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Prefaces

Preface to the English Edition

An entire generation of mathematicians has grown up during the time be-
tween the appearance of the first edition of this textbook and the publication
of the fourth edition, a translation of which is before you. The book is famil-
iar to many people, who either attended the lectures on which it is based or
studied out of it, and who now teach others in universities all over the world.
I am glad that it has become accessible to English-speaking readers.

This textbook consists of two parts. It is aimed primarily at university
students and teachers specializing in mathematics and natural sciences, and
at all those who wish to see both the rigorous mathematical theory and
examples of its effective use in the solution of real problems of natural science.

Note that Archimedes, Newton, Leibniz, Euler, Gauss, Poincaré, who are
held in particularly high esteem by us, mathematicians, were more than mere
mathematicians. They were scientists, natural philosophers. In mathematics
resolving of important specific questions and development of an abstract gen-
eral theory are processes as inseparable as inhaling and exhaling. Upsetting
this balance leads to problems that sometimes become significant both in
mathematical education and in science in general.

The textbook exposes classical analysis as it is today, as an integral part
of the unified Mathematics, in its interrelations with other modern mathe-
matical courses such as algebra, differential geometry, differential equations,
complex and functional analysis.

Rigor of discussion is combined with the development of the habit of
working with real problems from natural sciences. The course exhibits the
power of concepts and methods of modern mathematics in exploring spe-
cific problems. Various examples and numerous carefully chosen problems,
including applied ones, form a considerable part of the textbook. Most of the
fundamental mathematical notions and results are introduced and discussed
along with information, concerning their history, modern state and creators.
In accordance with the orientation toward natural sciences, special attention
is paid to informal exploration of the essence and roots of the basic concepts
and theorems of calculus, and to the demonstration of numerous, sometimes
fundamental, applications of the theory.
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For instance, the reader will encounter here the Galilean and Lorentz
transforms, the formula for rocket motion and the work of nuclear reac-
tor, Euler’s theorem on homogeneous functions and the dimensional analysis
of physical quantities, the Legendre transform and Hamiltonian equations
of classical mechanics, elements of hydrodynamics and the Carnot’s theo-
rem from thermodynamics, Maxwell’s equations, the Dirac delta-function,
distributions and the fundamental solutions, convolution and mathematical
models of linear devices, Fourier series and the formula for discrete coding
of a continuous signal, the Fourier transform and the Heisenberg uncertainty
principle, differential forms, de Rham cohomology and potential fields, the
theory of extrema and the optimization of a specific technological process,
numerical methods and processing the data of a biological experiment, the
asymptotics of the important special functions, and many other subjects.

Within each major topic the exposition is, as a rule, inductive, sometimes
proceeding from the statement of a problem and suggestive heuristic consider-
ations concerning its solution, toward fundamental concepts and formalisms.
Detailed at first, the exposition becomes more and more compressed as the
course progresses. Beginning ab ovo the book leads to the most up-to-date
state of the subject.

Note also that, at the end of each of the volumes, one can find the list
of the main theoretical topics together with the corresponding simple, but
nonstandard problems (taken from the midterm exams), which are intended
to enable the reader both determine his or her degree of mastery of the
material and to apply it creatively in concrete situations.

More complete information on the book and some recommendations for
its use in teaching can be found below in the prefaces to the first and second
Russian editions.

Moscow, 2003 V. Zorich
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Preface to the Fourth Russian Edition

The time elapsed since the publication of the third edition has been too short
for me to receive very many new comments from readers. Nevertheless, some
errors have been corrected and some local alterations of the text have been
made in the fourth edition.

Moscow, 2002 V. Zorich

Preface to the Third Russian edition

This first part of the book is being published after the more advanced Part
2 of the course, which was issued earlier by the same publishing house. For
the sake of consistency and continuity, the format of the text follows that
adopted in Part 2. The figures have been redrawn. All the misprints that
were noticed have been corrected, several exercises have been added, and the
list of further readings has been enlarged. More complete information on the
subject matter of the book and certain characteristics of the course as a whole
are given below in the preface to the first edition.

Moscow, 2001 _ V. Zorich

Preface to the Second Russian Edition

In this second edition of the book, along with an attempt to remove the mis-
prints that occurred in the first edition,! certain alterations in the exposition
have been made (mainly in connection with the proofs of individual theo-
rems), and some new problems have been added, of an informal nature as a
rule.

The preface to the first edition of this course of analysis (see below) con-
tains a general description of the course. The basic principles and the aim
of the exposition are also indicated there. Here I would like to make a few
remarks of a practical nature connected with the use of this book in the
classroom.

Usually both the student and the teacher make use of a text, each for his
own purposes.

At the beginning, both of them want most of all a book that contains,
along with the necessary theory, as wide a variety of substantial examples

! No need to worry: in place of the misprints that were corrected in the plates
of the first edition (which were not preserved), one may be sure that a host of
new misprints will appear, which so enliven, as Euler believed, the reading of a
mathematical text.
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of its applications as possible, and, in addition, explanations, historical and
scientific commentary, and descriptions of interconnections and perspectives
for further development. But when preparing for an examination, the student
mainly hopes to see the material that will be on the examination. The teacher
likewise, when preparing a course, selects only the material that can and must
be covered in the time alloted for the course.

In this connection, it should be kept in mind that the text of the present
book is noticeably more extensive than the lectures on which it is based. What
caused this difference? First of all, the lectures have been supplemented by
essentially an entire problem book, made up not so much of exercises as sub-
stantive problems of science or mathematics proper having a connection with
the corresponding parts of the theory and in some cases significantly extend-
ing them. Second, the book naturally contains a much larger set of examples
illustrating the theory in action than one can incorporate in lectures. Third
and finally, a number of chapters, sections, or subsections were consciously
written as a supplement to the traditional material. This is explained in the
sections “On the introduction” and “On the supplementary material” in the
preface to the first edition.

I would also like to recall that in the preface to the first edition I tried to
warn both the student and the beginning teacher against an excessively long
study of the introductory formal chapters. Such a study would noticeably
delay the analysis proper and cause a great shift in emphasis.

To show what in fact can be retained of these formal introductory chap-
ters in a realistic lecture course, and to explain in condensed form the syllabus
for such a course as a whole while pointing out possible variants depending
on the student audience, at the end of the book I give a list of problems
from the midterm exam, along with some recent examination topics for the
first two semesters, to which this first part of the book relates. From this list
the professional will of course discern the order of exposition, the degree of
development of the basic concepts and methods, and the occasional invoca-
tion of material from the second part of the textbook when the topic under
consideration is already accessible for the audience in a more general form.2

In conclusion I would like to thank colleagues and students, both known
and unknown to me, for reviews and constructive remarks on the first edition
of the course. It was particularly interesting for me to read the reviews of
A.N.Kolmogorov and V.I. Arnol’d. Very different in size, form, and style,
these two have, on the professional level, so many inspiring things in common.

Moscow, 1997 V. Zorich

2 Some of the transcripts of the corresponding lectures have been published and I
give formal reference to the booklets published using them, although I understand
that they are now available only with difficulty. (The lectures were given and
published for limited circulation in the Mathematical College of the Independent
University of Moscow and in the Department of Mechanics and Mathematics of
Moscow State University.)
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From the Preface to the First Russian Edition

The creation of the foundations of the differential and integral calculus by
Newton and Leibniz three centuries ago appears even by modern standards
to be one of the greatest events in the history of science in general and
mathematics in particular.

Mathematical analysis (in the broad sense of the word) and algebra have
intertwined to form the root system on which the ramified tree of modern
mathematics is supported and through which it makes its vital contact with
the nonmathematical sphere. It is for this reason that the foundations of
analysis are included as a necessary element of even modest descriptions of
so-called higher mathematics; and it is probably for that reason that so many
books aimed at different groups of readers are devoted to the exposition of
the fundamentals of analysis.

This book has been aimed primarily at mathematicians desiring (as is
proper) to obtain thorough proofs of the fundamental theorems, but who are
at the same time interested in the life of these theorems outside of mathe-
matics itself.

The characteristics of the present course connected with these circum-
stances reduce basically to the following:

In the exposition. Within each major topic the exposition is as a rule induc-
tive, sometimes proceeding from the statement of a problem and suggestive
heuristic considerations toward its solution to fundamental concepts and for-
malisms.

Detailed at first, the exposition becomes more and more compressed as
the course progresses.

An emphasis is placed on the efficient machinery of smooth analysis. In
the exposition of the theory I have tried (to the extent of my knowledge) to
point out the most essential methods and facts and avoid the temptation of
a minor strengthening of a theorem at the price of a major complication of
its proof. )

The exposition is geometric throughout wherever this seemed worthwhile
in order to reveal the essence of the matter.

The main text is supplemented with a rather large collection of examples,
and nearly every section ends with a set of problems that I hope will sig-
nificantly complement even the theoretical part of the main text. Following
the wonderful precedent of Pélya and Szegd, I have often tried to present
a beautiful mathematical result or an important application as a series of
problems accessible to the reader.

The arrangement of the material was dictated not only by the architecture
of mathematics in the sense of Bourbaki, but also by the position of analysis
as a component of a unified mathematical or, one should rather say, natural-
science/mathematical education.

In content. This course is being published in two books (Part 1 and Part 2).
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The present Part 1 contains the differential and integral calculus of func-
tions of one variable and the differential calculus of functions of several vari-
ables.

In differential calculus we emphasize the role of the differential as a linear
standard for describing the local behavior of the variation of a variable. In ad-
dition to numerous examples of the use of differential calculus to study func-
tional relations (monotonicity, extrema) we exhibit the role of the language
of analysis in writing simple differential equations — mathematical models of
real-world phenomena and the substantive problems connected with them.

We study a number of such problems (for example, the motion of a body of
variable mass, a nuclear reactor, atmospheric pressure, motion in a resisting
medium) whose solution leads to important elementary functions. Full use is
made of the language of complex variables; in particular, Euler’s formula is
derived and the unity of the fundamental elementary functions is shown.

The integral calculus has consciously been explained as far as possible
using intuitive material in the framework of the Riemann integral. For the
majority of applications, this is completely adequate.? Various applications
of the integral are pointed out, including those that lead to an improper in-
tegral (for example, the work involved in escaping from a gravitational field,
and the escape velocity for the Earth’s gravitational field) or to elliptic func-
tions (motion in a gravitational field in the presence of constraints, pendulum
motion.)

The differential calculus of functions of several variables is very geometric.
In this topic, for example, one studies such important and useful consequences
of the implicit function theorem as curvilinear coordinates and local reduction
to canonical form for smooth mappings (the rank theorem) and functions
(Morse’s lemma), and also the theory of extrema with constraint.

Results from the theory of continuous functions and differential calculus
are summarized and explained in a general invariant form in two chapters
that link up naturally with the differential calculus of real-valued functions
of several variables. These two chapters open the second part of the course.
The second book, in which we also discuss the integral calculus of functions
of several variables up to the general Newton—Leibniz—Stokes formula thus
acquires a certain unity.

We shall give more complete information on the second book in its preface.
At this point we add only that, in addition to the material already mentioned,
it contains information on series of functions (power series and Fourier series
included), on integrals depending on a parameter (including the fundamental
solution, convolution, and the Fourier transform), and also on asymptotic
expansions (which are usually absent or insufficiently presented in textbooks).

We now discuss a few particular problems.

3 The “stronger” integrals, as is well known, require fussier set-theoretic consider-
ations, outside the mainstream of the textbook, while adding hardly anything to
the effective machinery of analysis, mastery of which should be the first priority.
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On the introduction. I have not written an introductory survey of the subject,
since the majority of beginning students already have a preliminary idea of
differential and integral calculus and their applications from high school, and
I could hardly claim to write an even more introductory survey. Instead, in the
first two chapters I bring the former high-school student’s understanding of
sets, functions, the use of logical symbolism, and the theory of a real number
to a certain mathematical completeness.

This material belongs to the formal foundations of analysis and is aimed
primarily at the mathematics major, who may at some time wish to trace the
logical structure of the basic concepts and principles used in classical analysis.
Mathematical analysis proper begins in the third chapter, so that the reader
who wishes to get effective machinery in his hands as quickly as possible
and see its applications can in general begin a first reading with Chapter 3,
turning to the earlier pages whenever something seems nonobvious or raises
a question which hopefully I also have thought of and answered in the early
chapters.

On the division of material. The material of the two books is divided into
chapters numbered continuously. The sections are numbered within each
chapter separately; subsections of a section are numbered only within that
section. Theorems, propositions, lemmas, definitions, and examples are writ-
ten in italics for greater logical clarity, and numbered for convenience within
each section.

On the supplementary material. Several chapters of the book are written as a
natural extension of classical analysis. These are, on the one hand, Chapters
1 and 2 mentioned above, which are devoted to its formal mathematical
foundations, and on the other hand, Chapters 9, 10, and 15 of the second
part, which give the modern view of the theory of continuity, differential and
integral calculus, and finally Chapter 19, which is devoted to certain effective
asymptotic methods of analysis.

The question as to which part of the material of these chapters should be
included in a lecture course depends on the audience and can be decided by
the lecturer, but certain fundamental concepts introduced here are usually
present in any exposition of the subject to mathematicians.

In conclusion, I would like to thank those whose friendly and competent
professional aid has been valuable and useful to me during the work on this
book.

The proposed course was quite detailed, and in many of its aspects it
was coordinated with subsequent modern university mathematics courses —
such as, for example, differential equations, differential geometry, the theory
of functions of a complex variable, and functional analysis. In this regard
my contacts and discussions with V.I. Arnol’d and the especially numerous
ones with S. P. Novikov during our joint work with the so-called “experimental
student group in natural-science/mathematical education” in the Department
of Mathematics at MSU, were very useful to me.
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I received much advice from N.V.Efimov, chair of the Section of Math-
ematical Analysis in the Department of Mechanics and Mathematics at
Moscow State University.

I am also grateful to colleagues in the department and the section for
remarks on the mimeographed edition of my lectures.

Student transcripts of my recent lectures which were made available to
me were valuable during the work on this book, and I am grateful to their
owners.

I am deeply grateful to the official reviewers L. D. Kudryavtsev, V. P. Pet-
renko, and S.B.Stechkin for constructive comments, most of which were
taken into account in the book now offered to the reader.

Moscow, 1980 V. Zorich
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1 Some General Mathematical Concepts
and Notation

1.1 Logical Symbolism

1.1.1 Connectives and Brackets

The language of this book, like the majority of mathematical texts, consists
of ordinary language and a number of special symbols from the theories
being discussed. Along with the special symbols, which will be introduced
as needed, we use the common symbols of mathematical logic -, A, V, =,
and < to denote respectively negation (not) and the logical connectives and,
or, implies, and is equivalent to.!

For example, take three statements of independent interest:

L. If the notation is adapted to the discoveries. .., the work of thought is
marvelously shortened. (G. Leibniz)?

P. Mathematics is the art of calling different things by the same name.
(H. Poincaré).3

G. The great book of nature is written in the language of mathematics.
(Galileo).

Then, according to the notation given above,

! The symbol & is often used in logic in place of A. Logicians more often write
the implication symbol = as — and the relation of logical equivalence as +—
or +>. However, we shall adhere to the symbolism indicated in the text so as not
to overburden the symbol —, which has been traditionally used in mathematics
to denote passage to the limit.

2 G.W.Leibniz (1646-1716) — outstanding German scholar, philosopher, and
mathematician to whom belongs the honor, along with Newton, of having dis-
covered the foundations of the infinitesimal calculus.

3 H.Poincaré (1854-1912) — French mathematician whose brilliant mind trans-
formed many areas of mathematics and achieved fundamental applications of it
in mathematical physics.

4 Galileo Galilei (1564-1642) — Italian scholar and outstanding scientific experi-
menter. His works lie at the foundation of the subsequent physical concepts of
space and time. He is the father of modern physical science.
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Notation Meaning
L=P L implies P
L& P L is equivalent to P

((L= P)A(=P)) = (=L)  If P follows from L and P is false,
then L is false
~(LeG)V(Peaq) G is not equivalent either to L or to P

We see that it is not always reasonable to use only formal notation, avoid-
ing colloquial language.

We remark further that parentheses are used in the writing of complex
statements composed of simpler ones, fulfilling the same syntactical function
as in algebraic expressions. As in algebra, in order to avoid the overuse of
parentheses one can make a convention about the order of operations. To
that end, we shall agree on the following order of priorities for the symbols:

- NV, =, &

With this convention the expression ~AABVC = D should be interpreted
as (((wA) AB)VC) = D, and the relation AV B = C as (AV B) = C, not
as AV (B=C).

We shall often give a different verbal expression to the notation A = B,
which means that A implies B, or, what is the same, that B follows from A,
saying that B is a mecessary criterion or necessary condition for A and A in
turn is a sufficient condition or sufficient criterion for B, so that the relation
A & B can be read in any of the following ways:

A is necessary and sufficient for B;

A hold when B holds, and only then;

A if and only if B;

A is equivalent to B.

Thus the notation A < B means that A implies B and simultaneously B
implies A.

The use of the conjunction and in the expression A A B requires no ex-
planation.

It should be pointed out, however, that in the expression A V B the con-
junction or is not exclusive, that is, the statement A V B is regarded as true
if at least one of the statements A and B is true. For example, let  be a
real number such that 22 — 3z 42 = 0. Then we can write that the following
relation holds:

(z2-3z+2=0)e(z=1)V(z=2).

1.1.2 Remarks on Proofs

A typical mathematical proposition has the form A = B, where A is the
assumption and B the conclusion. The proof of such a proposition consists of
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constructing a chain A = Cy = --- = C, = B of implications, each element
of which is either an axiom or a previously proved proposition.®

In proofs we shall adhere to the classical rule of inference: if A is true and
A = B, then B is also true.

In proof by contradiction we shall also use the law of excluded middle,
by virtue of which the statement AV —A (A or not-A) is considered true
independently of the specific content of the statement A. Consequently we
simultaneously accept that —=(—A) < A, that is, double negation is equivalent
to the original statement.

1.1.3 Some Special Notation

For the reader’s convenience and to shorten the writing, we shall agree to
denote the end of a proof by the symbol O.

We also agree, whenever convenient, to introduce definitions using the
special symbol := (equality by definition), in which the colon is placed on
the side of the object being defined.

For example, the notation

b
/ f@de = lim o(fiP.6)

defines the left-hand side in termé of the right-hand side, whose meaning is
assumed to be known.
Similarly, one can introduce abbreviations for expressions already defined.

For example
n

> f(&) Az = o(f; P,€)

=1
introduces the notation o(f; P, ) for the sum of special form on the left-hand
. side.

1.1.4 Concluding Remarks

We note that here we have spoken essentially about notation only, without
analyzing the formalism of logical deductions and without touching on the
profound questions of truth, provability, and deducibility, which form the
subject matter of mathematical logic.

How are we to construct mathematical analysis if we have no formalization
of logic? There may be some consolation in the fact that we always know more
than we can formalize at any given time, or perhaps we should say we know
how to do more than we can formalize. This last sentence may be clarified by

® The notation A = B => C will be used as an abbreviation for (A= B)A(B=>C).
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the well-known proverb of the centipede who forgot how to walk when asked
to explain exactly how it dealt with so many legs.

The experience of all the sciences convinces us that what was consid-
ered clear or simple and unanalyzable yesterday may be subjected to re-
examination or made more precise today. Such was the case (and will un-
doubtedly be the case again) with many concepts of mathematical analysis,
the most important theorems and machinery of which were discovered in the
seventeenth and eighteenth centuries, but which acquired its modern formal-
ized form with a unique interpretation that is probably responsible for its
being generally accessible, only after the creation of the theory of limits and
the fully developed theory of real numbers needed for it in the nineteenth
century.

This is the level of the theory of real numbers from which we shall begin
to construct the whole edifice of analysis in Chap. 2.

As already noted in the preface, those who wish to make a rapid ac-
quaintance with the basic concepts and effective machinery of differential
and integral calculus proper may begin immediately with Chap. 3, turning
to particular places in the first two chapters only as needed.

1.1.5 Exercises

We shall denote true assertions by the symbol 1 and false ones by 0. Then to each
of the statements A, AA B, AV B, and A = B one can associate a so-called
truth table, which indicates its truth or falsehood depending on the truth of the
statements A and B. These tables are a formal definition of the logical operations
-, A, V, =. Here they are:

| -4 | [4]o]r AAB B
Ao
@ -A 1[0
0 [ojo
10
A A
0 |of1 0 |11
1 ]1]1 1 ]0j1

1. Check whether all of these tables agree with your concept of the corresponding
logical operation. (In particular, pay attention to the fact that if A is false, then
the implication A = B is always true.)


hayuxi
附注
Remember these 4 truth tables and the relations in Q2 as well.
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2. Show that the following simple, but very useful relations, which are widely used
in mathematical reasoning, are true:

a) "(AAB) & -~AV -B;

b) ~(AV B) & A A-B;

¢) (A= B) & (-B = -A);

d) (A= B) & (~AV B);

e) (A= B) & AAN-B.

1.2 Sets and Elementary Operations on them

1.2.1 The Concept of a Set

Since the late nineteenth and early twentieth centuries the most universal
language of mathematics has been the language of set theory. This is even
manifest in one of the definitions of mathematics as the science that studies
different structures (relations) on sets.®

“We take a set to be an assemblage of definite, perfectly dlstlngulshable
objects of our intuition or our thought into a coherent whole.” Thus did
Georg Cantor,” the creator of set theory, describe the concept of a set.

Cantor’s description cannot, of course, be considered a definition, since it
appeals to concepts that may be more complicated than the concept of a set
itself (and in any case, have not been defined previously). The purpose of this
description is to explain the concept by connecting it with other concepts.

The basic assumptions of Cantorian (or, as it is generally called, “naive”)
set theory reduce to the following statements.

19. A set may consist of any distinguishable objects.

20, A set is unambiguously determined by the collection of objects that com-
prise it.

- 3%, Any property defines the set of objects having that property.

If x is an object, P is a property, and P(z) denotes the assertion that
has property P, then the class of objects having the property P is denoted
{a:l P(x)}. The objects that constitute a class or set are called the elements
of the class or set.

The set consisting of the elements xi,...,x, is usually denoted
{z1,...,Zn}. Wherever no confusion can arise we allow ourselves to denote
the one-element set {a} simply as a.

6 Bourbaki, N. “The architecture of mathematics” in: N. Bourbaki, Elements of the
history of mathematics, translated from the French by John Meldrum, Springer,
New York, 1994.

" G.Cantor (1845-1918) — German mathematician, the creator of the theory of
infinite sets and the progenitor of set-theoretic language in mathematics.
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The words “class”, “family”, “totality”, and “collection” are used as syn-
onyms for “set” in naive set theory.
The following examples illustrate the application of this terminology:

— the set of letters “a” occurring in the word “I”;

— the set of wives of Adam,;

— the collection of ten decimal digits;

— the family of beans;

— the set of grains of sand on the Earth;

— the totality of points of a plane equidistant from two given points of the
plane;

— the family of sets;

— the set of all sets.

The variety in the possible degree of determinacy in the definition of a
set leads one to think that a set is, after all, not such a simple and harmless
concept.

And in fact the concept of the set of all sets, for example, is simply
contradictory.

Proof. Indeed, suppose that for a set M the notation P(M) means that M
is not an element of itself.

Consider the class K = {M| P(M)} of sets having property P.

If K is a set either P(K) or =P(K) is true. However, this dichotomy does
not apply to K. Indeed, P(K) is impossible; for it would then follow from
the definition of K that K contains K as an element, that is, that =P (K) is
true; on the other hand, —~P(K) is also impossible, since that means that K
contains K as an element, which contradicts the definition of K as the class
of sets that do not contain themselves as elements.

Consequently K is not a set. O

This is the classical paradox of Russell,® one of the paradoxes to which
the naive conception of a set leads.

In modern mathematical logic the concept of a set has been subjected to
detailed analysis (with good reason, as we see). However, we shall not go into
that analysis. We note only that in the current axiomatic set theories a set
is defined as a mathematical object having a definite collection of properties.

The description of these properties constitutes an axiom system. The core
of axiomatic set theory is the postulation of rules by which new sets can be
formed from given ones. In general any of the current axiom systems is such
that, on the one hand, it eliminates the known contradictions of the naive
theory, and on the other hand it provides freedom to operate with specific
sets that arise in different areas of mathematics, most of all, in mathematical
analysis understood in the broad sense of the word.

8 B.Russell (1872-1970) — British logician, philosopher, sociologist and social ac-
tivist.
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Having confined ourselves for the time being to remarks on the concept of
a set, we pass to the description of the set-theoretic relations and operations
most commonly used in analysis.

Those wishing a more detailed acquaintance with the concept of a set
should study Subsect. 1.4.2 in the present chapter or turn to the specialized
literature.

1.2.2 The Inclusion Relation

As has already been pointed out, the objects that comprise a set are usually
called the elements of the set. We tend to denote sets by uppercase letters
and their elements by the corresponding lowercase letters.

The statement, “z is an element of the set X” is written briefly as

zeX (or X 31),

and its negation as
z¢ X (or X #z).

When statements about sets are written, frequent use is made of the
logical operators 3 (“there exists” or “there are”) and V (“every” or “for any”)
which are called the existence and generalization quantifiers respectively.

For example, the string Vz((z € A) < (z € B)) means that for any object
x the relations * € A and x € B are equivalent. Since a set is completely
determined by its elements, this statement is usually written briefly as

A=B,

read “A equals B”, and means that the sets A and B are the same.

Thus two sets are equal if they consist of the same elements.

The negation of equality is usually written as A # B.

If every element of A is an element of B, we write A C B or B D A and
say that A is a subset of B or that B contains A or that B includes A. In this
connection the relation A C B between sets A and B is called the inclusion
relation (Fig. 1.1).

ACB

Fig. 1.1.
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Thus
(Ac B) :==Vz((z € A) = (z € B)) .

If AC B and A # B, we shall say that the inclusion A C B is strict or
that A is a proper subset of B.
Using these definitions, we can now conclude that

(A=B)& (ACB)A(BCA).
If M is a set, any property P distinguishes in M the subset
{z € M| P(x)}

consisting of the elements of M that have the property.
For example, it is obvious that

M={zeM|zecM}.

On the other hand, if P is taken as a property that no element of the set M
has, for example, P(z) := (z # x), we obtain the set

@ ={zeMz#z},

called the empty subset of M.

1.2.3 Elementary Operations on Sets

Let A and B be subsets of a set M.
a. The union of A and B is the set

AUB:={z € M|(z € A)V (z € B)},

consisting of precisely the elements of M that belong to at least one of the
sets A and B (Fig. 1.2).

b. The intersection of A and B is the set

ANB:={ze M|(zx € A)A(z € B)},
formed by the elements of M that belong to both sets A and B (Fig. 1.3).
c. The difference between A and B is the set

A\B:={ze M|(zx € A)AN(z ¢ B)},

consisting of the elements of A that do not belong to B (Fig. 1.4).

The difference between the set M and one of its subsets A is usually called
the complement of A in M and denoted Cps A, or CA when the set in which
the complement of A is being taken is clear from the context (Fig. 1.5).
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AUB ANB

M M

Fig. 1.2. Fig. 1.3. Fig. 1.4. Fig. 1.5.

Example. As an illustration of the interaction of the concepts just intro-
duced, let us verify the following relations (the so-called de Morgan® rules):

CM(AUB) =CyANnCyB, (1.1)
CM(AﬂB) =CyAUCYyB. (1.2)

Proof. We shall prove the first of these equalities by way of example:

(zreCy(AUB)) = (x¢(AUB))=>((x§§A)/\(x§§B)) =
= (.’I)ECMA)/\(JJECMB) = (.’I)E (CMAOCMB)) .

Thus we have established that
CM(AUB) C (CMAQCMB) . (13)
On the other hand,

(z € (CuANCMB)) = ((x € CuA) A (z € CuB)) =
= ((a:¢A)/\(x§€B)) = (xgé (AUB)) =
= (z € Cu(AUB)),

that is,
(CuANCyB) C Cy(AUB). (1.4)

Equation (1.1) follows from (1.3) and (1.4). O

d. The direct (Cartesian) product of sets. For any two sets A and B one can
form a new set, namely the pair {A, B} = {B, A}, which consists of the sets
A and B and no others. This set has two elements if A # B and one element
if A=B.

This set is called the unordered pair of sets A and B, to be distinguished
from the ordered pair (A, B) in which the elements are endowed with ad-
ditional properties to distinguish the first and second elements of the pair

9 A.de Morgan (1806-1871) — Scottish mathematician.
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{A, B}. The equality
(A7 B ) = (07 D )
between two ordered pairs means by definition that A = C and B = D. In
particular, if A # B, then (A, B) # (B, A).
Now let X and Y be arbitrary sets. The set

XxY :={(z,9)|(zxe X)AN(yeY)},

formed by the ordered pairs (z, y) whose first element belongs to X and whose
second element belongs to Y, is called the direct or Cartesian product of the
sets X and Y (in that order!).

It follows obviously from the definition of the direct product and the
remarks made above about the ordered pair that in general X XY # Y x X.
Equality holds only if X =Y. In this last case we abbreviate X x X as X?2.

The direct product is also called the Cartesian product in honor of
Descartes,'® who arrived at the language of analytic geometry in terms of
a system of coordinates independently of Fermat.!! The familiar system of
Cartesian coordinates in the plane makes this plane precisely into the direct
product of two real axes. This familiar object shows vividly why the Cartesian
product depends on the order of the factors. For example, different points of
the plane correspond to the pairs (0,1) and (1,0).

In the ordered pair z = (1, %2), which is an element of the direct product
Z = X1 x X5 of the sets X; and X5, the element x; is called the first projection
of the pair z and denoted pr; z, while the element z is the second projection
of z and is denoted pryz.

By analogy with the terminology of analytic geometry, the projections of
an ordered pair are often called the (first and second) coordinates of the pair.

1.2.4 Exercises

In Exercises 1, 2, and 3 the letters A, B, and C denote subsets of a set M.

1. Verify the following relations.

a) (ACC)A(BCCO) & ((AUB) c c);

b) (C C A)A(C C B) & (CC (AN B));

¢) Cu (C’MA) = A;

d) (AC CuB) & (B C CuA);

e) (AC B) & (CmA D CuB).
10 R. Descartes (1596-1650) — outstanding French philosopher, mathematician and

physicist who made fundamental contributions to scientific thought and knowl-

1 ff%‘z;mat (1601-1665) — remarkable French mathematician, a lawyer by profes-

sion. He was one of the founders of a number of areas of modern mathematics:
analysis, analytic geometry, probability theory, and number theory.
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2. Prove the following statements.
a) AU(BUC)=(AUB)UC =: AUBUC;
b) AN(BNC)=(ANnB)NC =: ANBNC;
c) AN(BUC)=(ANB)U(ANC);
d) Au(BNC)=(AUB)N(AUCQC).

3. Verify the connection (duality) between the operations of union and intersection:
a) Cu(AUB) =CuANCuB;
b) Cu(ANB)=CmAUCMB.

4. Give geometric representations of the following Cartesian products.
a) The product of two line segments (a rectangle).
b) The product of two lines (a plane).
¢) The product of a line and a circle (an infinite cylindrical surface).
d) The product of a line and a disk (an infinite solid cylinder).
€) The product of two circles (a torus).
f) The product of a circle and a disk (a solid torus).

5. The set A = {(z1,22) € X?|z1 = x2} is called the diagonal of the Cartesian
square X2 of the set X. Give geometric representations of the diagonals of the sets
obtained in parts a), b), and e) of Exercise 4.

6. Show that
a) (X xY=0)e (X=0)V (Y =0),andif X xY # &, then
b)(AXxBCXxY)& (ACX)AN(BCY),
) (X xY)U(ZxY)=(XUZ)xY,
X xY)NX'xY)=(XnX)x (Y NY').
Here @ denotes the empty set, that is, the set having no elements.

7. By comparing the relations of Exercise 3 with relations a) and b) from Exercise
2 of Sect. 1.1, establish a correspondence between the logical operators -, A, V and
. the operations C, N, and U on sets.

1.3 Functions

1.3.1 The Concept of a Function (Mapping)

We shall now describe the concept of a functional relation, which is funda-
mental both in mathematics and elsewhere.

Let X and Y be certain sets. We say that there is a function defined on
X with values in Y if, by virtue of some rule f, to each element x € X there
corresponds an element y € Y.

In this case the set X is called the domain of definition of the function.
The symbol = used to denote a general element of the domain is called the
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argument of the function, or the independent variable. The element yo € Y
corresponding to a particular value zo € X of the argument z is called the
value of the function at zo, or the value of the function at the value x = xg
of its argument, and is denoted f(zp). As the argument z € X varies, the
value y = f(x) € Y, in general, varies depending on the values of z. For that
reason, the quantity y = f(z) is often called the dependent variable.

The set

f(X):={yeY|Iz((xe X)A(y=f(z)}

of values assumed by a function on elements of the set X will be called the
set of values or the range of the function.

The term “function” has a variety of useful synonyms in different areas
of mathematics, depending on the nature of the sets X and Y: mapping,
transformation, morphism, operator, functional. The commonest is mapping,
and we shall also use it frequently.

For a function (mapping) the following notations are standard:

f:x-y, x-Lvy.

When it is clear from the context what the domain and range of a function
are, one also uses the notation z — f(z) or y = f(z), but more frequently a
function in general is simply denoted by the single symbol f.

Two functions f; and fo are considered identical or equal if they have the
same domain X and at each element z € X the values fi(z) and f2(z) are
the same. In this case we write f; = fa.

If AC X and f: X — Y is a function, we denote by f|A or f|a the
function ¢ : A — Y that agrees with f on A. More precisely, f|a(z) := ¢(z)
ifz € A. The function f|4 is called the restriction of f to A, and the function
f: X — Y is called an extension or a continuation of ¢ to X.

We see that it is sometimes necessary to consider a function ¢ : A =Y
defined on a subset A of some set X while the range ¢(A) of ¢ may also
turn out be a subset of Y that is different from Y. In this connection, we
sometimes use the term domain of departure of the function to denote any
set X containing the domain of a function, and domain of arrival to denote
any subset of Y containing its range.

Thus, defining a function (mapping) involves specifying a triple (X, Y, f),
where

X is the set being mapped, or domain of the function;

Y is the set into which the mapping goes, or a domain of arrival of the
function;

f is the rule according to which a definite element y € Y is assigned to
each element x € X.

The asymmetry between X and Y that appears here reflects the fact that
the mapping goes from X to Y, and not the other direction.

Now let us consider some examples of functions.
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Ezample 1. The formulas | = 27r and V = §7TT3 establish functional rela-
tionships between the circumference [ of a circle and its radius r and between
the volume V of a ball and its radius r. Each of these formulas provides
a particular function f : Ry — R, defined on the set Ry of positive real
numbers with values in the same set.

Ezample 2. Let X be the set of inertial coordinate systems and ¢ : X — R
the function that assigns to each coordinate system z € X the value ¢(z) of
the speed of light in vacuo measured using those coordinates. The function
¢: X — R is constant, that is, for any = € X it has the same value c. (This
is a fundamental experimental fact.)

Ezample 3. The mapping G : R? — R? (the direct product R2 = R x R =
R; x R, of the time axis R; and the spatial axis R;) into itself defined by the
formulas

=z —t,

¢ =t,

is the classical Galilean transformation for transition from one inertial coor-
dinate system (z,t) to another system (z’,t') that is in motion relative to
the first at speed v.

The same purpose is served by the mapping L : R? — R? defined by the
relations

o T — vt
27

1-(3)
t = t_(}:)_?)x .

This is the well-known (one-dimensional) Lorentz'? transformation, which
plays a fundamental role in the special theory of relativity. The speed c is the
speed of light.

Ezample 4. The projection pr; : X1 x X2 — X; defined by the correspon-

dence X; x X2 3 (x1,22) RAEN z1 € X is obviously a function. The second
projection pr, : X7 X Xo — X3 is defined similarly.

Ezample 5. Let P(M) be the set of subsets of the set M. To each set
A € P(M) we assign the set CpyA € P(M), that is, the complement to
A in M. We then obtain a mapping Cus : P(M) — P(M) of the set P(M)
into itself.

12 H. A. Lorentz (1853-1928) — Dutch physicist. He discovered these transformations

in 1904, and Einstein made crucial use of them when he formulated his special
theory of relativity in 1905.
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Example 6. Let E C M. The real-valued function xg : M — R defined on
the set M by the conditions (xg(z) =1ifz € E) A(xe(z) =0ifz € CyE)
is called the characteristic function of the set E.

Ezample 7. Let M(X;Y) be the set of mappings of the set X into the set
Y and z¢ a fixed element of X. To any function f € M(X;Y) we assign
its value f(zo) € Y at the element zo. This relation defines a function F' :
M(X;Y) — Y. In particular, if Y = R, that is, Y is the set of real numbers,
then to each function f : X — R the function F : M(X;R) — R assigns
the number F(f) = f(zo). Thus F is a function defined on functions. For
convenience, such functions are called functionals.

Ezample 8. Let I' be the set of curves lying on a surface (for example, the
surface of the earth) and joining two given points of the surface. To each
curve v € I' one can assign its length. We then obtain a function F': I' =+ R
that often needs to be studied in order to find the shortest curve, or as it is
called, the geodesic between the two given points on the surface.

Ezample 9. Consider the set M (R;R) of real-valued functions defined on the
entire real line R. After fixing a number a € R, we assign to each function
f € M(R;R) the function f, € M(R;R) connected with it by the relation
fa(z) = f(z + a). The function f,(z) is usually called the translate or shift
of the function f by a. The mapping A : M(R;R) — M(R;R) that arises
in this way is called the translation of shift operator. Thus the operator A is
defined on functions and its values are also functions f, = A(f).

This last example might seem artificial if not for the fact that we encounter

real operators at every turn. Thus, any radio receiver is an operator f N f
that transforms electromagnetic signals f into acoustic signals f; any of our
sensory organs is an operator (transformer) with its own domain of definition
and range of values.

Ezxample 10. The position of a particle in space is determined by an ordered
triple of numbers (z,y, z) called its spatial coordinates. The set of all such
ordered triples can be thought of as the direct product R x R x R = R3 of
three real lines R.

A particle in motion is located at some point of the space R® having
coordinates (z(t),y(t), 2(t)) at each instant ¢ of time. Thus the motion of a
particle can be interpreted as a mapping v : R — R3, where R is the time
axis and R? is three-dimensional space.

If a system consists of n particles, its configuration is defined by the
position of each of the particles, that is, it is defined by an ordered set
(21,1, 215, T2, Y2, 225 - - - ; T, Yn, Zn) consisting of 3n numbers. The set of all
such ordered sets is called the configuration space of the system of n parti-
cles. Consequently, the configuration space of a system of n particles can be
interpreted as the direct product R3 x R3 x - .- x R3 = R3” of n copies of R3.

To the motion of a system of n particles there corresponds a mapping
v : R — R3" of the time axis into the configuration space of the system.
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Ezample 11. The potential energy U of a mechanical system is connected
with the mutual positions of the particles of the system, that is, it is deter-
mined by the configuration that the system has. Let ) be the set of possible
configurations of a system. This is a certain subset of the configuration space
of the system. To each position g € @Q there corresponds a certain value U(q)
of the potential energy of the system. Thus the potential energy is a function
U : @ — R defined on a subset @ of the configuration space with values in
the domain R of real numbers.

Example 12. The kinetic energy K of a system of n material particles depends
on their velocities. The total mechanical energy of the system E, defined as
E = K + U, that is, the sum of the kinetic and potential energies, thus
depends on both the configuration g of the system and the set of velocities
v of its particles. Like the configuration ¢ of the particles in space, the set of
velocities v, which consists of n three-dimensional vectors, can be defined as
an ordered set of 3n numbers. The ordered pairs (g, v) corresponding to the
states of the system form a subset @ in the direct product R3" x R3" = R®",
called the phase space of the system of n particles (to be distinguished from
the configuration space R3").

The total energy of the system is therefore a function E : & — R defined
on the subset @ of the phase space R and assuming values in the domain
R of real numbers.

In particular, if the system is closed, that is, no external forces are acting
on it, then by the law of conservation of energy, at each point of the set @ of
states of the system the function E will have the same value Fy € R.

1.3.2 Elementary Classification of Mappings

When a function f : X — Y is called a mapping, the value f(z) € Y that it
assumes at the element x € Y is usually called the image of z.

The image of a set A C X under the mapping f : X — Y is defined as
the set

fA)={yeY|3(ze AHA(y=f(2)}

consisting of the elements of Y that are images of elements of A.

The set

fY(B) :={z € X| f(z) € B}

consisting of the elements of X whose images belong to B is called the pre-
image (or complete pre-image) of the set B C Y (Fig. 1.6).

A mapping f: X — Y is said to be

surjective (a mapping of X onto Y) if f(X) =Y

injective (or an imbedding or injection) if for any elements x,z2 of X

(f(z1) = f(x2)) = (z1 = 2) ,

that is, distinct elements have distinct images;
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bijective (or a one-to-one correspondence) if it is both surjective and in-
jective.

If the mapping f : X — Y is bijective, that is, it is a one-to-one corre-
spondence between the elements of the sets X and Y, there naturally arises
a mapping

fFliy—=Xx,

defined as follows: if f(z) = y, then f~!(y) = =, that is, to each element
y € Y one assigns the element z € X whose image under the mapping f is y.
By the surjectivity of f there exists such an element, and by the injectivity
of f, it is unique. Hence the mapping f~! is well-defined. This mapping is
called the inverse of the original mapping f.

It is clear from the construction of the inverse mapping that f=!:Y — X
is itself bijective and that its inverse (f~!)~! : X — Y is the same as the
original mapping f: X — Y.

Thus the property of two mappings of being inverses is reciprocal: if f~!
is inverse for f, then f is inverse for f~1.

We remark that the symbol f~!(B) for the pre-image of a set B C Y
involves the symbol f~! for the inverse function; but it should be kept in
mind that the pre-image of a set is defined for any mapping f: X — Y, even
if it is not bijective and hence has no inverse.

1.3.3 Composition of Functions and Mutually Inverse Mappings

The operation of composition of functions is on the one hand a rich source
of new functions and on the other hand a way of resolving complex functions
into simpler ones.

If the mappings f : X —+ Y and g : Y — Z are such that one of them (in
our case g) is defined on the range of the other (f), one can construct a new
mapping

gof: X2,
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whose values on elements of the set X are defined by the formula

(go f)(z):=g(f(x)) .

The compound mapping g o f so constructed is called the composition of
the mapping f and the mapping g (in that order!).
Figure 1.7 illustrates the construction of the composition of the mappings

fand g.
5

Fig. 1.7.

You have already encountered the composition of mappings many times,
both in geometry, when studying the composition of rigid motions of the plane
or space, and in algebra in the study of “complicated” functions obtained by
composing the simplest elementary functions.

The operation of composition sometimes has to be carried out several
times in succession, and in this connection it is useful to note that it is
associative, that is,

ho(go f)=(hog)of.
Proof. Indeed,

ho(go f)(z) =h((go f)(z)) = h(g(f(2))) =
= (hog)(f(2) = ((hog)o f)(z). O

This circumstance, as in the case of addition and multiplication of several
numbers, makes it possible to omit the parentheses that prescribe the order
of the pairings.

If all the terms of a composition f,o---o f; are equal to the same function
f, we abbreviate it to f™.

It is well known, for example, that the square root of a positive number
a can be computed by successive approximations using the formula

1 a
Tnt1 = 5(1:71 + _) )
n

starting from any initial approximation z¢ > 0. This none other than the suc-
cessive computation of f™(zo), where f(z) = 3 (z + 2). Such a procedure, in
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which the value of the function computed at the each step becomes its argu-
ment at the next step, is called a recursive procedure. Recursive procedures
are widely used in mathematics.

We further note that even when both compositions go f and f o g are
defined, in general

gof#fog.

Indeed, let us take for example the two-element set {a,b} and the
mappings f : {a,b} — a and g : {a,b} — b. Then it is obvious that
go f:{a,b} — bwhile fog: {a,b} — a.

The mapping f : X — X that assigns to each element of X the element
itself, that is z ni) z, will be denoted ex and called the identity mapping
on X.

Lemma.
(9o f =ex) = (g is surjective) A (f is injective) .
Proof. Indeed, if f: X -Y,g:Y - X, andgo f=ex : X — X, then
X =ex(X) = (g0 f)(X) = 9(f(X)) C g(Y)

and hence g is surjective.
Further, if z; € X and z2 € X, then

(21 # x2) = (ex(x1) # ex(22)) = (9o f)(z1) # (90 f)(z2)) =
= (9(f(21))) # 9(F(z2)) = (f(21) # f(z2)) s

and therefore f is injective. O

Using the operation of composition of mappings one can describe mutually
inverse mappings.

Proposition. The mappings f : X - Y and g : Y — X are bijective and
mutually inverse to each other if and only if go f = ex and fog=-ey.

Proof. By the lemma the simultaneous fulfillment of the conditions go f =
ex and f o g = ey guarantees the surjectivity and injectivity, that is, the
bijectivity, of both mappings.

These same conditions show that y = f(z) if and only if z = g(y). O

In the preceding discussion we started with an explicit construction of the
inverse mapping. It follows from the proposition just proved that we could
have given a less intuitive, yet more symmetric definition of mutually inverse
mappings as those mappings that satisfy the two conditions go f = ex and
f og=ey. (In this connection, see Exercise 6 at the end of this section.)
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1.3.4 Functions as Relations. The Graph of a Function

In conclusion we return once again to the concept of a function. We note that
it has undergone a lengthy and rather complicated evolution.

The term function first appeared in the years from 1673 to 1692 in works
of G. Leibniz (in a somewhat narrower sense, to be sure). By the year 1698
the term had become established in a sense close to the modern one through
the correspondence between Leibniz and Johann Bernoulli.!3 (The letter of
Bernoulli usually cited in this regard dates to that same year.)

Many great mathematicians have participated in the formation of the
modern concept of functional dependence.

A description of a function that is nearly identical to the one given at the
beginning of this section can be found as early as the work of Euler (mid-
eighteenth century) who also introduced the notation f(z). By the early
nineteenth century it had appeared in the textbooks of S. Lacroix'®. A vig-
orous advocate of this concept of a function was N.I. Lobachevskiil®, who
noted that “a comprehensive view of theory admits only dependence rela-
tionships in which the numbers connected with each other are understood as
if they were given as a single unit.”6 It is this idea of precise definition of
the concept of a function that we are about to explain.

The description of the concept of a function given at the beginning of
this section is quite dynamic and reflects the essence of the matter. However,
by modern canons of rigor it cannot be called a definition, since it uses the
concept of a correspondence, which is equivalent to the concept of a func-
tion. For the reader’s information we shall show here how the definition of a
function can be given in the language of set theory. (It is interesting that the
concept of a relation, to which we are now turning, preceded the concept of
a function, even for Leibniz.)

a. Relations

Definition 1. A relation R is any set of ordered pairs (z,y).

13 Johann Bernoulli (1667-1748) — one of the early representatives of the distin-
guished Bernoulli family of Swiss scholars; he studied analysis, geometry and
mechanics. He was one of the founders of the calculus of variations. He gave the
first systematic exposition of the differential and integral calculus.

14 5. F. Lacroix (1765-1843) — French mathematician and educator (professor at the
Ecole Normale and the Ecole Polytechnique, and member of the Paris Academy
of Sciences).

15 N.I. Lobachevskii (1792-1856) — great Russian scholar, to whom belongs the
credit — shared with the great German scientist C.F.Gauss (1777-1855) and
the outstanding Hungarian mathematician J.Bdlyai (1802-1860) — for having
discovered the non-Euclidean geometry that bears his name.

16 T obachevskii, N.I. Complete Works, Vol. 5, Moscow-Leningrad: Gostekhizdat,
1951, p. 44 (Russian).
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The set X of first elements of the ordered pairs that constitute R is called
the domain of definition of R, and the set Y of second elements of these pairs
the range of values of R.

Thus, a relation can be interpreted as a subset R of the direct product
XxY. IfXCX andY CcY/, thenof course RC X xY C X' xY’, so
that a given relation can be defined as a subset of different sets.

Any set containing the domain of definition of a relation is called a domain
of departure for that relation. A set containing the region of values is called
a domain of arrival of the relation.

Instead of writing (z,y) € R, we often write zRy and say that x is
connected with y by the relation R.

If R C X2, we say that the relation R is defined on X.

Let us consider some examples.

Example 13. The diagonal
A={(a,b) € X?*|a=0b}

is a subset of X? defining the relation of equality between elements of X.
Indeed, aAb means that (a,b) € A, that is, a = b.

Ezample 14. Let X be the set of lines in a plane.

Two lines @ € X and b € X will be considered to be in the relation R,
and we shall write aRb, if b is parallel to a. It is clear that this condition
distinguishes a set R of pairs (a,b) in X2 such that aRb. It is known from
geometry that the relation of parallelism between lines has the following
properties:

aRa (reflexivity);

aRb = bRa (symmetry);

(aRb) A (bRc) = aRc (transitivity).

A relation R having the three properties just listed, that is, reflexivity,'”
symmetry, and transitivity, is usually called an equivalence relation. An equiv-
alence relation is denoted by the special symbol ~, which in this case replaces
the letter R. Thus, in the case of an equivalence relation we shall write a ~ b
instead of aRb and say that a is equivalent to b.

Ezample 15. Let M be a set and X = P(M) the set of its subsets. For two
arbitrary elements a and b of X = P(M), that is, for two subsets a and b of
M, one of the following three possibilities always holds: a is contained in b; b
is contained in a; a is not a subset of b and b is not a subset of a.

17 For the sake of completeness it is useful to note that a relation R is reflezive
if its domain of definition and its range of values are the same and the relation
aRa holds for any element a in the domain of R.
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As an example of a relation R on X2, consider the relation of inclusion
for subsets of M, that is, make the definition

aRb:=(aCb).

This relation obviously has the following properties:
aRa (reflexivity);
(aRb) A (bRc) = aRc (transitivity);
(aRb) A (bRa) = aAb, that is, a = b (antisymmetry).

A relation between pairs of elements of a set X having these three prop-
erties is usually called a partial ordering on X. For a partial ordering relation
on X, we often write a < b and say that b follows a.

If the condition

VaVb((aRb) V (bRa))

holds in addition to the last two properties defining a partial ordering relation,
that is, any two elements of X are comparable, the relation R is called an
ordering, and the set X with the ordering defined on it is said to be linearly
ordered.

The origin of this term comes from the intuitive image of the real line R
on which a relation a < b holds between any pair of real numbers.

b. Functions and their graphs. A relation R is said to be functional if
(zRy1) A (zRy2) = (y1 = ¥2) -

A functional relation is called a function.

In particular, if X and Y are two sets, not necessarily distinct, a relation
R C X xY between elements x of X and y of Y is a functional relation on X
if for every x € X there exists a unique element y € Y in the given relation
to z, that is, such that 2Ry holds.

Such a functional relation R C X x Y is a mapping from X into Y, or a
~ function from X into Y.
We shall usually denote functions by the letter f. If f is a function, we

shall write y = f(z) or z NEIN y, as before, rather than z f y, calling y = f(x)
the value of f at z or the image of x under f.

As we now see, assigning an element y € Y “corresponding” to z € X in
accordance with the “rule” f, as was discussed in the original description of
the concept of a function, amounts to exhibiting for each x € X the unique
y € Y such that z fy, that is, (z,y) € f C X x Y.

The graph of a function f : X — Y, as understood in the original de-
scription, is the subset I' of the direct product X x Y whose elements have
the form (z, f(z)). Thus

I'={(z,y) e X xY|y=f(z)} .



22 1 Some General Mathematical Concepts and Notation

In the new description of the concept of a function, in which we define it
as a subset f C X x Y, of course, there is no longer any difference between
a function and its graph.

We have exhibited the theoretical possibility of giving a formal set-
theoretic definition of a function, which reduces essentially to identifying a
function and its graph. However, we do not intend to confine ourselves to that
way of defining a function. At times it is convenient to define a functional
relation analytically, at other times by giving a table of values, and at still
other times by giving a verbal description of a process (algorithm) making
it possible to find the element y € Y corresponding to a given z € X. With
each method of presenting a function it is meaningful to ask how the function
could have been defined using its graph. This problem can be stated as the
problem of constructing the graph of the function. Defining numerical-valued
functions by a good graphical representation is often useful because it makes
the basic qualitative properties of the functional relation visualizable. One
can also use graphs (nomograms) for computations; but, as a rule, only in
cases where high precision is not required. For precise computations we do
use the table definition of a function, but more often we use an algorithmic
definition that can be implemented on a computer.

1.3.5 Exercises

1. The composition Rz o R1 of the relations R1 and R is defined as follows:
RooR1:= {(a:, 2)| Jy (zR1y A szz)} .

In particular, if R1 C X XY and R, CY X Z,then R=Ra0R1 C X X Z, and
TRz =Ty ((y €EY)A (zR1y) A (ngz)) .

a) Let Ax be the diagonal of X? and Ay the diagonal of Y2, Show that if the
relations R1 C X XY and R2 C Y x X are such that (Re2o0R1 = Ax)A(R10Rz =
Ay), then both relations are functional and define mutually inverse mappings of X
and Y.

b) Let R C X?2. Show that the condition of transitivity of the relation R is
equivalent to the condition Ro R C R.

c) The relation R’ C Y x X is called the transpose of the relation R C X x Y
if (yR'z) & (zRy).

Show that a relation R C X? is antisymmetric if and only if RNR’ C Ax.

d) Verify that any two elements of X are connected (in some order) by the
relation R C X? if and only if RUR' = X2.

2. Let f: X — Y be a mapping. The pre-image f~'(y) C X of the element y € Y’
is called the fiber over y.

a) Find the fibers for the following mappings:
pI‘I:X1><X2—)X1, pI‘2:X1XX2——)X2.
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b) An element z; € X will be considered to be connected with an element
z2 € X by the relation R C X2, and we shall write z1Rz2 if f(z1) = f(z2), that
is, 1 and z2 both lie in the same fiber.

Verify that R is an equivalence relation.

c) Show that the fibers of a mapping f : X — Y do not intersect one another
and that the union of all the fibers is the whole set X.

d) Verify that any equivalence relation between elements of a set makes it
possible to represent the set as a union of mutually disjoint equivalence classes of
elements.

3. Let f: X — Y be a mapping from X into Y. Show that if A and B are subsets
of X, then

a) (AC B) = (f(4) C £(B)) # (AC B).

b) (4#2) = (£(4) #2),
) f(ANB) C f(A)N f(B),
d) f(AUB) = f(A)U f(B);
if A’ and B’ are subsets of Y, then
&) (4 c B) = (f1) C £7U(B)),
f) f7Y(A'NB) =1 (A)n fTY(B),
g) [THA'UB) =1 (AU (B
ifY D A’ > B, then
h) f7HAN\ B)) = fTHA)\ fTY(B),
i) fH(CrA) =Cx fTH(A);
and forany AC X and B’ CY
D17 (F) o 4,
K £(f(8)) C B
4. Show that the mapping f: X = Y is
a) surjective if and only if f(f_l(B')) = B’ for every set B’ C Y;
b) bijective if and only if
(7 (7)) = ) n (1(£78)) = B)
for every set A C X and every set B’ C Y.
5. Verify that the following statements about a mapping f : X — Y are equivalent:
a) f is injective;
b) f_l(f(A)) = A for every A C X;;
¢) f(AN B) = f(A) N f(B) for any two subsets A and B of X

d) f(A)Nf(B)=8 < ANB=g;
e) f(A\ B) = f(A)\ f(B) whenever X D AD B.
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6. a) If the mappings f: X =+ Y and g: Y — X are such that go f = ex, where
ex is the identity mapping on X, then g is called a left inverse of f and f a right
inverse of g. Show that, in contrast to the uniqueness of the inverse mapping, there
may exist many one-sided inverse mappings.

Consider, for example, the mappings f: X - Y and g: Y — X, where X is a
one-element set and Y a two-element set, or the mappings of sequences given by

(z1,. -y Zn,y-..) ELN (@, Z1y. ey Tny--2),

(y27'”ayn>"') (i" (ylay2,-”’yna"')'

b)Let f: X —» Y and g : Y — Z be bijective mappings. Show that the mapping
go f:X — Z is bijective and that (go f)™' = f~log~ %
¢) Show that the equality

(goNC) =F7(s7(O)

holds for any mappings f: X - Y and g: Y — Z and any set C C Z.

d) Verify that the mapping F : X XY — Y X X defined by the correspondence
(z,y) — (y,x) is bijective. Describe the connection between the graphs of mutually
inverse mappings f: X - Y and f7!:Y — X.

7. a) Show that for any mapping f : X — Y the mapping F': X — X x Y defined

by the correspondence x N (az, f (:c)) is injective.

b) Suppose a particle is moving at uniform speed on a circle Y; let X be the

time axis and z — y the correspondence between the time z € X and the position
y = f(z) € Y of the particle. Describe the graph of the function f : X — Y in
X xY.

8. a) For each of the examples 1-12 considered in Sect. 1.3 determine whether the
mapping defined in the example is surjective, injective, or bijective or whether it
belongs to none of these classes.

b) Ohm’s law I = V/R connects the current I in a conductor with the potential
difference V' at the ends of the conductor and the resistance R of the conductor.
Give sets X and Y for which some mapping O : X — Y corresponds to Ohm’s law.
What set is the relation corresponding to Ohm’s law a subset of?

c) Find the mappings G~! and L~! inverse to the Galilean and Lorentz trans-
formations.

9. a) A set S C X is stable with respect to a mapping f : X — X if f(S) C S.
Describe the sets that are stable with respect to a shift of the plane by a given
vector lying in the plane.

b) A set I C X is invariant with respect to a mapping f: X — X if f(I) = I.
Describe the sets that are invariant with respect to rotation of the plane about a
fixed point.

¢) A point p € X is a fized point of a mapping f : X — X if f(p) = p. Verify
that any composition of a shift, a rotation, and a similarity transformation of the
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plane has a fixed point, provided the coefficient of the similarity transformation is
less than 1.

d) Regarding the Galilean and Lorentz transformations as mappings of the
plane into itself for which the point with coordinates (z,t) maps to the point with
coordinates (z’,t'), find the invariant sets of these transformations.

10. Consider the steady flow of a fluid (that is, the velocity at each point of the
flow does not change over time). In time ¢ a particle at point z of the flow will move
to some new point fi(z) of space. The mapping = — fi(z) that arises thereby on
the points of space occupied by the flow depends on time and is called the mapping
after time t. Show that fi, o fi; = fi, © fi, = ft;+t, and fro f_; = ex.

1.4 Supplementary Material

1.4.1 The Cardinality of a Set (Cardinal Numbers)

The set X is said to be equipollent to the set Y if there exists a bijective
mapping of X onto Y, that is, a point y € Y is assigned to each z € X,
the elements of Y assigned to different elements of X are different, and every
point of Y is assigned to some point of X.

Speaking fancifully, each element x € X has a seat all to itself in Y, and
there are no vacant seats y € Y.

It is clear that the relation XRY thereby introduced is an equivalence
relation. For that reason we shall write X ~ Y instead of XRY', in accordance
with our earlier convention.

The relation of equipollence partitions the collection of all sets into classes
of mutually equivalent sets. The sets of an equivalence class have the same
number of elements (they are equipollent), and sets from different equivalence
classes do not.

The class to which a set X belongs is called the cardinality of X, and also
the cardinal or cardinal number of X. It is denoted card X. If X ~ Y, we
© write card X = card Y.

The idea behind this construction is that it makes possible a comparison of
the numbers of elements in sets without resorting to an intermediate count,
that is, without measuring the number by comparing it with the natural
numbers N = {1,2,3,...}. Doing the latter, as we shall soon see, is sometimes
not even theoretically possible.

The cardinal number of a set X is said to be not larger than the cardinal
number of a set Y, and we write card X < cardY’, if X is equipollent to some
subset of Y.

Thus,

(card X < cardY):=3Z C Y (card X = card Z) .
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If X CY, it is clear that card X < cardY. It turns out, however, that
the relation X C Y does not exclude the inequality cardY < card X, even
when X is a proper subset of Y.

For example, the correspondence x — I_le' is a bijective mapping of the
interval —1 < z < 1 of the real axis R onto the entire axis.

The possibility of being equipollent to a proper subset of itself is a charac-
teristic of infinite sets that Dedekind'® even suggested taking as the definition
of an infinite set. Thus a set is called finite (in the sense of Dedekind) if it is
not equipollent to any proper subset of itself; otherwise, it is called infinite.

Just as the relation of inequality orders the real numbers on a line, the
inequality just introduced orders the cardinal numbers of sets. To be specific,
one can prove that the relation just constructed has the following properties:

1° (card X < cardY) A (cardY < card Z) = (card X < card Z) (obvious).

20 (card X < cardY) A (cardY < cardX) = (card X = cardY) (the
Schréder-Bernstein theorem.!9).

30 VX VY (card X < cardY) V (card Y < card X) (Cantor’s theorem).

Thus the class of cardinal numbers is linearly ordered.

We say that the cardinality of X is less than the cardinality of Y and write
card X < cardY, if card X < cardY but card X # cardY. Thus (card X <
cardY) := (card X < cardY) A (card X # cardY’).

As before, let @ be the empty set and P(X) the set of all subsets of the
set X. Cantor made the following discovery:

Theorem. card X < card P(X).

Proof. The assertion is obvious for the empty set, so that from now on we
shall assume X # @.

Since P(X) contains all one-element subsets of X, card X < card P(X).

To prove the theorem it now suffices to show that card X # card P(X) if
X # 2.

Suppose, contrary to the assertion, that there exists a bijective mapping
f:X — P(X). Consider the set A= {z € X : z ¢ f(z)} consisting of the
elements z € X that do not belong to the set f(z) € P(X) assigned to them
by the bijection. Since A € P(X), there exists a € X such that f(a) = A.
For the element a the relation a € A is impossible by the definition of A, and
the relation a ¢ A is impossible, also by the definition of A. We have thus
reached a contradiction with the law of excluded middle. O

18 R. Dedekind (1831-1916) — German algebraist who took an active part in the
development of the theory of a real number. He was the first to propose the
axiomatization of the set of natural numbers usually called the Peano axiom
system after G.Peano (1858-1932), the Italian mathematician who formulated
it somewhat later.

19 7. Bernstein (1878-1956) — German mathematician, a student of G.Cantor.
E. Schroder (1841-1902) — German mathematician.
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This theorem shows in particular that if infinite sets exist, then even
“infinities” are not all the same.

1.4.2 Axioms for Set Theory

The purpose of the present subsection is to give the interested reader a picture of
an axiom system that describes the properties of the mathematical object called a
set and to illustrate the simplest consequences of those axioms.

1°. (Axiom of extensionality) Sets A and B are equal if and only if they
have the same elements.

This means that we ignore all properties of the object known as a “set” except
the property of having elements. In practice it means that if we wish to establish

that A = B, we must verify that Vz ((x ceA)e (ze B)).

2, (Axiom of separation) To any set A and any property P there corresponds
a set B whose elements are those elements of A, and only those, having property
P.

More briefly, it is asserted that if A is a set, then B = {z € A| P(z)} is also a
set.

This axiom is used very frequently in mathematical constructions, when we
select from a set the subset consisting of the elements having some property.

For example, it follows from the axiom of separation that there exists an empty
subset @x = {zr € X|z # z} in any set X. By virtue of the axiom of extensionality
we conclude that @x = @y for all sets X and Y, that is, the empty set is unique.
We denote this set by @.

It also follows from the axiom of separation that if A and B are sets, then
A\ B ={z € A|z ¢ B} is also a set. In particular, if M is a set and A a subset of
M, then Cp A is also a set.

3°. (Union axiom) For any set M whose elements are sets there ezists a set
UM, called the union of M and consisting of those elements and only those that
belong to some element of M.

If we use the phrase “family of sets” instead of “a set whose elements are sets”,
" the axiom of union assumes a more familiar sound: there exists a set consisting of
the elements of the sets in the family. Thus, a union of setsisa set,andz € JM &

ax((x EM)A(z e X)).
When we take account of the axiom of separation, the union axiom makes it
possible to define the intersection of the set M (or family of sets) as the set

MM := {erMWX ((Xe M) = (a;eX))}.

4°. (Pairing axiom) For any sets X and Y there exists a set Z such that X and
Y are its only elements.

The set Z is denoted {X,Y} and is called the unordered pair of sets X and Y.
The set Z consists of one element if X =Y.
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As we have already pointed out, the ordered pair (X,Y) differs from the un-
ordered pair by the presence of some property possessed by one of the sets in the
pair. For example, (X,Y) := {{X,X},{X,Y}}.

Thus, the unordered pair makes it possible to introduce the ordered pair, and
the ordered pair makes it possible to introduce the direct product of sets by using
the axiom of separation and the following important axiom.

5%. (Power set axiom) For any set X there exists a set P(X) having each
subset of X as an element, and having no other elements.

In short, there exists a set consisting of all the subsets of a given set.

We can now verify that the ordered pairs (z,y), where z € X and y € Y, really
do form a set, namely

X XY= {pEP(P(X)UP(Y))| (= (z,y)) AMzeX)A(ye Y)} .

Axioms 1°-5° limit the possibility of forming new sets. Thus, by Cantor’s the-
orem (which asserts that card X < card P(X)) there is an element in the set P(X)
that does not belong to X. Therefore the “set of all sets” does not exist. And it
was precisely on this “set” that Russell’s paradox was based.

In order to state the next axiom we introduce the concept of the successor X+
of the set X. By definition Xt = X U {X}. More briefly, the one-element set {X}
is adjoined to X.

Further, a set is called inductive if the empty set is one of its elements and the
successor of each of its elements also belongs to it.

6°. (Axiom of infinity) There exist inductive sets.

When we take Axioms 1°-4° into account, the axiom of infinity makes it possible
to construct a standard model of the set Ny of natural numbers (in the sense of
von Neumann),?® by defining Ny as the intersection of all inductive sets, that is,
the smallest inductive set. The elements of Ny are

o, o*=oU{e}={(e}, {2} ={e}U{{e}},...,

which are a model for what we denote by the symbols 0, 1,2, ... and call the natural
numbers.

7°. (Axiom of replacement) Let F(z,y) be a statement (more precisely, a
formula) such that for every zo in the set X there erists a unique object yo such
that F(xo,yo) is true. Then the objects y for which there exists an element z € X
such that F(z,y) is true form a set.

We shall make no use of this axiom in our construction of analysis.

Axioms 1°-7° constitute the axiom system known as the Zermelo—Fraenkel ax-
jioms.?!

To this system another axiom is usually added, one that is independent of
Axioms 1°-7° and used very frequently in analysis.

20 J.von Neumann (1903-1957) — American mathematician who worked in func-
tional analysis, the mathematical foundations of quantum mechanics, topological
groups, game theory, and mathematical logic. He was one of the leaders in the
creation of the first computers.

21 E.Zermelo (1871-1953) — German mathematician. A. Fraenkel (1891-1965) —
German (later, Israeli) mathematician.
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8°, (Axiom of choice) For any family of nonempty sets there exists a set C
such that for each set X in the family X N C consists of exactly one element.

In other words, from each set of the family one can choose exactly one repre-
sentative in such a way that the representatives chosen form a set C.

The axiom of choice, known as Zermelo’s axiom in mathematics, has been the
subject of heated debates among specialists.

1.4.3 Remarks on the Structure of Mathematical Propositions
and Their Expression in the Language of Set Theory

In the language of set theory there are two basic, or atomic types of mathe-
matical statements: the assertion z € A, that an object z is an element of a
set A, and the assertion A = B, that the sets A and B are identical. (However,
when the axiom of extensionality is taken into account, the second statement
is a combination of statements of the first type: (z € A) < (z € B).)

A complex statement or logical formula can be constructed from atomic
statements by means of logical operators — the connectors -, A, V = and the
quantifiers V, 3 — by use of parentheses ( ). When this is done, the formation
of any statement, no matter how complicated, reduces to carrying out the
following elementary logical operations:

a) forming a new statement by placing the negation sign before some
statement and enclosing the result in parentheses;

b) forming a new statement by substituting the necessary connectors A,
V, and = between two statements and enclosing the result in parentheses.

¢) forming the statement “for every object x property P holds,” (written
as Vz P(z)) or the statement “there exists an object z having property P”
(written as 3z P(z)).

For example, the cumbersome expression

3z (P(z) A (Vy (P(y) = (y = ))))

means that there exists an obj.ect having property P and such that if y is
" any object having this property, then y = x. In brief: there exists a unique
object z having property P. This statement is usually written 3!z P(x), and
we shall use this abbreviation.

To simplify the writing of a statement, as already pointed out, one at-
tempts to omit as many parentheses as possible while retaining the unambigu-
ous interpretation of the statement. To this end, in addition to the priority
of the operators —, A, V, = mentioned earlier, we assume that the symbols in
a formula are most strongly connected by the symbols €, =, then 4, V, and
then the connectors —, A, V, =.

Taking account of this convention, we can now write

Az P(z) := Jz(P(z) AVy (P(y) = y=1z)) .
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We also make the following widely used abbreviations:

(Vz € X)P :=Vz (z € X = P(z)),
(3z € X)P := 3z (z€ X AP(z)),
(Vz >a)P :=Vz(zr € RAz>a= P(z)),
(3z >a)P:=3z(z€eRAz>aAP(z)).

Here R, as always, denotes the set of real numbers.

Taking account of these abbreviations and the rules a), b), c) for con-
structing complex statements, we can, for example, give an unambiguous
expression

(lmf(x)=a) =Ve>036>0Vz e R(0< |z —a| <& =|f(z) — Al <¢)

of the fact that the number A is the limit of the function f : R — R at the
point a € R.

For us perhaps the most important result of what has been said in this
subsection will be the rules for forming the negation of a statement containing
quantifiers.

The negation of the statement “for some z, P(z) is true” means that “for
any z, P(z) is false”, while the negation of the statement “for any z, P(z) is
true” means that “there exists an z such that P(z) is false”.

Thus,

-3z P(z) < Vz-P(z),
-Vz P(z) < Jz-P(z) .

We recall also (see the exercises in Sect. 1.1) that

~(PAQ) & -PV-Q,
~(PVQ) & -PA-Q,
“(P=Q) & PA-Q.
On the basis of what has just been said, one can conclude, for example,

that
-((Vz > a) P) & (3z > a) -P.

It would of course be wrong to express the right-hand side of this last relation
as (Jz < a) -P.
Indeed,
-((Vz > a) P) := ~(Vz (z e RAz > a = P(z))) &
& Jz-(z€eRAz>a= Pz)) &
& 3z ((z€RAz >a)A-P(z)) = (3z >a)-P.
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If we take into acount the structure of an arbitrary statement mentioned
above, we can now use the negations just constructed for the simplest state-
ments to form the negation of any particular statement.

For example,

ﬂ(ii_g}lf(x)=A)®Els>0V5>OElxeR
(0<|z—a|l<S6A|f(z)— Al >¢).

The practical importance of the rule for forming a negation is connected,
in particular, with the method of proof by contradiction, in which the truth
of a statement P is deduced from the fact that the statement —P is false.

1.4.4 Exercises

1. a) Prove the equipollence of the closed interval {z € R|0 < z < 1} and the open
interval {x € R|0 < z < 1} of the real line R both using the Schroder-Bernstein
theorem and by direct exhibition of a suitable bijection. .

b) Analyze the following proof of the Schroder-Bernstein theorem:
(card X < cardY) A (cardY < card X) = (card X = cardY) .

Proof. It suffices to prove that if the sets X, Y, and Z are such that X DY D Z
and card X = card Z, then card X = cardY. Let f : X — Z be a bijection. A
bijection g : X — Y can be defined, for example, as follows:

| flz), ifze fMX)\fH(Y) for somen eN,
9(z) = { z otherwise.

Here f* = fo---o f is the nth iteration of the mapping f and N is the set of
natural numbers. O

2. a) Starting from the definition of a pair, verify that the definition of the direct
product X XY of sets X and Y given in Subsect. 1.4.2 is unambiguous, that is, the

set 'P(P(X) U 'P(Y)) contains all ordered pairs (z,y) in whichz € X and y € Y.
b) Show that the mappings f : X — Y from one given set X into another given
set Y themselves form a set M(X,Y).

c¢) Verify that if R is a set of ordered pairs (that is, a relation), then the first
elements of the pairs belonging to R (like the second elements) form a set.

3. a) Using the axioms of extensionality, pairing, separation, union, and infinity,
verify that the following statements hold for the elements of the set No of natural
numbers in the sense of von Neumann:

1°z=y=>zt =y
2° (Vz € No) (z+ # @);
Pt =yt ==y
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4° (Vo € No) (2 # 2 = (3y € No) (2 = y¥)).

b) Using the fact that Np is an inductive set, show that the following statements
hold for any of its elements z and y (which in turn are themselves sets):

1° cardz < cardz™;

2° card @ < cardz™;

3% cardz < cardy < cardzt < cardy™;

4° cardz < cardz™;

50 cardz < cardy = cardzt < cardy;

6% z =y < cardz = cardy;

" (CcyVzdy).

c) Show that in any subset X of Np there exists a (minimal) element z, such

that (Vz € X) (card z,, < cardz). (If you have difficulty doing so, come back to
this problem after reading Chapter 2.)

4. We shall deal only with sets. Since a set consisting of different elements may

itself be an element of another set, logicians usually denote all sets by uppercase
letters. In the present exercise, it is very convenient to do so.

a) Verify that the statement
VzIyvz (z cye Jw(zewAwe :c))

expresses the axiom of union, according to which y is the union of the sets belonging
to z.

b) State which axioms of set theory are represented by the following statements:

VzVyVz ((ze:z«:)ze:l/)@:c:y),

Vz Vy 3z Vo (vez¢(v=wvv=y)) )

Vz Iy Vz (zey%Vu(uez:uex)),

Elx(Vy(—Elz(zEy)éyex)/\Vw(wEx=>
=>‘v’u(\7’v(v€u®(v=wVv€w))=>u€x))).
c¢) Verify that the formula
Vz(z€ f = (Elxl Jp(zr€zAyp EYynz= (zl,yl)))) A
AVz, (zl €= Iy Iz (y1 ey/\z=(x1,y1)/\z€f)) A
AVz1Vy1 Yy (Hzl Jzo(z1 € fAZ2 € fAZ1 = (21,71) A

Nz = (:Ez,yz)) =1y = yz)
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imposes three successive restrictions on the set f: f is a subset of z xy; the projection
of f on z is equal to z; to each element = of x there corresponds exactly one y; in
y such that (z1,y1) € f.

Thus what we have here is a definition of a mapping f : z — y.

This example shows yet again that the formal expression of a statement is by no
means always the shortest and most transparent in comparison with its expression
in ordinary language. Taking this circumstance into account, we shall henceforth
use logical symbolism only to the extent that it seems useful to us to achieve greater
compactness or clarity of exposition.

5. Let f: X — Y be a mapping. Write the logical negation of each of the following
statements:

a) f is surjective;
b) f is injective;
c¢) f is bijective.

6. Let X and Y be sets and f C X x Y. Write what it means to say that the set
f is not a function.






2 The Real Numbers

Mathematical theories, as a rule, find uses because they make it possible to
transform one set of numbers (the initial data) into another set of numbers
constituting the intermediate or final purpose of the computations. For that
reason numerical-valued functions occupy a special place in mathematics and
its applications. These functions (more precisely, the so-called differentiable
functions) constitute the main object of study of classical analysis. But, as
you may already have sensed from your school experience, and as will soon be
confirmed, any description of the properties of these functions that is at all
complete from the point of view of modern mathematics is impossible with-
out a precise definition of the set of real numbers, on which these functions
operate.

Numbers in mathematics are like time in physics: everyone knows what
they are, and only experts find them hard to understand. This is one of the
basic mathematical abstractions, which seems destined to undergo significant
further development. A very full separate course could be devoted to this sub-
ject. At present we intend only to unify what is basically already known to
the reader about real numbers from high school, exhibiting as axioms the
fundamental and independent properties of numbers. In doing this, our pur-
pose is to give a precise definition of real numbers suitable for subsequent
mathematical use, paying particular attention to their property of complete-
ness or continuity, which contains the germ of the idea of passage to the limit
. — the basic nonarithmetical operation of analysis.

2.1 The Axiom System and some General Properties
of the Set of Real Numbers

2.1.1 Definition of the Set of Real Numbers

Definition 1. A set R is called the set of real numbers and its elements are
real numbers if the following list of conditions holds, called the axiom system
of the real numbers.
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(I) AXIOMS FOR ADDITION

An operation
+:RxR—>R,

(the operation of addition) is defined, assigning to each ordered pair (z,y) of
elements z,y of R a certain element x + y € R, called the sum of x and y.
This operation satisfies the following conditions:

14. There exists a neutral, or identity element O (called zero) such that
z+0=04+z=2

for every x € R.
24. For every element x € R there exists an element —z € R called the
negative of x such that

z+(—z)=(—z)+2=0.

34+. The operation + is associative, that is, the relation
z+y+z)=(z+y)+2

holds for any elements x,y,z of R.

4,. The operation + is commutative, that is,
rt+y=y+x

for any elements x,y of R.

If an operation is defined on a set G satisfying axioms 1, 24, and 3,
we say that a group structure is defined on G or that G is a group. If the
operation is called addition, the group is called an additive group. If it is also
known that the operation is commutative, that is, condition 4, holds, the
group is called commutative or Abelian.!

Thus, Axioms 1,—-4, assert that R is an additive abelian group.

(IT) AXIOMS FOR MULTIPLICATION

An operation
o :RxR—-R,

(the operation of multiplication) is defined, assigning to each ordered pair
(z,y) of elements z,y of R a certain element = -y € R, called the product of
z and y. This operation satisfies the following conditions:

! N.H.Abel (1802-1829) - outstanding Norwegian mathematician, who proved
that the general algebraic equation of degree higher than four cannot be solved
by radicals.
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1,. There exists a neutral, or identity element 1 € R\ 0 (called one) such
that

for every x € R.

2,. For every element x € R\ O there exists an element z~! € R, called
the inverse or reciprocal of z, such that

3.. The operation e is associative, that is, the relation
z-(y-2)=(z-y) 2z

holds for any elements x,y,z of R.

44. The operation e is commutative, that is,
T Y=y-x
for any elements x,y of R.
We remark that with respect to the operation of multiplication the set
R\ 0, as one can verify, is a (multiplicative) group.
(I, II) THE CONNECTION BETWEEN ADDITION AND MULTIPLICATION

Multiplication is distributive with respect to addition, that is
(z+y)z=zz+yz

for all z,y,z € R.
We remark that by the commutativity of multiplication, this equality
continues to hold if the order of the factors is reversed on either side.
If two operations satisfying these axioms are defined on a set G, then G
is called a field.
(III) ORDER AXIOMS

Between elements of R there is a relation <, that is, for elements z,y € R
one can determine whether x <y or not. Here the following conditions must
hold:

O0<.Vz e R(z < z).

l<. @<y A(y<z)=> (z=9).

2<. (z<y) ANy <2)= (z < 2).
VzeRWEeR(z<y)V (y <2).

IN A

w
IA
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The relation < on R is called inequality.

A set on which there is a relation between pairs of elements satisfying
axioms O<, 1<, and 2<, as you know, is said to be partially ordered. If in
addition axiom 3< holds, that is, any two elements are comparable, the set
is linearly ordered. Thus the set of real numbers is linearly ordered by the
relation of inequality between elements.

(I, IIT) THE CONNECTION BETWEEN ADDITION AND ORDER ON R

If x,y,z are elements of R, then

z<y)=(z+2z<y+2).

(II, III) THE CONNECTION BETWEEN MULTIPLICATION AND ORDER ON R

If x and y are elements of R, then

O<2)AN(0<yYy)=0<z-y).

(IV) THE AXIOM OF COMPLETENESS (CONTINUITY)

If X and Y are nonempty subsets of R having the property that x <y for
every x € X and every y € Y, then there exists c € R such that x < c <y
forallzre X andy €Y.

We now have a complete list of axioms such that any set on which these
axioms hold can be considered a concrete realization or model of the real
numbers.

This definition does not formally require any preliminary knowledge about
numbers, and from it “by turning on mathematical thought” we should, again
formally, obtain as theorems all the other properties of real numbers. On the
subject of this axiomatic formalism we would like to make a few informal
remarks.

Imagine that you had not passed from the stage of adding apples, cubes,
or other named quantities to the addition of abstract natural numbers; you
had not studied the measurement of line segments and arrived at rational
numbers; you did not know the great discovery of the ancients that the diag-
onal of a square is incommensurable with its side, so that its length cannot
be a rational number, that is, that irrational numbers are needed; you did not
have the concept of “greater” or “smaller” that arises in the process of mea-
surement; you did not picture order to yourself using, for example, the real
line. If all these preliminaries had not occurred, the axioms just listed would
not be perceived as the outcome of intellectual progress; they would seem at
the very least a strange, and in any case arbitrary, fruit of the imagination.

In relation to any abstract system of axioms, at least two questions arise
immediately.
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First, are these axioms consistent? That is, does there exist a set satisfying
all the conditions just listed? This is the problem of consistency of the axioms.

Second, does the given system of axioms determine the mathematical
object uniquely? That is, as the logicians would say, is the axiom system
categorical? Here uniqueness must be understood as follows. If two people
A and B construct models independently, say of number systems R4 and
Rp, satisfying the axioms, then a bijective correspondence can be established
between the systems R4 and Rp, say f : R4 — Rp, preserving the arithmetic
operations and the order, that is,

flz+y) = fl@)+ fv),
fl-y) = f(x)- fly),
r<y & flz) < fly)-

In this case, from the mathematical point of view, R4 and Rp are merely
distinct but equally valid realizations (models) of the real numbers (for ex-
ample, R4 might be the set of infinite decimal fractions and Rp the set of
points on the real line). Such realizations are said to be isomorphic and the
mapping f is called an isomorphism. The result of this mathematical activ-
ity is thus not about any particular realization, but about each model in the
class of isomorphic models of the given axiom system.

We shall not discuss the questions posed above, but instead confine our-
selves to giving informative answers to them.

A positive answer to the question of consistency of an axiom system is
always of a hypothetical nature. In relation to numbers it has the following
appearance: Starting from the axioms of set theory that we have accepted
(see Subsect. 1.4.2), one can construct the set of natural numbers, then the
set of rational numbers, and finally the set R of real numbers satisfying all
the properties listed.

The question of the categoricity of the axiom system for the real numbers
can be established. Those who wish to do so may obtain it independently by

- solving Exercises 23 and 24 at the end of this section.

2.1.2 Some General Algebraic Properties of Real Numbers

We shall show by examples how the known properties of numbers can be
obtained from these axioms.

a. Consequences of the Addition Axioms 1°. There is only one zero in
the set of real numbers.

Proof. If 0; and Oy are both zeros in R, then by definition of zero,

0;=0;4+02=024+0,=0,. O
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20, Each element of the set of real numbers has a unique negative.

Proof. If £; and z2 are both negatives of z € R, then
b.’ltl =z1+0=z1+(z4+z2)=(x1+z)+22=04+22=22. O

Here we have used successively the definition of zero, the definition of the
negative, the associativity of addition, again the definition of the negative,
and finally, again the definition of zero.

30. In the set of real numbers R the equation
a+zxz=>

has the unique solution

z=b+ (—a).
Proof. This follows from the existence and uniqueness of the negative of every
element a € R:

(a+z=0b)< ((x+a)+ (—a)=b+(—a) &
& (z+(a+(-a)) =b+(—a)) © (z+0=b+(—a)) &
& (z=b+(-a)).0O

The expression b+ (—a) can also be written as b — a. This is the shorter
and more common way of writing it, to which we shall adhere.

b. Consequences of the Multiplication Axioms 1°. There is only one
multiplicative unit in the real numbers.

20, For each = # 0 there is only one reciprocal z 1.
30. For a € R\ 0, the equation a - = b has the unique solution z =b-a~".

The proofs of these propositions, of course, merely repeat the proofs of the
corresponding propositions for addition (except for a change in the symbol
and the name of the operation); they are therefore omitted.

c. Consequences of the Axiom Connecting Addition and Multi-
plication Applying the additional axiom (I, IT) connecting addition and
multiplication, we obtain further consequences.

1. For any z € R
z:0=0-z=0.

Proof.

(z-0=z-(0+0)=2-0+2-0)=>(z-0=2-04+(—(z-0))=0). O
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From this result, incidentally, one can see that if z € R\0, then z=! € R\0.
20, (z-y=0)=(z=0)V(y=0).

Proof. If, for example, y # 0, then by the uniqueness of the solution of the
equation z-y =0forz, wefindz=0-y~ 1 =0. O

30, For any x € R
—z=(-1)-z.

Proof. +(-1)-z=(1+(-1))-2=0-z =20 =0, and the assertion now
follows from the uniqueness of the negative of a number. 0O

4°, For anyz € R

(-D(-=z)==.
Proof. This follows from 3° and the uniqueness of the negative of —z. O

50. For any x € R
(—z) (-z)==z-z.

Proof.
(—2)(=2) = ((=1) - 2)(=2) = (2 - (~1))(~2) = 2((-1)(=2)) = -2 .

Here we have made successive use of the preceding propositions and the
commutativity and associativity of multiplication. O

d. Consequences of the Order Axioms We begin by noting that the
relation z < y (read “z is less than or equal to y”) can also be written as
y > = (“y is greater than or equal to z”); when z # y, the relation z < y is
written z < y (read “z is less than y”) or y > z (read “y is greater than z”),
and is called strict inequality.

19, For any x and y in R precisely one of the following relations holds:
x <y, =y, z>y.

Proof. This follows from the definition of strict inequality just given and
axioms 1< and 3<. O

20 For any z,y,z € R

<yA(y<z) = (x<2),
(z<yYAN(y<z)= (z<2).
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Proof. We prove the first assertion as an example. By Axiom 2<, which as-
serts that the inequality relation is transitive, we have

@E<YA@y<2)e@<YAY<HNY#2) = (z<2).

It remains to be verified that x # z. But if this were not the case, we would
have

E<YAN[Y<2) L @Z<YA([Y<2) e @ZIYAY<)A(Yy#=2).

By Axiom 1< this relation would imply

(y=2)A(y#2),

which is a contradiction. 0O

e. Consequences of the Axioms Connecting Order with Addition
and Multiplication If in addition to the axioms of addition, multiplication,
and order, we use axioms (I,IIT) and (II, IIT), which connect the order with the
arithmetic operations, we can obtain, for example, the following propositions.

10, For any z,y,z,w € R
(<y) = (z+2)<(y+2),
0<z)= (—z<0),
E<yYAE<w) = (z+2) < (y+w),
<y Az<w)= (z+z<y+w).

Proof. We shall verify the first of these assertions.
By definition of strict inequality and the axiom (I,III) we have

E<y)=>(<y)=>(@+2)<(y+2).
It remains to be verified that x + 2z # y + 2. Indeed,
(z+2)=@W+2)=>(z=(y+2)—z=y+(2—2)=y),
which contradicts the assumption z < y. O
20, If z,y, 2 € R, then

O<z)A(0<y) = (0<zy),
(z<0)A(y<0) = 0<zy),
(z<0)A(0<y) = (zy<0),
(z<yyAN(0<2) =
(z<y)A(z<0) =

(zz <yz),
(yz < z2) .
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Proof. We shall verify the first of these assertions. By definition of strict
inequality and the axiom (ILIIT) we have

O0<z)A(0<y)=(0<2)A(0<y)= (0<2y).
Moreover, 0 # xy since, as already shown,
(z-y=0=(z=0V(y=0).
Let us further verify, for example, the third assertion:
(z<0)ANO0<y)=0<-z)AN0<y) =

=0<(-z)-y)=>0<((-1)-2)y) =
= (0< (1) (zy)) = (0< —(zy)) = (zy < 0) .0

The reader is now invited to prove the remaining relations independently
and also to verify that if nonstrict inequality holds in one of the parentheses
on the left-hand side, then the inequality on the right-hand side will also be
nonstrict.

39, 0<1.

Proof. We know that 1 € R\ 0, that is 0 # 1. If we assume 1 < 0, then by
what was just proved,

1<0)A(1l<0)=(0<1-1)=(0<1).

But we know that for any pair of numbers z,y € R exactly one of the possi-
bilities z < y, £ = y, * > y actually holds. Since 0 # 1 and the assumption
1 < 0 implies the relation 0 < 1, which contradicts it, the only remaining
possibility is the one in the statement of the proposition. O

42 O<z)=0<zHand 0<z)A(z<y)=O0<y HA@Y <z

Proof. Let us verify the first of these assertions. First of all, z71 # 0. As-
suming ! < 0, we obtain

(z7'<0)A(0<z)=(z-271<0)= (1<0).
This contradiction completes the proof. 0O

We recall that numbers larger than zero are called positive and those less
than zero negative.

Thus we have shown, for example, that 1 is a positive number, that the
product of a positive and a negative number is a negative number, and that
the reciprocal of a positive number is also positive.
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2.1.3 The Completeness Axiom and the Existence
of a Least Upper (or Greatest Lower) Bound of a Set of Numbers

Definition 2. A set X C R is said to be bounded above (resp. bounded below)
if there exists a number ¢ € R such that z < ¢ (resp. ¢ < z) for all z € X.

The number c in this case is called an upper bound (resp. lower bound) of
the set X. It is also called a majorant (resp. minorant) of X.

Definition 3. A set that is bounded both above and below is called bounded.

Definition 4. An element a € X is called the largest or mazimal (resp.
smallest or minimal) element of X if x < a (resp. a < z) for all z € X.

We now introduce some notation and at the same time give a formal
expression to the definition of maximal and minimal elements:

(a=maxX) = (a€ XAVz € X (z <a)),
(a=minX) := (a€e XAVz € X (a<2)) .

Along with the notation max X (read “the maximum of X”) and min X
(read “the minimum of X”) we also use the respective expressions mea,))(cx and
x

min z.
rzeX

It follows immediately from the order axiom 1< that if there is a maximal
(resp. minimal) element in a set of numbers, it is the only one.

However, not every set, not even every bounded set, has a maximal or
minimal element.

For example, the set X = {z € R|0 < z < 1} has a minimal element.
But, as one can easily verify, it has no maximal element.

Definition 5. The smallest number that bounds a set X C R from above
is called the least upper bound (or the ezxact upper bound) of X and denoted

sup X (read “the supremum of X”) or sup z.
zeX

This is the basic concept of the present subsection. Thus
(s=supX):=VzeX(z<s)A (Vs <sI' e X (s <a))).

The expression in the first set of parentheses on the right-hand side here
says that s is an upper bound for X; the expression in the second set says that
s is the smallest number having this property. More precisely, the expression
in the second set of parentheses asserts that any number smaller than s is
not an upper bound of X.

The concept of the greatest lower bound (or ezact lower bound) of a set
X is introduced similarly as the largest of the lower bounds of X.
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Definition 6.
(i=infX):=VzeX(i<z)A(Vi'>i3 € X (a' <7'))) .

Along with the notation inf X (read “the infimum of X”) one also uses the

notation 12§( z for the greatest lower bound of X.
x

Thus we have given the following definitions:
supX :=min{c€R|Vz € X (z <)},
inf X := max {ceR|Vz € X (c<z)}.

But we said above that not every set has a minimal or maximal element.
Therefore the definitions we have adopted for the least upper bound and
greatest lower bound require an argument, provided by the following lemma.

Lemma. (The least upper bound principle). Fvery nonempty set of real num-
bers that is bounded from above has a unique least upper bound.

Proof. Since we already know that the minimal element of a set of numbers
is unique, we need only verify that the least upper bound exists.

Let X C R be a given set and Y = {y € R|Vz € X (z < y)}. By
hypothesis, X # @ and Y # &. Then, by the completeness axiom there
exists ¢ € R such that Vz € XVy € Y (z < ¢ < y). The number c is therefore
both a majorant of X and a minorant of Y. Being a majorant of X, c is an
element of Y. But then, as a minorant of Y, it must be the minimal element
of Y. Thusc=minY =supX. 0O

Naturally the existence and uniqueness of the greatest lower bound of a
set of numbers that is bounded from below is analogous, that is, the following
proposition holds.

Lemma. (X bounded below) = (3! inf X).

We shall not take time to give the proof.

- We now return to the set X = {z € R|0 < z < 1}. By the lemma just
proved it must have a least upper bound. By the very definition of the set X
and the definition of the least upper bound, it is obvious that sup X < 1.

To prove that sup X = 1 it is thus necessary to verify that for any number
g < 1 there exists x € X such that ¢ < x; simply put, this me