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Foreword

We live in an age in which mathematics plays a more and more important role, to the
extent that it is hard to think of an aspect of human life to which it either has not
provided, or does not have the potential to provide, crucial insights. Mathematics is
the language in which quantitative models of the world around us are described. As
subjects become more understood, they become more mathematical. A good exam-
ple is medecine, where the Radon transform is what makes X-ray tomography work,
where statistics form the basis of evaluating the success or failure of treatments, and
where mathematical models of organs such as the heart, of tumour growth, and of nerve
impulses are of key importance.

To apply mathematics in a different area requires of the mathematician the ability and
willingness to learn about that area and understand its own language, and it requires of
the specialist in that area a similar ability and willingness to learn the language of the
appropriate parts of mathematics. Mathematics has its own internal language barriers
too, so that to move from one part of the subject to another can require a major effort.

It is to these needs of furnishing basic understanding and overcoming language barriers
that the Ozford Users’ Guide to Mathematics responds. In editing it, Eberhard Zeidler
has given us a remarkable panoramic overview of mathematics, ranging from elementary
facts and concepts, to advanced and sophisticated techniques, lucidly and economically
explained. The outcome of many years of work, it will provide readers of diverse back-
grounds with the fundamental concepts and language on which deeper understanding
and significant applications can be based.

Ozford, December 2003 John Ball
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Preface

In the past few years, mathematics has made enormous strides forward. An eminent
factor for this progress has been the construction and application of ever stronger and
faster computers. Moreover, the extremely complicated problems of modern technology
which pose themselves to engineers and natural scientists require highly sophisticated
mathematics, in which routine knowledge no longer suffices and the boundaries between
pure and applied mathematics are starting to melt.

The Ozford Users’ Guide to Mathematics responds to the high standards required by
the growing influence of computer science within the mathematical sciences and the
increasingly close relationships between mathematics and the natural and engineering
sciences. It conveys a lively, modern picture of mathematics aimed at a wide readership,
including:

students of high schools and undergraduates,

graduate students of mathematics,

students of engineering, natural sciences, economy and other directions of study
which require mathematical background,

- practitioners who work in these fields,

- teachers, both in schools and at universities.

The needs of as broad an audience as this will be taken into account in our presentation
by the consideration of a wide range of aspects, starting from elementary facts all the way
up to modern, highly sophisticated results and methods. In addition, the presentation
is very broad in its consideration of very diverse areas of mathematical research. In this
respect, the book is both vertically and horizontally quite deep. At the same time, we go
to great pains to motivate the material completely and explain the basic ideas in depth,
both aspects of which are emphasized more in the text than are technical details. Also,
applications of the ideas and methods play an important role in the development.

There are many interludes on historical background of the results or more generally
on the period in which the results were first obtained. In addition to these remarks
throughout the text, there is, at the end of the volume, a detailed sketch of the history
of mathematics. This exemplifies the point of view that mathematics is more than a dry
collection of formulas, definitions, theorems and manipulations with symbols. Rather,
mathematics is an integral part of our culture and a wonderful medium for thought
and discovery, which makes it possible to make progress on frontiers like the modern
theory of elementary particles and cosmology, areas which cannot be understood without
a mathematical model, as they so lie so far from our usual realm of perception and
understanding.

In the introductory Chapter 0 we collect basic mathematical notions and facts which are
often required by students, scientists and other practitioners, in the form of a reference
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book. A student of medicine, for example, can find here an elementary introduction to
the methods of mathematical statistics, which will hopeful be of use in the writing of a
statistical part of a thesis. The following three chapters are devoted to the three basic
pillars of mathematics:

- analysis,
- algebra, and

- geometry.
These chapters are followed by a chapter devoted to
- foundations of mathematics (logic and set theory),

which takes into account in particular the needs and difficulties of beginning students.
The last three chapters are then devoted to the most important fields of applications of
mathematics, namely

- theory of variations and optimization,
- stochastics (probability theory and mathematical statistics), and

- scientific computation.

The possibilities which modern supercomputers offer have radically changed scientific
computation. Whether mathematician, engineer or natural scientist, the practitioner
today is in a position to carry out extensive experiments on the computer which make it
possible to collect experience from examples in hitherto underdeveloped areas of math-
ematics. In this way, completely new questions arise and give new impulses for the
development of mathematical theories. The last chapter is the first appearance, in
pocket book form, of the modern theory of scientific computation, which, as mentioned
above, has revolutionized the engineering sciences.

The past decade has seen the appearance of software systems which make it possible to
carry out many routine jobs in mathematics on a standard PC. This is mentioned at
the corresponding places in the text, where these methods are motivated and described.
The bibliography at the end of the book was very carefully put together and gives you
an idea of where to turn should you have questions above and beyond what is directly
treated in the text. The level of references varies from introductory texts to classics and
goes on to advanced monographs, reflecting the frontiers of modern research.

This book has a long history. The Pocketbook of Mathematics by I. N. Bronstein and K.
A. Semendjajew was originally translated from Russian into German by Viktor Ziegler.
It appeared in 1958, published by the B. G. Teubner Verlag in Leipzig, and has become in
the mean time a standard in the German language with 18 editions until 1978. Toward
the end of the last century it was decided to bring this classic up to date, not only
with respect to the presented material, but also with respect to the breadth and kind
of presentation; this was carried out under the supervision of Eberhard Zeidler, who
wrote all chapters except that on scientific computing, which was authored by Wolfgang
Hackbusch and Hans Rudolf Schwarz. This appeared, again by Teubner-Verlag, in 1996.
The work was so fundamentally different than its predecessors that Oxford University
Press felt it would be worth translating it, and they assigned Bruce Hunt that job of
doing so. The translator has done his best to keep the spirit of the book as in the original,
at the same time including a series of corrections which had been reported by astute
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readers or which were spotted in the process of translating the volume. Furthermore the
translator has gone to great pains to improve the graphical quality of the text, as this
improves the ease with which the material can be absorbed by the reader.

Acknowledgments: In addition to the pure translation of the volume, it was agreed
with the publisher to typeset the entire book from scratch; in particular this meant
retyping all the formulas and tables, as well as redoing all the illustrations. For help with
these aspects, as well as extensive proof reading of the translation, both the translator
and the editor are indebted to Micaela Krieger-Hauwede (illustrations), Lars Uhlmann
(equations and tables) and Kerstin Folting (equations, tables and a meticulous proof-
reading of the entire text). Without their help the translation would have taken much
longer than it did. The editor likes to thank the translator for his excellent job.

Frankfurt/Main Bruce Hunt
Leipzig Eberhard Zeidler
Fall 2003
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Introduction

The greatest mathematicians like Archimedes, Newton
and Gauss have always been able to combine theory and
applications into one.

Feliz Klein (1849-1925)

Mathematics has more than 5000 years of history. It is the most powerful instrument of
the human mind, able to precisely formulate laws of nature. In this way it is possible to
dwell into the secrets of nature and into the incredible, unimaginable extension of the
universe. Fundamental branches of mathematics are

- algebra,
- geometry, and
- analysis.

Algebra is concerned with, at least in it original form, the solution of equations. Cunei-
form writing from the days of King Hammurapi (eighteenth century BC) document that
the practical mathematical thinking of the Babylonians was strongly algebra-oriented.
On the other hand, the mathematical thought of ancient Greece, whose crowning achieve-
ment was the appearance of Euclid’s The Elements (around 300 BC), was strongly
influenced by geometry. Analytical thinking, based on the notion of limit, was not
systematically developed until the creation of calculus by Newton and Leibniz in the
seventeenth century.

Important branches of applied mathematics are aptly described by the following indica-
tions:

- ordinary and partial differential equations (describing the change in time of systems
of nature, engineering and society),

- the calculus of variations and optimization,

- scientific computing (the approximation and simulation of processes with more
and more powerful computing machines).

Foundations of mathematics are concerned with

- mathematical logic, and

- set theory.

These two branches of mathematics did not exist until the nineteenth century. Math-
ematical logic investigates the possibilities, but also the limits of mathematical proofs.



2 Introduction

Because of its by nature very formal development, it is well-equipped to describe pro-
cesses in algorithms and on computers, which are free of subjectivity. Set theory is
basically a powerful language for formulating mathematics. Instead of dealing in this
book with the formal aspects of set theory, we put our emphasis on the liveliness and
broad nature of mathematics, something which has fascinated mankind for centuries.

In modern mathematics there are opposing tendencies visible. On the one hand, we
observe an increase in the degree of specialization. On the other hand, there are open
questions coming from the theory of elementary particles, cosmology and modern tech-
nology which have such a high degree of complexity that they can only be approached
through a synthesis of quite diverse areas of mathematics. This leads to a unification
of mathematics and to an increasing elimination of the non-natural split between pure
and applied mathematics.

The history of mathematics is full of the appearance of new ideas and methods. We can
safely assume that this tendency with continue on into the future.



0. Important Formulas, Graphical
Representations and Tables

Everything should be made as simple as possible, but not simpler.
Albert Einstein (1879-1955)

0.1 Basic formulas of elementary mathematics

0.1.1 Mathematical constants

Table 0.1. Some frequently used mathematical constants.

Symbol Appromimationl Notation

T 3.14159265 Ludolf number pi

e 2.71828183 Euler’ number e

C 0.57721567 Euler constant

In10 2.30258509 natural logarithm of the number 10

A table of the most important scientific constants can be found at the end of this
handbook.

Factorial: Often the symbol

nl:=1.2.-3-...'n

is used for the shown product; this product is called n-factorial Moreover, we define
ol:=1.

Ezample 1: 1'=1,21=1-2,31=1-2.3=6, 4! =24, 5! = 120 and 6! = 720.

In statistical physics, one requires the value of n! for n around 1023, For such astronom-
ical numbers, one has the Stirling formule

nl= (g)n 2mn (0.1)

as a good approximation (cf. 0.7.3.2).

!Leonhard Euler (1707-1783) was the most productive mathematician of all times. His collected
works fill 72 volumes and more than 5000 additional letters. His monumental lifetime work has shaped
much of the modern mathematical science. At the end of this handbook there is a table of the history
of mathematics, which should help the reader to orient her- or himself in the history of mathematics
and its greatest contributors.
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Infinite series for m and e: The precise value of 7 is given as the value of the
convergent Leibniz series

™ 1 1 1

T=l-3ts—5+- (0.2)
Because of the alternating sign of the terms, the error of the truncated series is always
given by the following term. Thus, the terms listed on the right-hand side of (0.2)
give an approximation of = for which the error is at most 1/9. This series, however, is
not used for practical computations of values for 7 on computers, because it converges
very slowly. Contemporary approximations of = are accurate up to more than 2 billion
decimal places (cf. the more detailed discussion of the number 7 in 2.7.7). The value of
e is the value of the following convergent series

1 1
—_t+ =

30 4!+...

_ 1
e—2+§i+

For large numbers n, for example, one has approximately

o= (1+%)”. (0.3)

More precisely, the right-hand side of (0.3) approaches for larger and larger values of n
the value of the number e. One also writes for this

1 n
e= lim (1+—> .
n—oo n
T

1
In words: the number e is the limit of the sequence of numbers (1 + —) , a8 n ap-
n

proaches infinity. With the help of the number e one can define the most important
function in mathematics:

y=-¢e". (0.4)

This is the Euler e-function (exponential function, cf. 0.2.5). The inverse function of
(0.4) is the natural logarithm

r=Iny

(cf. 0.2.6). In particular for powers of 10 one gets

In10* =2 -In10 ==z - 2.30258509.

Here x can be an arbitrary real number.

Representations of # and e through continued fractions: For more detailed
investigations of the structure of numbers, one uses representations in terms of continued
fractions instead of decimal numbers (cf. 2.7.5). The representations of 7 and e in terms
of continued fractions are displayed in Table 2.7.
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The Euler constant C: The precise value of C is given by the formula

n—oo 3

1 o0
C= lim (1+§+1+...+lfln(n+1)) =—/e_tlntdt.
n
0

For large natural numbers n, one thus has the approximation formula

1 1 1
l+-+-+...+=—=1 H+C.
tytgt.+o n(n+ 1)+
The Euler constant C appears in a surprisingly large number of mathematical formulas

(cf. 0.7).

0.1.2 Measuring angles

Degrees: In Figure 0.1, some of the most often used angles, measured in degrees,
are shown. An angle of 90° is also called a right angle. In ancient Sumeria near the
Euphrates and Tigris rivers, more than 4,000 years ago, a number system with the basis
60 (sexagesimal system) was used. One can trace back to this usage the fact that the
numbers 12, 24, 60 and 360 are used in such an important way in our measurement
of time and angles. In addition to the degree, other measures for angles used in, for
example, astronomy are the following smaller measurements:

| |
: te) = 1 : :
1" (arc minute) = 50’ ‘\900 :/éo | \60" Q

1" (arc second) =

3600 °
270° |
Ezample 1 (Astronomy): The ane Axo
face of the sun is about 30’ (half J % 4
a degree) in the sky.
Because of the motion of the Figure 0.1. Postive and negative angles.

earth and the sun, the stars in

the sky change their positions. Half the maximal change per year is called a parallaz.
This is equal to the angle o, which the star would appear to see between the earth and
the sun when they are at maximal distance from each other (cf. Fig 0.2 and Table 0.2).

Table 0.2. Parallax and distance.
| Star Parallax | Distance ] M earth
Proxima Centauri | 0.765"” | 4.2 light years @ sun
(nearest star) fixed star

Sirius 0.371" | 8.8 light years Figure 0.2.
(brightest star)

A parallax of one arc second corresponds to a distance of 3.26 light years (3.1-10% km).
This distance is also referred to as a parsec.
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Radians: A angle of a degrees (¢°) corresponds to

radians. Here o is the length of an arc on the unit circle which is cut out by the angle
a® (Figure 0.3). In Table 0.3 one finds often-used values for this measurement.

Convention: Unless stated otherwise, all angles in this book will be measured in
radians.

Table 0.3. Angles and radians.

a
Degrees 1° [45°|60°|90°(120°(135°|180°|270° | 360° ‘ﬁ
; T |lwa | 7| x| 27| 37 3
Radians wlzlslz2l3 |71 T 5 2
V=—"_—o. "_ —0. »
10800 0.000291, 1 618000 0.000005 Figure 0.3.

Sum of angles in a triangle: In a triangle, the sum of the angles is always , i.e.,

at+B+y=mw

(cf. Figure 0.4).

Y
a B
Figure 0.4. Angles in Figure 0.5. Angles in a quadran-
a triangle. gle.

Sum of angles in a quadrangle:
Since a rectangle can be decom-
posed into two triangles, the sum of
angles must be 27, i.e.,

at+f+y+é=2r (a) pentagon (b) hexagon

(cf. Figure 0.5). Figure 0.6. Pentagon and hexagon.

Sum of angles in an n-gon: In general one has

Sum of the inside angles of a n-gon = (n — 2)7.

Ezample 2: For a pentagon (5-gon) (resp. hexagon (6-gon)), the sum of the angels is
37 (resp. 4m) (Figure 0.6).
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0.1.3 Area and circumference of plane figures

In Table 0.4 the most important plane figures are illustrated. The meaning of the
appearing trigonometric functions sin o and cos « is explained in detail in 0.2.8.

Table 0.4. Surface area and circumference of several polygons.

Figure Diagram Area A Circumference
C
square A=a® C=4a
a (a length of a side)
a
rectangle A=ab C=2a+2b
b (a, b lengths of the sides)
a
parallelogram C =2a+2b
b ~ 'h | (a length of the base,
L a b length of the side
h height)
rhombus A =a%siny C=4a
(equilateral a
parallelogram) 4
a
trapezoid _1 C=a+b+c+d
(quadrangle b A= 2 (a+b)h

with two par-
allel sides)

(a, b length of the parallel
sides, h height)

triangle

1 1
A= Eah = Eabsin'y

(a length of the base,
b, ¢ length of the other
sides, h height, s := C/2)

Heronian formula for the area:

iA =+/3(s —a)(s —b)(s — c)l

C=a+b+c
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Table 0.4 (continued)

right

triangle

.

b

/

1
A=§ab

relation between
sides and angles:
b= ccosa,

a = csina,

a=btanc

(¢ hypotenuse 2,

a opposite leg,
b neighboring leg)

Theorem of Pythagoras®:

Euclidean relation
for the height:

[h% = pq
(h height over the hypotenuse,
p, q¢ segment lengths)

C=a+b+c

equilateral
triangle

circle

A =7wr?

(r radins)

sector of a cir-

cle

C=L+2r
L=ar

annulus

© bW 1

A=7(r?—p?%
(r outer radius,
o inner radius)

C =2n(r + o)

2In a right triangle the side which is opposite the right angle is called the hypotenuse. The other
sides are called catheti or simply legs.

3Pythagoras from Samos (at 500 BC) is considered to be the founder of the famous school of the
Pythagoreans in ancient Greece. The theorem of Pythagoras however was know almost 1,000 years
before that, by the Babylonians under the regent King Hammurapi (1728-1686 BC).
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Table 0.4 (continued)

parabola 1

sector? 4= gzy
z,y)
L
_ 1
hyperbola sec A== (:cy _ ab- arcosh f)
tor a

T,y) (b =atana)

. 1
ellipse sector A= §ab . arcosh =
a

ellipse diagram as A= mab C =4aE(e)

above, where
B is the (a, b lengths of the axi, (cf. (0.5))

focal point b<a,
£ numerical eccentricity)

The meaning of elliptic integrals for the calculation of the circumference of
the ellipse: The numerical eccentricity ¢ of an ellipse is given by the formula

The geometric interpretation of ¢ is to be found in the fact that the focal point of the
ellipse has a distance from the center of the ellipse of ea. For a circle, one has ¢ = 0.
The larger the numerical eccentricity ¢ is, the flatter the ellipse is.

It was already noticed in the eighteenth century that the circumference of an ellipse can
not be calculated by elementary means. This circumference is given by C = 4aE(e),
where we use the notation

w/2

E(e) = / /1 —e?sin? ¢ dy (0.5)
0

for the complete elliptic integral of the second kind of Legendre. There are tabulated
values for this integral (cf. 0.5.4). For an ellipse we always have that 0 < ¢ < 1. As

4Parabola, hyperbola und ellipse will be considered in 0.1.7. The function arcosh will be introduced
in 0.2.12.
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approximations for all these values one has the series

1\? 1-3)\%e*  (1-3.5\%¢"
Ble)=1-(=) &2 (=) & _ £
(€) (2) ¢ (2.4> 3 (2-4-6) 5

The general theory of elliptic integrals was created in the nineteenth century (cf. 1.14.19).

Regular n-gons: A n-gon is said

4 (e \?/ to be regular, if all the sides and an-
v > % gles are equal (Figure 0.7).
(p r & ) The distance from the center to one
a a

of the corners of the n-gon will be
n=3 n=4 n=>5 n==0 denoted by r. Then the geometry
of a regular n-gon is determined by
the following statements:

Figure (0.7. Regular n-gons.

27
center angle p=—,
n

complementary angle a=7—¢,

length of sides a=2r sin% ,
circumference C=na,

1
area A= énrz sing.

Theorem of Gauss: A n-gon with n < 20 can be constructed with the help of a ruler
and compass, if and only if

n=3,4,5,6,8,10, 12, 15, 16, 17, 20.—1

In particular, such a construction is not possible for n = 7, 9, 11, 13, 14, 18, 19.
This result is the consequence of Galois theory and will be considered in 2.6.6 in more
detail.

0.1.4 Volume and surface area of solids
In Table 0.5 the most important three-dimensional figures are collected.

Table 0.5. Volume and surface area of some solids.

Solid Diagram Volume V Surface area O

section area M

cube V=a3 O = 6a®
(a length of sides)




Table 0.5 (continued)

0.1. Basic formulas of elementary mathematics i1

parallelepiped V = abc O = 2(ab+bc+ca)
(a, b, ¢ lengths of sides)
a
— Anr?
bal P
e (r radius)
o
' (G area of the base, h height)
I
a
L
G
cylinder V =nr?h O =M+ 2mr2,
(r radius, h height) M =27rh

solid annulus

V =7h(r? — p?)
(v outer radius,
o inner radius,
h height)

pyramid

T
V=-Gh
3G

(G area of the base,
h height)
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Table 0.5 (continued)

circular cone V= %m«? h O =M+ 7r?,
(r radius, h height, M =mrs
y h s length of a meridian)
h
capped g V=3G+V/Gy+g)
pyramid <75
A (G surface area of the base,
g area of the top)
G
capped cone 0 V= 7"3_h(r2 +ro+o?) O=M+
A, 2, 2
oS\, (r, o radii, & height, (" +¢°),
s length of the side) M =ms(r + o)
obelisk 1
V=—(ab b+d
™~ slab=(a+ )b+ )
~' +ed)
‘ (a, b, ¢, d lengths of the sides)
) b
wedge V= Zr-bh(2a +c)
(the sides are ¢ 6
equilateral h (a, b base side lengths,
triangles) ¢ upper edge, h height)
et
section V= %hQ(Br —h) O = 27rh
of a ball :
(bounded by ‘ Ih (r radius of the ball, (top part)
a meridian) v h height)
slice of a ball mh O = 2nrh

(bounded by
two meridians)

V= F(3R2 + 30 + h%)

(r radius of the ball,
h height, R and g radii of the
meridians)

(middle layer)
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Table 0.5 (continued)

torus V =2rr?p O =4n%rg
(r radius of the torus,
o radius of the section)

5[ 9@

barrel V =0.0873 h(2D + 2r)?
(Wit.h circular (D diameter, r radius at the
section) top, h height;
the formula is an approxima-
h | tion)
ellipsoid 4 see the formula
S V= 37mbC of Legendre (L)
(a,b, ¢ lengths of the axi, for O
alc<b<a)

The meaning of elliptic integrals for the calculation of the surface area of the
ellipsoid: The surface of an ellipsoid can not be calculated by elementary means. One
requires again elliptic integrals. For this one has the formula of Legendre

27h
0 =27c® + ﬁ (czF(k, )+ (a® — A)E(k, &p)) (L)
with
kfg\/lﬂfcz _ . a? — ¢?
= b—\/?ﬂ_—? , ¢ = arcsin ————.

The formulas for the elliptic integrals E(k, ) and F(k, ) can be found in 0.5.4

0.1.5 Volumes and surface areas of regular polyhedra

Polyhedra: A polyhedron is a solid which is bounded by elementary parts (plane
figures).

The regular polyhedra (also called Platonic solids) have faces, all of which are congruent,
regular n-gons of side length a, in which at all corners the same number of faces meet.
There are precisely 5 regular polyhedra, which are listed in Table 0.6.
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Table 0.6. The five Platonic solids.’

Regular polyhedron Faces ’ Volume ’ Surface area
i 2
tetrahedron 4 equllateral [_ g 32
triangles 12
a
cube 6 squares a® 6a?
i
|
) I .
a
octahedron _ 8 equilateral _\/2 3 2/3 . a2
triangles 3 “
dodecahedron 12 equilateral 7.663-a%| 20.646-a®
pentagons

20 equilateral 2.182-a% | 8.660-a?
triangles

icosahedron®

Euler’s polyhedral formula: The following relation is generally true for regular
polyhedra:”

number of corners ¢ — number of edges e + number of faces f = 2. |

51n this table, the common length of an edge is denoted by a. The fomulas for the volumes and areas
of the dodecahedron and the icosahedron are approximations.

6The German mathematician Felix Klein wrote an famous book about the symmetries of the icosa-
hedron and its relation to the equations of fifth degree, (cf. [22]).

7This formula is a special case of a general topological fact. Since the surfaces of the regular polyhedra
are all homeomorph to the sphere, they have genus 0 and the Euler characteristic 2.
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Table 0.7 verifies this formula.

Table 0.7. The key numbers for the Platonic solids.

Regular polyhed’roﬂ; c ' e f L ct+e—f
tetrahedron 4 6 4 2
cube 8 12 6 2
octahedron 6 12 8 2
dodecahedron 20 30 12 2
icosahedron 12 30 20 2

0.1.6 Volume and surface area of n-dimensional balls

The following formulas are necessary in statistical physics. In these formulas, n is
roughly of the size 10?3, For such large values of n, one uses the Stirling formula for an
approximation to the value of n! (cf. (0.1)).

Characterization of the solid ball by an inequality: The n-dimensional ball
Kn(r) of radius r with center at the origin is defined to be the set of all points (21, ..., Z,)

that satisfy the inequality
|3+ .. 4o <]

Here «i,...,2, are real numbers with n > 2. The boundary (surface) of this ball is
formed by the set of all (z1,...,2z,) which satisfy the inequality

Lx§+...+:cfl=r2j

For the volume V;, and the surface area O, of K, (r) one has the following formulas of
Jacobi:

7rn/2,rn
Vo= -,
"r(g+1)
27rn/2,,.n—1
o

The gamma function I” is considered in section 1.14.16. It satisfies the recursion formula

I'z+1)=al(x) forallz>0

1
with I'(1) =1 and I (5> = /m. From this one gets for m =1, 2, ... the following
formulas:
_ amelm 2(27r)mr2m+1
1:3:5-...-2m+1)

Vo = T ‘/2m+1 =
m.
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and

27I.m7,2m—1 22m+1m!ﬂ.m,r.2m
O - O -
2m (m — 1), 1 2m+1 (2m)'

Fzxample: In the special case n = 3 and m = 1, one gets the well-known formulas

4
V3= §7r7‘3 , O3 = 4nr?

for the volume V3 and the surface area O3 of the three-dimensional ball of radius r.

0.1.7 Basic formulas for analytic geometry in the plane

Analytic geometry describes geometric objects like lines, planes and conic sections by
means of equations for the coordinates and investigates the geometric properties throngh
manipulations with these inequalities. This process of increased use of arithmetic and
algebra in geometry goes back to the philosopher, scientist and mathematician René

Descartes (1596-1650), after whom the Cartesian coordinates have their name.

0.1.7.1 Lines

Y (—2,2) Y (2.2) All of the following formulas are in terms

Y1

2
(1‘1‘,y1) |.-__2_r_ -T
- I L )
! : ; ; ; The coordinates of a point (z1,y;) are
2
1
1

| I X -2 -1 1

g __

of a Cartesian coordinate system, in which
the y-axis is perpendicular to the z-axis.

% given as in Figure 0.8(a). The x coordinate
of a point left of the y-axis is negative, and

(;2,'_2) (2,-2) the y coordinate of a point underneath the

(a) (b) z-axis is also negative.

' ) ) Ezample 1: The points (2,2), (2,-2),
Figure 0.8. Cartesian coordinates. (—=2,—2) and (—2,2) are found in Figure

0.8(b).

The distance d of the two points (x1,y1) and (x2,y2):

|7d2 Viza —21)2 + (32 — 11)?

(Figure 0.9). This formula corresponds to the theorem of Pythagoras.

Y Y Yy Yy
Y2 2
ﬁ A J;A; |"1\|I_>. b o
Yt 1 s T ~ %
Tz, = ™ 5 (a) m>0 (b) m<0
Figure 0.9. The distance Figure 0.10. The equation of a line.

between two points.



0.1. Basic formulas of elementary mathematics 17

Ezample 2: The distance of the two points (1,1) and (2,2) is

d=+(2-12+2-1)2=V2.

The equation of a line:

06)

Here b is the intersection of the line with the y-axis (y-intersect), and the slope of the
line is m (Figure 0.10). For the slope angle a one has the relation

tana =m.

(i) If one knows a point (1 , 1) of the line and the slope m, then one gets the missing
value of bas b=y, — may .

(ii) If one knows two points (z1, 1) and (22, y2) on the line with z; # 2, then:

Y2 — %
m = ———-—
T2 — Iy

s b= Y1 —Mmxy . (07)

Ezample 3: The equation of the line through
the two points (1,1) and (3,2) is

; 1$+1
1 1 —32v g
y—§$+§,
2-1 1
by (0.7 tm=——=— =
as by (0.7) we get m 3°71 2andb

1 1
1- 3=3% (Figure 0.11).
Figure 0.11. The slope of a line.

Abscissa equation of a line: If one divides the equation a line (0.6) by & and sets

m
— 1= ——  then one gets:
a b

Ty
2420, .
=+ > (0.8)

For y = 0 (resp. * = 0) one can
read off from this that the line hits Y y
the z-axis at the point (a,0) (resp.
the y-axis at the point (0,b)) (Fig- \ r + ¥_4
ure 0.12(a)). b a

Ezample 4: If we divide the line
equation

—_ND W

y=—-8x+4

by 4, it follows that ¥ = ~20+1 AN | V1w
and consequently (a) (b)

2r+ % =1. Figure 0.12. The abscissa of a line.

1
If we set y = 0, then we get z = 5 Hence the line intersects the z-axis in the point

z= % (Figure 0.12(b)).
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Equation of the y-axis:
z=0.

This equation is not a special case of (0.6). It corresponds formally to a slope of m = oo
(infinite slope).

General equation of a line: All lines are defined as the set of points satisfying the

equation
Az +By+C =20

with real constants A, B and C, which satisfy the condition A% + B? # 0.
Example 5: For A=1, B = C =0 one gets the equation z = 0 of the y-axis.

Applications to linear algebra: A series of problems in analytic geometry are most
easily solved by using the language of vectors (linear algebra). This will be considered
in section 3.3.

0.1.7.2 Circles

The equation of a circle of radius r» with center at the point (c,d):

I(i— e+ (y—d?= r2—| (0.9)

(Figure 0.13(a)).

Y Yy Yy
{0, %0)

d @P d
¢ % <>1 " e %

(2) (b) ()

Figure 0.13. Circles in the plane.

FExample: The equation of a circle of radins » = 1 with center at the origin (0,0) is
(Figure 0.13(b)):

22+t =1.

Equation of the tangent to a circle:

[@—c)mo—o) + (y—d)lwo—d) =12 ]

This is the equation of the tangent to the circle (0.9) through the point (zg,yo) (Figure
0.13(c)).
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Parameterization of the circle of radius r with center at the point (e, d):

|x=c+rcost, y=d+rsint, 0§t<2ﬂ'.—|

If one interprets ¢ as the time, then this starting point at ¢ = 0 corresponds to the point
P in Figure 0.13(a). In the time given by parameters t = 0 to t = 2w, the circle is
transversed exactly once counter-clockwise with constant speed (mathematical positive
direction).

Curvature K of a circle of radius R: By definition, one has

K=

1
=

0.1.7.3 Ellipse

The equation of an ellipse with center at the origin:

22y
—2+—=1. (0~10)

We assume 0 < b < a. Then the ellipse lies symmetrically with respect to the origin.
The length of the long (resp. short) axis of the ellipse is equal to a (resp. b) (Figure
0.14(a)). One also introduces the following quantities:

linear eccentricity e = /a2 — b2,

numerical eccentricity &= —,

half-parameter p=

Q|%Q|Cﬁ

The two points (+e,0) are called the focal points By of the ellipse (Figure 0.14(a)).

3

T ( )
B_ BN\Q C\K -
(b)

o2

B

Figure 0.14. The ellipse.
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Equation of a tangent to the ellipse:

Ty | YYo

T

This is the equation of the tangent to the ellipse (0.10) through the point (zg, yo) (Figure
0.14(b)).

Parameterization of an ellipse:

I:T::acost, y = bsint, 0§t<27r.|

When the parameter ¢ runs through the values from 0 to 27, the ellipse in (0.10) is run
through once counter-clockwise. The starting value ¢ = 0 corresponds to the point on
the curve @ (Figure 0.14(a)).

Geometric characterization of an ellipse: An ellipse is by definition the set of
points P, whose sum of distances from two given points B_ and B, is constant, equal
to 2a (cf. Figure 0.14(c)).

These points are called the focal points.

Construction: To construct an ellipse, one fixes two points B_ and B, which are to
serve as focal points. Then one fixes the ends of a piece of string with a thumbtack to
these focal points, and moves the pencil with the help of the string, keeping the string
taut. The pencil then has drawn an ellipse (Figure 0.14(c)).

Physical property of the focal points: A light ray which is sent from one of the
focal points B_ and reflected on the ellipse, meets the other focal point By (Figure
0.14(c)).

Surface area and circumference of an ellipse: See Table 0.4.

The equation of an ellipse in polar coordinates, directrix property and cur-
vature radii: See section 0.1.7.6

0.1.7.4 Hyperbola

The equation of a hyperbola with center at the origin:

xr2 y2

Here a and b are positive constants.

Asymptotes of a hyperbola: A hyperbola intersects the z-axis in the points (+a, 0).
The two lines

b
y==x-=x
a

are called the asymptotes of the hyperbola. These lines approach the branches of the
hyperbola as one moves out from the origin (Figure 0.15(b)).
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Focal points: We define

linear eccentricity e = v/a?+ b2,

e
numerical eccentricity &= o
b2
half-parameter p= —.

The two points (Ze,0) are called the focal points B of the hyperbola (Figure 0.15(a)).

Yy ) Yy
\ /(zo,y)

() (b) ()

(d)

Figure 0.15. Properties of the hyperbola.

Equation for the tangents to a hyperbola:

TTo  YYo

=220y

a? b2

This is the equation of the tangent to the hyperbola (0.11) through the point (zg,yo)
(Figure 0.15(c)).

Parameterization of a hyperbola®:

ﬁ:acosht, y = bsinht, —oo <t <oo.

As the parameter ¢ runs through all real values, the right branch of the hyperbola in
Figure 0.15(a) is run through once in the direction of the arrow in that picture. The
initial point at ¢ = 0 is the point (a,0) on the hyperbola. Similarly, the left hyperbola
branch in Figure 0.15(a) is run through once by the parameterization

z = —acosht, y = bsinht, —oo <t <oo.
Geometric characterization of a hyperbola: By definition, a hyperbola consists of

all points P whose difference of distances from two given points B_ and B, is constant,
equal to 2a (cf. Figure 0.15(d)). These points are again called the focal points.

8The hyperbolic functions cosht and sinh¢ are treated in detail in 0.2.10 .
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Physical property of the focal points: A light ray emerging from B_ is reflected
on the hyperbola in such a way that its backward extension passes through the other
focal point B, (Figure 0.15(e)).

Surface area of a hyperbola section: See Table 0.4.

Equation of hyperbolas in polar coordinates, directrix properties and curva-
ture radii: See section 0.1.7.6

0.1.7.5 Parabola

The equation of a parabola:

o

Here p is a positive constant (Figure 0.16). We define:
linear eccentricity e = P ,
2

numerical eccentricity £=1.

The point (e, 0) is called the focal point of the parabola (Figure 0.16(a)).

Yy Yy L
P
V%

(a) (b) © )

Figure 0.16. Properties of the parabola.

The equation of a tangent to a parabola:
yyo = p(x + Zo) -

This is the equation of the tangent to the parabola (0.12) through the point (xg,yo)
(Figure 0.16(b)).

Geometric characterization of parabolas: By definition, a parabola consists of all
points P, whose distance from a fixed point B (focal point) and a fixed line L (directrix)
is equal (Figure 0.16(c)).

Physical property of the focal point (parabolic mirror): A light ray, which is
parallel to the z-axis and hits the parabola, is reflected in such a way that it passes
through the focal point (Figure 0.16(d)).

Surface area of a parabolic sector: See Table 0.4.
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Equation of a parabola in polar coordinates and the curvature radii: See
section 0.1.7.6

0.1.7.6 Polar coordinates and conic sections

Polar coordinates: Instead of Cartesian coordinates, often polar coordinates are used,
in order to take advantage of the symmetry of the equations in certain problems. The
polar coordinates (r, ) of a point P in the plane are given as in Figure 0.17 by the
distance r of the point P from the origin O and the angle ¢ of the line segment OP
with the z-axis. The following relation between the Cartesian coordinates (z,y) and the
polar coordinates (r, @) of a point P hold:

'm:rcoscp, y=rsing, 0§<p<27r.l (0.13)

Moreover, one has

r=+a?+y?, tan(p:2

z .

Conic sections: By definition, a conic section is obtained by taking the section of a
double circular cone with a plane (Figure 0.18). In this way, the following figures occur:

(i) Regular conic sections: Circle, ellipse, parabola or hyperbola.

(i) Degenerate conic sections: two lines, one line or a point.

Equation of regular conic sections in polar coordinates:

p

r =
1—ccosy

(cf. Table 0.8). The regular conic sections are characterized
by the geometrical property, that they consists of all points
P for which the relation

l=¢
d

is constant, equal to £, where r is the distance from a fixed

point B (focal point) and d is the distance from a fixed line

L (directrix).

Vertical circle and curvature radius: In the apex §
of a regular conic sections, one can inscribe a circle in such
a way, that it touches the conic section (i.e., has the same
tangent as) at the point S. The radius of this vertical circle
is called the curvature radius R at the point S. The same
construction is possible at an arbitrary point P(zp,yo) of
the conic section {cf. Table 0.9). The curvature K at the
point P is given by definition by the formula

1 Figure 0.18.

K= —.
Ry
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Table 0.8. Regular conic sections.

Conic Numerical Linear Half-para- | Directriz-prop-
section eccentricity € | eccentri- meter p perty r —¢
city e d
b2
hyperbola® | & > 1 e=—F _ |p=2 (
(1—¢)? a d P
@
B
L
parabola e=1 e= g—

b2
ellipse 0<ex1 e= i p=—
1—g2 a
circle e=0 e=0 p =radius 7
(limiting case P
d = ) r

8Because of the inequalities ¢ > 1, ¢ = 1 and ¢ < 1, the Greek mathematician Appolonius of
Perga (roughly 260-190 BC) introduced the nomenclature vrepBoAs) (hyperbolé which means excess),
rapafol (parabolé which means equality) and EAAewyeC (élleipsis which means deficiency).
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Table 0.9. Inscribed circles.

Conic Equation Curvature radius rDiagm,m
; 2y 20 (8 %3 2
ellipse —a5—|—b—2=1 Ry = a®b ?_;.EI) ,
b2
R=— =
a
2 22 (%5 Y5 802
hyperbola ?4b7:1 Ry =d*b a_4+b—4) ,
b2
R=—=p
a
(p + 220)*/2 (x0,90)
parabola | y? = 2px Ry = , 05 Yo
G
R=p R

0.1.8 Basic formulas of analytic geometry of space

Cartesian coordinates in space: A spatial Cartesian
coordinate system is given as shown in Figure 0.19 by three
axi which are perpendicular to one another, which are de-
noted as the z-axis, y-axis and z-axis, and which are oriented
in the same way as the thumb, the pointing finger and the
middle finger of the right hand (right-handed system). The
coordinates (z1, 1, z1) of a point are determined by perpen-
dicular projection onto the axi.

zZ

21

(1’1 s Y1, Zl)
£
Y1
z x
Figure 0.19.

Equation of a line through the two points (z1,y;1, z1) and (z2, y2, z2):

l;=x1+t($2—$1)7 y=y1 +tly2 —y1), Z:ZI+t(Z2AZI)4-|

The parameter ¢ runs through the real numbers and can be interpreted as the time

(Figure 0.20(a)).
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(72,42, 22)

(x1, yhzl)
z

£ Y

(2) (b)

Figure 0.20. Equations for lines and planes in three-space.

Distance d between the two points (z1,y1,21) and (@2, Y2, 22):
ld= o — 2 + (0 -9 + (51 - )|

Equation of a plane:

|A:v+By+Cz:D—.|

The real constants A, B and C must fulfill the condition A% + B% + C? # 0 (Figure
0.20(b)).

Applications of vector algebra to lines and planes in three-space: See 3.3.

0.1.9 Powers, roots and logarithms

Power laws: For all positive real numbers a,b and all real numbers x, y one has:

a®a¥ = a*t¥, (a®)¥ =a"¥,
a a” 1

(ab)® = a"b", (3)1 =3 a ¥ = prt

It wasn’t until after a long historical course of development that the notion of powers
a® for arbitrary real exponents was realized (cf. 0.2.7).

Important special cases: For n=1,2,... one has:

1.a=1, alza, azza-a, a=a-a-a
2.0"=a-a-...-a (nfactors).
_ 1 _ 1 _ 1
3.7 =2, a2=—2, e, @ = —.
a a a”

1 1
4. a2 =+va, a% = ¥a.

h 1/n

n!? roots: Let a positive real number @ be given. Then x = a!/™ is the unique solution

to the equation

" =a, xZO.l

In older literature the term a'/* is often denoted by {/a (n*" root). In manipulations
with expressions involving such roots it is better to use the expression a'/™, since then
one can use the general rules for powers and is not restricted to ‘rules for roots’.

a
Ezample 1: From (a%) " = g@w the root law {/ %/a = "/a follows.
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m .
Limit relation for general powers: For z = - with m,n = 1,2,... the following

relation holds:
a® = ()" .

Moreover a~* = 1/a”. Hence the calculation of a” for arbitrary rational exponents
can be reduced to the calculation of roots.

Now let an arbitrary real number z be given. We choose a number sequence® (zx) of
real numbers xz; with

lim zx =x.
k—co

Then we have

lim a®* = a”®.
—00

This is an expression of the continuity of the exponential function (cf. 1.3.1.2). If one
chooses in particular a sequence xy of rational numbers xj, then the expressions ¢®* can
be expressed in terms of powers of roots, and a” is approximated for larger and larger %
more and more accurately.

Ezxample 2: The approximate value of 7 is given by 7 = 3.14... Therefore we have
a3.14 — 0314/100 _ ( 1%)314

is an approximation to the number a™ . Better and better approximations for a™ can be
obtained by incorporating more and more decimal places in the decimal representation
T=3141592 ...

The logarithm: Let a be a fixed, positive real number a # 1. For each given positive

real number y the equation

has a unique real solution x, which is denoted by

and is called the logarithm of y to base a.'°

Laws for logarithms: For all positive real numbers ¢, d and all real numbers z one
has:

log,(cd) = log, c +log, d, log, (-2) =log,c—log,d,

log, ¢ =zlog, ¢, log,a=1, log,1=0.

From the relation log(cd) = logc + logd one sees that the logarithm has the funda-
mental property that multiplication of two numbers corresponds to the addition of the
logarithms of those numbers.

9Limits of sequences of real numbers will be considered in 1.2.
10The word logarithm has a Greek root and means ‘ratio number’.
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Historical remark: In his monograph Arithmetica integra (Collected arithmetic),
Michael Stifel noted in 1544 the the comparison of
2 3

1aa®a®at ...

012 3 4

allows the reduction of the multiplication of the numbers in the first row to the addition
of the powers in the second row. This is precisely the basic idea of calculations with
logarithms. Stifel remarks on this: “One could write an entire book on the properties
of these wonderful numbers, but I have to be modest and close my eyes to this at this
point.” In the year 1614 the Scotch nobleman John Neper (or Napier) published the first
incomplete tables of logarithms (with a base proportional to 1/e). These tables were
improved bit for bit. After discussions with Henry Briggs, Neper agreed to use the basis
10 for all logarithms. In 1617 Briggs published a table of logarithms up to 14 decimal
places (to base a = 10). The appearance of these tables was of great help to Kepler in
the completion of his famous “Rudolfian tables” in 1624 (cf. 0.1.12). He propagated the
advantages of this powerful new method of calculation with ardent zeal.

In our modern times with the widespread use of computers these tables are no longer of
importance and represent a historical episode.

Natural logarithms: Logarithms log, y to base e are referred to as natural logarithms
(logarithmus naturalis) and are denoted Iny. If @ > 0 is an arbitrary base, then one has
the relation

oF = e1'lna

for all real numbers . If one knows the natural logarithm, then one can find the
logarithm to an arbitrary base by means of the formula

In

log,y = ﬁ-

1
FExample 3: For a = 10 one has lna = 2.302585 ... and o~ 0.434294 ...
na

In 1.12.1 we will give applications of the function y = ¢* with the help of differential
equations to radioactive decay and growth process. These examples show that the Euler
number e = 2.718283 ... is the natural base for the exponential function. The inverse
of y = e® gives x = Iny. This motivates the nomenclature ‘natural logarithm’.

0.1.10 Elementary algebraic formulas
0.1.10.1 The geometric and arithmetic series

Summation symbol and product symbol: We define

n
Zak ‘=aptartaxt+...+a,
k=0

and

T
H ay = apaidz ... qa, .
k=0
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The finite geometric series:

1— qn+1

=12,... 0.14
l—q ? n y & ( )

a+ag+ag® +...+ag"=a

This formula is valid for all real or complex numbers a and ¢ with ¢ # 1. The geometric
series (0.14) is characterized by the fact that the quotient of two successive terms is a
constant. With the help of the summation symbol one can write (0.14) in the form

kid 1_qn+1
Zaqk:a——l , q#l, n:l,2,...
k=0 4

3

1—
Ezample]:l—i—q—qu_—--l—_q; (g#£1).

The arithmetic series:

a+(a+d)+(a+2d)+...+(a+nd):";’1(a+(a+dn)). (0.15)

The arithmetic series (0.15) is characterized by the property that the difference of two
successive terms is a constant. In words:

The sum of an arithmetic series is equal to the swm of the first and
the last term multiplied by half the total number of terms.

With the help of the summation symbol, the formula (0.15) can be written:

Z(aJrkd):n;rl(aJr(aJrnd)),
k=0

Arithmetic series can be found in ancient texts of Babylonian and Egyptian times
(around 2000 BC). Geometric series and the formula for the sum are found in Euclid’s
Elements (around 300 BC).

Ezxample 2: It is reported that the teacher of the young Gauss (1777-1855) wanted
a relaxing day by giving his students the assignment of adding the numbers 1 to 40.
Just after assigning this, the little boy Gauss (who was to become one of the greatest
mathematicians of all times) came to the teachers desk with his slate and the result of
820. It apparently was immediately clear to the youngster that instead of the original
series 1 + 2 + ... + 40 one should rather consider

1 2 3...40
40 39 38 ... 1.

Here we have 40 pairs of numbers (those in columns above) whose sum is 41. Conse-
quently, the sum of the first series is half of the sum of these pairs, i.e., 20 - 41 = 820.

This is an example for a moment of inspiration in mathematics. A problem who initially
seems to be quite complicated is reduced by some elegant trick to a different, easier
problem which is quickly solved.
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0.1.10.2 Calculations with the summation and product symbols
Summation symbol: The following manipulations are often applied:

n n
1. Z ar = Z aj, (change of summation index).

n n+N
2. Z ay = Z aj—nN, (shift of the summation index; 7 = k+ N).
j=N

n n n
3.3 ar+ > b= (ax+be),  (rule for addition).
k=0 k=0 k=0

4, (zm:aj)(Zbk) = izn:a b, (distributive law).
k=1 i

=1 j=1k=1
m n n m
5. E E ajr = Z @k, (commutative law).
i=1k=1 k=1j

Product symbol: Analogously to the summations symbol one has the following prop-
erties of the product symbol:

k=0 =0
n n+N
2 ay = H Gj_N
k=0 =N
n n n
s. TLox TT 0= [T ext
k=0 k=0 k=0
m n n m
4 [T 1T e = IT Tl e
J=1k=1 k=1 j=1

0.1.10.3 The binomial formula

Three classical binomial formulas:

(a+b)% = a® + 2ab + 1%, {first binomial formula),
(a—b)% =a® ~ 2ab + b?, (second binomial formula),
(a —b)a+b) = a* — b2, (third binomial formula).

These formulas are valid for all real or complex numbers ¢ and b. The second binomial
formula is actually a consequence of the first, by replacing b by —b.
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The general third binomial formula: One has

n antl — pntt
z:a"_kb’c =a"+a" b+, a4 —————
k=0

a—b

for all n =1,2,... and all real or complex numbers ¢ and b with a # b.

Binomial coefficients: For all k = 1,2,... and all real numbers « we set

(Z) ::%'(Q;I)'(a;?)"”.(af:+l)'

Furthermore let

3 3.2 5 5-4-3
: =— = = =10.
Ezxample 1 <2) 173 3, (3> -

The general first binomial formula (binomial theorem):

(a+b)" = a" + (’;>a"—1b+ (72’) AL+ (n " 1) " B, (0.16)

This fundamental formula of elementary mathematics is valid for all n =1,2,... and all
real or complex a and &. With the help of the summation symbol, (0.16) can be written:

(a+b)" = i (Z)w*'%h (0.17)

k=0

The general second binomial formula:

n

(a—-b)" = z (Z) (—1)kan—kpk

k=0

This formula follows immediately from (0.17) upon replacing b by —b.

Pascal triangle: In Table 0.10 each coefficient is obtained as the sum of the two coef-
ficients lying above the given one. This gives a convenient way to obtain the coefficients
for the general binomial formulas.

Ezxample 2:

(a+b)® = a® 4 3a%b + 3ab® + %,

(a+b)* = a* + 4a®b + 6026 + 4ab® + b*,

(a+b)® = a® + 5a*b + 10a3b? + 106%b® + Sab* + b°.
The Pascal triangle is named after Blaise Pascal (1623-1662), who at the age of 20
built the first addition machine. The modern computer language Pascal is named in his

honor. One can also find the Pascal triangles for n = 1,..., 8 in the Chinese monograph
The precious mirror of four elements by Chu Shih—Chieh, written in 1303.
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Table 0.10. Pascal’s triangle.

Coefficients of the binomial formulas
n=24_0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 4 1
n=>5 1 5 10 10 5 1

Newton’s binomial series for real exponents: The 24-year old Isaac Newton
(1643-1727) found by intuitive reasoning the general formula for the series:

(1+2)° =1+ (T)x+ (;)#’ + (3)953 b= i (:)rk (0.18)

k=0

For o = 1,2,. .., the infinite series (0.18) is actually finite an is nothing but the binomial
formula.

Theorem of Euler (1774): The binomial series converges for all real ezponents o

and all complex numbers z with |z| < 1.

It had been attempted for a long time to prove the convergence of this series. It wasn’t
until Euler was 67 that he succeeded, more than one hundred years after Newton’s
discovery of the series.

The polynomial theorem: This theorem generalizes the binomial theorem to more
than two summands. Special cases are:

(a+b+¢)? =a®+ b+ + 2ab+ 2ac + 2be,
(a+b+¢c)® =a®+b® + ¢+ 3a% + 3a%c + 3b%¢
+ 6abe + 3ab? + 3ac® + 3bc?.

The general form of this theorem for arbitrary real or complex non-vanishing numbers

ai,...,ay and natural nunmbers n = 1,2, ... is:
n E n! my . ma my
(a1+a2+...+aN) = ﬁﬂll 0/2 "'(lN .
my-Mol---Mpy.
mi+..+my=n
The summation here is over all N-tuples (m1, ma, ..., my) of natural numbers running
from O to n and whose sum is n. Moreover n!=1-2....-n.

Properties of binomial coefficients: For natural numbers n, k with 0 < k£ < n and
real or complex numbers ¢, 3 one has:
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(i} symmetry law

()6 ) =

((ID * (kil) - (ZID ; (0.19)

(@) (1) (=),
@) OG2) ()=

Ezaomple 3: 1f we set @« = 3 = k = n in the last equation, then from the symmetry law

we get the relation:
n\? i n\?2 T n\? _(2n
0 1 n) =)

From the binomial theorem fora=b=1and a = —b=1 we get:

(g)+(2)++(2) —o,
(5 - (1) + (1) - s crn(2) =0

0.1.10.4 Sums of powers and Bernoulli numbers

(il) addition law!!

Sums of natural numbers:

1
k=1+2+...+n:"("T+),

B

1

=7

2k=2+4+...4+2n=n(n+1),

£
Il

1
n

> @k-1)=1+3+...+(@n—1)=n’.

k=1

Sums of squares:

- K212 497 4 +n2_n(n+1)(2n+1)
E ==
k=1

n 2
2(2#1)2:12+32+...+(2n71)2:@3;1).

k=1

11 The Pascal triangle is based on the formula (0.19).
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Sums of third and fourth powers:

n?(n +1)2

B=134+224+. . +nd= 2 ,

NgE

&
l

1

_ n(n+1){2n+1)(3n? +3n — 1)

=142t 40t .
+2°4+ ... +n 30

M=

o
I

1

Bernoulli numbers: Jacob Bernoulli (1645-1705) ran across these numbers as he
attempted calculating an empirical formula for the sums of powers

SE=1P4+22 4 ... 40P

of natural numbers. He found for n = 1,2,... and for the exponents p = 1,2,... the
general formula:

1 1 By(p\ .1 Bs/{p\ ._ B P
qP p+l | _ P 2 p—1 p=2 P
n p-l—ln R O L Tl +—p p_ln

He also noticed that the sum of the coefficients always turns out to equal 1, i.e, we have

1 1 Bafp\ Bs(p Bp( v
—_ o422 =3 R 4 =1.
p+1+2+2(1)+3(2 LR
From this one gets for p = 2,3, ... successively the Bernoulli numbers B, Bs,... One

also sets By := 1 and B; := —1/2 (see Table 0.11). For odd numbers n > 3 one has
B,, = 0. The recursion formula can also be written in the form

f:(p“;l)Bkzo.

k=0

Symbolically, this equation is
(14 B)P* — By =0,

if one agrees to replace B"™ by B,, after multiplying out the expression on the left.

Table 0.11. Bernoulli numbers By, (B3 = Bs = B =...=0).
k By, k By, k By k By
1 5 3617
0 1 4 ~30 10 6 16 30
1 —% 6 % 12 —26;)—310 18 %
1 1 7 174611
2 5 8 ~35 14 5 20 ~ 330
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Ezample:

1
Sk = §n2+§n,
1 1
2_ 1 3,1 2
Sa=gn t g T
1
3 a 1 3 1o
S = ik +2n +4n )
1 1 1
54 = gn5+§n4+§n3-§6n
In addition one has:
SE Bo(n+ 1P Bi(n+ 1) Ba(n+1)P! B,(n+1)
T . P .
p! o(p + 1)! 1ip! 2l(p — 1)! p!1!

Bernoulli numbers and infinite series:

For all complex numbers z with 0 < |z| <

27, one has:

31 B, ,

+—x+

— B
:Zk— k_

Bernoulli numbers also appear in the power series expansion of the functions

1 1
sinz ’

tanz, cotz, tanhz, cothz, - s
sinh z

Injtanz|, In|sinz|, Incosx

(cf. 0.7.2).

Bernoulli numbers also play an important role in the summation of the inverses of powers
of natural numbers. Euler discovered in 1734 the famous formula

11 1 x2
1— —_— —t —_— = —

More generally, Euler discovered for k = 1,2,. .. the values'?

1+§ﬂ+37k+"'

Even earlier, the brothers Johann and Jakob Bernoulli had tried for a long time to
determine the value of these series.

12For this, Euler used the product formula

sinwz = 7x H (1— —) ,

which he had discovered and which holds for all complex numbers ; this is in fact a generalization of
the fundamental theorem of algebra (cf. 2.1.6) to the sine function
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0.1.10.5 The Euler numbers

. . . T P .
Defining relations: For all complex numbers z with |z| < 5 the infinite series

1 E B 5 = Fr &
e e P22 SN
coshz - 1!I+ Q!I * = k!z

converges. The coefficients Fy which occur in this series are called Euler numbers (cf.
Table 0.12). One has Fp =1 and for odd n, E, = 0. The Euler numbers satisfy the
symbolic equation

(B+1)"+(E-1)"=0, n=12..]

in which one agrees to replace E™ by E,, after the multiplication has been carried out.
This gives a convenient recursion formula for the E,,. The relation between the Euler
and the Bernoulli numbers is, again in symbolic form, given by:

42n+1 1 2n+1
Eon = B, — - ; =1,2,...
A ( 4) =12
Table 0.12. The Euler numbers Ey (Eh = E3 = F5 = ... =0).

IERENER B | & | B

0 1 6 —61 12 2,702,765

2 -1 8 1,385 14 | -199,360,981
4 5 10 -50,521

Euler numbers and infinite series: The Euler numbers occur in the power series
expansion of the functions
1 1
coshz’' cosz
(cf. 0.7.2). For k = 1,2, ... one has in addition the formula

5 ; + ; 3 _ i (_l)n _ 2kl
FAT B T L (an 1) 232 (2k)]

| Eog| -

0.1.11 Important inequalities

The rules for manipulations with inequalities can be found in section 1.1.5

The triangle inequality!3:

“z| - lel <l|z—w| <|z|+|w| forall z,weC.

13The statement ‘for all a € R’ means that the formula is valid for all real numbers a. The statement
‘for all z € €’ means that the statement is valid for all complex numbers. Note that each real number
is also a complex number. The absolute value |z| of a real or complex number is introduced in 1.1.2.1.
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In addition one has for n complex summands z1,...,z, the triangle inequality

n

>

k=1

k(3
<Dl
k=1

The Bernoulli inequality: For all real numbers z > —1 and n = 1,2,... one has

|(1+w)"21+nw.

The binomial inequality:

1
labl < = (a* +?) foralla,beR.

[\

The inequality for means: For all positive real numbers ¢ and d one has:

2 1 2
2 < ﬁ—cd<c+d< 2+ d .
+ - 2 - 2

ol
e

The means which appear here are called, from left to right, harmonic mean, geometric
mean, arithmetic mean and quadratic mean. All these means lie in between the two
values min{¢, d} and max{c,d}, which justifies the term mean.!4

Inequality for general means: For positive real numbers zy,...,z, one has:

|min{m1,...,mn}§h§g§m§s§ max{xl,...,xn}.]

In this formula we have used the notations:

n
T1t+x2+ ...+ T 1 . .
mao= 2T T E T, (arithmetic mean or mean value),
n
k=1

n 1/n
9= (T122...2,)"" = <H $k> , (geometric mean),

k=1
h = 1—”—1—, (harmonic mean)
o T
and
L, 1/2 '
s:= (; ;%) , (quadratic mean).

14The terms min{c,d} (resp. max{c,d}) denote the smallest (resp. the largest) of the two numbers ¢
and d.
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The Young inequality: One has

laf” ol

|ab] < Y +— foralla,beC (0.20)

and all real exponents p and g which satisfy p,q > 1 and
1 1
-4+ -=1.
P q

In the special case p = ¢ = 2 the Young inequality is nothing but the binomial inequality.
If n=2,3,..., then the general Young inequality is valid:

n
JIES
k=1

n T Pk
SZ% for all z; € C (0.21)
k=1

1
and all real exponents py > 1 with Z —=1.
k=1 P*

The Schwarz inequality:

s(iz

k=1

n
Z-’Z'kyk

k=1

2 4o, 1/2
:rk]2> (Z lyk|2> for all zz,y, € C.
k=1

The Holder inequality'®:  One has

(@) < Izlplylly for al 2,y € C”|

1
and all real exponents p,q > 1 with ~ + — =1. The notations used are defined as
P g

follows:
N N 1/p
(zly) =) Zoge  and |zl = (Z [zk l”)
k=1 k=1
as well as

I2lloc := max. |ax|.

The notation Ty denotes the complex conjugate number to z; (cf. 1.1.2).

The Minkowski inequality:

[+ llp < llelly + lyll, forallz,y e €, 1<p<oo]

Jensen’s inequality:

[||x|\,,§ |zl for all z e CV, 0<r<p§oo.‘

18The statement ‘for all z € C¥’ means ‘for all N-tuples (z1,...,2y) of complex numbers zz’.
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Integral inequalities: The following inequalities hold, provided the integral on the
right hand side exists (and is therefore finite) 16 In addition, the real coefficients p, ¢ > 1

1
should satisfy the condition 1 + — = 1. Then:
P g

(i) triangle inequality

‘C[fdz

< [15@lda.
G

(ii) Holder inequality

‘ [ #@stexis
G

1/p 1/q
<( C[ spas) - ( G/ slolliaz)

In the special case p = g = 2 this reduces to the Schwarz inequality.

(iii) Minkowski inequality (1 <r < o0)

(/[f(x) +g($)‘rd3‘)1/r < (/If(:ﬂ)rdxy/r + (/Ig(x)'rdz)l/r.
G G

G

(iv) Jensen’s inequality (0 < p < r < 00)

(ftseras)™ < ([ireras)”"

G

The Jensen convexity inequality: Let m = 1,2,... If the real valued function
F: RY — R is convex, then

F (Z )\k:vk) S i)\kF(mk)
k=1 k=1

for all 2, € RY and all non-negative real coefficients A, with Z A =1 (cf. 1.4.5.5).
k=1

The Jensen convexity inequality for integrals:
J p(x)g(x)dx [ p(x)F(g(z))dz
G < G

[ p(z)d= = [ p(x)da

G (e

F (0.22)

Here it is assumed that:

16These formulas hold under very general assumptions. One can use the classical one-dimensional
b
integral (Riemann integral) / fdz = / fdx, the several variable classical integral or the modern

G a
Lebesgue integral. The values of the function f{x) may be real or complex.
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(i) The real valued function F: R — R is convex.

(i) The function p: G — R is non-negative and is integrable on the open set G in RV
with [, pdz > 0.

(iii) The function g: G — R has the property that all integrals in (0.22) exist!7.

For example, one may choose p(z) = 1.

The fundamental convexity inequality: Let n = 1,2,... For all non-negative real
numbers zx and A\ with Ay + M2+ ...+ A, =1 one has

! (Z )\kf(:lfk)> <g7! <z”: )\kg(:vk)> , (0.23)
k=1 k=1

provided the following assumptions are fulfilled:

(i) The functions f,g : [0,00[— [0, o0[ are increasing and surjective. We denote by
F1971 ¢ [0, 00[— [0, 0] the inverse functions to f and g.

(ii) The composition y = g (f~'(z)) of functions is convez on the interval [0, 00[.

Except for the triangle inequality one gets all the inequalities above from (0.23). The
idea behind all of these is the fruitful notion of converity.

Ezxample 1: If we choose f(z) := Inzx and g(z) := x, then we have f~(z) = e® and
g }(z) = z. From (0.23) we get the inequality for the weighted mean

n

ﬁ 2k <3 M, (0.24)
k=1 k

=1

T
which is valid for all non-negative real numbers z; and A\; which satisfy Z A = 1. This
k=1
inequality is equivalent to the Young inequality (0.21).
In the special case Ay = 1/n for all &, the inequality (0.24) is just the inequality ¢ < m
between the geometric mean g and the arithmetic mean m.

The duality inequality:

|aly) < Fle) + F*(y) forallz,y e BV ] (0.25)

Here, the function F : RY — R is given, and the dual function F* : RY — R is given
by the relation

F*(y) := sup (zly) — F(x).

TeRN

71f @ :=|a, b[ is an open bounded interval, then is it sufficient for example that p and g are continuous
on [a,b] (or more generally, almost everywhere continuous and bounded). In this case we have

b
/..‘dz:/...dz.
G a

If G is a bounded, open (non-empty) set in RY , then it is sufficient that p and g are continuous on the
closure G (or more generally almost everywhere continuous and bounded).
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P
Ezample 2: Let N =1,p> 1 and F(x) := m— for all x € R. Then one has
P

oy _ 1yl
F (y)-—q— forally e R,

1 1
where ¢ is determined from the equation =+ = = 1. In this special case, (0.25) is nothing
q

P q
but the Young inequality zy < % + I—y—'— .
q

Standard literature: A large collection of further inequalities can be found in the
standard references [19] and [15].

0.1.12 Application to the motion of the planets — a triumph of
mathematics in space

One can not have a pure understanding of what one has until one
has a complete understanding of what others had before oneself.

Johann Wolfgang von Goethe (1749-1832)

The results of the previous sections are correctly considered today to belong to elemen-
tary mathematics. Actually it was the result of centuries of toil and thought — always
in interaction with the resolution of important questions put to man by nature — before
these realizations, today considered to be elementary, could be attained. As an example
of this we consider here in more detail planetary motion.

Conic sections were already investigated intensively in ancient times. To describe the
location of the planets in the heavens, the ancient astronomers used the idea of Appolo-
nius von Perga (roughly 260-190 BC) of epicycles. According to this theory, the planets
move along a small circular orbit, which in turn moves along a larger circular orbit (cf.
Figure 0.21(a)).

aphelion perihelion

(a) epicycle (b) Kepler’s laws

planet F

(c) Newton’s law of motion

Figure 0.21. Historical occurrences of conic sections.

This theory gave a relatively accurate description of the apparent complicated annual
motion of the planets in the sky. The theory of epicycles is a very vivid example for how
the attempt to fit theory with observation can lead to a totally wrong model.
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Copernicus’ view of the world: In 1543, the year of death of Nicolaus Copernicus
(born in 1473 in the old Polish Hansa city Torun), his epochal work De revolutionibus
orbium coelestium (On the motion of the heavenly orbits) appeared. In this work he
broke with the tradition of the view of the world of the ancients, shaped by Ptolemy,
according to which the earth was the center of the universe. On the contrary, Copernicus
created the idea that the earth orbits the sun, while keeping the idea of circular orbits.

The three Kepler laws: Based on extensive observations of the Danish astronomer
Tycho Brahe (1564-1601), Johannes Kepler (1571-1630, born in the city of Weil in
Germany) found after extensive calculation the following three laws for planetary motion
(Figure 0.21(b)):

1. The planets move in elliptical orbits, with the sun at one of the focal points of the
ellipse.

2. The motion sweeps out equal arens in equal times (denoted A in Figure 0.21(b)).

3. The ratio of the square of the orbital period T and the third power of the long azis
a of the ellipse is a constant for all planets:

TQ
- = const .
a

The first two of the laws were published by Kepler in 1609 in his monograph Astronomia
nove (New Astronomy). Ten years later the third law appeared in his thesis Harmonices
mundi (World Harmonies)!8.

In 1624, Kepler finished the enormous work involved in completing the “Rudolfian ta-
bles”, which the German Emperor Rudolf IT had commissioned him with in 1601. These
tables were used by astronomers for the next 200 years. With the help of these ta-
bles it was possible to precisely predict the motion of the planets and solar and lunar
eclipses for all times past and future. In these days of computer computational power
it is impossible to imagine what an achievement this was, particularly since for use in
astronomy one needs very precise results, not just rough approximations. Kepler even
had to work without tables for logarithms. The first table of logarithms was published
by the Scotch nobleman Neper in 1614. Kepler immediately realized the computational
power afforded by these mathematical tool, reducing multiplications to additions. In
fact, Kepler’s paper on this was of great help in spreading the popularity of logarithms.

Newtonian mechanics: Exactly one hundred years after the death of Copernicus,
Isaac Newton — one of the true geniuses of human kind — was born in 1643 as the son
of a leaseholder in a small village on the east coast of England. Lagrange wrote about
him: “He is the luckiest of all; the system of the universe can only be discovered once”.
At the age of 26, Newton became Professor at the famous Trinity College in Cambridge
(England). Already at the age of 23 he used the third of Kepler’s laws to estimate the
power of gravitational attraction and found that this must be proportional to the inverse
of the square of the distance. In 1687 his famous book Philosophiae naturalis principia
mathematice (Mathematical Principles of Science) appeared. In this book, he founded
classical mechanics and derived and applied his famous law of motion

{force = mass X acceleration.|

18Kepler discovered the third law on May 18, 1618, five days before the window incident in Prague,
which began the thirty years’ war.
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At the same time he created the theory of differential and integral calculus. Newton'’s
law written in modern notion is the differential equation for the motion of the planets

| mx(t) = F(x(t)). | (0.26)

The vector x(t) describes the position of the planets!® at the time ¢ (Figure 0.21(c})). The
second derivative with respect to time, x”(¢), corresponds to the vector of acceleration
of the planet at time ¢, and the positive constant m is the mass of the planet. The
gravitational attraction of the sun according to Newton has the form

GmM
F(X) = - W—-e

with the unit vector
X

e:m.

The negative sign of F corresponds to the fact that gravitational force points in the
direction —x(t), that is, from the planet toward the sun. Furthermore, M denotes the
mass of the sun, G is a universal constant of natural, called the gravitational constant:

G=066726-10 1 m’kg~'s72.
Newton found solutions of (0.26) which are ellipses

P

"= 1 —ecosyp

(in polar coordinates) with the numerical eccentricity £ and the half-parameter p deter-
mined according to the following equations:
B 2ED? . D?
=Vt anar YT G
The energy E and the angular momentum I are determined from the position and the
velocity of the planet at some fixed time. The orbital motion ¢ = ¢(t) is obtained by
solving the equation

]
t= % / (p)de
0
for the angle ¢.

Gauss rediscovers Ceres: In the new years night of 1801 a tiny star of the magnitude
8 was discovered at the observatory in Palermo, which moved relatively quickly and
then vanished again. This amounted to an incredible challenge for the astronomers of
the day. Only 9 degrees of the orbit were known. The methods used up until then for
celestial calculations failed. The 24-year old Gauss however succeeded in surmounting
the difficulties of mastering an equation of the eighth degree, by developing totally new
methods, which he published in 1809 in his work Theoria motus corporum coelestium in
sectionibus conicis Solem ambientium?®®.

9Vector calculus will be described in detail in 1.8.
20 A translation of this title is The theory of the motion of the planets, which move in conic sections
around the sun.
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According to Gauss’ calculations, Ceres could be observed again in the new years night
1802. Ceres was the first of the asteroids to be observed. It is estimated that there are
approximately 50,000 such asteroids moving in a belt between Mars and Jupiter, whose
total mass is just a few thousandths that of the earth. The diameter of Ceres is 768 km.
It is the largest known asteroid.

The discovery of Neptune: During a night in March, 1781, Wilhelm Herschel dis-
covered a new planet, which was later named Uranus and whose orbital period around
the sun is 84 years (cf. Table 0.13). Two young astronomers, John Adams (1819-1892)
in Cambridge and Jean Leverrier (1811-1877) in Paris, determined independently of each
other the orbit of Uranus and concluded from the observed perturbation in Uranus’ orbit
the existence of a new planet, which according to Leverrier had been observed by Got-
tfried Galle in 1846 at the Berlin Observatory and received the name Neptune. This was
a triumph of Newtonian mechanics and at the same time one of practical calculations
in the theory of celestial motions.

From the observed perturbations in the motion of Neptune one later concluded the
existence of a further, tiny planet very far from the sun, which was discovered in 1930
and was named Pluto after the Roman God of the underworld (cf. Table 0.13).

Table 0.13. A model of the solar system scaled to 1m = 10 km.

Planet | Distance | Orbital period | Numerical Planet’s Compara-
from orbital diameter | tive size
the sun eccentricily &

Sun - - - l4dm -

Mercury 58m 88 days 0.206 5mm pea

Venus 108 m 255 days 0.007 12 mm cherry

Earth 149m 1 year 0.017 13mm cherry

Mars 229m 2 years 0.093 7 mm pea

Jupiter 778 m 12 vears 0.048 143 mm coconut

Saturn 1400 m 30 years 0.056 121 mm coconut

Uranus 2900m 84 years 0.047 50 mm apple

Neptune 4500m 165 years 0.009 53 mm apple

Pluto 5900m 249 years 0.249 10 mm cherry

The perihelion motion of Mercury: The calculation of the orbits of the planets
is quite complicated by virtue of the fact that not only the gravitational force of the
sun, but also of the other planets must be accounted for. This in done in the context of
mathematical perturbation theory, which in general considers the behavior of solutions
under small perturbations of the (coefficients of the) equations. In spite of incredibly
precise calculations, the orbit of the planet nearest to the sun, Mercury, had a rotation
of the long axi of the ellipse describing its motion by 43 arc seconds a century, which was
inexplicable. This discrepancy wasn’t explained until the advent of Einstein’s general
theory of relativity in 1916.
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The background microwave radiation of the big bang: There is a solution to
the equations of the general theory of relativity which describes an expanding universe.
The starting point of this expansion is referred to as the big bang. In 1965 the Ameri-
can physicists Penzias and Wilson at the Bell Laboratory in New Jersey discovered an
extremely weak (microwave), completely isotropic (the same in all directions) radiation,
which is now viewed to be a relict of and experimental evidence for the big bang from
15 billion years ago. This was a scientific sensation. Both scientist were awarded the
Nobel prize for this discovery. Since the radiation can be viewed as a photon gas at
the temperature of 3 degrees Kelvin (above absolute zero), one also speaks of the 3K
radiation. The complete isotropy of this radiation on the other hand was for sore time
quite difficult to explain; it is an apparent contradiction to the formation of galaxies in
the universe. In 1992, the satellite COBE., designed by George Smoot, after extensive
preparations over several years, finally observed a detailed anisotropy in the background
microwave radiation. This gives us a view back in time at the distribution of matter in
the universe at the very young age of 300,000 years after the big bang and makes the
formation of galaxies at about 10 billion years ago understandable.?!.

Astrophysics, differential equations, numerics, fast computers and the death
of the sun: Our source of life, the sun, formed together with the planets about 5
billion years ago by attraction and compression of dark matter. Modern mathematics
is in a position to describe the life and death of the sun. One uses a model for the
sun which consists of a complicated system of differential equations, the derivation of
which was the work of decades of astronomers. It is impossible to give exact solutions to
this complicated system of differential equations. However, modern methods in numerics
provides effective ways of calculating approximations to solutions with the computational
power of supercomputers. The chair of Roland Bulirsch at the Technical University in
Munich has carried through these calculations. This has been made vividly imaginable
by motion pictures describing the solutions found in this way; these show how the sun
at an age of about 11 billion years will start to expand to the orbit of Venus, at which
time all life on the planet Earth will long have ceased to exist from the incredible heat
caused by this expansion. Somewhat later the sun will start to collapse and will become
a brown dwarf from which no more light can escape.

0.2 Elementary functions and their graphical repre-
sentation

Basic idea: A real-valued function??
y=fla)

assigns, in a unique fashion, a real number y to the real number . One must differentiate
in thought between the function f as an assighment and the value f(z) of the function
at the number z.

(i) The set of all  for which the assignment is defined is called the domain D(f) of the
function f.

(ii) The set of image points ¥ for all z € D(f)?3 is called the range R(f) of the function

21The fascinating story of modern cosmology and of the COBE-project is described in the book [28].

22Real-valued functions are special maps. The definition and properties of general maps are discussed
in 4.3.3. For simplicity, real-valued functions are also briefly referred to as real functions.

23The symbol = € D(f) indicates that  is an element of the set D(f).
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f.
(iii) The set of all point pairs (z, f(x)) is called the graph G(f) of the function f.

Functions can be defined by a table of values or by a graphical representation.

Ezxample: For the function y = 2z + 1, the table of values is

Y
z{0|1(2]3|4
3 y|1(3/5|7|9
The graphical representation of y = 2z + 1. the graph of f is the
1 plane of points (z,y), is the line through the two points (0,1) and
(1.3).
1 2 =z Increasing and decreasing functions: A function f is said to
be (strictly) increasing if
Figure 0.22. |7:c < u implies f(z) < f(u)J (0.27)

A function f is said to be non-decreasing, decreasing or non-
increasing, if in (0.27) the symbol ‘f(x) < f(u)’ is replaced by, in order

fl@) < flw),  fl@)>flu),  fl@) = fu)
(see Table 0.14).
Table 0.14. Properties of functions.

| Increasing | Non-decreasing| Decreasing | Nom-increasing |
T
z z | 7
| Buen 0dd l Periodic |

I TL#C \Jﬂ\/\/x

Basic idea of the inverse function: We consider the function

[y=mz, 120.1 (0.28)

The equation (0.28) has for each y > 0 exactly one solution = > 0, which one denotes

by /y:
r=/y.
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Exchanging formally z with y, we get the square root function

y=vz. (0.29)

The graph of the inverse function (0.29} is ob-
tained from the graph of the original function
(0.28) by reflecting the graph on the diagonal
(Figure 0.23).

This construction can be carried out for ar-
bitrary continuous, increasing functions (cf.
1.4.4). As we will see in the next sections,
one get in this manner many important func- (a) y =z (b) y =&
tions (for example y = Inz, ¥y = arcsinz,
Y = arccos z etc.).

Figure 0.23. Power functions.
Graphical representation of functions

with Mathematica: The software package
Mathematica contains a built-in series of important mathematical functions. These can
be displayed by tables of values or by plotting the graphs.

0.2.1 Transformation of functions

It suffices to know certain standard forms of functions. From these one can get graphical
representations of other interesting functions by the processes of translation, dilation and
reflection.

Translation: The graph of the function
y=fle—a)+b

is obtained from the graph of y = f(z) by the translation in which each point (z,y) is
shifted to (z + a,y+ b).

Example 1: The graph of

y = {x—-1%+1is ob- y y Yy
tained from the graph of
y = x° by the translation
in which the point (0,0) 2
is translated to the point 1
(1,1) (Figure 0.24). T
| T ’ 1 T I T

Dilation along axi: The (a) y = 22 (©y=@E-12+1 (b)y=2s>
graph of the function
T Figure 0.24. Translation and dilation of a graph.
v=2/(3)

with fixed @ > 0 and b > 0 is obtained from the graph of y = f(x) by stretching the
z-axis by a factor of a and stretching the y-axis by a factor of b.

Ezample 2: From y = z? one gets y = 22? by stretching the y-axis by a factor of 2
(Figure 0.24).

Ezample 3: From y = sinx one gets y = sin 2z by dilating the z-axis by a factor of %
(Figure 0.25).
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Y Yl o
2r T T
(a) y =sinz (b) y =sin2x
Figure 0.25. Sinusoidal waves.
y Y Reflection: The graphs of
y = f(-x)| resp. |y =—f(x)

L 1 are obtained from the graph of

| - == Y= f(z) by reflection on the y-

(a) y = o (b) y = =2 axis (resp. on the z-axis).

Example 4: The graph of y =
e™® results by reflecting the
graph of y = e® on the y-axis
(Figure 0.26).

Even and odd functions: A function y = f(z) is said to be even (resp. odd), if
fl-z)=f(z)  (resp. f(—z) = —f(=))

for all z € D(f) (Table 0.14).

The graph of an even (resp. odd) function is invariant under reflection of the z-axis
(resp. reflection of both axi) on the origin.
2

Figure 0.26. Fzponential functions.

Erample 5: The function y = z2 is even, while y = 23 is odd.

Periodic functions: The function f has by definition a period p, if

Lf(x+p) = f(z) forallz e R&l

i.e., if the relation is satisfied for all real numbers z. The graph of a periodic function is
invariant under translations of the x-axis by p.

Ezample 6: The function y = sinx has a period of 2r (Figure 0.25).

0.2.2 Linear functions
The linear function

has a graph which is a line with slope m and which has y-intercept b (see Figure 0.10 in
0.1.7.1).
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0.2.3 Quadratic functions

The simplest quadratic function Y Ly
(030)
y = az? y = ax?
for a # 0 has a graph which is a parabola
(Figure 0.27). A general quadratic function - ~
Ly = ax”® + 2bx + cl (0.31)
can be put in the form
2 (a)a>0
D
y:a(z+é) - — (0.32)
a a y
with the discriminant D := 5 —ac by means
of quadratic completion. Thus (0.31) results \/
from (0.30) by a translation which moves the - D/a
b D
apex (0,0) to (——, ——>. —
o a ~b/a x
Quadratic equations: The equation (c)a>0
2 —
M Figure 0.27,
has for real coefficients a, b and ¢ with a > 0 y y Yy

the solutions

o —b+vD  —bE Vb —ac

SRR T——— U
Case 1: D > 0. There are two differ- 4 s 4 g -
ent real zeros z, and z_, which corre- i T =2y
spond to two different points of intersection () D >0 (b) D=0 () D<O
of the parabola (0.31) with the z-axis (Fig-
ure 0.28(a)). Figure 0.28.
Case 2: D = 0. There is one real zero . = z_ . The parabola (0.31) is tangent to the
z-axis (Figure 0.28(b)).

Case 3: D < 0. There are two complez zeros

_ —bxiv- —b+ivac - b

I+ 1
a a

where i is the imaginary unit with i> = —1 (cf. 1.1.2). In this case the z-axis is not
intersected by the (real) parabola (0.31) (Figure 0.28(c)).

Erample 1: The equation 22 — 6z + 8 = 0 has the two zeros

Ty =3+/32-8=3%1,

thatis zy =4 and z_ = 2.
Ezample 2: The equation 2> — 2z + 1 = 0 has the zero

rzy =1++v1-1=1.

Ezample 3: Yor 2% + 2z 4+ 2 = 0 we get the zeros

zr=—-1%£v1-2=-1%i.
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0.2.4 The power function

Table 0.15. The power function y = az™.

n>2: , Fven ‘I; Odd

o | AT/ /.

-
e |

y=ax

|

Bt

Let n =2,3,... The function

for even n is shaped similarly as ¥ = az® and for odd n similarly as y = ax® (Table
0.15).

0.2.5 The Euler e-function

The shortest path between two real points is through the complex
domain. Jocques Hadamard (1865-1963)

In order to recognize deep connections among different parts of mathematics, it is im-
portant to consider the functions e*, sinz and cos z also for complex arguments z.

Complex numbers of the form z = a + bi

. with real numbers a and b are discussed in

. detail in 1.1.2. One just has to note that

- the imaginary unit i satisfies the relation

Y

— T —
(@y=e (b)y=lns Every real number is at the same time a

complex number.

Figure 0.29. Definition: For all complex numbers z,

the infinite series®?

2 28 -
ez;:1+x+—+—+..,:2— (0.33)

PTRNET 2 !

converges.

In this way the exponential function y = e* is defined for all complex arguments z,

24]nfinite series are considered in detail in section 1.10.
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which turns out to be the most important single function in all of mathematics. For real
2 this function was introduced by Newton at the age of 33 in 1676 (Figure 0.29(a)).

Addition theorem: For all complex numbers 2 and z one has the fundamental formula:

e"t* = g%’
Euler made the very surprising discovery about 75 years after Newton that the e-function
and the trigonometric functions (for complex arguments) are closely related (see the
Euler formula (0.35) in 0.2.8.). Therefore one refers to the exponential function y = e*
as the Euler e-function. For z = 1 we get

1 1
e=l+1+a+§+‘..

In addition the Euler limit formula holds?®

e = lim (1 n 2)"

n—oo

for all real numbers z. One has e = 2.71828183.

Increasing property: The function y = €* is strictly increasing and continuous for all
real arguments.

Behavior at infinity?5:

lim €° = +oo0, lim e =0.
T-—>+o0 T——00

For negative arguments of large absolute value the graph of y = e” approaches the z-axis
asymptotically (Figure 0.29(a)). The limiting relation

lim — = +4oc, n=12...,

states that the exponential function for large arguments grows faster than every power
function.

The complexity of computer algorithms: If a computer algorithm depends on
a natural number N (if, for example, N is the number of equations) and the needed
computation time behaves like eV, then the computation time explodes for large N,
making the algorithm practically useless for large N. Investigations of this kind are
done in the context of the modern complezity theory. Especially many algorithms used
in computer algebra have a high complexity.

Derivative: The function y = €® is infinitely often differentiable for all real or complex
number z, and the derivative is2”

z
de®

dr

Periodicity in the complex domain: The Euler e-function has the complex period
of 2xi, that is, for all complex numbers x one has:

ez+27r1 =% .

25Limits of sequences of numbers are introduced in 1.2.

261 imits of functions are investigated in 1.3.

2TThe notion of derivative of real or complex functions, one of the most fundamental notions of
analysis, is found in 1.4.1 (resp. 1.14.3).
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If one restricts oneself to real arguments z, then this periodicity is invisible {see Figure
0.29(a)).

Non-vanishing of the e-function: For all complex numbers z, we have e* # (.28

0.2.6 The logarithm

The inverse of the e-function: Since the e-function is strictly increasing and contin-
uous for all real arguments, the equation

Y

has a unique real number z as solution for all y > 0, which is denoted

and is called the natural logarithm (logarithmus naturalis). Formally exchanging = and

y, we get the function

which is the inverse function of the function y = e*. The graph of y = Inx is obtained
from the graph of y = e* by reflection on the diagonal (Figure 0.29(b)).

From the addition theorem e“*? = e%e? the fundamental property of the logarithm

follows:29

Ili(xy) =Inz +lny|

for all positive real numbers  and y.

Logarithm laws: See section 0.1.9.

Limit relations:

lim lnx = —oc0, lim Inz = +4o00.
z——+0 T—+o0

For every real number a > 0 one has

lim z%lnz =0.
0

r—+

It follows that the function y = Inx approaches minus infinity extremely slowly near
z=0.

Derivative: For all real numbers z > 0 one has

dinz 1

dz T

28More precisely, the map x —— €7 is a surjective map from the complex plane C onto C\ {0} .
291f we set x := e* and y := eV, then we get xy = e**t?, This yields u = Inz, v = Iny and
u+ v =In(zy).



0.2. Elementary functions and graphs 53

0.2.7 The general exponential function

Definition: For every positive real numbers a

and every real number z we set Y
a® = e® Ina .
In this way the general exponential function a® y=a"
is reduced to the e-function (Figure 0.30). -
Power laws: See section 0.1.9. (a) a >| 3 z (b) 0 <| a<1

General logarithm: Let a be a fixed posi-
tive real number a # 1. For every positive real  Figure 0.30. The general exponential.
number y, the equation

y=a*

has a unique real solution x, which we denote by z = log, y. Formally exchanging  and
y, we get the inverse function to y = a*:

y = log, x.
For this one has the relation
Iny
! = —

(c£.0.1.9). Onehaslna>0fora>1andlne<0for0<a<1.
Two important functional equations: Let a > 0.
(i) The only continuous function®® f: R — R, which satisfies the relation

lf(x +y)= f(z)fly) forallz,yc RJ

together with the normalization f(1) = a, is the exponential function f(z) = a®.

(ii) The only continuous function g : ]0,c0] — R, which satisfies the condition

sz) = g(z) + g(y) for all z,y €0, oo[‘l

together with the normalization g(a) = 1, is the logarithm g(z) = log, z .

Both of these statements show that the exponential and logarithm are very naturally
and useful functions and that the mathematicians of the past certainly would have had
to run across these functions sooner or later.

0.2.8 Sine and cosine

Analytical definition: From a modern perspective it is convenient to define the two
functions y = sinz and y = cosz by means of their infinite series expansions

.’L'S 1‘5 e & z2k+1
inz=zr— 4T =S (e
SmE == gr g é( vk
o = (0.34)
. A | Ly
cosE of T g( A oAT

30The notion of continuity will be introduced in 1.3.1.2.
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These two series converge for all complex numbers3! .

The Euler formula (1749): For all complex numbers z the following fundamental
formula is valid:

[e%* = cosz +ising .| (0.35)

This formula dominates the entire theory of trigonometric functions. The realtion (0.35)
follows immediately from the power series expansions (0.33) and (0.34) for e'*, cosz
and sinz , when one takes note of the fact that i2 = —1. In 1.3.3 one can find important
applications of this formula to the theory of vibrations. From (0.35) we get

eiz _ e—iz eiz + e—i:c
- - £ te 0.36
sinz o cos 3 (0.36)

These formulas, together with the addition theorem e**% = e%e?, easily yield the fol-
lowing fundamental addition theorems for sine and cosine.

Addition theorems: For all complex numbers x and y one has:

sin(z £ y) = sinxcosy + coszsiny, (0.37)

cos(z + y) = coszcosy Fsinzsiny.

Evenness and oddness: For all complex numbers z one has:

|sin(—z) = —sinz, cos{—z) = cos IJ

Geometric interpretation on a right triangle: We consider a right triangle with
an angle  measured in radians (cf. 0.1.2). Then sinz and cosr are given as the ratios
of the sides as shown in Table 0.16.

Table 0.16. Interpretation of trigonometric functions in terms of a right triangle.

} Right triangle } Sine Cosine '

c

Aa sing = 2 cos:czé

c c
b

0 T (length of opposite side a (length of adjacent side b
<r<—
divided by the hypotenuse ¢) | divided by the hypotenuse ¢)

31Compare the remarks made at the beginning of 0.2.5 about complex numbers.
The symbol ‘sinz’ is read ‘sine of 2’ and the symbol ‘cosz’ is read ‘cosine of z’. The latin word
sinus means bulge. In older literature one also uses the functions
1 1

cosecant: cosec ¥ 1=

secant: secx = s . .
cosz sinx
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Geometric interpretation on the unit circle: Using the unit circle, the quantities
sinz and cosz are just the lengths of the segments shown in Figure 0.31(a)-(d). From
this one see immediately that sinz and cosz have the same values after a rotation of
27. This is the geometric interpretation of the 2#-periodicity of the sinz and cosz:

lsin(x +27) =sinz, cos(z + 27) = cos z—l (0.38)
sinx sinz
cos
cosz
(a) (b)
cosz
cosz
sinx sinz
(c)
Y
1

(e) y=sinz

Figure 0.31. Trigonometric functions and the unit circle.

These relations hold for all complex arguments z. Looking at the unit circle again, one
sees the following symmetries

rsin(w —z) =sinz, cos(m —z) = — cosa:—| (0.39)

for 0 < z < /2. In fact these relations hold for all complex numbers z. Finally one
gets from Figure 0.31(a) and the theorem of Pythagoras the relation

| cos®z +sin®x =1, [ (0.40)

which holds not only for real angles x, but also for all complex arguments z. In the
same way we get from the theorem of Pythogoras the values for sinz and cos z listed in
Table 0.17 (cf. 3.2.1.2).

The validity of (0.38), (0.39) and (0.40) for all complex numbers follows easily from the
addition theorem (0.37) and the relations sin 0 = sin 27 = 0 and cos0 = cos2nr = 1.
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Table 0.17. Ezxact values of the sine and cosine functions for important angles.

T T T " 27 3 5 T
0 T L _ ™ 27 3 am .
x 6 1 3 ) 3 1 6 ™ (radians)
0 30° | 45° | 60° | 90° | 120° | 135° 150° | 180° || (degrees)
sinz 0| L|Y2| V3| | ] V2 1|,
2 2 2 2 2 2
cosT 1 V3| V2 ! 0 1 V2 V3 1
2 2 2 2 2 2
Negative angles: Applying the geomet-
ric interpretation of the unit circle one gets
the graphical representation of the functions
y = sinz and y = cosz as shown in Fig-
ure 0.31(e),(f). Here negative angles z < 0
were introduced as in Figure 0.32, by mea-
(@) z=_= (b) 2= —r suring positive angles in counter-clockwise di-

rection (positive mathematical direction) and

] ' negative angles in clockwise direction (nega-
Figure 0.32. Negative angles. tive mathematical direction).

Zeros: From Figure 0.31(¢),(f) it follows that:

(i) The function y = sinz has zeros at the points # = km, where k is an arbitrary

integer; in other words the set of zeros is given by x =0, *w, £27, ...

(ii) The function y = cosx has zeros at the points r = kr + g, where & is an arbitrary

integer.

(iii) Both functions ¥ = sinz and y = cosz have only real zeros in the complex plane.

These zeros are those described in (i) and (ii).

The law of translation: It is suffient to know the values of sinz for all angles z with

0 <z < 5. All other values can be obtained by the following formulas, which in turn

are consequences of the addition theorems:

2

(T . . . (37
sm<§+x):cosx, sin{m + ) = —sinz, sin{ —+zx) = —cosz,

T . 3 X
cos(§+x)=—s1nw, cos(m+x) = —cosz, cos ?-{—r =sinz.

De Moivre’s formula for multiples of a given angle®?: Let n = 2,3,... Then for

32This formula, found by de Moivre (1667-1754), inspired Euler to the discovery of his famous formula
i

e'* = cosx +isinz.

Today it is more convenient to work the other way around: de Moivre's formula (0.41) is a consequence
of the Euler formula, using

! Nm
cosnz + isinnxy = "% = (e‘x) = (cosz + isinx)™

and the binomial formula (cf. 0.1.10.3).
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all complex numbers z, one has

n

n

cosnx +isinnz = Z i ( ) cos™ k¥ zsinf . (0.41)
o \F

Seperating here the real and imaginary part of the complex numbers, one gets

cosnx = cos" x — (;) cos™ 2 gsin® x + (Z) cos® trsintr— ... (0.42)

. n — . n —_ . n _ .
sinnz = (1> cos” ! zsinz —~ (3) cos" P zsin®z + <5> cos™ Pzsin®xr—...

For n = 2, 3,4 we get the following special cases:

sin2x = 2sinzcosx , cos2z = cos’ x —sin?z,
sin3z = 3sinz — 4sin®z, cos3x = 4dcos®x — 3cosa,
sindz = 8cos® rsinz — 4 coszsine, cosdx = 8cos*z —8cos?z 4 1.

The formula for half-angles: For all complex numbers x one has:

1 1
sinzg = —(l —coszx), cos? g = 5(1 +cosx),

\/—(l—cosm 0<z<m,
sm—
\/—(1~cos:c) m<g<2nm,
H—(l+cosa:)7 —r<z <,
cos—
\l—(l+cosm) <z <3m.

Formulas for sums: For all complex numbers z and y one has:

T+ x
sinz £siny = 2sin y cos :2Fy’
T T —
cosz + cosy = 2cos Ty cos 2y’
. r+ . —Z
cosz — cosy = 2sin y smy2 s

cosz =+ sinz = v2sin (% :I:ac) .

Formulas for products of two factors:

1

sinzsiny = 3 (cos(z — y) — cos(z + y)) ,
1

coszeosy = 5 (cos(xz — y) +cos(z + ) ,

1
sinzcosy = 3 (sin{z — y) + sin(z + y)) .
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Formulas for products of three factors:
C 1,. .
sinzsinysinz = - (sin{z +y — 2) + sin(y + 2 — z)
+sin{z +z —y) —sin(z+y+z)) ,
. 1 .
sinzcosycosz = - (sin(z +y—2) —sin(y + 2 — z)
+sin(z +z — y) +sin(z + y + 2)) ,
. . 1
sinzsinycosz = - (—cos(z+y—2)+cos(y+2z—x)
+ceos(z+x—y)—cos(z+y+2)),
1
COSTCOSYCOSZ = 4 (cos(x +y — z) + cos(y + z — x)
+cos(z+z—y)+cos(z+y+2)) .

Formulas for powers:

1 1
sin?z = 5(1 — cos 2z}, cos?z = —2—(1 + cos2z),
1 1
sin®z = Z(3sin:c—sin3x), cos® & = Z(3cos:c+cos3ac),
1 1
sin? ¢ = g(cos4x —4cos2zx +3), cos*z = Z(cosélm +4cos2z +3).

More general formulas for sin” x and cos™ z follow from de Moivre’s formula (0.42).

Addition theorems for three summands:

sin(x +y + z) = sinz cosycos z + cosz siny cos z
+ cosxcosysinz —sinzrsinysin z,
cos{x +y + z) = coszcosycosz — sinzsiny cos z
—sinzcosysinz —cosxsinysinz.
All of these formulas are verified by expressing cosz and sinz as linear combinations

of e*i® according to (0.36). Then it only remains to verify some elementary algebraic
identities. One can also apply the addition theorem (0.37).

The Euler product formula®3: For all complex numbers one has:

sin 7z =7T$H (1 - F) .

k=1

One can read off of this formula immediately exactly where the sine has zeros: sinnz
has zeros at z = 0,+£1, 42, ... These zeros are in addition simple (see 1.14.6.3).
Partial fraction decomposition: For all complex numbers z different from 0,+1, £2,
... one has

cosmr 1 = 1 1
sinwz _E+;(:r~k+z+k) '

33Infinite products are considered in 1.10.6.
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Derivatives: For all complex numbers z one has:

dsinx dcosz X
=cosz, = —sing.

dx

Parametrization of the unit circle with the aid of trigonometric functions:
See section 0.1.7.2.

Applications of trigonometric functions in plane trigonometry (land survey-
ing) and spherical trigonometry (navigation and air traffic): See section 3.2.

Historical remarks: Ever since ancient times, the developement of trigonometry has
been inseparably connected with technological developments in surveying and naviga-
tion, construction and use of calenders and the science of astronomy. Trigonometry
had a heyday in the hands of the arabians in the 8th century. In 1260 the book Trea-
tise on the complete quadrilaterial was written by at-Tusi, the most important islamic
mathematician in the area of trigonometry. This book was the starting point of an
independent branch of mathematics concerned with trigonometry. The most impor-
tant European mathematician of the fifteenth century was Regiomontanus (1436-1476),
whose name was in reality Johannes Miiller. His most important work3? De triangulis
ommnimodis libri quingue didn’t appear until 1533, long after his death. This treatise
contains a complete presentation of plane and spherical trigonometry, and founded the
modern branch of mathematics referred to as trigonometry. Unfortunately all formulas
in that book were expressed awkwardly in words.?® Since Regiomontanus didn’t have
decimal numbers at his disposal®®, he used in the sense of Table 0.16 the formula

a=csinz with ¢ = 10,000,000.

His values for @ correspond to an accuracy of 7 decimal places for sinz. Euler (1707-
1783) was the first to use ¢ = 1.

At the end of the sixteenth century, Vieta (1540-1603) calculated, in his monograph
Canon, a table of trigonometric functions, which proceeds from arc minute to arc minute.

Just like tables for logarithms, tables for values of trigonometric functions are obsolete
in the day of computers.
0.2.9 Tangent and cotangent

Analytic definition: For all complex numbers z not equal to one of the values 7 + k7
with k& € Z, we set®”

sinx

tanx 1=

cosz

We further define for all complex numbers x not equal to one of the values kx with k € Z
the function

cosx

cot T 1=

sinz

34Translated into English the title means “Five books about all kinds of triangles”.

35The use of formulas goes back to Vieta In artem analyticam isagoge, which appeared in 1591.

36Decimal numbers were introduced in 1585 by Stevin in his book La disme (The decimal system).
This lead to the unification of measurements in continental Europe, based on the decimal system.

37We denote by the symbol Z the set of all integers k = 0, £1,42,...
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Translation property: For all complex numbers & with z # kx. k € Z, one has:

ot x = tan (I —:c)
[¢ = ) .

Because of this, all properties of the function cotangent follow directly from those of
tangent.

Geometric interpretation in a right triangle: We consider a right triangle with
the angle = measured in radians (c¢f. 0.1.2). Then the values of tan z and cot z are given
by the ratios of sides as shown in Table 0.18.

Table 0.18. Interpretation of trigonometric functions in terms of a right triangle.

L Right triangle ] Tangent 1 Cotangent
-Aa tanz = = cotz::é
b a
b
(length of opposite side a (length of adjacent side b
T
0<z< 3 divided by length of divided by length of
adjacent side b) opposite side a)
cotzx cotx
tanx tanx
(a) z < ’21 (b) z > g
Yy Y
s z 3m s
2 2 2 2 7
e I _r x
2
(¢) y = tanz (period =) (d) y = cot z {period )

Figure 0.33. Geometrical interpretation of the tangent and cotangent functions.

Geometric interpretation on the unit circle: Using the unit circle, the values of
tanz and cotz are the lengths of the segments shown in Figure 0.33(a),(b). One gets
from this the special values listed in Table 0.19.
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Table 0.19. Exact values of tan and cot for important angles.

m m T b 2w 3T 5t .
z 0 5 1 3 3 3 v 5 s (radians)
0| 30° | 45° | 60° | 90° | 120° | 135° | 150° | 180° | (degrees)
tanz | 0 \/?g 1| V3| - | -vB| 1| - ‘/??_’ 0
cotxz -1 V3 1 13—3 0 - ? -1 -V3 -

Zeros and poles: The function y = tanz has for complex arguments z exactly the
zeros kn with k € Z and precisely the poles kmw + 3 with k € Z. All of these zeros and
poles are simple (Figure 0.33(c)).

The function cotz has for complex arguments x exactly the poles k7 with k£ € Z and
exactly the zeros km + g with k € Z. Again, all of these zeros and poles are simple®®
(Figure 0.33(d)).

Partial fraction decomposition: For all complex numbers x with x € Z one has:

oo

1 1 1
Cotﬂx—;+2(m+m) .

k=1

Derivative: For all complex numbers z with z # 5 + k7 and k € Z one has:

dtanzx 1

dz cos2z

For all complex numbers x with 2 # kx and k € Z one has:

dceotz 1
=T 32

dx sin® x

Power series: For all complex numbers z with |z| < § one has:

7 225 1727 >, | Bog |2+
fanz =4 o+ S ol = gbgk )BT
mr=rt ety Yt I; @ =D =g

For all complex numbers z with 0 < |z| < 7 one has:

ey

Here B»; denote the Bernoulli numbers.

Convention: The following formulas hold for all complex arguments x and y with the
exception of those arguments for which the function has a pole.

38The notion of simple zero or pole is defined in 1.14.6.3
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Periodicity:

[tan(a: +m) =tanz,

cot{z + m) = cotx ]

Oddness:

|tan(—$) = —tanz,

cot(—z) = —cotz. |

Addition theorems:

tanz + tany

tan(z +y) = — s =AY
an(z +y) 1Ftanxtany’

cotzcoty F1

t{r +y) = ;
cotlr +y) coty cotx

2

3
tan(ziz) = Fcotz, tan{m + r) = L tanz, tan(—gix) = Fcotzx,

3
cot (g:l:a:) = Ftanz, cot(m +x) = eotx, cot (%ir) = Ftanz.

Multiples of arguments:

2tanz 2 cot’z — 1 cotx —tanzx
tan 2z = 7 = s cot2z = =
1—tan“x cotx—tanz 2cotx 2
Stanz — tan® z cot®z — 3cotx
tandr = —————, cotdr = ——5—,
1-3tan“z Jeot*x—1
dtanz — 4tan®z cot*z —6cot?z + 1
tandzr = 5 T cotdx = =
1 —6tan“x 4 tan*x 4cot’z —4cotz
Half-arguments:
sinzx 1—cosx
tan — = = - N
2 1+cosx sinx
sin x 1+ cosz
cot — = = -~ .
2 1—cosx sinx

Sums:
sin(z £ sin(x £
tan:lt:l:tany:—(—l)’ cotz +coty =+ ( 'y)’
COsST COsY sinzsiny
coslr — cos(z +
tanar-l-coty:(_.y_)7 cotz — tany = — ( y)
cosrsiny sinz cosy
Products:
tanx + tany tanx — tany
tanz tany = = - )
cotx + coty cotxr —coty
cotz + coty cotz —coty
cotzcoty = =— .
tanz +tany tanz — tany
fanzx + coty tanzx —coty
tanzrcoty = = —

cotz + tany B

cotr —tany
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Squares:
. 1 5 tan® z 1
sin® x - —cos“z
1+tan’z 14 cot’x
2 1 in? 1 cot?z
cos* x —sin“z -
1+tan’x 14 cot?z
2 sin? z 1—cos’z 1
tan” z Tz Tk - o e
1—sin“z cos‘ ¥ cot‘x
5 1—sinx cos’ z |
cot” T2 T — cosZm 2 -
sin“ z 1—cos’zx tan® x

0.2.10 The hyperbolic functions sinh z and coshx

Sinus hyperbolicus and cosinus hyperbolicus (hyperbolic sine and cosine):
For all complex numbers « we define the functions

. et —e™® e’ +e”®
sinhy ;== ——— | coshz i= ————.
2 2

The function ‘sinh’ is read ‘sinch’,

‘cosh’ is read ‘cosh’. For real argu- Y Y
ments z the graph is drawn in Figure )
0.34. ,

Relation to the trigonometric / 1
functions: For all complex numbers
 one has:

sinhiz =isinz, coshir=cosx.

Because of this relation every for- 4
mula about the trigonometric func-
tions sine and cosine gives rise to a
formula about the hyperbolic func-
tions cosh and sinh. For example
cos®iz + sin?iz = 1 for all complex Figure 0.84. Hyperbolic functions.
numbers z implies the following for-

mula:

(a) y = sinhz (b) y = coshz

cosh? z — sinh?z = 1 J

The terminology hyperbolic function arises from the fact that these functions z =
acosht, y = bsinht, t € R are the parameterization of a hyperbola (cf. 0.1.7.4).

The following formulas hold for all complex numbers z and y.

Evenness and oddness:

sinh(—z) = —sinhz, cosh(—z) = coshz.
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Periodicity in the complex domain:

sinh(x + 27i) = sinhz,

Power series:

cosh(z + 27i) = cosha.

e 3 2 27 he =1 22 gt 28
sin I—$+—+§+7+, coshzr = +E+I+a+
Derivative:
dsinh x dcoshx .
= coshx, =sinhz.
x dx

Addition theorems:

sinh(z &+ y) = sinh x coshy + coshzsinh y,

cosh(z + y) = coshz coshy + sinhzsinhy.

Doubled arguments:

sinh 2z = 2sinhz coshz,

cosh 2z = sinh? z + cosh? z .

1
sinh% = 1(§(coshx—1)
Lz 1
smhizfﬂi(coshwfl) for z<0,

1
cosh A
2 2

Half-arguments:

for z>0,

(coshz + 1) for zeR.

Formula of de Moivre:

n=12.. |

| (coshz % sinh )™ = coshna + sinhnz,

Sums:

1 1
sinh z + sinhy = 2sinh 5(1 + y) cosh 5(w Fy),

1 1
coshz + coshy = 2cosh 5(;5 + y) cosh §(w -y,

1 1
coshz — coshy = 2sinh §(I+y) sinh 5(1 —y).

0.2.11 The hyperbolic functions tanh z and cothz

Tangens hyperbolicus and cotangens hyperbolicus (hyperbolic tangent and
cotangent): For all complex numbers
T # (k7r + Z)i with &k € Z we define a function

sinhx

tanhx :=

coshz




For all complex numbers x # k7i with &k €
Z we define the function

cosh

cothz :

sinhz

The graphical representation of these two
functions for real arguments x is given in
Figure 0.35.

The following formulas hold for all com-
plex arguments x and y for which the func-
tions do not have poles®®

Relationship with the trigonometric
functions:

0.2. Elementary functions and graphs 65
) Y
N -
] T 1, =
)
(a) y =tanhz (b) y = cothz

Figure 0.35. Hyperbolic functions.

|tanhz = —itaniz,

cothz =icot imj

Table 0.20. Zeros and poles of the hyperbolic functions and trigonomeiric functions (all

zeros and poles are simple).

Function Period Zeros (k € Z) Poles (k € Z) Parity
sinh x 27i ki - odd
coshz 271 (wk + E) i - even

2
. . TN .
tanh z i ki (ﬂ‘k + 5) i odd
cothz i (wk + g) i ki odd
sinz 27 wk - odd
T
Ccos I 2T wk + 0 - even
T
tanx T nk 7wk + 5 odd
T
cotzx T 7k + 0 wk odd
Derivative:
dtanhz 1 dcothz _ 1
dzx cosh’z’ dzx sinh®z

391n older liturature also the following functions are used (hyperbolic secant and cosecant):

1
sinhx
L _
cosh =

cosechz, :=

sechz, :=

(cosecans hyperbolicus) ,

(secans hyperbolicus) .
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Addition theorems:

tanhz & tanhy _ 1 +cothzcothy

tanh(z £ y)= ————, th(z £y) =
anh(z £ y) 1+ tanhz tanhy coth(z £ y) cothz &£ cothy
Doubled arguments:
2tanh: 1 + coth?
tanh 2z = Lﬁ s coth2x = 1dcoth = .
1+ tanh® z 2cothz
Half-arguments:
tanh z coshx—1 sinh z
anh - = =
2 sinhz coshz +1°
coth T _ sinhz  coshz+1
2 coshz—1  sinhz
Sums:
inh(z +
tanhz + tanhy = _s_l_n_(x__y)_ .
coshx coshy
Squares:
tanh? 1
sinh?z - cosh?z — 1 an x2 5
1 —tanh“z coth®z — 1
1 th?
cosh? z sinh®z + 1 - 5 c02 i
1 —tanh®z coth”x — 1
2 sinh? z cosh®z — 1 1
sinh“x + 1 cosh” z coth”
coth? sin%lr“) m2 +1 coth2 z 1 ; B
sinh” z cosh“z ~ 1 tanh” z

Power series expansion: See section 0.7.2.

0.2.12 The inverse trigonometric functions

The function arcsine: The equation

yZSil’lI, - ng )

Nl
rof

has for every real number y with —1 < y < 1 exactly one solution, which we denote by
z = arcsin y. Formally exchanging = and y, we get the function

y = arcsinz, -1<zg<1.

The graph of this function is obtained from that of y = sinz by reflection on the
diagonal® (see Table 0.21).

4015 older literature the principal branch and other branches of the function y = arcsinz are used.
This distinction can however lead to erroneous interpretation of (many-valued) formulas. In order to
avoid that, we will use in this book only the one-to-one inverse function, which corresponds to the older
principal branch (see Tables 0.21 and 0.22). The notation y = arcsinz means: y is the size of the
angle y (measured in radians), whose sine has the value x (latin: arcus cuius sinus est x). Instead of
arcsinz, arccos, arctanz and arccot z one speaks of the functions arcsine, arccosine, arctangent and
arccotangent (of x).
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Table 0.21. Inverse trigonometric functions — graphs.

67

-

Original function

Inverse function

-

Y
1 i
T @ S T z
-1
Yy=cosx Y = arccos
4 y
P s
4/ 2 """"""""""
S 4 z 7 T
2, 2 | =
0 2 1 r 2
y=tanz y = arctanzx

-------------- +7

N

&

Yy = arccotz

Table 0.22. Inverse trigonometric functions — formulas.

|

Equation Bounds ony | Solutions x (k € Z)

y =sinx -1<y<t r =arcsiny + 2km, = —arcsiny + 2rk,
Yy = COSX -1<y<1 ¢ = tarccosy + 2k,

y=tanz —oo<y<oo | z=arctany+ k7,

y=cotx —00 <y <00 T = arccoty + km.

Transformation formulas: For all real numbers x with —1 < 2 < 1 one has:

. . T z
arcsinz = — arcsin(—z) = = — arccosz = arctan — .
2 VI—a?
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For all real numbers z one has:

™ . T
arctanx = — arctan(—x) = — — arccot x = aresin ———— .
2 V1+z?

Derivative: For all real numbers x with —1 < = < 1 one has:

darcsinx 1 darccosz 1

dz \/1—z2’ da - ,/l_xZ'

For all real numbers x one has:

darctanx 1 darccotx _ 1
dx T 142’ dz T o l+a?

Power series: See section 0.7.2.

0.2.13 The inverse hyperbolic functions

Arcsinh: The equation
y = sinhx, -0 < < 00,

has, for every real number y, exactly one solution, which is denoted by z = arsinhy.
Formally exchanging x and y, we get the function

y = arsinhx, —o< T <00,

The graph of this function is obtained from the graph of the function y = sinhz by a
reflection on the diagonal*! (see Table 0.23).

Derivative:

darsinhz 1

e Vi —oo < & < 00,
d arcoshz 1 -1

= x

dx Vi—a22’
dartanh x 1

dx T T2 el > 1
darcothz 1

dx 12 ol <1

Power series: See section 0.7.2.

41The Latin names for the inverse hyperbolic functions are area sinus hyperbolicus, area cosinus
hyperbolicus, area tangens hyperbolicus and area cotangens hyperbolicus (of ). The notation used here
is from the fact that these functions give values which are the arguments of the hyperbolic functions.
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Table 0.23. Inverse hyperbolic functions — graphs.

69

Original function

Inverse function

l

y p yt -
x x
y =sinhz y = arsinhz
Yy L/’/ Yy ,/,
z 1 x
y = coshz y = arcoshz
Yy Y
1
5 x -1 1 x
-1
y = tanhzx y = artanhx
Y K LA
T - &
-1 :
Q:' hd

y = arcothx

Table 0.24. Inverse hyperbolic functions — formulas.

Equation r Bounds on y Solution x

y =sinhz —00 < Y < 00 mzarsinhyzln(y{»\/m),

y = coshx y=>1 xz:l:arcoshyz:i:ln(y—#%ﬁ) ,
y = tanhz —l<y<i1 xzartanhyzélnitz,

y =cotha y>1l,y<—1 ;r=arcothy=llny+1.

2 y-1
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Transformation formulas:

arsinh ¢ = (sgn x)arcosh v/1 + x? = artanh

x
- ~o0 < T < 00,

Jiva

arcoshx = arsinh /22 — 1, zr>1,

1
arcoth z = artanh — , -l<z<l1.
x

0.2.14 Polynomials

A (real) polynomial of degree n is a function of the form

Yy =az" + an 12" '+ ..+ arz+ae. (0.43)

Here n can take any of the values n = 0,1,2, ..., and all coefficients ay are real numbers

with a, #0.

Smoothness: The function y = f(z) in (0.43) is continuous and infinitely often differ-
entiable in every point z € R. The first derivative is:

fla

Behavior at infinity:

J=nae™ 4 (n— Da, 12" 2+ ... 4 a.

The function y = f(z) in (0.43) behaves for x — oo in the

same way as the function y = ax™, i.e., for n > 1 one has*?:

+00 for a, >0,
1i =
a—troo /@) {—oo for a, <0,
+00 for a, >0 andn even
or for a, < 0 and n odd,
lim f(z) =
r—-—00
—00 for a, >0 andn odd
or for a, < 0 and n even.
Zeros: If n is odd, then the
Y Y .
§ f graph of y = f(x) intersects
the z-axis at least once (Figure
) 0.36(a)). This point of intersec-
x ’ \;/ 2  tion corresponds to a solution of

(a) zeros and
local extrema

o

the equation f(z) =0.

(b) global minimum Global minimum: If  is even

and a, > 0, then y = f(z) has
a global minimum, i.e., there is
a point a with f{a) < f(z) for
all z € R (Figure 0.36(b)).

s T If n is even and a, < 0, then
’ y = f(z) has a global maxi-
(c) inflection point mum.
. . Local extrema: Let n > 2.
Figure 0.36. Local properties of polynomials. Then the function y = f(x) has

42The meaning of the limit symbol ‘lim’ will be explained in 1.3.1.1 .
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at most n — 1 local extrema, which are alternately local minima and local maxima.

Inflection points: Let n > 3. Then the graph of y = f(z) has at most n — 2 inflection
points (Figure 0.36(c)).

0.2.15 Rational functions
0.2.15.1 Special rational functions

Let b > 0 be a fixed real number. The function

b
y:E7 zeR, z#0,

represents a cquilateral hyperboloid, which has the z- and the y-axis as asymptotes.
The vertices are S+ = (:I:\/I;, :I:\/’I;) (Figure 0.37).

b
Behavior at infinity: 1111 —=0.
T—xToxo T

b
Pole at the point & = 0: lim — = $oo.

z—+0 T
y 4y v
| |
t I
t |
Sy ; k // !
P P -
- - b A
S : T | T
b ) |
y=—b>0 ) !
z ! |
1 |
(a) A<O b)A>0
Figure 0.37. Figure 0.38.

0.2.15.2 Rational function with linear numerators and denominators

Let the real numbers a,b,¢ and d be given with ¢ # 0 and A := ad — bc # 0. The
function

ax +b
cxr+d’

wER,x#—%

(0.44)

. . a .
is transformed by the change of coordinates x = u — —, ¥ = w + — to the simpler form
c c

we_ 2
Ty
. . A .
Thus, the general equation (0.44) results for the normalized form y = ——— by a simple
cAr

change of coordinates, which maps the point (0,0) to the point P = (

0.38).

a

d
Fig
o c) (Figure



72 0. Formulas, Graphs and Tables

0.2.15.3 Special rational function with a denominator of nth degree

Let & > 0 be given and n =

Y Y 1,2, ... The function
b
Yy=— reR > T 7/: 0,
a"-n
o ¢ is displayed in Figure 0.39.

0.2.15.4 Rational functions
with quadratic denominator

b b
(a) y= —m 1 even (b)y= Pl odd Special case 1: Let d > 0 be
Figure 0.39 given. The functions
1
il e
Y d* Y

and

T
= R
/ y ) y iR r e R,

are pictured in Figure 0.40.

8y
8

Special case 2: Let two real
numbers x4 be given with z_ <
z, . The function y = f(z) given
z b
b)y=—— Y
(b) y 2+ d?
Figure 0.40. _ [
y=-———-+——| (0.45)
@ o)z —2)

(a)y:w2+d2

can be put in the form

1 ( 1 1 )
y= - .
Ty — T \ZT—Ty T—T_

This is a special case of the so-call partial fraction decomposition (cf. 2.1.7). One has:

Thus the poles of the function are at the

Y, points x4 and z_ (see Figure 0.41).
Special case 3: The function
z—1
= A4
Y= (0.46)

T
* s initially not defined at the point z = 1.
However, if one uses the decomposition

22 —1=(z — 1)(z + 1), then we get

1
r+1’

i I
¥ i
1 1
| |
| !
| |
| t
Py 4
| |
! |
t |
l |
| |
| 1
i [
| {

y= reR, z# 1.

Figure 0.41.
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One says that the function (0.46) has a apparent singularity at the point z = 1.

General case: Let real numbers a, b, ¢ and d be given with a® + % # 0. The behavior
of the function y = f(z) defined by

ar+b

- 0.47
y 72 +2cr+d ( )

depends in an essential way on the sign of the discriminant D := ¢ — d. Independently
of this, one always has

lim f(z)=0.

r—toc

Case 1: D > 0. Then one has
2+ 2x+d=(z—z4)(m—2_)

with 24 = —c+ +/D. This yields the partial fraction decomposition
A B

T—zy T—T-

flz) =

The constants A and B are determined by calculating the limits:

_+
A= lim (w—z+)f(a:):az+—+b, B = lim (:::—x.)f(:::):u
T—T4 Ty — T T—T_

o —xy
There are poles at the points z+.
Case 2: D = 0. In this case one has z, = z_ . We thus get
az +b
g cEra

This yields

im f(x)=

z— x40

+oo, if ari+6>0,
—o0, if ary+b<0,
i.e., the point x is a pole.

Case 3: D < 0. In this case we have 2 4+ 2cz + d > 0 for all z € R. Consequently the
function y = f(z) in {0.47) is continuous and infinitely often differentiable for all points
x € R, in-other words, f is smooth.

0.2.15.5 The general rational function

A (real) rational function is a function y = f(z) of the form

_apT" + ... taiT+ag
T bz .. bzt by

where there are polynomials in both the numerator and the denominator (cf. 0.2.14).

Behavior at infinity: We set ¢ := a,,/b,, . Then we have:

lim f(z)= lim ecx" ™.

z—toc z—too
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From this we can discuss all possible cases.

Case 1: ¢> 0.
c forn=m,
lim f{z)=4 400 forn>m,
r—+40c
0 forn <m.
c forn=m,
. 400 for n > mand n —m even,
lim f(z) =
T——00 —oo for n > m and n - m odd,

0 forn<m.

Case 2: ¢ < (. Here one must replace oo by Foc.

Partial fraction decomposition: The precise structure of rational functions is given
by the partial fraction decomposition (cf. 2.1.7).

0.3 Mathematics and computers — a revolution in
mathematics

One can say that we live in the age of mathematics, and that our
culture has been ‘mathematized’. This is proved beyond a doubt by the
widespread use of computers.

Arthur Jaffe

{Harvard University, Cambridge, USA)

In solving mathematical problems one utilizes (at least) four important techniques:
(i) the use of numerical algorithms;

(ii) the algorithmic treatment of analytical, algebraic and geometric problems;

(iii) reference to tables and collections of formulas;

(iv) the graphical representation of situations.

Modern software programs can carry out all four of these effectively on computers:

(a) For the solution of standard problems of mathematics we suggest the system Math-
ematica.

(b) For more complicated problems of scientific calculations a combination of Maple and
Matlab often leads to success.

(¢c) Many software packages also contain the program library Imsl math/stat/sfun library
(International Mathematical and Statistical Library).

To solve a given mathematical problem, one should first check whether the problem is
amenable to the procedures available in Mathamatica. This is the case for example for
many of the problems considered in this book. Only after this has been checked with
negative result should one resort to (b) or (c).

There is a long list of literature on this topic at the beginning of the bibliography. The
handbooks listed there for using Mathematica are skillfully written and didacticly apt,
addressed to a large audience. Experience shows that one requires a certain amount of
time to get used to such programs, before they can be applied efficiently. It is worthwhile
to invest this time; the gains are potentially great.
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Modern software systems, which are continually being refined, are already able to do a
great amount of the routine work for the user, freeing him for other activities. However,
this can not replace a thorough occupation with the basics of mathematics. In this
connection the following picture is helpful. At a construction site one sees today huge
cranes, which do an enormous amount of work for humans. But still it is the humans
which decide what is to be built and how the building should be designed. For this human
qualities like phantasy and originality are required, something one can not expect {(or
want!) a machine to possess.

0.4 Tables of mathematical statistics and standard
procedures for practitioners

The goal of this section is to give a large audience of potential readers an acquaintance
with the basics and practical application of mathematical statistics. To meet this goal,
we assume on the part of the reader almost nothing in the way of mathematical back-
ground. A discussion of the fundamentals of mathematical statistics can be found in
6.3.

Mathematical statistics on the computer: Elementary standard procedures can
be done with Mathematica. More specialized statistical packages which are wide spread
are SPSS and SAS.

0.4.1 The most important empirical data for sequences of mea-
surements (trials)

Many measurements in technology, science or medicine have the characteristic property
that the results of measurements vary from trial to trial. One says, that the measure-
ments have a component of randomness. The quantity one wishes to measure, X, is
called a random variable.

Ezxample 1: The height X of a person is random, i.e., X is a random variable.
Sequence of measurements: If we measure a random quantity X, then we get mea-

surements

L1y vevy Ty

Example 2: The Tables 0.25 and 0.26 show the result of measuring the height of 8 men
in cm.

Table 0.25
2 o T3 T4 s I 7 s Ax
168 170 172 175 176 177 180 182 175 4,8

8

Table 0.26
1 T2 3 7y s Z6 Ty ITg
174 174 174 174 176 176 176 176 175 1,07

]
S
8

Empirical mean and empirical standard deviation: Two basic characteristics of
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a sequence of measurements x1,...,x, are the empirical mean

_ 1
$2:E($1+$2+...+£L‘n)

and the empirical standard deviation Az. The square of this quantity is given by the
formula®3

(Ax)? = TTI__I [ -2+ @ -2+ 2]

Ezample 3: For the values in Table 0.25 one gets

T = (168 +170+ 172+ 175+ 176 + 177 + 180 + 182) =175.

o] =

One says that the average height of the men is 175 cm. The same average is obtained
from the values in Table 0.26. A glance at the tables however shows that the variation
in the values of Table 0.25 is much higher than that of Table 0.26. For Table 0.26 we
get

1

(Aa) = = [(174—175)2+(174—175)2+...+(176—175)2}
1 8
=?[1+1+1+1+1+1+1+1]=;,

in other words, Az = 1.07. On the other hand, the values for Table 0.25 yield for the
standard deviation from the equation

1
(Ac)® = = [(168 1752 + (170 — 175)% + ... + (182 — 175)2}
1
= 7[49+25+9-~-1+4+25+49] =23

the value Az = 4.8.
Rule of thumb:

The smaller the empirical standard deviation is, the smaller
is the variation of the measurements from the mean % .

In the limiting case Az = 0, all the measurements coincide with the mean Z.

The distribution of the measurements — the histogram: To get a general idea
of the distribution of the measurements, one uses, especially for larger sets of measure-
ments, a graphical representation called the histogram.

(i) One divides the measurements into several classes K1, Ko, ..., K;. These are neigh-
boring intervals.

(ii) Let m, denote the number of measurements which belong to the class K.

(iii) If » measurements have been made z1,. .., Ty, then the quantity T is called the
n

relative frequency of the measurements with respect to the class K, .

43The appearance of the denominator n—1 instead of that probably expected by many readers, namely
n, can be justified by estimation theory. In fact the quantity Az is a expectation faithful estimation for
the theoretical standard deviation AX of the random variable X (cf. 6.3.2). For large n the difference
between n and n — 1 is negligible.

The quantity (Az)? is called the variance.
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(iv) One graphs the classes K, with a column of height % over each K.

Ezample 4: In Table 0.27 the measurements for the heights of 100 men in centimeters
are listed. The histogram constructed from these data is displayed in Figure 0.42.

Table 0.27
Relative
Class| Measure- | Frequency frequency

my
K, ments m,

100 y
Ky |150 <z <165 2 0,02 0.3
Ky (165 <z <170 18 0,18
Kz (170 <z <175 30 0,30
Ky [|175<2 <180 32 0,32 | s =
Ks | 180 <z < 185 16 0.16 150 165 175 185 200 z
Keg |185<zx <200 2 0,02 Figure 0.42

0.4.2 The theoretical distribution function

The sequences of trials of a random variable X generally vary from trial to trial. For
example, the measurements of heights of persons leads to different results if one measures
all men in a house, a city or a state. The notion of theoretical distribution function is
necessary in order to build up a theory of random variables.

Definition: The theoretical distribution function @ of a random variable X is defined
by the following prescription:

I@(z) =P (X < z) l

This means that the value ¢(z) is equal to the probability that the random variable is
less than the given number z.

The normal distribution: Many measured quantities follow a normal distribution.
To explain this, we consider a Gauss bell curve

w(x) == L e~ (@-w)?/20% (0.48)
oV2m

Such a curve has a maximum at the point # = . The smaller the positive value ¢ is,
the more it is more concentrated at the point z = . One calls u the mean and o the
standard deviation of the normal distribution (Figure 0.43(a)).

The area of the hatched surface in Figure 0.43(b) is equal to the
probability that the random variable lies in the interval [a, b].

The distribution function ¢ of the normal distribution (0.48) is displayed in Figure
0.43(d). The value &(a) in Figure 0.43(d) is equal to the area of the surface under the
bell curve, which lies to the left of a. The difference

B(b) — P(a)

is equal to the area of the hatched surface in Figure 0.43(b).
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Y Yy
12
] w—0 L 7 +o £ 1 a b £
(a) probability density (b) probability as area
Y y r
P
l1-a
14 P(a)
To Lo 'z$ z a z
(¢) confidence interval (d) distribution function

Figure 0.48. Properties of the Gaussian normal distribution.

Confidence interval: This notion is of central importance for mathematical statistics.

The a-confidence interval [z, ,z}] of the random variable X is defined in such a way

that the probability that all measurements of X lie in the interval is 1 — ¢, i.e., the
probability that z satisfies the inequality

- +
T, <z <Lz,

is 1 — . In Figure 0.43(c) the endpoints of the interval z} and z are chosen in such a
way that they are symmetric around the mean p and the area of the hatched surface is
equal to 1 — a. One has

+ _ -
T, =p+02,, Ty = — 02 -

The value of z, for the important cases for many applica-
Table 0.28 tions, namely o = 0.01, 0.05, 0.1, are listed in Table 0.28.

a | 0.01]0.05]0.1
Za| 2.6 | 2.0 | 1.6

The random variable X lies with the probability
1 — a in the a-confidence interval.

Example: Let p =10 and ¢ = 2. For o = 0.01 we get

xf=10+2-26=15.2, z, =10-2-2.6=48.

It follows that with a probability of 1 —a = 0.99, the measured value x lies between 4.8
and 15.2. Intuitively this means the following.

(a) I n is a large number and we take a total of n measurements of X, then there are
approximately (1 — a)n = 0.99n measured values in between 4.8 and 15.2.

(b} If we measure X for example 1000 times, then approximately 990 of the values lie
between 4.8 and 15.2.
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0.4.3 Checking for a normal distribution

Many test procedures in applications are based on the assumption that a random variable
X follows a normal distribution. We describe here a simple graphical procedure to test
whether X is normally distributed.

(i) We draw a line in the (z,y)-coordinate plane, which contains the pairs of points
(2,9(2)), which we take from Table 0.29 (Figure 0.44). Note that the value on the
y-axis in the present case has an irregular scale.

(ii) For given measured values z1, ..., Z, of X we form the quantities

;=7
Zj = ,
Az

7=1...,n.
(iil) We calculate the numbers
1 .
@.(z;) = = (number of measured values zj , which are smaller than z; )
n

and plot the points (z;, ®.(2;)) in Figure 0.44.

If these points lie approximately on the line drawn in (i), then X is approximately
normally distributed.

Example: The open circles in Figure 0.44 represent measurements which are approxi-
mately normally distributed.

Table 0.29. Sample values of the normal distribution function.
z -25| -2 | —-15] -1] —05( O 0.5 1 1.5 2 2.5
&(z)] 0.01| 0.02; 0.07| 0.16| 031} 05| 0.69] 0.84| 0.93| 0.98| 0.99

A more precise table of the values of @ is given in Table 0.29. The diagram of Figure
0.44 can also be obtained as so-called probability paper.

-25 -2 -15-1-05 0 05 1 15 2 25 g

Figure 0.44. Checking data for approzimate normal distribution.

The x2-fit test for normal distributions: This test, which is much more significant
than the intuitive method just explained with the probability paper, is described in
6.3.4.5.
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0.4.4 The statistical evaluation of a sequence of measurements

‘We assume that X is a normally distributed random variable, whose normal distribution
(0.48) has mean p and standard deviation o.

The confidence limit for the mean pu:
(i) We take n measurements of the quantity X and get the measurements z1,...,2, .

(ii) We choose a small number « as the probability of being in error and determine the
value of ¢, ,n with m =n — 1 from Table in 0.4.6.3.

Then the unknown mean y for the normal distribution satisfies the inequality:

Az A
T tame < p<T+tom — .

Vn vn

This statement has a probability of a of being in error.

Example 1: For the measurements of heights listed in Table 0.25 one hasn = 8,7 = 175,
Az = 4.8. If we choose a = 0.01, then we get from 0.4.6.3 for m = 7 the value
ta,m = 3.5. If we assume that the height is a normally distributed random variable,
then we have, with error probability « = 0.01, for the mean:

169 < pu < 181.

The confidence interval for the standard deviation o: With probability « of
error, the standard deviation o satisfies the inequality:

(n— 1;(&)2 co?< (n — 1) (Az)® _

The values a := X%—a/Q and b := Xi/2 are extracted from the table in 0.4.6.4 with
m =mn — 1 degrees of freedom.

Ezample 2: We consider again the height measurements listed in Table 0.25. For a =
0.01 and m = 7 we get a = 1.24 and b = 20.3 from 0.4.6.4. Consequently we get with
error probability @ = 0.01 the estimate

2.8 < o < 11.40.

It is not surprising that these estimates are quite rough. This is because of the small
number of measurements.

A more detailed justification is given in 6.3.3.
0.4.5 The statistical comparison of two sequences of measure-
ments

Let two sequences of trials of random variables X and Y be given,

rml, e Tp, and Ylyeors Yng- (0.49)

Two basic questions are:
(i) Is there a dependence between the two sequences of measurements?
(ii) Is there a significant difference between the two random variables?

To investigate (i) one uses correlation coefficients. An answer to (ii) is provided by the
F-test, the t-test and the Wilcoxon-test. This will be considered in the sequel.
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0.4.5.1 Empirical correlation coeflicients

The empirical correlation coefficient of the two sequences of measurements (0.49) with
ni = ny = n is given by the number

_(@m-Dn -+ (@ - -9+ + (@ -T) (-7
(n — 1)AzAy )

One has —1 < 9 < 1. For p = 0 there is no dependency between the two sequences.

The dependency between the two sequences is stronger
the larger the quantity g2 is.

Regression line: If one plots the pairs (z;, y;) of measurements in a Cartesian coordi-
nate system, then the so-called regression line

_ . Ay _
y=y+o5 (z-7)

is the line closest to the set of plotted points (Figure 0.45), i.e., this line is a solution of
the minimum problem

n
Z(yj—-a—bxj)z émin, a,breal,
=1

and the minimal value is equal to (Ay)2 (1 — 92) . The fit of the regression line on the
measurements is thus optimal for ¢ = 1.

Table 0.30
I 2 T3 T4 5 Zg 7 g I Azx
168 170 172 175 176 177 180 182 175 5
% Yo ¥3 Y4 Y5 Yo Y7 s g Ay
157 160 163 165 167 167 168 173 165 5

Example: For the two sequences of measurements
listed in Table 0.30 one gets the correlation coeffi-
cient

o= 0.96

with the regression line
y=7+096(z 7). (0.50) Figure 0.45.

Here there is a strong dependency between the two sequences of measurements. The

measurements are approximated quite well by the regression line (0.50).

0.4.5.2 The comparison of two means with the ¢-test

The t-test is often used in applications. With this test one can verify whether the means
of two sequences of trials differ essentially from one another.
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(i) We consider the two sequences z1,...,Zn, and yi,...,Yn, of two random variables
X and Y, which we assume are normally distributed.

In addition one assumes that the standard deviation of X and Y are the same. This
assumption can be checked with the help of the F-test 0.4.5.3.

(i) We calculate the number

E—@ nan(nl +n2—-2)

t=
\/(nl — 1) (Az)? + (ny — 1) (Ay)? n1 + n2

(iii) For a given @ and m = ny + n2 — 1 we determine the value 4, from the table in
0.4.6.3.

Case 1: Assume

In this case the means of X and Y differ, i.e., the differences between the measured
empirical means T and 7 are not random, but have some explanation. One also says in
this case that there is a significant difference between the random variables X and Y.

Case 2: One has

[t < ta.m -

One may assume that the means of X and Y do not differ significantly.

The statements both have a probability of error of a. This means the following. If one
applies this test in 100 different situations, then there is a probability that this will lead
to a false conclusion in 100 - « cases.

Ezample 1: For oo = 0.01 there might be in 100 tests one case in which the test leads to
a wrong conclusion.

Ezample 2: Two medicines A and B are being given to patients which have the same
illness. The random variable is the number of days X (resp. Y) for the medicine A
(resp. B) to be administered until the illness has been cured. Table 0.31 lists some
measurements. For example, the mean duration until cure is 20 days under the use of
medicine A.

Table 0.31
medicine A : T =20 Az =5 | ny = 15 patients
medicine B : Y =26 | Ay =4 | no = 15 patients.
We get
_ 26 — 20 15-15(30—2)_36
T J/14-25+14-16 15+ 15 o

We find for the value of a@ = 0.01 and m = 15+ 15 — 1 = 29 the value t,,» = 2.8 from
the table in 0.4.6.3.

Because of t > 4 m there is a significant difference between the two medicines, i.e.,
medicine A is better than B.
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0.4.5.3 The F-test

This test verifies whether the standard deviations of two normally distributed random
variables differ from one another.

(i) We consider the two sequences of measurements 1,...,Zy, and yi,...,Yn, of the
two random variables X and Y, both of which we assume follow a normal distribution.

(i) We form the quotients

2
Ax
- i A
(Ay) , if Az > Ay,

2
Ay .
—_ < .
( Am) , if Az < Ay

(iii) We look up the bold-faced value Fp qi;mym, in 0.4.6.5 for my :=n; — 1 and my :=
iz — 1.

Case 1: One has

In this case the standard deviations of X and Y are not the same, i.e., the difference be-
tween the measured empirical standard deviations Az and Ay is not a random variation,
but has some deeper meaning.

Case 2: One has

One may assume that the standard deviations of X and Y are essentially the same.
These statements both have a probability of error of 0.02. This means the following.
Carrying out this test in 100 different situations, it is likely that in two of these situations
the test leads to a wrong conclusion.

Ezample: We consider again the situation giving rise to the data of Table 0.31. One
has F = (Ax/Ay)2 = 1.6. From the table in 0.4.6.5 with m; = my = 14 we find
Fy.01;mims = 3.7. Because of F' < Fy p1,;m,m, We can be assured that X and Y have the
same standard deviation.

0.4.5.4 The Wilcoxon-test

The t-test can only be applied to normally distributed quantities. The Wilcoxon-test
is much more general and can be applied for example to check whether two sequences
of trials come from random variables with different distributions, i.e., whether these
quantities differ from each other in an essential way. This test is described in 6.3.4.5.

0.4.6 Tables of mathematical statistics

0.4.6.1 Interpolation of tables

Linear interpolation: Each table consists of entries and table values. In Table 0.32,
z denotes the entries and f(x) the values.
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y f Table 0.32 First basic problem: Interpola-
tion of table values f(z) for known

entries x : If the entry z is not in the

1} 0.52 table, one can use the method of lin-
| f } } 2} 060 ear interpolation, which is illustrated
T T T z 3| 064 in Figure 0.46. Here the graph of

y = f(z) is replaced by the secant be-
tween two of the pairs (z1, f(z1)) and
(x2, f(z2)). The approximate value
fi(z) for f(z) is then derived from the linear interpolation formula:

Figure 0.46.

5@) = plon) 4 LEL D gy (051)

o — X

Example 1: Let z = 1.5. In Table 0.32 one finds the nearest entries
z; =1 and I9 =2

with the values f(z1) = 0.52 and f(x2) = 0.60. From the interpolation formula (0.51)
it follows

.60 — 0.52
ful@) = 052 + M(” 1

=0.52+0.08-0.5=0.56.

Second basic problem: interpolation of the entry x for a known value f(z):
To determine z from f(z), one uses the formula:

(@)~ flw1)

f(:Ez) — f(xl) (IQ - Il) . (052)

r=x1+

Example 2: Suppose that the value f(z) = 0.62 is given. The nearest table values in
Table 0.32 are f(x;) = 0.60 and f(a2) = 0.64 with z; = 2 and x5 = 3. Applying (0.52)
we get

0.62 — 0.60 0.02

I:2+‘0.6470.60(372):2+m:2'5'

Higher precision with Mathematica: Linear interpolation is a method of producing
an approximation. For the needs of mathematical statistics this is quite sufficent. One
should not be led to believe that more digits after the decimal point is an increase in
accuracy in an endeavor like statistics which by its very nature is not precise.

In physics and technology, however, one often requires a higher precision. For this the
method of quadratic interpolation is often applied. In the day of wide-spread computers
one can use computer software programs to get very precise values for special functions
(for example with Mathematica).



0.4.6.2 Normal distribution

Table 0.33. The density function
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©(2)

plz) = L exp (—32°) of the normalized,
V2r -
g 0 =z
centered normael distribution. .
Figure 0.47.
z 0 1 2 I 3 ' 4 [ 5 6 7 | 8 T 9
0.0 30894 3989 3989 3988 3986 3984 | 3982 3980 3977 3973
a.1 39704 3965 3961 3956 3951 3945 3939 | 3932 3925 3918
0.2 39104 3902 3894 3885 3876 3867 | 3857 3847 3836 3825
0.3 3814714 3802 3790 3778 3765 3752 3739 3725 3712 3697
0.4 | 3683~4 3668 3653 3637 3621 3605 3589 3572 3555 3538
0.5 352174 3503 3485 3467 | 3448 3429 | 3410 3391 3372 3352
0.6] 3332-¢ 3312 3292 3271 3251 3230 3209 3187 3166 3144
0.7 312374 3101 3079 3056 3034 3011 2989 2966 2943 2920
0.8 28974 2874 2850 2827 2803 2780 2756 2732 2709 2685
0.9 26614 2637 2613 2589 2565 2541 2516 2492 2468 2444
1.0| 242074 2396 2371 2347 2323 2299 2275 2251 2227 2203
1.1 2179—4 2155 2131 2107 ( 2083 2059 2036 2012 1989 1965
1.2 194214 1919 1895 1872 1849 1826 1804 1781 1758 1736
1.3 171474 1691 1669 1647 1626 1604 1582 1561 1539 1518
1.4 1497-4 1476 1456 1435 1415 1394 1374 1354 1334 1315
1.5 12954 1276 1257 1238 1219 1200 1182 1163 1145 1127
1.6 11094 1092 1074 1057 1040 1023 1006 9893—% 9728 9566
1.7] 94055 9246 9089 8933 8780 8628 8478 8329 8183 8038
1.8 78955 7754 7614 T477 7341 7206 7074 6943 6814 6 687
1.9 65625 6438 6316 6195 6077 5960 5844 5730 5618 5508
2.0 5399° 5292 5186 5082 4980 4879 4780 4682 4 586 4491
2.1 43985 4307 4217 4128 | 4041 3955 3871 3788 3706 3626
22| 354775 3470 3394 3319 3246 3174 3103 3034 2965 2898
2.3 2833°° 2768 2705 2643 2582 2522 2463 2406 2349 2294
24| 2239-% 2186 2134 2083 | 2033 1984 1936 1888 1842 1797
2.5 17535 1709 1667 1625 1585 1545 1506 1468 1431 1394
2.6 1358—% 1323 1289 1256 1223 1191 1160 1130 1100 1071
2.7 10427° 1014 98716 9606 9347 9094 8846 8605 8370 8140
28| 79156 7697 7483 7274 7071 68731 6679 6491 6307 6127
2.9 59536 5782 5616 5454 5296 5143 4993 4847 4705 4567
3.0 4432-6 4301 4173 4049 3928 | 3810| 3695 3584 3475 3370
3.1 32676 3167 3070 2975 2884 2794 2707 2623 2541 2461
3.2 23846 2309 2236 2165 2096 2029 1964 1901 1840 1780
3.3 17236 1667 1612 1560 1508 1459 1411 1364 1319 1275
3.4 1232-6 1191 1151 1112 1075 1038 1003 96897 9358 9037
3.5 87277 8426 8135 7853 7 581 7317 7061 6814 6575 6343
36| 611977 5902 5693 5490 5294 5105 | 4921 4744 4573 4408
3.7 1 42487 4093 3944 3800 3661 3526 | 3396 3271 3149 3032
3.8 29197 2810 2705 2604 2506 | 2411 2320 2232 2147 2065
3.9 19877 1910 1837 1766 1698 1633 1569 1508 1449 1393
4.0 13387 1286 1235 1186 1140 1094 1051 1009 96878 9299
4.1 89268 8567 8222 7890 7570 7263 6967 6683 6410 6147
4.2 58948 5652 5418 5194 4979 4772 4573 4382 4199 4023
4.3 38548 3691 3535 3386 3242 3104 2972 2845 2723 2606
44| 2494-8 2387 2284 2185 2090 1999 1912 1329 1749 1672
4.5 15988 1528 1461 1396 1334 1275 1218 1164 1112 1062
4.6 1014-8 96849 9248 8830 | 8430 8047 | 7681 7331 6996 6676
4.7 63709 6077 5797 5530 5274 5030 4796 4573 4360 4156
4.8 39619 3775 3598 3428 3267 3112 2965 2824 2960 2561
4.9 243979 2322 2211 2105 2003 1907 1814 1727 1643 1563
Remark: 3989~ is to be understood to mean 3989 - 10~%.
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Table 0.84. Probability integral ®o(z) = / plz)dz =
0

normalized, centered normal distribution.

1

The distribution function ®(z —_— / exp dz is
1
) \/ 21 )
1 —0C
! related to ®o(z) by the relation ®(z) = } +®q(z); moreover,

0z $o(—2) = —Po(2).
Figure 0.48.

z 0 1 l 2 ‘ 3 l 4 5 6 I 7 [ 8 i 9
0.0 0.0 000 040 080 120 160 199 239 279 319 359
0.1 398 438 478 517 557 596 636 675 714 753
0.2 793 832 871 910 948 987 026 064 103 141
0.3 0.1 179 217 255 293 331 368 406 443 480 517
0.4 554 591 628 664 700 736 772 808 844 879
0.5 915 950 985 019 -054 088 123 157 190 224
0.6 0.2 257 291 324 357 389 422 454 486 517 549
0.7 580 611 642 673 703 734 764 794 823 852
0.8 881 910 939 967 995 023 051 078 106 133
0.9 0.3 159 186 212 238 264 289 315 340 365 389
1.0 413 438 461 485 508 531 554 577 599 621
1.1 643 665 686 708 729 749 770 790 810 830
1.2 849 869 888 907 925 944 962 980 997 015
1.3 0.4 032 049 066 082 099 115 131 147 162 177
14 192 207 222 236 251 265 279 292 306 319
1.5 332 345 357 370 382 394 406 418 429 441
1.6 452 463 474 484 495 505 515 525 535 545
1.7 554 564 573 582 591 599 608 616 625 633
1.8 641 649 656 664 671 678 686 693 699 706
1.9 713 719 726 732 738 744 750 756 761 767
2.0 772 778 783 788 793 798 803 808 812 817
2.1 821 826 830 834 838 842 846 850 854 857
2.2 860 864 867 871 874 877 880 883 886 889

966 474 906 263 545 755 894 962 962 893
2.3 892 895 898 900 903 906 908 911 913 915
759 559 296 969 581 133 625 060 437 758
2.4 918 920 922 924 926 928 930 932 934 936
025 237 397 506 564 572 531 443 309 128
2.5 937 939 941 942 944 946 947 949 950 952
903 634 323 969 574 139 664 151 600 012
2.6 953 954 956 957 958 959 960 962 963 964
388 729 035 308 547 754 830 074 189 274
2.7 965 966 967 968 969 970 971 971 972 973
330 358 359 333 280 202 099 972 821 646
2.8 974 975 975 976 977 978 978 979 980 980
449 229 988 726 443 140 818 476 116 738
2.9 981 981 982 9183 983 984 984 985 985 986
342 929 498 052 589 111 618 110 588 051
Remarks: 0.4 860 is to be interpreted here to mean 0.4 860 966.
966

A dot in front of an entry indicates a jump of one in decimal place.
For example in the line z = 0.5, the entry -019 means .2019.
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Table 0.34. (continued)
z 0 1 ‘ 2 3 4 5 6 l 7 8 9
3.0 0.4 986 986 987 987 988 988 988 989 989 989
501 938 361 772 171 558 933 297 650 992
3.1 990 990 990 991 991 991 992 992 992 992
324 646 957 260 553 836 112 378 636 886
3.2 993 993 993 993 994 994 994 994 994 994
129 363 590 810 024 230 429 623 810 991
3.3 995 995 995 995 995 995 996 996 996 996
166 335 499 658 811 959 103 242 376 505
34 996 996 996 996 997 997 997 997 997 997
631 752 869 982 091 197 299 398 493 585
3.5 997 997 997 997 997 998 998 998 998 998
674 759 842 922 999 074 146 215 282 347
3.6 998 998 998 998 998 998 998 998 998 998
409 469 527 583 637 689 739 787 834 879
3.7 998 998 999 999 999 999 999 999 999 999
922 964 004 043 080 116 150 184 216 247
3.8 999 999 999 999 999 999 999 999 999 999
276 305 333 359 385 409 433 456 478 499
3.9 999 999 999 999 999 999 999 999 999 999
519 539 557 575 593 609 625 641 655 670
4.0 999 999 999 999 999 999 999 999 999 999
683 696 709 721 733 744 755 765 775 784
4.1 999 999 999 999 999 999 999 999 999 999
793 802 811 819 826 834 841 848 854 861
4.2 999 999 999 999 999 999 999 999 999 999
867 872 878 883 888 893 898 902 07 911
4.3 999 999 999 999 999 999 999 999 999 999
915 918 922 925 929 932 935 938 941 943
4.4 999 999 999 999 999 999 999 999 999 999
946 948 951 953 955 957 959 961 963 964
4.5 999 999 999 999 999 999 999 999 999 999
966 968 969 971 972 973 974 976 977 978
5.0 999
997
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0.4.6.3 Values tn, , of the Student ¢-distribution

a/2 a/2
—tam 0 tom
Figure 0.49.
(23
\ 0.10 0.05 | 0.025| 0.020| 0.010 0.005 0.003 0.002 0.001
m

1 6.314 | 12.706 | 25.452 | 31.821 | 63.657 | 127.3 212.2 318.3 636.6
2 2.920 4.303 6.205 6.965 9.925 14.089 18.216 22.327 31.600
3 2.353 3.182 4.177 4.541 5.841 7.453 8.891 10.214 12,922
4 2,132 | 2.776 | 3.495 | 3.747 | 4.604 5.597 6.435 7.173 8.610
5 2.015 2.571 3.163 3.365 4.032 4.773 5.376 5.893 6.869
6 1.943 2.447 2.969 3.143 3.707 4.317 4.800 5.208 5.959
7 1.895 | 2.365 | 2.841 2.998 | 3.499 4.029 4.442 4.785 5.408
8 1.860 | 2.306 | 2.752 | 2.896 | 3.355 3.833 4.199 4.501 5.041
9 1.833 2.262 2.685 2.821 3.250 3.690 4.024 4.297 4.781
10 1.812 2.228 2.634 2.764 3.169 3.581 3.892 4.144 4.587
12 1.782 | 2.179| 2.560 | 2.681 | 3.055 3.428 3.706 3.930 4.318
14 1.761 2.145 2.510 2.624 2.977 3.326 3.583 3.787 4.140
16 1.746 2.120 2.473 2.583 2.921 3.252 3.494 3.686 4.015
18 1.734 2.101 2.445 2.552 2.878 3.193 3.428 3.610 3.922
20 1.725 2.086 2.423 2.528 2.845 3.153 3.376 3.552 3.849
22 1.717 | 2.074 | 2.405 | 2.508 | 2.819 3.119 3.335 3.505 3.792
24 1711 | 2.064 | 2.391 2.492 | 2.797 3.092 3.302 3.467 3.745
26 1.706 | 2.056 | 2.379 | 2479 | 2.779 3.067 3.274 3.435 3.704
28 1.701 | 2.048 | 2.369 | 2.467 | 2.763 3.047 3.250 3.408 3.674
30 1.697 2.042 2.360 2.457 2.750 3.030 3.230 3.386 3.646
o 1.645 1.960 2.241 2.326 2.576 2.807 2.968 3.090 3.291




0.4.6.4 Values xi of the y2-distribution

Figure 0.50.
2
0 Xa
Number m probability o
of degrees
of freedom | ©.99 0.98 1 0.95 090 | 080 | 0.70 | 0.50 | 0.30] 0.20] 0.10] 0.05 | o.ozLo. 01 | 0.005| 0.002| 0.001
1 0.00016 0.0006 0.0039 0.016 0.064 0.148 0.455 1.07 1.64 2.7 3.8 5.4 6.6 7.9 9.5 10.83
2 0.020 0.040 0.103 0.211 0.446 0.713 1.386 2.41 3.22 4.6 6.0 7.8 9.2 10.6 12.4 13.8
3 0.115 0.185 0.352 0.584 1.005 1.424 2.366 3.67 4.64 6.3 7.8 9.8 11.3 12.8 14.8 16.3
4 0.30 0.43 0.71 1.068 1.65 2.19 3.36 4.9 6.0 7.8 9.5 11.7 13.3 14.9 16.9 18.5
5 0.55 0.75 1.14 1.61 2.34 3.00 4.35 6.1 7.3 9.2 11.1 13.4 15.1 16.8 18.9 20.5
6 0.87 1.13 1.63 2.20 3.07 3.83 5.35 7.2 8.6 10.6 12.6 15.0 16.8 18.5 20.7 22.5
7 1.24 1.56 2.17 2.83 3.82 4.67 6.35 8.4 9.8 12.0 14.1 16.6 18.5 20.3 22.6 24.3
8 1.65 2.03 2.73 3.49 4.59 5.53 7.34 9.5 11.0 13.4 15.5 18.2 20.1 22.0 24.3 26.1
9 2.09 2.53 3.32 4.17 5.38 6.39 8.34 10.7 12.2 14.7 16.9 19.7 21.7 23.6 26.1 27.9
10 2.56 3.06 3.94 4.86 6.18 7.27 9.34 11.8 13.4 16.0 18.3 21.2 23.2 25.2 27.7 20.6
11 3.1 3.6 4.6 5.6 7.0 8.1 10.3 12.9 14.6 17.3 19.7 22.6 24.7 26.8 29.4 31.3
12 3.6 4.2 5.2 6.3 7.8 9.0 11.3 14.0 15.8 18.5 21.0 24.1 26.2 28.3 30.9 32.9
13 4.1 4.8 5.9 7.0 8.6 9.9 12.3 15.1 17.0 19.8 22.4 25.5 27.7 29.8 32.5 34.5
14 4.7 5.4 6.6 7.8 9.5 10.8 13.3 16.2 18.2 21.1 23.7 26.9 29.1 31.3 34.0 36.1
15 5.2 6.0 7.3 8.5 10.3 11.7 14.3 17.3 19.3 22.3 25.0 28.3 30.6 32.8 35.6 3.7
16 5.8 6.6 8.0 9.3 11.2 12.6 15.3 18.4 20.5 23.5 26.3 29.6 32.0 34.3 37.1 39.3
17 6.4 7.3 8.7 10.1 12.0 13.5 16.3 19.5 21.6 24.8 27.6 31.0 33.4 35.7 38.6 40.8
18 7.0 7.9 9.4 10.9 12.9 14.4 17.3 20.6 22.8 26.0 28.9 32.3 34.8 37.2 40.1 42.3
19 7.6 8.6 10.1 11.7 13.7 15.4 18.3 21.7 23.9 27.2 30.1 33.7 36.2 38.6 41.6 43.8
20 8.3 9.2 10.9 12.4 14.6 16.3 19.3 22.8 25.0 28.4 31.4 35.0 37.6 40.0 43.0 45.3
21 8.9 9.9 11.6 13.2 15.4 17.2 20.3 23.9 26.2 29.6 32.7 36.3 38.9 41.4 44.5 46.8
22 9.5 10.6 12.3 14.0 16.3 18.1 21.3 24.9 27.3 30.8 33.9 37.7 40.3 42.8 45.9 48.3
23 10.2 11.3 13.1 14.8 17.2 19.0 22.3 26.0 28.4 32.0 35.2 39.0 41.6 44.2 47.3 49.7
24 10.9 12.0 13.8 15.7 18.1 19.9 23.3 27.1 29.6 33.2 36.4 40.3 43.0 45.6 48.7 51.2
25 11.5 12.7 14.6 16.5 18.9 20.9 24.3 28.2 30.7 34.4 37.7 41.6 44.3 46.9 50.1 52.6
26 12.2 13.4 15.4 17.3 19.8 21.8 25.3 29.2 31.8 35.6 38.9 42.9 45.6 48.3 51.6 54.1
27 12.9 14.1 16.2 18.1 20.7 22,7 26.3 30.3 32.9 36.7 40.1 44.1 47.0 49.6 52.9 55.5
28 13.6 14.8 16.9 18.9 21.6 23.6 27.3 31.4 34.0 37.9 41.3 45.4 48.3 51.0 54.4 56.9
29 14.3 15.6 17.7 19.8 22.5 24.6 28.3 32.5 35.1 39.1 42.6 46.7 49.6 52.3 55.7 58.3
30 15.0 16.3 18.5 20.6 23.4 25.5 29.3 33.5 36.3 40.3 43.8 48.0 50.9 53.7 57.1 59.7

sousyIs onDwOYUL f0 $IYVL T 0
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0.4.6.5 Values Fp.05;m,m, and values Fy.01;m,m, (in boldface) of the F-distri-

bution
o
J . Figure 0.51.
0 I,
m1
ma 1 2| 3L 4| 5] 6] 7| 8] o] 1o| ul 1z
" 61| 200| 216| 25| 230| 234| 237| 230| o241| 242] 243| 244
4052 | 4999 | 5403 | 5625 [ 5764 | 5859 | 5028 | 5981 | 6022 | 6056 | 6083 | 6106
o | 1851 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.39 | 19.40 | 19.41
98.50 | 99.00 | 99.17 | 99.25 | 99.30 | 99.33 | 99.36 | 99.37 | 99.39 | 99.40 | 99.41 | 99.42
3 | 1013] 955| 928| 912| 9.01| 894| 889| s885| 881| 879| 876| 874
34.12 | 30.82 | 29.46 | 28.71 | 28.24 | 27.91 | 27.67 | 27.49 | 27.34 | 27.23 | 27.13 | 27.05
4 | 77| 694 659| 639 626 6.16| 6.00| 604| 600| 59| 594| 591
21.20 | 18.00 | 16.69 | 15.98 | 15.52 | 15.21 | 14.98 | 14.80 | 14.66 | 14.55 | 14.45 | 14.37
s | 661| 579| 541| 519| 5.05| 495 4.88| 4.82| 477| 474| 470| 468
16.26 | 13.27 | 12.06 | 11.39 | 10.97 | 10.67 | 10.46 | 10.29 | 10.16 | 10.05 | 9.96 | 9.89
6 | 5990 514a| 476| 453 439 428| 421 415| 410| 406| 403| 4.00
13.74 | 1092 | 9.78 | 9.15| 8.75| 8.47| 8.26| 8.10| 7.08| 7.87| 7.79| 7.72
7 | 559| 4a7a| a35| 412| 397 387| 379| 3.73| 368| 364| 360| 357
12.25| 9.55| 8.45| 7.85| 7.46| 7.19| 7.00| 6.84| 6.72| 6.62| 6.54| 6.47
g | 532| 446| 407| 384| 3.69| 3.58| 350| 344| 339| 335| 331 3.8
11.26| 8.65( 7.59| 7.01| 6.63| 6.37| 6.18| 6.03| 5.91| 5.81| 5.73| 5.67
o | 512| 426| 38| 363 348| 3.37| 320| 3.23| 348| 314| 30| 3.07
1056 | 8.02| 6.99| 6.42| 6.06| 5.80| 5.61| 5.47| 535 5.26| 5.18| 511
w0 | 49| 410] 371| 348| 333 322 314 307| 3.02| 298| 294| 291
1004| 7.56| 6.55| 5.99| 5.64| 5.39| 5.20| 5.06| 4.94| 4.85| 4.77| 471
11| 484 398 350| 336| 320| 309| 301 295 290 285 282 279
0.65| 7.21| 6.22| 5.67| 5.32| 5.07| 4.89| 4.74| 4.63| 4.54| 446 4.40
12| 47| 3s89( 349| 326| 3.11] 300| 291| 285 280| 275| 272| 269
9.33| 6.93| 5.95| 5.41| 5.06| 4.82| 4.64| 4.50| 4.39| 4.30| 4.22| 4.16
13| 467| 3s1| 341] 318| 303| 2092] 283| 277| 271| 267| 263] 260
0.07| 6.70| 5.74| 5.21| 4.86| 4.62| 4.44| 4.30| 4.19| 410 4.02| 3.96
1a| 460| 374| 334} 311| 206| 285| 276| 270| 2.65| 260 2.57| 253
8.86| 6.51| 5.56| 5.04| 4.70| 4.46| 4.28| 4.14| 4.03| 3.94| 3.86| 3.80
15| asa| 3es| 329| 306| 2901 279] 271| 264 250 254| 251| 248
8.68| 6.36| 5.42| 4.89) 4.56| 4.32| 4.14| 4.00| 3.89| 3.80| 3.73| 3.67
16| 249| 363| 324| 301| 285| 274| 266| 259 2.54| 249 246| 242
8.53| 6.23| 5.20| 4.77| 4.44| a.20| 4.03| 3.80| 3.78| 3.69| 3.62| 3.55
17| 445| 350| 320| 296| 28| 270| 261| 2.55| 249| 245| 241| 238
8.40| 6.11| 5.18| 4.67| 4.34| 4.10| 3.93| 3.790| 3.68| 3.59 3.52| 3.46
19| 441] 355 3.6| 293| 277 266| 258| 251 246( 241] 237 234
820 | 6.01| 5.00| 458| 4.25| 401| 3.84| 371| 3.60| 3.51| 3.43| 337
19| 438| 352| 3.3| 290 274| 263| 254 248| 242| 238 234| 231
8.18| 5.93| 5.01| 450 4.17] 3.94| 3.77| 3.63| 3.52| 3.43| 3.36| 3.30
op | 435| 349] 30| 287| 271| 260| 251| 245] 239| 235| 231 228
8.10| 5.85| 4.94| 4.43| 4.10| 3.87| 3.70| 3.56| 3.46| 3.37| 3.29| 3.23
op | 432| 347! 307| 284| 268| 257| 249| 242 237| 232| 228| 225
8.02| 5.78| 4.87| 4.37| 4.04| 3.81| 3.64| 3.51| 3.40| 3.31| 3.24| 3.7
9o | 430| 344| 305| 282| 266| 255| 246| 240| 234| 230| 226| 223
7.95| 572 4.82| 4.31| 3.99| 3.76| 3.50| 3.45| 3.35| 3.26| 3.18| 3.12
03 | 428| 342 3.03| 280| 264 253| 244| 237 232| 227| 224 220
788 | 5.66| 476 | 4.26| 3.94| 3.71| 3.54| 3.41| 3.30| 8.21| 3.14| 3.07
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ma
14| 16] 20L 2ﬂ 30 40[ 501 75| 100| 200' 500| oo |2
245 | 246| 248| 249| 250| 251| 252 253| 253| 254| 254 254,
6143 | 6169 | 6209 | 6235 | 6261 | 6287 | 6302 | 6323 | 6334 | 6352 | 6361 | 6366
10.42 | 1043 | 10.44 | 10.45 | 10.46 | 19.47 | 19.48 | 19.48 | 19.49 | 10.49 | 19.50 | 19.50 | 4
99.43 | 99.44 | 99.45 | 99.46 | 99.47 | 99.47 | 99.48 | 99.49 | 99.49 | 99.49 | 99.50 | 99.50
871 869| 866| 864] 862 859| 858| 857 855| 854 853 8534
26.92 | 26.83 | 26.69 | 26.60 | 26.50 | 26.41 | 26.35 | 26.27 | 26.23 | 26.18 | 26.14 | 26.12
587| 584 580 577| 575| 572| 570| 568| 566| 565| 564| 563,
14.25 | 14.15 | 14.02 | 13.93 | 13.84 | 13.74 | 13.69 | 13.61 | 13.57 | 13.52 | 13.48 | 13.46
464 | 4.60| 456| 453 450 4.46| 444| 442| 441| 439 437[ 436 g
9.77| 9.68| 9.55| 9.47| 9.38| 9.29| 9.24| 9.17| 9.13| 9.08| 9.04| 9.02
3.96 | 392 3.87| 384| 38| 377 375! 372| 871 3.69| 3.68| 367
7.60| 7.52| 7.38| 7.31| 7.23| 7.14| 7.09| 7.02| 6.99| 6.93! 6.90| 6.88
353 3.49| 3.44| 341| 338| 334 332) 320| 327| 325| 324 323),
6.36 | 6.27| 6.16| 6.07| 5.99| 591 5.86| 578| 575| 5.70| 5.67| 5.65
324 3.20| 3.15( 312| 3.08| 3.05( 3.02| 3.00| 297| 295| 294| 293/,
5.56 | 5.48| 5.36| 5.28| 5.20! 5.12| 5.07| 5.00| 4.96| 4.91| 4.88| 4.86
303 2.99| 293| 290| 286| 283 280| 2.77| 276| 273| 2.72| 2714
500 492| 4.81| 4.73| 4.65| 4.57| 452| 4.45| 4.42| 4.36| 4.33| 4.31
286 | 283| 277| 274| 270| 266| 264 261| 259| 256| 255 254
4.60| 4.52| 4.41| 4.33] 4.25| 4.17| 412| 4.05| 4.01| 3.96] 3.93| 3.91
274 270| 265 261| 257| 253 251| 247| 246| 243| 242 240 g4
4.29 | 4.21| 4.10| 4.02| 3.94| 3.86| 3.81| 3.74| 3.71| 3.66| 3.62| 3.60
264 260| 254| 251| 247 243 | 240 236 235| 232 231] 230 19
4.05| 3.97| 3.86| 3.78| 3.70| 3.62| 3.57| 3.49| 3.47| 3.41| 3.38| 3.36
255 251 246| 242) 238 234 231| 2028| 226 223 222 221 4
3.86| 3.78| 3.66| 3.50| 3.51| 3.43| 3.38| 3.30] 3.27| 3.22| 3.19| 3.17
248 | 244| 239| 235] 231| 227| 224| 221| 219| 216| 214| 213| 4,
3.70| 3.62| 3.51 3.43| 3.35| 3.27| 3.22( 3.14| 3.11| 3.06| 3.03| 3.00
242 2.33| 233] 220 225| 220| 218) 215| 212| 210| 208 207 |4
3.56 | 3.49| 3.37| 3.29| 3.21| 3.13| 3.08| 3.00| 2.98| 2.92| 2.89| 2.87
237| 233 228| 224| 219| 215| 212 209| 207| 204| 202| 201| 4
8.45| 3.37| 3.26| 3.18| 3.10| 3.02| 2.97| 2.86| 2.86| 2.81| 2.78| 2.75
233 229 223( 219| 215| 210 2.08| 204 202| 199( 197 1.96( 1y
3.35| 3.27| 216 3.08| 3.00| 2.92| 2.87| 2.79| 2.76| 2.71| 268 2.65
229 225| 219| 215| 211| 206| 204| 200| 198] 195 193| 192 ;o
3.27| 3.19| 3.08| 3.00| 2.92| 2.84| 278 2.71| 2.68] 2.62| 2.59| 2.57
226 221| 215| 211| 207| 203| 200| 1.96| 194] 191| 1.90| 18] 1q
3.19| 3.12| 3.00]| 292| 2.84| 2.76| 2.71| 2.63] 2.60| 2.55| 2.51| 2.49
222| 218| 212| 208| 204| 199 197| 192| 191| 1.88| 1.86| 1.84] o
3.13| 3.05| 2.94| 2.86| 2.78] 2.69| 2.64| 2.56| 2.54| 2.48| 2.44| 2.42
220| 216 210 205| 201 196 104 180| 188 184 1.82| 181 o
3.07| 2.99| 2.88| 2.80| 2.72| 2.64| 2.58] 2.51| 2.48| 242 | 2.38| 2.36
217| 213| 207| 203 1.98| 1.94| 191| 1.87] 1.85| 181 1.8 1.78] o
3.02| 2.94| 2.83| 275 2.67| 2.58| 2.53| 2.46| 2.42| 2.36| 2.33| 2.31
215| 211 205| 200| 1.96| 1.91| 1.88| 1.84| 1.82| 179| L77| 176 o3
2.97| 2.89| 2.78| 2.70( 2.62| 2.54| 2.48] 2.41| 2.37| 2.32| 2.28| 2.26
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mai
m
2 1| 2| 3) 4] 5| 6{ 7| Sl 9| 10| 11| 12
oa| 426 | 340 3.01| 278 262| 251| 242| 236| 230| 225 222| 218
7.82 | 5.61| 4.72| 4.22| 3.90| 3.67| 3.50| 3.36| 3.26 | 3.17| 3.09| 3.03
95| 424 | 339| 299| 276| 260| 249 240 234| 228| 224| 220| 216
777 | 5.57| 4.68| 4.18| 3.86 | 3.63| 3.46 | 3.32| 3.22| 3.13| 3.06| 2.99
96| 4.23 | 3.37] 298| 274} 259| 247| 233| 232| 227| 222| 218| 215
v72 | 5.53| 4.64| 4.14| 3.82| 3.59| 3.42| 3.29| 3.18| 3.09| 3.02| 2.96
g7 | 421 | 335| 296 273| 257 246] 237| 231 225 220 216| 213
768 | 5.49| 4.60| 4.11| 3.78| 3.56| 3.39| 3.26| 3.15| 3.06| 2.99| 2.93
og | 420 | 3.34| 295| 271| 256| 245| 236| 229 224| 219| 215| 212
7.64 | 5.45| 4.57| 4.07| 3.76| 3.53| 3.36 | 3.23| 3.12| 3.03| 2.96 | 2.90
o9 | 418 | 333 293| 270| 255| 243| 235| 228 222| 218| 214| 210
7.60 | 5.42| 4.54| 4.04| 3.73( 3.50| 3.33| 3.20| 3.09| 3.00| 2.93| 2.87
30| 417 | 332| 292 269 253) 242| 233| 227| 221| 216| 213 | 2.09
7.56 | 5.39| 4.51| 4.02| 3.70| 3.47| 3.30 3.17| 3.07| 2.98 2.90| 2.84
32| 415 | 320| 290| 267| 251| 240| 231 224| 219| 214 210| 2.07
7.50 | 5.34] 4.46| 3.97| 3.65| 3.43| 3.25| 3.13| 3.02| 2.93] 2.86| 2.80
34| 413 | 328 288 265| 249 238| 229 223| 217| 212| 208 205
7.44 | 5.29| 4.42| 3.93| 3.61| 3.39| 3.22| 3.09| 2.98| 2.80| 2.82| 2.76
36| 411 | 326| 287 263| 248| 236 228 221 215| 211| 207 2.03
7.40 | 5.25| 4.38| 3.89| 3.57| 3.35| 3.18| 3.05| 2.95| 2.86| 2.79| 2.72
ag| 410 | 324| 285 262 246| 235| 226 219 214 200| 205 2.02
7.35 | 5.21| 4.34| 3.86| 3.54| 3.32| 3.15| 3.02| 2.91| 2.82| 2.75| 2.69
10| 408 | 323| 284| 261| 245 234 225| 218 212| 208| 2.04| 2.00
7.31 | 5.18| 4.31| 3.83| 3.51| 3.20| 3.12| 2.99| 2.80| 2.80| 2.73| 2.66
40| 407 | 322| 283| 259, 244| 232| 224| 217 211| 206 2.03| 1.99
7.28 | 5.15| 4.29| 3.80| 3.49| 3.27| 3.10| 2.97| 2.86] 2.78| 2.70| 2.64
44| 406 | 321 282| 258| 243| 231| 223| 216 210 205| 201 1.98
7.25 | 5.12| 4.26| 3.78| 3.47| 3.24| 3.08| 2.95| 2.84| 2.75| 2.68| 2.62
46| 4051 320| 281| 257 242| 230 222| 215| 209| 204 200| 197
7.22 | 5.10| 4.24| 3.76| 3.44| 3.22| 3.06| 2.93| 2.82| 2.73| 2.66| 2.60
18| 404 | 319| 280| 257| 241| 230| 221| 214 208| 203 199| 1.96
7.20 | 5.08| 4.22| 3.74| 3.43| 3.20| 3.04| 2.91| 2.80| 2.72| 2.64| 2.58
so| 403 | 318 279 256| 240| 229 220| 213| 207 203( 1.99| 1.95
7.17 | 5.06| 4.20| 3.72| 3.41| 3.19| s.02| 2.89| 2.79| 2.70| 2.63| 2.56
551 402 | 316 278| 254| 238| 227| 218| 211| 206| 201| 1.97| 1.93
7.12 | 5.01| 4.16| 3.68| 3.37| 3.15| 2.98| 2.85| 2.75| 2.66| 2.59| 2.53
60| 400 | 315| 276 253| 237| 225 217| 210| 204| 199 195| 1.92
7.08 | 4.98| 413 3.65| 3.34| 3.12| 2.95| 2.82| 2.72| 2.63] 256 | 2.50
65| 399 | 314| 2.75| 251| 236| 224| 215| 208 203| 198| 1.94| 190
7.04 | 4.95| 4.10| 3.62| 3.31| 3.09| 2.93| 2.80| 2.69| 2.61| 2.53| 2.47
0| 398 | 313 274| 250| 235 2.23| 214| 207| 202| 197| 1.93| 189
7.01 | 4.92| 4.08| 3.60| 3.29| 3.07| 2.91| 2.78| 2.67| 2.59| 2.51| 2.45
so| 396 1 311| 272| 249| 233 221| 213| 206| 200 195| 191| 188
6.96 | 4.88| 4.04| 3.56| 3.26| 3.04| 2.87| 2.74| 2.64| 2.55| 2.48| 2.42
100| 394 | 309| 270| 246| 231 219| 210| 203| 1.97| 1.93] 189 1.85
6.90 | 4.82| 3.98| 3.51| 3.21| 2.99| 2.82| 2.69| 2.59| 2.50| 2.43| 2.37
125 | 392 | 3.07| 268 244| 220| 217| 2.08| 201| 1.96| 1.91| 187| 1.83
6.84 | 4.78| 3.94| 3.47| 3.17| 2.95| 2.79| 266 2.55| 2.50| 2.40| 2.33
150 | 390 | 3.06| 266| 243| 227| 216, 207| 200| 194] 189 | 185| 1.82
6.81 | 4.75| 3.92| 3.45| 3.14| 2.92| 2.76 | 2.63| 2.53| 2.44| 2.37| 2.31
200 | 389 3.04| 265| 242 226| 214| 206| 198| 1.93| 188 1.84| 1.80
6.76 | 4.71| 3.88| 3.41| 3.11| 2.89| 2.73| 2.60| 2.50| 2.41| 2.34| 2.27
00| 386 | 3.02| 262] 239 223| 212 203| 196| 190 185| 181 | 1.78
6.70 | 4.66| 3.83| 3.36| 3.06| 2.85| 2.690| 2.55| 2.46| 2.37| 2.29| 2.23
woo| 385 | 300| 261 238] 222| 211| 202] 195 189| 184 180| 1.76
6.66 | 4.63| 3.80| 3.34| 3.04| 2.82| 2.66| 2.53| 2.43| 2.34| 2.27| 2.20
oo| 384 300] 260 237] 221| 210] 201| 1.94| 18| 183| 179| 175
6.63 | 4.61| 3.78 | 3.32| 3.02| 2.80| 2.64| 251 | 2.41| 2.32| 2.25| 2.8
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my ma
14 [ 16 [ 20 | 24 [ 30 [ 10 l 50 [ 751 100 Lzoo 50?[ o
2131 2.09| 203| 198| 194 180] 1.86| 1.82| 1.80| 177| 1.75| 173 21
2,93 | 2.85| 2.74| 2.66| 2.58| 2.49| 2.44] 2.36| 2.33| 2.27| 2.24] 2.21
211 | 207| 201| 196| 192 187| 184| 180 178] 1.75| 1.73| 171 2%
2.80 | 2.81| 270| 2.62| 2.54| 2.45| 2.40| 2.32| 2.29| 2.23| 2.19( 2.17
210 | 205| 199| 195| 190 185]| 1.82| 178| 176| 1.73| 1.70| 1.69 26
2.86 | 2.78 | 2.66| 2.58 | 2.50 | 2.42 | 2.36 | 2.28 | 2.25 | 2.19| 2.16 | 2.13
208 | 2.04| 1.97| 193| 1.88| 184| 181 | 176 174} 1.71| 1.68| 1.67 o7
2.82 | 2.75| 2.63} 2.55| 2.47| 2.38| 2.33| 2.25| 2.22| 2.16| 2.12| 2.10
206! 202| 196] 1.01] 187| 182} 179] 175| 1.73| 1.69] 1.67| 1.65 o8
2.80 | 2.71| 2.60| 2.52| 2.44| 2.35| 2.30| 2.22| 2.19| 2.13| 2.09| 2.08
205 | 201 1.94| 1.90| 1.85( 1.80| 1.77| 173 1.71| 1.67| 1.65| 1.64 a9
2.77 | 2.69| 257 2.49| 2.41| 2.38| 2.27| 2.19| 2.16| 2.10| 2.06| 2.03
204 | 199 193( 189 1.84( 1.79| 176| 172| 170 1.66( 1.64| 1.62 30
2.74 | 2.66| 2.55| 2.47| 2.38| 2.30| 2.25| 2.16 | 2.13| 2.07| 2.03| 2.01
201 | 197 191 18| 1.82| 177| 1.74| 169| 1.67| 1.63| 1.61| 1.59 39
2.70 | 2.62| 250 2.42]| 2.34| 2.25| 2.20| 2.12| 208 2.02| 1.98| 1.96
199 | 195| 189| 1.84| 180| 1.75| 171 1e7| 165| 161 1.59] 1.57 34
2.66 | 2.58 | 2.46| 2.38| 2.30| 2.21| 2.16 | 2.08| 2.04| 1.98| 1.94 | 1.91
198 | 193] 187| 1.82| 1.78| 1.73| 169| 165| 1.62| 1.59| 1.56| 1.55 36
2.62 | 2.54| 2.43| 2.35| 2.26| 2.17| 212 2.04| 2,00} 1.94| 1.90| 1.87
196 | 192] 18| 181 | 176 1.71| 168| 163| 1.61| 1.57| 1.54| 1.53 a8
2.59 | 2.51| 2.40| 2.32| 2.23| 2.14| 2.09( 2.00| 1.97 | 1.90| 1.86 | 1.84
195 | 190| 1.84| 1.79| 174| 1.69| 166 1.61] 1.50| 155 1.53] 1.51 40
2.56 | 2.48 | 2.37| 2.20| 2.20( 2.11| 2.06 | 1.97{ 1.94 | 1.87| 1.83| 1.80
193 | 1.89| 1.83| 1.78| 1.73| 1.68| 1.65| 1.60| 1.57| 1.53| 1.51| 1.49 12
2.54 | 2,46 2.34| 2.26| 2.18( 2,09 2.03| 1.94| 1.91| 1.85| 1.80| 1.78
192 | 1.88] 18| 177 172] 167| 163 158| 1.56| 1.52| 1.49| 1.48 u“
252 | 2,441 2.32| 224 2.15( 2,08 2.01] 1.92| 1.80| 1.82] 1.78 | 1.75
191 | 1.87) 18| 17v6]| 171) 1.65| 162 157| 155| 151] 1.48] 1.46 46
2.50 | 2.42| 2.30| 2.22| 2.33| 2.04| 1.99] 1.90| 1.86| 1.80| 1.75 | 1.73
1.90 | 186 1.79| 175 170 1.64| 1.61| 1.56| 1.54| 1.49| 1.47| 1.45 18
2.48 | 2.40| 2.28 | 2,20 212 2.03| 1.97| 1.88| 1.84| 1.78 | 1.73| 1.70
1.89 | 185( 178| 174 169| 1.63| 160 1.55| 1.52{ 148| 1.46| 1.44 50
2.46 | 2.38) 2.26 | 2.18| 2.10| 2.00| 1.95] 1.86| 1.82| 1.76 | 1.71| 1.68
188 | 183| 176| 172| 1e7| 161| 158 152| 150 146 143] 1.41 55
2.43 | 2.34| 2.23| 2.15| 2.06| 1.96| 1.91| 1.82| 1.78} 1.71| 1.67] 1.64
1.86 | 1.82] 175| 170 1.65| 159 | 1.56| 1.50| 1.48| 1.44| 141} 1.39 60
2.39 | 2.31) 2.20| 212 2.03| 1.94| 1.88| 1.79| 1.75] 1.68| 1.63| 1.60
185 | 1.80| 1.73| 1.69| 1.63| 1.58| 154 1.49| 146] 142| 130| 1.37 65
2.37 | 2.29| 2.18) 2.09] 2.00| 1.90| 1.85] 1.76 | 1.72| 1.65| 1.60| 1.56
1.84 | 179 172) 1e67| 162| 157| 153| 147| 145| 140 137) 1.35 70
2.35 | 2.27| 215 2.07| 1.98| 1.88| 1.83| 1.74| 1.70| 1.62| 1.57| 1.53
182 | 177| 7o) 165| 1.60| 134| 151 145| 1.43| 138 1.35| 1.32 80
2.31 | 223 2.12| 2.03| 1.94( 1.85{ 1.79 | 1.70| 1.66 | 1.58 | 1.53 | 1.49
179 | 1.75] 168| 163| 157| 152 148| 1.42| 139| 134| 131] 1.28 100
2.26 | 2.19| 2.06| 1.98| 1.89| 1.79| 1.73 | 1.64| 1.60| 1.52| 1.47| 1.43
177 | 172] 165) 1.60| 1550 149| 145| 130] 136| 131 127] 1.25 125
2.23 | 2.15| 2.03] 1.94| 1.85| 1.75| 1.69 | 1.59| 1.55| 1.47| 1.41| 1.37
176 | 1.71) 164 159 153 1.48| 144 137] 1.34| 1.20] 125] 1.22 150
2.20 | 2.12| 2.00( 1.91| 1.83| 1.72| 1.66 | 1.56 | 1.52 | 1.43| 1.38| 1.33
174 | 169 162| 1.57| 1.52| 1.46| 1.41| 1.35] 1.321 1.26| 1.22| 1.19 200
2.17 | 2.09| 1.97| 1.88| 1.79| 1.69| 1.63| 1.53| 1.48| 1.39| 1.33| 1.28
172 | 167 160 1.54| 1.49| 142 1.38| 1.32| 1.28( 122 1.16| 113 400
212 | 2.04| 1.92| 1.84 | 1.74| 1.64| 1.57 | 1.47| 1.42] 1.32| 1.24| 1.19
170 | 165] 158 153| 1.47| 141| 136| 130 126) 119] 113} 1.08| 1000
2.09 | 2.02| 1.89| 1.81] 1.71| 1.61| 1.54| 1.44| 1.38 | 1.28 | 1.19| 1.11
169 | 164| 1.57| 1.52] 1.46| 1.39| 1.35| 1.28| 1.24| 117| 111| 1.00 oo
2.08 | 2.00| 1.88| 1.79| 1.70| 1.59| 1.52| 1.41| 1.36] 1.25| 1.15| 1.00
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0.4.6.6 The Fischer Z-distribution

Remark on the table: The table contains the values of zp, for which the probability:
that the Fischer random variable Z with (r1,r2) degrees of freedom is not smaller than
zp; is equal to 0.01, in other words,

P(Z > ) = /f(z)dz = 0.01.
Here f(z) is given by the formula

ooy
2 2 r1z
2r® ry e
1 T2 ri+ra
20 7))

f)=

1

= 1 2 3 [ 4 5 I 6 —[ 8 1712 [ 24 T oo

1 4.1535 | 4.2585 | 4.2974 | 4.3175| 4.3297 | 4.3379 | 4.3482 | 4.3585 | 4.3689 | 4.3794
2 2.2950 ( 22976 | 22984 | 2.2088 | 2.2991 | 2.2892{ 2.2994 | 2.2997 | 2.2999 [ 2.3001
3 1.7649 | 1.7140| 1.6915| 1.6786 | 1.6703 | 1.6645 | 1.6569 | 1.6489 | 1.6404 | 1.6314
4 15270 | 14452 | 14075} 1.3856( 1.3711] 1.3609 | 1.3473 | 13327 1.3170| 1.3000
5 1.3943 | 1.2929| 1.2449 | 1.2164 | 1.1974 (| 1.1838 | 1.1656 | 1.1457 | 1.1239 | 1.0997
6 1.3103 | 1.1955) 1.1401 ) 1.1068 | 1.0843 | 1.0680 | 1.0460} 1.0218 | 0.9948 | 0.9643
7 1.2526 | 1.1281 | 1.0682 | 1.0300 | 1.0048 | 0.9864 | 0.9614 | 0.9335| 0.9020; 0.8658
8 1.2106 | 1.0787 | 1.0135 ) 0.9734| 0.9459 | 0.9259} 0.8983 | 0.8673 | 0.8319| 0.7904
9 1.1786 | 1.0411 | 0.9724 | 0.9298 | 0.9006 | 0.8791{ 0.8494 | 0.8157 | 0.7769 ] 0.7305
10) 11535 | 1.0114| 0.9399 | 0.8054 | 0.8646 | 0.8419 ) 0.8104 | 0.7744 | 0.7324 | 0.6816
11| 1.1333 | 09874 | 0.9136 | 0.8674 | 0.8354 | 0.8116 | 0.7785 | 0.7405 | 0.6958 | 0.6408
12] 11166 | 0.9677 | 0.8919 | 0.8443 | 0.8111 | 0.7864 ; 0.7520 | 0.7122) 0.6649 | 0.6061
13| 1.1027 | 0.9511 | 0.8737 | 0.8248| 0.7907 | 0.7652( 0.7295| 0.6882 | 0.6386 | 0.5761
14| 1.0909 [ 09370 | 0.8581| 0.8082 | 0.7732| 0.7471 | 0.7103 | 0.6675 | 06159 | 0.5500
15| 1.0807 | 0.9249 | 0.8448 | 0.7939 | 0.7582  0.7314 | 0.6937 | 0.6496 | 0.5961 | 0.5269
16 { 1.0719| 09144 | 0.8331| 0.7814 | 0.7450] 0.7177| 0.6791 | 0.6339 | 0.5786 | 0.5064
17 1.0641 | 0.9051 | 0.8229 | 0.7705| 0.7335 ] 0.7057 | 0.6663 | 0.6199 | 0.5630 | 0.4879
18| 1.0572| 0.8970 | 0.8138 | 0.7607 | 0.7232 | 0.6950  0.6549 | 0.6075 | 0.5491 | 0.4712
19| 1.0511 | 0.8897 | 0.8057 | 0.7521 | 0.7140 ] 0.6854 | 0.6447 | 0.5964 | 0.5366 | 0.4560
20| 1.0457 | 0.8831 | 0.7985 | 0.7443 | 0.7058 | 0.6768 | 0.6355 | 0.5864 | 0.5253 | 0.4421
21| 1.0408 | 0.8772; 0.7920 | 0.7372| 0.6984 | 0.6690| 0.6272| 0.5773 | 0.5150 | 0.4294
22| 1.0363 | 0.8719 0.7860 | 0.7309 | 0.6916 | 0.6620 | 0.6196 | 0.5691 | 0.5056 | 0.4176
23| 1.0322| 0.8670 | 0.7806 | 0.7251 | 0.6855 | 0.6555 | 0.6127 | 0.5615 | 0.4969 | 0.4068
24| 1.0285 | 0.8626 | 0.7757 | 0.7197 | 0.6799 | 0.6496 | 0.6064 | 0.5545 | 0.4890 [ 0.396 7
25| 1.0251 | 0.8585 | 0.7712 0.7148 | 0.6747 | 0.6442 | 0.6006 | 0.5481 | 0.4816 | 0.3872
26| 1.0220 | 0.8548 | 0.7670 | 0.7103 | 0.6699} 0.6392 | 0.5952 | 0.5422 | 0.4748 | 0.3784
27| 1.0191 | 0.8513 | 0.7631 | 0.7062 | 0.6655| 0.6346 | 0.5902 | 0.5367 | 0.4685 | 0.3701
28| 1.0164 ; 0.8481 0.7595| 0.7023 | 0.6614 | 0.6303 | 0.5856 | 0.5316 | 0.4626 | 0.3624
29 1.0139( 0.8451 | 0.7562 | 0.6987 | 0.6576 | 0.6263 | 0.5813 | 0.5269 | 0.4570  0.3550
30| 1.0116, 0.8423| 0.7531 ] 0.6954 | 0.6540 | 0.6226 | 0.5773 | 0.5224 , 0.4519 | 0.3481
40| 0.9949 | 0.8223 | 0.7307 | 0.6712} 0.6283 | 0.5956 | 0.5481{ 0.4901 | 0.4138 { 0.2922
60| 0.9784 ) 0.8025| 0.7086 | 0.6472| 0.6028 | 0.5687 | 0.5189 | 0.4574 ; 0.3746 | 0.2352
120 09622 0.7829 | 0.6867 | 0.6234 ) 05774 ] 05419 04897 | 0.4243 | 0.3339| 0.1612
co | 0.9462 ] 0.7636 | 0.6651 | 0.5999 | 0.5522 | 0.5152 | 0.4604 | 0.3908 | 0.2913 | 0.0000




0.4. Tables of mathematical statistics 95

0.4.6.7 Critical numbers for the Wilcoxon test

a=0.05
n2
4 5 [ 7 8 9 10 11 12 13 14 ny
- - - - 8.0 9.0 10.0 10.0 11.0 12.0 13.0 2
- 7.5 8.0 9.5 100 115 120 135 140 155 160| 3
80 9.0 10.0 11.0 12.0 13.0 15.0 16.0 17.0 18.0 19.0 4
9.0 105 12.0 12.5 14.0 15.5 17.0 18.5 19.0 20.5 22.0 5
13.0 15.0 16.0 17.0 19.0 20.0 22.0 23.0 25.0 6
15 | 47.5 165 180 195 210 225 240 255 2710| 7
14 | 46.0 48.0 190 21.0 230 250 260 280 290| 8
13 | 435 450 475 225 250 265 280 305 320 9
12 | 41.0 43.0 45.0 47.0 27.0 29.0 30.0 32.0 34.0 10
11 | 385 40.0 425 440 465 30.5 330 345 370 11
10 | 36.0 38.0 40.0 42.0 43.0 45.0 35.0 37.0 39.0 12
9 33.5 35.0 37.5 39.0 40.5 42.0 44.5 38.5 41.0 13
8 31.0 33.0 34.0 36.0 38.0 39.0 41.0 42.0 43.0 14
7 28.5 30.0 3.5 33.0 345 36.0 37.5 39.0 40.5
6 26.0 27.0 29.0 30.0 32.0 33.0 34.0 36.0 37.0 38.0 39.0
5 23.5 240 25.5 27.0 28.5 30.0 30.5 32.0 33.5 35.0 35.5
4 20.0 21.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 32.0
3 [175 180 195 200 215 220 235 240 255 260 27.5
2 14.0 15.0 15.0 16.0 17.0 18.0 18.0 19.0 20.0 21.0 22.0
71 | 15 16 17 18 19 20 21 22 23 24 25
n2
a=0.01
T2
I 5 (3 4 ) ) 10 T 12 13 14 ny
- - - - - 13.5 15.0 16.5 17.0 18.5 20.0 3
- - 120 140 150 170 180 200 210 220 240 4
- 12.5 14.0 15.5 18.0 19.5 21.0 22.5 24.0 25.5 28.0 5
16.0 18.0 20.0 22.0 24.0 26.0 27.0 29.0 31.0 6
15 | 861.5 20.5 22.0 24.5 26.0 28.5 30.0 325 34.0 7
14 | 59.0 62.0 25.0 27.0 29.0 31.0 33.0 35.0 38.0 8
13 | 55.5 580 615 295 320 335 360 385 41.0| 9
12 | 53.0 55.0 58.0 61.0 34.0 36.0 39.0 41.0 44.0 10
11 | 49.5 52.0 54.5 57.0 59.5 39.5 42.0 44.5 47.0 11
10 | 46.0 49.0 510 53.0 560  58.0 440 470 500 12
9 42.5 45.0 47.5 50.0 52.5 54.0 56.5 50.5 53.0 13
8 [40.0 420 440 46.0 480 50.0 520 54.0 56.0 | 14
7 36.5 38.0 405 42.0 44.5 46.0 48.5 50.0 51.5
6 [33.0 350 360 380 40.0 420 440 450 470 490 510
5 29.5 31.0 32.5 34.0 35.5 37.0 38.5 41.0 42.5 44.0 45.5
4 (250 270 280 300 31.0 320 340 350 37.0 380 400
3 20.5 22.0 235 25.0 25.5 27.0 28.5 29.0 30.5 32.0 32.5
2 |- - - - 19.0 200 210 220 230 240 250
T1 | 16 16 17 18 19 20 21 22 23 24 25
n2
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0.4.6.8 The Kolmogorow—Smirnow A-distribution

Remark on the table:

The tables on probability theory and mathematical statistics are taken in part from [17]
and [27].

Xl [ Jed [» (e [x Jeadm [x [ed [x [ewm

0.32] 0.0000] 0.66 | 0.2236 | 1.00| 0.7300| 1.34 | 0.9449{ 1.68 | 0.9929] 2.00| 0.9993
0.33| 0.0001| 0.67| 0.2396 | 1.01 | 0.7406 | 1.35| 0.9478 | 1.69 | 0.9934}] 2.01 | 0.9994
034 0.0002| 0.68| 0.25568 | 1.02} 0.7508 | 1.36 | 0.9505| 1.70 | 0.9938 | 2.02| 0.9994
035 0.0003| 0.69| 0.2722] 1.03] 07608} 1.37| 0.9531| 1.71 | 0.9942] 2.03 | 0.9995
0.36| 0.0005| 070 | 0.2888 | 1.04 | 0.7704 ] 1.38 | 0.9556 f 1.72 | 0.9946 | 2.04 | 0.9995
0.37| 0.0008 | 0.71| 0.3055| 1.06| 0.7798 ] 1.39| 09580 | 1.73 | 0.9950 | 2.05| 0.9996
0.38| 0.0013] 0.72| 0.3223 | 1.06| 0.7889 ] 1.40| 09603 | 1.74 | 0.9953 | 2.06 | 0.9996
0.39| 0.0019| 0.73| 03391 ]| 1.07| 0.7976 | 1.41 | 0.9625| 1.75| 0.9956 | 2.07 | 0.9996
0.40| 0.0028 | 0.74| 0.3560 | 1.08 ] 0.8061 | 1.42| 09646 | 1.76 | 0.9959 | 2.08 | 0.9996
0.41| 0.0040]| 0.75| 0.3728 | 1.09| 0.8143 | 1.43| 0.9665| 1.77 | 0.9962 | 2.09 | 0.9997
0.42| 0.0055] 0.76 | 0.3896 | 1.10| 0.8223 | 1.44| 0.9684 | 1.78 | 0.9965 | 2.10 | 0.9997
0.43] 0.0074 ] 0.77] 04064 ) 1.11| 0.8299| 1.45| 09702] 1.79| 0.9967 | 2.11| 09997
0.44| 0.0097| 0.78| 04230] 1.12| 0.8374| 1.46 | 09718 | 1.80| 0.9969 | 2.12 | 0.9997
0.45] 0.0126 | 0.79 | 0.4395]| 1.13| 0.8445| 1.47| 09734 | 1.81 | 09971 | 2.13 | 0.9998
0.46{ 0.0160| 0.80| 0.4559 | 1.14| 0.8514 | 1.48 | 09750 1.82 | 0.9973 | 2.14| 0.9998
0.47| 0.0200| 0.81} 04720 | 1.15| 0.8580 | 1.49) 0.9764| 1.83 | 09975 2.15| 0.9998
0.48| 0.0247| 0.82| 0.4880| 1.16| 08644 ) 1.50 | 09778 1.84 | 09977 2.16 | 0.9998
049 0.0300| 0.83| 05038} 117 | 0.8706] 1.51 | 0.9791| 1.85 | 0.9979 | 2.17 | 0.9998
0.50| 0.0361| 0.84 | 0.5194] 1.18| 0.8765 | 1.52 | 0.9803 | 1.86| 0.9980 | 2.18 | 0.9999
0.51| 0.0428 | 0.85| 05347 1.19| 0.8823| 1.53| 09815 | 1.87] 0.9981 | 2.19 | 0.9999
0.52| 0.0503| 0.86 | 0.5497 | 1.20| 0.8877 | 1.54| 0.9826 | 1.88 | 0.9983 | 2.20 | 0.9999
0.53| 0.0585| 0.87| 0.5645 | 1.21| 0.8930( 1.55| 0.9836 | 1.89 | 0.9984 | 2.21 | 0.9999
0.54| 0.0675| 0.88] 0.5791 | 1.22} 0.8981] 1.56 | 0.9846 | 1.90 | 0.9985] 2.22 | 0.9999
0.55| 0.0772| 0.89| 05933 | 1.23| 09030 1.57| 09855 1.91 | 0.9986 ] 2.23| 0.9999
0.56| 0.0876 | 0.90| 0.6073| 1.24| 0.9076 | 1.58 | 0.9864 ) 1.92| 09987 | 2.24 | 0.9999
0.57| 0.0987 | 0.91| 0.6209] 1.25] 09121 | 1.59| 09873 1.93 | 0.9988 | 2.25{ 0.9999
0.58| 0.1104 | 0.92| 0.6343 ] 1.26| 09164 | 1.60| 0.9880| 1.94; 0.9989 | 2.26 | 0.9999
0.59| 0.1228 | 093 | 0.6473 | 1.27| 0.9206 | 1.61 | 0.9888 | 1.95| 0.9990 | 2.27 | 0.9999
0.60| 01357} 094 0.6601 | 1.28| 0.9245] 1.62| 09835 | 1.96| 0.9991 | 2.28 | 0.9999
0.61| 0.1492 | 095| 0.6725| 1.29 | 0.9283 | 1.63 | 09902 1.97 | 0.9991 | 2.29 [ 0.9999
0.62| 0.1632| 0.96 | 0.6846| 1.30| 0.9319( 1.64 | 0.9908 | 1.98 | 0.9992 | 2.30| 0.9999
0.63| 0.1778 | 097 | 0.6964| 1.31| 0.9354 | 1.65| 0.9914 | 1.99| 0.9993 | 2.31 | 1.0000
0.64| 0.1927] 0.98| 0.7079| 1.32} 0.9387 | 1.66 | 0.9919
0.65| 0.20801 0.99| 0.7191] 1.33| 0.9418 | 1.67| 0.9924
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A’!‘
PX=r)="e?
r!
A

r [0.1 [02 [ 03 [ 04 T 05 [ 086 Tor [ 08

0 ]0.904837 ) 0.818731 | 0.740818 | 0.670320 | 0.606531 | 0.548812 | 0.496585 | 0.449329
1 10.090484 | 0.163746 | 0.222245 | 0.268128 | 0.303265 | 0.320287 | 0.347610 | 0.359463
2 |0.004524 | 0.016375 | 0.033337 | 0.053626 | 0.0v5816 | 0.098786{ 0.121663 ] 0.143785
3 | 0.000151 | 0.001092 | 0.003334| 0.007150 | 0.012636 | 0.019757 | 0.028388 | 0.038343
4 10.000004 | 0.000055 [ 0.000250 | 0.000715 | 0.001580 | 0.002964 [ 0.004968 | 0.007 669
5 |- 0.000002 | 0.000015 | 0.000057 { 0.000158 | 0.000356 | 0.000696 | 0.001227
6 |- - 0.000001 | 0.000004 | 0.000013 | 0.000036 | 0.000081 | 0.000164
7 |- - - - 0.000001 | 0.000003 | 0.000008 | 0.000019
8 |- - - - - - 0.000001 | 0.000002

A

» [0.9 [T0 [ 15 2.0 ] 25 T 3.0 335 [ 4.0

0 |0.406570 | 0.367879 | 0.223130 | 0.135335 | 0.082085 | 0.049787 | 0.030197 | 0.018316
1 |0.365913 | 0.367879 | 0.334695 | 0.270671 | 0.205212 ( 0.149361 | 0.105691 [ 0.073263
2 10.164661 | 0.183940 | 0.251021 | 0.270671 | 0.256516 | 0.224042 | 0.184959 | 0.146 525
3 |0.049398 | 0.061313 | 0.125510 | 0.180447 | 0.213763 ] 0.224042 | 0.215785 | 0.195367
4 0011115 | 0.015328 | 0.047067 | 0.090224 | 0.133602 | 0.168031 | 0.188812 [ 0.195367
5 10.002001 | 0.003066 | 0.014120 | 0.036089 | 0.066801 [ 0.100819 | 0.132169 | 0.156 293
6 | 0.000300 | 0.000511 | 0.003530 { 0.012030 | 0.027834 | 0.050409 | 0.077098 | 0.104196
7 }0.000039 [ 0.000073 { 0.000756 | 0.003437 [ 0.009941 [ 0.021604 | 0.038549 | 0.059540
8 | 0.000004 | 0.000009 | 0.000142 | 0.000859 | 0.003106 | 0.008102 | 0.016865; 0.029770
9 |- 0.000001 | 0.000024 | 0.000191 | 0.000863 | 0.002701 | 0.006559 | 0.013231
10 | - - 0.000004 | 0.000038 | 0.000216 [ 0.000810 | 0.002296 { 0.005292
114 - - - 0.000007 { 0.000049 [ 0.000221 | 0.000730 | 0.001925
12 - - - 0.000001 | 0.000010 [ 0.000055 | 0.000213 | 0.000642
13- - - - 0.000002 | 0.000013 { 0.000057 | 0.000197
14§ - - - - - 0.000003 | 0.000014 | 0.000056
15 | - - - - - 0.000001 | 0.000003 | 0.000015
16 | — - - - - - 0.000001 | 0.000004
17| - - - — — ~ - 0.000 001

—

r [48 | 5.0 1~ 6.0 7.0 [ 80 9.0 [ iG.0

0 |0.011109 0.006 738 0.002 479 0.000912 0.000 335 0.000123 0.000 045
1 [ 0.048990 0.033 690 0.014 873 0.006 383 0.002684 0.001 111 0.000454
2 | 0.112479 0.083224 0.044 618 0.022 341 0.010735 0.004 998 0.002270
3 10168718 0.140 374 0.089 235 0.052129 0.028 626 0.014 994 0.007 567
4 | 0.189808 0.175 467 0.133 853 0.091 226 0.057 2562 0.033737 0.018917
5 | 0170827 0.175 467 0.160 623 0.127717 0.091 604 0.060 727 0.037833
6 }0.128120 0.146 223 0.160623 0.149003 0.122138 0.091 090 0.063 055
7 10.082363 0.104 445 0.137677 0.149003 0.139587 0.117116 0.090079
8 | 0.046 329 0.065 278 0.103 258 0.130377 0.139 587 0.131 756 0.112 599
9 |0.023165 0.036 266 0.068 838 0.101 405 0.124077 0.131 756 0.125110
10 | 0.010424 0.018133 0.041 303 0.070983 0.099 262 0.118 580 0.125110
11 | 0.004 264 0.008 242 0.022529 0.045171 0.072190 0.097020 0.113 736
12 | 0.001 599 0.003 434 0.011 264 0.026 350 0.048127 0.072765 0.094 780
13 | 0.000 554 0.001 321 0.005 199 0.014 188 0.029616 0.050 376 0.072908
14 | 0.000178 0.000472 0.002 228 0.007 094 0.016 924 0.032384 0.052077
15 | 0.000053 0.000 157 0.000 891 0.003 311 0.009 026 0.019431 0.034718
16 | 0.000015 0.000049 0.000 334 0.001 448 0.004 513 0.010930 0.021 699
17 | 0.000 004 0.000014 0.000118 0.000 596 0.002124 0.005 786 0.012 764
18 | 0.000 001 0.000 004 0.000 039 0.000232 0.000 944 0.002 893 0.007 091
19 | - 0.000 001 0.000012 0.000 085 0.000 397 0.001 370 0.003 732
20| - - 0.000 004 0.000030 0.000159 0.000617 0.001 866
21 |~ - 0.000001 0.000010 0.000061 0.000 264 0.000 889
22 | - - - 0.000 003 0.000 022 0.000108 0.000 404
23| - - - 0.000001 0.000 008 0.000 042 0.000 176
24| - - - - 0.000 003 0.000016 0.000073
25 | — - - - 0.000001 0.000 006 0.000 029
26 | - - - - - 0.000 002 0.000011
27 | — - - - - 0.000001 0.000 004
28 | - - - - - - 0.000001
29 | - - - - - - 0.000 001
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0.5 Tables of values of special functions

Remark on the following tables:

0. Formulas, Graphs and Tables

Some of these tables are taken from [21].

0.5.1 The gamma functions I'(z) and 1/T'(x)

Remark on this table: See also section 1.14.16.

x r(wﬂ 1/T(z) x r(z)| 1/I(z) x Lx)| 1/I(z)
1.00 1.000 00 1.0000 1.40 0.887 26 1.1270 1.70 0.908 64 1.1005
1.01 0.994 33 0057 141 886 76 1277 1.71 91057 0982
1.02 98884 0113 142 886 36 1282 1.72 91258 0958
1.03 983 55 0167 1.43 88604 1286 1.73 914 67 0933
1.04 978 44 0220 1.44 88581 1289 1.74 916 83 0907
1.05 97350 0272 1.45 885 66 1291 1.75 91906 0881
1.06 968 74 0323 1.46 885 60 1291 1.76 92137 0854
1.07 964 15 0372 1.47 88563 1291 1.77 92376 0825
1.08 959 73 0420 1.48 88575 1291 1.78 926 23 0796
1.09 955 46 046 6 1.49 88595 1288 1.79 92877 0767
1.10 0.951 35 1.0511 1.50 0.886 23 1.1284 1.80 0.93138 1.0737
1.11 947 40 0555 1.51 886 59 1279 1.81 93408 0706
1.12 943 59 0598 1.52 88704 1273 1.82 936 85 0674
1.13 93993 0639 1.53 88757 1267 1.83 939 69 0642
1.14 936 42 0679 1.54 88818 1259 1.84 94261 0609
1.15 93304 0718 1.55 888 87 1250 1.85 945 61 0575
1.16 92980 0755 1.56 889 64 1240 1.86 948 69 0541
1.17 926 70 0791 1.57 890 49 1230 1.87 951 84 0506
1.18 92373 0826 1.58 89142 1218 1.88 95507 0471
1.19 92089 0859 1.59 89243 1205 1.89 958 38 0435
1.20 0.91817 1.0891 1.60 0.89352 1.1191 1.90 0.96177 1.0398
1.21 91558 0922 1.61 894 68 1177 1.91 965 23 0360
1.22 91311 0952 1.62 89592 1161 1.92 968 77 0322
1.23 91075 0980 1.63 897 24 1145 1.93 972 40 0284
1.24 908 52 1007 1.64 898 64 1128 1.94 976 10 0245
1.25 906 40 1032 1.65 90012 1109 1.95 97988 0206
1.26 904 40 1057 1.66 90167 1091 1.96 983 74 0165
1.27 902 50 1080 1.67 903 30 1071 1.97 98768 0125
1.28 90072 1102 1.68 905 00 1049 1.98 99171 008 3
1.29 89904 1123 1.69 906 78 1028 1.99 995 81 0042
1.30 0.897 47 1.1142 If z is a natural number n with n» > 1, then
1.31 89600 1161 [(n) = (n — 1)},

1.32 89464 1178 so that, for example, I'(2) = 1.
1.33 893 38 1194 To calculate U'(z) for x which is less than 1 but not an
1.34 89222 1208 integer, one can use the formula
1.35 89115 1222 T(z+1)
1.36 89018 1234 M(z) = ———.
1.37 88931 1244 If = > 2, then for the calculation the formula
1.38 888 54 1254 INz) = (z - 1)-Tz-1)
1.39 887 85 126 3
can be used.
Ezamples:
1. 1(~0.2) = ro.sy  r({s) _0.931 38 _ 589113,

—0.2

T 02.08

0.16

2. T(3.2) =2.2-T(22) =2.2-1.2-2.1(1.2) = 2.2 1.2- 0.918 17 = 2.42397.
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0.5.2 Cylinder functions (also known as Bessel functions)
Remark: See also section 1.14.22.

| Jo@ | A | W@ [ i@ | h@ | h@ | K@) | Ki()
00| +1.0000] +o0.0000 —o0 —o0 1.000 | o0.000 o0 0o
0.1| +0.9975| +0.0499| -1.5342| —6.4590| 1.003 | 0.0501| 2.4271 9. 8538
0.2| +0.9900| +0.0995] -1.0811| -3.3238| 1.010 | 0.1005| 1.7527 4. 7760
03| +o.9776| +0.1483| -0.8073| -2.2931| 1.023 | 0.1517| 1.3725 3. 0560
0.4 +0.9604 | +0.1960| -0.6060] -1.7809| 1.040 | 0.2040| 1.1145 2. 1844
05| +0.9385| +0.2423| -0.4445| -1.4715| 1.063 | 0.2579| 0.9244 1. 6564
0.6 +0.9120 | +0.2867| -0.3085| -1.2604| 1.092 | 0.3137 | 0.7775 1. 3028
07| +0.8812| +0.3290| -0.1907] -1.1032| 1.126 | 0.3719| 0.6605 1. 0503
08| +0.8463 | +0.3688 | -0.0868 | -0.9781| 1.167 | 0.4329| 0.5653 0. 8618
09| +0.8075| +0.4059| +0.0056 | -0.8731| 1.213 | 0.4971| 0.4867 0. 7165
10| +0.7652| +0.4401| +0.0883| -0.7812| 1.266 | 0.5652| 0.4210 0. 6019
11| +0.7196 | +0.4709| +0.1622 -0.6981| 1.326 | 0.6375| 0.3656 0. 5098
12| +0.6711| +0.4983| +0.2281| -0.6211| 1.304 | 0.7147| 0.3185 0. 4346
1.3 +0.6201 | +0.5220| +0.2865| -0.5485| 1.469 | 0.7973 | 0.2782 0. 3725
14| 405669 | +0.5419| +0.3379| —0.4791| 1.553 | 0.8861| 0.2437 0. 3208
15| +0.5118 | +0.5579 | +0.3824 [ -0.4123| 1647 | 0.9817| 0.2138 0. 2774
1.6 +0.4554 +0.5699 | +0.4204( -0.3476| 1.750 1.085 | 0.1880 0. 2406
1.7 +0.3980 | +0.5778 | +0.4520( -0.2847| 1.864 1.196 | o0.1655 0. 2094
1.8 +0.3400| +0.5815| +0.4774( -0.2237| 1.990 1.317 | 0.1459 0. 1826
19| +0.2818 | +0.5812| +0.4968 | -0.1644| 2.128 1.448 | 0.1288 0. 1597
2.0 +0.2239| +0.5767 | +0.5104| -0.1070| 2.280 1591 | 0.1139 0. 1399
21| +0.1666 | +0.5683 | +0.5183| -0.0517 | 2.446 1.745 | 0.1008 0. 1227
2.2 +0.1104 | +0.5560| +0.5208 | +0.0015| 2.629 1.914 | 0.08927 | 0. 1079
2.3| +0.0555( +0.5399 +0.5181| +0.0523( 2830 [ 2098 | 0.07914 | 0. 09498
24| 40.0025| +0.5202| +0.5104| +0.1005| 3.049 | 2298 | 0.07022 | 0. 08372
25| -0.0484 | +0.4971| 40.4981| +0.1459 | 3.200 | 2517 | 0.06235 | 0. 07389
26| -0.0968| +0.4708| 40.4813| +0.1884| 3.553 | 2755 | 0.05540 | 0. 06528
27| —0.1424( +0.4416| +0.4605| +0.2276| 3.842 [ 3.016 | 0.04926 | 0. 05774
2.8| -0.1850| +0.4097| +0.4359| +0.2635| 4.157 [ 3.300 | 0.04382 | 0. 05111
29| -0.2243| +0.3754| +0.4079| +0.2959 | 4.503 | 3.613 | 0.03901 | 0. 04529
30| -0.2601| +0.3391| 40.3769 | +0.3247| 4.881 3.953 | 0.03474 | 0. 04016
31| —0.2921| +40.3009 | +0.3431| +0.3496| 5.204 | 4.326 | 0.03095 | 0. 03563
32| -0.3202| +0.2613| +0.3070| +0.3707 | 5747 | 4.734 | 0.02759 | 0. 03164
33| -0.3443| 402207 +0.2691| +0.3879| 6.243 5181 | 0.02461 | 0. 02812
34| -0.3643 | 40.1792| 40.2296 | +0.4010| 6.785 5.670 | 0.02196 | 0. 02500
35| -0.3801| +0.1374| +0.1890| +0.4102| 7.378 | 6.206 | 0.01960 | 0. 02224
3.6| -0.3918 | +0.0955| +0.1477| +0.4154| 8.028 | 6.793 | 0.01750 | 0. 01979
3.7| -0.3992| +0.0538 | +0.1061| +0.4167| 8.739 7.436 | 0.01563 | 0. 01763
3.8 -0.4026| +0.0128| +0.0645| +0.4141| 9.517 | 8.140 | 0.01397 | 0. 01571
3.9 -0.4018| -0.0272) +0.0234| +0.4078| 10.37 8.913 | 0.01248 | 0. 01400
4.0( -0.3971] -0.0660( -0.0169| +0.3979| 11.30 9.759 | 0.0i116 |{ 0. 01248
41| -0.3887| -0.1033| -0.0561| +0.3846 | 12.32 10.69 0.009980 | 0. 01114
42| -0.3766 | -0.1386| -0.0938| +0.3680| 13.44 1171 0.008927 | 0. 009938
43| -0.3610| -0.1719| -0.1296| +0.3484 | 14.67 12.82 0.007988 | 0. 008872
44| -0.3423( -0.2028| -0.1633| +0.3260] 16.01 14.05 0.007149 | 0. 007923
45| -0.3205| -0.2311| -0.1947] +0.3010| 17.48 15.39 0.006400 | 0. 007078
46| —0.2061| -0.2566| -0.2235| +0.2737 | 19.09 16.86 0.005730 | 0. 006325
47| -0.2693| -0.2791| -0.2494 | +0.2445 | 20.86 18.48 0.005132 | 0. 005654
48| -0.2404| -0.2085| -0.2723| +0.2136| 22.79 | 20.25 0.004597 | 0. 005055
49| -0.2097 | -0.3147| -0.2021| +0.1812| 24.91 22.20 0.004119 | 0. 004521
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2| Jo@ | i@ | %@ | i@ | ©o@ | h(=) | Ko@) | K@)
5.0 | -0.1776 | -0.3276 | -0.3085 | +0.1479 27.24 24.34 | 3691-10-% | 4045.1076
51 | -0.1443 | -0.3371( -0.3216 | +0.1137 29.79 26.68 | 3308-10-% | 3619.-10~°
5.2 | —0.1103 | -0.3432 | -0.3313 | 40.0792 32.58 29.25 | 2966 - 106 | 3239-106
5.3 | —0.0758 | —0.3460 | —0.3374 | 40.0445 35.65 32.08 | 2659-10-6 | 2900.-10—6
54 | -0.0412 | -0.3453| -0.3402 | +0.0101 39.01 35.18 | 2385-10-6 | 2597-10—F
5.5 | -0.0068 | -0.3414| -0.3395] -0.0238 42.69 38.59 | 21391076 | 2326-10~¢
5.6 | +0.0270 | —0.3343| -0.3354 | -0.0568 46.74 42.33 | 19181078 | 2083-10~F
5.7 | +0.0599 | -0.3241 | -0.3282| -0.0887 51.17 46.44 | 1721-1076 | 1866-10°
58 | 40.0917 | -0.3110 | -0.3177 | -0.1192 56. 04 50.95 | 1544 .10-¢ | 1673.107°
59 | +0.1220 | -0.2951 | -0.3044 | -0.1481 61.38 55.90 | 1386-10-6 | 1499.10-°
6.0 | 4+0.1506 | —0.2767 | -0.2882 ] -0.1750 67.23 61.34 | 1244-10-6 ] 1344.10-6
6.1 | +0.1773 | —0.2559 | -0.2694 | -0.1998 73.66 67.32 ] 1117-107% | 1205-10~°
6.2 | +0.2017 | -0.2329| -0.2483 | -0.2223 80.72 73.89 | 1003-10-6 [ 1081-10-6
6.3 | +0.2238 | -0.2081| —0.2251| -0.2422 88.46 81.10 | 9001 -10-7 | 9691-107
6.4 | 4+0.2433 | -0.1816| —0.1999 | -0.2596 96. 96 89.03 | 8083-10~7 | 8693.10~7
6.5 | +0.2601 | -0.1538 | —0.1732 | -0.2741] 106.3 97.74 | 72501077 | 7799.10~7
6.6 | +0.2740 | -0.1250| —0.1452 | -0.2857| 116.5 107.3 | 65201077 | 6998107
6.7 | +0.2851 | -0.0953 | —0.1162 | -0.2045| 127.8 117.8 | 5857-10"7 | 6280107
6.8 | +0.2931| -0.0652 | -0.0864 | -0.3002 140.1 129.4 | 5262-10"7 | 5636-10~7
6.9 | +0.2081 | -0.0349| -0.0563 | -0.3029| 153.7 142.1 | 4728-1077 | 5059.10~7
7.0 | 4+0.3001 | —0.0047 | —0.0259 | -0.3027| 168.6 156.0 | 4248.1077 | 4542-107
7.1 | 40.2991 | +0.0252 | +0.0042 | -0.2995| 185.0 171.4 | 3817-10~7 | 4078107
7.2 | +0.2951 | +0.0543 [ +0.0339 | -0.2934 | 202.9 188.3 | 34311077 | 3662-10"7
7.3 | 40.2882 | 40.0826 | +0.0628 | -0.2846 | 222.7 206.8 | 3084-10~7 | 3288.10~7
7.4 | 40.2786 | +0.1096 | +0.0907 | -0.2731| 244.3 227.2 | 2772-10~7 | 2953.10-7
7.5 | 4+0.2663 | +0.1352 | +0.1173 | —0.2591 | 268.2 249.6 | 2492-10"7 | 2653 10~7
7.6 | 40.2516 | +0.1592 | +0.1424 | -0.2428  294.3 274.2 | 22401077 | 2383-10°7
7.7 | +0.2346 | +0.1813 | +0.1658 | —0.2243 | 323.1 301.3 | 2014-10~7 | 2141107
7.8 | 4+0.2154 | 40.2014 | +0.1872 | -0.2039 | 354.7 331.1 | 1811-107 | 1924107
7.9 | +0.1944 | +0.2192 | +0.2065 | -0.1817 | 389.4 363.9 | 1629-10-7 [ 1729-10~7
8.0 | 4+0.1717 | 40.2346 | +0.2235 | -0.1581 | 427.6 399.9 | 1465-107 | 1554-10~7
8.1 | 40.1475 | +0.2476 | +0.2381 | -0.1331 | 469.5 439.5 | 1317-10~7 | 1396-10"7
8.2 | +0.1222 | 40.2580 | +0.2501 | -0.1072| 515.6 483.0 | 1185-1077 | 1255.10~7
8.3 | 4+0.0960 | +0.2657 | +0.2595 | -0.0806 | 566.3 531.0 | 1066-10"7 | 1128-10~"
8.4 | +0.0692 | +0.2708 | +0.2662 | -0.0535| 621.9 583.7 | 9588-10"5 | 1014.10~7
8.5 | +0.0419 | 40.2731 | +0.2702 | -0.0262 | 683.2 641.6 | 8626-10-% | 9120108
8.6 | +0.0146 | +0.2728 | +0.2715 | +0.0011 | 750.5 705.4 | 7761-107% | 8200108
8.7 | —0.0125 | +0.2697 | +0.2700 | +0.0280 | 824.4 775.5 | 6983-10~% | 7374.1078
8.8 | -0.0392| +0.2641 | +0.2659 | +0.0544 | 905.8 852.7 | 6283.10"8 | 6631108
8.9 | -0.0653 | +0.2559 | +0.2592 | +0.0799 | 995.2 937.5 | 5654-10"8 | 5964 .10~8
9.0 | —0.0903 | +0.2453 | +0.2499 | +0.1043 | 1094.0 | 1031.0 | 5088 -10~% | 5364108
9.1 | -0.1142 | 40.2324 | +0.2383 | 40.1275 | 1202.0 | 1184.0 | 4579-10~% | 4825.1078
9.2 | —0.1367 | +0.2174 | +0.2245 | +0.1491 | 1321.0 | 1247.0 | 4121-10"8 | 4340.108
9.3 | -0.1577 | 4+0.2004 | +0.2086 | +0.1691 | 1451.0 | 1371.0 | 3710-10~% | 3904-108
9.4 | -0.1768 | 40.1816 | +0.1907 | +0.1871 | 1595.0 | 1508.0 | 33391078 | 3512-10—8
9.5 | -0.1939 | 40.1613 | +0.1712 | +0.2032 | 1753.0 | 1685.0 | 3006 103 | 3160 10~
9.6 | —0.2090 | 40.1395 | +0.1502 | +0.2171 | 1927.0 | 1824.0 | 2706-10"% | 2843.10"%
9.7 | -0.2218 | 40.1166 | +0.2179 | +0.2287 | 2119.0 | 2006.0 | 2436-10~8 | 2559108
9.8 | —0.2323 | +0.0928 | +0.1045 | 4+0.2379 | 2329.0 | 2207.0 | 2193-10-% | 2302-10~8
9.9 | —0.2403 | 40.0684 | +0.0804 | +0.2447 | 2561.0 | 2428.0 | 1975-108 | 2072.10~8
10.0[ -0.2459 | +0.0435 | +0.0557 | +0.2490 | 2816.0 | 2671.0 | 1778-107% | 1865.107°
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Some values of Bessel functions of higher order p, for integral arguments

For p = 0.5, 1.5 and 2.5 see the table Spherical cylinder functions below.

Pl B [ B@ [ BE | B@ [ 56
0| +0.7652 +0. 2239 -0. 2601 -0. 3971 -0. 1776
1.0| +0. 4401 +0. 5767 +0. 3391 ~0. 06604 -0. 3276
20| +0.1149 +0. 3528 +0. 4861 +0. 3641 +0. 046 57
3.0{ 40.01956 +0. 1289 +0. 3091 +0. 4302 +0. 3648
3.5{ 40.7186.1072 | +0. 06852 +0. 2101 +0. 3658 +0. 4100
40| +0.2477.10-2 | +0. 03400 +0. 1320 +0. 2811 +0. 3912
4.5[ +40. 807-10~3 +0. 01589 +0. 07760 +0. 1993 +0. 3337
5.0( +0.2498107% | +0.7040-1072 | +0. 04303 +0. 1321 +0. 2611
55| +0. 741074 +0. 29731072 |  40. 02266 +0. 08261 +0. 1906
6.0 +0.2094107¢| +0.1202.1072| +40.01139 +0. 04909 +0. 1310
6.5| +0.6.10°° +0. 467103 +0. 5493102 +0. 02787 +0. 08558
7.0  +0. 1502-10~3 +0. 1749-1073 40. 2547-1072 +0. 01518 +0. 05338
8.0 +0.9422.10~7 +0. 2218.10% +0. 4934-10—3 +0. 4029-10—2 40. 01841
9.0] +0.5249-10°8 +0. 2492-10°5 +0. 8440-10~4 +0. 9386-10~3 +0. 5520-10~2
10.0] 40.2631-107° | +40. 25151076 | +40. 1290310~ | +40. 1950-1073 | 40. 1468102
) BE) [ M [ B® [ HO | Hao)
0| +0.1506 +0. 3001 +0. 1717 ~0. 09033 -0. 2459
10| -0.2767 -0. 4683-1072 | 0. 2346 +0. 2453 +0. 04347
20| -0.2429 -0. 3014 -0. 1130 +0. 1448 +0. 2546
30| +0. 1148 -0. 1676 0. 2911 ~0. 1809 +0. 05838
35 +0.2671 ~0. 3403-10~2 -0. 2326 -0. 2683 -0. 09965
40| +0.3576 +0. 1578 —0. 1054 -0. 2655 -0. 2196
45| +0. 3846 +0. 2800 +0. 04712 ~0. 1839 —0. 2664
50| +0. 3621 +0. 3479 +0. 1858 ~0. 05504 -0. 2341
55 +0. 3098 +0. 3634 +0. 2856 +0. 08439 -0. 1401
6.0{ +40.2458 +0. 3392 +0. 3376 +0. 2043 -0. 01446
6.5 +0.1833 +0. 2911 +0. 3456 +0. 2870 +0. 1123
7.0| +0.1296 +0. 2336 +0. 3206 +0. 3275 +0. 2167
8.0 -+0.05653 +0. 1280 +0. 2235 +0. 3051 +0. 3179
9.0 +0.02117 +0. 05892 +0. 1263 +0. 2149 +0. 2919
10.0| +0. 6964-10-2 | +0. 02354 +0. 06077 +0. 1247 +0. 2075
pl B [ K2 [ K03 | R4 [ J(5)
o| -0.1712 +0. 04769 +0. 2069 +0. 1711 -0. 01422
1.0 -0.1768 ~0. 2234 —0. 07032 +0. 1334 +0. 2051
20| +0.1390 -0. 08493 0. 2177 -0. 1520 +0. 041 57
3.0| +40.2273 +0. 1951 +0. 3320-102 -0. 1768 -0. 1940
3.5 +40.1294 +0. 2348 +0. 1407 -0. 06245 -0. 1991
40| -0. 01504 +0. 1825 +0. 2193 +0. 076 24 -0. 1192
45 0. 1519 +0. 064 57 +0. 2134 +0. 1830 +0. 7984-10~*
5.0f -0.2383 -0. 07347 +0. 1316 +0. 2204 +0. 1305
55| —0.2538 -0. 1864 +0. 7055-1072 |  40. 1801 +0. 2039
6.0 -0.2016 -0. 2437 —0. 1180 +0. 08117 +0. 2061
6.5 -0.1018 -0. 2354 -0. 2075 -0. 04151 +0. 1415
7.0| +0. 01838 -0. 1703 —0. 2406 -0. 1508 +0. 034 46
8.0 +0.2250 +0. 045 10 -0. 1410 -0. 2320 -0. 1740
9.0 +0. 3089 +40. 2304 +0. 066 98 -0. 1143 -0. 2200
10.0( +0. 2804 40. 3005 +0. 2338 +0. 08501 -0. 09007
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P] Jp(16) | a7 | Jp(18) | Jp(19) Jp(20)
0 -0.1749 -0.1699 —0.01336 +0.146 6 +0.1670
1.0 +0.090 40 —0.097 67 -0.1880 ~0.1057 +0.066 83
2.0 +0.1862 +0.1584 —0.7533-1072 —0.1578 -0.1603
3.0 —0.04385 +0.1349 +0.1863 +0.07249 —0.098 90
3.5 —0.1585 +0.01461 +0.1651 +0.1649 +0.021 52
4.0 —0.2026 -0.1107 +0.069 64 +0.1806 +0.1307
4.5 -0.1619 -0.1875 —0.05501 +0.1165 +0.1801
5.0 -0.057 47 —0.1870 -0.1554 +0.3572-10~2 +0.1512
5.5 +0.067 43 —0.1139 -0.1926 -0.1097 +0.059 53
6.0 +0.166 7 +0.7153-1073 -0.1560 -0.1788 —0.05509
6.5 +0.2083 +0.1138 —0.06273 -0.1800 —0.1474
7.0 +0.1825 +0.1875 +0.051 40 -0.1165 —0.1842
8.0 -0.7021.10~2 +0.1537 +0.1959 +0.09294 —0.07387
9.0 —0.1895 -0.042 86 +0.1228 +0.1947 +0.1251
10.0 —0.2062 —0.1991 -0.07317 +0.091 55 +0.1865
Spherical cylinder functions (Bessel functions) J4(n41/2)
. Ji/2 J3/2 | Js/2 I J_1/2 l J_3s2 J_5/2
0 0.0000 0.0000 0.0000 +oo —00 +oo
1 +0.6714 +0.2403 +0.0495 +40.4311 -1.1025 +2.8764
2 +0.5130 +0.4913 +0.2239 -0.2348 —0.3956 +0.8282
3 +0.0650 4+0.4777 +0.4127 -0.4560 +0.0870 +0.3690
4 -0.3019 +0.1853 +0.4409 -0.2608 +0.3671 -0.0146
5 —0.3422 -0.1697 +0.2404 +0.1012 +0.3219 —0.2044
6 —0.0910 -0.3279 -0.0730 +0.3128 +0.0389 -0.3322
7 +0.198 1 -0.1991 —0.2834 +0.2274 -0.2306 —0.1285
8 +0.2791 +0.0759 -0.2506 -0.0410 -0.2740 +0.1438
9 +0.1096 +0.2545 -0.0248 —0.2423 -0.0827 +0.2699
10 —0.1373 +0.1980 +0.1967 -0.2117 +0.1584 +0.164 2
11 —0.2406 -0.0229 +0.2343 +0.0011 +0.2405 —0.066 6
12 -0.1236 -0.2047 +0.0724 +0.1944 +0.1074 -0.2212
13 +0.0930 -0.1937 —0.1377 +0.2008 —0.1084 —0.1758
14 +0.2112 -0.0141 -0.2143 40.029 2 -0.2133 +0.0166
15 +0.1340 +0.1654 -0.1009 —0.1565 ~0.1235 +0.1812
16 —0.0574 +0.1874 +0.0926 -0.1910 +0.069 4 +0.1780
17 —0.1860 +0.0423 +0.1935 -0.0532 +0.1892 +0.0199
18 -0.1412 —0.1320 +0.1192 +0.1242 +0.1343 —0.146 6
19 +0.0274 —0.1795 -0.0558 +0.1810 -0.0370 —0.1751
20 +0.1629 -0.0647 -0.1726 +0.0728 -0.166 5 -0.0478
21 +0.1457 +0.1023 -0.1311 -0.0954 -0.1411 +0.1155
22 -0.0015 +0.1700 +0.0247 -0.1701 +0.009 2 +0.1688
23 -0.1408 +0.0825 40.1516 -0.088 6 +0.1446 +0.0698
24 -0.1475 —0.0752 +0.1381 +0.0691 +0.1446 —0.0872
25 -0.0211 -0.1590 +0.0020 +0.1582 +0.0148 ~0.1599
26 +0.1193 —0.096 6 -0.1305 +0.1012 —0.1232 -0.0870
27 +0.1469 +0.0503 -0.1413 —0.0449 —0.1452 +0.0610
28 +0.0408 +0.146 6 —0.0251 -0.1451 -0.0357 +0.1490
29 —0.0983 +0.1074 +0.1094 -0.1108 +0.1021 +0.1003
30 -0.1439 -0.0273 +40.1412 +0.0225 +0.1432 -0.0368
31 —0.0579 —0.1330 +0.0450 +0.1311 +0.0537 -0.1363
32 +0.0778 —0.1152 —0.0886 +0.1177 —0.0814 -0.1100
33 +0.1389 +0.006 1 —0.1383 -0.0018 -0.1388 +0.0145
34 +0.0724 +0.1182 -0.0620 -0.1161 —0.0690 +0.1222
35 —0.0578 +0.1202 +0.0680 -0.1219 +0.061 2 +40.116 6
36 —0.1319 +0.0134 +0.1330 -0.0170 +0.1324 +0.006 0
37 —0.0844 -0.1027 +0.076 1 +0.1004 +0.0817 —0.1070
38 +0.0384 —0.1226 —0.0480 +0.1236 —0.0416 -0.1203
39 +0.1231 -0.0309 -0.1255 +0.0341 —0.1240 —0.0245
40 +0.0940 +0.086 5 —0.0875 —0.0841 —0.0919 +0.0910
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The nt" zero of some Bessel functions
n p=20 p=1 p=2 | p=3 | p=4 l p=>5
1 2.405 3.832 5.135 6.379 7.588 8.771
2 5.520 7.016 8.417 9.760 11.064 12.339
3 8.654 10.173 11.620 13.015 14.373 15.700
4 11.792 13.323 14.796 16.224 17.616 18.980
5 14.931 16.470 17.960 19.410 20.827 22.218
6 18.071 19.616 21.117 22.583 24.018 25.430
7 21.212 22.760 24.270 25.749 27.200 28.627
8 24.353 25.903 27.421 28.909 30.371 31.812
9 27.494 29.047 30.569 32.065 33.537 34.989
0.5.3 Spherical functions (Legendre polynomials)
Remark: See also section 1.13.2.13.
e=P@| BRE | B | P | B | B [ AW
0.00 ~0. 5000 0.0000 0. 3750 0. 0000 -0. 3125 0. 0000
0.05 —0. 4962 -0. 0747 0.3657 0.0927 0. 2962 -0.1069
0.10 ~0. 4850 -0. 1475 0.3379 0.1788 -0. 2488 -0.1995
0.15 0. 4662 —0. 2166 0.2928 0.2523 -0. 1746 -0. 2649
0.20 —0. 4400 0. 2800 0.2320 0. 3075 -0. 0806 -0.2935
0.25 ~0. 406 2 —0.3359 0. 1577 0.3397 +0.0243 —0.2799
0.30 0. 3650 -0. 3825 +0.0729 0.3454 0.1292 —0.2241
0.35 0. 3162 0. 4178 —0.0187 0. 3225 0.2225 -0.1318
0.40 -0. 2600 -0. 4400 -0. 1130 0. 2706 0.2926 -0.0146
0.45 0. 1962 —0. 4472 -0. 2050 0.1917 0.3290 +0. 1106
0.50 -0. 1250 -0. 4375 0. 2891 +0. 0898 0.3232 0.2231
0.55 —0. 0462 —0.4091 -0. 3590 -0.0282 0.2708 0.3007
0.60 +0. 0400 -0. 3600 -0. 4080 -0. 1526 0.1721 0.3226
0.65 0.1338 0. 2884 0. 4284 -0. 2705 +0. 0347 0.2737
0.70 0. 2350 -0.1925 -0. 4121 —0. 3652 -0.1253 +0.1502
0.75 0. 3438 -0. 0703 -0.3501 0. 4164 0. 2808 ~0. 0342
0.80 0. 4600 +0. 0800 -0. 2330 -0. 3995 -0.3918 -0.2397
0.85 0. 5838 0. 2603 -0. 0506 -0.2857 -0. 4030 -0.3913
0.90 0. 7150 0. 4725 +0. 2079 -0.0411 -0. 2412 -0. 3678
0.95 0. 8538 0. 7184 0.5541 +0. 3727 +0. 1875 +0.0112
One has: P,(1)=1foralln=1,2,...
1 5 3
Py(z) =1, Pi(z) ==, Ps(z) = 5(631 — 70z” + 15z),
1 1
Py(z) = 5(33:2 —-1), Ps(z) = E(231x6 — 3152 + 10522 — 5),
1 1
Py(x) = 5(5353 - 3z2), Prz) = 1—6(429x7 — 6932° + 3152° — 35z),
1
Py(z) = -8—(35m4 - 3022 + 3).
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0.5.4 Elliptic integrals

Remark: See also section 1.14.19.
a) Elliptic integrals of the first kind F(k, ¢), k = sin a.

| a=0° I 10° | 20° 30° 40°

=0° 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.1745 0.1746 0.1746 0.1748 0.1749
20 0.3491 0.3493 0.3499 0.3508 0.3520
30 0.5236 0.5243 0.526 3 0.5294 0.5334
40 0.6981 0.699 7 0.7043 0.7116 0.7213
50 0.8727 0.8756 0.8842 0.898 2 0.9173
60 1.0472 1.0519 1.0660 1.0896 1.1226
70 1.2217 1.2286 1.2495 1.2853 1.3372
80 1.3963 1.405 6 1.4344 1.4846 1.5597
90 1.5708 1.5828 1.6200 1.6858 1.7868

J o = 50° 60° 70° 80° 90°

0=0° 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.1751 0.1752 0.1753 0.175 4 0.1754
20 0.3533 0.3545 0.3555 0.356 1 0.356 4
30 0.5379 0.5422 0.5459 0.5484 0.5193
10 0.7323 0.7436 0.7535 0.760 4 0.7629
50 0.9401 0.9647 0.9876 1.0044 1.0107
60 1.1643 1.2126 1.2619 1.3014 1.3170
70 1.406 8 1.4944 1.5959 1.6018 1.7354
80 1.6660 1.8125 20119 2.2653 2.4362
90 1.9356 2.1565 2.5046 3.153 4 -

b) Elliptic integrals of the second kind E(k, ¢), k = sina.

| a=0° 10° i 20° T 30° 40°

p=0° 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.1745 0.1745 0.1744 0.1743 0.1742
20 0.3491 0.3489 0.3483 0.3473 0.346 2
30 0.5236 0.5229 0.5209 0.5179 05141
40 0.6981 0.396 6 0.6921 0.6851 0.6763
50 0.8727 0.869 8 0.8614 0.848 3 0.8317
60 1.0472 1.0426 1.0290 1.0076 0.9801
70 1.2217 1.2149 1.1949 1.1632 1.1221
80 1.3963 1.3870 1.3597 1.3161 1.2590
90 1.5708 1.5589 1.5238 1.4675 1.3931

o= 50° 60° J 70° 80° 90°

©=0° 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.1740 0.1739 0.1738 1.1737 0.1736
20 0.3450 0.3438 0.3429 0.3422 0.3420
30 0.5100 0.506 1 0.5029 0.5007 0.5000
40 0.6667 0.657 5 0.6497 0.6446 0.6428
50 0.8134 0.7954 0.780 1 0.7697 0.7660
60 0.9493 0.9184 0.8914 0.8728 0.866 0
70 1.0750 1.0266 0.9830 0.9514 0.9397
80 1.1926 1.1225 1.0565 1.0054 0.9848
90 1.3055 1.2111 1.1184 1.0401 1.0000
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c) Complete elliptic integrals K and E, k = sina; for a = 90°, we set K= oo, E= 1.

o K E | o K | B | o] X | B

e 1.5708 1.5708 30 1.6858 1.4675 60 2.1565 1.2111

1 1.5709 1.5707 31 1.6941 1.4608 61 2.1842 1.2015

2 1.5713 1.5703 32 1.7028 1.4539 62 2.2132 1.1920

3 1.5719 1.5697 33 1.7119 1.4469 63 2.2435 1.1826

4 15727 1.5689 34 1.7214 1.4397 64 2.2754 1.1732

5 1.5738 1.5678 35 1.7312 1.4323 65 2.3088 1.1638

[ 1.5751 1.566 5 36 1.7415 14248 66 2.3439 1.1545

7 1.576 7 1.5649 37 1.7522 14171 67 2.3809 1.1453

8 1.5785 1.5632 38 1.7633 1.409 2 68 2.4198 1.1362

9 1.5805 1.5611 39 1.7748 1.4013 69 2.4610 1.1272
10 1.5828 1.558 9 40 1.7868 1.3931 70 2.5046 1.1184
11 1.5854 1.5564 41 1.7992 1.3849 71 2.5507 1.1096
12 1.5882 1.5537 42 1.8122 1.3765 72 2.5998 1.1011
13 1.5913 1.5507 43 1.8256 1.3680 73 2.6521 1.0927
14 1.5946 1.5476 44 1.8396 1.3594 74 2.7081 1.0844
15 1.5981 1.5442 45 1.8541 1.3506 75 2.7681 1.0764
16 1.6020 1.540 5 46 1.869 1 1.3418 76 2.8327 1.0686
17 1.606 1 1.5367 47 1.884 8 1.3329 77 2.902 6 1.0611
18 1.6105 1.5326 48 1.9011 1.3238 78 2.9786 1.0538
19 1.6151 1.5283 49 1.9180 1.3147 79 3.0617 1.046 8
20 1.6200 1.5238 50 1.9356 1.3055 80 3.1534 1.0401
21 1.6252 1.5191 51 1.9539 1.2963 81 3.2553 1.0338
22 1.6307 1.5141 52 1.9729 1.2870 82 3.3699 1.0278
23 1.6365 1.5090 53 1.9927 1.2776 83 3.5004 1.0223
24 1.6426 1.5037 54 2.0133 1.2681 84 3.6519 1.0172
25 1.6490 1.4981 55 2.0347 1.2587 85 3.8317 1.0127
26 1.6557 1.4924 56 2.0571 1.2492 86 4.0528 1.0086
27 1.6627 1.4864 57 2.0804 1.2397 87 4.3387 1.0053
28 1.6701 1.4803 58 2.1047 1.2301 88 4.7427 1.002 6
29 1.6777 1.4740 59 2.1300 1.2206 89 5.4349 1.0008

sin ¢
Pk, ) = / / dz
12
\/1—kzsm V1221~ k22?’
» sinp
E(k, p) = /\/1 —K2sin?ydy = /
0 a
/2
dz
K= F / /
\/l—kzsm P V1= 221 = k222’
/2

E=E /\/l—kzsm Ydyp = /,/1"“212

d(n+1)? / Ez"dz — (2n+3)(2n+5) / Ez""dz

=(2n+3)? / Kz"tdz — 4(n + 1)2/K:c"dx =22""HE — (2n + 3)(1 — £)K).
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0.5.5 Integral trigonometric and exponential functions

x .
sint

Definition: Si(x) :/—dt,

t

si(z) = Si(z)

0 o0
Ci(z) = - / s

z

. dt
li(z) :/m7

0

li(z) = Ei(lnz).

X0
s sint
——=— [ —dt
e
T

k4

Ei(z) = / °

—0

t

—dt,
t

ﬂ Si(x) | Ci(zx) L Ei(z)—[ x l Si(z) —L Ci(x) T Ei(z)
0.00 0. 0000 —o0 —00 0.40 0.3965 -0.3788 0.1048
0.01| 0.0100 —4.0280 —4.0179 | 041 0.4062 -0.3561 0.1418
0.02| 0.0200 -3.3349 -3.3147 | 0.42| 0.4159 ~0.3341 0.1783
0.03 0.0300 —2.9296 -2.8991 0.43 0.4256 -0.3126 0.2143
0.04|  0.0400 —2.6421 —2.6013 | 044| 0.4353 -0.2018 |  0.2498
0.05 0. 0500 —2.4191 -2.3679 0.45 0.4450 -0.2715 0.2849
0.06| 0.0600 —2.2371 —2.1753 | 046 0.4546 —0.2517 | 0.3ig5
0.07|  0.0700 -2.0833 -2.0108 | 047| 0.4643 -0.2325 | 0.3537
0.08| 0.0800 ~1.9501 -1.8669 { 048 0.4739 -0.2138 |  0.3876
009, 0.0900 ~1.8328 ~1.7387 |  049| 0.4835 ~0.1956 |  0.4211
0.10|  0.0999 -1.7279 ~1.6228 |  050| 0.4931 —0.1778 | 0.4542
0.11 0.1099 -1.6331 -1.5170 0.51 0.5027 -0.1605 0.4870
0.12]  0.1199 ~1.5466 -1.4193 ] 052 0.5123 -0.1436 |  0.5195
013 0.1299 ~1.4672 -1.3287 | 053] 0.5218 -0.1271 0.5517
0.14 0.1399 -1.3938 -1.2438 0.54 0.5313 -0.1110 0.5836
015 0.1498 -1.3255 -1.1641 |  055] 0.5408 -0.0953 | 0.6153
0.16 0.1598 -1.2618 -1.0887 0.56 0.5503 -0.0800 0.6467
0.17 0.1697 -1.2020 -1.0172 0.57 0.5598 -0.0650 0.6778
0.18 0.1797 -1.1457 —0.9491 0.58 0.5693 -0.0504 0.7087
019 0.1896 ~1.0925 ~0.8841( 059 0.5787 ~0.0362 | 0.7394
020 0.1996 -1.0422 -0.5218| 060| 0.5881 -0.0223 | 0.7699
021 0.2095 -0.9944 ~0.7619 | 061| 0.5975 ~0.0087 |  0.8002
0.22 0.2194 -0.9490 —0.7042 0.62 0.6069 +0. 0046 0.8302
023  0.2293 —0.9057 -0.6485 | 0.63| 0.6163 0.0176 |  0.8601
024 0.2392 -0.8643 —0.5947 | 064| 016256 0.0303 | 0.8898
025 0.2491 -0.8247 ~0.5425 | 0.65| 0.6349 0.0427 {  0.9194
0.26 0.2590 —0.7867 -0.4919 0.66 0.6442 0.0548 0.9488
0.27 0.2689 -0.7503 0. 4427 0.67 0.6535 0.0666 0.9780
0.28 0.2788 -0.7153 -0.3949 0.68 0.6628 0.0782 1.0071
0.29 0.2886 —0.6816 ~0. 3482 0.69 0.6720 0.089 5 1.0361
0.30( 0.2085 ~0.6492 -0.3027{ 070 0.6812 0.1005 | 1.0649
0.31 0.3083 -0.6179 —-0.2582 0.71 0.6904 0.1113 1.0936
0.32 0.3182 -0.5877 -0.2147 0.72 0.6996 0.1219 1.1222
0.33 0.3280 ~0.5585 ~0.1721 0.73 0.7087 0.1322 1.1507
034 0.3378 -0.5304 —0.1304 | o74| 0.7179 0.1423 1.1791
035  0.3476 ~0.5031 -0.0894 | 075 o0.7270 0.1522 1.2073
0.36| 0.3574 ~0.4767 -0.0403 | 076] 0.7360 0.1618 1.2355
0.37 0.3672 -0.4511 -0.0098 0.77 0.7451 0.1712 1.2636
0.38| 0.3770 -0.4263 +0.0290 | 078 0.7541 0.1805 | 1.2916
0.39 0.3867 ~0.4022 0.0672 0.79 0.7631 0.1895 1.3195
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z | Si(x) L Ci(x) [ Ei(x) r x [ Si(z) | Ci(x) ] Ei(z)
080] 0.7721 0.1983 1.3474 26] 1.8004 0.2533 7.5761
081 0.7811 0.2069 1.3752 27| 18182 0.2201 8.1103
082 07900 | -0.2153 1.4029 28| 1.8321 0.186 5 8.6793
0.83| 0.7989 0.2235 1.4306 29 28422 0.1529 9.286 0
084 0.8078 0.2316 1.4582 30| 1.8487 0.1196 9.9338
085 0.8166 0.2394 1.4857 31| 18517 0.086 99 10:626 3
0.86 0.8254 0.2471 1.5132 3.2 1.8514 0.055 26 11.3673
087 0.8342 0.2546 1.5407 33| 1.8481 +0.024 68 12.1610
0.88| - 0.8430 0.2619 1.5681 34| 18419 ~0.004 52 13.0121
089 0.8518 0.2691 1.5955 35| 1.8331 -0.032 13 13.9254
0.90] 0.8605 0.2761 1.6228 36| 18219 —0.05797 14.9063
0.91| 0.8692 0.2829 1.6501 37| 18086 ~0.081 9 15.9606
0.92| 0.8778 0.2896 1.6774 38| 1.7934 -0.1038 17.0048
093] 0.8865 0.2961 1.7047 39| 17765 ~0.1235 18.3157
0.94 0.8951 0.3024 1.7319 4.0 1.758 2 —0.1410 19.6309
0.95 0.9036 0.3086 1.7591 4.1 1.7387 -0.156 2 21.0485
0.96| 0.9122 0.3147 1.786 4 42| 17184 -0.1690 22.5774
0.97| 0.9207 0.3206 1.8136 43| 16973 -0.1795 24.2274
0.98| 0.9292 0.3263 1.8407 44| 16758 -0.1877 26.009 0
0.99] 0.9377 0.3319 1.8679 45| 1.6541 -0.1035 27.9337
10 0.9461 0.3374 1.8951 46| 1.6325 -0.1970 30.0141
1.1 1.0287 0.3849 2.1674 47| 16110 -0.1984 32.2639
1.2 1.1080 0.4205 2.4421 4.8 1.5900 —0.1976 34.6979
1.3 1.1840 0.4457 2.7214 49] 1.5696 —0.1948 37.3325
1.4 1.2562 0.4620 3.0072 50| 1.5499 ~0.1900 40.1853
15 1.3247 0.4704 3.3013 6 1.4247 ~0.068 1 85.9808
1.6 1.3892 0.4717 3.6053 7 1.4546 +0.076 7 191.505
1.7 1.4496 0.4670 3.9210 8 1.5742 +0.1224 440.380
1.8 1.5058 0.456 8 4.2499 9 1.6650 +0.055 35 1037.88
1.9 1.5578 0.4419 4.5937 10 1.6583 ~0.045 46 2492.23
2.0 1.6054 0.4230 4.9542 11 1.5783 ~0.089 56 6071.41
2.1 1.6487 0.4005 5.3332 12 1.5050 —0.04978 14 959.5
2.2 1.6876 0.3751 5.7326 13 1.4994 +0.026 76 37197.7
2.3 1.7222 0.3472 6.1544 14 1.556 2 +0.069 40 93192.5
24 1.7525 0.3173 6.6007 15 1.6182 +0.046 28 234 956.0
25 1.7785 0.2859 7.0738

x | Si(x) | Ci(x) | mTSi(wﬂ Ci(z)
20 1.5482 | 4+0.04442 | 120 | 1.5640 | +0.004 78
25 |1.5315 | —0.00685 | 140 | 1.5722 | +0.00701
30 |1.5668 | —0.03303 | 160 | 1.5769 | +0.001 41
35 1.5969 | -0.01148 | 180 | 1.5741 | -0.00443
40 | 1.5870 | +0.01902 | 200 | 1.5684 | -0.00438
45 | 1.5587 | +0.01863 | 300 | 1.5709 | —0.00333
50 | 1.5516 [ -0.00563 | 400 | 1.5721 | -0.00212
55 | 1.5707 | -0.01817 | 500 | 1.5726 | —0.00093
60 | 1.5867 | —0.00481 | 600 | 1.5725 | +0.00008
65 | 1.5782 | +0.01285 | 700 | 1.5720 | +0.00078
70 1.5616 | +0.01092 | 800 | 1.5714 | 4+0.001 12
80 | 1.5723| ~0.01240 | 103 { 1.5702 | +0.00083
90 1.5757 | +0.00999 | 10% | 1.5709 | —0.00003
100 | 1.5622 | -0.00515 | 105 | 1.5708 | +0.00000
110 | 1.5799 | -0.00032 | oo | =/2 | +0.00000
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0.5.6 Fresnel integrals

Remark: See also section 0.10.1.

zl C(x) TS(m) T L C(z) f S(x) T x L C(x) j S(x)

0.0 © 8.5 0.6129 0.5755 21.0 0.5738 0.5459
01| 02521 oosa | 90 | o560 | oeire | 215| 023 | 0.7as
02| 0.3554 00238 | 95 | 04969 | 06286 | 220| os012 | 05819
0.3 0.4331 00434 | 100| 04370 | 06084 | 225| 04607 | 0.5742
04| 0.4966 0.066 5 10.5 0.3951 0.563 2 23.0 0.4307 0.5458
05| 05502 00924 | 11.0| 03804 | 05048 | 235| 0.4181 | 0.5068
06| 0.5062 01205 | 115| 0.3951 | 0.4478 | 240| 04256 | 04670
07| 0.6356 01504 | 120| 04346 | 04058 | 245| 04511 | 0.4361
0.8 0.6693 01818 | 125| 04881 | 03882 | 250| 04879 | 0.4212
0.9| 0.6979 02143 | 130 05425 | 03983 | 255| 0.5269 | 0.4258
1.0| 0.7217 0.2476 13.5 0.5846 0.4325 26.0 0.5586 0.4483
15 0.7791 0.4155 | 140| 06047 | 04818 | 265| 05755 | 04829
2.0 0.7533 0.5628 14.5 0.5989 0.5337 27.0 0.5738 0.5211
25| 0.6710 0.6658 | 150| 05693 | 05758 | 27.5| 05541 | 0.5534
30| 0.5610 07117 | 155| 05240 | 05982 | 280| 05217 | 05721
35 0.4520 07002 | 160| 04743 | 05961 | 285| 04846 | 0.5731
40| 0.3682 06421 | 165| 04323 | 05709 | 200 04518 | 0.5562
4.5 0.3252 0.5565 17.0 0.4080 0.5293 29.5 0.4314 0.5260
50| 0.3285 04659 | 17.5| 0.4066 | 04818 | 300| 0.4279 | 0.4900
55| 0.3724 03918 | 180| 04278 | 04400 | 30.5| 0.4420 | 0.4570
6.0 0.4433 03199 | 185| 04660 | 04139 | 310| 04700 | 0.4350
6.5| 0.5222 03471 | 100| 05113 | 04093 | 315| 05048 | 04201
7.0l 0.5901 0.3812 19.5 0.5528 0.4269 32.0 0.5379 9.4406
75| 0.6318 04415 | 200| 05804 | 04616 | 32.5| 05613 | 0.4663
80| 0.6393 05120 | 205| 05878 | 05049 | 33.0| 05694 | 04999
@
. 2
0.5.7 The function / et dt
0
x| 0 1 2 3 4 5 6 7 8 9
0.9 0.0000| 0.0100 0.0200/ 0.0300| 0.0400| 0.0500| 0.0601) 0.0701| 0.0802| 0.0902
0. 0.1003| 0.1104| 0.1206/ 0.1307| 0.1409| 0.1511| 0.1614| 0.1717| 0.1820| 0.1923
0.2 0.2027| 0.2131| 0.2236) 0.2341} 0.2447| 0.2553] 0.2660| 0.2767| 0.2875| 0.2983
03 0.3092| 0.3202| 0.3313| 0.3424| 0.3536| 0.3648| 0.3762| 0.3876| 0.3991| 0.4107
0.4 0.4224| 0.4342| 0.4461| 0.4580| 0.4701| 0.4823 0.4946| 0.5070| 0.5196| 0.5322
0.5 05450 0.5579| 0.5709| 0.5841 0.5974| 0.6100] 0.6245| 0.6382| 0.6522| 0.6662
0.4 0.6805| 0.6049| 0.7095| 0.7243| 0.7393| 0.7544| 0.7698| 0.7853| 0.8011| 0.8171
01 0.8333| 0.8497| 0.8664| 0.8833( 0.9005| 0.9179| 0.9356| 0.0536| 0.9718| 0.9903
0.4 1.0001| 1.0282| 1.0477| 1.0674) 1.0875( 1.1079| 1.1287| 1.1498| 1.1713| 11932
0.9 1.2155| 1.2382{ 1.2613| 1.2848| 1.3088| 1.3332{ 1.3581| 1.3835| 1.4093| 1.4357
1.0 1.463 1.490 1.518 1.547 1.576 1.606 1.636 1.667 1.699 1.731
1.1 1.765 1.799 1.833 1.869 1.905 1.942 1.980 2.019 2.059 2.099
1.2 2.141 2.184 2.228 2.272 2.318 2.365 2.414 2.463 2.514 2.566
19 2.620 | 2.675 | 2.731 | 2.780 | 2.848 | 2.909 | 2.972 | 3.037 | 3.103 | 3.171
14 3241 | 3313 | 3.387 | 3.463 | 3.542 | 3.622 | 3.705 | 3.791 | 3.879 | 3.70
1.5 4.063 4.159 4.259 4.361 4 .467 4.575 4.688 4.803 4.923 5.046
16 5.174 | 5.305 | 5.441 | 5.581 | 5.726 | 5.876 | 6.030 | 6.190 | 6.356 | 6527
17 6.704 | 6.887 | 7.076 | 7.272 | 7.475 | 7.685 | 7.903 | 8.128 | 8.362 | 8.604
14 885 | 911 | 938 | 9.66 | 9.95 |1025 [10.57 [10.80 1123 [1158
1.9 11.94 12.32 12.70 13.11 13 .54 13 .98 14 .43 14 .91 15 .40 15.92
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0.5.8 Changing from degrees to radians

Arclength of the unit circle

Angle | Arc Angle | Arc Angle | Arc
17 0.000005 | 1° 0.017453 | 31° 0.541 052
2 0.000010 | 2 0.034907 | 32 0.558 505
3 0.000015 | 3 0.052360 | 33 0.575959
4 0.000019 | 4 0.069813 | 34 0.593412
5 0.000024 | 5 0.087266 | 35 0.610865
6 0.000029 | 6 0.104720 | 36 0.628 319
7 0.000034 | 7 0.122173 | 37 0.645 772
8 0.000039 | 8 0.139626 | 38 0.663 225
9 0.000044 | 9 0.157080 | 39 0.680678
10 0.000048 | 10 0.174533 | 40 0.698 132
20 0.000097 | 11 0.191986 | 45 0.785398
30 0.000145 | 12 0.209440 | 50 0.872 665
40 0.000194 | 13 0.226 893 55 0.959931
50 0.000242 | 14 0.244346 | 60 1.047198
15 0.261799 | 65 1.134464
1 0.000291 | 16 0.279253 | 70 1.221730
2 0.000582 | 17 0.296706 | 75 1.308 997
3 0.000873 | 18 0.314159 | 80 1.396 263
4 0.001164 | 19 0.331613 | 85 1.483530
5 0.001454 | 20 0.349066 | 90 1.570 796
6 0.001745 | 21 0.366 519 | 100 1.745329
7 0.002036 | 22 0.383972 [ 120 2.094 395
8 0.002327 | 23 0.401 426 | 150 2.617994
9 0.002618 | 24 0.418879 | 180 3.141593
10 0.002909 | 25 0.436 332 | 200 3.490659
20 0.005818 | 26 0.453 786 | 250 4.363 323
30 0.008 727 | 27 0.471239 | 270 4.712 389
40 0.011636 | 28 0.488692 | 300 5.235 988
50 0.014 544 | 29 0.506 145 | 360 6.283 185
30 0.523 599 | 400 6.981317
Ezxamples:
1) 52° 37 23" 2) 5.645 radians ( arclength)
50° =0.872 665 5235988 = 300°
2° =0.034 907 -
30 =0.008 727 0.409012
7 =0.002036 0.401426 = 23°
20" =0.000097 -
3" =0.000015 0.007 586
0.005818 = 20’
0.918 447 _
0.001 768
52° 37 23" =0.91845 rad 0.001745 = 6
0.000023 = 5"
5.645 rad = 323° 26’ 5"

109

The radian is the plane angle for which the quotient of the length of the corresponding
circular arc and its radius is equal to 1 (abbreviated rad).
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0.6 Table of prime numbers < 4000

0. Formulas, Graphs and Tables

The prime number fwins, i.e., two consecutive odd numbers which are prime, are indi-
cated by boldface (starting at 41-43). It is known that there are infinitely many such

twins.
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601
607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733
739 743 751 757 761 769 773 787 797 809
811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941
947 953 967 971 977 983 991 997 1009 1013
1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151
1153 1163 1171 1181 1187 1193 1201 1213 1217 1223
1229 1231 1237 1249 1259 1277 1279 1283 1289 1291
1297 1301 1303 1307 1319 1321 1327 1361 1367 1373
1381 1399 1409 1423 1427 1429 1433 1439 1447 1451
1453 1459 1471 1481 1483 1487 1489 1493 1499 1511
1523 1531 1543 1549 1553 1559 1567 1571 1579 1583
1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
1663 1667 1669 1693 1697 1699 1709 1721 1723 1733
1741 1747 1753 1759 1777 1783 1787 1789 1801 1811
1823 1831 1847 1861 1867 1871 1873 1877 1879 1889
1901 1907 1913 1931 1933 1949 1951 1973 1979 1987
1993 1997 1999 2003 2011 2017 2027 2029 2039 2053
2063 2069 2081 2083 2087 2089 2099 2111 2113 2129
2131 2137 2141 2143 2153 2161 2179 2203 2207 2213
2221 2237 2239 2243 2251 2267 2269 2273 2281 2287
2293 2297 2309 2311 2333 2339 2341 2347 2351 2357
2371 2377 2381 2383 2389 2393 2399 2411 2417 2423
2437 2441 2447 2459 2467 2473 2477 2503 2521 2531
2539 2543 2549 2551 2557 2579 2591 2593 2609 2617
2621 2633 2647 2657 2659 2663 2671 2677 2683 2687
2689 2693 2699 2707 2711 2713 2719 2729 2731 2741
2749 2753 2767 2777 2789 2791 2797 2801 2803 2819
2833 2837 2843 2851 2857 2861 2879 2887 2897 2003
2909 2917 2927 2939 2953 2957 2963 2969 2971 2999
3001 3011 3019 3023 3037 3041 3049 3061 3067 3079
3083 3089 3109 3119 3121 3137 3163 3167 3169 3181
3187 3191 3203 3209 3217 3221 3229 3251 3253 3257
3259 3271 3299 3301 3307 3313 3319 3323 3329 3331
3343 3347 3359 3361 3371 3373 3389 3391 3407 3413
3433 3449 3457 3461 3463 3467 3469 3491 3499 3611
3517 3527 3529 3533 3539 3541 3547 3557 3559 3571
3581 3583 3593 3607 3613 3617 3623 3631 3637 3643
3659 3671 3673 3677 3691 3697 3701 3709 3719 3727
3733 3739 3761 3767 3769 3779 3793 3797 3803 3821
3823 3833 3847 3851 3853 3863 3877 3881 3889 3907
3911 3917 3919 3923 3929 3931 3943 3947 3967 3989
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0.7 Formulas for series and products

For infinite series and infinite products the notion of convergence is fundamental (cf.
1.10.1 and 1.10.6).

0.7.1 Special series

One gets important series by inserting special values in the power series listed in 0.7.2
or in Fourier series listed in 0.7.4.

0.7.1.1 The Leibniz series and related series

3

= % (Leibniz, 1676) ,

1 1 = (-1
-4 - =
375 ;2n+1

—1)n+l
) =In2,

1 fee)
1—§+ g

1 > 1
In (172—2)+ln(1—3—2>+...:Zln<l-E§):—an,
k=2

11 =1
2+2'+3'+ :ZE:e (Euler number),
n=0
1 11 _i(—1)ﬂ_1
20 3 4 _n:2 n e’
T S o ( t
57173 o = geometric series)
n=0
1 = (-1)" 2
1—-4+--=4+ = ; on = 3 (alternating geometric series)
1 1 1 bad 1
—_— t——t—+...= — =1
12723 34" Zn(n+1) ’
1 1 1 1 1
T3t35 577 z(2n—1)2n+1) 2’
1 1 1 3
T3tzataE “Z(n_l ICESVIrS
1 1 1 > 1 1 =
35 7.9 1113 *§(4n—1)(4n+1) 2 8
1 1 = 1 1

+
+
I

1
1237234 345 ' Zaht)n+2 4
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1 1
1-2-3--~k+2- ---(k+1)+
o
1
= . k=23,
nam+1)--- n+k—1) (k~1)(k—1)!
= 1 1 1
Z TTZ——T QP( +2+ %), p=12..., (Jakob Bernoulli, 1689).

n=p+1
0.7.1.2 Special values of the Riemannian {-function and related series

The series

11 = 1
C(S)—1+—+3—s+ ;7:;
n=1

converges for all real numbers s > 1 and more generally for all complex numbers s with
Res > 1. This function is of fundamental importance in the mathematical discipline
of number theory, in particular with the distribution of prime numbers (see section
2.7.3). It is called the Riemann (-function and was studied by Euler and particularly
by Riemann in 1859.

The formula of L. Euler (1734)* :

1 (2m)2F
2k) = —+...= ——B k=1,2,...
C2k) =1+ 555 + g3 + 2R B2 .2,
Special cases:
1 7r2
wt 70 8
1 1 1 °°(_1)n+1 7r2k(22k_1)
1—2%4‘@'—@4—:2 % = (Qk)‘ |sz|, k=1,2,...
n=1
Special cases:
1 1 1 & (-1t g2
gt gt l o T
1 1 1 B ad (_1)n+1 B 7t
1—§z+3—4—4—4+..._;—n4 = 250

44The Bernoulli numbers By, and the Euler numbers Ej, can be found in sections 0.1.10.4 and 0.1.10.5.
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1 1 2k (2%-1)
= = B k=1,2,...
ot Z < @n+ 1)% ey Pk :
Special cases:
I+ b= i
32 52 T g
12+ i o=
34 6"
1 7r2k+1
- o 52k+1 —.= Z (2n+1)2k+l = TR |Batl, k=0,1,2,...
. . . 1 1
Special cases: For k = 0 one gets the Leibniz series 1 — 3 + 50 for k =1:
] 1 N 1 o
3 5% 32
0.7.1.3 The FEuler—-McLaurin summation formula
The asymptotic formula of Euler (1734):
lim 1+1+1+ +1 Inn+1)) =C (0.53)
Jim Ftzt-to =C. .

The Euler constant C has the value C = 0.57721 5664901532 ..., which had already
been calculated by Euler. The asympotic formula (0.53) is a special case of the Euler—
McLaurin summation formula (0.54).

Bernoulli polynomials:

sio=5 (o

Modified Bernoulli polynomials:4®
Cr(z) = By (z ~ [z]) .

The Euler-McLaurin summation formula: For n=1,2,... one has

FO) + FQ) + oo+ fn) = / F@)do + L0 HIM) i ™ s, (0.54)
with46
Snz%f,+%f(3)+ (‘52;’]‘.(211 1)1+Rp7 p:2,3,...7

45We denote by [z} the largest integer n smaller than or equal to z: (Gauss bracket). The function
C'y, coincides in the interval (0, 1] with By, and is extended periodically with period 1.
16 n
The symbol g|1 means g(n) — g(1).
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and the remainder term

By = (2p+1)‘/ FEP (@) Copy1 (2) da .

Here it is assumed that the function f: [0,n] — R is sufficiently smooth, i.e., has con-
tinuous derivatives up to order 2p + 1 on the interval [0, n].

0.7.1.4 Infinite partial fraction decomposition

The following series converge for all complex numbers x with the exception of those
values for which the denominator vanishes®’

1 & 1 1
try = =
cot Tz m+k§=:l(z—k+x+k)’

= 1 1
tanmr = — + s
D Y ()
7 1 = (-1)r2z
sinﬂx_a:Jr’; z2 k2’
T o\2 > 1
(sinmz:) =k=z_:oo (x— k)2’
(=)= % —
COS L Pt (:5 —k+ %)2

0.7.2 Power series

Comments on the power series table: The power series listed in the following
table converge for all complex numbers x for which the stated inequalities hold. The
properties of power series will be considered in more detail in 1.10.3.

The given first term in the series may be used as an approximation for |z| sufficiently
small.

Ezample: One has

oz

5 0 ( lk 2k+1
Smr=To et g 5040 —kzo 2k + 1)!

If |z| is small, then, approximately
sinz=z.

Successively improved approximations are obtained by

3 3 5

d i = z + il etc
6 sinz =z 150 .

sine =z —

47 These series are special cases of the theorem of Mittag—LefHer (cf. 1.14.6. 4).

oo
A sum Z . stands for the sum of the two infinite sums: z Z s
k=—co k=0 k=—oc
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For the frequently appearing factorials one can use the following table:

n o 12| 3| 4| 5| 6| 7 | 8 9 10

n! 1] 1| 2| 6| 24| 120| 720 5040| 40,320 | 362,880 3,628,800

In the expansions of

1
, tanx, cotz, —— = cosecz, tanhz, cothz, = cosecT

z 1
et —1 sinz sinh x

and

1 ;
=sechz, —— =secx, Incosz, Injr| —In|sinz|,
coshz cosx

respectively, the Bernoulli numbers By resp. Euler numbers Ej appear (see sections
0.1.10.4 and 0.1.10.5).

Function | Power series expansion Domain of conver-
gence (x € C)

geometric series

1 2 3 = k
e l+z+z° 4z +..‘=Zm lz| <1
k=0
1 2 3 = k .k

The binomial series of Newton

(1+z)~ 1+(T)w+(;)x2+...:§<z)xk lz] < 1

(e is an arbitrary real number?®) (2 =21, a>0)
o
(a+ ) a® (1+§) =a® + aa® o 4 a®7? (;)zz-i-... |z| < a
kad a
= Za“"‘( )zk (z = =a for
k=0 k
(a is a positive real number) a > 0)
(a+z)* a™ + (711) a" x4 (Z) a2t 4+ (T)am”"l +z" | |z <
(n=1,2,...; a and z are arbitrary complex numbers)
~ _ 1
(a+x)™ | (a+z) "= Gior

(a+ o)™ | (a+2)V" = Yotz

1
a+1x —1/n —1/n .
(a+2)" | (@) = e

i

a) _ ala ~1) i (a) _ a(a - 1){a—2)

48 The generalized binomial coefficients are defined by (a) =a, (
1 2 1-2 3 1-2-3

etc.
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Special cases of the binomial series for integral exponents
(a a complex number with a # 0)
1 1 nz  n(n+1)2? |
@tz |an T ot 2antz 2| <a
1 Zan+1)...(n—k+1) &
=a T kZ Klantk (Fz)
=1
1 1_x 22 2. (Fx)*
atz E;F-Fa?'q: + ;Oak“ lal <lel
(a+2)* | a®+ 20z + 22 || < oo
1 1 2z 322 423 (b +1)(Fa)k
i | @ et @ Tt T e 2] < laf
k=0
(a+2)® | a®+ 30’z + 302 £ 27 |z| < oo
1 1 3z 6x2 102°
(at2)? FTATFFE T 2] < lal
_ i (k+1)(k + 2)(Fa)*
- 3+k
= 2a
Special cases of the binomial series for rational exponents
(b a positive real number)
z 2 x>
btz | VoE—s - et —— zl < b
2\f 8bv/b 16b2\/— . =
1. k — 3)(—1)F+! (+
f (2 4.6...2k)b 1/
1 1 5 4 3:102 - 1522 + 2l < b
btz \/ 20vh b2\/_ 4853V/b
Z 1-3-5...(2k — 1){(-=1)"(£x)*
f 2bf (2-4-6...2k)b5/b
2 5173
Voxz | Vot — ad 2l <b
3902 9b\/17 812 V5 . -
2.-5.8...3k — ) (-1 (&
_pe Z -~ )= ()
3V A (3-6-9...3k)b-1V02
1 1 " 222 1423 . 2 < b
e \T 3b\3/— 9275 | 8137h
Z 4-7-10...(3k — 2)(-1)k(xx)*
- (3-6-9...3k)b’“\3/5
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Hypergeometric series (generalized binomial series) of Gauss

afa+1)8(B+1) ,
Fla, 8,7, ) 1+—x+*——— + ... || <1
’ v 2y(y+1)
14 i ofotl).. (a+k-1)B(B+1)... (B+k-1)
Pt Ely(y+1)... (v+k-1)
Special cases of the hypergeometric series
1+ z)* =F(-a,l1,1,—z)
11
arcsinx =zF (5,5,2,12)
In(1+z) =zF(1,1,2,—z)
z
o = lim F{1,51,-
€ ﬂ—{Too ( ﬁ’ ﬁ)
l1—-=z
P, (z) =F<n+1,——n,1, 3 ), n=0,1,2,...
(Legendre polynomials, see page 123 below)
Val(n+1) 1 n+l n+2 2n+3 1
Qna) 20+ (n 4 3)  gnH? 2 7 2 7 2 'x? e >
(Legendre functions, see page 123 below)
Exponential function
xr
¢ 1+z+§+—+ Zk, |z| < o0
b (bz)? | (bz) _ o (b2)*
e 1+ bz + TR +...—kz i jz| < o0
=0
(b is a complex number)
a® a® = " with b = Ina (a real and positive)
2 o0
T T =z B, 2*
1-2 4+
&1 Gt T Tt TR jol < 2m

k=0
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Trigonometric functions and hyperbolic functions
siniz =i sinhx, cosiz = coshx, sinhiz =isinz, coshiz = cosxz
(for all complex numbers x)
) J: S o Z2E+1
sinz m—ﬁ-}-ﬁ :;(71 e |z} < 00
) 3 b 0 2kt
sinh x m+§!-+§+ =kzzom |1‘|<OO
22 gt oo . a2
cosx 1—§+E— :Z(—l) o |z] < o0
k=0
2 gt 0 2%
coshz 1+2—!+Z+ “:,;0(2]“)’ || < o0
2> 2% 1727 >, | Bag|22*~! 7
t - =) 4F {4k 1 =
anse T3t s ; O 7T ol <3
2 2z% 1727 - Bapz? ! T
tanh . =3 441 -
anhe TTE T 3 kzzl =1 =50 el <3
z z®  2z° z’ 4%| Byy |x2k-1
~ —cot A T A AT N ] 0
2 Ol 3V T o T i Zl (2k)! <lal <=
1 i I3 21135 ]77 4 BQk.TB
h - —_— — -  _ p—
el 3Tm o st Z k). 0<lel <=
1 z? 5:54 615 2. | Erlz® ™
1+ — —t ... = < =
CcOS T + 2 + 720 ;_0 k! & 2
1 22 5¢% 61z 2. Bzt
1- 4= = =Z k lz] < =
coshz 2 24 720 paard k!
1 1 z Tz 31z5 12727 0< o] <
- 4= <
sinx 6 360 15120 604800
= 2 22k 1 1)
Bop |lp2k—1
Z (2K)! B2k |z
=1
1 1 x Tzt N 3125 12727 0< o] <
z sinhz 6 360 15120 604800
x 2 (2201 - 1)
S prcamtLi PR
!
= (2k)!
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Inverse trigonometric functions and inverse hyperbolic functions

P T i , z2F 1
arctanz r——=—+——...=) (-1 |z] <1
3 5 k=0 Zk+1 (or z = £1)
%:arctanl 1—%+-;——... (Leibniz series)
R o 2kt
artanh —4—=+...= P | <1
R gty ,§02k+1 =
7r w
5—arccotx §—arccotz:arctanx
tan | G A O<z<1
arctan 5 3 5
arctaml —E—x+x—3——5 -1<z<0
T 2 3 5
1 3 5
arcoth— s+ 42 4 0<lz|<1
z 3
arcsine I+z3+3z5+15$7+ Iz} <1
in =t
6 40 336
o~ 1-3-5...(2k — 1)z2+!
oty o
o246 2k(2k + 1)
™ T .
— — arceos T 5 —arccosz = arcsin
arsinhz Z3+3zs 15z7+ [z| <1
rsin Tt 336 T
o0
1-3-5.--(2k — 1)(—1)kx2k+!
:I+Z ( (1)t
= 2-4.6---(2k)(2k+ 1)
Logarithmic functions
2 3 4 i
In(1 + z) A ) L x| < 1
2 4 _
k=1 (and = 1)
1 1 1
In2 R e
" T3 71t
22 23 gt Lz
~In(1— A U 1
n(l - z) R R s > ol <1
k=1 (and z = —1)
1+ 2z°  2z° 227 o 2z%k+1
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22 gt 25 ©  92k-1 o
1 —t =t —+...= B.
nlel et g5 T agms T = 2 i Pl 0<laf<m
—In|sinz| k=1
In cos x2+z4+x6 1728 |l<7r
—lnc o4 2
T2 45 " 2520 S
_22% 1(4k—1)|B |:L‘2k
k(2Kk)! 2k
In | tanz| z2+7i+62$6 0<\|<7T
BT 13 T 90 T 2835 D
—In |z}
o0 4k 22k' 1 1)
B 2k
Zl R Pk
Complete elliptic integrals
/2
de 7 K2 okt
Kk — =l —+——+ ... k<1
®) 0/ 1—k2sin 2(+4+64+ k<
00 2
7r 1-3:5(2n-1)\2,,
=1 L St A W
(e x ()
/2
k? 9kt
E(k) 1 — k2 sin? cpdgo——— 1——+ k] <1
192
B I i 1 (2n— D\? (=1)rk2n
2 ~ 6---2n 2n—1
The Euler gamma function (generalized factorial) zeC
Mz+1)=a!, I'z+1)=zl(x) z#0,—1,-2,
o
/ ~trlde Rez >0
o o>
2 3 PRy
InI'(z+1) —Cz+c—(2)—x— cB)e” ...:—Cx—{—Z(—l)kE—(—)f— x| <1
2 3 2 k
1 T 1. 1+x
——— = 1-
21nsin7mc 21n1— +( C)
(1 — ¢(2k + 1))+ s
+ Z 1 (Legendre series™)
fige 1—=x > (1—((2k+1) k1
. 1- )
Nz +1) prl g, (( C)a:+k2:; T lz] < 1

49Here C denotes the Euler constant, and ¢ is the Riemannian ¢-function.



0.7. Formulas for series and products

121

The Euler beta function

r{zr
Blay) | Blay) = "W zyec,
(-T+y) Iayvz"'y?éov_la*Z:
1
B(z,y) = /t’”“l(l —t)v=ldt z>0,y>0
0
Bessel functions (cylinder functions)
zP 22 24
1— —...
To(@) ZPF(p+ 1) ( D) RE+DEL2 ) |$|¢<]_°°’ 0
skip z 00,
ZIs:'l"(p+k~i—1) ( )
The parameter p is real with p # —1,-2, ...
Jon(z) | Jon(z) = (1) Jp (2}, n=1,2,... lz] < oo
Neumann functions
Jp(z) cospr — J_p(z
Ny(z) Np(z) := p(T) sizr)lprr r(2) |z] < oo,
The parameter p is real with p £ 0, 1,42, ... ¢ ]-00,0]
. 1 [0Jp(x) aJ_ (:c))
N, N, = lim N, = (222 m £ 0<|z| <
n(e) | M) = i ) = (P (omPe) o< <o
m=0,%1,+2,...
Hankel functions
H;()S) (z) Hél)(m) = Jp(z) + N, () lz] < oo,
HP () := Jp(x) — iNy(x) z ¢ ]-o0,0]
The parameter p is real.
Bessel functions with imaginary argument
_ yliz) _ & 1 2kt
B b= 5 =Y ey (5) 2] < o0,
z ¢ ]—OO, O]
The parameter p is real.
MacDonald functions
7 (I_p(z) — Iy(x
Kole) | Kyle) = 2D Dl0)) la] < oo,
The parameter p is real with p # 0,+1,£2, ... & ¢ ]-00,0]
— 1 _ (1™ (OI_p(z) OLy(z)
Kn(z) |Kn(z):= ph_'nnll Ky(z) = 5 o o ) 0<|z| <o
m=0,+1,42,...
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e
2
Gaussian error integral erfy i = —= / edt
Nz
0

9 3 25 2 &= ( l)k 2k-+1
f L RS T N S
erfx \/E(a: 3-1—10 ) ﬁz PIETESY) [#] < o0

z ES
int
Integral sine Si(z) :/___sm dt = g _ / smtdt

t
0
x3 1.5 oo (_1)k$2k+1
Si — =t === —_—
i(z) T 18 7 600 g 2k + D)2k + 1) ol < o0
Integral cosine Ci(z) :== — f@dt 0<z<oo
12 x4 el (_1)k+11.2k
Inz —Ci Iz iy A
nz —Ci(z) +C T ,; (2k)12k lz| < o0
(C Euler constant®?)
Tt
Integral exponential function® Ei(z) :== PV / e?dt —00< L <00,
—0o0 "117&0
2
Ei(z)~In|z| - C +—+—+ Zk'k jx| < 00
Logarithmic integral® =PV / O<x<l,
Int
z>1
li(z) = Ei(lnx)

50The function Inz — Ci(z)+ C is initially only defined for real positive x. The power series converges
for all complex numbers and represents the analytically extended function Inz — Ci(x) + C (cf. 1.14.15).

51The notation PV / .. denotes the principal value of the integral, i.e.,

Ei(z) = llm (/ —dt+/ dt)

For x < 0 the principal value coincides with the usual integral for the case at hand.

z
52F0r0<x<1onehasliz:=fl—%t—t.Forx>10nehas
0

1—¢ x
. . di dt
liz = lim —+ / — .
e—+0 J Int Int

1+e
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n! dz» n—k k!

Legendre polynomials® n=0,1,2,...
1 4 (1‘2 _ 1)" (2”‘)’ no_ n(n _ 1) "2
Fulz) Il dan . 2n(nl)? < 2on—1)" ol < o0
L= Do -2)(n=3) oy
e
2 4-(2n-1)(2n - 3)
(If n is even (resp. odd), the the last
term is 2° (resp. z)).
0rthogonality relations:
Pp(z)Pp(z)de = ——— 20nm m=0,1
m m M+l n,m=4u,l1,...
Speczal cases:
1
Po(z) :1 Piz) =z, Pyz)= 3 (32— 1),
1
Pi(z) = (5:v ~3z), Py(z)= g (352* — 302° + 3)
1
—————— | Po(z) + Pi{z)z + P P x)z" z] <1
Legendre functions n=0,1,2,...
N(n)
1+z 2n —4k+3
P, -1,1
Qn(@) SPa@in "X oD k) |2 €L
n
= for even n
N{n) = 2 .
nt for odd n
Laguerre polynomials n=012,...
T AN (=T ot n _1\k
L5() ez~ * d" (e7%x ):Z(n—t-a)( 1) o 2] < o0

k=0

Orthogonelity relations:

o0

/ e~ L2(2) L2 (2)dz = 6pm (1 + )(":‘"),
0
nm=01,...,a>-1

Special cases:

Li(x)=1, Li(z)=1-z+a

54The deeper meaning of the Legendre, Hermite and Laguerre polynomials will become clear in the
context of the theory of complete orthonormal systems in Hilbert spaces.
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d”
Laguerre functions® £2(z) := 2%/ %z ’“/2d —(e"z""*), n=0,1,2,... | [z| < o0
z
Orthogonality relations: a>—1
3 fixed
‘/iﬂ,‘l’(w)fg(x)dm =0nm, n,m=0,12,...
0
Hermite polynomials n=0,12,...
2dre®
H,(z) on(—1)"e" , = 272 ()T 21/ |z] < oo
dgn
Special cases:
Ho(z) =ag, Hi(z) =2z, Ha(z)=o03(42” —2)
Hermite functions H(x) = Ho(z)e /2, n=0,1,2,... |z| < oo
Orthogonality relations:
oo
/ Ho(2) K () = bpm, n,m=0,1,2,...

0.7.3 Asymptotic series

An asymptotic expansion of a function is a representation of a function for very large

values of the argument.

0.7.3.1 Convergent expansions

Function Infinite series Domain of
convergence
1
-1 —1)? -1)3 = (z — 1)k > =
Inz z +($ 2) +($ 3) + :2(1 k) >3
T 2z 3z = kx (z real)
o1 1 1 1
1, i - x>
arclans 3 2738 5 ( real)
r 1.1 1 2 < 1
arctan "2z 3z bab (z real)
1 3 15 z>1
In2x — arcoshz e + % 28825 +... (z real)
_ i 1- (2k-1) 1
=2 - 2k(2k)  «?F
1 1 1
h L |z| > 1
arcothx 3@ 33 TEs T (z complex)

55See section 1.13.2.13; the coefficients ¢ are chosen so that £ satisfy (£%,.%2) = 1.
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0.7.3.2 Asymptotic equality

‘We use the notation

[f@)2g(z), a—a,

to indicate that lim —= /() =1.
s—a g(z)
1 1 1
1+5+§+...+—— —In(n+1)=2C, n—oo (C the Euler constant),
n

e (B Varn, n— oo (Stirling 1730),
e

1 1
Inn! = (n—}— 5) lnn—n+§ln\/27r, n— 0.

0.7.3.3 Asymptotic expansions in the sense of Poincaré

Following Poincaré (1854 -1912) one writes

“3)’“2;15» z — 400, {0.55)

to indicate the behavior
f(m)zzn:a—k—l—o L z — 400
k=1 xk xn 7 ?

for all n = 1,2,.. .5 This kind of series was met by Poincaré during his deep investiga-
tions of celestial mechanics at the end of the nineteenth century. He ran across divergent
series of the form (0.55). At the same time he discovered that such series are nevertheless
quite natural, since the expansion contains important information about the function f.

Stirling’s series for the gamma function:

1 1
lnI'(a:-l—l)—( 2)lnz+:c—lnv Z 2k-1)2k oy T — +00.

Here Bsy denote the Bernoulli numbers.

Asymptotic expansion of the Euler integral:

oo

1 1 21 3
/tilem*tdtrv;————}—————-i—..., x — oo,
T

RIS

36The symbol o(...) will be explained in 1.3.1.4. Explicitly, one has
™
. ag . —
xgrfwz" (f(z)-kz_l .z—k) =0 forall n=1,2,...
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Asymptotic representation of the Bessel and Neumann functions:

nw =2 (e - w0 ) wmee,

), T — +00.

The parameter p is real.

The method of stationary phase: One has

helr(a)

oc 0 A
/ A(z)eP® dg ~ z o5 w — +00,
o 1=0

with b:= /2xi/p”(a) (Reb > 0) and
dr+

1 77
Ak = Zk ik*2nnlm!p” (a) dz"“(P i)

n—m=

20>3m>0

1
as well as P(z) := p(z) — p(a) — E(x — a)?p”(a). Here it is assumed that the following

conditions are satisfied.

(i) The complex valued phase factor p: R — C is infinitely often differentiable. One
has Im p(a) = 0 and p’(a) = 0 with p”(a) # 0.
(i1) One has p'(z} # 0 for all real numbers z # a. The imaginary part Imp(z) is

non-negative for all real numbers z.

(iii) The real function A: R — R describing the amplitude is infinitely often differen-
tiable and vanishes outside of some bounded interval.

This theorem is important in classical optics (limiting behavior for large angular frequen-
cies w and hence for small wavelengths X) as well as in the modern theory of Fourier
integral operators.
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0.7.4 Fourier series

Note: See section 1.11.2.

sinx sin2z  sindz
l.y=z for —7m<z<m y=2 - 3 3

For the arguments + ki, the series sums up to 0 according to Dirichlet’s theorem.

Y
JTAA/. z

-7t lO' 2w/ At

ERES

cos3zr cosbxr cosTz
+ + +...

T
2.y_|x| for —-n<z<m y=5- 32 72 7

(cos r+

sinz = sin2x sindz )

3. y=a for 0<z<2m =7 -
y=uz for xw,y7r2(1 2-i-3

4 s T
) fi ——<z< =
T or 7 ST< 3 .
r 4 (. sin3z  sindz
y= - for ES-TSW ; y:; sinxT — 32 +T—
—(r+z) for —w<z< —g
Y
T
-7 0 =« 2T

—a for —-w<z<0 4a [ . sin3zr sinbx
5 y= ; yz? sinz + + +...

a for O<z<m 3 5
Yy
(] M
1
N I B
—27 : 0! ‘27|t 144
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6 _Ja for —wm<z<0 .
Y= co for o<z<nw|’

:cl+cz42cl~02 (sinx+5m3I sin 5z )

2 3 5
Y
LY
[ Voo ezl z
i I A e
=277 [0 er] 2m T4r
7.
0 for << 1T+ta, —-a<<zr<a T—alr<w
Y= a for a<r<T—w ;

—a for —m+a<zr< —a

T
0 < < =
*=3

40 , 1 . 1 .
y=— cosaslnz+§c053a51n3x+gc0s5asm5x+...
™

8.
i for —a<z< o
o
a for a<z<T—0
—a for —7+a <2< —a T 3 t/ A
v= a(Tf—iL') |r| T
——  for T—a <zx<T 07r7r| |27r
[0 I | ’N I
alz +7) 2
———< for - <z< -7+«
\ o
4a 1 1
Y= — smas1n:v+-—s1n3asm3z+ sin Sasin bz + .
T 32 52

T
In particular, for a = -

52

:6a\2/§(

1 1 1
inr — —<sinbx + — 7 s1n7r—fs1n11x+ >

9 w2 4 . cos 2x n cos 3z
. ; =— —4|cosz — — ...
ST > Yy 3 22 32
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10.

_ —z? for —wm<x<0 |
z? for O<z<w|’ WY
. sin2x  sin3z I { ) I |
y =27 |sinx — 5 + 3 : : : : E
8 (sinz sin3z sinbdz _2": 0 : 2 : Ar : b
e e e e e R T A A

11. y=z(r—2z) for 0 <z <n, an even extension in (—x,0); v
_7r_2_ cos2z+cos4z+cos6x+
Y= % 12 22 32 z
-7 0 n 2m 3rm
12. y=z(r—z) for 0<z <, an odd extension in (—=,0); v
_§ sinz+Sin3$+Sin5$+
¥=3 33 53 \ /\ z
—\/0 W\/Z'fr37'r\
13. y=A2® + Bz +C for —nw<z<m
An? i L Cos kx = pSin kx
y:T+O+4AZ(—1) e "QBZ(_I)T
k=1 k=1
14. y=]|sinz| for —-m<z<m ¥
_2_4 cosZz+cos4x+cos6:c+ 1
Y= TE\13 T35 " 57 x
- ‘0 T 2 37
15. y=cosz for 0 <z <, an odd extension in (—m,0); y
4 (2sin2x 4sindr 6sinbz 1
= — + +
s 1-3 3-5 5-7 ! | : \x
- WO \;r \':27rw37r"
-1
16. y= .0 for —7<z<0 :
sinx for 0<z<w 1 Y
—1+1sinx 2 cos2a:+cos4a:+cosﬁx+ T /\_iE
V=773 \13 T35 e o)A
- 0 n 2% 3w
17. y=cosuzx for — 7 <z <7, wu arbitrary real, but not integer;
_ 2usinuw L_ COs T cos 2z _ cos 3
¥y= ™ 2u? w?-1 w2-4 w2-9 7
18. y=sinux for —7 <z <, u arbitrary real, but not integer;

_ 2sinum sinx 2sin2x  3sindzx i
- w2 -1 wu2-4 uz -9 7

™
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19. y=zcosz for —wm<zx<m,
ls' +lein2:v 6sin3z = 8sindx
= ——sinz — -
Y=73 21 3 1 £-1
20. y=zsinz for —w<z<m
-1 lcosx 9 cos2r cos3x cosdx
¥y=273 2 1 -1 £-1
21. y=coshuxr for —n<z<m
_ 2usinhuw 1 cosS T + cos 2a cos 3x
N ™ 202 w2412 w2422 2432
22. y=sinhuzr for —w<z<m
_ 2sinhum sinx 2sin2x n 3sin3zx
- T w2412 w2422 2432
23. y=¢e* for —w<z<mW, a#0;

2 . .
y:ﬂ_smhaﬂ'( +Za2+k2 acoskzksmkx))

In the following examples the problem is not so much how to develop a given function
into a Fourier series than the converse question: to which functions do certain simple
trigonometric series converge?

24.

25.

26.

27.

28.

29.

30.

k
ZCOS T (2s1n2), O<z<2r
k=1
o0
k
Zsm r_ x, O<z<2r
k=1
kr 3z2-6 272
cozzzc: T f;Jrﬂ’ 0<z<2r
k=1
1nkm__/l <2sm )dz, 0<az<2r
L2
k=1 0
©_ coskz r r
Tz/dz/l (2sm )dt+2k3’ 0<z <27
k=1 0 0
oo 1 7T3
— = —=120206...
(Z k3 25.79436... )
k=1
sinkz 3 — 3nz? + 22z
= 0<r<2
k=1 k? 12 ’ ST

i(fl)k“# =1In (2cos g) , —w<z<®w

b
Il
—
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0.7. Formulas for series and products

—/dz/ln<2cos%)dt, —r<z<w

0<z <7

> sinkz  z
Z(—l)k“—k—:—z—, —r<zr<w
k=1
el 2 _ 3.2
Z k+1C°S]‘”""’7=7r__12i7 r<z<n
— sin kx [
Z(—l)k+1—2—=/l (2cos )dz, —r<g<T
k=1 k
= 0
= coskr < 1 [ f
k+1 _ k+1
S-Sk
k=1 k=1 S
o0 . 2 3
rp18inkr  mr—=z _
J;(_l) B - 1g ¢ TsesT
[= v}
cos(2k+ L)z 1 x
kgo—ml— —Eln(tani), O<z<m
o0 .
Zsm(Zk-i—l)a::E, O<z<n
= 2k+1 4
oC
cos2k+ 1)z 7% —2nx
= <z<
Z 2k + 12 g Usesr
o
sin(2k+ 1)z 1 z
= = <z <
; GTESIE 2/ln(tanz)dz, 0<z<nm
= cos(2k+ )z 1 r [ t G 1
= /d In | tan — ) dt —
Z 2k + 1)3 2/ z/n(an2) +Z(2k+1)3’
k=0 5 k=0
oC
sin(2k + 1)z 7z — mx?
= 0<z <
,; 2k+1)3 8 =EeT
o0
cos(2k+ 1)z =« w
Y i St B R QA -
;() %+ 1 1 3573
> sin(2k + 1) z T T ™
N Y i Sk e e R | __Z _Z
g() %+ 1 nftan (3-3)] —F<a<
-z
cos(2k+ 1)z 1 T T
PRESETOT 2 m(tanf) dz, -Z<z<Z
Z( T 2 / “(an TR T2g
0
RSNk + )z 7z b ™
— = — ——<r< =
Z( Vs =17 "35%%3

131
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weos(2k+ 1)z 7% — dwa? T 7
46. Z 1) = —ESQJS )

(2k +1)3 32 7
sin(2k + Dz _ 1 BT ¢ >
Sln + (L' m ™
47. 1)k = [ dz [In{tanc )at —_— - <<
Z( VRtip "2 / Z/n(anz) +§-:_0(2k+1)3‘ 3 =%=3
[ ) =
0.7.5 Infinite products
The convergence of infinite products will be considered in section 1.10.6.
Function| Infinite product Discoverer Domain of con-

vergence (x € C)

20 2
sinwz T H <1 - %) (Euler 1734) || < oo
k=1
T Ot (2k)?
= 11i
3 H TSR] (Wallis 1655)
k=1
o (14 1)° |z| < o0
Iz +1) H - (Euler)
wl AR (x#-1,-2,...)
kg
P gy T Yo e
> x/n
e Co H le — (Weierstrass;
act it C Euler constant)
I\t
() 11 (1 - (Buler®) lz| > 1

p

Further examples:

ad 1 1 i k 1
I(-wm)=3 I0+)=15% eecw<,

k=2 k=0
1 /1 1 /1)1 1 /1 1 /1 2

Sy IR N Y R f Viet

3 2+.2\/;\J2+2 2+2 5 - (product of Vieta 1579),
= 1 b 1 w
H(-@e)-2 (@) -5

2

iig
A\"? 68\ r10-12-14.16\F
3 5.7 9.11-13-15 T
e

=e€ (Euler constant C = 0.577215...).

57The product is to be taken over all prime numbers p, and ¢(s) denotes the Riemannian ¢{-Funktion.
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0.8 Tables for differentiation of functions

0.8.1 Differentiation of elementary functions

Table 0.35. First derivatives.

Function f(x) Derivative®®| Validity for Validity for
I (x) real numbers® complex numbers®®
C (constant) 0 zeR zeC
z 1 zeR zeC
z° 2z zeR zeC
" (n=1,2,..) nz" ! zeR zeC
1 1
ol -= z#0 z#0
z T
1 n
z% = *1"% (g real) az®™? z>0 T#£0,—w <argzr <
Vz =zt % z>0 TF 0, -7 <argr <7
Y=z (n=2,3,...) Ve z>0 x#0,—T<argr < W
nx
1
Inz - x>0 z#0,—m<argx <m
z
1
logax—% “na x>0 r#0,—7 <argx <7
(a>0,a#1)
e* e” z€eR zeC
a® = e a“Ina zeR zeC
(a>0,a#1)
sinx cosx z€eR zeC
cosx —sinx zeR zeC
sinh z coshz zeR reC
coshx sinh z zeR reC
1 T m
tanxz pop x;ék7r+§,k€Z x;élmr+5,k€Z

d
8Instead of f'(x) one also writes =) or %

z dx
592 € R (resp. x € C) means that the derivative for all real (resp. complex) numbers exists. The
notation k € Z stands for k = 0,+1,+£2,...
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Table 0.35. (continued)

1
cotx e rZkmkelZ z#kr, ke Z
1 -
tanh 2 — zeR $7’:'1k7r+1—7£,k:6Z
cosh” z 2
1
cothz — zelR z#£ikn, k€Z
sinh? z
1
arcsinx iR -l<z<l lz] <1
-z
1
Arccos T ey -l<z<1 lzf <1
-
1
arctanz 522 z€R IImz| < 1
T
1
arccotz ] zeR jImz| < 1
arsinh ! 1<zl lz| <1
rsinhz —_— -1<z
V1422
1
arcoshz =T z>1 < arg(z® —1) < m,
e = x# 1
1
artanhz T2 x| <1 lz] <1
-z
1
arcothz T2 |z > 1 |z| € C\[-1,1]
Table 0.36. Higher derivatives.
- Validity for
Function f(x) | n** derivative £ (z) Validity for complex
real numbers P
numbers
2™ (m=1,2, mm—-—1)...(m-n+1z™ " |zeR zeC
(=0 for n>m)
z* (« real) afa—1)...(a-n+1)z*™ |z>0 iigargz<ﬂ'
e (aeC) a”e** zeR zxeC
sin bx o nT
e o) b*sin(bz + ) zeR zeC
cos bz n nmw .
(beC) bcos(bx+2) zeR zeC
. b™ sinh bz for even n
hb ’ cR eC
s be b™ cosh bz for odd n N i
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Table 0.36. (continued)

b" cosh bz for even n

h b ) R cC
oSt or b" sinh bz for odd n ze x
bz
?a>0beC) (b-Ina)"a™ reR z#0, —wm< argz <

— 1)

Inz (_1)n—1(n = ) >0 s 40, -7 <argz <7
log, z e 1(71 1)! 0 ;
(@a>0,a#1) =1 i lna z > r#£0, —T<argzr <7

0.8.2 Rules for differentiation of functions of one variable

Table 0.37. Rules for differentiation.5

Rule Formula in Leibniz’ notation
rule of sums é(i—'_—g) df
dx dx
d d
multiplication by a constant (dCf) C‘—Ji (C constant)
z
d
product rule Eif 9) = 3_f. + fg_i
x z
f d
d(—> df - f ar
quotient rule =
dx g2
. dy dydz
chain rule % - 3,z
. . dz 1
inverse function = =
()
dz

Applying the sum rule: Fzrample 1: Using Table 0.35 we get

(e" +sinz)’ = (e®)' + (sinz) = e® +cosz, z€R,

(¢® +sinhz) = (2?) + (sinhz) = 2z + coshz, =z €R,

(Inz + cosz)’ = (Inz)’ + (cosz)' = % —sinz, z>0.
Applying the rule for multiplication by a constant: Ezaemple 2:

(26%) = 2(e") = 26", (3sinz) =3(sinz) =3cosz, zER,
(3z* +5) = (3z*) + (5) =3-42® = 1223, 2z €R.
Applying the product rule: Ezample 3:

(xe®Y = (z)'e* +z(e®) =1-e" + 3e” = (1 + z)e*, zcR,

2

(z?sinz) = (2?) sinz + 2*(sinz)’ = 2zsinz + 2% cosz, z € R,

(zInz) = (z) Inz + z(lnz) =lnz+1, =z>0.

80T he precise assumptions for the validity of the formulas can be found in 1.4. These rules hold for
functions of one real or complex variable. The Examples 1 to 6 remain valid for complex arguments z.
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Applying the quotient rule: Ezample {:

sinz\’ (sinz) cosz — sinz(cosz)’
(tanz) = (—) =
cosx cos? x
cos? ¢ +sin’z 1
cos?x cos?z

This derivative exists for all  for which the denominator cosx is non-vanishing, i.e.,
such that = # km + g with £ =0,41,42,...

Applying the chain rule: Fzample 5: To differentiate

y = sin 2z,
we write
y=sinz, z=2x.
The chain rule yields
,_dy dydz

y=1= T (cosz)-2 = 2cos2x.

Ezample 6: The differentiation of
y = cos(3z* + 5)
is affected by setting y = cos z, z = 3z* + 5 and calculating

oy _dyde

=T EIn T (—sinz)- 120% = —122%sin(3z* + 5).

Applying the rule for the derivative of the inverse function: Inverting the
function

x

ye”, —oo < < 00,
yields
z=Iny, y>0.
From this we get
dzx

0.8.3 Rules for differentiating functions of several variables

Partial derivative: Ifthe function f = f(z,w,...) depends on z and further variables
w, ..., then the partial derivative

af
oz

is formed by viewing f as a function of « alone, viewing the other variables as constants,
and forming the derivative with respect to z.
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Ezample 1: Let f(z) = Cx with the constant C. Then one has

af@) _
dx
In the same way, we get for f(z,u,v) = (¢” sinu)x the partial derivative
————————8f(x’ v ) =e”sinu.
oz

This is because one views u, v and hence also C = e” sinu as constants.
Ezample 2: Let f(z) = cos(3z* + C), where C denotes a constant. By Example 6 in
0.8.2 one has
df(z)
dz
In the function f(z,u) = cos(3z* + e*) we view u and hence also C = e* as constants
and get

= —12¢%5in(32% 4 C).

of(z,u) 193 4 _u
e 12z° sin(3z* + €*).
Ezample 3: For f(z,y) := zy one gets
of(x, of (x,
Jolory) — f( y) . (@)= f((%/y)=

Ezample 4: For the function f(z,y) := . zy~! we get
Yy

fola,y) = 3f(z ) v, fay) = <9f(z y) —3

Table 0.98. The chain rule.5!

of of
f=Ff=zy), fe ::5;7 Jy = EL
Name Formaula
total differential df = fwdw + fydy
. 3f
chain rule f,, Bw fy Bw

For the chain rule in Table 0.38 we view ¢ = z(w,...) and y = y(w,...) as functions of
w and (perhaps) other variables. A similar rule holds for functions f = f(x1,...,%x).
One has the total differential

ldf = fordas + . + fr,dza |

which gives the following expression for the chain rule

af T T
gw =Ty T ey

61The precise assumptions for the validity of these rules can be found in 1.5 These rules are valid for
functions of real or complex variables.
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in case the functions z,...,z, depend on w and further variables. If ;,...,z, are only

d

functions of w, then one uses the notation e instead of ; This yields the special
w

form of the chain rule

af

dzl dz,
dw = Joi gy dw T e g dw

Applications of the chain rule: Ezample 5: We set f(t) := z(t)y(t) . From Example
3 we get the expression

Idf:fxdm—i—fydy:ydm—l—xdy |

for the total differential. From this we then get
df dx d
L= y(a'() + 20y ().

!

t) = - =gy— =
FO=4=vq g

This is the product rule, which consequently may be viewed as a special case of the chain

rule for functions of several variables.

Example 6: For the function

ft) = =2

8
=
o~ |
—_—

we get from Example 4 the total differential

ldf = fedo+ fydy =y~ de — 2y~ dy|

42 sy PO - sy
awd  SO=G T T e W0 '

This is nothing but the quotient rule.

0.9 Tables of integrals

Differentiation is handicraft — integration is an art.
Folklore

Differentiation and integration on the computer: For this one can advanta-
geously use the software system Mathematica.

0.9.1 Integration of elementary functions

The formula

/f(x)dz=F(a:), reD,

means

E'(z) = f(z) forall zeD ]

Thus, the function F has the property that the derivative of F' is the function f on the
set D. One refers to F' as a primitive or as an indefinite integral of f. In this sense,
integration is the inverse process of differentiation.
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(i) Real case: If z is a real variable and D denotes an interval, then one gets all
possible indefinite integrals of f on the set D by adding to some fixed indefinite
integral different constants. To express this fact, one writes

/f(@dx:F(a:)—kC, zeD.

(if) Complex case: Let D be a domain in the complex plane. All statements above
remain valid, if C' is now taken to be a complex constant.

Table 0.39. Basic integrals.

. Indefinite inte- | Validity for Validity for
Punction f(x) gral’? [ f(z)dz | real numbers®® | complex numbers®
C (constant) Cz zeR zeC

2
z - z€eR zeC
mn+1
" (n=1,2,...) zeR zeC
n+1
1 1
x—n(n—2,3, ) A=)z T z#0 z#0
1
o Inz z>0 r#0,—rw<argr<m
: Inaf #0
- nlz
o z
l'a ma+1
(areal,a £ -1) | atl z>0 z#0,—mw<argr<m

1 2
VI =z2 3%V z>0 z#0,—w<argr < T
e® e zeR zeC
az a:l
(a>0,a7é1) m zeR zeC
sinz —Ccosx zeR zeC
cos T sinz zeR zeC

™
tanz —1In|cosz| z;é(2k+1)§
(keZ)
cotx In | sin z| z£kr (keZ)
L tanz # 2k +1)2 s#(2k+12 (ke
cos? ¢ “ 2 2

520nly one indefinite integral is listed.

63

z € R (resp. = € C) means the corresponding formula is valid for all real (resp. complex) numbers.

Moreover, k € Z stands for k = 0,£1,£2, ... For the functions Inz, vz and #®T! we use the principal
branch for the functions with complex arguments, which are obtained from the values for z > 0 by
analytic continuation (cf. 1.14.15).
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Table 0.39. (continued)

1
ia —cotzx z #kn z#kr (keZ)
sinhx coshz z€R zeC
coshz sinhz reR zeC
tanhz Incoshz z€R
cothz In|sinhz| z#0
1
S tanh z zeR z#£i2k+ 1S (keZ)
cosh® z 2
1
2 —cothz z#0 z#ikr (ke Z)
sinh® z
1 1 x
pr (a>0) p arctan - z€R
1 1 a+z
PR (a>0) %lna—x r#a
1 . T
- (a>0) arcsin — |z] < a
1 inh = R
T (a >0) arsinh~ z€e
1 T
m (a > 0) arcoshg |I| >a

0.9.2 Rules for integration
0.9.2.1 Indefinite integrals

The rules for calculation of definite integrals can be found in Table 0.41.

Table 0.40. Rules for calculation of indefinite integrals.5*

Name of rule Formula
sum rule /(u+v)dx:/udm+/vdm
constant multiples / oudr = « / udz {a constant)
integration by parts /u'v dz = uv — /uv’ dz

s dz
substitution formula / flz)dz = / f (z(t))a dt

!

logarithmic derivative J;((::)) dz =In|f(z)|

84The precise assumptions for the validity of these rules will be formulated in sections 1.6.4 and 1.6.5.
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The substitution rule is often used in the mnemonic very convenient formulation®®

/ F(t()) dt(z) = / fHyat (0.56)

with d¢(z) = t'(z) dz. In many cases (0.56) is more convenient than the formulation in
Table 0.40, for which one must in addition assume that z'(¢) # 0 in order to guarentee
the existence of the inverse function ¢t = t(z).

In all cases in which (0.56) can be applied, the existence of the inverse function is not
necessary.

Examples of substitutions: FErample 1: We want to calculate the integral
J= /sin(Zm +1)dz.
To do this, we set ¢ := 2z + 1. The inverse function is

(t—1).

Tr =

N =

1t follows that ((ii_:: = % The substitution formula in Table 0.40 yields

1
J= /(sint)%dt = —%costz ~3 cos(2x +1).

Now we use the formula (0.56) to caleulate J.

d(2z + 1)
dx

Because of = 2 one has d(2z + 1) = 2dz. This yields

1
/sin(2z +1)dz = / —;— sin(2z 4+ 1)d(2z+1) = / 3 sintdt

1 1
=-3 cost = ~3 cos(2x + 1).

After a certain amount of practice, one will note the following formula:

/sin(2$ +1)dz = /%sin(?x +1)d(2z+1) = —% cos(2z + 1).

Generally speaking, one should first check whether (0.56) can be applied. There are
situations where (0.56) cannot be immediately applied (see Example 3 in 1.6.5).

2
Example 2: From % = 2z it follows that

1 1
/ezzwdx = / %e$2 de? = / %et dt = -2—et = iezz.

65Exchanging the role of z and ¢, one gets by the substitution rule in Table 0.40 the formula

Jfant (z)dz = [ f(t) dt,

which corresponds to (0.56).
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With more experience you will just write

/ezzzdz = / %e“‘"z d2? = %erz .

Ezample 3:

zdz dz? 1 2
/1+z2 ‘f2(1+x2) =ghre).

More examples applying substitution can be found in 0.9.4. and 1.6.5.

Examples of integration by parts: Ezample 4: To calculate / zsinzdz, we set

v =sinz, v=urx,
u=—cosz, v=1.
This leads to
/:rsinmdm:/u'vdx:uv~/uv'dz
:—wcosx+/cos:cda:=—xcosx—l—sin:c.

Ezample 5: To calculate / arctan z dz we choose

This yields

/arctanmdm :/u'vdx =uy —/uv'dx

/ zdx
= rarctanzx —
1+ 22

1
= zarctanz — 3 In(1 +z?)

by Example 3.
More examples of integration by parts can be found in 1.6.4.

0.9.2.2 Definite integrals

The most important rules are gathered in Table 0.41.
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Table 0.41. Rules for calculation of definite integrals.5®

Name of rule

Formula

substitution formula

(z(a) = a,

B8 b
JECO O O

2(8) =5, o(t)>0)

integration by parts

a

b

b
7 b ’
uvdzzuv|a7 uv' dz.

a

b
fundamental theorem of calculus

due to Newton and Leibniz

a

/u’d:c =“|Z

The fundamental theorem of calculus results from the formula for integration by parts

in Table 0.41 by setting v = 1 there.
b

. b
Ezample: /smxdz = —cos x|a = —cosb+ cosa.

a
This follows from the fact that for « := — cosz one has v’ = sinz.

More examples are to be found in 1.6.4.

0.9.2.3 Integrals of functions of several variables

The rules of Table 0.41 for one-dimensional integrals (integrals of functions of a single
variable) correspond to similar formulas for integrals of functions of several variables
(higher-dimensional integrals), which are gathered in Table 0.42.

Table 0.42. Formulae for integrals of functions of several variables.5”

Name of rule

Formula

substitution formula

[ iw= ] Fla(t))ldet ! (8)] dt
(H) H

integration by parts

/(6ju)vdw= /uvnj dF—/quvdx
G G

8G
theorem of Gauss / Ojudr = / un; dF
G oG
theorem of Gauss—Stokes / dw = / w
M oM

theorem of Fubini (iterated integration)

/f(w,y) dzdy = 7(7 f(:v»y)dw) dy

—_oe —00

66The precise assumptions are found in 1.6. We set f|z = f(b) — f(a).
87The precise assumptions and an explanation of the notations are in 1.7.



144 0. Formulas, Graphs and Tables

Remarks:

(i) The theorem of Gauss in Table 0.42 results form the formula for integration by
parts, upon setting v = 1 there.

(ii) The theorem of Gauss-Stokes generalizes the fundamental theorem of calculus to
manifolds (for example, curves, surfaces, domains, etc.).

(iii) In fact, both the formula for integration by parts and the theorem of Gauss are
special cases of the theorem of Gauss—Stokes, which is one of the central theorems
in all of mathematics (cf. 1.7.6).

Applications of these rules are contained in sections 1.7.1 ff.

0.9.3 Integration of rational functions

Every rational function can be uniquely written as a sum of so-called partial fractions

A

(z—a)’

(0.57)

Here n = 1,2,..., and A and a are real or complex numbers (cf. 2.1.7). The partial
fractions (0.57) can be immediately integrated following the rules in Table 0.43.%8

Table 0.48. Integration of partial fractions.

dx 1
= R, n=23...,
e rekom et
dz
— =In|z —al z€R, z#a, a€lR
dz . r— o .
= In|z — |+ iarctan z€R, a=a+iB, B#0
r—a B

Example 1: From

1 _1( 1 _ 1)
22—-1 2\z—-1 z+1

it follows that

dz 1 1. jz—1
,/xz—l —§(ln|x—1]—ln|z+l|> —Eln’——z—kl .

Ezample 2: Because of

1 _1( 1 1)
2241 2i\e—i z+i

we get

d 1 .
/ = _T_ 1= % (ln |z —i] +iarctanz — In|z +1i] — 1arctan(—x))
i

=arctancz, z eR.

%8The method described here is particularly easy to comprehend, because it uses the extension to
complex numbers. Avoiding the complex numbers requires a delicate case-by-case study.
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Note that |z — i| = |z + i| and arctan(—z) = —arctanz for z € R.
Ezample 3: According to (2.30) one has
x 1 1 2

/(=)= G-D@-2° z-1 z-2 (@=2¢
Tt follows from this that

2
dr =1 —1l-In|jz -2/ - —.
[#@as=mle =11 -mjz -2 - 2
Arbitrary rational functions can be written as a sum of a polynomial and a fraction in
reduced terms.
z? 1

FExample 4: 1122 =1- Ty a2

/Ide —/dz—/ dz =z —arctanx
1+a2 1+22 )

Use of Mathematica: In our age of computers one only attempts to calculate very
easy expressions of the above kind by hand. Otherwise one applies one of the applicable
computer algebra programs, for example Mathematica.

0.9.4 Important substitutions

We list some types of integrals which can be solved by means of some universal substi-
tution. In particular cases, however, special substitutions may be more convenient in
trimming down the necessary computations. Nowadays this work is done by computer
algebra systems.

Very few integrals can be solved in closed form in terms of elementary functions.

Polynomials of several variables: A polynomial P = P(z,...,xz,) of the variables
Z1,...,Zy 18 a finite sum of expressions of the form
(PRI > SLREEE: A

Here a_.. denotes a complex number, and all exponents a; are equal to one of the values
1,2,...

Rational functions of several variables: A rational function R = R(z1,...,z,) of
the variables z1,...,z, is an expression of the form
P(z1,...,2n)
R w — b b
@ o) o e

where P and @ are polynomials.

Convention: In what follows, R will always denote a rational function.

Type 1: /R(sinhz,cosh z,tanhz, cothz,e”) dz .
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Solution: One expresses sinh z, etc. in terms of €* and uses the substitution

[t=e, dt=tds.]

This yields a rational function in ¢, which can be decomposed into a partial fraction
decomposition (cf. 0.9.3). Explicitly one has

1 1
sinhz = §(e’” —e™ %), coshe = §(e’” +e ),

sinh x coshx
= , cothz = — .
osh x sinh x

Ezample 1: J::/ do :/ - dm’x :/ d
2coshz €% +e t(t—}—%)

dt z
= m = arctant = arctane” .

Ezample 2: J := [8sinh®zdx = [2(e® — 2+ ¢ ) dx
2z

=e® 4z —e”
In this particular case the substitution ¢ = ¢” is unnecessary.
Ezample 3: For the calculation of J := f sinh™ z cosh zdz it is useful to apply (0.56).
This gives

s hn+1
J=/sinhnmdsinhz=%, n=12...
n

This approach corresponds to the substitution ¢ = sinh z.

Type 2: /R(sin:c,cosx,tanz,cot z)dz. (0.58)

Solution: Express sinz, etc., in terms of ¢'* and use the substitution

li:ei”, dt=itdx.l

This yields a rational function in ¢, which can again be decomposed into partial fractions
(cf. 0.9.3). Explicitly one has

. 1.. . 1,. .
sinz = —=(¥ —e %), cosx==(e"+e7),
2i 2
sinz COST

tanx = y cotx = — .
cos T sinz

Instead of this method, the substitution®®

t:tang, —r<z<T (0.59)

891n the words of M. Spivak, this is “undoubtedly the world’s sneakiest substitution”. Applying this
substitution transforms any integral which involves only sin and cos, combined by addition, multiplica-
tion, and division, into the integral of a rational function.
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always leads to a solution. One has

1-¢# 2 2dt

COSZ:W’ siny = —— dz =

1+’ 1+627
Ezample 4: J = [8cos® zdz = [2(e?* + 2 + e %) dz
= %(ezix —e A2 4 4 — 25in2x + 4x.
In the present case we can conclude more quickly
J = [(4cos2z +4)dz = 2sin2z + 4z

because of 2cos? z = cos 2z + 1.
Example 5: From (0.56) it follows that

sinz dx —dcosz 1
cos?z cos?x cosST

Type 3: /R(m (;ii?)d ad—f[y#0, n=23,...

Solution: Use the substitution™

_ fex+p & -p tmldt
t= e & z~a_7tn, dz = n(ad — ﬂ’)’)(a R

This reduces the integral to one of a rational function of ¢, for which the method of
partial fraction decomposition can be applied (cf. 0.9.3).

Ezample 6: The substitution ¢ = /T yields z = 2 and dz = 2¢dt. Thus one gets

2
Eotogr=2 [(t-2 dt
/x+f /1+t d /( +t+1)

=2(%—2t+21n[t+1[)

:2(372\/5+2ln|1+\/5|).

Type 4: /R(rr, Var? + 28z +v)dz.

Let o # 0. With the help of the quadratic completion

2
am2+2ﬁz+7:a(z+§) ——~+’y,

this type of integral can be reduced to one of those listed in Table 0.44. It is also possible
to apply the Euler substitution (cf. Table 0.45).

701f an integral contains roots of different degrees, it can be reduced to type 3 by passing to the
smallest common multiple of the degrees of the roots. For example one has

Vo + Yo = (o)t + (V2.
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Table 0.44. Algebraic functions of degree 2.

Integral (a > 0) Substitution Validity
[R(z,v/a? — (z + b)*dzx z+b=asint —g<t<g,dz=acostdt
a? + (z+b)2dx z 4+ b = asinht ~00 < t < 00, dx = acoshtdt

JR(z,/(x+b)? — a?dx z + b= acosht t > 0, dz = asinhtdt

cos’t +sint=1 R cosh®t —sinh®¢ = 1.

dz acoshtdt acoshtdt
FEzxample 7: = =

va® +z? Va? + a?sinh? ¢ acosht

= / dt = t:arsinhf.
a

Table 0.45. The Fuler substitutions for fR(a:, \/om) dz.
Case Substitution
a>0 \/m =t—xzva
7> 0 Voa? + 28zt~ =tz + /7
az? + 208z + v = alzr — z1)(x — z2) \/m:t(x—wl)

1,0 real, x1 # o

Type 5: /R(m, Vazt + Bx3 + va? + 6z + p)dz.

Here we assume that a #0 or a =0 and 8 # 0.

These so-called elliptic integrals can be solved by substitutions with elliptic functions in
the same manner as in Table 0.44 (cf. 1.14.19).

Type 6: /R(z,w(;c))dz.

Here w = w(z) is an algebraic function, i.e., this function satisfies some equation of the
form P(z,w) = 0, where P is a polynomial in  and w. These kinds of integrals are
called Abelian integrals.

Example 8: For w? — a® + 2% = 0 one has w = v/a2 — 22.
The theory of Abelian integrals was developed in the nineteenth century by Abel, Rie-

mann and Weierstrass and lead to profound discoveries in complex function theory and
topology (Riemann surfaces) and in algebraic geometry (cf. 3.8.1).
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Type 7: /zm(a + Bz dz.

These so-called binomial integrals can be integrated in elementary terms if and olny
if one of the cases listed in Table 0.46 applies. The substitutions listed there lead to
integrals of rational functions, which again may be solved by the method of partial
fraction decomposition (cf. 0.9.3).

Table 0.46. Binomial integrals [ z™{(a + fz™)* dx  (m,n, k rational).

Case Substitution
n . (r smallest common multiple of
keZ t= vz the denominators of m and n)
1
m: €z t=</a+ PGz (g denominator of k)
m+1 <f @+ Bx™

—+keZ t=
n + "

0.9.5 Tables of indefinite integrals

Comments on using these tables.

1. For simplicity the constant of integration has been omitted. Here the term In f(z) is
understood as In |f(z)|.

2. If the principal function is presented by a power series, then there is no elementary
representation for this function.

3. The symbol x marks formulas which are valid also for functions of complex variables.

4. Notations: N denotes the set of natural numbers, Z the integers and R denotes the
real numbers.

0.9.5.1 Integrals of rational functions

We first assume that we are given a function L with

[Lzaz—i-b, a;éO.I

1
1.* [ L"dg = ——— L™} .
/ dz a(n+1)L (neN, n#0)

1
2. "dy = ——— [ ; # # -1;
/[ T ( 1)L (nEZ, n#0, n 1;

if n <0, z;é—é; for n = —1, see No. 6).
a

1
3./L’dz=a(8+1)L’+1 (SER, s#0, s #—1, L>0).

"I This means that k is an integer.
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* n _ 1 n+2 b n+1
4. /:v L dxf_az(n_’_Q)L ——WH)L (neN, n+#0).

1 b
X N AC = n+2 _ n+1 A _ _9.
5/:1: dz a2(n+2)L a2(n+1)L ('ne , n# 0, n# -1, n#-2;
if n<0, x#Aé)
a

de 1 b

= ZInL _Z
6 7 n (a:# a)

rdx =z b b

zdz b 1
8 17 = 2L + 5 InL (x;f:——)
9. igﬂf = /x-L‘"dz (see No. 5).

rdzx 171 5 9 b

z?dx 1 b? b
IIA/ 2 =5 L— 2blnL——) (x#—z).

(
12'/zz§w:%(l +3- 2L2) (3”&_%)'
=

>

3 2
L 3b—2L—+3b2L—b3lnL)

WLt~ i

3 1 12 b3
15./“C o _ 7( —3bL+3b21nL+—)

3b  3b? 6% )
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/ z8dz 1 -1 3b 302 b3
n at {(n—4)Ln*t (n-3)L"3 (pn—2)L"2 (n-1)L*!

<x¢—s,nEN,n>4).

dz 1 L & /n- 1\ (-a)iz
19‘/an T [m;—;( i ) iLi
b
b#0, x;é—a, x2#0,neN n>0}.
For n =1 the sum is trivial (contains no terms).

20./ dz _ 1, 9o,1L (z;é—g,x;éo).

L bz Bz

dz 1 = (n\ (—a)ixi~t L L
1. _— = — ) —_ - -
2 /sz" bntl [ g (z) (i-1)Li71 * z ™ In z

(w#——s, z#0, neN, n>1).

dx 1 L 2L L? b
2. [ & = 2 | -2y 2 . :
2 /:1:3L s [a, m:v z +2z2} (m7é a z#O)
dz 1.4 L a®z L? 3alL b
dz
24./I3Ln =

ntl )2 272 2
1 _Z n—f—l ( a)x. a*L _(n+1)aL+n(n+1)a ln£
b2 i J(@E—-2)L*2 " 2g2? x 2 z

=

(z;é—g, x#0, neN, n>2>.

—t /(L —b"L™dz; ifneN, n#0,
then L™ on the left hand side is treated as a binomial representation (see section 2.2.2.1);
if m € N, m # 0, then (L — b)™ on the right hand side is treated as a binomial
representation; for n € N and m € N and m < n the right hand side representation is
preferable.

Remark: Suppose we are given / ™ L dz =
a

Integrals containing two linear functions axz + b and cx 4+ d: Here we make the
following assumptions:

[Li=az+b, Ly=cz+d, D=bc—ad, a,c#0, D#0.]
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If D =0, there exists a number s for which : Ly = s L.

25. le :—-+DlnL2 <z¢—9,z¢ 9)
a C
26/L1L2 ) ln%—j (a:# %,m;ﬁ g)
27. ;:igzz%(glnLl—%lnLg) (x;é %,z¢ ‘—Cl)
28/L2L2=%(Li1+%1n1€_?) (I#—E,m —g)
29. %:%m%—%& (x;é—g,m —%)

2?dz b2 b(be ~ 2ad) d? 1
30'/L%L2 “apn T (aL ) o <2L2>

(;v;éfé,;v;éf§>.
a c

zdr 1 b d cb+ad. clq b d
32'/mg_D2(L_1+L2- D lnaL;) (Z#*a’“é*c)'

x2dzx ~1 { b d? 2bd . cl; b d
33-/‘—Lm—b‘z(;a+@'3m5;) (“f‘;’““z)-

dz —1 ( a c 2ac1 cL1>

Gy I ey L R P
D P \L "L T D "al

Ol&

(a:;é—gx;é

Integrals containing a quadratic function az® +bz+ c:

Q=ac® +br+c D=4dac— 1, a#0, D#0.|

For D =0, @ is a square of a linear function; if ¢ is in the denominator of the fraction,
then no zeroes of ) are allowed to lie in the interval of integration.

2az + b
arctan for D > 0),
/b Vb for D=0
dz 2 2ax +b
34, [ == = — artanh ————— for D < 0 and |2ax + b < v~ D),
/% N 7D ( 20z 8 < ¥=D)
1 2ax +b—+~D
1 for D < 0 and |2 b| > v-D).
mn2az+b+ﬁ—5 (for and [2az + | )
dz 202 +b (2n —3)2a dz

@ " w-vpg T @-np J o
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zdz 1 b [dx
36_/?:%an—%/6 (see No. 34).
zdz bx + 2c b(2n — 3) dz

) o7 = Tm-npe1  -npJ g1

2 2
38./3c dz _z_ ian + b _2ac [dz (see No. 34).
a 2a?

Q 22 ) Q
39 zide -z + ¢ dzr  (n—-2)b fadz
St T (2n=3)a@Q™ ! (2n-3)a) @ (2n—-3)a) Q"
(see No. 35 and 37).
10 /xmdx L zm-1 N (m —1)c ™ 2dz
’ QT (2n-—m—1)a@Q~!  (2n-m—1la Q"
_ m—1
— (zén_ mni)bl)a z Qndx (m # 2n — 1; for m = 2n — 1 see No. 41).
" g e 1 f2®3dz ¢ fa*3de b [ 2 dz

Qr a Qn-1 a Q" a Qr
dx 1, z? b dz
42./@—%1115—2—"1/6 (See No. 34)
43/d_x_;_i E£+1/d_fv
JoQr 2e(n-1QMY 2e) QU cf aQrt

2
44./ do ilng_i+(b__ﬂ) 9T e No. 34).

22Q 2272 e \2e2 ¢ Q
6| o e e Fw
el = SC T
o [ G on = s |1 (fzcgg)z] sor i | &

(see No. 34).
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Integrals containing the quadratic function a? + z2:

Q=d>+ %

T .
arctan — for the sign “+7”,
a

1
P= artanh—x—:—ln
;7
arcothgz—lanra
a 2 zx—a

a+t+x

a—x

for the sign

for the sign “ —

“« __

and [z| < a,

7 and |z| > a.

In the case of a double sign in a formula the upper sign corresponds to Q = a2 + 2
and the lower one to Q@ = a® — 2%, @ > 0.

47. / fg =1

48. 2;2 - Zasz + leg

49. 2; = 473@ + &zifé + %

50. dz _ z 2n—1 d_a:
Qrtl 2na?2Q™ - 2na? J/ Qn

51. wg; = :i: InQ.

52, %ﬁ” _ %

53. %; - 4_223.

54. Sffl 2n1Qn.

24,
55/“‘”@ =+zrFaP.
56 odr =z n lP
)2 T T T %
K7 *dz =z T, 1
’ Q3 7 T4Q? T 8a2Q T 8a3
58 z2de _ z i d_.r
] oQrHl - 2mQ" " 2n Qn
23dx 22 a?
. =15 _ %
59 / 5 =ty - Fhe
z3dz a?
. . —1
60 o7 T 0 +=InQ.
61 z3dz 1 n a?
o T 20 4%
62 wdz B 1 N a?
. Qn+1 - 2(n _ 1)Qn—1 2nQn‘

In numbers 50, 54 and 58 above we require n # 0; in 62, n > 1.

dx 1 2
dz 1 1 z?
64~/rm—m+zz "%
65. / dzx 1 n 1 n 1 x?
——t =+ —In—.
zQ3 T 1a2Q2 T 20%Q T 2a5 T Q

dzr
2Q

. [ 55

1 1

a2z ' &b




67, _ x
2Q2 - :F 2a4Q
dz 1 z
68. [ o2 = - 5T
/x2Q3 abz ¥ 404Q
dz 1 1
69. x3Q " 20277 ¥ 2a4 In

70 dz 1 1
"] 23Qr T 2a%2? * 2a4Q T

71/ dz _ 1 1
. IzQa‘_ 2a6z2q:a6Q¥

z 1
2. =
7 / b+cx)Q a1 ¥?

Integrals containing a cub

0.9. Tables of integrals

3
w15
2:FSaGQ:FStﬂ
2
o
1 x?
—In—.
Q
I
W Tt

[cln(b+cx) - gan:I: SP .

ic function a® + &3:

155

K=0%+2%
means K = a® — 8.

; in the case of a “+”, the upper sign means K = a® 4 z°, the lower one

dz (a+z)? 1 2rFa
73. = :I:—
_/ 6aZ a2 ¥ az + x2 + a3 arctan av3
dz T 2 dz
74. K2 = —3(1_3}? '@5 ? (see NO. 73)
zdz 1 .e?2Faz+2? 1 2r Fa
75. = —In———— 4+ —— arctan .
K 6a (a+ x)? a3 av3
zdx x? 1 zdz
76. 77 " 33K + 38 K (see No. 75).
z2dz 1
77. =+= .
e 3 InK
. idz 1
K2 T3k
79[22 _ yppe [& (see No. 73)
. ==z — . 73).
% Fa 7 see No
%0 ?de  _x dz (see No. 73)
| == :{:3K 5| & see No. 73).
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dz 1.
S R
i _/acK 33 K

82/d$* 1 +11z3
| TK?2 T 33K ' 345 " K

dz 1 1 [ zdx
83'/% -5 a3 T (see No. 75).

dz 1 z? 4 xdx
M| —=-—F—F— | — No. 75).
/ 22 K? %z 7 3K T35 ) K (see No. 75)

dz

1 1 [dz
85. PR o T m / yd (see No. 73).

dz 1 T 5 dx
. - 2 fex No. 73).
86 / PKZ T 2a%22 T 38K T 3a6/ g (seeNo.T3)

Integrals containing the biquadratic (quartic) function a* &+ z*:

&7 dz 1 nx2+ax\/§+a2
Joat+ 1t 4632 22 - azv2 ta?
1 2
+-—— [ arctan m—@ + 1| + arctan Ei —1 .
2a3v/2 a a
xdz 1 z?
88. / m = ﬁ arctang.
89] z2dz 1 | 2% + azv2 + a?
. = — n
a* + x* 4av2 2?2 —azV2 + a2

+; arctan ﬂ + 1] + arctan &i -1 .
2a\/2_ [} a
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2
réde 1. a+z 1 x
93. | —— = —In—— — —arctan—.
/a4—$4 ez 27 a

3
z°dzx 1 4 4
94/m =——Zln(a - )
Special cases of integration by use of a partial fraction decomposition:

95/ dx u dz _H)/ dx w dz
S Era)(z+b)(zt+e) z+a z+b T+’

B 1 _ 1 _ 1
Tl-ac-a T @bt " {a-ob-¢’

U

a, b, ¢, are pairwise different.

96/ dz _t/dx+u/dw+v/dm+w/‘dﬂc
S E+ra)z+d)(z+e)(z+d) S z+a z+b z+c z+d

3 1 - 1
t‘(b—a)(a;a)(d—a)’ (@B~ Dd—0)

Tl-ab-od-o “Te-dt-dc-d’

a, b, ¢, d, pairwise distinct.

dx 1 bdzx ddx
g7’/(a+bzz)(c+dz2) " be—ad (/a+bx2 _/c+dx2> (be = ad # 0).

98/ dx _u/ dz —)—u/ dz tw dz
" @ +a) (@2 +b)(x2+c) z2+a 2+ b z24+¢’

u, v, w, a, b, ¢, see No. 95.

0.9.5.2 Integrals of irrational functions

Integrals containing the square root /= and the linear function a? & b%z:

b
s s arctan# for the sign “+7,
L=ao"xbz, M= 1. a+byz o
~In for the sign “—-".
2 a-b/x

In the case of a double sign in a formula the upper sign corresponds to L = a2 + b’z
and the lower one corresponds to L = a? — b%z.
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Vzdz \/n_c 2a
99/ =+2-— B2 b_3M

3 2v/x3 2
100. Vzidx _ . Va? 2a \/_ M
L 3b2 b4 b5

o1, [VEdE __VE 1,

2 LT ol

\/Fdzéizs/ﬁ 3a’Vz  3a,,
L* T RL ' ObiL b

dz 2
103. | —==—M
0 /L\/E ab

dz 2 2b
104. = — —M
0 /L\/x—3 az\/a?:F a’

dz Nz 1
105 | =2 = YT 4
05 /LZ\/E a?l * a3bM

102.

dz 2 362/ _ 3b
106. = =
06/L2 == wia T ar M

Other integrals containing the square root +/z:

d 1 V2 2 V2
107. ;‘/Exzz_ lnx+p TP + — arctanp x_
pt+z V2 z—-pV2r 42 pV2 -z
1 / 2 /
108./ i dz2 = In zhpvertp + arctan p2 2z .
@' +2%)vE  2p°V2  z-pV2r+p® PPV2 Pz
Vzdz 1 ptyvz 1 NG
109./ =—1In — arctan —.
pP-a22 2p p-Jz p P
110._/—4—(“7_:—1 p+\/— —arctanﬁ
(p* —2?)vz i P
Integrals containing the square root function Jax + b

111./fodz = 3—2ax/L3.
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— 93
112./1‘\/de = ML—.
15a2

113, /22\/Zdz _ 2(15a2z2 — 12abz + 8b%)VL3

105a3
g [z _2VE
VI e
zdx  2(ax — 2b)
115. T Tﬁ.
116 z2dz B 2(3a%z? — 4abx + 802)VL

15a3

—nu for b > 0,
117_/d_x: Vb VL +Vb

zVL \/i__barctanﬁ_ib for b < 0.

VI dzx
118. —dm=2\/z+b/———— see No. 117
9. [ 92 _ VL _a / _dz_
Joe2vL T b 20) oV/I

120, / a, dz

see No. 117).
I )

(see No. 117).

121/ dz _ VL
") /LT (n—1bznl

(2n—3)a dz
(2n—2)b / 1T’

VI
122./\/L3dz: 25(5 .

123. /mv Lidz = 352‘12 (5V LT — TbV LS).

9 7 2 5

125. /—d _—‘+2bx/f+b2 T (see No. 117).
VL

xzdz 2 b
126. | == = < \/E+—).
VI3 a? ( VL

159
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2 3 2
yor, [Edz _2 (VL b))
VI3 ad 3 VL

dz 2 1 dz
128. —:——+—/— see No. 117).
[im=witel e )

dz 1 3a 3a dx
129. = - - -— | —= see No. 117).
-y =y d B )

2L(2in)/2

130, | LA g = = ——.
3 / v a(2+n)

131 f prnfagy — 2 (L2 eLCeER
’ T a2\ 4+n 2+n J°

L(G:tn)/Z 2 L(4:I:n)/2 b2L(2:I:n)/2
132. / 22LE 24 = 2 _% + .
ad 6+n 4+n 2+n

n/2 ofn/2 (n—2)/2
133./L dr _ +b/L dz.
xz n T

134 [ 92 _ 2 S —=—
) T T L0 T b ) zron

135 dz. 1 na dz
f p2In/2 T prL(n-272 9y | pIn/2

Integrals containing square root functions \/ ax + b and ex + d:

[Li=az+b, Ly=cx+d, D=bc—ad, D#0.]

L L
dr zs‘gn(\t;)_s_—in—(lll)arctan‘/-Z—l; for ac < 0, sgn(Ly) = — AR

136.

Ll gSg—n@%(L—l) artanh % for ac > 0, and [cL1| < {aLyl.
2
xzdx L1L2 ad + be dz
137. /\/I_q—L—g o e iy (see No. 136).
138. 2vi

dx
/\/L—\/L_ ~ DVIa
\/_

2 arctan for De < 0
139 / dz_ _ Jv=De V- ’
") Lo 1 In eI \/ Dec

VDc  ¢/I1+VDe

for D¢ > 0.
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D+2aL2 D? dx
. = LL —_— No. 136).
140 /\/Lledx — 2/ LiLy — Bas I (see No. 136)

141./,/%3dx:sgn(Ll)( VIiLs — D de ) (see No. 136).
1

VLiLo

142.

,/Ij;ldas 2V D dz (see No. 139).
2

c Lg\/

Lpds L3 'de
el (2n+ e (V 1Lz —nD / :
dz 1 VI 3 / dzx )
144. - _3 9 )
VL oD (L"'l + (" 2) ¢ JLin T
2 2 2

145/\/ L2dz = +3) (2\/ L"+1+D/L2dx) (see No. 143).

146. \/Zmdxz(nj1)c< L"1 /\/—L” 1)

Integrals containing the square root function v/ a? — z2:

Q=a* - 2%

147. /\/—d:c = \/£_2 + o® aresin 2) .

MI»—\

148./x\/6dm = ~%\/@

149./m2\/§dz = —2\/@3+ %2 (z\/§+ a? arcsing) .

150./x3\/@dz = @ - a2\/@.

3

151./?@ = \/é—aln“:‘/@.

152./£?dm = —@ — arcsin E.
e T a

161
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d
154. / \/—% = arcsin 2.

zdz
155. = .
]

z2dx T a . T
156./ 70 AE\/C—Q+ 7 aresin—.

57, [ Bl _ V@ N

Vo 3

dz 1 a++/Q

doe V@
159./m——%.

dr  /Q 1. a++/Q
160'/:::3\/@ T 2422 243 o z

302 3a?
161./\/Q3dx= % (x\/Q‘*-!— a2zx/§+%arcsin 2)

162. ] o/l = %\/@.

163./z2\/§§dx:-z\é§ e x24 @ a ?g/— 16arcsm§.
7 2 /5

164./z3\/@dm:—\/7gz—a—\5/-g.

165./@@5:@%-(12\/6—(13111%.

\/Q3 \/Q3 3 3 2 . x
166./ 7—dm = " —a:\/Cj- 5@ arcsin —.

2

/Q /03
167. / dzf 3\§—Q+32_alnﬁ+m—\/@.

T

dz
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3
S~
3, Y
NE
|
s a-

. X
—= — arcsin —.
a

dz 1 V@ T
[ e w (5 7).

dz 1 3 3. a+V/@Q
"4'/353\/@ TN TN B

Integrals containing the square root function v/z2? 4 a2:

1 R 1
175. / VQde = 3 (z\/_Q_ + a*arcsinh E) = 5[:5\/6-!- a*(In(z + v/Q) — Ina)].
176./z\/§dw = %\/55
177,/352 VQdz = %/c? - 38?- (x\/c‘)+ a2arsinh§)

2

= V@ - SV + e’ tn(e+ Q) - na)].

178./.%3\/@(1:6 = @ - 923—\/@.

179./@dz:\/@—alna+

x

180./§dz = ——\/xg + arsinhg = —g +In(z ++/Q) — Ina.

22 22 z

181./\;—?dz:~@ 1,0 tv@

163



164 0. Formulas, Graphs and Tables

182. [ —% = arsinhg— =In(z +/Q) - lna.

183. f zdz _

184. x—j-/d_QE = g\/@ a; ar‘smh— = g - ——(ln(x +/Q) —Ina).
185. xf/‘g = @ N G)
dr 1, e+/Q
186. 1:—\/—5 = -—Eln po .
d V@
187./9:25@ = -3

188./ dz V@ 1, a+VQ

A0 2w T2 T

189. / v/ Q3dx = 1 (a:\/ Q@+ 3(122$\/§+ Earsinhz)
3a T
( VO + == \/'.;_ (ln($+\[—) ina)).
1 1
190‘/33 Q8dz = g\/QE’.

3 4 6
191./ 22/Q3dz = V _ @2V a :E\/@——E-arsinhg

24 16 16

5 2 3 4 8
- 17\/6.@_ _a $24Q _a i%/@ _ %g(hl(iﬂ‘!‘ \/@) —1Ina).

192.fw3\/§§dx _ V9T a:}ﬁ

7

193./—\/5—-—3dx= @-{—az\/@—aslna_}_\/@.

X
VL Q3 3, ..z
194./ p de = p + 2;3\/@+ 54 arsmha

= _‘—‘/—E—E + %x\/é}— gaQ(ln(a: +/Q) -~ Ina).



0.9. Tables of integrals

V. /@ 3 3 a+v@
195/?(11'—— 21‘2 +§ Q—§aln(—$—)

dz T
196 —ﬁ = a2\/@,
xdx 1
197./ﬁ —_ *ﬁ.
198. % = \/Q +ars1nh = —ﬁ +In(z + /Q) —

563

dx a?

x\/@_(ﬂ\/@_a?‘ z

200./ dx 1 1 h]a—{—\/a.

201./%:—%(§+%>.

202/ de 1 3 +i1“+\@
VP 202222/Q 240VQ '

Integrals containing the square root function /&2 — a2:

LQ:.’,E2*Q2,:E>G>O._I

2

203. /fdx = ( (+v/@ - aParcosn® ) = %[z\/a—az(ln(z+ V3) - Ina)].
204./x\/§dx = %\/@
205./x2\/6_2dz = %/Zz_u %2 (x\/cj— azarcoshg)

=—\/—+ z\/——a (In(z + /Q) —na)].
206./z3\/§d:r = @ + az‘éﬁ.

207./\/—x—gdw =Q - aarccos% = /@ - afln(z + /Q) — Inal.

165



166 0. Formulas, Graphs and Tables

208. / mﬂidz = ~—\/$~g + arcoshz- = ——\/xg +In(z 4+ v/Q) — Ina.

—~—— 4+ ——arccos — = —~—= + — ln(:v+\/_)—lna]

1 Q
209./%?@3- ;/;S % Z ;/z:

210. / % = arcoshg =In(z ++/Q) — Ina.

211. ﬁai = 0.

212./xdx=—f+—arcosh-: \/_-I- ln(z+\/—) Inal.

3
213./5” dr _ @Jra?\/c_g.

V@ 3
1

214. / dz arccosa

7;\/— z
215. / dz_ VO

z2/Q a’x

1 a

216. / 2‘1%2 + a3 arccos .

2 4
217./\/Q3 dr = i (I\/QB - 311296\/6_2-1— 3%arcoshg)

2 4
= i (z\/@— 3a2x\/6+ 3—;—[ln(x+ VQ) —lna]) .

218./z\/c;)_3dm = %\/@

/05 2 3
219./x2\/Q3 dz =2 GQ + TV e f2vQ + —arcoshE

24 16 16

Inal.

:z\/ﬁ-@_'_a?z @ az\/Q lnx+\/—)

24 16

220./ 22/ Q3dx = ‘/_ 2\/_

/O3 /OB
221./—:?—d.75= —{?——az\/@+a3arcc035.



0.9. Tables of integrals

V@, V@3 38 3 5 z
222./ -2 dz = 5 +21\/a 5@ arcosha

= *@ + gm\/a~ ga2 fin(z + v/Q) — Ina].

\/—— _ \/—- a
223. =5z 2 — Ea arccos P
dz T
224. = - .
NG
zdx 1
225, | —= = ———.
-\/55 \/Q
226 :_cfiz_ - +arcosh i—|—1n(at+\/a2_)—lna
Ve VR V@ '
23dz a®
27 [ 22 - /o- 2.
-Vl
dz 1 sgn () a sgn(z) =1 for >0,
228 =— - .
/x\/Q?’ a?/Q a8 M sgn(z) = -1 for z <0.7?

229.]2;1—;@:—;—4(—@+f—).

230/ dz__ _ ! - 3 3 arccosa
") 23,/0%  22222/Q 2a%/Q 245 z

Integrals containing the square root function v/ ax2 + bx + c:

4a
o

Q=ar’+bz+c, D=4dac—b*, d=

7 In(2v/aQ+ 20z +b)+C  for a >0,
1 z+b
——=ars] h C f 0, D
; \/Earsm \/5 + Cy ora>0, D>0,
x
23l. | —==¢ 1
N(*] — In(2azx + b) for >0, D=0,
\/_
-\/__aarcsin 23%b for e <0, D<0.
\

"2This integral is valid also for z < 0 if |z| > a.
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168 0. Formulas, Graphs and Tables

dz  2(2ar+b)
QvQ  DVQ

233. / Q;ijc_z 2(;’)%” ( 5 +2d)

232.

- __ 2axtb)  2dn-1)
‘ G2~ (ap — D002 T am 1 (2n 1)/2
Q ( )DQ Q

235/\/—d (2"‘”1’: 2d/\/@ (see No. 231).

236./Q\/§dz - @%ab)—‘/@ (Q+ %) + é% \% (see No. 231).

(2az + )@ 15 dz
237. [ @? = 24 — [ = . )
/Q VQdz = T (Q 8d2>+16d3 70 (see No. 231)
2ax + b)QU 12 In+1 _
938 [ o@n+D/2q, - / (2n-1)/2 4.
38 fQ o da(n+ 1) dni1) | ¢ de
239. ?QI _Ye_ b jf”_ (see No. 231).
a

zdz 2(bx + 2¢)
240. =—

Ve DyQ

zdx

241. VP = (2n— 1)aQ(2" o7~ /Q(2”+1)/2 {see No. 234).

2’ dx z 3 3b% —4ac [ dr
242, W = (2—(; — m) \/@‘I‘ 8(12 -—\/-_c—;)- (See No. 231)

2ldr (20 —4dac)z+2bc 1 [ dx

243. Q\/—Q‘ N +E ﬁ

(see No. 231).

_QVQ b2z +D) b dx
244. /z\/—édx =3, —&12———\/@ = Tod ﬁ (see No. 231).

245./ rQ\/Qdz = Q;—T\/Q — Q%/Q\/édz {see No. 236).

(2n+3)/2
Q i /Q(2"+1>/2dz (see No. 238).

246. (2n+1)/2, — _
46/$Q o (2n+3)e 2a



QR

4a

247./x2\/§dm= (a: 6a>

( Ll —2v/cQ + 2¢c+ bx
Ve t 2z
——=arsinh bz + 2¢
248/ doz Ve VD
/@ —iln bz + 2¢
N x
! arcsinw
v—c zv-D
249/_‘”___@_3/ dz
J 2 QT e 2 2/Q

250/‘/@“—\/_ /f

251. /\/_dx:—@+ j% b
(2n+1)/2 (2n+1)/2
252./ Q dz = Q
T 2n+1

dz 2
253, | ——— = ——+Vazx? + bz.
/x\/ azx? + bx bz
dzx T—a
254. { —————= = arcsin
/ V2az — x2

zdz
255./——— = -
V2ax — x2

_ 2
256. / V2ar — z2dx = _:172_a 2ax — z2 + % arcsin =

.z
2ax — z2 + aarcsin

0.9. Tables of integrals

(see No. 235).

— dac
16a2 / VQdz

for ¢> 0,
for ¢>0, D >0,
for ¢ >0, D =0,

for ¢< 0, D<O.

(see No. 248).

see No. 231 and 248).
\/— ( )

dx

— see No. 231 and 250).
g )

2n—1)/2
g/Q(2"'l)/2dx+c/——Q( " dz

T

169

(see No. 238 and 248).

—a

Integrals containing the square root of other expressions:

257'/*dw—
(az? + b) c:c2+d
—=————arctan =vad _be (ad — be > 0),
\/_\/ad be Vbverr + d
= 2 —
1 n\/_\/cz +d+zbec—ad (ad — be < 0).
WhV/bc—ad VbVex? + d — 2v/bc — ad




170 0. Formulas, Graphs and Tables

258./\/a1:+ dm——(a—+:—)—b)\/ ax + b.

n(az—i—b) 1
259 [ Yax+b (n—1)a {ax+b

260 /__ = —iln9+—— Var +a?
J oz +a? na Vv ’

261 / d _ 2 arccos a
S avTr—a®  ma NE

_zda _2 z\3
262. m arcsin (a)'

Recursive formulas for the integrals of special polynomials:
263.* / ™ (az" + b)¥ dz

1
— m+1 . bk k m n k—1
pey e [m (az™ +b)" +n b/m (az™ + b) dz]

1
- _ ol n b k+1 m n k+1
et 1) { v az™ + b) +(m+n+nk+1)/m (az™ +b) dx]

= m [mm"'l(ax" +0)** ! —a(m+n+nk+ 1)/ ™ (az™ + b)kdx]

1 m—n+l n k / ~
— b +1 _ _ b m-—n nyh k .
Y [x (az™ + b) (m—=n+1)b | 2™ "(az™ + b)*dz
0.9.5.3 Integrals of trigonometric functions™

Integrals which contain the function sin ax (o a real parameter):

1
264F /sinaa: dez = — = cosax.
o

1
265* /sin2 azdr = -z — L sin 2o,
2 4o

1 1
266> /sin3 azdr = —— cosaz + — cos® az.
« 3o

3
267" /sin4 azrxdr = =

! sin 2oz + ! sin4ax
— —si — .
8% T 1 T 33,

73For integrals of functions which contain, in addition to sinz and cosz, also hyperbolic functions
and %%, see No. 428 ff.
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sin" ! az cos ax n n—1

2687 / sin® axdr = — / sin® 2axzdzr (n an integer > 0).

no n

sinar xcosaz
ol a

269 /xsin ardz =

2 2 2
270F /:t: sinazdr = 22 sin ax — (% - —) COS .

a? as
3z2 6\ . 2 6z
271 | 2®sinazdz = —5 — — Jsinazr —{ — — — | cos az.
@ o o o

sin az (az)®  (az)® (az)”
e S TR N TR

n

2727 /a: sinazdz = — = cos am+a/x"_lcos ardr (n > 0).
o

273*/

The integral / - dt is referred to as the integral sine, denoted Si(z)

0
(see section 0.5.5).

3 5 7
Si(z) =2 —

2 2 &
3-31 5.5 7-7!

274, /Smo‘”" do = - 20T a/% (see No. 312).

z? x
sin ax 1 sinaz o} cos ax
275. / = dx = Ep + p—— 1/ o) dz (see No. 314).
d 1
276. / - z = /coseca:cd:t = ln‘cang = = In (cosec azx — cot ax).
sin oz « 2 o
d 1
277. / - 21: = ——cot az.
sin® ax «
dz COs L 1 azx
278. =— + —Intan —.
/ sin® az 2 sin® ax 20 2
dz 1 oS L n—2 dz
279. =— > 1).
sin” oz a(n—1)sin" lazx n-1 / sin" 2 ax (n>1)

sinax  o?

zdz 1 (ez)® | T(oz)d  3l{ax)”  127(ax)®
ag0, 29 _ L1
0 / (‘”J’ 3.3 T3.5.5 3.7-71 7 3.5.9

2221 — 1)
(2n+1)!
By, are the Bernoulli numbers (see section 0.1.10.4).

Bon(oz)™1 + . ) :

d 1
281. / .x23: = —Ecotaz—l——Zlnsin azx.
sin® ax o 1o
989 /' zdx _ T COSQx _ 1
" J sin" oz (n—Dasin® taz (n—1)(n—2)asin" ax

+n—2/ zdx (n>2)
n—-1/ sin”" 2az ’
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283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

296.

297.

298.

299.

300.

0. Formulas, Graphs and Tables

1+ sin oz + sin ax

|
|
ot
®

/l—smax -

1 T  ox
:——tan(———).
[

4 2

/ zdz _ :L't (ﬂ' ax)+ 2 I cos(ﬂ

1+sin oz an oz " 4

/ rdzx oz ot (7r ax>+ 2l S,n(w
l-smar o \2 2/727¥\]

sin ax dz 1 T ar
_— ::!:z+—tan<—:F—)-
@

1+ sinax

/ dz _
sinaz(l £sinaz)

/ dz _
(1+sinaz)? ~
/ dz _
(1 —sinaz)? ~
/' sinardr
(1 +sinaz)? ~

sin ax dx

(1 —sinax)?

4 2

— tan

1 T _ ax 1 axr
— tan (— F —) + —Intan —.
« «a

1 T or 1 3 (T Qax
(- 5) e (G- %)

2a

1

4 6o 4

T oor 1 3 (T
cot(———)+—cot( -

CZII)
2 .

1 ¢ (11' az)+ 1 ¢ 3(7r ax)
——tan (- — — —tan” [ — — —}.
20 4 2 6o 4 2

1 T  Qaz 1 3
——cot (———) + — cot (

2c 4 2 b6

/ dzx 1 arcsin 3sin“ar —1
1+sinoz  2v2a sinfar+1 /"

dz

[ra-]
1—sin? az

295 /sin az sin Sz dx =

,/,3+'ysinax—

sin axdz

X

cos? azx

B+ ysinax ;

= —tan ax.
o
sinfa — Bz sin(e+ Bz

200-08)  2a+§)
(le| # |8]; for |

arctan

%)

= | 3| see No. 265).
[ tan ax/2 4y

for 8% > +2,

2
/P VP
1

B tanozx/2 +

T- V-

for f% < 4%

n
a2 — 5% Btan az/2+

Ny
¥ ﬂ+’ysina$ ©

dz _
/sin az(f + vsin a:v) afl 2 8 / B

—In tan —_—

¥ €oS QX

+’y sin ax

TV

No. 296).

(see No. 296).

/ dz
(8 + v sin ax)?
(see No. 296).

" a(B7 —4%)(B + v sin axz)

B cos azx

ﬁ2—7 /ﬁ+75ma$

/ sin azdz
(B + v sin ax)?

(see No. 296).

a(y? ~ B%)(B + v sin ax)

~y
vz—ﬂz_/ﬂ—%-"ysinax
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1 2 24,
301./ d:v' 5 = arctan B+ tanax (8> 0).
B+ sin’ ax of/B%+ 42 B
1 32 — 42 tanazx o o
—————arctan—————, [(°>7,0>0,
302 /_____d’” —— LV A ’
: 2 _ A2 g 1 2 _ 32
B2 — 42 sin® az 1n V7 B tanax+[3’ V> 88> 0.

n
20872 - B2  \/v?—B? tanaz — B
Integrals which contain the function cos azx:

1
303.*/(:05 azrdzr = S sin ax.

1 1
304.’“/ cos? azdz = =z + — sin 20z.
2 4o

3

1 1
305F | cos® azdz = — sin ax — — sin® az.
« 3a

3 1 1
cos® azdz = 2z + — sin 20z + —— sin 4o,

306. 8 4o 32«

—1 .
cos" tarsinar n-—1 _
cos” ardr = + /cos" 2azdz (ne N).
no n

307

cos ar = sin ax
308F —_

/
/
/
[ o i = 50 5
/2
/
/
Ik

2x 2 .
309" [ x* cos axdz = —; cos ax + (— - ——) sin oz,
o? o o

32 6 36
310* [ 2% cos axdx = <—z2— — —4—) cos T + (_x_ - _z) sin az.
o a a o

z"sinaxr 0
311 f 2” cosaa:dm————————/a:"‘l sinozxdr (ne N).

« &

az)?  (az)t (ax)®
dx::ln(a:c)—(z.?)! +(4'i! _(ﬁ-f)i! + ...

319, COos ax

oo
4
The improper integral / %dt is called the integral cosine, denoted Ci(x) (see

section 0.5.5).

2 4 6

I . A
2.2 4-417 6-6!
C denotes the Euler constant (see section 0.1.1).

313. / P - -2 / === L (see No. 273).

COs ax cos ax « sin axdzx
314. / por dz = — CE I — / — (n#1, seeNo.275).

Ci(z)=C+Inz -

d 1
315. / L _ /sec ardz = —In tan (% + E) = lln(sec azx + tan ar).
cos ax o 2 4 o
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316. de

1
5 = —tan azx.
cos? ax  a

317 / dz sin ar N 1 In tan(ﬂ-—l—az)
"] cos ax  2acoslax | 2a 4 2/

1 sin ax n—2 dz
18. = .
3 cos® ax  a(n—1)cos"lar n-1 /cos”‘2 ax (n>1)
319 rde (az)?  (ax)*  5laz)®  61(ax)®  1385(ax)!®
' cosa:c‘ 2 4-21 7 6-4! 8- 6! 10- 8!
PR CD) il
(2n 4+ 2)(2n)!

Es, are the Euler numbers (see section 0.1.10.5).

zdz z 1
320. / 5 =—tanazr+ — In cos az.
cos? ax  « @

321.

/ zdz z sinox 1

cosar  (n—1lacos"laz (n—1)(n—2)a?cos" 2oz

+n—2/ xdx (n>2).

n—1J cos"2azx

322. = l cot (ﬂ) .
1+cosazr o 2

323.

1—cosam7 o 27

rdr T axr 2 azr
4. == — 4+ = -
32 / tan 5 + pe In cos 3

1+ cosazx «

zdz T az 2 azx
2 —Z ot == 4+ = In sin —.
325. l—cosax acot 5 +a2 In sin 2
d
g06. [Cosowdr o 1on0%
1+ cos ax a 2
d
327. /————COS QT T :41071601;&7i
1 —cos ax « 2
dz 1 T  ar 1 ar
398 [ ———— = _Int (— —)——t =,
/cos az(l +cos az) «a ntan gt o
dz T ax 1 azr
3209 [ — % it (— —)—— 3L
/cos az(l - cos azx) ptan izt a2

/ _ 1 an ax 1 an® ar
(14cos az)?  2c 2 ba 2°

dx 1 ax 1 azx
L | ——— = —— cot — — — cot® ==.
33 _/ (1 — cos ax)? 227 " 62" 2

330.

cos axdr 1 arx 1 azr

/ (1+cosaz)? 2 MY T a2

cos axdzx 1 o 1 ar

333. T = cot — — — cot® =,
(1-cosaz)? 2 Y T 6 2
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da 1 . {1-3cos® az
334. = arcsin [ —————— ) .
l+coslaz  22a 1+ cos? ax

335. / de = (il‘ = —l cot az.

1—-cos? axr sin® ax (o4
sinfa — B)z  sin(fa+8)x )
B+ TG (] £16)
for |aj =8| see No. 304).

336 / cosazx cos fJxdxr =

- 2
arctan (8~ ) tan az/ for 4% > ~2,
337. / a\/ﬂz—'y \/ﬁ -2
,6’+'ycosa.7: (7 B)tan az/2 + /v — 2
for B <
ay/y? —ﬁz (7 B)tan az/2 — /42 ~ﬁ2
gz, [ sozde 2z / S (see No. 337).
B+vycosaxr v ,6+'ycosax
dz 1 or T ¥
9. =—Int = N _ 2
33 /cosaz(ﬁ-l»'ycosaz) af . an(2 +4 ﬂ/ﬂ—(-'ycosaz

(see No. 337).

340 / da _ 4 sin ax B /
") Brvycosaxr)?  a(v?-pB)(B+vcosax) y2—-02) B+ cosox

(see No. 337).

341 cos axrdr _ B sin ax T f
" (Brvcosax)? T a(B-y2)(B+vycosaz) BE-92) B+ycosax
(see No. 337).
dz 1 ﬁ tan ox
342. = > 0).
/62 +72 C052 oar aﬁ /,82 +’}’2 /——— (ﬁ
1 8 tan az 2 2
——————arctan ————, B~ >8>0,
dz af/ 52 —~? V32— 2
343 | —— = = e
B2 — 2 cos? ax ! I Bten 0z = VP - B ¥ > B3>0
20072 - 3% Btanaz+~/v2 - 32 ’
Integrals which contain the functions sin cx and cos ax:
o f 1 5
3447 | sinax cos ardr = — sin” ax.
2cx
in 4o
345" [ sin? 2 opdr = 2 ~ 2o
/sm ax cos” ardr = 2 390
346.*/sin" ar cos qzdr = L sin™! ax  (» € N, see No. 358).
a(n+1)
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. 1
347* { sin ax cos™ axdr = ————— cos™*! az  (n € N, see No. 357).
aln+1)

sin"laz cos™ laz n-—1

348* [ sin™ ax cos™ axdr = — sin®? az cos™ azdz
a(n+m) n+m
1+l m—1
sin oz cos ar m-—1 h _
= + sin® az cos™ 2 azdz

a(n +m) n+m

(m,n € N;n > 0; see No. 359, No. 370, No. 381).

1
= —In tan az.
sin az cos ar «

349.

1 1
350. :—[1ntan(3+a—x)—.—].
sin® az cos ax @ 4 2 sin ax

( ox 1 )
In tan — + .
2 cos o

1
2 sin” ax

1
=—[Int — .
(n anam+2c052 ax)

351.

RIm

sin oz cos2 ox

—_

352.

el

sm ax COS ax

—

353. ;
sin ax cos® ax

| s
e
| e
|
/
/
/5
/
/3
/

Q

355. _ 1 sin ax 1 +3lntan(z+am)
sin? ax cos3 ar @ |2cos? ar sinax 2 4 2 ’
1 1
356. ——-( - C(.)S;w +§ln tan%).
sin® az cos2 ar o \cosaxr 2sin®ar 2 2

357.

1 dx
sin oz cos™ az a(n —1) cos"1 az _/ sin oz cos" 2 az
(n # 1, see No. 347, No. 351, No. 353).

358. . / dr
sin” ax cos ax a{n—1) sin® ! az sin™ 2 ar cos ax

(n # 1, see No. 346, No. 350, No. 352).

1 1

359. =1

sin" az cos™ az  a(n —1)sin L az cos™! az

n+m-—2 dz
+ i on—2
n—1 sin ax cos™ ax

1 1
-1

a(m — 1) sin® ! az cos™ 1 az

4 n+m-—2 dz
m—1 sin” ar cos™ 2 ax

(m,n € N;n > 0; see No. 348, No. 370, No. 381).




360.

361.

362.

363.

364.

365.

368.

371.

w
3
[

o
3
w

374.

/
/
/

sin az dz

1

1
= —sec az.

cos? ax

& COS [¢1

0.9. Tables of integrals

dz

177

} (n€N,n>3).

sin ax dz 1 1 tan? az + 1
= = —tan® ar + —.
cos® ax 2a cos? ax 2o 200
sin axdr 1
cos® ax  afn—1)cos"laz’
sin® az dz 1 azx
—————— = ——sginar+ — lntan( +—)
cos QX o 4 2
sin? azdz 1 sin ax 1 Int (71' + az)
== ~—lntan{—+—]].
cos?® az o |2cos? ax 2 4 2
sin? azdz _ sin ax 1 dx
cos® ax  a{n—1cos"larx n—1J cos" Zaz
(n € N,n > 1, see No. 315, No. 316, No. 318).
sin® azdz 1 (sin® az
=—= +Incosaz).
cos ax o 2
sin® azdz 1 1
2 = — | cos ax + .
cos? ax @ CoS ax
sin® azdz 1 1 1
cosm az  a |(n—1)cos"1az (n—3)cos" 3 ax
sin” ax sin" ! ar sin® 2 ardr
dz =— + (ne N,n>1).
cos ax a(n—1) cos ax
sin” azx _ sin®! az n—-m+2 sin™ azx
cos® ar  a(m-—1)cos™ ! azx m—1 cos™ 2 ax
(m,n € N; m > 1),
sin® ! oz n—1 [sin"?azdz
a(n—m)cos™lar n-—m cos™ ar
(m # n, see No. 348, No. 359, No. 381),
B sin® ! ax n—1 fsin"2azrde
T am-—Decosmlar m-1 cos™? ar
(m,neN; m>1).
cos ax d;v 1 1
- = —— cosec azx.
sin® az " asin az a
cos axdr _ 1 _ cotfaz 1
sin® ax " 2a sin? ax 20 20
cos ax d:t _ 1
sin™ az a(n ~1) sin" ! o’
cos ardz 1 a%4
(cos az + In tan —) .
Tsnazr o« 2
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o, [ends L (mear 00
sin® ax 2a \sin” az 2

cos? axdr 1 cos ax dz
376. — = - o1t 2
sin™ ax (n—-1) \asin"! ax sin" " “ azx
(n €N, n>1, see No. 279).

3 1 2
377. /Cos ordz = (COSQ % 4 In sin ax) .

sin ax

d 1 1
378. /COS ardr - (sin ar + — >
sin? az T a sin az
d 1 1 1
379. /COS axm: — - — ] (neN,n>3).
sin® azx (n—3)sin" " ar (n—1)sin""" oz
n—1 n—2 d
380, /cos Ot:B _cos ozz+/cos . axrdx (n#£1).
in az afn —1) sin oz
cos™ ar dx cos™t! ax n-m+2 [cos” axdz
381. = . 1 - . 3
sin™ oz T a(m—1)sin™ ! ox m—1 sin™"* ax
(m,n e N; m > 1),
_ cos™ ! ax n—1 fcos" ?azxdz
T aln—m)sin™ laxr n-m sin™ ax

(m # n, see No. 348, No. 359, No. 370),

m—1 m-—1 2

cos™ ! ax n—1 /cos"*2 oaxdz
a{m — 1) sin oz sin™™° ax

(m,neN; m>1).

382 / de + L + i
. = n
sin axz(l + cos ax) 2a(ltcosaz) 2o 2
dz 1 1 T  azx
383. s-Intan (7+50).
8 /cos ax(l j:sinax) 2a(1 isma:c) neni + 2
384 / sinaz dz :llnl:l:cosa:v‘
cosaz(l Lcosox) a cosax
285, / . cosazd.x :l nli.sinaz
sinaz(l £sinox) « sin oz
sin az dr 1 1 T ox
. o= lntan (£ 2.
386 /cosaz(l:i:sinax) 2a(1 :i:smax) nRanly + 2
cos ax dz 1 1 azx
387. l t
/ sin az(1 =+ cos aa:) " 2a(l * cos aa:) nan e
sinax dz T 1
388. | ——————— = - F —In(si + .
8 /sinaz tcosazx 2 * 200 n(sinaz £ cos az)

cos ax dx T

1
389. ———— — =%— 4 — In(si + .
8 /sin or + cosox 2 + 20 n(sinaz & cosaz)
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dz 1 axr T
390. —_— = —+—=).
/sina:c:i:cosoza: av?2 ntan( 2 8)
dx 1 ar
391. —_——— =t 1 —).
/1+cosaxisinax ialn( *+tan 2)
302. f _ e L a0
Bsinax + ycosax a\/52+72 2
. . Y Y
with singp = ———= and tan¢ = —.
LRV B
sin aur dz 1
393. _— =1 .
Bt ycosan o n(B + v cos ax)
cos ax dz 1
394. —_— = —1} i .
B+ sinazr oy n(8 + vysin.az)
395 dz _ d (18 + g)
" J B+~cosaz + dsinax B+ /% + 82 sin(az + ¢)
. o Y
with  sing = ————\/m and tan¢ = 3 {see No. 296).
dx 1 ¥
396. = ——arctan [ = tan az | .
Bcos?az ++2sinfax  afy ( 8 )
397 dx 1 ~vytanaz + 8

" J Peos?ax —42sinfar  20fy ~tanar — G

_cos(a+ Bz cos(a—@)z
2(a+B) 2(a—0)
(o # 2, for o = B see No. 344).

398. / sin o cos fr dr =

Integrals which contain the function tan az:

399. / tanarder = — l In cos az.
a

tanax

400. ftanz azxdx =

1 1
401. /tan3 azdzr = — tan® ax + ~ Incosaz.
200 a

1

402. { tan" oxdr = ——— tan"
/an oz dz an =D an

Loz — /tan”_2 azdz.

ax®  afzd 2527  17072°
403. t dz = —
/xaua”"z FR TR T N T-T T3
2211(2271 — 1)B2na2n~lx2n+l
@2n+1)!

+...
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tan oz dz (ax)®  2(ax)®  17(az)”

404. _—= e

0/:0 Tyt T a0 T

22n(22n _ I)an(ax)Zn—l
(2n — 1)(2n)!
By, are the Bernoulli numbers (see 0.1.10.4).
405 /tann L o= — L tannt! (n#-1)
" J cosZax T a(m+1) 2 ar " ’
d 1

406. / W::tlh = j:g + % In(sin ez £ cos az).

tanardzr 2z 1
o tanoxdr T % in(si .
o7 /tan ozl 27 20 n{sin ar & cos ax)

Integrals which contain the function cot ax:

408. /cot azrdr = l Insin az.
o

cot ax
-z

409. /cot2 ardzr = —
3 1 9 1 .
410. cot® axdr = —— cot“ ax — — Insinax.
2a «

1
411. /cot” ardr = —————cot” tax — /cot"‘z ardz (n#1).
a(n~1)

z al.?) O.’B.Ts 22nBQna2n—1z.2n+l
412. tapdeg =2 22 2% 2 TOwm% T
/“0 =L T 9 T s @n+ )1
Bs,, are the Bernoulli numbers (see section 0.1.10.4).
413 /cot ardr 1 ar (ox)® 2(az)® _ 2" Bap(ax)* Tt
' r  ar 3 135 4725 7 (2n - 1)(2n)!
Bo, are the Bernoulli numbers (see section 0.1.10.4).
cot™ ax 1
414, dz = —————cot™ ! ax n#—1).
/ sinfar aln + 1) @ (n# -1
dz tan oz dz
15. = No. 407).
415 / 1+ cotax /tan arx1 (see No. 407)

0.9.5.4 Integrals which contain other transcendental functions

Integrals which contain e**:

1
416.*/e‘”dx = —e%*,
o

(o5

* T €
417 /me"‘ dz = Ez—(ax— 1).

2 2 2
418."‘/.’52e‘”dz = e™* (l; _ + -—) .
o

a?  a?



0.9. Tables of integrals 181

1
419.’"/3;"e‘”dz = —g"e™® — E/:r"*le‘”dm.
o o

e (az)?  (az)?
420. —dzr = —_
20/ dr = 1nx+1 1'+22.+3_3!+

The improper integral / —t—dt is called the integral exponential function and de-

—co
noted Ei(x). For z > 0, this integral diverges at the point ¢ = 0; Ei(x) is then the
principal value of the improper integral (see sections 0.5.5 und 0.7.2).

T
et z? 23 ™
Cdt=Ctlng+ —— + 2 A
/t C+Inz+ = 1!+2 atsatto ™

(C is the Euler constant, see 0.1.1).

1. [ Cap= L (—e +a/e dx) (neN, n>1).

g n—1 zn-l gnl

or
422./ dz 1, ¢
1+ gox a 1+eo=®

dz x 1
. ——:————l ax.
423 /,6+~ye°w 5 g B+ e

e**dg 1
424, _— = —1 7).
B+ vex® oy n(f +7e)
1 g
———arctan | e*%/ = B8y > 0),
25 / dz ) ovBy ( \/:) ( )
° or —ax
e =PV (5 <0)
B By e By
re**dx ex

426.

(14 ax)? = {1+ ax)’

X Qx
lnz 1 [0 (see No. 420).
o (87 x

427. /e"‘zln zdz =
ea:z:
428."/ e*Tsinfxdz = m(a sin Bz — B cos Bz).

. o .
499; /eaz cosfrdz = m(a cos Bz + (Bsin Bz).

T 5in™ !
W(asinx —ncosx)
n(n — 1)

a? + n?

430.*/ e**sin"rdr =
/e‘” sin® 2z dz (see No. 416 and 428).

ax n—1

e cos z( + nsing)
———(aco nsing
g (cosz

n(n —1)

o? +_n2

431."]e"‘”cos"xdz =

T cos™ 2 dz (see No. 416 and 429).
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432."/ze

433 / ze“ cos frdr =

0. Formulas, Graphs and Tables

*C gin frdx =

(a sin 8z — (3 cos Bz)

ﬁz

(a2 T g2)2 ———v7(0® — 8%) sin Bz — 208 cos ).
Pl ﬁ2 (a cos Bz + Bsin fz)

(az ﬂ2)2 [( -8 ) cos Bz + 2a8 sin Bz].

Integrals which contain Inx:

434. /lna:dac =z (lnz —1).

435.

436.

437.

438.

439.

440.

441.

442.

443.

444,

445.

/(ln z)2dz = z[(lnz)? — 2lnz + 2).

/(ln z)*dz = z[(lnx)® — 3(Inx)? + 6Inz — 6].

/(lnm)"dx = z(lnz)" - n/(lnx)"’ldx (n# -1, neZ).

/— Inlnz +Inx+

(nz)? n (Inz)3
2-2 3.3

+...

The integral / i is called the logarithmic integral, denoted li(x). For z > 1 it
n

0
diverges at the point ¢ = 1. In this case the value of the function li(x) is understood
to be the principal value of the improper integral (see 0.5.5 and 0.7.2).

dz z . 1 / dx
(nzy» ~ (n—1)(nz)»1 n-1/ (Ing)n!
(n €N, n > 1, see No. 438).
Inz 1
m — pmtl [ —
/m Ilnzdr ==z i (m+1)2J (m € N, see No. 443).
™+ (Inz)" n
m n . o m n—1
2™ (lnz)"dz = ) +1/:1: (lnz)" dz

(m,n € N, see No. 444, 446, and 450).

/

/lnz

/
/

Inx

(Inz)™ dp = (In m)"*’l_
T n+1
Inz 1
— N 1).
“Dzm1 (m - 1)2 gl (meN, m>1)
(nz)" (lnz)” n ‘/‘(lnz)"’1
— dz = ey e — o dx (m,meN;m>1,
see No. 441, 446).
z™dx

—Y
- / %dy with y = —(m + 1) Inz (see No. 420).
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446.

(=2

e™dr ™+l Lmt 1 / z™dz
(Inz)» = (»n—Dnz)»! n-1J (oz)»-1

447. / d
xz

(m,neN,n>1,

see No. 441, 444).

(n—-1)>%(nz)® (n-1)%(Inz)®

dz
448. = —(n—
48 /z“lnz Inlnz —(n—1)lnz+ 290 330

dz -1
449. =
9 / z(lnz)*  (n—1)(lnz)»1
450./ dz _ -1 _m——l/ dz
zm(lnz)? 2z '(n-1)(nz)»! n-1/) 2m(lnz)*?

(neN, n>1).

(m,n €N, n>1, see No. 441, 444 and 446).

.’E3 $5 22n—132n$2n+1
451. | Insi =zher—-—oz—-———— .. - —
5 / nsinzdr =xzlnzx —z 8~ 900 wBn L 1]
23 $5 1177 22n—1(22n _ 1)B2
452. 1 dep=-2 - _ = _ _ . - no2n+41 _
/ ncoszdz G 5 315 S -

IS 7$ 22n(22n o 1)BZn 2n+1

453. [ 1 =zlnz — —
53 /ntanzdz rzlnx —xz 4+ — 9 +450+ .+ n(@n+ 1)

By, are the Bernoulli numbers (see section 0.1.10.4).

454. /sinlnzdz = g(sin Inz — coslnz).

455. /coslnzdz = g(sinlnx—kcoslnz).

1 (Il‘

1
456. /e‘” Inzdz = —e**lnz — — —dm
o o

Integrals which contain hyperbolic functions:

1
457 / sinh ez dz = — cosh a.
o
* 1.
458" | coshaxdx = — sinh azx.
@
Y 1 . 1
459F | sinh® ax dzr = — sinhaz coshaz — =z.
20 2

1 1
cosh? azdz = — sinhazcoshaz + ~z.

460
2a 2

461. /smh" ardr =

n—1 . _
— smh" ! az cosh ax — ——= / sinh™? az dz

2
—— _sinh" ! azcoshoz — nt2 / sinh”*? gz dx
a(n+1) n+1

"1n this case the formula is also true for complex numbers z.

+...

(see No. 420).

(neN,n>0),"

(neZ, n<-1).
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462. / cosh” azdz =

1 n—1
o sinh ez cosh™ ! az + —— [ cosh™ 2oz dz (neN,n>0),"
n
n+2
————sinhazcosh™ M ax + it /cosh"+2 axdr (n€Z, n<-1).
a(n+1) n+1

463

sinh az sinh Sz dz = i 7 (esinh Bz cosh ax — Beosh frsinhaz), o # f2

/ 7
1
464.*/ cosh ax cosh Bz dx = m (asinh ax cosh Bz — B sinh Bz cosh az), of # B2

4657 / coshazsinh fzdx = (asinh Bz sinh ax — Bcosh Bz coshaz), o £ F2
o

1
232
« : 1 . .
466" [ sinhazsinardr = 5o (cosh az sin ax — sinh ax cos ax).
o
" 1. .
467" [ coshoaxcosardr = o (sinh ax cos azx + cosh ax sin ax).
o

1
468 / sinh ax cos oz dx = 5 (cosh aux cos aex + sinh oz sin ax).
o

1
469.*/ coshazsinazdr = % (sinh oz sin az — cosh az cos azx).
o

470r —Int h——
0- _/smhax ntan 2
2
471. = — arctane®”
cosham o
1 1
472. zsinhaxrder = —xcoshax — — sinh azx.
a o

1 1
473.*/xcosh ardr = —zsinhaxr — 3 cosh ax.
o 1o}
1
474. /tanhazdx = alncoshax.

475. /cothazdw = llnsinhax.
@

tanh

476, / tonh? oz dz = g ABLOT
(83
th

477. /coth2 ardr=x — © aax»

Integrals which contain inverse trigonometric functions:

478. /arcsin gdw = zarcsin~ + a2 — z2 (lz| < Jel).
a

2 2
479. /x arcsinf—!dx = (% - %) arcsing + % a? — x? (lz] < |a]).



.
o]
o

481.

482.

483.

484.

485.

486.

487.

488.

489.

490.

491.

492.

493.

494.

495.

496.

497.
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3 1
22 arcsin = dz = % arcsin = + §(z2 +20%)va? — 12 (lz| < |e]).
@ a

T
arcsin — dz
a

_z, 1 :n3+ 1-3 25 1-3-5 m7+
z T o 23303 245505 2.4.6-7T-7T07
. T
amesin=de | o 1 a4 J@ZF
——2— = ——aresin = — —ln ———— (lz| < laf)
z z a o« z
arccos 2 dz = marccosg — Va2 —z? (2| < laf).
2 2
varccos —dz = | = — X arccosf—Z\/oF—:c2 (lz] < |al)-
a 2 4 a 4
3
1
22 arccos < dz = % arccosg - §(a:2 +20%)va? — 2 (|lz] < |e]).
@
z
recos ¥ _my w1 o 13 2 135 ol
z T2 2-3-30% 2-4.5-5a% 2.4-6.-7-7a7
x
arccos — dx 7 42
1 JoZ =
o o CareeosZ 4~ EEYETT ) <))
z z a a z

z T o«
arctan — do = rarctan — — — In(a? + z2).
o a 2

z 1
rarctan — dz = = (2% + o?
retan — dz 2(:15 +a®)

azx

T
arctan — — —.
o

2

(n € N, see No. 494).

3 2 3
x b z  az?
z? arctan = dz = - arctan - — — + — In(a? + z2).
@ 3 @ 6 6
n T zntl T o z"tldz
z" arctan — dz = arctan — — —— [ ———
o 1 a n+l/) a?+x
tan — d
w=£_f_:+%,§_77+m (Iz) < Jer]).
T a JFo 52¢v o
tan = d
arctan — dx o? + 12
o) = ——arctan — — — 5
z z

T
arctan — dx
o

8
3

= ! arcta; m+ e
T (n=1)znT R

arccot— dz = z arccot = + = In(a? + z2).
o a 2

T 1
zarccot— dz = = (2% + o?) arccot S
o 2 o

.T2

x z3 z
arccot— dr = —arccot — +
o «

aw2

6

ax

6

dz

3
In(o? + 2%).

xn—l(a2 + $2)

(n € N, see No. 491).
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n+l n+1
.15 z 2 / g do (n € N, see No. 501).

498. /z" arccotgdz = arccot - + i e e

x
arccot— dx 3 5 7
T T T x T
499, | ——— &  _ — np - S e
/ z Tt g T e T g

T
arccot— dzx 2 2
1 1
500. /—a——z——arccot£+—lna T .

z? T a 2« z?
au‘cco’c:Z dz
. 1 T o dzx
501. R t =~
/ T (n—1)zn-1 e S T n o1 / zr~1(a? + 1?)

(n € N, see No. 498).

0.9.5.4.1 Integrals which contain inverse hyperbolic functions:
502. / arsinh g de ==z arsinhg — m .

503. / arcosh% dz = a:arcoshg ~Va? a2 (la| < l]).

504. / arta.nh%dz = zartanhz + %ln(a2 —2%) (|| < o).

505. / arcoth g dz = warcothg + %ln(m2 —o?) (la| < [z]).

0.9.6 Tables of definite integrals
0.9.6.1 Integrals which contain exponential functions

We consider here integrals containing exponential functions combined with algebraic,
trigonometric and logarithmic functions.

oo

- in+1)

1. /x"e ‘”dz:-ml-— (,meR, a>0, n>-1).
0

(Gamma function I'(n), see 0.5.1).

For n € N this integral evaluates to ——.
Ol”+1

n+1
12——)— (n,aeR, a>0 n>-1)
. 20(%) b B 1 )
2. /w”e“‘“ﬁdz= 1-3...(2k — 1)/
9 —‘W (7’L=2k, kGN),
k!
\

(see No. 1).



12.

13.

14.
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e~ g = g for a > 0.

VT

2 _—a?s?
r‘e dr =
403

for a > 0.

\\8 0\8

(e
e’ cosfBrdr = %e‘ﬂz/‘mz for a>0.

e “sing 1
—— — —dr =arccota =arctan— for a>0.
o

e Tlnzdr =-C~ —-05772.

-2 (B o VT
e lnmdx—4I‘ (2> =~ (C+2In2).

’ 8 2
In 9 — 11, C is the Euler constant (see 0.1.1).
Ta+DI(b+1) 1

0

it 2
/6_22 Inzdz = ﬁ [(C+21n2)2+ W—] .
0

/2 T = SBla+1,b+1) (a,bER),
sin?* ! peos®tlpdr = ZI‘(a' +b+2) 2
ald! beN)
o 2a+b+1) (e, :
B(z,y) = My—) is the so-called Beta-function or, as it is also called, the
e +y)

Euler integral of the first kind, and T'(z) is the Gamma function, also called the
Euler integral of the second kind (see No. 1).

/sin(ma:) sin{ne)dz = dnp -1 (m,n e N)50

—T

/cos(mx) sin(nz)dz =0 (m,n € N).

-

soam’n =0 for m#n, ém,n =1 for m = n, Kronecker symbol.
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m
15. /cos(mm) cos(nz)dz =8y - (m,n € N).50

. 7
maa: 3 for o >0,
16. 2
4 5 for a<O0.
oosinﬁx 731
17. dr = ., 0<s<?2.
7 / z 2I'(s) sin s7/2 s
0

a
18, [ SR s (aeR)
0

o0

cos Bz w35t
. = , O0<s<l.
19 / z® de I'(s) cos sw/2 ?
0
w
— for a>0,
2. /tanazdz _ 72r
3 —3 for a<0.

91, /cosa:c—cosﬁxdleng
(¢
o

T
— for |al <1
o > for ol
22'/511&%@: T for fol=L,
Fed 4
0
0 for Ja|>1

X0 o0
sinx cos % T
23. dz = dor =4/—=.
3/ﬁ ¢ /ﬁ TV
0 0

2. / z smiz dz = sgn(ﬁ) e %8l (sgn(B) = —1for B8 < 0, sgn(B) = Lfor 8 > 0).
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o 4
sin® oz T
26. / = dz = 5]04.
0
+oo +o0
27. / sin(z?)dz = / cos(z?) dz = \/g
-0 —00
n/2
i 1
28. /__wz _1n1+a for |a < 1.
V1-a?sin’c 22 l-a
0
/2
d 1
29. / _osrdr  _ 2 arcsina for la] < 1.
1-—a?sin’z @

sin® z dz 1

S
1—a?sin’z @

K-E) for |a]<1.

2xd 1
MZT[E—(I—J)K] for |a| < 1.
1—o2sin®z G

/2
30. /
0
a2
31. /
0
In 30 and 31, E and K are the complete elliptic integrals:

E=F (a, g) ,K=F (a, 12[) (see section 0.5.4).

™

cos axdz 7 0%
2. = .
3 /1~2ﬁcosz+ﬁ2 g €N i<l

0

0.9.6.2 Integrals containing logarithmic functions

1
33. /ln Inzdz = —C = —0.5772, where C is the Euler constant (see 0.1.1).
0

1
2
34./ Inz 4,
x—1 6
0
1

189
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1
In(1
37. /n( +2) 4 =T o,
2 8
0

1
38-/(1_9601)(1_355)(1 —lnF(a—'—l)r(B_'-l),(a>—1,,3>—1,a+ﬁ>—1).

(1-z)lnz = Cla+8+1)

o
39. /ln (%) dz =T(a+1) (-1 < a < ), where I'(x) is the Gamma function

(see No. 1}
! 1
x> -7 an
40. | ————dzx=Intan — 0< 1).
/(1+m)lnz ¢ =Intan — 0<a<l)
0
/2 /2
41. /lnsinxdxz/lncosmdx:—glnl
0 0
21n2
42. /xlnsino:da:z—w 2n .
0

n/2
43. /sina: Insingdz =In2 — 1.
0

0 .
A4. /ﬁ‘ﬁ mzde = - ~C.
T 2
o

oo}

sinz | o .  m

45. = C 31 where C is the Euler constant (see 0.1.1).
i

46. /ln(a:t,@cosx)dx:wlna+ (a > B).
D

2rlna (> 3> 0),

47. [ In(a® -2 %Ydz =
b/n(a afcosx + G°)dz {QWIDB B>a>0).

w/2
48. / Intanzdx = 0.
0
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w/4
49. /1n(1 +tanz)dz = g In2.
0

0.9.6.3 Integrals which contain algebraic functions

1 1
Tla+ 1B+ 1)
a1 _ 0 g — 20101 _ 22y6 3. — _ )
50./m (1-2z)°dz 2/x (1—-z*)°dz Tlatb+2) Bla+1,b+1)
i) 0

For B(z,y) and I'(z), see No. 12.

oQ
51. / - T for a<l.
(1+a: = sinar

o0
52. /(1 Yo =—meotar for a< 1.
— )z

oo

o1 T

53'/1+x3d$ ﬁs1na—7r for D<a<pg.
0

B

Fr(a)
(%)

T'(z) is the Gamma function (see No. 1).

54/\/1_TF

35.

1
/ s (cac)
1+2(BCOSCI+1‘2 2sina 2/

oo

dx @ T
56. _ = 0 —].
/1+2xcosa+z2 sina ( <a<2)
0
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0.10 Tables on integral transformations

0.10.1 Fourier transformation

Legend of symbols occuring in the table:

C: Euler constant (C=0.57721567...)

I'(z) = /eqthldty Rez>0 {Gamma function),
0
1 n vt2n
(2) = Z fz' F)(u 1 n) 1) (Bessel functions),

K,(z) = %W(sin(m/))_l[f,,,(z) —I(z)] with

I(z) = e’%i’”’J.,(ze%i") (modified Bessel functions),

(Fresnel integrals),

z .
Si(z) = / sinf 4
0 (Elliptic sine),

oo

si(z) = — / L4t = Si(e) g

T

Ci(z) = / cost y (Elliptic cosine).

Occasionally we use the notation exp(x) for e®. Furthermore, [z] denotes the Gauss
bracket, i.e., the largest integer n for which n < .
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0.10.1.1 Fourier cosine transform:

193

2 o0
f(=) F@) = /2 [ £(z) costav)de
o
1, O<z<a \/Esin(ay)
0, z>a Ty
z O<z<1
’ 2 < 2YY, 2
2z, l<z<?2 4\/;(cosysm §)y
0, z>2
0, 0<z<a 2
1 -4/ —Cil(ay)
g x>a ™
1 1
V@ VY
1
ﬁ’ 0<z<a 2C’(ay)
0, r>a Vi
(1), I<z<a 1-2C(ay)
_\/_E, T>a '\/g
(a+2)"', a>0 \/g [ — si{ay) sin{ay) — Ci(ay) cos(ay)]
-1 2 . . T .
(a—z)7", a>0 \/; [cos(ay)Cl(ay) + sin{ay) (5 + Sl(ay))]
2 21 e ™
(a® +2%) 3
2 2y-1 E sin(ay)
o i

b b

Wi(a-2? Pilator

V2 e cos(ay)

a-t+x a—x

Bi(ata) BPt(a-z)

V2r e sin(ay)

(a2 +1‘2)—%

\/g Ko(ay)
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F(y) = @ [ #@ cosenrae
]

(a® =272, 0<z<a T
= Jo(a
0 s>a \/ 5 Jolay)
z™ 0<Rev<1 \/—a-sin (H) r{— vy’
’ T 2
—az \/?t a
e T a2 +y2
esz — e % 1 In 0.2 + y2
z V2r v+ y?
Ve ™ 12__2-(02_{_142)#%(:05 (g arctan (%))
- 2 241 %
e a+ (e® +y°)2
vz a* +y?
n_~ar 2 | 4R+l 2 2\—(n+1) m{n+ 1 y 2m
z"e 1/Trn.a (a® +y%) Z (-1) om (g)
0L2m<nt1
v—1_—ax g 2 2\—% g
' e \/—; (v a® +y°)" 2 cos (Varctan (a.))

111, 1
z\2 z e -1

)

In(1 — e 2"¥)

—ax

2% exp (—2)

— o™V (cos 2ay — sin Zay)

23 exp (—2)

221- e~ V2% cos \/2ay

Inz, 0<x<1

0, z>1
Inz 1 T
‘ﬁ ——ﬁ(c+§+ln4y)

#*—a®) 'In (g)

\/g- %(sin(ay)Ci(ay) - cos(ay)si(ay))
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f(=)

F(y) = \/g/f(m) cos(xzy)dx

(2% — a®)7 In(bx)

\/g . zll-(sin(ay) [Ci(ay) — In(ab)] - cos(ay)si(ay))

1 1 (YY)? C(YY)2
mln(l-ﬁ—z) o [(CI (2)) +(51(2)) J
etz 2 1m .
gl Py - 5{5 [cos(by) — cos(ay)] + cos(by)Si(by)
+ cos{ay)Si(ay) — sin(ay)Ci(ay) — Sin(by)Ci(by)}
¢ lng _j2_1 [ac+91n(a2+y2)+yarctan (g)]
T a? +y? 2 a
a® +z° Var by —ay
1 (bz + -'L'Z ) T (e —e )
a? 4 z? Vor _a
|2 (o) — ™)
2
Im (‘“”‘) —2v/27 si(ay)
T a—x
In(a® + z?) \/E %
JEr? -\ = [(C+ln (;)) Ko(ay)
a’ l—e™ %
In (1 + —2> Var
’ y
2
In|l— Z—z Jax L= cos(ay)
\/E <a
. 2! y
sin(az)
z VE e
2V 2’
0, y>a
ki —a
zsin(az) \/; e~ cosh(by), y<a
7% + 42

—\/g et sinh(ab), y>a
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o
2
e F@) = /2 [ £(z) cos(ay)de
o
- —~a
sin(az) \/; b1~ * cosh(by)), y<a
x(z? + b?)
\/—7-2E b2 sinh(ab), y>a
—bz 1 a+y a—-y
[ES—— +
e ** sin(ax) /o [bz T(a+y)?  BB+(a— y)z]
_e" sinz L arctan (2‘>
z Vam y?
sin’(ax) 1 a’
—_— In{l—-4—
z war | 8P
sin(azx) sin(bx) 1 n (a+b)? -7
z Vor o |(a—b)? —y?
2 kat 1
sin” (az) \/: (a - —y) ) y < 2a
— 2 2
z
0, y>2a
sin®(ax) 1
Yz ﬁ{(y+3a)ln(y+3a)+(y~3a)ln|y-3al
—(y+a)lm(y+a)—(y—a)lnly — a|}
1 /m 2 2
7V 3 B —v), O<y<a
.3 1 /7 o _
sin® (ax) syag ¥ y=a
3
1 /n 2
g\/;(Sa—y), a<y<3a
0, y > 3a
1 — cos(ax) 1 i l o’
z V2 y?
1 — cos(az) g (a—y), y<a
2
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1) F@) = /2 [ 1) costemaa
7 e * cosh(h

cos(az) \/; (; ( y)’ y<a

b2 + 22

™ e~ cosh(ab) Sa
2 b ¥ y

e™"" cos(az)

N S S
Ver [P+ (a-y) B+ (a+y)?

2
e cos(ax)

\/—12_11 exp (—g%ﬁ) cosh (%)

7 _T_ s tan(azx) V27 cosh(by) (1+ e2‘“’) -1
7 _t pe cot(azx) V21 cosh(by)(e*** - 1) -t
) ~2)

sin [a(1 - :vz)]

1 kg y2
mcos(a+4+4a>

i) ol (E)-e (D))o (5+5)
it -l -FE)T)

exp({—az”) sin(bz?)

a®+ bz)f% exp (—tay®(a® +6%)71)

% sin 1 arctan 2 - —L-
2 a 4(a? +b?)

S

cos(az?)

el () oo ()

cos [a(1 — .7:2)]

! sin a+£+y—2
4 ' 4o

9

exp(—az”) cos(bz?)

(a®+ bz)_% exp (—1ay*(a® + y*)7Y)

X COf L—l ctan 2
s 4(a? + b?) 2% a

S
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7@) p) =2 [ #(0) contenras
Lan (2) NEREN )
Zn (%) W fsin(2va) + cos(2/ay) &)
(%) (%) = [y + coszyam) +¢77)
Leon(2) 1 [0 - snizyap) + )

[003(2\/&—1,/) — sin(2+/ay) + e_z\/@]

[\
-

e G0 ()m (5) -5 (5) = (5)]
exp(~tz) sin(avE) 50+ e (1702 +47))

oo | gt = Sarctan (1)
e p(g)-e()
% cos(ay/T) \/g sin (% * Zy)

%ﬂz cos(b\/z)

V2(a® + y2)*% exp (~1ab’*(@®> + b))

2
by 1 v
X COs {4((12 T yg) 5 arctan (a):i

exp(—av/z) cos(ay/x) av2 (2y)" % exp (~ %)
e Ve . o2
vz [cos(av/z) - sin(av/7)] -ﬁ Xp (*5_,;)
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0.10.1.2 Fourier sine transform:

199

oo
2 .
7@ Fo) =2 [ @) sin@y)dz
0
1, O<z<a \/El—cos(ay)
0, T>a T Yy
x, 0<r<l 3
22—z, l<zx<?2 4\(—y_2siny sing(g)
T 2
0, > 2
! z
z 2
1
-, O<z<a 2 ..
x = Si(ay)
0, z>a 7r
0, O<z<a 2 .
1 -1/ — silay)
=, r>a n
z
1 L
vz vy
_l_ 0<
\/:E’ z<a QS(ay)
0, z>a vy
0, 0<zr<a 1 — 25(ay)
L z>a NGl
NES
Ly 27
Jz v

(a+z)7Y, a>0

\/g[sin(ay)(}i(ay) - cos(ay)si(ay)]

(a-x)" 7, a>0 \/g [sin(ay)Ci(ay) — cos(ay) (g + Si(ay))}
a? —:i x? \/g e
(a® - %! \/% é [sin(ay)Ci(ay) - cos(uy)Si(ay)]




200 0. Formulas, Graphs and Tables

f(=x)

Fw = /2 [ 1@ sin@y)de

b b

b2+ (a—x)° B2+ {a+ax)?

vors

e sin(ay)

a+x a—x

B+{atz)? 84 (a-z)?

Vo

e cos(ay)

_x _ T costay)
a® —z? 2 v
1 /m 1—cos(ay)
z(a? — z?) 2 a?
1 wl—-e
z(a? + 22) V2 a?
— 2 T o1
z 7, 0<Rer<2 —cos(—)[‘(1—~u)y
™ 2
e /2y
T a2+_y2
£ \/ g arctan (£>
€T ™ a
—az —bz 2 2
e —e 201 b +y Y y
= \/; [iy In (az—-l—yz) + b arctan (3) — @ arctan (E)
_2
Ve ‘/75 (a® +y%) 7 sin [% arctan (%)}
Y
e~a% (a2+y2)§ —a
NA; a2 +_y2
[4n]
e 0T 2 y)2m+l

2 _ n+1
4y ontle 2 2y~ (n+1) | _ym
Ve (@ ) > (-1 (2m+1

m=0

)

a

v—1 —azx
e

\/g T(w)(a® + y*) "% sin (u arctan (

¥
a

)

exp(—3z)(1— e_z)_l

1
Va2r

tanh(my)
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7@ Fw) =2 7f(m) sin(ey)da
0
26" \/g 4—?2- exp (—ﬂ;)

% exp (—2)

1 —\/m[ .
— e €08 4/ 2ay 4+ sin 2a,yil
Vi v

2 exp (- 2)

2 e~V 5in +/2ay

Inx, 0<r<l

\/E Ci(y) —C—Iny
y

0, z>1 kg

oz —/Z (€ +my)

T 2 ny
Inz 1 1w

7—; E[E—C—ln@]

z(z® - o®) "' In(bz)

\/g[cos(ay) [In(ab) — Ci(ay)] - sin(a,y)si(ay)]

2(z® —a*) ' In (3)

—\/g [cos(ay)Ci(ay) + sin(ay)si(ay)]

—ag 2 1 y 1 2, 2

e “lnzx \/;m[a a.rctan(z)—Cy—gyln(a +y)]

a+x 2 1 a . .

In - \/g 5{ In (E) -+ cos(by)Ci(by) — cos(ay)Ci(ay)
+ sin(by)Si{by) — sin(ay)Si{ay)
+g [ sin(by) + sin(a,y)]}

a+x T
In P sin(ay)
1 ataz\? 227 .
= In <a — a:) ” al [1 — cos(ay) — ay m(ay)]
a+2+z 2\/% > 1\ (Y
L <a2+z2—-z) — exp (—y,/a —z)sm (5)

s\/; [C + In(ay) — cos(ay)Ci(ay) — sin(ay)Si(ay)]
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2 T .
1) F) = /2 [ f@)sin(y)da
°
2 2
a*+ (b+z) 24/2rm ¢V sin(by)
a? 4 (b— x)? y
=In|l —a’x? —V2r Ci(—y-)
a
a2
—In|l-— o v2r [C + In(ay) — Ci(ay)]
sin(az) 1 Inlyte
T V2T y—a
z 0<y<
sin(az) 2 ¥ <y<a
2
z >
P a, Uy a
. 2
sin(m) — siny, 0<y<m=
—— ™
1—x2
0, y==
z e sinh(by) 0<y<a
sin{ax) 2 b ), y
b2 + x2

T e % |
\/; 3 sinh(ab), y>a

e sin(ax)

_1_b{ 1 3 1 ]
Var [P A=y Bt (aty)

e *" sin{ax)
x

ot sin(ax) 71__2_5 exp (Aii:_ﬁ) sinh (%)
}11 27, O<y<2a
sin”(azx) 1
T §v27r, y=2a
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oo
2 .
1) F) = /2 [ f@)sin@niae
o
0, O<y<a—b
sin{ax) sin{bx) 1
x i 2, a—-b<y<a+b
0, y>a+b
sin?(az) 1 \/5 1
Q2 iVa [(y+2a)ln(y+2a)+(y——2a)ln|y—2a,|—aylny]
1 5= Yy
sinz(aac) 1 27ry(2a—§), 0<y<2a
3
\/g az, y>2a
0, O<y<a
cos(ax) 1
T Z\/Zﬂ', y=a
™
\/-;7 y>a
T _ab .
z cos(ax) _\/; ™" sinh(by), 0<y<a
b2 + z2
g e~ % cosh(ab), y>a
2 2 2
. 2 y Y 'B
sin(az®) [ s(4a) ( >+sm(4a)5(4a
sin{az?) ™ 42 y?
z 2 [C <4a o 4a
2 1 v v vy vy
cos{az®) 72 [sm ( - C y” cos | o S 10
cos{ax?) ™ y? y?
T 2 [C (4a +5| 4a

e~ V¥ sin(av/z)
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0.10.1.3 Fourier transform

(=) F(y)=% / f(x)e vdy

exp (_zz_z) exp (_yz—Z)

exp(—%), Rea >0, Reya >0 V2a e’

A fora<z<b 4 (e—iby - e—iay) for y#0
0 otherwise yvn
e “Ccosbz forz >0 ‘i
a+iy
for z < 0 _———_ﬂ;((a PRI b2)
(=0, a>0)
e o%lte forz >0 1
0 forz < 0 m
>0, a>0)
- € 1 el
de(x) == g (e > 0) T e
& (Dirac delta distribution) _\/12=1|- (D)
1 S D)
2| vl
sgn & . sgny

—1

N Vvl

Formulas indicated by (D) are to be understood in the sense of distributions (generalized
functions; see [212]).

(D)

Numerous other formulas can be obtained from the relation

2F(y) = \/g / (£(@) + f(=2)) cos(zy) dz
0

_i\/g 7(f(1:) — f(—z)) sin(zy) dz,
0

using the previous tables for the Fourier cosine and Fourier sine transforms.
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0.10.2 Laplace transformation

0.10.2.1 Table of the inverse transformations for functions whose Laplace
transformation is a rational function

The table is ordered by the degree of the denominator. It is complete up to degree 3
and contains a few functions with denominators of higher degree.

L{rt)} O]
: 1
1 e—at
s+
1
32 i
1 1 —at
s(s+a) a [1-e"]
1 1 —at — gt
G+ +8) el
s 1 —at _ g Bt
Gt h) aplee ™ - pe
1 _
(s + a)? te ™
8 —
m)—z € t(l - at)
1 1 .
m E smh(at)
szj;az cosh(at)
1 1,
Tra? 5 sinat)
- cosat
52 +a?
1 1 _p .
(s ¥ ,3)2 T a2 E e sin ot

S

e Pt [cos at — é sin at]
a
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Z{f)} F(t)
1
& 5t
52—(;@ 51—2-( ~ b at—1)
1 1 —at t
Gra)s+d aBla—1) (2= 8) 4 o7 — 0™
1 1 ot —at
e e —are™]
1 1
(s+a)(s+B8)(s+7) (- 8)(B-1){v- )
x[(r = B + (=M™ + (8~ )™
s 1
(s+a)(s+B)(s+7) (a=B)B-7(r—a)
x| = Me™ + By — )e ™ +1(a— B)e ]
s% 1
(s+a)(s+8)s+) (a—BYB—7(v—a)
x[ = (8 = e = 2y ~ a)e ™ — 4 (a = Bl ]
1 1 —at _gt -6t
CERSICENE Foaple e - B
s 1 —at —pt
TG G| o Al
52 1 2 —at gt
m_'——ﬂ)z W[ae +ﬂ[[3—2a—ﬁ2t+cx,@t]eﬁ]
1 £ et
(s+a)® ¢
s —at <]
Gt ap et [1 - 51‘]
52 ot o?
T e {1 — 2at + 7#]
1

s [(s +B)2 + az}

1 —Bt B
e |:1 e (cos at + o sin ot
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Z{r®} £()
1 1
(524 o) E(l ~ cosat)
1 1 —at o
(5 + a)(s2 + B52) Py [e + 3 sin Bt — cos ﬁt]
1 -0 .
CFAETP gl b s+ e i
32 1 2 —ot . 2
(s + a)(s? + 52) 2+ 3 [0‘ e " —afsinft+ 0 cosﬁt]
! ! —at _ —At a-fB _p .
(s+a)[(s+8)2+? (B— o) +~2 [e e costt ——e sm'yt]
£ ! [—ae_“t+ae‘ﬁ‘ cos vt
(s+a)[(s +08)2+7? B—a)l+72 i
2
———-—aﬁ_f—w e_msin’yt]
82 1 2 —at 2 2 2y 0@t
(s +a)[(s +8)2 + 77 (B—a)?+7? {ae +((@=p) +7" - af)e™  cosyt
- (Ol’H- B8 (’Y _le=Bp ;ﬂ)ﬂ)) e‘ﬂtsin'yt]
1
Es 5t
1 1 1 1o 1 _a
ECE) @ @'t a T
o _atf 1 1 Cat 1 st
(s +a)(s +P) 2 o't eE- ¢ T Re-p°
1 o 2 o
(51 a) ;t(li—e t)+a§(e t_1)
! 1 o 2 s 2
(e g o (trag) v (- a2)]
_—1 - 1 3 —at
(5+a)4 =-te
(3—-:04? ltzeiat — 2Bt

2
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Z{f®)} f(®
1 1 1. 1,
TR | B et e

1
EraETE | powlee o]
82 1 . .
(2 + a2)(s2 + 87) m[—a51nat+651n,6t]
53 1 2 5
(52 + o?)(s7 + 57) o |~ o eomat + feos ]

1

232_1—22— [% sinh Bt — é sinh at]

s

(s* —a?)(s* - B?)

7 af [ cosh 3t — cosh at]

82

B%a? [,@ sinh Bt — asinh at]

83

(2 = o®)(s - 3%

B?i? [,32 cosh Bt — o sinh at]

! 1 (1.
(5% + a?)? by [a sinat — tcosat}
s 1.
(s2 + a2)? T tsinat
2
s 1.
m % {sm ot + atcos at]
a
1 .
(ST‘:’W 2 [2 cosat — atsin at]
1 1 1.
(5% — a2)2 52 tcosh ot — 5 sinh at]
s 1 .
(52 — 02)? G t sinh ot
52 1 .
& —a2)2 e [sinh et + ot cosh ot
&3

% [2cosh at + at sinh at]
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Z{r®)} f(t)
_r LI P S
52(s? + a?) o) o sine
1 1[1
2(s? — a?) = |:E sinh ot — t]
! ! [ a —t sin — d — sinh it cos it]
st +at V2 a? V2 \/5 72 2
s L . o, «
st +at o2 S ﬁt sinh Et
2
s 1 o
= £t sinh -t + sin — 2 4 cosh 2t
o+t V2a [ V2 V2 vz R ]
3
s @ a
—t h —t
& F ot cos 7 cos 7
1 1
PrRp 508 [S'mh ot — sin at]
1
pr j P %7 [cosh at — cos at]
2
1
st S_ o % [sinh ot + sin at]
3
1
5% i at E[cosh at + cos at]
__r RN P S
2(s2 + a2) o7 |t g sine
1 11,
52(s? — a2) 2z [Z smhat—t]
L 1
" (n—1)!
_._1— 1 n—1_-—at
(s+a)" (n—1)
1 1 S (at)k —at
k=0
1 1 eaan
s{as +1)...(as +n) H(I_EXP(_E))
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0.10.2.2 The Laplace transform of a few non-rational functions

In what follows, v denotes the constant v = e*; C is referred to as the Euler constant,

0. Formulas, Graphs and Tables

defined as follows (see also section 0.1.1)

C = lim

n— 00

"1
(;;—lnn

) =0.57721567...

Z{f®)} F(®)
ln_s —In~t
S
_1“% Int
T Int
—1/— Indys —

\/; g Vi
Ins t™ 1 1
pewsy H[1+§+...+E—ln7t}

1 |y=1 "
prs, Lgl;—ln'ys] o Int
(Ins)? 2

3 (Inyt)” ~ =

2
(nye)? .

1 [ du (also valid for o = 0)
s*lns () -
In(s+z) %sinhat

s —

§—w 1, g -
ln(s_ﬁ) z(e e

2 2
ln(;iZz) =(cos Bt — cos aut)
$ £
va vt
2 PN
ENZ b
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2{f®)} F(®)
s+a 14 2at
ENT] Vvt
1 Bt ot
Vs—a-—- /s~ e’ —¢
o 2t/ 7wt ( )
NEEP R oin ot
V2t
VsZ+aZ -3 2
=3 — sinat
84+ 7wt
Vsit+o?+s 2
) 5 — cosat
s“+ o it
VT o2 — o
—%ﬁ —2— sinh at
5 —a wt
Vet ~at+s 2
— a3 — coshat
8¢ —~ o 7t
1 sin & sinh V20t sin v2at
O] s N
1 6in 2 cosh v/2at sin+/2at
ENE] s Vo
1 cos & cosh v2at cosv2at
Vi s Vit
1 cos & sinh v/2at cos v2at
s4/8 38 Jar
1 sinh & cosh 2v/at — cos 2+/at
s s 2Vt
1 sinh a sinh 2vat — sin 2vat
8+v/s s 2/ ar
1 cosh & cosh 2vat + cos 2vat
s 8 2wt
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Z{f®)} (0
L sinh 2v/at + sin 2v/at
5/3 s 2/ar
1 t*!
et (Rez > 0) O)
1 1 cosh 2v/%
= €xp () N
1 ) sinh 2v/¢
PVARRAT N3
a sin ot
arctan —
s t
sin (38 + arctan 2) in(at + )
—_— %L sin(a
Vet
cos (ﬂ-!-arctan %) (ot + )
—_— %/ cos(a
JEra?

0.10.2.3 The Laplace transform of a few piecewise continuous functions

In what follows, the symbol [f] denotes the largest number n with n < ¢ (the function [-}
is called the Gauss bracket). Correspondingly, f([t]) =f(n)forn<t<n+l;n=
0,1,2,...

L{r®} 7t
=T “1
=D 2]
GTi—T)s [ +1
e [2+
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Z{f(v} #(®)
g @*D o1
= ol
Toar (alt
oo S (i1 - 1)alt=2
o — e =5 "
TP o
ke Pl
D) sin g1
;((m—c;:;s% cos ]
: (e:’s(isz;els) s =y | oUene
(e* — 1)(e® — acos ) o cos 1]

s(ez" — 205 cos 3 + a2)

f(&)
1
e 0 for 0<t<a —D
E} 1 for a<t -1 pS t
£
1,
L-em® 1 for 0<t<a
] 0 for <t — ps t
()
e s — e fs 0 for 0<t<ao 1
— 1 for a<t<p
# 0 for B<t Py )
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Z{fv)} F(t)
f(&)
1
(1-e—0s)2 i gg: g<t<a .
—_— -~ <t< 2 o 20
$ { 0 for 2a<t -1 —]
f(®

(e—as _ e—ﬁs)2

8

0 for 0<t<2a
1 for 2a<t<a+s
—1 for a+f8<t<28

P 2[]@25 ¢

0 for 28<t -1
f(t)

o

_ a—as)\2 t for 0<t<a
(Lez‘) 2a0 —t for a<t< 2o —At
s 0 for 2a<«t o 2a

I

0 for 0<t< 220 G-a

(e—as _ e—ﬁs)2

t—2a for 2a<t<a+f

) 28—t for a+B<t<28 i ¢
0 for 28<«t a 20 a+f 203
Be—as 0 for O<Kt<a
s(s+3) 1—e P2 for a<i
e~ as 0 for 0<t<a
s+4 e Blt—a) for <t
£(t)
o
1—e s t for 0<t<a
o2 a for a<t ] o ¢
f(t)
B-a .
e—as _ g—fBs 0 for 0<t<a
3 t—a for a<t<fg ] i ‘
& B—a for <t a 38
f@®)

1
s(1+e—@s8)

1for 2na <t < (2n+1a
0for 2n+1)a<t< (2n+ 2)a

n=20,12,...

} 1

1L

a 2a 3a 4o
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Z{f(t)} (1)
fit)
0 for 2na <t < (2n+ 1)
_ .t 1for (2n+ a <t < (2r+ 2o ;
o 2]
s(1+e) n=0,1,2,... a 2a 3o 4o
1)
1
—as 1 for 2no < t < (2n + 1) l ‘
e ~lfor 2n+1)a<t< (2n+a o 20 30 4a
— oS
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f®
1
s —1for 2na <t < (2n+ 1)a
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n=0,12,...

a 20 30 4o ba 6a
,H

@

1
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v

f®)

T,

1—e™%° 1
e 0 for (ntJ)act<tnenal S TEnnng
v>1 n=0,1,2,.. -t
t
— —2n for 2na < t £(&)
o
1_e-as < (2n+ 1)a 1
22(1 4 a—cxsy i
2 14+e—as _s :
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n=012...
t
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@ < {(dn+ Da (@
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< (dn+4)a

n=01,2,...
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Z{r®} £(2)
[t
t
as+1—e*° ——n for na<t<(n+1l)a 1
as?(l — eas) @
n=0,1,2,... I a 20 3¢ 4a
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1
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n=0,1,2,...
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In Z{f} =F(2)
z
1 z—1
13 r4
=1 FE
z
" -1
z(z +1)
n’ (z—-1)3
N;
n* G _kl(;zﬂ 81
n (—1)k+1Nk(—‘Z)
e’ TR
n z
nf M), (_1)mz
(‘1) (m) y N Z m-—1 (ZTW
n+k\. Pt
( m ) Fsm GrDmT
n z
@ z—a
! ax>1 !
z—a
n z
(1) z+a
n Z(l — a)
e - DG-a)

81The polynomials Ni(2) can be recursively calculated as follows:

M) =% Nea(e) = (b DeNee) = (2 = 2) - Na2)
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fn Z{fn} = F(z)
na® e
(z—a)?
N (2)
(2 —a)k+?
7\ n. a"z
(m) e oo
l; n>1 In -2
n z—1
_1yn—1
(—1—)—; n>1 In (1 + l)
n z
n—1
g ;o n>1 1 In z
n a z-—a
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n+1 , a a
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1 1
inh —L
@n + 1)! vz sin 72
1 1
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@n)! RV~
a” z a
Zginh./2
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__(2n)'. cosh\/;
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In fg{fn} = F(Z)
sinh o zsinha
nhan 22— 2zcosha+1
2(z — cosh a)
cosh an 2?2 —=2zcosha+ 1
inh inh(a —
sinh(an + ) z(z sinh @ + sinh(a — ¢))

22 — 2z cosha + 1

cosh(an + ¢)

z(z cosh ¢ — cosh(a — ¢))
22 — 2zcosha + 1

a" sinh an T
22 — 2za cosh o + a?
) z(z — a cosh a)
a” cosh an 22 — 2za cosh a + a2
n sinh an Z(Z2 e
(22 — 2z cosha + 1)2
z((z2 + 1) cosh o — 22)
h
n cosh an (22 — 2zcosha + 1)2
. z sin 3
sin On m
2(z — cos §8)
cos Bn 22 —2zcosfB+1
‘ z(z sinyg + sin(8 — )
sin(Bn + ¢) (22—22 cosfB+1 )
2(z cos ¢ ~ cos(B — ¢))
cos(Bn + ) 22 —2zcosfB+1
. ze*sin3
e sin Bn z% — 27e% cos 3 + e
e“" cos fn Tt
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fn -@P{fn} = F(z)

—ze%sin 8

n,_on -
- (=1)*e*"sin fn 777 3e% cos f 4 o5

z(z + e” cos §)

VITLCXTL P Sl et
(=1)"€™" cos fn 22 + 2e* cos B + 2>

2(z% — 1)sin g

n sin fn (22 =2z cos B+ 1)2

p z((2* + 1) cos B — 2z)
ncospn (22 — 2z cos B+ 1)2
cosfBn

L8O, > omf{-—%
n Vvz2—2zcosB+1

sin Bn sin
——’3—; n>1 arctan (—i)

z—cosf

3
(—1yt cosﬁn; n>1 ln(\/z + 2z cosﬁ+1)

z

(-t ﬂ’B—n; n>1 arctan (_m_n,B__)
z4cosf

cos 3n sin cos
cos fin cos 28 exp (__ﬁ)

nl z z

sin Bn . sin cos
8 sin 8 exp ( —'B )

n! z z

Remark: An inequality n > v on the left hand side of the table indicates that in the
construction of the Z-transform, the summation starts with v, for example, Z{a™"'} =

o
E a* iz
n=1



1. Analysis

Data aequatione quotcungue fluentes quantitae invol-
vente fluziones invernire et vice versa.l

Newton in o letter to Leibniz from 1676

The most fundamental notion in analysis is that of a &mit. Many of the important
concepts in mathematics and physics can be defined in terms of limits, for example
velocity, acceleration, work, energy, power, action, volume and surface of a body, length
and curvature of a curve, curvature of a surface, etc. The heart of analysis is the calculus,
which was independently discovered by Newton (1643-1727) and Leibniz (1646-1716).
With a few rare exceptions this notion was nof known in antiquity. Today analysis is
one of the most important fundamental notions in the mathematical description of the
natural sciences (see Figure 1.1).

However, analysis only develops its true capacity in interaction with other disciplines
of the mathematical sciences, like algebra, number theory, geometry, stochastic and

numerics.
m\

dxﬂerentlatlon integration

di fferentlal equations the calculus of variations and

\ integral equations

the natural sciences

Figure 1.1. The notion of a limit is central in mathematics.

1A modern translation of this is: ‘It is useful to differentiate functions and solve differential equa-
tions.” Actually, Newton encrypted this Latin sentence in the following anagram (letter riddle):
6a cc d ae 13e ff 7i 31 9n 40 4q rr 45 9t 12v x,
which means that the letter ‘a’ occurs 6 times, etc. Newton’s words ‘fluentes’ and ‘fluxiones’ correspond
to the modern words ‘function’ and ‘derivative’. It appears that a solution of this anagram would be
as great a intellectual achievement as the discovery of calculus!
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1.1 Elementary analysis

Concepts without intuition are empty, intuition with-
out concepts is blind
Immanuel Kant (1724-1804)

1.1.1 Real numbers

Intuitive introduction to the real numbers:? Start with a line G with two points,
called 0 and 1, and marked as in Figure 1.2(a). Each point a on G corresponds to a real
number, and in this manner one gets the real number line. For simplicity we use the
same notation for a point @ of the line G and the real number which corresponds to it.
The segment from 0 to 1 is called the unit segment E in G.

Order: For two arbitrary real num-

_E,’ bers @ and b we write the symbol
R ;¢
a a <
a<b
(a) (b)
—t—t—ea—e—-(G o6 —t—t—e (G |fandonly if the point e is strictly
(c()) 123 (;3 -1 0123 to the left of b, and we say in this

case that a is less than b (Figure
1.2(b)). We write a < bifa < b
or a = b and say in this case that a
is less than or equal to b.

Figure 1.2. The real number line.

The real number a is said to be positive (resp. negative, non-negative) if and only if
0 < a(resp. a <0,0<a).

Evolution of the concept of number: The concept of a number is actually one of the
greatest achievements of abstraction ever made by the human mind. Instead of speaking
of ‘two trees’, ‘two stones’, etc., one day the abstract notion of ‘two’ was applied. This
would seem to have occured in the newer stone age (Neolithic period) roughly 10,000
years ago, when in Asia and Europe the ice age ended and humanoids began to settle.
Cave paintings in France and Spain from about 15,000 years ago attest to the fact that
the humanoids of this period already had a keen sense of forms.

About 3000 BC the first Sumarian settlements were established in Mesopotamia near
the Tigres—Eufrates rivers (modern Iraq). The high level of mathematical achievments
of the Babylonians and Assyrians goes back to those of the Sumarians. These used a
number system with basis 60 (known as a sexagesimal system, 60 as opposed to our
modern 10). The Babylonians adapted this system and added about 600 BC an empty
position, which corresponded to our modern number 0.

1.1.1.1 Natural numbers and integers

The numbers
0, 1,2 3, ...,

2A stringent definition of real numbers and a discussion of the difficulties involved in irrational
numbers in the history of the subject can be found in 1.2.2. The very words used for some types of
numbers such as ‘irrational’, ‘imaginary’ and ‘transcendental’ attest to the epistemological difficulties
which had to be surmounted over the centuries.
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which correspond to successive segments of unit length, are called natural numbers® (see
Figure 1.2(c)) Moreover, we call the numbers

cey=3,-2,-1,0,1,2 3, ...

integers (see Figure 1.2(d)). One can imagine our line G as being a thermometer,
in which case the negative numbers would correspond to temperatures below freezing
(zero). Addition of two integers corresponds to the addition of the temperatures.

Ezample 1: The equation

—34+5=2

can be interpreted in the following manner: if the temperature in the early morning is
three below zero and the temperature rises five degrees by noon, then we have at that
time a temperature of two degrees.

The multiplication of integers is by means of the following rule:

‘positive times positive = negative times negative = positive’ (L1)
‘positive times negative = negative times positive = negative’. ’

The division of integers is by means of the following rule:

’

‘positive divided by positive = negative divided by negative = positive (1.2)
‘positive divided by negative = negative divided by positive = negative’. ’

We write +12 instead of 12, etc.
Ezample 2:

3-4=(+3)(+4) = +12=12,
(—3)(+4) = ~12, (+3)(—4) = -12, (=3)(—4) = 12,

(—12) + (+4) = -3, (-12)+(-4)=3, 12+ (-4)=-3.

From 3-4 = 12 it follows that 12 =4 = 3. As expected, a comparison of the second and
third line above shows that the inverse of multiplication remains correct for integers.

1.1.1.2 Rational numbers

Basic idea: One runs into rational numbers (fractions) when one attempts to break
the unit segment into parts.

Example 1: Let n be a proper natural number. If we divide the unit segment F into n
equal parts, we get points which we denote by

1 2 3 n—1 n
T Ty Tyt T Ty =1
non n n n
In particular, for n = 2 (resp. n = 4) we get the numbers
12 1234 _
2’2 47444
3Through the influence of set theory and computer sciences it has become common use to include

the number 0 in the set of natural numbers. The positive natural numbers would then be called the
proper natural numbers.

1 or
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(see Figure 1.3(a)). In a fraction 2, m (resp. n) is called the numerator (resp. denomi-
nator).

Reducing and expanding

1 1 1 3
i 1 2 1 fractions: According to Fig-
—r—t—————0——|— — e —
0 E 1 - 0 a ure 1.3(a) one has
(a) > (b) 2 1

1”7
This relation is a special case
of the following general rule:

Figure 1.3. Fractions on the real number line.

A fraction is left unchanged upon multiplication of both denominator
and numerator by the same natural number n (resp. divison by n).

This process is called ‘expanding the fraction’ (resp. ‘reducing the fraction’).

2
Example 2: Expanding 3 by 4 gives

2 2.4 8
37 3-4 12
=4 2
Simplifying 1%— by dividing by 4 yields % = 182—_4 =3

Multiplication of fractions: Fractions are multiplied with one another according to
the following rule:

‘Numerator times numerator and denominator times denominator’.

23 23 6
E: le§: = - = — = —.
wample 3 5 1T 34T 12
Division of fractions: The reciprocal of a fraction is the fraction obtained by switching
numerator and denominator. The rule for division is:

Division of fractions is the multiplication
by the reciprocal of the second fraction.

3
Ezample 4: The reciprocal of 5 is g Consequently

3

°5

25 10

7-3 21

-1 N
~ o
wl e

Addition of fractions: Two fractions are added by first extending them so that they
have a common denominator and then adding the numerators.

1 3 2 3 5
Ezxample 5: §+ZAL—1 i1

This procedure is the same thing as the general rule of ‘cross-multiplication’:

ad + be

+c
d bd

i
b
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Ezxample 6: % + 2 = 1—42# = 4—;—6 = % Upon reduction one gets from this g
Negative fractions: If m and n are proper natural numbers, then one gets the point
—2 by reflecting the point Z through the origin (point 0). The sign of a fraction of
integers is determined according to the rule (1.2).
(—3) 3 3 (—3) 3 3 3

E: le 7: —t =+4-=- —_— = — N =7

rample T T T1T T 3 Y 9”1
The apparently arbitrary choice of signs in the rules (1.1) and (1.2) are actually deter-
mined by demanding that for real numbers ‘simple’ rules for calculations should hold.

For example, demanding the truth of the associative law
a(b+c) = ab+ac,
one gets for the values a =4, b=4+3 and c = -3
43+ (-3))=4-0=0,
and
43+ (-3))=4-3+4-(-3)=12+4-(-3) =0,
or in other words 4(—3) = ~12, coinciding with the value given by the rule (1.1).
Definition: All real numbers with a representation § with integers a, b are called
rational numbers.

Those real numbers which are not rational are called irrational. For example, /2 is
irrational; a classical proof of this known in antiquity will be given in section 4.2.1.

The following notations have become customary in the modern literature:

N:= set of natural numbers,
Z:= set of integers,

Q:= set of rational numbers,
R:= set of real numbers,
C:= set of complex numbers.

Powers: Yor a real number a # 0 we set:

aozl, al:=a, a? =a-a, a=a-a-a, ,
-1 1 -2 . 1 -3 .__ 1
a = -, a =5 a =

a a a

Ezample 8: 2°=1, 22=4, 23=8, 271= % 272 =

1.1.1.3 Decimal numbers

Basic idea: In our daily life the decimal system is used.* The number symbol 123 is
actually an abbreviation for the number

1-102+2-10' +3-10°

4The volume La disme (The decimal system) appeared in 1585 by Simon Stevin. After that time all
measurements used .on the European continent were unified to the decimal system.
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In the same way the symbol 2.43 stands for the sum:
2.10°+4.-1071 +3.1072 (1.3)

Finally, a symbol like 2.43567 ... stands for the (unique) real number z which satisfies
the following infinite set of inequalities:

2.4 <z <24+41071
243 <z <243+1072

1.4
2435 <z <2435+ 1078, (L4)

Expansion in decimal fractions: In what follows all a; are assumed to be integers
witha; =0, 1,...,9 and a, # 0. Moreover let n =0, 1, 2,... be a natural, m a proper
natural number.

(i) The symbol

Anlp~1.-.-00.8-10_2 ...0_m

stands for the sum
Gn-10"+an 1-10"" 4. 460 -10°4+a_1-10 1 4a_5-1072 4+ ... +a_,-107"

in the same way as in (1.3).
(i) The symbol ¢nan—1...a0.a_10_-2... stands for the (unique) real number z, which
as in (1.4) satisfies the following infinite chain of inequalities:

O 00. Q102 Oy ST < Qp Q0. G_10-3...0_pm +107" m=1,2,...

Each real number can be expanded in a unique fashion in such a decimal fraction.

Theorem: A real number is rational, if and only if the decimal fraction expansion is
finite or periodic.

Ezample 1: The numbers % = (.25 and % = 0.333333--- are rational. On the other
hand, the decimal expansion of v/2:

V2 =1.414213562 - - - , (1.5)

has no period.

Rules for rounding real numbers: The goal of the process of rounding is to pass
from an infinite decimal expansion to a finite one, with as little error as possible.

Example 2:

(i) Rounding 2.3456. .. up gives 2.346.

(ii) Rounding 2.3454 ... down gives 2.345.
(iii) Rounding 2.3455. .. up gives 2.346.
(iv) Rounding 2.3465. .. down gives 2.346.

The error is in each case less that 0.0005.

The following rule is applied: If the last digit is 0 — 4 (resp. 6 — 9), the one rounds
down (resp. up). If the last digit is 5, then one can round up or down, the decision
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being dictated by the stipulation that after rounding the last digit is even.> However,
the usual procedure is to simply round 5 up.

The integer part of a real number: The notation [a] (known as the Gauss bracket)
for a real number a denotes the integer part of a, which is by definition the smallest
integer g with g < a.

Example 3: 2] =2, [1.99]=1, [-2.5]=-3.

1.1.1.4 Binary numbers

One gets the system of binary numbers by replacing the 10 in the expansions above by
2, and a; is chosen to be 0 or 1. An arbitrary real number can be written in a unique
manner as a binary expansion in which only the coefficients 0 or 1 occur. Because of
this property binary numbers are the system used by computers.

Exzample: In the binary system the symbol 1010.01 stands for the sum

1-2240-22+1-2'40-2°40-27141.272

1
which in the decimal system is the number 8 + 2 + 1= 10.25.

Other number systems: By replacing the number 10 in 1.1.1.3 by any chosen fixed
natural number 2 > 2, one gets a number system with basis 3. For example the
Sumerians in Mesopotamia used a sexagesimal system with basis 60 around 2000 BC.
Our division of time into 60 minutes per hour and of the circle into 360 degrees goes
back to the Sumerians.

The Mayas in Mexico and the Celts in Europe used a system with basis 8 = 20. The
ancient Egyptians used a decimal system with special symbols for each decimal unit.
The number system of the Romans used the same principle. The Roman digits

M,D,C L, X,Vand I

stand for 1000, 500, 100, 50, 10, 5 and 1 in that order. The symbol MDCLXVII for exam-
ple corresponds to the number 1667. Such a system is not adapted to doing complicated
computations.

1.1.1.5 Intervals

Let o and b be real numbers with a < b. By definition, a compact interval (with
endpoints a and b) is the set (see Figure 1.4(a))

[a,8] :={z e R|la <z < b}.

In words, the interval [a,b} consists of all real numbers z in R such that a < z < b.
Further we define® (see Figures 1.4(b)-(d))

la,bl:={z e R|a <z < b} (open interval)
[a,b:={zeR|a <z <b} (right half-open interval)
la,bl :={z e R|a <z < b} (left half-open interval)

5This statistical strategy for rounding has as consequence that after a long time of calculations with
rounding, the error is smaller than by consequently rounding 5 up or down.

SInstead of |a,b[, [a,b], ]a,b] one also writes (a,b), [a,b), (a,b] in that order. The notation above
has become customary in the modern literature to avoid confusion with the ordered pair of numbers

(a,b).
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f - a 4 2
——r <« 4 Lot 4

a b a b a b
(a) [a,8] (b) Ja, b (c) la,b]
‘;ﬁﬁb :a a
(d) la,¥] (e) ]-o0,d (f) ]—o0.qa]
b 1y
(g) [b,o0] (h) ]b,00]

Figure 1.4. Intervals on the real number line.

Often one used the following infinite intervals (see Figures 1.4(e)-(h}):

|—o0,a]:={zeR|{z<a}, |-o0,a[:={reR|z<al,
[b,00] ;= {x € R|b <z}, Jb,00[ :=={z € R|b < z}.

The set R of real numbers is also denoted by | — 00, 00].

1.1.2 Complex numbers

Formal introduction of the complex numbers:” There is no real number z which
satisfies the equation

2 =-1.

This is the way the Italian mathematician Raphael Bombelli introduce the symbol /—1
in the middle of the sixteenth century. Leonhard Euler (1707-1783) used the symbol i
for this. The so-called imaginary unit satisfies the equation

iZ=-1 (1.6)

Euler discovered the following basic relation, valid for all real numbers z, y:

e® Y = e%(cosy +1-siny), (1.7)

which yields an unexpected connection between the exponential function and the trigono-
metric functions.® This formula is constantly applied in the theory of oscillations (com-
pare 1.1.3)

Cartesian representation: A complex number is a symbol of the form

T + iy

"The rigorous introduction of the complex numbers as the algebra of ordered pairs (z,y) is carried
out in 2.5.3 in the context of field theory.

81n electro-technical literature one uses the symbol j instead of i, to avoid confusion with the notation
for the current strength.
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where « and y are real numbers. T +iy

Real numbers correspond to the y i
special case y = 0. For a long time
complex numbers seemed to be
rather mysterious. It was Gauss
who gave them their right place in
mathematics, by considering z+iy
as point in the Cartesian plane; he
showed that the calculation with
complex numbers can be given a geometric interpretation (Figure 1.5). Today the com-
plex numbers are ubiquitous in many parts of mathematics, physics and technology.

(a) x b 1

Figure 1.5. Graphical representation of complex
numbers.

One calculates with complex numbers by applying the usual formulas to the numbers
z + iy, taking into consideration the fact that i = —1. In particular, one calls the
number

T+iy:=z—1iy

the complez conjugate’number to = + iy.
Ezample 1 (Addition): (24 3i)+ (1 + 2i) = 3 + 51

Ezample 2 (Multiplication): (2+31)(1 +20)=2+3i+4i+62=2+T7i—6=—-4+7i
For all real numbers z and y, the relation

(z+iy)(z—iy) =z>+¢° (1.8)

is valid.

Ezample 3 (Division): From (1.8) it follows that
142 (14+20)(3-2i) 3+6i—2i—4i
3+2 (3+2i)(3-2i) 9+4

This method of expanding by the complex conjugate of the denominator is applicable
generally.

1 .

1.1.2.1 Absolute value

By definition the absolute value of a complex number z = = + iy is defined by

|2| == V22 + 32

Geometrically this is the length of the vector defined by z (see Figure 1.6(a)).

Ezxample 1: For a real number z, one has

lz| = z, ifz>0,
=N -z, ifr<o.

Moreover, |i| =1, [1+i| = V12412 = V2.

Distance: For two complex numbers z and w, the distance between them is

|z—w|,

9 Complex conjugate to avoid confusion with other (numerous) notions of conjugate objects in math-
ematics.
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v e

A

(a) (b) (0 ¥ %

Figure 1.6. Graphical representation of the distance between complex numbers.

(see Figure 1.6(b),(c)). In particular, |z| is the distance of z from the origin.

Triangle inequality: For all complex numbers z and w, we have the important ¢riangle
inequality:

2] = fwll < |z £ w| < |z] + ). (1.9)

In particular, this says that |z + w| < |z| + |w|, which means that the length of the
vector z + w is at most the sum of the lengths of the vectors z and w (Figure 1.8(b)).
Moreover,

z z
ool = liul, 2] =2 =

where w # 0 must be assumed when w occurs in the denominator.

Complex numbers in polar coordinates: If we use polar coordinates, then we have
for the complex number z = x + iy the representation:

Y
z z=r(cosp+1i-sinyp), —r<p<nw, r=]z|
Y
? Here ¢ denotes the angle of this vector with the z-axis (Figure
% 1.7). The Euler formula (1.7) yields the elegant representation:
Figure 1.7.

2 = re'®, —r<p<nw, r=|z|

One calls the angle argz := ¢

w the principal value of the ar-

/@/ gument of z. Making the as-

z sumption —n < ¢ < 7 deter-
mines ¢ through z uniquely.

All angles ¥ with z = rel¥ are

(b) called arguments of z. One has
Figure 1.8. The addition of complex numbers. Y =+ 2nk,
k=0, +1, +2,...
Ezample 2: i=¢"/2, —1=6" |i|= =1 =1, argi= g, arg(—1) = =.

1.1.2.2 Geometric interpretation of the operations with complex numbers

One has:
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(i) The eaddition of two complex numbers z and w corresponds to the addition of the
vectors they define (Figure 1.8(a)).
(ii) The multiplication of two complex numbers

re'¥ . ge'¥ = Tgei(«pHJ)

corresponds to a dilated rotation, i.e., the lengths of the vectors are multiplied and the
angles are added.
(iii) The division of two complex numbers

re? _ T ile—)
ge¥ o

corresponds to a division of the lengths of the corresponding vectors and a subtraction
of the angles.

(iv) Reflection. The transition from the complex number z = z + iy to its complex
conjugate Z = £ — Iy is the geometric operation of reflecting z on the real axis (Figure
1.9(a)). The transition from 2 to —z is a reflection through the origin (Figure 1.9(b)).
The transition from z to the reciprocal (Z)~! of the conjugate number corresponds to a
reflection on the unit circle, i.e., the image and inverse image points lie on the same line
through the origin, and the product of their distances is equal to 1 (Figure 1.9(c)).

1
() (b) (¢)

Figure 1.9. Graphical representation of conjugate and inverse complexr numbers.

1.1.2.3 Rules for arithmetic

Addition and multiplication: For all complex numbers a, b, ¢ one has

a+(b+c)=(a+d)+e albe)=(ab)c, (associativity),
a+b=b+a, ab=ba, (commutativity),
a(b+c) = ab+ ac, (distributivity).

Ezample 1: (a+b)2 = (a+b)(a+b) = a® + ab+ ba + b? = a® + 2ab + 2.
Rules for signs: For all complex numbers a, b one has

(_a’) (_b) = ab7 (—(1) b= —(lb7 a(—b) = ——ab’
—(_a) =a, (—1)a= —a,
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Ezample 2: (a —b)? = {a —b)(a — b) = a® — ab — ba + b? = o — 2ab + b?.
Ezample 3: (a + b)(a — b) = a® + ab — ba — b% = a® — b,

Arithmetic with fractions: In what follows we assume that all complex numbers
appearing in the denominators of fractions are non-zero. For all complex numbers a, b, ¢
and d, one has:

= - < ad = bc, (equality),1®

(multiplication),

= , (addition and subtraction),

A~ D QD
&l o
o
=%

NG

"
£
a

== (division).

o~~~

a0

~——|
>
y]

Transition to complex conjugate numbers: If a, b, ¢ and d are arbitrary complex
numbers with d # 0, then one has:

c

aib—ath ab=a-b @: .

d

Let z = z +iy. The component x (resp. y) is called the real part (resp. imaginary part)
of z. We write for this £ = Re 2 (resp. ¥ = Im z). One has:

1 - 1 -
Rez—i(z—{—z), Imz—é—i(z—z).

1.1.2.4 Roots of complex numbers

Let the complex number a = |ale!” with —7 < ¢ < 7 and a # 0.

Theorem: For fixed n = 2, 3,... the cyclotomic equation

has precisely the solutions

21k 27k
T =3 |a|<COS(———7r +<p)+i-sin(—ﬂ—n+—(€)), k=0,1,...,n—1.
n

These numbers, which we can also write in the form z = {/[a[e!@™*+¥)/n £ —0,... n—1
are called the nth roots of the complex number a. These nth roots divide the circle of
radius /|a| into n equal parts.

Ezample 1: For a =1 and n = 2,3,4, the nth roots of a = 1 {these are called roots of
unity) are displayed in Figure 1.10

a ¢, K .
101n words: 3 = 3 implies ad = cb and vice versa.
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-1 1 1

(ayn=2 b)yn=3 (c)n=4

Figure 1.10. Roots of unity. Figure 1.11.

Ezample 2: The 2nd roots of 2i = 2¢!™/2 are:

x=\/§(cos%+i-sin%)=l+i,

:r=\/§(cos(7r+£) +i-sin(7r+g)) =—(1+1)
(see Figure 1.11).

1.1.3 Applications to oscillations

Let the function f of period T > 0 be given, meaning that

fE+T)=f(t) for all ¢t € R.

We also define

1
vi=g (frequency), w = 2rv (angular frequency).

Ezxample 1 (sine): The function

y:= A sin(wt + a)

describes an oscillation of the angular frequency w and amplitude A (Figure 1.12(a)).
The number « is called the phase displacement.

Ezample 2 (sinusoidal wave): Let A > 0 and w > 0 be given. The function

y(z,t) = A -sin(wt + o — kz) (1.10)

describes a wave of amplitude A and wavelength X := 27/k, which spreads out from left
to right (Figure 1.12(b)) with the so-called phase velocity

The number k is called the wave number. A point (z,y(z,t)) which moves in time
according to the law kz = wt + a — g corresponds to wave crest of height A moving

from left to right with velocity c.



234 1. Analysis

In physics and technology it is customary to denote such waves by the complex function

Y(z,t) =C- gl(wt—kz)

with the complez amplitude C = Ael®. The imaginary part of Y (x,t) corresponds to
y(z,t) in (1.10).

y
A+
a J
& " t
(a) -7
]
¢ ——
4 4 T
(b) e

Figure 1.12. Wave functions (oscillations).

1.1.4 Calculations with equalities

Operations on an equation: Let a, b and ¢ be arbitrary real (or complex) numbers.
Calculations with equalities is dominated by the following rules:

a=1b = a+c=b+eg, (addition),
= a—-c=b-g (subtraction),
= = ac = be, (multiplication),
a=bc#£0 = % = IE’ (division),
a=ba#0 = é = %, (reciprocal).

In words:

(i) One may add the same number to both sides of an equality, the result being again
an equality.

(it) One may multiply both sides of an equality by the same number.
(iii) One may divide both sides of an equality by the same (non-zero) number.
(iv) One may form the reciprocal of an equality.

In cases (i) and (iv) one must always be careful to observe that

Division by zero is not allowed!

Heuristically an equation is like a scale in equilibrium. This equilibrium is not disturbed
by doing the same thing on both sides at the same time.
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Operations on two equations: For all real {or complex) numbers a, b, ¢ and d one
has:

=b,c=d = a+c=b+d, (addition of two equations),
=bc=d = a-c=b—d, (subtraction of two equations),
=b,c=d = ac = bd, (multiplication of two equations),
b . . .
a=bc=d,c#0 = 2_ 7 (division of two equations).
¢

Solving equations: A solution of the equation

224+3=7 (1.11)

is a number which satisfies (1.11) when we replace = by this number. One refers to = as
a variable or indeterminant.

Example 1: The equation (1.11) has a unique solution z = 2.

Proof: First step: suppose that a number z is a solution of (1.11). Subtracting 3 from
the left and right hand side of (1.11), we get

2z = 4.
Now dividing the left and right sides by 2 gives
T =2

This shows that 4f (1.11) has a solution, then it must equal 2.

Second step: We now show that 2 actually és a solution of (1.11). This follows from the
elementary equality 2-2+ 3 =17. ]
The second step is also called the ‘check’. Often a mathematical mistake occurs by
confusing the first step with a complete proof {cf. 4.2.6.2).

Ezample 2 (a system of linear equations): Let real (or complex) numbers a, b, ¢, d, &, 8
with ad — be # 0 be given. The system of equations

by = «,
azr + by = o (1.12)
cx+dy=p
then has a unique solution
_ad— (b _af —ca (1.13)

" ad—be’ Y= ad—be

Proof: First step: suppose the numbers z and y satisfy the equation (1.12). We multiply
the first (resp. second) equation of (1.12) by d (resp. (—#&)). This yields

adx + bdy = od,
—bex — bdy = —bg.

Adding both of these equations then gives
(ad — be)x = ad — b,
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After dividing both sides by ad — be we get the expression of (1.13) for z.
Now multiply the first (resp. second) equation of (1.12) on both sides by (—c) (resp. a).
This gives
—car —cby = —ca,
aczx+ady = af.

Adding these two equations then yields
(ad - be)y = af — ca.

After dividing both sides by ad — bc we get the expression (1.13) for y. This shows that
any solution of (1.12) must have the form (1.13), if it exists. In particular, there is (if
any) a unique solution.

Second step (check): we insert the values of (1.13) for = and y into the equations (1.12),
and after an easy computation, find that these are in fact solutions. ]
Erample 3 (quadratic equations): Let b and ¢ be real numbers satisfying 8% — ¢ > 0.

Then the quadratic equation
2+ 2%r+c=0 (1.14)

z=-b+ Vb —c (1.15)

Proof: First step: If z is a solution of (1.14), then add b — ¢ to both sides of (1.14) to
get

has exactly the two solutions

22+ 2+ 02 =0 —c.

This gives (z + b)2 = b2 — ¢, and from this we get = + b = b2 — c. Adding (~b) to
both sides of this equation gives (1.15). This shows that all solutions of (1.14) are of
the form (1.15), if they exist.

Second step (check): Insert the expression (1.15) for x into the equation (1.14). An easy
calculation shows that these values for = are indeed solutions. O
1.1.5 Calculations with inequalities

Manipulations with inequalities: For arbitrary real a, b and ¢, the following rules
hold:

a<b = a+c<b+e (addition),
a<b = a-—c<b—e¢, [(subtraction),
a<lbc>0 = ac < be, .
(multiplication),
a<b, c<0 = be < ac,
b

a<b, c>0 = e < -,

¢ ¢ (division),
a<h c<0 = 9 < E,

c” ¢

1 1 .
0<a<h = 3 < - (reciprocal).

This means: one may add or subtract the same number from both sides of an inequality,
or multiply or divide both sides by a positive number, without changing the validity of
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the inequality. Multiplication or division of both sides by a negative number turns the
inequality symbol around.

Manipulations with two inequalities: For all real numbers a, b, ¢ and d, one has

a<b c<d = a+c<b+d, (addition),
a<bh,0<c<d = ac < bd, (multiplication).

All these rules for manipulations with inequalities remain true, when
the inequality < is replaced throughout by strict inequality <.

Ezample 1: For all real numbers a and b we have the inequality
1
ab < 5(a2 + b2).

Proof: From 0 < {a — b)? one gets, applying the binomial formula

0 < a® — 2ab+ b*.
Adding 2ab to both sides gives 2ab < a2 +b2. The claim follows from this, upon division
of both sides by 2. O
Ezample 2: For all real numbers a the following inequality is valid:

4

< al.

1+a%2

Proof: From 1 < 1+a? it follows that gy < 1 by the rule for reciprocals. Multiplying
a
both sides by a? then yields the statement. O

Ezample 3: Let a and b be real numbers with @ # 0. We wish to examine the linear
inequality

az—b>0 (1.16)
for real z.
(i) For a > 0, (1.16) holds if and only if 2 > E
a
(ii) For a < 0, (1.16) holds if and only if z < 2
a

Ezample 4: For given real numbers a, b and ¢ with @ > 0, we consider the quadratic
inequality

ar® +2bx+¢>0 (1.17)

with the so-called discriminant D = b% — ac.
(1) For D < 0 any real number z is a solutions of (1.17).
(it) For D > 0 the set of solution of (1.17) consists of all real numbers = which satisfy

zg——_b_\/ﬁ or xz———_b+\/—D_.

a a

A selection of important inequalities can be found in 0.1.11.
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1.2 Limits of sequences

1.2.1 Basic ideas

Sequences: Example 1: We consider the sequence of real numbers {a,} with

As n grows in magnitude, the value of a, approaches 0 (see Table 1.1). To describe this
behavior we write

lim a, =0
n—oo

and say that the &mit of the sequence (ay,) is 0.

Table 1.1
n ||1] 2 10 | 100 | 1000 | 10000
an ||11]05]0.11]0.01]0.001 [ 0.0001

Ezample 2: The sequence (b,) with b, := - i 1 approaches for large n the value 1. We
again write lim b, = 1.

n—oo
Functions: In many applications of mathematics in science, technology and economics,
the notion of limits plays a particularly important role. The notion of the limit of a
function is reduced to the notion of the limit of a sequence as above.

Ezample 8: Consider the function

2% for all real numbers = # 0,
f(z) =

1 forz=0

(Figure 1.13).

We write

lim f(z) = b,

z—a

if and only if for every sequence (an) with a,, # a for all n, we have
the following:

From lim a, = a it follows that lm f(a,) =b.
n—oe n—o0

Figure 1.13.

For the function f(z) in this example one has

lim f(z) =0, (1.18)

since from a5, # 0 for all n and lim a, =0 it follows that lim flan) = lim a2 =0.
n—00 n— n—oo

The relation (1.18) corresponds to our intuitive impression: if the point = approaches
from the right (of the left) the point 0, then the corresponding values of the function
approach 0. The value of f at 0 is irrelevant to these considerations.

Since the limit of a sequence of rational numbers can be irrational, one needs a rigorous
development of the theory of limits, arising from a rigorous introduction of the real
numbers, which we describe in the following section.
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1.2.2 The Hilbert axioms for the real numbers

Around 500 BC a member of the Pythagorean school in ancient Greece discovered that
the length d of the diagonals of a unit square is incommensurable with the length of
the sides, i.e., the ratio of d by the length of the sides is not a rational number. By the
Pythagorean theorem it follows by Figure 1.14 that

d2 — 12+121

which implies d = /2. In modern terminology this citizen of ancient Greece discov-
ered the érrationality of the number /2 (see section 4.2.1). This discovery destroyed
the harmonic picture of the universe of the Pythagoreans and triggered a deep shock.
According to legend, the discoverer of this fact was thrown by other members of the
Pythagorean school into the ocean during a journey at sea.

The difficulties of irrational numbers were mastered by the — next
to Archimedes (281-212 BC) the most important mathematician of
antiquity — Eudoxus of Knidos (410-350 BC). It wasn’t until 2000
vears later that Dedekind returned to the ideas of Eudoxus in 1872, d 1
in order to create a mathematically rigorous definition of irrational
numbers.

Following the example of the Elements of Euclid (around 300 BC),
mathematical theories are often constructed axiomatically, i.e., one
builds the theory on some simple principles. The principles (laid down Figure 1.14.
in a set of axioms) need not be proved. Usually the axioms are the

result of a long and tedious mathematical examination of the situation. Starting from
the axioms, one deduces through logical conclusions the entire theory.

1.2.2.1 The axioms

We postulate the existence of a set R, whose elements are called real numbers and which
satisfy the following axioms (F), (O) and (C).

(F) Field azioms. The set R is a field with the neutral element 0 for addition and neutral
element 1 for multiplication.

(O) Ordering aziom. For any two given real numbers a and b, exactly one of the following
three relations holds:

a<b a=b b<a, (trichotomy).

For arbitrary real a, b and ¢ the following hold:

(i) The relations @ < b and b < ¢ imply a < c, (transitivity),
(ii) The relation a < b implies a + ¢ < b+ ¢, (monotony of addition),
(iii) The relations a < b and 0 < ¢ imply ac < be, (monotony of multiplication).

A Dedekind section (A, B} is an ordered pair of non-empty sets of real numbers such
that any real number lies in one of them and a € A and b € B implies a < b.

(C) Completeness aziom. For any Dedekind section (A, B) there
is exactly one real number o with the property that A : B

[#%

a<a<b forallac A, be B.

Figure 1.15.
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Intuitively, (C) means that the real number line doesn’t have any holes (Figure 1.15).
The axijom (F) means that the set of real numbers satisfies the following conditions.
Definition of a field: A set K is called a field, if it satisfies the following.

Addition. Two arbitrary elements @ and b in K are assigned a unique third element of
K, denoted a + b. For all a, b and ¢ in K we have the relations:

(a+b)+c=a+(b+c), (associativity),
a+b=>b+a, (commutativity).

There is a unique element in K, denoted 0, such that

a+0=a

for all ¢ € K. This element is called the neutral element for addition.

For every element a € K there is a unique element b € K such that

a+b=0.

This element is called the additive inverse of a. This element b is also written —a.

Multiplication. Two arbitrary elements o and b in K are assigned a unique third element
in K, which we denote by ab (or also a - b). For all a, b and ¢ in K we have:

{(ab)c = a(be), (associativity),
(ab) = (ba), (commutativity),
a{b+c) = ab+ac, (distributivity).

There is a unique element in K, denoted 1, with 1 # 0 and

a-l=a

for all @ € K. This element is called the neutral element for multiplication.

For every a € K with a # 0, there is a unique element b € K such that

ab=1.

This element is called the multiplicative inverse to a. In this case the element b is also

written a7 1.

The notion of a field is one of the most basic in all of mathematics. Many mathematical
objects are fields (see 2.5.3). In general field theory the symbol e is also used for the
element 1.

Consequences of the axioms: All rules of arithmetic for the real numbers (rules for
signs, fractions, equalities and inequalities) can be derived from these axioms.

The axioms (F) and (O) are also valid for the rational numbers; the axiom (C) is however
false.

Uniqueness: If R and R’ are two sets which satisfy all the axioms (F), (O) and (C),
then the field R is isomorphic to R’ by an isomorphism which respects the ordering
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axiom. This means: there is a bijective map ¢ : R — R’, such that for all @, b € R the
following conditions are satisfied:

() pla+b) = w(a) + o(b).
(if) w(ab) = pla)p(b).
(iii) From a < b it follows that ¢(a) < ¢(b).

This implies that one can do calculations in R’ just as in R.

1.2.2.2 The law of induction

Intuitively one gets the set of natural numbers 0,1,2..., by continued addition 0, 0 +
1, 1+ 1, ete. To arrive at a mathematically rigorous definition one must proceed along
a different (apparently more complicated) route.

Inductive sets: A set M of real numbers is called inductive, if it contains 0 and the
implication a € M = a + 1 € M holds.

By definition the set of natural numbers consists of the intersection of all inductive sets.
This means that N is the smallest inductive set.

Law of induction: Let A be a set of natural numbers with the following properties:
(i) 0 € A4,
(ii) n € A implies n + 1 € A.

Then A =N.

Proof: The set A is inductive. Since N is the smallest inductive set, N C A. Since A is
a set of natural numbers, A C N, and consequently A = N.

Many proofs in mathematics are based on the law of induction. This will be considered
in detail in 4.2.2.

1.2.2,3 Supremum and infinimum

Theorem: The set R of real numbers has an Archimedian order, i.e., to every real
number z there is a real number y with z < .

Bounds: A set M of real numbers is said to be bounded above (resp. bounded below), if
and only if there is a real number S such that

c<Sforalz e M (resp. S <z forall ze M)

The number S is called an upper bound (resp. lower bound) of the set M.
A set of real numbers is bounded if and only if it is bounded above and below.

Supremum: Every non-empty set M of real numbers which is bounded above has a
smallest upper bound. This bound is denoted

sup M.

The supremum of M is not necessarily contained in M.
For a non-empty set M of real numbers which is unbounded above we set sup M := +o0.

Erample 1: For M := {0,1} the set of upper bounds for M consists of all real numbers
S with S > 1. Therefore sup M = 1.
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M Example 2: For the open interval M :=|1, 2 the set of upper
1 42 bounds consists of all real S with S > 2. Thus supM = 2; in

-

[ I this case the supremum does not belong to M (Figure 1.16).

inf M sup M Infinimum: Any non-empty set M of real numbers which is
bounded below has a largest lower bound. This is denoted

Figure 1.16.
inf M.

The infinimum of M does not necessarily belong to M.
For a non-empty set of real numbers M which is unbounded below, we set inf M := —o0.

Ezample 3 For the set M := {0,1} the set of lower bounds consists of all real numbers
S with § < 0. Thus inf M = 0.

Ezample 4: The set of lower bounds for the open interval M :=]1, 2[ consists of the set of
real numbers S with S < 1. Therefore inf M = 1 (Figure 1.16). Here also the infinimum
does not belong to M.

FErample 5: inf R = —o00, supR =400, infN=0and supN = +o0.

1.2.3 Sequences of real numbers

In formulating the notion of limit, modern analysis uses the geometric language of neigh-
borhoods. Doing things in this manner allows a very general formulation of the notion
of limit in the context of topology (see [212]).

1.2.3.1 Finite limits

Neighborhoods: An e-neighborhood U, (a) of a real number q is the set of real numbers
x such that the distance from z to a is less than ¢, i.e., in set-theoretic notation

Ucla) ={z€R: |z —a| <e}

(Figure 1.17(a)). A set of real numbers U(a) is a neighborhood of a, if it contains some
e-neighborhood of a:

U.(a) CU(a)

for some € > 0.

Ue(a) Ula) If one uses the notion of inter-
4:—[ —t / ,  val, then Uc(a) =la —e,a+¢[.
a—¢ a a+¢e a However, a neighborhood U(a)
(a) (b) as just defined need not be an
interval, but rather must just

Figure 1.17. Neighborhoods of a point a. contain some interval.

The fundamental definition of limit: Let {a,) be a sequence of real numbers.!! We
write

lim a, = a, (1.19)

n—00

11This means that for any natural number n there is a real number a, assigned which belongs to the
sequence.
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if and only if any e-neighborhood of the real number a contains all but finitely many of
the a,. In this case we say that the sequence (a,) converges to the limit a.

In other words, the relation (1.19) holds if and only if for every real € > 0 there is a
natural number ny(e) (depending on ), such that

lan —al < € for all n > no(e).

1
Frample 1: We set a, := — for n =1,2,... Then we have
n

lim — =0.
n—oo N
1
Proof: For every real £ > 0 there is a natural number no(e) with ng(e) > o Conse-
quently,
1
lan| = = <& for all n > ng(e).
n

Ezample 2: For a constant sequence a, = a for all n, we get lim a,, = a.
n—og

Theorem:

(i) A limit, if it exists, is unique.

(ii) This limit does not change if finitely many of the terms of the sequence are changed.

Rules for manipulating limits: For any two sequences (a,) and (b,), both of which
converge to a finite limit, the following hold:

lim (e, + b,) = lim a, + lim by, (rule of sums),
n—00 n—oeo n—oo

lim (a,b,) = lim a, lim by, (product rule),
n—od n—00 n—oo

a lim a,

. n _ nooo . 12

nll’rgo 7, m b (quotient rule'?),
n—o0

lim |a,|=| lim ay|, (absolute value rule),
n—oQ n—oo
from a,, < by, for all n it follows lim a, < lim b,, (inequality rule).

n—oo n—oe

1 1 1
Example 8 (products): lim = lim o lim o= 0.
n—oQ n— o0 n—oc

Fzample 4 (sums): lim ntl = lim (1 + l) = lim 1+ lim 1 =1.
n

n—o0 n n—oo n—oo n-—o0 1N

1.2.3.2 Improper limits

Neighborhoods: We set
Ug(+00) :=|E, oo, Ug(—o0) :=] — o0, E|.

12Here one must in addition assume that limp_ o bn # 0.
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A set U(+o0) of real numbers is called a neighborhood of infinity, if there is a real number
E such that

Ugp(+00) € U(+00).

In the same way, U(—oc) is a set such that Ug(—o0) C U(—o0) for some fixed real
number E (Figure 1.18).

Definition: Let (a,) be a sequence of real numbers. We write

lim a, = +oo, (1.20)

n—oo

if and only if all but finitely
U(+00) U(=00) many a, lie in every neighbor-
/ hood U(+00).

In other words, the relation
(a) (b) (1.20) holds if and only if for
) ) . every real number £ we can

Figure 1.18. Neighborhoods of + infinity. find a natural number ng(E)

such that

an > F for all n > ng(E).

Ezample 1: lim n = 4o0.
n—oc
In the same way we write
lim a, = —oo,

n—o0

if and only if all but finitely many of the a, lie in every neighborhood U(—00).13

Reflection principle: One has lim a, = —oo if an only if lim (—a,) = +o0.
n—oa n— 0
Ezample 2: lim (—n) = —co.
n—o0

Rules for manipulations with infinity: Let —0c < @ < oc. Then we have

Addition:
a+ 00 =400, +00+00=-400,
a—00=—00, —00—00=—00.
Multiplication:

+o0 fora >0,
a(F00) = { Foo fora <0,
(+00)(+00) = +00, (=00)(~0) = +oe, (+00)(~oc) = —co.
Division:
a o0 | Foo fora >0,
+oo a | Foo fora<D0.

13Let limp—o0o an = a. In older literature one speaks of convergence for a € R, but of determined
divergence in case a = foo. In modern mathematics one has a general notion of convergence. In this
sense (an) converges for all values of a (cf. Example 4 in 1.3.2.1). This modern point of view, which we
adapt here, has the distinct advantage of avoiding the consideration of different cases, see 1.2.4.
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For example, the symbolic notation ‘a + 0o = + 00’ means that from the relations

lim ap, =a and lim b, = 4+ (1.21)
n—oo n—oo

we always get
lim (@, + b,} = +00
n—oo
as a consequence. Similarly, the notation ‘a(+o0) = +o0o for a > 0’ means that from

(1.21) and a > 0, it follows that

lim apb, = +oo.
n—oo

Ezample 3: lim »n? = lim n lim n = +oo.
n—00 n—00 n—oo

Rational expressions: We set

0= aknk + ak_lnk‘l +...+ o
T Bmn™ + Bpoan™ L+ B

for fixed k,m =0,1,2... and fixed real numbers ., 8s with oy # 0 and 8,, # 0. Then
we have:

n=12,...

O
— fork=m
Bm ’
lim ap =4¢ 0 for k < m,
n—+co +oo  for k> m and ox/Bm > 0,
—o0  for k > m and ok /0m < 0.
n2+1
E: ol =0.
rample 4 Jim T 0

Indeterminant expressions: In the case of

[en) )

+00— 00, 0-(£00), =, -Z.-f 0°, 0%, oo® (1.22)

one must be extremely carefull There are no general rules for manipulating these ex-
pressions. In different cases one gets different results.

Ezample 5 (400 — oo):

lim (2n —n) =400, lim(n—2n)=-00, lim((n+1)—n)=1.
n—oo n—00 n—od

Ezample 6 (0 - c0):

1 1
lim (— -n) =1, lim (- ~n2) = lim n = +oo.
n— o0 n n-—00 n n—00

In certain case expressions as in (1.22) can be given meaning and calculated by means
of 'Hospital’ rule (cf. 1.3.1.3).

1.2.4 Criteria for convergence of sequences

Basic idea: Ezample 1: We consider the iteration procedure

an, 1
=—4 — =0,12,... 1.2
Qny1 2 + an’ n 05 3 27 3 ( 3)
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with a fixed initial value ag := 2. To calculate the limit of the sequence (a,), we assume
the limit

lim a, =a (1.24)

n—oo

exists with @ > 0. From (1.23) we conclude
lim ap41 = lim (a_n + i) s
n—oo n—o00 2 Un

1
ora = g +e This yields 2a% = a? + 2, or a® = 2 and finally a = v/2. Consequently we
get
lim a, = v2. (1.25)

n—oo

The following example contains a false conclusion.

FEzample 2: We consider the iteration process

Ant1 = —Qn, n=0,1,2... (1.26)
with initial value ag := 1. The same method yields
lim apy1 = — lim an.
n—oo n—oo
This implies @ = —a, or a = 0, in other words we have nh_)n;o a, = 0.

On the other hand from (1.26) we get immediately a, = (—1)" for all n, and this
sequence is not convergent. Where is the mistake? The answer is:

This convenient method of computing the limit of an iteration
process is only valid if the existence of the limit is insured.

Because of this it is important to have some general criteria for checking when a sequence
converges. Such criteria are discussed in section 1.2.4.1 and 1.2.4.3 below.

Theorem: The iteration scheme (1.23) converges, i.e., one has lim a, = v2.
n—oo
Sketch of the proof: One shows
a02a12022...21. (127)

This means that the sequence (a,) is non-increasing and bounded below. The conver-
gence criterion in 1.2.4.1 gives the existence of the limit (1.24), which proves the claim
(1.25).14

Bounded sequences: A sequence of real numbers (a,) is said to be bounded below
(resp. bounded above), if there is a real number S such that

anp <8 for alln

(resp. S < a, for all n). A sequence is said to be bounded, if it is bounded above and
below.

Criterium for boundedness: Every sequence of real numbers which converges to a finite
limit, is bounded.

Consegquence: An unbounded sequence of real numbers can not converge to a finite limit.

Ezample 3: The sequence (n) of natural numbers is unbounded above. Consequently
this sequence does not converge to a finite limit.

14 A more detailed proof of (1.27) will be given below in 4.2.4 as an application of induction.
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1.2.4.1 Increasing and decreasing sequences

Definition: A sequence (a,) of real numbers is said to be increasing (res. decreasing),
if

n <m implies a, < an,

(resp. n < m implies a,, > am).
Convergence criterion: Every increasing sequence of real numbers (a,) converges to
a finite or to an infinite limit.'®

(1) If (an) is bounded above, then lim a, = a for some finite a € R.
n—o0
(ii) If (a,,) is unbounded above, then lim a, = +oo.
n-—oo

Set M := {an|n € N}. Then one has lim a, =sup M.
n—o0

1 .
Example: We choose the sequence a,, := 1——. This sequence is decreasing and bounded
n

above. Moreover, lim a, = 1.
n—oo

1.2.4.2 The Cauchy criterion for convergence

Definition: A sequence (a,) of real numbers is called a Cauchy sequence, if for every
€ > 0 there is ng(e) € N such that

lan —am| <& for all n,m > ng(e).

Cauchy criterion: A sequence of real numbers is convergent if and only if it is a
Cauchy sequence.
1.2.4.3 Subsequences

Subsequences: Let (a,,) be a sequence of real numbers. We choose indices ko < k; <
- and set

by = ay,, n=0,1,...

Then the sequence (by,) is called a subsequence!'® of (a,).

Ezample 1: Let a, := (=1)". If we set b, := ag,, then (b,) is a subsequence of (an).
Explicitly, one has

a0=1, (1.1=—1, 0.221, a,3:—1, ey

bo=ag=1 bi=a=1,..., b,=as,=1,

5In the same way, every decreasing sequence (a,) of real numbers converges to a finite or to an
infinite limit.

(i) If {an) is bounded below, then limp_.00 an = a for some finite a € R.

(ii) If (@n) is unbounded below, then limn o0 an = —oco. If one sets M := {a, : n € N}, then
limp— o0 an = inf M.

1614 is often convenient to denote such a subsequence by (a,,), which means we set a;/ := by, ay = b,
etc.
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Accumulation point: Let —0o < a < co. Then a is called an accumulation point of
the sequence (a,), if there is a subsequence (an') with

lim a, =a.
n—oo

The set of all accumulation points of (a,,) is called the limit set of (a,,).

Theorem of Bolzano—Weierstrass: (i) Every sequence of real numbers has an accu-
mulation point.

(ii) Every bounded sequence of real numbers has a real number which is an accumulation
point.

The limit superior: Let (a,) be a sequence of real numbers. We set'”

T@oan := largest accumulation point of (a,)

and lim a,:= smallest accumulation point of {a,).
n—oo

Subsequence criterion for convergence: Let —oco < a < oo. For a sequence (a,) of
real numbers, the following are equivalent:

(i) lim a, =a, and

n—00

(i)

lim =lim a, = a.
3 An oo

Ezample 2: Let an, := (—1)". For the two subsequences (a2, ) and (agn41), one has

lim az, =1 and lim agyy; = —1.
n—+o00 n—oc
There for a = 1 and @ = —1 are accumulation points of (a,), and these are all the

accumulation points. Consequently

lim a, =1, lim a, = -1.
n—oo n—00

Since these values do not coincide, the sequence (a,) cannot be convergent.
Ezample 3: For ay := (—1)"n one has lim ag, = 400 and lim agp41 = —oo. These
n—oc mn—00

are all the accumulation points of this sequence. Consequently we get

lim a, = +o0, lim a, = —co.
n—o0 n—00

As these two values again do not coincide, this sequence is divergent (i.e., not conver-
gent).

Special cases: Let (a,) be a sequence of real numbers and let —oo < a < o0.

(i) If lim a, = q, then a is the only accumulation point of (a,), and every subsequence
n—oo

of (an) converges to the same value a.

17This definition makes sense, since (an) really does have a largest and smallest accumulation point
(which may be £oc). One callsT}imwan (resp. lim an) the limit superior or upper limit (resp. limit
e n—oo

inferior or lower limit) of the sequence (an).
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(ii) If a subsequence of a Cauchy sequence (a,) converges to a € R, then a is the only
accumulation point of (@,) and one has lim a, = a.
n—oo

1.3 Limits of functions

1.3.1 Functions of a real variable

We consider functions y = f(z) of a real variable z with real values f(z).

1.3.1.1 Limits

Definition: Let —oo < a,b < 0o. We write

lim f(z) = b,

r—a

if, for every sequence (x,,) in the domain of f with x,, # a for every n, we havel®

lim z, =a  implies lim f(zxa.)="5.
n—00

n—00

In particular, we write
xz—a+0 f(l) T z—a—0 (1) ?

if only sequences (z,,) with z,, > a for all n (resp. z, < a for all n) are to be considered
(a €R).

Manipulations: Since the notion of limit of a function is defined in terms of the limit
of a sequence of numbers, the manipulations for the latter give manipulations for the
limits here. In particular, for —o0 < a < oo one has

lim (£(z) + 9(z)) = lim £(z) + lim g(z),
lim f()g(z) = lim f(x) lim g(z),
(@) lim f(x)

__ T—a

Eal h(z) ~ lim h(z)’

Here the additional assumption is made that all the limits on the right hand side exist
and are finite, and in the last expression, lim h(z) # 0.
T—a

These manipulations remain correct for t — a+0and x — a— 0 for a € R.

Ezample 1: Let f(z):= z. Then for all a € R,

lim f(z) = a.

r—a

Indeed, lim z, = a implies lim f(z,) =a.
n—co n—oo

18The function f need not be defined at a for these considerations. We only require that the domain
of f contains at least one sequence (zn) with the limit property listed above.
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Ezample 2: Let f(z) := 2%. Then we have

lim 22 = lim z lim 2 = &%.

T—a T—a T—Q

Ezample 3: We define
1 forx > a,
flz) = 2 for x =a,
-1 forz<a

(see Figure 1.19). Then we have
lim f(z) =1, lim =-1.

z—a+0 z—a—0

One calls the limit lim f(z) (resp. lim 0 f(z)) the right-sided (resp. left-sided) limit

z—a+0
of f at a.

Y . y y T
1 ’ f -~
a T ‘] T | T

-1 (a) continuous function (b) non-continuous

Figure 1.19. Figure 1,90, fumetion

1.3.1.2 Continuous functions

Intuitively the notion of continuous function is one which has no jumps (Figure 1.20).
Definition: Let a € M. The function f : M C R — R is said to be continuous
at a point a, if for every neighborhood U(f{a)) of the image point f(a) there is a
neighborhood U(a), such that!®

zeU(e)and z € M imply f(z) € U(f(a)).

In other words, f is continuous at q, if for every real ¢ > 0 there is a real number ¢ > 0
such that
|f(z)— fla) <e forallzec M with |z —a| <3d.

Limit criterion: f is continuous at a point a if and only if?®

lim f(z) = f(a).

Tr—a

190ne also writes f(U(a)) C U(f(a))-
20This means: for every sequence (xp) in M with limp—oc Zr, = @, one has limn oo fzn) = f(a).
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Manipulations: If f,¢g : M C R — R are continuous at a, then
(i) The sum f + ¢ and the product fg are continuous at a.

(ii) The quotient I is continuous at a, if g(a) # 0.
g

We now consider the composition of two functions

H(z) := F(f(z))-

We also write H = F o f for this.

Continuity of composed functions: The function H is continuous at a if f is con-
tinuous at a and F is continuous at the point f(a).

Differentiability and continuity: If the function f : M C R — R is differentiable
at a, then f is continuous at a (cf. 1.4.1).

Ezample: The function y = sinz is differentiable at every point a € R. It follows that

lim sinx = sina.
T—a

Similar statements hold for y = cosx, y = e*, y = coshz, y = sinh 2, y = arctanx and
for every polynomial y = ap + a1z + . . . + a,z™ with real coefficients aq, ..., 5.

The following theorems show that continuous functions have very pleasant properties.
Let —co < a <b < .

Theorem of Weierstrass: Every continuous function f : [a,b] — R has a minimum
and a maximum.

More precisely this means that there are «, 8 € [a, b] with

fla) < f(z) forallz € [a,b]

(minimum) and f(z) < f(8) for all z € [a,b] (maximum) (see Figure 1.21).

Y Y
f
a b . .
' L \7 r a \i) T
Figure 1.21. Figure 1.22.

Theorem of Bolzano: If the function f : [a,b] — R is continuous and f(a)f(b) <0,
then the equation

f@)=0, =z€la,b]
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has a solution (Figure 1.22).

Mean value theorem: If the function f : [a,b] — R is continuous, then the equation

f@)=~ z€lad

h lution for all ith mi << .
as a solution for all v wi argn;rglbf(m) <y < argggbf(x)

1.3.1.3 L’Hospital’s rule

. . . 0 .
This important rule allows the evaluation of expressions of the form i and @ It is
o0

f(z)

o F@) )
Pagle) e gla)

(1.28)

It is assumed that:

(i)There are limits lim f(z) = lim g(z) = b with b =0 or b = $o0, and —o0 < a < oc.

(ii) There is a neighborhood U(a) such that the derivatives f/(x) and ¢'(z) exist for all
z € U(a) and z # a.

(iii) One has g'(z) # 0 for all z € U(a), z # a.
(iv) The limit on the right hand side of (1.28) exists.?!

Ezample 1 (3): One has lim0 sinz = 1in}]9: = 0. From (1.28) it follows that
T — —

sinx cos T

lim = lim =cos0 =1,
z—0 X r—0
because of the continuity of cosz.
Ezample 2 (2):
Inz 1
lim —— = lim & =0,
—+00 T z—+00 1
v er
lim — = lim — =4
r—+4o0 I T—+00 1

Variants of I’Hospital’s rule: Sometimes one must apply I’Hospital’s rule repeatedly
before one gets a well-defined limit on the right-hand side.

DLC I (G N L1 C))
P gl T )

X X

. € . . e®
Example 3: ZBTOQ e IETOO . zHToo 5= +o0.

21 A similar statement holds for s — a +0 (resp. a — a — 0) with a € R. In this case one requires the
assumptions (ii} and (iii) only for points x € U for which £ > a (resp. = < a).
The notion of derivative f’(z) will be introduced in 1.4.1.
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Expressions of the form 0 - co are brought into the form £2 to which 'Hospital’s rule
applies.
1

. . Inz . .
Example 4: Illnigwlna: = zlinﬁo —%— = 11—1+I$0 (_;15) = zlinio(_z) =0.

Expressions of the form oo — oo are brought into the form oo - a for some finite value a.

Ezxample 5: lim (e” —z)= lim &” (1 - i) = lim € lim (1 - £) = lim €°
400 ——+o0 et z—+o0 z—+oo et T—+00
= 4o00. This follows from Example 2, where one has

zllvr-al-loo (1 h e%) =1

The following formula is also very handy:

a® = ez»lna.

It can be applied to expressions of the form 0°, oco® or 0°°.

I
Ezample 6 (00®): From z/* = es and Example 2, one gets

lim zt/* =e%=1.

z——+00

1.3.1.4 The order of magnitude of functions

For many considerations it is sufficient to have a good understanding of the qualitative
behavior of functions. For this there are convenient symbols O(g(x)} and o(g(z)), due
to Landau. Let —oo < a < oo.

Definition (Asymptotic equality): We write

flz)=g(z), =z-a,

flz) _

if and only if lim ——= =1.
a—a g(z)

inz
Ezxample 1: The equality lin}] S-lg—— =1 implies sinz 2 z, x — 0.
T —

Definition: We write

f(z) =0(g(x)), z—a, (1.29)
if there is a neighborhood U(a) of a and a real number K such that
‘;—g)l <K forallz € U(a) withz #a. (1.29%)
Theorem: The relation (1.29) holds if the finite limit lim !];—E;% exists.
x—a
322 +1

Ezample 2: The equality lir_{_l = 3 implies 322 + 1 = O(2?), z — +o0.
T—+0oC

r2

Definition: We write?2

flz) =olg(z)), z—ua,

22Let @ € R. In the same way one introduces the symbols f(x) & g(z), f(x) = O(g(zx)) and
f(z) = o(g(z)) for x — a + 0 (resp. # — a — 0). The inequality (1.29*) is in general true only for
z € Ufa) with z > a (resp. x < a).
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Ezample 3: One has 2" = o(z), x = 0 forn =2,3,...

Example 4:

12

@ 2+ 2
1

. ~ 1
(ii) x2+2=F,m——>+oo.

=1, x — oo.

(iii) sinz = O(1) for £ — a and all a with —o0 < a < oo.
(iv) Inz = o(2) for  — +0 and Inz = o(z) for z - +o0.

(v) 2" =ofe*) for z > +ocand n=1,2,...

The last statement (v) means that the function y = e” grows faster than every power
2™ as ¢ — +oo.

1.3.2 Metric spaces and point sets

Motivation: One of the characteristics of modern mathematics is the tendency to
extend notions and methods to more and more abstract situations. This allows for
solutions giving a great deal of insight of more and more complicated problems and
for seeing the connections between apparently completely different and disjoint areas
of study. This procedure also turns out too be highly economical, since it replaces the
necessity of more and more different notions by their derivation from a few very basic
ones.

To carry the notion of limits of functions of a single variable over to functions of several
variables, it is advantageous to introduce metric spaces. The full power of the modern
point of view becomes apparent in the study of functional analysis. This branch of
mathematics was developed in the 20th century (cf. {212]).

1.3.2.1 The notion of distance and convergence

Metric spaces: In a metric space one has a notion of distance between two points. A
non-empty set X is called a metric space, if for every ordered pair of points, (z,y) in X,
there is assigned a real number d(x,y) > 0, such that for all z,y,z € X, the following
statements are true:

(1) d(z,y) = 0 if and only if = y,
(ii) d(z, y) = d(y, z) (symmetry),
(iii) d(z, z) < d(z,y) + d(y, z) (triangle inequality).

The number d(z,y) is called the distance between x and y. By definition, the empty set
is also a metric space.

Theorem: Every subset of a metric space is again a metric space with the same distance
function.
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Limits: Let (z,) be a sequence of points in a metric space X. We write

lim z, =z,
n—o

if lim d(z,,z) = 0, that is, if the distance between z,, and z approaches zero as n — oo.
=00

Uniqueness: If a limit exists, then it is uniquely determined.
Ezample 1: The set R of real numbers is a metric space with distance function
d(z,y) = |z — y| forallz,y € R.

The notion of distance induced by this metric is the usual (naive) one (see 1.2.3.1).

Ezample 2: The set RV is by definition the set of all N-tuples z = (£1,...,£n) of real
numbers ;. Let y = (51,-..,mn) be another element of RY, and set

d(z,y) ==

N
& —m)
J=1

This makes RY a metric space.
For N = 1,2,3 the induced & &
notion of distance in R, R?

and R3® coincides with the / M
£

usual (naive) notion (see Fig-

T
ure 1.23). z
Furthermore we define T Y ! & ! &
(ayN=1 (b N=2 () N=3
|z - y| == d(z,v)
Figure 1.23. Distances in R™.
N
and let |z| =,/ 3~ &2 denote the Buclidean norm of x. Intuitively |z| is the distance of
i=1
z to the origin.
Let (z,) be a sequence in RY with components z, = (£in,..-,nn) and let z =
(&,...,&n) be as above. Then the convergence

m z, =z
n—oo

in the metric space RY is equivalent to the component-wise convergence

lim &, =¢; forallj=1,...,N.
n—oo

Ezample 3: In the special case N = 2, the convergence lim z,, = z corresponds to the
n—o0
visible fact that the points z,, get closer and closer to the point z (see Figure 1.24).

Ezample { (the unit circle): We consider the situation depicted in Figure 1.25. Each
point z of the real line R corresponds to a unique point x, on the unit circle of radius 1.
The north pole N doesn’t correspond to any point of R. Usually one replaces the north
pole by the points +oc0 and —co. We define

R = R U {400, —00}.
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—00 + X
Lx
x Y
T3 R
g 0 Y T
Figure 1.24. Figure 1.25. A distance function on the unit circle.

The set R becomes a metric space by setting

d(z,y) := arc length between z, and y, on the unit circle Z.

We agree on the convention
d(—o00,00) 1= 27.

For example, we have d(+o0,0) = 7. Let (z,) be a sequence of real numbers. The
convergence

lim z, =z

n=—oQ
with —0o < & < 400 in the sense of the metric d on R means that the corresponding
points (Z, )« on the unit circle converge to the point x.. This is equivalent to the classical
notion of convergence (see 1.2.3).

In this manner, the classical notion of convergence to either finite or infinite values is
given a uniform definition which derives from the metric notion of convergence in the
metric space Z of the unit circle.

1.3.2.2 Special sets

Let M be a subset of a metric space X.

Bounded sets: The non-empty set M is said to be bounded, if there is a real number
R > 0 such that

d(z,y) <R for all z,y € M.

The empty set is by definition bounded.

_Uela) et M e oM
, PR
e RN
R
I I
(a) X =R? (b) open set M in R?(c) closed set M in R2

Figure 1.26. Open and closed sets in R2.
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Neighborhoods: Let £ > 0. We set
Ucla) == {z € X|d(a,z) < &},

and call it the e-neighborhood of a. In other words, the e-neighborhood U.(a) of the
point a consists of all the points z in the metric space X whose distance to a is < ¢
(Figure 1.26).

A set U(a) is called a neighborhood of q, if it contains some e-neighborhood U.(a).

Open sets: A set M is said to be open, if for every a € M there is neighborhood U(a)
of a contained in M, U(a) C M.

Closed sets: The set M is said to be closed, if the complement X — M is open.

Interior and exterior: The point a € X is said to be an interior (or inner) point of
M., if there is a neighborhood U(a) of a contained in M, U(a) C M (Figure 1.26(c)).

The point b is said to be an ezterior (or outer) point of M, if there is a neighborhood
U(b) which does not belong to M, U(b) C X — M.

The point ¢ is said to be a boundary point of M, if ¢ is neither an inner nor an exterior
point of M (Figure 1.26(c)).

The set of all interior (resp. exterior) points of M is denoted int M (resp. ext M).

Boundary and closure: The set M of all boundary points of M is called the boundary
of M (Figure 1.26(c)). Furthermore, the set

M:=MUdM

is called the closure of M.
Theorem: (i) The interior int M of M is the largest open set contained in M.
(ii) The closure M of M is the smallest closed set containing M.

(iii) One has a decorposition into disjoint sets:

X=intMUextM UM,

which means that every point z € X belongs to exactly one of the sets int M, ext M, M.

Accumulation point: A point a € X is called an accumulation point of M, if every
neighborhood of a contains a point of M other than a itself.

Theorem of Bolzano—Weierstrass: Every infinite unbounded set of R¥ has an ac-
cumulation point.

1.3.2.3 Compactness

The notion of compactness is among the most important in all of analysis.

A subset M of a metric space is said to be compact, if every open cover of M (collection
of open sets whose union contains M) contains a finite sub-cover, i.e., there is a finite
subset of that collection of open sets whose union still contains M.

A set is said to be relatively compact, if its closure is compact.
Theorem: (i) Every compact set is closed and bounded.
(ii) Every relatively compact set is bounded.

Characterization in terms of convergent sequences: Let M be a subset of a metric
space.
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(i) M is closed if and only if every convergent sequence (z,,) in M has a limit in M.

(ii) M is relatively compact if and only if every sequence in M has a convergent subse-
quence.

(iii) M is compact if and only if every sequence in M has a convergent subsequence
whose limit belongs to M.

Subsets of RY: Let M be a subset of R¥. The following three statements are equiva-
lent:

(i) M is compact.
(i) M is closed and bounded.

(iil) Every sequence in M has a convergent subsequence whose limit belongs to M.

Moreover, the following three statements are also equivalent:

(a) M is relatively compact.
(b) M is bounded.

(c) Every sequence in M contains a convergent subsequence.

1.3.2.4 Connectedness

A subset M of a metric space is said to be arc-wise connected, if there is a continuous
curve in M joining any two points z,y € M?3 (see Figure 1.27).

Domains: A subset of a metric space is said to be a domain, if it is open, arc-wise
connected and not empty.

Simply connected sets: A subset M of a metric space is said to be simply connected,
if it is arc-wise connected and every closed curve in M can be retracted continuously to
a point?* (Figure 1.28).

1.3.2.5 Examples

Ezample 1 (X =R): Let —oo < a < b < +o0.

(i) The interval [a,b] is a compact set in R. It is also closed and bounded.
(ii) The interval |a, b] is open and bounded.

(iil) A subset of R is arc-wise connected if and only if it is an interval.

(iv) Every real number is an accumulation point of the set of rational numbers.

23The notion of continuous curve is defined as follows: there exists a continuous map ¢ : [0,1] - M
with ¢(0) = 2 and ¢(1) = y. The continuity of ¢ means that

Jim p(tn) = (1)

for every sequence (t») in [0, 1] for which limpn— oo tn = t.
24This means that for each closed curve, i.e., continuous ¢ : [0,1] — M with @(0) = (1), there is a
continuous function H = H(¢,«) from [0,1] x M into M, such that

H(0,z) = ¢(z}) and H(l,z)=z0

for all x € M, where x¢ is some fixed point in M.
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C
M
(a) simply connected (b} not simply connected
Figure 1.27.  Arc- Figure 1.28.  The notion of simply con-
wise connectedness. nected and non-simply connected sets.

(v) The half-open interval [a,b[ is neither open nor closed. It is however bounded and
relatively compact.

Ezample 2 (X = R2%): Let r > 0. We set
M = {(&1,6) € R*| & + € < r*}.

Then M is the interior of a circle of radius r centered at the origin (Figure 1.29(a}).

One may check that the boundary and closure are given as follows:
M = {(&1,&) e R* & + & =1},

M ={(&,&) e R?| €] +& <r*}
(see Figure 1.29(b)).
(i) The set M is open, bounded, arc-wise
connected, simply connected and relatively
compact.
(ii) The set M is a simply connected domain.
(iii) The set M is neither closed nor com-
pact.

(iv) The set M is closed, bounded, compact, (a) open circle M (b) M = MUSM
arc-wise connected and simply connected.

{(v) The boundary 0M is closed, bounded, Figure 1.29.

compact and arc-wise connected, but not

simply connected.

Ezample 3 (unit circle): The set R is unbounded with respect to the classical distance
function, hence not compact (cf. Example 1 in 1.3.2.1).

On the other hand, the metric space R U {+o0} introduced in Example 4 of 1.3.2.1 is
bounded and compact. This is the deeper reason for the fact that one can handle finite
and infinite limits in a uniform manner.

The notions introduced above can be generalized to metric and topological spaces
(see [212]).

1.3.3 Functions of several variables
Most of the functions which occur in applications depend on more than one variable,

for example space and time coordinates. We abbreviate this by writing y = f(z) with
z = (£1,...,€n), where all £; are real variables.
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1.3.3.1 Limits

Let f: M — Y be a function®® from a metric space M to a metric space Y. We write

lim f(z) = b,

if and only if for every sequence (z,) in the domain of f with z,, # a, and for all n, we

have:26

lim z, =a implies lim f(z,)=0.
T 00

n—oo

Ezample 1: For the function f: R® — R given by f(u,v) := «® + v? we have

lim u,v) = a? + b2,
(u,v)—{a,b) f( )

Indeed, for an arbitrary sequence (uy, v, ) with lim (v, v,) = (a,b) we have lim u, =a
n—oo n—o
and lim v, = b. Consequently,

n—oo

lim (u2 +v2) = a® + ¥°.

Ezample 2: For the function

for (u,v) # (0,0),

Fuv) :={ v
0 for (u,v)=(0,0)

the limit ( %inio 0 f(u,v) does not exist. This is because the sequence (un,v,) =

11
(—, —) satisfies
n’'n

11
while for (up,v,) = (—2, —) we get
n?’n

Hm f(un,vn) = 1,
n—oo

1
lim f(un,v,)= lim — =0.
n—00 n—o N

1.3.3.2 Continuity

Definition: A map f : M — Y between two metric spaces M and Y is said to
be continuous at a point a, if for every neighborhood of the image U{f(a)) there is a
neighborhood of a satisfying:

f(U(a)) € U(f(a)).

This means z € U(a) implies f(z) € U(f(a)).
The function f is called continuous, if it is continuous at every point a € M.

25The definition and properties of general functions can be found in 4.3.3.
26The function f need not be defined in the point a. We only require that the domain of f contains
some sequence (Zn) with the limit property stated.
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Limit criterion: For a function f: M — Y and a point a € M, the following three
statements are equivalent:2’

(i) f is continuous at a.

@) | lim f(z) = f(a)-

(iii) For every € > 0 there is a 6 > 0 such that d(f(z), f(a)) < € for all  with d(z,a) < 4.

Theorem: A function f: M — Y is continuous if and only if the inverse images of
open sets are open.

Law of composition: If f : M — Y and F : Y — Z are continuous, then the
composed map

Fof:M—2Z

is also continuous. We have (F o f)(z) := F(f(z)).

Manipulations: If the functions f,g: M — R are continuous in a point a, then:

f+g is continuous in a, (rule of sums),

fg is continuous in a, (rule for products),
= is continuous in a, if g(a) # 0, (rule for quotients).
g

Component rule: Let f(z) = (fi(z),..., fxr(z)). Then the following two statements
are equivalent:

(i) f; : M — R is continuous at a for every j.

(ii) f: M — R* is continuous in a.

Ezample: Let © = (£&1,&2). Every polynomial

m
plz) =) alth
J:k=0
with real coefficients aj is continuous at every point z € R2,
A similar statement holds also for polynomials in N variables.

Principle of invariance: Let f: M — Y be a continuous map between two metric
spaces. Then

(i) f maps compact sets to compact sets.
(ii) f maps arc-wise connected sets to arc-wise connected sets.

Theorem of Weierstrass: A continuous function f : M — R from a non-empty
compact subset M of a metric space has a minimum and a maximum.

This is true in particular for non-empty, bounded and closed subsets of RY.

27The condition (ii) means that lim f(z») = f(a) for every sequence (n,) in M with lim z, = a.
n—0oQ r—0o0
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Bolzano’s theorem on zeros: Let f : M — R be a continuous function on an
arc-wise connected subset of a metric space. If there are two points a,b € M with
f(a)f(b) <0, then the equation

flz) =0, TEM

has a solution.

Mean value theorem: If f : M — R is continuous and M is arc-wise connected,
then the image f(M) is an interval.

In the special case that f(a) < f(b) for two points a,b € M, the equation

f@y=~ zeM

has a solution for every real number ~ for which f(a) < < f(b).

1.4 Differentiation of functions of a real variable

1.4.1 The derivative

Definition: We consider a real function y = f(z) of a real variable z, which is defined
in a neighborhood of a point p. The derivative f'(p) of f at the point p is defined as the
finite limit

Y Y R) —
Ki . Geometric interpretation: The
| 1') D Th - I‘JTJ - number
(a) (b) flp+h)— fp)
h

Figure 1.30. The derivative. is the slope of the secant in Figure

1.30(a). For h — 0 the secant intuitively approaches the tangent. Thus we define:

F'(p) is the slope of the tangent of the graph of f at the point (p, f(p)).

The corresponding equation of the tangent is then:

y = f(p)(x —p)+ f().

Ezample 1: For the function f(z) := 2% we get

P — 1 (p+h)2—p2_ :
(o) = Jim, h = lim

2ph + h? .
= lim (2p+h) = 2p.
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Table of important derivatives: See section 0.8.1.

The notation of Leibniz: Let y = f(z). Instead of f'(p) one also writes

ro=Lo) o 1o = Lo,

If we set Af := f(z) — f(p), Az =z — p and Ay = Af, then we have

af o _ . Af . Ay
ﬁ(p)—Algl»oAm_AlggoAx'

This notation was introduced by Gottfried Wilhelm Leibniz (1646-1716) and has turned
out to be extremely convenient, as many of the important rules of manipulations with
derivatives follow just from the notation. This is a property which one expects from
well-chosen mathematical notation.

The relation between continuity and differentiability: If f is differentiable at a
point p (i.e., the derivative of f exists at p), then it is also continuous there (one says
‘then it is all the more continuous’).

The converse statement is false. For example, the function
f(z) == || is continuous at z = 0, but it is not differentiable at
that point (although it is differentiable at all other points), the
reason being that the graph of this function has no tangent at
z = 0 (Figure 1.31).

Higher derivatives: If we set g(z) := f’(z), then by definition

Figure 1.31.

(p) =g’ ().

We also write f(2)(p) for this, or in Leibniz notation:

2
Fp) = 3—;;(12)-

Similarly, we define f™(p) for n =2,3,....
Ezample 2: For f(z) := z2 we have
fl@)y=2zx, f'£)=2, f"(x)=0, f™&) =0 for n=4,5...

(see 0.8.1).

Basic rules: Suppose f and g are differentiable at a point z, and let a,3 be real
numbers. Then:

(af + 89) (z) = af (z) + B9’ (z), (rule of sums),
(faY(z) = f(z)9(z) + fz)d (=), (product rule),
(g) (z) = f’(m)g(x;(;)f(a:)g'(x), (quotient rule).

In the case of the quotient rule one must of course assume that g(z) # 0.

Examples can be found in 0.8.2.
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The Leibniz product rule: If f and g are n-times differentiable in a point z, then for
n=1,2,... one has

19w =3 (1) 1" P o)

k=0

This rule of differentiation has a similarity with the binomial formula (see 0.1.10.3). In
particular, for n = 2 one has

(f9)"(x) = f"(@)g(x) + 2f'(z)g'(z) + F(z)g" (2).

Ezample 3: We consider the function h(z) := z - sinz. If we set f(z) := x and g(z) =
sinx, then f'(z) =1, f"(z) =0 and g'(z) = cosz, g”(z) = —sinz. Consequently,

h'(z) = 2cosx — rsinz.

Functions of class Cla, b]: Let [a,b] be a compact interval. We denote the space of all
continuous functions f : [a,b] — R by Cla,]. Moreover we set>®

A == argg%cblf(w)l-

Functions of class C¥[a, 8]: This class consists of all functions f € C[a, b], which have

continuous derivatives f/, f”, ..., f(*) on the open interval ]a, b], each of which can be
extended to a continuous function on [a, b].
We define?®

k
il i= 3 g 1))

Type C*: We say that a function in a neighborhood of a point p is of type C*, if in an
open neighborhood of p it has k derivatives which are continuous.

1.4.2 The chain rule

The fundamental chain rule is easiest to remember in the suggestive Leibniz notation:

dy dydu
e A Al 1.3
dz dudz (1.30)

2

Ezample 1: In order to differentiate the function y = f(z) = sinz?, we write

y=sinu, u=<c
and apply the chain rule. According to 0.8.1. we have

y du
— = Ccosu — = 2z.
du T dz
28With respect to this norm ||f]}, Cla, b} is a Banach space, cf. [212].
29We set f(O)(z) := f(z). As above, C*[a,b] is a Banach space with respect to the norm || f|l¢.
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Consequently, it follows from (1.30) that

dy dydu 2
! - - 2 = .
filx) = Iz = dude 2x cosu = 2z cOS T

Example 2: Let b > 0. For the function f(z) := b*, we have
f'(z) =b"1nb, zeR.
Proof: We have f(z) = ¢*™™® and set y = e*, u = xInb. By 0.8.1 we have

dy . du

du =e, a—m =lInb.
Hence, it follows from (1.30) that
dy dydu
4 =_:__:"lb= Il b D
=) dx dudz e o

The precise formulation of (1.30) is as follows.

Theorem (Chain rule): For a composed function F(z) := g(f(z)) the derivative at a
point p exists and is given by:

F'(p)=¢'(f(p))f'(p)

under the following assumptions:

(i) The function f : M — R is defined in neighborhood U(p) of p and the derivative
f/(p) exists.

(i) The function g : N — R is defined in a neighborhood U(f(p)) of f(p) and the
derivative ¢'(f(p)) exists.

Barriers of thought: The chain rule shows that precise mathematical formulations
can be much more unwieldy than suggestive rules. This unfortunately often leads to
barriers between mathematicians and physicists and engineers, which have to be over-
come somehow. In fact it is a good idea to know both the suggestive and formal rules
as well as the precise mathematical formulations, in order to on the one hand do com-
putations with a minimum of work and on the other hand be aware of possible incorrect
applications of formal rules.

1.4.3 Increasing and decreasing functions

Criterion for increasing (or decreasing): Let —co < a < b < +00, and let f :
Ja, b|— R be differentiable.

(i) f is non-decreasing (resp. non-increasing), if

flz)y>0 forall z€la,b

(resp. f'(x) <0 for all z €]a, b[).
(ii) If f'(z) > 0 for all z €]a,b], then in fact f is increasing®® in Ja, b].

(iii) If f'(z) < O for all z €]a, b], then in fact f is decreasing in ]a, b|.

30The definition of increasing and decreasing functions is in section 0.2, with pictures in Table 0.14
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Y y Y
1
T
T "
@y=e (b) y = cos(a) @ ¢ bz
Figure 1.82.  Increasing and decreasing Figure 1.35. The
functions. mean volue theorem.

Example 1: Let f(z) := e”. Tt follows from f'(z) =e® > 0 for all z € R that f is an
increasing function on R (Figure 1.32(a)).

Ezample 2: We take f(z) := cosz. Since f'(z) = —sinz < 0 for all z €]0, n[, if follows
that f is decreasing on this interval (Figure 1.32(b)).

Mean value theorem: Let —oo < a < b < +o0. If f : [a,b] — R is differentiable on
the open interval a, b[, then there is a number £ €a, b[ with

b—a -

Intuitively this means that in Figure 1.33 the secants have the

] '/— same slope as the tangent for some point €.
Theorem of Lebesgue: Let —co < a < b < +o00. For a strictly
/( increasing function f :]a, b[— R one has:

| - (1) f is continuous except for finitely many points, at which the
left and right sided limits exist.

Figure 1.34. (i) f is differentiable almost everywhere®! (Figure 1.34).

1.4.4 Inverse functions

Many important functions are the inverse functions of known functions (cf. (0.28)).

1.4.4.1 Local inverses

The rule for differentiating inverse functions is easiest to remember using the suggestive
Leibniz notation:

1
% -2 (1.31)
Y dzx

Ezample 1: The inverse function to y = 22 is

T = /7, y>0.

31This means that there is a set M of Lebesgue measure zero such that f is differentiable for all points
not in M (see 1.7.2).
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One has %% = 2z. By (1.31) we have

dyg  da

111

dy dy %ﬁ 2z 2y
Ezample 2: For the function f(z) := +/z one has

T > 0.

1
! = ——
This follows from Example 1, by exchanging y and x there.

Ezample 8: The inverse function to y = e” is
z=Iny, y>0
(cf. 0.2.6). One has ‘—;}é =e”. From (1.31) it follows that

dlny dz 1

4 =
dy dy =

Afe

1
"

Ezxample 4: For the function f(z) :=Inz we get

This follows from Example 3, again by exchanging = and y.
The precise formulation of (1.31) is as follows.

Theorem on local inverse functions: Assume the function f : M C R — R is
defined in a neighborhood U(p) of a point p and is differentiable at the point p with

f'(p) #£0. Then
(i) The inverse function g to f exists in a neighborhood of the point f(p).32

(i1) The inverse function g is differentiable at f(p) and the derivative is given by

/ -
g (f(p)) - f/(p)'

1.4.4.2 The theorem on global inverses

In mathematics one carefully discriminates y /\ f
between

(a) local behavior (that is, behavior in the x
neighborhood of a point, or the behavior
in fhe small) and ’ (a) local (b) global

(b) global behavior (that is behavior in the
large). Usually global results are much more difficult to prove than local results. A strong
tool for deriving global results is topology (cf. [212]).

Figure 1.85. Local and global properties.

32That means that the equation y = f(z), & € U(p) can be uniquely inverted for y € U(f(p)) and
vields 2z = g(y) (Figure 1.35(a)). We write f~1 for g.
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Theorem: Let —o0 < a < b < 0o, and suppose the function f : [a,b] — R is strictly
increasing. Then the inverse function f~! exists,

71 i @), f(b)) = b,

in other words, the equation

f(fﬂ):y, IE[a,b]

has for every y € [f(a), f(b)] a unique solution x, which one denotes by z = f(y)
(Figure 1.35(b)).

If f is continuous, then so is f~1.

Theorem on global inverse functions: Let —oo < ¢ < b < o0, and suppose f :

[a,b] — R is a continuous function which is differentiable on the open interval ]a, b[
with

f(z) >0 forall z€la,bl.

Then there exists a continuous inverse function f=! : [f(a), f(b)] — [a,b] with deriva-
tive

1

—1y _
U0 = iy

y = flz),

for all y €]f(a), F(b)[.

1.4.5 Taylor’s theorem and the local behavior of functions

The Taylor series of a function can be used to get many statements about the local
behavior of a function y = f(z) in the neighborhood of a point p.

1.4.5.1 Basic ideas

To study the behavior of a function in the neighborhood of the point 2 = 0 we make
the ansatz®3
flz) =ap + 017 + asx® + ...

To determine the coeflicients ap, a1, . . ., we differentiate formally
Fx) =a1+2az+3a32®+ ...,

f'(z) =2az+2-3asz+...,
Mz =2-3as+...

At z = 0 we get the formal expansion

ap = f(0), a1= f’(O),

33This German word cannot be correctly translated, which is why it has become customary to use
it in the mathematics and physics literature. It means we just try something out, in this case the
particular way of writing the function locally, and see what this leads to.
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v K Yy
IXe I
D
| @ |
(a) local minimum  (b) local maximum

(f"(0) > 0) (f7(0) < 0)

Figure 1.56. Figure 1.37. Local extrema: minima
and mazima.

This gives the following basic formula, known as Taylor series

f(@) = F0)+ f/(0)z + %zz + @:ﬁ ... (1.32)

Local behavior at the point z = 0: From (1.32) we can see the local behavior of
the function f at the point = 0, which we now explain. For this we use the known
behavior of the power function y = z™ (see Table 0.15).

Ezample 1 (tangent): The first approximation is f(z) = f(0) + f'(0)z, which tells us
that locally the function is approximated by the line (Figure 1.36)

y = f(0)+ £ (0)z.

This line is just the tangent to f at the point z = 0.

Ezample 2 (local minimum or maximum): Suppose that f/(0) = 0 and f”(0) # 0. Then
near z = 0 the function f behaves like (this is the first approximation in this case)

FO)+ Lﬂz(—olrz.

For f”(0) > 0 (resp. f”(0) < 0) one there-
fore has at = = 0 a local minimum (resp. a

local mazimum) (Figure 1.37). z
. . . N (a) horizontal in- (b) horizontal in-
Ezample & (horizontal inflection point): If flection point fection point

f'(0) = f7(0) = 0 and f(0) # 0, then (f"(0) > 0) (F(0) < 0)

near = 0 the function f behaves like

f”’ (O) . Figure 1.38. Local extrema: inflection

FO) + 5~ points.

This corresponds to a horizontal inflection point at x = 0 (Figure 1.38).
Ezamgple 4 (local minimum): Suppose that f{(0) = 0for n =1,...,125and f(126(0) >
0. Then locally near z = 0 the function behaves like

£(0) + az?

with a := f126)(0)/126! The only important fact is that £!2% is an even power of 2 and
a is positive. Because of these two facts, f behaves locally like Figure 1.37(a), that is
f has a local minimum at z = 0. The difference is quantitative, not qualitative; looking
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at the function under a magnifying glass one would see that f is much more flat than
Figure 1.37(a).

This example shows the universal applicability of this method also in cases where many
derivatives of the function vanish.

Local curvature: The function

g(@) := f(x) — (f(0) + f'(0)x)

describes the difference between f and the tangent at the point z = 0. By (1.32) we
e £10) 0 £70) s

g(x) = T
Because of this, the derivatives f”(0), f”’ (0),... of the function describe how the graph
of f looks near the tangent at z = 0. This gives us information on the curvature of (the
graph of) f.
Ezample 5 (local convexity and local concavity): Suppose now that f”(0) # 0. Then,
near z = 0, g behaves like

Yy [
|
z
a) local convexity (b) local concavity

(f7(0) > 0) (£7(0) < 0)

£70) -
T v

From this one gets the results:
(i) For f”(0) > 0 the graph of f lies
locally near z = 0 above the tangent
(local convezity, see Figure 1.39(a)).
(i) For f"(0) < 0 the graph of f lies
locally near £ = 0 under the tangent
(local concavity, see Figure 1.39(b)).

} :‘@
8 -

uh s v Ezample 6 (inflection point): Suppose
f F7(0) = 0 and f"(0) # 0. Then g is

locally near = 0 like

£1(0) s

T x 3
(c) inflection point (d) inflection point Thus the graph of f lies locally at z = 0
(£(0)=0,f""(0)>0) (F(0)=0,f"(0)<0) ON both sides of the tangent (Figure
1.39(c),(d)).

Figure 1.39. Local curvature of functions. L’Hospital’s rule: This rule described

in 1.3.3 follows formally immediately
from (1.32). To see this, we note

7@ = 10) + £y + 1002 4 0

et
970 5

3 —x " +....

()2

(@) = g(0) + ¢ (O)z + I e+ ¢

0
Ezample 7 (6) Suppose that f(0)} = g(0) = 0 and ¢’(0) # 0. Then we get

. f(:L') i T (f'(O) + f_”églw +.. ) _ f’(D)

im - = lim = .
e—0 g(z) =—0 4 (g’(O) + g”z(O)z T ) g'(0)
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1.4.5.2 The remainder term

The formal considerations in 1.4.5.1 can be made rigorous by estimating the error in
(1.32). This is done by the following formula

f@) = 1) 1 Pl )+ TP w2+
) (1.33)
I n.(“’) (o ~p)" + B (@),
Here the remainder term R,41(x) has the form
(n+1) _
Rpi1(z) = ! gi?;f p))(x p)* L, D<d<1. (1.34)

With the help of the summation symbol, (1.33) can be written

f() = Zf )@~ p)* + Russ(a).

Taylor’s theorem: Let J be an open interval with p € J and suppose that f: J — R
is (n + 1)-times differentiable on J. Then for every z € J there is a number ¥ €]0, 1],
such that the representation (1.33) with the remainder term (1.34) is valid.

This is the most important theorem in local analysis.

Application to infinite series:3* One has

X £(k)
1@ =306y, (1.35)
k=0

if the following assumptions are fulfilled:

(i) The function f:J — R is infinitely often differentiable on the open interval J and
ped.

(ii) For fixed z € J and every n = 1,2,... there are numbers a,(x) such that we have
the following estimate:

F D (p+ 9z — p))
(n+1)!

with Hm ay,(z) =0.
n—oo

(2 —p)"T <ap(z)  forall ¥€)0,1]

Ezample (expansion of the sine function): Let f(z) := sinz. Then
f(x) =cosz, f"(z)=—sinx, f"(x)=—cosz, fY(z)=sinz,

hence £/(0) = 1, f7(0) = 0, f(0) = —1, f®(0) = 0 and so on. From (1.33) with
p =0 we get

. z3 ms ( 1)n12n1
smr=— —+——...+

Gt o @

34]nfinite series are considered in detail in 1.10.



272 1. Analysis

forallz € Rand n =1,2,... with the error estimate:®®

f(2 ) (Vz) , |z|2n

Rop = " —_—

| Rzn ()] = ’ (@n)! x ~ (2n)!
A . .
From lim —— = 0 we obtain from this

n—oo (2n)!
el 1)n 1 2n 1
smx—x— =Z 2n =1 forall z € R.

n=1

The integral remainder term: If the function f : J — R is of type C™*! (see end
of section 1.4.1) on the open interval .J with p € J, then (1.33) holds for all z € J, where
the remainder term has the form:

(z —p)™*!

n!

Rop(z) = /(1 B (p 4 (2 — p)t)dt

1.4.5.3 Local extrema and critical points

Definition: A function f : M — R on a metric space M is said to have a local
minimum (resp. local mazimum) at a point a € M, if there is a neighborhood U(a) with

fla)y < f(z) forallz e Ula) (1.36)

(resp. f(z) < f(a) for all z € U(a)).

The function f has a local strict miminum, if instead of (1.36) one has
fla) < f(z) forall zeU(a) with z#£a

and analog for local strict maximum.

Local extrema (local extremal points) are by definition either local minima or local
maxima (cf. Figure 1.40(a),(b)).

Starting data: We consider a function

fia,b]— R

with p €]a, b].

Critical points: A point p is called a eritical point of f, if the derivative f’(p) exists
and fulfills

f'p) =0

35Note that f(*)(9z) = +sindz, £ cosdz, |sindz| < 1 and |cosdz| < 1 hold for all real = and ©.
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Intuitively this means that the tangent

at the point p is horizontal.

Horizontal inflection point: Thisis a } \
critical point of f which is neither a local

minimum nor local maximum (Fig 1.40).

(a) local minimum (b) local maximum

L

—

Necessary condition for a local ex-
tremum: If the function f has a local
extremum at the point p and the deriva-

tive f'(p) exists, then p is a critical point ¥

of f,ie., f'(p) =0.

Sufficient conditions for a local ex-

tremum: If f is of type C?*, n > 1in

a neighborhood of p and T

FO=f'@=...=i*p =0,

and, moreover

Sy

(c) horizontal inflection points

f(2n)(p) >0 Figure 1.40. Local extrema.

(resp. f2")(p) < 0), then f has a local minimum (resp. maximum).

Sufficient condtions for a horizontal inflection point: If f is of type C?"*!, n > 1
in an open neighborhood of p and one has
Fe)=1"=...= ) =0

as well as

Y Y
f(2n+1)(p) 7é 07 L ]

then f has a horizontal inflection point

at p. T T

Ezample 1: For f(x) := cosx one has

fl(z) = —sinz and f’(z) = - cosz.

This gives (a) y = cosz (b) y = 23
f(0)=0 and f”(0)<0.

Moreover f has a local maximum at z = Figure 1.41.

0. From

cosz<1 forallzeR

one gets that the function ¥ = cosz even has a global maximum at z = 0 (Figure
1.41(a)).

Ezample 2: For f(x) := z° we get f'(z) = 32, f"(z) =6z and f"(z) = 6. Hence
f(0)=f"(0)=0 and f"(0)#0.
Consequently, f has a horizontal inflection point at z = 0 (Figure 1.41(b)).

1.4.5.4 Curvature

The relative position of the graph to the tangent: The function

g(z) == f(z) — f(p) — f'(p)(x — p)

describes the difference between the function f and the tangent at p. We define:
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y v y (i) The function f is locally con-
vex at p, if the function g has a

local minimum at p.
(ii) f is locally concave at p, if g

| - i - i — has a local maximum at p.
P x p x p z . . .
(iii) f has an inflection point at
(a) convex (b) concave (c) inflection p, if g has a horizontal inflection
point point.

Figure 1.42. Locally convexr and concave functions. [ (i) (resp. (ii)) the graph of g

lies above (resp. below) the tan-
gent at the point p.

In (iii} the graph of f lies locally near p on both sides of the tangent (Figure 1.42).

Necessary conditions for an inflection point: If f is of type C? in a neighborhood
of p and if f has an inflection point there, then

f"(p) =0.

Sufficient condition for an inflection point: Suppose f is of type C* in the neigh-
borhood of a point p and satisfies

oy ="w=...=f*Vp) =0 (1.37)

for odd k > 3, and moreover f(*)(p) # 0. Then f has an inflection point at p.

Sufficient condition for local convexity: Suppose f is of type C* in a neighborhood
of p. If one of the following conditions is satisfied, then f is locally convex at p.

(i) f"(p) >0 and k=2.
(i) £ (p) > 0 and (1.37) for even k > 4.

Sufficient conditions for local concavity: Suppose f is of type C* in a neighborhood
of p. Then f is locally concave if one of the following conditions is satisfied:

(i) f”(p) <0 and & = 2.
(i) £ (p) < 0 and (1.37) for even k > 4.

Y
J/’, \ Ezample: Let f(z) := sinz. Then f'(z) = cosz,
- ,

;o f"(z) = —sinz and f"”(z) = —cosz.
~ 2w (i) Because of f”(0) = 0 and f(0) # 0, the point
' \ o z = 0 is an inflection point.

y =sinz (ii) For = €]0,n[ one has f”(z) < 0, hence f is
locally concave there.

Figure 1.43. (iii) For z €], 2x[ one has f”(x) > 0, hence f is
locally convex there.

(iv) Because of f”(w) = 0 and f”(n) # 0, x = = is an inflection point (Figure 1.43).

1.4.5.5 Convex functions

Convexity is the most simple kind of non-linearity. Often energy and negative entropy
functions are convex. Moreover, convex functions play an important role in the calculus
of variations and in optimization {see Chapter 5).
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Definition: A set M of a linear space is said to be convez, if we have the implication

TyeEM=>tz+(1-tlye M foral tel0,1].

Geometrically this means that the secant joining two points in M also belongs to M
(Figure 1.44)

A function f: M — R is said to be convez, if the set M is convex
and

fliz+ (1 =t)y) < tfl@)+ (1 -)f (W) (1.38)

for all 2,y € M and all real ¢ €]0, 1[. If in (1.38) one has < instead Figure 1.44.
of <, f is said to be strictly conver (Figure 1.45).

A function f : M — R is said to be concave 4 F
(resp. strictly concave), if — f is convex (resp.
strictly convex).

Example: The real function f: M — R from
an interval M is convex (resp. strictly convex),
if and only if the secant joining two points of I xr | z
the graph of f are above (resp. strictly above)
the graph of f (cf. Figure 1.45).

Criteria for ({onvexity: A function f : J — ' Figure 1.45.
R on an open interval J has the following properties.

(a) strictly convex (b) convex

(i) If f is convex, then f is continuous on J.

(ii) If f is convex, then in every point @ € J the right-sided derivative3® f,(x) and the
left-sided derivative f_(x) exist, and fulfill

f-(2) < f4(2)-

(iii) If the first derivative f' of f exists on J, then®”

f is (strictly) convex on J <= f’ is (strictly) increasing on J.

(iv) If the second derivative f” exists on J, then

f’(z) >0onJ < fisconvex on J,
f’(x) >0o0on J < f is strictly convex on J.

1.4.5.6 Application to the analysis of graphs

In order to determine the qualitative behavior of the graph of a function f : M CR —
IR, one proceeds as follows:
(1) First determine the set of points where f is non continuous.
(ii) Determine the behavior of f near these points by calculating the one-sided deriva-
tives, if possible.

3614 (2) 1= limy, _ o LEHRI=SE),

37The symbol A = B means that A implies B, and A <= B means that both A= Band B= 4
hold.
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(iii) Determine the behavior of f ‘at infinity’ by calculating the limit il{rilw f(z), if these
exist.

(iv) Determine the zeros of f by solving the equation f(z) = 0.

(v) Determine the critical points of f by solving the equation f'(z) = 0.

(vi) Classify the types of critical points of f (minima, maxima, inflection points, see
1.4.5.3).

(vii) Determine the domains where f is increasing or decreasing by studying the sign of
the first derivative f’ at different points (see 1.4.3).

(viii) Determine the curvature of f by studying the sign of f”(z)} (convexity, concavity,
see 1.4.5.4).

(ix) Finally determine the zeros of f”(x) to see whether these are inflection points (see
1.4.5.4).

Ezample: We want to plot the graph of the function

2
1
:02 + for £ <2,
fl@=1 "7
— for x> 2.
3
(i) From
i 5
zl]»g;li:of(m) - g

we see that the function f is continuous at z = 2. Hence f is continuous for all x # +1
and for all z € R, z # £1, z # 2 differentiable.

(ii) From
2
we get,
lultzltof(z) +oo0, hnlliof(x)

(iil) We have lim f(z) =1 and HT floy=<

(iv) The equation f(z) = 0 has no solutions, so the graph of f does not intersect the
T-axis.

(v) Let o # +1. Taking derivatives, we get

, 4
f(x):-—a_z—f—lv for z < 2,
Flla) = M for r <2
(z —1)° 7
and f'(z) = f"(z) =0 for z > 2. From
R T WICEL

we obtain that for = 2, there is no tangent to the graph. The equation

fz)=0, z<2



1.4. Differentiation of functions of a real variable 277

has precisely one solution, given by z = 0.
(vi) From f'(0) = 0 and f”{0) < 0 we see that at z = 0 there is a local minimum.
(vii) From
£(2) >0 on]—oo,—1[ and ]— 1,0,

¥\ <0 onlo,1] and]1,2[
it follows: f is strictly increasing in the intervals | — oo, —1[ and | — 1,0[, and strictly
decreasing in [0, 1[ and ]1,2[.
(viii) From

M >0 on]—o0,~1[ and ]1,2],

f (z){ <0 on]—-1,1]

it follows that f is strictly con-
vex on the interval | — oo, —1]
and ]1,2[, and strictly concave
on]—1,1].
(ix) The equation f"(z) = 0,
z < 2 has no solution. Hence '
for z < 2 there is no inflection
point.

In conclusion, we see that the
graph of f has the form of Fig-

ure 1.46.
Figure 1.46. The graph of the function f above.

1.4.6 Complex valued functions

We consider functions f : M C R — C, which are defined on an interval M and take
on complex values. We decompose f into its real and imaginary parts,

fz) = alz) + B(2)i (1.39)

with a(z), 5(z) € R. The derivative is defined by the limit
flz+h) - f(=z)
h

SN s
fz) = lim

if this exists.3®

Theorem: The derivative f'(z) exists if and only if the derivatives o'(z) and 3'(x)

exist. In this case one has

fl(a) = o (z) + B'(2)i. (1.40)

Erample: For f(x) := e'® one has
f(z) =ie'®, zeR.

Proof: From the Euler formula f(z) = cosx + isinz and (1.40) it follows that f'(x) =
—sinz +icosz = i(cosz + isin z). O

38The meaning of the limit is the same as for real functions of a real variable, using convergence of
sequences in the domain and sequences of complex numbers in the range {cf. 1.14.2). Explicitly, this

means
P = tim LRk 1)

n
for all sequences (hy) in M with nan;Q hyp, =0 and hy # 0 for all .
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1.5 Derivatives of functions of several real variables

In this section we denote the points of RN by z = (x1,...,zy), where all x; are real
numbers. We write y = f(z) instead of y = f(z1,...,zN).

1.5.1 Partial derivatives

Basic idea: For the function f(u) := uz‘C for some constant C' we have by 0.8.2 the

— = 2uC. .

Let

flu,v) = w3,

If we view v to be a constant and differentiate f as a function of u with respect to u,
then we get as in (1.41) the so-called partial derivative

of . 4
30 = 2uv (1.42)

with respect to the variable u. Of course we can do the same, considering u as constant
and differentiating f as a function of v, we get

oF _

S 3u?e?, (1.43)

Summarizing:

Partial derivatives are formed by considering a function of several
variables just as a function of one of the variables; treating all
other variables as a constant.

Higher partial derivatives are obtained in the same manner. For example, treating v in

(1.42) as a constant, one has:
0F _ 8 (N _, 2
dvau v \du)

If we consider v instead to be constant in (1.43), then we get

N AN
8u8v_%(3_v>—6uv'

We use the following notation:

/) SV ) PR o |
fui= 3’ foi= B0’ fuv = (fu)v—%a—u’ fou = (f”)“_%a—;'

For sufficiently smooth functions we have the convenient symmetry

fuv = fuu
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(compare with the Schwarz’ theorem (1.44)).

Definition: Let f : M C RY — R be a function and let p be an inner point of M. If
the limit

O (o i SO B2 o) = fB )
811

h—0 h ’

exists, then we say that f has a partial derivative with respect to z;. Other partial
derivatives are defined similarly.

The following terminology is often used in analysis.

The class C*(G) of smooth functions: Let G be an open set of RY. C*(G) is the
set of all functions f : G — R, which have continuous partial derivatives up to order k.
If f € C*(G), we also say that f is of type C*.

The class C*(G): We let G = G U 8G denote the closure of G (see 1.3.2.2). The

set C*(G) consists of all functions f : G — R with f € C*(G), for which all partial
derivatives up to order k can be continuously extended to the closure G.3°

Schwarz’ theorem: If the function f : M C RY — R is of type C? in a open
neighborhood of p, then

Fflp) _ *f(p)

= hm=1,...,N. 1.44
6xj6xm 6$m6$] ’ Jm ’ ’ ( )

More generally, if f is of type C*, k& > 2 on some open neighborhood of p, then the
order of taking partial derivatives up to order £ is irrelevant.

Ezample 1: For f(u,v) = uv? one has f, = 4u®v?, f, = 2u'v and
Juw = fou = 8uv.
Moreover, fu, = 12u%0v? and

fuuu = fuvu = 24u2U~

Notations: To simplify our notations, we will write

o,f = oL

= 3

Ezample 2: Equation (1.44) means that 3,0, f(p) = 0m0; f(p)-

1.5.2 The Fréchet derivative

Basic idea: We want to extend the notion of derivative to functions f : M C RY —
R¥ of several variables. The starting point is the relation

f+h) = fp)=f(p)h+r(h) (1.45)

390mitting the superscript k or setting k = 0, C(G) or C%(@) (resp. C(G) or C°(@)) denotes the
space of all continuous functions f : G — R (resp. f : G — R). Moreover, C*°(G) (resp. C*(G))
consists of those functions which belong to C*(G) (resp. C*(G)) for all k.
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for all h in a neighborhood U (0) of the origin with

lim r(h)

Jim, = = 0. (1.46)

The general philosophy of modern mathematics, hidden behind this definition, is:

differentiation means linearization. (1.47)

The one-dimensional classical special case: Let J be an interval with p € J. The
function f : J — R has a derivative f'(p) if and only if the decomposition (1.45) with
(1.46) holds.

Proof: If the classical derivative

exists, we define

e(h) = w - f'(» for h#0

and £(0) := 0 as well as r(h) := he(h). Then (1.48) implies (1.45) and (1.46).
Conversely, if one has a decomposition as in (1.45) for some fixed f’(p) for which (1.46)
holds, then (1.48) follows. O

The modern point of view: The classical definition (1.48) is absolutely inconvenient
to extend the notion of derivative to functions of several variables, since in that case
the analog of h is a vector A € R¥; it makes no sense to divide by such a vector. But
the decomposition formula (1.45) always makes sense. This is why the modern theory
of differentiation is based on (1.45) and the general strategy (1.47).4°

Differentiating functions from R"™ to R¥: Suppose M is a subset of R which
contains a neighborhood of the point p. A map

f:MCRY - RK (1.49)
has the form y = f(z) with columns*!
1 fi(z) "N I
e=| [, fl@)= : coy=| |, k=]
TN fx(z) YK by

40This elegant point of view can be immediately extended to operators acting in infinite-dimensional
Hilbert and Banach spaces and is an important too! in non-linear functional analysis for solving non-
linear differential and integral equations (cf. [212]). Briefly summarized, we can say:

Modern differential calculus approximates non-linear opera-
tors by linear operators and allows one to apply the easy theory
of linear algebra to the study of difficult non-linear problems.

41'\We use columns in order to be able to write (1.45) as a matrix equation; matrices and determinants
are dealt with in section 2.1. Using transposed matrices we could also write z = (z1,...,zn5)" and

f@) =(h@),..., fx@)T.
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The Euclidean norm of h is defined by the expression

1/2

N
LD
j=1

Definition: The map f in (1.49) is in a point p Fréchet differentiable, if there is a

(K x N)-matrix f'(p)

such that a decomposition (1.45) with (1.46) holds.
In this case the matrix f’(p) is called the Fréchet derivative of f at the point p.
Convention: Instead of Fréchet derivative we will forthwith speak of the F-derivative.*?

Main theorem: If the function f in (1.49) is of type C! in a neighborhood of a point
p, then the F-derivative f'(p) exists, and satisfies f'(p) = (9;fx(p)). Explicitly this is
the matrix

hfilp), OhH), ..., Onfilp)
o) = 51]?2.(.20), O2fa(p), ..., Onfalp)
O fr(p), Oafrlp), ..., Onfx(p)

of the first partial derivatives of the components fi of f. The matrix f/(p) is also referred
to as the Jacobian matrix of f at the point p.

Jacobian determinant: Suppose that N = K. Then the determinant det f'(p) of the
matrix f'(p) is called the Jacobian (functional) determinant of f and is written

8(f17"'.7fN) i '
8(11, PR ,IN) o detf (p)

Ezample 1 (K = 1): For a real function f : M C RN — R with N real variables one
has

F'(p)=(B8:f(),---,Onf (D)

If for example, f(z) := x,coszy, then one has &1 f(z) = cosze, dof(z) = —z1sinzs ,
hence

f’(0,0) = (alf(o’ O)a 82f(0a O)) = (170)'

To connect with the idea of linearization we use the Taylor expansion

(ha)?
2

coshyg =1— +...

For p = (0,0)7, h = (ha,h2)T and small values by, hg, we get from this

flp+h)— f(h) = h1+r(h),

42This notion of derivative was introduced by the French mathematician René Maurice Fréchet (1878
1956) at the beginning of this century. Fréchet, who is also responsible for the theory of metric spaces,
is together with David Hilbert one of the fathers of modern analytic thinking (see [212]).
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where r denotes terms of higher order. From f/(p) = (1, 0) one also has

10+1) - 10) = POk 70 = (10, ) i)

We can view f’(p)h = hy as a linear approximation of f(h) = hy coshy if hy and h; are

sufficiently small.
Example 2: We set

~(2) (1)

Flp) = ( afilp) Ox2fi(p) )

Then we have

O1f2(p) Oa2fa(p)

and

01 02) _ et f(p) — | Q11(P)  O2fi(p)
Ax1,x2) det £'(p) _‘ Oifa(p)  fa(p) }’

hence

det f'(p) = 81f1(p)02 f2(p) — B2 f1(p)O1 f2(p)-

In the special case that fi(z) = az1 + bxa, fa(z) = cz1 + dxe, we have
_fa b 1
=2 a) (%)

a b
d

and

o) = ( Z Z ) det f'(p) = ‘zad—bc.

As to be expected, the linearization of a linear map is just the map itself, so f'(p)z =

f(z).

1.5.3 The chain rule

The important chain rule allows the differentiation of composed functions. In the spirit

of the general linearizations strategy (1.47), this rule says

The linearization of composed mappings is the com-
position of the linearizations of the individual maps.

1.5.3.1 Basic idea

Let
z = F(u,v), v=u(z), v=rv(z).

(1.50)

It is our goal to differentiate the composed function z = F(u(x),v(x)) by z. Following

the Leibniz notation, the chain rule follows formally from the formula

dF = F,du + F,dv

(1.51)
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by (formal) division

dF du dv
L -RE+RT. (152)

If u and v depend on other variables than just z, that is

u=ul(z,y,...), v=v(z,y,...),

then the usual derivative in (1.52) must be replaced by partial derivatives. This gives

a_F :Fua_u_;r_]:'uav

9 oz e (1.53)

Replacing x by y, we get

oF Ou v

If F depends on further variables, i.e., y = F'(u,v,w,...), the one uses the relation
dF = Fydu+ Fdv+ Fpdw +...

and proceeds in the same manner.

Erample: Let F(u,v) := uwv? and u = 22, v = z. We set
F(z) := F(u(z),v(z)) = z*. (1.54)
Using (1.52), we get

dF:Fd_u+Fvﬂ
dz

iz ey = v2(2z) + 2uv = 423,

The same result follows directly from F’(z) = 4a3.

Precise notation: The formula (1.52) is quite suggestive, but not completely precise;
in fact, on the left hand side F is a function of z, while on the right hand side it is a
function of u and v. If we are trying to be precise, then we should change the notations,
for example setting

H(z) := F(u(z),v(z)).

Then the precise statement of the chain rule, which completely states all arguments, is

H'(z) = Fu(u(z), v(@))u/(z) + Fo(u(z), v(x))v'(x). (1.55)

For
H(z7 y) = F(u(za y)v ’U(IE, y))

we get

Hy(z,y) = Fu(u(z,y), v(z,y))us(2,y) + Fo (u(z, ), v(z, ) Jvy (2, ). (1.56)

Since the formulas (1.55) and (1.56) are rather unwieldy compared with (1.52) and
(1.53), they are not often used in calculations. However, for more theoretical purposes,
like proving theorems, it can be essential to have the more precise notations as above.
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Physicists’ notation from thermodynamics: Let E denote the energy of a system.

Then the symbol
( ) T
6%

means that one views F = E(V,T) as a function of the volume V and the temperature
T, and forms the partial derivatives with respect to V. One the other hand,

(5)

o/

means that £ = E(p,V) is viewed as a function of the pressure p and the volume V,
and the partial derivatives are with respect to p. In this way the energy is denoted by

a unified symbol, the notation makes it clear, which variables the function depends on,
and one can use the advantages of the Leibniz notation (1.51) and (1.53).

1.5.3.2 Derivatives of composed functions

Basic formulas: We consider the composed function

H(z) := F(f(z)).

Explicitly this means
Hpy(z) = F(fi(z),..., fx(2)), m=1,...M,

with £ = (z1,...,zn). Our goal is to derive the chain rule

e ) = Z = (1(9) 32 ) (1.57)

form=1,...,M andn=1,..., N. Written as a matrix equation, (1.57) is

H'(p) = F'(f(p)f'(p). (1.58)

Because H = F o f this can also be written

(Fo f)(p)=F(f@)f'(p). (1.59)

which is similar to the linearization (1.50).

A function is said to be locally at a point p of type C¥, if the function is of type C* in
a neighborhood of p.

The chain rule: The formulas (1.57)-(1.59) hold and the composed function H = Fo f
is locally at p of type C, provided the following assumptions are satisfied:

(i) The function f : D(f) € RY — R¥ is locally at p of type C1.

(ii) The function F : D(F) € R¥ — RM is locally at f(p) of type C*.
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The product formula for functional determinants: In the case M = K = N,
(1.58) leads to the determinant formula

det H'(p) = det F'(f(p))det f'(p).

This is equivalent with the Jacobi product formula

Ofy,.. Hy) ) Oy, Fx)
8(%1,...,21\]) a(flv"'7fN)

6(f1y'~-:fN)

8(21,...,:1:]\])

(f(@) ().

1.5.4 Applications to the transformation of differential opera-
tors

Differential equations can often be simplified by passing to new coordinates. We il-
lustrate this with the example of polar coordinates. The same considerations can be
applied to arbitrary coordinate transformations.

Polar coordinates: Instead of Cartesian coordinates z,y, we introduce

T =rCcosy, y = rsineg, -T<p<m, (1.60)

which are called polar coordinates v, ¢ (Figure 1.47). We set
o 1= arctan 2’ T #0;
x

then the inverse of this coordinate transformation is

r= VET R, (161)

o for >0, yeR, y
Ifr+a forz<0,y20,
v= :I:g for z=0, y 20, r
T for z <0, y=0.
x
Transformation of a function to polar coordinates: The trans- Figure 1.47.
formation of a function F = F(z,y) from Cartesian to polar coordi-
nates r, ¢ is affected by setting
f(r, @) == F(z(r,0), y(r, ¥))- (1.62)

Transformation of the Laplace operator: Suppose the function F : R — R is of
type C2. Then the usual Laplace operator

AF := Fpp + Fyy, (z,y) € R?, (1.63)

is transformed to the expression

1 1
Af=Frt Floet 2y T>0 (1.64)
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Consequence: The relation (1.64) implies immediately that the function
f(r) :=nr, r >0,
is a solution of the partial differential equation Af = 0. Transforming back, we see that

Flz,y) =Invz?+y2, 2> +y°#0,

is a solution of the Laplace equation AF = 0, a fact which is much more difficult to see
in these coordinates.

Notations: Often the symbol F is used instead of f in (1.64). Although this notation
is inconsistent, it is very convenient in applications in physics and technology.

We now describe two methods for deriving the transformed equation (1.64).
First method: We start from the identity

F(LE, y) = f(’f‘(il],y), (P(SE, y))

Taking derivatives with respect to z and y with the help of the chain rule gives
Fz(ms y) = fr(T‘(JJ, y), 4,0(111, y))'rm (3:7 y) + flp(r(mv y)1 W(ZV y))@w (xa y):
Fy(z,y) = fr(r(z, ), o, y))ry (@, y) + fo(r(z,9), 0z, v))ey (2, 7).
Taking derivatives a second time, now using the product rule and the chain rule, gives
Py = (frrr:c + frcp‘P:)Ta: + frrmr, + (ftp'rrr + fcpga‘ﬁx)ﬂor + f:pSOma:,
Fyy = (forry + froy)ry + foryy + (Fory + foopy)py + Foyy-
Thus, we get the result

Fox + Fyy = frr(r?: + 1‘5) + pr(‘ﬁazc + <P§) + 2fr4p(4px"'x + WUTU)

1.65
I (Taw + Tyy) + Fo(@re + Pyy)- ( )

First assume that z # 0. Then (1.61) implies

x Y .
Ty = ————— = COS{, ry = ————— = sing,
/22 + 2 v /22 + 2
W__y_:_sincp _ T _cosp
Yo = Tur 2 r’ YT e o

Differentiating again with respect to x and y using the chain rule gives

2 2
. sin® cos®
ra = (—sing)ps = E, oy, = (cosplp, = L,
2cos@sing
Prz = _—7‘2-— = —Pyy-

These relations, together with (1.65), yields the formula (1.64) for z # 0. The case of
z =0, y # 0 follows from (1.64) by taking the limit z — 0.

Second method: We now use the identity

f(rv 30) = F(:c(r, 90)7 y(-r, 99))
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To simplify notations, we write f instead of F. Taking derivatives with respect to » and
©, using the chain rule gives

fr = fozr + fyyr = fa:COS(P+ fysin<p,
fo = fap + fyyo = —fzrsing + fyrcose.

Solving for f; and f, in this equation we obtain

fa: = Afr + Bf(pv fy = Cfr + thp (1-66)
with .
A=cosp, B:_snrupy C =singp, D:g.

o
We write 8, = P2’ etc. Then (1.66) is equivalent to the following key formula

8y = AB, + B3,, 8, =Cd,+ Da,.

From this we obtain

82 = (Ad, + Bd,)(Ad, + BY,)

T

= A8,(Ad,) + BI,(Ad,) + AB.(Bd,) + Bd,(Bd,).
The product rule implies 8,(A8,) = (8, A)8, + Ad? etc. Thus,
82 = AA,8, + A8} + BA,O, + 2AB8,0, + AB.8, + BB,0, + B8
Exchanging A with C and B with D, one gets similarly
82 = CC0, + C*82 + DCud, + 20DB,0, + CD,8, + DD,d, + D*82.

Because of the relations

A, =C. =0, A, = —singp, C, = cosy,
__ singp _ cosp _ cosg _ singp
B, = 7z Bcp__Tv Dr——r—27 D‘P_"T

we finally get
1 1
— 52 2 _ 92 2
A_61+3y—8,”+r—26¢+;8r,

which is the transformed formula (1.64).

The second method does not use the inverse formula (1.61), which can be a great sim-
plification in complicated calculations.

1.5.5 Application to the dependency of functions
Definition: Let fr : G — R be a C'-function, k = 1,...,K + 1, where G is a non-

empty open set of RY. We say that fx,, depends on fi,..., fx, if and only if there is
a C'-function F : RX — R with

fri(z) = F(fi(z),..., fx(z)) for all z € G.
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Theorem: The dependency relation is satisfied, provided the rank of the two matrices*?

(fi(@)s-- o feqa(@)  and  (fi(z),..., fx(2))
is constant, equal to 7 for some r with 1 <r < K.

Ezample: Let fi(z) := ™, fa(z) := €2 and f3{x) 1= ™ *®2. Then we have
’ _ 81 f1 (CL’) _ g™t ’ _ 0
ro=( o1 )-(% ) sw-(2).
Because of the relation det (fi(z), f4(x)) = e**e*2 # 0, we get from this

rank(f{(z), f3(2)) = rank(f](z), f3(z), f3(z)) = 2

for all z = (x1,22) in R?. Consequently, f3 is dependent on f; and fo in R?. In fact,
one has the explicit relation

F3(z) = fi(z) f2 ().
1.5.6 The theorem on implicit functions
1.5.6.1 An equation with two real variables

We want to solve the equation

Flz,y)=0 (1.67)

for y, where z,y € R and F(z,y) € R. That is, we are looking for a function y = y(z)
with

F(z,y(z)) = 0.
We assume that we know some fixed solution of the equation, i.e.,
F(g,p)=0. (1.68)
Moreover, we require
Fy(g,p) #0. (1.69)

Theorem on implicit functions: If the function F : D(F) C R?> — R is of type
C*, k > 1 in some neighborhood of the point (g, p), and the conditions (1.68) and (1.69)
are both satisfied, then the equation (1.67) can be uniquely

Y solved at the point (g, p) for y** (Figure 1.48).
V(p) :_ ¥¥¥¥¥ ! The solution y = y(x) is locally at q of type C*.
P /-‘: The method of implicit differentiation: To calculate
S- - ' the derivatives of the solution y = y(x), we differentiate the
| ¢ ¢ equation
U() Fla,y(z)) = 0
with respect to x and use the chain rule. This yields
Figure 1.48.

F(zy(2)) + Fy(z,y(2)y'(z) =0, (1.70)

“3We write f}(z) as a column matrix.
44This means there are open neighborhoods U/{(g) and V(p), such that the equation (1.67) has a unique
solution y(z) € V(p) for every = € U(g).
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which in turn implies

y'(2) = —Fy(z,y(x)) " Fo(z, y(2)). (L.71)

The higher derivatives of y are gotten by differentiating (1.71). However, it is more
convenient to take the derivative of (1.70) with respect to z. This gives

Faa(2,y(2)) + 2Fay(w, y(@))y (2) + Fyy (2, 9(2))y (2)* + Fy(, y(2))y" (z) = 0.

From this one can solve for y”(x). One proceeds similarly for higher derivatives.

Approximation formula: The Taylor expansion of y for a solution of F(z,y) = 0
gives the approximation

v"(9)

T(z~q)2+...

y=p+v gz -+

Ezample: Let F(x,y) = e¢Ysinz—y. Then F(0,0) = 0 and F(z,y) = ¥ sinz —1, hence
F,(0,0) # 0. Consequently, the equation

eVsinz —y =0 (1.72)

can be uniquely solved near (0,0) for y. To get an approximation of the solution y = y(z),
we make the ansatz

yx)=a+br+ca® +...
Because y(0) = 0, one has a = 0. Using the power series expansion of the exponential
3
eV=1+4+y+..., sinz:z——?)-'Jr..., (1.73)

we get from (1.72) and (1.73) the equation

z—br+z*(.)+23(.)+...=0.

Y
Comparing coefficients yields b = 1, hence p
y=z+... 4

Bifurcation: Let F(z,y) := 22 —y?. Then we have F(0,0) =0
and F,(0,0) = 0. Since (1.69) is not satisfied, the equation
F(z,y) = 0 cannot be locally solved at (0,0) uniquely for y. In
fact, the equation

Figure 1.49.

22—y =0

has two solutions, y = +z. Hence the point (0,0) is a point where the solutions branch
(a bifurcation point)*® (Figure 1.49).

45The general theory of bifurcations has many interesting applications in physics (cf. [212]).



290 1. Analysis

1.5.6.2 Systems of equations

The calculus of the F-derivative is flexible enough that it can be immediately generalized
to apply to systems of non-linear equations

F(z,y)=0 (1.74)

with z € RV, y € RM and F(z,y) € R™. One only has to pay attention to the fact
that F,(q, p) is a matrix and the decisive condition F, (g, p) # 0 has to be replaced by

det Fy(q,p) #0. (1.75)

Let (g, p) be a solution of

F(g,p)=0, q¢eRY, peRY. (1.76)

Theorem on implicit functions: If the function F : D(F) € R¥N™M™ — RM js of
type C*, k > 1 in a neighborhood of the point (g,p), and if the two conditions (1.75)
and (1.76) are satisfied, then the equation (1.74) has a unique solution y at the point
(¢,p)-

The solution y = y(z) is locally of type C* at the point ¢. The formula (1.71) for the
F-derivative y'(x} remains valid, now as a matrix equation.

Explicit formulation: The system (1.74) is explicitly
Fr(zy,. . 2N 01, um) =0, k=1,...,M, (1.77)

and Fy(z,y) is the matrix of the first partial derivatives of Fj, with respect to yy,.
Replacing ym, by ym(z1,...,2.) in (1.77) and taking derivatives with respect to z,, one
has

8ym( )

—‘(2 y(x)) +Z (my:v)) =0, n=1...,N.

Solving this equation for 0y, /0z,, yields the matrix equation (1.71).

1.5.7 Inverse mappings
1.5.7.1 Homeomorphisms

Definition: Let X and Y be metric spaces (for example subsets of RY). A map
f: X — Y is called a homeomorphism if f is bijective and both f and f~!
continuous (see 4.3.3).

Theorem on homeomorphisms: A bijective continuous map f : X — Y on a
compact set is a homeomorphism.

This theorem generalizes the theorem 