T E 9'(R d),

(E-Ep)*AT=T-T* 1 lop. (*)edp_

Show that, in particular, any harmonic function f on Rd (that is,
any f E 82(R2) satisfying A f = 0 in the ordinary sense) satisfies
the following mean value property:

f = f *
1

op forallp>0.t8pd-

(This is converse to the property of Example 3 on page 332.)
c. Applying (*) to the distribution T = E, prove that

1_top.Ep=E*
8df

2. Subharmonic distributions. A distribution is said to be subharmonic if
its Laplacian is a positive distribution. (For example, if f is a harmonic
real-valued function, If I defines a subharmonic distribution: see Exercise
11 on page 304.)
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a. Characterize subharmonic distributions on R.
Hint. See Exercise 12 on page 304.

b. Show that a distribution T on Rd is subharmonic if and only if, for
every p > 0,

T * 1 aP -Tsdpd_1

is a positive distribution.
Hint. Sufficiency follows from Example 3 on page 332 and necessity
from equation (*) in Exercise 1.

c. Show that every subharmonic distribution can be represented by a
locally integrable function.
Hint. Revisit the proof of Theorem 3.5 and use Exercise 10 on
page 337.

d. Let f and g be locally integrable real functions on Rd, and assume
f and g are subharmonic (this means that the distributions [ f ] and
[g] are subharmonic). Show that sup(f, g) is subharmonic.

e. Recall that a function f from Rd to [-oo, oo] is said to be upper
semicontinuous if, for every a E R, the set if < a} is open. Recall
also that the pointwise limit of a decreasing sequence of continu-
ous real functions is an upper semicontinuous function with values
in [-oo, +oo). Show that, if f is a subharmonic real-valued func-
tion, there exists an upper semicontinuous function f with values in
[-oo, +oo) such that f = f almost everywhere.
Hint. Take again the proof of Theorem 3.5 and note that there exists
a decreasing sequence in Cc(Rd) that converges pointwise to -yE.

3. Harmonic functions and the mean value property, continued. We wish
to characterize harmonicity on an open set by the mean value property.
We fix an open subset fl of Rd and f E C(1), and keep the notation of
Exercise 1.
a. Suppose that f is a harmonic function on ft. Take X E Sl and p E

(0, d(x, Rd\fl)). Take also e > 0 such that e < d(x, Rd\ft) - p.
Denote by w an element of CC(1l) such that V = 1 on B(x, p + e),
and identify Wf with an element of CC(Rd).
i. Show that (E - EP) * A(cp f) = 0 on B(x, e).

ii. Deduce that

cof = w.f * sd pd_ lap

on B(x,e). (Use part b of Exercise 1.)
iii. Show that f satisfies the following mean value property: For all

x E Sl and all p E (0, d(x, Rd\fl)), we have

f(x) = sdpd_ 1Jf(x_Y)dcp(v).If

Hint. Use the first remark after Proposition 2.13 on page 332.
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b. Conversely, suppose that, for all x E A and all p E (0, d(x, Rd\f2)),
we have

f (x) = 8dpd_1 Jf(z_w)&r9(v).

Let K and K' be compact subsets of fl such that K c k,, and take
wPECC(f!)such that co=1on K'.
I. Show that

1
Wf =cof* 8dpdo-1 P

on K if 0 < p < d(K, (Rd\k')). Deduce that Af = 0 in the
interior of K.
Hint. See Example 3 on page 332.

H. Show that in this case f is a harmonic function on Cl.
c. Show likewise that f is subharmonic (see Exercise 2) if and only if,

for all x E Cl and all p E (0, d(x, Rd\fl)),

A z) < 8d pd_ 1 Jf(x - y) do (y)

4. Show that, for every p E [1,+oo), the space WI.P(Rd) is separable and
9(Rd) is dense in Wl,n(Rd).
Hint. For separability, note that W1.P(Rd) is isometric to a subspace of
(LP(Rd))d+1

5. a. Show that, if f E W I, 1(R), there exists an element g E L1(R) such
that f g(x) dx = 0 and fzg(t) dt = f (x) almost everywhere.
Deduce that f has a representative in C0(R). (By Theorem 3.3, this
is still true if f E for 1 < p < oo.)

b. Show that there exists f E W1'2(R2) such that f 0 L-(R2).
Hint. Take f with compact support and equal to log(log(1/r)) In a
neighborhood of 0.

6. Let T be a distribution on an open Cl of Rd. Suppose that DPT E
LI (it) for every multiindex p of length d + 1. Show that T E C(C).
(Apply Theorem 3.4 d+1 times.) Deduce that if DPT E LL(A) for
every multiindex p E Nd, then T E

7. Let F be a closed subset of Rd such that

AF c F for all A E R+, F n(-F) = {0}, F+ F c F.

Write 9F. = {T E 9'(Rd) : SuppT c F}. Show that the convolution
product makes 9F into a commutative algebra with unity. (See Exer-
cise 4 on page 335.)

8. Denote by Y(d) the function on Rd defined by

Y(d)(x) = Y(x1)...Y(xd).

Also set F = (R+)d, a closed set.
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a. I. Show that Ytal is a fundamental solution of the operator Du ... Dd
and that the support of Y(d) is contained in F.

Ii. Let 9'F be the space defined in Exercise 7. Show that, if S E 9'F,
there exists a unique T E 9'F such that D1... DdT = S.

b. I. Let T be a distribution on Rd supported within a + F, where
a E Rd. Show that the convolution Y(d) * T is well defined, that
Supp(Y('0 * T) C a + F and that
A. if T E L' (Rd), then Y(d) s T E C(Rd);
B. if T is a Radon measure, then Y(d) * T E L(Rd) ;
C. if T is of order at most m with m >- 1, then Y(d) * T is a

distribution of order at most m -1.
ii. If r E N', set Yidl = y(d) * s Y(d) (y(d) appears r times).

Show that, if T is a distribution with compact support of order
at most m (with m > 0), then y(d)+2 * T E C(Rd).

c. Let T be a distribution on a n open 92 of Rd such that, for every
p E Nd,

maxpj<1 DDTELL(0).
t<j<d

Show that T E C(f2).
Hint. Take rp E 9(f1). Show that D1... Dd(coT) E L' (Rd) and use
parts a-i and b-i.

d. Let T be a distribution on an open A in Rd. Suppose that T and its
derivatives of all orders have order at most m. Show that T E 9(fl).
Hint. Start by showing that T E C(fl) using parts a-i and b-ii; then
consider the derivatives of T.

9. Let J be a nonempty subset of { 1, ... , d} and set Di = fljEJ D j. Show
that Dj is not hypoelliptic if d > 2.
Hint. Use Exercise 4 on page 323.

10. Local and global structures of a distribution.
a. Let T be a distribution with compact support of order k on Rd.

Show that there exists a continuous function f such that

Da+2JfJ = T.

Hint. Use Exercise 4 on page 323 or Exercise 8b-ii above.
b. Let T be a distribution on Rd. Show that, for every compact subset K

of Rd, there exists a continuous function f and a multundex p E Nd
such that T coincides with DPJ f J on 9K .

c. Let T be a distribution on R . Show that there exists a sequence
(pn)nEN of multiindices and a sequence (fn)nEN of continuous func-
tions on Rd such that
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Hint. Let be a locally finite covering of Rd by bounded
open sets and take a C°° partition of unity (son) subordinate to this
covering (see Exercise 14 on page 267). Apply the result of the first
part of this exercise to the distributions W.T.

11. We work in Rd, where d > 3.
a. Show that the only harmonic function that tends to 0 at infinity is

the zero function.
Hint. Use the mean value property from Exercise 1.

b. Take sp E L0 (Rd) (this space was defined in Exercise 19 on page 159)
and let E be the fundamental solution of A. Show that the Poisson
equation

Of = SP

has a unique solution in C0(Rd), namely f = E * W. Show that f
is of class C' on Rd and harmonic on Rd \ Supp sp. Show that if, in
addition, Dlp,... , Ddsp E LOO(Rd), then sp E CO(Rd), f E 12(Rd),
and A f = sp in the ordinary sense.

12. Solve in 9+ the following equation in T:

(Y(x) sin x) * T = S,

where S E 9+. Under what condition on S is the distribution T defined
by a locally integrable function?
Hint. Find a differential operator of which Y(x) sinx is a fundamental
solution.



10

The Laplacian on an Open Set

Conventions. In this whole chapter, 0 will denote an open subset of Rd.
The elements of L' (SZ) will always be identified with the distributions
they define on fl. Recall that, for every p E 11, oo), LP(SZ) C LL(ft) C
9'(fl). Differentiation operators should always be understood in the sense
of distributions, unless otherwise stated.

If f E LL(11), we denote by Vf the gradient of f:

Vf=(Dif,...,Ddf)

If all derivatives Dl f, ... , Ddf belong to LL (f1), we also write

Iofl =
( d IDjfI2)1/2

j1
If x = (x1, ... , xd) and y = (Y1'...' yd) are elements of Cd, we write

d

Z ,I=>xjyj.
j=1

1 The spaces H1(1) and HI (SZ)

The Sobolev spaces W1.P(Rd) over Rd and in particular the space H1 (Rd)
WI,2(Rd), were defined in Chapter 9, on page 338. One can define in an
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analogous way the same spaces over an arbitrary open set fl. In particular,
H'(0) is the space consisting of elements f E L2(fl) all of whose first
derivatives Dl f, ... , Ddf belong to L2(0). This space is given the scalar
product (- , - )H' (n) defined by

U I9)H- (n) = U I9)L2(n)+E(Djf I Dj9)L-(n) =1 f9dx+l
J-1 n n

The norms on the spaces L2(f)) and H'(fl) will be denoted by II IIL2(n)

and II II 11m' if there is no danger of
confusion.

Imitating the proof of Proposition 3.2 on page 338 we obtain this result:

Proposition 1.1 The scalar product ( , )H'(n) makes Hl(fl) into a Hit-
bent space.

In dimension d = 1, the Sobolev space HI(fl) has certain particular
properties.

Proposition 1.2 Suppose that 0 = (a, b), with -oo <- a < b < +oo.
Every element f of H'(fl) has a continuous representative on f) (stilt de-
noted by f) that has finite limits at a and b. Moreover, if a = -oo, we have

f (x) = 0; similarly, if b = +oo, we have limx ,b f (x) = 0.

Proof. By Theorem 2.8 on page 297, every element of Hl (11) has a contin-
uous representative f satisfying, for a E Cl,

f (t) = f (a) +
J

t
f(u) du for all t E Cl. (*)

a

If, for example, b < +oo, then L2((a,b)) C L'((a,b)), so f' E L1((a,b)).
Therefore f does have a finite limit at b. Similarly, f certainly has a finite
limit at a if a > -oo.

Now suppose that b = +oo. Multiplying equality (*) by f'(t) and inte-
grating the resulting equality between a and x, we conclude that, if x > a,

L
fx rx t

f (t)f'(t) dt = f (a) (f (x) - f (a)) + J `J f '(u) du) f' (t) dt.
a a a

By Fubini's Theorem,
rx rt r r

f'(u) du) f' (t) dt = /J 1 f'(u) f'(t) du dt
a \ a J (a,x]2

f'(u)f'(t) du dt
= (f(x) -

f (a))2_
2 2

We deduce that

f2(x) = f2(a) +21 f(t)f'(t)dt. (**)
a
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Since the two functions f and f' belong to Le(ft), their product f f' belongs
to L'(0) by the Schwarz inequality; therefore, by (**), f 2 has a finite limit
at +oo. Since f' E L' (f)), this limit can only be 0. The reasoning is similar
if a = -oo. 0

Remarks

1. If ft = R, we recover the inclusion H1 (R) C Co(R), which is a particular
case of the Sobolev Injection Theorem (Theorem 3.3 on page 339).

2. This result does not generalize to the case d > 2: if d > 2, there exist
elements of H'(R") having no continuous representative (see Exercise 5
on page 346).

When Cl is a bounded interval in R, an interesting denseness result holds.

Proposition 1.3 Suppose that Cl = (a, b), with -oo < a < b < +oo.
Then C'(3l) is a dense subspace of H'(fl).

Proof. Clearly C'([a,b]) is a subspace of H'(ft). Consider an element of
H' (ft), having a continuous representative f. By the preceding proposition
(and Theorem 2.8 on page 297), f has a continuous extension to [a, b] and

f (x) = f (a) +
J

f(t) dt for au x E [a, b].

Since C,(ft) is dense in L2(ft), the derivative f' is the limit in L2(ft) of a
sequence ((pn)nEN of elements of CC(ft). For each n E N, set

fn (x) = f (a) + I , (t) dt.
a

{P

Clearly fn E C' ([a, b]) and, for every x E [a, b],

If(x)-fn(x)1 </ If'(t)-(pn(t)Idt<

apt'-2nhIt2,

by the Schwarz inequality. Thus (fn)nEN is a sequence in C'([a,b]) that
converges uniformly, and so in Le(ft), to the element f. Since, in addition,
fn = cpn for every n, which implies that the sequence (f.) EN converges to
f' in Le(ft), we deduce that (fn)nEN converges to f in H'(fl). 0

The Space Ho (ft)

This denseness theorem of CI(II) in H'(f]) remains valid if Cl is abounded
open subset of Rd under an additional regularity assumption (for exam-
pie, that Cl be "of class C'"). We will not use this result; instead we will
introduce a subspace of H' (Cl) in which (Cl)9is dense, namely the space
Ho (ft), which is by definition the closure of 9(f)) in H'(0). The space
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Ho (fl), with the scalar product ( , )Hi , is a Hilbert space by construction,
being a closed subspace of the Hilbert space H' (fZ). In the case d = 1, the
relationship between Ho (1) and H( Q) is simple:

Proposition 1.4 If Q = (a, b), with -oo < a < b < +oo, then

HO '(0) = H' (Q) n Co(i).

In other words, Ho (f') consists of those elements of H' (Il) whose con-
tinuous representative tends to 0 at the boundary of fl in [-oo, +oo).

Proof. Consider an element of Ho (f') having f as its continuous represen-
tative and let (cpn)fEN be a sequence in 2(fl) that converges to f in H'(I).
Since the sequence (cpn)nEN converges to f in L2(fZ), it has a subsequence
that converges to f almost everywhere. Replacing it by a subsequence if
necessary, we can suppose that there is a point a E fZ such that the se-
quence (Wn(a))fEN converges to f(a). Then, by the proof of Proposition
1.2 (and particularly by Equation (**), with f replaced by f - con), we
have, for every x E f2,

fx

If(x)-cn(x)I2 < If(a)-con(a)I2+2I If (t) - con(t)I If'(t) -W,(t)I dt

which proves, by the Schwarz inequality, that the sequence (con)nEN con-
verges uniformly to f on (Z, and so that f E Co(fi).

At the same time, since C,(!Z) is dense in L2(11) by Proposition 2.6
on page 107, since -9(1) is dense in CC(fl) = 90(fl) by Corollary 1.3 on
page 262, and since there is a continuous injection from CC(O) into L2(1)
(so that convergence in CC(Q) implies convergence in L2(fI)), we deduce
that the space 2(1l) is dense in L2(fl).

Now consider f E H' (fZ)nC0(fZ). First suppose that -oo < a < b < +00.
Then, for every x E [a, b], we have f (x) = fa f'(t) dt and, in particular,
fa f'(t) dt = 0. Let (rbn)nEN be a sequence in.9(1l) that tends to f' in L2(fl),
and set An = fa On(t)dt for n E N. Then

b

f'(t) dt = 0.lim An = fa
n-)+oo

W.W = j(Pn(t) -x

We then check that cpn E 9(0), that the sequence (cpn)nEN converges to
f' in L2(fZ), and that (cpn)nEN converges to f uniformly and so in L2(1).
Thus f E HO (0), which proves the desired result if f2 is bounded.

Finally, suppose that, for example, a = -oo and b < +oo. Let (pn)nEN
be a sequence in 8((-oo, b)) such that, for every n E N, 0 < Pn < 1,
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pn = 1 on (-n, b), pn = 0 on (-oo, -n-2J, and lprn 1 < 1. By the Dominated
Convergence Theorem, we see that, on the one hand, the sequence (pnf )neN
converges to f in L2(f1) and that, on the other, since (pnf )' = p'n f +
pnf', the sequence ((pn f)')nEN tends to f' in L2(f1). Therefore (pnf )nEN
converges to f in Ha(ft). Moreover, since (pn f)(b) = 0 and (pn f)(x) = 0 for
x:5 -n-2, we can, by the result of the preceding paragraph, approximate
each pnf by elements of 9((-n-2, b)) in HI((-n-2,b)), and so also in
HI(St). Thus the result is proved in this case. The cases a > -oo, b = +oo,
and a = -oo, b = +oo are analogous. 0

Proposition 1.2 says that HI (R) c Co(R), so Proposition 1.4 implies that
HI (R) = Ho (R). The next proposition shows that this remains true in all
dimensions. It is also clear from Proposition 1.4 that Ha(ft) 36 H0(fl) if Cl is
an interval distinct from R. Intuitively, if Cl is a bounded open set in Rd, the
elements of Ha (ft) are, as in the case d = 1, those elements of Ha(ft) that
"vanish on the boundary of Cl". In dimension 1, this expression makes sense
since the elements of Ha(ft) have a continuous representative. In higher
dimensions, the elements of H1(C) are only defined almost everywhere,
so talking about their value on the boundary of Cl, which generally has
measure zero, makes no sense a priori. Nonetheless, it is possible, if Cl
is sufficiently regular, to define the value of an element of Ha(ft) at the
boundary of Cl. We will not do this; in this regard see Exercises 16, 17, and
18 below.

Proposition 1.5 The spaces HI(Rd) and H0(Rd) coincide.

Proof. We must show that !?(R d) is dense in HI (Rd). Take f E 9(Rd) such
that t(0) = 1. For each n E N', put {n(x) = C(x/n). If f E HI(Rd), then
(nf E HI(Rd) and, by the Dominated Convergence Theorem, the sequence
(4nf)nEN converges to f in L2(Rd). Moreover, for each j E (1,...,d},

Dj(Cnf)(x) = G(x)Djf(x) + I (Dif)(n)f(x),

so, again by Dominated Convergence, the sequence (D j (tn f ))nEN converges
to Djf in L2(Rd). Therefore the sequence (Snf)nEN converges to f in
HI (Rd). Consequently, the space HH (R" consisting of elements of HI (Rd)
with compact support is dense in HI(R ).

Now take f E H' (Rd) and let (Xn)TEN be a smoothing sequence. Then,
for every n E N, the convolution f * Xn is a function of class C°° on Rd (this
follows from the theorems on differentiation under the summation sign)
whose support is contained in Supp f +Supp Xn. Therefore f * Xn E 9(Rd).
On the other hand, by Proposition 3.7 on page 174, the sequence (Xn * f )nEN
converges to f in L2(Rd). Since, in addition, Dj(f * Xn) = (Djf) * Xn (by
Corollary 2.10 on page 330 and Proposition 2.12 on page 331), we again
deduce from Proposition 3.7 on page 174 that the sequence (D j (f * Xn))nEN
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converges to D j f in L' (Rd). It follows that (f * Xn)*EN converges to f in
Hi(Rd), which concludes the proof. 0

The next inequality, applicable when fZ is bounded, will play an impor-
tant role later.

Proposition 1.6 (Poincard inequality) If fl is a bounded open set in
Rd (more generally, if one of the projections of (2 on the coordinate axes
is bounded), there exists a constant C > 0 depending only on Cl and such
that

IIUIIL2(fl) < C IIIVuIIIL'(n) for all u E Ho(Ii).

If f2 is bounded, we can take C = d(fl).

Proof. By denseness, we just have to show the inequality for every u E
9(f2), that is, for every u E .9(R d) such that Suppu C Cl. Suppose for
example that the projection on Cl onto the first factor is bounded, so there
exist real numbers A < B such that Cl C [A, BJ x R4-1. Since u is of class
C1

u(x) = /A 1 8 (t, x2i ... , xd) dt for all x E Cl.

It follows, by the Schwarz inequality, that

ra 2

Iu(x)I2<(B-A)J I81149U I (t,xs...... d)dt for all xEft.

Integrating this inequality over (A, B) x Rd-1 gives

IIuIIL2 < (B - A)' IID1uIIL2.

Since ID1ul < IVul, the result is proved. 0
It follows in particular that, if Cl is a bounded open set, nonzero constant

functions belong to H1(ft) but not to H01(f2); thus H01(f2) 96 H'(C).
The Poincare inequality can be interpreted in the following way:

Corollary 1.7 Suppose that Cl is a bounded open set (more generally, that
one of the coordinate projections of Cl is bounded). The map

u - Hull H;(n) = II Vul11L'(n)

is a Hilbert norm on Ho(fl) equivalent to the norm II 11H-(n)

Proof. If C is the constant that appears in the Poincare inequality, we have,
for every u E Ha (fl),

IIIvuIIIL2(n) <_ IIUIIL3(n)+IllvullIL2(n) = IlullH(sl) <_ (1+C')IllvuIIJ2(n),
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which proves the equivalence between the two norms. At the same time,
we see that the norm IIuIIH;(n) is defined by the scalar product

d

(u I v)H;(n) = (Dfu I Djv)L.(n). 0
J-1

Proposition 1.8 For f E Ho (f2), set

If on f2,
{o onRd\l.

Then f E HI(Rd) and the map that takes f to f is an isometry between
(Ho(A), II-IIH*(n)) and (H'(Rd), II.IIHI(Rd))-

Proof. If f E 9(fl), we clearly have f E 9(Rd) and Di f = DJ 1 for
j E {1,.. . , d}. Consequently, the map f s-+ f is an isometry from 9(fl),
with the norm II . IIHI(a), into HI(Rd). Since H1(Rd) is complete, the ex-
tension theorem says that this isometry extends to an isometry f H f from
(Ho'(fl), II' IIHI(n)) to (H'(Rd), II - IIHI(Rd)). Now, convergence in H' im-
plies convergence in L2, so, if (Wn)nEN is a sequence in 9(f12 converging to
f in Ho(f2), the sequence converges to f in L2(R ). Since it also
converges to % in H' (Rd) (by the definition of f) and so also in L2(Rd), it
follows that f = f , which concludes the proof. O

Lemma 1.9 For every u E Hl(Rd) and every h E Rd,

Ilmu - uIIL2 <- IIIvutIIL2 IhI

Proof. By Proposition 1.5, the space 9(R4) is dense in H' (Rd). Thus it
suffices to prove the property for u E 9(Rd). If u E 9(Rd), we have

u(x - h) - u(x) f Vu(x - th) h dt;l
0

thus, by the Schwarz inequality,

1(vuI2 (x - th) dt.I mu(x) - u(x)
I2 < IhI'

100

Now it suffices to integrate this inequality over Rd using the fact that
Lebesgue measure is invariant under translations. 0

We now derive from the preceding results an important compactness
theorem.

Theorem 1.10 (R.ellich) If 11 is a bounded open set, the canonical in-
jection u -+ u from H01(11) into L2(fl) is a compact operator.
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In other words, every bounded sequence in Ha (iZ) has a convergent sub-
sequence in L2(1Z).

Proof. Since the map u -+ urn from L2(Rd) to L2(f2) is clearly continuous,
it suffices to prove that the map f '-+ f from Ho (fl) to L2 (Rd) is a compact
operator (where f is as in Proposition 1.8). Let B be the closed unit ball
in Ho (fl), and put b = (f-:I, E B}. By Proposition 1.8, B is contained in
the closed unit ball of Hi (R . We must show that b is relatively compact
in L2(Rd). To do this, we use the criterion provided by Theorem 3.8 on
page 175 in the case P = 2.

Properties i and ii in the statement of that theorem are clearly satisfied
since, for every f E B, we have IIf I I L2 < 1 and

If(x)I2dx=0
{IxI>R}

for every R > 0 such that 52 C B(0, R). On the other hand, B is contained
in the closed unit ball of H1(Rd); thus, by Lemma 1.9,

117W I - Al V < IhI for all f E B and h E Rd,

which proves property iii.

Exercises

Here fl is still an open subset of Rd.

1. Show that, if u E H' (f2) and v E Ho (ft), then

(Dju I v)L2 = -(u l D fv)L2 for j E {1, ... , d}.

2. Let (un)aEN be a sequence in HI(O) that converges in L2(fl) to an
element u E L2(f2) and such that, for each j E (1,...,d), the sequence
(Djun)fEN converges in L2(fI) to an element of E L2(fl). Show that
u E H'(fl), that (un)nEN converges to u in Hl(fl), and that of = Dju
for each j E {1,...,d}.
Hint. Show that (un)nEN is a Cauchy sequence in H1(fl).

3. Let (un)nEN be a bounded sequence in Hl(f2) that converges in L2(l)
to u E L2(ft). Show that u E H1(fl) and that there exists a subsequence
(un,,)kEN such that

lim =u
k-++oo k + 1

in H'(ft).
Hint. Use the Banach-Saks Theorem (Exercise 16 on page 121).
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4. Let H,'(St) be the set of elements of H"(9) having compact support.
Prove that H, '(fl) is a dense subspace of Ho (St).

5. Show that the canonical injection from H'(Rd) to L2(Rd) is not com-
pact.

6. Suppose u E H' (St). Show that there exists a sequence (un)nEN in l(12)
that converges to u in L2 (St) and is such that, for every j E {1,.. . , d},
the sequence converges to Dju in L oC(12). (Convergence in
Li x(12) was defined in Exercise 19 on page 159.)

7. Suppose that 2 = (a, b) is a bounded interval in R. Show that the best
constant in the Poincare inequality is (b-a)/ir.
Hint. Use Wirtinger's inequality, Exercise 16d on page 137.

8. The Meyers -Serrin Theorem. Let 5t be an open subset of Rd. Show that
8(12) n H' (St) is dense in H' (12).
Hint. Let (Uj)jEN be a family of relatively compact open subsets of Sl
covering St and such that 1o = 0 and 1j C flj+H for every j E N.
Let (Wj) EN be a partition of unity relative to the family of open sets
(1j+2 \ 12j)jEN (see Exercise 14 on page 267). Finally, take a smoothing
sequence (Xn )nEN on Rd, an element u E H' (St), and E > 0. Show that,
for every j E N, there exists an integer nj E N such that

SuPP(Xn, *(Wju)) C 12j+2\Stj and <E2-j-1

Then consider v = E EN Xn, * (Wju).
9. The Poincarg inequality in H'(SZ). (This result generalizes Exercise 16b

on page 137.) Suppose it is a bounded and convex open set in Rd.
a. Show that the relation

Tf(x)= fIx_YiI_dfY)dY

defines a continuous linear operator T from L2(11) to L2(12).
Hint. Use the Young inequality in Rd (see page 172 and also Exercise
9b on page 182).

1
b. Take u E C' (1)nL' (1), and put m(u) = u(x) dx, b = d(S).

volSIShow that, for every x E S,
1 d

Iu(x) - m(u)I <
volit

d fix - yi'-d dy.

Hint. Prove, then integrate with respect to y, the equality

u(x) - u(y) = J0 1x
yI ' Vu (x + t y - x

Deduce that

I u(x) - m(u)d < n Vu (x + t- dt dz,
vol 0 J{=ERd:I:I<6}

(f0+
1 \ 1z1) I )
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where Vu is extended with the value 0 outside it. Then use Theorem
3.9 on page 74 twice.

c. Deduce the existence of a constant C > 0 such that

Ilu - m(u)IIL,(n) < CIIIVUIIIL,(n) for all u E H'(ft). (*)

Hint. Show this inequality for every u E C' (it) fl Hl (Cl), then argue
by denseness, using Exercise 8.

d. Show that the norm I I defined on Hl (ft) by

lul = I

fu(x)dxl + IIIVUIIIL2(n)

is equivalent to the norm II 11 H' (a)

10. All functions considered here are real-valued.
a. Suppose u E H1(1l). Show that there exists a sequence (un)nEN in

9(11) that converges to u almost everywhere and in Le(ft) and is such
that, for every j E (1,.. ., d}, the sequence (D converges to
Dju in LL(ft) (see Exercise 6).

b. Let G E C'(R) satisfy

G(0) = 0, IG'(t)I < M for all t E R.

Show that, if u E HI (0), then Go u E HI (fl) and

D1(Gou)=(G'ou)Dju

for every j E {1,...,d}. In particular, IIGouIIH< <- MIIuflHi.
Hint. Take an approximating sequence (un),,EN of u as in the first
part of this exercise. Show that (G o un)nEN converges to G o u in
Le(ft) and, for every j E {1, ... , d}, the sequence whose general term
is D j (G o un) = (G' o un) D jun converges to (G' o u) D ju in L 12.,,(O).

c. Show that, if G is as above and u E HQ (i)), then G o u E Ho (f2).
Hint. Consider again the preceding proof and notice that, if v E
9(11), then G o v E H,,' (1l) (see exercise 4).

11. All functions considered here are real-valued.
a. Show that, for every n E N, there exists a function G E 9(R) such

that IG;,(t)I < 1 for all t E R and

Gn(t)
1/2n if t<-1/n,

t ift>0.
b. Suppose U E Hi(lt). Show that u+ E Hl(fl) and that Dj(u+) _

1{u>o)Dju for every j E {1,...,d}.
Hint. Compute the limits in Le(ft) of the sequence (Gn o u)nEN and
of the sequences (D1(Gn o for j E { 1, ... , d}, using Exercise
10 for the latter. Then use Exercise 2.
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c. Show that, if u E He(ft),

1{,o}Dju = 0 for j E {1,...,d}.

Hint. Compute D j (u- ).
d. Let u E Ho (ft). Show that u+ E Ho (0).

Hint. Let (Wn)nEN be a sequence in .9(f1) converging to u in Ho (f1)
and almost everywhere. Then consider the sequence (Gn o W,,)nEN

e. Assume either that u E H' (f1) or that u E Ho (f1). Show that Jul E
He(ft) or Jul E Ha(ft), respectively, and that

DjluI = l{, >o}Dju -1{ ,<o}Dju for j E {1,...,d}.

Deduce that
IIIuIIIHI = IIuoH,.

f. Show that Hl (f1) and Ho (ft) are lattices.
12. All functions considered here are real-valued.

a. Let K be a compact subset of R of Lebesgue measure zero.
1. Show that there exists a sequence ((MnEN in CS(R) such that,

for every n E N, we have 0!5 ypn < 1, Wn >- (Pn+i and

Um WO) = 1K (t) for t E R.

U. Take u E Hl(fl) and suppose $n(x) = fo sn(t)dt. Show that,
for every n E N, 6n o u E He(ft), (f,, o u)fEN converges to 0 in
He(ft), and

l{,.EK}Dju = 0 for j E {1,...,d}.

(This generalizes Exercise llc.)
Hint. Use Exercises 2 and 10.

b. Show that, if A is a Borel set in R with measure zero and u E He(ft),
we have Vu = 0 almost everywhere on u- I (A).
Hint. Use the fact that the Radon measure p defined by

f dp=J(W ou)IVu12dx for allPEC.(R)

Is regular (see Exercise 5 on page 77).
13. All functions considered here are real-valued.

a. Let G : R -> R be a Lipschitz function with Lipschitz constant M
and satisfying G(O) = 0. Show that, if u E Hl ((1), then Gou E Ht (f1)
and IIGo uIIHI < MIIuIIH*.
Hint. Approximate G by functions

Gn(x) = n
:+(1/n)

G(t) dt
- `1/n

G(t) dt
JI: JJo

and use Exercises 3 and 10.



360 1 10. The Laplacian on an Open Set

14 Under the same assumptions on G, prove that u E Ho (f') implies
GouEH'(11).
Hint. Show first that u E 9(fl) implies G o u E Ha (fl) (see Exer-
cise 4). Then use Exercise 3.

14. ow that, if f and g belong to H1(it) n L' (R), so does the product
f, and that

Dj(fg) = gDjf + fDjg for j E {1,...,d}.

S ow that if, in addition, f and g belong to Ho (fl), so does f g.
nt. Using Exercise 10, prove first that, if h E H'(fl) fl L°°(fl), then
E HI(fl) and Dj(h2) = 2hDjh (and similarly with H0(iZ) instead of
(Il))

15. S w that every positive element of Ho (11) is the limit in H1(fl) of a
uence of positive elements of 9(1l).

If u is a positive element of Ho (12), there exists a sequence
o real-valued elements of 9(0) that converges to u in H'(fl) and al-

everywhere. Show that there exists a sequence (GII)IIEN in X(R)
s that, for every n E N, we have 0 < G;, < 1 and

G,i(t) =
(0 ift<0,
t-1/n ift>2/n.

S w that the sequence (Gn o lPn)nEN converges to u in H1(fl) (use
ercise 11c).

16. wish to show that C0(I)f1H1(fl) C H01(0). Take U E Co (f))nH' (fl)
let W be a function of class Cl on R such that cp = 0 on [-1,1] and
1 on (-oo, -2) U (2, +oo).

a For n E N*, set un = W(nu)u. Show that un E H1(Q) fl Co(il).
Hint. Use Exercise 10.

b Show that the sequence (un)nEN converges to u in H'(il).
Hint. Use Exercise 2.

c Complete the proof.
Hint. Use Exercise 4.

( to that this exercise yields another proof of the result in the one-
di ensional case.)

17. umethat d=2 and that

fl={xER2:0<IxI<1}.

W be an element of 9(R) such that W(t) = 1 if Iti < 1/2 and W(t) = 0
if I>1.FornEN'andxEfl,put

un(x) = V(21xI)
log\n Tx1/
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and u(z) = Sp(2IxJ). Show that U. E 9(0) for every n E N' and that
the sequence (un)nEN converges to u in Hi(ll). Deduce that

Ho (D) n C(1Z) 5t Co(D)

18. The trace theorem in a half-space. Assume that d > 2 and that D =
(0, +oo) x Rd-i.

a. Show that the space 9(l) consisting of functions of class C°° on 11
with compact support, is dense in Hi(ll).
Hint. Argue as in the proof of Proposition 1.5, choosing a smoothing
sequence (Xn)nEN consisting of elements of

b. Take u e !9(11). Show that, for every x E Rd-I,

Iu(0,x)I2 <
J+oo

IU(xi,x)Is+Iox,
(x1,2)12) dxi.

Deduce that
IIu(0, .)IIL2(Rd_l) s II'IIH'(l).

c. Show that there exists a unique continuous linear map -yo from Hi (fl)
to L2(Rd-1) such that

ryou = u(0, ) for all u E 9(il).

d. Show that

,you = u(0, - ) for all u E C(?I) fl Hi(ll).

Hint. Show that every element of C(il)f1H1(Il) can be approximated
in C(3I) and in H1(I)) by a sequence of elements of 9(O).

e. Green's formula in H1 (f)). Suppose u,v E Hi(IZ). Show that

(v, Dju)La(n) = -(Djv, u)L2(fl) for all j E {2, ... , d}

and that

(V,D1u)L2(n) = -(Dlv,u)La(n) -

Hint. Use the first part of the exercise.
f. I. If u E HI (O), denote by u the extension of u to Rd having the

value 0 outside fl. Show that, for every u E ker yo,

8u 8u
for j E {1, ... , d},

8xj 8xj

and so that u E Hi(Rd).
Hint. Use the preceding question.
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ii. Show that the space 2(il) is dense in keryo (with respect to the
norm 11 II 11(0) ).

g. Deduce from these results that Ho (Cl) = ker yo and that

Ho (il) n C(S1) = (u E C(il) n H1(il) : u(0, - ) = 0}.

(In this sense, we can say that Ho (il) consists of those elements of
H1(Sl) that vanish on the boundary of Cl.)

19. The maximum principle for the Laplacian in H1 (it). Suppose that Cl is
bounded. All functions considered will be real-valued.
If u E H1 (Q), we say that u < 0 on the boundary 8il of it if u+ E Ho '(0).
(It was proved in Exercise 10 that u+ E H1(fl) for every u E H1(il).)
a. Show that, if u E C(i2) n H1(Q) and u(x) < 0 for every x E Oil, then

u < 0 on Oil in the sense defined above.
Hint. Use Exercise 16.

b. Take U E H1(C). Show that, if Du > 0 (that is, if Au is a positive
distribution), we have

u(x) supu for almost every x E Cl,
- an

where supon u = inf{l E R : u - l < 0 on Oil}.
Hint. Take I E R such that v = (u - I)+ E Ho (il). Using Exercise
l0showthat Vv=Don{u-l<0}and Vv=Vuon{u-l>0}.
Deduce that

Il

1vv1II
L2(n) = fn Vu(x) . Vv(x) dx < 0

(using Exercise 15) and conclude the proof
c. Take U E H1(il). Show that Du = 0 implies

inf u < u(x) < sup u for almost every x E Cl,
an

where infan u = - supon (-u).
d. Show that these results remain true if we replace the assumptions

Au > 0 and Au = 0 by, respectively, Yu > 0 and Yu = 0, where
2 is an elliptic homogeneous operator of order 2, that is, a linear
operator on H 1(il) of the form

Yu = E s
i
(a,i_u),

1<i,j<d

with ai,j E LR (fl) for 1 < i, j < d, satisfying the condition that
there exists a > 0 such that, for almost every x E

E aia(x)tgj > ajtJ2 for all l; E Rd.
1 <i,j<d
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20. Suppose that ft is a bounded interval in R. Show that the canonical
injection of Hl(fl) in C(fl) is a compact operator. (This is a stronger
result than Rellich's Theorem in this case.)
Hint. Show that, if u E HI (ft) and x, y E ft,

Iu(x) - u(y)I <- Is - v1112 IIUIIHI.

(In other words, H'(ft) injects continuously in C'12(if), the Space of
Holder functions of order 1/2 on fl; see Exercise 5 on page 45.) Then
use Ascoli's Theorem or Exercise 5 on page 45.

21. Suppose that Cl is a bounded open subset of Rd. Let (un)fEN be a se-
quence in Ho (Cl). Suppose that the sequence (un)nEN converges weakly
in Le(ft) and that, for every j E (1, ... , d}, the sequence (bun/8--j)-EN
is bounded in L2 (fl). Show that the sequence (un)neN converges strongly
in Le(ft).
Hint. By Exercise 10a on page 120, the sequence (un)iEN is bounded
in Ho (ft). Then use Reilich's Theorem and Exercise 12 on page 121.

2 The Dirichlet Problem

We consider a bounded open subset Cl of Rd. The space HJ(ft) is from now
on given the Hilbert space structure defined by the scalar product

d

r Vu Vvdx.(u I v)H; = (Diu I Djv)L2(n) = In

We denote by II . thethe norm associated with this scalar product.
If f EL 2(fl), a solution of the Dirichlet problem on Cl with right-

hand side f is, by definition, an element u of HH(ft) such that

Au = f.

Classically, to impose a Dirichlet condition on the solution (in the ordi-
nary sense) of a partial differential equation over Cl means stipulating the
value of the solution on the boundary of Cl. In the present context, the
condition u E H01(11) is of this type, since it amounts, in a sense already
discussed, to requiring that u `banish on the boundary of ft".

The next proposition gives the so-called variational formulation of
the Dirichlet problem, which underlies the Galerkin-type algorithms for
numerical solution of the Dirichlet problem (see Exercise 1 on page 116).

Proposition 2.1 If f E Le(ft), these statements are equivalent:

-uEHp(fl)and Au =f.
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- u E Ho(fl) and (u I v)Hi = -(f I v)L2 for all v E Ho(fl).

Proof If f E L2(ft) and u E Ho(ft), we have the following chain of equiv-
alences:

Au = f,-:--* (Au, (p) _ (f I so)L2 for all W E 9(ft)
d

>(D ju I Dj(P)L2 _ -(f I 'P)L2 for all V E 9(fl)
j-i
(u I W)H; _ -(f I W)L2 for all W E 9(fl).

The result follows because 9(fl) is dense in Ho(fl). O

This will allow us, in particular, to prove the existence and uniqueness
of the solution of the Dirichlet problem.

Theorem 2.2 For every f E L2(f)), the Dirichlet problem on it with
right-hand side f has a unique solution u E Ho (fl). The operator

&-' : L2(fl) -+ Ho(l)
f - u

thus defined is continuous and has norm at most C, the constant that ap-
pears in the Poincarg inequality (Proposition 1.6).

Proof. If f E L2(f1),

((f I v)L2I < CIIf IIL2 IIvIIHa for all v E Ho(n),

where C is the constant in the Poincar6 inequality. Thus, the map L : v H
(v I &2 is a continuous linear form on Ha (f)) of norm at most C IIf II La
Therefore the existence and uniqueness of the solution u, together with the
inequality IIUIIHH < CIIfIIL2, follow immediately (in view of the preceding
proposition) from an application of Riesz's Theorem (page 111) to the
Hilbert space H0101). 0

The Dirichlet problem can also be interpreted as a minimization problem:

Proposition 2.3 Let f E L2(fl). For every v E Hol (11), put

Jf(v) =
s

(IIvtIH;)2 + Re(f I v)L2.

These statements are equivalent:

- u E Ho (f)) and 0u = f.
- u E H'(fl) and Jf(u) = mine Ho(n) JI(v)
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Proof. Suppose h E Ho (fl). Then

Jf(u + h) = JI(u) + Re((f I h)L- + (u I h)Hi) +
z

(UhHIHo)2.

Therefore, by Proposition 2.1, Au = f implies that

Jf(u+h) = Jf(u)+.1(IIhIIHo)2 for all h E Ho(n).

Thus JJ attains its minimum on Ho (fl) at u and only at u.

We now study the spectral properties of the Laplacian on Sl with "Dirich-
let conditions". More precisely, we will say that a complex number A is
an eigenvalue of the Dirichlet Laplacian if there exists a nonzero
u E Ha (fl) such that Du = Au. Such functions u are the elgenfunc-
tions associated with the eigenvalue A. The eigenspace associated with A
is the space of u E H01(fl) such that Au = Au.

Proposition 2.4 The operator

T : Ho (1) -+ Ho (fl)
v '-+ u such that Au = -v

is an injective, compact, positive selfadjoint operator on Ho (E2).

Proof. Let J : is y u be the canonical injection from Ho(st) into L2(Sl).
Then T = -0-1 o J, so, by Proposition 1.2 on page 215, T is compact,
because 0-1 is continuous (Theorem 2.2) and J is compact (Rellich's The-
orem, page 355).

On the other hand, if u E Ho (St) and Tu = w, we have Ow = -u.
Therefore, by Proposition 2.1,

(Tu I v) H,,. = (u IV) L2 for all u, v E Ho (fl),

which easily implies that T is selfadjoint, positive, and injective.

It follows that we can apply to the operator T the results established in
Chapter 6 concerning the spectrum of compact selfadjoint operators. Now,
if A E C and U E Ho (11) is nonzero, we have

Du = Au e T(Au) = -u t (A # 0 and Tu =

It follows that A is an eigenvalue of the Dirichlet Laplacian if and only if
A # 0 and -1/A is an eigenvalue of T, and that in this case the associated
eigenfunctions are the same. Since T is not of finite rank (its image clearly
contains we deduce from Theorem 2.2 on page 235 and Corollary
2.7 on page 238 the following properties:
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Theorem 2.5 1. The set of eigenvalues of Dirichlet Laplacian on fI forms
asequence 0>Ao>Al >...>A,> tendingto -oo.

2. The eigenspace associated with each eigenvalue A has finite dimension
da.

3. Let (An)nEN be the decreasing sequence of eigenvalues of the Dirichlet
Laplacian, where each eigenvalue A is repeated da times. There exists a
Hilbert basis (un)nEN of Ho (f2) such that

Dun = Anon for all n E N.

Remarks

1. By Proposition 2.1,

(Un I V)HH = -µn(Un I V42 for all nENandvEHo(f2).

In particular, (IIunIIL2)2 = -1/A,. and (un I u,n)L2 = 0 if n 36 m. At
the same time, the space 9(f2) is dense in L2(f2) (see the proof of
Proposition 1.4), and a fortiori Ho (0) is dense in L2(f2). Since conver-
gence in Ho (f2) implies convergence in L2(11), the family (un), which is
fundamental in H01(f2), is also fundamental in the closure of Hl(f2) in
L2(f)), namely in L2(f)). It follows that the sequence (%/ un1fEN is
a Hilbert basis for L2(ft).

2. For every n E N, we have un E B(f2) (see Exercise 8). Therefore un
satisfies the equation Dun = Anon in the ordinary sense.

Using the sequence (un)nEN and the eigenvalues (An)nEN, we will now
describe the solutions of various partial differential problems with Dirichlet
conditions.

2A The Dirachlet Problem

Proposition 2.6 Suppose f E L2(fl). The solution u of the Dirichlet
problem on f2 with right-hand side f is given by

+00

U = - 1 (f I un)L3 un,
n=0

the series being convergent in H01(11).

Proof. By remark 1 above, (/un)nEN is a Hilbert basis of L2(fl), so

+00

f=-F, An(fIUn)L2Un,
n=0
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with convergence in L2(fl). In particular,

+M

(IIf IIL9)2 = E -pn I (f I un)L2
12

< +oo
n=0

and, since the sequence (-Ecn)nEN is increasing and thus bounded below
by-po>0,

+oo

I(f Iun)L3I' <+00.
n=0

Since the sequence (u,i)fEN is a Hilbert basis for Ho ((l), it follows that the
series

+00

V = - >(f I un)L2 un
n=0

converges in Hj(fl). Since convergence in Ha(ft) implies convergence in
L2(fl), which in turn implies convergence in 9'(Il), we deduce that, in
g(n),

+oo

n=0

(by the definition of the sequence pn). Likewise

+00

n=0

with convergence in 9'(f2). It follows that AV = f and so that v = u, the
solution of the Dirichiet problem on n with right-hand side f . D

2B The Heat Problem
Proposition 2.7 Suppose f E Ho (fl). There exists a unique function u
f om (0, +oo) to Ho (f2), differentiable in (0, +oo) and satisfying the follow-
ing conditions:

- u(t) = Au(t) for all t > 0.
- lim=o u(t) = f in Ho (f2).

This function u is given by

+oo

u(t)=>(fIun)Hoe`'"un forallt>0,
n=0

the series being convergent in Ho (fl). If we write u(t) (x) = u(t, x), we have

dC 8-
82 )

8t
E

8x2
U= O in 9'((0, +oo) x ST).

f=1
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e function u is called the solution of the heat problem on SZ with
ini al data f and Dirichiet conditions.

P Suppose u satisfies the conditions of the statement. Then

I (IIu(t)IIL2)2 = 2Re(u'(t) I u(t))L2 = -2(IIu(t)IIHo)2,

by toposition 2.1. It follows that the function t H (IIu(t)IIL2)2 is decreas-
ing d, in particular, that

II u(t)II L2 <_ IIfIIL' for all t > 0.

Co uently, if f = 0, we have u(t) = 0 for all t > 0, which proves
uni eness.

arding existence, it suffices to check that the given formula is good.
T ' is easy if we take into account that /pre < po < 0 for every n. 0I
2C The Wave Problem
Pr osition 2.8 Suppose f, g E Ha (11). There exists at most one func-
tion from R to Ho (St), twice differentiable on R and satisfying these
co tions:

- (t) = Au(t) for all t E R.
- 0) = f and u'(0) = g.

If sequences (µn (f I un)HH )nEN and ( Un (g I un)HI )nEN lie
suc a function u exists and is given by

in 82,

+00

u( = F, (COS (V -An t)(f I un)H. + 1µn sin(V -)Z t)(9 I un)H., Jun
n=0

for l t E R, the series being convergent in HH(ff).

Let u satisfy the conditions of the statement. By Proposition 2.1,

7, (IIu (t)IILa)2 = 2Re(u"(t) I u'(t))L3
d

-2Re(u(t) I u'(t))H. = dt (IIu(t)IIHo)2

It fo ws that the expression (IIu'(t) II L2) 2 + (Ilu(t) II Ho)2 does not depend
on t. particular, if f = g = 0, we have u(t) = 0 for t E R, which proves
uniq ness.

T proof of existence, as in the previous example, is straightforward. 0
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Here again, if we write u(t)(z) = u(t, z), we conclude that, under the as-
sumptions made in the existence part of Proposition 2.8, the given function
u is a solution in 9'(R x Rd) of the equation

d02

j=1
j )

Note that (") is the sequence of fundamental frequencies of the
wave u2a ^e d
Exercises

Unless otherwise stated, Cl is a bounded open subset of Rd.

1. A generitized Dirichlet problem
a. Suppose f, gl, ... , gd are elements of L2(0). Show that there exists

a unique element u in Ho (f2) such that

d

Au = f + Dfgf.
f=!

Show that, in addition,

d

II IVUIIIL2(n) <- CIIJIIL2(n) + L II9fIIL3(n),
f-1

where C is the constant that appears in the Poincarb inequality for
the open set Cl.

b. Suppose f E L2(f)) and g E H'(f2). Show that there exists a unique
element u of HI(O) such that

Au= f and u-gEHo(f2).

Show that, in addition,

II loin IIL2(n) <- C II f IIL2(n) + 2IIIVgI IIL3(n)-

2. The Sturm-Liouville problem. AU functions considered here will be real-
valued. Let a, b E R be such that a < b and let p and q be elements
of LOO ((a, b)). Suppose that q > 0 and that there exists a real number
a > 0 such that p > a.
a. Show that, for every f E L2((a,b)), the equation

_(pu')' + qu = f (*)
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has a unique solution u in Ho ((a, b)), and that this solution mini-
mizes over Ho ((a, b)) the functional

'JIM =
2 Jn

b)(pv'2 +gv2)(x) dx - f
a

b)(f v)(x) dx.

Hint. Apply the Lax-Milgram Theorem (Exercise 1 on page 116) to
the space Ho ((a, b)) and to/the bilinear form

a(u, v) = (pu' I V') V + (qu I v) L.. (**)

b. Show that the linear operator T from Ho ((a, b)) to Ho ((a, b)) that
maps each f E H0((a,b)) to the corresponding solution of (*) is a
compact, injective, positive selfadjoint operator on the Hilbert space
(H'((a,b)), a), where a is defined by (**).

c. Show that there exists a Hilbert basis (en)nEN of (Ho ((a, b)), a) and
an increasing sequence ('n)nEN of positive real numbers with limit
+oo such that

-(pen)' + qen = anen for all n E N.

Show that the family (v'e,i)LEN is a Hilbert basis for L2((a,b)).
d. Show that, if p E C' ([a, bJ) and q E C([a, b] ), we have en E C2 ([a, b] )

for every n E N. Compare Exercise 13 on page 224.
e. Let ',Vp be the set of p-dimensional subspaces of Ho ((a, b)). Show that

b

(pf'2+gf2)dxJAn= min max
WEY'n+, JEW\(0) jb

f2 dz.

(see Exercise 11 on page 247). Deduce that, if a, /3, -y, and 6 are real
numbers satisfying 0<a<p<[3and 0<ry<q<6,we have, for
every n E N,

ry+a n
7r(n+1)12

Ab-a J ( b-a
Show that, in particular,

f (pf12+gf2)dx
a

J EHo{(a,b))\{O) jf2dx

and that this generalizes Wirtinger's inequality (Exercise 16d on
page 137).
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3. A more general elliptic problem of order 2. Take elements aij (for. 1 <
i, j < d) and c in LR (fl), with c < 0. Let 2 be the differential operator
defined by

Yu = F,
i ka'J8 j u) Cit.

1<i,j<d

Suppose that there exists a > 0 such that, for almost every x E 12,

ai.j(x)&tj ? Cg12 for all t E Rd.
1 <i,j<d

(In this case the operator 2 is said to be strongly elliptic or uni-
formly elliptic.) We now restrict ourselves to real-valued functions.
a. Show that 2 is well defined as a linear operator from Ho (12) to

9'(12y
b. Show that, for every f E L2(12), there exists a unique u E Ho(11)

such that Yu = f .
Hint. Apply the Lax-Milgram Theorem (Exercise 1 on page 116) to
the space Ho (12) and to the bilinear form

a(v, w) = >2 (ai,jD jv I Dsw)L3 - (CV I w)La. (*)
1<i,j<d

c. Show that, if the matrix (ai, j (x))i, j is symmetric, the solution u E
Ho (12) of the equation Yu = f is characterized by a certain mini-
mization property.

d. Suppose that the matrix (a{, j (x))i, j is symmetric. Show that the op-
erator T on Ho (Cl) that maps f E Ho (12) to the element T f = u E
Ho (12) such that -2u = f is a compact, injective, positive selfad-
joint operator on the Hilbert space (Ho(12), a), where a is defined
by (*). Derive the existence of a Hilbert basis (un),,EN of (Ho (Cl), a)
and of a decreasing sequence (p,,)fEN of negative real numbers with
limit -oo such that tun = pnun for every n E N. Deduce, in par-
ticular, that Propositions 2.6, 2.7, and 2.8 extend immediately to the
case where the Laplacian is replaced by the operator 2 and ( I )Ho
is replaced by a.

e. Let Y'p be the set of p-dimensional subspaces of Ho (12). Show that,
for every n E N,

a(f, f)
-Jtn = Wmin+. Iwho} IIf II La

(see Exercise 11 on page 247). Deduce that

(-µn) > a(-pn(S2)) for all n E N,

where (ftn(12))nEN is the sequence of eigenvalues of the Dirichlet
Laplacian on Cl.
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4. A mixed problem. We maintain the hypotheses and notation of Exer-
cise 3. Take elements bi E Lr(fl) and let b be the bilinear form on
H'(0) defined by

d

b(u'v) = a(u'v) + fa > b{(x) 8 (x)v(x) dx.

If f E L2(f)), we consider the following problem (P) j: Determine an
element u E HJ (n) such that

b(u, v) = for all v E H(fl).

a. Interpret (P) f as a partial differential problem in HJ(fl).
b. I. Show that, for any e > 0 and any real numbers a and

a13 < a2 + jN

ii. Derive the existence of a real number B > 0 such that, for every
e>0and uEHo(A),

d

F,b{(z)
8u (x)u(x)

dx > -2eIIIVU1112.A - ZEIIUII 2inlIn {l OT,

c. Deduce from this that, if the diameter of Cl is small enough, the form
b is coercive in H01(11), so the problem (P) f has a unique solution
for every f E L2(11).

(We make no assumptions on the diameter of it in the remainder of the
exercise.)
d. Show that there exists a constant Ao > 0 such that the bilinear form

defined by

(u, v) '--> b(% v) + Ao I u(x)v(x) dx
In

is coercive on Ho (fl).
e. Take f E L2(fl). Explain why there is a unique u E HH(fl) such that

for every v E Ho (f)),

b(u, v) + A0 in u(x)v(x) dx = fn f (x)v(x) dx.

hen prove that the operator T from L2(il) to L2(0) defined byT
T f = u is compact.

f. Let E be the vector space of solutions of (P)o.
I. Show that E is finite-dimensional.
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H. Show that (P)1 has a unique solution for every element f E
L2(fl) if and only if E = {0}.

5. Neumann boundary conditions in dimension 1. We restrict ourselves to
real-valued functions. Suppose that fl = (a, b).
a. Show that, for every f E L2(fl), there exists a unique u E H'(fl)

such that
r

J b(u'v')(x)dx+1.(uv)(x)dx = f f(x)v(x)dx for all v E H'(fl).
a a

Hint. Use the Riesz Theorem in the Hilbert space H'(fl).
b. Show that u is the element of H'(0) that minimizes the functional

Jj(v) = 1
lb

(VI2 +v2)(x) dx - l (fv)(x) dx.
2 a

c. Check that, in this case, U' E HI (fl) and

-u"+u= f.
d. Deduce that, for every v E H' (fl),b

u'(x)v'(x) dx = u'(b)v(b) - u'(a)v(a) -1 b u"(x)v(x) dx
a a

(you might use Exercise 14 on page 360); then deduce that

u'(a) = u'(b) = 0.

e. Show that, for every function f E L2((I), there exists a unique func-
tion u E C' ([a, b]) such that

-u" + u = f, u(a) = u(b) = 0,

and that if, in addition, f E C((a, b)), then u E C2((a, b)).
6. A variational problem with obstacles. We restrict ourselves to real-valued

functions. Fix f E L2(fl) and let x be a function on Cl such that the set

C = {u E Ho (fl) : u > X almost everywhere}

is nonempty.
a. Show that there exists a unique u E C minimizing over C the func-

tional J defined by

+(f Iv)L2 for all vEC.J(v)= sIIVI12HO,

Show that u is also characterized by the following conditions:

UEC,

f(v-u)dx forafvEC.L
(s)

Hint. Use the Lions-Stampacchia Theorem, Exercise 2 on page 117.
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b. Now suppose that X E C(SI), u E C(fl), and u satisfies (*). Show
that u satisfies

u E C,

-Du + f is a positive distribution on fI, (**)

-Du+f =0onw={u>X}.
Hint. Prove first the following facts:
i. IfW E9(f))and<p>0,then u+WEC.

H. If <p E 9(w), there exists q > 0 such that u + tip E C for every
t E (-n, n)

c. Suppose that u,X E C(f2) and that, Dju E L2(1)) for every j E
{1,... , d}. Show that, if u satisfies (**), then u satisfies (*).

d. Suppose in this part that u and X belong to Co(fl) and that u satisfies
(**). Let V E C.
1. Show that

Vu(x) V (v - u)+(x) dx > - J f (x) (v - u)+(x) dx

(see Exercise 15 on page 360).
H. Show that

in
Vu V(u - v)+dx = f Vu V(u - v)+dx,

W

in f (u - v)+dx = / f (u - v)+dx.
W

Hint. For the first equality, use Exercise 11 on page 358.
Hi. For n > 1, let w = (u - v - (1/n))+. Show that wn belongs to

Ho (fl) and that the support of w,, is contained in the set (u-X >
1/n}. Deduce that E H,1 (w), then that (u-v)jW E Ho (w)
(see Exercise 4 on page 357).

iv. Deduce thatl

I Vu V(u - v)+dx = - / f (u - v)+dx.
W

v. Conclude from the preceding results that u satisfies (*).
e. Suppose again that u and X belong to Co(f)) and that u satisfies

(**). Let v E C be such that -AV + f is a positive distribution
on fl. Show that v > u. (Therefore, under the assumptions stated,
u is also characterized as the smallest element v E C such that
-AV +f>0.)
Hint. Show that i(u - v) is a positive distribution on w and that
u - v < 0 on 8w in the sense of Exercise 19 on page 362. Then deduce
from this exercise that v > u on w. Conclude the proof.
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7. Let Cl, and Cl2 be disjoint open sets in Rd and put ft = ill u ill. De-
termine the eigenvalues (A,, (il)) and the eigenfunctions of the Dirichiet
Laplacian on Cl as a function of the eigenvalues (4(f12)) and
of the eigenfunctions of the Dirichlet Laplacian on Cl, and 112-

S. Let (u-),.EN be the Hilbert basis of HJ(Cl) defined in Theorem 2.5, con-
sisting of eigenfunctions of the Dirichlet Laplacian. Let (p,.),.EN be the
corresponding sequence of eigenvalues. Denote by Ek the fundamental
solution of the operator Ak defined in Exercise 4 on page 313. We recall
that, if 2k > d + 1, Ek belongs to 82k-d-I (Rd). Moreover, we denote
by u8 the function u extended to Rd with the value 0 outside Cl.
a. Show that, if ?T denotes the restriction of (p,.)kEk * u8 to fl, then

Ak(u,. - 7-k) = 0

in
b. Using the fact that All is hypoelliptic, prove that u,. E g2k-d-1(Cl)

if 2k > d + 1. Deduce that u,. E 8(fl).
9. Let Ao be the first eigenvalue of the Dirichlet Laplacian that is, the

smallest eigenvalue in absolute value). Show that -1/Ao is the best
possible constant C in the Poincark inequality.

10. We retain the notation of Theorem 2.5.
a. Show that

11SO11L2(n) < - II'PJIM.(n) for all W E HO, (0)

and that equality takes place if and only if

Hint. Use the Bessel equality in the space Ho (fl) with the basis
(u,,),.EN and in L2(f)) with the basis (/ul)IEN

b. Let E be the Ao-eigenspace of the Dirichlet Laplacian on Cl:

E = {cp E H0(C) : Ocp = Aoco}.

Let ER be the set of real-valued elements of E. Show that IcpI E ER
for every cp E ER.
Hint. Use Exercise lie on page 359.

c. Recall from Exercise 8 that the elements of E belong to 8(Sl). Take
cp E ER and let x E fl be such that V(x) = 0. Show that, if p <
d(x, Rd\fl), then

f I cp(x -1!)I dail(y) = 0,

where ail is the surface measure on the sphere of center 0 and radius
p in Rd. Deduce that cp = 0 on B(x, d(x, Rd\Sl)).
Hint. Show that A(IcpI) < 0 and use Exercise 3c on page 346.
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d. Suppose that f) is connected. Show that a nonzero element of E
cannot vanish anywhere on fl. Deduce that E has dimension 1 and
that E is generated by a strictly positive function on fl.
Show that no eigenfunction of the Dirichlet Laplacian associated
with an eigenvalue other than Ao can have positive values every-
where.

e. What happens to the results of the previous question when 0 is not
connected? (You might use Exercise 7 for inspiration.)

11. An asymptotic estimation of the eigenvalues of the Dirichlet Laplacian.
If it is a bounded open set in Rd, denote by (µ (fl))TEN the decreasing
sequence of eigenvalues of the Dirichlet Laplacian on U, each eigen-
value appearing as many times as the dimension of the corresponding
eigenspace. Denote by A(fl) = the set of eigenvalues of the
Dirichlet Laplacian on Cl.
a. Suppose first that Cl = (0, l)d, where 0 < l < +oo.

1. Show that, for every p E (N')d, the real number

AP=-j2(pi+...+ld)

lies in A(ft).
Hint. Show that the function

up(z) =
(2)d1'2d()

1

is an eigenfunction corresponding to Ap.
ii. Show that A(ft) =

Hint. Show that the family {up}pE(N.)d is a fundamental or-
thonormal family in L2(ft).

Ill. Let r > 0. Show that the number of points in the ball B(0, r) in
Rd whose coordinates belong to N' is at least wd((r- fd)+)d2-d

and at most wdrd2-d, where wd is the volume of the unit ball in
Rd.

iv. Deduce that, for every n E N,

(i_v'2)d // 1 dZd<n+1 <wd1 2
v. Deduce that there exist constants a, Q > 0 such that, for every

nEN,
-orn2/d < µn(it) < -fln2'd.

(More precisely, lin(il) - -4u21-2wd 2/dn2/d.)
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b. Let S2 and 0' be bounded open sets in Rd. Show that, if 11 C fl', we
have

1µ.(S')1 < Ii.(SZ)I for all n E N.

Hint. Use Exercise 11 on page 247 and the fact that, using the
same proof of Proposition 1.8, we can isometrically inject Ho (fl)
into H0(fl').

c. Show that, for every bounded open set fl in Rd, there exist two
constants an, On > 0 such that

-ann2/d < j ( ) < -Ohn2/d for all n E N.

12. Let u : (0, +oo) H Ho (fl) be the solution of the heat problem

u'(t) = Du(t) for all t > 0

with initial condition limt_,o u(t) = f in Ho (fl) (where f E HO '(9)).
Show that, for every t > 0,

Ilu(t) II HI 5 Ill II H
e-tI'\°I,

where AO is the first eigenvalue of the Dirichlet Laplacian (the smallest
eigenvalue in absolute value).

13. Heat semigroup.
a. Suppose f E Ho (fl) and t > 0. Denote by Ptf the value at t of the

solution of the heat problem on fl with initial data f and Dirichlet
conditions. Show that

+oo

Ptf = 1: etµ"(f Ivn)L2vn
n=0

with vn = µn un (in the notation of Theorem 2.5), the series
being convergent in L2(Sl).

b. Deduce that, for every t > 0, Pt extends to a continuous linear
operator from L2(fl) to L2(fl) of norm at most et' °. We denote this
operator again by Pt.

c. Show the following facts:
- Pt+8= Pt P, for allt,s>0.
- limt,o+ Pt f = f in L2(fl) for all f E L2(SZ).

d. Show that, if f E L2(Sl), the limit limt_,o+ (Pt f - f )/t exists in L2(Sl)
if and only if the series n o µn I (fIvn)L2 I2 converges. Show that,
if this is the case,

lim Af-f =
t

+oo

E A. (f I vn)L2vn = f
n=0





Answers to the Exercises

Prologue
- Page 4, Ex. 1. a. No. b. Yes. c. Yes.
- Page 5, Ex. 3a. D is the set of dyadic numbers:

D=(k2 ' :nEN,kEN,0<_k<2n).

Page 7, Ex. 9a-i. If (n, m) E 1, then (n, m) + 1 = (n, m+1). The limit points
of ! are the elements (n, 0), for n E N'.
Page 11, Ex. 7. b. ro. c. co.

Chapter 1
- Page 30, Ex. 1. With the notation of the proof of Proposition 1.1,

N

7=1

Page 37, Ex. 2c-iii. D. * f = S, Kn * f = 3.0
Page 38, Ex. 3b-ii. Bn(1) = 1, Bn(X) = X, and Bn(X2) = X2+X(1-X)/n.
Page 45, Ex. 1. (0, 1).
Page 46, Ex. 5b-ii. If m > n, then B(Cm([O,1])) is not closed in C"(10, 11).

Page 47, Ex. 7b-iii. Uniqueness does not hold in general, as can be seen from
the example f (x, t) = (xJ, for which W(t) = 0 and W(t) = t2/4 are solutions.
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Chapter 2
- Page 54, Ex. 1. b and c. (0, 1). d. Any infinite-dimensional Banach space: for

example, C([0,11).
- Page 54, Ex. 5b. The space R[X] with IIPII = max io.1! 1P(X)1-

Another example: Q.
- Page 79, Ex. 8c. No. Suppv = {(x,x) : x E R}.
- Page 91, Ex. 7d. X = R, µn = bn, the Dirac measure at n.

Chapter 3
Page 109, Ex. 2b. F1 consists of the constant functions on [0, 1]. For f (x) _
e=, we have d(f, F) = e - 1.
Page 109, Ex. 3. The orthogonal projection onto En is f H lA" f.
Page 120, Ex. 10b. Set E = PZ and let (xn)nEN be the sequence defined in
Section 3B on page 115. It converges to 0 weakly and (xn I xn) = 1 for all n.

- Page 130, Ex. 3. a. A Hilbert basis for EA is given by {ep}pqA, with ep(x)
e`P=

b. EAA = EZ\A.
c. The orthogonal projection onto EA is given by f Ep&A(f I ep)ep-
Page 131, Ex.4b. f H E' -0(j +

;)(f I P,)P,.
Page 132, Ex. 7b-i. (Xk, L,, ) = 0 if k < n; (X", Ln) _ (-1)"n!.

Chapter 4
- Page 148, Ex. 2c. If p = 00, f,,. (x) = I. If P E [1, oo),

fr(x) = (IxI(Iog2 IxI + 1)) ".

- Page 149, Ex. 3d. If K(x,y) = 1/(x+y), then IITII = 7r/sins/p').
If K(x, y) = 1/ max(x, y), then IITII = p + P

- Page 152, Ex. 7d. No - for example, if X has a non .S'-measurable subset and
the singletons of X are S-measurable.

- Page 155, Ex. 14c. Example: d,, = {[k2-",(k+ 1)2'"] : k E (0,...,2"-1)}.
- Page 159, Ex. 19b. If (Kn)nEN is a sequence of compact sets exhausting X,

one can give LP c the metric d(f, g) = En o 2-" inf(II1K (f -9)IIP, 1).
- Page 164, Ex. 4c. (f°°(I))' can be identified with the vector space spanned

by the family {L,,),EA(I).

Chapter 5
Page 195, Ex. 4b. ev(T) = {a; : i E N} and a(T) = ev(T).

- Page 196, Ex. 9. If T is considered as an operator on LP(m), then ev(T) _
{J E IIS : m({(p = A)) > 0} and a(T) = W(Suppm).

- Page 197, Ex. 10. r(T) = s/2.
Page 197, Ex. 11. ev(S) = o(S) _ {0,1/5).
Page 197, Ex. 12. ev(T) = o(T) _ {0, (4 + vl'3-1)/60,(4 - vl'3-1)/60).

- Page 198, Ex. 15b. r(T) = 0, a(T) = {0}.
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- Page 200, Ex. 20f. Let E = e', p E (1, oo] and T defined by (Tu) (0) = 0 and,
for n E N', (Tu)(n) = u(n - 1). Then ev(T) = ev(T) = 0,

aev(T)={AEK:1A1=1}, o(T)=(AEK:1A(<1}.

- Page 208, Ex. 2. In the example,

o(T)={AEK:IAI <1}U{AEK:(A-11<1}.

- Page 211, Ex. lie. Pf = Ialf, Uf = 1in#ol(a/Ia()f
- Page 212, Ex. 14. f (T) u = (f o W) u.

Chapter 6
Page 221, Ex. 2. c. No. d. ev(TS) = {0} if there exists n > 1 such that
An = 0; otherwise ev(TS) = 0. a(TS) = {0}.

- Page 223, Ex. 11. o(T) _ {0} U {((7r/2) + k7r)-2 : k E N).
- Page 224, Ex. 12d. Yes.

Page 227, Ex. 14c. One can take µ = >nEN 2-nb=,,, where (xn)nEN is a dense
sequence in X.

- Page 243, Ex. 4b. r(TT') = 4/a2, (ITh = 2/7r-
- Page 244, Ex. 6b. The family (fn)nEZ, with f. (x) = f cos((7r/2+2nir)x).
- Page 249, Ex. 12d.

£. An = -n27r2, Wo = 1, W. = f cos(nirx) if n > 1;
ii. An = -((7r/2) + na)2, cpn = 'cos(((h/2) + n7r)x);

iii. An = -(n + 1)21x2, 1pn = % `sin((n + 1)ax).

Chapter 7
Page 264, Ex. 2. If h E 6°n (R), then f E 6sn-1(R2).
Page 264, Ex. S. The value of f at 0 is h(n}1)(0)/(n + 1)!.

- Page 266, Ex. 9. limn--+o° Cpl/n = E,=1 u,D_,cp.
- Page 275, Ex. 2. The order of T is supnEN (pnI.

Page 275, Ex. 3. Distribution of order 2.
Page 277, Ex. 8. (f X(x) dx)5.
Page 277, Ex. 9. a. 0. b. (2 f +°°(sin x/x) dx)5 = 7rb. c and d. b.

- Page 277, Ex. 10. In .9'(R*) there is convergence for any sequence (an)fEN.
In 2'(R) there is convergence if and only if the series Ek=°; ak/k converges.

- Page 277, Ex. 12. b.
- Page 278, Ex. 15b. No.
- Page 279, Ex. 17. If n = R and Tn = n(b1/n - b), then, for every n E N*, Tn

is of order 0 and the limit b' is of order 1.
- Page 284, Ex. 2. No. Example: w(x) = x in a neighborhood of 0 and T = b'.
- Page 285, Ex. 4c. If SuppT = then

r

(T, ,) = E E ct DP'p(xi ),

where m is an upper bound for the order of T.
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Chapter 8
Page 291, Ex. 7b. T = To + EkEZ Ckbk,..
Page 303, Ex. 6. SuppT = {(x,x), x E R}; T has order 0 and (0T)/(0x1) +
(O')/((9x2) = 0.
Page 303, Ex. 7c.

d'n fp(Y(x)/x) _ (-1)mm!fp (Y(x) ) - CE jd,m
1) b(m}

m+1
-1

Page 303, Ex. 8. b1 + 6-1 - 26.
Page 304, Ex. 9a. (Of /Ox) = -1{s2+u2<,}x(x2 + y2)-1/2.

(aflay) = -1{=2+y2<1}Y(x2 + y2)-1/2
Page 304, Ex. 11. a. Og, = e2(((gf/0x)2 + (Of/Oy)2)(£2 + f2)-3/2

d. f p dA = 2 f W(0, y) I yl dy + 2 f sv(x, 0) IxI dx.
Page 306, Ex. 15b-iv. Let H be a hyperplane and fi a normal unit vector. We
setH+={x+tn:xEHandt>0}andH-={x+tl:xEHandt<O}.
Take j E { 1, ... , d} and let n2 be the j-th component of n. Finally, denote by
a Lebesgue measure on H (defined by introducing an orthonormal basis for
H). Let f E Lio,(Rd) be such that the restriction to Rd \ H is of class C' and
such that (0f/0x2) E Lloc(Rd). Suppose also that

f+(x) =
hE l i yes f (y)

and f- (x) =
hE l im, /(y)

exist at every point x of H. Then

D, [f] = [af ] +n,,(f+ - f-)a.

Page 306, Ex. 16. a. x8(') b. -6/3. C. U = Ax112, V = p(-x)112.
e. T = -(6/3) + Af Y(x) + µ J Y(-x).
Page 312, Ex. 1. E(x) = (e3z - e-z)Y(x)/4.

1

- Page 313, Ex. 4b. C d = (3d2"-' (k - I l k - d)) .

Page 314, Ex. 5. a-i. D3f = (('P (r)lr) -(V(r)lr2))(xjlr)

-3Ta 1,Dif= Tr)rs2 \1

\

a-ii. A f = (cp"(r))/r) - 47rV(0)6.
b. If A > 0, then W(r) = -(1/47r) cos f r +C sin f r.

If A = 0, then V(r) = -(1/47r) + Cr.
If A < 0, then W(r) = -(I/4Tr) cosh yr + Csinh fir.

c. EA(x) = -e-`v'-Xr/(47rr).

Chapter 9
Page 322, Ex. 3. a. Ta(x) = T(Ax). c. The degree of h(k) is -1 - k. d. The
degree of pv(1/x) is -1. The distribution fp(Y(x)/x) is not homogeneous.
e. T = AY(x) + µY(-x). g. (x2Y(x)) 0 d' has order 1 and degree 0.
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Page 323, Ex. 4. a. YJ is a fundamental solution of DJ = H,EJ D,.
b. D°(x°Y(x)) = p!Y(x). If p > 1, then x°-'Y(x)/(p - 1)! is a fundamental
solution of D°. c. E = EI ® Ed with E,(x,) = 1)! if
p,>IandE3=6ifp,=0.
Page 323, Ex. 5. T has order 2.
Page 335, Ex. 1. 6= * 6y = 6=+y.
Page 335, Ex. 2. P(D)5 * Q(D)b = (PQ)(D)6.
Page 335, Ex. 5. b-i. Q(X) = P(Xi -al,... , Xd-ad). b-ii. eLE.
C. n,=1 a°,=,Y(x,)
Page 336, Ex. 6b. The sequence (Pf)fEN converges to 6.
Page 345, Ex. 2a. They are the distributions associated with functions of the
form f + g, where f is a convex function on R and g an affine function with
values in C.
Page 348, Ex. 12. T = S" + S. T is locally integrable if and only if S E C' (R)
and S' is absolutely continuous on R.

Chapter 10
- Page 371, Ex. 3c..1(u) = J(v), with

J(v) = 2 (a,j D3v I DIv)Lz - z (CV IV) L- + (f I v), 2.
1<,,,<d

Page 372, Ex. 4a. u E Ho (52) and

dd (a3_) u=-f.
OX, Ox, Xi

IS to < d

- Page 375, Ex. 7. If u E Ho (52), then Du = Au on S2 if and only if, for i = 1 and
i = 2, u, = urn, E Hp (1l) satisfies Du; = Au, on Q,. Therefore
(A-011))-EN U {An(522)}nEN

- Page 376, Ex. 10e. Suppose for example that Q is the disjoint union of two
open sets S21 and 522, and let Ao(521) and Ao(522) be the first eigenvalue of
the Dirichlet Laplacian on S21 and 112, respectively. If Ao(121) = Ao(f12) (for
example, if 02 is a translate of 521), then Ao = Ao(111) and E has dimension 2.
If IAo(522)I > IAo(121)I (for example, if d = 1 and 52 = (0,2) U (3,4)), then
Ao = Ao(01), E has dimension 1 and every element of E vanishes on 522.
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in C(X), for X compact, 44
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Banach
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Banach Alaoglu Theorem, 19, 115
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operator, 223
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Bessel
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measure, 68
set, 124
Theorem, 265

Borel-Lebesgue property, vi
bounded

function, 52
Radon measure

complex, 89
real, 88

set, 18
variation

function of, 93, 95
normalized function of, 94
on [a, b], 93
on R, 93

Browder Theorem, 121

C°°, see smooth
CK(X),C(X), 27
Co (lR), Co(R), 40
C+(X), 53
CC(X),Co(X), 52
C°([0,11),fora>0,45
C+(X), 53
C'(X),Cb(X), 52
CC (X), 53
CK(X),Cc(X), 52
CK(X),CK(X), 69
canonical

euclidean space, 98
hermitian space, 98
injection, 260

Cantor set, 14
Cantor's Theorem, 4
Cantor -Bendixon Theorem, 11
Cantor-Bernstein Theorem, 7
Cauchy semigroup, 182
Cauchy-Riemann operator, 311
Chasles's relation, 21, 72
Chebyshev

inequality, see Bienayme-Chebyshev
polynomials, 131

choice, axiom of, see axiom of choice
Choquet, game of, 22, 54
Clarkson Theorem, 158
class, Baire, 59, 65, 66
closed

convex hull, 18, 111, 121

graph theorem, vi
coercive bilinear form, 116
commutative

algebra with unity, 27
Banach algebra, 173

compact
abelian group, 85
metric space, 8
operator, 45, 213

complete, conditionally, 151
complex

Fourier coefficients, 128
Radon measure, 89
scalar product space, 97

conditional expectation
operator of, 166

conditionally complete lattice, 151
conjugate exponent, 144
conjugation, invariance under, 34
connected metric space, 5, 45
continuous

measure, 69
on CK (X ), linear form, 87
one-parameter group of operators,

201
convergence

in Cc(X), 91
in measure, 155
narrow, 81
of distributions, 272
of test functions, 259
strong, 115, 166
uniform on compact sets, 57
vague, 80, 91
weak

in LP, 166, 168
in a Hilbert space, 114
of Radon measures, 91

weak-*, 166
convex

function, 122, 304
bull, closed, 18, 111, 121
set, 18, 105, 108, 121, 122
uniformly, 157

convolution
in CP(Z), 178
of distributions, 324, 327
of functions, 170, 171
of measures, 336, 337
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semigroup, 181, 182
convolvable, 171
count measure, 99
countable, 1
Courant-Fischer formulas, 247
critical value, 249

258
a17K (SZ), 2'"(S2), 2K (SI), 2582'M

(S2), 280
d'Alembert's Theorem, 192
Daniell's Theorem, 59, 67, 70, 77
diagonal procedure, 12-14, 16, 18, 57
differential operator, 307

elliptic, 371
differentiation of distributions, 292
Dini's Lemma, 29, 30, 67
Dirac

measure, 68, 74, 79
sequence, 36, 174, 261

normal, 174
Dirichlet

condition, 363, 368
Laplacian, 365
problem, 363

distribution, 267
differentiation of, 292
division of -s, 289
extension of, 271
function, 74, 299
positive, 269
product of, 287
restriction of, 271
translate of, 332

distributions
convolution of, 324, 327

division of distributions, 289
domain of nullity, 281
dual, see topological dual
Dvoretzki-R.ogers Theorem, 130

equicontinuity
at a point, 42
uniform, 42

equidistributed sequence, 39
equiintegrable, 156
ergodic theorem, 120
essential support, 145
euclidean

scalar product, 98
space, 98

Euler's equation, 323
exhaust, 51
expectation, conditional, 165
extension

of a distribution, 271
theorem for continuous linear maps

with values in a Banach space, vi

Fejer's Theorem, 36, 38
finite

mass, 70, 145
on compact sets, 68
part, 273, 274, 279
rank operator, 213

spectrum, 197
finitely additive, 163
first Baire class, 59, 65
Fourier coefficients, 128
Frechet space, vi
Fredholm

Alternative Theorem, 239
equation, 239

F, set, 65
F,-measurable, 65
Fubini's Theorem, vii, 112
function, see under qualifier
fundamental

family, 9
solution of a differential operator,

307
theorem of algebra, 192

X'"(Sl),tl°(Sl), 257
o'(SZ), 283
eigenfunction, 365
eigenspace, 189, 365
eigenvalue, 189

approximate, 200
of the Dirichlet Laplacian, 365

elliptic differential operator, 362, 371

Galerkin approximation, 116, 363
game of Choquet, 22
Gaussian

quadrature, 132
semigroup, 181

G6 set, 23, 65
gradient, 122
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Gram determinant/matrix, 139
Gram -Schmidt, see Schmidt
Green's

formula, 361
function, 225

group of operators, one-parameter, 200

Haar
measure, 85, 86
system, 134

Hahn -Banach Theorem, vi
Hankel operator, 229
Hardy's inequality, 177
harmonic

distribution, 332, 342
function, 342, 344, 345

heat
operator, 310
problem, 368
semigroup, 377

Heaviside function, 273, 293, 307, 323
Helly's Theorem, 16
Hermite polynomials, 131
herinitian

operator, 113
scalar product, 98
space, 98

Hilbert
basis, 123
completion, 105, 118, 133
cube, 103
space, 101

Hilbert-Schmidt
norm, 141, 247
operator, 140, 216, 221, 247

Holder
function, 45, 214, 363
inequality, vi, 143

holomorphic function, 102
homogeneous distribution, 322
hypoelliptic operator, 341

ideals in C(X), 31
incompatible, 17
index of an eigenvalue, 233
infinite

countable set, 1
product of measures, 66, 84

infinity, 52, 55

initial segment, 17
Injection Theorem, Sobolev's, 339
inner regular, 78
integration by parts, 94, 292
invariant metric, 23
invertible operator, 187
isolated point of the spectrum, 211
isometric spaces, 129
isometry, spectrum of, 196

kernel of an operator, 214, 216
Korovkin's Theorem, 37
Krein-Rutman Theorem, 226
Kuratowski, 134

L(E, F), L(E), 18
L1(m), 58
2' (m), 58
Y1'c(iz), 79
L2(A), 124
.2'2(m), 98
!K (m), 2" (m), 143
ep, 11
eP(I),eK(I), 12
fp(I),ee(I), 99, 145
LK (m), L"(rn), 144
LP, c(m), L I0 , 159
Laguerre polynomials, 132
Laplace transform, 209
Laplacian, 307

with Dirichlet conditions, 365
lattice, 32, 58, 88

conditionally complete, 151
Lax -Milgram Theorem, 116, 370, 371
Lebesgue integral, vii
left shift, 195
Legendre

equation, 249
polynomial, 131, 250

Leibniz's formula, 258, 294
length of a multiindex, 258
Levy's Theorem, 82
lexicographical order, 7
Lindelo"f's Theorem, 11
linear form

on CR(X), 87
Lions- Stampacchia Theorem, 117
Lipschitz

constant, 32
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function, 32 34, 43
locally

compact, 49
convex, vi
integrable, 63, 79

lower semicontinuity, 64, 77
Lusin Theorem, 78

M+ (X), 69
C(X),80

9Jl f (X), 70
9Jic(X), Mc(X), 89
W1 (X), 92
MR (X), 87
9Jij(X), 88
mass, 68
maximal orthonormal family, 134
maximum principle, 362
mean value

property, 344, 345
theorem, vii, 74, 193, 272, 319
theorem, second, 94

measure
convergence in, 155
of finite mass, 145
of the unit ball, 8:3
space, 63, 143

metric, invariant, 23
Meyers- Serrin Theorem, 357
Minkowski inequality, vi
modulus of uniform continuity, 37
monotone class, 64
morphism of Banach algebras, 179
multiindex, 258
multiplication, see product
Miintz's Theorem, 139
mutually singular measure, 92

narrow convergence, 81
Neumann conditions, 373
Neumann, J. von, 159
normal

Dirac sequence, 174, 261
operator, 120, 208, 211, 234, 244

normalized function of hounded
variation, 94

nuclear, 247

obstacle problem, 373

one-parameter group, 200
open

basis, 10
mapping theorem, vi, 187

operator, see under qualifier
operators, space of, 112
order of a distribution, 268
orthogonal

family, 123
projection, 107
projector, 107
space, 101
subsets, 101
vectors, 101

orthonormal family, 123
maximal, 134

outer regular, 78

parallelogram identity, 101
partition of unity

C-, 262
continuous, 53

Peano's Theorem, 47
periodic function, 98, 124
piecing distributions together, 276
Poincar6 inequality, 354, 357
Poisson equation, 348
polar, 110

decomposition, 211, 246
polynomial

Chebyshev, 131
Hermite, 131
Laguerre, 132
Legendre, 131

positive
distribution, 269
function, ix
linear form, 59, 69, 160
operator, 30, 195, 225, 226
Radon measure, 69, 71, 77
of finite mass, 70

selfadjoint, 114
pre-Hilbert space, 97
precompact, 14
primitive of a distribution, 298
principal value, 272, 291
probability measure, 66
product

distance, 13
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of distribution by function, 287
of measures, infinite, 66, 84

projection, 105, 120
spectrum of, 196
theorem, 105

Pythagorean Theorem, 101

Rademacher system, 136
Radon measure, 71, 144

bounded real, 88
complex, 89
positive, 69, 77
positive of finite mass, 70
real, 86

Radon-Nikodym Theorem, 165
Radon-Riesz Theorem, 69
rank, 213
real

distribution, 275
Radon measure, 86, 88
scalar product space, 97

regular
measure, 78
value, 189

regulated function, 5, 21
relatively compact set, 12
Rellich Theorem, 355
reproducing kernel, 118
resolvent

equation, 191
set, 189
value, 189

restriction of a distribution, 271
Riemann integral, 20, 71
Riemann-Lebesgue Lemma, 179
Riesz Representation Theorem, 111
Riesz Theorem, 49, 213
Riesz-Fischer Theorem, 145
right shift, 196, 202, 221

scalar
product, 97
product space, 97
semiproduct, 97

Schmidt
decomposition, 246
orthonormalization process, 128

Schur's Lemma, 167
Schwarz inequality, 99, 101, 143

second
Baire class, 66
mean value theorem, 94

self-conjugate, 34
selfadjoint operator, 113, 234
semicontinuous, 64, 77, 345
semigroup, 181, 182, 377
separable

o-algebra, 153
metric space, 7

separating subset, 32
sesquilinear, 212
shift, 195, 196, 202, 221
or-compact, 8
singular value, 246
skew-linear, 98
skew-symmetric bilinear form, 97
smooth partition of unity, 262
smoothing Dirac sequence, 261
Sobolev

function, 214
Injection Theorem, 339
space, 338

solution of Dirichlet problem, 363
spectral

image, 194, 206, 207
measure, 212
radius, 192
value, 189

spectrum, 189
of L', 179
of a finite-rank operator, 197
of a projection, 196
of an isometry, 196

square root of a positive hermitian
operator, 210

staircase function, 20
stereographic projection, 56
Stieltjes

integral, 71
measure, 72, 298

Stone-Weierstrass Theorem
in Cc (X), for X compact, 34
in CR(X), for X compact, 33
in Co(R), 40
in Co(X), for X locally compact, 56

strong
convergence, 115, 166

ellipticity, 371
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Sturm-Liouville problem, 224, 248,
369

subalgebra, 33
subharmonic, 344
summable family, 127, 129

sum of, 127
summation by parts, 94, 299
support, 52, 68, 90

essential, 145
of a Borel measure, 68
of a class of functions, 145
of a continuous function, 52, 79
of a distribution, 281
of a positive Radon measure, 77
of a Radon measure, 90

surface measure, 75
symmetric

bilinear form, 97
convex set, 24
operator, 113

Taylor formula, 264
tend

to infinity, 55
to zero at infinity, 52

tensor product of distributions, 320
test functions, 257, 259

convergence of, 259
Tietze Extension Theorem, 40, 56
topological

basis, 9
dual, 18

of t°°(I), 163
of C(X), for X locally compact, 92
of Co(X), 88
of Coc (X), 89
of L°°, 164
of L', 159
of La,for0<p<1,163
of a Hilbert space, 111

vector space, v
topology, 8

of uniform convergence, 28
totally bounded, 14

trace theorem, 361
translate

of a distribution, 332
of a function, 169

transpose, 112
trigonometric

polynomial, 35
Tychonoff Theorem, 67, 103

ultrafilter, 164
uniform

continuity, modulus of, 37
convergence, topology of, 28
convexity, 157
ellipticity, 371
equicontinuity, 42
norm, 28, 52

upper semicontinuity, 77, 345

vague convergence, 80, 91
variational formulation, 363
Volterra operators, 198
von Neumann, J., 159

wave
operator, 314, 315

problem, 368
weak

continuity, 230
convergence

in LP, 166, 168
in a Hilbert space, 114
of Radon measures, 91

limit, 114
weak-*

convergence, 166

Weierstrass's Theorem, 30, 33, 37
well-ordering, 6
Weyl criterion, 39
Wirtinger's inequality, 137

Young's inequality, 172

Zermelo's axiom, 6
Zorn's Lemma, 134, 152
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