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PREFACE

The late Professor Harry Bateman of the California Institute of
Technology was one of those rare scientists who, responding to the
interplay between mathematical analysis and physical understanding,
made outstanding contributions to American applied mathematics. His
contributions to aero- and fluid mechanics, to electro-magnetic theory,
to thermodynamics, to geophysics, and to a host of other fields in which
his adroit mathematical skills were applied, resulted in significant
advances in these fields. During his last years he had embarked upon a
project whose successful completion, he believed, would prove of great
value to scientists in all fields. He planned an extensive compilation
of ‘““special functions” -- solutions of a wide class of mathematically
and physically relevant functional equations. He intended to investigate
and to tabulate properties of such functions, inter-relations between such
functions, their representations in various forms, their macro- and micro-
scopic behavior, and to construct tables of important definite integrals
involving such functions.

It is true that much of this material was already in existence. However,
anyone who has been faced with the task of handling and discussing and
understanding in detail the solution to an applied problem which is
described by a differential equation is painfully familiar with the dispro-
portionately large amount of scattered research on special functions one
must wade through in the hope of extracting the desired information.
Professor Bateman was eminently qualified to embark on such a com-
pilation, for he was unusually familiar -- and systematically so -- with
existing mathematical literature on the subject; he was exceptionally
adept in mathematical analysis; and he was ever conscious of the needs
of the scientist who must so often use these functions. When his death
cut short his work, the California Institute of Technology, in recognition
of one of its great scientists, and the Office of Naval Research, in
recognition of the extremely useful service such a compilation could
render to both basic and applied science, pooled their efforts to continue
the task initiated by Professor Bateman.
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x SPECIAL FUNCTIONS

In 1948 arrangements were completed between the California Institute
of Technology and the Office of Naval Research to employ at the Calif-
ornia Institute of Technology four mathematical analysts of international
reputation to complete Professor Bateman’s work: Professors Arthur
Erdélyi of the University of Edinburgh; Wilhelm Magnus of the University
of Gottingen; Fritz Oberhettinger of the University of Mainz; and
Francesco Tricomi of the University of Torinos It was not long after
this team began work that it became apparent that not only would Pro-
fessor Bateman’s original project find its completion in their unusually
competent hands, but that the activities of such a group would lead to
significant mathematical investigations and advances in the general
field of mathematical analysis, as well as in the more particular field
of special functions. The present compendia bear undeniable witness
to the success of the undertaking.

The Office of Naval Research is proud of its collaboration with the
California Institute of Technology, not only for erecting this lasting
memorial to Professor Bateman, but also for producing what it considers
a significant contribution to general science. These compendia, which
have taken their roots in Professor Bateman’s ‘“shoe boxes’’ (his repos-
itory for card files) have been nurtured into mathematical maturity under
the deft minds and penetrating work of the members of the international
team of Erdélyi, Magnus, Oberhettinger, and Tricomi. In addition, we
are pleased to have been able to render support to several young Amer-
ican mathematicians who have not only contributed to these compendia
but were able to avail themselves of the opportunity to work and study
under the direction of distinguished scientists in a field that is sorely
in need of young recruits. We feel that special thanks should be extended
to both Dean E. C. Watson of the California Institute of Technology and
to Professor Erdelyi; to the former, for his extremely helpful and untiring
interest in seeing to the establishment and completion of this task; to
the latter, for assuming, in addition to scientific participation, both the
scientific administrative duties of the project and the general editorial
responsibilites for the publication of these compendia.

MINA REES,
Director Mathematical Sciences Division

Office of Naval Research



FOREWORD

The late Professor Harry Bateman was one of the greatest authorities
in that part of mathematics now usually described as classical analysis.
His knowledge of the literature was encyclopedic and probably unsur-
passed and his ability to utilize this knowledge for specific problems
was extraordinary. Research workers in difficulties would often write to
him and receive, by return mail, detailed answers to their questions
together with a list of references which in many cases amounted to a
complete bibliography.

It was natural for Bateman to want to make accessible in a system-
atic form the tremendous amount of material which he had collected in
the course of the years. His book on Partial Differential Equations (1932)
was an attempt to carry out this task in a restricted field. Although the
book was received with enthusiasm, and, after twenty years, is still one
of the most important books on its subject, Bateman was not satisfied
with this method of providing information. For a number of years he made
plan after plan to organize and prepare for publication his material, a
task made extremely difficult by the very breadth of the field which he
intended to cover.

At the time of Bateman’s death (1946) his notes amounted to a veri-
table mountain of paper. His card-catalogue alone filled several dozen
cardboard boxes (the famous ‘‘shoe-boxes’’). His family, his friends,
and his colleagues at the California Institute of Technology very natu-
rally wished to have some of this material prepared for posthumous
publication, thereby erecting a monument to one of the most distin-
guished and most versatile members of the faculty of the Institute.
Professor A. D. Michal, for many years a friend and colleague of the
deceased, undertook the sifting of Bateman’s notes. He spent several
months in this herculean task, sorted out those notes which might be
considered for publication and made recommendations for proceeding
further withthe matter. Dr.A.Erdé€lyi, then of the University of Edinburgh
in Scotland, was invited to prepare a detailed report and proposals, and
spent the academic year 1947-48 in Pasadena for this purpose.

xi



xii SPECIAL FUNCTIONS

It turned out that Bateman’s notes ranged over a wider field than even
his friends had suspected and also that no single section of this wide
field was in a state sufficiently advanced for immediate publication.
Indeed the field was so wide that it appeared imperative to narrow it
down if anything useful was to be accomplished. Notes for books on
functional equations, integrals in potential theory, binomial coefficients
and factorials, and many other matters had to be laid aside entirely. Of
the remaining material the most important part was a projected trilogy
on the higher transcendental functions, on definite integrals (especially
those containing higher functions), and on numerical tables offunctions
occurring in applied mathematics. Since the appearance of the Index of
Mathematical Tables by Fletcker, Miller, and Rosenhead, adequate
information has been available on numerical tables, and so it was de-
cided to concentrate on the first two parts, and these came to be called
the handbook and the integral tables.

The Office of Naval Research recognized the great importance of such
a work by giving generous financial support to it. Thus originated what
at the California Institute came to be called the Bateman Manuscript
Project. The Institute was fortunate indeed, not only in being able to
persuade Professor Erd€lyi to remain as its Director and as Editor of the
forthcoming publications, but also in securing the services of Professor
Wilhelm Magnus of the University of Géttingen (now of New York Uni-
versity), of Dr. Fritz Oberhettinger of the University of Mainz (now
Professor at the American University, Washington, D.C.) and of Professor
Francesco G. Tricomi of the University of Turin. These distinguished
and internationally known scholars were assisted by a staff of younger
mathematicians. The technical preparation of the vari-typescript suit-
able for reproduction by a photo-offset process was in the capable hands
of Miss Rosemarie Stampfel.

The present volume is the first of three projected volumes on the
higher transcendental functions. These three volumes will be followed by
two volumes of integral tables.

The California Institute of Technology wishes to express its thanks
both to the family of the late Professor Bateman for the gift of his notes
and of his library, and to the Office of Naval Research and especially
to Dr. Mina Rees, the Director of its Mathematical Sciences Division,
for the generous support they have given to this work and for the under-
standing they have constantly shown for the difficulties encountered.
The Institute also wishes to record its appreciation and thanks to the
following persons and organizations: to Professor Michal for his pre-
liminary survey of Bateman’s notes; to the University of Edinburgh for
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granting leave of absence to Dr. Erd€lyi; to the Rockefeller Foundation
for defraying travelling expenses for Dr. and Mrs. Erdelyi on their visit
in 1947-48; to the University of Turin for granting leave of absence to
Professor Tricomi; to Professors T.M. Apostol of the California Institute,
R. C. Archibald of Brown University, E. D. Rainville of the University
of Michigan, Mr. S. O. Rice of the Bell Telephone Laboratories, and
Professor C. A. Truesdell of Indiana University for information or con-
sultations in connection with the work; and to the McGraw-Hill Company
for technical advice and publication.Last but not least, acknowledgments
should be expressed to Dr. Erdélyi and the staff of the Bateman Manu-
script Project for the faithful and highly competent performance of a
difficult task.

E. C. WATSON

Dean of the Faculty

California Institute of Technology



INTRODUCTION

The work of which this book is the first volume might be described
as an up-to-date version of Part Il. The Transcendental Functions of
Whittaker and Watson’s celebrated ‘““Modern Analysis’’. Bateman (who
was a pupil of E. T. Whittaker) planned his ‘“Guide to the Functions”’
on a gigantic scale. In addition to a detailed account of the properties
of the most important functions, the work was to include the historic
origin and definition of, the basic formulas relating to, and a bibli-
ography for all special functions ever invented or investigated. These
functions were to be catalogued and classified under twelve different
headings according to their definition by power series, generating func-
tions, infinite products, repeated differentiations, indefinite integrals,
definite integrals, differential equations, difference equations, functional
equations, trigonometric series, series.of orthogonal functions, or integral
equations. Tables of definite integrals representing each function and
numerical tables of a few new functions were to form part of the ‘“Guide”’.
An extensive table of definite integrals and a Guide to numerical tables
of special functions were planned as companion works.

The great importance of such awork hardly needs emphasis.Bateman’s
unparalleled knowledge of the mathematical literature, past and present,
and his equally exceptional diligence, would have made the book an
authoritative account of its vast subject, and in many respects a defin-
itive account; a Greater Oxford Dictionary of special functions.

A realistic appraisal of our abilities and of the time at our disposal
led to a drastic revision of Bateman’s plans. Only Bateman himself had
the erudition to give a reliable and accurate history of special functions,
and the manpower available to us was insufficient for the inclusion of
all functions. Thus we restricted ourselves to an account (probably far
less detailed than that planned by Bateman) of the principal properties
of those special functions which we considered the most important ones.
The loss thus caused to mathematical scholarship is great, regrettable,
and final but we venture to hope that it will be counterbalanced in some
measure by the considerable reduction in size of the book, and by the
gain in the clarity of its organization. We can only hope that although
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XVviii SPECIAL FUNCTIONS

NOTATION, REFERENCES

The notation presents peculiar difficulties, There are special func-
tions, for instance Bessel functions of the first kind, for which there
is a generally accepted standard notation. There are others, like con-
fluent hypergeometric functions, for which there are several essentially
different and independent notations. The most awkward problems present
themselves with those functions for which more or less the same symbol
is used with several different meanings. Hermite polynomials are usually
denoted by H (x) or He, (x), but this symbol sometimes refers to the
polynomials derived by repeated differentiation of exp(—x?), and some-
times to those derived from exp (~%x?). Moreover, some authors include,
others exclude a factor, n!. We attempted to use the same notations
throughout our book. The most significant deviation from this principle
is in the case of the confluent hypergeometric series for which the
symbol | F| is used mostly, except in Chapter VI (and some of the later
chapters) where the symbol ® is used for the same series (and ¥ for a
second solution of the confluent hypergeometric equation).

Wherever possible we followed standard notations. In the case of
Bessel functions we adopted the notations used by G. N. Watson in his
monumental work, in the case of orthogonal polynomials we used Szegd’s
notation (with the exception of using CY for ultraspherical polynomials).
With Legendre functions, we followed Jahnke-Emde, Magnus-Oberhettinger
and some other authors in making a distinction between the definition
of Legendre functions appropriate for the interval (=1, 1) and the defi-
nition appropriate for the complex plane outside of this interval. In
cases of doubt we usually decided upon that notation for which more
convenient or more extensive numerical tables were available. We adhered
to definitions used in numerical tables even in cases in which we thought
that a different definition would be preferable from the mathematical
point of view. All notations are explained where they occur for the first
time. There is at the end of this volume an Index of notations which
will help the reader to find the meaning of any notation used in the book,
and a Subject index which gives the notation for any function which
occurs in the text.

Many of our chapters may be read independently of the others, yet
there are many cross references. Equations within the same section
are referred to simply by number, equations in other sections areindi-
cated by the section number followed by the number of the equation.
Thus (3) means equation (3) in the section in which the reference occurs,
2.1(3) means equation (3) in section 2,l. References to the literature
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have the name of the author followed by the year of publication. They
invariably refer to the list of references at the end of the chapter.

The size and complexity of our compilation make it vain to hope
that errors of judgment, or mistakes have been avoided. The undersigned
will be glad to receive corrections or suggestions for the improvement
of the work should a second edition become desirable.

In conclusion I should like to express the thanks of the entire project
staff to the California Institute of Technology, and especially to Dean
E. C. Watson, for initiating this work and for the great understanding
they have shown for the numerous problems we encountered. I should
also like to thank my colleagues without whose assistance the present
work could not have been carried out.

A. ERDELYI



CONTENTS

PREFACE. .

FOREWORD .
INTRODUCTION
CHAPTER I
THE GAMMA FUNCTION
11 Definition of the gamma function S
1.2. Functional equations satisfied by F(z) .....
1.3. Expressions for some infinite products in terms of
the gamma function . . . o oW
1.4. Some infinite sums conuected w1|:h the gamma
function . . u 3
1.5. The beta functlon .. .
1.5.1. Definitie integrals expressxble in terms of the bata
function . . . A G .
L.6. The gamma and beta functlons expressed as contour
integrals.
17 The  function.

1.7.1. Functional equations for l,[/(z)
1.7.2. Integral representations for y(z)

1.7.3. The theorem of Gauss . . . S

1.7.4. Some infinite series connected w1th the Y- functmn

1.8. The function Gl2): « « « o w « 5 s & = w & s s m
L.9. Expressions for the function logI"(z) . . . . . . . .
1.9.1. Kummer’s series for log"'(z) . . . . . . . . . . ..
1.10. The generalized zeta function. . < e

1.11. The function ®(z,s,v) = s (v+n)"*z™ .

1.11.1. Euler’s dilogarithm . e

1.12. The zeta function of Riemann. .

1.13. Bernoulli’s numbers and polynomials .

1.13.1. The Bernoulli polynomials of higher order

1.14. Euler numbers and polynomials ,

xxi

ix
xi
XV

L~

13
15
16
16
18
19
20
20
23
24

27

31
32
35
39
40



xxii

1.14.1.

1.15.

1.18.
1.19.
1.20.
1.21.

2.1.

2.1.1.
2.1.2,
2.1.3.
2.1.4.
2,1.5.
2.1.6.
2.2.

2.2.1.
2:2.2,
2.3.

2.3.1.

2.3.2.
2.4.

2.5.

2.5.1.
2.5.2.
2.5.3.

2.54.
2.5.5.

SPECIAL FUNCTIONS

The Euler polynomials of higher order .

Some integral formulas connected with the
Bernoulli and Euler polynomials. .

Polygamma functions

Some expansions for log F(1+z) l.b(1+z) C(1+ z)
and I'(z). - ‘omowm B & e
Asymptonc expansions. . . .

Mellin - Barnes integrals . 3 s
Power series of some trigonometric functions . .
Some other notations and symbols .

References .

CHAPTER II
THE HYPERGEOMETRIC FUNCTION
FIRST PART: THEORY

The hypergeometric series .

The hypergeometric equation .

Elementary relations. s $ @ v @
The fundamental integral representatlons o o T

. .

Analytic continuation of the hypergeometric series. .

Quadratic and cubic transformations . ., .

F (a, b; ¢; z) as function of the parameters .

The degenerate case of the hypergeometric
equation . . e s e o 4 s s s s e »

A particular solutlon .

The full solution in the degenerate case ,

The full solution and asymptotic expansion in the
general case . . . . .

Linearly independent solutlons of the hypergeometric

equation in the non-degenerate case ,

Asymptotic expansions, ’ ;
Integrals representing or mvolvmg hypergeometnc
functions .

Miscellaneous results . . . . . . .
A generating function . .
Products of hypergeometric series. :
Relations involving binomial coefficients and the
incomplete beta function . . . . . .

A continued fraction . . “ e
Special cases of the hypergeometnc functlon .

.

43

43
44

45
47
49
50
52
54

56
56
57
59
62
64
68

68
68
69

74

74
75

78
81
8l
82

85
87
88



2.6.

2.6.1.
2.6.2.

2.7.

2.7.1.
2.7.2.
2.7.3.
2.7.4.

2.8.
2.9,
2.10.
2.11.
2.12.

3.1.
3.2.
3.3.1.
3.3.2.
3.4.
3.5.

3.6.1.
3.6.2.
3.7.
3.8.
3.9.1.
3.9.2.

3.10.
3.11.
3.12.
3.13.
3.14.

CONTENTS
Riemann’s equation. . . B
Reduction to the hypergeomelnc equation . . .
Quadratic and cubic transformations. . . . . . . . .
Conformal representations . . . . . . . O
Group of the hypergeometric equation . . . . . . . .
Schwarz’s function . . . . . . . . . .

Uniformization . .
Zeross: : % m 2 % 4 8 2 B B s 4 8 &

SECOND PART: FORMULAS

The hypergeometric series. . . . .

Kummer’s series and the relations between them . .

Analytic continuation . . . . . . . . . . . .
Quadratic and higher transformations s ow
Integrals . . . . . .. P
References . . . . . . EE 8 & ¥R

CHAPTER III
LEGENDRE FUNCTIONS

Introduction . .

The solutions of Legendre s dlfferentlal equanon e

Relations between Legendre functions .

Some further relations with hypergeometric series . .
Legendre functions onthecut . . . . . . . . . .

Trigonometric expansions for P"l‘f (cos 6) and

Qﬁ(cos 9)

Special valuesof pand v . . . . . . . . . . ..
Legendre polynomials . . . . . . . . . . . . ..
Integral representations . . . . . . . . . . . ..
Relations between contiguous Legendre functions. .

Asymptotlc expansions S
Behavior of the Legendre functlons near the
singular points . 2 5 & A
Expansions in terms of Legendre functlons
The addition theorems. . . . . . . .
Integrals involving Legendre functions

The ring or toroidal functions. . .

The conical functions . .

xxiii

89
89
92
93
93
96
99
99

101
105
108
110
114
117

120
121
140
141
143

146
148
150
155
160
162

163
165
168
169
173
174



xxiv

3.15.

3.15.1.
3.15.2.

3.16.

4.1.
4.2.
4.3.
4.4.

4.5.
4.6.

4,7.
4.8.

FURTHER GENERALIZATIONS OF THE HYPERGEOMETRIC

5.1.

5.2.
5.2.1.
5.2.2.

5.3.
5.3.1.
5.4.
5.4.1.
5.5.
5.5.1.
5.5.2.

SPECIAL FUNCTIONS

Gegenbauer functions . . . . . . . . .. .. ..
Gegenbauer polynomials . . . . . . . . . . . ..
Gegenbauer functions . . . . . . . . . .
Some other notations. . . . . . . . . . .
References. + « « + ¢ « « o o« o o o o o a o + »

CHAPTER IV
THE GENERALIZED HYPERGEOMETRIC SERIES

Introduction: = « « « & = & % % & & 8 w8 b s
Differential equations . . . . . . . . . . . . ..
Identities and recurrence relations. . . . . . . . .
Generalized hypergeometric series with unit

argument in the casep=¢+1 . . . . . . . . ..
Transformations of q+|Fq and values for

arguments other thanunaty . . . . . . . . . . ..
Integrals . . . . . . . ¢ v o v 0w e e .
Various specialresults . . . . . . . .. . ...
Basic hypergeometric series . . . . . . . . . . .
References . . . . . « . « « ¢ v v o o

CHAPTER V

FUNCTION

Various generalizations . . . . . . . . . 5w o

MACROBERT’S £-FUNCTION

Definition of the E -function . . . . . . . . . . .
Recurrence relations. . . . . . . . . . . e e e
Integeals .. o o 5 % 0 @ & 68 w3 8 & o v w 3 5

MEIJER’S G - FUNCTION

Definition of the G-function . . . . . . . . . . .
Simple identities . . . . . . . . . . ..
Differential equations . . . . . . . . . . . . ..
Asymptotic expansions. . . .« .« .+« 4 o . . .
Series and integrals . . . . . . . . . . . .. L.
Series of G-functions . . . . . . . . . . . . ..
Integrals with G-functions . . . . . . . . . . ..

175
175
178
179
180

182
184
185

188

190
192
192
195
199

202

203
205
205

206
209
210
211
213
213
214



CONTENTS XxXv

5.6. Particular cases of the G-function . . . . . . . . 215

HYPERGEOMETRIC FUNCTIONS OF SEVERAL VARIABLES

5.7. Hypergeometric series in two variables . . . . . . 222
5.7.1. Horn’s list . . . . . . . 5 E S B W R w G E A 294
5.7.2. Convergence of the series . . . . . . . .. ... 227
5.8. Integral representations |, A IR R N 229
5.8.1. Double integrals of Euler’s type e R W 230
5.8.2.  Single integrals of Euler’stype . . . . . . .. .. 231
5.8.3. Mellin - Barnes type double integrals . ., . . . . . . 232
5.9. Systems of partial differential equations . . . . . . 232
5.9.1. Ince’s investigation . . . . . . .« . . ¢ 0 . . .. 237
5.10. Reduction formulas . . . . . . . . . . 5w T 237
5.11. Transformations. . . . . . . . . « « . ¢ . ... 239
5.12. Symbolic forms and expansions . . . . . . & 8 m B 243
5.13. Special cases. . . . . . v 4 0 00w 0 e 244
5.14. Furtherseries . . . . . . . . . . ¢ o ¢ o o . 245

Beleteneol . o « 5« &« % a5 6 % ¢ 3 R &= v % & & 246

CHAPTER VI

THE CONFLUENT HYPERGEOMETRIC FUNCTION

6.1. COrientation . . . O E e # e B T Ty 248
6.2. Differential equatlons 3 ve T E T Y 249
6.3, The general solution of the confluent equatlon

near the origin . . . . . e 252
6.4. Elementary relations for the (D functlon AR 253
6.5. Basic integral representations, . . . o w B & s 255
6.6. Elementary relations for the ¥ funcnon 2 i @ B 257
6.7. Fundamental systems of solutions of the confluent

equanon S Rk N E R R R E W § o B 258
6.7.1. The logarithmic case. . . . . . . . S E G § A s 260
6.8. Further properties of the ¥ function . . . . . . . . 262
6.9. Whittaker functions. . . . . . . . . .. PRI 264
6.9.1. Bessel functions, . . . . PN RS e E 265
6.9.2. Other particular confluent hypergeometnc

functions . . . ¥ S oW o 266
6.10. Laplace u'ansforms and conﬂuent bypergeometnc

fUNCEIONS » « « o s » @ & = o & ® % & & » ‘o @ w » 269
6.11. Integral representations . . . . . . 5 Gl W& e 271

6.11.1. The® function . . . . . . ¢ ¢ ¢ ¢« = ¢« & « o « & 271



xxvi SPECIAL FUNCTIONS

6.11.2. TheW¥ function . . . . . . . . « v v v 4 « v .« . 273

6.11.3. Whittaker functions . . . 4 . s ” I 274
6.12. Expansions in terms of Laguen‘e polynomlals and

Bessel functions « « + « ¢« ¢ ¢ 0 v v 0 0 4 e e 275
6.13. Asymptotic behavior . . . . . . ... 000 277
6.13.1. Behaviorforlarge [x| . . . .. . . . . ... 5 278
6.13.2. Large parameters . . . . . . « . « 4 s 4 0 0 . s 278
6.13.3. Variable and parameters large. . . . . . R 280
6.14. Multiplication theorems. . . . . . . . . . . . .. 282
6.15. Series and integral formulas . . . . . . . . . .. 283
6051, Series . y w s v s os o oE @ FEE WA B e & 8 H 283
6.15.2. Integrals . . . . . G 1 284
6.15.3. Products of confluent hypergeometrlc functlons & o 286
6.16. Real zeros forreala,c. . . . «. . + . ¢« ¢ ¢« . . . 288
6.17. Descriptive properties forreal a,c,x . . . . . . . 291

References . . . . . . . . . . . . .. i 8 s o8B 293
SUBJECTINDEX . = « « ¢« « « « « « = § 6 Mo oE i i oW @ 296

INDEX OF NOTATIONS . . . . . + . &« T 301



CBAPTER 1
THE GAMMA FUNCTION
1.1. Definition of the gamma function

The function I'(2) can be defined by one of the following expressions:

[-5] -

() T@=[Te*t*"d=] (log1/e)*™" dt Re z > 0,

nln? Fri
o = 1 ¥
@ = I g TS el s(1+8)(1+%2)---(1+z/n)

<51 T [(1+1/7)* (1 +z/p)"1],

@) VI()=ze¥* f._i | [(1 + z/n) e~ *],
where

4 y=lim (£ 1/n-logm)= 05772156649 -+ -

m—>00 pn=1

denotes Euler’s or Mascheroni’s constant. The definition (1) was used by
Euler, (2) (in a slightly different notation)by Gauss, and(3)by Weierstrass.
Replacing t by s¢ in (1) (s real and positive) we get

(5) I'(2) =s‘fbw e St 2 7 4t Re z > 0.

It can be shown [cf. 1.5(34)] that this formula holds for complex
values of s and for a path of integration along the straight line from the

origin to we %, Thus e have
i

(6) F(z)z—s‘fje e~ Stpr=i gy

- (Mr+8) <args <%nmr-85 Rez>0.
This equation holds for args + 8 = £ % 7 provided 0 < Re z < 1.
‘ 1



2 SPECIAL FUNCTIONS L1

From (2) and (3) it is seen that the gamma function is an analytic func-
tion of z whose only finite singularities are z = 0, -1, -2, ... . From (1)
it follows that

D T = [ et de+ [T et de=P2) +Q2),

Q(z) being an integral function. Expanding e” ! in a power series and inte -
grating term by term:

8) Pley= 2 (0Pt lzsn)i~t,
n=0

Hence it follows that (~1)*/n! is the residue of I'(z) at the simple pole
z==n,r=0,1,2 ...)[cf. LIT(1D].

It will be shown that the expressions (1), (2), (3) represent the same
function.

For a positive integer n and Re z > 0 repeated integration by parts yields

nlin?
2z+ DE+2) o (z+m)]
so that by Tannery’s theorem

fo"(l— pnYe® " di =

oo _ n'n?*

li "(1—t/nyer " de = tp Vg = i .
Wi J:’ ( W) J; ¢ n-lnooz(z+ 1) *+* (z +n)

Thus (1) is equivalent to (2). Equation (3) can be deduced from (2) as
follows. By (2) we have

I/T"(z) = lim 2z(L+ 2)(1 + %2) <<« (1 + z/n) e % len

or
VD) = lim[z(L+2) e 2 (L+%2) e ™ e+ (1+2/n)e */n
xel(“"%*‘""ﬂ/n—lcg n)],
and finally

YT (2) = ze¥* o_ﬁ‘ [(1+z/n) e %,

If the real part of z is negative, andn + 1> Rel~2z) >n,(n =0, 1, 2,...),
I'(z) can be represented by an integral due to Cauchy and Saalschitz
(Whittaker-Watson, 1927, p. 243):

9 T(2)= [Tlet= & («)%/mNe= " ~(a+1)<Rez<-n
r =0
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1.2. Functional equations satisfied by I'(z).
Integrating 1. 1(1) by parts,
I'(z) = (1/2) _]:u e ttrde=(1/2) T'(1+ 2),
or
(1) T(1+2)=2zI"(2),
and hence if n is a positive integer,

(D T(z+n)=z(+ D+ ** (z+n-1T(2),

whence follows

3 I'YT(z=-n)=(z~1D(z-2) *++ (z=n)
="'~z +n+1)/T"(~z + 1),

4 Tz +n)/TED)=D"2(z~ 1) »ec (z~n+ 1)
==+ /T'(z-n+ D.
Since

I‘(1)=f°m e tdt=1,

we have
I'h+1)=1+2+3**°n=nl.

From the expression 1.1(3),
Pla) D) m—z"2 T (1—2¥n?)"
n=1

and since

sin(7z) = 7z it (1~2%2?
n=1

(Bromwich, 1947, p. 294), we have
(5) T(2) T(=z) = — 7wz~ esc(nz)
so that

(6) I'(z) T'(1-2) = 7 cse(mz),

or

() T2+ 2) Tl - 2) = 7 sec(mz).
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From (5) and (2)

IF'h+2)T-2) wz 3
) = (1-2%¥m? (AR %

[(n - 1)'-]2 sin (7z) 1
From (7), (2), and (3) .
©) C(r+% + 2) 1“(n+3/z—z)_ 1 [ 42?2 ]
[1'(r + %)]2 " cos(mz) m=1 2m — 1F

R R O
From (6) and (1) with z = %, it follows that

55 il
(100 0 =2 [ e™™ dv=ym.
We shall next prove the multiplication formula of Gauss and Legendre:

(1) "Iz +/m) = @04E" m% =% D (mnz) N

r=o

From 1.1(2),

(12) H(z) =" [z +r/m)= lim n=*5E=0 (e §,
r=0

n—0o
where

N=mz(mz+1) *** mz+mn)mz+mn+1) - (mz+mn+m— 1) m™2m+D),

Since

I'(mz) = lim (mn)™ (mn) ! (mz(mz + 1) *++ (mz + mn)]™",

n—*oo

we have

(13) m™ ™ D (mz)/H(z) = lim 22" Y (mn -~ D1 ()™ m™"" = /K, say.

It is evident that K is independent of z and can be evaluated by putting,
for instance, z = 1/m in (13), Thus

C(DK/m=1U(Ym)=T(Vm) I'(2/m) *++ T'[{m - D/ml I'(D
or

K/m=T(1-YVm)I'(L=2/m) ¢+ T'[1~(m - 1)/m].
Multiplying the last two equations and using (6),

-1
m2ar' =Kz I sin(7r/m)
r=1
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so that

(14) K2=m2m)~~".

Since K, as defined by (13), is certainly positive, (12), (13), and (14)
prove (11).
The case m = 2 of (11) is Legendre’s duplication formula

(15) T'(22) =22 ' 7 %5 T (2) T (z + ¥).
1.3. Expressions for some infinite products in terms of the gamma function
From 1. 1(2)

21°Ca)
z'(22) (02 - J22)

(1-2) [+ Val¥ (143 /017"

ﬁ'[n Val5 1+ 3 1/n17" (14 +2/0]" ' [1-2/2n+ D',

=

and since I'(}2) =/ 7,

2Vn
2D Gez) (% - Y% 2)

(D

=(1-2) D1—11[1+‘;‘z/n][1-z/(2rz+ DIi=(1-2)(L+2/2)(1—2/3)++"
From 1.1(3)

(9 T@)/T+v)=(1+o/w) e’ T [1+o0/u+n)e "

n=1
=¥ T [+ e/tusn)) a vty
n=20

and hence
= iy/n
@ T+ i)TE@=e " a@rin™ || —

n=1

L+ iy/(n + x) .
From (2),

I'(z,) T(z,) P

4 -
W [z, + 2,) T'{z, ~ 2,)

[1+z,/(z, +n)][ 1 - z,/(z, + n)].

n=20
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Mellin’s formula

(5) VO @/MT(x+y)= H [L+y/(n+a)] e 1/0+2
n=0
can easily be proved as follows. From L7(3)

o0
WD - omvy=dlx [ g/lntntw)]

s

and by means of (2) the required result (5) follows.

We now take z = 27 'v, 2720, ..., 27"v, respectively in Legendre’s
duplication formula 1.2(15) and multiply the n relations so obtained. After
canceling some factors,

()= 22072 72D ) I (7% T %+ 27" 0)],
=1
or what is equivalent to this by L2(1),

F(l+v) =202 (14 27%) T [ %5 T%+2"0)].

m=1

On making n + o, Knar’s formula

6) T(l+v)=2% M [# %%+ 2 ")l

n=1
is obtained,
The relation
M T [1-G/mfl=-z" T [(-ze?mir/n)]-! m=2 3,4 -
n=1 r=1

is a generalization of the well-known formula 1.2(4) and can easily be
verified by introducing the expression 1.1(3) for each gamma function on
the right-hand side and by taking into account the relations

& ezﬂ'ir/u =0 and ﬁ g 27 ir/m =(__"1).—1'

&
r=1 r=1

Finally we consider the expression

¥ lneadls=a) s Goad TT Doafndss €1 tn)
P- 1 2 ® 1 k
H (n =b,)(n —b,) *** (r—b) ,,l:[| (L~ b,/n) *=* (1-b;/n)

n=1
by, b,, b,, ..., b, not positive integers.
A necessary condition for the absolute convergence of this infinite pro-

duct is 2, + a, + ***+a, ~b, —b, ~ ***~ b, =0. This condition
is also sufficient, and if it is satisfied,
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- a/n g,/ n

(1-a/n) e’ e (1-a, /n)e

&) F= b,/
n=1 (l-b,/n)e‘n“‘(l—bk/n)e
i lﬂ(l—b_)
=1 D(l-a)

by virtue of 1,1(3)and 1.2(1),
1.4. Some infinite sums connected with the gamma function

Dougall’s formula

=n? csc(ma) csc(mb)

S Da+n) T +n)

(D s :Z I'(c +n) I'(d + n)
” T(c+d—-a-b-1)

T'le-a)'(d~-a) "' {c =b) "(d - b)

Rela+b6 —¢c~d) <-1, a,b, not integers

can be proved as follows.
The series S is obviously the sum of the residues of the function

f@)=mctn(mz) Tl@a+2) T +2)/ [T +2) " + 2)]

at the poles z =0, £ 1, £2, ... of ctn(rz). For large |z|, 1.18(4) and
1.2%(5) show that

Tla@+2) G +2)/[Tc+2)T(d + 2)]

is represented asymptotically by z°*®7¢ 9 if 7 < arg z <m, and by

(< 5) b cd sin[7(z + ¢)] sin[#w(z + d)]

sin[ 7 (z + a)] sin[ 7 (z + b)]
if ~7 < arg(-z) <m.

We can describe in the z-plane a circle of radius r as large as we please
avoiding all zeros of sin[#(z + a)] or sin[w(z + )] or sin(7z). On this
circle

sin{mz + me) sin(nz + nd) csc(wz + ma) csc{mz + nb) ctn{rz)

is bounded, the bound being independent of r. Also the integral
Tlaotted | g Re(a+b—-c—-d) <-1

taken along the circle will tend to zero as r increases. In this case the
sum of all the residues of f(z) is zero, and thus S = — sum of the residues
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atthe polesofI"(z + a) and I"'(z + 4). The residue of f(z) at the pole
z==(a+m(m=0,12,)is

I'b-—a-m)
I'c-—a-m)Td-a~-m) ’
and the sum of the residues at the polesof I'(z + a) is

I'(b—a)

—7 ctn (7a) -F((:«a)r'(d—-a) 217'1((1—c+ La-d+ l;a-b+1;1)

—a(=D* m D" ctn(wa) -

72 ctn (ma) I'lc+d—-a-56-1)
sin[#(a~b)] T'(c-a)T(d-a)T(c-b)T"(d-0b)
by Gauss’ formula 2.1(14).
For the sum of the residues at the poles of F(b + z) we have only to

interchange a and b, and the sum of these two expressions 1s (D).
The formula

(2)

n

Il 118

-1
1 (Y )<x+nr*=r<x)r(y)/r(x+y>=13(x,y)

o]

can easily be verified by expanding the integrand of 1.5(1) in a power
series and integrating term by term.
Furthermore, we have the following formulas (formulas to be proved in

Chapter 2.4):

(3) ifo {(a), ) /[(1=b+a) a1} [sa+n—-2)""+a+n+2)""]

T'Ma-2)T(a + 2) I'l<b+aI"'(1-=05)
T (l-b+Y%a—-z2)(1-b+Y%a+2) I'(a)

Reb< 1,
I'%a+2)"(Ya-2)

IMNe-Y%a+2)I'(1-5b +%a—-2z)

~ I'(a) S (@), (B),
T T I(1-b) &0 (c)n n!

(4)

-(MBa+n-z)"!

. I'(a) (@), (1-c+a)
I'(l+a-58)T(c-a) .= (l—-b+a)nn!

c Ma+n+2)"

Re(a+b~¢)< L
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1.5. The beta function

The beta function is defined by the integral
(D Blx,y)= ['e* " (1~ " e Rex>0, Rey >0,
Substituting ¢ =v/(1+v), the relation
(2 Blmy)= [ o= (L+v) = 7 d Rex>0, Rey>0
is obtained, and from this
(3) Blx,y)= [ (0= ' + 07 ) (1+0) = do Rex>0, Rey>0.

can be deduced. It follows that
(4) B(x,y)= By, x).

If
a5 I'ix +v)
—“‘Hﬂttz‘*'y—! di =
j" ¢ (1+v)*"y

[cf. 1.1(4)] is multiplied by v*~", integrated with respect to v between
0 and =, and if the order of integration is inverted, we have

fo“’ dt J:” e~ tot) yxty=1 2=t 4. _ F(x+y) j:" vV (1+0)" %Y do

or
I'(x) T'(y)
'x+y ’

the expression for the beta function in temms of the gamma function.
The following functional equations for the beta function can be deduced
easily from (4) and (5). (See Section 1.2):

(6) Blx,y + D=(/2 B(x + 1, y)=[y/(x + ¥)IB(x, y),
(7) B(x,y) Bx +y, z) = By 2z) B(y + z,x) = B(z,x) Blx + z, y),
Cx)Cly) T'(z) T (u)

F'x+y+z+u)

1 n+m-=1 n+m-1
o m),_,,, o =n e B ) n, m, positive integers.

1.5.1. Definite integrals expressible in terms of the beta function

(5) Blx,y) =

(8) Blx,y) Blx+y, 2) Blx +y + z, u) =

t J

(9

By means of suitable substitutions, a number of definite integrals,
such as the following, are reducible to the beta function:
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(10) Bloy) =27 [ [(1+0)* ' (1= + 1+ 7' (1= de
Rex>0, Rey>0,
() L1 e* (L= (L4507 Y de = (1+5)7* Blx, y)
b>“1, Re x>0, Rey}O,
(12) [Ce=' (1+b)™*7dt =b"*Blx,y)
b>0, Re x > 0, Re y > 0,

(13) fb” t~-0)*"(a=-)Y""dt=(a~-b)*"""" Blx,y)
Rex>0, Rey>0, b<a,
b)’ 1(3_,3)7 1 (a_b)x*-y—‘l

1 =
b —e)*7Y ‘ (a=cy (b ~c)

B(x,y)

Rex>0, Rey>0, c<b <a,

x=1 -1 @ — pyxty=1
(15) f /S o T s
L

o= e e o Py

Rex>0, Rey>0, b<ac<e,

(16) (L+be2) Y exde =2z ' b~ V2 Bl (w4 /2, v ~ (x + 1)/z]
z>0, b>0, O0<Rel(x+ 1)/z]<Rey,
(17) [ =7 (1-¢97""de=27" Blxz™", y)
z>0, Rey>0, Rex>0,
(18) [0 (L+ P (1= o' (14677 de = 254772 B, y) |
Re x>0, Rey>0.

Substituting trigonometric and hyperbolic functions, we obtain a number
of integrals involving trigonometric and hyperbolic functions:

(19) f:‘” (sin £)**7" (cos t¥? ' dt = % B(x, y)
Rex>0, Rey>0,

Y o . \2g-1 y-1
(20) f L i PP S
o]

(1+b sin? ¢)**y

Rex>0, Rey>0, b>-1,
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Ko, 2x—1 29=1
(sin &) (cos £}
(21) f sin cos dt =% b~ * Blx, "
[

(cos? i+ b sin? ¢)*t?

Rex>0, Rey>0, b6>0,

(22) J;m cosh ¢ (sinh ¢**7' (1 + b sinh® ¢)™* Y dt = % b™* B(x, y)
Rex>0, Rey>0, 5>0

b4

(23) J~ (sinh £)* (cosh £) P dt = % B(%a + %, %B - %a)
Rea>-1, Re(a-p)<o0,

(20) [Te (1—e =Y " de~ 27 Blx/z,y)
Rex/z2>0, Rez>0, Rey>0,

(25) [ e™*[sinh (Be)]” de=B™' 27'"Y B($ &~ 4 5, L+y)

Rey>-1, ReB>0, Rel(a/B)>Rey,

T cosh(2at) g
- »[J[cosh (plr)]"/“?dh:_4 R B g gl

Re(B *a/p)>0, p>0,

(27 _[:a cos (2zt) sech(nt) dt = Y% sech z m z| <%,
(28) [ 7 cosh(2zt) sech(nt) di = Y% sec z |Rez| <% m

0

Formula (27) is known as Ramanujan’s formul a.

Formulas (12), (13), (17), (19) originate from (1); (11) from (2); (10)
and (26) from (3); (14), (15), (20), and (21) from (11); (16) and (22) from
(12); (18) from (16); (24) from (17); (23) from (22); (25) from (24); (27) and
(28) from (26); all are obtained by easily recognizable substitutions or
specializations of parameters. Evidently the range of validity of the
formulas (11), (20), and (12), (16), (21), (22) with respect to b can be
extended to any values of b in the complex b-plane supposed cut along
the real axis from — 1 to — = and from 0 to — = respectively.

By complex integration it is possible to express some further trig-
onometric integrals in terms of the gamma function. Consider

J; (27— z)azﬁ—' dz

where C is a contour consisting of the upper semi-circle |z| = 1 and its
diameter. The contour is indented at z = 0, % 1, and the radius of each
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indentation is €. On letting ¢ approach zero, one obtains (cf. Nielsen,
1906, p. 158) the following result :

m F(l-)—a)
B% T3+ &8y Il 528

2

: i%ms

(29) [ (sint)%e Pt dt =
o

Rea>-1.

If C is a contour consisting of the semi-circle |z| = 1 in the right-half
plane and the straight line joining the points z = % i, with indentations
at z =0, i, and if the radii of indentation are made to approach 0, the
evaluation of

S+ D%2P " de

gives
¥ w F(l + a)
30 2 dt =
(30) fo (cos t)*cos(Br) di 5577 (s a: g) (s a; 2
Rea>-1.
For other similar integrals see 2,4(6) to 2.4 (10).
Next consider
fc gV gTer gy c> 0,

where the contour C consists of the real axis from + ¢ to + R, the arc of
the circle z = R e'®from ¢p= 0 to p=B(-Y%n < B < %n), the straight line
from z = Re ¥ to (egB’ and the arc of the circle z = ce!® from =8 to
@ = 0. Since the value of the contour integral is zero, on making ¢ » Q
and R » « it follows that

(31) J;"" £a=1 get cosfictsin B g, _ T'(g) ¢~ G~ 198
~%hr<B< Y%m, Rea>0, or B=1t%m, 0<Rea<]l.
Withp=ccosf3, g=c sin 8
(32) f: t2"V ePtT i gy = T(a) (p2+q2)"%“e_i°“’“_'”’/q’
p>0, Rea>0, or p=0," 0<Rea< 1.
Withp +iq=s, tan™' (¢/p) = arg s
(33) J:at“_'e'“dt=r(a) Ol
Rea>0, Res>0 or Res=o0, 0<Reax<l,

and hence more generally
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(34) J;meis t" Ve stdt =T (a) s™¢
Rea>0, —(%r+8)<args<Ym-8.
From (32) one obtains
(35) [ t* ' e cos B cos(ct sin B) dt = ['(a) ¢ *cos (aB)
c>0, Rea>0, -Yr<p < Y%n,
(36) [" 27" e7et e B sin(ct sin B) dt = I'(a) ¢ "*sin (af3)
c>0, Rea>-1, -Yr<p < Y%
If B approaches J37 and ¢ is greater than zero, then
37) j:a t% ' cos(et) dt = ¢ 74T (a) cos (Y ma) 0<Reac< 1,
(38) f: t® 7 sin(et) dt = ¢ %I (a) sin (Y% ma) =T # B g L

Furthermore, one obtains

(39) _E’O cos (atP) dt = (paVP)™' I'(1/p) cos 7 (2p)~"] a>0, p>1l,
(40) fom sin (at?) dt = (pa”P)™' I'(1/p) sin [7(2p)7"]

1.6. The gamma and beta functions expressed as contour integrals
We use the notation fgoﬂf(t) dt for an integral taken along a contour

C which starts at a point ¢, encircles the origin once counter-clockwise
and returns to its starting point, it being understood that all singularities
of the integrand except ¢ = 0 are outside C.

Consider f_:i“ e't”* dt, the initial and final values of arg ¢t being — 7
and +7 respectively. Taking C to consist of the lower edge of the cut from
~ to —p, the circle ¢ = peiq)(--ﬂ < @ < m), and the upper edge of the
cut from — p to — =, we find that

JOM et 472 dt = 24 sin(mz) fpm e Vv dv+ I,

where I denotes the integral along the circle [¢| = p. Since I tends to
zero with p, provided that Re z < 1, we have, in view of L.1(1),

() LMt o2 de = 2i sin(mz) I'(1 - 2)
or,by means of 1.2(6), Hankel’s representation
(2 UI'()=1/@m) [P et 2de T———

Since both sides of this equation represent entire functions of z, the
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equation is valid for all values of z.
If we replace z by 1 — z in (1) we obtain

(3) 2i sin{mz) I'(2) = f_“::) et t*7' dt larg ¢ < 7.
Equation (3) may be written as
(4) 2i sin(7z) I'(2) = - f::ﬂ(—t)‘-' e tdt |arg(~2)| < .

In the same manner, a more general expression can be obtained by the
aid of 1.5(34) if we consider the contour integral

(0+) -
fm“p is t e dt.

The initial and final values of arg ¢ are now taken to be & and 2m + 6.
This leads to
(5) F(s)z{,”(ez"i‘—l)_' f.,:i:.; ” ts—l e't( dt
~Yr+8) <arg {< Yir -5, OS<Largt<2m+8, s#0,+1,%2,...,
or, by replacing s by 1 — s and using 1.2(6),we have
(6) 2m (L&) = [OF 0 e

~(im+ &) <arg {< ¥m -8, S<argt< 2m+ 8,
which is valid for all values of s.

Finally, consider

L 77" Q-07"de= [ f(e)de

taken around a closed contour which starts from a point 4 on the real
t-axis between 0 and 1, and consists of a loop around ¢ = 1 inthe positive
sense, a loop around ¢ = O in the positive sense, a loop around ¢t = 1in
the negative sense, and a loop around ¢ = 0 in the negative sense, so
that f(¢) returns to A with its initial value, which is positive real and
taken with argument zero. Take the loop around 1 to consist of the line
from A to 1 — p, the small circle |t — 1| = p and the line from 1 - p to 4,
and similarly with the other loops. On making p~ 0,

J‘M-h(H-,I-,O-—) t;—l(l_ t)y—! dt =(1 - ezwi:) (1- ezwi_y) B(x, :)")

Rex>0, Re y>0.
Hence

. (1+,04,1-,0-)
~e—rn(:+y) f
= =107 _ ay-
(7) Blx y) e e — ¥ (1= 971 gy,




1.7 GAMMA FUNCTION 15

and by the theory of analytic continuation this formula, derived in the
first instance for Re x > 0, Re ¥ > 0, x, ¥, not integers, holds for all
values of x and y except integers. It is due to Pochhammer.

In a similar manner B(x, y) can be represented as a single loop
integral

(8) Bl(x, y) =% csch(niy) j‘;“ﬂz‘" =D de
Rex>0, |arglt-D|<m, y#0,=*1,%2,...,
(9) Bz, y) =-% csch(min) [ (-0 (1-0)7" d
Rey>0, |arg(~8)|<m, =x£0,%1,%2,....

1.7. The ¢ function

The function ys(z) is the logarithmic derivative of the gamma function:
d logI'(2) ~ ' (z)

z
(1 ¢z = T T or logI'(2) = | "¢ (2) da.
From equations 1.1(2) and 1.1(3) we obtain the representations
1 il 1 1
(2) ¢(z2)= lim [logu-—-——— - - = ],
n- oo z z+1 z+2 z+n

® Y@=y W2+ 5 2/lnz+nl

——y+G=D £ 10+ D+l

The ¢ function is meromorphic with simple poles at z =0, -1, =2, ... .
Clearly

(4) ¢(D) =-y.
From equation 1.3 (2) with u = z, v = 1 we have
ra )
(5) logu= logz=—y+ % {n+1D7" —logll+1/(n+2)]}.
F(Z) n=0

From equations (3) and (5)
6) w(d=logz— > Hn+2""—logll+V(n+2)]h
n=0

From equation (6) and 1.1(1)

(0 y=-¢(= b [n"—log(1+n—')]'=-fo°° e tlogt dt.
n=1
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1.7.1. Functional equations for /(z)
From equations 1.2(1), 1.2(2), 1.2(6) and 1.2(11) we have
8) ylz2)=uv(1+2)-1/z

1 1 1
(9) l,’l(1+n)=1+_+_+...+___y’

1 1 1
(10) Y(z+n)=— + +oecer — 4 y(z2) n=1,23,...
z z+1 z+n-1

(1) ¢(2) - ¥(1=2) = -7 ctn(wz),
W (z) ~ Y (-z) = -7 ctn(nz) - 1/z,
YA +2)=-¢(l=2)=z""—7 ctn(wz2),
Y +2z)— (% - z) = 7 tan (nz),

(12) ¢ (mz) = W) Uiz +r/m) + log m.
r=o0

1.7.2. Integral representations for (z)

The formula
(13) p@=-y+ [ A=t"HA-0)"" dt Re z > 0,
is easily verified by expanding (1 — ¢)7' into a series, integrating term

by term, and using (3).
The substitution ¢ = e * gives

(14) y(2) =—-y +j;°°(e_"'— e” ) (1-e"H""dt Re z> Q.

Hence we have

Yyl 3+ 3 (@+B)/bl -yl 3 + 3(a-pB)/b]

=2b [ e **sinh(B¢) [ sinh (b2)17" dt Rela+b £8) >0,
From (11) we obtain a formula for /(z) valid for Re z < 1,
(15) ¥ (2) =—y —m ctn(mz) + fo' Q-1 ~-)"de Re z <1
or
(16) ¢(2) ==y -memlmz) + [~ (1-e®™) (et~ D" dt Re z < 1.

Gauss’ integral formula,

(17) !11(2)=_J;m[t_1 e t=(1=-e"9"'e ] ds Re z> 0,
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can be proved as follows. Integrating

G 00 o
7' = [T e de
o]

with respect to x from 1 to n we have
(18) logn =[5 (e t—e ) ¢ 4.

00

Introducing this and 1/(z + m) = fo e" "2t g in (2) we have

Uiz) = li_.meo { fo“[(e-:_e—nc) ! _e-tz_e"t(z'H)__ G e‘t(z‘*‘n)]dt}

= lim ffom[t—1e_'—-(l-e_*)"e_“]dt

n —oc
= fowe"nt (™ = (1w ™ B e—ruﬂ)] de i

The first integral is independent of n, and the second tends to zero as
n » oo, This proves (17).

Taking z = 1 in (17) an integral formula for Euler’s constant isob-
tained:

(19) y= fow[(l-—e'*)" ~t7 " et dt
With £ = log{(1l + x) and 8 = log(l + A) we have from (17)
Yl2)= lim [T e t—(l—e 97" e ] dt
5§—0 "8

0. oo
= Sliino f: YTleTtd +Ali—]~no -I;Q [e™* —(1+2)7 %] 2™ dx

Since the first limit is zero, Dirichlet’s formula,
(20) ()= [Tle = (1+072] ¢ de Re z> 0,
follows. Also we have

(21 y=—t//(1)=—j:°[e"——(l+t)"’]z“’dt
== [®lcost—(1+¢2)7"1 ¢ " ds.

The first integral follows from equation (20), andthe second canbe obtained
by integrating t™' e”* — t"'(1 + #)”' around a quadrant of a circle in-
dented at the origin, the origin being the centre of the circle.

From equations (20) and (21) we obtain

¢(z)=—y+f0°°[(1+¢)"-—(1+z)_’]t:" dt Re z > 0.
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Binet’s expressions,

(22) ¥(2) = log z+ [Tl = (1=e™)7 " e7ds Re z >0,
(23) Yl =logz—Y%z"" - [TI(1-e 97"t - %] et ds

Re z > 0,
(24) () =logz+ J; (L—e) '+, =1l e t2de Re z >0,

(25) Y(2)=logz— %z '~ J; We?=1)""=t""+Y%le **dt Rez>0,
can easily be obtained from (17) and (18).

The more general expression
e if
(26) ¥()=logz~Y%z""~ [ et - - e R e
—-hr < B < Yam, —(%m+B)<argz< (%r — B)
can be deduced from (25) by integrating

O o P P
around a sector indented at the origin, as in the derivation of L5(31),
From 1.9(9) we obtain
d log I'(2)

z

(27) ¥(2) = =logz~Y%z""~ 2f°°° (Tl el L Y
Re z > 0,
which is likewise due to Binet. Hence we have

(28) y=-¥(D=Y%+ 2 %+ 17" (- D't de

1.7.3. The theorem of Gauss

Taking z = p/qin (13),0 < p < g, p and g integers, and putting ¢t = v 7
we obtain

Wp/q) ==y + [ R dv, R@) =g =0T (i~ D7,
Since
2 o If =iy = ) :_EI'![u— exp(2min/ )l ,
we can decompose R (v) into partial fractions:

R(v)= q%’"[ exp(2mipn/q) — 1] [v — exp(2min/q) 17",
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Introducing R(v) and integrating it can be shown (B&hmer 1939, p. 77)
that

(29) ¢ (p/q) =—y ~log g ~Ym ctn(wp/q)
<Y¥gq

+ E 'cos(2ﬂpn/q) logl2 — 2 cos(2rn/g)l.

n=1
The prime indicates that in case of an even ¢ only one-half of the last
term shall be taken in the sum. Thus for a positive proper fraction z the
value of /(z) can be expressed as a finite combination of elementary
functions. By means of (10) this result may be extended to every rational
value of z. This is Gauss’ theorem.
1.7.4. Some infinite series connected with the |y function
If we define
L /n
Af(2) =f(z+ 1) =f(2), A"f(z)= 2 ( )f(z +n—-m) (=",
m
2 m =0

it follows from 1.7(8) that

Adr(a +2) =1/(a + 2),
so that we have

A2 yla+z2)=Al1/(@a+2)]=-1/[(a+2) (a+2z+1)]
and

Ary(a+2)=A""[1/(a+2)]

==D""'"(r-D!/Wa+2)la+z+1 *** (a+z+n-D].

Hence the development of /(a + 2) in a factorial series is convergent for

Re(a + z) > 0, a not a negative integer, and is of the form (N&rlund 1924,
p. 261)

1 z(z—l) 1 z(z-1(z-2)
s e R i - e
(30) yla+z) =y a 2 ala+ 1) 3 ala + 1) (a+2)
The functional equation 1.7(10) is useful for summing some series.
We have for instance:

@B 2 (a+mb) ' =b"" 2 (m+a/b)t =57 [Yn+1l+a/b) =i (a/b)],

m =0 m =0

1 1 1 1 =1
58 a+b_a+26+ T+ 2nb -—E 2b b
Y% b~ ? . 1)+ (55 +1
= —— — )=yl —+=)-u —+ +1)+
: ATy i Zb+2 " 4
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and, if n > oo,

1 1 1
33 - _— tes — =1 1+Y% b""l . 1 1 -1
. )a+b a+2b . a+3b % b7 W (1+%,ab™ [~y (% +Y ab™")],

L8. The function G (z)

The function G (z) is defined by
(D G(2) =yl +%z) - y(az)
From L7(13)and L7(14) we have

(2 G@=2[ ¢ (1+07" dt Re z > 0,
(3) G(z)=2_[:°e-“(l+é“)"dz Re z > 0.

A consideration of [ e *(1+ e )" dt extended over the contour used
<

in deriving 1.5(31) yields the more general representation

i
(4) c;(z)=zj°"°e e *(l+e B 'de

—lam<B<lm, —-Cm+P) <argz< Ym-B,
or
-1 ﬂﬂeiﬁ -
5) G@)=z""+] tanh (%¢) e ™% dt
0
- hm<B<lam, —(Chm+ B) <argz < Yr - B.

If we expand (1 + 9~' in (2), and integrate term by term, we obtain
® G=2 % D (z+n)"'=2;"" ,F (1, z; L+ 2z;-D.
n=0

The functional equations

(N G(l+2)=2z""-G(2),
(8) G(1-2) =27 csclmz) —G(2),

©) G(mz) == (2/m) "E' (=1 Y(z + r/m) —
r=0
G Cilme)= (1) X 1 Gl bl % oild,
F=0

follow from (1) in conjunction with 1.7 (1).
1.9. Expressions for the function log I'(2)
From 1.7(17) we obtain Malmstén’s formula
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8o 1_8—(z-l)t gt
(1) logT'(2) = [ ¢(2) dz=f (z =1 - — dt
1-e7¢ t

o

Rez>0
and from 1.7(25)
(2) logT(2)=(z-%)logz—2z+1
+ Jo et =D ™ e B le” B - ) T de
Re z > 0.
Since (Whittaker-Watson, 1927, p. 249)
(3) jo‘”['/z —tT 4 (et=D7 7 eTtde =1 - Y% log(2n),
we have Binet’s first expression of log I'(z),
(4) logI'(z) =(z —%) log z — z + % log(2n)
+ [ TUet =D~ 4Bl e de Re z >0,

or, more generally [ cf. 1.5(1) and also 1.7(25), 1.7(26)1,

(5) logI'(2) =(z-%) logz—z + % log(2n)

B
+f0°°e [E=D7 = "3 Y%l 5 e™ " di

-hr<B<hr, -G%r+B)<argz<%nm -B.
From 1.2(6) one obtains
log I'z) = logm — log(sinnz) ~logI'(1 - 2)
and hence
(6) logl'(z) = log m — log(sin 7z)
—fom[(e“-l) (L=~e™ 8yt —z] &t e tdt Re z <1.
Adding (1) and (6) we have
(7) logI'(2) =% lognm — % log(sin nz)
+4% f: {sinh[(4—z)t] csch(e/2) = (1 —22) e™ ¥} &7 " dt
0<Rez< L
Since
%~ 4(e®*-D7'"1e' | <K for 0<t<on,
it is easily seen from Binet's first expression (4) that

(8) |logD'(z) —(z —%) log.z + z— % log 27| < K/x z =x +iy.
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Finally, we derive Binet’s second expression for log " (z)

tan” ' (¢/z)
e T ]

(9) logTl(2)=(z~%)logz—-z+ % 108(2;7)+2j‘$

o
Re 2> 0.
From 1L.7(3) we have

d? logl'(z) o
- R Vel
dz n=0

(10) ¢¥'(2) =

Now we make use of a summation formula due to Plana (Lindelsf, 1906,
p. 61),

(1D §° f(n) = %f(O) + jo“’f{f) dr+i,j°°°[f(u.>-f(_u)](e’"'— D7 e,
valid if
1) f(¢) is regular for Re £ > 0, &=+ it,

2) lim e_z"ltl f(r +it) = 0 uniformly for 0 < 7 < o,

t —*o0

3 lim [ (e in)de-o0.

Taking f(¢) = 1/(z + £)*(Re z > 0) in (11) we find that

(120 § Ve+nfP=v ) =%e24+2"

n=20
+ j:o 45z (t2 + 2272 (*t-1)"" di.
Integrating twice from 1 to z we obtain
(13) logI'(2) =(z- %) logz+2(4A -1 +B
+ 2 7 (= D7 tan”" (¢/2) de,

A and B being integration constants. To determine these, we note that
0<tan™'x<x forx> O so that

|log T'(2) ~(z = %) logz ~(4 -~ 1) z ~ B <(2./z)j(;m (2™~ 1) 't de

for z real and positive. The right-hand side vanishes as z » o through
P g g
positive real values, and by comparison with (8) we at once have 4 = 0,

B = Y log(2n). This proves (9).
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19.1. Kummer's series for log I'(2)

The function logI"(x}, 0 < x < 1, can be expanded in a Fourier series.
We shall use the known Fourier expansions (Bromwich, 1947, pp. 356, 393,
and 370 respectively):

log(sin7x) =~ log 2 - %31 (1/n) cos(2mnx),
csch(¥t) sinh (2 ~ %)t = 87 0_201 [n sin{(2mx)]/(t* + 472 n?),

7(l-2x)= 2 D_Eo' (1/n) sin(27nx),

If these are substituted in (7) with z = x, we have to evaluate the
integral

00 P,
f ( 2mn et \dt 1 w( 1 ol 4t
e t%+ 4n? n? 2mn t 2m o 1+62_e ¢

1 71 dt ® g tgm2mt = _.dt
— cost ) —— + —_——dt + (cost—e B)—
2anJo \1+1¢2 L s t t

and by means of 1.7(21) and L.7(18) this is (2m)” '[y + log(2mn)] since
we have for the third integral :

lim [~ (cost—e™® ¢t 'dt= lim [Ei(-8) - Ci(8)]=0.
§ -0 "8 §—o0

Thus we have

(14) log I'(x) = % log(2m)

+ § [@2n) " cos(2mz) + (y + log 2m) (mn) ™" sin(2mnx)],
n=1
log I'(x) = (% — x) (y + log 2} + (1~ x) log 7 — % log (sin 7x)
+ § (m) ™! logn sin (2mnx) 0<x<l,
n=1

which is Kummer’s series.
A similar representation for ¥/(x) is dueto Lerch (Nielsen, 1906, p. 204),

(15) ¢ (%) sin{mx) = — Y%7 cos(7x) — (y + log 27) sin mx

+ B log(

n=1

n
l) sin(2n + 1) mx 0<x <L

n +
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From (14) we obtain the integral formulas:

y + log(2mn)

(16) fOT log I'(x) sin(2mx) do = —————— m=l %8 a y
m
1
(17) _f: log I'(x) cos(2mnx) dx = Ty A= L, 2% s w3
n

(18) J; "og I'(%) dx = % log(2m).

Furthermore, we have
(19) [ **' log'(e) dt = x log x — x + % log(27).

This formula can be proved in the following way.
From the multiplication formula 1.2(11) we have

= x—1
m”! log{r(mx) (211)'/2 Am%_“] = 3 n! log I'lx + /m).
r=20

If we now let m » o, replace I'(mx) by its asymptotic expression 1.18(1),
and observe that

lim -“EE m”'log I'(x + r/m) = j: log I'(x + y) dy = IIH log T"(¢) dt,

R —oe r=20

we obtain (19).
Replacingx by x + L, x + 2,x + 3, ..., % + n — 1 respectively,in (19)
and adding the equations, we have more generally

(20) fﬁ"logf‘(x) de=xlogx +(x+ 1) loglx + 1) + »+~

+x+n-Dloglx+n—1D~nx—%nln-1 + %n log(2a)
ne L, B, B sum e

1.10, The generalized zeta function
The generalized zeta function is defined for Re s > 0 by the equation

M L= 8 @en® vA0,-1,-2,....
n=0
It satisfies the functional equation
m 1
(2) y(s,v)=y(s, m+)+ 2 (G+v)" s fi= L2 B i s
n =0

Since for Re s > 0 and Re v > 0 we have from 1.1 (5)

(v +n)" I (s) = j:o e~ tvnlt 51 dr,
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it follows that

3) T'(s) L(s,0) = f:" o e

= _];1 """ (1= %" "(log /%) ™" dx Res>1, Rewv>0.

Considering _f; t°" ' e " (1-e """ dt taken around the complete bound-
ary of a sector of a circle, indented at the origin [ cf. L5(1)], we have the
more general representation

wetB
@ I s, 0) = J T e (1 e d
Res>1, —-Yr<B<hnr, —-(hn+p)<argv < km-p.

With the notation of section 1.6 equation (3) can be converted into a
contour integral,

(5) 9 mi C(S, v) :—F(l—s) f,:o+, (__t)s"' e-"t(l—e_t)—‘ dt
Rev>0, |arg(-t)| < .

This integral gives a representation of {(s, v) valid over the whole s-plane
with the exception of the points s = 1, 2, 3, ... . From it Hurwitz’ series
representation of {(s, v) can be obtained. Consider

J 0 e (e ar

taken around a closed contour C starting at the point ¢ = (2¥ + D7 and

+8mi

+-8m t-plane

consisting of a circle K and a loop L as indicated in the above figure.
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The radius of the circle is (2N + D7 (V an integer), and the loop L does
not contain any of the points ¢ = % 2mi, * 4m, + 6, ... . In the region
bounded by C the integrand of (5) is analytic and one valued except at the
simple poles % 2mi, t 4m, ... , + 2Nmi, By the theorem of residues

(-2 e (-7 " et N
= dt + ———— dt=2m ¥ (R + R))
l-e l-e™t a=1 " b
K L

where R and R are the residues of the integrand respectively at 2nm

and — 2nmi,
Rn = (2nr s—1 e-i%-n'(s—l) e—anJ;” Ru': (2]”7)5—1 el Y (s=1 )e 2rmvi_

Letting N 5 ~ we find that the integral over K tends to zero provided
Res < 0 and0 < v < 1. By means of (5) we thus obtain Hurwitz’ formula

(6) <(s,v)=22n) 'T(1=+s) 6221 n°" " sin(2mmv + % 7s)

Res<0, 0<wv <l

Finally, we shall take f(y) = (y + ©)7° in Plana’s summation formula

1.9 (11) to find
(D) s, o) = — Lt 2f""sin[s tan~' (¢/0)]  de
s, v} = :
o

2vs s-1 (vz+t2)%’ LU |
Rev> 0,

which is Hermite’s representation of {(s, v).

From (7) it can be seen that {(s, v) has only one singularity (a simple
pole with residue 1) in the finite part of the s-plane. Furthermore we have
[ef. 1.7(27)1

(8) £(0,v) =% —v,

1 1 ® e dt

9 L - = =

) ,i"‘,[":(s’”) 5-1:] 20 l°gv+2f viit® et~ 1
0

=~ Y(v) Rev> 0.

Differentiating (7) with respect to s, then putting s = 0, and using
1.9(9) we obtain

S

(10) [Ei—-é-(:;—u-):! = log [(0) ~= % log(2m).
§=0
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In the special case when s = —m{m = 0, 1, 2, ... ), we have
B_,, ()
T Pt L
m+ 1

where B _(v) denotes the Bemoulli polynomial [ cf. 1.13(3)]. To prove this,
we note that if s is an integer, the integrand of (5) is a one-valued function
of t, and we may apply Cauchy’s theorem. If s = =m(n =0, 1, 2, ... ),
we have [ cf. 1.13(2)]

vt —wvt

e te
(= et (R
; | : |
&G tn—l“‘z
D' B ) e,
n=0 n!
% . B +1 (‘!))
Thus the residue of the integrand at £ = 0 is—= , and this proves
(1D. b3 DI
1.11. The function ®(z, s, v) = § (v+n)"*2"
n=o0
The function
(D ®(zs,0)= & (wen)" 42" lz] <1, v#£0,-1,-2, ...
n=0

satisfies the equation
-1
(2) y(z,s,v)=2"y(z,s,m +v) + s . (v+n)"%2z"
=

m=123 ..., v#0,-1,-2,....
Since
(w+n) szt =[1/T(s)] _[;oo e vt 5T (ze "D dt
Rev>0, Res >0,

From 1.1(5), we have the integral formula

(-]

1 ST gt 1 0 psTl g lum ik
3 P(zs,0) = de = - &
i Sean =i j; l-ze * T J; etz

Rev>0 andeither|2) < L z# L Res>0 orz=1 Res> L

If a cut is made from 1 to = along the positive real z-axis, ® is an
analytic function of z in the cut z-plane provided that Re s > 0 and
Rev > 0.

Another representation by a definite integral can be obtained from the
definition (1) and Plana’s summation formula 1,9(11)
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(4) P(z,s,v)=%v" "5+ fom v+~ 2zt de

-2 j:o sin{t log z — s tan™" (o) } (24 A W™= 1) dy
Rev > 0.

For z = 1 we have again Hermite’s formula 1.10 (7).
Lipschitz’s formula

217 (s) °E°1 ein? (v+n)ys= _f:ots_‘ e_“(eig— e Y (cosht— cos @' dt

n=

0<8<27, Res>0, Rev>-1

results from (3) by taking z = ¢ ¥,
® can be represented as a contour integral

(5) 2m ®(z s,0)=-T(1-5) L:M’ (=Y (] —ze” Y™ i
Rev>0, J|arg(-t)| <~

assuming, as in the analogous work of 1.6, that the contour does not
enclose any of the points ¢ = log z * 2nmi(n = 0, 1, 2, ... ), which are
poles of the integrand of (5). Equation (5), for every fixed s which is not
a positive integer, defines ® as an analytic function of z regular in the
cut plane, and for every fixed z in the cut plane,® as an analytic func-
tion of s regular, except possibly at the points s = 1, 2, 3, .. .(it being
understood that Re v > 0).

As in the preceding section our function can be represented by a
series. In order to do so, consider

_f;_ (=) Ve ™ ¥ (1l-ze ) " dt

over the contour C consisting of a circle K of radius (2V + D= (N a posi-
tive integer) and a loop L round the origin. The center of the circle in

this case is the point ¢ = log z(z # 1), and all points ¢ = log z + 2nmi

(n=0,1,2 ...) are to be outside the loop. Letting N » o, it is found
that the integral over K tends to zero provided Pe s < 0 and0 < v < 1.
Therefore

®(z,5,0) =I(1-5) £ R,
n==—o0
= = =(yv—1)

where R = z 1(—tﬂ)‘ "e " "' is the residue of the integrand at the

polet =t = log z + 2nmi. Thus we have

6 @(z,5,v)=2z"*1'(1-5) s (-logz+2nni)’—'ezww

n=-o00

0<v<1l, Res<0, |ag(-logz+ 2nm)| < m.
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Writing

s (~log z + 2nm)*~" e = S ewmiv (~log z — 2nm) s~
n=-—o0 n=0

+ 3 emiv (- log z + 2nmi) 57!
n=1

and comparing with (1) we obtain at once Lerch’s transformation formula
for the function ®(z, s, v):

(7) D(z,s,0) =iz (2m)" 'T(1-s){e "2 ®[e™ 7, 1 -5, (log 2)/(2m) ]

— e ms2T2 G2 | _ 5 |~ (log 2)/(2m)]}.
If in (6) we use the binomial expansions
(~ log z + 2nmi)*™!

= — @2 iei"Y2 T (-1 (S: 1) [ (log 2)/(2nm)]" e™ 7 /2,

r=o0

(~log z ~ 2nm)s™!

- (2,,“7)3—1 ie—iﬂsfz § (S o 1) [(log z)/(2mr)]’ e iTTr/z,
r

r=2o
we find
z' ®(z,s,0)/T(1~5) =[log(l/z)] 57" + 2 3 S (2m)!

n=1 r=20

x{— nr (S; 1) sin (%4 ws + 2nmv) [(log 2)/(2nm) 1%

+(=Dr (S =i ) cos(Yms + 2nmv)[ (log z)/(27m)]"+}
2r+ 1

Summing with respect to n by means of Hurwitz’ formula 1.10(6) we
have

T
(8) ®(z,s,v) = 1 )

-—i(log /2" '+ 27 = s =r,0) —(lﬁi
r=0

r!
logz| <27, s#1,2 3 400, v#£#0,-1,-2,....

If s is a positive integer s = m, we first put s = m + ¢ and we have

from 1.17(11) and L10(9)
(log 1/2)¢ = 1 + ¢ log(log 1/2) + O(e?),
I ol
(m - 1!
Hl+e,v)=¢ "= U(v) +0(e).

v

I'(1-s)=T(1-m~%¢ [e7' = ¢(@)] + 0,
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Making € » 0, we then obtain from (8)

n=0 n!

@ mmyn s { §’ Lm —n, v) (log =

(log z)*'
(m - D!
m=284,.0., |logz|]<2m v£0,-1,-2 ....

The prime indicates that the term withn = m — 1 is to be omitted.
In the case where s = 1 we have simply

(10) &z L) = § =

n=0 n+v

[ (m) — ¥(v) —log(log l/z)]}

=v' JF(Lv;1+v; 2) |z| < 1.

From 1.8(6) we see that
G)=2®(-1, L »).

If s is a negative integer,s = ~m{(m = 1, 2, 3, ... "), we can use
L10(1D) in order to express @, as given by (8), in terms of Bemoulli’s
polynomials:

=Y

(A1) B,y ) 225'! (log 1/z) "' - Z B, +r+1(")(1°g z)
z =

o rllm+r+1)
llog z| < 2.
Finally from (8) and (10) we deduce

(12) lim (1-2)""*®(z s, v)=1(1-s) Re s < 1,

x =

(13) iir_rh ®(z 1, vY[-log(l-2)]=1.
The properties of the function

(14) F(zs) = i; (2n®) =z ®(z s, D)

can easily be deduced from the equations (1) to (13). f s = ~m(m = 1,
2, 3, «u« ), we find from (11) and L 13(7) that

(15) F(z,~m) =m ! (log 1/2)"*7"' = S Ti;";%‘l)_!_(lo,f.g2.')"
o m r!

|log z| < 2m,

where B. +r+ denotes the Bernoulli number.
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From Lerch’s transformation 1.11(7) we obtain Joncquiére’s relation

(16) Fz ) + e F(1/z s) = (I?(’;’) e;-m/ag(l_s’ Izo:iz)

Furthermore we have

(17) F(z,-m) =(=1D=*" F(1/z,-m) m=12,8,s00,

() Bile, m)oe L™ PG m)= = (2’") (bgz) m=2 384, ...

These equations furnish the analytlcal continuation of the series (14)
beyond its circle of convergence |z| = L.

If F, (z) denotes the principal branch of F(z) in the cut z-plane
[0 < arg(z — 1) < 27], the cut being imposed from 1 to o along the real
axis, the difference of the values of ¥, (z) between a point on the upper
edge of the cut and a point on the lower edge of the cut is seen from (16)
to be

. 2ni
(19) F,(x,s) - F, (xe®"7, s) = e )(logx)’ e

Hence, if we cross the cut, from the upper half-plane to the lower half-
plane, we obtain for the continuation Fl (2) of Fo (2)

(20) F,(2) = F(z) + 2mi(log 2) sT1/T(s).
The analogous formula for the inverse process of continuation is
(21) F,(2) = E (2) = 2mi (log 2)*~ '/ T(s).

(For further discussions of the function F(z, s) see Truesdell, 1945,
p. 144.)
1.11.1. Euler’'s dilogarithm
Euler’s dilogarithm is defined by
(22 L,(2) = s (z"/n? = -—J;zz-' log(1—2) dz = F(z 2),
n=1

which is a special case of (14).
From (18) we get the equation

(23) L,(2)=—=L,(1/2) - %(log 2)® + mi log z + 7?/3.

If we denote the principal branch of L, (2) by L}(z) [0 < arg(z ~ D
< 2n], (19) and (20) show that for any branch

L,(2) = LXz2) + 2nmi log z + 4mn?® n,m=0, £1 22, ...
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(For a detailed discussion, see O. Hilder, 1928, p. 312. For other special
cases of formula (14) see Ramanujan, 1927, p. 40, 336; Rogers, 1905;
and Sandham, 1949.)

1.12. The zeta function of Riemann

Putting v = 1 in L 10(1) we obtain Riemann’s zeta-function

() &9 =¢s, D=5, 0= § (/) Res> L
Hence, we have

@ E [0 /nl=(1-279 L) = B 1,5, D Re s > 0,
(3) ?0[1/(2n+ DSl =(1-279%) L(s) =275 ®(1,s,%) les> 1,

We therefore have the following integral expressions for (s) [ ef. 1.10(3)
and L11(3)]-

(4 T'(s) &s) =f°°° t* " (et—- 1D "dt = 257" _J::o e tt5 ' csch ¢ dt

Res>

(5) (1-2'""9T(s) L) =f:°t’_' (et+ D' dt
=23—'j:°e_tt‘—'sechtdt Res >0y
(6) 2I'(s) (1-279) &(s) zj: t57" csch ¢ dt Res> 1.

From L.11(1) and 1.11(3) we have

(N L) =@ (L s+1,0=[2"/T(s+ DI f;” ¢*(csch )% de
Re s > 1,

@ (1-2"7"94 =0 (-1, s+ 1L 0)=[2""/T(s + D] [ t(sechz)* dt
Re s>- L
The following representations of {(s) by means of contour integrals
© 20 L) ==T(1-9) [ (D" (et~ D" de
(0} 2mi(l 29 () == D1 wa) [0 Gl (e ts 1) s
(A1) 4ri(1=279) £() =P =9) [ €0 cneh s e
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with

s#1,2,3,..., |arg(=d)| <~
follow from 1.10(5) and L.11(5) by means of (1), (2), and (3). The con-
tour in (9) and (11) contains none of the points ¢ = +2nm and in (10)

none of the points ¢ = (2n — Drmi.
From (1) and 1.10(7) we obtain

(12) ¢() =% + 1/s = D+ 2 [T (L+ 6"~ 7" sin(s tan™" 2) de.

Furthermore (Lindelof, 1905, p. 103) we have
s=1

2
(13) <(s) = 1 = O J:o(l+ zz)“’z(e”’+1)" sin(s tan~"' ) dt,

s —

=z [ - -1
(19) () = w2 1 f 1+ tz)%(l_s;cos[(s 1) tan™' ¢]
o

d’
= [ cosh (M 72) 17 )
2s—1 oo } » :
2 {1+ ¢ "2_‘&:“1)_ dt
k=3 0 cosh % n2)

These formulas are due to Jensen. The integrals in (12) to (15) define
an analytic function for all values of s.
Other integral representations are (Bruijn, 1937)

) =(s=D"+n! sin(rrs)j:o[log(1+ x) - (l+x)] x° dx,

(1 + s)=(ms) " "sin (rrS)fomyfr'(l+ x) x Sdx

=" sin(ms) f:c [l/,(1+x)+y] e dx,

r inlms *
(m+s) = (=D M[ YW1+ x) 5% dx

7 1'(m + s)
= La 25 By wam s

These formulas are valid for 0 < Re s < 1 and /™ is defined in 1.16(1).
Furthermore
) =(s~ D"+

sin(ms)

i - xS dx
ﬂ(s_l)f [P+ 2 - (14 07"]

0

0<Res<?2 s#1.

Finally we prove Riemann’s representation of Z(s),

oo

(16) 7T (s/2) &(s) = +J (%024 22 7Y wle) de
1

sls=1
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where

o= 3 e ™mt=%16,0, i)~ 1],

n=1

6, being the elliptic theta function. The integral in (16) represents an
analytic function of s for all values of s.

From 1.1(5) we have
AT P - A Re s > 0.

A

Hence we obtain

7 200/2) Ls) = [T (o) £ de
= fo’ w(®) £V de + f‘”m(t) i

But by means of Jacobi’s imaginary transformation of the theta functions
(Whittaker and Watson, 1927, € 21.51) we have
o@=-Y%+%t™% + 7% w(1/2).
Introducing this expression into the integral, we obtain

7 2T6/2) L)
=— (I/s)+ /(s -1 +J;’ w(1/5) 152~ ¥2 d£+f‘wm(t) 2 i

and substitutingl/t=¢ in the first integral, we obtain (16). For further
integral representations see Ramanujan, 1927, p. 72; Hardy, 1949, pp.
333, 337.

A power series expansion of {(s) is (Hardy, 1912, p. 215; Kluyver,
1927, p. 185)

(D) L) =(s=D7"+y+ £y (s= 1"

where

Vo=lim [ £ 17" (log "~ (n + D7' (og "],

m — o0
Puttingv = 1in L.10(8) to 1.10(1 1) we obtain
(18) £(0)=- %, <£'(0)=~ % log(2m);

(19) li_r.nT [£Gs) = (s = D] ==-y(D =y,
and [ ef. L13(7)]

B
(20) C(—m)z—'—ﬂl% mi= L 3, ey
m +
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or

B
21 —2m) =0 2m) = (- )= L S
(2D (-2m) =0, {(2m)=(-1»"" (27) Y

m=1,2,3 ...,
(2) ¢-@2m-1D]=- Bon

2m

Putting v = 1 in Hurwitz’ equation, we obtain Riemann’s functional
equation for £(s)

r -
(23) £(s) = 2—(1_——52 sin(ms/2) {(1-s)
(277)1 s

or in view of 1.2(6)
(24) L(1~5)=(2m 7% 21'(s) cos(ms/2) {(s).
Introducing a new function defined by

(25) &(s) = i-(-s—z—_—l)— [(s/2) 7%/ 2(s)

we have

(26) £(1=s) = &(s).

This function is known as Riemann’s £ function. For asymptotic repre-
sentations ofthe zeta function see Hutchinson, 1925; Titchmarsh, 1935,

1936; for numerous other results, Titchmarsh, 1930,
If we consider the function

N\ (-
27) L = Res>0
(@) Lis) = Z et ,
which is similar to the ¢ function, we have by means of 1L.11(1) and

1L.11(3)

1 tS 1
28) L(s)=2""d(-1,s, )= f de Re s> 0.
525l LAn) ( R 2I(s) cosh ¢
Putting z = — 1, v = % in Lerch’s transformation 1,11(7), the fol-

lowing functional equation for L (s) is found:
2 s

(29) L(1-s) =<—) I'(s) sin(ms/2) L (s).
7

(For further discussions see Lichtenbaum, 1931, p. 64 L)
1.13. Bemoulli’s numbers and polynomials

The Bernoulli numbers B are defined by the equation

n=

() z(e*-D"'= ¥ B, 2/n! z < 2m
(]
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and the Bemoulli polynomials Bn(x) by means of

@ ze®(e*-D7'= ¥ B (x) zYn! |z] < 27

n=20

Since the left-hand side of (2) is

g B z"/r! } { [(xZ)"/m.']} ,
r=2o0 mn=0

Cauchy’s rule for multiplying power series gives

(3) B (x)=a"+ " B, x™" ' 4 co- 4+ E B _ x4+ & B
- L4 n=1/) ™" nj "
( )Bx -
r=0

By(x)=1, B,(x)=x-1%, Ba(x)=x2—x+1/6,

B (x)=x>-3/2x2>+ Y%x, B (x)=x*-2x>+2x2-1/30,....
3 4

Clearly we have

(4 B_(0)=B

Differentiating (2) with respect to x and comparing coefficients we
obtain

(5) B:‘ (x)=n B, (x).
From (2) it follows that

= ze* =

3 B,(x+1~B (x)]

n=20

n=1 (n = 1)! ’
Hence we have

Bo(x+ 1)=Bo(x), B,(I+ ) -B,(x)=1,

and in general

(6 B (x+1)-B (x)=nx""", n=234,...
from which it follows that
(d B (D=B,0=5B,. 2 2
Since we have
zl’l zell el s zr o0 zm
3 B (x+1) =—=3 B (x) — 5
n=o0 ! ef—1 r=o0 vl e mil

Cauchy’s rule for multip]ying power series gives a recurrence formula
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for the Bernoulli polynomial:

(8) ﬂ(n)Br(x)=Bn(x+D, or % (n>B(:c)=nxn—t
r=o0 T r=0 ¥ v

o= By Wy arere
From (5) and (6) we obtain
B )-8, (%)
n+1

@ 7B (5 de= o L7 B () de=an.

Hence it follows that
Byyi(m) =B,
n+ 1 ’
n=234,....

From (6) we can obtain the multiplication theorem and the symmetry
property of B (x) (Fort pp. 32,34)

(10) I frH B”(z)dz=J;m B_(¢) dt =
r=o r

r=20

(11 B (mx = .i1 Bn(x+r/m),

r=0
(12) B, (1-2) = (=1 B_(x).

The Bemoulli polynomials are expressible in trigonometric series.
For B, (x) we have from (3)

(13) B(x)=x-% =~ § (rm ™" sin(27rx) 0<% <1,
r=1

The Fourier series of B, (x) for £ > 1 can easily be obtained by the
calculus of residues. Consider _I;f(z) dz with f(z) = il Sl (- |
(k an integer > 1), the contour C being a (large) circle with radius
(2N + D (N an integer), center at the origin, The poles of the integrand
are z_= 2mir, (r = 0, 1, +2, ... ). The residues of the function f(z)
forr = 1, £2, ... are easily found to be (2#in) ™% e* '*  and from (2)
the residue at z = 0 is seen to be Bh (x)/k . The integral aroundthe circle
C tends to zero as N » = provided 0 < x < 1, and by the theorem of
residues we have

B ()/k1== ' (2min ™k i,
r=-—o0

The prime indicates that the term corresponding to

r = 0 must be omit
ted. This gives the expansions (n = 1, 2,3, ...;0 < x <

i)

(14) B, (&)= 2(=D"*" (2n)! gl (27" cos(2mra),
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(15) B, , ()= 2(-D"" (20 + D! $ (2m) 72" sin(2mrx).
r=1

Putting *x = 0 we get the following expressions for the Bernoulli
numbers (cf. also Schwatt, 1932, p. 143):

(16) B,, = 2(-D™*' (2m)! & (2m) ™" n=123 ...

(17) an+1=0 n:].,z,g,---o

Equations (4) and (8) give a recurrence formula for the Bernoulli num-

bers
n=1

18 ) (")B,:o n=234 ..
r=o0 r

From (18) and (3) we have
(19) By=1, B,=-Y% B,=1/6, B,=-1/30, B,=V42..,

Numerical values of the B, up to B, and recurrence relations can be
found in Ramanujan, 1927, p. 1.

By using (14), (15), and 1.11(4), the following integral representa
tions for the Bernoulli polynomials are obtained:

® cos(27x) —e 27t

(20) B,,(x) = (- "' (2n) f 2 &
[s]

cosh(2nt) — cos(2mx)
0<Nex<l, n=1,2 3650

% sin (2 mx)

t? dt

cosh (2mt) ~ cos(2mx)

(2D B, ,,(x)=(D"""(2n + 1)f
o]

O0<Rex<l, n=0,12,.0..

In terms of Riemann’s zeta-function 1,12(1) we have
(22) B, =D (2m)7™ 2(2n) ! {(2n) n=0,1,2 00

(23) B, =-2n {[-(2r - D] =1, 2,8, s

as is seen from (16) and 1.12(22).
From 1.12(4) to 1.12(8) we find integral representations for the B,

kin= I, 2 8 vl
(24) an:(“ I)n+| _4nJ;°°£2n—l (ezn_ 1)—1 dt

= (="' 2n j:tz"_’ e " cschn) dt,
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(25) B2n=(—l)“+'fln(1—2‘_2")"'j:otz"_'(ez"‘+ D'de

= (=D 20 (1-2'72)7" [ 4271 e T sech (mh) di,
_ nt1 2n _ -1 2n=1
(26) B,, = (—D""" 2n (2% = D7' [T4*"" esch(me) dt,

27 an = ()t o _];w t*[csch () 12 dt,

(28) B, = (-1 n(1 -2 j:’";zﬂ[sech(m)]?dc.
(For other results cf. Nielsen, 1923, and Ramanujan, 1927, p.1.)

1.13.1. The Bernoulli polynomials of higher order

The Bernoulli numbers and polynomials of order m are defined respec-
tively by

(20) a, “ra, 2" [(e T =D e (e - DI

=ni’§°0 B (a, +++ a)z%n! |2l < 2nla,|™",
(30) a, rra_z[(e ' =D e (e m m D] e®

=n:§o B:l")(xla‘ wve g ) end lz| < 2nla |7,
Here m is a positive integer, @, ... , a_ are arbitrary parameters, and

(8D |ay|= max [|a,|, ..., |a]|].

For m = 1 and @, = 1, (29) and (30) reduce to (1) and (2) respectively.
Clearly we have

(32 B ©la, *++a,) =B (a, v a,),

(33) B! (xla,) = a} B (x/a,).
From (29) and (30)

(34) Bfl’“)(x}a‘ - L Z (;)ngim—)l(a1 wrr g, )
o

=

We denote

(35) &= %la, + =~ +a)
and

(36) Di®l —2r B (Llg s4:a )



40 SPECIAL FUNCTIONS L13.1

It can be shown that

(37) Dir) =0 n=0,12....
We thus get from (30)

(38) (ﬂl vee a.) z" [sinh(aI z) - sinh(a. 2] ' = %.‘.o Dz(:) z2/(2n) !

n=0
lal <mla,| ™.
The Bernoulli numbers and polynomials of order -m (m = 1, 2, 3, ...)
are defined respectively by
(39 (€ =1 e —Dla, rra) 27
= § B:"')(a‘ css a‘) 2l o
n=0
(40) (™" =) (e =D (a, rra ) 2Tm e
= §; B'&_")(xh:z1 swi g ) EVE L 5
n=o
both expansions converge in the whole z-plane.

From (35) and (40) for x = — £ we have

(41) sinh(a, 2) **+ sinh(a, 2) (@, **+a) ' 27" = 3 DM z™/(20)1,

n=20
where
ol 1 (=n) e
(42) D™= 2" B (- ¢]a, @, ).
Again we have
(43) D7) =0 e Wy 2 B

For an exhaustive treatise of the Bernoulli numbers and polynomials
of higher order see Nérlund, 1922 and 1924, Ch. VI.

The case a, = a, = ***=a, = 1 is thoroughly discussed in Milne-

Thomson, 1933, Ch. VI.

1.14. Euler numbers and polynomials

Euler numbers £ and Euler polynomials £ (x) are defined by the equa-

tions:

(1) sechz=2ee®+D7 "= £ E zn! 2| < %,

n=20

(2) 2e*(e?*+1)7'= :33 E (x) z%n! |2| <.

n=0
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Differentiating (2) with respect to x and equating coeificients of z"
we obtain

3) E!®=nE_ (2.

If the left-hand side of (2) is written in the form
2e¢#/2(er+ D)7 2= %)= § E 21207 & (x- %) 2/ml,
r=0 m=20

Cauchy’s rule for multiplying power series gives
& n
@ E@-) ( )2" E, (x— %,
r=o NT

hence taking x = %,
(5) E, =-2"E (4.
From (2) we have

p> [E(x+ D+ E (D] 2n!=2e*=2 5 x" z%nl,

n=o0 n=o0
and therefore
(6) E(x+1)+E(x)=2x"
Writing
zezz/Z(e 22 | k= ze(z+l)z/2 (e?=1""T= ze ¥/ 2 (e®= 1)—1,
we obtain from (2) and 1.13(2)
@ E_,)=n"" 27{B [%(x+ D] ~B (4} =n"" 2B () - 2" B_Cs)].

Hence from 1.13(11), 1.13(12) the following relations are obtained

®) E (me)=m"= (D'E (x+/m) m odd,
r=0
©) E (ma)=-2m"(n+ 1" "‘z:'o =D B, (x+r/m) —

(10) E,(1-=) =(-1D" E ().
From

2tz )= X E 27! £ 2%/m! = % E(x+ 1) 2"n!

(o] m=0 n=20
we obtain a recurrence formula

an ) (':) E()=E (x+1), or i (f)Er(x)+En(x)=2x".
r=20

r=09o
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In a manner similar as in 1,13 a representation of Euler’s polynomials
by means of Fourier series can be obtained. Here one considers the in-
tegral 2 [ z7¥7' ¢* (e* + 1)7' dz taken along a circle, center at the

c

origin, radius 2¥r (N an integer). From (2) the residue of the integrand
at z = 0 is easily seen to be Ek (x)/k! . The result is

(12) E, () =(-D"4(20)1 3 [(2r + Dal 2" sin[ (27 + Dl

r=9o

n=1,23 ..., 0<x<1,

(13) By y (0 = (D" 420+ D1 E [(2r+ Dl 22 cos[ (2r + Dl
r=20

n=0,1,2 ..., 0<ax<l.
From (5}, (12), and (13) we have
(14) E, = (1" 2(20) 1 (2/m2™*' & (-1)7/(2r + D2+
- n=0,1,2 ...,
(15) E,,4, =0,
or, with the notation of 1.12(27)
(16) E, =(=D" 2(2n) 1 (2/m>"*! L(2n +1) =0, 1,2 swes .
The equation

(1/cosh z) coshz=1= b3 E,, z?*/(2n) ! by 22 /(2m) !,
n=o

mn=20

and the application of Cauchy’s multiplication rule gives the recurrence
formula for Euler’s numbers:

an ) (m) E, =0 n> 0.
r=2o

Using (14) we have
E,=1, E,=-1, E,-5 E,--61, E, =1385,....

An integral expression for £, can be obtained by replacing L (2n + 1)
in (16) by the expression 1.12(28),

(18) E, = (D" (2/m™*" [* 1" sech ¢ dt
=(=pn y2=tt fomtz"sech(nt) de n=0,1,2 ous

The Fourier expansions (12) and (13) can be replaced by integral ex-
pressions. The result is:
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* ¢2" sin(7x) cosh(mt)

cosh(27t) — cos(2mx)
n=0,1,2 ..., 0<Rex<l,

(19) E, () =(-1" 4 f

2nt1 oos(7x) sinh (mt)

cosh(27t) — cos(2ax)
n=0,1,2,..., 0<Rex<1.

= i
20) E, ,, () = (-1*14 f
0

(For other results cf. Nielsen, 1923.)

1.14.1. The Euler polynomials of higher order

Euler’s numbers and polynomials are defined respectively by

z(a‘ ...+ a.l) [(e2a1z

(21) 2" e s 1) smola 7 g PP

=[cosh(a,z) +++ cosh(a, 217" = g E'(l')(a! wieg ¥ gal 5

n=20

a,z a z o]
(22) 2% e*[(e ' +1) *+c(e ™ +D]""=3 Ef‘“)(xla' an) z%n !,
n=0
The series in formula (21) is convergent for |z < %4 rrlazl_t, and the series
in (22) is convergent for |z| < m|a | whereja ,|is defined in 1.13(31).
Again in (21) and (22) m is a positive integer, and a,, ... , a_ are arbit-
rary parameters. The special case m = 1, a, = 1 reduces to that discussed
in 1.14.
Clearly from (21), (22), and 1.13(35) we have

(23) Er(t")(a1 — a.)= 9n Ef‘")(tf|a| ...am)'

The Euler numbers and polynomials of order —m (m = 1, 2,‘ 3, ... ) are
defined respectively as follows:
—z{a, +...+a) 2 2
(24) 27me e M i e = 4 D]

= cosh(alz) .o cosh(a_I z) = § l':',(:")(a,r “'an) R .
n=20

a, z

(95) 7" e e 1 £ 1) "'(ea'z+1)= 3 E'(:")(xla‘ "'al) 2"nl s

n=0

both expansions are convergent in the whole z-plane. For more details see
Nérlund, 1922 and 1924, Ch. VI. The case a, = a, =***= a_ = 1l is thor-
oughly discussed in Milne-Thomson, 1933, Ch. VI.

1.15. Some integral formulas connected with the Bemmoulli and Euler
polynomials

Some integral relations can be deduced from the two preceding sections.
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First, 1.13(1) can be written in the form

(D (e*-D7'-2'+% =3 B, z2'/(2n)! |z < 2a.

n=1

If the B, are replaced by 1.13(24) and 1.13(27) we find

(2) (e*~D7'=z""-Y4+ 2]; (e?t~ 1)~ sin(tz) dt | Imz | < 27,

(3) (*=D""'"=(22)"'=Y% + 727! f;w sin?(tz) csch?(mt) dt  |Im z| < .

If in 1,13(2) the B _(x) are replaced by the expressions 1.13(20) and
1.13(21) and in 1.14(2) theEr(x) by the expressions 1.14(19) and 1.14(20), we
find

e** 1 * cos(2mx) — e 7
(4) = +f = sin (tz) dt

Gl & cosh(2nt) — cos(2mx)

o sin (2 7x)

cos(tz) dt

cosh(27t) — cos(2nx)
0<x<1l, |Imz)]<2nm,

0
e*? 00 s ) h (e
(5 : 1: Zf sin (7x) cosh (7t) ool it
0

e + cosh (27t) — cos(27x)

_ 2]‘ cos(wx) sinh (mt) _
0

cosh(27t) ~ cos (27x)
0<x<l, |Imz| <.
1.16, Polygamma functions

We define

d™ log'(2)  d™ y(2)
(D ¢(g) = B

O (2) = y(2)

dz= dz" ’
dnG() n=1,2,3,---,
z
(2) G(")(Z)=—-—n—, G(O)(z)=c(z) n=]., 2, 3,----

z

The following functional equations are consequences of the results of
1.7.1 and 1.8:

(3) ¢'(z) = 'L +2) =(=Dn*" pt/zn*

@ D) = (1 P (1) =

zﬂ

[ etn(72)]

(5) ¢YPma) =m " "E (2 4 /) el R v,

r=20
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©) 276G (2) = %z + %) - Y% 2),
(7} G (1+2)+G"(2) =2(~D"% /2%,

n

8 C'"N+ (-GN 1-2) =27

= [ese(w2)].
z

We have also the expressions:

9 ¢ =(-D"""'n! S (z+ AT = (=D ! Le 4 L, 2),

r==o0
(1) 6D =2-D"n! £ D (2407 =21l @1, n + 1, 2.

Hence, we may express ¢ '"(z) and G'*'(2) as definite integrals if we
replace the functions { and @ by their integral representations.

1.17. Some expansions for log I'(1 + 2), ¥ (1 + z), G(1 + 2), and ['(2)

The Taylor expansion of log I'(1 + 2) is

S - (1 "
() log°(1+2) = E [d logd i +z)} z
a=0 ot

i
=0 M

= zyp(D+ $ /mllg™" 1D,
m=2
or
(2) logT(1+2)=—yz+ T Zim) z™/m |z] <1,
n=2

[cf. 1.16(9) and 1.12(1)].
Taking z = 1 we obtain the expression

(3} = S , D" Lm)/m

for Fuler’s constant.

If in
oo 1 -1
4 yvQ+2)=-y+ X (-——-— )
n=1 n +n
[cf. 1.7(3)] we expand
1 1 P z? z? 2l <1
e e e e B o § B ,
n z+n n? nt n*

we obtain

(5) Y(l+)=-y+ E;Z(-l)" £(n) 27" 2] < 1.
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Similarly, from 1.8(6) we have

6 Gl+2=2 % D" o) 2!
n=1

=2(D+2 T (D" (1-2""7 L) 27"

n= 2

where |z| < 1, o(1) = log 2, and o(n) = § D7 Yrr=(1-2""1) L)
forn > 1 =l

If we form the expressionst/(l + 2) + ¢4(1 ~ 2) and G(L + 2) + G(1 — 2)
by means of (5) and (6), and take into account 1.8(7), 1.8(8), 1.7(10), and
1.7(11) we obtain

N $(1+2=22""~y-(a/2 ctn(m2) - E;l £2n + 1D 2™ 2] <1,

(8) G(l+z2)=z""-ngecsclwz) + 26(1) + 2 3;1 (1-27" A2+ 1) 22"

lz] < 1.
Using 1.7 (1) we have from (7)

. - on s 1
(9) logI'(1+2) == %log (Sm "z) = Z E(R—Jr) 20

nz

or, using the series

1+2 3 2R
s (122 - ,
&8 ( Zo 2n+ 1

n

we obtain
(10) logf‘(1+z)—/z{log[ ] Iog<1+z>}
sin(72)
& 1-2(2n +1) .
* 21 2n + 1 ‘ gl

Formulas (9) and (10) are valid if |z] < 1.

Finally we give an expression of I'(z) and ¥/(z) near z = — m (m =0,
1, 2,...). From 1,2(6) we have

I'2) =r D2/AT(1~2) sin[a(z + m)]3.
Expanding 1/T'(1 — 2) in a Taylor series near z =— m and using 1.13(36)

we obtain
(1) T =D/ m iz +m) ™ + (m + 1)
+ B lz+ml (@¥3) + 2 (m+ 1) - ¢'lm+ D] +00(z + m)2]}.



118 GAMMA FUNCTION 47

Similarly from 1.7(11), 1.13(31), and 1.16(9) we have
(12 YD ==(z+m T+ ylm s D+ £ (DL + & G em

1.18. Asymptotic expansions

In 1L.9(5) we replace the expression within the parentheses under the
integral sign by the right-hand side of 1.15(1). Since the conditions of
Watson’s lemma are satisfied, we may integrate term by term and obtain
the following asymptotic expansion (Stirling series)

() logI'(2) =(z- %) log z—2z + % log(2n)
L .i;l BZn /[(2”'_ 1) (2”) zZn—I] +O(z'2"")

|arg z| < m
This is equivalent to

z

" i U -2 139z73
(2) T'(2) =e—ze(z-A)IOSz(2n.)A [1+ a 4 £ _ 0(2—4)]

12 288 51840
|arg Z| <m

[Formula (2) can be obtained directly from the loop integral 1.6(2) using
the method of steepest descent. For this and for the remainder in (1) and
(2) cf. Watson, 1920, p. 1.]

From (1) and (2) a number of asymptotic formulas can be derived, such
as

(3) log'(z+a)=(z+a-Ylogz—z+%log(2m +0(z7"),
@ T+ /T(z+B) =21+ %z " (a-Pla+B-D+0(z73],
(5) lim e %2 (z+a)/I'(2)=1.,

121> oo

In connection with formula (3) see also (12), and in connection with (4)
see (13). In (3), (4), and (5) @ and 8 are fixed arbitrary complex numbers
and —7 < arg z < 7. We also have

(6) lim [T (x +iy)] eIyl ly|# = = (2m* x, v real.

lyl=> o0

From (1) we obtain the asymptotic expansion for ¥(z2),

() YD =logz-(227"= £ B, z72/(2n) + 0(z7* 7).
n=1
The integrand of 1.10(4) can be written as [ cf. 1.15(1)]
(8) ts Ve f(l-e"B=t""e T+ o+ 3 B,. t@7v/(2n)!]).

n=1
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Hence, from 1.10(3) we obtain the following asymptotic expansion of
L:(s, v) for large values of Iv] with ‘arg 01 < e

(9) (s, v)=[1/T)Ho" T (s=1D+ %o *T'(s)

+ 3 B, T'(s+2n~1/(2n) 10** '] + 0072771}
" Re s> 1.
Putting s = (n + 1) we obtain an asymptotic expansion for U (z) as
given in 1L.16(9).

Finally we derive an asymptotic expression of log I'(z) due to Binet.
In Binet’s first expression 1.9(4) we write the integrand in the form

Ve t2t 2(et= D" [et(t~2)+¢+2]

% B el 40y (o= I,

n=1

replacing e 'in the numerator on the left-hand side by its power series.
Since, according to 1.10(3)

_I:° t"e”E(et-DVde=Thh+1D r+1, z+1),

we obtain

(10) logT'(z) =(z— %) log z—z + % log(2n)

n
1 e e
t % z, (n+1)(n+2)§(n+l,z+1).

This is Binet’s formula.

n=

A similar expression converging faster is Burnside’s formula (Wilton,

1922, p. 90)
(1D logI'(2) =(z~ %) log (z — %) —z — Y% + % log (27)

o ii, £(2n, 2) /2% 2n (20 + D] Re z > - X%,

From the left-hand side of (3) and (4) complete asymptotic expansions
can be given. These are

(12) logI'(z+a) =(z+a - %) log z— z+ % log(27)
B,(a) z7" -D"*' B, ,(a) 27"

& 1-2 * nn+1)

+ 0(z™"Y

larg z| <m, n=1,23, ¢eus
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(13) F(z+a) I'(z+a,)/[T(z+B) T'(z+p))]

=za|+a2-B!—Bz [1+ cy <,

+ .
z+1 (z+D(z+2)
|arg z| < m.
These expansions are due to Barnes, 1899, p. 64, and Van Engen, 1938,
respectively.

1.19. Mellin-Barnes integrals

Of all the integrals which contain gamma functions in their integrands
the most important ones are the so-called Mellin-Barnes integrals. Such
integrals were first introduced by S. Pincherle, in 1888; their theory has
been developed by H. Mellin { 1910, where there are references to earlier
work), and they were used for a complete integration of the hypergeometric
differential equation by E. W. Barnes (1908). See also section 2,1.3,

The integral

(1) f(z)= _1_ +£""I“‘(a1+ A, s) C(a, +A,5s)
2m . I(C1+Cis) --.r‘(c +CS)
b Ao p -

I_'(b1 - B;s) *++TI'(b_~ B _s)
X L& " z
F(d' —Ds) =+- F(dq— Dqs)

is a typical Mellin-Barnes integral. It will be assumed that y is real, all
the AJ., BJ., C_," D . are positive, and that the path of integration is a
straight line pa.ralleI' to the imaginary axis with indentations, if necessary,
to .avoid the poles of the integrand. The discussion given here is based on
Dixon and Ferrar (1936).
The following notations will be used:
q

P
@ e=2 4+% B~3 ¢~Z2 D

j=1 1 =1 j=1 j=1 7

i P q
3 B=2 A4-3% B:— X C.+X D,
j=1 j=1 j=1 ¥ gEmw 4

n P q
() A=Rel % a~%m+ 2 b-Yn~ 3 e +%p- T d;+%9g
P

ji=1 j=1 j=1

A. n =i, B -c. ¢ D.
(4)y’7 10 BY 7 I (C) 7 11 (D).
LI j=1 4 j=1 7 = 4

—

(3) p=

1

J
The convergence of (1) can be investigated by means of the asymptotic

representation of the gamma function 1. 18(6). With
s=c+it (o,treal), z=Re® (R>0, @ real)
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the absolute value of the integrand is comparable with
(6) e Homtd \t1'@7+)\R'—7 e(ptpy

when [¢] is large. There are four types of convergent integrals (1).

First type: a > 0. The integral converges absolutely for |®| < an/2
and defines a function analytic in the sector |arg z| < min(7, an/2). (The
point z = 0 is tacitly excluded. )

Second type: a =0, 8 £~ 0. The integral (1) does not converge for
complex z. For z > 0 it converges absolutely if y is so chosen that

() =By>1+2;

and there exists an analytic function of z, defined over |arg z| < =,
whose values for positive z are given by (1).

Third type: a = B = 0, A < -1, Here (7) is satisfied for arbitrary y.
The integral converges absolutely for all positive z (but not for complex z)
and represents a continuous function of z (0 < z < ). There are nowtwo
analytic functions, one regular in any domain contained in |arg z| < =,
|z| > p whose values for z > p are represented by (1), and another regular
in any domain contained in |arg z| < 7, 0 < |z| < p whose values for
0 <z < p are represented by (1). The two functions are in general distinct.

Fourth type: a = 8 = 0,—-1 < X < 0. The integral converges (although
not absolutely) for 0 < z < p and for z > p. There are two analytic func-
tions of the same nature as in the preceding case. There is a discontinuity
at z = p and the integral does not exist there, though it may have a prin-
cipal value. The nature of the discontinuity, and the principal value, are
discussed in the paper by Dixon and Ferrar.

Multiple integrals of a similar structure occur occasionally.

An example for an integral of the Mellin-Dames type is the following
one (Whittaker-Watson, 1927, p. 289)

® [TTla+ )T+ y-9) (5-s)ds

Fla+y I'la+ 8 (B +y) [(B+8

I'(a+B+y+0) )
The path of integration is indented so that the poles of I'(y —s) T'(8 — s)
lie to the right and the poles of ['(a + s) I'(B + s) to the left of it, and itis
supposed that a, 3, y, & are such that no pole of the first set coincides

with any pole of the second set. [For further examples cf. 2.1(15) and
section 7.3.6 and Ramanujan, 1927, p. 216.]

= 2m

1.20. Power series of some trigonometric functions

Irom 1,13(1) a number of trigonometric expansions can be deduced
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(cf. also similar expansions obtained by Schwatt, 1932) such as

(1) zcothz=2z(e**-1""+2= 30: ZZ"BZH z2/(2n) !

n=0

-2 3 (=D &(2n) mm A0 |z| <,

n=20

(2) tanhz=2coth(2z) — cothz= X 22 (2 1) B, z2""'/(2n)!

n=1

=23 (1" (22 = 1) ¢2n) 7 lz| < n/2,

n=1

(3 zemz= 3 (-D"2% B, z%/(2n)!

n=20

==2 g &(2n) o7 220 |z| <=,

n=20
(4) tanz= 3 (-1 2 (2 -1 B, 2*'/(2n)!
n=1

=2 E ' (22" - 1) £(2n) n~20 2271 |z| < n/2,

(5) z/sinz=z[ctn(}2)— ctn z] =2 3 O o L B,, 22" /(2n) 1

n=20
2] <=,

(6) log cos z=~— foz tan z dz = § (=1 (2% = 1) 2! B, z2/[n(20) 1

n=1

lz| < #/2.
We write
(7) tanz= 3 (=D Copgq 277 /20 + DI |z| < =/2,
n=0
(8) z/sinz= 3 (-1"D, 2%"/(2n)! lz| <=

n=0

Then a comparison with (4) and (5) gives

oy €, ,=2=(1-2%B /o),

2n

(10) D, = 2(1-2*"" 8B, -
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Integralexpressionsfor C, _, and D, can be obtained from 1.13(24) to
1.13(28).

More general expansions than those listed before can be obtained from

theresultsin sections 1.13.1 and 1.14,1 (Nérlund, 1922, p. 196). Two ex-
amples are

(1) cos(me) (t/sing)* = ¥ (-1 (20*BL /(2m) 1,

n=0

(12) sin(me)(¢/sine)* = 3 (=1) "' (26)2*' B /(25 + 1)1 .

= 2n+1
Both expansions converge for |t| < 7. With the notation used in 1.13 (1) we
have
(13) B =B (a, =+ a,) 4=t =a =1

n
1.21. Some other notations and symbols

Alternative notations for the gamma function and some related symbols

are (cf. 1.2):
(1) (Factorial function) Il (2) =z! =T (z+1);
(2) y = Euler’s constant 1.1(4);
(3) (Hankel’s symbol)
(v,n) =27 (402 - D(Av? =32 -+ (402 =(2n-12]1}/n!
=M% +v+n)/[n!'T'(% +v-n)] 7= 1 2 8,
(4) (Kramp’s symbol)
e =clc+b)(c+2b) ***[c+(a—1)b]
=0 1T (a +¢/b)/T(c/b) 8=2,3; 4y s
(5) (Pochhammer’s symbol)
(a)n=a(a+ Da+2) ***(a+n—-1=T(a+n)/T(a)
o= ], 25 By e i

s ]

(6) (Binomial coefficient)
(2) =-1)*Tn-a/m!Ta] =T +a/[n ! T(1+a=-m)l.
The Bernoulli numbers B_ are often defined by the expansion
(M Y%z+zler=D7' =Yz coth(h2) =1~ £ (1B, =™/ (2n)!.
It follows from 1.13 (1) and 1.13(16) for the B_ thus defined

(8 B, =2(2n)!(2m) " I ;o

r=1
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and hence
(9) B,=1/6, B,=1/30, B,=1/42, B,=1/30,....
The Bernoulli polynomials are often denoted by ® (x) and defined by

(10) z(e®* =1 /(e*=1) = b3 ® (x)z"/nl,
n=1
With our notation 1.13 (2) we have
(11) @ (x) =B, (x) - B, (0)
and hence with 1.13(3)
|

(12) O, (x) =x, ®,(x)=x"-%, @ (x)=2x"~ 3x%+ x.
If the Euler numbers £ are defined by

(13) sech z = ﬁo 1 E, z*/(20)1,

then it is obvious from 1,14 (1) and 1.14 (14) that

(14) E,_=2(2n)1 (2/m**! §0 (=1)7(2r + 72"

r=
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CHAPTER I
THE HYPERGEOMETRIC FUNCTION
FIRST PART: THEORY
2.1. The hypergeometric series

2.1,1, The hypergeometric equation

If a homogeneous linear differential equation of the second order has
at most three singularities we may assume that these are at 0, o, 1. If all
of these singularities are ‘‘regular’ (cf. Poole, 1936), then the equation
can be reduced to the form (cf. Poole, 1936)

2

du
(1) z(1-2) =7 +le=-(a+b+1)z] o

du

—abu=0

where a, b, ¢, are independent of z. This is the hypergeometric equa-
tion. We shall call a, b, ¢ the parameters of the equation; they are
arbitrary complex numbers.

We define
(a)rl =TI'(a + n)/T (),

i.e.,
(@y=1, (a),=ala+1D)-:-(@a+n=-1) fue L0 B e
Ifc#0,-1,-2, ..., then

@ u,= 3 @, (&, 2"/c) nll=,F, (g b;c;2) = Fla b; c; 2)
n=0
is a solution of (1) which is regular at z = 0.
Ifc=-n, wheren=0,1,2,..., then

@) u, =z"" ¥ @en+D, Gen+D, 2/[0+2), ml]

m=0

=zt JJFletn+l,b+n+l5n+2;2)

56
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is such a solution. The function ,F, (a,b; c¢; z) is called the hypergeo-
metric series of variable z with parameters a, b, ¢. The subscripts in ,F,
‘are usually omitted if there do not occur any other types of generalized
hypergeometric series (cf. Chapters 4, 5) in the investigation.

We shall supplement the definition of the hypergeometric series in the

case ¢ = ~m, (m =0, 1, 2, ... ,), when (2) becomes meaningless.
If a=-n orb=-n wherern=20,1, 2, ..., and if ¢ = ~m where
m=n,n+ 1, + 2, ..., then we define

F(~n,b;—-m; 2) = il. (-n)r (b)r 2t [(—m)r rl]
r=0
(4)
Fla,-n;-m; z)= 3 (a), (=n), 27/ [(-m)r ml]
r=o
Since (3) and (4) are solutions of (1), we see that the hypergeometric
equation has a solution which is a polynomial of 2 whenever —a or—b is a
non-negative integer. (If a = —m or b = —m and ¢ = —n, where n = 0,
1, 2, vos ,and m=n + 1, n + 2, ... , the series in (3) terminates.)
If @ and b are different from 0, -1, -2, ... , then the hypergeometric

series (2) [ or (3), in the case ¢ = —n] converges absolutely for all values
of |z] < 1. Since an application of 1.18(4) shows that
®) (@, ®), Tla+n) I'(b+n) Tle) (1)
)n! T T® T+n Th+D
T ..
=———— pe°"¢ 1+0@™!
TaTo " [1+0&™DH],

we see by Raabe’s test (see e.g. Bromwich 1947, pp. 39, 241) that for

|z] =1 we have:
absolute convergence for [z] =1 if Re{a +b —¢) <0,
conditional convergence for |z| =1, 2# 1if 0 < Rela+b-¢) <1,
divergence if [z| =1 and 1 < Re(a + b —c),
2.1.2. Elementary relations
From the definition (2) we have
Fla,b;c; z2)=F(b,a;c; 2z).
The six functions
Flat1,b5c5;2), Fla,btl;c;2), Flab;c tl;2)

are called contiguous to F (a,b; c; z). Between F (a,b; c; z) and any two
functions contiguous to it there exists a linear relation with coefficients
which are linear functions of z. There are 15 relations of this type which
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have been found by Gauss. For a complete list see 2.8(31) to 2.8(45).
One of these relations is

6) ¢ Fla,b-1;c;2)+(a-b)z Fla,b;c+1;2)
=c F(a-1, b; c; 2).

To verify (6) we expand both sides in a power series. Then the coefficient
of z™ on the left-hand side of (6) is

(@), (b-1), (@) CB). oy
¢ (C)nn ! i (e+D _, (n=D!
Gk (B).y
= (C+1)n_, -y l[a-b+(Bb -1 (a+n-1)/n]
_c (a) _, &) _, ~ (a-1), (),
_—*_(c)nn! (a-l)(b+n—1)—c—--——(c)nn! 5

which proves (6).
If I, m, n, are integers, then

Fla+l,b+m;c+n;z)

can be expressed by repeated applications of these relations as a linear
combination of F{a,b; c; z) and one of its contiguous functions with coe-
fficients which are rational functions of a, b, ¢, z.

Of course we must assume that ¢ and ¢ + n are different from 0, —1,
-2, ve. . Fla,b;c;2z)and F(a + 1, b + m; ¢ + n; z) are called associ-
ated series. It can be shown that any three associated series are connected
by a linear homogeneous relation with polynomial coefficients provided
that the values of the third parameter are different from 0, ~1, -2,

(cf. Poole, 1936, p. 91 fI).

We also have

n

(7 Fla,b;c;z)= (tz)n(b)“[(c)"]_1 Fla+n, b+n;c+n; z),

z?l
n

d
(8) (a) 2z 'Fla+n,b;c; z)=‘ﬁ[z“+"'1 F(a,b; c; 2)],
r4
() o), 297 (L ~2)**7¢ Fla,bs052)
dﬂ
T dzn

Relation (9) is due to Jacobi (1859). For a complete list of such relations
see 2.8(20) to 2.8(27). To prove (8) and (9) we introduce the operators

[zrte~ T (1 —zP*etb"cF(a+n,b+n;c+n;2)].
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d d
8=zd—z, D=E;
Wehave
aFla+1,b;¢0;2)=(8+a) F(a,b; c; z)
and since

(6+a)+a+1) " (S+a+n-1) f(z)=z'"apn[zatr! f(2)]

for every analytic function f(z2) (cf. Poole, 1936, p. 93), this proves (8).

To obtain (9), we write (1) in the form

D[z(1~2) MDu] = abMu
where M = z¢7'(1 = z)e*tb~e, According to (7), D"' F (a,b; ¢ ; z) satis-
fies the hypergeometric equation with a + n ~ 1, b + n - 1, ¢ +n — 1
instead of a, b, ¢ and from that we obtain the recurrence relation

Dz"(1-2)*MD"Fl=(a+n-1D(b+a-1D[z(1 -2)]1*"' YD 'F
and therefore

D"[z" (1~ 2)" MD"F] = (a), (b), MF.
Using (7) again and assuming that F is not a polynomial of degree less
than n, i. e., (a), (b), # 0, we finally obtain (9).

The general theory of Riemann’s equation (cf. section 2.6.1, and Poole,
1936) indicates that in general there must exist 24 solutions of (1) which
are of the type

2°(1-2)° F(a’ b5 ef 2°)

where p, 0, a’, b’, ¢” are linear functions of 4, b, ¢ and where z and z " are
connected by a homographic transformation. For alist of these 24 solutions
(which are due to Kummer) see Goursat(1881),and 2.9(1) to 2.9(24). Any
three of these solutions are connected by a linear relation with constant
coefficients; for these see Goursat (1881) and 2.9(25) to 2.9(44). These
relations can be used for the analytic continuation of the hypergeometric
series, for a proof see 2.1.4.

2.1.3. The fundamental integral representations
If Re ¢ > Re b > 0, we have Euler’s formula

(10) Flayb;c; 2)=T() [CB) e 517" [} 57 (1= 0 07" (1 = £2) " de.

Here the right-hand side is a one-valued analytic function of z within the
domain |arg (1 — 2)| < m; therefore (10) gives also the analytic contin-
uation of F(a,b; ¢; z). To prove (10) for |z| < 1 we expand (1 —¢tz)"®in a
binomial series and integrate term by term; this leads to beta-integrals

which can be evaluated by 1.5(1) to 1.5(5).
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From the identity

(11){(1-)az [e—(a+b+Dz] 2 - abl
2 zazz""c a + + Z‘E‘;"—a

d
X[ (1 ="' (1~¢t2)"%] =~a = (68 (1 =07t (1 =¢2)"27"]
L
it follows that the right-hand side in (10) satisfies (1), and with s = —¢
that
fow sP TN (1 4+s)F 7 (1+s2) %ds

is a solution of (1) if Re b > 0, Re(a + 1 — ¢) > 0, and |arg z| < 7. With
s = /(1 = 1) this becomes .

L A Q- 1= (1= 217 de,
and therefore
(12) Fla,b;a+b+1l—-c;1-2)=T(a+b+1=-)[T®T(a+1-¢)]""
X j;msb_' (L+s)7 " (1+s2z)"%ds

is also a solution of the hypergeometric equation. Moreover, any integral
fc T (A= (L 2) 0 e

is a solution of (1) if C is either closed on the Riemann surface of the
integrand or terminates at zeros of % (1 — £)°7% (1 — ¢2)7%"'" Expanding
(1 -— ¢2)7% in a binomial series and using the contour integrals 1.6(6) to
1.6(8) for the beta-function we find

tI'(c) explin(b ~c)]
I'(b) I'(e — b) 2 sin w(c - b)
x [T (- )T (U)o
Reb>0, |arg(l—2)|<m c~b# L2 3 vaws
—i I'(c) exp(~inb)
T(B) T (c -b) 2 sin 7b
x f1(°+) tP (1= (L -s2)"% ds
Rec>Rebd, |arg(-2)|<m b#£1,2 3, .uu,

F(a,b;c; z)=

F(a,b;c; z)=

—T'(c) exp(~inc)
I'(d) I'(c = b) 4 sin 7b sin w(c — b)

X f’“""o""'h'o") (BN (1= e b (L —t2)" % ds

(13) Fla,bs¢c;2)=

|arg(-2)| <n, b, l—c,c-b#£1,2 3, ....
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In each case we assume that the path of integration starts at a point of the
Riemann surface of %7 (1 ~ £)¢75" (1 — £2z)™® where t is real, 0 <t <1
and ¢, (1 —¢)¢7? denote the principal values of these functions, and where
(1 —t2)7° is defined in such a way that (1 —¢2)7%> 1 if z » 0.

If we put z = I, the right-hand side of (10) becomes a beta-integral and
we obtain form 1.5(1) and 1.5(5)

(14) F(a,b;e; 1)=T()T(c-a-b)[T(c-a)T(c-0)]""

Rec> Reb>0, Re(c-—a-2bd)>0.
We can show directly that (14) is valid only if ¢ # 0, -1, -2, ..., and
Re(c — a—b) > 0. From the recurrence relation

(c —a)(c=b)z F(a,b;c+ 1;2)
=¢c[@c-a-b—-1)z—-c+1]1F(a,b;c; z)
+ele-1A=2)F(a,b;c—1; 2)

and from the remarks after (5) of section 2.1.1 we find that, for m = 1, 2,
3; wen o
(c —a)(c =)

Fla,b;c; )= —————— F(a,b; ;1
(a c P (a c + )

(c~a), (c-b),
= m Fa,b;c+m: 1)

provided that
zli_:n'(1—z)F(a,5;C‘,Z);‘O Re(c —a—-5)>0.

If this is true ( as we will show presently), then we have for m » o

lim F(a,b; c+m; 1)=1,

I (c—a)_ (c-—b)_ _F(c)r(c-—a-b)
» me (C)u (e —cz——l))"l T Tle=a}Tle =B
I'(c ~a+m)'(c—5b+m)
X 11m ]
m—-o [(c+m)T(c—a=-b+m)
and this together with 1.18(4) proves (14). Now
(1-2)F(a,b;e~-1;2)=1+ 5 (v, - v

n=1

n_')z"-» 0 for z » 1,

if
~ T'(@a+n) (b +a) I'e-1)
" T e+n-DT@m+1) T (D)

v >0 for n > co.
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This is true according to (5) if Re(c ~a ~ b) > 0.

A second type of integral representations for the hypergeometric series
is due to E. W. Barnes, (1908), who based the whole theory of the hyper-
geometric function on the representation

I'(a) T"(d)
(15) e F(:l,:,c,Z)
1 T'(a+s)T(b +s) '(~s) .
N 2mi »[,_oc I'(e + s) (2" ds,

where |arg (-z| < 7 and where the path of integration is indented if nec-
essary in such a manner as to separate the poles at s =0, 1, 2, ..., from
the polesat s =—a -n,s ==b-n @ =0,1,2,...,) of the integrand.
It is always possible to find such a path of integration provided that both
a and b are different from 0, -1, =2, ... . If we define

F(a,b;c;z)/T(c)
to be equal to
(16) (a)_,, () ,, 2" F@+n+1,b+n+Ln+2;2)/(n+1)!

when ¢ =-n(n=0,1, 2, ..., ), then (15) remains valid also for these
values of c.

To prove (15) we observe that in the case |z| < 1 the integral on the
right-hand side can be evaluated by the calculus of residues as the sum
of the residues of the integrand at the poles s =0, 1, 2, .. , (cf. 1,18 for
the asymptotic formulas which describe the behavior of the integrand at
infinity).

2.1.4. Analytic continuation of the hypergeometric series

The integrals in (10), (13), (15) define analytic functions of z which
are one-valued in the domain |arg (—2z)| < #, that is, in the whole z plane
with the exception of the points on the positive real axis, and may serve
for effecting the analytic continuation of F(a,b; ¢; z) to the domain
|arg (—2z)| < m. We shall denote this analytic continuation of F(a,b; c; 2)
again by F(a,b; c; z) which then means a branch (the principal branch)
of the analytic function generated by the hypergeometric series.

We exclude the polynomial case when a or b is equal to 0, -1, -2, ...,
and define F (a, b; ¢; z)/T'(c) by (16) ifc =0, -1, -2, ... . Evaluating the
integral on the right-hand side of (15) by the calculus of residues as the
sum of the residues of the integrand at the poles s = ~a - [, s ==b -,
where &k, 1 =0, 1, 2, ..., we first assume that @ — b is not an integer so
that these poles are simple poles and obtain
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(17) F(a,b; ¢; 2)/T'(c)
=I'b-a[I'®I'(c-a)]l"'(-2)"*F(a,1-c+a; 1-b+a;z" ")
+T@=-B[T(@T(c=0)1""(=2)" F,1l-c+b;1-a+b;z "

where a — b is not an integer and where |arg (—z)| < 7.

Ifb =a + m wherem = 0, 1, 2, ..., then the integrand in (15) has sim-
ple polesat s =~a -k (k =0, 1, ..., m — 1) (and no simple poles at all
ifm=0;ats=-a-m-1(=0,1,2,...,) there are poles of the sec-
ond order, and we have

I'(a +m)
(18) W F(a,a +m;c; 2)
_ (—2)-a_- 3 (a)n+u (1 S a)n+n -n.
" Tle —a) nZo nl(n+m)! @7 Hog(=2) + k]

m=1

t(ez)" Z (a), I'(m = n) .

wo 'lc —a—=n)n!
at0,-1,-2,..., m=0,1,2 ..., J|arg(-2)]|<am,

El.Ild

h

n

Yy(l+m+n)+yQ+n)—-vla+m+n)=yYlc—a-m—n)

=yl+m+n)+y(Ql+n)-vyla+m+n)—y(l-c+a+m+n)
+ 7 ctn ﬂ(c-—a).

I

-1
The summation “z in (18) means zero if m = 0. If ¢ =a+ m + [ where
n=0

l=0,1, 2, ..., then (18) remains valid only after a passage to the limit
the result of which is:

I'la + m)

“”m““’“"““m”'z)
mntl —a—m S (n—l)T =
=(“].) (_Z) = (n+m)’ nl 2
-1
_——(-—z)_a.'" (a)n‘i'n (l—m_l)n+n —p ,
+(l+m"1)! nZo n!{n+m)! ™" Llogl=a) + 571
m=1
-a (m—n—-1)!(a), .
e 2 (m+l-n=-D!n!

n=0
- a+m#0,-1,-2 ..., |ag(-2) <m

Ivnv
Here % , S denote zero if L =0 or m = 0, and
n=0 n=0
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A =yQ+m+n)+yg(l+n)~yle+m+n) -y -n)

If c —aorc—2bis anegative integer, then F(a,b; c; z) becomes an ele-
mentary function of z. In particular we have

(20) Flag,a+m;a+m=1;2)=(1=2)""F(m-1L, ~l;a+m-1; 2)

where the hypergeometric series on the right-hand side is a polynomial if
£=0,1,2,....To prove {20) we observe that Euler’s integral (10) or (12)

transforms into an integral of the same type if we put
21) s=1—=¢t, (A=8)/(1L—=t2), ¢t/(1-2z+t2).

From this we obtain

(22) Fla,b;¢c;2)=(1=2)"*F[a,c =b;c;z/(z =11,
=(1=2)"%F[e~a,b;c; 2/(z-1],

and

(23) Fla,b;¢c;2)=(1=2)"%bF(c~a,c=b;c;2).

Relation (22) holds if both |z| < 1 and |z/(z — 1)| < 1. Since the right-

hand side of (22) is defined for Re z < %, this can be used to obtain an

analytic continuation of F(a,b; c; z) into the half plane Re z < %. Of

course (23) is valid only if |z| < 1, unless a, b, ¢ — @ or ¢ — b is a non-

positive integer.

From (17) to (23) and from combinations of these formulas (cf. sections
2.9 and 2.10) we can obtain the complete analytic continuation of F(a,b;
¢; z) into the domain |arg(l — z)| < 1. As a result, at any pointz =z,
F(a,b; c; z) may be computed from a series which converges like a geo-
metric series, unless z; = exp(+in/3). In this case it may happen that all

of the series in (17) to (23) converge only conditionally or like a series
of the type £ z" n* where k is a constant > L.

2.1.5. Quadratic and cubic transformations

We may consider (17) to (23) as linear transformations of F (a, b; ¢; z).
If @, b, ¢ are unrestricted then there exists no transformation of a higher
order (i.e., a transformation in which the variables are connected by a
non-linear relation).

If and only if the numbers

+(1 - ¢), 1 (a - b), t(a+ b-c¢)

have the property that one of them equals }; or that two of them are equal,
then there exists a so-called quadratic transformation. The fundamental
formulas are those of Gauss and Kummer:

(24) Fla,b; 2b;42z/(L+2)21=(1+ 2 F(a,a+% —b; b +%; z?),
(25) Fla,b; 1+a-0b;2)
=(1-2)"*F[%a%a+% -b; l—-—a+b;-4z/(1-2)*],
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(26) F(a, a+ Y%;b; z) = 22a[] 4 (1 - z)%] 2
X F{2a,2a-b+1;b;[1-(1-2)%1/[1+(1-2)%],

(27) Fla, b;a+b+%;42(1 =2)] = F(2a, 2b; a+ b+ Y%; 2).

In (26), (1 — 2)* is defined in such a way that it becomes positive if
z isreal and z < 1. A consequence of (27) and 2.10 (1) is

(28) F(2a, 2b;a+b +%; Yz + 1)

B F'(a+b+%) (%) —
= F(a+%)l“(b+%) F(a,b,/z,z)

Ma+b+%) I'(-%)
I'(a) T'(b)

The series on both sides of (24} to (28) converge in a certain neigh-
borhood of z=0, and the formulas are valid in the largest connected domain
which is such that it contains the point z = 0 and that the series in the
formula under consideration are convergent within this domain. For in-
stance, (27) holds if |z| < (2% = 1)/2 but is not valid if z is real and
% < z < 1, although both sides of (27) make sense in this case. Apart from
these restrictions, (24) to (28) can also be used for the analytic continu-
ation of one of the series involved, in particular if they are combined with
the linear transformations.

For a complete list of quadratic transformations see E. Goursat, 1881,
and 2.11(1) to 2.11(36).

The quadratic transformations are consequences of the general theory
of Riemann’s P-equation [cf. Poole, (1936) and 2.6(2)]. We could verify
(24) to (28) by showing that both sides satisfy the hypergeometric equation.
For instance, it is easy to show that Fla, b; a + b + 4; 4z(1 - 2) ] satis-
fies (1) if we take 2a, 2b and @ + & + )% as the values of the parameters.
Next we see that at z = 0 both sides of (27) have the same values and the
same first derivative. Since we can deduce from 2.2(2) and 2.3 (1) that (1)
has only one solution which is one-valued and regular at z = 0 unless
¢c=0,-1, -2, ..., both sides of (27) must be equal, with the possible
exception of the case wherea +b +}2 =0, -1, -2, ... .

By applying the linear transformations to (27) we can obtain the re-
maining formulas (24) to (28). There exist also direct proofs for these
transformations. To prove, e.g., (25) we can proceed as follows (cf. Bailey
1935). We write (23) in the form

(29) (1 -2)°*® ¢ F(a, b;c; 2)=F(c=-a, c-b;c; 2),
expand both sides in a series of powers of z, and compare the coeffic-
ients of z". This gives

Fla+%,b+%;3/2; z2).
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(@), B), (c-a=b),_, (c-a), (c—b),

rSo (o), r! (n=-nr! B (e) n!
and hence
(30) Z (a), (b), (=n), _(e-a), (c-b),

'L @, A+a+b-c-n) r! () (c-a-5_
This is Saalschiitz’s formula. Now the right-hand side of (25) is
(4a), Ka+¥-b)

s rlllsa—b),

r (_4z)r (1 = z)-a—?_r’

and here the coefficient of 2" is
Z": (%a), Cra+% ~0), (4" (a+2r) _,
(1+a-—b)rr1(n—r)1 )

r=2o0
Because of the relations
47 (%a) (ha + l/z)r =(a),., D' (-n) (n-r)l=nl!,

G oand ot @) 2,

and because of Saalschiitz’s formula (30), this is equal to
E)_" Zﬂ Yia +% —b) (a+n) (-n) _ (a), (b), .
Ly (Q+a-b) Ha+h) r! n!(l+a-0)

n!

This completes the proof of (25).
Applying (22) to the right-hand side of (25) we obtain

(1+2)"°F[%a, %ba+Y% 1l+a~b;4z/(L+ 2?1 =F(a, b; 1 +a-b; z),

and if we introduce 4 z/(1 + z)? instead of z as a new variable, a relation
equivalent to (26) is obtained.
To prove (24), we show first that

{32) Fl(a, b; 2b; 42/(1 + 2)?]

=(1+2*2(+z)7*Fi{Y%a, %a+%:;b+%[22/(1+27]13%,
which is equivalent to
(33) Fa, b; 2b;2) =(1=-Y%2)"*Fi%a, %a+4%; b+4%;[2/(2-2)]174,

as may be seen by introducing 4z/(1 + z)? as a new variable instead of z.
From (26) it follows that the right-hand side in (32) is equal to

(L+2) Fla,a—b+%; b+%; 2%,

and therefore (24) follows from (26) and (32). To prove (32), we use (10)
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which gives:

(34) Fla, b; 2b; 42z/(1 + 2?1 =T(2B) [T(B)]172 (1 + z)%¢
x fo'[t,(l—t)]b"' [1+22(1—-2¢) +2z2%]"%ds.

Since the integral on the right-hand side remains unchanged if we write
—z instead of z and 1 — ¢ instead of ¢, it is an even function of z, and by
introducing 1 — 2¢ = cos @ we see that the right-hand side in (34) is equal
to

27 (L + 2P (1 + 27T (28) [T (B)]72
x f: (sin )27 [1+ 2z cos /(1 +z2%)]7° d6.
Expanding the brackets [ ] in a series of powers of cos @ and evaluatingthe
resulting beta-integrals according to 1.5(19), we obtain
2T (1 + 2P {1+ 2% 2 2B [T(B)] 2

S T®) F+ %) (a),, ( )
no I'(b+n+%)(2n)! 1+ 22
and because of
(@), = 2% (ha) (ha+%), , @n)!1=2"nl(y ,

we find that this is

[(1+z)2] « %) T(20)

2= (b)) (b + %)
& (Ka), Ga+ld),
HZO (b+%) n! Lat 2 &
Applying the multiplication theorem of the gamma-function to the factor in

front of the sum, we find that this is the right-hand side of (32).
If two of the parameters are unrestricted, there are only linear and

1+2z2

quadratic transformations.
A cubic transformation of the hypergeometric equation exists if and
only if either

l—c=+4(a=-b)=x(c—a-2>)
or if two of the numbers

+(l-¢), z(a-b), z(c—-a-1b)
are equal to one-third. For a proof of the main results, which are given
in section 2.11, see E. Goursat (1881) and G. N. Watson (1909).

There exist transformations of the fourth and sixth degrees where one
of the three parameters is unrestricted {cf. Goursat, 1881, and section
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2.11). Transformations of other degrees can exist only if a, b, ¢ are certain
rational numbers; in these cases the solutions of the hypergeometric
equation are algebraic functions (cf. section 2.7.2 and Goursat, 1938).

2.1.6. F(a,b; c; z) as function of the parameters

In many cases it is convenient to prove a relation (e.g., a linear trans-
formation) for the hypergeometric series under certain restrictions (e.g.,
inequalities) for the parameters; for instance, it is easier to deduce (22)
from (10) with the restriction Re ¢ > Re b > O than to use (13) for the
proof of (22) without any restriction for the parameters. In this connection
the method of analytic continuation (with respect to the parameters) is
useful.

It is trivial that F (a, b; c; z, )/T'(c) is an entire analytic function of
a, b, c, if z, is fixed and |z,| < 1 since the hypergeometric series then
converges uniformly in every finite domain of the (complex) a, b, ¢ space.
From (22) it follows that the same is true for all z; for which Re z, <.
Typical examples are :

F(2a,1~2a;2¢; %)/T(2c)=2""2T(%)/[T(a+e) (e -a+%)],

F(l,2a; 2a+ 1;-1)/T(2a+ 1) = 2[¢(a + %) — ¢ (a)]/T'(2a)

for other formulas see 2.8(46) to 2.8(56). Most of the results of this type
can be deduced from the formulas for the transformation of the hypergeo-
metric series, from a direct evaluation of the integral representations, or
from an expansion by partial fractions. There are a few other cases known
where a more elaborate proof is necessary, e.g.,

F(2a,2b;a+b+ L; ¥ =r*b-a)"'T(a+b+1)
x{TE) TMa+B)I-[T@ITG+%17'
For this and for more general results see Mitra (1943).

2.2. The degenerate case of the hypergeometric equation

2.2.1. A particular solution

In general, the points z = 0, =, 1, are branch points of the solutions
of the hypergeometric equation 2.1(1). If we start with an expansion in a
series of powers of z — z, for a certain solution u, (z) of 2.1(1) and if we
continue u, analytically along a closed curve L which encircles at least
one of the branch points 0, 1 and returns to z,, then we shall obtain a
solution u = Ayu + A, u,, where A, and A, are constants and where u
and u, are linearly independent solutions of 2,1(1). In general, A, will be
£ 0, and this means that all solutions of 2.1(1) can be obtained from a
single one and its analytic continuations. But it may happen that A, = 0
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for any L. If this happens we speak of a degenerate case and call the solu-
tion u, involved in this process a degenerate solution.

If the effect upon u, of a simple loop LO(H or L") (which goes around
Z =0 or z =1 in the positive sense) amounts to the multiplication of u,

by a factor € ¥ or e "'“ respectively then

§= Pl —Z)'Uu,(z) = u*(z)

is a one-valued function of z which is regular for all finite z with the
possible exception of z =0 and z = 1 where u* may have poles. According
to the general theory of Fuchsian equations (cf. Poole 1936), u, and there-
fore u* cannot have an essential singularity at z = ~. Therefore u* must
be a rational function which can have poles only at z = 0, =, 1, and there-
fore we have that, in the degenerate case, u, is of the type

(D) u,(2) =2M1=2)*p, (2)

1

where p (z) denotes a polynomial of degree n, such that p  (0) ¥ 0 and
p, (1) # 0.

From the general theory of Riemann’s P-equation it follows (cf. Winston
1895 and section 2.7.1) that 2.1(1) has a solution of type (1) if and only
if at least one of the numbers

(2) a, b, c—a, c~b
is an integer. This is equivalent to the condition that at least one of the
eight numbers £{c — 1) £(a - b) £(a + b — ¢) is an odd integer.

If precisely one of the four numbers (2) is an integer and ¢ # 0, t1,
+92, ..., then one of the two functions

Fla,bic;z2)=(1 =272 F(c —a, c - b;¢; 2)

L

(3) u,5=z1"" (1=2) " tF(1-q 1-5;2—c; 2)
=z'""Fa+1l-¢c,b4+1l-c;2~-c; 2)

is of type (1), since one of the four series in (3) terminates.

2.2.2. The full solution in the degenerate case

We shall now givetwo linearly independent solutions of the hypergeo-
metric equation in the degenerate case. This can be done by referring to
the 24 series of Kummer [cf. 2.9(1) to 2.9(24)]. In order to obtain also
the analytic continuation of these solutions throughout the domain
|arg (=2) | < 7 we shall use the formula

4 Fo+Lnan+m+1l;n +m+1l+2;2)

nemi i & DI-DF 4TS [(1 e dl - 1'2_3)]
- NNl +m)!(m+D)! dz"t» . dz! E

Lmnrn=0,12...
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where F(1,1; 2; 2) = -z~ log(1 - z). It is also useful to observe that
(5) 1=27% [z7e(1-2)""dz

is a solution of 2.1(1) if ¢ = a, and that this becomes

i zn+l"r -~ =(m+ [+1)
(6) i (_ 1)'_ ([ + ) (1 Z)

r=o m+1—r

[
+(=1)a* (m++ml) (1= 2) =441 g 2

n m+1-r — ) (mt )
. +zl (_1)r(l+m)z (1-2)
r
b

r=nm+2 m+1-—r
=l+m+1, c=a=m Lm=0,1,2....
Here the last sum denotes zero if I < 2.
To prove (4) we only have to apply 2.1(7) to 2.1(9); and (6) is an ele-
mentary formula.
The choice of the two linearly independent solutions from Kummer’s
series will depend on the number of quantities in (2) which are integers.
In the survey of the various cases we shall use the following notations:

I, m,n denote non-negative integers;

n.i. indicates that a quantity is not an integer;

deg. indicates that the solution is of type (1);

rat. indicates that the solution is a rational func-
tion;

log 2.1(19) indicates that the analytic continuation of the
solution can be effected by 2.1(19) and leads to
logarithms;

u, 2.9(1) indicates one of the 24 series of Kummer and

denotes, e.g., that the first of the six functions
and the expression 2.9(1) for it should be taken.

Whenever a solution has at least one analytic continuation which in-
volves logarithms, this has been stated in the table on the following page.

Since the hypergeometric equation is symmetric with respect to @ and
b, we shall assume in the following table that

(i) if @ or b is an integer, then a is an integer;
(ii) ifc —a orc —b is an integer, then ¢ — a is an integer;
(iii) if b ~ @ is an integer, then b — a > 0.



2.2.2

Case

10

11

12

13

14

a

m+ 1

c+m

c—m—1

—m

m+1

m+1

m+1

=m

—m=~1

—-m—i—1

HYPERGEOMETRIC FUNCTION

SOLUTIONS IN THE DEGENERATE CASE

m+l+1

I+1

c

n.i.

—m—1

n+1

c—a=b

I+1

1+1

n.i.

Degenerate
solution

u, rat. 2.9(1)

u 2.9(18)
U, 2,9(2
ug 2.9(17)

u, rat. 2.9(1)

ug 2.9(18)

u, rat. 2.9 (1)

ug 2.9(18)

u, 2.9(18)
u, rat. 2.9(1)
u, rat, 2.9(1)

v, rat. 2.9(1)

u rat. 2.9(17)

u, rat. 2.9(1)

71
Second
solution

u, 2.9(18)
u, 2.9(1)
g 2,9(17)
u,  2.9(2)
ug 2.9(18)
log. 2.3(2)
u, 2.9(1)
log. 2.3(2)
ug 2.9(18)
log. 2.3(4)
u, 2.9(1)
log. 2.3(2)
u, 2.9(1)
log. 2.1(18)
u deg. 2,9(18)
u 2,9(18)
log. 2.1(18)
u,deg. 2.9(15)
w,  2.9(14)
log. 2.1(18)
u, 2.9(14)
log. 2.1(18)
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2.3. The full solution and asymptotic expansion in the general case

2.3.1. Linearly independent solutions of the hypergeometric egquation
in the non-degenerate case

We may assume now that none of the numbers a, b, ¢ —a, ¢ = b is an
integer. Then two linearly independent solutions ul(z), ”z(z) of 2.1(1)
can be obtained from any not identically vanishing solution by analytic
continuation along a path which encircles one of the points z = 0, =, L.
If ¢ is not an integer, we may choose

(1) u,(2)=F(a,b; c; 2),
u,(z)=z""¢Fla-c+1,b-c+1;2-c¢; 2).

If a — b and ¢ — a — b are also non-integers, the analytic continuation of
u'(z), uz(z) can be carried through by 2.10(1) to 2.10(6). If @ — b is an
integer, but ¢ is not an integer, formula 2.1(18) gives the analytic con-
t.inuation of u, (z) and uz(z) into the neighborhood of the point at z = e,
and if ¢ — @ — b is an integer, we have forc =a+b+1(,1=0,1, 2, ...

(2) F(a,b;a+b+l; 2)
FOTe+b+D 'J (@), (&), .
= z (1-2)

Te+DTG+D &, (-0 n!
T(a+b+1)
g e b ————
+ (1-2)4-1) T™a) T
S a b+1
) G Lk NN [

n“(n+l)f

where

E,o=ym+D+yn+l+D~dla+n+D-yb+n+l)

l—
and where 2' denotes zero if [ = 0.
n=20

This result can be obtained from 2,10(1) by putting ¢ =a + b + [ +¢
and by a limiting process € » 0.

In the same way we obtain for u, in this case

2
3 z'"* b lp(l-b-l,1-a-1;2-a~b=1;3z)

PO @-a-b-0 _ _._,, ‘& Q=b=D (A-a=D

= 4 a n
I'(l-a) I'(1-5) 2 (l—l)n n!
N2~a-5-1)

ra-s-DrQQ-a-=1)

n=0

% (1_z)n+zl—a—b—l(l_z)l(_l)l
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N (1—a)n (1_ b)n ] n
Z i T e TogfL [ {1~ )

where
El=yln+ D+ e +1+0) =y (l=b+n) =yl —a+n)
and wherel_f.i denotes zero if [ =0
n=0
Finally, if c =a+ b—1[ where [l =0, 1, 2, ..., and if ¢ is not an in-
teger, we have for u, (z):
(4) F(a,b;a+b-1;z)

FrOra+b-0 & Bb-D (a=1)
==yt e i il ST P T
ke T'(a) I'(b) "ZO Mm%
. (D! I'la+b-=1) Z (a), (b)

INe-0)TB=-1) 5 n'(n+l)7
X [k: —log(l~2)] (1-2)"

where

E'=yw(+l+n) +y¢(1+n) -(a+n) - (b+n)

-
and where X denotes zero if /=0
n=0

The corresponding formula for u
1+1l-a 1+1—-b respectively.
If ¢ is an integer, we may take

(5) u,(z)=Fl(a,b;c; 2) c >0,
(6) u,(z)=z"""F(a—c+1,b—c+1;2-c;z} c<0,

, is obtained by replacing a, b6 by

(7 v, (d=Fla,b;l+a+b-c;1-2) l+a+b-c#0,~-1,-2,.

(8) uz(z) =(1-2)¢% Flc—a,c=b;l—a—-b+c;l-2)
lt+a+b-¢c=0,-1,-2, ...,
The analytic continuation of u y(2) and u 2(ﬁ:) into the neighborhood of
the points at z = 0, z = o or z = 1 can be carried through by using the
formulas 2.10(1)to0 2.10(15) since we may assume throughout this section
that none of the numbers a, b, ¢ — a, ¢ =b is an integer.
2.3.2. Asymptotic expansions

The behavior of the solutions of the hypergeometric equation for
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large values of |z| can be fully described by means of the formulas for
the analytic continuation into the neighborhood of the point at z = =,
Unless a — b is an integer, every solution u(z) can be put into the form

(9 u(2)=A,z27%+ A, 2784 0(z79") +0(z707Y)

where A, and A, are constants; if @ — b is an integer, z~ * or z~ % has to
be multiplied by a factor log z.

The behavior of F(a, b; ¢; 2) for large values of |a|, | 5|, |c| has been
investigated by O. Perron (1916-17) and by G. N. Watson (1918).

If a, b and z are fixed numbers and |c| is large with the restriction
|arg c| < m—¢, € >0, then for |z| <1 we have
(10) F(a,b;¢c;2)=1+ -a-b—z +o0e 4 W, B,

c (e) n!

2"+ 0(|c™ ™)),

With a slightly modified expression for the remainder term this remains
valid even if |z| > 1, Jarg (1 — 2)| < =, provided that Re ¢ » . Then, if
|e] » = and b is fixed, Re ¢ > Re b. For a sufficiently large value of n
we also have Re(b + n) > 0. We have

] b ( b
(11) F(a,b; c; z)—l—iz "'—g-)"—()—'l 2= g g layby ey #)
c (e), n! "

=T T@+n) 2"/ [T(B) I'(c -8 I'(a) n!l
x fo' fo'w" (1=0) 8" (1-s)"(1—stz)" o """ ds de.

We splita=a+ia’',b=B+if8', c =y +iy’ into real and imaginary

parts, Then, for 0 <s, t < 1 we have [(1 = stz)7* "' | <M™2" """, where

M depends on z and denotes either the minimum or the maximum of |1-stz|.
This gives

T (e) (@), 2"*"
@) T(c=58)| (r+1)!
@,y (80| [T D]

n+ D! B | T(e-0b)|
'y -8) T'(y
r Thrn+Dd )

1Pl < Mot [ (L= A dy

= |z/M|"*' y~e

x

From 1.18(5) we obtain an estimate for the last three quotients of gamma
functions. The result is

(12) lp,,,| < pla) 2™ || By An
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where p(n) depends on n, a, b and on Im z if Re z > 0. This proves (10)
L with |p_,,| instead of O( le] ™" ") for a sufficiently large value of n],
But then (10) is clearly also valid forn = 1, 2, ..., since each term of
the asymptotic series in (10) behaves like |pn+||. For more general
results see T. M. MacRobert (1923) who has proved (10) for a range of
arg ¢ which is > 7.

If a, ¢ and z are fixed numbers, ¢ #0,-1,-2, ... and 0 <| z| < 1, and
if |b| » o such that —37/2 < arg zb < Y4, then we have

) et ] (1+0(]5/™)]

(13) Fl(a,b; ¢c; 2) = F(a,b; c; bz/b) =
(C)n n!

n=o
and here the asymptotic formulas for the confluent hypergeometric func-
tion of a large argument (cf. Chapter 6 or Whittaker-Watson 1927, 16.3)
give
(14) F(a,b;c;2)=e " [['(c)/T"(c — a)] (b2)"°[1+0(|bz]™")]
+ [T/ T (] eb=(b2) * < [1+ 0O(|bz|"")].
Similarly, if - Y47 < arg bz <37/2, we have
(15) Fla,b;¢c; 2)=e2[1(e)/1 (c —a)] (b2) °[1+0O(|bz| "]
+[I'(e)/T(a)]) eb*(b2) c[1+0(|bz|™ "]
In the case where more than one of the parameters tends to infinity,
G. N. Watson (1918) has obtained the following results.
Let £be defined by z £(z% = 1% = e %4 and put
1-ef=(ef -Detim
where the upper or lower sign is taken according as Im z % 0. Then for
large | A| we have
(16) %z-%)"MFla+r a—c+1+r;a—b+1+2);2(1-2""]
20T a~b+1+20TMDN® _ ine
Fa-c+1+NMT(c-56+AN
% {1 — e E) B {14 YR [ 01X Y]
where |arg A| < 7 — 8, 6> 0 and also

(17) Fla+A, b=A;c; % — 1 2)
I'1-6+N1 ()

I'(%) Le=5b+A)

x AR LABE | gtimleh) oM E111 4 Q(|A™"])]

et~ (L e~€) 7K (14 ¢ )0t N
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where the upper or lower sign is taken according as Im z € ( and where
|A| is large, E={ +in,

- hr-w,+8<arg A< Jpm+w, —- 8 8> 0,
wzztan"(n/cf),—wl=tan_'[(7]—rr)/¢] N0,
w,=tan ' [(n +m/ ], ~w =tan""(n/¢) 7150

Here tan™' x denotes the principal value of the function, i.e.,

- Yr <tan ' x < 7.

Other cases where a, b,c (or their moduli) are large have been inves-
tigated by M. J. Lighthill (1947), H. Seifert (1947), and T. M. Cherry
(1950 a, b). The case where @ = ipv, b =iv, ¢ = 1, where p, v are real
where p is fixed, and where v » = has been investigated by A. Sommer-

feld (1939).

2.4. Integrals representing or involving hypergeometric functions

Euler’s integral 2.1(10) cannot be transformed into itself by an ele-
mentary subsitution in such a way that the relation

Fla,b; c; z) =F (b, a; c; 2)
becomes evident, although this is a trivial property of the hypergeometric
series. Wirtinger (1902) has given a triple integral for /' which makes the

symmetry with respect to @ and b evident, and for the same purpose

A. Erdélyi (1937 b) has derived the double integral
I'(e) T'(o)
'@ (B T'(c—a) I'(c - b)

" L‘ f;tb_' P (A= (- DT (L - tr2) S de dr

(1) Fla,b5¢; 2)=

which can be obtained from 2.1(10) and 1.5(11).
H. Bateman (1909) [cf. also A. Frdélyi (1937 a, b)l has proved that

(2) Fla,b; c; 2) =iT()/[T(s) I'(c —s) 1}
x fo' 21 -x)°""" F(a b; s; xz)dx
Rec>Res>0, z#1, |ag(l-2)|<m
This can be obtained by expanding ¥ (a, b; s; xz) in a series of powers of
xz, integrating term by term and applying 1.5(1) and 1.5(5).

By means of fractional integration by parts, the following general-
izations of (2) may be obtained (Erdélyi, 1939):

(3) Flab;c;z)=T"(c) [1I'(s) T'(c - S)]_'f; 5 (1= (1 —x2) "
xkla-—a, b; s; x2) Fla, b—s; c—s; (1 -2 z/(1—x2)] dx
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=ITE/TE) Tle = [ %°7 (1= (1~ xz)7 ot

xF@r—a r=>b;s;xz) Fla+b=r, r—s;c—s5;(1-%) 2/(1—x2)] dx.

Combining the integral representations 2,1(10) and 2,1(15) with the
linear and quadratic transformations of the hypergeometric series we
obtaim a large number of integral formulas. Starting, e.g., with 2,1(15),
substituting — z for z, and applying Mellin’s transformation formula, we
obtain

IF'l@+s) T +s) T(e)

) I'(a) 1(b) e +s)

I'(-s) = f: Fa b;c;-2)z7°""dz

c$0,-1,-2 ..., and Res<0, Rel(a+s)>0, Re(b+s)>0.

Splitting the right-hand side in (4) into the sum of two integrals extended
from O to 1 and from 1 to « respectively, applying 2.1(17) to the inte-
grand of the latter integral, and substituting — z and — 27" for z, we
obtain:

fomF(a’ bie;—2) 27" dz =eime f; Fl, bje;2) 2™ " dz

+T@DTG-a) [T (c —a)] ! etimlats)

X‘[o' Fl@,l—c+a;1=b+a;z)z°r"14;

+T(e) T(a = b) [T(a) T'(c = b)]~1 eTimlbts)
X_J-\‘ F(b, 1'—C +b’ 1—a+b, z)zb+s—1 dz
0

where throughout we may take either the upper or lower signs. If we now
eliminate the third integral by combining the two formulas with the upper
and lower sign we obtain, with s =w -} a:

IF'%a+w) I'ta —w)
I'le-%a+w) 'l =b6+%a~w)
I'(a) T @, 0-c+a), 1
=F(1+a—b)F(c—a)n=°(l—b+a)nn! n+w+ Y%a
ra@ v @, ), 1
"TOTA-52,@ n! n-w+ha

- I'{a) f‘F(a,l—c+a;1—b+a;z)
IFrQA+a-8)T(c—-a)°

F({l) 1 ¥
- L by e £ gy,
O Ta=5 _[;) F(a c;z2)z z

(5)

x zhate =1 g, 4
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The first equation in (5) is valid if Re (@ + b ~ ¢) < 1; the second equa-

tion is valid if we also have Re (4a tw) > 0, Re (1 = b+ a) > 0, and

Re b < 1. The formula becomes particularly simple if c — a = 1 —b.
We have

6) [ (cos )% (sin )% %90 d6

= 2'2“"2”"'eiﬂ(a_”-%)[[(a—,u—v) Fre2p+ /I'+a-v+ul
F(2v,a-p-v;l+a-v+p;-1)

X

+ 2722w GV AR T gy — ) T2+ D/ T D +a~p+ )]
X F(-2p,a—p—-v;l+a-p+v;=1
Repu>-%, Rev>-%4.

In particular, if a =v + p + 1, 2u = x 2v = y, we find from 1.5(13)
(witha=1, b=-1, v = e?f) that

(7) e_%i'n'(y+1) 2x+y+l J‘%’" (COS e)x (Sil‘l e)y e i{x+y+2)0 de
o

=2*WM T+ DIy + D/ T +y + 2]
=+ D" Flx 13y +2; =D+ (x + D)7 F{—y, 1;x +2;-1)
Rex>-1 Rey>-1
These formulas may be obtained by introducing e?*? as a new variable
in the left-hand side of (6) and applying Fuler’s integral representation

2.1(10) to it.
We may deduce from (6) for Re p > — %, Rev > - %

(8) [ (cos 6)** (sin 6)2¥ e*%? 49

71 (2v + 1)
Fl+p+v-a)T(l+v+a-p

—eimla—p) g-pn-v

X F(=2p,a=-p-v;l+va—-pu+v;-1)
if we define
(cos 6) 2% = e™2'H [ gin (0 — Ym)]P# hr<O<m
In particular we have for2u=m=0, 1, 2, ... andv =0
Fl—m, = Y%m—-Y%a;1=-Y%m-Y%a;~-1)
=(=2" (m + a) csclan) foﬂ(cos O™ cos af db

a£0, 1, £2 wuu
The quadratic transformation 2,1(24) combined with 2,1(10) gives
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9) Fla,a-b+Y% b+%; 2%
'k +%
=m f:(singb)zb" (1+2zcosgp+20)"%dop
2
Rebd >0, lz|< 1.
fn=0,1,2, es.,we have
(10) Flg,n+a;n+1; 2%
“n

z™"n!

" 27(a)

2
jo cosng(l -2z cos¢+zz)_° do
Rea >0, |[z]<1;

this may be shown by expanding

(1-2zcosp+2z)7%= (1~ ze idy=a (] — ze-i¢)-a
into the product

Z (@), s leidl Z (i)Lz. e=idm
1=5 L 1 n=0m!
If we multiply these sums and collect the coefficients of e¥i® " we ob-

tain (10). We also have
72AT 1+ pB)
Fl+%B+%a-%TA+%B-Y%a+k%r)
xFl-v, ha-%B~-Y%v;l+%B+%a-Y%v;a?/b?)

=j';%7re"a9(0056)8 (a2etP+b2e OV dg
—AT

(11)

Re 8>-~1, |b|>|al-

This follows from an expansion of the integrand in a binomial series and
term by term integration. If |a| > |b|, the corresponding formula may be
obtained by substituting ~ & for @ and - § for 6. The analytic continuation
of the hypergeometric function in (11) into the domain |a/b| > 1 does not
give the value of the integral on the right-hand side,

2.5. Miscellaneous results
2.5.1. A generating function

Ifrn=0,1,2, «eu, the polynomials F(-n, a + n;‘c; z) are the Jacobi
polynomials (cf. Chapter 10 on orthogonal polynomials). Forthese we have
the generating function

(1) § s"(c)nF(—n,a+n;c;z)/n!

n=20

_ 51 S+s=1N\"" /S+s+1\°7¢
2sz 2
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“here
§S=[1-2(1-22 s+ s21%

and S > 1 as s » 0. The expansion on the left-hand side in (1) is con-
vergent if |s| < 1 and |1 = 2z| < 1. In the case Re ¢ > 0 we can prove
(1) by introducing u = ¢£(1 — ¢t2) (1 — £)”' as a new variable in the integral
2.1(10) which gives

I'(c)
T®) [(c-b

XIN by —u+U 1+u— <! du
i il
o 2uz U

U=[1+2u(1-22)+ u42]%,

Applying the inversion formula of the Mellin transformation we obtain

-u+U 1+u— =t =
2uz
B+

u b F(b, a=b; c; 2) L e B db,
" O B—;w I'(c)
where 8 is a suitably chosen real number. The integrand on the right-
hand side of (3) has poles at b=-n (n =0, 1, 2, ... ). An application of
the theorem of residues can be justified by the results of section 2.3 and
gives (1) with s = —u. By analytic continuation of both sides of (1) with
respect to ¢ it can be shown that the restriction on ¢ can be dropped.
We may consider (3) as a continuous linear generating function for
F (b, a=b; ¢; z). For a bilinear generating function and for many related
results see A. Erdélyi (1941).
By the same method which has been used in proving (1) it can also
be shown that

(2) F(b,a-1b;c; 2)=

(1-9(1-s+s)7°= & s"(c) Flon,a;c; 2)/n!

n=0

ls| <1, Js(l-2)| <1

25.2. Products of hypergeometric series

Cayley, Orr (1899), and Bailey (1935) have proved a series of identi-
ties which have been generalized by J. I.. Burchnall and T. W. Chaundy
(1948). (For the proof and for more general results compare the latter
paper). A result of Cayley and Orr is that if

(1-2)e*t"c F(2a, 2b; 2c—1;2) = %.‘.Q A z"

’
n
n=0
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we then have

(4) Fla, b;c—=Y;2)Flc—a, ¢ —b;c+ %; 2)

= i (—C);‘—An z™s
»n=0 (c+/2)ﬂ

J. L. Burchnall and T. W. Chaundy (1948) have proved the multiplication
and duplication formulas :

(5) F(2a, 2b; 2¢; 2)
S ), (@ () (e-a) (c-b),

oo wlle+) (etn=1, (],

2n

X [Fla+n, b+n; c+ 2n; 2)]2,

(6) Fla,b;c; 2D = 2 (a), ), (c - a), (c-b), s

n=o nlle+n=-1_ ()

2n
X Fla+n,b+n;c+2n;z)F(a+n, b+n; c+2n;—2),

v (4 b) (c — _
(D) [Fla bse; 2= ) (), (@), ), (c —a) (e~ b),

n2o nllc) (), (c+n—-2%)_

X F(2a+ 2n, 2b + 2n; 2¢ + 4n; z)

All these formulas are valid if |z| < 1 and if the hypergeometric series

involved are defined (i.e., if 2¢ and ¢ are different from 0,-1, -2, ...).

Formulas of Burchnall and Chaundy which are of the type of an add-
ition theorem [ cf. Burchnall and Chaundy (1940)] follow:
Fla,b;c; z+ (- z0)

oo () () (c—a) (c—b)

= z (__ 1)11 n n n n

n=0 n!(c+n—1)n (C)Zn

n n

X

Fla+n, b+n; c+ 2n; z) Fla+n, b+n; c+ 2n; ¢)

o0 a (b
IENICAGH

n=0 Tl!(c)n

I

z" (P Fla+m, b+n;c+n; z+ ),

F(a, b; ¢; 2) Fla, b; ¢; £
S’ (a)n (b)n (c— a)n (c - b)

n=0 Ly ! (c)n (C)Zn

n (g é-)n

X Fla+n, b+n;c+ 2n; z+ £— z0).
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These formulas are valid if |z|, |{], and |z + £~ 2| or |z + {|are < 1,
andife # 0,-1,-2, .

Certain bilinear relations have been proved by J. Meixner (1941), for
example,

(8) S (;\)s" F(=n, b c; 2) F(=n, B; y; {)

_ N\ /\)(zc_,”s)" ), (B,
SL (n T+ 9% (9, (.

n=20

X Fln =X, b+n;c+n;sz/(1+8)] Fln =X, B+n;y+n; &s/(1+s)],
N A

(9) Z ( )sﬂ F(-n, b;c; 2) F(n- A, B;y; &)
1=0 n

- v G A\ scar (b)) (B
_.(1+S) nZo ( (s+1)2n (C)n(y)n

X Fln =X, b+n; c+n; sz/(Q+s)] Fln= A, B+n; y+n; AL +9)],
SN (A) s"Fu-A, byc;2) Fln= A, B y; &)
n=0 N\
o A n
n

o T+97 O, 0,
XFln-X, b+nse+n; 2/(L+s)] Fln- X, B+n; y+n; £/(1 +5)],

(1D z ( ) (c_b) (y B)" F(n = A, b; ¢ +n; 2)

n T _ .
XF(n—A,B;ym;a:uHV\i (A)[s( A1 - 2]

(1+s)2
y (b), (B)

(C) (y)n Fln—=XA, b+n;c+n;(s+ 2/ + s}l

X Fln=X, B+n;y+n;(s+ /(1 +9).

All these formulas are valid if s, z, £ are such that the fourth argu-
ment of the hypergeometric functions involved is different from 1 and
from o« and if |s| is sufficiently small. If ¢, ¥ > 0, =1, -2, ... , we ob-



25.2 HYPERGEOMETRIC FUNCTIONS 85
tain a valid formula again on multiplying first by [T'(&)]7" or [I"(1)] ™'

or by both and then let ¢ or ¥ both tend to 0, =1, =2, ... . As a special
case of these formulas we have

12 Y (?\) " Plop, BN £} Filcn Bs —Ai £)
n=0 n

—(1+ M1 s-52)"(QLrs—-sOP

x Fl{b. B: — - e g .
{"87 ’(1+s—sz)(1+s—sé)]’

since F(a b; b; z) = (1 — 2)7%, one of the sums can be put in a finite
form if ¢ = y =-—A. If we put {= 0 in (8) and (9), we obtain

I aet:

( ) n F(~n, b; c; z)—(1+s)>‘F[ A, b; c; sz/(1 + s)],

"Ms i

( A) s"F(n=M\, b:ec; 2)=(1 +s)>\F[-—)\, b; ¢; z/(1 + ).

Finally, if we put { =0 in (12), we obtain (1).
Generalizing Legendre’s relation from the theory of elliptic integrals,
E. B. Elliot (1904) has proved:

(13) FMG+ A, =Y —v; 1+ A+ ) Fa-A %+v; l+v+p;l-2)
+ FM+r Y- led+m 2)FE%-A, B+u; 1vv+p; 1-2)
—FM+A, Y=y l+ A+ 2) FGA— XA, v levtpu; 1-2)
T+ A+ T(l+v+p)
TA+p+v+3/2T %+

T A=p =v =0, we obtain [egendre’s relation from (13). This result
has been generalized again by A. L. Dixon (1905).

2.5.3. Relations involving binomial coefficients and the incomplete beta
function

u
We define the polynomial ( ) in u by
n

(14)( ) T L o Ay A Lt —m
Th+D -2

1 n=20

ulu—Duw—-2+ (wu—n+1)/n!
n=1223, ...
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Then we have

F(L —u; ~v; 2) = § z"(u)/<u>

n=0 n n
and, according to 2,1 (14),
v M) Fa-v-1 %

i Z (u)/(v)= )T (u=-v )= v

s AT n IN'—2-Dl'w-2) v—-—u+1

W T Re (u —v) > L
v-—u+1

1nce

(o) =) () mim v

we also have

ARV GREIAYB]
3 VAT AL

and combined with (15) this gives

w03 ()02 -0)/6]

Equations (15) and (16) are called “‘Lerch’s theorem’’.
If we put z = =1 in 2.1(25) and use 2,1(14), we obtain

27T (1 +a —-56) I'(%)
N -5+%a) % + %a)

Bl I

and if we put @ = — m where m is an integer, we obtain

n L fm u m—u—1 2" TA =m+u)rm
néo(—l) (n)(n)/( n ) r(1+u—%m)r(/z—/2m).

In a similar way, the linear and quadratic transformations of the hyper-
geometric series can be used to sum in closed form sums involving
binomial coefficients by one or several of the following processes:

(i) giving special values to z,

(ii) putting @ or b equal to a negative integer,

(iii) comparing the coefficients of the same power of z in differ

F b; l+a-5b;-1)=
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ent expressions for a hypergeometric series, e.g., in both sides
of 2.1(22) or in an equation which is of a similar type.
So we have that F(n, ~n; 1; 1) = 0 due to 2.1(14), and this may be written
in the form

Z- =D"""m+n-D!

= 1/m.

W nln!(m-n)!

Another example is Saalschiitz’s formula 2.1 (30).
The truncated binomial series

n-=1
a
n=20 n
may be expressed by two hypergeometric series, viz.,

Fl,—a I —2) = 2 —1 2tV F( e s g )
y—a; ;=2) -z -a, 1; 5 —
IT'le+1-m)m! S e z

or by

a
( ) z* " F(l-m, a-m+2;-2"")
m-1
afm-2,m-3,...,0,

The incomplete beta function. In mathematical statistics, the func-
tions

B_(p, q) = f:zf’“' (1-n9"ds
and
I (p, =B, 9/B,(p,
are found. B_(p, q) is called the incomplete beta function. We have
B (p,p=p =" F(p, 1-gp+1x),
B, (p, 9) = T(p) T() /T(p + g

The following recurrence relations can be derived from 2.8(31) to 2.8(45)
[ For an application cf. T. A. Bancroft (1949)]:

xI(p, @ -Lp+1 @+(1-x1(p+1 ¢-1=0,
p+g-pdIlp, d-ql(p, q+VD-p(1-0TL(p+1¢g-1D=0,
gl (p, g+ D+pI(p+1 @) —(p+q I(p, =0

2.5.4. A continued fraction
Gauss (1812) [ cf. Gauss (1876)] has found continued fractions for the
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quotients of certain associated hypergeometric series. A typical example
is

Fla, b+ 1;¢c+1; 2)

F(a, b; c; )
) 1
1-_“ u'z
1“ 'U,IZ
1_ uzz
1_ ‘UZZ

where

_(a+n—1)(c-b+n-1)
n- (e+2n=(c+2n-1)

u

_ (b+n)lc—a+n)
1)"—(c+2n—1)(c+2n)

n=1,2,3,-ll-

When we have b = 0, we obtain a continued fraction for F(a, 1; c; 2z).

2.5.5. Special cases of the hypergeometric function

In many cases the hypergeometric series reduces to an expansion of
an elemenatry function. In the degenerate case at least one solution of
2.1(1) always is an elementary function. Results of the type

Fa, a+ %; %; 2) = %(1-2%)720+ % (1+ %)~

may be obtained from the quadratic transformation 1.5(24) by a limiting
process b » 0. Various other cases where F (a, b; ¢; 2} is an elementary
function are listed in 2.8(4) to 2.8(17). All of them either may be veri-
fied directly or may be deduced from the linear and quadratic transforma-
tions.

Other classes of hypergeometric functions which have been particu-
larly investigated or which occur in the theory of other functions are
listed in the table on the following page.
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SPECIAL HYPERGEOMETRIC FUNCTIONS

P arameters a, b, ¢ Variable Name Chapter

Two of the numbers
l1—¢, ¥{(a=b5), t(c—a—0>b) Legendre

are equal to each other n-Yiz functions 3
or one of them equals + %
—-n,n+2v;v+4% Gegenbauer
=0, 1 2 ::s) b—-Y%z polynomials 10, 11
-n, at+ n; vy Jacobi
=005 L Do ) 2 polynomials 10, 11
Yoo W, 1 22 Complete elliptic

2 P P 13
— Y, Y, 1 z integrals
1{1';/::;1/1” ;r ;ero ) Inverse of
Quotient of two solutions z aulon?orphxc 14
of 2.1(1D. functions
One of the numbers D at
a, b: c—a ¢c— b z C:Sgener © 2.2
is an integer. ¢

Incomplete

c—a=1 z 2,5.3

beta function

2.6. Riemann’s equation

2.6.1. Reduction to the hypergeometric eguation

For proofs of the theerems given in this section see E. G. C. Poole
(1936). If a homogeneous linear differential equation of the second order
has only three singularities and if these singularities are of the regular
type (cf. Poole 1936) then the equation may be written in the form:

d*u l—an—a:l du

(D

3

g T =
n=1 n

23 a, a’ (znhznﬂ) (zn—zn+2):|

zZ -2z
n

x ]
(z-32,) (z=2) (z~2z,)
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4
Here @ , a, z are constants such that z, = z,, z, = z, but z, # z,

#2,#z,,and )
(2) 3 (@, +a’) =1.

n=1

The singularities are at z = z, (n = 1, 2, 3); the constants a,s a;
are called the exponents belonging to z = z . We admit the case where
one of the singularities is at infinity, and the coefficients of du/dz and
u in (1) are obtained by an appropriate limiting process.

We shall call (1) Riemann’s equation. The name “‘Papperitz equation’’
is also common.

The constants A = a - a; are called the exponent differences. If
none of them is an integer, (1) has two linearly independent solutions
u,(z), uz(z) for the neighborhood of z = z, such that

u, (2)=(z - zn)a" § v, (z —zn)'
m=20

(3) o oo
u ) =(z-2) " .E—o v =) J".
O/f course, v, vl' may depend on z,, z,, z, but not on z, and v, #0,
vy # 0. If one or several of the exponent differences are integers, then
one or several of the series (3) may involve logarithmic terms. Since
we shall be able to reduce (1) to the hypergeometric equation, we may
refer to the preceding section for the details of the logarithmic cases,
By the symbol

(4) P Cl' az a3 .4

we shall denote the complete set of solutions of (1), Then B.Riemann
(1892) has shown

z Z ¥4

Y2l o 1 2 3
z -z, zZ -2z

(5) ( ) ( 3) P{'] 2 3
z—zz Z—.’:'2

Q
ja}
R
N

rd ’, ’,

(Z,I a a

= a, +p a,—-p-o a,+a z

d 4 ’
a;+p a,-p-o a,+0o
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and
é‘ é‘z C3 z‘ Z2 z3
(6) P < a, a, a, o =PLa, a, a, 2z
a @l o o el o
where
Az + B A B
B e . Sk
Cz+D L Czn+D

and A4, B, C, D are arbitrary constants such that AD — CB # 0. From
(5) we see that the product of a solution of (1) with a factor

(z—z, )p (z—z3)°'

z-2z, z-2z,

also satisfies a Riemann equation. Of course we can permute the sub-
scripts 1, 2, 8 in (5). If z = e, then z — z_ in (5) must be replaced by
unity.

Ifz,, z,, z, are given, we can always find four constants 4, B, C, D
satisfying AD — BC # 0 such that {y» £,, £, are any three arbitrarily
assigned numbers. Therefore (6) shows that we can always transform (1)
by means of a homographic substitution of the variable into a Riemann

equation which has its singularities at the points ¢, , ¢,, ¢, .
Combining (5) and (6) we obtain

z, 22 23 a, o:l.3
z—Zy Z2—2,
(8) P a, a, a z = .
: 5 2=y z-1z,
a

3
d
a, L) 3
0 oo 1
(z=2z)(z,-2,)
X P 4] a,+a,+a, ! = 2 .
’ ’, , iz_zz)(z3~zl)
o, ~a, tz,+a2+a3 a; —a,

Now the hypergeometric equation 2,1(1) is a special case of Riemann’s
equation. This may be expressed by saying that

0 oo 1
(9) P 0 a 0 z
l1-¢ b c—a-5b

is the set of all solutions of the hypergeometric equation. Therefore (8)
gives a reduction of the most general Riemann equation to the special
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case 2,1(1). Since there are 24 different ways to transform the hypergeo-
metric equation into itself this reduction is not uniquely determined.
This may be seen as follows. The hypergeometric equation is character-
ized among Riemann’s equations by the fact that its singularities are at
0, =, 1, that its exponent differences at these points are 1 ~ ¢, a — b,

¢ — a — b respectively, and that one of the exponents at z = 0 and at
z = 1is zero. The six homographic substitutions

(10) =2, 1-2z z/(1-2, =z (1-2"" 1-z7!

lead to the six possible pemmutations of the singularities. If we multiply
the solutions of a Riemann equation with singularities at z = 0, o, 1,
by zP(1 — 2)7, then we can always choose p, 7 in such a way that one of
the exponents at z = 0 and at 2 = 1 becomes zero. Since we have the
choice between two exponents at each of these points, we obtain 2 * 2 *

6 = 24 transformations of 2.1(1) into itself. This leads to 24 solutions
of the type

2P (1 - 2)9 F(a*, b*; c*; z*)

where z* is one of the expressions in (10) and a*, b*, c* are linear
functions of a, b, c. These solutions are called Kummer's series;they are
given in 2,9(1) to 2.9(24). These 24 solutions can be arranged in six
sets such that the four series belonging to each set represent the same
function; the six resulting functions which, in general, are different
from each other will be denoted by u,, u,, ..., u,.

Any three of these are connected by a linear relation with constant
coefficients, the resulting 20 linear relations (valid in the half-plane
Re z > Q) are given by 2.9(25) to 2,9(44).

2.6.2. Quadratic and cubic transformations

The following relations are the source of the quadratic and cubic
transformation of the hypergeometric series:

0 oo 1 -1 00 1
(1) P 0 a, a, z =P a, 2a, @y z%
% a; a; a; 2a; a,
-1 1 ,
= P a, 2a, a, m
a, 2a; a,

rd I_l
wherea, + a; +a, +a; = %, and
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0 oo 1 1 w w?
(12) P 0 0 @, =% pg=PA a, v, g 2%
1/3 1/3 a"3 a; a; a;

where a, + a] = 1/3 and w = exp (2m/3). Both of these were discovered
by B. Riemann and investigated by E. Goursat (1881) [ cf. also E. W.
Barnes (1908) and G. N. Watson (1909)].

There exist higher transformations in a limited number of cases where
all the constants involved are rational numbers. For these see E. Goursat
(1881), (1938).

2.7. Conformal representations
[ For this section cf. Goursat (1936), (1938)].

2.7.1. Group of the hypergeometric equation

1If none of the exponent differences 1~¢, b —a ¢ — a—b is an inte-
ger, then

u,(2) = F(a b; c; 2)
(1)

u,(z)=z'""*Fla—c+1, b—c+1;2~c¢;2)

are two linearly independent solutions of 2.1(1) which are one-valued
and regular within the domain |z — %| <%, but at each of the three points
z =0, oo, 1, at least one of them will have a branch point, We shall con-
sider the effect upon the two solutions (13) of z describing any closed
circuit, beginning and ending for example at z = % and enclosing one or
several of the branch points. We can reduce this problem to the following
one. What will be the effect of two simple positive circuits C,, and C,,,
beginning and ending at z = %2 and enclosing z =0 and z = 1? The effect
of any loop can be reduced to the effect of a sequence of the loops
C(o)’ Cy» and C“'”, C('t)’ where the prime denotes the corresponding
negative circuit. Now we can derive from 2.9(25) to 2.9(44) that 4, and
u, are affected by C,, and C, in the way indicated by the arrows.

We have

Uy > U,

u, > e 2T u,,

u,» By u,+Bu,
3 C

(n
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where

. sin (7a) sin (7 b)
B“=1—2Lem° _—

sin(mc)
B.. =~9ip eimlc-ob) I'erc-1
i3 IMNe-a)T(c-0T® @)’

B, = Din gtwie—a—h) r@2-cra-ec) ’
21 FrM-oarrA-5Tr+a-e)'A+b-c¢)

~ o . S H sin7(c —a) sinn(c — b)
B,=1+2ie'"'c"°

sin(7c)

The proof of (2) is obvious. To prove (3) we start with the formulas
[ cf. 2.10(1)]

Fla, b;e; ) =M Fla, bja+b—-c+1;1=-2)

—a=b % ‘
+)\‘2(1—z)" @O F(lc—ac—-b;c—a-b+1;1-2),

2V F(a-c+L b—c+l; 2~c¢; 2)
=X,z “Fla-c+l b-c+La+b-c+1;1-2)
+A, (1=t 2" ¢ F(l~q 1-bjc-a-b+11-2)
=N, Fla,b;a+b-c+1;1-2)
+/\22(1-z)°““""F(c—a, c—bjc—a-b+1;1-2).

This gives

Apui=Apu,=(A A, =2, 2,) Flg bja+b-c+1; 1-2),

22

Mgy = Ay u, =, Ay =4y, D [ i) ¥R
X F(c—a, c=b;c—a-b+1;1-2),
and from these equations we have

App Uy =AU, > A u =Au,

€y
A, —A u,»expl2mi(c—a-b]\,,u, -A,u,)
Here
I'(e) I'(¢c— a-b) T'(e)T(a+ b-2¢c)
" TeodTeSh’ T T@re

T'2-¢)T(c—a-1b) A I'(2-c¢)T'(a+ b-20)

4T Pll=-all=3 & ? Tlamc+ DT (h-w+])
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The rest of the proof of (3) amounts to a repeated application of the fun-
damental relations which hold for the gamma function.

The effect upon u,, u,, of any closed circuit beginning and ending
at a fixed point, say at z = %, may be described by a linear substitution;
the whole set of these linearsubstitutions forms a group, the group of the
hypergeometric equation. All substitutions of the group may be obtained
by a composition of those given by (2) and (3). Usually the set of homo-
graphic substitutions for ul(z)/uz(z) is also called the group of the
hypergeometric equation. If ¢ is different from 0, £ 1, £2, ..., then (2)
and (3) always have a meaning. Obviously, either u, or u, is merely
multiplied by a constant factor after any closed circuit if at least one of
the numbers @ b, ¢ — a, ¢ — b, is an integer. This leads to the degen-
erate case which has been investigated in section 2.2. If ¢ is an integer,
it may be necessary to modify (2) and (3). To do this we may use 2.1(18),
2.1(14), 2.2(4), and also 2.10(7) to 2.10(15). For instance, in the non-
degenerate case a = b =%, ¢ = 1, all of the three exponent differences
l-¢, b—a,c—-a~-b equal zero, and in this case we may take

uy=F(% % L 2)
u,=i F(% % 1; 1-2).

Then we obtain

Ry <2 iy
4 C
U, 2u' tu,,
u,~>u,-2u,
(5) C“)
u,->u,.

This result may be derived from
(6) %m F(%, % L 2)+ % log(l—2) F(%, %% 1; 1= 2)

v (), Ca),

n'nT

[y +D -y +¥]1AQA-2)"

1[\4

which follows from 2.1(15) by the method used in section 2.1.4.

B. Riemann has shown [ cf. Poole (1936)] that associated hypergeo-
metric equations have the samegroup of homographic substitutions and
from this it can be deduced that there exists a linear relation between
any three associated hypergeometric series where the coefficients are

rational functions of the variable.
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2.7.2. Schwarz's function

[ cf. Kampéde Fériet (1937), Poole (1936)]. From now on we shall
denote the exponent differences by

(7) l-c=XA, b-a=p, c—a-b=v.
If u is a solution of the hypergeometric equation, then
y (z) = z% KA1 = %KY 4 (2)

satisfies
2

d%y
dz?

where

(8)

+I(A, g, v52)y =0

1-A2 1-v2 1= A% 4 p?—o?
+ +
4z  A(l-2)? 421~ 2)

Defining the Schwarzian derivative {w, z} of a function by
3w w 3 d?w dw \?
lw, z}= e e d
dz*/ dz 2 dz? dz
and putting
w(z) =y ,(2)/y,(2)
where y, and y, are two linearly independent solutions of (8), we have

(10) tw, 2z} =21\, u, v; 2).
If {is a function of z we have Cayley’s identity;

(9 1A, p,v;2) =

2
(1D tw, 2} =tw, & ig—) + 322k
dz

Also
Ax + B Ax + B

(12) —_— x = {2x, =0
Cx+D Cx+D

where 4, B, C, D, are constants such that AD — BC # 0. Therefore, if
¢ =(Aw + B)/(Cw + D), we have

Aw + B
bw, z} = {———, z}.
Cw+D

This shows that if w(z) is a solution of (10), then (Aw + B)/(Cw + D)
also satisfies (10), and it can be proved that all the solutions of {10) are
of this type. Therefore -we know all the solutions of (10) if we know two
linearly independent solutions of (8). On the other hand, if w(z) is a solu-
tion of (10), then w(z) cannot be a constant unless A2 = p2 =2 = 1. We
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shall exclude this case, and then we have that

dw Y* dw \ 7%
(13) y,(2)=w(-E> ; yz(z)=(d—‘:)

are two linearly independent solutions of (8).

We shall denote by s (u, », A; z) the whole set of solutions of (10),
and we will call s the general Schwarz function. A particular Schwarz
function will be denoted by S(i, v, A; z). It may be shown that the func-
tion s(\, u, v; z) is meromorphic inthe neighborhood of any point z # 0,
0, 1, and that the correspondence between w and s is locally one to one
(schlicht) since ds/dz or, if s has a pole, ds™'/dz is differentfrom zero
at all points z # 0, o, 1. This follows from

ds _ (B I\ o
dz F1 dz Y2 dz Y2

where the numerator is a constant.

If in particular A, p, v are real, we may use the theorems on associ-
ated hypergeometric series (cf. sections 2,1.2 and 2.7.1) to show that the
functions

sltA,mtpu,ntv;z) I,mn=0,%1, 2, ...

arise from hypergeometric functions with the same group ifl + m + n is
even. Among these functions there is one set which we will call reduced
and for which

0 A,p,v<1, O0Lp+v, v+A, A+p<l.

It has been shown by H. A. Schwarz (1873) that a reduced function
7=S(\, g, v; z) maps the upper half-plane Im z > 0 upon a triangle A
in the m~plane bounded by three circular arcs (some of which may be
segments of straight lines) which do not overlap and which enclose in-
terior angles Am, pw, vr, at the points corresponding to z = 0, e, 1. Here
the word interior refers to that domain bounded by the triangle which con-
tains for example the point corresponding to z = i.

If follows from Schwarz’s principle of symmetry that the complete
system of branches of 7= S(A, p, v; z) maps the z-plane upon a Riemann
surface spread over the rplane which consists of A and of all the tri-
angles obtained from A | by the following construction. If a circle (or a
straight line as a limiting case of a circle) is given, we can map the
r~plane upon itself by a substitution

i Gt F Gy
T = ——

Ay T+ Ay

where 7" is the point corresponding to r and where ris the conjugate com-
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plex value of r, such that 7= 7" for the points of the circle. We shall call
that an inversion with respect to the circle. Carrying out the inversions
with respect to the circles bounding A, this will be mapped upon three
new triangles A , A, A , which again are bounded by arcs of circles,
and we obtain new triangles from A, A,, A , by carrying out the inver-
sions with respect to these boundaries and so on. If any two of the tri-
angles thus obtained do not overlap, the function 7= S(\, p, v; z) has a
meromorphic one-valued inverse function

(14) z= ¢ (A, p,v; 7D

which is called an automorphic function. As a necessary condition for
the existence of a function ¢ with this property we have that A, u, v,
must be either zero or equal to the reciprocal values of integers.

There are 15 reduced sets of values for A, v, u, for which s(A, i, v; 2)
is algebraic. They have been listed by H. A. Schwarz (1873). His list
(in which Number 1 actually contains an infinite number of cases) is
given in the table below. Here n, p, are non-negative integers and 2p < n.

SCHWARZ’S TABLE

Number X 1 v Number A " v
1 V2 Y2 p/n 8 2/3 V5 V5

2 vz Y3 VY3 9 ve 5 V5

3 %3 Y3 V3 10 3/5 13 /5

4 vz Y3 Va4 11 25 2/5 %5

5 ”3 V4 V4 12 %3 V3 /5

6 vz V3 Vs 13 45 V5 /5

7 %5 V3 Y3 14 V2 s V3

15 3/5 2/5 /3

In the cases 1 (forp = 1), 2, 4, 6, the inverse function ¢{\, y, v; 7) is
a rational function. In particular, we may take

n_1 2
d (4, Y%, I/n; 1) = (f ) .

Myl
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In the case A= p = v = 0 we obtain a particular automorphic function

if we take

12 A7 T T
e B, 0, 0 ) =i o s 1= 2
F(l/z’ %’; l; Z)

The corresponding inverse function z(7) is wsually denoted by x2(7) and
is called the elliptic modular function. This function is the subject of a
large literature. Consult Chapter 14 and Klein and Fricke (1890, 1892)
and for general automorphic functions Fricke and Klein (1897). An ex-
plicit expression for x*(9 is x*(d = (6, /6,)* where

92 =9 § -1" eirr’r(nﬂé)z: e iTT/4 r—%[l +9 § (-1 e—iﬂnz/'r]

n=0 n=1

oo 2 2 % i o0 Fe 2
0.=1+2 3 iTh _im/A k(1,92 F gTimn 4Ty

n=1 n=1
are functions of r which are regular if and only if Im 7> 0. (cf. Whittaker-
Watson 1927, sections 21.7, 22.3).
2.7.3. Uniformization
If we introduce r by
z=x2(7)

(cf. 2.7.2) as a new variable, F (a, b; c; z) becomes a one-valued func-
tion of r which is defined and regular in the half-planeIm 7> 0. Wirtinger
(1902, 1903), has proved the formula.

(15) % T Tlc—b) Fla, b; c; k(3] = 2®T ()8, (0, N* [, ®lu, Adu

where
251 2(c—b~1
O(u, » = ———61 S - 6—-—2 5% o
6,(0, 7) 6,(0, 7)

93(U, ‘r} 1-2a 64(11, ‘r) 1=2(c—a)
g, (0, 7) 6,(0, 7)

The functions 6 (u, 7) (i = 1, 2, 3, 4) are the four Jacobian theta func-
tions (cf. Chapter 13). The integral in (15) must be replaced by a con-
tour integral if the conditions Re ¢ > Re & > 0 -are not fulfilled. (cf.
2,1,3).

2.7.4. Zeros

Let u(a, b; ¢; z) be a one-valued branch of a solution of 2,1(1) which
is defined in the half-plane z > 0 with the possible exception of the
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points 0, oo, 1. Then the equation
(16) uf(a, b;c; z) = A

is satisfied only by a finite number of values of z if A is any given
constant. This follows from the fact that the solution of 2,1(1) can be
expanded in the neighborhood of the singular points 0, o, 1, in the way
shown by 2,10(1) to 2,10(5), From these we can deduce that the be-
havior of u at these points is determined by a single term of the type

1.)0(z)=co(zr,—zo)dO or vo(z)=c°(z—zo)d° logz — z )

where z =0, «, 1 and z — z | is to be replaced by z7" if z , = oo, This
is to say that u/v, approaches a finite value not equal to zero if z > z
Therefore (16) can have only a finite number of solutions in a suffi-
ciently small neighborhood of 0, =, 1 (if we confine ourselves to the
domain Im z > O and therefore to a one-valued branch of v,). In the
remaining parts of the upper half-plane u is regular and therefore (16)
can be satisfied there only at a finite number of points.

In the case where a, b, ¢, are real, the number of zeros [i.e., the
number of solutions of (16) with A = 0] of a one-valued branch of
ufa, b; c; z) has been determined by Hurwitz (1907), Van Vleck (1901),
(1902), and Herglotz (1917). The methods used by the latter authors
are closely connected with the results given in 2,7(1) and 2,7 (2).

In the case of the polynomials

u=F(-n, a+n;y; z) 7= 0 Lo 2 woeie

where a, y are real and y >0, @ + 1 — y > 0 all the zeros are real and
lie in the interval 0 < z < 1, (See Chapter 10 on Jacobi polynomials.,)
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SECOND PART: FORMULAS

2.8. The hypergeometric series
3 (b
(1) F(a, b; - e Z (a)n )n

_— e 0, =L, ~2y uoiuy
n=0 (c)nn!

(a) =1
(2)
(a)n=l"(a+n)/l"(a)=a(a+ Dee(a+n-1) n=12 ,3....

Ifc=-m -l wherem, [ =0, 1, 2, ..., then we have

(8) F(-m, b, _m_;;z)zz (=m), (b),

n=o0 (a-'m _l)n n !

¥4

Some elementary functions which can be expressed by hypergeometric
series follow (cf. sections 2,2.1 and 2.5.5).

(4) (1+2°=F(-aq b; b; -2)
(5) %(1+zx)_2“+‘/2(1—zx)_2“=F(a,a+'/z;l/z; z)

(6) [%+(1-2¢/21""2=F(a-%, a; 2a; 2)
=(1-2)% F(a a+¥%; 2a; 2)

(7Y A-272""(1+2=F(2q a+1; a; 2)

The truncated binomial series follow:

a a a -
(8) 1+( >z+“'+( )z'=( )z' Fl-m, la=-m+1;,-37"
1 \m m

® (N a_Lae _ TlarD o
(9 Z (n) - I'a=m)(m+ D! Flm+l-aq l;m+ 2;-2)

n=m+1
(10) e"%¥=(2coshz) %tanh z F[1 +%a, % + % a; 1+ a; (cosh z)7?]
(11) cos az = F[Y% a, — Y% a; %; (sin 2)?]
=cos z F[% + Y% a, % - Y% a; %; (sin 2)?]
=(cos z)® F[- Y%a, % — Y% a; ¥; — (tan 2)?]

(12) sinaz=asinz F[% +%a % —Y%a; 3/2; (sin 2)?]
=asinzcosz F[1+%a, 1-%a; 3/2; (sin z)2]
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(13) sin"'z=z F(%, %; 3/2; z?)
(14) tan™ 'z =2z F(4, 1; 3/2; —z?)
(15) loglz+ D)=z F(1, 1; 2; —2)

1+ 2
(16) log = =2z F(¥%, 1; 3/2; z%)
-
d" te=1 b = b=c—
(17 2" (1-2)°7¢) =(e), 2°7' (1 = 2)*7¢7" F(=n, b; ¢; 2)

dz"

ELEMENTARY RELATIONS
(18) F(a b; c; 2) = F(b, a; c; 2)
(19) lim [T(c)]17" Fla, b;c; 2)
- (a) ., (b)

= TEAEL oot Platn+ 1, ben+ 1+ 2; )
n + :

dan b
F(a, b; c; z) = M Fla+n, b+n;c+n;z)
dz" (e)

n

(20)

n

—[2°"""" F(q b; c; 2)]

d
(21) (a), 29 ' Fla+n, by c; 2) =
dz

n

(22) (c —n)n z¢717" F(a, bsc—n; z) = [z¢7" F(a, b; c; 2)]

zﬂ
(23) (¢ -a), z¢7 N (1 - )t e Fg—n, b; c; 2)

dﬂ
" dz™

[ze7ef ™t (1= D o*t7¢ F(a, b; c; 2)]

(c—a), (c-8),

2
(24) =)

(L= Pyatb=e=n F(a b;c+n;2)

dﬂ
3 [(1-2) "¢ F(q b; ¢; 2)]

(-D"(a) (c-b)
(e),

dn
dz"

(25) (1-2°"'"F(a+n, b;¢c +n; 2)

[(Q-2)2*""' F(q b; ¢; 2)]
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(26) (c'—n.)'I 21 (1=-2)%“F(a—-n, b; c —n; z)

d
= [z¢7' (1= 2) ¥~ c*n F (q, b; c; 2)]
dz"

(27) (e -n), 297170 (1 = Q)stbTemn g, b~z 0 =0y 2)
dn
=—[27'(1-2)*** ¢ F(q b; c; 2)].
dz"

The relations between contiguous hypergeometric series in the case
where two parameters are constants are given below:

(28) (c—a) Fla—1, b;c; 2) +(2a—c — az + bz) F(a, b; c; z)
+alz=1DFla+1, b;c;2)=0

(29) (¢c=b) Fla, b—1;¢;2)+(2b=c~bz+ az) F(a, b; c; z)
+b(z—-1 F(a,b+1;¢;2)=0

(30) cle=D(z~1) Fla b;c~-1;2z)+cle-1-(2¢c-a-b-1 z]
X F(a,b; e;2)+(c~a) (c=b) z Fla, b; c+ 1; z) = 0.

The fifteen relations of Gauss between contiguous functions [F de-
notes F(a, b; ¢; z), and F(a 1), F(b £ 1), and F(c % 1) stands for
Flat1l, b;e;2), Flao b t1, c; z), and F(a, b; ¢ +1; 2z) respectivelyl.

3) [c-2a-(b-a)z] F+a(l-2)F(a+ D —-(c-a) Fla-= D=0
(32) (b-a) F+aF(a+D-bF(b+1D=0

(33) (c~a-b) F+a(l-2 Fla+ D -(c-b) FG-1=0

34) cla=(c=b) 2] F-ac(l-2) Fla+ 1D +{c~a) (c=b) z Flc +1)=0
35) (c—a-DF+aFla+D=(c-1DF(c-1D=0

(36) (c—a—-b) F=(c—a) Fla-D +b(l-2) F(b+1) =0

37) b—a)(1=-2)F—-(c—a) Fla=D+(c=-0) F(b-1)=0

(388) c(l-2) F—cF(a—=D+(c=-0) zF(c+1D=0

(39) [a-1—(c=b=1D 2] F+(c-a) Fla=1) —=(c=1D(1-2} F(c-1)=0
(40) [c—=2b+(b-a) 2l F+b(1—2) F(b+ D =(c-b) F(b-1 =0
(41) clb—(c=a 2l F=bc(l-2) F(b+ D +(c—a)(c=b)z F(c+1)=0
(42) (c=b-DF+bFB+1)~-(c~1D) F(c-1D=0
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43) ¢c(1-2) F-cF(b=-D+(c~a) Flc+1)=0
49 [b=1-(c-a-D 2 F+(c=b) F(b-1 -(c=1D(1-2)F(c-1=0

45) cle—=1-(2c-a=-b-D A F+lc-a)(c—-b) zF(c+1)
—cle=D(1-2) F(c=1 =0

VALUES FOR SPECIAL =z

I'(c) I'(c = a=-1b)
I'le=a) I'(c-b)
c#0,-1,-2,..., Rec>Re(a+d)
T(1+a-b T

I'l-6+%a ' + %a)

l+a-b#0,-1,-2,...
(48) (a+ 1) Fl=a, 1;6+2-D+b+ 1 F(-b, La+2;-1

T(a+2) T'(b+2)

— 9atb+1 a bt —-2,-3,-4,...
I'la+b+ 92

(46) F(a, b;c; 1) =

47) F(a, b;1+a—-b;-1)=2"°

(49) F(l,a;a+1;-D=2alys + %a)-ylia)l

I'la+ b +%) I'(%)
T(a+%) I'(b +%)
a+b+% #£0,-1, ~2,...

') I'(%)

IFa+%b) TC4b-Ya+k)
b£0,-1,-2, ...

(50) F(2a, 2b;a+b +%; %)=

(51) F(a, 1-a;b; ) =2'"

(52) F(2a,2b;a+b+1; %)
=% (a=b0)""T(a+ b+ DI[T(a T(b + %) '-[Tla+ %) T(BH)] '}

a+b+1#0,-1,~-2 ...
'(4/3) T'(2a + 3/2)
I'3/2) I'(2a +4/3)
2a+3/2#0,-1,-2, ...
I'(2a +5/6) I'(1/2)
I'(a+ 1/2) T'(a + 5/6)
2a+5/6#0,~-1,-2,..

2a
(53) F(-a, —a+%;2a+3/2; - l/3)=(—2—a-)

3a
(54) F(3a,3a+1/2;3a+ 5/6; 1/9) =G)
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(55) Fla+1/3,3a; 2a+ 2/3; e'™/3)
I(2a+ 2/3)
I'a+1/3) I'la+ 2/3) [(2/3)

(56) F(a+ 1/3, 3a; 2a+ 2/3; e™'"/73)
-%ima 3—%(3g+1)

. ehiTa 3—% (3a+1)

I'2a + 2/3)
I'(e + 1/3) I'(a + 2/3) ['(2/3)
2a+2/3#0,-1,-2, ...

2.9. Kummer’s series and the relations between them

=2ne

Kummer’s 24 solutions of the hypergeometric equation are given below:

(D) u, =F(q b; c;2)

(2) =(1-2°""F(c-a c—b; c; 2)

(3) =(l-27*F[a c—b;e; z/(z-1]

4 =0-27*Fle-a b;e;2/(z=-D]

(5) uw,=F(ag bja+b+1-c;1-2)

(6) =z'""Fla+1l-c,b+1l-c;a+b+1—c;1-2)
(7) =z7%Flag,a+1-c;a+b+1—-c;1-2"")

(8) =z b Fb+l-c bya+b+1l-c;1-2"")

(9 u,=(2"°F(gaa+1l-c;a+1-b; 24

(100 =(=2)"c(1=-2 b F(1-b,c-bja+1-b;2""

(11) =0-2"Flg, c—bja+1-b;(1-2""]

(120 =G=2""°1=-2"*"Fla+1-¢, 1-b;a+1=-5;(1-2""]
(13) u,=(-2)"* F(b+1-¢ bsb+1-a;z"")

(149 =C2"°Q-20"*" F(l-agqc-a;b+1-a;2z"")
(15) =(1-27"Fb,e—a;b+1—-a; (1-2)""]
(16) =(=2)""e (1= " Flb+1l—-¢, 1l=a;b+1=a;(1=2)""]

(1) u,==z""*Flar 1~ b+l-e; 2~¢; 2)

(18) =z (1=2) " F(l-aq 1-b;2—¢; z)
(19) =z""°(1=2)°"'"Fla+1l-¢, 1-8;2-c¢; 2/(z~- D]
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(200 =z"°(1-2°'"Flb+l-¢ 1-a;2~¢; z/(z= 1]
(21) o, =(1-2""% Flc-a,c=bjc+1-a-b;1-2)

(22) =z""*(1-2°"**F(l-aql-bjc+l-a-b;1-2)
(23) =2°(1-2)°%bF(c-aql-a;c+l-—a-b;1-2z7"
(24) =2z"°(1-2)%b F(e-b,1-bjc+1l-a-b;1-2z"")

Any three of the functions u;, ..., u, are connected by a linear re-

lation with constant coefficients. This gives 20 relations, viz., :

. T T(a+1-2¢) ') T'(c - b)
irh L = N SRS
el & I[a+b+1-c) 2 = T'(e) “
4. g IMKBT=ed I'(a+ 1=¢) '(c—-b)
T(a+1-b) ta
(26) oima I'a) T(b+1-¢) ~ I'a) I'(e - @)
¢ et btl-a 2 Tig
. IT'(b+1=¢) I'(c—-a)
immlati—c)
Te I'e+1-a Ha
- eim_“f‘(e—lﬂ1"<1—a> . () T'(c-b)
Tlc+1l-a—-B) &  [le) i
Y g iml=b) I'(l-a) T'(b) .
rt6+1-q2 4
. I'b+1-¢)I"(a) I'(b+1-0c)I'(1-0)
im(b+1=¢) _
G2 e Tla+b+1—a) 2 T2 -9 s
) I'(a) T(1 - b)
imlb+1—¢)
e Thas 1-b) ®
. I'(e—a) ' (1-0) I'(a) I'(c - a)
tmlc—a) -
sy = Tlewdeme bl & () al
p— I'(l-5)T(a)
+ e T e e
I'(a+1-5) 3
3 T'(a+ 1-¢) T'(5) T'(a+1-0¢) T(1-a)
imlat1—¢) =
o0k o Tasbel-g & r(2-¢ s

(b)) T'(1l-a)
r'eé+1-a a

+e i lat1=¢)
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(31) ei‘r.r('(—b}

(32) e im{1—a)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

13

<+

+ £

HYPERGEOMETRIC FUNCTION

r1-5r(-a

IM(1-5T(b+1-¢)

Tle+Ll-u—0 &
Ic—a)T'(b+1

ei'rr(1—b)

I'(2-¢)

)

I'6+1-a
I'(l-=a ['(c=b)

U,

I'l-aI'(a+1-¢)

im(1=a)

T(c+1-—a-05) e =

I'(c=-b)T(a+1-2¢)

I'a+1-05)
I'e) T'(c—a-5)

Yaq

I'(2-¢)

M) I'(a+b-c)

S Tl lle—B "2

I'(e) T(b - a) T'(e)
Fle = BH) 3

Ila+b+1-¢) T'(1-¢)
INe+1l=-c)T'(b+1-¢)

I(atb+1-c)T(b-a
I'b+1-¢)T'(e)
IMa+b+1=0c)T'(a-0)
I'(a+1-2¢) I'(a)

I'(l1-o I'(a+1-0)

I'(a) T'(2)

I'(a - b)

L

"Te-pr@ “

107

Uy

Ui

MNa+b+1=-¢ I'(c-1

u|+

—~iffa
3

=imh
4

ITNer(l-eor'(a+1-0)

['(a) T'(d)

T -0 Tlatl=a | Pl2—alle~5) Lo

T'c+l—-a=-bT(a+b-c)(a+1-0b)

ima

T'A-T-bT(@a+b+1-¢)

I'a+b~¢c)T(a+1-0)
T'(e+1-¢ T'(a)

I'rM-or'(l+%-a

imle=b)
H’S

175

2

TNl (1-e)T(b+1-a)

TO-—ad T h=g '
I'(c+1—a=b)T(a+b-T(b+1-0a)

I'2-¢)Te-al' ()

imb

FMMl-a Il(c—aT'(ea+b+1-2¢)
I'(a+b-c)T(b+1=-0a)

'b+1-c I'(d)

imle—al

6

172

2

u

5

immle—1 )u

iml{c—1)

5

5
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4D u _F(Z—c) T'(c—a-1b) . I'e-co I'(a+b-c)
= Tloa Ill= * Tasl-oCEsi- °
i F(Z-—C) F(b—a) im{1—¢)
o) I'(l=a (b +1-¢) € "3
. M2 ~8) Tla~ 8 s
TA-BT(erl-o = “a
_— Tle+l-a-HT(1-0)
YT T ra-ara-sm O
I'(fc+1-a=-56)T(c-1)
I'(c—a) ['(e ~b) “s
 Tlosl=a=bp Dthk=d ...
e B e “s
I'le+1-a-5b)T(a-b) r—
Tli=0 Tle sl “a

These relations hold for all values of @, b, ¢, for which the gamma
factors of the numerators are finite and for all values of z for which the
series involved converge and Im z > 0.

The first eight of these relations connect three of the functions u, ,
U,, ..., g which are not defined in the same domain. The last twelve
express a function which is defined in one domain D by two other func-
tions which are both defined in one and the same domain D“whereD =D’
These formulas can be used for analytic continuation.

If Im z < O the signs of the arguments of the exponential functions in
(25) to (44) must be changed.

2.10. Analytic continuation

The fundamental formulas for the analytic continuation of the hyper-
geometric series are given next. General case is where 1-¢, b —a, and
¢ — b — a are not integers. [Cf, also 2.9(1) to 2.9(4) and 2.9(33) to 2.9
(44).1

(1) F(a bje;2)=A, Fla bja+b-c+1;1~12)
+Az(l-—2)°_"_b Flc—ac—-bjc—a-b+1;1-2)
arg(l-2)| <#
(2) Fla byc;2)=B,(-2)7%F(a, 1-c+a;1-b+a;z"")

+Bz(—z)_b F(b,l—c+b;1l—a+b;z"")
arg(—2)| <m
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(3) Fla, byje;2)=B,(1-27°Fla,c~bja-b+1;(1-2)""]
s Ba(l-z)_bF[b, c—a; b=—a+1;(1-2""]
larg(l ~ 2)| < =
(9 Fla,bje;2)= A,z °Flaa+1-c;a+b+1—c; 1-27"]
+ Azz""c(l—z)"“_'J Fle—a, 1-a; c+l-a-b;1-27"]

larg z| < a
The coefficients 4, A,, B,, and B, are given below:

y =F(c) T'(c —a-~2b) A - I'e)T'(a+ b -¢)
L Tc—a T(c—-53)" = I'(a) T(b)
(3
B - I'(e) T'(b - @ _ ['(e) I'(a - b)
VT IMNe-a £ I'(a) T'(c-b)

(6) Fla b;¢;2)=(1-2)"*Fla c-b;e; z/(z-1]
=(1-2"°F[b c—-a ¢; 2/(z — 1)]

Analytic continuation of F(a, b; ¢; z)in the logarithmic cases follows
next. The letters [, m, n, denote non-negative integers.

(7)) Fla, a+m; c; z2) Na+m/T(c)

(=z)7* (@), s, A=c+a), .. _.
T T(e-a % T z7" [log(~2) +4 ]
LN Dm-n @,
eI L Temamat ¢

-7 < arg(—2z) <m ¢ — anot an integer

(8) ﬁn:l,/j(1+m+n)+lﬁ(1+n)—1/)(a+m+n)—l/J(c-—a-m-n)
=¢g(l+m+n)+p(Ql+n)—yla+m+n)—Y(l—c+a+n+m
+ 7 cta m{c — a)

if Mij is to be interpreted as zero when m = 0.

n=20
(9) Flgga+mia+m+Il+1:2)Ta+m)/T(e+m+1+1)
i (@), (a=1-11 _
3

=1+1 (n+m)!n!

_ (__Dm + [+1 (_z)—a'—m

2=t (m—n-1) '.'(4:1)'1

+(=2)"° z

n=20

m+l-n)!ln!
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1
(-2 (@)yp Cm =D o . ,
+(l+m)! W=l p. m) T 1 z "[log(=2) + A ]

—77<arg(~—z) <m
(100 A=A +m+n)+¢(l+n) - Yla+m+n) =yl +1-n)

(1) Fn+ 1L, n+m+1l;n+m+1l+2; 2)

I ! _111‘- dn+u i
_ (n+m+1+ ) ( ) {(1—z)"'”j—l[z"log(1—z)]}

HalG+m)lm+D ! dznte z

(12) F(a, b;a+b+m; 2)/T'(a+ b+m)
) I (m) v (@ (b))
T(a+m) T(b+ m Lo (l—m)nn!

(L-2)"

-2 =D & m
( 2® (-1) E (a+ )n(b+m)n [h';-_,log(l-z)](l—z)n

'(a) T'(d)

o (n+m)In!

~r<arg(l—-2)<m a,b,£0,-1,-2,...
(13) h';=;[r(n+1)+([;(n+m+ D-yla+n+m)—y(b+n+m

m--1
and 3 is to be interpreted as zero when m = 0.
n=0

(14) Fla b;a+b~—m; 2)/T(a+b—-m)
_F(m) (1— 2™ =] (a—m)n(b—m)
- T(@T®) (1-m) n!

n(l_z)n
=0
N (-1)" ¢ (), ),
Fa-mI'(b-m ,“, (n+m)n
—17<arg(1—z)<rr, a b, #£0,-1,-2, ...
(15) /Tn=1,0(1+n)+x//(1+n+m)—1[1(a+n)+d;(b+n)

[k ~log(1- 2] (1~ 2)"

n=1
and 3 is to be interpreted as zero when m = O,
n=o0

For the degenerate case (one of the numbers a, b, ¢ — @, ¢ — b is an
integer) see section 2.2.2.

2.11. Quadratic and higher transformations

All quadratic transformations can be derived from the linear trans-
formations in section 2.9 and the special transformations (cf. section
2.1,5 for the range of validity).

(1) Fa, b;a-b+1; 2)
=(1-2"F%a -b+{a+1)/2; 1+a-b;—4A1-2)""]
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(2 F(2a 2b;a+b+%;2)=Fla, b;a+b+%;4A1- 2)]

T'a+b+%) I'%)
3 F(2a, 2b; b+%:% +%2) = b; Y%; 2
(3) (24, a+b+%;% +%2) PP Flq 2 2°)

T(a+b+%) I'(-%)
I'(a) T'(5)

(4) Fa b;2b; 2)=(1-%2)"*Ft%a %+ Y%a; b+%;[2/(2- 217}
(5) Fla b;2b;42(1+2 7 =(1+2?%2F(a, a+% —b; b+%; z?)

Fla+%, b+%;3/2; z2)

(6) Flag a+%;b; 22—2)=(1-%2)"22F(2qa 2a—- b+ 1; b; z/(2—2)]

Goursat’s table of quadratic transformations. The square roots are
defined in such a way that their value becomes real and positive if z is
real and 0 < z < 1. All formulas are valid in a neighborhood of z = 0.
@ 2T %) I'(a+ b+ %) Fla bs % 2)

Ta+W TG+ 77
= Fl2q, 2b; @+ b +%; %(1 +2%)]

+ Fl[2a 2b; a+ b +%; %(1- z%)]

2T M%) T (a+1-5)
1+ 2°F(a b3 %: -
(8) F(a+%)r(1—b)(+z) (q b; Y3 —2)
=F[2a 1-2b;a+1-b; %+%z%(1+ 2]

+F[2a, 1-2b;a+1-b; Y-%z% (1+ 27%]

"'12 b"l 1

(9) 2T s = 2% F(a, b: 3/2; 2)
Ta-%TG-%
=F(2a-1 2b-1;a+b-Y%;% -Y%z#)

—F(2a-1 2b-1;a+b—Y%; %+% z%)

(10) F(a b;a+b+%; 2)=F[2a, 2b; a+b +%; Y% (1 - 2)*%]
(1) F(a by;a+b+Y%; 2)

Yy — (].""Z)%'—].
=[%+%Q -2% z“F[:v.a,a—b+'/g;a+b+‘/2; m]
(12) F(a, bja+b+%;—2)
=[(1+2)% +2%1"29F[2a, a+b; 2a+2b; 2(z + 2)% - 22]
(13) F(a, b; a+b -%; 2)
~(1-2) % F[2a-1, 2b-Y;a+b=-Y%:%-%(1-2%]
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(14)

(15)

(16)

(17)

(18)
(19)

(20)

(21)

(22)

(23)
(24)

(25)

(26)

(27)
(28)
(29)
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Fla b;a+b-Y%; 2)=(1-27%[% +%(1-2)%]"' 2

(1-2%-1
xF[za— L a-b+Y%; a+b—l/2;?1__zz))%_ﬁ]

Fla b;a+b-Y%;—2)=(1+ 2) %4 [(1L + 2)% + z%]1 "2
x F{2a-1 a+b-1;2a+ 2b-2; 2(z+ 2% - 22]

F(a, a+%; ¢c; 2)
=(l-2"°F[2q 2c—2a-1; c; % -%(1- 2)7%]

F(a, a+%; ¢; z)

=(1+2z%)722F[2q, c~Y%; 2¢—1; 22%(1 + z%)" ']
Fla, b (a+b+1)/2; 2 =F[%a %b;(a+b+ 1/2; 42(1 - 2)]

Fla, b;(a+b +1)/2; 2]
=(1-22)Fl% +%a % +%b;(@a+b+1)/2; 42(1 - 2)]

Flag by (a+b+1)/2; 2] =(1-22)"¢
=Fl%aY%+%a;(a+b+1)/2;42(z-1 (2z-1D"?]

Fla b;(a+ b+ 1)/2;—2] =[(1 + 2)% + z%]7 %
=Fla Ya+Y%bia+b; 4z%(z+ D5 [(1+ 2% + %172
Flg 1-a;c; 2)
=(1-2"F%c-Y%a (c+a-1/2; ¢; 42(1-2)]
=(1-2°""(1-22) F%c+%a (c+1-a)/2; c; 42(1 - 2)]
Fla, 1—a;c;2z)=(1-2)¢""(1-22)%"¢
X Flbc ~Ya (c+1-a/2c;42(z-1 (1-22)77
Fla, 1—a;¢;-2) =(1+2)¢7 " [(L+ 2)% ¢ 2% 272 2
XFic+a-1 c=%;2c—1;4z%(1 + 2)%4 [(L+ 2)% + 2%]72}
F(a, b; 2b; 2)
=(1=2)"%*F(Y%a, b-Y%a; b+%; (z2/4) (z ~ D™ *]
=(1-%20A -5k Flp+% -Y%a %+%a; b+ ¥%; 22/(42-4)]
=(1-%Y2)"*F[Ya % +Y%a;b+¥%; z3(2-2)"7]
=(1-2(1-% 22 F[b-Y%a b+% - Y%a; b+Y%;22/(2-2)7
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(30) F(a, b; 2b; z) = (1 — 2)~%e
X Fla 2b-a;b+%; (-4 (1-2%[1-(1-2%1%

(31) F(a, b; 2b; 2)=[% + % (1 - 2)%] 2

1-(1-2%7)
XF{a,a—b+%_;b+%;[m] }

(32) F(a bja—-b+1;2z)=(1-2)"¢
X Fl%a (a+1-2b)/2;a~-b+ 1;-4z(1-2)"7

(33) F(ag, b;a-b+1;2)=(1+2) (1-2)""
X FlY% +%a, ba+1-bya—b+1;-4z(1-2)"2]

(84) Fla, bja-b+1;2)=(Q+2)"°
XF[%aY%a+%;a~-b-1; 4z(1+272]

(35) Fla b;a-b+1;2)=(1~2)""2(1+ )% !
X Flla+1-2b)/2,(a=2b+2)/2;a+ 1-b;4z(1+27?]

(36) Fla, b;a—b+ 1; z2)=(1+ z%)72
X Fla, a=b+%; 2a—2b+1; 4z%(1+ z%)7?]
Cubic transformations. These can be reduced to (37), (38), or (39) by
using 2.10(1-6) and 2.11(1-6).
Fla a+1/3; 2/3;2z73)
'2/3) '(a+ 2/3)

(37) 2a(l-2z%2(-2)"3 [

e™?  Fla+1/3, a+ 2/3;4/3; 279 3ya - i
N :277(1—2)“3 1Ta
= T(4/3 T(a)
y [F(a, a+1/3; %35 2% . Fla+1/3, a+2/3;4/3; 2%) ]

T(2/3) T(at2/3) @ -° T(4/3) ()

(38) = 3(3a*1/2 o #ima/2 (g 4 1/3) (—w) "2 (1 — ) ®
x[T'(2a+ 2/3]""F(a+ 1/3, 3a; 2a+2/3; w™")
w=el= gD, e=e®"
The + sign stands according as Im(-w) % 0.
We also have:
larg(-2)| < n/8, |arg(l-2z9)| < m, |arg(-w)| <=,
larg(l—w)| < 7; |w|>1, Rew> 1/2
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(39) F[3a/2 (3a—-1/2; a+%;~z73]
=(l+2)'""% Fla-1/3, a; 2a; 223+ z?) (1 + 2)73].

E. Goursat (1881) gives an extensive list of cubic transformations. Of
these, the rational ones only will be repeated here:

(40) F(3a, 3a+%;4a+ 2/3; z2)=(1-9z/8)" %
X Fla, a+%; a+5/6;-272z2(1-2) (9z-8)"7

(41) F(3a, 3a+%; 2a+5/6; z2)=(1-92)"2
X Fla, a+%; 2a+ 5/6; -272(1 - 2)* (1 -92)"2]

(42) F(3a a+ 1/6; 4a+ 2/3; 2) =(1 - z/4)" %
x Fla, a+ 1/3; 2a + 5/6; -27z%(z — 4)73]

(43) F(3a, 1/3-a; 2a+5/6;2z)=(1-4z)"%
x Fla, a+1/3; 2a +5/6; 27z(4z - 1) 73]

(44) F(3a, 1/3—a; 1/2; z)=(1-2)"°
X Fla, 1/6 —a; 1/2; (2/27) (9 -82)2 (1= 27"]

(45) F(3a, a+ 1/6; 1/2; z) = (1= 2)~2°
X Fla, 1/6 —a; 1/2; ~(2/20) (2 =9)2(1 - 2)72]

(46) F(3a +1/2,5/6 —a;3/2; z)=(1-82/9) (1-4z/3) 3" %2
x Fla+1/2, a+5/6; 3/2; 2(9-82)2(4z - 3)73]

(47) F(3a, + 1/2, a+2/8;3/2; 2) =(1 - z/9) (1 + z/3) "3~ ¥2
X Fla+ 1/2, a+5/6; 3/2; z(z =92 (z+ 3)7°].

2.12. Integrals .

(1) F(a b;c; z)zF—(b)LF((%):T)j; t? (1= (1-t2) "% dt
Rec>Reb>0, |arg(l-2)|<nm
(2) F(a b;ec;2)
~il'(e) explim(b-o) f
- 2I'(8) T'(c - b) sinnlc - b) J,
Re 5> 0, |arg(l-2)|<n, c—-b#1,238, ...

(1+)
e (1-)e 0 (1—t2) " dt

(3) F(a, b; c; z)

(0+)
T () Te—b) sintel) J: © O-9 (1-t2) " de

Rec>Reb, |arg(-2)|<m b# 1,2, 3,...
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—I'(e)exp(—ime)
F . . =
(4) (al b? ¢; Z) 4l1"‘(b) F(C -t b) Sin(n’b) sin 7T(C = b)

(1+, 0+ 1—=,0-)
Xf tP (1= N (1—t2) " dt

b, o —b# 1, 208 v

I"'(e)

(5) F(Qb;c;l—z)=m

f sl 4+ 8% (1+s2) %ds
(o]
Rec>Reb >0, J|agz|<nm

(6) Fla, bsc;2z7 "

F(C) foc
- ( _1c—b-l a=c . - “a g4
BT, T -
1+ Rea>Rec>Reb, |arglz~1)|<7n

2T (e) e (sin £)?*~' (cos t)2c™2"1
(D Fla b; ¢ Z):—l"(b) F(c—b)j; FEPRT de

~ 2'7¢T(e) 7 (sin £)27' (1 + cos £)°72
T@Ie-b) ),

217¢ 1(¢) fﬂ (sin £2¢72071 (1 = cos £)?*™¢
TG T(c-58)J, (1-%z+%z cos t)®

(8) F(a b;c;2) dt

(1-Y%z+Y%z cost)

dt

(9) Fla, b;c; 2) = dv

2T (c) fw(cosh p)?e72¢* (ginh p)2eT2b!
' Ir(e-5 Jo [(cosh v)2 - z]°

(10) F(a, b; c; z)
2b=a () fm (sinh £)2¢72¢*7 (cosh £ — 1)2e~a"b!
o

e di
T Dte ~5) (% —z+% cosh )° e
(11) F(a, b; c; 2)
2872 (¢) fm (sinh £227207" (cosh ¢ + 1)a*b—2e*1 p
_ )
T I'(e=0)Jo (% — z+ Y% cosht)®

(12) F(a, b;c; 2)
2T (c) fm (sinh v)Zb—’ (cosh v)2e~2et!
T Tle-b)Jo [ (cosh )2 ~ z(sinh v)?] ¢
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(13) F(a b;c; 2)
2¢=b 1" (¢) f (sinh 5)25_1 (cosh ¢ + 1)8~¢~b*!
o

=1"(b)1"(c-b) [1+z+(1=2) cosh¢]® o

(14) F(a, b; c; 2) -
2¢7b T'(¢) (sinh t)z“_zc'“ (cosht — 1)bte-at

= d
(B T'(c - b)Jo (e 2 2L = costi A" ‘

(15) F(a, b; c; 2)
I"'(e)
BNCINCED)
The conditions for the validity of (7) to (15) are
Re ¢ > Re > 0.

For other integrals see 2.1(15), 2.4(1) to 2.4(10), 2.1(34), 2.1(35)
and 3,7 where the Legendre functions may be expressed by special
hypergeometric functions. For integrals which lead to hypergeometric
functions see also Chap. 7(Sonine-Schafheitlin and related integrals).

f el i R Ll PR Tl
)
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CHAPTER II1
LEGENDRE FUNCTIONS
3.1. Introduction

The expression (a? — 2ar cos y + r2)™% represents the potential at a
point P of a source situated at A when r and a are the distances re-
spectively of P and A4 from a point O, and y is the angle subtended by
PA at Q. The expansion of this expression in ascending powers of r is
of the form

() (/a) £ P_(cosy) (r/a)" o e
n=20

where the coefficients P (cos y) depend on cos y only (they are in-
dependent of a and r) and can be shown to be polynomials of degree n
in cos y. They were introduced in 1784 by Legendre and are known as
L egendre polynomials.

Legendre polynomials and related functions occur for example when
Laplace’s equation AV = 0, the wave equation, or the diffusion equation
are discussed in spherical polar coordinates r, 8, ¢, defined by

x=rsinfcos¢p, y=rsinfsing, z=rcosfb.

In these coordinates

d av d av
AV = r_z—-(rz-—> +r % (sin 8)_'——(ain 60—
or ar a0 a0
2 9%
dp?’
and if a solution of AV =0 is of the form V = R(r) T(6) F(¢), where
R, T, F dependrespectively onr, 6, ¢ only, T must satisfy the ordi-
nary differential equation

2

dT
(2 —g% * o 9—d—0— +lwl+D -(pesc H* T =0

in which g and v are separation constants. The substitution { = cos 6

120

+(r sin 6)~
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reduces (2) to Legendre’s equation of degree v and order p

d*T " dT B ) 3 G cnn

E— éE-FVV-Fl—F (1—4) ]T=0_

The same differential equation arises in potential problems in spheroidal
and toroidal coordinates; see sections 3.13 and 3.14.

In spherical polar coordinates { = cos @ is real and between —1 and 1;
and if the potential is to be one-valued and continuous with continuous
partial derivatives on the surface r = constant of a sphere, it can be
shown that ¢ and v must be integers. However, (3) arises in other con-
nections when the restriction of £ to the interval (=1, 1) and of g, v to
integer values is inappropriate, and therefore we shall investigate the
solutions of (3) for unrestricted real or complex values of ¢ p, v.

The Legendre equation also arises in the theory of hypergeometric
functions. In that theory it is found that whenever Gauss’ hypergeo-
metric series admits of a quadratic transformation, the hypergeometric
differential equation may be reduced to (3).

An entirely different approach is given by the theory of orthogonal

(3) (1-¢3

polynomials. Legendre polynomials P_({) are the orthogonal polynomials
associated with the weight function unity on the interval (~1, 1): hence
their occurrence in interpolation theory and in mechanical quadrature.
The orthogonal polynomials with the weight function (1 — ¢?)® on the
interval = 1 < ¢ < 1 may also be expressed in terms of Legendre functions
(cf. Chapter 10).

In the present chapter, the differential equation (3) will be the basis
for the study of Legendre functions.

3.2. The solutions of Legendre’s differential equation

The Legendre functions are solutions of Legendre®s differential equa-
tion
d*w d
222 i lulp+ D = p2(1=-2)"Tw=0
dz? dz

(1 (1-2z?)

z, v, pu, unrestricted.
Under the substitution w = (z2 — 1)*# v, (1) becomes

v

d? dv
2 (A-z29—=-2+Dz —+lw-p)+p+Dv=0.
dz dz

And, with (=% ~%z as the independent variable, this differential equa-
tion becomes

gl

d%
dé?

dv
+(p+DA-24 -‘}Z+(v—‘u)(v+p+1)v=0.
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This is Gauss’ equation 2.1(1) with a=p - v, b=p + v+ 1, and
c=p + L
Hence by 2,3(1) it follows that the function

(9 wePh(s) = —— (”1)%# i Ll %Y
w=PHl(z _F(l—u) — —v, v+ 1L 1—p Y~ Y%2)

[1-2] <2
is a solution of (1).
If we set {= z?%, (2) becomes
a d
@ 42(1-9 dg: +[2=(4p +6) g}-‘-i% T =~ G 4 T i = B

which is also of hypergeometric type witha=%(u+v + 1), b =% (g - 1),
¢ = %. Hence equation (1) by 2.9(9) has a solution

. _ Fre+p+1) _ _ _
— O - ghim oVt U -1 2_1%u
(5) w=QMz)=¢ 7 Tor32 (z )
X Flv+hhp+ L %v+Y%p+%;0+8/2; 277 lz] > L

The functions B/(z) and Q4 (z) are known as the Legendre functions
of the first and second kind, respectively., They are one-valued and
regular in the z-plane supposed cut along the real axis from I to — eo.
We assume

(6) |arg(z £D)| <n, |argz|<nw
and (2% = DA = (z — DB (2 + D%,

Legendre’s differential equation remains unchanged if u is replaced
by —u, z by —z, and v by —v — 1. Therefore

E¥ifea), QP BY (+2), @%F_(+2)

—p= -v=1

are solutions of (1) (cf. also section 3.3.1).
Applying 2.1(23) to (3) and (5) we obtain

(M TA-WPr @D =2"E2=D* Fl-p+vy, —p—v; 1 p; %= %2)
(8) T(w+3/2 Q(D=e 27 " p% T(w+p+ 1) 27" VHE (22~ )75~
x F(% +]/zv-—1/zp., 1+%V—-%,u;v+3/2; z7?),

(I v or p or both are positive integers, see section 3.6.)
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By means of the transformation formulas of the hypergeometric func-

tion, given in section 2.10, (3) and (5) are expressible in several ways
in the forms

(@) PMa)=d, Fla,bie,8)+4, Fla,,b,30,:8) Il <1,

(10) e-i“"Qﬁ(z)=A3 F(aa,ba;ca;¢)+A4F(a‘,b‘;c‘;g)
£l €3

where { is a function of z and depends on the choice of the transforma-
tion. The various expansions (9) and (10) are shown in (14) to (49). The
last column in each table indicates the way in which the expansion in
question has been derived. For example (15) results when the trans-
formation 2.10(1) is applied to (14). The tables contain 36 different
hypergeometric series, each being a solution of (1). If the transformation
2.1(23) is applied to each of these series, we find 36 other hypergeo-
metric series. These constitute Olbricht’s 72 solutions of the differential
equation (1) (Olbricht, 1888, p. 1). In all these formulas

(11) (z* - D*=(z - D*(z + D*, larg(z £ D] <7, |arg z| <m
and therefore
(12) —z-1=e? (241, =—z+l=e 7 (z-1),

1-22=e7i (22 -1)

where the upper or lower sign is to be taken according as Im z >< 0.
From (1) it is found that the Wronskian

d d
WIPA(z), QL (2) § =Pl(2) — QM (2) = Q¥ (2) — P/H(2)
v v v dz Y dz

must be of the form ¢/(1 — z2), where the constant ¢ may be evaluated
by putting z = 0. Using (22) and (40) we thus obtain

(13) WiP4(2), QX(2)}

e T 92U T (1 + Yy + %) T + %u + %)
T AT +%y %0 T4+ %y - %)

There follows a table of expansions of the form given by equations

(9) and (10).
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EXP ANSIONS FOR P (z)

3.2

A

1

A

2

(z+ DA (z= D75/ (1= p)

(14)
0
C(~p) (z+ D* (2 - DA/ [P +v —p) T (= = )]
(15)
—n~" sin(vm) T(g) (z = D (2 + 1740 ¥ 7
27V (z + DAY (z = 1)THH/ (1 - p)
(16)
0
—2”*’F(-y)ei‘"”(z+-D%“(z—-D'%“'”"'
x [T +v-p)T'~v-w]™!
(17)
7=' 2" gin(vn) F(p,) etimlmu) (5 - 1)%“‘_1’—' (z + ])—%LL
P P (=1— 20) (z+ DERYY (2= D75 /[T (—0) D (=v —p)]
(18)

271+ 20) (z+ D¥Y (2 - D/ [T(L+ ) T(L+v —p)]
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EXPANSIONS FOR P*(z)
a, b, &y
& Remarks
a, bz ¢
-v 1+v 1-p
1~-2
14
(14) P
=i 1+v l4p (14), 2.10(1)
1+2z
(15) S
The upper or lower sign
-v 1+v 1-p according as Im z %0
-V -V - [ l—p
z—1
(16) (14), 2.10(6)
z+1
1l+v l+v+p|l+p (15), 2.10(6)
z+ 1
17)
z-1 The upper or lower sign
1l+v l+v=p|l-p according as Im z < 0
1+v l+v—p)2+2v
2
(18) (16), 2.10(1)
1+2z
—_1 -¥ — -2y
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EXPANmONSFORIy%ﬂ

A

1

A

2

V(14 20) (z+ D¥ (2 = D% /[T (L +) T(L + v =)

(19)
V1 (=1 =20) (z + D¥ (2= D721/ [T (=) D=y -p) ]
W (22— D7EL/T(1-p)
(20)
0
27V 2% (=% =) (22 = D% /(v —p)
(21)
ar A% +v) 22 =D /T (1 +v—-p)
Mph (22 = DA/ =Yy =% T (1 + Y%r - %p)l
(22)
-k Y (2% - DR/ % + Yy — %) T (=% - %)
2V R (=Y =) 27V (22 = DR/ (—y —p)
(23)

Wa ™D +v) 2P (22 - D/ T (L +v - p)
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EXP ANSIONS FOR Pf(z)

a, bI g,
i Remarks
a, bz By
-v -V +pu -2y
2
(19) (14), 2,10(2)
l-=z
1l+v l+v+p 2+ 2v
Y+Yhv-Y%u | -Yhv - Y%pu 1-p |(15), 2.11(2)
(20) 1-2z2
cee cos s Rez>0
Valhv —Yp | Y%+4%v+%p | v+3/2
1
(21) > (20), 2.10(2)
1-z
—hav +lp v —Yap “B-v
—Wv = lip el -Yu | %
(22) z° (20), 2.10(1)
V-Y%v-lap | L+hkv = lau 3/2
Y+ -Yp | 1L+ Y%v -Y%p | v +3/2
1
(23) 5 (21), 2.10(6)
z
v =Y B-twv-=lap | 2 —v
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EXPANSIONS FOR P}(z)

A

1

4

2

O (22 — 1)7THB Y /T (1 —p)

(24)

0

n% ot e FAWAV) (22 L)%Y [T (Y — Yo ~ Yp) T+ %y — 4w
(25)

—p% out eI irls (u+v—1) z(z% - 1)%1/-%

x[T(=Y%v - Y%p) T(% + Y%v = %)

25 (22 =D (=% =) [z = (22 = DAY /T (—v—1)
(26)

@D H (2 -DE TG+ [z=(22 = D1V % /T (1 +v -p)

a7 B(=Y% —1) (22 = DEE [z 4 (22 = D¥]7V Y /T (~p—p)
(27)

7R 20T (% +0) (22 = D#eLz + (2% = DAY H/T(L+v - p)

M(z2 — DEH [z + (22 = DAV /T(1 -p
(28)
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EXPANSIONS FOR Py‘“( 2)

129

% b, C4
L Remarks
a, b, €,
-%v |-k
- T e |1-e |20, 2106
(24) 1-—-—;
z
o e 0 Re z > 0
% -%v
42 Y + Y%y A (24), 2.10(2)
25
(25) o1
h=Yv | % -hy The upper or lower sign
- by +Mp 3/2 according as Im z <0
Y+p |%-p |3/24v
—z+(z2-1)%
26 (23), 2.k1(16)
(26) 2 - D%
Bhap |-n 2-v
Yoo+u |l+v+p|v+3/2
z~(z2=1)%
SN (26), 2.10(6)
(27) z+(z2=1)*
Yo +p —v+p Y% —v
—v-p | Y%-p [ 1=2p | (24), 2.11(17)
(28) 2(z2-1*
z+(z2-1)%

Rez>0
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EXPANSIONS FOR Pj(z)

A

1

A

2

(22 - V) [z = (2% = DAIVHH/T(L - p)

(29)
0
(2m) % ', +v) eF ) (22 _ )TH [z 4 (22 = DAV
X[ —p+ D7
(30)
(2m) 7% T(=% —v) e* W) (52 - D% [z + (22 - DE]VHE
X [C(=v=-p]!
7% TR +0) (22 - DR [z — (22 - DAIX* /T (v —p + 1)
(31)
7% B (=Y — ) (22 = DB [z + (22 = DRI B T (v —p)
EXPANSIONS FOR e~ 7 Ql(2)
AB
A4
FQay 4+ TEw (2= D™ (2 + D520 +v —p)
(32)

Y% D) (z+ D% (z = D74




3.2

LEGENDRE FUNCTIONS

EXP ANSIONS FOR P[/(2)

2, b, %
i Remarks
@, b, Ca
~v-p |-p |[1-2p
2(2? ~1)*
29 (28), 2.30(6)
@9 —z+(z2 =1)*
Yooy |%+p | M-v [(28), 2.10(2)
(30} z+(z% - 1)*
2(22 - 1)%
The upper or lower sign
% - y 3/2
A= Atp | v+ according as Im z > 0
—v-p | h-u | -v (20), 2.10(1)
z+(z2=D*
(3D PR
z—(z*-1) The h.g. series converge
1+V—-}_L L —p v + 3/2 | nowhere in the cut plane
EXPANSIONS FOR e~ "7 Q!(2)
R By s
¢ Remarks
24 b, Sy
- 1+v 1l +p
1-
(62| —— (37), 2.10(2)
-v 1l+v ] 1-pn

131
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EXP ANSIONS FOR e~ 7 Q/(2)
AS
A4
—et T D (1+w +p) Tl=p) (z + D% (z - D7¥4/[2 (1 + v ~ )]
33)
— YTV () (2~ DEE (2 + D7HE
27V () (2 + DYHAR (2 - DTHR
(34)
271V (14w +p) T(=p) (z+ D% (2 - D¥ /T +v—p)
P~ ) T(L+v +p) (2= D7H77 (2 4+ DE/T (L +v - p)
(35)
¥ T () (z + D75 (2 — DHuv-!
PTA+)T(1+w +p) (2 + DAV (2= DT /T(2 + 20)
(36)
0
T+ D(1+v +p) (z+ D (z = DTHV/T(2 + 20)
(37)
0
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EXPANSIONS FOR e~ W7 Q4(2)

a, ba c,
4 Remarks
a
4 64 e,
—-v 1l+v l+p | (36), 2.10(2)
1+z
(33)
2 Th 1 ;
=ij 1 Lo e upper or lower sign
according as Im z 20
-v -V —u 1-p
z-1
(34) (36), 2.10(1)
z+1
-v —v 4 1+p
1+ l+v +yp 1+p
z+1
(35) (36), 2.10(3)
z-1
1l+v l+v=—-pu 1-p
l+v=p| 1+v 2+ 2v
2
(36) (41), 2.¥1(17)
1+2z
l+v+py | 1+v 2+ 2v
2
(37) (36), 2.10(6)
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EXPANSIONS FOR e %7 Q%(2)
AS
A4

2R () (22 - D7
(38)

27VHET (v + @) T(=p) (22 = DA/ (1 + v —-p)

2V A D (L 4w +p) (22 = DH7% /T (v + 3/2)
(39

0

7k WV(Y + %o +Y%p) e ¥4 Wmv=1) (2 | yHu

X [T +Y%v —Yu)!7!
(40)

7% (L + Y%y + %p) et ihl=m) (2 _ p)=Hu

x[T(4 +Y%y =% )]

2V A DL 4w +p) 27TV (22 — DEL /T (o 3/9)
(41)

0

OHTY () ZVTM (22 — TR
(42)

2R (L 4w +p) Tlop) 2274 (22 = D#4/T(1 +v — )
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EXP ANSIONS FOR e~ 7 Q(z)

a, b, ey
4 Remarks
@4 b, Ca
As k| ~Sv~ak | 18 | g, sa00
=By ’
(38) |1- 22
B+Bv| -Yr+4% 1+
:%#2 2 i K Rez>0
B +Y%v| o+
1 ___l/z# +1/2,u V+3/2
(39) |=—— (41), 2.10(6)
-~z
-% Y%+ 4%
il Rl if (41), 2.10(2)
~-Y%p -V
(40) | 2%
B—-Yv| 1+ hv 3/2 The upper or lower sign
-hp ~ Yo according as Im z 2 0
1+4%v | %+h%y v+ 3/2
1 +Vep +%u
(41) ?
- Y Y% -t 1—p
1 - Yy - Yu
@2 |1 ~— (38), 2.10(6)
* o 14 Y- v 1+p
+Jap + Y




136 SPECIAL FUNCTIONS 3.2

EXP ANSIONS FOR e~ %7 0(2)

A3
A
a4
GBIV (Y 4 Y + Y €8 O (22 - DR T (L4 Yow = Yp)
(43
7% 2uT(L + Yy +Yp) " K 5(52 — DAY %/ T+ Y% v = %p)
Gm)% T(l+v +p) (22 = D% [z = (22 = DAY /T (v + 3/2)
(44)
0
p% T (L+v+p) (22 = D4z + (2% - DXV 7VH/T(w + 3/2)
(45)
0
287 M) (2 - D7HE [ 2 4 (22 = D¥]7He
(46)
27E (14w +p) Dip) (2% = D¥ [z + (22 = DEP /T (1+v—p]
27 D) (22 - D7 [z - (8- DH]P
47
27V ET(L 4w+ ) D) (22 = D¥4 [z = (22 = DI/ T(L+v—p)
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EXP ANSIONS FOR e %7 Qk(2)

137

a3 b3 03
4 Remarks
o b, €4
- Y - Y
22 — Y%y +Y%p % (41), 2.10(3)
(43) |
£ = % —Y%v | b -Y%v The upper or lower sign
-%p +hp 3/2 according as Im z 2°0
Y%o+p |%-p |v+3/2
—z+(22-1)%
44) .
( R (4D, 2.11(16)
g +% 1+v+p | v +3/2
z—(z2- D%
45 44), 2.
O e e (44), 2.10(6)
—y—p Yo—p 1- 2u (44), 2.10(3)
46) 2(z2 - 1
z+(z2 =D*
—v+p % +p 1+2pu Rez>0
—v-p | o—p | 1-2p
2(z2 -1
AN 3 = .
47) (21 (44), 2.10(2)
—v+p %+ 1+2u
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EXP ANSIONS FOR e™ 7 Q¥(2)

A

3

A

4

Ml T +0) (22 = D %[z -(22 = DE)EHY/T(L+v —p)

(48)
75277V (L 4y +4) (=% 1) cos(pn) (22 - D%
2% T(Y+v) e Tl (g2 _ Phu, (o2 - PE eV
x[r(l+u—'u)]-1
(49)

~ 2% coslum) T(L+v +p) T'(=% —1) e 701
X (z2 = D)7HH [z + (22 = DA v
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EXP ANSIONS FOR e~ 7 Q¥ (2)

ay b, Cs
& Remarks

tp | Y-p | M-v

P st (44), 2.10(1)
2(22- 1% S
l+v—p| l4+v+p | v +3/2
Y+u | p-v Yo-v (48), 2.10(6)
2
(49) 2+(z2 -1 The upper or lower sign
z—-(z2 -1 according as Im z 2 0

The h.g. series converge
4 — 1 l+v—p | v +3/2| nowhere in the cut plane
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3.3.1. Relationsbeiween Legendre functions

From 3.2(3) we have
(1) PH(2) =PE _ (2).

=1
From 3.2(5) and 3.2(8) we have
(2 e*"T'(v+p+D Q1 (g) = e WMy —p+1) Q (2).

From 3.2(5) it follows by 3.2(23) that
(3) QY (2) sin[a(v +p)] - Q*

—-p=-

=7 e ™7 cos(vr) PH (2).

, (2) sin[7 (v —p)]

From 3.2(32) and 3.2(3) we obtain

(4)  Q%(z) sin(un) =4 ghmt 'I:P#(z)_MP'“ (2) :I ’
v v Nv-p+D ¥
and hence
T'(y - ;
(5) P7H(z) = M [PH(2) —(2/m) ™ "7 sin(um) Q*(2)1,
¥ Fy+p+1 H <
I'( N =t a7l
6) PE(2) ='1%1—) P7H(2) +(2/m) ™ W7 sin(um) QX (2),
and thus, ifp = m(m=1,2,3, ...),

. IT'v+m+1 o
W e e T
From (5) and (3)
e_i“wr‘(v—p+1)

st _
) PV (2) 7cos(vm) (v +p + 1)

sinlr (v - [Q4(2) - %, _ (2]

or with 1.2(6)

(9) QL _, (2~ Oﬁ(z) =e™ cosun) Tl +p+ DT - By
From 3.2(15), 3.2(3), and 3.2(32)

(10) PH(~2) = ™ TiPE(2) —(2/m) ™ %7 sinln (v +p)l Q4(2)

or

(1D Q4(2) e #7 sinlr (v +w)l = Yim [ ™7 PE(z) = PA(= 2l

Hence, replacing z by —z

(12) Q4(-2) =—e*™7 Qu{2).
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In (10), (11), (12) the upper or lower sign is to be taken according as
Im z 2 0. =

If we replace z by z2(z% — 1% svby—p—-% andp by-v-% in
3.2(3) and compare with 3,2(44) we obtain Whipple’s formula

(13) QB(2) = e ™7 (4m* Tl +p + D (22 = D7* P24 2 (2% - D7*],

Re z>0,
which is equivalent to

(14) T(-v =) P4 (2) =ie ™" (hm) ™% (2% = D% QT¥% [z (2% - 1) %]

g

Rez >0,

As z varies from a point on the real axis at whichz > 1to a point on the
imaginary axis, z (2 — )™% varies from a point on the real axis to a
point on the cut between 0 and 1. As the Legendre function of the second
kind becomes discontinuous on the cut, we must introduce the restriction

Re z> 0.

3.3.2. Some further relations with hypergeometric series

From 3.2(3) and (11)
(15) Qu(2) e” W7 sin [ (v + )] T(1 =)

Saued &% LW
= Yn [e*"’”(z+ ) Fl-v,v+1l;1-u;-%2)

z-1

], %
- — F(-v,v+1;1—u;%+%2)].
Z

and hence by means of (2)

1 %
(16) 2 Q% (2) e W (1+p) =" (1 +v +p) i+—-1) T(p-v)

v
X[F(—y,v+ Ll+p;+%2)

-, z—1\*
_e+11}77<._._._1.) F(—v,v+1; 1+u;'/£—}/22)]
Z+

with the upper or lower sign chosen according as Im z 2 0.
From (6), 3.2 (3), and (16)

z+ 1\ -
(17) n‘l—'(1+u)P‘;(z)=l—‘(u+u+1)l—‘(u—V) — sin(um)
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(1) PE,_, (x) = PA(x),
(8) e M QL(x 4 i0) — & T Ql(x — i0) =ime HTPE(x)

(9) e ¥ Ql(x £i0) = ™ T [QL(x) F i(w/2) PX(0)],

— e \A
(10) fo(x)= e A (i+x> Fl-v,v+1l;p+1; %-Y%x)
x

20 (1 +v—p)

14+ x WV#
+% T'(w) cos(um) I Fl—v,v+1;1=p; % -Y%2),
- X

F(=Y%p —Y%v, % - Y%p +Y%v; %; x%)
T ~Y%r = %) DL+ %y - %p)

2xF (% —%v —Y%p, 1+ Y —Y%pu; 3/2; x%)
'+ Y%y =4 (= %r - % ’

(12) (1= 2?)%8 2787 ™% Qk(x)

(L) (1—#®)%# 274 7™ Ph(x) =

cotl br (v + )l z F(% —%v = %p, %v ~Y%p + 1;3/2; 2%)
M+ Y%y =% D%y -4
Ytan U+ W] FGY%v =% % + %y —Yu; %; x?)
Fl+%v-%pTHh-%v-Y%w ’

(13) 2 Q* (x) sin (um) = n'[P”(x) cos(um) — Ly+p+l) P+ (x)] s
v L Fy-p+1) u

(14) P (~x) =P (%) cos[m(v +p)] ~ (2/7) Q4 (x) sin (7 (v + pl
O<x<gl,
(15) (-2 == Q) (%) cos[n(v +p)] = %r P4 (x) sin[7 (v +p)],
0<x<1,
(16) sin[=(v —u)] Q* _, (x)
= sin[# (v +u)] Q¥ (x) =7 cos(vw) cos(un) Pﬁ(x),
(17 'y + g+ 1) P;""(x)
=y —p +1) [PE (%) cos(un) —(2/7) sin(ur) Q4 (2)],
(18) 'l +p + D Q_l"f (x)
=T(v—p+ DIQ)(x) cos(un) + Yr PZ \x) sin(um)].
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Equation Proved from
(3) 3.2(3) and 3.2(12)
4 3.2(3) and 3.2(12)
(5) (3) and (4)
6) (1), (3) and (4)
(7) (6)
(8) (6) and 3.2(32)
9 (8) and (2)
(10) (2) and 3,2(32)
(11) 3.2(22), (1), and 3.2(12)
(12) 3.2(40), (2), and 3.2(12)
(13) 3.3(4), (1), and (9)
(14) 3.3(10), (7), and (9)
(15) 3.3(12), (2), and (3)
(16) 3.3(3), (5), and (2)
(17) (13)
(18) 3.3(2), (9), and (2)

For integer m and n we have from (14) and (15)
(19) P3 (~=) =(—1)'+"P"n(x); Q:('-x)=(-1)'+"+'Q:(x).
For x =0 we find from (11) and (12)
(20) P£(0) = 0% cos[Ymw +wl % + % +%u)/T' (1 + %o - %p),
21) Q4(0) == 2¢"" a* sin[ Y%y +w] T'(% + % + %uw)/T (1 + Y%v - Yp).

ab
=—— we have from (11) and (12)
c

d
As—F(a, b;c;2z)
dz

z=0

d L
(22) ( Q (x)) = Wk cos[Bam(v + Wl T(1 + %v+Yuw)/T % +%r -Ypu),

d P (x)

(23) outl sm[/grr(v+p)]r'(1+1/zv +Lw/ T (L% ~Yu).

Furthermore, from equations (20) to (23)
d d
(20) [P;‘j () = 04 (3 =04 (5) — Pl () ]

x=0

=241+ B%r+%p) TG+ + )/ [T (L4 -Yp) CCs+ivelop) ).
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Since we have from section 3.2 that
d d
Py (x) — QU (x) = QL (x) - PE ) = C(L =a")",

the constant C may be determined by putting x = 0 and using (24). Then
we obtain

d
(25) (1 -x?) P‘: (x) — Q‘: (x) — Q;"‘ (x) —li P’: (x) ]
dx dx

_ZZ“F(1+‘/zu+‘/zv)F(‘/z+%u + 4y
Fl+%y -%u) T+ Y% - %)

3.5. Trigonometric expansions for P~ (cos 6) and QY (cos 6)

We put z = cos 8 + i0, (22 -~ D* = eT¥%7 5in 0 in 3.2(45) and obtain
(1) €% QM (cos0 +i0) (v +3/D =n# 2°T (v +p + 1) e™hHT
X (sin 8)* e: 10 (1+v+p) F(4 +pu,l +v +p;v+3/2; e; i26)’
and hence by means of 3.4(8) and 2.1(2)
N +p+1)

P#(cos =n % M (5in G)H
(2) P, (cos @) =a"7 27" (sin 0) e 32

% + ,u)l(l +v +,UL)I

X 2 9 » :
1=o I(w+3/2), sin[(20 + v +p+1) 0]
Similarly from 3.4 (2)
1 ’ 'y +#+1)
@ 0 (con 0 =0 2 (oin 0 T S
S G+ Qv +w),
) 21 1) 6l.
i Tilre BB SOtk BERE

Both series are convergent for0 < § < . In the same manner we obtain
from 3.2 (44) ’

(@) €HTQL (cos 0 £i0) D(w + 3/2) =7%(2 sin )% ¥ £ i+ +4)0]

i'ie;ie
x F Vz+u,‘/z—p.;v+3/2;2 - I'iv+p+ 1D

Sin

and hence by means of 3,4 (8), 3.4(2), and 2.1(2)
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(5) (v +3/2) P4 (cos@) =2% (n sin®) ¥ 'y +p + 1)

g Cat ), 04 ~ )
X _11 1 1
Z el 11(2sin6) (v + 3/2),

X sin[(w+1+%) 0+Gu +¥)m +% lal,

(6) T +3/2) Q“(cos ) =r* (2sin ¥ T'(w+p+1)

I=0

2 M+w, (% -p
x (-1t ; 1
IZO 11(25in6)'(v +3/2),
X cos[(v +1+%) 9+(l/2u + %) 7 +% lnl.

As can be seen from (4), the expansions (5) and (6) are convergent if
/6 < 6 <57/6. From 3.4 (5) and 3.2(20), 3.2(7), and 3.2(3), respectively

(n T'A-p PX (cos 6)
= sin)*F[% +%v -Y%p:~%r—Y%u;1-p; (sin 0)?] ,

0<8<r/2,
(8) F(l—u)P‘:(cosﬁ)
=(% sin)*FF[l+v—p,—v—p; 1—p; (sin 46)?] .
0<O0< m,
(9) F(l—u)Pﬁ(cosB)
=(cot Y44 F[-v,v +1; 1 — u; (sin %6)?] . O<f<m,

A formula for P;'” (cos 6) suitable when 6 is small (MacDonald, 1914,
p. 220) is
(10) P_# (cos 6) =[(v + %) cos YOl ™+
x 1, (@ +(sin 40> [(1/6) a ]y (@ =T ,, (@ +(22)7" [, (@)
+0[(sin 4601}

Here a = (2v + 1) sin %6 and J, (a) denotes the Bessel function (see

Ch. 7).
This expression can be obtained by writing 3.4 (6) in the form

1-% V2 g I'v+nr+1)
-4 " 1"
Pv (x) <l+x> nZo il Fo4n+ DI (w+n+1)
o ¢4 —-%. 0"

nl

and expressing ['(v + n + 1)/T'(w — n + 1) in terms of powers of v + 4.
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3.6.1. Special values of y and v
If p is a positive integer, p =m (m =1, 2, 3, ... ), we have from

3.3(7) and 3.2(7)
(1) Tlw-m+Dm!P(z)

=27"T(w+m+ 1D (22 =D%* F(1 + m+v, m~v; 1+m; %=1% z),
and from 3.4(5) and (1)
(2) r‘(v-m+1)m!P;(x)

=" Tw+m+ D (A -xP" F(l+m+v,m—v;l+m; %~%.x).

If v is an integer, 3.3(1) shows that it is no restriction to assume that
v is a non-negative integer, v =n, n =0, 1, 2, «.. . We have to dis-
tinguish three cases:

() If p is not a positive integer, the hypergeometric series in
3.2(3) is a polynomial of degree n in z.

(i) fpu=m m=1,2,3, «es , and n > m, (1) and (2) are valid,
and the hypergeometric series involved are polynomials of degree n — m
in z.

(ii) Hp=m m=1,2,3, ..., and m > n, then sz,‘(z)andF‘f)‘L (%)
vanish identically. However ['(v = + 1) P*(2) and ['(v — p + 1) P#(x)

approach finite limits asu » m, v » n,
It is customary to write P (z) = P_(z) etc. Often P (z) and Q_(2) are
called Legendre functions, £/(z) and Q4(z) associated Legendre func-
tions.

From 3.2(7) we have
) B(2)=F(l+v,-v;1;% ~"%2).

If we differentiate (3) m times with respect to z (m =1, 2, 3, ... )and
consider 2,1(7), 1.20(5), 3.2(7), and 3.3(7) it follows that

(4-) P:(Z)=(Zz—1)%niPV_(Z) m=l,2,3,-an,
dz™
and hence, with 3.3(11), and 3.2(8)
s,
6) 02(a) =Gt - s L% 0 Uy 2y en
dz™
From (4), (5), 3.4(2) and 3.4(5)

d" B, (x)

(6) P]: (x) = ("‘ 1). (1 —xz)%u dx™
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e 470,
dx™
mal, %8, wewy =ldmLlL
Again from (3), 2.1(7), and 3.2(7)

(8 P r(2)=(% = D7 [T «oe [T P (2) (d2)",

(M QF) =(-1=(1-

9) Q" (2) =(-D" (* - 7%= f:° B f:’()y (z) (dz)",
(10) P7*(x) = (-D* (01 —2)7%" [* cov [* P (x) (dx)".

Furthermore if y is a positive integer, p =m (m =1, 2, 3, ... )the
formula 3.2(32) becomes an undetermined form which can be evaluated
by applying the usual rules. It results (Hobson, 1931, p. 205) in

(11) Q7 (2)

sm(wr)
.(Z) 10g<—) 2y~ (v+m+ D)=t (v — m+1)]
sin(vm)
Z 1 "X rd
= "'77( o ) ZF(r - +r+1D) I (m=-r) cos(r )(/2 % z)T
z+1  C(m+l=v) T(m+l+r+1) !
- by —Y% n+l
) v Tm+ D1 o{l) &4, -% z)
M'v+m+1) Ain Cr=-)C(r+r+1) S R
T Tw-m+) <z+1) L2t am)! o{m#r) (4 =% 2)
where
o{l) =1+% + +——¢(l+1)—¢(1)=¢(l+1)+y,
o{0) =0.

If u is a negative integer use 3.3(2) and (11). When m = 0, (11) becomes

1
Q, (2) =% P,(2) [log(z i 1) -2y = 2¢ (v + 1):|

— 7= sin {¥r) IE Tlepal) T i de Ve () (g -4 DU Y2,
=1

In case if v is also a positive integer, v =n (n =1, 2, 3, ... ) we have

0 () =%P (2) []og (z = 1)~ 2a(n)]
z-1
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+ li DM+ Do) G =% DY IUNE (=D
=0

(see also 3.6.2).
From 3.2(16), 3.2(20), 3.2(26), 3.2(36), 3.2(37) and 3.2(44),

respectively it is evident that the expressions for PJY , PVV+2"H,

BERH gutan et @R i eagen wil; 1D vxe peduce

to a finite number of terms. In particular we have
P%(2) =(2m 7% (2 = D7¥{[2+ (22 =117 ™ +[2+(22 = D%] 7V 7%}

(12)
Q:’f (2) =i /D% (22 = D% [z + (2% — D¥]7V 74,
5 ) 2—1 & 1 ) "
PVA (2) = (2/m)* -(—22—-‘_)1— Wz +(22 =D%]VH o[ 2 4(22 =) %] 7V %)
v
(13)
2_1 =%
0% () = iom B0, 4o 1ty vk,
2v +1

and from 3.2(16)
P V() =277 (22 - )¥/T(wv + 1),
(14)
P:’(cos 6) =27Y(sin )Y/T (v + 1).
From equations (11) to (14) a number of other formulas can be derived
by applying 3.3(13) and 3.3(14).
3.6.2. Legendre polynomials

A particularly important case of the Legendre function is that in
which p = 0 and v is an integer (cf. also section 10,10). We may assume
v to be non-negative. From 3,2(22) we have forn =0, 1, 2, ...,

%

w
a5y p,,(2) B S T F(-n, n +%;%; z?%)
(=D" (2n)!
S a DT F(-n, n +%; %; 2%),
-9 %
byt (2) i F(-n, n +3/2;3/2; z%)

=n!F(—’/3—n)
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-D"(2n + 1!
R s

22n (n |)2
or, in both cases
(2n)!
16) P Sy
(16) P (2) PIE

R nn-1) . nr-1)(n-2) (n-3) sk
X Z2h - —— + z" _—ass
2(2n - 1) 2:4(2n - 1) (20 ~3) J

which may be written as

n

(17) Pn (z) =(2"n ™!
dz"

(22 =1

This is Rodrigues’ formula.
Thus P (z) is a polynomial of degree n in z which has the same
parity as n.
P (=z) =(=D" P (2).
These polynomials are known as ],egendre polynomials. They form an
orthogonal system for the interval (—1, 1), and all their roots are real,

simple and between —1 and 1 (cf. also chapter 10).
From 3.5(2) and 3.5(3) we have

22n+2 (n !)2

7(2n+1)!

n+1l

sin(n+1) 0+
2n+3

(18) Pﬂ(cos 0) = sin(n+ 3)0

13 (m+D(n+2)
2! (2n+3)(2r+5)
1:3:5 (n+1D) (n+2) (n+3)
3! (2nrn+3)(2r+5)(2n47)

sin(n+5) 0

sin(n+7)8 + - ]

and

pERl ()

T(@2r+D !

. 1:3 (n+1) (n+2)
21 (2n+3) (2 +5)

n+1

neé
[Cos(n+ ) +2n+3

cos(n+ 3)0

(19) Qn (cos 0) =

cos(n +5) 6

1+3+5 R+ (n+2(n+3)
3! (2n+3) (2r+5)(2n+7)

cos(n +7) 8 + "':I

0<6<m
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From 3.2 (40)
1
QO(Z) =Fhin+zF (% 153/2; 2% =% %in + % log (1 +z)’

-l

the upper or lower sign being taken according as Im z 2 0. Since 1 -z
=(z~1) e*”, we have

z+1
(20) Q,(2)="% log( >,
z—-1

and from 3.4 (12)
(21) Q@) =xF (%, 1; 3/2; x?) =% log (

l+x

Equation 3,2(13) gives for p=0 and v=n

d Q,(2)
A 2 % e (x2_ 1)
WiP (2), Q ()} = [P, (2)] = l: ) ] (z2-1)

hence

(22) Q=P () [T - D7 [P ()] de,

where the path of integration does not cross the cut. As Po(t) =1 [efs
3.6(3)], (20) and (22), the latter for » =0, are in agreement.

Now, P (¢) is a polynomial of degree n with n distinct zeros t,, ¢,,.-.,
t, say, and as P (1) =(=D"P _(-1) =1, no zero is equal to + 1. By

decomposition into partial fractions we have

€2 =D P @ de= Y- DT = %6+ DT+ B be-r)?
=1

and hence from (22)

z+1 b,
(23) Q (2)=%P (z)log +P (2) s 5
B n z-1 I=1 (z—zl)

+1
--l -—Wn—t (Z)1

where W __ (z) is a polynomial of degree n — 1. So, for instance,

1 z+1
Q'(z)-——— z log( )—
2
) 3

-—z,
2
5
2

or

(24) Q,(2) = %P, (2) 1og(:

1
(25) Q (z)—-—P (z) log (

1
Q,(@ =2—P3(z) log (z = ) -

2
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From (24) it is evident that Qn(z) has logarithmic branch points at
z = = 1, but there is no branch point at infinity so that any branch of the
function is one-valued and regular in the z-plane supposed cut along the
real axis from — 1 to 1.

From (24) and 3.4 (2)

1+x
(26) Q,&x)=%P (x) log (1 — )— W _, &

Substituting (24) in Legendre’s equation 3,2(1) with p = 0, we find that
W _, m=1,2,3,..) satisfies the equation

(27) (1-2z3 ¥, ) 4 W h+1DW 2 4k,
-z =
4 z " +n\n + - d

22 z ! z

and hence it can be shown that (Hobson, 1931, p. 54)

28) W,_, () =

(Z )o

["/S-%]M_i
n=20 (R—m) (2m+1) n=2m —1

This is Christoffel’s formula.
Next, let z be any

fixed point of the w

plane which does not lie

on the real axis between

-1 and 1, and apply

Cauchy’s theorem to the

domain bounded by the

contours C, and C, of the

figure. Then we have

2m Q,(2) = J”c QW) (o~ 2)" dw ~ fc Q,w) w -~ 2)7! dw.
2 1

If the radius of C, increases indefinitely, fc -+ 0 by virtue of 3,2(5);

2

and the contribution of the circular arcs to fC vanishes with their radius.
1

Thus we have

27i Q (2) = j_‘1 [Q,=-i0)=-Q, (+i0)](z-2v) " dv,
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and since the expression in the braces is 7 Pn(v), we have Neumann’s
integral representation

(29) Q,(2) =% L, (z=0)"" P,(v) dv = (="' Q (~2).
Writing (29) in the form
(30) Q,(2) =%P,(2) [[(z=v) " dv~% [ (z =0)7'[P,(2) - P, ()] db,

we see by comparison with (24) that
(81) W, (=% ['(z=0)7"[P,(2) - P,(»)] dv.

Generalizations of Neumann’s formula (29) are(Gormley, 1934, p. 149)
(32) Q(z) =Y%e W ek = IR _[1' (1 -vz)_”/z (z =" Pv) dv,

v+u=0,1,2, ..., Rev>—1, z not on the real axis between — 1 and 1;

and (Wrinch 1930, p. 1037)
P(2)Q,(2) =% [ (z =)' P,(v) P, () dv,

n < m, z not on the real axis between — 1 and 1, n, m integers.
For the Legendre polynomials we have the generating function

H?Oh"Pn(z) for || < min]z %(z2 — D¥|
(33) (1-2hz +hH) 7%=

n_i‘: R P (2) for |h| > max| z £(2% = D%|.
This mey easily be fownd by expanding (38) in e sedes mespectively of
ascending and descending powers of &, and using (16). (For a generali-

zation cf. section 3,15).
On the other hand if z = cosh(z + iv) (u, v real),

S 50, (2)
n=0

converges for |h| <", Inserting here the expression (30) for Q,(z) and
considering (33), we obtain

S 0k =% [ (z=0)7" (1~ 2hv + k) %dv,
n=0 -1

or

G4) 3 Q (2) k"= (1 = 2hz + h?) 7% log {
n=0

z2—h +(1 =2hz + h2)%
(z2 = 1% ’
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and from 3.4 (2)

x—h+(1——2hx+hz)%]
(1 -x%)%

For further results in case of integral values of p and v compare
Chapters 10 and 11, and for results on associated Legendre functions

with the sum of the degree and the order equal to a positive integer see
section 3.15 and MacRobert, 1943, p. 1; 1947, p. 332.

(35) Dﬁ Qn(x) A =(1=2hx + KB % logI:
n=0

3.7. Integral representations
From 3.2(7) and 2.12(10) it follows at once that

9V (z2 = 1) "Wl =
(z + cosh )*™~ ' (sinh )Z*! d¢
o

PH(z) =
(1) V() M-I +1

Re(-p)>Rev > -1,
z not on the real axis between — 1 and o.
Similarly from 3.2 (45). and 2,12 (14)
2 Tw-p+DD(p+% Qhz) = Wk TR (b4 + D (22 - N

X j;w[z + (22 = 1% cosh ¢]7Y"#7! (sinh ) dt,

3) Tw-p+ DIT(+% Q)cosha) =e WTa % 9L (v 44 + 1) (sinh a)*

% [*(cosh a + sinh a cosh £)™¥7#~! (sinh £)* dt,
0

both formulas valid for Re(v tu + 1) >0.

Setting e = cosh a + sinh @ cosh ¢ in (3) and using 3.3 (2) we obtain

1 a 1 h # * 1 — L=
(4) QH(cosha) =(%n)* eum(';‘»l(f;—a))[ e” WP (coshv—cosha) 7% dv
2=l

a>0, Relv+u+1)>0, Repn<k.

Furthermore it follows from 3.2(36) and 2,12(8) that when z is not on the
real axis between~1 and 1,

F'v+p+1
e +1

X J‘W (z + cos )*~ 77" (sin )T dt
0 Rev>-1, Relv+p+1)>0.

(B)  QH(z) = ewmioTv! (22 - D2

From 3.2 (28) and 2.12(8) or from (5) and 3.3 (14) we have

-% 2 = m
24 - 174 1 -
(6) PH(z) = 7 e : [z +(22 -~ 1)% cos t]¥** (sin £)" % dt
e 's —w o
Re p < 123
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From (6)
7% 2 (sinh a) 7

(7) P{cosha) =

'z —w
x [" (sin )7% (cosh a + sinh a cos )*** d¢
Rep < %;
and hence with the substitution cosh a + sinh a cos t =e?,
8) P“(cosha) = (%4m) ™" %%:’_‘%
x j: (cosh @ — cosh v) ™% cosh[ (v + %) vl dv
Re u < 4.

Another integral representation may be obtained by considering
j‘e(”’t%)" (cosh a — cosh v)"”—% dv taken around the rectangle with
vertices (¢, 0) and (¢, ir), and having indentations at the points
(% a, 0). Making ¢ » = and using (8) we obtain an integral formula for
P;‘(cosh @); in this we change v into — v = 1 and then add the two expres
sions using 3,3 (1). The result is

P&(cosh -
= z((f/os)_z) (sinh a)* sin(ur) cosh[(v + %) ] . i
T (% -p) a (cosh ¢t — cosh a)#*%

* sin(vr) coshl( + %) ]
- Lty de
A (cosh t + cosh a)

Reu<¥%, Relv+u+1>0, Relp-v)>0.

On substituting for Iz'/+% (2) in 7.8(6) from 7.3(31) and changing the
order of integration, it is found that

(10) Q(2) = e# ™ (2m) % (2% — DA T(u + 1)

><\_J;W(z ~ cos £)"H*7% cos[(v + %) t] dt

— cos(vm) fom (z + cosh £) ™+ 7% e~ WHh) t g, 1

Rep>-%, Relw+p+1)>0

where z is not a point on the real axis between 1 and =~ . Hence, with
3.3(9) we have
[+ ) (a2 = DA
Fe+p+ DT (=)

X fow(z + cosh £) ™% cosh{(v + %) 1l dt
Re(p-v) >0, Re(p+v+1)>0

(1) PoE(2) = (% m) 7%
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where z is not a point on the real axis between — 1 and ~ .

Applying Whipple’s transformation 3.3 (1L3) to (11) we obtain

L T+ ” ;
(12) QH(2) =e i VT [z+(22=1)% coshe] 77! cosh(pe)dt
= Fwv-p+1 J,
Re(v ) > -1, vi£&-1,-2,-3,....
Applying 3.3 (14) to (10)
'(-v)
(13) Pu(2) = ——-—-—-—-V— ff [z=(z2=1)% cost]” cos(ut) dt
M~y -
+ sm(urr) fo Lz ¢z == 1% cosh t]Y eHtde}

Re(v +u) <0, Rez>0, Rev<O0.

Hence, if 4 is an integerp =m (m =0, 1, 2, ... ) [cf. (1.2.3)], we have

v +m+1) i y
(14) P*(2) =——— [z +(z2=1)* cost]¥ cos(mt) dt
¥ al (v +1) "
Re z > 0.
This equation may be written
n 'e+m+1) "
(15) Pv(z)— T D) / [z + (22 -1)A cos t]¥ eintd;
Re z > 0.
Hence, substituting £ = ® — ¢ we obtain
N'v+m+1)
p- = —
(6l ol eoalitil = 5 e )
x fozw [z +(z2 - 1% cos{(d = ¢N1Y cos(m®) dP Rez >0,
(17) P i e +m+1)
yiz sin(mh) = 520D
% _LG[z+ (z2 = 1% cos(® - ¥ sin(m®) O Re z > 0.

In case ¢ = 0, (16) may be extended to unrestricted values of m
and Re v > — 1 (Erdélyi, 1941, p. 351).

In case m = 0 a generalization of (16) is (Whittaker-Watson 1927,
p. 329)

(18) P,z z' —(2* - Y4 (z2°2 = D% cos ]
=@2mn™’ fom[z +(z% = D% cos(yy — D)
X [2' +(z7% - 1)% cos ®] V7 4O Rez>0, Rez' >0.
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Other expressions for P£(z) may be derived from the previous results
by means of 3.3 (1).

By means of 3.4(5), 3.4(8), and 3.4(2) similar expressions for P%(x)
and Q%(x) may be deduced. From 3.4 (8) and (2) with z = cos 6 we obtain

(19) IM'(p +32) I'(w —p + 1) P4(cos 0) = ifr_% 27H (v +u + 1) (sin O)#
x [ fom(cos 0 + ¢ sin 8 cosh ) Y7 (sinh £)% dt
~ J.” (cos 6 ~ i sin 6 cosh £)™7#7" (sinh )% dt ]
Rep>-%, Re(w zp+1)>0.
And from 3.4 (2) and (2)
20) T(w+¥ T —p+1) Q;‘f(cos 0) =gk 2TET ['(y +u + 1) (sin OH
x [ [ (cos @ +i sin 6 cosh )™ 747" (sinh £)%dt
+ [ (cos 6 —i sin @ cosh )"*™# (sinh )% dt] |
Reu>-%, Re(v +p +1) >0.
From 3.4(8) and (12), and 3.4(2) and (12) respectively, we have
iTw+1
o I (7 p o+ 1)

X cosh(ut) dt — ek inT fom(cos @ — i sin @ cosh £)”v™!

(21 P:‘f(cos ) = [e Hum fow(cosﬁ-fi sin 6 cosh ¢)™¥™!

X cosh (ut) dt]
L' +1)

(22) Q;"(cos 6) = m)

3 o4 ~v=
[e~¥%ium fo (cos @ + i sin O cosh £)7¥!

% cosh(uf) dt + e 47 [ (cos @ — i sin 0 cosh )7

X cosh(ut) dtl,

both formulas being valid for Re(v + W) >~ 1, v #~1, -2, -3, ...
From 3.4 (5) and (6)

(23) P%(cos 6)

“HoK (sin@)H T
=W—(SL—- (cos@+isind cost)yﬂ‘b(sint)“m dt
Qs -w o
Rep< k4

and from 3.4 (5) and (13)

(24) P-‘:(cos 9
eh T ()

=—-m [ J;W (cos@—isin8 cosht)” cos(ut) dt
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+ sin(um) J:O(cos 0 + i sin O cosh )Y e#'dt]
0<6@<na/2, Rel—v-p)>o0.

From 3.4(5), (16), and (17)

Cv+m+1)
27w+ 1

b j;m [cos 6 + i sin 8 cos(D = )Y cos(m®d) dD,

(25) P:(cos 6) cos(mpy) =i™

' +m+1)
27N + 1)
X Lm[cos 6 + i sin 0 cos(P —y)]¥ sin(md) P 0<@<n/2

(26) P;(cos 0) sin(myr) =i™

In case 7/2 < 6 <7 the expression on the right-hand side of (25) and (26)
can be evaluated by means of 3.4 (14).
With the substitution cos 6 + i sin 0 cos t = ¢ ™ we find, from (23),
(sin Q)
(27) p~ 8 = (M4n) % ———
vieos O = Um0

X J;g(cos v — cos O)TE % cos[(v + %) v] dv
0<@<m, Rep< k.

This is the Mehler-Dirichlet formula.
Furthermore, (Copson, 1945, p. 81)

(28) Qn(cos ) :%i"ﬂ J::|sin t]|*(sin @ + i cos @ sin £)™ """ di.

The formula
(29) TG PJ#() =2 = D4 [7P (1) (z - 04" dy,
valid for Re p > 0, z not on the real axis between — 1 and 1, may easily

be proved from 3.6(3) and 2.1(7). The integral f‘z (t = D" (z - * 1 dy,
which occurs in the proof, may be evaluated by the substitution

t=v(z-1)+1
and 1.5(1) as
(z=D"" T+ DC@W/MT R+ 1+ p).
In the same manner
(30) (W) PjHx) = A=) [1B(8) (¢t~ 7" de
Rep>0,

by means of 3.6(3), 1.5(13), and 3.4 (5).
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Similarly we have
(31) ['(w) Q74(2) = e (22 = I™WE [ Q () (e = )41 dt
|zl >1, Rep>0, Relwv—-p+1)>0,

by means of 3.2(5), 1.5(2) and the substitution ¢t = vz + 2.
Furthermore from 3.2(45) and 2.12(15)

(32) T'(% — ) QH(2) = e 7 24 7% (22 - W& [z + (22 - D¥%]~v%
X _Lwe"("“‘“)‘i(l —e Y[z +(22 = D% - ze t+(22 = 1) e” }dt
Rep <%, Relv+p+1)>0.

The corresponding expressions for P:"(z), Ql"f(cos 6), and P:'(cos 9)
follow by means of 3.3(9), 3.4(2), and 3.4 (8) respectively.
The formula

(1 - 2p) (22 — )42
Frl-prlp-) e -p+1)
x fom(l +2tx w B PR FTVA G,
Re(p +v) <0, Re(p-v)<1, |arg(z :tl)[ <

(33) P4(2) =

may be proved by writing 1 + 2tz + ¢ = (1 + 82 [1 =22 (1 + )72 (1 - 2)],.
expanding the integrand in a series, integrating term by term,and using
1.5(12), 2.1(2), and 3.2(7). For representations of the Legendre functions
as loop integrals see Hobson, 1931, pp. 183 -200, 236 -243, 266.

3.8. Relations between contiguous I.egendre functions

The recurrence formulas for the Legendre functions may be derived
by applying Gauss’ relations between contiguous hypergeometric func-
tions, 2.8. So, we have from 3.2 (14) and 2.8(30)

(1) PE*3(2) + 2(p + 1) z(z2 = D% PLY(y)
=w-Ww+p+1) P‘;(z)
from 3.2(28) and 2.8(28)
(2) v +DzPLG) =@ -p+1) P4 () + W +p) PY_ (2)
and from 3.2 (24) and 3.2 (4)
(3) PA, (2) =P (2) ==(2v +1) (22 = D¥ PE7Y(z),
The following formulas may be derived from (1) to (3)
4) w-—w-p+1 P’;H(z) -+ +u+ P:‘_,(z)

= (20 +1) (2% = ¥ PEH(y),
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(5) PE(2)—zPH(2) == (v —p +1) (2% = D¥PEYz),

(6) zP4(2) ~PE(2) == (v +p) (22 = D* P¥7Y(2),

() (=P zPH () = (v +p) B (2) = (22 = 1)¥% PEY(2),

8) (v —p+DPA ()= +p+DzPH2) = (22 - D¥ PEYI(2).,
Differentiating 3.2(7) and using 2.1(7)

dP*(z) )
(0 —2E, wlp i) e Dilet =% prigy 8 pug,
dz = 32 ] M
Eliminating P‘:}”(::) by means of (6) it follows that
ape
(10) (z2-1) V(Z)z(v—y+1) DL (Z)—(v+1)zpﬁ(z)

v+i
=vzPE(2) = (v +p) P .. (&)

It may easily be shown that the formulas (1) to (10) are valid for
QL(z). .

With P:"(x + 10) = g #itum P#(x) we have the following recurrence
relations for Legendre functions on the cut:

(11) P;”z(x) +2(p +1) 2(1 - x2) %4 P"":'(x) +(v=p)w+pu+1 PV“(x) =0,
(12) 2v + 1 = PE(x) = —p + 1) P:LH (x) + v +p) P5_, (#),
(13) P#_ (x) = P4, (x) =(2v + D) (1 - x?)* P47 (=),

(14) w-w) w=—p+DPL ()= +p) v +p+1) P, (x)
= (2 + 1) (1= x?)% PAY(y),

(15) PX_, (x) —xP4(x) = (v —p + D (1 - x))% PA7"(x),

(16) xPA(x) - P, () = (v + ) (1= x)% PL7'(x),

(17) (v —p)x PA(x) = (v +p) PE_ (x) = (1 - x2)% P4 (x),
vt

dPX(x)

x

(18) (w—p+D P (x) = +p + Dx PA(x) = (1 - %)% P (),

(19) (1 -=%? =+ DxPsx) - —p+ 1 Py, (x)

=—vx Pﬁ(x) + +p) Ps_, ().
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Here again it can be shown, that the formulas (11) to (19) are valid
for the QZ(x).

From (2) we have Christoffel’s first and second summation formula
(20) (£ -2) i_ (2m +1) P, (2) P ()
=(n+1)[P +1(Cf,')P(z)—P(C)PH(z)]

@) -2 3 Em+D)P (2)0Q, ()

n=0

=1-(+DIP,, (2) Q) =P, (2) Q,, ()]

3.9.1. Asymptotic expansions

For large positive Re ¢, the hypergeometric series F (a, b; c; 2) is an
asymptotic expansion in ¢, even when the series does not converge,
provided only that z is not a real number > 1. Hence, for fixed z and v,
and Re y » =,3.3(17), 3.3(16), 3.2(3), and 3.3 (15) are asymptotic expan-
sions of, respectively, P"j(z), Q}"j(z), P;""(z), and Q;“(z). The first,
second, and fourth expansions hold for all z save for points on the real
axis between — « and — 1 and + = and + 1, and 3.2(3) holds for all z not
on the real axis between — e and - 1.

For fixed z and g, and Re v - o, 3.3 (21), 3.2(44), 3.3(21) together
with 3.3 (1) and 3,3 (22) are asymptotic expansions of respectively P/ (z),
Qi(z), P~ (z), and Q¥ (z). The first, third and fourth expansions hold
for all z save for points on the real axis between — =~ and — 1 and + o and
+ 1, and 3.2(44) holds for all z not on the real axis between — « and + 1.

The expressions 3.5(5) and 3,5(6) are asymptotic expansions in v of
Pﬂ(cos @) and Qﬁ(cos 6), respectively, valid ife < 0 <7 —¢€,¢e > 0.

Thus we have

() X o) - e +u+1) )
RS (v +3/2) 2sm9)

X Ycosl(v +%)0 +n/4 + Yur] + O™ ")},

and
v +up+1)
(v +3/2)
X {cos[(v + %O —a/d + Yur]l +0 (™)1,

e<0< m—e, €>0.
For small values of & see 3.5(10). Formula 3.5(9) gives an asymptotic
expansion in u of P_#(cos 6).

(2) P‘;( cos A) = (Y% sin )%
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3.9.2

3.9.2. Behavior of the Legendre functions near the singular points

(1 + )= A= (x%— %)Fo1 %~
{ + 2=l
N\ia ~D@a+r+a1(-)d 1-2/-8
2/m-(* = 1) (i) (M), 1 _¢ /1
([ w=a) ) [
wy @ =T) (L + %+ )] wy G w(l-)

"-1d/ N\dx?ld 2
(T + A)yp— A= (%— 2 W)Fol %—

aT+r7-11
ot =) LT+ AT =) i G
2/ri-(L=2) (N oG
(T+u—-a)Jiu
wy(L=2) [+ + ) Tuy 0
M=)/ gL~ %) o

uia) Furpeor]
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The behavior of Legendre functions in the neighborhood of one of
the singular points, 1, — 1, or =, may be investigated by means of the
expansions of sections 3.2, 3.4, and 3.6, The results, together with the
restrictions that have to be imposed, are shown in the tables on the
preceding pages. Information about the source of these results follows
this paragraph. Equation (3), for instance, shows that in the neighbor-
hood of z = 1, the function P#(z) is equal to [2*/%(z ~ 1)™H/2/T'(1 - )]
+ terms of higher order in z — 1 provided that g is not a positive integer.
This result is derived from 3,2 (3).

Equation Proved from
3) 3.2(3)
(4) 3.6(1)
(5) 3.2(32)
(6) 3.2(32)
7 3.2(36) and 2,10 (14)
(8) 3.4 (6)
9) 3.6 (2)
(10) 3.4 (10)
(11) 3.4 (10)
(12) (7), 3.4(2), and 3.2 (12)
(13) 3.4 (14), (8), and (10)
(14) 3.4 (14), (8), and (11)
(15) 3.4 (14), (8), and (12)
(16) 3.4(15), (10), and (8)
(17 3.4 (15), (11), and (8)
(18) 3.4(15), (12), and (8)
(19) 3.2(18)
(20) 3.2(18)
(21) 3.2(5)

3.10. Expansions in terms of Legendre functions

Some of the integral representations of Legendre functions are of
the form of Fourier coefficients and may be used to sum certain Fourier

series.
For a fixed 6,0 < 0 < m, let

(cos v — cos 0) H7% 0<v<f or 2r-—0<v<2m
f) =
0 6<v<2p-0.
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The Fourier series of f(v) may be formed from 3.7(27). This establishes

the expansion
() I'%-pw [P;_f% (cos 6) +2 ii’ P‘;b% (cos 8) cos(nv)]

(2m)% (sin O (cos v — cos ) # 4 0<wv <0,

0 g<v<m,

0<h<m, Reuc<k.
Hence, replacing v byw — 0 and @ by 7 ~ v,

PG -wPA (~cosv) +2 2 (=D)"P_, (= cos v) cos(nf)]
n=1 :

(2m)% (sin v)" (cos v ~ cos ) #7%4 v<f<m,

0 0<B<u,
O<wv<r, Rep<h.
In a similar manner, from 3.7 (27)

@ T-w £ Phlcos6) cos (n +%) v

(4.m)"% (sin O)* (cos v — cos )~ 7% 0<v<,

0 f<v<um,

O0<f<m, Repu<kh.
If we expand (z — cos v)™ ™% into a Fourier series (z fixed and not
on the real axis between — 1 and 1) and use 3,7(10), we obtain:

(3) Q4 (D +2 % 04, (2) coslno)
~ e W7 (Yn Y D +%) (22 = D¥/2 (2 = cos v)™#7%,

Reu>-%,

z not on the real axis between — 1 and 1.

Furthermore from 3.7(16)

v +1)
a=1 Dy +m+ 1)
=[z + (22 = D* cos(v — #)1¥ Re z > 0.

4) PV(Z) + 2 P;(z) cos [m(v —¢d)]
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Hence, putting ¢» =0, changing v into — v ~ 1 and using 3,3 (1) and 1,2(3)

F''GC-m+1
(5) 2, 2 ¥ Y —p*"
) (2) + Z (-1 TS 7 (2) cos(mv)
=[z + (22 = D* cosv]7V"! Rez>0
Dougall’s expansion
i y 1 it
(6F P {oan ) momtl ¥ (—1)"( = )P';*(cos 6)
™ n=0 v—n v+n+1

-m<0<m, u>0

may be proved as follows. We start with the formula

1 1
(7) cosl (v +%)vl = S"’(V")Z (1" ( - 1>COS[(R+'/1)1)]

e v—n v+n+

- <v<m,

which may easily be established by evaluating the contour integral
f[(z — ) sin(m2)]”! cos[(z +%) v] dz

taken around a circle with the origin as center and (N +'%4) n as radius.
(N is a finite integer.) Applying Cauchy’s theorem and making N - o
we get (7). Substituting (7) in 3.7(27), integrating term by term and
replacing p by — p we find (6).

Again from 3.7 (27)

P#(cos 0) P} \(cos 67)

s o 8
in@)™*
=(U%m! (;:_1(117f cos[ (v + %) v] (cos v — cos O)*~ % dy
® 2
0 ;
(;1(; ’)/) / cos[(v + )4) ¢ (cos ¢ ~ cos 9'))\—4 de.
+ /2
Using (7) again and integrating term by term we find
in(vrm)
(8) P;“(cos 6) vah(cos o) = R i
m
oo i | 1
x 5 (=1 - P7# (cos 6) P, (cos 6")
n=0 v—n v+n+1

—7<0+0'<n, —-r<0-0"<m, ux0, A20.

Furthermore, putting ¢ = 0 and A = m in (8), (m is a positive integer)
differentiating m times with respect to x and using 3.6(6),
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(9) P2(x) PyMx")

_ sin (vm) Z -1 (Vl_n_ 1 )P:(x)P—n.(x')

m n= n v+n+1
0<@<m, 0<8'<m, O+0'<nm, =x=cosB, x' =cosf’.

(For similar expansions cf. MacRobert, 1934.)

From the asymptotic expansions 3.3(21) and 3.2(44) for P _(z) and
Qn(z) respectively [ cf. 3.9(1)] we find that the right-hand side of 3.8(21)
tends to 1 when n tends to infinity, provided, that

24 (22 =~ )% 2 [£ +(L2 - 1)%|,

and we obtain Heine’s formula
10) €-27"= £ @n+DP_(2)Q, ().
= =0
For numerous other formulas see Dougall, 1919; Darling, 1923;
Prasad, 1930, pp. 64 -67; 159; 1931; Shabde, 1931, 1932, 1933; Banerjee,
1932; Mac Robert, 1934, 1935, 1936.
3.11. The addition theorems
The relation
(1) Pz 2! = (22 = D% (2'2 = 1% cos 3| =P (2) Pv(z')
oo F(V -m + ].)
+2 3 {=-l) -
=1 -1 I'e+m+1)
Rez>0, Rez'>0, |arg(z-1D|<wm, |arg(z'-1|<n

P ;(z) P2(z") cos (my)

may be proved as follows. We have from 3,10(4), 3.10(5) and Parseval’s
theorem (Titchmarsh, 1932, p. 421) the series

2P ()P, () +4 § (cpr Ly m*D

n=1 T+ m) P%(2) P:(Z ) cos(mfr)

converging to
(1/m) _[:’;_[z +(22 = D% cos(® =% [z" +(2'2 = D% cos ®17V" ' dD,

and this latter expression is equal to
2P (zz" (22 =1* (z'* = D% cosyl .

by 3.7(18) which establishes (1).
Furthermore (Hobson, 1931, p. 371) we have by virtue of 3.4 (14)

(2) Pv( cos @ cos @' +sin 6 sin @' cos )
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= Pv(cos 6) P, (cos a')

+2 £ (-1" P3*(cos 0) P3(cos 6) cos(mh)
=P, (cos0) P,(cos 0")
pip ¥ DTN e 1P b B
ThamaD L vees )P} (cos ') coslmip)

0<B<m, 0<O<m, 6+60'<m, ¢ real

m=1

Hence, with 3.4(14)
(3) Q,(cos 6 cos @' + sin @ sin §' cos ¢))
=P_(cos ) Q,(cos 6)
+ 2 2 (=" P "(cos 0") Q7 (cos 0) cos(myp)

=1
-P (cos @' ) Q, (cos 6)
F(v-—m+1)
L 2 F(V+m+1)
0<0' <n/2, 0<@<m, 0<O0+0'<m, i real.
From (1) and 3.3(11)
(4) Q,lee’ -(? - D% (t'z—l)A cos Y]
=Qy(t P ') +2 .Ex (=D" Q73 () P';'(t') cos (myf)

t,t' real, 1<t' <t v#£-1,-2,-3,..., i real

P:(cos a') Q:(cos 6) cos(my)

mn=1

(For similar expansions cf. Cowling, 1940, p. 222.)
3.12. Integrals involving Legendre functions

If w"]j(z) and wg(z) denote any solutions of Legendre’s differential
equation 3,2(1) with the parameters v, ¢ and o, p, respectively, then it
follows from 3,2(1), 3.8(10), and 3.8(19) that

(1) fab[(v-‘c') (V+G'+1)+(p2-—,uz)(l~—zz)_']w‘;‘ wa"_’dz

b
d d
= [(1-22) (ﬂl‘f —d—zw;’—wg’ —d7 wﬁ)]a

_ _ n 1L - y pP1b
e =0 u uf 4 (o) L, = e e, w1}
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When  =p =0, we have from (1) and 3.8(7)

@) [P w,w, dz=[=0) (v+o+ DI =2 = D% (0! ~w, e .

If w, and w_ denote two Legendre functions on the cut, we find from (1)
and 3.8(17)

(3) f: w,w dx=[(v-0) (v+o+DI'[(1- x2)% (w, w) —w, w! )1'; .

The following results can be easily proved from (2) and (3) by the aid of
theformulas of section 3.9.2,

W) [T P,(x) 0 (x)dx=[(c=1) (o +v+ D]
Reo>Rev >0,

(5) [0, Q) dx=[(c=1) (c+v+ D7 [glo+ 1) -y + DI
Re(oc+1)>=1, o+v+1£0, v,0f~1,-2,-3, ..

6 [T10,dx=2v+D7" ¢ v+ 1) Rev > -4,

@ [ P @ P.(ddx=20"2[(01) (04w + 1]

x12sin(mv) sin(7o) [ (v + ) — (o + D] + 7 sin(po—mv) |
o+v +1£0,

in particular for v =n, o =m (n, m integers)

(8) J’_‘! Pn(x) B (x) dx =0,
(9) f_tl [Py(x)]% de=n 2 (v + %) " [7? = 2sinm)2 + ¢’ (v + 1),

(10) L, [P, (x)]? dz =(n+%)"" sl Ty B

an ' 0,0 Q (0 dx=[o-1) (o+v + DI
x[Y(v + 1) —lo+ D] [1 + cos(on) cos(vr)] — Y%7 sin(vr —on)}
o+v+1#0, p,0#-1,-2,-3,..

(12) j_" [Q, (2% dx =(2v + 17" t%a? =y’ (v + 1) [1 + (cos vm)?]}
viE=-1,-2,-3,...,

(13) [ P,() Q0 dx =l ~0) & +o+ D]
x[1 = cos(or —vr) = 277" sin(mv) cos(mo) [ (v + 1) —ylo+ D]}

Rev>0, Reo>0, o#v,
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(14) [ B,(x) Q,(®) dx = ="' (21 + D" sin(2um) ¢ (v + 1)
Rev >0,
(15) [ P,(0) B(x) dx = 207" [(0=1) (04w + 1)
x[A4 sin(Y40m) cos(Yvm) — A7 sin(Y4vm) cos (}z0m)],
(16) fy Q,(2) Q(x) dx =[(c=1) (G+v + DI""gly + D) — o+ 1)
- B (4 - A" )sin(Bor+Yn) - (4 +A7Y) sin(Y4onm - Yvml}
Rev >0, Reo> 0,
17 [' P, (x) Q,(Ddx=[(0-1) (o +v+ D]
x[A7" cos(Yvr — Yoom) = 1) Reo>0, Rewv>0.
In (15) to (17)
Ml +%)T(1+%0)
TG +%)C(1+%0)

If in(l)p =p =m, v =n,0=1(, mn, positive integers) we ob-

tain from 3,9(8), 3.9(10), and 3.4 (19)

1-(=D"*"  (a+m)!
U=-DU+n+)D (r-m! °

(18) [1 Q4 Py dx =(-D*

Likewise from (1) if m, n, [, k, are non-negative integers we obtain

(19) ['P3(x) P(x) dx =0 L#n,

(200 [\ P*(x) PE(x) (1 =227 dx =0 k£ m,

@D [ [Pr]2dz=(a+%)7" (n +m)/(n - m)!,
and
@22 [ Q-7 [PA)2 dx =(n +m)!/[m (n = m)1].
Furthermore we have
mh 9=o=1 ' +o)
Frl+%o-% M G%o+%v +3/2

@3) [P, (%) «7 dx = Re o> —1.

This can be proved by substituting 3,2(3) and 2.1(2) and integrating
term by term. Using 1.5(1) and 2.1(23) we first find

L' P (0 a%da=(0+ D7 Flov, v+ Lo+ 25 %)
=2 "o+ D" Flo+v+2,0-v+ L 0+2; %)

and with 2.8(50) the result (23) follows at once.
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Bamnes (1908, pp. 183 ff.) has proved that
(20) [' 27 (1 - %272 Ph(x) dx
2T B+ BT +%0)
"TA+Y%0-Y%v - %W T'(Go+ % - %p + 3/2)
Reu<1l, Reo>-1,
(25) (-D" 2" T (1~m+v) fo‘ 27 (1 - 2%)~* P2 (x) dx

B % +%ATCA+%AT(L+m+v)
Tl +%c+%m =% T(3/2+Y%o+%m+%0)
Reo>-1,

m a positive integer,
(26) j(‘)' (1 -2»)7! [Pfj‘(x)]z de=-TQ+p+v)/[20 T (1 =p + )]
Rep <0, v +u apositive integer,

Other integrals involving Legendre and trigonometric functions are
(Mac Robert, 1940, p. 95, 96; 1947, p. 366, 367):

@7) [7 (sin 9°7" PJ# (cos ) de

~ 27 T (Ma + %) T'(Ma - %u)
FU+Y%a + %) T(Ma =% T + %y + DTG - Y%y +4%)
Re(a £p) >0,

(28) J:a (sinh £) *7" P7H(cosh ¢) dt

_2-1_‘““1—‘(%(1'(‘%#) ["(l/zy—‘/za+l)r(l/z—l/za—%V)
- Cp+X%v+ DT + % -%) T+ Y% ¢ - %a)
Re(a +u) >0, Relv-a+2>0, Re(l-a-»)>0,

(29) T(1+%v — %) D%+ %y + %a) [ (sinh )*7" Q% (cosh 2) ds

=e T 27D (% + Yy + %) DL+ %y ~%a) D Ca + %0 Ga=Y%p
Re(a £4) >0, Relr —a+2) > 0.
Furthermore (Shabde, 1945, p. 51) we have
(30) [Cw+ DI+ D2 [ P(x) P,(a) (1+0)¥* dx

=2v+u+![[‘*Qy+u+1)}"./[—‘(2v+2,u+2) Re(v +u + D> 0.

For further integrals involving L.egendre functions see Chapter 7 and
Bailey, 1931, p. 187; Banerjee, 1940, p. 25; Barnes, 1908, pp. 179 -204;
B. N. Bose, 1944, p. 125; S. K. Bose, 1946, p. 177; Dhar and Shabde,
1932, p. 177; Mac Robert, 1939, p. 203; 1940, p. 95; 1947, p. 366, 367;
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Meijer, 1939, p. 930; Prasad, 1930, p. 33; Shabde, 1934, p. 41; Sircar,
1927, p. 244. For integrals with respect to their degree see MacRobert
1934, 1935,

3.13. The ring or toroidal functions

The ring or toroidal functions arise when Laplace’s equation AV =0
is transformed into toroidal coordinates (n, €, )
¢ sinhn cos & ¢ sinhn sin ¢ ¢ sin 0
m x»=—, y=——onn " z=— .
coshny — cos @ coshn — cos @ coshnp ~ cos @
With the substitution s = coshp and V' = (cosh p — cos 6) v (s, 6, ¢)
the equation AV = 0 becomes
d I: dv 9% 9%v
2) — (sz—l)—]+—— +v/4+(s? -1
(2) ds ds 06?2 Sk ) a2
With v = v, (s) vz(B) va(g‘fw), this leads to the following differential
equation for v,
d? di
@ (-3 212 D[ -%) w+%) - (1-sH7 w2l v, =0,
ds? ds :
v and p being separation parameters. According to 3.2 (1) solutions of (3)
are

=l

Pr, (s) PL_,, (coshn)

4 v, =

Il

QY _y (s) Qi (cosh ) .
The behavior for large values of n follows from 3.2(28) and 3.2 (45):
G) T'dA-w P%_, (coshn) = 9% (1 — e~ 21 )TH =¥ H4Im
x Fl4 ~p,Yo+v—pu;1=2pu;1-e"9),
(6) T'(1+2) Q%_, (coshnp) —r% e T +v +p) (1 - e Mk g~ W HEM
x FM+p, %+v+p; l+rv;e™ ).
Special cases of (4) are
(7 P _, (cosh n) =04r cosh n/27" K(tanh n/2),
(8) O_% (cosh ) = 272 K(e™T),

(9) Py (coshn) = (/27" en/* E[(1 - ™™ *].

K and E are the complete elliptic integrals of the first and second kind
respectively (cf. also Darling, 1923; Lowry, 1926; Airey, 1935).
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All other properties and representations of the ring functions follow
from the formulas of the earlier sections of this chapter. (For an expan-
sion theorem involving toroidal functions cf. Banerjee, 1938; 1942.)

3.14. The conical functions

The differential equation

d? d
() Q-2 = 2z ———[p? +% +(1-2) " p?w =0
(p is a real parameter) is a special case of 3,2(1) with v =-% + ip.

Solutions of (1) are
(2) P’:% + ip(z) a-nd O_% +ip )

The conical functions are solutions for a real argument x numerically
less than unity.

(3) _% g (cos @) and Qf%+ ip(cos a).

The principal properties of these functions can be obtained from the
general results regarding P/ (cos ) and Q4(cos 0). For instance from
3.5(7) and 3.5(8)

1£)2
(4) P__.A+:.p(cost9)=1 iﬁ‘(slnG)z
e 1/ 2 2 3 22
O Y o< oenn

4p2 3- 12 . 5
(B) Py, ,(cos®) =1+ —é—z-—-—(sm6/2)
(4p? +12) (4p? + 32)
& 22 - 42
and it is seen that conical functions of the first kind are positive for real
p. A special case of (5)is
P‘_‘/5 (cos ) = (% =)' K (sin 6/2).

(sin 0/2% + -+~ 05 <nm,

K is the complete elliptic integral of the first kind. (cf. also Darling,
1923; Lowry, 1926; Airey, 1935,)

Formulas similar to those of Neumann, 3.6(29) and Heine, 3.10(9)
respectively, have been given by Mehler, 1881, p. 193:

(6) "P—‘/{Hp(—x) = cosh (pn) _];m (v-0"'P_,, p(2) dv x<1,

“p tanh
T =,,fu Poys ) Py =) dp.

cospr
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These formulas are a special case of the following inversion formulas

(Mehler, 1881, p. 192; Fock, 1943).
(®)  f(8) =t tanh(ms) [~ Py, (%) g(x)dx,

©) g =L Py, (2 (0 de.

All other properties and representations of the conical functions
follow from the formulas of the earlier sections of this paper. See also
Mehler, 1881 and Neumann 1881. For an expansion theorem involving
conical functions see Banerjee, 1938, p. 30.

3.15. Gegenbauer functions
3.15.1. Gegenbauer polynomials

Gegenbauer's polynomial C%(2) for integral value of n is defined to
be the coefficient of 2™ in the expansion of (1 — 2kz + A?)7” in powers
of & (cf. also section 10,9);

() (1-2hz +h)™¥= £ CY(2) k" |h| <]z (2% — D],
n=0

Since

(1=2hz +5) Y =(1=A"#[1+28(1-R"2(1=-2)]"
= F (=)' (s +N(1=-2*5°(1 = H-2=2/[5 1T ()]
s=0
and

B(1-R)"22% = 3 Dim+2s+20) A/ [m !0 (2s + 20)],

m=0
the coefficient of A" in (1) is found to be
R =-DIC +) T+ 20 +0) 4 -% 5!

@ Eylo= ,Zo TG T2+ 20) (e = D)!

and by means of 1.2(3), 1.20(5), and 2.1(2) we find that
C(r + 2v)
Ch(2) = e Fn + 2v, —nsv + 15 %= % 2)
(3) ’(2) D@D (n+2v,-nyv+Y% %-Y%z
0 1 2y e
From (3) and 3.2(7)

(4) C¥(2) = 2% D+ 20) (v +%) (22 = D¥ 4
x P% =¥ (2)/[[(20) T'(n + D]

ntyv—
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From (4) and 3.2 (22)
(5) C;’n(z) ==D"T'(w+n) F(=n, n+v; %; 23 /[n1 W),
(6) C:’nﬂ(z) =20 +n+1) 2F(-n, n +v+ 1;3/2;22)/[n 1 T ).

From (3), (5), and (6)
(7 () =(=n" C(-1) =T'(n + 22)/Tn 1T (20)].

From 3.2 (23)
®) CY(2 =Q)"Tw+n) F(=%n % -Y%n;1-v-n;z"3/[n!1TCG)N,
< Y%n
(9) C:(z) =W =2 (-D*Tw+n-m)(22)"2%/[m!(n -2m)!].
m=20

Hence it can be shown that

n

(10) €% () = (1= 225 2 [(1 = 22y mhv=4],

xED" T+ 2v +0)/[(n!1TG) T2y + 20)].
From (9)
dz"

A trigonometric expansion of C”(cos ¢) may be obtained as follows.
We write
(12) (L-2h cosp +h2) ¥ =(1-he®) V(1= he  ¥)?¥
and expand the left-hand side and each of the two factors on the right-

hand side in powers of 2. Thus we have

s C”(cos ¢) A" @iz
n=0

(11)

(Crdl=2"T{w +n)/TCW).

=1 2 D+ hsebsPys uili C(+v) hle™ b /01],
=0

s=0

and comparing coefficients of 2™ on both sides
(@) 3 C” (cos ¢)

= 2 Plr+ ) Tn-—m+2) e~ 8728 /(1 (n - m!].

m=0

or

(13) %IrWI3 C'r:(cos ®)
<Y%n

= _2 l(m+) T =m +1) cos[(n-2m)p]/lm! (n —m) 1],

n=0
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When n is even, only half of the last term (corresponding to m =Y n) must
be taken.
From (13)

(14) lim ') C¥(cos ¢} = 2n7" cos(np) n=1,2,3, 0004
v >0

From the identity
(1-2h cos b +h¥)7" = (2 sing)™!
x[(L-he®) ' e® _(1_pe )" ™ ]
we obtain the result

(15) C'ﬂ(cos $) = sinl(n + 1) ¢ 1/ sing.

To establish the orthogonality relations of Gegenbauer's polynomials,
(16) J €% CYUx) (1= 29" dx =0 iy
2" 7 ['(n + 2v)
nlw+n)[C@)N2°

we write the integral on the left-hand side by means of (10) in the form
-rr r( 1 "
AN R n)f C%(x) [(1 - 22) "% ] dx.
-1

an [ e 1% (-2 % dx -

eI T @) I'(2v + 2n) dx™

Integrating n times by parts and using (11) we obtain (16) and (17).
From (16) and (17) with C} (x) = 1 we have

0 n=]~12’31"'7
T

(18) [, C¥%(cos ¢) (sin $¥* dp =

27 a2y + D) [IT(1 + )] 72

n=0,
The addition theorem for the C:(z) has been given by Gegenbauer

(Gegenbauer, 1893, p. 942)
(19) (TWI%C¥%[z z, - (2% - D* (2% - D* cospl.

=2y =D Iﬁ (- (G =1+ DT+ DI (20 +21 - 1)
=0
x[Mn + 20 + D17 (22 = DEUZ2 - D C¥2 1 (2) CVF (=)
XC”I_% (cos )]+
From (18) and (19)
(20) _foﬂ C¥(cosy cos Y’ + sinyr siny’ cos @) (sin p)* 7' dp

=227 n 1 [C'(W?% CE(cos ) Clcos ¢y ")/T(2v +n) Rev >0.
(For further integral formulas cf. Watson, 1944, pp 367 -369,)



178 SPECIAL FUNCTIONS 3.15.2

3.15.2 Gegenbauer functions

From 2,1(1) it is to be seen that (3) with n replaced by a (a arbitrary)
is a solution of
21) Z2=-Dw" +2v+)) zw' —a(a+2v) w=0,

We therefore define Gegenbauer’ s function for arbitrary (possibly complex)
values of @ by (3) or (4) with n replaced by a.
From (4), 3.7(6), 3.7(8), and 3,7(34), respectively

(22) C%2) =r % (@ +20) T'(w +%)/[C () T(20) [ (e + D]
x [ [z +(z% - D¥ cos t]%(sin ™" dt Rev >0,

(23) C¥%cos @) =2 Tla+ 20 ' + %)/ [['(W) T'(20) ['(a + DI
% (sin qS)"z” fod’ cos[(v +a) v] (cos v — cos )V ! dv

Rev>0, 0<¢<a,

(24) C";(z) =~7"" sin(ar) fom (1 4+ Zezapd) Y =Y
—2<Rev<Rea <0, larg(z T1)| <.

(For further integral representations cf. Dinghas, 1950.)

The Mellin inversion of this last relation is
¢t oo

(25) (1+2tz+t2)"”=‘/2if (sin ar) ™" t*C¥(2) da
c= 100
-2<Rev<ec<.
From (4) and section 3.8

(26) (a +2) CZH(Z) =2 +a+1) zC%,,(2) =(2v + @) C;(Z),

(27) a C¥(2) =2v[2C Y (2) = C¥1] (2)]

(28) (a + 2v) CU(z) = 2u[CZ+'(z) - zC::; (21,

(29) a C¥(2) =(a-1+2v) 2CY_, (2) ~20(1 - 2% C::; (2),
(30) i C¥(z) = 2v C¥}! (2).

From 3.3(1) and (4)
(31) C:(z) =~ sin(am) C¥ zv(z)/[sinn'(a + 2v)].

—-—a-

A second solution of Gegenbauer’s differential equation (21) is easily
found to be
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rr@e+a

(32) D:(z) =2_'_aﬁ—-— Flv +Y%a,v+%+Y%a;v+a+l; z2).
v +a

The D:(z) satisfy the same recurrence relations as the C¥(z).
A relation between D:(z) and C:(z) analogous to Christoffel’s re-

lation between @ (2) and P (z) [cf. 3.6(24), 3.6(28)] has been given by
Watson (1938)

(33) D%(2) =T (20) CY(a) [ (e - D™ ¥ dt

- (20) (22 = 1)%-1/{“42%]

(1-—1/)"(21/ +n—m).

(n=m) by )4,

(w+n-2m-1

X

BT gt B0 Rev >0,

3.16. Some other notations
The factor e **™ in the definition of Q‘;(z) 3.2(5) is often omitted.
(MacRobert).

In the definition of Q% (z) given by Barnes, the factor e W7 in 3,2(8)
is replaced by

sin[7 (v + p)] ]

sin(vw) .

furthermore the factor e 7 on the left-hand side of 3.4(2) is omitted.
Ferrers’ associated Legendre function (Mac Robert, 1947, p. 307) is
denoted by T;”'(x) and is identical with PY(x) (- 1< x < 1).
A different notation for Gegenbauer’s functions is used by Chu and
Stratton, 1941. Instead of (4) and (32) respectively we find

C¥z) = (2% - ) PY. 52
DY) = (52 - D% Q% (2),

They satisfy the following differential equation
z2=Dw”" +2w+Dzw —ala+2v+1)=0.
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CHAPTER 1V
THE GENERALIZED HYPERGEOMETRIC SERIES

4.1. Introduction

Gauss’ hypergeometric series F(a, b; c; z) has been generalized by
the introduction of p parameters of the nature of @, b, and of ¢ parameters
of the nature of ¢. The ensuing series

s |
55 S0 S e Rt Lol PSS -] P
P q P,’---sﬁq P g r t

) (a| )n aae (ap)n zh

7= (py), et (o), nl

is known as the generalized hypergeometric series. Gauss’ series in the
present notation is

b;
F (@ bye; )= F [“’ z]

c
Here
(2) (@), =1, (a,=al@a+D - (a+n-1 =I(a+a)/T(a)

n=1, 2, «au,
and z is a complex variable. In general (that is, excepting certain in-
teger values of the parameters for which the series terminates or fails
to make sense) F_ converges for all finite z if p < ¢, converges for
|z| <1lifp =g + 1, and diverges forall z £#0 if p > g + 1.

The numbers a,, -+« , a_are called the numerator-parameters and
Pissesspyyare referred to as denominator-parameters.

The series |F_is not the only generalization of Gauss’ series. The
hypergeometric equation is a linear differential equation of Fuchsian
type, but, while the series (1) also satisfies a linear differential equa-
tion, this is not of Fuchsian type. Thus the differential equation can be
used as the basis for another generalization in which one considers the
generalization to be the solution of an equation of Fuchsian type of
higher order. In this connection L.. Pochhammer (1870) has investigated
the most general homogeneous linear differential equation of the n-th
order which has singularities ata,, a

182

53 +++ 5 @, o and is such that the
n
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general solution in the neighborhood of every singularity a, (v = 1, 2,
.., n) is of the form

OEO cl(z-ay)"-i-zp § c:‘(z-ap)"

m =0 m =0

where B Cpm 59 9@ 3 and c(; are arbitrary constants. Similarly, the

expansion for large z of the general solution is assumed in the form

where g, ..., g,_, and g; are arbitary constants. It can be shown that
the differential equation is determined by these postulates.

The point of departure for another generalization is Schwarz’s s-
function (cf. 2.7,2) which maps a half-plane on a triangle formed of three
circular arcs. Koppenfels (1937, 1939) has studied the function which
maps the area bounded by four circular arcs on a half-plane, assuming
that two of the four angles of the curvilinear quadrilateral are 7/2 and
the other two either 7/2 and 37/2 or 37/2 and 37/2.

E. M. Wright (1935, 1940) has investigated the asymptotic behavior
of the sum

Tla, +B8,n) "'F(ap—f»Bpn) z
n=o F(p| +,u,|n) e F(pq +.uqn) nl

for large |z|. Here the B_and the y , are real, positive and

q P
1+ tE ' ‘u‘—,-f| B8,> 0.
If all the p, and B, are equal to unity, this reduces to a multiple of
e g
5Ewleine’s: hypergeometric series are discussed in section 4,8, For
further generalizations see Chapter 5.
The following conventions will be observed throughout this chapter:

The values of the ¢ parameters p,, ... , p g in qu are always dif-
ferent from 0, -1, -2, ... .

If the variable z in o Fq is not equal to unity, we assume tacitly
|z] < 1.

If the variable z of ,, F is unity, we always assume

1
qt1

g
Re 21 p,— Z al>0.
t=

=01

If the variable z in a |F_is unity it will be omitted.
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4.2, Differential equations

The function pF is defined by 4,1(1). The series was introduced by
Clausen (1828) in tile case p = 3, g = 2; the notation is that of Poch-
hammer as modified by Barnes. If one of the a _is a non-positive integer,
the series terminates; the cases in which one of the p . is a non-positive
integer are excluded. '

Ifp=g+1and

(1) s =Relp, e bg =y —---—aq“),

then the series in 4,1(1) converges for all |z| = 1 if s > 1; it converges
forall |2| =1, 2 #1if 1>s >0 and is divergent if s < 0. The proof is
the same as the one given in 2.1.1 for , F,.

Let 8 denote the operator zd/dz . Then u = qu satisfies

(2) 16(+p, =1 - (B+p, ~D=-2B+a) -G +a)lu=0,

which is equivalent to the general equation of the type

q
(3) n§1 zn! (anz—bn)Dnv+aOu+quqHv=0 gz p,

or

g
W) = 2"'(a,z-b)Dv+aw+zi(1-22D"™v=0 p=g+],

n=1

where @ _, b, are constants, a, # 0 and D = d/dz. For (3), z =0 and
z = oo are singular points, of which z = 0 is of regular type (cf. Poole
1936, Chapter 5); (4) is of Fuchsian type (cf. Poole 1936, p. 77) with
regular singularities at 0, =, 1. For a set of linearly independent solu-
tions for the neighborhood of z =0 and z = « see section 5,4, There and
in the greater part of the literature, only the “ general” case is inves-
tigated where none of the p ¢ and none of the differences B~y s B
(r #£5) is an integer.

In the case p < ¢, E. W. Barnes (1906) gave the asymptotic expan-
sions for the solutions of (2) in the " general” case (see above). L.
Pochhammer (1893b) considered various forms of (2) and (3) and gave a
complete set of linearly independent solutions in the form of multiple
integrals. In particular the cases, ¢ = 3 and ¢ = 4 (p < q) were inves-
tigated by I.. Pochhammer (1893 a, 1895, 1898).

In the case p = ¢ + 1 Pochhammer (1888b) investigated (2) and (4)
in the " general” case and gave multiple integrals which are solutions in
the neighborhood of z = 0, =, 1. He also showed that there exist p
linearly independent solutions which are one-valued in the neighborhood
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z = 1, In the case p = 3, ¢ = 2 this had been done already by E. Goursat
(1883, 1884). Thomae (1869) gave the connection between complete sets
of linearly independent solutions at z =0 and z == for p = 3, ¢ = 2, This
has been done for all values of p (= ¢ + 1) by F. C. Smith (1938, 1939),
who also investigated various special cases where some of the solutions
of (2) and (4) involve logarithms (some or all of the differences p, — o,
may be integers, but the p,~ a and the p , themselves are not integers,
or some or all of the a_— a_ are integers, but the a_— p ,and thea
themselves are not integers).

If v(2) satisfies (2) and if it can be obtained from an analytic function

w(t), such that lim w(¢) = 0, by a Laplace transformation
t=>0

v(z) = fooo e *wl(e) de,

then w(t) satisfies
(5) W=D?*" 9(0 + 1—a1) e (O + l—ap)

+(=p t@+1) (6 +2-p)+ e (0+2-p Nv=0
where 8 = td /ot.

For other results on differential equations satisfied by functions
involving generalized hypergeometric series see Chaundy (1943).
4.3. Identities and recurence relations

T. Clausen (1828) proved that

2a, a+b, 2b; z
1) [Fla, bja+b+%; 2% =_F
(e : 321 a+b+Y%; a+ 2b;
and he also showed that this is the only case in which the square of
F(a, b; c; z) can be expressed in terms of a ,F, of argument z. More
generally, E. Goursat (1883) proved that F(a, b; c; z2) F(a', b'; ¢';2)

isa F_ of argument z only if either

a' =a+l-¢, b'=b+l=¢c, ¢'=2-c¢

c—-a-b=n+%, n=0,%1, £2,...,
orifa—a’, b=b', c~c' areintegers andc +c’' —a—-a’' —=b-b' =n
where n =0, 1, 2, «4s s
W. N. Bailey (1928) gave new proofs for this and for similar results
by Orr, Preece (1924), and Ramanujan and supplemented their results
by some new formulas. We have:

(2)  F,(p;5 2) ,F, (o3 2)

=,F,Up+hahp+ho-lap,0,p+0-142)
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B) o F los2) (Fylps=2) = Fylp, Yp, Yap + Y; — 2°/4).
@) ,F,(a,B;:2) ,F,(a, B;~2)
~ F.la,B, %a+B), %(a+B + Da +B; 42%]
(5) | F,(a;p;2) ,F (a;p;-2)
=,F(a,p~a;p, Yp, %ilp +1); 2%/4)
6) |F, (a;2a;2) ,F,(B; 28;~2)
=, Fa@+B), ila+B +D;a+%,B8+%, a+fB;22/4]

(7 on(Pr’pz;z)on(pl’PZ;hz)
. B /30, +p,-D, /30, +p,), 1/3(, +p, + 1); —(3/4)° 22
3e P1,P2,%P|,%P2,%P1+1/2,l/2pz+%)}‘vl-‘

where A =%(p, +p, =D, p=%(p, +p,).

(8) 2F1 (a,B;a+B —%;2) 2F1(a’B§a+B +Y%; 2)
=,F,(2a,2B,a+B8;2a+28 -1,a+B +%; 2)

©) 2 F (a,B;a+B -%;2) 2F|(a—1,B;a+B'—l/z;Z)
:3F2(2a-1, 2B,a+B-1;2a+2B8-2,a+8 -Y%; 2)

The series in (4) converge only if @ or 8 is a non-positive integer, but
(4) is formally valid for all values of a, B, in the sense that a formal
multiplication of the power series on the left-hand side gives the right-
hand side. The other formulas hold at least for |z| < 1.

For the related formulas by Cayley and Orr [cf. 2.5(4)] see Bailey
(1935). The following formula is due to H. B. C, Darling (1932) (cf. also
Bailey 1935):

1P Y 1- y]-'_ ,1— 5
(10) .F a,B,y; 2z E a B w2
LB 8, € ¥E 2 =5, 2 e

e—1 a+1-86,8+1-8,y+1-5;z
e~ AR DR O, ]
6—-a,d—-B,0~-vy; 2
X gl “ A & + a product obtained
6,86 +1—¢

by interchanging & ande.
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For other relations connected with the identities of Cayley and Orr see
section 2,5.2 and J. L. Burchnall, T. W. Chaundy (1948). A large number
of expansions of hypergeometric functions in series of other hypergeo-
metric functions has been given by T. W. Chaundy (1942, 1943). The

simplest cases are:

= b
e (C)rr!
4, B, c, —r; 1 .
X4F3 a,b,C z 2F|(a+r!b+7;c+r;z)
& (a). (b)
= 2 _1!"__,-—,‘—
'=°( ) (c+r=1 r!

T8 e it ] S I
z +r,0+r; H
8 a b C JF,(a+r ric+2r;z

(12) F, (c;p2) ,F, (c'; q2) = s el

n=0 nl! (c)n

2F,(l—c—=n,-n;¢';p/q)

(18) , F, (a; c; p2) ( Fi(a'5¢"; ¢2)

o (a), (p2)" ~a',1-c~-n,-n;-¢q¢/p
Z o F,

nso nlle), ¢c',1-a-n

(14) ,F,(a, b; c:pz) ,F,(a', b'5¢'; q2)
= (ajn (b)n (Pz)n a’; b,’ 1 —-c =1, -n; ‘I/P
- —zo 4F3 ’

nlc), ¢',1-a~n,1=b-n

(15) ,Fy(a, b;pz) ,F(a’, b"; g2)

_ S (a),,(b),,(pz)"an [a',b',—n;—q/p ]

o n! l-a-n,1-b-n
The series in (15) do not converge unless they terminate; but the coef-
ficients of corresponding powers of 2 on both sides are equal.

Two functions F are called contiguous if their arguments and para-
meters have the same value with the exception of one parameter for which
the values are supposed to differ by * 1. There exist 2p + g linearly
independent linear relations between a fixed F_and its 2(p + q) contig-
uous functions. The coefficients of these relations are linear functions
of the variable and polynomials of the parameters. These relations have
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been given by E. Rainville (1945) for the cases where all of the denom-
inator-parameters are different from 0, -1, =2, «..and ifp < g + L

4.4. Generalized hypergeometric series with unit argument in the case
p=q+1

Standard types of generalized hypergeometric series. When the para-
meters in g+ Fq (a 3 Py 2) are such that

1) a, +a, +--- +a gy ==1+p, e

the series is called Saalschiitzian. If we have
(2) ].+(1‘ =p'+a2-_—...=pq+aq+'

the series is called well-poised. If all but one of the equations in (2)
are satisfied, the series is called nearly-poised. Then the parameters
can always be arranged, (without changing the series itself) in such a
way that the breakdown in the equality of sums of pairs of parameters
occurs with the first or with the last pair; accordingly, 5 Fq is called
nearly-poised of the first or second kind, respectively.

Saalschiitz’s theorem

!bl_; = -b
(3) an[a : ] o —al e~ 1, il L v s

c,1+a+b-c—-n =(c)n(c-a—b)n

which has been proved in section 2,1.5 and stated in 2,1 (30) sums every
terminating Saalschiitzian | F, . For a non-terminating Saalschitzian j F,

we have (cf. Saalschiitz 1891, Bailey 1935, p. 21)
@ .F, [a, b, H,{, fa b 1,:|
Frrric-a=-5sI(f-—a->5)
e Dle =BT F=a =5
I'(e) T'(f)
ITMaT B I'(c+f-a-b)

c—a,c—0b, 1;
x , F, .
c—a-b+1l,c+f—-a-b

Again, this is a special case of one of a large number of linear relations
between three series . Fz ; for a full account of these see Bailey (1935,
Chapter 3).

Every well-paised _F, of unit argument can be summed in terms of
gamma functions. The result is

+la+b=-e)"1
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®) F a, b, c
22l 1+a-b,1+a-c

_ T1+%a) T QA +a=-8)T'(A1+a=-c)T(1=-b-c+Y%a)
Frl+a)FrA-6+%a)TF'Q-c+%a)T(l+a=-b—-2¢)

This is Dixon’s theorem (cf. Dixon 1903, Watson 1924, Bailey 1937 and
MacRobert 1939). Other cases where a ,F, of unit argument can be
evaluated are:

6) F a, b, c;
321 Y(@e+b+1), 2¢

T T+ TI'Cha+lab+ 1R Dc+~la—-%b)
F'Ga+ KB/ T4b+WT(c+%—-Ya)'(c+%—-%b)
(Watson’s theorem, cf. Whipple 1925) and

a, 1-a, c;
£ 3Fz|:f, 2c+1—f]
# L (S 1) 21

TT(c+%a+%-%NT(Gha+%NOT(c+%+%b=2%)T (%b+%[)
(Whipple’s theorem, cf, Whipple 1925).

Dougall’s theorem sums a terminating well-poised _ F, of unit argument
with a special value of the second parameter:

a, 1 +%a, b, ¢,d, e, —n;
(8) 7F°[ ’ n]

Y%a,l1+a-b,l+a—-c,1+a-d, 1+a—-e, 1l+a+

_(Q+a) (I+a-b-c) Q+a=-b=-d) (1+a-c—-d)
(1+a—$)n(1+a—c)n(1+a—d)n(l+a—b-c—d)n

where 1+2a =b+c+d+e-nandn=0,1, 2, ... (Dougall 1907).

There exists a large number of transformations of series 1 Fq with
unit element, i.e., formulas which express one such series by one or
more others, in many cases with varying values of ¢g. A simple example
is:

( ) F -n, b, c, d; _ (w—d)n
# 43l 1-pn=bl-n—-c, w - (w),I

& d,l~n—b-c,—Yn, Y%o=Yn, 1-n—w; :l
A | L ey 1 gy, R &= 10 =), L% )

which transforms a terminating nearly-poised ,F, of the second kind
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into a (F,. For this and for results of a more difficult type see Bailey
(1935 Chapters 3 to 6), Whipple (1935, 1937), MacRobert (1939), Mitra
(1942), Bose (1944).

4.5. Transformations of gt Fq and values for arguments other than unity

Except for the connection between generalized hypergeometric series
of argument z and z~' which are solutions of the same differential equa-
tion (cf. Thomae 1869, F. C. Smith 1938, 1939) no linear transformations
of gt Fq seem to be known in the general case if ¢ > 1. In certain cases,
quadratic and cubic transformations exist for , F,, e.g.,

F a b, c; z
SVRNERE l+a-b,1+a-c

—(1-2)e 31‘72 [1+a—b—c, Ya, }/za+l/z;—4-z(1—z)_2:|

l+a-b,1+a-c
(Whipple 1927) and
@) B, [a, 2b—-a~1,2~2b + a; z/4]
b,a-b+3/2
a/3, a/3+1/3, a/3 +2/3; —=27 z/[4(1-2)3]
b,a-b+3/2 ]

which have been proved by Bailey (1929). Bailey also gave a linear
transformation of a nearly—poised ,F, of the first kind:

’ " 2a-1, a+%,a-b-Y%;z
(3) (1 - z)2e! B ) )
a=-%, a+b+%

=(1=-2z)"°_F,

(gt p | 2L bMb—a-lz)
ik b-Y% a+b+%

Burchnall (1948) has proved that a well-poised | F, of argument x can
be expressed as a sum of series , F, of argument — (x — 1)?/(4x).

There are also a few cases known where a e Fq can be evaluated
for an argument # 1, e.g.,

a, 1 +%a, b, c; -1 I'l+a=-8)TA+a-c¢)
(4) i3 =

Ya, 1+a~b, 1+a~c —F(1+a)l—‘(1+a-—»b—c)
(cf. Bailey 1935, p. 28, and also Bailey 1929).
Some special cases: The formulas developed in section 4.4 and in the
present section contain a large number of results which cannot easily be
proved directly and which have found much attention in the literature.



4.5 GENERALIZED HYPERGEOMETRIC SERIES 191

For instance, 4.4 (5) gives (witha=b =¢c =-n):

[( )] _ cos YL T T (% + %n) (A +3n0/2) 27

) 2 (-1 aT (1 +%) T +%n)n!

r=0

If we substitute b =1+ a 4+ n in 4,4(8) and let n » « we obtain

a, 1+%a, c, d, e
6 F
©) s ‘[%a,l+a—c,1+a-—d,l+a-—e

_ T(l+va=-e)TQ+a-d)T(Ql+a-e)IT'(1+a-c~d-ce)
TQ+a)T(l+a-d-e)'(l+a-c-e)T(l+a-c—-d)
A special case of this is the Dougall-Ramanujan formula
B 1e2 § _EDE0, 6,
n=1 (1+x)n(l+y)n(1+z)n

TE+DT G+ DI+ DI E+y+z+ 1D
T +z+DT(x+z+ D (x+y+1)

which is valid for Re(x + ¥y + 2 + 1) > 0. Another consequence of (6)
(witha=1, c=1-x,d=e=1)is
x—=1 (x=1) (x=2)

B A=8 x+1 w (x+ 1) (x+2) =san=l

‘The series on the left-hand side converges if Re x > 1. A large number
of other special cases is given by Bailey (1935, Examples pp. 96, 97) and

Hardy (1923).
The truncated hypergeometric series

(@, b
¥, (@ b, ¢, 2) = Z ﬁ&;'

can be expressed in two different ways in terms of _F,:

—-n, a, b; z . e?~-n,a by z
¥o= afls = lim _F,
-n, ¢ €>0 €—n, c

and
(a) (b) 1, -n,1-n-c¢; 271
y = n nzn F
"oe), m! 12 l-n-a, 1-n-5%

If z = 1 we have

b, c,1) =
¥ala by o 1) nlT(a+b+n+1) ¢, atbtn+

T(e+n+1DT(B+n+1) a, b, ¢ +n;
3t 2 1
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_F(l+a—c)l"(1+b-—-c)
T =) T ~c #a 48

i (@, 4, )4, F l-a,1-b,n+1;
(n+D!e-D 37 2 2—c,n+2

I'lea+n+DICG+r+1) c—a,c--b;c+n;:|

nllM@a+b-c+1DTc+n+1) o c,e+n+1

(cf. Bailey 1935, pp. 93, 94). Corresponding formulas exist for the trun-
cated ,F, and a special truncated ,F, with unit argument (cf. Bailey
1935, pp. 94, 95).

4.6. Integrals

The analogue of the Eulerian integral representations in section
2.1.3, in the case of the general qu has been given by Pochhammer
(1893h), Erdelyl (1937), [cf. also 5.2(2)] and by Pewvnyi (1940) for
integral relations of the type given in 2.4 (2). The extension of Barnes’
integral representation 2.1(15) to the case of a general qu can be
derived from the results in sections 5.3 and 5.6.

Many definite integrals can be expressed by one or several series
F . In particular, the Laplace transform of a qu’ p<Lq,is

P
: .ot
sf”e"'qu Fuasc-afpit d£=p+‘Fq[1’a”""a.n’S :|
o p1,...,pq pl,..-,pq
A formula by Shanker (1946) gives the Hankel-transform of a , F :

2

I P B, o %+ m+ D %p—m + 1), %lp+v+1); %e2]
X Jv(zt) (z)% dt =(=1) zP 7%
F,lp, %olp+m+1); %(p~m+ D) Yip+v+1y-%z2%],

where
m=0,1,2,..., and Re(p+v +1) >0, Re(p—-m+1)>0, Re p > %.
For other special results see section 4.7 and Erdélyi (1938).

4.7. Various special results

H. Bateman (1933, 1934) and Pasternack (1939) investigated the
polynomials in z,

F(2)=_F,(=nn+1 K+%z 1,1 1) n=0,1,2, c0s,
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and Bateman (1936) studied the polynomials Z (z) and Jr';"” (z) defined
by

Zn(z)=2Fz(—n,n+ 1, 1; 1; 2) n=20,1,2, con,
IN'v+n+1+%uw)
n!F(u+DT(v+l+%u)'

Bateman’s results have been generalized by Pasternack (1937, 1939)
and by S. Q. Rice (1939). The latter introduced

H”(é_’ P ‘U) = 3F2 (_n” n + 1) 5; 1, Ps U)

g W o BV g) = F,(~n;u+lv+1+Y%u; z?).

wheren =0, 1, 2, ... and &, p, v, are complex variables but p #-n -1,
~n—2,.... Rice found that

H (&, p, v)
_— TA-HPETP(1-2u)d
roTe-5J, t t) n( vt) dt
Rep > Re £>0, Pn(z)=2Fl(-—n,n+l;l;.1/z—l/gz)
and that

Hn({:, ps v) r(P & q) F(q) F(f) F(P = f)

2n

F(P) otioo
= F) T~ T(E=-s)T(p—g~E&+s)H (s,q,0v)ds
o~ 100

O0<Reo<Regq, 0<Re({~0)<Relg-p).
The generating function of the H_ is

(1-—3)—1 2FT[§’ l/2; ps -—41):5(1—13)_2]
- S "H (& p, o)
n=20

If Q_(z) is defined by 3.6(24), then

£ @n+D QD H & p v)=(s=D" F [ 1;p; 20/(1 = 5)]

n=20
If n > o, an asymptotic expression for # (&, p, 1) is
L) n~* .1 P n R
Tp-8T1-9 T(E-p+ D)

Rainville (1945) gave recurrence relations for the J:"’and showed
that Hn(é', p, v) satisfies the four-term recurrence relation
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n(2n—3)(p+n—l)Hu

=(2n-1D[(rn-2)(p-n+ 1)+2(n—1)(2n—3)—2(2n—3)(§+n—1)v]
xH _—(2n=-3)[2(a =1 -n(p—n+1)+2(2n-1)(é-n+1)v] H _
—(n=-2) (2n—1)(p—n+1) Hn_

2
g
M. C. Fasenmyer (1947) proved that
d
e (1 (& p,v)+ H _ (& p, 0)]

= n[Hn(.f, p, v) — Hn__1({", p, )]
and studied the polynomials
flasbsz)= F [“ﬂ,n+1,a|,..,,ap;z]
BT rerge Yy Ly by yunayb
=05.555.5 0 J=lyeaw g

which can be generated by

g -4zt o ;
1-0"7¢C [(1—3)2 = n§=lo [, 2"

where

~ By www s B3 ¥
C) = F, [b‘ v ]
1

For recurrence relations, series and integrals involving the f see
Fasenmyer (1947) and also Chaundy (1943). A particularly simple result
is an integral representation for Bateman’s Zn(z):

Z (D) =a% [T ML (2) L (~t2) de

where L _(z) denotes the n-th Laguerre polynomial (cf. Chapter 10), and
f A& ps ) =idm™ [V (0% e tH (£, p, —v/d) dy,
H (& p,v)=a® [Tt e™tf (& p; vt) de.

Erdélyi (1938) has proved the expansion

8—2/2 o0
; s 2 An(/\,u+n,t)z"1F1()\+n+1;2p+2n;z)
- Z n=20

where

_ S =a=1
An()\’ s t) = r:}:‘o c)\.u.rtr
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and

Ve

Chwr =gy dfiln -4 20 -5 2,

which is valid for [£] > 1, |z] <L, p#0, 1,12, ....
Krall and Frink (1949) have investigated a class of polynomials
¥.(a, z). According to Rainville these can be written in the form

v.la, 2) = ,F (-n, a+n -1 -2)

where n = 0, 1, 2, voo ,and a = 1£ 0, =1, =2, .... The y_ (a, 2) are
orthogonal polynomials on the unit circle associated with the weight
function

a-1) Fy (L a—-1;—-z"").
They can be expressed in terms of Whittaker’s function W, #(z) [cf.
6.9(5)] in the form ’

Yola, 2) = eV B VW i T

For recurrence relations, a differential equation, and other results for
¥,(a, z) see Krall and Frink (1949).

4.8. Basic hypérgeomet.ric series

The following account of the theory of basic generalized hypergeo-
metric series follows closely Chapter 8 of Bailey (1935). Let g be a
parameter which in general shall be restricted to the domain [g| < 1. We
define

( (a)q'n=(1-a) (1-ag) (1 ~ag?® ++- 1=ag"™"') n=12 ...,

@ (@, =1

for all @ and g.[The notation [a] for (a) (where the ¢ is not shown
explicitly) is even more common in the liférature .

Then
@ @ Qyy By 545 3 &pi B _Z (a,)q’n(.az)q’ -~-(a) n
Fa | ) T,
Pys oo Py n=o(q)q,n(p! q,n- P q,n
is a function of z and of r + s + 1 parameters @, , ... , @ ;P ;-5 p q
which reduces to

QyyUyy ane 3 @52
I'FS
[ Prseess Py
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if r=s+ 1 and ¢ » 1. The function ,®, was first investigated by E.
Heine (1878, p. 97-125). @ is called a basic hypergeometric series; it
seems that the case r = s + 1 is the only one which has been dealt with.
For basic hypergeometric series of two variables see section 5.14.

The simplest case is that of ,® (a; z) which is a generalization of
the binomial series. It may be shown that

@ 0= ) e e ] Tt

n= g q,n n=0

and therefore
(8) @, (a; 2) , @ (b; az) = @, (ab; 2)
(cf. Bailey 1935, p. 66). Other elementary cases are:

o0 zn
(6) @, (g, q; g% 2) =  —
Tog Z 109, 45 97 2) nzfl—q"
zn
(D ® (g, -1;~q; z =1+2§
2P, (g q; z) L Ty
z S z"
(8) —— ,9,(q, ¢%; ¢¥%; 2) = -
1-qA 2 ! n=11_an

If we divide (8) by z* and replace g, z, by q2, g exp (2ix) where x is
real, the imaginary part of the series becomes

"+A sin(2rn +1) x Kk <2Kx
2 sn

2n+'[ =

; (1-2g% cos 2x +¢*" (1+qz""")2 (1-g%)?
= (sin %) qA H

(1 -2¢%""" cos 2x + ¢*"72)

where sn u denotes Jacobi’s elliptic function of modulus %, and where
k, K, and ¢ are connected by

9) gq=exp(-7K'/K),
(10) K=Yom F(%, %; 1, k?, K'=NYaF(% %1, 1-k%.

This result is part of the theory of elliptic theta-functions, see Chapter
11.

Many of the results in the theory of generalized hypergeometric
series have analogues in the theory of basic hypergeometric series.
This holds in particular for the theorems on well-poised series. The
analogue of Dougall’s theorem 4.4 (8) is
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(11y . ® % qa%’ —qa%’ b, ¢, d, e, q—"; q
87| a% -a*, ag/b, ag/c, aq/d, ag/e, ag"*!

_ (aq)_ y (aq/cd)q‘N (aq/bd)q,N (aq/bc)q,N
(aq/b), . (ag/c), , (ag/d), , (ag/bed),

where bede =a? g"*' and N = 1, 2, 3, ... . The effect of the presence
of the four elements ga*, —qa”, a”, —a* in the function on the left is

merely the insertion of the factor (1 — a¢*")/(1 — a) in the general term
of the series. Another important result (which is the analogue of a

theorem due to Whipple) was proved by Watson (1929):
12 @ a, ga*, —qa*, ¢, d, e, f, g; a® ¢%/(cdefg)
LI a%r '—ﬁ%, 09’/6‘, al]/d, GQ/C, WI/f, aQ/g
_ ﬁ |-(1 —ag™ (1 -aq™/fg) (1 —aq"/ge) (1 - ag™/ef)
L1 = ag™/e) (1 - ag™/f) (1 — ag"/g) (1 — ag"/efz)

n=1

< B ag/cd, e, f, g5 ¢
S efg/a, ag/c, aq/d
For more general results see W. N. Bailey (1935, 1936, 1947 a, b, 1948

a, b), A discussion of the state of the theory is also given by Bailey

(1947 a, 1948b).
Among the consequences of (11) there are the basic analogues of the

theorems of Saalschiitz 4,4 (3), Gauss 2,1(14) and of 2,9 (2) viz.

o | B a| W), @),
272 d, beg'Nd | @), (@),

b, c; d/be | T (1-dg"/b) (1—dg"/c)
2Ty [ d ]‘H (1—dg™ (1 —dq"/bo)

n=20

a, b; z c/a, ¢/b; abz/c
T |: ] :‘(I)o[ab/c; zl 2Py |: c ]

c
A large number of identities can be derived from (12). Some of these

are Euler’s identity

1 + § (-1" [q%n(Bn—1)+q%n(3n+t)]= ﬁ' (1'-(]"),
n=1 n=

the Rogers-Ramanujanidentities

2
n

5 q9
nzi 1-g) (A1 =g®) - (1=g™

1+
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- ﬁ (1_q‘l+5n)-l (1_q4+5n)-1’

n=20
00 ni{n+1)

1+ Z - 2 n
Q=9 (Q=g?) ... (1=-g"

- ﬁ (1 = q2+5n)—l (1_ q3+5n)—l,

n=20

and a result due to Gauss
oQ

2
L 3 ghnttt) l_[( 1"29::)'
n=1 n=1 l—q &

For the proofs and for other results see Bailey (1935).

4.8

The basic analogue of Kummer’s formula 2,8 (47) has been proved by

Daum (1942), The result is

a, b; —q/b
2P,
ag/b

Q(ag/b) Q(ga*) Q(-ga*) Q(-g/b) .

Q(aq) Q(-q) Q(ga”/b) Q(~ga”/b)

where

aw=]] L=

ooy i ZG
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CHAPTER V

FURTHER GENERALIZATIONS OF THE HYPERGEOMETRIC
FUNCTION

5.1. Varioms generalizations

The classical hypergeometric series
ala+1) B(B+1)
() Fla,Bipo=1+L o, in ik
1y 1.2.9(y+1)

has inspired the investigation of many functions and series. In this
chapter we shall be concerned with those generalizations which are
commonly regarded as hypergeometric functions. Other generalizations,
for instance, Mathieu and IL.ame functions, will be found in other chapters.

The generalized hypergeometric series

@), - (@), ="
Y ni’
g’n

(2) qu(a"“"aP;b'""’bq;x)=,.20 G -

where
B I'(a +v)
¥ e

and where it is assumed that the parameters are such that at least one
of the definitions (3) makes sense, has already been introduced in
Chapter 4. Here we shall regard (2) as a formal power series and will
pay no attention to questions of convergence.

It is usual to define the most general (formal) hypergeometric series
as a formal power series for which the ratio of two consecutive coef-
ficients is a (fixed) rational function of the index. More precisely,

= n Cn-H e P(n)
@ y—ngocnx, c _O(n+1)’

n

(3) (a) (a)0=1, (a)nz al@a+1) - (a+n-1),

where P and Q are polynomials; we assume that

Q(n+1)=(n+1)0|(n+1)

where @ is a polynomial such that P (n) and Q, (n + 1) have no common
factors. The respective degrees of P and ¢, are p and g. The factor-

202
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ization of P and Q, in linear factors at once leads to the expression of
(4) in terms of the symbol qu’ so that essentially (2) is the most general
(formal) hypergeometric series.

The differential equation satisfied by (4) can be written in terms of
the differential operator

(5) =z
=ExX—-
dx
We have 6x " = nx" and hence for any polynomial operator with constant
coefficients f(8) x™ = f(n) x". Thus (4) satisfies the differential equa-
tion

d
(6) 1xP(8)-Q&)}ly=0 or iP(S)—d—j—:—Q,(B)ly=0,

which is of order max(p, ¢ + 1) and has singularities at 0 and o~ if
p #q +1, and at 0, =, and at a third, finite, point if p =g + L.

In connection with this generalized hypergeometric function there are
two distinct problems: (i) to interpret (2) when p > ¢ + 1 and the series
is divergent for every x # 0, and (ii) to find fundamental systems of
solutions of (6) for the neighborhood of every singularity.

A further generalization introduces basic hypergeometric functions.
For these see Chapter 4.

Hypergeometric functions of two or more variables are similarly
defined. For these see section 5.7,

MACROBERT'S £ - FUNCTION
5.2. Definition of the E - function
MacRobert’s E -function arose from an attempt to give a meaning to
the symbol qu when p > g+ L. Forp < ¢+ 1 we have
T(a,)+++(a))
MLl R 38

E(p;a_:q; tx)=
(1) Ep;a,:q;p,:%) T(p) - (p,)

x qu(a,,...,ap;p,,... ,pq;-—l/x)
where x #0 ifp <gand |x| > 1lifp=qg+ L
Forp> g+ 1 we have
(2) E(psa,:q;p,:2)=
i’ e, ~a,)
s=1

a
= F(a?')x %

q
r=1 I F(pf— ar)

t=1




204 SPECIAL FUNCTIONS 5.2

X q+1FP_|[ar, a =pykly o0p, a,=p,+ 1;

A= By ceny kg ane ,ar—ap"l-l; (__1)P+qx]

where |x| < 1if p = ¢ + 1. The prime in Il indicates the omission of the
factar " (a_~ a,); the asterisk in F the omission of the parameter a_— a_+
1; an empty product is to be interpreted as 1; and zero or negative in-
teger values of the @ are tacitly excluded. Similar conventions will be
observed throughout this chapter. The asymptotic expansion, for x - oo,
- Yp-g+1D m<agx<hlp-q+ 1) nm of (2) is given by the right-
hand side of (1). Originally (MacRobert, 1937-1938),E was defined by
the multiple integral

r(aq+‘l)

3) E(p;a:q;p,:x)=
O ) G e T, —ap - T, = a)

q 00 -—l -
x T [ Ai”a“ (1+/\u)p’*d,\#

p=1
5 Nty Bt ™
q
X v]——]z f:e A:w qu""V
x |7 e_)\" NI I Agta Agva t00 A, T aa
) P T+ A @+ (1+)tq)x P

where |arg x| <@, p > g + 1 and the a_and p_ are such that the integrals
are convergent. The equivalence of 2) and (3) can be proved ( Mac
Robert 1937-1938).

Other related functions are the P-function which arises when (2) is
written as

p .
4) Elpa,:q;p,:2)= 21 P(ar;p—l; ayq; p,:x)
P

and two further functions, denoted by ¢ and H, which are multiples of
P and E respectively (MacRobert 1937-1938). An alternative notation
for E (p; a q,p.-x)isE(a,,... p‘,...,pq:x).

Several particular cases of the F- iPunctlon arise from (1) by means of
the formulas developed or quoted in Chapter 4. From (2) and (3) some
further interesting particular cases arise among which the most important
are the expression of the modified Bessel function of the third kind,

(5) (2mx)* Kv(x) =e *cos(vm) EM+v, U—v::2x)
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[ MacRobert 1937-1938 (12)], and that of Whittaker’s W-function
(6) F(Vz—k—m)T('/g—k+m)x_*e%"Wkl(x)

=EM-k-m Y¥—k+m: :x)
[ MacRobert 1941(25)]. It may be noted that W, L @x) W, (—t.x) may also
be expressed in terms of the E -function [ MacRobert 1941 (15')] as can
other combinations. The E-function itself is a particular case of Meijer’s

G -function [cf. 5.6(2)].
5.2.1. Recurrence relations

A basic system of recurrence formulas has been given by MacRobert
[ 1941, equations (20) to (24)]. The three most important formulas are

D a, x Ela, ,...,ap:p',...,pq:x)
=z Bla, + 1@, 050 ,ap:p,,...,pq:x)

+E(a'+1,az+l,...,ap+1:p|+1,...,pq+1:x),

d
(8) EE(G' seee s @yt Py, ...,pq:x)

—x—zE(a[+1,...,aP+ Lpy+1.ee,p,+1ix),
and
(9) (pi-l)xE(al,...,ap:pT,...,pq:x)
=xE(a1,... ,ap:p,—l,pz, ...,pq:x)

+E(a,+1,...,ap+1:p1+1,...,pq+1:x).

5.2.2, Integrals

A few integrals with hypergeometric functions may be evaluated in
terms of the E -function. A typical example [ MacRobert 1937-1938 (21)]
is

o) S~ e"*A XYV F (a, B; 8 —A) dA

)«
=————F(a,B,y: 8 ) >0,
which may be proved by substituting

. F, (e, B; & -A)

_ " (&) [ ud=B~1 (g =5 1 3 . d
r@re-m ° " il A+w E
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on the left-hand side and using (3).

The integral

1 g
fo e F (a, B; y; EME

may be evaluated by complex integration; we integrate around a contour
which is a rectangle with vertices at 0, 1, 1+ ik, ik(k > 0 )and which
has indentations at 0 and 1 and then make the radii of the indentations
tend to zero and & - =, using (10). [ MacRobert 1937-1938 (23); there are
also a few other integrals in this paper. ]

Integrals with the E -function are discussed in Mac Robert 1941, The

most important are the integrals of the Laplace or Euler type, but there
are some more general integrals too. Typical samples are

1 (o+)
(11)';[ e'fftc'E(al,...,ap:p',...,pq:.fx)df

=E(a, ,...,ap:p‘,...,pq,a:x) -m<argé<m,
(12) [T e APV E(ay, ceey @yt pyyenes pyt #/A) dA

=E(a,,...,aP,B:p|,...,pq:x) Re 8> 0,
(13) f—(o:) ef fﬂ"E(a” Cee s @,y e ,pq:x/.f) d&

=ei'8"E(a' = T ap,ﬁ:p,, e Py xe " iM)
-e_'ﬂ"E(a” vee s @y Bipys e, Pyt xe ')

If p=gq+ 1, this holds provided that £ = x inside the loop; if p < g or
p = g and x> 1, the right-hand side reduces to

2i sin(Bn) E(a,, ..., a,, Bipy, e ,pq:—x)-

(14) fo‘” )\U—ﬁ-1(1+,\)'0E[a',...,a EPya e Pyt (1+A)x]

=I'(c-B)E(a,, ... ,ap,B:p!,... ,pq,o:x)
Re(B) >0, Re(c-pB)>0.

The proof of these formulas is based on the definition of the E-
function; (1) or (2) and (3) are used according to the values of p and g.

MEIJER’S G-FUNCTION
5.3. Definition of the G -function

Meijer’s G -function provides an interpretation of the symbol qu
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when p > g + 1; this interpretation is in complete agreement with the one
given by MacRobert’s E-function. In addition, all significant particular
solutions of a hypergeometric differential equation 5,1(6) may be ex-
pressed in terms of the G ~function.

Originally (Meijer 1936), the G-function was defined in a manner
resembling 5.2(2). Later (Meijer 1941 c, 1946),this definition was re-
placed by one in terms of Mellin-Bames type integrals (for which see
section 1,19). The latter definition has the advantage that it allows a
greater freedom in the relative values of p and q. Here we shall complete
Meijer’s definition so as to include all values of p and ¢ without placing
any (non-trivial) restriction on m and n.

We define
" Gyseee @
(1) Cp.q (x 5 b”)
preeea by
I Te,~s) i T-a/+s)

1 j=1 i=1
= f x%ds
2m /1

q P
O I'=-b+s) 1T T'(a—-s)
Jj=m+1 J J=n+1 J

where an empty product is interpreted as 1, 0 <m < g, 0 <n <p, and the
parameters are such that no pole of I'(b, ~ s), j = 1, ..+ ,m, coincides
with any pole of I'(1 = @, +5), k=1, ..., n. These assumptions will be
retained throughout. Whenever there is no danger of misunderstanding we
shall write more briefly

a
Gnn(x
Pa

b’), G;; (x) or simply G (x).
There are three different paths L of integration:

(2) L runs from =i to +ioce so that all poles of I'(b~5s), j=1,..., m,
are to the right, and all the poles of T'(1~a, +s), k=1, ..., 7, to
the left, of L. The integral converges if p + ¢ < 2(m + n) and
1argx| % (m+n'-l/zp —%q) .

(3) L is a loop starting and ending at + « and encircling all poles of
F(bj— s), =1, vau , m, once in the negative direction, but none of
the poles of I'(1 — @, + s), k = 1, «u. , n. The integral converges
if ¢> 1 and eitherp <gorp =gq and |x| < L.

(4) L is a loop starting and ending at — « and encircling all poles of
I'(l—a, +s), k=1, «us , 1, once in the positive direction, but none
of the poles of I'(b.~s), j =1, «v. , m. The integral converges if
p>1 andeitherp >gorp =g and |%| > L
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We shall always assume that the values of the parameters and of the
variable x are such that at least one of the three definitions (2), (3), (4)
makes sense. In cases when more than one of these definitions make
sense, they lead to the same result so that there will be no ambiguity
involved.

The G -function is an analytic function of x; it is symmetric in the
parameters @,, ..., @ _, likewise in a nt
b, iaeres b

Wlth (3) the 1ntegral can be evaluated as a sum of residues. If no two
bi, j=1,...,m, differby an integer, all poles are of the first order and

) G-"( , )

. i’ 'b,-b) i I +b,~a)
i=1 j=1 bh

1,...,ap,inb ceey b, ,and

9 P
MU m TQ+b,-b6) O Tla=b,)

j=mt1 j=nt1

prq_l[1+bh—a”...,1+b -a;

h
1+bh—b7’ ase g kg eee gy 1+bh...bq; (_1)p-m—nx]

p<gq or p=g¢g and Ix| <L

Similarly if no two @,, &k = 1, ..., n, differ by an integer, we have

from (4)

a
r

b

s

(6) G;q" x

_II I'a, —-a) i F(b —a, +1)

j=1 a, -1

P
1 T‘(a—a +1) H T(ah—bj)
n

+1 j= m+1

% 1+b’—ah,...,1+bq-—ah;
52
g p-1 1+a‘—ah,,..,*,...,1+ap—a,h;(_1)q—u—nx‘|

g<p or g=p and |x|>L

In these expansions conventions corresponding to those of 5.2(2)

hold.
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5.3.1. Simple identities

If one of thea, j=1, ... , n, is equal to one of the b, j=m + 1,

., g (or one oft{meb ,Jj=1 ..., m, equals one of thea, j=n+ 1,

. » p), then the G-function reduces to one of lower order: p, ¢, and
n (and m) decrease by unity.

D C‘"(r Qyy oo ,a) gt (x
Pq b W a p=1,9-1
pa e 90, g0 Gy

is such areductionformula, and all others are similar.
Cbvious changes of the variable in the integral (1) give

[eg mnn ar - mn ar+a
(8) x qu<x b >HGPq (x b +a’),
1-b%
mn -1 — nm s
(9) qu “qu (x 1_3)’
mn a,
(10) Gm %[,

= (2n)'AP+%q'u—n o¥p=tigti—ay— """ = ap+b1+" . +bq
1 1 4 &
x G2nen ( 92p=2a 4 l/zar, Ya T % ]
Ricq /21)5, l/zbs +%

In (10) the duplication formula of the gamma function has been used,
and there is a cormresponding formula which uses the multiplication

Qyyeeer @,
- - ,bq__T

n,p,qg>1

a
r

b

theorem 1.2(11) of the gamma function.

The most important of these formulas is (9) because it enables us to
transform a G -function with p > ¢ to one with p < ¢. In this way in
all discussionsp < q¢ may be assumed without loss of generality. Sam-
ples of other fairly obvious relations are

(1) (18, +by) G2

o e (x

a,~la,,...,

b, bz,...,
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mn af""’ap
q
LY a,~La, gy e e iy By
Pq b|,...,b
q
[ TP, .. S
+G;;G ‘ e T ) l<n<p-1,

bysenn b,
(].3) 4 G»n a" mn
xd_x pe \* b =qu %
s
( 1 rn o
+ (e, - )qu x
(14) G-n X ar =_1,_ eTrib.+‘ Gn-H,n xe-'rri a'r
P bs 21 Pq bs
_-n-ib'H_' o $1.5 ik
=& qu xe
“r = ._}_ eTria"+t Gt [ e
b, 2mi Pq

-mia 3
+1 +1
=y n G®mn xe™t
Pq

5.4. Differential equations

From 5.,3(1) it is seen that G (x) satisfies the linear differential
equation
P q d
(1) [(=1)pP7mr"n x o - a;+ D- O (5 —bj)] y=0 b&=x—.

j=1 j=1 dx
Clearly, every differential equation of the form 5.2(6) may be reduced
to this form by a change of variable. Equation (1) is of degree max (p, q)
and on account of 5,3(9) we may assume p < g, The solutions of (1)
have been investigated by Meijer (1946).
If p < g, the only singularities of (1) are x = 0, o ; x = 0 is a regular
singularity, x = o an irregular one. A fundamental system of ¢ linearly
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independent solutions of (1) for the neighborhood of x = 0 is

(2) G"P<xe (p=m=n-1)ri
Pg

a , a

1 2 s P h=1 ..., q
bys bys e by b e, b

h? ¥

For the neighborhood of the irregular singularity, x must be restricted
to a sector, and Meijer determines two integers, %, g, so that

38) |largx+(gq—-m—-n—-2k+Dn <Mg-%p+1Dax

and

4) |argx+(g-m-n—-2R)m|<(g-p+e&n

for h=g, g+ ... ,8+qg-p—-1, wheree=Y%ifg=p +1, and
e =1if ¢ > p + 2. Then, if x is in the sector determined by (3) and (4),
the p functions

|@ps Bys <an s @ a
® ¢ (xe(q-m-zww b e B G )

B e 3 B,

and the ¢ — p functions

6) G c:),qo Qe (g=m=n—=2h)m

form a fundamental system of solutions of (1).

If p = q, the point x = = is also a singularity of the regular type
and, with the conditions (3), a fundamental system is given by (5). In
this case x = (<1)?™"7" is also a regular singularity, but no funda-
mental system for the neighborhood of this point has been given in the
literature.

Ifp > ¢,5.3(9) may be used in order to reduce the differential equa-
tion to the case already discussed; x = 0 and x = « interchange their

a

b') h=g, g+L...,g+q-p+1

s

role.

In any case, it is clear from (1) that for fixed p, g, a,, ... , a,,
bosiias bq, all (p + 1) (g + 1) functions
(7) G;qn [(__1)-+nx] OSqu, OSnSP

satisfy the same differential equation.

5.4.1. Asymptotic expansions

We shall assume p < g; the results for p > ¢ can be obtained from
5.,3(9) by interchanging the role of x = 0 and x = c. Certain integer
values of combinations of parameters are excluded, and so are a few
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other exceptional cases, for example, those in which the coefficient
of the dominant term of the asymptotic expansion is zero.

The point x =0 is a singular point of the differential equation (1), and
the behavior of G (x)in the neighborhood of this point follows from 5.3(5).

We have
(8) G;;(x)=0(|xl‘6) as x-0

where p < g and 8 =max Re b, forh=1,2, ..., m.

The point x = = is a singular point of irregular type of (1), and ac-
cordingly the behavior of G (x) as x + = is much more involved. The in-
vestigation of this behavior was commenced by Barnes (1907, and other
papers), continued by other authors (among them MacRobert,1937-1938), and
completed by C. S. Meijer (1946). The detailed results are too involved
to be included here, and only a brief summary (Meijer 1946, $18) will
be given.

As x > oo, the G-function is of the order of some powerof xifp < ¢
and if
9 a3l m+n>Yp+Y%q, and |argx| <m+n-—Yp-Y%q)m;
or if
(10) g=p+1, k is some integer, and

largx —(m +n —p +2k - Dr| <%

As x - o, p < g, the G -function vanishes exponentially if
(11) m>Y%p+%q, n=0, largx|<(m-Y%p-Y%qg m

When x » = and p < g, the G -function becomes exponentially infinite
in the regions described below.

(12) If ¢ > p + 2, we must have either
()m+n>%p+Y%q and |largx|>m+n-Y%p-Y%q nm
or
(ii)m+n < ¥%p+%qg and no restriction on arg x.
(13) fg=p + 1, let k be an integer, and let
larg x = (m +n —p + 2k) | < Vam.
In this case we must have either
i) m+n2p+1 and £>20 or k<p-m-n
or
(ii)m +n < p and no restriction on the integer k.
When p = ¢, the behavior of G(x) as x > o follows from 5,3 (6); it is

that of a power of x.
For more complete and more detailed results see Meijer 1946 S1s.
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5.5. Series and integrals

Of the more involved functional relations for the G-function the most
important ones are series and integrals. Comparatively few series of
G -functions have been investigated. The number of known integrals
is, however, very considerable. Only a few samples will be given here;
for more details refer to the original papers, mostly by C. S. Meijer.

5.5.1. Series of G -functions

A first group of series expansions in terms of G -functions consists
of the four multiplication theorems (Meijer 1941 c),

G‘“" A Qyseney @,
1o, b
q9

) Z ——(1 N G Gromee @y
e b1+r,bz,...,b
q
A=-1]<1, m>1,
b X l a" ’
(2) =A " E —WA=-D"G*"( x ! p
re=o T Pq - ,b .. b +r
q-1 q
m<gq, [A-1]<1
a, -1 & 1 1\" G, =Ty @,y ool
(3) _)‘1 Z o 1__) Grn 1 2 p
v (O A P byseres by
n>1, ReA>lY,
_ o r -
@ =AY _1_(.1_-—1) Bpm1r Ep 7
rog TLRA 1,...,bq
n<p, Re A>#l,

which express G (Ax) as an infinite series of G (x). If p < g and m = |,
the restriction |A = 1] < 1 may be omitted in (1) and a similar re-
mark applies to (3) whenn =1, p >q

The second set of important series consists of the so-called expan-
sion formulas (Meijer 1946). These serve to express a G -function as a
finite combination of G -functions with the same p, g, but changed
m, n and are very useful in the investigation of the solutions of the
differential equation 5.4 (1). For instance, the fourth expansion formula
(Meijer 1946, Theorem 5) expresses a G*" as a linear combination of
v functions of the type G "ql, u functions ofthe type G kp; !, and another
k _ p — v functions of fhe same type, under suitable restrictions on

k, 1, m, N, P, q, [y Vs
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5.5.2. Integrals with G -functions

The most important integrals are those which express the properties
of the G -function under integral transformations. The Fuler transform is

Ayy euwy O
S L CAT
R q

a, a 9 oo g a
= F(G—B) GPR‘;""EL‘(I b‘, ,'. .y b » g)
q

and may be proved from 5.3 (1) when
6) p+qg<2(m+n), largx|<(m+n-Y%p-Y%aq)mn,

(7N BeB<Hea<Rebh+1 h=1,...,m

or from 5.3(5), for p < q (or for p = ¢ and |x| < 1), under the conditions
(7). With a equal to one of the numbers b ,,, ..., bq or 3 equal to one
of the numbers a
tion of G"".

The behavior of G"P'; under the Laplace transformation follows from

(- - - R Aoy aae 4y
8 [T e vyTo qu xy b' bp dy
122 %y

0
=G.'"+‘ a, at,...,ap
pti,g 7 b b
12700 Yy

valid for example under the conditions (6) and (7), the part referring to 8
being deleted from the latter.

The behavior of the G -function under the Mellin transformation can be
read off 5.3(1) with conditions 5.3(2). Certain integrals of products of
G -functions may be evaluated by means of the product theorem of the
Mellin or of the Laplace transformation. Some such integrals were given
by Meijer (1936). Meijer also gave generalizations of (5).

The Hankel transform is
) -a J Yy o a,,...,ap
©) fo Y » (2y )quva b,,...,bq)dy
a— Y%y, Qyyoee,r @ ,a+%v)

=Gn,n+! = p
+2;
p*z,q boy.eesb

P (5) becomes an important functional equa-

9
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valid for example under the conditions (6) and
(10) Re(=a+ %v+5,)>-1 b=l ope;m

Re(—a+aj)<1/4 J 2= mee 5 iy
In all these formulas the introduction of loop integrals enables us to
relax the conditions on a [or on B in (5)]. Other conditions of validity
should be possible, but apart from a number of cases in the papers by
C. S. Meijer these have not been given explicitly.
A last integral containing (modified) Bessel functions is

@yyenes @ %
b.psesy B
q
a=Y%v, a+ Yy, ap, ..., a,
b b

12+ q

= % mn
ay I, ¥ K (er®iem (xy

=1 a,nt2
N /1 GF+2:Q' (x

valid for example under the conditions (6) and

(12) Re(—a:t%v+bh)>-—1 h=1, s0e ,m

Better conditions have been given by Meijer [1936, equation (58)] in a
particular case.

5.6. Particular cases of the G -function

Clearly,

(1) PFq (g5 cow 5 ps by o s bq;x)

o I'(e)
i=r 7
on re)
j=1 4 Bt Lby,oonb,
= ; gtp\ T A
O Tr() #
i=1 !

and by comparison of 5.2(2) and 5.3(5)
(2) Elp;a.:q;B,:x)

omy ([P BBl
& ek @yyeeey
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The importance of the G-function derives largely from the possibility
of expressing by means of the G -symbol a great many of the special
functions appearing in applied mathematics, so that each of the formulas
developed for the G -function becomes a master or key formula from which
a very large number of relations can be deduced for Bessel, Legendre,
Whittaker functions, their combinations and other related functions. The
material for the following list of special G -functions has been obtained
mainly from several papers by C. S. Meijer.

(3) G2 (x|a b) = % (ath) Ju—b(2x%)

(4) G2 (x|a b)=2x%E) K _ (25%)

%
) 6 (x b”_b)= nh ™% K (%)

(6) Gi‘;G bac>x%(b+c—l)e'%z W, .

E=%(1+b+c)—a m=%b-Y%ec

Y %
(7) c;;G b’_b) - co:bﬂe%x K, (%x)

(8) Gf; (x b“):r(b— a+1D)IT(c-a+1) xAB¥e=1) Hx Wk_(x)
» € g

k=a=-%b+c+1), m=%b-Y%c

(9) GY¥(x|a b 2b~a,2b-a+%)=n"%xb

4
3/2 x|/4) F

s T 23/2 xl/A)

2(0-6)(2 Z(a—b)(

(10) G;S (x|a+%, a b 2a-5b)=r"*%[sin(a - b) 7]V 272
% x9 [Jz(a~b )(23/2 x'“) % (b-u)(zsm x”‘) -~ Iz (a_b)(zm xI/A)

8 &y g i1 @Y S92

(1D G (x| a a+ %, b b+%)=x%la*t) g b)(4961”‘)

2 (a—
(12) GB (x| a, =a, 0, %) = — n* (sin 2am™’

% [Jza(ze-nri/l.) Jza(ze-win) _J_za(zewih) J—za (ze-”i/‘)]
s 23/2 xl/4
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(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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GB (x| 0, %, a —a) =n* i™! (sin 2am)""

x [e2a7ri JZa (ze_"i“) J

mi/ay _ ,—2ami mi/a
(T T, (z )

x J_Za(ze"‘”i/‘)] z=2%2 14

G (x|3a -%,a -a-% a~-%)=2nr% (cos 2an)”"

*% xu—% K4a(23/2 x1/4) [Ju(23/2 xl/d) 4 o (23/2x1/4)]

—4a
CR(x|0,a-Y% —a-% %) =4n% x7h

x Kza (2¥2 x 1/4) [Jzﬂ'(z?’/2 ') cos ar ~ Yz“(23/2 x'4) sin ar]

G2 (x| -% a=%, —a -%, 0)=—-47% x7*
X [(2’3(2:"/2 x4 [J:,_a(23/z x') sin ar + }"2“(2:""2 x'4) cos anl

CX(x|a b+%,b 2b-a)=a%2%xbK, _ (2% ')

/| 1/4
xd, (a_63(23 2 Ay

Go‘f(x |ay a+%, b, b+%)= A @tttk b)(4x1/4)

2 (a—
Gﬁ(x | @, a+%, b, 2a —b) = 23 mh x®

XKz(b—a)(zalz x‘l/4 e-ni/l.) Kz(b—a)(“za/z xl/A e-‘rri/l)

G”GI & ):#JZ(#)
13 a,O, __a' a

* ) =% J_(x%) J__(«%)

maRE=R gy (2m)

a, b,a-%

-5)
o)

=gk )y (on%)

a, b,a-%

a+

a, 2a ~-

1
% ) =n% 27V (sin am) ! [J_za(x%) —J: (x%)]

z)= —ahxt J,_ («*) ¥, _ (x%)

-a, 0
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(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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% ; ;
=2n% I_(x%) K _(x%)
-a

% 0): 7¥2 (sin 2an) ™' ['P'_a(x%) -I* @)

(x
C
g G S B a) = %‘%—; LE,. (2t L. (2xH)]
(
C
C

a+%,—a,a cos 2am

Aok A % %
Gf; a, a+ %, b) o S0 [I“‘b(2x ) =L a—b(2x P
a+1/2 % La Y%
Gl a+b,a—b,(D = 207" %% K &%)
+% 2 . .
G o )= — L m, (2x%) = ¥, (2x%)]

a

(2x%)

a, b, i 2a-1,2b

6 Q

1/
G3 (% W =7¥227 " [cos(b—a)r ]!
= b, 2a =b, a
X x

ARG

a—-1 =5 B F(a+c|)r(a+cz)
B I'(a + b)

>= 92042 (1 —q =) (1 —a +B) S

12
G,, x

-C -c

1? 2

xx®!' Fla+c,a+c,;a+b;—x)

s (x

22 _ ¥ _a % !
" (x b, ¢, 2a -c, 2a—b) =2mxt I, o (F) Ky (x%)

0, % s
6% (= ‘ =i27% %
a, b, —b, —a

ANV ANCEORY SN CIOT BNl

l/+ l/_ 1 L
cx (x e a)=n%x-’4Wab(2xA)W

a+h,a

b+a,a-c,a+c,a-b

) B 17% i Jb+c(x%) Jb—c(x%)

a, a+¥

s 1257

0, %, b, —-b
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¢ ]/ 1 1
(39) G% G G ars )=2ﬂ"éx°Kb+c(xA)Kb_hc(x%)

a+b,a+c,a-c,a=-b

0, Y _9-2 "5/2
40 GM e s
( ) 24 (’Z a, b’ - b, . a) i SiIl am Sill bﬂ

% [ BT e A ) Ay e YR RN 5T M

l/z 0 2—2 ”5/2 :
41 6'_41 x 2 TP
wily 2 a b, ~-b, —a cos ar cos br

x [V (k) B aRY w5 H P ()]

42) G4 (x

x Wa,b (2ix %) Wa'b(-2ix%)

(43) G '4‘1 (x

x Fla+b,a+bd

1/2+a" %—
0’ %7 b:"’b

>=x"4 A TM%+b-a)T(%—-b~a)

4
oar b
1, -¢ h=1 ek "')

- ,,-cz,-ca} -
-b,-b,,-5,,-b

e A T
h=1

2,a+bs,a+b‘;a+c',a+cz,a+cs;-x)

The following combinations of special functions are among those that
may be expressed in terms of the G -function.

(44) x* J (x) =2¢G 0 4= | Yv+Yop, % p—1%v)

(45) x* J (x) = 44 G20 (474 x* [Yv+ YUp Yv+Yu+%, Yp—- Yy, B+ Y4pu~Y%0)
v 04

(46) x* Yv(x) = 2“"0?2 (1/4.172

Bu=hv-%
You-Yv, p+ Y%y, bp-Yv-%
(47) =#K (x) =27 C% (Nx?| %p+ %y, Yop~ 1)

(48) x“KV(x) = 4u gt

xG£(4“x‘1%v+‘/;,u,%+%v+%u,-%u+%m Y—Yv+Y%p

%
v, —

(49) e—"Kv(x) =% Gf’g (2x
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%
vV, — V

Y%+ v+ Y
Yo+ Yo+ Yp, ip - Yv, ¥op+ Y

Y%+ Y%
Y%+ Y%y, — Y, v

You + v + Y%
Y+ Y%v, bp + Y%v+Y%, Bpu-Y%v

(50) e* Ky(x) =% cos vmr Gf; (Zx

(51) =* B () = 2% G (%4x?

(52) Hv(x) - Yv(x) =7 2cosvr G f; (1/4:\:2

(3) x#[L(x) - L, ()] =7"" 2% ¥ (mz

(54) x*[I_ (&) — L, ()]

Y+ Yv + Y%, Y- Yy, Y + hv

1
' — o - W) T 04— Yp + %)

l/1+l/z,u
Y+ Yy, Yov, = Wv
%
v, 0, — v
Y
0, v, -v

Yo+ o, Yoo
Blu+rv+a), Wlv+o-pw, Y(p+o-1), l/z(a—y—v}]

- B+lYr+l
=7 ' 2% cos v G‘:'; Csz P o

(55) S, () = 27"

x G?; (‘sz

(56) J2(x) =% G Gz

(57) J (=) J_ () =" G (xz

(58) x% J#(x) J, (%)

_ =% 12 2
=7 *G; [x

4

(59) x* I (x) J,(x) = b o2 G;g(;4 Yu+Yy Yp-Y%u, 4p l/;u-}-%)

% + Y
v+ Y%, Yp, Yu—v

A
v, 0, —v

60) = J ) Y, () =-7"% G} (ﬁ

(61) Iv(x) Kv(x) — 91 ;% Gf-_.: (xz
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(62) x* K (x) J, () = =% 2%/27%

1
4
*Co (zzx

63) x° 1;(;:) Kﬂ(x) =271 7%
X G:i [xz

(64) X“HL" (x) HLZJ (x) = 772 2 cos v

L 1
x G3 | x2 AT hL
13 Yu+v, hu—-v, Hp

o1
(65) x“K23(x)=2""7% G¥\ x2 % ki
4 v+Bu -v+¥%p 0

13
%U’ l/2'17 + 1/2
“hlv+p+o), hlv+o=p), % (p+o-v), '/2(0—'1/—#)]

Yp+Y%v, dp+ %, U %,u—‘/w)

Yo, o+ Y% ]
Vilv+p+o), %lv+o-p), i(pto-v), Ylo—v—p

66) %7 K, () K (%) = 27" o*

X G:g [xz

67) xmKW(xe-rriﬂ) Kw(xe—rriﬂ) = ou~3 _”—%
1

X Gg(E x4

(68) xle %+ Vo =0GY (x

You, op+ Y%, p+ v, ‘/2u-V)

l-k+1
m+l+%, l-m+%

1
1 %x e
(69) x'e Wk,u(x)m r(’/z+m~k)r(%_m“k)

c? E+1+1
x
= xt—m+%,m+l+%

(70) e "Hx Wiz,.(x) o n,—% x% gk=¥%

oo (e 2| Bk K=Y
X P 1% Yem, Y- Yom, Yom, —Ym
(71) e* W,  (2x) =

o5 9 kt1) gm32

TGHh+m-EB)T ¢ —m—Fk)

XG42G2 MW+ Uk, %+ Y%k
# Yom, o+ Ym, = Vam, - Yom
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x4

72) ='W )W, (=2ix) =
(72) =°W,  (2ix) W,  (~2ix) A L T p—
x 64 (#2 Y+l +k B+%l-k
Yl Y+%l %l+m Bl-m
(73) ='W, (W, (&) =a7%

Ylvk+1, %l-k+1
xG;*:(‘sz sl+k+ 1L 4% + )

Vi+¥ BWili+ L, %l+m+4%, bl-m+4%
I'(e) x -1 -c
74) ,F, (2 by 3~ %) = ——oee G2 ’
(74) ,F,(a; b, c; — x) T T Gzz(x_a,_[))
rear@ro
(75 F ’b; ,d; ’ 11;_ =
Vil bodie f l-0 - o r T O T@

-1, -e -f,-1
x G
“(z —a,—b,—c,—d)

Other similar formulas are contained in Meijer’s papers, in partic-
ular formulas for Legendre functions and various generalized hyper-
geometric functions.

HYPERGEOMETRIC FUNCTIONS OF SEVERAL VARIABLES
5.7. Hypergeometric series in two variables

The great success of the theory of hypergeometric series in one
variable has stimulated the developement of a corresponding theory in
two and more variables. Appell has defined, in 1880, four series,
F1 to F4 [cf. equations (6) to (9) infral which are all analogous to
Gauss’ F (a, B; ¥; x). Picard has pointed out that one of theseseries
is intimately related to a function studied by Pochhammer in 1870, and
Picard and Goursat also constructed a theory of Appell’s series which
is analogous to Riemann’s theory of Gauss’ hypergeometric series.
P. Humbert has studied confluent hypergeometric series in two vari-
ables. An exposition of the results of the French school together with
references to the original literature are to be found in the monograph
by Appell and Kampé de Fériet (1926), which is the standard work on
the subject. This work also contains an extensive bibliography of all
relevant papers up to 1926; the list of references given in the present
chapter is largely supplementary to Appell and Kampé de Fériet’s
bibliography.
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Hom (1889) gave the following general definition: the double power
series

00

4] 3 A x"y"

mn
n,n=0

is a hypergeometric series if the two quotients

A A
(2) '—:;ﬂ'ﬂ-=f(m’n) and —-;'—Ml = g(m, n)

RN mn

are rational functions of m and n. Hom has investigated the conver-
gence of hypergeometric series of two variables and established the
systems of partial differential equations which they satisfy.

For the special hypergeometric series investigated by the authors
already named, by Mellin, and by several others, 4 _ is a gamma pro-
duct, that is to say it is of the form

@) yog= 0T (a;+u,m+v,n)/T(a)

where the a are arbitrary (real or complex) constants, and the u ; and
v, are arbitrary integers which may be positive, negative, or zero. The
question, then, arises, whether this type of series is the most general
one compatible with Hom’s definition. Clearly, f and g must satisfy

4) fm n)glm+ 1Ln)=flm n+1) glm, n)

for allm, n =0,1, 2, ... , and hence identically in m andn, since
each of the two sides is 4 ,,  .,/4 ; anditis easy to see that any
pair of rational functions of m, n satisfying (4) generates a hypergeo-
metric series.

Birkeland (1927) stated that every rational solution of the functional
equation (4} can be decomposed into linear factors, and this would
seem to lead to gamma products for A4 . Ore noted (1929) that the
Birkeland theorem is not entirely general and gave (1930) a thorough
analysis of the rational solutions of (4), From Ore’s result it can be
deduced that the most general form of 4 is of the form

AM=R(m, n) P b"

where R is a fixed rational function of m and n, @ and b are constants,
and y__ is a gamma product. This is equivalent to saying that the most
general hypergeometric series of two variables results from the opera-
tion of a rational differential operator,

R( a d
X — §y —
dx ) dy
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on a hypergeometric series of the type
2 y,, (@)™ &)

It would seem, therefore, sufficient to investigate series of the Horn-
Birkeland type.

5.7.1. Hom's list

Horn puts
F(m, n) G (m, n)

F'(m, n)’ g(m,n)=G,(m’ n)

where F, F', G, G' are polynomials in m, n of respective degrees
p» P'» @ q'. F'is assumed to have a factor m + 1, and G' a factor
n +1; F and F' have no common factor except, possibly, m + 1; and G
and G' no common factor except possibly n + 1. The highest of the four
numbers p, p’, q, ¢', is the order of the hypergeometric series. Hom
investigated in particular hypergeometric series of order two and found
that, apart from certain series which are either expressible in terms of
one variable or are products of two hypergeometric series, each in one
variable, there are essentially 34 distinct convergent series of order
two (Horn 1931, corrections in Borngisser 1933).
There are 14 complete series for whichp=p’ =g=¢q' =2:

( B), B")
(6) F| (a’B’B" y’x,y)=z a()u+n B. B n xnyrx

(5) f(m’ "') =

’
V4, m! ol

@,,. B, B, . .
x

F ’; 3 " 4 =
() F,(q BB %y %) (M, '), mlin!

(a), (a"), (B), (B"),
x

(8) Fa(a,a', B!B”y’x’y)=2 ()’).+nm!n! EL
(a) .. (B)
9 F - ,’ : _ n+n n tn x™ n’
©) Fila Byy'ssy) M, ') mlal g
10) ¢,(a B, B'; % y)=2 = (B);H: e i
m:.n.:

(11) Gz(a, al’ ,8, Bl,x; )’)=E (a)_ (Cl )n (B)n—- (B ).._n x"y",

mln!
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(12) Ga(ﬂa (I’, x, y) = 2 (a)z""l (a )Zu—n x"® yn’

mlin!
(a) n+n (}’)n n n
(13) H,(a B, y» & % ¥) = z o, m'nT X" yn,
(14) H, (@ By 8 6 % ) = E (a), ., (B), (y')n (3,
() m!lni
1) H, (e B yo )= 3 Deatn B un

(N, 4, m!n!

(a)ZI +n (B)n m ..n

H —
(16) H,(a B, % & %, ¥) (M, ), min! e
an Hs(a’ B, Vs X y) = M% : yn’
(y)rl min!

(].8) Hs(a’ ﬁ’ Vs X, y) = 2 (a)gg-n (B)n—. (}’)n <™ yn,

m!n!

(a)-,,_,n (B)n (y)n n n
(19) H7(a,/3,y,5,x,}’)=2 (25).! m!ilnl e

and there are 20 confluent series which are limiting forms of the com-

plete ones and for which p <p' =2 g < ¢’ =2 andp, ¢ not both = 2:
(@, ., (B,
W, 4ymlinl

(20) @,(a, B, 7> % ¥) = " yn l#| <1,

B, B"), . on
x"y

1 ' T T mial
21) ¢2(Bs B s Y X y) (Y),,.HlM!n!

8, o
@) 0,6, 3% = Y, Gt "
i (a)m+n ('B)n . ‘
(23) ‘l"(a, B, )/sy,x’y)= (‘Y). ()/,)nm!n! 2Ty le<1,
(a)
(24) ¥, (a, % y's % ¥) = Tnin £ 5,

(M, '), min!



226

SPECIAL FUNCTIONS
(@), (a"), (B),

(25) Et(a, a,,ﬁr Y X, J’)='- (y)-+nm! ]’1! x.yn,
(26) Ez(a’ B v % 7) = 2 M "
M, somin!
27y I' A% B; B", Z 2, (B)w rB i
m:!n
@28) I (B, g Xy y)_z QB)n n (nTB )l -y")
m!n
(a). -n (3)1 +n ®R ..Nn
(29) H,(a B, 8 x, ) = B uiul T
(a). -y (08)- (y)n mn_.n
0 B, B0 850 = ) v
(a) _ (B)
H - R —n n LV
(31) 3(% B; & % y) (8)‘l mlnl R
(a)._n() n n
(32) H,(a, 5 8 x,y) = B, mial ~ 7"
(33) H (a, 8, x, y) = Emf-"—;T x=® y",
2m tn LAY
(34)H(a,‘y,x,}’) z(y) m'n! il
(35) H'J(ao Y 8’ X, y) = (a)Z. - ) yn

(36)

37)

(38)

('y)_ (3),_l mln!
H (a B, x, y) = Z@‘Ll(‘m% x* yn
mi@n!

(a)Zn—n (Bﬂ - xl n
(5). mlin!

(a,, _, .
H,o(a,S,x,y)=2.za)_""_.._ .

Lmlin!

Hs(a’ B! 8, X, )’)=

5.7.1

x| <1,

x| <1,

|} <1,

x| <1,

|| <1,

x| <1,

x| <%,

|| <%,

lx| <%,

lx| <%,

x| <%,
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(@, . (3,6,

(39) H“(a’ B, Yy 85 x, 9’)=Z b)) mlin!

" y" bl €1

In all these double series m and n run from Q to oc.

5.7.2. Convergence of the series

The positive quantities r, s are called the associated radii of con-
vergence of the double power series X A x" y" if the power series is
absolutely convergent for |x| <r, |y| <'s, and divergent when |x| > r,
ly] > s. We put max r = R, max s = S. In the absolute plane (, s), the
points representing associated radii of convergence lie on a curve C
which is entirely in the rectangle 0 <r < R, 0 <s < S, and divides this
rectangle into two parts of which the one containing r = s = 0 is the two-
dimensional representation of the domain of convergence of the double
power series.

Investigating the convergence of (1), Horn defines

(40) ®(p, v) = limf (pe, ve), Wx, v) =lim g (ut, ve) o .
and shows that R = [®(1, 0)|™', S = |¥(0, 1)|™', and that C has the
parametric representation r = |[®(u, )|7', s = [¥(g, )|7', where p,
v >0,

The application of this to the complete series of the second order
gives the following table:

Series | @ (g, v) Yp, v) Cartesian equation of C
@n|rF |1 1
+v + v
@ | F, | £ = TP, |
I v
K v
(43) Fa
pt+v w+v
2 2
+ + . ’
@) | F — (" ") £ % g 1
4 2 =
—(p+1) —(p+v)
45) | G, £ s r+s=1
7 v
@e) |G, | -1 -1
F3 2
— 2 -—
@n| e 3 Lol 27r2s2+ 18rs 24(r—s)—1=0
Bl opev-p | v(@u-w
2 2
- p+v
(a8) | H = 4rs=(s =1)?
1 2
m p—v
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Series| ®©(u,») W, ) Cartesian equation of C
p—v v <
(49) | H, —r+s'=1
p p-v
(2p+)2 2u+v
(50) | H, r+(s—-wi=y%
,u(,u+v) ptv
@2p+w)? 2u+v
(51) | H, 7 ar=(s~1)*
©° v
2p+v) Cu+-p
(52) | H, - 1+ 16r%—36rs +t@r —s + 27rs %) =0
plv—p) v
(2p—2)* v-
(53) | H, k s sir+s—1=0
plv—p 2p—v
(2p-v)? v
(54) | H, # 2 4r=(s""= 1?2
3 2p—v

The domains of convergence of the various series can be represented
as follows:

0,1 (L,D (0, 1) (o, 1)
Fl 2 F3
GZ
Fz ’ GI F4

(0,0) (1,0) (0,0 (1,0) (0,0) (1,0)

(0, %) (0,1) : (0,1)
(1,%4)

H, 1, 3—-2/2) H,
0,0) (%,0) (0, 0) 1,0 (0, 1) (1,0)

Regions of convergence
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(0,1) (0,1) o, 1)
(%, %)

(0,0) (%4,0) (0,0) (4,0) (0,0) (%,0)

(0, 1) (0, 1)

(%, 2¢/2-2)
(%4, %)
Hs H_,
(0,0) (%,0) ©,0) (%,0)

Regions of convergence

In the case of confluent series either @ or ¥ vanishes identically,
the region of convergence simplifies considerably, and any inequalities
which may be necessary to secure convergence are recorded in (20) to

(39).
5.8. Integral representations

Basically, hypergeometric functions of two variables, as the corre-
sponding functions of ome variable, can be represented either by the
Euler-Laplace type or by the Mellin-Barnes type of definite integrals,
The latter type invariably, and the former type with an elementary inte-
grand mostly, leads to double integrals. Since double integrals are some-
what untractable and not very well suited for the integration of differen-
tial equations, it is natural to seek for single integrals representing
the functions. Such representations can be found in every case, but the
integrand in most cases contains a hypergeometric function of one vari-
able, or even a product of such functions.

The large number of functions in Horn’s list makes it impossible to
give a complete list of integral representations here ; integral re-
presentations will be given for Appell’s functions only, but it should be
noted that all of Horn’s functions have similar representations and that
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many of these have been given in the papers quoted in the list of refer-
ences. Integral representations are useful in connection with the analytic
continuation of hypergeometric series in two variables, their trans-
formation theory, and also for the integrationof hypergeometric systems
of partial differential equations.

5.8.1. Double integrals of Euler’s type

The integral representations

r
2 Fr(“'5’B"V”"y)=r(5)r(3');*y()y—3—ﬁ')
£ T oty ‘(1—u—v)7-ﬁ— —'(I—ux—uy) % du dv
(.;2&,:%: Re,8>0, Re B' >0, Re(y-B-B8')>0,
rmr’)

2 F Py "s ’ '; 2] =

x [ L uB B T (e AT (1= 0)Y B (- ummvy) " dudy
Re >0, ReB’'>0, Re(y-p)>0, Re(y'-8")>0,
and
I'(y)
r@rEHry-g-a"
2B vﬁ' ¥l n _v)—'r-ﬁ-ﬁ' -1

(3) Fa(a’ a"BSBI!'y; %y f}’)=

u>0, v>0
utv <1
x (1= ux)"*(1 - vy)_"’" du dv
Re >0, ReB'>0, Re(y-B8-8')>0
are easily obtained from the series by using either Euler’s integral of
the first kind for the beta-function, or the corresponding double integral
(Appell and Kampe’de Fériet 1926, Chapter TI).

The function F, is much more difficult to handle and does not seem
to possess a very simple integral representation. Of the various double
integrals proposed, perhaps the simplest is Burchnall and Chaundy’s
[ 1940, equation (68)]

TG Ty")
FraI'(BILy-a 'y’ -=B)
x [ uet o (L= w)ym et (L= )y B

o 0

(4) Fa, By, v 52(1=y), y(1-2)]=
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x (L= )@Y~y " *1 (1 - vy) B~ ~Y W g vy)? Y “a=B-10udy
Re (@) >0, Re(B)>0, Rel(y-a) >0, Re(y’' -p)>0.

In all these integral representations it is assumed that |x| and |y|
are small enough to make both series and integrals converge.

5.8.2. Single integrals of Euler’s type

Picard has pointed out that F, can be represented by a single in-
tegral in the form

(5) Fy(a,B,B', 7%y

&. 1 a=1 -y—a_1 —ﬂ _ﬁl
><l—‘(m) I'(y —a) fo % Q- (1=ux)"7 (1-uy) du

Rea>0, Re(y—-a)>0.

This representation has the great advantage that it can easily be con-
verted into a contour integral valid for negative Re a and Re (y = a) and
that it is the best tool for the complete integration of the system of
partial differential equations connected with ¥, . Equation (5) sets up a
factorization, into a function of x and a function of ¥, of F, by means of
Euler’s transformation, and the great usefulness of (5) is due to this
property.
There are corresponding relations for F, and F, (Erdélyi, 1948)

e r(")rd-a
(6) Fz(ﬂqu B',V,‘Y';x;)’)= E (p)g_ -
2 i)

x [ (=P (- n-e' Flp, B; v;x/t)Flp', B'5 v 5 v/ (1 -0)]ds
where p + p' = a+ 1, and the contour of integration is a Pochhammer
double loop (1 +, 0 +, 1 —, 0 =) such that |¢| > |x| and |1 =¢| > |y| along
it; and
(D Fyara's B By %9 =@m) 2T pTA-p )T

xf“+'°+"—'0_)(—t)p—' (¢ - 1)p‘_,

x Fla, B; p; tx) Fla', B'; p's (1 —t) yldt

where p + p’ = y. In either case a special choice of p reduces one of the
hypergeometric functions in the integrand to an elementary function, but
with general values of the parameters it is impossible to reduce the
whole integrand to elementary functions.

The function F, proves again more difficult to handle than its fellows:
no single integral is known which factorizes F,. On the other hand, the
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integral representation [Erdelyi 1941, equation (3)]
(8) F‘(ag Bo Y }" HE Y) 2(2777:)—2 r(y) F(y') F(Z i ‘y')
w (4,04,1,0) ey (o 1)~
x Fla, B3y +y' + 1 x/t +y/(1=10)]dt,
in which |x/t + /(1 - ¢)] < 1 along the contour, is reasonably simple

and useful for the integration of the system of partial differential equa-
tions associated with F .

5.8.3. Mellin- Barnes type double integrals

Following Appell and Kampé de Fériet, the four integral representa-
tions can be summed up as

I'(y)
I'(a) T'(B) (2mi) 2

x L s, DT () Ten) () (o) s e

(9) q) (x’ )’) -,

where the contours of integration are indented in the usual manner (cf.
section 2,1.3). ® and ¥ are given in the four cases as

@ (x, v) Y(s, t)
' TNa+s+)T(B+s)T(B' +1)
(10) F(a, B, B", v3 2 ) FBIYC(y+s+1)
Ta+s+)T(B+s)T(B' +8) T'(y")
LY y+s)T(y" +¢)
Te+s)T(a' + ) T(B+s) (B +1¢)
M@ )T T (y+s+1)
Fa+s+) T(B+s+)T(y")
Fiy+s)T(y' +10)

(11) F,(a,B,B',7:7": % y)

(12) Fa(a, a’, ﬁ, B’, Y % )’)

(13) F4(a, Bl Y 'y' 3 Xy y)

Integrals of this type were used in Mellin’s investigation of the hyper-
geometric functions.

5.9. Systems of partial differential eguations

The series X 4 _ = F(m, n)/F'(m, n),

n

x® y™, where 14.”,""/./1.m



5.9 GENERALIZATIONS OF THE HYPERGEOMETRIC FUNCTION 233

A, /A, =GClm, n)/G'(m, n) and F, F', G, G, are polynomials as
in 5.7(5), satisfies a system of linear partial differential equations
which can be written in terms of the differential operators

d d
(1) 6=x — and &' =y —
dx dy

as
(2) [F'(8,8")x""'=F(5 8] z=0,
[G'(58")y™" =65 8" ) z=0.

In what follows we shall restrict ourselves to hypergeometric functions
of the second order, in which case we find two partial differential equa-
tions of the second order.

The two equations are certainly compatible (since the hypergeo-
metric series satisfies both of them), and from the general theory of
such systems (cf. for instance , Appell and Kampé de Fériet 1926, Chapter
IM) it follows that they have at most four, and possibly less, linearly
independent solutions in common. A closer investigation shows that the
systems of partial differential equations associated with the eight series

@ F,6G,6G,9,,8,,®,IadT,
of Hom’s list have only three linearly independent solutions, while all

the other 26 systems have four independent solutions each. However, in
the case of the systems associated with

4 G, H,, H, H,H,

one of the solutions is a comparatively trivial elementary function of
the form x” y?, with the following values of p and o:

Series P o
1 '3 l ’
(5) Gs ——(a+2a’) -—(2a+a’)
3 3 =
(6) | Hy, Hy y—a-1 a—-2y+ 2
7) H,,H, -—a-f3 -a~- 28.

In the following list of partial differential equations z is the unknown
function of x and v,

@) dz 0z d%z 0%z 5 9%z
= —— =— = —_—, S = s B e
B P e i % gy oyt

9 2x(1-2)r+yQ-x)s+[y—-(@a+B+1D=xlp-Byg-aBz=0
Fy,
yA=-y)t+x(1-y)s+[y-(a+B'+ Dylg-B'sp —aB2z =0
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(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

SPECIAL FUNCTIONS 5.9

x(l-x)r-—xys+[y-(a+B+Dxlp-Byg—aBz=0 &
y(l=y)t—xys +[y'=(@+ B'+ Dyl g-B'xp-aBf'z=0 &

x(l-x)r+ys+ly—-(a+B+1Dxlp-aBz=0 }F
y(l=-Pt+xs+y—(a'+B'+Dylg-a'B'z=0 a2
x(l-x)r—y?t=2xys+[y-(a+ B+ Dxlp
—(a+B+1) yg—afz=0 2
y(l-y)t—x2r=2xys +[y'=(@a+B+Dylg &
—(a+B+Dxp-afz=0

x(l+x)r—ys—y2t+[1=B+(a+B'+Dxlp
+(B'-a-Dyg+aB'z=0
] Gy»
yly+Dt—xs—x2r+[1-8' +(a+B+Dylgq !
+(B-a-1Dap+aBz=0
x(l+x)r=y(Q+x)s+[1-B+(a+B'+ D xlp
—ayq+aB’'z=0
G,,
Y1+ t=-x(Q+y)s+[1-B'+(a'+B+Dylg %
—a'xp+a'Bz=0
x(l+4x)r—(4x+ 2 ys+y2t+[l-a+(da’+6)xlp
-2a'yg+a'(a'+ Dz=0 a
y(l+4y)t—x(4y+2)s+x2r+[1—a'+(4a+6)y]q =
- 2axp+ala+1) z=0

x(l—x)r+y2t+[8—(a+B+1)x]p—(a—B—1)yq-—aBz=0}H
—y(1+y)t+x(Q-y) s+[a=-1-(B+y+1) ylg<yxp— Byz =0 "

H,,

2

x(x=-1r —xys+[(a+B+ 1) x—€lp-Pyg+aBz=0
yy+ L)t —xs+[1l-a+(y+8+Dylg+ydz=0 }
2(1=4x)r+y(1—4x) s=y® ¢t +[y~(4a+6) x]lp
- 2(a+ D yg—-ala+1) z=0
y(1 -y t+x(1-2y)s+[y-(a+B+Dylg
= 2Bxp —afz=0

3 L
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(19) x(1-4x)r—4xys ~y?t+[y—-(4da+4) x]p

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

-Ba+2yg—ala+1) z=0 5
y(l-y)t-2xys +[6-(a+B)yl g—2Bxp —aBz =0 e
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x(1+4x)r—y(1-4x) s+y?t+[l-y+4(a+ Dxlp
+Ba+2yg—ala+1)z=0 y
y(l=y)t—xys+2x*r24[y—-(a+B+Dylgq 5 -
+(2+a~2Q) ap—aBz=0
2(l+4x)r=(L+4x) ys +y¥2t+[1-B+(4da+6) x]p
-2ayg+ ala+1) z=0 i
yA+9)t-x2+y)s+[l-a+(B+y+1Dylg Bt

~ yxp + Byz =0
x(l-4x)r+4xys —y2t+[6-(4a+6)x]p
+2ayqg-ala+1) z=0
y(l+y)t—3xys+[l-a+(B+y+1) ylg —yxp + Byz=0
x(l=)r+y(Q-x)s+ly-(a+B+Dxlp-Byg-aBz=0
yt+zxs+(y-y) g-xp-az=0

xr+ys +(y-x)p-Bz=0 "
yt +xs +(y—y) g—-B'z=0 2

xar+ys +(y—x)p-Bz=0 2
yt+xs+yqg=2z=0 -

x(l—x)r—xys+[y—(a+ﬁ+1)x]p—Byq—aﬁz=0}‘P

yt+(y'=y)g—ap~-az=0 v

xr+(y—x)p—yq—az=0 }‘I’

yt+(y'-y) q-xp-az=0) 2’

x(l=x)r+ys +[y-(@a+B+Dxlp-aBz=0 }E

yt +xs +(y—y) g—a'z=0 1

x(l-x)r+ys +ly-(a+ B+ 1D xlp-aBz=0

yt+xs+yg—z=0 }

s+ Dr-—yx+Ds+[1-B+@a+B'+ Dxlp
—ayq +af3'z=0

E,,

yt—as+(1-B'+y) g—2p +Bz=0
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(81) xr —ys +(x—ﬁ+1)p—yq+ﬁ'z=0}r

yt—xs+(y-B'+Dg-xp+Pz=0 =
32) x(1-x)r+y2t+[6-(a+B+Dxlp

+(B-a+1Dyg-aBz=0 H
yt—xs +(l—a+y) g+2p +Bz=0

(33) x(1-=x)r+xyt + [8—(a+B+1)x]p+Byq—aBz=0}H
2,

yt—=xs +(l=a+y) g+yz=0

(34) x(l—x)r+xyt+[8—(a+ﬁ+1)x]p+Byq—aBz=0} -
3’

yt—xs +(l—a+y) g+2z=0

(35) xr+(6-x)p+yg—az=0
-yt+xs-(l—-a+y)g—-yz=0 4’
(36) xr+(5-x)p+yg—az=0 .
yt—xs +(l-a+y)gq+2=0 B
(37) x(1-4x)r+y(1-4x)s —y?t+[y-(4a+6)x] p
-Q2a+2yg-ala+1) z=0 > H,,

yt +xs +(y —y) g = 2xp —az =0

(38) x(1-4x) ~4dxys —y%t+[y-4(a+ D xlp
-Ba+2yg-ala+1)z=0 H.,
yt+(8-y) g=2xp—az=0

(39) x(1+4x) r—y(1+4x) s+y?t+[1-B+@a+6)xlp

- 2ayqg+ala+1) z=0 H

yt=2xs +(l—a+y) g—xp+Bz=0

(40) x(1 -4x) r + 4xys -—y2t+[5—(4a+6) x] p
+2ayg—ala+1) z=0

H,,
yt-2xs+(l—a+y) g+ Bz=0 o
(41) x(1—4x)r +4xys —y?t+[6 - (4a +6) x]p
+2ayg-ala+1) z=0 -
yt=2xs +(l—a) g+2=0 10’

42) 2r+(8-x)p+yqg—az=0 H
yoy+Det-xsHl-a+(B+y+Dylg+ Byz=0 k=

5.9
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The monograph by Appell and Kampé de Fériet gives an account of the
attempts to investigate some of these systems of partial differential
equations; since its publication more work has been done, in particular
by Hom, Borngisser, Burchnall,and Erdélyi. Some solutions are known
for each system, but a complete set of all relevant fundamental solutions
is not known except for the systems of F,, G,, (Erdélyi, unpublished),
F, (Burchnall 1939, Erdélyi 1941), and @, , ®,, T', (Erdélyi 1939, 1940).

The difficulties in dealing with these systems of partial differential
equations have two sources. One is the unsatisfactory state of the gen-
eral analytic theory of systems of partial differemtial equations; in par-
ticular our very scant knowledge of the behavior of solutions in the
neighborhood of points at which more than two singular curves of the
‘system intersect, or at which two singular curves are at contact. The
other is the large number of apparently distinct systems. This second
difficulty can be diminished considerably by using a result of the trans-
formation theory (cf. section 5.11) which suggests that with the possible
exception of the systems of

43) F,, H,, Hy, H,,

every system connected with a hypergeometric series of the second
order can be reduced to the system of F, or to a particular or limiting
case thereof.

5.9.1. Ince’s investigation

Ince (1942) investigated the system
(44) ar+bc s +dp+e g+fz=0

a,t+b es+d g+ep+f,2=0

in which a, b, ¢, d, e, f, are polynomials in x, and @, b,, ¢,,d,, e,,
f,, are polynomials in y. He made certain assumptions regarding the
ab, ..., e,, f,, which ensure that (44) has four linearly independent
solutions, that it is symmetric in x and ¥ (with a suitable interchange of
constant parameters), and that the singular curves are determined by the
coefficients of the second partial derivatives in (44); under these assump-
tions he proved that (44) can be reduced to the system of F, or to a
particular or limiting case of that system.

5.10. Reduction formulas

Under exceptional circumstances, hypergeometric functions of two
variables can be expressed in terms of simpler functions, notably in
terms of hypergeometric functions of one variable or in terms of elemen-
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tary functions. In such cases we speak of reducible hypergeometric
functions and of reduction formulas. The exceptional circumstances arise
either if the parameters in a hypergeometric series satisfy one or several
relations, or if the two variables are connected by a relation. In the
latter case the relation is usually the equation of a singular curve of the
system of partial differential equations associated with the series in
question,

Certain trivial reduction formulas are obvious: if 8 = 0 in Fu F,
or ' or @,, if y = 0 in any of the series, the hypergeometric series of
two variables can be expressed in terms of series of one variable: such
trivial reductions are disregarded in the sequel.

REDUCIBILITY FOR PARTICULAR VALUES OF PARAMETERS

The following reduction formulas can be proved either by expanding
in infinite series and comparing coefficients, or by manipulating integral
representations.

1) Fla,B,B's B+B"i%,y)=(L~n""
xFla, By B+ B (2 =5)/(1=y)]
(@ F,le, B, B',Byys%y)=(1-x)"%Flq B';y'; y/(1-2)]
@) F,(a B, B, a as2,9)=(1=0"F (1-y)A
x FiB, B'; & xy/[(1-2) (1 -y}
4) Fia,y=a B y=Byviny=0-0N"*FYF(a B,y x+y-=y)

(58) Fla,y+y' —a=-1y,y';52(1-9), y(1-2]
=Fla,y+y' —a-Lyx)Flgay+y' —a=-Ly';y)

6) Fia B, a B;-x/A01-2 1=yl -y/[(1-2) (1-y]
—(l-m)" A-0E-y)"

() Fla,B,8, B;~x/1-2) (1-y],-y/(1-2 (1-91}
=(1-2)*(1-y)*F(a, 1+ a-B; B; xy)

(8) Fila B,1+a-8,B;-=/[(1-2)1Q-y)] -y/[(1-2)(1-y]1}
=(1-9)%F(a B; 1+a— B; —x(1-%)/(1-x)]

(9) H,ly+8-1,8,1%2B; 4(1 -2 (1-y?) (1+xy)7% 22y (1 + xy)7"]
=(l+x)Y BV FHB+Y%y-% %B+Y%y v 1—-x?)
xFCaB+Y%y—Y4 BB +%y; B+ %y?)
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For (1), (2), and (4) see Appell and Kampé de Fériet (1926) Chapter I;
for (3), (5), (6), (7), and (8) see Bailey (1935) Chapter IX and examples;
and for (9) see Erdélyi (1948) p. 384. A few other reducibile cases are
also found in the literature quoted.

REDUCIBILITY FOR SPECIAL VALUES OF THE VARIABLES

The methods are, broadly, speaking, the same as in the previous case,
but the known results are far less numerous. Appell and Kampé de Feriet's
monograph gives only

FryIry—-a-B")
Ty-aT'(y=-8")
(11) F (e, B, B, v % x)=Fla, B+B"; y; %),

both immediate consequences of 5.8 (5).

(10) F|(a,B,ﬁ','y;x, D= F(a,ﬁ;}’-ﬁ';X)

5.11, Transiormations

Although there is essentially only one hypergeometric series of the
second order in one variable (namely Gauss’ series), its transformation
“theory is quite extensive (cf. section 2,9 to 2,11). With the considerable
number of hypergeometric series of the second order in two variables, the
complete set of transformations would run into the hundreds, and only a
few examples can be given here. The best means for deriving these
(and other) transformations is the integral representations of the functions
concerned where a change of variables of integration, or a deformation
of the contour of integration will often yield the desired results. With
integral representations, such as 5,8(6), in whose integrands hypergeo-
metric functions of one variable occur, the known transformation theory
of these functions can be used with good effect,

First we have transformations of a series into a series of the same

type:
FI(G’B’B’y Y X, y)

=8 ' ] x ¥
(1) =(1-x)"(1-9)"2 F, (Y'"a,ﬁyﬁ ,Y;m’;f-)
_ ; y % ¥y —-x
(2) =Q=-2"F (ay=-B-B"4B Y ——7 7T

o | g g XX ¥
(3) =(1—y) F,(a,ﬁs)’-B B s Y y_l . y~1>
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(4) (-2 B1-y)F F'(Y'avv-ﬁ =B\ Byix, :-9)
-

5)  =(1-0BA-y7"B F, Q'a, B.y-B-B'yi—t » )

Fz(an B ﬂ‘; Ys }";x, y)

(6) =(1_x)-an(1,y—BsiBJ,Y!)’,;—x—s ] )
x—

1 l-x
- ’ x y
(7) z(lwy) an a!B’}' —'ﬂlv)’yy';——-—',
1-y  y-1
- A y
(8) =(l-x=9y)"%F e B et ‘ ) .
N e y=By =By P (e s

All these correspond to Euler’s transformation of the ordinary hypergeo-
metric series,2,9(4). No simple transformations of this type seem to be
known for any of the other complete hypergeometric series of two vari-
ables.

There are also transformations of a series into a series of the same
type which represent analytic continuations, such as,

(9) Fla,Byyry'sxy)

rayHYrE-a

=l—\(y:_a)1—|(—B) (—J’)-a’F4(a,a+1—y',y,a+l—ﬁ;x/y, ]/y)

Lo Ta-p
rG'-p ' a

and lastly, for special values of the parameters, there are quadratic and
higher transformations. All these transformations occur in the monograph
of Appell and Kampé de Fériet (Chapters I and II).

Secondly, we have transformations of a hypergeometric series of two
variables into another type of such series. There are two kinds of such
transformations: the one provides an analytic continuation of a series
in tems of series of another type, the other is a kind of reduction form-
ula showing that with certain special values of the parameters the series
is expressible in terms of a simpler series (i.e., with a smaller number
of parameters). Perhaps the best known example of analytic continuation
in terms of another hypergeometric series is the transformation

P F,(B+1-y', By, B+1-a; x/y, 1/¥);
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(10) F (a,a", B, B, ¥;x %)
_ 2 FrMIT-ANTle-p
P l@ly-A-pw
xF,A+p+1-y, A, , A+ 1=-p, p+1-0; I/x, 1/y)

(-x)™M (L) o

where the sum consists of four terms in which A, p, p, o, arerespectively,
a a', B, B'sa B's B,a'; Bsa', g B'y and B, B', o, a'. The

best known example for the reduction is
(1) F,(a,a', B, B'ya+a’; % y)=(1-9y)7R

XF|[a:ﬁs B':a+a';x,7/(9’—1)]-

The following two tables give a condensed account of the various
known transformations of complete series, i.e., those denoted by F, G, H,
in Horn’s list. The actual formulas, and similar transformations of con- .
fluent series, will be found in Appell and Kampé de Fériet (1926), Bailey
(1935) Chapter IX and examples, Burchnall and Chaundy (1940, 1941)
(where the transformations are not explicitly stated, but occur as de-
generate cases of expansions), and Erdélyi (1948).

ANALYTIC CONTINUATIONS

Continued in

Series Variables ——— With variables
¥y x, y F, 1/x, 1/y
E % ¥ H, 1/x, =y
H, x ¥ F, 1%, —y

TRANSFORMATION OR REDUCTION FORMULAS FOR SPECIAL VALUES OF
THE PARAMETERS

Transforms
Series Restriction . With restriction
into

1
F,  B'+y=a+l F, By
F, a=7y' E, none
F, y+y'=a+l G, none
F, y+y'=a+l H, a+y=¢
F, 2=y H, none
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TRANSFORMATION OR REDUCTION FORMULAS FOR SPECIAL VALUES OF
THE PARAMETERS (Continued):

Series Restriction ’I.‘ransforms With restriction
into

F, y=2Band y'=28' F, y+y'=a+l
F, y'=2,6" and,8+B’=a+‘A F, B+y'=a+1
F, B=B'andy+y'=a+1l F, y+y'=a+l
¥, B=B'and y+y'=a+1 G, none
2y y+‘y'=a+1=2—ﬁ=2—6' G, none
By ata’' =y F, none
F, a+B=landa+a’'=y H, none
F, B=a+% H, 6=28
F, B+y'=a+1 H, B+y=a+1
H, e=28 H_, none
H, B=yand a+6=¢ H, at+d=¢
H, y+06=1,8+¢=a Hy none

The first entry in the second table, for instance, indicates that if
B' +y=a+ 1lin the series F (a, 8, B', ¥; %, ¥), then this series can
be expressed in terms of a series F,(a, B8, y, y'; x, y) where the new
a, B, v, v' (of F,) depend on the parameters of F| in such a manner that
B=y' inF,; and the x, y in F, depend on the variables of F, .

These tables show that the series F!, F3’ G,» Gz, Ga’ Hz’ 113, H,,
H,, and H7 , with arbitrary values of their parameters, can be expressed
in terms of F,, and clearly the confluent series which are their limiting
cases can be expressed in terms of limiting cases of F,. We then have
the result that all hypergeometric series of the second order in two
variables, with the possible exception of F,, H , H_, and H,, can be
expressed in terms of F, or its special or limiting forms, and this in its
turn leads to the corresponding theorem on the systems of partial differ-
ential equations associated with these series (cf. also section 5.9).
It is not known at present if, although it seems likely that, F,, H,, and
H_ are independent of F, and also of each other when their parameters
are arbitrary,
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5.12. Symbolic forms and expansions

Burchnall and Chaundy (1940, 1941) introduce the operators

TR TG+ 8'+4) T(5+h) T3 +A)
V) = N
) e TE+AT(6'+h) e TRTE+6 +4)
d
8= T "= —_—
xax » yay

by means of which they write
@) F,(a,B,B",7, v ;% N=V(a Fla, B v; x) Fla B'5 y'; ¥),

@) Fyla,a’, BB yi2% ) =AW Fla, B y; x) Fla', B'; ¥; %),
4) F,(a, B,B5y;% y)=V(a) A(Y) Fla, B; y;2) Fla, B'; ;)

(5) Fla, B, ¥,y 5% ¥)=V(a) V(B) Fla, B; y; x) Fla, B '3 %),

thus factorizing Appell’s functions by means of the operators A and V;
they also obtaintransformations of Appell’s functions such as

©) Fyle, B, B's v % y)=V(a) Fs(a, a, B, B; y; % ¥),
() F,(a,ﬁ,ﬁ',y;x,y) =A(y)Fz(a,B,B',y,‘y;x,y),

8 Fla,B,7vy' 5% =VPB F,(aB B v¥y;:%y),

and some others.

These symbolic forms are used to obtain a large number of expan-
sions of Appell’s functions in terms of each other, of Appell’s functions
in terms of products of ordinary hypergeometric functions, or vice versa.
To give an example, by Gauss’ formula for F(a, 85 y; 1), 2.8(46), we
have symbolically

J (9, (-8"),

V(k)=,=° *), r 1

Now,

(a), (B),
O,
and hence (2) suggests the expansion
9 Fa, B, B' sy %)
T @B, (B,

= L O B Y x"y" Fla+r, B+r;y+r;2) F(a+r, B4r;y'rsy)
r=o0 i ’y r(-y )r

(=8), F(a, B; y; x) =(=)" x"Fla+r, B+r;y+r;x),
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By inversion of (2) in the form
Fla,B;y;2) Fla, B'5v'39) =Aa) F,(a,B,B8"5%7"5 % ¥)
and a corresponding expansion of A(a), the companion to (9),
(10) Fla, B;y; %) Fla, B'5 %5 %)
Z (o), (B), (B",
( )r xr r
r=o r! ()/) ('y )

xF,(a+r, B+, B +r, y+r, ¥y +7r;x, )

is obtained. These expansions can be proved without symbolic methods
by comparing coefficients of equal powers of x and ¥ on both sides.

By these methods Burchnall and Chaundy obtained 15 pairs of expan-
sions involving Appell’s functions and ordinary hypergeometric func-
tions, as well as a further considerable number of expansionsinvolving
hypergeometric series of higher order, and Humbert’s confluent hypergeo-
metric series, ®, ¥, and E. The method also yields useful integralre-
sentations [such as 5.8(4)] and integral formulas.

‘There are many other expansions involving Appell’s functions and
ordinary hypergeometric functions. A particularly important one is the

bilinear generating function of Jacobi polynomials,
oo

Z nla+B+1)
(a+1) B+1,

L (2n+a+ B+ D"

n=0

(e+B+D(1-2)
(1+t)a.+ﬁ+2

xEMa+%B+L Ya+r%B+3/2,a+ 1, B+1, a¥k? b%/k?)

where a = sin ¢ sin ¥, b = cos ¢ cos U k=%0"%+ t%)(Bailey 1935,
p- 102 example 19).

x R‘(a’ﬁ)(cos 2¢) Pn(a’ﬁ) (cos 2¢) =

5.13, Special cases

Generalizing Jacobi’s polynomials to two variables, Appell has
studied the following families of polynomials (m and r are non-negative
inte gers):

M 3, =), GNI ="y (1 —x—y)?* e
m+tn
3 %a_yn 7 *e=t 7 a1y —y)atnta=y=y

x+y=1"x+y—

x
= {1~x-y}" ** F, (”*‘y ~amm=n,~m, =, y, y'; —— , ——

)
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x‘-"yy1—’y’ au+n

2) F =
( ) mn (,y). (yf)n axl ayn

’
[x'y+. —1y'y +n=1 (l—x _y)u +n]

=F,(-m—-n, y+m y+n, 5 y'i% ),
(3) E.n=F2(y+y1+m+n,—m, -n, ¥ y’;x, ¥).

The latter two families form a biorthogonal system for the domainx, y > 0,
x +% < 1 with the weight function x” ™" y¥ -1,
The series

(4) x"y"F (=Y%m, =lan, Yo=Yom, Yo=Yon, ~-m—n-Ys+%; x7% y7?)

(which can be expressed also in terms of F2 ) and
(6) =x"y"F [-Vam, =lan, Yo=Yam, Vi=lin, Vos+1i; @2+y2=-1) %73
(x2+y2-1 y?]

occur in the investigation of hyperspherical harmonics.
All these special cases are investigated in the monograph by Appell
and Kampé de Fériet.

5.14. Further series

Hypergeometric series of higher order than two, in two variables,
have been studied by Mellin, Birkeland, Kampé de Fériet (cf. Appell
and Kamp€ de Fériet 1926 Chapter IX), and by Burchnall and Chaundy
(1941), Burchnall (1942), and Chaundy (1942). Hypergeometric series
in three variables have been investigated by Horn (1889); series in n
variables by Lauricella (Appell and Kampe’ de Fériet Chapter VII) and
by Erdélyi (1937, 1939a). Particular cases of Lauricella’s series occur
in the investigation of hyperspherical harmonics.

An extension of basic hypergeometric series to two variables has
been given by Jackson (1942, 1944).
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CHAPTER VI
CONFLUENT HYPERGEOMETRIC FUNCTIONS
6.1. Orientation

If we put z = x/b in Gauss’ hypergeometric series

b
Fa, b;ec; 2) =1+ :. z+a(a+1)b(b+1) #2 ds ws
l.¢ 1:2.¢c(e+1)

’

in which we assume that neither @ nor ¢ is zero or a negative integer
we obtain a power series in x whose radius of convergence is |b| and
which defines an analytic function with singularities at x = 0, b, and
oo, As b - oo, the limiting case will define an entire function whose
singularity at x = « is a confluence of two singularities of F (a, b;c;x/b)
In this manner we are lead to Kummer’s series
2

iy denl o BEFD ®

c 1! clc+1) 21
In the notation of generalized hypergeometric series 4,1(1) this is
;1 Fy o e x), but in this chapter and in the following two chapters (1)
will be denoted by Humbert’s symbol

®(a, c; x).

Sometimes the notation M (a, ¢, x) is also used.
The series (1) satisfies the differential equation

d?y

dx?

dy

(2) = +(c—x)E—ay=0.

The substitution
(8) y=x"/2e*2; a=Yek+p, c=1+2p

reduces (2) to Whittaker’s standard form

d®z Kk  h-pt
@ s~y ¢85 2 8,
dx ? * x x?

Either of the two equations will be called a confluent hypergeometric
equation, and any solution of either of them a confluent hypergeometric
function; a and ¢ (or x and u) will be called the parameiers, x the
variable.

248
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In this chapter, the investigation of confluent hypergeometric func-
tions will be based on (2), but some of the more significant results
will also be given in Whittaker’s notation.

6.2. Differential equations

Equation 6,1(2) is a homogeneous linear differential equation of the
second order whose coefficients are linear functions of the indepen-
dent variable; and it can be shown that every such differential equation
can be integrated in terms of confluent hypergeometric functions. Let

2

19 lmprn Bl ol wle, s sl

dx? dx

+(azx+bz)y-—~0

be the differential equation. If a, = @, = a, = 0, the equation has con-
stant coefficients and can be integrated by elementary functions. This
case will be excluded. The transformation

(2) y=e™z, x=A&+p, (L£0)
carries (1) into
d?z dz

127 +la, &+ B,)—+ (@, &+ B,) z2=0,

@) (a,&+8,) =

where

(4) ao=a0/)\, a|=A'(h), a2=)tA(h),
By=(agu+b)/A%, B, =Tud'(B) +B (DY,

B,=upA®) + B(h),
AR =a h*+ah+a,, A'(R)=2a,h+a,,

BMRY=b,h®>+b h+b,, B'(R)=2bh+b,.

If we can determine A, p, and %, so that

ap+b, =0, a +r4'(R)=0, AR =0,

then (8) reduces to 6.1(2). In other cases a change of the independent
variable will reduce (3) to a confluent hypergeometric equation or to
the Bessel equation. The results are set out inthe table on the follow-
ing page, where J(a, ¢, x) stands for any solution of 6.1(2), and Cy(x)
for any solution of the Bessel equation

d®y dy

e +x-d—x'+ (x?2 =13 y=0.

(5) =x?
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The reduction of (1) to the confluent hypergeometric equation is not
unique, for 6.1(2) can be transformed into an equation of the same form
in several ways. If we put

(10) x =X, y==xPel g

the differential equation 6.1(2) tranforms into
2

d&é?
+lplp+c=1/E-NMa-hc+p=2hp) +A2h(h=1) €] 5 =0,
and this is the differential equation of &(a, y, &) if

(12) p=0 or 1-=¢, h=0 orl, A1-2k)=1,

a=MNa-he) +p, y=c+2p.

d
an ¢ +[c+2p—(1—zh)A§]£—

Thus, counting the identity transformation, 6.1(2) can be transformed in
four different ways into an equation of the same form.

The confluent hypergeometric equation is a homogeneous linear
differential equation of the second order with a singular point of regular
type at x = 0, and with coefficients which are regular for all x #£ 0
(including x = «). Every such equation can be shown (Tricomi 1948) to
be of the form

d’y b\ dy B ¥
(13) Toc? + (a+—x~ 'J:‘—+ (a+7+ ‘x—z) y=0,
and it is easy to see that [apart from the trivial case when (13) can be
integrated in terms of elementary functions] the integration of (13)
leads to confluent hypergeometric functions or to Bessel functions. We
have to distinguish between two cases of (13).

If a2 # 4a, we have

(14) y =242 c7=/2 w(x, pu, &),

where

(15) k =(B-%ab) (a2 -4a)%, pu=%[b-12-4yl%,
(=(a?-4a)% x,

and w (x, pt, x) is any solution of 6.1 (4); and if a? =4gq, we have

(16) y = x%"b/2 g CV(E),

where
(17) v=[(b-1D2-4y1%, £=20(8-%ab)x]%.

The equation
d* dy .
(18) X? + (AXP+ B X— +(DX*+GXP+K)y =0.
dX? dX
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in which p # 0 is any number, is reduced to (13) by the substitution
(19) x=XY, a=A4/v, b=B+v-1D/y
a=Dv7%, B=GCGuv7%, y=Kv_2

and hence can be reduced to the confluent hypergeometric equation. A
more general form can be obtained from (18) by putting

d
(20) y =Y exp [f 3 (X) —;(—:I

Y satisfies the equation
2

d°z
(21) X?
) dXx?

dz
+ (Axp+B+2¢)XTiY + I:DXZ‘°+GXP+K

d
+(AXP+B -1 ¢+¢2+X—£]Y=0.
dX
For instance, with ¢(X) = hX7 it follows that
2

g
(o) XE
d

XZ

dz
+ (AXP4+BX°+C) X —
dX

+(DX%® +EXP*? + FX* + GXP+HX+K) z=0

can be integrated in terms of confluent hypergeometric functions pro-
vided that

(23) E=%AB, F=%B* H=%B({C +o0-1.

At this point it is worth mentioning that Bessel functions themselves
are special confluent hypergeometric functions (cf. section 6.9.1) so
that in all non-trivial cases the differential equations of this section
can be integrated in terms of confluent hypergeometric functions.

The principal linear differential equations of the second order
which can be integrated in terms of confluent hypergeometric functions

are (1), (13), (18), and (22), the last under conditions (23).
6.3. The general solution of the confluent equation near the origin

We shall investigate the confluent hypergeometric equation in the
form
2

(1) =

d
e

One solution of this equation is
(2) y,=%(q c; x),
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and the transformations 6.,2(10), 6.2(12) give three further solutions,
viz.,

(B) y,=x'"""®(@-c+1 2~c;x),
4) y,=e*dlc~-gq c;~x),

(5) y4=x'_"e"¢(1—a, 2 —c; —x).

From their behavior at the origin it follows that y, and y, are line-
arly independent if ¢ is not an integer so that (in this case) the general
solution of (1) may be written as

(6) y=4dAy,+By,

where A and B are arbitrary constants. The exceptional case of an in-

teger ¢ will be discussed later (cf. section 6,7.1).

On the other hand, both y, and y ; are solutions of (1), both are
regular at the origin, and have the value unity there. Since (with a non-
integer c¢) the differential equation cannot have more than one such
solution, we must have y, =y, or

(7) @(a’ c; x)=ex¢)(c-—a, c; —-x).

This is known as Kummer’s transformation. Similarly y, = y, by the
Kummer transformation.

Kummer’s transformation is alimiting case of Euler’s transformation

Fla b;c;2)=(1=2)"Fle —aq, b; ¢; 2/(z = 1]
of the hypergeometric series [cf. 2,1(22)], and is a very important
relation, Cur proof assumes that ¢ is not an integer, but the trans-
formation holds, by continuity, for positive integer c.

If ¥ and y g are any two solutions of (1), their Wronskian,

d
@) qu=yp-g Yo =Yg Yo

must be of the form K e * x~ ¢, where the constant qu can be evaluat-
ed by using the first two terms of the series expansions of the y’s. We
find

(9) le = W:M = W.M = — W23 =(1l-¢c)x ce*

All the other Wronskians of the four solutions vanish identically.
6.4, Elementary relations for the @ function

As in the theory of Gauss’ hypergeometric series,the four functions
(1) da@P=0(@+1],c; x), Pla-)=®(a-1, c;x),
D )=Pla c+1;x), @)= c-1;x)
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are said to be contiguous to ® = ®(a, c; x). The function ® and any two
functions contiguous to it are linearly connected. The six formulas
describing these connections can be derived from Gauss’ relations
between the contiguous functions (cf. section 2.1.2) and can also be
verified by comparing coefficients of like powers of x. The formulas are
as follows:

2 (c-aP@)+2a-c+x)P-ad(a+) =0,

3) cle=-DB(c)=clec-1+2)P+{c~-a)x Plc =0,
4) (a-c+D@®-a®@)+(c-1) d(c-)=0,

(5) c@-cPla~)—xDlc+)=0,

6) cla+x)D=(c-a)x®(c+)~ac ®la+) =0,

(7) (@-1+x)P+(c-a)®la-)~-(c-1) ®(c-)=0.

These relations are not all independent. From two suitably chosen ones,
e.g., from (2) and (4), all the others follow by simple operations.

Any function ®(a + m, ¢ + n; x),m, n, integers, is said to be asso-
ciated with ®(a, c; x). By repeated application of the relations between
contiguous functions, it is easy to prove that any three associated func-
tions are connected by a homogeneous linear relation whose coefficients
are polynomials in x.

By means of term-by-term differentiation, we have

(8) i@(a, ¢ x) = - Pla+1, c+1; x),
dx ¢

or®' = (a/c) ®(a +, ¢ +). By repeated application, the derivative of any
order of ® is an associated function, and hence any three derivatives
are connected by a homogeneous linear relation whose coefficients are
polynomials in x. The differential equation 6.1(2) is the simplest ex-
ample of such a relation. Combining (8) with the relations between con-
tiguous functions, we have

l-c¢

[® -d(c-1)]

9 o' =i[¢(a+)—¢]=(—a-— ) DlcHD+P=
x c

x
Further useful formulas are:

dn
e D (a, c;x)=§a;" ®(a+n, c +n;x)

(10)

4 c
n

dn
(11) Y [x2*"" @(a, c; 2)] = (a) x°7' ®(a +n, c; x)
x
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n

(12) o [x¢7' @ (a, c; )] = (D" (1 - e}, 27" " ®la, ¢ —n; x)
d" -
(13) [e-z@(a, C;£)]=(—1)"£—a)"—-e_x q)(a, c +n; x)
dx™ (C)n
(14) o [e™* x¢79*""1 @(a, ¢; )] = (c - @), e x77 " ®la—-n, c; x).
Here
(@), =1 (a)n=a(a+1)---(a+n—1)=iis%)—il)«

ni= Lo 25 3y were s

6.5. Basic integral representations

It is known that homogeneous linear differential equations whose
coefficients are linear functions of the independent variable can be in-
tegrated by Laplace integrals, The integral representation

() 1
(1) ®(g c;9) = ——m0onon- gt~ (L =) el g
@ '@ 'l -a) foe " ; 4 “
Rec>Rea>0

u

can be verified at once by expanding e* in powers of x. This represen-

tation suggests the integration of 6,1(2) by an integral of the form
y = Ic e ™ (1 4a)eoV dt,

which is also suggested by Laplace’s method. Substituting this in 6,1 (2)
we use the identity

d? d
I:xd +(c—x)T—a:| [e™ 21 (142)c727"]

x 2 x

d
—— [ "'ztta 1 t)e-e
e Q+ge°7e]

to show that the integral satisfies 6.1(2) provided that C does not pass
through any singular point of the integrand, and that the initial and final
values of e"*¢2 (1 + £)°~ ¢ are finite and equal to one another. If Re ¢ >
Re a > 0, one possible choice for C is the interval (0,-1), thus showing
that (1) satisfies 6,1(2). If Re a > 0, another possible choice is a ray
from the origin. We put

1 o0
(2) Ya, c;x)=m fo e~xtpaTl (1 4 p)emo" gg Re a > 0.

This equation defines a solution of 6.1(2) in the half-plane Re x > 0.
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The domain of definition can be extended by rotating the path of inte-
gration. Thus,

1 o e '
- = =gty a=1 c—a=1
(3) ¥(a c; x) @ fo e ¥ty 1 +¢) de

Rea>0, -w<¢p<n, =—-YUr<p+argx<hn

Here ¢t°' and (1 + ¢)°™*"" are assumed to have their principal values.
The condition Re @ > 0, and also the condition Re ¢ > Re a > 0 for ®,
will be removed later, in 6,11(2) and 6.11 (1), when we introduce contour
integrals.

Another type of integral representation uses Mellin-Barnes integrals
(cf. section 1.19). The formula
.y +ioco

1 ) I's)'(a+s)
d(a, c; x) = — —_—  (=x)%ds
l ¥ ) 2m I (a) f;_iw T'(c+s) e

~ Yim <arg(-x) <Y%m, O0>y>-Reaq, o 0L, B nee 5

can be verified by evaluating the integral as the sum of residues of the
integrand at the poles of I (~s).
The corresponding representation of ¥ is obtained by substituting
1 ‘y+iao
Tla—c+ DA+ = I'(=s)T'(a=c+s+1) t*ds

27i )
Y = e

0>9y>Re(c—a)
in (2). Interchanging the order of integration is permissible if y+Rea > 0,
and gives

I'a)T(e—c+1) ¥Y(a, c; x)
1 v+ ico 66
i ds I (=s) r(a—c+s+1)f e e

- 270 Jy—ico 0
Evaluating the last integral,

x~ ¢ Yrior (L) T(a+s)T@a—c+1+5s)
" MNaYT'(a=c+1)

Y(a, c; x) =

: x~% ds,
me

- {oo

or, with a slight change of notation,

1 Pk MN=s)T(1-c-
(5) ‘P(a,c;x)=——-7f g LEM T U Sl o
2nwi S T@Il(a—c+1)
3
— Rea <y <min(0, 1 — Re ¢), . <argx<ﬁ.

In the derivation, more stringent assumptions had to be made. The exten-
sion to the conditions stated in (5) follows from the theory of analytic
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continuation. The conditions imposed upon the parameters in (4) and (5)
can be relaxed still further if the path of integration is suitably deformed.
In fact, (4) is valid (with any y) whenever @ is not zero or a negative
integer, provided that the contour of integration is indented, if necessary,
so as to separate the poles of I'(—s) from the poles of I'(a + s). Similarly,
(5) is valid (with any y) as long as neither @ nor @ — ¢ + 1 is zero or a
negative integer, provided that the path of integration separates the poles
of I' (@ + s) from the poles of ['(~s) I'(1 - ¢ — s). The conditions on arg x
cannot be relaxed.

It can be verified that (4) and (5) satisfy 6.1(2) (Whittaker and Watson,
1927, section 16.4).

From (5) we have

6) Y(a, c;x)=x2'""°W(a=-c+1, 2—c; ).
If ¢ is not an integer, the poles of I'(—=s) I'(1 = ¢ ~ s) are all simple.

The evaluation of (5) as the sum of residues of the integrand at these
poles leads to the important relation
'(l-¢)
¥(a, ¢; x) = ————= @(q, ¢;
4] (@, c; x) TGe—esD a, ¢; x)
I'e=-1
§—_—
T (a)

between the ®function and the ¥ function.

x'"®(a-c+1,2-¢c;x)

6.6. Elementary relations for the ¥ function

The ¥ function was introduced by Tricomi (1927) who denotes it by G;
it is related to F; (Meixner, 1933), to E(a, 8 :: x) (MacRobert 1941), and
to ,F, (a, B; x) (Erdélyi, 1939) by the relations
(1) Ela,B:20=T(@T(B x*¥(a, a=B +1; %),

I'(y)
I'(y—-a

(3) 2F°(ayB;—1/x)=xaq,(a’a—ﬁ+1;x).

(2) F,(a, y, x) =’ ¥Y(a, y; %),

Y(a, c: x) is a many-valued function of x, and we shall usually consider
its principal branch in the plane cut along the negative real axis, this
branch being determined by 6.5(3) with -~ Yir < ¢ < Vom

A number of elementary relations for the ¥ function follows directly
from the corresponding relations of section 6,4 for ®@.
4 P@)-R2a-c+x)¥+ala-c+ D) ¥ (=0

5) (c—a-D¥c-)=-(c-1+x)¥+x¥(c+H=0
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6) Y-a¥@+)-¥(c-)=0

(7 (c-a¥-x¥(c+H+¥P@=-)=0

8) (a+x0)¥+alc-a-D¥@a+)-x¥Pc+)=0
9 (a-1+x)¥-¥Y(@)+@a=-c+1D¥(c-)=0

(10) ' =a¥(a+ c+) =V -¥(c+
=(a/x) [(a=c+1D)¥(@d) -P]=(l/x)[(ea-—c+x) ¥ -¥(a-)]

n

(11) = ¥(a, ¢c; x) =(=D"(a), ¥Y(a+n, c+n;x)
%
d’l
(12) e [ ¥W(g, c; x)]=(-D"(a—-c + l)nx"'_"" ¥Y(a, ¢ - n; %)
(13) == [x2*~! W(g, c; x)] = (a)n(a—c + l)nx“_' ‘I’(a-l‘-n, ¢ x)
x
(14) [e7*¥(a, c; )] =(=D" e *¥(a, ¢ + n; x)
dx™
(15) [e* o ein~t @ia, oy .0)]
dx®

=(=Dre *xc" %" Y(ag-n, c; x).
6.7. Fundamental systems of solutions of the confluent equation

Four solutions, y, to y,, of the confluent equation are listed in
section 6.3. From the work of section 6,5 in conjunction with section 6,3
it follows that

(1) y,=%¥a, e x),

(2) y, =x'""*%Y(a-c+1, 2-c;x),

3) y,=e*¥(c-a c;-x),

(4) Ye =e*x' " W(l-aq 2~-c;—x)

are four further solutions. Therelationship of the four solutionsy,,..., y,
has been investigated in section 6.3; in particular we know that y =y
and ¥y, = y, form a fundamental system of solutions of 6.1(2) provided

that ¢ is not an integer. There remains a discussion of the four solutions
Yg» «+ » ¥+ In this section we shall assume that ¢ is not an integer.
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The exceptional case will be dealt with in the next section.

From 6.5(6) we see that
(5) yg=yg,» and y,=- g AEEE ¥
where ¢ = sgn (Imx) = 1 if Im x> 0, = — 1 if Im x < 0. This significance of
¢ will be retained in the present section. The factor e**7"'~9 js caused by
our conventions in determining x'~°, Thus, there remain four, in general
distinct, solutions, y, =y, y,=y,, ¥y, =y, andy_ =e ”76("'-"9/8 . All
of these are defined when ¢ is not an integer. Their Wronskians, cf. 6.3(8),
are all of the form qu = qu e* x” ¢ with

T (¢)
(6) K'2=1"'C, K1s=_m ”
. T (¢) :
K - rn‘E(c—a), K - I.TTEc’
7= € ¥ Tl = w)
_ N2-¢) re-c)
% T'(a=c+1 "’ 27_—F(1—a) ’

In general, that is if ¢, a, ¢ — a, are non-integer, any two of the four
solutions are distinct and form a fundamental system. However, if n
denotes a non-negative integer and @ = ~ n, W, vanishes identically, so
that ¥, and y, are constant multiples of each other; 6.5(7) shows that
this is indeed the case. Similarly, if a = 1 + n, y, and y, coincide; if
¢-a=-n, ¥y, and y, coincide; and if ¢ —a =1 +=, y, and y, are con-
stant multiples of each other. If ¢ is an integer, eithery, or y, fails to
be defined and cannot be used. Ws., has been derived, from le and 6.5(7),
under the assumption that ¢ is not an integer; however, on account of
continuity it holds forinteger ¢ too. Since it never vanishes identically in
x, it follows that ¥, and ¥, form a fundamental system of solutions of
6.1(2) under all circumstances.

The expression of ¥ in terms of ® is given by 6.5(7). The converse
expression of @ in terms of ¥ is obtained by writing down an expression
similar to 6,5(7) for y,, and then eliminating one of the two ®-functions.
The result is

I'(e) .
(7) ®(a, c;x) =-i_:-(-c—c_—-3 e P (g, ¢; x)
+ LOintamae e*W(c-a, c;—x),

T (a)
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with a companion formula for ¥, By means of (7) and 6.5(7), the follow-
ing relations between the solutions of the confluent equation may be es-

tablished:
'd-c) I'(c-1)

® v T T T e
I'(l-e¢) I'(e=1) . E
N T M Teoa | T
F(C) i7Ta€ r(c) i77(a=¢) €
(10) y‘=-——r(c_a) Yg+ W) e tmla=e ¥ o

(2= c) r@-o) :I
..

(11 = pgCla=cdmi | _
* Za = I'(l-a) y5+r(a—c+1)y

6.7.1. The logarithmic case

The function ®(a; c; x) is an entire function of x, and also an entire
function of a. Considered as a function of ¢, ® has poles, and fails to be
defined, atc¢ =0,~ 1, - 2, ... . However, we have the relation

. D(a, c; x) (a)
o e Tra - =l

showing that ®* = ®(a, c; x)/T'(¢) is an entire function of both parameters
as well as of the variable. In other respects too this function shows a
simple behavior, for instance some of the differentiation formulas of
section 6,4 become simpler when expressed in terms of ®*

As a consequence of this situation, the ® function furnishes only one
solution of the confluent equation when ¢ is an integer. If ¢ = 1, y, and
y , are identical. If ¢ = 2, 3, ..., ¥, does not exist, and although the
equation y,/T'(2 ~ ¢) tends to a finite limit as ¢ approaches one of the
integers > 1, (12) shows that this limit is a numerical multiple of y, and
does not provide a new solution. Forc =0, -1, - 2, ..., the situation is
similar, except that y, and y, interchange their roles. Whenever ¢ is an
integer, ¥, or y, provide one solution, and the second solution will con-
tain logarithmic terms. This second solution can be determined by the
familiar method of Frobenius.

Another approach to the exceptional case uses the ¥ function as its
point of departure. The integral representation 6.5(3)defines the ¥ func-
tion for all values of ¢ and shows that this function always satisfies the
confluent equation. [f ¢ is not an integer, the expansion of ¥ in ascend-
ing powers of x is given by 6.5(7). If ¢ is an integer it will be sufficient
to assume ¢ = 1+ n wheren =0, 1, 2, ... . For ¢ =1+ n, both terms on

L x"®(a+n, 1+n;%) n=1,2,3, 00,
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the right-hand side of 6.5(7) become infinite, and the expansion in
ascending powers ofx can beobtained either by making ¢ » n + 1 in 6.5(7),
or more directly from 6.5(5). We shall briefly describe the second method.

If ¢ =n + 1, the integrand of 6,5(5) has simple poles at s =—-n,
-n+1,...,-1 and double poles at s =0, 1,2, ..., (if n = 0, there
are only double poles). The residue of I'(a + s) I'(=s) I'(~n — s) x7° at
the simple pole s =r—-n,r=0,1,...,n-1is

@ '"Te@-n+nTm=-rx"""/r!;
the residue at the double pole s=r,r=0, 1, 2, ..., is
-D"T'(a+r)

[logx+yla+n) =yl +r)—y(l+n+r)]x"
rln+r)!

where 1 (z) is the logarithmic derivative of I'(z) (cf. section 1.7)., Eval-
ulating the integral 6.5(5) as the sum of residues of the integrand at the
poles which lie to the right of the path of integration, we obtain

e

(13) ‘P(a, n+ ].; x) = m {q)(a, n + ].; x) Iogx

oo (a) o
+ rz'o m, [Yla+r)—¢(l+7r) =1 +n+ 1) _r_'_}

=11 "E‘ (a-—n)r 2T ™8

=O ssee o
(@ (=), 71 A el

r=o
The last sum is to be omitted if n = 0. The corresponding expansion of
Y(a, 1 - n; x) can be obtained from (13) and 6.5 (6).

Some formulas simplify in the logarithmic case. As an example we
shall show that

d d
(14) f(e) = (-—— +2 — ) ®(aq, c; x)
da de
can be expressed in terms of confluent hypergeometric functions when ¢
is an integer.
Since

2oty el [ ol =gl
aa n n

where 14(z) is the logarithmic derivative of the gamma function, term-by-
term differentiation of 6.1(1) gives
fore) (a) xl"

fle) = L [yla+r)=yla)=2y¢(c+n)+2yle)]

rl’
r=0 (c)r
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By comparison with (13), with n =0,

(15) f() =[2¢(D) - ¢(a) - logx] ®(a, 1; x) - T'(a) ¥(a, 1; x).

The corresponding result for f(1 +n) with n =0, 1, 2, ..., may be written
down by means of 6.4(13).

6.8. Further properties of the ¥ function

Like the @ function, the ¥ function is a limiting case of Gauss’ hyper-
geometric function, since
(1) lim F(a, byc; 1 —c/x)=x"%¥(a, a-b + 1; x)
c—=> oo
Erdélyi 1939a). The proof is based on 6.5(7) and the expansion of
F(1 - ¢/x) in ascending powers of x.
The behavior of ¥ for small x can be investigated by means of 6.5(7),

6.7(13), and the corresponding formula for ¢ equal to zero or a negative
integer. The results are summarized in the table

¥(a, c; x) for small x

c v
(2) |Rec>1 x'7¢T(c-1)/T(a) + R
(3) | Ree <1 Iri-¢)/T(a=c+ 1 +R
I'(l-¢) I'(e-1)
=1 1=-c¢
(4) |[Rec=1 c#1 P + Ty +R
(5) |le=1 —[M @] "logx +R

The order of the remainder is seen from the following table

R =0(u)
(] u
(6) |[Ree>2 c#£2 || BE o2
(D) le=2 |log x|
(8) | 1<Rec<?2 1
9) |[Rec=1 c#£1 ||
(10)[ ¢ =1 | log x|
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& u
(IN] 0 <Rec<1 || TR #
(12)| Ree <0, ¢ #£0 ||
(13)] ¢ =0 |x log x|

According to the convention of section 6.6, the negative real axis is
a branch cut of the W function. We denote by f(—& + i0) the limit of
f(~& + in) as n > O through positive values, and define f(-& ~ i 0) sim-
ilarly. From 6.5 (7),

(14) Y(a, c; - & £ i0)
' 1-¢)
- I'ae-c+1)
I'e-1)
T T

I'(l-¢)
s g e S - i
¢ ':r(a—c+1) B~

(P(as c; —é-)

e:iwc EVcd(a—-c+1, 2—c;=¢&)

I'(e-1)

I'(a)
where £> 0, and either all upper or all lower signs have to be taken. In
particular,
(15) A=%(a, ¢; -¢+:i0) —W(a, ¢; -&~i0)

2ni

 T'@r(2-o
Since the derivation of this formula is based on 6.5(7), integer ¢ are
excluded in the first place. By continuity, the formula remains valid for
c=1,0,-1,-2, ... .Forec=2,3,4, ..., the right-hand side appears
in an indeterminate form, and when it is written as

Qm wlla-—c+r+1)

I'(a)T(a=c+1) I(2-c+n

¢ can be made to approach 1 +n(n =1, 2, ,..,) with the result that

R LTS o
(16) A=(-1) o= ®la, 1+n;-¢)

e-Fi'frc é-‘l-c CD(I—G, 2_0;_‘5)]

E'Ve®la-c+ 1, 2-¢; =&).

(_1)1' gi—c*'r’

r=20

>0, e=14n n=0,1,2, ¢ee
Y(a, c¢; x) is one-valued (i) if a = 0,-1,~2, ... , when ¥ is a poly-
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nomial in x and according to 6,5(7) a multiple of @, and (ii) if c =n + 1,

n =12 ..., and a is one of the integers 1, 2, ..., n, when 6.7(12)

shows that ¥ is a polynomial in x™'.

The behavior of ¥ when x encircles the origin can be understood from
the formula

(17) ¥(a, c; xe?" ™) = e~ 2cTiY(qg c; x)
T'(l-¢)

+(l-e™2@m) —— — @(q, c; =, £1, 22 sas s
o ——— s et b

6.9. Whittaker functions

For some purposes it may be convenient to use Whittaker’s notation.
Whittaker writes the confluent equation in the standard form 6.1(4). From
6.2(13), with

g=-1, b=g¢ a=p=0 =—a,
we see that
3a, c; x)=e*Px" 2wk, p, x)

with k = —a + Y e, p=%c — Y. Two solutions of the Whittaker equation
are the Whittaker functions

(1) MK,u(x) =e 2 x2 Pa, c; %)= z,,

(2) IT/,\,”lL(;»r,)=e"""’x"2 Y(a, c;2)=2z, a=Y-—x+p c=2p+l.

Conversely,
(3) ®(a c; x)=e*? x'l"""MK'u(x)

(4) Rla, c;x)=e*? xR, (2) k=Ye—a p=lhec-%

We also have, in the notation of 6.6(3),
(5) WK'M(x)=e"‘/2 P zFo =Kk +p, o=k - ps-1/x).

Further solutions of the Whittaker equation 6,1(14) can be derived
from sections 6.3 and 6.7. Indicating corresponding solutions of 6.1(2)
and 6.1(4) by the same subscript

©) z,=M, =), z,=M_ (-2, z,=M_ _ (),

zgm W () 2,=W_. (~2), z,=W (==).

-K 8 —Ky=p

Kummer’s transformation 6,3 (7) becomes

(M M, () =e Y (x)
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where ¢ = 1 if Im (x) > 0 and € = = 1 if Im(x) <0, and the transformation
6.5(6) becomes

® W, =W, .

Ky=it

Whittaker defined M by (1), while in the definition of W he used an
integral representation equivalent to 6,5(2).
Buchholz (1943 and other papers) uses the notation

m (5)(2) =(2z/m) 7% MV.%P(Z)

w<5)(z) = (22/77)'_% WV.%p (z)

6.9.1. Bessel functions

If k = 0, the Whittaker equation 6.1(4) can easily be reduced to the
Bessel equation 6,2 (5). The result may be indicated as

w(0, u, x) = x* C#(l/zix).

In the notation of 6,1(2) this corresponds to ¢ = 2a. The connection
between Bessel functions and confluent hypergeometric functions can be
summarized in the following formulas in which the standard notation is
used for Bessel functions (cf. Watson, 1922).

(9) Jv(x)=l_‘—(y+—1-)-(l/2x)ve_h¢(l/z+ V,].+2V; le)
1
(10) Iy(x) =m('/zx)'” e *®(Y+ v, 1+ 2v; 2x)

(D) M, ,(2ix) = (2i0)* 5 A () =T (p+ 1) 4% 2554 2% J ()
(12) H (@) = hax)™* e T4V B 1% + v, % - v; 1/(2ix)]
== 2ig™ % e TTVM (22)Y W(Y + v, 1+ 2u; — 2ix)
= (Y mx) "% etV T Wo,u(“zi")
(For i 2", change i into —i)
(13) K (x) =% e™* (22)Y ¥ (% + v, 1 + 205 2x)
(14) W, &)= n % x* K (4x)

(15) Y (x)=- 7% (2x)Y [e*™™ P WY+ v, 1+ 20; 2ix)

+ etV (Y 4y, 14 20 ; — 2ix)]
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Bessel functions occur also as limiting cases of the confluent hyper-
geometric functions. Performing the limiting process term by term, we

find
(16) lim ®(a, c; — x/a) = ['(c) x% ~%e Jc_‘ (2x%).

a > oo

The corresponding result for the ¥ function can be obtained from 6,5(7)
for non-integral ¢. From Stirling’s formula, or still better, from 1.18(4),

. T(l+a-2c)
lim ——————=1,
a» oo al”¢ T (a)
and this result, in conjunction with (16) and 6,5(7), shows that
(17) lim [I'(a-c+1)¥(a, c; -x/a)]

a=> oo
= mx % % cosec (we) [Jc_1 (2x%) + e t€CT J'_c (Zx%)]
= s=orn VT8 6 ~ie g U1 £ ) Im x> 0,
= frum ™ S0 o e 1 1 (2K Im x < 0.

Similar is the proof of
(18) lim ®(a, c; x/a) =T (c) x%* 7% I _ (2x%),

a —> oo

(19) lim [lﬂ(a—-c+1)‘l'(a,c;x/a)]=2;\7%_%"Kc~l (2x%).

a —» oo

6.9.2. Other particular confluent hypergeometric functions

The relation
(20) ®(a, a;x)=e*

is obvious, and many other special functions can be expressed in terms
of the confluent hypergeometric functions. The first group of such func-
tions consists of incomplete gamma functions and related functions. By

6.5(2) and 6.5(6), and by 6.5(7) and 6.3(7),

@21 I'(g x) = f:" e"ttVdt=e " *W(l—a, 1-a;x),

(22) y(a, x) =T {(a)-T(a, x) = a 'x*®la, a+ 1; - x)
For the error functions,

(23) Exf(x) = [ e™* dt=Y%y(%, x?) = x ®(1/2, 3/2;-x7),
(24) Erfc(x) = f:oe_‘z dt =% (%, x?) = e_"2 WY, Y% x?).

For the exponential integral, the logarithmic integral, integral sine and
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cosine and the Fresnel integrals we have

(25) ~ Ei-2)= [ e7 ' de=e ¥, 1; x),
. * dt
(26) li(x) = ——=Ei(log ) =—x ¥(1, 1; - log %),
o logt

(27) Si(x)= [y ¢ 'sintdt =Y%n— [, ¢t 'sintde
=Yom—Yie ®W(1, 1; ix) + %ie ™ W(1, 1; - ix),
(28) Ci(x)E—f:o t™ costdt==Ye HW(L,1; ix) - Ye ™= W(1, 1; - ix),

(29) C(x)=2"% 7% foxt“% cos t dt
=74 27% 2% [9(1/2, 3/2; — xe 777 + B(1/2, 3/2; ~ xe”772)],
(B0) Sx)=27%77% [ " ¢+ sint dt
=7 A 27% 2% i [®(1/2, 3/2; — xe '77?) — B(1/2, 3/2; ~ xe”i7)],
The parabolic cylinder functions of Chapter VIII are also confluent
hypergeometric functions:
(31) D) = 2% 7%= W(= Y, 4; Y%x?)
= 2HVTH oM £ WY = Y, 3/2; %),
Special cases of these are the Hermite polynomials:
(32) H (27% %) = 2%7 45" D (x) = 27™% x W(% - Yn, 3/2; %a?)
where n is a non-negative integer.

Again ¥(a, 0; *) = x W(a + 1, 2; x) is connected with Bateman’s
function k_,(J3x) with v = % - 4 a. Originally Bateman put

(33) £, (x) = 27" foéﬁ cos (x tan 6 — v ) d 6

for real values of x and v. Then

34) T(v+ 1 kzy(x) =e *W¥(-y, 0; 2x) for x > 0,

and it is useful to consider this as the definition of the k-function in the
cut plane, With Bateman’s original definition, /sy(—x) = k_v(x). This
formula no longer holds when the definition (34) is adopted. Instead we

have

(35) k, (~&+i0) =k_, (&) — e D=y, 0; - 28) £>0,
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If a is zero or a negative integer, ® and ¥ are polynomials in x, related
to the generalized Laguerre polynomials of Chapter X,

(36) L(:(x) = (a;'l)"— ¢l(=n, a+1; x)=i‘l‘(—n, a+1; x)
n! n!

n=0,]..,2,0-.-

The so-called Laguerre functions, for unrestricted values of 1, are an
altemative notation for confluent hypergeometric functions (Pinney 1946)

1
B LY @)= B, a+ L x
v re+1 B i o e
If ¢ —a -1 is a non-negative integer,x"“' ¥(a, c; x) is a polynomial and
(38) Y(g,a+n+1;x)=x"9""%¥(-pn, 1-a~-n; x)
=(a), x7°" ®(~n, l—a-n;x)=(a) x7°7" L:‘.a-", (=)
n=0,1,2,,,,.
It can be proved (Erdélyi 1937f) that the confluent equation has a solution
which is a finite combination of elementary functions if and only if either
a or ¢ —a is an integer.
Of recent importance are the Poisson-Charlier polynomials (Szegd

1939) arising in the calculus of probability. They can be expressed by
means of the confluent hypergeometric function as

39 p,@W=a# @)% (x-n+1) ®(-n, x—n+1a)
The so-called Toronto functions (Heatley 1943) are defined by
L2 T0am+ 1)
I'(l1+n)

The following table gives information about some of the more important
particular and limiting cases of confluent hypergeometric functions.

(40) T (m, n, x) = x2""=*1 ¢~ ¢Gm + %, n+1; x).

SPECIAL CASES OF THE CONFLUENT HYPERGEOMETRIC FUNCTION

Parameters Functions
g=1,2; iis 3 Incomplete gamma functions and their particul ar cases
a=0,-1,-2,..., Laguerre polynomials
a - oo Bessel functions
c=0; =2 Bateman’s k-function
c=Y%, ¢=3/2 Parabolic cylinder functions

c=a Elementary functions, incomplete gamma functions
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SPECIAL CASES OF THE CONFLUENT HYPERGEOMETRIC FUNCTION
(Continued)
Parameters Functions
D Laguerre polynomials,
c=a=1 2,38, svis s

Y Incomplete gamma functions

c=2a Bessel functions
c=a=1 Exponential integral and related functions
a=1/2, ©¢=3/2 Error functions and related functions

6.10. Laplace transforms and confluent hypergeometric functions

We shall use the notation

(1) L{F(i), S}=j;)me_"F(t) dt=f(s)

for the Laplace transform of F (¢), and shall occasionally write more
briefly LiF}. From the theory of the Laplace transformation we quote the
product theorem,

@ LU F @ F,(-u)dul=LIF, O} LIF, O,

valid, for instance, if L1F,} and L{F,} converge absolutely, and the

complex inversion formula

i v +ic
(3) F(t):—-—_J[ f(s) estds
2mi ly

—iho
valid, e.g., if L1F } is absolutely convergent for Re s = y, and F (x) is of
bounded variation and continuous in some neighborhood of ¢t. The i{_n&nite
integral is in general a Cauchy Principal Value, that is lim _I:y'y_“ as
A > oo, Hg\xﬁep if f(s) is absolutely integrable on Re s = y, we may write
simply f‘)"'ioo in (3).

There are many pairs of Laplace transforms in which confluent hyper-
geometric functions occur. We may rewrite 6.5(2) as

(4) Lit® ' (Q+8) "t =T (a) ¥(a, c; x) Rea>0, Res>O0.

We also have, for Re b > 0, and Re s > Max (0, Re %),

(5) Lit? " ®(a, c; kt)} =T"(b) sV F(a, b:c; ks™M |s| > %],
=T () (s —k)"® Fle —a, b; c; k/(k = 5)] [s — k| > |k

The first form can be obtained either by term by term integration of the
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power series for @, or from 6.5(1) and Euler’s integral for Gauss’ series;
the second form follows by Euler’s transformation of the first form. If k&
is negative real, we may make s » 0 in (5) provided that Re @ > Re b. With
b = ¢, (5) assumes the simpler form

6) Lit° "®la, c:)=T(c)s c(1l-s""""
Rec>0, Res>1l
From (5), 6.5(7), and 2,9(33)

(7Y Lt ' W(a, c; o)}
_F(b)r(b—c+l)

= F(b, b- 1 b- 1;1-s1
I'la+b-c+1) ¢ e et A

Reb>0, Rec<Reb+1, |l-s|<]1,

TETG=-c+1)
C TlasB—gad

s~ F(q, b;a+b—c+1;1-s_') Re s > 4.

The result can be written in several equivalent forms, and can be ex-
tended by analytic continuation to the half-plane Re s > 0. If Re a > Re b,
we may make s » + 0 in (7).
Another Laplace transform pair is given by Weber’s first exponential
integral
1 1 T(a)
8) Lt 'J (2t =—  s7"®(a, v+ 1;-5""
(8) A F(v+1)s (a, v+ s hH
Rea>0, Res>0,
Similarly
(9) Lige¥v? K, 25N =%T (@Il (@a=1) s °¥(a v+1;s "
Rea>0, Rea>Rewr, Res>0.
The relation
(10) Lt " Fla, b;e;-t)=T(c) s* *W(a, a—b+ 1;s)
Rec>0, Res>0

is equivalent to an integral representation of W, ., given by C. S. Meijer.
L]
Another transform pair is

(11) Lie~ ¢ t2"2 & (a, ¢; t)} = 2" 2T (2c -~ 1) W(c - %, a+%: %s?)

Rec>%, Res>0.
In Whittaker’s notation, the principal formulas read:
(12) Lie¥teeM, (D} =T(a+p+3/2) s™04737

xFla+p+3/2 p—x+1/2; 2u+1;s7Y

Re(a+ p+3/2)>0, Res>0,
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(13) LteNeA% M, (=T (2p+ 1) (s = A= H)FH % (s A4 1) <k

Repu>-%, Res>Rer-%,
(14) Lie**:°W, )

F(a+y+3/2) IM'a~p+3/2)
I'la-«x+2)

—a.—;.c"‘3/-2

xFla+p+3/2, u—x+1/2;a—x+2;1 =571

Re(a tp+3/2)>0, Res>0.

From the product theorem, (2), and (6) we have the integral addition
theorem for ®:

(c—uye™"
(IS)f o (I’(a, c; u) -—-—I;TL:-,-)— Dla’, ¢';t—u)du
c+c —
m ‘I)(a+a',c+c';£) RBC>0, Re c'>0.

The particular case a’ =0, or
(16) j;)t u? ' (=) YT B(e, y; u) du
G-y

T(e)

may be mentioned separately.

®(a, c;t) HeC>Rey>0

6.11. Integral representations

In this section the basic integral representations will be generalized
by the introduction of contour integrals, and further integral representa-
tions will be listed,

6.11.1. The ® function

The integral representation 6,5(1) is based on Euler’s integral of the
first kind, 1,5(1), for the beta function. The restrictions imposed upon
the parameters can be removed, partly or entirely, by the introduction of
complex integrals, as in section 1.6, Using 1.6(6), 1.6(7), or 1.6(8),
instead of 1.5(1), we arrive at the integral representations

1) Plge;0)=C2m) 2e " T1-a)T()TQ+a-c)

(1+,0+,1~=,0-) - =
XJ" + ’ e"'lﬂl(l-—t)c a‘dt,
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(2) (g, c:20)=2m) 'T () T (a~c+ 1)/T(a)

xf(:‘ﬂe"‘t“" (t-1e 2" gt Rea>0,
and
(3) ®(a, c;x)==02m) ' T(c) T(1~a)/T(c~a)

xj-'(oﬂ e*t(=)2"1 (1 —t)c-“-‘ dt Re(c - a) > 0.

In (1), the contour of integration is a double loop starting at a point 4
between 0 and 1 on the real ¢ axis, with arg ¢t = arg(1 —£) =0 at 4, en-
circling first ¢ =1 in the positive sense, then ¢t = 0 in the positive sense,
then £ = 1 in the negative sense, and finally £ = O in the negative sense,
returning to A.

In (2), the contour is a loop starting (and ending) at ¢t = 0 and encir
cling 1 once in the positive sense. Similarly in (3), with 0 and 1 inter-
changing roles. All powers have their principal values in (2) and (3).

.

(l+’ 0+, 1—, 0‘)

The ® function can also be represented in terms of Bessel functions.
From 6.10(16) with y = 2a, and 6,9(10),

(4) T(a)I'(c-2a)®B(a, c; x) =% T'(c) x%~°
x [ e¥stee K (L= e I, (ht) de

Rec>2, Rea>0,
and from 6,10(8), with a slight change in notation,
(5) T'(c—a)®(a, c;x)=T(c) e*x% %
xfo"" e~ fgkemad J . [26t)%] de
Rec>Rea>0, Rex>0.

Further integral representations may be obtained by using the complex
inversion formula, 6.10(3), in connection with the Laplace transforms
6.10(5), with &£ = 1, and 6.10(6).

(6) ®(a, c;t) =(27)" ' T(b)e'~? }7Hm e**s b F(q b; c; s™") ds

y = oo

Reb >0, y>1,
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@ ®@, c;0)=2m) "T(c)e'" ¢ fy""iw e*sTe¢(1l—-s" " gs
¥ =ico

Rec>0, y>1.

Ifb=n+Lnr=0,1,..., in (6), the integrand is a one-valued function
of s, and the path of integration may be replaced by a closed contour, for
instance, by a circle |[s| =p > L

(8) ®(a, c;t)=(2m) "'n!let™" fc e*'s™ " V" F(g,n+1;c;s Nds
ﬂ-=0’ 1,2,----
6.11.2. The ¥ function

A similar discussion of the ¥ function leads to the following integral
representations:

(o+)
(9) ¥, c; x)t(zni)-'e-mr(l—a)f I L ¢ B Ll P

e
~Wnr<¢+argx <Ym, argt=¢ atthe beginning of the loop,
(10) T(@TI'(a=c+1) ¥Y(g c; x)
= 2% He fom e tpoThe—k K__, [2(x)%] dt
Rea>0, Rela-c)>-1,
(11) IT'(b) ¥(a, c3x)
=x97b f:"e'mb-' Fla, a=c+1;b;—t)dt

Reb>0, Rex>0,

12) T(a+b=-c+D¥a ;) =2m) ' TBT(b=-c+1D 't
¥ +ioco - "
X:F.y e**s " F(a bja+b—c+1;1-5s"")ds

-iw
Re 5>0, Re(b-¢)>-1, y>Y4
For x > 0, the following integral representation can be derived from
6.5(2). We assume Re a > 0, Re ¢ < 1, x > 0, Then it is permissible to
deform the path of integration into the segment of the real axis from ¢ =10
tot=-Y% and the ray from ¢ = — % to ¢t ==% + ico. Along (0, = %) we
putt =ue’”; along (-%, — % + i =) we put
t=Y%e " Ngech, l+t=%e'Psec@(0<0<Y%n).
Thus we find
e” eI (a) ¥(a, c; x) = fo% e ™y (1=u)®"" " du

Ko
- 2'"¢ Io (cos 0)™¢ exp [4x — Y4ix tan 6 + (c — 2a) i 6] 4.
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A corresponding formula can be obtained when the path of integration is
deformed into the segment (0, —%), along which now ¢ = ue™'", and the
ray (~%, =% — i), along which ¢t = Je i6-m sec @, Subtracting the two
formulas,

(13) 7 ¥(a, c; x) =2'"¢T (1 - a) e%*
x f:ﬂ(cos ) Ccos[¥xtan O+ (2a~-c) 8] d6O
x>0, Rec<l, a#1,2 eees
The condition Re @ > 0, used in the derivation, can be discarded by
analytic continuation. However, a new restriction on @ must be introduced
in order to avoid the poles of the gamma function. Formula (13) corre-
sponds to the integral representation 6.9(29) of Bateman’s k function.

Two further integral representations, due to C. S. Meijer (1938, 1941),
are

(14) ‘I’(a, c; x) = x 9% I:' e—%z cosh 2t Py;.t. (cosh &) (2 sinh t)'.—”‘ At

p=c—-2a+% wv=c-3/2, Rex>0, Reic<l],
and
(15) ‘I’(a, ¢; x)= "-‘A 2a"Ac+| e%x x%—‘,{c
oo . 2 1
xfo e % (sinh 1) .Dc_m[(2ac)’4 cosht] cosh [(c—=1)¢t]dt

Re x > 0.

6.11.3. Whittaker functions

The basic integral representations for Whittaker’s confluent hypergeo-
metric functions are:

16) T(4 =+ ) T(H%+x+p) MKJ#(:\:)
=27 T(2p+ D a#*s [T e¥ot(1 ) Hitin(y 4 g¥rtug,
Re(p ) >-%,
7)) TG+ k+p M, ()
=T (2p+ D% [Te K% g, [20x)%] de
Re(p + k) > = 4,
(18) I'(% -k + ) WK”U_(x)

= g THX gutA J’om g™t TR (] 4 )RR g,y

Re(p-x)>-%, Rex>0,
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and
(19) WK’#(x) =(2m) " e7HE xH
x'/'“'"F(s)F(l/zux-u—S)r(%—K+u—S)
FG-k—-wWIlGH—k+p

x*ds
—00 1 3
- n(argx<2—17,

2
where neither }2 + x + p nor % + x — y is a positive integer, and the path
of integration separates the poles of I'(s) from the poles of

IF'—k-—p—-8) T4 ~k+p—s).

6.12. Expansions in terms of Laguerre polynomials and Bessel functions

Beside the power series expansions, there are other useful expansions
of confluent hypergeometric functions.

Weput ¢=0,c=a+1, t =u/(1 ~u), in 6,11 (9) and obtain
(1) ¥Y(a a+1l;x)=@2nm) "'e!" (1l -a)

(o)
leo e~/ =w a1 (1= )" du.
Now,
(2) (1-w)™otgmm/Mi=u_ T (@ () yn lu] <1
n=0

is the well-known generating function of generalized L.aguerre polynomials
[ Szegd 1939(5.1. 9)]. Since thls series converges only inside the unit
(o+) (0o+)
circle |u| < 1, we write f = lim fv y ¥ » 1 —, and substitute (2).
Since
to+)

L

we thus obtain

wetnl du = 2ie ¥ sin(an) v Y (n +a),

I'(a) ¥(a, a+ 1; x) = lim o°¢ § (n+a) "o Lr(:a’ (x)

v 1= n= 0
and by Abel’s theorem on the continuity of power series,
(3) T(a)¥(a, a+1;x) = 3 )™ L (a) )

n=0

whenever the infinite series converges. From the known estimate of
generalized Laguerre polynomials (Szegd 1939 Theorem 7,6,4) it is seen
that the series is convergent in any finite positive interval of x if a < %.
On the other hand, using the transformation 6,5 (6),
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@) Tle-a¥%ea+l;2)=272 3% (h+a-a) 'L (@)
n=0
where the series converges (for positive %) if a > — %. Outside the pos-
itive real axis both series are divergent. The expansions (2) and (4) are
due to Tricomi. Another expansion in terms of Laguerre polynomials
oo
(a)

(5) ®(a c;2xy(x-D"'1=(1-x)° E ()" L,(f_”(y)x"

n= 0 n

ix|<1; y>0

is a generalization of (2) and, with x = }, it provides an expansion of ®
on the negative real axis in terms of Laguerre polynomials. It is due to
A. Erdélyi [ 1937 a, equation (5, 7) 1.

Tricomi (1947, 1949) has given two expansions of @ in terms of Bessel
functions. These expansions are useful for the investigation of the be-
havior of ® when the parameters are large. The first expansionis

6) @(-a, a+1;2) =Tla+ D@ %% T 4 () &/a)¥* J,, [2(ax)*]
n=0

where a is real, 2 > 0, and the coefficients 4  are determined by the
generating function

@ £ A Wzt =e=[l+h-Dz]®(Leh) e,
r =0

From the asymptotic representation of Bessel functions for large order it
is seen that the infinite series in (6) converges as

£ 4, (W) x*/Tla+m+1)
mn=0

and hence is absolutely and uniformly convergent in every bounded region
of the complex x plane. From (7) we have

® 4,=1, A,=-(@+Dh, 4,=Gt-%) a+%(a+1) (a+2)kr?

and the recurrence relation

© m+DA, ,=[(1-2m-ha+DI4, —[(1-2h) a

+h(h=D(a+m)]A_ _ +h(h-Dad, mo= 2, 3y 4y sens

-2
for the computation of the later 4. Also,
(10) 4, (0)=(D=L™=Na) 4, (D)=L letntattiy),

andifa=n=0,1,2, ..., also
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n
n
_pm- ~k g ~tk+m +a+1)
A W) k=Y <k>(h—1)" Lo ey
k=0

The A are polynom1als in @, a, h, and the degree of A in a is [%m] if
h#%, and [m/3]ifh =Y ( [5] is the largest integer < b) The most suit-
able choice for % is 4.

Tricomi’s second expansion is

(1) e ™% P(a, a+ 1; x) = [(a + 1) (kx) %

x S Ak, Y+ %) Gk )% T (26K 1)
n=0

where « = 4% + Y%a — a is Whittaker’s parameter, and the An(K’ A) are
coefficients in the expansion

(12) e (1= M L+ T 4 («, 1) 2" lz| <1

R=0

Tricomi (1950) proved that, for reasons similar to those advanced in con-
nection with (6), the infinite series in (11) is convergent in the entire x-
plane. Moreover, (11) can be used for the approximate computation of the
® function for large x. From (12) we have

(13) 4, (c, V=1, 4,(, V=0, 4,(x, =)\

2
A, (k, )=~ —3'K, A4(K, N=5%M,,
2

1 1 1
A5(K,/\)=—2(?)\+5_)K, Ae(K,A)= 5'(A)3+ E‘Kz,

(+DA &, N=G+2A-1D4, _ (k, V=24, ,(x, N
A T
and 4 _ is a polynomial of degree [n/3] in x. Also
(14) A (-k, N =D"4 (x, N
For further details about these coefficients see Tricomi (1949).

6.13. Asymptotic behavior

The asymptotic behavior of confluent hypergeometric functions is
different according as the large quantity is the variable, one of the
parameters, or two or all three of these quantities. A complete set of
results is not yet available.

The investigations are based either on integral representations, or
directly on the differential equation, or else on suitable expansions in
infinite series.
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6.13.1. Behavior for large ||

The behavior of confluent hypergeometric functions as x » « can be
investigated by means of the basic integral representations. If in 6.5(3)
we put
tﬂ

o o R

n.:

1+07°' = F (=D (@a-c+ 1) b
n=0

and estimate the integral involving Ry , it can be shown that

(1 l[l(a, c; x) = ﬁ (=1)" (a)n(a—c+ ]_)n

n=o0 n!

P I T{ P el )

3 3
N=0,1,2, sney 2% o0y —-5-17<argx<§-n.

The same result may be obtained from 6.5(5) by shifting the path of
integration to the left, evaluating the residue whenever we pass a pole of
T(a + s), and estimating the remaining integral. Note that this result is
in agreement with 6.6(3), showing that the (divergent) formal power series
, F, is the asymptotic expansion in an appropriate sector of the analytic
function defined by 6.6 (3).

The behavior of ® can be inferred from 6,7 (7).

I'(e . d
%_)J (e m¢/m) Z
I'(c)
I (a)
+0(le*x37c V=T MN=0,12 ...,

e=1iflmx>0, e=-1iflmx<0, =x+0, —-mg<argx<m

(a)n(a—c+ 1),_l
nl

(c - a)n 1- a),_l

n!

2) ®a, c; x) = (-x)~"

X 00
4

+O0(x|7e7¥71) +

A=

]

In particular, as Re x » oo,

(3) @(a c; x)=£(—g e*x%7°[1+0(x|™N],
and as Re x » — oo,

I"'(e) . B

®a, 05 %) = s (-0 T 1+ O (x| 711,

6.13.2. Large parameters

If ¢ » =, while @ and x are bounded, 6.1 (1) describes the behavior of
®. In particular,

(4) ®(a, c;x)=1+0(c|™ a, x bounded, ¢ - oo,
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If ¢ » o while ¢ — a and x are bounded, 6.3(7) provides such a descrip-
tion, In particular, '

(5) @@ c;2)=e*[1+0(d™ "]

¢—a, xbounded, ¢ .
The behavior of W in this case can be investigated by means of 6,5(7),
1.18(3), and 1,18(4).

(6) W(g c;2)=(-c)"2[1+0(c|™)]
+(2m)% x""¢ explx—c + (c = 3/2) log ¢] [1 +0(c|™"]

a, % bounded, c¢- =, |argec|<m—¢, |arg(=c)|<m—¢, €>0.

The corresponding result for ¢ » ~ when ¢ — @ and x remain bounded
follows from 6.5 (6).

The case a » = is more difficult. Perron (1921) based his investiga-
tions of this case on integral representations of the Laplace type and
used the method of steepest descent. Among later investigators we men-
tion F. Tricomi (1947), who showed that under certain restrictions his
expansion 6,12(11) is an asymptotic expansion, and W, C. Taylor (1939)
who used E. R. Langer’s method of asymptotic representation of solu-
tions of differential equations. Taylor’sresults are described in 6,13.3.
If |x| is bounded, and bounded away from zero, they simplify consider-
ably. In the formulas below, ¢ is bounded, x is bounded and also bounded
away from zero, @ » «. It will be more convenient to express the formulas
in terms of

(7) k=Yec—~a.

It is assumed that |arg x — arg x| < 7. We then have the following table in
which € is any positive number:

arg k between kA TK R e (K YE Y (g, ¢ x) =
@8) |-m+e m—e 2% coslxm — 2(x2)% = K al - [L+ 0 (x| 9]
(9) e, 3m—ce Y(1+i)expl=ikm+2i(cx)%]. [1+0 (|x|~%)]
(10)| 27 +e, 4dm—ce i 2% cos[km=2(kx) %+ % 7] - [1+0(|«| %]
AV 37 +¢, 6m—c =% (=) explikm—2i(kx) 41 [1+0 (|| %))

The asymptotic form of @, under the same circumstances is obtained from

6.7 (7): "
5 ) i
(12) @ (a, c; x) = 2% T'(c) e#* k¥ ~He X ~le te, e2ikca® | cze—h(K’,

+ (kx)™% O [exp |Im (2x% x%)|1}
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and with s an integer we have
(13) ¢, = (27) "% g imts=K)(2e—1)
! (2s-2r+e<arg(kx)® <(2s + Dr -,
(14) c, = (2”)—% e iTls+4)(2c—1)
(25 = D7+ e < arg(cx)’ <(2s + 27 —e.
For ® Taylor also gives an asymptotic form uniformly valid in the
neighborhood of x = 0. If xx is bounded,
(15) @(a, c; 2) =T'(c) (k)% 7% ¥ J _ [2(cx) %1+ O (|&|™")
¢, kx bounded, x + «,
The case where a, ¢, and ¢ — a + = simultaneously, has not been
investigated fully, It is, however, known that if

(16) a=vA+a, c—-a=vB+B

where a, B, are fixed, possibly complex, numbers, 4, B, are fixed
positive numbers, and v » « through positive values, and if the abbre-

viations t = - A/(A + B), u = A(1 +¢t) = AB/(A + B) are used, then

(2m)% T'(c)
w:T'@I'c-a)
See also section 6.13.3.

(17) ®(a, c;x) =

e (=t (1+o)° % [1+0 (N

6.13.3. Variable and parameters large

1f a is bounded and ¢ and x » o« in such a manner that |x| < |¢]|,
the behavior of ® may be investigated by means of 6.1(1). We put
x=c&,0<|£] <1 -ele>0), and use 1,18(4). Then we have as ¢ »

1 I'(c)

s B e T T - n - =1 -
(C)n Py c"M1-Y%nrn-1Dc ' +0(c|™]

and

a 2
(18) B, c; cf)=(1- 6)"’[1 -"(2: 4 (155) +,oqc1-2)}

a bounded, |£| < 1-¢, €>0.
The corresponding formula for bounded ¢ —a, andc, x + = may be
obtained by means of Kummer’s transformation, the formula for ¥ by
means of 6.5(7)

When a and x increase indefinitely, the bebavior of confluent hyper-
geometric functions is more complicated. W. C. Taylor (1939) has
applied E. R. Langer’s method to derive the asymptotic forms of con-
fluent hypergeometric functions from the differential equation. We shall
use again,

(19) k=Y%c-a.
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Taylor introduces the auxiliary variable
(200 E=it%x"(x —4k)% -k log [(x* + (x — 4x) %)% /(4 )13,

where the arguments of x, «, and x — 4« are all zero whenthese quantities
are positive, and for other values the arguments are obtained by analytic
continuation in such a manner that |arg x — arg x| < 7 throughout the
process. First Taylor investigates the asymptotic behavior of ¥ under
the assumption that £ » = and that there are constants r and N such that
0<r<1, N>0, and |x| > N|«| ™" ** as kx > oo. His results for this case
are:

. KR IR LY Kt Wi,z aom
@D|-27+e -—¢ (e —ie”*¥)[1+0 (|| ™N+0(|&]™"]
O -nm+e, 2m—¢ e [1+ 0™ +0(&™M]

(23)| 7w +¢, 3m—e¢ (e +ie”¥)[1+0(«|™" + 0(&|™]
(24){ 2w +¢, Sm—c¢ e ¥ 1+ 0(«|™ + 01"

For bounded &, or x ~ 4« = O (|«|'®), Taylor has the asymptotic form
(25) kK x%e% (x — 4k)% X752 W (q, c; x)
=[2m /BN [ei™/® J_, (&) —e™ 1778 g, (O] + O (|| ™)

x'—4K=0(IK|1/3), K > o0,
For ®, Taylor has
(26) (kx)%¢7% %% ®(a, c; x)
=T(e) J,_, [2(xx) %] + &% x¥* Olexp [Im(2x* x*)]]
c, arg x, arg k bounded, x=0(|x|'?7¢), k- .

If xx is large, the Bessel function can be expressed in terms of elemen-
tary functions

], 1 -l : % —93
Jc(2:<% x%) = 27% K 41c1 gerisal +c,e 2i (Kz)
+ (kx) 7% O[exp][m(2x% x4}

where ¢, and ¢, are as in (13) and (14).
Another result for large a and large x is that Tricomi’s expansion
6.12(10) provides an asymptotic representation if k + « and x = O (|«[?)
with some p < 1/3 (Tricomi 1949).
The case when both parameters and the variable are large has not
been investigated systematically. Erdélyi (1938d) applies the method of
steepest descents to the integral representations of the Laplace type to

discuss the behavior of confluent hypergeometric functions when

%
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(27) x=vX+¢& a=vd+a, c—-a=uvB+f A, B, X real,
and either ‘
(28) 4 >0, X>0

or

(29) A>0, B>0,

The real numbers 4, B, X, and the possibly complex numbers a, B, &,
are fixed while v » « through positive real values, The quadratic equation
int,

(30) Xe(t+1)~-A(¢+1)-Bt =0

has two distinct real roots in both cases considered. In the case (28),
let ¢, be the (only) positive root; in the case (29) let ¢, be the (only)
root between — 1 and 0 of (30). Also put

(1) u,=A(L+t)* +Bt;=00+¢,) (4 +Xt?) h=1,2
which is positive in both cases. Then we have
(32) T(a) W(a, c;2) =(2r/u )% e " 21+t ) 2 [1+0G™N)]
A>0, X>0, voe
and
(33) T(a) T (c —a) ®(a, c; x)
=T(e) @nfu)k e 2 (et ) (1+e) ™ [1+ 0]
A>0, B>0, v-=e
which can be proved from 6.5(2) and 6.5(1), respectively.
6.14. Multiplication theorems

Taylor’s expansion

o9 (A=-1D"x" dnr
frx) = - f)
W= o n! dx™
on the one hand, and the expansion
1 a"
Af(Ax) = S — (- (" f(x)],
n=o0 nl dx"

which is a particular case of Lagrange’s expansion (E. T. Whittaker and
G. N. Watson 1927, section 7.32), on the other hand are sources of the
““multiplication theorems’’ for functions for which either all d” f(x)/dx"
or all " [x" f(x)]/dx™ are known. Using the formulas of section 6,4 and
section 6.6, we thus arrive at the following multiplication formulas:
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D) Ol cian=) —o

(A=D"x"®(a +n, c+n; x),
n=o n!(c),

) 1-
(2) @(a c; Ax)=A'"" ‘(—llc)—"—(l-/\)"(b(a,c--n;x),
n=0 n!
(3) ®(a, c; )\x):)\'“f @), (1-A"NH"d(a+n, c; x) 1
5 C} n____on! s C5 Re A > Yy
& {a)
(4) Ww(q, c;/\x)=2 1" (1=-M"x"¥(a+n, ¢c+n; x) A=-1]<1,
o, on!
e © (@a=c+1
(5) W(a, c; Ax)=A'"° Z —_— P (1-MN"Y(, ¢c—n; x)
n=o n!

[A-1] <1,

(6) Wla, c;Ax)=2"" ) o), e By

n=p

1-A2"""¥%(a +n, c; x)

n!

IA-1]<1, ReA>k

All these formulas can be re-written as addition formulas by putting
A=1+y/x, Ax =x +y. A further multiplication formula,
o0

@D B, ;A= Y —

—2 — (~x)"F(=n, g+n;c; N
n="p (g+n)nn!

x®(a+n, g+2n+1;x),

was given by Erdélyi (1936 c). Here g is anarbitrary parameter except that
it must not be a negative odd integer. The Gauss series F appearingin
(7) is a Jacobi polynomial, and becomes an ultraspherical polynomial
when g = 2¢ = 1, and a Legendre polynomial when g =¢ =1,

6.15. Series and integral formulas

A vast number of relationships involving infinite series or integrals
of confluent hypergeometric functions is to be found in papers of the
last 20 years. No unified theory exists, and a full presentation of the
results is impracticable. Only samples of the more interesting results
and some references to the literature will be given. The references are
far from complete, and further papers will be found,in particular, in Eng-
lish and Indian periodicals,

6.15.1. Series

Many of the series of confluent hypergeometric functions which were
investigated have one of the following three forms:
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(1) § an‘l)(a—n, c; x)

n=20

(2) E B,x"®(a+n, c+2n;x)
n=20

3 3 v, x" ®(a, ¢ +n; x)

n=0

A few of the results are shown in the table below

Coefficients Sum
= —c' I !
(4) a. (e C)n/n r(C)' %€ .hc(b(a’ cl; x)
Rec'~¢) > Y% (e
a,=t"(c=c") /n! ()M (e YT (e=e )] (1=p) ~e 51 -e
5) | Rec>Rec’>0, x foxuc =4 (x~u)cc -1 ®(a, ¢ u)
lt|<1, |argx|<¥n x exp[~(x —u) t/(1 - ¢)] du
(6) Bn= An(t), le < ltl (¢ —x)_‘ e A%
B =1=¥"/nl]
2 xF(-n,a—c-n+1; e %=
2-¢;2)
I'v+n)e” x!7c *  ut y—1 c=v=1
(8) Yn= n!l'(c +n) I'(c —v) f° e e il
Re ¢ > Re v> 0. x®Pla, c —v;x —u) du

For these and other, related, results see Erdélyi (1936b, c, 1937a, c).
In (6),

(9) A;(t)= i (%) F(-m, a=c-n+1;2=¢)/m!.

= =0

For other series see section 6.15.3.

6.15.2 Integrals

Indefinite integrals with confluent hypergeometric functions follow
from the differentiation formulas of sections 6.4 and 6.6. Many definite
integrals can be derived from the formulas of section 6,10.

If s =—1and Rea>Re b>0in 6.10(5) or if Rea > Re 4 > 0 and
Re ¢ > Re b + 1 in 6.10(7), we may make s » 0. Thus
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') T(e) T(a=b)
% b1 G (g or — _ o
(10) fo 87 ®(a, c; - 1) de Ry 0<Re b <Reaq,

I Ta-b)T(b-—c+1)
IF'@)I'la=c + 1)
O<Beb<Rea, Rec<Reb+1.

These are the Mellin-inversions of 6.5 (4) and 6.5(5).
Other integral formulas are

(12) fom cos(2xy) ®(a, c; ~ y?) dy

I' ()
T'(a)

(11) fo"“ t5 " W(a, c; 0) dt =

=% n*

2a=1 ~x° 2
x%7 e W(e-%, a+¥%;x%)

(13) T [ "y¥e % J__ [265)%] @, ¢; - 2y%) ¥(a, c5 29%) dy

=27°T () x® AR [ 14+ (1 +0)%]e722 (L4 2) 7%
Rec>2, Relc—-2a)<¥k
[which is the Hankel inversion of 6.15(19)], the reciprocity formula
(14) T(@) [ 6271 (140" W(a, c; tx) de

=T(a") fmt“" 1+ " Wla! ¢’ tx) dt
o

Rea>0, Rea>Rec’-1, Rea’' >0, Rea’'>Rec-1,
Magnus’s addition theorem (1946)

(15) @m)™' [T T(-a) T(c - a) ¥la, c; %) ¥(c - q, c; ¥) da

=T"(c) ¥le, 2¢; x +7v),
and the formula
(16) fom e"*xt T (x4 9)7V B (a, ¢; x) dx
==D"T()T(M=-a)y " " ¥(c—-a, c;y)
—~Rec<n<l-Rea, n=0,1,2,..., Jlargy|l<m,
which is closely related to the Stieltjes inversion of 6.8(15), and also
to some results by Meixner (1933). Integrals with respect to the parameters

have also been evaluated by Erdélyi (1941) and Buchholz (1947, 1948,

1949).
Another type of integral arises in the investigation of the zeros of

confluent hypergeometric functions. Tsvetkoff (1941) proved that for any
two zeros &, 1 of @.

f‘ /- % (E+m] e A€ Ix x¢ B(a, ¢; Ex)B(a, c;nx) dx =0
0
E£n, Ree>0,
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=(a/&) e7¢ [®(a +1, c; ]2 £=1, Rec>0,
and for any two zeros &, 7, of ¥

f'm [x/x = 4 (&E+ )] e %EHN)x e (g, c; £x) Y(a,c;nx) dx =0
Etm,

=— ¢V e Wa-1, c; O12 &=
We also mention here an inversion formula with the kernel
Nk, x) =e %2 ®YMe + ik, c;ix) ¢ >0.

From
f@) =~ NGk, ) g k) dk

if follows, under certain assumptions that
I'(%e + ik) T'(he - ik)

2T
6.15.3. Products of confluent hypergeometric functions

g(k) =

e [Ty NGk ¥) £&) dy.

The investigation of products of confluent hypergeometiric functions
often involves generalizations of the hypergeometric series (cf. Section
5). In this section we note some of the cases in which such general-
izations do not occur.

Some of the more important integral representations are:

(17) e #*~%Y ®(a, c; x) ®(a’, c; x)
=2m) ' T (c) _j:,_ e*(s - Y%x + l/z)’)hn(8+l/zx-*l/zy)-al

x (s +Y%x+ '/2)’)“+°L‘ Fila,a';c;4xy[4s?=(x—y)?17 "'} ds

where L is a loop starting and ending at — «, and encircling all singu-
larities of the integrand, i.e., the four points s = + Y4x £}y, in the pos-
itive direction,

(18) I'(a) I'(c — a) ¥(a, c; x) ®(a, c; —x)
=[T(c)?x'"¢ f_: Ic_' (x sech t) e'® ™29 gech ¢ dt
Re a> 0, Re(c —a) >0,
(19) T'(a) ®(a, c; ~x) ¥(a, c; x)
=T(e)x'™ [ J,_, (v sinh ¢) (tanh % 6)**7 dt
Rea>0, Rex>0,
(20) #¥(a, c; x) ¥(c —a, c; x)

=2x'7¢e* f:“r K., (x sect)cos[(c — 2a) t] sect dt

Re x>0,
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(21) T'(y) ¥(a, c; x) ¥(a', c55)
= f: e’V (x4 D) (y+ )7

xFla, ayy;tlx+y+8) x+)" " (y+26)7 '] dt
y=a+a' —c+1, Rey>0, =xy#0.
We may add the following integral formulas:
(22) f:e'“t"-' ®(a, c; ) ® (a’, c; At) dt

=T(c) (s =D%(s = N~ so%=¢ Flg gle;Als -1 (s-N)""]
Rec>0, Res>ReA+1,

(28) T (rda) j:" yReHe TN T e o (2051 W, o Y)®a) =~ y) dy

=T(c" xhetke'=1 Y(c'-a)c+ec'—a—a';x)Pa',a+a's—x)
Rec '>0, 1<Re(c+c’')<2Refa+a’)+ Yy,
and

(24) T(G) [ e *tP ®(a ;1) ¥la) e’ Ao de
=CT@T(B) A Flc—aqa, B;y; 1L=27"),

where either
p=c-1, o=-¢, PB=c—-c'+1l, y=c-a+a'-c+1,
C=T(a' -a)/T(a"),
or
p=c+c¢'=2, o=1l-c-c¢', B=c+c' -1,
y=a'=a+c, C=T(e' -a-c'+1)/T@' -c'+1.
These, and many more, integrals can be found in papers by Erdélyi and
especially C. S. Meijer. Erdélyi (1936d) has also evaluated the integral

(o+) _
fmo e P2 zIM (a‘z)---MK ,#n(anz)dz

Kf‘u'l n
in terms of Lauricella’s hypergeometric function of n variables.
A few infinite series involving products of confluent hypergeometric
functions are:
= (c-a), (c'-a') e
(25) Z e 5 Pa,—c+n;x)Pa’,c’'+n;y9)2"
@,

n=

= l8). (a*)
x —?—i—ﬁ-(b(a+n,c+n;x—z)'lb(a'+n,c'+n;y—z),

e), (")

n= 0
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00§ T ern e tmnm 0 etmi
=0 n n

n

(), ("), n!

) i (c-a), (a')

®(a, ¢ +n; x) ®(a’'+n, c'+n;y-—-z) 2B

> (A) n! p
27 n L(c‘I) L(c -l n
Bl zo(c)n(c')n o NG %
=(1-2)"" nZ= oﬁl’t)ﬁ—! ®[h +n, c +n;22(z-1)7"]
x®h+n, c'+n;yz(z =D [xyz(1 - 2)7%" lz] <1,
¢ TT'h+n
(28) [[(c = N1 Z —(Yi—)-(b(a—n, c;x) ®la—-n, c;y)
n
n=o0

= D Gay)'=e [7 57 et (2= ) (y = 7

x®(a, c =N x—1t) Bla, c =Ny —1t) dt

(29) S M@(a+a'—c,c+2n;x)xz"

o), "), n!

=®(a, c; x) Pla’, c; x).

These series are from papers by Erdélyi who discussed other series
too. See also Burchnall and Chaundy (1940, 1941).

6.16. Real zeros for real a, ¢

On account of 6.9(1), 6.9(2), the zeros Of'MK./J. coincide with those of
the @ function and the zeros of WK'# with those of the ¥ function, ex-
cept possibly for x = 0, o,

If @ and ¢ are real, ® has only a finite number of real zeros and ¥
only a finite number of positive zeros, since there is only a finite num-
ber of zeros in any finite interval and, by virtue of 6,13 (1) and 6.9(3), no
zero for sufficiently large |x|. From Whittaker’s differential equation
6.1 (4) it can be proved that, for real a and ¢, every confluent hypergeo-
meftric function has at most a finite number of zeros.

A more detailed investigation of the number of real zeros of ® (q, c; x)
when a and ¢ are real (Kienast 1921) is based on the circumstance that
under suitable assumptions either the functions ®(a + 1 —j, ¢; x) (j = 0,
1, ... , m + 1) or the functions ®(a + j, ¢; x) (=0, 1, ..., n) form a
Sturmian chain. Kienast’s results can conveniently be represented by
diagrams in which the (real) a, ¢ plane is divided into compartments
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inside each of which @ has a given number of positive, or negative,
zeros. In the following diagrams vertical boundary lines belong to the
compartments to their right, oblique boundary lines to the compartments
to their left. Along the horizontal lines ¢ =0, - 1, — 2, ... , the function
® is not defined.

A€

7 6 S 4 3 2 1 0

=7 =6 -5 =4 =3 =D -1 kO o 2

6 5 4 3 2 1 0 1
=1

5 4 3 2 1 0 1 0
=)

4 3 2 1 0 1 0 1
=3

3 2 1 0 1 0 1 0
=7

2 1 0 1 0 1 0 1
=53

1 0 1 0 1 0 1 0
=

0 1 0 1 0 1 0 1
=

;S L LSS S S A ar

Negative zeros of ®(a, c; x)
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The positive zeros of ¥(a, ¢; x) can be investigated similarly; for
negative real x, however, ¥ is in general complex and different from
zero [cf. 6.8(14)]. Equations 6.5(2) and 6.5(6) show that ¥ cannot have
positive zeros if a and ¢ are real and either a > 0 or a —c +1>0.If
-n<a<l-nn=1,2, ..., the functions ¥Y(a+j, c;x),j=0,1,...,
n, form a Sturmian chain; all these functions are positive for large pos-
itive x, and their signs as x » 0 are governed by 6.8(2) to 6.8(5). The
information derived therefrom is represented in the diagram below. The
results coincide with those by A. Milne (1915) and G. E. Tsvetkoff
(1941a).

Positive zeros of ¥ (a, c; x)

Approximate expressions for the zeros have been given by Tricomi
(1947). From 6,12(11), it can be shown that if fr is the r«th positive zero

of ®(a, c; x), and the r-th positive zero of Jc_' (x), then for large «,

(D §r=jc2_,_r 4x)7" 1 1+ 1/3[2¢(c - 2) + j2 172+ 0™,

c—1,r

H. Schmidt (1938) found a similar result and showed that the series of
which (1) gives the first two terms is convergent for sufficiently large
|a|. The r-th positive zero can be approximated by

(2) 72 +%c-%%12c - 4a).

Further details about the zeros are contained in the papers by Tricomi
and Tsvetkoff quoted above.
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The complex zeros (for real ¢ and c¢) have been investigated by

Tsvetkoff (1941b) and by Tricomi (1950a).

6.17. Descriptive properties for real a, ¢, x

‘The results of ‘'section 6.16 together with differentiation formulas such
as 6,4 (10) and 6.6 (11) give information about the number and approximate
position of the zeros, turning points, and points of inflexion of the con-
fluent hypergeometric functions when a, ¢, x, and hence also ® and ¥
are real. Moreover, the Sonine-Pélya theorem (Szegs 1939) gives results
on the magnitude of successive maxima and minima. Writing 6,1 (2) in the
self-adjoint form

dx dx

an application of that theorem shows that the turning values, or rather
their absolute values, form an increasing or decreasing sequence accord-
ing as

d __dy i
(1) —|xe™* = ) -—ax"'e *y =0,

(2) —ax® e xfe *=—qgx? ' e

is a decreasing or increasingfunction of x. Hence the successive maxima
of |y| are increasing if

3) a>0, x<c=-% or a<0, =x>c-%,

and are decreasing if

(4) a>0, x>c-% or a<0, =x<c-4%.

For Whittaker’s functions M, - and W, , let us call d the interval
between 0 and 2 (12 — %)/« and let us appf; the Sonine-Pblya theorem to
6.1 (4). The successive relative maxima of |z| are increasing if

k> 0 and x is outside of &
(5)9 or

if k< 0 and x is inside O,
and are decreasing if

& >0 and x is inside &
(6)< or

if k <0 and x is outside .

The sizes of the later turning values can be approximated by means of
the asymptotic representations developed in section 6.13.
As an example, we shall investigate

() y=®(-4.5,1;%)
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for real x. In Whittaker’s notation, k =5, u = 0. By 6.4 (10),
(8 y'=-4:-5@(-3.5,2;x).

Clearly y (0) =1, ¥ ' (0) = — 4.5, and since I' (- 4.5) < 0,we have from
6.13(3) that y(~ ) = o, ¥ ' (= =) = 0, ¥(0) = = 00, ¥’ (o) = — 00, From the
diagrams of section 6,16, ¥ has five positive, and no negative zeros. From
6.16 (2) the zeros of y can be approximated by 0.3, 1.5, 3.7, 6.9, 10.6,
from 6,16 (2) and (8) the turning pointsby x = 0.9, 2.8, 5.8, 9.9. Moreover,
at all these points (2) is satisfied and so the maxima of |y| form an in-
creasing sequence. A rough graph of y based onthis informationis given
below:

10 1

el » %
- 104
- 20 4
-0 1

D~ 45, 1;x)
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All numbers refer to pages. Numbers in italics refer to the definitions.

A
Automorphic functions, 98
B

Basic hypergometric series, 195, 203
of several variables, 245
Bateman - Pasternack polynomials,
192
Bateman’s k -function, 267, 274
Bessel functions,
as special case of G-function, 216
as special case of E-function, 204
connection with Meijer’s G-function,
216
connection with confluent hyper-
geometric functions, 252, 265
expansion of confluent hyper-
geometric function in terms of
276
Bessel’s differential equation, 249
Beta function, 9ff.
(see also incomplete beta function)
contour integrals for, 14
Bernoulli numbers, 30, 35
expressed by zeta function, 34, 38
of higher order, 39
Bernoulli polynomials, 36, 43
of higher order, 39
relation with generalized zeta
function, 27
Binomial coefficients,
relations involving, 85
Binomial series,
generalization of, 196
truncated, 87, 101

C

Confluence of singularities, 248

Confluent hypergeometric differ-
ential equation, 248ff.
fundamental systems of
solutions, 258
general solution of, 253
transformation of, 251
Confluent hypergeometric functions,
248
associated, 254
asymptotic behavior of, 277 ff.
behavior at origin, 262
branch cut for, 263
connection with Bessel
functions, 265
contiguous, 254
derivative of, 254, 258
elementary relations for, 253, 257
expansions of, 275
integral addition thearem for,
271, 285
integrals involving, 283, 287
integral representations of, 255 ff,
27186.
Laplace transforms containing,
269
logarithmic case, 260
multiplication formula for, 282
products of, 286
reduction of Ao Y + A, y' o+ Azyzo’

A =ax + b, and other types of
linear differential equation, to,
2491,
relations between, 259
series involving, 284, 287
special values of parameters, 265
269
Wronskian, 253, 259
zeros of, 288
Conical functions, 174
Convergence,
associated radii of, 227
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D
Dougall-Ramanujan formula, 191

E

E -function,
(see MacRobert’s E -function)
Elliptic functions,
connection with basic hyper-
geometric series, 196
Elliptic modular functions, 99
Error functions,
connection with confluent
hypergeometric function, 266
Euler numbers, 40
of higher order, 43
Euler polynomials, 40, 44
of higher order, 43
Euler ’s constant, 1
Euler’s dilogarithm, 31
Euler’s identity, 197
Euler’s transformation of hyper-
geometric function, 64, 253
Exponential integral,
connection with confluent
hyper geometric function, 266
Exponent differences, 90

F

Fresnel integrals,
connection with confluent hyper-
geometric function, 267

G

G -function,
(see Meijer’s G -function)
Gamma function, 1
(see also incomplete gamma function)
asymptotic expansions, 47
behavior of, at poles, 46
Binet’s expression for y(2), 18, 21,
22
contour integrals for, 13
Dougall’s formula, 7
duplication formula for, 5
expansions for I'(1 + z), (1 + z),
T'(z) and G(1 + z), 45
expressions for log ['(z), 20ff. 48
functional equations for, 3
G(z), 20, 44
Gauss’ formula for Y (p/g), 18

297

infinite products expressed by, 5

infinite series involving, 7

infinite series in terms of /-
function, 19

integrals containing, 49

Joncquiére’s relation for F (z, s),
31

Kummer’s series, 23

Legendre’s duplication formula, 5

Lipschitz’s formula, 28

logarithmic derivative of, 15ff.,

23, 44

Multiplication formula of Gauss, 4

singularities of, 2

various notations for, 52

Gauss’ series

(see hypergeometric series)
Gegenbauer’s differential equation,
178
Gegenbauer’s functions, 178
Gegenbauer polynomials 175 ff.
Generalized hypergeometric differential
equations, 184, 203, 210
Generalized hypergeometric functions
(see generalized hypergeometric
series)
Generalized hypergeometric series,
182, 202
as special case of G -function, 215
basic, 195 .
contiguous, 187
convergence of, 182, 184
cubic transformations for 31:‘2 , 190

differential equations for, 184

Dixon’s theorem, 189

Dougall’s theorem, 189

F1 (a; c; x), 248

identities invovling, 185

integrals involving, 192

linear ransformations of F ,
gti’ ¢

188, 190

nearly-poised, 188, 190

of unit argument, 183, 188, 190

Pochhammer -Barnes notation, 184

quadratic transformations for

3y 190

recurrence relations for, 185
Saalschiitzian, 188
special cases of, 190, 192
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terminating, 182
Watson'’s theorem, 189
Whipples’ theorem, 189
well-poised, 188, 190

H

H -function, 204
Hankel - transform of ) Fz , 192

Heine’s hypergeometric series, 183
Hermite polynomials
connection with confluent hyper-
geometric function, 267
Hypergeometric differential equation,
56 (see also hypergeometric
series and functions; generalized
hypergeometric series and func-
tions; hypergeometric functions
of several variables)
for Legendre polynomials, 122

solutions in the degenerate case of,

71
Hypergeometric equations,
associated, 95
as special case of Riemann’s
equation, 91
degenerate case of, 69
degenerate solution of, 69
full solution, 74
group of, 93
singularities, 56
transformation of, 92
Hypergeometric function, 57
arelation for o F, (Lz; 1+2;—-1), 20

analytic continuation of, 62, 108
as continued fractions, 87
associated, 58

asymptotic expansions of, 75
bilinear relations for, 84

connection with Legendre functions,

141
contiguous, 57
cubic transformation of, 67, 113
degenerate case of, 68ff.
derivatives of, 58, 102
duplication formula for, 83
elementary functions as, 101
elementary relations for, 102
full solution of, 74

Gauss’ relations for contiguous, 103

generating function for
F(b, a—b; c; z), 82
Goursats’ tables of quadratic trans-
formations for, 111
integrals involving, 79-81, 205
integral representations of, 59, 62,
67, 78, 114
Kummer’s relations between, 105
Legendre’s relation, 85
multiplication farmulas for, 83
products of, 82
quadratic transformation of, 64, 110
121
special cases of, 89, 101, 122, 150
special values of, 104
transformations of higher degree of,
67
uniformization of, 99
zeros of, 99

Hypergeometric functions of several

variables (see also hypergeometric
series of several variables)
analytic continuation of, 241
as solutions of partial differential
equations, 231 ff.
Horn’s list, 224
integral representations of, 229,
reducible, 238
reduction of, to hypergeometric
functions of one variable, 237
transformations of, 239 1.

Hypergeometric series,

(see also hypergeometric functions)
57

convergence of, 57

terminating, 57

truncated, 191

Hypergeometric series of several variables,

(see also hypergeometric function of
several variables), 222

complete, 224

confluent, 225

convergence of, 227

expansion of, 243

Homn'’s list of, 224

symbolic forms, 243

Hyperspherical harmonics, 245

I

Incomplete beta function, 87
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Incomplete gamma functions,
connection with confluent hyper-
geometric function, 266
Integral cosine,
connection with confluent hyper-
geometric function, 266
Integral sine,
connection with confluent hyper-
geometric function, 266

J

Jacobi polynomials,
as special case of hyperge ometric
function, 81
bilinear generating function of,
244
generating function, 81
of two variables, 244
Jacobian theta functions, 99

K

k -function,
(see Bateman’s k -function)
Knar’s formula, 6
Kummer’s formulas for hypergeometric
series, 64
Kummer’s series,
for confluent hypergeometric
function, 248
for log I'(z), 23
of hypergeometric function, 92, 105
Kummer’s transformation,
of confluent hypergeometric
function, 253
of Whittaker’s function, 264

L

Laguerre functions,
connection with confluent hyper-
geometric function, 268
Laguerre polynomials,
connection with confluent hyper-
geometric function, 268
expansion of confluent hypergeo-
metric function in terms of, 275
Laplace integrals,
for confluent hypergeometric
function, 255
Laplace transforms, 269
of generalized hypergeometric
series, 192

Laplace’s equation, 120, 173
Legendre’s differential equation, 72]
as special case of hypergeometric
equation, 122
Legendre's functions, 122
addition theorem for, 168
associated, 148
asymptotic expansions for, 162
behavior of, at singular point, 163
derivatives of, 148, 181
Dougall’s expansion, 167
expansions in terms of, 165
Ferrer’s associated, 179
integral representations for, 155 ff,
integrals involving, 169 f.
Olbricht’s solutions of, 123
of special order and degree, 150
of integral order, 148
on the cut (for — 1 <x < 1), 143, 161
recurrence relations for, 160 ff.
relations between, 140, 149
relations of, with hypergeometric
functions, 123f., 141, 148
trigonometric expansions for
Legendre functions on the cut,
146
Whipple’s formula, 141
Wronskian of, 123
Legendre polynomials, 120, 150
Christoffel’s formula, 153
generating function of, 154
Heine’s formula, 168
integrals involving, 152ff.
Neumann’s integral relation for, 154
orthogonality of, 121, 151
relations between, 152
Rodrigues’ formula for, 151
Wronskian, 152
Lerch’s theorem, 86
Lerch’s transformation formula for
@(z, 8, v), 29
Logarithmic integral,
connection with confluent hypergeo-
metric function, 267

M

MacRobert’s E -function, 203
integrals involving, 206
recurrence relations for, 205

Mascheroni’s constant
(see Euler’s constant)

Mehler -Dirichlet formula, 159
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Meijer’s G-function, 206
asymptotic expansions for, 211
differential equation for, 210
integral transforms of, 214
multiplication theorems, 213
series with, 213
special cases of, 215 ff.,

Mellin-Barnes integrals, 49, 232, 256

285

Mellin’s formula,

for infinite products, 6

P

P -function, 204

Papperitz equation, 90

Parabolic cylinder functions,
connection with confluent hyper-

geometric functions, 267

Poisson’s-Charlier polynomials, 268

Polygamma functions, 44

1~ function, 15ff.

Q
Q@ -function, 204
R

Riemann’s P-equation, 65, 89
Riemann’s f-function, 35
Riemann’s zeta function,

(see zeta function)
Ring functions,

(see toroidal functions)
Rogers-Ramanujan identities, 197

S

Saalschutz’s formula, 66

Schwarzian derivatives, 96
Schwarz’s s-function, 96, 183
Schwarz’s table, 98

Steepest descent, method of, 279, 281
Stirling series, 47

Summation formula of Plana, 22

T

Toroidal coordinates, 173
Toroidal functions, 173

Toronto functions, 268
W

Whittaker functions, 264, 270, 274, 291
as special case of E-function, 205
as special case of G-function, 216ff.
Wronskian,
of confluent hypergeometric functions, 253
of Legendre functions, 123
of Legendre polynomials, 152

z

Zeta function, 32
asymptotic expansion of {(s, v), 48
generalized, 24, 27
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B
B" Bernoulli number, 35

B:‘n) , 30
Bn (x) Bernoulli polynomial, 36

B™la +vra ), 39
n 1 =

C

C (x) Fresnel integral, 267
C:(z) Gegenbauer polynomial, 175

CZ(z) Gegenbauer function, 178
Ci(x) Cosine integral, 267

D

Du (x) Parabolic cylinder function, 267

E

E(P;ar:q;ps:x) MacRobert’s
E -function, 203

En Euler number, 40

En (x) Euler polynomial, 40

—Ei(—x) Exponential integral, 267
Erf (x) error function, 266
Erfc (x) complementary error function,

266
F
F (a,b;c;z) Hypergeometric

function, 57

F(z,s), 30

301

PF;J(G' ,...,ap;b‘ ,....bq;z)

Generalized hypergeometric
series, 182

F (), 192
F| 3 oo ,}’1‘("- .x,)’)

Hypergeometric series of two
variables, 224
I(a,e52), 249

G(z), 20
GI " Gz . G3 («se»x,y) Hypergeometric

series of two variables, 224
G (x), G;':, Meijer’s G -function, 207
H
Hn (x) Hermite polynomial, 267
H

JEReD ,H7 (+s.5x,y) Hypergeometric

series of two variables, 225

H (£,p,1), 193

J
Jn"'"(z) Bateman polynomial, 193
K

ky(x) Bateman’s function, 267

L

li(x) logarithmic integral, 267



302 SPECIAL FUNCTIONS

M

M (a,c,x) Confluent hypergeometric
function, 248
Mk u(x) Whittaker’s function, 264

P
PV (z) Legendre function, 148

P‘:ﬁ(z) Associated Legendre function,
122

P* (x) Legendre function on the qut,
Y143

Q

Q. (z) Legendre function of the second
Ykind, 148

Q" (z) Associated Legendre function
Yof the second kind, 122

Qu(x) ‘Legendre function of the second
Ykind on the cut, 143

S

S (x) Fresnel integral, 267
Si (x) Sine integral, 267

w

Wk #(x) Whittaker’s function, 264

Z

zZ " (z) Bateman’s polynomial, 193

GREEK LETTERS

Bi,y), 9

I' x), Gamma function, 1

I" (a,x) Incomplete gamma function, 266
y (@,x) Incomplete gamma function, 266

F‘ 5 Fz (sse,x,7) Confluent

hypergeometric series of two
variables, 226
)/n (@,z), 195

H el

hypergeometric series of two
variables, 226

(+ss,x,¥) Confluent

{(s) Zeta function, 32
C(S,U)' 24
(D(zvslu)f 27

®(@,c;x) Confluent hypergeometric
function, 248

(I",q)z,@a(...,z,y) Confluent

hypergeometric series of two;
variables, 225

[P Basic hypergeometric series,
195
Yi(z) Logarithmic derivative of
gamma function, 15
Y (a, c; x) Confluent hypergeometric
function, 255
lpl s¥, (e sx, ) Confluent hyper-

geometric series of two variables,
225
’.:1 ’Ez («se,x,y) Confluent hyper-

T

geometric series of two variables,
226

MISCELLANEQUS NOTATIONS

arg z argument (or phase)of z (complex)
Imz imaginary part of z (complex)
Re z real part of z (complex)

v Euler-Mascheroni constant (see p. 1)

@), =T @+n)/T (@)
n=1

(@ orfal = M (1-ag")
g.n ",

f Cauchy principal value of an integral





