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Pretace

The study of matrices occupies a singular place within mathematics. It
1s still an area of active research, and it is used by every mathematician
and by many scientists working in various specialities. Several examples
1llustrate its versatility:

Scientific computing libraries began growing around matrix calculus.
As a matter of tact, the discretization of partial differential operators
1s an endless source of linear finite-dimensional problems.

At a discrete level, the maximum principle is related to nonnegative
matrices.

Control theory and stabilization of systems with finitely many degrees
of freedom involve spectral analysis of matrices.

The discrete Fourier transform, including the fast Fourier transtorm,
makes use of Toeplitz matrices.

Statistics 1s widely based on correlation matrices.
T'he generalized inverse 1s involved in least-squares approximation.

Symmetric matrices are inertia, deformation, or viscous tensors in
continuum mechanics.

Markov processes involve stochastic or bistochastic matrices.

Graphs can be described in a useful way by square matrices.



viii Preface

e (Quantum chemistry is intimately related to matrix groups and their
representations.

e The case of quantum mechanics is especially interesting: Observables
are Hermitian operators, their eigenvalues are energy levels. In the
early vears, quantum mechanics was called “mechanics of matrices,”
and it has now given rise to the development of the theory of large
random matrices. See [23| for a thorough account of this fashionable
topic.

This text was conceived during the years 1998-2001, on the occasion of
a course that I taught at the Fcole Normale Supérieure de Lyon. As such,
every result is accompanied by a detailed proof. During this course I tried
to investigate all the principal mathematical aspects of matrices: algebraic,
geometric, and analytic.

In some sense, this 1s not a specialized book. For instance, 1t 1s not as
detailed as |19 concerning numerics, or as [35| on eigenvalue problems,
or as |21] about Weyl-type inequalities. But it covers, at a slightly higher
than basic level, all these aspects, and is therefore well suited for a gradu-
ate program. Students attracted by more advanced material will find one
or two deeper results in each chapter but the first one, given with full
proofs. They will also find further information in about the half of the
170 exercises. The solutions for exercises are available on the author’s site
http://www.umpa.ens-1lyon.fr/ serre/exercises.pdf.

This book is organized into ten chapters. The first three contain the
basics of matrix theory and should be known by almost every graduate
student in any mathematical field. The other parts can be read more or
less independently of each other. However, exercises in a given chapter
sometimes refer to the material introduced in another one.

This text was first published in French by Masson (Paris) in 2000, under
the title Les Matrices: théorie et pratique. 1 have taken the opportunity
during the translation process to correct typos and errors, to index a list
of symbols, to rewrite some unclear paragraphs, and to add a modest
amount ol material and exercises. In particular, I added three sections,
concerning alternate matrices, the singular value decomposition, and the
Moore—Penrose generalized inverse. Therefore, this edition differs from the
French one by about 10 percent of the contents.

Acknowledgments. Many thanks to the Ecole Normale Supérieure de Lyon
and to my colleagues who have had to put up with my talking to them
so often about matrices. Special thanks to Sylvie Benzoni for her constant
interest and useful comments.

Lyon, France Denis Serre
December 2001
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1
Flementary 1'heory

1.1 Basics

1.1.1 Vectors and Scalars

Fields. Let (K, +,-) be a field. It could be IR, the field of real numbers, C

(complex numbers), or, more rarely, € (rational numbers). Other choices
are possible, of course. The elements of K are called scalars.

Given a field k, one may build larger fields containing k: algebraic ex-
tensions k(aq, ... ,a,), fields of rational fractions k(Xq,...,X,,), fields of
formal power series k|| X1, ..., X,]||. Since they are rarely used in this book,
we do not define them and let the reader consult his or her favorite textbook

on abstract algebra.
The digits 0 and 1 have the usual meaning in a field K, with 0 + x =

1-x = x. Let us consider the subring Z1, composed of all sums (possibly
empty) of the form +(1 + ---+4 1). Then Z1 is isomorphic to either Z or
to a field Z /pZ . In the latter case, p is a prime number, and we call it the
characteristic of K. In the former case, K is said to have characteristic 0.

Vector spaces. Let (E,+) be a commutative group. Since F is usually
not a subset ot K, it 1s an abuse of notation that we use + for the additive

laws of both E and K. Finally, let

(a,x) +— ax,
KxEFE — FE,
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be a map such that
(a+b)r =ax + bxr, a(x+y)=ax—+ ay.

One says that E is a vector space over K (one often speaks of a K-vector
space) if moreover,

a(bx) = (ab)x, 1z ==z,

hold tor all a,b € K and x € E. The elements ot E are called vectors. In a
vector space one always has Oz = 0 (more precisely, Oxz = 0g).

When P,() C K and F,G C E, one denotes by P() (respectively P +
(), F'+G, PF) the set of products pq as (p, q) ranges over P x () (respectively

p+q, f+g,pf asp,q, f,grangeover P,Q, F,G). A subgroup (F, +) of (£, +)
that 1s stable under multiplication by scalars, 1.e., such that K F C F', 1s
agaln a K -vector space. One says that it is a lznear subspace of E, or just a
subspace. Observe that F', as a subgroup, is nonempty, since it contains Og.
The intersection of any family of linear subspaces is a linear subspace. The
sum F' + G of two linear subspaces is again a linear subspace. The trivial
formula (F'+ G)+ H = F + (G + H) allows us to define unambiguously
F'+ G+ H and, by induction, the sum of any finite tamily of subsets ot F.
When these subsets are linear subspaces, their sum is also a linear subspace.

Let I be a set. One denotes by K* the set of maps a = (a;)icr : I — K
where only finitely many of the a;’s are nonzero. This set is naturally
endowed with a K-vector space structure, by the addition and product
laws

(CL -+ b)z = a; T bi, ()\CL)@ » = )\CL@.

Let E be a vector space and let 2 — f; be a map trom I to E. A linear
combination of (f;)icr is a sum
Z 7 fia

el

where the a;’s are scalars, only finitely many of which are nonzero (in other
words, (a;);e;r € K'). This sum involves only finitely many terms. It is a
vector of E. The family (f;);cr is free if every linear combination but the
trivial one (when all coefficients are zero) is nonzero. It is a generating
family if every vector of £ is a linear combination of its elements. In other
words, (f;)icr is free (respectively generating) if the map

K' — E,
(@i)ier Zaifia
i€l

is injective (respectively onto). Last, one says that (f;)i;cs is a basis of E if
it is free and generating. In that case, the above map is bijective, and it is
actually an 1somorphism between vector spaces.
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If G C E, one often identifies G and the associated family (g),ecg. The set
(+ of linear combinations of elements of ¢ is a linear subspace E, called the
linear subspace spanned by G. It is the smallest linear subspace E containing
U, equal to the intersection of all linear subspaces containing ¢. The subset
G is generating when G = E.

One can prove that every K-vector space admits at least one basis. In
the most general setting, this is a consequence of the axiom of choice.
All the bases of E have the same cardinality, which is therefore called the
dimension of E/, denoted by dim E. The dimension is an upper (respectively
a lower) bound for the cardinality of free (respectively generating) families.
In this book we shall only use finite-dimensional vector spaces. If F, G are
two linear subspaces of E, the following formula holds:

dim FF'+dim G = dim FF NG + dim(F + G).

If FNG = {0}, one writes F & G instead of F' + (G, and one says that F
and G are in direct sum. One has then

dimF ¢ G = dim F' + dim G.

Given a set I, the family (e*);cr, defined by

(AN Oa ]%@,
(e)ﬂ_{ L, j=i

is a basis of K, called the canonical basis. The dimension of K’ is therefore
equal to the cardinality of 1.

In a vector space, every generating family contains at least one basis of
E. Similarly, given a free family, it is contained in at least one basis of E.
T'his 1s the incomplete basis theorem.

Let L be a field and K a subfield of L. If F'is an L-vector space, then F’
1s also a K-vector space. As a matter of fact, L is itselt a K-vector space,
and one has

dlmKF — dlmLF - dlmK L.

The most common example (the only one that we shall consider) is K = IR,
L = C, for which we have

dimp F = 2dim¢ F.

Conversely, if G is an IR-vector space, one builds its complezxification G
as follows:

G¢ =G x G,

with the induced structure of an additive group. An element (z,y) of G¢
1s also denoted = + 1y. One defines multiplication by a complex number by

(A=a+1b,z=x+1y) — Az := (ax — by, ay + bx).
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One verifies easily that G€ is a C'-vector space, with
dime G = dimp G.
Furthermore, G may be identified with an IR-linear subspace of G¢ by
r — (x,0).

Under this identification, one has G = G +iG. In a more general setting,
one may consider two fields K and L with K C L, instead of IR and C', but
the construction of G* is more delicate and involves the notion of tensor
product. We shall not use 1t 1in this book.

One says that a polynomial P € L|X| splits over L if it can be written
as a product of the torm

aH(X —a;)", a,a; €L, re€IN,n;eIN".
i=1
Such a factorization is unique, up to the order ot the tactors. A field L in
which every nonconstant polynomial P € L|X| admits a root, or equiva-
lently in which every polynomial P € L|X| splits, is algebraically closed. 1t
the field K’ contains the field K and if every polynomial P € K|X| admits
a root in K’, then the set of roots in K’ of polynomials in K|X] is an alge-
braically closed field that contains K, and it is the smallest such field. One
calls K’ the algebraic closure of K. Every field K admits an algebraic clo-
sure, unique up to isomorphism, denoted by K. The fundamental theorem
of algebra asserts that IR = C'. The algebraic closure of @, for instance,

1s the set of algebraic complex numbers, meaning that they are roots of
polynomials P € Z|X|.

1.1.2 Matrices

Let K be a field. If n,m > 1, a matrix of size n X m with entries in K is a
map from {1,...,n} x {1,...,m} with values in K. One represents it as
an array with n rows and m columns, an element of K (an entry) at each
point of intersection of a row an a column. In general, if M is the name ot

the matrix, one denotes by m;; the element at the intersection of the ¢th
row and the j5th column. One has therefore

which one also writes

M = (mij)1<7j<n,1<j<m-

In particular circumstances (extraction of matrices or minors, for example)
the rows and the columns can be numbered in a different way, using non-
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consecutive numbers. One needs only two finite sets, one for indexing the
rows, the other for indexing the columns.

The set of matrices of size n X m with entries in K is denoted by
M, «m(K). It is an additive group, where M + M’ denotes the matrix M"
whose entries are given by m;. = m;; +m;.. One defines likewise multipli-

] ij°
cation by a scalar a € K. The matrix M’ := aM is defined by m;, = am;.

One has the formulas a(bM) = (ab)M, a(M + M') = (aM) 4+ (aM"), and
(a+ b)M = (aM) + (bM), which endow M,, «,, (K ) with a K-vector space
structure. The zero matrix 1s denoted by 0, or 0,,,,, when one needs to avoid
ambiguity:.

When m = n, one writes simply M,,(K) instead of M,,«,(K), and 0,
instead of 0,,,,. The matrices ot sizes n X n are called square matrices. One
writes I,, for the identity matrix, defined by

[0, ifi#]
L J Y 7
m@ﬂ_éi_{ 1, ifi=7j.

In other words,

1 0 0
A

S

0 0 1

The i1dentity matrix is a special case of a permutation matrix, which are
square matrices having exactly one nonzero entry in each row and each
column, that entry being a 1. In other words, a permutation matrix M
reads

My = 5;7(j)
for some permutation o € 5,,.
A square matrix for which ¢+ < 7 implies m;; = 0 is called a lower
treangular matrix. It 1s wpper triangular if 7 > 7 1mplies m;; = 0. It is

strictly upper triangular if ¢ > 7 implies m;; = 0. Last, it 1s diagonal if m;;
vanishes for every pair (7, j) such that ¢ # j. In particular, given n scalars
di,...,d, € K, one denotes by diag(dy, ... ,d,) the diagonal matrix whose
diagonal term m;; equals d; for every index 1.

When m = 1, a matrix M of size n x 1 is called a column vector. One
identifies it with the vector ot K™ whose ith coordinate in the canonical
basis is m;1. This identification is an isomorphism between M,,«1(K) and
K™. Likewise, the matrices of size 1 X m are called row vectors.

A matrix M € M, «n(K) may be viewed as the ordered list of its
columns M) (1 < j < m). The dimension of the linear subspace spanned

by the M) in K™ is called the rank of M and denoted by rk M.
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1.1.8 Product of Matrices

Let n,m,p > 1 be three positive integers. We define a (noncommutative)
multiplication law

M sxm (K) X Myxp(K)  —  Mpxp(K),
(M, M"Y — MM,

which we call the product of M and M’. The matrix M"” = MM’ is given
by the formula

We check easily that this law is associative: if M, M’, and M" have
respective sizes n X m, m X p, p X g, one has

(MM YM" = M(M'M").
T'he product 1s distributive with respect to addition:
MM +M"Y=MM"+MM", (M+ M YM"=MM"-+ M M".

It also satishies
a(MM’) — (aM)M’ — M(aM’), Va € K.

Last, if m = n, then I,,M' = M’. Similarly, if m = p, then M 1,, = M.
The product is an internal composition law in M,,(K ), which endows

this space with a structure of a unitary K-algebra. It i1s noncommutative

in general. For this reason, we define the commutator of M and N by

M,N| := MN — NM. For a square matrix M € M, (K), one defines
M? = MM, M? = MM? = M?M (from associativity), ..., M5t = MFM.
One completes this notation by M! = M and M° = I,,. One has M7 M" =
MITE for all 5.k € IN. If M"* = 0 for some integer k£ € IN, one says that
M 1s nilpotent. One says that M is idempotent if I,, — M 1is nilpotent.

One says that two matrices M, N € M, (K) commute with each other
it MN = NM. The powers of a square matrix M commute pairwise. In
particular , the set K (M) formed by polynomials in M, which cinsists of
matrices of the form

aol, +aM+---+a,M", aqg,...,ar € K, relN,

1s a commutative algebra.
One also has the formula (see Exercise 2)

rk(MM'") < min{rk M, rk M'}.

1.1.4 Matrices as Linear Maps

Let E,F be two K-vector spaces. A map u : £ — F' is linear (one also
speaks of a homomorphism) if u(xz + y) = u(x) + u(y) and u(azxr) = au(x)
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for every z,y € E and a € K. One then has u(0) = 0. The preimage
v~ 1(0), denoted by keru, is the kernel of u. It is a linear subspace of L.
The range u(FE) is also a linear subspace of F'. The set of homomorphisms
of E into F'is a K-vector space, denoted by L(FE, F'). If FF = E, one defines
End(F) := L(E, F); its elements are the endomorphisms of E.

The identification of M, «1(K) with K™ allows us to consider the matri-
ces of size n X m as linear maps from K™ to K"™. It M € M,,«xm(K), one
proceeds as in the following diagram:

K™ — mel(K) — Mnxl(K) — K7,

r X — Y =MX — uy.
Namely, the image of the vector x with coordinates x4, ... ,x,, 1s the vector
y with coordinates yq, ... ,vy, glven by
Tr
Yi = Zmz‘jﬂfj- (1.1)
j=1

One thus obtains an isomorphism between M« (K) and L(K™; K™),
which we shall use frequently in studying matrix properties.

More generally, if E, F' are K-vector spaces of respective dimensions m
and n, in which one chooses bases 8 ={eq,... ,e;m}and vy ={f1,..., fn},
one may construct the linear map v : &£ — F' by

?,L(.CE‘1€1 -+ .. —|—Cl7m€m) — ylfl -+ .- ‘|‘ynfna

via the formulas (1.1). One says that M is the matrix of v in the bases (3,
.

Let E, F, G be three K-vector spaces of dimensions p,m,n. Let us
choose respective bases «, 3,~. Given two matrices M, M’ of sizes n X m
and m X p, corresponding to linear maps v : F — G and v’ : E — F, the
product MM’ is the matrix of the linear map vwou’ : E — G. Here lies
the origin of the definition of the product of matrices. The associativity
of the product expresses that of the composition of maps. One will note,
however, that the isomorphism between M,,«.,(K) and L(E, F') is by no
means canonical, since the correspondence M +— u always depends on an
arbitrary choice of two bases. One thus cannot reduce the entire theory of
matrices to that of linear maps, and vice versa.

When E = F is a K-vector space of dimension n, it is often worth
choosing a single basis (v = @ with the previous notation). One then has
an algebra isomorphism M +— u between M,,(K ) and End(FE), the algebra
of endomorphisms of E. Again, this isomorphism depends on an arbitrary
choice of basis.

If M is the matrix of u € L(FE, F') in the bases «, (3, the linear subspace
u(FE) is spanned by the vectors of F' whose representations in the basis 3
are the columns M) of M. Its dimension thus equals rkM.

If M € M,,«m(K), one defines the kernel of M to be the set ker M of
those X € M,,,«1(K) such that M X = 0,,. The image of K™ under M is
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called the range of M, sometimes denoted by R(M). The kernel and the
range of M are linear subspaces of K™ and K", respectively. The range is
spanned by the columns of M and therefore has dimension rk M.

Proposition 1.1.1 Let K be a field. If M € M« (K), then
m = dim ker M + rk M.

Proof

Let { f1,..., fr} be a basis of R(M). By construction, there exist vectors
{e1,...,er} of K™ such that Me;, = f;. Let E be the linear subspace
spanned by the e;. If e = Zj a;e; € ker M, then Zj a;fi = 0, and thus the
a; vanish. It follows that the restriction M : £ — R(M) is an isomorphism,
so that dim &/ = rk M.

If e € K™, then Me € R(M), and there exists ¢’ € E such that Me' =
Me. Therefore, e = ¢’ + (e — €’) € 4+ ker M, so that K™ = E + ker M.
Since £ Nker M = {0}, one has m = dim £ + dim ker M.

.
1.2 Change of Basis
Let E be a K-vector space, in which one chooses a basis § = {eq,... ,e,}.
Let P € M,,(K) be an invertible matrix.! The set 3’ = {e],... ,e’ } defined

by

T
, — « .
€; — Pji€;
7=1

is a basis of E. One says that P is the matrix of the change of basis 5 — ',
or the change-of-basis matrix. If x € F has coordinates (x1,...,Z,) in the
basis # and (z},...,x, ) in the basis ', one then has the formulas

T
T
. E— . . /
ZCJ — pjzajz-
1=1

If w: E — F is a linear map, one may compare the matrices of u for
different choices of the bases of E and F'. Let 3, 3" be bases of E and let

v, be bases of F. Let us denote by P, () the change-of-basis matrices of
B — (" and v — ~'. Finally, let M, M’ be the matrices of u in the bases
G,y and (',~', respectively. Then

MP = QM

or M' = Q7 'MP, where Q—! denotes the inverse of ). One says that M
and M’ are equivalent. Two equivalent matrices have same rank.

1See Section 2.2 for the meaning of this notion.
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If ¥ = F and v € End(F), one may compare the matrices M, M’ of u

in two different bases 3,3’ (here v = 3 and v = 3’). The above formula
becomes

M =P 'MP.

One says that M and M’ are similar, or that they are conjugate (the latter
term comes from group theory). One also says that M’ is the conjugate of
M by P.

The equivalence and the similarity of matrices are two equivalence
relations. They will be studied in Chapter 6.

1.2.1 Block Decomposition

Considering matrices with entries in a ring A does not cause difficulties, as
long as one limits oneself to addition and multiplication. However, when A
1s not commutative, it is important to choose the tormula

> M;; M,
j=1

when computing (M M');i, since this one corresponds to the composition
law when one identifies matrices with A-linear maps from A™ to A".

When m = n, the product is a composition law in M,,(K'). This space
1s thus a K-algebra. In particular, it 1s a ring, and one may consider the
matrices with entries in B = M, (K). Let M € M, «,(B) have entries M,
(one chooses uppercase letters in order to keep in mind that the entries
are themselves matrices). One naturally identifies M with the matrix M’ €
M., xgn (K), whose entry of indices ((z — 1)n + k,(j — 1)n + 1), for i < p,
7 <gq,and k,l <n, 1s nothing but

(Mij) k-

One verifies easily that this identification is an isomorphism between
M, «q(B) and M, «sn(K) as K-vector spaces.

More generally, choosing decompositionsn = ni+---+n,, m = mi+- - -+
mg wWith ng,m; > 1, one may assoclate to every matrix M & M, m (K)

an array M with 7 rows and s columns whose element of index (k,[) is a
matrix My € My, «m, (K). Defining

VE :Znt, 2 :th (v1 = p1 = 0),

t<k <l

one has by definition
(Mi1)i; =My, +ipm+i, 1<1<ngl<j5<m.

This procedure, which depends on the choice of ny, m;, is called block
decomposition.
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Though M is not strictly speaking a matrix (except in the case studied
previously where the ny, m; are all equal to each other), one still may define
the sum and the product of such objects. Concerning the product ot M and
M’. we must of course be able to compute the products M. ; M .., and thus
the sizes of blocks must be compatible. One verifies easily that the block
decomposition behaves well with respect to the addition and the product.
For instance, if n = ny + no, m = m1 + mo and p = p1 + p2, two matrices
M, M’ of sizes n x m and m X p, with block decomposition M;;, M,,, have
a product M" = MM" € Myx,(K), whose block decomposition M/’ is

oglven by

A square matrix M, whose block decomposition is the same according to
rows and columns (that is my = ng, in particular the diagonal blocks are
square matrices) is said lower block-triangular if the blocks My; with k <[

are null blocks. One defines similarly the upper block-triangular matrices or
the block-diagonal matrices.

1.2.2  Transposition

If M € M,,«m(K), one defines the transposed matrix of M (or simply the
transpose of M) by

M" = (mji)1<i<m.1<i<n-

The transposed matrix has size m X n, and its entries m;; are given by
mi; = mj;. When the product MM’ makes sense, one has (MM')! =
(M")* M™* (note that the orders in the two products are reversed). For two
matrices of the same size, (M + M')* = M* + (M’)!. Finally, if a € K,
then (aM)* = a(M*). The map M — M’ defined on M,,(K) is thus linear,
but 1t 1s not an algebra endomorphism.

A matrix and its transpose have the same rank. A prootf of this fact is
ogiven at the end of this section.

For every matrix M € M,,«.m(K), the products M* M and MM* always

make sense. These products are square matrices of sizes m X m and n X n,

respectively.
A square matrix is said to be symmetricif M* = M, and skew-symmetric
if M* = —M (notice that these two notions coincide when K has char-

acteristic 2). When M € M, «,,(K), the matrices M* M and MM?' are

symmetric. We denote by Sym_(K) the subset of symmetric matrices in
M, (K). It is a linear subspace of M,,(K'). The product of two symmetric
matrices need not be symmetric.

A square matrix is called orthogonal if M* M = I,. We shall see in
Section 2.2 that this condition is equivalent to MM?* = 1.,

It M e My,xm(K), y € K™, and x € K", then the product ! My

belongs to M1 (K) and is therefore a scalar, equal to y* M* z. Saying that
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M = 0 amounts to writing z* My = 0 for every x and y. If m = n and
r! Mz = 0 for every z, one says that M is alternate. An alternate matrix
1s skew-symmetric, since

' (M+M")y =z My+y' Mz = (x+y) M(x+y)—2" Mx—y' My = 0.
The converse holds whenever the characteristic of A is not 2, since
22 Mz =" (M + M")x = 0.

However, 1n characteristic 2 there exist matrices that are skew-symmetric
but not alternate. As a matter of fact, the diagonal of an alternate matrix
must vanish, though this need not be the case for a skew-symmetric matrix
in characteristic 2.

The interpretation of transposition in terms of linear maps is the
following. One provides K™ with the bilinear form

<37,y> c = xTy — yTx — L1Y1 T T LnYn

called the canonical scalar product; one proceeds similarly in K™. If M &
M, «m (K), there exists a unique matrix N € M,,, «,(K) satisfying

<any> — (a?,Ny>,

for all x € K™ and y € K™ (notice that the scalar products are defined on
distinct vector spaces). One checks easily that N = M*. More generally, if
E, F are K-vector spaces endowed with nondegenerate symmetric bilinear
forms, and if u € L(E, F), then one can define a unique u* € L(F, E) from
the 1dentity

(w(@),y)r = (z,u” (Y))p, Vr€E,yePF

When £ = K™ and F = K" are endowed with their canonical bases and

canonical scalar products, the matrix associated to u* is the transpose of
the matrix associated to wu.

Let K be a field. Let us endow K™ with its canonical scalar product. If
F' 1s a linear subspace of K™, one defines the orthogonal subspace ot F' by

F-:={xec K™ (z,y) =0,Vy € F}.

It 1s a linear subspace of K. We observe that for a general field, the
intersection F' N F~ can be nontrivial, and K™ may differ from F + F+.
One has nevertheless

dim F 4+ dim F+ = m.

Actually, F'+ is the kernel of the linear map 7 : K™ — L(F;K) =: F*,
defined by T'(x)(y) = (z,y) for x € K™, y € F. Let us show that 7" is onto.
It {f1,...,fr} is a basis of F', then every linear form [ on F'is a map

f = szfj — I(f) = Zl(fj)zj-
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Completing the basis of F' as a basis of K™, one sees that [ is the restric-
tion of a linear form L on K™. Let us define the vector x € K™ by its
coordinates in the canonical basis: z; = L(e’). One has L(y) = (x,y) for
every y € K™; that is, [ = T'(x). Finally, we obtain

m =dimkerT +rk T = dim F— + dim F'*.

The dual formulas between kernels and ranges are frequently used. If

M € M,,«m(K), one has

K™ =kerM &~ R(M"), K" =ker(M"')® R(M),
where @&+ means a direct sum of orthogonal subspaces. We conclude that
rk M' = dim R(M") =m —dim R(M")* = m — dimker M,
and finally, that
rk M* =1k M.

1.2.3  Matrices and Bilinear Forms

Let E, I' be two K-vector spaces. One chooses two respective bases 3 =

{er,...,eptand vy ={f1,...,fm}. lf B: E x IF — K is a bilinear form,
then

B(z,y) = » Bles, fj)wiy;.

where the x;,y; are the coordinates of x,y. One can define a matrix M &
M., «xm (K) by m;; = B(e;, f;). Conversely, it M € M« (/) is given, one
can construct a bilinear form on £ X F' by the formula

B(z,y) :=x" My = Z MiiTiY;.
2,
Therefore, there is an isomorphism between M,, «.,,(K ) and the set of bi-
linear forms on E X F'. One says that M is the matrix of B with respect
to the bases [,~. This isomorphism depends on the choice of the bases.

A particular case arises when £ = K™ and FF = K™ are endowed with

canonical bases.
If M is associated to B, it is clear that M ' is associated to the bilinear
form defined on F' X E by

(y, ) — B(x,y).

When M is a square matrix, one may take F° = FE and v = (3. In that
case, M is symmetric if and only if B is symmetric: B(z,y) = B(y,x).
Likewise, one says that B is alternate it B(x,x) = 0, that is if M itself is
an alternate matrix.
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It B: E Xx F — K is bilinear, one can compare the matrices M and
M'" of B with respect to the bases 5,v and (5’,~’. Denoting by P, () the
change-of-basis matrices of 5 +— (3’ and v — ~’, one has

m;j — B(efi'?fj,') — ZpkiQZjB(ekafl) — ZpkiQijkl-
k,l k,l

Theretore,
M' =P MQ.

When FF = F and v = 3, v = ', the change of basis has the effect of
replacing M by M’ = P* M P. In general, M’ is not similar to M, though
it is so if P is orthogonal. If M is symmetric, then M’ is too. This was
expected, since one expresses the symmetry of the underlying bilinear form

B.

If the characteristic of K 1is distinct from 2, there is an isomorphism
between Sym_ (K) and the set of quadratic forms on K™. This isomorphism
1s given by the formula

Qe; +ej) —Qe) — Qlej) = 2my;.

In particular, Q(e;) = my;.

1.3 Exercises

1. Let G be an IR-vector space. Verify that its complexification G¢ is a
C'-vector space and that dimg G¢ = dimp G.

2. Let M € M, (KX) and M" € M,,,«,(K) be given. Show that
rk(MM'") < min{rk M, rk M'}.

First show that rk(M M’) < rk M, and then apply this result to the
transpose matrix.

3. Let K be a field and let A, B,C be matrices with entries in K, ot
respective sizes n X m, m X p, and p X q.

(a) Show that rk A +rk B < m + rk AB. It is sufficient to consider
the case where B is onto, by considering the restriction of A to
the range of B.

(b) Show that rk AB + rk BC' < rkB + rk ABC. One may use
the vector spaces KP/ker B and R(B), and construct three
homomorphisms u, v, w, with v being onto.

4. (a) Letn,n’,m,m’ € IN" and let K be afield.If B € M,,«x,»(K) and
C' € M,/ «xm/ (K), one defines a matrix B ® C' € My,n/ xmm (K),
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the tensor product, whose block form is

bﬂc R blmC

01 C oo by C
Show that (B,(C') — B ® (' is a bilinear map and that its range
spans M,/ «mm’ (K). Is this map onto?

(b) If p,p’ € IN" and D € M, «,(K), E € My« (K), then
compute (B ® C)(D ® F).

(¢c) Show that for every bilinear form ¢ : M, o (K) XM/ s (K) —
K, there exists one and only one linear form

L . Mnanmmf(K) — K
such that L(B ® C') = ¢(B, ().



2

Square Matrices

The essential ingredient for the study of square matrices is the determinant.
For reasons that will be given in Section 2.5, as well as in Chapter 6, it
1s useful to consider matrices with entries in a ring. This allows us to
consider matrices with entries in Z (rational integers) as well as in K|X]|
(polynomials with coefficients in K'). We shall assume that the ring A of
scalars is a commutative (meaning that the multiplication is commutative)
integral domain (meaning that it does not have zero divisors: ab = 0 implies
either a = 0 or b = 0), with a unit denoted by 1, that is, an element
satisfying 1o = x1 = x for every x € A. Observe that the ring M,,(A) is
not commutative it n > 2. For instance,

(0 0) (5 0)=Coo)# (o 1)=(70)(00)

An element a of A is wvertible if there exists b € A such that ab = 1.
The element b is unique (because A is an integral domain), and one calls it
the inverse of a, with the notation b = a~!. The set of invertible elements
of A is a multiplicative group, denoted by A*. One has

(ab) "' =b"tat=a"tb

2.1 Determinants and Minors

We recall that §,,, the symmetric group, denotes the group of permutations
over the set {1,... ,n}.
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Let M € M,,(A) be a square matrix. Its determinant is defined by

det M := Z G(O-)mla(l) o MMno(n) s
O-ES?”L

where the sum ranges over all the permutations ot the integers 1,... , n.
We denote by €(0) = £1 the signature of o, equal to +1 if ¢ is the product
an even number of transpositions, and —1 otherwise. Recall that e(co’) =
e(o)e(a’).

If M is triangular, then all the products vanish other than the one
associated with the identity (that is, o(j) = 7). The determinant of a
triangular M is thus equal to the product of diagonal entries m;;. In par-
ticular, det I, = 1 and det0,, = 0. An analogous calculation shows that
the determinant of a block triangular matrix is equal to the product of the
determinants of the diagonal blocks M ;.

Since €(c~!) = €(0), one has

det M* = det M.

Looking at M as a row matrix with entries in A", one may view the
determinant as a multilinear form of the n columns of M:

det M = det (M(l),... ,M(”)).

This form 1s alternate: It two columns are equal, the determinant vanishes.
As a matter of fact, if the ¢th and the jth columns are equal, one groups the
permutations pairwise (o, 7o), where 7 is the transposition (7, j). For each
palr, both products are equal, up to the signatures, which are opposite;
their sum is thus zero. Likewise, if two rows are equal, the determinant is
Z€TO.

More generally, if the columns of M satisty a non trivial linear relation
(a1, ... ,an, not all zero) of linear dependence

aiMqy+---+a,M, =0

(that is, if rk M < n), then det M is zero. Let us assume, for instance, that
a1 1s nonzero. For 7 > 2, one has

det (M(j),M(Q), . ,M(n)) _ 0
Using the multilinearity, one has thus
aydet M = det (alM(l) +eidta, M M) ,M(n))
— et (0,M<2>,...) _ 0.

Since A is an integral domain, we conclude that det M = 0.

For a matrix M € M,,«m(A), not necessarily square, and p > 1 an integer
with p < m,n, one may extract a p X p matrix M’ € M, (A) by retaining
only p rows and p columns of M. The determinant of such a matrix M’ is
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called a minor of order p. Once the choice of the row indices 17 < -+ < 1,
and column indices 71 < --- < 7, has been made, one denotes by

Ji1 J2 0 Jp
the corresponding minor. A principal minor is a minor with equal row and
column indices, that is, of the torm

TR
ML & 2.
11 19 .« o Zp

In particular, the leading principal minor of order p is

1 2 - p
(5 b

Given a matrix M € M,,(A), one associates the matrix M of cofactors,
defined as follows: its (7, 7)-th entry m;,; is the minor of order n —1 obtained
by removing the ith row and the jth column multiplied by (—1)**7. It is
also the factor of m;; in the formula for the determinant of M. Finally, we
define the adjoint matrix adj M by

adj M = MT.
Proposition 2.1.1 If M € M, (A), one has
M(adjM) = (adjM)M = det M - I,,. (2.1)

Proof

The identity is clear as far as diagonal terms are concerned; it amounts to
the definition of the determinant (see also below). The off-diagonal terms
m;; of M(adjM) are sums involving on the one hand an index, and on
the other hand a permutation o € §,,. One groups the terms pairwise,
corresponding to permutations o and o7, where 7 is the tranposition (i, j).
The sum of two such terms is zero, so that m;; = 0.

I

Proposition 2.1.1 contains the well-known and important expansion tor-
mula for the determinant with respect to either a row or a column. The

expansion with respect to the 1th row 1s written
det M = (—1)i+1mi1m7j1 o T (_]-)Z_l_nmznmzna

while the expansion with respect to the 1th column is

det M = (—1)?’ 1m1im1i o s T (—1)Z ”mmmm

2.1.1 Irreducibility of the Determinant

By definition, the determinant is a polynomial function, in the sense that
det M is the value taken by a polynomial Det 4 € A|z11,... ,Zy,| Wwhen the
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ri;'s are replaced by the scalars m;;. We observe that Det 4 does not really
depend on the ring A, in the sense that it is the image of Dety through
the canonical ring homomorphism Z — A. For this reason, we shall simply
write Det. The polynomial Det may be viewed as the determinant of the

matrix X = (xij)lgi,jgn — Mn(A[.ClZ‘H, e ,Zl?nn])
Theorem 2.1.1 The polynomial Det is irreducible in A|x11,... ,Tnnl-
Proof

We shall proceed by induction on the size n. If n = 1, there is nothing
to prove. Thus let us assume that n > 2. We denote by D the ring of
polynomials in the x;; with (¢,7) # (1,1), so that A{x11,... ,Znn] = D|211].
From the expansion with respect to the first row, we see that Det = x11 P+
(), with P,() € D. Since Det is of degree one as a polynomial in x1,
any factorization must be of the form (z11 R + 5)T, with R, S,T € D. In
particular, R1 = P.

By induction, and since P is the polynomial Det of (n — 1) x (n — 1)
matrices, 1t 1s irreducible in E, the ring of polynomials in the x;;’s with
1,7 > 1. Therefore, it is also irreducible in D, since D is the polynomial
ring F|T12,... ,21n,T21,... ,Tn1|. Lherefore, we may assume that either R
or 1" equals 1.

If the factorization is nontrivial, then R = 1 and 1" = P. It follows that
P divides Det. An expansion with respect to various rows shows similarly
that every minor of size n — 1, considered as an element of A|z11,...,Znnl,
divides Det. However, each such minor is irreducible, and they are pairwise
distinct, since they do not depend on the same set of z;;’s. We conclude
that the product of all minors of size n — 1 divides Det. In particular, the
degree n of Det is greater than or equal to the degree n*(n — 1) of this
product, an obvious contradiction.

2.1.2 The Cauchy—Binet Formula

In the sequel, we shall use also the following result.

Proposition 2.1.2 Let B € M,,xm(A), C € M,,,«;(A), and an integer
p<n,l begiwen. Let 1 <11 <--- <1, <nandl <k <--- <k, <1 be
indices. Then the minor

SR PR
BO) (2 )
s given by the formula
11 lg e 1 71 g2 )
Bl o . Py.C P
S ooB(n o )e(hor )

1<71<go<--<gp<m
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Corollary 2.1.1 Let b,c € A. If b divides every minor of order p of B

and if ¢ divides every minor of order p of C, then bc divides every minor
of order p of BC'.

The particular case [ = m = n is fundamental:

Theorem 2.1.2 If B,C' € M, (A), then det(B(C') = det B - det C.

In other words, the determinant is a multiplicative homomorphism from
M, (A) to A.

Proof

The corollaries are trivial. We only prove the Cauchy—Binet formula.
Since the calculation of the ith row (respectively the jth column) of BC
involves only the ith row of B (respectively the jth column of ('), one
may assume that p = n = [. The minor to be evaluated is then det BC'. It
m < n, there is nothing to prove, since on the one hand the rank of BC
1s less than or equal to m, thus det BC' is zero, and on the other hand the
letft-hand side sum in the formula is empty.

There remains the case m > n. Let us write the determinant of a ma-
trix PP as that of its columns P; and let us use the multilinearity of the
determinant:

T

det BC = det | » ¢j1Bj,(BC)s,...,(BO),
J1=1
— Z cj1det | 5y, Z Cjy25s (BC)Sa v (BC)’TZ
31:1 j2:1

In the sum the determinant is zero as soon as f — jr 1s not injective,
since then there are two identical columns. If on the contrary 7 is injective,
this determinant is a minor of B, up to the sign. This sign is that of the
permutation that puts j1,... ,J, in increasing order. Grouping in the sum
the terms corresponding to the same minor, we find that det BC' equals

Z Z E(O-)Ckla(l) o Ckna(n)B ( ki ko - kn ) )

1§k1<<kn§ma O'ESn

which is the required formula.

2.2 Invertibility

Since M,,(A) is not an integral domain, the notion of invertible elements
of M,,(A) needs an auxiliary result, presented below.
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Proposition 2.2.1 Given M € M, (A), the following assertions are
equivalent:

1. There exists N € M, (A) such that MN = I,.
2. There exists N' € M,,(A) such that N'M = I,,.
3. det M 1s invertible.

If M satisfies one of these equivalent conditions, then the matrices N, N’
are unique and one has N = N”.

Definition 2.2.1 One then says that M is invertible. One also says some-
times that M is nonsingular, or regular. One calls the matrix N = N’ the
inverse of M, and one denotes it by M~'. If M is not invertible, one says
that M s singular.

Proof

Let us show that (1) is equivalent to (3). If MN = I,,, then det M -
det N = 1; hence det M € A*. Conversely, if det M 1is invertible,
(det M)~'M7 is an inverse of M by (2.1). Analogously, (2) is equivalent
to (3). The three assertions are thus equivalent.

It MN = N'M = 1I,, one has N = (N'M)N = N'(MN) = N'. This
equality between the lett and right inverses shows that these are unique.

—

The set of the invertible elements of M,,(A) is denoted by GL,,(A) (for
“general linear group”). It is a multiplicative group, and one has

(MN)—l _ N_lM_l, (Mlc)—l __ (M_l)k, (MT)—l __ (M_l)T.

The matrix (M1)~! is also written M ~1. If kK € IN, one writes M % =
(M*)~1 and one has M7 M?" = M7+ for every j,k € Z.

The set of the matrices of determinant one is a normal subgroup of
GL, (A), since it is the kernel of the homomorphism M +— det M. It is
called the special linear group and is denoted by SL,(A).

The orthogonal matrices are invertible, and they satisty the relation
M~—1t = M?'. In particular, orthogonality is equivalent to MM*' = I,,.
The set of orthogonal matrices with entries in a field K 1is obviously a
multiplicative group, and is denoted by O,,(K). It is called the orthogonal
group. The determinant of an orthogonal matrix equals +1, since

1 =det M -det M* = (det M)~.

The set SO,,(K) of orthogonal matrices with determinant equal to 1 is
obviously a normal subgroup of the orthogonal group. It is called the special
orthogonal group. It is simply the intersection of O, (K ) with SL,, (K).

A triangular matrix is invertible if and only if its diagonal entries are
invertible; its inverse is then triangular of the same type, upper or lower.
The proposition below is an immediate application of Theorem 2.1.2.
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Proposition 2.2.2 If M, M’ € M,(A) are similar (that is, M' =
P~*MP with P € GL,(A)), then

det M’ = det M.

2.3 Alternate Matrices and the Pfathan

The very simple structure of alternate forms is described in the following
statement.

Proposition 2.3.1 Let B be an alternate bilinear form on a vector space
E, of dimension n. Then there exists a basis

{1, Y1y e o Ty Yky 21y v+ 5 Zn—2k |

such that the matrix of B in this basis 1s block-diagonal, equal to

diag(.J,...,J,0,...,0), with k blocks J defined by

0 1
J(l O).
Proof

We proceed by induction on the dimension n. If B = 0, there is nothing to
prove. If B is nonzero, there exist two vectors x1, y; such that B(x1,y1) # 0.
Multiplying one of them by B(z1,y1)” !, one may assume that B(x1,y1) =
1. Since B is alternate, {x1, y1 } is free. Let N be the plane spanned by z1, y;.
The set of vectors x satistying B(z,v) = 0 (or equivalently B(v,x) = 0,
since B must be skew-symmetric) for every v in N is denoted by N-. The
formulas

B(axy + by1,x1) = —b, B(axi +by1,y1) = a

show that N N N+ = {0}. Additionally, every vector x € E can be written
as r =1y +n, where n € NV and y € N— are given by

n:B(xayl)xl_B(xaxl)yla Yy .= & —N.

Therefore, E = N & N-. We now consider the restriction of B to the
subspace N+ and apply the induction hypothesis. There exists a basis
{x2, Y2, ... , Tk, Yk, 21, .- , Zn_o2k | such that the matrix of the restriction of
B in this basis is block-diagonal, equal to diag(./,... ,J,0,...,0), with £—1
blocks J, which means that B(x;,y;) = 1 = —B(y;,2;) and B(u,v) = 0
for every other choice of u, v in the basis. Obviously, this property extends
to the form B itself and the basis {z1,y1,... , %k, Yk, 21, .-+ , Zn_2k |-
H
We now choose an alternate matrix M € M, (K) and apply Proposition
2.3.1 to the form defined by M. In view of Section 1.2.3, we have the
following.
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Corollary 2.3.1 Given an alternate matric M € M, (K), there exists a
matriz () € GL,(K) such that

M = Q" diag(J,...,J,0,...,0)Q. (2.2)

Obviously, the rank of M, being the same as that ot the block-diagonal
matrix, equals twice the number of J blocks. Finally, since det J = 1, we
have det M = ¢(det ), where € = 0 if there is a zero diagonal block in the
decomposition, and € = 1 otherwise. Thus we have proved the tfollowing
result.

Proposition 2.3.2 The rank of an alternate matrix M 1s even. The num-
ber of J blocks in the identity (2.2) is the half of that rank. In particular,
it does not depend on the decomposition. Finally, the determinant of an
alternate matrix 1s a square in K.

A very important application of Proposition 2.3.2 concerns the Pfaffian,
whose crude definition is a polynomial whose square is the determinant of
the general alternate matrix. First of all, since the rank of an alternate
matrix is even, det M = 0 whenever n is odd. Therefore, we restrict our
attention from now on to the even-dimensional case n = 2m. Let us consider
the field F' = @Q(x;;) of rational functions with rational coefficients, in
n(n — 1)/2 indeterminates z;;, ¢ < j. We apply the proposition to the
alternate matrix X whose (i, 1)-entry is 0 and (4, j)-entry (respectively (7, 1)-
entry) is x;; (respectively —x;;). Its determinant, a polynomial in Z ||, is
the square of some irreducible rational function f/g, where f and g belong
to Z[x;;]. From ¢g® det X = f*, we see that g divides f in Z|z;;]. But since
f and g are coprime, one finds that ¢ is invertible; in other words g = +1.
T'hus

det X = f°. (2.3)

Now let k be a field and let M € M, (k) be alternate. There exists
a unique homomorphism from Z|z;;| into k sending z;; to m;;. From

equation (2.3) we obtain
det M = (f(mlg, ‘o ,mn_ljn))Q. (24)

In particular, if k¥ = @ and M = diag(J,...,J), one has f* = 1. Up
to multiplication by 41, which leaves unchanged the identity (2.3), we
may assume that f = 1 for this special case. This determination of the
polynomial f is called the Pfaffian and is denoted by Pt. It may be viewed
as a polynomial function on the vector space ot alternate matrices with
entries in a given field k. equation (2.4) now reads

det M = (Pf(M))~. (2.5)

Given an alternate matrix M € M, (k) and a matrix Q € M,(k), we
consider the Pfaffian of the alternate matrix Q! M Q. We first consider the

case of the field of fractions @(x;;,y;;) in the n*+n(n—1)/2 indeterminates
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zi; (1 <1< j7<n)and y;; (1 <1,7 <n). Let Y be the matrix whose
(2, 7)-entry is y;;. Then, with X as above,

(PF(Y*XY))? =detY* XY = (detY)?det X = (Pf(X)detY)~.
Since Z|x;;,Y;;| 1s an integral domain, we have the polynomial identity
Pf(Y'XY) =ePf(X)detY, e=+1.

As above, one infers that Pf(Q* M Q) = &= Pf(M)det Q for every field &,
matrix () € M,(k), and alternate matrix M € M, (k). Inspection of the
particular case () = I,, yields ¢ = 1. We summarize these results now.

Theorem 2.3.1 Let n = 2m be an even wnteger. There exists a unique
polynomial Pt in the indeterminates z;; (1 < i < j < n) with integer
coefficients such that:

e For every field k and every alternate matrix M € M, (k), one has
det M = Pf(M)=.

o [f M =diag(J,...,J), then Pf(M) = 1.
Moreover, if Q € M, (k) is given, then Pf (QTMQ) = Pt(M) det Q).

We warn the reader that if m > 1, there does not exist a matrix Z € @|z;;]
such that X = Z% diag(J,...,J)Z. The factorization of the polynomial
det X does not correspond to a similar factorization ot X itself. In other
words, the decomposition X = Q* diag(J,...,J)Q in M,(Q(z;;)) cannot
be written within M, (Q|z;,]).

The Ptfathan is computed easily for small values of n. For instance,
Pf(X) — L1292 if n = 2, and Pt = L12L34 — L1324 L14L923 it n = 4.

2.4  Eigenvalues and Eigenvectors

Let K be a field and E, F two vector spaces of finite dimension. Let us
recall that it v : £ — F' is a linear map, then

dim £ = dim ker u + rk u,

where rk v denotes the dimension of u(F£) (the rank of u). In particular, if
u € End(F), then

u 1S bijective <= wu 1s 1njective <= u 1s surjective.

However, u is bijective, that is invertible, in End(£), if and only if its
matrix M in some basis (3 is invertible, that is if its determinant is nonzero.

As a matter of fact, the matrix of u=! is M ~!; the existence of an inverse
(either that of M or that of u) implies that of the other one. Finally, if
M € M,,(K), then det M = 0 is equivalent to

VX e K" MX=0—X=0.
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In other words,

det M =0<+= X e K", X #0, MX =0).

More generally, since M X = A X (A € K) can also be written (A,—M )X =
0, one sees that det(\l,, — M) is zero if and only if there exists a nonzero
vector in K™ such that M X = AX. One then says that A is an eigenvalue
of M in K, and that X is an eigenvector associated to A. An eigenvector
1s thus always a nonzero vector. The set of the eigenvalues of M in K 1is
called the spectrum of M and is denoted by Sp (M).

A matrix in M,,(K) may have no eigenvalues in K, as the following
example demonstrates, with K = IR:

(50)

In order to understand in detail in the structure of a square matrix M &€
M., (K), one is thus led to consider M as a matrix with entries in K. One
then writes Sp(M ) instead of Sp#(M ), and one has Spy (M) = KNSp(M),
since the eigenvalues are characterized by det(A\l,, — M) = 0, and this
equality has the same meaning in K as in K when \ € K.

2.5 The Characteristic Polynomial

The previous calculations show that the eigenvalues of M € M,,(K) are
the roots of the polynomial

Py (X) := det(X I, — M).

Let us observe in passing that if X is an indeterminate, then X1, — M &€
M, (K(X)). Its determinant P,; is thus well-defined, since K(X) is a
commutative integral domain with a unit element. One calls Py, the charac-
teristic polynomaial of M. Substituting 0 for X, one sees that the constant
term in Pp; is simply (—1)" det M. Since the term corresponding to the
permutation o = id in the computation of the determinant is of degree
n (it is | [.(X — my;)) and since the products corresponding to the other
permutations are of degree less than or equal to n — 2, one sees that P is
of degree n, with

Pu(X)=X"— (Z m) X" 4o 4 (=1)" det M.
1=1

The coethicient

T
E TG4
i—=1
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1s called the trace ot M and is denoted by Tr M. One has the trivial formula
that if N € M,,«xm(K) and P € M,,,«,,(K), then

Tr(NP)="Tr(PN).
For square matrices, this identity also becomes
Tr|N, P| = 0.

Since Pj; possesses n roots in K, counting multiplicities, one sees that
a square matrix has always at least one eigenvalue, which, however, does
not necessarily belong to K. The multiplicity ot A as a root of P, is called
algebraic multiplicity ot the eigenvalue A\. The geometric multiplicity of A is
the dimension of ker(Al,,—M ) in K™. The sum of the algebraic multiplicities
of the eigenvalues of M (considered in K) is n, the size of the matrix. An
eigenvalue of algebraic multiplicity one (that is, a simple root of Pys) is
called stmple. 1t is geometrically stmple it its geometric multiplicity equals
one.

The characteristic polynomial is a similarity invariant, in the tollowing
sense:

Proposition 2.5.1 If M and M’ are similar, then Py = Puyo. In
particular, det M = det M and Tr M = Tr M.

The proof is immediate. One deduces that the eigenvalues and their
algebraic multiplicities are similarity invariants. This is also true for the
geometric multiplicities, by a direct comparison of the kernel of A\I,, —
M and of \I,, — M’. Furthermore, the expression obtained above for the
characteristic polynomial provides the following result.

Proposition 2.5.2 The product of the eigenvalues of M (considered in
K ), counted with their algebraic multiplicities, is det M. Their sum is 'Tr M.

Let 1 be the geometric multiplicity of an eigenvalue A of M. Let us choose
a basis v of ker(\I,, — M), and then a basis of 3 of K that completes .
Using the change-of-basis matrix from the canonical basis to (3, one sees
that M is similar to a matrix M’ = P~ M P, whose u first columns have

the form
( AI“ )
On—u,u |

A direct calculation shows then that (X — \)# divides Py, that is, Pys. The
geometric multiplicity is thus less than or equal to the algebraic multiplicity.
The characteristic polynomials of M and M?! are equal. Thus, M and
M* have the same eigenvalues. We shall show in Chapter 6 a much deeper
result, namely M and M?' are similar.
The main result concerning the characteristic polynomial is the Cayley—
Hamilton theorem:



26 2. Square Matrices

Theorem 2.5.1 Let M € M, (K). Let
Pu(X)=X"+a X" '+ +ay
be 1ts characteristic polynomial. Then the matrix
M"™ +~aM* Y+ ... +a,1,
equals 0,,.

One also writes Py (M) = 0. Though this formula looks trivial (obviously,
det(M1I, — M) = 0), it is not. Actually, it must be understood in the
following way. Let us consider the expression X I,, — M as a matrix with
entries in K| X|. When one substitutes a matrix N for the indeterminate

X in X1, — M, one obtains a matrix of M,,(A), where A is the subring

of M,,(K') spanned by I,, and N (one denotes it by K(/N)). The ring A is
commutative (but is not an integral domain in general), since it is the set
of the q(N) for ¢ € K|X|. Therefore,

N —my1ly,

Py (N) = Mg dn

N — mnnIn

The Cayley—Hamilton theorem expresses that the determinant (which is
an element of M,,(K'), rather than of K') of this matrix is zero.

Proof
Let R € M,,(K (X)) be the matrix X1,, — M, and let S be the adjoint of

R. Each s;; 1s a polynomial of degree less than or equal to n — 1, because
the products arising in the calculation ot the cofactors involve n — 1 linear
or constant terms. 1hus we may write

where S; € M, (K). Let us now write RS = (det R)I,, = Py (X)I:
(XTI, — M)(So X" 1+ 4+ 8, 1) = X"+ X"+ +an)],.

Identifying the powers of X, we obtain

SO — I’na
Sl — MSO — Cbljn,
Sj — MSj_l — G,jIn,
Sn—-1—MSp—2 = an_11n,
—MSn_1 — a,nIn.
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Let us multiply these rows by the powers of M, beginning with M"™ and
ending with MY = I,. Summing the obtained equalities, we obtain the
expected formula.
_
For example, every 2 X 2 matrix satisfies the identity

M= — (Tr M)M + (det M)I5 = 0.

2.5.1 The Mwnimal Polynomaial

For a square matrix M € M,,(K), let us denote by Jy; the set of polyno-
mials () € K|X]| such that Q(M) = 0. It is clearly an ideal of K|X|. Since
K |X| is Euclidean, hence principal (see Sections 6.1.1 and 6.1.2), there ex-
ists a polynomial () s such that Jy; = K|X|Q . In other words, Q(M) = 0
and () € K| X| imply Qu|@Q. Theorem 2.5.1 shows that the ideal Jj; does
not reduce to {0}, because it contains the characteristic polynomial. Hence,
Qr # 0 and one may choose it monic. This choice determines Qs in a
unique way, and one calls it the minimal polynomial of M. It divides the
characteristic polynomial.

Contrary to the case of the characteristic polynomial, it is not immedi-
ate that the minimal polynomial is independent of the field in which one
considers Jj; (note that we consider only fields that contain the entries of
M). We shall see in Section 6.3.2 that if L is a field containing K, then the
minimal polynomials of M in K|X| and L|X| are the same. This explains
the terminology.

T'wo similar matrices obviously have the same minimal polynomial, since

Q(P'MP) =P 'Q(M)P.

If A is an eigenvalue of M, associated to an eigenvector X, and if q¢ €
K|X]|, then ¢q(A\)X = q(M)X. Applied to the minimal polynomial, this
equality shows that the minimal polynomial is divisible by X — A. Hence,
if Pys splits over K in the form

T

H(X _ )\j)njv

j=1
the A; all being distinct, then the minimal polynomial can be written as

T

H(X _ )\j)mjv

g=1

with 1 < m,; < n,. In particular, if every eigenvalue of M 1s simple, the
minimal polynomial and the characteristic polynomial are equal.

An eigenvalue is called semi-simple if it is a simple root of the minimal
polynomial.
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2.6 Diagonalization

If A € K is an eigenvalue of M, one calls the linear subspace Ex(\) =
ker(M — A,) in K™ the eigenspace associated to A. It is formed of eigen-
vectors associated to A on the one hand, and of the zero vector on the other
hand. Its dimension is nonzero. If L is a field containing K (an “extension”
of K), then dimg Ex(\) = dimy, Er(A). This equality is not obvious. It
follows from the third canonical form with Jordan blocks, which we shall
see 1n dection 6.3.3.

If A\q,..., A\, are distinct eigenvalues, then the eigenspaces are in direct
sum. l'hat is,

(1 € Ex(M),..., 2 € Ex(\), 21+ 42, =0) = (1 =--- =2, = 0).
As a matter of fact, if there existed a relation 1 + --- + 4 = 0 where
x1,...,ZTs did not vanish simultaneously (we say that it has length s), one

could choose such a relation of minimal length r. One then would have
r > 2. Multiplying this relation by M — A, 1,,, one would obtain

(Al — )\7’)5[51 T T ()\'r'—l — )\7")337“—1 — Oa

which is a nontrivial relation of length » — 1 for the vectors (A, — \;)x; €
Ex(A;). This contradicts the minimality of r.

If all the eigenvalues of M are in K and it the algebraic and geometric
multiplicities coincide for each eigenvalue of M, the sum of the dimensions
of the eigenspaces equals n. Since these linear subspaces are in direct sum,
one deduces that

K" = E(Al) D .- @E(AT)

Thus one may choose a basis of K" formed of eigenvectors. It P is the
change-of-basis matrix from the canonical basis to the new one, then
M' = P 'MP is diagonal, and its diagonal terms are the eigenvalues,
repeted with their multiplicities. One says that M is diagonalizable in K.
A particular case is that in which the eigenvalues of M are in K and are
simple.

Conversely, if M is similar, in M, (K), to a diagonal matrix M’ =
P~ 'MP, then P is a change-of-basis matrix from the canonical basis to
an eigenbasis (that is, a basis composed of eigenvectors) of M. Hence, M
1s diagonalizable if and only if the algebraic and geometric multiplicities of
each eigenvalue coincide.

Two obstacles could prevent M from being diagonalizable in K. The
first one is that an eigenvalue of M does not belong to K. One can always
overcome this difficulty by moving towards M,, (K ). The second one is more
serious: In K, the geometric multiplicity of an eigenvalue can be strictly
less than i1ts algebraic multiplicity. For instance, a triangular matrix whose
diagonal vanishes has only one eigenvalue, zero, of algebraic multiplicity
n. duch a matrix is nilpotent. However it is diagonalizable only if it is 0,,,
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since M = PM'P~! and M’ =0 imply M = 0. Hence,

(00)

1s not diagonalizable.

2.( 'Irigonalization

Let us begin with an application of the Cayley—Hamilton theorem.

Proposition 2.7.1 Let M € M, (K) and let Py be its characteristic poly-
nomial. If Pyy = QR with coprime factors Q, R € K| X|, then K" = E®F,
where E, F' are the ranges of Q(M) and R(M), respectively. Moreover, one
has E =ker R(M), FF =ker Q(M).

More generally, if Pyy = Ry1--- Rs, where the Ry are coprime, one has
K'=FE{ & --® E; with E; =ker R;(M).

Proof

It is suflicient to prove the first assertion. From Bézout’s theorem, there
exists Rq,()1 € K|X]| such that RRy + Q)1 = 1. Hence, every x € K™ can
be written as a sum y + z with y = Q(M)(Q1(M)x) € E, and similarly
z=R(M)(Ri(M)z) € F. Hence K" = E + F..

Furthermore, for every y € E, the Cayley—Hamilton theorem says that
R(M)y = 0. Likewise, z € F implies Q(M)z = 0. If x € E N F, one has
thus R(M)xz = Q(M)x = 0. Again using Bézout’s theorem, one obtains
x = 0. This proves K" = E & F..

Finally, E C ker R(M). Since these two vector spaces have the same
dimension (namely n — dim F'), they are equal.

l

If K is algebraically closed, we can split P; in the form

Pu(X)= [ (X-XN™.
AESp(M)

From Proposition 2.7.1 one has K" = &) FE)\, where E\ = ker(M — \I)™*
1s called a generalized ergenspace. Choosing a basis in each £, we obtain a
new basis B of K™. It P is the matrix of the linear transtormation from the

canonical basis to B, the matrix PM P~! is block-diagonal, because each
E'\ 1s stable under the action of M:

PMP~' =diag(...,M,,...).

The matrix M) is that of the restriction of M to E). Since E) = ker(M —
A )", one has (M) — AI)™ = 0, so that A is the unique eigenvalue of M.
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Let us define Ny = M) — Al,,, which is nilpotent. Let us also write

D" = diag(... , A, ,...),
N' = diag(...,NA,...),
and then D = P='D'P, N = P! N'P. The matrices D', N’ are respec-

tively diagonal and nilpotent. Moreover, they commute with each other:
D'N" = N'D’. One deduces the following result.

Proposition 2.7.2 If K is algebraically closed, every matrix M € M,,(K)

decomposes as a sum M = D+ N, where D s diagonalizable, N 1s nilpotent,
DN = ND, and Sp(D) = Sp(M).

Let us continue this analysis.

Lemma 2.7.1 Every nilpotent matrix s similar to a strictly upper
triangular matrix (and also to a strictly lower triangular one).

Proof

Let us consider the nondecreasing sequence of linear subspaces Ej =
ker N*. Since Ey = {0} and E, = K™ for a suitable r, one can find a basis
fz!, ..., 2"} of K™ such that {z!,... 27} is a basis of E}, if 7 = dim E},
(use the theorem that any linearly independent set can be enlarged to
a basis). Since N(Ep 1) = Er, NaJ € Ej. If P is the change-of-basis
matrix from this basis to the canonical one, then PN P~ is strictly upper
triangular.

H

Let us return to the decomposition PM P~' = D’ + N’ above. Each N,
can be written, from the lemma, in the form R;lT v, where 1 1s strictly
upper triangular. Then Ry (D) + N A)R)Tl — D) + T is triangular. Let us
set

R =diag(... ,Ry,...).

Then (RP)M(RP)~! is block-diagonal, with the diagonal blocks upper
triangular, and hence this matrix is itselt upper triangular.

Theorem 2.7.1 If K s algebraically closed, then every square matriz s
similar to a triangular matrix (one says that it is trigonalizable).

More generally, if the characteristic polynomial of M € M,,(K) splits as
the product of linear factors, then M s trigonalizable.

A direct proot of this theorem that does not use the three previous
statements is possible. Its strategy is used in the proof of Theorem 3.1.3

2.8 Irreducibility

A square matrix A is saild reducible it there exists a nontrivial partition
{1,...,n} =1TUJ such that (i,7) € I x J implies a;; = 0. It is irreducible
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otherwise. Saying that a matrix is reducible is equivalent to saying that
there exists a permutation matrix P such that PAP ™! is of block-triangular

form
B C
Opn—p D )’

with 1 < p <n—1. As a matter of tact, P is the matrix of the transtorma-
tion from a basis v to the canonical one, v being obtained by first writing
the vectors €/ with 7 € J, and then those with 7 € I. Working in the new
basis amounts to decomposing the linear system Ax = b into two subsys-
tems Dz = d and By = ¢ — Cz, which are to be solved successively. The
spectrum of A is the union of those of B and D, so that many interesting
questions concerning square matrices reduce to questions about irreducible
matrices.

We shall see in the exercises a characterization of irreducible matrices in
terms of graphs. Here is a useful consequence ot irreducibility.

Proposition 2.8.1 Let M € M, (K) be an irreducible matrix such that
1 > 7+ 2 implies m;; = 0. Then the eigenvalues of M are geometrically
simple.

Proof

T'he hypothesis implies that all entries m; 11 ; are nonzero. It A is an eigen-
value, let us consider the matrix N € M,,_1(K), obtained from M — A,
by deleting the first row and the last column. It is a triangular matrix,

whose diagonal terms are nonzero. It i1s thus invertible, which i1mplies
rk(M — A\l,,) = n — 1. Hence ker(M — AI,,) is of dimension one.

2.9 Exercises

1. Verity that the product of two triangular matrices of the same type
(upper or lower) is triangular, of the same type.

2. Prove in full detail that the determinant of a triangular matrix (re-
spectively a block-triangular one) equals the product of its diagonal

terms (respectively the product of the determinants of its diagonal
blocks).

3. Find matrices M, N € My(K) such that MN = 02 and NM = 0-.
Such an example shows that M N and N M are not necessarily similar,

though they would be in the case where M or /N 1s invertible.

4. Characterize the square matrices that are simultaneously orthogonal
and triangular.
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One calls any square matrix M satisfying M? = M a projection
matrix, or projector.

(a) Let P € M, (K) be a projector, and let £ = ker P, F' = ker([,, —
P). Show that K" = E & F.

(b) Let P, (@ be two projectors. Show that (P — ())* commute with
P and with (). Also, prove the identity

(P—Q)°+ (I, —P—Q) =1,.

Let M be a square matrix over a field K, which we write blockwise

as
A B
M= ( C D ) '
The formula det M = det(AD — B(') is meaningless in general, except

when A, B, C, D have the same size. In that case the formula is false,

with the exception of scalar blocks. Compare with Schur’s formula
(Proposition 8.1.2).

. It A, B,C,DeM,,(K)and if AC = CA, show that the determinant

of
A B
v=(c b)
equals det(AD — C'B). Begin with the case where A is invertible, by

computing the product
I’m Om
( T O ) M

Then apply this intermediate result to the matrix A—z1,,, with z € K
a sultable scalar.
Compare with the previous exercise.

. Verity that the inverse of a triangular matrix, whenever it exists, is

triangular of the same type.

. dhow that the eigenvalues of a triangular matrix are its diagonal

entries. What are their algebraic multiplicities?

Let A € M, (K) be given. One says that a list (ai15(1),--- » non))
is a diagonal of A if o is a permutation (in that case, the diagonal
given by the identity is the main diagonal). Show the equivalence of
the following properties.

e Lvery diagonal of A contains a zero element.
e There exists a null matrix extracted from A of size k x [ with

kE+1[>n.
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Compute the number of elements in the group GL2(Z /2Z). Show
that it 1s not commutative. Show that it 1s isomorphic to the
symmetric group S,,, for a suitable integer m.

If (ag,...,an_1) € C" is given, one defines the circulant matrix
circ(ag, ... ,an—1) € M, (C') by

agp a1 Up—1
- L Up—1 a0
CIIC(CL(), .o e ,a,n_l) . —
a1
a1 Uy —1 o

We denote by C,, the set of circulant matrices. Obviously, the ma-
trix circ(1,0,0,...,0) is the identity. The matrix circ(0,1,0,...,0)
1s denoted by .

(a) Show that C,, is a subalgebra of M, (C'), equal to C'|w|. Deduce
that it is isomorphic to the quotient ring C'| X |/(X"™ — 1).

(b) Let C' be a circulant matrix. Show that C*, as well as P(C'), is
circulant for every polynomial P. If (' is nonsingular, show that
C~1 is circulant.

(c) Show that the elements of C,, are diagonalizable in a common
elgenbasis.

(d) Replace C' by any field K. If K contains a primitive nth root w
of unity (that is, w” = 1, and w™ = 1 implies m € nZ ), show
that the elements of C,, are diagonalizable.

Note: A thorough presentation of circulant matrices and
applications is given in Davis’s book [12].

(e) One assumes that the characteristic of K divides n. Show that

C, contains matrices that are not diagonalizable.

Show that the Pfafian is linear with respect to any row or column
of an alternate matrix. Deduce that the Pfatfian is an irreducible
polynomial in Z|x;;]|.

(Schur’s Lemma)).

Let k be an algebraically closed field and S a subset of M,, (k). As-
sume that the only linear subspaces of £™ that are stable under every
element of S are {0} and k" itself. Let A € M,,(k) be a matrix that

commutes with every element of S. Show that there exists ¢ € k such
that A = cl,,.

(a) Show that A € M,,(K) is irreducible if and only if for every pair
(7, k) with 1 < 7, k < n, there exists a finite sequence of indices
7 =11,...,l, = k such that al, 1, 1 =+ 0.

(b) Show that a tridiagonal matrix A € M,,(K), for which none of
the a; ;4+1’s and a;4+1 ;s vanish, 1s irreducible.
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16. Let A € M, (k) (k= IR or C') be given, with minimal polynomial gq.
If x € k™, the set

I, :={p €k X||p(A)r = 0;

is an ideal of k| X|, which is therefore principal.

(a) Show that I, # (0) and that its monic generator, denoted by
v, divides g.

(b) One writes r; instead of p, when x = €’. Show that ¢ is the
least common multiple of r1,... ,ry,.

(c) If p € k| X, show that the set
Vpi= 1w € k" [ps € (p)}

(the vectors x such that p divides p,) is open.

(d) Let x € k™ be an element for which p, is of maximal degree.
Show that p, = ¢g. Note: In fact, the existence ot an element x
such that p, equals the minimal polynomial holds true for every

field k.
17. Let k be a field and A € M,,«m(k), B € M,,xn(k) be given.

(a) Let us define
XI, A
M= ( B XI, ) |

Show that X™ det M = X" det(X?I,, — BA) (search for a lower
triangular matrix M’ such that M’M is upper triangular).

(b) Find an analogous relation between det(X=*1I,, — AB) and det M.
Deduce that X" Ppa(X) = X" Psap(X).

(c) What do you deduce about the eigenvalues of A and of B?

18. Let k be a field and 6 : M,,(k) — k a linear form satistying §(AB) =
#(BA) for every A, B € M, (k).

(a) Show that there exists a € k such that for all X, Y € k™, one
has (XY ') = )i TiYj.
(b) Deduce that 8 = o/ Tr.

19. Let A,, be the ring K|X4,...,X,]| of polynomials in n variables.
Consider the matrix M € M,,(A,,) defined by

1 1

X1 X

= | Xi X;
X{’L—l Xﬁ—l

Let us denote by A(Xq,...,X,) the determinant of M.
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(a) Show that for every i # j, the polynomial X; — X; divides A.
(b) Deduce that

ZS::(ZI]K)Q;—ka%

1<J
where a € K.
(c) Determine the value of a by considering the monomial

ﬁ Xj.'.
j=1

(d) Redo this analysis for the matrix

X%’l e X
: ) )
an oo XPn
where p1, ... ,p, are nonnegative integers.

20. Deduce from the previous exercise that the determinant ot the

21.

Vandermonde matrix

1 e 1
aq . o -
2 2
a e o o CI/
1 n . ai, 7an€5}(a
n—1 n—1
a, ar

1s zero 1f and only if at least two of the a;’s coincide.

A matrix A € M, (IR) is called a totally positive matrix when all

minors
J1J2 o Jp

with 1l <p<n, 1<y <--- <y <nandl <y <o < g, <nare
positive.

(a) Prove that the product of totally positive matrices is totally
positive.

(b) Prove that a totally positive matrix admits an LU factorization
(see Chapter 8), and that every “nontrivial” minor of L and U
1s positive. Here, “nontrivial” means

J1 J2 0 Jp

withl <p<n, 1<ij<---<ip,<n,1<j <--<j,<lI,

and 1, > 5 for every s. For U, read 15 < j, instead. Note: One
says that L and U are trianqular totally positive.
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22.

23.

2. Square Matrices

(c) Show that a Vandermonde matrix (see the previous exercise) is
totally positive whenever 0 < a; < --- < a,.

Multiplying a Vandermonde matrix by its transpose, show that

T S1 Sn—1
S1 52
det — H(aj — a;)?,
1<
Sn—l * o o * o o 82n_2

—q? + ... q
where s, := a7 + -+ aj.

The discriminant of a matrix A € M, (k) is the number

d(A4) = | [\ —N)?

i<
where A\1,..., A, are the eigenvalues of A, counted with multiplicity:.

(a) Verify that the polynomial

A(Xy,..., X)) = | [(X; — X3)?

1<J

1s symmetric. Therefore, there exists a unique polynomial () €
Z\Y1,...,Y,| such that

A = Q(O‘l,... ,O'n),

where the o;’s are the elementary symmetric polynomials
o1 =X1+--+Xp,...,0np =Xq1---X,.

(b) Deduce that there exits a polynomial D € Z|z;;| in the indeter-
minates z;;, 1 < 1,7 < n, such that for every k£ and every square
matrix A,

d(A) — D(all, ai12, ... ,ann).

(c) Consider the restriction Dg of the discriminant to symmetric
matrices, where x ;; 1s replaced by x;; whenever 1 < j. Prove that

Dy takes only nonnegative values on IR™"1/2 Show, however,
that Dg is not the square of a polynomial if n > 2 (consider first
the case n = 2).
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24. Let P € k|X| be a polynomial of degree n that splits completely in

29.

k. Let Bp be the companion matrix

O ... () —a,,
1

Bp:: 0
_ . .0 _
o --- 0 1 —a

Find a matrix H € M,,(k), whose transpose is of Vandermonde type,
such that

HBp = diag()\l,. .. ,An)H

T'his furnishes a direct prootf of the tact that when the roots of P are
simple, Bp 1s diagonalizable.

(E. Formanek [14])
Let k be a field of characteristic O.

(a) Show that for every A, B,C € May(k),
[A,B]*,C| =0.

Hint: use the Cayley—Hamilton theorem.
(b) Show that for every M, N € Ms(k),

MN + NM — Tr(M)N — Tr(N )M+
(Tr(M) Tr(N) — Tr(MN))Is = 0.

One may begin with the case M = N and recognize a classical
theorem, then “bilinearize” the formula.

(c) It m € S, (S, is the symmetric group over {1,...,7}), one
defines a map T : Ma(k)" — k in the following way. One de-
composes m as a product of disjoint cycles, including the cycles
of order one, which are the fixed points of :

T — (CLl,... ,akl)(bl,... ,bkz)--- :
One sets then

T.(Ny,...,N,)=Tr(N,, ---N

a,kl

) Tr(Np, -+~ Ny, ) -+

(note that the right-hand side depends neither on the order of
the cycles in the product nor on the choice of the first index

inside each cycle, because of the formula Tr(AB) = Tr(BA)).
Show that for every Ni, No, N3 € Mo (k), one has

> €(m)Tx(N1, N2, N3) = 0.
WESS
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(d) Generalize this result to M, (k): for every Ni,...,Npi1 €
M,,(k), one has

> €e(m)Tx(N1, ..., Npg1) = 0.
WESn+1

Note: Polynomial identities satisfied by every n X n matrix have
been studied for decades. See |15] for a thorough account. One
should at least mention the theorem of Amitsur and Levitzki:

Theorem 2.9.1 Consider the free algebra Z|x1, ... ,x,| (where
T1,...,Ts are noncommuting indeterminates) define the stan-
dard polynomial S, by

Sr(.flj‘l, . o s ,.CCT) — Z E(ﬂ')aj‘ﬁ(l) L)
WEST

Then, given a commutative mng A, one has the polynomial
identity

82?’?,(@17 JEI aQQn) — Ona lea I aQZn < Mn(A)

26. Let k be a field and let A € M,,(k) be given. For every set J C
{1,...,n}, denote by A; the matrix extracted from A by keeping
only the indices 7,5 € J. Hence, Ay € M, (k) for p = cardJ. Let

A € K.

(a) Assume that for every J whose cardinality is greater than or
equal to n — p, A 1s an eigenvalue of A ;. Show that A is an
eigenvalue of A, of algebraic multiplicity greater than or equal
to p+1 (express the derivatives of the characteristic polynomial).

(b) Conversely, let g be the geometric multiplicity of A as an eigen-
value ot A. Show that if card J > n — ¢, then A is an eigenvalue

OfAJ.

27. Let A € M,,(k) and [ € IN be given. Show that there exists a poly-
nomial ¢; € k[X], of degree at most n — 1, such that A" = ¢;(A). If
A is invertible, show that there exists r; € k|X|, of degree at most

n — 1, such that A" = r;(A4).

28. Let k be a field and A, B € M, (k). Assume that A\ £ u for every

A€ Sp A, u € Sp B. Show, using the Cayley—Hamilton theorem,
that the linear map M — AM — M B is an automorphism of M, (k).

29. Let k be a field and (M,x)i1<;r<n @ set of matrices of M, (k), at
least one of which is nonzero, such that M;; My = 5§?Mz-l for all
1 <i,7,k, 1 <n.

(a) Show that none of the matrices M, vanishes.
(b) Verify that each M;j; is a projector. Denote its range by F;.



2.9. Exercises 39

(c) Show that Ej,..., E, are in direct sum. Deduce that each E
1s a line.

(d) Show that there exist generators e; of each E; such that M;,e; =
(526;‘.

(e) Deduce that every algebra automorphism of M,,(k) is interior:
For every o € AutM,,(k), there exists P € GL, (k) such that
o(M) = P~ 'MP For every M € M, (k).
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Matrices with Real or Complex Entries

Definitions

A square matrix M € M,,(IR) is said to be normal if M and M* commute:
M*M = MM?*. The real symmetric, skew-symmetric, and orthogonal
matrices are normal.

In considering matrices with complex entries, a usetul operation is com-
plex conjugation z — Z. One denotes by M the matrix obtained from M
by conjugating the entries. We then define the Hermitian adjoint matrix’

M™ by

M* := (M) = MT.

One therefore has m;;, = mj; and det M* = det M. The map M — M~
is an anti-isomorphism, which means that it is antilinear (meaning that

(AM)* = AM*) and satisfies, moreover, the product formula
(MN)* = N*"M~.

When a square matrix M € M,,(C) is invertible, then (M*)~! = (M~1)*.
T'his matrix 1s sometimes denoted by M ~*.

One says that a square matrix M € M,,(C') is Hermitian it M* = M and
skew-Hermitian if M* = —M. It M € M,,«m(C'), the matrices M M* and

1'We warn the reader about the possible confusion between the adjoint and the Her-
mitian adjoint of a matrix. One may remark that the Hermitian adjoint is defined for
every rectangular matrix with complex entries, while the adjoint is defined for every
square matrix with entries in a commutative ring.
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M*M are Hermitian. We denote by H,, the set of Hermitian matrices in
M., (C"). It is an IR-linear subspace of M,,(C'), though it is not a C-linear
subspace, since 1M 1s skew-Hermitian when M 1s Hermitian.

A square matrix M € M, (C') is said to be unitary if M*M = I,,. Since
this means that M is invertible, with inverse M*, and since the lett and
the right inverses are equal, an equivalent criterion i1s MM™* = 1,,. The
set of unitary matrices in M, (C') forms a multiplicative group, denoted
by U,,. Unitary matrices satisfy | det M| = 1, since det M*M = |det M|
for every matrix M. The set of unitary matrices whose determinant equals
1, denoted by SU,, is obviously a normal subgroup of U,,. Finally, M 1is
sald to be normal it M and M* commute: M M* = M*M. The Hermitian,
skew-Hermitian, and unitary matrices are normal.

Observe that the real orthogonal (respectively symmetric, skew-sym-
metric) matrices are unitary (respectively Hermitian, skew-Hermitian).
Conversely, if M is real and either unitary, symmetric, or skew-symmetric,
then M 1s either orthogonal, Hermitian, or skew-Hermitian.

A sesquilinear form on a complex vector space is a map

(z,y) — (T,9),

linear in x and satistying

Y, x) = (,9).

It 1s thus antilinear in y:

(@, Ay) = N, y).

When y = z, (x,y) = (x,x) is a real number. The map z — (z,x) is called
a Hermatian form. The correspondence between sesquilinear and Hermitian

forms 1s one-to-one.
Given a matrix M € M,,(C'), the form

(.CC, y) — Z mjkﬂij_ka
J K
defined on C" x C", is sesquilinear if and only if M is Hermitian. It fol-
lows that there is an isomorphism between the sets of Hermitian matrices,

Hermitian, and sesquilinear forms on C". As a matter of fact, a Hermitian
form can be written in the form

Tr — E M kLT
7,k

The kernel of a Hermitian or a sesquilinear form is the set of vectors
r € F such that (z,y) = 0 for every y € E. It equals the set of vectors
y € E such that (z,y) =0 forevery z € E. If E = C'", it is also the kernel
of M*, where M is the (Hermitian) matrix associated to the Hermitian
form. One says that the Hermitian form is degenerate it its kernel does not
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reduce to {0}. When F = C™, this amounts to det M = 0. One says that
the form is nondegenerate otherwise.

If both E and F' are endowed with nondegenerate sequilinear forms (-, -) g
and (-, ), respectively, and if u € L(FE, F'), one defines u* by the formula

wz),y)g = (z,u(y))r, VreF yck

The map v — u* is an IR-isomorphism from L(FE, F') onto L(F, FE), and
one has (A\u)* = \u*, (u*)* = u. When E = C" and F = C™ are endowed
with the canonical sesquilinear forms x1y7 + ---, the matrix associated
to u* 1s simply the Hermitian adjoint of the matrix associated to w. The
canonical Hermitian form over C"™ is positive definite: (x,z) > 0ifx # 0. It
allows us to define a norm by ||z|| = +/{z, z). Identifying C™ with column

vectors, one also defines | X|| = vX*X if X € M,,«1(C"). This norm will

be denoted by || - || in Chapter 4. A matrix is unitary if and only if it is
associated with an isometry of C™:

|u(2)|| = |lzf, Vrelm.

More generally, let M be a Hermitian matrix and (-,-) the form that it
defines on C". One says that M is positive definite if (x,xz) > 0 for ev-
ery x # 0. Again, \/(z,z) is a norm on C". We shall denote by HPD,,
the set of the positive definite Hermitian matrices; it is an open cone in
H,,. Its closure consists of the Hermitian matrices M that define a posi-
tive semidefinite Hermitian form over C" ({(x,z) > 0 for every x). They
are called positive semidefinite Hermitian matrices. One defines similarly,
among the real symmetric matrices, those that are positive definite, respec-
tively positive semidefinite. The positive definite real symmetric matrices
form an open cone in Sym, (IR), denoted by SPD,,.

The natural ordering on Hermitian forms induces an ordering on Hermi-
tian matrices. One writes H > 0,, when the Hermitian form associated to H
takes nonnegative values. More generally, one writes H > hit H — h > 0,,.
We likewise define an ordering on real-valued symmetric matrices, reterring
to the ordering on real-valued quadratic forms.?

If U is unitary, the matrix U*MU 1is similar to M. It M is Hermitian,
skew-Hermitian, normal, or unitary and if U is unitary, then U* MU is still
Hermitian, skew-Hermitian, normal, or unitary.

“We warn the reader that another, completely different, order still denoted by the
symbol > will be defined in Chapter 5. This one will concern real-valued matrices that
are neither symmetric nor even square. One expects that the context is never ambiguous.
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3.1 FEigenvalues of Real- and Complex-Valued
Matrices

Since €' is algebraically closed, every complex-valued square matrix, and
every endomorphism ot a C'-vector space of dimension n > 1, possesses
eigenvalues. As a matter of fact, the characteristic polynomial has roots.
A real-valued square matrix may not have eigenvalues in IR, but it has at
least one in C. If n is odd, M € M, (IR) has at least a real eigenvalue,
because Pjs is real of odd degree.

Proposition 3.1.1 The eigenvalues of Hermaitian matrices, as well as
those of real symmetric matrices, are real.

Proof
Let M € M,,(C') be a Hermitian matrix and let A be one of its eigen-

values. Let us choose an eigenvector X: M X = AX. Taking the Hermitian
adjoint, we obtain X*M = AX. Hence,

AX*X = X*(MX) = (X"M)X = \X*X,
or
(A —NX*X =0.

However X*X = ) . |z; 2 > 0. Therefore, we are left with A —\ = 0. Hence
A 1s real.

H
We leave it to the reader to show, as an exercise, that the eigenvalues of
skew-Hermitian matrices are purely imaginary.

Proposition 3.1.2 The eigenvalues of the unitary matrices, as well as
those of real orthogonal matrices, are complex numbers of modulus one.

Proof
As betore, if X is an eigenvector associated to A, one has

M X|]F = AX)*O0X) = (MX)*MX =X*"M*"MX =X*X = || X7,

and therefore |\|* = 1.

3.1.1 Continuity of Eigenvalues

One of the more delicate statements in the elementary theory of matrices
concerns the continuity of the eigenvalues. Though a proot might be pro-
vided througth explicit bounds, it is easier to use Rouché’s theorem about
holomorphic functions. We begin with a statement concerning polynomials,
that 1s a bit less precise than Rouché’s theorem.
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Theorem 3.1.1 Letn € IN and let P € C'|X| be a polynomial of degree
I,

P(X)=po+piX+-+p X"

Let x be a root of P, with multiplicity 1, and let d be the distance from x to

the other roots of P. Let D be an open disk, D = D(x;p), with 0 < p < d.
Then there exists a number € > 0 such that if () € C|X| has degree n,

QX)) =qo+qX +---+ g X",
and if

mJaX|QJ _p3| < €,

then D contains exactly pu roots of (), counting multiplicities.

Let us apply this result to the characteristic polynomial of a given matrix.
Since the coefficients of the characteristic polynomial pps are polynomial
functions of the entries of M, the map M — pj, is continuous from M, (C)
to the set of polynomials of degree n. From Rouché’s theorem, we have the
following result.

Theorem 3.1.2 Let M € M,,(C'), and let X be one of its eigenvalues, with
multiplicity 1, and let d be the distance from A\ to the other eigenvalues of
M. Let D be an open disk, D = D(\;p), with 0 < p < d. Let us fix a norm
on M,,(C").

There exists an € > 0 such that if A € M, (C') and |A|| < €, the sum of
algebraic multiplicities of the eigenvalues of M + A in D equals L.

Let us remark that this statement becomes talse if one considers the
geometric multiplicities.

One often invokes this theorem by saying that the eigenvalues of a ma-
triz are continuous functions of its entries. Here is an interpretation. One
adapts the Hausdorfl distance between compact sets so as to take into ac-
count the multiplicity of the eigenvalues. If M, N € M, (C'), let us denote
by (A,...,A,) and (#4,...,60,) their eigenvalues, repeated according to
their multiplicities. One then defines

d(Sp M,SpN) := inf max|\; — O,(;|,
JGSn J

where S, is the group of permutations of the indices {1, ... ,n}. This num-
ber is called the distance between the spectra of M and N. With this
notation, one may rewrite Theorem 3.1.2 in the following form.

Proposition 3.1.3 If M € M,,(C') and o > 0, there exists € > 0 such
that || N — M| < € implies d(Sp M,Sp N) < a.

A usetul consequence of Theorem 3.1.2 is the following.
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Corollary 3.1.1 In M, (k) (k = IR or C) the set of diagonalizable
matrices 1S an open subset.

3.1.2  Trigonalization in an Orthonormal Basis

From now on we say that two matrices are unitarily stmilar it they are
similar through a unitary transtormation. Two real matrices are unitarily
similar if they are similar through an orthogonal transformation.

If K = C, one may sharpen Theorem 2.7.1:

Theorem 3.1.3 (Schur) If M € M, (C), there exists a unitary matriz
U such that U*MU 1s upper triangular.

One also says that every matrix with complex entries is unitarily
trigonalizable.

Proof

We proceed by induction on the size n of the matrices. The statement is
trivial if n = 1. Let us assume that it is true in M,,_1(C'), with n > 2. Let
M € M,,(C) be a matrix. Since C' is algebraically closed, M has at least
one eigenvalue A. Let X be an eigenvector associated to A. By dividing X
by ||X ||, one can assume that X is a unit vector. One can then find an
orthonormal basis { X!, X*,..., X"} of C" whose first element is X. Let
us consider the matrix V := (X! = X, X*,..., X"), which is unitary, and
let us form the matrix M’ := V*MYV . Since

VM'e! = MVe' = MX =) X = \Vel,

one obtains M’e! = \el. In other words, M’ has the block-triangular form:

, ...
v (0l W)

where N € M, _1(C'). Applying the induction hypothesis, there exists
W € U, _1 such that W*NW 1s upper triangular. Let us denote by W
the (block-diagonal) matrix diag(1, W) € U,. Then W*M’'W is upper
triangular. Hence, U = VW satisfies the conditions of the theorem.

_

3.2 Spectral Decomposition of Normal Matrices

We recall that a matrix M is normal it M*™ commutes with M. For real
matrices, this amounts to saying that M* commutes with M. Since it is
equivalent for a Hermitian matrix A to be zero or to satisty t*Hx = 0O for
every vector x, we see that M is normal if and only if ||Ax|s = ||A*z||2

for every vector, where ||z||2 denotes the standard Hermitian (Euclidean)
norm (take H = AA* — A*A).
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Theorem 3.2.1 If K = C, the normal matrices are diagonalizable, using
unitary matrices:

(M*M = MM*) = (3U € U,; M =U 'diag(di,...,d,)U).

Again, one says that normal matrices are unitarily diagonalizable. This
theorem contains the following properties.

Corollary 3.2.1 Unitary, Hermaitian, and skew-Hermitian matrices are
unitarily diagonalizable.

Observe that among normal matrices one distinguishes each of the above
families by the nature of their eigenvalues. Those of unitary matrices have
modulus one, while those of Hermitian matrices are real. Finally, those of
skew-Hermitian matrices are purely imaginary.

Proof

We proceed by induction on the size n of the matrix M. It n = 0, there
is nothing to prove. Otherwise, if n > 1, there exists an eigenpair (A, x):

Mx = Mz, |z|2 =1.

Since M is normal, M — A1, is, too. From above, we see that ||(M*—\)z||s =
(M — MNzl|l2 = 0, and hence M*z = Az. Let V be a unitary matrix such
that Vel = z. Then the matrix M, := V*MYV is normal and satisfies
Mie! = \e'!. Hence it satisfies Me! = Ae!. This amounts to saying that
M is block-diagonal, of the form M7 = diag(A, M"). Obviously, M’ inherits
the normality of M;. From the induction hypothesis, M’, and therefore M,
and M, are unitarily diagonalizable.

I

One observes that the same matrix U diagonalizes M™, because M =
U~1DU implies M* = U*D*U~* = U~'D*U, since U is unitary.

Let us consider the case of a positive semidefinite Hermitian matrix H. It
HX = )X, then 0 < X*HX = )\||X||*. The eigenvalues are thus nonnega-
tive. Let Aq,..., A, be the nonzero eigenvalues of /. Then H is unitarily
similar to

D := diag(\1, ... , A, 0,...,0).

From this, we conclude that tk H = p. Let U € U,, be such that H =
UDU*. Defining the vectors X, = VA,Uy,, where the U, are the columns
of U, we obtain the following statement.

Proposition 3.2.1 Let H € M, (C') be a positive semidefinite Hermitian
matrix. Let p be its rank. Then H has p real, positive eigenvalues, while the
ergenvalue X = 0 has multiplicity n — p. There exist p column vectors X,
pairwise orthogonal, such that

H:Xle+---+XpX;.

Finally, H is positive definite if and only if p =n (in which case, A = 0 is
not an eigenvalue).
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3.3 Normal and Symmetric Real-Valued Matrices

The situation is a bit more involved if M, a normal matrix, has real en-
tries. Ot course, one can consider M as a matrix with complex entries and
diagonalize 1t in an orthonormal basis, but we quit in general the field of
real numbers when doing so. We preter to allow bases consisting ot only
real vectors. Since some of the eigenvalues might be nonreal, one cannot in
general diagonalize M. The statement is thus the following.

Theorem 3.3.1 Let M € M,,(IR) be a normal matriz. There exists an or-
thogonal matriz O such that OMO™! be block-diagonal, the diagonal blocks
being 1 X 1 (those corresponding to the real eigenvalues of M ) or 2 X 2, the
latter being matrices of direct similitude:

(% 0) ®ro

Similarly, OM* O~ is block-diagonal, the diagonal blocks being eigen-
values or matrices ot direct similitude.

Proof

One again proceeds by induction on n. When n > 1, the proot is the same
as 1n the previous section whenever M has at least one real eigenvalue.

If this is not the case, then n is even. Let us first consider the case n = 2.

T'hen
a b
M= ( v b ) |
Since M is normal, we have b* = ¢* and (a — d)(b — ¢) = 0. However,
b # ¢, since otherwise M would be symmetric, hence would have two real
eligenvalues. Hence b = —c and a = d.

Now let us consider the general case, with n > 4. We know that M has
an eigenpair (A, z), where A is not real. If the real and imaginary parts of
2z were colinear, M would have a real eigenvector, hence a real eigenvalue,
a contradiction. In other words, the real and imaginary parts of z span a
plane P in IR™. As before, Mz = Az implies M1z = \z. Hence we have
MP C Pand M*P C P. Now let V be an orthogonal matrix that maps
the plane Py := IRe' & IRe? onto P. Then the matrix M := V' MV is

normal and satisfies
MPyC Py, MiPy,Ch,.

This means that M; is block-diagonal. Of course, each diagonal block (of
sizes 2 X 2 and (n—2) X (n—2)) inherits the normality of M. Applying the
induction hypothesis, we know that these blocks are unitarily similar to a

3 A similitude is an endomorphism of a Euclidean space that preserves angles. It splits
as aRR, where R is orthogonal and a is a scalar. It is direct if 1its determinant is positive.
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block-diagonal matrix whose diagonal blocks are direct similitudes. Hence
My and M are unitarily similar to such a matrix.
I

Corollary 3.3.1 Real symmetric matrices are diagonalizable over IR,

through orthogonal conjugation. In other words, given M € Sym (IR),
there exists an O € O, (IR) such that OMO~" is diagonal.

In fact, since the eigenvalues of M are real, OMO~! has only 1 x 1 blocks.
We say that real symmetric matrices are orthogonally diagonalizable.

The interpretation of this statement in terms ot quadratic forms is the
following. For every quadratic form () on IR", there exists an orthonor-
mal basis {eq,...,e,} in which this form can be written with at most n

squares:*

Q(x) = z’”’: aix?.
i—=1

Replacing the basis vector e; by |a;|!/?¢e;, one sees that there also exists

an orthogonal basis in which the quadratic form can be written

T S
Q) =) v/ = ) i
i=1 =1

with r+s < n. This quadratic form is nondegenerate if and only if r+s = n.
The pair (r, s) is unique and called the signature or the Sylvester index of
the quadratic form. In such a basis, the matrix associated to () is

1
0
1
—1
—1
0
0
0
3.3.1 Rayleigh QQuotients
Let M be a real n X n symmetric matrix, and let A\ < --- < A\, be its

elgenvalues arranged 1n increasing order and counted with multiplicity. Let

“In solid mechanics, when @ is the matrix of inertia, the vectors of this basis are
along the tnertia axes, and the a;, which then are positive, are the momenta of inertia.
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us denote by B = {v1,...,v,} an orthonormal eigenbasis (Mv; = A;v,).
If x € IR", let us denote by v, ... ,y, the coordinates of z in the basis B.
Finally, let us denote by || - ||2 the usual Euclidean norm on IR". Then

vt Mx = Z)\jy?- < An Zy? = A\ |25,
] J

Since v: Mv, = A\,||v.||35, we deduce the value of the largest eigenvalue of
M :

! Mz
A, = Mmax ;
r£0  ||||3

= max {z' Mz||z|5=1}. (3.1)

Similarly, the smallest eigenvalue of a real symmetric matrix is given by

T\
A\ = min ——— = min{aT Mz |||z||2 = 1}. (3.2)
220 |23

For a Hermitian matrix, the formulas (3.1,3.2) remain valid when we replace
1 h *
r' by x*.
We evaluate the other eigenvalues of M € Sym,, (IR) in the following
way. For every linear subspace F of IR" of dimension k, let us define

T
' Mx
R(F) = max — =max{z' Mz|z€F, ||z||3=1}.
zeF\{0} |[|z|]3
The intersection of F' with the linear subspace spanned by {vg,... ,v,} is
of dimension greater than or equal to one. There exists, theretore, a nonzero
vector x € F' such that y; =--- =y,r_1 = 0. One has then

T
v Mz = ZAijQ' > A Zy? = \i||z]|5.
J=FK J

Hence, R(F') > M. Furthermore, if G is the space spanned by {v1,... , v},
one has R(G) = Ar. Thus, we have
A = min{ R(F) | dim F = k}.

Finally, we may state the following theorem.

Theorem 3.3.2 Let M be an n X n real symmetric matrix and A1, ..., Ay,
its etgenvalues arranged in increasing order, counted with multiplicity. Then
_ vl Mz
AL = min  max

dim F'=k xc F\{0} ||35'||% |

If M 1s complex Hermitian, one has similarly

| x* Mx
Ak — IT1111 IT1aX o5
dim F'=k x€ F\{0} ||‘CC||2

This formula generalizes (3.1, 3.2).



50 3. Matrices with Real or Complex Entries

3.8.2 Applications

Theorem 3.3.3 Let H € H,, {, z € C" ', and a € IR be given. Let
A < - < \,—1 be the eigenvalues of H and 1 < --- < u, those of the

Hermatian matrix
7 H =
x* a |
One has then g < Ay <o < <A < pjgpg <oee

Proof
By Theorem 3.3.2, the inequality p©; < A; 1s obvious, because the infimum

1s taken over a smaller set.

Conversely, let 7 :  — (x1,...,2,—1)" be the projection from C" on
C" . If F is a linear subspace of C" of dimension j + 1, its image under
7 contains a linear subspace G of dimension j (it will often be exactly of
dimension j). By Theorem 3.3.2, applied to H, one therefore has

R'(F) > R(G) > \;.

Taking the infimum, we obtain p,;y1 > A;.

The previous theorem is optimal, in the following sense.

Theorem 3.3.4 Let Ay < --- < A1 and pu1 < --- < u, be real numbers

satesfying 1 < A1 <o < KA < pirr < oo+ Then there exist a vector

r € IR" and a € IR such that the real symmetric matrix

AN =z
=0 )

where A = diag(A1, ..., \p—1), has the eigenvalues ;.

Proof
Let us compute the characteristic polynomial of H from Schur’s

complement formula® (see Proposition 8.1.2):

pn(X) = (X—a—z" (XI—1 —A)"'z)det(XI,—1 — A)
_ X—a—ZXx_j)\j [Tex— .

Let us assume for the moment that all the inequalities p; < A\; < 49

hold strictly. In particular, the A;’s are distinct. Let us consider the partial
fraction decomposition of the rational tunction

Hz(X_MZ)_ Cy
[1,(X — X)) _X_“_ZX—Aj'

J

°One may equally (exercise) compute it by induction on n.
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One thus obtains
=T
[ J

a formula that could also have been tound by comparing the traces of A
and of H. The inequalities A\;_1 < u; < A; ensure that each c; is positive,
because

Hz()\j — i)
Hk;éj ()\j - )\k).

Let us put, then, z;, = ,/¢; (or —x,; = ,/c;). We obtain, as announced,

pu(X) = | [ (X — ).

[

Cj:

In the general case one may choose sequences ,ul(m) and )\gm) that con-
verge to the p;’s and the A;’s as m — 400 and that satisty the inequalities
in the hypothesis strictly. The first part of the proof (case with strict in-
equalities) provides matrices H (M) Since the spectral radius is a norm over
Sym,, (IR) (the spectral radius is defined in the next Chapter), the sequence
(H™)),,en is bounded. In other words, (a!™), (™)) remains bounded. Let
us extract a subsequence that converges to a pair (a,2) € IR x IR™'. The
matrix H associated to (a,x) solves our problem, since the eigenvalues
depend continuously on the entries of the matrix.

_
Corollary 3.3.2 Let H € Sym,_(IR) with eigenvalues A\ < --- < A1,
Let p1,...,pun be real numbers satisfying p1 < Ay < --- < pu;<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>