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Foreword

We live in an age in which mathematics plays a more and more important role, to the
extent that it is hard to think of an aspect of human life to which it either has not
provided, or does not have the potential to provide, crucial insights. Mathematics is
the language in which quantitative models of the world around us are described. As
subjects become more understood, they become more mathematical. A good exam-
ple is medecine, where the Radon transform is what makes X-ray tomography work,
where statistics form the basis of evaluating the success or failure of treatments, and
where mathematical models of organs such as the heart, of tumour growth, and of nerve
impulses are of key importance.

To apply mathematics in a different area requires of the mathematician the ability and
willingness to learn about that area and understand its own language, and it requires of
the specialist in that area a similar ability and willingness to learn the language of the
appropriate parts of mathematics. Mathematics has its own internal language barriers
too, so that to move from one part of the subject to another can require a major effort.

It is to these needs of furnishing basic understanding and overcoming language barriers
that the Oxford Users' Guide to Mathematics responds. In editing it, Eberhard Zeidler
has given us a remarkable panoramic overview of mathematics, ranging from elementary
facts and concepts, to advanced and sophisticated techniques, lucidly and economically
explained. The outcome of many years of work, it will provide readers of diverse back-
grounds with the fundamental concepts and language on which deeper understanding
and significant applications can be based.

Oxford, December 2003 John Ball
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Preface

In the past few years, mathematics has made enormous strides forward. An eminent
factor for this progress has been the construction and application of ever stronger and
faster computers. Moreover, the extremely complicated problems of modern technology
which pose themselves to engineers and natural scientists require highly sophisticated
mathematics, in which routine knowledge no longer suffices and the boundaries between
pure and applied mathematics are starting to melt.

The Oxford Users' Guide to Mathematics responds to the high standards required by
the growing influence of computer science within the mathematical sciences and the
increasingly close relationships between mathematics and the natural and engineering
sciences. It conveys a lively, modern picture of mathematics aimed at a wide readership,
including:

- students of high schools and undergraduates,

- graduate students of mathematics,

- students of engineering, natural sciences, economy and other directions of study
which require mathematical background,

- practitioners who work in these fields,

- teachers, both in schools and at universities.

The needs of as broad an audience as this will be taken into account in our presentation
by the consideration of a wide range of aspects, starting from elementary facts all the way
up to modern, highly sophisticated results and methods. In addition, the presentation
is very broad in its consideration of very diverse areas of mathematical research. In this
respect, the book is both vertically and horizontally quite deep. At the same time, we go
to great pains to motivate the material completely and explain the basic ideas in depth,
both aspects of which are emphasized more in the text than are technical details. Also,
applications of the ideas and methods play an important role in the development.

There are many interludes on historical background of the results or more generally
on the period in which the results were first obtained. In addition to these remarks
throughout the text, there is, at the end of the volume, a detailed sketch of the history
of mathematics. This exemplifies the point of view that mathematics is more than a dry
collection of formulas, definitions, theorems and manipulations with symbols. Rather,
mathematics is an integral part of our culture and a wonderful medium for thought
and discovery, which makes it possible to make progress on frontiers like the modern
theory of elementary particles and cosmology, areas which cannot be understood without
a mathematical model, as they so lie so far from our usual realm of perception and
understanding.

In the introductory Chapter 0 we collect basic mathematical notions and facts which are
often required by students, scientists and other practitioners, in the form of a reference
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book. A student of medicine, for example, can find here an elementary introduction to
the methods of mathematical statistics, which will hopeful be of use in the writing of a
statistical part of a thesis. The following three chapters are devoted to the three basic
pillars of mathematics:

- analysis,

- algebra, and

- geometry.

These chapters are followed by a chapter devoted to

- foundations of mathematics (logic and set theory),

which takes into account in particular the needs and difficulties of beginning students.
The last three chapters are then devoted to the most important fields of applications of
mathematics, namely

- theory of variations and optimization,

- stochastics (probability theory and mathematical statistics), and

- scientific computation.

The possibilities which modern supercomputers offer have radically changed scientific
computation. Whether mathematician, engineer or natural scientist, the practitioner
today is in a position to carry out extensive experiments on the computer which make it
possible to collect experience from examples in hitherto underdeveloped areas of math-
ematics. In this way, completely new questions arise and give new impulses for the
development of mathematical theories. The last chapter is the first appearance, in
pocket book form, of the modern theory of scientific computation, which, as mentioned
above, has revolutionized the engineering sciences.

The past decade has seen the appearance of software systems which make it possible to
carry out many routine jobs in mathematics on a standard PC. This is mentioned at
the corresponding places in the text, where these methods are motivated and described.
The bibliography at the end of the book was very carefully put together and gives you
an idea of where to turn should you have questions above and beyond what is directly
treated in the text. The level of references varies from introductory texts to classics and
goes on to advanced monographs, reflecting the frontiers of modern research.

This book has a long history. The Pocketbook of Mathematics by I. N. Bronstein and K.
A. Semendjajew was originally translated from Russian into German by Viktor Ziegler.
It appeared in 1958, published by the B. G. Teubner Verlag in Leipzig, and has become in
the mean time a standard in the German language with 18 editions until 1978. Toward
the end of the last century it was decided to bring this classic up to date, not only
with respect to the presented material, but also with respect to the breadth and kind
of presentation; this was carried out under the supervision of Eberhard Zeidler, who
wrote all chapters except that on scientific computing, which was authored by Wolfgang
Hackbusch and Hans Rudolf Schwarz. This appeared, again by Teubner-Verlag, in 1996.
The work was so fundamentally different than its predecessors that Oxford University
Press felt it would be worth translating it, and they assigned Bruce Hunt that job of
doing so. The translator has done his best to keep the spirit of the book as in the original,
at the same time including a series of corrections which had been reported by astute
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readers or which were spotted in the process of translating the volume. Furthermore the
translator has gone to great pains to improve the graphical quality of the text, as this
improves the ease with which the material can be absorbed by the reader.

Acknowledgments: In addition to the pure translation of the volume, it was agreed
with the publisher to typeset the entire book from scratch; in particular this meant
retyping all the formulas and tables, as well as redoing all the illustrations. For help with
these aspects, as well as extensive proof reading of the translation, both the translator
and the editor are indebted to Micaela Krieger-Hauwede (illustrations), Lars Uhlmann
(equations and tables) and Kerstin Folting (equations, tables and a meticulous proof-
reading of the entire text). Without their help the translation would have taken much
longer than it did. The editor likes to thank the translator for his excellent job.

Frankfurt/Main Bruce Hunt
Leipzig Eberhard Zeidler
Fall 2003
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Introduction

The greatest mathematicians like Archimedes, Newton
and Gauss have always been able to combine theory and
applications into one.

Felix Klein (1849-1925)

Mathematics has more than 5000 years of history. It is the most powerful instrument of
the human mind, able to precisely formulate laws of nature. In this way it is possible to
dwell into the secrets of nature and into the incredible, unimaginable extension of the
universe. Fundamental branches of mathematics are

- algebra,

- geometry, and

- analysis.

Algebra is concerned with, at least in it original form, the solution of equations. Cunei-
form writing from the days of King Hammurapi (eighteenth century BC) document that
the practical mathematical thinking of the Babylonians was strongly algebra-oriented.
On the other hand, the mathematical thought of ancient Greece, whose crowning achieve-
ment was the appearance of Euclid's The Elements (around 300 BC), was strongly
influenced by geometry. Analytical thinking, based on the notion of limit, was not
systematically developed until the creation of calculus by Newton and Leibniz in the
seventeenth century.

Important branches of applied mathematics are aptly described by the following indica-
tions:

- ordinary and partial differential equations (describing the change in time of systems
of nature, engineering and society),

- the calculus of variations and optimization,

- scientific computing (the approximation and simulation of processes with more
and more powerful computing machines).

Foundations of mathematics are concerned with

- mathematical logic, and

- set theory.

These two branches of mathematics did not exist until the nineteenth century. Math-
ematical logic investigates the possibilities, but also the limits of mathematical proofs.



2 Introduction

Because of its by nature very formal development, it is well-equipped to describe pro-
cesses in algorithms and on computers, which are free of subjectivity. Set theory is
basically a powerful language for formulating mathematics. Instead of dealing in this
book with the formal aspects of set theory, we put our emphasis on the liveliness and
broad nature of mathematics, something which has fascinated mankind for centuries.

In modern mathematics there are opposing tendencies visible. On the one hand, we
observe an increase in the degree of specialization. On the other hand, there are open
questions coming from the theory of elementary particles, cosmology and modern tech-
nology which have such a high degree of complexity that they can only be approached
through a synthesis of quite diverse areas of mathematics. This leads to a unification
of mathematics and to an increasing elimination of the non-natural split between pure
and applied mathematics.

The history of mathematics is full of the appearance of new ideas and methods. We can
safely assume that this tendency with continue on into the future.



0. Important Formulas, Graphical
Representations and Tables

Everything should be made as simple as possible, but not simpler.

Albert Einstein (1879-1955)

0.1 Basic formulas of elementary mathematics

0.1.1 Mathematical constants

Table 0.1. Some frequently used mathematical constants.

Symbol

e

C

In 10

Approximation

3.14159265

2.71828183

0.57721567

2.30258509

Notation

Ludolf number pi

Euler1 number e

Euler constant

natural logarithm of the number 10

A table of the most important scientific constants can be found at the end of this
handbook.

Factorial: Often the symbol

is used for the shown product; this product is called n-factorial. Moreover, we define
0!:=1.

Example 1: 1! = 1, 2! = 1 • 2, 3! = 1 • 2 • 3 = 6, 4! = 24, 5! = 120 and 6! = 720.

In statistical physics, one requires the value of n! for n around 1023. For such astronom-
ical numbers, one has the Stirling formula

n! := I 2 3.. . • n

as a good approximation (cf. 0.7.3.2).
1Leonhard Euler (1707-1783) was the most productive mathematician of all times. His collected

works fill 72 volumes and more than 5000 additional letters. His monumental lifetime work has shaped
much of the modern mathematical science. At the end of this handbook there is a table of the history
of mathematics, which should help the reader to orient her- or himself in the history of mathematics
and its greatest contributors.



4 0. Formulas, Graphs and Tables

Infinite series for and e: The precise value of is given as the value of the
convergent Leibniz series

Because of the alternating sign of the terms, the error of the truncated series is always
given by the following term. Thus, the terms listed on the right-hand side of (0.2)
give an approximation of for which the error is at most 1/9. This series, however, is
not used for practical computations of values for on computers, because it converges
very slowly. Contemporary approximations of are accurate up to more than 2 billion
decimal places (cf. the more detailed discussion of the number in 2.7.7). The value of
e is the value of the following convergent series

For large numbers n, for example, one has approximately

More precisely, the right-hand side of (0.3) approaches for larger and larger values of n
the value of the number e. One also writes for this

In words: the number e is the limit of the sequence of numbers as n ap-

proaches infinity. With the help of the number e one can define the most important
function in mathematics:

This is the Euler e-function (exponential function, cf. 0.2.5). The inverse function of
(0.4) is the natural logarithm

(cf. 0.2.6). In particular for powers of 10 one gets

Here x can be an arbitrary real number.

Representations of and e through continued fractions: For more detailed
investigations of the structure of numbers, one uses representations in terms of continued
fractions instead of decimal numbers (cf. 2.7.5). The representations of and e in terms
of continued fractions are displayed in Table 2.7.
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The Euler constant C : The precise value of C is given by the formula

For large natural numbers n, one thus has the approximation formula

The Euler constant C appears in a surprisingly large number of mathematical formulas
(cf. 0.7).

0.1.2 Measuring angles

Degrees: In Figure 0.1, some of the most often used angles, measured in degrees,
are shown. An angle of 90° is also called a right angle. In ancient Sumeria near the
Euphrates and Tigris rivers, more than 4,000 years ago, a number system with the basis
60 (sexagesimal system) was used. One can trace back to this usage the fact that the
numbers 12, 24, 60 and 360 are used in such an important way in our measurement
of time and angles. In addition to the degree, other measures for angles used in, for
example, astronomy are the following smaller measurements:

Example 1 (Astronomy): The
face of the sun is about 30' (half
a degree) in the sky.

Figure 0.1. Postive and negative angles.Because of the motion of the
earth and the sun, the stars in
the sky change their positions. Half the maximal change per year is called a parallax.
This is equal to the angle a, which the star would appear to see between the earth and
the sun when they are at maximal distance from each other (cf. Fig 0.2 and Table 0.2).

Table 0.2. Parallax and distance.

Star

Proxima Centauri
(nearest star)

Sirius
(brightest star)

Parallax

0.765"

0.371"

Distance

4.2 light years

8.8 light years Figure 0.2.

A parallax of one arc second corresponds to a distance of 3.26 light years (3.1 • 1013 km).
This distance is also referred to as a parsec.

5matics
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Radians: A angle of a degrees (o°) corresponds to

radians. Here a is the length of an arc on the unit circle which is cut out by the angle
a° (Figure 0.3). In Table 0.3 one finds often-used values for this measurement.

Convention: Unless stated otherwise, all angles in this book will be measured in
radians.

Table 0.3. Angles and radians.

Degrees

Radians

Figure 0.3.

Sum of angles in a triangle: In a triangle, the sum of the angles is always TT, i.e.,

(cf. Figure 0.4).

Figure 0-4- Angles in
a triangle.

Figure 0.5. Angles in a quadran-
gle.

Sum of angles in a quadrangle:
Since a rectangle can be decom-
posed into two triangles, the sum of
angles must be 2?r, i.e.,

(cf. Figure 0.5). Figure 0.6. Pentagon and hexagon.

Sum of angles in an n-gon: In general one has

Sum of the inside angles of a n-gon = (n — 2)?r.

Example 2: For a pentagon (5-gon) (resp. hexagon (6-gon)), the sum of the angels is
3?r (resp. 4?r) (Figure 0.6).
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0.1.3 Area and circumference of plane figures

In Table 0.4 the most important plane figures are illustrated. The meaning of the
appearing trigonometric functions since and cos a is explained in detail in 0.2.8.

Table 0.4- Surface area and circumference of several polygons.

Figure Diagram Area A Circumferenc
C

square A = a2

(a length of a side)
C = 4a

rectangle A = ab
(a, b lengths of the sides)

C = 2a + 2b

parallelogram \A = ah = ab sin 7]
(a length of the base,
b length of the side
h height)

C = 2a + 2b

rhombus
(equilateral
parallelogram)

A = a2 sin 7 C = 4a

trapezoid
(quadrangle
with two par-
allel sides)

(a, b length of the parallel
sides, h height)

C=a+b+c+d

triangle

(a length of the base,
b, c length of the other
sides, h height, s := C/2)

Heronian formula for the area:

C = a + b + c

7
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Table 0.4 (continued)

right
triangle

relation between
sides and angles:

(c hypotenuse 2,
a opposite leg,
b neighboring leg)

Theorem of Pythagoras3:

\a2 + b2 = c2\

Euclidean relation
for the height:

(h height over the hypotenuse,
p, q segment lengths)

C=a + b + c

equilateral
triangle

C = 3a

circle

(r radius)

sector of a cir-
cle

C = L + 2r,
L = ar

annulus A = 7r(r2 - g2)
(r outer radius,
Q inner radius)

C = 27r(r + Q)

2 In a right triangle the side which is opposite the right angle is called the hypotenuse. The other
sides are called catheti or simply legs.

3 Pythagoras from Samos (at 500 BC) is considered to be the founder of the famous school of the
Pythagoreans in ancient Greece. The theorem of Pythagoras however was know almost 1,000 years
before that, by the Babylonians under the regent King Hammurapi (1728-1686 BC).

2 = pq
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Table 0.4 (continued)

parabola
sector4

hyperbola sec-
tor

ellipse sector

ellipse diagram as
above, where
B is the
focal point

(a, b lengths of the axi,
b < a,
£ numerical eccentricity)

(cf. (0.5))

The meaning of elliptic integrals for the calculation of the circumference of
the ellipse: The numerical eccentricity e of an ellipse is given by the formula

The geometric interpretation of e is to be found in the fact that the focal point of the
ellipse has a distance from the center of the ellipse of ea. For a circle, one has e = 0.
The larger the numerical eccentricity e is, the flatter the ellipse is.

It was already noticed in the eighteenth century that the circumference of an ellipse can
not be calculated by elementary means. This circumference is given by C = 4aE(e),
where we use the notation

for the complete elliptic integral of the second kind of Legendre. There are tabulated
values for this integral (cf. 0.5.4). For an ellipse we always have that 0 < e < 1. As

4Parabola, hyperbola und ellipse will be considered in 0.1.7. The function arcosh will be introduced
in 0.2.12.
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approximations for all these values one has the series

The general theory of elliptic integrals was created in the nineteenth century (cf. 1.14.19).

Regular n-gons: A n-gon is said
to be regular, if all the sides and an-
gles are equal (Figure 0.7).

The distance from the center to one
of the corners of the n-gon will be
denoted by r. Then the geometry
of a regular n-gon is determined by
the following statements:Figure 0.7. Regular n-gons.

center angle

complementary angle

length of sides

circumference

area

Theorem of Gauss: A n-gon with n < 20 can be constructed with the help of a ruler
and compass, if and only if

n = 3, 4, 5, 6 , 8, 10, 12, 15, 16, 17, 20.

In particular, such a construction is not possible for n = 7, 9. 11, 13, 14, 18, 19.
This result is the consequence of Galois theory and will be considered in 2.6.6 in more
detail.

0.1.4 Volume and surface area of solids

In Table 0.5 the most important three-dimensional figures are collected.

Table 0.5. Volume and surface area of some solids.

Solid Diagram Volume V Surface area O

section area M

cube V = a3

(a length of sides)
0 = 6a2
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Table 0.5 (continued)

parallelepiped V = abc
(a, b, c lengths of sides)

O = 2(ab+bc+ca)

ball

(r radius)

O = 47IT2 |

prism \V = Gh\

(G area of the base, h height)

cylinder V = irr2h
(r radius, h height)

O = M + 27rr2,
M = 2?rr/i

solid annulus V = Trh(r2 - Q2)
(r outer radius,
Q inner radius,
h height)

pyramid

(G area of the base,
h height)
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Table 0.5 (continued)

circular cone

capped
pyramid

capped cone

obelisk

wedge
(the sides are
equilateral
triangles)

section
of a ball
(bounded by
a meridian)

slice of a ball
(bounded by
two meridians)

(r radius, h height.
s length of a meridian)

(G surface area of the base,
g area of the top)

(r, Q radii, h height,
s length of the side)

(a, b, c, d lengths of the sides)

(a, b base side lengths,
c upper edge, h height)

(r radius of the ball,
h height)

(r radius of the ball.
h height, R and g radii of the
meridians)

(top part)

(middle layer)
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Table 0.5 (continued)

torus

barrel
(with circular
section)

ellipsoid

(r radius of the torus,
Q radius of the section)

(D diameter, r radius at the
top, h height;
the formula is an approxima-
tion)

(a, 6, c lengths of the axi,
c < b < a)

see the formula
of Legendre (L)
forO

The meaning of elliptic integrals for the calculation of the surface area of the
ellipsoid: The surface of an ellipsoid can not be calculated by elementary means. One
requires again elliptic integrals. For this one has the formula of Legendre

with

The formulas for the elliptic integrals E(k, (p) and F(k, </?) can be found in 0.5.4

0.1.5 Volumes and surface areas of regular polyhedra

Polyhedra: A polyhedron is a solid which is bounded by elementary parts (plane
figures).

The regular polyhedra (also called Platonic solids) have faces, all of which are congruent,
regular n-gons of side length a, in which at all corners the same number of faces meet.
There are precisely 5 regular polyhedra, which are listed in Table 0.6.
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Table 0.6. The five Platonic solids.5

Regular polyhedron Faces Volume Surface area

tetrahedron

cube

octahedron

dodecahedron

icosahedron6

4 equilateral
triangles

6 squares

8 equilateral
triangles

12 equilateral
pentagons

20 equilateral
triangles

a3 6a2

7.663 • a3 20.646 • a2

2.182-a3 8.660 • a2

Euler's polyhedral formula: The following relation is generally true for regular
polyhedra:7

number of corners c — number of edges e + number of faces / = 2 .

5In this table, the common length of an edge is denoted by a. The fomulas for the volumes and areas
of the dodecahedron and the icosahedron are approximations.

6 The German mathematician Felix Klein wrote an famous book about the symmetries of the icosa-
hedron and its relation to the equations of fifth degree, (cf. [22]).

7This formula is a special case of a general topological fact. Since the surfaces of the regular polyhedra
are all homeomorph to the sphere, they have genus 0 and the Euler characteristic 2.
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Table 0.7 verifies this formula.

Table 0.7. The key numbers for the Platonic solids.

Regular polyhedron

tetrahedron

cube

octahedron

dodecahedron

icosahedron

c

4

8

6

20

12

e

6

12

12

30

30

/

4

6

8

12

20

c + e-f

2

2

2

2

2

0.1.6 Volume and surface area of n-dimensional balls

The following formulas are necessary in statistical physics. In these formulas, n is
roughly of the size 1023. For such large values of n, one uses the Stirling formula for an
approximation to the value of n! (cf. (0.1)).

Characterization of the solid ball by an inequality: The n-dimensional ball
Kn(r) of radius r with center at the origin is defined to be the set of all points (x\ , . . . , £ „ )
that satisfy the inequality

Here xi,... ,xn are real numbers with n > 2. The boundary (surface) of this ball is
formed by the set of all (#1, . . . , xn) which satisfy the inequality

For the volume Vn and the surface area On of Kn(r) one has the following formulas of
Jacobi:

The gamma function F is considered in section 1.14.16. It satisfies the recursion formula

with f(l) = 1 and From this one gets for m — 1, 2 , . . . the following

formulas:
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and

Example: In the special case n — 3 and m = 1, one gets the well-known formulas

for the volume Vz and the surface area Oa of the three-dimensional ball of radius r.

0.1.7 Basic formulas for analytic geometry in the plane

Analytic geometry describes geometric objects like lines, planes and conic sections by
means of equations for the coordinates and investigates the geometric properties through
manipulations with these inequalities. This process of increased use of arithmetic and
algebra in geometry goes back to the philosopher, scientist and mathematician Rene
Descartes (1596-1650), after whom the Cartesian coordinates have their name.

0.1.7.1 Lines

Figure 0.8. Cartesian coordinates.

All of the following formulas are in terms
of a Cartesian coordinate system, in which
the y-axis is perpendicular to the x-axis.
The coordinates of a point (xi,yi) are
given as in Figure 0.8(a). The x coordinate
of a point left of the y-axis is negative, and
the y coordinate of a point underneath the
x-axis is also negative.

Example 1: The points (2,2) , (2, -2),
(-2,-2) and (-2,2) are found in Figure
0.8(b).

The distance d of the two points (xi,yi) and (x2,y2) :

(Figure 0.9). This formula corresponds to the theorem of Pythagoras.

Figure 0.9. The distance
between two points.

Figure 0.10. The equation of a line.
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Example 2: The distance of the two points (1,1) and (2,2) is

The equation of a line:

Here b is the intersection of the line with the y-axis (y-intersect), and the slope of the
line is m (Figure 0.10). For the slope angle a one has the relation

(i) If one knows a point (x\ , yi) of the line and the slope m, then one gets the missing
value of b as b = y\ — mxi.

(ii) If one knows two points (x\, y\] and (x2 , yi) on the line with x\ ^ x%, then:

Example 3: The equation of the line through
the two points (1,1) and (3,2) is

as by (0.7) we get m = and 6 =

(Figure 0.11).

Figure 0.11. The slope of a line.

Abscissa equation of a line: If one divides the equation a line (0.6) by b and sets

then one gets:

For y = 0 (resp. x = 0) one can
read off from this that the line hits
the x-axis at the point (a, 0) (resp.
the y-axis at the point (0,6)) (Fig-
ure 0.12(a)).

Example 4: If we divide the line
equation

y = -8x + 4

by 4, it follows that

and consequently

Figure 0.12. The abscissa of a line.

If we set y — 0, then we get x — Hence the line intersects the x-axis in the point

x = (Figure 0.12(b)).



18 0. Formulas, Graphs and Tables

Equation of the 7/-axis:

This equation is not a special case of (0.6). It corresponds formally to a slope of m = oo
(infinite slope).

General equation of a line: All lines are defined as the set of points satisfying the
equation

with real constants A, B and C, which satisfy the condition A2 + B2 ^ 0.

Example 5: For A = I , B = C = 0 one gets the equation x = 0 of the y-axis.

Applications to linear algebra: A series of problems in analytic geometry are most
easily solved by using the language of vectors (linear algebra). This will be considered
in section 3.3.

0.1.7.2 Circles

The equation of a circle of radius r with center at the point (c, d):

(Figure 0.13(a)).

Figure 0.13. Circles in the plane.

Example: The equation of a circle of radius r — 1 with center at the origin (0, 0) is
(Figure 0.13(b)):

Equation of the tangent to a circle:

This is the equation of the tangent to the circle (0.9) through the point (xo,J/o) (Figure
0.13(c)).
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Parameterization of the circle of radius r with center at the point (c, d) :

If one interprets t as the time, then this starting point at t = 0 corresponds to the point
P in Figure 0.13(a). In the time given by parameters t = 0 to t = 2?r, the circle is
transversed exactly once counter-clockwise with constant speed (mathematical positive
direction).

Curvature K of a circle of radius R: By definition, one has

0.1.7.3 Ellipse

The equation of an ellipse with center at the origin:

We assume 0 < b < a. Then the ellipse lies symmetrically with respect to the origin.
The length of the long (resp. short) axis of the ellipse is equal to a (resp. b) (Figure
0.14(a)). One also introduces the following quantities:

The two points (±e,0) are called the focal points B± of the ellipse (Figure 0.14(a)).

Figure 0.14- The ellipse.

19
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Equation of a tangent to the ellipse:

This is the equation of the tangent to the ellipse (0.10) through the point (XQ, yo) (Figure
0.14(b)).

Parameterization of an ellipse:

When the parameter t runs through the values from 0 to 2vr, the ellipse in (0.10) is run
through once counter-clockwise. The starting value t = 0 corresponds to the point on
the curve Q (Figure 0.14(a)).

Geometric characterization of an ellipse: An ellipse is by definition the set of
points P, whose sum of distances from two given points 5_ and B+ is constant, equal
to 2a (cf. Figure 0.14(c)).
These points are called the focal points.

Construction: To construct an ellipse, one fixes two points 5_ and B+ which are to
serve as focal points. Then one fixes the ends of a piece of string with a thumbtack to
these focal points, and moves the pencil with the help of the string, keeping the string
taut. The pencil then has drawn an ellipse (Figure 0.14(c)).

Physical property of the focal points: A light ray which is sent from one of the
focal points B- and reflected on the ellipse, meets the other focal point B+ (Figure
0.14(c)).

Surface area and circumference of an ellipse: See Table 0.4.

The equation of an ellipse in polar coordinates, directrix property and cur-
vature radii: See section 0.1.7.6

0.1.7.4 Hyperbola

The equation of a hyperbola with center at the origin:

Here a and b are positive constants.

Asymptotes of a hyperbola: A hyperbola intersects the x-axis in the points (±a, 0).
The two lines

are called the asymptotes of the hyperbola. These lines approach the branches of the
hyperbola as one moves out from the origin (Figure 0.15(b)).
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Focal points: We define

The two points (±e, 0) are called the focal points B± of the hyperbola (Figure 0.15(a)).

Figure 0.15. Properties of the hyperbola.

Equation for the tangents to a hyperbola:

This is the equation of the tangent to the hyperbola (0.11) through the point (xo,yo)
(Figure 0.15(c)).

Parameterization of a hyperbola8:

As the parameter t runs through all real values, the right branch of the hyperbola in
Figure 0.15(a) is run through once in the direction of the arrow in that picture. The
initial point at t = 0 is the point (a, 0) on the hyperbola. Similarly, the left hyperbola
branch in Figure 0.15(a) is run through once by the parameterization

Geometric characterization of a hyperbola: By definition, a hyperbola consists of
all points P whose difference of distances from two given points 5_ and B+ is constant,
equal to 2a (cf. Figure 0.15(d)). These points are again called the focal points.

8The hyperbolic functions cosht and sinht are treated in detail in 0.2.10 .
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Physical property of the focal points: A light ray emerging from B- is reflected
on the hyperbola in such a way that its backward extension passes through the other
focal point B+ (Figure 0.15(e)).

Surface area of a hyperbola section: See Table 0.4.

Equation of hyperbolas in polar coordinates, directrix properties and curva-
ture radii: See section 0.1.7.6

0.1.7.5 Parabola

The equation of a parabola:

Here p is a positive constant (Figure 0.16). We define:

The point (e, 0) is called the focal point of the parabola (Figure 0.16(a)).

Figure 0.16. Properties of the parabola.

The equation of a tangent to a parabola:

This is the equation of the tangent to the parabola (0.12) through the point (xo,yo
(Figure 0.16(b)).

Geometric characterization of parabolas: By definition, a parabola consists of al
points P, whose distance from a fixed point B (focal point) and a fixed line L (directrix
is equal (Figure 0.16(c)).

Physical property of the focal point (parabolic mirror): A light ray, which i:
parallel to the z-axis and hits the parabola, is reflected in such a way that it passei
through the focal point (Figure 0.16(d)).

Surface area of a parabolic sector: See Table 0.4.
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Equation of a parabola in polar coordinates and the curvature radii: See
section 0.1.7.6

0.1.7.6 Polar coordinates and conic sections

Polar coordinates: Instead of Cartesian coordinates, often polar coordinates are used,
in order to take advantage of the symmetry of the equations in certain problems. The
polar coordinates (r,ip) of a point P in the plane are given as in Figure 0.17 by the
distance r of the point P from the origin O and the angle (p of the line segment OP
with the x-axis. The following relation between the Cartesian coordinates (x, y) and the
polar coordinates (r, (p) of a point P hold:

Moreover, one has

Conic sections: By definition, a conic section is obtained by taking the section of a
double circular cone with a plane (Figure 0.18). In this way, the following figures occur:

(i) Regular conic sections: Circle, ellipse, parabola or hyperbola.

(ii) Degenerate conic sections: two lines, one line or a point.

Equation of regular conic sections in polar coordinates:

(cf. Table 0.8). The regular conic sections are characterized
by the geometrical property, that they consists of all points
P for which the relation

is constant, equal to e, where r is the distance from a fixed
point B (focal point) and d is the distance from a fixed line
L (directrix).

Figure 0.17.

Vertical circle and curvature radius: In the apex S
of a regular conic sections, one can inscribe a circle in such
a way, that it touches the conic section (i.e., has the same
tangent as) at the point S. The radius of this vertical circle
is called the curvature radius R at the point S. The same
construction is possible at an arbitrary point P(xo,yo) of
the conic section (cf. Table 0.9). The curvature K at the
point P is given by definition by the formula

Figure 0.18.
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Table 0.8. Regular conic sections.

Conic
section

Numerical
eccentricity s

Linear
eccentri-
city e

Half-para-
meter p

Directrix-prop-
r

perty — = e
d

hyperbola8

parabola

ellipse

circle

8Because of the inequalities £ > ! . £ = ! and e < 1, the Greek mathematician Appolonius of
Perga (roughly 260-190 BC) introduced the nomenclature VTrspfHoXi) (hyperbole which means excess),
Trapa/3oXri (parabole which means equality) and eAAet^t^ (elleipsis which means deficiency).
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Table O.Q. fnsr.ribfid rArr.le.s.

Conic Equation Curvature radius Diagram

ellipse

hyperbola

parabola

0.1.8 Basic formulas of analytic geometry of space

Cartesian coordinates in space: A spatial Cartesian
coordinate system is given as shown in Figure 0.19 by three
axi which are perpendicular to one another, which are de-
noted as the x-axis, y-axis and z-axis, and which are oriented
in the same way as the thumb, the pointing finger and the
middle finger of the right hand (right-handed system). The
coordinates (xi, 3/1,21) of a point are determined by perpen-
dicular projection onto the axi. Figure 0.19.

Equation of a line through the two points (a?i,j/i,Zi) and (#2,3/2? ^2):

x = xi +t(x2 -zi), y = y\+t(y2-yi), z = z{ + t(z2 - zi) .

The parameter t runs through the real numbers and can be interpreted as the time
(Figure 0.20(a)).
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Figure 0.20. Equations for lines and planes in three-space.

Distance d between the two points (aii, 3/1,21) and (x2 ,y25 z2):

Equation of a plane:

The real constants A, B and C must fulfill the condition A2 + B2 + C2 ^ 0 (Figure
0.20(b)).

Applications of vector algebra to lines and planes in three-space: See 3.3.

0.1.9 Powers, roots and logarithms

Power laws: For all positive real numbers a, b and all real numbers x, y one has:

It wasn't until after a long historical course of development that the notion of powers
ax for arbitrary real exponents was realized (cf. 0.2.7).

Important special cases: For n = 1 , 2 , . . . one has:

1. a° = 1 , a1 = a, a2 = a • a, a3 = a • a • a.

2. an = a • a • ... • a (n factors).

3.

4.

nth roots: Let a positive real number o be given. Then x = a1/™ is the unique solution
to the equation

In older literature the term a1/" is often denoted by {/a (nth root). In manipulations
with expressions involving such roots it is better to use the expression a1/71, since then
one can use the general rules for powers and is not restricted to 'rules for roots'.

Example 1: From the root law follows.
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Limit relation for general powers: For x = with m, n = 1,2,.. . the following

relation holds:

Moreover a x — l/ax . Hence the calculation of ax for arbitrary rational exponents x
can be reduced to the calculation of roots.

Now let an arbitrary real number x be given. We choose a number sequence9 (xk) of
real numbers Xk with

Then we have

This is an expression of the continuity of the exponential function (cf. 1.3.1.2). If one
chooses in particular a sequence Xk of rational numbers Xk, then the expressions aXk can
be expressed in terms of powers of roots, and ax is approximated for larger and larger k
more and more accurately.

Example 2: The approximate value of TT is given by vr = 3.14 ... Therefore we have

is an approximation to the number a71". Better and better approximations for a* can be
obtained by incorporating more and more decimal places in the decimal representation
7,- = 3,14 1592 . . .

The logarithm: Let a be a fixed, positive real number a ̂  1. For each given positive
real number y the equation

has a unique real solution x, which is denoted by

and is called the logarithm of y to base a.10

Laws for logarithms: For all positive real numbers c, d and all real numbers x one
has:

From the relation log(cd) = log c + log d one sees that the logarithm has the funda-
mental property that multiplication of two numbers corresponds to the addition of the
logarithms of those numbers.

9Limits of sequences of real numbers will be considered in 1.2.
10The word logarithm has a Greek root and means 'ratio number'.
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Historical remark: In his monograph Arithmetica Integra (Collected arithmetic),
Michael Stifel noted in 1544 the the comparison of

1 a a2 a3 a4 . . .

0 1 2 3 4 . . .

allows the reduction of the multiplication of the numbers in the first row to the addition
of the powers in the second row. This is precisely the basic idea of calculations with
logarithms. Stifel remarks on this: "One could write an entire book on the properties
of these wonderful numbers, but I have to be modest and close my eyes to this at this
point." In the year 1614 the Scotch nobleman John Neper (or Napier) published the first
incomplete tables of logarithms (with a base proportional to 1/e). These tables were
improved bit for bit. After discussions with Henry Briggs, Neper agreed to use the basis
10 for all logarithms. In 1617 Briggs published a table of logarithms up to 14 decimal
places (to base a = 10). The appearance of these tables was of great help to Kepler in
the completion of his famous "Rudolfian tables" in 1624 (cf. 0.1.12). He propagated the
advantages of this powerful new method of calculation with ardent zeal.

In our modern times with the widespread use of computers these tables are no longer of
importance and represent a historical episode.

Natural logarithms: Logarithms loge y to base e are referred to as natural logarithms
(logarithmus naturalis) and are denoted Iny. If a > 0 is an arbitrary base, then one has
the relation

for all real numbers x. If one knows the natural logarithm, then one can find the
logarithm to an arbitrary base by means of the formula

Example 3: For a = 10 one has In a = 2.302585... and = 0.434294 . . .

In 1.12.1 we will give applications of the function y = ex with the help of differential
equations to radioactive decay and growth process. These examples show that the Euler
number e = 2.718283 . . . is the natural base for the exponential function. The inverse
of y = ex gives x = I n y . This motivates the nomenclature 'natural logarithm'.

0.1.10 Elementary algebraic formulas

0.1.10.1 The geometric and arithmetic series

Summation symbol and product symbol: We define

and
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The finite geometric series:

This formula is valid for all real or complex numbers a and q with q ̂  I. The geometric
series (0.14) is characterized by the fact that the quotient of two successive terms is a
constant. With the help of the summation symbol one can write (0.14) in the form

The arithmetic series:

The arithmetic series (0.15) is characterized by the property that the difference of two
successive terms is a constant. In words:

The sum of an arithmetic series is equal to the sum of the first and
the last term multiplied by half the total number of terms.

With the help of the summation symbol, the formula (0.15) can be written:

Arithmetic series can be found in ancient texts of Babylonian and Egyptian times
(around 2000 BC). Geometric series and the formula for the sum are found in Euclid's
Elements (around 300 BC).

Example 2: It is reported that the teacher of the young Gauss (1777-1855) wanted
a relaxing day by giving his students the assignment of adding the numbers 1 to 40.
Just after assigning this, the little boy Gauss (who was to become one of the greatest
mathematicians of all times) came to the teachers desk with his slate and the result of
820. It apparently was immediately clear to the youngster that instead of the original
series 1 + 2 + ... + 40 one should rather consider

1 2 3 ... 40

40 39 38 ... 1.

Here we have 40 pairs of numbers (those in columns above) whose sum is 41. Conse-
quently, the sum of the first series is half of the sum of these pairs, i.e., 20 • 41 — 820.

This is an example for a moment of inspiration in mathematics. A problem who initially
seems to be quite complicated is reduced by some elegant trick to a different, easier
problem which is quickly solved.

Example 1:
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0.1.10.2 Calculations with the summation and product symbols

Summation symbol: The following manipulations are often applied:

(change of summation index).

(shift of the summation index; j = k + N).

(rule for addition).

(distributive law).

(commutative law).

Product symbol: Analogously to the summations symbol one has the following prop-
erties of the product symbol:

0.1.10.3 The binomial formula

Three classical binomial formulas:

(a + b)2 = a2 + lab + b2, (first binomial formula),

(a — 5)2 = a2 — 2ab + b2. (second binomial formula),

(a - 6) (a + 6) = a2 - &2, (third binomial formula).

These formulas are valid for all real or complex numbers a and b. The second binomial
formula is actually a consequence of the first, by replacing b by —b.
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The general third binomial formula: One has

for all n = 1,2, . . . and all real or complex numbers a and b with a ̂ b.

Binomial coefficients: For all k = 1,2, . . . and all real numbers a we set

The general first binomial formula (binomial theorem):

This fundamental formula of elementary mathematics is valid for all n = 1, 2 , . . . and all
real or complex a and b. With the help of the summation symbol, (0.16) can be written:

The general second binomial formula:

This formula follows immediately from (0.17) upon replacing b by —b.

Pascal triangle: In Table 0.10 each coefficient is obtained as the sum of the two coef-
ficients lying above the given one. This gives a convenient way to obtain the coefficients
for the general binomial formulas.

Example 2:

(a + b)3 = a3 + 3o26 + 3ab2 + b3 ,

(a + b)4 = a4 + 4a36 + 6o262 + 4a63 + 64 ,

(a + b)5 = a5 + 5a46 + 10a362 + 10a2fe3 + 5a64 + b5 .

The Pascal triangle is named after Blaise Pascal (1623-1662), who at the age of 20
built the first addition machine. The modern computer language Pascal is named in his
honor. One can also find the Pascal triangles for n = 1 , . . . , 8 in the Chinese monograph
The precious mirror of four elements by Chu Shih-Chieh, written in 1303.

Furthermore let

Example 1:
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Table 0.10. Pascal's triangle.

Coefficients of the binomial formulas

n = 0

n= 1

n = 2

n — 3

n = 4

n = 5

1

1

1 2

1 3

1 4 6

1 5 10

1

1

3 1

4 1

10 5 1

Newton's binomial series for real exponents: The 24-year old Isaac Newton
(1643-1727) found by intuitive reasoning the general formula for the series:

For a. = 1, 2 , . . . , the infinite series (0.18) is actually finite an is nothing but the binomial
formula.

Theorem of Euler (1774): The binomial series converges for all real exponents a
and all complex numbers x with \x < 1.

It had been attempted for a long time to prove the convergence of this series. It wasn't
until Euler was 67 that he succeeded, more than one hundred years after Newton's
discovery of the series.

The polynomial theorem: This theorem generalizes the binomial theorem to more
than two summands. Special cases are:

(a + b + c)2 =a2 + b2 + c2 + 2ab + 2ac + 2bc,

(a + b + c)3 = a3 + b3 + c3 + 3a2& + 3a2c + 3b2c

+ Gabc + 3ab2 + 3ac2 + 3bc2 .

The general form of this theorem for arbitrary real or complex non-vanishing numbers
a i , . . . , a^v and natural numbers n = 1, 2 , . . . is:

The summation here is over all ,/V-tuples (mi, ni2,..., m^} of natural numbers running
from 0 to n and whose sum is n. Moreover n\ = 1 • 2 • . . . • n.

Properties of binomial coefficients: For natural numbers n, k with 0 < k < n and
real or complex numbers a, /? one has:
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(i) symmetry law

(ii) addition law11

Example 3: If we set a = (3 = k = n in the last equation, then from the symmetry law
we get the relation:

From the binomial theorem for a = b = I and a = — b = 1 we get:

0.1.10.4 Sums of powers and Bernoulli numbers

Sums of natural numbers:

Sums of squares:

11 The Pascal triangle is based on the formula (0.19).
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Sums of third and fourth powers:

Bernoulli numbers: Jacob Bernoulli (1645-1705) ran across these numbers as he
attempted calculating an empirical formula for the sums of powers

of natural numbers. He found for n = 1,2,... and for the exponents p — 1,2,... the
general formula:

He also noticed that the sum of the coefficients always turns out to equal 1. i.e, we have

From this one gets for p = 2 ,3 , . . . successively the Bernoulli numbers B2, B3,... One
also sets BQ := 1 and B\ := —1/2 (see Table 0.11). For odd numbers n > 3 one has
Bn = 0. The recursion formula can also be written in the form

Symbolically, this equation is

if one agrees to replace Bn by Bn after multiplying out the expression on the left.

Table 0.11. Bernoulli numbers Bk (B% = B5 = B7 = . . . = 0).

fe

0

1

2

Bk

1

1
2

1

6

k

4

6

8

Bk

1

30

1
42

1

30

k

10

12

14

Bk

5
66

691
2730

7
6

k

16

18

20

Bk

3617
510

43867

798

174611
330
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Example:

In addition one has:

Bernoulli numbers and infinite series: For all complex numbers x with 0 < \x\ <
2-7T, one has:

Bernoulli numbers also appear in the power series expansion of the functions

(cf. 0.7.2).

Bernoulli numbers also play an important role in the summation of the inverses of powers
of natural numbers. Euler discovered in 1734 the famous formula

More generally, Euler discovered for k = 1, 2 , . . . the values12:

Even earlier, the brothers Johann and Jakob Bernoulli had tried for a long time to
determine the value of these series.

12For this, Euler used the product formula

which he had discovered and which holds for all complex numbers x; this is in fact a generalization of
the fundamental theorem of algebra (cf. 2.1.6) to the sine function
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0.1.10.5 The Euler numbers

Defining relations: For all complex numbers x with \x\ the infinite series

converges. The coefficients Ek which occur in this series are called Euler numbers (cf.
Table 0.12). One has £0 = 1 and for odd n, En — 0. The Euler numbers satisfy the
symbolic equation

(E + l)n + (E - l)n = 0, n= 1 ,2 , . . . ,

in which one agrees to replace En by En after the multiplication has been carried out.
This gives a convenient recursion formula for the En. The relation between the Euler
and the Bernoulli numbers is, again in symbolic form, given by:

Table 0.12. The Euler numbers Ek (Ei = E3 = E5 = . . . = 0).

k

0

2

4

Ek

I

_ j

5

k

6

8

10

Ek

-61

1,385

-50,521

k

12

14

Ek

2,702,765

-199,360,981

Euler numbers and infinite series: The Euler numbers occur in the power series
expansion of the functions

(cf. 0.7.2). For k = 1. 2 , . . . one has in addition the formula

0.1.11 Important inequalities

The rules for manipulations with inequalities can be found in section 1.1.5

The triangle inequality13:

13The statement 'for all a £ R ' means that the formula is valid for all real numbers a. The statement
'for all z £ C' means that the statement is valid for all complex numbers. Note that each real number
is also a complex number. The absolute value \z\ of a real or complex number is introduced in 1.1.2.1.
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In addition one has for n complex summands x\,..., xn the triangle inequality

The Bernoulli inequality: For all real numbers x > — 1 and n = 1 ,2 , . . . one has

The binomial inequality:

The inequality for means: For all positive real numbers c and d one has:

The means which appear here are called, from left to right, harmonic mean, geometric
mean, arithmetic mean and quadratic mean. All these means lie in between the two
values min{c, d} and max{c, d} , which justifies the term mean.14

Inequality for general means: For positive real numbers x\,..., xn one has:

In this formula we have used the notations:

(arithmetic mean or mean value),

(geometric mean),

(harmonic mean)

and

(quadratic mean).

14The terms min{c, d} (resp. max{c, d}) denote the smallest (resp. the largest) of the two numbers c
and d.
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The Young inequality: One has

and all real exponents p and q which satisfy p, q > I and

In the special case p = q = 2 the Young inequality is nothing but the binomial inequality.
If n = 2, 3 , . . . , then the general Young inequality is valid:

and all real exponents p^ > 1 with

The Schwarz inequality:

The Holder inequality15: One has

and all real exponents p, q > I with The notations used are defined as

follows:

as well as

The notation Xk denotes the complex conjugate number to Xk (cf. 1.1.2).

The Minkowski inequality:

Jensen's inequality:

15The statement 'for all x € C^ ' means 'for all ./V-tuples (a? i , . . . , xjv) of complex numbers x^\
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Integral inequalities: The following inequalities hold, provided the integral on the
right hand side exists (and is therefore finite)16. In addition, the real coefficients p, q > 1

should satisfy the condition 1. Then:

(i) triangle inequality

(ii) Holder inequality

In the special case p = q = 2 this reduces to the Schwarz inequality.

(iii) Minkowski inequality

(iv) Jensen's inequality (0 < p < r < oo)

The Jensen convexity inequality: Let m — 1 ,2 , . . . If the real valued function
F : RN -> R is convex, then

for all Xk G Mw and all non-negative real coefficients \k with = 1 (cf. 1.4.5.5).

The Jensen convexity inequality for integrals:

Here it is assumed that:
16These formulas hold under very general assumptions. One can use the classical one-dimensional

integral (Riemann integral) f d x , the several variable classical integral or the modern

Lebesgue integral. The values of the function f ( x ) may be real or complex.
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(i) The real valued function F: R —* R is convex.

(ii) The function p: G —> M is non-negative and is integrable on the open set G in RN

with fG pdx > 0.

(iii) The function g: G —» R has the property that all integrals in (0.22) exist17.

For example, one may choose p ( x ) = 1.

The fundamental convexity inequality: Let n = 1. 2 , . . . For all non-negative real
numbers Xk and A& with AI + \2 + ... + \n = I one has

provided the following assumptions are fulfilled:

(i) The functions /, g : [0,oo[—> [0,oo[ are increasing and surjective. We denote by
f~l,g~l • [0, oo[—> [0, oof the inverse functions to / and g .

(ii) The composition y = g ( f ~ l ( x ) ) of functions is convex on the interval [0, oo[.

Except for the triangle inequality one gets all the inequalities above from (0.23). The
idea behind all of these is the fruitful notion of convexity.

Example 1: If we choose f ( x ) := lux and g ( x ) := x, then we have f~l(x) = ex and
g~l(x) = x. From (0.23) we get the inequality for the weighted mean

which is valid for all non-negative real numbers Xk and \k which satisfy = 1. This

inequality is equivalent to the Young inequality (0.21).

In the special case A& = 1/n for all k, the inequality (0.24) is just the inequality g < m
between the geometric mean g and the arithmetic mean m.

The duality inequality:

Here, the function F : RN —> M is given, and the dual function F* : RN —>• R is given
by the relation

17If G :=}a, b[ is an open bounded interval, then is it sufficient for example that p and g are continuous
on [a, b] (or more generally, almost everywhere continuous and bounded). In this case we have

If G is a bounded, open (non-empty) set in RA , then it is sufficient that p and g are continuous on the
closure G (or more generally almost everywhere continuous and bounded).



0.1. Basic formulas of elementary mathematics 41

Example 2: Let N = l,p > 1 and F(x] for all x G R. Then one has

where q is determined from the equation In this special case, (0.25) is nothing

but the Young inequality xy <

Standard literature: A large collection of further inequalities can be found in the
standard references [19] and [15].

0.1.12 Application to the motion of the planets - a triumph of
mathematics in space

One can not have a pure understanding of what one has until one
has a complete understanding of what others had before oneself.

Johann Wolfgang von Goethe (1749-1832)

The results of the previous sections are correctly considered today to belong to elemen-
tary mathematics. Actually it was the result of centuries of toil and thought - always
in interaction with the resolution of important questions put to man by nature - before
these realizations, today considered to be elementary, could be attained. As an example
of this we consider here in more detail planetary motion.

Conic sections were already investigated intensively in ancient times. To describe the
location of the planets in the heavens, the ancient astronomers used the idea of Appolo-
nius von Perga (roughly 260-190 BC) of epicycles. According to this theory, the planets
move along a small circular orbit, which in turn moves along a larger circular orbit (cf.
Figure 0.21 (a)).

Gigure 0.21. Historical occurrences of conic sections.

This theory gave a relatively accurate descriotion of the apparent complicated annual
motion of the planets in the sky. The theorty of epicycles is avery vivid exmaple for how
the attempt to fit theory with ovservation can lead to a totally wrong model.
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Copernicus' view of the world: In 1543, the year of death of Nicolaus Copernicus
(born in 1473 in the old Polish Hansa city Toruri). his epochal work De revolutionibus
orbium coelestium (On the motion of the heavenly orbits) appeared. In this work he
broke with the tradition of the view of the world of the ancients, shaped by Ptolemy,
according to which the earth was the center of the universe. On the contrary, Copernicus
created the idea that the earth orbits the sun, while keeping the idea of circular orbits.

The three Kepler laws: Based on extensive observations of the Danish astronomer
Tycho Brahe (1564-1601), Johannes Kepler (1571-1630, born in the city of Weil in
Germany) found after extensive calculation the following three laws for planetary motion
(Figure 0.21(b)):

1. The planets move in elliptical orbits, with the sun at one of the focal points of the
ellipse.

2. The motion sweeps out equal areas in equal times (denoted A in Figure 0.21(b)).

3. The ratio of the square of the orbital period T and the third power of the long axis
a of the ellipse is a constant for all planets:

The first two of the laws were published by Kepler in 1609 in his monograph Astronomia
nova (New Astronomy). Ten years later the third law appeared in his thesis Harmonices
mundi (World Harmonies)18.

In 1624, Kepler finished the enormous work involved in completing the "Rudolfian ta-
bles", which the German Emperor Rudolf II had commissioned him with in 1601. These
tables were used by astronomers for the next 200 years. With the help of these ta-
bles it was possible to precisely predict the motion of the planets and solar and lunar
eclipses for all times past and future. In these days of computer computational power
it is impossible to imagine what an achievement this was, particularly since for use in
astronomy one needs very precise results, not just rough approximations. Kepler even
had to work without tables for logarithms. The first table of logarithms was published
by the Scotch nobleman Neper in 1614. Kepler immediately realized the computational
power afforded by these mathematical tool, reducing multiplications to additions. In
fact, Kepler's paper on this was of great help in spreading the popularity of logarithms.

Newtonian mechanics: Exactly one hundred years after the death of Copernicus,
Isaac Newton - one of the true geniuses of human kind - was born in 1643 as the son
of a leaseholder in a small village on the east coast of England. Lagrange wrote about
him: "He is the luckiest of all; the system of the universe can only be discovered once".
At the age of 26, Newton became Professor at the famous Trinity College in Cambridge
(England). Already at the age of 23 he used the third of Kepler's laws to estimate the
power of gravitational attraction and found that this must be proportional to the inverse
of the square of the distance. In 1687 his famous book Philosophiae naturalis principia
mathematica (Mathematical Principles of Science) appeared. In this book, he founded
classical mechanics and derived and applied his famous law of motion

force = mass x acceleration.
18Kepler discovered the third law on May 18, 1618, five days before the window incident in Prague,

which began the thirty years' war.
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At the same time he created the theory of differential and integral calculus. Newton's
law written in modern notion is the differential equation for the motion of the planets

The vector x(t) describes the position of the planets19 at the time t (Figure 0.21(c)). The
second derivative with respect to time, x"(i), corresponds to the vector of acceleration
of the planet at time t, and the positive constant m is the mass of the planet. The
gravitational attraction of the sun according to Newton has the form

with the unit vector

The negative sign of F corresponds to the fact that gravitational force points in the
direction — x(t), that is, from the planet toward the sun. Furthermore. M denotes the
mass of the sun, G is a universal constant of natural, called the gravitational constant:

G = 6.6726 • KT11 m3kg~ V2 .

Newton found solutions of (0.26) which are ellipses

(in polar coordinates) with the numerical eccentricity £ and the half-parameter p deter-
mined according to the following equations:

The energy E and the angular momentum D are determined from the position and the
velocity of the planet at some fixed time. The orbital motion if = </?(£) is obtained by
solving the equation

for the angle

Gauss rediscovers Ceres: In the new years night of 1801 a tiny star of the magnitude
8 was discovered at the observatory in Palermo, which moved relatively quickly and
then vanished again. This amounted to an incredible challenge for the astronomers of
the day. Only 9 degrees of the orbit were known. The methods used up until then for
celestial calculations failed. The 24-year old Gauss however succeeded in surmounting
the difficulties of mastering an equation of the eighth degree, by developing totally new
methods, which he published in 1809 in his work Theoria motus corporum coelestium in
sectionibus conicis Solem ambientium?0.

19Vector calculus will be described in detail in 1.8.
20 A translation of this title is The theory of the motion of the planets, which move in conic sections

around the sun.
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According to Gauss' calculations. Ceres could be observed again in the new years night
1802. Ceres was the first of the asteroids to be observed. It is estimated that there are
approximately 50,000 such asteroids moving in a belt between Mars and Jupiter, whose
total mass is just a few thousandths that of the earth. The diameter of Ceres is 768 km.
It is the largest known asteroid.

The discovery of Neptune: During a night in March, 1781, Wilhelm Herschel dis-
covered a new planet, which was later named Uranus and whose orbital period around
the sun is 84 years (cf. Table 0.13). Two young astronomers, John Adams (1819-1892)
in Cambridge and Jean Leverrier (1811-1877) in Paris, determined independently of each
other the orbit of Uranus and concluded from the observed perturbation in Uranus' orbit
the existence of a new planet, which according to Leverrier had been observed by Got-
tfried Galle in 1846 at the Berlin Observatory and received the name Neptune. This was
a triumph of Newtonian mechanics and at the same time one of practical calculations
in the theory of celestial motions.

From the observed perturbations in the motion of Neptune one later concluded the
existence of a further, tiny planet very far from the sun, which was discovered in 1930
and was named Pluto after the Roman God of the underworld (cf. Table 0.13).

Table 0.13. A model of the solar system scaled to 1m = 106km.

Planet

Sun

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Distance
from
the sun

-

58m

108m

149m

229m

778m

1400m

2900m

4500m

5900m

Orbital period

-

88 days

255 days

1 year

2 years

12 years

30 years

84 years

165 years

249 years

Numerical
orbital
eccentricity e

-

0.206

0.007

0.017

0.093

0.048

0.056

0.047

0.009

0.249

Planet 's
diameter

1.4m

5mm

12mm

13mm

7mm

143mm

121mm

50mm

53mm

10mm

Compara-
tive size

-

pea

cherry

cherry

pea

coconut

coconut

apple

apple

cherry

The perihelion motion of Mercury: The calculation of the orbits of the planets
is quite complicated by virtue of the fact that not only the gravitational force of the
sun, but also of the other planets must be accounted for. This in done in the context of
mathematical perturbation theory, which in general considers the behavior of solutions
under small perturbations of the (coefficients of the) equations. In spite of incredibly
precise calculations, the orbit of the planet nearest to the sun, Mercury, had a rotation
of the long axi of the ellipse describing its motion by 43 arc seconds a century, which was
inexplicable. This discrepancy wasn't explained until the advent of Einstein's general
theory of relativity in 1916.
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The background microwave radiation of the big bang: There is a solution to
the equations of the general theory of relativity which describes an expanding universe.
The starting point of this expansion is referred to as the big bang. In 1965 the Ameri-
can physicists Penzias and Wilson at the Bell Laboratory in New Jersey discovered an
extremely weak (microwave), completely isotropic (the same in all directions) radiation,
which is now viewed to be a relict of and experimental evidence for the big bang from
15 billion years ago. This was a scientific sensation. Both scientist were awarded the
Nobel prize for this discovery. Since the radiation can be viewed as a photon gas at
the temperature of 3 degrees Kelvin (above absolute zero), one also speaks of the 3K
radiation. The complete isotropy of this radiation on the other hand was for some time
quite difficult to explain; it is an apparent contradiction to the formation of galaxies in
the universe. In 1992, the satellite COBE., designed by George Smoot, after extensive
preparations over several years, finally observed a detailed anisotropy in the background
microwave radiation. This gives us a view back in time at the distribution of matter in
the universe at the very young age of 300,000 years after the big bang and makes the
formation of galaxies at about 10 billion years ago understandable.21.

Astrophysics, differential equations, numerics, fast computers and the death
of the sun: Our source of life, the sun, formed together with the planets about 5
billion years ago by attraction and compression of dark matter. Modern mathematics
is in a position to describe the life and death of the sun. One uses a model for the
sun which consists of a complicated system of differential equations, the derivation of
which was the work of decades of astronomers. It is impossible to give exact solutions to
this complicated system of differential equations. However, modern methods in numerics
provides effective ways of calculating approximations to solutions with the computational
power of supercomputers. The chair of Roland Bulirsch at the Technical University in
Munich has carried through these calculations. This has been made vividly imaginable
by motion pictures describing the solutions found in this way; these show how the sun
at an age of about 11 billion years will start to expand to the orbit of Venus, at which
time all life on the planet Earth will long have ceased to exist from the incredible heat
caused by this expansion. Somewhat later the sun will start to collapse and will become
a brown dwarf from which no more light can escape.

0.2 Elementary functions and their graphical repre-
sentation

Basic idea: A real-valued function22

assigns, in a unique fashion, a real number y to the real number x. One must differentiate
in thought between the function / as an assignment and the value f ( x ) of the function
at the number x.

(i) The set of all x for which the assignment is defined is called the domain D(f) of the
function /.

(ii) The set of image points y for all x £ D(f)23 is called the range R ( f ) of the function
21 The fascinating story of modern cosmology and of the COBE-project is described in the book [28].
22 Real-valued functions are special maps. The definition and properties of general maps are discussed

in 4.3.3. For simplicity, real-valued functions are also briefly referred to as real functions.
23The symbol x € D ( f ) indicates that x is an element of the set D ( f ) .
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f .

(iii) The set of all point pairs (x. f ( x ) ) is called the graph G(f) of the function /.

Functions can be defined by a table of values or by a graphical representation.

Example: For the function y = 2x + 1, the table of values is

x 0 1 2 3 4

y 1 3 5 7 9

The graphical representation of y — 2x + 1. the graph of / is the
plane of points (x. y). is the line through the two points (0,1) and
(1,3).
Increasing and decreasing functions: A function / is said to
be (strictly) increasing if

Figure 0.22.

A function / is said to be non-decreasing, decreasing or non-
increasing, if in (0.27) the symbol lf(x} < /(u)' is replaced by, in order

(see Table 0.14).

Table 0.14- Properties of functions.

Increasing Non- decreasing Decreasing Non-increasing

Even Odd Periodic

Basic idea of the inverse function: We consider the function

The equation (0.28) has for each y > 0 exactly one solution x > 0, which one denotes
by
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Exchanging formally x with y, we get the square root function

The graph of the inverse function (0.29) is ob-
tained from the graph of the original function
(0.28) by reflecting the graph on the diagonal
(Figure 0.23).

This construction can be carried out for ar-
bitrary continuous, increasing functions (cf.
1.4.4). As we will see in the next sections,
one get in this manner many important func-
tions (for example y = Inz, y = arcsinx,
y = arccosx etc.).

Graphical representation of functions
with Mathematica: The software package

Figure 0.23. Power functions.

Mathematica contains a built-in series of important mathematical functions. These can
be displayed by tables of values or by plotting the graphs.

0.2.1 Transformation of functions

It suffices to know certain standard forms of functions. From these one can get graphical
representations of other interesting functions by the processes of translation, dilation and
reflection.
Translation: The graph of the function

is obtained from the graph of y = f(x] by the translation in which each point (x, y) is
shifted to (x + a, y + 6).

Example 1: The graph of
y — (x — I)2 + 1 is ob-
tained from the graph of
y = x2 by the translation
in which the point (0,0)
is translated to the point
(1,1) (Figure 0.24).

Dilation along axi: The
graph of the function

Figure 0.24- Translation and dilation of a graph.

with fixed a > 0 and b > 0 is obtained from the graph of y = f(x) by stretching the
x-axis by a factor of a and stretching the y-axis by a factor of b.

Example 2: From y = x2 one gets y = 2x2 by stretching the y-axis by a factor of 2
(Figure 0.24).
Example 3: From y = sinx one gets y = sin2x by dilating the x-axis by a factor of |
(Figure 0.25).

47
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Figure 0.25. Sinusoidal waves.

Reflection: The graphs of

V = f(-x) resP- V = -/(a)

are obtained from the graph of
y = f ( x ) by reflection on the y-
axis (resp. on the x-axis).

Example 4-' The graph of y =
e-x results by reflecting the
graph of y = ex on the y-axis
(Figure 0.26).

Figure 0.26. Exponential functions.

Even and odd functions: A function y = f ( x ) is said to be even (resp. odd), if

f(-x) = f ( x ) (resp. f(-x] = -/(*))

for all x e £>(/) (Table 0.14).

The graph of an even (resp. odd) function is invariant under reflection of the x-axis
(resp. reflection of both axi) on the origin.

Example 5: The function y = x2 is even, while y = x3 is odd.

Periodic functions: The function / has by definition a period p, if

i.e., if the relation is satisfied for all real numbers x. The graph of a periodic function is
invariant under translations of the x-axis by p.

Example 6: The function y — sin a; has a period of 2vr (Figure 0.25).

0.2.2 Linear functions

The linear function

has a graph which is a line with slope m and which has y-intercept b (see Figure 0.10 in
0.1.7.1).
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0.2.3 Quadratic functions

The simplest quadratic function

for a ^ 0 has a graph which is a parabola
(Figure 0.27). A general quadratic function

can be put in the form

with the discriminant D := b2 — ac by means
of quadratic completion. Thus (0.31) results
from (0.30) by a translation which moves the

apex

Quadratic equations: The equation

ax2 + 2bx + c = 0
Figure 0.27.

has for real coefficients o, b and c with a > 0
the solutions

Case 1: D > 0. There are two differ-
ent real zeros x+ and x- , which corre-
spond to two different points of intersection
of the parabola (0.31) with the x-axis (Fig-
ure 0.28(a)). Figure 0.28.

Case 2: D = 0. There is one real zero x+ = X- . The parabola (0.31) is tangent to the
x-axis (Figure 0.28(b)).

Case 3: D < 0. There are two complex zeros

where i is the imaginary unit with i2 = — 1 (cf. 1.1.2). In this case the x-axis is not
intersected by the (real) parabola (0.31) (Figure 0.28(c)).

Example 1: The equation x2 — 6x + 8 = 0 has the two zeros

that is x+ = 4 and x_ = 2.

Example 2: The equation x2 — 2x + I = 0 has the zero

Example 3: For x2 + 2x + 2 = 0 we get the zeros
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0.2.4 The power function

Table 0.15. The power function y = axn.

n>2: Even Odd

Let n = 2 ,3 , . . . The function

for even n is shaped similarly as y = ax2 and for odd n similarly as y = ax3 (Table
0.15).

0.2.5 The Euler e-function
The shortest path between two real points is through the complex
domain. Jacques Hadamard (1865-1963)

In order to recognize deep connections among different parts of mathematics, it is im-
portant to consider the functions ex, sins and cosx also for complex arguments x.

Complex numbers of the form x = a + 6i
with real numbers a and b are discussed in
detail in 1.1.2. One just has to note that
the imaginary unit i satisfies the relation

12 = -1.

Every real number is at the same time a
complex number.

Definition: For all complex numbers x.
Figure 0.29.

the infinite series24

converges.

In this way the exponential function y = ex is defined for all complex arguments x,

24Infinite series are considered in detail in section 1.10.
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which turns out to be the most important single function in all of mathematics. For real
x this function was introduced by Newton at the age of 33 in 1676 (Figure 0.29(a)).

Addition theorem: For all complex numbers x and z one has the fundamental formula:

Euler made the very surprising discovery about 75 years after Newton that the e-function
and the trigonometric functions (for complex arguments) are closely related (see the
Euler formula (0.35) in 0.2.8.). Therefore one refers to the exponential function y = ex

as the Euler e-function. For x = 1 we get

In addition the Euler limit formula holds25

for all real numbers x . One has e = 2.71828183.

Increasing property: The function y = ex is strictly increasing and continuous for all
real arguments.

Behavior at infinity26:

For negative arguments of large absolute value the graph of y = ex approaches the x-axis
asymptotically (Figure 0.29(a)). The limiting relation

states that the exponential function for large arguments grows faster than every power
function.

The complexity of computer algorithms: If a computer algorithm depends on
a natural number N (if, for example, N is the number of equations) and the needed
computation time behaves like e^, then the computation time explodes for large JV,
making the algorithm practically useless for large N. Investigations of this kind are
done in the context of the modern complexity theory. Especially many algorithms used
in computer algebra have a high complexity.

Derivative: The function y = ex is infinitely often differentiate for all real or complex
number x, and the derivative is27

Periodicity in the complex domain: The Euler e-function has the complex period
of 2?ri, that is, for all complex numbers x one has:

25Limits of sequences of numbers are introduced in 1.2.
26Limits of functions are investigated in 1.3.
27 The notion of derivative of real or complex functions, one of the most fundamental notions of

analysis, is found in 1.4.1 (resp. 1.14.3).
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If one restricts oneself to real arguments x, then this periodicity is invisible (see Figure
0.29(a)).

Non-vanishing of the e-function: For all complex numbers x, we have ex 7^ O.28

0.2.6 The logarithm

The inverse of the e-function: Since the e-function is strictly increasing and contin-
uous for all real arguments, the equation

has a unique real number x as solution for all y > 0, which is denoted

and is called the natural logarithm (logarithmus naturalis). Formally exchanging x and
y, we get the function

which is the inverse function of the function y = ex. The graph of y = Inx is obtained
from the graph of y = ex by reflection on the diagonal (Figure 0.29(b)).

From the addition theorem eu+v = euev the fundamental property of the logarithm
follows:29

for all positive real numbers x and y.

Logarithm laws: See section 0.1.9.

Limit relations:

For every real number a > 0 one has

It follows that the function y = Inx approaches minus infinity extremely slowly near
£ = 0.

Derivative: For all real numbers x > 0 one has

28More precisely, the map x i > ex is a surjective map from the complex plane C onto C \ {0} .
29If we set x := eu and y := ev , then we get xy — eu+v . This yields u = I n x , v = Iny and

u + v = ln(xy) .



0.2. Elementary functions and graphs 53

0.2.7 The general exponential function

Definition: For every positive real numbers a
and every real number x we set

In this way the general exponential function ax

is reduced to the e-function (Figure 0.30).

Power laws: See section 0.1.9.

General logarithm: Let a be a fixed posi-
tive real number a ̂  1. For every positive real
number y, the equation

y = ax

Figure 0.30. The general exponential.

has a unique real solution x, which we denote by x = loga y. Formally exchanging x and
y, we get the inverse function to y = ax:

y = loga x.

For this one has the relation

(cf. 0.1.9). One has Ina > 0 for a > 1 and Ina < 0 for 0 < a < 1.

Two important functional equations: Let a > 0.

(i) The only continuous function30 / : R —> R, which satisfies the relation

7(x + y) = f ( x ) f ( y ) for all x, y € R

together with the normalization /(I) = a, is the exponential function f ( x ) = ax .

(ii) The only continuous function g : ]0, oo[ —> R, which satisfies the condition

together with the normalization g(a) = 1, is the logarithm g(x) = loga x .

Both of these statements show that the exponential and logarithm are very naturally
and useful functions and that the mathematicians of the past certainly would have had
to run across these functions sooner or later.

0.2.8 Sine and cosine

Analytical definition: From a modern perspective it is convenient to define the two
functions y = sin x and y = cos x by means of their infinite series expansions

30The notion of continuity will be introduced in 1.3.1.2.
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These two series converge for all complex numbers31 x.

The Euler formula (1749): For all complex numbers x the following fundamental
formula is valid:

This formula dominates the entire theory of trigonometric functions. The realtion (0.35)
follows immediately from the power series expansions (0.33) and (0.34) for elx , cosx
and sin x, when one takes note of the fact that i2 = — 1. In 1.3.3 one can find important
applications of this formula to the theory of vibrations. From (0.35) we get

These formulas, together with the addition theorem eu+v = euev, easily yield the fol-
lowing fundamental addition theorems for sine and cosine.

Addition theorems: For all complex numbers x and y one has:

Evenness and oddness: For all complex numbers x one has:

sin(—x) = — sinx , cos(—x) = cosx.

Geometric interpretation on a right triangle: We consider a right triangle with
an angle x measured in radians (cf. 0.1.2). Then sin a; and cosx are given as the ratios
of the sides as shown in Table 0.16.

Table 0.16. Interpretation of trigonometric functions in terms of a right triangle.

Right triangle Sine Cosine

(length of opposite side a

divided by the hypotenuse c)

(length of adjacent side b

divided by the hypotenuse c)

31 Compare the remarks made at the beginning of 0.2.5 about complex numbers.
The symbol 'sina;' is read 'sine of x' and the symbol 'cosx' is read 'cosine of x'. The latin word

sinus means bulge. In older literature one also uses the functions

secant: sec x cosecant: cosec x
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Geometric interpretation on the unit circle: Using the unit circle, the quantities
sinx and cos a; are just the lengths of the segments shown in Figure 0.31(a)-(d). From
this one see immediately that sinx and cos a; have the same values after a rotation of
2vr. This is the geometric interpretation of the 2?r-periodicity of the sinx and cosx:

Figure 0.31. Trigonometric functions and the unit circle.

These relations hold for all complex arguments x. Looking at the unit circle again, one
sees the following symmetries

for 0 < x < 7T/2. In fact these relations hold for all complex numbers x. Finally one
gets from Figure 0.31 (a) and the theorem of Pythagoras the relation

which holds not only for real angles x, but also for all complex arguments x. In the
same way we get from the theorem of Pythogoras the values for sin x and cos x listed in
Table 0.17 (cf. 3.2.1.2).

The validity of (0.38), (0.39) and (0.40) for all complex numbers follows easily from the
addition theorem (0.37) and the relations sinO = sin27r = 0 and cosO = cos27r = 1.
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Table 0,17. Exact values of the sine and cosine functions for important angles.

(degrees)

(radians)

Negative angles: Applying the geomet-
ric interpretation of the unit circle one gets
the graphical representation of the functions
y = s\nx and y = cos a; as shown in Fig-
ure 0.31(e),(f). Here negative angles x < 0
were introduced as in Figure 0.32. by mea-
suring positive angles in counter-clockwise di-
rection (positive mathematical direction) and
negative angles in clockwise direction (nega-
tive mathematical direction).Figure 0.32. Negative angles.

Zeros: From Figure 0.31(e),(f) it follows that:

(i) The function y = sin x has zeros at the points x = kit, where k is an arbitrary
integer; in other words the set of zeros is given by x — 0,

(ii) The function y = cos x has zeros at the points x ~ where k is an arbitrary
integer.

(iii) Both functions y = sin x and y = cos x have only real zeros in the complex plane.
These zeros are those described in (i) and (ii).

The law of translation: It is suffient to know the values of sin x for all angles x with
0 < x < |. All other values can be obtained by the following formulas, which in turn
are consequences of the addition theorems:

De Moivre's formula for multiples of a given angle32: Let n — 2 ,3 , . . . Then for

32This formula, found by de Moivre (1667-1754), inspired Euler to the discovery of his famous formula

Today it is more convenient to work the other way around: de Moivre's formula (0.41) is a consequence
of the Euler formula, using

and the binomial formula (cf. 0.1.10.3).

sin x

coz X
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all complex numbers x, one has

Seperating here the real and imaginary part of the complex numbers, one gets

For n = 2,3,4 we get the following special cases:

The formula for half-angles: For all complex numbers x one has:

Formulas for sums: For all complex numbers x and y one has:

Formulas for products of two factors:
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Formulas for products of three factors:

Formulas for powers:

More general formulas for sin" x and cos" x follow from de Moivre's formula (0.42).

Addition theorems for three summands:

All of these formulas are verified by expressing cos x and sin x as linear combinations
of e±lx according to (0.36). Then it only remains to verify some elementary algebraic
identities. One can also apply the addition theorem (0.37).

The Euler product formula33: For all complex numbers one has:

One can read off of this formula immediately exactly where the sine has zeros: sin THE
has zeros at x = 0, ±1, ±2, . . . These zeros are in addition simple, (see 1.14.6.3).

Partial fraction decomposition: For all complex numbers x different from 0, ±1. ±2,
. . . one has

33Infinite products are considered in 1.10.6.
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Derivatives: For all complex numbers x one has:

Parametrization of the unit circle with the aid of trigonometric functions:
See section 0.1.7.2.
Applications of trigonometric functions in plane trigonometry (land survey-
ing) and spherical trigonometry (navigation and air traffic): See section 3.2.

Historical remarks: Ever since ancient times, the developement of trigonometry has
been inseparably connected with technological developments in surveying and naviga-
tion, construction and use of calenders and the science of astronomy. Trigonometry
had a heyday in the hands of the arabians in the 8th century. In 1260 the book Trea-
tise on the complete quadrilaterial was written by at-Tusi, the most important Islamic
mathematician in the area of trigonometry. This book was the starting point of an
independent branch of mathematics concerned with trigonometry. The most impor-
tant European mathematician of the fifteenth century was Regiomontanus (1436-1476).
whose name was in reality Johannes Miiller. His most important work34 De triangulis
omnimodis libri quinque didn't appear until 1533, long after his death. This treatise
contains a complete presentation of plane and spherical trigonometry, and founded the
modern branch of mathematics referred to as trigonometry. Unfortunately all formulas
in that book were expressed awkwardly in words.35 Since Regiomontanus didn't have
decimal numbers at his disposal36, he used in the sense of Table 0.16 the formula

a = csinx with c = 10,000,000.

His values for a correspond to an accuracy of 7 decimal places for sinx. Euler (1707-
1783) was the first to use c = I.

At the end of the sixteenth century, Vieta (1540-1603) calculated, in his monograph
Canon, a table of trigonometric functions, which proceeds from arc minute to arc minute.
Just like tables for logarithms, tables for values of trigonometric functions are obsolete
in the day of computers.

0.2.9 Tangent and cotangent

Analytic definition: For all complex numbers x not equal to one of the values ^ + kit
with k e Z, we set37

We further define for all complex numbers x not equal to one of the values kit with k 6 Z
the function

34Translated into English the title means "Five books about all kinds of triangles".
35 The use of formulas goes back to Vieta In artem analyticam isagoge, which appeared in 1591.
36Decimal numbers were introduced in 1585 by Stevin in his book La disme (The decimal system).

This lead to the unification of measurements in continental Europe, based on the decimal system.
37We denote by the symbol Z the set of all integers k = 0, ±1, ±2.. ..
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Translation property: For all complex numbers x with x ^ kit. k 6 Z, one has:

Because of this, all properties of the function cotangent follow directly from those of
tangent.

Geometric interpretation in a right triangle: We consider a right triangle with
the angle x measured in radians (cf. 0.1.2). Then the values of tanx and cot x are given
by the ratios of sides as shown in Table 0.18.

Table 0.18. Interpretation of trigonometric functions in terms of a right triangle.

Right triangle Tangent Cotangent

(length of opposite side a

divided by length of

adjacent side b)

(length of adjacent side b

divided by length of

opposite side a)

Figure 0.33. Geometrical interpretation of the tangent and cotangent functions.

Geometric interpretation on the unit circle: Using the unit circle, the values of
tanx and cotrr are the lengths of the segments shown in Figure 0.33(a),(b). One gets
from this the special values listed in Table 0.19.
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Table 0.19. Exact values of tan and cot for important angles.

(radians)

(degrees)

Zeros and poles: The function y = tanx has for complex arguments x exactly the
zeros kit with k € Z and precisely the poles kir + ^ with k G Z. All of these zeros and
poles are simple (Figure 0.33(c)).

The function cotx has for complex arguments x exactly the poles kit with k e Z and
exactly the zeros fcvr H— with k G Z. Again, all of these zeros and poles are simple38

(Figure 0.33(d)).

Partial fraction decomposition: For all complex numbers x with x ^ Z one has:

Derivative: For all complex numbers x with x ^ ^ + fcvr and k 6 Z one has:

Power series: For all complex numbers a; with x\ one has:

For all complex numbers x with 0 < \x\ < one has:

Here B^k denote the Bernoulli numbers.

Convention: The following formulas hold for all complex arguments x and y with the
exception of those arguments for which the function has a pole.

38The notion of simple zero or pole is defined in 1.14.6.3

X

tanx

cot a;

For all complex numbers x with x and one has:
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Periodicity:

Oddness:

Addition theorems:

Multiples of arguments:

Half-arguments:

Sums:

Products:
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Squares:

0.2.10 The hyperbolic functions sinh x and cosh x

Sinus hyperbolicus and cosinus hyperbolicus (hyperbolic sine and cosine):
For all complex numbers x we define the functions

The function 'sinh' is read 'sinch',
'cosh' is read 'cosh'. For real argu-
ments x the graph is drawn in Figure
0.34.

Relation to the trigonometric
functions: For all complex numbers
x one has:

sinh ix = i sin x , cosh ix = cos x.

Because of this relation every for-
mula about the trigonometric func-
tions sine and cosine gives rise to a
formula about the hyperbolic func-
tions cosh and sinh. For example
cos2 ix + sin2 ix = 1 for all complex
numbers x implies the following for-
mula:

Figure 0.34- Hyperbolic functions.

The terminology hyperbolic function arises from the fact that these functions x =
a cosht , y — bsinh t , t € R are the parameterization of a hyperbola (cf. 0.1.7.4).

The following formulas hold for all complex numbers x and y.

Evenness and oddness:

sinh(—x) = — sinhx , cosh(—x) = coshx .
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Periodicity in the complex domain:

Power series:

Derivative:

Addition theorems:

Doubled arguments:

Half-arguments:

Formula of de Moivre:

Sums:

0.2.11 The hyperbolic functions tanhx and coth x

Tangens hyperbolicus and cotangens hyperbolicus (hyperbolic tangent and
cotangent): For all complex numbers
x ^ (ktr + f ) i with k G Z we define a function
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For all complex numbers x ^ km with k 6
Z we define the function

The graphical representation of these two
functions for real arguments x is given in
Figure 0.35.

The following formulas hold for all com-
plex arguments x and y for which the func-
tions do not have poles39

Relationship with the trigonometric
functions:

Figure 0.35. Hyperbolic functions.

Table 0.20. Zeros and poles of the hyperbolic functions and trigonometric functions (all
zeros and poles are simple).

Function Period Zeros (k 6 Z) Poles (k € Z) Parity

odd

even

odd

odd

odd

even

odd

odd

sinhx

coshx

tanhx

cothx

sinx

cos a;

tan a:

cotx

Derivative:

39In older liturature also the following functions are used (hyperbolic secant and cosecant):
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Addition theorems:

Half-arguments:

Sums:

Squares:

Power series 'expansion: See section 0.7.2.

0.2.12 The inverse trigonometric functions

The function arcsine: The equation

has for every real number y with — 1 < y < 1 exactly one solution, which we denote by
x = arcsin?/. Formally exchanging x and y, we get the function

The graph of this function is obtained from that of y = sinx by reflection on the
diagonal40 (see Table 0.21).

40In older literature the principal branch and other branches of the function y = arcsin a; are used.
This distinction can however lead to erroneous interpretation of (many-valued) formulas. In order to
avoid that, we will use in this book only the one-to-one inverse function, which corresponds to the older
principal branch (see Tables 0.21 and 0.22). The notation y = arcsin a; means: y is the size of the
angle y (measured in radians), whose sine has the value x (latin: arcus cuius sinus est x). Instead of
arcsin x, arccosrr, arctanx and arccot x one speaks of the functions arcsine. arccosine, arctangent and
arccotangent (of x).

Doubled arguments:
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Table 0.21. Inverse trigonometric functions - graphs.

Original function Inverse function

Table 0.22. Inverse trigonometric functions -formulas.

Equation Bounds on y Solutions x (k € Z)

Transformation formulas: For all real numbers x with — 1 < x < 1 one has:
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For all real numbers x one has:

Derivative: For all real numbers x with — 1 < x < 1 one has:

For all real numbers x one has:

Power series: See section 0.7.2.

0.2.13 The inverse hyperbolic functions

Arcsinh: The equation

has, for every real number y, exactly one solution, which is denoted by x = arsinhy.
Formally exchanging x and y, we get the function

The graph of this function is obtained from the graph of the function y = sinh x by a
reflection on the diagonal41 (see Table 0.23).

Derivative:

Power series: See section 0.7.2.

41The Latin names for the inverse hyperbolic functions are area sinus hyperbolicus, area cosinus
hyperbolicus, area tangens hyperbolicus and area cotangens hyperbolicus (of x ) . The notation used here
is from the fact that these functions give values which are the arguments of the hyperbolic functions.
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Table 0.23. Inverse hyperbolic functions - graphs.

Original function Inverse function

y — sinh x y = arsinhx

y = cosh x y = arcoshx

y = tanh x y = artanhx

y = cothx y = arcothx

Table 0.24- Inverse hyperbolic functions -formulas.

Equation Bounds on y Solution x
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Transformation formulas:

0.2.14 Polynomials

A (real) polynomial of degree n is a function of the form

Here n can take any of the values n = 0 ,1 .2 . . . . . and all coefficients o^ are real numbers
with an 7^ 0 .

Smoothness: The function y = f(x] in (0.43) is continuous and infinitely often differ-
ential) le in every point x G R. The first derivative is:

/'(x) = nanx
n~l + (n- l)an^xn~2 + . . . + «i .

Behavior at infinity: The function y = f ( x ) in (0.43) behaves for x —> ±00 in the
same way as the function y = axn , i.e.. for n > 1 one has42:

Zeros: If n is odd, then the
graph of y = f(x] intersects
the x-axis at least once (Figure
0.36(a)). This point of intersec-
tion corresponds to a solution of
the equation f ( x ) = 0 .

Global minimum: If n is even
and an > 0, then y = f ( x ) has
a global minimum, i.e.. there is
a point a with /(a) < f ( x ) for
allx e R (Figure 0.36(b)).

If n is even and an < 0 , then
y = f ( x ) has a global maxi-
mum.

Local extrema: Let n > 2.
Then the function y = f(x] hasFigure 0.36. Local properties of polynomials.

42The meaning of the limit symbol 'lim' will be explained in 1.3.1.1 .
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at most n — 1 local extrema, which are alternately local minima and local maxima.

Inflection points: Let n > 3 . Then the graph of y = f(x) has at most n — 2 inflection
points (Figure 0.36(c)).

0.2.15 Rational functions

0.2.15.1 Special rational functions

Let b > 0 be a fixed real number. The function

represents a equilateral hyperboloid, which has the x- and the y-axis as asymptotes.
The vertices are S± = (Figure 0.37).

Behavior at infinity:

Pole at the point x — 0

Figure 0.37. Figure 0.38.

0.2.15.2 Rational function with linear numerators and denominators

Let the real numbers a, 6, c and d be given with and ad — be 0. The
function

is transformed by the change of coordinates x = u — y = w + to the simpler form

Thus, the general equation (0.44) results for the normalized form y = — by a simple

change of coordinates, which maps the point (0, 0) to the point P = (Figure

0.38).
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0.2.15.3 Special rational function with a denominator of nth degree

is displayed in Figure 0.39.

Let b > 0 be given and n =
1 ,2 , . . . The function

0.2.15.4 Rational functions
with quadratic denominator

Special case 1: Let d > 0 be
given. The functions

Figure 0.39.

and

are pictured in Figure 0.40.

Special case 2 : Let two real
numbers x± be given with X- <
x+ . The function y — f(x) given
by

Figure 0-40.

can be put in the form

This is a special case of the so-call partial fraction decomposition (cf. 2.1.7). One has:

Thus the poles of the function are at the
points x+ and x_ (see Figure 0.41).

Special case 3 : The function

is initially not defined at the point x = 1.
However, if one uses the decomposition
x2 — I = (x — l)(x + 1), then we get

Figure O.J^l.
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One says that the function (0.46) has a apparent singularity at the point x = 1.

General case: Let real numbers a, 6, c and d be given with a2 + b2 ̂  0. The behavior
of the function y — f(x) defined by

depends in an essential way on the sign of the discriminant D := c2 — d. Independently
of this, one always has

Case 1: D > 0. Then one has

with This yields the partial fraction decomposition

The constants A and B are determined by calculating the limits:

There are poles at the points x±.

Case 2: D = 0. In this case one has x+ = x_ . We thus get

This yields

i.e.. the point xj. is a pole.

Case 3: D < 0. In this case we have x2 + 2cx + d > 0 for all x G R. Consequently the
function y = f(x) in (0.47) is continuous and infinitely often differentiable for all points
a; € R, in-other words. / is smooth.

0.2.15.5 The general rational function

A (real) rational function is a function y = f(x) of the form

where there are polynomials in both the numerator and the denominator (cf. 0.2.14).

Behavior at infinity: We set c := an/bm . Then we have:
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From this we can discuss all possible cases.

Case 1: c > 0.

Case 2: c < 0. Here one must replace

Partial fraction decomposition: The precise structure of rational functions is given
by the partial fraction decomposition (cf. 2.1.7).

0.3 Mathematics and computers — a revolution in
mathematics

One can say that we live in the age of mathematics, and that our
culture has been 'mathematized'. This is proved beyond a doubt by the
widespread use of computers.

Arthur Jaffe
(Harvard University, Cambridge, USA)

In solving mathematical problems one utilizes (at least) four important techniques:

(i) the use of numerical algorithms;

(ii) the algorithmic treatment of analytical, algebraic and geometric problems;

(iii) reference to tables and collections of formulas;

(iv) the graphical representation of situations.

Modern software programs can carry out all four of these effectively on computers:

(a) For the solution of standard problems of mathematics we suggest the system Math-
ematica.

(b) For more complicated problems of scientific calculations a combination of Maple and
Matlab often leads to success.

(c) Many software packages also contain the program library Imsl math/stat/sfun library
(International Mathematical and Statistical Library).

To solve a given mathematical problem, one should first check whether the problem is
amenable to the procedures available in Mathamatica. This is the case for example for
many of the problems considered in this book. Only after this has been checked with
negative result should one resort to (b) or (c).

There is a long list of literature on this topic at the beginning of the bibliography. The
handbooks listed there for using Mathematica are skillfully written and didacticly apt.
addressed to a large audience. Experience shows that one requires a certain amount of
time to get used to such programs, before they can be applied efficiently. It is worthwhile
to invest this time; the gains are potentially great.
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Modern software systems, which are continually being refined, are already able to do a
great amount of the routine work for the user, freeing him for other activities. However,
this can not replace a thorough occupation with the basics of mathematics. In this
connection the following picture is helpful. At a construction site one sees today huge
cranes, which do an enormous amount of work for humans. But still it is the humans
which decide what is to be built and how the building should be designed. For this human
qualities like phantasy and originality are required, something one can not expect (or
want!) a machine to possess.

0.4 Tables of mathematical statistics and standard
procedures for practitioners

The goal of this section is to give a large audience of potential readers an acquaintance
with the basics and practical application of mathematical statistics. To meet this goal,
we assume on the part of the reader almost nothing in the way of mathematical back-
ground. A discussion of the fundamentals of mathematical statistics can be found in
6.3.

Mathematical statistics on the computer: Elementary standard procedures can
be done with Mathematica. More specialized statistical packages which are wide spread
are SPSS and SAS.

0.4.1 The most important empirical data for sequences of mea-
surements (trials)

Many measurements in technology, science or medicine have the characteristic property
that the results of measurements vary from trial to trial. One says, that the measure-
ments have a component of randomness. The quantity one wishes to measure, X, is
called a random variable.

Example 1: The height X of a person is random, i.e., X is a random variable.

Sequence of measurements: If we measure a random quantity X, then we get mea-
surements

Example 2: The Tables 0.25 and 0.26 show the result of measuring the height of 8 men
in cm.

Table 0.25

£l £2 £3 £4 £5 XQ X^ X& £ Ax

168 170 172 175 176 177 180 182 175 4,8

Table 0.26

Xi X2 £3 £4 £5 £6 %7 X8 X Ax

174 174 174 174 176 176 176 176 175 1,07

Empirical mean and empirical standard deviation: Two basic characteristics of
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a sequence of measurements x\,..., xn are the empirical mean

and the empirical standard deviation Ax. The square of this quantity is given by the
formula43

Example 3: For the values in Table 0.25 one gets

One says that the average height of the men is 175 cm. The same average is obtained
from the values in Table 0.26. A glance at the tables however shows that the variation
in the values of Table 0.25 is much higher than that of Table 0.26. For Table 0.26 we
get

in other words, Ax = 1.07. On the other hand, the values for Table 0.25 yield for the
standard deviation from the equation

the value Ax = 4.8 .

Rule of thumb:

The smaller the empirical standard deviation is, the smaller
is the variation of the measurements from the mean x .

In the limiting case Ax = 0, all the measurements coincide with the mean x.

The distribution of the measurements - the histogram: To get a general idea
of the distribution of the measurements, one uses, especially for larger sets of measure-
ments, a graphical representation called the histogram.

(i) One divides the measurements into several classes K\, K<2,..., Ks. These are neigh-
boring intervals.

(ii) Let mr denote the number of measurements which belong to the class Kr.
TTl

(iii) If n measurements have been made #1,. . . ,xn, then the quantity —- is called the
n

relative frequency of the measurements with respect to the class Kr .
43The appearance of the denominator n—l instead of that probably expected by many readers, namely

n, can be justified by estimation theory. In fact the quantity Ax is a expectation faithful estimation for
the theoretical standard deviation AX of the random variable X (cf. 6.3.2). For large n the difference
between n and n — 1 is negligible.

The quantity (Ax}2 is called the variance.
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(iv) One graphs the classes Kj, with a column of height over each Kr.

Example 4: I*1 Table 0.27 the measurements for the heights of 100 men in centimeters
are listed. The histogram constructed from these data is displayed in Figure 0.42.

Table 0.27

Class

Kr

K!

K2

K3

K±

Ks

K6

Measure-

ments

150 < x < 165
165 < x < 170
170 < x < 175
175 < x < 180
180 < x < 185
185 < x < 200

Frequency

mr

2

18

30

32

16

2

Relative
frequency

mr

100

0,02
0,18
0,30
0,32
0,16
0,02 Figure 0.42

0.4.2 The theoretical distribution function

The sequences of trials of a random variable X generally vary from trial to trial. For
example, the measurements of heights of persons leads to different results if one measures
all men in a house, a city or a state. The notion of theoretical distribution function is
necessary in order to build up a theory of random variables.

Definition: The theoretical distribution function $ of a random variable X is denned
by the following prescription:

This means that the value 3>(x) is equal to the probability that the random variable is
less than the given number x.

The normal distribution: Many measured quantities follow a normal distribution.
To explain this, we consider a Gauss bell curve

Such a curve has a maximum at the point x = p,. The smaller the positive value a is,
the more it is more concentrated at the point x = fi. One calls // the mean and a the
standard deviation of the normal distribution (Figure 0.43(a)).

The area of the hatched surface in Figure 0.43(b) is equal to the
probability that the random variable lies in the interval [a,b].

The distribution function ^ of the normal distribution (0.48) is displayed in Figure
0.43(d). The value $(a) in Figure 0.43(d) is equal to the area of the surface under the
bell curve, which lies to the left of a. The difference

is equal to the area of the hatched surface in Figure 0.43(b).
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Figure 0-43. Properties of the Gaussian normal distribution.

Confidence interval: This notion is of central importance for mathematical statistics.
The a-confidence interval [x~,o;+] of the random variable X is defined in such a way
that the probability that all measurements of X lie in the interval is 1 — a, i.e., the
probability that x satisfies the inequality

is 1 — a. In Figure 0.43(c) the endpoints of the interval £+ and xa are chosen in such a
way that they are symmetric around the mean /j, and the area of the hatched surface is
equal to 1 — a. One has

The value of za for the important cases for many applica-
tions, namely a = 0.01, 0.05 , 0.1, are listed in Table 0.28 .Table 0.28

a 0.01 0.05 0.1

za 2.6 2.0 1.6
The random variable X lies with the probability
1 — a in the a-confidence interval.

Example: Let // = 10 and a = 2 . For a = 0.01 we get

It follows that with a probability of 1 — a. = 0.99, the measured value x lies between 4.8
and 15.2. Intuitively this means the following.

(a) If n is a large number and we take a total of n measurements of X, then there are
approximately (1 — a)n — 0.99n measured values in between 4.8 and 15.2.

(b) If we measure X for example 1000 times, then approximately 990 of the values lie
between 4.8 and 15.2.
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0.4.3 Checking for a normal distribution

Many test procedures in applications are based on the assumption that a random variable
X follows a normal distribution. We describe here a simple graphical procedure to test
whether X is normally distributed.

(i) We draw a line in the (z, y)-coordinate plane, which contains the pairs of points
(z,<?(z)), which we take from Table 0.29 (Figure 0.44). Note that the value on the
y-axis in the present case has an irregular scale.

(ii) For given measured values x\,..., xn of X we form the quantities

(iii) We calculate the numbers

(number of measured values Zk , which are smaller than Zj )

and plot the points (zj,<£*(z.,-)) in Figure 0.44.

If these points lie approximately on the line drawn in (i), then X is approximately
normally distributed.

Example: The open circles in Figure 0.44 represent measurements which are approxi-
mately normally distributed.

Table 0.29. Sample values of the normal distribution function.

z

*(*)

-2.5

0.01

-2

0.02

-1.5

0.07

-1

0.16

-0.5

0.31

0

0.5

0.5

0.69

1

0.84

1.5

0.93

2

0.98

2.5

0.99

A more precise table of the values of $ is given in Table 0.29. The diagram of Figure
0.44 can also be obtained as so-called probability paper.

Figure 0.44- Checking data for approximate normal distribution.

The x2-fit test for normal distributions: This test, which is much more significant
than the intuitive method just explained with the probability paper, is described in
6.3.4.5.
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0.4.4 The statistical evaluation of a sequence of measurements

We assume that X is a normally distributed random variable, whose normal distribution
(0.48) has mean /j, and standard deviation a.

The confidence limit for the mean p,:

(i) We take n measurements of the quantity X and get the measurements x i , . . . , xn .

(ii) We choose a small number a as the probability of being in error and determine the
value of iQ)Tn with m = n — I from Table in 0.4.6.3.

Then the unknown mean n for the normal distribution satisfies the inequality:

This statement has a probability of a of being in error.

Example 1: For the measurements of heights listed in Table 0.25 one has n = 8, x = 175 ,
Ax = 4.8. If we choose a = 0.01, then we get from 0.4.6.3 for m = 7 the value
ta,m = 3.5. If we assume that the height is a normally distributed random variable,
then we have, with error probability a = 0.01, for the mean:

The confidence interval for the standard deviation a: With probability a of
error, the standard deviation a satisfies the inequality:

The values a := Xi_a/2
 and b := X«/2 are extracted from the table in 0.4.6.4 with

m = n — 1 degrees of freedom.

Example 2: We consider again the height measurements listed in Table 0.25. For a —
0.01 and m = 7 we get a = 1.24 and b = 20.3 from 0.4.6.4. Consequently we get with
error probability a = 0.01 the estimate

It is not surprising that these estimates are quite rough. This is because of the small
number of measurements.

A more detailed justification is given in 6.3.3.

0.4.5 The statistical comparison of two sequences of measure-
ments

Let two sequences of trials of random variables X and Y be given,

Two basic questions are:

(i) Is there a dependence between the two sequences of measurements?

(ii) Is there a significant difference between the two random variables?

To investigate (i) one uses correlation coefficients. An answer to (ii) is provided by the
F-test, the t-test and the Wilcoxon-test. This will be considered in the sequel.



0-4- Tables of mathematical statistics 81

0.4.5.1 Empirical correlation coefficients

The empirical correlation coefficient of the two sequences of measurements (0.49) with
n\ = ri2 = n is given by the number

Regression line: If one plots the pairs ( x j , y j ) of measurements in a Cartesian coordi-
nate system, then the so-called regression line

is the line closest to the set of plotted points (Figure 0.45), i.e., this line is a solution of
the minimum problem

and the minimal value is equal to The fit of the regression line on the
measurements is thus optimal for g2 = 1.

Table 0.30

x\

168

2/1
157

X2

170

2/2

160

X3

172

2/3

163

#4

175

2/4

165

X5

176

2/5

167

X&

177

2/6

167

x7

180

2/7

168

X8

182

2/8

173

X

175

27
165

Ax

5

Ay

5

Example: For the two sequences of measurements
listed in Table 0.30 one gets the correlation coeffi-
cient

with the regression line

Figure 0.45.

Here there is a strong dependency between the two sequences of measurements. The
measurements are approximated quite well by the regression line (0.50).

0.4.5.2 The comparison of two means with the t-test

The £-test is often used in applications. With this test one can verify whether the means
of two sequences of trials differ essentially from one another.

One has For 0 there is no dependency between the two sequences.

The dependency between the twosequences is stronger
the larger the quantity is.
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(i) We consider the two sequences x\,..., xni and y i , . . . , yn2 of two random variables
X and Y, which we assume are normally distributed.

In addition one assumes that the standard deviation of X and Y are the same. This
assumption can be checked with the help of the F-test 0.4.5.3.

(ii) We calculate the number

(iii) For a given a and m = n\ + n^ — I we determine the value ta,m from the table in
0.4.6.3.

Case 1: Assume

In this case the means of X and Y differ, i.e., the differences between the measured
empirical means x and y are not random, but have some explanation. One also says in
this case that there is a significant difference between the random variables X and Y.

Case 2: One has

One may assume that the means of X and Y do not differ significantly.

The statements both have a probability of error of a. This means the following. If one
applies this test in 100 different situations, then there is a probability that this will lead
to a false conclusion in 100 • a cases.

Example 1: For a = 0.01 there might be in 100 tests one case in which the test leads to
a wrong conclusion.

Example 2: Two medicines A and B are being given to patients which have the same
illness. The random variable is the number of days X (resp. Y) for the medicine A
(resp. B) to be administered until the illness has been cured. Table 0.31 lists some
measurements. For example, the mean duration until cure is 20 days under the use of
medicine A.

Table 0.31

medicine A :

medicine B :

x = 20

y = 26

Ax = 5

Ay = 4

HI

n2

— 15 patients

= 15 patients.

We get

We find for the value of a = 0.01 and m — 15 + 15 — 1 = 29 the value ta,m = 2.8 from
the table in 0.4.6.3.

Because of t > ta^m there is a significant difference between the two medicines, i.e.,
medicine A is better than B .
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0.4.5.3 The F-test

This test verifies whether the standard deviations of two normally distributed random
variables differ from one another.

(i) We consider the two sequences of measurements x\,..., xni and y i , . . . , yn2 of the
two random variables X and Y, both of which we assume follow a normal distribution.
fii ^ \A^» form fVif* mintifmfc

(iii) We look up the bold-faced value -Fb.oi;mim2
 m 0.4.6.5 for mi := n\ — 1 and m^ :=

n-2 — 1.

Case 1: One has

In this case the standard deviations of X and Y are not the same, i.e., the difference be-
tween the measured empirical standard deviations Ax and Ay is not a random variation,
but has some deeper meaning.

Case 2: One has

One may assume that the standard deviations of X and Y are essentially the same.

These statements both have a probability of error of 0.02. This means the following.
Carrying out this test in 100 different situations, it is likely that in two of these situations
the test leads to a wrong conclusion.

Example: We consider again the situation giving rise to the data of Table 0.31. One
has F — (Ax/'Ay]2 = 1.6. From the table in 0.4.6.5 with mi = ra2 = 14 we find
-Fb.oi;mim2

 = 3.7. Because of F < Fo.oi;mim2 we can be assured that X and Y have the
same standard deviation.

0.4.5.4 The Wilcoxon-test

The i-test can only be applied to normally distributed quantities. The Wilcoxon-test
is much more general and can be applied for example to check whether two sequences
of trials come from random variables with different distributions, i.e., whether these
quantities differ from each other in an essential way. This test is described in 6.3.4.5.

0.4.6     Tables of mathematical statistics

0.4.6.1 Interpolation of tables

Linear interpolation: Each table consists of entries and table values. In Table 0.32,
x denotes the entries and f ( x ) the values.
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First basic problem: Interpola-
tion of table values f ( x ) for known
entries x : If the entry x is not in the
table, one can use the method of lin-
ear interpolation, which is illustrated
in Figure 0.46. Here the graph of
y — f ( x ) is replaced by the secant be-
tween two of the pairs (xi,/(#i)) and
( x 2 , f ( x 2 ) ) . The approximate value

/*(x) for f ( x ) is then derived from the linear interpolation formula:

Example 1: Let x = 1.5. In Table 0.32 one finds the nearest entries

with the values f(x\) = 0.52 and f ( x ^ ) = 0.60. From the interpolation formula (0.51)
it follows

Second basic problem: interpolation of the entry x for a known value f ( x ) :
To determine x from f ( x ) , one uses the formula:

Example 2: Suppose that the value f ( x ) — 0.62 is given. The nearest table values in
Table 0.32 are f ( x i ) = 0.60 and f ( x 2 ) = 0.64 with xi = 2 and x2 = 3. Applying (0.52)
we get

Higher precision with Mathematica: Linear interpolation is a method of producing
an approximation. For the needs of mathematical statistics this is quite sufficent. One
should not be led to believe that more digits after the decimal point is an increase in
accuracy in an endeavor like statistics which by its very nature is not precise.

In physics and technology, however, one often requires a higher precision. For this the
method of quadratic interpolation is often applied. In the day of wide-spread computers
one can use computer software programs to get very precise values for special functions
(for example with Mathematica).

Firure 0.46:

Table 0.32

x f(x)

1 0.52

0.60

0.643

2
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0.4.6.2 Normal distribution

Table 0.33. The density function

of the normalize*

centered normal distribution.
Figure 0.47.

z 0 1 2 3 4 5 6 7 8 9

0.0 3989~4 3989 3989 3988 3986 3984 3982 3980 3977 3973
0.1 3970^4 3965 3961 3956 3951 3945 3939 3932 3925 3918
0.2 3910~4 3902 3894 3885 3876 3867 3857 3847 3836 3825
0.3 3814~4 3802 3790 3778 3765 3752 3739 3725 3712 3697
0.4 3683~4 3668 3653 3637 3621 3605 3589 3572 3555 3538
0.5 3521~4 3503 3485 3467 3448 3429 3410 3391 3372 3352
0.6 3332~4 3312 3292 3271 3251 3230 3209 3187 3166 3144
0.7 3123'4 3101 3079 3056 3034 3011 2989 2966 2943 2920
0.8 2897~4 2874 2850 2827 2803 2780 2756 2732 2709 2685
0.9 2661~4 2637 2613 2589 2565 2541 2516 2492 2468 2444

1.0 2420~4 2396 2371 2347 2323 2299 2275 2251 2227 2203
1.1 2179~4 2155 2131 2107 2083 2059 2036 2012 1989 1965
1.2 1942~4 1919 1895 1872 1849 1826 1804 1781 1758 1736
1.3 1714~4 1691 1669 1647 1626 1604 1582 1561 1539 1518
1.4 1497-4 1476 1456 1435 1415 1394 1374 1354 1334 1315
1.5 1295~4 1276 1257 1238 1219 1200 1182 1163 1145 1127
1.6 1109~4 1092 1074 1057 1040 1023 1006 9893~5 9728 9566
1.7 9405~5 9246 9089 8933 8780 8628 8478 8329 8183 8038
1.8 7895~5 7754 7614 7477 7341 7206 7074 6943 6814 6687
1.9 6562~5 6438 6316 6195 6077 5960 5844 5730 5618 5508

2.0 5399~5 5292 5186 5082 4980 4879 4780 4682 4586 4491
2.1 4398~5 4307 4217 4128 4041 3955 3871 3788 3706 3626
2.2 3547~5 3470 3394 3319 3246 3174 3103 3034 2965 2898
2.3 2833~5 2768 2705 2643 2582 2522 2463 2406 2349 2294
2.4 2239~5 2186 2134 2083 2033 1984 1936 1888 1842 1797
2.5 1753~5 1709 1667 1625 1585 1545 1506 1468 1431 1394
2.6 1358~5 1323 1289 1256 1223 1191 1160 1130 1100 1071
2.7 1042"5 1014 9871~8 9606 9347 9094 8846 8605 8370 8140
2.8 7915~6 7697 7483 7274 7071 6873 6679 6491 6307 6127
2.9 5953~6 5782 5616 5454 5296 5143 4993 4847 4705 4567

3.0 4432~6 4301 4173 4049 3928 3810 3695 3584 3475 3370
3.1 3267~6 3167 3070 2975 2884 2794 2707 2623 2541 2461
3.2 2384~6 2309 2236 2165 2096 2029 1964 1901 1840 1780
3.3 1723~6 1667 1612 1560 1508 1459 1411 1364 1319 1275
3.4 1232~6 1191 1151 1112 1075 1038 1003 9689-? 9358 9037
3.5 8727~7 8426 8135 7853 7581 7317 7061 6814 6575 6343
3.6 6119~7 5902 5693 5490 5294 5105 4921 4744 4573 4408
3.7 4248~7 4093 3944 3800 3661 3526 3396 3271 3149 3032
3.8 2919~7 2810 2705 2604 2506 2411 2320 2232 2147 2065
3.9 1987~7 1910 1837 1766 1698 1633 1569 1508 1449 1393

4.0 1338~7 1286 1235 1186 1140 1094 1051 1009 9687~8 9299
4.1 8926~8 8567 8222 7890 7570 7263 6967 6683 6410 6147
4.2 5894~8 5652 5418 5194 4979 4772 4573 4382 4199 4023
4.3 3854~8 3691 3535 3386 3242 3104 2972 2845 2723 2606
4.4 2494~8 2387 2284 2185 2090 1999 1912 1829 1749 1672
4.5 1598~8 1528 1461 1396 1334 1275 1218 1164 1112 1062
4.6 1014~8 9684~9 9248 8830 8430 8047 7681 7331 6996 6676
4.7 6370~9 6077 5797 5530 5274 5030 4796 4573 4360 4156
4.8 3961-9 3775 3598 3428 3267 3112 2965 2824 2960 2561
4.9 2439~9 2322 2211 2105 2003 1907 1814 1727 1643 1563
Remark: 3989~4 is to be understood to mean 3989 • 10~4.
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Table 0.34- Probability integral

normalized, centered normal distribution.

The distribution function

related to $o(z) by the relation $(2) = 4+$o(-z); moreover,

Figure 0-48.

z

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

0

0.0 000
398
793

0.1 179
554
915

0.2 257
580
881

0.3 159

413
643
849

0.4 032
192
332
452
554
641
713

772
821
860
966

892
759

918
025

937
903

953
388

965
330

974
449

981
342

1

040
438
832
217
591
950
291
611
910
186

438
665
869
049
207
345
463
564
649
719

778
826
864
474

895
559

920
237

939
634

954
729

966
358

975
229

981
929

2

080
478
871
255
628
985
324
642
939
212

461
686
888
066
222
357
474
573
656
726

783
830
867
906

898
296

922
397

941
323

956
035

967
359

975
988

982
498

3

120
517
910
293
664
•019
357
673
967
238

485
708
907
082
236
370
484
582
664
732

788
834
871
263

900
969

924
506

942
969

957
308

968
333

976
726

983
052

4

160
557
948
331
700
•054
389
703
995
264

508
729
925
099
251
382
495
591
671
738

793
838
874
545

903
581

926
564

944
574

958
547

969
280

977
443

983
589

5

199
596
987
368
736
•088
422
734
•023
289

531
749
944
115
265
394
505
599
678
744

798
842
877
755

906
233

928
572

946
139

959
754

970
202

978
140

984
111

6

239
636
•026
406
772

• 123
454
764
•051
315

554
770
962
131
279
406
515
608
686
750

803
846
880
894

908
625

930
531

947
664

960
930

971
099

978
818

984
618

7

279
675
•064
443
808
•157
486
794
•078
340

577
790
980
147
292
418
525
616
693
756

808
850
883
962

911
060

932
443

949
151

962
074

971
972

979
476

985
110

S

319
714
•103
480
844
•190
517
823
•106
365

599
810
997
162
306
429
535
625
699
761

812
854
886
962

913
437

934
309

950
600

963
189

972
821

980
116

985
588

9

359
753
•141
517
879
•224
549
852
•133
389

621
830
•015
177
319
441
545
633
706
767

817
857
889
893

915
758

936
128

952
012

964
274

973
646

980
738

986
051

Remarks: 0.4 860 is to be interpreted here to mean 0.4 860 966.
966

A dot in front of an entry indicates a jump of one in decimal place.
For example in the line z — 0.5, the entry -019 means .2019.

86

is
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Table 0.34- (continued)

z 0 1 2 3 4 5 6 7 8 9

3.0 0.4986 986 987 987 988 988 988 989 989 989
501 938 361 772 171 558 933 297 650 992

3.1 990 990 990 991 991 991 992 992 992 992
324 646 957 260 553 836 112 378 636 886

3.2 993 993 993 993 994 994 994 994 994 994
129 363 590 810 024 230 429 623 810 991

3.3 995 995 995 995 995 995 996 996 996 996
166 335 499 658 811 959 103 242 376 505

3.4 996 996 996 996 997 997 997 997 997 997
631 752 869 982 091 197 299 398 493 585

3.5 997 997 997 997 997 998 998 998 998 998
674 759 842 922 999 074 146 215 282 347

3.6 998 998 998 998 998 998 998 998 998 998
409 469 527 583 637 689 739 787 834 879

3.7 998 998 999 999 999 999 999 999 999 999
922 964 004 043 080 116 150 184 216 247

3.8 999 999 999 999 999 999 999 999 999 999
276 305 333 359 385 409 433 456 478 499

3.9 999 999 999 999 999 999 999 999 999 999
519 539 557 575 593 609 625 641 655 670

4.0 999 999 999 999 999 999 999 999 999 999
683 696 709 721 733 744 755 765 775 784

4.1 999 999 999 999 999 999 999 999 999 999
793 802 811 819 826 834 841 848 854 861

4.2 999 999 999 999 999 999 999 999 999 999
867 872 878 883 888 893 898 902 907 911

4.3 999 999 999 999 999 999 999 999 999 999
915 918 922 925 929 932 935 938 941 943

4.4 999 999 999 999 999 999 999 999 999 999
946 948 951 953 955 957 959 961 963 964

4.5 999 999 999 999 999 999 999 999 999 999
966 968 969 971 972 973 974 976 977 978

5.0 999
997



88 0. Formulas, Graphs and Tables

0.4.6.3 Values ta,m of the Student ^-distribution

Figure 0.49.

0.10 0.05 0.025 0.020 0.010 0.005 0.003 0.002 0.001

1 6.314 12.706 25.452 31.821 63.657 127.3 212.2 318.3 636.6

2 2.920 4.303 6.205 6.965 9.925 14.089 18.216 22.327 31.600

3 2.353 3.182 4.177 4.541 5.841 7.453 8.891 10.214 12.922

4 2.132 2.776 3.495 3.747 4.604 5.597 6.435 7.173 8.610

5 2.015 2.571 3.163 3.365 4.032 4.773 5.376 5.893 6.869

6 1.943 2.447 2.969 3.143 3.707 4.317 4.800 5.208 5.959

7 1.895 2.365 2.841 2.998 3.499 4.029 4.442 4.785 5.408

8 1.860 2.306 2.752 2.896 3.355 3.833 4.199 4.501 5.041

9 1.833 2.262 2.685 2.821 3.250 3.690 4.024 4.297 4.781

10 1.812 2.228 2.634 2.764 3.169 3.581 3.892 4.144 4.587

12 1.782 2.179 2.560 2.681 3.055 3.428 3.706 3.930 4.318

14 1.761 2.145 2.510 2.624 2.977 3.326 3.583 3.787 4.140

16 1.746 2.120 2.473 2.583 2.921 3.252 3.494 3.686 4.015

18 1.734 2.101 2.445 2.552 2.878 3.193 3.428 3.610 3.922

20 1.725 2.086 2.423 2.528 2.845 3.153 3.376 3.552 3.849

22 1.717 2.074 2.405 2.508 2.819 3.119 3.335 3.505 3.792

24 1.711 2.064 2.391 2.492 2.797 3.092 3.302 3.467 3.745

26 1.706 2.056 2.379 2.479 2.779 3.067 3.274 3.435 3.704

28 1.701 2.048 2.369 2.467 2.763 3.047 3.250 3.408 3.674

30 1.697 2.042 2.360 2.457 2.750 3.030 3.230 3.386 3.646

oo 1.645 1.960 2.241 2.326 2.576 2.807 2.968 3.090 3.291



0.4.6.4 Values x^ °f the ^-distribution

Figure 0.50.

Number m probability a
of degrees
of freedom 0.99 °-98 ° 95 ° 90 ° 80 ° 70 °-50 ° 3° ° 20 ° 10 ° °5 °-02 ° 01 0.005 0.002 0.001

1 0.00016 0.0006 0.0039 0.016 0.064 0.148 0.455 1.07 1.64 2.7 3.8 5.4 6.6 7.9 9.5 10.83
2 0.020 0.040 0.103 0.211 0.446 0.713 1.386 2.41 3.22 4.6 6.0 7.8 ' 9 . 2 10.6 12.4 13.8
3 0.115 0.185 0.352 0.584 1.005 1.424 2.366 3.67 4.64 6.3 7.8 9.8 11.3 12.8 14.8 16.3
4 0.30 0.43 0.71 1.06 1.65 2.19 3.36 4.9 6.0 7.8 9.5 11.7 13.3 14.9 16.9 18.5
5 0.55 0.75 1.14 1.61 2.34 3.00 4.35 6.1 7.3 9.2 11.1 13.4 15.1 16.8 18.9 20.5
6 0.87 1.13 1.63 2.20 3.07 3.83 5.35 7.2 8.6 10.6 12.6 15.0 16.8 18.5 20.7 22.5
7 1.24 1.56 2.17 2.83 3.82 4.67 6.35 8.4 9.8 12.0 14.1 16.6 18.5 20.3 22.6 24.3
8 1.65 2.03 2.73 3.49 4.59 5.53 7.34 9.5 11.0 13.4 15.5 18.2 20.1 22.0 24.3 26.1
9 2.09 2.53 3.32 4.17 5.38 6.39 8.34 10.7 12.2 14.7 16.9 19.7 21.7 23.6 26.1 27.9

10 2.56 3.06 3.94 4.86 6.18 7.27 9.34 11.8 13.4 16.0 18.3 21.2 23.2 25.2 27.7 29.6
11 3.1 3.6 4.6 5.6 7.0 8.1 10.3 12.9 14.6 17.3 19.7 22.6 24.7 26.8 29.4 31.3
12 3.6 4.2 5.2 6.3 7.8 9.0 11.3 14.0 15.8 18.5 21.0 24.1 26.2 28.3 30.9 32.9
13 4.1 4.8 5.9 7.0 8.6 9.9 12.3 15.1 17.0 19.8 22.4 25.5 27.7 29.8 32.5 34.5
14 4.7 5.4 6.6 7.8 9.5 10.8 13.3 16.2 18.2 21.1 23.7 26.9 29.1 31.3 34.0 36.1
15 5.2 6.0 7.3 8.5 10.3 11.7 14.3 17.3 19.3 22.3 25.0 28.3 30.6 32.8 35.6 37.7
16 5.8 6.6 8.0 9.3 11.2 12.6 15.3 18.4 20.5 23.5 26.3 29.6 32.0 34.3 37.1 39.3
17 6.4 7.3 8.7 10.1 12.0 13.5 16.3 19.5 21.6 24.8 27.6 31.0 33.4 35.7 38.6 40.8
18 7.0 7.9 9.4 10.9 12.9 14.4 17.3 20.6 22.8 26.0 28.9 32.3 34.8 37.2 40.1 42.3
19 7.6 8.6 10.1 11.7 13.7 15.4 18.3 21.7 23.9 27.2 30.1 33.7 36.2 38.6 41.6 43.8
20 8.3 9.2 10.9 12.4 14.6 16.3 19.3 22.8 25.0 28.4 31.4 35.0 37.6 40.0 43.0 45.3
21 8.9 9.9 11.6 13.2 15.4 17.2 20.3 23.9 26.2 29.6 32.7 36.3 38.9 41.4 44.5 46.8
22 9.5 10.6 12.3 14.0 16.3 18.1 21.3 24.9 27.3 30.8 33.9 37.7 40.3 42.8 45.9 48.3
23 10.2 11.3 13.1 14.8 17.2 19.0 22.3 26.0 28.4 32.0 35.2 39.0 41.6 44.2 47.3 49.7
24 10.9 12.0 13.8 15.7 18.1 19.9 23.3 27.1 29.6 33.2 36.4 40.3 43.0 45.6 48.7 51.2
25 11.5 12.7 14.6 16.5 18.9 20.9 24.3 28.2 30.7 34.4 37.7 41.6 44.3 46.9 50.1 52.6
26 12.2 13.4 15.4 17.3 19.8 21.8 25.3 29.2 31.8 35.6 38.9 42.9 45.6 48.3 51.6 54.1
27 12.9 14.1 16.2 18.1 20.7 22.7 26.3 30.3 32.9 36.7 40.1 44.1 47.0 49.6 52.9 55.5
28 13.6 14.8 16.9 18.9 21.6 23.6 27.3 31.4 34.0 37.9 41.3 45.4 48.3 51.0 54.4 56.9
29 14.3 15.6 17.7 19.8 22.5 24.6 28.3 32.5 35.1 39.1 42.6 46.7 49.6 52.3 55.7 58.3
30 15.0 16.3 18.5 20.6 23.4 25.5 29.3 33.5 36.3 40.3 43.8 48.0 50.9 53.7 57.1 59.7
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0.4.6.5 Values -Fb.o5;mim2
 and values -Fb.oi;mim2 (in boldface) of the F-distri-

Figure 0.51.

bution

TTll

7712 1~| 2 ~ j 3 ~ | 4~| 5~| 6 ~ j 7 ~ | 8 ~ | 9 ~ | 1 0 ~ 1 I T ] 1 2

! 161 200 216 225 230 234 237 239 241 242 243 244
4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6083 6106

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.39 19.40 19.41
98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.41 99.42

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74
34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91
21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.45 14.37

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70 4.68
16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.96 9.89

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00
13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57
12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.72 6.62 6.54 6.47

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28
11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73 5.67

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07
10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18 5.11

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91
10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77 4.71

n 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79
9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69
9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60
9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53
8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.86 3.80

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48
8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42
8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62 3.55

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41 2.38
8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.46

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34
8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43 3.37

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34 2.31
8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28
8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25
8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.24 3.17

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23
7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.24 2.20
7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07
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TJT-l

14~| 161 2 0 ~ ] 2 4 ~ | 3 G ~ | 4 0 ~ | 5 0 ~ ] 7 5 ~ 1 1 0 0 200 500 oo m2

245 246 248 249 250 251 252 253 253 254 254 254 1

6143 6169 6209 6235 6261 6287 6302 6323 6334 6352 6361 6366

19.42 19.43 19.44 19.45 19.46 19.47 19.48 19.48 19.49 19.49 19.50 19.50 2

99.43 99.44 99.45 99.46 99.47 99.47 99.48 99.49 99.49 99.49 99.50 99.50

8.71 8.69 8.66 8.64 8.62 8.59 8.58 8.57 8.55 8.54 8.53 8.53 3

26.92 26.83 26.69 26.60 26.50 26.41 26.35 26.27 26.23 26.18 26.14 26.12

5.87 5.84 5.80 5.77 5.75 5.72 5.70 5.68 5.66 5.65 5.64 5.63 4

14.25 14.15 14.02 13.93 13.84 13.74 13.69 13.61 13.57 13.52 13.48 13.46

4.64 4.60 4.56 4.53 4.50 4.46 4.44 4.42 4.41 4.39 4.37 4.36 5
9.77 9.68 9.55 9.47 9.38 9.29 9.24 9.17 9.13 9.08 9.04 9.02

3.96 3.92 3.87 3.84 3.81 3.77 3.75 3.72 3.71 3.69 3.68 3.67 6
7.60 7.52 7.39 7.31 7.23 7.14 7.09 7.02 6.99 6.93 6.90 6.88

3.53 3.49 3.44 3.41 3.38 3.34 3.32 3.29 3.27 3.25 3.24 3.23 7
6.36 6.27 6.16 6.07 5.99 5.91 5.86 5.78 5.75 5.70 5.67 5.65

3.24 3.20 3.15 3.12 3.08 3.05 3.02 3.00 2.97 2.95 2.94 2.93 g

5.56 5.48 5.36 5.28 5.20 5.12 5.07 5.00 4.96 4.91 4.88 4.86

3.03 2.99 2.93 2.90 2.86 2.83 2.80 2.77 2.76 2.73 2.72 2.71 g
5.00 4.92 4.81 4.73 4.65 4.57 4.52 4.45 4.42 4.36 4.33 4.31

2.86 2.83 2.77 2.74 2.70 2.66 2.64 2.61 2.59 2.56 2.55 2.54 1Q
4.60 4.52 4.41 4.33 4.25 4.17 4.12 4.05 4.01 3.96 3.93 3.91

2.74 2.70 2.65 2.61 2.57 2.53 2.51 2.47 2.46 2.43 2.42 2.40 n
4.29 4.21 4.10 4.02 3.94 3.86 3.81 3.74 3.71 3.66 3.62 3.60

2.64 2.60 2.54 2.51 2.47 2.43 2.40 2.36 2.35 2.32 2.31 2.30 12
4.05 3.97 3.86 3.78 3.70 3.62 3.57 3.49 3.47 3.41 3.38 3.36

2.55 2.51 2.46 2.42 2.38 2.34 2.31 2.28 2.26 2.23 2.22 2.21 13
3.86 3.78 3.66 3.59 3.51 3.43 3.38 3.30 3.27 3.22 3.19 3.17

2.48 2.44 2.39 2.35 2.31 2.27 2.24 2.21 2.19 2.16 2.14 2.13 14
3.70 3.62 3.51 3.43 3.35 3.27 3.22 3.14 3.11 3.06 3.03 3.00

2.42 2.38 2.33 2.29 2.25 2.20 2.18 2.15 2.12 2.10 2.08 2.07 15
3.56 3.49 3.37 3.29 3.21 3.13 3.08 3.00 2.98 2.92 2.89 2.87

2.37 2.33 2.28 2.24 2.19 2.15 2.12 2.09 2.07 2.04 2.02 2.01 16
3.45 3.37 3.26 3.18 3.10 3.02 2.97 2.86 2.86 2.81 2.78 2.75

2.33 2.29 2.23 2.19 2.15 2.10 2.08 2.04 2.02 1.99 1.97 1.96 17
3.35 3.27 2.16 3.08 3.00 2.92 2.87 2.79 2.76 2.71 2.68 2.65

2.29 2.25 2.19 2.15 2.11 2.06 2.04 2.00 1.98 1.95 1.93 1.92 18
3.27 3.19 3.08 3.00 2.92 2.84 2.78 2.71 2.68 2.62 2.59 2.57

2.26 2.21 2.15 2.11 2.07 2.03 2.00 1.96 1.94 1.91 1.90 1.88 lg
3.19 3.12 3.00 2.92 2.84 2.76 2.71 2.63 2.60 2.55 2.51 2.49

2.22 2.18 2.12 2.08 2.04 1.99 1.97 1.92 1.91 1.88 1.86 1.84 2Q
3.13 3.05 2.94 2.86 2.78 2.69 2.64 2.56 2.54 2.48 2.44 2.42

2.20 2.16 2.10 2.05 2.01 1.96 1.94 1.89 1.88 1.84 1.82 1.81 21
3.07 2.99 2.88 2.80 2.72 2.64 2.58 2.51 2.48 2.42 2.38 2.36

2.17 2.13 2.07 2.03 1.98 1.94 1.91 1.87 1.85 1.81 1.80 1.78 22
3.02 2.94 2.83 2.75 2.67 2.58 2.53 2.46 2.42 2.36 2.33 2.31

2.15 2.11 2.05 2.00 1.96 1.91 1.88 1.84 1.82 1.79 1.77 1.76 23
2.97 2.89 2.78 2.70 2.62 2.54 2.48 2.41 2.37 2.32 2.28 2.26
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m-i
7712 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.22 2.18
7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.20 2.16
7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.22 3.13 3.06 2.99

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15
7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 3.02 2.96

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.16 2.13
7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.99 2.93

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12
7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.23 3.12 3.03 2.96 2.90

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.14 2.10
7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.93 2.87

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09
7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.90 2.84

32 4.15 3.29 2.90 2.67 2.51 2.40 2.31 2.24 2.19 2.14 2.10 2.07
7.50 5.34 4.46 3.97 3.65 3.43 3.25 3.13 3.02 2.93 2.86 2.80

34 4.13 3.28 2.88 2.65 2.49 2.38 2.29 2.23 2.17 2.12 2.08 2.05
7.44 5.29 4.42 3.93 3.61 3.39 3.22 3.09 2.98 2.89 2.82 2.76

36 4.11 3.26 2.87 2.63 2.48 2.36 2.28 2.21 2.15 2.11 2.07 2.03
7.40 5.25 4.38 3.89 3.57 3.35 3.18 3.05 2.95 2.86 2.79 2.72

38 4.10 3.24 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02
7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 2.75 2.69

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00
7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66

42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.06 2.03 1.99
7.28 5.15 4.29 3.80 3.49 3.27 3.10 2.97 2.86 2.78 2.70 2.64

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98
7.25 5.12 4.26 3.78 3.47 3.24 3.08 2.95 2.84 2.75 2.68 2.62

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.15 2.09 2.04 2.00 1.97
7.22 5.10 4.24 3.76 3.44 3.22 3.06 2.93 2.82 2.73 2.66 2.60

48 4.04 3.19 2.80 2.57 2.41 2.30 2.21 2.14 2.08 2.03 1.99 1.96
7.20 5.08 4.22 3.74 3.43 3.20 3.04 2.91 2.80 2.72 2.64 2.58

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.99 1.95
7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.79 2.70 2.63 2.56

55 4.02 3.16 2.78 2.54 2.38 2.27 2.18 2.11 2.06 2.01 1.97 1.93
7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66 2.59 2.53

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92
7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50

65 3.99 3.14 2.75 2.51 2.36 2.24 2.15 2.08 2.03 1.98 1.94 1.90
7.04 4.95 4.10 3.62 3.31 3.09 2.93 2.80 2.69 2.61 2.53 2.47

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97 1.93 1.89
7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.78 2.67 2.59 2.51 2.45

80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.91 1.88
6.96 4.88 4.04 3.56 3.26 3.04 2.87 2.74 2.64 2.55 2.48 2.42

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.89 1.85
6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.43 2.37

125 3.92 3.07 2.68 2.44 2.29 2.17 2.08 2.01 1.96 1.91 1.87 1.83
6.84 4.78 3.94 3.47 3.17 2.95 2.79 2.66 2.55 2.50 2.40 2.33

150 3.90 3.06 2.66 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.85 1.82
6.81 4.75 3.92 3.45 3.14 2.92 2.76 2.63 2.53 2.44 2.37 2.31

2oo 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.84 1.80
6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.34 2.27

400 3.86 3.02 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.78
6.70 4.66 3.83 3.36 3.06 2.85 2.69 2.55 2.46 2.37 2.29 2.23

100Q 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.80 1.76
6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.27 2.20

3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75
6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.18
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TJT-i

14

2.13
2.93
2.11

2.89
2.10

2.86

2.08
2.82

2.06
2.80
2.05

2.77

2.04
2.74

2.01
2.70
1.99

2.66
1.98

2.62

1.96
2.59

1.95
2.56

1.93
2.54
1.92

2.52

1.91
2.50
1.90

2.48
1.89

2.46

1.88
2.43
1.86

2.39

1.85
2.37

1.84
2.35
1.82

2.31
1.79

2.26

1.77
2.23

1.76
2.20
1.74

2.17

1.72
2.12

1.70
2.09

1.69
2.08

16

2.09
2.85

2.07
2.81
2.05

2.78
2.04

2.75
2.02

2.71

2.01
2.69

1.99
2.66

1.97
2.62
1.95

2.58

1.93
2.54

1.92
2.51

1.90
2.48

1.89
2.46
1.88

2.44
1.87

2.42
1.86

2.40
1.85

2.38
1.83

2.34
1.82

2.31

1.80
2.29

1.79
2.27
1.77

2.23
1.75

2.19

1.72
2.15
1.71

2.12

1.69
2.09

1.67
2.04

1.65
2.02
1.64

2.00

20

2.03
2.74

2.01
2.70
1.99

2.66
1.97

2.63

1.96
2.60
1.94

2.57

1.93
2.55

1.91
2.50
1.89

2.46
1.87

2.43

1.85
2.40
1.84

2.37

1.83
2.34

1.81
2.32

1.80
2.30
1.79

2.28
1.78

2.26

1.76
2.23
1.75

2.20

1.73
2.18
1.72

2.15
1.70

2.12
1.68

2.06

1.65
2.03
1.64

2.00
1.62

1.97

1.60
1.92

1.58
1.89
1.57

1.88

24

1.98
2.66

1.96
2.62

1.95
2.58

1.93
2.55
1.91

2.52

1.90
2.49

1.89
2.47
1.86

2.42
1.84

2.38
1.82

2.35
1.81

2.32

1.79
2.29

1.78
2.26
1.77

2.24
1.76

2.22
1.75

2.20
1.74

2.18
1.72

2.15
1.70

2.12

1.69
2.09

1.67
2.07
1.65

2.03
1.63

1.98

1.60
1.94

1.59
1.91
1.57

1.88

1.54
1.84

1.53
1.81
1.52

1.79

30

1.94
2.58
1.92

2.54

1.90
2.50
1.88

2.47

1.87
2.44

1.85
2.41
1.84

2.38
1.82

2.34

1.80
2.30
1.78

2.26

1.76
2.23

1.74
2.20

1.73
2.18
1.72

2.15
1.71

2.13
1.70

2.12
1.69

2.10
1.67

2.06

1.65
2.03
1.63

2.00

1.62
1.98
1.60

1.94
1.57

1.89

1.55
1.85

1.53
1.83

1.52
1.79

1.49
1.74
1.47

1.71

1.46
1.70

40

1.89
2.49

1.87
2.45
1.85

2.42
1.84

2.38
1.82

2.35
1.80

2.33

1.79
2.30
1.77

2.25
1.75

2.21

1.73
2.17
1.71

2.14

1.69
2.11

1.68
2.09
1.67

2.06
1.65

2.04
1.64

2.03
1.63

2.00
1.61

1.96

1.59
1.94

1.58
1.90

1.57
1.88
1.54

1.85
1.52

1.79

1.49
1.75

1.48
1.72

1.46
1.69

1.42
1.64

1.41
1.61
1.39

1.59

50

1.86
2.44
1.84

2.40
1.82

2.36

1.81
2.33
1.79

2.30

1.77
2.27

1.76
2.25
1.74

2.20

1.71
2.16

1.69
2.12

1.68
2.09

1.66
2.06

1.65
2.03

1.63
2.01
1.62

1.99
1.61

1.97
1.60

1.95
1.58

1.91

1.56
1.88
1.54

1.85

1.53
1.83
1.51

1.79

1.48
1.73

1.45
1.69
1.44

1.66
1.41

1.63

1.38
1.57

1.36
1.54

1.35
1.52

75

1.82
2.36
1.80

2.32

1.78
2.28
1.76

2.25

1.75
2.22

1.73
2.19

1.72
2.16
1.69

2.12

1.67
2.08

1.65
2.04

1.63
2.00

1.61
1.97

1.60
1.94

1.58
1.92

1.57
1.90
1.56

1.88
1.55

1.86
1.52

1.82
1.50

1.79

1.49
1.76

1.47
1.74
1.45

1.70
1.42

1.64

1.39
1.59
1.37

1.56

1.35
1.53

1.32
1.47

1.30
1.44

1.28
1.41

100

1.80
2.33
1.78

2.29
1.76

2.25
1.74

2.22

1.73
2.19
1.71

2.16

1.70
2.13
1.67

2.08
1.65

2.04
1.62

2.00

1.61
1.97

1.59
1.94

1.57
1.91

1.56
1.89
1.55

1.86
1.54

1.84
1.52

1.82

1.50
1.78
1.48

1.75

1.46
1.72

1.45
1.70
1.43

1.66
1.39

1.60
1.36

1.55
1.34

1.52

1.32
1.48

1.28
1.42

1.26
1.38
1.24

1.36

200

1.77
2.27

1.75
2.23
1.73

2.19

1.71
2.16
1.69

2.13
1.67

2.10

1.66
2.07

1.63
2.02

1.61
1.98
1.59

1.94

1.57
1.90

1.55
1.87

1.53
1.85
1.52

1.82

1.51
1.80
1.49

1.78
1.48

1.76
1.46

1.71
1.44

1.68
1.42

1.65

1.40
1.62
1.38

1.58
1.34

1.52
1.31

1.47

1.29
1.43

1.26
1.39

1.22
1.32
1.19

1.28
1.17

1.25

500

1.75
2.24

1.73
2.19
1.70

2.16

1.68
2.12

1.67
2.09
1.65

2.06

1.64
2.03

1.61
1.98

1.59
1.94

1.56
1.90
1.54

1.86

1.53
1.83

1.51
1.80

1.49
1.78

1.48
1.75
1.47

1.73
1.46

1.71

1.43
1.67
1.41

1.63

1.39
1.60

1.37
1.57
1.35

1.53
1.31

1.47
1.27

1.41

1.25
1.38

1.22
1.33

1.16
1.24

1.13
1.19
1.11

1.15

oo

1.73
2.21

1.71
2.17
1.69

2.13

1.67
2.10

1.65
2.06

1.64
2.03

1.62
2.01

1.59
1.96
1.57

1.91

1.55
1.87

1.53
1.84

1.51
1.80
1.49

1.78

1.48
1.75
1.46

1.73
1.45

1.70
1.44

1.68
1.41

1.64

1.39
1.60
1.37

1.56

1.35
1.53
1.32

1.49
1.28

1.43
1.25

1.37
1.22

1.33

1.19
1.28

1.13
1.19

1.08
1.11

1.00
1.00

7T12

24

25

26

27

28

29

30

32

34

36

38

40

42

44

46

48

50

55

60

65

70

80

100

125

150

200

400

1000

oo



94 0. Formulas, Graphs and Tables

0.4.6.6 The Fischer Z-distribution

Remark on the table: The table contains the values of ZQ, for which the probability:
that the Fischer random variable Z with (ri^r^) degrees of freedom is not smaller than
ZQ] is equal to 0.01, in other words,

Here f(z) is given by the formula

T-2

1

2

3
4

5
6
7
8
9
10
11

12

13
14

15
16

17

18
19
20
21

22

23
24

25

26
27

28

29
30
40
60

120
oo

n
l

4.1535
2.2950
1.7649
1.5270
1.3943
1.3103
1.2526
1.2106
1.1786
1.1535
1.1333
1.1166
1.1027
1.0909
1.0807
1.0719
1.064 1
1.0572
1.051 1
1.045 7
1.0408
1.0363
1.0322
1.0285
1.0251
1.0220
1.0191
1.0164
1.0139
1.0116
0.9949
0.9784
0.9622
0.9462

2

4.2585
2.2976
1.7140
1.4452
1.2929
1.1955
1.1281
1.0787
1.041 1
1.0114
0.9874
0.9677
0.951 1
0.9370
0.9249
0.9144
0.905 1
0.8970
0.8897
0.883 1
0.8772
0.8719
0.8670
0.862 6
0.8585
0.8548
0.8513
0.848 1
0.845 1
0.842 3
0.8223
0.8025
0.7829
0.7636

3

4.2974
2.2984
1.6915
1.4075
1.2449
1.1401
1.0682
1.0135
0.9724
0.9399
0.9136
0.8919
0.8737
0.858 1
0.844 8
0.833 1
0.8229
0.8138
0.805 7
0.7985
0.7920
0.7860
0.7806
0.775 7
0.7712
0.7670
0.763 1
0.7595
0.7562
0.753 1
0.7307
0.7086
0.686 7
0.665 1

4

4.3175
2.2988
1.6786
1.3856
1.2164
1.1068
1.0300
0.9734
0.9299
0.8954
0.8674
0.8443
0.8248
0.8082
0.7939
0.7814
0.7705
0.7607
0.7521
0.7443
0.7372
0.730 9
0.725 1
0.7197
0.7148
0.7103
0.7062
0.7023
0.6987
0.6954
0.6712
0.6472
0.6234
0.5999

5

4.3297
2.2991
1.6703
1.3711
1.1974
1.0843
1.0048
0.9459
0.9006
0.8646
0.8354
0.8111
0.7907
0.7732
0.7582
0.7450
0.7335
0.7232
0.7140
0.7058
0.6984
0.6916
0.6855
0.6799
0.6747
0.6699
0.6655
0.6614
0.6576
0.6540
0.6283
0.6028
0.5774
0.5522

6

4.3379
2.2992
1.6645
1.3609
1.1838
1.0680
0.9864
0.9259
0.879 1
0.841 9
0.8116
0.7864
0.765 2
0.747 1
0.731 4
0.7177
0.7057
0.695 0
0.6854
0.6768
0.6690
0.6620
0.6555
0.6496
0.644 2
0.6392
0.634 6
0.6303
0.6263
0.6226
0.5956
0.5687
0.5419
0.5152

8

4.3482
2.2994
1.6569
1.3473
1.1656
1.0460
0.9614
0.8983
0.8494
0.8104
0.778 5
0.7520
0.7295
0.7103
0.6937
0.679 1
0.666 3
0.6549
0.6447
0.6355
0.6272
0.6196
0.6127
0.6064
0.6006
0.5952
0.5902
0.5856
0.5813
0.5773
0.548 1
0.5189
0.489 7
0.4604

12

4.3585
2.2997
1.6489
1.3327
1.1457
1.0218
0.9335
0.8673
0.8157
0.7744
0.740 5
0.7122
0.6882
0.6675
0.6496
0.633 9
0.6199
0.6075
0.5964
0.5864
0.5773
0.5691
0.5615
0.5545
0.548 1
0.5422
0.5367
0.5316
0.5269
0.5224
0.490 1
0.4574
0.4243
0.3908

24

4.3689
2.2999
1.6404
1.3170
1.1239
0.9948
0.9020
0.8319
0.7769
0.7324
0.6958
0.6649
0.6386
0.6159
0.596 1
0.5786
0.5630
0.549 1
0.5366
0.5253
0.5150
0.5056
0.496 9
0.489 0
0.4816
0.4748
0.4685
0.4626
0.4570
0.4519
0.4138
0.3746
0.3339
0.2913

oo

4.3794
2.300 1
1.6314
1.3000
1.0997
0.964 3
0.8658
0.7904
0.7305
0.6816
0.6408
0.606 1
0.576 1
0.5500
0.5269
0.5064
0.4879
0.4712
0.4560
0.442 1
0.4294
0.4176
0.406 8
0.3967
0.3872
0.3784
0.370 1
0.3624
0.3550
0.348 1
0.292 2
0.2352
0.1612
0.0000
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0.4.6.7 Critical numbers for the Wilcoxon test

a = 0.05

15
14
13
12
11
10
9
8
7
6
5
4
3
2

n-2
4 5

_ _

7.5
8.0 9.0
9.0 10.5

47.5
46.0 48.0
43.5 45.0
41.0 43.0
38.5 40.0
36.0 38.0
33.5 35.0
31.0 33.0
28.5 30.0
26.0 27.0
23.5 24.0
20.0 21.0
17.5 18.0
14.0 15.0

6

_

8.0
10.0
12.0
13.0

47.5
45.0
42.5
40.0
37.5
34.0
31.5
29.0
25.5
23.0
19.5
15.0

7

_

9.5
11.0
12.5
15.0
16.5

47.0
44.0
42.0
39.0
36.0
33.0
30.0
27.0
24.0
20.0
16.0

8

8.0
10.0
12.0
14.0
16.0
18.0
19.0

46.5
43.0
40.5
38.0
34.5
32.0
28.5
25.0
21.5
17.0

9

9.0
11.5
13.0
15.5
17.0
19.5
21.0
22.5

45.0
42.0
39.0
36.0
33.0
30.0
26.0
22.0
18.0

10

10.0
12.0
15.0
17.0
19.0
21.0
23.0
25.0
27.0

44.5
41.0
37.5
34.0
30.5
27.0
23.5
18.0

11

10.0
13.5
16.0
18.5
20.0
22.5
25.0
26.5
29.0
30.5

42.0
39.0
36.0
32.0
28.0
24.0
19.0

12

11.0
14.0
17.0
19.0
22.0
24.0
26.0
28.0
30.0
33.0
35.0

40.5
37.0
33.5
29.0
25.5
20.0

13

12.0
15.5
18.0
20.5
23.0
25.5
28.0
30.5
32.0
34.5
37.0
38.5

38.0
35.0
30.0
26.0
21.0

14

13.0
16.0
19.0
22.0
25.0
27.0
29.0
32.0
34.0
37.0
39.0
41.0
43.0

39.0
35.5
32.0
27.5
22.0

m

2
3
4
5
6
7
8
9
10
11
12
13
14

Til 15 17 18 19 20 21 22

a = 0.01

15
14
13
12
11
10
9
8
7
6
5
4
3
2

m

n2

4 5

_ _
-

12.5

61.5
59.0 62.0
55.5 58.0
53.0 55.0
49.5 52.0
46.0 49.0
42.5 45.0
40.0 42.0
36.5 38.0
33.0 35.0
29.5 31.0
25.0 27.0
20.5 22.0
-

15 16

6

_

12.0
14.0
16.0

61.5
58.0
54.5
51.0
47.5
44.0
40.5
36.0
32.5
28.0
23.5
-

17

7

_

14.0
15.5
18.0
20.5

61.0
57.0
53.0
50.0
46.0
42.0
38.0
34.0
30.0
25.0
-

18

8

_

15.0
18.0
20.0
22.0
25.0

59.5
56.0
52.5
48.0
44.5
40.0
35.5
31.0
25.5
19.0

19

9

13.5
17.0
19.5
22.0
24.5
27.0
29.5

58.0
54.0
50.0
46.0
42.0
37.0
32.0
27.0
20.0

20

10

15.0
18.0
21.0
24.0
26.0
29.0
32.0
34.0

56.5
52.0
48.5
44.0
38.5
34.0
28.5
21.0

21

11

16.5
20.0
22.5
26.0
28.5
31.0
33.5
36.0
39.5

' 54.0
50.0
45.0
41.0
35.0
29.0
22.0

22

12

17.0
21.0
24.0
27.0
30.0
33.0
36.0
39.0
42.0
44.0

51.5
47.0
42.5
37.0
30.5
23.0

23

13

18.5
22.0
25.5
29.0
32.5
35.0
38.5
41.0
44.5
47.0
50.5

49.0
44.0
38.0
32.0
24.0

24

14

20.0
24.0
28.0
31.0
34.0
38.0
41.0
44.0
47.0
50.0
53.0
56.0

51.0
45.5
40.0
32.5
25.0

25
T12

Ttl

3
4
5
6
7
8
9
10
11
12
13
14

16 23 24 25
n2
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0.4.6.8 The Kolmogorow-Smirnow A-distribution

Remark on the table:

The tables on probability theory and mathematical statistics are taken in part from [17]
and [27].

A

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

Q(A)

0.000 0

0.000 1

0.0002

0.000 3

0.000 5

0.0008

0.001 3

0.001 9

0.0028

0.0040

0.005 5

0.0074

0.0097

0.0126

0.0160

0.0200

0.0247

0.0300

0.036 1

0.042 8

0.0503

0.058 5

0.0675

0.0772

0.0876

0.098 7

0.1104

0.1228

0.1357

0.1492

0.1632

0.1778

0.1927

0.2080

A

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Q(A)

0.2236

0.2396

0.2558

0.2722

0.2888

0.305 5

0.3223

0.3391

0.3560

0.3728

0.3896

0.4064

0.4230

0.4395

0.4559

0.4720

0.4880

0.5038

0.5194

0.5347

0.5497

0.5645

0.579 1

0.5933

0.6073

0.6209

0.6343

0.6473

0.6601

0.6725

0.6846

0.6964

0.7079

0.7191

A

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

Q(A)

0.7300

0.7406

0.7508

0.7608

0.7704

0.7798

0.7889

0.7976

0.8061

0.8143

0.8223

0.8299

0.8374

0.8445

0.8514

0.8580

0.8644

0.8706

0.8765

0.8823

0.8877

0.8930

0.898 1

0.9030

0.9076

0.9121

0.9164

0.9206

0.9245

0.9283

0.9319

0.9354

0.9387

0.9418

A

1.34

1.35

1.36

1.37

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

1.46

1.47

1.48

1.49

1.50

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.60

1.61

1.62

1.63

1.64

1.65

1.66

1.67

Q(A)

0.9449

0.9478

0.9505

0.953 1

0.9556

0.9580

0.9603

0.9625

0.9646

0.9665

0.9684

0.9702

0.9718

0.9734

0.9750

0.9764

0.9778

0.979 1

0.980 3

0.981 5

0.982 6

0.983 6

0.984 6

0.9855

0.9864

0.9873

0.988 0

0.9888

0.989 5

0.9902

0.9908

0.9914

0.9919

0.9924

A

1.68

1.69

1.70

1.71

1.72

1.73

1.74

1.75

1.76

1.77

1.78

1.79

1.80

1.81

1.82

1.83

1.84

1.85

1.86

1.87

1.88

1.89

1.90

1.91

1.92

1.93

1.94

1.95

1.96

1.97

1.98

1.99

Q(A)

0.9929

0.9934

0.9938

0.9942

0.9946

0.9950

0.9953

0.9956

0.9959

0.9962

0.9965

0.9967

0.9969

0.997 1

0.9973

0.9975

0.9977

0.9979

0.9980

0.998 1

0.9983

0.9984

0.9985

0.9986

0.9987

0.9988

0.9989

0.999 0

0.999 1

0.999 1

0.9992

0.999 3

A

2.00

2.01

2.02

2.03

2.04

2.05

2.06

2.07

2.08

2.09

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

Q(A)

0.9993

0.9994

0.999 4

0.999 5

0.999 5

0.9996

0.9996

0.9996

0.9996

0.9997

0.9997

0.9997

0.9997

0.9998

0.9998

0.9998

0.9998

0.9998

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

0.9999

1.0000



0-4- Tables of mathematical statistics 97

0.4.6.9 The Poisson distribution

r

0
1
2
3
4
5
6
7
8

r

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

r

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

A
0.1

0.904837
0.090484
0.004 524
0.000 151
0.000004
-
-
-
-

fr2

0.818731
0.163746
0.016375
0.001 092
0.000055
0.000002
-
-
-

0.3

0.740818
0.222 245
0.033337
0.003334
0.000250
0.000015
0.000001
-
-

0.4

0.670 320
0.268 128
0.053 626
0.007 150
0.000 715
0.000057
0.000004
-
-

0.5

0.606531
0.303265
0.075816
0.012636
0.001 580
0.000 158
0.000013
0.000001
-

0.6 1

0.548812
0.329 287
0.098 786
0.019 757
0.002 964
0.000 356
0.000036
0.000 003
-

o.r

0.496 585
0.347610
0.121663
0.028 388
0.004 968
0.000696
0.000081
0.000 008
0.000 001

0.8

0.449329
0.359463
0.143785
0.038343
0.007 669
0.001 227
0.000 164
0.000019
0.000002

A
0.9

0.406 570
0.365 913
0.164661
0.049 398
0.011115
0.002 001
0.000 300
0.000 039
0.000004
-
-
-
-
-
-
-
-
-

1.0

0.367879
0.367879
0.183940
0.061313
0.015328
0.003066
0.000511
0.000073
0.000 009
0.000001
-
-
-
-
-
-
-
-

1.5

0.223 130
0.334 695
0.251021
0.125510
0.047067
0.014120
0.003 530
0.000 756
0.000 142
0.000 024
0.000 004
-
-
-
-
-
-
-

2.0 2.5

0.135335
0.270671
0.270671
0.180447
0.090224
0.036089
0.012030
0.003437
0.000 859
0.000191
0.000038
0.000 007
0.000 001
-
-
-
-
-

0.082085
0.205212
0.256516
0.213763
0.133602
0.066801
0.027834
0.009 941
0.003 106
0.000863
0.000216
0.000 049
0.000010
0.000002
-
-
-
-

3.0 3.5

0.049 787
0.149361
0.224042
0.224042
0.168031
0.100819
0.050409
0.021 604
0.008 102
0.002 701
0.000810
0.000221
0.000055
0.000013
0.000 003
0.000001
-
-

0.030 197
0.105691
0.184959
0.215785
0.188812
0.132169
0.077098
0.038 549
0.016865
0.006 559
0.002296
0.000 730
0.000213
0.000 057
0.000014
0.000 003
0.000 001
-

4.0

0.018316
0.073 263
0.146525
0.195367
0.195367
0.156293
0.104 196
0.059 540
0.029 770
0.013231
0.005 292
0.001 925
0.000 642
0.000 197
0.000056
0.000015
0.000 004
0.000 001

A
4.5

0.011 109
0.049990
0.112479
0.168718
0.189808
0.170827
0.128120
0.082 363
0.046 329
0.023 165
0.010424
0.004 264
0.001 599
0.000 554
0.000 178
0.000053
0.000015
0.000 004
0.000 001
-
-
-
-
-
-
-
-
-
-
-

5.0 6.0 7.0 8.0 9.0

0.006 738
0.033 690
0.083 224
0.140374
0.175467
0.175467
0.146223
0.104445
0.065 278
0.036 266
0.018133
0.008 242
0.003 434
0.001 321
0.000 472
0.000 157
0.000 049
0.000 014
0.000004
0.000001
-
-
-
-
-
-
-
-
-
-

0.002479
0.014873
0.044618
0.089 235
0.133853
0.160623
0.160623
0.137677
0.103258
0.068 838
0.041 303
0.022529
0.011 264
0.005 199
0.002 228
0.000 891
0.000 334
0.000 118
0.000 039
0.000012
0.000 004
0.000001
-
-
-
-
-
-
-
-

0.000912
0.006 383
0.022341
0.052 129
0.091 226
0.127717
0.149003
0.149003
0.130377
0.101405
0.070983
0.045 171
0.026350
0.014 188
0.007094
0.003311
0.001 448
0.000 596
0.000 232
0.000 085
0.000030
0.000010
0.000 003
0.000001
^
-
-
-
-
-

0.000335
0.002 684
0.010 735
0.028 626
0.057252
0.091 604
0.122138
0.139587
0.139587
0.124077
0.099 262
0.072 190
0.048 127
0.029616
0.016924
0.009 026
0.004513
0.002 124
0.000 944
0.000397
0.000 159
0.000061
0.000 022
0.000 008
0.000 003
0.000001
-
-
-
-

0.000 123
0.001111
0.004 998
0.014994
0.033 737
0.060 727
0.091 090
0.117116
0.131756
0.131756
0.118580
0.097020
0.072 765
0.050376
0.032 384
0.019431
0.010930
0.005 786
0.002893
0.001370
0.000617
0.000 264
0.000 108
0.000042
0.000016
0.000006
0.000002
0.000001
-
-

10.0

0.000 045
0.000454
0.002 270
0.007567
0.018917
0.037833
0.063055
0.090079
0.112599
0.125110
0.125110
0.113736
0.094 780
0.072 908
0.052 077
0.034718
0.021 699
0.012 764
0.007091
0.003 732
0.001 866
0.000889
0.000 404
0.000 176
0.000 073
0.000 029
0.000011
0.000004
0.000001
0.000001
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0.5 Tables of values of special functions

Remark on the following tables:
Some of these tables are taken from [21].

0.5.1 The gamma functions F(ac) and l/F(x)

Remark on this table: See also section 1.14.16.
X

1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19

1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39

T(x)

1.00000
0.994 33

98884
98355
97844
97350
96874
96415
95973
95546

0.95135
94740
94359
93993
93642
93304
92980
92670
92373
92089

0.91817
91558
91311
91075
90852
90640
90440
90250
90072
89904

0.89747
89600
89464
89338
89222
89115
890 18
88931
88854
88785

i/r(x)
1.0000

0057
0113
0167
0220
0272
0323
0372
0420
0466

1.0511
0555
0598
0639
0679
0718
0755
0791
0826
0859

1.089 1
0922
0952
0980
1007
1032
1057
1080
1102
1123

1.1142
1161
1178
1194
1208
1222
1234
1244
1254
1263

X

1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49

1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59

1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69

r(x)
0.88726

88676
88636
88604
88581
88566
88560
88563
88575
88595

0.886 23
88659
88704
88757
88818
88887
88964
89049
89142
89243

0.89352
89468
89592
89724
89864
90012
90167
90330
90500
90678

i/r(x)
1.1270

1277
1282
1286
1289
1291
1291
1291
1291
1288

1.1284
1279
1273
1267
1259
1250
1240
1230
1218
1205

1.1191
1177
1161
1145
1128
1109
1091
1071
1049
1028

x

1.70
1.71
1.72
1.73
1.74
1.75
1.76
1.77
1.78
1.79

1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.89

1.90
1.91
1.92
1.93
1.94
1.95
1.96
1.97
1.98
1.99

r(x)
0.908 64

91057
91258
91467
91683
91906
92137
92376
92623
92877

0.931 38
93408
93685
93969
94261
94561
94869
95184
95507
95838

0.961 77
96523
96877
97240
97610
97988
98374
98768
99171
99581

i/r(x)
1.1005

0982
0958
0933
0907
0881
0854
0825
0796
0767

1.0737
0706
0674
0642
0609
0575
0541
0506
0471
0435

1.0398
0360
0322
0284
0245
0206
0165
0125
0083
0042

If x is a natural number n with n > 1, then
r(n) = (n-l)!,

so that, for example, F(2) = 1.
To calculate F(x) for x which is less than 1 but not an
integer, one can use the formula

If x > 2, then for the calculation the formula
F(x) = (x- 1) -T(x- 1)

can be used.
Examples:
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0.5.2 Cylinder functions (also known as Bessel functions)

Remark: See also section 1.14.22.

X

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

4.0
4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

J0(x)

+ 1.0000
+0.9975
+0.9900
+0.9776
+0.9604

+0.9385
+0.9120
+0.8812
+0.8463
+0.8075

+0.7652
+0.7196
+0.671 1
+0.6201
+0.5669

+0.5118
+0.4554
+0.3980
+0.3400
+0.2818

+0.2239
+0.1666
+0.1104
+0.0555
+0.0025

-0.0484
-0.0968
-0. 142 4
-0. 185 0
-0.2243

-0.2601
-0.2921
-0.3202
-0.3443
-0.3643

-0.3801
-0.3918
-0.3992
-0.4026
-0.401 8

-0.3971
-0.3887
-0.3766
-0.3610
-0.3423

-0.3205
-0.2961
-0.2693
-0.2404
-0.2097

Ji(x)

+0.0000
+0.0499
+0.0995
+0.1483
+0.1960

+0.2423
+0.2867
+0.3290
+0.3688
+0.4059

+0.4401
+0.4709
+0.4983
+0.5220
+0.5419

+0.5579
+0.5699
+0.5778
+0.5815
+0.5812

+0.5767
+0.5683
+0.5560
+0.5399
+0.5202

+0.4971
+0.4708
+0.4416
+0.4097
+0.3754

+0.3391
+0.3009
+0.2613
+0.2207
+0.1792

+0.1374
+0.0955
+0.0538
+0.0128
-0.0272

-0.0660
-0.1033
-0. 138 6
-0.1719
-0.2028

-0.2311
-0.2566
-0.2791
-0.2985
-0.3147

Y0(as)

—oo
-1.5342
-1.081 1
-0.8073
-0.6060

-0.4445
-0.3085
-0.1907
-0.0868
+0.0056

+0.0883
+0.1622
+0.2281
+0.2865
+0.3379

+0.3824
+0.4204
+0.4520
+0.4774
+0.4968

+0.5104
+0.5183
+0.5208
+0.5181
+0.5104

+0.498 1
+0.4813
+0.4605
+0.4359
+0.4079

+0.3769
+0.3431
+0.3070
+0.2691
+0.2296

+0.1890
+0.1477
+0.1061
+0.0645
+0.0234

-0.0169
-0.0561
-0.0938
-0.1296
-0. 163 3

-0.1947
-0.2235
-0.2494
-0.2723
-0.2921

Vi(x)

— oo
-6.4590
-3.3238
-2.2931
-1.7809

-1.4715
-1.2604
-1.1032
-0.9781
-0.8731

-0.7812
-0.6981
-0.6211
-0.5485
-0.4791

-0.4123
-0.3476
-0.2847
-0.2237
-0.1644

-0.1070
-0.0517
+0.0015
+0.0523
+0.1005

+0.1459
+0.1884
+0.2276
+0.2635
+0.2959

+0.3247
+0.3496
+0.3707
+0.3879
+0.4010

+0.4102
+0.4154
+0.4167
+0.4141
+0.4078

+0.3979
+0.3846
+0.3680
+0.3484
+0.3260

+0.3010
+0.2737
+0.2445
+0.2136
+0.1812

/o(x)

1.000
1.003
1.010
1.023
1.040

1.063
1.092
1.126
1.167
1.213

1.266
1.326
1.394
1.469
1.553

1.647
1.750
1.864
1.990
2.128

2.280
2.446
2.629
2.830
3.049

3.290
3.553
3.842
4.157
4.503

4.881
5.294
5.747
6.243
6.785

7.378
8.028
8.739
9.517

10.37

11.30
12.32
13.44
14.67
16.01

17.48
19.09
20.86
22.79
24.91

Ii(x)

0.000
0.0501
0.1005
0.1517
0.2040

0.2579
0.3137
0.3719
0.4329
0.4971

0.5652
0.6375
0.7147
0.7973
0.8861

0.9817
1.085
1.196
1.317
1.448

1.591
1.745
1.914
2.098
2.298

2.517
2.755
3.016
3.301
3.613

3.953
4.326
4.734
5.181
5.670

6.206
6.793
7.436
8.140
8.913

9.759
10.69
11.71
12.82
14.05

15.39
16.86
18.48
20.25
22.20

Ko(x)

oo
2.4271
1.7527
1.3725
1.1145

0.9244
0.7775
0.6605
0.5653
0.4867

0.4210
0.3656
0.3185
0.2782
0.2437

0.2138
0.1880
0.1655
0.1459
0.1288

0.1139
0.1008
0.08927
0.079 14
0.07022

0.06235
0.05540
0.04926
0.04382
0.03901

0.03474
0.03095
0.02759
0.02461
0.021 96

0.01960
0.01750
0.01563
0.01397
0.01248

0.01116
0.009980
0.008927
0.007988
0.007149

0.006400
0.005730
0.005 132
0.004597
0.004 119

Ki(x)

00

9. 8538
4. 7760
3. 0560
2. 1844

1. 6564
1. 3028
1. 0503
0. 8618
0. 7165

0. 6019
0. 5098
0. 4346
0. 3725
0. 3208

0. 2774
0. 2406
0. 2094
0. 1826
0. 1597

0. 1399
0. 1227
0. 1079
0. 09498
0. 08372

0. 07389
0. 06528
0. 05774
0. 05111
0. 04529

0. 04016
0. 03563
0. 03164
0. 02812
0. 02500

0. 02224
0. 01979
0. 01763
0. 01571
0. 01400

0. 01248
0. Oil 14
0. 009938
0. 008872
0. 007923

0. 007078
0. 006325
0. 005654
0. 005055
0. 004521
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X

5.0
5.1
5.2
5.3
5.4

5.5
5.6
5.7
5.8
5.9

6.0
6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9

7.0
7.1
7.2
7.3
7.4

7.5
7.6
7.7
7.8
7.9

8.0
8.1
8.2
8.3
8.4

8.5
8.6
8.7
8.8
8.9

9.0
9.1
9.2
9.3
9.4

9.5
9.6
9.7
9.8
9.9

10.0

Jo (a;)

-0.1776
-0. 144 3
-0.1103
-0.0758
-0. 041 2

-0. 006 8
+0.0270
+0.0599
+0.0917
+0.1220

+0.1506
+0.1773
+0. 201 7
+0.2238
+0. 243 3

+0. 260 1
+0.2740
+0. 285 1
+0. 293 1
+0. 298 1

+0. 300 1
+0. 299 1
+0. 295 1
+0.2882
+0.2786

+0.2663
+0.2516
+0.2346
+0.2154
+0.1944

+0.1717
+0.1475
+0.1222
+0. 096 0
+0. 069 2

+0. 041 9
+0.0146
-0.0125
-0. 039 2
-0. 065 3

-0.0903
-0. 1142
-0.1367
-0.1577
-0. 176 8

-0. 193 9
-0. 209 0
-0.2218
-0. 232 3
-0. 240 3

-0.2459

Ji(z)

-0.3276
-0. 337 1
-0.3432
-0. 346 0
-0. 345 3

-0. 341 4
-0.3343
-0. 324 1
-0.3110
-0. 295 1

-0. 276 7
-0. 255 9
-0. 232 9
-0. 208 1
-0. 181 6

-0. 153 8
-0.1250
-0. 095 3
-0. 065 2
-0. 034 9

-0. 004 7
+0.0252
+0.0543
+0.0826
+0.1096

+0.1352
+0.1592
+0.1813
+0.2014
+0.2192

+0.2346
+0.2476
+0.2580
+0. 265 7
+0.2708

+0. 273 1
+0.2728
+0.2697
+0. 264 1
+0.2559

+0.2453
+0.2324
+0.2174
+0.2004
+0.1816

+0.1613
+0.1395
+0.1166
+0.0928
+0.0684

+0. 043 5

Yb(z)

-0. 308 5
-0. 321 6
-0. 331 3
-0.3374
-0. 340 2

-0. 339 5
-0. 335 4
-0. 328 2
-0.3177
-0. 304 4

-0. 288 2
-0. 269 4
-0. 248 3
-0. 225 1
-0. 199 9

-0.1732
-0. 145 2
-0.1162
-0.0864
-0. 056 3

-0. 025 9
+0. 004 2
+0.0339
+0. 062 8
+0. 090 7

+0.1173
+0.1424
+0.1658
+0.1872
+0. 206 5

+0.2235
+0. 238 1
+0. 250 1
+0.2595
+0.2662

+0. 270 2
+0. 271 5
+0.2700
+0. 265 9
+0. 259 2

+0. 249 9
+0. 238 3
+0.2245
+0. 208 6
+0.1907

+0.1712
+0.1502
+0.2179
+0.1045
+0.0804

+0.0557

n(x)

+0.1479
+0.1137
+0.0792
+0. 044 5
+0.0101

-0. 023 8
-0. 056 8
-0. 088 7
-0.1192
-0. 148 1

-0. 175 0
-0. 199 8
-0. 222 3
-0. 242 2
-0. 259 6

-0. 274 1
-0. 285 7
-0. 294 5
-0. 300 2
-0. 302 9

-0. 302 7
-0. 299 5
-0.2934
-0. 284 6
-0. 273 1

-0. 259 1
-0. 242 8
-0. 224 3
-0. 203 9
-0. 181 7

-0. 158 1
-0. 133 1
-0.1072
-0. 080 6
-0. 053 5

-0. 026 2
+0. 001 1
+0.0280
+0.0544
+0.0799

+0.1043
+0.1275
+0. 149 1
+0. 169 1
+0.1871

+0. 203 2
+0.2171
+0. 228 7
+0.2379
+0. 244 7

+0.2490

Io(x)

27.24
29.79
32.58
35.65
39.01

42.69
46.74
51.17
56.04
61.38

67.23
73. 66
80.72
88.46
96.96

106.3
116.5
127.8
140.1
153.7

168.6
185.0
202.9
222.7
244.3

268.2
294.3
323.1
354.7
389.4

427.6
469.5
515.6
566.3
621.9

683.2
750.5
824.4
905.8
995.2

1 094. 0
1 202. 0
1321.0
1451.0
1 595. 0

1 753. 0
1 927. 0
2119.0
2329.0
2561.0

2816.0

Ji(x)

24.34
26.68
29.25
32.08
35.18
38.59
42.33
46.44
50.95
55.90
61.34
67.32
73.89
81.10
89.03
97.74

107.3
117.8
129.4
142.1
156.0
171.4
188.3
206.8
227.2

249.6
274.2
301.3
331.1
363.9
399.9
439.5
483.0
531.0
583.7
641.6
705.4
775.5
852.7
937.5

1031.0
1 134. 0
1 247. 0
1371.0
1 508. 0

1 685. 0
1 824. 0
2 006. 0
2 207. 0
2 428. 0

2671.0

K0(as)

3691-Hr6

3308- ID"6

2966-10-6

2659-1Q-6

2385-1Q-6

2139- 10~6

1918- 10~6

1721 • 10~6

1 544 • 10~6

1386- 10~6

1 244 • 10"6

1117- 10~6

1 003 • 10~6

9001 -1Q-7

8083 -10-7

7259- 10~7

6520- 10~7

5857-1Q-7

5262-1Q-7

4728-10"7

4248- 10~ 7

3817-10-7

3431 • 10~7

3084- UT7

2772- 10~ 7

2492- ID" 7

2240 • 10" 7

2014- ID"7

1811 • 10~7

1629- 10~7

1465-10-7

1317-1Q-7

1 185 • 1Q-7

1066- 10~7

9588- 10~8

8626- 10~8

7761-HT8

6983-HT8

6283- 10~8

5654- 10~8

5088- 10~ 8

4579- 10~8

4121 • 10~8

3710- 10~8

3339-Hr8

3006 • 10~8

2706- 10~8

2436-10-8

2193-1Q-8

1975-1Q-8

1 778 • 10~ 8

Ki(as)

4045- 10~6

3619- 10~6

3239- 10~6

2900- 10-6

2597- 10~6

2326- 10~6

2083-KT6

1866- 10"6

1 673 • 10~6

1499- 10~6

1 344 • 10~ 6

1 205 • 10~6

1081- 10~6

9691- 10~7

8693- 10~7

7799- 10~7

6998-10-7

6280- 10~7

5636- 10~7

5059- 10~7

4542- 10~7

4078- 10~7

3662- 10~7

3288-nr7

2953- 10~7

2653- 10~7

2383- 10~7

2141 • 10~7

1924- 10~7

1729- 10~7

1554- 10~7

1396-10"7

1255-1Q-7

1128- 10~7

1014- 10~7

9120- 10~8

8200-10-8

7374- 10~8

6631 • 10~8

5964-10-8

5364- 10^8

4825 -10-8

4340- 10~8

3904- 10"8

3512- 10~8

3160-1Q-8

2843- 10~8

2559- 10~8

2302- 10~8

2072- 10~8

1865-10-8
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Some values of Bessel functions of higher order p, for integral arguments

For p = 0.5, 1.5 and 2.5 see the table Spherical cylinder functions below.

P
0

1.0
2.0
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
8.0
9.0

10.0

Jp(l)

+0. 7652
+0. 440 1
+0. 1149
+0. 01956
+0. 7186-10-2

+0. 2477-10-2

+0. 807-10-3

+0. 249 8- ID"3

+0. 74-10-4

+0. 2094-10-4

+0. 6-1Q-5

+0. 1502- 10-5

+0. 9422-10-7

+0. 5249-1Q-8

+0. 2631-1Q-9

Jp(V

+0. 2239
+0. 5767
+0. 3528
+0. 1289
+0. 068 52
+0. 03400
+0. 01589
+0. 7040-10~2

+0. 2973-Hr2

+0. 1202-10-2

+0. 467-10-3

+0. 1749-1Q-3

+0. 2218-1Q-4

+0. 2492-1Q-5

+0. 2515-1Q-6

Jp(3)

-0. 2601
+0. 339 1
+0. 486 1
+0. 309 1
+0. 210 1
+0. 1320
+0. 07760
+0. 04303
+0. 02266
+0. 01139
+0. 5493-lQ-2

+0. 2547-10-2
+0. 4934-10-3

+0. 8440-10-4

+0. 1293-1Q-4

Jp(4)

-0. 3971
-0. 06604
+0. 3641
+0. 4302
+0. 3658
+0. 2811
+0. 1993
+0. 1321
+0. 08261
+0. 04909
+0. 02787
+0. 01518
+0. 4029-10-2

+0. 9386-1Q-3

+0. 1950-10-3

Jp(5)

-0. 1776
-0. 3276
+0. 04657
+0. 3648
+0. 4100
+0. 391 2
+0. 3337
+0. 261 1
+0. 1906
+0. 1310
+0. 08558
+0. 05338
+0. 01841
+0. 5520-10-2

+0. 1468-10"2

P

0
1.0
2.0
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
8.0
9.0

10.0

Jp(6)

+0. 1506
-0. 2767
-0. 242 9
+0. 1148
+0. 2671
+0. 3576
+0. 3846
+0. 362 1
+0. 3098
+0. 2458
+0. 1833
+0. 1296
+0. 05653
+0. 021 17
+0. 6964-10-2

JpW

+0. 3001
-0. 4683-10-2
-0. 301 4
-0. 1676
-0. 3403-1Q-2

+0. 1578
+0. 2800
+0. 3479
+0. 3634
+0. 3392
+0. 291 1
+0. 2336
+0. 1280
+0. 05892
+0. 02354

Jp(8)

+0. 1717
+0. 2346
-0. 1130
-0. 291 1
-0. 2326
-0. 1054
+0. 047 12
+0. 1858
+0. 2856
+0. 3376
+0. 3456
+0. 3206
+0. 2235
+0. 1263
+0. 06077

JP(9)

-0. 09033
+0. 2453
+0. 1448
-0. 1809
-0. 2683
-0. 2655
-0. 1839
-0. 05504
+0. 08439
+0. 2043
+0. 2870
+0. 3275
+0. 3051
+0. 2149
+0. 1247

Jp(10)

-0. 2459
+0. 04347
+0. 2546
+0. 05838
-0. 09965
-0. 2196
-0. 2664
-0. 2341
-0. 1401
-0. 01446
+0. 1123
+0. 2167
+0. 3179
+0. 2919
+0. 2075

P

0
1.0
2.0
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
8.0
9.0

10.0

Jp(ll)

-0. 1712
-0. 1768
+0. 1390
+0. 2273
+0. 1294
-0. 01504
-0. 1519
^0. 2383
-0. 2538
-0. 201 6
-0. 1018
+0. 01838
+0. 2250
+0. 3089
+0. 2804

Jp(12)

+0. 04769
-0. 2234
-0. 08493
+0. 1951
+0. 2348
+0. 1825
+0. 064 57
-0. 07347
-0. 1864
-0. 2437
-0. 2354
-0. 1703
+0. 045 10
+0. 2304
+0. 3005

JP(13)

+0. 2069
-0. 07032
-0. 2177
+0. 3320-10-2
+0. 1407
+0. 2193
+0. 2134
+0. 1316
+0. 7055-10-2

-0. 1180
-0. 2075
-0. 2406
-0. 1410
+0. 06698
+0. 2338

Jp(14)

+0. 171 1
+0. 1334
-0. 1520
-0. 1768
-0. 06245
+0. 07624
+0. 1830
+0. 2204
+0. 1801
+0. 081 17
-0. 04151
-0. 1508
-0. 2320
-0. 1143
+0. 08501

JP(15)

-0. 01422
+0. 205 1
+0. 04157
-0. 1940
-0. 1991
-0. 1192
+0. 7984-1Q-1

+0. 1305
+0. 2039
+0. 2061
+0. 1415
+0. 03446
-0. 1740
-0. 2200
-0. 09007
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p
0

1.0
2.0
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
8.0
9.0

10.0

JP(16)

-0.1749
+0. 090 40
+0.1862
-0. 043 85
-0.1585
-0. 202 6
-0. 161 9
-0.05747
+0.06743
+0.1667
+0.2083
+0.1825
-0.7021-10-2
-0. 189 5
-0. 206 2

Jp(17)

-0. 169 9
-0.09767
+0.1584
+0.1349
+0.01461
-0.1107
-0.1875
-0.1870
-0.1139
+0.7153-10~3

+0.1138
+0.1875
+0.1537
-0. 042 86
-0. 199 1

JP(18)

-0.01336
-0. 188 0
-0.7533-1Q-2

+0.1863
+0.1651
+0.06964
-0. 055 01
-0. 155 4
-0. 192 6
-0.1560
-0. 062 73
+0.05140
+0.1959
+0.1228
-0. 073 17

JP(19)

+0.1466
-0. 105 7
-0.1578
+0.07249
+0.1649
+0.1806
+0.1165
+0.3572-10-2

-0. 109 7
-0. 178 8
-0. 180 0
-0.1165
+0.09294
+0.1947
+0.09155

JP(20)

+0.1670
+0.06683
-0.1603
-0. 098 90
+0.02152
+0.1307
+0. 180 1
+0.1512
+0. 059 53
-0. 055 09
-0.1474
-0. 184 2
-0. 073 87
+0.1251
+0.1865

Spherical cylinder functions (Bessel functions) J±(n+i/z)

X

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

40

Jl/2

0. 000 0
+0.6714
+0.5130
+0.0650
-0. 301 9
-0. 342 2
-0. 091 0
+0. 198 1
+0.2791
+0.1096
-0.1373
-0. 240 6
-0. 123 6
+0.0930
+0.2112
+0.1340
-0.0574
-0. 186 0
-0. 141 2
+0.0274
+0.1629
+0.1457
-0. 001 5
-0. 140 8
-0. 147 5
-0.0211
+0.1193
+0.1469
+0.0408
-0. 098 3
-0.1439
-0. 057 9
+0.0778
+0.1389
+0. 072 4
-0.0578
-0. 131 9
-0. 084 4
+0. 038 4
+0. 123 1
+0. 094 0

•^3/2

0. 000 0
+0. 240 3
+0.4913
+0. 477 7
+0.1853
-0. 169 7
-0.3279
-0. 199 1
+0. 075 9
+0.2545
+0.1980
-0. 022 9
-0. 204 7
-0. 193 7
-0.0141
+0.1654
+0.1874
+0. 042 3
-0.1320
-0. 179 5
-0. 064 7
+0.1023
+0.1700
+0. 082 5
-0. 075 2
-0. 159 0
-0. 096 6
+0. 050 3
+0.1466
+0.1074
-0. 027 3
-0. 133 0
-0.1152
+0. 006 1
+0.1182
+0.1202
+0.0134
-0. 102 7
-0. 122 6
-0. 030 9
+0. 086 5

•^5/2

0. 000 0
+0. 049 5
+0.2239
+0.4127
+0. 440 9
+0. 240 4
-0.0730
-0. 283 4
-0. 250 6
-0. 024 8
+0.1967
+0.2343
+0. 072 4
-0.1377
-0.2143
-0. 100 9

+0.0926
+0.1935
+0.1192
-0. 055 8
-0. 172 6
-0. 131 1
+0. 024 7
+0.1516
+0. 138 1
+0. 002 0
-0. 130 5
-0. 141 3
-0.0251
+0.1094
+0. 141 2
+0. 045 0
-0. 088 6
-0.1383
-0. 062 0
+0. 068 0
+0.1330
+0. 076 1
-0.0480
-0. 125 5
-0. 087 5

•7-1/2

+00

+0.4311
-0. 234 8
-0. 456 0
-0. 260 8
+0.1012
+0.3128
+0.2274
-0. 041 0
-0. 242 3
-0.2117
+0.0011
+0.1944
+0.2008
+0.0292
-0.1565
-0. 191 0
-0. 053 2
+0.1242
+0.1810
+0.0728
-0. 095 4
-0. 170 1
-0. 088 6
+0. 069 1
+0.1582
+0.1012
-0. 044 9
-0. 145 1
-0.1108
+0.0225
+0. 131 1
+0.1177
-0. 001 8
-0. 116 1
-0. 121 9
-0.0170
+0.1004
+0.1236
+0. 034 1
-0. 084 1

•7-3/2

-oo
-1.1025
-0. 395 6
+0.0870
+0. 367 1
+0.3219
+0.0389
-0.2306
-0. 274 0
-0. 082 7
+0.1584
+0. 240 5
+0.1074
-0. 108 4
-0.2133
-0.1235
+0. 069 4
+0.1892
+0.1343
-0.0370
-0. 166 5
-0. 141 1
+0. 009 2
+0.1446
+0.1446
+0.0148
-0.1232
-0. 145 2
-0. 035 7
+0. 102 1
+0. 143 2
+0.0537
-0. 081 4
-0.1388
-0.0690
+0.0612
+0.1324
+0. 081 7
-0. 041 6
-0.1240
-0.0919

•7-5/2

+00

+2.8764
+0.8282
+0.3690
-0.0146
-0. 294 4
-0. 332 2
-0. 128 5
+0.1438
+0.2699
+0.1642
-0. 066 6
-0. 221 2
-0.1758
+0.0166
+0.1812
+0.1780
+0.0199
-0.1466
-0. 175 1
-0. 047 8
+0.1155
+0.1688
+0. 069 8
-0. 087 2
-0.1599
-0. 087 0
+0.0610
+0.1490
+0.1003
-0. 036 8
-0. 136 3
-0.1100
+0.0145
+0. 122 2
+0.1166
+0. 006 0
-0. 107 0
-0.1203
-0. 024 5
+0.0910
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The nth zero of some Bessel functions
n

1

2

3

4

5

6

7

8

9

p = 0

2.405

5.520

8.654

11.792

14.931

18.071

21.212

24.353

27.494

p= 1

3.832

7.016

10.173

13.323

16.470

19.616

22.760

25.903

29.047

p=2

5.135

8.417

11.620

14.796

17.960

21.117

24.270

27.421

30.569

p = 3

6.379

9.760

13.015

16.224

19.410

22.583

25.749

28.909

32.065

p = 4

7.588

11.064

14.373

17.616

20.827

24.018

27.200

30.371

33.537

p=5

8.771

12.339

15.700

18.980

22.218

25.430

28.627

31.812

34.989

0.5.3 Spherical functions (Legendre polynomials)

Remark: See also section 1.13.2.13.

x — PI (x)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

ft(x)

-0. 500 0

-0. 496 2

-0. 4850

-0. 466 2

-0. 4400

-0. 406 2

-0. 365 0

-0. 316 2

-0. 2600

-0. 1962

-0. 1250

-0. 046 2

+0. 040 0

0. 1338

0. 235 0

0. 3438

0. 4600

0. 583 8

0. 7150

0. 853 8

P3(*)

0.0000

-0. 074 7

-0. 1475

-0. 2166

-0. 2800

-0. 335 9

-0. 382 5

-0. 4178

-0. 440 0

-0. 447 2

-0.4375

-0. 409 1

-0. 3600

-0. 288 4

-0. 1925

-0.0703

+0. 0800

0. 2603

0. 472 5

0. 7184

P4(x)

0. 375 0

0. 365 7

0. 337 9

0. 292 8

0. 232 0

0. 1577

+0. 072 9

-0.0187

-0. 1130

-0. 205 0

-0. 289 1

-0. 3590

-0. 408 0

-0. 428 4

-0. 412 1

-0. 350 1

-0. 2330

-0. 0506

+0. 2079

0. 554 1

fls(aO

0. 000 0

0. 092 7

0. 1788

0. 252 3

0. 307 5

0. 339 7

0. 3454

0. 322 5

0. 270 6

0. 191 7

+0. 089 8

-0. 028 2

-0. 1526

-0. 270 5

-0. 365 2

-0. 4164

-0. 399 5

-0. 285 7

-0. 041 1

+0. 372 7

Pe(*)

-0. 3125

-0. 296 2

-0. 2488

-0. 1746

-0. 080 6

+0. 024 3

0. 1292

0. 2225

0. 292 6

0.3290

0. 323 2

0. 270 8

0. 172 1

+0. 034 7

-0. 125 3

-0. 280 8

-0. 3918

-0.4030

-0. 241 2

+0. 1875

Pr(x)

0. 000 0

-0. 1069

-0. 199 5

-0. 264 9

-0. 293 5

-0. 279 9

-0. 224 1

-0. 1318

-0.0146

+0. 1106

0. 223 1

0. 300 7

0. 3226

0. 273 7

+0. 1502

-0. 034 2

-0. 239 7

-0. 391 3

-0. 367 8

+0.0112

One has: Pn(l) = 1 for all n = 1, 2,
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0.5.4 Elliptic integrals

Remark: See also section 1.14.19.
a) Elliptic integrals of the first kind F(k,S), k = sin S

ip=0°
10
20
30
40
50
60
70
80
90

a = 0°

0.0000
0.1745
0.349 1
0.5236
0.698 1
0.8727
1.0472
1.2217
1.3963
1.5708

10°

0.0000
0.1746
0.3493
0.5243
0.699 7
0.875 6
1.0519
1.2286
1.4056
1.5828

20°

0.0000
0.1746
0.3499
0.5263
0.7043
0.8842
1.0660
1.2495
1.4344
1.6200

30°

0.0000
0.1748
0.3508
0.5294
0.7116
0.8982
1.0896
1.2853
1.4846
1.6858

40°

0.0000
0.1749
0.3520
0.5334
0.7213
0.9173
1.1226
1.3372
1.5597
1.7868

>f=0°
10
20
30
40
50
60
70
80
90

a = 50°

0.000 0
0.1751
0.3533
0.5379
0.7323
0.9401
1.1643
1.4068
1.6660
1.9356

60°

0.0000
0.1752
0.3545
0.542 2
0.7436
0.9647
1.2126
1.4944
1.8125
2.1565

70°

0.0000
0.1753
0.3555
0.5459
0.7535
0.9876
1.2619
1.5959
2.0119
2.5046

80°

0.0000
0.1754
0.356 1
0.5484
0.7604
1.0044
1.3014
1.6918
2.2653
3.1534

90°

0.0000
0.1754
0.3564
0.5493
0.7629
1.0107
1.3170
1.7354
2.4362
oo

b) Elliptic integrals of the second kind E(k, if), k = sin a.

ip=Q°
10
20
30
40
50
60
70
80
90

a = 0°

0.0000
0.1745
0.349 1
0.5236
0.698 1
0.872 7
1.0472
1.2217
1.3963
1.5708

10°

0.0000
0.1745
0.3489
0.5229
0.3966
0.8698
1.0426
1.2149
1.3870
1.5589

20°

0.0000
0.1744
0.3483
0.5209
0.692 1
0.8614
1.0290
1.1949
1.3597
1.5238

30°

0.0000
0.1743
0.3473
0.5179
0.685 1
0.8483
1.0076
1.1632
1.3161
1.4675

40°

0.0000
0.1742
0.3462
0.5141
0.6763
0.8317
0.980 1
1.1221
1.2590
1.3931

v?=o°
10
20
30
40
50
60
70
80
90

a = 50°

0.0000
0.1740
0.3450
0.5100
0.6667
0.8134
0.949 3
1.0750
1.1926
1.3055

60°

0.0000
0.1739
0.343 8
0.506 1
0.6575
0.7954
0.9184
1.0266
1.1225
1.2111

70°

0.0000
0.1738
0.3429
0.5029
0.6497
0.780 1
0.8914
0.9830
1.0565
1.1184

80°

0.0000
1.1737
0.342 2
0.5007
0.6446
0.7697
0.8728
0.9514
1.0054
1.0401

90°

0.0000
0.1736
0.3420
0.5000
0.6428
0.7660
0.866 0
0.9397
0.9848
1.0000
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c) Complete elliptic integrals K and E, fe = sin a; for a = 90°, we set K— oo, E= 1.

a° K E a° K E a° K E

0 1.5708 1.5708 30 1.6858 1.4675 60 2.1565 1.2111
1 1.5709 1.5707 31 1.6941 1.4608 61 2.1842 1.2015
2 1.5713 1.5703 32 1.7028 1.4539 62 2.2132 1.1920
3 1.5719 1.5697 33 1.7119 1.4469 63 2.2435 1.1826
4 1.5727 1.5689 34 1.7214 1.4397 64 2.2754 1.1732
5 1.5738 1.5678 35 1.7312 1.4323 65 2.3088 1.1638
6 1.5751 1.5665 36 1.7415 1.4248 66 2.3439 1.1545
7 1.5767 1.5649 37 1.7522 1.4171 67 2.3809 1.1453
8 1.5785 1.5632 38 1.7633 1.4092 68 2.4198 1.1362
9 1.5805 1.5611 39 1.7748 1.4013 69 2.4610 1.1272

10 1.5828 1.5589 40 1.7868 1.3931 70 2.5046 1.1184
11 1.5854 1.5564 41 1.7992 1.3849 71 2.5507 1.1096
12 1.5882 1.5537 42 1.8122 1.3765 72 2.5998 1.1011
13 1.5913 1.5507 43 1.8256 1.3680 73 2.6521 1.0927
14 1.5946 1.5476 44 1.8396 1.3594 74 2.7081 1.0844
15 1.5981 1.5442 45 1.8541 1.3506 75 2.7681 1.0764
16 1.6020 1.5405 46 1.8691 1.3418 76 2.8327 1.0686
17 1.6061 1.5367 47 1.8848 1.3329 77 2.9026 1.0611
18 1.6105 1.5326 48 1.9011 1.3238 78 2.9786 1.0538
19 1.6151 1.5283 49 1.9180 1.3147 79 3.0617 1.0468

20 1.6200 1.5238 50 1.9356 1.3055 80 3.1534 1.0401
21 1.6252 1.5191 51 1.9539 1.2963 81 3.2553 1.0338
22 1.6307 1.5141 52 1.9729 1.2870 82 3.3699 1.0278
23 1.6365 1.5090 53 1.9927 1.2776 83 3.5004 1.0223
24 1.6426 1.5037 54 2.0133 1.2681 84 3.6519 1.0172
25 1.6490 1.4981 55 2.0347 1.2587 85 3.8317 1.0127
26 1.6557 1.4924 56 2.0571 1.2492 86 4.0528 1.0086
27 1.6627 1.4864 57 2.0804 1.2397 87 4.3387 1.0053
28 1.6701 1.4803 58 2.1047 1.2301 88 4.7427 1.0026
29 1.6777 1.4740 59 2.1300 1.2206 89 5.4349 1.0008
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0.5.5 Integral trigonometric and exponential functions

Definition:

x Si(x) Ci(as) Ei(x) x Si(x) Ci(z) Ei(x)

0.00 0.0000 -oo -oo 0.40 0.3965 -0.3788 0.1048
0.01 0.0100 -4.0280 -4.0179 0.41 0.4062 -0.3561 0.1418
0.02 0.0200 -3.3349 -3.3147 0.42 0.4159 -0.3341 0.1783
0.03 0.0300 -2.9296 -2.8991 0.43 0.4256 -0.3126 0.2143
0.04 0.0400 -2.6421 -2.6013 0.44 0.4353 -0.2918 0.2498

0.05 0.0500 -2.4191 -2.3679 0.45 0.4450 -0.2715 0.2849
0.06 0.0600 -2.2371 -2.1753 0.46 0.4546 -0.2517 0.3195
0.07 0.0700 -2.0833 -2.0108 0.47 0.4643 -0.2325 0.3537
0.08 0.0800 -1.9501 -1.8669 0.48 0.4739 -0.2138 0.3876
0.09 0.0900 -1.8328 -1.7387 0.49 0.4835 -0.1956 0.4211

0.10 0.0999 -1.7279 -1.6228 0.50 0.4931 -0.1778 0.4542
0.11 0.1099 -1.6331 -1.5170 0.51 0.5027 -0.1605 0.4870
0.12 0.1199 -1.5466 -1.4193 0.52 0.5123 -0.1436 0.5195
0.13 0.1299 -1.4672 -1.3287 0.53 0.5218 -0.1271 0.5517
0.14 0.1399 -1.3938 -1.2438 0.54 0.5313 -0.1110 0.5836

0.15 0.1498 -1.3255 -1.1641 0.55 0.5408 -0.0953 0.6153
0.16 0.1598 -1.2618 -1.0887 0.56 0.5503 -0.0800 0.6467
0.17 0.1697 -1.2020 -1.0172 0.57 0.5598 -0.0650 0.6778
0.18 0.1797 -1.1457 -0.9491 0.58 0.5693 -0.0504 0.7087
0.19 0.1896 -1.0925 -0.8841 0.59 0.5787 -0.0362 0.7394

0.20 0.1996 -1.0422 -0.8218 0.60 0.5881 -0.0223 0.7699
0.21 0.2095 -0.9944 -0.7619 0.61 0.5975 -0.0087 0.8002
0.22 0.2194 -0.9490 -0.7042 0.62 0.6069 +0.0046 0.8302
0.23 0.2293 -0.9057 -0.6485 0.63 0.6163 0.0176 0.8601
0.24 0.2392 -0.8643 -0.5947 0.64 0.6256 0.0303 0.8898

0.25 0.2491 -0.8247 -0.5425 0.65 0.6349 0.0427 0.9194
0.26 0.2590 -0.7867 -0.4919 0.66 0.6442 0.0548 0.9488
0.27 0.2689 -0.7503 -0.4427 0.67 0.6535 0.0666 0.9780
0.28 0.2788 -0.7153 -0.3949 0.68 0.6628 0.0782 1.0071
0.29 0.2886 -0.6816 -0.3482 0.69 0.6720 0.0895 1.0361

0.30 0.2985 -0.6492 -0.3027 0.70 0.6812 0.1005 1.0649
0.31 0.3083 -0.6179 -0.2582 0.71 0.6904 0.1113 1.0936
0.32 0.3182 -0.5877 -0.2147 0.72 0.6996 0.1219 1.1222
0.33 0.3280 -0.5585 -0.1721 0.73 0.7087 0.1322 1.1507
0.34 0.3378 -0.5304 -0.1304 0.74 0.7179 0.1423 1.1791

0.35 0.3476 -0.5031 -0.0894 0.75 0.7270 0.1522 1.2073
0.36 0.3574 -0.4767 -0.0493 0.76 0.7360 0.1618 1.2355
0.37 0.3672 -0.4511 -0.0098 0.77 0.7451 0.1712 1.2636
0.38 0.3770 -0.4263 +0.0290 0.78 0.7541 0.1805 1.2916
0.39 0.3867 -0.4022 0.0672 0.79 0.7631 0.1895 1.3195



0.5. Tables of values of special functions 107

X

0.80
0.81
0.82
0.83
0.84

0.85
0.86
0.87
0.88
0.89

0.90
0.91
0.92
0.93
0.94

0.95
0.96
0.97
0.98
0.99

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4
2.5

Si(as)

0.7721
0.7811
0.7900
0.7989
0.8078

0.8166
0.8254
0.8342
0.8430
0.8518

0.8605
0.8692
0.8778
0.8865
0.895 1

0.9036
0.9122
0.9207
0.9292
0.9377

0.9461
1.0287
1.1080
1.1840
1.2562

1.3247
1.3892
1.4496
1.5058
1.5578

1.6054
1.6487
1.6876
1.7222
1.7525
1.7785

Ci(x)

0.1983
0.2069
0.2153
0.2235
0.2316

0.2394
0.2471
0.2546
0.2619
0.2691

0.2761
0.2829
0.2896
0.2961
0.3024

0.3086
0.3147
0.3206
0.3263
0.331 9

0.3374
0.3849
0.4205
0.445 7
0.4620

0.4704
0.471 7
0.4670
0.4568
0.4419

0.4230
0.4005
0.3751
0.3472
0.3173
0.2859

Ei(x)

1.3474
1.3752
1.4029
1.4306
1.4582

1.4857
1.5132
1.5407
1.5681
1.5955

1.6228
1.6501
1.6774
1.7047
1.7319

1.7591
1.7864
1.8136
1.8407
1.8679

1.8951
2.1674
2.442 1
2.7214
3.0072

3.3013
3.6053
3.9210
4.2499
4.5937

4.9542
5.3332
5.7326
6.1544
6.6007
7.0738

X

2.6
2.7
2.8
2.9
3.0

3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9
4.0

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
5.0

6
7
8
9
10

11
12
13
14
15

Si(x)

1.8004
1.8182
1.832 1
2.8422
1.8487

1.8517
1.8514
1.8481
1.8419
1.833 1

1.8219
1.8086
1.7934
1.7765
1.7582

1.7387
1.7184
1.6973
1.6758
1.6541

1.6325
1.6110
1.5900
1.5696
1.5499

1.4247
1.4546
1.5742
1.6650
1.6583

1.5783
1.5050
1.4994
1.5562
1.6182

Ci(x)

0.2533
0.2201
0.1865
0.1529
0.1196

0.08699
0.05526

+0.02468
-0.00452
-0.032 13

-0.05797
-0.0819
-0. 103 8
-0.1235
-0.1410

-0.1562
-0.1690
-0.1795
-0. 187 7
-0.1935

-0.1970
-0. 198 4
-0.1976
-0.1948
-0.1900

-0.068 1
+0.076 7
+0.1224
+0.05535
-0.045 46

-0.08956
-0.049 78
+0.026 76
+0.06940
+0.046 28

Ei(a:)

7.5761
8.1103
8.6793
9.2860
9.9338

10.626 3
11.3673
12.1610
13.0121
13.9254

14.9063
15.9606
17.0948
18.3157
19.6309

21.0485
22.5774
24.2274
26.0090
27.9337

30.0141
32.2639
34.6979
37.3325
40.1853

85.9898
191.505
440.380

1037.88
2492.23

6071.41
14959.5
37197.7
93192.5

234956.0

X

20
25
30
35
40

45
50
55
60
65

70
80
90
100
110

Si(«)

1.5482
1.5315
1.5668
1.5969
1.5870

1.5587
1.5516
1.5707
1.5867
1.5792

1.5616
1.5723
1.5757
1.5622
1.5799

Ci(=c)

+0.04442
-0.006 85
-0.03303
-0.01148
+0.01902

+0.01863
-0.005 63
-0.01817
-0.00481
+0.01285

+0.01092
-0.01240
+0.00999
-0.005 15
-0.000 32

X

120
140
160
180
200

300
400
500
600
700

800
103

104

105

oo

Si(x)

1.5640
1.5722
1.5769
1.5741
1.5684

1.5709
1.5721
1.5726
1.5725
1.5720

1.5714
1.5702
1.5709
1.5708

7T/2

Ci(a;)

+0.004 78
+0.00701
+0.001 41
-0.00443
-0.004 38

-0.003 33
-0.002 12
-0.000 93
+0.00008
+0.000 78

+0.001 12
+0.000 83
-0.00003
+0.000 00
+0.00000
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0.5.6 Fresnel integrals

Remark: See also section 0.10.1.
X

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1.0
1.5
2.0
2.5
3.0

3.5
4.0
4.5
5.0
5.5

6.0
6.5
7.0
7.5
8.0

C(x)

0
0.2521
0.3554
0.4331
0.4966

0.5502
0.5962
0.6356
0.6693
0.6979

0.7217
0.7791
0.7533
0.6710
0.5610

0.4520
0.3682
0.3252
0.3285
0.3724

0.4433
0.5222
0.5901
0.6318
0.6393

S(x)

0
0.0084
0.0238
0.0434
0.0665

0.0924
0.1205
0.1504
0.1818
0.2143

0.2476
0.4155
0.5628
0.6658
0.7117

0.7002
0.6421
0.5565
0.4659
0.3918

0.3499
0.3471
0.3812
0.4415
0.5120

X

8.5
9.0
9.5
10.0
10.5

11.0
11.5
12.0
12.5
13.0

13.5
14.0
14.5
15.0
15.5

16.0
16.5
17.0
17.5
18.0

18.5
19.0
19.5
20.0
20.5

C(x)

0.6129
0.5608
0.4969
0.4370
0.3951

0.3804
0.3951
0.4346
0.4881
0.5425

0.5846
0.6047
0.5989
0.5693
0.5240

0.4743
0.4323
0.4080
0.4066
0.4278

0.4660
0.5113
0.5528
0.5804
0.5878

S(X)

0.5755
0.6172
0.6286
0.6084
0.5632

0.5048
0.4478
0.4058
0.3882
0.3983

0.4325
0.4818
0.5337
0.5758
0.5982

0.5961
0.5709
0.5293
0.4818
0.4400

0.4139
0.4093
0.4269
0.4616
0.5049

X

21.0
21.5
22.0
22.5
23.0

23.5
24.0
24.5
25.0
25.5

26.0
26.5
27.0
27.5
28.0

28.5
29.0
29.5
30.0
30.5

31.0
31.5
32.0
32.5
33.0

C(x)

0.5738
0.5423
0.5012
0.4607
0.4307

0.4181
0.4256
0.4511
0.4879
0.5269

0.5586
0.5755
0.5738
0.5541
0.5217

0.4846
0.4518
0.4314
0.4279
0.4420

0.4700
0.5048
0.5379
0.5613
0.5694

S(x)

0.5459
0.5748
0.5849
0.5742
0.5458

0.5068
0.4670
0.4361
0.4212
0.4258

0.4483
0.4829
0.5211
0.5534
0.5721

0.5731
0.5562
0.5260
0.4900
0.4570

0.4350
0.4291
9.4406
0.4663
0.4999

0.5.7 The function

X

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

0

0.0000
0.1003
0.2027
0 .309 2
0.4224

0 .545 0
0 .680 5
0 .833 3
1 .009 1
1 .2155

1.463
1 .765
2.141
2.620
3.241

4.063
5.174
6.704
8.85

11.94

1

0.0100
0.1104
0.2131
0.3202
0.4342

0.5579
0.6949
0 .849 7
1 .028 2
1 .2382

1.490
1.799
2.184
2.675
3.313

4.159
5.305
6.887
9.11

12.32

2

0.0200
0.1206
0.2236
0.3313
0 .446 1

0.5709
0.7095
0.8664
1 .047 7
1 .2613

1 .518
1 .833
2.228
2.731
3.387

4.259
5.441
7.076
9.38

12.70

3

0.0300
0.1307
0 .234 1
0 .342 4
0 .458 0

0 .584 1
0.7243
0.8833
1.0674
1.2848

1.547
1.869
2.272
2.789
3.463

4.361
5.581
7.272
9.66

13.11

4

0 .040 0
0.1409
0 .244 7
0 .353 6
0 .470 1

0.5974
0.7393
0 .900 5
1 .0875
1.3088

1.576
1.905
2.318
2.848
3.542

4.467
5.726
7.475
9.95

13.54

5

0.0500
0.1511
0.2553
0 .364 8
0.4823

0.6109
0.7544
0.9179
1 .1079
1 .3332

1.606
1 .942
2 .365
2.909
3.622

4.575
5.876
7.685

10.25
13.98

6

0 .060 1
0.1614
0.2660
0 .376 2
0 .494 6

0 .624 5
0.7698
0.9356
1 .1287
1 .358 1

1.636
1 .980
2.414
2.972
3.705

4.688
6.030
7.903

10.57
14.43

7

0 .070 1
0.1717
0.2767
0.3876
0.5070

0 .638 2
0.7853
0.9536
1.1498
1.3835

1 .667
2.019
2.463
3.037
3.791

4.803
6.190
8.128

10.89
14.91

8

0.0802
0.1820
0.2875
0 .399 1
0.5196

0.6522
0 .801 1
0.9718
1 .1713
1 .409 3

1 .699
2.059
2 .514
3.103
3.879

4.923
6.356
8.362

11 .23
15.40

9

0.0902
0.1923
0.2983
0.4107
0.5322

0.6662
0.8171
0.9903
1.1932
1.4357

1.731
2.099
2.566
3.171
3.970

5.046
6.527
8.604

11.58
15.92
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0.5.8 Changing from degrees to radians

Arclength of the unit circle

Angle Arc Angle Arc Angle Arc

1" 0.000005 1° 0.017453 31° 0.541052
2 0.000010 2 0.034907 32 0.558505
3 0.000015 3 0.052360 33 0.575959
4 0.000019 4 0.069813 34 0.593412
5 0.000024 5 0.087266 35 0.610865
6 0.000029 6 0.104720 36 0.628319
7 0.000034 7 0.122173 37 0.645772
8 0.000039 8 0.139626 38 0.663225
9 0.000044 9 0.157080 39 0.680678

10 0.000048 10 0.174533 40 0.698132
20 0.000097 11 0.191986 45 0.785398
30 0.000145 12 0.209440 50 0.872665
40 0.000194 13 0.226893 55 0.959931
50 0.000242 14 0.244346 60 1.047198

15 0.261799 65 1.134464
1' 0.000291 16 0.279253 70 1.221730
2 0.000582 17 0.296706 75 1.308997
3 0.000873 18 0.314159 80 1.396263
4 0.001164 19 0.331613 85 1.483530
5 0.001454 20 0.349066 90 1.570796
6 0.001745 21 0.366519 100 1.745329
7 0.002036 22 0.383972 120 2.094395
8 0.002327 23 0.401426 150 2.617994
9 0.002618 24 0.418879 180 3.141593

10 0.002909 25 0.436332 200 3.490659
20 0.005818 26 0.453786 250 4.363323
30 0.008727 27 0.471239 270 4.712389
40 0.011636 28 0.488692 300 5.235988
50 0.014544 29 0.506145 360 6.283185

30 0.523599 400 6.981317

Examples:

The radian is the plane angle for which the quotient of the length of the corresponding
circular arc and its radius is equal to 1 (abbreviated rad).

1) 52° 37' 23" 2) 5.645 radians ( arclength)

50° = 0.872 665 5.235 988 = 300°
2° =0.034907

30' = 0.008 727 0.409 012
7' = 0.002 036 0.401426 = 23°

20" = 0.000 097
3" =0.000015 0.007586

0.005818 = 20'
0.918 447

0.001 768
52° 37' 23" = 0.91845 rad 0.001745 = 6'

0.000023 _ = 5"

5.645 rad = 323° 26' 5"
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0.6 Table of prime numbers < 4000

The prime number twins, i.e., two consecutive odd numbers which are prime, are indi-
cated by boldface (starting at 41-43). It is known that there are infinitely many such
twins.

2
31
73

127
179
233
283
353
419
467
547
607
661
739
811
877
947

1019

1087
1153
1229
1297
1381

1453
1523
1597
1663
1741
1823
1901
1993
2063

2131
2221
2293
2371

2437
2539
2621

2689
2749
2833
2909

3001
3083
3187

3259
3343
3433
3517

3581
3659
3733

3823
3911

3
37
79

131
181
239
293
359
421
479
557
613
673
743
821
881
953

1021

1091
1163

1231
1301
1399
1459
1531
1601

1667
1747
1831
1907

1997
2069
2137

2237
2297
2377

2441
2543
2633
2693
2753
2837
2917
3011
3089
3191
3271
3347
3449

3527
3583
3671
3739
3833

3917

5
41
83

137
191
241
307
367
431
487
563
617
677
751
823
883
967

1031

1093
1171
1237

1303
1409
1471
1543

1607
1669
1753
1847
1913

1999
2081
2141
2239
2309
2381

2447
2549
2647
2699
2767
2843
2927
3019
3109
3203

3299
3359
3457

3529
3593
3673
3761
3847

3919

7
43
89

139
193
251
311
373
433
491
569
619
683
757
827
887
971

1033

1097
1181
1249
1307
1423

1481
1549

1609
1693
1759
1861

1931
2003

2083
2143
2243

2311
2383

2459
2551
2657
2707
2777
2851
2939
3023

3119
3209

3301
3361
3461
3533
3607
3677

3767
3851
3923

11
47
97

149
197
257
313
379
439
499
571
631
691
761
829
907
977

1039

1103
1187
1259

1319
1427
1483
1553
1613

1697
1777
1867

1933
2011

2087
2153
2251
2333
2389

2467
2557

2659
2711
2789
2857
2953
3037

3121
3217
3307

3371
3463
3539
3613
3691

3769
3853
3929

13
53

101
151
199
263
317
383
443
503
577
641
701
769
839
911
983

1049

1109
1193

1277
1321
1429
1487
1559

1619
1699
1783

1871
1949
2017
2089
2161

2267
2339
2393

2473
2579
2663
2713
2791
2861
2957
3041
3137
3221
3313
3373
3467
3541
3617
3697
3779
3863

3931

17
59

103
157
211
269
331
389
449
509
587
643
709
773
853
919
991

1051

1117
1201

1279
1327
1433

1489
1567

1621
1709

1787
1873
1951
2027
2099
2179

2269
2341
2399

2477
2591
2671
2719
2797
2879
2963
3049
3163
3229
3319

3389
3469
3547
3623
3701
3793
3877
3943

19
61

107
163
223
271
337
397
457
521
593
647
719
787
857
929
997

1061

1123
1213
1283
1361
1439
1493
1571
1627

1721
1789
1877
1973

2029
2111
2203
2273
2347
2411

2503
2593
2677

2729
2801
2887

2969
3061
3167
3251
3323

3391
3491
3557
3631
3709
3797
3881
3947

23
67

109
167
227
277
347
401
461
523
599
653
727
797
859
937

1009
1063

1129
1217

1289
1367
1447
1499
1579
1637

1723
1801

1879
1979
2039

2113
2207
2281
2351
2417

2521
2609
2683

2731
2803
2897

2971
3067

3169
3253
3329
3407
3499
3559
3637
3719
3803
3889
3967

29
71

113
173
229
281
349
409
463
541
601
659
733
809
863
941

1013
1069

1151
1223

1291
1373

1451
1511
1583
1657
1733
1811
1889
1987
2053

2129
2213
2287
2357
2423

2531
2617

2687
2741
2819
2903

2999
3079
3181

3257
3331
3413
3511
3571
3643
3727

3821
3907
3989
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0.7 Formulas for series and products

For infinite series and infinite products the notion of convergence is fundamental (cf.
1.10.1 and 1.10.6).

0.7.1 Special series

One gets important series by inserting special values in the power series listed in 0.7.2
or in Fourier series listed in 0.7.4.

0.7.1.1 The Leibniz series and related series

(Euler number),

(geometric series).

(alternating geometric series),
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(Jakob Bernoulli, 1689).

0.7.1.2 Special values of the Riemannian ^-function and related series

The series

converges for all real numbers s > 1 and more generally for all complex numbers s witl
Re s > I . This function is of fundamental importance in the mathematical discipline
of number theory, in particular with the distribution of prime numbers (see sectior
2.7.3). It is called the Riemann (^-function and was studied by Euler and particularly
by Riemann in 1859.

The formula of L. Euler (1734)44 :

Special cases:

Special cases:

44The Bernoulli numbers B^ and the Euler numbers E^ can be found in sections 0.1.10.4 and 0.1.10.5.
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Special cases:

Special cases: For k = 0 one gets the Leibniz series

0.7.1.3 The Euler—McLaurin summation formula

The asymptotic formula of Euler (1734) :

The Euler constant C has the value C = 0.57721 56649 01532 . . . , which had already
been calculated by Euler. The asympotic formula (0.53) is a special case of the Euler-
McLaurin summation formula (0.54).

Bernoulli polynomials:

Modified Bernoulli polynomials:45

The Euler-McLaurin summation formula: For n= 1 , 2 , . . . one has

with46

45We denote by [x] the largest integer n smaller than or equal to x: (Gauss bracket). The function
Cn coincides in the interval [0,1[ with Bn and is extended periodically with period 1.

46The symbol <;|™ means g(n) — <?(!) .
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and the remainder term

Here it is assumed that the function /: [0, n] —> M is sufficiently smooth, i.e., has con-
tinuous derivatives up to order 2p+ 1 on the interval [0,n].

0.7.1.4 Infinite partial fraction decomposition

The following series converge for all complex numbers x with the exception of those
values for which the denominator vanishes47:

0.7.2 Power series

Comments on the power series table: The power series listed in the following
table converge for all complex numbers x for which the stated inequalities hold. The
properties of power series will be considered in more detail in 1.10.3.

The given first term in the series may be used as an approximation for x sufficiently
small.

Example: One has

If \x\ is small, then, approximately

Successively improved approximations are obtained by

47These series are special cases of the theorem of Mittag- Leffler (cf. 1.14.6.4).

A sum stands for the sum of the two infinite sums:
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For the frequently appearing factorials one can use the following table:

n 

n! 1 1 2 6 24 120 720 5040 40,320 362,880 3,628,800

In the expansions of

and

respectively, the Bernoulli numbers B^ resp. Euler numbers Ek appear (see sections
0.1.10.4 and 0.1.10.5).

Function Power series expansion Domain of conver-
gence (x € C)

geometric series

The binomial series of Newton

(a is an arbitrary real number48)

(a is a positive real number)

a and x are arbitrary complex numbers)

The generalized binomial coefficients are denned by
ptr

0 1 2 3 4 25 6 7 8 9 10

48
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Special cases of the binomial series for integral exponents
(a a complex number with a 7^ 0)

Special cases of the binomial series for rational exponents
(b a positive real number)
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Hypergeometric series (generalized binomial series) of Gauss

Special cases of the hypergeometric series

(Legendre polynomials, see page 123 below)

(Legendre functions, see page 123 below)

Exponential function

(b is a complex number)

(a real and positive)with 6 = In a
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Trigonometric functions and hyperbolic functions

sin ix — i sinh x , cos ix = cosh x , sinh ix = i sin x , cosh ix = cos x
(for all complex numbers x)

sinx

sinhx

cosx

coshx

tanx

tanhx
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Inverse trigonometric functions and inverse hyperbolic functions

Logarithmic functions

arctan x

(Leibniz series)

artanh x

arctan

arctan

arcoth

arccot x = arctan x

arcsin x

arccos x

arsinhx

arccos x = arcsin x

In 2

ln(l 4- x)

(and x = — 1)
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Complete elliptic integrals

The Euler gamma function (generalized factorial)

49Here C denotes the Euler constant, and £ is the Riemannian (^-function.

(Legendre Series 49)
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The Euler beta function

Bessel functions (cylinder functions)

Neumann functions

The parameter p is real with p 7^ —1, — 2 , . . .

The parameter p is real with p ̂  0, ±1, ±2,. . .

Hankel functions

The parameter p is real.

Bessel functions with imaginary argument

The parameter p is real.

MacDonald functions

The parameter p is real with p ^ 0, ±1, ±2,..
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Gaussian error integral

Integral sine

Integral cosine

Integral exponential function51

Logarithmic integral5

50The function In x — C\(x) + C is initially only denned for real positive x. The power series converges
for all complex numbers and represents the analytically extended function Inx — Ci(x) + C (cf. 1.14.15).

51The notation PV / • • • denotes the principal value of the integral, i.e.,

For x < 0 the principal value coincides with the usual integral for the case at hand.

52For 0 < x < 1 one has one has
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Legendre polynomials53 n — 0 , 1 , 2 , . . .

(if n is even (resp. odd), the the last
term is x° (resp. #)).

Orthogonality relations:

Special cases:

Legendre functions n = 0 , 1 , 2 , . . .

Laguerre polynomials n = 0 , 1 , 2 , . . .

Orthogonality relations:

Special cases:

The deeper meaning of the Legendre, Hermite and Laguerre polynomials will become clear in the
context of the theory of complete orthonormal systems in Hilbert spaces.
54
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Laguerre functions55

Orthogonality relations:

Hermite polynomials n = 0 , 1 , 2 , . . .

Special cases:

Hermite functions

Orthogonality relations:

0.7.3 Asymptotic series

An asymptotic expansion of a function is a representation of a function for very large
values of the argument.

0.7.3.1 Convergent expansions

Function Infinite series Domain of
convergence

Inx

arctan x

arctan x

In 2x — arcoshx

arcothx

55See section 1.13.2.13; the coefficients c™ are chosen so that J£™ satisfy (j£^*, 3£%) = 1.
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0.7.3.2 Asymptotic equality

We use the notation

to indicate that

(C the Euler constant),

0.7.3.3 Asymptotic expansions in the sense of Poincare

Following Poincare (1854-1912) one writes

to indicate the behavior

for all n = 1,2, . . ,56 This kind of series was met by Poincare during his deep investiga-
tions of celestial mechanics at the end of the nineteenth century. He ran across divergent
series of the form (0.55). At the same time he discovered that such series are nevertheless
quite natural, since the expansion contains important information about the function /.

Stirling's series for the gamma function:

Here B2k denote the Bernoulli numbers.

Asymptotic expansion of the Euler integral:

The symbol o(...) will be explained in 1.3.1.4. Explicitly, one has

for all n = l ,2 , . . .

56
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Asymptotic representation of the Bessel and Neumann functions:

The parameter p is real.

The method of stationary phase: One has

with and

as well as Here it is assumed that the following
conditions are satisfied.

(i) The complex valued phase factor p: R —> C is infinitely often differentiable. One
has Imp(a) = 0 and p'(a) = 0 with p"(a) ^ 0.

(ii) One has p' (x) ^ 0 for all real numbers x ^ a. The imaginary part lmp(x} is
non-negative for all real numbers x.

(iii) The real function A: R —> R describing the amplitude is infinitely often differen-
tiable and vanishes outside of some bounded interval.

This theorem is important in classical optics (limiting behavior for large angular frequen-
cies u} and hence for small wavelengths A) as well as in the modern theory of Fourier
integral operators.



0.7. Formulas for series and products 127

0.7.4 Fourier series

Note: See section 1.11.2.

For the arguments ± kir, the series sums up to 0 according to Dirichlet's theorem.
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In particular, for
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an even extension in

an odd extension in

an odd extension in

u arbitrary real, but not integer;

u arbitrary real, but not integer;
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In the following examples the problem is not so much how to develop a given function
into a Fourier series than the converse question: to which functions do certain simple
trigonometric series converge?
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0.7.5     Infinite products

The convergence of infinite products will be considered in section 1.10.6.

Function Infinite product Discoverer Domain of con-
vergence (x 6 C)

57The product is to be taken over all prime numbers p, and £(s) denotes the Riemannian C-Funktion.

(Euler constant C = 0.577215 .. .) .

(product of Vieta 1579),

(Euler57)

(Weierstrass;
C Euler constant)

(Gauss)

(Euler)

(Wallis 1655)

(Euler 1734)

Further examples:
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0.8 Tables for differentiation of functions

0.8.1 Differentiation of elementary functions

Table 0.35. First derivatives.

x G R (resp. x 6 C) means that the derivative for all real (resp. complex) numbers exists. The
notation k £ Z stands for fc = 0, ±1, ±2,.. .

Function f ( x ) Derivative58

/'(x)
Validity for
real numbers5®

Validity for
complex numbers59

Instead of /' (x) one also writes

C (constant)

x

x2

0

1

2x

xn (n = 1,2,...)

Inx

ex

sinx

cosx

sinhx

coshx

tanx

58

59
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Table 0.35. (continued)

Table 0.36. Higher derivatives.

Function f(x) nth derivative f(n} (x] Validity for
real numbers

Validity for
complex
numbers

cotx

tanhx

cothx

arcsin x

arccos x

arctan x

arccotx

arsinhx

arcoshx

artanhx

arcothx

sin&o;

cosbx

sinh bx bn sinh bx for even n,
bn cosh bx for odd n
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Table 0.36. (continued)

0.8.2 Rules for differentiation of functions of one variable

Table 0.37. Rules for differentiation.60

Applying the sum rule: Example 1: Using Table 0.35 we get

(ex + sinx)' = (ex)'+ (sina;)' = ex + cosx, x 6 M ,
(x2 +sinhx)' = (x2)' + (sinhx)' = 2x + coshx, x e R,

(In x + cos x)' = (In x)' + (cos x)' = sin x , x > 0 .

Applying the rule for multiplication by a constant: Example 2:

(2ex)' = 2(ex)' = 2ex , (3sinx)' = 3(sinx)' = 3cosx, x e R ,
(3x4 + 5)' = (3x4)' + (5)' = 3 • 4x3 = 12x3 , x e R.

Applying the product rule: Example 3:

(xex)' = (x)V + x(ex)' = 1 • e* + xex = (1 + x)ex , x € R,
(x2 sinx)' = (x2)' sinx + x2(sinx)' = 2xsinx + x2 cosx , x e R,
(xlnx)' = (x)'lnx + x(lnx)' = lnx + 1, x > 0.

The precise assumptions for the validity of the formulas can be found in 1.4. These rules hold for
functions of one real or complex variable. The Examples 1 to 6 remain valid for complex arguments x.

cosh bx bn cosh bx for even n,
bn sinh bx for odd n

Rule Formula in Leibniz' notation

rule of sums

multiplication by a constant

product rule

quotient rule

chain rule

inverse function

60
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Applying the quotient rule: Example 4-

This derivative exists for all x for which the denominator cosx is non-vanishing, i.e.,
such that x ^ kit + - with k = 0, ±1, ±2, . . .

Applying the chain rule: Example 5: To differentiate

we write

The chain rule yields

Example 6: The differentiation of

is affected by setting y = cosz, z = 3x4 + 5 and calculating

Applying the rule for the derivative of the inverse function: Inverting the
function

ye*,

yields

x = In y, y > 0.

From this we get

0.8.3 Rules for differentiating functions of several variables

Partial derivative: If the function / = /(x, w,...) depends on x and further variables
w,..., then the partial derivative

is formed by viewing / as a function of x alone, viewing the other variables as constants,
and forming the derivative with respect to x.
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Example 1: Let /(x) = Cx with the constant C. Then one has

In the same way, we get for /(a;, u, v) = (ev sin u)x the partial derivative

This is because one views u, v and hence also C — ev sinu as constants.

Example 2: Let f ( x ) — cos(3x4 + C), where C denotes a constant. By Example 6 in
0.8.2 one has

In the function f(x,u) = cos(3x + e") we view u and hence also C = e" as constants
and get

Example 3: For /(x, y) := xy one gets

Example 4- For the function we get

Table 0.38. The chain rule.61

Name Formula

total differential

chain rule

For the chain rule in Table 0.38 we view x = x(w,...) and y = y(w,...) as functions of
w and (perhaps) other variables. A similar rule holds for functions / = /(xi, . . . ,xn).
One has the total differential

which gives the following expression for the chain rule

The precise assumptions for the validity of these rules can be found in 1.5 These rules are valid for
functions of real or complex variables.

61
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in case the functions x\,..., xn depend on w and further variables. If x i , . . . , xn are only

functions of lo, then one uses the notation — instead of ——. This yields the special
aw dw

form of the chain rule

Applications of the chain rule: Example 5: We set f ( t ) := x ( t ) y ( t ) . From Example
3 we get the expression

for the total differential. From this we then get

This is the product rule, which consequently may be viewed as a special case of the chain
rule for functions of several variables.

Example 6: For the function

we get from Example 4 the total differential

and

This is nothing but the quotient rule.

0.9 Tables of integrals

Differentiation is handicraft — integration is an art.

Folklore

Differentiation and integration on the computer: For this one can advanta-
geously use the software system Mathematica.

0.9.1 Integration of elementary functions

The formula

Thus, the function F has the property that the derivative of F is the function / on the
set D. One refers to F as a primitive or as an indefinite integral of /. In this sense,
integration is the inverse process of differentiation.

means
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(i) Real case: If x is a real variable and D denotes an interval, then one gets all
possible indefinite integrals of / on the set D by adding to some fixed indefinite
integral different constants. To express this fact, one writes

(ii) Complex case: Let D be a domain in the complex plane. All statements above
remain valid, if C is now taken to be a complex constant.

Table 0.39. Basic integrals.

Only one indefinite integral is listed.
x € R (resp. x 6 C) means the corresponding formula is valid for all real (resp. complex) numbers.

Moreover, k 6 Z stands for A; = 0, ±1, ±2,. . . For the functions Inx, Vx and xa+l we use the principal
branch for the functions with complex arguments, which are obtained from the values for x > 0 by
analytic continuation (cf. 1.14.15).

Function f(x)
Indefinite inte-
gral / f(x)dx

Validity for
real numbers63

Validity for
complex numbers63

C (constant)

x

Cx

ex

sinx

cosx

tana;

cotx

sinx

— cosx

62

63
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Table 0.39. (continued)

0.9.2 Rules for integration

0.9.2.1 Indefinite integrals

The rules for calculation of definite integrals can be found in Table 0.41.

Table 0-40. Rules for calculation of indefinite integrals.64

64The precise assumptions for the validity of these rules will be formulated in sections 1.6.4 and 1.6.5.

sinhx

coshx

tanhx

cothx

— cot x

cosh x

sinhx

In cosh x

In | sinhx|

tanhx

— coth x

Name of rule

sum rule

constant multiples

integration by parts

substitution formula

logarithmic derivative

Formula
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The substitution rule is often used in the mnemonic very convenient formulation65

with dt(x) — t'(x)dx. In many cases (0.56) is more convenient than the formulation in
Table 0.40, for which one must in addition assume that x'(t) ^ 0 in order to guarentee
the existence of the inverse function t = t(x).

In all cases in which (0.56) can be applied, the existence of the inverse function is not
necessary.

Examples of substitutions: Example 1: We want to calculate the integral

To do this, we set t := 1x + 1. The inverse function is

It follows that

Now we use the formula (0.56) to calculate J.
d(2x + 1)

Because of = 2 one has d(2x + 1) = 2dx. This yields
dx

After a certain amount of practice, one will note the following formula:

Generally speaking, one should first check whether (0.56) can be applied. There are
situations where (0.56) cannot be immediately applied (see Example 3 in 1.6.5).

dx2

Example 2: From — — = 2x it follows that
dx

Exchanging the role of x and t, one gets by the substitution rule in Table 0.40 the formula

which corresponds to (0.56).

The substitution formula in Table 0.40 yields

65
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With more experience you will just write

Example 3:

More examples applying substitution can be found in 0.9.4. and 1.6.5.

Examples of integration by parts: Example 4: To calculate we set

This leads to

Example 5: To calculate we choose

This yields

by Example 3.
More examples of integration by parts can be found in 1.6.4.

0.9.2.2 Definite integrals

The most important rules are gathered in Table 0.41.
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Table 0-41- Rules for calculation of definite integrals.^

The fundamental theorem of calculus results from the formula for integration by parts
in Table 0.41 by setting v = 1 there.

Example:

This follows from the fact that for u := — cosx one has u' = sinx.

More examples are to be found in 1.6.4.

0.9.2.3 Integrals of functions of several variables

The rules of Table 0.41 for one-dimensional integrals (integrals of functions of a single
variable) correspond to similar formulas for integrals of functions of several variables
(higher-dimensional integrals), which are gathered in Table 0.42.

Table 0.42. Formulae for integrals of functions of several variables?7

B The precise assumptions are found in 1.6. We set /| :— f(b) — /(a).
The precise assumptions and an explanation of the notations are in 1.7.

Name of rule Formula

substitution formula

integration by parts

fundamental theorem of calculus
due to Newton and Leibniz

Name of rule

substitution formula

integration by parts

theorem of Gauss

theorem of Gauss-Stokes

theorem of Fubini (iterated integration)

Formula

67



144 0. Formulas, Graphs and Tables

Remarks:

(i) The theorem of Gauss in Table 0.42 results form the formula for integration by
parts, upon setting v — 1 there.

(ii) The theorem of Gauss-Stokes generalizes the fundamental theorem of calculus to
manifolds (for example, curves, surfaces, domains, etc.).

(iii) In fact, both the formula for integration by parts and the theorem of Gauss are
special cases of the theorem of Gauss-Stokes, which is one of the central theorems
in all of mathematics (cf. 1.7.6).

Applications of these rules are contained in sections 1.7.1 ff.

0.9.3 Integration of rational functions

Every rational function can be uniquely written as a sum of so-called partial fractions

Example 1: From

it follows that

Example 2: Because of

we get

68The method described here is particularly easy to comprehend, because it uses the extension to
complex numbers. Avoiding the complex numbers requires a delicate case-by-case study.

Here n — 1,2, . . . , and A and a are real or complex numbers (cf. 2.1.7). The partial
fractions (0.57) can be immediately integrated following the rules in Table 0.43.68

Table 0.43. Integration of partial fractions.



0.9. Tables of integrals 145

Note that \x — i| = \x + i| and arctan(—x) = — arctanx for x € R.

Example 3: According to (2.30) one has

It follows from this that

Arbitrary rational functions can be written as a sum of a polynomial and a fraction in
reduced terms.

Example 4-'

Use of Mathematica: In our age of computers one only attempts to calculate very
easy expressions of the above kind by hand. Otherwise one applies one of the applicable
computer algebra programs, for example Mathematica.

0.9.4 Important substitutions

We list some types of integrals which can be solved by means of some universal substi-
tution. In particular cases, however, special substitutions may be more convenient in
trimming down the necessary computations. Nowadays this work is done by computer
algebra systems.

Very few integrals can be solved in closed form in terms of elementary functions.

Polynomials of several variables: A polynomial P = P(XI, . . . ,x n ) of the variables
x i , . . . , xn is a finite sum of expressions of the form

Here a... denotes a complex number, and all exponents QJ are equal to one of the values
1,2, . . .

Rational functions of several variables: A rational /unction R = R(XI, . . . , xn) of
the variables xi, . . . , xn is an expression of the form

where P and Q are polynomials.

Convention: In what follows, R will always denote a rational function.

Type 1:
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Solution: One expresses sinhx, etc. in terms of ex and uses the substitution

This yields a rational function in t, which can be decomposed into a partial fraction
decomposition (cf. 0.9.3). Explicitly one has

Example 1:

Example 2:

In this particular case the substitution t = ex is unnecessary.

Example 3: For the calculation of J := / sinhn x coshxdx it is useful to apply (0.56).
This gives

This approach corresponds to the substitution t = sinhx.

Type 2:

Solution: Express sinx, etc., in terms of elx and use the substitution

t = elx , dt = it dx .

This yields a rational function in t, which can again be decomposed into partial fractions
(cf. 0.9.3). Explicitly one has

Instead of this method, the substitution69

In the words of M. Spivak, this is "undoubtedly the world's sneakiest substitution". Applying this
substitution transforms any integral which involves only sin and cos, combined by addition, multiplica-
tion, and division, into the integral of a rational function.

69



0.9. Tables of integrals 147

always leads to a solution. One has

Example 4: J '•

In the present case we can conclude more quickly

because of 2 cos2 x = cos 2x + I .

Example 5: From (0.56) it follows that

Type 3:

Solution: Use the substitution70

This reduces the integral to one of a rational function of t, for which the method of
partial fraction decomposition can be applied (cf. 0.9.3).

Example 6: The substitution t = \fx yields x = t2 and dx = 2tdt. Thus one gets

Type 4:

Let a 7^ 0. With the help of the quadratic completion

this type of integral can be reduced to one of those listed in Table 0.44. It is also possible
to apply the Euler substitution (cf. Table 0.45).

If an integral contains roots of different degrees, it can be reduced to type 3 by passing to the
smallest common multiple of the degrees of the roots. For example one has
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Table 0-44- Algebraic functions of degree 2.

Integral (a > 0) Substitution Validity

cos21 + sin21 — 1, cosh t — sinh2 t — 1.

Example 7:

Table 0.45. The Euler substitutions for

Case Substitution

Type 5:

Here we assume that a ^ 0 or a = 0 and /? ̂  0.

These so-called elliptic integrals can be solved by substitutions with elliptic functions in
the same manner as in Table 0.44 (cf. 1.14.19).

Type 6:

Here w = w(x) is an algebraic function, i.e., this function satisfies some equation of the
form P(x, w) = 0, where P is a polynomial in x and w. These kinds of integrals are
called Abelian integrals.

Example 8: For w2 — a2 + x2 — 0 one has

The theory of Abelian integrals was developed in the nineteenth century by Abel, Rie-
mann and Weierstrass and lead to profound discoveries in complex function theory and
topology (Riemann surfaces) and in algebraic geometry (cf. 3.8.1).
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Type 7:

These so-called binomial integrals can be integrated in elementary terms if and olny
if one of the cases listed in Table 0.46 applies. The substitutions listed there lead to
integrals of rational functions, which again may be solved by the method of partial
fraction decomposition (cf. 0.9.3).

Table 0.46. Binomial integrals

Case Substitution

0.9.5 Tables of indefinite integrals

Comments on using these tables.
1. For simplicity the constant of integration has been omitted. Here the term ln/(x) is
understood as In |/(x)|.
2. If the principal function is presented by a power series, then there is no elementary
representation for this function.

3. The symbol * marks formulas which are valid also for functions of complex variables.

4. Notations: N denotes the set of natural numbers, Z the integers and R denotes the
real numbers.
0.9.5.1 Integrals of rational functions

We first assume that we are given a function L with

This means that k is an integer.71
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For n = 1 the sum is trivial (contains no terms).

Remark: Suppose we are given

then Ln on the left hand side is treated as a binomial representation (see section 2.2.2.1);
if m e N, m / 0, then (L — b)m on the right hand side is treated as a binomial
representation; for n € N and m G N and m < n the right hand side representation is
preferable.

Integrals containing two linear functions ax + b and ex + d: Here we make the
following assumptions:
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If D = 0, there exists a number s for which :L-2 = s-L\.

Integrals containing a quadratic function ax2 + bx + c:

For D = 0, Q is a square of a linear function; if Q is in the denominator of the fraction,
then no zeroes of Q are allowed to lie in the interval of integration.
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(see No. 35 and 37).

(see No. 34).

(see No. 34).

(m / 2n — 1; for m = 2n — 1 see No. 41).

(see No. 34).

(see No. 34).

(see No. 34).
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Integrals containing the quadratic function a2 ± x2:

In the case of a double sign in a formula the upper sign corresponds to Q — a2 + x2

and the lower one to Q = a2 — x2, a > 0.

for the sign " — " and |x| < a,

for the sign " — " and |x| > a.

In numbers 50, 54 and 58 above we require n ^ 0; in 62, n > 1.
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Integrals containing a cubic function a3 ± a;3:

K = a3 ± x3; in the case of a "±", the upper sign means K = a3 4- x3, the lower one
means K = a3 — x3.

(see No. 73).

(see No. 75).

(see No. 73).

(see No. 73).
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(see No. 75).

(see No. 75).

(see No. 73).

(see No. 73).

Integrals containing the biquadratic (quartic) function a4 ± x4:
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Special cases of integration by use of a partial fraction decomposition:

a, 6, c, are pairwise different.

a, b, c, d, pairwise distinct.

u, v, w, a. b, c, see No. 95.

0.9.5.2 Integrals of irrational functions

Integrals containing the square root T/X and the linear function a2 ± b2x:

In the case of a double sign in a formula the upper sign corresponds to L — a2 + b2x
and the lower one corresponds to L = a2 — b2x.
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Other integrals containing the square root \fx:

Integrals containing the square root function \/ax + b:
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Integrals containing square root functions and A



Integrals containing the square root function

0.9. Tables of integrals L61

(see No. 136).

(see No. 136).

(see No. 139).

(see No. 143).
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Integrals containing the square root function
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Integrals containing the square root function
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Integrals containing the square root function

72This integral is valid also for x < 0 if \x\ > a.
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Integrals containing the square root of other expressions:

(see No. 238 and 248).

(see No. 231 and 248).

(see No. 231 and 250).

(see No. 235).
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Recursive formulas for the integrals of special polynomials:

0.9.5.3 Inteerals of trigonometric functions72

Integrals which contain the function sin ax (a a real parameter):

73For integrals of functions which contain, in addition to sinx and cosz, also hyperbolic functions
and eax, see No. 428 ff.
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The integral is referred to as the integral sine, denoted Si(x)

(see section 0.5.5).

B-2n are the Bernoulli numbers (see section 0.1.10.4).
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Integrals which contain the function cos ax:

The imnroner integral is called the integral cosine, denoted Ci(x) (see

section 0.5.5).

C denotes the Euler constant (see section 0.1.1).

(see No. 273).

see No. 275).
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are the Euler numbers (see section 0.1.10.5).
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Integrals which contain the functions sin ax and cosaa;:
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see No. 315, No. 316, No. 318).
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see No. 348, No. 359, No. 370),
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with

Integrals which contain the function tan ax:

with

and

and

for see No. 344).

(see No. 296).
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Integrals which contain the function cot ax:

are the Bernoulli numbers (see 0.1.10.4).

are the Bernoulli numbers (see section 0.1.10.4).

are the Bernoulli numbers (see section 0.1.10.4).

0.9.5.4 Integrals which contain other transcendental functions

Integrals which contain eax:

B2nm
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The improper integral is called the integral exponential function and de-

noted Ei(x). For x > 0, this integral diverges at the point t = 0; Ei(x) is then the
principal value of the improper integral (see sections 0.5.5 und 0.7.2).

(C is the Euler constant, see 0.1.1).

(see No. 420)

(see No. 416 and 428).

(see No. 416 and 429).
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Integrals which contain Inx:

The Integra is called the logarithmic integral, denoted li(x). For x > I it

diverges at the point t = 1. In this case the value of the function li(x) is understood
to be the principal value of the improper integral (see 0.5.5 and 0.7.2).

see No. 438).

see No. 443).

see No. 441, 446).

(see No. 420).
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-E?2n are the Bernoulli numbers (see section 0.1.10.4).

Integrals which contain hyperbolic functions:

In this case the formula is also true for complex numbers x.79



184 0. Formulas, Graphs and Tables

Integrals which contain inverse trigonometric functions:
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0.9.5.4.1 Integrals which contain inverse hyperbolic functions:

0.9.6 Tables of definite integrals

0.9.6.1 Integrals which contain exponential functions

We consider here integrals containing exponential functions combined with algebraic,
trigonometric and logarithmic functions.

(Gamma function F(n), see 0.5.1).

For n € N this integral evaluates to
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is the so-called Beta-function or, as it is also called, the

Euler integral of the first kind, and F(x) is the Gamma function, also called the
Euler integral of the second kind (see No. 1).

&m,n = 0 for m 7^ n , <5m>n = 1 for m = n, Kronecker symbol.

In 9 – 11, C is the Euler constant (see 0.1.1).

0
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In 30 and 31, E and K are the complete elliptic integrals:

0.9.6.2 Integrals containing logarithmic functions

where C is the Euler constant (see 0.1.1).
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where F(x) is the Gamma function

(see No. 1).

where C is the Euler constant (see 0.1.1).
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0.9.6.3 Integrals which contain algebraic functions

For B(x,y) and T(x), see No. 12.

F(x) is the Gamma function (see No. 1).
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0.10 Tables on integral transformations

0.10.1 Fourier transformation

Legend of symbols occuring in the table:

C: Euler constant (C= 0.577 215 67...)

(Gamma function),

(Bessel functions),

with

(modified Bessel functions),

(Fresnel integrals),

(Elliptic sine),

(Elliptic cosine).

Occasionally we use the notation exp(x) for ex. Furthermore, [x] denotes the Gauss
bracket, i.e., the largest integer n for which n < x.
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0.10.1.2 Fourier sine transform:
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0.10.1.3 Fourier transform

Formulas indicated by (D) are to be understood in the sense of distributions (generalized
functions; see [212]).

Numerous other formulas can be obtained from the relation

using the previous tables for the Fourier cosine and Fourier sine transforms.
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0.10.2 Laplace transformation

0.10.2.1 Table of the inverse transformations for functions whose Laplace
transformation is a rational function

The table is ordered by the degree of the denominator. It is complete up to degree 3
and contains a few functions with denominators of higher degree.
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0.10.2.2 The Laplace transform of a few non-rational functions

In what follows, 7 denotes the constant 7 = 6 ; C is referred to as the Euler constant,
defined as follows (see also section 0.1.1)
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0.10.2.3 The Laplace transform of a few piecewise continuous functions

In what follows, the symbol [t] denotes the largest number n with n < t (the function [-]
is called the Gauss bracket). Correspondingly, f([t]) = f ( n ) for n < t < n + 1; n =
0,1,2, . . .
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0.10.3 The Z-transformation

The polynomials N/<.(z) can be recursively calculated as follows:81
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Remark: An inequality n > v on the left hand side of the table indicates
construction of the Z-transform, the summation starts with v, for example,

that in the



1. Analysis

Data aequatione quotcunque fluentes quantitae invol-
vente fluxiones invernire et vice versa.1

Newton in a letter to Leibniz from 1676

The most fundamental notion in analysis is that of a limit. Many of the important
concepts in mathematics and physics can be defined in terms of limits, for example
velocity, acceleration, work, energy, power, action, volume and surface of a body, length
and curvature of a curve, curvature of a surface, etc. The heart of analysis is the calculus,
which was independently discovered by Newton (1643-1727) and Leibniz (1646-1716).
With a few rare exceptions this notion was not known in antiquity. Today analysis is
one of the most important fundamental notions in the mathematical description of the
natural sciences (see Figure 1.1).

However, analysis only develops its true capacity in interaction with other disciplines
of the mathematical sciences, like algebra, number theory, geometry, stochastic and
numerics.

Figure 1.1. The notion of a limit is central in mathematics.

JA modern translation of this is: 'It is useful to differentiate functions and solve differential equa-
tions.' Actually, Newton encrypted this Latin sentence in the following anagram (letter riddle):

6a cc d ae 13e ff 7i 31 9n 4o 4q rr 4s 9t 12v x,
which means that the letter 'a' occurs 6 times, etc. Newton's words 'fluentes' and 'fluxiones' correspond
to the modern words 'function' and 'derivative'. It appears that a solution of this anagram would be
as great a intellectual achievement as the discovery of calculus!
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1.1 Elementary analysis

Concepts without intuition are empty, intuition with-
out concepts is blind

Immanuel Kant (1724-1804)

1.1.1 Real numbers

Intuitive introduction to the real numbers:2 Start with a line G with two points,
called 0 and 1, and marked as in Figure 1.2(a). Each point a on G corresponds to a real
number, and in this manner one gets the real number line. For simplicity we use the
same notation for a point a of the line G and the real number which corresponds to it.
The segment from 0 to 1 is called the unit segment E in G.

Order: For two arbitrary real num-
bers a and b we write the symbol

a < b

if and only if the point a is strictly
to the left of 6, and we say in this
case that a is less than b (Figure
1.2(b)). We write a < b if a < b
or a = b and say in this case that a
is less than or equal to b.

Figure 1.2. The real number line.

The real number a is said to be positive (resp. negative, non-negative) if and only if
0 < a (resp. a < 0, 0 < a).

Evolution of the concept of number: The concept of a number is actually one of the
greatest achievements of abstraction ever made by the human mind. Instead of speaking
of 'two trees', 'two stones', etc., one day the abstract notion of 'two' was applied. This
would seem to have occured in the newer stone age (Neolithic period) roughly 10,000
years ago, when in Asia and Europe the ice age ended and humanoids began to settle.
Cave paintings in France and Spain from about 15,000 years ago attest to the fact that
the humanoids of this period already had a keen sense of forms.

About 3000 BC the first Sumarian settlements were established in Mesopotamia near
the Tigres-Eufrates rivers (modern Iraq). The high level of mathematical achievments
of the Babylonians and Assyrians goes back to those of the Sumarians. These used a
number system with basis 60 (known as a sexagesimal system, 60 as opposed to our
modern 10). The Babylonians adapted this system and added about 600 BC an empty
position, which corresponded to our modern number 0.

1.1.1.1 Natural numbers and integers

The numbers

0, 1, 2, 3, . . . ,

2 A stringent definition of real numbers and a discussion of the difficulties involved in irrational
numbers in the history of the subject can be found in 1.2.2. The very words used for some types of
numbers such as 'irrational', 'imaginary' and 'transcendental' attest to the epistemological difficulties
which had to be surmounted over the centuries.
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which correspond to successive segments of unit length, are called natural numbers3 (see
Figure 1.2(c)) Moreover, we call the numbers

...,-3, -2, -1, 0, 1, 2, 3, . . .

integers (see Figure 1.2(d)). One can imagine our line G as being a thermometer,
in which case the negative numbers would correspond to temperatures below freezing
(zero). Addition of two integers corresponds to the addition of the temperatures.

Example 1: The equation

can be interpreted in the following manner: if the temperature in the early morning is
three below zero and the temperature rises five degrees by noon, then we have at that
time a temperature of two degrees.

The multiplication of integers is by means of the following rule:

'positive times positive = negative times negative = positive'
'positive times negative = negative times positive = negative'.

The division of integers is by means of the following rule:

'positive divided by positive = negative divided by negative = positive'
'positive divided by negative = negative divided by positive = negative'.

We write +12 instead of 12, etc.

Example 2:

3 - 4 = (+3)(+4) = +12 = 12,

(-3)(+4) = -12, (+3)(-4) = -12, (-3)(-4) = 12,

(-12) + (+4) = -3, (-12)+ (-4) = 3, 12+ (-4) = -3.

From 3 • 4 = 12 it follows that 12 -=- 4 = 3. As expected, a comparison of the second and
third line above shows that the inverse of multiplication remains correct for integers.

1.1.1.2 Rational numbers

Basic idea: One runs into rational numbers (fractions) when one attempts to break
the unit segment into parts.

Example 1: Let n be a proper natural number. If we divide the unit segment E into n
equal parts, we get points which we denote by

In particular, for n = 2 (resp. n = 4) we get the numbers

3Through the influence of set theory and computer sciences it has become common use to include
the number 0 in the set of natural numbers. The positive natural numbers would then be called the
proper natural numbers.

-3 + 5 = 2

or
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(see Figure 1.3(a)). In a fraction ^, m (resp. n) is called the numerator (resp. denomi-
nator] .

Figure 1.3. Fractions on the real number line.

Reducing and expanding
fractions: According to Fig-
ure 1.3 (a) one has

This relation is a special case
of the following general rule:

A fraction is left unchanged upon multiplication of both denominator
and numerator by the same natural number n (resp. divison by n).

This process is called 'expanding the fraction' (resp. 'reducing the fraction').
2

Example 2: Expanding - by 4 gives
o

Q

Simplifying — by dividing by 4 yields
L£

Multiplication of fractions: Fractions are multiplied with one another according to
the following rule:

'Numerator times numerator and denominator times denominator'.

Example 3:

Division of fractions: The reciprocal of a fraction is the fraction obtained by switching
numerator and denominator. The rule for division is:

Division of fractions is the multiplication
by the reciprocal of the second fraction.

Example 4- The reciprocal of is Consequently

Addition of fractions: Two fractions are added by first extending them so that they
have a common denominator and then adding the numerators.

Example 5:

This procedure is the same thing as the general rule of 'cross-multiplication':
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Example 6: Upon reduction one gets from this

Negative fractions: If m and n are proper natural numbers, then one gets the point
— ~ by reflecting the point ^ through the origin (point 0). The sign of a fraction of
integers is determined according to the rule (1.2).

Example 7:

The apparently arbitrary choice of signs in the rules (1.1) and (1.2) are actually deter-
mined by demanding that for real numbers 'simple' rules for calculations should hold.
For example, demanding the truth of the associative law

4(3+(-3)) = 4 - 0 = 0,

and
4(3 + (-3)) = 4 • 3 + 4 • (-3) = 12 + 4 • (-3) = 0,

or in other words 4(—3) = —12, coinciding with the value given by the rule (1.1).

Definition: All real numbers with a representation ^ with integers a, b are called
rational numbers.

Those real numbers which are not rational are called irrational. For example, \/2 is
irrational; a classical proof of this known in antiquity will be given in section 4.2.1.

The following notations have become customary in the modern literature:

N:= set of natural numbers,
Z:= set of integers,
Q:= set of rational numbers,
R:= set of real numbers,
C:= set of complex numbers.

Powers: For a real number a / 0 we set:

Example 8:

1.1.1.3 Decimal numbers

Basic idea: In our daily life the decimal system is used.4 The number symbol 123 is
actually an abbreviation for the number

4The volume La disme (The decimal system) appeared in 1585 by Simon Stevin. After that time all
measurements used on the European continent were unified to the decimal system.

one gets for the values a = 4, 6 = +3 and c = —3

a(b + c) — ab + ac,
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In the same way the symbol 2.43 stands for the sum:

Finally, a symbol like 2.43567... stands for the (unique) real number x which satisfies
the following infinite set of inequalities:

Expansion in decimal fractions: In what follows all dj are assumed to be integers
with a., = 0, 1 , . . . , 9 and an j^ 0. Moreover let n = 0, 1, 2 , . . . be a natural, m a proper
natural number.

(i) The symbol

stands for the sum

in the same way as in (1.3).
(ii) The symbol anan_i . . . ao- a_ia_2 • • • stands for the (unique) real number a;, which
as in (1.4) satisfies the following infinite chain of inequalities:

Each real number can be expanded in a unique fashion in such a decimal fraction.

Theorem: A real number is rational, if and only if the decimal fraction expansion is
finite or periodic.

Example 1: The numbers - = 0.25 and - = 0.333333-•• are rational. On the other

hand, the decimal expansion of \/2:

has no period.
Rules for rounding real numbers: The goal of the process of rounding is to pass
from an infinite decimal expansion to a finite one, with as little error as possible.

Example 2:

(i) Rounding 2.3456... up gives 2.346.

(ii) Rounding 2.3454 . . . down gives 2.345.

(iii) Rounding 2.3455... up gives 2.346.

(iv) Rounding 2.3465... down gives 2.346.

The error is in each case less that 0.0005.

The following rule is applied: If the last digit is 0 — 4 (resp. 6 — 9), the one rounds
down (resp. up). If the last digit is 5, then one can round up or down, the decision
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being dictated by the stipulation that after rounding the last digit is even.5 However,
the usual procedure is to simply round 5 up.
The integer part of a real number: The notation [a] (known as the Gauss bracket)
for a real number a denotes the integer part of a, which is by definition the smallest
integer g with g < a.

Example 3: [2] = 2, [1.99] = 1, [-2.5] = -3.

1.1.1.4 Binary numbers

One gets the system of binary numbers by replacing the 10 in the expansions above by
2, and aj is chosen to be 0 or 1. An arbitrary real number can be written in a unique
manner as a binary expansion in which only the coefficients 0 or 1 occur. Because of
this property binary numbers are the system used by computers.

Example: In the binary system the symbol 1010.01 stands for the sum

which in the decimal system is the number 8 + 2 H— = 10.25.

Other number systems: By replacing the number 10 in 1.1.1.3 by any chosen fixed
natural number /3 > 2, one gets a number system with basis j3. For example the
Sumerians in Mesopotamia used a sexagesimal system with basis 60 around 2000 BC.
Our division of time into 60 minutes per hour and of the circle into 360 degrees goes
back to the Sumerians.
The Mayas in Mexico and the Celts in Europe used a system with basis f3 = 20. The
ancient Egyptians used a decimal system with special symbols for each decimal unit.
The number system of the Romans used the same principle. The Roman digits

M, D, C, L, X, V and I

stand for 1000, 500, 100, 50, 10, 5 and 1 in that order. The symbol MDCLXVII for exam-
ple corresponds to the number 1667. Such a system is not adapted to doing complicated
computations.

1.1.1.5 Intervals

Let a and b be real numbers with a < b. By definition, a compact interval (with
endpoints a and b) is the set (see Figure 1.4(a))

In words, the interval [a, b] consists of all real numbers x in R such that a < x < b
Further we define6 (see Figures 1.4(b)-(d))

(open interval)
(right half-open interval)
(left half-open interval)

5 This statistical strategy for rounding has as consequence that after a long time of calculations with
rounding, the error is smaller than by consequently rounding 5 up or down.

6Instead of ]a, b[, [a,b[, }a,b] one also writes (a,b), [a,b), (a,b] in that order. The notation above
has become customary in the modern literature to avoid confusion with the ordered pair of numbers
(a, b).
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Figure 1.4- Intervals on the real number lint

Often one used the following infinite intervals (see Figures 1.4(e)-(h)):

The set R of real numbers is also denoted by

1.1.2 Complex numbers

Formal introduction of the complex numbers:7 There is no real number x which
satisfies the equation

x2 = -I.

This is the way the Italian mathematician Raphael Bombelli introduce the symbol \/^T
in the middle of the sixteenth century. Leonhard Euler (1707-1783) used the symbol i
for this. The so-called imaginary unit satisfies the equation

Euler discovered the following basic relation, valid for all real numbers x, y:

which yields an unexpected connection between the exponential function and the trigono-
metric functions.8 This formula is constantly applied in the theory of oscillations (com-
pare 1.1.3)

Cartesian representation: A complex number is a symbol of the form

7The rigorous introduction of the complex numbers as the algebra of ordered pairs (x, y) is carried
out in 2.5.3 in the context of field theory.

8 In electro-technical literature one uses the symbol j instead of i, to avoid confusion with the notation
for the current strength.
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Figure 1.5. Graphical representation of complex
numbers.

where x and y are real numbers.
Real numbers correspond to the
special case y = 0. For a long time
complex numbers seemed to be
rather mysterious. It was Gauss
who gave them their right place in
mathematics, by considering x+iy
as point in the Cartesian plane; he
showed that the calculation with
complex numbers can be given a geometric interpretation (Figure 1.5). Today the com-
plex numbers are ubiquitous in many parts of mathematics, physics and technology.

One calculates with complex numbers by applying the usual formulas to the numbers
x + iy, taking into consideration the fact that i2 = — 1. In particular, one calls the
number

the complex conjugate9 number to x + \y.

Example 1 (Addition): (2 + 3i) + (1 + 2i) = 3 + 5i.
Example 2 (Multiplication): (2 + 3i)(l + 2i) = 2 + 3i + 4i + 6i2 = 2 + 7i - 6 = -4 + 7i.
For all real numbers x and y, the relation

is valid.

Example 3 (Division): From (1.8) it follows that

This method of expanding by the complex conjugate of the denominator is applicable
generally.

1.1.2.1 Absolute value

By definition the absolute value of a complex number z = x + ly is defined by

Geometrically this is the length of the vector defined by z (see Figure 1.6(a)).
Example 1: For a real number x, one has

Moreover,

Distance: For two complex numbers z and iu, the distance between them is

9 Complex conjugate to avoid confusion with other (numerous) notions of conjugate objects in math-
ematics.
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Figure 1.6. Graphical representation of the distance between complex numbers.

(see Figure 1.6(b),(c)). In particular, z\ is the distance of z from the origin.

Triangle inequality: For all complex numbers z and w, we have the important triangle
inequality:

In particular, this says that \z + w\ < \z + w , which means that the length of the
vector z + w is at most the sum of the lengths of the vectors z and w (Figure 1.8(b)).
Moreover,

where w ̂  0 must be assumed when w occurs in the denominator.

Complex numbers in polar coordinates: If we use polar coordinates, then we have
for the complex number z = x + \y the representation:

Here ip denotes the angle of this vector with the x-axis (Figure
1.7). The Euler formula (1.7) yields the elegant representation:

Figure 1.7.

One calls the angle argz := <f>
the principal value of the ar-
gument of z. Making the as-
sumption —TT < (p < TT deter-
mines (f> through z uniquely.

All angles ij) with z = re1^1 are
called arguments of z. One has

Figure 1.8. The addition of complex numbers.

Example 2:

1.1.2.2 Geometric interpretation of the operations with complex numbers

One has:
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(i) The addition of two complex numbers z and w corresponds to the addition of the
vectors they define (Figure 1.8(a)).
(ii) The multiplication of two complex numbers

corresponds to a dilated rotation, i.e., the lengths of the vectors are multiplied and the
angles are added.
(iii) The division of two complex numbers

corresponds to a division of the lengths of the corresponding vectors and a subtraction
of the angles.

(iv) Reflection. The transition from the complex number z = x + \y to its complex
conjugate ~z = x — \y is the geometric operation of reflecting z on the real axis (Figure
1.9(a)). The transition from z to — z is a reflection through the origin (Figure 1.9(b)).
The transition from z to the reciprocal (z)~l of the conjugate number corresponds to a
reflection on the unit circle, i.e., the image and inverse image points lie on the same line
through the origin, and the product of their distances is equal to 1 (Figure 1.9(c)).

Figure 1.9. Graphical representation of conjugate and inverse complex numbers.

1.1.2.3 Rules for arithmetic

Addition and multiplication: For all complex numbers a, b, c one has

a + (b + c) = (a + b) + c, a(bc) = (ab)c, (associativity),
a + b = b + a, ab = 6a, (commutativity),
a(b + c) = ab + ac, (distributivity).

Example 1: (a + b}2 = (a + b)(a + b) = a2 + ab + ba + b2 = a2 + lab + b2.

Rules for signs: For all complex numbers a, b one has

(—a)(—b) = ab, (—a) b = — ab, a(—b) = — afe,
— (—a) = a, (—1) a = —a.
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Example 2: (a - b)2 = (a - b)(a - b) = a2 - ab - ba + b2 = a2 - 2ab + b2.

Example 3: (a + b)(a — b) — a2 + ab — ba —b2 = a2 - b2.

Arithmetic with fractions: In what follows we assume that all complex numbers
appearing in the denominators of fractions are non-zero. For all complex numbers a, b, c
and d, one has:

(equality),10

(multiplication),

(addition and subtraction),

(division).

Transition to complex conjugate numbers: If a, b, c and d are arbitrary complex
numbers with d ̂  0, then one has:

Let z = x + ly. The component x (resp. y) is called the real part (resp. imaginary part)
of z. We write for this x = Re z (resp. y = Imz). One has:

1.1.2.4 Roots of complex numbers

Let the complex number a = \a\eltp with —?r < </? < TT and a ̂  0.

Theorem: For fixed n = 2, 3,... the cyclotomic equation

has precisely the solutions

These numbers, which we can also write in the form
are called the nth roots of the complex number a. These nth roots divide the circle of
radius y a into n equal parts.

Example 1: For a — 1 and n — 2,3,4, the nth roots of a = I (these are called roots of
unity) are displayed in Figure 1.10

10 In words: — = — implies ad = cb and vice versa.
b d
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Figure 1.10. Roots of unity. Figure 1.11.

Example 2: The 2nd roots of 2i = 2ei7r/2 are:

(see Figure 1.11).

1.1.3 Applications to oscillations

Let the function / of period T > 0 be given, meaning that

We also define

Example 1 (sine): The function

describes an oscillation of the angular frequency u and amplitude A (Figure 1.12(a)).
The number a is called the phase displacement.

Example 2 (sinusoidal wave): Let A > 0 and u> > 0 be given. The function

describes a wave of amplitude A and wavelength A := 27T/A;, which spreads out from left
to right (Figure 1.12(b)) with the so-called phase velocity

The number k is called the wave number. A point (x, y(x, £)) which moves in time

according to the law kx = ut + a corresponds to wave crest of height A moving

from left to right with velocity c.
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In physics and technology it is customary to denote such waves by the complex function

with the complex amplitude C = Aeia. The imaginary part of V(z, t) corresponds to
y ( x , t ) in (1.10).

Figure 1.12. Wave functions (oscillations).

1.1.4 Calculations with equalities

Operations on an equation: Let a, b and c be arbitrary real (or complex) numbers.
Calculations with equalities is dominated by the following rules:

In words:

(i) One may add the same number to both sides of an equality, the result being again
an equality.

(ii) One may multiply both sides of an equality by the same number.

(iii) One may divide both sides of an equality by the same (non-zero) number.

(iv) One may form the reciprocal of an equality.

In cases (iii) and (iv) one must always be careful to observe that

Division by zero is not allowed!

Heuristically an equation is like a scale in equilibrium. This equilibrium is not disturbed
by doing the same thing on both sides at the same time.
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Operations on two equations: For all real (or complex) numbers a, b, c and d one
has:

Solving equations: A solution of the equation

is a number which satisfies (1.11) when we replace x by this number. One refers to x as
a variable or indeterminant.

Example 1: The equation (1.11) has a unique solution x = 2.

Proof: First step: suppose that a number x is a solution of (1.11). Subtracting 3 from
the left and right hand side of (1.11), we get

2z = 4.

Now dividing the left and right sides by 2 gives

x = 2.

This shows that if (1.11) has a solution, then it must equal 2.

Second step: We now show that 2 actually is a solution of (1.11). This follows from the
elementary equality 2 - 2 + 3 = 7. D

The second step is also called the 'check'. Often a mathematical mistake occurs by
confusing the first step with a complete proof (cf. 4.2.6.2).

Example 2 (a system of linear equations): Let real (or complex) numbers a, b, c, d, a, (3
with ad — be ̂  0 be given. The system of equations

then has a unique solution

Proof: First step: suppose the numbers x and y satisfy the equation (1.12). We multiply
the first (resp. second) equation of (1.12) by d (resp. (—b) ) . This yields

adx + bdy = ad,
—box — bdy = —b/3.

Adding both of these equations then gives

(ad — bc)x = ad — (3b.

(addition of two equations),

(subtraction of two equations),

(multiplication of two equations),

(division of two equations).
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After dividing both sides by ad — be we get the expression of (1.13) for x.

Now multiply the first (resp. second) equation of (1.12) on both sides by (—c) (resp. a).
This gives

—cax — cby = —ca,
acx + ady = a/3.

Adding these two equations then yields

(ad — bc)y = aft — ca.

After dividing both sides by ad — be we get the expression (1.13) for y. This shows that
any solution of (1.12) must have the form (1.13), if it exists. In particular, there is (if
any) a unique solution.

Second step (check): we insert the values of (1.13) for x and y into the equations (1.12),
and after an easy computation, find that these are in fact solutions. D

Example 3 (quadratic equations): Let b and c be real numbers satisfying b2 — c > 0.
Then the quadratic equation

x2 + 2bx + c = 0 (1.14)

has exactly the two solutions

Proof: First step: If a; is a solution of (1.14), then add b2 — c to both sides of (1.14) to
get

x2 + 2bx + b2 = b2 - c.

This gives (x + b)2 = b2 — c, and from this we get x + b = ±-\/&2 — c. Adding (—6) to
both sides of this equation gives (1.15). This shows that all solutions of (1.14) are of
the form (1.15), if they exist.

(addition),

(subtraction) ,

(multiplication) ,

(division),

(reciprocal).

1.1.5 Calculations with inequalities

Manipulations with inequalities: For arbitrary real a, b and c, the following rules
hold:

This means: one may add or subtract the same number from both sides of an inequality,
or multiply or divide both sides by a positive number, without changing the validity of

Second step (check): Insert the expression (1.15) for x into the equation (1.14). An easy
calculation shows that these values for x are indeed solutions.
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the inequality. Multiplication or division of both sides by a negative number turns the
inequality symbol around.

Manipulations with two inequalities: For all real numbers a, 6, c and d, one has

(addition),

(multiplication).

All these rules for manipulations with inequalities remain true, when
the inequality < is replaced throughout by strict inequality <.

Example 1: For all real numbers a and b we have the inequality

Proof: From 0 < (a — 6)2 one gets, applying the binomial formula

Adding 2ab to both sides gives lab < a2 + b2. The claim follows from this, upon division

Proof: From 1 < 1 + a2 it follows that 1 by the rule for reciprocals. Multiplying

both sides by a4 then yields the statement.

Example 3: Let a and b be real numbers with a ^ 0. We wish to examine the linear
inequality

for real x.

(i) For a > 0, (1.16) holds if and only if

(ii) For a < 0, (1.16) holds if and only if

Example 4-' For given real numbers a, b and c with a > 0, we consider the quadratic
inequality

with the so-called discriminant D :— b2 — ac.

(i) For D < 0 any real number x is a solutions of (1.17).

(ii) For D > 0 the set of solution of (1.17) consists of all real numbers x which satisfy

A selection of important inequalities can be found in 0.1.11.

of both sides by 2.

Example 2: For all real numbers a the following inequality is valid:
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1.2 Limits of sequences

1.2.1 Basic ideas

Sequences: Example 1: We consider the sequence of real numbers (an) with

As n grows in magnitude, the value of an approaches 0 (see Table 1.1). To describe this
behavior we write

and say that the limit of the sequence (an) is 0.

Table 1.1
n
an

1
1

2
0.5

10
0.1

100
0.01

1000
0.001

10000
0.0001

Example 2: The sequence (bn) with

again write lim bn = 1.
n—>oo

Functions: In many applications of mathematics in science, technology and economics,
the notion of limits plays a particularly important role. The notion of the limit of a
function is reduced to the notion of the limit of a sequence as above.

Example 3: Consider the function

x2 for all real numbers x 7^ 0 ,
1 for x = 0

(Figure 1.13).

/(*) :=

We write

if and only if for every sequence (an) with an ^ a for all n, we have
the following:

it follows that

Figure 1.13. For the function f ( x ) in this example one has

since from an ^ 0 for all n and lim an = 0 it follows that lim f(an) = lim an = 0.
n—>oo n—>oo n—>oo

The relation (1.18) corresponds to our intuitive impression: if the point x approaches
from the right (of the left) the point 0, then the corresponding values of the function
approach 0. The value of / at 0 is irrelevant to these considerations.

Since the limit of a sequence of rational numbers can be irrational, one needs a rigorous
development of the theory of limits, arising from a rigorous introduction of the real
numbers, which we describe in the following section.

approaches for large n the value 1. We

From



1.2. Limits of sequences 239

1.2.2 The Hilbert axioms for the real numbers

Around 500 BC a member of the Pythagorean school in ancient Greece discovered that
the length d of the diagonals of a unit square is incommensurable with the length of
the sides, i.e., the ratio of d by the length of the sides is not a rational number. By the
Pythagorean theorem it follows by Figure 1.14 that

d2 = I2 + I2,

which implies d = \/2. In modern terminology this citizen of ancient Greece discov-
ered the irrationality of the number \/2 (see section 4.2.1). This discovery destroyed
the harmonic picture of the universe of the Pythagoreans and triggered a deep shock.
According to legend, the discoverer of this fact was thrown by other members of the
Pythagorean school into the ocean during a journey at sea.

The difficulties of irrational numbers were mastered by the - next
to Archimedes (281-212 BC) the most important mathematician of
antiquity - Eudoxus of Knidos (410-350 BC). It wasn't until 2000
years later that Dedekind returned to the ideas of Eudoxus in 1872,
in order to create a mathematically rigorous definition of irrational
numbers.

Following the example of the Elements of Euclid (around 300 BC),
mathematical theories are often constructed axiomatically, i.e., one
builds the theory on some simple principles. The principles (laid down Figure 1.14-
in a set of axioms) need not be proved. Usually the axioms are the
result of a long and tedious mathematical examination of the situation. Starting from
the axioms, one deduces through logical conclusions the entire theory.

1.2.2.1 The axioms

We postulate the existence of a set R, whose elements are called real numbers and which
satisfy the following axioms (F), (O) and (C).

(F) Field axioms. The set R is a field with the neutral element 0 for addition and neutral
element 1 for multiplication.
(0) Ordering axiom. For any two given real numbers a and 6, exactly one of the following
three relations holds:

a < 6, a = 6, b < a, (trichotomy).

For arbitrary real a, b and c the following hold:

(1) The relations a < b and b < c imply a < c, (transitivity),

(ii) The relation a < b implies a + c < b + c, (monotony of addition),

(iii) The relations a < b and 0 < c imply ac < be, (monotony of multiplication).

A Dedekind section (A, B) is an ordered pair of non-empty sets of real numbers such
that any real number lies in one of them and a e A and b € B implies a < b.

(C) Completeness axiom. For any Dedekind section (A, B) there
is exactly one real number a with the property that

Figure 1.15.
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Intuitively, (C) means that the real number line doesn't have any holes (Figure 1.15).

The axiom (F) means that the set of real numbers satisfies the following conditions.

Definition of a field: A set K is called a field, if it satisfies the following.

Addition. Two arbitrary elements a and b in K are assigned a unique third element of
K, denoted a + b. For all a, b and c in K we have the relations:

(a + 6) + c = a + (b + c), (associativity),
a + b = b + a, (commutativity).

There is a unique element in K, denoted 0, such that

a H-0 = a

for all a € K. This element is called the neutral element for addition.

For every element a e K there is a unique element b e K such that

a + b = 0.

This element is called the additive inverse of a. This element b is also written —a.

Multiplication. Two arbitrary elements a and b in K are assigned a unique third element
in K, which we denote by ab (or also a • 6). For all a, b and c m K we have:

(ofr)c = a(fec), (associativity),
(06) = (ba), (commutativity),

a(b + c) = ab + ac, (distributivity).

There is a unique element in K, denoted 1, with 1^0 and

a • 1 = a

for all a e K. This element is called the neutral element for multiplication.

For every a E K with a ̂  0, there is a unique element b & K such that

ab = 1.

This element is called the multiplicative inverse to a. In this case the element b is also
written a"1.

The notion of a field is one of the most basic in all of mathematics. Many mathematical
objects are fields (see 2.5.3). In general field theory the symbol e is also used for the
element 1.

Consequences of the axioms: All rules of arithmetic for the real numbers (rules for
signs, fractions, equalities and inequalities) can be derived from these axioms:

The axioms (F) and (O) are also valid for the rational numbers; the axiom (C) is however
false.

Uniqueness: If R and R' are two sets which satisfy all the axioms (F), (O) and (C),
then the field R is isomorphic to R' by an isomorphism which respects the ordering
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axiom. This means: there is a bijective map (f : M —> R', such that for all a, b e R the
following conditions are satisfied:

(i)<p(a + b) = <p(a) + <p(b).

(ii) p(ab) = <p(aM&).
(iii) Prom a < 6 it follows that (p(a) < <p(b).

This implies that one can do calculations in M' just as in M.

1.2.2.2 The law of induction

Intuitively one gets the set of natural numbers 0,1,2 . . . , by continued addition 0, 0 +
1, 1 + 1, etc. To arrive at a mathematically rigorous definition one must proceed along
a different (apparently more complicated) route.
Inductive sets: A set M of real numbers is called inductive, if it contains 0 and the
implication a e M = > a + l 6 M holds.
By definition the set of natural numbers consists of the intersection of all inductive sets.
This means that N is the smallest inductive set.
Law of induction: Let A be a set of natural numbers with the following properties:

(i) o e A,
(ii) n € A implies n + 1 € A.

Then A = N.

Proof: The set A is inductive. Since N is the smallest inductive set, N C A. Since A is
a set of natural numbers, A c N, and consequently A = N.
Many proofs in mathematics are based on the law of induction. This will be considered
in detail in 4.2.2.

1.2.2.3 Supremum and infinimum

Theorem: The set R of real numbers has an Archimedian order, i.e., to every real
number x there is a real number y with x < y.

Bounds: A set M of real numbers is said to be bounded above (resp. bounded below), if
and only if there is a real number S such that

The number S is called an upper bound (resp. lower bound) of the set M.

A set of real numbers is bounded if and only if it is bounded above and below.

Supremum: Every non-empty set M of real numbers which is bounded above has a
smallest upper bound. This bound is denoted

supM.

The supremum of M is not necessarily contained in M.

For a non-empty set M of real numbers which is unbounded above we set sup M := +00.

Example 1: For M := {0,1} the set of upper bounds for M consists of all real numbers
5 with S > I . Therefore supM = 1.
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Example 2: For the open interval M :=]!, 2[ the set of upper
bounds consists of all real S with S > 2. Thus sup M = 2; in
this case the supremum does not belong to M (Figure 1.16).

Infinimum: Any non-empty set M of real numbers which is
bounded below has a largest lower bound. This is denoted

Figure 1.16.

inf M.

The infinimum of M does not necessarily belong to M.

For a non-empty set of real numbers M which is unbounded below, we set inf M :— — oo.

Example 3: For the set M := {0,1} the set of lower bounds consists of all real numbers
S with 5 < 0. Thus inf M = 0.

Example 4'- The set of lower bounds for the open interval M :=]!, 2[ consists of the set of
real numbers S with S < 1. Therefore inf M = 1 (Figure 1.16). Here also the infinimum
does not belong to M.

Example 5: inf R = —oo, supM = +00, inf N = 0 and supN = +00.

1.2.3 Sequences of real numbers

In formulating the notion of limit, modern analysis uses the geometric language of neigh-
borhoods. Doing things in this manner allows a very general formulation of the notion
of limit in the context of topology (see [212]).

1.2.3.1 Finite limits

Neighborhoods: An e-neighborhood U£(a) of a real number a is the set of real numbers
x such that the distance from a; to a is less than e, i.e., in set-theoretic notation

(Figure 1.17(a)). A set of real numbers U(d) is a neighborhood of a, if it contains some
e-neighborhood of a:

for some

If one uses the notion of inter-
val, then U£(a) =}a — e, a + e[.
However, a neighborhood U(a)
as just defined need not be an
interval, but rather must just
contain some interval.Figure 1.17. Neighborhoods of a point a.

The fundamental definition of limit: Let (an) be a sequence of real numbers.11 We
write

11 This means that for any natural number n there is a real number an assigned which belongs to the
sequence.
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if and only if any e-neighborhood of the real number a contains all but finitely many of
the an. In this case we say that the sequence (on) converges to the limit a.

In other words, the relation (1.19) holds if and only if for every real e > 0 there is a
natural number no(e} (depending on e), such that

Example 1: We set an :— — for n = 1,2,. . . Then we have
n

Proof: For every real e > 0 there is a natural number no(e) with no(e) > -• Conse-

quently,

Example 2: For a constant sequence an = a for all ro, we get lim an = a.
n—>oo

Theorem:
(i) A limit, if it exists, is unique.

(ii) This limit does not change if finitely many of the terms of the sequence are changed.

Rules for manipulating limits: For any two sequences (an) and (fen), both of which
converge to a finite limit, the following hold:

(rule of sums),

(product rule),

(quotient rule12),

(absolute value rule),

(inequality rule).

Example 3 (products):

Example 4 (sums):

1.2.3.2 Improper limits

Neighborhoods: We set

12Here one must in addition assume that limn_»oo bn 7^ 0.
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A set C7(+oo) of real numbers is called a neighborhood of infinity, if there is a real number
E such that

In the same way, t/(—oo) is a set such that C/E(—oo) C U(—oo) for some fixed real
number E (Figure 1.18).

Definition: Let (an) be a sequence of real numbers. We write

if and only if all but finitely
many an lie in every neighbor-
hood U(+oo).

In other words, the relation
(1.20) holds if and only if for
every real number E we can
find a natural number no(E)Figure 1.18. Neighborhoods o/± infinity.

such that

Example 1: lim n = +00.
n—>oo

In the same way we write

if and only if all but finitely many of the an lie in every neighborhood U(—oo).13

Reflection principle: One has lim an = —oo if an only if lim (—an) = +00.
n—»oo n—»oo

Example 2: lim (—n) = —oo.

Rules for manipulations with infinity: Let —oo < a < oo. Then we have

Addition:

Multiplication:

Division:

13Let lirrin^oo an = a. In older literature one speaks of convergence for a € R, but of determined
divergence in case a = ±00. In modern mathematics one has a general notion of convergence. In this
sense (an) converges for all values of a (cf. Example 4 in 1.3.2.1). This modern point of view, which we
adapt here, has the distinct advantage of avoiding the consideration of different cases, see 1.2.4.
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For example, the symbolic notation 'a + oo = +00' means that from the relations

we always get

as a consequence. Similarly, the notation 'a(+oo) = +00 for a > 0' means that from
(1.21) and a > 0, it follows that

Example 3:

Rational expressions: We set

for fixed fc, m = 0,1,2 .. . and fixed real numbers ar, (3S with o^ ^ 0 and /3m ^ 0. Then
we have:

Example 4:

Indeterminant expressions: In the case of

one must be extremely careful! There are no general rules for manipulating these ex-
pressions. In different cases one gets different results.

Example 5

Example 6

In certain case expressions as in (1.22) can be given meaning and calculated by means
of 1'HospitaT rule (cf. 1.3.1.3).

1.2.4 Criteria for convergence of sequences

Basic idea: Example 1: We consider the iteration procedure
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with a fixed initial value ao := 2. To calculate the limit of the sequence (an), we assume
the limit

exists with a > 0. From (1.23) we conclude

or a = —I—. This yields 2a2 = a2 + 2, or a2 = 2 and finally a — \/2. Consequently we
Zi d

get

The following example contains a false conclusion.

Example 2: We consider the iteration process

with initial value ao := 1. The same method yields

This implies a = —a, or a = 0, in other words we have lim an = 0.
n—>oo

On the other hand from (1.26) we get immediately an = (—l) n for all n, and this
sequence is not convergent. Where is the mistake? The answer is:

This convenient method of computing the limit of an iteration
process is only valid if the existence of the limit is insured.

Because of this it is important to have some general criteria for checking when a sequence
converges. Such criteria are discussed in section 1.2.4.1 and 1.2.4.3 below.

Theorem: The iteration scheme (1.23) converges, i.e., one has lim an = V2.
n—>oo

Sketch of the proof: One shows

This means that the sequence (an) is non-increasing and bounded below. The conver-
gence criterion in 1.2.4.1 gives the existence of the limit (1.24), which proves the claim
(1.25).14

Bounded sequences: A sequence of real numbers (an) is said to be bounded below
(resp. bounded above), if there is a real number S such that

(resp. S < an for all n). A sequence is said to be bounded, if it is bounded above and
below.

Criterium for boundedness: Every sequence of real numbers which converges to a finite
limit, is bounded.

Consequence: An unbounded sequence of real numbers can not converge to a finite limit.

Example 3: The sequence (n) of natural numbers is unbounded above. Consequently
this sequence does not converge to a finite limit.

i4A more detailed proof of (1.27) will be given below in 4.2.4 as an application of induction.
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1.2.4.1 Increasing and decreasing sequences

Definition: A sequence (an) of real numbers is said to be increasing (res. decreasing),
if

(resp. n <m implies an > am).

Convergence criterion: Every increasing sequence of real numbers (an) converges to
a finite or to an infinite limit.15

(i) If (on) is bounded above, then lim an = a for some finite a € M.
n—>oo

(ii) If (an) is unbounded above, then lim an = +00.
n—KX

Set M := {an I n £ N}. Then one has lim an = supM.
n—>oo

Example: We choose the sequence an := 1 . This sequence is decreasing and bounded
n

above. Moreover, lim an = I.
n—KX>

1.2.4.2 The Cauchy criterion for convergence

Definition: A sequence (an) of real numbers is called a Cauchy sequence, if for every
e > 0 there is no(e) e N such that

Cauchy criterion: A sequence of real numbers is convergent if and only if it is a
Cauchy sequence.

1.2.4.3 Subsequences

Subsequences: Let (an) be a sequence of real numbers. We choose indices &o < &i <
• • • and set

Then the sequence (bn) is called a subsequence1® of (an).

Example 1: Let an := (—1)™. If we set bn := a^n, then (bn) is a subsequence of (an).
Explicitly, one has

ao = 1, 01 = — 1, 02 = 1, 03 = — 1, . . . ,

feo = o-o = 1, 61 = 02 = 1,. . . , bn = a2n = 1,

15 In the same way, every decreasing sequence (an) of real numbers converges to a finite or to an
infinite limit.

(i) If (an) is bounded below, then limra_,00 an = a for some finite a € M.
(ii) If (an) is unbounded below, then limn^oo a™ = —oo. If one sets M := {an : n e N}, then

limn_>oo o-n = inf M.
16It is often convenient to denote such a subsequence by (an>), which means we set a1/ :=6i, ay :—b^,

etc.
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Accumulation point: Let —oo < a < oo. Then a is called an accumulation point of
the sequence (an), if there is a subsequence (an') with

The set of all accumulation points of (an) is called the limit set of (an).

Theorem of Bolzano—Weierstrass: (i) Every sequence of real numbers has an accu-
mulation point.

(ii) Every bounded sequence of real numbers has a real number which is an accumulation
point.

The limit superior: Let (an) be a sequence of real numbers. We set17

lim an := largest accumulation point of (an)

and lim an:= smallest accumulation point of (an).
n—>oo

Subsequence criterion for convergence: Let —oo < a < oo. For a sequence (an) of
real numbers, the following are equivalent:

(i) lim an — a, and
n—>oo

(")

Example 2: Let an := (—l) n . For the two subsequences (a^n) arid (a,2n+i), one na§

and

There for a = 1 and a = — 1 are accumulation points of (an), and these are all the
accumulation points. Consequently

Since these values do not coincide, the sequence (an) cannot be convergent.

Example 3: For an := (—l)nn one has lim a^n = +00 and lim a^n+i = —oo. These
n—>oc n—>oo

are all the accumulation points of this sequence. Consequently we get

As these two values again do not coincide, this sequence is divergent (i.e., not conver-
gent).

Special cases: Let (an) be a sequence of real numbers and let — oo < a < oo.

(i) If lim an = a, then a is the only accumulation point of (on), and every subsequence
n—>oo

of (an) converges to the same value a.
17This definition makes sense, since (ara) really does have a largest and smallest accumulation point

(which may be ±00). One calls lim an (resp. lim an] the limit superior or upper limit (resp. limit
inferior or lower limit) of the sequence (an)-
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(ii) If a subsequence of a Cauchy sequence (an) converges to a G R, then a is the only
accumulation point of (an) and one has lim an = a.

n—>oo

1.3 Limits of functions

1.3.1 Functions of a real variable

We consider functions y = f ( x ) of a real variable x with real values f ( x ) .

1.3.1.1 Limits

Definition: Let — oo < a, b < oo. We write

if, for every sequence (xn) in the domain of / with xn 7^ a for every n, we have1

In particular, we write

if only sequences (#„) with xn > a for all n (resp. xn < a for all n) are to be considered
(a e R).

Manipulations: Since the notion of limit of a function is defined in terms of the limit
of a sequence of numbers, the manipulations for the latter give manipulations for the
limits here. In particular, for — oo < a < oo one has

Here the additional assumption is made that all the limits on the right hand side exist
and are finite, and in the last expression, lim h(x) ^ 0.

x—>a

These manipulations remain correct for x —> a + 0 and x —> a — 0 for a G BL

Example 1: Let f ( x ) := x. Then for all a e R,

Indeed, lim xn = a implies lim f(xn) = a.
n—too n—>oo

18The function / need not be defined at a for these considerations. We only require that the domain
of / contains at least one sequence (xn) with the limit property listed above.
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Example 2: Let f ( x ) :— x2. Then we have

Example 3: We define

(see Figure 1.19). Then we have

One calls the limit lim f ( x ) (resp. lim /(or)) the right-sided (resp. left-sided) limit
x—>a+0 x—>a—0

of / at a.

Figure 1.19. Figure 1.20.

1.3.1.2 Continuous functions

Intuitively the notion of continuous function is one which has no jumps (Figure 1.20).

Definition: Let a 6 M. The function / : M C R —> M is said to be continuous
at a point a, if for every neighborhood U(f(a)) of the image point /(a) there is a
neighborhood U(a), such that19

In other words, / is continuous at a, if for every real s > 0 there is a real number 6 > 0
such that

Limit criterion: / is continuous at a point a if and only if20

19One also writes f(U(a)) C U(f(a)).
20This means: for every sequence (xn) in M with limn—^oo xn = o, one has lim^^tx, f(xn) = /(a).
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(i) The sum f + g and the product fg are continuous at a.

(ii) The quotient — is continuous at a, if g(a) ^ 0.
9

We now consider the composition of two functions

We also write H = F o / for this.

Continuity of composed functions: The function H is continuous at a if / is con-
tinuous at a and F is continuous at the point /(a).
Differentiability and continuity: If the function / : M C R —> M is differentiable
at a, then / is continuous at a (cf. 1.4.1).

Example: The function y = sin x is differentiable at every point a € R. It follows that

Similar statements hold for y = cosx, y = ex, y = cosh a;, y = sinhx, y = arctanx and
for every polynomial y = CLQ + a\x + . . . + anx

n with real coefficients ao , . . . , an.

The following theorems show that continuous functions have very pleasant properties.
Let —oo < a < b < oo.

Theorem of Weierstrass: Every continuous function / : [a, 6] —> R has a minimum
and a maximum.

More precisely this means that there are a, (3 6 [a, b] with

(minimum) and f(x) < f(/3) for all x €E [a, b] (maximum) (see Figure 1.21).

Figure 1.21. Figure 1.22.

Theorem of Bolzano: If the function / : [a, b] —>• R is continuous and f(a)f(b) < 0,
then the equation
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has a solution (Figure 1.22).

Mean value theorem: If the function / : [a, b] —> R is continuous, then the equation

has a solution for all 7 with min /(x) < 7 < max f ( x ) .
a<x<b a<x<b

1.3.1.3 L'Hospital's rule

This important rule allows the evaluation of expressions of the form and It is

It is assumed that:

(i)There are limits lim f ( x ) = lim g(x) — b with b = 0 or b = ±00, and —oo < a < oc.
x—>a x—>a

(ii) There is a neighborhood U(a) such that the derivatives f'(x) and g'(x) exist for all
x 6 U(a) and x 7^ a.

(iii) One has </(#) 7^ 0 for all x € f/(a), x ^ a.

(iv) The limit on the right hand side of (1.28) exists.21

Example 1 (%}: One has lim sinx = lim x = 0. From (1.28) it follows that
V 0 / x->0 x^O V '

because of the continuity of cosx.

Example 2 (g):

Variants of 1'Hospital's rule: Sometimes one must apply I'Hospital's rule repeatedly
before one gets a well-defined limit on the right-hand side.

Example 3:

21A similar statement holds for s —> a + 0 (resp. a —> a — 0) with a € R. In this case one requires the
assumptions (ii) and (iii) only for points x G U for which x > a (resp. x < a).

The notion of derivative f ' ( x ) will be introduced in 1.4.1.
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Expressions of the form 0 • oo are brought into the form — to which 1'Hospital's rule
applies.

Example 4-

Expressions of the form oo — oo are brought into the form oo • a for some finite value a.

Example 5:

This follows from Example 2, where one has

The following formula is also very handy:

It can be applied to expressions of the form 0°, 00° or 0°°.
In x

Example 6 (00°): Prom x <x = e x and Example 2, one gets

1.3.1.4 The order of magnitude of functions

For many considerations it is sufficient to have a good understanding of the qualitative
behavior of functions. For this there are convenient symbols O(g(x)} and o(g(x)), due
to Landau. Let —oo < a < oo.

Definition (Asymptotic equality): We write

if and only if lim

sin x
Example 1: The equality lim = 1 implies sinx = x, x —» 0.

x^O X

Definition: We write

if there is a neighborhood U(a) of a and a real number K such that

Theorem: The relation (1.29) holds if the finite limit lim exists.

Example 2: The equality lim implies 3x2 + 1 = O(x2), x —> +00.

Definition: We write22

22Let a G M. In the same way one introduces the symbols f ( x ) =^ g(x), f ( x ) = O(g(x)) and
f ( z ) = o(g(x)) for x —> o + 0 (resp. x —> a — 0). The inequality (1.29*) is in general true only for
x £ U(a) with x > a (resp. x < a).
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if hm M = 0.
i-*o g(x)

Example 3: One has xn = o(x), x —> 0 for n = 2 ,3 , . . .

Example J^:

(iii) sinx = O(l) for x —>• a and all a with — oo < a < oo.

(iv) In a; = a(^) for x —>• +0 and In a; = o(x) for x —> +00.

(v) xn = o(ex) for x —> +00 and n = 1,2, . . .

The last statement (v) means that the function y = ex grows faster than every power
xn as x —> +00.

1.3.2 Metric spaces and point sets

Motivation: One of the characteristics of modern mathematics is the tendency to
extend notions and methods to more and more abstract situations. This allows for
solutions giving a great deal of insight of more and more complicated problems and
for seeing the connections between apparently completely different and disjoint areas
of study. This procedure also turns out too be highly economical, since it replaces the
necessity of more and more different notions by their derivation from a few very basic
ones.

To carry the notion of limits of functions of a single variable over to functions of several
variables, it is advantageous to introduce metric spaces. The full power of the modern
point of view becomes apparent in the study of functional analysis. This branch of
mathematics was developed in the 20th century (cf. [212]).

1.3.2.1 The notion of distance and convergence

Metric spaces: In a metric space one has a notion of distance between two points. A
non-empty set X is called a metric space, if for every ordered pair of points, (x, y) in X,
there is assigned a real number d(x, y) > 0, such that for all x,y,z £ X. the following
statements are true:

(i) d(x, y) — 0 if and only if x = y,

(ii) d(x, y) = d(y,x) (symmetry),

(iii) d(x,z) < d(x,y] + d(y,z) (triangle inequality).

The number d(x, y) is called the distance between x and y. By definition, the empty set
is also a metric space.

Theorem: Every subset of a metric space is again a metric space with the same distance
function.
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Limits: Let (xn) be a sequence of points in a metric space X. We write

if lim d(xn, x) = 0, that is, if the distance between xn and x approaches zero as n —» oo.
n—»oo

Uniqueness: If a limit exists, then it is uniquely determined.

Example 1: The set R of real numbers is a metric space with distance function

The notion of distance induced by this metric is the usual (naive) one (see 1.2.3.1).

Example 2: The set ~K.N is by definition the set of all ./V-tuples x = (£1,... ,£/v) of real
numbers £j. Let y = ( r / i , . . . ,7?AT) be another element of M^, and set

This makes R^ a metric space.
For TV = 1,2,3 the induced
notion of distance in R, R2

and R3 coincides with the
usual (naive) notion (see Fig-
ure 1.23).

Furthermore we define

\x-y\ :=d(x,y)
Figure 1.23. Distances in W1.

and let denote the Euclidean norm of x. Intuitively |x| is the distance of

x to the origin.

Let (xn) be a sequence in R^ with components xn = (£irn • • • »&Vn) and let x =
(£i> • • • > 6v) be as above. Then the convergence

in the metric space R^ is equivalent to the component-wise convergence

Example 3: In the special case N = 2, the convergence lim xn = x corresponds to the
n—*oo

visible fact that the points xn get closer and closer to the point x (see Figure 1.24).

Example 4 (the unit circle): We consider the situation depicted in Figure 1.25. Each
point x of the real line R corresponds to a unique point x* on the unit circle of radius 1.
The north pole N doesn't correspond to any point of R. Usually one replaces the north
pole by the points +00 and — oo. We define
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Figure 1.24- Figure 1.25. A distance function on the unit circle.

The set R becomes a metric space by setting

d(x, y) := arc length between x* and y* on the unit circle Z.

We agree on the convention

For example, we have d(±oo, 0) = TT. Let (xn) be a sequence of real numbers. The
convergence

with — o o < x < + o o i n the sense of the metric d on R means that the corresponding
points (xn)* on the unit circle converge to the point x*. This is equivalent to the classical
notion of convergence (see 1.2.3).
In this manner, the classical notion of convergence to either finite or infinite values is
given a uniform definition which derives from the metric notion of convergence in the
metric space Z of the unit circle.

1.3.212 Special sets

Let M be a subset of a metric space X.

Bounded sets: The non-empty set M is said to be bounded, if there is a real number
R > 0 such that

The empty set is by definition bounded.

Figure 1.26. Open and closed sets in R2.
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Neighborhoods: Let e > 0. We set

and call it the e-neighborhood of a. In other words, the e-neighborhood U£(a) of the
point a consists of all the points x in the metric space X whose distance to a is < £
(Figure 1.26).

A set U(a] is called a neighborhood of a, if it contains some ^-neighborhood Ue(a).

Open sets: A set M is said to be open, if for every a € M there is neighborhood U(a)
of a contained in M, C/(a) C M.
Closed sets: The set M is said to be closed, if the complement X — M is open.
Interior and exterior: The point a € X is said to be an interior (or inner) point of
M, if there is a neighborhood [7(a) of a contained in M, U(a) C M (Figure 1.26(c)).
The point fc is said to be an exterior (or outer) point of M, if there is a neighborhood
U(b) which does not belong to M, C/(6) C X - M.

The point c is said to be a boundary point of M, if c is neither an inner nor an exterior
point of M (Figure 1.26(c)).

The set of all interior (resp. exterior) points of M is denoted intM (resp. extM).

Boundary and closure: The set dM of all boundary points of M is called the boundary
of M (Figure 1.26(c)). Furthermore, the set

is called the closure of M.

Theorem: (i) The interior int M of M is the largest open set contained in M.
(ii) The closure M of M is the smallest closed set containing M.

(iii) One has a decomposition into disjoint sets:

which means that every point x €E X belongs to exactly one of the sets int M, ext M, dM.

Accumulation point: A point a 6 X is called an accumulation point of M, if every
neighborhood of a contains a point of M other than a itself.

Theorem of Bolzano—Weierstrass: Every infinite unbounded set of RN has an ac-
cumulation point.

1.3.2.3 Compactness

The notion of compactness is among the most important in all of analysis.
A subset M of a metric space is said to be compact, if every open cover of M (collection
of open sets whose union contains M) contains a finite sub-cover, i.e., there is a finite
subset of that collection of open sets whose union still contains M.

A set is said to be relatively compact, if its closure is compact.
Theorem: (i) Every compact set is closed and bounded.

(ii) Every relatively compact set is bounded.

Characterization in terms of convergent sequences: Let M be a subset of a metric
space.
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(i) M is closed if and only if every convergent sequence (xn) in M has a limit in M.

(ii) M is relatively compact if and only if every sequence in M has a convergent subse-
quence.

(iii) M is compact if and only if every sequence in M has a convergent subsequence
whose limit belongs to M.

Subsets of RN: Let M be a subset of Rw. The following three statements are equiva-
lent:
(i) M is compact.

(ii) M is closed and bounded.

(iii) Every sequence in M has a convergent subsequence whose limit belongs to M.

Moreover, the following three statements are also equivalent:

(a) M is relatively compact.

(b) M is bounded.

(c) Every sequence in M contains a convergent subsequence.

1.3.2.4 Connectedness

A subset M of a metric space is said to be arc-wise connected, if there is a continuous
curve in M joining any two points x, y e M23 (see Figure 1.27).

Domains: A subset of a metric space is said to be a domain, if it is open, arc-wise
connected and not empty.

Simply connected sets: A subset M of a metric space is said to be simply connected,
if it is arc-wise connected and every closed curve in M can be retracted continuously to
a point24 (Figure 1.28).

1.3.2.5 Examples

Example 1 (X = R): Let -oo < a < b < +00.
(i) The interval [a, b] is a compact set in R. It is also closed and bounded.

(ii) The interval ]a, b[ is open and bounded.
(iii) A subset of R is arc-wise connected if and only if it is an interval.
(iv) Every real number is an accumulation point of the set of rational numbers.

23The notion of continuous curve is defined as follows: there exists a continuous map (f> : [0,1] —> M
with y(0) = x and <p(l) = y. The continuity of tp means that

for every sequence (tn) in [0,1] for which limn—.00 in = t-
24This means that for each closed curve, i.e., continuous <p : [0,1] —» M with tp(Q) = <f(l), there is

continuous function H = H(t, x) from [0,1] x M into M, such that

H(Q, x) = ip(x) and H(l, x) = x0

for all i £ M, where xo is some fixed point in M.

a
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Figure 1.27. Arc-
wise connectedness.

Figure 1.28. The notion of simply con-
nected and non-simply connected sets.

(v) The half-open interval [a, b[ is neither open nor closed. It is however bounded and
relatively compact.

Example 2 (X = R2): Let r > 0. We set

Then M is the interior of a circle of radius r centered at the origin (Figure 1.29(a)).

One may check that the boundary and closure are given as follows:

(see Figure 1.29(b)).

(i) The set M is open, bounded, arc-wise
connected, simply connected and relatively
compact.

(ii) The set M is a simply connected domain.

(iii) The set M is neither closed nor com-
pact.

(iv) The set M is closed, bounded, compact,
arc-wise connected and simply connected.

(v) The boundary dM is closed, bounded,
compact and arc-wise connected, but not
simply connected.

Example 3 (unit circle): The set R is unbounded with respect to the classical distance
function, hence not compact (cf. Example 1 in 1.3.2.1).

On the other hand, the metric space R U {±00} introduced in Example 4 of 1.3.2.1 is
bounded and compact. This is the deeper reason for the fact that one can handle finite
and infinite limits in a uniform manner.

The notions introduced above can be generalized to metric and topological spaces
(see [212]).

1.3.3 Functions of several variables

Most of the functions which occur in applications depend on more than one variable,
for example space and time coordinates. We abbreviate this by writing y = f(x] with
x = (£1,. . . , £/v)> where all £j are real variables.

Figure 1.29.
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1.3.3.1 Limits

Let / : M —> Y be a function25 from a metric space M to a metric space Y. We write

if and only if for every sequence (xn) in the domain of / with xn ^ a, and for all n, we
have:26

Example 1: For the function / : given by f ( u , v) := u + v2 we have

Indeed, for an arbitrary sequence (un, vn) with lim (un, vn) = (a, b) we have lim un — a
n—nx n—>oo

and lim vn — b. Consequently,

Example 2: For the function

the limit lim f ( u , v ) does not exist. This is because the sequence (un,vn] —
(u,u)—>(0,0)

satisfies

while for we get

1.3.3.2 Continuity

Definition: A map / : M —> Y between two metric spaces M and Y is said to
be continuous at a point a, if for every neighborhood of the image f/(/(a)) there is a
neighborhood of a satisfying:

This means x € U(a) implies f(x) e U(f(a)}.

The function / is called continuous, if it is continuous at every point a 6 M.
25The definition and properties of general functions can be found in 4.3.3.
26 The function / need not be defined in the point a. We only require that the domain of / contains

some sequence (xn) with the limit property stated.
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Limit criterion: For a function / : M —> Y and a point a 6 M, the following three
statements are equivalent:27

(i) / is continuous at a.

(iii) For every £ > 0 there is a 8 > 0 such that d(f(x), /(a)) < e for all x with d(x, a) < 5.

Theorem: A function / : M —> Y is continuous if and only if the inverse images of
open sets are open.

Law of composition: If / : M —> Y and F : Y —> Z are continuous, then the
composed map

is also continuous. We have (F o /)(#) := F(f(x)).

Manipulations: If the functions f,g:M —> R are continuous in a point a, then:

/ + g is continuous in a,
/# is continuous in a,

(rule of sums),
(rule for products),

/

9
is continuous in a, if g(a) 7^ 0, (rule for quotients).

Component rule: Let f(x) = (/i(x),.. • ,/&(#)). Then the following two statements
are equivalent:

(i) fj : M —> M is continuous at a for every j.

(ii) / : M —> Rfc is continuous in a.

Example: Let x = (^1,^2)- Every polynomial

with real coefficients ajk is continuous at every point x £ R2.

A similar statement holds also for polynomials in TV variables.

Principle of invariance: Let / : M —> Y be a continuous map between two metric
spaces. Then

(i) / maps compact sets to compact sets.

(ii) / maps arc-wise connected sets to arc-wise connected sets.

Theorem of Weierstrass: A continuous function / : M —>• R from a non-empty
compact subset M of a metric space has a minimum and a maximum.
This is true in particular for non-empty, bounded and closed subsets of R^.

27The condition (ii) means that lim f(xn) = /(a) for every sequence (nn) in M with lim xn = a.
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Bolzano's theorem on zeros: Let / : M —> R be a continuous function on an
arc-wise connected subset of a metric space. If there are two points a, b € M with
/(a)/(fe) < 0, then the equation

has a solution.
Mean value theorem: If / : M —> R is continuous and M is arc-wise connected,
then the image /(M) is an interval.

In the special case that /(a) < f(b) for two points a, b 6 M, the equation

has a solution for every real number 7 for which /(a) < 7 < f(b).

1.4 Differentiation of functions of a real variable

1.4.1 The derivative

Definition: We consider a real function y = f(x) of a real variable x, which is defined
in a neighborhood of a point p. The derivative f (p) of / at the point p is defined as the
finite limit

Geometric interpretation: The
number

Fiqure 1.30. The derivative.y is the slope of the secant in Figure
1.30(a). For h —> 0 the secant intuitively approaches the tangent. Thus we define:

f'(p) is the slope of the tangent of the graph of / at the point (p, f(p)).

The corresponding equation of the tangent is then:

Example 1: For the function /(x) := x2 we get
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Table of important derivatives: See section 0.8.1.

The notation of Leibniz: Let y = f(x). Instead of f'(p) one also writes

This notation was introduced by Gottfried Wilhelm Leibniz (1646-1716) and has turned
out to be extremely convenient, as many of the important rules of manipulations with
derivatives follow just from the notation. This is a property which one expects from
well-chosen mathematical notation.
The relation between continuity and differentiability: If / is differentiable at a
point p (i.e., the derivative of / exists at p), then it is also continuous there (one says
'then it is all the more continuous').
The converse statement is false. For example, the function
f(x) := \x\ is continuous at x = 0, but it is not differentiable at
that point (although it is differentiable at all other points), the
reason being that the graph of this function has no tangent at
x = 0 (Figure 1.31).

Higher derivatives: If we set g(x) := f ' ( x ) , then by definition

Figure 1.31.

We also write for this, or in Leibniz notation:

Similarly, we define f^(p) for n = 2,3,
Example 2: For f(x] := x2 we have

f ( x ) = 2x, f " ( x ) = 2, f'"(x) = 0, /(n)(z) = 0 for n = 4 ,5 , . . .

(see 0.8.1).
Basic rules: Suppose / and g are differentiable at a point x, and let a, (3 be real
numbers. Then:

If we set and then we have

(rule of sums),
(product rule),

(quotient rule).

In the case of the quotient rule one must of course assume that g(x) ^ 0.
Examples can be found in 0.8.2.
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The Leibniz product rule: If / and g are n-times differentiate in a point x, then for
n = 1, 2 , . . . one has

This rule of differentiation has a similarity with the binomial formula (see 0.1.10.3). In
particular, for n = 2 one has

(f9)"(x) = f " ( x } g ( x ] + 2 f ( x } g ' ( x ) + f ( x ) g " ( x ) .

Example 3: We consider the function h(x) := x • sinx. If we set f ( x ) := x and g(x) '.=
sinx, then f ' ( x ) = 1, f " ( x ) = 0 and g'(x) — cosx, g"(x) = — sinx. Consequently,

h"(x) = 2 cosx — xsinx.

Functions of class C[a, b]: Let [a, b] be a compact interval. We denote the space of all
continuous functions / : [a, b] —> R by C[a, b}. Moreover we set28

Type Ck: We say that a function in a neighborhood of a point p is of type Ck , if in an
open neighborhood of p it has k derivatives which are continuous.

1.4.2 The chain rule

The fundamental chain rule is easiest to remember in the suggestive Leibniz notation:

Example 1: In order to differentiate the function y = f ( x ) — sinx2, we write

y = sinu, u = x2

and apply the chain rule. According to 0.8.1. we have

28With respect to this norm ||/||, C[a,b] is a Banach space, cf. [212].
29We set /(°)(a;) :— f ( x ) . As above, Ck[a, b] is a Banach space with respect to the norm ||/||fe.

Functions of class Ck[a. b]: This class consists of all functions / G C[a, 6], which have
continuous derivatives /', /", . . . , f^ on the open interval ]a, 6[, each of which can be
extended to a continuous function on [a, b].

We define29
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Consequently, it follows from (1.30) that

Example 2: Let b > 0. For the function f ( x ) := 6X, we have

Proof: We have f ( x ) = ex]nb, and set y = eu, u = xlnb. By 0.8.1 we have

Hence, it follows from (1.30) that

The precise formulation of (1.30) is as follows.

Theorem (Chain rule): For a composed function F(x) := g(f(x)) the derivative at a
point p exists and is given by:

under the following assumptions:

(i) The function / : M —» R is denned in neighborhood U(p) of p and the derivative
f ' ( p ) exists.

(ii) The function g : N —> R is denned in a neighborhood U(f(p)} of f(p) and the
derivative g'(f(p)) exists.

Barriers of thought: The chain rule shows that precise mathematical formulations
can be much more unwieldy than suggestive rules. This unfortunately often leads to
barriers between mathematicians and physicists and engineers, which have to be over-
come somehow. In fact it is a good idea to know both the suggestive and formal rules
as well as the precise mathematical formulations, in order to on the one hand do com-
putations with a minimum of work and on the other hand be aware of possible incorrect
applications of formal rules.

1.4.3 Increasing and decreasing functions

Criterion for increasing (or decreasing): Let —oo < a < b < +00, and let / :
]a, b[—»• R be differentiable.

(i) / is non-decreasing (resp. non-increasing), if

(resp. /'(or) < 0 for all x €]a,6[).

(ii) If f ' ( x ] > 0 for all x e]a, 6[, then in fact / is increasing30 in ]a, b[.

(iii) If f ' ( x ) < 0 for all x e]a, 6[, then in fact / is decreasing in ]a, b[.
30The definition of increasing and decreasing functions is in section 0.2, with pictures in Table 0.14
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Figure 1.32.
functions.

Increasing and decreasing Figure 1.33. The
mean value theorem.

Example 1: Let f(x) := ex. It follows from f ' ( x ) = ex > 0 for all x € R that / is an
increasing function on R (Figure 1.32(a)).
Example 2: We take /(x) := cosx. Since /'(x) = — sinx < 0 for all x e]0,TT[, if follows
that / is decreasing on this interval (Figure 1.32(b)).

Mean value theorem: Let —oo < a < b < +00. If / : [a, 6] —>• R is differentiate on
the open interval ]a, 6[, then there is a number £ G]a, b[ with

Figure 1.34-

Intuitively this means that in Figure 1.33 the secants have the
same slope as the tangent for some point £.

Theorem of Lebesgue: Let —oo < a < 6 < +00. For a strictly
increasing function / :]a, b[—> R one has:

(i) / is continuous except for finitely many points, at which the
left and right sided limits exist.

(ii) / is differentiable almost everywhere31 (Figure 1.34).

1.4.4 Inverse functions

Many important functions are the inverse functions of known functions (cf. (0.28)).

1.4.4.1 Local inverses

The rule for differentiating inverse functions is easiest to remember using the suggestive
Leibniz notation:

Example 1: The inverse function to y — x2 is

31 This means that there is a set M of Lebesgue measure zero such that / is differentiable for all points
not in M (see 1.7.2).
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One has g = 2x. By (1.31) we have

Example 2: For the function f ( x ) := ^/x one has

This follows from Example 1, by exchanging y and x there.

Example 3: The inverse function to y — ex is

(cf. 0.2.6). One has ̂  = e*. From (1.31) it follows that

Example 4: For the function f ( x ) := \nx we get

This follows from Example 3, again by exchanging x and y.

The precise formulation of (1.31) is as follows.

Theorem on local inverse functions: Assume the function / : M C R —> M ii
defined in a neighborhood U(p) of a point p and is differentiable at the point p wit!
f ' ( p ) ^ 0. Then

(i) The inverse function g to f exists in a neighborhood of the point /(p).32

(ii) The inverse function g is differentiable at f(p) and the derivative is given by

1.4.4.2 The theorem on global inverses

In mathematics one carefully discriminates
between

(a) local behavior (that is, behavior in the
neighborhood of a point, or the behavior
in the small) and

(b) global behavior (that is behavior in the
Figure 1.35. Local and global properties.

large). Usually global results are much more difficult to prove than local results. A strong
tool for deriving global results is topology (cf. [212]).

32That means that the equation y = f ( x ) , x G U(p) can be uniquely inverted for y £ t/(/(p)) and
yields x = g(y) (Figure 1.35(a)). We write f~l for g.
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Theorem: Let —oo < a < b < oo, and suppose the function / : [a, b] —> R is strictly
increasing. Then the inverse function f~l exists,

in other words, the equation

has for every y G [f(o-),f(b)} a unique solution x, which one denotes by x = f l(y)
(Figure 1.35(b)).

If / is continuous, then so is f~l.

Theorem on global inverse functions: Let — oo < a < b < oo, and suppose / :
[a, b] —> R is a continuous function which is differentiable on the open interval ]a, b[
with

Then there exists a continuous inverse function / 1 : [/(a), /(&)] —> [a, b] with deriva-
tive

for all

1.4.5 Taylor's theorem and the local behavior of functions

The Taylor series of a function can be used to get many statements about the local
behavior of a function y = /(x) in the neighborhood of a point p.

1.4.5.1 Basic ideas

To study the behavior of a function in the neighborhood of the point x = 0 we make
the ansatz33

/(x) = OQ + a\x + a^x2 + ...

To determine the coefficients OQ, GI, ..., we differentiate formally

f ' ( x ) = ai + 2o2z + 3a3z
2 + . . . ,

/"(x) = 2a2 + 2-3a3x + . . . ,

/'"(x) = 2 - 3 a 3 + ...

At x = 0 we get the formal expansion

33 This German word cannot be correctly translated, which is why it has become customary to use
it in the mathematics and physics literature. It means we just try something out, in this case the
particular way of writing the function locally, and see what this leads to.
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Figure 1.36. Figure 1.37. Local extrema: minima
and maxima.

This gives the following basic formula, known as Taylor series

Local behavior at the point x = 0: From (1.32) we can see the local behavior of
the function / at the point x = 0, which we now explain. For this we use the known
behavior of the power function y = xn (see Table 0.15).

Example 1 (tangent): The first approximation is f ( x ) — /(O) + /'(0)x, which tells us
that locally the function is approximated by the line (Figure 1.36)

y = m + f'(0)x.

This line is just the tangent to / at the point x = 0.

Example 2 (local minimum or maximum): Suppose that /'(O) = 0 and /"(O) ^ 0. Then
near x — 0 the function / behaves like (this is the first approximation in this case)

For /"(O) > 0 (resp. /"(O) < 0) one there-
fore has at x = 0 a local minimum (resp. a
local maximum) (Figure 1.37).

Example 3 (horizontal inflection point): If
/'(O) = /"(O) = 0 and /'"(O) ^ 0, then
near x = 0 the function / behaves like

Figure 1.38. Local extrema: inflection
points.

This corresponds to a horizontal inflection point at x = 0 (Figure 1.38).

Example 4 (local minimum): Suppose that /(n)(0) = 0 for n = 1,. . . , 125 and /(126)(0) >
0. Then locally near x = 0 the function behaves like

with a := /(126)(0)/126! The only important fact is that x126 is an even power of x and
a is positive. Because of these two facts, / behaves locally like Figure 1.37(a), that is
/ has a local minimum at x — 0. The difference is quantitative, not qualitative; looking
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at the function under a magnifying glass one would see that / is much more flat than
Figure 1.37(a).

This example shows the universal applicability of this method also in cases where many
derivatives of the function vanish.

Local curvature: The function

describes the difference between / and the tangent at the point x = 0. By (1.32) we
have

Because of this, the derivatives /"(O), /'"(O),... of the function describe how the graph
of / looks near the tangent at x = 0. This gives us information on the curvature of (the
graph of) /.

Example 5 (local convexity and local concavity): Suppose now that /"(O) ^ 0. Then,
near x = 0, g behaves like

From this one gets the results:

(i) For /"(O) > 0 the graph of / lies
locally near x = 0 above the tangent
(local convexity, see Figure 1.39(a)).

(ii) For /"(O) < 0 the graph of / lies
locally near x = 0 under the tangent
(local concavity, see Figure 1.39(b)).

Example 6 (inflection point): Suppose
/"(O) = 0 and /'"(O) ^ 0. Then g is
locally near x = 0 like

 Thus the graph of / lies locally at x = 0
 on both sides of the tangent (Figure

1.39(c),(d)).
Figure 1.39. Local curvature of functions.

from (1.32). To see this, we note

L'HospitaPs rule: This rule described
in 1.3.3 follows formally immediately

Example 7 Suppose that and Then we get
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1.4.5.2 The remainder term

The formal considerations in 1.4.5.1 can be made rigorous by estimating the error in
(1.32). This is done by the following formula

Here the remainder term J?n+i(x) has the form

With the help of the summation symbol, (1.33) can be written

Taylor's theorem: Let J be an open interval with p E J and suppose that / : J —> R
is (n + l)-times differentiable on J. Then for every x e J there is a number 7? e]0,1[,
such that the representation (1.33) with the remainder term (1.34) is valid.
This is the most important theorem in local analysis.
Application to infinite series:34 One has

if the following assumptions are fulfilled:
(i) The function / : J —> R is infinitely often differentiate on the open interval J and
p € J.
(ii) For fixed x 6 J and every n = 1,2,. . . there are numbers an(x) such that we have
the following estimate:

Example (expansion of the sine function): Let /(#) := sinx. Then

/'(x) = cosx, f " ( x ) = — sinx, f"(x) = — cosx, f^(x) = sinx,

hence /'(O) = 1, /"(O) = 0, /'"(O) = -1, /(4)(0) = 0 and so on. From (1.33) with
p — 0 we get

34 Infinite series are considered in detail in 1.10.
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for all x e R and n = 1,2,... with the error estimate:35

\x 2n

From lim -—— = 0 we obtain from this
n^oo (2n)!

The integral remainder term: If the function / : J —> R is of type Cn+1 (see end
of section 1.4.1) on the open interval J with p €E J. then (1.33) holds for all x 6 J. where
the remainder term has the form:

1.4.5.3 Local extrema and critical points

Definition: A function / : M —> R on a metric space M is said to have a local
minimum (resp. local maximum) at a point a 6 Af, if there is a neighborhood U(a) with

(resp. /(x) < /(a) for all x 6 U(a)}.

The function / has a /oca/ strict miminum, if instead of (1.36) one has

/(a) < /(x) for all x 6 C/(a) with x ^ a

and analog for local strict maximum.

Local extrema (local extremal points) are by definition either local minima or local
maxima (cf. Figure 1.40(a),(b)).
Starting data: We consider a function

with p e]a, b[.

Critical points: A point p is called a critical point of /, if the derivative f'(p) exists
and fulfills

35Note that f^(&x) = ±sini9a;, ztcostfx, |sini?x| < 1 and Icos^xl < 1 hold for all real x and •&.



1.4- Differentiation of functions of a real variable 273

Intuitively this means that the tangent
at the point p is horizontal.

Horizontal inflection point: This is a
critical point of / which is neither a local
minimum nor local maximum (Fig 1.40).

Necessary condition for a local ex-
tremum: If the function / has a local
extremum at the point p and the deriva-
tive f'(p] exists, then p is a critical point
of / , i.e., f(p) = 0.

Sufficient conditions for a local ex-
tremum: If / is of type C2n, n > 1 in
a neighborhood of p and

and, moreover

Figure 1.40. Local extrema.

(resp. f ( 2 n ^ ( p ) < 0), then / has a local minimum (resp. maximum).

Sufficient condtions for a horizontal inflection point: If / is of type C2n+1, n > 1
in an open neighborhood of p and one has

as well as

then / has a horizontal inflection point
at p.

Example 1: For f(x] :— cosx one has
f ' ( x ) = — sinx and f"(x) = — cosx.
This gives

/'(O) = 0 and /"(O) < 0.

Moreover / has a local maximum at x — Figure 1.41.
0. From

cosx < 1 for all x £ M

one gets that the function y = cosx even has a global maximum at x = 0 (Figure
1.41(a)).

Example 2: For f(x) := x3 we get f ' ( x ) = 3x2, f"(x] = 6x and f'"(x) = 6. Hence

/'(O) = /"(O) - 0 and /'"(O) ^ 0.

Consequently, / has a horizontal inflection point at x = 0 (Figure 1.41(b)).

1.4.5.4 Curvature

The relative position of the graph to the tangent: The function

g(x):=f(x)-f(p)-f'{p)(x-p)

describes the difference between the function / and the tangent at p. We define:

(x-p)
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Figure 1.42. Locally convex and concave functions.

(i) The function / is locally con-
vex at p, if the function g has a
local minimum at p.

(ii) / is locally concave at p, if g
has a local maximum at p.

(iii) / has an inflection point at
p, if g has a horizontal inflection
point.

In (i) (resp. (ii)) the graph of g
lies above (resp. below) the tan-
gent at the point p.

In (iii) the graph of / lies locally near p on both sides of the tangent (Figure 1.42).

Necessary conditions for an inflection point: If / is of type C2 in a neighborhood
of p and if / has an inflection point there, then

f"(p) = 0.

Sufficient condition for an inflection point: Suppose / is of type Ck in the neigh-
borhood of a point p and satisfies

f " ( p } = /'"(P) = ••• = f(k'l\p] = 0 (1.37)

for odd k > 3, and moreover f^k\p) ^ 0. Then / has an inflection point at p.

Sufficient condition for local convexity: Suppose / is of type Ck in a neighborhood
of p. If one of the following conditions is satisfied, then / is locally convex at p.

(i) f"(p) > 0 and k = 2.

(ii) f(k)(p) > 0 and (1.37) for even k > 4.

Sufficient conditions for local concavity: Suppose / is of type Ck in a neighborhood
of p. Then / is locally concave if one of the following conditions is satisfied:

(i) f'(p) < 0 and k = 2.
(ii) f(k\p) < 0 and (1.37) for even k > 4.

Example: Let f ( x ) := sinx. Then f ' ( x ) = cosx,
f"(x) = —sinx and f'"(x) = —cosx.

(i) Because of /"(O) = 0 and /"'(O) / 0, the point
x = 0 is an inflection point.

(ii) For x G]0,7r[ one has f " ( x ) < 0, hence / is
locally concave there.

(iii) For x e]?r, 2vr[ one has f " ( x ) > 0, hence / is
locally convex there.

7^ 0, x = TT is an inflection point (Figure 1.43).

Figure 1.43.

(iv) Because of /"(TT) = 0 and

1.4.5.5 Convex functions

Convexity is the most simple kind of non-linearity. Often energy and negative entropy
functions are convex. Moreover, convex functions play an important role in the calculus
of variations and in optimization (see Chapter 5).
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Definition: A set M of a linear space is said to be convex, if we have the implication

Geometrically this means that the secant joining two points in M also belongs to M
(Figure 1.44)

A function / : M —> M is said to be convex, if the set M is convex
and

for all x, y e M and all real t e]0,1[. If in (1.38) one has < instead Figure 1-44-
of <, / is said to be strictly convex (Figure 1.45).

A function / : M —> R is said to be concave
(resp. strictly concave), if —/ is convex (resp.
strictly convex).

Example: The real function / : M —> R from
an interval M is convex (resp. strictly convex),
if and only if the secant joining two points of
the graph of / are above (resp. strictly above)
the graph of / (cf. Figure 1.45).

Criteria for convexity: A function / : J —>
R on an open interval J has the following properties.

(i) If / is convex, then / is continuous on J.

(ii) If / is convex, then in every point x e J the right-sided derivative36 /+ (x) and the
left-sided derivative /_ (x) exist, and fulfill

f-(x)<U(x).

(lii] If the first derivative /' of / exists on J, then37

/ is (strictly) convex on J /' is (strictly) increasing on J.

(iv) If the second derivative /" exists on J, then

f"(x) > 0 on J
f"(x) > 0 on J

/ is convex on J,
/ is strictly convex on J.

1.4.5.6 Application to the analysis of graphs

In order to determine the qualitative behavior of the graph of a function / : M C R —>
R, one proceeds as follows:

(i) First determine the set of points where / is non continuous.

(ii) Determine the behavior of / near these points by calculating the one-sided deriva-
tives, if possible.

37The symbol A =>• B means that A implies B, and A 4=>- B means that both A =>• B and B => A
hold.

Figure 1.45.

36
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(iii) Determine the behavior of / 'at infinity' by calculating the limit lim f ( x ) , if these

exist.

(iv) Determine the zeros of / by solving the equation f ( x ) = 0.

(v) Determine the critical points of / by solving the equation f ' ( x ) — 0.

(vi) Classify the types of critical points of / (minima, maxima, inflection points, see
1.4.5.3).

(vii) Determine the domains where / is increasing or decreasing by studying the sign of
the first derivative /' at different points (see 1.4.3).

(viii) Determine the curvature of / by studying the sign of /" (x) (convexity, concavity,
see 1.4.5.4).

(ix) Finally determine the zeros of f " ( x ) to see whether these are inflection points (see
1.4.5.4).

Example: We want to plot the graph of the function

we see that the function / is continuous at x = 2. Hence / is continuous for all x ^ ±1
and for all x 6 R, x / ±1, x 7^ 2 differentiable.

(ii) From

(iv) The equation f ( x ) = 0 has no solutions, so the graph of / does not intersect the
x-axis.

(v) Let x ^ ±1. Taking derivatives, we get

and f ' ( x ) = f"(x) = 0 for x > 2. From

we obtain that for x = 2, there is no tangent to the graph. The equation

f'(x) = 0, x < 2

we get

We have and

(i) From
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has precisely one solution, given by x = 0.

(vi) From /'(O) = 0 and /"(O) < 0 we see that at x — 0 there is a local minimum.

(vii) From

it follows: / is strictly increasing in the intervals ] — oo, —1[ and ] — 1,0[, and strictly
decreasing in ]0,1[ and ]1,2[.

(viii) From

it follows that / is strictly con-
vex on the interval ] — oo, —1[
and ]1,2[, and strictly concave
on ]-!,![.

(ix) The equation f"(x) = 0,
x < 2 has no solution. Hence
for x < 2 there is no inflection
point.

In conclusion, we see that the
graph of / has the form of Fig-
ure 1.46.

Figure 1.46. The graph of the function f above.

1.4.6 Complex valued functions

We consider functions / : M C R —> C, which are denned on an interval M and take
on complex values. We decompose / into its real and imaginary parts,

with a(x),/3(x) & M. The derivative is defined by the limit

if this exists.38

Theorem: The derivative f'(x) exists if and only if the derivatives a'(x) and f3'(x)
exist. In this case one has

Example: For f ( x ) := elx one has

Proof: From the Euler formula f ( x ) = cosx + isinx and (1.40) it follows that /'(#) =
— sin x + i cos x = i(cos x + i sin x).

38The meaning of the limit is the same as for real functions of a real variable, using convergence of
sequences in the domain and sequences of complex numbers in the range (cf. 1.14.2). Explicitly, this
means

for all sequences (hn} in M with and
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1.5 Derivatives of functions of several real variables

In this section we denote the points of R^ by x = (xi , . . . , XAT), where all Xj are real
numbers. We write y = /(x) instead of y = / (x i , . . . , XN).

1.5.1 Partial derivatives

Basic idea: For the function f ( u ) := u2C for some constant C we have by 0.8.2 the
derivative

Let

If we view v to be a constant and differentiate / as a function of u with respect to u,
then we get as in (1.41) the so-called partial derivative

with respect to the variable u. Of course we can do the same, considering u as constant
and differentiating / as a function of v, we get

Summarizing:

Partial derivatives are formed by considering a function of several
variables just as a function of one of the variables; treating all
other variables as a constant.

Higher partial derivatives are obtained in the same manner. For example, treating u in
(1.42) as a constant, one has:

If we consider v instead to be constant in (1.43), then we get

We use the following notation:

For sufficiently smooth functions we have the convenient symmetry
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(compare with the Schwarz' theorem (1.44)).

Definition: Let / : M C RN —> R be a function and let p be an inner point of M. If
the limit

exists, then we say that / has a partial derivative with respect to x\. Other partial
derivatives are defined similarly.

The following terminology is often used in analysis.

The class Ck(G) of smooth functions: Let G be an open set of MN. Ck(G) is the
set of all functions / : G —> R, which have continuous partial derivatives up to order k.

If / 6 Ck(G), we also say that / is of type Ck.

The class Ck(G): We let G = G U dG denote the closure of G (see 1.3.2.2). The
set Ck(G) consists of all functions / : G —>• R with / e Ck(G), for which all partial
derivatives up to order k can be continuously extended to the closure G.39

Schwarz' theorem: If the function / : M C E.N —> R is of type C2 in a open
neighborhood of p, then

More generally, if / is of type Ck, k > 2 on some open neighborhood of p, then the
order of taking partial derivatives up to order k is irrelevant.

Example 1: For f(u,v} = u4v2 one has fu = 4u3v2, fv = 2u^v and

Moreover, fuu = 12u2v2 and

Example 2: Equation (1.44) means that djdmf(p) = dmdjf(p).

1.5.2 The Frechet derivative

Basic idea: We want to extend the notion of derivative to functions / : M C RN —>
RK of several variables. The starting point is the relation

39Omitting the superscript k or setting k = 0, C(G) or C°(G) (resp. C(G) or C°(G)) denotes the
space of all continuous functions / : G —> K (resp. / : G > R). Moreover, C°°(G) (resp. C°°(G))
consists of those functions which belong to Ck(G) (resp. Ck(G)) for all k.

Notations: To simplify our notations, we will write
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for all h in a neighborhood C/(0) of the origin with

The general philosophy of modern mathematics, hidden behind this definition, is:

differentiation means linearization.

The one-dimensional classical special case: Let J be an interval with p E J. The
function / : J —> R has a derivative f ' ( p ) if and only if the decomposition (1.45) with
(1.46) holds.

Proof: If the classical derivative

exists, we define

and e(0) := 0 as well as r(h) := he(h). Then (1.48) implies (1.45) and (1.46).

Conversely, if one has a decomposition as in (1.45) for some fixed f ' ( p ) for which (1.46)
holds, then (1.48) follows. D

The modern point of view: The classical definition (1.48) is absolutely inconvenient
to extend the notion of derivative to functions of several variables, since in that case
the analog of h is a vector h €. Rw; it makes no sense to divide by such a vector. But
the decomposition formula (1.45) always makes sense. This is why the modern theory
of differentiation is based on (1.45) and the general strategy (1.47).40

Differentiating functions from RN to RK: Suppose M is a subset of RN which
contains a neighborhood of the point p. A map

has the form y — f ( x ) with columns41

40This elegant point of view can be immediately extended to operators acting in infinite-dimensional
Hilbert and Banach spaces and is an important tool in non-linear functional analysis for solving non-
linear differential and integral equations (cf. [212]). Briefly summarized, we can say:

Modern differential calculus approximates non-linear opera-
tors by linear operators and allows one to apply the easy theory
of linear algebra to the study of difficult non-linear problems.

41 We use columns in order to be able to write (1.45) as a matrix equation; matrices and determinants
are dealt with in section 2.1. Using transposed matrices we could also write x = (x\,... , £JV)T and
/(*) = (/! Or),.. . ,/K(*))T .
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The Euclidean norm of h is defined by the expression

Definition: The map / in (1.49) is in a point p Frechet differentiate, if there is a

(K x AO-matrix /'(p)

such that a decomposition (1.45) with (1.46) holds.

In this case the matrix f ' ( p ) is called the Frechet derivative of / at the point p.

Convention: Instead of Frechet derivative we will forthwith speak of the F-derivative.42

Main theorem: If the function / in (1.49) is of type Cl in a neighborhood of a point
p, then the F-derivative f ' ( p ) exists, and satisfies f ' ( p ) = (djfk(p)). Explicitly this is
the matrix

of the first partial derivatives of the components fk of f. The matrix f ' ( p ) is also referred
to as the Jacobian matrix of / at the point p.

Jacobian determinant: Suppose that N = K. Then the determinant det/'(p) of the
matrix f ' ( p ) is called the Jacobian (functional) determinant of / and is written

Example 1 (K = 1): For a real function / : M C RN —> R with AT real variables one
has

If for example, f ( x ) := Xicosx2, then one has d\f(x] = cosx^-, dzf(x) = —xisina;2 >
hence

To connect with the idea of linearization we use the Taylor expansion

For p = (0, 0) , h = (hi, h2) and small values hi, h2, we get from this

42This notion of derivative was introduced by the French mathematician Rene Maurice Frechet (1878-
1956) at the beginning of this century. Frechet, who is also responsible for the theory of metric spaces,
is together with David Hilbert one of the fathers of modern analytic thinking (see [212]).

f(p + h}-f(h) = hl+r(h],
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where r denotes terms of higher order. From f ' ( p ) — (1,0) one also has

We can view f ' ( p ) h = hi as a linear approximation of f ( h ) = h\ cosh? if hi and h^ are
sufficiently small.

Example 2: We set

Then we have

and

hence

In the special case that f i ( x ) = ax\ + bx%, fz(x) = cx\ + dx2, we have

and

As to be expected, the linearization of a linear map is just the map itself, so f'(p)x —

/(*)•

1.5.3 The chain rule

The important chain rule allows the differentiation of composed functions. In the spirit
of the general linearizations strategy (1.47), this rule says

The linearization of composed mappings is the com-
position of the linearizations of the individual maps.

1.5.3.1 Basic idea

Let
z = F(u, v), u = u(x), v = v(x).

It is our goal to differentiate the composed function z = F(u(x),v(x)) by x. Following
the Leibniz notation, the chain rule follows formally from the formula
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by (formal) division

If u and v depend on other variables than just x, that is

u = u(x,y,...), v = v(x,y,...),

then the usual derivative in (1.52) must be replaced by partial derivatives. This gives

Replacing x by y, we get

If F depends on further variables, i.e., y = F(u, v,w,...), the one uses the relation

dF = Fudu + Fvdv + Fwdw + ...

and proceeds in the same manner.

Example: Let F(u, v) := uv2 and u = x2, v = x. We set

Using (1.52), we get

The same result follows directly from F'(x) = 4r3.

Precise notation: The formula (1.52) is quite suggestive, but not completely precise;
in fact, on the left hand side F is a function of x, while on the right hand side it is a
function of u and v. If we are trying to be precise, then we should change the notations,
for example setting

H(x) := F(u(x),v(x)}.

Then the precise statement of the chain rule, which completely states all arguments, is

For

we get

H(x,y) := F(u(x,y),v(x,y))

Since the formulas (1.55) and (1.56) are rather unwieldy compared with (1.52) and
(1.53), they are not often used in calculations. However, for more theoretical purposes,
like proving theorems, it can be essential to have the more precise notations as above.
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Physicists' notation from thermodynamics: Let E denote the energy of a system.
Then the symbol

means that one views E = E(V, T) as a function of the volume V and the temperature
T, and forms the partial derivatives with respect to V. One the other hand,

means that E = E(p, V) is viewed as a function of the pressure p and the volume V,
and the partial derivatives are with respect to p. In this way the energy is denoted by
a unified symbol, the notation makes it clear, which variables the function depends on,
and one can use the advantages of the Leibniz notation (1.51) and (1.53).

1.5.3.2 Derivatives of composed functions

Basic formulas: We consider the composed function

Explicitly this means

Hm(x] := Fm(/i(x),. . . , MX)), TO = 1,. . . M,

with x — ( x i , . . . , XTV). Our goal is to derive the chain rule

for m = 1 , . . . , M and n = 1 , . . . , TV. Written as a matrix equation, (1.57) is

Because H = F o f this can also be written

which is similar to the linearization (1.50).

A function is said to be locally at a point p of type Ck, if the function is of type Ck in
a neighborhood of p.

The chain rule: The formulas (1.57)-(1.59) hold and the composed function H = Fo f
is locally at p of type C1, provided the following assumptions are satisfied:
(i) The function / : D(f) C RN —> RK is locally at p of type C1.

(ii) The function F : D(F] CRK —> MM is locally at f(p) of type C1.
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The product formula for functional determinants: In the case M = K = N,
(1.58) leads to the determinant formula

This is equivalent with the Jacobi product formula

1.5.4 Applications to the transformation of differential opera-
tors

Differential equations can often be simplified by passing to new coordinates. We il-
lustrate this with the example of polar coordinates. The same considerations can be
applied to arbitrary coordinate transformations.

Polar coordinates: Instead of Cartesian coordinates x, y, we introduce

which are called polar coordinates r, if> (Figure 1.47). We set

ya := arctan — , x f 0;
x

then the inverse of this coordinate transformation is

Transformation of a function to polar coordinates: The trans- Fiaure 1 A7
formation of a function F = F(x, y) from Cartesian to polar coordi-
nates r, if> is affected by setting

Transformation of the Laplace operator: Suppose the function F :
type C2. Then the usual Laplace operator

is transformed to the expression

is of
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Consequence: The relation (1.64) implies immediately that the function

is a solution of the partial differential equation A/ = 0. Transforming back, we see that

is a solution of the Laplace equation A-F = 0, a fact which is much more difficult to see
in these coordinates.

Notations: Often the symbol F is used instead of / in (1.64). Although this notation
is inconsistent, it is very convenient in applications in physics and technology.

We now describe two methods for deriving the transformed equation (1.64).

First method: We start from the identity

Taking derivatives with respect to x and y with the help of the chain rule gives

Taking derivatives a second time, now using the product rule and the chain rule, gives

Thus, we get the result

First assume that x ^ 0. Then (1.61) implies

Differentiating again with respect to x and y using the chain rule gives

These relations, together with (1.65), yields the formula (1.64) for x ^ 0. The case of
x = 0, y 7^ 0 follows from (1.64) by taking the limit x —> 0.

Second method: We now use the identity
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To simplify notations, we write / instead of F. Taking derivatives with respect to r and
</?, using the chain rule gives

Solving for fx and fy in this equation we obtain

with

We write dx = -x—, etc. Then (1.66) is equivalent to the following key formula
ox

From this we obtain

The product rule implies dr(Adr) = (drA)dr + Ad? etc. Thus,

Exchanging A with C and B with D, one gets similarly

Because of the relations

we finally get

which is the transformed formula (1.64).

The second method does not use the inverse formula (1.61), which can be a great sim-
plification in complicated calculations.

1.5.5 Application to the dependency of functions

Definition: Let /& : G —> R be a (^-function, k = 1,..., K + 1, where G is a non-
empty open set of M.N. We say that /K+I depends on /i, . . . , /x, if and only if there is
a (^-function F : RK —> R with
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Theorem: The dependency relation is satisfied, provided the rank of the two matrices43

is constant, equal to r for some r with 1 < r < K.

Example: Let fi(x) := exi, /2(x) := eX2 and f s ( x ) := eXl+X2. Then we have

Because of the relation det (/{(#), fz(x}} = eXleX2 ^ 0, we get from this

for all x = (x\,x-2) in R2. Consequently, fz is dependent on fa and /2 in R2. In fact,
one has the explicit relation

MX) = fa(x)h(x).

1.5.6 The theorem on implicit functions

1.5.6.1 An equation with two real variables

We want to solve the equation

for y, where x, y 6 R and F(x, y) G R. That is, we are looking for a function y = y ( x )
with

F(z ,y(x))=0.

We assume that we know some fixed solution of the equation, i.e.,

Moreover, we require

Theorem on implicit functions: If the function F : D(F) C R2 —> R is of type
Ck, k > 1 in some neighborhood of the point (g,p), and the conditions (1.68) and (1.69)

are both satisfied, then the equation (1.67) can be uniquely
solved at the point (q,p) for y44 (Figure 1.48).

The solution y = y(x) is locally at q of type Ck.

The method of implicit differentiation: To calculate
the derivatives of the solution y = y(a;), we differentiate the
equation

F(z,y(z))=0

with respect to x and use the chain rule. This yields
Figure 1-48.

43 We write /j(x) as a column matrix.
44This means there are open neighborhoods U(q) and V(p), such that the equation (1.67) has a unique

solution y(x) € V(p) for every x € U(q).
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which in turn implies

The higher derivatives of y are gotten by differentiating (1.71). However, it is more
convenient to take the derivative of (1.70) with respect to x. This gives

Fxx(x, y ( x } } + 2Fxy(x, y(x))y'(x) + Fyy(x, y(x)}y'(x)2 + Fy(x, y(x))y"(x) = 0.

From this one can solve for y"(x). One proceeds similarly for higher derivatives.

Approximation formula: The Taylor expansion of y for a solution of F(x, y) = 0
gives the approximation

Example: Let F(x,y) := eysinx — y. Then F(0,0) = 0 and Fy(x,y) = e^sinx —1, hence
Fy(0,0) ^ 0. Consequently, the equation

can be uniquely solved near (0,0) for y. To get an approximation of the solution y = y(x),
we make the ansatz

y(x) = a + bx + ex2 + ...

Because y(0) = 0, one has a = 0. Using the power series expansion of the exponential

we get from (1.72) and (1.73) the equation

x - bx + x2(...) + xz(. ..) + ... = 0.

Comparing coefficients yields 6 = 1, hence

y = x + ...

Bifurcation: Let F(x, y} := x2-y2. Then we have F(Q, 0) = 0
and Fy(Q,0) — 0. Since (1.69) is not satisfied, the equation
F(x, y) = 0 cannot be locally solved at (0,0) uniquely for y. In
fact, the equation

Figure 1.49.

has two solutions, y = ±x. Hence the point (0,0) is a point where the solutions branch
(a bifurcation point}45 (Figure 1.49).

45The general theory of bifurcations has many interesting applications in physics (cf. [212]).

y=p+y'(q)(x-q)+y"(q)/2!(x-q)2+...
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1.5.6.2 Systems of equations

The calculus of the F-derivative is flexible enough that it can be immediately generalized
to apply to systems of non-linear equations

with x 6 Rw, y e RM and F(x,y) e RM. One only has to pay attention to the fact
that Fy(q,p) is a matrix and the decisive condition Fy(q,p) ^ 0 has to be replaced by

Let (q, p) be a solution of

Theorem on implicit functions: If the function F : D(F] C RN+M —» RM is of
type Ck, k > I in a neighborhood of the point (g,p), and if the two conditions (1.75)
and (1.76) are satisfied, then the equation (1.74) has a unique solution y at the point
(<?,?>)•
The solution y = y(x) is locally of type Ck at the point q. The formula (1.71) for the
F-derivative y'(x) remains valid, now as a matrix equation.

Explicit formulation: The system (1.74) is explicitly

and Fy(x,y] is the matrix of the first partial derivatives of Fk with respect to ym.
Replacing ym by ym(#i, . . - , xn) in (1.77) and taking derivatives with respect to xn. one
has

Solving this equation for dym/dxn yields the matrix equation (1.71).

1.5.7 Inverse mappings

1.5.7.1 Homeomorphisms

Definition: Let X and Y be metric spaces (for example subsets of R^). A map
/ : X —> Y is called a homeomorphism if / is bijective and both / and f~l are
continuous (see 4.3.3).

Theorem on homeomorphisms: A bijective continuous map / : X —> y on a
compact set is a homeomorphism.

This theorem generalizes the theorem on global inverse real functions on a compact
interval (see 1.4.4.2).
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1.5.7.2 Local diffeomorphisms

Definition: Let X and Y be non-empty open sets of R", N > 1. The map / : X —> Y
is called a Ck-diffeomorphism, if / is bijective and both / and f~l are of type Ck.

The main theorem on local diffeomorphisms: Let 1 < k < oo. Assume the map
/ : M C RN —>• RN is of type Ck on an open neighborhood V(p) of p, and that

Then / is a local C^-diffeomorphism46 at the point p.

Example: We consider the map

with «o := g(xo-,yo), VQ := h(xoJyo). The functions 5 and h are both assumed to be of
type Ck, 1 < A; < oo in a neighborhood of the point (XQ, yo), and it is assumed that

Then the map (1.78) is a local
C^-diffeomorphism at the point

(xo,Vo)- Figure 1.50. A local diffeomorphism.

This means that the map in (1.78), depicted in Figure 1.50, can be inverted in a neigh-
borhood of the point (UO,VQ), and the inverse mapping

x = x(u,v), y = y(u,v)

in smooth in a neighborhood of (MO, VQ), that is, x, y are of type Ck.

1.5.7.3 Global diffeomorphisms

The Theorem of Hadamard on global diffeomorphisms: Let 1 < k < oo. Suppose
a Cfe-map / : K^ —> R^ satisfies the two conditions:

Then / is a Cfe-diffeomorphism.47

Example: Let N = 1. For the function f(x) := sinhx,
f'(x) = coshx > 0 imply that (1.79) is satisfied. Thus
/ : R —> R is a C°°-diffeomorphism (Figure 1.51).

Figure 1.51.

46This means that / is a (7fe-diffeomorphisni from some appropriately chosen open neighborhood U(p)
to an open neighborhood U(f(p)).

47In the special case where N = 1, we have det/'(x) = f ' ( x ) .
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1.5.7.4 Generic behavior of solutions

Theorem: Let / : RN —> RN be of type C1 such that lim |/(x)| = oo. Then there
\x\—*oo

is an open and dense48 set D C Rw, such that the equation

has at most finitely many solutions for each y £ D.

One abbreviates this conclusion by saying: there are generically finitely many solutions.
More precisely, one has the following clear situation.

(i) Perturbations. If a value yo £ ^N is given, then there is, in every neighborhood of
yo, a point y G R^ for which the equation (1.80) has at most finitely many solutions, in
other words, by perturbing yo slightly one can get favorable behavior of the solutions.

(ii) Stability. If the equation (1.80) has for some point y\ € D at most finitely many
solutions, then there is a neighborhood U(y\] in which (1.80) has only finitely many
solutions for all y 6 U(y\).

1.5.8 The nth variation and Taylor's theorem

nth variation: Let / : U(p) C RN —> R be a function defined in a neighborhood of a
point p. For h 6 RN we set

where the real parameter t is allowed to vary in a small neighborhood of t — 0. If the
nth derivative (f>^ (0) exists, then the number

is called the nth variation of the function / at the point p in the direction of h.

Directional derivatives: For n — 1 we set 8f(p\ h) :— 5l f(p\ h) and call this expression
the directional derivative of / at the point p in the direction of h. Explicitly, one has

Theorem: Let n > 1. If the function / : U(p) C WN —» R is of type Cn in an open
neighborhood of the point p, then one has

and

48A set D is dense in RN, if its closure in RN is all of Rw, i.e., D = RN.
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Example: For N = n = 2, we have

If we use the more convenient notation then we get from this

The general form of Taylor's theorem: Let / : U C RN —> R be a function of
type Cn+1 on the open convex set U. For all points x, x + h G U, we have

with the remainder term

where the number $ depends on x and satisfies 0 < $ < 1. In addition, one has

Local behavior of functions: One can use the Taylor expansion in an entirely similar
manner as in 1.4.5 to study the local behavior of functions. Important results in this
respect can be found in 5.4.1.

1.5.9 Applications to estimation of errors

Usually measurements in physics contain measurement errors. The theoretical error
estimation is used to relate errors in the arguments of functions with those of the values.

Functions of a real variable: We consider the function

and set

= error of the argument x,

= relative error of the value f ( x ) .

From Taylor's theorem it follows that

= error of the value of the function /(#),
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with 0 < i? < 1. Prom this we get the error estimate:

Example 1: For f ( x ) := sinx we have f " ( x ) = — sinx, hence

For example, when Ax = 10 3 we have (Ax)2 = 10 6.

For sufficiently small errors Ax one uses the general approximation formula

Functions of several variables: For the function y — / (xi , . . . , XN) we set

The approximation formula here is

Chain rule: For a composed function H(x) — F(/i(x),..., fm(x)) with
x = (xi , . . . , XN) we have

Example 2 (summation rule): For H(x) we get

that is, the absolute errors add up.

Example 3 (product rule): For H(x) = fk(x) one gets

that is, the relative logarithmic errors add up.
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f ( X )
Example 4 (quotient rule): For H(x) = —7-7 one has

9(x)

that is, the relative logarithmic errors are subtracted.
The Gaussian law of propagation of errors: We consider the function

Suppose we are given measurements

xi,...,xn and j / i , . . . ,y m

of the x and y. From this we get the values of z, Zjk = / (^7 ,2 / fe ) - By definition, the
averages x, y and the variances are given by

According to Gauss one has the following approximate relations for sufficiently large n
and m:

This relation is called the Gaussian law of error propagation.

1.5.10 The Frechet differential
It is important to take note of the way notations can
help with discoveries. In this way the work of the
mind can be wonderfully reduced.

Gottfried Wilhelm Leibniz (1646-1716)

Leibniz differential calculus: The notion of differential is of fundamental impor-
tance in modern analysis, geometry and mathematical physics. For Leibniz these were
differentials d/ of infinitely small size, which reflected his philosophical ideas about the
smallest mental components of the world. The inconcise, but extremely convenient no-
tion of the infinitely small can be found even today in the physics and technological
literature. In order to give the convenient Leibniz notion a sound basis, one introduces
the Frechet differential d/(x). This was done at the beginning of this century by the
French mathematician Maurice Frechet (1878-1956). For a function
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the Frechet differential is a linear map

which is to be defined, which assigns to every h 6 R^ a real number d f ( x ) h , and which
in addition satisfies the linearity condition

for all a,/? e M and all h,k € RN (cf. 1.5.10.2).

Differentials are linear maps.

The differential calculus of Cartan: The same notion of differential is the basis of
the elegant differential calculus of Cartan, which the great French mathematician Elie
Cartan (1869-1961) introduced at the end of the last century and provides a useful
extension of the Leibniz calculus. The Cartan calculus is one of the most powerful and
most often used instruments of modern mathematics and physics.49

Advantages for practical calculations: Both the Leibniz and the Cartan differential
calculus have a decided practical advantage, in that one only needs to remember a few
easy rules. The rest is done by the calculus itself. We emphasize this by first presenting
the formal rules and only then worrying about the rigorous justification. For most
practical calculations, one only needs to know the formal rules.

1.5.10.1 The formal Leibniz differential calculus

Let a function y = f ( x ) with x = (#1, . . . , XN) be given. According to Leibniz, one does
computations with differentials by applying the following rules:

(i) (total differential),

(ii) d(f + g) = df+ dg, (rule of sums),

(iii) d(fg) = (df)g + fdg, (product rule),

(iv) d2Xj = 0, (infinitely small).

One has to keep in mind that the last rule (iv) only holds for the arguments.

This calculus has shown itself to be extremely flexible.

Transformation rules for differentials: This calculus is applied particularly often
to transform functions to a new set of variables. If we have

Xj = X j ( u i , . . . , UM), j = 1,... ,N,

then we get from the rule for the total differential the fundamental transformation rule
for differentials:

49Leibniz' notion of the infinitely small has been given a rigorous basis in non-standard analysis,
by extending the real numbers by new quantities, which are called infinitely small or infinitely large
numbers, and with which (in the context of an extended logic) one can calculate rigorously (cf. [53]).

df(x)ah+Bk)=adf(x)h+Bdf(x)k
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This yields

Comparing this with

we get

The Leibniz calculus gives in this way the chain rule automatically.

Example 5 (chain rule for higher derivatives): Let h(x) := f ( z ) , z = g(x). As argument
(dependent variable) we choose x, which by rule (iv) implies

d2z = 0.

From the product rule we get

dz = g'dx,

d2z = d(dz] = d(g'dx) = dg'dx + g'2x = dg'dx = g"dx2

and
d/ = fdz,

d2/ = d(d/) = (d/')dz + f'd2z
= /"dz2 + f'g"dx2 = (/V2 + f'g")dx*.

It follows from this that

Rigorous proof of (1.83): Taking derivatives of h(x) = f ( g ( x ) ) using the chain rule yields

h'(x) = f'(g(x))g'(x).

Differentiating again and using the chain rule and the product rule, we get

h"(x] = f"(g(x))g'(x)2 + f(g(x))g"(x)t

which is (1.83). D

For functions of several variables it is often advantageous to use differentials instead of
partial derivatives. For this reason this calculus is popular in the physics and techno-
logical literature.

1.5.10.2 Prechet differentials and higher Frechet derivatives

Frechet differentials (F-differentials for short) can be defined rigorously by using decom-
positions of functions with appropriate remainder terms. For historical reasons one uses
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both F-differentials as well as F-derivatives. In fact, however, these two notions coincide.
Consider a function

which is defined in a neighborhood of a point x. Also set

etc.

The F-differential d/(x): By definition the function / has a F-differential at a point
x, if and only if the decomposition

is valid for all h £ RN in a neighborhood of the origin, where one assumes in addition
the two conditions:

(i) df(x) : Rw —> R is a linear mapping.

(ii) The remainder term is o-small,50 r(h] = o(|/i|), h —> 0.

The relation to the F-derivative: One also calls d/(x) the F-derivative, denoted
f ' ( x ) . Moreover, we call

the value of the F-differential of the function / at the point x in the direction of h.

Relation to the first variation: If the F-differential d/(x) exists, then the first
variation of / at the point x in the direction h also exists, and

Existence theorem:51 If the function / is of type Cl in an open neighborhood of a
point x, then one has

The second F-differential d2f(x): By definition, a function / has at a point x a
second F-differential, if there is a decomposition of differentials

df(x + h)k - df(x)k = d2f(x)(kj h) + r(h, k)

for all h £ R^ in a neighborhood of the origin and for all k £ RN, where we in addition
assume:

50 This means The reading is 'little o-small', as there is also

a notion of 'big O-small'.
51For most practical purposes it suffices to know the formulas (1.84), (1.85) and (1.86). The more

general definition here is given because it is easier to generalize to abstract operators, which is of
utmost importance for modern theoretical and numerical treatment of non-linear differential and integral
equations (cf. [212]).



1.5. Derivatives of functions of several real variables 299

(i) d2f(x] :RN xRN —> R is a bilinear mapping.
(ii) The remainder term is o of h, i.e., \r(h, k)\ = o(\h\), h —> 0. To simplify nota-

tions, one writes for this also d2f(x)hk := d2f(x)(h, k) and d2f(x)h2 := d2 f(x)(h, h).
The second F-derivative f"(x): One also denotes the differential d2f(x) as the
second F-derivative f " ( x ) of the function / in the point x. Furthermore, the value of
this differential of the function / at the point x with respect to the directions h and k is

Relation with the second variation: If the second F-differential d2f(x) exists, then
the second variation of / at x exists for every direction h which satisfies

Similarly one defines the nth F-differentials dnf(x).
Existence theorem: Let n > 2. If / of type Cn in a neighborhood of a point x, then:

More generally, one has

In particular one has the symmetry of the second derivatives

d2f(x)hk = d2f(x)kh for all h,keRN.

Similarly, dnf(x)h^ • • • h^ is invariant under an arbitrary permutation ofh^\ . . . , h^n\
h® e RN.

1.5.10.3 Rigorous justification of the Leibniz differential calculus

If one views the Leibniz differentials as F-differentials, then it is easy to give a rigorous
justification to the Leibniz differential calculus.
The Leibniz formula for the total differential: If a function / is of type C1 in a
neighborhood of a point x, then one has:52

with

52We abbreviate notations slightly be writing dxj instead of dxj(x).
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Proof: We set f ( x ) :— Xj. Form (1.84) we get

where we have used The statement (1.87) is then

But this is equivalent to (1.84).

The differential operator d: We define

The relation (1.87) can then be written in the following way:

if we agree to let

The Leibniz product formula: Let functions /, g : U(x) C RN —> M be of type Cl

in a neighborhood of x. Then

d(/9)0r) = g(x)df(x) + f ( x ) d g ( x ) .

Proof: This follows from (1.87) and the product rule for derivatives:

The Leibniz transformation formula: We assume that

Xj = X J ( U I , . . . , U M ) , j = l,...,N,

that is, the quantities Xj depend on the variables um. Furthermore we set F(u) :=
f(x(u}). Then one has

and

This corresponds to (1.81) and (1.82).

Proof: The formula (1.88) follows from (1.87).
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Applying (1.87) to the function F, it follows from the chain rule that

This is (1.89). 

Leibniz' formula for the second differential: Let a function / be of type C2 in a
neighborhood of x. Then

More explicitly, this is

and

Here we are using the tensor product, i.e., the following relation

Proof: The formula (1.91) follows from (1.85) together with (1.93). If we set f ( x ) := Xj,
then the second partial derivatives of / with respect to xi, xa , . . . all vanish identically.
Thus (1.85) implies (1.92)

Comparison of Leibniz' and Cartan's differential calculus: The tensor product
<8) and the exterior (outer) product A are of particular importance in multilinear algebra
(cf. 2.4.2).

(i) The Leibniz calculus is based on the operator d and the tensor product <8>. One then
has for example the product d2 as

(ii) The Cartan calculus is based on the operator d and the exterior product A. In this
case the operator d2 is given by

Instead of (1.93) one has in the Cartan calculus the following relation

forallMeR*.
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1.5.10.4 The formal Cartan differential calculus

In order to simplify notation, we now agree that if two identical indices appear in a
formula, then one forms the sum over that index (Einstein summation convention). In
this section, the index will run from 1 to N. For example, we have

The product symbol A: The Cartan differential calculus follows from the Leibniz
calculus, by inserting a A; one must now worry about signs, as A is anti-commutative:

From (1.95) it follows also that dxm A dxm = —dxm A dxm, or in other words

Example 1:

Example 2:

Rule for permutations: The product

does not change upon an even permutation of the factors, but changes its sign under an
odd permutation,53 and vanishes if two factors coincide.

Differential forms: A differential form of degree r is a linear combination of products
of the form (1.96).

Functions are by definition differential forms of degree 0.

Example 3:

The coefficients a?, o^ and ajkm are functions of x = (x i , . . . , XN).

The three basic rules:

(i) Addition: Differential forms are added in the usual way and multiplied by functions
in the usual way.

(ii) Multiplication: Differential forms are multiplied in the usual way with the operator
A, paying attention to (1.95).

(iii) Differentiation: For a function / one has the Leibniz rule:

For a form one has the Cartan rule:

53See 2.1.1 for definitions about permutations.



1.5. Derivatives of functions of several real variables 303

These three basic rules completely determine the calculus with differential forms.

Example 4-' For a = a(x, y] and b = b(x, y), one has

da = axdx + aydy, db — bxdx + bydy.

Example 5: For a; = adx + bdy one gets for the exterior derivative of u>:

Here the following facts were used:

Example 6: Let c = c(x, y) be given. For dy we get

Here again one uses the fact that a A-product with two equal factors vanishes identically.

Example 7: Let

where a, b and c depend on x, y and z. Then we have54

This follows from

Example 8: For

we get

This follows from the computation

Transformation of differential forms to a new set of variables: For this one uses
the Leibniz rule. The number of old and new variables are immaterial for this.

Example 9: If we apply the variable transformation

x = x(t), y = y(t], z = z(t)

to
(jj = adx + bdy + cdz,

54Observe the great symmetry in all of these formulas. The summands are obtained by cyclic permu-
tations of a, b, c and x, y, z.
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then we get dx — x'dt, etc. This yields

uj(ax' + by' + cz')dt.

Example 10: Applying the variable transformation

x = x(u,v), y = y(u,v)

to

with a = a(x,y) yields

This formula also follows from

dx = xudu + xvdv, dy = yudu + yvdv

together with the relation cj With the help of the
Jacobi determinant

one can also write this in the form

Example 11: Consider the change of variables

x = x(u, t>, w), y = y(u,v,w), z = z(u,v,w)

and apply this to

This gives the expression

with the functional determinant

This follows from u> and

Example 12: Via the change of variables

x = x(ii, w), y = y(w, v), z = z(u, v)
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we get from

the expression

Manipulations: Let o>, // and r) denote arbitrary differential forms of degree 0. We
set

if a is a function.

(i) Associative law:

(ii) Distributive law:

(iii) Supercommutativity:

(r degree of u>, s degree of //).

(iv) Rule for products of differential forms:

(v) Poincare lemma: One always has d2 = 0, i.e.,

d(dw) = 0.

(vi) Rule of exchange: The operations of differentiation and of change of variables can
be exchanged (these operations commute with each other).55

Mnemonics: The basic formula (1.98) for differentiation can be easily remembered, by
writing d A a; instead of du. Then formally one has:

Poincare's rule d(du;) = 0 then also follows formally:

because of

55This means that it is immaterial whether one first forms du> and then applies a coordinate change,
or whether one first changes variables and then forms dw with respect to the new variables. It is this
fact which makes the Cartan calculus so flexible.
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1.5.10.5 Rigorous justification of the Cartan differential calculus and its
applications

In order to make what we have discussed up to this point mathematically rigorous, it will
suffice to understand the A-product in the sense of multilinear algebra, which is given
by (1.94). Then the differential formula (1.98) is a definition of duj, and the remaining
statements can be verified by direct computation.

The Cartan differential calculus has the following applications (see [212]):

(i) Iterated integrals and integral along curves on m-dimensional surfaces (cf. 1.7.6).

(ii) The theorem of Stokes which generalizes the fundamental theorem
of calculus to higher dimensions and which contains the classical integral theorems
of Gauss, Green and Stokes as special cases (cf. 1.7.6.ff).

(iii) Poincare's theorem on the solutions of do; = (j, and applications of this in vector
analysis (cf. 1.9.11).

(iv) The theorem of Cartan-Kahler on the solution of systems of differential forms

LJl = 0, Ct>2 = 0, . . . , Uk = 0,

which contain general systems of partial differential equations as special cases (cf.
1.13.5.4).

(v) Tensor analysis.

(vi) The special theory of relativity and electrodynamics,

(vii) Calculus on manifolds.

(viii) Thermodynamics,

(ix) Symplectic geometry, classical mechanics and classical statistical physics.

(x) Riemannian geometry, Einstein's general theory of relativity, cosmology, and the
standard model in particle physics.

(xi) Lie groups and symmetry,

(xii) Differential topology and de Rham cohomology.

(xiii) Modern differential geometry, curvature of principal bundles, gauge theories in
high energy physics, and string theory.

This list of applications shows that the Cartan differential calculus plays an important
role in many areas of modern mathematics and physics.

1.6 Integration of functions of a real variable

Many methods for the explicit calculation of integrals and an extensive
list of known integrals can be found in section 0.9
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1.6.1 Basic ideas

The precise mathematical formulation of the following considerations can be found in
1.6.2 ff.

The limit of a sum: The integral

is equal to the area of the hatched region under the graph of / in Figure 1.52(a). This
area can be calculated by choosing an approximation by means of rectangles as in Figure
1.52(b) and then taking the limit as the rectangles get thinner and thinner. This means56

Here we divide the compact interval
[a, b] into n equal parts. The division
points are then given by

with

In particular XQ = a and xn = b.
Figure 1.52. Approximation of surface area.

Practical calculation of integrals:
Newton and Leibniz discovered the fundamental formula

which is called the fundamental theorem of calculus.57 This formula shows that the
integration can be viewed as the inverse of differentiation. Henceforth we will write

56The area of a rectangle of width Ax and height /(x^) is equal to /(zfc)Az. Consequently, the
expression

is the sum of the areas of the individual rectangles in Figure 1.52(b).
57A formal motivation for the formula (1.102) is given by passing to the infinite limit:

In Leibniz notation one gets the parallel formulas

k=0,1,2,...n,
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Example 1: Let F(x) := x2. From F'(x) = 2x we get

Example 2: Let F(x) := sinx. From F'(x) = cosx we get

Primitive functions: Let J be an open interval. A function F : J —>• R is called an
primitive function to / on J, if

Theorem: If -F is a primitive function for / on J, then all primitive functions for / on
J are of the form

F + C,

where C is an arbitrary real constant.

One also writes for this

and calls the set of all primitive functions on the right-hand side in (1.104) the indefinite
integral of / on J. From (1.102) we get

The calculation of integrals is thus reduced to the calculation of the primitive functions.

Table of important primitive functions: This table can be found in 0.9.1.

Example 3: Because of (— cosx)' = sinx one has

and

and

A rigorous justification of (1.103) is given in the context of general measure theory, which is also valid
for a certain class of non-continuous functions F (cf. [212]).
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Example A: Let a be a real number with Prom (xaY = axa~l it follows that

and

Integration of non-continuous functions: A differentiable function is always con
tinuous, hence only sufficiently smooth functions can be differentiated.

However, one can integrate a large class of non-continuous functions.

Example 5: We set

Figure 1.53. Inte- Figure 1.54- Approximation of the integral on
gration of discontinu- an unbounded interval,
ous functions.

Because of the additivity of areas we expect according to Figure 1.53 the relation:

Here the discontinuity of / at the point x = 2 is irrelevant. Intuitively the area of the
region under the graph of the function / in Figure 1.52(a) does not change when the
value of / is changed in finitely many points.

Integration over unbounded intervals: The integral corresponds intu-

itively to the area of the hatched region in Figure 1.54(a). This area can be calculated
in the obvious way as the limit

(Figure 1.54(b)). Here we have used the formula

arctan arctan b — arctan 0 = arctan b.
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Integration of unbounded functions: The integral corresponds to the area

of the hatched region in Figure
1.55(a).

This area can be calculated by pass-
ing to the limit

(Figure 1.55(b)). Here we have used
the formula

Figure 1.55. Integration of unbounded functions.

Measure and integral: The great mathematician of ancient Greece, Archimedes (287-
212 BC) calculated an approximation to the circumference of the unit circle by approxi-
mating the circle by a 96-gon. In this way he got the approximation 6.28 for the number
2-7T. After him, many mathematicians and physicists worked on calculating 'measures'
for sets (length of curves, areas of surfaces, volumes, masses, charges, etc.). At the
beginning of this century, the French mathematician Henri Lebesgue (1875-1941) devel-
oped a general measure theory, which allows the assignment of measures to subsets of a
given set, calculations which can be performed in a satisfactory manner; in particular,
limits can be formed in this theory. In this way, Lebesgue solved completely the an-
cient problem of finding and calculating measures. The notion of the Lebesgue measure
contains the so-called Lebesgue integral, of which the classical (Riemannian) integral

(1.101) is a special case.

For reasons of didactics, this classical integral is still part of the syllabus in schools and
colleges. But in modern mathematics and physics, one really needs the full power of the
general notion of the Lebesgue integral (for example in probability theory, calculus of
variations, theory of partial differential equations, quantum theory and so forth). The
reason for the superiority of the modern Lebesgue integral is the basic limit formula

which holds under very mild assumptions for the Lebesgue integral, but does not hold
for the classical integral. It can happen that the integral on the left in (1.106) exists as
a classical integral, while the limit function limn_>00 f(x) is so terribly non-continuous
that the right-hand side of (1.106) does not exist in the classical sense, but only in the
sense of the Lebesgue integral.

In this Volume we consider only the classical notion of integral. The modern measure-
theoretic notion is explained in [212]. The following statements about one-dimensional
integrals J f(x)dx can be immediately extended to integrals of several variables (cf.
1.7).

1.6.2 Existence of the integral

Let
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First existence theorem: If a function / : [a, b] —> C is continuous, then the integral
fa f(x)dx exists in the sense of (1.101).

Sets of vanishing one-dimensional measure: A subset M of M is said to have
one-dimensional vanishing Lebesgue measure, if for every real e > 0 there is an at most
countable set of intervals Ji, J?,, •.., which cover the set M and whose total length is
less than e.

Example 1: Every set M which consists of finitely or countably many real numbers, has
zero one-dimensional Lebesgue measure.

Since the set Q of rational numbers is countable, it follows in particular that Q has zero
Lebesgue measure.

Functions which are continuous almost everywhere: A function / : [a, b] —> M
is almost everywhere continuous (or continuous almost everywhere), if there is a set M
of zero Lebesgue measure, such that / is continuous for all x € [a, b] — M.

Example 2: The function pictured in Figure 1.56 contains finitely many points of dis-
continuity and is therefore almost everywhere continuous.
Second existence theorem: If a function / : [a, b] —> M is
bounded58 and almost everywhere continuous, then the integral
la f(x)dx in the sense of (1.101) exists.

Complex-valued functions: A complex-valued function / :
[a, b] —> C can be put in the form

where <p(x) denotes the real and ^}(x) the imaginary part of the
complex number f ( x ) . The function / is continuous in a point x precisely when both (p
and if} are continuous in x.

Both of the existence theorems above continue to hold without change for complex-valued
functions / : [a, b] —> C. In this case, / is bounded and almost everywhere continuous
if both tp and tjj enjoy these properties. For the integral one gets the following formula:

Properties of the integral: Let —oo < a < c < b < oo, suppose the functions
/, g : [a, b] —> C are bounded and almost everywhere continuous, and let a, (3 6 C.

(i) Linearity:

(ii) Triangle inequality:

58The boundedness of / means that |/(x)| < constant for all x € [a, b].

Figure 1.56.
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(iii) Addition rule:

(iv) Principle of invariance: The integral /(x)dx does not change when the values

of the function / are changed on a set M of zero Lebesgue measure.

(v) Monotony: If / and q are real-valued functions, then /(x) < g(x) for all x € la, b]
implies the inequality

Mean value theorem for integrals: One has the relation

for some appropriate £ G [a, b], if the function / : [a, b] —> R is continuous and g :
[a, b] —> R is non-negative, bounded and almost everywhere continuous.

Example 3: For the special case g(x) = 1, we get

Example 4'- If / : [a,b] —» R is almost everywhere continuous and if m < /(x) < M for
all x 6 [a, 6], then one has

that is,

1.6.3 The fundamental theorem of calculus

Fundamental theorem: Let — oc < a < b < oo. For a function F : [a, b] —> C of
class59 C1, the following relation holds:

Example: Because of (eax)' = aeax for all x £ R (a a complex number), we have

59This means that both the real and the imaginary part of F belong to Cl[a, b}.
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In the following / : [a, b] —> C denotes a continuous function.

Differentiation with respect to the upper limit of integration: We set

we then have

with F = F0.

Existence of a primitive function:

(i) The function FQ : [a, b] —> C is the unique solution in the class C1 of the differential
equation (1.107) with F0(a) = 0. In particular, FO is an primitive function for / on the
interval ]a, b[.

(ii) All C^-solutions F0 : [a, 6] —> C of (1.107) are obtained as

F0(x) + C,

where C is an arbitrary complex constant.

(iii) If F : [a, b] —> R is a solution of (1.107) in the class C1, then

1.6.4 Integration by parts

Theorem: Let —oo < a < b < oo. For the C1-functions u, v : [a, b} —> C one has:

Proof: Prom the fundamental theorem of calculus together with the product rule for
differentiation we have:

Example 1: To calculate the integral

we set
u' = 2x, v = Inx,

2 / 1u — or, v = —.
x
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From (1.108) we get

Example 2: To find the value of the integral

we set
u' = sinx, v = x,
u = — cosx, v' = 1.

According to (1.108), this means

Example 3 (iterated partial integration): To calculate the integral

we set
, 1 2u = cos a;, v = —x ,

Zi

u = sinx, v' = x.

From (1.108) we get

The last integral is calculated as in Example 2 by using partial integration again.
Indefinite integrals: Under the same assumptions as for (1.108) we have:

1.6.5 Substitution

Basic idea: We wish to transform the integral f(x)dx by making the substitution
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Using the Leibniz differential calculus, the formal rule

yields the formula

which can be rigorously justified (see Figure 1.57).

Theorem: The formula (1.109) is valid under the following assumptions:

(a) The function / : [a, b] —>• C is bounded and almost everywhere continuous.

(b) The (^-function x : [ a , f t ] —>R satisfies the condition60

and x(a) = o, x(ft) = b.

The important condition (1.110) guarantees that the function x = x(t) is strictly in-
creasing on [ex, ft], and hence the unique invertibility t = t(x) for the transformation
of variables. Without assuming (1.110), the formula (1.109) leads to completely wrong
results.

Example 1: To calculate the integral

we set t = 2x. This gives

For x = a, b this implies t = 2a, 2fe, hence a — 2a
and ft = 26. From (1.109) it then follows that

Figure 1.57.

Substitution in indefinite integrals: According to the Leibniz notation the formal
rule for substitution in indefinite integrals is

One has to consider two cases:

(i) During the calculation, no inverse function is required.
60If x'(t) < 0 for all t €]a, J3[, then one must pass from x(i) to -x(t).
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(ii) One requires an inverse function during the calculation.

In the non-critical case (i), one can always use (1.111). In the second case (ii) however,
one can only use intervals on which the inverse function to x = x(t) exists.

In case one is not sure, one should always carry out the check F'(x) = f ( x ) after the
calculation J f(x}dx = F(x).

Example 2: To calculate the integral

dt
we set t = x . From — = 2z, we get

ax

This yields61

The check for this is

Example 3: To determine the integral

ax
we choose the substitution x = sin t. Then —- = cos t, and we get

In these formal considerations we have used the inverse function t = arcsinx, hence
we must be careful in deducing on which interval the derived expression for B is valid.

We begin with the substitution

(Figure 1.58). The corresponding inverse function is

t = arcsinx, — 1 < x < 1.

Figure 1.58.

For alii € 1 - one has cos t > 0, hence

61 The following notation is particular helpful for the mnemonics:

Once you are used to this you can use the even shorter version:
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Thus, we get in sum

List of important substitutions: This can be found in 0.9.4.

1.6.6 Integration on unbounded intervals

Integrals on unbounded intervals are calculated by first calculating integrals on bounded
intervals and then passing to the limit where the length of the interval goes to infinity.62

Let a 6 R. Then one has:

and

Criterion for existence: Assume that the function / : J —> C is almost everywhere
continuous and satisfies the estimate:

and fixed a > 1. Then the following hold:

(i) If J = [a, oo[ (resp. J =] — oo,a]), then the finite limit in (1.112) (resp. in (1.113))
exists.

(ii) If J =] — oo, oo[, then the finite limits in (1.112) and (1.113) exist for all a G M, and
the sum on the right-hand side of (1.114) is independent of the choice of a.

Example:

62In older literature the term 'improper integral' is used for this. This word is misleading, as also
this kind of integral is a special case of the general notion of Lebesgue integral, and obeys also the
general rules laid down by this theory. For the Lebesgue integral it is irrelevant whether the integrand
or interval is unbounded.



318 1. Analysis

1.6.7 Integration of unbounded functions

Let — o o < a < 6 < o o . The starting point is the relation between limits

Criterion for existence: Suppose the function / :]a, b] —> C is almost everywhere
continuous and satisfies the estimate:

for fixed a < 1. Then the limit in (1.115) exists and is finite.

Example: Let 0 < a < 1. Prom

it follows that

In a similar manner one treats the case

Criterion for existence: Suppose the function / : [a, b[—> C is almost everywhere
continuous and satisfies the estimate:

and fixed a < 1. Then the limit (1.116) exists and is finite.

1.6.8 The Cauchy principal value

Let e > 0 be sufficiently small. Because of the relations

Let We define the Cauchy principal value by the formula
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we obtain

For e —»• -f 0 we have Ins —» —oo, and hence because of the special choice of limits in the
integrals of (1.117), the dangerous terms in me cancel each other.

The integral does not exist in either the classical nor the Lebesgue sense.

Therefore, the Cauchy principal value is a genuine extension of the notion of (Lebesgue)
integral.

1.6.9 Application to arc length

Arc length of a plane curve: The arc length of a curve

is defined to be the value of the integral

Figure 1.59. Arc length.
Standard motivation: Following the example of Archimedes (287-212 BC), we ap-
proximate the curve by an open polygon (Figure 1.59(a)).

The theorem of Pythagoras yields for the length of one secant of this polygon

(Figure 1.59(b)). From this it follows that

The length of the secant is approximately equal to

Passing to the limit in which we let the length of the individual secants go to zero, the
integral expression (1.119) is a continuous analog of (1.121).

Refined motivation: We suppose that the curve has an arc length and let S(T] denote
the arc length between the points on the curve defined by t = a and t = r (Figure
1.60(b) with s(r] = m(r)). From (1.120) the following differential equation follows for
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which has the unique solution

according to (1.107).

Example: For the arc length of the unit circle given by the curve

x = cost, y = sint, 0 < t < 2?r,

we get

1.6.10 A standard argument from physics

The mass of a curve: Let Q = Q(S) be the density of mass of the curve (1.118) per
unit of length. According to definition, the mass m(cr) of part of this curve of the length
a is given by

If we relate this expression to the parameter t of the curve, we get for the mass of the
piece of curve from the points corresponding to the parameter values t = a and t = r
the formula

This yields

Standard motivation: We subdivide the curve into small pieces with the mass Am
and the arc length As (Figure 1.60(a)). Then we have approximately

If we let the pieces get smaller and smaller, the the formula (1.124) for At —> 0 is a
continuous analog of (1.125).

This kind of considerations have been used in physics ever since the times of Newton, as
a way to motivate formulas for physical quantities, which are defined in terms of integral
expressions.
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Refined motivation: We start with the mass function m = m(s] and assume that the
integral representation (1.123) with a
continuous function Q is valid. Differen-
tiation of (1.123) at the point a — s gives

m'(s) = e(s)

(cf. (1.107)). The function Q is thus the
derivative of the mass with respect to
the arc length and is therefore called the
length density. The formula (1.124) fol-
lows then from (1.123) with the help of
the rule for substitution of integrals. Figure 1.60.

1.7 Integration of functions of several real variables

The calculation of integrals is concerned with limits of finite sums, which occur for
example in the computation of volumes, areas, length of curves, masses, charges, center
of masses, moments of inertia or probabilities. In general one has

differentiation = linearization of functions (or maps),
integration = limits of sums of values of functions.

The most important results in the theory of integration are sketched in the following
keywords:

(i) principle of Cavalieri (the theorem of Pubini),

(ii) rule of substitution,

(iii) fundamental theorem of calculus (theorem of Gauss-Stokes),

(iv) integration by parts (a special case of (iii)).

The principle (i) allows the computation of iterated integrals (integrals of functions of
several variables) to be reduced to that of one-dimensional integrals.

In older literature one uses in addition to integrals for volumes a series of further notions
of integrals: curve integrals of the first and second kind, surface integrals of the first and
second kind, etc. In passing to higher dimensions n = 4,5,..., which is necessary for
example in the theory of general relativity or statistical mechanics, the situation gets
even more confusing. Notations and notions of this kind have been poorly chosen and
completely conceal the following, very simple principle:

Integration over an area of integration M of arbitrary
dimension (domains, curves, surfaces, etc.) corresponds
to the integration fM cj of differential forms u>.

If one takes this point of view, then there are only a few rules which one needs to
remember, in order to get all the important rules in a form very convenient for mnemonics
in the context of Cartan differential calculus.

1.7.1 Basic ideas

The following heuristical considerations will be rigorously justified later in 1.7.2.
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The mass of a rectangle: Let and We consider
the rectangle R := i(x.y) : a which is assumed to be covered by a
mass density g (Figure 1.61(a)). To calculate the mass from R, we set

and Xj := a + jAz, yk := c +
kAy with j, k = 0 , . . . , n. We
subdivide the rectangle R in
small sub-rectangles with the
upper right corner (xj, yk) and
length of sides Ax, Ay. The
mass of such a sub-rectangle is
approximately equal to

Figure 1.61. Calculation of volumes.
Therefore, it makes sense to

defined R by the limit relation

Iterated integration (theorem of Fubini): One can reduce the calculation of an
integral over R to that of one-dimensional integrals by means of the formula

which is of great practical value.63

Example 1: This is the area of

the rectangle R.

Examvle 2: From the relation

it follows that

63The formula (1.127) follows by taking the limit n > oo in the following commutation relation for
finite sums:

where Q is written instead of (more correctly) g ( x j , y k ) .
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The mass of a bounded domain: To calculate the mass of a domain D with the
mass density 0, we choose a rectangle R, which contains D and set

with

These considerations can be generalized in a completely analogous manner to higher
dimensions. Instead of rectangles one has in that case n-cubes, where n is the dimension
of the domain (cf. Figure 1.61(b)).

The principle of Cavalieri: We consider the situation illustrated in Figure 1.62. We
have

Note that Q*(x,y) coincides with g(x,y) on the interval
[a(y), f3(y)] for fixed y, and it vanishes outside of this in-
terval. From (1.127) and (1.128) it consequently follows
that

Figure 1.62. A y-section.

This formula can also be written in the abbreviated form

with the so-called y-section of D:

The formula (1.129) does not depend on the special form of the domain65 D, shown in
Figure 1.62 (see also Figure 1.63(a)).

64If Q also takes negative values, then one may view Q as a surface charge density, and fD Q(X, y)dxdy
is interpreted as the total charge in the domain D.

For g = 1 the integral fD dxdy is just the area of the domain D.
65If we introduce the x-section of D as Dx := {y 6 M | (x, y) € D}, then similarly to (1.129) one has

the formula

(cf. Figure 1.63(b)).
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Figure 1.63. y and x-sections of a domain D.

The equation (1.129) can also
be generalized to higher di-
mensions and corresponds to
the general principle of the
theory of integration, which
was originally discovered in
its easiest form before New-
ton and Leibniz by the stu-
dent of Galileo, Bonaventura
Cavalieri (1598-1647) in his
main work Geometria indi-
visibilius continuorum, which
appeared in 1653.

Example 3 (volume of a cone over a circle): Let D be a cone over a circle of radius R
and height h. For the volume of D one has the formula

To derive this formula, we use the principle of Cav-
alieri:

Figure 1.64- The z-section Dz is a disc of radius Rz (Figure
1.64(a)). Hence one has

surface area A of a disc of radius Rz, which is A

(cf. Example 4). From Figure 1.64(b) we see that

Hence we get

The substitution rule and Cartan differential calculus:
We consider a map

which maps the domain D' in the (u, v) plane to the domain D in the (x, y) plane (Figure
1.65).
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The proper transformation law

for the integral / g(x, y)dxdy is
JD

derived in the following formal
manner from Cartan's differen-
tial calculus. For this we write

Figure 1.65. The substitution rule.

with

Using the transformation (1.130), we get

(cf. Example 10 in 1.5.10.4). In this manner we have derived the following fundamental
formula for substitutions:

which can be rigorously justified. Here one must assume that66

Application to polar coordinates: The transformation

maps the usual Cartesian coordinates (x, y) to polar coordinates (r, <p) (Figure 1.66(a)).
Then we have

This follows from (1.131) with 67

66It is allowed that Q/^'^J vanishes at finitely many points.
67An intuitive motivation for (1.132) is given by dividing the domain into small pieces

and carrying out the limit in the sum (cf. Figure 1.66(b)):
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Example 4 (area inscribed in a circle): Let D be the domain bounded by a circle of
radius R. For the surface area A of D we get (Figure 1.67):

The fundamental theorem of calculus and Cartan's differential calculus: In
the one-dimensional case the fundamental theorem of Newton and Leibniz is:

We write this formula in the form

with u = F and D =]a, b[. Note that
du = dF = F'(x)dx.

The beautiful elegance of the differ-
ential calculus of Cartan can be seen
in the fact that (1.133) holds for do-
mains, curves and surfaces of arbi-
trary dimensions (cf. 1.7.6).

Since (1.133) contains the classical
theorems of Gauss and Stokes from
field theory (vector analysis) as spe-
cial cases, (1.133) is referred to as
the theorem of Gauss-Stokes (or more
briefly just the general theorem of
Stokes).

Example 5 (Theorem of Gauss in the
plane): Let D be a plane domain with
boundary dD, which has a parame-
terization given byFigure 1.67. The area inscribed by a circle.

and which as in Figure 1.68 is positively oriented .in the mathematical sense. We choose
the one-form

u> = adx + bdy.

Then we have

(cf. Example 5 in 1.5.10.4). The formula (1.133) is then
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The differential calculus of Cartan shows
us at the same time how these integrals
are to be calculated. In the integral to
the left in (1.134) one simply replaces
dx A dy by dxdy (this rule being valid for
domains of arbitrary dimension). In the
integral to the right in (1.134) we relate
u to the parameterization of dD. This
gives

Figure 1.68. An n-frame at a point on the
boundary dD.

and

Thus (1.134) is written in classical notion,68

This is the theorem of Gauss in the plane.

Application to integration by parts: The following relations hold:

Here n = nx\ + nyj is the outer normal vector at a boundary point and s denotes the
arc length of the (supposed sufficiently smooth) boundary curve. The formulas (1.136)
generalize the one-dimensional formula

We now wish to show that (1.136) follows from (1.135). For this, we view the parameter
t along the boundary curve dD as the time. If a point moves along dD, then its equation
of motion is

r(t) = x(t)i + y(t)j

^Including also the arguments in the notation, this is more precisely the following formula:
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with the velocity vector
r'(t) = x'(t)\ + y'(tn.

The vector N = y'(t)i-x'(t)j is, because of the relation r'(i)N = x'(i)y'(t)-y'(i)x'(i) =
0, perpendicular to the tangent vector r'(t) and points to the outside of D. For the
corresponding unit vector n, we get the expression

(cf. Figure 1.68(a)). Moreover one has Hence

If we set b := uv and a = 0 in (1.135), then we get

Because of the product rule (uv)x = uxv + uvx this is the first formula in (1.136). The
second formula is obtained in exactly the same manner, this time by setting a := uv.

Integration over unbounded domains: As in the one-dimensional case the integral
over an unbounded domain is derived by approximating the domain D by bounded
domains, and then passing to the limit in which the approximating domains grow in size
beyond all bounds:

The notations are chosen such that and

Example 6: We set r and take the domain defined by

the exterior of the unit circle. We approximate D by annuli (Figure 1.69(a))

Dn = {(x,y) Kr <n}.

For a > 2 we have

Using polar coordinates, the above follows from the relation
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Integration of unbounded func-
tions: Again, as in the one-dimen-
sional case, one approximates the do-
main D by domains on which the
function is bounded.

Example 7: Let D := { ( x , y ) G
R2 | r < R} be the interior of a cir-
cle of radius R. We approximate this
ring by annuli (Figure 1.69(b)) Figure 1.69. Integrating unbounded functions (b)

and over unbounded domains (a).

where t/e(0) := { ( x , y) € R2 | r < e} is the interior of a circle of radius e. For 0 < a < 2
one has

Again using polar coordinates, this follows from the relation

1.7.2 Existence of the integral

Let AT be a natural number > 1. The points of R^ will be denoted x — (x\,... ,XN).

Furthermore, let

The reduction principle: We reduce the integration over subsets D of RN to the
integration over all of R^ by the formula

Here we have set
on D
outside of D.

The function /* is in general non- continuous at the boundary points of D (jump tc
a zero value). Therefore we are naturally led to the integration of (sufficiently nice'
non-continuous functions.

Sets of vanishing Af-dimensional measure: A subset D of E^ has by definitior
vanishing Af-dimensional Lebesgue measure, when for every real number e > 0 there is
a set of at most countably many parallelepipeds RI, R^,... which cover D and whose
total measure is less than e.69

69 An JV-dimensional parallelepiped is a set of the form

The classical volume (measure) of R is by definition given by the formula meas(/J) := (bi — ai)(62 —
02) • • • (bjv — ojv)-
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Example 1: A set of finitely many or countably many points of RN has vanishing TV-
dimensional Lebesgue measure.

Example 2: (i) Any reasonable (bounded or unbounded) curve in M2 has vanishing
2-dimensional Lebesgue measure.

(ii) Any reasonable (bounded or unbounded) surface in R3 has vanishing 3-dimensional
Lebesgue measure.

(iii) Any reasonable (bounded or unbounded) subset of RN with dimension < N has
vanishing TV-dimensional Lebesgue measure.

Almost everywhere valid properties: A property holds almost everywhere on a
subset D of RN, if it is valid for all points of D with possible exception of a set with
vanishing TV-dimensional Lebesgue measure.

Example 3: Almost all real numbers are irrational, since the exceptions to this, the set
of rational numbers, is countable, hence has vanishing Lebesgue measure.

Admissible domains of integration: A subset D of RN is said to be admissible, if
the boundary has vanishing TV-dimensional Lebesgue measure.

Admissible functions: A real or complex valued function / : D C RN —> C is said
to be admissible, if / is almost everywhere continuous on an admissible set D and one
of the following conditions is satisfied:

(i) Let a > TV. For all points x € D we have the following estimate:

(ii) Let 0 < (3 < N. There are at most finitely many points p\.....pj and bounded
neighborhoods U(p\),..., U(pj] in R , such that for all x with we
have the following estimate:

Moreover the estimate (1.137) is satisfied for all points x € D, which are outside of all
the neighborhoods U(PJ).

Remarks: (a) If a function / is bounded on a bounded set D, that is sup |/(x)| < oo,
xeD

then the condition (i) is automatically fulfilled.

(b) If the set D is unbounded, then (i) means that \f(x)\ —» 0 for |aj| —> oo sufficient
fast.

(c) In case (ii) the function / may possibly have singularities in the points pi, • . . ,pj,
where |/(x)| may approach infinity for x —> PJ, but not too fast.70

Theorem of existence: For every admissible function f : D C R^ —> C the integral

dx exists.

Construction of the integral: First let TV = 2.

70The function / need not be defined in the points PJ. For those points we set f*(pj) := 0, j =
1,. . . , J.
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(a) For a rectangle R the limit71

exists.

(b) We choose a sequence RI of rectangles with R2 Then the
limit

exists and is independent of the choice of rectangles.

(c) We set

In the general case N > 1 one proceeds in the same manner, just replacing the rectangles
Ri by parallelepipeds.

For the empty set D we define f(x)dx = 0.

Connection with the Lebesgue integral: For admissible functions the value of the
integral we have constructed coincides with the value of the general Lebesgue integral
defined by the Lebesgue measure on R^.

Standard examples:
(i) The integral

exists. By Example 3 in 1.7.4, the value of this integral is

(ii) Let D be an admissible bounded domain in R3. If the function Q : D —> R is almost
everywhere continuous and bounded, then the integral

exists for all points p £ R3, and we set

If we interpret g(x) as a mass density at the point x, then the function U is the gravity
potential, and the vector

F(p) = Fi(p)i + F2(p)j + F3(p)k

describes the gravitational pull (force) acting at the point p, which is generated by the
mass distribution induced by Q. Moreover,

P(p) = -grad U(p) for all p € R3.

The gravitational constant is denoted by G.
71 We are using the notations introduced in (1.126).
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Measure of a set: If D is a bounded subset of R^, whose boundary 3D has vanishing
TV-dimensional Lebesgue measure, then the integral

exists and is by definition the measure of the set D.

1.7.3 Calculations with integrals

Let D and Dn denote admissible sets in RN, and assume the functions f,g:DC. RN —»
C are admissible; let a, /? € C. Then one has the following properties for manipulations
with the integral.

(i) Linearity:

(ii) Triangle inequality:72

(iii) Invariance principle: The integral fD f ( x ) d x does not change when / is changed
on a set of vanishing TV-dimensional Lebesgue measure.

(iv) Additivity with respect to domains of integration: One has

if D is the disjoint union of two domains D\ and D%.

(v) Monotony: If / and g are real functions, then the inequality /(#) < g(x) for all
x 6 D implies an inequality

Mean value theorem in integration: One has

72If D and / are bounded, then one has in addition
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for appropriate £ e D, provided the function / : D —> R is continuous on a compact,
arc connected set D, and the non-negative function g : D —> M is admissible.
Convergence with respect to the domain of integration: One has

provided D = with and the function / : D C is admissible.

Convergence with respect to the integrand: One has

provided the following assumptions are satisfied:

(i) All functions fn : D —> C are almost everywhere continuous.

(ii) There is an admissible function h : D —> 1R with

for almost all x € D and all n.

(Hi) The limit /(z) := exists for almost all x E D and the limit function / is

in D almost everywhere continuous.73

1.7.4 The principle of Cavalieri (iterated integration)

Let RN = RK x RM, that is, RN = {(y, z) \ y € R*, z € RM}.
Theorem of Fubini: If the function / : RN —> C is admissible, then one has the
relation:

Example 1: For N = 2 and K = M = I we get

In case N = 3, this implies that for variables x, y, z & R. we have the formula

In a similar manner, the calculation of an integral over M is reduced to the successive
calculation of one-dimensional integrals.

73In the points where the limit does not exist, the value of / can be prescribed arbitrarily.
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In case / can be written as a product f ( y , z) — a(y)b(z), one has

A similar formula is also valid in R .

Example 2 (Gaussian distribution): One has

Proof: We use an elegant, classical trick. Iterated integration yields

On the other hand, using polar coordinates, we get

Example 3: One has

Proof: For N = 3 we have and hence

A completely analogous conclusion holds for arbitrary N.

Principle of Cavalieri: If the function / : D C RN —> C is admissible, then

In this formula, the z-section Dz of D is as denned above,

Dz:={y€RK :(y,z)€D}.

This principle follows from (1.140), by replacing the function / in (1.140) by its trivia!
extension

Applications of this principle can be found in 1.7.1.

on D,

otherwise.
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1.7.5 Substitution

Theorem: Let D' and D be open subsets of RN. Then one has

provided the function / : D —> C is admissible and the map denned by x = x(u) is a
C1-diffeomorphism of D' onto D.

If we set x = (xt ... ,XN) and u = (MI, ... ,«jv), then the determinant deta/(n) is the
Jacobian functional determinant, i.e.,

(cf. 1.5.2).

Application to polar coordinates, cylinder coordinates, spherical coordinates:
See section 1.7.9.

Application to differential forms: For dzj\r we define

Here the symbol

Transformation principle: Let x = x(u) be a function as in (1.142). Then the

integral is unchanged when u is transformed to the new coordinates u, provided

this transformation preserves the orientation, i.e., one has detx'(u) > 0 on D'.

Proof: One has the formula

(cf. Example 11 in 1.5.10.4). Thus, the rule for substitutions (1.142) yields

1.7.6 The fundamental theorem of calculus (theorem of Gauss-
Stokes)

One can ask what the deepest mathematical theorem
is which unquestionably has a clearly defined physical
interpretation. For m,e the natural candidate for such
a theorem is the Theorem of Stokes.

Rene Thorn (born 1923)
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The basic formula of the general theorem of Stokes74 is:

This exceptionally elegant formula is a generalization of the fundamental theorem of
calculus of Newton and Leibniz, which is

to higher dimensions.

Theorem of Stokes: Let M be a n-dimensional real oriented compact manifold (n > I)
with the coherently oriented boundary dM, and let u be a (n — l)-form on dM which
is in the class Cl. Then the formula (1.143) holds.

Comments: The mathematical objects occurring in this theorem will be introduced
in detail in [212]. For the time being, we recommend that the reader consider the
fundamental formula (1.143) in an intuitive manner without worrying about the precise
formulation.

(i) It is useful to think of M as a bounded curve, a bounded m-dimensional surface
(ra = 2,3 , . . . ) or the closure of a bounded open set in R^.

(ii) Parameter: If writing the integrals in local coordinates, then these latter should be
arbitrary, for both M and dM.

(ii) Decomposition principle: If it is not possible to describe M (resp. dM) be a single
set of local coordinates (parameters), then one decomposes M (resp. dM) into a disjoint
union of finitely many parts, each of which does have such a global parameter. Then
the sum of the integrals of the parts is the sought for integral over M.
Then one has the convenient fact:

Cartan's differential calculus works by itself.

One only has to take care that the local coordinates on M near a boundary point P
is synchronized with the local coordinate one has on the boundary dM near P (this is
the notion of coherently oriented boundary). This will be intuitively explained in the
following examples-75

1.7.6.1 Applications of the classical integral theorem of Gauss

We consider the 2-form

According to Example 8 in 1.5.10.4 we have

74One usually refers to the Theorem of Gauss-Stokes just as Stokes' Theorem.
75 The general synchronization principle in arbitrary dimensions can be found in [212].
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In order for (jj to be well-defined, dM must be two-dimensional. Hence we assume

that M is the closure of a bounded open (non-empty) set in K3 with a sufficiently smooth
boundary dM, which has a parameterization

x = x(u, v), y = y(u, v), z = z(u, v}

If we relate uj to the parameters u and v, then we get

(cf. Example 12 in 1.5.10.4). The formula u then yields the classical

theorem of Gauss for three-dimensional domains M:

Transition to vector notation: We introduce the coordinate vector r := x'\ + yj + zk.
Then the expression

ru(u,v) = xu(u,v)i + yu(u, t>)j + zu(u, u)k

is a tangent vector to the coordinate line y = const through the point P(u, v} on dM
(Figure 1.70(b)). Similarly, rv(u, v) is a tangent vector to the coordinate line u = const
through the point P(u,v). The equation of the tangent plane at the point P(u,v) is
then

r = T(U,V) + pru(u,v} -\-qrv(u,v],

where p, q are real parameters
and r(u, v) is the coordinate
vector of the point P(u,v). In
order for the tangent vectors
ru(u,v) and rv(u,v) to span
a plane, we must assume that
TU(U,V) x rv(u,v) 7^ 0, i.e.,
that these two vectors are not
parallel or anti-parallel. The
unit vector

TU(U,V) X TV(U,V)

\ru(u,v) x rv(u,v)\

'(1.145)
is perpendicular to the tangent
plane at the point P(u, v) and
is therefore a normal vector.
Coherent orientation of M and
dM means here that this vec-
tor points to the outside (Fig-
ure 1.70(a)).

Figure 1.70. Coordinates for the integral theorem of
Gauss.

Figure 1.71. Volume on a surface.

n
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If we introduce the vector field J := ai + b] + ck, then the theorem of Gauss for three-
dimensional domains can be written in the classical form:

Here we have set

Intuitively the surface element AF of dM is approximately given by

(Figure 1.71(a)).76

The physical interpretation of (1.146) can be found in 1.9.7. The integral fdMgdF is
intuitively given by decomposing the surface dM into small parts AF and refining the
decomposition. To describe this we also use the abbreviated formula

Surfaces in three-dimensional space: The formulas above for the tangent plane, the
normal unit vector and the surface element are valid for arbitrary (sufficiently smooth)
surfaces in R3.

1.7.6.2 Applications to the classical integral theorem of Stokes

We consider the 1-form
u = adx + bdy + cdz.

According to Example 7 in 1.5.10.4 one has

In order for fQM u> to make sense, the boundary dM must
be one-dimensional, that is, it must be a curve, which
bounds the surface M (Figure 1.72). The surface M has
a parameterization

x = x(u, v), y = y(u, v), z — z(u, v),

and the parameterization of the boundary curve is:

x = x(t), y = y ( t ] , z = z(t), a<t</3.

Figure 1.72.

As in Figure 1.72, a coherent orientation of M and of dM is given by the rule that the
normal vector (1.145) together with the oriented curve dM are oriented as the thumb
and the first two fingers of the right hand (right-hand rule).

76In the special case of a plane, x = u, y = v and z = 0, one has (cf. Figure 1.71(b)).
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If we relate u> (resp. du>) to the corresponding parameters t (resp. (it, i>)), then we get

(cf. Example 12 in 1.5.10.4). The formula then gives the theorem of
Stokes for surfaces in K3 in its classical form:

If we write B = oi + 6j + ck, then we get

We will give a physical interpretation of this formula in 1.9.8.

1.7.6.3 Applications to curve integrals

The formula for the potential: We consider a 0-form uj = U in R3 with the function
U = U(x,y, z ) . Then we have

dU = Uxdx + Uydy + Uzdz.

We choose a curve M with the parameterization

x = x(t), y = y(t), z = z(t), a<t<p. (1.150)

Transforming U to the parameter t yields

The theorem of Stokes gives us here the so-called potential formula:

Here Q is the starting point, P is the end point of the curve M. Explicitly the potential
formula is



340 1. Analysis

Using the language of vector analysis, we have dU = grad t/dr, and we get

and

with r(t) = x(t)i + y(t)j + z(t)k. The physical interpretation of this formula can be
found in 1.9.5.

Integrals over 1-forms (curve integrals): Let the 1-form

(jj ~ adx + bdy + cdz

be given and the curve M with the parameterization (1.150). The integral

is called a curve integral.77

Independence of the chosen path: Let D be a contractible78 domain in R3, and let
M be a curve in D with the C^-parameterization (1.150). Furthermore let

u! = adx + bdy + cdz

be a 1-form of class C2, i.e., a, b and c are real C -functions on D. Then we have

(i) We assume that there exists a C^-function U : D —> R with

i.e., the following hold:

a = Ux, b = Uy, c = Uz on D.

Figure 1.73.

Then the integral fMu> is independent of the path, i.e., because
of the potential formula fM dM = U(P) — U(Q) the integral only
depends on the starting and end points of the curve M (Figure
1.73).

(ii) The equation (1.152) has a unique C^-solution U, if the inte-
grability condition

77More precisely this formula is

with P(t) := (x(t),y(t), z(t)).
78Intuitively this means that the domain D can be continuously contracted to a point. The precise

definition is given in 1.9.11.
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is satisfied. According to 1.7.6.2 this is equivalent to the condition

Cy — bz, az = cx, bx = cy on D.

(in) The equation (1.152) has a Crl-solution [7, if and only if the integral JM uj is inde-
pendent of the path of integration M for every C1-curve in D.

The statement (ii) is a special case of the Poincare lemma (cf. 1.9.11). Moreover (iii)
is a special case of the de Rham theorem. A deeper understanding of these results is
possible in the context of differential topology (de Rham cohomology), cf. [212].
The physical interpretation of this result can be found in 1.9.5.

Example: We want to integrate the 1-form

u; = xdx + ydy + zdz

along the line M : x = t, y = t, z = t with 0 < t < I. Then we have u> =
tx'dt + ty'dt + tz' dt = 3t dt, hence

Because of the relation do; = dx A dx + dy A dy 4- dz A dz = 0, this integral in R3 is
independent of the path of integration. In fact, u; = dU with U = \(x2 + y2 + z2). This
yields

Properties of curve integrals:
(i) Addition of curves:

Here A + B denotes the curve which arises when one first runs through A and then
through B (Figure 1.74(a)).

(ii) Reversing the orientation on curves:

Here -M denotes the curve, which is obtained from Figure 1.74- Reversal of orienta-
ls! by reversing the orientation (Figure 1.74(b)). tion.

All of the properties of contour integrals JV, u; described in this section hold in a similar
manner for curves Xj = Xj(t), a. < t < j3 in RN, with j = 1,..., N.

1.7.7 The Riemannian surface measure

According to Riemann (1826-1866) the knowledge of the arc length leads immediately
to an expression for the surface area of a surface and the volume of a domain in curved
coordinates.
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Let & be a domain in Rm. An ra-dimensional surface is given in RN by the parameter-
ization

where u = (u\,..., um) and x = (x i , . . . , XN) (cf. Figure 1.75 with itx = w, u^ — v and
xi = x, x2 = y, .1-3 = 2).

Definition: For a curve x = x(t), a < t < fl in M^, the arc length between the curve
points with parameter values t = a and t = r is given by the formula

A motivation for this definition is
given in 1.6.9.

Theorem: Every curve u — u(t) in
the parameter domain @ corresponds
to a curve

x = x(u(t))

on a surface element ^, whose arcFigure 1.75. Arc length in a domain.
length satisfies the differential equation:

One calls the terms

the components of the metric tensor. Instead of (1.153) one writes symbolically

This corresponds to the approximation (As)2 = gjk&UjAuk.

Proof: We set Xj(t) = Xj(u(t)), we then have the relation

and the chain rule yields

Volume form: We set g := det (gjk) and define the volume form /j, of the surface &
by:
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Surface integral: We define

In classical notation this corresponds to the formula

Physical interpretation: If we view Q as a mass density (resp. charge density), then
Jjj. gdF is equal to the amount of mass (resp. charge) on &. For g = 1, J .̂ gdF is equal
to the surface measure of &.

Application to surfaces in R3: Let a surface & in M3 be given with parameterization

x = x(u, v), y = y(u,v), z = z(u,v), (u,v) E @

in Cartesian coordinates x, y and z (Figure 1.75). Then one has

ds2 = Edu2 + 2Fdudv + Gdv2.

with

hence g = EG — F2. The volume form is given by // = VEG — F2 du A dv. The surface
integral has the form

Generalization to Riemannian manifolds: See [212].

1.7.8 Integration by parts

Surface integrals play a central role in generalizing the classical formula of partial inte-
gration

to higher dimensions. In place of the usual derivative one has partial derivatives, and
the boundary term uv\b

a is replace by a boundary integral. This gives:
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Theorem: Let D be a bounded, open, non-empty set in R^ with a piecewise smooth
boundary79 dD and the outer normal vector n = (ni,..., n?j). Then for all C^-functions
u, v : D —> C, the formula (1.154) for integration by parts holds.
Comment: The formula

follows from the general theorem of Stokes fD do; = fQD u, in case u is an (N — l)-form.
This follows in the same way that the integral theorem of Gauss in 1.7.6.1 followed from
that theorem. The formula (1.154) follows immediately from (1.155), by setting w = uv
and applying the product rule dj(uv) = vdjU + udjV.

Application to the formula of Green: Let Au := uxx + uyy + uzz, i.e., A is the
Laplace operator in R3. Then the following Green's formula holds:

du
Here —— = n\ux + n^u^ + n^uz denotes the normal outer derivative with normal outer

on y

vector n = n\\ + n-^ + nak (Figure 1.70(a)).
Proof: We write dV for dxdydz. Integration by parts yields

Similar formulas hold for y and z, hence summing the contributions leads to (1.154). u
The formula for integration by parts pays a fundamental role in the modern theory of
partial differential equations, because it makes it possible to introduce the notion of
generalized derivative. This is connected with the theory of distributions and Sobolev
spaces. Distributions are objects which extend the classical notion of function and which
have the exceptional property of being infinitely often differentiable, (see [212]).

1.7.9 Curvilinear coordinates

We denote by i, j and k the unit vectors in the directions of the coordinate axi of a
Cartesian coordinate system ( x , y , z ) . Furthermore we set r = x\ + yj + zk (Figure
1.70(a)).

1.7.9.1 Polar coordinates

Coordinate transformation (Figure 1.76):

79This boundary is allowed to have reasonable corners and edges. The precise assumption here is that
dD e C°'1 (cf. [212]).
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Figure 1.76. Polar co- Figure 1.77. Cylinder
ordinates. coordinates.

Natural basis vectors er, ev at the point P:

1.7.9.2 Cylinder coordinates

Coordinate transformation:

Natural basis vectors er, e^,, e2 at a point P:

Coordinate lines:

(i) r = variable, (p = const, z = const : ray perpendicular to the z-axis.

(ii) (p = variable, r = const, z = const : great circle on the surface of
the cylinder given by r = const.

(iii) z = variable, r = const, <p = const : line parallel to the z-axis.

Through each point P, which is not the origin, there pass exactly three coordinate lines
with the tangent vectors er, e^, ez, which are moreover perpendicular to one another
(Figure 1.77).

Decomposition of a vector v at a point P:

v = viBr + v2elp + v3ez.

We call v i, t>2 and vs the natural components of the vector v at the point P in cylinder
coordinates.
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Arc element: 

Volume form: 

Volume integral:

This formula corresponds to the substitution rule.

Cylinders of fixed radius: For the cylinder given by r = const one has for the arc
length the formula

with the volume form fj, = rdip A dz and the area integral

Example: The surface area of the cylinder of radius r and height h is determined by
calculating the value of the integral:

1.7.9.3 Spherical coordinates

Coordinate transformation:

with

Natural basis vectors e<o, e#, er at a point P:

The surface r = const is the surface Sr of a sphere centered at the origin of radius r.

Coordinate lines:

(i) (p = variable, r = const, 9 = const : great circle on Sr

of geographical latitude 0.
(ii) 9 = variable, r = const, (p — const : half a great circle on Sr

of geographical longitude (p.
(iii) r = variable, (p = const, 9 = const : ray from the origin outwards.



1.7. Integration of functions of several real variables 347

Through each point P, distinct from the
origin, there are exactly three coordinate
lines which pass through the point; these
have tangent vectors e^,, eg, er which
are perpendicular to one another (Figure
1.78).

Decomposition of a vector v at the
point P:

v = v^ + viee + vser.

We call v\, v<2 and ^3 the natural compo-
nents of the vector v at the point P in
spherical coordinates.

Figure 1.78. Spherical coordinates.

Arc element:

Volume form:

Volume integral:

This formula corresponds again to the rule of substitution.

Spherical surface: On Sr the formula for the arc length is given by

with the volume form /j, = r2 cos Odtp A dO and the surface integral

Example: The surface area F of a sphere of radius r is determined as the value of the
integral

Table 1.2. Curvilinear coordinates.
Polar Cylinder Spherical
coordinates coordinates coordinates

Length element ds2 dr2 + r2d<^2 dr2 + r2d<£2 + dz2 dr2 + r2d#2 + r2 cos2 (9d<^2

Special volume rdpdzdr r2 cos fld^dfldr
element v

rdrdip rdtpdz r2 cos OdipdO
Surface element (plane surface) (cylinder surface (sphere with the radius r)

with the radius r)
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1.7.10 Applications to the center of mass and center of inertia

The formulas for mass, center of mass and center of inertia are found in Table 1.3.

Example (ball): We consider a solid ball of radius R centered at the origin in a Cartesian
coordinate system (x, y,z) (Figure 1.79(a)).

Volume:

We have used here spherical coordinates (cf. Table 1.2).

Center of mass: This is located at the center of the ball, i.e., at the origin.

Table 1.3. Integral quantities in curvilinear coordinates.

Mass M Vector of cen- Center of inertia
(Q density) ter of mass (r with respect to

= xi + yj -f- zk) the z-axis

Curve

Surface

the curve length

the surface area of

Solid &
(dV =
dxdydz)

the volume of

'for

Figure 1.79. Solid ball, cylinder and circular cone.

Center of inertia (with respect to the z-axis):
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Example 2 (spherical cylinder): We consider a spherical cylinder of radius R and height
h (Figure 1.79(b)).

Volume:

Here we are using the cylinder coordinates (cf. Table 1.2).

Center of mass: zcm = -, xcm = ycm = 0.
Zt

Center of inertia with respect to the z-axis:

Example 3 (circular cone): We consider a cone over a circle of radius R and of height h
(Figure 1.79(c)).

Volume:

Here we apply the principle of Cavalieri. According to Example 3 in 1.7.1 one has
Rz = (h- z)R/h.

Center of mass:

Center of inertia with respect to the z-axis:

First Guldinian rule: The volume of a body of ro-
tation can be found by multiplying the area F of a
meridian section lying on the side of the axis of ro-
tation S with the length of the trajectory which the
center of mass of S follows during one revolution (cf.
Figure 1.80).

Second Guldinian rule: The area of the surface
of a body of rotation can be found by multiplying the
length of the boundary dS of the meridian section with
the length of the trajectory transcribed by the center
of mass of the boundary dS upon one revolution.

Figure 1.80.
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Example 4 (torus): The meridian section S of a torus is a circle of radius r with surface
area F = irr2 and the circumference U — 2?rr (Figure 1.80). The center of mass of S and
of dS is the center of the circle, which has a distance of R from the z-axis. According
to the Guldinian rule, one has:

volume of the torus = 2irRF — 2vr2
JRr2,

surface area of the torus = 2irRU = 4ir2Rr.

1.7.11 Integrals depending on parameters

We consider the function

where D is an admissible subset of RN and P is an open set of MM. We call p a
parameter. Furthermore, let dj := d/dpj.

Continuity: The function F : P —> C is continuous, if:

(i) The function f ( . , p ) ' D —> C is admissible and continuous for every parameter
peP.

(ii) There is an admissible function h : D —> R with

\ f ( x , p ) \ < h(x) for all x € D, p <E P.

Differentiability: The function F : P —> C is of type C1 with

for all p e P, if in addition to (i) and (ii), the following conditions are satisfied:

(a) The function f ( . , p ) : D —> C is of type C1 for every parameter p e P.

(b) There is an admissible function hj : D —> R. with

In these definitions, /(.,p) denotes the function which for fixed p assigns to each point
x the value f(x,p).

Integration: Let P be an admissible subset of RM. Then the integral

exists, if / : P x D —> K is admissible.

Example: Let —oo < a < b < oo and —oo < c < d < oo. We set Q := {(x, y] 6 R2 : a <
x < b, c < y < d} and choose p := y as a parameter.
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(i) If / : Q —> C is continuous, then the function

is continuous for every parameter p 6 [c, d]. Moreover,

(ii) If / : Q —> C is of type C1, then the same is true for F on [c, d], and we get the
derivative F'(p) by differentiating under the integral sign:

Application to integral transformations: See section 1.11.

1.8 Vector algebra

Scalars, vectors and affine vectors: Quantities whose values are given by real num-
bers are called scalars (for example, mass, charge, temperature, work, energy, power).
On the other hand, quantities which have in addition to a scalar component a direc-
tion are called vectors (for example, speed, acceleration, force, electric or magnetic field
force). In physics, the base (starting point) of the vector is often of importance, which
leads to the notion of (based) vectors. If the starting point is irrelevant, then one is
dealing with affine vectors.

Definition of vector: Let a point O be given; a vector F starting at the point O is an
arrow whose origin is at the point O (see Figure 1.81).

The length of the arrow is denoted by |F|. If P is the endpoint of the arrow, we also

write F= OP. The vector 0 := OO is called the zero vector at the point O. Vectors
whose length is unity are called unit vectors.

Physical interpretation: One may view F as a force, which acts on the point O.

Figure 1.81. Figure 1.82. Figure 1.83.

1.8.1 Linear combinations of vectors

Definition of scalar multiplication of a vector (Figure 1.81): Let F be a vector
based at the point O, and let a be a real number.

for all
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(i) —F is a vector with base point O, with the same length as F, but with the opposite
direction as F.

(ii) For a > 0, the vector aF is a vector again based at O, but in the same direction as
F and of length equal to a|F|.

(iii) For a < 0, we set aF := |a|(—F), and for a = 0, aF := 0.

Definition of vector addition: Let FI and F2 be two vectors, both based at the point
O; the sum

is by definition a vector based at the point O, which is defined as the diagonal in the
parallelogram formed by FI and F2 as in Figure 1.82.

Physical interpretation: If FI and F2 are two forces acting on the point O, then
FI + F2 is the resulting force acting there (parallelogram of forces).

The difference b — a for two vectors a and b is defined by the formula b + (—a). One
has a + (b - a) = b (Figure 1.83).

Basic laws: Let a, b and c be vectors, based at a point O, and let a, (3 be real numbers.
Then one has:

We call aa + (3b a linear combination of the vectors a and b. Moreover one has

We use the notation V(O) to denote the set of all vectors based at the point O. Using
the modern language of mathematics, (1.156) says that V(O} is a real vector space (cf.
2.3.2). Equation (1.157) then implies that V(O) is in fact a normed vector space (cf.
[212]). The distance function

in addition gives V(O) the structure of a metric space. Here |b — a| is the distance
between the endpoints of the vectors b and a (Figure 1.83).
Linear independence: The vectors FI, . . . , Fr in V(O) are said to be linearly inde-
pendent, if the equation

with real numbers QI, . . . , ar implies that ot\ = • • • = ar = 0.
Example: (i) Two vectors in V(O), both different from 0, are linearly independent if
and only if they do not lie on a line, i.e., if they are not collinear.
(ii) Three vectors in V(0), all different from the zero vector, are linearly independent,
if and only if they do not lie in a plane, i.e., they are not coplanar.
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1.8.2 Coordinate systems

The maximal number of linear indepen-
dent vectors in V(O) is equal to three.
Because of this, one says that the lin-
ear space V(O) has dimension equal to
three.

Basis: Ifei, 63, 63 are three linear inde-
pendent vectors in V(O), one can write
an arbitrary vector r in V(O) in a unique
way as

Figure 1.84- A coordinate basis.

The real numbers #1, X2, x$ are called
the components of r with respect to the
basis ei, 62, 63. At the same time,
#1, X2, x$ are the coordinates of the end-
point P of r (Figure 1.84).

A Cartesian coordinate system is given
by three vectors of unit length i, j, k
which are perpendicular to one another,v v ' Figure 1.85. Cartesian coordinates.
and which are right-handed with respect
to each other, i.e., they point (are ori-
ented) like the thumb and the first two fingers of the right hand. Each vector r in V(O)
then has a unique representation of the form

where x, y and z are called the Carte-
sian coordinates of the endpoint P of r
(Figure 1.85).

Moreover, one has

Figure 1.86. The length of vectors.

The corresponding situation in the plane
is shown in Figure 1.86.

Free vectors: Two vectors which are
based at the same point or at two dif-
ferent points are said to be equivalent,
if they have the same direction and the
same length. We write for this

a ~ c

(Figure 1.87). Furthermore we denote by [a] the equivalence class of the vector a, i.e.,
the set of all vectors c which are equivalent to a. All elements in the equivalence class
[a] are called representatives of a. Each such equivalence class [a] is called a free vector.
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Geometric interpretation: A free vector [a] represents a translation in space. Each

representative c = QP indicates that the point Q is mapped to P under the translation
(Figure 1.87).

Sum of free vectors: We define

[a] + [b]:=[a + b].

This means that free vectors are added component-wise, and this operation is indepen-
dent of the choice of representative. Similarly, we define

a [a] := [aa].

Figure 1.87. Figure 1.88. The sum and difference of vectors.

Convention: To simplify the notation, one writes a = c instead of a ~ c and a + b
(resp. aa) instead of [a] + [b] (resp. a [a]).

This corresponds to the proceedure of working with (usual) vec-
tors and viewing these as being equal if they have the same
direction and the same length. Instead of free vectors we will
usual just speak of vectors in the sequal.

>
Example: The sum a + b of two vectors a and b is given by
moving a and b by a parallel translation until they have the
same base point, then adding them by the parallelogram method
described above (Figure 1.88). In the same way one obtains
a + b + c (Figure 1.89).

Gravitational attraction of the sun: If the sun has a mass
M at the point S in space and there is a planet with the mass
m at the point P, then the gravitational force of the sun acting
on the planet is

Figure 1 90 with r := OP, rcm := OS and G denotes the gravitational
constant (Figure 1.90).

1.8.3 Multiplication of vectors

Definition of the scalar product: The scalar product of two vectors a and b, denoted
ab, is denned to be the number

ab := |a| |b| cos</?,
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where (p is the angle between the two vectors a and b, which is to be chosen in such a
way that 0 < (p < -K (Figure 1.91).

Orthogonality: Two vectors a and b are said to be
orthogonal,80 if

ab = 0.

If a 7^ 0 and b 7^ 0, then this condition is satisfied if and
only if <f = 7T/2.

The zero vector 0 is by convention orthogonal to all vec-
tors.

Definition of the vector product: The vector prod-
uct of two vectors a and b, denoted a x b, is defined to
be a vector with the length Figure 1.92.

|a| |b| sin</?

(this is just the surface area of the parallelogram spanned by a and b), which is perpen-
dicular to both a and b, in such a way that the three vectors a, b and a x b, in that
order, form a right-handed system, provided a ^ 0 and b ^ 0 (Figure 1.92).

Laws: For arbitrary vectors a, b and c and arbitrary real numbers a, we have the
following laws:

ab = ba, a x b = —(b x a),

t*(ab) = (aa)b, a(a x b) = (aa) x b,

a(b 4- c) — ab + ac, a x (b + c) = (a x b) + (a x c),

a2 :=aa= |a|2, a x a = 0.

Moreover, the vector product has the following properties:

(i) The vector product vanishes, a x b = 0, if and only if either one of the two factors
is the zero vector, or a and b are parallel or anti-parallel.

(ii) One has a x b = 0 if and only if a and b are linearly dependent.

(iii) The vector product is not commutative, i.e., in case a x b 7^ 0, then a x b 7^ b x a.

Products of several vectors:
Development law:

a x (b x c) = b(ac) - c(ab).

Lagrange identity:
(a x b)(c x d) = (ac)(bd) - (be)(ad).

Triple product: We define
(abc) := (a x b)c.

Under a permutation of a, b and c, the triple product (abc) gets multiplied by the sign
of the permutation, i.e., one has

(abc) = (bca) = (cab) = — (acb) = — (bac) = — (acb).

80One also says that a and b are perpendicular to one another.

Figure 1.91.
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The three vectors a, b and c are linearly independent, if and only if one of the following
two conditions is satisfied:

(a) (abc) ̂  0.

aa ab ac

(b) ba bb be ^ 0 (Gram determinant).

ca cb cc

Expressions in a Cartesian coordinate system: In terms of the Cartesian coordi-
nates in the representations

a = aii + 02J + ask, b = M 4- b^j + b3k, c — c\\ + C2J + csk,

the products above are expressed as follows:

Expressions in general coordinate systems: Let 61,62 and 63 be arbitrary linearly
independent vectors. Then we call the set of three vectors

the reciprocal basis to the basis ei, 62,63. Every vector a has unique decompositions

a — ajei + a262 + a 63 and a = oie1 + 026 + ase3.

We call a1, a2, a3 the contravariant coordinates and ai, a-2, 0,3 the covariant coordinate:
of a. Then one has:

ab = a\bl + a^b2 + a^b3,

Geometrically, the triple product abc is the volume of the
parallelepiped which is spanned by a, b and c (Figure 1.93).
Moreover, one has

Figure 1.93.
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In a Cartesian coordinate system one has the relations

i = ei=e1 , j = 62 = e2, k = e3 —e 3 , a, = aj, j — 1,2,3.

In particular, in this case the contravariant and the covariant coordinates coincide.

Applications of vector algebra in geometry: See section 3.3.

1.9 Vector analysis and physical fields

We need an analysis which is of geometric nature
and describes physical situations as directly as algebra
expresses quantities.

Gottfried Wilhelm Leibniz (1646-1716)

The topic of vector analysis is the study of functions of vectors (vector-valued functions)
with the help of calculus. It is one of the most fundamental mathematical instruments
for the description of classical physical fields (hydrodynamics, elasticity, heat conduction
and electrodynamics). The field theory in use today in modern physics (special and
general theories of relativity, gauge field theory of elementary particles) are based on
Cartesian differential calculus and tensor analysis, both of which contain classical vector
analysis as special cases (cf. [212]).

Characteristic invariance: All of the operations with vectors described in the sequel
are independent of the chosen coordinate system. This is the reason why vector anal-
ysis is such an important tool in the description of geometric properties and physical
phenomena.

1.9.1 Velocity and acceleration

Limits: If (an) is a sequence of vectors and a is some fixed vector, where we assume
that all the a™ as well as a are based at a point O, we write

if and only if lim |an — a| =0, i.e., the distance between the endpoints of an and a
n—»oo

approaches 0 as n —> oo (Figure 1.94).

With the help of this notion of limit, one can extend many
properties which have been introduced for real-valued functions
to the case of vector functions.

Trajectory: We choose a fixed point O. Let r(t) := OP(t).
Then the equation

Figure 1.94-
describes the motion of a particle whose coordinates at the time
t is P(t).
Continuity: The vector function r — r(i) is said to be continuous, if limr(s) = r(i).

s—*t

Velocity vector: We define the derivative of the vector-valued function r(t) by the
formula
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with Ar := r(t + At) - r(t) (Figure 1.95). The vector r'(i)
has the direction of the tangent to the trajectory at the point
P(t) (in the direction of increasing values oft). In physics, r'(t)
is referred to as the velocity vector at the point -P(t), and its
length \r'(t)\ is by definition the speed of the particle at the
time t.

Figure 1.95.

Acceleration vector: The second derivative

is by definition the acceleration vector of the particle at the time t, and |r"(t)| is the
acceleration at time t.

The fundamental Newton law of motion in classical mechanics:

Here, m denotes the mass of the particle, and F(r, t) is the force, which acts on the
endpoint of the vector r at the time t. Written in words, the equation (1.160) says:

Force is equal to mass times acceleration.

This law holds even if the force depends on the velocity, i.e., F = F(r, r',i).

Figure 1.96. The harmonic oscillator.

Example (harmonic oscillator): The mo-
tion of the endpoint of a spring aligned on
a line, of mass m, is given by r(i) = x(t)i
with a force acting in the other direc-
tion F := — kxi; here k > 0 is a con-
stant describing the physical nature of the
spring.81 This yields the Newtonian law of
motion

81 This law of motion can be derived from the following general consideration: according to Taylor's
theorem, one has for small values of x (small amplitude) the approximation

F(x) = F(0) + xa 4- x2b + z3c + . . .

If there is no motion, then there should also be no force; in other words, F(0) = 0. Moreover, we expect
the symmetry F ( — x ) = —F(x). From this is follows that b = 0. Since the force is in the direction
opposite to that of the motion, it must act in the direction of —i. Thus a = —fci and c = —Zi for some
positive constants fc and Z. Hence we get the law of motion

for what is called the aharmonic oscillator. The harmonic oscillator is the special case when Z = 0.
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If we set (J1 — k/m, then we get the differential equation for the harmonic oscillator:

x" + u2x = 0

(Figure 1.96). This differential equation will be solved in 1.11.1.2.

Coordinate representation: If we choose a Cartesian coordinate system with coor-
dinates (x, y, z) and which has the point O as its origin, then for an arbitrary vector we
have

and

In particular, r'(t) = r^(t), r"(t) = r^(t] etc. This means that the nth derivative
r(n)(t) exists precisely when the nth derivatives x^n\t}, y^(t) and z^(t) exist. Let
an = c*ni + Pnj + 7nk and a = m + (3j + 7k. Then we have

if and only if, an —> a, f3n —> (3 and 7n —> 7 for n —> oo obtains (convergence of
the coordinates, or as one says, coordinate-wise convergence).

Smoothness: The Cfe-property of r = r(t) is defined in the same way as for real
function (cf. 1.4.1).

The function r = r(t) is of type Ck on an interval [a, 6], if and only if, all component
functions x = x(t), y = y(t] and z = z(t) are in the class Ck on [a, ft] in some fixed
Cartesian coordinate system.

Taylor series: If r = r(t) is of type Cn+l on an interval [0,6], then we have

for all t, t + h € [a, 6], with the error estimate

1.9.2 Gradient, divergence and curl

As usual, C/x, Uxx, etc., denote partial derivatives.

Gradient: In a Cartesian coordinate system with origin at a point O we consider the
function

T = T(P)

with P — (x,y, z), and define the gradient of T in the point P by the formula
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Often one writes T(r) instead of P, where r is the vector r = OP.
Directional derivatives: If n is a unit vector (i.e., a vector of length one), then the
derivative of T at the point P is defined by means of the formula

One has:

if T is of type C1 in a neighborhood of the point P.
If n denotes the normal vector to a surface, then
dT/dn. is called the normal derivative.

Physical interpretation: If T(P) is the temper-
ature at the point P, then one has:

(i) The vector grad T(P) is perpendicular to the
surface of constant temperature T = const and
points in the direction of increasing temperature.82Figure 1.97.

(ii) The length Igrad T(P}\ of the gradient is equal to the normal derivative 
(see Figure 1.97).
The function f(h) := T(r + hn) describes the temperature on the line through the point
P in the direction of n. One has

Scalar fields: Real-valued functions are also called scalar functions in physics (for
example one speaks of a scalar temperature field).
Divergence and curl: Suppose we are given a vector field

F = F(P),

i.e., an assignment of a vector F(P) to each point P. For example F(P) might be a

force acting at the point P. Instead of F(P) one also often writes F(r) with r = OP.
In a Cartesian coordinate system we have the representation

F(P) = a(P)i + 6(P)j + c(P)k.

We define the divergence of the vector field F at the point P by

divF(P) := ax(P) + by(P) + cz(P]

and the curl of the vector field F by

curlF(P) := (cy - bz)i + (az - cx)j + (bx - ay)k,

where cy stands for cy(P), etc.

82The surface T = const is called a level surface of the function T.
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Vector gradient: For a fixed vector v we define

where r = OP. In particular, if n is a unit vector, then one calls

the derivative of the vector field F in the direction of n at the point P. In a Cartesian
coordinate system one has

(v grad)F(P) = (v grada(P))i + (v grad&(P))j + (v gradc(P))k.

Laplace operator: We define

AT(P) :=divgradT(P)

and
AF(P) := grad divF(P) - curl curl F(P).

In a Cartesian coordinate system one has:

Prom F = ai + 6j + zk it follows AF = (Ao)i + (Afe)j + (Ac)k.
Invariance: The expressions gradT, divF, curlF, (vgrad)F, AT and AF have
a meaning which is independent of the chosen Cartesian coordinate system. In all
Cartesian coordinate systems these expressions are given by the same formulas. The
following definitions also have such an invariant meaning.

A vector field F = F(P) on an open set D of 3R3 is said to be of type Ck, if and only if
all components a, b and c in any Cartesian coordinate system are of type Ck.

Curved coordinates: The formulas for gradT, divF and curlF in cylinder and
spherical coordinates can be found in Table 1.5. The corresponding formulas in arbitrary
curved coordinates can be elegantly given using tensor analysis (cf. [212]).

Physical interpretation: Compare sections 1.9.3- 1.9.10.

1.9.3 Applications to deformations

The operations div u and curl u on a vector field u play a fundamental role in the
description of the behavior of deformations. The deformation of a elastic body under
the influence of forces is given by

y(r) = r + u(r) .
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Here r := OP and y(r) are vectors based at
the point O (Figure 1.98). For simplification
of the relations we identify the vector r with
its endpoint P.

The endpoint of the vector r is transformed
into the endpoint of y(r) = r + u(r) under
this deformation. We set

Figure 1.98.

We denote the line through the point O in the direction of u; by A.

Theorem: Let u = u(P) be a C1-vector field in the domain D C R3. Then one has:

(i) A small increment of volume at the point P is rotated in a first approximation by
the angle u>\ with respect to the axis A. In addition, it is rotated in the direction of the
main axis, and there is a translation involved.

(ii) If the first partial derivatives of the coordinates of u are sufficiently small, then
div u(P) is in a first approximation equal to the relative change in volume of a small
increment of volume at the point P.

This explains the names 'curl' and 'divergence' of the vector field: the curl describes
the rotation83 of the vector field, while the divergence describes for example a change of
mass of a chemical substance during a chemical reaction (cf. 1.9.7).

We wish to discuss this theorem in more detail. The starting point of our considerations
is the decomposition

y(r + h) = r + u(r) + (h + u x h) + D(r)h + R,

with a remainder term |R| = o(|h|) for |h| —> 0.

Infinitesimal rotation: Let T(u>)h denote the vector based at O,
which is the rotation of h with respect to the axis A by an angle of
(f :— <jj\ (Figure 1.99). Then one has

T(u>)h = h + u? x h + o(y>), (f -» 0.

For this reason one denotes the product u» x h as the infinitesimal
rotation of h.

Figure 1.99.

Dilations: There are three pairwise perpendicular unit vectors t>i ,D2 and 03 based at
P and positive real numbers AI, A2 and X% such that:

Consequently one has D(r)bj = A./DJ, j = 1,2,3. One refers to bj, j = 1,2,3 as the
principal axi of the stretching at the point P. If we consider a Cartesian coordinate
system, then AI, \2 and AS are the three eigenvalues of the matrix (djk) whose entries
are given by the relations

83In German, this is referred to as rot u, which is short for 'Rotation', the German word for rotation.
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Here we have u = ui\ + it2J + usk. Moreover, the columns of the matrix (djk) are the
coordinates of the principal axi bi, b2, bs-
Applications to the equations of hydrodynamics and elasticity: See [212].

1.9.4 Calculus with the nabla operator

The nabla operator: Many formulas of vector analysis can be found in Table 1.4.
These formulas can be verified by a series of straightforward calculations in Cartesian
coordinates. However, the same results can be derived much more easily by applying
calculus with the nabla operator.84 For this one introduces the nabla operator as follows:

Then one has:

Another common notation for V is

Rules for calculus with V:

(i) Write the expression you wish to calculate as a formal product with the help of V.

(ii) Linear combinations are multiplied distributively:

Here X and Y are function or vectors, and a and f3 are real numbers.

(iii) A product of the form V(XY) is written as follows:

For this it is irrelevant whether X and Y are vectors or functions. The bar indicates
that the corresponding factor is differentiated.

(iv) Transform the expressions V(XY), V(XY) strictly according to the rules of vector
algebra in such a way that all expressions without a bar are to the left of V (and all
objects with a bar are to the right). During these manipulations, treat V as a vector.

(v) Finally write the formal products involving V as expressions of vector analysis, for
example

Here the bars are dropped.

This formal calculus takes into account that V is on the one hand a vector and on
the other a differential operator. The formula (1.161) is just the product formula for
differentiation. For three factors, use the rule

Example 1: grad

84The name 'nabla' and the symbol V come from a Phoenician string instrument.
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Table 1.4- Rules of vector calculus

Gradient

grad c = 0, grad(cC/) = cgrad U (c= const),
grad(C7 + V)= grad U + grad V, grad(C/Vr) = U grad V + V grad [/,
grad (vw) = (vgrad )w + (w grad)v + v x curl w + w x curl v,
grad(cr) = c (c = const),

P
gradt/(r) = U'(r)~ (central field; r = |r|),

gradF(t7) = F'(U)greaW,

•7j— = n(gradf/) (directional derivative in the direction of the unit vector n),
an
U(r + a) = J7(r) + a(grad C7(r)) + ... (Taylor expansion).

Divergence

divc = 0, div(cv) = cdivv (c, c =const),
div(v + w) = div v + div w, div(C/v) = C/div v + v(grad J7),
div(v x w) = w(curl v) — v(curl w),
div(J7(r)r) = 3C/(r) + rE7'(r) (central field; r = |r|),
div curl v = 0.

Curl

curie = 0, curl(cv) = ccurlv (c, c =const),
curl(v + w) = curl v + curl w, curl(CTV) = U curl v + (grad U} x v,
curl(v x w) = (wgrad)v — (vgrad)w + vdiv w — wdiv v,
curl(c x r) = 2c,
curl grad v = 0,
curl curl v = grad div v — Av.

Laplace operator

AC/ = div gradf/,
Av = grad div v — curl curl v.

Vector gradient

2(vgrad)w =
curl(w x v) + grad(vw) + v div w — w div v — v x curl w — w x curl v,

w(r + a) = w(r) + (agrad)w(r) + ... (Taylor expansion).
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Table 1.5: Different coordinate systems
Cartesian coordinates x,y,z (Figure 1.86)

(natural decomposition),

(nabla operator)

Cylinder coordinates (cf. 1.7.9.2)

(natural decomposition),

grad
div v

curlv

cylindrically symmetrical field: B — C = 0.

(natural decomposition),

spherically symmetrical field (central field) : A = B = 0.

85 Note that the quantity r has a different meaning in cylindrical and in spherical coordinates.

Spherical coordinates (cf. 1.7.9.3)85
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Example 2: grad

Example 3: div grad U

Example 4-' div(v x w)

Example 5: In what follows, note the development rule

One has

Example 6: From the development result (1.162) one gets moreover

grad(vw)

curl curl v

Example 7: From a(a x b) = 0 and a x a = 0 it follows that

Integral curves: Let F = F(P) be a vector field; a curve r = r(t) is called an integral
curve, if it is a solution of the following differential equation:

At each point P, F(P) is a tangent vector to the integral curve.

Such curves are also referred to as flow lines
or streamlines, depending on the usage. If the
vector field F represents a force field, then the
integral curves are also called lines of force
(Figure 1.100(a)), while in the case of an elec-
tromagnetic field, one speaks of flow lines.
Moreover, if v = v(P, €) is the vector field
whose values at points P are the velocity of a
liquid flow, then the particles in the flow move
along the integral curves of v; in this case one

speaks of the streamlines of the flow. Here v(P, t) is the velocity vector of the particle
which is at the point P at the time t (Figure 1.100(b)).

Figure 1.100.

1.9.5 Work, potential energy and integral curves

Work: If a point with the mass m moves along a path M : r = r(t), a < t < /3 which
is of class C1, then by definition, the work of the force field F = F(r) is given by the
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curve integral:86

which is calculated by means of the formula87

Potential: A particularly important special case of this is when there is a function U
such that

Then U is called a potential of the vector field F = F(r) on D and for the work we have

where Q is the starting point and P is the endpoint of the path (Figure 1.102(a)). One
also refers to U as the potential energy.

Figure 1.101. Work = force times Figure 1.102. Work as difference
distance. in potential energy.

Example: Let F = — ragk be the gravitational force acting on a stone of mass m in a
Cartesian coordinate system (g is the acceleration of gravity). Then we get the potential
energy:

Indeed, one has grad C7 = C/2k = — F. If a stone falls from a height z > 0 to the height
2 = 0, then W = U = mgz is the work which is done by the gravitational field of the
earth; it is transformed into heat energy upon landing on the earth.

86 In a first approximation, we have Figure 1.101), i.e., work = force times

distance.
87If we set F = ai + bj + ck and dr = dxi + dyj + dzk, then w := Fdr is a differential one-form. In

the language of differential forms, we get

(see 1.7.6.3).
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Main theorem: Let F be a C2-force field in a domain D of R3. Then the following
conditions are mutually equivalent:

(i) F has a potential of class C1 in D.

(ii) curlF = 0 on D.

(iii) The work W = I Fdr is independent of the path M, i.e., depends only on the
JM

start and end points of M.

(iv) One has / Fdr = 0 for every closed path M of class C1 (Figure 1.102(b)).
JM

If a potential U for F exists on D, then it is determined up to a multiplicative constant.

1.9.6 Applications to conservation laws in mechanics

The general Newton law of motion in classical mechanics for N bodies (mass
points):

Here mj is the mass of the jth point and Fj denotes the force acting on the jth point.
The solution to the equations is the trajectory TJ = fj(t), j = 1,... ,N. At the initial
time t = 0 one prescribes the initial position and velocity:

To simplify notations we put r := (ri , . . . , rjv).

Theorem of existence and uniqueness: Supposing the fields Fj are force fields
which are of type C1 in a neighborhood of the initial configuration (r(0),r'(0),0), then
for a certain time interval, there exists a unique solution of (1.163) and (1.164).

Complications can arise in the case when there are collisions among the particles or the
forces are so large that the particles can reach infinity in finite time.

For the forces we assume there is a decomposition of the following form:

Fj = -gradr.U(r) + Fj*.

Along the trajectory r = r(t),a < t < (3, the work W done is determined from the
equation:

The forces are conservative, if U can be chosen such that all Fj. vanish.

Definitions:

Total mass:

Center of gravity:

Total momentum:
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Total angular momentum:

Total force: F

Total torque: T

Total kinetic energy:

Total potential energy: U.

An admissible trajectory is a solution r = r(t) of (1.163).

Equations of equilibrium: Along every admissible trajectory one has:

(equilibrium of energy),

(equilibrium of momentum),

(equilibrium of angular momentum),

(motion of the center of mass).

The equilibrium of momentum and the equation for the motion of the center of mass
are identical.

Laws of conservation: The following statements hold for admissible trajectories,

(i) Conservation of energy: If all forces are conservative, then we have

T + U = const.

One calls E := T + U the total energy of the system.

(ii) Conservation of momentum: If the total force F vanishes, then

P = const.

(iii) Conservation of angular momentum: If the total torque vanishes, then

A = const.

Planetary motion: If the N bodies represent the sun and N — I planets, then the
gravitational force acting on the jth body by the remaining ones is given by
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where G denotes the gravitational constant. In this case conservation of energy holds.
Moreover, the center of mass of the entire solar system moves with constant velocity
along a straight line.

The potential energy is given by the formula

1.9.7 Flows, conservation laws and the integral theorem of Gauss

Gauss' Theorem:

Figure 1.103.

Here D is a bounded domain in R3 with piecewise smooth boundary88

and outer normal unit vector n (Figure 1.103).

Also, let J be a Crl-vector field on D.

Derivative of the volume: Suppose that g is a real-valued function continuous in a
neighborhood of the point P; then we have:

Here (Dn) is a sequence of admissible domains (for example, balls), which all contain
the point P and whose diameter approaches zero as n —> oo and meas Dn denotes
the Lebesgue measure. The expression on the right-hand side of (1.165) is called the
derivative of the volume.

The fundamental equation for the balance of mass:

Motivation: The equation (1.166) describes the following situation. Let D be a sub-
domain of a reference domain £}, in which there are several substances St... which may
react chemically with one another. We define:

A(t) mass of a chemical substance S, which is in D at time t,

B(t) mass of S which flows out of D during the time interval [0, t],

C(t] mass of S which is generated in D by chemical reactions in the interval [0, t].

The law of conservation of mass yields the equation

A(t + At) - A(t) = -(B(t + At) - B(t}} + (C(t + At) - C(t)).

Dividing by At and passing to the limit At —* 0 gives

88The precise assumption is that 3D € C0'1 (cf. [212]).
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We now make the assumption that these quantities can be described by densities as
follows:

with Cartesian coordinates x — (xi,X2, £3). In physics one uses the following notations
for this:

p(x, t) mass density at the point x at time t (mass per volume),
J(x, t)         flux density vector of the flow of mass at the point x at time t

(mass per area and time),
F(x, t) force density of produced mass at the point x at time t

(generated mass per volume per time).

The fundamental nature of the theorem of Gauss lies in the fact that

i.e., the boundary integral can be written as a volume integral. From (1.167) we therefore
get

The derivative of the volume follows then from (1.166).

Flows of liquids: If v = v(x, t) is the velocity field of the flow of a chemical substance
S in a liquid, then (1.166) holds with the flux density vector

If there is no mass created, then one obtains the so-called equation of continuity:

The special case of an incompressible liquid is given by p = const. From this we get
divv = 0, which tells us that incompressible liquids are volume preserving.

Flows of current: If one replaces the mass by a charge and if there is no creation of
charge, then one gets (1.169) with the charge density p.

Heat flows: The basic equation for the case of heat flows is

Here T(aj, t) denotes the temperature at time t at the point x, and F(x, t) is the power
density of heat production at time t at the point x (heat amount produced per volume
per time). The constants //, s and K stand for the mass density, specific heat and heat
conduction coefficient, respectively,

Motivation: We consider a small piece of a domain Q, with volume AV. At time t the
amount of heat in fi is denoted by Q(f). This implies that in a first approximation, we
have
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where p(x, t) is the heat density at time t in the point x. For a change AQ of the amount
of heat and a change of temperature AT we get the relation:

which one uses as an equation of definition of specific heat s. If we set
and i then we get

Passing to the limit At —* 0 yields

Following Fourier (1768-1830) one gets in a first approximation for the heat flux density
vector

This means that J is perpendicular to the surface of constant temperature, proportional
to the difference in temperature and in the direction of falling temperature. Inserting
the quantities pt and J in the equation of equilibrium (1.166), one gets (1.170).

1.9.8 Circulation, closed integral curves and the integral theo-
rem of Stokes

Non-vanishing of the quantity curl v is closely related to the existence of closed integral
curves.

The integral theorem of Stokes:

Figure 1.104.

This formula is valid under the assumption that v is a C1-
vector field on a bounded, sufficiently smooth surface89 M
in R3 with a normal unit vector n and the coherent ori-
entation of dM as depicted in Figure 1.104.

Circulation: We call the expression / vdr the circula-

dM
tion of the vector field v along the closed curve dM. For
example one may view v as a velocity field of a liquid
flow.

Theorem: (i) If dM is a closed integral curve, then the
circulation along dM vanishes, and curl v can not vanish
identically on M.

(ii) If curl v = 0 in a three-dimensional domain £), then
Figure 1.105.

89 More precisely one may assume for example that M is a two-dimensional real oriented compact
manifold with coherent oriented boundary (cf. [212]).
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there can be no closed integral curves of the vector field v in D.

Example: Let the vector u> be given. The velocity field

v(r) := w x r

corresponds to a rotation of liquid particles around the axis u; (in a mathematically
positive sense) with the angular velocity |w|. The integral curves are concentric circles
around the axis u; (Figure 1.105). Moreover one has

curlv = 1(jj.

Hence curlv has the same direction as the rotation axis, and the length of curlv is
equal to twice the angular velocity of the particle.

1.9.9 Determination of a vector field from its sources and vor-
tices (main theorem of vector analysis)

Prescribing sources: Let a C1-function p : D —> R be given on a contractible90

domain D in R3. Then there always exists a C2-vector field D which satisfies the
equation

div D = p on D.

The general solution of this equation has the form

D = Dpar + curl A,

where Dpar is a particular solution and A is an arbitrary C3-vector field on D.

Prescribing the vortices: Let a C1-vector field J be given on a contractible domain
D in R3. Then there exists a unique C2-vector field H with

curlH = J onD,

provided the condition div J = 0 is satisfied on D. The general solution has the form

H = Hpar + grad U,

where Hpar is a particular solution and U : D —> R is an arbitrary C3-function.

Explicit formulas for solutions: Let D = R3 and suppose that p and J are of type
C1 on R3 and vanish outside some ball. Let in addition div J = 0 on R3. We introduce
the so-called volume potential

and the vector potential

90This term is defined in section 1.9.11.
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We finally set
Dpar := -grad V, Hpar := curl C.

Then we have:

div Dpar = Pi curl Dpar = 0 on R3

and

div Hpar = 0, curl Hpar = J on M3.

Hence the field v := Dpar + Hpar solves the two equations

The main theorem of vector analysis: The problem

has a unique solution v of type C2 on D, if the following assumptions are satisfied:
(i) D is a bounded domain in M3 with smooth boundary; n is the outer unit normal
vector at the boundary.

(ii) The given functions p and J on D are sufficiently smooth, as is g on dD.

(iii) One has

Physical interpretation: A vector field v (for example a velocity field) is determined
by the prescription of its sources and vortices and by its normal component on the
boundary.

1.9.10 Application to Maxwell's equations in electromagnetism

Maxwell's equations for the interaction between electrical charges and electrical flows in
a vacuum are found in Table 1.6. In that table, £Q denotes the dielectrical constant and
yUo denotes the permeability constant of a vacuum.

Both constants are related by the formula

Figure 1.106.

where c denotes the speed of light in a vacuum.
Moreover, p denotes the charge density, and
j denotes the current (electrical flux) density
vector.

Integral form of Maxwell's equations: Using the integral theorems of Gauss and
Stokes yields for a sufficiently regular domain D and surface M the following

and
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equations (Figure 1.106):

The last equation is a consequence of the other equations.

Table 1.6: Maxwell's equations in international metric units \

Equation Physical interpretation

div D = p Charges are the source of the electromag-
netic field E.

curl E = — Bt Magnetic fields which vary in time generate
vortices of the electric field (law of induc-
tion).

divB = 0 There are no magnetic monopoles.

curl H = j + Dt 
Vortices of the magnetic field can be gener-
ated by electric currents or by electric fields
which vary in time.

pt + div j = 0 Charge conservation (follows from the other
equations).

Historical remark: Maxwell's equations were derived by James Clerk Maxwell (1831-
1879) and published in 1865. It is amazing that these few, extremely elegant equations
describe electromagnetic phenomena in their entirety. Maxwell's theory was based on an
experiment of Michael Faraday (1791-1867). While Newton's mechanic deals with forces
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and actions from afar, the ingenious physical intuition of Faraday saw that electrical
and magnetic fields act at small distances. This idea of Faraday is now the basis of all
of physics. All modern physical field theories are theories with forces acting at small
distances, meaning that the speed of interaction determined by these theories is finite.

The modern approach to Maxwell's equations using the language of differen-
tial forms: Maxwell's equations, in spite of their simplicity and beauty, are not the last
word in the matter. The fundamental question arises: in which system of reference do
Maxwell's equations hold, and how do the electric and magnetic fields E and H trans-
form upon transformation to a different system of reference? This problem was solved
by Einstein's special theory of relativity, put down in 1905. The modern formulation of
Maxwell's equations uses the Cartan differential calculus and the language of principle
fiber bundles. Formulated this way, Maxwell's equations are the starting point for gauge
field theories, the basis of modern particle physics. This will be discussed in more detail
in [212].

1.9.11 The relation of classical vector analysis with the differen-
tial calculus of Cartan

The Cartan differential calculus included the following fundamental results for differen-
tial forms in Rn:

(i) Stokes' theorem:

(ii) The Poincare rule: ddu; = 0.

(iii) The Poincare lemma: The equation do; = b on a contractible domain D has a
solution (jj if and onlv if d6 = 0.

A domain D is called contractible, if it can be deformed contin-
uously to a single point XQ 6 £>, i.e., there is a continuous map
H = H(x, t) from D x [0,1] to D with

H(x, 0) = x and H (x, 1) = XQ for all x 6 D

(Figure 1.107).

Specialization: The classical integral theorems of Gauss and
Stokes are special cases of (i), while (ii) includes

div curl H = 0, curl grad V = 0

Figure 1.107.

as special cases. Finally, (iii) in R3 includes as special cases the equations

grad V = F on D,

curl H = J on D,

div D = p on D.

This will be discussed in more detail in [212].

1.10 Infinite series

An extensive table of infinite series can be found in 0.7.
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Particularly important infinite series are power series and Fourier series.

Definition: Let OQ, ai, . . . be a sequence of complex numbers. The symbol called

an infinite series, stands for the limit as k —> oo of the sequence (sk) of partial sums

The numbers an are called the terms of the series. We write

if and only if there is a complex number a with lim Sk = a. We say that the infinite
fc—>oo

series converges to the number a. If this is not the case, one says the series is divergent.91

Necessary conditions for convergence: For a convergent series we have

If this condition is not satisfied, then the series diverges.

Example: The series diverges, since lim
iii— j.

The geometric series: For every complex number z with \z\ < 1, the following formula
obtains:

Tf 1^1 ^> 1 tlitm tVif> sprite rlivprcrps

Proof: For we have Fhis implies

In case \z\ > 1, we have lim \z\n = oo. Thus, in particular, the sequence (sn) of partial

sums does not converge to zero, and the series diverges.

Cauchy convergence: The series converges if and only if for every real number

e > 0 there is a natural number
no depends on e) with

(the e in brackets here indicates that the number

|«n + «n+l + • • • + an+m\ < £

The convergence of sequences of complex numbers will be considered in 1.14.2. The use of complex
numbers is imperative for a deeper understanding of the convergence behavior of power series.

91
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for all n > no(e) and all m = 1,2,. . .

Finite modifications: The convergence of an infinite series is unchanged, when finitely
many of its terms are changed (in any (finite) manner whatsoever).

Absolute convergence: A series is said to be absolutely convergent, if the

infinite series is convergent.

Theorem: The absolute convergence of a series implies its convergence.

1.10.1 Criteria for convergence

The boundedness criterion: The series converges absolutely, if and only if

In particular, a series with non-negative terms converges if and only if the se-

quence of partial sums is bounded.
The comparison test: Suppose that

Then the convergence of the series implies the absolute convergence of the series

The ratio test: If the limit

exists, then one has:

(i) If q < 1, the series converges absolutely.

(ii) If q > 1, the series diverges.

In case that q — 1, both convergence and divergence can occur, depending on the
sequence (the test is non-conclusive).

Example 1 (exponential function): For one has
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Thus, the series

converges absolutely for all complex numbers z.

The root test: We set

(i) If q < 1, the series converges absolutely.

(ii) If q > 1, then series ^ diverges.

In case q = 1, either convergence or divergence may occur: as above, the test is non-
conclusive in this case.

Example 2: Let

gence of the series

Prom we get the conver-

for all 2 6 C with \z\ < 1, and divergence of the same series if \z\ > 1.

The integral test: Let / : [l,oo[—> R be a continuous, decreasing positive function.
The series

converges if and only if the integral converges.

Example 3: The serie

converges for a > 1 and diverges for a < 1.

Proof: One has

and

Leibniz' criterion for alternating series: The infinite series
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converges, if and

bor the error dk one has

Example h: The famous series of Leibniz

7T
converges. According to Example 2 in 1.10.3 the limit is equal to —. For example, one

gets the error estimate

and

1.10.2 Calculations with infinite series

The importance of absolute convergence: Manipulations with absolutely conver-
gent series can be done as with finite sums.

1.10.2.1 Algebraic operations

Addition: Two convergent series can be added and a convergent series can be multiplied
by a complex number a:

Brackets: In a convergent series, one may add brackets without changing the conver-
gence of the series or the sum of the series.

Permutations: In an absolutely convergent series, one may permute the terms of the
series without changing convergence or limit of the series.

Multiplication: Two absolutely convergent series may be multiplied.

The product series is again absolutely convergent and its terms may be permuted. In
particular, one can use the Cauchy multiplication:
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Double sums: One has

if one of the following conditions is satisfied:

converges.

One may calculate by an arbitrary summation over the anm, and the sum is

independent of the order chosen to do so.

1.10.2.2 Sequences of functions

The importance of uniform convergence for the exchanging of limits: In the
case of uniform convergence one may integrate and differentiate the limit relation

term-wise:

and

Definition: Let - The limit is uniform if

Continuity of the limit function: If all functions fn '• [a, b] —>• C are continuous at a
point x e [a, b] and if the limit (1.174) is uniform, then the limit function / is continuous
at, the noint, x.
Integrability of a limit function: If all
functions fn : [a, 6] —> C are continuous
almost everywhere and bounded, and if the
limit (1.174) is uniform, then (1.175) holds.92

Differentiability of the limit function: If
all functions fn : [a, b] —> C are differentiable
on [a, b] and if both sequences (/n) and (f'n]

92This means in particular that all integrals and the limit in (1.175) exist.

Figure 1.108.
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converge uniformly on [a, b] to functions / and g, then the limit function / is differen-
tiate on [a, 6] and (1.176) holds.93

The following example shows that uniform convergence is important.

Example: The functions fn in Figure 1.108 are all continuous. The limit function
f ( x ) = lim fn(x) however is not continuous at the point x = 0.

n—»oo

This convergence is not uniform on the interval [0, b] with b > 0.

1.10.2.3 Differentiation and integration

The roll of the comparison criterion: Infinite series are special sequences of func-
tions (sequences of partial sums of functions). Often it is easy to derive uniform conver-
gence from the comparison criterion.

Let — oo < a < 6 < oc. We consider the series

with fn(x) € C for all x £ [a, b] and formulate two comparison criteria:

(Ml) Suppose |/n(^)| < CLn in [a, b] for all n, and the series converges.

(M2) Suppose \f'n(x}\ < bn in [a, b] for all n, and the series converges.

Prom (Ml) it follows that the limit (1.177) is uniform in [a, b].

Continuity of the limit function: If all the functions fn : [a, b] —> C are continuous
at x and (Ml) holds, then the limit function is continuous at the point x.

Integrability of the limit function: If all functions /„ : [a, b] —> C are continuous
almost everywhere and the condition (Ml) holds, then the limit function is integrable
and one has

Differentiability of the limit function: If all functions /„ : [a, b] —> C are differen-
tiable in [a, b] and both conditions (Ml) and (M2) are satisfied, then the limit function
/ is differentiable in [a, b], and

1.10.3 Power series

An extensive table of power series can be found in 0.7.2.

93 It is important to note the requirement of uniform convergence of both sequences, something which
is easily forgotten.
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Power series are an extremely powerful and elegant instrument for investigating func-
tions.
Definition: A power series centered at a point ZQ is an infinite series of the form

where all an and ZQ are fixed complex numbers, while z is a complex variable. Calcul
tions with power series are very transparent.94

Identity theorem for power series: If two power series centered at ZQ coincide
an infinite set of points in the complex plane which converge to the point ZQ, then bo
series have the same coefficients and hence are identical.
Radius of convergence: We set and95

In addition we consider the disc Kr :

In case r = 0, KQ consists of just one point, ZQ. Then we have:

(i) The power series (1.178) converges absolutely for all points z in the so-called domain
(disc) of convergence Kr, and it diverges for all z outside of the closure Kr of the domain
of convergence (Figure 1.109(a)).

(ii) At the boundary points of the disc the power series may converge or diverge.

Abel's theorem: If the power series (1.178) converges at one boundary point z* of the
domain of convergence, then one has

for every sequence (zk) of complex numbers
which approach the point z* from inside Kr

(Figure 1.109(b)).
Properties of power series:

Figure 1.109.

Inside of the domain of convergence power series may be added, multi-
plied, terms may be permuted, and one may differentiate term-wise as
often as one wishes as well as integrate term-wise. Upon differentiation
and integration, the domain of convergence does not change.

The principle of holomorphicity: If a function / : U(ZQ) C C —> C is holomorphic
in an open neighborhood of the point ZQ (cf. 1.14.3.), then it can be developed in a power
series centered at the point ZQ. The domain of convergence is the largest disc which is
contained in U(ZQ).

94This section is closely related to section 1.14 (complex function theory).
95For Q = 0 (resp. Q = oo) let r = oo (resp. r = 0).



384 1. Analysis

The power series in this case coincides with the Taylor series of the function:

Every power series represents a function, which is holomorphic inside of the domain of
convergence.

Example 1: Let

This function has a singularity at the point z = 1, but is holomorphic inside the disc
K\. Hence it may be expanded in a power series centered at z — 0 with a radius of
convergence r = 1 (Figure 1.110(a)). Because of

we get Hence

for all z € C with \z\ < 1.

(i) Differentiating (1.179) term-wise yields

for all with

(ii) Let wit Integrating (1.179) term-wise yields

(iii) Applying Abel's theorem at the
boundary point t = — 1 teaches us that
(1.180) converges at t = —1, using the
Leibniz criterion for alternating series.
The limit process t -> -1 + 0 in (1.180)
then gives us

Figure 1.110. (iv) Because of (ii), we define ln(l — t)
for all complex arguments t with \t\ < 1

by the relation (1.180). This corresponds to the principle of analytic continuation (cf.
1.14.15).
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Example 2: The equation 1 + z2 = 0 has two zeros at the points z = ±i. Let

This function has singularities (only) at the points z = ±i. Hence it can be expanded in
a power series centered at z = 0 with the radius of convergence r = 1 (Figure 1.110(b)).
From the geometric series, we get

for all z e C with \z\ < 1.

(i) Differentiating (1.181) term-wise yields

for all z € C with z| < 1.

(ii) Let t € R with \t\ < 1. Integrating (1.181) term-wise yields

(iii) Applying Abel's theorem at the boundary point t = 1 shows the the series (1.182)
converges for t = 1 according to the Leibniz criterion for alternating series. The limit

7T
t —> 1 — 0 in (1.182) yields by virtue of arctanl = — the famous Leibniz series

(iv) The formula (1.182) allows a definition of arctant for all complex arguments t with
\t\ < 1. This corresponds to the principle of analytic continuation (cf. 1.14.15.).

1.10.4 Fourier series

An extensive table of important Fourier series can be found in 0.7.4.

Basic idea: We start from the famous classical formula

with the angular frequency u> = 27T/T, the period T > 0 and the so-called Fourier
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coefficients :96

Here we are assuming that the function / : R —> C has a period T > 0, i.e., for all
times t we have

Symmetry: If / is even (resp. odd), then we have bk = 0 (resp. a^ = 0) for all k.

Principle of superposition: We may view / as an oscillation of period T. The formula
(1.183) we started from then describes this function / as a superposition of cosine and
sine functions with the periods

i.e., oscillations of periods which are increasingly small (Figure 1.111).

The cosine and sine functions
whose Fourier coefficients are
large dominate this series. Eu-
ler (1707-1783) was not con-
vinced that a general function
of period T could be given
as a superposition of the form
(1.183). The fact that the form
(1.183) is indeed universal was

Figure 1.111. Coefficient functions for Fourier series.

an idea put forward by the French mathematician Fourier (1768-1830) in his volumi-
nous treatise Theorie analytique de la chaleur (Analytic theory of heat). The continuous
analog of (1.183) is

This formula, which is equivalent to a Fourier integral, makes the decomposition of an
arbitrary (i.e., non-periodic) function into a superposition of cosine and sine functions
possible (cf. 1.11.2).

96The formula for a/, and 6^ can be obtained formally from (1.183) by multiplying by coskujt or by
sin ku>t and then integrating over the interval [0, T]. Here one uses in an important way the orthogonality
relation

for two different cosine and sine functions. This method is closely related to orthonormal systems in
Hilbert spaces (cf. [212]).



1.10. Infinite series 387

Fourier series and Fourier integrals as well as their generalizations97 are
a fundamental technical tool in mathematical physics and probability
theory (spectral analysis).

Problem of convergence: From a mathematical point of view, the convergence of
formula (1.183) should be shown under the least stringent assumptions possible. This
turned out to be a difficult problem in the nineteenth century, and was not completely
solved until the twentieth century with the help of the Lebesgue integral and functional
analysis. This is described in [212]. Here we just give a classical criterion, which is
helpful in practical applications.

Criterion of Dirichlet (1805-1859): We assume the fol-
lowing (Figure 1.112):

(i) The function / : E —> C has a period T > 0.

(ii) There are points to := 0 < t\ < ... < tm := T such
that the real and imaginary parts of / on every open interval
]tj,tj+\{ are continuous and either increasing or decreasing.

(iii) The one-sided limits Figure 1.112.

exist in the points tj.

Then the Fourier series of / converges in every point t € R to the mean

This value is equal to f(t) at all points t where / is continuous.

Example: The function / : R —> R is given to have the period T = 2?r with f ( t ) := \t\
on the interval [—TT, TT] (Figure 1.113). Then one has the convergence

for all t € R.

Criterion for smoothness: If a T-periodic
function / : R —> C is of type Cm with m > 2, Figure 1.113.
then one has

For every t 6 R the expansion (1.183) is absolutely and uniformly convergent and may
be integrated term-wise.

Letting r := m — 2 > 0, one may differentiate (1.183) term-wise r times at every point
t E R.

97 A deeper understanding of these is only possible in the context of functional analysis (spectral
theory) (cf. [212]).
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The Fourier method: The previous result is used in the Fourier method of solving
partial differential equations - for example in the treatment of vibrating strings (cf.
[212]).

The method of least squares of Gauss: Let / : R —> C be a bounded functions,
continuous almost everywhere and with a period T > 0. Then the minimization problem

has the Fourier coefficients as unique solution. Moreover one has convergence in quadratic
mean:

which is the key to the modern functional analytic treatment of Fourier series (cf. [212]).

The complex form of Fourier series: The theory of Fourier series can be made even
more elegant if one uses the ansatz

with u := 27T/T.98 The Fourier coefficients are now:

Motivation: Let

We multiply formally (1.184) with e~isu;( and integrate over [0,T]. This gives (1.185).

Real-valued functions: If /(£) is real for all t, then one has c_& = Ck for all k.

Convergence: The Dirichlet criterion and the criterion for smoothness hold for (1.184)
also.

If / : E —> C is almost everywhere continuous and bounded, then one has convergence
in quadratic mean:
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1.10.5 Summation of divergent series:

The philosophy of the procedure of summation is that even divergent series (for example
divergent Fourier series) contain information which can be accessed by some kind of
generalized convergence (summation).

The principle of permanence: A procedure for summing infinite series is said to
admissible (or permanent), if applied to all convergent series, the procedure yields the
classical limit.

In what follows, let ao,ai , . . . be complex numbers, and let Sk

partial sum.

The method of arithmetic means: We set

in case this limit exists. The summation procedure is admissible.

Example 1 (Theorem of Fejer (1904)): In 1871 Du Bois-Reymond constructed a con-
tinuous 27r-periodic function whose Fourier series diverged at a point. However, one
can construct continuous periodic functions completely from their Fourier series, if one
applies the summation procedure of arithmetic means.

If / : R —> C is continuous and T-periodic with T > 0, then we have

for all t E R. This convergence is uniform on [0, T].

The summation procedure of Abel: We define

This summation procedure is admissible.

Example 2:

Proof:

In the history of mathematics, the series 1 — 1 + 1 • has repeatedly led to controversies

and philosophical speculations. The value - was attributed in the seventeenth century

to the value of the infinite series, as it is the arithmetic means of the sequence of partial
sums 1,0,1,0,1,... D

Asymptotic series: See section 0.7.3.

1.10.6 Infinite products:

A table of infinite products can be found in 0.7.5.
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Definition: Let bo,61,... be complex numbers. The symbol stands for the limit

of the sequence (pk) of partial products

This is called an infinite product. We write

if and only if there is a complex number b with lim pk = b. In this case one speaks of
k—»oo

a convergent infinite product.

Convergence: An infinite product is said to be convergent, if either (1.186) holds with
b 7^ 0, or if this situation can be achieved after deletion of finitely many factors bn, all
of which vanish. In all other cases, the product is said to be divergent.

A convergent infinite product vanishes if and only if one of its factors b^ vanishes.

Example 1:

Proof: Noting that

Example 2 (Wall product):

we get

Principle of modification: The convergence of an infinite series is unchanged when
finitely many of the factors are modified.

Necessary criterion for convergence: converges, then

Absolute convergence: converges by definition absolutely, if the product

converges.

Theorem: Absolutely convergent infinite products are convergent.

Main Theorem: The product is absolutely convergent if and only if the

series is absolutely convergent.



1.11. Integral transformations 391

Example 3: For all complex numbers z the following famous formula of Euler is valid:

The absolute convergence of this product follows from the convergence of the series

for all z € C.

Theorem: (i) The product converges, if both the series

converge.

(ii) If an > 0 for all n, then the product converges if and only if the series

converges.

1.11 Integral transformations

Simplification of mathematical operations: If one ranks the operations according
to their degree of difficulty, then one gets the following list:

(i) addition and subtraction;

(ii) multiplication and division;

(iii) differentiation and integration.

An important strategy in mathematics is to replace more complicated operations by
simpler ones. For example, using the relation

In(a6) = In a + In b

one can reduce multiplication to addition. The discovery of this simplification at the start
of the seventeenth century was of great assistance to Kepler (1571-1630) in surmounting
the extremely long and difficult calculations necessary in the production of the tables of
planetary orbits.

Integral transformations reduce differentiation to multiplication.

The most important integral transformation is the Fourier transform, which goes back
to Fourier (1768-1830). The Laplace transformation, which is in constant use by control
engineers, is a special case of the Fourier transformation.

Strategy for solving differential equations:
(51) Applying an integral transform to a differential equation (D), one gets a linear
equation (A), which can be solved by the methods of linear algebra (cf. 2.3)

(52) Applying the inverse transformation used above to the solution of the linear equa-
tion (A), one gets a solution of the original differential equation (D).
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In order to solve difference equations in a manner to (Si), (S2), one can use the
Z-transformation.

The Fourier transform is the most important analytic instrument in the modern theory
of linear partial differential equations. Some of the keywords here are: distributions (gen-
eralized functions), pseudo-differential operators and Fourier integral operators. More
details can be found in [212].

Spectral analysis: The basic physical idea behind the Fourier transform is to decom-
pose electromagnetic waves (for example light or radio waves from outer space) into
individual frequencies and study the intensity of these. In this way astronomers and
astrophysicists gain new insights into the composition of stars, galaxies and the rest of
the universe.

Earthquake detection centers use the Fourier transform to decompose the extremely
irregular seismographic waves into periodic oscillations of different frequencies. With
the help of frequencies and amplitudes of the dominant oscillations, one can determine
the location and strength of earthquakes.

The Heaviside calculus: To solve, for example, the differential equation

the English electrical engineer Heaviside used the following ingenious method at the end
of the nineteenth century:

(i) From

it follows by applying division that

(ii) The geometric series

This gives the formula for the solution:

For every polynomial / the formula (1.187) just derived is indeed a solution of the
original equation.

Example: For f ( t ] := t, we get y = t + I. This checks:

y-y' = t + l-l = t.

The philosophy of Heaviside was that one can work with differential operators in the
same way as with algebraic quantities. This idea has been realized in the context of the
theory of pseudo-differential operators in a mathematically rigorous fashion. An even
more general framework for this kind of calculation with arbitrary operators is contained
in modern functional analysis, which is for example the mathematical basis of the theory
of quantum mechanics (cf. [212]).
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1.11.1 The Laplace transformation

An extensive table of Laplace transformations of various functions can
be found in 0.10.2.

As the mathematician Doetsch noticed a few decades after Heaviside, one can justify
Heaviside's calculus with the help of a transformation which goes back to Laplace (1749-
1827). The basic formula is

Here H^ := {s e C | Res > 7} denotes a half-plane in the complex plane (Figure 1.114).
One calls F the Laplace transform of / and also writes F = -^{/} for this.

The class K^ of admissible functions: Let 7 be a
real number. By definition, K-y consists of all functions
/ : [0, oo[—> C satisfying the weak growth condition

Theorem of existence: For / € K^, the Laplace trans-
formation F of / exists and is holomorphic, i.e., infinitely
often differentiable, on the half-strip H-,. The derivatives
are obtained by differentiating under the integral sign. For example one has:

Theorem of uniqueness: If two functions /, g 6 K^ have the same Laplace transfor-
mations on jfiT7, then / = g.

Convolution: We denote by R the entirety of all continuous functions / : [0, oo[—> C.
For /, g € R, we define the convolution f * g € R by the formula

For all /, g, h 6 R one has:99

(i) f*g = 9*f, (commutativity),

(ii) / * (g * h) = (f * g) * h, (associativity),

(iii) f*(g + h) = f*g + f*h, (distributivity),

(iv) from / * g = 0 it follows that / = 0 or g = 0.

"The properties (i) to (iv) show that R with respect to the 'multiplication' * and the usual addition
of functions forms a commutative ring without divisors of zero (an integral domain), cf. 2.5.2.

figure 1.14.
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1.11.1.1 The basic laws

Law 1 (exponential function):

Here a denotes an arbitrary complex number whose real part is a.

Law 2 (linearity): For /, g E K~/, and a, b 6 C, one has

Example 1:

Law 3 (differentiation): Assume the function
F := -§f{/}. Then we have for all s 6 #7:

Example 2:

Law 4 (convolution): For /, g € K^, we have:

1.11.1.2 Applications to differential equations

The universal method: The Laplace transformation turns out to be a universal tool,
to solve in a very elegant way

ordinary differential equations of arbitrary order with constant
coefficients as well as systems of such equations.

Equations of this kind occur for example quite often in control engineering.

One uses the following solution steps:

(i) Transform the given differential equation (D) into an algebraic equation (A) with the
help of the linearity and differentiation law for the Laplace transformation (laws 2 and
3).

(ii) The equation (A) is a linear equationor a system of linear equations and can be
solved with the methods of linear algebra. This solution is a rational function and a
partial fraction decomposition (cf. 2.1.7) of this rational function can be formed.

(iii) These partial fractions are individually transformed back with the help of law 1
(exponential function).

(iv) Inhomogeneous terms of the differential equation give rise to product terms in the
image space, which can be transformed back by using the convolution (law 4).
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To get the partial fraction decomposition, one needs to determine the zeros of the de-
nominator, which correspond under the inverse transformation to the frequencies of the
characteristic oscillations of the system.

Example 1 (harmonic oscillator): The oscillation x = /(t) of a spring at the time t under
the influence of an exterior force f = f(t) is described by the differential equation

with w > 0 (cf. 1.9.1).

We set F := 5?{f} and F := 5?{f}. From the first line of (1.188) it follows that

because of the linearity of the Laplace transformation (law 2). The law of differentiation
(law 3) then yields

which has the solution

The partial fraction decomposition of the this is

Applying now exponentiation (law 1) and convolution (law 4) leads to

The Euler formula elu>t = cos u>t ± i sin ut gives the solution:

This representation of the solution displays for the engineer or the physicist how the
individual quantities influence the system. For example, a pure cosine wave with the
angular frequency u> is obtained for /'(0) = 0 and f = 0, i.e., when the system is a rest
at t = 0 and there are no exterior forces.

In case /(O) = /'(O) = 0 (this means that in addition to being at rest at t = 0, the
position of the spring is at the origin) the system is only influenced by the exterior force,
and we get

The function G(t,r) := — sinu;(i — T) is called the Green's function of the harmonic
UJ

oscillator.

395
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Example 2 (harmonic oscillator with friction):

Applying the Laplace transformation to this, we get

s2F - b + 2sF + F = 0,

which means

The inverse transformation (law 1) yields the solution

One has lim f(i) = 0. This means that the system returns to a position at rest after
t—> + 00

sufficient time.
Example 3 (electrical circuit): We consider an electrical circuit with a resistance R, a
coil with the inductance L and the potential difference V = V(t) (Figure 1.115). The
differential equation for the current I(t) at the time t is:

We set F := =$?{/} and K := Jz?{F}. For simplicity we set
L — 1. As in Example 1, we get

sF -1(0) + RF = K

with the solution

From laws 3 and 4 we get for the solution:

From this one can see that the resistance R > 0 has a dampening effect.
Example 4-' We consider the differential equation

f(n] = 9,
/(O) - /'(0) = ... = /("-1)(0) = 0, n = l , 2 , . . .

Applying the Laplace transformation leads to

snF = G,

LI' + RI = V,
7(0) = a.

Figure 1.115.



1.11. Integral transformations 397

which means F — G

Convolution then gives the solution

In the special case where n = 1 this is

Example 5 (a system of differential equations):

f' + g' = 2k, f'-g' = 2h,
/(O) = g(Q) = 0.

Here the Laplace transformation leads to the system of linear equations (cL 2.1.4.)

sF + sG = 2K, sF-sG = 2H

with the solution

F = (K + H)-, G = (K-H}-.
s s

According to law 1 we have •£?{!} = -. The inverse transformation using convolution
S

yields / = (k + h) * 1 and g = (k — h) * I. This means:

1.11.1.3 Further rules

Translation: &{f(t - b)} = e~bs^{f(t)} for b € R.

Dampening: Sf {e~at/00} = F(s + a) for a e C.

Similarity: Jzf{/(at)} = -F (-} for a > 0.
a \a/

Multiplication: &{tnf(i}} = (-l)nF(n)(s) for n = 1 , 2 , . . .
Inverse transformation: If / € -fC7, then one has

where a denotes some fixed number with a > 7 and F denotes the Laplace transforma-
tion of /.

Exponentiating (law 1
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1.11.2 The Fourier transformation

Extensive tables of Fourier transforms of functions can be found in 0.10.1.

Basic ideas: The basic formula is

with the amplitude

We set ^{f} := F and call F the Fourier transform of /. Moreover, the set of all
Fourier transforms form a space called the Fourier space. The basic property of the
Fourier transformation is obtained upon differentiating (1.189) with respect to t:

Hence the derivative /' passes over to a multiplication iujF in the Fourier space.

Physical interpretation: Let t be the time. The formula (1.189) displays the time-
dependent process / = /(£) as a continuous superposition of oscillations

of angular frequency u; and amplitude F(UJ).

The influence of the angular frequency on the behavior of the function / increases with
the absolute value |F(u;)|.

Example 1 (rectangular momentum): The Fourier transform of the function

Example 2 (dampened oscillations): Let a and /? be positive numbers. The Fourier
transform of the function

is

is
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with

Figure 1.116. Dampened oscillations.

According to Figure 1.116, the
absolute value of the amplitude
\F has a maximum at the dom-
inating frequency u> = 0. This
maximum is steeper when the
dampening is small, i.e., when a.
is small.

Example 3 (Gaussian normal
distribution): The non-normalize
Gaussian distribution f ( t ) :=
e~* /2 has the splendid property
of coinciding with its Fourier
transformation.

The Dirac 'delta function',
white noise and generalized
functions: Let e > 0. The
Fourier transform of the func-
tion

Figure 1.117. The Dirac delta function and
white noise.

is

(Figure 1.117). The following considerations are fundamental to the understanding of
modern physical literature.

(i) The limiting process e —> 0 in Fourier space. We get

ence the amplitude is constant for all frequencies o>. One speaks of 'white noise'.

(ii) Formal limiting process e —> 0 in the domain. Physicists are particularly interested
in whether the real process

corresponds to white noise. Formally we get

and

399
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Moreover, from one gets formally the relation

(iii) Rigorous justification. There is no classical function y = 5(t) with the properties
(1.192) and (1.194). Also, the integral (1.193) diverges. In spite of this, physicists have
used the Dirac delta function, introduced by the renowned physicist Paul Dirac since
about 1930, with great success.

The history of mathematics shows that successful formal calculations can always be
rigorously justified in an appropriate formulation. In the case at hand, this justification
was delivered around 1950 by the French mathematician Laurent Schwartz in the context
of his theory of distributions (generalized functions). These are mathematical objects
which are infinitely differentiable and which can be manipulated more conveniently than
functions. In place of the Dirac delta function one has the Schwartz delta distribution.
This wonderful modern extension of the classical differential calculus of Newton and
Leibniz can be found in 10.4. of section II.

Fourier cosine and sine transformations: For u € M we define the Fourier cosine
transformation by the formula

and similarly, the Fourier sine transformation is given by the formula

We also write ^c{f} and ^s{f} for Fc and Fs, respectively.

Theorem of existence: Let / : R —> C be almost everywhere continuous and suppose
that

for fixed n = 0,1, — Then we have:

(i) In case n = 0, ̂ {/},^c{/} and J^s{/} are continuous on R and

are of type Cn on R. The derivatives are obtained
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by differentiating under the integral sign. For example, for all u G R one has

1.11.2.1 The main theorem:

The Jzfp spaces: By definition, the space J* ,̂ consists of all functions / : R —•» C,
which are almost everywhere continuous and for which the pth power of the absolute
value of the function is integrable,

The Schwartz space 5?\ A function / : R —> C is contained in 5? by definition, if
and only if / is infinitely often differentiate and

for all k, n = 0,1,..., i.e., the function / and all of its derivatives approach zero rapidly
as t —> ±00.

The classical theorem of Dirichlet-Jordan: Suppose a function / e ££\ has in
addition the following properties:

(i) There are finitely many points to < t\ < •.. < tm, such that in each interval, where
the real and imaginary part of / is increasing or decreasing and continuous on each

} t j , t j + i [ .
(ii) In each of the points £_,-, the left and right limit of /, f ( t j ± 0) := lim f ( t j ± e)

exists.

Then the Fourier transform of /, denoted F, exists, and for all i 6 R, one has

In the points where / is continuous, the left side of the above expression is equal to /(£).

Corollary: (i) The Fourier transformation (1.190) determines a bijective map & :
5? —> 5?, which assigns to a function / its Fourier transform. The inverse transforma-
tion is given by the classical formula (1.189).

(ii) This transformation translates differentiation into multiplication and conversely.
More precisely, one has for all / 6 5? and all n = 1,2,.. . the relations
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and

hold. More generally, the formula (1.195) holds for each function / : R —> C of type Cn

such that /,/ ',..., /("•) 6 J*?i. Moreover, the relation (1.196) holds under the weaker
assumption that the two functions / and t n f ( t ) belong to 5£\.

1.11.2.2 Rules for calculations

Rule for differentiation and multiplication: See (1.195) and (1.196).

Linearity: For all /, g e J£\ and a, b € C one has:

Translation: Let a, 6 and c be real numbers with a ̂  0. For each function / € Jz?i one
has the relation:

Convolution: If both / and g belong to Jzfi and to Jz?2, then one has

with the convolution

The Parseval equality: For all functions / 6 5? one has:

Here F denotes the Fourier transform of /.
The connection between the Fourier and the Laplace transformations: Let a
be a real number. We set

Moreover let s := a + \uj. The Fourier transform of the functions of this special form is
given by

This is the Laplace transform of g.
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1.11.3 The Z-transformation

An extensive table of Z-transforms of various functions can be found in 0.10.3.

The Z-transformation can be viewed as a discrete version of the Laplace transformation.
It is used to solve difference equations with constant coefficients.
We consider the sequence of complex numbers

/ = (/o,/i ,- . .)-

The basic formula is then

One calls F the Z-transform of / and writes F = -2°{/}.
Example: Let /:=(!,1,...). The geometric series yields

for all z € C with z\ > 1.
The class W^ of admissible sequences: Let 7 > 0. The class J£y consists by
definition of the set of all sequences / which satisfy the property

|/n| < const e7n, n = 0,l ,2, . . .

We denote by #7 := {z 6 C : \z\ > 7} the outside of a disc of radius 7 around the origin.
Theorem of existence: For / € J£y, the Z-transform F of / exists and is holomorphic
On Ay.

Theorem of uniqueness: If the Z-transforms of two sequences f , g E J£y coincide on
Ry, then / = g.

Inverse transformation: If / € J£y, one obtains / from the Z-transform F by the
formula

Here the integral is carried out over a circle C := {z G C : |z|=r} with radius r > 7.
Convolution: For two sequences we define the convolution / * g by the formula

One has / * g = g * /.
Translation operator: We define Tf by the formula

Then one has (Tfe/) = fn+k for n = 0,1,2, . . . and k = 0, ±1, ±2,. . .
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1.11.3.1 The basic laws

Let F be the Z-transform of /.
First law (linearity): For /,g e J^, and a, b 6 C one has

Second law (translation): For k = 1, 2 , . . . one has:

and

Example:

Third law (convolution): For /, g e Jfc, one has:

Fourth law (Taylor expansion): If we set G(C) := F(l/£), then we have

Fifth law (partial fraction decomposition): For a € C one has:

Applying the same law one gets the inverse transformation for

The inverse transformation of is obtained from the partial fraction decompo-

sition:

Proof of the fifth law: The geometric series yields

2?{T~kj} = Z-kF(z).

2?{Tf} =zF(z)-f0z,
JT{T2/} = z2F(z] - f0z

2 - hz.
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From this the expression (1.197) for the Z-transform of / = (0, l,a, a2 , . . .) follows.
Differentiating (1.198) with respect to z yields

etc.

1.11.3.2 Applications to difference equations

The universal method: The Z-transform is a universal tool for solving equations of
the form

Here we are given complex numbers /?o, • • • , Afc-i and /io, h\,.... The solution will be
the complex numbers /&, /fc+i, — If we set

then we have

etc. Therefore (1.199) can be expressed as a linear combination of /n, A/n , . . . , Afe/n.
This is why one refers to (1.199) as a difference equation of degree k with constant
complex coefficients ao, . . . , afe-i-
One applies the following steps in the solution:
(i) By applying linearity and translation (laws 1 and 2), one gets an equation for the
Z-transform F, which can be solved immediately and yields a rational function F.

(ii) Applying partial fraction decomposition and law 5, we get the solution / of the
original problem (1.199).

Example: The solution of the difference equation of second order

is

In order to get this expression, we write (1.200) first in the form

The law of translation (law 2) then gives us
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From this we get in turn

which implies

The partial fraction decomposition which this leads to is

Law 5 then gives the inverse transformation

Applying finally law 3 we get

This is the solution given in (1.200).

1.11.3.3 Some further rules for calculations

Multiplication: 2f{nfn} = -zF'(z).

Similarity: For every complex number a ^ 0, we have:

Rule of differences: For k = 1,2, . . . and F := 3f{f}, one has

with Ar/0 := /0 for r = 0.

Rule of sums:

Rule for residues: If F is the Z-transform of a rational function / with poles a\,..., a j,
then we have:

The residue of a function g with a pole of order m at a point a is calculated by the
following formula:

(z2 -2z + 1)F = pz + H,
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1.12 Ordinary differential equations

Differential equations form the basis for the scientific
view of the world.

Vladimir Igorovich Arnol'd

Solving differential equations with Mathematical This software package is able
to solve differential equations numerically and also to give the solution in closed form if
this is possible.

A relatively complete list of ordinary and partial differential equations whose solution
is known in closed form can be found in classics on the subject [113].

Smoothness: We say a function is
smooth if it is in the class C°°, that
is, if it is infinitely often differen-
tiable.

A domain O C RN will be called
a domain with smooth boundary, if
the boundary dfl is smooth, that
is, the domain fi lies locally on one
side of the boundary dtt. and this
boundary can be described locally by a smooth function (Figure 1.118(a)). Domains
with smooth boundaries have no corners.

The class of functions which are smooth in the domain O and which have carrier con-
tained inside a compact subset of fi, i.e., which vanish outside a compact subset of Q,
will be denoted C£°(fi).

Example: The function ip depicted in Figure 1.118(b) belongs to the class Co°(0,1). This
function is smooth and vanishes outside the interval ]0, l[ as well as in a neighborhood
of x = 0 and x = I.

1.12.1 Introductory examples

1.12.1.1 Radioactive decay

Consider a radioactive substance (for example radium, which was discovered in 1898 by
the husband and wife scientists Curie). Such a material has the property that certain
of its atoms are continually decaying.

Let N(t) denote the number of atoms at time t which have not decayed. Then the
following law holds:

N'(t) = -ojvm,J (1.202)
N(0) = N0 (initial value).

This equation contains one derivative of the sought-for function and is called a differential
equation for that reason. The initial value describes the fact that at the beginning time
t = 0 the number of atoms which have not yet decayed is equal to NQ. The positive
constant a is the constant of decay.

Figure 1.118. Functions of class CQ°(^,}.
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Existence and uniqueness result: Problem (1.202) has a unique solution (Figure
1.119(a)):

Figure 1.119. Solutions of the differential equations N'(t) = —aN(t), N'(t) = aN(t)
andN'(t) = aN(t)-/3N(t)2.

Proof: (i) (Existence). Differentiating (1.203) gives

Furthermore, jV(0) = JV0.

(ii) (Uniqueness). The right-hand side of the differential equation N' = —aN is of
type Cl with respect to N. The global uniqueness theorem in 1.12.4.2 then gives the
uniqueness of the solution. D
General solution: The general solution of the differential equation (1.202) is obtained
by choosing NQ arbitrarily. This insures (1.203) with the constant JVo-

The following examples can be treated in a similar manner.

Motivation for the differential equation: It is interesting that the differential equa-
tion (1.202) can be derived without knowing anything about the precise process of ra-
dioactive decay. For this consider the Taylor series

Our assumption is that A is proportional to the amount N(t). Because of decay, we
have N(t + At) — N(t) < 0 for At > 0. Therefore A must be negative, and we set

From (1.204) we get

Well-posedness of the problem: Small changes in the starting amount JVo lead to
small changes in the solutions.
To describe this in more detail, we introduce the norm

For two solutions TV and TV* of the differential equation (1.202) we then have
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Stability: The solution is asymptotically stable, meaning that it tends towards an
equilibrium solution for large times. More precisely, we have:

This means that after sufficiently long times all atoms have decayed.

1.12.1.2 The equation for growth

We now let N(t) denote the number of a particular kind of pathogens at time t. We
assume that the reproduction of this species obeys (1.204) with A = aN(t). From this
we get the equation for growth

Existence and uniqueness: The problem (1.206) has a unique solution (Figure
1.119(b)):

The problem is ill-posed: Small changes in the boundary condition NO grow in time
to large differences in the solution:

Instability:

Processes with constant speed of growth grow in time beyond all
bounds and lead to a catastrophe already after relatively short times.

1.12.1.3 Impeded growth (logistic equation)

The equation

with positive constants a and (3 deviates from the growth equation (1.206) by the
impedance term, which describes the difficulties of the population in finding sufficient
food. The equation (1.208) is special case of a so-called Riccati differential equation (see
1.12.4.7).10°

100The logistic equation (1.208) was suggested in 1838 as the equation for the growth of the human
population on earth by the Belgian mathematician Verhulst.
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Rescaling: We change the units for the number of particles N and the time t, that is,
we introduce new variables ̂  and r with

We then get from (1.208) the equation

If we choose 8 := I/a and 7 := a//3, then we get the new equation

Determination of the equilibrium states: The time-independent solutions (equilib-
rium states) of (1.209) are given by

Proof: From JV(j} = const and (1.209) it follows that JY^ — jY = 0, which implies
JV = 0 or jy = 1.

Existence and uniqueness: Let 0 < JY§ < 1. Then the problem (1.209) has for all
times r the solution (see Figure 1.119(c))

with C := (1 - JVftl^.
For <//Q = 0 the problem (1.209) has for all times T the unique solution =yK(r) = 0.

Stability: If 0 < jY§ < 1, the system develops for large times into the equilibrium
solution jY = 1, that is

The equilibrium solution ^Y = 1 is stable, that is small changes in the number of particles
jY at the initial time T = 0 leads by (1.210) after sufficient time to this equilibrium
solution.

The equilibrium solution jY = 0 on the other hand is instable. Small changes in the
number of particles at the initial time r = 0 lead by (1.210) to drastic changes in the
solution after relatively small times.

1.12.1.4 Explosion in finite time (blowing up)

The differential equation

has a unique solution in the interval ] — 7r/2,7r/2[

N(t) = tan£

syf-'(r)=^(r)-^r(r)2,
yK(O) = jY§ (initial condition).

JV(T) = 0 and JV(r) = I .

(1.209)
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(see Figure 1.120).

We have

The unusual thing here is that the solution becomes infinite in
finite time. This is a model for a self-induction process, which is
feared for example by engineers in chemical factories. Figure 1.120.

1.12.1.5 The harmonic oscillator and characteristic oscillations

Simple spring: We consider a
point mass of mass m, which
moves along the x-axis under the
influence of a spring, which devel-
ops a force which is proportional
to the distance from x = 0, FQ :=
—kx\, with an additional external
force Fi := &(t)\. The Newto-
nian law of force tells us that the
force is equal to the mass times
the acceleration, mx" = Fn + Fi,
where x = xi. This yields the differential equation

Figure 1.121. Initial value problem for oscillations.

Here u> := \fkjm and F := & /m. The force function F : [0, oo[—> R is assumed to be
continuous.

Existence and uniqueness: The problem has a unique solution for all times101

x"(t)+u2x(t) = F(t),

x(0) = XQ (initial position),
x'(0) = v (initial velocity).

with the Greens function G(t, r) := ^ sincj(t — T).

Characteristic oscillations: If the external force vanishes, i.e., F = 0, then one calls
a solution of (1.213) a characteristic oscillation of the harmonic oscillator. This is the
superposition of a sinusoidal wave and a cosinosidal wave with the frequency o> and the
period

Example: Figure 1.121(b) shows the characteristic oscillation x = x(t) which incurs, if
the point mass on the x-axis is not central at t — 0 and is not in motion at this time,
i.e., XQ 7^ 0 and v = 0.

101 This solution can be calculated with the help of the Laplace transformation (see (1.188)).
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Well-posedness of the problem: Small changes in the initial position XQ, the initial
velocity v and the external force F lead to small changes in the motion. More precisely,
for two solutions x and z* of (1.212), we have the inequality

with

Here [0, &\ is an arbitrary time interval.

Eigenvalue problem: The problem

-x"(t) = Az(t),
x(0) = x(l] = 0 (boundary condition)

is called an eigenvalue problem. The number / > 0 is given. A non-trivial solution x ^ 0
will be called an eigensolution (x, A). The corresponding number A is then called the
eigenvalue.

Theorem: All eigensolutions are given by

x(t) = Crsin(no>ot), A = n2u>g, u>o — — , n = 1, 2 , . . .
I

Here C is an arbitrary non-zero constant.
v

Proof: We use the solution x(i) = — smut

of (1.213) with x0 = 0, F = 0 and de-
termine the frequency u so that the mass
point meets x = 0 at time I (Figure 1.122).

From sin(u>l) = 0 we get ujl = mr with
7T

n = 1,2,.. . . This yields ui = n— = HUJQ.

Differentiating x(t) — Cs'm(nujQt) then
gives

x"(t) = -\x(i)Figure 1.122.

with

1.12.1.6 Dangerous resonance effects

We consider the harmonic oscillator (1.212) with the periodic external force

F(t) :=sina£.

Definition: This external force is in resonance with the vibrations of the harmonic
oscillator, if a = u>, that is, the frequency a of the external force is the same as the
frequency of the characteristic oscillation.

In this case the external force actually amplifies the characteristic oscillations. This
phenomenon is feared by engineers. For example, in the case of bridges, one has to take
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care that the vibrations generated by traffic are not in resonance with the characteristic
oscillations of the bridge. The construction of earth quake resistant high rises is based
on the fact that the resonance effects of the earth quake vibrations are avoided.
The following considerations show how resonance effects arise mathematically.

The non-resonance case: Let a ^ u>. Then the unique solution of (1.212) for all
times t with periodic external force F(t) := s'mat is:

This solution is bounded for all times.
The resonance case: Let a = u. Then the unique solution of (1.212) for all times t
with external force F(t) = sinwi is:

The last term t-cosuit, which describes
a vibration of the external force of fre-
quency w, is dangerous, as it grows
without bound as t grows, which in
real life can lead to the destruction of
structures (Figure 1.123(a)).

The occurrence of the dangerous reso-
nance term t-cosuit is understandable,
when one realizes that the resonance
solution (1.215) can be derived from
the non-resonance solution (1.214) by
passing to the limit a —» u.

Figure 1.123.

1.12.1.7 Dampening

If there is an additional resistance force F2 = —7x', 7 > 0 acting on the mass point
in 1.12.1.5 which is proportional to the speed of the mass point, then we get from the
equation of motion mx" = FO + F2 = — fcx — 7x' the differential equation

with the positive constant (3 :— 7/2m.
An ansatz: We make the ansatz

From (1.216) we get (A2 + J1 + 2/3X)ext = 0, in other words,

413
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with the solution A± = -0 ± i-y/o;2 - (32. If C and D are arbitrary constants, then the
function

x = Cex+t + D^-*

is a solution of (1.216). The constants C and D are determined from the initial condi-
tions. We also use the Euler formula e(a+l6^ = ea*(cos&£ + isinW).

Existence and uniqueness: Let 0 < /9 < w. Then the problem (1.216) has the unique
solution for all times i102

with o>* := y/u;2 — /?2. These are dampened vibrations.

Example: If the mass point is at rest at t = 0 with XQ ^ 0 but v — 0, then one finds the
dampened vibrations (1.217) in Figure 1.123(b).

1.12.1.8 Chemical reactions and the inverse problem of chemical reaction
kinetics

Let m chemical substances A\,..., Am be given, together with a chemical reaction among
them of the form

with the so-called stochiometrical coefficients i/j. Moreover let Nj be the number of
molecules103 of the substance Aj. We denote by

the density of the substance Aj. Here V is the cumulative volume of the reaction.
Example: The reaction

2Ai + A2 —> 2A3

means that two molecules of substance A\ combine with a single molecule A% to form
two molecules of a third substance A^. One can also write this as follows:

viAi + v<iAi + vsAs = 0

with v\ = — 2, z/2 = — 1 and v^ = 2. An example of this is the reaction

2H2 + O2 —»• 2H2O,

which describes for formulation of two molecules of water from two molecules of hydrogen
and an oxygen molecule.
The fundamental equation of chemical reaction kinetics:

102This solution can be derived with the help of the Laplace transformation (see 1.11.1.2).
103The number of such in chemistry is measured in terms of moles, where one mole contains Avegadro's

number 6.023 • 1023 of molecules.
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Here k is the positive reaction speed constant, which depends on the pressure p and the
temperature T. The numbers ni, n^ ... are called reaction orders. The unknowns are
the dependence on time of the densities of the particles Cj(t).

Remark: Chemical reactions usual will involve sub-reactions with their own products
on the way of completing the reaction. In this way a huge number of systems like (1.218)
are needed to describe the actual chemical changes that occur. In many cases one does
not really know what these sub-reactions are nor does one know the reaction speed
constant k or the reaction orders HJ . This leads to the difficult problem of deducing the
constants k and HJ from measurements of the Cj(t), using (1.218). This is a so-called
inverse problem.104"

Applications in biology: Equations of the form (1.218) or variants thereof occur often
in biology. In this case Nj is the number of living beings of some kind (compare also
the equation for growth (1.206) and the dampened equation of growth (1.208)).105

In the following sections we consider a series of fundamental phenomena in which or-
dinary and partial differential equations occur. The knowledge of these phenomena is
quite helpful in understanding the theory of differential equations.

1.12.2 Basic notions

Many processes in nature and in technology are described by differential equations.

(i) Systems which have finitely many degrees of freedom correspond to ordinary differ-
ential equations (for example the motion of finitely many mass points in Newtonian
mechanics).

(ii) Systems with infinitely many degrees of freedom correspond to partial differential
equations (for example the motion of elastic bodies, liquids, gases, electromagnetic fields
and quantum systems, the description of reaction or diffusion processes in biology and
chemistry or the variation in time of our universe).

The basic equations of the different disciplines in physics are all differential equations.
The starting point for many of them is the Newton law of motion for a particle (for
example a planet or star) of mass m:

This law is, expressed in words, the mass of
the particle times its acceleration is equal to
the force acting on it. One is looking for the
trajectory of the particle,

Figure 1.124-which satisfies the equation (1.219) (Figure
1.124). It is typical for a differential equation
that it contains, in addition to the function
being sought for, also derivatives of the latter (hence of course the name 'differential
equation').

104 At the Konrad-Zuse-Zentrum in Berlin there are very effective computer programs for this kind of
inverse problem which have been developed by Prof. Dr. Peter Deuflhard and his coworkers.

105In complicated cases more terms occur in (1.218).
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Ordinary differential equations: If the function which is being sought depends only
on a single real variable (for example on time t), then the differential equation is referred
to as ordinary.

Example 1: In (1.219) one has an ordinary differential equation.
Partial differential equations: In physical field theories the quantities involved (for
example the temperature or the strength of the electromagnetic field) depends on sev-
eral variables (for example on time and position). The differential equation for these
quantities then contains partial derivatives of the function being sought for, and is thus
called a partial differential equation.

Example 2: The temperature field T = T(x, y, z, t) of a body satisfies in many cases the
heat conduction equation

with AT := Txx + Tyy + Tzz. Here T(x,y,z,t) denotes the temperature at the posi-
tion (z, y, z) at the time t. The material constant K characterizes the ability of heat
conduction of the body.

1.12.2.1 The fundamental 'infinitesimal' epistemological strategy in the nat-
ural sciences

The differential equation (1.219) describes the behavior of a trajectory at an 'infinitesi-
mal level', which means roughly speaking that it is valid for extremely small times t.we

This is part of an astounding epistemological phenomenon, which roughly speaking says
the following.

At the 'infinitesimal level' (i.e., for extremely small times and
extremely small spatial distances), all processes in nature become
very simple and can be expressed in terms of a few basic equations.

These basic equations then encode an incredible amount of information. It is the job of
mathematics to decode this information, i.e., solve the differential equation for reason-
able times and spatial distances.

With the creation of infinitesimal calculations, i.e., calculus, Newton and Leibniz have
given us the key to a deeper understanding of phenomena occuring in the natural sci-
ences. This achievement of the human mind can not be esteemed highly enough.

1.12.2.2 The role of initial conditions

The differential equation of Newton (1.219) describes all possible motions of the particle
of mass m. Astronomers, for example, are really interested in calculating the trajecto-
ries of heavenly bodies. In order to calculate these trajectories, one must introduce in
addition to the equations of Newton the situation of the bodies in question at a given

106Ever since Newton (1643-1727) and Leibniz (1646-1716) one speaks of 'infinitesimal' or 'infinitely
small' times and spatial distances. A precise mathematical interpretation of this notion can be obtained
using modern non-standard analysis (cf. [53]). Traditionally in rigorous mathematics the notion of
'infinitely small' is not used, but rather replaced by the consideration of limits.



1.12. Ordinary differential equations 417

time to. More precisely, one has to consider the following problem.

mx"(t) = F(x(t), t) (equation of motion),

x(fo) = XD (initial position), (1.221)

x'(£o) = VQ (initial velocity).

Existence and uniqueness result: We assume the following:

(i) At the initial time to the position XQ and the velocity vector VQ of this point (the
space object) are given.

(ii) The force field F = F(x, t) is sufficiently smooth (for example of type C1) for all
positions x and all times t in a small neighborhood of the initial time to.

Then there is a spatial neighborhood C/(XQ) and a time-interval J(to) such that the
problem (1.221) has exactly one solution which is a trajectory

x = x(t),

which remains in t/(xo) for all times t £ J(io)-107

This result surprisingly insures the existence of a trajectory only for sufficiently small
times. But in general one can not expect more to hold. It is possible, that

lim |x(£)| = oo,
*->*!

i.e., the force F is so strong, that the particle reaches 'infinity' in a finite time t\.

Example (model problem): For the force F(x) := 2mx(l + or2), the differential equation

mx" = F(x),

x(0) = 0, z'(0) = 1

has the unique solution
x(t) = tant, -- < t < -.

Here we have
lim x(i] = +00.

t-»f-o

To insure that a solution for all times exists, one uses the following general principle:

A-priori estimates insure global solutions.

This can be found in section 1.12.9.8.

1.12.2.3 The role of stability

The gravitational field of the sun has the form

107 This is a special case of the general existence and uniqueness theorem of Picard-Lindelof (cf. section
1.12.4.1).
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in which M is the mass of the sun, m is the mass of the massive particle or body in the
gravitational field of the sun and G denotes the gravitational constant. At the center of
the sun x = u>, this force field has a singularity.

The famous problem of the stability of the solar system: This problem is summed
up in the following two questions.

(a) Are the trajectories of the planets stable, i.e., do they change their form in long
times very little?

(b) Is it possible that a planet could collide into the sun or escape from the solar system
altogether?

Many great mathematicians have worked on this problem ever since Lagrange (1736-
1813). First it was attempted to express the trajectories of the planets in closed terms
through 'elementary functions'. Toward the end of the nineteenth century, however, it
was realized by Poincare (1854-1912) that this is not possible, not even in principle.
This led to two completely new directions of development in mathematics.

(I) Abstract proofs of existence and topology: Since it did not seem possible
to write down explicitly solutions, it was attempted to at least prove their existence
by indirect, abstract methods. This lead to the development of fixed-point theorems,
which will be described in detail in [212]. One of the topological fundamental principles
toward the existence of solutions of ordinary and partial differential equations is the
famous principle of Leray-Schrauder, which originated in 1934 and is

A-priori estimates insure the existence of solutions.

(II) Dynamical systems and topology: Scientists and engineers are often interested
not in the precise form of solutions, but only in the fundamental properties of their
behavior (for example the existence of stable equilibrium positions of stable periodic
vibrations or also the possible transition to chaos). This set of problems is the topic of
investigation of the science of dynamical systems, which will be described in detail in
[212].

Those branches of mathematics which are more interested in the qualitative behavior
of objects is topology. Both topology and the theory of dynamical systems were initi-
ated by the great French mathematician Poincare in connection with his fundamental
investigations of stability in celestial mechanics.108 A readable account of his historical
discoveries in this regard can be found in the book [217].

Some aspects of stability theory were developed in the middle of the nineteenth century
by engineers. They were interested in constructing machines, buildings and bridges in
such a way that they were stable and not easily destroyed by the elements (wind and
storms).

Fundamental general mathematical results of stability theory were obtained by the Rus-
sian mathematician Liapunov in 1892. With this, stability theory came into being as a
separate mathematical discipline, which is still today the subject of intensive research.
For many complicated problems the stability properties of the solutions are still not

108 In 1892 the first of a three-volume series Les methodes nouvelles de la mecanique celeste appeared.
With this set of volumes, Poincare continued a tradition started by the volume La mecanique analytique
by Lagrange (1788) and the five volumes entitled La mecanique celeste by Laplace in 1799.
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noindent known today. Note:

Mathematically correct solutions can be completely irrelevant in the real
world, if they are instable and therefore cannot be realized in nature.

A similar statement is true for numerical procedures made for computers. Only stable
numerical procedures, that is, ones which are robust with respect to rounding errors, are
of use.

The problem of stability of the solar system is still unsolved today. In 1955, Kolmogorov
and later also Arnol'd and Moser showed that the perturbation of quasiperiodic motions
(as the motion of the solar system) are very sensitive to the kind of perturbation and
can end in chaos (KAM-theory). A miniscule particle can possibly lead to a change
in the total motion of the system. For this reason, the question of stability of the
solar system will never be solved by theoretical considerations. Week-long computations
with supercomputers (for example at the famous Massechusettes Institute of Technology
(MIT) in Boston) have shown that the solar system will remain stable for at least the
next one million years.

1.12.2.4 The role of boundary conditions and the fundamental idea of
Green's functions

In addition to initial conditions, we also have to consider boundary conditions.

Example 3 (elastic rod): The motion (displacement) y = y ( x ) of an elastic rod under
the influence of an external force is described by the following mathematical problem:

-K,y"(x) = f ( x ) (equilibrium of forces),
y(0) = y(l) = 0 (boundary condition).

Here, 

which acts in the interval [a,b] on the
rod in the y-direction, i.e., f ( x ) is the
density of the exterior force at the point
x. The positive material constant n
describes the elastic properties of the
rod. The boundary condition describes
the fact that the rod is spanned at
the points x = 0 and x — I (Figure
1.125(a)).

Figure 1.125. The differential equation for an
elastic rod.

Connection with the calculus of variations:

The appearance of boundary conditions is typical
for problems which are related to variations.

For example, (1.223) results as the Euler-Lagrange equation from the principle of least

^ ^^

j denotes 
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action

with the Lagrange function L := —y' — fy (cf. 5.1.2). Here, one has:

the elastic energy of the rod minus the work done by the force.

Representation of solutions with the help of the Green's function: The unique
solution of (1.123) is given by the formula

Here, the Green's function of the problem (1.223) is

Physical interpretation of the Green's function: We choose the force density

which for smaller and smaller e is more and more concentrated at the point XQ and which
corresponds to a total force of

(Figure 1.125(b)). The motion determined by this is denoted by ye. Then one has

The formal use of the Dirac delta function: Often physicists write the formal
expression

and say that y(x) := G(X,XQ) is a solution of the initial value problem (1.223) for the
point-density force f ( x ) := 6(x — XQ). The function 6(x — XQ) is called the Dirac delta
function. In this formal sense, we have

-KGxx(x,xQ) = 6(x-x0) on]0, / [ ,

G(0,xo) = G(l,xo) = 0 (boundary condition).
(1.225)
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The precise mathematical formulation in the context of the theory of distri-
butions: The Green's function is a solution of the boundary value problem

-KGxx(x, so) = £*0
on 1M>  226)

G(0,xo) = G(l,xo) = 0 (boundary condition).

Here, SXo stands for the delta distribution, and the solution (1.226) is to be understood
in the sense of distributions.109

Green's functions were introduced around 1830 by the English mathematician and physi-
cist George Green (1793-1841). The general strategy is:

The Green's function described physical effects which are generated by
sharply concentrated exterior influences £'.
The effect of general exterior influences is derived as the supposition
of exterior influences with similar (sharp) forms as £.

The method of Green's functions is used intensively in all areas of physics, since it allows
a localization of physical effects and shows how general physical effects are constructed.
In quantum field theory, for example, Green's functions are calculated with the help of
Feynman integrals (path integrals).
The formula (1.224) for the solution represents the action of an arbitrary force as the
superposition of individual forces

G(x,0/(0

which are localized at the point £.

1.12.2.5 The role of boundary—initial conditions

In physical fields theories, one must prescribe the structure of the fields at the initial
time to and at the boundary of a domain. Often one sets to := 0.
Example (heat conduction): In order to uniquely determine the distribution of temper-
ature in a body, one needs to know the distribution at the initial time t = 0 and the
distribution for all times t > 0 along the boundary. Therefore, one has to add to the
heat conduction equation (1.220) the following conditions:

Tt - /sAT = 0, P e D, t > 0,

T(P,0) = T0(P), PeD, (initial temperature), (1.228)
T(P, t) = Ti(P, t), P e dD, t > 0 (boundary temperature).

109 The theory of distributions, which was created around 1950 by the French mathematician Laurent
Schwartz, is described in [212]. The equation (1.226) then means

for all test functions if € C§°(0,1). The equation (1.227) follows formally upon multiplying (1.225) by
<p, partially integrating over [0,1] twice and using
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Here we have set P := (x, y, z).

Theorems on existence and uniqueness: If D is a bounded domain with smooth
boundary in R3, and if the prescribed initial temperature TO as well as the given bound-
ary temperature T\ are smooth, then the heat conduction equation (1.228) has a uniquely
determined smooth solution T in D for all times t > 0.

1.12.2.6 Well-posed problems

In order for a mathematical model in the form of a differential equation to be of use
in the investigation of scientific phenomena, the differential equation must possess the
following properties:

(i) There is a unique solution.

(ii) Small changes in the initial conditions lead to small changes in the solutions.

Problems for which these properties hold are referred to as well-posed. In each case, one
must make more precise what is to be understood under 'small' changes.

In the case of time-dependent problems, one is in addition interested in the global
stability:

(iii) The solution exists for all times t > to and tends to an equilibrium position for
t —> +00.

Example 1: The initial value problem

y' = -y, y(0) = e (1.229)

is well-posed for e = 0, since (1.229) has for arbitrary e the unique solution

If e = 0, we get the equilibrium so-
lution y(t) = 0. For small perturba-
tions £, the solution (1.230) changes
but slightly and because of

lim ee~* = 0
t—> + 00

for large times t, it tends in that case to
the equilibrium solution y = 0 (Figure
1.126(a)).

Example 2: The initial value problemFigure 1.126. Perturbations of solutions of dif-
ferential equations.

is for e = 0 not well-posed. Indeed, the uniquely determined solution

y ( t ) = ee*

blows up for every, arbitrarily small, initial value e ̂  0 (Figure 1.126(b)).

Example 3 (ill-posed inverse problem): A satellite measures the gravitational field of
the earth. From this, one would like to determine the density g of the earth; one is
particularly interested in localizing oil fields.

This problem is ill-posed, i.e., the density g cannot be uniquely determined from the
measurements.

y(t) = £e"*, t £ R. (1.230)

y' = y, y(o) = e
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1.12.2.7 Reduction to integral equations

Example 1: The problem
y'(t)=g(t), y(0)=a,

has the unique solution

Therefore, one can reduce the more general problem

to the equivalent problem

This equation contains an unknown function y under the integral sign and is therefore
referred to as an integral equation. This integral equation can be solved by means of the
iteration process

Example 2: The boundary value problem

can, because of the formula (1.224) for a solution, be reduced to the equivalent integral
equation

Integral equations will be dealt with systematically in [212]. In the classical theory of
partial differential equations, one used to pass to equivalent integral equations by use
of Green's functions. This method, however, turns out to be quite toilsome for more
complicated problems, and in some cases yields no result at all. In the more modern,
functional analytic theory of partial differential equations, which arose around 1935,
partial differential equations are viewed from the beginning as equations for differential
operators, without passing over to integral equations.

1.12.2.8 The importance of integrability conditions

For functions of the class C2, u = u(x,y}, we have the commutativity of partial differ-
entiation:



424 1. Analysis

This relation plays an important role in many questions in the theory of partial differ-
ential equations.

Example 1: The equation

can not possess any solutions. Indeed, for a solution w, we would have uxy = uyx, which
because of uxy = 0 and uyx — 1 cannot possibly be true.
Example 2: Let the (^-functions / = f ( x , y ) , g = g(x,y] be given, defined on a domain
D in R2. We consider the equation

ux(x,y) = f ( x , y ) , uy(x,y) = g ( x , y ) on D.

If a C2-solution u exists, then because of uxy = uyx, the so-called integrability condition

f y ( x , y } = 9x(x,y) onD

must hold. This condition is sufficient for the existence of a solution, if D is simply
connected. The solution can then be determined as the curve integral

which is independent of the path of integration.

If one chooses D as a small disk around a point, then D is simply connected. Thus
the validity of the integrability condition is sufficient for solving the initial problem
ux = /, uy = g locally.
It is a basic experience which has been made again and again, that necessary integrability
conditions are also sufficient for the local solvability. In contrast, the global solvability
depends in a decisive way on the structure (topology) of the domain.110 Integrability
conditions play an important role in many applications:
(i) The fundamental theorema egregium of Gauss represents an integrability condition
for the derivative equations of a surface (cf. 3.6.3.3).

(ii) The two facts: every circulation-free force field (like for example the gravitational
field) has a potential, and: the electromagnetic field is the derivative of a four-potential,
are both consequences of integrability conditions.
(iii) Important relations in thermodynamics follow from the integrability conditions for
Gibbs' equation, which is closely related to the first and second theorem of thermody-
namics (cf. 1.13.1.10).
The appropriate set-up for the elegant treatment of integrability conditions is given by
the Cartan-Kahler theorem on differential forms (cf. 1.13.5.4).

1.12.3 The classification of differential equations

The order of a differential equation: The highest derivative occuring in a differential
equation is called the order.
Example 1: The Newtonian law of motion

mx" = F
110A very deep result in this direction is the de Rham theorem (see [212]).

ux=x, uy=x
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contains two time derivatives and is thus of order two.
The heat equation

contains one time derivative and two derivatives in each of the space variables. This
differential equation therefore has order two.

Systems of differential equations: The heat equation (1.231) is a differential equa-
tion for the temperature, viewed as a function of time. In case there are more than one
equation or function in the differential equation, one speaks of systems of differential
equations.
Example 2: If we use Cartesian coordinates, then for a vector of position we can write
x := xi + yj + -2k. Decomposing the force vector in the same way, F := X\ + Yj + Z\a,
the Newtonian law of action of Example 1 can be written:

mx"(t) = X(P(t), t), my"(t] = Y(P(t), t), mz"(t] = Z(P(t),t)

with P :— (x,y,z). This is a system of differential equations of order two.

1.12.3.1 The principle of reduction

Any differential equation and any system of differential equations
can be reduced to an equivalent system of differential equations of
first order by introducing appropriate variables.

Example 1: The differential equation of second order

y" + y + y = o
is transformed into the equivalent system of differential equations of first order

y ' = p >
p' + p + y = 0

by introducing the new variable p := y'. In a similar manner, the equation

y'" + y" + y' + y = 0

is transformed into
P = y', Q = P',
q' + q + p + y = Q,

by introducing p := y' and q := y".

Example 2: The Laplace equation

l^xx ~r" ^yy — ̂

is transformed into the equivalent system of first order

p = ux, q = uy,
Px + Qy=0

by changing variables to p := ux and q := uy.
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1.12.3.2 Linear differential equations and the principle of supposition

A linear differential equation for the unknown function u has by definition the form

where the right hand side / also depends on the variable u and the differential operator
L has the characteristic property:

for all sufficiently smooth functions u,v and all real numbers a, (3.

Example 1: The ordinary differential equation

u"(t) = f ( t )

is linear. To see this, set

d2

Often one writes simply L := --^. Prom the additivity of differentiation we get
at^

Consequently, the linearity condition (1.233) is satisfied.

Example 2: The most general ordinary differential equation of nth order for the function
u — u(t) has the form

aou + aiu' + a^u" + . . . + anu^ = /,

where all coefficients a; and / are functions of the time t and an ^ 0.

The most general linear differential equation is a linear combination of partial derivatives
with coefficients, which are all functions of the same variables as the function which is
the solution of the equation.

Example 3: Let u = u(x,y). The differential equation

is linear in case a = a(x,y), b = b(x,y) and / = f(x,y) are all functions of only the
independent variables x and y.

In case the right-hand side / = /(x, y,w) also depends on the unknown u, then (1.234)
is a non-linear differential equation.

Homogenous equations: A linear differential equation (1.232) is said to be homoge-
nous, if / = 0, otherwise it is called inhomogenous.

The principle of superposition: (i) For a homogenous differential equation, a linear
combination cm + /3v of solutions u and v is also a solution of the equation, (ii) For an
inhomogenous equation one has the following important rule:

The general solution of the inhomogenous equation
= a particular solution of the inhomogenous equation (1.235)
+ the general solution of the homogenous equation.
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Example 4-' We consider the differential equation

u' = 1 on R.

A particular solution is u = t. The general solution of the homogenous equation u' = 0
is u = const. Hence, the general solution of the inhomogenous system is

u = t + const.

1.12.3.3 Non-linear differential equations

Non-linear differential equations describe processes with interactions.

Most processes in nature are processes with some kind of interaction. This explains
the importance of non-linear differential equations in the natural sciences. An apparent
exception to this rule is formed by the set of Maxwell equations for the electromagnetic
field. However, these equations only describe a part of the total phenomena of the
electromagnetic fields. The complete equations of quantum electrodynamics describe
interactions between electromagnetic waves (photons), electrons and positrons. These
equations are indeed non-linear.

For non-linear differential equations the superposition principle is not valid.

Example 1: The Newton equations of motion for a planet in the gravitational field of
the sun is

These equations (one for each coordinate of the vector x) are non-linear and describe
the gravitational interaction of the sun and the planets.

Semilinear equations: If L is a linear differential operator of order n as in (1.232),
one calls an equation of the form

Lu — f(u)

semilinear, the right-hand side of / depends on the sought-for function u and its deriva-
tives up to order n — 1.

Example 2: The equation uxx + uyy = f(u,ux,uy,x,y) is semilinear.
Quasilinear equations: An equation which is linear in its highest derivative is called
quasilinear.

Example 3: The equation auxx + buyy = f is quasilinear, if a, b and / depend (only) on
x,y,u,ux and uy.

1.12.3.4 Stationary and non-stationary processes

A process which depends on the time t is said to be non-stationary. Stationary process
are by definition those which are independent of time.

Stationary processes correspond to equilibrium configurations
in nature, technology and economy.
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1.12.3.5 Equilibrium configurations

Stable equilibrium configurations: A configuration in equilibrium is said to be
stable, if the system is unaffected by small perturbations, i.e., after a small perturbation
out of the equilibrium position, the configuration returns after a finite time to the
equilibrium.

In our physical world, only stable equilibrium configurations occur.

Unstable equilibrium configurations are those which leave equilibrium indefinitely after
small perturbations.

The principle of equilibrium: In order to find the equilibrium solutions of a differen-
tial equation for a non-stationary process, one sets all time derivatives in the differential
equation to zero and solves the resulting differential equation.

Example 1: Consider the non-stationary heat equation

We get the equilibrium solutions by searching for solutions T = T(x,y,z) which are
independent of time. Thus one has Tt = 0. Thus we are looking for solutions to the
stationary heat equation

One expects that a non-stationary (time dependent) heat distribution tends to an equi-
librium under mild assumptions at t —> oo, i.e., certain solutions of (1.236) tend to a
solution of (1.237) as t —> oo.

This expectation can be rigorously justified for a general situation under appropriate
assumptions.

We explain this in the following simple model problem.

Example 2: Let a ^ 0. In order to find the equilibrium solutions of the differential
equation

we assume that the solution does not depend on time. Thus y'(t) = 0 and hence

According to Examples 1 and 2 in 1.12.2.6 this equilibrium solution for a = — I is stable
and for a = 1 it is unstable (Figure 1.126).

1.12.3.6 The method of comparing coefficients - a general method of solu-
tion

Example 1: To solve the equation
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we use the Taylor expansion

If we know w(0) and u'(0), then all higher derivatives w"(0), «'"(0),... can be calculated
from the differential equation. At the same time, we must include the following initial
value problem to get a unique solution

u" = u + 1, u(0) = a, tt'(O) = b.

Then we get
w"(0) = w(0) + 1 = a + 1, «'"(0) = u'(0) = b,
w<2n>(0) = a + l, tt(2n+1>(0)"=&, n = l ,2 , . . .

In the same way one can solve any ordinary differential equation
from which the highest derivatives can be solved for.

The same method can also be applied to partial differential equations. In this case,
however, a new effect enters the game, which has to do with the characteristics of the
differential equation.

Example 2: Let the function (p = ip(x) be given. We are looking for a function u :—
u(x,y) which solves the following initial value problem:

uy =u,
u(x,Q) = tp(x) (initial value),

i.e., we prescribe the values of u along the x-axis. To proceed, we take the Taylor
expansion of the function at the origin,

u(x, y ) = w(0,0) + ux(0,0)x + uy(Q, 0)y + .. . .

For this method to yield a well-defined expression, we have to be able to determine all
the partial derivatives of u from the initial values and differential equation. In the case
at hand this is in fact possible. The initial condition u(x, 0) = <p(x) yields first all the
partial derivatives with respect to x:

u(Q, 0) = tp(0), ux(Q, 0) = y/(0), uxx(Q, 0) = <p"(0) and so on.

From the differential equation uy = u we get

u t f(0,0) = u(0,0) = <p(0).

All remaining derivatives can be determined by differentiating the differential equation:

uyx(Q, 0) = ux(0,0) and so on.

Example 3: The situation is completely different for the initial value problem

uy = u,
u(Q,y) = ip(y) (initial value),
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for which we prescribe the values of u along the y-axis.

In this case we have no information whatsoever about the derivatives with respect to
x. In fact, the differential equation and the initial value problems can contradict one
another, so that no solutions at all exist. For example, a solution would have to fulfill
uy(0,0) = ^'(0) and at the same time uy(Q,0) = u(0,0) = t/;(0), and hence

This necessary condition for the existence of a solution is referred to as a compatibility
condition] if this condition is not satisfied, then no solutions can exist.

Example 4: Let the line I : y = ax with a ^ 0 be given. To solve the initial value
condition

uy = n,
u is known along I (initial value)

we choose I as ^-coordinate axis and introduce new
coordinates £,y (Figure 1.127(b)).

If we write the function u in these new coordinates,
then we get the problem

uy = u,
«(£,0) = y>(0,

which can be solved in the same way as Example
2 above.111

Figure 1.127.

Characteristics: Because of the course of Examples 2 to 4 above, one says that in
these cases the y-axis is characteristic for the differential equation

uy — u

while all other lines through the origin are not characteristic.

The general theory of characteristics and their physical interpretation will be considered
in 1.13.3. The behavior of characteristics of a differential equation can at the same time
be used to classify partial differential equations (elliptic, parabolic and hyperbolic, cf.
1.13.3.2).

Roughly speaking one has

Characteristics correspond to the initial conditions of systems which
do not determine solutions uniquely or which allow no solutions at all.

From a physical point of view characteristics are important because they describe wave
fronts. The propagation of waves is the most important mechanism in nature for trans-
porting energy.

Example 5: The equation

111 The rigorous justification of the power series method described here can be carried out for ordinary
and partial differential equations using the theorems of Cauchy and Cauchy-Kowalewskaja (cf. 1.12.9.3
and 1.13.5.1).
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describes the propagation of a wave with speed c from left to
right (Figure 1.128).

(i) If we prescribe the values of u at the initial time t = 0, we
can determine the function tp from the equation u(x, 0) = y>(x)
uniquely.

(ii) If on the other hand we prescribe u along the line x — ct =
const = a, then only the value <p(a) is determined, and the func-
tion (p is arbitrary up to this value.

Figure 1.128.

1.12.3.7 Important information which can be derived from a differential
equation without actually solving it

In many cases it is not possible to explicitly solve a differential equation. Because of
this it is of great value to derive as much physically relevant information directly from
a given differential equation. Among others, the following kinds of information can be
obtained in this manner:

(i) conservation laws (such as conservation of energy);

(ii) equations for the wave fronts (characteristics), see 1.13.3.1;

(iii) maximum principles (cf. 1.13.4.2);

(iv) criteria for stability (cf. 1.12.7).

Example (conservation of energy): Let x = x(t) be a solution of the differential equation

mx"(t) = -U'(x(t}}.

If we set

then we have

in other words,

E(i) = const.

This is the law of conservation of energy.

In deriving this relation we only used the differential equation and not the form of a
solution.

1.12.3.8 Symmetry and conservation laws

Example 1 (conservation of energy): We consider the Euler-Lagrange equation (see
sections 5.1.1 and 14.5.2)

for the Lagrange function L and a function P(t) := (<f(t), <?'(*))• If we set

E(t}:=q'(t)Lq,(P(t}}-L(P(t}\
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then for every solution of (1.239) we have the following law of conservation of energy:

Conservation laws are of fundamental importance in nature and are responsible for the
stability of different forms in the world around us. A world without conservation laws
would be complete chaos.

What is the deeper reason for the occurrence of such conservation laws? One answer to
this difficult question is the following:

Symmetries in our world are responsible for the conservation laws we observe.

The rigorous mathematical formulation of this basic epistemological principle is the
content of the famous theorem of Emmy Noether, proved in 1918. This theorem, which
is of extreme importance for theoretical physics, will be considered in more detail in
[212].

Example 2: The conservation of energy (1.240) is a special case of the Noether's theorem.
The corresponding symmetry property derives from the fact that the Lagrange function
L does not depend on time t. Because of this, the equation (1.239) is invariant under
translations in time. This means: if

q = q(t)

-s a solution of (1.239), then the function

q = q(t + t0]

is also a solution, where to denotes an arbitrary time constant.

Definition: One says a physical system is invariant under time translations, if the
following statement holds: if a physical process & is possible, then also any process
which is derived from & by adding a time constant is also possible.

Systems which are invariant under time translations
possess a conserved quantity, which is called energy.

Example 3: The gravitational field of our sun is independent of time. Therefore, all
motions of the planets around the sun are invariant under time translations, thus any
motion resulting from an existing motion by a translation in time is possible.

If the gravitational field of the sun were time dependent, then the choice of an initial
value (time) would be of utmost importance in determining the motion of the planets.
In this case conservation of energy for planetary motion would not hold (cf. 1.9.6).

Systems which are invariant under a rotation possess a conserved quan-
tity, which one refers to as angular momentum. Conservation of an-
gular momentum means: if a process &> is possible then any other
motion which derives from & by a rotation is also possible.

Example 4'- The gravitational field of our sun is rotationally symmetric. Thus angular
momentum is a conserved quantity for our solar system.
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Systems which are invariant under translations possess
a conserved quantity which is referred to as momentum.

Example 5: If one lets the location of the sun in the solar system be variable instead
of being situated at the origin, our solar system is invariant under translations. Thus,
momentum is a conserved quantity for the solar system. This is equivalent to the
statement that the center of mass of the solar system moves in a straight line with
constant velocity (cf. 1.9.6).

1.12.3.9 Strategies for obtaining uniqueness results

For ordinary differential equations there is a very simple general uniqueness result (cf.
1.12.4.2). For partial differential equations, however, the situation is much more com-
plicated. One has the following methods for checking uniqueness of solutions.

(i) The method of energy, which is based on the law of conservation of energy (cf.
1.13.4.1) and
(ii) maximum principles (cf. 1.13.4.2).

We explain the basic idea in two simple examples.
Energy method: Example 1: The initial value problem

has at most one solution.

Proof: Suppose that there were two different solutions x\ and x^. Then as in all unique-
ness results, we consider the difference

y(t) := Xl(t) - x2(t).

We will be finished if we can show that y(t) = 0.
To do this, we first note the equation for y which results when we subtract (1.241) for
x = x\ and x = x^'-

my" = -y, y(0) = y'(0) = 0.

From conservation of energy as in 1.12.3.7 with U = y2/2, we have

If we consider the initial time t = 0, then we get from the relations y(0) = y'(0) = 0 the
relation E = 0. Hence

y(t) = 0.

The simple physical idea behind this proof is the intuitively clear fact:

If a system in which conservation of energy holds is at rest at an initial
time, then the system has no energy and remains at rest for all times.

Maximum principle: Example 2: Let £7 be a bounded domain in R3. Every solution
T of the stationary heat equation
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which is of type C2 on the closure Q = fl U dfl, attains its maximum and minimum on
the boundary.

In particular, if T = 0 on d£l for a solution of (1.242), then T = 0 on H.

Physical interpretation: If the temperature at the boundary vanishes, then there can
be no point P in the interior such that T(P) ^ 0. Otherwise, the rate of change of
temperature would lead to a time independent heat flow, which contradicts the time
independent (stationary) property of the system.

Example 3 (uniqueness): Let the function TO be given. The boundary value problem

has at most a single solution T.

Proof: If TI and T% are different solutions, the difference T := T\— T2 fulfills the equation
(1.243) with TO = 0. Hence, by Example 2, T = 0.

1.12.4 Elementary methods of solution

Laplace transformation: Every linear differential equation of arbitrary order with
constant coefficients as well as every system of such equations can be solved with the
help of the Laplace transformation (cf. 1.11.1.2).

Quadratures: By definition, a differential equation can be solved by quadratures, if
the solution can be found by computing integrals. The following so-called elementary
solution methods are of this type.112

1.12.4.1 The local existence and uniqueness theorem

x'(t) = f(t,x(t»,
x(to) = XQ (initial value).

Definition: Let a point (to,XQ~) € R2 be given. The initial value
problem (1.244) is locally uniquely solvable, if and only if, there is
a rectangle R := {(to,x) € R2 : \t — to\ < a, \x — XQ\ < /?}, such
that in R a unique solution x = x(t) of (1.244) exists (Figure
1.129).113

The theorem of Picard (1890) and Lindelof (1894): If / is
of type Cl in a neighborhood of a point (to,xn). then the initialFigure 1.129.

value problem is locally uniquely solvable. This solution can be obtained by means of
the iteration scheme114

112The most general differential equation can not be solved by quadratures.
A general symmetry principle, through which many differential equations can be solved by quadra-

tures, was discovered by the Norwegian mathematician Sophus Lie (1842-1899). This principle, which
uses the theory of transformation groups, can be found in [212].

113This means there is a unique solution x = x(t) of (1.244) with \x(t) — XQ\ < /3 for all times t with
|*-*o| < a.

114The proof of this relies on the Banach fixed-point theorem, and can be found in [212].

(1.244
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The zeroth approximation is the constant function xo(t] = XQ.

Relaxing the assumptions: It is sufficient that one of the following assumptions is
satisfied:

(i) / and the partial derivative fx are continuous in a neighborhood of the point (to, XQ).

(ii) / is continuous in a neighborhood U of the point (to,xo) and Lipschitz continuous
with respect to x, i.e., one has

for all points (t, x) and (t,y) in U.

In fact, (i) is a special case of (ii).

The theorem of Peano (1890): If / is continuous in a neighborhood U of the point
(£o>£o), then the initial value problem (1.244) is locally solvable.

However, the uniqueness of such a solution can not be guaranteed.115

Generalization to systems: All the statements above remain valid, when (1.244)
represents a system of differential equations. In this case x = (xi , . . . ,x n ) and / =
(/i) • • • , fn)- The equation (1.244) is in this case explicitly:116

^(t) = /,-(t,z(t)), j = l , . . . ,n , (1245)
Xj(to) = XJQ.

According to the reduction principle, an arbitrary system of arbitrary order can be
reduced to one of the form (1.245) (cf. 1.12.3.1).

Generalization to systems of differential equations with complex variables:
All statements remain valid, with appropriate modifications, if the Xj are complex vari-
ables and the values f j ( t , x ) are complex.

Global existence and uniqueness results: In this respect, see 1.12.9.1.

1.12.4.2 The global theorem of uniqueness

Theorem: Suppose that x = x(t), t\ < t < t-2 is a solu-
tion of (1.244) such that every point (t,x(t)) has a neigh-
borhood U on which / is of type C1. Then the initial
value117 problem (1.244) has no further solution on the
interval ]ti,*2[ (Figure 1.130).

Figure 1.130.

Proof idea: A further solution would necessarily differ from the given one in some point,
which is impossible by the Theorem of Picard-Lindelof.

Generalization: A similar result holds for real and complex-valued systems.
115 The theorem of Peano can be proved with the fixed point theorem of Schauder, which is based on

the notion of compactness (cf. [212]).
116We denote in this case by fx the matrix (dfj/dx/.) of the first partial derivatives with respect to

x i , . . . , xn, and we set:

117It is sufficient that one of the two following conditions is satisfied:

(i) / and fx are continuous on U.

(ii) / is continuous on U and in addition Lipschitz continuous with respect to x.
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1.12.4.3 A general strategy for finding solutions

Physicists and engineers (as well as mathematicians in the seventeenth and eighteenth
centuries) developed mnemonic and very simple formal methods for solving differential
equations (cf. for example 1.12.4.4). If one has found a 'solution' with the help of one
of these methods, then there are two important questions:

(a) Is this in fact a solution?

(b) Is this the only solution or are there more solutions, which the formal method does
not find?

The answers are:

(a) A solution can be recognized by carrying out the differentiation occurring in the
differential equation explicitly.

(b) Use the global uniqueness result of 1.12.4.2.

In the next section we will consider applications of this strategy.

1.12.4.4 Separation of variables

Formal method: The differential calculus of Leibniz elegantly yields immediately

and

If one wants to accommodate initial conditions, then one writes:

Theorem: If / is continuous in a neighborhood of to and g is of type Cl in a neigh-
borhood of XQ and g(xo) ^ 0, then the initial value problem (1.246) is locally uniquely
solvable. The solution can be obtained by solving equation (1.247) for x.

Remark: This theorem insures the solution for times which lie in a small neighborhood
of the initial time. In general it is not possible to obtain more than this (cf. Example
2). However in concrete cases, one can use this method to obtain a candidate x — x(i)
for a solution, which may exist for longer times. It is advantageous at this point to use
the strategy set out in 1.12.4.3.

Example 1: We consider the initial value problem
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Here a is a real constant. The unique solution of (1.248) is

Formal method: We assume first that XQ > 0. Then applying separation of variables
yields

From this it follows that In x — In XQ = at, hence In — = at, i.e., — = eat.
XQ XQ

Exact solution: Differentiating (1.249) gives

x' = axoeat = ax,

i.e., the function x in (1.249) is indeed a solution of (1.248).

Since the right side f(x,t) ~ ax is of type C1, the global uniqueness theorem 1.12.4.2
shows that there are no other solutions.

These considerations are valid for all XQ 6 R, while for example the formal method fails
for XQ — 0 because of 'InO = —oo'.

Example 2:

Here e > 0 is a constant. The uniquely determined solu-
tion of (1.250) is:

67T
Moreover we have x(t) —> +00 as t —> 0. The smaller

£
e is, the faster the solution blows up (see Figure 1.131).

Formal method: Separation of variables yields

Figure 1.131.

so that arctanx = t/e, i.e., x = tan(t/e).
Exact solution: Conclude as we have in Example 1.

1.12.4.5 The linear differential equation and the propagator
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Theorem: If A, B : J —> R are continuous on an open interval J, then the initial value
problem (1.251) has on J the unique solution

with the so-called propagator

For the propagator we have

and P(*3,ti) = P(t3,t2)P(t2,t1) for ti < t2 < t3.

Proof: Differentiating (1.252) yields

Taking (1.253) into account, we obtain

x'(t) = A(t}x(t) + B(t).

The uniqueness follows from the global uniqueness result in section 1.12.4.2.

The fundamental importance of the propagator in physical processes will be discussed
in 1.12.6.1.

One is led to the solution (1.252) upon applying a method called variation of constants,
which was invented by Lagrange (1736-1813) for treatment of problems of planetary
motion.

Variation of constants: Step 1: Solution of the homogenous problem. If we set B = 0,
then we get from (1.251) by separation of variables the expression

For XQ > 0 this gives In

with the constant C = XQ.

Step 2: Solution of the inhomogenous problem. Lagrange's idea is that by introducing
the perturbation B, the constant C = C(t) becomes time dependent. Differentiation of
(1.254) yields

hence
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By comparison with the given differential equation x' = Ax + B, we get the differential
equation

with the solution

This is (1.252).

Application of the principle of superposition: Example 3: A first guess leads to
the special solution x = 1 of the differential equation

The homogenous equation x' = x has the general solution x = const • e* by (1.248).
Therefore, by the superposition principle in 1.12.3.2 the differential equation (1.255) has
the general solution

x = const • e* + 1.

1.12.4.6 The differential equation of Bernoulli

x'= A(t)x + B(t)xa, a^l.

By the substitution y = xl~a, one gets from this the linear differential equation

y' = (l-a)Ay + (l-a)B.

This differential equation was first studied by Jakob Bernoulli (1654-1705).

1.12.4.7 The Riccati differential equation and problems of control

If one knows a special solution x*, then the linear differential equation

is obtained by the substitution

Example: The inhomogenous logistic equation

x' = x - x2 + 2

has the special solution x = 2. The corresponding differential equation (1.257) is y' =

3y + 1 and has the general solution y = - (Ce3< — l). The general solution
o

follows from this and (1.256), with the constant C.
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The double ratio: If one knows three solutions xi, x% and 23 of (1.256), then one gets
the general solution x = x(t) of (1.256) from the condition that the double ratio of these
four functions

is constant. This equation, which was studied by Jacopo Count Riccati (1676-1754)
plays a central role today in (linear) control theory with quadratic cost function (cf.
5.3.2).

1.12.4.8 The homogenous differential equation

, meaning that F is in reality
x

only a function of the ratio — . The substitution

x
y — —y t

then leads to the differential equation

which can be solved via separation of variables.

Example: The differential equation

transforms to the equation y' = 0 upon substituting y — x/t; this has the solution
y — const. Therefore,

x = const • t

is the general solution of (1.258).

1.12.4.9 The exact differential equation

Let g(x0,t0) ^ 0.

Definition The differential equation (1.259) is said to be exact, if and only if the func-
tions / and g are of type Cl in a neighborhood U of (to, XQ) and on U the integrability
condition

is satisfied.

IF
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Theorem: In case of exactness, the equation (1.259) is locally uniquely solvable. The
solution is obtained from the equation

after solving for x.

This is a generalization of the method of separation of variables (cf. 1.12.4.4).

Total differential: The formula (1.261) for the solution is equivalent to the following
procedure.
(i) Write the differential equation (1.259) in the form

gdx - fdt = 0.

(ii) Determine the function F as the solution of the equation

dF = gdx - fdt.

The condition for solvability d(dF) = 0 is satisfied because of d(dF) = (gt + /x)dt A dx
and (1.260).
(iii) Solve the equation

F(x,f) = F(x0,to)

for x and get a solution x = x(t) of (1.259). Explicitly, this means

(1.261) follows from this.

In simple cases one doesn't need to use (1.261), since the function F can easily be
guessed. The following example demonstrates this.
Example: The equation

is written in the form

One easily guesses that the equation

has the solution F(x,t) = x2t3 + xt. The equation F(x,t) = const., that is

x2t3 + xt = const,

describes a family of curves, which represent the general solution of (1.262)

(2xt3 + t)dx + (3x2t2 + x)dt = 0.

dF = Fxdx + Ftdt = (2xt3 + t)dx + (3x2t2 + x)dt

441
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1.12.4.10 The Euler multiplier

If the differential equation (1.261) is not exact, then one can try, by multiplying denom-
inator and numerator by M(x,y), to get a new differential equation

which is exact. If the factor M achieves this, then it is called an Euler multiplier.

Example: If we apply this to the equation

with M := l/x2t, then we get the exact differential equation (1.262).

1.12.4.11 Differential equations of higher order

Type 1 (Energy trick):

Let F(x) = I f d x , that is, F is a primitive function of /. The equation (1.263) is, for

non-constant solutions, equivalent to the so-called equation of energy conservation

Indeed, differentiation gives

Accordingly, every solution of (1.263) is also a solution of (1.264). The converse holds
for non-constant solutions.

An application of this to the determination of the cosmological limiting velocity of the
earth will be considered in 1.12.5.1.

Type 2 (Reduction to lower order):

By the substitution y = x', one obtains the equation of first order

y' = f(y,t), y(t0) = v

whose solution y = y(t) yields the solution
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of (1.265).

Type 3 (The trick of the inverse function):

We use the formal Leibniz' calculus and set

From (1.266) it then follows that

The chain rule then implies

Prom the solution p = p(x) of this equation we obtain from the function

The inverse of t = t(x) then is the sought-for solution of (1.266).

These formal considerations may be rigorously justified.

Type 4 (Variation of constants):

If one knows a special solution x* of the homogenous equation with d = 0, then setting

x(t) = C(t)x*(t]

leads the the linear differential equation of first order

with

Type 5 (Euler—Lagrange equation):

Here L = L(x,x',t). All differential equations which can be obtained from variational
problems have this form. Special methods for solving this kind of equation can be found
in section 5.1.1.
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1.12.4.12 The geometric interpretation of differential equations of first or-
der

Let the differential equation

be given. This equation associates to each point (t,x) a number m := /(£,#).
In each point (£, x) we draw a short segment through this point with a slope of m. In
this way, a field of directions is formed (Figure 1.132(a)). The solutions of (1.267) are
exactly the curves x = x(t), which fit into this field of directions, i.e., the slope of the
curve at the point ( x ( t ) , t ) is equal to m = f(t,x(t)) (Figure 1.132(b)).

Figure 1.132. Figure 1.133.

Branching of solutions (bifurcations): In the case of an implicit differential equation

it is possible that, for each point (t,x), there are several directional elements m which
satisfy the equation F(t, x, m) = 0. Several different solutions can pass through such
points.

Example: The differential equation
x'2 = l

has the two families of curves x = ±t + const as solution curves (Figure 1.133).

1.12.4.13 Envelopes and singular solutions

Theorem: If the differential equation (1.268) has a family of solutions with an enve-
lope,118 then the envelope is also a solution of the differential equation and is called a
singular solution.

Construction: In case a singular solution of (1.268) exists, then it can be obtained by
solving the system of equations

and eliminating the constant C.119

118This notion is defined in 3.7.1.
119We assume here that such a (local) solution is possible by the theorem on implicit functions.
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Example: The Clairaut differential equation1

has the family of solutions consisting of the lines

with a constant C. Its envelope is obtained, according to
3.7.1, by differentiating (1.271) with respect to C, that is,
using

0 = t-C

to eliminate C from (1.271). This yields

as singular solution of (1.270). All solutions of (1.270) can
be obtained from the parabola (1.272) and its set of tangent
lines (1.271) (Figure 1.134).

The same result can be obtained by using the method of (1.269).

Figure 1.134-

for a sought-for function £ = £(r) has a simple structure with respect to the derivative
£'. The derivative x' is transformed under the Legendre transformation to the dependent
variable T.

Definition: The Legendre transformation ( t , x , x f ) i—> (T, £,£') is defined by the rela-
tions:

Here all variables are considered to be real-valued. The inverse transformation is given
symmetrically by

120The French mathematician, physicist and astronomer Alexis Claude Clairaut (1713-1765) worked
in Paris.

1.12.4.14 The method of contact transformations of Legendre

Basic idea: The contact transformation of Legendre (1752-1833) is used, when a given
differential equation

is complicated when expressed in terms of the derivative x' of the sought-for function
x = x ( t ] , but simple as a function of x. In this case the transformed differential equation
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There is a transformation F of / = f ( t , x, #'), naturally associated to the relation (1.276):

1.12.4.14.1 The fundamental invariance property of the Legendre transfor-
mation:

Solutions of differential equations are invariant
under Legendre transformations.

Theorem: (i) If x = x(t) is a solution of the differential equation (1.273), then the
function £ = £(r) which is given by the parameterization

is a solution of the transformed equation (1.274).

(ii) If conversely £ = £(r) is a solution of the differential equation (1.274), then the
function x = x(t), given by the parameterization

is a solution of the original equation (1.273).

1.12.4.14.2 Application to the differential equation of Clairaut: The differ-
ential equation

is transformed under the Legendre transformation (1.275) into the equation

This equation, which no longer contains derivatives, can be trivially solved. From the
inverse transformation (1.277) we get the parameterization

which is a solution of (1.278). From this we obtain the family of solutions

of (1.278) with a parameter r. This is a collection of lines.

1.12.4.14.3 Application to the Lagrangian differential equation:

The Legendre transformation (1.276) yields here the linear differential equation

which is easily solved (cf. 1.12.4.5). The inverse transformation (1.277) yields the solution
x = x(t) of (1.279).
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1.12.4.14.4 The geometric interpretation of the Legendre transformation:

The basic geometric idea of the Legendre transformation
is that a curve is viewed not as a set of points, but rather
as the envelope of its tangents.

The equation of these tangents is the equation of a curve in tangent coordinates (Figure
1.135). We want to give an analytic description of this idea.

Let the equation

of a curve C in point coordinates (t, x)
be given. The equation of the tangent
to this curve in a fixed point (£*, x(t*)}
of the curve C is

Figure 1.135. The envelope of tangents
on a curve.

The Legendre transformation transforms the directional
elements (t, x,x') of curves into the directional elements
( r >£>£ ' ) of other curves (Figure 1.136).

with the slope T and the intersection
—£ with the x-axis (Figure 1.135(a)).
Hence we have:

Each tangent is uniquely determined by its tangent coordinates (T, £). The union of all
of these tangents of C is given by the equation

(i) The equation (1.282) of the curve C in tangent coordinates is obtained from (1.281)
t>y eliminating the parameter £*.

(ii) If conversely the equation (1.282) of C in tangent coordinates is given, then one
obtains according to (1.280) the collection of tangents of C in the form

The envelope of this family of tangents is calculated by eliminating the parameter r
from the system

(cf. 3.7.1). This yields the equation x = x(t) of C.

The transition from point coordinates to tangent coordinates corresponds precisely to
the Legendre transformation.

Example: The equation of the curve x = e*, t £ R is, in tangent coordinates, given by
(Figure 1.136):

The following fact is decisive:
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For this reason one refers to the Leg-
endre transformation as a contact
transformation (cf. 1.13.1.11).

The following considerations repre-
sent the analytic heart of the Leg-
endre transformation and can be ap-
plied in a universal manner to arbi-
trary systems of ordinary and par-
tial differential equations. This illus-
trates the elegance and flexibility of
the differential calculus of Cartan.

Figure 1.136. The Legendre transformation.

1.12.4.14.5 Differential forms and the product trick of Legendre: If we set
T — x', then we can put the original differential equation

in the equivalent form

We will explain in (1.287) that the form (1.284) is more to the point for purely geomet-
rical reasons than (1.283). The trick of Legendre is now to apply the product rule for
differential forms121

In this way, the new equation

arises from equation (1.284). This equation is particularly simple, if we introduce the
new variable

From (1.286) it then follows that d£ — tdr = 0, that is £' = t. We hence obtain

Thus the equation (1.286) is transformed into the form

which is equivalent to the transformed equation

The advantage of formulating differential equations in the language of the
differential calculus of Cartan:
Example 1: The differential equation

121 This effective general trick is also the basis of the Legendre transformation in theoretical mechanics
and thermodynamics (cf. 1.13.1.11).
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is ill-posed, since it contains a singular point at t = 0. Moreover,
(1.287) does not accurately reflect the geometric situation which
is given by the family of directional elements as in Figure 1.137.

The curves x — const • t and t = 0 fit to this family of direc-
tional elements. However, the solution t = 0 does not appear in
(1.287). The correct geometric formulation is based on obtaining
solutions with the parameterization

x = x(p), t = t(p),

and instead of (1.287), considering the equation

Figure 1.137.

This can be written in the abbreviated form

tdx — xdt = 0.

This corresponds to the procedure in (1.284), in which we have eliminated the variable
T for simplicity.

The full power of this formulation becomes apparent when considering arbitrary systems
of partial differential equations in the language of differential forms, in the form of the
fundamental theorem of Cartan-Kahler (cf. 1.13.5.4).

1.12.4.14.6 Application to differential equations of the second order: In this
case one uses the Legendre transformation

with the inverse transformation

Example 2: Applying the Legendre transformation to

yields

with the general solution

Because of x = r£' — £ and t = £' we obtain from this the solution of (1.288) in the
parameterized form

with the parameter T and the constants C and D.
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1.12.5 Applications

1.12.5.1 The escape velocity of the earth

The radial movement r = r(t) of a rocket in the gravitational field of the earth, whose
radius is taken to be R, is given by the Newtonian law of motion

(m is the mass of the rocket, M the mass of the earth, G is the gravitational constant).
The law of conservation of energy (1.264) yields

Taking the initial conditions into account, this means

We want to determine the starting velocity v of the rocket
which is necessary for the rocket to escape the gravitational
field, i.e., such that r'(t) > 0 for all times t (Figure 1.138).
The smallest possible value for v is obtained from the equa-
tion v2 - 2GM/R = 0, that is

Figure 1.138.

This is the sought for escape velocity of the earth. This starting velocity v corresponds
to the motion of the rocket given by

1.12.5.2 The two body problem

The two body problem in celestial mechanics can be reduced to a one body problem for
the relative motion of the two bodies with respect to one another, yielding the Kepler
laws of motion.

The Newtonian law of motion: We study the motion

xi = xi(t) and x2 = x2(£)

for two celestial bodies with the masses mi and m2 and the total mass m = mi + m2.
For example, mi could be the mass of the sun and m2 the mass of one of the planets
(Figure 1.139). The laws of motion are
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with the Newtonian gravitational force

(G the gravitational constant). The appearance of the
forces F and — F in (1.290) corresponds to the Newto-
nian law actio = reactio. rigure 1.139.

Separation of the motion of the center of mass: For the center of mass

of this system and the total momentum P = my' one gets from (1.290) the conservation
of the total momentum

which means my" = 0 with the solution

The center of mass hence moves on a straight line with constant velocity. Explicitly, one
has

For the relative motion with respect to the center of mass

we get the equations of motion

In the case of the system consisting of the sun and a planet, the center of mass y lies
inside the sun.

The relative motion of the two celestial bodies with respect to each other:
For

one gets from x = y2 — yl the law of motion

This is the one body problem for a body of mass ra2 in the gravitational field of a body
of mass m.

If one knows the solution of (1.291), then one gets a solution of the original equation of
motion (1.290) through

Conservation laws: From (1.291), the law of conservation of energy and angular
momentum
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follows, with

(cf. 1.9.6). We choose initial conditions such that N ^ 0.

Plane motion: From the conservation of angular momentum (1.293), it follows that
x(t)N = 0 for all times t. Therefore the motion is constrained in a plane perpendicular
to the vector N. We choose a Cartesian (x,y, z)-coordinate system with the z-axis in
the direction of the vector N. Then x(t) lies in the (x, y)-plane, i.e., one has

Polar coordinates (Figure 1.140): We choose polar coordinates

and introduce the unit vectors

er := cos<^i + sim/y, e^ := — sin</?i + costpj.

The motion is then given by (p — </?(£), T — r(t). We choose in
addition the x-axis in such a way that <p(Q) = 0.

Differentiation with respect to the time t yields

e'r = (-sin cpi +cos <£])<// = y'elf.Figure 1.140.

From the equation for the trajectory

we get x' = r'er + r^'e^. Because of 6,-e^ = 0, one has x'2 = (r')2 + (r')2(<^')2. Thus
we get from (1.292) the system of equations

Theorem: The solution of (1.294) is

The motion in time is then given by

with constants
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Proof: This is easily verified by straightforward differentiation.122

We discuss the case 0 < e < 1.

First Kepler law: The planets move along ellipses, with the sun lying in one of the
focal points (Figure 1.141).

Proof: In Cartesian coor-
dinates x, y, the equation
(1.295) turns into the equa-
tion

Figure 1.141- The Kepler laws of plantary motion.
for the trajectory. Here one
has a := p/(l — e2) and b :=
p/Vl — £2- The sun is cen-
tered at the focal point (0,0)
or the ellipse.

The second law of Kepler: The orbits of the planets sweep out equal areas in equal
times.

Proof: In the time interval [s,t], the area

is swept out.

The third law of Kepler: The ratio of the square of the period T and the third power
of the long semiaxis a is a constant for all planets.

Proof: The surface area of the elliptic trajectory is equal to nab. From (1.298) with
t = T and s = 0, we get

From a = p/(l - e2) and (1.297), we obtain

Since the mass of the sun m\ is very large compared with that of the planet m2, we may
disregard m-i in (1.299) in a first approximation.

Our considerations show that the third Kepler law is only an approximation. Kepler
(1571-1630) derived his law through the study of extensive data from observations of
the planets. The law he got empirically and the mathematical derivation which was
later discovered by Newton (1643-1727) was a great achievement of the mathematics
and physics of the day.

122 One is lead to the formula (1.295) by. using

and integrating this equation by means of separation of variables. The function F(r) is derived from
the first equation in (1.294). Moreover, (1.296) follows from the second equation in (1.294). In 1.13.1.5
we will use the elegant method of Jacobi for calculating the solution.
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1.12.6 Systems of linear differential equations and the propaga-
tor

For systems of linear differential equations with variable, continuous coefficients, there
is a complete theory of solutions. In the case of constant coefficients, the Laplace
transformation (cf. 1.11.1.2) is the universal method of solution.

1.12.6.1 Linear systems of first order

Here x = (x\,..., xn)
J is a column matrix of complex numbers Xj. Moreover, A(i) is a

complex (n x ri) matrix, and B(t) is a complex matrix with n columns. We let J denote
an open interval in R with to E J (for example, J = R). Written in components, (1.300)
becomes:

Existence and uniqueness theorems: If the components of A and B are continuous
functions on J, then the initial value problem has for every a € Cn exactly one solution
x = x(i) on J.

If A, B and a are real, then the solution is also real.

Propagator: The solution has the convenient representation

where P is the so-called propagator.

Constant coefficients: If A(t) = const, then one has123

The fundamental formula of Dyson: In the general case the propagator possesses
the convergent series representation

If one introduces the time ordering operator & by means of the formula

123 The series

converges for all t, T £ R component-wise.



1.12. Ordinary differential equations 455

then one has

A shorter and elegant way of writing this is as follows:

This formula of Dyson can be extended to operator equations in Banach spaces. It
plays a key role in the construction of the S-matrix (scattering matrix) in quantum field
theory. The 5-matrix contains all information about scattering processes of elementary
particles, which are conducted in modern accelerators.

Remark: If f?(0) = 0, then the propagator describes the solution x(t) = P(t,to)a of
the homogenous equation. Formula (1.301) shows that one has the following situation:

The propagator of the homogenous problem allows the construction of the
general solution of the inhomogenous problem by means of superposition.

This a fundamental principle in physics, which is valid in much more general situations
than that of (1.300) and which for this reason can be applied to partial differential
equations and operator equations in infinite-dimensional spaces.

The propagator equation: For arbitrary times t and ti < t% < £3 one has:

with P(t,t) = I.

The following classical considerations are appropriate for the special structure of (1.300)
and, in contrast to the previous ones, cannot be generalized.

Fundamental solution: We consider a (n x n)-matrix

with the column vectors Xj, where the following hold:

(i) Every column Xj is a solution of the homogenous equation Xj = AXj.

(ii)detX(t0)^0.124

Then X = X(£) is called a fundamental solution of x' = A(i]~x..

Theorem: For a fundamental solution the following hold:

(i) The general solution of x' = A(t)x has the form

with arbitrary constants Ci, ...,(?„.
124One calls detX(i) the Wronskian determinant. From (ii) one has also detX(t) ^ 0 for all t.
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(ii) The propagator has the form125

Example: The system

is, written in matrix notation, the matrix equation

or more briefly x' = Ax. + b. One recognizes immediately that xi = cos(t — to), #2 =
— sin(t — to) and xi = sin(t — to), x2 = cos(t — to) are solutions of (1.303) with bi = 0
and 62 = 0. These solutions form the columns of the fundamental solution

Because of X(to) = / (identity matrix), we get from this the propagator

The inhomogenous problem (1.303) has a solution

For to = 0 this corresponds to the explicit formula for the solution:

The same result would be obtained with the help of the Laplace transformation.

The formula

for the propagator is equivalent to the addition theorems for sine and cosine. Since
(1.303) corresponds to the motion of a harmonic oscillator (cf. 1.12.6.2), this gives the
addition theorem an immediate physical interpretation.

125 The formula (1.301) for the solution can be obtained by setting

This is the method of variation of constants of Lagrange (cf. 1.12.4.5).
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1.12.6.2 Linear differential equations of arbitrary order

This problem can be reduced to a systems of linear differential equations of the first
order of the form (1.300) by introducing new variables x\ = y, x% = y' , . . . ,xn — y(n~1' .
Analogously, linear systems of arbitrary order are handled.

Example: The equation for the harmonic oscillator

is transformed into the form (1.303) with 61 = 0 and 62 = / by making the substitution
x\ = y, x-2 = y'.

1.12.7 Stability

We consider the linear differential equation

where x = (#1,... ,zn)T, A is a real, time independent (n x n)-matrix and the compo-
nents of b = (61,.. . , 6n)

T are real C1-functions for all x in a neighborhood of the origin
for all times t > 0. Moreover, let

Hence x(i) = 0 is a solution of (1.304) which corresponds to a point of equilibrium of
the system. We also abbreviate this behavior by speaking of an equilibrium point at
x = 0.

Figure 1.142. Stability of solutions of a linear differential equation.

Definition: (i) Stability (Figure 1.142(a)): The equilibrium point x = 0 is stable if and
only if for each e > 0 there is a number 6 > 0 such that from

the existence of a unique solution x = x(i) of (1.304) follows, with

|x(i)| < e for all times t > 0.
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This means that sufficiently small perturbations of the equilibrium configuration at
x = 0 remain small for alH > 0.

(ii) Asymptotic stability (Figure 1.142(b)): The equilibrium point x = 0 is asymptotically
stable if and only if it is stable and in addition there is a number 5* > 0 such that, for
each solution with x(0)| < <5*, we have the limit relation

This means that small perturbations of the equilibrium configuration at time t = 0
return to their starting configuration after a sufficiently long time.

(iii) Instability (Figure 1.142(c)): The equilibrium point x — 0 is instable if and only if
it is not stable.

The Theorem on stability by Liapunov (1892): Suppose a perturbation b of the
linear system x' = Ax. with constant coefficients is sufficiently small, i.e., one has

Then one has:

(i) The equilibrium point x = 0 is asymptotically stable, if all eigenvalues126 AI, . . . , \m

of the matrix A are in the left half plane, i.e., have negative real part for all j (Figure
1.143(a)).

(ii) The equilibrium point x = 0 is unstable, if an eigenvalue of A is in the right half
plane, i.e., one has Re A., > 0 for some j (Figure 1.143(b)).

Figure 1.143. Eigenvalues of linear differential
operators.

If an eigenvalue of A is on
the imaginary axis, then the
method of the center manifold
(see [212]) must be applied
(displayed in Figure 1.143(c)).

To effectively apply the sta-
bility criterion of Liapunov to
complicated problems in con-
trol theory, one requires a cri-
terion for when the equation

det (A — A7) = 0 has a zero in the left half plane, without calculating the eigenvalues
explicitly. This problem, which was posed by Maxwell in 1868, was solved in 1875 by
the English physicist Routh and independently by the German mathematician Hurwitz
in 1895.

The criterion of Routh—Hurwitz: All zeros of the polynomial

with real coefficients o7 and fulfilling an > 0 lie in the left half plane, if and only if, all
determinants

126The notions of eigenvalues and eigenvectors of matrices is introduced in section 2.2.1.
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(with am = 0 for m > n) are positive.

Applications: The equilibrium point x = 0 of the differential equation

with 6(0, t) = 0 is asymptotically stable, if the smallness criterion (1.305) and the crite-
rion of Routh-Hurwitz are satisfied.

Example 1: The equilibrium point x = 0 of the differential equation

is asymptotically stable.

Proof: One has

Generalization: In order to investigate the stability of an arbitrary solution y* of the
differential equation

one sets y = y+ + x. This yields a differential equation

x' = g ( x , f )

with the equilibrium point x = 0. The stability of this point is by definition equivalent
to the stability of y*.

Example 2: The solution y(t) = 1 of the differential equation

y" + 2y' + y - l - (y - l ) n = 0, n = 2,3,. . .

is asymptotically stable.

Proof: If we set y = x + 1, then x satisfies the differential equation of Example 1, and
x = 0 is asymptotically stable.

1.12.8 Boundary value problems and Green's functions

In the following section the classical theory, which is based on the work of Sturm (1803-
1855) and Liouville (1809-1882) and whose generalization to partial differential equa-
tions has played an important role in the development of analysis in this century, is
described.127

1.12.8.1 The inhomogenous problem

We consider the boundary value problem

127 The relation to the theory of integral equations and to functional analysis (Hilbert-Schmidt-theory)
can be found in [212]. The theory of singular boundary value problems of Hermann Weyl (1885-1955)
and its modern extensions, which represent a gem of mathematics, are also described in [212].
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The given real functions p and q are assumed to be smooth on the compact interval [a, b]
with p(x) > 0 on [a, b]. The given real-valued function / is assumed to be continuous
on [a,b]. We are looking for the real-valued function y = y ( x ) .

The problem (1.306) is said to homogenous, if and only if, f ( x ) = 0.

The Fredholm alternative: (i) If the homogenous problem (1.306) has only the
trivial solution y = 0, then the inhomogenous problem (1.306) has for every / exactly
one solution. This solution can be represented by the integral

with the continuous symmetric Green's function G, i.e., one has

(ii) If the homogenous problem (1.306) has a non-trivial solution y*, then the inhomoge-
nous problem (1.306) has a solution if and only if the solvability criterion

is satisfied for the function / occuring in the right-hand side of (1.306).

Uniqueness conditions: (a) If y and z are non-trivial solution of the equation —(py')'+
qy = 0, and are not constant multiples of one another, then the case (i) occurs if and
only if y(a)z(b) - y(b)z(a) + 0.

(b) The condition max q(x) > 0 is sufficient for the occurrence of case (i).
a<x<b

Construction of the Green's function: Suppose case (i) occurs. We choose functions
y\ and yi with

and the initial conditions

Then we have:

Example 1: The boundary value problem

has for every continuous function / : [0,1] —> K the unique solution

with the Green's function
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The uniqueness of the solution follows from (b) above.

Nullstellensatz of Sturm: Let J be a finite or infinite interval. Then every non-trivial
solution y of the differential equation

has only simple zeros, and of these at most countably many, which moreover have no
accumulation point at infinity.
Sturm's theorem on separating zeros: If y is a solution of (1.307) and z is a solution
of

with q* (x) < q(x) on J, then there is a zero of y between any two zeros of z.

Example 2: Let 7 6 R. Then every solution v = v(£) of the Bessel differential equation

on the interval ]0, oo[ has countably many zeros.
Proof: By making the substitution x := ln£ and y(x) :— v(ex], we get the differential
equation (1.307) with q(x) := e2x — 72. We set q*(x) := 1 and choose a number XQ such
that

The function z :— sinx satisfies the differential equation (1.308) and has only countably
many zeros in the interval J := [XQ,OO[. Therefore the claim follows from the theorem
of Sturm above.

Oscillations: Every non-trivial solution y of the differential equation

has at most countably many zeros, provided the function q is continuous in the interval
J := [a, oo[ and one of the two following conditions is satisfied:

In case (b) one can conclude in addition the boundedness of y on the interval J.

1.12.8.2 The corresponding variational problem

We set

We let Y denote the set of all C*2-functions y : fa, b]
conditions y(a) = y(b) = 0.

Theorem: The variational problem

R which satisfy the boundary

is equivalent to the original problem (1.306).
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The method of approximation of Ritz: We choose functions yi , . . . ,yn £ Y and
consider the approximation problem

instead of (1.309). This a problem of the form "minimize G(c), c e Rn". The necessary
condition for a solution of (1.310) is

This yields for c the following system of linear equations

with c = (c i , . . . , cn)T, ^4 = (o,-fc) and 6 = (61,. . . , 6n)T, as well as

The approximate solution of (1.306) and (1.309) is then

Ritz' procedure for the eigenvalue problem: From the solutions of the matrix
eigenvalue problem

one obtains according to (1.312) an approximation A and y for the eigenvalues and
eigenfunctions, respectively, of the following problem (1.313).

1.12.8.3 The eigenvalue problem

Instead of (1.306), we now consider the similar boundary value problem

A real number A is called an eigenvalue of (3.313), if there is a non-trivial solution y of
(1.313). The eigenvalue A is called simple, if all corresponding eigenfunctions are equal
up to a constant multiple.

Example: The problem

has the eigenfunctions yn = sin no; and the eigenvalues An = n2, n — 1,2,...

Existence theorem: (i) All eigenvalues of (1.313) form a sequence
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(ii) These eigenvalues are all simple. The corresponding eigenfunctions yi, 2/2, • • • can be
normalized in such a way that

(iii) The nth eigenfunction yn has exactly n — 1 zeros in the interior of the interval [a, b],
and all of these zeros are simple.

(iv) For the smallest eigenvalue we have the estimate AI > min q(x).

The fundamental theorem on developing solutions: (i) Every Cl -function / :
[a, b] —» R which satisfies the boundary conditions /(a) = f ( b ) = 0, can be described
by an absolutely and uniformly convergent power series

with the generalized Fourier coefficients

(ii) If the function / : [a, b] —> R is only assumed to be almost everywhere continuous

and satisfies then the generalized Fourier series (1.314) converges in

the sense of mean squared convergence, i.e., one has

Asymptotic behavior of eigensolutions: For n —> oo one has

and

Here we have set

The minimum principle: Let

Moreover, let Y be the set of all C2-functions y : [a, b] —> R with y(a) = y(b) = 0.

(i) For the first eigenfunction (the eigenfunction to the first eigenvalue) yi, one has the
extremal (minimization) problem:
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(ii) The second eigenfunction y<2 is obtained from the extremal problem:

(iii) The nth eigenfunction yn is the solution of the extremal problem:

For the nth eigenvalue one has \n := F(yn).

The minimum—maximum principle of Courant: The nth eigenvalue \n is obtained
directly from the equation

This is to be understood as follows. We choose fixed functions zi , . . . , zn-\ in Y. Then
Yn consists of precisely those functions y G Y which satisfy

(y\y) = l and ( y \ z k ) = 0, k = 1 ,2, . . . ,n - 1.

For each choice of Yn we calculate the minimal value F ( y ) on Yn. Then \n is the
maximum of all of these possible minimal values.

Comparison theorem: From p(x) < p*(x) and q(x) < q* (x) on [a, b] it follows that

for the corresponding eigenvalues of the original problem (1.313).

This is an immediate consequence of (1.315).

1.12.9 General theory

1.12.9.1 The global existence and uniqueness theorem

Consider the problem

Let x = (#!,..., xn) and / = (/i,..., fn). For this system of higher order we use the
same notations as in (1.245).

Figure 1.144-

Theorem: Suppose the function / : U C Mn+1 —>• R is
of type C1 on an open set [7, and suppose the point (xo,io)
belongs to U. Then the initial value problem (1.316) has a
uniquely determined maximal solution

i.e., this solution is defined from boundary to boundary of
U and can therefore not be further extended in U (Figure
1.144).
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Corollary: It is sufficient that one of the following conditions hold:

(i) / and fx are continuous in U.

(ii) / is continuous in U and / is locally Lipschitz continuous128 in U with respect to x.

1.12.9.2 Smooth (differentiable) dependence on initial values and parame-
ters

We denote the maximal solution (1.317) by

where we admit the possibility that the right hand side / = f ( x , t,p) in (1.316) depends
also on parameters p = (pi,... ,pm) which vary in an open set P of Rm.

Theorem: If / is of type Ck with k > 1 in U x P, then X in (1.318) is also of type
Ck with respect to all variables (t, XQ,to,p) in the domain of existence of the maximal
solution.

1.12.9.3 Power series and the Cauchy theorem

Theorem of Cauchy: If / is analytic,129 then also the maximal solution x = x(t) of
(1.316) is analytic.

The local power series expansion of x = x(t) is obtained by the method of comparing
coefficients.

Example: For the initial value problem

x' = x, z(0) = 1

we get x' (0) = 1 and similarly x^ (0) = 1 for all n. From this we get the solution

Remark: The theorem of Cauchy remains valid for complex variables t, x\,..., xn and
complex-valued functions /i, . . . , /«.

1.12.9.4 Integral equations:

We consider the integral equation

for the unknown x, where J := [0, T].

128To every point in U there is a neighborhood V, such that \f(x,t) — f ( y , t ) \ < constjx — y\ for all
(*,y)e v.

129 This means that for each point in U there is a neighborhood in which / can be expanded in an
absolutely convergent (in all variables) power series.
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The Lemma of Gronwall (1918): Suppose the function x : J —> R is continuous and
obeys the integral equation (1.319) with a real number a and a non-negative function
/ : J —> R. Then one has

with

1.12.9.5 Differential inequalities

We consider the following system of equations and inequalities:

where J := [0, T] and / : [0, oof—> [0, oo[ is a strictly increasing function of type Cl.

Theorem: If x and y are C1-functions satisfying the relation (1.320) with x(t) > 0 on
J, then one has

Corollary: If the C1-functions x and y satisfy the relations

and if moreover x(t) > 0 on J, then

Example: Let x = x(t) be a solution of the differential equation

with F(x] > I + x2 for all x € R. Then one has

and hence also

Proof: We set f(y) := 1 + y2. For y(t) := tant we get

The statement now follows from the corollary.
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1.12.9.6 Blowing up of solutions in finite time

We consider the real system of first order

where we have set x = (x\,..., xn), / = (/i,. • • , /n) and let in addition

We make the following assumptions:
(Al) The function / : Rn+1 —> R is of type C1.

(A2) We have (f(x,t)\x) > 0 for all (x,t) € Rn+1.
(A3) There are constants b > 0 and /? > 2 such that {/(x,t)|ar) > b|x|^ for all (z,i) e
Rn+1 with |x| > |x0| > 0.
Theorem: There is a number T > 0 with

i.e., the solution blows up in finite time.

1.12.9.7 The existence of global solutions

The faster than linear growth of / in (A3) is responsible for the blowing up of the
solution. The situation is dramatically different if the growth is at most linear.
(A4) There are positive constants c and d with

|/(z,t)| < c\x\ + d for all (x,t) E Rn+1.

Theorem: If the assumptions (Al) and (A4) are satisfied, then the initial value problem
(1.321) has a unique solution which exists for all times t.

1.12.9.8 The principle of a-priori estimates

We assume:
(A5) If a solution of the initial value problem (1.321) exists on an open interval ]to —
T, to + Tl then one has

with a constant C, which may depend on T.
Theorem: Under the assumptions (Al) and (A5) the initial value problem (1.321) has
a unique solution which exists for all times.
Remark: One calls an estimate like (1.322) an a-priori estimate. The theorem above
is a special case of the following general principle in mathematics:130

A-priori estimates guarentee the existence of solutions.

130A general statement in this direction is the Leray-Schauder principle (cf. [212]).
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Example: The initial value problem

x' = sinx, a:(0) = XQ

has for every XQ € R a unique solution, which exists for all times.

Proof: If x = x(t} is a solution on [—T, T], then one has

Because of | sinx| < 1 for all x, we obtain the following a-priori estimate:

To obtain such a-priori estimates, one can utilize differential inequalities.

1.13 Partial differential equations

Of all the mathematical disciplines, the theory of differential
equations is the most important. All branches of physics pose
problems which can be reduced to the integration of differential
equations. More generally, the way of explaining all natural
phenomena which depend on time is given by the theory of
differential equations.

Sophus Lie (1894)

In this section we consider elements of the theory of partial differential equations. The
modern theory is based on the notion of generalized derivatives and the application of
the theory of Sobolev spaces in the context of functional analysis. This latter topic will
be considered in more detail in [212]. Since partial differential equations describe very
diverse type of phenomena which occur in nature, it is not surprising that the theory is
far from being finished. There are a series of basic and deep questions which have no
satisfactory answer even today.

The basic ideas of this theory, which also occur in the theory of ordinary differential
equations, can be found in 1.12.1.

The great spectrum of types of solutions of partial differential equations:
Partial differential equations have as a rule classes of functions as solutions.

Example 1: Let Jl be a non-empty, open set in R^. The differential equation

uXl (x) = 0 on fi

has as solutions precisely the set of functions which do not depend on x\.

Example 2: The differential equation

uxy = 0 on R2

has as set of smooth solutions precisely the set of functions of the form

u(x,y) := f(x}+g(y),

where / and g are smooth.
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For physical problems it is not rinding the most general solution which is of interest, but
rather, describing concrete processes. To do this, one adds to the differential equation
certain constraints, which describe the physical system at a starting time (initial value)
or along a boundary (boundary value).

Many phenomena of the theory of partial differential equations can be visualized by
interpreting the equations physically. We shall pursue this method of inquiry systemat-
ically in this chapter.

1.13.1 Equations of first order of mathematical physics

1.13.1.1 Conservation laws and the method of characteristics

Consider the equation

where x = (xi,...,zn) and / = (/i,.-.,/n)- Together with this linear homogenous
partial differential equation of the first order for the sought-for function E = E(x, £), we
consider the system of ordinary differential equations of first order131

The solutions x = x(t) of (1.324) are called the characteristics of (1.323).

Suppose the function / : fl C Mn+1 —> M is smooth in a domain Q. A conserved
quantity (also referred to as an integral of (1.324)) is a function E which is constant
along every solution of (1.324), i.e., E is constant along all characteristics.

Conserved quantities: A smooth function E is a solution of (1.323) if and only if it
is a conserved quantity for the characteristics.

Example 1: We set x = (y, z). The equation

has a smooth solution

with an arbitrary smooth function g. This is the most general smooth solution of (1.325).

Proof: The equation for the characteristics y = y(t), z = z(t) is

with the solutions

y = t/o cost + ZQ sin t, z = — yosint + zocost. (1.328)

These are circles y2 + z2 = J/o + ^o of radius vVo + zo- Hence (1.326) is the most general
conserved quantity. 

131 More explicitly one has

and
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The initial value problem: In addition to (1.323) we now consider also an initial
value problem:

Theorem: If the given function EQ is smooth in a neighborhood of the point x = p,
then the problem (1.329) has a unique solution in a sufficiently small neighborhood of
(p, 0), and this solution is smooth.

If we vary EQ , then we get the general solution in a small neigh-
borhood of the point (p, 0).

Construction of the solution with the help of the method
of characteristics: Through each point x = XQ, t = 0, a char-
acteristic passes, which we denote by

Figure 1.145.

(Figure 1.145). The solution E of (1.329) must be constant along these characteristics,
which means that we have

E(x(t,xQ),t) = EQ(XQ).

If we solve the equation (1.330) for XQ, we get XQ = XQ(X, i) and E(x,t) = Eo(xo(x,t)).
This is the sought-for solution.

Example 2: The initial value problem

has for every smooth function EQ : M2 —> R the unique solution

E(y, z,t) = Eo(ycost — zsmt, zcost + ysini)

for all x,y,t£ R.

Proof: According to Example 1, the characteristics are circles. If we solve the equation
of the characteristics (1.328) for yo> ZQ, then we get

y0 = y cos t — z sin t, ZQ = z cos t + y sin t.

The solution of (1.331) is obtained from E(x,y,t) = Eo(yo,zo).

Historical note: If one knows n linearly independent132conserved quantities EI, ..., En

of the equation x' = /(x, t) for the characteristics, and if Ci , . . . , Cn are constants, then
one obtains upon solving the equation

Ej(x,t) = Cj, j = l,...,n,

locally the general solution x = x(t; C) of x' — f(x, t}.

During the nineteenth century it was attempted to solve the three body problem in
celestial mechanics in this manner. This problem is given by a system of differential
equations of second order for the nine components of the trajectory. This is equivalent

132This means that det E'(x) ^ 0 on fi with E'(x) = (dkE/dxj).
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to a system of first order with 18 variables. Thus one requires 18 conserved quantities.
The conservation of momentum (the motion of the center of mass), angular momentum
and energy yield only ten scalar conserved quantities. In 1887 and 1889, respectively,
Bruns and Poincare showed that for a large class of functions there are no further
integrals. Thus it was seen to be impossible to obtain a closed solution of the three body
problem by using integrals of motion. The deeper reason for this failure is the fact that
the three body problem can in fact be chaotic.

In treating the n-body problem with n > 3 one uses in our present age of satellites
abstract existence and uniqueness results and effective numerical procedures which arise
from these for calculating the trajectories.

1.13.1.2 Conserved quantities, shock waves and the condition for entropy
due to Lax

Although differential equations which determine the motion of
fluids have been written down, the integration of these equa-
tions has only been successful in the cases in which the differ-
ences in pressure are infinitely small.

Bernhard Riemann (I860)133

In the dynamics of liquids one often encounters shock waves, which for example can
be observed as the sonic boom of supersonic aircraft. Shock waves of this kind, which
correspond to a point of non-continuity of the mass density p, make the treatment of
the dynamics of fluids extremely difficult. The equation

is the simplest mathematical model possible to describe the phenomena of shock waves.
We assume the function / : R —> R is smooth.

Example 1: In the special case f ( p ) = p2/2, we obtain the so-called Burger's equation

Physical interpretation: We consider the distribution of mass along the x-axis; let
p(x, t) denote the density at the point x and time t. We introduce the mass density
current vector

J(x,t) := f ( p ( x , t ) Y i

we may then write the equation (1.332) in the form pt + div J = 0, i.e., the equation
(1.332) describes the conservation of mass (cf. 1.9.7).

Characteristics: The lines

are called characteristics. One has:

Every smooth solution p of the equation of conservation
(1.332) is constant along the characteristics.

133 In his fundamental treatise On the propagation of air waves of finite amplitude, Riemann laid a
cornerstone for the mathematics of the theory of fluids and non-linear hyperbolic differential equations,
which describe non-linear wave processes. This paper, together with a commentary by Peter Lax, can
be found in Riemann's collected works [182].
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This may be given the following physical interpretation: a point of mass, which is at the
point XQ at time t = 0, moves according to (1.334) with a constant velocity VQ. Collisions
of such points of mass lead to discontinuities in p, which we refer to as shocks.

Shock waves: Let f"(p) > 0 for all p e R, i.e., the function /' is assumed to be
monotonously increasing. If XQ < x\ and

Figure 1.146.

then VQ > vi in (1.334), and a point of mass which
starts at point XQ catches up with a point of mass which
starts at x\. In an (x,£)-diagram, the corresponding
characteristics intersect each other at a point P (Fig-
ure 1.146).

Since the density p must be constant along the charac-
teristic, p is necessarily discontinuous at P. By definition, this means that at the point
P we have a shock wave.

Solution of the initial value problem: If the initial density PQ is smooth, then we
get a solution p of the initial value problem (1.332) be setting

p ( x , t ) := po(x0),

where (x,t) and XQ are connected by the equation (1.334).
This solution is unique there and also smooth, as long as the characteristics do not
intersect in the (x, t)-plane.

If f"(p] > 0 in R, then the equation (1.332) for the conserved
quantity has no smooth solution for all p for all times t > 0,
in spite of the smoothness of the initial function PQ.

The points of discontinuity develop through the shocks.

Generalized solutions: In order to study the behavior of the discontinuities precisely,
we will refer to the function p as a generalized solution of the equation (1.332), if

for all test functions

The jump along a shock wave: Let the characteristic

be given, together with a generalized solution p of (1.332), which is smooth except
for jumps along the characteristic. The one-sided limit of p from the left and right of
the characteristic will be denoted by p+ and p- (Figure 1.147). Then the following
fundamental condition on the jump is satisfied:

134The function <p is a test function, if it is smooth and vanishes outside of a compact set in R^. :=
{(x, t) e K2 : t > 0}. The relation (1.335) follows by multiplying the equation (1.332) with <f and
applying partial integration.
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Figure 1.147.

Conditions on the location of the jumps were first intro-
duced into the study of fluids by Riemann in 1860 and
then a few years later in a more general formulation by
Rankine and Hugoniot. The relation (1.336) relates the
velocity VQ of the shock wave to the jump of the density.

The condition of Lax on the entropy (1957): The jump condition of (1.336) is also
valid for rarefications. However, these are eliminated from consideration by the so-called
entropy condition

Physical discussion: We consider a metal cylinder with a
different fluids (or gases) on each side with different densities
p_ and p+. The piston will then only move from left to right,
if p- > p+. This is a compression process (Figure 1.148).
Rarefaction processes with /?_ < p+, in which the density is
smaller in front of the moving piston than behind it, are not
observed in nature.

moving oiston. and two

Figure 1.148.

The second law of thermodynamics decides whether a
process is possible in nature or not.

Only those processes in closed systems which have a non-decreasing entropy are possible.
The entropy condition (1.337) is a replacement for the second law of thermodynamics
in the model (1.332).

Applications to Burger's equation: We consider the initial value problem (1.333).

Example 2: Suppose the initial density is given by the function:

Let f(p) := p2/2 and p- — I and p+ —
0. The jump condition (1.336) yields the
relation

Figure 1.149.
The shock wave thus propagates with the
velocity VQ = 1/2 from left to right. In front
of the shock wave (resp. behind it), the density is p+ = 0 (resp. p_ = 1). This is a
compression process, for which from f'(p) = p we see that the entropy condition

is satisfied (Figure 1.149).
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Example 3: If the initial density is

then we observe the
same shock wave as in
Example 2. However
the density in this case
is p+ = I (resp. p_ =
0) in front of the wave
(resp. behind it). This
is a physically impos-
sible rarefication pro-
cess, for which the en-

Figure 1.150. Rarefication process for Burger's equation.

tropy condition is violated (Figure 1.150(b)).

The characteristics of the initial conditions (1.338) are depicted in Figure 1.150(a). Here
there is a hatched area which is not covered by the characteristics and in which the so-
lution is indeterminate. There are many possibilities to fill this hole, so that generalized
solutions occur. However, none of these solutions make sense physically.

1.13.1.3 The Hamilton—Jacob! differential equations

Suppose the Hamilton function H = H(q,r,p) is given. In addition to the canonical
equations

for the sought-for trajectory q = q(r}, p = p(r), we consider, following Jacobi, also the
Hamilton- Jacobi partial differential equation

for the sought-for function S = S(q, T). Here q = (qi,..., qn) and p = (pi,. . . ,pn)- If H
does not depend on T, then H is a conserved quantity for (1.339). In classical mechanics
H is then the energy of the system.

The theory is particularly elegant if it is formulated in the language of symplectic ge-
ometry. To do this, one requires the canonical differential form

and the corresponding symplectic form135

135 In components one has

Moreover, and



along one of the light rays q = q(o], p = p(cr) which connect the points (go,TO) and
(q, r), then S(q,r} is the time which the light ray requires to transverse the distance
between these two points.

Since there is a close relation between the physics of light rays and of wave fronts,
one expects also a close relation between the two equations (1.339) and (1.340). The
following two famous theorems, due to Jacobi and Lagrange, verify that this is indeed
the case.136

The Hamiltonian analogy between mechanics and geometric optics: It was
the idea of the Irish mathematician and physicist William Rowan Hamilton (1805-
1865) to apply the methods of geometric optics to the study of classical mechanics. In
mechanics, q = q(r] corresponds to the motion of a system of particles at time r. The
integral (1.344) describes the action that is transported along the trajectory. Action is
a fundamental physical quantity with the dimension of energy times time (cf. 5.1.3).

We denote by Q = (Qi, - - - , Qm) and P = (Pi,.. . , Pm) real parameters. The following
result contains an important method for solving the equations of motion in celestial
mechanics in more complicated cases. From the viewpoint of geometric optics, this
theorem shows that systems of light rays can be obtained from systems of wave fronts.

Theorem of Jacobi (1804—1851): If one has a smooth solution S = S(q, r, Q) of the
Hamilton-Jacobi partial differential equation (1.340), then one obtains by means of

a system of solutions137

of the canonical equation (1.339), which depends on Q and P, that is, on 2m real
parameters.

Application of this result will be considered in 1.13.1.4 and 1.13.1.5 below.
136The most general relation between arbitrary non-linear partial differential equations of the first

order and systems of ordinary differential equations of the first order will be described in the theorem
of Cauchy in section 1.13.5.2.

137The notation here is that SQ = dS/dQ, etc. We are assuming that the equation SQ(q,r,Q) = P
can be solved for q. This is locally the case if det SQg(<jo, T0i Q) 7^ 0.
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The fundamental duality between light rays and wave fronts: In geometric
optics the curves

are referred to as light rays, where q and r denote space variables. The equation (1.340)
is called the eikonal equation. The surfaces

correspond to the wave fronts, which are perpendicular to the light rays. If we calculate
the integral
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The basic idea of the following theorem is that the eikonal function of the wave fronts
can be constructed out of the system of light rays. This goal cannot be achieved with
an arbitrary system of rays, but rather it is required that the rays form a Lagrangian
manifold.

We assume the Hamiltonian function H is smooth.

The theorem of Lagrange (1736-1813) and symplectic geometry: Let a system
of solutions

of the canonical differential equation (1.339) with QQ(TO,QO) ^ 0 be given. Then the
equation q = q(r,Q) can be solved in a neighborhood of (ro,Qo) f°r the variable Q,
which yields a relation Q = Q(r, q).

The system (1.346) is now assumed to form a Lagrangian manifold in the neighborhood
of Qo at time TO, i.e., the symplectic form uj vanishes identically for TO along the solutions
of the system.138

We consider the curve integral

where q and p are given by (1.346). This curve integral is independent of the path of
integration and yields by means of

a solution S of the Hamilton-Jacobi differential equation (1.340).

Corollary: The system of solutions (1.346) form for all times T a Lagrangian manifold.

The solution of the initial value problem:

138 Because of this condition implies that

hence

for all parameters Qi. Here we are using the brackets which were introduced by Lagrange

Implicitly it was already clear to Lagrange that the notion of symplectic geometry is of great impor-
tance for the mathematical description of classical mechanics. However, this notion of geometry was
not explicitly applied until around 1960, in order to understand deeper properties of many classical
considerations, but also to get new insights. This will be described in more detail in 1.13.1.7 and more
generally in [212]. The modern standard reference for symplectic geometry and its many applications
is the text [156].
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Theorem: We assume that the Hamilton function H = H(q, r,p) is smooth in a neigh-
borhood of the point (QQ, 0,0). Then the initial value problem (1.347) has a unique
solution in a sufficiently small neighborhood of the point (go10,0), and this solution is
smooth.
Construction of the solution: We solve the initial value problem

for the canonical equations. The corresponding system of solutions q = q(r,Q), p =
p(r, Q) yields by the Theorem of Lagrange the solution S of (1.347).

1.13.1.4 Applications to geometric optics

The movement of the light ray q = q(r) in the (T, g)-plane can be obtained by the
principle of Fermat (1601-1665):

Here n(q) is the indicatrix, i.e., the index of refraction at the point q(r) (c/n(q) is the
speed of light in the medium), and c is the speed of light in the vacuum. A light ray hence
moves in such a way as to transverse the distance between two points in a minimum of
time.

The Euler-Lagrange equations: If we introduce the Lagrangian

then every solution q = q(r) of (1.348) satisfies the ordinary differential
equation of second order

that is

To simplify notations we choose the units of measurement so that c = 1.

The Hamiltonian canonical equations: The Legendre transformation

yields the Hamiltonian

The Hamiltonian canonical equations q' = Hp, p' = —Hq are then:

139 The general initial value problem with the initial conditions S(q, 0) = So(q) can be immediately
reduced to the case considered in (1.347), by replacing S by the difference S — So-
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This a system of ordinary differential equations of the first order.

The Hamilton-Jacobi differential equation: The equation ST + H(q,Sq,r) — 0 is

This corresponds to the eikonal equation

The method of solution of Jacobi: We consider the
special case n = 1, which corresponds to propagation of
light in a vacuum. Obviously

is a solution of (1.351), which depends on the parameter
Q. According to (1.345) we get upon setting — SQ =
P, p = Sq a system of solutions of the canonical equations

Figure 1.151.

which depends on the two constants Q and P, hence is a general solution. This system
is a set of lines q = q(r] of light rays, which are perpendicular to the straight wave fronts
S = const (Figure 1.151).

1.13.1.5 Applications to the two body problem

The Newtonian equation of motion: According to 1.12.5.2, the two body problem
(for example for the sun and one of the planets) leads to the equation

for the plane motion q = q(£), where the sun is taken to be
at the origin (Figure 1.152). Here mi denotes the mass of
the sun, m-2 the mass of the planet, m = mi +7712 is the total
mass, and G is the gravitational constant. The force is given
by the relation

Figure 1.152.

The total energy E: This is given as the sum of the kinetic and the potential energy.
This gives

The Hamiltonian canonical equations: We introduce the momentum p = m^
(mass times velocity). From the expression above for the energy E we get the Hamilto-
nian
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If we set q = q\\ + tfej and p = p\\ + p-£, then the canonical equations q'j = Hpj, p'j =
—Hqj can be written in vector notation:

This equation is equivalent to the Newtonian equations of motion (1.352).

The Hamilton-Jacob! equation: For the sought-for function S = S(q,t), the equa-
tion St + H(q, Sq} = 0 becomes explicitly

with Sq — grad S. In order to solve this equation conveniently, it is important to pass
to polar coordinates r, (p at this point. This gives the equation

The method of solution of Jacobi: We look for a two-parameter system of solutions
S = S(r,<p,t,Qi,Q<2) of (1.353) with the parameters Qi and Q%. Setting

yields with the help of (1.353) the ordinary differential equation

This means that s'(r) — f ( r ) , where

Hence we obtain

According to (1.345), the equation for the trajectory is obtained from the equation
—SQ^ = Pj with a constant Pj. This gives

For simplification we set Q\ = E and Qi = N. Integrating the second equation, we
obtain
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We may choose const = 0. We have thus derived the equation

for the orbit, where The calculation of
the energy and the angular momentum or this motion imply that the constant h is the
energy and the constant N is the absolute value |N| of the vector of angular momentum
N.

The trajectories (1.354) are conic sections, which are ellipses for 0 < e < 1. The Kepler
laws for the orbits of the planets can be derived from these solutions.

1.13.1.6 The canonical transformation of Jacobi

Canonical transformations: A diffeomorphism

Q = Q(q,p,t], P = P(q,p,t\ T = t,

is called a canonical transformation of the canonical equation

if this transforms the equation into a new canonical equation

The idea is that by choosing the canonical transformation judiciously, the solution of
(1.355) can be reduced to the simpler problem (1.356). This is the most important
method to solve complicated equations in celestial mechanics.

The generating function of Jacobi: Let a function S = S(q, Q, t) be given. Using
the relation

a canonical transformation is generated by setting

and

Here we are assuming that the equation p = Sq(q, Q, t] can be solved for Q by means of
the theorem on implicit functions.

Jacobi's method: If we choose 5 as a solution of the Hamilton-Jacobi differential
equation St + H = 0, then 3? = 0. The transformed canonical equation (1.356) becomes
trivial and has the solution Q = const and P = const. Therefore, (1.358) is the method
of Jacobi given in (1.345).

Symplectic transformations: The transformation Q = Q(q,p), P = P(q,p) is now
assumed to be symplectic, i.e., it satisfies the condition

d(PdQ) = d(pdq).

and
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Then this transformation is canonical with

Proof: Prom the relation d(pdq — PdQ) = 0 we see that the equation

dS = pdq-PdQ

has locally a solution S by 1.9.11, which according to (1.357) generates a canonical
transformation.

1.13.1.7 The hydrodynamic interpretation of Hamiltonian mechanics and
symplectic geometry

The interaction between mathematics and physics has always
played a pronounced role. The physicist, who only has a rudi-
mentary grasp of mathematics, is at a great disadvantage. The
mathematician, who has no interest in the physical applications,
loses an opportunity for motivation and deeper insights.

Martin Schechter,
University of California

A particularly intuitive and elegant interpretation of Hamiltonian mechanics is obtained
by using a hydrodynamical picture in the (q, p)-phase space and the language of differ-
ential forms. A key role is played in this setup by the Hamiltonian function H and the
three differential forms

The symplectic form u is responsible for the ability of symplectic geometry for giving a
closed mathematical description.

In what follows suppose that all functions and curves which occur are smooth. Moreover,
only bounded domains with smooth boundaries shall be considered. Pathological curves
and domains are excluded from consideration.

Classical currents in R3

Integral curves: Suppose we are given a velocity field v = v(x, t). The curves x = x(t)
which satisfy the differential equation

are called integral curves or flow
lines of the vector field. These
curves describe the flow of fluid
particles (Figure 1.153(a)). We
set

Ft(xo) := x(t),

i.e., Ft associates to each point
P of the fluid the point Pt,
which denotes the position of
the particle at time t which Figure 1.153. Currents in R3.

starts at P at time t — 0. One calls Ft the flow operator at time t.140

140The general theory of flows on manifolds will be considered in [212]. In his construction of the
theory of Lie groups and algebras, Sophus Lie (1842-1899) used in an essential way the notion of flows
(one-parameter subgroups). For ease of notation we identify the vector x with its endpoint in P.
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The theorem of flows:

Example: If h = p is the mass density, then the conservation of mass means that in
(1.359) the integral on the left vanishes. If we contract the domain f2 to a point, then
from the vanishing of the integral on the right-hand side yields the so-called continuity
equation

Vortex lines: The curves x = x(t) which satisfy

are called vortex lines. The contour integral

along a closed curve C is called the circulation of the velocity field along C. If the field v
is vortex-free, i.e., if curl v = 0, then the circulation along every closed curve vanishes.
It then follows from Stokes theorem that

if C is the boundary dF of a surface F. In general the circulation is non-vanishing and
yields a measure of the strength of the vortex in the fluid. There are two important
conservation laws for the circulation along curves.

The vortex theorem of Helmholtz (1821—1894): One has the relation

if the curve C* is obtained from C by parallel transport along vortex lines (Figure
1.153(b)).

The vortex theorem of Kelvin (1824-1907): In an ideal fluid one has the relation

Here Ft(C) consists of those particles at time t, which belong to the closed curve C at
time t = 0. Hence the circulation along a closed curve, which consists of particles of an
ideal fluid, remains constant in time.
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Ideal fluids: As opposed with the vortex theorem of Helmholtz, the velocity field v in
the theorem of Kelvin must be the solution of the Euler equations of motion for an ideal
fluid. These equations are

Here p denotes the density, p the pressure and f = — grad U the force density.

Incompressible fluids: In the case of constant density p = const, one speaks of an
incompressible fluid. It then follows from the continuity equation (conservation of mass)
in (1.360) that we have the so-called incompressibility condition:

div v = 0.

Conservation of volume: In an incompressible fluid the flow is volume-preserving,
i.e., the fluid particles that are in a domain Q at time t = 0 are in Ft(£l) at time t and
both of these domains have the same volume (Figure 1.154). Analytically this means

Proof: This follows from the flow equation (1.359) with h = 1 and div v = 0.

Figure 1.154- Conservation of volume. Figure 1.155. Hamiltonian flows.

The Hamiltonian flow
Phase space: let q = (gi , . . . , qn) and p = (pi,... ,pn), so that (q,p) € M2n. We denote
this (p, <?)-space as the phase space. Moreover let q = q(t) and p = p(t) be solutions of
the canonical equations
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We set

Ft(qo,Po) •= (?(*),?(*))•

In this manner one obtains what is by definition called a Hamiltonian flow (Figure
1.155).

Conservation of energy: The Hamiltonian function is constant along the integral
curves of the Hamiltonian flow.

The theorem of Liouville (1809-1882): The Hamiltonian flow is volume preserving.

Remark: This theorem states that

The differential form 9 := dqi A dq? A ... A dqn A dpi A ... A dpn is the volume form of
the phase space. The important relation with the symplectic form uj is contained in the
formula

with n factors and a constant an. The relation (1.361) then corresponds to the formula

The generalized vortex theorem of Helmholtz and the invariant integral of
Hilbert: Let C and C* be two closed curves, whose points are connected via integral
curves of a Hamiltonian flow. Then one has

This integral is called the invariant integral of Hilbert (or the absolute integral invariant
of Poincare-Cartan).

The generalized vortex theorem of Kelvin: If C is a closed curve in phase space,
then one has the relation

This integral is called the relative integral invariant of Poincare.

The parallel transport of curves and tangent vectors induced by the Hamil-
tonian flow (Figure 1.156): Let the curve

C:q = q(a), p = p(a)

in phase space be given, which passes through the point P for the parameter value a = 0.
The Hamiltonian flow carries the point P into the point

Analysis
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and transports the curve C into the curve Ct- Moreover,
the tangent vector v to the curve C at the point P is
carried into the tangent vector vt to the curve Ct at the
point Pt. If two curves C and C' both have the same
tangent vector at the point P, then the image curves
Ct and C't both have the same tangent vector vt at the
point Pt. In this manner we obtain a transformation
v i—> vt. We write

to denote this transformation.141 One calls F/(P) the linearization of the flow operator
at the point P. In fact, F/(P) is just the Frechet derivative of Ft at the point P.

The natural transformation of differential forms induced by the Hamiltonian
flow: Let ^ be a 1-form. We define the 1-form Ft*/z by means of the natural relation

We call Ft*// the pull-back (with respect to the given flow) of the differential form //.
Indeed, the values of F^p, at the point P only depend on the form fj, at the point Pt

(Figure 1.156).

In the same way one defines the pull-back for arbitrary differential forms. For example,
this is for a 2-form

Analogously, the pull-back can be introduced when Ft is replaced by some, diffeomor-
phism F.

The pull-back is used to verify invariance properties of the differential form with respect
to the flow in a very elegant manner.

Compatibility of pull-back with the outer product: For arbitrary differential
forms n, z/, one has142

and

This statement remain correct if Ft is replaced by an arbitrary diffeomorphism.

141 This is a kind of differentiation, since we have

and

142 The general rules for this analysis can be found in [212].

Figure1.156.
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Symplectic transformations
Let F : O C M2n —» F(fy be a diffeomorphism from a domain fi of the phase space
R2n, which we assume is of the form

F:P = P(q,p), Q = Q(q,p).

We call F a symplectic transformation, if the symplectic form uj remains invariant under
F, i.e., if

Written in components, this equation becomes

Theorem: If F is a symplectic transformation, then one has:

(i) F*9 = 9.

(F is volume preserving).

(iii) For the canonical form a there is locally a function S with

(iv) For a closed curve C one has:

These basic statements can be obtained easily and elegantly from the differential calculus
of Cartan.

Proof: (i): From (1.362) we have

(ii): The relation (1.363) yields

(iii): We have Hence the equation (1.364)
has according to the Poincare lemma locally a unique solution 5 (cf. 1.9.11).

(iv): One has Thus the relation (1.363) yields



1.13. Partial differential equations 487

Thus (iv) follows from (iii).

The main theorem of the Hamiltonian formulation of mechanics:

For every time t, the map Ft generated by
the Hamiltonian flow is symplectic.

Therefore, in the above theorem, F may be replaced throughout by Ft.

The canonical equations: The velocity field v of the Hamiltonian flow satisfies the
equation:143

This is the most elegant formulation of the Hamiltonian canonical equations. The ap-
pearance of the symplectic form u in these equations is the key for the applications of
symplectic geometry in classical mechanics.

Symplectic invariance of the canonical equations: The canonical equations (1.365)
are invariant under symplectic transformation, i.e., under a symplectic transformation,
the canonical equations

q' = Hp, p' = -Hq,

are transformed into new canonical equations

Q' = HP, P' = -HQ.

Proof of (1.365): Let q = q(t), p — p(t) be an integral curve of the Hamiltonian flow.
Then for the velocity vector v at the time t we have the relation

v = (q'(t),p'(t».

If we moreover set w = (a, 6) with a, b 6 Rn, then equation (1.365) tells us that

From and

we obtain

for all aj, bi 6 R. Upon comparing coefficients, this yields

These are the canonical equations.

Lagrangian manifolds: Let D be an open set in Rn. An n-dimensional surface

143The symbol vJo> denotes the so-called inner product of v with w. This is a linear functional, defined
by means of the relation

Instead of vJu; one also writes
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which has a tangent plane at each point,144 is called a Lagrangian manifold, if u vanishes
on J?", i.e., one has

for all tangent vectors v and w of & in the point P.145 Geometrically this means that
each tangent space of & is isotropic with respect to the symplectic form induced by u>
on it (cf. 3.9.8).
Invariance: Lagrangian manifolds are transformed to Lagrangian manifolds under sym-
plectic transformations.

1.13.1.8 Poisson brackets and integrable systems

We consider the canonical equations

for the sought-for motion q = q(t), p = p(t) with g, p 6 Mn. Our goal is to find
conditions for the system (1.367) to have solutions, which after an appropriate change
of coordinates are of the form

Here tpj are angle coordinates of period 27r, i.e.,
describe the same state of the system.

Quasi-periodic motions: In (1.368) each coordinate corresponds to a periodic motion
with the angular frequency of Wj. As these frequencies u > i , . . . , u;n may very well be
different, the motion as a whole is referred to as quasi-periodic. The set

is called an n-dimensional torus. In this description, the boundary points are identified,
if the coordinates (pj coincide or if they differ by integral multiples of 2?r. The motion
(1.368) takes place along an n-dimensional torus T.

Example 1: For n = 2 the Figure 1.157(a) pictures the situation. Here one identifies in a
natural manner the points which lie on opposite sides of the rectangle. If these points of
T are glued together, then one gets the geometric torus 27 depicted in Figure 1.157(b).

(i) If the ratio wi/u^ is a rational number, then the trajectory <p\ = u\t + const, if 2 =

ujzt + const consists of finitely many pieces, which return to the starting position. The
corresponding curve on & is a closed curve, wrapping around & finitely many times
before closing.

(ii) If cji/^2 is an irrational number, then the trajectory covers both T and ST densely
without returning to its starting point (Fig 1.157(c)).

144This means (q1 (C), p'(C)) = n on G.
145 If one uses the Lagrangian brackets introduced in 1.13.1.3, then (1.366) is equivalent to the equation

and
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Figure 1.157. Quasi-periodic motion in coordinates as in (1.368).

Poisson brackets:146 For two smooth functions / = f(q,P) and g = g(q,p) the Poisson
bracket is denned by the formula

Liouville's (1809—1882) theorem: Let n smooth conserved quantities Fi,...,Fn :
R2n —> M of the canonical equations (1.367) be given with FI = H, which are in
involution, i.e., for which

{Fj,Fk} = Q for j ,fc = l , . . . ,n .

Moreover we assume that the set Ma of all points (q,p) £ M2n with

Fj(q,p)=aj, j = l , . . . ,n ,

for fixed a € Rn form a compact, connected n-dimensional manifold, i.e., the matrix
(dkFj) of first partial derivatives has rank n at every point of Ma.

Then Ma is diffeomorphic to a n-dimensional torus T, where the trajectories q =
q(t), p = p(t) which are solutions of the canonical equations (1.367) represent the
quasi-periodic motion (1.368) on Ma.

The foliation by invariant tori: Suppose there is an open neighborhood U of a, so
that a neighborhood of Ma in the phase space M2n is diffeomorphic to the product

Here the set T x {/} with / e U is diffeomorphic to MI. In particular, the parameter
value I = a belongs to Ma. Through this diffeomorphism

the original canonical equations (1.367) transform into the new canonical equations

146 One can construct a Poissonian mechanics parallel to Hamiltonian mechanics, which utilizes the
Poisson brackets (cf. 5.1.3). Poissonian mechanics is based on the fact that the vector fields on a manifold
form a Lie algebra, while Hamiltonian mechanics takes advantage of the fact that the cotangent bundle
of a manifold has a natural symplectic structure (cf. [212]). Poissonian mechanics plays a key role in
the quantization of classical mechanics as carried out by Heisenberg in 1924, which was the birth of
quantum mechanics.
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The solution this yields is

Here u>j := dH(I)/d!j. The variables /_,- are called action variables; together with the an-
gle variables y>j they form the set of action-angle variables of the integrable Hamiltonian
system.

The curve (1.371) corresponds to
a motion on M/. Here M/ is the
set of all points (q,p) e R2n in
phase space which satisfy

F j ( q , P ) = I j , j = l , . - . , n .

We refer to M/ as an invariant
torus. If / is in a sufficiently
small neighborhood of a, then
MI is obtained from Ma by a
small deformation.
Example 2: In case n = 1, the sit-
uation is as in Figure 1.158. Here
one has T :={</? € E : 0 < ip <
27r}, where the points tp = 0 and

Figure 1.158. Invariant tori and action-angle
variables.

(f> = 2?r are identified. The closed curves in (q,p)-phase space map to the system of
circles

of which the radii are / 6 U. Thus M/ corresponds to the circle ^/ of radius / (action
variable).

1.13.1.9 Perturbations of integrable systems (KAM theory)

The decisive question here is: How does an integrable system behave under a small
perturbation? The natural answer, that the situation is only slightly deformed, is unfor-
tunately false. The reason is that resonances between the angular frequencies u > i , . . . , un

can occur.

Instead of the integrable system (1.370) we consider the perturbed system

with the perturbed Hamiltonian H := J4?(I) + £<%?*(!,(p) for a small parameter e. The
Kolmogorov-ArnoPd-Moser theory (KAM theory), which was initiated by Kolmogorov
in 1953 and extended significantly some years later by V. I. Arnol'd and J. Moser, is
concerned with the behavior of the perturbed system (1.372).
'Definition: An invariant torus T x {/} on which the system of solutions (1.371) lives,
is called resonant, if and only if there are rational numbers n.,... , rn, not all of which
vanish, such that

The following results are formulated for non-degenerate systems, i.e., for which the
determinant of the second partial derivatives det (d2J4?(Io}/dIjdIk) of the unperturbed
Hamiltonian in non-vanishing.
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Theorem: // the perturbation parameter e is sufficiently small, then most of the non-
resonant tori of the unperturbed system remain only slightly deformed, and the qualitative
behavior of the trajectories on these tori is unaffected by the perturbation.

The intricacy of the situation lies in the fact that certain non-resonant tori can be
destroyed under the perturbation. Moreover, in the unperturbed system the set of
non-resonant and resonant tori is not clearly separated, i.e., in a arbitrarily small neigh-
borhood of non-resonant tori there may be resonant tori.

Under the smallest possible perturbation, the qualitative behavior of
the trajectories on the invariant tori may change dramatically. It is
even possible that chaotic motion, in a sense the opposite of integrable
motion, may ensue.

Application to the stability of the solar system: If one in a first approximation
neglects the gravitational force between the planets, as well as the force of the planets
on the sun, then each planet moves in a periodic orbit around the sun (an ellipse with
the sun at one of the focal points, the first Kepler law, cf. 1.12.5.2) with different
periods (frequencies). This situation corresponds to a quasi-periodic motion. Once the
interactions of the planets are included in the model, one obtains a perturbation of this
quasi-periodic motion. According to the KAM theory it is in principle impossible to
prove the stability of the solar system for all times, as this behavior depends decisively
on the initial values, which can only be known up to a certain precision.

Many aspects of classical and modern celestial mechanics can be found in the encyclo-
pedia volume [121] as well as in [122].

1.13.1.10 Gibbs' equations in thermodynamics

First law of thermodynamics:

Second law of thermodynamics:

These equations describe the behavior of the temporal development of general thermo-
dynamical systems. These are systems which consist of a large number of particles (for
example molecules or photons). The quantities appearing in these equations are:

Q(t) thermal energy, which is added to the system in the time interval
[0,*];

A(t) work done on the system in the time interval [0, t];

E(t),S(t),T(t) inner energy, entropy, and the absolute temperature, respectively,
of the system at the time t.

If Q'(t) = T(t)S'(t) for all times t, then the process is called reversible. Otherwise the
process is called irreversible.
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If the system is closed, then this means in particular that no thermal energy is added
from outside the system, i.e., Q(t) = 0. From the second law (1.374) it follows that in
this case

Hence one has:

In a closed thermodynamic system, the entropy is non-decreasing.

In a closed system, a process is reversible if and only if S'(t) = 0, i.e., the entropy is
constant.

The following equation characterizes an important class of thermodynamical systems.

Gibbs' law:

This equation holds for thermodynamical systems, whose state can be characterized by
the following parameters:

T: absolute temperature, V: volume, NJ: the number of particles in the jth substance.

The other quantities are then functions of these parameters:

E = E(T, V, N) (inner energy),

S = S(T,V,N) (entropy),

p = p(T,V,N) (pressure),

/j,j = Atj(T, V, N) (chemical potential of the jih substance).

Here one has N = (Ni,... ,7Vr). The equation (1.375) is equivalent to the system of
partial differential equations of the first order:

A thermodynamical process is described in this situation by the equation

This includes the functions

with &>(t] := (T(t),V(t),N(t)). Moreover we obtain Q = Q(t) and A = A(t) by
integrating

with Q(t0) = A(tQ) = 0.

Theorem 1: If one knows a solution of the basic Gibbs equation (1.375), then the
thermodynamical process (1.376) - (1.378) satisfies the first and second law of thermo-
dynamics. This process is reversible.
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The special case of a gas or liquid: We consider the system which consists of N
molecules of some sort of particle with the molecular mass of m. Then M = Nm is the
total mass. Gibbs' equation in this case amounts to

We introduce the following quantities:

mass density,

specific inherent energy,

specific entropy.

Then e, s, p and /j, are functions of T and p. Moreover we define the specific heat by
the relation c(T,p) := eT(T,p).

Theorem 2: For T > 0 and p > 0 suppose we are given two smooth functions

where the constraint cp = —prrT/p2 is satisfied. We also assume we are given values
e(To,/9o) and s(To,po)- Then the uniquely determined solution of the Gibbs' equations
(1.379) is:

All of these curve integrals are independent of the path of integration.

Remark: The state condition p = p(T,p) and the specific heat c(T,p) have to be
determined experimentally. Then all other thermodynamical quantities e, s and JJL are
determined from these.

Example 1: For an ideal gas at room temperature T one has:

p = rpT (equation of state), (specific heat).

Here r is called the gas constant, and a corresponds to the excited degrees of freedom
(usually one has a = 3, 5,6, respectively, for gases consisting of one, resp. two resp. n
with n > 3 atoms). From this we obtain the relations

e = cT + const, s = cln(Tp1-7) + const,

(chemical potential)
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with 7 := 1 + r/c.

The Legendre transformation and thermodynamical potentials: In thermody-
namics one often requires a change of variables. This can be done quite elegantly with
the help of Gibbs' law.

Example 2: Gibbs' equation

dE = TdS-pdV + ndN

shows that S, V and N are natural variables of the inner energy. From E = E(S, V, TV)
it follows that

T = ES, p=-Ev, n = EN.

Example 3: The function F := E — TS is called the free energy. Because of the relation
dF = dE - TdS - SdT one has

dF = -SdT-pdV + [idN.

Hence T, V and N are the most natural variables of F. From F = F(T, V, TV) we then
get

S = -FT, p = -Fv, M = FN.

One calls E and F thermodynamic potentials, as one can obtain all other thermodynam-
ical quantities from these by differentiation. Further thermodynamical potentials are
listed in Table 1.7.

Because of ESV = EVS etc. we get from this the integrability conditions

where we have set

Table 1.7. Important thermodynamical potentials.

Potential

inner

energy E

free energy

F = E - TS

entropy S

enthalpy

H = E + pV

free

enthalpy

G = F + pV

statistical

potential

ft = F - nN

Total differential

dE = TdS-pdV + ^dN

dF = -SdT-pdV + f^dN

TdS= dE + pdV-ndN

dH = TdS-Vdp + ndN

dG = -SdT-Vdp + ndN

dQ = -SdT-pdV -Ndn

Natural

variable

E(S, V, N)

F(T, V, N)

S(E, V, N)

H(S,p,N]

G(T,p,N}

n(r,F,A*)

Interpretation of

the derivative

Es = T, Ev = -p,

EN = LI-

FT = -S, Fv = -p,

FN =/ /

TSE = 1, TSv=p,

TSN = -/z

Hs = T, Hp = -V,

HN = p,

GT = -S, Gp = -V,

GN = \i

QT = -S, fly = -P,

fi^ = -N
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1.13.1.11 The contact transformations of Lie

By pursuing Plucker's ideas about the changing of
elements of space, I arrived in 1868 at the general
notion of a contact transformation.

Sovhus Lie (1842-1899)

In mathematics one can often simplify problems by carrying out an appropriate trans-
formation. For differential equations the contact transformations turn out to be the
proper kind of transformation to achieve this. These are a generalization of the Leg-
endre transformation, whose geometric interpretation was discussed in 1.12.1.14. It is
important that:

Under contact transformations solutions of differential equations are
carried over to solutions of the transformed differential equations.

In addition to the traditional transformation of dependent and independent variables,
in contact transformations the derivatives of the variables can be used as independent
variables.

Definition: Let x = (x i , . . . , xn} and p = (pi,... ,pn)- Moreover let X = (Xi,..., Xn)
and P = (Pi,..., Pn). A contact transformation

is a diffeomorphism of an open set G of R2n+1 to an open set Jl of R2n+1, such that the
relation

is satisfied in G, where the smooth function p is non-vanishing on G

Theorem: If u = u(x) is a solution of the differential equation

with u' = (uqi,..., uqn), then U = U(X) is a solution of the differential equation

F(X, U, U') = 0,

which is obtained from (1.382) with the help of the contact transformation (1.380), where
we have set

Then one obtains also

The general Legendre transformation:
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k can take on any value 1 < k < n. For k = n the last row is vacant. From the product
rule d(pjXj) = pjdxj + Xjdpj, (1.383) follows for p = —1. Thus (1.383) is a contact
transformation.

Example, 1: The Legendre transformation of thermodynamics is obtained from (1.383)
for k = 1. For example in this case we have E = u (inner energy) and F — — U (free
energy) (cf. 1.13.1.10).

Example 2: The Legendre transformation of mechanics is (1.383) with the Lagrange
function L — u and the Hamiltonian H = U (cf. 5.1.3). In this case one has Xj = q'j
(velocity coordinates).

1.13.2 Equations of mathematical physics of the second order

The equations for the flow of heat as well as those for the oscilla-
tions of acoustic bodies and of fluids belong to an area of analysis
which has recently been opened, and which is worth examining in
the greatest detail.

Jean Baptiste Joseph Fourier,
Theorie analytique de la chaleur147, 1822

1.13.2.1 The universal Fourier method

The basic idea of the Fourier method consists in representing the solutions of partial
differential equations of second order in the form

In important cases the term ak(x)bk(t) corresponds to a characteristic oscillation of the
physical system. The following general principle:

The development in time of many physical systems is given as the
superposition of characteristic states (for example, of characteristic
oscillations).

is hidden behind (1.384).

This principle was used first by Daniel Bernoulli in 1730 to treat oscillations of rods and
strings. The sound of every music instrument as well as of every singing voice is described
by expressions of the form (1.384), where ak(x)bk(t) represent the fundamental and
higher tones, the intensity of which determines the quality of the sound. Interestingly,
Euler did not believe the claim made by Daniel Bernoulli that one can obtain the general
time development with the help of (1.384). One must remember that, at this time, there
was no accepted general notion of a function and convergence of infinite series.

In his work Analytic theory of heat, which appeared in 1822, the method (1.384) of
Fourier was developed as an important tool in mathematical physics. However, it wasn't
until the beginning of the twentieth century that one obtained a deeper understanding
of this method through application of methods of functional analysis. This will be
discussed in more detail in [212].

147The analytic theory of heat.
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1.13.2.2 Applications to vibrating strings

This problem describes the motion of a string of the length
L, which is fixed at the ends. The function u has the inter-
pretation: u(x,t) = the displacement of the string at the
point x at time t (Figure 1.159). The number c corresponds
to the velocity of propagation of the string waves.

In order to simplify the notions, we let L = it and c=l. Figure 1.159.

Existence and uniqueness result: Let UQ and u\ be a given smooth, odd function
of period 2?r. Then the problem (1.385) has the unique solution

The notations are such that

that is, the coefficients bk (resp. fcafc) are the Fourier coefficients of UQ (resp. HI). Ex-
plicitly this means

Physical interpretation: The solution (1.386) corresponds to a superposition of char-
acteristic oscillations

u(x, t) = sin kt sin kx and u(x, t) = cos kt sin kx

of the suspended string with the angular frequency uj = k.

The following considerations are typical of applications of the Fourier method.

Motivation for the given solution: (i) We first seek special solutions of the original
problem (1.385) in the form of a product:

(ii) The initial conditions u(Q,t) = u(-ir,t} = 0 can be satisfied by setting:

(iii) The \-trick: From the differential equation utt — uxx = 0 we obtain

(differential equation),

(boundary value),

(initial position),

(initial velocity).
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This equation can be satisfied by setting

with an unknown real number A. In this way we obtain the two equations

and

One calls (1.388) the boundary-eigenvalue problem with the eigenvalue parameter A.

(iv) Non-trivial solutions of (1.388) are

If we set A = — k2 in (1.389), then we obtain the solutions

(v) Superposition of these special solutions yields

with unknown coefficients a& and &&. Differentiating with respect to t yields

(vi) From the initial conditions u(x,Q) = UQ and ut(x,0) = u\(x) we then get the
equation (1.387) for the determination of the a^ and &&.

1.13.2.3 Applications to a rod conducting heat

This problem describes the distribution of the temperature in a rod of length L. The
function T has the interpretation: T(x, t) = the temperature of the rod at the point x
at the time t. The positive number a is a material constant.
For simplification of the calculations set L = TT and a = 1.

Existence and uniqueness result: Let a smooth, odd function T0 of period 2?r be
given. Then the problem (1.390) has the unique solution:

(differential equation),

(boundary temperature),

(initial temperature).
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Here one has

i.e., the coefficients bk are the Fourier coefficients of TQ. Explicitly this means

This result is analogous to 1.13.2.2.

1.13.2.4 The instantaneous heat equation

This problem describes the distribution of temperature in a bounded domain fi of R3

with smooth boundary dfl. The function T has the meaning: T(x, i) = the temperature
at the point x = (£1,0:2, £3) at the time t. The physical meaning of the constants s, ^
and K can be found in (1.170). The operator

is called the Laplace operator.

Existence and uniqueness theorem: Let two smooth functions TO and T\ be given.
Then the problem (1.391) has a unique solution. This solution is smooth.

Heat sources: A similar result holds if one replaces the differential equation in (1.391)
by

with a smooth function / = f(x,t). The function / describes heat sources (cf. (1.170)).

The initial value problem for all of space:

Existence and uniqueness result: Let a continuous, bounded function TO be given.
Then the problem (1.394) has the unique solution
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for all x e M3 and t > O.148 Moreover, one has

Remark: The solution T in (1.395) is smooth for all times t > 0, even though the initial
temperature TQ at time t = 0 is only continuous. This smoothing out effect if typical for
all flow processes (like heat conduction and diffusion).

1.13.2.5 The instantaneous diffusion equation

The equation (1.391) also describes diffusion processes. In that case T is the density
of the number of particles (number of molecules per volume). Similarly, (1.394) and
(1.395.) describe diffusion processes in R3.

Example: The initial density of particles T0 in (1.394) is concentrated near the origin,
i.e., one has

The corresponds to precisely TV particles near the origin. It then follows from (1.395)
after passing to the limit e —> 0 that the solution is

where T denotes the density of the number of particles. The particles, which are initially
concentrated near the origin, diffuse into the entire space. From a microscopic point of
view this is a stochastic process for the Brownian motion of the particles (cf. 6.4.4).

1.13.2.6 The stationary heat equation

If the temperature T does not depend on the time t, then the stationary heat equation
is obtained from the instantaneous heat equation (1.393), leading to

which is also called the Poisson equation. The heat current density vector is given by

Here fi is a bounded domain in R3 with smooth boundary dfi. In addition to the dif-
ferential equation (1.397) one can consider three different kinds of boundary conditions.

(i) First boundary condition:

148 In order to insure the uniqueness of the solution, one must require in addition

for all T > 0, i.e., the temperature must remain bounded in the time interval [0,r].
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(ii) Second boundary condition:

Here n denotes the outer normal vector along the boundary

(iii) Third boundary condition:

Here we assume h > 0 on the boundary <9Q. Moreover one has

Physical interpretation: In the first boundary
condition the boundary temperature is known, while
in the latter two the outer normal component of
the heat conduction density vector is known on the
boundary <9Q (Figure 1.160).

Existence and uniqueness result: Let F, g and
h be given smooth functions.

(i) The first and third boundary value problems for
the Poisson equation (1.397) are uniquely solvable.

(ii) The second boundary value problem for the Pois-
son equation (1.397) is solvable if and only if

Figure 1.160.

The solution T is then unique up to an additive constant.

Variational principles: (i) Every smooth solution of the minimum problem

is a solution of the first boundary value problem for the Poisson equation (1.397).

(ii) Every smooth solution of the minimum problem

is a solution of the third boundary value problem for the Poisson equation (1.397). In
case h = 0, the second boundary value problem also has a solution.

The first boundary value problem for a ball BR of radius R:
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Let BR be an open ball in R3 of radius R centered at the origin. If TO is continuous on
the boundary dBR, then the problem (1.399) has a unique solution

The function T is continuous on the closed ball BR.

Remark: Even though the temperature of the boundary TO is only continuous, the
temperature T in the interior of the ball has derivatives of arbitrary order. The strong
smoothing effect is typical for stationary processes.

1.13.2.7 Properties of harmonic functions

Let Q be a domain in R3.
Definition: A function T : fl —>• R is called harmonic, if AT = 0 on O. Here A is the
Laplace operator (see (1.392)).

We can interpret T as a temperature distribution in fi (without heat sources).

Smoothness: Every harmonic function T : £1 —> R is smooth.

Lemma of Weyl: If the functions Tn : f2 —> R are harmonic, and if

with a continuous function T : O —* R, then T is is harmonic.
The condition (1.400) is satisfied in particular if the sequence (Tn) converges uniformly
to T on every compact subset of f2.
Mean value property: A continuous function T : fi —> R is harmonic, if

for all balls of radius R in S7, for all R.

Maximum principle: A non-constant harmonic function T : Q —> R has in £2 neither
a minimum nor a maximum.
Corollary 1: Let T : £2 —> M be a non-constant continuous function. If T is harmonic
in £2, then T attains its minimum and its maximum on the boundary dfi.

Physical motivation: If there were a maximal temperature in £2, then this would lead to
an instantaneous heat flow, which is in contradiction to the stationarity of the situation.

Corollary 2: Let £1 be a bounded domain with exterior Q* := R3 — £1 If T : £2* —> R
is continuous and harmonic on £2* with lim T(x) = 0, then one has

The Harnack inequality: If T is harmonic and non-negative on the ball BR := {x €
R3 : \x\ < R}, then one has the inequality
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1.13.2.8 The wave equation

The one-dimensional wave equation

We interpret u = u(x, t) as the displacement of a vibrating, infinite string at the point
x and the time t. This equation is called the one-dimensional wave equation.

Theorem: The general smooth solution of (1.401) has the form

u(x, t) = f ( x — ct) + g(x + ct)

with arbitrary smooth functions f , g : M . —> R.

Physical interpretation: The so-
lution u(x, t) = f(x — ct) corre-
sponds to a wave, which propagates
from left to right with the velocity
c and at the time t = 0 the form
u(z,0) = f(x) (Figure 1.161(a)).
Similarly, u(x, t) = g(x + ct} corre-
sponds to a wave which propagates
from right to left with the velocity
c.

Figure 1.161. The initial value problem for the
wave equation.

The existence and uniqueness result for the initial value problem: Let
wo, u\ : R —> R and / : R2 —> R be smooth functions. Then the problem

has the unique solution

Here £/ := [x — ct,x + ct] and D is the triangle which is pictured in Figure 1.161(b).
The line x = ±ct + const are called characteristics. The sides of D which start in the
point (x, t) are among those characteristics.

Domain of dependence: Let / = 0. Then the solution u at the point x at time t
depends only on the initial values UQ and u\ on stf. Therefore one refers to stf as the
domain of dependence of the point (x,t) (Figure 1.161(b)).

Remark: It is typical for wave processes as opposed to diffusion or stationary processes
that no smoothing of the initial solution takes place.

The two-dimensional wave equation

Existence and uniqueness result: Let UQ,UI : R2 —» M be smooth functions. Then
the initial value problem
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has the unique solution

Here Bct(x) denotes a ball of radius ct centered at x.

The three-dimensional wave equation

Existence and uniqueness result: If UQ,UI : M3 —> R and / : M4 —> R are smooth
functions, then the initial value problem

has the unique solution

Here ^^(u) denotes the mean value

In the above formula, dBr(x) denotes the boundary of a ball Br(x) of radius r centered
at x (this is a sphere of radius r).

Domain of dependence: Let / = 0. Then the solution u at the point x and time
t depends only on the values of UQ and u\ and the first derivatives of UQ on the set
stf := dBct(x), which is therefore called the domain of dependence of ( x , t ) .

Clear transmission of signals and
the Huygens' principle in R3: Ex-
plicitly, £/ consists of all points y
which satisfy

Figure 1.162. Huygens' principle in R2 andR3.

This corresponds to a clear transmis-
sion of signals with the velocity c.
One also refers to the validity of the
Huygens' principle in R3 instead of

clear transmission of signals. If UQ and u\ are concentrated in a small neighborhood
of the origin x = 0 at time t = 0, then the perturbation which these functions repre-
sent propagates with the velocity c and is therefore at time t concentrated in a small
neighborhood of the surface dBct(Q) of the ball (Figure 1.162(a)).

Non-validity of Huygens' principle in R2: In the case of dimension two, the depen-
dence of the solution at the point x at time t is given by s4 = Bct(x). Therefore there
is no clear transmission of signals. A small perturbation, which is concentrated at x = 0
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at time t — 0 propagates to the entire disc Bct(0) (Figure 1.162(b)). To get an intu-
itive feeling for this situation, think of living in flatland. The non-validity of Huygens'
principle in this two-dimensional world makes it impossible to listen to radio or watch
TV: all signals arrive at your antenna completely distorted through the superposition
(heterodyning) of the signals sent at different times.

1.13.2.9 The Maxwell equations of electrodynamics

The initial value problem for the Maxwell equations consists in prescribing the electric
and magnetic fields at the time t = 0. Moreover one has the electric charge density p
and the electric current density vector j defined for all times in all of space, where the
equation of continuity

pt + div j = 0

must be satisfied. If these quantities are smooth, then they determine unique electric
and magnetic fields for all times in all of space. The explicit solution together with a
detailed investigation of the Maxwell equations will be given in [212].

1.13.2.10 Electrostatics and Green's functions

The basic equations of electrostatics:

Let O be a bounded domain in R3 with smooth boundary. The electromagnetic poten-
tial U is to be determined, with given boundary values UQ and given external charge
density p. In the special case where UQ = 0, the boundary dQ consists of an electrically
conducting material (eo is the dielectric constant of the vacuum).
Theorem 1: If the functions p : Q —> R and UQ : d£l —> M are smooth, then the
problem (1.404) has a unique solution. The corresponding electric field is E = —grad U.

The Green's function G:

We fix the point y e fi. Suppose the function V is smooth on fL
Theorem 2: (i) For every fixed point y E O the problem (1.405) has a unique solution
G.

(ii) One has G(x, y) — G(y, x) for all x, y € Q, that is, G is a symmetric function,

(iii) The unique solution of (1.404) is obtained by the formula
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Here d/dny denotes the outer normal derivative with respect to y.

Physical interpretation: The Green's function x i—> G(x, y) corresponds to an elec-
trostatic potential with a point charge of strength Q = I at the point y in the domain
f), which is bounded by an electrical conductor. In the language of distributions, one
has:

Here 6y denotes the Dirac distribution (cf. [212]). The first line of (1.406) is equivalent
to the relation

Example 1: The Green's function for the ball BR := (x e M3 : x\ < R} is

The point y* is obtained from the point y by reflecting on the sphere dB^.

Example 2: The Green's function for the half-space H+ := {x E M3 : £3 > 0} has the
form

The point y* is obtained from y by reflecting on the plane £3 = 0.

1.13.2.11 The Schrodinger equation of quantum mechanics and the hydro-
gen atom

Classical motion: For a particle of mass m in a force field F = —grad U with a
potential U the Newton equations of motion are:

mx" = F.

The energy of the system is given by

where p = mx' denotes the momentum.
Quantized motion: In quantum mechanics the motion of a particle is given by the
Schrodinger equation

(h is the Planck constant, and h = h/2?r). The complex valued wave function ip = tp(x, t)
of the particle satisfies the normalization:
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The number

is equal to the probability that the particle in contained in the domain O at the time t.

Rule for quantization: The Schrodinger equation (1.408), which was formulated by
Schrodinger in 1926, is obtained from the classical formula (1.407) for the energy upon
making the replacements:

Then p2 changes to —frgrad = h A.

States with strict energy levels: We call the differential operator

the Hamilton operator of the quantum mechanical system. If the function </? = <p(x) is
an eigenfunction of H with eigenvalue E, i.e., if

then the function

is a solution of the Schrodinger equation (1.408). By definition, ^ corresponds to the
state of a particle with the energy E.

The hydrogen atom: The motion of an electron of mass m and charge e < 0 around
the nucleus of a hydrogen atom of charge \e\ corresponds to the potential

(where £Q is the dielectrical constant of the vacuum). The corresponding Schrodinger
equation has, in spherical coordinates, the solution

with the so-called quantum numbers n = 1,2,... and I = 0,1,2,. . . , n — 1 as well as
m = I, I — 1,..., —I. The function ip in (1.409) corresponds to states of the electron with
energy

Here the quantity 7 is given by 7 := e4m/8eQh2. Moreover, TQ := 4ir£oh2/me2 =
5 • 10~nm is the Bohr radius of the atom. The definition of the special functions
occuring in (1.409) is explained in section 1.13.2.13.

Orthogonality: Two functions ip and ifr* of the form (1.409) which belong to different
quantum numbers are orthogonal, i.e., one has
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In case -0 = V'*; the integral is equal to unity (=1).
The spectrum of the hydrogen atom: If an electron lying in the energy shell with
energy En jumps to the energy shell with the lower energy E/,, then a photon of energy
AE = En — Ek is emitted with the frequency v given by the following formula:

A deeper understanding of quantum mechanics is only possible in the context of func-
tional analysis. This is discussed in [212].

1.13.2.12 The harmonic oscillator in quantum mechanics and Planck's law
of radiation

Classical motion: The equation

corresponds to the oscillation of a point of mass m on the x-axis with the energy

and momentum p = mx'.

Quantized motion: In quantum mechanics the motion of the particle is determined
by the Schrodinger equation

together with the normalization

The number

is equal to the probability that the particle can be found in the interval [a, b]. The
Schrodinger equation (1.410) has the solutions

with n = 0, 1, . . . and XQ :— (cf. 1.13.2.13). These are states of energy
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For AE := En+l - En we get

The Planck law of radiation (1900): The equation (1.412) contains the famous
Planck quantum formula, which is the starting point of quantum mechanics and, as op-
posed to the unsuccessful attempts using classical mechanics, gives the correct radiation
law. The energy J3, which is emitted by a star of temperature T with the surface area
F in the time interval Ai, is according to Planck, equal to

where A is the wavelength of the light, h is the Planck constant, c is the speed of light
and k is the Boltzmann constant.
The zero point energy of Heisenberg: The formula (1.411) was obtained by Heisen-
berg in 1924 in the context of his matrix mechanics. In this manner Heisenberg created
quantum mechanics. The most interesting point of (1.411) is the fact that the lowest
state n = 0 has a non-vanishing energy EQ = riw/2. This leads to the fact that the lowest
states of a quantum field with its infinitely many degrees of freedom has an 'infinitely
large' energy. This behavior is one of the reasons for the unsurmountable difficulties
involved in forming a mathematically rigorous quantum field theory.

1.13.2.13 Special functions of quantum mechanics

Orthonormal systems: Let X be a Hilbert space with scalar product (u,v). Then
the set of elements UQ, HI, ... form a complete orthonormal system in X, if

for all fc, m = 0,1,2,. . . and every element u € X can be written in the form

This means that

with ||u|| := (v,v)1/2. In the following let x 6 R. Most of the functions discussed below
have been introduced in section 0.7.2.
Hermitian functions: (see p. 124)

For n = 0,1,2,. . . , these functions satisfy the differential equation
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and form a complete orthonormal system in the Hilbert space L<z(—00,00) with the
scalar product149

Normalized Legendre polynomials:

For n = 0,1,..., these functions satisfy the differential equation

and form a complete orthonormal system in the Hilbert space LZ(—1,1) with the scalar
product

Generalized Legendre polynomials:

For k = 0,1,2, . . . and I = k, k + l,k + 2,..., these functions satisfy the differential
equation

and form a complete orthonormal system in the Hilbert space LZ(—1,1).

Normalized Laguerre functions:

For a fixed a > — 1 and n = 0,1,. . . , these functions satisfy the differential equation

and form a complete orthonormal system in the Hilbert space £2(0, oo) with the scalar
product

The positive constant c° can be chosen such that (L", L") = 1.

Spherical functions:

149A function u : R —> R belongs to Lz(—oo, oo) if and only if (u,u) < oo, where the integral is to
be understood in the sense of Lebesgue (cf. [212]). In particular the continuous or almost everywhere
continuous functions u : K —> R belong to L?.(—oo, oo) if and only if (u,u) < oo. Similarly the spaces
LZ(—1,1) etc. can be defined.
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Here r, (f> and 9 are spherical coordinates (see section 1.7.9.3). For / = 0,1,.. . and
m = 1,1 — 1,... , — /, these functions form a complete orthonormal system in the Hilbert
space Lz(S2)c consisting of the complex-valued functions on the unit sphere S2 := [x €
M3 : \x\ = 1} with the scalar product

1.13.2.14 Non-linear partial differential equations in the natural sciences

The limit is the location of knowledge.
Paul Tillich

Important processes in nature are described by complicated non-linear differential equa-
tions. Among these are the equations of hydrodynamics, gas dynamics, elasticity, chem-
ical processes, general relativity (cosmology), quantum electrodynamics and gauge the-
ories (the standard model in the theory of elementary particles). The non-linear terms
which occur correspond to interactions.

In these problems the methods of classical mathematics fail. One requires modern
functional analysis for their treatment. A central tool for this is the theory of Sobolev
spaces. These are spaces of functions which are not smooth and which possess only
generalized derivatives (in the sense of distributions). These Sobolev spaces are at
the same time the appropriate tool in studying the convergence of modern numerical
procedures.

These questions will be handled in detail in [212].

1.13.3 The role of characteristics

Important information of physical processes involving waves can be gleaned from the
corresponding differential equations without actually solving them. There is a difference
between weak discontinuities (jumps of higher derivatives) and strong discontinuities
(jumps of the functions themselves). Weak discontinuities are connected with charac-
teristics and yield for example the following important physical statements:

(i) Electromagnetic waves are transversal;
(ii) Sound waves are longitudinal;
(iii) Elastic waves can be both transversal and longitudinal.

Strong discontinuities correspond to shock waves in the dynamics of gases and the cor-
responding Rankine-Hugoniot conditions.
The behavior of jumps: Let the surface

be given in R^"1"1 with x = (x i , . . . , XN)- The normal vector n in the point x is given
by150

150Explicitly one has tp' = ( d i i f i , . . . , djvV') and n = (m,.. . , UN) with n^ =
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We define the size of the jump by the relation

with «±(x) = lim u(x ± hn) (Figure 1.163).
h—>+0

Figure 1.163. Notations: Let

In order to have a convenient notation for higher partial derivatives, we introduce multi-
indices a, = (ai , . . . , QN) as a tuple of natural numbers ai , . . . , &N and write

with |a| := a\ + • • • + aw- Similarly, let

In particular, if a = (0 , . . . , 0), we set dav := v and Aa :— I.

1.13.3.1 Characteristics and the propagation of discontinuities

Quasilinear systems: We consider the initial value problem

with smooth coefficient functions aa, b and 0/3. Each symbol aa denotes a quadratic
(N x 7V)-matrix. In (1.413) the summation is over all derivatives of u up to order m,
where the zeroth derivative is understood to be the function u itself. The coefficients
aa and b are only supposed to contain derivatives of u up to order m — I. A system
of equations of this type is referred to as a quasilinear system of order m. If all the
coefficient functions aa and b are independent of u, then this is in fact a linear system.

Let the surface & be defined by the equation

with ip'(x] ^ 0 in all points of &.

Symbol: To the differential equation (1.413) we associate its symbol

If the system (1.413) is linear, the symbol ^(x, A) does not depend on u.
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The symbol 5? contains fundamental information about the system of solutions of
(1.413).

Characteristics: The surface & : ^(x) = 0 is called a characteristic, if and only if the
function ip satisfies the differential equation

A curve x = x(a) is called a bicharacteristic to the characteristic V>, if151

Physical interpretation: For the Maxwell equations the bicharacteristics correspond
to the light waves, and the characteristics are the wave fronts of these light waves (cf.
1.13.3.3).

The differential equation ^(x,u(x),^'(x)) = 0 is of the first order in t/>. According
to a general result of Cauchy one can build the solution surfaces of partial differential
equations of first order from curves, which in the case of the function -0 correspond to
the bicharacteristics (cf. 1.13.5.2).

Theorem on discontinuities: Let u = u(x) be a solution of the quasilinear system
(1.413), which, together with its derivatives of up to (m — l)st order, is continuous in
a neighborhood of &. The possible jumps of the mth derivatives of u at x obey the
following:

(i) Kinematic compatibility condition:

(ii) Dynamical compatibility condition:

Here p is a fixed vector in RM. One has p ^ 0 if (^>,u) is characteristic in x, i.e.,
J^(xXx),V/(x)) = 0.152

Weak correctness of the initial value problem: For smooth functions u,ijj the
following statements are equivalent:

(i) All derivatives of u up to order m at x are uniquely determined by the differential
equation and the initial values of (1.413).

(ii) (t/>,u) is not characteristic at x, i.e., ^(x,tt(x),i/'/(x)) ^ 0.

1.13.3.2 Applications to the classification of differential equations

Let u be a smooth solution of the quasilinear system (1.413). The following classification
depends in general on u. For linear systems the described classification is, however,
independent of u.

151 Explicitly one has
152 We set
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We fix a point x and consider the A-polynomial

with a fixed invertible real (N x AQ-matrix A and the column vector A. The following
conditions should be satisfied for a fixed choice of A (for example, AX = A).

Definition: (i) The quasilinear system (1.413) is called elliptic at the point x, if A = 0
is the only zero of &.

(ii) (1.413) is said to be parabolic at x, if the polynomial & is degenerate, i.e., it depends
on fewer than TV variables.

(iii) (1.413) is said to be strictly hyperbolic at x, if the equation

has exactly MN different real solutions XN for every non-vanishing tuple ( A i , . . . , AJV-I)
eR^-1.

Qualitative behavior: Roughly speaking one has the following facts:

(i) Elliptic problems correspond to stationary processes in nature. Here there are no
characteristics. The solutions have no discontinuities.

(ii) Parabolic problems correspond to flow processes (for example heat conduction and
diffusion). These processes have a smoothing effect in time.

(iii) Hyperbolic problems belong to wave processes. Here the propagation of disconti-
nuities along wave fronts is an important mechanism for transporting physical effects in
nature.

Classification of equations of second order: We consider the equation

with dj :— d/dxj and with a symmetric real matrix A = (a.jk)- It is our goal to find
a real function u = u(x) which solves the equation. The coefficients o^, a,j and a are
assumed to be real numbers. The corresponding symbol is obtained by

i.e., ^(A) = \JAX. The equation for the characteristics is if)(x) = 0. The function
satisfies the equation ^(^'(x)) = 0, that is

The equation for the bicharacteristics x = x(o~) is:

Theorem: (i) The equation (1.415) is elliptic if and only if the eigenvalues of A are all
positive (or all negative).

(ii) The equation (1.415) is parabolic if and only if at least one eigenvalue of A vanishes.
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(iii) The equation (1.415) is strictly hyperbolic if and only if an eigenvalue of A is positive
and all other eigenvalues are negative (or the other way around).

Example 1: The Laplace equation

can be written in the form d\u + d\u = 0. The symbol is therefore

Prom ^(A) = 0 it follows that A = 0. Therefore the Laplace equation is elliptic.

Example 2: The heat equation

has the symbol <^(A) = — \\ and
is hence degenerate, as it does not
depend on A2- Consequently, the
heat equation is parabolic.

The equation for the characteris-
tics t/j(x,t) = 0 is determined by
the solution of t/^ = 0- The fam-
ily of solutions tp = t + const cor-
respond to the lines

as characteristics (Figure 1.164(a)).
Figure 1.164- Characteristics of the heat and

vibrating string equations.

Example 3: The equation of a vibrating string

has the symbol ̂ (A) := -^A?-Ao. For every real number AI ^ 0 the equation &(\) = 0
&

has two real solutions A2. Hence the equation of the vibrating string is strictly hyperbolic.

The equation for the characteristics is t/j(x, t) = 0. The function ij) is obtained as the
solution of the equation

The family of solutions ip = ±ct — x + const corresponds to the characteristics (Figure
1.164(b)):

Remark: As the speed c of propagation increases, these characteristics approach the
characteristic t = const of the heat equation. In fact, the initial perturbations of the heat
equation are propagated with arbitrarily high speed. This fact is at contradiction with
the Einstein principle, according to which physical effects can propagate with at most
the speed of light. Therefore the heat equation must be modified in special relativity.
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Example 4- Let

(i) The Poisson equation

is elliptic.

(ii) The heat equation

is parabolic.

(iii) The wave equation

is strictly hyperbolic. The characteristics ip(x, y, z, i] = 0 of the wave equation, which
correspond to moving wave fronts, belong to solutions ip of the eikonal equation

In particular, for the characteristics of the form V7 = ct — <p(x, y, z) one obtains the
bicharacteristics x = x(t) from the differential equation

These are curves which are perpendicular to the wave surfaces ip(x, y, z) = const. In the
particular case when (p(x) = ax + /3y + 72 + 6, the characteristics

correspond to planes which propagate at the speed c in the normal direction. The
bicharacteristics are lines, which are perpendicular to these planes.

1.13.3.3 Applications to electromagnetic waves

We consider the initial value problem for the Maxwell equations

for the electric field vector E and the magnetic field vector B in a vacuum in the absence
of electrical charges and currents. Here c denotes the speed of light in a vacuum. Suppose
that divEo = 0 and divBo = 0. For the solutions of (1.416) this means automatically
that div E = div B = 0 for all times t.

Characteristics: The equation for the characteristics of (1.416)
are tp = 0. The function ^ is a solution of the equation

We consider solutions of the form ^(x, t) = y(x) — ct with
(grady>)2 = 1. Then

Figure 1.165.

corresponds to the propagation of the wave front with speed c in the direction of the
unit normal vector
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(Figure 1.165). One has x = x\\ + x^j + xak and n = n\i + n<£ + nak.

Jump condition: If the electromagnetic fields E, B are continuous along the wave
front ^", then the possible jumps of the first derivatives of E and B at x at the time t
satisfy the relations153

Here a and b are vectors with a2 + b2 ^ 0 and

a = b x n and b = n x a.

Since a and b are perpendicular to the direction of propagation n of the wave front, we
speak of transversal waves.

Example: If a radio station starts its daily program at time t = 0, then an electromag-
netic wave front is generated, in such a way that E and B vanish in front of the wave
front but are non-vanishing behind it.

1.13.3.4 Applications to elastic waves

We consider small deformations of elastic bodies, i.e., a point with position vector x
passes during this deformation at time t to a point with position vector

y = x + u(x,t).

The equations governing linear elasticity theory are:154

Here p is the constant density of the body and K and A denote the Lame material
constants.

Characteristics: The solution if) of the equation

with

yield the characteristics

Transversal waves: Let ip be a function with (gradc/p)2 = 1. Then the function

is a solution of (1.417), where & corresponds to a surface, which moves with the speed
ctr in the direction of the normal vector n := grad</?(x) of the surface (Figure 1.165).
The condition for discontinuities for the second derivatives of u at the point x of the
wave front at time t is:

153 [/]:=/+-/_ with/±(x,t) : =

The general equations of non-linear elasticity theory can be found in [212].154
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The vector a ^ 0 is perpendicular to n. We therefore speak of a transversal wave.

Longitudinal waves: If we replace ctr by c\, then we get the same result, with the
vector a now being parallel to n, i.e., we now have a longitudinal wave.

1.13.3.5 Applications to sound waves

The Euler equations for the motion of a compressible fluid (without inner friction) are:

(equation of motion),

(conservation of mass),

(adiabatic equation of state).155

The notations are as follows: v(x, t) is the velocity of the fluid particles at time t at the
point x, p(x, t) is the density of fluid at the point x at time t, f is the density of exterior
forces and p is pressure.

Let ^t(x, i) < 0. The equation

describes the motion of a surface in R3 with the speed c in the direction of the unit
normal vector n of the surface at the point x at time t. One has:

A fluid particle at the point x of the surface at time t has the velocity vector v with the
normal component vn. For the relative velocity c — vn between the wave front and the
particle we obtain

with

Characteristic equation:

Here we have set

Sound waves: If ̂  is a solution of the equation

then (1.418) is satisfied. For the relative velocity we obtain

155 If one introduces the density p and the specific entropy density s, then one obtains the Dirac density
relation p = p(p) from p = p(p, s) with s = const (adiabatic process). The following considerations
remain valid for gases (cf. 1.13.3.6).
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The quantity cs is called the speed of sound. The condition for discontinuities of the
first derivatives of v and p at the point x at time t is

with a = bcsp 1n and a2 + b2 ̂  0. Since the jump vector a is parallel to the surface
normal vector n, we have a longitudinal wave.

1.13.3.6 Shock waves in the dynamics of gases

The equations of motion for gases (without friction and without heat conduction) are:

(conservation of momentum),156

(conservation of mass),

(conservation of energy),

(entropy equation).

In addition one has the thermodynamic relations

(Gibbs equation).

In contrast to the case of liquids, in working with gases one must account for the effects
of thermodynamics.

The notations are as follows: v is the velocity vector, p the pressure, T the absolute
temperature, p the density, f the density of exterior forces, e the specific inner energy
density (inner energy per unit of mass), and s is the specific entropy density. Moreover,

is the density of total energy.
156The tensor product a <8> b is identified here with a linear operator, which is defined by the relation

(a<g> b)c := a(bc) for all vectors c.

In older literature one used the notation (aob)c = a(bc) and spoke of the dyadic product. The meaning
of div(a ig> b) is given by the Gaussian integral formula

where n is the outer normal vector. In a Cartesian coordinate system with basis vectors ei, 62 and 63,
one has the following representation in components:

Because of conservation of mass Qt + div(/ov) = 0 the conservation of momentum (1.419) is equivalent
to the equation of motion
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Example: In the special case of an ideal gas, under the condition of temperatures which
are not too low, one has:

where r is the gas constant and c is the specific heat capacity.

The Rankine—Hugoniot discontinuity condition: Let a moving surface

be given, which is not necessarily a characteristic. For the possible jumps of the physical
quantities at a point x on the surface at the time t, one has:157

If discontinuities of this type occur, one denotes & as a shock wave. Supersonic aircraft
for example generate shock waves. The theoretical and numerical treatment of the
equations of the dynamics of gases are often quite made complicated by the occurrence of
shock waves. These mathematical problems are of great importance for the construction
of modern aircraft with minimal fuel consumption.

Shock waves for conservation laws: We consider the equation

If the solutions to this equation, p, and j, have jumps at a point x on the surface & in
(1.421), then one has:

In the derivation of (1.424) it is assumed that the equation (1.423) is satisfied in the
sense of distributions (cf. [212]).

Since the basic equations (1.419) of the dynamics of gases are of the form of conservation
laws, the relations (1.422) for the jumps follow from (1.424).

Sound waves in a gas: The propagation of sound is a process which proceeds so
quickly that the individual units of volume cannot exchange any heat with one another.
Therefore the specific entropy density s remains constant. From (1.420) we get for
s = const the relation

157 We set f1 = grad ip and

Here n := tf>'(x)/\ip'(x)\ is the unit normal vector to the surface & at the point x (cf. Figure 1.165).
Moreover one has
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and the adiabatic equation of state

Similarly as in 1.13.3.5 the speed of sound eg is obtained from the relation
hence

For the mixture of gases which form our atmosphere, experiments yield the value 7 ~ 1.4.

1.13.4 General principles for uniqueness

1.13.4.1 The energy method

This method can be applied to problems for which the energy is conserved. To explain
the general ideal of this method, we consider the equation for a vibrating string

(boundary condition),

(initial condition).

Here u(x,t) denotes the displacement of the string at the point x at time t.

Uniqueness result: The problem (1.425) has at most one smooth solution u.

Proof: For simplification we set c = 1. If v and w are two solutions of (1.425), then we
set

u := v — w.

We must show that u = 0. The function u satisfies the equation (1.425) with

We consider the function

This corresponds to the energy of the string at time t.

(i) One has E'(t) = 0 for all times t > 0. Indeed, partial integration yields

because of (1.425) and (1.426).

(ii) E(0) = 0. This follows from (1.425) and (1.426).

(iii) From (i) and (ii) it follows that E(t) = 0 for all times t > 0. This in turn implies
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hence u(x, t) = const. Because of the initial condition w(x, 0) = 0 we obtain the desired
result that u = 0.

Basic physical idea: The method of proof above uses the fact that one has conservation
of energy and the initial energy vanishes. It follows that the energy vanishes for all times,
and the system must be at rest.

The same argument may be applied to dissipative processes, in which the energy is a
non-increasing function in time.

1.13.4.2 Maximum principles

The basic physical ideas of the maximum principle is that the temperature differential
in a body generates a flow of heat in the direction of lower temperature.

Non-stationary heat equation:

(boundary value),

(initial value).

We denote by fi a bounded domain in RN with smooth boundary for N > 2. Assume
that the material constant a is positive. We set D := fJ x [0, to] for a fixed time £Q > 0.

Maximum principle: If T is a smooth solution of (1.427) with / < 0 on D, and if the
temperature T attains its maximum in an interior point of D, then T is constant on D.

Inequality relations: For a smooth solution T of (1.427) one has:

(i) From / > 0 on D, r > 0 on dft and T0 > 0 on Q it follows that T > 0 on D.

(ii) From / = 0, r = 0 and T0 = 0 it follows that T = 0.

Uniqueness result: The problem (1.427) has at most one smooth solution T.

Proof: If v and w are two solutions, then the difference T := v — w satisfies the equation
(1.427) with r = 0 and T0 = 0. From (ii) it then follows that T = 0, hence v = w.

The stationary heat equation:

(boundary value).

Maximum principle: If T is a smooth solution of (1.428) with / < 0 on O and if the
temperature T attains its maximum on fi at a point of Q, then T is constant on Ct.

Inequality relations: For a smooth solution T of (1.428) one has:

(i) From / > 0 on Q and r > 0 on <9fJ it follows that T > 0 on Q.

(ii) From / = 0 and r = 0 it follows that T = 0.

Uniqueness result: The problem (1.428) has at most one smooth solution T.

1.13.5 General existence results

In this section we consider important classical results on the existence of solutions of
partial differential equations. Modern existence results can be found in [212].
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1.13.5.1 The theorem of Cauchy-Kovalevski

(initial value).

Here we use notions x = (x i , . . . ,x n ) , u = (ui,...,um) and / = (/i , . . . , /m)- All
quantities t, x,j and fk are assumed to be complex. The solutions are the complex-
valued functions Uk- We will call a function analytic if it can be developed in an absolutely
convergent power series with respect to all of its variables.

We assume that / is analytic in a neighborhood of the point (xo,to,uo). Moreover we
assume that tp is analytic in a neighborhood of the point XQ with (p(xo) = UQ.

Theorem of Augustin Cauchy (1789—1855) and Sonya Kovalevski (1850-
1891): The initial value problem (1.429) has a unique solution u in a neighborhood
of the point (xo,to), and this solution is analytic. The power series expansion can be
derived by means of comparing coefficients.

Example:

We set P := (0,0). Prom the initial conditions it follows that u(P) = 0, ux(P] =
1? uxx(P) = 0 etc. The differential equations yields ut(P) = u(P) — 0, utt(P) =
ut(P) = 0, Utx(P) = ux(P) = 1- In this way we obtain the following solution in a
neighborhood of the point P:

1.13.5.2 The theorem of Cauchy for partial differential equations of the first
order

on U (initial condition for 5),

on U (initial condition for Sx).

The sought-for solution of the equations is the real function 5 = S(x) of the real variables
x = (x i , . . . ,xn). Moreover p = (pi,. . . ,pn)- We view F = F(x,S,p) as a function of
the variables x, S and p. Let a — (a\,... ,<Jn-i) be a tuple of n — 1 real parameters,
which vary in a neighborhood of the origin in Rn-1.

Example 1: The Hamilton-Jacobi differential equation

St + H(q, Sq) = 0

is a special case of (1.430) with x\ — q, x% = t.

Assumptions: Let the smooth functions
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be given, where we assume the following compatibility condition to hold158

as well as the regularity condition

which should be satisfied with P := 

Geometric interpretation: In the case n = 2 we are
looking for a surface S = S(x) passing through the curve

Figure 1.166.

(Figure 1.166). For the construction of the solution, how-
ever, it turns out to be convenient to introduce in addi-
tion the quantity p = Sx. The chain rule then yields

This is the compatibility condition (1.431).

Theorem of Cauchy: The initial value problem (1.430) has a unique solution S = S(x)
in a sufficiently small neighborhood of the point #o(0). This solution is smooth.

Construction of the solution: The surface S = S(x) which is a solution is constructed
as the union of curves

with parameter t and an additional parameter a (Figure 1.166). These curves satisfy
the following system of ordinary differential equations, which one calls the characteristic
system belonging to the partial differential equation (1.430):159

The regularity condition is equivalent to the fact that one can solve the equation

158 The classical texts on the subject are full of long and complicated formulas with lots of indices.
Modern analysis prefers working with the notion of Frechet derivative and can therefore be formulated
much more briefly and elegantly.

The transition to components is provided by the relations

The compatibility conditions are then explicitly

The determinant in the regularity condition contains in the jth column and Fp as the last column.
159To simplify notions we are writing here x = x(t), p — p ( t ) and S = S(t) for x = x(t\ cr), p = P(t; a)

and S = y(x,t).
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in a neighborhood of the point t = 0, a = 0 for (t,cr). This yields a relation

Prom this we get the sought-for solution

Example 2: For the Hamilton-Jacobi differential equation

St + H(q,t,Sq) = Q

the characteristic system (1.432) is, for q = q(t), p = p(t):

J = Hp(q,p,t), p' = -Hq(q,p,f).

These are the canonical Hamiltonian equations. Moreover the equations

S'^pq' + P, P' = -Ht(q,p,t)

belong for 5 = S(t), P = P(i), q — q(t) and p = p(t] to the characteristic system.

1.13.5.3 The theorem of Frobenius and integrability conditions

(initial value),

Given are the point a € R.N and a real number b, as well as the smooth functions
KJ, j = 1,..., N in a neighborhood of the point (a, 6) in R^*1. The sought-for solution
is the real-valued function u = u(x). The problem (1.433) is equivalent to the equation

with/if

Theorem of Georg Frobenius (1849—1917): The initial value problem (1.433) has
a unique solution in a sufficiently small neighborhood of the point a if and only if the
integrability condition

is satisfied for all j, m — 1,..., N with P := (x, u) in a neighborhood of (a, b).

Remark: The integrability conditions (1.434) follow immediately from the relations

and (1.433). A similar result holds for (1.433) with u = ( t t i , . . . , UAT).
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Applications: The theorem of Frobenius is an important tool in constructing surfaces
(or more general manifolds).

(i) The proof of the main theorem in the theory of surfaces in 3.6.3.3 uses in an essential
way the theorem of Frobenius. The integrability condition implies for example the
famous theorema egregium of Gauss.

(ii) The construction of a Lie group from its Lie algebra is based on the theorem of
Frobenius.

(iii) If N = 3 and the functions Kj are independent of u, then (1.433) corresponds
exactly to the vector equation

gradu = F, u(a) = b.

Here one wants to determine the potential — u of a given force field F. The integrability
condition in this case is

curlF = 0.

(iv) A general formulation of the theorem of Frobenius in the language of differential
forms on manifolds can be found in [212].

1.13.5.4 The theorem of Cartan-Kahler

Basic ideas

An arbitrary system of partial differential equations can be described as a system of
equations for differential forms. The fundamental theorem of Cartan-Kahler guarantees
for this kind of system unique solutions for regular initial value problems. For this it
is assumed that the functions which occur in the formulation are analytic. This is a
generalization of the theorem of Cauchy-Kovalevski. In fact, the theorem of Cartan-
Kahler is a consequence of the the theorem of Cauchy-Kovalevski. The idea for proving
this is to introduce appropriate local coordinates and solve for the first partial derivatives,
leading to a system of first order, to which one can apply the theorem of Cauchy-
Kovalevski.

Example 1: We consider the partial differential equation of first order

If we set p :~ ux and q :— uy, then we get the equivalent system

This is a system of equations for differential forms, where we view functions as differential
forms of the zeroth order.

Example 2: The partial differential equation of the second order

is transformed into the equivalent system

F(x, y, u,p, q, a, 6, c) = 0,

du — pdx — qdy = 0,

dp — adx — bdy = 0,

dq — bdx — cdy = 0
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through the substitutions p :— ux, q := uy, a := uxx, b := uxy and c := uyy.

In a similar manner one can treat an arbitrary system of partial differential equations.

The transition to differential forms greatly simplifies the treatment,
since one can then apply the elegant differential calculus of Cartan.

The original theory, which originated in work of Riquier at the end of the nineteenth
century, used differential equations and was very complicated and difficult to understand.
Between 1904 and 1908 Elie Cartan discovered that the calculus of differential forms
could advantageously be applied to this circle of problems. The final, very elegant
formulation was provided by Erich Kahler in 1934.

The procedure of forming the closure: If a system

W j = 0 , jf = l , . . . ,J

of differential forms is given, then the closure is formed by adding the Cartan derivatives

dwj=0 , j = l,...,J.

In this way all dependencies between the partial derivatives of the coefficient functions
are dealt with (integrability condition). Because of ddu> = 0 (Poincare Lemma), no new
information is obtained by adjoining the Cartan derivatives once more. Therefore the
process of forming the completion is finished after one step.

Example 3: The closure of the equation

a(x, y)dx + b(x, y)dy = 0

yields the relation da A dx + db A dy = 0, hence

a dx + b dy = 0,

(ay - bx) dy A dx = 0.

Integral manifolds

The solutions of the systems of differential forms are called integral manifolds. The
solutions can be found by trial and error, applying appropriate substitutions.

Example 4: We consider the closed system

Zero-dimensional integral manifolds: A point (cco,yo) is a solution of (1.437), if
and only if y0 + f ( x o ) = 0.

One-dimensional integral manifolds: The curve

x = x(t), y = y(t]

is a solution of (1.437), if
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This is obtained by substituting da; = x'(t)dt and dy = y'(t}dt in (1.437). The system
(1.438) is equivalent to the system

y(t)+ /(*(*)) = 0,
y'(t) + f(x(t))x'(t) = 0.

The third equation of (1.438) is automatically satisfied because of dt Adi = 0. In general
one has:

In searching for r-dimensional integral manifolds, it is
sufficient to consider all differential forms up to order r.

Two-dimensional integral manifolds: The surface

x = x(t,s) y = y(t,s)

is a solution of (1.437), if

Here we have set P := (t, s). This follows upon making the substitution dx = xtdt+xsds
and dy — ytdt + ysds from (1.437). The system (1.439) is equivalent to the following
system:

y(P) + /(z(P)) = 0,
yt(P) + f'(x(P))xt(P) = 0,
ys(P) + f'(x(P))xs(P) = 0,

xt(P)ys(P) - xs(P)yt(P) = 0.

Here the coefficients in (1.439) of di, ds and dt A ds have been set to zero.

The pull-back g*u> of a differential form u: In order to conveniently formulate the
notion of integral manifold above, we introduce the symbol g*ui. The equation

y = g(t), t e U,

with y = ( j / i , . . . , yn), t = ( i i , . . . , im) and an open set U C Mm, describes an integral
manifold given by the equation

if and only if

Here the pull-back 5*0; is obtained from u> upon transforming the y-coordinates to t-
coordinates utilizing the substitution y = g ( t ) . If we denote by

ei := (1,0,. . . , 0), e2 := (0,1,0,.. . , 0), . . . , em := (0,. . . ,0,1)

the canonical basis of Rm, then one has dtj(ek) = 6jk, and equation (1.440) is equivalent
to the relation
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Example 5: Let the equation ui = 0 be given in the form

Moreover, set

We set dj := d/dtj. Prom dyj = d\gjdt\ + d^gjAtz, (1.440) corresponds here to the
relation

If we take account of (dti A di-2)(ei,e-2) = dti(ei)dt2(e^) — d£i(e2)dt2(ei) = 1, then
(1.441) is equivalent to

Hence the function (1.443) is a solution of (1.442) if and only if the equation
holds. This corresponds to the same method applied in Example 4.

Our goal is the formulation of global existence and uniqueness results. We first consider
a local variant.

The local existence and uniqueness theorem of Cartan—Kahler
We study the initial value problem

The function a is given. The object we are trying to determine is an integral manifold

where the coordinates t\,..., tp+\ vary in an open neighborhood W of Rp+1. We denote
by WQ the set of all points of W with tp+\ = 0. The fixed integer p is assumed to fulfill
the inequality 1 < p < n.

Remark: We consider the differential forms Uj with respect to a fixed y-coordinate
system, where y = (y i , . . . , yn) and y G Mn. The transformation

introduces a new i-coordinate with t = (< i , . . . , t n ) and t € M", where U is an open
neighborhood of the origin and (p : U —> V is a diffeomorphism of U to an open
neighborhood V of the point yo in Rn. We assume that </? is analytic, i.e., that the
components of (p can be expanded in (absolutely convergent) power series. We denote
by e i , . . . , en the canonical basis in the t-coordinates, i.e., e\ = (1,0,.. . , 0), etc.
We assume that

on WQ.

The dual polar space: We choose a fixed point t e U and denote by P(t) the polar
space, the set of all vectors v 6 Rn for which
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Here u;j£(£) denotes the differential form ujk after the transformation into the /-coordinates,
i.e., ul := ip*uJk-

Regularity of the initial value problem: We speak of a regular initial value problem,
if we have the following:

(a) There is a fixed number r, such that all r vectors e n _ r +i , . . . , en form together with
e i , . . . , ep a basis of the polar space P(t) in each point t 6 Rn in a sufficiently small
neighborhood of t = 0. Here we require 1 < r < n — p.

(b) The matrix whose entries are the first partial derivatives

has constant rank n — p in a neighborhood of the point ( t i , . . . , tp) = 0 in W.

Here a*Uk(t) is pulled back from u>k by applying the transformation y — a(t\,... ,tp) to
the coordinates ti,... ,tp.

Remark: Condition (b) guarantees that the system (1.445) is regular along the p-
dimensional initial surface

IP : y — a(ti,....tp).

If condition (b) does not hold, then there is some singular behavior, which usually is
connected with the fact that Ip represents a characteristic.160 In this case there can be
infinitely many solution surfaces through Ip. The sought-for (p+l)-dimensional solution
surface of the original system (1.445) is denoted by

For the uniqueness statement we need the (n — r)-dimensional surface

where ( i i , . . . , tn-r} varies in neighborhood of the origin in M'l~r. In order to pass from
these considerations to the global formulation in the following sections, we introduce in
addition the n-dimensional open neighborhood of the origin

where t varies in a neighborhood of the origin in R". The situation is summarized by
the following inclusions:

The local existence and uniqueness result: We make the following assumptions:

(i) Closedness: The initial system (1.445) is closed, i.e., for every differential form U>A- in
(1.445), also the Cartan derivative dw^ belongs to (1.445).

(ii) Analyticity: The system (1.445) is analytic, i.e., the coefficients of the differential
forms and the initial value function a(.) can be developed in power series with real
coefficients.161

160 One can study the structure of characteristics of partial differential equations by analyzing non-
regular initial value problems. In particular, one gets in this manner the characteristic system of Cauchy
for partial differential equations of first order (cf. 1.13.5.2) and its generalization to partial differential
equations of higher order and even of arbitrary systems. Details on this can be found for example in
[141].
161 The assumption of analyticity can be weakened to C^-smoothness.
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(iii) Regularity: The initial value problem is regular.

Then the initial value problem (1.445) has an analytic solution in a sufficiently sma
neighborhood of the origin in R™, in which the surface F is contained.
The global existence and uniqueness theorem of Cartan-Kahler

We consider the system

of analytic differential forms of arbitrary order > 0 on a real analytic manifold ̂  of
dimension n > I. The basic situation is now described by the inclusions

Global existence and uniqueness result: We make the following assumptions:

(i) A p-dimensional submanifold J^p C ̂  is given with 1 < p < n.

(ii) J^p is a regular integral manifold of the original system (1.447).

(iii) The polar space of J^ has in every point of J>p dimension r +p with 1 < r < n — p.

(iv) There is a submanifold & in ̂  of dimension n — r with J ,̂ C =^, where the tangent
space of & is transversal to the polar space at every point of J^,.

Then the system (1.447) has exactly one (p + l)-dimensional submanifold J^p+i of ̂
which is an integral manifold with the property (1.448).
Helpful remark for the reader: Global statements are often formulated in modern
mathematics in the elegant language of manifolds, which are presented in detail in [212].
However, the contents of the above theorem can be understood by every reader, without
understanding that language. Just imagine that at every point of ̂  one can introduce
local i-coordinates, for which we have the situation of the local existence and uniqueness
theorem for the problem (1.445). Locally, (1.448) is realized as the statement (1.446).
Sketch of proof: To obtain the global theorem, one first proves the local statement
with the help of the theorem of Cauchy-Kovalevski and then extends this local solution
with the help of analytic continuation to a global solution. This is where the assumptions
on analyticity come in.
Applications: The theorem of Cauchy-Kovalevski has a large number of applications
in differential geometry (the construction of manifolds with given properties) and in
mathematical physics. We recommend the monograph [129] for details on this. The
theorem of Frobenius for manifolds is a special case of the theorem of Cartan-Kahler.
Applications of the theorem of Frobenius in thermodynamics will be discussed in [212].

Differential ideals:

Up to now we have considered finite systems

of differential forms. Different choices of the forms u>k can lead to equivalent systems.
In order to eliminate this indeterminacy, one considers systems of the form
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Here J is a so-called differential ideal, i.e., one has

(i) J is a real linear space of differential forms.

(ii) Prom u 6 J it follows that uj A p, € J for every differential form //.

(iii) Prom a; € J it follows that do; € J.

Every ideal of this kind possesses a finite basis u J i , . . . ,UK-

Therefore (1.450) is equivalent to (1.449), where the concrete choice of basis of the ideal
is irrelevant.

The procedure corresponds to a general strategy of modern algebraic geometry, which
is to replace systems of equations by the systems of objects which are annihilated by an
ideal.

1.14 Complex function theory

The introduction of complex quantities into mathematics originates in
and has its first applications in the theory of variables which are de-
pendent upon one another via simple operations. Indeed, if one applies
these dependencies in an extended sense by allowing the variables to be
complex, then a hidden harmony and structure becomes apparent.

Bernhard Riemann, 1851

Riemann (1826-1866) is the man with glowing intuition. Through his
overall genius he stands far above all his peers. Everywhere that his in-
terest was aroused, he started the theory from scratch without worrying
about tradition or constraints of existing systems. Weierstrass (1815-
1897) was above all a logician; he works slowly, systematically, step by
step. Where he works, he heads for a finished form of the theory.

Felix Klein (1849-1925)

The development of the theory of functions of a complex variable took a rather winding
path, as opposed to the modern theory of today with its extreme elegance, which belongs
to the most beautiful and esthetically pleasing theories mathematics has to offer. This
theory reaches into all branches of mathematics and physics. The formulation of modern
quantum field theory for example is based in essence on the notion of a complex number.

The complex numbers were introduced by the Italian mathematician Bombelli in the
middle of the sixteenth century, in order to solve equations of the third order. Euler
(1707-1783) introduced instead of the number \/^T the symbol i and discovered the
famous formula

ex+iy = ex(cosy + isiny), z , y e R ,

which establishes a surprising and most important connection between trigonometric
functions and the exponential function.

In his dissertation in 1799, Gauss provided the first (almost) complete proof of the
fundamental theorem of algebra. For this proof he required complex numbers as a tool.
Gauss eliminated the mysticism which surrounded complex numbers of the form x+iy up
until that time, and showed that they may be interpreted as points (x, y) in the complex
(Gaussian) plane (cf. 1.1.2). There is much evidence that Gauss already knew many
properties of the complex-valued functions at the beginning of the eighteenth century,
in particular the relation to elliptic integrals. However, he never published any of this.

In his famous Cours d'analyse (course in analysis), Cauchy treated power series in 1821
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and showed that series of this kind in the complex realm have a circle of convergence. In a
fundamental piece of work in 1825, Cauchy considered contour integrals and discovered
their independence from the path of integration. In this regard, he later developed a
calculus of residues for the calculation of apparently complicated integrals.

In 1851, Riemann took a decisive step in the construction of a theory of complex-valued
functions, when in his dissertation at Gottingen, with the title Grundlagen fur eine
allgemeine Theorie der Funktionen einer verdnderlichen komplexen Grofle (Foundations
of a theory of functions of a complex variable), he founded the so-called geometric
function theory, which uses conformal maps and which is distinguished by its intuitive
appeal and the close proximity to physics.

Parallel to Riemann's work, Weierstrass developed rigorous analytic foundations for
function theory based on power series. The work of both Riemann and Weierstrass
was centered around the search for a deeper understanding of elliptic and more general
Abelian integrals for algebraic functions. In this connection, completely new ideas are
due to Riemann, out of which modern topology - the mathematics of qualitative behavior
and form - sprouted.

In the last quarter of the nineteenth century Felix Klein and Henri Poincare created the
powerful structure of the theory of automorphic functions. This class of functions is a
broad generalization of the periodic and doubly period (elliptic) functions and is closely
related to Abelian integrals.

In 1907 Koebe and Poincare proved independently the famous uniformization theorem,
which represents one of the highlights of classical function theory and which completely
clarifies the structure of Riemann surfaces. This uniformization theorem, which Poincare
sought for years to prove, is described in [212].

The first modern and complete presentation of classical function theory was given by
Hermann Weyl in his book Die Idee der Riemannschen Fldche (The idea of Riemann
surfaces), which is a pearl of the mathematical literature.162

Important new ideas in function theory were introduced in the fifties by the French
mathematicians Jean Leray and Henri Cartan, who developed the notion and theory of
sheaves, which is described in [212].

1.14.1 Basic ideas

The local—global principle in analysis:163 The elegance of complex function theory
is based on the following three basic facts:

(i) Every differentable complex-valued function on an open set can be developed locally
in a power series, i.e., is analytic.

(ii) The contour integral of analytic functions in a simply connected domain is indepen-
dent of the path of integration.

(iii) Every locally given function which is analytic in a neighborhood of a point can be
uniquely extended to a global analytic function, provided one uses the notion of Riemann
surface as the domain of definition of that extension. Hence one has:

The local behavior of an analytic function
uniquely determines its global behavior.

162A new edition of this classic with commentaries has been published by Teubner-Verlag in 1996 (cf.
[236]).

163The local-global principle in number theory can be found in 2.7.10.2 (p-adic numbers).
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This kind of rigid behavior is in general not possessed by real-valued functions.

Example 1: The real-valued function f ( x ) := x for x G [0, e] can be extended in infinitely
many ways to a differentiable function (Figure 1.167). The unique extension of this
function, viewed as a complex-valued function, is the analytic function

Example 2: The differentiable functions depicted in Figures 1.167(b),(c) can not be
extended to analytic functions in the complex domain. This is because they locally
coincide with the function (1.452), but not globally.

The principle (1.451) is quite important in physics. If one knows that a physical quantity
is analytic, then one only needs to know its behavior in a small open set, in order to
understand (or at least determine) its global behavior. This is the case for example for
the elements of the 5-matrix, which describe the scattering of elementary particles in
modern particle accelerators. From this fact one gets the so-called dispersion relations.

Figure 1.167. Non-analytic functions in the plane. Figure 1.168.

1.14.2 Sequences of complex numbers

Every complex number z can be written in the form

with real numbers a;, y. One has

We write Re z := x (the real part of z) and Imz := y (the imaginary part of z). The
set of complex numbers is denoted by C. The rules for computations involving complex
numbers can be found in 1.1.2.

The metric of the complex plane C: If z and w are two complex numbers, then we
define their distance by the formula

This is the classical notion of distance between two points in the plane (Figure 1.168).
This gives C the structure of a metric space, and all of the general results for metric
spaces (cf. 1.3.2) may be applied to C.
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Convergence of complex sequences: We say we have convergence, denoted

if and only if the sequence of complex numbers (zn) satisfies the relation

This is equivalent to

Example 3: One has

since 1/n —> 0 and n/(n + 1) —> 1 as n —> oo.

Convergence of series with complex terms: This convergence is defined by the
relation

Series of this kind were studied in section 1.10.

Convergence of complex functions: The limit

is to be understood as meaning that for every sequence of complex numbers (zn} with
zn ^ a for all n and lim zn = a implies lim f(zn) = b.

n—>oo n—>oo

1.14.3 Differentiation

The connection between complex differentiation and the theory of partial differential
equations is given by the fundamental Cauchy-Riemann differential equations.

Definition: Let a function / : U C C —> C be given, defined in a neighborhood of the
point ZQ. /is said to be complex differentiable at ZQ, if the limit

exists. The complex number /'(ZQ) is called the (complex) derivative of / at the point
ZQ. We set

Example 1: For f ( z ) := z we get f ' ( z ) = 1.

We set z = x + \y with x, y £ R and

f ( z ) = u(x,y) + iv(x,y),
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i.e., u(x,y) (resp. v(x, y)) is the real (resp. imaginary) part of f ( z ) .

The main theorem of Cauchy (1814) and Reimann (1851): A complex-valued
function / : U C C —> C is complex differentiable at ZQ € C if and only if both u and
v are Frechet-differentiable at the point (xo,yo) and the Cauchy-Riemann differential
equations

hold at the point (x0,y0). In this case one has

Holomorphic functions: A function / : U C C —>• C is said to be holomorphic on an
open set U, if / is complex differentiable in every point z of U.

Rules for differentiation: The same rules as for real-valued differentiable functions,
the rule of sums, the product and quotient rules as well as the chain rule, hold for complex
derivatives (cf. 0.8.2). The rules for derivatives of inverse functions are considered in
section 1.14.10 below.

Power series: A function

f(z) = a,Q + a\(z — a) + a%(z - a)2 + 03(2; - a)3 + ...

can be differentiated at every point of the interior of the domain of convergence (cf.
1.10.3). The derivative can be obtained by termwise differentiation of the power series,
i.e., one has

f ' ( z ) = ai + 2a2(£ - a) + 3a3(z - a)2 + ... .

Example 2: Let f ( z ) :— e2. From the relation

it follows that

Table of derivatives: For all functions which can be developed in power series, the
real and complex derivatives coincide. A table of derivatives for important elementary
functions can be found in 0.8.1.

The differential operators dz and dg of Poincare: If we set

then the Cauchy-Riemann differential equations (1.453) can be written in the elegant
form

Let / : U C C —> C be an arbitrary complex-valued function. We set z = x + \y and
~z = x — \y as well as

dz := dx + idy and dz :— dx — idy.
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If we write /(x, y) instead of /(-z), then one has

d/ = uxdx + Uydy + i(vxdx + vydy).

Prom this it follows that

If / is complex differentiable at the point ZQ , then one has

1.14.4 Integration

The most important integration property of holomorphic functions is the independence

of the contour integral / f(z)dz from the path of integration on simply connected
Jc

domains (integral theorem of Cauchy).

Curves in the complex plane
C: A curve C in C is given by a
function

(Figure 1.169(a)). Here -oo <
a < b < oo. We set z := x + iy,
so that this corresponds to a real
curve

Figure 1.169. Curves in the complex plane.

x = z(£), y = y(t), a < t <b

in the plane R2. The curve C is said to by of type C1 if both functions x = x(t) and
y = y(t) are of type C1 on [a, b].

Jordan curves: A curve C is called a Jordan curve, if the map A : t \—> z(t) is a
homeomorphism on [a, 6].164

The curve C in (1.454) is a closed curve, if z(a) = z(b). A closed Jordan curve is the
homeomorphic image of the circle {zeC:|z| = l}in the complex plane C.

Jordan curves have regular behavior, i.e., there are no self-intersections as shown in
Figure 1.169(c).

Definition of curve integrals: If a function / : U C C —> C is continuous on an
open set U and C : z = z(t), a <t < b is a C1-curve, then we define the curve integral
by the formula

This definition is independent of the parameterization of the oriented curve C.165 If the
curve C is closed, then one speaks of a contour integral.

164This means that A is bijective and both A and A~l are continuous. Because of the compactness of
[a, 6] it is sufficient that A is bijective and continuous.

165Here C1-changes of parameter t = t(r), a < r < 0 are allowed, where t'(r) > 0 for all T, i.e.,
t = t(r) is strictly increasing.
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Triangle inequality:

Change of orientation: If we denote by — C the curve which is obtained from C by
reversing the orientation, then one has (Figure 1.169(b)):

Main theorem of Cauchy (1825) and Morera (1886): A continuous function
/ : U C C —> C on a simply connected domain U is holomorphic if and only if the

integral / /dz is independent of the path of integration in C/.166

Jc

Example 1: In Figure 1.170 (a) we have / /dz = / f d z . The fundamental notion of
Jc Jc'

simply connected domains was introduced in section 1.3.2.4. Intuitively, simply con-
nected domains have no holes.

Figure 1.170. Properties of contour integrals.

Corollary: A continuous function / : U C C —» C is holomorphic on a simply
connected domain C/, if

for all closed C1-Jordan curves C in U.

Example 2: If C is a closed Jordan curve of class C1 (for example a circle) encircling
the origin, positively oriented in the mathematical sense (i.e., counter clockwise), then

If k = 0,1,2, . . . , the function /(z) := zk is holomorphic in C. In this case (1.456) follows
from (1.455). For k = — 1, the function /(z) := z"1 is homomorphic in the non-simply

166 A path is a C1-curve or one which is pasted together of finitely many such curves (Figure 1.170(b)).
This includes for example the circumferences of polygons.
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connected domain C — {0}, while this function is not holomorphic in all of C. The
relation which arises from (1.456),

shows therefore that the assumption that U is simply connected in (1.455) cannot be
weakened (Figure 1.170(c)).

In what follows, let C denote a C1-curve in U with starting point ZQ and endpoint z.

The fundamental theorem of calculus: Let a continuous function / : U C C —> C
on a domain U be given and let F be a primitive of / on C/, i.e., F' = f on U. Then

Two primitives of / on U differ by a constant.

Example 3:

Corollary: If the function / : U C C —> C is holomorphic in a simply connected
domain U, then the function

is a primitive of / on C/.167

A fundamental (topological) property of integrals of holomorphic functions is the fact
that they are unchanged upon passing to C1-homotopic and C1-homologous paths.

C1-homotopic paths: Let a domain U in the complex plane C be given. Two C1-curves
C and C' are said to be C1 -homotopic, if the following two conditions are satisfied:

(i) C and C' have the same start and end points.

(ii) C can be deformed differentiably into C" (Figure 1.170(a)).168

Theorem 1: If / : U C C —> C is holomorphic on the domain U, then one has

if the curves C and C' are C1-homotopic.

C1-homologous paths: Two Crl-curves C
and C' in the domain U are said to be Cl-
homologous, if they differ by a boundary, i.e.,

Figure 1.171. Homotopic paths.

167 / /d£ stands for / /d£. Because of the independence of the integral from the path of integration,
Jz0 Jc

one can choose for C any curve in U which connects 20 with z.
168This means there exists a C1-function z = z(t, T) from [a, 6] x [0,1] into U such that for T = 0 the

image is C and for T = 1 the image is C".
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there is a domain Q, whose closure is contained in C7, such that

The boundary curve dtl is oriented in such a way that the domain fi is to the left of
this curve (Figure 1.171(a)). We write in this case C ~ C'.

Example 4- The boundary curve dfl of the domain fl in Figure 1.171 consists of the two
curves C and -C", in other words, <9Q = C - C", hence C = C' + dtl.

In a similar manner it follows that C ~ C' in Figure 1.172.

Figure 1.172. Homologous paths. Figure 1.173.

Theorem 2: The equation (1.457) attains for (^-homologous paths C and C'.

The integral formula of Cauchy (1831): Let U be a domain in the complex plane
which contains the disc Cl := {z E C : \z — a\ < r} together with its (mathematically
positively oriented) boundary curve C. If the function F : U —> C is holomorphic, then
for all z £ Jl we have the relations:

and

This result continues to hold if Jl is a domain whose boundary curve C is a (positively
oriented in the mathematical sense) closed (71-Jordan curve. Moreover fi and C are
required to lie in U (cf. Figure 1.173).

The theory of complex-valued functions of one variable contains the
seed of the general theories of homotopy and homology of algebraic
topology, which was created (in this context) by Poincare at the end
of the nineteenth century.

Algebraic topology is considered in much more detail in [212].
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1.14.5 The language of differential forms
5o that is the secret!

Faust

A deeper understanding of the theorems of Cauchy-Riemann and of Cauchy-Morera in
the preceding section becomes possible if one uses the language of differential forms.
The starting point of our considerations is the one-form

We use the decomposition z — x+iy of the complex number z and f ( z ) = u(x, y)+iv(x, y)
of the function / into their real and imaginary parts, respectively.169

Results of function theory which are deeper, like the Riemann-Roch theorem, require the
notion of Riemann surfaces. In this context differential forms are fundamental objects,
which are both natural and indispensable (cf. [212]).

Theorem 1:

This result shows us that the definition of the integral

same meaning as the integral one gets from the context of differential forms.

Proof:

Theorem 2: Let two Crl-functions u, v : U —>• R (real and imaginary parts of a
complex-valued function /) be given on an open set U. Then the following statements
are equivalent:

(i) do; = 0 on U.

(ii) / is holomorphic on U.

This is the theorem of Cauchy-Riemann of 1.14.3 in the language of differential forms.

Proof: Because of the relations du = uxdx + uydy and dv — vxdx + vydy one gets

dw = (du + idv)(dx + idy) = {(uy + vx) + \(vy - ux)}dy A dx.

Therefore du; = 0 is equivalent to the Cauchy-Riemann differential equations

Theorem 3: Let two C1-functions u and v be given on a simply connected domain U.
Then the following statements are equivalent:

(i) du; = 0 on U.

u> is independent of the path of integration C in U.

169If we write f ( x , y) instead of f(z), then the relation is written as

w = f(x, y)(dx + idy).

(ii) 

fdz in 1.14.4 has exactly the
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This is the theorem of Cauchy-Morera of 1.14.4 (up to an additional regularity assump-
tion).

Sketch of proof: (i)=^(ii). We consider the situation depicted in Figure 1.174. We
have dtl — C — C'. If do; = 0 on [7, then Stokes theorem yields

a;, i.e., the integral of <jj in U is independent of the path of

integration.

Figure 1.174- Proof of Theorem 3.

(ii)=>(i). If conversely the integral of
uj in U is independent of the path of
integration, then one has

for all domains Jl in U which have a
closed C^-Jordan curve as boundary
d£l. It follows from this that do; = 0
on U by de Rham's theorem (cf. [212]).

Theorem 4: If / : U C C —> C is holomorphic on a domain U, then one has the
relation

for (71-homologous paths C and C' in U.

Proof: From du = 0 on U and C = C' + dft we get

since it follows from Stokes theorem that

The preceding considerations form the basis for the de Rham cohomology theory, which is
at the center of modern differential geometry and has important applications to modern
physics in the theory of elementary particles.

Symplectic geometry of the complex plane C: The space R2 carries a natural
symplectic structure, given by the volume form

We can identify R2 with C by means of the map (x, y) i—» x + iy. In this way also C i{
a symplectic space. One has

since dz A dz = (dx + idy) A (do; — idy) = —2ido; A dy.

This implies
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The Riemannian metric on the complex plane C: The classical Euclidean metric
on R2 is given by

If u = (MI, 1*2) is a point in R2, then one has dx(u) = u\ and dy(u) = u^. From this we
get the expression

g(w, v) = uiv\ + U2V? for all u, v € R2.

This is the standard scalar product in R2.

By identifying R2 with C the complex plane C also becomes a Riemannian manifold.
From z = x + iy and ~z = x — ly it follows that

The complex plane C as a Kahler manifold: The space R2 carries an almost
complex structure, which is given by the linear operator J : R2 —>• R2 with

J(x, y) := (-i/, x) for all (x, y) e R2.

If one identifies (x, y) with z = x + iy, then J corresponds to the mapping z i-> \z
(multiplication by the complex number i). The metric g is compatible with the almost
complex structure J, i.e., one has

g(Jn, Jv) — g(w, v) for all u, v e R2.

Moreover, we denote by

the two-form which is called the fundamental form of g. One has <&(w, v) = u-^vi — u\v<2
for all u,v e R2, i.e.,

It follows from this that d<& = 0. In this way R2 becomes a Kahler manifold.170

If we now identify C with R2, then also the complex plane C becomes a Kahler manifold.
Manifolds of this kind play a central role in modern string theory as the configuration
spaces of strings. This theory has the declared goal of explaining all four elementary
forces in a unified theory (theory of everything).

An important theorem concerning Kahler manifolds is the famous theorem of Shing-
Tung Yau, for which (together with other important results due to him) he received the
Fields medal in 1982 (cf. [212]).

1.14.6 Representations of functions

1.14.6.1 Power series

An extensive list of important power series is contained in the tables of section 0.7.2.
The properties of power series are collected in section 1.10.3.

170The general definition of Kahler manifolds is given in [212]. These manifolds were introduced by
Erich Kahler (1906-2000) in 1932.
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Definition: A function / : U C C —*• C on an open set U is called analytic if and only
if for every point of U there is a neighborhood in which / can be expanded in a power
series.

Main theorem of Cauchy (1831): A function / : U C C —> C is analytic if and
only if it is holomorphic.

Consequence: A holomorphic function on U has derivatives of arbitrary order.

Cauchy's expansion of holomorphic functions: If a function / is holomorphic in
the neighborhood of a point a e C, then one has the following expansion as a power
series:

The domain of convergence is the largest open disc around a in which the function / is
holomorphic.

Example 1: Consider f ( z ) := The largest open disc around the origin in which

/ is holomorphic is the disc of radius 1. Therefore the geometric series

has the convergence radius r — 1.

The analytic landscape: Every complex-valued function w =
f(z) is associated with an analytic landscape over the complex
plane, by choosing a Cartesian (x, y, £)-coordinate system and
taking the value C := l/(2:)l ss the height of the landscape at the
point z = x + iy.

Example 2: The analytic landscape of the function /(z) := z2 is
the paraboloid C = #2 + y2 (Figure 1.175).Figure 1.175.

The maximum principle: If a non-constant function / : U C C —> C on an open set
U is holomorphic, then the function £ := \f(z)\ nas no maximum on U.

If the function £ = \f(z)\ on U has an absolute minimum at a point a in U, then
/(a) - 0.

Intuitively this means that the analytic landscape of / over U has no highest peak. If
there is a lowest point, then the height there is 0.

Sequences of holomorphic functions: Suppose we are given functions fn : U C
C —> C which are holomorphic on an open set U. If the sequence

converges uniformly171 on U, then the limit function / is also holomorphic on U. More-
over one has

for all derivatives of orders k = 1,2, —

171 This means lim sup \fn(z) - f(z)\ = 0.
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1.14.6.2 Laurent series and singularities

Let r, Q and R be given with Q<r<g<R<oo. We consider the annulus fi := {z €
C\r<\z\< R}.

The expansion theorem of Laurent (1843): Let / : fi —> C be holomorphic. Then
for all z £ fl one has the absolutely convergent series expansion

Here the coefficients are given by the formula

Let C denote a circle of radius Q centered at a. The so-called Laurent series (1.458) can
be termwise integrated and differentiated in Q.

Isolated singularities: A point a is said to be an isolated singularity of the function
/, if there is an open neighborhood U of a such that / is holomorphic on U — {a}. In
this case (1.458) holds with r = 0 and a sufficiently small number R.

(i) a is called a pole of order m of /, if (1.458) holds with a_m ^ 0 and a_fc = 0 for all
k > m.

(ii) a is called a removable singularity of /, if (1.458) holds with a_£ = 0 for all k > 1.
In this case / is turned into a holomorphic function on all of U by setting /(a) := ao-

(iii) a is said to be an essential singularity, if neither case (i) nor case (ii) holds, i.e., the
Laurent series contains infinitely many terms with negative exponents.

The coefficient a_i in (1.458) is called the residue of / at the point a and is denoted by
the symbol

Example 1: The function

has a pole of second order at the point z — 1, whose residue at this point is a_i = a.

Example 2: The function

has an essential singularity at the point z = 0, with the residue a_i = 1 there.

Bounded functions: A function / : U C C —> C is said to be bounded, if there is a
number S such that \f(z)\ < S for all z € U.

Theorem: Suppose the function / has a singularity at the point a.

(i) If the function / is bounded in a neighborhood of a, then the singularity of / at a is
removable.
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(ii) If one has \f(z)\ —> oo for z —> o, then the function / has a pole at the point a.

Theorem of Picard (1879): If a function / has an essential singularity at the point a,
then / takes on all complex numbers as values, with at most finitely many exceptions,
in every neighborhood of a.

This means that the function is quite pathological near any essential singularity.

Example 3: The function w = e1/2 has an essential singularity at the point z = 0,
and attains every complex number as a value in a neighborhood of the origin, with the
exception of w = 0.

1.14.6.3 Entire functions and their product expansions

Entire functions are a generalization of polynomials.

Definition: The functions which are holomorphic on the entire complex plane, and
only these functions, are called entire.

Example 1: The functions w = ez, sin z, cosz, sinhz and coshz, as well as every
polynomial, are entire.

Theorem of Liouville (1847): A bounded entire function is constant.

Intuitively this means that the height of the analytic landscape of a non-constant entire
function grows beyond all bounds.

Theorem of Picard: A non-constant entire function attains every complex number as
a value with finitely many exceptions.

Example 2: The function w = ez attains every complex number as a value with the
exception of w = 0.

Zeros of entire functions: For an entire function / : C —> C the following statements
hold.

(i) Either / = 0 of / has in every disc of the plane at most finitely many zeros.

(ii) The function / is a polynomial if and only if it has finitely many zeros in the entire
plane.

Multiplicity of a zero: If a function / is holomorphic in a neighborhood at a point a
with /(a) = 0, we say that the zero a of / has by definition multiplicity ra, if the power
series expansion of / in a neighborhood of a has the form

f ( z ) = am(z - a)m + am+l(z - a)m+l + - - -

with am ^ 0. This is equivalent to the condition

/ ( m )(a)^0 and /'(a) = /"(a) = . . . = f(m~l)(a) = 0.

The fundamental theorem of algebra says that for a non-constant polynomial /, one has

Here the points zi,...,zn are the distinct zeros of / and mi , . . . , mn are their multiplic-
ities; a denotes some non-vanishing complex number.

The following theorem is a generalization to more general functions:
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The product formula of Weierstrass (1876): Let / : C —>• C denote a non-constant
entire function, with infinitely many zeros z\,z-i,..., and corresponding multiplicities
mi,m2 .... Then for / we have the formula

Here pi,p2, • • • are polynomials and g denotes an entire function.172

Example 3: slmrz = irz               for all z €E C. This formula was first discovered

by Euler (1707-1783) when he was still quite young.
Corollary: If one prescribes an at most countable number of zeros and their multiplic-
ities, then there is an entire function which has these zeros and multiplicities.

1.14.6.4 Meromorphic functions and partial fraction decompositions

Meromorphic functions are a generalization of rational functions (quotients of polyno-
mials).

Definition: A function / is said to be meromorphic, if it is holomorphic on C with the
exception of isolated singularities, all of which are poles.
We associate the value oo to the poles of /, and consider the compactification of C
obtained by adjoining the point oo, C := C U {00} (this space can be identified with the
two-dimensional sphere, cf. 1.14.11.4 below, which carries a natural complex structure,
but here this just refers to a space consisting of the union of C and the point denoted
oo).

Example 1: The functions w = tanz, cot z, tanhz and cothz as well as arbitrary
rational functions, and all the more all entire functions, are meromorphic.

Poles of meromorphic functions: For every meromorphic function / : C —> C the
following statements hold:

(i) The function / has in every disc at most finitely many poles.

(ii) / is a rational function if and only if it has only finitely many poles and finitely
many zeros in the entire complex plane.

(iii) / is the quotient of two entire functions (generalizing the fact that rational functions
are, by definition, quotients of polynomials).

(iv) The set of all meromorphic functions form a field (in the sense of section 2.5.3),
which is the quotient field of the ring (in the sense of section 2.5.2) of entire functions.

The theorem on partial fraction decompositions of rational functions states that every
rational function / can be written as a linear combination of polynomials and expressions
of the form

where the points a are the poles of / and b is some complex number.

172Since e*" ^ 0 for all w € C, the exponential factors in (1.459) do not contribute zeros to /, but are
present to insure convergence of the product.
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Theorem of Mittag—Leffler (1877): Let / : C —> C be a meromorphic function,
with (infinitely many) poles zi,z^,..., ordered such that \z\\ < \z%\ < • • • . Then there
is an expression

valid for all z e C with the exception of the poles of /. Here 51,32, ••• and Pi,p2, • • • are
polynomials.

Example: One has

for all complex numbers z different from the poles k € Z of the function w = simrz.

Corollary: If one prescribes the poles and their principal parts in a Laurent expansion
(i.e., the terms with negative powers), then there is a meromorphic function with the
given poles and principal parts.

1.14.6.5 Dirichlet series

Dirichlet series are important in analytic number theory.
Definition: The infinite series

is said to be a Dirichlet series, if all an are complex numbers and the real exponents \n

form a strictly increasing sequence with

We set

Here the quantities A(N) are defined by the relations

Moreover, we let denote the part of C to the 'right' of

Example 1: If An := Inn and an := 1, we get the Riemann (^-function

with The following three statements hold for Dirichlet series, for
example, for the Riemann ^-function.
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Theorem: (i) The Dirichlet series (1.461) converges in the open half-space and
diverges in the open half-space

The convergence is uniform on compact subsets of

(ii) The function / is holomorphic on The series (1.461) may be differentiated
termwise arbitrarily often.

(iii) If an > 0 and An = Inn for all n, then / has a singularity in the point s = VQ.

The connection with the theory of prime numbers: Let g : N+ —> C be a
function denned on the set of positive natural numbers, g is called multiplicative, if and
only if g(mn) = g(m)g(n) for all relatively prime natural numbers m and n. If the series

converges absolutely, then one has an Euler product

where the product is to be taken over all prime numbers p. This product is always
absolutely convergent.

Example 2: In the special case g = I we get

for all s e C with Re s > I.

A more detailed discussion of the Riemann ^-function and the famous Riemann hypoth-
esis (a conjecture) is found in 2.7.3.

1.14.7 The calculus of residues and the calculation of integrals
Mathematics is the art of avoiding calculations.

Folklore

The following theorem is of great importance. It shows that, in order to calculate
complex integrals, just the behavior of the integrand at its singularities which lie inside
the path of integration is sufficient to do the calculation of the whole integral. The
calculation of integrals can be very tedious. It must have been a God's send for Cauchy
when he discovered the beautiful trick with the residues, which reduces the amount of
calculation in many cases to a minimum.

The residue theorem of Cauchy (1826): Let the function
/ : U C C —> C be holomorphic on the open set U except for
finitely many poles in the points z\,..., zn. Then one has

Figure 1.176.

Here C is closed C1-Jordan curve in [/, which has all points z i , . . . , zn in its interior and
which is in addition positively oriented (in the mathematical sense, cf. Figure 1.176).

Example 1: Let
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hence Res2=i/ = 1 and Res2=_i = —2. For a circle C, which goes around both points
z = ±1, one has

Rules for calculations: If the function / has a pole of mth order at the point a, then

with

Example 2: A rational function with g(a) ^ 0 has a pole of the mth order at a if

and only if the denominator h has a zero of mth order at a.

Standard examples: One has

In the calculation of the real integral it is assumed that g and h are polynomials with
deg/i > deg<? + 2. The denominator h should have no zeros on the real axis. We denote
by z\,..., zn the zeros of h in the upper half-space, that is, in the set of complex numbers
in the complex plane with positive imaginary part.

Example 3:

Proof: The polynomial h(z) := I + z2 has, because of the decomposition h(z) = (z —
i)(z + i), a simple zero at the point z = i in the upper half plane. From (1.463) it follows

The relation (1.464) therefore yields

Sketch of proof of (1.464): We set / := The boundary

AR+BR of the half-circle in Figure 1.177 is chosen sufficiently
large that all zeros of h in the upper half-plane are contained
in the interior. From (1.462) one gets

Figure 1.177.

Moreover one has

and
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and

The claim (1.464) now follows from (1.465) for R —> oo.

The limiting relation (1.466) can be obtained from the estimate173

for all with

which follows from the relation deg/i > deg# + 2 for the degrees, and from the triangle
inequality for contour integrals:

(length of the half-circle BR)

1.14.8 The mapping degree

Let a bounded domain fi in the com-
plex plane be given, whose boundary <9fl
is formed from finitely many closed Cl-
Jordan curves, which are oriented in such
a way that fi lies to its left (Figure 1.178).
We write / £ <^(Q) if:

(i) The function / is holomorphic in an
open neighborhood of fi except for finitely
many poles, which all lie in fi.

Figure 1.178. The domain of definition of
f for the definition of the mapping degree.

(ii) There are no zeros of / on the boundary

Definition: The mapping degree of / on is defined by

Here N (resp. P) is the sum of the multiplicities of zeros (resp. poles) of / in

Example: For f ( z ) := zk and the disc one has

Theorem: Let F,g Then one has the following:

(i) Representation formula:

the constant here is independent of R.
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(ii) Existence principle: If deg then the function / has a zero or a pole on

(iii) Stability of the mapping degree: From the relation

it follows that deg deg

The principle of Rouche on zeros (1862): Assume the two functions / and g are
holomorphic on an open neighborhood of (7, and that (1.467) holds. Then if / has a
zero on Q, it follows that / + g also has a zero on fi.

Proof: Since / has a zero and no pole (/ is holomorphic), one has deg (/,(]) ^ 0. From
(iii) above it follows that deg (/ + g,£l) ^ 0, and (ii) yields the statement. D

The general theory of mapping degrees, which can be found in [212], makes it possible to
prove the existence of solutions for a large class of problems in mathematics (systems of
equations, ordinary and partial differential equations, integral equations) without having
to explicitly construct these solutions.

1.14.9 Applications to the fundamental theorem of algebra

From a modern point of view we would say that the proof of the fun-
damental theorem of algebra given by Gauss in 1799 is in principle
correct, but not complete.

Felix Klein (1849-1925)

However - so we ask - will it become impossible, because of the ever-
expanding volume of material in mathematics, for a single researcher
to be acquainted with all of mathematics? As an answer to this I would
like to remind you how important it is for the essence of the mathemat-
ical sciences that each bit of progress is accompanied by a correspond-
ing extension of the tools as well as simpler methods, which makes the
understanding of earlier results easier and makes complicated meth-
ods used previously unnecessary, and that a single researcher, by using
these new tools and simpler methods, has an easier time orienting him-
self in the different branches of mathematics, more than this is the case
for any other science.

David Hilbert,
Paris lecture, 1900

The fundamental theorem of algebra: Every polynomial

p(z) := zn + a^iz71"1 + ... + aiz + a0

with degree deg > n with complex coefficients a, has a (complex) zero.

Gauss used the decomposition p(z) — u(x,y) -f iv(x, y) of p into its real and imaginary
part and studied the properties of the plane algebraic curves u(x, y) = 0 and v(x, y) — 0.
A proof of this kind is by nature tedious and requires a developed apparatus for algebraic
curves, which is available today but not in Gauss' days.

The intuitively clear idea of Gauss is the following: we consider the disc of radius R
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The polynomial p yields a map (also denoted by p)

where the mathematically positively oriented
boundary curve dD^ is mapped to a cir-
cle p(dDR) which wraps around the origin
n times in the mathematically positive sense
(cf. Figure 1.179 for n = 2). Hence there
must be a point z\ € DR which is mapped
to the origin, i.e., for which one has p(z\] =
0. In order to show that the image curve
p(dDR) wraps around the origin n times, we
consider the polynomial w — f(z) defined by
f(z) := zn. From the relation z = Reitf it
follows that

Figure 1.179.

Hence the circle dD^ of radius R is mapped to the circle f(dDR) of radius Rn, which
wraps around the origin n times. If R is sufficiently large, then this wrapping behavior
holds also for p, as p and / differ only by terms of lower order.

The following proof is the rigorous formulation of the above idea.

First proof of the fundamental theorem of algebra (mapping degree): We
write

p ( z ) ~ f ( z ) + g ( z )

with /(z) := zn. For all z with \z\ — R, we have

\f(z)\ = Rn and \g(z)\ < const • Rn~l.

If jR is sufficiently large, then one has

\g(z)\ < \f(z}\ for all z with \z\ = R.

The function / obviously has a zero. According to the theorem of Rouche in 1.14.8 it
follows that the function / + g = p has a zero also. D
The following proof is shorter yet.
Second proof of the fundamental theorem of algebra (theorem of Liouville):
Suppose the polynomial p has no zero. Then the inverse function 1/p is entire, and
because of

it is also bounded. According to the theorem of Liouville 1/p must be constant. This is
a contradiction and proves that p has a zero. D

Corollary: The power series expansion of p at the point z\ yields, because of p(z\) = 0,

p(zi) =ai(z- zi) + a2(z - z2)
2 + . . . ,

hence p(z) = (z — z\)q(z). The polynomial q has a zero Z2, hence q(z) = (z — Z2)r(z),
etc. Putting these facts together obtain a factorization
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1.14.10 Biholomorphic maps and the Riemann mapping theo-
rem

The class of biholomorphic maps has the important property that it transforms holo-
morphic functions into holomorphic functions. Moreover, biholomorphic maps are angle
preserving (conformal).
Definition: Let U and V be open sets in the complex plane C. A function / : U —> V
is biholomorphic, if it is bijective and both / and f ~ l are holomorphic.
Local theorem on inverse functions: Let a holomorphic function / : U C C —> C
be given in a neighborhood of a point a with

Then / is a biholomorphic map from a neighborhood of the point a to a neighborhood
of the point /(a).
For the inverse function w = f(z) one has, just as in the real case, the Leibniz rule

Global theorem on inverse functions: Suppose a function / : U C C —>• C is
holomorphic and injective on a domain U. Then the image f(U) is again a domain, and
/ is a biholomorphic function from U to f(U~).

Moreover one has f ' ( z ) ^ 0 on U, and the derivative of the inverse function of / on
f(U) is given by the formula (1.468).
The principle of holomorphic transformations: Let a holomorphic function

be given on an open set U. Moreover, let b : U —> V be a biholomorphic map. Then /
can be transformed to the set V in a natural manner.174 For this transformed function
/* one has:

(i) /* : V C C —> C is holomorphic.

(ii) The integral is invariant, i.e., one has

for all C^-curves C in U and C* := b(C).

Remarks: This important result makes it possible to introduce complex manifolds.
Roughly speaking, one has the following statements
(i) A one-dimensional complex manifold M is constructed in such a way that around
every point P e M, it is locally described by a coordinate z which belongs to an open
set U of the complex plane C.

174Explicitly one has /» := fob'1, i.e., /*(«;) = f(b~1(w)).
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(ii) The change from the local coordinate z to the local coordinate w is described by a
biholomorphic function w = b(z) from the open set U to the open set V.

(iii) Only those properties of M are considered important which are invariant under
such a change of local coordinate.

(iv) The principle of holomorphic transformation shows that the notion of holomorphic
function and of integral are denned in an invariant manner on complex manifolds.

(v) Connected one-dimensional complex manifolds are called Riemann surfaces.

The precise definitions of these objects are found in [212].

The main theorem of Riemann (1851) (Riemann mapping theorem): Every
simply connected domain in the complex plane C which is not equal to C itself can be
biholomorphically mapped to the interior of the unit circle.175

1.14.11 Examples of conformal maps

In order to interpret the properties of holomorphic functions / : U C C —> C geomet-
rically, we view

as a mapping, which associates to each point z of the z-plane a point w of the to-plane.

Conformal mappings: The map de-
nned by / is said to be angle preserv-
ing or conformal in the point z = a, if
the intersection angle of two C1-curves
through the point (including the sense
of direction) is preserved under the map
(Figure 1.180).

A map is said to be angle preserving or
conformal, if it is so in every point of its
domain of definition. Figure 1.180. Conformal maps.

Theorem: A holomorphic function / : U C C —> C from a neighborhood U of a point
a determines a conformal mapping at the point a if and only if /'(a) / 0.

Every biholomorphic map / : U —* V is conformal.

1.14.11.1 The group of similarity transformations

Let a and b be fixed complex numbers with a ̂  0. Then the association

determines a biholomorphic (and hence conformal) mapping w : C —> C of the complex
plane C to itself.

Example 1: For a — 1, the map (1.469) is a translation.

175Every biholomorphic map is angle preserving (conformal).
The deep uniformization theorem of Poincare and Koebe from 1907 generalizes the Riemann mapping

theorem in the following way: every simply connected Riemann surface can be mapped biholomorphi-
cally to exactly one of the following: the interior of the unit circle, the complex plane itself, or the
closed complex plane C (Riemann sphere), which is described in section 1.14.11.3. Details on this
generalization can be found in [212].
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Example 2: We set z = reltp. If b — 0 and a = |a|eia, then one has

Consequently the mapping w = az is a rotation by an angle of a and simultaneously
multiplies the lengths by a factor of |a|.

In case 6 = 0 and a > 0 one gets the proper similarity transformations (multiplying
lengths by the factor of a).

The set of all transformations (1.469) forms the group of orientation-preserving similarity
transformations of the complex plane C into itself.

1.14.11.2 Inversion on the unit circle

The mapping

is a biholomorphic and hence conformal mapping of the punc-
tured complex plane C — {0} into itself. If we set z = re"*3,
then we have

Because of \w\ = the point w is obtained from z through

the reflection on the unit circle and a simultaneous reflection
on the real axis (Figure 1.181).

Figure 1.181.

1.14.11.3 The closure of the complex plane

We set

i.e., we add to the complex plane C a point oo and call C the completed complex plane.
The following construction is typical for the construction of complex manifolds. It is our
goal to give local coordinates on C.

Definition of local coordinates: (i) For any point a e C we take the neighborhood
U := C as neighborhood, with coordinate C := z for z G C.
(ii) As a neighborhood of the point oo we take the set V := C — {0} with the local
coordinate

Thus we have for every point z £ C — {0} two different local coordinates, C, = z and
C' = 1/2, and these two local coordinates are related by the relation £ = !/£'• The point
0 has only the local coordinate £ = 0, while the point oo has the local coordinate £' = 0.
Thus we get a rigorous expression of the notation 0 = l/oo.
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Mappings of the completed complex plane: The properties of a map

are defined by passing to local coordinates. For example, / is holomorphic if and only
if it is so upon passing to local coordinates.

Example 1: Let n = 1,2,.. . The mapping

is a holomorphic mapping / : C —> C.

Proof: First of all, / is clearly holomorphic on the open set U := C. Transforming the
equation

to local coordinates and yields hence, on the other open set V,

This is a holomorphic function on C. Hence / is by definition holomorphic on V =
C-{0}. D

According to equation (1.470) we have in local coordinates a zero of order n. Since C = 0
corresponds to the point z = oo and /(oo) = oo, we say that / has an infinity (a pole)
of order n at oo.

Example 2: The mapping

is a biholomorphic mapping / : C —> C.

Proof: According to the first example, / is holomorphic. Moreover, / : C —> C is
bijective and f~l = f . Hence we conclude that f~l:C —> C is holomorphic, as was
to be shown. D

Example 3: If w = p ( z ) is a polynomial of nth degree and if we set p(oo) := oo, then
p : C —> C is a holomorphic function with a pole of order n at the point z = oo.

Example 4: Let n = 1,2 We set

Then / : C —» C is a holomorphic mapping with a pole of order n in the point z = (
and a zero of nth order in the point z = oo.

For n = 1, / : C —> C is biholomorphic.
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Proof: To study w — f(z] in a neighborhood of z = 0, we use the local coordinates
w = l/p, and C, = z. The function formed from this,

is holomorphic in a neighborhood of £ = 0 and has a zero of order n. Consequently, /
has a pole of order n at z = 0. D

Neighborhoods: Let £ > 0 be given.
For every point p € C we define its ^-neighborhood by

and set U£(oc) to be the set of all complex numbers z with \z\ > e l together with the
point oo.

Open sets: A set U of the completed number sphere C is called open, if it contains, for
each of its points, at least one e-neighborhood of that point.

Remarks: (i) With the help of these open sets we can give the completed complex
number sphere C the structure of a topological space, and then all the notions of topo-
logical spaces can be applied to it (cf. [212]). In particular, C is compact and connected.

(ii) With respect to the local coordinates we have introduced, the space C becomes
a one-dimensional complex manifold, and all the notions of complex manifolds can be
applied to it (cf. [212]).
(iii) By definition, one-dimensional complex manifolds are Riemann surfaces. Hence C
is also a compact Riemann surface.

In the middle of the nineteenth century, Riemann worked with a quite intuitive notion of
Riemann surface (cf. 1.14.11.6). Historically, the struggle for a mathematically rigorous
concept of 'Riemann surface' contributed much to the development of topology and the
theory of manifolds. A decisive step in this direction was taken by Hermann Weyl with
the appearance of his book Die Idee der Riemannschen Fldche (The idea of a Riemann
surface), which was published in 1913.

1.14.11.4 The Riemann sphere

Let (x, y, C) be a given Cartesian coordinate system. The sphere

is called the Riemann sphere. Let TV denote the north pole,
i.e., the point with the coordinates (0,0,1). The stereo-
graphic projection

Figure 1.182.

is defined by sending a given point P of S2 — {N} to the in-
tersection point z = <p(P) of the line NP connecting TV with
P with the (x, y)-plane (Figure 1.182 shows the intersection
of S2 with the (x, C)-plane). This map can be extended to a
map (p : S2 —> C by sending N to the point oo.

Example: The south pole S of S2 (with coordinates (0,0,—!)) is mapped under (p to
the origin of the complex plane C, while the equator is mapped to the unit circle.
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Theorem: The map (f>: S2 —>• C is a homeomorphism, i.e., it maps S2 — {N} confor-
mally to C.

Corollary: If we transfer the local coordinates from C to S2, the Riemann sphere S2 be-
comes a one-dimensional complex manifold, and the map ip : S2 —> C is biholomorphic.
More precisely, S2 is a compact Riemann surface.

1.14.11.5 The group of MSbius transformations

Definition: The set of all biholomorphic maps / : C —> C form a group, which is
called the automorphism group Aut(C) of C.176

Conformal geometry on C: The group Aut(C) determines the notion of conformal
symmetry on the completed plane C. A property belongs by definition to the conformal
geometry of C, if it is invariant under all transformations of the group Aut(C).

Example 1: A generalized circle on C is (the image in C of) a circle in C or a line in C
together with the point oo.

The elements of Aut(C) map generalized circles into generalized circles.
Mobius transformations: If a, fe, c and d are complex numbers with ad — bc^ 0, then
the transformation

is called a Mobius transformation, where we agree to the following:

(i) For c = 0, we set /(oo) := oo.

(ii) For c ̂  0, we set /(oo) := a/c and f(—d/c) := oo.

These transformations were first studied by August Ferdinand Mobius (1790-1868).
Theorem 1: The group Aut(C) of automorphisms of C consists precisely of the Mobius
transformations.
Example 2: The set of Mobius transformations which map the upper half-plane J£+ :=
{z € C | Im z > 0} into itself in a conformal (angle-preserving) manner are those trans-
formations of the form (1.471) for which a, b, c and d are real and ad — be > 0.

Example 3: The set of Mobius transformations which map the upper half-plane confor-
mally to the unit disc (interior of the unit circle) are those of the form

with complex numbers a and p for which o| = 1 and Imp > 0.

Example 4: The set of all Mobius transformations which map the interior of the unit
disc conformally to itself is the set of mappings given by

with complex numbers a and p for which |a| = 1 and \p\ < 1.

Properties of Mobius transformations: For a Mobius transformation / one has:
176 The notion of automorphism group depends on the structure which is to be preserved. Here we

require preserving the structure as a complex manifold, hence the biholomorphic maps. There is also a
group of diffeomorphism, homeomorphism, etc., each of which is distinct.
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(i) / can be composed of a translation, a rotation, a proper similarity transformation
and an inversion on the unit circle. Conversely, every such composition of mappings is
a Mobius transformation.

(ii) / is conformal and maps generalized circles to generalized circles,

(iii) / preserves the double ratio

of four points in C.177

(iv) Every Mobius transformation other than the identity has at least one and at most
two fixed points (points P with f ( P ) = P).

We let GL(2, C) denote the group of all complex invertible (2 x 2)-matrices. Moreover
let D denote the subgroup178 of all such matrices of the form XI with A =£ 0 in GL(2, C)

(here / denotes the identity matrix I =

Theorem 2: The mapping defined by the prescription

is a group homomorphism179 from GL(2, C) to Aut(C) with the kernel D. Hence one
has a group isomorphism (a bijective group homomorphism)

i.e., Aut(C) is isomorphic to the complex projective group PGL(2,C).

1.14.11.6 The Riemann surface of the square root

The ingenious idea of Riemann is to consider many-valued complex functions defined
on the complex plane C (as for example z = ^/w), which can be made single-valued
by changing the domain of definition to a more complicated object D than C itself. In
simple cases one obtains D by cutting several copies of the complex plane along certain
segments and gluing them together along these cuts. This leads to the notion of Riemann
surface.

The map w = z2: We set z = and have accordingly

The map w = z2 squares the distance r of the point z from the origin and doubles the
angle <p of z.

To study the behavior of w = z2 more precisely, we consider in the z-plane a circle C
around the origin of radius r, where C is given the mathematically positive orientation.

177One uses the natural method of calculation for the point oo, i.e., l/oo = 0, 1/0 = oo and oo±z = oo
for z € C.

178 Groups and subgroups are defined in section 2.5.1 below.
179Group homomorphisms are defined in section 2.5.1.2 below.
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If one runs through C once in the z-plane, then the image in the w-plane is a circle of
radius r2 which runs around the origin twice.

To study the converse mapping z = ^/w it is advantageous to take two copies of the
w-plane and cut them along the negative real axis (Figure 1.183).

(i) If we run through C in the z-plane from the point z = r to the point z — ir, then the
image points run on the first copy of the to-plane from the point r2 to the point — r2,
or, as one says, along the first sheet of the Riemann surface.

(ii) We continue along C from the point ir to the point —ir. The image points now run
through the second sheet from the point —r2 through the point r2 to the point —r2.

(iii) If we finally pass along C from —ir to the point r, then the image points run along
the first sheet from —r2 to r2.

Figure 1.183.
for z = T/W.

The Riemann surface Figure 1.184- The two 'sheets'
of the Riemann surface.

The inverse map z = n/w: The important observation for the following is:

To every point w ^ 0 on one of the two sheets of the to-plane
there is exactly one point z in the z-plane with w = z2.

This makes the function z = T/W on the union of the two sheets of the w;-plane well-
defined (single-valued). One has explicitly for a point w = Re1^ with —TT < if) < ir the
relation

for w on the first sheet,

for w on the second sheet.

Here vR > 0. The value of -Jw on the first sheet is called the principal value of ^/w
and is denoted +^/w.

The intuitive Riemann surface & of z = ^/w: If we glue the two sheets as depicted
in Figure 1.183(b) (i.e., T with T and S with S), then we get the intuitive Riemann
surface & of z = ^/w.

The topological type of the Riemann surface &\ The situation becomes easier to
understand if instead of the two w-planes one uses two Riemann spheres, cutting these
along a curve from the south pole to the north pole, and then gluing as depicted in
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Figure 1.184. The object we get in this manner can be blown up like a balloon to a
sphere. Thus & is homeomorphic to a sphere, which in turn is homeomorphic to the
Riemann sphere.

The intuitive Riemann surface & of the two-valued function
z = ^/w is homeomorphic to the Riemann sphere.

Similarly one can treat the maps w = zn, n = 3,4, — In this case one requires n copies
of the w-pl&ne to get the intuitive Riemann surface of the function z = \/w.

Remark: The representation of Riemann surfaces with paper, scissors and glue is quite
instructive and intuitive for simple cases. However, for more complicated functions this
method meets its limits. A satisfying mathematical construction of the Riemann surface
of an arbitrary analytic function can be found in [212].

1.14.11.7 The Riemann surface of the logarithm

The equation

has a many-valued inverse function, which we denote by z — Lnw. To describe this
function, we choose for each integer A; a copy Bk of the w-plane which we cut along the
negative real axis. For w = Re1^ with —TT < ifj < TT and w ^ 0 we set

If we glue the sheet Bk with the sheet .B/t+i along
the cut denoted S in Figure 1.185, and let k
run through all integers, then we get the 'infinite
round staircase' &, on which the function z =
Lnw; is well-defined. We call & the intuitive
Riemann surface of the logarithm.Figure 1.185. The Riemann surface

of the logarithm Ln. Branching point: We call w = 0 a branching
point of infinite order of the Riemann surface &.

In the case of the function z = ^/w, the point w = 0 is called a branching point of second
order.
Principal value of the logarithm: Let w — Re1^ with —?r < ip < TT and w ^ 0. We
set

and call In w the principal value of the logarithm of w. This value corresponds to Ln w
on the sheet BQ (the important point here is the assumption —TT < ^ < TT).
Example 1: For all z e C with \z\ < I one has

The principal value of with and n = 2 ,3 , . . . is defined
by
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Example 2: For all z € C with \z\ < I one has

with Q = 1/n in the sense of the principal value of the nth root.

1.14.11.8 The Schwarz—Christoffel mapping formula

This function maps the upper half-space {z € C In ix>0}
biholomorphically (and hence conformally) to the interior of
an n-gon with the inside angles 7^71-, j = l , . . . ,n (Figure
1.186 shows the case n = 3). It is assumed that all Zj are real
numbers with z\ < z% < • • • < zn and that 0 < TJ-TT < 2ir for
all j and moreover that the relation 71 ?H 1-7™ TT = (n — 2)7r
(the sum of all angles in the n-gon). The points z\,..., zn

are mapped to the corners (vertices) of the n-gon.
Figure 1.186.

1.14.12 Applications to harmonic functions

Let SI be a domain in R2. We identify R2 with the complex plane C, by identifying
z = x + \y e C with the point (x, y) e R2.

Definition: A function u : Q —> R is called harmonic, if

Here we have set Ait := uxx + uyy. We use in addition the decomposition

f ( z ) = u(x,y) + iv(x,y)

of a complex-valued function / into its real and imaginary parts.

Theorem 1: (i) If the function / : fi C C —» C is holomorphic on the domain fi, then
u and v are harmonic on Q.180

If /, g : fi —> C are holomorphic functions with identical real part u on fi, then the
imaginary parts of / and g differ by at most a constant.

(ii) Conversely, if the function u : Q —> R is harmonic on a simply connected domain
fi, then the curve integral

180This arises from the fact that the Cauchy-Riemann differential equations

ux = vy, uy — —vx

hold; it follows that uxx = vyx and uyy = —vxy, hence uxx + uyy = 0.
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is independent of the path of integration for fixed start and end points ZQ e O, and the
function / = u + iv is holomorphic on Q.

The function v is said to be a conjugate harmonic function to u.

Example 1: Let fi = C. For f ( z ) = z we get from z = x + iy on fi the harmonic functions
u(x, y) = x and v(x, y) = y.

Example 2: Let fi = C — {0} and z = re'v with — TT < <p < TT. For the principal value of
the logarithm one has

In z = In r + iy.

Hence

and this is a harmonic function on fi. The function v(x,y) :— ip is harmonic on every
subdomain Q' of O which does not contain the negative real axis A. On the other hand,
v is discontinuous on fj with jumps along A.

This example shows that the assumptions on the simple-connectedness of the domain fi
in Theorem 1 cannot be weakened.

The Green's function: Let fi be a bounded domain in the complex plane C with
smooth boundary. The Green's function w = G(z, ZQ} of O is by definition a function
with the following properties:

(i) For every fixed point ZQ 6 fi one has

with a continuous function h : £7 —> M, which is harmonic on J7.

(ii) G(z, ZQ) = 0 for all z € dto.
In the language of distributions, one has for a fixed point ZQ € fi:

The first equation means

Theorem 2: (i) There is a unique Green's function G of Q.

(ii) One has the symmetry property

G(z,3b) = G(z0,z)

and the positivity G(z, ZQ) > 0 for all z, ZQ 6 f2 with z ^ ZQ.

(iii) If g : d£l —> R is a given continuous function, the first boundary value problem

has a unique solution u, which is continuous on 17 and smooth on £7. For all z 6 f2 one
has the formula:



1.14- Complex function theory 56?

Here d/dn^ denotes the outer normal derivative with respect to £, and s is the arc length
of the boundary curve 9fi, which is oriented in such a way that (7 lies to its left.

Main theorem: Let J) be a bounded, simply connected domain in the complex plane
with smooth boundary. Suppose we are given a biholomorphic (and hence conformal)
mapping / from fi onto the interior of the unit disc with /(ZQ) = 0. Then the formula

defines the Green's function of Q.

Example 3: Let Q ~ {z £ C : \z\ < I } . The Mobius transformation

maps the unit disc fi to itself, with /(ZQ) = 0. The formula (1.473) for the solution
becomes here explicitly for the unit disc £7:

This is the so-called Poisson formula. Here we have set z = el<f> with 0 < r < 1.

The Dirichlet principle: A smooth solution u of the variational problem

is the unique solution of the first boundary value problem (1.472).

This result was originally derived by Gauss and Dirichlet.

Historical remark: The previous considerations show that there is very close relation-
ship between harmonic functions and conformal mappings. This connection was used
in an important way by Riemann in his construction of geometric complex analysis in
1851. In section 1.14.10 one can find the famous Riemann mapping theorem. Riemann
was able to reduce the proof of this theorem to the first boundary value problem for
the Laplace equation (1.472). To solve this equation, he used the variational problem
(1.474). It seems he viewed the existence of a solution of (1.474) as being evident from
physical considerations.

Weierstrass pointed out this gap in Riemann's proof. It wasn't until half a century
later in 1900 that Hilbert was able to give a rigorous proof of the solution of (1.474)
in a famous paper of his, thus completing Riemann's proof of the mapping theorem.
This paper of Hilbert was the starting point of an intensive period of progress of direct
methods of the calculus of variations in the context of functional analysis. A more
detailed discussion can be found in [212].
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1.14.13 Applications to hydrodynamics

The basic equations for plane flows:

These equations describe a plane stationary (time-independent) flow free of sources of
an ideal181 fluid of constant density Q. We identify the point (x, y) with z = x + \y. The
notations in (1.475) are as follows. v(z) is the velocity vector of the fluid particle at the
point 2, p ( z ) is the pressure at the point z, f = — grad W is the density of the exterior
force with the potential W.

Circulation and source strength: Let C be a closed, mathematically positively
oriented curve. The number

is called the circulation of C. Moreover, one calls

the source strength of the domain surrounding C (where n is the outer normal vector
and s denotes arc length).

Integral curves: The fluid particles move along the integral curves (or flow lines), i.e.,
the velocity vector v is tangent to the integral curves. In the following we will identify
the velocity vector v = ai + bj with the complex number a + ib.

Connection with holomorphic functions: Every holomorphic function

f ( z ) = U(z) + iV(z)

on the domain fJ of the complex plane C corresponds to a plane flow, i.e., it is a solution
of the basic equations (1.475), in the following way.

(i) The velocity field v is obtained as v = —grad [/, hence

The function U is called the velocity potential; f is called a complex velocity potential.
Moreover, |v(z)| = \ f ' ( z ) \ .

(ii) The pressure p is calculated from the Bernoulli equation:

The constant is determined by prescribing the pressure at some fixed point.

(iii) The curves V(x, y ) = const are the integral curves.

181 One neglects the inner friction for ideal fluids.
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(iv) The curves U(x,y) = const are called equipotential curves. In the points z with
f ' ( z ) 7^ 0 the integral curves are orthogonal to the equipotential curves.

(v) Circulation and source strength follow from the formula

This integral can be conveniently calculated with help of the residue theorem.

Pure parallel flow (Figure 1.187(a)): Let c> 0. The function

with U = —ex and V =
—cy corresponds to the
parallel flow

v = c,

that is v = ci. The lines
y = const are the inte-
gral curves, the lines x =
const are the equipoten-
tial curves, orthogonal to
the integral curves.

Figure 1.187. Hydrodynamical flows.

Pure circulation flow (Figure 1.187(b)): Let F be a real number. We set z = reltf.
For the function

one has U = and This yields for the velocity field

Let C be a circle around the origin. For the circulation we get from the residue theorem

The integral curves V = const are concentric circles around the origin, and the equipo-
tential curves U = const are rays originating in the origin.

Pure source flow (Fig-
ure 1.187(c)): Le t<?>0.
The function

corresponds to a source
flow with the velocity
field

Figure 1.188. A flow around an obstacle (a disc).
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whose potential is U = In r and whose source strength is equal to

The integral curves are rays originating in the origin, the equipotential curves are con-
centric circles around the origin.

Flow with obstacle a disc (Figure 1.188): Let c> 0 and F > 0. The function

describes the flow past a disc of radius R] this flows is composed of a parallel flow with
the speed c and a circulation flow determined by F.

Figure 1.189. A flow around an obstacle G, an arbitrary simply connected domain.

The trick with conformal mappings: Since biholomorphic maps transform holo-
morphic functions into holomorphic functions, one gets at the same time a map of flows
which transforms integral curves into integral curves. Recall that biholomorphic maps
are always conformal.

This explains the importance of conformal mappings for physics and technology. The
same principle can also be applied in electrostatics and magnetostatics (cf. 1.14.14).

Flow with obstacle a domain G (Figure 1.189): Suppose we are given a simply
connected domain G with a smooth boundary. Let g be a biholomorphic map from G
onto a disc. A map of this kind always exists by virtue of the Riemann mapping theorem.
We choose the function / as in (1.476) with R = l. Then the composed function

w = f(g(z}}

is a flow around the domain G.

1.14.14 Applications in electrostatics and magnetostatics

The basic equations of plane electrostatics:

These are the Maxwell equations for a stationary electric field E in the absence of electric
charges and flows as well as the absence of a magnetic field.
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The analogy principle: Every fluid flow from 1.14.13 corresponds to an electrostatic
field, if one uses the following dictionary to translate the two notions:

velocity field v electrical field E,

velocity potential U electric potential (voltage) U,

integral curves field curves of E,

source strength Q(C) plane charge q on the interior of (7,

circulation Z(C) circulation Z(C).

At a point of charge Q the force of QE acts in the direction of the field curves. The
electric field vector is perpendicular to the equipotential curves. Electrical conductors
(like metals) correspond to a constant value of the potential U.

One of the strengths of mathematics is that the same mathematical theory
can be applied to completely different situations occuring in nature.

Point charges: The pure source flow f ( z ) := Inz in 1.14.13 corresponds to an

electrostatic field E with the potential

The field E(z) = is generated by a plane charge of strength q at the origin (Figure

1.187(c)).

Metallic circular cylinders of radius R: The
electrostatic field of a cylinder corresponds in each
plane perpendicular to the axis of the cylinder the
source flow

with the electrostatic potential U In r for r

R. The equipotential curves are concentric circles.
In the cylinder we have U = const = U(R) (Figure
1.190). Figure 1.190.

Magnetostatics: If one replaces the electric field E in (1.477) by the magnetic field B,
then one gets the basic equations of magnetostatics.

1.14.15 Analytic continuation and the identity principle

One of the most wonderful properties of holomorphic functions is the fact that one can
analytically continue equations and differential equations in a unique manner to larger
domains of definition without changing the form of the equations.

Definition: Let two holomorphic functions / : U C C —> C and F : V C C —> C be
given on the domains U and V with U C V. If we have the identity

f = F onU,

then F is completely determined by / and is called the analytic continuation of /.
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Example 1: We set

f ( z ) :=l + z + z2 + ... for all z £ C with \z\ < 1.

Moreover let

Then F is the analytic continuation of / on C — {!}.

Identity principle: Let two holomorphic functions f , g : £ l —> C be given on a domain
Q, and suppose that

where (zn) is a sequence with zn —> a for n —> oo and o e Q. Assume in addition that
zn 7^ a for all n. Then / = g on fi.

Example 2: Suppose we have the addition theorem

for all x,y e] — a, a[ for small angles with a > 0. Since w = sin 2 and w = cosz
are holomorphic functions on C, we know (without any calculation) that the addition
theorem holds for all complex numbers x and y.

Example 3: Suppose we have proven a formula for the derivative

for all x €] — a, a[. Then the validity of this formula for all complex numbers z follows.

Analytic continuation along a curve: Suppose we are given the power series

with the domain of convergence D = {z 6 C : |z — a| < r}. We choose a point b £ D
and set z — a = (z — b) + b — a. The series (1.479) may be reordered, and we get the
new power series

g(z) = bQ + bl(z-b} + b2(z - b)2 + ...

with the domain of convergence D' :=
{zeC : \z-b\ < R} (Figure 1.191(a)).
Here we have / = g on the intersection
D n D'. If D' contains points which are
not in D, then we get an analytic continu-
ation F of / to the union D\JD', by setting

F := f on D and F := g on D'.

One can try to continue this process (Fig-
ure 1.191(b)).

Figure 1.191. Analytic continuation.

Example 4-' The function
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is holomorphic on the unit disc. However, it cannot be analytically continued to a larger
domain.182

Monodromy theorem: Let £7 be a simply connected domain and / a function which
is holomorphic in a circular neighborhood of a point a € O, so that / can locally be
expanded in a power series around a.

If the function / can be analytically continued along a C1-curve in Jl, then this yields a
uniquely determined holomorphic function F on the domain fi (Figure 1.191(b)).

Analytic continuation and Riemann surfaces: If the domain £7 is not simply
connected, then it may happen that the analytic continuation leads to a many-valued
function.

Example 5: Let C be a circle in the w-plane, positively oriented in the mathematical
sense. We start the analytic continuation along a curve for the principal value of the
function

in a neighborhood of the point w = I. After going around C once, the analytic con-
tinuation along the curve C gives rise to a power series expansion at w = 1 of —+-^/w
(the negative of the principal value). Running along C one more time we return to the
power series expansion of +^/w again.

The situation becomes understandable if we use the intuitive Riemann surface of the
function z = \/w (cf. 1.14.11.6). We start at the point w = I on the first sheet and land,
after running through C once, on the second sheet. Passing a second time along C, we
land again on the first sheet.

Example 6: If we start the analytic continuation with the power series expansion of the
principal value

z — In it;

in a neighborhood of the point w = 1, then we get after m revolutions around w = 1
along C the power series expansion of

Here the number m = — I corresponds to a revolution around C in a negative mathemat-
ical sense, i.e., with the reverse orientation, etc. This procedure yields the many-valued
function z = Ln w discussed above.

With the help of the intuitive Riemann surface of z = Lntt; in 1.14.11.7, we can interpret
the analytic continuation above as follows. We start at the point w = 1 on the zeroth
sheet, land on the first sheet after the first revolution along C, on the second sheet after
the second revolution, etc.

In general one can utilize this procedure to continue a given power series expansion of
/ to the Riemann surface of the maximal analytic continuation of /. This is described
in [212].

Analytic continuation using the Schwarz reflection principle: Suppose we are
given a domain

which consists of two domains fi+ and f)_ together with a segment S. Here fi_ should
be the image of Q+ under a reflection on the segment 5 (Figure 1.192). We make the
following assumptions:

182The symbol z2" stands for z(2™) and should be not be confused with (z2)™ = z2'". In general ab<:

means the same thing as a^b ).
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(i) The function / is holomorphic in fi+ and
continuous on the union fi+ U S.

(ii) The image f ( S ) of the segment S under
the map w = f ( z ) is a segment in the w-
plane.

(iii) We set

Figure 1.192.

Here the star in the notion means the reflection on the segment S in the z-plane (resp.
on the segment f ( S ) in the w-plane).
This construction leads to an analytic continuation of / to the entire domain fi.

The general power function: Let a 6 C. Then one has

The function on the right-hand side can be analytically continued. This continuation is
then the function w = za.

(i) w = za is well-defined on C, if Re a and Ima are integers.

(ii) w = za is finitely-valued (many-valued with finitely many values for a give argu-
ment), if Re a and Ima are rational numbers which are not integers.

(iii) w — za is infinitely-valued, if Re a or Im a are irrational.

In case (ii) the intuitive Riemann surface of w = za is the same as that of the function
w = yfz for some natural number n > 2.

In case (iii) the intuitive Riemann surface of the w = za is the same as that of the
function w — Lnz.

1.14.16 Applications to the Euler gamma function

We define

r(n + 1) := n!, n = 0 , l ,2 , . . .

This trivially implies the relation

for z = 1,2,.. . Euler (1707-1783) asked whether one can define the number n! in a
meaningful way for other values of z. To do this, he sought a solution F of the functional
equation (1.480) and found the convergent integral

as a solution.
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Analytic continuation: The real-valued function
F defined by (1.481) can be uniquely extended to a
meromorphic function in the complex plane C. The
poles of this function are precisely in the points z =
0, —1, — 2 , . . . ; all of these poles have order one.

The Laurent series in a neighborhood of the pole
z = —n with n — 0,1,2, . . . is as follows:

By the identity theorem, the functional equation Figure 1.193. Euler'sY-function.
(1.480) then holds for all complex arguments z in
which F has no pole.

The graph of the gamma function for real values x is pictured in Figure 1.193.

The Gaussian product formula: The function F has no zeros. It follows that the
inverse function 1/F is an entire function. One has the product formula

The Gaussian multiplication formula: For k = 1,2,.. . and all z 6 C for which F
has no pole, one has:

In particular, for k = 2 one gets the doubling formula of Lagrange:

The complementary theorem of Euler: For all complex numbers z which are not
integers, one has

The Stirling formula: For every positive real number x there is a number ?9(x) with
0 < $(x) < 1, such that the following relation is satisfied:

For every complex number z with Re z > 0 one has In particular,
one has

Further properties of the gamma function: (i) The Euler integral representation
(1.481) holds for all complex numbers z with Rez > 0.

for all complex numbers z which are not integers.
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for all complex numbers 2, for which z + is not

an integer.

The uniqueness result of Wielandt (1939): Let a domain fJ in the complex plane
C be given, which contains the vertical strip S := {z £ C 1 < Rez < 2}. Suppose / is
a holomorphic function / : Q —> C with the following properties:

(i) f ( z + 1) = zf(z) for all complex numbers z in Q, for which z + I also belongs to $1.

(ii) / is bounded on S and /(I) = 1.

Then the function / is identical to the gamma function F.

1.14.17 Elliptic functions and elliptic integrals

1.14.17.1 Basic ideas

The addition theorem of Fagnano (1781): The equation

describes in polar coordinates the lemniscate of Jakob
Bernoulli (1654-1705) with the arc length

Figure 1.194.
between the origin O and the lemniscate point which has

the distance r from O (Figure 1.194). The Italian mathematician Fagnano (1682-1766)
found in 1718 the doubling formula

This formula contains a prescription of how to double the lemniscate using a compass
and ruler.
In 1753, Euler found many additional formulas for elliptic integrals, which are referred
to as addition theorems.
The discovery of Gauss: Gauss, when he was only 19 years old, studied the lemniscate
in 1796.183 He asked how one could calculate the distance r of a point on the lemniscate
from the arc length s. In other words, he was interested in the inverse function r = r(s)
of the elliptic integral (1.482). Upon differentiation of (1.482) one gets

Hence the function s :] — 1,1[—> R, for which one has s'(r) > 0, is strictly increasing
and has an inverse function, which Gauss denoted by

183This research was not published until after his death.
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and called the lemniscate sine function. Here the number

is the length of a half-arc of the lemniscate (Figure 1.194). Moreover Gauss introduced
through the relation

the lemniscate cosine function. One has

This relation indicates that Gauss was quite aware of the analogy to the trigonometric
functions. This analogy becomes even more evident if one considers the integral

The inverse of this function s — s(r) yields the trigonometric sine function

r = sin s.

If we choose the number

then we get parallel to (1.484) the trigonometric cosine function

cos s = sin(u; — s)

with the familiar relation
sin2 s + cos2 s = 1,

which is generalized by (1.485). Just as there is an addition theorem for the trigonometric
functions

sm(x + y) = sin x cos y + cos x sin y

there are algebraic addition theorems for the lemniscate sine and cosine functions. With
these formulas, Gauss introduced the functions r = si s and r = cl s for all real arguments
s. The brilliant idea which Gauss had at this point was to extend these functions to
complex arguments. To do this, he first utilized the substitution t = ig and derived,
formally,

hence s(ir) = is(r). This led him to the definition

sl(is) := i(sl s) for all s € R.

With the help of this relation and the addition theorem he was then easily able to
define si s for all complex numbers s and obtained, as a corollary, the two fundamental
periodicity relations
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As opposed with the trigonometric sine the lemniscate sine has not only a real period oi
4w, but also a second, purely imaginary period 4wi. This means that si s is a meromorphic
function which is doubly periodic. Functions of this kind are called elliptic functions.

Gauss had discovered already in 1796 the existence of elliptic functions.

General elliptic integrals: An integral of the form

is called rational, if p is a quadratic polynomial with two distinct zeros. Integrals of this
kind can always be solved by substitutions involving the trigonometric functions (with
real or complex arguments). Trigonometric functions are periodic.

If p is a polynomial of third or fourth degree with pairwise distinct zeros, then we call
(1.486) an elliptic integral. Integrals of this kind can be solved by substitutions, in which
elliptic, that is doubly periodic functions, are used.

Elliptic integrals and elliptic functions generalize the
rational integrals and the trigonometric functions.

The integral (1.486) is called hyperelliptic if p is polynomial of fifth or sixth degree with
pairwise distinct zeros. Integrals of the form

where w is an algebraic function,184 are called Abelian integrals. Such integrals were
studied by Niels H. Abel (1802-1829).

A general theory of elliptic integrals: Elliptic integrals were studied systematically
by Legendre (1752-1833) and Jacobi (1804-1851), whereby Jacob! used rapidly converg-
ing theta functions and derived the Jacobian sine and cosine functions w = snz and
w = cnz, generalizing the trigonometric functions.

However, a deeper understanding of the theory of elliptic integrals comes about only
when one takes the elliptic functions as the starting point of the theory. This was the
way that Weierstrass systematically presented the material in a famous series of lectures
at Berlin University in 1862. His starting point was the p-function which he introduced.
One can obtain all elliptic functions from this one and its derivative by means of rational
operations.

The basic ideas of the general theory are the following:

(i) Elliptic integrals can be solved with the help of a universal substitution, in which the
Weierstrass p-function is used.

(ii) Elliptic integrals have local inverses. Analytic continuation of these local inverse
functions yields elliptic functions on the complex plane C.

(iii) The global behavior of elliptic integrals are influenced by the many-valuedness of the
function \/p(z) under the integral. In order for the integral (1.486) to be well-defined as
a curve integral, one must utilize paths of integration which lie on the Riemann surface of
the function ^/p(z). On this Riemann surface, the function w = \/p(z) is single-valued.
In this way, the function under the integral also becomes single-valued.

184This means that the (many-valued) function w = w(z) satisfies an equation p(w, z) = 0, where p is
a polynomial of arbitrary degree.
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(iv) The Weierstrass p-function has an algebraic addition theorem.

This is the basis of the doubling formula (1.483) found by Fagnano, the general addition
theorems of Euler as well as the addition theorems for general elliptic functions, such as
the Gaussian lemniscate sine and cosine functions.

The deeper reason for the existence of an addition theorem of the p-function is the group
structure on an elliptic curve (cf. 3.8.1.3).

(v) In order to apply the p-function to the calculation of arbitrary elliptic integrals, one
must solve the inversion problem for the p-function, in other words, the calculation of a
period lattice from certain given invariants of the p-function. This leads to the theory
of modular forms, which we will consider in 1.14.18. Modular forms play an important
role in areas as diverse as number theory and string theory in modern particle physics
(cf. [212]).

The famous Jacob! problem of inversion of hyperelliptic integrals: In 1832,
Jacobi formulated the following conjecture. Let w = p(z) be a polynomial of the sixth
degree, which has only simple zeros. We consider the two functions u = u(a, b) and
v = v(a, 6) which are solutions of the following system of equations:

where Uj and Vj are fixed given complex numbers, j = 0,1.

Then the two functions u + v and uv are unique and possess four distinct periods.

Riemann and Weierstrass worked intensively on finding a solution to this problem and
developed in the process essential parts of the theory of complex functions. Both found
a solution to the problem, with different methods, and showed that this is but a special
case of more general properties of Abelian integrals.

Automorphic functions: In place of the elliptic functions in the case of elliptic in-
tegrals, automorphic functions arise in the case of hyperelliptic integrals. Automorphic
functions are meromorphic functions on a domain (for example on the upper half-plane
or on a disc), which are invariant under the action of a discrete group of automorphisms
of that domain. The importance of automorphic functions in the calculation of Abelian
integrals is based on the fact that for every compact Riemann surface & of genus g > 2,
there is an automorphic map p : SB —> & from the open disc SB to ̂ , with the property
that p in invariant under the group of deck transformations of & (cf. [212]).

In the case of elliptic integrals one uses elliptic functions p : C —> &, where £% is a
Riemann surface of genus g = 1, which is hence homeomorphic to a torus. The group
of deck transformations is formed by the set of all translations of the complex plane C
which leave the period lattice invariant.

The general theory of Abelian integrals is determined by an extraordinarily harmonious
interaction of analysis, algebra and geometry. The rich collections of ideas contained in
this theory has turned out to be fruitful also in many other areas and has influenced the
development of mathematics in the twentieth century in an essential way.
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1.14.17.2 Properties of elliptic functions

Definition: An elliptic function is a doubly periodic meromorphic function /
i.e., there are two complex numbers wi, u>2, both non-vanishing, such that

We set T := 0^2 A^i and assume henceforth that the two periods are ordered in such a
way that Imr > 0. Prom (1.487) we get

where n and m are arbitrary integers.

The period lattice: The set

is called the period lattice generated by o>i and 0^2; F is a subgroup of the additive group
C. The set

is called the fundamental domain. This is a parallelo-
gram spanned by uj\ and u>2 (Figure 1.195). We write

if and only if z\ — z% € F, and in this case we say that
z\ and z-2 are equivalent. Doubly periodic functions
take on identical values at equivalent points.

Example: In Figure 1.195 four equivalent points are
indicated by the open circles.Figure 1.195. A period lattice.

Theorem: For every point z\ in the complex plane C there is a unique point z-2 in the
fundamental domain & which is equivalent to z\.

Therefore it is sufficient to know the values of an elliptic function in its fundamental
domain to know its values everywhere.

Liouville's theorem (1847): For a non-constant elliptic function / : C —> C one has:

(i) / has at least one and at most finitely many poles in the fundamental domain &.

(ii) The sum of the residues of all poles of / in & is zero.

(iii) / takes on every value w € C and w = oo with the same multiplicity at all points
ofJ^.185

1.14.17.3 The Weierstrass p-function

Definition: Let u>i and UJ2 be given, spanning a period lattice. For all z 6 C — F we set

185 The sum of the multiplicities of all zeros of / — w in & and the sum of all multiplicities of all poles
of / in & coincide.
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The summuation symbol with the apostrophe inidicates that the lattice point g = 0 is
not a summand.

In addition we set

One has:

The (non-normalized) discriminant of this polynomial is

If the numbers ei, 62 and 63 are pairwise distinct, then A 7^ 0.

Theorem 1: (i) The p-function is elliptic with the periods u\ and MZ-

(ii) <p has exactly one pole in the fundamental domain &. This is at the point z = 0
and has multiplicity two.

(iii) The p-function attains every value w £ C in & twice and is an even function, i.e.,
$>(—z) = p(z) for all z € C.

(iv) For all z e C — F the function w = p(z) obeys the differential equation

(v) One has the addition theorem

for all «, v € C — F with u ^ v. Moreover, one has the relation

The field of elliptic functions: The set of all elliptic functions with given periods u>i
and 0*2 form a field186 J%'. This field is generated by the p-function and its derivative.
Explicitly J^ consists of all functions of the form

where R is an arbitrary rational function in two variables (a quotient of two polynomials
in two variables).

The Eisenstein (1832-1852) series: Forn = 3,4,... the series

186Fields are defined in section 2.5.3



580 1. Analysis

converge. Here again the summation with the apostrophe indicates that the lattice point
(jj = 0 is not included.

Theorem 2: One has g-2 = 60G4 and #3 = 140Ge. In a neighborhood of z = 0 one has
the Laurent expansion

1.14.17.4 The Jacobian theta functions

Definition:

Here q is defined as q := e17rr with r 6 C and Imr > O.187

Theorem: For fixed parameter r the function $o is entire. It has a period of 1 and
zeros at exactly the points

As a function of z and r the function $o satisfies the complex heat equation

Definition: From $o one gets the other Jacobian theta functions:

1.14.17.5 The Jacobian elliptic functions

Definition: Let 0 < k, k' < 1 with k2 + k'2 = 1. We set

(sinus amplitudinis),

(cosinus amplitudinis),

(delta amplitudinis).
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The quantities used here are:

and T := \K'(k}/K(k} with K'(k) := K(k').188 In what follows we keep k fixed and
write more briefly snz and enz as well as K and K'.

Theorem: The three functions w = snz, en z and dnz are elliptic with the properties
listed in Table 1.8. Moreover, one has:

sn2 z + en2 z = I and (sn z)' = en z dn z

for all z € C, provided there are no poles there. The function snz is odd, while cnz and
dn z are even.
Differential equations: The general non-constant solution of the differential equations

is

Addition theorems:

1.14.18 Modular forms and the inversion problem for the
function

Different periods u>\, uj-2 can lead to the same lattice.
Example: The two pairs of periods (l,i) and (1,1 + i) generate the same lattice in C
(Figure 1.196), as the set of lattice points for both coincide.
Main theorem: (i) The Weierstrass p-function depends only on the period lattice and
not on the periods generating the lattice.

(ii) If three distinct complex numbers e\, e? and €3 are given, there is a lattice and a
p-function which belong to these values (in the sense of (1.488)).

188The standard symbol K' means here a real number and not the derivative of a function.
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Table 1.8. The elliptic functions of Jacobi.

Periods Zeros Poles Residues

snz AK, 2K'i 2mK + 2nK'i 2mK+(2n+l)K'i

cnz 4ftT, 2(K + K'i) (2m + 1}K + 2nK'i 2mK + (2n+l)K'i

dnz 2K, 4K'i (2m + l)K+(2n + l)K'i 2mK + (2n+l)K'i —i, i

n and m are integers

Remark: The universal method of solving el-
liptic integrals is based on this result, namely
making the substitution w = p'(t), z = $(t)
(cf. 1.14.19).

The theorem above follows from the theory
of modular forms which is presented in the
sequel. In particular one uses the fact that
the modular J-function of Klein takes on ev-
ery complex number as one of its values. The

Figure 1.196. Different periods which
define the same lattice.

theory of modular forms has important applications in number theory, in algebraic ge-
ometry (cf. the deep Shimura-Taniyama-Weil conjecture in 3.8.6.2), in numerics for the
calculation of TT, as well as in string theory in high-energy physics.

The modular group: Let J£+ := {z £ C | Imz > 0} denote the upper half-plane. A
modular transformation is by definition a Mobius transformation of the form

where a, 6, c and d are integers with ad — be — I. These transformations map J£+
biholomorphically (and hence also conformally) into itself.

The set of all modular transformations form a subgroup of the automorphic group (of
Mobius transformations, see 1.14.11.5), which one calls the modular group ̂ .

Let r, T' € Jtf+. We write
T = r' mod ̂ ,

if and only if there is a modular transformation which maps r to r'. This is an equivalence
relation which is denoted by ̂ \^+ (the operation is from the left).

The modular group is generated by the transformations T' — T + 1 and r' = — 1/r.

The fundamental domain of the modular group: We set

(see Figure 1.197). Then we have:
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(i) Every point of the upper half-plane is equivalent to a
point of &(j&) modulo ̂  (this means that there is an
element of ̂  transforming the given point to a point in
the fundamental domain).

(ii) Two arbitrary points of &(^() are inequivalent
modulo ̂  if and only if they lie on the boundary.

Equivalent lattices: Two lattices T and T' are said to
be equivalent if there is a complex number a ̂  0 such that
r = Or.
Theorem 1: Two pairs of periods (wi,^) and (u^,^)
generate equivalent lattices if and only if the quotients
US/MI and u'2/u}( are equivalent modulo ̂ . Recall that
we agree that Imr > 0 for r := u>2/^i-

Figure 1.197. The fun-
damental domain of the
modular group.

The association (wi,^) "-» ^2/^1 yields a bijective map from the set of equivalence
classes of lattices to the fundamental domain ^(^'} of the modular group.

Modular forms: A modular form of weight A; is a meromorphic function / : J£+ —> C
with the property that

and for all modular transformations. In the case of k — 0 we speak of modular functions.

In the sequel we shall be using the quantities

which were denned in (1.488), where we indicate the dependency of these on the periods
O>i, (jO-2-

Definition: Let g j ( r ) :— gj(l,r], j = 1,2 and The modular (Klein)
J-function is denned by the relation

The function J only depends on the period ratio T = u<2/u\.

Theorem: (i) The functions w — J(r), A(r), g^ij] and ^(T) are holomorphic on the
upper half-plane.

(ii) J is a modular function, which maps the fundamental domain ̂ (^} of the modular
group bijectively to the complex plane C.

(iii) The function w = A(r) is a modular form of weight 12.

The Dedekind (1831-1916) eta function:
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This function, which is important in number theory as well as, for example, in string
theory, is holomorphic on the upper half-plane and satisfies the relation

and all modular transformations. Here E is a 24th root of unity, i.e., e24 = 1. Moreover,
one has

1.14.19 Elliptic integrals

In order to get a better grasp of the general theory, we begin with an important example.
With the example we want to elucidate the following basic principle:

Riemann surfaces are of great practical value in the calculation of inte-
grals of many-valued algebraic functions (for example elliptic integrals).

1.14.19.1 The Legendre normal form of integrals of the first kind and the
Jacobian sine function

The basic integral
Consider the real integral

Here the numbers A; and k' are given and satisfy 0 < k, k' < I and k2 + k' = I . We
furthermore set

and K' := K(k'). If we use the integral

then we have

and K(k] = F The elliptic integral F(k, (p) is tabulated in section 0.5.4. For all

one has

Therefore the function / is strictly increasing and has a unique
inverse function, which Jacobi (1804-1851) denoted by
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Instead of sn(t; fc) and K(k) we write in what follows more briefly sni and K. Hence
we have

The amplitude functions: For every fixed k E\ — 1,1[ the function

is strictly increasing and has the smooth inverse function

which one calls the amplitude function.

Theorem 1: For all t e] - K, K[ one has

This explains the term sinus amplitudinis and cosinus amplitudinus (Latin) for the
Jacobian functions snt and cn£.

The limiting case k = 0: If k = 0, then one has K = Tr/2 and

Analytic continuation
Theorem (Jacobi): The functions z = sni, cnt and dnf, which are defined on the
interval ] — K, K[, can be extended in a unique manner to the complex plane C. The
result of this extension is a set of elliptic functions.

The corresponding formulas expressing these functions in terms of the theta functions
can be found in 1.14.17.5. In particular one has

i.e., the function z = snt has a real period of ̂ K and a purely imaginary period of 1K'\.

The general contour integral

The contour integral

only makes sense if one declares how the many-valued square root along the curve C is to
be understood (i.e., along which sheet does one take the function?). Since the function

is single valued on its Riemann surface ^", it is natural to consider the integrand of the
integral I(C) as living on &. In order to amplify this point we write
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with the algebraic function

The Riemann surface &: We choose two copies of the complex z-plane, cut these
along the intervals

and

and glue the corresponding edges criss-cross (Figure 1.198). We denote the surface
constructed in this manner by <^. We define189

for z on the first cut sheet,

for z on the second cut sheet,

for z on the cut intervals and

With this definition, the function w =
is single-valued on

is the intuitive Riemann sur-
face of this function.

Figure 1.198. Sheets of a Riemann surface.

The parameterization of paths on the Riemann surface (global uniformiza-
tion)

Theorem 2: Every continuous compact path on the Riemann surface 1% corresponds
in a one to one manner to a path

in the complex £-plane, so that C has a parameterization

where the corresponding values of w are given by W(T) = (sn)'(t(r)). This clarifies the
question as to which sheet of the Riemann surface gives the values for snt(r).190

The calculation of the integral

From Theorem 2 it follows that

189 We denote the principal value of the square root by
190The map

is closely related to the equation

and the differential equation

From a general topological point of view the complex t-plane is the universal covering surface of the
Riemann surface &. The corresponding covering map p : C > & is given by (1.493). Covering spaces
of manifolds are considered in [212].
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Indeed, the substitution (1.491) yields

One writes for this more briefly z = snt, w = z'(t) and

Conformed maps

In order to explain the connection between the paths C on the Riemann surface and the
corresponding paths C» in the complex t-plane, we investigate the function

from the complex i-plane to the complex z-plane. We again denote the upper half-plane
(of the z-plane) by

Theorem 3: (i) The function

maps the upper half-plane <#+
biholomorphically (hence confor-
mally) to the open rectangle Q
in the complex t-plane, which has
corners ±K and ±K + K'i.

(ii) Moreover, the closed lower
half-plane (including the point
oo) is mapped homeomorphically
to the closed rectangle Q, where
the mapping sends the points

Figure 1.199. The function sinus amplitudinis.

to the vertices

and the edges between these points to the corresponding edges of Q.

(iii) The inverse map to (1.492) from Q to 34? + is given by z — snt (Figure 1.199).

We consider the period rectangle

Theorem 4: The function z — snt maps & bijectively to the Riemann surface &.

Example 1: The path C in the t-plane is transformed to a path ̂  on ̂ , during which
a transition from the first to the second sheet is made (Figure 1.200).

Proof: We consider the point t in Figure 1.199. Reflection of t on the real axis gives us
a point t*. According to the Schwarz reflection principle, the image point of z = snt,
namely z* = snt*, is obtained by reflection on the real axis (cf. 1.14.15).
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Furthermore, the reflection of t
on the segment passing through
the two points K ± K'\ yields
a point t**. The image point
z** = sn£** is obtained by
reflection of z = sn£ on
the real axis, where we this
time view z** as a point on
the second sheet of the z-
plane.Figure 1.200. The function sn is a uniformization.

The deformation trick for simplifying the integral
We have the following two important rules at our disposal:

(i) If C is a closed path on the Riemann surface ̂  which
can be continuously deformed to a point on &, then one
has I(C) = 0.
(ii) If Ci and C% are two paths on & with the same start
and end points, then one has

Figure 1.201.

if the closed curve C = C\ — C% has the property (i) (Figure 1.201).

Figure 1.202. Deforming a path to calculate a curve integral.

Example 2: For the path C = A\ + A2 in Figure 1.202(a) we get

This is a period of the function z = sn t.

Proof: The second rule (ii) above gives us I(Aj) = I(stfj] (Figure 1.202(b)). This yields

where we have set g(z) := (I — z2)(l — k2z2}.
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The topological structure of the Riemann surface
Following Riemann's example one should master proofs
through ideas and not through brutal computation.

David Hilbert (1862-1943)

We set e\ := —1/fc, 62 := —1, 63 := 1 and 64 := 1/k. Instead of two z-planes we
consider two Riemann spheres, cut these from e\ to 62 (resp. from 63 to 64), and glue
them diagonally. If we blow the resulting surface up like a balloon, we get a torus (Figure
1.203). The fundamental topological property of a torus £F is that on such a surface
there are two different types of closed curves, which cannot be continuously deformed to
a point. Such closed curves are, for example, the longitude L and an arbitrary meridian
M (Figure 1.203). From Example 2 we infer

I(M) = 4JC.

Moreover one has

These are precisely the two
periods 4/f and 1K'\ of the
function z = snt. If we de-
note by mM a curve which is
obtained by running m times
around M, then we have:

Figure 1.203. Glueing two spheres to obtain a torus.

Hence the elliptic integral / = has two additive periods, which are the two periods

of the inverse function z = snt. These considerations are true more generally:

The Riemann surface of the integrand of an elliptic integral always
has the topological structure of a torus, which is the reason that the
inverse function of this elliptic integral is an elliptic function (i.e., is a
doubly periodic function).

This elegant topological argu-
ment allowed Riemann to un-
derstand the behavior of arbi-
trary Abelian integrals with-
out any computation. The
corresponding Riemann sur-
faces are homeomorphic to a
sphere with g handles, where
g is the called the genus of
the Riemann surface. For ex-
ample a sphere with one han-
dle as in Figure 1.204 can be
turned into a torus by a cut

Figure 1.204- Riemann surfaces.

and paste procedure as above. Note that the torus corresponds to this construction in
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the case 5 = 1. In a similar manner, the following general result can be proved:

If the Riemann surface of the integrand has genus 5, then

the Abelian integral R(z, w)dz has 2g additive periods.

With these topological ideas, Riemann opened completely new perspectives in mathe-
matics. In the twentieth century, topology has triumphantly marched into the center of
mathematics and even plays also a central role in theoretical physics.

1.14.19.2 The general method of substitutions of Weierstrass

The considerations for the Legendre normal form for integrals of the first kind can be
generalized to arbitrary elliptic integrals

Here ai, 02, 0.3, 04 are four distinct complex numbers, and u = R(z,w) denotes a
rational function of the complex arguments z and w. The substitution

maps the point 04 to the point z = oo, and we get the elliptic integral

with a new rational function R. here ei, 62 and 63 are three distinct complex numbers.
This integral can be written in the form

together with the algebraic equation

The fact that a Weierstrass p-function with the periods uj\ and uj? belongs to this
equation is important. The p-function satisfies the differential equation

on C. We consider the path

in the complex t-plane and use the substitution
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This maps the curve C* to the curve
C and we get the decisive formula

This is an integral over a well-defined
elliptic function with the periods u>i
and u>2 in the t-plane (Figure 1.205).

Figure 1.205. Transformation of an elliptic
integral.

The Riemann surface: As in
1.14.19.1 the curve C is actually a curve on the Riemann surface & of the integrand,
and conversely, to every curve C on & there corresponds a curve C* in the i-plane. The
Riemann surface & is obtained as shown in Figure 1.203 with 64 = oo.

This construction for the
Riemann sphere corresponds
to the choice of two z-
planes, which are cut along
a segment from e\ to 62 and
half-line from 63 to oo. The
two edges are then glued
together cross-wise (Figure
1.206). One can find a trea-

Figure 1.206. Constructing the Riemann surface &.

sure of concrete methods for calculating elliptic integrals in the classical monograph
[226].

1.14.19.3 Applications

The length of an elliptic arc: Suppose we are given an ellipse

with the major and minor axi a, b and the numerical eccentricity e =
Then the length L of the elliptic arc between the point (a, 0) and the point (x, y) is
given by the elliptic integral

(Figure 1.207(a)). The values of this integral are tabulated in section 0.5.4.

The geometric relationship has led to the no-
tion of 'elliptic integral' for a more general
class of integrals.

The spherical pendulum: The motion
(p = (f>(t) of a spherical pendulum of length I
swinging under the influence of gravity leads
to the differential equation

Figure 1.207. The spherical pendulum.
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with uj2 = g/l and the acceleration of gravity g (Figure 1.207(b)). The solution is
obtained by solving the equation

for ip, where k := sin(^>o/2). The period of the pendulum is given by T = 4ajK(k).

More details can be found in section 5.1.2.

1.14.20 Singular differential equations

Consider the differential equation

We assume that there is a neighborhood U of the point a such that p and q have an
isolated singularity at the point z = a. The general solution in a neighborhood of z = a
can be written in the form

with complex constants C\ and C% and a positive real number r.

Case 1: The functions w\ and w-i have the form

with real coefficients Q\ and QI . Here ^fj denotes the Laurent series of Wj at the point
z = a.

Case 2: The function w\ is given by (1.495), while we have for w^:

Theorem: The two following statements are equivalent:

(i) The singularity z = a is a regular singular point, i.e., J2?i and ̂  are power series.

(ii) q has a pole of order at most two in a, and p has a pole of order at most one in a.

Construction of solutions in the case of regular singular points: The ansatz

leads in (1.494) to the quadratic equation

with the two solutions QI and Q^. The quantities A and B satisfy
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The equation (1.497) is called the index equation of the differential equation (1.494).

Case 1: The difference QI — QZ is a small number. Then one gets the solutions w\ and
w-2 by using the Ansatz (1.496) with Q = Q\, QI and comparing coefficients.

Case 2: The difference Q\ — 02 is an integer. Then we get w\ as in the first case, while
the second solution w^ is obtained through integration, applying the formula

Behavior at oo: By means of the substitution z = - the original differential equation

(1.494) leads in a neighborhood of the point z = oo to a differential equation in a
neighborhood of the point £ = 0, with can be studied with the previous methods.

In what follows we shall consider some important examples. A more detailed investi-
gation of large classes of special functions on the basis of singular differential equations
can be found in [229].

1.14.21 Applications to the Gaussian hypergeometric differen-
tial equation

Let a, f3 and 7 be complex numbers. The Gaussian hypergeometric differential equation

has precisely three regular singular points, located at the points 2 = 0, 1, oo.

We consider the point z = 0 and assume that 7 is not an integer. The index equation is
then

and has the two solutions g\ = 0 and 02 = 1 — 7- Equation (1.496), together with a
comparison of coefficients yield for QI = 0 the Gaussian hypergeometric function

This series converges for all z € C with \z\ < 1. Here we have set (a)k '•= a(a+l) • • • (a+
k — 1). For 02 — 1 — 7 we get in addition to w\(z) = F(z;a,(3,j) the second linearly
independent solution

of (1.498) in a neighborhood of the point z = 0.

Important special cases of the function w = .F(z;a,/3,7) are given in section 0.7.2.

1.14.22 Application to the Bessel differential equation

Let a be a complex number with Re a > 0. The Bessel differential equation
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Figure 1.208. Solutions of the Bessel differential equation.

has a regular singular point at z = 0 and a non-regular singular point at z = oo.

We consider the point z = 0. The index equation

02-a2 = 0

has the two solutions Q\ = a and £2 = —a. The general solution of (1.499) is

w = C\w\ + Ciw?..

Case 1: If a is not an integer, one gets the two linearly independent solutions wi = Ja

and u>2 = J-a, where the Bessel function Ja is defined by the formula

The power series converges for all z € C (see Figure 1.208(a)).

Case 2: If a = n with n = 0,1,2,. . . , then one has J-n(z) = (—l)nJn(z). Therefore
the functions J_n and Jn are linealy dependent. In this case one chooses w\ = Jn and
w-2 = Nn, where Nn is the Neumann function, defined by

More tscplicitly, this implies the formula:

with the Euler constant C = 0.5772... and Hk as well as HQ := 0 (Figure

1.208(b)). The power series converges for all z 6 C.
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More formulas for the Hankel function, Bessel function with imaginary argument and
the MacDonald function can be found in section 0.7.2.

Application to an eigenvalue problem: Let D := {(x,y) e R2 | x2 +y2 < 1} be the
open unit disc. The eigenvalue problem

has the eigensolutions

with A; = 0,1,... and m = 1,2,... as well as x = r cosy?, y — r sirup. We denote the
zeros of the Bessel function «/& by 0 < AA^ < Afc2 < • • • . The functions {vkm} form a
complete orthonormal system in the Hilbert space Lz(D) with the scalar product

(cf. 1.13.2.13).

Application to the vibration of a spanned membrane: Let u(x, y, t) be the dis-
placement of a membrane at the point (x, y) at time t. The vibration problem is

-jutt — uxx - uyy = 0, (x, y) e D, t > 0,

u = Q ondD, (boundary value), (1.501)

u(x,y,0) = uo(x,y),ut(x,y,Q} = ui(x,y], (initial value).

We set c = 1.

Theorem: If the prescribed continuous functions UQ,UI : D —> R are smooth, then
the boundary-initial value problem (1.501) has the unique solution

with

This solution is obtained by utilizing the Fourier method, taking (1.500) into account.

1.14.23 Functions of several complex variables

The theory of functions of several complex variables is in elementary aspects similar
to the corresponding theory of a function of one variable. More complicated questions,
however, for example those depending on the existence of domains of holomorphy, are
completely different. The modern theory is dominated by the abstract theory of sheaves.
This circle of questions will be considered in [212].
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The space Cn as a metric space: Let Cn denote the set of all n-tuples (z\,..., zn)
of complex numbers z\,...,zn. We set

By defining the distance of complex numbers by

the set Cn acquires the structure of a metric space. Hence all the general notions for
metric spaces (cf. 1.3.2) can be applied to Cn.

The notion of holomorphy for functions of several variables is reduced to the notion
of holomorphy of functions of a single complex variables by means of the following
definition.

Holomorphic functions: Let U be an open subset of C". A function

is said to he holomorphic on [/, if it is holomorphic with respect to all of its variables
_ 191zi-

Example 1: The function w = eZl+Z2 is holomorphic on C2. Indeed, if we keep z\ (resp.
22) fixed, then we get a holomorphic function on C with respect to 22 (resp. z\).

Power series: Let a, b and a,km denote complex numbers. The series

converges by definition at the point z = (zi, z-z), if the series of absolute values

converges. In (1.502) the order of the terms is irrelevant.

Similarly one defines power series of n variables z\,..., zn.

Analyticity: According to definition the function / : U C Cn —* C is analytic on
the open set U if and only if for every point in U there is a neighborhood in which the
function / can be represented by a convergent power series.

Theorem: A function / : U C C" —> C is holomorphic on an open set U if and only
if it is analytic there.

The Weierstrass preparation theorem: This fundamental result allows the appli-
cation of the algebraic methods of ideal theory to the theory of several complex variables.
This theory of ideals is found in section 3.8.7.

Domains of holomorphy: A domain D in Cn is called a domain of holomorphy,
if there is a (!) holomorphic function / : D —> C which cannot be extended to a
holomorphic function on any larger domain.

191 Let p be an arbitrary point of U. We consider the function

9(%) :=/ (z ,P2,- . . ,Pn)

and require that g is holomorphic in a neighborhood of z = p\. In a similar way one defines the
holomorphicity with respect to the other variables Zj.
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Example 2: Cn is trivially a domain of holomorphy, as there are holomorphic functions
on Cn (for example f ( z ) := z\ + 1- zn). The question of extension of the function is
vacant in this case.

Example 3: The function

has the interior of the unit disc in the complex plane as a domain of holomorphy.

Theorem: (i) For n = I every domain in the complex plane C is a domain of holomor-
Phy.
(ii) For n > 2 not every domain in Cn is a domain of holomorphy.

(iii) Convex domains in Cn are domains of holomorphy.

Example 4- We consider the annulus

Then every holomorphic function / : A —> C can be extended to a holomorphic function
on{zeC2 : |z |<l}. This means that A is not a domain of holomorphy.

Pseudoconvex domains: Let D be a domain in Cn with at least one boundary point.
We set

d(z, 3D] :— the distance of the point z to the boundary dD

According to definition the domain D is pseudoconvex, if the function

g(z) := -\nd(z,dD)

is subharmonic on £>, i.e., to every point z € D there is a number TQ > 0 such that the
mean value inequality

is satisfied for all radii r with 0 < r < ro.192

We also agree that Cn is pseudoconvex by definition.

Main theorem of Oka (1942): Let n > 2. A domain in Cn is a domain of holomorphy
if and only if it is pseudoconvex.

Example 6: The annulus in Example 4 is not a domain of holomorphy and hence is also
not pseudoconvex.

192We write z + relf for (21 + re^,..., zn + re1*).
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2. Algebra

Algebra is the study of the four basic arithmetic operations - ad-
dition, subtraction, multiplication and division - and the solution
of equations which arise in this quest. Such a theory is possible
because the objects on which these operations act can all be left
indefinite to a great extent.

In the early days of algebra, the symbols which were used instead
of actual numbers were just viewed as not determined numbers.
That is, the quantity which each symbol represented was left in-
definite, while the quality of the object it represented in algebraic
calculations was fixed.

It is typical of modern algebra, which has been developed in the
last century, and in particular typical of what is now known as
'abstract algebra', that even the quality of the symbols used can be
left indeterminate, leading to a genuine theory of the operations.

Erich Kahler (1953)

A important prerequisite for the development of algebraic thinking was the transition
from the calculation with numbers to the use of letters representing indefinite quantities.
This revolution in mathematics was carried out by the Frenchman Frangois Viete (Vieta)
in the second half of the sixteenth century.

The modern structural theory of algebra has its origin in lectures of Emmy Noether
(1882-1935) in Gottingen and Emil Artin (1898-1962) in Hamburg in the twenties of
the twentieth century and was presented in a monograph for the first time in the book
Modern Algebra by Bartel Leendert van der Waerden which appeared in 1930. Since then
this book has been published in many editions and is still today a readable standard
reference for modern algebra.

However, the basis for this work was laid in the nineteenth century. Important impulses
were given by Gauss (cyclotomic fields), Abel (algebraic functions), Galois (group theory
and algebraic equations), Riemann (genus and divisors of algebraic functions), Kummer
and Dedekind (ideal theory), Kronecker (number fields), Jordan (group theory) and
Hilbert (number fields and invariant theory).

2.1 Elementary algebra

2.1.1 Combinatorics

Combinatorics is the study of the number of ways one can combine a certain number of
elements. Here the symbol

n! := 1 - 2 - 3 - . . . • n, 0! := 1, n = l ,2, . . .
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is used, which is read 'n factorial', as are the binomial coefficients1

Example 1: 3! = 1 • 2 • 3 = 6, 4! = 1 • 2 • 3 • 4 = 24,

Binomial coefficients and the binomial formula: This is described in section
0.1.10.3.

Factorial and the gamma function: This is described in section 1.14.6.

Basic problems in combinatorics: These are:2

(i) permutations,

(ii) permutations with repetitions (also known as the book problem),

(iii) combinations without repetitions

(a) without taking order into consideration (the lottery problem),

(b) taking the order into consideration (the modified lottery problem),

(iv) combinations with repetitions

(a) without taking order into account (the modified word problem),

(b) taking order into account (the word problem).

Permutations: There are exactly

different possibilities to combine n different elements. Such a combination of the elements
is referred to as a permutation.

Example 2: For the numbers 1 and 2 there are 2! = 2 • 1 possible combinations, namely

12, 21.

For the three numbers 1,2,3 there are 3! = 1 • 2 • 3 possible combinations, namely

123, 213, 312,
132, 231, 321.

The book problem: Let n books be given, not necessarily different, of which there
are mi,..., ms copies (i.e., s of the books are distinct). Then there are

different possibilities to order these books in a row, where the different copies of each
book are not distinguished from one another.

Example 3: For three books, two of which are the same, there are

1This definition is valid for real or complex numbers n and for k = 0,1,.. .
2 Combinatorics which take the order of the elements into account are also called variations.

(2.2)
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possible ways to order them in a row. One obtains these different orderings by replacing
the number 2 by 1 in (2.2) and eliminating combinations which are identical to already
existing ones. This gives the three possibilities

113, 311, 131.

The word problem: Starting from A; letters, one can form exactly

different words of the length n.

If one defines two words to be equivalent if they differ only by a permutation of the
letters, then the number of classes of equivalent words is equal to

(modified word problem).

Example 4: From the two symbols 0 and 1 one can form 22 = 4 words of length four,
namely

00, 01, 10, 11.

The number A of the classes of equivalent words is with n — k = 2, that

is A Representatives of these classes are

00, 01, 11.

Moreover there are 23 = 8 words of length 3:

000, 001, 010, Oil,
100, 101, 110, 111.

The number of classes of equivalent words is with n = 3 and k = 2,

As representatives of these classes we can take

000, 001, Oil, 111.

The lottery problem: There are

possible ways of choosing k numbers from n without taking the order of the chosen
numbers into account.
If one does take the order into account, then there are
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possibilities.

Example 5: In the German game "6 from 49" (one chooses 6 numbers from a field of
49) one would have to fill out exactly

lottery tickets, in order to have a sure bet.

Example 6: There are possibilities to choose two numbers from the set 1,2,3

without taking the order of the chosen two into account. These are

12, 13, 23.

If one does take the order into account, there are 6 possibilities:

12, 21, 13, 31, 23, 32.

The sign of a permutation: Let the n numbers 1,2, ...,n be given. The natural
order 12 • • • n is by definition an even permutation. A permutation of the n numbers
is called even (resp. odd), if it results from the natural order by an even (resp. odd)
number of transpositions of two elements.3 By definition, the sign of a permutation <r,
written sgncr, is +1 if the permutation is even and —1 if it is odd.

Example 7: The permutation 12 of the numbers 1,2 is even and 21 is odd.

For permutations of the three elements 1,2,3 one has:

(i) the even permutations are the permutations 123, 312, 231;

(ii) the odd permutations are the permutations 213. 132, 321.

The drawer principle of Dirichlet: Sorting more than n objects into n drawers
results in at least one of the drawers containing more than one object.

This simple principle due to Dirichlet (1805-1859) has been applied successfully in num-
ber theory.

2.1.2 Determinants

Basic idea: A two-rowed determinant is calculated by means of the formula

The calculation of three-rowed determinants is done by using the conceptually clear
development rule, developing the determinant by the first row

which reduces the calculation to that of two-rowed determinants. This rule is gotten
-by striking certain rows or columns from the three-by-three determinant: for example

3A transposition is the permutation which just switches two of the elements and leaves the others
unchanged. The definition of even and odd just given in independent of the choice of transposition used
to arrive at the given permutation from the natural order.
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the determinant next to the a in the formula is gotten by striking the row and column
of a. In a similar manner, the calculation of higher determinants are reduced to the
calculation of smaller ones by a general rule for developing determinants. The general
rule is given by the Laplacian rule for developing determinants, see (2.6).

Example 1: Let

and

Definition: The determinant

is the number

Here the summation is carried out over all permutations mim? • • -mn of the numbers
1,2,..., n, where sgn-zr denotes the sign of the corresponding permutation.

All ajk are real or complex numbers.

Example 2: For n = 2 we have the even permutation 12 and the odd permutation 21.
Therefore we have

D = anC22 - 012021-

This coincides with the formula (2.3).

Properties of determinants:

(i) A determinant is unchanged when one permutes a row with a column.

(ii) A determinant changes its sign if two rows or two columns are permuted with each
other (i.e., if they are transposed}.

(iii) A determinant vanishes if there are two equal rows or two equal columns.

(iv) A determinant is left unchanged upon adding a multiple of one row to another
row.

(v) A determinant is unchanged when one adds a multiple of a column to another
column.

(vi) A determinant is multiplied by a number by multiplying a fixed row or column of
the determinant by this number.
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Example 3:

Triangular form: If in (2.5) all elements underneath (resp. above) the main diagonal
(from upper left to lower right) vanish, then one has

D = Ona22 ' • -Q"nn-

Example 4-'

An important strategy for calculating large determinants is to apply the operations (ii)
and (iii) in order to bring the determinant into a triangular form and then apply the
above formula. This can always be done.

Example 5: For A = — 2 one has

Laplacian rule for the development of determinants: For the determinant D in
(2.5) one has:

The notations are as follows, k is some fixed row number4. Ajk denotes the so-called
adjoint to the element djk, which means it is the determinant which is obtained by
striking the kth row and the jth column from (2.5) and multiplying by (—1)J+A:.

Example 6: The formula (2.4) is a special case of this formula.

Multiplication of two determinants: If A — (o^) and B = (bjk) are two square
matrices (dealt with in section 2.1.3 below) with n rows and columns, then one has

Here det A denotes the determinant of A (i.e., det A = D in (2.5)), and AB denotes the
product of the two matrices (see section 2.1.3 below). Moreover, one has

4 A similar statement also holds for columns instead of rows.
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where AJ denotes the transpose of A (again, this is defined in section 2.1.3).

Differentiation of a determinant: If the elements of a determinant depend on a vari-
able t, then one obtains the derivative D'(t) of the determinant D(t) by differentiating
each row with respect to t, leading to n new determinants, and then adding all of these
n determinants together.
Example 7: For the derivative of

one gets

Rule of multiplication of functional determinants: One has

denotes the determinant of the first partial derivatives dfj/duk (cf.Here

The Vandermonde determinant:

More generally, the determinant

is equal to the difference product

2.1.3 Matrices

Definition: A matrix A of type (m, n) is a rectangular scheme of numbers

with m rows and n columns. Here the elements djk can be real or complex numbers.5

A square matrix is a matrix A for which m = n.
5The matrix A is said to be real, if all a,jk are real. Another notation for a matrix of type (m, n) is

a (TO x n)-matrix.
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The set of all matrices of type (m, n) is denoted Mat(m, n).

Goal: We would like to define algebraic operations like addition and multiplication
for matrices. These operations will no longer possess all the familiar properties which
we are accustomed to from the real or complex numbers. For instance, for the matrix
multiplication the rule AB = BA does not in general hold, in contrast to the case
of commutative multiplication of the real or complex numbers. Algebraically, we are
observing here the fact that the set of matrices form a (non-commutative) ring instead
of a field. These algebraic notions are defined in section 2.5 below.

Addition of two matrices: If A and B both belong to Mat(m, n), then we define the
sum matrix A + B by forming the matrix whose elements are the sums of the elements
of A with those of B. This matrix again belongs to Mat(m, n).

Example 1:

Multiplication of a matrix by a number (scalar multiplication): Let A G
Mat(m, n) and let a be a (real or complex) number. We define the product aA, the
product of A by the scalar a, by multiplying every element of the matrix A by the
number a. This matrix again belongs to Mat(m, n).

Example 2:

The zero matrix: The (m x n)-matrix

all of whose elements are 0, is called the zero matrix.

Rules for calculations: For A, B, C £ Mat(m, n) and a € C, one has:

More precisely, the set Mat(m, n) forms a linear space over the field of complex numbers
(cf. 2.3.2).
Multiplication of two matrices: The basic idea of matrix multiplication is contained
in the formula

Example 3: One has (1,3) 1 - 2 + 3 - 4 = 2 + 12 = 14.



Altogether we then have

Moreover one gets

This is because we have
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The natural generalization of formula (2.7) is

The product of a matrix A e Mat(m,n) with a matrix B e Mat(n, 1} is a matrix
C = AB £ Mat(m, Z), whose elements Cjk are defined by the following rule:

If we denote the elements of A (resp. of B} by a., (resp. by 6..), then this formula is

Example 4-' Let

The product matrix C := AB is written as

Then one has:

c\\ — the first row of A times the first column of B = (1,2) 1 - 2 + 2-4 = 10,

1-1 + 2 - 1 = 3,

3 - 2 + 4 - 4 = 22,

3 -1 + 4 - 1 = 7.

012 = the first row of A times the second column of B = (1,2)

C2i = the second row of A times the first column of B = (3,4)

022 = the second row of A times the second column of B = (3,4)
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The matrix product AB exists if and only if A and B fit, i.e., the number of
columns of A is equal to the number of rows of B.

Identity matrix: The quadratic (3 x 3)-matrix

is called the (3 x 3)-identity matrix.6 Similarly, the (n x n)-identity matrix is denned as
the matrix with 1's in the main diagonal and zeros everywhere else.

Calculations with square matrices: Let A, B, C £ Mat(n, n), and let E denote
the (n x n)-identity matrix and O the (n x n)-zero matrix. Then one has:

A(BC) = (AB)C, A(B + C}=AB + AC,
AE = EA = A, AO = OA = O, A + O = A.

More precisely, the set Mat(n, n) forms a (non-commutative) ring and in addition an
algebra of the field of complex numbers (cf. 2.4.1 and 2.5.2).

Non-conimutativity of the product of matrices: For A, B 6 Mat(n, n) with n > 2,
it in general does not hold that AB — BA (this is the non-commutativity just referred
to).

Example 5: One has

Zero divisors for the matrix product: If AB = O for two matrices A and B, then
this does not necessarily imply that A = O or B = O. Let A, B € Mat(n, n). If AB = O
for A ^ O and B ^ O, then one calls the matrices A and B zero divisors in the ring
Mat(n, n).

Example 6: For

one has A ^ O but A A — O. Indeed, one has

Inverse matrices: Let A E Mat(n,n). An inverse matrix of a given matrix A is by
definition a matrix B e Mat(n, n) for which

AB = BA = E,

where E is the (n x n)-identity matrix. A matrix B of this kind exists if and only if
detA ^ 0, i.e., when the determinant of A is non-vanishing. In this case B is uniquely
determined and is denoted by A"1. Hence, in case detA 7^ 0, we have

AA-1 = A'1 A = E.

6This name comes from the fact that this matrix is the identity element in the ring of matrices.

but



2.1. Elementary algebra 609

Example 7: The matrix A 1 inverse to the matrix

exists if and only if det A ^ 0, i.e., when ad — bc^ 0. In this case the inverse is given by

Indeed, a calculation shows that

Theorem: For an arbitrary (n x n)-matrix A with det A / 0 one has

Here (.A 1)jfc denotes the element of A 1 in the jth row and kth column. Moreover A^j
is the adjoint to 0^., in the determinant of A (cf. 2.1.2).

The group GL(n, C): A matrix A £ Mat(n, n) is said to be regular (or invertible), if
det A 7^ 0, so that the inverse matrix A~: exists. The set of all regular (n x n)-matrices
is denoted by GL(n, C).

More precisely, the set GL(n, C) forms a group (cf. 2.5.1), which one calls the (complex)
general linear group (hence the notation).7

Applications to systems of equations: See 2.1.4 for this.
Transposed and adjoint matrices: Let a real or complex (m x n)-matrix A = (a,jk)
be given. The transposed matrix AT of A results by exchanging the rows and columns
of A. If one in addition takes the complex conjugate entries, one gets the adjoint matrix
A* to A.

If one denotes the elements of AJ (resp. A*) by ajfe (resp. by a*jk), then one has:

alj '•= ajk, <4j := oJJb fc = 1,..., n, j = 1,.. . , m.

Hence AT and A* are (n x m)-matrices.

Example 8:

For all real or complex numbers a and ft one has:

7Similarly, the set GL(n, R) of all real regular (n x n)-matrices forms the so-called real general linear
group. Both GL(n, C) and GL(n, R) are very important examples of Lie groups and will be investigated
in more detail in [212] in connection with applications to elementary particle physics.
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Here we are assuming that the matrices A and B have the same number of rows and
columns and that the matrix product CD exists (recall that this requires that C and
D fit). Moreover it is assumed that the inverse matrix Q~[ of Q exists (recall that this
requires that detQ 7^ 0); in this case the inverse matrices to QJ and Q* also exist.
The matrix (Q"1)7 is called the contragredient matrix to Q.
The trace of a matrix: The trace of a (n x n)-matrix A = (ajfc), denoted tr A, is the
sum of the diagonal elements of A, i.e.,

Example 9:

For all complex numbers a, (3 and all (n x n)-matrices A, B, one has:

Example 10: If the (nxn)-matrix C is invertible, then one has the relation tr (C 1AC] =
tr^CC-1) =t rA

2.1.4 Systems of linear equations

Basic ideas: Linear systems of equations can be solvable or not. In case they are
solvable, the solution is unique or there is a whole family of solutions which depend on
infinitely many parameters.
Example 1 (solutions depending on parameters): In order to solve the linear system of
equations

3xi + 3x2 + 3x3 = 6,
2xi + 4x2 + 4x3 = 8 ( }

in the real numbers, we multiply the first row by —2/3. This yields the modified first
row

-2xi - 2x2 ~ 2x3 = -4.

This expression is now added to the second row of (2.9). Thus from (2.9) we get the
new system of equations

3xi + 3x2 + 3xs = 6,
2z2 + 2z3 = 4. (2A())

From the second equation of (2.10) it follows that X2 = 2—x3. If we insert this expression
into the first equation in (2.10), we get Xi = 2 — X2 — x3 = 0. The general solution of
(2.9) in real numbers then takes the form8

z i=0 , z2 = 2-p, x3=p. (2.11)

Here p is a real number.
8These considerations establish that any solution of (2.9) must have the form (2.11). By inverting

the reasoning, it is seen that (2.11) is indeed a solution of (2.9).

(2.9)

(2.10)
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If one chooses p to be an arbitrary complex number, then (2.11) is the general solution
of (2.9) in complex numbers.

Example 2 (unique solution): If we apply the same method as used in the first example
to the system

3xi + 3x2 = 6,
2xi + 4x2 = 8

then we get
3xi + 3x2 = 6,

2x2 = 4

with the unique solution X2 = 2, xi = 0.

Example 3 (no solution): Suppose the system

3xi + 3x2 + Sxa = 6, (2.12)
2xi + 2x2 + 2x3 = 8

had a solution xi, X2, xa. Applying the method of Example 1 leads to the contradiction

3xi + 3x2 + 3x3 = 6,
0 = 4.

Consequently, (2.12) has no solutions at all.

Solutions of linear systems of equations with Mathematica: This software package
is able to find the general solution9 of arbitrary linear systems of equations.

2.1.4.1 The general solution of a system of linear equations

A real linear system of equations has the form

011X1+012X2 + . . . + oinxn = &i,
a2lXi + 022^2 + • • • + dinXn = &2,

OmiXi + am2X2 + . - - + amnxn — bm.

Let the real numbers djk, bj be given. We are looking for the real numbers xi , . . . , xn

which solve (2.13). This corresponds to the solutions of the matrix equation

In more detail, this equation is:

Definition: The system (2.13) is called homogenous, if all the coefficients bj of the
right-hand side vanish, otherwise (2.13) is said to be inhomogenous. A homogenous
system always has at least the trivial solution x i = X 2 = - - - = x n =0 .

9The general solution of a linear system of equations is explained in the next section.

(2.13)
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Superposition principle: If one knows a particular solution xpart of the inhomogenous
system (2.14), then one gets the set of all solutions of (2.14) by setting

where y is an arbitrary solution of the homogenous system Ay = 0. In sum:

the general solution of the inhomogenous system
= the special solution of the inhomogenous system
+ the general solution of the homogenous system.

This principle is valid for all linear problems in mathematics (for example, for linear
differential or integral equations).

2.1.4.2 The Gaussian algorithm

The Gaussian algorithm is a universal method to find the general solution of (2.13) or to
determine the non-solvability of (2.13). It is just a natural generalization of the method
used in (2.9) to (2.12).

Triangular form: The idea of the Gaussian algorithm is to bring the initial system of
equations (2.13) into the following equivalent form:

Here y^ = x/c for all k or y\,..., yn can be obtained from x\,..., xn by a renumbering
(permutation of the indices). Moreover one has

The system (2.15) is obtained as follows.

(i) Suppose at least one of the a^ is not zero. After a permutation of the rows or
columns we may then assume that an ^ 0.

(ii) We multiply the first row of (2.13) with —ctfci/an and adding this row to the kth

row for k = 2 , . . . , m. This yields a system of equations whose first and second
row are of the form as in (2.15) with an ^ 0.

(iii) We apply the same procedure to rows 2 to m of the new system (iteration of the
first two steps), etc.

Calculation of the solutions: The solution of (2.15) is easily written down. This in
turn yields a solution to the intitial system of equations (2.13).

Case 1: We have r < m, and not all of /3r+i, /3r+2i • • • > @m are zero. Then the equations
(2.15), hence also (2.13), have no solutions.
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Case 2: One has r = m. From arr ^ 0 we can solve the rth equation in (2.15) for
yr, where we view yr+\, • • • ,2/n &s parameters. Then we use the (r — l)s* equation to
calculate yr-\. Similarly we obtain the solutions for yr_2, • • • ,yi-
This shows that the general solution of (2.15) and (2.13) depends on n—r real parameters.

Case 3: One has r < m and /?r+i = ... = flm = 0. In this case we proceed as in
case 2 and get the general solution of (2.15) and (2.13), which depends on n — r real
parameters.
The number r is equal to the rank of the matrix A (cf. 2.1.4.5).

2.1.4.3 Cramer's rule:

Theorem: Let n = m and det.A / 0. Then the linear system of equations (2.13) has
the unique solution

Explicitly this means:

Here the determinant (det A)j is determined as the determinant of the matrix which
results from A upon replacing the jth column by b. One calls this formula Cramer's
rule.

Example: The linear system of equations

an^i +012^2 = h,
0-21X1 + 0,22X2 = &2

has in case 011022 — 012021 ^ 0 the following unique solution:

2.1.4.4 The Fredholm alternative

Theorem: The linear system of equations Ax = b has a solution x if and only if

for all solutions y of the homogenous dual equation A^y = 0.
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2.1.4.5 The criterion on the rank

Linearly independent row-matrices: Let m row-matrices10yli,..., Am of length n
with real entries be given. If the equation

aiAi + ... + amAm = 0

is satisfied for real numbers ay only if a\ — a2 • • • = am = 0, then one says AI, ..., Am

are linear independent. Otherwise they are said to be linearly dependent.

A similar definition holds for column-matrices (i.e., (n x l)-matrices).

Example 1: (i) Linear independence. For A\ := (1,0) and A2 := (0,1) it follows from

a:Ai + a2A2 = 0

that ((21,0:2) = (0,0), hence that a\ = a2 = 0. This means that A\ and A2 are linearly
independent.

(ii) Linear dependence. For AI := (1,1) and A? := (2,2) one has

2Ai -Az = (2 ,2)-(2,2) = 0,

i.e., A\ and A? are linearly dependent.

Definition: The rank of a matrix A is equal to the maximal number of linearly inde-
pendent columns (i.e., column-matrices which make up columns of A).

Each determinant which is obtained from the matrix A by striking a certain number of
rows and/or columns is called a subdeterminant of (the determinant of) A.

Theorem: (i) The rank of a matrix is equal to the maximal number of linear indepen-
dent rows, in other words, one has rank(^4) = rank(AT).

(ii) The rank of matrix is equal to the maximal size of a non-vanishing subdeterminant.

The rank theorem: A linear system of equations Ax = b has a solution if and only if
the rank of the coefficient matrix A is equal to the rank of the extended matrix (A, b)
(this is a (m x (n + l))-matrix). In this case the general solution depends on n — r
real parameters, where n is the number of indeterminants and r denotes the rank of the
matrix A.

Example 2: We consider the system of equations

Xl + x2 = 2,
2o:i+ 2*2 = 4.

Then we have

(i) Linear dependence of the rows. The second row of A is equal to twice the first row,
i.e.,

2(1,1)-(2,2) = 0.

Hence the first and second row of A are linearly dependent. Consequently r = rank(A) =
1. Similarly one finds rank(A, b) = 1. On the other hand n — r = 2 — 1 = 1.

Therefore the system of equations (2.17) has a solution, which depends on a real param-
eter.

10These are (1 x n)-matrices.

(2.17)



2.1. Elementary algebra 615

This result is also easy to verify directly. Since the second equation in (2.17) is just
twice the first equation, one may omit the second equation. The first equation in (2.17)
has the general solution

xi = 2 - p, x2 = p,

with the real parameter p.

(ii) Determinant criterion. Because of

the subdeterminants of A and of (A,6) of size 2 vanish. However, there are non-vanishing
subdeterminants of size 1. Hence we have rank(j4) = rank(A, fe) = 1.

Algorithms for determining the rank: We consider the matrix

If all a,jk vanish, then we have rank(A) = 0.

In all other cases we can by permuting rows and/or columns and by adding multiples of
rows to other rows achieve a triangular form

where all Q.JJ are non-vanishing. Then we have rank(.A) = r.

Example 3: Let the matrix

be given. We subtract twice the first row from the second row, and get

i.e., rank(^4) = 2.

Complex systems of equations: If the coefficients a,jk and bj of the linear system
of equations (2.13) are complex numbers, then we seek complex numbers x i , . . . , xn as
solutions. All statements made about linear systems of equations still hold in this case.
In the definition of linear independence one must allow ai , . . . , afc to be complex also.

2.1.5 Calculations with polynomials

A polynomial of degree n with real (resp. complex) coefficients is an expression
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where ao , . . . ,a n are real (resp. complex) numbers with11 an ^ 0.

Equality: By definition

aQ + a\x + ... + anx
n = &o + b\x + . . . + bmxm

if and only if n = m and a., = bj for all j (i.e., the polynomials have the same degree
and the same coefficients).

Addition and multiplication: One uses the natural rules (1.1.4) to calculate these
operations, collecting terms of like degree.

Example 1: (x2 + 1) + (2z3 + 4z2 + 3x + 2) = 2x3 + 5x2 + 3x + 3,
(x + l)(z2 - 2x + 2) = x3 - 2x2 + 2x + x2 - 2x + 2 = x3 - x2 + 2.

Division: Instead of 7 -r- 2 = 3 with remainder 1 one can also write 7 = 2 • 3 + 1 or
7 1
- = 3 H—. One does the same in the case of polynomials.

Let N(x) and D(x) be polynomials, where we assume that the degree of D(x) is at least
one. Then there are uniquely determined polynomials Q(x) and R(x) such that

where the degree of the remainder polynomial R(x) is strictly less than the degree of
the denominator D(x). Instead of (2.19) we also write

One calls N(x] the numerator and Q(x) the quotient of the two.

Example 2 (division without remainder): For N(x) := x2 — 1 and D(x) := x — 1 (2.19) is
satisfied with Q(x) = x + 1 and R(x) = 0. Indeed, x2 — 1 = (x — l)(x + 1). This means

Example 3 (division with remainder): One has

To obtain the corresponding decomposition

11 In a rigorous formal development of mathematics (2.18) is an abstract expression, which can be
associated to complex numbers, if one substitutes fixed complex numbers in ao , . . . , an, x. One also says
in this case that OQ, . . . ,an,x are occupied by complex numbers.
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with the remainder polynomial R(x) = —2x — 5, we use the following scheme:

(division: 3z4 -f- x2 = | 3x2 |)

(multiplication: (x2 -2x + 3)| 3x2 [)

(subtraction + division: — 4x3 -j- x2 = | —4x |)

(multiplication: (x2 — 1x + 3) (—4x) )

(subtraction + division: 5x2 -j-a;2 = [s])

(multiplication: (x2 — 2x + 3)[5|)

(subtraction).

This method is summarized in the statement: divide the terms of highest order, multiply
back, subtract, divide the resulting terms of highest order, etc. This method comes to
an end when the terms of highest order can no longer be divided.

Example 4: The decomposition

x3 -I = (x-l)(x2 + Z + 1)

follows from the scheme:
x3 -1
x3 -x2

x2 -1
X2 — X

x -I.

The greatest common divisor (gcd) of two polynomials (the Euclidean algo-
rithm): Let N(x) and D(x) be polynomials of degrees at least one. Similarly as in
(2.19) we form the division chain with remainder

N(x} = D(x)Q(x} + Ri(x),
D(x) = Ri(x)Qi(x) + R2(x),

Ri(x) = R2(x)Q2(x) + R3(x), etc.

Prom the relation deg (Rj+i) < deg (Rj) we get, after finitely many steps, at some point
a vanishing remainder polynomial, i.e., we have

Rm(x) = Rm+i(x}Qm+i(x}.

Then Rm+-i(x) is the greatest common divisor of N(x) and D(x).

Example 5: For N(x) := x3 — 1 and D(x) := x2 — 1 we get:

x3 - 1 = (x2 - l)x + x - 1,
x2 -l = (a;-l)(x + l).

Hence x — I is the greatest common divisor of x3 — 1 and x2 — I.

3x4 -10x3 +22z2 -24x +10

3x4 - 6x3 + 9x2

- 4x3 +13x2 -24cc +10

- 4x3 + 8or2 -12a;

5a;2 -12x +10

5x2 -IQg +15

- 2x - 5
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2.1.6 The fundamental theorem of algebra according to Gauss

Fundamental theorem: Every polynomial of nth degree, p(x) :— ao + a\x-\ \-anx
n

with complex coefficients and an ^ 0 has the product representation

The complex numbers x\,..., xn are unique up to order.

This famous theorem of Gauss was proved in his dissertation in 1799. However this
proof still had a gap. A very elegant function-theoretic proof has been given in section
1.14.9.

Zeros: The equation

has exactly the solutions x = x\,... ,xn. The numbers Xj are called the zeros of p(x).
If a number Xj occurs in the decomposition (2.21) exactly m times, then one refers to
m as the multiplicity of the zero Xj.

Theorem: If the coefficients of p(x] are real, then for every complex zero Xj, also the
conjugate complex number Xj is a zero, and these two zeros have the same multiplicity.

Example 1: (i) For p(x) := x2 — I one has the decomposition p(x] = (x — l ) ( x + 1).
Hence p(x) has the simple zeros x — 1 and x = — 1.

(ii) For p(x) = x2 + 1 one has the decomposition p(x) — (x — i)(x + i). Hence p(x) has
the simple zeros x = i and x = —i. Note that these are conjugates.

(iii) The polynomial p(x) := (x — l)3(x + l)4(x — 2) has a triple zero (i.e., a zero of
multiplicity 3) at x = 1, a quadruple zero at x = — I and a simple zero at x = 2.

Calculating zeros with the division algorithm: If we know a zero x\ of the poly-
nomial p ( x ) , then we can divide the factor (x — xi) into p(x) with vanishing remainder,
i.e., one has

p(x) = (x-xi)q(x).

The other zeros of p(x) are then equal to the zeros of q(x). In this manner one can reduce
the problem of determining the zeros of a polynomial to a problem of lower degree.

Example 2: Letp(x) := x3 — 4x2 + 5x — 2. Obviously :TI := 1 is a zero of p(x). Performing
division according to (2.19) yields

p(x) = (x - l)q(x) with q(x) := x2 - 3x + 2.

The zeros of the quadratic equation q(x) = 0 can be solved with the help of 2.1.6.1. But
in the case at hand one sees easily that x^ = 1 is again a zero of q(x), hence performing
division once again, we get

q(x) = (x-l)(x-2).

Hence we havep(x) = (x — l)2(x — 2), i.e., p(x) has the double zero x = 1 and the simple
zero x = 2.

Numerical calculation of zeros with Mathematica: This software package is able
to calculate the zeros of a given degree n polynomial to an arbitrary degree of precision.

Explicit formulas for solutions: For equations of nth degree with n — 2,3,4, one
knows since the sixteenth century formulas for calculating the zeros, yielding formulas
with roots (cf. 2.1.6.1 ff.). For n > 5 formulas of this kind no longer exist (Theorem of
Abel, 1825) The general instrument for investigating the solvability of algebraic equa-
tions is Galois theory (cf. 2.6).
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2.1.6.1 Quadratic equations:

The equation

with complex coefficients p and q has the two solutions

Here D := p2 — q is the so-called discriminant. Moreover we denote by ^/D a fixed root,
i.e., a fixed solution of the equation y2 = D. One always has the relations

—2p = #1 + #2, q = x\X2, 4D = (xi — x?)2 (theorem of Vieta).

This follows from the decomposition (x — xi)(x — x-z) = x2 + 2px + q. The theorem of
Vieta can be used as a check for pre-determined zeros.

The behavior of the solutions in (2.22) for real coefficients is listed in Table 2.1.

Table 2.1: Quadratic equations with real coefficients.
D > 0 two real zeros

D = 0 one double real zero

D < 0 two conjugate complex zeros.

Example: The equation x2 — 2x — 3 = 0 has the discriminant D = 4 and the two solutions
x\£ = 1 ± 2, that is x\ = 3 and #2 = —!•

2.1.6.2 Cubic equations

Normal forms: The general cubic equation

x3 + ax2 + bx + c = 0 (2.23)

with complex coefficients a, b and c can be transformed by means of the substitution
a,

y = x -\— into the normal form
o

Here one has the relations

The quantity D :— p3 + q2 is called the discriminant of (2.24). Table 2.2 describes the
behavior of the solutions of (2.24), hence also of (2.23), in the case that the coefficients
are real.

Table 2.2: Cubic equations with real coefficients.
D > 0 one real and two conjugate complex zeros

D < 0 three distinct real zeros

D — 0, g ^ O two real zeros, one of which is double

D = 0, q = 0 one triple real zero.
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The formulas of Cardano: The solutions of (2.24) are

Here one has

For a real discriminant D > 0 the two roots u± are uniquely determined. In general one
must determine the two complex third roots u± in such a way that u+U- = —p.

Example 1: For the cubic equation

y3 + 9y - 26 = 0

we get p = 3, q = -13, D = p3 + q2 = 196. According to (2.25) we have

u± = $13 ±14, u+ =3, u- = -1.

From this the zeros can be determined to be y\ = u+ + U- = 2, y2?3 = — 1 ± 2i\/3.

Example 2: The equation x3 — Qx2 + 21x — 52 = 0 is transformed by the substitution
x = y + 2 into the equation of the first example. The zeros are therefore Xj = y, + 2,
i.e., xi = 4, £2,3 = 1 ± 2i\/3.

The importance of the casus irreducibilis in the history of mathematics: The
formulas (2.25) for y\ were proven by the Italian mathematician Cardano in his book
Ars Magna (Great Art) which was published in 1545.12 In the monograph Geometry,
Raffael Bombelli introduced the symbol \/— 1, in order to handle the so-called 'casus
irreducibilis'. This corresponds to the case of real coefficients p, q with D < 0. Although
in this case all three zeros yi, y2, ya are real, they are built up of the complex quantities
u+ and U-. This surprising turn of events was an important factor in the introduction
of complex numbers in the sixteenth century.

The detour through complex numbers can be avoided by applying the trigonometric
formula listed in Table 2.3.

Theorem of Vieta: For the solutions yi, y2 and y% of (2.24) one has:

y\ + 2/2 + ya = 0, yiy2 + yiy3 + y2ys = 3p, yiy2ys = -2<?,
(yi - ?/2)2(yi - y3)2(y2 - ys)2 = -108D.

The trigonometric formulas for solution: In the case of real coefficients one can
obtain the solution of (2.24) by means of the relations listed in Table 2.3.

Table 2.3: cubic equation (p,q real, q ̂  0, P :— (sgn q) \/\p\)

p < 0, D < 0

(3:=

2/1

2/2,3

1 q
3 

-2Pcos/9

2Pcos(/3±|)

p < 0, D > 0

0 := -arcosh -^

-2Pcosh/3

P(cosh/3±i\/3sinh/3)

12 This solution was not found by him, but rather by Nicol of Bres
his tongue was called Tartaglia, "the stammerer". Cardano had vowe
then published it.

p > 0

ft := -arsinh -^

-2Psinh/3

P(sinh/3±i\/3cosh/3)

cia, who because of an injury to
d to keep the formula secret, but

 ^3arccos
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2.1.6.3 Biquadratic equations

Solutions of biquadratic equations can be reduced to those of cubic equations. This can
already be found in Cardano's Ars Magna.

Normal form: The general equation of fourth degree

x4 + ax3 + bx2 + ex + d = 0

with complex coefficients a, b, c, d can be brought into the normal form

by means of the substitution y = x + -. The behavior of solutions of (2.26) depends on

the behavior of solutions of the so-called cubic resolvent

z3 + 2pz2 + (p2 - 4r)z - q2 = 0.

If a, 0 and 7 denote the solutions of this cubic equation, then one gets the zeros y\,..., 1/4
of (2.26) from the formula:

2yi = u + v + w, 2y2 = u — v + w, 2y$ = — u + v + w, 2y^ = —u — v — w.

Here u, v, w are solutions of the equations u2 = a, v2 = /3, w2 = 7, where in addition
it is required that uvw — q.

Table 2.4. describes the behavior of solutions of (2.26) in the case of real coefficients.

Table 2.4: Solutions of biquadratic equations with real coefficients.

cubic resolvent

a, (3, 7 > 0

a > 0, 0, 7 < 0

a real, 0 and 7 conjugate complex

biquadratic equation

four real zeros

two pairs of conjugate complex zeros

two real and two conjugate complex zeros

Example: Suppose we are given the biquadratic equation

y4 - 25y2 + 60y - 36 = 0.

The corresponding cubic resolvent is z3 — 50z2 + 7692; — 3600, which has the zeros
a = 9, 0 = 16, 7 = 25. From this it follows that u = 3, v = 4 and w = 5. Hence we
get the zeros

yi =-^(u + v-w) = 1, y<2 = 2, y3 = 3, y4 =-6.

2.1.6.4 General properties of algebraic equations

We consider the equation

p(x) := a0 + aix + ... + an-\x
n~l + xn = 0 (2.27)

with n = 1,2,... Important properties of the solutions of algebraic equations of arbitrary
degree can be read off of the coefficients ao, . . . ,a n_i above. Assume first that the
coefficients are all real. Then one has:
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(i) If Xj is a zero of (2.27), then so is also the conjugate complex number Xj.

(ii) If the degree n is odd, then (2.27) has at least one real zero.

(iii) If n is even and one has OQ < 0, then (2.27) has at least two real zeros with different
signs.

(iv) If n is even and (2.27) has no real zeros, then p(x) > 0 for all real numbers x.

The rule of signs of Descartes (1596-1650): (i) The number of positive zeros of
(2.27), counted with multiplicities, is equal to the number A of changes in sign in the
sequence 1, a n _i , . . . , ao, or less than this by some even number.

(ii) If the equation (2.27) has only real zeros, then A is equal to the number of positive
zeros.

Example 1: For
p(x] := x4 + 2x3 - x2 + 5x - 1

the sequence 1,2, —1,5, —1 of coefficients has three changes of sign, hence p(x) has one
or three positive zeros.

If we replace x by —x, we obtain q(x] := p(—x) = x4 — 2x3 — x2 — 5z — 1. In this
case there is but a single change of sign in the sequence of coefficients 1 , — 2 , — 1 , — 5 , — 1 .
Hence q(x) has only one positive real zero, i.e., p(x) has at least one negative zero.

If we replace x by x + 1, i.e., we consider r(x) := p(x + 1) = x4 + Qx3 + llx2 + 13x + 6,
then r(x) has according to the rule of signs no positive zero, i.e., p ( x ) has no zero > 1.

The rule of Newton (1643—1727): The real number S is an upper bound for the
real zeros of (2.27), provided one has the relations

p(S) > 0, p'(S) > 0, p"(S) > 0, . . . , p(n-1}(5) > 0. (2.28)

Example 2: Let p(x) := x4 — 5x2 + 8x — 8. Then one has

p'(x) = 4x3 - lOx + 8, p"(x] = I2x2 - 10, p"'(x) = 24x.

From
p(2) > 0, p'(2) > 0, p"(2) > 0, p'"(2) > 0

one then gets S = 2 as an upper bound for the set of real zeros of p(x).

If one applies this procedure to q(x) := p(—x), then one obtains the result that all real
zeros of q(x) are less than or equal to three.

Hence all real zeros of p(z) are in the interval [—3, 2].

Sturm's theorem (1803-1855): Let p(a) ^ 0 and p(b] ^ 0 with a < b. We apply a
slight modification of the Euclidean algorithm (cf. 2.1.5) to the polynomial p(x) and to
its derivative p'(x):

p = p'q- RI,
pf = Riqi - R2,

R! = -^292 ~ RS-I

Rm — Rm+lQm+1-

With W(a) we denote the number of sign changes in the sequence p(a), p'(a), -Ri(a),.. • ,
Rm+i(a). Then W(a) — W(b) is equal to the number of distinct zeros of the polynomial
p(x) in the interval [a, b], where multiple zeros are only counted once for this purpose.

If Rm+i is a real number, then p has no multiple roots.
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Example 3: For the polynomial p(x) \— x4 — 5x2 -f Sx — 8 one can choose a — — 3 and
6 = 2 (cf. Example 2). We get

p'(x) = 4x3 - Wx + 8,
Ri(x) = 5x2 - I2x + 16, Rz(x) = -3z + 284, R3(x) = -I.

Since #3 is a number, p(x) has no multiple zeros. The Sturm sequence p(x), p'(x),
RI(X), ... ,Rz(x) is for x = —3: 4, —70, 97, 293, —1, which has three changes of sign,
hence W(—3) = 3. Similarly for x = 2 one obtains the series 4,20,12,278, — 1, hence
W(2) = 1.

Because of W(—3) — W(2) = 2 the polynomial p(x) has two real zeros in the interval
[—3,2]. According to Example 2 all real zeros lie in this interval.

A similar consideration yields W(0) = 2. From W(-3)-W(0) = 1 and W(0)-W(2) = 1
we get that the polynomial p(x) has exactly one zero in each of the intervals [—3,0] and
[0,2]. The other zeros of p(x) are not real, but rather conjugate complex numbers.

Elementary symmetric functions: The functions

are called the elementary symmetric functions of the variables x i , . . . , xn.

Theorem of Vieta (1540—1603): If xi , . . . ,xn are complex zeros of a polynomial
p(x) := ao + aix H + an-ix

n~l + xn with complex coefficients, then one has:

This follows from p(x) = (x — x\) • • • (x — xn). Hence the coefficients of the polynomial
can be expressed in terms of its zeros.

A polynomial is said to be symmetric, if it is invariant under an arbitrary permutation
of its variables. For example the polynomials e i , . . . , en are symmetric.
Main theorem on symmetric polynomials: Every symmetric polynomial in the
variables xi , . . . ,xn with complex coefficients can be expressed as a polynomial (with
complex coefficients) in the elementary symmetric functions e i , . . . , en.

Application to the discriminant: The symmetric polynomial

is called the (normalized) discriminant.

If we denote by x i , . . . , xn the zeros of a polynomial p, then A is called the (normalized)
discriminant of p. This quantity can always be expressed in terms of the coefficients of
P-
Example 4'- For n = 2 one has A = (x\ — x^)"2, hence

A = (xi + x2)2 - 4xix2 = e\ - 4e2.
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For p(x) := OQ + a\x + x2 one has p(x) = (x — xi)(x — x2) = x2 — (x\ + x2)x + x\x2.
Therefore we have a\ = — (x\ + x2) = —e\ and UQ = Xix2 = e2, that is

For the (non-normalized) discriminant D used in 2.1.6.1 we have D = A/4.

The resultant of two polynomials: Let the two polynomials

p(x) := a0 + aix + ... + anx
n, q(x) := bo + b\x + ... + bmxm

with complex coefficients be given, where n, m > 1 and an ^ 0, bm 7^ 0. The resultant
Rip-, q) of p and q is defined as the following determinant:

The vacant spots in this determinant are all zero.

Main theorem on common zeros: Two given polynomials p and q have a common
complex zero if and only if one of the following two conditions is satisfied:

(i) p and q have a greatest common divisor of degree n > 1.

(n)R(p,q) = 0.

The greatest common divisor of the two polynomials can be easily determined with the
help of the Euclidean algorithm (cf. 2.1.5).

Main theorem on multiple zeros: A polynomial p has a multiple zero if and only if
one of the following three conditions is satisfied:

(i) The greatest common divisor of p and the derivative p' of p has a degree n > 1.

(ii) The discriminant A of p vanishes.
(iii)fl(psp') = 0.

Up to a non-vanishing constant factor A and R(p,p') coincide.

2.1.7 Partial fraction decomposition

The method of partial fraction decompositions makes it possible to give an additive
decomposition of rational functions in terms of polynomials and terms of the form

Basic ideas: In order to decompose the function

with the Ansatz

we start



2.1. Elementary algebra 625

Multiplying by the denominator (x — l)(x — 2)2 then yields the relation

First method (comparison of coefficients): From (2.30) we get

x = A(x2 - 4x + 4) + B(x2 - 3x + 2) + C(x - 1).

Comparison of the coefficients of re2, x and 1 then yields

0 = A + B, 1 = -4A -3B + C, Q = 4A + 2B-C.

This linear system of equations has the solution A= I , B = — 1, C = 2.

Second method (inserting special values): We choose the values x — 2,1,0 in (2.30),
yielding the linear system of equations

2 = C, 1 = A, 0 = 4A + 2B - C

with the solution A = 1, (7 = 2, B = —1. The second method is generally quicker.

Definition: A rational function in lowest terms is an expression

where TV and D (numerator and denominator, respectively) are polynomials with com-
plex coefficients satisfying the condition 0 < deg (TV) < deg (D).

Let the pairwise distinct zeros of the denominator D be x i , . . . ,xr with multiplicities
ai, . . . , ar, so that for D we get the expression

D(x) = (x - zi)ai -...-(x-Xr)^.

Theorem: Let / be a rational function in lowest terms. For all complex numbers
x ^ £1,..., xr, we have the decomposition

with the uniquely determined complex numbers Ajp.

If N and D have real coefficients, then the zeros of D occur in conjugate complex
pairs with equal multiplicities. The corresponding coefficients Aj@ are in this case also
complex conjugate.

The coefficients Ajp can at any rate be calculated using either of the previously described
methods.

General rational functions: If one has deg (TV) > deg(-D), then the Euclidean algo-
rithm in 2.1.5 yields a decomposition

with a polynomial Q(x) and a rational function R(x)/D(x) in lowest terms.

Example:
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Partial fraction decomposition with Mathematical This software package is able
to determine the partial fraction decompositions of arbitrary rational functions.

2.2 Matrices

Elementary operations with matrices are described in section 2.1.3. All deeper state-
ments about matrices are based on their spectrum. Spectral theory of matrices makes
deep generalizations to operator equations possible (for example differential and integral
equations) in the context of functional analysis. This is described in [212].

2.2.1 The spectrum of a matrix

Notations: We denote by Cg the set of all column matrices

with complex numbers c u i , . . . , an. On the other hand, the symbol Cn will always denote
the set of row matrices (ai , . . . , an) with complex entries. If a i , . . . , an are real, then
we get in a similar manner the spaces Rg and Mn.

Eigenvalues and eigenvectors: Let A be a complex (n x n)-matrix. An eigenvalue
of A is a complex number A, for which the equation

has a solution x €E Cg with x ^ 0. We then call x a eigenvector for the eigenvalue A.

Spectrum: The set of all eigenvalues of A is called the spectrum (r(A) of A. The set of
complex numbers which do not belong to &(A) is called by definition the resolvent set
p(A) of A.

The largest absolute value |A| of all eigenvalues of A is called the spectral radius of A,
denoted r(A).

Example 1: Prom

it follows that the matrix A := 

sponding eigenvectors x = (1,0)T, (0,1)T. The (n x n)-unit matrix E has A = 1 as its
sole eigenvalue. Every column vector x ^ 0 of length n is eigenvector for E.

Characteristic equation: The eigenvalues A of A are exactly the solutions of the
so-called characteristic equation

(or the zeros of the polynomial det (A — XE)). The multiplicity of the zero A is called
the algebraic multiplicity of the eigenvalue.

has the eigenvalues A = a, b with the corre-
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The inverse matrix (A — \E) l exists if and only if A belongs to the resolvent set p(A)
of A. One calls the matrix (A - XE)~l the resolvent of the matrix A. The equation

has, for a given right-hand side y e Cg, the following behavior:
(i) Regular (non-singular) case: If the complex number A is not an eigenvalue of A, i.e.,
A € p(A), then (2.31) has the unique solution x = (A — \E)~1y.

(ii) Singular case: If A is a eigenvalue of y, i.e., A € o~(A), then (2.31) has no solution at
all, or the solution, if it exists, is not unique.

Example 2: Let A

characteristic equation is

The zeros A = ±1 are the eigenvalues of A with the algebraic multiplicity one. The
corresponding eigenvectors are x+ = (1,1)T and X- = (1, — 1)T.
Special matrices: Let A be a complex (n x n)-matrix. We denote by A* the adjoint
matrix (section 2.1.3).

(i) A is called self-adjoint, if A = A*.

(ii) A is called skew-adjoint, if A = —A*.

(iii) A is called unitary, if AA* = A* A = E.

(iv) A is called normal, if A A* =A*A.

The matrices in (i) to (iii) are all normal.
The matrix A A* is always self-adjoint. The matrix A is skew-adjoint if and only if iA is
self-adjoint.
If A is real, then one has A* = AT. In this case one speaks, in the cases (i), (ii) and
(iii), respectively, of symmetric, skew-symmetric and orthogonal matrices, respectively.
Example 3: We consider the matrices

If all Ojfc are real, then A is symmetric if an only if a^ = «2i- If the elements a,jk are
complex numbers, then A is self-adjoint, if and only if cijk = flfcj for all j and A;. In
particular, this implies that an and 022 must be real.
For every real number (p the matrix U is orthogonal (or unitary). The spectrum of U
consists of the numbers e±1¥?.

The transformation x' — Ux, i.e.,

corresponds to a rotation of the Cartesian coordinate system by an angle of (p in the
mathematically positive sense (cf. 3.4.1).
Spectral theorem:
(i) The spectrum of a self-adjoint matrix lies on the real line.
(ii) The spectrum of a skew-adjoint matrix lies on the imaginary axis.

Becauseof det the
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(iii) The spectrum of a unitary matrix lies on the unit circle.
Theorem of Perron: If all elements of a real quadratic matrix A are positive, then the
spectral radius r(A) is an eigenvalue of A of the algebraic multiplicity one, and all other
eigenvalues of A are on the inside of a circle of radius r(A) (centered at the origin).
The eigenvector corresponding to the eigenvalue r(A) has entries all of which are positive.
Calculation of eigenvalues and eigenvectors with Mathematica: This software
system can also calculate the eigenvalues and eigenvectors for matrices of arbitrary size.

2.2.2 Normal forms for matrices

Basic idea: Let A and B be complex (n x n)-matrices; these are called similar if there
is a complex, invertible (n x n)-matrix C such that

C~1AC = B.

The matrix A is said to be diagonalizable, if there is a diagonal matrix B which is similar
to A In this case the diagonal entries of B are precisely the eigenvalues of A (occuring
as often as the corresponding multiplicity).
Theorem: A (n x n)-matrix is diagonalizable if and only if it has n linearly independent
eigenvalues. If this is the case, then:

and AI , . . . , \n are the eigenvalues of A.

Application: The linear transformation

x+ = Ax

is mapped through the introduction of new coordinates y = C 1x into

y+ = (C~lAC)y. (2.33)

Let x = (£1,... ,£n)T and z = (771, . . . ,r/n)T. Because of (2.32) the transformation takes,
in the new coordinates, the particularly simple form

Considerations of this kind are often used in geometry, for example to simplify rotations
or projective maps.
Every normal matrix is diagonalizable. The goal of the theory of normal forms for square
matrices is to obtain particularly simple forms (Jordan normal form) through the use of
similarity transformations. In this way one is able to obtain geometric statements.

2.2.2.1 Diagonalization of self-adjoint matrices

The theory of normal forms of self-adjoint matrices is dominated by the notion of or-
thogonality. The following considerations make it possible, through the choice of new
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coordinates, to give conic sections and surfaces of degree two particularly simple normal
forms. This is based on the notion of major axis, which are perpendicular to each other
(cf. 3.4.2 and 3.4.3).

The generalization of these major axis transformations to functional analysis, performed
by Hilbert and von Neumann, is the basis for the mathematical treatment of quantum
theory (cf. [212]).

Orthogonality: For x, y G Cg we define13

and \\x\\ := ^/(x\x).

We say that x and y are orthogonal, if (x\y) = 0. Moreover, the vectors x i , . . . , xn form
by definition an orthonormal system, if

for j, k — 1,..., r.14 In case r = n we speak of an orthonormal basis.

The Schmidt orthogonalization procedure: If x\,..., XT e Cg are linearly indepen-
dent, then one can obtain an orthonormal system yi , . . . , yr by passing to an appropriate
linear combination. Explicitly we choose z\ := x\ and define for k = 2 , . . . , r inductively

Finally we set yj := Zj/\\Zj\\ for j = 1,..., r.

Main theorem: For every self-adjoint (n x n)-matrix A one has:

(i) All eigenvalues are real.

(ii) Eigenvectors to different eigenvalues are orthogonal.

(iii) For every eigenvalue of algebraic multiplicity s there are exactly s linearly indepen-
dent eigenvectors.

(iv) If one applies the Schmidt orthogonalization procedure to (iii), one gets an orthonor-
mal basis of eigenvectors x\,..., xn to the eigenvalues AI, . . . , An.

(v) If we set U := (xi,..., xn), then we have

13 If one has

14The so-called Kronecker symbol is defined by the relation:
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Here U is unitary, i.e, U 1 = U*.

(vi) We have the formulas det A = \i\z • • • Xn and tr A = X\ + • • • + Xn.

(vii) If A is real, then so are the eigenvectors #1, . . . , xn, and the matrix U is orthogonal,
i.e., U is real and U~l — C/T.

Example 1: The symmetric matrix A := I ] has the eigenvalues A± = ±1 and

the eigenvalues x+ = (1,1)T, x_ = (1, — 1)T. Because of ||x±|| = \/2, the corresponding
orthonormal basis is given by x\ = x+/\/2, x% — x_/\/2. The matrix

is orthogonal and we have the relation

Morse index and the signature: The number m of negative eigenvalues of A is called
the Morse index15of A.

The number of non-vanishing eigenvalues of A is equal to the rank r of the matrix A.
Hence A has precisely ra negative and r — m positive eigenvalues. The pair (r — m, m)
is called the signature of A.

Let a real symmetric (n x n)-matrix A := (o^) be given. The signature of A can be
calculated directly from the entries of the matrix A. We consider for the the so-called
s-rowed major subdeterminants of A,

Ds := det (cijfc), j, k = 1, . . . , s.

After perhaps renumbering rows and columns of A we may assume that

£>i^0 , £>2^0, . . . , £>P^0, Dp+1 = ... = Dn.

The signature criterion of Jacobi: The rank of A is equal to p and the Morse
index m of A is equal to the number of changes in sign of the sequence 1, DI, . . . , Dp.
Moreover, for the signature of A we have sig (A) = (p — m, m).

I one has £>i = 1 and D

sequence 1, DI, £>2 has only one change of sign. Thus the Morse index is Morse(A) = 1
and sig (A) = (1,1). In fact A has the eigenvalues A = 3, —1.

Applications to quadratic forms: We consider the real equation

xTAx = b (2.36)

with the real symmetric (nxn)-matrix A = (djk), the real column matrix x = (xi,... ,rrn)T

and the real number b. Explicitly (2.36) means:

15The importance of the Morse index for the theory of catastrophes and for the topological theory of
extremal problems of functions on manifolds can be found in [212].

TheExample 2: For A :+
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The real coefficients djk satisfy the symmetry condition djk = dkj for all j, k. For n = 2
(resp. n = 3), this is the equation of a conic section (resp. the equation of a quadric
surface) (cf. 3.4.2 and 3.4.3).

Through the transformation x = Uy the equation (yrU~r)AUy = y^U^^-AUy = b results
from (2.36), taking U~l = f/T into account. By (2.35) the following formula is obtained:

To further simplify this equation, we set Zj := \7Aj% f°r -\? — 0 and zj := — \/~^jVj
for AJ < 0. After a possible renumbering of the variables we then obtain from (2.37) the
final normal form

Here we have Morse(^4) = m, rank(A) = r, sig(A) = (r — m,m).

Uniqueness of the normal form (Sylvester's law of inertia): If one has obtained
a normal form

of (2.37) through a transformation x = Bz with a real invertible (n x n)-matrix B, where
for the form (2.39) a.j = ±1 or Oij = 0, then (2.39) and (2.38) coincide (after a possible
renumbering of the variables).

Remark: This theorem is usually formulated more simply as follows: the signature o:
the quadratic form x1 Ax, i.e., the number of positive and negative eigenvalues of A
is independent of the basis chosen with respect to which the matrix A is formed (the
matrix U above represents a change of basis).

Definiteness: The quadratic form x*Ax in (2.36) is called positive definite, if

xrAx > 0 for all x ^ 0.

This is equivalent to one of the following conditions being satisfied:

(i) All eigenvalues of A are positive.

(ii) All major subdeterminants of A are positive.

2.2.2.2 Normal matrices

Main theorem: Every normal (n x n)-matrix A has a complete orthonormal basis
Xi,...,xn of eigenvectors to the eigenvalues AI, . . . , An. If we set U := (zi , . . . , xn).
then U is unitary, and one has

Every self-adjoint, skew-adjoint, unitary or real symmetric, skew-symmetric or orthog-
onal matrix is normal.

Application to orthogonal matrices (rotations): If a real (n x n)-matrix A is
orthogonal, then one has (2.40), where the eigenvalues \j are equal to ±1 or occur
pairwise in the form e±1¥> with a real number <f>. The matrix U is in general not real.
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There is however always a real orthogonal matrix B, such that

The matrices Aj are either (1 x l)-matrices consisting of ±1, or they are of the form

where (f> is real. The numbers ±1 occuring are the eigenvalues of A. In case (2.42)
occurs, e±lv are a pair of conjugate complex eigenvalues of A. The block matrices Aj
occur as often as the corresponding algebraic multiplicity of the eigenvalues.

For an arbitrary orthogonal matrix A one has detyl = ±1.

The most general orthogonal (2 x 2)-matrix A with det A — I has the form (2.42), where
(p is an arbitrary real number.

Example: For n = 3 and det A = I one has the normal form

Geometrically this corresponds to the fact that every rotation of the three-dimensional
space at a point is a rotation on a fixed axis with an angle (p. The rotation axis is the
eigenvector of A for the eigenvalue A = 1 (Euler-d'Alembert's law).

In case det A = —I one has to replace the number 1 in (2.43) by —1. This corresponds
to an additional reflection on the plane of rotation, which passes through the center of
rotation and is perpendicular to the axis of rotation.

Application to skew-symmetric matrices: Let A = (ajfc) be a real (n x n)-skew-
symmetric-matrix16, which means that Q.JJ = 0 for all j and ajk = —dkj for all j, k with
j ^ k. Then (2.40) holds, where the eigenvalues A^ are zero or occur pairwise as ±cd.
The matrix U is in general not real.

There is however always a real invertible matrix B with

The matrices Aj are either (1 x l)-matrices with entry 0, or are of the form

16The most general skew-symmetric (2 x 2)-matrix has the form

where a is an arbitrary real number.
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The total length of these (2 x 2)-blocks is equal to the rank of A.

Application to symplectic forms: We consider the real equation

with the real skew-symmetric (n x n)-matrix, real column vectors x, y and a real number
b. Explicitly, (2.44) is the equation

The real coefficients djk satisfy the condition ajj = 0 for all j and ajk = —a-kj for all
j 7^ k. Then there is a real invertible matrix B, such that the equation is transformed
by the change of coordinates u = Bx, v = By into the following normal form:

(v2Ui - U2Vi) + (V^U3 - U4W3) + . . . + (V2SU2S~1 - U2sV2s-l) = b. (2.45)

Here Is is the rank of A.

We call x*Ay a symplectic form, if A is also invertible. Then n is even, and one has the
normal form (2.45) with 2s = n.

Symplectic forms are the basis of symplectic geometry (cf. 3.9.8), which is the funda-
mental notion for classical mechanics or geometric optics, as well as of the theory of
Fourier integral operators (cf. [212]). Many physical theories can be formulated parallel
to classical Hamiltonian mechanics in terms of Hamiltonian equations (cf. 1.3.1). All of
these theories are based on the notion of symplectic form.

Simultaneous diagonalization: Let Ai,...,Ar be complex (n x n)-matrices, which
pairwise commute with each other, i.e., AjAk = AkAj for all j, k. Then all of these
matrices have a common eigenvector.

If these matrices are in addition normal, then they in fact possess a common orthonormal
basis xi , . . . ,xn of eigenvectors. If we form the matrix U := (xi,..., xn), then U is
unitary and the matrices

U^AjU

have diagonal form for all j, where the eigenvalues of Aj are the diagonal entries.

2.2.2.3 The Jordan normal form

The Jordan normal form is the most general normal form for complex matrices. It
originated in work of the French mathematician Camille Jordan (1838-1922). The theory
of elementary divisor goes back to work of Karl Weierstrass (1815-1897) in 1868.

Jordan blocks: The matrices

are called Jordan blocks of size two resp. three. The number A is the sole eigenvalue of
these matrices. In general one calls a matrix of the form
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a Jordan block.

Main theorem: For an arbitrary complex (n x n)-matrix A there is an invertible
complex (n x n)-matrix C, such that

There exists at least one Jordan block for every eigenvalue Xj of A.

The matrix on the right in (2.46) is called the Jordan normal form of A. This matrix is
unique up to a permutation of the Jordan blocks.

Geometric and algebraic multiplicity of an eigenvalue: By definition the geo-
metric multiplicity of an eigenvalue A is the number of linearly independent eigenvectors
to the eigenvalue A. The geometric multiplicity of A is equal to the number of Jordan
blocks in (2.46). The algebraic multiplicity of A on the other hand is equal to the total
length of all Jordan blocks to that eigenvalue.

Example 1: The matrix

is already in Jordan normal form. The numbers AI , A2 are the eigenvalues of A, where
it is possible that AI = A2-

Suppose that AI ^ \2- Then AI has algebraic multiplicity three and geometric multi-
plicity two. For A2 the algebraic and the geometric multiplicity are both one.

For many considerations the algebraic multiplicity is more important than the geometric
multiplicity.

The lengths of the Jordan blocks can be determined from the coefficients of A, as we
shall see presently.

Elementary divisors: The greatest common divisor ^S(A) of all s-row subdetermi-
nants of the characteristic matrix A — XE of A is called the sth determinant divisor17 of
A. We set £^0 := 1- The quotients ^(A) := ^s(A)/^s_i(A), s = 1,... , n are polyno-
mials and are called the combined elementary divisors of A. The factors in the product
decomposition

are called the elementary divisors of A. The numbers AI, . . . , An are always eigenvalues
of A.

17&s is a polynomial in A, whose largest term has by definition the coefficient 1.
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Corollary to the main theorem: To every elementary divisor (A — Am)r of A there is
a Jordan block of size r in the Jordan normal form of (2.46). In this manner one obtains
all Jordan blocks.

Criterion for diagonalizability: The Jordan normal form of a square matrix A has
diagonal form if and only if one of the following three conditions is satisfied.

(i) All elementary divisors of A have the degree 1.

(ii) For all eigenvalues of A the algebraic and geometric multiplicity coincide.

(iii) The number of linearly independent eigenvalues of A is equal to the number of rows
of A

Theorem of trace: The trace tr A of a square matrix A is equal to the sum of all
eigenvalues of A, each counted with the corresponding algebraic multiplicity.

This follows from (2.46) and the relation tr A = tr (C~1AC).

Theorem of determinant: The determinant det A of a square matrix A is equal to the
product of all eigenvalues, each counted with the corresponding algebraic multiplicity.

Similarity theorem: Two complex square matrices A and B are similar if and only if
they have the same elementary divisors.

Methods for calculating the Jordan normal form: Methods of this kind can be
found in [256].

2.2.3 Matrix functions

In this section we let A, B, C denote complex (n x n)-matrices, and r(A) (resp. &(A))
denote the spectral radius (resp. spectrum) of A (cf. 2.2.1).

2.2.3.1 Power series

Definition: Let the power series

be given, with the radius of convergence p around the origin. If r(A) < p, then we define

This series converges absolutely for every matrix element of f(A).

In particular, if p = oo (for example, this is satisfied for f ( z ) = e2, sinz, cosz or f ( z ) =
a polynomial in z), then (2.47) is valid for all square matrices A.

Theorem: (i) C~lf(A)C = f(C^AC), in case C"1 exists.

(ii) f(A? = f(A*\ Af(A) = f(A)A.

(iii) f(AY = f*(A*), where /*(z) := f ( z ) .

(iv) If AI, . . . , Xn are the eigenvalues of A, then / (Ai ) , . . . , /(An) are the eigenvalues of
f(A), counted with the corresponding algebraic multiplicities.

Diagonalizable matrices: From the relation
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it follows that

Jordan normal form: From the relation

it follows that

with /j,j :— f(\j).

The exponential function: For every square matrix A and every complex number t
one has18:

The exponential function has the following properties:

(i) eAeB — eA+B, in case A and B commute, i.e., AB = BA (addition theorem),

(ii) det eA = etr A (determinant formula),

(iii) (e^)-1 = e'A, (eA)T = e^T, (eA)* = eA*.

Example: For A = I 1 one has A2 = A3 = • • • = 0, hence e*A = E + tA.

The logarithm: If r(B) < 1, then the series

exists.

The equation

e° = E + B

has in this case the unique solution C = ln(E + B}.

2.2.3.2 Functions of normal matrices

If A is normal, then there exists a complete orthonormal basis x\,..., xn of eigenvectors
to the eigenvalues AI, . . . , An. If we set C := (x i , . . . , xn), then C is unitary and (2.48)
holds.

18 Important applications of expressions like etA to ordinary differential equations (resp. Lie groups
and Lie algebras) may be found in [212].
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Definition: For an arbitrary function / : a(A) —> C we define19 f ( A ) by the relation
(2.49).
This definition is independent of the choice of complete orthonormal basis of eigenvectors
of A

Theorem: (i) The statements of the theorem in section 2.2.3.1 continues to hold,

(ii) If A is self-adjoint and / is real for real arguments, then f ( A ) is also self-adjoint.

The square root: If a self-adjoint matrix A has only non-negative eigenvalues, then
the square root \^A exists. This matrix is again self-adjoint.

Polar decomposition: Every square complex (n x n)-matrix A can by written as a
product

where U is unitary and S is self-adjoint, with eigenvalues all of which are non-negative.

If A is in addition real, then U and S are also real.

If A is invertible, then one can choose U and S as S = yAA* and U = AS~1.

2.3 Linear algebra

2.3.1 Basic ideas

The idea of linearity: Differentiation and integration of functions are linear opera-
tions, meaning that one has relations

where a and /3 are numbers. In general a linear operator L satisfies the condition

where /, g can be functions, vectors, matrices or whatever.

The idea of linearity is important in many mathematical and physical problems. Linear
algebra collects in a comprehensive and unified manner the experiences of generations
of mathematicians and physicists with linear structures.

The principle of superposition: By definition, in a physical system a principle of
superposition holds if for any two states of the system the linear combination of these
is again a state in the system. For example, the two functions x — /(£), g(i) are both
solutions of the differential equation

X" + LJ2X = 0

of the harmonic oscillator, and the linear combination a/ + (3g is again a solution.

The principle of linearization: An important and often recurring principle in math-
ematics consists in the method of linearizing a problem. A typical example of this is the
notion of derivative of a function. Closely connected with this notion is that of tangents

19If, in addition, we have the situation of 2.2.3.1, then both definitions of f ( A ) given coincide.



638 2. Algebra

of a curve, tangent plane on a surface or more generally tangent spaces on manifolds.
The basic idea of the principle of linearization is contained in the Taylor expansion

f ( x ) = /(z0) + f'(x0)(x - z0) + . . .

where the right hand side is a linear approximation of the function / in a neighborhood
of the point XQ . Adding additional terms

means adding quadratic and higher terms. This kind of multi-linear structures are
considered in the theory of multi-linear algebra (cf. 2.4).

The branch of mathematics known as topology is concerned with the qualitative behavior
of systems. An important method used in that science is to associate to topological
spaces certain linear spaces (for example, the de Rham cohomology groups) or vector
bundles, and to study the properties of these linear spaces with the tools of linear algebra
(cf. [212]).

Infinite-dimensional function spaces and functional analysis: In classical geom-
etry one is generally concerned with finite-dimensional spaces (cf. Chapter 3). More
modern methods of investigations of differential and integral equations in the context of
functional analysis are based on infinite-dimensional spaces, whose elements are func-
tions (for example, metric spaces, Banach spaces, Hilbert spaces, locally convex spaces;
cf. [212]).

Quantum systems and Hilbert spaces: If one gives a linear space the additional
structure of a scalar product, then one gets a class of spaces known as Hilbert spaces,
which are fundamental for the mathematical description of quantum systems. The
states of the quantum system correspond to elements of a Hilbert space J2? and physical
quantities are given by appropriately defined linear operators on Jf, which are called
observables (cf. [212]).

The beginnings of linear algebra go back to the book Der baryzentrische Kalkiil (The
Barycentrical Calculus) by August Ferdinand Mobius (1790-1868),which appeared in
1827, and Die lineare Ausdehnungslehre (The theory of linear extension) by Hermann
Grassmann (1809-1877), which appeared in 1844.

2.3.2 Linear spaces

In what follows, the symbol K stands for E (the set of real numbers) or C (the set of
complex numbers). In a linear space X over K. linear combinations of the form

are declared for u, v £ X and a, (3 G K.

Definition: A set X is called a linear space (or vector space) over K, if for every ordered
pair (u, v) with u 6 X and v G X there is a uniquely determined element in X, denoted
u + v, and for every pair (a, u) with a € IK and u G X a uniquely determined element
in X, denoted cm, such that for all u, v,w €E X and all a, (3 € K one has the following
properties20:

20Instead of u + (—v) we write forthwith more briefly u — v. One can show that, moreover, the
properties above imply the relations 'Ou = o for all u £ X' as well as 'ao = o for all a 6 K'. For this
reason we shall in what follows always denote both the element '0' in K and 'o' in X by the symbol '0'.
Because of the rules laid down here this results in no contradiction. In a similar manner linear spaces
over arbitrary fields K (cf. 2.5.3) can be denned.
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(i) u + v = v + u (commutativity).

(ii) (u + v) + w = u + (v + w) (associativity).

(iii) There is a uniquely determined element in X, which we denote by o, such that

z + o = z for all z G X (neutral element).

(iv) For every z £ X there is a uniquely determined element in X, which we denote by
(—2), such that

z + ( — z ) = o for all z e X (inverse element).

(v) a(u + v) = au + av and (a + {3)u = au + /3u (distributivity).

(vi) (a/3)u = a((3u) (associativity) and lu = u.

Linear spaces over R (resp. C) are called real (resp. complex) (vector) spaces.

Linear independence: Elements M I , . . . , un of a linear space over K. are said to be
linearly independent if and only if a relation

ai«i + ... + anun = 0, a\,..., an € K

always implies the relation a\ = • • • = an. Otherwise ui,...,un are said to be linearly
dependent.

Dimension: The maximal number of linearly independent elements of a linear space
X is called its dimension and denoted dimX. The symbol dimX = oo means that
there are arbitrarily many linearly independent elements in X. If X consists only of the
neutral element (check that this is consistent with the definition!), then dimX = 0.

Basis: Let dim X < oo. A system 61,.. . , bn of elements of a linear space X over K is
said to be a basis of X, if every element u G X can be written uniquely in the form

u = aibi + ... + anbn, o^, . . . ,an e K.

In this case we call the ai,.. . , an the coordinates of u with respect to the basis.

Theorem on basis: Let n be a positive natural number. We have the equality dim X =
n if every system of n linear independent elements forms a basis of X.

Steinitz' theorem on exchange of basis: If 61,. . . , bn form a basis of a linear space
X and if «i , . . . , ur are linearly independent elements in X, then

«i , . . . , u r,6 r+i,...,6n

forms a new basis of X (after a renumbering if necessary).

Example 1 (the linear space Rn): We denote by En the set of all n-tuples (£1, • • • , £n) of
real numbers £,. Upon setting

for all a, /? 6 R, Rn becomes an n-dimensional real linear space. As basis one may take

&i := ( l , 0 , . . . , 0 ) , 62 :=(0,1,0, . . . ,0) , . . . , bn := (0,0... ,0,1)

since
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If one admits complex numbers £_,-, rjj, a and /?, then one gets the n-dimensional complex
linear space C".

Example 2: Let n be a positive natural number. The set of all polynomials

a0 + a\x + ... + an~ixn~l

with real (resp. complex) coefficients a 0 , . . . , an-i forms a real (resp. complex) n-dimensional
linear space. A basis is given for example by the elements 1, x, x2,..., xn~l.

Example 3: The set of all functions / : R —> R forms with respect to the usual linear
combination a/ + f3g a real linear space. This space is infinite-dimensional, since the
power functions bj(x) := x^, j = 0,1,... ,n are linearly independent for every n, i.e.,
from the relation

aobo(x) + • • • + anbn(x) = 0, a0 , . . . , an € R

it follows that a^ = • • • = an = 0.

Example 4- All continuous functions / : [a, b] —> R on the compact interval [a, b] form
a real (infinite-dimensional) linear space C[a, b].

This statement is based on the fact that for any two continuous functions / and g, the
linear combination a/ + fig is again continuous.

Linear combinations of sets: Let a, /3 6 K. If U and V are non-empty sets of a
linear space X over K, then we set

aU + (3V := [au + 0v : ueU and v £ V}.

Subspace: A subset Y of a linear space X over K is called a subspace, if for all u, v e Y
and all a, /3 e K,

Example 5: We draw the two vectors a and b at the point P
(Figure 2.1). The set {aa + /3b | a, (3 e R} of all real linear
combinations forms a linear space X, which corresponds to
the plane through the point P spanned by the elements a
and b. The subspace Y := {aa| a G R} is the line through
P in the direction of the vector a.

One has dimX = 2 and dimY = 1.

Dimension theorem: If Y and Z are subspaces of a linear
space X, then one has:

dim (Y + Z) + dim (Y n Z) = dimY + dim Z.

Figure 2.1.

Here the sum Y -\- Z and the intersection Y n Z are again subspaces of X.

Codimension: Let Y be a subspace of X. In addition to the dimension dimY, often the
codimension codimY of Y is important. By definition one has21 codim Y := dimX/Y.
In case dimX < oo, one has

codim Y = dim X — dim Y.

21The quotient space X/Y is introduced in section 2.3.4.2.
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2.3.3 Linear operators

Definition: If X and Y are linear spaces over K, then a linear operator A : X —> Y is
a map with the property

for all u, v 6 X and all a, (3 G K.

Isomorphism: Two linear spaces X and Y are said to be isomorphic if there is a
bijective linear mapping A : X —> Y. Maps of this kind are called isomorphisms.2'2

Calculations can be carried out the same way in isomorphic linear spaces. Therefore,
from an abstract point of view, there is no difference between isomorphic linear spaces.

Theorem: Two finite-dimensional linear spaces over K are isomorphic, if and only if
they have the same dimension.

Thus the dimension of a linear space is the only characteristic of finite-dimensional linear
spaces.

If & i , . . . , bn is a basis in an n-dimensional linear space X over K, then the map defined
by

is a linear isomorphism of X to Kn.

Example 1: Let [a, 6] be a compact interval. If we set

then A : C[a, b] —> R is a linear operator.

Example 2: We defined a derivation operator by

(Au)(x) := u'(x) for all x 6 M.

Then A : X —> Y is a linear operator, if X is the space of all differentiable functions
u : R —> R and Y is the space of all functions v : M —> R.

Example 3 (matrices): Let Rg denote the real linear n-dimensional space of all real
column matrices

The linear combination au + flv corresponds to the usual matrix operation. The set of
all linear operators A : Rg —> Rg1 consists precisely of the set of real (m x n)-matrices
A = (a-jk)- The equation Au = v corresponds to the matrix equation

22The Greek word 'isomorph' means 'of the same form'.
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2.3.3.1 Calculations with linear operators

We consider linear operators A, B : X —> Y and C : Y —> Z, where X, Y and Z are
linear spaces over K.
Linear combinations: Let a, j3 6 K be given. We define the linear operator O.A+J3B :
X —>• Y by means of the formula

Product: The product AC : X —> Z is a linear operator, which is defined by compo-
sition, i.e., by setting

(AC)u = A(Cu) for all u € X.

Unity operator: The operator defined by lu := u for all u G X is a linear operator
/ : X —> X called the unity operator and is also denoted by idx • For all linear operators
A : X —> X one has the relation

AI = IA = A.

2.3.3.2 Linear operator equations

Let a linear operator A : X —> Y be given. We consider the equation

Kernel and image: We define the kernel Ker(^4) and the image Im(^4) by the equations

Ker(A) := {u € X \ Au = 0} and Im(-A) := {Au \ u e X}.

Definition: (i) A is said to be surjective, if Im(A) = V, i.e., the equation (2.50) has a
solution u € X for every v € Y.

(ii) A is said to be injective, if (2.50) has at most one solution u € X for every v € Y".
(iii) A is called bijective, if A is both surjective and injective, i.e., the equation (2.50)
has for every v E Y a unique solution u €E X.

In the last case the relation A~lv :— u defines the inverse linear operator A~l : Y —> X.

The superposition principle: If UQ is a special solution of (2.50), then the set UQ +
Ker(A) is the set of all solutions of (2.50).

In particular, for v = 0 the subspace Ker(A) is the solution space of (2.50). Hence we
have: if u and w are solutions of the homogenous equation (2.50) with v = 0, then this
is also the case for every linear combination au + (3w with a, /3 € K.
Criterion for surjectivity: A linear operator A is surjective if and only if there is a
linear operator B : Y —> X with the property that

AB = IY.

Criterion for injectivity: A linear operator A : X —> Y is injective if and only if
one of the two following conditions is satisfied:
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(a) Prom Au = 0 it follows that u = 0, i.e., dimKer(.A) = 0.

(b) There is a linear operator B : Y —> X with

BA = IX.

Rank and index: We set:

rank(yl) := dimlm(A) and ind (A) := dimKer(A) — codimlm(A).

The index ind (A) is only defined if one of dimKer(A) and codimlm(A) is finite.

Example 1: For a linear operator A : X —> Y between two finite-dimensional linear
spaces X and Y one has:

ind (A) = dimX — dimY, dimKer(A) = dimX — rank(^4).

(a) The second statements includes the fact that the dimension of the linear space23 oi
solutions UQ + Ker(.A) of (2.50) is equal to dimX — rank(yl).

(b) If one has ind (.A) = 0, then from dimKer(A) = 0 it follows immediately that
Im(A) = Y. Consequently A is bijective, i.e., the equation Au = v has for every v € Y
a unique solution u = A~lv.

Importance of the index: The index plays a fundamental role. This is seen clearly
when one studies the behavior of solutions of differential and integral equations in the
case of infinite-dimensional linear spaces. One of the deepest results of mathematics in
the twentieth century is the Atiyah-Singer index theorem. This theorem states that one
can calculate the index of an important class of linear differential and integral operators
on compact manifolds solely in terms of topological (qualitative) data on that manifold
and the so-called symbol of the operator. This has the consequence that the index oj
an operator remains the same under relatively strong perturbations of the operator and
the manifold (cf. [212]).

2.3.3.3 Exact sequences

Modern linear algebra and algebraic topology are often formulated in the language of
exact sequences. A sequence

of linear operators A and B is said to be exact, if Im(A) = Ker(B).

More generally, a sequence

is called exact, if for all k we have

Theorem: For a linear operator we have:24

(i) A is surjective if and only if the sequence is exact.

(ii) A is injective if and only if is exact.

(iii) A is bijective if and only if is exact.
23This is an example of what is called an affine subspace of the linear space X, see 2.3.4.2.

We denote by 0 the trivial linear space {0} consisting only of the neutral element. Moreover,
0 —> X and Y —> 0 stand for zero operators.
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2.3.3.4 The connection with the calculus of matrices

The matrix $4 associated to a linear operator A: Let A : X —> Y be a linear
operator, where we are assuming that X and Y are finite-dimensional linear spaces over
K.

We choose a fixed basis 61,..., bn in X and a fixed basis c\,..., cm in Y. For u 6 X
and v 6 Y one has the uniquely determined decompositions:

and

Here bj, Ck and a,jk are elements of K. We call the (m x n)-matrix

the matrix associated to the linear operator A (with respect to the chosen basis). More-
over we introduce the coordinate column matrices associated to u and v by

Then the operator equation

Au = v

corresponds to the matrix equations

Theorem: The sum (resp. product) of linear operators correspond to the sum (resp.
product) of the corresponding matrices.

The rank of a linear operator is the same as the rank of the corresponding matrix (this
latter rank is independent of the chosen basis).

Change of base: By means of the transformation formulas

we pass to a new basis 6 ^ , . . . , b'n (resp. c ' l 5 . . . , c'm) in X (resp. in Y). Here we require
that the (n x n)-matrix £T = (trk] and the (m x m)-matrix 5? = (sy) are invertible.
The new coordinates u'k (resp. t/) of u (resp. v) are determined by the decomposition

From this we obtain the transformation formulas for the coordinates of u and v, respec-
tively:

The operator equation Au = v corresponds to the matrix equation stf'W — V with
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In the special case in which X = Y and bj = Cj for all j, one has 5? = ̂ . Then we get
a similarity transformation stf' = 2?~lstf'S? of the matrix stf.
Trace and determinant: Let dimX < oo. We define the trace trA and the determi-
nant det A of the linear operator A : X —> X by the relation

trA :=tr(aj f c), det A := det (a^).

These definitions are all independent of the choice of the basis chosen for forming thi
matrix.
Theorem: For two linear operators A, B : X —> X we have:
(i) det (AS) = (det A) (det B).
(ii) A is bijective if and only if det A ^ 0.
(iii) tr(aA + (3B) = atr A + /3tr B for all a, (3eK.
(iv) tr(AB) = tr(BA).

(v) trlx =dimX.

2.3.4 Calculating with linear spaces

From given linear spaces we can construct new ones. The following constructions are
models for all algebraic structures (for example, groups, rings and fields). Tensor prod-
ucts of linear spaces will be handled in 2.4.3.1.

2.3.4.1 Cartesian products

If X and Y are linear spaces over K, then the product set X x Y := {(u, v) u € X, v €
Y} is made into a linear space over K by setting

which is called the Cartesian product of X and Y.

If X and Y are finite-dimensional, then one has the dimension formula for the Cartesian
product,

dim (XxY) = dim X + dim Y.

If bi,..., bn (resp. c i , . . . , cm) is a basis in X (resp. in Y), then the set of all possible
pairs (bj,c/t) form a basis of X x Y.

Example: For X = Y = R one has X x Y = R2.

2.3.4.2 Quotient spaces

Linear manifolds (afflne linear spaces): Let Y be a subspace of a linear space X
over K. Every set

u + Y := {u + v | v E Y}

with fixed u € X is called a linear manifold (affine subspace) (parallel to Y). One has

u + Y = w + Y

if and only if u - w e Y. We set dim (u + y) := dim Y.
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Quotient space (factor space): We denote by X/Y the set of all linear manifolds in
X parallel to Y. By defining the linear combinations

for U, V e X/Y and a, (3 e K., we make X/Y to a linear space, which is called the
quotient space (factor space) of X modulo Y. Explicitly we have

For dim X < oo we have

dim X/Y = dimX - dimY.

Example: Let X := M2. If Y is a line through the origin, then X/Y consists of all lines
parallel to Y (Figure 2.2).

Alternative definition: Let w, w 6 X.
We write

if and only if u — w e Y.

This is an equivalence relation (cf. 4.3.5.1)
on X. The corresponding equivalence
classes [u] := u + Y form the set X/Y.
By setting

Figure 2.2. A quotient space.

the set X/Y acquires the structure of a linear space. This definition does not depend
on the choice of representatives for u and z.

The map u i—>• [u] is called the canonical map from X onto X/Y.

Structure theorem: If Y and Z are two subspaces of X, then one has the isomorphism

In case Y C Z C X one has in addition

2.3.4.3 Direct sums

Definition: Let Y and Z be two subspaces of a linear space X. We write

if and only if every u £ X can be written uniquely in the form
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The space X is referred to as the direct sum of Y and Z, and one calls Z the algebraic
complement to Y in X. One has

Theorem: (i) From X = Y 0 Z it follows that Z^X/Y.

(ii) One has dim Z = codim Y.

Intuitively speaking the codimension of Y, codim Y, is equal to the number of dimensions
which are missing in Y, compared with the whole space X.

Example 1: For X — R3 the origin 0, a line through the
origin and a plane through the origin have, respectively, the
dimensions 0, 1 and 2 and the codimensions 3, 2 and 1.

Example 2: In Figure 2.3 the decomposition R2 = Y ® Z is
depicted.

Existence theorem: For every subspace Y of a linear
space X there is an algebraic complement Z, i.e., a subspace
for which X = Y ® Z.

Linear hull: If M is a set in a linear space X over K, then
we call the set

Figure 2.3.

span

the linear hull (or span) of M.

and

The space span M is the smallest subspace of X which contains M.

Construction of complementary spaces: Let Y be an m-dimensional subspace of
the n-dimensional linear space X with 0 < m < n < oo. We choose a basis MI, . . . , un

of X. Then one has

The direct sum of arbitrarily many subspaces: Let {Xa}a&A be a family of
subspaces of a linear space X. We write

if and only if every x G X can be written uniquely in the form

where only finitely many summands are allowed to occur. If the index set A is finite,
then one has the formula

for the dimensions.

The outer direct sum of linear spaces: Let {Xa}a^A be a family of linear spaces
Xa over K. Then the Cartesian product consists of the set of all tuples (xa),
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which are added together and multiplied by with scalars from K component-wise. The
outer direct sum

of the linear spaces Xa is by definition the subset of which consists of all tuples

which differ from zero for only finitely many values

If one identifies Xp with all tuples (xa) for which then

corresponds to the direct sum of the subspaces Xa.

Grading: One says that the space is graded by the subspaces Xa.

2.3.4.4 Application to linear operators

The rank theorem: Let a linear operator be given. We choose some
decomposition then the restriction of A

is bijective. From this it follows that

codimKer(^4) = dimlm(A) = rank(A).

Invariant subspaces: Let a linear operator A : X —> X be given, where X is a linear
space over K. The subspace Y in X is said to be invariant with respect to A, if u € Y
implies Au e Y.

In addition Y is called irreducible (with respect to A), if Y has no genuine invariant
subspaces other that the trivial one 0.
The fundamental decomposition theorem: If dim X < oo, then there is, for each
A, a decomposition

of X into (non-trivial) irreducible, invariant subspaces Xi,..., Xk, i.e., there are oper-
ators A : Xj —> Xj for all j.
If X is a complex linear space, then one can choose a basis in each subspace such that
A, restricted to Xj, is given by a Jordan block matrix. The matrix of A on X with
respect to such a basis is then in Jordan normal form.
The sizes of the Jordan blocks are then the dimensions of the subspaces Xj. These
dimensions can be calculated by the method of elementary divisors as described in
section 2.2.2.3, by applying this method to a matrix of A with respect to some basis.

2.3.5 Duality

The notion of duality is important in many areas of mathematics (for example in pro-
jective geometry and in functional analysis).25

25 A more detailed investigation of the theory of duality for linear spaces and its applications can be
found in [212].
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Linear forms: A linear form (or linear functional) on a linear space X over K i;
linear map u* : X —> K.

Example 1: Setting

defines a linear form on the space C[a, b] of continuous functions u : [a, 6] —>• R.

The dual space: We denote by X* the set of all linear forms on X. Denning a linear
combination an* + /3v* by

for all u e X, the space X* acquires the structure of a linear space over K, which is
called the dual space to X.

We set X** := (X*)*.

Example 2: Let X be a n-dimensional linear space over K. Then one has an isomorphism

which is however not canonical, but rather depends on the choice of a basis b\,..., bn of
X. In order to show this, we set

b*(uibi + ... + unbn] := Uj, j = 1,..., n.

Then the linear functionals 6 J , . . . , 6* form a basis of the dual space X*, which we call
the dual basis.

Each linear form u* on X can be written in the form

If we set A(u*) := ot\b\ -\ \-anbn, then A : X* —> X is a bijective linear map, which
yields the isomorphism X* = X.

On the other hand, the isomorphism

is canonical, i.e., does not depend on the choice of basis, by setting

Then to every u € X is associated a M**, and this map of X to X** is linear and bijective.

For infinite-dimensional linear spaces, the relation between X and X* as well as X** is
no longer so clear as in the finite-dimensional case (cf. for example the theory of reflexive
Banach spaces in [212]).

The dual operator: Let A : X —> Y be a linear operator, where X and Y are linear
spaces over K. We define the dual operator A* by the formula

This is a linear operator

Product rule: If and are linear operators, then one has

a
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2.4 Multilinear algebra

Let X, Y and Z be linear spaces over K. Multilinear algebra investigates products

uv

with values in Z, i.e., for which u £ X, v e Y and uv & Z. The typical property of such
a product is the relation

for all u, w € X, v, z 6 Y and a, /3 € K. Important examples of products of this kind
are the tensor product u C£> v, the exterior product u f\v and the inner product u V v
(Clifford multiplication).

All products of this sort can be expressed in terms of the tensor product, i.e., there is
always a uniquely determined, linear operator L : X <g> Y —> Z with the property that

(cf. 2.4.3; this is the universal property of the tensor product). For example, the exterior
product can be expressed asuAf :=u®v — v®u. This yields an anti-symmetric relation

The exterior product is closely related to the theory of determinants. In quantum theory,
the tensor product a ® b describes composite states (for example a ® b <g> c correspond
to the proton being the composite of three quarks, cf. [212]). The inner product is used
to describe particles with half-integer spin (fermions).

2.4.1 Algebras

Definition: An algebra &/ over 1C is a linear space, in which a distributive and associa-
tive multiplication (product) is defined.

More explicitly, this means there to every ordered pair (a, b) of elements a and b in &/
there is a uniquely determined third element of #f associated to them, which is denoted
ab, such that for all a, b, c € stf and a, /3 G K one has:

(i) (aa + /3b)c = a(ac) + ft (be) and c(aa + ftb) = a(ca) + ft(cb), and

(ii) a(bc) = (ab)c.

Homomorphisms: A homomorphism (p : ̂  —> SB from an algebra stf to an algebra
38 is a linear map which respects the product, i.e., one has

Isomorphism: An algebra stf is said to be isomorphic to another algebra 38, if there is
a bijective homomorphism (f : &f —> SB. Bijective homomorphisms are called isomor-
phisms.

Isomorphic algebras can, for all practical purposed, be viewed as identical objects.
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2.4.2 Calculations with multilinear forms

Let X, Y, Z and Xi,. .., Xn, YI, . . . , Ym denote linear spaces over K.

Bilinear forms: A bilinear form is a map B : X x Y — > Z, which is linear in each
argument separately, i.e., for which

for all u, w £ X, v, z E Y and a, /3 6 K.

Products: If we set uv :— B(u, v), then we get a product between elements of the linear
spaces X and Y with values in the linear space Z.

Special properties: Let B : X x X —> Z be a, bilinear form, in the special case in
which X = Y.

(i) B is called symmetric, if B(u,v) — B(v,u) for all u, v € X.

(ii) B is called anti-symmetric, if B(u, v) = —B(v, u) for all u, v e X.

(iii) B is said to be non-degenerate, if B(u, v) = 0 (or B(v, u) = 0) for all v € X implies
that u = 0.

Multilinear forms: A n-multilinear form is a map

M : Xi x . . . x Xn —> K,

which is linear in each argument. The number n is called the degree of M.

If we set u\ui • • -un := M(UI, ... ,un), there we get a product on the n-fold Cartesian
product.

Symmetry properties: A given n-linear form M : X x • • • x X —> Z is said to
be symmetric, if M(m,...,un) is invariant under an arbitrary permutation of its n
arguments.

M is said to be anti-symmetric, if M(UI, . . . , un) is invariant under an even permutation
of the n arguments, and under an odd permutation, M gets multiplied by (—1).

Determinants: Let A : X —> X be a linear operator on a n-dimensional linear space
X over K. Then one has

M(Aui,..., Aun) — (det A}M(u\,..., un)

for all anti-symmetric n-linear forms M : X x • • • x X —> K and all u\,..., un 6 X.

The tensor product of multilinear forms: Let M : X\ x • • • x Xm —> K be a
m-linear form, and N : Y\ x • • • x Yn —> K be a n-linear form. Through the formula

for all Uj G Xj and v^ G Yk one obtains a (ra + n)-linear form

which is called the tensor product of M and N.
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Properties: For arbitrary multilinear forms M, N, K and arbitrary numbers a, (3 G K,
one has:

(i) (aM+ftN)®K = a(M®K}+p(N®K) and K®(aM+f3N] = a(K®M)+(3(K®N),

and

(ii) (M®N)®K = M®(N®K).

In (i) M and TV must of course have the same degree for the formula to make sense.

2.4.2.1 Anti-symmetric multilinear forms

The exterior product: Let X be a linear space over K. By £/q(X) we denote the set
of all anti-symmetric q-linear forms

Moreover we set £/°(X) :— IK. The space s/q(X] is naturally a linear space over K.

For M <E s f q ( X ) and N G f ^ p ( X ) with q,p > 1 we define

for all HI, ..., un G X. The summation is extended over all possible permutations TT of
the indices with TT(!) < 7r(2) < • • • < 7r(q) and 7r(g + ! ) < • • • < 7r(g + p). We denote by
sgnvr the sign of a permutation TT.

The anti-symmetric (p + q)-linear form M A N which is obtained in this manner is called
the exterior product of M and N. One has M A N e

For a, /? e K and M 6 ̂ (X) with <j > 1 we define

The development theorem of determinants then yields

Similarly one gets the same expression for ((a A 6) A c)(u, v,w). This gives rise to an
associative law

Example 1: In case q = p = I one has

If q = 1 and p — 2, then we get

Example 2: Let a, 6, c G X*. Then we get
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We also abbreviate this by writing

If we use the tensor product, then we have the relation

and

This corresponds to the sum over all permutations of a <g> b <8> c, each permutation added
with its sign.

Properties: For all anti-symmetric multilinear forms M, N and K of degree > 0 and
all numbers a, (3 G K we have:

In (i) it is assumed that M and N have the same degree. In (iii) we let q = deg M and
p = deg N. This graded multiplication rule says that the commutativity or anticommu-
tativity of the product M /\ N depends on the degrees of the factors.

The algebra stf(X}: The exterior direct sum

is with respect to the A-multiplication an algebra over K, which one calls the algebra
of anti-symmetric multilinear forms over X. This algebra is graded by the linear spaces
g?p(X). The elements of £?(X) are sums

MO + MI + M2 + . . .

with Mq e <stfq(X), where at most finitely many of the Mq are non-vanishing. The sum
and A-product are formed in the usual manner, taking care of the order of the factors.

Example 3:

Because MQ, NQ € K, this expression is equal to MoNo + M0Ni + NoMi + MI A A/I.

Finite-dimensional spaces: Let 61, . . . , bn be a basis of X. The basis which is dual
to this in X* is denoted 6 1 , . . . , 6n, i.e., we have

for all a i , . . . , an e K. Then one has
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for all j, k = 1 , . . . , n. In particular,

Example 4'- For n = 2 and g = 2, all elements of £/2(J0 are of the form

with arbitrary numbers a, /3 G K. This means that dim=e/2(X) = 1. One can also write
M uniquely in the form

where ajk is anti-symmetric with respect to the indices, i.e., one has o^ G IK and

Example 5: In case dimX = n, the form

is anti-symmetric with respect to all indices. All products in (2.51) with j\ < ji < • • • <
jq and jk = 1,. • • , n for all k form a basis of stfq(X\ and one has

Each M G stfq(X] can be written uniquely in the form

where a... are elements of K and are anti-symmetric with respect to all indices. Here th<
Einstein summation convention is being used, whereby like indices which occur both a;
superscripts and as subscripts are summed over.

Under a change of basis the coefficients a... of M transform like a g-covariant, anti-
symmetric tensor (cf. [212]).

Applications to differential forms in W1: Let X — Rn. We choose the natura
(canonical) basis

61 := (1,0, . . . ,0 ) , . . . , bn := (0,0, . . . , ! )

in Rn. The dual basis is denoted

i.e., for all a x , . . . , an G R one has:

dxj(otib\ + ... + anbn) — QJ, j = 1 , . . . , n.

In all the formulas of Example 5 one just replaces the symbols V by dx-7. Then one
refers to M in (2.52) as a differential form of degree q (with constant coefficients).

Qjfc = -Oikj for all j, k.

dx1,...,dxn,
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Differential forms of this kind play a fundamental role in modern analysis and geometry
(cf. [212]).

Example 6: In R2 the canonical basis consists of b\ := (1,0) and 62 := (0,1). The dual
basis dx1, dx2 is determined by the rule

For all u, v € R2, one has

and This yields

From this it follows that

All A-products with more than two factors vanish.
The two-dimensional space J2/1(R2) consists of the linear combinations

while the one-dimensional space £/2(R2) consist of the expressions ^(dx1 A dx2) with
5 G R. The algebra <e/(R2) consists of all expressions of the form

2.4.2.2 Covariant and contravariant tensors

Tensors play a fundamental role in differential geometry and in mathematical physics
(cf. [212]).

Tensors: Let X be a finite-dimensional linear space over K. The set ^(X) consists
by definition of the set of all multilinear forms

where the space X occurs in the Cartesian product q times and the dual space X* occurs
p times. The elements of ^j'(X) are referred to as q-covariant, p-contravariant tensors
on X. Moreover one sets £?§ := K.

Tensor products: For all M <E &q
p(X) and N € ^(X) with p + q > I and r + s > 1

we define the natural product ("natural" meaning independent of any choices)

for all Uj € X and Vk €E X*. This is the usual tensor product, where however the
arguments are arranged in such a way that first the elements of X, then the elements of
X* occur in the product. Moreover, let
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with p, q > 0. In general one has:

From and it follows that

Einstein summation convention: In what follows we shall always be assuming sum-
mation over like sub- and superscripts (upper and lower indices). This summation will
be from 1 to n.

Basis representation: Let 6 j , . . . , bn be a basis over K of the linear space X. Every
tensor M G ̂ j'(X) with p + q > 1 can be written uniquely in the form

with coefficients t'" in K. Here ft1,..., bn denotes the basis which is dual to & i , . . . , bn

In (2.53) we identify bj with the linear form bj(u*) := u*(bj] for all u* € X*.

Change of basis: For a basis transformation

one has the transformation formula

for the dual basis. Here A% is uniquely determined as a solution of the system of
equations

Theorem: The coordinates of a tensor transform under a change of basis the
same way as

Example 1: Then with

Contraction: From M in (2.53) one gets a new tensor, by setting one of the upper
indices equal to one of the lower ones in the coordinate t" (for example j ) , and then
eliminating the basis vectors bj and V from the linear combination. This operation is
independent of the chosen basis and is referred to as the contraction of M on the index
3-
Example 2: From M one gets

The algebra of covariant and contravariant tensors: The (outer) direct sum

becomes an algebra with the operations + and

Example 3: From and it follows that

and
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2.4.3 Universal products

2.4.3.1 The tensor product of linear spaces

Let X and Y be linear spaces over K. To every u G X we associate via

a linear form on X*. Similarly we define linear forms on Y*. By

we denote the ®-product of these linear forms, i.e., we have the relation

The tensor product X <g> Y: The set of all finite sums

with Uj £ X, Vj 6 Y for all j and k = 1,... forms a linear space over K, which is called
the tensor product of X and Y.
Two sums of the form (2.55) are by definition identical, if they have the same values as
bilinear forms. This can occur for quite different linear combinations.
Basis theorem: If t t i , . . . , Uk are linearly independent in X and « i , . . . , vm are linearly
independent in Y, then the set of all products

are linearly independent in X <8> Y. Moreover, these products form a basis of X <8> Y, if
MI , . . . , Uk is a basis of X and v\,..., vm is a basis of Y.
The tensor product Xi <g> X^ ® • • • <8> %,.: If Xi , . . . , Xr are linear spaces over K, then
X\ ® • • • <8> Xr denotes the set of all finite sums of terms of the form

with Uj £ .Xj for all j. This space is called the tensor product of the Xj, j = 1, . . . , r.
The basis theorem above for two spaces holds analogously for r factors, and one has

The product on the right is by definition zero if one of the factors (i.e., one of the
dimensions dimXj) vanishes.
The universal property of the tensor product: Let X ± , . . . , Xn and Z be linear
spaces over K. If M : X\ x • • • x Xn —> Z is an n-linear mapping, then there is a linear
map L : Xi ® • • • ® Xn —> Z with

for all Uj 6 Xj, j = 1,..., n. In this manner all products u\u-2 • • • un := M(u\,..., un)
can be reduced to the tensor product.26

26 The tensor product of linear spaces can equivalently be described in terms of factor spaces (cf.
[212]).
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Complexification of a linear space: If X is a real linear space, then one calls the
tensor product X ® C, a complex linear space, the Complexification of the real linear
space X. Because u ® (a + /3i) = (aw) ® 1 + (/3u) ® i, X ® C consists of all expressions
of the form

with u, v € X. One has u ® l + D ® i = u ' ® l + i / < 8 ) i i f and only if u = u' and v = v'.
The formula ip(u) := u ® 1 gives rise to a injective linear map if : X —> X ® C. Hence
u can be identified with u ® 1. Moreover, one has dim(X ® C) = dim X (note that on
the left hand side we are talking about dimensions of complex vector space, on the right
hand side of real ones).

2.4.3.2 The tensor algebra of a linear space

Let X be a linear space over K. We denote by ®PX the p-fold tensor product of X with
itself, i.e., X ® • • • ® X. Moreover we set ®°X := K. The outer direct sum

consists of all finite sums MO + MI + • • • of p-linear forms M : X x • • • x X —> K, for
which a ®-product is defined in 2.4.2. In this way ®(X) becomes an algebra over K,
which is called the tensor algebra (over K) of the linear space X.

Example: For u, v, w € X one has

(2 + u) ® (3 + v ® w) = 6 + 3« + 1v ® w + u ® v ® w.

2.4.3.3 The exterior product of a linear space (Grassmann algebra)

The exterior product: Let X be a linear space over K. For u, v e X we let

denote the A-product in the sense of linear forms as in (2.54), i.e., such that

for all u*, v" 6 X". This means ut\v = u®v — v®u.

The exterior product X A X: The set of all finite sums

with «,-, Vj e X for all j and k = 1,... forms a linear space over K, which is called the
exterior product of X with itself.

X A X is the subspace of X <g> X consisting of exactly the anti-symmetric bilinear forms
M:XxX—>Kof*®X.

Basis theorem: If MI, ... ,Uk are linearly independent in X, then all the products
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with i < j and i, j = 1,..., k are linearly independent. If u i , . . . , u& in fact form a basis
of X, then the products in (2.56) form a basis of X A X.

The exterior product ApJf: Let p = 2,3,... The set of all finite sums of products of
the form

form a linear space over K, which is called the exterior product f\pX.

Moreover we set f\°X := K and /\1X := X.

Basis theorem: If ui,..., u* are linearly independent in X, then the set of all prod-
ucts of the form (2.57) with ji < J2 < • • • < jp and ji,...,jp — 1,..., fc are linearly
independent. If 111,..., UK forms a basis of X, then the products of the form (2.57) form
a basis of f\pX.

Criterion for dependency: The elements u j , . . . , un in X are linearly independent if
Ui A • • • A un = 0.

The universality of the exterior product: If X and Z are linear spaces over K,
and M : X x • • • x X —> Z is an anti-symmetric p-linear form, then there is a linear
mapping L : f\pX —» Z with

The exterior algebra: The outer direct sum

consists of all finite sums MQ -I- MI -I of anti-symmetric p-linear forms Mp : X x • • • x
X —> K, on which a A-product is defined in 2.4.2. In this manner /\(X) becomes an
algebra over K, which is called the exterior algebra of the space X.

If X is finite-dimensional with dim X = n, then

Example: For u, v, w £ X one has

(2 + u) A (3 + v A w) = 6 + 3u + 1v A w + u A v A w.

2.4.3.4 The inner algebra of a linear space (Clifford algebra)

Let X be an n-dimensional linear space over K, and B : X x X —> K a bilinear form
on X. Our goal is to introduce the so-called inner multiplication u V w on X with the
property

for all u, w 6 X. In addition, it should hold that

for all



660 2. Algebra

Clifford algebras play a central role in modern physics, in order to describe the spin of
elementary particles (cf. 3.9.6).

Existence theorem: There is an algebra ^(X) over IK, whose multiplication is denoted
by V, such that the following conditions are satisfied:

(i) <#(X) contains K and X and (2.58) and (2.59) hold.

(ii) If 61, . . . , bn is a basis, then the ordered products

form a basis of ^(.X"), if i\ < i% < • • • < ir and ik = 1 , . . . , n for all k.

From (ii) we see that every element of ^(X) can be written as a linear combination of
elements as in (2.60) with uniquely determined coefficients in K. The number of these
elements is 2n. Hence we have

Uniqueness theorem: The algebra ^(X) is uniquely determined up to isomorphism
by the conditions (i) and (ii). We call 'tf(X) the Clifford algebra of X with respect to
the bilinear form B(., .).

Universal property of the Clifford algebra: Let stf be an algebra over K, whose
multiplication we denote by V, such that K and X are contained in sf and the multi-
plication rules (2.58) and (2.59) hold.

Then there is an algebra homomorphism from ^(X) to st.

Example 1 (quaternions): Let 61, 62 be a basis of R2. Then the Clifford algebra ^(R2)
consists of all expressions of the form

with a, /3,7,5 € R. The multiplication table is given by the rules

The sum is formed in the natural way.

In the special case that B ( b j , b k ) = — 6jk, one has

In this case the algebra ^(R2) is isomorphic to the space of quaternions H. Classically,
the quaternions (R. Hamilton's claim to fame) are given by the elements

with Q, /3,7, <5 G M, together with the multiplication table

The isomorphism of ^(R2) to H is obtained by mapping 61 i—> i, 62 >—> j, b\ V 62 •—* k.

Example 2 (Grassmann algebra): Let bi,... ,bn be basis of a linear space X over K. If
we choose B = 0 (i.e., B(bj,bk) = 0 for all j, k), then in the Clifford algebra ^(X) we
have the multiplication rule

i 2 = j 2 = k 2 = -l
ij = -ji = k, jk = -kj = i, ki = -ik = j.

bj V bk + bk V bj = 0 for all j, A; = 1,. . . , n.
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^(X) is isomorphic to the Grassmann algebra A(X), simply by replacing the V product
symbol by A.

Example 3 (the spinor algebra of Dirac): Let bi,... ,64 be a basis of a complex linear
space X. We choose the Minkowski metric

and set B ( b j , b k ) •'.= Qjk- In the corresponding Clifford algebra ^(X) one then has the
multiplication rule

^(X) is isomorphic to the algebra M(4,4) of complex (4 x 4)-matrices. This isomorphism
is given by the map bj i—» jj, where the V-product is replaced by the matrix product.
In particular one has

with the Pauli matrices

and the Dirac matrices

These matrices play a fundamental role in the formulation of the Dirac equation for
the relativistic electron. Prom the Dirac equation, the spin of the electron follows as a
property of the solution (cf. 3.9.6).

2.4.4 Lie algebras

Definition: A Lie algebra over K is a linear space ^£ over K, in which for every ordered
pair (A, J5) of elements in *£ there is an element in jSf, denoted [A, B] and referred to
as the bracket of A and £?, such that for all A, B, C £ ^f and a, fl € K, one has:

(i) [aA + pB, C] = a[A, C] + P[B, C] (linearity),

(ii) [A,B] = — [B, A] (anti-commutativity), and

(iii) [A, [B, C]} + [B, [C, A]] + [C, [A, B}} = 0 (Jacobi identity).

The Jacobi identity (iii) is a replacement for the missing associativity of the Lie product
[A,B].

Example 1: If gl(X) denotes the set of all linear operators A : X —> X on a linear
space X over K, we can make gl(X) to a Lie algebra over K by defining the product as

[A, B] := AB - BA. (L)

Example 2: The set gl(n, R) of all real (n x n)-matrices is a real Lie algebra over R with
respect to (L).

bjVbk + bk^bj = 2gjk, j,k = 1,2,3,4.
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The Virasoro algebra: Let C°°(Si} denote the linear space27 of all functions / :
Sl —> C on the unit circle S1 := {z 6 C : \z\ = 1}, which are holomorphic in a
neighborhood of the origin. We set

If W denotes the complex linear hull of all Ln, then W is with respect to the bracket

an infinite-dimensional complex Lie algebra. One has [Ln,Lm] = LnLm — LmLn.

We choose an one-dimensional complex linear space Y := span{Q}. Then the outer
direct sum Vir := W © Y with respect to the product

becomes an infinite-dimensional complex Lie algebra, which is called the Virasoro alge-
bra; this is a central extension28 of W.

The Virasoro algebra plays an exceptionally important role in modern string theory and
conformal theory.

The Heisenberg algebra: Let X be a complex linear space which is the linear
hull of linearly independent elements b, ao,a±i,o±25 • • • Then X becomes an infinite-
dimensional complex Lie algebra by means of the bracket

which is called the Heisenberg algebra.

A number of important Lie algebras and applications of these to geometry and modern
high-energy physics is contained in [212].

2.4.5 Superalgebras

A superalgebra is an algebra sf with a decomposition jz/ = JZ/Q © sf\, such that the
product in st respects the grading, i.e., one has

(a) From u, v e JZ/Q it follows that uv e £/0.

(b) From u, v € s#\ it follows that uv € £/Q.

(c) From u € J^o, v €. £&i or u €. £?i, v 6 sfo it follows that uv € s#\.

A superalgebra is said to be supercommutative, if

Supercommutative algebras play an important role in the modern supersymmetric the-
ory of elementary particles. The commutative elements in S#Q correspond to bosons

27The linear structure is the natural one: the sum of two such functions is the function whose value
is the sum, i. e., (/ + g)(z) = f(z) + g(z), and similarly with scalar multiplication. The reader may
easily verify all the necessary properties for this to make C°°(Sl) a linear space.

28This abstract notion is a standard one in the theory of algebras; in the case at hand it is defined
precisely by the expressions in (Vir) involving Q.
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(particles with integer spin, for example photons) and the anti-commutative elements in
M correspond to the fermions (particles with half-integer spin, for example electrons).

Example: The Grassmann algebra is made into a supercommutative superalgebra by the
gradation

2.5 Algebraic structures

Real numbers can be added and multiplied. Operations of this sort can however be
declared for many other mathematical objects. This leads to the notions of group, ring
and field, which arose in the context of the solutions of algebraic equations and the
solution of number theoretic as well as geometric problems in the nineteenth century.

2.5.1 Groups

Groups are sets on which a product gh (of elements g, h of the set) has been declared.
One uses groups to describe the geometric phenomenon of symmetry mathematically.

Definition: A group G is a set, in which there is a product gh (also referred to as
the group operation) assigned to any ordered pair (g, h) of elements in G, such that the
following hold:

(i) g(hk) = (gh)k for all g, h, k e G (associative law).

(ii) There is exactly one element e such that for all g 6 G, the relation eg = ge = g is
satisfied (neutral element).

(iii) For every g e G there is exactly one element h G G with gh = hg = e. Instead of h
one writes for this element g~l (inverse element).

A group G is said to be commutative (or Abelian), if the commutative law gh = hg is
satisfied for all <?, h £ G.

Example 1 (groups of numbers): The set of all non-vanishing real numbers forms, with
respect to multiplication as the product, a commutative group, which is called the
multiplicative group of real numbers.

Example 2 (matrix groups): The set GL(n,R) of all real (n x n)-matrices A with non-
vanishing determinant form, with the usual matrix multiplication AB as the group
operation, a group; this group is non-commutative for n > 2. The neutral element in
this group is the identity matrix E. This group is referred to as the general linear group
(over R), hence the notation.

Symmetry (rotation group): The set @ of all rotations around a fixed point O of
three-dimensional space form a non-commutative group, which is referred to as the
three-dimensional rotation group. The group operation is given by the composition of
two roations (see below). The neutral element is the transformation which acts trivially
on all points, while the inverse of a rotation is the inverse rotation.

The intuitive symmetry group of a ball B with center at O can be described group-
theoretically as the set of elements of 2> which map B into itself.

Transformation groups: If X is a non-empty set, the set of all bijective maps g :
X —> X forms a group G(X). The group operation corresponds to the composition of
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maps, i.e., for g, h E G(X), and all x E X,

(gh)(x) := g(h(x)).

The neutral element corresponds to the identity map id : X —> X with id (or) = x for
all x E X. Moreover, the inverse element g~l of g is the inverse map (see 4.3.3), which
exists because g is bijective.

Permutation groups: Let X = {1,..., n}. The set of all bijective maps TT : X —> X
is called the symmetric group and denoted 5?n. One also refers to ,5^n as the permutation
group on n letters. Every element TT 6 5fn can be represented by a symbol

which tells us that the element k is mapped under vr to ik, i.e., 7r(fc) = i& for all
k. The product of two permutations T^TTI corresponds to the composition of the two
permutations, i.e., first -K\ is applied to X, then 712. The neutral element e and the
inverse element TT~I to TT are given by

The number of elements29 of ̂ n is n\ In the special case in which n = 3, one gets for
example for the two elements

the product

since ir\ maps 1 to 3 and 7T2 maps 3 to 2, i.e., (vr27ri)(l) = 7T2(7Ti(l)) = 7^(3) = 2. For
n > 2 yn is not commutative.

Transpositions: A transposition (km) with k ^ m is the permutation which maps k
to m and m to k, fixing all other elements of X. Every permutation TT can be written
(in more than one way!) as a product of r transpositions, where r is either even or odd
(i.e., independent of the particular choice of product decomposition). Therefore we can
define the sign of TT by the rule

For one has

In the sense of section 2.5.1.2 this means that the map TT H^ sgnTT is a homomorphism
of the permutation group 5?n to the multiplicative group of real numbers.

A permutation TT is even (resp. odd), sgnvr = 1 (resp. sgn?r = — 1). Every transposition
is odd.

29For a finite group G, the number of elements in the group is called the order of the group and
denoted ord G.
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Cycles: Let (abc) denote the permutation which maps a to b, b to c and c to a, fixing
the rest of X. One says that this element cyclically permutes the set {a, b, c}. Similarly
one can define a cycle (z\zz • • • Zk). Every permutation TT can be written uniquely (up
to a reordering) as a product of cycles. For example one gets for the 3! = 6 elements of
^3 as the following cycles:

(1), (12), (13), (23), (123), (132).

2.5.1.1 Subgroups

Definition: A subset H C G of a group G is called a subgroup, if H is a group with
respect to the multiplication induced on H by the multiplication in G. This is equivalent
to the condition that for all g, h e H, one has gh~l e H (closure of the operation).

Normal subgroups: A normal subgroup H of G is a subgroup H of G which the
additional property that

The group G itself, as well as the trivial subgroup {e} are always normal subgroups;
these are referred to as trivial normal subgroups.

Every subgroup of a commutative group is normal (since ghg~l = gg~lh = h e H).

Simple groups: A group G is said to be simple, if it has only the trivial normal
subgroups.

Example 1: All positive real numbers form a subgroup (in fact a normal subgroup) of
the multiplicative group of all non-vanishing real numbers.

The order theorem of Lagrange: The order (defined in the last footnote) of every
subgroup of a finite group is a divisor of the order of the group.

Example 2 (permutations): The set of even permutations of 5^n form a normal subgroup
stfn, which is called the alternating group on n letters. For n > 2 one has

(i) The group ^2 consists of the elements (1), (12) and has only the trivial norim
subgroups £&2 = (1) and itself,

(ii) The six subgroups of ̂  are:

(1), (12), (13), (23), (123), (132), (1),
(1), (123), (132),

(1), (12) (1), (13) (1), (23).

Here j#3 is the only non-trivial normal subgroup of

(iii) 5?^ has ̂  and the commutative Klein four-group:

(1), (12)(34), (13)(24), (14)(23)

as normal subgroups.

(iv) For n > 5, £?n is the only non-trivial normal subgroup of J^, and the group £/n is
simple.
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Additive groups: An additive group is a set G with an operation associating to every
ordered pair (g, h) of elements in G a sum g + h e G, such that

(i) g + (h + k) = (g + h) + k for all g,h,k £ G (associative law).

(ii) There is precisely one element, denoted 0, such that for all g € G we have 0 + g —
g + 0 = g (neutral element).

(iii) For every g G G there is exactly one element h e G such that h + g — g + h = 0.
Instead of h we write for this element —g (inverse element).

(iv) g + h = h + g for all g, h £ G (commutative law).

Hence an additive group is nothing but a commutative group in which the group oper-
ation is written + and the neutral element is written 0.

Example 3: The set R of all real numbers is an additive group with respect to the usual
addition. The set Z of integers is an additive subgroup of M.

Example 4: Every linear space is an additive group.

2.5.1.2 Group homomorphisms

Definition: A homomorphism30 between two group G and H is a map (f : G —> H
which respects the group operations in both groups, i.e., for which

for all g, h e G.

The bijective homomorphism are referred to as group isomorphisms.

Two groups G and H are said to be isomorphic, if there is an isomorphism tp : G —>• H.
Isomorphic groups have the same structure and may be identified.31

Surjective (resp. injective) homomorphisms are also referred to as epimorphism (resp.
monomorphisms). An automorphism of a group G is an isomorphism of G to itself.

Example 1: The group G := {!,—!} is isomorphic to the group H := {E, —E} with

The isomorphism (p : G —> H is given by y(±l) := ±E.

Group symmetries: With respect to the composition, all automorphisms of a group
G form a new group, which is called the automorphism group of G and denoted Aut(G).
This group describes the symmetries of the group G.

Inner automorphisms: Let g be a fixed element of a group G. We set

Then (pg : G —> G is an automorphism of G. The set of all such automorphisms is
referred to as the set of inner automorphisms of G.

The inner automorphisms of G form a subgroup of Aut(G). A subgroup H of G is
normal if and only if it is mapped by all inner automorphisms into itself. This is just a
restatement of the definition.

30 In the language of category theory (cf. [212]) this is a morphism in the category of groups.
31 In the language of category theory, isomorphic groups are equivalent objects in the category of

groups.
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Factor groups: Let N be a normal subgroup of a group G. For g, h 6 G we write

if and only if gh 1 6 N. This is an equivalence relation on the group G (cf. 4.3.5.1).
The equivalence classes are denoted by [</], and defining an operation by

this set of equivalence classes acquires the structure of a group32, which is called the
factor group of G modulo N, and denoted G/N. In the case of an additive group we
write g ~ h if and only if g — h 6 N. In this case the group operation on G/N is given
by(g} + (h]:=[g + h}.

Example 2: Let G be the multiplicative group of real numbers, and let N := {x € 1R | x >
0}. Then one has g ~ h if and only if g and h have the same sign. Hence G/N has one
element for each sign, [1] and [—1]; the multiplication table is [!][—!] = [—1], etc. This
means that G/N is isomorphic to the group {!,—!}.

If TV is a normal subgroup of a group G, then one has

The importance of factors groups lies in the fact that they describe (up to isomorphism)
all epimorphic images33, as seen in the following result.

Structure theorem for group homomorphisms: (i) If <p : G —> H is an epimor-
phism of groups, then the kernel, defined as ker (p := i p ~ l ( e ) , is a normal subgroup of G
and one has the isomorphism

(ii) If, conversely, N is a normal subgroup of G, then the map denned by

is an epimorphism tp : G —> G/N with ker<^ = N.

In particular, a group G is simple if and only if every epimorphic image of G is isomorphic
to either G or {e}, in other words, when G has only trivial epimorphic images.

Example 3: Let Z be the additive group of integers. A group H is an epimorphic image
of Z if and only if the group is cyclic (cf. 2.5.1.3).

First isomorphism law for groups: If TV is a normal subgroup of a group G and H
is a subgroup of G, then TV n H is normal subgroup of G, and one has the isomorphism

Here we have set HN := {hg \ h 6 H, g e N}.

Second isomorphism law for groups: Let N and H be normal subgroups of G with
N C H C G. Then H/N is normal subgroup of G/N and one has an isomorphism

32The definition [g][h] does not depend on the choice of representatives of the equivalence classes [g]
and [/], as is easily seen.

33 An epimorphic image is the image of G under some epimorphism.
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2.5.1.3 Cyclic groups

A group G is said to be cyclic, if every element g € G can be written in the form34

The element a is called the generating element or generator of G.

(i) If an ^ e for all natural numbers n > 1, then G contains infinitely many elements,

(ii) If an = e for some natural number n > 1, then G consists of finitely many elements.
To every natural number m > 1 there is a cyclic group of order m.

Two cyclic groups are isomorphic if and only if they have the same number (finite or
infinite) of elements. The isomorphism is given by an i—> bn, where a and b denote the
corresponding generators.

Theorem: (a) Every cyclic group is commutative.
(b) Every finite group of prime order35 is cyclic.

(c) Two finite groups of the same prime order are cyclic and isomorphic to each other.
Example 1: A cyclic group of order 2 consists of the elements e and a with

a2 = e.

Then one has a 1 = a. A cyclic group of order 3 consists of elements e,o, a2, where
a3 = e. From this it follows that a"1 = a2 and a~2 = a.

Example 2: The additive group Z of integers is an infinite additive cyclic group, which
is generated by the element 1. Any infinite cyclic group is isomorphic to Z.

Example 3: An additive cyclic group of order m > 2 can be displayed by the symbols
0, a, 2a, . . . , (m — l)a; in this group we generally do calculations in the natural manner,
taking

ma = 0

into account.36

Main theorem on additive groups: Let G be an additive group with finitely many
generators a i , . . . , as G G, i.e., every element g E G can be written as a linear combina-
tion m\ai + • • • + msas with integral coefficients mj. Then G is a direct sum37

of (finitely many) additive cyclic groups Gj. Moreover, we have

(i) GI , . . . , Gr are isomorphic to Z, and

(ii) G r+i , . . . , Gr-if-a are cyclic of the finite orders r r + i , . . . , rr+s, where TJ divides TJ+I
for all j. One refers to r as the rank of the cyclic group G, and r r+i, . . . , rr+s are called
the torsion coefficients of G.

34We set a° := e, a~2 := (a"1)2, etc.
35 This means the order of the group is a prime number.
36This group is isomorphic to the Gaussian residue class group Z/mZ (cf. 2.5.2).
37This means that every element g G G has a unique decomposition g = g\ + • • • + gs with gj £ Gj

for all j.
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Two additive groups are isomorphic if and only if they have the same rank and the same
torsion coefficients.
In classical combinatorial topology, groups G of this kind occur as Betti groups (ho-
mology groups). In this case the rank r is also referred to as the Betti number of G.

2.5.1.4 Solvable groups

Solvable groups: A group G is said to be solvable if and only if there is a sequence

of subgroups Gj of G with GO = {e}, and for which, for all j,

GJ is a normal subgroup of GJ+I and Gj+i/Gj is commutative.

Example 1: Every commutative group if solvable.
Example 2 (permutation groups):
(i) The commutative group ̂  is solvable by Example 1.
(ii) The group ̂  is solvable. Take {e} C ̂ 3 C JT^ as the sequence of subgroups.
(iii) The group J^ is solvable. Take {e} C Jff4 C ̂ 4 C ̂ 4 as the sequence.

Note that ord(^/s) = 3, ord^/ja^) = 2 and ord(^/4/<J^4) = 3. These are prime
numbers. Therefore these groups are all cyclic and hence commutative by the theorem
in the previous section.

(iv) The group 6^n is not solvable for n > 5. This is caused by the simplicity of &?§.

By Galois theory, these statements are responsible for the fact that algebraic equations
of order > 5 are not solvable by radicals (cf. 2.6.5).

2.5.2 Rings

In a ring both the sum a + b and the product ab of two elements are defined. In rings
one has a theory of divisibility (cf. 2.7.11).
Definition: A set R is called a ring if R is an additive group and for every ordered pair
(a, b] with a, b e R there is an element ab e R, such that for all a, 6, c 6 R one has:

(i) a(bc) = (afr)c38 (associative law).

(ii) a(b + c) = ab -\- ac and (b + c}a = ba + ca (distributive law).
The ring R is commutative if, moreover, for all a, b 6 R, ab = ba.

If the ring R has an element e such that ae = ea = a for all a € R, then the element e
is uniquely determined by this property and is called a unit and R is called a ring with
unit.

A zero divisor a in a ring R is an element a ^ 0 such that for some element 6 ^ 0 ,
ab = 0.

Integral domains: The commutative rings with unit and with no zero divisors are
called integral domains.

38In the expression a(bc) the brackets indicate that one first performs the multiplication fee, then
multiplies the result from the left with a.
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Example 1: The set Z of all integers is an integral domain (thus the name).

Example 2: The set of all real (n x n)-matrices form a ring with the unit matrix E as
unit. For n > 2 this ring is not commutative and has zero divisors. For example, for

yields the zero element although both factors are non-trivial.

Subrings: A subset U of a ring is called a subring of R if U (with the operations induced
on it by those of R) is itself a ring. This is the same thing as requiring a — b G U and
abEU for all a,beU.

Ideals: A subset J of a ring R is called an ideal, if J is a subring with the following
additional property:

From r G R and a 6 J it follows that ra e J and ar € J.

Example 3: All ideals of Z are obtained in the form mZ := {mz z € Z} for an arbitrary
natural number m.

The ring of polynomials P[x]: Let P be a ring. We denote by P[x] the set of all
expressions of the form

ao + a\x + a^x2 + . . . + a^xk

with k = 0, 1, . . . and a^ G P for all fe. With respect to the addition and multiplication
of polynomials, P[x] is a ring, referred to as the polynomial ring (in one variable x).

If P is an integral domain, then the polynomial ring P[x] is also.

Ring homomorphisms: A homomorphism ip : R — > S between two rings R and S is
a map which respects both operations in the rings, i.e., for which

f(ab) = tf(a)(p(b} and ip(a + b) = ip(a) + Lp(b] for all a, b e -R.

The bijective homomorphisms are referred to, just as in the case of groups, as isomor-
phisms.

Surjective (resp. injective) homomorphisms are called epimorphisms (resp. monomor-
phisms). A ring automorphism is an isomorphism of a ring to itself.

Factor rings: Let J be an ideal of the ring R. For a, b 6 R we write

if a — c € J. This is an equivalence relation on the ring R (cf. 4.3.5.1). The corresponding
equivalence classes are denoted [a]; the set of all these equivalence classes forms a ring
with the operations

[a][6]:= [06] and [a] + [b] := [a + b];

this ring is called the factor ring and is denoted R/J.39 The elements [a] of the factor
ring are also called residue classes, and the factor ring itself is in some cases referred to
as the residue class ring.

39 As always, it must be verified that the definitions of [a][b] and [a] + [b] do not depend on the choice
of representatives (here a and b).

n = 2, the product



2.5. Algebraic structures 671

The Gaussian residue class ring Z/mZ: Let Z be the additive ring of integers, and
choose some m 6 Z, m > 0. Consider the ideal mZ. Then we have

if and only if z — w e raZ, i.e., the difference z — w is divisible by m. Following Gauss,
we also use the following notation to denote this:40

z = wmodm.

For the residue classes one has [z] = [w] if and only if the difference z — w is divisible
by m. The ring of residue classes Z/mZ consists of precisely the m classes

[0],[l], . . . ,[m-l],

for which the rules
[a] + [b] = [a + 6], and [a] [b] = [ah]

hold by definition.

Example 4'- For ra = 2, the ring Z/2Z consists of the two residue classes [0] and [1]. One
has [z] = [w] if and only if z — w is divisible by 2. Hence the residue class [0] (resp. [1])
corresponds to the set of even (resp. odd) integers. The set of all operations (complete
addition and multiplicition tables) is:

[1] + [1] = [2] = [0], [0] + [0] = [0], [0] + [1] =

[!][!] = [1], [0][1] = [1][0] = [0][0] = [0].
[1] + [0] = [1],

For m = 3 the ring Z/3Z consists of three residue classes [0], [1], [2]. One has [z] = [w]
if and only if the difference z — w is divisible by 3. For example one has

[2][2] = [4] = [1].

For ra = 4 the ring Z/4Z consists of four residue classes [0], [1], [2], [3]. From the
decomposition 4 = 2 • 2 it follows that [2] [2] = [4] and hence

[2][2] = [0].

Thus, Z/4Z has zero divisors.

The residue class ring Z/mZ for m > 2 is free of zero divisors if and only if m is a prime
number. In this case Z/mZ is in fact a field (see below).

The following theorem shows that all epimorphisms of a ring can be constructed by
knowing all of the ideals of the ring.

Structure theorem for ring homomorphisms: (i) If <p : R — > S is an epimorphism
of the ring R onto the ring 5, then the kernel ker tp := <^-1(0) is an ideal of R, and S is
isomorphic to the factor ring R/ ker tp.

(ii) If, conversely, J is an ideal of R, then

defines an epimorphism <p : R — > R/J with ker<£> = J.

40This reads: z is congruent to w modulo m.
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2.5.3 Fields

Fields are rings in which multiplicative inverses exists, and the usual rules for calcula-
tions, familiar from the real numbers, hold in them. In a sense fields are the most perfect
algebraic structures. A central theme in field theory is the investigation of field exten-
sions. Galois theory reduces this investigation to the theory of the symmetry groups of
these extensions.

Definition: A set K is called a skew field, if it satisfies:

(i) K is an additive group with zero element 0.

(ii) K — {0} is a multiplicative group with unit element e.

(iii) K is a ring.

A field is a skew field for which the multiplication is commutative.

Equations: Let K be a skew field. Let elements a,b,c,d e K with a ^ 0 be given.
Then the equations

ax = b, ya = b, c + z = d, z + c — d

have unique solutions in K, which are given by x = a lb, y = ba l and z = d — c.

Subfields: A subset U of a skew field K is called a subfield of K, if U is a skew field
itself with respect to the induced operations (closure of addition and multiplication).

A subfield of K is referred to as non-trivial, if it is not equal to {e} or K itself.

Characteristic: By definition a skew field K has the characteristic zero, if

A skew field has the characteristic m > 0, if

In this case m is necessarily a prime number.

Example 1: The set R of real numbers and the set Q of rational numbers are fields of
characteristic zero. Q is a subfield of M.

Example 2: Let p > 2 be prime. Then the Gaussian residue class ring TLjpL is a field of
characteristic p (cf. 2.5.2).

Homomorphisms: A homomorphism of skew fields (p : K —> M is a homomorphism
of the corresponding rings. For all a, 6, c 6 K one then has

if c / 0. Moreover one has ip(e) = e and <^(0) = 0.

The bijective homomorphisms are referred to, just as in the case of groups, as isomor-
phisms.

Surjective (resp. injective) homomorphisms are called epimorphisms (resp. monomor-
phisms). A field automorphism is an isomorphism of a field to itself.

Prime fields: A skew field which contains no non-trivial subfields is called a prime
field.

(i) In every skew field there is precisely one subfield which is a prime field.
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(ii) This prime field is isomorphic to either Q or to Z/pZ for some prime number p.

(ii) The characteristic of a skew field is equal to 0 (resp. p), if the prime field just
mentioned is equal to Q (resp. Z/pZ).
Galois fields: The finite skew fields are also referred to as Galois fields. Every Galois
field is in fact a field.
For every prime number p and n = 1,2,... there is a field with pn elements. In this
manner one gets all of the Galois fields.
Two Galois fields are isomorphic if and only if they have the same number of elements.
Complex numbers: We will show, following Hamilton (1805-1865), that one can
construct algebraic objects which give a rigorous foundation for the theory of complex
numbers. We denote by C the set of all ordered pairs (a, b) with a, b 6 R. Defining the
operations

(a, 6) + (c, d) := (a + c, b + d)

and
(a, 6)(c, d) := (ac — bd, ad + be)

we get the structure of a field on C. If we set

i :=(0, l ) ,

then we have i2 = (—1,0). For every element (a, b) e C one has the unique decomposi-
tion41

(a,6) = (a,0) + (6,0)i.

The map <p(a) := (a, 0) is a monomorphism of R into C. Thus we may view any element
a € R as the element (a, 0) 6 C. In this sense we can write any element (a, b) uniquely
in the form

a + &i

with a, b 6 R. In particular one has

i2 = -1.

Thus we have arrived at the usual notation, showing that C contains R as a subfield.42

Quaternions: The set H of quaternions a-|-/?i+7J+£k with a, (3,7,8 6 R is a skew field,
which contains the field C of complex numbers as a subfield. For a2 + (32 + 72 + 62 ̂  0
one obtains the inverse element through

(cf. Example 1 in 2.4.3.4).
Quotient fields: Let P be an integral domain, which does not consist of only the zero
element (cf. 2.5.2). Then there is a field Q(P) with the following properties:
(i) P is contained in Q(P).

41This means that (0,6) = (6,0)i.
42 Note also that this shows that C is the complexification of the one-dimensional R-vector space R,

i.e., C = K®C (cf. 2.4.3.1).
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(ii) If P is contained in a field K, then the smallest subfield of K which contains P is
the field Q(P). The field Q(P) is called the quotient field or the field of fractions of P.

Explicitly one obtains Q(P) through the following construction. We consider the set of
all ordered pairs (a, 6) with a, b e P and 6^0. We write

if and only if

This is an equivalence relation (cf. 4.3.5.1). The set Q(P) of corresponding equivalence
classes [(a, b)] is a field with respect to the operations defined by43

[(o,6)][(c,d)]:=[(oc,M)],
[(a,6)] + [(c,d)] = [(ad + 6c,6d)].

Instead of [(a, b)] one also writes — . Then Q(P) consists of the set of all symbols
b

with a, b € P and 6^0, where the calculations with these symbols are done in the usual
way one calculates with fractions, i.e.,

if and only if ad = be

and

CLT
If we choose an r in P with r ^ 0 and set (p(a) := — > then we obtain a monomorphism

r
(p : P —> Q(P)] this is independent of the choice of r. In this sense we can identify the

CLT T
elements a of P with the elements — of Q(P). Then - is the unit element in Q(P) and
we have

As in the case of the complex numbers above, the seemingly complicated method of
using the residue classes [(a, b)] is only done to guarantee that the formal calculations
with fractions - does not lead to any contradictions.

b
Example 3: The quotient field of the integral domain Z is the field Q of rational numbers.

Example 4: Let P[x] be the polynomial ring over an integral domain P =£ {0}. Then
the corresponding quotient field Q(P[x]), which is usually denoted P(x), is the field of
rational functions with coefficients in P, i.e., the elements of P(x) are quotients

of polynomials p(x) and q(x) with coefficients in P (cf. 2.5.2), where one requires that
q 7^ 0, i.e., q(x) is not the zero polynomial.

43 Again, these operations are independent of the choices used in their definitions.
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2.6 Galois theory and algebraic equations

The Paris circles with their intensive mathematical enterprise,
produced around 1830 with Evariste Galois a genius of the high-
est quality, who, like a comet, vanished just as fast as he had
appeared.^

Dirk J. Struik

2.6.1 The three famous ancient problems

In classical Greek mathematical culture there were three famous problems, whose non-
solvability was not shown until the nineteenth century:

(i) the squaring of the circle,

(ii) the Delian problem of doubling the cube, and

(iii) the trisection of an arbitrary angle.

In all these cases only constructions utilizing a ruler and a compass are allowed. In
problem (i), one is to construct a square whose area is the same as that of some given
circle. In problem (ii), one is to construct from a given cube the length of the sides of a
new cube which has twice the volume.45

Besides these problems the general problem of constructing regular polygons with a ruler
and a compass was important in ancient times.

All of these problems can be reduced to problems concerning the solvability of algebraic
equations (cf. 2.6.6). The investigation of solutions of algebraic equations is done with
the help of a general theory which was created by the French mathematician Everiste
Galois (1811-1832). Galois theory paved the way for modern algebraic thinking.

Galois theory contains as special cases results of the young Gauss (1777-1855) on cy-
clotomic fields and the construction of regular polygons, as well as the theorem of the
Norwegian mathematician Niels Henrik Abel (1802-1829) on the non-solvability of the
general equation of fifth and higher degree through radicals (cf. 2.6.5 and 2.6.6).

2.6.2 The main theorem of Galois theory

Field extensions: A field extension K C E (which is also denoted by (E\K)) is a field
E, which contains a given field K as a subfield. Every subfield Z of E with

is called an intermediate field of the extension K C E. A chain of field extensions

is a set of subfields Kj of the field E with the indicated inclusion relations.

The tragical life of Galois, who died in a dual at the age of 21 and wrote down the most important
results of his theory on the eve of that dual in a letter to a friend, is described in the book of the student
of Einstein, Leopold Infeld, Wen die Goiter lieben (Whom the gods love), which appeared in 1954 in
the Schonbrunn-Verlag, Vienna.

45 On the Greek island Delos in the Aegean Sea one of the most famous shrines of the ancient world was
located, dedicated to Artemis and Apollo. The Delian problem supposedly originated as the problem
of constructing a shrine *with twice the volume. Giovanni Casanova (1725—1798), the protagonist in
Mozart's Don Giovanni, worked on this problem.
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The basic idea of Galois theory: Galois theory considers an important class of field
extensions (Galois extensions) and determines all intermediate fields with the help of all
subgroups of the symmetry group (Galois group) of this field extension.

In this way a field-theoretic problem (quite difficult in general) is reduced to a much
easier group-theoretic problem.

It is a general strategy in modern mathematics to reduce the investigation of compli-
cated structures to those of simpler structures. For example one can reduce topological
problems to algebraic problems (which are easier), and the investigation of continuous
Lie Groups to the study of Lie algebras, objects of linear algebra (cf. [212]).

The degree of a field extension: If K C E is a field extension, then one may view
E as a linear space over K. The dimension of this space46 is called the degree of the
field extension and is denoted [E : K}. If this degree is finite, we speak of a finite field
extension.

Example 1: The extension Q C R of the field of rational numbers to the field of real
numbers is infinite.

Example 2: The extension R C C from the field R of real numbers to the field C of
complex numbers is finite and has degree two, since it has been shown in section 2.5.3
that C may be viewed as a two-dimensional vector space over R, with basis consisting
of 1 and i.

The extension Q C R is moreover a transcendental extension in the sense of section
2.6.3, while the extension R C C is a simple algebraic extension.

The theorem on degrees: If Z is an intermediate field of a finite field extension
K C- E, then K C Z is also a finite field extension, and one has the relation

[ E : K ] = [Z : K ] [ E : Z}.

This relation is easy to remember if one thinks of the symbols as defining fractions.

The Galois group of a field extension: Let K C E be a field extension. Then the
Galois group of this extension, denoted G% or Ga\(E\K), is by definition the group of
all automorphisms of the field E which act trivially on all elements of K.

A finite field extension K C E is called Galois, if

i.e., if there are as many symmetries of E over K as the degree of the field extension.

Main theorem of Galois theory: Let K C E be a finite Galois field extension.
There there is a one-to-one correspondence between the intermediate fields Z of this
extension and the subgroups H C G^; this correspondence is such that the subgroup
H corresponding to the intermediate field Z consists of all automorphisms which fix all
elements of Z.

In this way one obtains a bijective map from the set of all intermediate fields and the set
of all subgroups of the Galois group. Note that an intermediate field Z is Galois over
K if and only if the subgroup H corresponding to it, which is isomorphic to Gj^, is a
normal subgroup of G^.

Corollary: A finite, Galois field extension K C E has no intermediate Galois field
extensions if and only if the Galois group of the extension is a simple group (see section
2.5.1.1 for this notion).

46 This is defined by using the general notions of linear algebra, replacing the field K used in section
2.3.2 with the field K.
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Example 3: We consider the classical field extension

of the field R of real numbers to the field C of complex numbers.

First we determine the Galois group Gal(C|R) of this extension. Let (p : C —> C be an
automorphism which fixes all real numbers. From i2 = — 1 it follows that <£>(i)2 = — 1.
Hence either </?(i) = i or (p(i) = —i. These two possibilities correspond to the identity
automorphism id(a + 6i) := a + bi on C and the automorphism

of C (the transition to the complex conjugate variable), respectively.

Hence G% = (id, (p} with <£>2 = id. According to Example 2

Hence the field extension C|R is Galois.

The Galois group G^ is cyclic of order two. From the simplicity of the Galois group the
simplicity of the field extension C|R follows. Note that in this case, as the cyclic group
of order two has no subgroups at all, there are also no intermediate field extensions
between R and C.

Example 4-' The equation

x2 - 2 = 0

has in Q no solutions. In order to construct a field in which this equation does have a
solution, we set i? := \/2- We denote by Q($) the smallest subfield of C which contains
both Q and &. One then has $, -i? 6 <Q(tf) and

i.e., Q is the splitting field for x2 — 2 (cf. 2.6.3 for this notion). This field consists of all
expressions

where p and q are polynomials over Q with q ̂  0. From $2 = 2 and (c + dd)(c — d-d] =
c2 — 2d2 one can reduce all of these expressions to ones of the form47

As in Example 3, we see that the field extension Q C Q($) is Galois of degree 2 and
hence simple. The corresponding Galois group

is generated by the permutations of the zeros •&, —$ of x2 — 2. The identity permutation
corresponds to the identity automorphism id (a + 6$) := a + W of Q($). On the other

47 For example we have
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hand, the transposition oft? and —19 corresponds to the automorphism (p(a+b$) := 0—67?
of

Example 5 (cyclotomic equation): If p is a prime number, then the equation

has the solution x — 1. To construct the smallest field E which contains all solutions of
this equation, we set $ := e27n/p and denote by Q(i?) the smallest subfield of C, which
contains both Q and $. Because of the relation

the field E := Q(i9) is the splitting field of the polynomial xp - 1 (cf. 2.6.3).

The field Q($) consists of all expressions of the form

which are added and multiplied in the usual manner, taking i9p = 1 into account. Since
the elements 1,$,... ,$p~l are linearly independent over Q, one has [Q($) : Q] = p.

Moreover the extension Q C Q(i?) is Galois. The corresponding Galois group GQ =
{<^o, • • • , ¥>p-i} consists of all automorphisms <pk '• Q($) —> Q($)> which are generated
by

One has id = <£o and (p\ = </?£, k = 1, . . . ,p — 1 as well as (/?f = id.

Hence the Galois group GQ is cyclic of prime order p and simple, which implies the
simplicity of the extension Q C Q(i9).

2.6.3 The generalized fundamental theorem of algebra

Algebraic and transcendental elements: Let E\K be a field extension. We denote
by K[x] the ring of all polynomials

with 0^ € K for all k. These expressions are called polynomials over K (or polynomials
defined over K}. Moreover we denote by K(x) the field of all rational functions

where p and q are polynomials over K and q =£ 0.

An element $ of E is said to be algebraic over K, if i9 is the zero of a polynomial over
K. Otherwise $ is transcendental.

The field extension E\K is said to be algebraic over K, if every element of E is algebraic
over K. Otherwise E is called transcendental over K.
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A polynomial over K is irreducible, if it is not the product of two polynomials over K,
each of which has a degree > 1. It is an important general problem in algebra to find
an extension E of the field K in which a given polynomial p(x) splits into linear factors:

p(x) = an(x - xi)(x - z2) • • • • • (x - xn)

with Xj G E for all j.

Algebraic closure: An extension field E of K is said to be algebraically closed, if every
polynomial over K splits into linear factors over E (meaning all of its zeros are contained
in£).

An algebraic closure of K is an algebraically closed extension E of K, which contains
no non-trivial (not equal to E itself) subfield with this property.

The generalized fundamental theorem of algebra due to Steinitz (1910): Every
field K has a unique (up to an isomorphism which fixes all elements of K.} algebraic
closure; it is denoted K.

Splitting field of a polynomial: The smallest subfield of K in which a given polyno-
mial p(x] splits into linear factors is called the splitting field of the polynomial p(x).

Example: The field C of complex numbers is the algebraic closure of the field R of real
numbers. Because of the relation

x2 + 1 = (x -i)(z + i),

C is at the same time the splitting field of the polynomial x2 + 1, which is defined over
R and is irreducible over R.

2.6.4 Classification of field extensions

The notions of finite, simple, algebraic and transcendental field extensions were defined
in section 2.6.2 and 2.6.3.

Definition: Let E\K be a field extension.

(a) An irreducible polynomial over K is called separable, if it contains no multiple zeros
(recall these zeros are elements of the algebraic closure K of K}.

(b) E\K is said to be a separable extension, if the extension is algebraic and every
element of E is the zero of an irreducible and separable polynomial in K.

(c) The extension E\K is said to be normal, if the extension is algebraic and every
irreducible polynomial over K has either no zero in E or splits in E completely into
linear factors.

Theorem: (i) Every finite field extension is algebraic.

(ii) Every finite separable extension is simple.

(iii) Every algebraic extension of a field of characteristic 0 or of a finite field is separable.

Characterization of Galois field extensions: For a field extension E\K one has:

(i) E\K is Galois, if the extension is finite, separable and normal.

(ii) E\K is Galois if and only if E is the splitting field of an irreducible polynomial
defined over K.

(iii) If a field K has characteristic 0 or is finite, then E\K is Galois if and only if E is
the splitting field of a polynomial defined over K.

The following results give a complete description of all simple field extensions.
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Simple transcendental field extensions: Every simple transcendental extension of
a field K is isomorphic to the field K(x) of rational functions over K.

Simple algebraic field extensions: Let p(x) be an irreducible polynomial defined
over a field K. We consider a symbol i? and all expressions of the form

which we add and multiply in the usual manner, taking p($) = 0 into account (we take
i? to be a zero of p(x)}. The set of all of these expressions with the operations just
introduced yields a field K($), which is a simple algebraic field extension of K and has
the important property that i? is a zero of p ( x ) . Moreover one has

(E:K}=degp(x).

If (p(x)) denotes the set of all polynomials over K, which can be written in the form
q(x)p(x) with a polynomial q(x) (note that this is the ideal in the ring K[x] generated
by the element p ( x ) ) , then the factor ring K[x]/(p(x)) is a field, which is isomorphic to

If one takes all irreducible polynomials p(x] defined over K, then one gets (up to iso-
morphism) all simple algebraic extensions of K.

Example: Let K = M be the field of real numbers. We choose p(x) := x2 + 1. If we use
all expressions of the form (2.62) with p($) = 0, then we have $2 = — 1. This means
that i? corresponds to the imaginary unit i.

The extension field K(d} is the field C of complex numbers, hence C = K[x]/(x2 + 1).

2.6.5 The main theorem on equations which can be solved by
radicals

Let K be a given field. We consider the equation

with a,j E K for all j. We assume that the polynomial p(x) is irreducible over K and
also that it is separable48. We denote by E the splitting field of the p(x), i.e., such that

p(x) — (x- xi)(x - x2) • ... • (x - xn]

with x j 6 E for all j.

Goal: One would like to express the zeros x\,..., xn of the equation (2.63) in as simple
a manner as possible through the elements of K and a certain number of additional
quantities $1, . . . , $ & . The classical formulas for solving equations of the second, third
and fourth degrees achieve this with expressions $j which are roots of the coefficients
OQ, . . . , an. After these formulas were found in the sixteenth century, it was natural to try
to find similar expressions for equations of higher degrees. Building on work of Lagrange
(1736-1813) and Cauchy (1789-1857), the 22-year old Norwegian mathematician Abel

48If the field K has characteristic 0 (for example K = R oder K = Q) or if K is finite, then every
irreducible polynomial over K is automatically separable.
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proved in 1824 for the first time that there simply is no such formula for general49

equations of the fifth degree. The same result was obtained in 1830 independently by
Galois.

Definition: The equation (2.63) is said to be solvable by radicals, if the splitting field
E can be obtained from K by successively adding quantities t?i, . . . ,$&, each of which
satisfies an equation of the form

where HJ > 2 and Cj is in the extension constructed previously. If the characteristic p
of the field K is non-zero, then we assume in addition that p is not a divisor of HJ .

Remark: Instead of (2.64) one also writes

This legitimates the use of the word radical (root). The above definition then corresponds
to a chain of field extensions

with KJ+I — KJ(&J) and GJ € Kj for j = 1 , . . . ,k. Since all zeros x\,...,xn of (2.63)
are in E1, we get

where Pj is a polynomial in $1,..., $fc, whose coefficients lie in K.

Main theorem: The algebraic equation (2.63) can be solved by radicals if and only if
the Galois group G^ of the extension E\K is solvable.

Definition: A general equation of nth degree is an equation (2.63) over the field K :=
Z(OQ, • • • , an_i), which consists of all rational functions

where p and q are polynomials in the variables ao,.. . ,an-i with integral coefficients
and q is not the zero polynomial.

Theorem of Abel—Galois: The general equation of nth degree is not solvable by
radicals for n > 5.

Sketch of proof: We view x\,..., xn as variables and consider the field E := TL(x\,..., xn)
of all rational functions

with integral coefficients. Through multiplication and comparison of coefficients in

49This means that the coefficients of the equation are general, that is, not special; for special coeffi-
cients there may very well be solutions given by simple formulas.
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we get the quantities OQ, . . . , an-i (UP to sign) as the elementary symmetric functions
of xi, . . . ,#„ (cf. 2.1.6.4). For example one gets

-an_i = xi + ... + xn.

All expressions of the form (2.65) with the property that P and Q are symmetric with
respect to xi,..., xn, form a subfield of E, which is isomorphic to K and hence may be
identified with K.

The polynomial p(x) is irreducible and separable in K, and E is its splitting field. The
field extension E\K is Galois. By a permutation of x\..... xn one gets an automorphism
of E which fixes all elements of K. Two different such permutations correspond to
different automorphisms of E, hence the Galois group of the field extension E\K is
isomorphic to the symmetric group on n letters, i.e.,

For n = 2,3,4 the group 6fn is solvable, while for n > 5 it is not solvable (cf. 2.5.1.4).
The theorem of Abel-Galois is therefore a consequence of the main theorem above.

2.6.6 Constructions with a ruler and a compass

Every beginner in geometry knows that different regular polygons,
namely the triangle, the pentagon, the 15-gon and those which are
obtained from these by doubling the number of sides of these, can
be constructed geometrically. This was already known to Euclid,
and it seems that one had convinced oneself since then that these
cases represent the limit of the possible: at least I am not aware
of any successful attempt in extending these results.

All the more I am convinced that the discovery, that besides the
above mentioned polygons a series of further ones, among them
the 17-gon, are capable of a geometric construction, is worthy of
mention. This discovery is actually but a corollary of a not yet
completed wider-ranging theory, which shall be presented to the
public as soon as it has been completed.

C. F. Gauss, from Braunschweig
Student of mathematics in Gottingen

(Intelligenzblatt der allgemeinen Literaturzeitung, June 1, 1796

We consider in the plane a Cartesian system of coordinates and finitely many points

-Pi = (zi,yi), • • - , Pn = (xn,yn)-

We can always choose the coordinate system in such a way that x\ = 1 and y\ = 0.
We denote by K the smallest subfield of the field of real numbers which contains all the
numbers Xj and yj. Moreover, let Q(y) be the smallest subfield of R which contains all
rational numbers as well as the number y.

Main theorem: A point (x, y) can be constructed from the points PI, . . . , Pn with a
ruler and compass if and only if x and y belong to a Galois field extension E of K with

[ E : K } = 2m,

where m is some natural number.

(2.66)
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A segment $ can be constructed from a segment of the length y and from the unit
segment with ruler and compass, if and only if $ belongs to a Galois field extension E
with K := Q(y) for which (2.66) holds.

The non-solvability of the problem of squaring the circle: We want to construct
a square with ruler and compass; we require it to have the same surface area as the unit
circle. Letting •& denote the length of the sides of the square, one has

(cf. Figure 2.4(a)). In 1882, the thirty-year old Ferdinand Lindemann (Hilbert's teacher)
proved the transcendence of the number TT over the field Q of rational numbers. Conse-
quently, TT (and hence also $) cannot be an element of any algebraic field extension of
Q.

Figure 2.4- The Delian problems.

The non-solvability of the problem of doubling the cube: The length i? of a cube
of volume 2 is a solution of the equation

x3 -2 = 0.

The Delian problem requires the construction of this number i? from the length of the
unit segment using only a ruler and a compass (Figure 2.4(b)). The Delian problem is,
according to the main theorem, solvable when t? belongs to a Galois extension field E
of Q for which [E : Q] = 2m. Since, however, the polynomial x3 — 2 is irreducible over
Q, one has the chain of field extensions

with [Q(i?) : Q] = 3. From the theorem on the degrees of extensions, we get from this

(cf. 2.6.2). Hence [E : Q] cannot possibly be of the form 2m.

The non-solvability of the general trisection with a ruler and a compass:
According to Figure 2.4(c), this problem can be reduced to the problem of constructing
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fa segment with the length $ = cos — from a segment of length cos </? and the unit
o

segment. This means that $ is a solution to the equation

For (p = 60°, one has costp = -, and the polynomial on the left in (2.67) is irreducible

over Q. The same argument with the degrees of the field extensions just given shows that
•& cannot belong to a field extension E of Q of degree 2m. Consequently, the trisection
of an angle of 60° cannot be constructed with a ruler and a compass.

The construction of regular polygons with a ruler and a compass: The set of
complex solutions of the so-called cyclotomic equation

xn - I = 0

contains the number 1 and divides the unit circle into n equal parts (cf. Figure 2.4(d)).
The main theorem above together with the properties of the cyclotomic equation yields
the following result.

Theorem of Gauss: A regular n-gon can be constructed with ruler and compass if
and only if

Here m is a natural number, and the pSs are pairwise distinct prime numbers of the
form50

22" + l, fc = 0 , l , . - . . (2.69)

It is presently known that, for k — 0,1,2,3,4, the above number is prime.51 Conse-
quently one can construct regular n-gons for n in the list of prime numbers

2, 3, 5, 17, 257, 65537.

For n < 20 one gets in this way the constructibility of all regular n-gons with

n = 3, 4, 5, 6, 8,10,12,15,16,17,20

using only a ruler and a compass.

50The number 22 is to be interpreted as 2(2k~>.
51Fermat (1601-1665) already conjectured that the numbers (2.69) are all prime numbers. However,

Euler discovered that for fc = 5 there is a decomposition of the number in (2.69) into the product of
two primes: 641 • 6700417.
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2.7 Number theory

Your Disqusitiones artihmeticae has placed you among the top
mathematicians, and I see that the last section52 contains the most
beautiful analytic discovery which has been made in a long time.

The nearly seventy-year old Lagrange
in a letter to the youthful Gauss in 1804

It is well known that Fermat claimed that the Diophantine equa-
tion

xn + yn = zn

- with trivial exceptions - has no solutions in integers x,y,z. The
problem of showing this non-solvability result gives an excellent
example of how a special and seemingly meaningless problem can
give incredible impetus to scientific research. In fact, roused by
the challenge of this Fermat conjecture, Kummer was led to his
introduction of ideal numbers and to the discovery of the theorem
of the unique decomposition of numbers of a cyclotomic field into
ideal prime factors - a theorem which, in the form of the gener-
alization of the result due to Dedekind and Kronecker to general
algebraic systems, is at the heart of modern number theory and
has importance far beyond the boundaries of number theory in the
areas of algebra and function theory.53

David Hilbert (Paris 1900,)

Number theory is often called the queen of mathematics. Number-theoretic problems
can often be formulated very easily, but solved only with a considerable amount of effort.
For the proof of the Fermat conjecture mentioned above, mathematicians required the
work of 350 years. It wasn't until the complete restructuring of mathematics in the
twentieth century and the development of incredibly abstract tools that Andrew Wiles
(Princeton, USA) was finally able to give a complete proof in 1994.

The most famous open problem in mathematics - the Riemann hypothesis - is closely
connected with the distribution of prime numbers (cf. 2.7.3). The greatest mathemati-
cians of all times have time and again put all their energy into solving number-theoretic
questions and developed important mathematical tools in the process, which have then
led to progress in other areas of mathematics.

The basic classics in number theory are Diophant's Arithmetica of ancient times, Gauss'
Disquisitiones arithmeticae, which appeared in 1801 and founded modern number theory,
and Hilbert's Zahlbericht of 1897, which discussed algebraic number fields. Number
theory in the twentieth century has been decisively influenced by the problems which
Hilbert posed at the mathematical world congress in 1900.

52This section is concerned with cyclotomic fields and the construction of regular polygons with a
ruler and a compass (cf. 2.6.6).

53Fermat (160H665), Gauss (1777-1855), Kummer (1810-1893), Kronecker (1823-1891), Dedekind
(1831-1916) and Hilbert (1862-1943).
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2.7.1 Basic ideas

2.7.1.1 Different forms of mathematical thought

One makes the distinction in mathematics between:
(i) continuous thinking (for example real numbers and limits), and
(ii) discrete thinking (for example natural numbers and number theory).

Experience shows that continuous problems are often easier to treat than discrete ones.
The great successes of the continuous way of thinking are based on the notion of limits
and the theories connected with this notion (calculus, differential equations, integral
equations and the calculus of variations) with diverse applications in physics and other
natural sciences.

In contrast, number theory is the prototype for the creation of effective mathematical
methods for treating discrete problems, arising in today's world in computer science,
optimization of discrete systems and lattice models in theoretical physics for studying
elementary particles and strings.

The epochal discovery by Max Planck in 1900 that the energy of the harmonic oscillator
is not continuous but rather discrete (quantized), led to the important mathematical
problem of generating discrete structures from continuous ones by an appropriate, non-
trivial quantization process.

2.7.1.2 The modern strategy of number theory

A the end of the nineteenth century, Hilbert suggested the program of extending the,
at the time already highly developed, methods of complex analysis (algebraic functions,
Riemann surfaces) to number-theoretic questions. The challenge here was to formulate
notions from continuous mathematics in such a way that they could also be applied
to discrete systems. Number theory in the twentieth century has been molded by this
program; this has led to very abstract, but at the same time very powerful methods.
Important impulses in this direction are due to Andre Weil (1902-1998) and Alexander
Grothendieck (born 1928), who revolutionized algebraic geometry and number theory
with his theory of schemes.
Climaxes of number theory of the twentieth century are:
(a) the proof of the general reciprocity law for algebraic number fields by Emil Artin in
1928,
(b) the proof of Andre Weil's analog of the Riemann hypothesis for the (^-function of
algebraic varieties over a finite field by Pierre Deligne in 1973 (Fields medal 1978).54

(c) the proof of the Mordell conjecture for Diophantine equations by Gerd Faltings in
1983 (Fields medal 1986) and
(d) the proof of the Fermat's last theorem (Fermat conjecture) and a more general part
of the Shimura-Taniyama conjecture in 1994 by Andrew Wiles.

2.7.1.3 Applications of number theory

Nowadays supercomputers are applied to test number-theoretic conjectures. Ever since
1978 number-theoretic methods are applied to give subtle coding of data and digital

54 The Fields medals have been awarded every four years at the International Congress of Mathemati-
cians for pioneering new mathematical results. This award can be compared to the Nobel prizes. In
contrast with the latter, however, the mathematicians awarded the Fields medal are not allowed to be
older than 40. For outstanding life achievements, mathematicians can be awarded the Wolf prize.
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information (cf. 2.7.8.1). Classical statements about the approximation of rational num-
bers by sequences of irrational numbers play an important role today in the investigation
of chaotic and non-chaotic states in the theory of dynamical systems (for example in
celestial mechanics). A bridge between number theory and theoretical physics has been
spanned by superstring theory in the last few years, which has led to a fruitful transfer
of ideas from pure mathematics to physics and back.55

2.7.1.4 Compression of information in mathematics and physics

In order to understand the interaction between number theory and physics from a philo-
sophical point of view, we mention that mathematicians have learned over the centuries,
in a long process of trial and error, to code information in very compressed form using
the structure of of discrete systems, making it possible to make important and deep
statements about the systems. A typical example for this is the Riemann (-function,
which codes the structure of the set of prime numbers, and the law of distribution of
prime numbers. Other important examples of this are given by the Dirichlet L-series
(cf. 2.7.3) and modular forms, which grew out of the theory of elliptic functions (cf.
1.14.18). The most important information about the fine structure of a real number is
coded in its continued fraction representation (cf. 2.7.5).

On the other hand, physicists have come to the notion of partition number from a
completely different point of view, which codes the behavior of systems a large number
of particles (statistical systems). If one knows the partition function, one can derive
from it all relevant physical quantities of the system.56 The Riemann (-function may
be viewed as a special kind of partition function.

The fruitful exchange of ideas between mathematics and physics is based, for example,
on the fact that mathematical problems can be looked at with physical intuition, when
they are translated into a physical language. A pioneer in applying this idea is Ed-
ward Witten (Institute for advanced studies, Princeton), who was awarded the Fields
medal in 1990, although he is a physicist and not a mathemtician. It is interesting that
many great number theorists like Fermat, Euler, Lagrange, Gauss and Minkowski also
made important contributions to physics. When Disquisitiones arithmeticae by Gauss
appeared in 1801, it represented a profound change in mathematics from a universal sci-
ence, as Gauss considered it, to a specialized science. In particular, number theory took
its own course for a long time. Presently one observes again a fortunate convergence of
the methods of mathematics and physics.

2.7.2 The Euclidean algorithm

Divisors: If a, b and c are integers with the property that

c = ab,

then one refers to a and b as divisors of c. For example it follows from 12 = 3 • 4 that
the numbers 3 and 4 are divisors of 12.

An integer is said to be even, if it is divisible by 2, otherwise it is called odd.

Example 1: Even numbers are 2,4,6,8, — Odd numbers are 1,3,5,7, —
55 Numerous applications of number theory in the natural sciences and in computer science can be

found in [286]. The relationship between number theory and modern physics is described in [276] and
[288].

56In quantum field theory, the partition function is given by the Feynman path integral.
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An elementary criterion for divisibility: The following statements are valid for the
decimal representation of natural numbers n.
(i) n is divisible by 3 if and only if the cross sum (i.e., the sum of the digits) is divisible
by 3.
(ii) n is divisible by 4 if and only if the last two digits of n form a number divisible by 4.
(iii) n is divisible by 5 if an only if the last digit is 5 or 0.
(iv) n is divisible by 6 if and only if n is even and the cross sum is divisible by 3.
(v) n is divisible by 9 if and only if the cross sum is divisible by 9.
(vi) n is divisible by 10 if and only if the last digit is 0.

Example 2: The cross sum of 4,656 is 4 + 6 + 5 + 6 = 21. The cross sum of 21 is 3;
therefore 21 and hence also 4,656 is divisible by 3, but not by 9.

The cross sum of n = 1, 234,656 is 1 + 2 + 3 + 4 + 6 + 5 + 6 = 27. The next cross sum
is 9, hence 27 and n are divisible by 9.

The last two digits of the number m = 1, 234, 567, 897, 216 are 16, which is divisible by
4. Hence ra is divisible by 4. The number 1,456,789,325 is divisible by 5, but not by
10.

Prime numbers: A natural number p is said to be a prime number, when p > 2 and
the only divisors of p are 1 and p itself. The first prime numbers are 2,3,5,7,11.

The sieve of Eratosthenes (around 300 BC): Let a natural number n > 11 be
given. To determine all prime numbers

one does the following:
(i) One writes down all natural numbers < n (for convenience one can skip those divisible
by 2, 3 or 5 to start with).
(ii) One considers all numbers < \/n in this list and erases all those which are multiples
of these.

All numbers remaining are then prime numbers.

Example 3: Let n = 100. All prime numbers < 10 = A/100 are 2,3,5 and 7. We
only have to erase the numbers which are divisible by 7 (in the following list they are
underlined) and get

2 3 5 7 ; 11 13 17 19 23 29 31 37 41
43 47 49 53 59 61 67 71 73 77 79 83 89 91 97.

All prime numbers < 100 are obtained as those numbers which are not underlined.

A table of all prime numbers < 4000 is given in section 0.6.

Theorem of Euclid (around 300 BC): There are infinitely many prime numbers.

This theorem is proved in Euclid's Elements. The following theorem can be found there
also, but only implicitly.

The fundamental theorem of arithmetic: Every natural number n > 2 is the
product of prime numbers. This decomposition is unique, if the prime numbers are
ordered according to their size.

Example 4- One has
24 = 2 • 2 • 2 • 3 and 28 = 2 - 2 • 7.

Least common multiple: If m and n are two positive natural numbers, then one
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obtains the least common multiple of n and m, denoted

1cm (m, n) ,

by multiplying all distinct prime numbers in the prime number decompositions of ra and
n.

Example 5: Prom Example 4 we have

lcm(24,28) = 2 • 2 • 2 • 3 • 7 = 168.

Greatest common divisor: If m and n are two positive natural numbers, then one
denotes by

gcd(m, n)

the greatest common divisor of m and n. This gcd is obtained by taking the product of
all prime numbers which occur in both the prime number decompositions of m and n.

Example 6: From Example 4 we have gcd(24,28) = 2 - 2 = 4.

The Euclidean algorithm for the calculation of the greatest common divisor:
If n and m are two given integers, both non-vanishing, then we set TO := m\ and use
the following scheme of division with remainder:

Here ao,ai,. . . as well as the remainders 7"i ,r2, . . . are uniquely determined integers.
After finitely many steps one obtains at some step r^ = 0. Thus

gcd(m, n) = rk-i-

This process is referred to as the Euclidean algorithm applied to m and n. Briefly:

The greatest common divisor is the last non-vanishing remainder in the Eu-
clidean algorithm.

Example 7: For ra = 14 and n = 24 one gets:

24 = 1 • 14 + 10 (remainder _ 10),
14 = 1-10 + 4 (remainder 4),
10 = 2 • 4 + [J] (remainder 2),
4 = 2 - 2 (remainder 0).

Hence gcd(14,24) = 2.

Relatively prime numbers: Two positive natural numbers ra and n are said to
relatively prime, if

gcd(m, n) = 1.

Example 8: The number 5 is relatively prime to 6,7,8,9, but not to 10.
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The Euler (/^-function: Let n be a positive natural number. We denote by <£>(n) the
number of all positive natural numbers m < n which are relatively prime to n. For
n = 1,2, . . . one has:

The product in this expression is carried out over all prime numbers p which divide n.

Example 9: One has </?(!) = 1. For n > 2 one has tp(n) = n — I if and only if n is a
prime number.

From gcd(l,4) = gcd(3,4) = 1 and gcd(2,4) = 2, gcd(4,4) = 4, it follows that

V(4) = 2.

The Mobius function: Let n be a positive natural number. We set

for n = 1

if the decomposition of n into prime numbers
contains exactly (r) distinct primes

otherwise.

Example 10: From 10 = 2 • 5 it follows that ju(10) = 1. Because of 8 = 2 • 2 • 2 one has
M(8) = 0.

Calculations with number-theoretic functions from their sums: Let a function
/ be given which associates to every natural number n an integer /(n). Then one has

with

Here the sum is extended over all divisors d > 1 of n and all divisors c > 1 of d (this is
the inversion formula of Mobius (1790-1868)).

This formula tells us that the value f ( n ) can be constructed from the sums s(d).

2.7.3 The distribution of prime numbers

/ feel that I am expressing my gratitude for the honor that the
Berlin Academy has endowed upon me by appointing me as one
of its correspondents, by making immediate use of my privileges
thereof and presenting the results of an investigation on the fre-
quency of prime numbers; a subject which, by the interest which
Gauss and Dirichlet have given it over a long period of time, seems
to be worthy of anewed mention.57

Bernhard Riemann (1859)
57This is the beginning of one of the most famous works in all of mathematics. On page 8 of this

paper Riemann develops his new ideas and presents the celebrated "Riemann hypothesis".
The collected works of Riemann, which, together with extensive up-to-date commentaries, are con-

tained in [182], are all in all just one volume. However, every single one of these papers is a jewel of
mathematics. Riemann has profoundly influenced the mathematics of the twentieth century with his
treasure of ideas.
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One of the main problems of number theory is to discover laws about the distribution
of prime numbers.
The gap theorem: The numbers n\ + 2, n\ + 3 , . . . , n\ + n are, for n = 2, 3,4,.. . , not
prime numbers, and for growing n the sets of non-primes (gaps in the set of primes) get
longer and longer.

Theorem of Dirichlet (1837) on arithmetic progressions: The sequence58

a, a + d, a + 2<Z, a + 3d, ... (2.70)

contains infinitely many prime numbers, provided that a and d are two relatively prime
natural numbers.

Example 1: One may choose a = 3 and d = 5. Then one gets the sequence

3, 8, 13, 18, 23, ...

which contains infinitely many prime numbers.
Corollary: For an arbitrary real number x > 2 we define

Pa,d(x) := set of all prime numbers p in (2.70) with p < x.

Then one has:

where (p denotes the Euler function (cf. 2.7.2). The remainder term O(l) does not
depend on a. In Example 1 we have (p(d) = 4.

The formula (P) makes the statement precise that all sequences (2.70) with a constant
difference d contain "asymptotically" the same number of prime numbers, independent
of the value of a.

In particular for a = 2 and d = 1 (2.70) contains all prime numbers. In this case one
has tf(d) = 1.
Analytic number theory: In his proof of this theorem, Dirichlet introduced totally
new methods into number theory (Fourier series, Dirichlet series and L-series), which
have also turned out to be fundamental in the theory of algebraic numbers. In so doing
he founded a new branch of mathematics - analytic number theory.59

2.7.3.1 The prime number theorem

Prime number distribution functions: For an arbitrary real number x > 2 we
58The sequence in (2.70) is an arithmetic progression, i.e., the difference of two successive terms is

constant.
If a and d are not relatively prime, then in (2.70) no prime numbers appear at all, unless a itself is a

prime.
59After Gauss' death in 1855, Dirichlet (1805-1859) became his successor in Gottingen. In 1859,

Riemann was appointed to this famous chair in Gottingen. From 1886 until his death in 1925, Felix
Klein was also in Gottingen; in 1895 Klein brought David Hilbert to Gottingen, who worked there until
his retirement in 1930.

In the twenties of the twentieth century, Gottingen was the leading center of mathematics and physics
in the world. In 1933 many of the leading scientists emigrated arid Gottingen lost its supreme position
among the intellectual centers of the world.
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define

Theorem of Legendre (1798):

Hence there are considerably fewer prime numbers than natural numbers.

The fundamental prime number theorem: For large numbers x one has the fol-
lowing asymptotic equality:60

This is the most famous asymptotic formula in mathematics. Table 2.5 compares TT(X)
with li x.

Table. 2.5.

x

103

106

109

n(x)

168

78498

50847534

li x

178

78628

50849235

Euler (1707-1783) still believed that prime num-
bers are distributed totally irregularly. The
asymptotic distribution for v(x) was found in-
dependently by the 33-year old Legendre in 1785
and the 14-year old Gauss in 1792 through an
intensive study of tables of logarithms.

A rigorous proof of the prime number theorem
was given independently by the thirty-year old

Jacques Hadamard (1865-1963) and the thirty-year old Charles de la Vallee-Poussin in
1896. If pn denotes the nth prime number, then one has

Error estimate: There are positive constants A and B so that for all x > 2 we have
the relation

with

Statement of Riemann: We have the considerably more precise estimate

provided the Riemann hypothesis (2.72) turns out to be true.61

60ExpIicitly this corresponds to the limiting relation

The definition of logarithmic integral is:

filln 1914 Littlewood proved that the difference TT(X) —\\x changes sign infinitely often for growing a
If, however, Xa denotes the value of x for the first such change of sign, then according to Skewes (1955

we have 10™ < X0 < lO10'"34.
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The Riemann (^-function: Riemann considered the function

The surprising relation of this function with the theory of prime numbers arises from
the following result.

Euler's theorem (1737): For all real numbers s > 1 one has

where the product is extended over all prime numbers p. This means:

The Riemann C-function encodes the structure of the set of all prime
numbers.

Riemann's theorem (1859):

(i) The (^-function can be extended to
an analytic function on C — {!}, and
it has a pole of the first order at s = I
and residue there equal to unity, i.e.,
for all complex numbers s ^ 1, one
has

power series centered
at the point s.

For example,
(ii) For all complex numbers
one has a functional equation

Figure 2.5. Riemann's (,-function.

(i\i) The ^-function has the so-called trivial zeros at s = —Ik for k = 1,2,3,. . . (Figure
2.5).

2.7.3.2 The celebrated Riemann hypothesis

In 1859 Riemann formulated the following conjecture:

All non-trivial zeros of the ^-function lie on the

critical line Re s = - in the complex plane. (2.72)
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Hardy's theorem (1914): On the critical line there are infinitely many

zeros of the Riemann (^-function.62

One today knows of a series of statements of different kinds, all of which are equivalent
to the Riemann hypothesis. Extensive, imaginative projects and experiments with su-
percomputers have given no clue as of yet that the Riemann hypothesis might not hold.
The calculations yield billions of zeros on the critical line. Precise asymptotic estimates
show that at least one-third of all of the zeros of the (^-function must lie on that critical
line.

2.7.3.3 The Riemann ^-function and statistical physics

A basic realization of statistical physics is that one can obtain all physical properties
of a statistical system from the energy states E\, E^,... for a fixed number of particles
from the partition function

Here T denotes the absolute temperature of the system, and k is the Boltzmann constant.
If we set

then we have

This means that the Riemann ^-function is a particular partition function. This explains
the fact that functions of type similar to the £-function are important in treating models
in statistical physics precisely (and not just approximately on supercomputers).

2.7.3.4 The Riemann ^-function and renormalization in physics

Unfortunately divergent expressions occur often in statistical physics and in quantum
field theory. Physicists have developed ingenious methods to overcome these difficulties
and make some sense of these initially meaningless (divergent) expressions. This is
the broad area of renormalization in physics, which in quantum electrodynamics and
the standard model, in spite of the mathematical dubiosity of the arguments, agree
phenomenally well with experimental evidence.63

Example: The trace of an (n x n)-unity matrix In has the value

tr /„ = 1 + 1 + . . . + 1 = n.

For the infinite unity matrix I we get for the trace

62In the posthumous works of Riemann at the university library at Gottingen it has been discovered
that Riemann actually had proved this theorem, although he never published it.

63Euler often worked with divergent series. It was his keen mathematical intuition which led him to
correct results in doing this. Renormalization is in a sense an extension of Euler's method. A famous
open problem in mathematical physics is to present rigorous foundations of quantum field theory in
which renormalization is better understood and justified.
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In order to associate a sensible finite value to tr /, we consider the equation

For Re s > 1 this is a correct formula in the sense of convergent series. The left-hand
side can, by Riemann's theorem, be extended to an analytic function which associates
to every complex number s ^ 1 a definite value. Using this fact, we can define the
right-hand side of (2.74) as this definite value. In the special case in which s = 0, the
right-hand side is formally 1 + 1 + 1-1 . Hence we can defined the renormalized value
of tr / by

The "infinite sum" 1 + 1 + 1 + • • • of positive numbers surprisingly gives as a result a
negative number!

2.7.3.5 Dirichlet's localization principle for prime numbers modulo m

Let m be a positive natural number. To prove his fundamental theorem on the distri-
bution of prime numbers, Dirichlet put Euler's theorem (2.71) in the following form:

The product is to be taken over all prime numbers p. Here we have set

This series is called a Dirichlet L-series. The symbol Xm denotes a Dirichlet character
which is a character modulo m, meaning:

(i) The map x' '• Z/mZ —> C — {0} is a group homomorphism.64

(ii) For all g G Z we set

Example: If m = 1, we get Xi(flO = 1 f°r all 9 £ ^- Then

Thus the Dirichlet L-series generalize the Riemann ^-function. Roughly speaking, one
has

The Dirichlet function £,(•, Xm) encodes the structure of the set of
prime numbers modulo m.

The theory of L-functions can be generalized to other algebraic objects, in particular to
algebraic number fields.

64If [g] = g + raZ denotes the residue class of g modulo m (cf. 2.5.2), then one has x'([<?]) 7^ 0 and
X'(\9\[h]) = X'([9])x'([h}) for all g, h <= Z.
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2.7.3.6 The conjecture on prime twins

Two different prime numbers which differ just by two are called twins. Examples are
given by the pairs 3,5 as well as 5,7 and 11,13. It is generally conjectured that there
are infinitely many of these pairs.

2.7.4 Additive decompositions

Additive number theory begins with the decomposition of numbers into sums.

2.7.4.1 The Goldbach conjecture

In 1742, Goldbach formulated the following two conjectures in a letter to Euler:
(Gl) Every even number n > 2 is the sum of two prime numbers.
(G2) Every odd number n > 5 is the sum of three prime numbers.

Example: One has the following decompositions:

4 = 2 + 2, 6 = 3 + 3, 8 = 5 + 3, 10 = 7 + 3,

and

7 = 3 + 2 + 2, 9 = 5 + 2 + 2, 11 = 7 + 2 + 2, 13 = 7 + 3 + 3,

If one uses the decomposition n = 3 + m, then (G2) follows immediately from (Gl).
Computer experiments have shown that the two statements (Gl) and (G2) are correct
for all n < 108.

The proof of the conjecture (Gl) is completely open to the present day. On the other
hand, Vinogradov showed in 1937 that (G2) holds for all n with

This lower bound has more that 6 million decimal places.

2.7.4.2 The Waring problem

It was proven by Lagrange in 1770 that every natural number is the sum of four squares.

Example 1: One has

2 = I2 + I2 + O2 + O2 and 7 = 22 + l2 + l2 + l2.

Also in 1770, Waring formulated the conjecture that for every natural number k > 2
there is a natural number g(k) > 1 such that every natural number n can be written in
the form

with integers mi, m2, . . . .
This conjecture was proved by Hilbert in 1909. The minimal amounts are g(2) = 4 (four
squares), g(3) = 9 (nine cubes), g(4) = 19 (19 fourth powers). In general one has the
estimate
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Here [m] denotes the largest integer < m (Gauss bracket).

The special case of two squares: A natural number n > 2 can be written as the sun
of two squares of integers if and only if, in the primary decomposition of n, all appearin;
primes of the form

4m+ 3, ra = 0,1,2, . . .

occur only with odd powers.
Format's theorem (1659): A prime number is a sum of two squares of natural num
bers if and only if it is of the form

4m + 1, m = 1 ,2 , . . . .

This decomposition is unique up to the order of the squares.
Example 2: The prime number 13 = 4 • 3 + 1 has the unique decomposition

13 = 22 + 32.

We denote by N(n) the number of different possibilities to represent a positive natura
number n as the sum of four squares.

Jacobi's theorem (1829):

».rf \ o [sum of all positive divisors of n,lN(n) = 8 • < , . , H , ,. . .,. , , ' >v ' [which are not divisible by 4. J

Example 3: One has N(l) — 8 • I. In fact, one has:

2.7.4.3 Partitions

Let n be a positive natural number. We define

the number of decompositions of n into
| a sum of positive natural numbers. 

Example 1: One has p(3) = 3, since

3 = 1 + 1 + 1, 3 = 2 + 1, 3 = 1 + 2.

Coding information: We define the partition function

with p(0) := 1. This series converges for all complex numbers q with \q\ < 1. Thus all
information on partitions are coded by the function P. The problem now is to obtain
information on partitions by elegant manipulations with P. This problem was solved by
Euler.

p(n)
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Euler's theorem: For all q e C with |g| < 1 one has the convergent product represen-
tation

together with

These surprisingly simple formulas were found by Euler numerically. After finding the
formulas, he had to work a long time to get a proof.

The Euler recursion formula: We set p(ri) := 0 for n < 0. For all n — 1, 2 , . . . one
has

with t The first few terms of this series are explicitly

Example 2: p(2) = p ( l ) + p(0) = 2,
p(3)=p(2)+p(0) = 3,
p(4)=p(3)+p(2) = 5,

p(200) = 3972999029388.

The asymptotic formulas of Hardy and Ramanunjan (1918)65: Let K :=
7TA/(2/3). One has for n —> oo the asymptotic equalities

p(n) = p(n — 1) + p(n — 2) — p(n — 5) — p(n — 7) + ... .

The product formula of Jacobi (1829): For all complex numbers q and z / 0 with
q < 1 one has the equality

65Rademacher discovered in 1937 that p(n) can be expanded in a convergent series in n. His proof
used the Dedekind Ty-function

which is holomorphic in the open upper half plane (cf. [216]). This is a typical example for the fruitfulness
of the deep theory of modular forms (cf. 1.14.18).
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2.7.5 The approximation of irrational numbers by rational num-
bers and continued fractions

We consider the question of how one can approximate irrational numbers by rational
ones. In these considerations, continued fractions play a central role. Continued fractions
first occurred in the seventeenth century. For example, Christian Huygens (1629-1695)
ran across continued fractions in his construction of a cogwheel model of the solar system
and to this end tried to approximate the relations between the periods of the planets with
as few teeth as possible. The theory of continued fractions goes back to Euler (1707-
1783). In contrast to decimal decompositions, continued fractions give information on
the fine structure of real numbers. For example, the fundamental problem of the best
approximation of irrational numbers by rational numbers is solved with the help of
continued fractions (cf. 2.7.5.3). Often continued fractions are significantly more effective
than power series. They are also applied in many ways in computer algorithms.

Basic idea: From the identity

it follows by repeated insertion of factors

and

2.7.5.1 Finite continued fractions

Definition: A finite continued fraction is an expression of the form

For this we also use the symbol
[a0,ai,...,an].

Here ao, 01,..., an are real or complex numbers, which with the exception of ao are all
assumed to be non-vanishing.
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Example 1:

Example 2:

Recursion formula: One has

Effective algorithm: If one uses the iteration process

with the initial values then one has

Example 3: In order to calculate

conveniently with the help of (2.76), we use the scheme presented in Table 2.6. Every
number of the third line arises as the product of the number an above it with the
previous number of the third line, plus the number of the third line preceeding that
previous number. Similarly the fourth line is calculated.

Table 2.6. Calculation of a continued fraction.

n — 2 — 1 0 1 2 3 length of continued fraction

an 2 1 2 1 components o f continued fraction

p

qn I 0 1 1 3 4 iteration values

Pn 2 3 8 11 — _ _ _ — canonical approximation tractions
qn 1 1 3 4

2.7.5.2 Infinite continued fractions

Definition: An infinite continued fraction, denoted

[00,01,.-.] (2-77)

pn 0 1 2 3 8 11 iteration values
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is a sequence of finite continued fractions

The infinite continued fraction (2.77) is said to be convergent, if the finite limit

exists. Then we associate the number a to the infinite continued fraction (2.77).

Criterion for convergence: The infinite continued fraction (2.77) is convergent if and
only if the infinite series

diverges. Then one has in addition the interlocking of intervals

and the (generally) much sharper error estimate (2.83).

Example 1: A continued fraction [ao,ai,...] is said to be regular, if all dj are integers
with dj > 0 for all j > 1. Every continued fraction of this type converges.

Example 2: The continued fraction [1,2] = [1,2,2,2,...] converges.66 According to
(2.75) one has:

Unique representation of of real numbers by continued fractions: Every real
number a can be written uniquely as a continued fraction. For this expression one has:

(i) a is rational if the corresponding continued fraction is finite.67

(ii) a is irrational, if the corresponding continued fraction is infinite.

This theorem gives us a general tool to determine the irrationality of real numbers. One
calculates their continued fraction and checks whether the latter is infinite.

Example 3: The number \/2 is irrational, since its continued fraction is the infinite one
of Example 2.

Constructive iteration: Let po := a. The determination of the continued fraction of

66For simplicity we indicate periods by an over-line. For example

[a, b, c,d\ = [a, b, c, d, c, d, c,d,...}.

67To avoid trivial ambiguities in the representation a = [ao,ai,... ,an] for a rational number a, we
assume in addition that an ^ 1 for all n > 1. The given algorithms automatically take this convention
into account.
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a can be done with the help of the following (modified) Euclidean algorithm:68

The iteration ends when at some stage there is no remainder. If we set 0,0 := [po], &i "
[pi],.. . , then we have

a = [o0,ai,...].

we getExample 4: For

This yields

Example 5: Euler determined for the number e the neat continued fraction expression

This means e = [2,1,2,1,1,4,1,1,6,1,. . .] . Since this continued fraction is infinite,
Euler was able to prove the irrationality of e in 1737. It wasn't until 150 years later that
Hermite was able to prove the transcendence of e.

In fact, Euler derived first the formula

and then guessed the formula (2.80) before he was able to give it a rigorous proof. More
continued fractions can be found in Table 2.7.

The golden ratio: If one divides the unit segment [0,1]
by the point x, where

Figure 2.6. The golden
ratio.

then this division has be known since ancient times as the
golden ratio and is considered to be particularly esthetic for

68Here again [a;] denotes the largest integer < x (Gauss bracket).
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Table 2.7. Continued fractions of some special real numbers.

Real number Continued fraction

(the golden ratio)

(no visible pattern)

sculptures, paintings and buildings (Figure 2.6). From (2.81) it follows that x2+x—I — 0,
that is

with the continued fraction decomposition

z= [0,1] = [0,1,1,1,...].

It is interesting to note that this number has the simplest possible continued fraction.

2.7.5.3 Best rational approximation

Main theorem: Let a be an irrational real number and n > 2. Then one has69

if p and q are integers which satisfy the relation

69One has even stronger statements such as \aqn — pn\ < \otq — p\.
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Corollary: Let n = 0,1, 2 , . . . For the error of the approximation of a real number by
rational numbers, one has the estimate

Example 1 (golden ratio): The golden ratio number ag = -(Vo — 1) has the represen-

tation ag = [0,1]. For n = 0 ,1 , . . . the canonical approximation fractions are

Hence — is the best rational approximation to as with a denominator which is < 13.
13 s 

From (2.83) it follows that one has the error estimate

Example 2: For \/2 = [1,2, 2 ,2 , . . . ] we get the canonical approximation fractions

17
Hence — is the best rational approximation of \/2 with a denominator < 12. From

(2.83) we get the error estimate

Example 3: For e = [2,1, 2,1,1,4,1,.. .] the canonical approximations are

87
Hence — is the best rational approximation for e with a denominator < 32. Moreover

oZ
one has the estimate of the error

The determination of the optimal rational approximation has played an exceptional role
in the history of mathematics in connection with the approximation of the circumference
of a circle (approximation of TT, cf. 2.7.7).

Diophantine approximation theorem of Dirichlet (1842): A real number a is
irrational if and only if the inequality

has infinitely many solutions for relatively prime integers p and q > 0.
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The optimal approximation theorem of Hurwitz (1891): For every irrational
number a the inequality

has an infinite number of rational solutions

The constant \/5 is optimal70. The number which can be approximated the worst is

the golden ratio71 ag = -(-\/5 — 1). In this sense ag is the "most irrational" of all real

numbers.

The role of the golden ratio in chaos theory: If one has two coupled oscillating
systems with the angular frequencies u>i and u>2, then the resonance case

rational number

is particularly dangerous. On a computer there are, practically speaking, only rational
numbers. However, experience has shown that the irrationality of the quotients uJi/uJz
can be simulated on a computer by using the canonical approximation fractions of the
golden ratio from Example 1 for uji/u^ (cf. KAM theory in [212]).

2.7.6 Transcendental numbers

The classification of real numbers (cf. Figure 2.7): A real number is said to be
rational, if it is the solution of an equation of the form

c\x + c0 = 0

with integral coefficients CQ and c\ ^ 0. It was already known to the Pythagoreans
(around 500 BC) that the number \/2 is not rational. A real or complex number is said
to be algebraic, if it is a solution of an equation of the form

with integral coefficients Cj for all j and cn f 0. The lowest degree of a polynomial
which and algebraic number a satisfies is called the degree of the number. Algebraic
numbers of degree 2 are also called quadratic.

The deeper investigation of algebraic numbers is the topic of algebraic number theory.
The basic constituents of this theory are ideal theory, Galois theory and the theory of
p-adic numbers.

Figure 2.7. The different types of real numbers.

70If one replaces \/5 in (2.84) by a larger number, then one can always find an irrational number a
so that the new inequality (2.84) has only finitely many rational solutions p/g.

71 One has
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Criteria for irrationality: A real number a is irrational if one of the following condi-
tions is satisfied:

(i) The continued fraction of a is infinite.

(ii) In the expansion of a as a decimal there are no periods.

(iii) (Theorem of Gauss) The number a is the solution of an algebraic equation

with integral coefficients, and this equation has no integral solutions.

A further criterion is the Diophantine approximation theorem of Dirichlet in section
2.7.5.3.

Example 1: The number ^/2 is a solution of the algebraic equation

x2 -2 = 0

and hence a (quadratic) algebraic number. Since this equation obviously has no integral
solutions, \/2 is irrational by the theorem of Gauss.

Real or complex numbers which are not algebraic are called transcendental. The exis-
tence of transcendental numbers was first proved by Liouville in 1844 with the aid of his
approximation theorem (see Example 3 below).

Theorem of Euler—Lagrange: A real number is a quadratic algebraic number if and
only if it has a periodic continued fraction.

Example 2: The continued fractions of \/2, A/3 and \/5 are periodic (see Table 2.7).

The existence of transcendental numbers according to Cantor (1874): A first
sensational success of the set theory developed by Cantor was that he was, in contrast to
Liouville, able to give a completely elementary proof of the existence of transcendental
numbers. He showed:

(i) The set of algebraic numbers is countable,

(ii) The set of real numbers is not countable.

Consequently there must be transcendental numbers. If one chooses an arbitrary com-
pact interval of the real numbers, then the probability is one that a transcendental
number is contained in that interval. In this sense almost all real numbers are transcen-
dental.

Approximation order: An irrational number a has by definition a real number K > 0
as its approximation order, if the inequality

is satisfied for infinitely many rational numbers p/q with q > 0. In particular it follows
from this that there exists an infinite sequence of rational numbers (Pn/Qn) with

Theorem: Every irrational number has at least the approximation order 2.

Liouville's approximation theorem (1844): An algebraic number of degree n > 1
can have at most the approximation order n.
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Example 3: The number

has arbitrarily high approximation orders. Hence this number must be transcendental.

In this way Liouville was able to prove the existence of transcendental numbers. A much
stronger result is the following.

Approximation theorem of Roth (1955)72: The maximal approximation order of
an irrational number is two.

Roughly speaking this means the following:

Algebraic irrational numbers can only poorly be approximated by
rational numbers, whereas transcendental numbers can be effi-
ciently approximated by rational numbers.

Theorem of Hermite (1873): The number e is transcendental..

Theorem of Lindemann (1882): The number it is transcendental.

Both of these famous theorems are special cases of the following result (cf. Example 4).

Theorem of Lindemann—Weierstrass (1882): If ai, . . . ,a r e are pairwise distinct
complex algebraic numbers, then from

it follows that at least one of the complex coefficients (3j is transcendental or the case is
trivial, i.e., (3k = 0 for all k.

Corollary: The complex number

e2 is transcendental,

if the complex number z ̂  0 is algebraic.

Proof: We set QI := 0 and a-2 := z. According to the theorem of Lindemann-Weierstrass,
from the non-trivial relation

it follows that the coefficient ez is transcendental.

Example 4: (i) It we choose the algebraic number z = 1, then we get the statement that
e is transcendental.

(ii) For z = 2?ri the number e2 = 1 is not transcendental, hence 2?ri cannot be algebraic,
hence also TT cannot be algebraic and is consequently transcendental.

Theorem of Gelfond—Schneider (1934): At least one of the complex numbers

is transcendental, if one excludes the trivial cases (a = 0 or In a = 0 or (3 = rational
number).

This famous theorem provided a solution of the seventh Hilbert problem (posed in 1900).
Example 5: The number

72Klaus Roth received the Fields medal in 1958 for the proof of this fundamental result.
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is transcendental, since in the sequence 2, y5, 2^ only the last number can be tran-
scendental. Statements of this kind were already suspected to hold by Euler.

Example 6: e71' is transcendental.

Proof: One has e71' = i~2'. Of the three numbers i, —2i and i~21, only the last can be
transcendental.

2.7.7 Applications to the number TT

The calculation of the circumference of a circle, i.e., the calculation of the number vr,
has it origins in ancient times and has always engulfed the fantasy of mathematicians.

In the Old Testament one can find the number 3 as an approximation to TT. In the
first Book of Kings, verse 7.23, one can read: "And he made a sea, poring from one
edge to the other ten ellens across, and five ellens high, and a string of 30 ellens' length
measured the extension of the shore."

In papyrus roles of the ancient Egyptians (dating from about 1650 BC) one can read:

"Take - from a diameter and construct a square of what remains, and it will have the
same area as the circle." This gives are more precise approximation:

Progress due to Archimedes (287-212 BC): He approximated the circle by poly-
gons and found with the help of a 96-gon the famous estimate:73

Here one has

Best rational approximation of TT: We will show below that TT has the continued
fraction

which has no regular behavior whatsoever. The canonical rational approximations com-
ing from this continued fraction are

£i£j
As second fraction occuring we have already the approximation — of Archimedes. From

22
the main theorem in section 2.7.5.3 it follows that — is the best rational approximation
of TT if we bound the denominator of the fraction to be < 7. Similarly

73The symbol TT was introduced by Euler in 1737. Possibly Euler was thinking of the Greek word
irepupepeLct for periphery.



2.7. Number theory 709

is the best rational approximation if we admit denominators < 113. The surprisingly
good estimate given by this fraction follows from (2.83) and the estimate

Astonishingly one can find the fraction (2.87) as an approximation for TT already in the
works of the Chinese mathematician Zu Chong-Zhi (430-501).

In 1766 the following estimate was discovered in Japan:

These are in fact canonical approximations stemming from the continued fraction ex-
pression for TT.
We now want to show how the continued fraction (2.86) of TT is derived. One needs for
this the decimal estimate

which one can obtain with the numerical procedure described below. The continued
fraction algorithm (2.79) yields in this case

This yields (2.86).

The product formula of Vieta: An analytical formula for TT was first given in 1579
by Francis Vieta. This formula is:

with

and

If we set then we have the estimate

From 622 one gets the estimate (2.88) for TT.

The product formula of Wallis: In 1655 John Wallis published in his monograph
Arithmetica infinitorum the following infinite product formula:
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The infinite summation formula of Newton: In 1665 the then 22-year-old Isaac
Newton used the series

arcsin x

and obtained, in the particular case where x = 1/2, the formula

from which he was able to derive the first 14 decimal places of TT.

The infinite summation formula of Leibniz: The then 28 year-old Leibniz made
the discovery in 1674, through geometric considerations, of the summation formula

which is distinguished by its great simplicity. The error is determined by the first
discarded term. Thus this series converges only very slowly and is not of any use for the
calculation of ?r.74

The product formula of Euler: Roughly 80 years after Wallis, Euler found his famous
product formula:

The product formula of Wallis (2.89) is a special case of this formula, when z = 1/2.

Exact calculation of TT: Ludolf van Ceulen (1540-1610) was the first to calculate the
number TT up to 35 decimal places. For this reason vr is sometimes referred to as the
Ludolf number.

Starting in the eighteenth century the formula of John Machin

was used for the calculation of TT, together with the power series for arctanx (cf. (2.93)).

Ramanunjan's formula: The Indian mathematician Srinivasa Ramanunjan75 discov-

74In fact' this series was discovered three years before Leibniz discovered it, by the British mathemati-
cian James Gregory.

75Ramanunjan (1887-1920) is, in his genius, one of the most amazing personalities in the history of
mathematics. He discovered mathematical formulas of incredible complexity. Through a letter which
he directed to the great English mathematician Godefroy Harold Hardy (1877-1947), the latter became
aware of the mathematical talent of Ramanunjan and invited him to England in 1914. Ramanunjan's
Notebook is, with its treasury of mathematical formulas which appear to be coming from another world,
a unique document in the mathematical literature. For those who are interested in the fascination of
deep mathematics this notebook, in its present edition containing proofs and commentaries, is highly
recommended: [263].
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ered in 1914 the formula

This formula is closely connected with the deep theory of modular forms (cf. 1.14.18).

The brothers David and Gregory Chudnovsky of Columbia University (New York) cal-
culated, with a modified and very complicated formula similar to the above formula of
Ramanunjan, the number TT up to more than two billion decimal places (2,260,321,336,
to be precise).

The iteration scheme of the brothers Borwein: The following spectacular iteration
scheme was derived by Peter and Jonathan Borwein (University of Waterloo, Canada):

with the initial values yo One has

This sequence has such an amazing speed of convergence that already 15 iterations suffice
to get the value of TT up to two billion decimal places.

The scheme is the expression of a revolution in modern mathematics. Powerful computers
raise the need of completely new methods and algorithms, which one describes with the
phrase "scientific calculation".

General continued fractions: A general continued fraction is an expression of the
form

For this expression one also uses the symbol

In the special case in which bj = 1 for all j one gets the symbol [OQ , . . . , an] of section
2.7.5.1.
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Legendre's proof of the irrationality of TT (1806): In 1766 Johann Lambert (1728
1777) found the (general) continued fraction:76

From this expression he concluded the irrationality of tanz, if z ^ 0 is rational. In
particular, from the rationality of the expression

he concluded that TT is irrational. The proof given by Lambert contains however a gap,
which was not closed until 1806 by Legendre.

Already 2000 years before, Aristotle had conjectured the irrationality of TT, in the form
of stating that the radius and the circumference of a circle are not commensurable.

The theorem of Lindemann on the impossibility of the quadrature of the
circle (1882): Ferdinand Lindemann showed in 1882 that the number TT is transcen-
dental. This has as a consequence the negative solution of the ancient problem of the
quadrature of the circle (cf. 2.6.6).

The general continued fraction of vr: For all real numbers x one has the convergent
continued fraction

arctanx

In contrast, the power series

arctan x

only converges for — 1 < x < 1. If we use

then we get from (2.93) for x = I the Leibniz series (2.90), which converges so slowly. In
order to calculate TT up to seven decimals, one requires roughly 106 terms of the Leibniz
series. The same precision of TT is obtained by setting x = I in (2.92) and calculating
nine terms. In general one gets the very regular expression

2.7.8 Gaussian congruences

Definition: if a, b and m are integers, then one writes, following Gauss, the symbol

a = b mod m

if and only if the difference a — b is divisible by m. In this case, a and 6 are said to be
congruent modulo m.

Example 1: 5 = 2 mod 3, since 5 — 2 is divisible by 3.
76 This continued fraction converges for all complex numbers 2 which are not poles of tanz.
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Manipulations: (i) a = a mod m.

(ii) From a = bmodm it follows that b = amodm.
(iii) From a = bmodm and b = cmodm it follows that a = cmodm.
(iv) From a = b mod m together with c = d mod m one obtains

a + c = b +dvaodm and ac = bdmodm.

Theorem: If s and m are relatively prime positive natural numbers, then the equation

ts = I mod ?7i

has a solution t in positive integers.
Theorem of Fermat (1640) and Euler (1760): For positive natural numbers a and
m, which are assumed to be relatively prime, one has

Here (p(m) denotes the number of integers 1,. . . , m which are relatively prime to m (the
Euler <£>-function, see section 2.7.2).
Example 2: For a prime number p, which does not divide a, one has

In this form the theorem was originally formulated by Fermat.

2.7.8.1 Application of the theorem of Fermat—Euler in coding theory

More that 200 years the theorem of Fermat-Euler was considered to be only a result
in pure mathematics. In 1977 however, Rivest, Shamir and Adlemann published the
following bafflingly simple and yet extraordinarily secure code, which is based on the
theorem above and is often used today.
Preparations by the operator: (i) Here two prime numbers p and <?, roughly of the
size 10100, are chosen and kept secret.
(ii) One forms the product

m = pq

and calculates <p(m) = (p — !)(<? — 1).
(iii) One chooses an additional natural number s with 1 < s < ip(rn).
(iv) The person sending the message is given (publicly) the two numbers

m and s.

Encoding the message: The message is simply encoded in a single natural number

n

as follows. One associates to every letter (for example) a two-digit number 10,11,12 ...
and replaces in the message all occurrences of the letter by that two-digit number. Then



714 2. Algebra

forming the concatenation of all of these, one gets a big number n. The number ns

is then divided by m, and the remainder r is sent to the operator, i.e., the number r
satisfying

ns = r mod m

is the only information sent.

Decoding the message by the operator: Here one must construct from the remain-
der r the original number n.

Since <p(rri) and s are relatively prime, there is a natural number t > 1 with

Theorem: r* = nmodm.

The operator now just divides r* by m. The remainder here is the sought for number n.
Note that from the size of m one always has n < m.

Proof of the theorem: By the Fermat-Euler theorem one has

From (2.95) there exists an integer k with ts = I + kip(m). It follows that

The security of this method: If an intruder wants to decode the message, he needs
the number t, that is </?(ra) = (p — l)(q — 1). To get this number he must determine
the prime number decomposition of the number m, which is known to him. The trick
of this method is simply that because of the size chosen for p and q, no computer is as
yet able to determine the factors p and q in a reasonable amount of time.
Since computers are becoming more and more powerful all the time, the security of the
method is only guaranteed if one chooses new, larger numbers p and q from time to
time.
The method could become unsafe if some algorithm were found for quickly factoring
large numbers into their prime decompositions. For this reason all mathematicians who
consider problems in this area are closely monitored by the National Security Council.

2.7.8.2 The quadratic reciprocity law

We study the solvability of the two equations

and

Leeendre symbol: We set

has a solution,
has no solution.

if
if
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The quadratic reciprocity law of Gauss (1796): If p and q are prime numbers
greater than two, then one has

Moreover, for the Legendre symbol we have

Historical remark: This theorem was discovered empirically independently by Euler
(1722), Legendre (1785) and Gauss. The first complete proof was given by Gauss. This
law, together with its many generalizations, expresses the deepest elementary behavior
known in number theory.

Example: Let p = 4n + I be prime, where n denotes some positive natural number.
Then the equation

x2 = — 1 mod p

has a solution, since

Theorem of Gauss (1808): Let where p denotes a prime. Then one has

Sums of this type are called Gaussian sums. It took even Gauss a long time to prove
this result.

2.7.9 Minkowski's geometry of numbers

Lattices: Let 61, . . . , bn be linearly independent column vectors of Rn with n > 2. The
set

is called a lattice in K". The number Vol (L) := |det (61,. . . , bn)\ is equal to the volume
of the n-dimensional cube spanned by b\,..., bn and is called the lattice volume.

Lattice point theorem of Minkowski (1891): Let L be a lattice, and let C be
convex set which is centrally symmetric with respect to the origin, i.e., from x e C it
follows that —x 6 C. If for the volume Vol (C) of C the inequality

Vol (C) > 2nVol (L)

is satisfied, then C contains a lattice point x ^ 0.

Example: If C is a ball of R3 centered at the origin with Vol (C) > 8, then C contains
some lattice point x ^ 0.
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2.7.10 The fundamental local—global principle in number theon

2.7.10.1 Valuations

Definition: Let K be a given field. A (real) valuation on the field K associates to ever
element x 6 K a real number v(x) > 0 with the following properties:

(i) v(x) = 0 if and only if x = 0.

(ii) v(xy) = v(x)v(y] and v(x + y) < v(x) + v(y] for all x, y e K.

Example 1: The trivial valuation is i/(0) = 0 and v(x) = I for all x ^ 0.

Example 2: Let Q be the field of rational numbers. The prescription

Voo(x) := x\

yields a valuation on Q.

If p is a prime, then every number x ^ 0 in Q can be written in the form

where m is an integer, and the two numbers a and b are not divisible by p. If we set

vp(x):=p-m,

then we get the so-called p-adic valuation on Q.

2.7.10.2 p-adic numbers

Every metric space X can be extended to a complete metric space. This extension is
unique up to an isometry (cf. [212]).

The field Q of rational numbers is made into a metric space by setting

d(x,y) := v^x-y).

The completion of this metric space yields the field M of real numbers.

If we instead use the p-adic valuation in the above procedure, then the completion of Q
with respect to the metric

d(x,y) := vp(x-y]

yields the field Qp of p-adic numbers.

Example: An infinite series is convergent in Qp if and only if (an) converges to

zero.

A result of that simplicity is not available in M.

Theorem of Ostrowski (1918): If one has a non-trivial valuation v on the field Q
of rationals, then the completion of Q with respect to the metric d(x, y) := v(x — y] is
either the field M or one of the p-adic fields Qp.

Remark: If one takes the point of view that rational numbers are uniquely determined
by natural numbers, then the theorem of Ostrowski shows that the classical abstrac-
tion from Q to M is not necessary; rather one has all the p-adic fields Qp as possible
completions of the same field (metric space).
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The p-adic numbers were introduced in 1904 by Kurt Hensel in number theory and have
since proved themselves to be fundamental. There are mathematicians and physicists
who think that theoretical physics is so incomplete today because it has up to now been
restricted to the real numbers for historical reasons and hence does not take the other
fields Qp into account.

2.7.10.3 The theorem of Minkowski—Hasse

We consider the equation

Here a i , . . . , an are rational numbers, all non-vanishing.
Theorem: If the equation (2.98) has a non-trivial solution

for K = R and K = <QP (p an arbitrary prime number), then it also has a non-trivial
solution

Remark: One calls solutions of (2.99) local and the solutions of (2.100) global. Ihe
theorem thus tells us that from the local solvability of the equation (2.98), the global
solvability follows. This is a special case of the general local-global principle in number
theory, which documents the fundamental nature of the p-adic number fields.

2.7.11 Ideals and the theory of divisors

Every integer can be written as a product of prime numbers. This fact is not true for
arbitrary rings. In this more abstract setting, one must use the theory of divisors (cf.
Figure 2.8).
The starting point for the theory of ideals is the work of Kummer from 1843, which
contains an incorrect proof of Fermat's last theorem. Dirichlet recognized this mistake,
which was precisely that the prime decomposition of numbers does not hold in arbitrary
rings. Following this, Kummer studied the problem of decomposition. By introducing
ideal numbers he was able to prove generalized decomposition theorems, which made a
correct proof of Fermat's last theorem possible in some special cases. Dedekind intro-
duced the general notion of ideal in 1871 and so founded ideal theory, which today plays
an important role in modern mathematical physics in the context of operator algebras
(cf. [212]).

2.7.11.1 Basic notions

Let R be an integral domain with unit, i.e., R is a commutative ring without divisors of
zero.

Units: An element e of R is called a unit, if s~l also belongs to R.

Example 1: In the ring Z of integers, the only units are ±1.
Prime elements: A ring element p is called prime or irreducible, if p ^ 0, p is not a
unit, and from a decomposition

p = ab
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Figure 2.8. Relations between rings of different types

it follows that a or 6 is a unit.

Unique decomposition into prime elements: A ring R is called factorial (or a
unique factorization ring}, if and only if every non-vanishing ring element can be uniquely
(up to units and up to the order of factors) written as a product of prime elements.

Example 2: The ring Z of integers has this property.

2.7.11.2 Principal ideal domains and Euclidean rings

Let .R be a commutative ring with unit.

Ideals: A non-empty set sf of R is said to be an ideal, if the following two properties
are satisfied:

(i) From a, b £ £/ it follows that a — b e ^/.

(ii) From a G £^ and r € -R it follows that ra G &?.

Note that this property just states that £/ is closed with respect to addition and scalar
multiplication by elements in R. In this respect, an ideal is the ring analog of a normal
subgroup in the theory of groups. In fact, an analog of the homomorphism theorem
in group theory characterizing the normal subgroups as the set of kernels of group
homomorphisms holds for ideals: a subset ,£/ of R is an ideal if and only if it is the
kernel of a ring homomorphism.

We denote by (a) the smallest ideal which contains an element a. Explicitly one has
(a) = {ra | r <E R}. Ideals of this kind are called principal

Principal ideal rings: An integral domain with unit is called a principal ideal ring, if
and only if every ideal of the ring is a principal ideal.

Theorem 1: Every principal ideal ring has the property of unique decomposition into
prime elements.

Euclidean rings: An integral domain with unit R is called a Euclidean ring, if to every
ring element r ^ 0 there is an integer h(r) > 0 such that

(i) h(rs) > h(r] for all r ^ 0 and s ̂  0.

(ii) Two every two ring elements a and b with b ̂  0 there is a representation

a = qb + r,

for which either r = 0 or h(r) < h(b). The function h : R —> Z is called a height.
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Theorem 2: Every Euclidean ring is a principal ideal ring.

Example 1: The ring Z of integers is a Euclidean ring with h(r) := \r\.

Example 2: If K is a field, then the ring K[x] of all polynomials in the indeterminant x
with coefficients in K is a Euclidean ring. The height of a polynomial is its degree.

The units in the ring K[x] are the non-vanishing elements of K. The prime elements in
K[x] are called irreducible polynomials.

The polynomial ring Z[x] is not a principal ideal ring.

Prime ideals and primary ideals: Let s4 be an ideal of the ring R.

(i) £? is called a prime ideal, if the factor ring R/£/ has no divisors of zero.

(ii) £/ is said to be a primary ideal, if the zero divisors of R/s/ are idempotent (i.e.,
some power of the element vanishes).
Theorem 3: To every primary ideal &/ there is prime ideal £/' which consists of all
elements of R which are powers of elements of £/.

Example 3: In the ring Z of integers, the ideal (p) is a prime ideal if and only if p is a
prime number (this fact explains the terminology).

Moreover, (a) is primary if a is a power of a prime number.

2.7.11.3 The theorem of Lasker-Noether

We denote by ( a i , . . . , as) he smallest ideal which contains the elements a i , . . . , as (one
also speaks of the ideal generated by the elements).
Noetherian rings: A ring is said to be Noetherian, if it is commutative and every ideal
is generated by finitely many elements.
The Hilbert basis theorem (1983): If R is a Noetherian ring with unit, then this
is also true for every ring of polynomials R[XI, . . . , xn] in n variables with coefficients in
R.
The following theorem is the main result in the theory of divisors.

Theorem of Emanuel Lasker (1905) and Emmy Noether (1926): Let R be a
Noetherian ring. Then every ideal of R can be written in a non-redundant way as the
intersection of primary ideals, whose associated prime ideals are distinct.

Any two such representations have the same number of primary ideals and (up to order)
the same associated prime ideals.
Products of ideals: Let stf and SB be ideals of a ring R; one denotes by

S* SB

the smallest ideal which contains all products ab with a € stf and b € SB. Moreover, the
intersection s4 n 3$ and the ideal-theoretic sum £/ + & := {a + b a £ £?, fee &} are
ideals.

2.7.12 Applications to quadratic number fields

The field Q(\/d): Let d be an integer with d ̂  0 and d^l. Moreover suppose that d
is square-free, i.e., not divisible by a square. The quadratic number field Q(\/a) consists
by definition of all numbers of the form
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where Q is the field of rational numbers. The conjuqate number is
the number

Moreover, we define the norm N(z) and the trace tr (z) of the number z by the formulas

Theorem 1: Every extension field K of the field Q of degree 2 is isomorphic to a
quadratic number field Q(\/d) for some d.

The Galois group of K over Q consists of the automorphisms (p± : K —> K defined by

Integers:77 A number z e Q(Vd) is said to be integer, if it satisfies an equation of the
form

with (rational) integral coefficients OQ, • • • , an-i and a positive natural number n. The
set of integers in Q(\/5) is denoted by ff (or ff^ to make the dependency on d explicit).
It is a ring and is called the ring of integers of K.

Theorem 2: For d = 2 mod 4 and d = 3 mod 4 one has

and for d = 1 mod 4 one has

The number D occuring here is called the discriminant of the field Q(Va)-78

Corollary: The units in the ring ff are:

Here one has e := x + y\fd, where (x, y) is the smallest solution of the Fermat equation
x2 — dy2 = 1 with x, y € N (cf. 3.8.6.1). This unit is called the fundamental unit of
Q(Vd).
The fundamental decomposition theorem of Dedekind (1871): ff^ is a ring, in
which every ideal &/ 7^ 0 can be written uniquely (up to order) as a product of prime
ideals.

Example 1: Let d = —5. In the field Q(\/—5) one has the two decompositions

9 = 3 - 3
77Tb discriminate between the usual integers and the integers of a number field, one refers to the

former as rational integers.
78 The notions norm, trace and discriminant as well as ring of integers are quite general and can be

defined for arbitrary number fields.
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and

of the number 9 into prime elements, i.e., the decomposition into prime elements in the
ring ^-5 is not unique. However, if one considers instead of the number 9 the principal
ideal (9), one gets the unique decomposition

with the two prime ideals and

Example 2: (i) Let a < 0. ihen u^ is a unique factorization ring only lor the values

d = -1, -2, -3, -7, -11, -19, -43, -67, -163.

For exactly the values rf=—1,—2,—3,—7 and —11, ffd is a Euclidean ring,
(ii) Let d > 0. Then ff^ is a Euclidean ring if and only if

d = 2,3,5,6,7,11,13,17,19,21,29,33,37,41, 57, 73.

These rings ff^ are also unique factorization rings. A complete description of the rings
ffd which are factorial is even today an unsolved problem.
Fractional ideals: A subset s# of Q(\/d) is said to be a fractional ideal, if one has:

(i) The elements of s# are exactly the elements of Q(\/d) which can be written in the
form

0,1 zi + ... + anzn

with fixed numbers zi , . . . , zn in Q(va) and arbitrary coefficients a i , . . . , an £ Z.

(ii) From z e sf and r e ̂  it follows that rz e jtf.

Example 3: && is a fractional ideal.
Two fractional ideals £/ and ̂  are said to be equivalent, if sf = k^S with a fixed number
k ^ 0 in Q(\/d). If sf and 9& are fractional ideals, then one denotes by

stm

the smallest fractional ideal which contains all products ab with a 6 stf and b G £&.

The fundamental class number of Q(\/rf): The set of equivalence classes of fractional
ideals of Q(Vd) forms a group with respect to the multiplication stStl, which one calls
the class group of Q(v/d); the order of this group is called the class number of the field.
The class number is usually denoted by h, or in this case h(d) to indicate the dependency
on the field Q(v/d).
These notions can all be found in Gauss' Disquisitiones arithmeticae published in 1801.
The larger the class number, the more complex the structure of the ring G& and of the
field Q(Vd).
Theorem 3: ffj is a principal ideal ring if and only if the class number of Q(Vd) is
equal to unity, i.e., up to equivalence there is but a single fractional ideal in Q(\/d).

Example 4: All Euclidean rings in Example 2 are principal ideal rings and hence have
class number one.
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2.7.13 The analytic class number formula

In 1855, after Gauss' death, the University of Gottingen tried to keep
the reputation it had gained through having the first of all living math-
ematicians for half a century by appointing Dirichlet as Gauss' succes-
sor.

Eduard Rummer (1810-1893)

Dirichlet (1805-1859) was the first to systematically apply analytic methods in the
theory of numbers and so created what is now known as analytic number theory. Among
other things he got formulas for the class numbers using his L-series.

Class number formula: For the class number h(d) of Q(\/d) one has

for

for

for

Here D is the discriminant of the field Q(Vo) and e is the fundamental unit. Moreover

with

for

for

for and

as well as The products extend over all prime numbers

p which are divisors of d (resp. of S in the third case). Moreover, is the Legendn

symbol (cf. 2.7.8.2). One calls x a character of

2.7.14 Hilbert's class field theory for general number fields

The theory of number fields is like an architectural masterpiece of won-
derful beauty and harmony.

David Hilbert,
Zahlbericht (1895)

The ultimate goal of class field theory is to give a complete classification of all fields.
Already in the apparently simple case of algebraic number fields this turns out to be
quite a challenge.

Abelian field extensions of number fields: A field extension from K to L is called
Abelian, if the Galois group of the extension (cf. 2.6.2) is Abelian, i.e., commutative.
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An algebraic number field is a finite field extension of the rational numbers. If K is an
algebraic number field, then one would like to determine all the Abelian field extensions
LofK.

To this end, on considers a particular finite field extension H(K) of K, which is called
the Hilbert class field of K. This field H(K) contains important information on the
Abelian extensions of K.

Example: The Hilbert class field of K = Q(v
/r5) is H(K) = Q(i, \/5), i.e., H(K) is the

smallest field extension of Q which contains i and v/5-

A presentation of modern class field theory on the basis of homological algebra (coho-
mology of groups) including the deep reciprocity laws can be found in [287] and [282].
In this theory broad generalizations of the local-global principle are applied, which con-
nect ideal theory with the theory of valuations and which generalize the theory of p-adic
numbers (cf. 2.7.10.3).

The starting point of Hilbert's theory is the following classical result of Kronecker and
Weber (1887).

Theorem: Every finite Abelian extension L of the field Q of rational numbers is con-
tained in the cyclotomic field Q(Cn)-

Remarks: 1. The notation is C« := e2*"1/™, an nth root of unity, and Q((n) denotes the
smallest subfield of C which contains £n. The Galois group of the extension Q(Cn)|Q is
equal to (Z/nZ)x (the group of units in the residue class ring Z/nZ of Z modulo n). It
follows from Galois theory that a bijective mapping

U^L

exists between the set U of all subgroups of (Z/nZ)x and the set of Abelian field exten-
sions L of Q which are contained in Q(Cn)-

2. The extension of this classical theory to non-Abelian extensions, laid down in the so-
called "Langlands program", reaches into the furthest frontiers of modern mathematics,
creating links between number theory, commutative algebra, algebraic geometry, repre-
sentation theory of Lie groups and many other areas. In particular, Shimura varieties
occur, which in turn are related to the Shimura-Taniyama-Weil conjecture, proved by
Andrew Wiles for semi-stable curves; the proof of Fermat's last theorem is a corollary
of this result.
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3. Geometry

He who understands geometry, understands anything in the universe.
Galileo Galilei (1564-1642)

Geometry is the invariant theory of groups of transformations.

Felix Klein,
Erlanger Program 1872

3.1 The basic idea of geometry epitomized by Klein's
Erlanger Program

The geometry known in ancient times was Euclidean geometry, and it dominated math-
ematics for over 2000 years. The famous question as to the existence of non-Euclidean
geometries led in the nineteenth century to the description of a series of different ge-
ometries. This being established, it was natural to consider the classification of possible
geometries. Felix Klein at the age of 23 solved this problem and showed in 1872 with
his Erlanger Program that geometries can be conveniently classified by means of group
theory. A geometry requires a group G of transformations. Every property or quantity
remaining invariant under the action of this group G is a property of the associated
geometry, which is therefore also referred to as a G-geometry. We will make continual
use of this classification principle in this chapter. We explain the basic idea with the
example of Euclidean geometry and the so-called similarity geometry.

Euclidean geometry (geometry of motion): We consider a plane E. We denote by
Aut (E) the set of all maps of E into itself which are composed of the following types of
transformations (a special case of automorphisms, hence the notation):

(i) translations,

(ii) rotations around a point, and

(iii) reflections on a fixed line (Figure 3.1).

Compositions of these transformations, i.e., the elements of Aut (E), are called motions1

of E. We denote by

hg

the transformation which is the composition of g and h, i.e., first applying g, then h.
With this multiplication hg the set

Aut (E)

1 Specializing to those transformations which are compositions of only the translations and the rota-
tions, we obtain the set of proper motions.
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inherits the structure of a group (a special case of automorphism group). The neutral
element e in the group is the identical motion (no motion at all).

By definition the set of properties and quanti-
ties which are invariant under this group belong
to the Euclidean geometry of the plane. Ex-
amples of this are 'the length of a segment' or
'the radius of a circle'.

Congruence: Two subsets of the plane (for
example, two triangles) are said to be congru-
ent, if they can be mapped into one another by
a transformation in Aut (E). The well-known
theorems on the congruences of triangles in the
plane are results about Euclidean geometry (see
section 3.2.1.5).

Similarity geometry: A special similarity
transformation is a transformation of the plane
E which maps the set of all lines through a cho-
sen point P into itself and which at the same
time multiplies all distances from P to some-
where else with a fixed (positive) number. We

Figure 3.1. Plane motions.

denote by Sim(£J) the set of all transformations of E which are composed of the motions
above and the similarity transformations. Then

Sim(E)

forms with respect to the same product hg as above a group, which is called the group
of similarity transformations.

The notion 'length of a segment' is not a notion of this geometry. However, the notion
'the ratio of two segments' is.

Similarity: Two subsets of E (for example, two triangles) are said to be similar, if they
are related by a similarity transformation, i.e., if there is a similarity transformation
which maps one to the other. The well-known theorems on similarity of triangles in the
plane are theorems of this geometry.

Every technical drawing is similar to the object it is rendering.

3.2 Elementary geometry

Unless we explicitly state the contrary, all angles will be measured in radians (cf. 0.1.2).

3.2.1 Plane trigonometry

Notations: A plane triangle consists of three points which do not lie on a line called
vertices, as well as the three segments joining these vertices in pairs, called edges or
sides. We denote the sides2 by a, b, c and the angles opposite those sides by a,/3,7,

2 We will also denote by the same symbols the lengths of the corresonding sides, provided no confusion
is caused by this.
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respectively (Figure 3.2(a)). Moreover, we set:

(half the circumference),

F surface area, ha height of the triangle over the side a,
R radius of the circumscribed circle, r radius of the inscribed circle.

The circumscribed circle is the smallest
circle which contains the entire triangle
and which passes through the three ver-
tices. The inscribed circle is the largest
circle which is contained in the triangle.

3.2.1.1 Four fundamental laws for Figure 3.2. Quantities of a plane triangle.
triangles

Law on the sum of the angles:

Cosine law:

Sine law:

Tangent law:

Triangle inequality: c < a + b.

Circumference: C = a + b + c = 2s.

Height: For the height of the triangle over the side a one has (Figure 3.2(b)):

Surface area: From the height formula one gets

In words: the surface area of a triangle is equal to half the product of the length of the
side and height over that side.

Moreover, one can also use the Heronian formula3:

In words: The surface area of a triangle is equal to half the product of the radius of the
inscribed circle and the perimeter of the triangle.

3This formula is named after Heron of Alexandria (first century AD), one of the most important
mathematicians of ancient times who wrote numerous books on applied mathematics and engineering.
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More formulas on triangles:

Laws of half-angle:

Mollweidian formulas:

tangent formula:

projection law:

Cyclic permutation: More formulas can be obtained from (o.l) to (3.5) by cyclically
permuting the sides and the angles:

a —> b —> c —» a and a —> /? —> 7 —> a.

Special triangles: A triangle is called a right triangle, if one of the angles is Tr/2 (that
is, 90°) (Figure 3.3).

Figure 3.3. A right triangle. Figure 3.4- An equilateral triangle.

Figure 3.5. A symmetric triangle.

A triangle is called symmetric
(resp. equilateral] if two (resp.
all three) of its sides are equal
(Figure 3.5 and Figure 3.4, re-
spectively) .

Acute and obtuse angles:
An angle 7 is said to be acute
(resp. obtuse), if 7 is between
0 and 90° (resp. between 90°
and 180°).
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Calculations for triangles on a calculator: In order to calculate the formulas which
occur below, one requires the values sin a, cos a, etc. These are provided by most
calculators.

3.2.1.2 The right triangle

In a right triangle the side opposite the right angle is called the hypotenuse. The other
sides are referred to as catheti (cathetus is the singular) or just legs. Both of these word
are taken from Greek. In what follows we use the notations as shown in Figure 3.3.

Surface area:

The theorem of Pythagoras:

In words: the square of the length of the hypotenuse is equal to the sum of the squares
of the lengths of the other two legs.

Because of 7 = 7T/2 and cos 7 = 0, the result (3.6) is actually a special case of the cosine
law (3.2).

Euclid's law of height:

h2 = pq.

In words: the square of the height is equal to the product of the lengths of the segments
of the hypotenuse which arise from projection of the legs on the hypotenuse.

Euclid's law on catheti:
a2 = qc, b2 = pc.

In words: the square of the length of one of the legs is equal to the product of the
lengths of the segments of the hypotenuse which arise when the leg is projected onto the
hypotenuse.

Angle relations:

Because of the relation sin/3 = cos a the sine theorem (3.3) is transformed into the result

tan— a — — . One refers to a (resp. b) as the opposite (resp. adjacent) leg to the angle
ba.

Calculations on right triangles: All of the problems which are posed about right
angles can be solved with the help of (3.7) (cf. Table 3.1).

Example 1 (Figure 3.5(b)): In a right triangle with equal sides one has the relation for
the height over side c:
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Table 3.1. Formulas for right triangles

Given Formulas for the remaining
quantities quantities for a right angle

Proof: The triangle APC in Figure 3.5(b) is a right triangle. Since the sum of angles in
Ta triangle is always 180°, one has a = (3 = 45°. Because of — = 45 , the triangle APC

has equal sides. It then follows from the Pythagorean theorem that a2 = h2 + h2. This
implies h2 = a2/2, hence h = a/\/2 = a\/2/2. D

Moreover we get

Example 2 (Figure 3.4(b)): In an equilateral triangle we have for the height over the
side c:

 From this it follows that

4a2 = 4/i2 + a2, hence 4/i2 = 3a2. This implies 2h = \/3a.

Moreover, we get

3.2.1.3 Four basic problems on triangles

From the equation sin a = d one cannot determine the angle a uniquely, since a could
be acute or obtuse and sin(7r — a) = sin a. The following methods for the first and third
of the problems now presented however do yield unique angles.

Proof:  The Pythagorean theorem yields
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First problem: Let the side c and the adjacent angles a and /3 be given. The problem
is to find the other sides and angle of the triangle (Figure 3.2).

(i) The angle 7 = TT — a — f3 is determined by an application of the law on the sum of
angles.

(ii) Both sides a and b can be determined from the sine law:

(iii) For the surface area we have

Second problem: Suppose now that the sides a and 6, as well as the angle 7 between
them are given.

(i) One calculates uniquely from the tangent law:

(ii) From the law on the sum of angles one has:

(iii) The side c follows now from the sine law:

(iv) For the surface area we have

Third problem: Now suppose that all three sides a, b and c are given.

(i) One calculates half the perimeter of the triangle s — - (a + b + c) and the radius of
the inscribed circle

(ii) The angles a and /3 are now uniquely determined by the equations:

(iii) The angle 7 = TT — a — (3 is again determined by the law on the sum of the angles,

(iv) For the surface area we get the easy formula A = rs.

Fourth problem: Finally, suppose that the two sides a and b as well as the one opposite
angle a are given.

(i) We first determine the angle /3.
Case 1: a > b. Then /3 < 90°, and (3 is determined from the sine law uniquely from

the equation

Case 2: a — b. Here one just has a = f3.
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Case 3: a < b. If b sin a < a, then the equation (3.8) yields two angles /? as solutions,
one acute and one obtuse. In case b sin a = b we have j3 = 90°. For b sin a > a there is
no triangle with the given conditions.

(ii) The angle 7 = 7r — a — /3 is again determined by the law on the sum of the angles.
(iii) The side c is determined from the sine law:

(iv) For the surface area we have

3.2.1.4 Special lines in a triangle

Medians and the center: A median is by definition a line through the midpoint of
the one of the sides and the opposite vertex.

All three medians of a triangle meet in the center. One knows that in addition the center
cuts each median in a ratio of 2 : 1 (measured from the vertex, see Figure 3.6(a)).

Figure 3.6. Geometric properties of circles and triangles.

The length of the median meeting the side c in its midpoint:

Equidistant perpendicular and circumscribing circle: An equidistant perpendic-
ular is by definition a segment which is perpendicular to one of the sides and passes
through the midpoint of that side. The three equidistant perpendiculars meet at the
center of the circumscribing circle.

Radius of the circumscribinq circle: 

Bisectors and the inscribed circle: A bisector passes through one of the vertices
and the opposite side, dividing the angle into two equal angles (bisects the angle).
All three bisectors meet at the center of the inscribed circle.

Radius of the inscribed circle:

Length of the bisector to the angle 7:
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Theorem of Thales4: If three points lie on a circle (with center
M), then the central angle 27 displayed in Figure 3.7 is equal
to twice the periphery angle 7.

3.2.1.5 Theorems on congruent triangles

Two triangles are congruent (that is, they are related by one of
the transformations described in section 3.1) if and only if one
of the following four cases holds (Figure 3.8(a)):

(i) Two sides and the angle between them are equal.
(ii) One side and the two adjacent angles are equal.
(iii) Three sides are equal.
(iv) Two sides and the larger of the opposite angles are equal.

Figure 3.7.

Figure 3.8. Congruent and similar triangles.

3.2.1.6 Theorems on similar triangles

Two triangles are similar (i.e., they can be transformed into one another by one of the
similarity transformations of section 3.1), if one of the following four cases holds (Figure
3.8(b)):

(i) Two angles are equal.
(ii) Two ratios of side lengths are equal.
(iii) One ratio of side lengths and the enclosed angle are equal.
(iv) One ratio of side lengths and the angle opposite the longer of these two sides are

equal.
Theorem of Thales (the ray theorem): Let two lines be given,
which intersect one another in a point C. If two parallel lines
meet these two lines, the corresponding triangles ABC and
A'B'C are similar (Figure 3.9).

For this reason the angles of both triangles and the ratios of the
corresponding sides equal. For example, one has:

3.2.2 Applications to geodesy
Figure 3.9.

Geodesy is the science of making measurement on the surface of
the earth. One uses triangles for this (triangulation). Strictly speaking the triangles

4Thales of Milet (624-548 BC) is regarded as the founder of Greek mathematics.
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here are triangles on the surface of a sphere (spherical triangles). If, however, these
triangles are small enough (compared with the sphere), then one may treat them as
plane triangles and apply the formulas of plane trigonometry. This is the case for most
applications in geodesy. In sea and air travel, however, the triangles used are so large
that one must use the formulas for spherical trigonometry (cf. 3.2.4).

Height of a tower: One is trying to determine the height h of a tower (Figure 3.10).

Measured quantities: We measure the distance d from the tower and
the angle a of inclination.

Calculation: h = dtana.

Distance to a tower: Here one is trying to determine the distance
d to a tower whose height is known.

Measured quantities: We measure the angle of inclination a and know
the height h of the tower.

Calculation: d = h cot a.

Figure 3.10.

The basic formulas of geodesy: Let two point A and B be given with Cartesian
coordinates (XA,UA) and (ZB,y.e), where we make the assumption that XA < XB (Figure
3.11). Then we get for the distance d = AB and the angle a. the formulas:

Figure 3.11. The basic idea
of geodesy.

Figure 3.12. Formulating
problems in geodesy.

3.2.2.1 The first basic problem (forward cutting)

Problem: Let two points A and B be given, with Cartesian coordinates (XA,VA) and
(XB,VB}- The Cartesian coordinates ( x , y ) of a third point P (as in Figure 3.12(a)) are
sought for.

Measured quantities: We measure the angles a and j3 as in Figure 3.12.

Calculation: We determine b and 8 by means of the formulas
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and get

Proof: We use the right triangle APQ in Figure 3.12. Then we have

From me has and From the sine
law it follows that

Finally one gets for sum of angles in a triangle) the relation

3.2.2.2 The second basic problem (backwards cutting)

Problem: We are now given three points A, B and C with
Cartesian coordinates (xA,yA), (XB^B} and (xc,yc)- We are
looking for the Cartesian coordinates (x, y) of a point P as in
Figure 3.13.

Measured quantities: We measure the angles a and (3.

The problem can only be solved if the four points do not lie on
a circle.

Calculation: From the auxiliary quantities Figure 3.13.

we calculate p, and 77 as

and get

3.2.2.3 The third basic problem (calculation of a distance which cannot be
directly measured)

Problem: We are looking for the distance PQ be-
tween the two points P and Q as in Figure 3.14,
which are for example separated by a lake. There-
fore the distance cannot be directly measured.

Measured quantities: One measures the distance c —
AB between two other points A and B, as well the
four angles a, /?, 7 and 6 (as in Figure 3.14).

Figure 3.14-
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Calculation: From the auxiliary quantities

and we get

3.2.3 Spherical geometry

Spherical geometry is concerned with the geometry on a sphere (the surface of a ball).
In the case of the surface of the earth on can apply the methods and formulas of plane
trigonometry in good approximation provided the triangles (i.e., distances) are small
enough. However, for calculations involving larger distances (for example trans-Atlantic
flights or long ship journeys), the curvature of the earth plays an important role; in
other words, in these cases one must use formulas of spherical trigonometry instead of
plane trigonometry.

In what follows we will view the earth as a round ball, i.e., we ignore the flattening near
the poles. The word geometry comes from Greek and means measuring the earth.

3.2.3.1 Measuring distances and great circles

We consider a ball of radius R and denote the surface of this ball by S?R (sphere of
radius R). We agree to call the circles on S^R which are centered at the center of the
ball great circles.

Instead of the lines of plane geometry, in spherical geometry one
has the great circles.

Definition: If A and B are points on J^, one
gets the great circle which passes through A and
B by intersecting 5?R with the plane spanned
by A, B and the center M of the ball.

Example 1: The equator and the circles of lon-
gitude on earth are great circles. Parallels of
latitude are not great circles.

Measuring distances on a sphere: The
shortest segment on a sphere joining two points
A and B on S?R is obtained by considering the
great circle between A and B (as above) and
taking on this the shorter of the two segments

Figure 3.15. Distances on a sphere

into which this great circle is divided by A and B (Figure 3.15).

The distance between two points A and B on a sphere is by defi-
nition the shortest distance between the two points on the sphere.

Example 2: If a ship (or a plane) wishes to take the shortest route between two points
A and B, then it must travel on the great circle joining these two points.
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(i) If A and B both lie on the equator, then the ship just needs to travel along th(
equator (provided this is possible), see Figure 3.15(a).
(ii) If A and B are on the same parallel of latitude (which are not great circles), ther
the route which is shortest would be along a great circle joining them and not along th(
parallel of latitude, see Figure 3.15(b).

Uniqueness of the shortest path: If A and B are not on exactly opposite point o
the sphere (the line between them passes through the center of the ball), then there ii
a uniquely determined shortest path.
If however A and B are opposite, then there are infinitely many shortest paths, all o
the same length.
Example 3: The shortest paths from the north to the south pole consist of all greai
circles of longitude.
Geodesies: All segments of the great circles are called geodesies.

3.2.3.2 Measuring angles

Definition: If two great circles intersect in a point A, then the angle between them is
by definition the angle between the tangents to the great circles at the point A (Figun
3.16).

Spherical diangle: If one joins two pints A and B on a sphere S^R by means of twc
great circles, then one gets what is called a spherical diangle with the surface area

where a is the angle between the two great circles (Figure 3.17).

Figure 3.16. Figure 3.17. Figure 3.18.

3.2.3.3 Spherical triangles

Definition: A spherical triangle is formed by three points A, B and C on the sphere
5^R and the shortest paths joining these points.5 The angles are denoted by a, j3 and
7. The length of the sides are denoted a, b and c (Figure 3.18).
Cyclic permutations: All the formulas which follow remain correct when the following
cyclic permutation is performed:

a —> b —> c —> a and a —> (3 —> 7 —> a.

5We assume in addition that no two of the points are dimetral (i.e., opposite) and that the three
points A, B and C do not lie on a single great circle.
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Surface area S of a spherical triangle:

Since the surface of the sphere itself is equal to 4frR2, we get
from 0 < S < 4:TrR2 for the sum of the angles the inequality

Figure 3.19. 
If one is not sure whether one lives on a sphere or in a plane,
one can answer this question by measuring the sum of angles

in triangles. For plane triangles one always has a + /3 + 7 = TT.

The difference a + /3 + 7 — TTIS called the spherical excess.

Example 1: The triangle in Figure 3.19 is formed by the north pole C and two points
A and B on the equator. Here one has a = /3 = Tr/2. For the sum of the angles we get
a + /3-r-7 = 7T + 7. The surface area is given by S = R2j.

Triangle inequality:

Ratios of the sides: The longest side is always opposite the largest angle. Explicitly
one has:

Convention:6 We set

Law of sines:7

Law of cosines of sides and angles:

Half-angle law: We set Then one has

6Often one takes R = 1. Then one has a* = a, etc. We keep the radius R in the formulas in order
to be able to pass to the limit R —> oo (Euclidean geometry) and replace R >—» iR (the transition to
non-Euclidean hyperbolic geometry) (cf. 3.2.8).

7 If a is a right angle, then one has sin a = 1 and cos a = 0.



3.2. Elementary geometry 739

Formula for the surface area A of a spherical triangle:

(generalized Heronian formula).

Half-side law: Let Then one has:

Neperian formulas:

Mollweidian formulas:

Radii r and Q of an inscribed circle and a circumscribing circle of a spherical
triangle:

Passage of limit to plane trigonometry: If one carries out the limit R —> oo in the
formulas above (meaning that the radius of the sphere grows beyond all bounds), then
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the curvature of the surface of the sphere becomes smaller and smaller. In the limit one
gets the familiar formulas of plane trigonometry.

Example 2: From the cosine law (3.10) it follows from
and that

After multiplying the formula by R2 we get for R —> +00 the expression

This is the cosine law of plane trigonometry.

3.2.3.4 The calculation of spherical triangles

Note in what follows that a* := a/R, etc. We consider here only triangles in which all
angles and sides lie between zero and IT.

First basic problem: Two sides a and b are given, together with the enclosed angle 7.
One calculates the other side c and the other angles a and j3 with the help of the cosine
law for the sides:

Second basic problem: Here we are given all three sides a, b and c, all of which are
to lie between 0 and TT. The angles a, /3 and 7 are calculated by means of the half-side
laws:

The formulas for tan —• and tan — are obtained from tan — by cyclic permutation.

Third basic problem: Here the three angles a, j3 and 7 are given. The sides a, b and
c can be obtained from the half-side laws:

The formulas for tan -^ and for tan —^ are obtained from tan -^- by cyclic permutation.

Fourth basic problem: The side c is given, together with the two incident angles a
and j3. The missing angle 7 is obtained from the cosine law:

The other sides are then calculated by an application of (3.14).



3.2. Elementary geometry 741

3.2.4 Applications to sea and air travel

In order to exemplify the principle, we calculate with rounded values.

A sea journey from San Diego to Honolulu: How long is the shortest route between
these two cities? With which angle /3 do we have to start at San Diego?

Answer: We consider Figure 3.20:

Solution: The two cities have the following geographical coordinates:

A (Honolulu) : 22° northern latitude, 157° western longitude,
B (SanDiego) : 33° northern latitude, 117° western longitude.

We use angular measurements. With the notations as in Figure 3.20, one has:

The first basic problem in 3.2.3.4 yields:

This yields c* = 37° and /3 = 97°. The radius of the earth is
R = 6370 km. Hence the triangle side c is given by

Transatlantic flight from Copenhagen to Chicago:
How far is the shortest route (by air) between these two
cities? With which angle (3 does on have to start from Copen-
hagen?

Answer: We consider Figure 3.20 again. Figure 3.20.

Solution: The two cities have the geographic coordinates:

A (Chicago) : 42° northern latitude, 88° western longitude,
B (Copenhagen) : 56° northern latitude, 12° eastern longitude.

We again use angular measurements. In the notations of Figure 3.20, we have:

From (3.15) it follows that hence The angle is obtained

from it is
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3.2.5 The Hilbert axioms of geometry

Hence all human knowledge begins with perception, passes from
that to notions and ends in ideas.

Immanuel Kant (1724-1804)
Kritik der reinen Vernunft, Elementarlehre9

Geometry needs - just as does arithmetic with numbers - to be put
on rigorous foundations consisting of only a few simple principles.
These principles are called the axioms of geometry. The deriva-
tion of these axioms and the study of there interconnections is a
task which has led to many exceptional treatises in mathematics
ever since Euclid. The task just mentioned amounts in the logical
analysis of our spatial perception.

David Hilbert (1862-1943)
Principles of Geometry

The first systematic presentation of geometry was given in the famous Elements of Euclid
(365-300 BC), which have been taught unchanged for over 2000 years. An axiomatic
presentation which is completely rigorous from a modern point of view was given by
David Hilbert in his Principles of Geometry which appeared in 1899. This book has
lost none of its intellectual freshness since then and in 1987 was published in a 13th
edition by Teubner-Verlag. The following rather formal and seemingly dry axioms are
the result of a long and tedious epistemological path, which was cluttered with errors
and misconceptions all along the way. They are closely related to the Euclidean parallel
axiom, which will be discussed in section 3.2.6. For clarity of presentation we restrict
ourselves here to the axioms of plane geometry. To make the presentation more under-
standable we include figures illustrating the axioms. We would like to explicitly bring
to the reader's attention that visualization methods like this have been used for 2000
years by mathematicians but helped to conceal the true nature of geometry (cf. 3.2.6 to
3.2.8).

Basic notions of plane geometry: For emphasis we state the most important notions
of plane geometry at the start.

Point, line, incident,10 between, congruent.

In laying the foundations of geometry, these notions are not described. This is a radical
point of view, as Hilbert was the first to point out, and is the basis for every mod
ern axiomatic treatment in mathematics. The missing contextual interpretation of the
modern mathematical form of geometry is an apparent philosophical weakness; in fact
it is however one of the great strengths of this approach and is typical of mathematical
thinking. By restraining from trying to give these notions a concrete meaning one is

9Translated this means "A critique of pure reason, elementary theory".
10Instead of the statement 'the point P is incident to the line /', one also says 'P lies on V or 'I passes

through P'. If P lies on two lines / and TO, then one says that the lines I and m intersect in P.
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in a position to all at once deal with a myriad of different situations with one logical
construction (cf. 3.2.6 to 3.2.8).

Incidence axiom (Figure 3.21 (a)): (i) To two different points A and B there is
exactly one line I which passes through both A and B.
(ii) There are at least two points lying on each line.
(iii) There exist three points, not all of which lie on the same line.
Order axiom (Figure 3.21(b)): (i) // a point B lies between the points A and C,
then A, B and C are three different points, which lie on a line, and the point B
also lies between C and A.
(ii) For every two distinct points A and C there is a point B which lies between C
and A.
(iii) // three distinct points lie on a line, then there is exactly one of these points
which lies between the others.

Figure 3.21. The Hilbert axioms of geometry.

Definition of a segment (Figure 3.21(c)): Let A and B be two distinct points, which
lie on a line /. The segment AB is the set of all points of / which lie between A and B.
The points A and B themselves are counted for this purpose.

The axiom of Pasch (Figure 3.21(d)): Let A, B and C be three distinct points
which do not all line on a single line. Furthermore, let I be a line on which none
of the points A, B and C lie. If the line I intersects the segment AB, then I also
intersects the segment BC or the segment AC.

Definition of a ray (Figure 3.21(e),(f)): Let A, B, C and D be four distinct points, all
of which lie on a line I, where C is between A and D, but not between A and B. Then
we say that the points A and B lie on the same side of C, while A and D lie on different
sides of C.

The set of all the points which lie on one side of C is called a ray.

Definition of angle (Figure 3.21 (g)): An angle /(&, c) is a set [b, c} of two rays b and
c which belong to different lines and initiate from a common point A. Instead of Z(6, c)
also the notion /(c, 6) is used.11

11 According to this convention, the rays b and c are treated equally. Intuitively one will choose the
angle formed by 6 and c which is less than 180°.
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If B (resp. C] is a point on a ray b (resp. c), where B and C are distinct from the point
A, then we write ^BAC or /CAB instead of Z(6, c).

With the help of the axioms presented thusfar, we can prove the following result.
1 ne theorem on tne decomposition or tne plane by a
line (Figure 3.22): If / is a line, then all points either lie on
the line I or in one of the two sets stf and SB which have the
following properties:

(i) If the point A lies in sf and the point B in ̂ , then the
segment AB intersects the line /.

(ii) If two points A and A' (resp. B and B'} lie in stf (resp.
^), then the segment AA' (resp. BB'} does not intersect the
line /.

Definition: The points of stf (resp. £§} lie on one (resp. the
other) side of the line /.

A congruence, of segments and
angles are notions which are
also not given a more precise
meaning. Intuitively speak-
ing, congruent objects are ones
which can be transformed into
one another by motions. The
symbol

AB-CD

means that the segment AB is
congruent to the segment CD,
andFigure 3.23. Congruence axioms for segments ant

angles.

means that the angle /ABC is congruent to the angle A.EFG.

Congruence axiom for segments (Figure 3.23(a),(b)): (i) Assume that two
points A and B lie on a line I, and the point C lies on a line m. Then there
is a point D on m such that

AB ~ CD.

(ii) If two segments are congruent to a third segment, then they are also congruent
to one another, (iii) Let AB and BC be two segments on a line I, which have no
common point other than B. Moreover let A'B' and B'C' be two segments on a line
V, which have no common points other than B'. Then the relations

AB ~ A'B' and BC ~ B'C'

always imply
AC ~ A'C'.

Definition of a triangle: A triangle ABC consists of three distinct points A, B and
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C, which do not all lie on a line.

Congruence axioms for angles (Figure 3.23(c),(d)): (i) Every angle is congruent
to itself, i.e., /(&,c) ~ Z(6, c). (ii) Let /(&, c) be an angle and let b' be a ray on the
line V. Then there is a ray c' with

and all inner points of Z(6',c') lie on one side of the line I ' , (iii) Let two triangles
ABC and A'B'C' be given. Then from

it always follows that

and

The axiom of Archimedes (Figure 3.24): If AB and CD are two given segments,
then on the line through A and B there are points

Ai,A2,...,An

such that the segments AAi,AiA2,...,An_iAn are all congruent to the segment
CD and B lies between A and An.

12

Completeness axiom: It is not possible to extend the system by adding points or lines
such that the axioms all continue to hold.

Theorem of Hilbert (1899): If the theory of real numbers is free of contradictions,
then geometry as defined by the axioms is free of contradictions.

Figure 3.24- The axiom of
Archimedes.

Figure 3.25. The parallel
axiom of Euclid.

3.2.6 The parallel axiom of Euclid

Definition of parallel lines: Two lines / and m are said to be parallel, if they do not
intersect in a point.

Euclidean parallel axiom (Figure 3.25): // a point P does not lie on a
line I, then there is exactly one parallel line p to I containing the point P.

12 Intuitively this means that by drawing the segment CD n times one gets a segment which contains
AB.

There are geometries in which all of the axioms except the axiom of Archimedes hold. Geometries of
this kind are called non-Archimedean.
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Historical comment: The parallel problem is:

Can the parallel axiom be proved from the remaining axioms of Euclid?

This was a famous unsolved problem in mathematics for over 2000 years. Karl Friedrich
Gauss (1777-1855) was the first to realize that the parallel axiom cannot be proven
from the other axioms. However, in order to avoid possible irrational quibbles he never
published this result. The Russian mathematician Nikolai Ivanovich Lobachevski (1793-
1856) published in 1830 a book on a new kind of geometry in which the Euclidean
parallel axiom simply didn't hold. This is the Lobachevski geometry (or hyperbolic
non-Euclidean geometry). The Hungarian mathematician Janos Bolyai (1802-1860)
derived independently similar results.

The Euclidean geometry of the plane: The Hilbert axioms in section 3.2.5, includ-
ing the parallel axiom, hold for the usual geometry in the plane, as depicted in Figures
3.21 to 3.25.

Visualization and intuition can be misleading: Figure 3.25 suggest that the par-
allel axiom is obviously correct. This view is however false! The mistake is based on
the fact that we intuitively think of a line as being something 'straight'. But none of
the axioms of geometry state that this should be so. The two geometries which follow
in sections 3.2.7 and 3.2.8 illustrate this point.

3.2.7 The non-Euclidean elliptic geometry

We consider a sphere 5? of radius R = 1. As a 'plane of reference' -Eemp we choose the
northern hemisphere including the equator.

(i) 'Points' are either classical points which do not lie on the equator, or pairs of points
{A, B} which lie on opposite sides of the equator.

(ii) 'Lines' are the great circles on the sphere.

(iii) 'Angles' are the usual angles of great circles (Figure 3.26).

Theorem: In this geometry, the parallel axiom does
not hold.

Example: Let a line / be given as well as a point P
which does not lie on the line (north pole in the figure).
Every line through P is a circle of longitude. All of
these lines intersect I in one point. In Figure 3.26 for
example the line / intersects the line m in the point
{A,B}.

Congruence: 'Motions' in this geometry are the rota-
 tions on the axis passing through the north and southr icfure o./ou.

pole. Congruent segments and angles are by defini-
tion such which can be transformed into one another

by such a motion.

This geometry satisfies all the Hilbert axioms of geometry except for the Euclidean par-
allel axiom. For this reason this geometry is referred to as non-Euclidean. It is amazing
that for 2000 years no mathematician came across the idea of using this simple model
for proving that the parallel axiom does not follow from the other axioms. Obviously
there was a barrier in the thinking of the time. One was too rigid in imagining points as
usual points, lines as usual (straight) lines, etc. In fact this kind of intuitive visualization
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plays no role in the proof of geometric theorems with the help of the axioms and the
usual rules of logic.

3.2.8 The non-Euclidean hyperbolic geometry

The Poincare model: We choose a Cartesian (x, y)-coordinate system and consider
the open upper half-plane

-H = Hhyp:={(x,y)£R2\y>Q},

which we refer to as the hyperbolic plane. We use the following conventions:

(i) 'Points' are classical points in the upper half-
plane

(ii) 'Lines' are half-circles in the upper half-plane
whose centers lie on the x-axis (Figure 3.27).

Theorem (Figure 3.28): (i) There is exactly one line
I through two arbitrary distinct points A and B of
H.
(ii) If / is a line, then through every other point P
outside of I there are infinitely many lines p which do
not intersect /, i.e., there are infinitely many parallels
to I through the point P.

Figure 3.27.

The Euclidean parallel axiom does not hold in hyperbolic geometry.

Angles: The 'angle' between to lines is equal to the angle between the corresponding
circular arcs (Figure 3.28(b)).

Distance: The length of a curve y = y(x), a < x < b in the hyperbolic plane Ji is given
by the integral

With respect to this distance,
the lines are the shortest paths
(geodesies).

Example 1: The distance be-
tween the points P and Q in

Figure 3.28. Geometry in the Poincare plane.

Figure 3.28(a) is infinite. Therefore one calls the x-axis in Figure 3.28(a) the line a\
infinity of the hyperbolic plane.

Hyperbolic trigonometry: This is the science of calculation of triangles in the hy-
perbolic plane. All formulas of hyperbolic geometry can be elegantly derived from the
formulas for spherical trigonometry using the following translation principle:

One replaces in all formulas of spherical trigonometry the radius R by
i.R (where i is the imaginary unit with i2 = — 1) and sets R— I.
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Example 2: From the cosine law for sides of spherical trigonometry

c a b a b
cos — = cos — cos — + sin — sin — cos 7

R R R R R

one gets upon replacement of R by i.R the relation13

cosh — = cosh — cosh sinh — sinh — cos 7.

For R — I we get the cosine law for sides in hyperbolic geometry

coshc = cosh a cosh b — sinh a sinh b cos 7.

If 7 is a right angle, then cos 7 = 0, and we get the theorem of Pythagoras of hyperbolic
geometry

cosh c = cosh a cosh b.

More important formulas can be found in Table 3.2. The formulas for elliptic geometry
correspond to those for spherical trigonometry on a sphere of radius R = 1.

Table 3.2. Formulas in various geometries.

sum of the angles of
the triangle (A the
area)

area of a circle of
radius r

circumference of a
circle of radius r

theorem
of Pythagoras

cosine law

sine law

Gaussian curvature

Euclidean
geometry

a + /3 + 7 = TT

TIT2

2-rrr

C2 = a2 + b2

c2 = a2 + b2

—lab cos 7

sin a a
sin/3 b

K = 0

Elliptic
geometry

a + /3 + 7 = 7r + ^4

2?r(l — cosr)

2?r sinr

cos c = cos a cos b

cos c = cos a cos b
+ sin a sin b cos 7

sin a sin a
sin j3 sin b

K = 1

Hyperbolic
geometry

a + j3 + 7 = TT -A

2vr(coshr — 1)

2vr sinhr

cosh c = cosh a coshfe

cosh c = cosh a cosh b
— sinh a sinh b cos 7

sin a sinh a
sin/3 sinh b

K = -l

Further formulas can be obtain upon perfoming cyclic permutations

a —> b —> c —> a and a —> (3 —> 7 —> a.

13Note that cosix = coshx and sinix = isinhx.

b-R
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Motions: We set z = x + \y and z' = x' + \y'. The 'motions' of hyperbolic geometry
are the special Mobius transformations

with real numbers a, (3,7 and 6, where in addition a5 — /3-y > 0 is assumed to hold. The
set of all such transformations form a group, which is called the group of motions of the
hyperbolic plane.

(i) Lines of Ji are mapped under hyperbolic motion into other lines,

(ii) Hyperbolic motions are angle-preserving and distance-preserving.

According to Klein's Erlanger Program, properties of hyperbolic geometry are those
which are preserved under the group of hyperbolic motions.

Theorem: The hyperbolic geometry just defined satisfies all the Hilbert axioms except
for the Euclidean parallel axiom.

Riemannian geometry: Hyperbolic geometry is a Riemannian geometry with the
metric

and the (negative) constant Gaussian curvature K = — I (cf. [212]).

Physical interpretation: A simple interpretation of the Poincare model in the context
of geometric optics can be found in section 5.1.2.

3.3 Applications of vector algebra in analytic
geometry

The discovery of the method of Cartesian coordinates by Descartes
(1596-1650) and Fermat (1601-1665), which was referred to at
the end of the eighteenth century as 'analytic geometry', increased
the importance of algebra in geometric considerations.

Jean Dieudonne

Vector algebra makes it possible to describe geometric objects by means of equations,
which are independent of the chosen coordinate system.

Let O be fixed point. We denote by r = OP the
radius vector of the point P. If we choose three
pairwise perpendicular unit vectors i, j and k which
form a right-handed system, then we have

r = x\ + yj + zk.

The real numbers x, y, z are called the Cartesian co-
ordinates of the point P (Figure 3.29 and Figure
1.85). Moreover we set a = aii + a^\ + ask etc.

Figure 3.29. Cartesian coordi-
nates.

All the formulas which follow contain the vectorial formulation and the representation
in Cartesian coordinates.
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3.3.1 Lines in the plane

The equation of a line through a point Po(x0,yo) in the direction of the
vector v (Figure 3.30(a)):

x = x0 + tvi_, y = yo + tv2.
If we view the real parameter t as the time, then this is the equation of a motion of a
point with the velocity vector v = vii + v2j and TJ = Xj'\ + yjj.

The equation of a line through the two points Pj(xj,yj), j = 0,1 (Figure
3.30(b)):

x = x0 + t(xi -x0), y = y0 + t(yi -yo).

The equation of the line I
through the point Po(xo,yo)
perpendicular to the unit vec-
tor n (Figure 3.31(a)):

n(r - r0) = 0,

m(x - XQ) + n2(y- y0) = 0.

Figure 3.30. A line through two points. Here one has

Distance of a point P* from
the line /:

d — n(r* - r0),

d = rii(or* - XQ) + n2(y* - y0)-

Figure 3.31. A line perpendicular to a vector.

r

Here we have set r* = OP*. One
has d > 0 (resp. d < 0) if the
point P* is on the positive (resp.
negative) side of / with respect to
n (Figure 3.31(b)). Moreover one
has n = n\\ + n^j.

Distance d between two points
PI and P0 (Figure 3.32(a)):

d= ri -r0|,

Figure 3.32. Distance and area.

with vertices Pj(xj,yj), j = 0,1,2 (Figure 3.32(b)):
Surface area A of a triangle
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Explicitly one has:

3.3.2 Lines and planes in space

Equation of a line through the point Po(xo,yo, ZQ) in the direction of the
vector v (Figure 3.33(a)):

x = xo + tvi, y = yo + tvz, z = z0 + tv3.

If we view the real parameter t as the time, then this is the equation for the motion of
a point with velocity vector v = Vi'i + t>2J + vsk and r = xi + yj + zk.

Equation of a line through two points PJ(XJ, t/j, Zj), j = 0,1 (Figure 3.33(a)):

x = x0 + t(xi -xQ), y = yo + t(yi-yo), z = z0 + t(zi - ZQ).

Figure 3.33. Equations of objects in space.

Equation for a plane through three given points P(XJ, yj, Zj), j = 0,1, 2:

X = XQ + t(xi - XQ) + S(X2 ~ X0),

y = yo + t(yi - 2/0) + 5(2/2 - 2/0),

Z = ZQ + t(zi - ZQ) + S(Z2 — ZQ).

Equation of plane E through the point P(XQ, yo? ^o) perpendicular to the
unit vector n (Figure 3.33(b)):

n(r - r0) = 0,

n\(x - XQ) + n2(y - 2/o) + n3(z - ZQ) = 0.
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Here one has 1. One calls n the unit normal vector of the plane E. If
three points P\, P^ and P% are given on E, then one obtains n by means of the formula

Distance of a point P* from a plane E:

d = n(r* - r0),

d = ni(z* - x0) + n2(y* - yo) + n3(.z* - ZQ}.

Here one has d > 0 (resp. d < 0) if the point P* is on the positive (resp. negative) side
of the plane E with respect to the unit normal n (Figure 3.33(c)).
Distance between two points PQ and PI:

d = |ri - r0 ,

Angle between two vectors a and b:

3.3.3 Volumes

Volume of the parallelopid spanned by the vectors a, b and c (Figure 3.34(a)):

V = (a x b)c,

Figure 3.34- Two and three-dimensional
volumes.

Here one has V > 0 (resp. V < 0) if
a, b, c form a right-handed (resp. left-
handed) system.

Volume of the parallelopid spanned by the points PJ(XJ, y j , Zj), j = 0,1, 2,3:
Set a := ri - r0, b := r2 - r0, c := r3 - r0.
Surface area of the triangle spanned by the vectors a and b (Figure 3.34(b)):
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3.4 Euclidean geometry (geometry of motion)

3.4.1 The group of Euclidean motions

We denote by x i , X 2 , £ 3 and x'^x'^x'% two Cartesian coordinate systems. A Euclidean
•motion is a transformation

x' = Dx + a

with a constant column vector a = (ai,a2,a3)T and real orthogonal (3 x 3)-matrix D,
i.e., such that DD7 = DJD = E (where E denotes the identity matrix). Explicitly these
transformations are given by the equations

xj = djiXi + dj2X2 + djsXs + a,j, j = 1,2.3.

Classification: (i) Translation: D = E.

(ii) Rotation: detD = 1, a = 0.

(iii) Rotational reflection: detD = —1, a = 0.

(iv) Proper motion: det D = 1.

Definition: The set of all motions forms with respect to the composition a group, which
is called the group of Euclidean motions.

All rotations form a subgroup, which is referred to as the group of rotations.14

All translations (resp. all proper motions) for a subgroup of the group of Euclidean
motions, which is referred to as the group of translations (resp. the group of proper
Euclidean motions).

Example 1: A rotation around the £-axis with an angle
of rotation ip (taken in positive mathematical sense) in
a Cartesian (£, r?, £)-system is:

Figure 3.35 shows the rotation in the (£, r/)-plane.

Figure 3.35.

Example 2: A reflection on the (£, 7y)-plane is given by the relations:

Structure theorem: (i) Every rotation can be transformed in an appropriate Cartesian
coordinate system into the rotation around the £-axis.

(ii) Every rotational reflection can be represented in an appropriately chosen (£, 77, £)-
coordinate system as the composition of a rotation around the £-axis and a reflection
on the (£, r?)-plane.

Euclidean geometry: According to Felix Klein's Erlanger Program the properties of
Euclidean geometry are exactly those properties which are invariant under the group of
Euclidean motions (for example, the length of a segment).

14This is a three-dimensional Lie group (see [212] for a definition of these).
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3.4.2 Conic sections

The elementary theory of conic sections was presented in section 0.1.7.

Quadratic forms: We consider an equation

xTAx = b.

Explicitly this equation is

with the real symmetric matrix A = I I . Assume A
V o2i 022 J

0. Then one has

det A = 011022 ~ 012021 and tr A = an + a22.

Theorem: By applying a rotation in the Cartesian (xi, X2,X3)-coordinate system one
can always put the equation (3.17) into the normal form

Here A and // are eigenvalues of A, i.e., one has

with £ = A, //. One has det A = Xfx and tr A = A + p,.

Proof: We determine two eigenvectors u and v of the matrix A, i.e., such that

Au = \u and Av = /j,v.

Here we can choose u and v in such a way that v7v = 0 and v?u — VTV = I hold. We
set D := (u,v). Then

x = Dx'

is a rotation. From (3.17) it follows that

General conic sections: We now study the equation

x1 Ax + xTa + 033 = 0

with a = (ai3,a2s)T7 i-6.,

anZi + 2ai2XiX2 + 0,22^2 + ais^i + 023^2 + 033 = 0

with the real symmetric matrices
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First main case: Equation for the center. If det A ^ 0, then the system of linear
equations

ctnai + ai2a2 + ais = 0,

&2lCtl + O22O2 + &2S = 0

has a unique solution (0.1,0.2). By translating Xj := Xj — QJ, j — 1,2, the equation
(3.19) transforms into

Similarly as in (3.17) we get from this a rotation

Because of det A =
3.3.

and tr A H one obtains the normal forms listed in Table

Second main case: No equation for the center. We have in this case det A = 0, hence
A ̂  0 and /x = 0. By applying a rotation to (3.19) we get

Quadratic completion applied to this yields

1. If p 7^ 0, the the curve is a parabola.
2. If p = 0, then by applying a translation we get x2 = 0 or x2 = ±a2 (cf. Table 3.4).

3.4.3 Quadratic surfaces

Quadratic forms: We consider the equation

xJAx = b.

Explicitly, this equation is

with a real symmetric matrix A = (djk). Suppose that A ^ 0. Then for the trace we
have tr A = an + 022 + ass-

Theorem: By applying a rotation to the Cartesian (xi,^,^-coordinate system we
can put the above equation in the following normal form:

Here A, a and C are the eigenvalues of A. i.e., one has det (A — vE) = 0 with v
or One has det A and tr A

Proof: We determine the three eigenvectors u, v and w of the matrix A, i.e., vectors such
that
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Table 3.3 Centered conic sections.

det A det &/ Normal form Name Diagram
(a > 0, 6 > 0, c > 0)

 ellipse

imaginary ellipse

 double point

hyperbola

 hyperbola

 double line

Table 3.4 Non-centered curves (det A — 0).

Normal form (a > 0) Name Diagram

y — ax2 parabola

y2 = 0 double line

y2 — a2 two lines y =

y2 = —a2 two imaginary lines
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Table 3.5. Centered surfaces.

Normal form Name Diagram
(a > 0, b > 0, c> 0)

ellipsoid

imaginary ellipsoid

origin

single-sheeted hyperboloid

double cone

two-sheeted hyperboloid
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Table 3.6. Non-centered surfaces (detA = 0).

Normal form Name Diagram
(a > 0, b > 0, c > 0)

2 9
X If
—^ + — = 2cz elliptic paraboloid
a2 b2

x2 y2

—- o~ = 2cz hyperbolic paraboloid
a2 b2

(saddle)

x2 y2

—o- H — o = l elliptic cylinder
a2 b2

9 9x y
—r- — —r — I hyperbolic cylinder
a b2

x2 y2

— o = 0 two intersecting planes
a2 b2

x — 2cy2 parabolic cylinder
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Table 3.6. (Continued)

Normal form Name Diagram
(a > 0, 6 > 0, c> 0)

x = a2 two parrallel planes (x = ±a)

x2 = 0 double plane

imaginary elliptic cylinder

degenerate elliptic cylinder

(the z-axis)

Here one can choose u, v and w such that u^v = v7w — vjw = 0 and uju = vjv — w^w =
1. Setting D := (u,v,w), the transformation

x = Dx'

is a rotation. It follows from (3.20) that

The general quadratic surface: We now study the equation

xTAx + xTa + 044 = 0

with a = (014,0245 as4)T. Explicitly this equation is

with the real symmetric matrices
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First main case: Equation for the center. If det A ^ 0, then the system of linear
equations . . . nn aiiai + ai2a2 + a130i3 + ai4 = 0,

02101 + 02202 + 02303 + 024 = 0,

0310:1 + 03202 + 03303 + 034 = 0

has a unique solution (01,02,03). Through the translation Xj :— Xj — Oj, j = 1,2,3,
(3.21) is transformed into the equation

Similarly as in (3.20) we get from this a rotation:

Second main case: No equation for the center. This occurs in the case when det A = Q.
By applying a rotation to (3.21) we get in this case

Forming the quadratic completion and translating yields then the different normal forms
listed in Table 3.6.

3.5 Projective geometry

3.5.1 Basic ideas

In the geometry of the Euclidean plane there is no such thing as duality between points
and lines. Instead, one has:

(i) There is always exactly one line passing through two distinct points,

(ii) However, it is not true that two distinct lines meet in a point.

In order to eliminate this asymmetry, one defines:

a point at infinity = a non-oriented direction.

Two parallel lines always have the same direction, i.e., the have the same point at infinity.
Using this convention, one has: any two distinct lines meet in a point (which may be a
point on the 'line at infinity', the set of all directions).

Homogenous coordinates: To make this idea amenable to calculations, we replace
for example in the equation of a line

y = 2x + I

the quantities x (resp. y) by x/u (resp. by y/u) an multiply through by u. This yields

y = 2x + u.
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To every point (x, y) we associate the set of all homoge-
nous coordinates (xu, yit), where u is an arbitrary non-
vanishing real number. The two parallel lines

y = 2x + l, y = 2x + 3

correspond to the equations

y = 2x + u, y = 2x + 3u Figure 3.36.

with the solution x = 1, y = 2, u = 0, which corresponds to the point at infinity (Figure
3.36). The equation

u = Q

is the equation of the line at infinity.

Projective points of the plane: A projective point is a set

with x2 + y2 + u2 7^ 0 (note that this is just requiring that at least one of x, y, u is
non-zero). The set of all these projective points is denoted by RP2 and is called the real
projective plane.

Every tuple (Ax, Ay, Xu) with A ̂  0 is called a set of homogenous coordinates for the
point [(x,y, it)]. The point [(x, y,«)] with u — 0 is the point at infinity.

Projective lines: The set of all projective points [(x, y, u)] which satisfy the equation

ax + by + cu = 0

is called a projective line. Here a, b and c are real coefficients with a2 + b2 + c2 ^ 0.

Two projective lines
a\x + b\y + c\u = 0,
a-iX + b^y + c^u = 0

are distinct from one another, when rank 

Duality principle: (i) Two distinct projective points deter-
mine a unique line containing them both.

(ii) Two distinct projective lines determine a unique point,
namely the point of intersection.

Realizing the projective plane with the unit circle: We
denote by RP2 the set of all points of the open unit disc. Here
we identify two points A, B on the boundary (the unit circle)
with each other if they are opposite points on the unit circle
(Figure 3.37).

Theorem: There is a bijective mapping from RP2 to RP2.

Proof: We associate to the projective point [(x, y, 1)], which corresponds to the point
with Cartesian coordinates (x, y), the point (£,77) which is the point on the line from
(x, y) and (0,0) whose distance from the origin (0,0) is equal to
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with r := In contrast, the point at infinity [(l,m,0)] corresponds to the pair
{A, B} of opposite points which are obtained as the intersection of the boundary of the
unit circle with the line y = mx (Figure 3.37). D

The theorem of Desargues (1593—1662): If the lines joining the corresponding
vertices of two triangles pass through a point, then the intersections of the corresponding
sides lie on a line (Figure 3.38).

Figure 3.38. Theorem of Desargues. Figure 3.39. The
double ratio.

Double ratio: If four points A, B, C and D lie on a line, then one calls the real number

AC_ BC_
~AD '' ~BD

the double ratio of these four points (Figure 3.39). Here AC is the length of the segment
from A to C. etc.

The double ratio is the most important invariant in projective geometry.

3.5.2 Projective maps

Projection of two lines onto each other: Figure 3.40 shows a parallel projection and
a central projection. Under these projections, the lengths of segments may be changed.
However, one does have the following fundamental result:

The double ratio of four points is preserved.

Projection of two planes onto one another: Figure 3.41 shows a central projection
of the plane <£" onto the plane $'. Here once again the double ratios of four points on a
line are preserved.

Collineation: If we introduce homogenous coordinates into $ and £", (x,y,u) and
(x1, y',«'), respectively, then a collineation is defined by a mapping of the form

with a real (3 x 3)-matrix (ajfc), whose determinant does not vanish.
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Figure S.AO. Projections of two lines. Figure 3-41- Central projection.

(a) parallel (b) central

Structure theorem: (i) Every map from«? to &' which is combined from finitely many
parallel projections and central projections is a collineation. In this manner one obtains
all collineations from <f to <£".

(ii) The double ratio of four points on a line are preserved under collineations.

Example: During photographic work on landscapes, the double ratio of four points lying
on a line is equal to the double ratio of the points on the photography. Hence, if one
know the coordinates of three of the points in the landscape, the fourth can be calculated
by measuring the double ratio of the four points on the photography.

Projective properties: According to Felix Klein's Erlanger Program the projective
properties are precisely those which are preserved under the group of collineations.

3.5.3 The n-dimensional reed projective space

Let n = 1 , 2 , . . .

Projective points: A projective point in n dimensions is a set

Here the Xj are real numbers such that not all Xi vanish simultaneously. We call
(Axi , . . . , Axn+i) with A 7^ 0 homogenous coordinates of the projective point [#i,..., xn+i]-

The set of all of these points is denoted RPn and is called the n-dimensional real pro-
jective space. The points for which xn+\ = 0 are called points at infinity.

Projective subspaces: Let m linearly independent vectors p i , . . . ,pm € Rn+1 be given.
The set of all projective points [x], whose homogenous coordinates x can be written in
the form

x = tipi + ... + tmpm

with arbitrary real parameters *i,... ,tm, is by definition an m-dimensional projective
subspace of RPn, which is generated by the points [pi],..., \pm}-

If m = 1 (resp. m = n — 1), then we speak of a projective line (resp. projective
hyperplane).

Collineations: These are mappings

x = Ax
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between sets of projective coordinates x and x'. Here A is a real square matrix with
n + 1 rows and det A ^ 0.

Every such collineation corresponds to a map

One has y>A = PB if and only if the matrices A and B are multiples of one another by
a non-zero real scalar.

Projective group: The set of all of these mappings <p forms the projective group
PGL(n + 1,R) with respect to the composition of mappings. This group is itself a
factor group of the form

PGL(n + 1, R) = GL(n + 1, R)/Z>.

Here GL(n + 1,R) denotes the group of all real invertible (n + l)-matrices, while D
stands for the subgroup of all diagonal matrices XI with A ̂  0.

Theorem: Collineations map m-dimensional projective subspaces to m-dimensional
projective subspaces and preserve incidence relations.

The topological structure of RPn: The space RPn is an n-dimensional, connected,
compact, smooth real manifold.15 If we denote by

qn ._ ( ^ TUn+1 IT-! — 1 \O . — i X t l r ^ |X| — if

the n-dimensional unit sphere and by 1,2 the cyclic group of order 2, then Sn fL^ is
diffeomorphic to KLPn. We indicate this by writing

Here the quotient Sln/Z2 is obtained from Sn by identifying antipodal points of Sn with
each other. Another representation of RP™ as a quotient is gotten by setting

for the closed northern hemisphere; then we have also

The quotient in this case is obtained by identifying antipodal points on the equator of
S" with each other (and making no further identifications).

Example 1: For n = 1, S+ is the upper half of the unit circle {x2 + y2 = 1 \ y > 0},
and the quotient S\/^2 is obtained by identifying the two boundary points (—1,0) and
(0,1). In this way we get a deformed circle, which can be stretched into the usual unit
circle Sl. The motivates the homeomorphism

which is in fact a diffeomorphism.
15This basic notions will be introduced in [212] and studied in detail there.



3.5. Projective geometry 765

Example 2: In case n = 2 we have the homeomorphisms

where RP2 is obtained from the (closed) unit disc {(x, y) e R2 | x2 + y2 < 1} by identify-
ing the points on the boundary (i.e., on the unit circle) which are opposite with respect
to the origin (see Figure 3.37).

Theorem: RP2 is a non-orientable surface.

For a usual surface one has two different 'sides', an inside and an outside. For example
every sphere has this property. In the case of non-orientable surfaces, there is no such
thing as different sides.

3.5.4 The n-dimensional complex projective space

If, in the above definitions, we allow the variables x\,..., £n+i as well as A to be complex,
then we get what is called the complex projective space CPn in the same way as RP"
was obtained in section 3.5.3.

Also, collineations of CPn are defined just as for RPn, by allowing the matrices A to be
complex. The complex projective group PGL(n + 1,C) is defined as the quotient group

PGL(n + 1, C) = GL(n + 1, C)/£>.

Here GL(n + 1,C) is the group of complex invertible (n + l)-matrices, and D denotes
the subgroup of all diagonal matrices with

Projective properties: A property belongs to complex n-dimensional projective ge-
ometry, if it is invariant under all collineations of CPn, i.e., if the property is invariant
under the action of PGL(n + 1, C).

The topological structure of CPn: The space CPn is a n-dimensional connected,
compact, smooth complex manifold. If we denote by

the n-dimensional complex unit sphere, then we have a diffeomorphism

In section 3.8.4 we will see the fruitfulness of the methods of complex projective geom-
etry for the investigation of plane algebraic curves. Without such methods, the theory
of algebraic curves would be a basket of isolated results, whose formulation would be
continuously cluttered by exceptional cases.

The ideal-theoretic and topological properties of CPn are the basis
for the success of projective methods in algebraic geometry.

3.5.5 The classification of plane geometries

We consider a plane P. The classification of the plane geometries is affected under
utilization of the Erlanger Program of Felix Klein (1872), by considering the possible
groups of transformations in the plane P and their properties.
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3.5.5.1 Euclidean geometry

The Euclidean group of motions: The group of this geometry is the Euclidean
group of motions of P, which is composed of translations, rotations and reflections.
Analytically this group is given by transformations x H-> x' of the plane, which are of
the form

x' = Ax + a (T)

with x — (xi.x^Y and a = (ai.a^Y- Here A is an orthogonal matrix, that is, A^A —
AAT = E (where E is the unit matrix). For A = E, the formula (T) describes a
translation.16

Congruence: Two figures in the plane P are called congruent, if and only if they can
be mapped into each other through a Euclidean motion.

3.5.5.2 Similarity geometry

The group of similarity transformations: The group of this geometry is the group
of similarities, which are the transformations as in (T) for which A is a product of an
orthogonal matrix and a diagonal matrix with positive elements.

Geometric characterization: A proper similarity transformation is obtained by per-
forming a central projection on two parallel planes P and Q and then identifying the
corresponding points of P and Q. This corresponds to (T) with a diagonal matrix

The positive number A serves as a multiplication factor of the similarity transforma-
tion. Arbitrary similarity transformations consist of compositions of proper similarity
transformations and Euclidean motions.

Similar figures: Two figures in the plane P are said to be similar, if they can be
transformed into one another by means of a similarity transformation.

3.5.5.3 Afflne geometry

The afflne group: This is the transformation group of the plane P consisting of those
mappings (T) for which the matrix A is invertible. Such transformations are called
affine transformations or affinities.

Geometric characterization: Geometrically one gets an affinity by taking finitely
many planes P,Pi,...,Pn,Q in space and performing a parallel projection on each,
then identifying the points of P and Q which are mapped to each other.

Affine equivalence: Two figures in the plane P are said to be affinely equivalent, if
they can be mapped into one another by a affinity.

Example: Under an affinity, circles are mapped to ellipses, while ellipses are mapped to
ellipses. Thus, the notion of ellipse is a notion of affine geometry.

16Explicitly one has

Xi =• a\\x\ + 0122:2 + aii

z2 = a2ixi + 0222:2 + a2,

with real coefficients ajk, o,j and real variables Xj and x'-.
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3.5.5.4 Projective geometry

The group of collineations (projectivities): The group of the projective plane
consists of the collineations17

y' = By.

with the homogenous coordinates y = (y\, 7/2, ya)T and y' = (y{, y2, y'3)
T. Here y ^ 0 and

y' 7^ 0. Moreover, J3 is an invertible real (3 x 3)-matrix. Collineations are also called
projectivities.

Points at infinity: By adding the points at infinity y with y% — 0, the plane P is extended
to the projective plane P^, and this corresponds to the two-dimensional projective space
RP2. Two tuples y and y' are homogenous coordinates of one and the same point in
the projective plane POO, if y = ay' for some real number a ^ 0.

Geometric characterization: Geometrically one gets a projectivity when one per-
forms a central projection on finitely many planes P, PI , . . . , Pn, Q and then identifies
the points of P and Q which are mapped under this composition.

Projective equivalence: Two figures in the plane P are said to be protectively equiv-
alent, if they can be mapped into one another under a projectivity.

Example: Under a projectivity, circles, ellipses, parabolas and hyperbolas can all be
mapped into one another. For this reason, the notion of (non-degenerate) conic section
is a notion of projective geometry.

Moreover, the following notions also belong to projective geometry: 'line', 'point', 'a
point lying on a line', 'two lines intersect in a point' and 'the double ratio of four points
on a line'.

3.5.5.5 Historical remarks:

Euclidean geometry was presented in great detail by Euclid of Alexandra (ca. 365-300
BC) in his famous treatise The elements. These books dominated all school courses for
over 2000 years.

Affinities are due to Euler (1707-1783).

Descriptive geometry and orthogonal projections: Descriptive geometry which
uses orthogonal projections on (one or two) planes was created by Monge (1746-1818)
between 1766 and 1770 in connection with work in the construction of fortifications. In
1798 his fundamental work Geometric descriptive appeared.

Projective geometry and central projections: During the Renaissance there was
a revolution in European painting caused by the introduction of perspective, which is
based on central projections. Several great artists were involved in this: the painter Leon
Batista Alberti (1404-1472) (architect of Saint Peters Cathedral in Rome), Leonardo
da Vinci (1452-1519) and Albrecht Diirer (1471-1528). He published the book Unter-
weisung der Messung mit Zirkel und Richtscheit (Instructions in making measurements

17 Explicitly one has

y{ = 6nj/i + 6122/2 + 6is2/3,

1/2 = &212/1 + 6222/2 + ^232/3,

2/3 = 6312/1 + 6322/2 + 6332/3-

The coefficients bjk and all variables yj and y'- are real.
The transition to affine coordinates and affinities is obtained when one sets ys = 1, 631 = 632 = 0

and 633 = 1.
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with compass and ruler). The use of perspective prevailed until about 1900.

Modern photography is also based on central projections. The first camera was described
by Leonardo da Vinci in 1500. Niecephore Niepce generated the first actual photographs
in 1822 with the 'camera obscura'.

Synthetic projective geometry: The development of projective geometry as a mathe-
matical discipline began in 1822 with the appearance of the book Traite des proprietes
pojectives des figures (Textbook on the projective properties of figures) by the French
mathematician Poncelet (1788-1867). Poncelet used in this work only the method of
drawings, which is often referred to as synthetic geometry, as opposed to the analytic ge-
ometry due to Descartes (1596-1650). Poncelet stands here in the tradition of the French
mathematicians Desargues (1591-1661), Pascal (1623-1662) and Monge (1746-1818).

The barycentric coordinates of Mobius Our ability to do calculations with projectivities
is due to the work of Mobius, presented in his book Der baryzentrische Calcul, ein neues
Hilfsmittel zur analytischen Behandlung der Geometric (The barycentric calculus, a new
tool for analytic treatment of geometry), which appeared in 1827.18 Mobius introduced
in this work barycentric coordinates (mi,m,2,m3). If pi,p2,P3 are three points of the
plane P which do not lie on a line, then one can describe every point p of P uniquely
by real coordinates mi,m2,m3 with mi + m^ + m^ = I . If xi ,X2,X3 and x are the
corresponding vectors of the points pi,p2,Ps and p, then one has:

x = mixi + m2X2 + m3X3 .

Example: We can take for the points p\ = (1,0,0), P2 = (0,1,0) and p% = (0,0,1).

The barycentric coordinates can be given a simple physical interpretation. If one puts
the masses mi, m.2, ma at the three points p\,pz and pa, then p is the center of mass of
these mass points and lies in the interior of the triangle spanned by the three points. If
one allows also negative or vanishing masses, then one gets the rest of the points of the
plane.

If one drops the condition on the m« that mi + 7712 + ma = 1, then one also gets the
points at infinity.

Further important contributors to the theory of projective geometry in the nineteenth
century were Steiner (1796-1863), von Staudt (1798-1867), Pliicker (1801-1868), Cayley
(1821-1895) and Klein (1849-1925). The notion of projective space had gained general
acceptance as a fundamental geometric notion by 1870. Between the appearance of
Euclid's Elements and this point in time lay over 2000 years.19

18Augustus Ferdinand Mobius (1790-1868) worked from 1816 until his death at the university of
Leipzig and was the head of the Leipzig observatorium.

19The history of geometry, which exploded in the nineteenth century, is masterly described in Fe-
lix Klein's Vorlesungen uber die Entwicklung der Mathematik im 19. Jahrhundert (Lectures on the
developement of mathematics in the nineteenth century) (cf. [492])
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3.6 Differential geometry

There is no science which is not developed from knowledge of phe-
nomena, but to obtain advantage from this knowledge, it is neces-
sary to be a mathematician.

Daniel Bernoulli (1700-1782)

Differential geometry studies the properties of curves and surfaces with the methods of
calculus. The most important differential geometric property is curvature. During the
nineteenth and twentieth centuries mathematicians have attempted to generalize this
intuitive notion to higher dimensions and to more and more abstract situations (theory
of principal bundles).

Physicists, on the other hand, have tried ever since Newton to understand the forces
acting on our world and in the universe. Surprisingly, the four basic forces in cosmol-
ogy and elementary particle physics (gravity and the weak, strong and electromagnetic
forces) are all based on the basic relation

force = curvature,

which is the deepest known connection between mathematics and physics. This will be
discussed in detail in [212].

In this section we consider the classical theory of differential geometry of curves and
surfaces in three-dimensional space. The theory of curves was created in the eighteenth
century by Clairaut, Monge and Euler and was further developed in the nineteenth cen-
tury by Cauchy, Frenet and Serret. From 1821 to 1825 Gauss carried out extremely
strenuous geodesic measurements in the Kingdom of Hannover. This was motivation for
him, who always connected theory and application in an exemplary manner, to inten-
sive studies of curved surfaces. In 1827 his epochal treatise Disquisitiones generales circa
superficies curvas, in which he created the theory of differential geometry of surfaces,
appeared, and in center stage of that theory stood his theorema egregium. This deep
mathematical theorem says that the curvature of a surface can be determined by mea-
surements taken only on that surface, without using the ambient space. With this result
Gauss laid the foundations for the general theory of differential geometry, whose further
development by Riemann and Elie Cartan led to the crowning achievement: Einstein's
general theory of relativity and gravity (cosmology) as well as the standard model of
elementary particle physics.20 The standard model is based on a gauge theory, which
from a mathematical point of view corresponds to the curvature of appropriately defined
principal bundles.

Local behavior: To study the behavior of curves and surfaces in the neighborhood of a
point one uses the Taylor expansion?1 This leads to the notions of 'tangent, curvature
and torsion' of a curve as well as the notions of 'tangential plane and curvature' of
surfaces.

Global behavior: Besides the local behavior 'in the small' just mentioned, one is
interested in the behavior in the large. A typical result of this type is the Gauss-Bonnet
formula in the theory of surfaces, which is the starting point of modern differential
geometry in the context of the theory of characteristic classes (cf. [212]).

20In connection with the theory of relativity, Henri Poincare's name should be mentioned. In fact, for
his work in this area, he was nominated several times for the Nobel Prize in physics. - The translator

21 We tacitly assume that all functions are sufficiently smooth.
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3.6.1 Plane curves

Parameter representation: A plane curve is given by an equation of the form

in Cartesian coordinates (x,y) (Figure 3.42).
If we interpret the real parameter
t as the time, then (3.22) describes
the motion of a point which at time
t has the coordinates (x(t),y(t)).

Example 1: In the special case t =
x, we get the curve equation y =
y(x] (the equation of a graph of a
function in R2).

Arc length s of a curve:
Figure 3.42. Plane curves.

Equation of a tangent at the point (x0,y0) (Figure 3.42(a)):

Here we have set x0 := x(t0), x'0 := x'(t0), yo := y(to], y'Q := y'(t0).

Equation of the normal vector to the curve at the point (x0,2/o) (Figure
3.42(b)):

Curvature radius R: If the curve (3.22) is of type C2 in
a neighborhood of a point P(x0,?/o), then there is a uniquely
determined circle of radius R centered at a point M(£,?/), and
R is called the curvature radius of the curve, which coincides
with the curve at the point P up to order 2 (one also says the
circle touches the curve to order 2, or that the curve and the
circle have a point of contact of order 2, see Figure 3.43).

Curvature K: This quantity is introduced as the number K
whose absolute value is inverse to the curvature radius R:

The sign of K at a point P is by definition positive (resp. nega-

Figure 3-43.

tive), if the curve lies above (resp. below) the tangent at the point P (Figure 3.44). For
the curve (3.22) one has
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with the center of curvature M(£, rj):

Inflection point: By definition
a curve has an inflection point at
a point P, if K(P) = 0 and K
changes its sign at the point P
(Figure 3.44(c)).

Extremal points: Points on
a curve where the curvature K
has a minimum or a maximum
are called extremal points of the
curve.

Angle if> between two curves
x = x(i). v = y(t) and X =
X(T), Y = Y(T) in a point of intersection:

Figure 3.44- The curvature K of a curve.

Here (f> is the angle between the tangents in the intersection point measured in the
mathematically positive sense, see Figure 3.45.

The values XQ, XQ, etc., are those of the point of intersection.

Applications:

Example 2: The equation of circle of radius R centered at the
origin (0,0) is:

x — R cost, y = R sint, 0 < t < 2n

(Figure 3.46). The point (0,0) is the center of curvature, and
R is the curvature radius. This yields for the curvature

From the derivatives x'(i) = —Rsint and y'(i) = Rcost we
get the parametrized equation of the tangent:

Figure 3-45.

x = XQ - (t-to)yo, y = 2/o + (t - t0)x0,

For the arc length s we get from cos21 + sin2 t — I the relation

If we write the circle equation in the implicit form

x2+y2 = R2

Figure 346.
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then we get from Table 3.8 with F(x, y) := x2 + y2 — R2 the equation of the tangent a1
the point (xo,yo):

x0(x - x0) + yo(y - yo) = 0,

i.e., x0x + yoy = R2. In polar coordinates the equation for the circle is

r = R.

Table 3.7. Formulae for explicitly given plane curves.

Equation of y = y(x) r = r(ip)

the curve (explicit form) (polar coordinates)

Arc length

Tangent at a y = XQ + y'0(x — XQ)
point P(x0,y0)

Normal vector at —y'o(y ~ yo) = x ~ xo
a point P(x0, y0)

Curvature K at a
point P(*0,yo)

Center of
curvature

Table 3.8. Formulae for implicitly given curves.

Implicit equation F(x, y) = 0

Tangent at a point Fx(P}(x - XQ) + Fy(P)(y - y0) = 0
P(x0,yo)

Normal vector at a point Fx(P}(y — yo) — Fy(P)(x — XQ) = 0
P(x0,yo)

Curvature K at a point P
(Fx := FX(P) etc.)

Center of curvature
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Example 3: The parabola

with a > 0 has according to Table 3.7 at the point x = 0 the curvature K = a.

Example 4'- Let y = x3. From Table 3.7 we get

At the point x = 0 the sign of K changes. Hence this is an inflection point.

Singular points: We consider the curve x = x(t), y = y(i). By definition a point
( x ( t o ) , y ( t o ) ) is called a singular point of the curve, if

a;'(to) = J/'(*o) = 0.

At such a point the tangent is not well-defined. The study of the behavior of the curve
in a neighborhood of a singular point is affected by applying the Taylor series

Example 5: For

x = x0 + (t-10)
2 +... , y = yo + ( t - t o ) 3 + •••

one has a point of return (Figure 3.47(a)). In case of

x = XQ + (t - t0)
2 + .. . , y = yo + (t~ *o)2 + - - •

the curve ends at the point (xo,yo) (Figure 3.47(b)).

Singular points for curves given
by implicit equations: If the curve
is given by an equation F(x, y) = 0
with F(xo,yo) = 0, then by definition
(xo,yo) is a singular point if and only
if

Fx(x0,y0) = Fy(x0,y0) = 0. 

Figure 3.47. Singular points.
The behavior of the curve in a neigh-
borhood of (#0,2/0) is again studied by
means of the Taylor expansion

F(x, y) = a(x - xQ)2 + 2b(x - x0)(y - y0) + c(y -yo)2 + ... . (3.24)

Here we have set a := ^Fxx(xo,yo), b := ^Fxy(x0,yo) and c := ^Fyy(x0,y0). Moreover
let D := ac - b2.

Case 1: D > 0. Then (xo,yo) ls an isolated point (Figure 3.48(a)).
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Case 2: D < 0. Here the two branches of the curve intersect at the point (XQ, yo) (Figure
3.48(b)).

If D = 0, then we must consider also terms of higher order in the expansion (3.24). For
example the following situations can occur: point of contact, point of return, end point,
triple point or more generally a point of order n (cf. Figure 3.47 and Figure 3.48).

Figure 3.48. Singular points on curves.

Catastrophe theory: A discussion of singularities in the context of catastrophe theory
is to be found in [212].

Asymptotes: If a curve approaches a line as the distance from the origin grows beyond
bounds, then one calls the line an asymptote of the curve.

Figure 3.49. Asymptotes:
the hyperbola xy = 1.

Figure 3.50. Asymptotes:

the hyperbola

Example 6: The x-axis and the y-axis are asymptotes of the hyperbola given by the
equation xy = 1 (Figure 3.49).

Let a 6 M. We consider the curve x — x ( t ) , y — y(i] and the limit as t goes to to + 0.

(i) For y(t) the line x = a is a vertical asymptote.

(ii) For x(i) , the line y = a is a horizontal asymptote.

(iii) Suppose that x(t] and y If the two limits

exist, then the line y = mx + c is an asymptote.

Similarly one can treat the cases

Example 7: The hyperbola
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has the parameterization x = a cosht, y — b sinhi. The two lines

are asymptotes (Figure 3.50).
Proof: For example one has

3.6.2 Space curves

Parameterizations: Let x, y and z be Cartesian coordinates
with the basis vectors i,j,k and the radius vector r = OP of a
point P. A space curve is given by an equation

i.e., x = x(t), y = y(t), z = z(t) and a < t < b.

Equation of a tangent at a point r0 := r(t0):
Figure 3.51.

r = r0 + (t-to)r'(to), * e R.

Physical interpretation: If t denotes the time, then the space curve r = r(i) describes
the motion of a mass point with the velocity vector r'(t) and the acceleration vector r"(t)
at the time t (Figure 3.51).

3.6.2.1 Curvature and torsion

Arc length s of the curve:

If one replace b by to, then one gets the arc length between the starting point and the
point of the curve at time t0.

In what follows we will consider the space curve r(s) as a function of the arc length s
and denote by r'(s) the derivative with respect to s.

Taylor expansion:

The following definitions are based on this formula.
Tangent unit vector:

t := r'(s0).
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Curvature:

The number R := l/k is called the curvature radius.

Normal unit vector: i

Binormal vector: 
b := t x n.

Torsion:

Figure 3.52. Minimum and
maximum.

Figure 3.53. Inflection points.

Geometric interpretation: The three vectors t, n, b form the so-called accompanying
three-frame at the point PQ of the curve.22 This is a right-handed system of pairwise
orthogonal unit vectors (Figure 3.53).

(i) The contact plane of the curve at the point PQ is the plane spanned by t and n.

(ii) The normal plane to the curve at the point PQ is the plane spanned by n and b.

(iii) The rectifying plane to the curve at the point PQ is the plane spanned by the vectors
t and b.

According to (3.25) the curve at the point PQ lies to second order (has a contact of order
2) in the contact plane (Figure 3.52).

If w = 0 for the point PQ, then the curve is according to (3.25) a plane curve to third
order.

If w > 0 (resp. w < 0) at PQ, then the curve moves in a neighborhood of PQ in the
direction of b (resp. —b) (Figure 3.53).

General parameterization: If the curve is given in the form r = r(£) with a real
parameter t, then one has

22In German, bein means leg; in French, repere means marking; both terms have been adapted and
ire used: one also calls an n-frame an n-bein or n-repere.
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Example.: We consider the spiral

x = a cost, y = a sint, z — bt, t G R

with a > 0 and b > 0 (right-handed, see Figure 3.54) resp. b < 0
(left-handed). One has:

Proof: We replace the parameter t by the arc length

Then one has Figure 3.54-

hence

The curvature k is thus constant. For the torsion one has by (3.26) the value

This means that the torsion is also constant.

3.6.2.2 The main theorem in the theory of curves

The formulas of Frenet: For the derivatives of the vectors t, n, b with respect to the
arc length one has:

t' = /fen, n' = -kt + wb, b' = -ion. (3.27)

Main theorem: If two continuous functions

k = k(s) and w = w(s)

are given in the interval a < s < b and k(s) > 0 for all s, then there is, up to transfor-
mations of the entire space, exactly one curve segment r = r(s), a < s < b, which has
arc length equal to s and has the curvature k and torsion w.
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Construction of the curve: (i) The equation (3.27) consists of a system of nine ordi-
nary differential equations for the three components each of t, n and b. By prescribing
the values t(0), n(0) and b(0) (which amounts to the prescription of the accompanying
three-frame at the point s = 0), the solution of these differential equations (3.27) is
uniquely determined.

(ii) If one in addition prescribes the vector r(0), then one gets

3.6.3 The Gaussian local theory of surfaces

From time to time in the past, certain brilliant, unusually gifted
personalities have arisen from their environment, who by virtue
of the creative power of their thoughts and the energy of their
actions have had such an overall positive influence on the intel-
lectual development of mankind, that they at the same time stand
tall as markers between the centuries...Such epoch-making mental
giants in the history of mathematics and the natural sciences are
Archimedes of Syracuse in ancient times, Newton toward the end
of the dark ages and Gauss in our present day, whose shining,
glorious career has come to an end after the cold hand of death
touched his at one time deeply-thinking head on February 23 of
this year.

Sartorius von Waltershausen, 1855
in honor of Gauss

Parameterization of a surface: Let x, y and z be Cartesian coordinates with the
basis vectors i,j,k and the radius vector r = OP of the point P. A surface is given by
an equation

r = r(u,v)

with real parameters u and u, i.e.,

x = x(u, w), y = y(u, v), z = z(u, v).

The accompanying three-frame: We set

/ \ / A TVT 

ei :=ru(u0,vQ), e2 := TV(UO, u0), N = 

Then ei (resp. 62) is the tangent vector to the
coordinate line v = const (resp. u = const)
through the point PQ(UQ, VQ) of the surface. Fur-
thermore, N is the normal unit vector to the
surface at PQ (Figure 3.55).

Explicitly one has

61 = XU(UQ, U0)i + VU(UQ, fo)j + ZU(UQ, t>o)k,

£2 = Xv(uo,vo)i + yv(uQ,vo)j + zv(u0,v0)lc..
Figure 3.55.
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Equation of the tangent plane at the point PQ:

r = r0 + iiei + £262, * i , i 2 € l R -

Implicit equation of the surface: If the surface is given by an equation F(x, y, z) = 0,
then one gets the unit normal vector at the point Po(xo,yo,zo') by the formula

gradF(Po)

gradF(P0)| '

The equation of the tangent plane at the point PQ is:

gradF(P0)(r-r0) = 0.

Explicitly this means

Fx(P0)(x - x0) + Fy(P0)(y - y0) + Fz(P0)(z - z0) = 0.

Explicit equations for surfaces: The equation z = z(x, y) can be written in the form
F(x, y, z) — 0 as follows: F(x, y, z) := z — z(x, y).

Example 1: The equation of a sphere of radius R is:

x2 + y2 + z2 = R2.

If we set F(x, y, z) := x2 + y2 + z2 — R2, then we get the equation for the tangent plane
at the point PQ:

x0(x - x0) + y0(y - y0) + z0(z - z0) = 0

with the unit normal vector N = ro/|ro .

Singular points on surfaces: For a surface r = r(u, v) the point PQ(UQ, ^o) is said to
be singular, if and only if, GI and 62 do not span a plane.

In the case of an implicit equation F(x, y, z) = 0, a point PQ is by definition singular if
there is no unit normal vector, i.e., gradF(Po) = 0. Explicitly this means

Fx(P0) = Fy(P0) = Fz(P0) = 0.

Example 2: The cone x2 + y2 — z2 = 0 has the singular point x = y — z = 0, which is
just the vertex of the cone.

Change of parameters and tensor calculus: We set ul = u, u2 = v. If on the
surface we are given two functions aa(u1,w2), a = 1,2, which transform under the
change of coordinates given by passing from the uQ-system to a M/a-system on the
surface as follows:

then we call aa(u
1,u2) a simple covariant tensor field on the surface. In (3.28) the

Einstein summation convention is used (this will be used for the rest of section 3.6.3),
which says that sums are formed over same indices which occur both as superscripts and
subscripts (here of course the summation is from 1 to 2; the convention makes sense in
a more general situation).
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The 2k+2l functions form by definition a k-covariant and l-contravariant
tensor field on the surface, if they transform under the coordinate change from ua to
u'a as follows:

Advantage of tensor calculus: If one applies tensor calculus in the theory of surfaces,
then one recognizes immediately when some given (analytic-algebraic) expression has a
geometrical meaning, i.e., is independent of the chosen parameterization. This goal can
be achieved by utilizing tensors and constructing scalars (cf. [212]).

3.6.3.1 The first Gaussian fundamental form and metrical properties of sur-
faces

First fundamental form: According to Gauss, this form can be written on a surface
given by an equation r = T(U, v) as

ds2 = Edu2 + Fdudv + Gdv2

with

If the surface is given in the form z = z(x, y ) , then one has

The first fundamental form encodes all metrical properties of the surface.

Arc length: The arc length of a curve r = r(u(t),v(t)) on the surface between the
points with the parameter values to and t is equal to

Surface area: The piece of the surface described by allowing the parameters u, v to
vary in a domain D of the u, -y-plane has the surface area

Angle between two curves on the surface:
If r = r(ui(t),vi(t)) and r = r(«2(i), ^2(*)) are two curves on the surface r = r(u,v)
which intersect in a point P, then the angle of intersection a (the angle taken in the
positive tangent direction at the point P) is determined as
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Here u\ and «2, respectively, are the first derivatives of u\(t) and uz(t), respectively, in
the parameter values corresponding to P, etc.

Maps between two surfaces: Suppose we are given two surfaces

and

both of which are given with respect to the same parameters u and v (perhaps after
reparameterizations). If one associates to the point PI of &\ with the radius vector
ri(u, v) the point P-z of J^ with the radius vector r^u, v), then one gets a bijective map

; between these two surfaces.

(i) (p is called distance-preserving, if the length of an arbitrary curve segment is preserved
under </?.

(ii) if> is said to be angle-preserving (or conformal), if the angle between two arbitrary
curves which intersect is preserved under ip.

(iii) (p is called area-preserving, if the area of an arbitrary piece of surface is preserved
under (p.

In Table 3.9 the quantities E j , F j , G j are the coefficients of the first fundamental form
of <^j, taken with respect to the parameters u and v. The conditions listed in Table 3.9
must be satisfied at every point of the surface.

Theorem: (i) Every length-preserving map is conformal and area-preserving,

(ii) Every area-preserving map and every conformal map is length-preserving.

(iii) A length-preserving map preserves the Gaussian curvature K at every point (cf.
3.6.3.3).

Table 3.9. The algebraic conditions for geometric properties of surfaces.

Property Necessary and sufficient conditions on Ej, Fj, Gj

distance-preserving E\ = £2, F\—F^ G\ = G*2

angle-preserving E\ = XE^, FI = XF-2, G\ = A(?2, X ( u , v ) > 0
(conformal)

volume-preserving E±Gi — F2 = E^Gi — F2

The metric tensor ga$\ If one sets u1 = u, u2 = v, gn = E, g\i = 521 = F and
922 = G, then one can write, under utilization of the Einstein summation convention,
the metric as

ds2 = gaf3duadu/3 .

By passing to another set of coordinates u'a on the surface, one has ds2 =
with

Hence the gap are manifestly the coordinates of a two-covariant tensor field (metric
tensor}.

Moreover, one sets

and

g = detgaf3 = EG - F2
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One has ga^g/3-j = #?. By transition from the «a-coordinate system to coordinates u'a,
qaf3 and q transform as

(a two-contravariant tensor field) and

with the functional determinant

In order to give a curved coordinate system an orientation r\ = ±1, one fixes a coordinate
system UQ and declares it as positive (77 = +1), and declares that r\ is given by the

sign of the functional determinant 77 If we set e11 = e22 = 0 and

1, then the following Levi-Civita tensors

are just the same as ind respectively

3.6.3.2 The second Gaussian fundamental form and the curvature proper-
ties of the surface

Second fundamental form: According to Gauss, for a surface r = r(ii, t>), this form
is given by the relation

-dNdr = Ldu2 + 2Mdudv + Ndv2

with

and

If ne sets u1 = u, u2 = v and bn = L, 612 = 621 = M, ^22 = N, then one can write

Under a coordinate transformation from the tta-coordinates to new coordinates u' , one
has —dNdr =
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Figure 3.56. Figure 3.57.

where e is the sign of the functional determinant: e = sgn Hence the bap
\ ' /

are the coordinates of a two-covariant pseudo-tensor. One further sets b := det bap +
LN — M2. The quantity b transforms according to the same law as g.

The second fundamental form encodes the curvature properties of the surface.

The canonical Cartesian coordinate system at a point PO on the surface: Near
a given point PQ one can always choose a Cartesian coordinate x, y, z-system whose
origin is at PQ and whose x, y-plane is the tangent plane of the surface at the point
PO (Figure 3.56). In this x,y, z-system the surface can be, near to PQ, described by
z = z(x, y) with z(0,0) = zx(Q, 0) = zy(Q, 0) = 0. This corresponding three-frame at the
point PQ consists of the three unit vectors i, j and N = i x j. The Taylor expansion in a
neighborhood of P0 is:

By making an additional rotation of the Cartesian coordinate system around the z-axis
one can furthermore achieve the situation in which

This x, y-system is called the canonical Cartesian coordinate system of the surface at
the point PQ. One calls the x-axis and the y-axis the principal curvature directions and
ki, fc2 the principal curvatures of the surface at the point P0.

Moreover RI := 1/fci and R2 := 1/&2 are called the principal curvature radii.

The Gaussian curvature K at a point PQ: We define

K := kik2.

This is the fundamental curvature quantity of a surface.

Example: For a sphere of radius R one has Pti = R-2 — R and K — l/R2.

Surfaces with K = const are called surfaces of constant Gaussian curvature. Examples
of this are:

(a) a sphere, for which K > 0, and
(b) a pseudo-sphere, for which K < 0; such a surface can be formed by rotation of a

tractrix around the z-axis as in Figure 3.57.
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The mean curvature H at a point PQ: We set

and refer to J7 as the mean curvature of the surface. Surfaces with H = 0 are called
minimal surfaces (cf. [212]).

If we change coordinates by the transformation x H-> y, y i—> #, z i—» —2, then the
principal curvatures are transformed as k\ H-> —&2 and &2 >—> — fcx. From this it follows
that K t—> K and H \-> —H. This means that X is a genuinely geometrical quantity,
while this is not true for H but only for \H\.

Table 3.10 gives the geometric interpretation of the different signs of K.

Table 3.10. Possible values for surface curvatures.

Type of point PQ

elliptic point

umbilical point

hyperbolic point

parabolic point

Analytic definition

K = kik2 > 0

(i.e. LN-M2 > 0)

K = kik2 > 0, ki = k2

K = kik-2 < 0

(i.e. LN-M2 < 0)

K = hkz = 0

(i.e. LN-M2 = 0)

(a) k\ + k2, ^ 0
(b) ki = k2 = 0

Surface behavior near PQ to
second order

ellipsoid

sphere

single-sheeted hyperboloid

cylinder

plane

Theorem: Suppose a surface is given in the parameterization r = r(w, v).

(i) One has

(ii) The principal curvatures k\ and k? are solutions of the quadratic equation

fc2 - 2Hk + K = 0.

(iii) If ei, 62 and N denote the three-frame on the surface, the principal curvature
directions are of the form Aiei + //e2, where A and p, are solutions of the equation

Sketch of proof: In the canonical Cartesian coordinate system one has for the first and
second fundamental forms the very simple expressions

ds2 = dx2 + dy2, -dNdr = kidx2 + k2dy2.

From this one gets
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It then follows from tensor calculus hat these expressions are valid in an arbitrary ua-
coordinate system, since K is a scalar and H is a pseudo-scalar. Equation (3.29) corre-
sponds to the result

Developable ruled surfaces: A surface is called a ruled surface, if it can be generated
by the motion of lines in space (for example a cone, cylinder, hyperboloid or hyperbolic
paraboloid). If the ruled surface can in fact be 'peeled off' to a plane, then one calls
the surface developable (for example a cone or a cylinder). In all points of a developable
surface one has K — 0, hence LN — M2 = 0.

Surface sections: Let 61,62, N be the accompanying three-frame of the surface r =
r(tt,v) at the point PQ. We cut the surface with a plane E, which passes through the
point PQ and the line which is generated by Aei + pe2- Moreover E and the normal
vector N form an angle we denote by 7. Then the curvature A; of the curve of intersection
at the point PQ is given by

with

Curvature of a curve on a surface: A curve on a surface which passes through
a point PQ of the surface has the same curvature k as the curve of intersection of the
surface with the contact plane at the point PQ. If the contact plane forms the angle 7
with N and the angle a with the principal curvature direction corresponding to k\, then
one has

(Theorem of Euler-Meusnier).

3.6.3.3 The main theorem of the theory of surfaces and Gauss' theorema
egregium

The equations of Gauss and Weingarten for derivatives: A change in the ac-
companying three-frame is described by the so-called derivative equations:

All indices here run from 1 to 2. Indices which appear both in subscripts and in super-
scripts are summed over. The Christoffel symbols are given by the formula

These symbols do not represent tensors (they transform incorrectly under coordinate
transformations). The derivative equations form a system of 18 partial differential equa-
tions of the first order for the three components of each of 61,62 and N; these equations
can be solved with the aid of theorem of Frobenius (cf. 1.13.5.3).
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Integrability condition: Prom one gets

the so-called integrability conditions

(equation of Mainardi-Codazzi) and

(Gauss' theorema egregium).

Here Rap^s = R'a'% gvs is the Riemannian curvature tensor with

Main theorem: If one is given functions

9li(u\u2) = E(u,v), gi2(u\u2) = g21(u\u2) = F(u,v), g22(u\u2) = G(u,v)

(which are assumed to be twice continuously differentiable) and

bu(ul,u2) = L(u,v), bi2(u\u2) = b2l(u\u2) = M(u,v), b22(u\u2) = N(u,v)

(which are assumed to be continuously differentiable), which moreover satisfy the in-
tegrability conditions (3.30) and (3.31) and which for arbitrary real numbers A,// with
A2 + p2 ^ 0 satisfy EX2 + IF\JJL + Gp2 > 0, there is a surface r = r(u, v) which is
three times continuously differentiable and whose coefficients in the first and second
fundamental form are the given functions. This surface is unique up to translations and
rotations in space.

The construction of the surface is as follows. 1. From the derivative formulas of Gauss
and Weingarten one gets uniquely the accompanying three-frame GI, 62, N, if the values
of these are given in a fixed point PQ(UQ,VO). 2. From dr/dua = eQ one can calculate
r(u, v); r(u, v) is uniquely determined if one requires that the surface passes through the
point PQ-

The fundamental theorema egregium: The Gaussian curvature K of a surface was
introduced in section 3.6.3.2 with the aid of the ambient space. According to (3.29)
however, K depends only on the metric tensor ga/g and its derivatives, hence only on
the first fundamental form.

The Gaussian curvature K can be determined by
measurements on the surface alone.

Hence the curvature K is an intrinsic property of the surface, i.e., it does not depend on
the ambient space. This is the starting point for the theory of curvature of manifolds. In
the general theory of relativity for example the curvature of four-dimensional space-time
is responsible for the gravitational force.
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It was a long struggle for Gauss to complete the proof of the theorema egregium (which
means the 'exquisite theorem'). It is the culmination of his theory of surfaces.

Example: For a distance-preserving map the first fundamental form and hence also the
Gaussian curvature is preserved. For the sphere (resp. the plane) one has K — l/R2

(resp. K = 0). Hence the sphere cannot be mapped in a distance-preserving manner
onto the plane. Consequently there is no distance-preserving map of the surface of the
earth.

However, one can make angle-preserving maps. This is of great importance for naviga-
tion.

3.6.3.4 Geodesic lines

Geodesic lines: A curve on a surface is called a geodesic line, if at every point of the
curve, the principal normal to the curve and the principal normal to the surface are
either parallel or anti-parallel. The shortest segment between two points on a surface
is always part of a geodesic line. In the plane these geodesic lines are just the lines
in the usual sense. On the sphere, the geodesic lines are the great circles (for example
longitudes and the equator. A geodesic line r = r(«1(s),«2(s)) (where s denotes arc
length) satisfies the differential equation

and conversely, solutions of these equations are always geodesic lines.

If the surface is given in the form z = z(x,y), then the differential equation for geodesic
lines z = z(x, y(x)} are:

Geodesic curvature: For a curve on a surface given by r = r(it(s), v(s)} (s arc length)
there is always a decomposition of the form

with

The number kg is called the geodesic curvature. A curve on a surface is a geodesic line
if and only if one has kg = 0.
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3.6.4 Gauss' global theory of surfaces

The theorem of Gauss (1827) on the sum of angles in a
triangle: Let D be a geodesic triangle on a surface with angles
a,/3 and 7, i.e., the sides of this triangle are geodesic lines. Then
one has

Figure 3.58. A tri-
angle on a surface.

where dF denotes the surface measure (cf. Figure 3.58).

Example: For the unit sphere one has K = 1, i.e., fDKdF is
equal to the surface area of the triangle.

The total curvature: For an arbitrary sphere one has

This relation remains valid for every closed smooth surface F which is diffeomorph to a
sphere. In this fundamental result differential geometry and topology meet. The con-
nection with the Euler characteristic and the theory of characteristic classes is explained
in [212].

If the surface F is a torus or diffeomorphic to a torus, then one has to replace the
right-hand side of (3.33) by '= 0'.

The theorem of Bonnet (1848): If the sides of the triangle in Figure 3.58 are
arbitrary curves with arc length s, then one must replace (3.32) by the relation

where the boundary curve 3D is transversed in a mathematically positive sense.

3.7 Examples of plane curves

3.7.1 Envelopes and caustics

We consider a family of curves depending on a real parameter c:

F(x,y,c) = 0.

The envelope of this family is obtained by eliminating c from the equations

Fc(x,y,c) = Q, F(x,y,c) = 0.

Example: For the family of curves (x — c)2 + y2 — 1 = 0 we get x — c = 0 and hence

y2 = i-
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Figure 3.59. An envelope. Figure 3.60. Caustic of the circle
reflecting parallel light rays.

The solution set consists of the two lines y — ±1 (Figure 3.59).

Caustics: Figure 3.60 shows a circular mirror, which reflects parallel light rays falling
into it. The envelope of the reflected light rays is called a caustic. The appearance of
caustics typically causes great difficulties in geometrical optics and, more generally, in
the calculus of variations.

Caustics were already known in ancient Greece.

3.7.2 Evolutes

Definition: The geometric locus of all centers of curvature of a given curve C is called
the evolute E of C.

If the curve C is given in the form y = /(x), then one obtains the equation for the
evolute in the parameter form:

(cf. Table 3.7).

Theorem: The normal to the curve C in a
point is equal to the tangent to the evolute
E at the corresponding center of curvature
(cf. the segment PQ in Figure 3.64).

Example 1: For the parabola C : y = -x2

we get

By eliminating t one gets the semicubical
parabola

as the evolute of the parabola (Figure 3.61).

Figure 3.61. The evolute of a parabola.
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Example 2: The evolute of the ellipse

is the astroid

with c2 = a2 - b2 (cf. Figure 3.62).

Figure 3.62. The evolute of an ellipse.
3.7.3 Involutes

Definition: If a curve E is given, then one gets
the involute C of E by wrapping (or unwrap-
ping) a chord of constant length (Figure 3.63).

Theorem: If E is the evolute of C, then C is the involute of E.

Figure 3.63. Figure 3.64-

Example: The involute of the circle

E: x2 + y2 = R2 (3.34)

is

(Figure 3.64). More precisely, one has the following situation: the circle (3.34) is the
evolute of the curve (3.35). If we consider in Figure 3.64 the tangent PQ to E, then one
gets by unwrapping this segment an arc of the curve C.

3.7A Huygens' tractrix and the catenary curve

The tractrix (Figure 3.65(a)): This curve is given by the equation

Geometric characterization: If we consider the tangent to the curve through a point
K, which intersects the x-axis in a point H, then the length of the segment KH is a
constant.
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Figure 3.65. Two curves involving the hyperbolic trigonometric functions.

The name tractrix comes from the fact that the curve arises when an ox at the point
H pulls a cart at the point K in the direction of the x-axis. This is a situation which
earlier often actually occurred in mining.
The x-axis is the asymptote of the tractrix. If s(y) := SK denotes the length of the arc
from the cusp of the curve to the cart at K, and x(y) = OH denotes the distance of the
ox from the origin, then one has

This value is approximately 0.3069 • a.

By rotating the tractrix around the x-axis one gets a surface of constant negative cur-
vature, which is known as the pseudosphere (Figure 3.57).
The catenary curve (Figure 3.65(b)): This curve has the equation

Physical characterization: This curve corresponds in form to a clothesline or chain,
which is what gives rise to the name: catenary means chain line in Latin; the line is
hung at the points P and Q and sags under the force of gravity.

The length of the arc between P and Q is equal to 2a • sinh(x/a).
Geometric characterization: The catenary curve is the evolute of the tractrix.

By rotating the catenary curve around the x-axis, one obtains a surface whose mean
curvature vanishes (a minimal surface), which is known as the catenoid.

3.7.5 The lemniscate of Jakob Bernoulli and Cassini's oval

The equation of the lemniscate in Cartesian coordinates (Figure 3.66(a)):

The constant a appearing in this equation is assumed to be positive. This curve was
first described by Jakob Bernoulli in in his Acta eruditorum, which appeared in 1694.
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Figure 3.66. The lemniscate, which is a special case of Cassini's oval.

Geometric characterization: The lemniscate is the geometric locus of all points for which
the product of the distances from two points A = (a,0) and B = (—a, 0) is equal to a2.

The two lines y = ±x are tangent to the lemniscate at the origin.

Total area: 2a2.

Length of the curve: For a = 1, the lemniscate has the total length

This is an elliptic integral. The 22-year-old Gauss discovered in 1799 the formula

Here the quantity M(ao,&o) denotes the arithmetic-geometric mean of the two positive
numbers OQ and 60, that is to say that

with

The Gaussian formula (3.36) is a special case of the more general formula

for the complete elliptic integral K(k) of the first kind with 0 < k < I.

The equation of Cassini's oval in Cartesian coordinates (Figure 3.66(b)):

Here the constants a and c are positive. This curve was described by the astronomer
Jean-Dominique Cassini (1625-1712) in his Elements d'astronomie, which appeared in
1749.

Geometric characterization: Cassini's oval is the geometric locus of all points for which
the product of the distances to two fixed points A = (a, 0) and B = (—a, 0) is a constant,
equal to c2.
The lemniscate is for a = c a special case of Cassini's oval, which was later realized in
1782 by Pietro Ferroni.
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3.7.6 Lissajou figures

Parameterization of Lissajou figures in Cartesian coordinates (Figure 3.67):

x = a smut, y = b s'm(u't +a).

If we interpret t as the time, then these
are oscillations, which were studied
in 1815 by the American astronomer
Nathaniel Bowditch23 (1773-1838) and
in 1850 by Lissajou. By varying the an-
gular frequencies uj and u/ as well as a
changing the phase by a, one can gen-
erate with a laser a great variety of curves, something which is occasionally shown where
laser performances are set up.

Figure 3.67. Lissajou curves.

3.7.7 Spirals

Archimedean spirals (Figure 3.68(a)): The equation of these curves in polar coordi-
nates is:

The constant a which occurs here is assumed to be positive.
Logarithmic spirals (Figure 3.68(b)): These are given by the equation

The constants a and b occuring are again assumed to be positive.

Geometrical property: Each ray issuing from the origin 0 cuts a logarithmic spiral in a
constant angle a, where cot a = 6.

Length of the arc determined by the condition

(a) Archimedean spiral (b) logarithmic spiral (c) hyperbolic spiral

Figure 3.68. Various spiral curves.

Curvature radius:

For 6 = 0 the curve is a circle of radius a.
23He also translated Laplace's Mechanique Celeste into English.
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Hyperbolic spirals (Figure 3.68(c)): These
curves have the equation

The constant a is again positive.

Spider curves (clothoids) (Figure 3.69):

Figure 3.69. Spider curve.
In this equation, R is the curvature radius and
s represents the arc length between the point of
the curve and the origin 0. The constant a is
positive.

If a curve is described by purely geometrical quantities as in (3.38), then one speaks of
a natural curve equation.

Parameterization in Cartesian coordinates:

This curve is situated symmetrically with respect to the origin 0= (0,0).

Arc length: s = at

Asymptotic points: A

3.7.8 Ray curves (chonchoids)

Definition: If a curve C

is given in polar coordinates, then the chonchoid of C is the curve with the equation

Here again b is a positive constant.

3.7.8.1 The chonchoid of Nikomedes

Equation in polar coordinates (Figure 3.70):

The two constants a and b are both assumed to be constant. For '+' (resp. ' — ' ) one
gets the positive (resp. negative) branch of the curve. If one sets b = 0 in (3.39), then
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Figure 3.70. Chonchoid of Nikomedes.

one gets the equation of the line x = a (Figure 3.70(a)). The chonchoid of Nikomedes is
thus the chonchoid of a line.
This curve was invented around 180 BC, in an attempt to solve the Delphian problem
of the doubling of the cube and the trisection problem graphically.

3.7.8.2 Pascal's snail and the cardioid

Equation in polar coordinates (Figure 3.71):

Here the constants a and b are positive. The equation of the circle (x — a)2 + y2 = a2 is

Figure 3.71. Pascal's snail.

in polar coordinates r = a cos <£>, where

as the chonchoid of the circle.

This is why one refers to (3.40)

Enclosed surface area:2*

24In case b < o, the area enclosed by the inner cycle is counted twice as shown in Figure 3.71(c).
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Equation in Cartesian coordinates: (x2 + y2 — ax)2 = b2(x2 + y2).

The special case of the the cardioid occurs for a — b. In this case we have

Enclosed surface area: A

Inflection point: x = 2a, y = 0.

Many curves can be generated by rotating a wheel along a given curve with a constant
angular velocity and taking the trajectory of a fixed point P on a spike of the wheel (for
example on the periphery). This is illustrated in Figures 3.72 to 3.74. Curves of this
kind, with which many mathematicians have dealt since the renaissance, are used often
in all areas of technology.

3.7.9.1 Rolling a wheel along a line (cycloids)

Parameterization in Cartesian coordinates (Figure 3.72):

Here a is the radius, and ip is the relative angle of the rolling wheel.

(a) cycloid

(b) shortened cycloid

(c) stretched cycloid

Figure 3.72. Wheel curves or cycloids for various parameters.

Classification: (i) 1 (cycloid),

(ii) 0 < < 1 (shortened cycloid),

(iii) 1 (stretched cycloid).

3.7.9 Wheel curves
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In case (i), the point P is on the periphery of the wheel, while in case (ii) (resp. case
(iii)) it lies inside (resp. outside) of the periphery of the wheel. Curves of the latter two
cases are also called trochoids.

Surface area between a cycloid arc and the x-axis: A = 37ra2.

Length of a cycloid arc between the points x = 0 and x = a: L = 8a.
(D

Curvature radius of the cycloid: 4a sin —.

Curvature radius of the trochoid:

Length of a trochoid arc from

The cycloid is the solution of the famous problem of the brachystochrone due to Johann
Bernoulli (cf. 5.1.2).

Figure 3.73. Epicycoids (generated by rotating a wheel on a circle).
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3.7.9.2 Rotating the wheel on the periphery of a circle (epicycloids)

Parameterization in Cartesian coordinates (Figure 3.73):

Here a wheel of radius a is rotating on a circle of radius A. The point P has polar
coordinates (p and r.

Classification: (i) p, = 1 (epicycloid),

(ii) 0 < fj, < 1 (shortened epicycloid),

(iii) p, > 1 (extended epicycloid).

Curvature radius of an epicycloid:J v y

Interesting phenomenon: Set n = — .
a

(i) If n is a natural number, then the curve closes after one revolution around the circle.

(ii) If n is a rational number, then the curve closes after finitely many revolutions around
the circle.

(iii) If on the other hand n is irrational, then the curve does not close at all.

Length of an arc from one cusp to the next for the epicycloid: 8(A + a)/n.

3.7.9.3 Rotating the wheel on the inside of a circle (hypocycloids)

Parameterization in Cartesian coordinates (Figure 3.74):

Figure 3.74- Hypocycloids (generating by rotating a wheel inside a circle).
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Here a wheel of radius a rotates on the inner periphery of a circle of radius A. The point
P has polar coordinates </? and r.

Classification: (i) p, = 1 (hypocycloid),

(ii) 0 < p, < 1 (shortened hypocycloid),

(iii) n > 1 (extended hypocycloid).

Curvature radius of a hypocycloid:

Example 1: For A = 2a and [i > 0 one gets an ellipse, which in the special case /^ = 1
degenerates to a line segment.

A
Example. 2: In the special case n = — = 4 and // = 1 we get the parameterization

a

This is an astroid, whose equation in Cartesian coordinates is given by

or (x2 + y2 — A2)3 + 27x2y2A2 = 0 (Figure 3.74(a)). The astroid is thus an algebraic
curve of order 6 (see section 3.8.2 below).

3.7.9.4 The epicycles of Hipparchos

Parameterization in Cartesian coordinates (Figure 3.75):

Interpreting t as the time, (3.41) describes the motion of a
particle at the point P on a circle Ka of radius a. During
this motion, the center of Ka moves on a circle KA of radius
A with the angular velocity LJ, while Ka rotates with the
angular velocity u/.

These epicycles were used by the great astronomers Hippar-
chos (180-125 BC) and Ptolemy (around 150 BC) in ancient
times to describe the complicated motion of the planets in
the heavens.

The theory of epicycles warns us: with a sufficiently flexible
model, one can approximately describe reality, even though
the model is definitely wrong.

3.8 Algebraic geometry

Figure 3.75.

What the geometer loves about his science is that he sees what he thinks.
Felix Klein (1849-1925)

3.8.1 Basic ideas

3.8.1.1 The basic problem

Let m polynomials PJ — PJ (z) with complex coefficients in n (complex) variables z\ , . . . , zn

be given. Set z = (zi, . . . , zn). Algebraic geometry is concerned with finding solutions
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of systems of equations of the form

This a central problem in all of mathematics, the solution of which is of importance to
many problems.25

3.8.1.2 Singularities and their relevance in physics

A typical difficulty in algebraic geometry is the appearance of singularities.

Definition: Let m < n. A solution z of (3.42) is said to be a regular point, if

(i.e., the Jacobian matrix of / has maximal rank). Otherwise z is a singular point or
singularity of the set (3.42).
If all solutions of the system (3.42) are regular, then the set of solutions form a smooth
manifold. Manifolds are studied in differential topology and differential geometry (cf.
[212]).

Example 1 (manifold): The equation for a line

and the equation for a circle

X2 + y2 = r2

y = mx + b

with r > 0 describe curves without singularities, i.e., these curves form one-dimensional
manifolds. A characterizing property of such a manifold is that there is a unique tangent
at every point on the curve (cf. Figure 3.76(a)).

Example 2 (a double point as a singularity): The equation

x2 - y2 = 0

decomposes as x2 — y2 = (x — y)(x + y) = 0. This implies that the curve which the
equation describes splits off into two separate lines, with the equations x — y = 0 and
x + y = 0. These two lines intersect at the point (0,0), and this point is called an
ordinary double point. Clearly, at this points the curve has two tangents (the two lines),
and thus it is not a manifold (Figure 3.76(b)).
Double points can also occur where a curve intersects itself, as in the case of the Cartesian
leaf (cf. Figure 3.82 in section 3.8.2.3).

25 An additional important generalization of this problem is to replace the field C of complex numbers
as the domain of coefficients and solutions by an arbitrary field K.

In the case of the field K = Q of rational numbers for example, this leads to Diophantine geometry,
which has been studied for almost 2000 years by the most astute minds in mathematics. See section
3.8.6 for more information on this.
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Figure 3.76. Smooth manifolds and singular points.

Example 3 (a cusp as a singularity): The semi-cubical parabola

y2-x3 = 0, (3.43)

has at the point (0,0) a so-called cusp. At the cusp there is no tangent, so again, this is
not a manifold.

Double points and cusps are the simplest singularities which can occur.

The relevance of singularities in physics: A fundamental phenomenon in nature
is that systems can drastically change their qualitative behavior under critical external
influences. In this case one speaks of a bifurcation (branching). These can belong to, for
example, ecological catastrophes or economic crises.

Example 4 (bifurcation of equilibrium positions): If a system is in equilibrium, it can,
under the influence of external forces, pass over to a new equilibrium position. If, for
example, forces act on a rod over its length, then at some critical level a bulge in the
rod can occur.

Example 5 (Hopf bifurcation): A dynamical system which is in equilibrium can, under
the influence of external forces, start to vibrate.

Bifurcations which occur in nature can be mathematically modeled
with the aid of singularities.

This is the content of bifurcation theory, which we shall present in [212]. Also the so-
called catastrophe theory, due to the French mathematician Rene Thorn, belongs to this
area.

We now consider the easiest special cases of (3.42).

801
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Linear equations

If all polynomials PJ are linear (have degree one), then (3.42) is a system of linear
equations, for which there is a complete theory of solutions (cf. 2.3).

From a geometric point of view, the study of linear equations corresponds to the inves-
tigation of the intersection behavior of lines, planes and hyperplanes.

Functional analysis: Even the simplest case of linear equations, which from a modern
point of is view trivial, led to the development of the theory of linear algebra. This in
turn forms the basis for the theory known as functional analysis. Both the modern theory
of partial differential equations and quantum theory are formulated in the language of
functional analysis.

Topology: A basic strategy in modern mathematics is to study complicated structures
by associating to them simple structures belonging to linear algebra. This is the method
which is applied for example in algebraic topology, in which (topological) spaces are
represented by their de Rham cohomology groups, which forms the basis of modern
differential topology. A not so sophisticated example is the use of tangent spaces to
study manifolds (see [212]).
Quadratic equations

If the polynomials PJ are quadratic, i.e., have degree two, then the basic equation (3.42)
describes conic sections and the intersection behavior of these. If we consider a single
equation

of second degree, supposing that the polynomial p is irreducible, we get a smooth conic
section. Singularities can occur only in the case that the polynomial p splits (i.e., factors
into a product), in which case we have the situation described in Example 2.

Number theory: Quadratic equations correspond to quadratic forms, which are in-
tensively studied in number theory. The basis for this is the theory of quadratic forms
due to Gauss, which was developed in his treatise "Disquisitiones arithmeticae" , which
appeared in 1801. This in turn was the foundation for the theory of quadratic number
fields as well as the modern theories of algebraic and analytic number theory.

Spectral theory: A quadratic equation in n variables

can be elegantly written in matrix form as

XT Ax = const.

The investigation of this kind of equations involves finding normal forms for the matrix
A. This theory was developed in the second half of the nineteenth century. The basis
was formed by investigations of Euler (1765) and Lagrange (1773) on the axis of inertia
of rotating rigid bodies, which led to special transformations of the principle axis. The
general form of this transformation was laid down by Cauchy in 1829. In 1904, Hilbert
generalized this in connection with his theory of integral equations to infinite-dimensional
matrices. John von Neumann recognized in 1928 that the considerations used by Hilbert
actually also apply to the spectral theory of unbounded, self-adjoint operators in Hilbert
spaces, which in turn is the basis for quantum theory. The spectrum of the Hamiltonian

P(x,y)=0
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operator generalizes the eigenvalues of symmetric matrices and describes exactly the
possible energy levels of a quantum system.

Quadratic forms and geometries of modern physics: Groups of transformations
which preserve a quadratic form, and in particular lead to normal forms, are the basis
of important geometries, which are considered in detail in section 3.9.

Special functions: If one seeks the parameter representation of the circle

x2 + y2 = 1,

then one is lead to the trigonometric functions. The global parameter representation
(uniformization) of the circle is given by

The fact that one requires periodic functions for this description has a deeper topological
reason, which is that the circle is an irreducible algebraic curve of second degree and
genus 0.

Prom the parameterization of the circle one gets immediately the global parameterization
(uniformization) of the hyperbola

o;2-y2 = l

by replacing y by \y and t by is:

This is identical with the parameterization of the hyperbola

in terms of hyperbolic functions.

Looking only at the real values, the periodicity of the functions is not obvious. Euler
discovered that the inverse functions of certain elliptic integrals are periodic. During
his investigations of the lemniscate, Gauss, as a twenty-year old, made in 1796 the
discovery, which was to have great consequences, that the inverse functions of certain
elliptic integrals have, in addition to the real periods derived by Euler, two purely
imaginary periods. This fact later turned out to be, in the theory of doubly periodic
(elliptic) functions developed by Weierstrass, the key to a complete understanding of
elliptic integrals. The deeper topological reason for the double-periodicity of the inverse
functions of elliptic integrals was explained in section 1.14.19.

Uniformization and the resolution of singularities: An interesting problem is
to find a global parameterization of general curves and surfaces. Here the notion of
uniformization is what is also referred to as resolution of singularities. This area of
problems, at least for quite general objects which one would like to uniformize, is among
the most difficult in all of mathematics.

(i) The uniformization of all algebraic curves of degree three (cubic curves) leads to the
theory of elliptic functions and elliptic integrals (cf. 3.8.1.3).
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(ii) The uniformization of arbitrary algebraic curves is the content of the famous uni-
formization theorem due to Koebe and Poincare, proved in 1907. This uniformization
allows the calculation of Abelian integrals in terms of automorphic functions.

(iii) In 1964, Hironaka succeeded in proving the general resolution of singularities of
projective algebraic varieties of arbitrary dimension.

Cubic equations

Algebraic curves of degree three can (even if the equation is irreducible) have singular-
ities. These are points at which there is not a uniquely defined tangent. The simplest
example of this is the semi-cubical parabola (3.43).

3.8.1.3 Elliptic curves and elliptic integrals

Elliptic curves: The set of complex solutions (z, w) of the equation

w2 = 4z3 - g2z - #3 (3.44)

are, according to Weierstrass (1815-1897), given by the parameter representation

Here <p denotes the elliptic function defined by Weierstrass with the two complex periods
2a>i, 2u>2 and the constants

Elliptic integrals: The integral

is to be understood in the sense

where ( z , w ) is a solution of equation (3.44). Through the substitution z — p(t), w =
p'(t) we get

Because of the connection with the theory of elliptic functions, one denotes (3.44) as
an elliptic curve. In the theory of functions of a complex variable (function theory) on
the other hand, one speaks in this case of the Riemann surface26 of the "many-valued
function" w = w(z) given by (3.44). Thus, one has

The investigation of elliptic curves leads to the theory
of elliptic functions and elliptic integrals.

26By definition, a Riemann surface is a connected, smooth, one-dimensional complex manifold. The
simplest Riemann surface is just the complex plane C, which is one-dimensional over the complex
numbers, but viewed as a real space of course, being isomorphic to R2, is two-dimensional. This
explains that fact that the notion "curve" and "surface" are both applied to the same object, (cf. [212]).
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The topological structure of an elliptic curve: The set of all pairs of complex
numbers (z,w) which satisfy (3.44) form by definition an elliptic curve C. Since the
p-functions has complex periods uj\ and u>2, we can, when seeking a parameter repre-
sentation in (3.45), restrict ourselves to the t-values in a parallelogram T, where the
opposite points on the boundary of T are identified (Figure 3.77(a)). With the aid of
the formula

we get a bijective mapping between the elliptic curve C and T.

If we glue the opposite points of T
together, we get a torus & (Figure
3.77(b)). It follows that the elliptic
curve C is bijectively related to the
torus 2F. If we endow C with the
topology obtained from «^", then C
is homeomorphic to a torus and thus
has the genus

p = I

t1+t2= £3 mod T

(Zi,Wi) + (z2,W2) = (Z3,W3).

(cf. [212]).

The group structure on an ellip-
tic curve: There is a natural group
action of the group &, which is gen-
erated by the addition rule

Figure 3.77. The definition of elliptic curves.

on the space T. This is defined by first defining the sum ii 4- £2 as the usual sum of the
two complex numbers t\ and t2. If this sum is in T, then we set t\ + £2 := t3. If the
sum lies outside of T, this means there are two (uniquely determined) complex numbers
mi and ra2 such that the point t% := t\+t2 — 1m\u\ — 2m2^2 does lie in T, and we set
accordingly t\ + t2 := t% (Figure 3.77(c)).

The group & is easily made into a group *&' for the elliptic curve C, simply by defining
the sum by the formula

(3.47)

Here we have set

It then follows from the addition theorem:

that

and
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The group operation (3.47) was discovered in 1834 by Jacobi. To prove it, he used the
famous addition theorem for elliptic integrals discovered by Euler in 1753, on which
many addition theorems for elliptic functions are based.

The intuitive interpretation of the group structure on an elliptic curve: We
consider an elliptic curve C, i.e., a cubic curve without singular points with real coeffi-
cients in the real plane R2.
(i) We fix a point PQ on that curve.

(ii) The sum of two points PI and P^ is the point PS obtained by the geometric con-
struction pictured in Figure 3.78

This means we first determine the intersection S of the line P\P-2 and the curve C. Then
PS is the intersection of the line PyS with the curve C. The 'sum' of PI and P^ is then
defined by

(3.49)

Theorem: (a) The curve C becomes a group with the
addition as just defined, the neutral element of the addition
being P0 = 0.

(b) If one chooses PQ as one of the inflection points of C,
then three points P,Q,R on the curve lie on a line if and
only if

(3.50)

Pi+Pz •=Ps-

Figure 3.78.
stucture on
curve.

The group
an elliptic

P + Q + R = 0.

The statement (b) was discovered by Poincare in 1901 and plays an important role in
the investigation of Diophantine geometry (cf. 3.8.6).

The principle of analogy as a cause of developments in mathematics: An
elliptic curve C has the typical property that every line through two distinct points of
the curve meets the curve in precisely one more point.27 This is the geometric basis for
the construction of the sum P\ + P^ of two points on the curve in (3.47). The notation
'sum' might at first sight seem unnatural, since one usually associates linear objects with
this notion, like lines or planes. But here we are considering a curved space. One of the
strengths of mathematics is the possibility of introducing compositions into new objects
through analogy with compositions on known objects. In this case the known addition
is that of numbers, which allows us by analogy to introduce an addition on a curve.
In this way the known results of mathematics can be carried over to more and more
complicated objects resp. situations, leading to new findings and discoveries. It turns out
that the number of basic structures is relatively small. Thus, just a few basic structures
are sufficient (for example, groups, rings, fields, topological spaces, manifolds). The next
step in abstraction is the

combination of the basic stuctures.

For example, combing the basic notions of group and of manifold, we get the structure
known as a Lie group, which is of basic importance in physics (cf. [212]).
However, the history of mathematics is not clear and smooth like this, but rather takes
its winding paths to get to the objective. The main impetus for new developments
in mathematics is the solution of complicated problems. The mathematician is forced

27This statement is only correct if one also admits a point at infinity, i.e., works with the methods of
projective geometry, see 3.8.4.
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to look for new and powerful ideas. The first proofs of deep results are often very
complicated and difficult to follow, leading to the desire to simplify the proofs. To do
so, often new theories are developed, the application of which allows the complicated
problems to brought to higher level of abstraction, in which they turn out to be much
more tractable and simple. Starting from this new level of abstraction in turn, more
and more complicated problems can be dealt with.

Comparing this development in mathematics with mountain climbing (which is inter-
estingly a popular sport among mathematicians), a group of mountain climbers is pro-
ceeding from one plateau to the next. While some especially daring individuals rush
ahead without ropes to secure them, the greater part of the company investigates each
plateau, clearing it of boulders and so allowing those to follow an easier climb.

3.8.1.4 Algebraic curves of higher degree and Abelian integrals

Up till now we have only considered elliptic curves, which are closely connected with
elliptic integrals and elliptic functions. The investigation of more complicated integrals,
which at first sight appear to be untractable, is elegantly dealt with by taking advantage
of investigations of complicated curves, first studied by Riemann (1857). These are
integrals of the form

where the point (2, w) is a point on the curve

Here p is a polynomial in z and w. The "many-valued function" w = w(z), which satisfies
(3.51), is referred to as an algebraic function. Integrals of this kind were first studied in
generality by the young Norwegian mathematician Niels Henrik Abel (1802-1829).

Historical remarks: The investigation of Abelian integrals played a fundamental role
in the mathematics of the nineteenth century and lead to the development of function
theory by Riemann and Weierstrass. Riemann, who lived from 1826 to 1866, recognized
in an ingenious manner that the treatment of Abelian integrals becomes quite simple
and clear by studying the qualitative behavior, i.e., the topology, of the Riemann surface
belonging to the equation (3.51). The decisive role here is played by the genus of
the Riemann surface, because the genus is the only topological invariant of a compact
Riemann surface.

The equation (3.45) induces a parameter representation of the elliptic curve (3.44). Felix
Klein (1849-1925) and Henri Poincare (1854-1912) both tried, as young men, to solve
the difficult problem of finding an appropriate parametrization for an arbitrary algebraic
function (3.51). This lead to the development of the theory of automorphic functions,
which generalize elliptic functions.
The final solution of the problem of parametrizing (3.51) was obtained independently
by Paul Koebe (1882-1945) and Henri Poincare in 1907 with the proof of the famous
uniformization theorem (cf. [212]).

The language of schemes: In modern algebraic geometry one considers the system of
equations (3.42) over arbitrary fields (instead of over the complex numbers C). One of the
modern tools in this study are objects called schemes. This notion, which is among the
most important in all of mathematics (for example, in its most general form, it contains
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the notion of manifold), connects topology, differential topology, algebraic geometry
and number theory. The basic objects of all these central mathematical disciplines are
schemes (cf. 3.8.9.4).

The Fermat conjecture (Fermat's last theorem) and the Shimura-Taniyama—
Weil conjecture: In 1994, Andrew Wiles at Princeton succeeded in proving Fermat's
last theorem, which had been one of the central open problems for over 300 years. One
part of the proof was to reduce it to the proof of a partial verification of a much deeper
geometric conjecture about elliptic curves (the Shimura-Taniyama-Weil conjecture).

String theory: The contemporary attempts to unify all the basic forces of nature
(gravitation, the weak and strong forces and electromagnetism) in the context of string
theory has lead to extremely fruitful interactions of ideas between physics and mathe-
matics. The methods of algebraic geometry play a predominant role in these modern
developments.

Algebraic geometry is a mathematical discipline which has strong interactions to many
areas of mathematics and also to the natural sciences, and no doubt belongs to the
fundamental and basic pillars of mathematics. In what follows we shall attempt to build
the bridge from the intuitive and geometric origins of the theory over to the modern
abstract aspects of the theory, which were not developed for their own sake, but to prove
difficult results.

3.8.2 Examples of plane curves

The most important property of a plane algebraic curve is its genus p (cf. 3.8.5).

In what follows, a, b and c are positive (real) constants.

3.8.2.1 Curves of the first and second degrees

Algebraic curves of degree one (linear curves) are lines; they have the genus p = 0.

Irreducible algebraic curves of the second degree (quadratic curves) are non-degenerate
conic sections (circles, ellipses, parabolas and hyperbolas); they again have the genus

Quadratic curves which are reducible are nec-
essarily pairs of lines.

All the curves introduced in this and the next
section are irreducible. An irreducible curve of
degree three (cubic curve) has the genus p = 1 ,
provided there are no singularities28, otherwise
the genus is p = 0.

An irreducible curve of the fourth degree (quar-
tic curve) has the genus p = 3, 2, 1 or p = 0.
The first case corresponds to the curve being
smooth, i.e., the absence of singularities, the
other cases occur depending on the number and
kind of singularities. For example, a famous
curve, the Klein quartic, has three ordinary double points and genus p = 0.

Figure 3.79.
Agnesi.

Versiera of Maria

28This statement is made with respect to the projective representation of the curve in the complex
domain (cf. 3.8.4). The graphical representation of the curves in a real plane thus gives an incomplete
picture of the singularities of the complex curve.

p=0.
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3.8.2.2 Cubic curves

The versiera of Maria Agnesi (Figure 3.79):

(x2 + a2)y -a3 = 0. (3.52)

Asymptote: y = 0.

Surface area between the curve and its asymptote: ira2.

Curvature radius at the vertex (0, a): R = a/2.

Two inflection points:

Genus: p = 0.

The equation of the versiera in the complex projective plane CP2: The equation
of the curve (3.52), written in projective coordinates of the projective plane, is

x2y + a2yu2 — a3u3 = 0. (3.53)

This equation is obtained by replacing the variables x and y in (3.52) by x/u and y/u
and then multiplying through by u3 (this is referred to as homogenizing the polynomial
or the equation).

Here, x, y and u are complex variables, for which the case x = y = u = 0 (all simulta-
neously vanishing) has been excluded. Two solutions (xj,yj,Uj) of (3.53) correspond to
the same point on the curve if there is a complex number A ̂  0, such that

If one sets u = 1, one gets the so-called affine form (3.52) of (3.53). This is the inverse
of the homogenization procedure, also called dehomogenization.

The infinitely far point: The curve (3.53) intersects the line at infinity, defined by the
equation u = 0, at the points

(1,0,0) and (0,1,0),

which correspond in Figure 3.79 to the directions of the x-axis and the y-axis.

Singularities: The only singularity of the curve is the infinitely far double point (this
is just another way of saying "the double point at the line of infinity") (1,0,0). This
corresponds to the asymptote y = 0 of the curve in Figure 3.79.

Genus: p = 0.

The cissoid of Diocles (Figure 3.80):

x3 + (x -a)y2 = 0.

Rational parametrization: x =

one has t = tan (p.

Representation in polar coordinates:

Asymptote: x = a.

In polar coordinates
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Surface area between the curve and the asymptote: 37ro2/4.

Geometric characterization: Let K be a circle of radius a/2, centered at the point
(a/2,0), and let g be the line x = a. A ray emanating at the origin O intersects K at a
point A and the line g at a point B. The point P on the cissoid has the property that

OP = AB.

The word cissoid is of Greek origin and means the outline of a leaf of ivy
(cissoz meaning ivy).

The cissoid has a cusp at the origin (0,0) as its sole singularity.

Figure 3.80. Cissoid. Figure 3.81. Strophoid.

Strophoid (Figure 3.81):

(x + a)x2 + (x — a)y2 = 0.

Rational parametrization:

coordinates one has t = tamp.

Representation in polar coordinates:

In polar

Asymptote: x = a.

Tangent at the origin O:

Surface area of the loop:

Surface area between the curve and the asymptote:

Geometric characterization: We fix a ray originating at a point (—a, 0), which intersects
the y-axis at a point Y. The points PI and P-2 on the strophoid satisfy the condition

PjY = OY . j=l,2.
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It is this property which gives rise to the Greek name strophoid.

The strophoid has a double point at the origin (0,0) as
its sole singularity.

Cartesian leaf (Figure 3.82):

Figure 3.82. Cartesian leaf.
Asymptote: x + y + a = 0.

Tangent at the origin O: y = 0 and x = 0.

Surface area of the loop: 3a2/2.

Surface area between the curve and the asymptote: 3a2/2.

ApexP: (3a/2,3a/2).

Curvature radius at the origin for both branches: R = 3a/2.

Genus: p = 0. The Cartesian leaf has a double point at the origin as its only singularity.

3.8.2.3 Curves of the fourth order (quartic curves)

The following curves are discussed in detail in section 3.7:

Figure 3.83. Conchoid of Nicomedes.

Conchoid of Nicomedes (Figure 3.83):

(X-a)2(x2 + y2)-b2x2 = 0.

Genus: p = 2.

Rational parametrization:

and In polar coordinates one
has t = tan <p.
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The name conchoid is again of Greek origin and means shell curve (KOI/XT? =shell). The
conchoid has, depending on the values of the parameters a and fa, a cusp or a double
point as its only singular point.
Pascal's snail (Figure 3.71):

(* 2+y 2 -az) 2 -6 2 (z 2+y 2 ) = 0.

Genus: p = 2 or p = 3, depending on the values of the parameters a and fa.

Cardioid (Figure 3.84(a)): This is a Pascal's snail with a = b.

Genus: p — 2.

The cardioid has a cusp at the origin (0, 0) as its only singularity.

Cassini's oval (Figure 3.66(b)):

(z2 + y2)2 - 2c2(z2 - y2) + c4 - o4 = 0 .

Genus: p = 3 or p = 2, depending
on the value of the parameters a
and c.

Lemniscate of Jakob Bernoulli
(Figure 3.84(b)): This is a
Cassini's oval for the parameters
a = c.

Figure 3.84- Two famous curves.

Genus: p = 2.

The lemniscate has a double point
at the origin (0,0).

Historical remarks: The cissoid
of Diocles (the ivy curve) and the

conchoid of Nicomedes (the shell curve) are the oldest known algebraic curves with sin-
gularities, discovered around 180 BC. They were invented (discovered) to solve the two
famous Delian problems of the doubling of the cube and the trisectomy of an angle by
graphical methods (cf. 2.6.1). In ancient times, the conchoid of Nicomedes was also used
for the construction of profiles of pillars (Figure 3.83(c)).

Properties of Pascal's snail were studied by the father of the famous mathematician
Blaise Pascal (1623-1662).

The Cartesian leaf (folium Cartesii) was introduced by Descartes (1596-1650), who
made important contributions towards algebraic geometry by representing geometric
figures in 'Cartesian coordinates'. Cassini's curves originate with the work of the Italian
astronomer Cassini (1650-1700).
Newton (1643-1727) carried out various investigations on the behavior of algebraic
curves. The lemniscate of Jakob Bernoulli (1655-1705) played an important role in
the development of the theory of elliptic integrals (cf. 3.7.5).

In 1748 the Italian mathematician Maria Gaetana Agnesi (1718-1799) wrote a book with
the title Instituzioni analittiche, which collected the knowledge of the day in algebra and
analysis and because of the clear presentation was translated into several other languages.
It was in this book that the curve now known as the versiera of Agnesi was treated. The
Italian word versiera means nightmare.
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3.8.3 Applications to the calculation of integrals

We consider the integral

Here R denotes a rational function of the variables x and w. Moreover, w is an algebraic
function of x, i.e., the pairs (x, w) are points on a plane algebraic curve

C: p (x, w) = 0.

If the parameter representation

x = x(t), w = w(t) (3.55)

of the curve C has been given, then we get for the integral (3.54) via substitution the
expression

Integrals like this containing rational functions can be calculated with the aid of a partial
fraction decomposition. Ever since Newton's and Leibniz' time around 1700, the search
has been on for new rational substitutions to transform integrals of the form (3.54) into
integrals like (3.56) with a rational integrand, which can be calculated as just mentioned.
After some time the following question crystallized itself as the critical issue: for which
integrals do rational substitutions exist?

The rule of thumb is:29

The curve C has a rational representation as in (3.55)
if and only if the genus of the curve is zero.

Example 1: The integral

can be written in the form R(x, w)dx with

C : x2 + w2 = l.

This is a circle, which has genus zero. A rational parameterization of the circle is given
by

If we set

then we have

29The precise answer is given by the theorem of Poincare (1901), described in section 3.8.5. For this
one requires the projective complex form of the curve C, which will be introduced in the next session.
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This explains the universal success of the substitution (3.58) for the calculation of inte-
grals of the form

Example 2: Let —oo < e\ < 62 < 63 < oo. The integral

can be written in the form R(x, w}dx with

w2 = (x - ei)(x - e2)(x - e3).

This curve is of the third order and has no singularities; it therefore has genus one. This
is the deeper reason why elliptic integrals cannot be solved by rational substitutions.
This fact was gradually realized in the course of the eighteenth century and lead in the
nineteenth century to the development of the theory of elliptic functions.

The integral (3.57) can be solved with the substitution (3.58) with the help of (sim-
ply) periodic trigonometric functions. To calculate the integral (3.60). one requires the
substitution

with the doubly periodic (elliptic) Weierstrass p-function (cf. 1.14.17.3).

3.8.4 The protective complex form of a plane algebraic curve

Basic idea: The only way to clearly organize the theory of plane algebraic curves is to
pass over to homogenous complex coordinates, meaning that the curve is considered in
the complex plane CP2 (cf. 3.5.4).

Example 1 : In the equation of the circle

x2 + y2 = l

we replace x and y by x/u and y/u. After multiplying through by u2 we get the complex
projective form

of the circle. Here x, y, u are complex numbers, for which the triple (0,0,0) is excluded,
i.e., not all of the variables are allowed to vanish at the same time. Two such tuples
(x, y, u) and (x*, y*, u*) define the same point (in the projective plane), if they differ by
a non-vanishing constant factor A, i.e., if we have (x,y,ti) = A(x*,y*,u*).

Definition: Every plane algebraic curve of degree n can be written in the form

X2 +y2 = u2

(3.61)

where p is a homogenous polynomial of degree n with complex coefficients in the complex
variables x,y and u. Such curves are called algebraic curves in CP2. The number n is
called the degree of the curve.

p(x,y,u) = 0
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Irreducible curves: The curve denned by the equation (3.61) is said to be irreducible,
if the polynomial p is irreducible over C. This means intuitively that the curve consists
of "a single piece", i.e., it does not split into more than one component.

Example 2: The equation x = 0 is irreducible and describes a line. The equation

xy = 0

is of second degree and is reducible (i.e., not irreducible). This curve is a degenerate
conic section, which splits into (consists of the union of) the two lines x = 0 and y = 0.

The irreducible quadric curves are precisely the ellipses, parabolas and hyperbolas
(where, however, there is no difference among these from the point of view of the complex
projective plane). These are the non-degenerate conic sections.

3.8.4.1 The theorem of Bezout on the intersections of curves

The following theorem is one of the
most important results in the the-
ory of algebraic curves.

Generic intersections: If two ir-
reducible curves intersect at a point
P, then this point is said to be regu-
lar if both curves have a unique tan-
gent at this point and the two tan-
gents do not coincide (Figure 3.85).
This situation "almost always" oc-
curs. This adverb is the content
of the mathematical term generic,
which means "the exceptions occur
very seldom", in more mathematical language, "the exceptions occur on a set of lower
dimension".

Theorem of Bezout (1779): Let two distinct irreducible algebraic curves C resp. D
be given in CP2, and let m resp. n be their degrees.30 Then there are at most mn
intersection points of the two curves. Moreover, if all intersection points are regular,
then there are exactly mn points of intersection.31

Example 1: Two conic sections (without common components) can intersect at most at
mn = 2 - 2 = 4 points.

Example 2: The unit circle x2 + y2 = 1 and the line x = 2 do not intersect in the real
plane. Passing to homogenous coordinates we get

Figure 3.85. Intersection points of plane curves.

x2 + y2 = u2, x = 2u

with the two points
finite, but imaginary

of intersection (2, ±i-\/3, 1). Note that these intersection points are
f-

30The same statement holds if C and D are reducible, but we assume they have no component in
common.

31 More generally, one can introduce the notion of multiplicity of a point of intersection (see be-
low). Then the statement is that, counted with multiplicities, there are always exactly mn points of
intersection.
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Corollary: Every point of intersection can be assigned a multiplicity, such that:32

The sum of all multiplicities of the points of intersec-
tions of the two curves is precisely mn.

Regular points of intersection have the multiplicity one.

3.8.4.2 Rational transformations of curves

In mathematics there is for every class of objects a corresponding class of transforma-
tions. In the theory of algebraic curves in the projective plane CP2 the first thing one
thinks of are projective maps of CP2 to itself. A classification of the curves with respect
to this relation turns out, however, to be too difficult and complex to be of any use.
Instead, what has turned out to be useful is the classification with respect to birational
transformations.

Rational maps of curves: Let two algebraic curves C and C' in CP2 be given. The
map defined by

x' = X(x,y,u], y' = Y(x,y,u), u' = U(x, y,n) (3.62)

from C to C' is said to be rational, if X, Y and U are homogenous polynomials in the
variables x,y and w, which all have the same degree.

The map (3.62) is said to be birational if the map is rational and bijective and the inverse
mapping is also rational.

Rational curves: A curve is said to be rational if it is the rational image of a line.
Explicitly this corresponds to a representation

of the curve, where X, Y and U are homogenous polynomials in the complex variables
A and /x, which all have the same degree.

Example 1: Lines and conic sections are rational curves.

Birational equivalence of curves: Two algebraic plane curves are said to be bi-
rationally equivalent or birational to one another if they can be transformed into one
another by means of a birational mapping.

The algebraic geometry of algebraic plane curves is the invariant theory
of these curves under birational transformations.

Example 2: The degree of a curve is not a birational invariant, but the genus of the
curve (cf. 3.8.5) is.

32 Suppose the two curves are given by the equations

p(x,y,u) = Q and q(x,y,u) = 0.

With the help of the coordinate transformation (collineation) we may assume that the origin (0, 0, 1)
does not lie on the line joining two points of intersection.

We set & := C[x,u] (this is the polynomial ring over C with variables x and u). Then we have

The resultant fl(p, q) of p and q vanishes at the point of intersection P of the two curves. The multiplicity
of the corresponding zero y of the resultant over &[y] is called the multiplicity of the point of intersection.
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Cremona group: The set of birational maps of CP2 into itself form a group, which was
first studied in detail by the Italian geometer Luigi Cremona between 1863 and 1865.
That is why the group carries his name today.

3.8.4.3 Singularities

Tangents: The tangents to the curve p(x,y,u) = 0 at the point P := (xo,yo,^o) is
given by the equation

px(P)(x - x0) + py(P}(y - yo) + Pu(P}(u - «0) - 0. (3.64)

Example 1: The equation of the tangents to the unit circle x2 + y2 — u2 = 0 is:

2x(x — XQ) + 2y(y — yo) - 2u(u - UQ) = 0 .

This is equivalent to the so-called polar equation

XXQ + yy0 - UUQ = 0 .

Regular point: A point P on a curve is called a regular point, if and only if there is a
uniquely determined tangent at P, i.e., one has

Singular point: A point which is not regular is said to be singular. A singular point
P has by definition the multiplicity s, if all partial derivatives of the polynomial p up
to order s — I vanish at the point P, while at least one partial derivative of order s is
non-vanishing at P.

Double points and cusps: Singular points of multiplicity s = 2 (resp. s = 3) are
called double points (resp. cusps).

Example 2 (double point): For p (x, y) := x2 — y2 and P := (0, 0, 1) one has

px (P) = Py (P) = Pu (P) = 0 and Pxx (P) = 2.

Thus the intersection point P of the two lines y = ±x into which x2 — y2 = 0 splits is a
double point (cf. Figure 3.76 in section 3.8.1.2).

Example 3 (cusp): For p (x, y, u) := x3 — y2u and P :— (0, 0, 1), we have

Pxxx(P) = 6,

while all partial derivatives up to the second order vanish at P. Thus P is a cusp. This
point corresponds to the origin (0, 0) of the semi-cubical parabola x3 — y2 — 0 (cf. Figure
3.76 in section 3.8.1.2).

Theorem: Regular points and singular points including their multiplicities are invari-
ants with respect to the birational equivalence of curves.

Application to the versiera of Agnesi: The equation of this curve is

C: x2y + yu2 -u3 = 0

(cf. Figure 3.79 in section 3.8.2.2). We set p = x2y + yu2 - u3.
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(i) The points of intersection of this curve with the line at infinity u = 0 are (1,0,0) and
(0,1,0).
(ii) The singular points on this curve are determined from the common solutions of the
set of equations

px = Ixy = 0 , py = x2 + u2 , pu = 2uy - 3u2 = 0 , p = 0 .

This yields the solution (0,1,0) and the geometrically irrelevant point (0,0,0) (recall
that projective space does not contain the point (0,0,0)). Because pxx(0,1,0) — 2, the
point at infinity (0,1,0) is a double point of C, which corresponds to the asymptote of
C in Figure 3.79.

3.8.4.4 Duality

The dual curve: Let an algebraic curve C : p(x,y,u) = 0 be given. The mapping

C* : x* = px(x,y,u), y* = py(x, y, u}, w* = pu(x,y,u),

which is considered for all regular points (re, y, u) of C, describes a curve in CP2, which
is called the dual curve33 of the curve C. The degree of the dual curve is called the class
of the curve C.
From a geometric point of view, the point coordinates of the dual curve are the coordi-
nates of the tangent lines of the original curve.
Theorem: Dualizing a curve twice leads again to the curve, i.e., we have (C*)* = C.

Example: Let p(x,y,u) := x2 + y2 — u2. The corresponding algebraic curve C :
p(x,y,u) = 0 is the unit circle. For this curve we get the parameterization

x* = 2x, y* = 2y , u* = —2u

for the dual curve C*. From x2 + y2 — n2 = 0, we see that C = C*, i.e., the unit circle
is dual to itself.
The previous example should not give the false impression that determining the dual of
a given curve is easy; on the contrary, it is a difficult algebraic problem.

3.8.5 The genus of a curve

In this section we consider irreducible algebraic plane curves C in CP2, i.e., we pass
to projective coordinates. The most important and fundamental characteristic of an
algebraic plane curve is it genus. The definition of the genus is based on an appropriate
parameterization of the curve, which is given by the uniforrnization theorem.
The uniforrnization theorem for algebraic plane curves: Every curve

C : p ( x , y,u) = 0

has a global parameterization

with the following properties.
33 A more usual notation for the dual curve is C* or Cv.
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(i) The parameter space & is a compact, connected, one-dimensional complex manifold,
in other words, a Riemann surface.

(ii) The mapping defined by (3.65) TT : & —> C is holomorphic and surjective.

We denote by S the necessarily finite set of singular points of the curve C. The inverse
image 5? :— ir~l(S) is called the critical set of parameter values.

(iii) The map

is biholomorphic, and the critical set of parameter values is compact and has no interior
points, i.e., y is "thin".

Remark: We interpret the curve parameter t as the time. Then (3.65) describes the
curve C as the (generalized) trajectory of a point. It is important that the parameter
space £T has no singularities. For this reason one also refers to the parameterization
(3.65) as a resolution of singularities of the curve C.

Example 1: We first consider the strophoid (x + u)x2 + (x — u)y2 = 0 in R2. There we
have the parametrization

The parameter space here is the real
axis R, which is free of singulari-
ties. Ift the time t runs through all
real values, the curve in Figure 3.86
is transcribed exactly once. How-
ever, the parametrization (3.66) is
not appropriate for our needs. This
is because we need to understand all
points (x, y, u) of the complex curve
including the points at infinity. Fur-
thermore, the parameter space SF is
required to be compact, which R is
not.

This simple example already demon-
strates how non-trivial the statement
of the uniformization theorem is. On
the contrary, it is an extremely deep
mathematical result.

Definition of the genus: The genus of a curve C is the genus p of the parameter space
3T of the uniformization theorem.34

(i) If £? is homeomorphic to the Riemannian sphere, then p = 0 (Figure 3.87(a)).

(ii) If & is homeomorphic to a torus, then p = I (Figure 3.87(b)).

(iii) If neither of the two preceeding cases holds, then 2? is homeomorphic to a surface
which is obtained from the Riemannian sphere by adding p handles. One calls p the
genus of the

curve (Figure 3.87(c)).

34 A general result of topology is the following. Every oriented, connected, compact, two-dimensional
real manifold is homeomorphic to a sphere with p handles; the number p is defined to be the genus of
the manifold. Two such manifolds are homeomorphic if and only if they have the same genus p.

Figure 3.86. Uniformization of the
cuspidal cubic.
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Figure 3.87. Curves of various genera.

Remark: The genus is well-defined, since different parametrizations of the kind occur-
ing in the uniformization theorem lead to homeomorphic parameter spaces & with the
same genus.

Example 2: The two surfaces in Figure 3.87(c) and (d) are homeomorphic, i.e., they
can be deformed by an elastic motion into one another, thus they have the same genus
p = 2.

The genus of Riemann surfaces was introduced, at least in spirit, by Riemann in 1857
during his fundamental investigations of Abelian integrals. The name genus was intro-
duced seven years later by Clebsch.

The fundamental invariance of the genus: The genus of a curve is invariant under
birational transformations.

There is the following rule of thumb:

The greater the genus of a surface is, the more complicated is its structure.

Examples of the determination of the genus: (i) The theorem of Poincare: A
curve is rational if and only if it has the genus p = 0.

Among these curves are the lines, the conic sections (quadratic curves) and cubic curves
with singularities.

(ii) Smooth cubic curves (curves of third degree) have the genus p = 1. By definition,
these are the elliptic curves.

(iii) A non-singular curve C of degree n has the genus

The Euler characteristic \ °f C is given by the relation

X = 2-2p = 2 - (n- l)(n - 2).

(iv) The Clebsch formula: If an irreducible curve of degree n has only double points or
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cusps as singularities, then for the genus we have the relation

where d is the number of double points and c is the number of cusps.

(v) The theorem of Harnack: An (irreducible) algebraic curve with real coefficients of
genus p has in the real domain at most p + 1 components.

Example 3: Let e\, e% and 63 be real numbers with e\ < 62 < 63. Then the equation

y2 = (x - ei)(x - e2)(x - e3)

defines a curve of genus p = 1, which consists of p + 1 = 2 components (Figure 3.88).

Example 4-' If an irreducible cubic curve C has only
double points or cusps, then from (3.67) we get the in-
equality

p=l-c-d>0,

i.e., for C only the following three cases are possible:

(i) C is regular (no singular points) and p = 1.

(ii) C has exactly one double point (d = 1 and c — 0),
and this curve is rational (p = 0).

(iii) C has exactly one cusp and no double points (d = 0
and c = 1), and C is rational (p = 0).

Remark: Using the notion of multiplicity of a singular-
ity, a more general formula than (3.67) can be derived,
from which it follows that a cubic curve can have no other singularities than double
points or cusps, i.e., the assumption above that C has only double points or cusps is
always satisfied. Thus the three cases above are the only possibilities for cubic curves.

Example 5: The versiera of Agnesi is a cubic curve which has a double point, which is
located at the line at infinity, corresponding to the real asymptote as depicted in Figure
3.79. Thus d = 1, c = 0 and p = 0.

Figure 3.88. Real points of a
cubic curve.
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3.8.6 Diophantine Geometry

There are no unfinished symphonies in mathematics or the natural
sciences. For hundreds of years certain problems can be studied by
generation after generation without losing their dynamics. Looking
back onto problems of this kind, the long, continuously developing
set of ideas for studying the problem form a fascinating example
of the continuity of human thinking.

Hans Wussing, 1974

Diophantus is one of the greatest riddles in the history of science.
We do not know exactly when he lived, nor do we know who his
contemporaries or predecessors were, who worked on similar prob-
lems as he did.
The time at which he lived in Alexandria cannot be determined
more exactly than to say that it could have been anytime during
half a millennium. In his book on polygonal numbers, Diophantus
mentions several times the mathematician Hypsicles of Alexan-
dria, from whom we know that he lived during the second century
EC. On the other hand, the commentaries of Theon of Alexandria
on the "Almagest" of the astronomer Ptolemy contain excerpts of
work of Diophantus. Theon lived during the fourth century AD.

Isabella Baschmakowa, 1974

3.8.6.1 Elementary Diophantine equations

The basic idea of Diophantine equations is to find integral (resp. rational) solutions of
equations given by polynomials with integral (resp. rational). In this section we first
consider the case of integral solutions.

Linear Diophantine equations and the Euclidean algorithm: Let integers a, b
and c be given, not all of which vanish. We are looking for integral numbers x and y
such that

ax + by = c.

This is a linear Diophantine equation.

(i) This equation has a solution if and only if the greatest common divisor d of a and b
also divides c.

(ii) The general solution of the equation is obtained by setting

with an arbitrary integer g and XQ := ansgna and y0 :— /3nsgn6. For the calculation of
an and (3n one uses the Euclidean algorithm

with T-Q := |a , r\ := |6|; one then sets

Example 1: The Diophantine equation

9973x - 2137y = 1



3.8. Algebraic geometry 823

has the general solution x = 3 + 2137</, y = 14 + 9973# with an arbitrary integer g.

Proof: The Euclidean algorithm in this case yields the relations

Therefore n = 3, qo — 4, q\ = I and q% = 2. From this it follows that

hence x0 = 03 = 3, j/o = —/3s — 14.

This method of solution was already used by Indian astronomers in the sixth century
AD.

Pythagorean numbers: Because

9973

2137

1425

712

= 4-

= 1
Q

2137+1425,

•1425 + 712,

•712 + 1,

= 712 • 1 .

32 + 42 = 52

every triangle with sides of lengths x = 3, y = 4 and z = 5 is a right triangle. This fact
can be used to construct right angles, a method used by the ancient Egyptians.

It is interesting to note that three strings with lengths in ratios 3 : 4 : 5 corresponds to
the accord known as the quartic-sextic accord, given by the base tone, the quartic and
the sextic tones above the given base.

Theorem: The quadratic Diophantine equation

x2 + y2 = z2

has the general solution

x = 2ab, y = a2 - b2 , z = a2 + b2

with arbitrary natural numbers a and 6, with 0 < b < a, provided one restricts to
pairwise prime natural numbers x, y, z as solutions.

This result was already known by Babylonian mathematicians 3,500 years ago.

Example. 2: For a = ll, b = 10 we get the Pythagorean numbers x = 220, y = 21 and
z = 221.

The Fermat or Pell equation and continued fractions: Let d > 0 be a natural
number which divides no square of a prime number. We seek natural numbers x and y
which satisfy

x2 - dy2 = 1.

(i) All solutions (xn,yn) are obtained by the formula
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(ii) The smallest solution (zi,yi) is obtained as follows.

The number \fd has a representation as a continued fraction of period k.

If PJ/QJ for j = 0 ,1, . . . are the corresponding finite parts of the continued fraction, then

x\ = pk-i , Vi = qk-i for even k

and
xi = P2k-i, 2/1 = <?2fc-i for odd k.

This result is due to Lagrange (1736-1813), who became the successor of Euler at the
Berlin Academy but returned to Paris in 1787. His corps lies in the Pantheon in Paris
along with those of other great French personalities.

Example 3: For d = 8, we have x\ = 3, yi = 1 and for d = 13 we have

Xi = 649 , 2/1 = 180 .

In general, the solutions £1,2/1 are very irregular, yielding small and very large values.
For d = 60, for example, one gets x\ = 31, y\ = 4, while for the next solution d = 61
one has

Xl = 1,766,319,049, yi = 226,153,980

3.8.6.2 Rational points on curves and the role of the genus

The basic problem: We consider the equation

where p is a polynomial in x and y. The decisive assumption which is made here is that
the coefficients of the polynomial are rational numbers.

p(x,y) = 0 , (3.68)

The goal is to find all rational numbers x and y which satisfy the equation (3.

Geometric interpretation: If we view (3.68) as a (Diophantine) equation of a curve
in R2, then we seek all rational points which lie on this curve. A point in R2 is said to
be rational, if both coordinates x and y are rational numbers.

The set of rational points are dense in the plane, but there are nonetheless many more
irrational points. More precisely, the set of rational points is, according to Cantor (1845-
1918), of the same cardinality as the set of integral points in the plane (this means that
there is a bijective mapping between the two sets), while the set of irrational points has
the same cardinality as the whole plane (cf. 4.3.4). Thus there is no intuitive way of
seeing how many rational points are on a complicated curve. It is to be expected that
the genus of the curve is an important aspect of the answer, as the higher the genus, the
more complicated the curve.

Example 1: On the line

y = x

there are infinitely many rational points and infinitely many irrational points, depending
only on whether x is rational or irrational.

Example 2: On the circle

x2 + y2 = l
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Figure 3.89. Figure 3.90. Rational points on cubic curves.

there are infinitely many rational points.

Proof (following Diophantus): The line y = m(x + 1) intersects the circle for every
rational slope m in a rational point (Figure 3.89).

Theorem of Diophantus: (i) On every Diophantine line there are infinitely many
rational points.

(ii) On every Diophantine conic section there are either none or infinitely many rational
points.

We now consider a smooth, cubic Diophantine curve C. This means that the genus of
the curve is p = I.

(iii) Secant method of Diophantus: If two rational points lie on (7, then the line joining
these points intersects the curve C in a third rational point of the curve (Figure 3.90(a)).

(iv) Tangent method of Diophantus: If a rational point P lies on C, then the tangent to
C through P intersects the curve C in a further rational point (Figure 3.90(b)).35

Remark: These results can be found in the various examples given in Diophantus'
Arithmetica^ the first great treatise on number theory in the history of mathematics. In
this monograph, Diophantus used positive and negative rational numbers, as well as the
symbols

which correspond to the symbols x,£2,x3,x4,x5 and x6 used today.36

Decisive advances in Diophantine geometry were not made until Poincare published
in 1901 a fundamental paper on this topic. This paper completely solved the problem
discussed above in the case of genus p = 0. He was also the first to realize the importance
of the secant and tangent method of Diophantus for the elliptic casep = 1. He discovered
that both these results were an expression of the structure of a group on an elliptic curve
(cf. (3.47)). The methods of Diophantus are in fact quite ingenious, which is seen in
the following theorems of Poincare and Mordell; these theorems show that Diophantus'
methods are universal for the cases of genus p = 0 or p = 1 .

35In (iii) and (iv), one must also consider the points of the curve C at infinity.
36The symbol A" (for what we denote today as x2) is derived from the Greek word Awa/nt£ (dy-

namis), which means power. The symbol Kv representing the third power stands for Kv(3o£ (kubos),
which means cube.

For numbers, which for Diophantus always meant rational numbers, he uses the word apiQ^o^ (arith-
mos). From this the notation arithmetic (the study of the rules of calculations with numbers and letters)
is derived.

Negative numbers were denoted by Diophantus \elipt(^ (leipsis), which means deficiency. Moreover,
Diophantus also introduced symbols for our present-day negative powers x~l,... ,x~6.



826 3. Geometry

The Diophantine birational transformation due to Poincare: A transformation

is said to be Diophantine rational (in modern language rational over Q or defined over
Q), if / and g are rational functions with rational coefficients.

If a Diophantine rational transformation is invertible such that the inverse transforma-
tion is also Diophantine rational, then we refer to the transformation as Diophantine
birational transformation.

Diophantine equivalence: Two Diophantine curves are said to (Diophantine) equiv-
alent , if there is a Diophantine birational transformation between the two of them.

Theorem of Poincare (1901) for the genus p==0: (i) Every Diophantine curve of
genus p — 0 and odd degree is equivalent to a Diophantine line. Thus, it has infinitely
many rational points.

(ii) Every Diophantine curve of genus p = 0 of even degree is equivalent to a Diophantine
conic section and thus has either none or infinitely many rational points.

Poincare further conjectured the following result which was later proved by Mordell.

The theorem of Mordell (1922) for genus p=l: On a Diophantine elliptic curve
(p = 1) there are either no rational points on the curve or there are finitely many rational
points PI , . . . , Pn , such that every rational point on the curve can be obtained from these
by applying the secant and tangent method.

In the language of group theory this means that the subgroup of rational points of the
additive group of the elliptic curve is generated by these finitely many point PI , . . . , Pn ,
i.e. every rational point can be written in the form

p — mi PI + . . . + mnPn

with integers m i , . . . , mn. The addition in this representation is to be understood in the
sense of (3.47).

The following result was conjectured by Mordell in 1922 and remained for a long time a
conjecture.

The fundamental theorem of Diophantine geometry proved by Faltings in
1983 for genus p>2:

On every Diophantine curve of genus p > 2 there are
at most finitely many rational points.

For this fundamental result, Gerd Faltings (born 1954) was awarded at the International
Congress of Mathematicians in 1986 in Berkeley the Fields Medal, which is for mathe-
matics what the Nobel Prize is to the natural sciences. Faltings1 proof is based on very
abstract mathematical models, which have only been developed since the middle of the
twentieth century.

The Shimura—Taniyama—Weil conjecture (1955): Let y2 = ax3 + bx2 + ex + d
be a Diophantine elliptic curve. For every prime number p let np denote the number of
solutions (x, y) of the equation

y2 = ax3 + bx2 + ex + d mod p.
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Conjecture: There is a modular form37 / with the Fourier expansion

for all z in the upper half-plane, such that for sufficiently large prime numbers p, we
have the surprisingly simple relation

bp=p+l — np

This conjecture follows the general philosophy that modular forms are a fundamental
instrument for encoding countably-infinite systems, see section 1.14.18.

3.8.6.3 Fermat's last theorem

The age of modern mathematics began with the four great French
mathematicians Girard Desargues (1591-1661), Rene Descartes
(1596-1650), Pierre de Fermat (1601-1665) and Blaise Pascal
(1623-1662).

Four people with less in common that this quartet is difficult to
imagine; Desargues - the most original of the four and an ar-
chitect - is described as a peculiar person, who wrote his most
important work in a kind of secret language and printed it with
microscopically small letters.

Descartes - the most famous - was first an enlisted soldier and
could, if need be, defend himself with a dagger against thieves
among the sailors of the Rhein; in the manner of a soldier he
also prepared his general attack (Discourse sur la methode) on the
foundations of the sciences.

Pascal - the most ingenious - turned his back to mathematics and
became in later life a religious visionary; throughout his life he
suffered under constipation.

Finally Fermat - the most important - was employed in the king's
court as advisor to the Parliament of Toulouse, a position which
might best be compared with a senior civil servant today. He con-
sequently had sufficient leisure to spend time thinking about math-
ematics . . .

Winfried Scharlau and Hans Opolka
in: "Von Fermat bis Minkowski", 19903S

Fermat belongs to the founding fathers of analytic geometry and probability theory; his
method for calculating the minima and maxima is a precursor of the differential calculus
of Newton and Leibniz. In Fermat's copy of the monograph Arithmetica by Diophantus,
the following result is written in the margin:

Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-quadratos, et
generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem nominis fas
est dividere; cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas
non caperet.

37 Modular forms are holomorphic functions / defined on the upper half-plane and which satisfy
f(z + 1) = f ( z ) and f(z~l) = z~kf(z) for all complex numbers z in the upper half-plane and some
fixed natural number k.

38 We recommend [285] as a very vivid introduction to number theory with many historical comments.
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In modern terminology, Fermat is claiming here that the equation

xn + yn = zn

for n = 3 ,4 , . . . has no solution in integers x,y and z. Furthermore he writes that he
has found a wonderful proof for this, but the margin is too small to write it down here.
This margin remark of his seems to have been written sometime between 1631 and 1637.
Since this time, this result has become known as Fermat's last theorem, although more
correctly it should be called Fermat's conjecture.

Euler proved in 1760 this conjecture for the case n — 3. Between 1825 and 1830 Dirichlet
and Legendre were able to complete the proof for the case n = 4. In 1843, Kummer
sent a paper to Dirichlet, in which he claimed to have found a proof for all n > 3.
However, Dirichlet found a deep gap in the proof, which amounted to Kummer taking
for granted the validity of the uniqueness of the prime decomposition of integers in all
number fields, which is incorrect. In order to correct this mistake, Kummer worked
intensively on the laws of divisibility in number theories, laying the foundations for the
later theory of divisors developed by Dirichlet. With the aid of his theory of divisibility,
Kummer was able to show that Fermat's conjecture is correct for all so-called regular
primes, for example for all primes n < 100 except for n = 37, 59 and 67. In 1977,
Wagstaff proved with the help of computer calculations that Fermat's last theorem is
correct for all primes 2 < p < 125,000. Fermat's last theorem is equivalent to the
following statement of Diophantine geometry. On the curve

xn + yn = 1

there are, for n > 3, no rational points.

Theorem of Wiles (1994): Fermat's last theorem is a theorem.

Andrew Wiles proved this statement by proving the Shimura-Taniyama-Weil conjecture
for all so-called semistable curves. This displays the geometric essence of Fermat's last
theorem. The fact that the Shimura-Taniyama-Weil conjecture implies Fermat's last
theorem is itself quite deep, and was originally suggested by Gerhard Frey The idea is,
supposing Fermat's last theorem were false, a solution would produce, by a complicated
construction, an elliptic curve which would contradict the Shimura-Taniyama-Weil con-
jecture.

3.8.7 Analytic sets and the Weierstrass preparation theorem

Analytical sets are locally zero sets of finitely many holomorphic functions.

Definition: A subset X of n-dimensional complex space C™ is said to be analytic, if
for every point ZQ £ X, there is an open set U of ZQ and finitely many holomorphic
functions / i , . . . , fk : U C Cn —> C, such that X n U is the set of all solutions of the
set of equations

Analytic varieties: Irreducible analytic sets are called analytic varieties.39

Since a smooth complex manifold ̂  is locally isomorphic to an open set in C", the
notion of analytic set is carried over naturally to ̂ .

39 An analytic set X is said to be irreducible, if there is no disjoint decomposition X = Y U Z with
non-empty analytic sets Y and Z.
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The factorization problem: Example: The equation

has, because sin

with g(0) ^ 0. Therefore the original problem (3.69) is, in a sufficiently small neighbor-
hood of the origin, equivalent to the much simpler equation z = 0.

More generally we seek a factorization for the equation

of the form

with a holomorphic function g : V C Cn — > C from a neighborhood V of the origin,
and a ^-polynomial

p ( z , t ) :=tk + ak-i(z)tk~1 + ... + ai(z)t + a0(z), k > I .

The coefficients ai, . . . ,0/^-1 as assumed to be holomorphic in a neighborhood of the
origin.

The Weierstrass preparation theorem: Let / : U C Cn — > C be holomorphic in a
neighborhood of the origin, such that the function w = /(O, t) is a power series beginning
with the term tk . Then there is a uniquely determined factorization of the form (3.70).

3.8.8 The resolution of singularities

Let an analytic set X in Cn be given, with an isolated singularity at the origin z = 0.
We would like to find a local parametrization

of the set X, such that the parameter space £F has no singularities. We denote by
5? := ?r~1(0) the critical set of parameters.

The local uniformization theorem of Hironaka (1964):40

There exists a parametrization -n : & —> X with the following properties.

(i) The parameter space 3? is a smooth complex manifold.
(ii) TT is a proper41, holomorphic mapping from 3T to a neighborhood of the origin in X.

(iii) The mapping TT : &\5P —> X\{0} is biholomorphic.

(iv) The critical set S? of parameters is an analytic set of S7 of codimension 1, i.e.,
dimJ^ = dim^-l.

40The Japanese mathematician Heisuke Hironaka (born 1931) received the Fields Medal in 1970 for
his fundamental results on local and global uniformization. The global uniformization result is in section
3.8.9.2.

41A proper map has the important property that the inverse images of compact sets are again compact.

the factorization
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One refers to TT : 3" —> X as a resolution of singularities at the origin (the isolated
singularity) of X.

Blowing up at singularities: In the course of it's resolution, a singularity gets blown
up finitely many times. We now describe this process, which is quite fundamental for
algebraic geometry, with a couple of examples.

Example (Figure 3.91): We consider the curve

which has a double point at P = (0,0).

Step 1: We blow up the double point P to a line gp (Figure 3.91(b)), i.e., replace the
point by a projective line. This is effected by utilizing the parametrization

with f(u,v) := (v,uv). From (3.71) we get the equation

Figure 3.91. Resolving a double point.

This leads to three lines, g± :
u = ±1 and gp : v = 0.

The lines g+ and g_ (resp. the
line gp) are transformed by
(3.72) into the two lines which
are components of X (resp. the
double point of X).

Step 2: We now embed the
line gp in a three-dimensional
space and obtain a line in C3

which we denote by Gp (Fig-
ure 3.91(c)). This can be done,
for example, by setting

Step 3 - Construction of the resolution: We choose as
parameter space 3 the union of three, non-intersecting
lines g+, g- and Gp. The resolution mapping TT :
^7 —> X is given simply by setting

Figure 3.92.

with the projection H(u,v,w) := (u,v).

In this example one could easily define the resolution
explicitly by embedding the local construction into three-space (Figure 3.92). The ad-
vantage of the general construction of blowing up is that it can be extended to a universal
kind of construction.
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3.8.9 The algebraization of modern algebraic geometry

Algebraic geometry has developed in waves, each with its own lan-
guage and point of view. The late nineteenth century saw the
function-theoretic approach of Riemann, the more geometric ap-
proach of Brill and Noether, and the purely algebraic approach
of Kronecker, Dedekind, and Weber. The Italian school followed
with Castelnuovo, Enriques, and Severi, culminating in the clas-
sification of algebraic surfaces. Then came the twentieth-century
'American' school of Chow, Weil, and Zariski, which gave firm al-
gebraic foundation to the Italian intuition,. Most recently, Serre
and Grothendieck initiated the French school, which has rewritten
the foundation of algebraic geometry in terms of schemes and coho-
mology, and which has an impressive record of solving old problems
with new techniques.

Robin Hartshorne (1977),
University of California at Berkeley

Modern algebraic geometry has a strong algebraic flavor to it. This very fruitful tendency
turned up in the development of the theory in the second half of the nineteenth century.
Kummer (1810-1893) developed in connection with divisibility questions in number fields
and his attempts to prove, with these results, Fermat's last theorem, the theory of what
he called 'ideal numbers', which gave rise to Dedekind's development of ideal theory.
Next, Dedekind (1831-1916) and Weber (1843-1913) discovered a purely field-theoretic
formulation of the deep theorem of Riemann-Roch and exposed thus the algebraic basis
of this geometric theorem.42 Hilbert (1862-1943) proposed towards the end of the
nineteenth century the general program of formulating the well-developed methods of
continuous mathematics as used in analysis in such a way that they could be applied
to discrete questions, in particular to number-theoretic problems and to problems in
algebraic geometry, where singularities regularly occur. There was intensive work in the
twentieth century in realizing this program. One of the central notions developed in this
respect is that of scheme, which was devised by the French mathematician Alexandre
Grothendieck in 1960; this notion has proved itself to be exceptionally effective in solving
difficult problems. Schemes, in turn, are based on the notion of sheaf, which was invented
in 1945 by the French mathematician Jean Leray. Modern books on algebraic geometry
are written in the language of schemes (an important exception is the book Foundations
of Algebraic Geometry by Phillip Griffiths and John Harris, which is written in the
language of complex analysis in several variables and complex differential geometry, the
other basic possible approach to algebraic geometry). In what follows we try to make
some of these ideas accessible through a series of concrete examples.

3.8.9.1 The connection with field theory

Let a plane algebraic curve

C:p(x,y) = 0,

be given, where p is an irreducible polynomial in the polynomial ring C[x, y]. We want
to construct the 'quotient field modp'. By definition, 'a = 6 modp' precisely when the

42The theorem of Riemann—Roch and its modern generalization due to Hirzebruch (accordingly known
as the theorem of Riemann-Roch-Hirzebruch) are special cases of the Atiyah—Singer index theorem, one
of the deepest results of mathematics in the twentieth century. This area of problems will be addressed
in [212].
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difference a — b is divisible by p.

Definition: We consider quotients

with /, g 6 C[x, y], where we assume that g ̂  0 modp, and write — ~ — if and only
9i 92

if/152 = fz9i mod p.

Theorem: The set of equivalence classes with respect to this relation form a field K(C),
which is refereed to as the field of rational functions on the curve C.

Rational curves: The curve C is by definition rational if it admits a parametrization

x = X(t), y = Y(t), t 6 C

with complex rational functions X and Y.

Main theorem: The curve C is rational if and only if the field K(C) is isomorphic to a
subfield of the field C(x) of rational functions in a variable x with complex coefficients.

Example: For the line defined by C : y = 0, we have K(C) = C(x).

3.8.9.2 The connection with ideal theory and the theorem of Hironaka

Let !% :— C[x i , . . . ,x n + i ] denote the ring of polynomials in the variables x\,...,xn+\
with complex coefficients. An ideal J^ of & is said to be homogenous, if it has a basis
consisting of homogenous elements.

Definition: A point P e CPn is said to annihilate a polynomial p € ̂ , if

p(xi , . . . ,x n + i ) = 0

for every set of homogenous coordinates (x i , . . . , xn+i) representing P.

Algebraic sets: A set X of projective space CPn is called algebraic if and only if it is
the zero set of a finite set of homogenous polynomials in &.43

Example: Every algebraic curve in CP2 is an algebraic set.

Theorem: The mapping

where J?x denotes the set of polynomials vanishing precisely at X, or, put differently,
the set of polynomials annihilated by all points of X, which in fact forms an ideal in the
polynomial ring, and Z(J?) denotes the zero set of ,/, i.e., the set of points P which
annihilate all / 6 J^), defines a bijective correspondence between the set of algebraic
subsets X in CPn and the set of homogenous ideals J?x in &•

The investigation of algebraic sets in projective space can be reduced
to the study of homogenous ideals in polynomial rings.

Remark: This mapping "reverses inclusions", in the following sense. The union and
intersection of algebraic sets is well-defined as the usual union and intersection of sets.

43In other words, there are polynomials pi,... ,pk £ <^> such that P £ X if and only if P annihilates
all pi,...,pk.
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The union and intersection of ideals is defined in the same manner. Then under the
bijective mapping above, the intersection of two algebraic sets maps to the union of the
ideals:

or, put differently, J^xnY = -^x U JV. This is because a point P e X n Y if it is in
X and hence annihilates all / G J'x and it is in Y and hence annihilates all / e J"y.
Similarly, one has ^XUY — ̂ x n <^Y, since a point is in the union if it is either in
X and hence annihilates J'x or it is in Y and hence annihilates JV- Thus, the set of
polynomials annihilated by all points in the union are those polynomials which are in
both J'x and J'v.

Similarly, we have Z(J n /} = Z(J^) U Z(/\ as a point P is in Z(J} U Z(/} if it
is in Z(J^), hence annihilates J^, or it is in Z(afl], hence it annihilates ̂  . Hence it
either in Z(^) or in Z(t/}. In the same way we have Z(J? U /} — Z(J] n Z(/}.

The two following theorems of Hilbert are fundamental and revolutionized invariant
theory toward the end of the nineteenth century.

Hilbert's theorem on the finite generation of ideals (1893): Every ideal J^ in
the polynomial ring 3% is finitely generated, i.e., has a finite basis.

Hilbert's Nullstellensatz (1893): Let J^ be an ideal in <%. If a polynomial p 6 &
vanishes at every point of the zero set of all polynomials in J^, then some power of p
belongs to ̂  . In other words, if p € *&z(J)i tnen Pk £ ̂  f°r some k.

A more general theorem by Bezout: Let pi,...,pn be homogenous polynomials.
Then the number of points x = (xi, . . . , xn+i) which satisfy

Pi(x1,...,xn+i) = 0, . . . , pn+i(xi,...,xn+i) = 0

is either infinite or at most equal to the product of the degrees of the PJ .

The Zariski-topology on projective spaces: A subset of projective space CPn is
said to be closed if it is algebraic. A subset of projective space CPn is called open it its
complement in projective space is closed.

Theorem: The set of open sets as just defined give rise to a topology, which is called
the Zariski topology on CPn.44

Projective varieties: An irreducible algebraic set X in CPn is called a projective
variety.45

Rational maps: If X and Y are two projective varieties in CPn, then a rational map
f : X —> Y is a map of the form

x'j = Pj(xi,...,xn+1), ] = l , . . . , n + 1.

Here all PJ are homogenous polynomials of the same degree.

A map (f> : X —> Y is said to be birational, if (p is bijective and both (f and (p~l are
rational.

44The notion of topology is defined and discussed in [212]. It amounts to an axiomization of the
situation of open sets in Kn, which can, however, be applied to many mathematical objects. As soon
as a topology exists on a space, the entire apparatus of topology theory may be applied to this space.

45Irreducibility here means that there is no disjoint decomposition X = Y U W into non-empty
algebraic sets Y and W.
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The category of projective varieties: The objects of this category are projective va-
rieties, and the morphisms are the rational maps between these varieties. Isomorphisms
in the category are birational maps.

The following theorem is a very deep result of modern mathematics.

The global uniformization theorem of Hironaka (1964): Let X be a projective
variety with the singular set S C X. Then there is a surjective mapping

with the following properties:

(i) ^ is a non-singular projective variety.

(ii) TT is a morphism.

(iii) Let & := Tr~l(S). Then TT : 3~\^ —> X\S is an isomorphism.

The space £F which exists by virtue of this theorem is called the resolution of singularities
o f X .

3.8.9.3 Local rings

Local rings make the use of notions like locally near a point possible through the use of
algebraic tools.

Let J? be an ideal in a ring 3%. Then J2" is by definition trivial if J^ = {0} or J? = &.

Maximal ideals: The ideal J? is maximal if it cannot be extended to a larger ideal.

Basic idea: Let C(X)c denote the ring of complex continuous functions

on a non-empty compact topological space X (for example, X could be a compact subset
of Mn). We associate to every point P 6 X the set

A *-ideal of C(X)c is an ideal which contains for every function / also the complex
conjugate function /.
Theorem: Every set J^p as just defined is a maximal *-ideal in C(X)c- The mapping

yields a bijective map from the topological space X and the set of maximal *-ideals in
C(X)C.
With this result one can associate to the points of a geometric object corresponding
algebraic objects, namely maximal *-ideals.46

Local rings: A local ring is a Noetherian ring ̂  with a non-trivial ideal J1 which
contains all non-trivial ideals of &.
The local ring at a point P on an algebraic curve: Suppose we are given an
algebraic curve

C: p(x,y) = 0

46 This is the starting point for modern non-commutative geometry.
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where p denotes an irreducible polynomial in C[a, y\.

(i) A function / : C —> C on the curve is said to be regular, if it is the restriction of a
polynomial in C[x, y] to the curve C.

(ii) We choose a fixed point P on the curve. If / and g are two regular functions on C,
then we write

/ ~ g mod P,

if and only if / and g coincide in some neighborhood of the point P. This is an equiv-
alence relation. The set of equivalence classes [/] carry the natural structure of a ring,
which we denote by Jffp and call the ring of germs of regular functions at P.

Theorem: Jfp is a local ring.

This ring is an algebraic replacement or representative of the point P.

The localization of a ring: If & is a non-trivial prime ideal in a Noetherian ring 3$,
then the quotient ring &&> is a local ring. This ring consists of all fractioins

of elements r and s in 3$; the usual rules for calculations with fractions are applied to
such expressions. We require in addition that the demoninator s is not in the prime
ideal 0>.

3.8.9.4 Schemes

Ringed spaces: A ringed space consists of a topological space X (for example, a metric
space) and a sheaf ^', which associates to each open set U of X a ring R(U).47

Standard example 1: Every topologicial space X forms with the sheaf & of continuous
functions a ringed space. This sheaf associates to each open set U C X the ring R(U)
consistsing of all continuous functions

To obtain the localization at a point x £ X, we write

/ ~ g mod x,

if and only if the continuous real-valued functions / and g coincide in a neighborhood of
the point x. The set of corresponding equivalence classes [/] forms a ring, the so-called

stalk ^x of the sheaf & at the point x.

The fundamental notion of a scheme: A ringed space

(*,Sf)

is said to be a scheme if it looks locally like a given ringed space (Xo,%).

47Topological spaces and sheaves are introduced in [212]. These notions present a kind of axiomati-
zation of the Standard example 1 which follows.



836 3. Geometry

Explicitly this means that for every open set U C X the restriction ([/, &) is isomorphic

We denote by C°°(U) the ring of all (7°°-functions / : U —> R.

Standard example 2: Every n-dimensional C^-manifold X defines a scheme.48

(i) The manifold X is made into a ringed space by taking & to be the sheaf of all smooth
functions on X. This sheaf associates to every open set U in X the ring C°°(U).

(ii) As the "comparison ring" (Xo,%) we choose XQ := R™ with the sheaf % of smooth
functions on Rn. We have:

3.8.9.5 Affine schemes

Definition: A scheme is said to be affine if the given "comparison ring" (Xg,^) is the
spectrum (Spec R, %) of a ring R.

We now explain the notion of spectrum of a ring R. For this, suppose that R is a
commutative ring with unit element.

The underlying space Spec R of the spectrum: We denote by Spec R the set of
all prime ideals of R.

Example: The space Spec Z of the ring Z of integers consists of the set of all principal
ideals

(p), p a prime number.

Moreover, the zero ideal {0} belongs to SpecZ.

The topology on Spec -R: If J" is an ideal of R, then we denote by V(J?) the set of
all prime ideals of R which contain ^.

The sets of the form V(^) are defined to be the dosed sets. The open sets are then by
definition the complements of these. This defines a topology on Spec R.

The sheaf % on Spec R: If & € Spec R, then we denote by Ry> the localization of
the ring R with respect to the prime ideal £P (cf. 3.8.9.3).

Let an open set U in Spec R be given. We assoiciate to U the ring &(U) of all functions
/ on U with

These functions / are assumed to be locally quotients of elements of the original ring R,
i.e., for every & € U there is a neighborhood V of & and ring elements r, s € -R, such
that for every J? e V we have

Localized schemes: Because of the great importance of local rings for algebraic geom-
etry, one often assumes in the definition of a scheme in addition to the above that the
stalk ^x of the sheaf *£ on the ringed space (X, &} is a local ring for every point x E X.

48The notion of manifold is introduced in [212].

to
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3.9 Geometries of modern physics

The vision of space and time which I will now present to you
are based on experimentally verified facts of physics. This is its
strength. It gives a radical departure from our previous notions.

Starting with this lecture, space and time as individual entities
shall cease to exist, and there will only remain a union of both as
the sole notion of reality.

Hermann Minkowski,
Conference of the Society of German Scientists
and Doctors in Cologne in 1908

Modern physics is formulated in the language of geometry. Physical phenomena corre-
spond to geometric objects. The description of physical observations in different frames
of reference is given by the coordinates of geometric objects in different coordinate sys-
tems.

3.9.1 Basic ideas

Pseudo-unitary geometry and the theory of relativity: The geometrization of
physics has its birth in work of Minkowski, who in 1908 interpreted the special theory of
relativity, which Einstein had laid down three years previously, as a pseudo-unitary ge-
ometry of four-dimensional space-time and showed that the Lorentz transformations used
by Einstein to connect different inertial frames form the symmetry group of Minkowski
space.

Einstein's theory of gravity (the general theory of relativity) of 1915 geometrizes the
force of gravity, which corresponds to the curvature of the four-dimensional pseudo-
Riemannian space-time manifold. In the case of vanishing curvature, one gets back the
Minkowski space of the special theory of relativity.

Unitary geometry and quantum theory: Modern quantum mechanics was cre-
ated in 1925 by Heisenberg (1901-1976) as a matrix-mechanical system and' in 1926
by Schrodinger (1887-1961) as a wave-mechanical system. In 1928, Dirac (1902-1984)
invented a mathematical formalism which showed that these two different systems of
mechanics were but different views of one and the same theory, namely the theory of
abstract Hilbert spaces. At about the same time, John von Neumann (1903-1957) rec-
ognized that quantum theory can be formulated as a rigorous mathematical theory of
self-adjoint operators in a Hilbert space. The spectrum of the energy operator (the
Hamiltonian) is identical with the possible energy values of the quantum system. The
Heisenberg uncertainty principle states that one can not at the same time exactly mea-
sure both the position and the velocity of a quantum particle. This fundamental fact of
quantum theory has a geometric origin. It follows from an infinite-dimensional analog
of the fact that for the scalar product

in three-space one always has (from | cos 7] < 1) the Schwarz inequality

(cf. [212]). Behind quantum theory, the unitary geometry of Hilbert spaces is lurking.

Spin geometry, Clifford algebras and the spin of the electron: To give an
interpretation to the splitting of the spectral lines of atoms in magnetic fields, which
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was experimentally observed at the beginning of the twentieth century, Uhlenbeck and
Goudsmit postulated in 1924 the existence of a self-rotation impulse of the electron,
which they dubbed the spin. Four years later. Dirac formulated his famous fundamental
equation for the relativistic electron with the help of the Clifford algebra which derives
from the Minkowski metric (see section 2.4.3.4). The spin of the electron arises quite
naturally from this equation, so that the spin can be viewed as a relativistic effect. In
close connection with the formalism of the spin, there is a spin geometry which can be
elegantly described with the help of inner algebra (Clifford algebras) and vector spaces.

The most simple spin geometry arises from the Clifford algebra of a Hilbert space. This
geometry is the theory of invariants of the spin group Spin(n). In particular, one has

Spin(3) =5C/(2),

and this is the group describing the spin of the electron.

Clifford algebras also play a central role in the formulation of the contemporary standard
model of elementary particles, which unifies electromagnetism with the weak and strong
forces using gauge theory.

Symplectic and classical mechanics: Symplectic geometry is based on a skew-
symmetric bilinear form. This geometry is the basis of classical geometric optics, clas-
sical mechanics (for example celestial mechanics) and the classical statistical physics
originating with Gibbs.
Kahler geometry and string theory:

The importance of Kahler geometry is the fact that it is a synthesis of
Symplectic and unitary geometry.

This geometry, which has its origin in the work of Erich Kahler (born in 1906) in 1932, is
decisive in the formulation of string theory, whose goal it is to unify all the fundamental
forces of nature, including the general theory of relativity (i.e., the theory contains a
graviton). The theorem of Yau and the so-called Calabi-Yau spaces are fundamental in
this theory as the configuration spaces of strings (cf. [212]).
Conformal geometry: The theory of complex functions of one variable is a specializa-
tion of a more basic structure, conformal geometry, since biholomorphic mappings are
conformal (angle-preserving). The group of all biholomorphic mappings of the Rieman-
nian sphere into itself is the automorphic group, consisting of all Mobius transformations
(cf. 1.14.11.5).
The proper Lorentz group 5O+(3,1) can be described as the group SL(2, C) of complex
(2 x 2)-matrices with determinant equal to one (this is one of the so-called exceptional
isomorphisms between Lie groups of low dimension). This group is isomorphic to the
subgroup of all Mobius transformations which map the upper half-plane conformally
onto itself. Meromorphic functions which are invariant under discrete subgroups of the
automorphic group are called automorphic functions. This is an exceptionally important
class of functions, which contains for example the elliptic modular function J (see section
1.14.18) and occurs also during the calculation of Abelian integrals.
The mathematical richness of string theory is based on the fact that this theory is
invariant under conformal transformations (conformal quantum field theory) and that
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the group of conformal transformation on two-dimensional Riemannian manifolds is very
large, compared with higher dimensions.

Infinitesimal symmetries: If one linearizes the symmetry group G of a geometry
in a neighborhood of the identity element, one gets, in the language of physicists, the
so-called infinitesimal symmetries. In the language of mathematics, symmetries of this
kind are just elements of the Lie algebra ^(G) of the Lie group G.

The most important result of the theory of Lie groups, founded by Sophus Lie (1842-
1899) is the following statement:

The Lie algebra ̂ (G) contains all information on the structure of the
Lie group G near the identity element.

However, several different Lie groups can belong to the same Lie algebra, i.e., have an
identical structure near the identity element. There is a privileged group among these,
the universal covering group of the Lie algebra, which has the special property of being
simply connected (cf. 1.3.2.4).

Examples: (i) The universal covering group of the group SO(3) of all rotations in three-
space is the group SU(2) which is responsible for the spin of the electron.

(ii) The universal covering group of SO(n) for n > 3 is the spin group Spin(n); for n = 3
we have Spin(3) = 577(2).

(iii) The universal covering group of SO+(3,1) of proper Lorentz transformations is the
group 5L(2,C) (cf. [212]).

Manifolds: In this section we consider the geometries which are relevant for modern
physics, formulated in linear spaces (linear manifolds). These geometries are all related
to bilinear forms, which can all be viewed as generalized scalar products.

However, it is decisive in physics to have not only this theory in the linear spaces, but
also on manifolds.

A manifold is a global geometric object which locally looks like a linear space.
Using this fact, all geometries on linear spaces can be extended to manifolds.49

It might be helpful to think of the curved face of the earth when trying to visualize the
notion of manifold, which is locally mapped through the maps of a geographical atlas.

The mathematical efficacy of nature: One observation is imposed upon us while
studying the geometries which occur in modern physics. From a mathematical point of
view there is an incredible spectrum of symmetry groups (Lie groups and Lie algebras),
to which there correspond geometries by the Erlanger Program of Felix Klein (cf. 3.1).
Even today there is not a
complete classification of all
possible groups which can
occur. At our present state
of understanding, however,
just a few of these are suffi-
cient to describe all physical
phenomena of nature. These
are the groups indicated in the box above. The physicist and Nobel price winner Eugene

SL(2, C) (relatvity),
[/(!) (electromagnatism),
577(2) (electron spin),
SU(3) (quark structure),
C7(l) x SU(2) x 577(3) (the standard model).

49In particular, the fundamental principle force = curvature is discussed in detail in [212].
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Wigner (1902-1995), who worked for a long time at Princeton, spoke in this connection
of the "unreasonable efficiency of mathematics".

Convention: In what follows we consider finite-dimensional linear spaces X over a field
K with

dim X = n .

The elements of X will be referred to as vectors. We will assume that K = R (the reals)
or K = C (complex numbers).

Leibniz' vision: Following a suggestion of Leibniz (1646-1716) one works in geometry
directly with the geometrical objects and avoids whenever possible the use of coordinates.
Only in this manner is it possible to generalize the results of the following sections to
infinite-dimensional spaces, which describe in physics systems with an infinite number
of degrees of freedom. This is described in relation with functional analysis in [212].

3.9.2 Unitary geometry, Hilbert spaces and elementary particles

Unitary geometry is based on the notion of a positive definite scalar product, which
generalizes the classical scalar product uv for vectors u and v (cf. 1.8.3). All important
notions of unitary geometry can be, as we shall see, directly interpreted in the quark
model of elementary particles.

Definition: A unitary space is a linear space over K, on which we are given a scalar
product. This means that we associate to every pair n, v G X of vectors a number
(u, v) G K, such that for all u, v, w € X and all scalars a, (3 £ K we have:

(i) (u, v) > 0; (u,u) = 0 if and only if u = 0;

(ii) (w, au + (3v) = a(w, u) + j3(w, v } ;

(iii) (u, v) = (v, u) .

From (ii) and (iii) we get

(au + j3v, w) = a(u, w) + (3(v, w) for all u,v,w€.X, a , / 3 e K .

Here, a denotes the complex conjugate of a complex number a, i.e., if K = R, this is
the identity and the bars can be omitted.

Hilbert space: Every finite-dimensional unitary space is at the same time a Hilbert
space in the sense of the general definition which can be found in [212].

The adjoint operator: If A : X —> X is a linear operator, then there is a naturally
associated linear operator A* : X —>• X which satisfies the relation

(u, Av] = (A*u, v)

for all u, v e X. A* is called the adjoint operator.

The unitary group U(n,X): An operator U : X —> X is said to be unitary, if it
preserves the scalar product, i.e., if U is linear and the relation
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is satisfied for all v, w 6 X. The set of all unitary operators on X forms a group, which
is called the unitary group and is denoted U(n,X). All operators in the group which
satisfy in addition

det U = I

form a subgroup of U(n,X), which is denoted by SU(n,X) and is called the special
unitary group. A linear operator U : X —> X belongs to U(n, X) if and only if

uu* = u*u — I

In the case of a real space (i.e., K = M), we write 0(n, X) (resp. SO(n,X)) instead of
U(n,X) (resp. SU(n,X}} and call the group in this case the orthogonal group (resp. the
special orthogonal group}.50

Example 1: The position vectors u, v with respect to some origin
O of the three-space of our world form a real, three-dimensional
Hilbert space H with the usual scalar product

(u,v) = uv

Figure 3.93. (see Figure 3.93). The group SO(3,H) consists of all rotations
around the point O. If one adds the reflection u i—> —u at the
point O (that is, one considers the group of all transformation

which are compositions of elements of 50(3, H) and the reflection), then one gets the
group 0(3, #).

Unitary geometry: By definition, a property belongs to the unitary geometry of a
Hilbert space X if and only if it is invariant under all operators of the group U(n,X). All
of the following properties belong to unitary geometry in this sense. An exception is the
volume, which is only invariant under transformations which preserve the orientation.

Unitary geometry generalizes the intuitive Example 1 to arbitrary dimensions.

Orthogonality: Two vectors it, v G X are said to be orthogonal, if they satisfiy the
relation

the orthogonal complement of L.

(u, v) = 0.

If L is a linear subspace of X, then we denote by
By definition, this means

For an arbitrary vector u 6 X there is a unique decomposition

In particular, X = L © L^, and one has the formula for the dimensions,

dim L + dim L ̂  = dim X .
50The groups U(n,X), SU(n,X), O(n,X) and SO(n,X) are real compact Lie groups of dimensions

dim U(n, X) = n2, dimSU(n, X) = n2 - 1 ,

dim O(n, X) = dim SO(n, X]

These dimensions indicate on how many parameters the groups depend (cf. [212]).
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Length and distance: To every vector u 6 X we associate a length \\u\\ by setting

One has ||u|| > 0 if and only if u ̂  0. Moreover, ||M|| = 0 for u = 0. Then the number

is called the distance between the vectors u and v. With this notion of distance, every
Hilbert space becomes a metric space.
Angles: We further associate to two given vectors n, v € X in a real Hilbert space X a
uniquely denned angle a between the vectors by the relation

Here u 7^ 0 and v ̂  0 are assumed. In an arbitrary real or complex Hilbert space X one
has the Schwarz inequality

\(u,v)\ < \\u\\\\v\\ for all u,v e X .

Orthonormal basis: n given vectors GI, ... ,en in X form an orthonormal basis, if

In this case one has for every vector u G X the Fourier representation

with the Fourier coefficients
Uj := (e-j,u) -

The tuple («i,..., un) forms by definition the Cartesian coordinates of the vector u with
respect to the basis ei , . . . , en.
Basis theorem: Every Hilbert space has an orthonormal basis.
Construction of unitary operators: If e i , . . . , en and e ' l 7 . . . , e'n are two arbitrary
basis in a Hilbert space X, then the map defined by

(3.74)Uej := e'j , j = 1,... , n

is a unitary operator U : X —> X. In this manner one obtains all unitary operators on
X.

Theorem 1: A linear operator U : X —> X is unitary if and only if every orthonormal
basis is again mapped to an orthonormal basis.
Orientation: An orientation of a Hilbert space X is provided by choosing a fixed
orthonormal basis ei , . . . , en and defining the volume form
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Here dx-7 : X —> K is a linear map with dsj (e^) = 5j/t for all j, fc = 1,..., n. If 61, . . . , bn

is an arbitrary basis in X, then we call the number

the orientation of the basis. One always has a = 1 (positive orientation) or a — — 1
(negative orientation).

Theorem 2: (i) For an arbitrary orthonormal basis e±,..., e'n one has

i.e., the definition of the volume form /j, depends only on the orientation of the Hilbert
space.

(ii) A unitary transformation U preserves the orientation if and only if det U = 1, i.e.,
if U &SO(n,X).

Volume: Let ̂  denote a bounded domain in a real oriented Hilbert space X. The
volume of <£ is denned by

To interpret this formula, we use the decomposition (3.73). Let G denote the set of all
Cartesian coordinates (o r i , . . . , xn} of the points in <g. We then get the classical formula

This volume depends only on the choice of an orientation of the Hilbert space X . Re-
versing the orientation leads to a sign change of the volume.

If U : X — > X is an operator in O(n, X), then we have

with sgaU = ±1 and sgnJ7 = 1 if U € SO(n,X).

Infinitesimal unitary operators and the Lie algebra u(n,X): An operator A :
X —> X is said to be infinitesimally unitary, if it is linear and satisfies the relation

This is equivalent to A* — —A (A is skew-hermitian). The set of all such operators is
denoted «(n, X), with the set of all such operators satisfying in addition tr^l = 0 (the
infinitesimal version of det A = 0) forming by definition the set sit(n, X).

If X is a real Hilbert space, then we denote u(n,X) (resp. su(n,X)).by o(n,X) (resp.
so(n,X)).

Theorem 3: Let X be a complex Hilbert space with dimX = n.

(i) With respect to the Lie bracket

[A, B] := AB - BA (3.75)
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and the usual linear combinations aA + /3B, a, (3 6 M of linear operators, u(n, X)
becomes a real vector space and a Lie algebra with dimu(n, X) = n2.

Moreover, su(n, X) is a Lie subalgebra of u(n,X) with dimsu(n, X) = n2 — 1.

(ii) From A 6 u(n, X) it follows that exp(A) G U(n,X] (exp(^4) is a power series of
operators). Conversely, there is a number e > 0 such that for each U € U(n,X) with
||I — U\\ < e there is a unique operator A G u(n,X) such that

U = eA, (3.76)

i.e., A = InU (this is again a power series in operators).

(iii) From A G su(n,X) it follows that exp(^4) G SU(n,X). Conversely, there is a
number e > 0 such that for each U G SU(n,X) with ||7 — U\\ < e there is a unique
operator A G su(n,X) which satisfies the equation (3.76).

The statements (ii) (resp. (iii)) mean that u(n,X) (resp. su(n,X)) represents the Lie
algebra of the Lie group U(n,X) (resp. SU(n,X}) (cf. [212]).

Theorem 4: Let X be a real Hilbert space with dim X = n.

(i) With respect to the Lie bracket (3.75), o(n, X) is a real vector space and a Lie algebra
with dim o(n, X] = n(n — l)/2.

Moreover, so(n, X) is a Lie subalgebra of o(n, X) with dim so(n, X) = n(n — l)/2.

(ii) From A G o(n,-X") it follows that exp(A) G O(n, .X"). Conversely, there is a number
e > 0 such that for each U G O(n,X) with ||/ — U\\ < e there is a unique operator
A G o ( n , X ) such that [7 = exp(A), i.e., A = \aU.

(iii) From A e so(n, X) it follows that exp(A) e SO(n,X). Conversely, there is a
number e > 0 such that for each U G SO(n, X ] with ||7 — C7|| < e there is a unique
operator A € so(n,X) which satisfies the equation (3.76).

According to (ii) (resp. (iii)) o(n, X) (resp. so(n,X)) is the Lie algebra of the Lie group
O(n,X) (resp. SO(n,X)).

Construction of a Hilbert space: Let e\,..., en be a basis of a linear space X. We
define

In this way, X becomes a Hilbert space with the orthonormal basis e i , . . . ,en. More
explicitly, we have

where (xj) and (yj), respectively, denote the Cartesian coordinates of u and v, respec-
tively.

This gives every linear space the structure of a Hilbert space. The scalar product
depends, however, on the choice of basis.

Application to the quark model of particle physics:
We consider a three-dimensional complex Hilbert space X with an orthonormal basis
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61,62,63. We interpret51

ei as the w-quark (up), e% as the d-quark (down), and 63 as the s-quark (strange).

The physical states correspond to the vectors in X of unit length. If u € X has \\u\\ = 1,
then the Fourier representation

allows the following physical interpretation

\(ej,u)\2 is the probability that a quark ej exists in the state u.

This uses the relation

Two unit vectors u and v represent by definition the same physical state if u = Xv with
a complex number A of absolute value |A| = 1.

The physical quantities (observables) are represented by self-adjoint operators A : X —>
X, i.e., such that A = A*. The number

which is always real, is the expectation value of the physical observable A being in the
state u upon measurement. The corresponding variance A^4 > 0 follows from

Hypercharge and the isospin of a quark: The decisive role in the mathematical
model of the quarks is played by the group 577(3, X] and its Lie algebra su(3,X). By
definition, the Cartan algebra ̂  = "^(Jzf) of a Lie algebra %? is the largest commutative
subalgebra of „£?.

For su(3, X), one has dim^7 = 2. A basis of ̂  is obtained by taking i^j and i^, where
^, & : X —> X are self-adjoint linear operators. One has explicitly:

One refers to ^3 (resp. &} as the operator of the third component of the isospin (resp.
hypercharge). The eigenvalues T$ (resp. Y) of $3 (resp. ^) are referred to as the third
component of the isospin (resp. hypercharge) of the cor responding, quark particle.

51 In nature there are six quarks. The last of these, the top quark, was not experimentally verified
until 1994. A proton consists of two M-quarks and one d-quark. This corresponds to the state

A more detailed discussion of the physics and mathematics of the quark model will be given in [212].
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Example 2: According to (3.79), we have T3 = 1/2 and Y =
1/3 for the w-quark e\ (Figure 3.94).

The charge operator for quarks: According to Gell-
Mann and Nishijima (1953), the charge operator £ for el-
ementary particles is given by the famous formula

Here, 5? is the strangeness operator52, and e denotes the
charge of the electron. In the Hilbert space X one has for
the three quarks ei, e2 and 63 the relation 5? = 0. Thus, we
have

Figure 3.94- Quarks.

Example 3 (charge of a proton): The 27 tensor products Ci ® e,j ® e/^, i,j, k = 1,2, 3,
form a basis of the space Z := X <S> X ® X. Let a linear operator A : X —> X act on Z
by means of the formula

Thus, we get the eigenvalue formula for the proton state from (3.78)

which yields

in other words, the proton has the charge
Relation to the calculus of matrices: Let X be an n-dimensional Hilbert space over
K. We choose an orthonormal basis e\,..., en and associate to every linear operator
A : X —> X a matrix stf = (a^ by setting

Then we have

We denote by L(X, X) the ring composed of all linear operators A : X — > X. Moreover,
let L(Kn,Kn) denote the ring consisting of all (n x n)-matrices with coefficients in K.

Theorem 5: By means of the association A i— > £/ a bijective linear map

52The eigenvalues of 6^ are in correspondence with a quantum number s; if s ^ 0, the particles are
referred to as strange. The three quarks e\, 62 and 63 are not strange.
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is defined, which respects the multiplicative structure as well as the *-structure, meaning
that for all A, B € L(X, X) and a, /3 e K, one has:

Note that for real matrices A* = A*.

Example 4- Let X be a complex Hilbert space, (p induces a group isomorphism

Here U(ri) denotes the group of all unitary complex (n x n)-matrices, which are defined
by the relation U*U = UU* = E. The symbol SU(n) denotes the subgroup consisting
of all matrices U of U(n) for which det U — 1.

Example 5: Let X be a real Hilbert space. Then (p induces a group isomorphism

Here O(n) denotes the group of all real orthogonal (n x n)-matrices which are charac-
terized by the validity of the relation U^U = UUT = E. Moreover, SO(n) denotes the
subgroup of matrices U 6 O(ri) for which det U = 1.

3.9.3 Pseudo-unitary geometry

Pseudo-unitary geometry is not a real geometry of our experience of the everyday world,
however, it is the geometry of Einstein's special theory of relativity.

Example 1: The space M2 can be made a pseudo-unitary space of Morse index m — 1
and signature (1,1) in the sense of the definition below by setting

The corresponding pseudo-orthogonal group 0(1,1) consists of the set of all transfor-
mations

An important fact about this geometry is that there exist vectors u ̂  0 with B(u, u) — 0;
for example this is the case for u = (1,1)T. Vectors with this property are referred to as
isotropic.

Definition: A pseudo-unitary space is defined to be a finite-dimensional space X over
K, endowed with a map B : X x X —> K, such that for all u, v, w € X and all a, (3 e K,
the following properties hold:

(i) B(w, au + /3v) = aB(w, u) + /3B(w, v).

= B(v,u).

(iii) If B(u, v) = 0 for all v E X, then u = 0.

Condition (iii) means that the form B is non- degenerate. From (i) and (ii) it follows
that
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Here a denotes the complex conjugate of a. In a real space X (i.e., K = M), the bar can
be omitted throughout.
Morse index and signature: If e i , . . . , en denotes a basis of X, then we construct a
matrix 88 = (bjk) by setting

bjk :- B ( e j , e k ] , j,k = l,...,n.

Then £8 is self-adjoint, i.e., 3§* = 3$. All eigenvalues of 88 are real and non-vanishing.
The number m of negative eigenvalues of SB is referred to as the Morse index of B (note
that this number is independent of the basis by the Sylvester inertia theorem), and
(n — m, m) is called the signature of B.

Pseudo-orthonormal basis: A basis e\,..., en of the space X is said to be pseudo-
orthonormal, if:

Basis theorem:
(i) There always exists a pseudo-orthonormal basis ei,...,en of X.
(ii) Every vector u € X can be written uniquely in the form

u = x\e\ + ... + xnen.

The numbers x j , . . . , xn € K are called pseudo-Cartesian coordinates of n. These depend
of course on the choice of pseudo-orthonormal basis.
(iii) If we define a linear map dxj : X —> K by

dx^(a\ei + ... + anen) — a,-,

then we have

The pseudo-unitary group U(n — m, m; X): An operator U : X —> X is said to be
pseudo-unitary , if U preserves the hermitian form B, i.e., U is linear and

The set of pseudo-unitary operators on X form a group, which is referred to as the
pseudo-unitary group- U(n — m, m; X). All operators in U(n — m, m; X) with

det U = 1

form a subgroup, which is denoted SU(n—m, m; X) and called the special pseudo-unitary
group. In case the space X is real, we write O(n — m, m;X) (resp. SO(n — m, m ; X ) )
instead of U(n — m, m; X) (resp. SU(n — m, m; X)) and speak of the pseudo-orthogonal
group (resp. of the special pseudo-orthognal group).53

53The groups U(n — m,m;X), SU(n — m,-m; X), O(n — m,m; X) and SO(n — m, m; X) are examples
of Lie groups of dimensions

dim U(n — m, m; X) = n , dim SU(n — m, m; X) = n — 1,

dim O(n — m, m; X) = dim SO(n — m, m; X) =

These dimensions indicate the number of real parameters on which the groups depend (cf. [212]).
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Remark: In the literature, the prefix "pseudo" is usually omitted, and one speaks of
operators which are unitary with respect to B, regardless of the signature of B. A more
precise notation, which is also used in the literature, is U(B,X], in words: the'unitary
group of linear transformations of X preserving B. The difference is important if one is
considering changes of basis and thinking of the groups as explicit matrix groups. The
notation U(n — m, m; X) indicates that the form B is in diagonal form with respect to
the given basis. Similarly, the more precise notation for the special pseudo-orthogonal
group is SU(B,X), and this subgroup is usually just referred to as the special unitary
group of B.

Theorem: Let X be a complex linear space. A linear operator U : X —> X belongs
to U(n — m, m; X), if U transforms an arbitrary pseudo-unitary basis of X into another
such.

If X is real, corresponding statements with U replace by O hold.

Pseudo-unitary geometry: A property belongs to the pseudo-unitarian geometry, if
it is invariant under all operations in the group U(n — m,m;X).

Example 2: The notions of orthogonal vectors, pseudo-orthonormal basis and isotropic
vectors are all notions of the pseudo-unitarian geometry, i.e., the defining properties
(orthonormality, isotropic, etc.) are preserved by all U 6 U(n — m, m; X).

These notions are defined as follows. Two vectors u and v are said to be orthogonal, if

B(u,v) = 0.

A vector u is called isotropic, if it is orthogonal to itself, i.e., B(u,u) = 0.

Infinitesimal pseudo-unitary operators and the Lie algebra u(n — m,m;X): An
operator A : X —> X is referred to as infinitesimally pseudo-unitary, if it is linear and
the relation

B(u,Av) = -B(Au,v]

for all u, v € X. The set of the operators form by definition the space u(n — m, m; X).
The set of operators A e u(n — TO, m; X} for which tr A = 0 form by definition the set
su(n — m, m;X}.

If X is real, then we denote u(n — m, m; X) (resp. su(n — m, m; X) by o(n — m, m; X ) )
(resp. so(n — m, m; X)).

Theorems 3 and 4 in section 3.9.2 continue to hold when the notion 'Hilbert space' is
replaced by 'pseudo-unitary space'. One needs only replace U(n, X) by U(n — TO, m; X).
Similarly for all the other groups and algebras occuring here one simply replaces 'n' by
'n — m, TO'.

The relation to the calculus of matrices: We choose a fixed orthonormal basis
e i , . . . , en and endow the linear space X with a scalar product by setting (ej, e^} '•= Sjk.
To every linear operator A : X —> X we associate a'matrix jtf := (a,jk) by setting

ajk '•= (ej,Aek).

If X is a complex linear space, then the map defined by A H-» stf induces group isomor-
phisms

Similarly, one gets for a real space X group isomorphisms

and

and
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Definition: The group U(n — m, m) consists of precisely the set of (n x n)-matrices stf
with thfi nrnnprtv

Here ^n-m>m is a diagonal matrix of the form

where Ir denotes the unit matrix of size r (i.e., a (r x r)-matrix). The subset of matrices
gtf for which detj^ = 1 forms by definition the linear (matrix) group SU(n — m, m).
Similarly, O(n — m, m) (resp. SO(n — m, m)) consists of the set of real matrices in
U(n — m, m) (resp. SU(n — m, m)).

3.9.4 Minkowski geometry

Minkowski geometry is the geometry of a four-dimensional real vector space with an
indefinite scalar product

In what follows we only use geometric notions which are independent of a chosen co-
ordinate system. In 3.9.5 we will show how this leads to an elegant formulation of the
special theory of relativity, which is fitting for the most important principle in physics
- Einstein's principle of relativity.

Definition: Minkowski space M4 is the real pseudo-unitary (i.e., pseudo-orthogonal)
space for which the signature of the scalar form is (3,1).

Pseudo-orthonormal basis: A given basis e\, 62, 63, 64 of M^ is said to be pseudo-
orthonormal, if54

Prom the decomposition

we get the component representation of the scalar product uu*, which is called the
Lorentzian scalar product:

Symmetry groups: The group O(3,1; M±) belonging to M± is called the Lorentz group.
By definition, a linear operator A : M$ —> M& belongs to the Lorentz group if and only
if it preserves the Lorentzian scalar product, i.e.,

54 In the literature, the scalar product which corresponds to — uv is used. The convention which we
have chosen here has the advantage of yielding the standard Euclidean scalar product as a special case.

The other convention, on the other hand, has the advantage of a direct physical interpretation of
the pseudo-Riemannian arc length of the four-dimensional world-line of a moving particle as being
proportional to the eigentime T of the particle.
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The group 5(9(3,1; M4) consists by definition of all transformations A e (9(3,1; M4) for
which det A = 1.

The proper Lorentz group SO+(3,1; M4) consists by definition of all A e 5(9(3,1; M4)
for which

This definition is independent of the choice of pseudo-orthonormal basis ei, 62,63,64.

As we will see, the elements of 50(3,1; M4) preserve the orientation, while the elements
of SO+(3,1; MI) in addition preserve the direction of time.

The Poincare group P(M4): This group, which is the most important group in
quantum field theory, consists by definition of the set of all transformations

of M4 to itself, for which A e (9(3,1; M4) and a € M4.

Classification of vectors: Let u € M4 be a given vector,

(i) u is said to be space-like , if u2 > 0.

(ii) u is said to be time-like , if u2 < 0.

(i) u is said to be light-like , if u2 = 0.

Arc length: If u = u(a), o\ < a < a-2 a curve on M4, the we define the arc length s
with respect to the curve parameter a by the relation

For this, one writes more briefly:

Case 1: If the curve u = u(a) is space-like, i.e., u'(cr} is space-like for all a, then one
can introduce the arc length

as a new parameter on the curve.

Case 2: If the curve u = u(a] is time-like, i.e., u'(a] is time-like for all a, then we can
use the so-called eigentime

as a new parameter on the curve. Here c denotes the speed of light in a vacuum.55

55 In the special theory of relativity, time-like curves represent motions of particles moving at more
than the speed of light. The eigentime T is then time as rendered by a clock which is in the same frame
as the particle.
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Orientation: We orient Minkowski space by distinguishing a fixed pseudo-orthonormal
basis ei, 62,63,e4 and defining the volume form

Here, dx-7 : X —> R is a linear mapping with dxj(efc) — Sjk for all j, k = 1,2,3,4. If
&i, ^2,63,64 is an arbitrary basis of M4, we define the number

to be the orientation of the basis. This number is either a = 1, in which case one speaks
of a positive orientation, or a = — 1, in which case one speaks of a negative orientation.

Theorem: (i) For an arbitrary pseudo-orthonormal basis e ' t , . . . , e4 we have

The constant a' is determined to be a' = 1 (resp. a' = — 1) if the basis is positively
(resp. negatively) oriented.

(ii) A Lorentz transformation A is orientation-preserving if and only if detA = 1, in
other words, A £ 50(3,1; M4).

Multilinear algebra on M4: Minkowski space M4 is a linear space. For this reason,
all notions of multilinear algebra can be applied to it. Among these are

(i) tensor algebra,

(ii) exterior algebra (the Grassmann algebra),

(iii) inner algebra (the Clifford algebra),

(iv) the differential calculus of Cartan, and

(v) the Hodge operator * (duality operator).

In what follows we define a series of operators with the help of a pseudo-orthonormal
basis. This formulas are special cases of general formulas of tensor calculus, which can
be found in [212]. In particular, this calculus shows that all operators d, 5, Div have an
invariant meaning and do not depend on the choice of the pseudo-orthonormal basis used
to define them. Also, the *-operator has an invariant meaning, provided one uses only
positively oriented pseudo-orthonormal basis in its definition. A change of orientation
of the basis has the effect of changing * to (—!)*•

The tensor algebra of M4: For any two vectors u, v e M4, the tensor product

is defined (cf. 2.4.3.1).

The exterior algebra of M4: For two vectors n, v € M4, the exterior product u A v =
u<&v — v ® u is defined. One has

This product corresponds to the usual vector product of three-dimensional space. How-
ever, u A v no longer belongs to M4, but rather to the vector space of anti-symmetric
bilinear forms on the dual space M%.
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Duality: The Hodge *-operator acts on the space of exterior products. If ei, 62,63,64
is a pseudo-orthonormal basis of M^, then one has:

The general action of the *-operator on u A v can be determined from these formulas,
using its linearity. One has

Example 1:

The inner algebra (Clifford algebra) of M$: For all u, v € M^, one has

Differential forms on M4: Let 61,62,63,64 be a pseudo-orthonormal basis with the
corresponding dual basis dxl,..., drc4, which is given by the relations

From this we get p-forms for p = 1,2,3,4.

Example 2: One-forms have the form

with real-valued functions a,j : M& —» R. Linear combinations of the products dx^ A dxk

yield two-forms, etc. The volume form

is an example of a four-form.

The exterior derivative d: For a p-form w, the exterior derivative

is defined in an invariant manner (cf. 1.5.10.5).

Example 3: For a function a : M^ —> R one has

with dj := d/dxi. From this we get

For the volume form fj, we get the relation d/x = 0.

The Hodge 5-operator: For an arbitrary p-form we set
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The linear *-operator is defined by the following relations:

(i) dualization of zero-forms:

(ii) dualization of one-forms:56

fiii) dualization of two-forms:

The missing expressions required to completely define the operator are obtained from
the dualization formula

which holds for arbitrary p-forms u>.

Example 4-'

The application of the *-operator to arbitrary forms is obtained by combining the above
actions with the linearity of the operator.

Example 5:

The divergence operator: We set for

Here, one sums over the indices which appear both as upper and lower indices (Einstein
convention), which run from 1 to 4.

The operator Alt (B): For a vector B = Ble± + B^ez + B3e3 we define

3.9.5 Applications to the special theory of relativity

The relativity principle of Einstein (1905):

In any two inertial systems, with identical initial and boundary condi-
tions, all physical processes transpire in identical manners.

An inertial system S is a Cartesian (x, y, z)-coordinate system with an orthonormal
basis i,j,k such that, with respect to time t, a body free from external forces is at rest
or moves along a line with constant velocity.

Example 1: In every inertial system the speed of light in a vacuum is identical, the
constant c.

The Einstein principle of relativity replaces the classical principle of relativity due to
Galilei, according to which (3.89) holds for physical processes of mechanics.

Example 2: Let E and E' be two inertial systems which have parallel axi, in which an
observer in S observes a motion of the origin of S' with the equation

x = v t
56 On gets *dxi from this by cyclic permutation.
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(Figure 3.95). According to Galilei one then has the transformation formula

between the coordinates x,y,z,t in
and the coordinates x',y',z',t' in £' (a
so-called Galilei transformation). The
light ray

x = ct

in E has the equation

Figure 3.95. Frames of reference.

inS'.

This means that if the speed of light in £ is c, then its speed in E' is c — v, which
implies that the statement of Example 1 does not hold. This is why Einstein replaced
the Galilei transformation by the special Lorentz transformation

From x = ct it follows that x' = ct', i.e., the statement of Example 1 is now actually
verified.

If v is very small compared with the speed of light c, then the Lorentz transformation
(3.91) approximates the Galilei transformation (3.90). More precisely, the limit of (3.91)
as c —> oo is (3.90). More generally, one has:

The limit of the theory of relativity as c —> oo is classical physics.

Example 3: If the inertial system £' is not parallel to £, then by applying a rotation D
one can bring E' into a position so that its axi are parallel to those of E. Following this,
one applies the Lorentz transformation (3.91), then the inverse rotation D~l to reverse
the original rotation D.

The special Lorentz transformation (3.91) can be described particularly elegantly by
using the hyperbolic functions in the form

Here, a is defined by

and

From our point of view today, the Einstein principle of relativity (3.89) is more natural
than the principle of relativity of Galilei, which refers to a particular physical discipline
- mechanics. In fact, the Einstein principle implies a complete revision of the classical
ideas of time and space. There is no longer such a thing as an absolute world-time,
but rather, every inertial system has its own notion of time. Moreover, only velocities
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v with |u| < c are possible. Einstein postulated in this connection the much stronger
statement:

An arbitrary physical action can, in a given inertial
system, propagate with at most the velocity c.

Lorentz transformations: We consider the transformations

and set

Here one has 0 := 1/^/1 — v2/c2 and Sj = ±1 for all j. Moreover, £> is a rotation, i.e,
one has ̂ ^T = & ® = E and det^ = 1. The matrix ^ describes for s4 = 1 th
identical transformation or a reflection in space. In case 54 = — 1, one gets a reflection
in time.

Definition: The Lorentz group O(3,1) consists of all matrices stf of the form

From this it follows that det,e/ = det<5^ = ±1. Moreover, the group 50(3,1) (resp.
SO+(3,1)) consists of all matrices stf € O(3,1) for which det^ = 1 (resp. 5? = E).
If s4 is a Lorentz transformation, i.e., s/ € O(3,1), then (3.92) is called a Poincare,
transformation. The set of all such Poincare transformations forms by definition the
Poincare group. Moreover, the Lorentz transformations for which stf e SO+(3,1) are
called proper, i.e., reflections in space and time are not allowed. For the theory of
elementary particles one requires the full Poincare group.57

Geometric interpretation: We consider Minkowski space. A pseudo-orthonormal
basis 61,62,63,64 with the decomposition58

corresponds to an inertial system with Cartesian coordinates

x = xi , y = x2 , z = x3

and £4 = ct. One then also has e\ = i, 62 = j, 63 = k. From this it follows that

u = x + cte4 with x = xi + yj + zk.

57The Poincare group £? is a ten-dimensional real Lie group. In the Lie algebra of &> one can find ten
basis operators, which correspond in quantum field theory to the conservation of energy, momentum
and angular momentum.

58 Instead of Xj one also writes here x-3.
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Theorem: The group 2P of Poincare transformations (3.92) is isomorphic to the group
P(MA) of the Poincare transformations

on M4. This isomorphism is obtained by setting

and using formula (3.92) to calculate x'j.

The eigentime: We consider the motions of a mass particle

x = x(t)

with the velocity less than c in an inertial system. Then the curve

u = u(t) = x(i) + cie4

belongs to M4. One has u'(t) = x'(t) + ce4 and u'(t)2 = x'(i)2 - c2. From (3.86) the
eigentime

follows. This is the time that a clock, which is fixed with respect to the moving particle
displays.

The Einstein twin paradox: We assume that two twins Z and Z' at the origin x = (
of an inertial system are born at time to = 0.

While Z remains at the origin, Z travels with a space ship
and returns at time t. Then Z has experienced the eigentime
T, while Z' has experienced the eigentime r' = t because of
x = 0. From (3.94) we get

i.e., Z is younger that Z1 upon his return. The difference
in age is more pronounced the greater the velocity |x'(£)| of
travel had been.

The Maxwell equations of electrodynamics: In an ar-
bitrary inertial system we consider the following quantities:

E, the vector of the electric field strength,

B, the vector of the magnetic field strength,

£», the electric charge density,

Figure 3.96. The twin
paradox.

J, the electric current density vector.

These quantities are associated to the following geometric objects on M4:

It follows that
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One refers to F as the electromagnetic field tensor. Then the Maxwell equations of
electrodynamics are transformed into the surprisingly simple and elegant form

The first equation DivF = J expresses the fact that electric charges and currents are
the source of the electromagnetic field tensor F. The second equation Div * F = 0
reflects a duality between electric and magnetic fields and at the same time an asym-
metry which arises from the fact that there is no inhomogenous term. The cause is
that in classical electrodynamics there is no such thing as isolated magnetic charges
(monopoles). This asymmetry bothered Dirac. In order to get rid of it, he assumed the
existence of monopoles. In modern gauge field theories the existence of such magnetic
monopoles follows purely mathematically. Currently researchers are searching in space
for the existence of these creatures.

Discussion: The formulation (3.97) is valid in Minkowski space M/±. If F and J are
described with respect to a basis 61 , . . . , 64 of M^, then one gets the form of the Maxwell
equations in a system of reference with respect to the basis 61, . . . , 64. It is possible that
electric fields transform into magnetic fields and conversely.59

For every pseudo-orthonormal basis, F and J have the same structure. For this reason,
the Maxwell equations have the same form in an arbitrary inertial system. This is
explicitly:60

The transition from an inertial system S to another inertial system £' with the help of
the special Lorentz transformation (3.91), the electromagnetic field and the charges and
currents have to be transformed as follows:

Here v := m, E = Ei'i + E2j+E3k and E* = /^(^li+^j + ̂ k) with/?-1 := \/l - v2.
These equations are written in dimensionless quantities.

Duality symmetry of the Maxwell equations: Because of **F = —F the Maxwell
equations (3.97) possesses a duality, which arises from (3.95) and (3.96), in case g = 0

59An electric charge which is at rest generates only an electric field. However, an observer in motion
sees a charge in motion, which corresponds to an electric field which generates a magnetic field.

Around 1900 the electrodynamics of mediums in motion was an important open problem in physics.
It was not clear how to describe the transformation of the electromagnetic field under a change of
systems of reference. Einstein recognized in 1905 that the Maxwell equations can be left unchanged,
replacing only the Galilei transformation by a Lorentz transformation.

60This formulation is so appealing, as it contains no physical constants. This is achieved by pass-
ing to the international MKSA-system, leading to dimensionless quantities, by making the following
substitutions in Table 1.5:

(where e is the charge of the electron, me is its mass, re its radius and £Q is the dielectric constant in
a vacuum).
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and j — 0, and from the substitution

The equation of motion of a charged particle in electromagnetic field: The
motion u = U(T) of a particle with rest mass m and the charge Q is given by the
equation61

This corresponds to the differential equation

p'(t) = QE (x(t), t) + Qx'(t) x B(x(t), t)

for the trajectory x = x(t) in an arbitrary inertial system. Here p := mx.' is the
momentum vector, and the quantity

is called the relativistic mass of the particle. It grows as the speed |x'(i)| of the particle
approaches the speed of light c.

The fourth component of the equation of motion (3.99) is in an inertial system:

E'(t) = QE(x(t),t)x'(t).

This means that the change in time of the energy

E = mc2

is equal to the power with which the electric force F = QE applies to the moving
particle. If the particle is at rest, then ra = mo, and we get as a special case the famous
mass-energy relation of Einstein

EQ = m0c
2

for the energy of the relativistic particle which is at rest. This energy is freed in the
fusion process which drives the energy production of the sun.

Remark: The Maxwell equations can, in addition to using the language of four-
dimensional vector analysis used in (3.97), also be formulated in the language of general
tensor analysis, in the language of differential forms and in the language of principle
fiber bundles. This is will be discussed in detail in [212]. There one can also find the

61 If 61,62163 j 64 is a basis of M4, then one has

with x/s = gkrx
r and g^r = b^br. Here, one sums over indices which appear as both sub- and superscripts

(Einstein convention), with indices running from 1 to 4. This definition of F u is independent of the
choice of the basis.
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relativistic addition theorem for velocities as well as the relativistic contraction of lengths
and dilation of time.

The Maxwell equations of electrodynamics have given important
impulses to the development of both physics and mathematics.

In particular one can formulate the Maxwell equations in the context of U(l) gauge
theory. If one replaces the Abelian group U(l) by other Lie groups (for example SU(2)
or St/(3)), then one gets non-Abelian gauge theories, which are used in the standard
model of the theory of elementary particle (cf. [212]).

3.9.6 Spin geometry and fermions

The relativistic electron is closely related to the Clifford algebra of Minkowski space M4.
The spin of the electron is the symmetry given by the universal covering group Spin(3)
of the rotation group 50(3) of three-dimensional space; Spin(3] is isomorphic to the
special unitary group SU(2). One is naturally lead to Clifford algebras when one tries to
generalize the structure of the complex numbers (a real two-dimensional space) to higher
dimensions. William Hamilton (1805-1865) first discovered in 1843 the four-dimensional
space of quanternions, after vain attempts to find a three-dimensional analogue of the
complex numbers.62 The Clifford algebra of Euclidean space was introduced by William
Clifford (1845-1879) a year before his death. These algebras have dimensions 2n with
n = 1,2,3,.. .
Notations: The symbol 5L(2, C) stands for the group of all complex (2 x 2)-matrices A
with det A = 1. The unitary matrices in SU(2,C) form by definition the group SU(2).
Moreover, U(l) denotes the (multiplicative) group of all complex numbers z with \z\ = 1.
The group SO(n] is defined as the group of all real orthogonal matrices A of size (n x n)
with det A = 1. In particular, SO(2) consists of the real matrices in SU(2).

3.9.6.1 The Clifford algebra of Minkowski space

Let ^(Mt) be the Clifford algebra (see 2.4.3.4) of Minkowski space M4. Then M4

^(M^). For all u, v e M4 we have

u V f + f V w = 2uv.

If one chooses a pseudo-orthonormal basis e\,..., e4, then one has

i.e., ei V ei = e2 V 62 = 63 V 63 = 1 and e4 V e4 = —1 as well as

ejVek = -ekVej, j = l ,2,3,4.
62According to Hamilton himself, he was lead to the discovery of quaternions by a question asked by

his two sons at breakfast: can you multiply triples (a, b, c) of numbers? He was unable to do this in
spite of long deliberations, but he did discover that there is a way to multiply real four-tuples (a, b, c, d),
i.e., quaternions (cf. 3.9.6.3).

The intutive reason for the missing multiplication of triples of numbers is because of the fact that
the classical vector product is not associative. The notion of vector was also introduced by Hamilton,
in 1845.

Over and again in the history of mathematics it occurs that simple inquisitiveness lead to mathemat-
ical results which later turn out to be very fruitful for the description of nature.
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One has dim^(M4) = 16. A basis of ^(M^) can be taken to be the following 16
elements:
(i) I,ei,e2,e3, e4;

All other products can be expressed in terms of these with the aid of (3.100).
The Pauli matrices and the Lie algebra su(2): By definition the algebra su(2)
consists of all complex (2 x 2)-matrices A with A* = —A and tr A = 0. The matrices

are called Pauli matrices] i<7i,i<T2 and \a^ form a basis of the real linear space su(2),
which is made into a Lie algebra by setting63

[A, B] := AB - BA.

The Pauli-Dirac matrices: These complex (4 x 4)-matrices are defined by setting

In addition we set 7° := 7a for a = 1,2,3 and 74 := —74. Let Mat(4,4) denote the set
of all complex (4 x 4)-matrices. One has

One sees the analogy of (3.100) with (3.101) immediately.
Theorem: With respect to the matrix multiplication, Mat(4,4) is a Clifford algebra.
By means of the association

one gets an isomorphism between the Clifford algebra ^(M^) of Minkowski space and
the Clifford algebra Mat(4,4).

Example: Under this isomorphism, &j V e& maps to 7^7^, etc.

3.9.6.2 The Dirac equation and relativistic electrons

In this section we use the Einstein summation convention, whereby like indices which
occur both as superscripts and as subscripts are summed over. Latin indices run from
1 to 4, Greek indices from 1 to 3.
Dirac equation: The equation which Dirac derived in 1928 for the free electron is

Here the complex four-column matrix
of the electron. We abreviate this by writing

63Letting SU(n) denote the Lie group of complex unitary matrices B of size (n x n) with detB = 1,
then su(2) is the Lie algebra of ST/(2) (cf. [212]).

s  c a l l e d  t h e  w a v e  f u n c t i o n
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The Dirac equation (3.102) is written with respect to an inertial system with coordinates
x = (a;1,^2,^3,^4) with x4 = ct (cf. 3.9.5). The function * = *(x) depends on the
space-time point x. Moreover, we set

with <9fc := d/dxk. Furthermore, c is the speed of light in a vacuum, mo is the rest mass
of the electron, h is the Planck action quantum and h = h/27r.

The Dirac equation (3.102) corresponds to the system of equations64

Behavior under transformations: Upon the passage from one inertial system to
another by means of a proper Lorentz transformation, one has:

This transforms the Dirac equation to the corresponding equation for vP'. For every
matrix A G 5X(2, C) there is a Lorentz transformation x' = L(A)x corresponding to it,
where x' is derived from the equation

One calls (f> and % spinors and ^ a bispinor.

Theorem: (i) The association A <—>• L(A) gives rise to a homomorphism from the group
SX(2,C) to the proper Lorentz group 5O+(3,1) with kernel N = {E, -E}.

(ii) There is an isomorphism

(iii) If the matrix A in SL(2, C) is in addition unitary, then the Lorentz transformation
x' = L(A)x corresponds to a spatial rotation. In this way the association A H-* L(A)
yields a homomorphism from the group SU(2) to the rotation group SO(3) of three-
space.

(iv) There is an isomorphism65

64In the liturature, many different formulations of the Dirac equation can be found. For example,
different definitions are used for the Dirac matrices 7^, and the scalar product of Minkowski space MI is
often —CjBfc instead of CjCfc. However, all of these formulations can be easily converted into one another
and yield identical physics (as they should!).

65The group 5L(2,C) (resp. SU(2)) is the universal covering group of SO+(3,1) (resp. SO(3)), see
[212] for more details.
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Spatial reflections P:

Reflections in time T:

Charge conjugation C:

The Dirac equation is invariant under each individual of these three transformations.
For general processes involving elementary particles there is an invariance under the
composed transformation PCT. The following intuitive principle is behind this invari-
ance:

If some process & of elementary particles in possible in nature, then
there is a process &' which is also possible, which is obtained from &
by a spatial reflection, a reflection in time and the transition from the
particle to its anti-particle, all at the same time.

The electrospin: The operator

is called the operator of total angular momentum. The expressions involved are defined
as

where a is summed from 1 to 3. If we write the Dirac equation (3.102) in the form
mA* = H*, then we get

Here D represents an conserved quantity, a property which does not hold for the expres-
sion x x P without the spin operator s. For the es-component of s one has

with ?/>+ := 2~1/2(1,0,1,0)T and *_ = 2~1/2(0,1,0,1)T. The functions *± represent
electron states with a spin (self-angular momentum) in the direction of the es-axis of
the size ±h/2.

The natural requirement (3.104) of the conservation of the total momentum thus forces
the existence of the electrospin.
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Chirality: We define the chirality operator by the expression

with 75 := — 171727374. One has 75 =/ and

P2 = P.

The states * for which P^ = ̂  are assigned a chirality of = 1 and the states for which
(/ — P)fy — \& are assigned the chirality — 1. More explicitly, we have

It is precisely the set of eigenvectors ^ of 75 which have a definite chirality. From
7s\& = OiQ the chirality (a = ±1) is determined.

Example: \& := (</?, 0) has the chirality = +1, while $ := (0,ix) has the chirality —1. In
the case of spatial reflections (p >—> y>', x "—* x'i one has

i.e., the chirality changes sign.

In 1956, Lee and Yang introduced the hypothesis that the neutrino only naturally occurs
with chirality — 1. This means that during a process involving neutrinos, no spatial
reflection can occur. This effect is referred to as the loss of parity of the weak interaction
(force). This spatial asymmetry was verified experimentally by Mrs. Wu in 1957 during
the observation of /5-decay of cobalt. That same year Lee and Yang won the Nobel
award for physics for the theory of violation of parity.

Fermions, bosons and the standard model of elementary particles: All parti-
cles with a half-integral spin

Aft /2, k = l , 3 , 5 , . . . ,

are referred to as fermions; the particles for which the spin is integral

mn , m = 0,1,... ,

are called bosons. The standard theory in its present form uses as elementary particles

6 quarks and 6 leptons (such as electrons and neutrinos)

and their anti-particles.66 All these particles are fermions and are described by equations
of the same type as the Dirac equation. According to the principle of local gauge
invariance, these Dirac equations must be coupled to additional fields which correspond
to the gauge bosons, which describe (or mediate) the interactions between the 12 basic
fermions (cf. [212]). For example, the electromagnetic interaction is mediated by the
photon (see Table 3.11).

The existence of anti-particles is only required after the second quantization of the Dirac
equation in the context of quantum field theory.

66 The sixth quark (the top quark) was long sought for and finally verified to exist in experiments at
the Fermilab (near Chicago) in 1994.
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Table 2.10. Gluons of the four elementary forces.

Interaction occuring in nature

electromagnetic
strong (nuclear forces)
weak (radioactive decay)
gravity

Gauge boson

photon
8 gluons
W±,Z

graviton

Spin

h
h
h
2h

Supersymmetry (SUSY): It is generally agreed that a realistic model of the universe
incorperates the notion that the physics was supersymmetric shortly following the big
bang, i.e., to each boson there was a partner particle which was fermionic. For example,
the fermion corresponding to the graviton is the gravitino with spin 3h/2.

It is still hoped that the next generation of accelerators will be able to verify the existence
of supersymmetric particles, which have not yet been observed; the higher the energy of
an accelerator, the better the conditions following the big bang can be simulated.

3.9.6.3 The Clifford algebra of a Hilbert space and the spin groups

Let X be a real Hilbert space with dimX = n. Then the Clifford algebra (cf. section
2.4.3.4) ¥(X) of X is a subset of X, tf(X) C X, and

where (u, v)x denotes the scalar product on X.

We choose an orthonormal basis ei,...,en of X. Then we have

This relation generalizes the equation i2 = — 1 for the imaginary unit. We set CQ := 1
and

Basis theorem: One has 
set of the

Example 1: Let dimX = 1. Then e\ Vei = — 1. Thus in this case one can do calculations
with elements a + be\ in the Clifford algebra ^(X) just as with complex numbers, i.e.,
there is an isomorphism

between the Clifford algebra ^(R) and the field C of complex numbers.

The Hilbert space 'tf(X): We endow ^(X) with the uniquely determined scalar
product (.,.}<e(x), with respect to which the basis eo,ea,... is orthonormalized, i.e.,
one has

A basis of s formed by eo and the

for and
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Example 2: For <if (R) one has

The Clifford norm: For every u e ^(X] we define

Here, one forms the supremum over all w G ̂ (X) for which
Example 3: For <?f (R) we get

This formula corresponds to the absolute value |a + b\\ of the complex number a + bi
which corresponds to a + be\ as in Example 1 above.

The conjugation operator: By making the assignment

one gets an automorphism <p : 'tf'(X) —> ^(X) of the Clifford algebra ^(X), i.e., the
map if respects linear combinations and the V-product. Instead of <p(u) we also write u.

Example 4'- For j, k = 1, . . . ,n one has

Example 5: For ^(R) one gets in particular

This corresponds to the passage to the complex conjugate number

The ^-operator: We set

The action on the other elements of the basis are determined by taking the products in
the opposite order:

Finally, the *-operator is uniquely determined by the further requirement that it is linear
on

Example 6

The algebra of Hamiltonian quaternions (1843): We consider all formal sums

a + v

consisting of real numbers a and classical (three-) vectors v. We define on this set an
addition by the rule

(a + v) + (6 + w) := (a + 6) + (v + w)
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and a multiplication by the rule

(a + v) V (b + w) := ab + aw + bv + (v x w) — vw .

Here, v x w (resp. vw) denotes the classical vector product (resp. the classical scalar
product).

These operations satisfy the associative and distributive laws. We set

In particular one gets

Finally, we set

Then the set of all of these elements define a skew-field with

Example 7: Let i,j,k be an orthonormal basis. Then we have

The other products can be obtained from these by cyclically permuting
If one writes

then the multiplication be also be easily obtained with the aid of (3.105). For example
one has

(l + i ) V ( j + k ) = j + k + iVj + i V k = j + k + k - j = 2k.

Theorem: If X is a real Hilbert space with dimX = 2 and orthonormal basis i and
j, then the Clifford algebra 'tf(X) is isomorphic to the algebra of (Hamiltonian) quater-
nions. This isomorphism is given explicitly by mapping

This preserves absolute values (norms) and maps each element to its conjugate element.

The rotation formula of Hamilton: Let

with e2 = 1. Then the elegant formula

corresponds to a rotation of the vector x by an angle (p in the
mathematical positive sense around the axis e (Figure 3.97).

It is our goal to generalize the formula (3.106) to higher di-
mensions with the help of Clifford algebras.

Figure 3.97.
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The group Spin(n, X), n > 2: The set of all products

which contain an even number of factors and in addition satisfy the two conditions

form with respect to the product "V" a group, which is denoted by Spin(n,X).

Theorem of Brauer and Weyl (1935): Every element a £ Spin(n,X] generates via
the prescription

a unitary transformation (rotation) D(a) : X —> X. The mapping

gives rise to a homomorphism of the group Spin(n,X) to the group SO(n, X) with
kernel N = {/, —/}. This in turn gives rise to an isomorphism67

For X = Mn we write Spin(n] instead of Spin(n,X).

Example 8: One has the following isomorphisms68

(i) 5O(2) = [/(I), R/Z = £0(2); the additive group R of real numbers is the universal
covering group of SO(2).

(ii) Spin(3) ^ 517(2).

(iii) 5pzn(4) = SU(2) x SU(2).

(iv) Spin(n, X) = Spin(n) for every real Hilbert space X with dimX = n.

The elliptic Dirac operator: This operator is denned by

It acts on functions ijj : W1 —> ^(X) with values in the Clifford algebra ^(X). More-
over, we define the Laplace operator8®

Theorem: One has

Remark: This relation shows that the Laplace operator can be constructed in terms of
the Dirac operator. This is one of the reasons that the Dirac operator plays an extremely

67Spin(n,X) is for n > 2 a compact real Lie group of dimension n(n — l)/2. Moreover, for n > 3,
Spin(n,X) is the universal covering group of SO(n, X).

68 (i) - (ii) are example of so-called exceptionial isomorphisms which exist for certain low-dimensional
Lie groups.

69The operators D and A are often denned in the literature with the opposite sign.
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fundamental role in modern analysis. The problem of calculating the index of the Dirac
operator on manifolds was one of the questions which led to the discovery of the Atiyah-
Singer index theorem in 1960. This result is among the deepest of the twentieth century
(cf. [212]).70

3.9.7 Almost complex structures

Definition: A real linear space X of even dimension In is said to be almost complex, if
there is a bijective linear operator J : X —> X such that

Theorem: Every almost complex (real) linear space X with dim X = In can be made
into a complex linear space of dimension n by setting

for all a, /3 € M and u e X.

3.9.8 Symplectic geometry

Definition: A symplectic linear space X is a real linear space X of even dimension
In on which is given a bilinear mapping u> : X x X —> R, fulfilling the following two
conditions:

(i) uj is skew-symmetric, i.e., one has u>(u, v) = —u)(v,u) for all u, v € X.

(ii) (jj is non-degenerate, i.e., from uj(u,v) — 0 for.all u e X it follows that v = 0.

Basis theorem: An arbitrary linear symplectic space has a basis e\,..., en, fi,..., fn,
such that

A basis with these properties is referred to as a symplectic basis.

Normal form for u: If we set

then we have (Darboux's theorem)

In particular this implies

Now setting 

70This circle of problems together with important applications can be found in [296].
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In the langauge of matrices, this means

where In denotes the n-dimensional unity matrix.

Symplectic mappings: A symplectic mapping A : X —> X is a linear map such that

A linear mapping A : X —> X is symplectic if and only if it transforms every symplectic
basis into another symplectic basis.

The symplectic group Sp(2n, X): The set of all symplectic mappings A : X —> X
form a group which is referred to as the symplectic group of X and which is denoted
Sp(2n,X).

The invariants of this group are, according to the general philosophy of the Erlanger
Programm (cf. 3.1) the properties of the symplectic geometry of X.

Volume: We define the volume form

(n factors) .

The volume of a subset <£ of X is then defined, in analogy with 3.9.2, by

For A € Sp(2n, X) one has Vol (A(tf}} = Vol (#).

With respect to a symplectic basis as above, the form p, can be written

with an appropriately chosen real factor a. Thus the symplectic volume coincides with
the classical volume up to a constant factor.

Orthogonality: Two vectors it, v £ X are reffered to as being orthogonal to one another
if w(u,v) = 0.

Lagrangian subspaces: A linear subspace L of X is said to be isotropic if

A subspace with this property is called a Lagrangian subspace, if and only if it cannot
be extended to a larger isotropic subspace (in other words, if it is isotropic and maximal
with that property). The dimension of a Lagrangian subspace is always n.

The almost complex structure of a symplectic space: Let e i , . . . , en, / i , . . . , fn

be a symplectic basis of X. By means of the formula

with u = q\e\ + • • • + qnen + pifi + • • • + pnfn, a scalar product is defined on X. Then
there is a uniquely defined linear operator J : X —> X with the property
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Because of J2 = —/, this gives rise to an almost complex structure on X (cf. 3.9.7).

Theorem: A linear mapping A : X —> X is symplectic if and only if it satisfies the
relation

A*JA = J.

Symplectic matrices: If we set bj := BJ and bn+j := fj for j = 1,. . . , n, and if we
associate with every linear operator A : X —> X the matrix stf := (djk} with

then the operator J, viewed as a linear map, corresponds to the matrix

Moreover, A is symplectic if and only if the corresponding matrix is symplectic, i.e., if

The set of all of these matrices forms the symplectic matrix group Sp(2n). The associ-
ation A i—> £& gives an isomorphism between Sp(2n,X) and Sp(2n).
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4- Foundations of Mathematics

We need to know,
we shall know.1

David Hilbert (1862-1943)

4.1 The language of mathematics

As opposed to our everyday form of communication, mathematics uses a very precise
language; we first will explain some of the basic notions concerning this.

4.1.1 True and false statements

A statement is a construction of language which makes sense and can either be true or
false.

Example 1: The statement '2 divides 4 or 3 divides 5' is true, since the first part of the
statement is true. On the other hand, the statement '2 divides 5 or 3 divides 7' is false,
since both parts of the statement are so.

The alternative: If sf and SB denote statements, then there is a composed statement

which is true if either one of the two components gtf or & is true. If both statements stf
and SB are false, then the composed statement '<e/ or SB"1 is also false. This statement is
called an alternative or an or statement.

The strict alternative: The statement

is true if one of the two statements is true and (at the same time) the other is false. In
all other cases, the statement 'either g/ or SB"1 is false.

Example 2: Let m be an integer. The statement 'either m is even or m is odd' is true.
In contrast, the statement 'either m is even or m is divisible by 3' is false.

The conjunction: The statement

1 These words of Hilbert are written on his gravestone in Gottingen. Although Hilbert was quite
aware of the limits of human understanding, these words express an optimistic epistemological point of
view.

st or SB

either s# or SB

stf and 38
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is defined to be true if both parts of the statement are true. Otherwise it is false. This
statement is called a conjunction or an and statement.

Example 3: The statement '2 divides 4 and 3 divides 5' is false.

Negation: The statement

is true (resp. false) if <e/ is false (resp. true).

Statements on existence: Let D be a fixed set of objects. For example, D could
denote the set of real numbers.

The somewhat long-winded statement

there is an object x in D with the property E

is abbreviated by writing

This statement is true if there is an object x m D with the property E, whereas the
statement is false if there is no such object x in D with the mentioned property. A
statement of this kind is referred to as an existence statement.

Example 4-' The statement 'there is a real number x with the property that x2 + I = 0'
is false.

Generalizers: As above, instead of the statement

all objects x in D have the property E

we also write more briefly

: E (or again also

The statement is true if all elements x in D have the property E, and the statement is
false if there is at least one object x m D which does not have the property. This kind
of a statement is referred to as a generalizer or, more often, as a for all statement.

Example 5: The statement 'all integers are prime numbers' is false, since (for example)
4 is not prime.

4.1.2 Implications

Instead of the statement

implies SS ( or 38 follows from

we use the symbolic notation

A composed statement of this kind is referred to as a conclusion (or implication). Instead
of (4.1) the following terminology has become commonplace:

not s?
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(i) si is sufficient for &;

(ii) 38 is necessary for .g/.

The implication ''si =>• SS' is false if the assumption si is true and the implied statement
3§ is false. Otherwise the implication is true. This corresponds to the at first sight
somewhat surprising convention in mathematics that any conclusion made from a false
premise (assumption) is to be considered true. In other words, with a false assumption
one can prove anything. The following example shows that this convention is quite
natural and corresponds to the usual formulation of mathematical statements.

Example 1: Let m be an integer. The statement si (resp. 88} is m is divisible by 6 (resp.
m is divisible by 2). The implication ''si =>• SOT can then be formulated as follows.

From the divisibility of m by 6 the divisibility of m by 2 follows.

means that the two implications '<£/ =>• ^' and '̂  => si"1 are true. Instead of the
so-called logical equivalence (4.3), the same state of affairs is described by any of the
following:

(i) si holds if and only if S$ holds;

(ii) si is sufficient and necessary for 3$;

(iii) £$ is sufficient and necessary for si.

Example 2: Let m be an integer. The statement si (resp. £$} is lm is divisible by 6'
(resp. 'm is divisible by 2 and 3'). Then the equivalence '<£/ <=>• 3P means.

The integer m is divisible by 6 if and only if m is divisible by 2 and 3.

One can also say: the divisibility of m by 2 and 3 is necessary and sufficient for the
divisibility of m by 6.

This is also expressed by saying

(a) The divisibility of m by 6 is sufficient for the divisibility of m by 2;

(b) The divisibility of m by 2 is necessary for the divisibility of m by 6.

Intuitively you would think that the statement (4.2) is always true, i.e., that is expresses
a mathematical theorem. To actually prove that this is the case, we have to consider two
cases.

Case 1: m is divisible by 6.

This means that there is an integer k such that m = 6k. This implies that m — 2(3/c),
which expresses the fact that m is divisible by 2; the statement (4.2) is correct in this
case.

Case 2: m is not divisible by 6.

This means that the premise is false (from which it follows that any conclusion is correct),
so that the conclusion (4.2) is also correct in this case.

Taking both cases together, we see that the statement (4.2) is always true. The argu-
mentation we produced above is what one refers to as a proof of (4.2).

Logical equivalences: It is false that '#? =>• 9$^ implies '88 => s#\ For example, the
converse implication of statement (4.2) is false. This is also expressed by saying that
the divisibility of m by 2 is necessary, but not sufficient, for m to be divisible by 6.

A statement of the form

(4.2)
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Mathematical statements in the form of logical equivalences always contain a conclusion
and are therefore of particular interest for mathematics.

Counter-position of an implication: A given implication W =>• ̂ ' always implies
and is implied by the new (equivalent) implication

where the statement 'not £/' means that £/ is assumed not to hold, and similarly with
'not ^". Note that each statement ($/ and .38} are negated, while the direction of the
implication is inverted. This is called the counter-position or negation of the implication
'£?=>&.

Example 3: From the statement (4.2) we get the new statement: If m is not divisible by
2, then m is also not divisible by 6.

Counter-position of a logical equivalence: From the logical equivalence '£/ <£=>•
SB"1 we get the new, equivalent logical equivalence

Example 4'- Let (an) be an increasing (or decreasing) sequence of real numbers. Consider
the theorem:2

(an) is convergent 4=> (an) is bounded.

By applying the counter-position to this equivalence we get the new theorem:

(an) is not convergent <=> (an) is not bounded.

In other words, (i) an increasing (or decreasing) sequence is convergent if and only if it
is bounded, and (ii) an increasing (or decreasing) sequence is not convergent if and only
if it is not bounded.

4.1.3 Tautological and logical laws

Tautologies are composed statements, which are always true, regardless of the truth of
the partial statements composing it. Our entire logical thinking, which is the basis for
mathematics, is itself based on the application of tautologies. These tautologies can also
be viewed as logical laws. The most important tautologies are the following.

(i) The distributive law for alternatives and conjunctions:
^ and (SB or #) <^ (^ and SB} or (*f and <&},
sf or (SB and <*?) 4=> (sf or SB} and (f/ or #).

(ii) The negation of a negation:
not (not <c/ ) <^=^ <«/ .

(iii) The counter-position of an implication:

(sf => SB} «=> (not SB => not £&).

(iv) The counter-position of a logical equivalence:

(#/ 4=> g§} ^=$ (not sf <^=> not S B } .

2Here we mean by convergent sequence one which has a finite limit.
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(v) The negation of an alternative (rule of de Morgan}-?

(vi) The negation of a conjunction (rule of de Morgan):^

(vii) The negation of a statement of existence:

(viii) The negation of a generalized statement:

(ix) The negation of an implication:

(x) The negation of a logical equivalence:

not(j2/ «=>• SB} 4=» {(=c/and not&} or (^ and not £/)} .

(xi) The fundamental rule of separation (modus ponens) of Theophrast of Eresos (372-
287 BC):

The tautologies in (i) are responsible for the distributive laws (with respect to unions
and intersections) in set theory (see section 4.3.2).

The law of negation of a negation means that the double negation of a statement is
logically equivalent to the statement one started with.

We already used the tautologies (iii) and (iv) in the Examples 3 and 4 in section 4.1.2.
The tautologies (iv) to (x) are utilized quite often in mathematical induction proofs (see
4.2.1).

The rule of separation (xi) implies the following logical law, which is often used in all of
mathematics and it therefore referred to sometimes as a Fundamental Theorem of Logic:

If a statement £S follows from the assumption stf and if the assumption
=K/ is satisfied, then the statement £$ holds.

The rule of de Morgan (v) implies the following logical law:

The negation of an alternative is logically equivalent to the conjunction
of the negated alternative statements.

Example: Let m be an integer. Then:

(i) If the number m does not satisfy: it is even or divisible by 3, then m is not even and
m is not divisible by 3.

3Note the exchange of 'or' and 'and' on the two sides!
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(ii) If the number m does not satisfy: it is even and it is divisible by 3, then m is not
even or m is not divisible by 3.

The tautology (vii) is, expressed in words, the statement: If there is no object x with
the property E, then all objects do not have property E, and the converse statement is
true also.

The tautology (viii), expressed in words, states: If it is not true that all objects x have
the property E, then there exists an object x, which does not have property E, and the
converse statement also holds.

4.2 Methods of proof

4.2.1 Indirect proofs

Many proofs in mathematics are carried out as follows. One assumes that the statement
(which one is trying to prove) is false, then leads this assumption to a contradiction.

The following proof is due to Aristotle.

Example: The number \/2 is not rational.

Proof (indirect): We assume that the statement is false. Then \/2 is a rational number
and can be written in the form

with integers m and n ^ 0. We may further assume that m and n are relatively prime
(otherwise reduce the fraction).

We utilize the following elementary facts which hold for arbitrary integers p.

(i) If p is even, then p2 is divisible by 4.

(ii) If p is odd, then also p2 is odd.4

If we now square (4.4), then we get

The square m2 is thus even. Consequently, m must also be even according to the counter-
position of (ii). But then m2 must be divisible by 4 according to (i), which means by
(4.5) that n2 is even. Thus, both m and n are even. But this is a contradiction to the
fact that m and n are relatively prime.

This contradiction shows that the assumption made, namely that \/2 is rational, is false.
Thus, A/2 is not rational.

4.2.2 Induction proofs

The principle of induction, presented in section 1.2.2.2, is often used in the following
way. Let a statement &/(n) be given, which depends on an integer n with n > HQ for
some fixed integer no- Furthermore, assume that the following hold:

(i) The statement stf(n) is true for n = no;

(ii) The validity of stf(n) implies the validity of stf(n + 1).

Then the statement stf(n) is true for all integers n with n > HQ.
4This follows from (2k)2 = 4k2 and (2k + I)2 = 4/c2 + 4fc + 1.
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Example: The following equation

is valid for all positive natural numbers n, i.e., for n = 1,2,...

Proof: The statement stf(n) is: (4.6) holds for the positive natural number n.

Step 1: <^(n) is clearly true for n = 1.

Step 2: Let n be any fixed chosen positive natural number. Assume that stf(n) holds;
we must conclude that this assumption implies that g?(n + 1) holds also.

If we add n + 1 to both sides of (4.6), then we obtain

Moreover,

This implies that

which is nothing but st(n + 1).

Step 3: We conclude that the statement stf(n} is true for all natural numbers n > 1.

4.2.3 Uniqueness proofs

A uniqueness statement expresses the fact that there are only finitely many objects with
a given property.

Example: There is at most one positive real number x with

Proof: Suppose that there are two solutions a and b. But a2 + 1 = 0 and 62 + 1 = 0
imply a2 - b2 = 0. Thus,

(a-fe)(a + 6) = 0.

Because of a > 0 and b > 0, we get a + b > 0. Dividing the left-hand side by a + 6, this
then implies that a — b = 0. Thus a = b.

4.2.4 Proofs of existence

It is important to make a clear distinction between the uniqueness and the existence of
a solution. The equation (4.7) has at most one positive real solution. This means that
it either has one or it has no solution at all. In fact, equation (4.7) has no real solution.
Indeed, were x a real solution of (4.7), then from x2 > 0 we get immediately the relation
x2 + 1 > 0, which contradicts x2 + 1 = 0. Generally speaking, proofs of existence are
much more difficult than proofs of uniqueness. There are two types of these proofs:

(i) abstract proofs of existence, and

(ii) constructive proofs of existence.

Example 1: The equation
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has a solution x in the real numbers.

Abstract proof of existence: We set

In words: the set A consists of those real numbers a which satisfy one of the two
conditions 'a < 0' or 'a > 0 and a2 < 2'.

Similarly, the set B consists of all real numbers a with a > 0 and a2 > 2.

Clearly every real number belongs to one of the two sets A or B. Because of 0 £ A
and 2 e £?, both sets are not empty. Therefore, according to the completeness axiom in
1.2.2.1, there is a real number a with the property:

We show that o? — 2. Otherwise, we would have from (±a)2 = a2 the following two
cases.

Case 1: a2 < 2 and a > 0.

Case 2: a2 > 2 and a > 0.

In the first case we choose a number e > 0 sufficiently small, so that

For example, we could take Then we have

it would follow that a + e < a, which is impossible. Therefore case 1 is impossible.
Similarly one can show that case 2 is impossible. Thus, the assumption that ec2 ^ 2 is
false, hence the proof is complete.

Uniqueness theorem: As in 4.2.3 one can show that the equation (4.8) has at most
one positive solution.

The conclusion on existence and uniqueness: It follows from the above that the
equation x2 = 2 has a unique positive solution x, which is usually denoted by \/2.

Constructive proof: We show that the iteration

with oi := 2 converges to a number

Step 1: We show that an > 0 for n = 1, 2 , . . .

This is true for n = I. Moreover, from an > 0 for some fixed n, together with (4.10), we
see that also an+i > 0. By the principle of induction we get an > 0 for n = 1,2,. . .

Step 2: We show that a2 > 2 forn = 1,2,...

This statement is true for n = 1. If a2 > 2 for a fixed n, then it follows from the
Bernoulli inequality:5

5 For all real numbers r with r > — 1 and all natural numbers n one has

By (4.9)
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Thus, a^+1 > 2. By the principle of induction we then have the relation a2 > 2 for
n = 1,2,...

Step 3: From (4.10) we get

Thus the sequence (an) is decreasing and bounded below. The convergence criterion for
decreasing sequences in section 1.2.4.1 then shows the existence of the limit

If we pass to the limit in the equation (4.10), we obtain

This means that 2x2 = x2 + 2, hence

x2 = 2.

Prom an > 0 for all n, we conclude that x > 0. Thus x —

4.2.5 The necessity of proofs in the age of computers

One might think that theoretical considerations in mathematics are superfluous by the
incredible computing power available today through modern computers. On the con-
trary, given a mathematical problem, the following steps can be used for solving the
problem.

(i) Prove the existence of the solution (abstract proof of existence);

(ii) Prove the uniqueness of the solution;

(iii) Study the stability of the solution (which is now known to exist) with respect to
small perturbations of parameters of the problem;

(iv) Develop an algorithm for calculating (an approximation of) the solution on a com-
puter;

(v) Prove the convergence of the algorithm, i.e., show that the algorithm converges to
the unique solution under appropriate (reasonable) assumptions;

(vi) Prove an estimate for the approximation delivered by the algorithm;

(vii) Study the speed of convergence of the algorithm;

(viii) Prove the numerical stability of the algorithm.

In (v) and (vi) it is important that the existence of a unique solution is already known,
as otherwise a computer calculation could yield an apparent solution, which, however,
does not exist in reality (so-called ghost solutions).

A problem is said to be well-posed, if (i), (ii) and (iii) are assured. Estimates of a given
approximation are of two kinds:

(a) a priori estimates, and

(b) a posteriori estimates.

These notions are similar to the philosophy of Immanuel Kant (1724-1804). An a priori
estimate yields information on the error of approximations before the calculation is done
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(on a computer). On the other hand, an a posteriori estimate uses the information one
has obtained from an already done calculation (on a computer). As a rule of thumb,
one has:

A posteriori estimates are more precise that a priori estimates.

Algorithms must be numerically stable, i.e., they must be robust with respect to rounding
errors which occur in the process of computer calculations. As it turns out, iteration
procedures are particularly well-behaved for numerical calculations.

Example: We consider the sequence (are) from (4.10) for the iterative calculation of \/2-
The total error an — \/2 is denoted by An. For n = 1,2,..., the following estimates hold.

(i) Speed of convergence:

This is what is known as a quadratic convergence, i.e., the process converges very
quickly.6

(ii) A priori estimate:

(iii) A posteriori estimate:

A glance at Table 4.1 shows that Table 4-1'- Successive approximations to

n

1

2

3

4

5

an

2

1.5

1.4118
1.414215

1.414213562

I

1.33

1.4116
1.414211

1.414213562

4.2.6 Incorrect proofs

The two most predominant mistakes in proofs are making a step in the proof where one
'divides by zero', and proving statements 'in the wrong direction'.

4.2.6.1 Division by zero

During manipulations with equations, you must always watch out for situations where
you could, depending on the values of certain variables, divide by zero.

False claim: The equation

6The method of iteration of (4.10) corresponds to the Newton iteration method for the equation
f i x ) := x2 - 2 = 0 (see also section 7.4.1).
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has exactly one real solution x = 1.

'Proof of this claim: It is easily verified that x — I solves the equation (4.11). In order
to show that this is the only solution, we assume that XQ is a further solution of (4.11).
Then we have

Prom this we get XQ — XQ = 0, hence

Division by XQ yields XQ — 1 = 0, which means that XQ — 1.

Clearly the claim is false, as x = 1 and x = 0 are both solutions of (4.11). The mistake
in the proof is in (4.12) we can only divide by XQ under the assumption that XQ ̂  0.

Correct claim: The equation (4.11) has exactly the two solutions x = 1 and x = 0.

Proof: If x is a solution of (4.11), then (4.12) follows; this implies that either x = 0 or
x - I = 0.

Checking both values shows that both indeed satisfy (4.11).

4.2.6.2 Proof in the wrong direction

A mistake which is often made consists of trying to prove the statement

by proving the converse implication 3§ => si'. The so-called '0 = 0' proofs belong to this
type of mistake. We show this in the following example.

False claim: Every real number x is a solution of the equation

'Proof of this claim: Let x € R. Then from (4.13) we have

Adding —x2 — 1 to both sides yields

By squaring this result we get

This implies

This correct chain of implications shows:

However, this is not a proof of the claim above. Rather, we would have to prove the
chain of implications
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But this is impossible, as the implication (4.15) =>• (4.16) cannot be inverted. The
implication (4.16) =*• (4.15) is only true for x = 0.

Correct claim: The equation (4.13) has the unique solution x = 0.

Proof:Step 1: Suppose that a real number x is a solution of (4.13). The chain of impli-
cations above yields

Hence (4.13) can have at most the solution x = 0.

Step 2: We show that

This chain of implications is correct, and hence x = 0 is a solution.

In this simple example we could have left out the second step and directly have checked
that x = 0 is a solution of (4.13). In more complicated cases one often tries to make
only logically equivalent manipulations, so that both directions are shown at once. In
the example above, this would be

4.3 Naive set theory

In this section we describe the naive handling of sets. An axiomatic foundation of this
can be found in section 4.4.3.

4.3.1 Basic ideas

Classes and elements: A class is a collection of objects. The symbol

means that the object a belongs to the class A. The symbol

means that the object a is not an element of the class A. Either a e A is true or a £ A
is true.

In mathematics, one often considers classes of classes, i.e., classes are iterated. For
example, a plane is a class whose elements are points. On the other hand, the set of
all planes through the origin in three-dimensional space is a class called a Grassmann
manifold. There are two types of classes (Figure 4.1):

(i) The class is called a set, if it itself is an element in a new class.

(i) The class is called a non-set, if it cannot be an element in a new class.

Intuitively you can think of non-sets as classes which are so huge that no further classes
could hold them as an element. For example the class of all sets is a non-set.
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Set theory was created by Georg Cantor (1845-1918) during
the last quarter of the nineteenth century. The boldest idea
which Cantor had was structuring infinity by introducing
transfinite cardinalities (see section 4.3.4) and developing
an arithmetic of transfinite ordinal- and cardinal numbers
(see 4.4.4 for this). Cantor made the following definition:

"A set is a collection of well-defined objects
of our imagination or our intuition (which
then are the elements of the set)."

Figure 4-1- Sets and non-
sets.

In 1901, the English philosopher and mathematician Bertrand Russel discovered that
the notion of 'the set of all sets' is contradictory (Russel's antinomy). This created a
crisis in the foundation of mathematics, which however could be overcome by

(i) making the distinction between sets and non-sets, and

(ii) giving set theory an axiomatic foundation.

The Russel contradiction is solved by defining that the collection of all sets is not a set,
but rather a non-set. This will be discussed in more detail in section 4.4.3.

Subsets and equality of sets: If A and B are sets, then the symbol

means that every element of A is at the same time an
element of B. One also says that A is a subset of B
(Figure 4.2). Two sets A and B are said to be equal,
denoted hv the svmhol Figure 4-%- Subsets.

if both conditions AC. B and B C A are satisfied. Moreover, we write

if A C B and A ^ B. For sets A, B and C, the following rules are valid.

(i) A C A (reflexiveness);

(ii) The conditions A C B and B C C imply the relation A C C (transitivity);

(iii) The conditions A C B and B C A imply the relation A = B (anti-symmetry).

The property (iii) is used to prove (and in fact is often the only way of showing) the
equality of sets (see the example in 4.3.2).

Definition of sets: The most important method of defining sets is by means of a
formula

A := {x e B | for a; the statement &f(x] holds}.

This means that the set A consists of those elements x of the set B, for which the
statement s#(x) is true.

Example: Let Z denote the set of integers. Then the formula

A := {x E % | x is divisible by 2 }
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defines the set of even numbers. If a and b are objects, then {a} (resp. {a, b}) denotes
the set consisting only of the element a (resp. of the elements a and 6).

The empty set: The symbol 0 denotes the empty set, which is the set consisting of no
elements at all (note that this set is uniquely defined).

4.3.2 Calculations with sets

In this section we let A, B, C, X denote sets.

Figure 4-3. The intersection, union and difference of sets.

The intersection of two sets: The intersection

of the two sets A and B consists by definition of all elements which belong to both A
and B (Figure 4.3(a)). Using the formula notation above, this is A n B := {x\x e
A and x 6 B}.

Two sets A and B are said to be intersection-free or disjoint, if A n B = 0.

The union of two sets: The union of two sets A and B, denoted

consists by definition of the set of elements which belong to either A or B (Figure 4.3(b)).
One has a relation of inclusions among the intersection and union:

Moreover, A C B is equivalent to A n B = A as well as to A U B = B.

The intersection A(~\B (resp. the union A(JB) behave in a similar manner to the product
(resp. sum) of two numbers; the empty set 0 plays the role of the number 0. Explicitly,
we have the following rules.

(i) The law of commutativity:

(ii) The law of associativity:
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(iii) The law of distributivity:

(iv) Neutral element:

Example 1: We wish to show
Step 1: We show that (A n B) C (B n ,4). In fact, we have

Step 2: We show that (B n A) C (A n -B). This follows in the same way as we showed
Step 1 (exchanging A and 5).
Prom these two steps we get
The difference of two sets: The difference set

4\B

consists by definition of those elements of A which are not elements of B (Figure 4.3(c)).
In the formula notation of above, this is A\B := {x € A \ x $ B}. This notation is not
universal; in some situations, it could be misunderstood as a coset notation. In order to
avoid misunderstandings, the notation A — B is also often used.
In addition to the obvious inclusion relation

and the relation A\A = 0, the following rules hold.
(i) Distributive law:

(ii) Generalized distributive law:

(iii) Generalized associative law:

The complement of a set: Let
A and B be subsets of a set X.
The complement

CXA

of A in X is by definition the set
of elements of X which do not be-
long to A, i.e., CXA := X\A (Fig-
ure 4.4(b)). One has a disjoint de-
composition Figure 4-4- The complement of a set.
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Moreover, one has the so-called rule of de Morgan:

In addition, CXX = 0, CX0 = X and CX(CXA) = A. The inclusion A C B is
equivalent to CXB C CXA.

Ordered pairs: Intuitively, an ordered pair (a, b) is a collection of the two objects a
and 6, with the addition of an ordering ('a is first'). The precise mathematical definition
follows:7

(a,b) := {a, {a,b}}.

It follows that (a, b) = (c, d) if and only if a = c and b = d.

For n = l ,2,3,4,. . . one defines successively n-tuples by the conditions

The Cartesian product of two sets: If A and B are sets, then the Cartesian product
of the two sets, denoted

Ax B

consists by definition of all ordered pairs (a, b} with a e A and b € B. For arbitrary sets
A, B, C, D, one has the following distributive laws:

One has A x B = 0 if and only if A — 0 or B = 0.

Similarly, for n = 1,2,.. . one defines the Cartesian product

as the set of all n-tuples (GI, . . . ,an) with a, 6 A, for all j — 1,... ,n. This is also

denoted by using the product symbol

Disjoint union: A disjoint union, denoted

is the union (A x {!}) U (B x {2}). The notation A\JB is also often used for the disjoint
union.

Example 2: For A := {a, b}, one has A U A = A, but

A Ud A = {(a, !),(&,!), (a, 2), (6,2)}.
7This means that (a, b) is a set, which consists of the singleton (set with one element) {a} and the

set {a,b}.
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4.3.3 Maps

Intuitive definition: A map (or mapping) between two sets X and Y, denoted

is an association of a uniquely defined element y = f ( x ) to every x e X; f ( x ) is called
the image point of x. Maps are also often referred to as functions, although in general
the latter term is more often used for maps whose image is the set of real or complex
numbers.

If A C X, then we define the image of A (under /) by

The set X is called the domain of /, and the set f ( X ] is called the range of /.

The domain of / is also denote by D(f) or Dom/; the range is also denoted R ( f ) or
Im/, the later indicating the image of / (more literally the 'image of the domain of /',
i.e., the image set of the entire set on which / is defined).

The set

is called the graph of /.

Example 1: Through the prescription
f ( x ) := x2 for all real numbers x we ob-
tain a function / : R —> R with D(f) = R
and R ( f ) = [0, oo[. The graph G(f) is given
by the parabola depicted in Figure 4.5(a).

Classification of functions: Let the map
/ : X —* Y be given. We consider the
equation

Figure 4-5. The graph of functions.

(i) / is said to be surjective, if and only if the equation (4.18) has a solution x 6 X for
every y e Y, i.e., f ( X ) = Y.

(ii) / is said to be injective, if and only if the equation (4.18) has for every y e Y at
most one solution, i.e., f(x\) = f(x<z) implies x\ — x%.

(iii} f is said to be bijective, if and only if it is both injective and surjective, i.e., for
every y € F is there is exactly one solution x 6 X to (4.18).8

Inverse maps: If a map / : X —> Y is injective, then we refer to the unique solution
x e X of (4.18) (for a given y e F) by /-1(y) and call f-1 : f ( X ) —> X the inverse
map to /.

Example 2: Let X := {a,b}, Y := {c,d,e}. We set

/ (o):=c, f(b):=d.

Then / : X —> Y is injective, but not surjective. The inverse map
is oivfm hv

8In older literature one uses for 'injective', 'surjective' and 'bijective' respectively the terms 'one-to-
one', 'onto' and 'one-to-one onto', respectively.



890 4- Foundations of Mathematics

Example 3: If we set /(x) := x2 for all real numbers x, then the map / : R —> [0, oo[ is
surjective, but not injective, since for example the equation /(x) = 4 has two solutions,
x = 2 and x = —2, so (4.18) is not uniquely solvable (see Figure 4.5(a)).

If, on the other hand, we define h(x) := x2 for all non-negative real numbers x, then
the map h : [0, oo[—> [0,oo[ is bijective. The corresponding inverse map is given by
h~l(y) = ,/y (see Figure 4.5(b)).

Example 4: If we set pr1(a, b) := a, then we get the so-called projection mapping prx :
A x B —> A, which is surjective.

Identity map; composition: The map idx : X —> X defined by

is called the identity mapping of X. It is also denoted by 7 or
/y. If

are two maps, then the composed map g o f : X —> Z is defined
by the relation

An associative law holds:

ho(gof) = (hog)of.

Commutative diagrams: Many relations between mappings can be easily visualized
with the help of commutative diagrams. A diagram is said to be commutative, \ih = g o f ,
i.e, it is irrelevant whether one follows the diagram from X via y to Z or directly to Z.
Similarly, a diagram is said to be commutative, if g o / = s o r.

Example 5: If the map / : X —> Y is bijective, then

Theorem: Assume a map / : X —> Y is given. Then:

(i) / is surjective if and only if there is a map g : Y —> X such that

i.e., the diagram in Figure 4.6(a) is commutative.

(ii) / is injective if and only if there is a map
h : Y —> X such that

ho f — idx,

i.e., the diagram in Figure 4.6(b) is commuta-
tive.

(iii) / is bijective if and only if there are maps
g : Y —> X and h : Y —> X withFigure 4-6. Definition of properties of

maps through diagrams.
f o g = idy and ho f — idx,

i.e., both diagrams in Figure 4.6 are commutative. In this case one has also h — g = f l.
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Inverse images: Let / : X —>• Y be a map, and let B be a subset of Y. We set

i.e., / 1(B] consists of the set of all points of X whose images lie in the set B. We call
f~l(B] the inverse image of the set B.

For arbitrary subsets B and C of Y, we have:

Prom B C C it follows that

Power sets: If A is a set, then 2A denotes the power set of A, i.e, the set of all subsel
of A.

Correspondences: A correspondence c between two sets A and B is a map

from the set A into the power set 2B, i.e., every point a G A is mapped to a uniquely
determined subset of B, which we denote by c(a).

The image set of a correspondence c is the union of all subsets c(a) in the image of c.

The precise set-theoretic definition of a map: A map / from X to Y is a subset
of the Cartesian product X x Y with the two following properties:

(i) For every x E X there is a y € Y with (x,y) 6 /.

(ii) The two relations (x,y\) € / and (x,yz) e / imply y\ = y%.

(i) and (ii) together state that for every x e X there is (condition (i)) a uniquely
determined y G V (condition (ii)) defined by the subset. The unique element y is also
denoted by /(x), and one also writes / : X —>• y or G(/) for the map /.

4.3.4 Cardinality of sets

Definition: Two sets A and B are said to have the same cardinality, or a said to be
isomorphic (as sets), denoted

if and only if there is a bijective map tp : A —> B.

For arbitrary sets A, B, C, the following laws are valid:

(i) A ̂  A (reflex law);

(ii) A = B implies B = A (symmetry);

(iii) A ̂  B and B = C imply A ̂  C (transitive law).

Finite sets: A set A is said to be finite, if it is either empty or there is a natural number
n, so that A has the cardinality of B := {k € N 11 < k < n}. In this case n is called the
number of elements in A (in the first case, A has zero elements).

If A consists of n elements, then the power set 2A has exactly 1n elements (explaining
the notation).

Infinite sets: A set is said to be infinite (or unbounded), if it is not finite.

Example 1: The set N of natural numbers is infinite.

Theorem: A set is infinite if and only if it has the same cardinality as a strict subset.
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A set is infinite if and only if it contains an infinite subset.

Countable sets: A set A is said to be countable, if it has the same cardinality as the
set N of natural numbers.

A set is said to be at most countable if it is finite or it is countable.

A set is said to be uncountable, if it is not at most countable.

Clearly, both countable and uncountable sets are infinite.

Example 2: (a) The following sets are countable: the set of integers, the set of rational
numbers, the set of algebraic real numbers.

(b) The following sets are uncountable: the set of real numbers, the set of irrational real
numbers, the set of transcendental real numbers, the set of complex numbers.

(c) The union of n countable sets MI, . . . , Mn is again countable.

(d) The union MI, M<z,... of countably many countable sets is again countable.

Example 3: The set N x N is countable.

Proof: We order the elements (m, n) of N x N in the form of a matrix:

If one follows the matrix elements as indicated by the arrows, then every matrix ele-
ment is associated to a unique natural number and conversely, every natural number is
represented by precisely one matrix element.

Remark: Although seemingly trivial, this proof is important and is the usual way of
showing the countability of any set.

We use the notation

to indicate that B contains a subset which has the same cardinality as A. We say that
B has a larger cardinality than A if A < B and A does not have the same cardinality
as B.

Theorem of Schroder—Bernstein: For arbitrary sets A, B, the following laws con-
cerning the cardinalities hold.

(i) A < A (reflexive law);

(ii) the two relations A < B and B < A imply A = B (anti-symmetry);

(iii) the two relations A < B and B < C imply A < C (transitive law).

Cantor's theorem: The power set of a set always has a higher cardinality than the
set itself.

4.3.5 Relations

Intuitively speaking, a relation on a set X is an association which either holds or does
not hold between any two elements of X. Formally, one defines a relation on X to be a
subset R of the Cartesian product X x X.

Example: We set R to consist of the ordered pairs (x, y) of real numbers x and y with
x < y. This subset R of K x R then corresponds to the ordering relation.
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4.3.5.1 Equivalence relations

Definition: An equivalence relation on a set X is a subset of X x X with the following
three properties.

(i) (x,x) e R for all x e X (reflexiveness of the relation);

(ii) from (x, y) e R it follows that (y, x) € R (symmetry of the relation);

(iii) from (x, y) 6 R and (y, z) e R it follows that (x, z) & R (transitivity of the relation).

In other words, an equivalence relation is a relation which is reflexive, symmetric and
transitive. Instead of (x, y) € jR one often writes x ~ y. In this notation the conditions
above are

(a) x ~ x for all x € X (reflexiveness of the relation);

(b) from x ~ y it follows that y ~ x (symmetry of the relation);

(c) from x ~ y and y ~ z it follows that x ~ z (transitivity of the relation).

Let x £ X. Then we denote by [x] the equivalence class of x, which is by definition the
set of all elements equivalent to x, i.e.,

The elements of [x] are called representatives of the equivalence class.

Theorem: Every set X decomposes into pairwise disjoint equivalence classes (under an
arbitrary equivalence relation on X).

Factor set: We denote by X/ ~ the set of all equivalence classes. This set is also often
called the factor set (or factor space).

If there are operations which are defined on the set X, then one can carry these over to
the factor space, provided the operations are compatible with the equivalence relation;
this means that the operation preserves the relations provided by the equivalence relation
(see the example below). This is a general principle in mathematics for constructing new
structures (factor structures9).

Example: If x and y are two integers, then we write x ~ y if and only if x — y is divisible
by 2. With respect to this equivalence relation, we have

i.e., the equivalence class [0] (resp. [1]) consist of all the even (resp. odd) integers.

Moreover, from x ~ y and u ~ v it follows that x + u ~ y + v. Therefore, the definition

N + [y] •= ix + y}
is independent of the choice of representatives. Thus,

[0] + [1] = [1] + [0] = [1], [1] + [1] = [0], [0] + [0] = [0].

Every cognitive process is based on the fact that different things are identified with
one another and statements are made about the corresponding identifications made (for
example the classification of animals by overriding notions of mammals, fish, birds and
so forth). Equivalence relations are the precise mathematical formulation of the process.

9We considered factor groups in section 2.5.1.2 above.
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4.3.5.2 Ordering relations

Definition: An order relation on a set X is a subset R of the Cartesian product X x X
with the following three properties.
(i) One has (x,x) G R for all x G X (reflexive law).

(ii) From the relation (x,y) G .R and (y, x) 6 R it follows that x = y (anti-symmetry).
(iii) From (x, y) G /? and (y,z) G /? it follows that (x, y) G .R (transitive law).

Instead of (x, y) one also writes x < y. Using this notion, we have
(a) For all x G X, x < x (reflexive law).
(b) From x < y and y < x it follows that x = y (anti-symmetry).
(c) From x < y and y < z it follows that x < z (transitive law).
The symbol x < y means precisely that x < y and x ^ y.

An ordered set X is said to be totally ordered, if for all elements x and y of X either the
relation x < y or y < x is valid.
Let x G X be given. If x < 2 always implies x = z, then x is said to be a maximal
element of X. Suppose M C X. If y < s for all y G M and some fixed s G X, the s is
called an upper bound of the subset M.
Finally, u is called a minimal element of M, if u G M and it < z for all z G M.
Zorn's Lemma: An ordered set X has a maximal element provide every totally ordered
subset of X has an upper bound.
Complete order: An ordered set is said to be completely ordered, if every non-empty
subset contains a smallest element.
Example: The set of natural numbers is completely ordered with respect to the usual
order relation.
On the other hand, the set of real numbers R is, with respect to the usual order relation,
not completely ordered, since the open set ]0,1] does not contain a smallest element.
Zermelo's theorem on completely ordered sets: Every set can be completely
ordered.
The principle of transflnite induction: Let M C X be a subset of an ordered set
X. Then M = X if for all a G X, we have

If the set {x G X \ x < a} belongs to M, then a G M as well.

Order-preserving maps: A map (f> : X —> Y between two ordered sets X and Y is
said to be order-preserving, if from x < y it follows that if>(x) < <p(y).
Two ordered sets X and Y are said to be ordered in the same way if there is a bijective
map (f : X —> Y such that both if and p~1 are order-preserving.

4.3.5.3 n-fold relations

An n-fold relation R on a set X is a subset of the n-fold product X x • • • x X.
This kind of relation is often used to describe operations.
Example: Let the set R consist of all 3-tuples (a, b, c) of real numbers a, b, c with ab = c.
Then the 3-fold relation . R C R x R x R i s the multiplication of real numbers.
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4.3.6 Systems of sets

A system of sets ̂  is a set ̂  whose elements are sets X. The union

consists by definition of those elements which belong to one of the sets X of ̂ '.

If ̂  contains at least one set, then the intersection

consists by definition of the elements which are contained in all elements (sets) X of ̂ '.

By definition a family of sets (Xa)aeA is a function which is defined on the index set A
and which associates to each a G A a set Xa.

An ^4-tuple (xa) (also denoted (xQ)ae^) is a function on A which associates to each
a € A an element xa E Xa. The Cartesian product

consists of all >l-tuples (xa). One also calls (xa) a selection function. A union

consists of all elements which are contained in at least one of the sets Xa.

Suppose that A is non-empty. The intersection

consists of all elements which belong to all the sets Xa.

4.4 Mathematical logic

Truth occurs when thought and reality coincide.

Aristotle (384-322 BC)

Theoretical logic, also called mathematical or symbolic logic, is the ex-
tension of formal methods of mathematics to the area of logic. It ap-
plies to logic a language and syntax similar to that long used to express
mathematical relations.10

David Hilbert and Wilhelm Ackermann (1928)

Logic is the science of thinking. Mathematical logic is the most precise form of logic. It
uses a strict and formalized calculus to express statements and relations, and in the age
of computers forms the foundation of computer science.

10Taken from the preface of the first edition of Foundations of Theoretical Logic.
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4.4.1 Prepositional calculus

Basic symbols: We use symbols g i , < ? 2 5 - - - (statements), the symbol (, ) as well as
symbols

Instead of the statement variables QJ we also use q,p,r....

Expressions: (i) Every chain of symbols which contains a single statement is an ex-
pression.

(ii) If A and B are expressions, then so are the chains of symbols

These expressions are called in order negation, conjunction (both one and the other),
alternative (either one or the other), implication and equivalence.

Example 1: The following are examples of expressions:

Dropping parenthesis: For real numbers a, b, c, the product symbol has priority over
the addition symbol. Thus there is no ambiguity in writing ((ab) + c) more briefly as
ab + c.

Similarly we agree that the symbols displayed in (4.19) have priority starting from the
left, allowing us to discard of unnecessary parenthesis.

Example 2: Instead of (4.20) we may write

True and false statements: We set

The symbols 'T' and 'F' used here represent 'true' and 'false'. The background of (4.21)
is that the negation of a true (resp. false) statement is false (resp. true).

Moreover, the functions et, vel, seq, eq are denned by the values given in Table 4.2.
The expressions et(X, Y), vel(X, Y), seq(X, Y) and eq(X, Y) have in order the following

Table 4-2. Functions of logic.
X

T

T

F

F

Y

T

F

T

F

et(X,Y)

T

F

F

F

vel(X, Y)

T

T

T

F

seq(X,Y)

T

F

T

T

eq(X,V)

T

F

F

T

meanings: 1X and Y\ 1X or V, 'X implies V and 'X is equivalent to V. For example
et(T,F) =F, meaning that if X is true and Y is false, then the combined statement X
and Y is also false.
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Truth values of expressions: A map

b: {91,92,...}—»{T,F},

which associates to each statement variable QJ either a value T (true) or F (false), is
called a truth value function. If b is given, then every expression A, B,... can be assigned
a value T or F according to the following rules:

(i) value (9,-) := 6(9,-).

(ii) value (~<A) := non(value(yl)).

(iii) value (A A B) := et(value(A),value(JB)).

(iv) value (A V B) := vel(value(A),value(5)).

(v) value (A —> B) := seq(value(A),value(B)).

(vi) value (A <—> B) := eq(value(A),value(S)).

Example 1: For b(q) :=T and b(p) := F, we get value (-ip) = non(F) = T and

value(g —» -ip) = seq(T,T)=T.

Tautologies: An expression is called a tautology, if for every truth value function this
expression carries the value T.

Example 2: The expression

is a tautology.
Proof: For 6(9) = T we get

and b(q) = F yields

Equivalent expressions: Two expressions A and B are said to be (logically) equivalent
if they yield the same value for every truth value function. This is denoted symbolically
by

Theorem: We have A = B if and only if A <—> B is a tautology.
Example 3:

Thus,

is a tautology.

Important tautologies of classical logic can be found in section 4.1.3.
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4.4.1.1 The fundamental axioms

The goal of the logic of statements, or as it is also referred to, of expression logic, is to
describe all tautologies. This is done in a purely formal manner by making axioms and
rules for making deductions from these. We now present these axioms.

4.4.1.2 The rules of deduction

We denote by A, B, C arbitrary expressions. The rules for deduction are

(Rl) Every axiom can be deduced.

(R2) (modus ponens - reduction rule) If (A —> 5) and if A is deducible from the
axioms, then B is also deducible from the axioms.

(R3) (replacement rule) If A can be deduced from the axioms and if B arises by replacing
a statement variable qj in A throughout by a fixed expression C1, then B can also
be deduced from the axioms.

(R4) An expression can be deduced from the axioms if and only if it can be so deduced
by virtue of rules (Rl), (R2) and (R3).
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4.4.1.3 The main theorem of expression logic

(i) Completeness of the axioms: An expression is a tautology if and only if it can be
deduced from the axioms.

In particular, all axioms are tautologies.

(ii) Classical freedom from contradictions: It is impossible to deduce from the axioms
an expression and at the same time its negation.11

(iii) Independence of the axioms: None of the axioms can be deduced from the remaining
ones.

(iv) Decidability: There is an algorithm which terminates after a finite number of steps
to decide whether an expression is a tautology or not.

4.4.2 Predicate logic

Intuitively speaking, predicate calculus investigates properties of entities and their rela-
tionships. For this one applies the expressions 'for all entities it is true ...' and 'there is
an entity for which ...'.

Entity domain: Working formally, we hypothesize the existence of a set M, referred
to as the entity domain or domain of entities. This set is also referred to as an alphabet
or a base set.

Relations: Properties and relations between entities are described by n-fold relations
on the set M. Such a relation R is a subset of the n-fold Cartesian product M x • • • x M.
The symbol

indicates by definition that there is a relation R between the entities a i , . . . , an. If n = 1,
one also says simply that ai has the property R.

Example 1: The entity domain is assumed to be the set R of real numbers. Let R be
the set of natural numbers. Then the statement

aeR

expresses the fact that the real number a is in fact a natural number.

If x denotes a so-called entity variable, then the expression

is considered to be true if all entities in M belong to R (i.e., have the property R). If
this statement is however false, then there is an entity in M which does not belong to
R. The expression

on the other hand is true if there is an entity in M which also lies in R, and false if none
of the entities of M lie in R. Similarly one can define 2-fold relations like

11A system of axioms is said to have semantics free from contradictions if only tautologies can be
deduced from them. Furthermore, a system of axioms is said to have syntax free from contradictions,
if not all expressions can be deduced from it.

The system of axioms (AI) to (A15) has both semantics and syntax free from contradictions.
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Example 2: As the domain of entities we choose the set R of real numbers, and we set
R := {(a, a), | a € R}. Then R is a subset of R x R. The symbol Rab means (a, 6) <E R,
and the formalization

means: for all real numbers a and 6, the relation a = b implies b — a.

Basic notations: In the predicate calculus of the first level, the following notations are
used:

(a) entity variables xi, X2, • . . ;

(b) relation variables R(k\R(
2
k\ ... with k = 1,2,.. .;

(c) logical functors

(d) the generalizer V and the existence declarator 

(e) parenthesis ( , ).

The relation variables Rn applies by definition to n entity variables, for example

#2 X\X-2-

Expressions: (i) Every chain of symbols R^'x^x^ ---x^ is an expression (k,n —
1,2, . . . ) .
(ii) If A and B are expressions, then so are also

(iii) If A(XJ) is an expression in which the entity variable Xj occurs completely freely,
meaning that although Xj occurs, neither \/Xj nor 3Xj occur, then so also are VXjA(xj)
and 3XjA(xj) expressions.

(iv) A chain of symbols is an expression only if it is so because of (i) to (iii) above.

Completeness theorem of Godel (1930): In first order predicate logic there are
explicitly exhibitable axioms and rules of deduction, so that an expression is a tautology
if and only if it can be deduced from these axioms.

The situation is similar to that of prepositional logic12 in section 4.4.1.3.

Theorem of Church (1936): As opposed to propositional logic there is no algorithm
in first order predicate logic which can decide after a finite number of steps whether a
statement is a tautology or not.

4.4.3 The axioms of set theory

In order to create a rigorous axiomatic set theory, one uses, according to Zermelo (1908)
and Fraenkel (1925), the basic notions 'set' and 'element of a set', and requires the
following axioms to be satisfied.

(i) Existence axiom: There is a set.

(ii) Identity axiom: Two sets are equal if and only if they have the same elements.

(iii) Condition axiom: Given any set M and any statement ^(x), there is a set A whose
elements are precisely those elements of M for which <&(x) is true.13

Example 1: We choose a set M, and let stf(x) be the condition (statement) x ^ x. Then
there is a set A which consists of those elements x e M for which x ^ x. This set is

12 More details can be found in [349].
13We assume hereby that x occurs in S#(x) at least once without the quantifiers V and 3, i.e., that x

is free.
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denoted by 0 and is called the empty set. According to the identity axiom, this set is
unique.

Example 2: There is no set whose elements are all sets (no 'set of sets').

Proof: Suppose there did exists such a set X of all sets. According to the condition
axiom, the set
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denoted by 0 and is called the empty set. According to the identity axiom, this set is
unique.

Example 2: There is no set whose elements are all sets (no 'set of sets').

Proof: Suppose there did exists such a set X of all sets. According to the condition
axiom, the set

is again a set.

Case 1: If A £ A, then by construction A € A.

Case 2: We have A e A. But then by construction A $. A.

In both cases we have produced a contradiction, thus the assumption that such an X
exists is false. 

(iv) Binary set axiom: If M and N are sets, then there is a set which contains precisely
M and N as its elements.

(v) Union axiom: To every system of sets ^K there exists a set which consists precisely
of those elements which belong to a set of ̂ .

(vi) Power set axiom: Given a set M there is a system of sets ̂  which contains precisely
all subsets of M.

We define the successor X+ of a set X by the condition14

X+ :=XU{X}.

(vii) Infinity axiom: There is a system of sets ̂  which contains the empty set and with
each set also its successor.

(viii) Axiom of choice: The Cartesian product of a non-empty family of non-empty sets
is not empty.15

(ix) Replacement axiom: Let £/(a, 6) be a binary statement, so that for every element
a of a set A we can form the set M(a) := {b \ s f ( a , &)}. Then there is a unique function
F with the domain of definition A such that F(a) = M(a) for all a e A.

The construction of set theory from these axioms is described in [347]. The extremely
careful formulation of these axioms is necessary to prevent pathologies like the Russel
paradox of the set of all sets.

4.4.4 Cantor's structure at infinity

In his work on set theory, Cantor introduced transfinite ordinal numbers and cardinal
numbers. Ordinal numbers correspond to our intuitive feeling of 'counting on and on',
while cardinal numbers describe the 'number of elements', also called the cardinality, of
sets.

4.4.4.1 Ordinal numbers

The set u: We set

0 :=0 , 1:=0+ , 2:=1+ , 3 := 2+, . . . ,
14Here {X} denotes the set whose sole element is the set X.
15Punctions, families of sets and Cartesian products are defined as in section 4.3.
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where x+ = x U {x} is the successor to x. Then we have16

1 = {0}, 2 = {0,1}, 3 = {0,1,2}, ...

A set M is said to be a successor set if it contains the empty set and, for each set it
contains, also its successor. There is a unique successor set u which is a subset of every
other successor set (a 'smallest' successor set).

Definition: The elements of u> are called natural numbers.

The recursion formula of Dedekind: Let a function (f> : X —> X on a set X be
given, and let m be a fixed element of X. Then there is precisely one function

with .R(O) = m and R(n+) = (p(R(n)}. One refers to R as a recursive function.

Example 1 (addition of natural numbers): We chose X := uj and let (f> be defined
by (p(x) := x+ for all x e aj. Then for every natural number m there is a function
R : uj —> uj with -R(O) = m and R(n+) = R(n)+ for all n € u>. We set ra + n := R(n).
This means that

m + 0 = M and m + n+ = (m + n)+

for all natural numbers n and m. In particular, m + 1 = m+, since m + l = m + 0+ =
(m + 0)+ =m+.

In this manner it is possible, with the aid of the axioms of set theory, to introduce the
set of natural numbers as the set uj and introduce an addition on this set.17 Similarly, we
can define a multiplication on the set of natural numbers. By using the construction of
appropriate equivalence relations, we can form from this set the set of integers, rational
numbers, and finally real and complex numbers.

Example 2 (integers): The set of integers can be obtained with the following construction.
We consider all pairs (m, n) of natural numbers m, n e uj and write

(m, n) ~ (a, b) if and only if m + b = a + n.

The corresponding equivalence classes [(m, n)] are called integers.18 For example, we
have (1,3) ~ (2,4).

Definition: An ordinal number or ordinal is a well-ordered set X with the property
that for all a € X, the set

coincides with a.

Example 3: The sets defined above, 0,1,2 ... and u> are ordinals. Moreover,

are all ordinals. They correspond to counting, starting at uj.

[f n and 8 are ordinals, we write

16Note that 1 = 0 U {0} = {0} = {0}, 2 = 1 U {1} = {0} U {1} + {0, 1} and so forth.
17In order to emphasize the ordinal character of this construction, we, following the tradition of set

theory, denote the natural numbers here by the symbol u instead of N.
18Intuitively, the equivalence class [(ra, n)] is the number m — n.
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if a is a subset of (3.

Theorem: (i) For any two ordinals a and (3, precisely one of the three conditions
a < (3, a = (3, a > (3, is true.

(ii) Every set of ordinals is well-ordered.

(iii) Every well-ordered set X is ordered in the same way as exactly one ordinal, which
we denote by ordX and call the ordinal (number) of X.

Ordinal sums: If A and B are two disjoint, well-ordered sets, then we define the ordinal
sum

1A(JB'

as the union A U B with the following natural order:

for and

This means in particular that a < b corresponds to the order in A (resp. B) if both a
and b belong to A (resp. to B).

Ordinal product: If A and B are two well-ordered sets, then the ordinal product of
these, denoted

'AxB'

is defined as the product set ^ 4 x 5 with the lexicographical order, i.e., (a, b) < (c, d) if
and only if either a < c or a = c and b < d.

Arithmetic of ordinals: Let a and j3 be two ordinals. Then there is precisely one
ordinal 7 which is ordered as the ordinal sum 'a U /?'. We define the sum of ordinal
numbers by

Example 4'- We have a + I = a+ for all ordinals a.

Moreover, there is precisely one ordinal d, which is ordered as the ordinal product 'a x /?'.
We define the product of ordinal numbers by

Example 5: We consider the lexicographical order on the set a> x u>:

(0,0)

(1,0)

(0,1)

(1,1)
(0,2) l

(1,2) i

(0,3) ...

(1,3) ...

(i) The first row is ordered as a;, i.e., the ordinal number of the first row is u.

(ii) The first row together with (1,0) is ordered as o> + 1, i.e., the ordinal of this set is
u> + 1.

(iii) The ordinal of the first row together with the second row is 2u>.

(iv) If we endow the first and second column with the lexicographical order (0,0), (0,1),
(1,0), (1,1),. . . , then we get a set M whose ordinal is a>2. On the other hand, M is
ordered as the set of natural numbers. Hence u>2 = uj, i.e., 2u> ̂  uj2.

(v) The ordinal number of the entire matrix is uuj, i.e., ord(u> x u>) = uju>.

Paradox of Burali-Forti: The totality of all ordinals is not a set.
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4.4.4.2 Cardinal numbers

Let an arbitrary set A be given. All ordinals which can be bijectively mapped to A form
a well-ordered set. The smallest ordinal of this set is called the cardinality of A, denoted
card A.

The relation card A < card B corresponds to the relation between ordinal numbers.

Theorem: (i) We have card A = card B if and only if A and B are in bijective relation.

(ii) We have card A < cardB if and only if A is bijective to a subset of B.

Example: For a finite set A, the cardinality card A is just the number of elements of the
set.

Arithmetic of cardinal numbers: Let A and B be disjoint sets. We define the sum
of cardinal numbers by the relation

card A + card B := card(A U B).

For two arbitrary sets A and B we define the product of cardinal numbers by

(card A)(card B) :— card(A x B).

This definition is independent of the choice of representatives for A and B.

Cantor's paradox: The totality of cardinal numbers is not a set.

4.4.4.3 The continuum hypothesis

It is customary to denote the cardinal number card a; of the natural numbers u; by19 ^o-
There is also a smallest cardinal number K1? which is genuinely larger than KQ. Either
of the two following situations are conceivable:

(i) NO < KI = cardR.

(ii) K0 < KI < cardR.

One denotes the cardinal number cardM of the set of real numbers as the cardinality
of the continuum. Cantor tried in vain to prove the so-called continuum hypothesis (i).
Intuitively (i) tells us that there is no further cardinality between that of the natural
numbers and that of the continuum.

In 1940 it was proved by Godel that the continuum hypothesis (i) is compatible with
the rest of the axioms of set theory, in 1963 Cohen proved that (ii) is also.

Theorem of Godel-Cohen: The axiom of choice and the continuum hypothesis are
independent of the remaining axioms of set theory.

More precisely this means that if the axioms of set theory presented in 4.4.3 are free of
contradictions, then both (i) and (ii) can hold without contradiction. The same result
holds if one replaces the axiom of choice by its negation!

This surprising result shows that there is not a unique set theory, but rather several
possible set theories, and that contrary to what you would be inclined to think, the very
natural axioms of 4.4.3 do not completely determine the structure of infinity.

One of the profound findings of physics and mathematics of the twentieth century is that
our usual 'common sense' can be so totally inadequate when dealing with ideas which
are far from our daily doings. This is true of quantum theory (atomic dimensions),
relativity (high velocities and forces) as well as set theory (the notion of infinity).

19The symbol K is aleph, the first letter of the Hebrew alphabet.
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4.5 The history of the axiomatic method and its re-
lation to philosophical epistemology

Before you start to axiomize things, be sure that you first have
something of mathematical substance.

Hermann Wevl20 (1885-1955)

In the history of mathematics, two fundamental trends can be observed:

(i) the interaction with the other natural sciences, and

(ii) the interaction with philosophical epistemology.

In this section we would like to briefly consider (ii). A detailed discussion of (i) is
given in [212] including the fascinating (more recent) interaction between geometry and
modern physics (elementary particle theory and cosmology). At the end of this volume
there is a collection of names and events which have made an impact in the history of
mathematics.

Axioms: The axiomatic representation of a mathematical discipline corresponds to a
scheme as follows:

At the top we have the so-called postulates or axioms.
These are assumptions which are not to be proven but
rather form the basis of the deductive reasoning process
and are taken for granted. However, these axioms are
not arbitrarily stated, but are generally formulating the
result of a hard and long mathematical process of gaining
insight into the heart of some topic. With the help of
these axioms, one makes logical deductions, which are
called proofs, resulting in mathematical results (lemmas,
propositions, theorems) Particular importance is given certain results which are then
called theorems.21

Definitions give a name to a notion which is repeatedly used. Often the key to making
proofs workable is to make the right definitions.

Euclid's Elements: The famous book The Elements by Euclid is a shining example for
the axiomatic method and has served as a model for the next 2000 years. This book was
written about 325 BC in Alexandria. This book begins with the following definition: 1.
A point is something which has no parts. 2. A line is extended length. 3....

The parallel axiom is particularly famous. Expressed in modern language it states the
following.

(P) If a point P is not on a line /, then there in the plane which is spanned by P and I
precisely one line which passes through P but does not intersect /.

It wasn't until the nineteenth century that Bolyai, Gauss and Lobachevsky proved that
the parallel axiom is independent of the other Euclidean axioms. This implies that there
are geometries for which (P) holds and there are also geometries for which it does not
hold (see section 3.2.7).

20 Hermann Weyl became the successor to David Hilbert in Gottingen in 1930. In 1933 he emigrated
to the United States and worked together with Albert Einstein at the famous Institute for Advanced
Studies in Princeton, New Jersey. Richard Courant, who also emigrated in 1933, founded in New York
the famous institution now called the Courant Institute.

21 To structure a proof it is often helpful to formulate intermediate results which are often referred to
as lemmas.
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Hilbert's foundations of Geometry: The modern axiomatic method was created
by Hilbert in his Foundations of Geometry, which was written in 1899. As compared
with Euclid, Hilbert's presentation represents a much more radical development. He
does not attempt to define what a point is, but rather bases the theory on the notions
'point', 'line' and 'plane' together with relations 'passes through', 'congruent' and 'lies
between', without trying to give these some fixed content. He then formulates axioms
expressed in these notions, thus creating the notion of a geometry. For example, his
first axiom is simply: Through any two points, a line passes. This makes it possible to
consider completely different models. For example, in the Poincare model of hyperbolic
geometry, a 'line' is a circle whose center is located on the x-axis (see section 3.2.8).
Hilbert's proof of geometry's relative freedom from contradictions: Under
the assumption that certain parts of algebra and analysis are free of contradictions,
Hilbert was able to prove the non-contradictory nature of geometry, by utilizing Carte-
sian coordinates and then translating geometrical statements into algebraic and analytic
statements. For example, the theorem in Euclidean geometry that 'two non-parallel lines
intersect in exactly one point' corresponds to the fact that the system of equations

Ax + By + C = 0 ,

Dx + Ey + F = 0

for given real numbers A,B,C,D,E,F with AE — BD ^ 0 has in the real numbers
precisely one solution (x,y).
Hilbert's program of an absolute proof for the freeness from contradictions
of mathematics: Around 1920, Hilbert developed a program whose object is was to
prove that all of mathematics is free of contradictions. The main theorem of statement
logic in 4.4.1.3 serves as model for the proof. The basic idea is that one can obtain all
'theorems of a theory' from a fixed number of axioms by applying, in a purely formal
manner, a fixed number of rules for deductions.
The non-completeness theorem of Godel: In 1931, Godel's foundational work On
Formally Decidable Theorems in the Principia Mathematica and Related Theorems. In
this paper he shows that in any theory based on axioms which is sufficiently rich to
encompass number systems there are always theorems which cannot be deduced purely
from the axioms, although they are definitely true and can be proved.
Moreover, Godel shows that the only way to prove that such a system of axioms is free
of contradictions is by passing to a larger system. With this Hilbert's program for a
proof of the non-contradictory nature of mathematics turned out to be unattainable.
According to Godel's insight, mathematics is more than just a formal system of axioms
and rules for making deductions.
Mathematical logic: Godel's work represents a highlight of mathematical logic. For-
mal logic - an important part of philosophy - originated with Aristotle (384-322 BC).

The first basic principle of thought is, according to Aristotle, the Theorem of contradic-
tion. He writes: "It is unacceptable the something should be able to exist and at the
same time not exist".
The second basic principle of Aristotle is the Theorem of the excluded third: "Either a
statement is true or it is false". All indirect proofs in mathematics use this principle in
the following form: if the negation of a statement is false, then the statement itself must
be true.22

22Not all mathematicians accept this principle. In the 1920's Brouwer founded the so-called intu-
itionist mathematics, which refuses to accept indirect proofs and accepts only constructive ones.



4-5. The history of the axiomatic method 907

The term logic was introduced by the stoic Zenon (336-264 BC). The Greek word logos
means word, lecture, thinking, reason.

Leibniz (1646-1716) expressed the thought of introducing mathematical symbols into
logic. The first such system was created by the English mathematician George Boole
(1815-1869). Modern mathematical logic began with the publication in 1879 of Be-
griffsschrift (English: Paper on Notions) by Gottlob Prege (1848-1925). But it was the
appearance of the three-volume Principia Mathematica by Bertrand Russel (1872-1970)
and Alfred Whitehead (1861-1947) which provided the necessary mathematical tools
the present all of mathematics with a set of concise formal symbolic symbols. This
development was brought to a crowning conclusion with the appearance of Foundations
of theoretical logic in 1928 by Hilbert and Ackermann as well as the appearance of the
two-volume treatise Foundations of Mathematics by Hilbert and Bernays in 1934 and
1939.

An excellent modern introduction to mathematical logic is [349]. Influenced by the
needs of quantum theory and computer science, a many-valued logic has been created,
which allows in addition to 'true' and 'false' further possible truth values (for example
'possible'). The set theory corresponding to this logic is the theory of fuzzy sets.
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5. Calculus of Variations and Optimization

Since the divine plan is the most perfect thing there is, there can be no
doubt that all actions in the world can be determined by the calculus of
minima and maxima from the corresponding causes.

Leonhard Euler (1707-1783)

In the entire history of mathematics, aside from the golden age of Greek
philosophy, there has never been a better time than that of Leonhard
Euler. It was his privilege to leave mathematics with a completely
changed face, making it into the powerful machine that it is today.

Andreas Speiser (1885-1970)

By generalizing the method of Euler in the calculus of variations, La-
grange (1736-1813) discovered how one can write, in a single line, the
basic equation for all problems in analytic mechanics.

Carl Gustav Jakob Jacobi (1804-1851)

True optimization is a revolutionary contribution of modern mathe-
matical research to the effective design of decision processes.

George Bernhardt Dantzig (born 1914)1

In this chapter we consider the elements of the calculus of variations, decision theory
and optimization. More results can be found in [212]. In particular, there we will
explain the connection between non-linear functional analysis, the theory of non-linear
partial differential equations and modern physics. A comprehensive and unified modern
presentation of the calculus of variations, decision theory and the theory of optimization
can be found in [213], Volume III. The unifying band joining these apparently quite
different areas of inquisition is non-linear functional analysis, which has made a closed
theory of 'mathematics of optimization' possible.

1 Dantzig developed around 1950 in the USA the fundamental simplex algorithm in linear optimiza-
tion (see section 5.5). This was the basis for the modern theory of optimization, whose development
went (and goes) hand in hand with the use of more and more powerful computers.
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5.1 The calculus of variations for functions of one
variable

5.1.1 The Euler-Lagrange equations

Let real numbers to,ti,qo, q\ be given, which satisfy to <t\. We consider the minimiza-
tion problem

and the more general problem

The so-called Lagrange function L is assumed to be sufficiently regular.2

Main Theorem: If q = q(t), t0 < t < t\ is a (72-solution of (5.1) or (5.2), then for the
Lagrange function, we have the following Euler-Lagrange equation3

This famous theorem was proved by Euler in 1744 in his famous treatise Moethodus
inveniendi lineas curvas maxirni minimive proprietate gaudentes, sive solutio problematis
isoperimetrici latissimo sensu accepti.4 With this he founded the calculus of variations
as a mathematical discipline. In 1762, Lagrange simplified Euler's derivation of this
result and in this way could generalize equation (5.3) to functions of several variables
(see (5.46)). Caratheodory (1873 - 1950) referred to Euler's calculus as "one of the most
beautiful mathematical pieces ever written". We consider examples in 5.1.2.

Remark: The Euler-Lagrange equation (5.3) is equivalent to the problem (5.2). On the
other hand, the equation (5.3) only represents a necessary condition for the minimization
problem (5.1). Every solution of (5.1) solves (5.3), but the converse is not true. In section
5.1.5 we will give sufficient conditions that solution of the Euler-Lagrange equation (5.3)
are actually also solutions of the minimization problem (5.1).

2For this it is sufficient, for example, that L : R x R x [to, ti] > R is of type C2.
3Written in more detail, these equations take the following form:

4The translation of the title in Latin is 'A method of finding curves which have a property of extremes
or solution of the isoperimetric problem, if it is understood in the broadest sense of the word'.
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Generalization to systems: If q is a vector q = ( < ? i , . . . ,QF] in (5.1) or (5.2), then
(5.3) must be replaced by the system of Euler-Lagrange equations

The Lagrange equation of motion in mechanics: In mechanics, the Lagrange
function can be chosen to be, in case the forces are independent of time and have a
potential.

L = kinetic energy — potential energy.

Then the system (5.4) is the famous set of Lagrange equations of motion. The parameter
t corresponds to time, and q are arbitrary vectors of location.

The variational problem belonging to this, (5.2), is called the Hamiltonian principle of
stationary action.

If one is dealing with the motion of point masses along curves or on surfaces (for example
a circular or spherical pendulum), then one must add to the Newton equations of motion
constraining forces which serve to keep the point on the curve or surface. This is a
complicated process. The ingenious idea of Lagrange was that it is much more elegant
to introduce appropriate coordinates which fully eliminate the use of constraining forces.
This led to (5.4) (see for example the discussion of the circular pendulum in 5.1.2).
The Newton equations, paraphrased as 'force equal mass times acceleration', cannot be
extended to more general physical contexts, like electrodynamics, general relativity and
particle physics. In contrast,

The Lagrange formulation can be extended
to all field theories occuring in physics.

This is discussed in [212].

The interpretation of the solution of a variational problem: We consider a
familv of curves

passing through the points (to, Qo) and (ii, QI),
i.e., such that h(to) = h(ti) = 0 (Figure 5.1).
Moreover, let e be a small real parameter. If
we insert this family of curves into the integral
(5.1), then we get the expression

(i) If q — q(t) is a solution of the minimization
problem (5.1), then the function if = tp(e) has
a minimum at the point e = 0, in particular,

Figure 5.1. A family of curves.
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(ii) The problem (5.2) means by definition that the function </? = (p(e) has a critical
point at s — 0. This then implies (5.6).

From (5.6) we get the Euler-Lagrange equation. This will be proved in detail in [212].

We set

and

with q°(t) := q(t). Then we have (p(s) = J(q + sti). By definition, the first variation of
the integral J is given by 5J(q)h := f>'(0). The equation (5.6) then implies

(the vanishing of the first variation). In physics this is indicated by writing simply
SJ — 0. The second variation is defined by

The following notion is fundamental.

Strong and weak local minimum: Let a Cfl-function q = q(t) be given on [<o,*i]
with q(to) — a and q(t\) = b. By definition, the function q is a strong minimum (resp.
weak minimum) of (5.1), if there is a number r\ > 0 such that

holds for all Crl-functions <?* on [to,^i] with q*(to) = a, q*(ti) = &, and in addition

for k = 0 (resp. k = 1).

This definition can be likewise extended to systems of equations. Every weak (or strong)
local minimum is a solution of the Euler-Lagrange equations.

Conservation laws: The Euler-Lagrange equation (5.3) for L = L(q, q',t), i.e.,

is, explicitly,

The quantity

is called the (generalized) momentum.

(i) Conservation of energy: If the Lagrange function L does not depend on time t
(homogeneity of the system with respect to time), then (5.7) takes the form

Lq'q'q" +Lq'qq' + Lqqq't_lq=0. (O(5.7)

P(T) : + Lq,(q(t),q'(t),(t)
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It follows that

q'(t}p(f) - L(q(t),q'(t)} = const. (5.8)

The left-hand side corresponds in mechanics to the energy of the system.

(ii) Conservation of momentum: If L is independent of location, i.e., does not depend
on q, (homogeneity of the system with respect to location), then

and hence

p(t] = const. (5.9)

(iii) Conservation of velocity: If L depends on neither the location q nor the time t, then
Lq'(q'(t)) = const with the solution

q'(t) = const. (5.10)

It follows from this that the family of curves q(t) = a + (3t is a solution of (5.7).

The Noether theorem and conservation laws in nature: In general, the calculus
of variations yields conservation laws for any symmetry properties of the Lagrangian
and consequently of the variational integral. This is the content of the famous theorem
proved by Emmy Noether in 1918. This theorem can be found in [212].

Generalizations to variational problems with higher derivatives: If the La-
grange function depends on derivatives of up to the nth order, then the Euler-Lagrange
equations (5.4) must be replaced by the following relations:

(k~)In the principle of stationary action one must supply the values of q- , k = 0 ,1, . . . , n—1
at the points to and ti.

5.1.2 Applications

The shortest path between two points: The variational problem

means that we seek the shortest path between the points (tQ,qo) and (ii,<7i). The
Euler-Lagrange equation (Lq')' — Lq = 0 has, according to (5.10), the family of curves

as a solution. The free constants a and (3 can be uniquely determined in terms of the
boundary conditions q(to} = a and q(ti) — b.
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Theorem: A solution of (5.11) is necessarily of the form

These solutions are, not surprisingly, lines.

Light rays in geometric optics (the Fermat principle): The variational problem

is the fundamental problem of ge-
ometric optics. Here, y = y(x)
is the trajectory of a light ray (c
is the speed of light in a vacuum,
n(x, y) the refraction index at the
point (x,y)). The integral on the
left-hand side of (5.12) is equal to
the time that the light in the re-
fracting medium requires to trans-
verse from (x0,yo) to (x i>2/i) (Fig-
ure 5.2(a)). Thus, (5.12) represents
the principle of Fermat (who lived
1601-1665):

Figure 5.2. Light rays: the principle of Fermat.

Light rays transverse a medium between two points in such a way that
they require the minimum amount of time to do so.

The Euler-Lagrange equations which belong to (5.12) are the fundamental equations of
geometric optics:

Special case: If the index of refraction n = n(y) does not depend on the location variable
x, then (5.8) implies that (5.13) yields in this case the relation

The eikonal S and wave fronts: We fix a point (xo>yo) and set

Here, y = y(x) is the solution of the variational problem (5.12), i.e., S(x\,yi) represents
the time that light requires to transverse from (z0,2/o) to (xi, j/i).
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The function S is called the eikonal and it satisfies the eikonal equation

which is but a special case of the Hamilton-Jacobi differential equation (see 5.1.3).

The curves which are determined by the equation

S(x,y) = const

are called wave fronts. They consists of the set of points which, from a fixed point of
origin (xo,yo), are reached in equal time (Figure 5.2(b)).

Transversality: All the light rays originating from a fixed point of origin (xo,yo)
intersect the wave front transversally (i.e., the angle of intersection is a right angle).
Example: If the index of refraction n(x, y) = 1, then the light rays are lines by (5.14).
The wave fronts in this case are circles (Figure 5.3).

Figure 5.3. Wave fronts for
unity index of refraction.

Figure 5.4. Huygens'principle.

Huygens' (1629—1695) principle (Figure 5.4): If one considers a wave front

S(x,wi(x)} = Si

and if one starts with a light ray from every point of the wave, then after time t these
all reach a second wave front

S(x,U>2(x)] = 82

with 82 := Si+t. This second wave front can be obtained as the envelope of 'elementary
waves'. These are the wave fronts which are generated from a fixed point after time t.

Non-Euclidean hyperbolic geometry and light rays: The variational principle

can be given two interpretations.
(i) In the context of geometric optics, (5.16) describes the motion of light rays in a
medium with the refraction index n = 1/y. Combined with (5.14), this implies that the
light rays have the form

(x-a)2 + y2 = r2. (5.17)
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Figure 5.5. Light rays: n =
i/y-

Figure 5.6. The brachistochrone.

These are circles centered on the x-axis (Figure 5.5).

(ii) We introduce on the upper half-plane the metric

Because

(5.16) describes the problem of the shortest path between the two points A(xo,yo] and
B(XI,y\). The circles (5.17) are the 'lines' of this geometry, which therefore coincides
with the non-Euclidean hyperbolic geometry of the Poincare model (see 3.2.8).

The famous problem of brachistochrones brought up by Johann Bernoulli in
1696: In the June 1696 edition of the magazine Leipziger Acta Eruditorium5, which
had been founded shortly before in Leipzig, Johann Bernoulli published the following
problem. "Find the trajectory of a point mass moving from a point A to a point B
under the influence of gravity" (Figure 5.6).

This problem was the beginning of the calculus of variations. Bernoulli did not yet have
the Euler-Lagrange equations at his disposal; however we will now apply them to the
problem.

Solution: The variational problem is

The corresponding Euler-Lagrange equations (5.14) yield the solution

where the constants C and UQ are determined from the condition y(a) = —h. This is a
cycloid arc.

The law of motion for a falling stone: The Lagrange function is:

L = kinetic energy — potential energy

5 Magazine of the educated.
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(where m is the mass of the stone, g is the gravitational constant). From this one gets
the Euler-Lagrange equation

my" + mg = 0

with the solution y(t) for the height of the stone at time t:

Here h is the height and v is the velocity of the stone at the initial time t = 0. This is
the law of motion of Galilei (1564 - 1642).

The circular pendulum and the method of
adapted coordinates due to Lagrange (Figure
5.7): For the motion x = x(t), y = y(t) of a circular
pendulum in the gravitational field of the earth writ-
ten in Cartesian coordinates, we have the Lagrange
function:

L = kinetic energy — potential energy

Figure 5.7. Circular pendulum.

However, for the corresponding variational problem,
the constraint

x(tf+y(t)2 = l2

has to be taken account of (m mass of the pendulum, / length of the pendulum, g the
gravitational constant). Approaching the problem in this manner requires the use of
Lagrange multipliers (see 5.1.6).

There is a much simpler way of treating this problem by using polar coordinates instead
of the Cartesian coordinates. Written in these coordinates, the equation of motion is
quite simply

in which there are no constraints whatsoever. One has

Because of x'(t) = l<p'(i) cos <£>(£), y'(t) = l<p'(i) smip(t) and sin2 <p + cos2 <p = 1 we get
for the Lagrange function the expression

The Euler-Lagrange equation

yields
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with a;2 = g/l. If <^o is the maximal extension of the pendulum (0 < </?o < TT), then the
motion ip = ip(t) is derived from the equation

with k = sin The substitution sin = ksinip yields the elliptic integral

The period T of the pendulum is obtained from the famous formula

with the complete elliptic integral of the first kind

The approximation

is correct up to about 1 percent, provided the maximal amplitude </?0 is less than 70°.

The circular pendulum for small oscillations and the harmonic oscillator: For
V2

small oscillations ip of the pendulum one has cos (p = IH h . . . Up to an unimportant

constant, the Lagrange function is thus approximately

The corresponding variational problem

stationary,

leads to the Euler-Lagrange equation

with a;2 = g/l and the solution
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where the maximal amplitude </?o and the phase a are derived from the initial conditions
y>(0) = ft and <//(0) = 7. For the period we now get

Other important variational problems in geometry and physics (see [212]):

(i) Deriving the equation for minimal surfaces.

(ii) Deriving equations for capillary surfaces and space travel experiments.

(iii) Finding the fundamental equations for string theory and the theory of elementary
particles.

(iv) Finding geodesies in Riemannian geometry.

(v) Finding the equations of non-linear elasticity theory.

(vi) Equations for stress and bifurcations.

(vii) Deriving the non-linear conservation equations in rheology for very viscous liquids
and hard materials.

(viii) Finding the equations of motion for particles moving according to Einstein's special
and general theories of relativity.

(ix) Finding the basic equations for the gravitational field in the general theory of rela-
tivity.

(x) Deriving the Maxwell equations for electrodynamics.

(xi) Deriving the fundamental equations for electrons, positrons and photons.

(xii) Deriving the fundamental equations for gauge theory and elementary particles.

5.1.3 Hamilton's equations

One of the properties inherent in mathematics is that any real
progress is accompanied by the discovery and development of new
methods and simplifications of previous procedures ... The unified
character of mathematics lies in its very nature; indeed, mathe-
matics is the foundation of all exact natural sciences.

David Hilbert
Lecture at the ICM, Paris, 1900

After the seminal work of Euler and Lagrange in the eighteenth century, Hamilton (1805-
1865) had the brilliant idea of applying the methods of geometric optics to the mechanics
studied by means of Lagrange's methods. This led to the following 'dictionary':

Geometric optics

light rays

eikonal S
eikonal equation and wave fronts
Fermat's principle 

Hamiltonian mechanics

trajectory of particles,
Hamilton's canonical equations
action function S
Hamilton-Jacobi differential equation
Hamilton's principle of least action
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The Euler-Lagrange differential equations of second order are replaced by a new system
of equations of first order,

Hamilton's canonical equations.

In this way it becomes possible to apply the theory of dynamical systems on manifolds
(phase spaces) to classical mechanics. It turns out that there is a geometry hiding behind
classical mechanics, the so-called symplectic geometry (see 1.13.1.7). At the end of the
nineteenth century, Gibbs (1839-1903) recognized that the Hamiltonian formulation of
mechanics can conveniently be used to treat systems of many particles (for example
gases) in the context of statistical physics. The point of departure for this is the fact,
following from the symplectic geometry of the formulation, that the Hamiltonian phase
flows preserves the volume of the phase space (Theorem of Liouville).

The action as a fundamental quantity in nature: Action is a physical quantity
which has the dimensions

action = energy x time.

In 1900, Max Planck (1858-1947) formulated his epoch-breaking quantum hypothesis,
according to which any action occuring in nature cannot be arbitrarily small. The
smallest unit of action is the Planck action quantum

h = 6.626 • 10~34Js.

This was the key to completing quantum theory, which, along with Einstein's theory of
relativity (dating from 1905) completely revolutionized physics (see 1.13.2.11 ff.).

The Hamiltonian formalism is a fundamental formulation of the laws of physics, which
is particularly well-adapted to the propagation of action. The utility of this formalism
can be seen in the fact that it can be used to quantize classical field theories in the
context of quantum mechanics and, more generally, in the context of quantum field
theory (canonical quantization or Feynman quantization using path integrals).

The deeper meaning of mechanics becomes apparent when, following
Hamilton, one uses the (generalized) position and momentum variables
as a unit and studies the propagation of the action.

The close connection between position and momentum is particularly clear in quantum
mechanics. According to Heisenberg's uncertainty principle, the position q and momen-
tum p cannot be measured simultaneously. The relation states more precisely that, if
A(? and Ap denote the variance of these variables,

Here we have set h := h/2?r.

The connection with modern control theory: Hamiltonian mechanics was, in
addition, around 1960 the model for the development of optimal control theory based
on the Pontryagin maximum principle (see 5.3.3).
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In what follows we describe the motion of a particle by an equation of the form

q = q(t)

with t denoting time and position coordinates q — ( < ? i , . . . , qp)- The number F is called
the number of degrees of freedom of the system. The coordinates qj are generally speaking
not Cartesian, but adapted coordinates of some kind (for example the angle of extension
<£> of a circular pendulum, see Figure 5.7).

Hamilton's principle of stationary action:

Here to, ti G R and o, b E RF are given. The integral on the left-handed side has the
dimension of an action.

Euler—Lagrange equations: For a sufficiently regular situation the problem (5.19) is
equivalent to the following set of equations:

Legendre transformation: We introduce new variables

which we refer to as generalized momenta. Moreover we assume that the equation (5.21)
can be solved for q':&

q' = q'(q,p,t).

Instead of the Lagrange function L, the Hamilton function H — H(q,p, t) is used:

In this equation, q' must be replaced by q'(q,p,t). The transformation

(<?,?',*)
Lagrange function L

(<2SP,*),
Hamiltonian function H (5.22)

6 If the strict Legendre condition

is satisfied, then (5.21) can be uniquely solved in a neighborhood of (go, g0>*°) by *ne implicit function
theorem.
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is called the Legendre transformation. We call the F-dimensional space of g-coordinates
M the configuration space and the 2F-dimensional space of (g, p)-coordinates the phase
space. We view here M as an open subset of RF and the phase space as an open subset
of R2F. The full power of the theory is realized when we use the language of manifolds.7

Hamilton's canonical equations: From the Euler-Lagrange equations for the La-
grange function we obtain the following system of new equations of first order for the
Legendre transformation of the Lagrange function8

?; = -#„, q'j = HPi, j = l,...,F. (5.23)

The Hamilton—Jacobi differential equation:

St(q,t')+H(q,Sg(q,t'),t)=0. (5.24)

There is a close relation between the system of ordinary differential equations (5.23) and
the partial differential equation of first order (5.24).

(i) From a set of solutions of (5.24), depending on parameters, one can obtain solutions
of (5.23).

(ii) Conversely, from families of solutions of (5.23) one can obtain solutions of (5.24).

This is discussed in section 1.13.1.3. In geometrical optics, the construction of light rays
from wave fronts is behind (i), while in (ii) it is the wave fronts being constructed as
families of light rays.

The Hamiltonian flow: We assume that the Hamilton function H does not depend
on time t, and interpret the solutions

q = q(t), p = p(t) (5.25)

of the canonical equations as the trajectories of particles moving in a flow (Figure 5.8).
This is referred to as the Hamiltonian flow.

(i) Conservation of energy: The function H is a conserved
quantity of the Hamiltonian flow, i.e.,

H ( q ( t ) , p ( t ) ) = const.

The function H has the interpretation as the energy of the
system.Figure 5.8. The flow.

(ii) Conservation of the phase volume (Theorem of Liouville): The Hamiltonian flow is
volume preserving.9

Hence the Hamiltonian flow behaves like an incompressible fluid.
7Then M is a real .F-dimensional manifold, and the phase space is nothing but the cotangent bundle

T*Mof M.
8The equation (5.23), written out in detail, is:

9 The particles of the flow in a domain GO at time t = 0 are in a domain Gt at time t, and Gt has
the same volume as Go.
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The importance of the action function 5: We fix a point g* at time to and set

In the integral we choose a solution q = q(t) of the Euler-Lagrange equation (5.20), with
the boundary conditions

g(*o) = Q*, q(t\) = q**.
We suppose that this solution is uniquely determined.

Theorem: If the solution is sufficiently smooth, then the action function S is a solution
of the Hamilton-Jacobi differential equation (5.24).

Situations where the requisite smoothness is not available correspond in geometric optics
to situations where the wave fronts touch or cross each other (caustics).

Poisson brackets and conserved quantities: If A = A(q,p,t) and B = B(q,p,t)
are functions, then the Poisson bracket is defined by the relation

One has

{A,B} = -{B,A},

so that in particular {A, A} — 0. Moreover, one has the Jacobi identity

{A,{B,C}} + {B,{C,A}} + {C,{A,B}}=0.

Lie algebras: The real C°° functions A = A(q,p) on the phase space form with respect
to addition, (real) scalar multiplication and the Poisson bracket as multiplication an
infinite-dimensional Lie algebra.

Poisson's equation of motion: Along the trajectory (5.25) of a Hamiltonian flow one
has for all sufficiently smooth functions A = A(q,p,t) the relation10

Theorem: If A is independent of t and {H, A} — 0, then A is a conserved quantity, i.e.,

A(q(t),p(t)) = const

along the trajectories of the Hamiltonian flow.
10 More explicitly this equation is
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Example 1: If the Hamiltonian function H is also independent of £, then H itself is
a conserved quantity of the Hamiltonian flow. This follows from the trivial relation
{H,H} = 0.

Example 2: The Poisson bracket between the generalized variables and momenta <jv and
PJ satisfy

Prom (5.26) we see that

These are the Hamilton's canonical equations.

The semi-classical quantization rule of Bohr and Sommerfeld (1913):

The (q,p) phase space consists of cells of size hF.

This rule is motivated by the fact that AgAp has the dimension of an action and the
Planck action quantum h is the smallest possible unit of action.

Heisenberg brackets: For linear operators A and B we define

The fundamental quantization rule of Heisenberg (1924):

A classical mechanical system can be quantized by promoting the gen-
eralized variables qj and momenta PJ to operators and replacing Pois-
son brackets by Heisenberg brackets.

Ever since Planck put down his quantization hypothesis in 1900, physicists had been
struggling to find a general formulation of the quantization process of this kind. The
basic equations of the Heisenberg view of quantum mechanics follows from (5.27) and
(5.28):

In 1925, Schrodinger discovered an apparently completely different rule of quantization,
which led to a partial differential equation - the Schrodinger equation (see 1.13.2.11).
But in fact it can be shown that these two formulations of the quantization process are
equivalent. They represent two different ways of expressing the same state of affairs in
the Hilbert space.
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5.1.4 Applications

One-dimensional motions: We consider a one-dimensional
motion q = q(t) of a particle of mass m along the q-axis
(Figure 5.9). If U = U(q] is the potential energy, then the
Lagrange function is

Figure 5.9. Motion in
one dimension.

L = kinetic energy — potential energy

The principle of stationary action

stationary

q(t0) = a, q(ti) = b

leads to the Euler-Lagrange differential equation (Lq>)' — Lq = 0, in other words,

mq" = -U'(q). (5.31)

This is at the same time the Newton law of motion with the force F(q) = —U'(q). We
set

p := Lqi (q, q') and E :— q'p — L.

Then p = mq' is the classical momentum (mass times velocity),

(i) Conservation of energy: The quantity

coincides with the classical energy (kinetic plus potential energy). According to (5.8),
E is a conserved quantity (first integral), i.e.,

along every motion (solution of (5.31)).

(ii) Legendre transformation: The Hamilton function H = H(q,p) arises as the Legendre
transformation of the Lagrange function, H(q,p) := q'p — L, hence

This expression is identical with the energy E.

(iii) Canonical equations:

p' = -Hq, q' = Hp.

These equations correspond to the two equations q' = p/m and the Newton law of
motion mq" — —U'(q}.

Applications to the harmonic oscillator: The harmonic oscillator is the simplest
non-trivial mathematical model of a mechanical system. Nonetheless, from this simple
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model it is possible to draw far-reaching physical implications. For example, the quan-
tization of the harmonic oscillator yields Einstein's theory of photons and hence the
Planck law of radiation, which is fundamental for understanding the birth and life of
the universe (see [213], Volume IV).

We consider a one-dimensional motion with the following properties:

(a) It is assumed the system has only small displacements from equilibrium.

(b) At the equilibrium point there are no forces acting.

(c) The potential energy is positive.

Developing the potential energy in a Taylor series yields

Assumption (b) then implies that 0 = F(0) = —U'(0). Since the constant t/(0) is
irrelevant for the force (since F(q) = —U'(q)) and thus is also irrelevant for the equation
of motion mq" = F, we may set U'(Q) = 0 without restricting generality. This leads to
a formula for the potential energy of the harmonic oscillator:

with k := 17"(0) > 0.

(iv) The Newton law of motion: Prom (5.31) we obtain the relations

q(Q) = go (initial position) ?'(0) = 9i (initial velocity)

with The unique solution to this is

(v) The Hamiltonian flow in phase space: The Hamiltonian function (energy function)

Prom this the canonical equations p' = —Hq, q' = Hp take the form

The corresponding solution curves

describe the trajectories of the Hamiltonian flow in the (q,p) phase space (po •= q\/m).
The conservation of energy yields

i.e., the trajectories are ellipses whose size grows with growing energy (Figure 5.10(a)).

(vi) Action variable I and angle variable (p: We define

surface area of the ellipse in the (q,p) phase space at energy E).
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Then

Consequently, the Hamiltonian
ul

is given by H — —. The new
^7T

variables / = const and (p := ut (

satisfy the new set of Hamilton's
equations

Figure 5.10. The Hamiltonian flow in phase space.

(vii) The Bohr-Sommerfeld quantization (1913): According to (5.29) the surface area
element in the (q,p) phase space consists of cells of length h. If we consider two trajec-
tories at energies E% and E\ with EZ > E\, then for the surface area between the two
corresponding ellipses we get

(Figure 5.10(b)). If we set A.E = E^ — E\, then we get the equation

This is the famous quantum hypothesis put forward by Planck in 1900.
Einstein postulated in 1905 that also light consists of quanta, which he referred to as
photons. For light of frequency v and angular frequency o> = 2-Tri', the energy of the
photon is, according to Einstein, given by

For this photon theory of light, Einstein was awarded the Nobel prize in physics in 1921
(it is noteworthy that he did not receive this award for his relativity theory).
(viii) Heisenberg's rule of quantization (1924): Using his method, Heisenberg calculated
the exact energy levels of the quantized harmonic oscillator, getting

We have seen in section 1.13.2.12 how (5.32) follows from the Schrodinger equation.

Interestingly, the ground state n = 0 corresponds to a non-vanishing energy E = -ho>.
Zi

This fact is actually of fundamental importance in quantum theory. It implies that
the ground state of a quantum field has infinite energy. This in turn gives rise to
spontaneous transitions of particles from ground into excited states, which among other
things account for the (eventual) disintegration of black holes.

5.1.5 Sufficient conditions for a local minimum

In addition to the minimization problem
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for a real function q = q(t), we consider the Euler-Lagrange equation

and the Jacobian eigenvalue problem

withQ:= (q(t),q'(t),t} and

Moreover, we consider the Jacobian initial value problem

The smallest zero t* of the solution h = h(t) of (5.36) with t* > to is said to be the
conjugate point to to.

The real number A is by definition an eigenvalue of (5.35) if and only if this equation
possesses a non-trivial (not identically zero) solution h.

Smoothness: We make the assumption that the Lagrange function L is sufficiently
smooth (for example of type C3).
Extrema: Every C2-solution of the Euler-Lagrange equation (5.34) is said to be an
extremum. However, such an extremum does not necessarily correspond to a local
minimum in (5.33), just as is the case for functions. For the existence of a minimum,
additional conditions need to be satisfied.

The Weierstrass ^-function: This function is defined as

Convexity of the Lagrange function: The convexity of L with respect to q' is a
particularly important fact. This property of L is obtained under the assumption that
one of the following two conditions is satisfied:

5.1.5.1 The sufficient condition of Jacobi

The necessary condition of Legendre (1788): If q = q(t) is of type C2 and a weak
local minimum of (5.33), then it satisfies the so-called Legendre condition

for all
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Jacobi's condition (1837): Let q — q(t) be an extremum of (5.33) with q(to) = a and
q(ti) — b, which satisfies the strict Legendre condition

Then q is a weak local minimum of (5.33), in case one of the two following additional
conditions is satisfied:

(i) All eigenvalues A of the Jacobian eigenvalue equation (5.35) are positive.

(ii) The solution h of the Jacobian initial condition problem (5.36) has no zero in the
interval ]£o>ii[, i-e., this interval contains no point conjugate to t0-
Example: (a) The function q(t) = 0 is a weak local minimum of the problem of the
shortest path between two points (Figure 5.12):

(b) The line q(i) = 0 is a global minimum of (5.37).

Proof of (a): We have L — \/l + q'2, from which it follows that

The Jacobi initial value problem

has the solution h(t] = t — to, which has only a single zero at

The Jacobi eigenvalue problem

has the eigensolutions

i.e., all eigenvalues A are positive.

Proof of (b): We embed the extremal q(t) = 0 in a family of extremals q(t) = const.
Since the Lagrange function L is convex with respect to q', as follows from Lq>q> > 0,
the statement follows from the following section 5.1.5.2.

5.1.5.2 The sufficient condition of Weierstrass

Suppose we are given a smooth family of extremals

q = q(t,a),

with a real parameter a, which cover a domain D of the (t, g)-space is a regular manner,
i.e., without intersection points or points of contact among the individual extremals. We
make the following assumptions.

for all
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(i) The family contains an extremal g* which passes through the points (to, a) and (ti, 6)
(Figure 5.11(a)).

(ii) The Lagrange function L is convex with respect to q'.

Then q* is a strong local minimum of (5.33).

Figure 5.11. Extremals q* through (to, a)
and (ti, b).

Figure 5.12. The extremals
among local weak minima.

Corollary: If there is a family of extremals q = q(t, a) covering the entire (t, g)-space
(meaning situation as above with D = R2), then q* is a global minimum of (5.33).

Interpretation in geometric optics: Families of extremals correspond in geometric
optics to families of light rays. Points of intersection (focal points) and points of contact
(caustics) represent singular behavior. In Figure 5.11 we see two focal points. The
special situation is that here not every light ray is necessarily a shortest path between
two points.

The Jacobi condition of 5.1.5.1 does not necessarily hold if an extremal passes through
two focal points; these focal points are then also called conjugate points.

5.1.6 Problems with constraints and Lagrange multipliers

Let q — (qi,..., qp). We consider the minimization problem

together with one of the following constraints:

(i) Integral constraints

(ii) Implicit constraints, given by equations

We assume that the functions L and Nk are sufficiently smooth.
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The idea behind Lagrange multipliers: We replace the Lagrange function L by the
modified Lagrange function

and write %? instead of L in the Euler-Lagrange equations:11

The functions A^ = Afc(i) are called Lagrange multipliers. We wish to determine the
functions q = q(t) and \t~ = Afc(£), k = 1,..., K from (5.41) and the constraints and
boundary conditions.

Main Theorem: Let q = q(t) be a C2-solution of the minimization problem (5.38) with
one of the constraints (5.39) or (5.40), and suppose that the situation is not linear.12

Then there are sufficiently smooth Lagrange multipliers A^ such that (5.41) holds.

Addendum: In the case (5.39) of integral constraints, the Lagrange multipliers are real
numbers and not functions.

5.1.7 Applications

The classical isoperimetric prob-
lem of Queen Dido: According to leg-
end, during the founding of Carthago
Queen Dido was only allowed to acquire
as much land as could be delimited by
a single skin of a steer. The cunning
queen cut the skin into thin slices and
circumscribed a circle with it.

Theorem: Among all two-dimensional
domains D which are bounded by a
smooth curve of length /, a circle maxi-
mizes thp a.rfifl. pnrlnsfirl

Figure 5.13.

It order to motivate this situation, we consider the minimization problem

11 More explicitly, this equation is

12This is to exclude certain pathological cases, which however do not usually occur if due care is taken
in the formulation of the problem. A precise formulation of the Main Theorem described here can be
found in [213], Volume III, Section 37.41.
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We look for a boundary curve in the form x = x(t), y = y(t), to < t < t\ (Figure
5.13(a)). Then the outer normal vector has the components

Integration by parts yields

Consequently, we have reformulated the problem and get the new problem

Here R is a real parameter. For the modified Lagrange function 2£ := —y'x + x'y +
we obtain the Euler-Lagrange equations

i.e,

For A = —2 this yields as solution a circle x = Rcost, y = Rsint with / = litR.

Figure 5.14-

Terminology: Following Jakob Bernoulli (1655-1705) one calls
any variational problem with integral constraints an isoperimetric
problem.

A hanging rope: We seek the form y = y(x) which a hanging
rope of length I will take under the force of gravity. The rope
is assumed to be attached at the two points (—a, 0) and (a, 0)
(Figure 5.14).

Solution: The principle of minimal potential energy gives us the
following variational problem:
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(where p is the constant density of the rope and g is the gravitational acceleration
constant). To simplify the formulas we set pg = 1. The modified Lagrange function
££ := (y + A) A/1 + y'2 with a real number A as Lagrange multiplier leads to an Euler-
Lagrange equation, which according to (5.18) yields the relation

which calculates to : = c and has the family of solutions

y = c cosh

These are catenaries.13 The constants b, c and A result
from the boundary conditions and the constraints.

Geodesies: On a surface given by M(x,y,z) = 0
we seek the shortest paths x = x(t), y = y(t), z =
z(t), to < t < ti between the points A(xo,yo,zo) and
B(xi,yi,zi) (Figure 5.15).

Solution: The variational problem is

Figure 5.15. The variational
problem for geodesies.

The Euler-Lagrange equations

for the modified Lagrange function )M(ic, y, z) are, after
passing to arc length s as parameter,

r"(s)=^(s)(gradM)(r(s)).

Geometrically this means that the principle normal
vector to the curve r = r(s) is either parallel or anti-
parallel to the normal vector to the surface, N.

The circular pendulum and its constraints
(Figure 5.16): If x = x(t), y — y(t) is the trajec-
tory of a circular pendulum of length / and mass
m, the principle of stationary action yields for the
Lagrange function

Figure 5.16. The circular pendu-
lum.L = kinetic energy — potential energy

13The name catenary conies from Latin, meaning chain. This is the problem of a hanging chain.
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the following variational problem:

For the modified Lagrange function ^£ := L — A(x2 + y1 — I2) with a real number A we
get the Euler-Lagrange equations

This reduces to

If we use the directional vector r = xi + yj, then we get as the equation of motion of the
circular pendulum

The term —gj corresponds to gravity, —2Ar is the additional force acting opposite the
direction in which the pendulum is connected above which keeps the pendulum on the
circle.

5.1.8 Natural boundary conditions

Problems with free end points: A sufficiently smooth solution of the variational
problem

satisfies the Euler-Lagrange equation

and the additional constraint

JV(y(zi),y'(zi),zi) = 0.

This condition is referred to as a natural boundary con-
dition, because it does not occur in the originally for-
mulated variational problem.
Problems with endpoints lying on a curve: If the
endpoint (zi,y(xi)) lies on a curve defined by C : x =
X(r), y = V(T), then we get the problem

Figure 5.17. Constraints.



5.2. Calculus of variations - several variables 935

where the parameter value T of the intersection point P of the solution curve y = y(x)
with the given curve is also to be determined (Figure 5.17).

Every sufficiently smooth solution of this problem satisfies the Euler-Lagrange equation
(5.42) with the generalized transversality condition at the point of intersection P:

Here we have set Q := (y(xi),y'(xi),xi) and x\ :— X(T).

Example: In geometrical optics, one has L = n(x,y) Using this, (5.43) takes
the form

i.e., the light ray hits the curve C in a right angle. This is then in particular true for a
wave front C (Figure 5.17).

5.2 The calculus of variations of functions of several
variables

5.2.1 The Euler-Lagrange equations

Suppose we are given a bounded domain D in WS.N and a function ip on the boundary
8D. We consider the minimization problem

and the more general problem

We have set in this equation dj := d/dxj and

We also assume that the functions L and ?/> are sufficiently smooth on the boundary 3D.

Main Theorem: If q = q(t) is a solution of (5.44) or (5.45), then q satisfies the following
Euler-Lagrange equations on D:14

14In more detail these equations are

with Q =
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These famous equations were derived by Lagrange in 1762. All field theories in physics
can be formulated with the help of (5.46), in which (5.45) corresponds to the principle
of stationary action.

Corollary: For sufficiently smooth functions q, the problem (5.45) is equivalent to
(5.46).

5.2.2   Applications

Plane (two-dimensional) problems: A necessary condition for the solvability of the
minimization problem

is the solvability of the Euler-Lagrange equation

Figure 5.18. Minimal surfaces. Figure 5.19. The catenoid.

Minimal surfaces (Figure 5.18): We seek a surface & : z = q(x,y) with a mini-
mal surface area, which passes through a given boundary curve C. The corresponding
variational problem is

with the Euler-Lagrange equation on D:
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All solutions of this equation are called minimal surfaces. Equation (5.49) means ge-
ometrically that the mean curvature of the surface vanishes identically, i.e., H = 0 on
dD.

Catenoid (Figure 5.19): We allow a curve y = y(x) to rotate around the a;-axis. The
objective is to produce a surface with minimal area in this manner. The corresponding
variational problem is

with T, • According to (5.8) we get y'L,,' — L = const from the Euler-
Lagrange equation, i.e., we have

const.

The catenoid y = ccosh is a solution.

The catenoid is the only minimal surface with results through rotation of a curve in this
manner.

The first boundary problem for the Poisson equation: Every sufficiently smooth
solution of the minimization problem

satisfies according to (5.48) the Euler-Lagrange equation

This is the first boundary value problem for the Poisson equation.

Elastic membranes: Physically, (5.50) corresponds to the principle of minimal poten-
tial energy for a membrane z = q(x,y), which is spanned by a boundary curve C (Figure
5.18). The quantity / corresponds here to the density of an exterior force. For gravity
one chooses f(x,y) = — pg (p the density, g the gravitational constant).

The second and third boundary value problems for the Poisson equation:
Every sufficiently smooth solution of the minimization problem

satisfies the Euler-Lagrange equation
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Here s denotes the arc length on the boundary curve, positively oriented in the mathe-
matical sense, and

denotes the outer normal derivative, where n = n-^i + n^ is the outer unit normal vector
(Fierure 5.20).

For a = 0 (resp. a ̂  0), the problem (5.53) (resp. (5.54))
is called the second (resp. third) boundary value problem
of the Poisson equation.

The boundary condition (5.54) does not occur in the
variational problem (5.52). Thus this is a natural
boundary condition. For a = 0, the functions / and
b are not arbitrary, but must satisfy the solvability con-
dition

Figure 5.20. Boundary value
problem for the Poisson equa-
tirfn

Sketch of Proof: Let q be a solution of (5.52).

Step 1: We replace q with q + eh with a small real parameter e and get

Because of (5.52), the function ip has a minimum at s = 0, i.e., we have </?'(0) = 0. This
yields

If a = 0, (5.55) follows from (5.56) upon taking h = 1.

Step 2: Integrating by parts yields

Step 3: We present a heuristic argument which can be fully justified. The equation
(5.57) holds for all smooth functions h.

(i) We consider first the set of all smooth functions h for which h — 0 along the boundary
3D. Then the boundary integral in (5.57) vanishes, and since h is arbitrary, we get

Qxx +<lyy + f = Q °n D.

(ii) Thus the integral over D vanishes in (5.57). Since we can choose a function h with
arbitrary values along the boundary, we get

Remark: For the variational problem (5.50), a similar argument leads to a similar
result. Since q = if) along dD, one is in this case, however, restricted to functions h for
which h = 0 along dD. The conclusion (i) then yields (5.51).
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The principle of stationary
action for a vibrating string:
We let the equation q = q(x, t)
describe the displacement of a
string at time t at a point x
(Figure 5.21(a)). We set D :=
{ ( x , t ) € R2 : 0 < x < I, t0 <
t<ti}.

For the Lagrange function
Figure 5.21. The principle of stationary action for a
vibrating string.

L = kinetic energy — potential energy

(where p denotes the density and k is the material constant), the principle of stationary
action states

stationary,

q is given along the boundary 3D.

The corresponding Euler-Lagrange equation (Lqt)t + (Lqx)x = 0 yields the equation for
the vibrating string

with r2 = k./n.

Theorem: The most general (72-solution of (5.58) is

q(x, t) = a(x — ct) + b(x + ct), (5.59)

where a and b are arbitrary C2-functions. The solution (5.59) corresponds to the super-
position of two waves which expand with velocity c in opposite directions (one from left
to right, one from right to left).

5.2.3 Problems with constraints and Lagrange multipliers

We discuss this important approach in an example.

The eigenvalue problem for the Laplace equation: In order to solve the variational
problem

we choose, in analogy with 5.1.6, the modified Lagrange function
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The real number A is called the Lagrange multiplier. The Euler-Lagrange equation for
Jgf is

This corresponds to an eigenvalue problem

One can show that (5.61) is a necessary condition for the existence of a C2-solution of
(5.60). The Lagrange multiplier A becomes in this case an eigenvalue.

5.3 Control problems

Goal: Control theory develops mathematical tools for optimizing processes by choosing
control quantities (or controls] appropriately.

Example 1: If a space ship returns from the moon, the en-
trance trajectory has to be controlled in such a way that
the heat shield is confronted with a minimal amount of
heat. For this, there was no way to carry out experiments;
rather NASA had to use model equations of the engi-
neers and numerical simulations using these. The com-
puter computations turned out to be extremely sensitive
to small changes in the control parameters. In fact, there
is only a small window of possible entries for the space
capsule. If this window is missed, the capsule will melt or
is bounced back into space. Figure 5.22 shows the trajec-

tory. Somewhat contrary to expectations, the capsule first descends rather deeply into
the atmosphere, only to then gain altitude until it has reached a stable circular orbit,
from which the final descent is performed.15

Example 2: The take-off of a rocket should use a minimal amount of fuel to reach a
predetermined altitude. This problem is considered in [212].

Example 3: The moon lander had to be controlled in such a way as to make the landing
as smooth as possible while at the same time using a minimum of fuel.

Example 4: A flight of a space ship to Mars is to be determined in such a way that a
minimal amount of fuel is required. For this, the trajectory is calculated by computer
simulations using the gravitational effect of other planets.

Two different strategies in control theory: Modern control theory originated in
the years between 1950 and 1960. This generalized the classical calculus of variations in
two directions:

Hamiltonian mechanics
Hamilton-Jacob! differential equa-
tions for the action functional S

Hamilton's canonical equations for
the energy function H

Control theory
Bellman dynamical optimization

the Pontryagin maximum principle.

15The problem is dealt with using the Pontryagin maximum principle in [213], Volume III, section
48.10.

Figure 5.22.
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5.3.1 Bellman dynamical optimization

The basic problem: We consider the minimization problem

In addition we have the following constraints.

(i) Control equation for the state z (the function u is referred to as the control):

z'(t) = f ( z ( t ) , u ( t ) , t ) .

(ii) Initial condition for the state:
z(to) = a.

(iii) Final condition for the state:

(iv) Constraint on the control:

The parameter t corresponds to time. The unknowns are the final time t\ as well as

a trajectory z = z(t) and an optimal control u = u(t).

The notations are as follows: z = (zi,..., ZN) and u = (ui,..., UM}- The initial time to
if given as is the initial position a, the time interval & and the sets Jf° C M^, ^ C RM.
Admissible pairs: A pair of functions

is said to be admissible, if these functions are continuous except for a finite number
of jumps, and in addition satisfy the constraints (i) to (iv) above. The set of all such
admissible pairs will be denoted Z(to, a).

The Bellman action function S: We define

i.e., we form the infinimum over all admissible pairs. In what follows we shall study the
function S, allowing the initial conditions (to, a) to vary.
Main Theorem (a necessary condition): Let (z*, u*) be a solution of the control prob-
lem (5.62). Then the following three conditions are satisfied.

(i) The function S — S ( z ( t ) , i) is strictly decreasing on the interval [£Q, ti] for all admis-
sible pairs ( z , u ) .

(ii) The function S = S ( z * ( t ) , t ) is constant on [to,£j].

(iii) We have 5(6, ti) = F(Mi) for all 6 e 3T, ti e &.

Corollary (a sufficient condition): If 5 is a function which together with an admissible
pair (Z*,M*) satisfying (i)-(iii) above, then (z*,u*) is a solution of the control problem
(5.62).
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The Hamilton-Jacobi-Bellman equation: We assume that the action function S
is sufficiently smooth. For every admissible pair (z, u) we have the inequality

on [to)*i]- F°r a solution of the control problem (5.62), the inequality in (5.63) is an
equality.

5.3.2 Applications

Linear control problems with quadratic cost function:

Here, A and B are real numbers.

Theorem: Let w be a solution of the Riccati differential equation

on [io^i] with w(ti) = 0. Then a solution x = x(t) of the control problem can be
obtained as a solution of the differential equation

The optimal control u = u(t) is given by

Feedback control: The equation (5.67) describes a coupling between the state x(t)
and the optimal control u(t) (feedback control). The design of such optimal controls can
be particularly efficiently constructed in this manner in engineering and are also often
found in biological systems. Equation (5.66) arises upon insertion of the coupling (5.67)
into the control equation (5.65).

Proof, Step 1 (reduction of the problem): We introduce a new function y(.) by the
relation

For y as variable we obtain the equivalent problem

Moreover, we set z := (x,y).

Step 2: For the Bellman action function S we use the Ansatz

S(x,y,t) :=w(t)x2 +y.

Step 3: We check the assumptions of the Corollary in 5.3.1.
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(i) If w = w(t) is a solution of the Riccati equation and if x = x(t), u = u(t) satisfy the
control equation (5.65), then

Thus the function S = S(x(t),y(t),t) is decreasing with respect to time t.

(ii) If the coupling condition (5.67) is satisfied, then in (i) we have equality, i.e,
S(x(t),y(t),t) = const.
(iii) From w(ti] = 0 we obtain S(x(ti),y(ti),ti) — y(t\).

5.3.3 The Pontryagin maximum principle

The control problem: We consider the minimization problem

In addition we have the following constraints:

(i) Control equation for the trajectory q:

q'(t} = f(q(t),u(t),t).

(ii) Initial condition for the trajectory q:

q(t0) = a.

(iii) Condition for the trajectory at the final time t\:

Mg(*i),*i)=0.

(iv) Constraint on the control:

for all times

Remark: All possible finite intervals [to>*i] need to be taken into consideration. The
control u — u(t) is assumed to be continuous except for a finite number of jumps.
Moreover, we assume that the trajectories are continuous and that except for a finite
number of points they have first derivatives with respect to time t. We set

Q= ( g i , - - - , g j v ) , u = ( U I , . . . , U M ) , / = (/i, • • • ,/N), h = (hi,... ,hN).

The given quantities are the initial time to, the initial position a € RN and the set of
controls <% C RM. Finally, we assume that the given functions L, / and h are Cl.

The generalized Hamiltonian J%?: We define

Main Theorem: If q,u,ti form a solution of the given control problem (5.68), then
there is a number A = 1 or A = 0, a vector a € Rw and a continuous function PJ = Pj(i)
on [to,ti] such that the following conditions are satisfied.
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(a) Pontryagin maximum principle:

(b) Generalized canonical equations:16

(c) The condition at the final time t±:17

Here either and If h = 0, then A = 1.

Corollary: If we set

at the points of continuity t on the right-hand side, then PQ can be extended to a
continuous function on all of [to,£il- Moreover,18

and
Po(ti) = ht (g(<i),£i) a.

The equations (a), (b) and (5.69) hold for all times t in [io>*i] in which the optimal
control u = u(i) is continuous.

5.3.4 Applications

The optimal control of an idealized motorized
vehicle: A vehicle W of mass m = 1 is supposed to
be at rest at the point x = — b at the initial time
to = 0. This vehicle now moves under the force
of the motor u = u(t) along the x-axis. We seek a
motion x = x(i) such that W reaches the point x = b

Figure 5.23.

in the shortest possible time ti, where is comes to rest (Figure 5.23). It is important
that the power of the motor satisfies the constraint |tt| < 1.

Mathematical formulation of the problem:

16This means

with Q : = (q(t),u(t),p(t),X).

17This means p^(ti)

18This means p'0(t)



5.3. Control problems 945

Bang-bang control: We now show that the optimal control is a motion of the vehicle in
which a maximal acceleration is followed by a maximal deceleration. The procedure is
to use the full power of the motor u = 1 for the first half of the way, up until x = 0, and
the decelerating (brakes!) with u = — 1.

Proof utilizing the Pontryagin maximum principle: We set q\ :— x, q^ '•= x'. Then we
have

According to 5.3.3 the generalized Hamiltonian is given by

Let q = q(t) and u = u(t] be a solution. We set

TVifin bv virt.np nf 5 3.3.

From (ii) to fiv) it follows that pn(t) = 0, Pi(t) = — a\, p->(i) = a-\(t — t-\) — ao.

Case 1: Let ai = a^ = 0. Then This contradicts (i) with
0, so this case is excluded.

Case 2: Then and (i) then implies

This yields

Since p2 is linear, it can change sign at most once. Suppose this happens at time t*.
Since at time t\ there must be a deceleration, we get

Prom the equation of motion x"(i) = u(t), we obtain

At the time t* at which the acceleration changes to deceleration, the position and the
velocity must coincide. Therefore,

x'(tj = t*=ti-t*,
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or t* = t\/1. Finally, from

we see that x(t*) = 0. This means that the vehicle must be at position x = 0 at the
time £* in which acceleration changes to deceleration.

5.4 Classical non-linear optimization

5.4.1 Local minimization problems

Suppose we are given a function

which is denned in a neighborhood U of a point x*. It suffices to study minimization
problems, since a maximization problem turns into a minimization one upon replacing
/ by ~/• Let x = (xi , . . . , xjy).
Definition: The function / is said to have a local minimum at a point x*, if there is a
neighborhood V of x* such that

If /(x*) < /(x) for all x € V with x ^ x*, then we call x* a strict local minimum.

Necessary condition: If / is C1 and if / has a local minimum at x*, then

/'(x*) = 0.

This is equivalent19 to djf(x*) = 0, j = 1,..., N.

Sufficient condition: If / is of type C2 and f ' ( x * ) = 0, then / has a strict local
minimum at x*, provided that:

The matrix /"(x*) of second partial derivatives of / at the point x*
has only positive eigenvalues.

The condition (D) is equivalent to the fact that all principle sub-determinants

are positive for M = 1,.. . , N.

Example: The function has a strict local minimum at x* = (0,0).

Proof: We calculate: d \ f ( x )
<9id2/(0,0) = 0. This implies

(0,0) = 1 and

and
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5.4.2 Global minimization problems and convexity

Theorem: For a convex function / : K C RN —> R from a convex set K, every local
minimum is a global minimum.

If / is strictly convex, then / has at most one global minimum.

Convexity criterion: A C2-function / : U C RN —> R on an open convex set U is
strictly convex, if the matrix f"(x) has only positive eigenvalues at all points x in U.

Example: The function f ( x ) In £7 is strictly convex on the set U :=

~RN | x3> 0 for all j}. Consequently —/ i s strictly concave on U. The entropy function
(cf. 5.4.6) is of this type.

Proof: All determinants

det

with M — 1,.. . , N are positive for

Continuity criterion: Every convex function / : U C R^ —>• R on an open convex
set U is continuous.

Existence result: If / : RN —> R is convex and if j
the function / has a global minimum.

then

5.4.3 Applications to Gauss' method of least squares

Let the following TV measurements be given:

xi,yi; #2,2/2; • • • ; xN,yN.

We wish to approximate these data with a family of curves

y = f(x;a1,...,aM)

depending on the M parameters a i , . . . , GM- To do this, we apply the following mini-
mization problem:

Theorem: A solution a = (ai, . . . , OM) of (5.71) satisfies the system of equations

Proof: Differentiate (5.71) with respect to am and set this derivative equal to zero.
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In 1795, the 18 year old Gauss came up with this method of least squares. He repeatedly
used this method elegantly later on in astronomical calculations as well as in geodesy
problems.

The numerical solution of (5.72) will be considered in 7.2.4.

Fitting a given curve with Mathematica: This software system has a convenient
algorithm for fitting data by means of a given class of functions.

5.4.4 Applications to pseudo-inverses

Suppose we are given a real (n x m)-matrix A and a real (n x l)-column matrix b. The
objective is to find a real (m x l)-column matrix x such that

This means we solve the problem Ax = bin the sense of Gauss' method of least squares.20

The problem (5.73) is, however, not always uniquely solvable.

Theorem: Among all possible solutions of (5.73), there is a uniquely determined el-
ement x for which \x\ is minimal. For this particular solution and for every 6, the
equation

x = A+b

can be uniquely solved for a real (m x n)-matrix A+, which is referred to as the pseudo-
inverse of the matrix A.

If bj denotes a (n x l)-column matrix, which has a 1 in the jth position and otherwise
only zeros, and if Xj denotes the particular solution of (5.73) with b = bj, then we have

A+ = (xi,...,xn).

Example: If A is quadratic with inverse A~l, then the problem (5.73) has the unique
solution x = A~lb (as it should), and A+ = A~*.

5.4.5 Problems with constraints and Lagrange multipliers

We consider the minimization problem

Here we have set x = (x i , . . . , XN) with N > J. Consider the following assumption.

The functions /, QJ R are of type Cn in a neighborhood
U of a point x*, and assume the important boundary condition

rank g'(x*) = J

is satisfied. Moreover, assume QJ(X*) = 0 for j = I,..., J.

(H)

20
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Necessary condition: Assume that (H) holds with n = 1. If x* is a local minimum of
(5.74), then there are real numbers AI, . . . , Aj (Lagrange multipliers) such that

for & := / - AT#.22

Sufficient condition: Assume that (H) is true with n = 2, that there are numbers
AI, ..., Aj with &'(x*} = 0, and that &"(x*) has only positive eigenvalues. Then x* is
a strict local minimum of (5.74).

The shortest difference between two points on a curve:

Here it is assumed that g is in the class C1. The objective is to find a point x* on the
curve C which has the shortest distance to the origin (0,0) (Figure 5.24(a)).

The condition rank^'(x) = 1 on
the rank of the g' means that
Szi(z)2 = 9x2 (z)2 ^ 0, i.e., that
the normal vector to the curve n
exists at the point x. We set

The necessary condition for the
existence of a local minimum in
(5.76) is &'(x*) = 0, that is Figure 5.24- Minimizing distance.

This means that the line connecting the origin with the point x* intersects the curve C
at a right angle.

Example: If we choose the line g(xi, x^) := x\ + x? — 1 = 0, then the solution of (5.76)
is

Proof: (i) The necessary condition is satisfied: from (5.77) we see that

i.e., that x\ = x\. From x\ + x\ — 1 = 0, (5.78) and A = 1 follow.

(ii) The sufficient condition is satisfied: we choose &(x] = f(x] — X(x\ + xo — 1) with
: 1. Then

proving the claim.
21 This means that the matrix (d^gj(x*)) of first partial derivatives at x* has maximal rank.

22 More explicitly, this means &'(x) := /(x) and dj^(x*) = 0 for j = 1,. .., J.
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5.4.6 Applications to entropy

We wish to show that the absolute temperature T of a gas can be viewed as a Lagrange
multiplier.

The basic problem of statistical physics:

Interpretation: We consider a thermodynamical system E (for example a gas with
a variable number of particles due to an ongoing chemical reaction). We assume that
E has the probability Wj of having an energy of Ej and number of particles Nj. By
definition,

is the entropy (or information) of the system S, where k denotes the Boltzmann constant.
Assume that we know the average total energy E and the average number N of particles.
Then (5.79) is essentially the principle of maximal entropy. We have

Theorem: If (wi,... ,wn) is a solution of (5.79) with 0 < w3, < 1 for all j, then there
are real numbers 7 and 8 such that for j = 1 , . . . , n we have

Remark: In statistical physics it is customary to set

and call T the absolute temperature and // the chemical potential. If we insert Wj into
the constraint of (5.79), then T and p, become functions of E and N. The formula (5.80)
is the starting point for the entire classical and modern theory of statistical physics (see
a detailed discussion in [212]).

Proof: We set

Here the summation is over j from 1 to n. The numbers a, 7 and 6 are Lagrange
multipliers. Prom &'(w) = 0 it follows that the first partial derivatives of & with
respect to Wj vanish, i.e.,
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This yields Wj = const • exp^Ej + SNj). The constant is obtained from the relation

y^ttfj = 1, completing the proof. D

5.4.7 The subdifferential

Subdifferentials are important instruments of modern optimization theory. They replace
the derivative in the situations which are not sufficiently smooth to define the latter.23

Definition: Let a function / : R^ —> M be given. The subdifferential df(x*) consists
of all p e RN with24

The elements p of df(x*) are called subgradients of / at the point x*.

Minimum principle: A function / has a minimum at a point x* if the generalized
Euler equation

is satisfied.

Theorem: If / is of type C1 in a
neighborhood of a point x*, then
df(x*) coincides with the deriva-
tive f'(x*), and (5.81) is the clas-
sical equation /'(#*) — 0.
Example: Let y = f ( x ) be a real- Fi9ure 5'25' Subtangents.
valued function. A subtangent at
x* is a line through the point (x*, /(x*)) which the graph of / lies above (Figure 5.25(a)).
Here we do not assume that a tangent at the point (x*, f ( x * ) ) exists. Then

The subdifferential df(x*) consists of the slopes of all subtangents at x*.

Equation (5.81) expresses the fact that there is a horizontal subtangent at a minimum
x* of / (see Figure 5.25(b)).

5.4.8 Duality theory and saddle points

In addition to a given minimization problem

we want to construct a corresponding maximization problem

23 A detailed presentation of the subdifferential and the numerous applications of it can be found in
[213], Volume III.
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which gives us a sufficient solvability condition for (5.82). To do this, we choose a
function L = L(x, y) and assume that F can be written as

Then we can define G by

Here L is a function L : X x Y —> M for any two non-empty sets X, Y.

Saddle point: By definition, (x*,y*) is a saddle point of L, if

Main Theorem: If one knows points x* e X and y* e Y with

then x* is a solution of the original problem (5.82), and y* is a solution of the dual
problem (5.83).

Corollary: (i) For any two points x G X and y e y, one has the approximation for the
minimizer a:

Moreover G(y) < (3 < F(x), and ft < a.

(ii) A point x* is a solution of (5.82) and y* a solution of (5.83) if and only if (x*, y*) is
a saddle point of L.

This simple principle has a variety of applications. Some of these can be found in [213],
Volume III, Chapters 49-52.

5.5 Linear optimization

Linear optimization studies the minimum of linear functions under certain constraints
which are either linear equalities or linear inequalities. The corresponds geometrically to
the minimization of linear functions on sets which are the intersection of finitely many
hyperplanes and half-spaces.

Linear optimization with Mathematica: This software package can solve arbitrary
linear optimization problems, using the simplex algorithm (see 5.5.4 below). In what
follows we only describe the basics of the theory. For experimental work or actual
calculations we recommend Mathematica.

5.5.1 Basic ideas

We set,

For problems in two- or three-space we write x = x\, y = x2 and z = x$.
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Extremal points: A point x of a convex set K C W1 is called an extremal point, if it
is not an inner point of an interval whose endpoints are in K, i.e., if it is not of the form

Example 1: The extremal points of the triangle K in Figure 5.26(a) are precisely the
vertices.

Theorem of Krein—Milman:
The smallest compact convex set
containing all the extremal points
of a given compact convex subset
K of Rn is K itself.

Main Theorem of linear op-
timization: If F : RN —»• R is
a linear function and K a non-
empty, compact convex subset of
RN, then the minimization prob- Figure 5.26. The Krein-Milman theorem.
lem

has a solution, which is one of the extremal points of K.

The set of all solutions is itself a convex set.

The set K is called the admissible domain of the problem. In future we will also refer
to extremal points (at least in a linear context) as vertices.

The idea of the simplex algorithm: The simplest version of the famous simplex
algorithm is obtained by taking the values of F at all vertices of K and picking out the
one for which the value of F is minimal. The simplex algorithm is, however, more subtle
and elegant. It begins at one vertex and can decide without any comparison whether
this vertex is already a solution. If it is not a solution, the next vertex is checked, and
so on.

Example 2:

The constraints (5.85) define the admissible domain K, which is a triangle (Figure
5.26(a)). The extremal points of K are the vertices

(0,0), (0,1), (1,0).

For the function F(x, y) := x + y we obtain

F(0,0)=0, F(0,l) = l, F(l,0) = l.

Hence (0,0) is a solution of (5.84) and (5.85).
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Geometric interpretation: We consider the plane E : z = x + y over the admissible
domain K and look for the coordinates (x, y) of the point of the plane which is nearest
to K (Figure 5.26(b)).

Graphical method of solution for plane admissible domains: We draw the level
lines

F(x,y) = c,

and let the constant c get smaller and smaller; then we determine the value of c for
which the level line leaves the admissible domain.

Example 3: In (5.84) and (5.85) we need to consider the level lines x + y = c (Figure
5.27).

Geometric complications:

(i) //, as it can happen, the admissible set is empty, then there are no solutions at all.

Figure 5.27. Figure 5.28. Figure 5.29.

Example 4- There is no point (x, y) in the plane with y = —1 and x > 0, y > 0 (Figure
5.28).

(ii) //, as it can happen, the admissible domain is unbounded, there not need to be any
solutions.

Example 5: The problem

has as admissible domain K the stripe pictured in Figure 5.29. There is no solution to
the problem. On the other hand, the problem

with the same admissible domain, does have a solution (for example (0,0)).

(iii) The admissible domain arises from a geometrically degenerate situation.

In a non-degenerate situation the vertices P are intersection points of (exactly) n hy-
perplanes in En. A degenerate situation is the case where more than n of the defining
hyperplanes meet at P.

Perturbations: A degenerate situation can be turned into a non-degenerate one by
means of a small perturbation.
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The simplex algorithm can fail in degenerate situations.

Example 6: In Figure 5.30,
P is a degenerate vertex,
since three lines intersect
there. The second picture
shows how a small pertur-
bation alleviates the prob-
lem.

Figure 5.30. Perturbing a degenerate vertex.

5.5.2 The general linear optimization problem

Written in matrix notation, a general linear optimization problem can be expressed by
the following set of equations:

The vectors x and y are to be determined.

Written out in terms of coordinates, these equations are explicitly

The real numbers #1,. . . , xn and yi , . . . , yr are to be determined.

For the formulation of the simplex algorithm it is convenient to pass to a normal form.

Problems of type LOP: The term LOP is used to denote a linear optimization problem
(LOP) of the form

We assume that b > 0, and that the rank of the (m x n)-matrix A is equal to m with
m < n.
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Admissible domain: The admissible domain K of (5.87) is given by the set

Thus K is the intersection of the first quadrant with m linear independent hyperplanes
(m < n).

Example 1: Figure 5.31 shows some
possibilities for K in the plane case
n = 2.

The reduction to form (5.87):
Every linear optimization problem
can be reduced to that of type LOP,
by introducing if necessary several
new variables.

problems of type LOP. corresponding row with (-1).
(ii) An inequality can be turned into
an equality by introducing a new
variable z.

Example 2: We turn the inequality x + y < I into the equality x + y + z — I by assuming
that z > 0.

(iii) If x > 0, then we set x = y — z, y > 0, z > 0 with the new variables y and z.

The advantage of having the problem in the form of LOP is that one can easily char-
acterize the vertices of the admissible domain K. We write for this A = (ai , . . . ,an)
where &j denotes the jth column of A.

Vertex theorem: A point x = (x i , . . . , xn)T is a vertex of K if and only if the following
hold:

(i) x is a solution of the system of equations Ax = b.

(ii) All components Xj are non-negative.

(iii) The columns a., of A which belong to the positive components Xj are linear inde-
pendent.

If the problem (5.87) is solvable, then a vertex of K is a solution.

Definition: A vertex of K is
said to be non-degenerate, if is
has a maximal number of pos-
itive components, i.e., m.

Basis: A basis of a vertex x is
a set of m linearly independent
column vectors of A contain-
ing all those columns which
belong to positive components

Figure 5.32. Vertices of admissible domains. xi'
There is a uniquely determined

basis for a non-degenerate vertex.

Example 3: For the admissible domain

one has A = (1,1,1) and m = rank A — 1. The three vertices (1,0,0), (0,1,0) and

Figure 5.31  Admissible domains for (i) If bj  0, Then we multiply the
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(0,0,1) are non-degenerate (Figure 5.32(a)).

Example 4- For the admissible domain

one has

with m = rank A = 2. The vertex P = (0,0,1) is non-degenerate (Figure 5.32(b)).

5.5.3 The normal form of an optimization problem and the min-
imal test

Definition: The linear optimization problem is said to be in normal form, if it has the
following form:

In addition we assume that bj > 0 for all j.

We call xi,...,xn^m the non-basis variables and xn-m+i, • • •,xn as the basis variables.

Examvle 1: The Droblem

is in normal form. The variables xi,x-2 are the non-basis variables and £3,24 are the
basis variables.

This normal form has the great advantage that one can see immediately the behavior of
the solutions from it.

Minimal test: (i) If PJ > 0 for all j, then

is a solution of (5.89) with a minimal value of c. This solution is called the basis solution
and represents one of the vertices of the admissible domain.

Ifpj > 0 for all j, then (5.91) is the only solution of (5.89).

(ii) If there is a (column) index j such that PJ < 0 and aij < 0 for all (row) indices i,
then the problem (5.89) has no solution.

Exchange: If neither of these two cases attains, then the simplex algorithm passes over
to a new normal form. To obtain the latter, one chooses an appropriate basis variable
Xj and an appropriate non-basis variable Xk and exchanges these two, i.e., one makes
Xj to a non-basis variable and Xk to a basis variable.
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One can then apply the minimal test to this new normal form.

Degeneracy: It is possible that this process never comes to an end, because an (un-
usual) case of degeneracy is in effect. In this case one makes a small perturbation of
the problem to obtain a non-degenerate one. This is done by replacing one of the 6j by
hi + e with e sufficiently small. Once one has obtained a solution to this non-degenerate
problem, one can set e = 0 to get a solution of the original problem.

5.5.4 The simplex algorithm

5.5.4.1 The simplex tableau

In order to have a convenient method to calculate with the simplex algorithm, the
so-called simplex tableau is used. For the normal form (5.89), this scheme is given as
follows:

In the first row the non-basis variables are lined up, in the first column the basis variables.

Example: For (5.90), the tableau is

For concrete calculations the form on the right is more convenient, in which the vectors
Xj are replaced by the indices j.

5.5.5 The minimal test

The minimal test from 5.5.3 is now applied to the simplex tableau.

Example: We consider the tableau (5.93).

Case 1: If a > 0, then the problem (5.90) has according to the minimal test the solution

Il=a;2= 0, Xs = 3, Z4 = 5

with the minimal value c of the function we wish to minimize.

Case 2: If a < 0, then we need to perform the exchange of variables to the simplex
algorithm.
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Exchange: We replace the tableau (5.92) with the new tableau

by replacing all quantities by primed quantities.
The pivot column: We choose the smallest PJ in the last row of (5.92). Let the column
number be denoted by s. The column consisting of the Oj8, i = 1,2,... in the tableau
(5.92) is by definition the pivot column.

Case 1: All elements a,8 of the pivot column are non-positive. Then the given optimiza-
tion problem has no solution.

Case. 2: Case 1 does not occur. Then we perform the following steps.

The pivot row: For all positive elements Ois in the pivot column we form the quotient

We now choose the (or a, if not unique) row z for which this quotient is minimal, and
call it the pivot row.

The pivot element: We call azs the pivot element and set

Exchange of variables: We make the exchange

All other variables are left untouched. In what follows we assume i ̂  z and j ^ s.

The new pivot row:

The new pivot column:

The other rows and columns:
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5.5.5.1 An example

For the problem in the canonical normal form

we get the simplex tableau

The pivot element is framed. The first exchange (of x-2 and xg) yields

Here the elements for exchange have been circled. In the last row all coefficients PJ are
still not all non-positive, so we may continue with further exchanges
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until we finally reach the convenient tableau

in which all quantities PJ > 0 (last row).

Solution: The first row of (5.96) contains the indices of the basis variables. According
to the minimal test, we read off of (5.96) the basis solution

X4 = 3, £5 = 2, XQ = 2, x\ = 2, x-i = 6 and £7 = xg = #3 = 0.

In the lower right hand corner of (5.96) we have the minimal value of the function which
we wish to minimize, namely 38.

5.5.6 Obtaining the normal form

Use of an initial vertex: We first assume that we know a vertex of the admissible
domain K. Then we can always produce the normal form as follows.

We choose a basis belonging to the vertex x. Perhaps after a renumbering we may
assume that this basis consists of the columns an_m-|_i,... ,an of A. The equation
Ax = b corresponds to the equation

aizi + ... + an_mzn_m + an_m+i2;n_m+i + ... + anxn = b. (5.97)

We can solve this equation for the basis variables xn-m+i,...,xn. This leads to the
normal form of the problem.

Calculation of an initial vertex: Suppose we are given the problem

of type LOP. We introduce the additional variables xn+\ ...,xn+m and consider the
auxiliary problem

which is already in normal form.

Theorem: If the admissible domain of (5.98) is non-empty, then every solution of (5.99)
is of the form

(an, . . . ,a : n ,0 , . . . ,0)
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and this is a vertex of (5.98).

If the auxiliary problem (5.99) has a solution with a positive minimal value, then the
admissible domain of the original problem (5.98) is empty.

Normal form: We are given the problem (5.98) of type LOP.

(i) We apply the simplex algorithm to the auxiliary problem (5.99) and obtain a vertex
x of (5.98).

(ii) We choose a basis belonging to x. Then we obtain the normal form from (5.97).

5.5.7 Duality in linear optimization

In addition to the original problem

for (x, y) we also consider the dual maximization problem

for (u, v).

Theorem: (i) If one of these problems is solvable, then so is the other and the extremal
values of the functions one is varying are the same.

(ii) Repeating the dualization leads back to the original problem.

Necessary and sufficient conditions for a solution: We assume that (x, y) resp.
(u, v) satisfy the constraints of (5.100) resp. of (5.101). Then the following two state-
ments are equivalent.

(a) (x,y) is a solution of (5.100) and (u, v) is a solution of (5.101).

(b) One has

Example: The dual problem to

is

If p > 0, then the dual problem can be immediately brought into normal form by
introducing new variables as in section 5.5.2.
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5.5.8 Modifications of the simplex algorithm

There are some classically convenient modifications of the simplex algorithm which can
save calculations, among which we mention

(i) the revised simplex algorithm, and

(ii) the dual simplex algorithm.

In (i) the inverses of the basis are used. In the case of large systems (many variables)
this can amount to a large reduction in the number of calculation steps required, and
the precision can be much improved.

In (ii) the structure of the dual problem is utilized. One calculates a non-degenerate
solution of the dual problem and obtains through (5.102) a linear system of equations
whose solutions solve the original problem.

The dual problem is used if it contains fewer constraints than the original problem or
when it can more easily be reduced to normal form.

5.6 Applications of linear optimization

A surprising number of problems arising naturally can be reduced to linear optimization
problems. We explain this in a few typical examples.25

5.6.1 Capacity utilization

Example: Suppose we produce four products A* in quantities which lie between a^ and
bi for i = 1,..., 4, with cost per produced unit pi. Each product Ai requires aij minutes
of work on three machines Mj, j = 1,..., 3, whose utilization lies between HJ and nij
minutes. The object is to find the production plan which minimizes cost.

Variable a^: Let this be the number of units of type Ai which are produced.

Mathematical model:

Variant: Letting PJ denote the profit instead of cost, this turns into a maximization
problem.

Other examples:

AJ | Mj

agricultural units work force, machines
domestic animal species work force, stalls, feed.

25Section 5.6 owes quite a bit to the sections 6.2 and 6.3 of [354].
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5.6.2 Mixing problems

Example: We have three raw metals Mj with respective densities aa, carbon contents
Oj2 and phosphor contents a^ which we are to mix together in amounts lying between ctj
and bi to form an alloy. The cost of each is Pi dollars per kilogram and the alloy should
have a density lying between n\ and mi, a carbon content lying between n<i and m^ and
a phosphor content lying between n^ and m^. The total produced amount should be c
kilograms and the cost should be minimal.

Variable Xj: This is the amount of the jth substance measured in kilograms.

Mathematical model:

Other examples:

MJ Oij

feed nutritional value, amounts of harmful substances
natural gas thermal value, amounts of sulfur and dust
varieties of turnips yields of leaves and roots.

5.6.3 Distributing resources or products

Example: We are to produce m products Pj in amounts aj. We have n machines Mj
available for the production, each with bi minutes machine time. Each unit of product
PJ can be produced on any of the machines MJ, with costs Cij minutes and pij dollars.
The object is to determine the optimal plan for production, incurring a minimum of
costs.

Variable Xij: The amount of Pj which is produced on machine Mj.

Mathematical model:

Variant: Minimize the total amount of time used by the machines.

We choose model (M) with the function F to be minimized given by
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Example 1:

PJ Mi Cij pij Goal

agricultural units  fields  const income max!

factories energy supplier const degree of utilization max!

products factories cost profit max!.

Example 2:

Pj | MJ p^ Goal

m products n factories cost of production min!

m factories to be constructed n sites cost of construction min!

m trains to be put together n tracks maneuver movements min!

m tasks n workers time invested min!.

5.6.4 Design and shift planing

Example 1: For a raw material delivered in the form of rods of a single length I, there
are Zi design variants, i = 1 , . . . ,6 for producing the following order: aj parts Tj oi
length l j , j = 1,2,3,4. For design variant Zi the number of parts Tj produced is kij.
The order should be produced using a minimal number of rods.

Variable Xi: The number of rods required using variant Zi.

Mathematical model:

Remark: By introduction of new variables and multiplying the equations by —1 we
obtain immediately a dual-admissible normal form, so that the simplex algorithm makes
sense.

Further examples:

Raw material Tj

pieces of plywood cut pieces

material rolled in L-meter rolls or smaller pieces of material or strips of
metal sheets of width I the metal sheet of width /_,-.

Deriving plans for shifts for libraries, ticket sales booths etc. can be modeled in the same
way. Let Zi be the different shifts for a day, Tj certain times of the day, kij = 1 if the
shift Zi is active at time Tj and fcy = 0 otherwise. Moreover, let a, be the number of
workers active at time Tj and Xi those workers in shift Zi.

In the special case a,- = 1, kij = 0,1 certain over-coverage problems arise, which require
the methods of integral linear optimization to be dealt with.

Example 2: There are six projective sites Zi for the establishment of water work plants,
each of which supplies several of four townships TJ; if Zi supplies Tj then kij — 1, and



966 5. Calculus of Variations and Optimization

kij = 0 otherwise. By constructing as few plants as possible, each of the four townships
Tj should be supplied by at least one of the plants.

Variable: Let Xi = 1 if a plant is to be constructed at Zi, and Xi = 0 otherwise.

Mathematical model: We choose the design model with ai = 02 = 03 = 04 = 1 and the
additional constraint Xi — 0 or Xj = 1 for i — 1, . . . , 6.

Variant: The cost of construction of a plant at Zi is pi\ the objective is to minimize the
cost while at the same time assuring that all townships are supplied. The function to
be minimized is then

P\X\ + P-2.X-2 + P3X3 + p4X4 + p5X5 + p6X6.

We could also require that each township is supplied by n of the plants, in which case
we would have a» = n.

Further examples:

Zj | Tj

phases of a traffic light amount of traffic to be accomodated
applicants for an expedition capabilities which need to be provided

(medical, network, language . . . ) .

5.6.5 Linear transportation problems

Linear transportation problems are problems of linear optimization which have a special
structure. Because of this they can be treated particularly effectively with a special
variant of the simplex algorithm, which is fittingly called the transport algorithm.

Formulation of the problem: We seek the most cost effective solution for transporting
a product

from 77i warehouses (indexed by i = 1,..., m)
to n consumers (indexed j = 1, . . . , n).

If consumer j acquires a unit of the product from warehouse i, then this incurs

COStS Pij.

We assume that the cost of transport is proportional to the amount of product trans-
ported, and introduce the following notations:

Q.J requirement of consumer j,
bi the amount of the product available at warehouse i.

Here we assume that

Remark: If then the difference remains in the warehouses.

To deal with this case, we introduce a virtual consumer n + 1 whose requirement is
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and set the transport costs Pi,n+i for this virtual consumer equal to

zero. The quantity x^n+i (see below) can be visualized as the amount remaining in tm
warehouses.

Variable Xij: This will denote the amount of product which is transported from ware
house i to the consumer j. In view of (5.103) we have to solve the following linea]
optimization problem:

A transport problem of this kind can be characterized by a transport table and a cost
table, as follows:

We will then represent an admissible transport plan by a transport table

The sum of the ith row is 6j, the sum of the jth column is Oj, and all x^ are required to
be non-negative.

Example:
I 20 5 10 10 5

1 5 5 6 3 5 9
1 5 6 4 7 3 5
20 2 5 3 1 8 .
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We obtain the following linear optimization problem

with function to be minimized given by

Main Theorem: Every transport problem has a solution.

Integrality Theorem: If all a,- and 6j of the transport problem are integral, then th
variables Xij, written in terms of any basis (in particular with respect to any optirm
solution) have integral values as well.

5.6.5.1 Obtaining an initial configuration

We first write down the table

1. We choose a field (i*,j*).

2. We replace the spot ( i * , j * ) in the table with Zj.j. = min{6j*,a,*}:26

(a) bi* < aj*: The rest of the i*th row is deleted. (This means that the entire amount

of the product from warehouse i* is delivered to j*.} The element a.,* is then replaced
by (aj« — 6j«), and 6j. is replaced by a 0.

26If min{&i*, o,j« } = 0, then we enter a 0. There is a difference between entering a 0 and making no
entry at all!
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(b) frj. > flj«: The rest of the entries of the j*th column is deleted. (This means that
customer j* has already received the full amount of his or her requirement.) The element
6j* is replaced by (6j« — a,-*), and a,j» is replaced by a 0.

Exceptional case: If the tableau only consists of one column, then one does not delete
this column, but rather the i*1 row.

3. The rest of the table contains a row resp. column less than the previous one.

This procedure is repeated until the table has no remaining free fields.

After a finite number of steps, we can relate each of the entries in the original table with
either a deleted entry or an entry which is one of the numbers x^. We have thus found
a basis solution to the problem: precisely the variables x^ which are related to a deleted
entry are the non-basis variables. The others are transformed into the basis variables
Xij. In every row and every column there is thus at least one basis variable (whose value
could be 0, in which case we are dealing with a degenerate situation.)

In general one chooses the entry (i*,j*) which belongs to a minimal transport cost
(mmpij = PJ.J.) to obtain the most convenient initial basis.

i,3

If instead one always picks the left-upper entry, the selection is referred to as the north-
west corner rule.

The selection of the initial position for the example:
(I) Apply the north-west corner rule: in the upper left-hand corner we enter
min{15,20} = 15, and the remainder of the row is deleted, leading to

In the upper left-hand corner of the remaining table we then have min{5,15} = 5; this
is entered, and the remainder of the column is deleted, leading to

At the end of the procedure we obtain the table

This corresponds to the basis solution x\\ = 15, #21 = 5, #22 = 5, £23 — 5, £33 = 5, £34 =
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10, £35 = 5 (these are the basis variables), and the rest of the variables are non-basis
variables and have in the basis solution the value 0.

(II) rainpij = I — P34i in the (3,4)*h spot we enter min{20,10} = 10, and the remainder
l->3

of the column is deleted.

minpij = 2 = p^: in the (3, l)th position we enter a min{10, 20} = 10 and the remainder
.7/4

of the third row is deleted,

min pa = 3 = 013: in the (l,3}th position we enter min{15,10} = 10, and the
ijtSjjt* J i ' J
remainder of the third column is deleted. If we proceed further in this manner, then we
obtain in result the table

5.6.5.2 The transport algorithm

Suppose we are given a transport table with initial solution Xij with x^ = Xij for the
basis variables and x^ for the non-basis variables (meaning that the fields for the non-
basis variables remain empty). Moreover, we require the cost table with the given values
Pij. We will refer to in what follows to the example described in (5.105).

Determination of the simplex multipliers: We copy the cost table, but leave the
fields corresponding to the non-basis variables empty. In the right-most column we shall
enter the values of the indeterminates u i , . . . , um, and in the bottom row we shall enter
the values of the indeterminates v i , . . . , vn (cf. Figure 5.33). These n + m indeterminates
are required to satisfy the linear system of equations Ui + Vj — p^ for all index pairs

(«,J).
One can show that this system has a tri-
angular form for all basis solutions which
have rank n + m —I and thus it can always
be solved as follows:

(i) In the first step, we set vn — 0.

(ii) If the value of one of the variables
has been determined in the kth step, then
there is always a not-yet determined vari-
able in the system which can be uniquely
solved in the (k + l)st step from an equa-
, . , ,1 n C ,, Fiqure 5.33. Determination of the simplextion Ui + vj = pij, since the value or the y . ,.
other variable in this question is already
known. (This holds as long as there are still undetermined variables.)

The variable which can be determined in the (k + l)st step is recognized by trial and
error. The elements Ui and vj are known in the general theory of the simplex algorithm
as 'simplex multipliers' because of their use in this procedure. Occasionally they are
referred to as 'potentials' and the algorithm itself as the 'potential method'.

multipliers
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Example:

 v5 = 0 —>• us = 8 because of «3 + f5 = ^35 = 8
 —> ^4 = — 7 because of u$ + v± = ^34 = 1
 —>• t>3 = — 5 because of 1*3 + v3 = 3

 —> «2 = 12 —> W2 = — 8 —> Ui = — 6 —> «i = 11.

Determination of the pivot column: The simplex multipliers also give us a clue as
to a non-basis element ( i , j ) which is added to the basis in one of the exchange steps
(this corresponds to finding the pivot column in the simplex algorithm). In our scheme
above, we enter the values

Pij = Pv - m - Vj

in the free positions to determine the simplex multipliers (the coefficients of the function
we are minimizing with respect to the non-basis variables). If all p^ are non-negative,
then the basis solution is optimal (use the minimal test). Otherwise we choose an
arbitrary element pap < 0; usually one choose the minimal element with this property.
The index (a, /?) denotes a non-basis variable xap, which should be input into the basis.
We mark the corresponding field in the table with a '+'.

Example:

minimal element —7 —> (a,/3) = (2,5).

Determination of the pivot row: Except for the field (a, (3), we add marks + or —
to fields populated with numbers until in each row and each column we have an identical
number of + and — marks. This can always be done in a unique manner with at most
one + and one — in each row and column.

Example:

(Explanation: the + in the field (2,5) was first added. Then in the last column we need
to add the —, which can only be done in field (3,5). Then we need to add a + in the
last row, which can only be done in field (3,3). Once this has been set, we must add
the — in the (2,3) field, and then we are done: there is now way to add another + in
the second row, as we would then also have to add a —, which is impossible.)

Finally we determine the minimum M of all field with a — and choose a field (7,5)
in which this minimum is attained. In our example we have M, = 5 and we could
choose (7,5) = (2,3); (7,6) then denotes the basis variable which should be added to
the non-basis and corresponds to the pivot row in the simplex algorithm.

Exchange step (transition to a new transport table):

(a) In the field (a, 0) of the new table we enter M.

(b) In the field (7,5) of the new table we do not make any entry.
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(c) In the other fields which are marked with a "—" (resp. with a "+"), we subtract
(resp. we add) M to the given entry. The result is the value for the corresponding field
of the new table.

(d) The non-marked numbers are transferred as they are to the new table. All other
entries of the new table are left blank.

Example:

In this manner we get a new transport table, to which we can again apply the described
procedure. Except for the theoretical possibility of a closed cycle in the case of a degen-
erate situation, this process always will satisfy the minimal test after a finite number of
steps.

Example: Figure 5.34 shows the entire process for the example (5.105). The first trans-
port table was derived in 5.6.5.1 with the north-west rule. The generation of the first
auxiliary table and the second transport table were precisely described above. After that
a new auxiliary table and a transport table are generated by the general procedure until
after four steps the optimal situation (fulfilling the minimal test) has been obtained.

Figure 5.34- Solution of the example (5.105).

Note that the next to last transport table is precisely the table which was derived in
section 5.6.5.1 using the improved procedure for finding an initial solution. From this
starting point, only one further step is necessary (as opposed to four which are required
when the simpler northwest rule is applied).

Behavior of degenerations: If the original transport table is degenerate (this can
be recognized by an entry whose value is 0), then the element am can be modified to
am + ne and all bj can be modified to bj +e with a small number e > 0, and the Xij of the
basis variables can be modified in such a way that we obtain a new basis solution for the
new di and bj. This can always be achieved (in a manner similar to the determination
of the simplex multipliers):
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If one of the Xki so obtained turns out to be negative, then there must be some positive
Xkr in the same row and a positive xsi in the same column. The field (s, r) is then
available; now enter a + there and perform an exchange step. In this way all such
negative values can be gotten rid of.27 After this change, the transport algorithm is
performed on the resulting table, and degeneration can be completely avoided this way.
By considering the limit e —> 0 in the solution one obtains a solution of the original
problem.

27Often it is sufficient to replace e with —e everywhere.
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6. Stochastic Calculus - Mathematics of
Chance

I believe that the astute reader will notice in what follows that this topic
is not only a question of games of chance, but forms the basis of a very
interesting and rewarding theory.

Christian Huygens (1654)
De Rationciniis in Aleae Ludol

The true logic of this world is to be found in the theory of probability.

James Clerk Maxwell (1831-1897)

Stochastics is concerned with the mathematical laws of chance, or as one prefers to say, of
randomness. While the theory of probability is concerned with theoretical foundations,
the theory of statistics is concerned with the ways in which large amounts of raw data
can be gleaned for laws or rules of behavior of the object under investigation. There-
fore, mathematical statistics is a mathematical instrument which all sciences dealing
with empirical data (medicine, natural sciences, social sciences and economy) cannot do
without.

A useful compilation of the most important procedures of mathematical statistics
which require a minimum amount of knowledge on the part of the reader to apply
can be found in section 0.4.

It is typical for probability theory and mathematical statistics to create and study models
which apply to situations of differing concreteness. As in other sciences, it is therefore
important to choose the model to by studied very carefully. The application of different
models to the same situation will in general lead to different results and hence to different
conclusions.

In the nineteenth century James Clerk Maxwell and Ludwig Boltzmann (1844-1906)
founded statistical physics. They applied methods of probability theory to describe
systems with large numbers of particles (like gases). In this theory the physicists of
the nineteenth century assumed that the particles obey the laws of classical mechanics
and thus move along well-defined trajectories. These trajectories are determined for

1The translation of the title of this book is On Calculations of Games of Chance. This was the
first book ever about about probability theory. The mathematical investigation of games of chance (for
example games with dice) began in Italy during the fifteenth century.

The mathematical discipline of probability theory was founded by Jakob Bernoulli with his famous
treatise Ars Conjectandi, in which he gave a mathematical proof of the "law of large numbers". This
book appeared in 1713, which was eight years after Jakob Bernoulli's death.

The classical standard reference for the theory of probability was Theorie analytique des probabilites
by the French mathematician and physicist Pierre Simon Laplace, which appeared in 1812. The modern
axiomatic theory was founded by the Russian mathematician Andrei Nikolajevic Kolmogorov in his book
Foundations of Probability Theory, which appeared in 1933.
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all times by the initial conditions (location and velocity). In fact it is impossible to
determine these initial conditions for a collection of 1023 gas molecules (a mole). In
order to compensate for this impossibility, methods of statistics are applied.
The situation was radically changed with the introduction of quantum mechanics by
Heisenberg and Schrodinger around 1925. This theory is statistical from the very onset.
According to the Heisenberg uncertainty principle, it is impossible to know (measure) the
location and simultaneously know (measure) the velocity of a particle. Most physicists
today are convinced that the fundamental processes of elementary particles are stochastic
by nature, as opposed to being unrecognizable because of the inability to determine
hidden parameters. Thus the theory of stochastics is of fundamental importance for
modern physics.

Basic notions: In probability theory there are the following basic notions:

(i) random event (for example the sex of a baby at birth (conception));

(ii) random variable (for example the height of people);

(iii) random function (for example, the temperature in New York City during a given
year).

The notion (iii) is also referred to as a stochastic process. In addition there is a notion
of 'independent' which applies to (i) - (iii).

Standard notations:

P(A) denotes the probability that the event A will occur.

It is a convention that probabilities lie between 0 and 1, meaning the following.

(a) If P(A) = 0, one says the event A is almost impossible.

(b) If P(A) = 1, one says that the event A is almost certain.

Example 1: The probability that a child is female (resp. male) is p — 0.485 (resp.
p = 0.515). This means that of 1000 born children, 485 are female and 515 are male.
The investigation of the relationship between probability and frequency is one of the
aims of mathematical statistics (see section 6.3).

Example 2: Let a needle fall upright onto a tabletop; then it is almost impossible that
the needle will hit a given point Q with its tip, while it is almost certain that it will not.

Let X be a random variable (defined in 6.2.2 below).

P(a < X < b) denotes the probability that a measurement of
X yields a value x which satisfies a < x < b.

Mathematization of phenomena: The theory of probability (stochastics) is a typical
example of how a phenomenon of daily experience ('chance') can be put into a mathe-
matical framework and how this can lead us to a deeper understanding of our views of
reality.

6.1 Elementary stochastics

We now discuss several basic patterns of probability theory which were of fundamental
importance in the development of the theory.
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6.1.1 The classical probability model

Basic model: We consider a random experiment and denote all possible events of the
experiment by

ei, 62 , • • . , en .

We call e i , . . . , en the elementary events of this experiment.

Moreover, we use the following notations.

(i) Totality of events E, meaning the set of all ej. This is also referred to as a field of
events.

(ii) Event A, meaning a subset of E.

We associate to a given event A a probability P(A) by the following rule:2

In the classical literature one refers to the elementary events in A as 'positive outcomes',
while the set of all elementary events is the set of 'possible outcomes'. Then we have

This formulation of the notion of probability was introduced at the end of the seventeenth
century by Jakob Bernoulli. We consider a few examples.

Throwing a die: The possible outcome of this random experiment consists of the
elementary events

ei, 62 , • . . , e6 ,

where ej corresponds to the outcome that j eyes are on the top face of the die.

(i) The event A := {e±} is that in which the top face has one eye. According to (6.1) we

have P(A) = i

(ii) The event B := {e^, 64, ee} is the appearance of an even number on the top face of
3 1

the die. According to (6.1) we have P(B) — - = —, which proves our intuition that
6 2

there is a 50-50 chance of throwing an even (or odd) number.

Throwing two dice: The possible outcomes in this case consist of elementary events

6y, i,j = l , . . . ,6 .

Here 623 for example means that the first die has a 2, the second a 3. There are 36
elementary events.

(i) For A := {&ij} (for any fixed i,j), we get P(A) = — from (6.1).
OU

(ii) The event B := {611,622,633,644,655,666} consists in both die showing the same
f\ 1

number. From (6.1) again, we get P(B) = •— = -.
36 6

The lottery problem: We consider the lottery game '6 from 45', in which six numbers
out of 45 are checked, and six numbers are drawn to determine the winner. What is the
probability of checking n correct numbers? The results are gathered in Table 6.1.

2 The notation P(A) goes back to the French word probabilite for probability.
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Table 6.1. The lottery game '6 from 45'.

Number of Number of winners
correctly checked Probability among 10 million

numbers participants

The elementary events in this example have the form

with ij = 1,. . . , 45 and i\ < i-z < • • • < i§. There are elementary events of this

kind (see Example 5 in 2.1.1). If, for example, the winning numbers are 1,2,3,4,5,6,
then A := {6123456} represents the event of having six correct numbers. According to
(6.1) we have

To determine all the elementary events which correspond to five correctly checked num-
bers, we have to choose five among 1,2,3,4, 5,6. From the remaining 39 wrong numbers

7 ,8 , . . . , 45 we have to choose one. This means that there are I 1-39 positive elementary
V /

events of this type.

In a similar manner one can check all the values listed in Table 6.1.

If we multiply the probabilities by the number of participants, we get roughly the number
of winners in each class, listed in the last column.
The birthday problem: At a party there are n guests. How large is the probability
p that two of the guests have their birthdays on the same day? According to Table 6.2
one can wager a relatively safe bet even if the number of guests is only about 30. One
rrevfc

The elementary events are given by

For example, 612,14.... represents the event that the first guest has birthday on the 12
day of the year, the second on the 14th and so forth. There are 365" elementary events.
Moreover, there are 365 • 364 • • • (365 — n + 1) elementary events corresponding to the
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event that there are no coincidences among the n birthdays. Thus the numerator in
(6.3) represents the number of positive outcomes.

Table 6.2. The birthday problem.

Number of guests 20 23 30 40

Probability that at least two guests have 0.4 0.5 0.7 0.9
coincident birthdays

6.1.2 The law of large numbers due to Jakob Bernoulli

A fundamental experience is that upon repeating a random experiment many times the
relative frequencies obtained get nearer and nearer to the probabilities. This is the basis
for a great number of applications of probability theory. Mathematically this fact can be
proved as the 'law of large numbers', first put forward and proved by Jakob Bernoulli.
We explain this using the example of throwing a coin.

Throwing a coin: This is probably the easiest of all experiments: throw a coin; the
elementary events are

ei, e2 , (6.4)

where e\ denotes 'heads' and e-2 denotes 'tails'. The event A = {e\} corresponds to
throwing heads; its probability is, according to (6.1), given by

Relative frequency: Our experience tells us that throwing a coin n times for a large
number of trials will yield a frequency near to 1/2 for heads and the same for tails. We
now give a mathematical discussion of this.

Throwing a coin n times: The elementary events are

eiii2...in ' ^i , . . . , Zn = 1, 2 .

Here Ci1i2...jn means that the first throw yields the elementary event e^ of (6.4), the
second the event e^ of (6.4) and so on. Thus ij = I or i3•, = 2 for all j. We associate to
this elementary event a relative frequency as follows (here 'heads'):

The number in the numerator is thus equal to the number of occurrences of ' 1' as index
in the elementary event e^...^.

The law of large numbers of Jakob Bernoulli:3 Let an arbitrary real number e > 0
be given. We denote by An the set of all elementary events e^iy... for which

3This famous law was published eight years after Jakob Bernoulli's death in 1705.
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This means that among the indices, the difference between the percentage of '1's (and
also '2's) and 1/2 (50%) is less than the given number. Bernoulli calculated the proba-
bility P(An), using (6.1), and showed that

lim P(An} = 1.
n—>oo

This theorem is also described in the single formula

6.1.3 The limit theorem of de Moivre

One of the most import insights of probability theory is that one obtains results which
are easy to understand upon taking the limit n —> oo, where n denotes the number of
trials performed. We explain this again using the example of throwing a coin. Let An^
denote the set of all elementary events ei1i2,..in for which the index '!' occurs exactly
k times. This corresponds to the set of all trials for which heads turns up k times in
n throws. This implies that for the relative frequency Hn of heads occuring in each
elementary event in An^ we have the relation

Also, This is indicated again in a single formula:

This is the probability that upon throwing the coin n times, the relative frequency Hn

of throwing heads is k/n.

Theorem of de Moivre (1730): For a large number n of coin tosses one has the
asymptotic equality4

with the parameters /^ = n/2 and a — y^n/4. In (6.5) the function on the right-hand
side is the so-called Gaussian normal distribution (see Figure 6.2). As expected, the
probability P in (6.5) is largest for k = n/2. ;

6.1.4 The Gaussian normal distribution

The basic model of a measurement process: Let a continuous (or more generally
almost everywhere continuous) function uy : K —> 1R be given, with

4The quotient of the two expressions of (6.5) approaches 1 for fixed k as n —> oo.
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Figure 6.1. A probability density and corresponding distribution function.

This situation can be interpreted in a probabilistic manner as follows.

(i) Suppose we are given a random measurement variable X determined by the mea-
surement of some real quantity. An example could be the height of people.

(ii) We set

in which this expression is the probability that the measured quantity X lies in the
interval [a, b\. Intuitively, P(a < X <b) corresponds to the surface area under the curve
(p in the interval [a, b] (see Figure 6.1 (a)). We call (p a probability density. The function

is called the distribution function determined by (p (see Figure 6.1(b)).
(iii) The quantity

is called the mean (or expectation) of X. Moreover,

is referred to as the variance or square deviation, and the non-negative quantity A.AT is
called the standard deviation of X.

If we interpret <p as a mass density, then X is the center of mass.

The Chebychev inequality: For all /? > 0 we have:

In particular for AX = 0 we have P(X = X) = 1.
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Confidence interval: Let 0 < a < 1. The measured value of the random variable X
lies with a probability > 1 — a in the interval

Example 1: Let a, = 1/16. The measured value of X lies with a probability > — in the
16

interval [X - 4 AX, X + 4AX].

This makes in meaning of the mean and the standard deviation more precise:

The smaller the standard deviation AX is, the more the mea-
sured values of X are concentrated around the mean X.

The Gaussian normal distribution N(/j,,cr): This distribution is given by the prob-
ability density

with real parameters JJL and a > 0 (Figure
6.2). One has

Figure 6.2. The Gaussian normal
distribution.

This normal distribution is the most impor-
tant distribution of probability theory. The
reason for this is the central limit theorem,
according to which any random variable is
nearly normally distributed, provided it is

composed of many independent random quantities (see section 6.2.4).

Table 6.3. Several continuous probability distributions.

Name of distribution Probability density ip Mean X ^*- aev-
AX

normal distribution j

exponential distribution
(Figure 6.3)

equidistant distribution
(Figure 6.4)

Exponential distribution: The corresponding density is listed in Table 6.3. This
distribution is used, for example, to describe the life span of a product (for example a
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Figure 6.3. Exponential Figure 6-4- Equidistant
distribution. distribution.

light bulb). Then

is the probability that the life span of the product is contained in the interval [a, 6]. The
mean life span is equal to p,.

Mean value of functions of random variables: Let Z = F(X) be a function of a
random variable X. Every measurement of X yields a value for Z. The mean Z and
the standard deviation (AZ)2 of Z is given by

Example 2:

The addition formula for means:

6.1.5 The correlation coefficient

The most important quantities for arbitrary measurements are mean, standard deviation
and correlation coefficient r with — 1 < r < 1. For this last quantity we have the following
fact.

The larger the absolute value \r\ of the correlation coefficient, the more
two measured values are correlated, i.e., depend on one another.

The basic model for the measurement of two random variables: Let a function
(f> : M2 —> M be given, which is almost everywhere continuous and non-negative, and
fulfills:
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This situation can be given a probabilistic interpretation as follows.

(i) Let two random variables X and Y be given, which have real values given by two
measurements. One refers to the pair (X, Y) as a random vector.

(ii) Probability: We set

This is the probability that upon taking measurements of X and Y the point (X, Y) lies
in the set G. We call <p the probability density of the random variable (X, Y).

(ui) The probability densities ipx and </?y for X and Y are:

(iv) The mean X and standard deviation (AX)2 of X are given by:

Similarly one calculates Y and (AY)2.

(v) The mean value for a function Z = F(X, Y) is given by:

(vii) The addition formula for the means is:

(vi) The standard deviation is given by:

Covariance: The number

is called the covariance of X and Y. Explictly we have
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The correlation coefficient: A fundamental question coming up at this point is: Are
X and Y strongly or weakly correlated? The answer to this question is given by the
correlation coefficient r, which we define bv the relation

This coefficient always satisfies — 1 < r < 1, i.e., r2 < 1.

Definition: The larger r2 is, the stronger X and Y are correlated.

Motivation: We consider the minimization problem

This means that we seek a linear function a + bX which approximates Y closely. The
minimization problem corresponds to the method of least squares of Gauss.

(a) The solution of (6.6) is the so-called regression line

(b) For this solution we have

The best (resp. worst) approximation is obtained for r2 = 1 (resp. r = 0).

Example: In practical cases one is given
measurements xi,...,xn and y i , . . . , yn of
X and Y. These measurements (xj,yj) are
plotted in the (x,y)-plane. The regression
lino

is the line which is nearest to all these points
(see Figure 6.5). Fi9ure 6-5' A regression line.

The true quantities AX", AF and r are not
known. But we can estimate them from our measurements as follows.

Independence of random variables: By definition random variables X and Y are
said to be independent, if the (joint) probability density <p has a product decomposition
of the form
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Then we have:

(i) (px(x) = a(x) and (pY(y) = b.
(ii) The product formula for the probabilities is:

(iii) The product formula for the means is given by:

(iv) The correlation coefficient r vanishes.5

(v) The addition formula for the standard deviation is:

The Gaussian normal distribution:

This distribution, which is a product of one-dimensional normal distributions, is a prob-
ability density which corresponds to two independent random variables X and Y. One
has

and

6.1.6 Applications to classical statistical physics

The whole of classical statistical physics can be described quite elegantly and briefly with
the help of the results of the last paragraph. We consider a system which consists of N
particles of mass m. The starting point for the description is the following expression
for the energy E of the system.

E = H(q,p).

The function H is the Hamilton function of the system. Every particle is assumed to
have / degrees of freedom (for example three translations and/or additional degrees of
freedom coming from rotations or from vibrations). We set

9 = (9i> • • • , « / # ) , P = ( p i 5 - - - , P / J v ) -

Here the QJ are the coordinates of the particles, and the PJ are (generalized) momentum
variables, which are related to the velocity of the particles.

5 This follows from X - X = 0 and
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Classical mechanics: The equation for the motion q = q(t) and p = p(t) of the
particles at time t is given by

q'^t] = H p j ( q ( f ) , p ( t ) ) , p'^t) = -Hqj(q(t),p(t)), j = l,...JN.

The variables (q,p) are supposed to move in a domain II of R-^, which we call the phase
space of the system (for these basic notions on Hamiltonian mechanics, see section 5.1.3).

Classical statistical mechanics: We start with a probability density

where the constant C is to be determined in such a way that Jn tpdqdp = 1. Here T
denotes the absolute temperature of the system, and k is a constant of nature called
the Boltzmann constant. The constant is responsible for the dimensionlessness of H/kT.
With the aid of </? we can now introduce the fundamental quantities.

(i) The system is in a subdomain G of the phase space with the probability P(G):

(ii) The mean and standard deviation of a function F = F(q,p) are given by:

(iii) The correlation coefficient r of two given functions A = A(q,p) and B = B(q,p) is:

(iv) The entropy of the system at the absolute temperature T is:6

Applications to the Maxwell velocity distribution: We consider an ideal gas
consisting of TV particles of mass ra, which moves in a bounded domain O of R3. Let V
denote the volume of the domain Q. The jth particle is described by a coordinate vector
Xj = Xj(t) and the momentum vector

where x^ (t) is the velocity of the particle at time t. If v denotes an arbitrary component
of the velocity vector of the jth particle in a Cartesian coordinate system, then we have:

6Note that tp depends on T.
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This is the probability that mv lies in the interval [a, b]. The corresponding probability
density is a Gaussian normal distribution with the mean mv = 0 and the standard
deviation

This law was laid down by Maxwell in 1860. With it he laid the foundations on which
Boltzmann built statistical mechanics.

Reasoning: In a Cartesian coordinate system we set p± = pii+p2J+Pak, p2 = P4i+Psj +
Pek,. . . and Xi = <7ii + <?2J + <?3k,. . . The total energy E of the ideal gas is, because there
is no interaction between the particles (ideal gas), the sum of all the kinetic energies of
the individual particles:

Consider for example pi = mv. According to (6.7) we have7

where the number J is obtained from integration over ^2 • • -psN from — oo to oo and
from the integration over the coordinates QJ . The value of C J is then deduced from the
normalization condition P(—oo < p < oo) = 1. This yields (6.8).

The principle of fluctuations: A decisive question is: Why is it necessary to have
very sensitive measurement capabilities to see the statistical nature of a gas? The answer
is to be found in the fundamental formula

which is valid for an ideal gas. The notations are: N is the number of particles, E is
the total energy, e is the energy of a single particle. Since Ae/e is roughly unity and N
has the size of 1023, the relative variations in the energy AE/E of a gas are extremely
small and do not play any observable role in everyday life.

Reasoning: Since the particles of an ideal gas do not interact with each other, the
energies of the individual particles are independent random variables. Therefore we may
apply the addition formula for the mean and the standard deviation. This yields

(6.9) follows from this.

Systems with variable numbers of particles and the chemical potential: Dur-
ing chemical reactions, the number of particles can change. The corresponding statistical
physics then works with the parameter T (the absolute temperature) and the param-
eter fj, (chemical potential). This is discussed in [212]. There we consider a general
scheme which can also be applied to modern quantum statistics (the statistics of atoms,
molecules, photons and elementary particles).

7For clarity we use the notation exp(x) := ex here.



6.2. Kolmogorov's probability theory 989

6.2 Kolmogorov's axiomatic foundation of probabil-
ity theory

The general probability model of Kolmogorov: Suppose we are given a non-
empty set E which we view as a given field of events. The elements e of E are called
the elementary events. Let P be a measure on E satisfying

P(E) = 1.

The general events in this picture are the subsets A C E for which the measure P(A) is
defined.

Connection with measure theory: With this Ansatz, probability theory becomes
just a special case of the modern mathematic branch of measure theory, which is devel-
oped in [212]. A measure on a set E with the property P(E) = 1 is called a probability
measure. The events correspond to measurable sets. In what follows we formulate
explicitly the definition of a probability measure.

Explicit formulation of the Kolmogorov axioms: On the set E we assume we are
given a system 5? of subsets A C E, which satisfy the following conditions.

(i) The empty set 0 and the set E are elements of 5?.

(ii) If A and B belong to ̂ , then this is also true for the union A U B, the intersection
A fl .B, the difference set A — B and the complement CsA := E — A.

00

(iii) If AI,AZ, • • • belong to J?, then the (infinite) union M An and the (infinite) inter-
^1

00

section | j An also belong to 5?.
n=l

The events are the elements of 5?. To every event A we associate a real number P(A)
which satisfies:

(a) 0 < P(A) < 1.

(b) P(E) = 1 and P(0) = 0.

(c) For any two events A and B with A fl B = 0 we have

P(A U B) = P(A) + P(B).

(d) If A\, A<2,... are countably many events with Aj fl Ak — 0 for all indices j ^ k,

Interpretation: The elementary events correspond to possible outcomes of a random
experiment, and P(A) is the probability for the occurrence of the outcome.

Definition: The triple (E, 3*, P) as above is called a probability space.

Philosophical context: This general approach to probability theory, proposed by Kol-
mogorov in 1933, assumes that each outcome has a well-defined probability of occurrence
independent of any measurements which are made of the experiment.

then we have
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Attempts to create a theory of probability based on measurements and the ensuing
relative frequencies have not had any success.

Kolmogorov's approach is also compatible with the philosophy of Immanuel Kant (1724-
1804), by assuming that probabilities exist a priori. Relative frequencies, on the other
hand, are products of measurements and thus a posteriori.

Three facts of our experience: In our daily life we use the following three basic
facts.

(i) Events with a very small probability occur very seldom.

(ii) Probabilities can be estimated by relative frequencies.

(iii) Relative frequencies stabilize after a certain number of measurements have been
made and recorded.

The law of large numbers shows mathematically that (ii) and (iii) can in fact be derived
from (i).

Example 1: The probability for having six winning numbers in '6 from 45' is 10~7.
Everybody knows that the chances of winning are negligible.

Example 2: Life insurance companies require the probabilities for the deaths of their
customers depending on their ages. Probabilities of this kind cannot be derived as in
6.1.1 with combinatorial methods, but rather require a detailed analysis of large amounts
of data. In order to determine the probability p that a person will reach the age of 70,
choose n people. If k of these are 70 or older, then we can say approximately

Example 3: To determine the probability that a newborn child is a girl or a boy, one
also must use data analysis. Already Laplace (1749-1827) investigated the data available
from cities like London, Berlin, St. Petersburg and more data from France. He found a
relative frequency of girls being born of about

One the other hand, in the city of Paris the value was about p = 0.5. Having faith in the
universality of laws of chance, Laplace sought to explain this difference. He discovered
that in Paris children who had been found by others also contributed to the statistics;
at the time people in Paris would abandon mostly female babies. Once he accounted for
these children, also Paris turned out to have a value near p = 0.49.

Finitely many possible outcomes: If a random experiment has a finite number n of
possible outcomes, then we choose a set E with elements

ei, . . . ,en

and associate to each elementary event a number P(BJ) with 0 < P(&j) < 1, and such
that

P(ei) + P(e2) + ... + P(en) = l.

All subsets A of E are called events. To each event A = {GII, ... , € i k } we associate a
probability

P(A):=P(eil) + ... + P(eifc).
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Example 4 (throwing a die): This experiment has n = 6. If

then we have a fair die, otherwise this is probably the die of a cheater.

The needle experiment, infinitely many possible outcomes and the Monte
Carlo method: We let a needle fall perpendicularly onto a unit square E : {(x, y) \ 0 <
#> V < !}• The probability that a subset A of E is hit by the tip of the falling needle is

P(A) :— surface area of A

(see Figure 6.6(a)). The set E is again referred to as a field of events. An elementary
event e is any point of E. In this case, we have the two following surprising facts which
can be observed.

(i) Not every subset A of E is an event,

(ii) One has P({e}) = 0.

In fact it is not possible to associate to every subset A of E a surface area in such a
way that we obtain a measure on E fulfilling (6.10). The natural candidate for such a
measure would be the Lebesgue measure on M2. For sufficiently reasonable sets A the
probability P(A) is precisely the surface area of A. However, there are also 'wild' subsets
A of E, which are not Lebesgue measurable and thus not events. These sets cannot in
any sensible way be assigned a probability of being hit by the tip of the needle.

Figure 6.6. Probability as surface area. Figure 6.7. Buff on's
needle problem.

If we consider the set A consisting of the unit square E without a single point e, then
we have

P(A) = l-P({e}) = l.

This is paraphrased by saying that it is almost certain that the tip of the needle will hit
A.

This motivates the following definitions.

Almost impossible events: An event A is said to be almost impossible if P(A) — 0.

Almost certain events: An event A is said to be almost certain if P(A) — I.

Example 5: We choose a circle A of radius r. Then we have P(A) = nr2. Thus we can
determine an experimental value of TT with the aid of this experiment.
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The falling needle can be simulated with the help of a random number generator on a
computer. This is the basic idea behind Monte Carlo simulations, which are used to
calculate high-dimensional integrals in atomic physics, elementary particle theory and
quantum chemistry.

Example 6 (Buffon's needle problem): In 1777 the following problem was posed by the
French natural scientist Buffon. In the plane we draw parallel lines separated at a
distance of d from each other (Figure 6.7). Now throw a needle of length L with L < d
at the plane. What is the probability that the needle will hit one of the lines? The
answer is

In 1850 the astronomer Wolf in Zurich (Switzerland) threw a needle 5000 times and
thus determined (an approximation of) the probability p. From this he obtained the
approximation TT ~ 3.16, which approximates the true value (3.14 to two decimal places)
relatively well.

6.2.1 Calculations with events and probabilities

Events are sets. Every set-theoretic construction corresponds to another such in a prob-
ability theory; these are collected in Table 6.4. The calculation with events is done
according to the rules of set theory (explained in section 4.3.2).

Monotonous property of probabilities: If A\, A-2,... are events, then one has the
inequality

for N = 1,2,... and N — oo. According to (6.10) we have equality if Aj and Ak for all
fc 7^ j have no elements in common, i.e., the events are incompatible with one another.
Limit properties:

6.2.1.1 Conditional probabilities

We choose a fixed field of events E and consider events A,B,... which belong to E.

Definition: Let P(B) ^ 0. The number

is called the conditional probability of A occuring under the condition that B has already
occurred.
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Table 6.4- The algebra of events.

collective event

impossible event

arbitrary event

the event A or B occur

both A and B occur
the events A and B can
not occur simultaneously

A occurs, B does not

the event A does not occur
(CEA :=E-A)

if A occurs, then
so does B

the events A and B are
independent

Motivation: We choose the set B as a new field of
events and consider the subsets A n B of B, where A
is an event with respect to E (i.e., ACE, Figure 6.8).

We construct a probability measure PB on B with
PB(B) := I and PB(AnB) := P(AnB)/P(B). Then
we have P(A\B) = PB(A).
Example 1 (Throwing two coins): We consider two Figure 6.8.
events A and B.

A: Both coins are heads.

B: The first coin shows heads.

Then we have

(i) Intuitive determination of the probabilities: the outcomes of the experiment (elemen-
tary events) are given by

HH, HT, TH, TT.
This means that, for example, HT denotes the event in which the first count is heads,
the second tails, and so forth. We have

A = {HH}, B = {HH,HT}.

Prom this it follows that P(A) — 1/4. If one knows that B has already occurred, then
only HH and HT have a non-vanishing conditional probability. This means P(A\B) =
1/2.

(ii) Using the definition (6.11): From A n B = {HH} and P(A n B) = 1/4 as well as
P(B) = 1/2, we get

Event Interpretastion Probability
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It is important to make a clear distinction between normal probabilities and conditional
probabilities.

The law of total probability: If we have the conditions

then we have for every event A the relation

Example 2: We draw a marble from one of two identical urns.

(i) The first urn contains one white and four black marbles.

(ii) The second urn contains one white and two black marbles.

We consider the following events:

A: The marble we have drawn is black.

B: The marble we have drawn comes from the jth urn.

For the probability P(A) of drawing a black marble we have

The theorem of Bayes (1763): Let P(A) ^ 0. Then under the assumption (6.12) we
have

Example 3: In Example 2 suppose we have already drawn a black marble. What is the
probability that it comes from the first urn?

Prom P(Bi) = 1/2, P(A\Bi) = 4/5 and P(A) = 11/15, we have

6.2.1.2 Independent events

One of the most important problems for probability theory is to give a precise mathe-
matical definition to the intuitive notion of events being independent.

Definition: Two events A and 5 in a field of events E are said to be independent, if

Similarly, n events A\,..., An of E are independent if the product property
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holds for all possible m-tuples of indices j\ < fa < • • • < jm and all m = 2 , . . . , n.

Theorem: Let P(B) ^ 0. Then the events A and B are independent if and only if
their conditional probabilities satisfy

Motivation: In our daily life one often works with relative frequencies instead of prob-
abilities. We expect that from n cases of an event A (resp. B] the occurrence will have
a relative frequency of nP(A) (resp. nP(B}}.

If A and B are independent, then our intuition tells us that the event ''A and B both
occur' has the relative frequency (nP(A)) • P(B).

Example: We roll a pair of dice and consider the following events.
A: The first of the dice shows a '!'.

B: The second of the dice shows a '3' or a '6'.
There are 36 elementary events

(»J), t,j = l , . . . , 6 .

Here ( i , j ) denotes the event that the first die has a i and the other has a j. The events
A, B and A n B are associated to the following elementary events

A: (1,1), (1,2), (1,3), (1,4), (1,5), (1,6).
B : (1,3), (2,3), (3,3), (4,3), (5,3), (6,3),

(1,6), (2,6), (3,6), (4,6), (5,6), (6,6).
AnB : (1,3), (1,6).

Therefore P(A] = 6/36 - 1/6, P(B) = 12/36 = 1/3 and P(A n B} = 2/36 = 1/18. In
fact we have P(A n B) = P(A)P(B), i.e., these events are independent.

6.2.2 Random variables

In this section we introduce the notion of random variable, which is used to model
measured quantities which have random character, like for example the height of people.

6.2.2.1 Basic ideas

Let E = {ei,...,en} be a finite field of events with probabilities pi,...,pn f°r the
outcomes e i , . . . , en. A random function on E is a function

which maps each elementary event BJ to a real number X(e.j) :— Xj. Making a mea-
surement of X will yield the value Xj with probability PJ . The important quantities of
this function are the mean X and the square of the standard deviation (AX)2, given as
follows:
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The square of the standard deviation is more commonly referred to as the variance. The
quantity AX" = -y/(A.X")2 is called the standard deviation, as it is the deviation of the
measured value from the expected one.

From the Chebychev inequality we get as a special case the following statement, which
explains the importance of the variation and the standard deviation: upon taking a
measurement of X, the probability of it lying in the interval

is greater than 0.93 (see 6.2.2.4).

Example: An (imaginary) cassino allows the player to throw a die and pays out the
amount listed in Table 6.5. Negative (resp. positive) amounts are the wins (losses) for

Table 6.5. Win/loss in a casino game.

Number thrown b y player 

Amount paid ou t ($ ) 

Xj 

the cassino. Daily the game is played 10,000 times.

What are the average daily earnings for the cassino ?

Answer: We construct a field of events

£ = {ei,...,en}.

Here ei is the event that an 'i' is thrown. Moreover, we set

X ( e j ) := earnings for the cassino when a j is thrown.

As mean we obtain

Thus the cassino makes an average daily earnings of $ 1.5 • 10,000 = $ 15,000. However,
since the standard deviation AX = 3.6 is quite large, the profit for the cassino can
change drastically from day to day. Generally this would motivate the cassino owner to
offer a more advantageous game.

The importance of the fundamental notion of mean (expectation) X was realized during
games of chance played in the seventeenth century. An important role in this was played
by a famous correspondence between two of the best mathematicians of the day, Pascal
(1623-1662) and Fermat (1601-1665).

6.2.2.2 The distribution function

Definition: Let (E, J7, P) be a probability space with probability measure P. A random
variable on E is a function X : E —> M such that for each x 6 M, the set
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is an event.8 Thus, the distribution function

is well-defined. Here P(X < x) stands for P(AX}.

Strategy: We reduce the investigation of random variables completely to the investi-
gation of distributions.

Intuitive interpretation of the distribution function: Suppose that the real axis
has been endowed with a mass distribution, such that the total mass of the axis is 1.
The value $(a;) of the distribution function tells us how much of the mass is contained
in the interval J :=] — oo,x[. This mass is also the probability that the measured value
of X lies in J.

The larger $(x) is, the larger the probability that the measured value
of X lies in the interval ] — oo, x[.

Example 1: If the point x\ has the
mass p = 1, then the corresponding
distribution function looks like Figure
6.9.

Example 2: If we have masses p\ and
P2 at the points x\ and x-2, and if pi +
P2 = 1, then the distribution function
looks like that in Figure 6.10. ° Figure 6.9. A point p with unit mass.
More explicitly we have

Example 3: If the distribution func-
tion $ : R —> R is continuously dif-
ferentiable, then the derivative

Figure 6.10. A two point distribution.

is a continuous mass density ip : R —> R, and one has

The mass which is contained in the interval [a, b] is equal to the surface area of the
hatched area in Figure 6.11.

The function </? is called the mass density (or probability density). A standard example
is the Gaussian normal distribution:9

8X is a random variable if and only if the inverse image X~l (M) for every set M in the Borel algebra
<^(R) represents an event.

9The relation between the distribution and the density was explained in section 6.1.4.
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Figure 6.11. The probability density and distribution viewed as mass functions.

Discrete and continuous random variables: A random variable is said to be dis-
crete, if the corresponding distribution only takes on finitely many values.
On the other hand, X is said to be a continuous random variable, if the distribution
function is continuously differentiable as in Example 3.
We set $(x ± 0) := lim $(t).

V

Theorem 1: A distribution function $ : R —> R has the following properties.

(i) $ is an increasing function and is continuous from the left, i.e., one has $(x — 0) =
for all

Theorem 2: For all real numbers a, b with a < b we have:

The Stieltjes integral: For the calculation with random variables, the Stieltjes integral

is an instrument of fundamental importance (see 6.2.2.3). This integral is the inte-
gral over a measure formed by the mass density corresponding to $ on the real line.
Intuitively, we have approximately

This means that we subdivide the real line into intervals [xj,Xj+\[ with the mass Amj,
form the product f(xj)&m,j and sum over all these factors along the real line (Figure
6.12). Finally, we pass to a limit by allowing the intervals to shrink in size. Thus, we
have

The rigorous definition of the Stieltjes integral
can be found in [212]. For most practical pur-
poses, the following results are sufficient.
The calculation of the Stieltjes integral:
Assume we are given a continuous function / :

> JK.
Figure 6.12.
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(i) If the distribution function $ : R —> R is differentiable, then we have

if the classical integral on the right-hand side converges,
(ii) If $ only takes on finitely many values, then we have

where the sum is over all points of discontinuity Xj of $.
(iii) If $ only takes on countably many values, and for the points of discontinuity Xj we
have the relation lim x,- = +00, then

n—»oo

if the infinite series on the right-hand side converges.
(iv) If the distribution function $ is differentiable except for finitely many points of
discontinuity x i , . . . , xn, then

provided the integral on the right-hand side converges.

6.2.2.3 The expectation value (mean)

The expectation value is the most important quantity associated with a random variable.
All other quantities of importance (for example, standard deviation, higher moments,
correlation coefficients, covariance) can be obtained by the construction of appropriate
expectations from this one.
Definition: The expectation (mean) of a random variable X : E —> R is given by

if this integral exists.
This integral is to be understood in the sense of an abstract measure-theoretic integral
(see [212]). However, it can be reduced to the Stieltjes integral with respect to the
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distribution function $ of X. For this we have

Intuitive meaning: The expectation X is the center of mass of the mass distribution
associated with $.

Calculations: We have the following rules concerning calculations with the expectation,

(i) Additivity: If X and Y are random variables on E1, then we have

(ii) Functions of random variables: Let X : E —> E be a random variable with distri-
bution function <&. If F : R —> R is a continuous function, then the composed function
Z := F(X) is also a random variable on E with the expectation

provided the integral on the right-hand side converges.

6.2.2.4 The variance and Chebychev's inequality

Definition: If X : E —> M is a random variable, then we define the variance of X by

If $ denotes the distribution function of X, then we have

if the integral on the right-hand side converges.
The standard deviation AX of X is denned by

Example 1 (continuous random variable): If $ has a continuous derivative (p = <&' on R,
then
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Example 2 (discrete random variable): If X only attains finitely many values xi , . . . , xn,
and if we set PJ := P(X — Xj), then

Chebychev's inequality: If X : E —> R is a random variable with AX < oo, then
for every real number /? > 0 we have the fundamental inequality

In particular, for AX = 0 we have P(X — X) = 1, i.e., the value of X is almost surely
its expected value.

Applications to confidence intervals: If we choose are real number a with 0 < a < 1,
then the observed values of X lie with probability > 1 — a in the interval

Example 3 (4AX-rule): Let a = 1/16. With a probability greater than 0.93, all observed
values of X lie in the interval

Moments of a random variable: The expectation

of the kth power of X is called the kth moment of X. If $ denotes the distribution of
X, then we have

The famous 'moment problem' is: do the values of all the moments of X determine the
distribution function uniquely? Under appropriate assumptions, there is an affirmative
answer (see [212]).

6.2.3 Random vectors

In order to deal with series of measured (observed) values of a random variable in the
context of mathematical statistics, it is necessary to consider vectors (Xi,..., Xn) whose
components Xj are random variables. Intuitively, Xj is then the measured value of X
in the jth trial.

6.2.3.1 The joint distribution

Definition: Let (E, 5?, P] be a probability space. A random vector (X, Y) on E is a
pair of functions X, Y : E —> M, such that for each pair (x, y) of real numbers, the set
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is an event. If this is the case, the distribution function

is well-defined. Here P(X < x, Y < y ) stands for P(Ax,y). We call this the joint
distribution function of X and Y.

Strategy: As above we reduce the investigation of random vectors to the investigation
of distribution functions.

Intuitive interpretation of the distribution
function: Suppose that the plane is endowed with
a mass density with a total mass of unity. The value
$(#0)2/0) of the distribution function describes the
amount of mass which is contained in the set

(Figure 6.13). This mass is equal to the probability
that the measured values of X and Y are in the
corresponding open intervals ] — oo, XQ [ and ] — oo, yo [•

Theorem: The components X and Y of a random
vector are random variables with distribution func-
tions

Figure 6.13.

Probability density: If there is a non-negative continuous function with

and

then we call <p a (joint) probability density of the random vector (X, Y). In this case the
variables X and Y have probability densities with

Random vectors ( . X " i , . . . , Xn): All of these considerations can be easily extended
to the case of vectors of n components.

6.2.3.2 Independent random variables

Definition: Two random variables X, Y : E —> R are said to be independent, if (X, Y)
is a random vector which has the following product property:

Here $, $x and $y, respectively, denote the distribution functions of (X,Y), X and
Y, respectively.
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Rules for calculations: For independent random variables X and Y we have:

(i) ~XY = YX.

(ii) (Apr + y))2 = (AX)2 + (Ay)2.
(iii) The correlation coefficient (see next paragraph) r of X and Y vanishes,

(iv) If J and K are real intervals, then we have

P(x e J , Y e K ) = P(X e J)P(Y E K).

Theorem: If a random variable (X, Y) has a continuous distribution density <p, then
X and Y are independent if and only if there is a product representation

valid for all x, y 6 R.

Dependence of random quantities: Practical applications will often lead one to
suspect that two given random variables X and Y are in some way dependent on one
another. There are two methods of mathematically verifying whether this is the case.

(i) Use the correlation coefficient (see 6.2.3.3).

(ii) Use the regression line (see 6.2.3.4).

6.2.3.3 Dependent random variables and the correlation coefficient

Definition: For a random vector (X, Y) we define the covariance

and the correlation coefficient

We always have the relation — 1 < r < 1.

Definition: The larger r2 is, the stronger X and Y are correlated.

Motivation: The minimization problem

has the so-called regression line:

with a minimal value at (Ay)2(l — r2) as solution (see the discussion in section 6.1.5).

For the covariance we have
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where $ denotes the joint distribution of X and Y.

Example 1 (discrete random variable): If $ only attains finitely many values (xj,yk)
with probabilities pjk := P(X = X j , Y = yk), then we have

with

and

Example 2: If (X, Y) has a continuous probability density <p, then Cov(X, Y) and r are
calculated as in section 6.1.5.

The covariance matrix: If we are given a random vector (Xi,.. .,Xn), then the
(n x ri)-covariance matrix is defined as C = (cjk), where Cjk is given by

This matrix is symmetric, and all eigenvalues are non-negative.

Interpretation: (i) Cjj = (AX,)2, j = 1,. . . , n.

(ii) For j ^ k the number

is the square of the correlation coefficient of Xj and Xk •

(iii) If (Xi,...,Xn) are independent, then we have Cjk = 0 for all j ^ fc, i.e., the
covariance matrix is a diagonal matrix, the entries of which are the standard deviations
of the individual variables.

The general Gauss distribution: Let A be a real, symmetric, positive definite (n x n)-
matrix. Then the probability density

with and defines by definition the general Gauss distri-

bution of the random vector (X\,..., Xn) with the covariance matrix

and the expectations Xj = 0 for all j.

If A = d iag(Ai , . . . , Xn) is a diagonal matrix with eigenvalues Xj, then the random
variables X\,..., Xn are independent. Moreover, we have
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6.2.3.4 The dependency curve between two random variables

Conditional distributions: Let (X, Y) be a random vector. We fix a real number x
anH sot

If this limit exists, $x is called the conditional distribution of the random variable Y
under the assumption that X takes on the value x.

Dependency curve (regression curve): The curve defined by

is called the dependency curve (or regression curve) of the random variable Y with
respect to the random variable X.

Interpretation: The number y(x) is the expectation of Y
under the assumption that X takes on the value x (Figure
6.14). If at x = XQ there are observed values y i , . . . , yn for
V, then one can take

as an approximation for y(xo) (Figure 6.14).
Probability density: If (X, Y) has a continuous probability
density <p, then we have

Figure 6.14-

and

6.2.4 Limit theorems

Limit theorems generalize the classical law of large numbers due to Jakob Bernoulli in
1713 and are among the most important results of all in probability theory.
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6.2.4.1 The weak law of large numbers

Theorem of Chebychev (1867): Let Xi,X%,... be independent random variables on
a probability space. We set

If the standard deviation are uniformly bounded (i.e., sup AJfn < oo), then we have the

relation

for arbitrary small numbers e > 0.
This theorem is a generalization of the law of large numbers as just mentioned (see
6.2.5.7).

6.2.4.2 The strong law of large numbers

Theorem of Kolmogorov (1930): Let Xi,X-2,... be independent random variables
on a probability space, whose standard deviations satisfy

(for example sup Then the following limit relation

holds almost surely.10 Moreover, (6.16) is a consequence of (6.17).
A weaker statement had already been proved in 1905 by Borel and in 1917 by Cantelli.
The importance of the expectation: If the assumptions of the Theorem of Kol-
mogorov are satisfied and if Xj = // for all j, then almost surely we have

6.2.4.3 The central limit theorem

Let Xi,Xz,... be independent random variables on a probability space. We set

10If A denotes the set of all elementary events e with

then P(A) = 1.
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with the average standard deviation

Central Limit Theorem:11 The following two conditions are equivalent:

(i) The distribution function $n of Yn converges for n —> oo to the normal distribution
N(Q,1), i.e., we have

(ii) The distribution function $n of Xn satisfies the Lindeberg condition:

for all T > 0.

Remark: The Lindeberg condition (L) is satisfied if all Xj have the same distribution
$ with mean // and standard deviation a. In that case (L) is equivalent with

Condition (L) is also satisfied if all distribution functions 3>fc of the Xk have a similar
structure at infinity and regarding expectations and standard deviations.

The importance of the central limit theorem: The central limit theorem is the
most important result in probability theory. It explains why the Gaussian normal dis-
tribution occurs so often. The central limit theorem also makes the following intuitive
principle mathematically rigorous:

If a random variable X is a superposition of many other random variables,
which are treated on an equal basis, then X is normally distributed.

6.2.5 Applications to the Bernoulli model for successive inde-
pendent trials

Jakob Bernoulli developed the following model, which is applicable in many situations.
It is among the most important models used in probability theory, and in particular is of
use in deriving a relationship between theoretical probabilities and relative frequencies.

6.2.5.1 The basic idea

Intuitive situation:
11 This fundamental result has a long history. Among others, the following have contributed: Cheby-

chev (1887), Markov (1898), Liapunov (1900), Lindeberg (1922) and Feller (1934).
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(i) We first carry out one trial (the reference or ground trial), which has two possible
outcomes,

Suppose the probability of outcome ej is PJ. Moreover, we set p := pi, so that p^ = 1 — p.
We call p the probability of the ground trial.

(ii) Now we carry out n trials of the experiment.

(iii) All of these trials are independent, meaning that their outcomes do not influence
one another.

Example: The reference trial is a throw of a coin, where e\ denotes an occurrence of
'heads' and 62 an occurrence of 'tails'. If p = 1/2, we think of the coin as being fair;
if p ^ 1/2, then this is clearly not a fair coin. In 6.2.5.5 we will show how to expose a
cheater by evaluating a series of trials.

6.2.5.2 The probability model

The probability space: The total event E consists of the elementary events

with probabilities

Interpretation: e.\i\... means that the series of trials has outcomes ei, 62, GI, . . . in that
order. For example P(e\i\) = p(l — p)p = p2(l — p).

Independence of the trials: We define an event

Then the events

are independent for all possible indices i i , . . . , in.

Proof: We consider the special case n = 2. The event A\ = {en,ei2} consists of the
elementary events en and e^. Hence

Because of we have From (6.18) we obtain the
required product property

since on the left we have P(CJJ) = Pipj and on the right we also have Pipj.

The relative frequency as a random variable on E: We define a function Hn •
V
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Then Hn is the relative frequency for the occurrence of the event e\ in the series of trials
(for example the relative number of 'heads' occuring in a trial of throwing a coin).

Our objective is to investigate the random variables Hn.

Theorem 1:

(ii) Hn = p (expectation).

(standard deviation).

(inequality of Chebychev).

In (iv) the number e > 0 must be sufficiently small. You will see that the relative
frequency varies less and less from the expected value as the number of trials n grows.
This expectation is the probability p that e\ occurs in the reference trial. As mentioned
above, in the case of a fair coin we have p = 1/2.

This probability model was considered first by Jakob Bernoulli (1654-1705). The ex-
pression in (i) of this result is not convenient for calculations. To improve this matter
of affairs, de Moivre (1667-1754), Laplace (1749-1827) and Poisson (1781-1840) looked
to find appropriate approximations (see section 6.2.5.3). The inequality of Chebychev
(1821-1894) holds for arbitrary random variables.

The absolute frequency: The function An := nHn describes the number of occur-
rences of the event e\ during the series of trials (for example the total number of 'heads'
thrown in a series of trials).

Theorem 2:

(expectation).

(standard deviation).

The indicator function: We define a random variable Xj : E —> E by the following
rule:

Thus Xj is 1 if and only if the event e\ occurs in the jth trial.

Theorem 3: (i) P(Xj - 1) = p.

and

(iii) Xi, . . . , Xn are independent.

(y) An = X1 + ... + Xn.
The frequency An is thus a superposition of equally treated independent random vari-
ables. Therefore we expect, taking the central limit theorem into consideration, that An

is nearly normally distributed for large n. This statement is the content of the theorem
of de Moivre-Laplace.
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6.2.5.3 Approximation theorems

The law of large numbers (Bernoulli): For every e > 0 we have

Jakob Bernoulli found this law through voluminous computations. In fact (6.10) follows
from the Chebychev inequality (Theorem 1 in 6.2.5.2).

If one uses Theorem 3, (iv) of 6.2.5.2, then (6.19) is a special case of the weak law of
large numbers due to Chebychev (see 6.2.4.1).

The local limit theorem of de Moivre and Laplace: For n —» oo, the absolute
frequency has the asymptotic form

with and

This means that for each k — 0,1, . . . the quotient of the expression on the left and on
the right in (6.20) approaches unity for n —> oo.12

We now investigate the relative frequency

Then we have ffln — 0 and AJ^ = 1. We denote the distribution function for 3lfn

by $n. Let $ be the distribution function for the Gaussian normal distribution A^O, 1)
with mean /j, = 0 and standard deviation a = 1. The normalized absolute frequency

is equal to the normalized relative frequency J4?n and therefore also has $n as its distri-
bution function.
The global limit theorem of de Moivre and Laplace:13 For all x € M we have

For all intervals [a, b] we obtain from this the equality

12For the proof, Abraham de Moivre (1667-1754), who lived in London, used the approximation

for large n; the value of C is approximately C ~ 2.5074. When de Moivre asked Stirling (1692-1770)
for help, the latter found the precise value of C — \/27r. The corresponding formula (6.21) is known as
the Stirling formula.

13De Moivre found this formula for p = 1/2 and symmetrical boundaries b = —a. The general formula
was proved by Laplace in his fundamental book Theorie analytique des probabilites, which appeared in
1812.
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In fact, there is a very precise estimate:

Remark: For large n the relative frequency is almost normally distributed with expec-
tation Hn — p and standard deviation A#n = \/p(p — l)/^- For every interval [a, b]
and large n we therefore have the fundamental relation

On the left-hand side we have the probability that the measured value of the relative
frequency Hn lies in the interval \p+a&.Hn,p + bAHn}. This statement gives us a precise
expression of the law of large numbers of Bernoulli.

The values of <&o c&n be found in Table 0.34.

For negative z we have $0(2) = — $o(—z}-
Formula (6.24) is equivalent to the statement

The absolute frequency An thus satisfies, because of An — nHn, the relation

Here we have and

Small probabilities p of the reference trial: If the probability p is very small, then
formula (6.23) shows us that the approximation through a normal distribution does not
take effect until very large n. Poisson (1781-1840) discovered that for small p there is a
better approximation.
Definition of the Poisson distribution: In the points x = 0 , l ,2 , . . .on the real axis
we attach masses mo, mi, .. -, where we take

The number A > 0 is a parameter. The corresponding mass distribution function is

and is called the Poisson distribution function (Figure 6.15).
Theorem: If a random variable x is Poisson distributed (i.e., its distribution function
is the Poisson distribution), then we have

(mean) and (standard deviation).
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Figure 6.15. The Poisson distribution function.

The approximation theorem of Poisson (1837): If the probability p of the reference
trial is very small, then for the absolute frequency An we have approximately:

with and

(ii) The distribution function <&n of An is nearly Poisson distributed with the parameter
A = np. More precisely, we have the estimate

The values of can be found in 0.4.6.9.

6.2.5.4 Applications to quality control

Suppose a factory produces a product & (for example light bulbs). The probability
that & is defective is very small; let it be p (for example p = 0.001). Suppose further
that in a transport container there are n pieces of the product.

(i) According to the model developed in 6.2.5.2, the probability that the container con-
tains exactly r defective parts is given by the following formula:

(ii) The probability that the number of defective parts in the container is between k and
ra is obtained from the relation

Approximation: We now wish to give a practical formula for these probabilities. For
this we note that p is small and apply the Poisson approximation

with A = np. These values are tabulated in section 0.4.6.9 of the book.

Example 1: Suppose we have 1000 light bulbs in our container, and that the probability
of a light bulb being defective is p = 0.001. From 0.4.6.9 with A = np = 1 we obtain
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It follows that

The probability that there are no defective bulbs in the container is thus 0.37 (37%).
There are at most two defective bulbs in the container with probability 0.92.

If n is sufficiently large, then we can assume that An is normally distributed. From
(6.24) and the equations following it, we get

The values of $o can be found in Table 0.34.

Example 2: Suppose now that the probability that a light bulb is defective is 0.005. The
probability that in a shipment of 10,000 bulbs there are at most 100 which are defective
is given by the relation14

Thus we can be almost certain that there are at most 100 defective bulbs.

6.2.5.5 Applications to testing hypothesis

It is our goal to expose a cheater using a coin which is not fair, just by making obser-
vations of a trial of experiments. For this we use a mathematical argument which is
typical for mathematical statistics. One of the prime properties of mathematical statis-
tics is that, in the situation at hand, it accepts that 'exposing a cheater' can only be
done with a certain residual probability, say a, that our conclusion is incorrect. This
means, for example for a = 0.05, that if we attempt to expose a cheater 100 times, then
on average we will come to an incorrect conclusion about 5 times, in this case accusing
a fair person of being a swindler.

Trial for exposing an unfair coin (thrower): We flip the coin n times, and observe
that 'heads' appears k times. We call hn = k/n the realization of the random variable
Hn (the relative frequency). We denote by p the probability for the appearance of
'heads'. We make the hypothesis:

(H) The coin is fair, i.e., p = 1/2.

Basic principle for mathematical statistics: We will discard our hypothesis (H)
with an error probability a if:

Here A/fn := 1/2^/n. The number za is determined from Table 0.34 from the equation
2$0(^a) = 1 -a. For a = 0.01 (resp. 0.05 and 0.1) we have za = 1.6 (resp. 2.0 and 2.6).

Reasoning: According to (6.24) the probability that the measured value hn of the
theoretical quantity Hn lies in the confidence interval (6.25) is for large n

14The value 3>o(7) can not be found in Table 0.34. The value is near to 0.5.
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If the measured value does not lie in this confidence interval, then we discard our hy-
pothesis, with a probability of error a.

Example: For n = 10,000 flips of a coin we have AHn = 1/200 = 0.005. The confidence
interval for an error probability of a = 0.05 is

If in 10,000 flips we observe 5,200 occurrences of 'heads', then hn = 0.52. This value lies
outside of the confidence interval (6.26), and our conclusion, with an error probability
of 0.05, is that the coin is not fair.

On the other hand, if we observe 5,050 occurrences of 'heads' in our 10,000 flips, then we
have hn = 0.505, and hn does lie in the confidence interval (6.26), so we are convinced
that the coin in this case is indeed fair. This conclusion will be correct with a probability
of 95%, i.e., the error probability is a = 0.05.

6.2.5.6 Application to the confidence interval for the probability p

We consider a coin. Let p denote the probability for the occurrence of 'heads' in a
reference trial. We flip the coin n times and measure the relative frequency hn of the
occurrence of 'heads'. We now consider p as unknown, and wish to determine its value
with a certain degree of certainty.

Basic principle of mathematical statistics: With an error probability of a, we
assume that the unknown probability p lies in the interval

Here we have15

This statement is true in general for the estimation of probabilities p occurring in
Bernoulli's model 6.2.5.2.

Reasoning: According to (6.24), for large n we have the inequality

with probability Since is
equivalent to

in other words,

This inequality holds if and only if p lies between the zeros p- and p+ of the correspond-
ing quadratic equation.

Example: Flipping a coin 10,000 times, suppose that 'heads' turns up 5,010 times. Then
hn = 0.501, and the unknown probability p for the occurrence of 'heads' lies in the
interval [0.36,0.64] with a residual probability of error of a = 0.05.

15The meaning of a and za was explained in 6.2.5.5.
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This estimate is, however, still quite crude. Making 1,000,000 flips and obtaining a
relative frequency 0.501 for 'heads', we can assert that p lies, with the same residual
error probability as before, in the interval [0.500,0.503].

6.2.5.7 The strong law of large numbers

Infinite trials of experiments: Up until now we have considered Bernoulli's model
for n trials. In order to formulate the strong law of large numbers we need to pass over
to an infinite number of trials.

Thus, we consider a total event E consisting of the elementary events

e

where each index ij can take the value 1 or 2. The symbol 612... means that in the
first trial e\ occurs, in the second 62 and so forth. We denote by A^...in the set of all
elementary events of the form e^...^..., and set

with pi := p and p? := I — p (see (6.18)). We denote by ̂  the smallest cr-algebra of E
which contains all sets A^...in for all n.

Theorem: There is a uniquely determined probability measure P on the subsets of &*
which has property (6.29). (E,^,P) is thus a probability space.

Relative frequency: We define a random variable by Hn : E —> R by

(number of indices with

The strong law of large numbers of Borel (1909) and Cantelli (1917): The
limit relation

holds almost surely16 on E.

6.3 Mathematical statistics

Don't trust any statistic which you haven't tampered with yourself.

Old proverb

Mathematical statistics investigates the properties of random phenomena of our daily
world on the basis of series of measurements of random variables. This requires a very
responsible use of statistical procedures. Different methods and models will lead to
completely different conclusions. Therefore, you should always act by the following
golden rule of mathematical statistics:

Every statement of mathematical statistics is based on certain
assumptions. Without a complete enunciation of all assumptions
on which a conclusion is based, the statement is worthless.

16If A denotes the set of all e 6 E with then P(A) = 1.
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6.3.1 Basic ideas

Confidence intervals: Let $ be a distribution function of a random variable X. An
a-confidence interval [cc^,^] is given by definition by the requirement

Interpretation: The value of a measurement of X lies with the probability 1 — a in the
confidence interval [ajQ,x+].

Example 1: If X has a continuous probability density </?, then the hatched area in Figure
6.16 over the confidence interval [aJ~,x£] is equal to 1 — a, i.e., we have

Figure 6.16. The normal distribution.

Example 2: For a normal distribu-
tion N(n, a) with mean // and stan-
dard deviation a, the confidence in-
terval [x~ ,x£] is given by

The value za is obtained from the

equation $o(-2Q) = with the

help of Table 0.34. In particular we
have za = 1.6, 2.0 and 2.6 for the values a = 0.01, 0.05 and 0.1.

Variational series: Let X be a given random variable. In practical cases X will be
measured n times in a series of measurements or experiments, and one obtains n real
numbers

as measured values of X. Such a series is referred to as a variational series. Our basic
assumption at this point is that the measurements are independent of one another, i.e.,
the individual measurements have no influence on measurements following them.

Mathematical random samples: The measurement will vary from trial to trial. In
order to describe this fact mathematically, we consider the random vector

of independent variables, where all Xj have the same distribution function as X does.

The basic strategy of mathematical statistics:

(i) We formulate the hypothesis:

The distribution function $ of X has the property <f. (H)

(ii) We construct a so-called sample function
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and determine the distribution function <&z under the assumption (H).

(iii) After a series of measurements has been made with measured values x\,..., xn.
we calculate the real number z := Z(xi,..., xn). We call z a realization of the sample
function Z.

(iv) The hypothesis (H) will be discarded with a probability of error of a, if z does not
lie in the a-confidence interval of Z.

(v) If z does lie in the a-confidence interval of Z, then we say that the observations dc
not contradict the hypothesis, again with a probability of error of a.

Example 3: The hypothesis might, for example, be: '$ is a normal distribution'.

Estimate of parameters: If the distribution function <& depends on parameters, then
one would like to know intervals in which these parameters lie. A typical example oJ
this can be found in 6.2.5.6.
Comparison of two variational series: If we are working with two random variables
X and Y, then the hypothesis (H) will be an assumption on the distribution functions
of X and of Y. The sample function will then have the form

Z = Z(Xl,...,Xn,Yi,...,Yn).

The measured values x\,..., xn, yi,..., yn will then determine a realization of the sample
function z := Z(x\,..., xn, yi,..., yn). This reduces steps (iv) and (v) in our strategy
to checking it for a single function, namely Z, and drawing our conclusions from this.

6.3.2 Important estimators

Let (Xi,..., Xn} be a mathematical sample for a random variable X.

Estimation of the expectation: The sample function

is called the estimator for the expectation X o f X . The dependency on n will be indicated,
if necessary, by the notation Mn.

(i) The estimator M respects expectations, i.e., we have

(ii) If X is normally distributed with distribution JV(//, cr), then M is normally dis-
tributed with distribution N(^,a/^/n).

(iii) Assume that AX < oo. If $n denotes the distribution function of Mn, then the
limit function

is normally distributed of type

Estimation of the variance: The sample function
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is called the estimator of the variance of X.

(i) This estimator respects expectations, i.e.,

(ii) If X is normally distributed of type N(p,, cr), then the distribution function of

is a t-distribution with n — 1 degrees of freedom. Moreover, the distribution function of

is a x2-distribution with n — 1 degrees of freedom (see Table 6.6).

Table 6.6. Probability densitiy of probability functions.

Name of the distribution Probability density

t-distribution with n degrees of freedom

X2-distribution with n degrees of freedom

6.3.3 Investigating normally distributed measurements

The assumption is often made that a given random variable X is normally distributed.
The theoretical legitimization of this results from the central limit theorem (see 6.2.4.3).
Examples for the following procedures can be found in 0.4.

6.3.3.1 The confidence interval for the expectation

Assumption: X is normally distributed of type N(n,a).

Variational series: From the measured values #1 , . . . , xn of X we calculate the empir-
ical expectation

and the empirical standard deviation
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rhe statistical statement: With a possibility of making an error of a, the following
.nequality for the expectation /j, is valid:

The value ta,n-i can be found in section 0.4.6.3.

Reasoning: The random variable >/n(M — n}/S is t-distributed with n — 1 degrees of
freedom. We have P(\T\ < iQ,n-i) = I — a. Hence the inequality

holds with a probability of 1 — a. This yields (6.30).

6.3.3.2 The confidence interval for the standard deviation

Assumption: X is normally distributed of type N(n, a).

The statistical statement: With an error probability of a, the following inequality
for the standard deviation holds:

The values a := Xi_a/2 an<^ ^ :~ Xa/2 can be found in section 0.4.6.4 for the value
m = n — I degrees of freedom.

Reasoning: The quantity A := (n — l)S2/cr2 is x2-distributed with n — 1 degrees of
freedom. According to Figure 0.50 we have P(a < A < b) = P(A > b) — P(A > a) =

Therefore, the inequality

holds with a probability of 1 — a, and (6.31) is a consequence of this.

6.3.3.3 The fundamental significance test (t-test)

It is the objective of this test to determine from two variational series of random variables
X and F, whether X and Y have the same expectation, i.e., whether there is a significant
difference between X and Y.

Assumption: X and Y are both normally distributed with the same standard devia-
tion.17

Hypothesis: X and Y have the same expectation.

Variational series: From the observed values

17This assumption can be verified with the aid of the F-test, see 6.3.3.4.
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of X and Y we calculate the empirical expectations (means) x and y as well as the
empirical standard deviations Ax and Ay (see 6.3.3.1). Moreover, we calculate the
number

The statistical statement: With an error probability a the hypothesis is false, i.e.,
there is a significant difference between X and Y, provided

The value ta,m can be found in 0.4.6.3 with m = n\ + n^ — 1 degrees of freedom.

Reasoning: If we replace in (6.33) the quantities x, y, (Ax)2, (Ay)2 by X,y, 5^,5^,
then we obtain a random variable T, whose distribution is a ̂ -distribution with m degrees
of freedom. Since P(|T| > ta) = «, the hypothesis will be discarded if \t\ > ta.

6.3.3.4 The F-test

This test is to determine whether two normally distributed random variables have dif-
ferent standard deviations.
Assumption: Both random variables X and Y are normally distributed.

Hypothesis: X and Y have the same standard deviation.

Variational series: Prom the observed values (6.32) we calculate the empirical stan-
dard deviations Ax and Ay. We suppose that Ax > Ay.

The statistical statement: The hypothesis will be discarded with a probability of
error equal to a, provided

The value Fa can be taken form 0.4.6.5 with m\, = n\ — I and mz = n-z — 1.

If, on the other hand, (6.34) is true but with '< FQ' on the right-hand side, then the
observations do not contradict the hypothesis, with an error probability a.
Reasoning: If the hypothesis is true, then the random variable F := S'x/Sy is F-
distributed with the degrees of freedom (mi,7712). Since P(F > FQ) = a, we will
discard the hypothesis if (6.34) holds, with an error probability a.

6.3.3.5 The correlation test

The correlation test can be used to check whether two random variables X and Y are
correlated.
Assumption: X and Y are normally distributed.
Hypothesis: For the correlation coefficient we have r = 0, i.e., there is no dependency
between X and Y.

Variational series: From the measured values

we calculate the empirical correlation coefficient
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with the empirical covariance

The statistical statement: With an error probability a, the independency hypothesis
will be discarded when

The value ta,m can be found in 0.4.6.3 with m = n — 2.

Reasoning: We set

The random variable is t-distributed with n — 2 degrees of freedom. The

observations (6.35) yield a realization p of R. Since P(\R\ > ta) = a, we discard the
hypothesis if (6.36) holds with a residual probability a of making an error.
Test for normal distribution: To determine whether a random variable is normally
distributed one can apply the %2-suitability test (see 6.3.4.4).

6.3.4 The empirical distribution function

The empirical distribution function is an approximation of the actual distribution func-
tion of a random variable. This statement is made precise in the main theorem of
mathematical statistics.

6.3.4.1 The Main Theorem of mathematical statistics and the Kolmogorov—
Smirnov test for distribution functions

Definition: Let observed values xi,..., xn of a random variable X be given. We set

and call the step function Fn the empirical distribution function.

Example: Suppose our observations have the values x\ = x% = 3.1, x$ = 5.2 and £4 =
6.4. The empirical distribution function (see Figure 6.17):



1022 6. Stochastic Calculus - Mathematics of Chance

The difference between the empirical distribution function Fn and the actual distribution
function <E> of the random variable X is measured by the quantity

Figure 6.17. An empirical distribution function.

The Main Theorem of mathematical statistics (Glivenko, 1933): We have
almost surely

The theorem of Kolmogorov—Smirnov: For all real numbers A we have

with

The Kolmogorov—Smirnov test: We choose a distribution function $ : M —> R.
With an error probability of a we discard $ as the distribution of X provided

Here AQ is a solution of the equation Q(\a] = I — a, using 0.4.6.8.

In case ^/ndn < \a, the observations do not contradict the hypothesis that $ is the
distribution of X, with an error probability of a.

This test can only be used for a sufficiently large number n of measurements. Moreover,
one cannot apply it to distribution functions $ depending on parameters, when these
parameters themselves have to be estimated from the measurements. For this one uses
instead the x2-test (see 6.3.4.4).

Application to the equidistribution: A random variables X is assumed given, with
values ai < 02 < • • • < a/c, where we assume an equidistribution, i.e., each value dj has

probability — . In this case the Kolmogorov-Smirnov test works as follows:
/c

(i) We determine the observations xi,..., xn.

(ii) Let mr be the number of measurements in the interval [ar, ar+i[-

(iii) Given the error probability a, we determine Aa from Table 0.4.6.8 such that Q(\a] =
I-a.
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(iv) We calculate the test quantity

The statistical statement: If ^/ndn > \a, then with error probability a the hypoth-
esis that the distribution is an equidistribution is false.

If \fndn < Aa we accept our hypothesis of equidistribution, with the probability of
making an error of a.

Testing an apparatus for drawing lottery numbers (6 from 45): We lay 6 balls
with numbers r = 1,..., 6 into the apparatus and make a series of 600 drawings. The
observed frequencies mr of drawing the number r are displayed in Table 6.7.

Table 6.7. Observed frequencies.

r 1 2 3 4 5 6

mr 99 102 101 103 98 97

Let a = 0.05. According to 0.4.6.8 it follows from Q(Xa) = 0.95 that Aa = 1.36. From
g

Table 6.7 we obtain dn = —- = 0.005. Since \/600dn = 0.12 < Xa we have (with an
error probability a = 0.05) no reason to doubt that the apparatus is a fair one.

6.3.4.2 The histogram

Histograms correspond to empirical probability densities.

Definition: Let the observations

be given. We choose numbers a\ < 0,2 < • • • < a^ with the corresponding intervals
Ar := [ar,ar+i[, so that every measurement lies in at least one of these intervals. The
quantity

mr := number of observations in the interval Ar

is called the frequency of the rth class. The empirical distribution function is given by

A graphical representation of this function is called a histogram.
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Table 6.9Table 6.8

X\ X? Xs X4 Xs XG Xf X» Xg XIQ

I 1.2 2.1 2.2 2.3 2.3 2.8 2.9 3.0 4.9

r mr

1

2

3

2

6

2

Figure 6.18.

Example: If the measured values x i , . . . , XIQ are as in Table 6.8, then Table 6.9 gives a
Dossible division of these values into classes, and the corresponding histogram is shown
n Fiffiire 6.18.

6.3.4.3 The x2-suitability test for distribution functions

This test is used to determine whether a function $ is the distribution function of a
given random variable X.

Hypothesis: X has the distribution function $.

Variational series: (i) We observe values x\,..., xn of X and divide these observations
into classes Ar := [ar, ar+i[ with r = 1,..., k.

(ii) We determine the number mr of measurements in the interval Ar.

(iii) We set pr := <&(ar+i) — $(ar) and calculate the test quantity

(iv) We choose an error probability a and determine the value x« from 0.4.6.4 with
ra = k — 1 degrees of freedom.

The statistical statement: If c2 > x«i then $ is with an error probability of a not
the distribution function of X.

If <? < x2, then, with a probability a of making an error, we may assume that our
hypothesis is correct and $ is the distribution function of X.

Reasoning: For n —»• oo the test quantity c2 is x2-distributed with ra = k — 1 degrees
of freedom.
%2-test for distributions depending on parameters: If the distribution function
$ depends on parameters J3\,..., /3S, then these parameters have to be estimated from
the same observations.

For k classes of measurements we need to set m = k — 1 — sin using 0.4.6.4 to determine
y2
ACT

Example: Mean and standard deviation of a normal distribution can be estimated by
empirical means x and empirical standard deviations Ax (see 6.3.4.4).
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In the general case, one can use the maximal likelihood method to estimate the values
of the parameters (see section 6.3.5).

6.3.4.4 The x;2-suitability test for normal distributions

The test presented in this paragraph is used to test whether a random variable, which
one expects from observations is normally distributed, actually is so.

(i) We make measurements x\,..., xn of X and determine the empirical expectation x
and the empirical standard deviation Ax:

(ii) We choose values ai < 02 < • • • < a/t and determine the number mr of observations
which lie in the interval [ar,ar+i[.

(iii) With the aid of Table 0.34 we calculate

(iv) We form the test quantities

(v) Given an error probability a we determine with the help of 0.4.6.4 for m = k — 3
degrees of freedom the value x«-

The statistical statement: If

we accept the hypothesis that X is normally distributed, with an error probability of a.

If c2 > x2 we discard the hypothesis that X is normally distributed as incorrect, again
with a probability of having made an error of a.

Here it is important to assure npr > 5. This can be achieved by an appropriate choice
of the ar.

Errors of a measurement instrument: We consider an instrument which makes
some kind of measurement (for example length). We want to verify that errors in these
measurements are normally distributed. For this we make 100 measurements of some
normed object (i.e., for which we know whether the observed measurement is correct or
not) and enter any errors in these measurements in Table 6.10. Suppose for example
that x = 1 and Ax = 10. In this case we obtain

by Table 0.34. If we choose a = 0.05, then 0.4.6.4 yields for m = 10 - 3 = 7 degrees of
freedom the value x« = 14.1. Since c2 < 14.1, we can assume, with an error probability
of a, that errors in measurements of our instrument are indeed normally distributed.

Actually, the condition npr > 5 is not satisfied in Table 6.10. In order to achieve this
we would group the classes r = 1,2,3 and r = 9,10 together.
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Table 6.10. Errors of a measurement instrument.

nprPr
Frequency
mr of the
measure-

ment

1

4

9

10

24

26

16

6

2

2

100

Interval of
measure-

ment

Fl x < -20
2 -20<z<-15
3 -15 < re <-10
4 -10 < x < -5
5 -5 < x < 0
6 0 < x<5
7 5 < x < 10
8 10 < x < 15
9 15 < x < 20

10 20 < x

Sum

0.01

0.03

0.09

0.14

0.19

0.20

0.16

0.10

0.06

0.02

1.0

1

3

9

14

19

20

16

10

6

2
inn

0
0.3
0
1.1
1.3
1.8
0
1.6
2.7

_0

c2 = 8.8

6.3.4.5 Comparing two distribution functions with the Wilcoxon test

The Wilcoxon test allows us to check whether two given variational series belong to truly
different statistical quantities. The decisive advantage of this test is that it makes no
assumptions on the distribution functions and it is very easy to apply.

Hypothesis: The distribution functions of two random variables X and Y coincide.

Variational series: Suppose the observed values for X and Y are

xi,...,xni and yi , . . . ,y n 2 .

By definition a pair of values (xj,yk) are in inversion if yk < Xj. We measure the
quantities

u := number of inversions.

Prom 0.4.6.7 we determine the value ua for a given a18.

The statistical statement: If

then the hypothesis is discarded, with an error probability of a, i.e., we conclude the
random variables are significantly different.

Testing two medicines: Let A and B be two medicines for treating a disease. Table
6.11 displays the number of days which pass before recuperation. Here yj is inverse to

18 For large ni and 712 we have

Here z is determined from Table 0.34 from the equation

r
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Table 6.11.
Medicine A x\ X2 xz x* xs

3 3 3 4 4

Medicine B 3/1 y2 j/s y4 -
2 1 2 1 -

all Xk The number of inversion is therefore equal to u = 4 • 5 = 20. Prom 0.4.6.7 with
a = 0.05 and HI =5, n^ = 4, it follows that ua = 9. Prom

we can assert, with an a-chance of being mistaken, that these two medicines are quite
different in their efficacy against this disease. In other words, the much quicker effect
seen from medicine B is not just a product of coincidence.

6.3.5 The maximal likelihood method for estimation of param-
eters

The fundamental maximal likelihood method of mathematical statistics makes it possible
to obtain estimates for unknown parameters which are, in a sense, optimal.

Continuous random variables: Let <p = (f>(x, (3) be a probability density of a random
variable X, which depends on parameters (/?i,... ,/?&), which we will denote by /3 for
brevity. Then one obtains a maximal likelihood function for /3 — (3(xi,...,£„) by solving
the system of equations19

for /3i , . . . , (3k- The quantities x\,..., xn are measured values.

Example 1 (normal distribution): Let

be the probability density for a normal distribution with mean // and standard deviation
a. Because of

the equations (6.37) with (3\ = // and /?2 = a correspond to the system

19The name of this procedure comes from the fact that the condition

for the so-called likelihood function leads to the equation

which after dividing by L is identical to (6.37).
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From this the maximal likelihood estimators

result.

Discrete random variables: Let a random variable X have finitely many values
a i , . . . , ctfc with probabilities pi(/3),... ,pfc(/3). We denote by hj the relative frequency
of the appearance of a,- in a variational series X i , . . . , xn. Then the maximal likelihood
estimators j3r — 0r(

xi, • • • , ̂ n), r = 1,..., fe are obtained from the equation

with hi + • • • + hk = 1.

Example 2: Let the event A occur with a probability of p. We set

Then X is a random variable with P(X = 1) = p and P(X = 0) = 1 — p. We use a
parameter 0 = p. From (6.38) we obtain

This yields the maximal likelihood estimator

This means that the probability p is estimated by the relative frequency hi of the
occurrence of A.

Example 3: Let X be a random variable taking on the values j = 0,1,... with proba-
bilities

which means that X is Poisson distributed. If hj denotes the relative frequency for the
occurrence of j among the measured values x\,..., xn of X, then the maximal likelihood
function for /3 is:

Reasoning: Equation (6.38) is here:

This implies which corresponds to (6.39), as nhj is the number of measured

quantities xr which are equal to j.
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6.3.6 Multivariate analysis

If we are given voluminous data, a central question is:

Are the given measurements purely random or do they
depend on a finite number of variables of some kind?

To answer this question the methods of multivariate analysis are applied, which origi-
nate in the work of the American statistician Ronald Fischer (1890-1962). The most
important influencing quantities are also called factors.

In what follows we shall merely describe some of the basic ideas. The statistical software
SPSS or the various software packages of the company SAS can be used to apply these
methods to concrete situations.

6.3.6.1 Variance analysis

Known factors and clusters: The methods of variance analysis are used to investigate
the influence of known factors on a set of data. For this, the measurements are split into
clusters.

The basic idea is that the standard deviation (resp. variance) of the factors is much larger
than the standard deviation (resp. variance) of a random perturbation of the data. From
the theoretical point of view, this approach is related to the F-test (cf. 6.3.3.4).

Example: We wish to investigate how fertilizers affect the yearly yield of a crop of grain.
For this we choose n different fertilizers

and use differing amounts of each on the fields.

We allow several of the fertilizers to be applied to a single field.
(i) The factors are the different kinds of fertilizers F\,..., Fn.

(ii) The measured quantity is the yearly yield of all fields.
(iii) All fields to which the same fertilizers have been applied in identical concentrations
are the clusters of the analysis.

The method of variance analysis makes it possible to first of all ascertain whether the
measured quantity (yearly yield) is at all affected by the fertilizers.
If this is the case, then one can use the method of multiple means to obtain the clusters
which have been affected most strongly by the corresponding fertilizers.

6.3.6.2 Factor analysis

Factors: As opposed to variance analysis, factor analysis uses factors which are a priori
not known. The goal is to find as small a group as possible of background variables (fac-
tors) which determine the data (and the large number of variables on which it depends)
as far as possible. For this several variables which are strongly correlated are collected,
or grouped, into one factor.

Example: We would like to know which factors determine damage to forests. To start
the investigation, k properties
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are chosen and measured in different forests (examples could be number of leaves on a
certain type of tree, the thickness of bark, etc.).

With the aid of factor analysis, we can, from our measurements, determine whether n
factors

have an essential influence on the data. Working with computer programs, also different
possible values for n can be tried out.

It is important to note that statistics of this kind do not make any statement about
the kind of factors which will be important. Rather, this is the job of the investigator,
and requires a certain amount of experience and skill. However, once these have been
determined, statistics does provide an additional aid in the investigation: the so-called
factor weights describe the strength of the influence of the different factors FI , . . . , Fn

on the properties MI , . . . , Mfc.

6.3.6.3 Cluster analysis

Division into clusters: In order to divide a given set of data into clusters, one uses
cluster analysis. The clusters are supposed to collect data of like properties.

Example: A bank wishes to divide the set of its customers into clusters:

These clusters correspond to the following credit ratings of the customers: very trust-
worthy, trustworthy, partially trustworthy and not trustworthy.

In order to achieve a sensible division, we require much information about the customers,
which may perhaps have to be obtained from other sources, like other banks, information
to persons (age, earnings, etc.). Cluster analysis is the right tool to carry out such a
division.

6.3.6.4 Discriminant analysis

Following a division into clusters by an application of cluster analysis, one can apply
discriminant analysis. This statistical method makes it possible to determine the rew
traits which characterize the clusters in an optimal way. New data can then be imme-
diately divided among the existing clusters. An important assumption for discriminant
analysis is that a clustering already exists.

Example 1: If, as in 6.3.6.3, we have a division of bank customers into clusters according
to their credit ranking, discriminant analysis makes it then possible to determine the
(measurable) factors which characterize the various clusters. Thus, for a new customer,
it is easy to put her or him into one of the clusters, i.e., ascertain her or his credit rating.

Example 2: Discriminant analysis is often applied in medicine. Those patients which
suffer from certain diseases are divided into clusters according to their reaction to cer-
tain medicines. The properties of the corresponding measured data (degree of fever,
composition of blood, etc.) are then characteristics of these clusters. With the aid of
discriminant analysis, the physicians can make some prediction on the chance of a new
patient for recovering from the illness.

GI, G-2, (?3, GU .
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6.3.6.5 Multiple regression

Let random variables

be given. We seek a functional correspondence of the form

To estimate the (unknown) functions FI , . . . , Fm in the context of a given class of func-
tions, we use the measurements Xi,..., Xn and Yi,...,Ym. The random quantities £,-
describe small perturbations.

Linear regression: If all functions Fj are supposed to be linear, then we obtain a
(linear) system of equations

The coefficients a^ and bj, which are assumed to be real, need to be estimated in terms
of the measured data. What we do here is a generalization of the degrees of regression
and the correlation coefficients discussed in section 6.2.3.3.

Computer programs are very flexible and make it possible to determine the most im-
portant factors by deleting some of the coefficients a,* and bj which are sufficiently
small.

Recommendation for practical applications: In order to determine which of the
various statistical methods is appropriate for a given problem, a certain amount of
experience is required. One should take note of the fact that each of the methods
depends on certain assumptions, which often are only approximately satisfied.

If you are unsure how to proceed, the best thing to do is to consult an expert, i.e.,
someone with experience with the application of statistics to practical problems. Such
experts can be contacted at university computer centers or other scientific institutions.

6.4 Stochastic processes

In this thesis we shall show that, according to the theory of molec-
ular thermal kinematics, microscopic particles suspended in liquids
must, as a result of thermal motion, necessarily carry out motions
of such magnitude that they are simply visible in a microscope.
It is possible that the motions described here coincide with the
so-called 'Brownian motion';20however, as the information I have
about the latter is so imprecise, I do not wage to make a more
definite statement.

Albert Einstein, 1905
Stochastic processes are time-dependent processes in nature, engineering and economy,
which depend to some extent on random factors. Already the ancient Egyptians at-
tempted to determine the laws for the flooding properties of the Nile river to protect
their civilization from damage due to flooding. More examples for stochastic processes

20This motion was discovered in 1827 by the English botanic scientist Robert Brown (1773-1858)
during observations through a microscope.
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are the temperature measurements at some fixed place taken over time, the development
of populations, forces acting on a car driving along a rocky road, price development of
stocks or commodities and the change in the gross national product of a nation in time.

In classical thermodynamics stochastic processes are used to account for the imprecision
of dealing with the millions of gas particles in a gaseous volume. The situation has
been totally changed since the advent of quantum mechanics. This is because quantum
processes are stochastic by very nature.

Historical remarks: The investigation of stochastic processes in physics goes back to
the fundamental paper of Einstein in 1905 cited from above; in 1922 Norbert Wiener
(1894-1964) began the systematic mathematical investigation of Brownian motion. He
realized:

The precise mathematical description of Brownian motion uti-
lizes a probability measure /u on the space of trajectories.

The typical jittery motions involved in the Brownian motion observed under the micro-
scope is mathematically described by the fact that the trajectories, even though they
are continuous, are, with probability one, not differentiable.21

For the calculation of expectations, one requires the notion of integral with respect to a
measure /j, which Wiener introduced and today carries his name.

In 1933, Andrei Kolmogorov (1903-1987) created modern (set-theoretic) axiomatic prob-
ability theory and at the same time, following the lead of Wiener, laid the foundations
for a general theory of stochastic processes. The elementary events in this theory are
the possible trajectories (realization of the process). The probability that a certain set
of trajectories will occur is a measure on the space of all trajectories. Thus the theory of
stochastic processes leads naturally to measure theory, including integrals over subsets
of spaces of functions.

During the second world war, Norbert Wiener, then working at MIT, developed pre-
diction theory, in order to shoot down enemy planes over England with a maximum of
precision.

In his famous 1941 dissertation at Princeton University, the ingenious physicist Richard
Feynman (1918-1988) presented a completely new approach to quantum mechanics by
introducing the Feynman integral, which sums over all possible trajectories of quantum
particles and takes an average of these. From a mathematical point of view this is a
formal Wiener integral in imaginary time. Many calculations of quantum field theory
(used in the theory of elementary particles) are based on the very successful application
of Feynman's integral, although there still is not a rigorous mathematical justification
for this integral even today.

The physicist Edward Witten, who works at the Institute for Advanced Studies in
Princeton, has masterly applied the Feynman integral to gain totally new insights in
deep mathematical topics. He was awarded the Fields Medal for this work at the Inter-
national Congress of Mathematicians in Kyoto in 1990 (see also the historical outline of

21 Ampere attempted to prove in 1806 that every continuous function is in fact differentiable. It
wasn't until 50 years later that Weierstrass constructed a function which is continuous everywhere, but
differentiable nowhere. The precise formulation of this result can be found in [212]. The investigations
of Wiener proved that this is by far not a mathematical sophistry, but that functions of this kind occur
in nature.

Modern chaos theory has shown that a series of mathematical phenomena, all of which were theo-
retically constructed during the second half of the nineteenth century using set theory and at the time
were considered to be pathologies, play an important role in nature. This is for example also the case
with so-called fractals with non-integral dimension.
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mathematics at the end of this volume).

Goal: The goal of the theory of stochastic processes is to derive theoretical laws for the
interpretation and future calculation of these processes using only the empirical data at
hand.

6.4.1 Time series

Basic ideas: We consider the points in time

with At > 0. To every time t — nAi is associated a random variable Xn. The measured
values of this random variable Xn at time t = nAi will be denoted by xn.

Example 1: An analysis of the price for wheat during the years 1500 and 1870 showed
that there was a period of 13.3 years in these prices. An excerpt of this data is shown
in Figure 6.19.

An important problem in the analysis of time series is to discover
periodic behavior in time or to negate the existence of such.

For this one uses the elementary method of autocorrelation coefficients or the more
modern method of spectral analysis (Fourier analysis of the autocovariance function).

Figure 6.19. Periodic behavior of wheat prices from 1820-1860.

Evaluation of time series on computers: We recommend using the software package
SPSS Statistic.22

6.4.1.1 Empirical autocorrelation coefficients

Let a variational series XQ, #1, . . . , XN be given. We fix a number k = 1 ,2 , . . . , N/2 and
consider the two relatively shifted sub-series

and

22 Since the publication of the original in 1996 there has of course been a great deal of movement in
this market. - The translator
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Recall the notion of empirical correlation coefficient r& of these two variational series;
here it is called the kth-autocorrelation coefficient of the variational series. Explicitly we
have

Here we have set yj := Xj+k and

Interpretation of Tk\. First of all, we have — 1 < r^ < 1. The larger \r^\ is, the larger
the correlation of the values which are obtained by shifting the time by fcAt.

(i) If the values of |rfc| for k = m, 2m, 3m,... are particularly large compared with the
other values, this is a strong indication of the existence of a period T = 2mAt in the
time series (see Example 2 below).

(ii) If all values of r^| are small, then there is practically no correlation between the
values measured at different times. This is a strong indication of an aperiodic behavior
of the time series.

Example 2: For a purely periodic series

of period T = 2mAt and amplitude a ^ 0 we have for a large number N of measured
values approximately

In particular, we get (see Figure 6.20(a)):

Example 3: Suppose that Xj = const for all j. Then we have r^ = 0 for all k.

Example 4'- In Figure 6.20(b) we have drawn a time series which is only correlated for
short times. For large time shifts fcAt the value of r^\ gets smaller and smaller, hence
there is no longer any correlation at all.

Approximate values: For a large number JV of measurements we have approximately

with

The approximation (6.40) is often applied to practical cases.
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Figure 6.20. Time series and the autocorrelation coefficients.

6.4.1.2 The spectral analysis of discrete time series

This method is based on the use of Fourier series, whose coefficients are the autocovari-
ance coefficients.

Stationary time series: Let E be a probability space and

a series of random variables Xn with 0 < AXo < oo. We interpret Xn as a random
variable at time t = nA£ and say the series is stationary (in a broad sense) if

and

for all n, A; = 0, ±1, ±2, . . . Here Cov (X, Y) = (X-X)(Y-Y), so that in particular
Cov(X,X) = (&X)2.

Definition: We define the autocorrelation coefficients

Interpretation: The number r/t is the correlation coefficient between the random vari-
able Xn at time nAi and the random variable Xn+k at time (n + k)A£. That the time
series is stationary is expressed in the fact that the expectations Xn and the standard
deviation AJiTn do not depend on the time t = nAi. Moreover, the correlation coeffi-
cient rk does not depend on the chosen time t = nAt, but rather depends only on the
difference fcAi.

Theorem: If we set R(k) := Cov (Xo,Xk), then we have
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In addition, R(-k) = R(k) for all k.

Spectral theorem: Let Then the function

is continuous, and we have

In particular, we get for the variance the expression

The 2?r-periodic function / is called the spectral density of the stationary time series.
According to (6.41) and (6.42), it contains all information on the standard deviation
AX and the autocorrelation coefficients r^ = R(k)/R(Q).

Example 1: For a fixed natural number n > 1, let

R(±ri) ^ 0 and R(k) = 0 for all k ̂  n.

Then we have

Example 2: Let
R(0) ^ 0 and R(k) = 0 for all k ̂  0.

Then

Uncorrelated time series of this kind are referred to as white noise.

6.4.1.3 Statistics of discrete time series

Let a time series (Xn) be given, which is stationary (in the broad sense). We now wish
to estimate important quantities from measured values

X Q , X I , . . . ,Xjv-i

provided that JV is sufficiently large.

(i) Estimate of the expectation Xn for all n:
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(ii) Estimate of R(k):

In particular, #/v(0) is the estimate for the standard deviation AXn for all n. Moreover,

is an estimate for the autocorrelation coefficient TV
(iii) Estimate of the spectral density:

6.4.1.4 Herglotz' spectral theorem

Theorem: If (Xn] is a stationary (in the broad sense) time series, then there is a
non-decreasing, bounded function F : [—TT, TT] —* R such that

giving a representation of R(k) as a Lebesgue-Stieltjes integral. If then
fc=U

the derivative ^'(A) =: /(A) exists almost everywhere and we can replace the symbol
dF(A) in (6.43) by /(A)dA.

6.4.1.5 Spectral analysis of continuous time series and white noise

Let E be a probability space and

a continuous series of random variables Xt with 0 < A^o < oo. We interpret Xt as a
random variable at time t. This series will be called stationary (in the broad sense) if

and

for all times t, s e R. The expression
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defines a function R : R      R which is called the autocovariance function. The number

is the correlation coefficient between the random variables Xt and Xt+s. We have
R(-s) = R(s) for all s.

Spectral theorem Then the function

is continuous and we have

Thus the spectral density function / is the Fourier transform of the autocovariance
function R.
Short time correlation, white noise and distributions: For some fixed, small
e > 0, let

Then the correlation function satisfies re(s) = 1 on the small time interval [—e,e] and
r(s) = 0 outside of this interval. This is a typical short time correlation. For the spectral
density /E we obtain the expression

In the limiting case e —> +0, we get

This limiting case is called white noise. In the language of physicists and engineers, we
have for the autocovariance function the relation

where 6 denotes the Dirac delta distribution (see [212]). In fact, <5 is not a classical func-
tion but a distribution. The formal relation (6.44) is more rigorously to be interpreted
as the relation
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in the sense of distributions. This means

for all test functions 

White noise is a model of stochastic processes occuring in nature and engi-
neering, for which there is only a correlation among very small time shifts.

6.4.2 Markov chains and stochastic matrices

The Bernoulli experimental scheme is based on the assumption that the individual trials
are independent (see 6.2.5). The Markov chains to be introduced in this section, which
were first investigated by Andrei Markov (1856-1922) in 1906, are the simplest possible
generalize ion of Bernoulli's scheme to events which are dependent.

The basic model: (i) We consider a system of discrete points in time

t = 0, At, 2At, 3At,...

(ii) To each of these times we consider a system of states

Zi,Zz,...,Zi,.

(iii) We define

Pij := transition probability of the state Zt ••••' time t = nAt
changing into the state Zj at time t = (n + 1) At.

This transition probability is equal to the conditional probability that the system is in
the state Zj at time t = (n+ l)At, provided it had been in the state Zi at time t = nAt.
This system is what is referred to as a Markov chain.

It is typical for Markov chains that the transition
probabilities do not depend on the point in time at
which they are considered (homogeneity in time).

(iv) We collect these transition probabilities into a so-called square transition matrix

We as?'ime that P is a stochastic matrix, meaning that the elements of P satisfy the
inequality

ind all sum of rows are equal to unity, i.e., one has
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Definition: Let p\^' denote the transition probability for the state Zi at time t — nAi

moving to the state Zj at time t = (n + fc)Ai. The elements (pL ) are collected in a

matrix which we denote by P^, and which could naturally be called the kth transition
matrix.

The Chapman—Kolmogorov equality: For all k, m = 1, 2 , . . . we have

Corollary: P<fc) = Pk.

In the special case m = I (resp. k = 1), (6.46) is referred to as the forward equation
(resp. backward equation).

6.4.2.1 Ergodic behavior

Definition: A Markov chain is said to be ergodic, if the limits

exist and are independent of i. Moreover, we assume that p, > 0 for all j such that

Interpretation: An ergodic Markov chain completely forgets the situation at the initial
time t — 0. The number PJ is the probability that for large times the state Zj is realized.

The Ergodic Theorem of Markov (1906): A Markov chain is ergodic if and only if
there is a natural number n > I such that all entries of Pn are positive.

A model for the spreading of rumors: We denote by

two possible variations of a message. For example Z\ (resp. Z^) could mean that Mr
X will turn in his notice (resp. will not turn in his notice). We assume the following
transition matrix

This means

(i) If a person hears the message Zi, then with a probability of p he will spread the
message Zg, while the probability that he spreads it correctly is 1 — p (p is the probability
that the message will be incorrectly reproduced, i.e., becomes a rumor).

(ii) Similarly the message Z-z will be incorrectly reproduced with a probability of q.

The assumptions 0 < p < 1 and 0 < q < 1 are realistic. Then we have

Phis means that and In particular, if p — q we get
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After the rumor has been spread for some time the public opinion is that Mr X will
turn in his notice with a probability of p\ — 1/2, which has no relation to the actual
fact and original message.

6.4.2.2 Recurrence

Suppose that at time t = 0 we have a state of our system Zj. We denote by wn the
probability that the system will first return to this state precisely at the time t = nAt.
Then

is equal to the probability that the system will return back to the original state after
some finite time.

Definition: The state Zi at the initial time t = 0 is said to be recurrent, if the proba-
bility w just introduced is equal to unity. Otherwise we call Zi transient.

Theorem: (i) The initial state Zi is recurrent if and only if

(ii) If the system is in a recurrent state Zi at the initial time t = 0, then with probability
one it returns to this state infinitely often.
(iii) If the initial state Zi is transient, then there is a finite time after which the state
Zi is never again reached.

6.4.3 Poisson processes

Poisson processes are used to describe events which occur very rarely in a given short
time period.

Basic model: We consider an event S (for example the arrival of a telephone call at
the switchboard) and define

Pn(t, s) := probability that during the time interval [t, s] exactly
n events S (telephone calls in our example) occur.

We make the following assumptions:

(i) The process is homogenous in time, i.e., Pn(t, s) depends only on the difference s — t
but not on the starting point t.

(ii) Pi(t, s) = n(t -s) + o(t - s) for s - t -» 0.

(iii) Pn(t, s) = o(t - s) for s - t -> 0 and all n = 2,3, . . .

Consequence: Then we have

This is a Poisson distribution for a given fixed interval [t, s].
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If -Xg_t denotes the number of events <? occuring in the time interval [£, s], then we get
for the expectation (mean) and the standard deviation

6.4.4 Brownian motion and diffusion

6.4.4.1 The classical model of random motion

The transition probabilities for Brownian motion: We consider a particle moving
on the real axis. We denote by Xt the location of the particle at time t, and define

P(y, s; J, t) := conditional probability that the particle is in the in-
terval J at time t, provided it had been at the point
y at time s.

The quantity P(y, s; J, t) is also referred to as a transition probability. For Brownian
motion we have

with

Motivation: We partition the real
axis by means of the lattice points

and consider the discrete points in
time

The particle is assumed to be at x =
0 at the initial time t = 0. Let us
assume that if at time t = nAi, the
particle is at the pointFigure 6.21. Brownian motion.

then at the next time step t = (n + 1)A£ it is at the right neighboring point

with probability p = 1/2, and with the same probability at the left neighboring point

(see Figure 6.21). This situation can be obtained with a Bernoulli experiment with N
trials (cf. 6.2.5). The reference trials are e+ (motion to the right) and &- (motion to the
left). If the event
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with eij = e± is such that exactly k symbols are e+ and N — k symbols are e_, then the
particle is at time t = NAt at the point

The probability for this is given by

If one passes to the limit N —> oo with A.X —> 0, an finally At —> 0, then we obtain (6.47)
by virtue of the limit theorem of de Moivre-Laplace. We refrain from further details on
this.

6.4.4.2 The diffusion equation

We now consider, instead of a single particle, a fluid on the x-axis with the particle
density p(x, t) at the point x and time t. Then we get from (6.47) the relation

From this the diffusion equation

follows. Diffusion processes can thus be illuminated with the example of random motion.

6.4.4.3 The Wiener measure and the Wiener process

We set R_|_ := {t e K. 1 1 > 0} and denote by C(XQ) the space of all continuous functions

We interpret x = w(t) as the trajectory of a particle which is at the point XQ at the
initial time t = 0. Our goal is to construct a cr-algebra J? of subsets M of C(XQ) and a
measure p,Xo on & such that

fj,Xo(M) := probability that a trajectory x = w(t) of the Brownian
motion belongs to the subset M of C(XQ).

With this intent we first consider so-called cylindrical sets23

23Note that this set 3f depends on the Jfc, so a more precise notation would be JZ (Ji,-..., Jra).
However for simplicity we refrain from using this more precise notion and trust this will cause no
confusion.
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The times tk are assumed to satisfy the condition 0 < t\ < ti < • • • < tn, and Jk is an
arbitrary real interval. Thus 3? consists of all continuous trajectories x — w(t] which
are in the interval Jfc at time tk, k = 1,. . . , n. In case 0 < t\ < £2 we define

with to := 0. In the general case 0 < t\ < • • • < tn we set

Finally, we denote by 5? the smallest cr-algebra of subsets of C(XQ) containing all the
cylindrical sets (see [212]).

Theorem: The measure [ixo can be uniquely extended to a measure on all of 5?. It is
called the Wiener measure.

Example: We denote by @ the set of all differentiable trajectories in C(XQ). Then

Thus a trajectory of Brownian motion is almost surely not differentiable. This explains
the jittery motion of Brownian motion.

The Wiener process: We let Xt denote the position w(i) of a trajectory w E C(XQ)
at time t. Then we have:

(i) Xt is normally distributed with expectation (mean) Xt = XQ and standard deviation
AXt = Vt.

(ii) The probability that Xt = XQ at time t = 0 is one.

(iii) Let h > 0 and 0 < s < t. Then the differences

are independent. Moreover, these quantities are normally distributed with mean 0 and
standard deviation ^fh.

(iv) The quantities Xtl, Xt2,..., Xtn have a common distribution function $ti»-tn with
density

Here s a normal distribution with mean // = XQ and standard

deviation One then defines a Wiener process as the family

of random variables Xt on the probability space (C(xo),J?',fjLXo) (a stochastic process).
This process was investigated in 1922 by Norbert Wiener.
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6.4.4.4 The formula of Feynman and Kac

Diffusion results from the Brownian motion of particles. The basic idea of the famous
Feynman-Kac formula is to obtain the particle density Q as an average of stochastic
trajectories of these particles. The construction of average utilizes the properties of the
Wiener measure /j,x.

We consider the initial value problem

for a diffusion process under an addition external force, which is given by the function
U. The unknown is the particle density g = g(x, t) at the point x at time t. The givens
are the initial density QQ G Co°(R) and the function U G C0°(R). We choose a unit of
time such that a = 1/2.

Theorem: The unique solution of (6.49) is given by the Feynman-Kac formula

Here the integration is over all trajectories w G C(x). The integral over C(x) with respect
to the Wiener measure fj,x occuring here is to be understood as a measure integral, as
explained in [212].

6.4.4.5 The Feynman integral

Dick Feynman was an exceptional scientist. He invested five years
of hard work to formulate his own view of quantum mechanics.
The calculation I carried out for Hans Bethe with the help of the
orthodox Schrodinger equation took several months and hundreds
of pages of paper. For the same result Dick needed, using his
methods, only half an hour on the board.

Freeman Dyson, 1979

The initial value problem for the Schrodinger equation

is formally related to the initial value problem (6.49) for the diffusion equation via the
formula

This allows us to present the following interpretation:

The motion of a quantum particle is
Brownian motion in imaginary time.
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This is the mathematical background for the Feynman approach to quantum mechanics,
which was discovered by Feynman in a completely different way using ingenious physical
intuition. Feynman discovered that the quantum motion of a particle can be obtained
as a weighted average over its classical trajectories, where the weights correspond to
probabilities. This average uses the so-called Feynman integral, which at the same time
gives the deepest relation between classical and quantum mechanics.

Formally, the Feynman integral is obtained from the Feynman-Kac formula (6.50) by
replacing the density g by the Schrodinger (wave) function •*/?.

The Feynman integral, however, has only in a few exceptional cases been rigorously
denned and mathematically justified. Still, it is of immense importance as a tool for
calculations of processes of elementary particles in the context of quantum field theory.
The secret for the phenomenal success of the Feynmar integral lies in its ability to
describe microscopic effects of the propagation of actions in quantum processes.

An introduction to the Feynman integral together with the physical background can be
found in [215].

6.4.5 The main theorem of Kolmogorov for general stochastic
processes

The general definition of stochastic processes: Let E be a probability space with
probability measure P and a-algebra &'. A stochastic process is a family

of random variables Xt, where t varies in a non-empty set.

If the index set T is at most countable, then we speak of discrete processes, otherwise
of continuous processes.

Example 1: If T is the set of real numbers, then we may view Xt as a random variable
at time t. For example, Xt could be the temperature at time t in some fixed location.24

Realization of a stochastic process: Let e be an element of E, i.e., an elementary
event. We define

Then xe : T —> R is a real function of the time t, which we interpret as a curve of
measurements (Figure 6.22). Let M be a subset of E which is an event. Then we have:

P(M) = probability that one of the curves of measurements
x = xe(t) with an index e E M has a realization.

The probability space E can therefore be viewed as the index set for all possible curves
of measurements, and the probability measure P can be viewed as a measure on the
space of all curves of measurements.

24If we wish to describe the temperature distribution at every point of the earth, then the random
variable will be X(Q r), depending on the location Q as well as the time T, i.e., the index set T consists
of all pairs (Q,r).

However, for simplicity and the advantage of concrete intuition, we will stick with t as denoting time.
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Important quantities for applications: The most
important quantities of stochastic processes are the fol-
lowing.

(i) The expectation Xt and the standard deviation AJtj
of the random variable Xt at time t.

(ii) The correlation coefficient Figure 6.22.

between the random variables Xt and Xs at the times t and s.

(iii) The distribution function $t of Xt.

(iv) The common distribution function $^,s of Xt and Xs for times t and s with t < s.

The family of common distribution functions: Let $^...4^ denote the common
distribution function of the random variables Xtl,..., Xtn, where the times are to satisfy
the inequality

More explicitly, we have

In case we have the natural condition

for all n and m with 1 < n < m and all arguments xi,..., xn € R.

Gaussian processes: If the common distribution functions of a stochastic process are
Gaussian distributions, then by definition we have a Gaussian process.

Example 2: The Wiener process (6.48) is a Gaussian process.

Main theorem of Kolmogorov (1933): Let an index set T be given as a non-
empty subset of the real numbers. Suppose that for n = 1,2,.. . and every set of times
(6.54), distribution functions $ti—tn are given, which together satisfy the compatibility
conditions (6.55).

Then there is a stochastic process of the form (6.53) which has the given functions $tl...tn
as its common distribution functions.
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7. Numerical Mathematics and Scientific
Computing

Already the very early command which Gauss (1777-1855) had of
the world of numbers was amazing. He was completely at home in
this world and totally in command of the various tools he developed
for its investigation. For every number less than a thousand he
was able to, according to his friend Sattorius von Waltershausen,
"immediately or after very brief reflection name all the particular-
ities of that number". He used this knowledge for elegant calcu-
lations. Through new tools he continually developed and through
tricks he was able to enliven the, sometimes month-long, calcu-
lations he needed. His incredible memory of numbers aided him
in this endeavor. He knew the first few decimals of all logarithms
and, according to Sattorius, "was able to calculate approximations
of these in his head".
He carried out one of the most incredibly long and difficult calcu-
lations in the second half of 1812, in order to determine the mass
of the planets from the perturbations which these caused in the or-
bits of other planets. According to estimates made later on these
calculations, he must have been doing on the order of between 2600
and 4400 digits every day.

Erich Worbs
Biography of Gauss

Numerical mathematics with Mathematica: With this software package you are
able to perform many of the numerical standard procedures on your home PC.

The basic experience of numerical mathematics: Many mathematical methods
which are by nature constructive, while giving deep insights and making for elegant
proofs, are not well adapted to numerical calculations on computers. In order to develop
effective procedures which can be implemented on computers, a great deal of experience
as well as specific knowledge is required.

One rule of thumb is the following:

For every imaginable numerical procedure, no matter how elegant it
appears, there are counterexamples for which the method does not work
at all.
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Therefore it is important not to blindly believe what software systems produce; instead
it is important to understand the structure and limitations of numerical methods. That
is the object of this chapter.

The most important property of a numerical
procedure is its numerical stability.

Already back in 1947, John von Neumann pointed out this fact. Numerical stability
is the property of being stable under numerical perturbations (errors in data, rounding
errors in computations).

Complexity: If the computation time Z(p) required of a numerical procedure depends
on a parameter p, then the procedure is said to be complex, if

This corresponds to exponential growth of the computation time for growing parame-
ter values p. Complex algorithms of this kind are useless for large values of p, as the
computation time can then be measured in millions of years. Modern complexity theory
investigates the fundamental question of the complexity of algorithms for solving prob-
lems in a given class. The object is to construct optimal algorithms from the point of
view of minimal computation time, or to prove that such do not exist.

Complexity theory is a new branch of modern mathematics and computer science, which
still has many open questions. For their solution one applies for example deep results
of algebraic topology (see [212]). As for modern physics, this means complexity theory
lies on the boundary between pure and applied mathematics, once again underlying the
unity of mathematics.

7.1 Numerical computation and error analysis

7.1.1 The notion of algorithm

An important goal of numerics is to develop and apply constructive methods for the
most efficient processing and numerical solution of problems from all of the natural
sciences and engineering. For this, precisely formulated rules for computations are de-
veloped, in the form of algorithms, which can be implemented on computers and in this
way applied to practical problems. An algorithm is therefore a well-defined series of
elementary calculations and decisions, starting from a certain set of knowns, the input
of the problem, and leading to a result, the output. Such algorithms for the numerical
treatment of problems must satisfy the following requirements.

(a) Every step is uniquely determined, and must take into account all possible variations
and exceptions.

(b) The result must be delivered after finitely many steps by means of elementary calcu-
lations which all can be implemented on a computer with maximal, or at least sufficient,
numerical accuracy.

(c) The algorithm is generally only applicable to a certain set of problems. Different
problems of this set require only changes in the input to be correctly dealt with.

(d) Given the input, the problem will be dealt with resulting in a maximal precision of
the result and a minimum of computational expense.
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Table 7.1. Typical representations for real numbers.

Computer

CRAY-1

(DEC

VAX)

IBM 3033

HP 28S

0

2

2

2

16

16

10

t

48

24

53

6

14

13

L

-8192

-127

-1023

-64

-64

-499

U

8191

127

1023

63

63

500

•Emin

4.60 -10-2467

2.94 • 10~39

5.56 • 10-309

5.40 • 10-79

5.40 • 10~79

1.00 • 10-499

2! max

5.50 -102465

1.70 • 1038

8.99 • 10307

7.24 • 1075

7.24 • 1075

1.00 • 10500

6

7.11 -10-15

5.96 • 10~8

i.n -lo-16

9.54 • 10-7

2.22 -10-16

5.00 • 10-12

The implementation of an algorithm on a computer, however, leads to a number of
fundamental questions, which are connected with the limited precision a computer can
provide, resulting in difficulties with the verification of certain postulates. Therefore
the study of sources of errors, error propagation in the course of computations and the
influence of this on the result are central problems in numerics. In this respect, a simple
algorithm, or one with a minimal number of computations, is not necessarily the optimal
solution. Moreover, mathematically elegant solutions like the closed-form formulas of
integral tables, etc. are often quite useless.

7.1.2 Representing numbers on computers

Most computers use different representations for integers and for real numbers. We
consider in what follows only the most important representations for real numbers which
are used for computer procedures. In order to obtain as precise a representation as
possible, the so called floating point representation of a real number x G K is used as an
approximation

where /3 is the base of the number system, a € {+1, —1} is the sign of x, the coefficients
aj € {0, 1, . . . , (3 — 1} are the digits of the mantissa, t is the length of the mantissa and
e G Z denotes the exponent. It is assumed that a\ ^ 0, and one speaks of a i-digit
representation of the number x to the base (3. For x = 0, the normalized representation
a - ±1, di = 0, i = 1, 2, . . . , t and e = 0 is used (cf. 1.1.1.3 and 1.1.1.4).

Computers normally use powers of two to represent numbers, i.e., use the base j3 = 2
(dual system), (3 = 8 (octal system) or (3 = 16 (hexadecimal system); less often 0 = 10
(decimal system) is used. The length of the mantissa t is generally some fixed number
which depends on the computer, and the set of exponents is bounded by L < e < U
with fixed numbers L and U, so that the real numbers which can be represented in this
way is bounded according to xm;n < \x\ < xmax. Some typical combinations are listed
in Table 7. 1.1

If a real number x ^ 0 has an infinite representation to the base /?

JIn this chapter, exponential notation like 7.11E — 15 will be used to represent 7.11 • 10 15.
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then some computers (for example CRAY-1 and IBM 3033) drop the digit at-\.\. For x
the chopped-off representation

is used as an approximation. This dropping of the digit at+i is applied after each arith-
metic operation. Another procedure is rounding the number, which is the representation
given by

In the second case of this definition, the rounding is performed by increasing the digit
at for (.00.. .01)0 = f3~l by one. This corresponds to the usual rounding of numbers
done in the decimal system.

For most real numbers we consequently have x ^ f l ( x ] , hence for x ^ 0 the relative
error, defined as

X

plays an important role. In the case of the truncated representation we have \e\ < /3~*+1,

and for rounding we have \e\ < -(3~t+1. In both cases the relation can be written as

so that f l ( x ) can be viewed as a small perturbation of x. This definition, which goes
back to Wilkinson, is the key to an in-depth study of the errors and their propagation
in algorithms. The maximal absolute value of the relative error is called the relative
computational precision, and this value is equal to the smallest positive floating decimal
number 5. for which

This characteristic value for each computer is dependent on the applied rounding or
truncation used (see Table 7.1).

7.1.3 Sources of error, finding errors, condition and stability

We now give a rough overview of the possible sources of errors which can occur during
the solution of a problem. In what follows, exact values will be denoted by plain symbols
such as a, 6 , . . . , x, y, z, while computed values will be denoted by corresponding barred
variables such as a, 6 , . . . , x, y, ~z. Instead of considering the relative error of x, in the
decimal system one often uses the concept of significant digits: x has m significant digits
with respect to x 7^ 0, if we have

A first source of errors of an algorithm is that of input errors. These occur because of the
i-digit floating decimal point representation for real numbers x, where a relative error
of magnitude 6 can ensue through the rounding or truncation, and on the other hand
the data themselves can have errors, either through incorrect measurements or through
previous computations with raw data.
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Further errors can then occur from arithmetical operations with floating point numbers
x and y. If o denotes one of the operations +, —, x, -r, then in general x o y does not
necessarily have a i-digit floating point representation; rather, one has

under the assumption that the value x o y is calculated sufficiently precisely in the first
place and then is rounded or truncated. These errors, which are generally referred to
as rounding errors, propagate and multiply during the performance of an algorithm
and consequently have an impact on the number of significant digits of the end result
of the computation. If one analyzes the magnitude of these errors at each step of
the algorithm all the way through to the final result, then one is performing what is
called a forward error analysis. The resulting estimates of the errors of the result are
usually quite pessimistic, but they can give good qualitative insights into the critical
steps of the algorithm, which impact the final result the most. The interval arithmetic
is a method which implements a forward analysis automatically on the computer by
working with intervals [rca,:^], which guarantee that the actual, correct value x lies in
the corresponding interval (cf. [422] and [430]).

Another technique of studying the propagation of errors is based on the backward anal-
ysis. This principle consists in taking the result of a computation and, for each step,
investigating the most precise data which could have produced the result of that step,
and estimating the errors which that theoretical computation would have had. In this
way one obtains qualitative results on the set of precise data which could have led to
the same result without rounding errors; investigation of these quantities and their per-
turbations yields information on errors which arise invariably or which are inherent in
the problem being considered.

Thus the basic problem is to study how errors of the input data result in errors of the
output. One should differentiate here between the mathematically caused errors and
those due to the particular algorithm used to solve the problem. The relation between
changes in the exact results and the errors of the input data is called the condition of the
problem. This measure can be a single, generally comparable number for all components
of a solution in the sense of a norm, or it can be a whole set of individual numbers, each
of which is a condition number for a particular part of the algorithm. A quite different
notion is that of stability; an algorithm is said to be stable, if (small) errors of the input
data result in correspondingly small errors of the final result. This numerical stability of
an algorithm is in the end the single criterion which decides whether an algorithm can be
effectively put to use; a given mathematical problem may very well be well-conditioned,
but the corresponding algorithm chosen for solving it may be unstable.

Besides the sources of errors already discussed, there are also possible errors which occur
during an algorithm from the fact that floating decimal representations limit the actual
size of numbers to which it applies; either an overflow or an underflow can be the result,
and these can in certain circumstances render the result unusable. In order to avoid
these errors, the algorithm may have to be adapted.

Finally there are procedural errors which can occur when precise values are only approx-
imately calculated. This situation can occur for example when an iteration is broken off
after finitely many steps or a limiting procedure cannot be carried out or a differential is
approximated by the corresponding difference quotient. The analysis of such procedural
errors is part of the description of an algorithm.

Example: As an illustration of these notions and the difficulties that they represent,
consider the following numerical examples which are carried out in a decimal system
(/? = 10) with a mantissa length t = 5 and usual rounding procedures.
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1. Let o = 0.31416 • 101, b = -0.31523 • 101, c = 0.67521 • 10~5 be decimal floating
point numbers. Then we obtain

The associative law is in general not valid for floating arithmetic. Moreover, we have

The first result is only correct to three digits. What happens is that certain digits cancel
out upon the subtraction of numbers which are roughly equal.

2. The problem of determining the two solution of the quadratic equation

is well-conditioned. If we calculate the smaller of the two solutions y for p — 157 and
q = 2 according to the formula

then we find fl(^p2 + q ) = /i(\/0.24651 • 105 ) = 0.15701 • 103 and therefore y =
0.10000 • 10"1. Using the equivalent formula

however, we get y = //(2/(0.31401 • 103)) = 0.63692 • 10~2, a result with a relative error
of approximately 1.5 • 10~5, which has four significant digits. The second calculation is
numerically stable, while the first is instable due to the cancellation of leading digits.

3. Calculating the integral Table 7.2. Recursive computation of integrals.

n

0

1

2

3

4

5

6

7

8

0.63212 • 10°

0.26424 • 10°

0.16060 • 10°

0.11392-10°

0.87800 • HT1

0.71120 -10"1

0.58840 • 10-1

0.44000 • 10-1

-0.15880 -Hr1

0.63212 • 10°

0.26424 • 10°

0.16060 • 10°

0.11393-10°

0.87836 • Hr1

0.71302 • 10-1

0.59934 • ID"1

0.51656 -10-1

0.45368 • 10-1

for n = 0,1,2, . . . , 8 can be done
with the help of the recursion for-
mula

Jn = n-Jn_i--, n = l ,2 , . . .
e

which results from partial inte-
gration, where

The computation yields after a few recursions incorrect values and for n = 8 even a
negative value (see Table 7.2). If one considers just the propagation of the input error
£o := IQ — IQ — 5.59 • 10~7 , then one observes that the resulting error of the final result
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is en := In — In — n\ • EO, which is rapidly increasing. The algorithm is very instable.
The actual error is in fact, due to superposition of the error of //(1/e), even larger. On
the other hand, if the recursion formula in the form

is applied, then the error is reduced in the calculation of In-\ over that of In by a factor
of n. In this way, the algorithm is fitted to yield a stable method of computation of the
well-conditioned problem. If one notes that /„ < l/(n +1) and starts the new recursion
at /is = 1/32, then the initial error satisfies £15 < 1/32, so that \£$\ < 10~9, i.e., t
desired results are as precise as the input errors themselves (see Table 7.2).

7.2 Linear algebra

7.2.1 Linear systems of equations — direct methods

Suppose we want to solve an inhomogeneous linear system of equations

Ax + b = 0,

with n equations and n unknowns x\,..., xn. We make the assumption that the (n x n}-
matrix A is regular, i.e., det A ^ 0, so that the existence and uniqueness of a solution
vector x is assured for every constant b (cf. 2.1.4.3). We now consider direct elimination
methods for the numerical calculation of x.

7.2.1.1 The Gauss algorithm

The Gauss elimination method discussed in section 2.1.4.2 can be put in a form which
is convenient for the implementation on a computer. The equation we wish to solve is
written in the following self-evident scheme, which for n = 4 looks as follows:

Xi

Oil

021

031

041

X2

012

022

032

042

X3

013

023

033

043

£4 1

014

024

034

044

ftl

62

&3

64

The first part of the Gauss algorithm consists of successively making transformations
of the system of equations until it has triangle form. The new elements of the matrix
which this procedure delivers will be denoted by the same symbols.

In the first step, we first check whether an ^ 0. If an = 0, the there is some api ^ 0
with p > 1, and the two rows with indices 1 and p are switched. The first equation (after
this transposition) is now already in final form, and an is a pivotal element. With the
help of the quotients

we then subtract the /a-multiple of the 1st row from the ith row. This results in the
new scheme
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with 

The process is now repeated with the last (n — 1) rows, which now represent a linear
system of equations for the (n —1) unknowns X2,...,xn. Prom the assumption that A is
regular, there exists in the kth step among the a^fc, 0^+1^,.. . , ank at least one element
which is non-vanishing, so that again transposing two rows leads to a pivot element
Ofefe ^ 0.
After (n — 1) steps, the scheme consists of n equations in final form. We now change
the notations, denoting the matrix elements in final form by rjfc, and the values of the
constant column by Ci. Instead of the O's in the lower left-hand corner of the matrix, we
now write the quotients lik with i > k. The resulting scheme thus has the form

From this system of equations we can easily calculate the values of the unknowns, the
second part of the Gauss algorithm, by using the formulas (in reverse order to the
unknowns):

The quantities occuring in the final equations are related to the original system of
equations Ax + b = 0 in the following way (cf. [432]). With the right triangle matrix R
and the left triangle matrix L

and a further permutation matrix P, which described the transpositions among the rows
carried out during the algorithm, we have

The Gauss algorithm yields for a given matrix A, for which the rows have been appro-
priately permuted, two matrices: a regular, lower triangular matrix L with 1's in the

6
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diagonals, and a regular, upper triangular matrix R. By virtue of the LR-decomposition,
the Gauss algorithm can be described for P(Ax + b) = PAx + Pb = LRx + Pb =
—Lc + Pb = 0 with Rx = — c as follows:

1. PA = LR (LR-decomposition),

2. Lc — Pb = 0 (forward substitution —> c),

3. Rx + c = 0 (reverse substitution —> x).

This scheme is particularly useful, if one needs to solve systems of equations for different
b but the same A, as the decomposition of A only needs to be carried out once.

The computational effort of essential arithmetic operations, i.e., multiplications and divi-
sions, is for the LR-decomposition ZLR = (n3 — n)/3 and for the processes of the forward
and reverse substitution ZVR = n2. The Gauss algorithm altogether thus requires

essential operations.

In order to make the Gauss algorithm as stable as possible, a pivotal strategy is required,
which determines a pivot choice at each step of the algorithm. The diagonal strategy,
which works on the premise that no row permutations are required, can only lead to
success if the matrix A is diagonally dominant, i.e.,

Generally, the maximal queue strategy is applied, which determines the element in the
kth row which has a maximal absolute value as the pivot element. In the kth step of the
elimination, an index p is determined, for which

In case p =£ k, the kth and the pth rows are switched. However, this strategy makes
the assumption that the matrix is row scaled, i.e., the sum of the absolute values of the
elements of each row are not equal. Since a scaling of the rows to achieve this is not
advisable, as it too can introduce computational errors, one uses instead the so-called
relative queue strategy, which chooses the element with a maximal absolute value as if
the system were row scaled.

7.2.1.2 Gauss—Jordan procedure

A variant of the Gauss algorithm is to eliminate the unknown Xk in the kth step of the
algorithm not just in the kth equation, but also in all preceeding equations. After a
choice of a pivot element and the necessary permutation of rows, the quotients

are formed and the /^-multiple of the kth row is subtracted from the ith row, so that
in the kth row and column, only the pivot element akk remains. The procedure for
calculating the new entries after the kth step of the Gauss-Jordan procedure is
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Since after n steps the result is a scheme which is a diagonal matrix with non-vanishing
diagonal entries, the solution itself is then obtained by the simple equations

Although this algorithm requires, compared with the Gauss-algorithm, more calcula-
tions, namely

the procedure itself is simpler and particularly well-adapted to vector calculators.

7.2.1.3 Calculation of determinants

Prom the LR-decomposition of the Gauss algorithm we get from detL = 1, detR =

and detP = (—l)y , where rkk denotes the kth pivot element and V is the total

number of row transpositions which need to be carried out, that for the determinant of
a (n x n)-matrix A, we have

The idea of calculating the determinant det A as the product of pivot elements of the
LR-decomposition is efficient and stable. The evaluation of the denning equation for the
determinant presented in section 2.1.2 is too costly and instable because of cancellations.

7.2.1.4 Calculation of inverse matrices

If the inverse matrix A"1 of a regular, quadratic matrix A needs to be calculated
(certainly not for the calculation of solutions of linear systems of equations!), then it is
usually '' ter mined via the matrix equation A A"1 = E by solving a series of systems of
linear et ations, by finding the solutions of Axfc — e^ = 0 for k = 1 ,2 , . . . , n with unit
vectors u^; the kth column of A-1 is then x^. However, this procedure is not optimal,
neither from the point of view of memory nor from the number of operations.

It is more convenient to invert A using a swaping procedure. For this we consider the n
linear forms in n variables x^'.

which belong to A. Assuming apq ^ 0, we solve the pth linear form yp with respect to
xq and insert the resulting linear form instead of xq in the other expressions:

If we now exchange (swap) the linear form xq and the variable yp, then we get a scheme
similar to that above which takes for n — 4, p = 3 and q = 2 the following form.
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The elements of the new scheme are defined by the relations

One calls apq the pivot element of the exchange step. The computation cost of an
exchange step is n2 essential operations. If in this way n successive exchange steps
are carried out, swaping x variables with y variables which are on the left, then the
inverse linear forms result, which then yield the inverse matrix, after an appropriate
permutation of the rows and columns. Pivot strategies are required for this procedure
to be stable. This said, the procedure presents the following advantages: every exchange
step can be carried out in the allocated space for the matrix A, the operations can easily
be vectorized, and the computation cost for calculating the inverse matrix of a (n x n}-
matrix A is n3 essential operations.

Example: We invert the matrix

with the swap procedure and the maximum queue strategy:
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7.2.1.5 The Cholesky algorithm

For solving a inhomogeneous linear system of equations Ax + b = 0 with a symmetric
and positive definite matrix A, there is a more efficient and elegant method which
takes advantage of the properties of A. Because a positive definite quadratic form
Q(x.) := xTAx can be written as the sum of squares of linearly independent linear
forms, there is a so-called Cholesky decomposition

where L is a regular, lower triangular matrix with positive diagonal elements Ikk- From
the matrix equation

the elements of L can be successively calculated from the relations

according to the formulas

For carrying out the Cholesky decomposition of a symmetric and positive definite matrix
A, only the elements on and just below the diagonal are needed, and the matrix L can
be successively computed and stored in the storage area of the matrix A. With this
utilization of memory, the procedure is not only efficient from the memory usage point
of view, but also numerically very efficient, as the computational cost is

essential operations, plus the much lower number of n square roots which need to be
computed. Compared with the LR-decomposition for a general matrix, this means
roughly half the cost (which perhaps isn't surprising considering that a symmetric matrix
contains only roughly half the number of different elements of a general matrix). In
addition, the Cholesky decomposition is stable, because the matrix elements of the
matrix L are bounded in absolute value and cannot become arbitrarily large.

With the help of the Cholesky decomposition of A, the Cholesky algorithm for solving
Ax + b = 0 is given by the following three steps.

1. A = LLT (Cholesky-decomposition),

2. Lc — b = 0 (forward substitution —> c),

3. LTx + c = 0 (reverse substitution —* x).
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The computation cost for the substitution steps is altogether Zsu^ch = n2 + n essential
operations.

7.2.1.6 Tridiagonal systems of equations

We now treat the important special case of tridiagonal systems of equations, but only
for the special case that the diagonal strategy for the Gauss algorithm applies. In this
case the matrices L and R of the LR-decomposition are both bidiagonal, so that we have

By comparison of coefficients we obtain from this the algorithm for calculating the LR-
decomposition for a tridiagonal (n x n)-matrix A:

For the system of equations Ax — d = 0, the forward substitution Ly — d = 0 is used
for calculating the auxiliary vector y:

yi=di, Vi = (k - li-iyi-i, z = 2,3, . . . ,n.

The solution vector x is then obtained from Rx + y = 0 by reverse substitution

This extremely simple algorithm requires only Ztrid = 5n — 4 essential operations, im-
plying a linear growth in the number of operations with n. The algorithm with pivot
choice is described in [432].

7.2.1.7 Condition of a linear system of equations

Because of the invariable imprecision of the input, the algorithms presented thus far only
really solve nearby systems of equations. But even if one has absolutely precise inputs,
the results are not exact, due to rounding errors. If together with a calculated solution
x, one calculates also the defect or the residue r := Ax + b, then x may be viewed as an
exact solution of the perturbed set of equations Ax+ (b — r) = 0. Because Ax + b = 0,
the error vector z := x — x satisfies the system Az + r = 0.

If ||x|| is a vector norm and ||A|| is matrix norm compatible with it, then we have the
inequalities

For the relative error we thus obtain

The quantity «;(A) := ||A|| • ||A l\\ is called the condition number of the matrix A.
In the situation we are considering, «(A) describes how a small change of the constant
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vector b of small norm affects the solution. A relatively small defect thus in general
implies little about the precision of the calculated solution x.

The size of changes in the solution x of Ax + b = 0 under perturbations AA and Ab
of the inputs to the system (A + AA)(x + Ax) + (b + Ab) = 0 can be estimated by

provided «(A) • ||AA||/||A|| < 1. From this we obtain the following important rule: If
Ax + b = 0 is solved with d-digit precision with a condition number ft(A) ~ 10°, then
as a consequence of input errors of x, only d — a — 1 decimal places are significant in the
component of largest absolute value. In the other components the relative error can be
even larger.

7.2.2 Iterative solutions of linear systems of equations

Iterative methods are particularly well adapted to the solution of large systems of equa-
tions

Ax + b = 0,

in which the matrix A is sparse (meaning that most entries vanish), since iteration can
take advantage of this property. Iterative procedures are based on either bringing the
given system Ax + b = 0 into the fix point form

or by minimizing an appropriate functional. The fixed point relation x(fc+1) = Tx^ + c
for a given start vector x^°^ generates a sequence which converges to a solution x if and
only if the spectral radius of the iteration matrix T satisfies £>(T) < 1.

7.2.2.1 Classical iteration methods

We now decompose the matrix A into the sum A = —L + D — U, where L is a strictly
lower diagonal matrix, U is a strictly upper diagonal matrix and D is a diagonal matrix
with diagonal non-vanishing elements a,kk of A:

D := diag(aii,o22,... ,ann).

The iteration algorithm of the combined step procedure, also referred to as the Jacobi
algorithm, is then
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and the iteration matrix is defined by the relation

A sufficient condition for the convergence of the Jacobi algorithm is that the matrix A
is diagonally dominant.
The single step procedure, also referred to as the Gauss-Seidel algorithm, is defined by

so that the elements of the fix point iteration are given by

The iteration can be written in components as

Sufficient conditions for the convergence of the single step procedure are for example the
diagonal dominance or the symmetry and positive definiteness of the matrix A.
It often leads to much better performance (speed of convergence) of the algorithm if
one multiplies the individual components with a relaxation factor u; ^ 1. If ui > 1, then
this is called over-relaxation, while the other case u < 1 is called under-relaxation. The
combined step procedure gives rise to the JOR-procedure

The elements of the fix point iteration are therefore

Similarly one has the method of successive over-relaxation, represented by the SOR-
procedure with

The optimal relaxation parameter wopt should be chosen such that the spectral radius
0(TjoR,(k>)) resp. £?(TSOR(W)) is minimized. Because of the given properties of the
system matrix A, there exist different theoretical possibilities for choosing a;opt.

7.2.2.2 The method of conjugate gradients

For the iterative solution of very large, sparse systems of equations Ax + b = 0 with
symmetric and positive definite matrix A, which is the type of matrix which occurs for
the discretization of elliptic boundary value problems, the method of conjugate gradients
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is especially appropriate. This method is based on the fact that the solution x is a
minimum of the quadratic function

The minimum of F(v) is successively determined in such a way that for a starting vector
x(°) the negative gradient direction is found and in the kth step a conjugate descent
direction p(fc) is found, so that F(v) is minimized in that direction. The CG-algorithm
is:

5? In the CG-procedure the residue vectors r(fc) are pairwise orthogonal, and the di-
rections of descent pW are pairwise conjugate, i.e., we have (p^) Ap(J") — 0 for
j = 1,2,... ,k — I . Therefore this method yields a solution x of the system of equations
Ax + b = 0 with n unknowns after at most n iterations. The kth iterative solution x^
of the CG-algorithm is, in fact, the global minimum of the function F(v) with respect
to thesubspace Sk := span ({p (1),p (2),... ,p(fc)}) = span ({p(0),p(1),... .p'*"1'}), so
that

From this it follows that the error e^ := x^ — x is similarly minimized in the energy
norm ||z||A := zTAz with respect to Sk, so that finally we obtain

The number of CG-steps k which insure that ||e(fe^||A/||e^°^||A < £ can be estimated
from this as

This bound is determined by the tolerance e and the square root of the condition number
Ac(A). The convergence of the CG-method can be noticeably improved by a precondi-
tioning. This is done by transforming the system of equations to be solved ahead of time,
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yielding a matrix A which has a better condition. This uses a regular (n x n)-matrix C
which transforms Ax + b = 0 into Ax + b = 0 via

Here A is symmetric positive definite and similar to

The preconditioning matrix M = CCT is thus necessarily an approximation^ A in order
for the condition number with respect to the spectral norm to satisfy «2(A) = ^(K) =
/t2(M~1A) <C «2(A). There are numerous strategies for choosing the preconditioning
matrix M from the specifics of the problem at hand, cf. [425].

7.2.3 Eigenvalue problems

For the calculation of eigenvalues \j and the corresponding eigenvectors x^ of a matrix
A such that

there are many different methods and procedures, which either use specific properties
of the problem or specific properties of the matrix A. In what follows we consider
the eigenvalue problem under the assumption that the matrix A has few vanishing
entries and the problem is to find all pairs (Aj,Xj) of eigenvalues and the corresponding
eigenvectors.

7.2.3.1 The characteristic polynomial

The theoretical approach of calculating the eigenvalues \j as the zeros of the charac-
teristic polynomial PA (A) = det(A — AE) and then determining the eigenvectors from
the corresponding homogeneous linear system of equations (A — AjE)xj = 0 (cf. 2.2.1)
cannot be put into practice for numerical calculations. The largest problem here is that
the rounding errors in the calculation of the coefficients of the characteristic polynomial
can have drastic effects on the computed values for the eigenvalues (cf. [432]). For this
reason this step is in general quite instable. The treatment of eigenvalue problems has
to be done with other methods.

7.2.3.2 Jacobi procedure

The eigenvalues A., of a real symmetric (n x n)-matrix are real, and the n eigenvectors
form an orthonormal system of vectors (cf. 2.2.2.1). Therefore there is an orthogonal
(n x n)-matrix X, whose columns are the eigenvectors x^, which can be used to bring
A into diagonal form

The Jacobi procedure realizes this transformation iteratively, by carrying out an appro-
priate sequence of orthogonal similarity transformations with elementary Jacobi rotation
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matrices

The pair of indices (p, q) with l<p<q<nis called the rotational pair of indices and
V(p, q, (f>) is called a (p, q) rotation matrix. In the transformed matrix A" := U"1 AU =
UTAU, only the elements of the pth and qth rows and columns are changed. For the
elements of A' := UTA, we have

From this we obtain the matrix elements of A" = A'U by

The matrix elements on the intersection points of the pth and qth rows and columns are
given by

The angle (f of a (p, q) rotation matrix U(p, q, </?) = U can be chosen in such a way that
in the transformed matrix A" we have a'^q — a'^p = 0, i.e., such that

In the classical Jacobi procedure we start with A^ ' :— A and form the orthogonal
and similar matrices A^ = U^A^ fe~1^Ufc, k = 1,2,... , so that in the kth step, a non-
diagonal element apq = aqp of A^ ~1' can be made by Ufc = U(p, q, if>) to vanish.
The vanishing element generated in this way in A^ ' is, in general, destroyed by later
rotations.

The special Jacobi procedure chooses the following order for the rotation pairs:

so that the non-diagonal elements of the upper half of the matrix are, in each step,
changed to zero in a whole row.
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For both of these procedures one can show that the sum of squares of the non-diagonal
elements of A^

forms a zero sequence and that therefore the sequence of matrices Ask' converges to
a diagonal matrix D. If S'(A^) < e2, then the diagonal elements a\f' represent the
eigenvalues Aj with an absolute precision of e, and the columns of the product matrix
V := Ui • U2 • • • Ufc of the rotation matrices are orthonormalized approximations to th
corresponding eigenvalues.

7.2.3.3 Transformation to the Hessenberg form

Here we start with a non-symmetric (n x n)-matrix A and transform this matrix with
a sequence of similarity transformations into the form of a Hessenberg matrix, which is
adapted to calculations:

The elementary Jacobi rotation matrices are now applied in the method of Givens to pro-
duce a situation in which the matrix element underneath the first subdiagonal which is to
be eliminated does not lie on the intersection point of the pth and qth rows and columns.
Moreover, the elements which have been brought to vanish are no longer changed in

later steps, so that the transformation can be achieved in N* = steps.
The successive elimination of the matrix elements is done in the order

^311 a41, • • • i <2nl?a425 Q-52, • • • j &n2> 0>53, • • • > &n,n-2

by rotation matrices U(p, q, tp) with the corresponding rotation pairs of indices

(2,3), (2 ,4) , . . . , (2, n), (3,4), (3 ,5) , . . . , (3, n), (4 ,5 ) , . . . , (n - 1, n).

The angle ip (E [—Tr/2, Tr/2] is determined so that for the elimination of a^ ^ 0 with
i > j + 2 through the (j + 1, i) rotation, we have

With the product matrix Q := Ui • Ua • . . . • Ujv* we have H = QTAQ, and the
eigenvalues of A are calculated from the eigenvectors y^ of the Hessenberg matrix H as
xj = Qyj
If the transformation is applied to a symmetric (n x n)-matrix A, then because of the
conservation of the symmetry property under orthogonal similarity transformations, a
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symmetric tridiagonal matrix J := QTAQ of the form

results. The orthogonal similarity transformation of A into the Hessenberg matrix or a
tridiagonal matrix can be done efficiently with the aid of the fast Givens transformation
or utilizing Householder matrices (see 7.2.4.2).

7.2.3.4 The QR-algorithm

For every real (n x n)-matrix A there exists by virtue of Schur's Theorem an orthogonal
matrix U such that A is similar to a quasi triangular matrix R = UT AU of the form

The matrices Rij, i = 1,2,. . . , m are square of size one or two. The real eigenvalues of
A are thus equal to the elements of the (1 x l)-matrices R^j, while the complex conjugate
pairs of eigenvalues are equal to those of the (2 x 2)-matrices RJJ. The QR-algorithm is a
procedure for constructing a sequence of orthogonal similar matrices which converge to
a given quasi triangular matrix R. It is based on the fact that every real (n x n)-matrix
A can be written as a product of an orthogonal matrix Q and a upper triangular matrix
R of the form

The elementary Jacobi rotation matrices are the constructive elements of the QR-
decomposition. If one forms the new matrix

from the constituents of the QR-decomposition of A, then A' is orthogonally similar
to A, and the transition from A to A' is called a QR-step. It is used to construct the
sequence of similar matrices, at least in principle. In order to reduce the computation
cost, one works with a Hessenberg matrix H or with a tridiagonal matrix J, since the
QR-transformed matrix H' of a Hessenberg matrix H is again a Hessenberg matrix, and
after a QR-step, the transformed matrix J' of a symmetric tridiagonal matrix J is again
a tridiagonal matrix. For a Hessenberg matrix HI the algorithm of the QR-algorithm
of Fansis is

Under certain assumptions the sequence of orthogonal, similar, Hessenberg matrices Hfc
converges to a quasi triangular matrix. In order to increase the convergence ability
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of the algorithm, one applies spectral shifts. The algorithm is then modified to the
QR-algorithm with explicit spectral shift

The spectral shift a% in the kth QR-step is chosen appropriately, for example as the last
diagonal element of Hfe. This insures that the last or next to last subdiagonal element of
Hfc converges quickly to zero. Thus the matrix Hfc decomposes, and the QR-algorithm
can be continued, applied to submatrices of smaller size. In this way the eigenvalues
can be successively calculated. If the given matrix HI has pairs of complex conjugate
eigenvalues, then to avoid the necessity of working with complex numbers one also uses
the technique of QR-double-step. This applies to successive QR-steps with complex
conjugate spectral shifts in such a way that the resulting Hessenberg matrix H&+2 is
calculated directly from Hfc, where the spectral shifts are implicit.

The QR-algorithm with implicit spectral shifts, applied to Hessenberg matrices or tridi-
agonal matrices, is a very efficient method for calculating eigenvalues, as for each eigen-
value or conjugate pair of such on average only a few QR-steps are necessary. It is the
standard procedure for treating eigenvalue problems for fully filled matrices.

7.2.3.5 The broken inverse vector iteration of Wielandt

This method is used to efficiently calculate approximations of eigenvalues of a matrix like
to ones resulting from the QR-algorithm. Let \k be an approximation of the eigenvalue
Afc of a Hessenberg matrix H which satisfies 0

Then the iteration

generates for a given starting vector z^, which has a non-vanishing component of the
eigenvector yk of H for the eigenvalue Afc, a sequence of vectors z^m\ which converge
very quickly to the direction of the eigenvector yfc. For a good starting approximation \k
and for a sufficiently well-spaced eigenvalues, a few iteration steps of the broken inverse
vector iteration are sufficient for a satisfying result. The solution of the linear system of
equations (H — AfcE)z(m) = z(m~l) with respect to z^m^ are obtained with the Gauss
algorithm when a column pivot strategy is applied, taking account of the Hessenberg
form of the matrix. It is more economical to normalize the iteration vectors.

This procedure can also be applied to determine the eigenvalues of known eigenvalue
approximations of symmetric tridiagonal matrices J, where the more specific structure
of the set of equations to be solved should be taken into consideration.

7.2.4 Fitting and the method of least squares

The basic problem which fitting calculations should solve is to estimate unknown pa-
rameters in empirical formulas, which are dictated by known scientific laws or model as-
sumptions. In the simplest case we have a function f(x; a\, a2> • • • , OLU} and its values for
TV (different) points xi, x-z,..., XN coming from measurements j/i, ?/2i • • • , DN for the val-
ues of f ( x i ; QI, 0:2, • • • , OLn). We want to determine the set of parameters ai, 0:2, . . . , an

so that the standard deviation or residues
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are minimal in a sense to be made precise below. The number N of measurements is
larger than the number n of parameters in order to offset the invariable errors in the
input data. Under the assumption that the measurements are normally distributed of
equal variance, the Gauss fitting principle or the method of least squares is appropriate
for the problem for probability theoretical reasons. The requirement (the statement of
being minimal) is

If the observations have relatively different precisions, i.e., if the variances of the normally
distributed errors are different, then this can be accounted for by providing the residues
with weights.

In what follows we consider only the case of a function /(a^; ai, 0:2, • • • , cnn) which de-
pends linearly on the parameters a/c, so that

for given functions <pk(%), k = 1, 2 , . . . , n which do not depend on the parameters a^.
The equations we have to solve, then, are the linear error equations

With the quantities c^ := <fk(xi}, i = 1>2, . . . , A T ; k = l , 2 , . . . , n , the matrix C =
(cik) G RNxn, the vector y € RN of the measurements, the parameter vector a: 6 M^
and the residue vector r € M.N, the system of equations can be compactly written as

7.2.4.1 The method of normal equations

The solution of error equations like the one we have just met, coming from the Gaussian
fitting calculation for postulating

leads with A := CTC £ Mnxn and b := CTy € M" to the necessary (and at the same
time sufficient) condition represented by the linear system of normal equations

for the parameters to be determined. If the matrix C of the error equation has maximal
rank n, then the matrix A is symmetric and positive definite. Consequently, A is
regular, the parameter vector a is uniquely determined and the system of equations can
by solved with the aid of the Cholesky procedure (cf. 7.2.1.5). The residues are obtained
from the calculation of the parameter vector a by substitution into the error equation.
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The matrix elements tijfc and the constants bi of the normal equations can be calculated
from the column vectors Cj of the matrix C as scalar products:

Using Gauss' summation notation the elements of the

normal equation are given by a^ = They allow an explicit
exhibition of the solutions for special cases which often occur.

7.2.4.1.1 Fitting of direct observations. If an unknown quantity y is observed
and if we have N measurements yi, then the N error equations y—yi = ri, i = l,2,...,N
and the resulting single normal equation for the parameter values y which we want to
determine are given by

The fitting, i.e., most probable value y according to the method of least squares is then
equal to the arithmetic mean of the measurements. The resulting residues Ti for the
mean are the most probable errors, the quantity m := \/[rr]/(N — 1) is called the mean
error of the observation, and my := ^/[rr]/(N(N — 1)) is called the mean error of the
mean.

7.2.4.1.2 The regression line y = ax + b. If measurements Mj(xj,yj), i =
1,2, . . . , JNfie nearly on a line (assuming exact abscissas Xi and measured ordinates yj,
then the parameters a and b of the regression line y = ax + b are to be determined from
the error equations

according to the method of least squares. The corresponding normal equations are

The solution of this equation is often derived from the Cramer rule (cf. 2.1.4.3) in the
form

These formulas are numerically instable, since in the case of positive Xi and yi cancella-
tion of numerators and denominators is possible. A stable way to do the calculation is
to use the means x := [x]/N, y := [y]/N in the form
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7.2.4.1.3 Fitted parabola y — a + bx + ex"2. For measurements M;(xj,yj), i =
1,2,... ,N which lie nearly on a parabola, it follows from the corresponding N error
equations

that the following three equations are the normal equations.

Their solution should be dispensed of with the Cholesky procedure.

7.2.4.1.4 Fitted polynomials. In certain situations it is appropriate to use fitted
polynomials of higher degree. Using the Ansatz function y>k(x) = xh~l, k = 1,2,..., n
for a fitted polynomial of degree (n — 1), one obtains the normal equations for the
parameters ai , . . . , an

The condition number K(A) of the normal equation matrix A is often very large, so that
the calculation of the solution a has the usual problems as discussed in section 7.2.1.7.
An improvement of the situation can be obtained by using, instead of the simple power
function, a more appropriate Ansatz function if>k(x) in the form of a Legendre polynomial
Pfc(x) (cf. 1.13.2.13) or one of the Chebychev polynomials Tk(x) (cf. 7.5.1.3), which fit
the approximation interval by a simple substitution of variables.

7.2.4.2 The method of orthogonal transformations

In order to treat the error equations, for which the normal equations are often poorly
conditioned, in a numerically more stable manner, we can first apply to them an or-
thogonal transformation with the objective of bringing the system of error equations
into a simpler form. An orthogonal transformation is in the context of the method of
least squares admissible, since the Euclidean length of the residue vector is not changed
by this transformation. Let Q G RArxAr be an orthogonal matrix. Then Co; — y is
transformed into

For every matrix C € RWxn of maximal rank n < N there is an orthogonal matrix
Q 6 E'NxN such that

where R € R(7V~n)xri is a regular upper triangular matrix and 0 € Rnxn is the zero
matrix. The orthogonal matrix Q can be constructed explicitly as a product of n
Householder matrices of the form

The Householder matrix U is symmetric and UTU = E, and hence U is orthogonal.
It corresponds to a reflection on a (N — l)-dimensional complementary subspace of R^
which is orthogonal to w. Because of the reflection property, by appropriately choosing
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the vector w, we can, for every vector c e R^, c ̂  0, display a Householder matrix U so
that c maps to an arbitrarily given vector c' of the same norm as c, by setting c' = Uc.
The vector w has to be given the direction which bisects the angle between c and —c'.

In the first transformation step with Ui = E — 2wiw]", we can arrive at the situation
in which the first column of the transformed matrix C' = UiC we have a multiple of
the first unit vector ei e RN. This means that UiCi = —761 with 7 = ±||ci||, where
Ci is the first column of C. Consequently the direction of wi is uniquely determined
as h := ci 4- 761. In order to avoid a possible cancellation in the calculation of the
first component of h, we choose the sign of 7 to be the same as the first component
en of c. With the vector wi obtained by normalizing h, the first transformation step
C' = UiC = (E — 2wiwJ)C = C — 2wi(w]~C) can be carried out with a minimum of
computation cost by using the auxiliary quantities

according to

In the following kth transformation step we transform the kth column of the matrix
Q(k-i} ._ Ufc- i . . .UiC in the desired form by using a Householder matrix Ufc =
E — 2wfcwJ, k = 2 ,3 , . . . , n with a vector w^ e M^, whose first (k — 1) components
vanish. This means that the partial vector of the kth column, which consists of the
(N — k + 1) last components, is mapped to a multiple of the unit vector ei € MJV~fc+1.
At the same time the first (k — 1) columns of C^k~l> are unchanged. After n such
orthogonal transformations we have

If one forms the transformed measured vector

through successive multiplication with the Householder matrix Ufc, then the equivalent,
transformed system of error equations becomes

Since the last (N — n) residues fi are determined by the corresponding values t/j, the
sum of the squares of the residues is minimal if and only if r\ = TI = • • • = f~n = 0. The
parameters a\,..., an we wish to determine are obtained from

through the process of reverse substitution with the vector y l , which consists of the first
n components of the y G M^. If the residue vector r is to be calculated with respect to
the given error equations, this can be done most conveniently, by virtue of the relation
Qr = ? and the symmetry of the Householder matrix Ufc, by the formula
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In f the first n components vanish, and the last (N — n) components are given by
fj = —y"j. The successive multiplication of? with the matrices Ufc is done with the aid
of the efficient calculational technique described above.

The method of orthogonal transformations yields the parameter values with relatively
small errors compared with the classical method using the normal equations. This is
because the transition from the error equations to the normal equation squares the
condition number of C.

Besides the Householder transformations of the error equations with elementary rotation
matrices there are orthogonal transformations with elementary rotation matrices, where
in each step a single matrix element is eliminated. This variant is costlier, but it makes
it possible to take special, irregular ways in which the matrix C might be occupied into
account. In addition, it can be more advantageous from the memory use point of view
and takes at each step the particular error equation of the system into account.

7.2.4.3 The method of singular value decomposition

If the rank of the matrix C of the error equations is not maximal, but rather rank C =
g < n, or if the column vectors of C are up to the precision of the calculations being made
almost linearly dependent, then the methods described up to now are not applicable. In
these cases the solution of Co: — y = r is not unique with the method of least squares or
at least it is ill-defined. Processing problems of this type is based on the facts we now
describe.

For every matrix C 6 RJVxn with rankC = g < n < N, there exist orthogonal matrices
U G M.NxN and V G !R.NxN such that we have the singular value decomposition

in which S denotes a diagonal matrix with non-negative diagonal elements Sj, which
can be ordered in such a way that si > $2 > ... > se > se+i = ... = sn = 0,
and 0 e ]R(Ar-n)xn is a zero matrix (cf. [432]). Here s, are the singular values of the
matrix C. The column vectors u, € R^ of U are called the left-singular, the column
vectors Vj € Rn are called the right-singular vectors of C. Because of the singular value

decomposition, written as CV = US or C U = VS , one obtains the relations

The singular value decomposition is related to systems of principal axis of a symmetric,
positive definite matrix as follows

The squares of the positive singular values are equal to the positive eigenvalues of both A
and B, while the right-singular vectors v* are the eigenvectors of A and the left-singular
vectors Uj are the eigenvectors of B.

With the singular value decomposition we can transform Ca — y = r with orthogonal
transformations into an equivalent system of error equations :
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With /3 := VTa, y := UTy and UTCV = S, the transformed system of error equations
is

Since the last (N — g) residues fi are determined by the corresponding t/j, the sum of the
squares of the residues is minimal if fj. = f~2 = • • • = fe = 0. Thus the first Q auxiliary
unknowns (3i can be determined by

while the rest of the /? e_i , . . . , /3n in the case g = rank C < n are arbitrary. If one further
takes account of y"j = ujy, i = 1,2 . . . , AT, then the solution vector a is given by

with (n — Q) free parameters /3j, i = Q + 1,.. . , n. If C does not have maximal rank n,
then the general solution a is the sum of particular solutions from the linear hull which
is generated by Q right-singular vectors v$ corresponding to the positive singular values
Si and an arbitrary vector from the kernel of the linear mapping defined by C.

In the set of solutions of a not uniquely solvable system of error equations, one is often
interested in the particular solution whose Euclidean norm is minimal. Because of the
orthonormality of the right singular vectors YJ, this leads to the equation

In certain applications with very poorly conditioned error equations, which are charac-
terized by a large ratio between the largest and the smallest singular values, it can make
sense to drop certain components of a* if this procedure will make the values of the
squares of the residues acceptable.

The actual calculation of the singular value decomposition of a matrix C is carried
out in two steps. First the matrix C is transformed to a bidiagonal matrix B which
has the same singular values as C does, by using orthogonal matrices Q e RJVxAr and
W 6 Rnxn, and calculating B via B = QTCW. In the second step, the singular values
of B are calculated using a special variant of the QR-algorithm.

7.3 Interpolation, numerical differentiation
and quadrature

7.3.1 Interpolation polynomials

Let (n + 1) pairwise different points (interpolation points) X G , X I , . . . ,xn in an inter-
val [o, b] C R be given, together with the corresponding values (interpolation values)
yo ,y i , . . . ,yn which for example might be the values of a real-valued function f ( x ) at
the interpolation points. The interpolation problem is then to find a polynomial In(x)
of degree at most n, such that In satisfies the (n + 1) interpolation conditions

Under these assumptions there is a unique such polynomial. The representation of this
uniquely determined polynomial In can take various forms.
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7.3.1.1 The Lagrange interpolation formula

We introduce the (n + 1) special Lagrange polynomials

which correspond to the (n + 1) interpolation points. This polynomial has, being a
product of n linear factors, degree n, and the properties Lj(xi) — 1 and Li(xk) = 0 for
k =£ i. The polynomial In can be written in terms of these polynomials as

In order to calculate the value In(x) at a point which is not one of the interpolation
points, one uses the Lagrange interpolation formula, which is

Using the partial coefficients

which only depend on the interpolation points, and the interpolation weights

which depend on the point x whose value we wish to determine, one obtains the repre-
sentation

This product of (n + 1) linear factors is equal to the reciprocal value of the sum of the
Hi, and hence one obtains the following barycentric formula for the calculation of /„ (x)

This formula is useful for numerical computations. In the particular case of increasingly
ordered and equidistant interpolation points, with step size h > 0,

the partial coefficients are given by
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Since the common factor (—l)n/(/inn!) in the barycentric formula can be dropped, we
can just as well use the equivalent partial coefficients, the signed alternating binomial
coefficients:

7.3.1.2 The Newton interpolation formula

We now consider the (n + 1) Newton polynomials

where Ni(x) has degree i, being a product of i linear factors. Then the Newton interpo-
lation formula is

The coefficients c$ are determined as the ith divided difference, also called the ith slope,
which is denned by

where [xj] := yi,i = 0,1,... ,n are the initial values for the recursively defined slopes.
Let jo, ji,..., ji be successive index values in {0,1,..., n}. Then we have

For the determination of the needed slopes in the Newton formula, the following scheme
of divided differences

turns out to be convenient. Indeed, the coefficients Ci of the Newton formula are just
the values of the downward-sloping diagonal. These are the only values of interest, and
they can be calculated by a computer program which starts with the points of interpo-
lation Xi and the corresponding values y, = [or,], then calculates the values columnwise.
The most efficient calculation of an interpolated value at the point x follows from this
representation, for example for n = 4,
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by successive evaluation of the expressions in brackets from the innermost outward; the
computational cost is a mere n multiplicative operations for a general polynomial In (x).

For equidistant interpolation points Xj = XQ + jh, j = 0 , 1 , . . . , n, the divided differences
simplify, which in turn simplifies the whole interpolation polynomials, as

and similarly, for the kth differences:

The forward differences are recursively defined by

where the initial values are A°J/J := yi? i = 0 ,1 , . . . , n. They again can be calculated
with the help of a neat scheme:

The Newton interpolation formula thus takes the form

where the coefficients are in the downward-sloping diagonal of the scheme. If we further
define x = XQ + th, t e R, then we get from this the Newton-Gregory I-interpolation
formula

The interpolation polynomial can just as well be developed from the interpolation point
the farthest to the right. In this case one has xn-j = xn — jh, j = 0 ,1 , . . . , n, and one
uses this time the backward differences:

where the initial values are now V°yn-j '•= Vn-j, j — 0 ,1 , . . . , n. These again form a
scheme:
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With the backward differences, it is now the lower, upward sloping diagonal in which
the desired differences lie, yielding

Prom this we get for x := xn + sh, s 6 M, the interpolation formula of Newton-Gregory
II

7.3.1.3 The Gaussian interpolation formula

In certain situations it makes sense to take as the initial values for developing an inter-
polation polynomial, not the first or last interpolation point, but rather a point in the
middle of the interval. In this case, the interpolation points, assuming they are equidis-
tant, will have the form Xj = XQ +jh, j = 0, ±1, ±2, . . . , ±m. The number n = 2ra +1 of
interpolation points is assumed to be uneven. In this case there are central differences,
which using the initial values 8°yj := y j , j = 0, ±1,.. . , ±m, are recursively denned by

The scheme for the central differences is

From the intuitive Ansatz for the polynomial In(x)
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we get with x := XQ + th, t 6 R, the two Gaussian interpolation formulas

If we now form the arithmetical mean of these two formulas, using the mean values

then we obtain the Stirling interpolation formula

7.3.1.4 Interpolation errors

If the function f(x) which we are attempting to approximate with the help of an inter-
polation polynomial In(x) (in the interval [a, b] with Xj € [a, b] for alii = 0 , . . . ,n) is
(n + l)-times continuously differentiable, then the interpolation error is given by

where £ G]a, b[ is a number which is dependent on x. We get, using the supremum norm
of the mth derivatives in the interpolation interval [a, b]

for the general interpolation error in the case of equidistant interpolation points with step
h for linear, quadratic and cubic approximation polynomials, respectively, the estimates

7.3.1.5 The algorithm of Aitken-Neville and extrapolation

If, for given interpolation points and values, exactly one value of the interpolation poly-
nomial is what we want to calculate, then the algorithm of Aitken-Neville is appropriate.
Let S = [io,..., ik} C {0,1,..., n} is a subset of (k + 1) pairwise different index val-
ues, and let A*oi1---i f c(x) denote the interpolation polynomial for the interpolation points
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and values (xj,yi) with i € 5. With an initial polynomial of degree zero, namely
I£(x) := y k , k = 0,1, . . . ,n, we have the recursion formula

with which we can successively form interpolation polynomials of higher degrees. It is
useful for calculating the interpolated value for a given x as the value /oi---n(x) = In(%)-
The Neville algorithm is a method for successively calculating these values, by utilizing
the scheme

Each value of the scheme is a linear combination from the numbers which are to the left
and above, for example

The second representation is more efficient and better for implementation on a computer.

The Neville algorithm is mainly used for extrapolation. Often we can only approximate
a quantity A with the help of an auxiliary quantity B(t], which depends on a parameter
t, in the sense that we have an expansion

with coefficients ci, c - 2 , . . . , cn which are independent of t. If for some reason B(t) can
not be calculated for a sufficiently small value of t, which is necessary for B(t) to ap-
proximate A closely, then for a series of parameter values to > t\ > • • • > tn > 0 we
calculate the values B(tk), k = 0,1, . . . ,n successively and then evaluate the corre-
sponding interpolation polynomials Jfc(i) at the point t = 0 (which is not one of the
interpolation points); this process is called extrapolation. For this the Neville scheme is
set up row-wise and the decrease of the absolute value of t is stopped as soon as the last
extrapolated values change sufficiently little (i.e., near convergence).

Example: The number TT can be approximated from the circumferences Un of an n-gon
which has been inscribed in the unit circle. For Un, n > 2, we have

If we set t := (1/n)2, then Un = B(t) is the approximating function for A = TT. With
the circumferences U<2,Uz,U4,U§ and Us, all of which can be calculated without re-
course to trigonometric functions, we get via extrapolation with the Neville scheme the
astoundingly accurate approximations for TT:
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1/4
1/9
1/16
1/36
1/64

2.000000000
2.598076211
2.828427125
3.000000000
3.061467459

3.076537180
3.124592585
3.137258300
3.140497049

3.140611053
3.141480205
3.141576632

3.141588849
3.141592411 3.141592648

The parameter values tk often form a geometric sequence with quotients q = 1/4, so
that tk = to • qk, k = 1, 2 , . . . , n. In this special case the computation of the Neville
scheme is simplified. If we set p\ ' := I*_k j_fc+1 ^ which is the value of the Neville
scheme in the kth column, then for t = 0 we get

For the kth column the differences should be multiplied with a factor l/(4fc — 1), which
for k —•> oo rapidly approaches zero. This special Neville scheme is called a Romberg
scheme.

7.3.1.6 Spline interpolation

Interpolation polynomials for which we have a large number of interpolation points which
are equidistant or nearly so have a strong tendency to oscillate rapid near the ends of
the interval. Because of this, they will have a large difference to the function they are
supposed to be approximating. In other words, the procedure, which is valid for a given
interval, of approximating a function by a polynomial of low degree, leads, in the case
of many interpolation points, to a polynomial which no longer is a good approximation,
being in general not even continuously differentiable at the end points of the interval.

This state of affairs can be improved by using spline interpolation, which always yields a
smooth interpolation function. The idea is simply to interpolate between interpolation
points by a polynomial of low degree, then glue the pieces together to form a continuous
function. We consider here the particular case of cubic splines. More precisely, the
natural cubic spline interpolator s(x) for the interpolation points XQ < x\ < • • • <
xn-i < xn is uniquely determined by the following conditions.

(a) s(xj) = j/j, .7 = 0 , 1 , 2 , . . . , n,

(b) s(x) is for x € [xj, £i+i], i = 0,1, 2 , . . . , n — 1 a polynomial of at most degree 3,

(c) S(x)eC2([x0,xn}),

(d) s"(x0) = s"(xn} = 0.

These conditions uniquely determine a function s. The corresponding function is piece-
wise, i.e., between the interpolation points, a cubic polynomial, and at the interpolation
points s is twice continuously differentiable and at the end points of the interval has
vanishing second derivatives. To numerically calculate the spline function s(x), we let

denote the lengths of the partial intervals [x^Xj+i], in which for s(x) we require
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In addition to the given interpolation values yi we require also the second derivatives y"
to determine the partial polynomials Sj(x). For the four coefficients a«, 6j, Ci, di of Si(x),
we thus require

These conditions take account of the interpolation conditions as well as the continuity of
the second derivatives at the inner interpolation points. The condition of the continuity
of the first derivatives at the (n — 1) inner interpolation points yields the (n — 1) linear
equations

If we note also that y'g = y% = 0 then this system of linear equations are for the (n — 1)
unknowns y",..., y'^-i- The corresponding coefficient matrix is symmetric, tridiagonal
and diagonally dominant. The system of equations therefore has a unique solution, which
can be calculated with the computational cost of n essential operations (cf. 7.2.1.6). Even
for larger values of n we have good numerical properties of the tridiagonal system of
equations, as the condition number of the matrix is small provided the partial intervals
do not have large differences in size.

The two so-called natural end conditions S"(XQ) = s"(xn} = 0 are in most cases, however,
not appropriate to the problem at hand. In general they are replaced by two other
conditions, so that s(x) is nonetheless uniquely determined. Examples for conditions
which can be placed, depending on the problem at hand, are:

Q) Prescribe the first derivatives:

The system of equations is then extended to include the two equations for the further
unknowns T/Q and y'^:

The resulting system of equations is still symmetric, tridiagonal and diagonally domi-
nant.

(3} Smoothing the boundary:

The first and the last equation of the system are adapted to insure that the coefficients
of y" and y'^-i are additive.

7) Not-a-knot condition: Here we require that the cubic polynomials SQ(X) and si(x)
(resp. sn-2(x) and sn_i(x)) coincide. This can be achieved by requiring
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This leads to the following additional equations

The resulting linear system of equations for the (n + 1) unknowns y'^y",..., y£ is no
longer symmetric, tridiagonal or diagonally dominant. Still, it can be solved using the
Gaussian algorithm with a diagonal strategy, plus special treatment for the first and the
last equation.

<5) Periodicity condition:

where T := xn — XQ is the period of the function we are approximating, so that yn = yo-
For the n unknowns y$, y'{,..., y'n~\ we have as first and last equation

while the other equations remain unchanged. The matrix of the system of equations is
symmetric and diagonally dominant, but in general no longer tridiagonal. The special
structure of the equations makes applications of appropriate methods possible, leading
to a solution.

7.3.2 Numerical differentiation

Interpolation polynomials can be used to calculate the derivatives of functions which
are given, for example, by a table of values. The formulas obtained for numerical
differentiation can likewise be used to approximate derivatives of complicated functions,
but they are in particular indispensable for approximating the derivatives of solutions
of partial differential equations.

For equidistant interpolation points Xi = XQ — ih with corresponding interpolation values
Vi = f ( x i ) , i = 0,1, . . . , n, one obtains by a n-times differentiation process the Lagrange
interpolation formula (cf. 7.3.1.1)

For a point £ € (xo,xn), the expression on the right yields the exact value of the nth

derivative of f ( x ) . The corresponding nth difference quotient is for n — 1,2,3:
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More generally one can approximate the pth derivative at a particular point x by using
the pth derivatives of a interpolation polynomial In(x) of higher degree. For n = 2 we
get in this way for the first derivatives the approximations

Similarly, for n = 3 with XM '•— —(XQ + £3), we obtain

A few differentiation formulas for five interpolation points are

7.3.3 Numerical integration

,6

An approximate calculation of a definite integral / = / f(x)dx from known individual
Ja

or approximate function values of the integrand is known as numerical integration or
quadrature. The most appropriate method for obtaining an approximation to / depends
in an essential way on the properties of the integrand in the interval in which it is to be
approximated: is the integrand smooth, or are there singularities of the function f ( x )
or of one of its derivatives? If we are given values of the function in tabular form, or
can we calculate f ( x ) for arbitrary arguments xl What is the desired precision, and are
there other, similar integrals which also have to approximated?
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7.3.3.1 Interpolative quadrature formulas

One class of quadrature formulas for continuous and sufficiently differentiable integrands
arises by first approximating the function f ( x ) in the desired interval [a, b] by an inter-
polation polynomial In(x) at (n + 1) interpolation points a < XQ < x\ < • • • < xn < 6,
and then approximating the value of / by approximating the integral of In(x). Because
of the Lagrange interpolation formula in section 7.3.1.1, this yields

Prom the first component of the formula, we get the quadrature formula

depending only on the chosen interpolation points or knots X Q , X I , . . . ,xn, and with
corresponding integral weights Wk which depend only on the size of the interval (b — a),
defined by

The quadrature error Qn is given by

This error can be explicitely calculated for equidistant interpolation points. All quadra-
ture formulas for interpolation have by construction the property that Qn yields the
precise value for I in case f ( x ) is itself a polynomial of degree at most n. In certain
cases it can even be exact when f is a polynomial of higher degree. This motivates the
definition of a precision degree m e N of an (arbitrary) quadrature interpolation formula

Qn :=(&-«) Wkf(xk] as the greatest integer m for which Qn precisely integrates all

polynomials up to and including degree m. For given (n +1) interpolation points for the
integration a < XQ < x\ < ... < xn < b there is a uniquely determined, interpolation by
quadratures formula Qn, whose precision degree is at least n.

For equidistant knots with XQ = a, xn — b, x/t = XQ + kh, k = 0,1,2, . . . , n , h :=
(b — a)/n we obtain closed formulas known as the Newton-Cotes quadrature formulas. If
fk ;= /(xfe), k = 0 ,1 ,2 , . . . , n are the interpolation points for the integrand, then some
of these formulas, together with the corresponding quadrature errors and with precision
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degree m are given in the following box.

The quadrature formulas for n = 21 and n — 21 + 1, I e N have the same precision degree,
namely m = 21 + 1. Therefore it is advantageous to use the Newton-Cotes formulas for
even n, since the precision obtained for the following, odd n, is very marginal. Since, as
we already mentioned, the interpolation polynomial In (x) has the tendency for growing n
to oscillate strongly near the end points of the interval, using the Newton-Cotes formula
for n > 6 is not to be recommended. In particular for n = 8 and n > 10 the value for
some of the integration weights become negative.

A better approximation of / can be obtained by subdividing the integration interval
[a, b] into N equally large subintervals, to each of which we apply the Newton-Cotes
formula. From the simple trapezoidal rule above we get the summed trapezoidal rule,

The summed Simpson rule is

whose quadrature error for an at least four times continuously differentiable integrand
/(#) is given by

The mean rule or tangent trapezoidal rule

is an open Newton-Cotes formula with an interpolation point x\ at the midpoint of the
interval [a, b]. It has the precision degree m = 1 and a quadrature error of
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The summed mean rule or mean sum rule

corresponds to a Riemannian sub-sum for a particular decomposition Z of the interval
[a, b] (see section 1.6.2).

There is a relation between the trapezoidal rule T(h) and the mean sum rule M(/i),
which is

which makes it possible to improve an approximation T(h] through the use of the mean

rule sum to an approximation T for half the step width. Each such halving of the

step length requires twice the number of functional values.

The trapezoidal rule with successive halving of the step length is particularly appropriate
for the calculation of integrals of periodic and analytic integrands over a period interval,
since the trapezoidal sums converge very rapidly. The trapezoidal rule is also convenient
for the calculation of indefinite integrals over R for sufficiently fast decreasing (at infinity)
functions f ( x ) .

7.3.3.2 The Romberg procedure

For an integrand f(x) which is sufficiently often continuously differentiable, we have the
Euler-Maclaurin summation formula with remainder term

where £?2fc> fe = 1,2,... are the Bernoulli numbers with values

Moreover, for the remainder we have RN+i(h) = O(h2N+2). The calculated trapezoidal
sums T(h} approximate the integral / with an error having an asymptotically valid
development in the step length h, which only has even powers of h. If we successively
halve the step length, then the assumptions are satisfied for applying the extrapolation
from t = h2 to t = 0 using the Romberg scheme (cf. 7.3.1.5). The required trapezoidal
sums T(hi) for the sequence ho — b — a, hi = foj_i/2, i = 1,2,3,... can successively be
determined by using the mean sum rule above. In the Romberg scheme, therefore, the
values of the important upper diagonal converge to the value of the integral. The halving
of the step width can be broken off when two extrapolated values of this upper diagonal
are sufficiently near to each other. From this it follows that the Romberg procedure is
an efficient, numerically stable integration method, provided the integrand is sufficient
smooth.

Example:
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h

1
1/2
1/4
1/8
1/16

T(h)

3.206404939
3.097098826
3.068 704 101
3.061519689
3.059717728

3.060663455
3.059239193
3.059124886
3.059117074

3.059144242
3.059117265
3.059116553

3.059116837
3.059116542 3.059116541

7.3.3.3 Gaussian quadrature

Instead of prescribing the interpolation points, we could just as well choose these together
with the integration weights in such a way that the resulting quadrature formula has a
maximal precision degree. We consider this point of view in this section in the context
of a general approximation of an integral

with a given continuous weight function q(x) which is assumed to be positive in the
interval (a, b). For every number n > 0 there are n interpolation points Xk 6 [a, 6], k =
1,2,. . . ,n and weights Wk, k = 1,2, . . . , n so that

for some a < £ < b. The quadrature formula defined by this sum has a maximal precision
degree of m = In — 1, provided the knots Xk are chosen to be the zeros of a polynomial
<f>n(x) of degree n which belongs to a whole family tpo(x), y > i ( x ) , . . . , <pn(x) of orthogonal
polynomials with the properties

The zeros of the polynomial (fk(x) are always real, pairwise disjoint and Xk E (a, b).

The integration weights Wk are determined as the integrals of the weighted Lagrange
polynomials by virtue of the corresponding interpolation quadrature formula, i.e., by

where k — 1,2, . . . ,n. From the second, equivalent representation it follows that the
integration weights Wk for all Gaussian quadrature formulas are positive.

Since the orthogonal polynomials <pk(x), k = 0 ,1 ,2 , . . . , n of the above mentioned family
satisfy a three-term recursion formula, the zeros of (pn (x) can easily be calculated as the
eigenvalues of a symmetric, tridiagonal matrix. The corresponding integration weights
are essentially just the square of the first component of the corresponding normalized
eigenvectors of the matrix.
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Table 7.3. Gauss-Legendre quadrature formulas.

n

2

3

4

5

6

k

1

1
2

1
2

1
2
3

1
2
3

Xk = — Xn-k+i

0.5773502692

0.7745966692
0

0.8611363116
0.3399810436

0.9061798459
0.5384693101
0

0.9324695142
0.6612093865
0.2386191861

Wk

1.0000000000

0.5555555556
0.8888888889

0.3478548451
0.6521451549

0.2369268851
0.4786286705
0.5688888889

0.1713244924
0.3607615730
0.4679139346

En(f]

6.3- 10

2.9-10

8.1-10

1.5-10

-3

-5/(6)(0

~7/(8)(0

-10̂ (10)̂

-12/(12)(0

The general Gaussian quadrature formulas are, because of their high precision de-
gree, very important for the approximate calculation of definite integrals in the case
of (weighted) integrands which we can calculate at an arbitrary point. For applications,
the following special cases are particularly important, where for the consideration of the
first two cases we assume without restriction of generality that the integration interval
is [—!,+!]. Indeed, every finite interval [a, b] can, with the aid of a mapping

be mapped to [—!,+!].

Gauss—Legendre quadrature formulas: For the weight function q(x) = 1 in [—1, +1],
the function tf>n(x) = Pn(x) of the previous section are the Legendre polynomials (cf.
1.13.2.13). The zeros of the Legendre polynomials Pn(x], n = 1 ,2 , . . . , are symmetric
with respect to the origin, and the integration weights Wk for symmetrically situated in-
terpolation points are equal. Table 7.3 contains for a few values of n the most important
information. The quadrature error is

Gauss—Chebychev quadrature formulas: For the weight function q(x) = 1/Vl — x2

in [—!,+!], the polynomials (pn are the Chebychev polynomials (pn(x) = Tn(x), which
are discussed below in section 7.5.1.3. The interpolation points Xk and the weights Wk
are

For the quadrature error we have the estimate

The Gauss-Chebychev quadrature formula is, in a special case, closely related to the

7.4. 10-3 f(4) 
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mean sum M(h). Indeed, from

it follows, setting x = cos#,

where Ok = (2k — l)7r/(2n), k = 1 ,2 , . . . , n are equidistant interpolation points for the
2-7r-periodic, even function /(cos#). The mean sum yields for increasing values of n
approximation with very small quadrature errors.

Gauss-Laguerre quadrature formulas: For the weight function q(x) = e~x in [0, oo]

the polynomials above are <pn(%) — Ln(x] := n = 0 ,1 ,2 , . . . , which

are the Laguerre polynomials. The first few of these are

They satisfy the recursion relation

Table 7.4 contains a few interpolation points and the corresponding weights, with the
quadrature errors

The coefficient of the quadrature error shrinks slowly as n grows in magnitude.

7.3.3.4 Substitution and transformation

An appropriate substitution of variables to calculate the integral / can be used to bring
the integral into a form which allows an efficient application of one of the quadrature
formulas above. This is of particular interest in the case of integrands which are singular
or are indefinite (defined on unbounded intervals) with slowing decreasing integrands.
If we use the substitution

with an increasing function ip(t) whose inverse maps the given interval of integration
[a, b] bijectively to [a, 0] with <p(a) = a, </?(/?) = b, we get

An algebraic boundary singularity like for example
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Table 7.4- Gauss-Laguerre quadrature formulas.

n

4

5

6

k

1
2
3
4

1
2
3
4
5

1
2
3
4
5
6

Xk

0.32254769
1.74576110
4.53662030
9.35907091

0.26356032
1.41340306
3.59642577
7.08581001
12.64080084

0.22284660
1.18893210
2.99273633
5.77514357
9.83746742
15.98287398

wk

0.60315410
0.35741869
0.03888791
0.53929471 • 10~3

0.52175561
0.39866681
0.07594245
0.36H7587 -nr2
0.23369972 • 10~4

0.45896467
0.41700083
0.11337338
0.01039920
0.26101720- 10~3

0.89854791 • 10~6

En[f]

1.43-10-2/(8)(0

3.97-10-3/(10)(0

1.08-10-3/(12)(0

with an analytic (in the interval [0,1]) function /(x) can be transformed to the integral

by the substitution of variables

note that the integrand of the integral has no singularity because of p + q — 1 > 0, so
that this integral can be efficiently approximated using the Romberg procedure or the
Gauss quadrature formulas.

The transformation of intervals of integration which have one or both of its end points
infinite can be done as follows. The integral on the interval [0, oo) is mapped by means
of the substitution x — </?(£) := t/(t + 1) to an integral on the interval [0,1). The
substitution x = ip(t) := (e* — l)/(e* + 1) transforms the interval ] — 00,00[ to the
interval ] — 1,1[. The resulting integrand is in general not continuous, as it in general
will now have singularities at the end points of the interval.

To treat singularities of the integrand at the two ends of the interval ] — 1,1 [, whose
nature is not known, application of the tanh-transformation is appropriate. This is the
substitution

which maps the interval ] — 1,1[ to the infinite interval ] — oo, oo[, but it has the advantage
that the integrand of the transformed integral
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often decreases exponentially.

For indefinite integrals with slowly decreasing integrands, the smh-transformation can
often be convenient. This is given by

A finite number of such sinh-transformations leads to an integrand which decreases
exponentially to both sides of the integration interval, so that for a numerical integration
the trapezoidal rule is efficient.

7.4 Non-linear problems

7.4.1 Non-linear equations

Suppose we are given a continuous, non-linear function / : R —> R, and wish to
determine the zeros of the function as solutions of the equation

The determination of these zeros can be done iteratively, starting from some known
approximations.

Assuming that there are two values x\ < £2 for which f ( x \ ) and /(#2) have opposite
signs, there is, according to the last theorem in section 1.3 ('In-between' theorem),
at least one zero in the interval [0:1,2:2]. This zero can be closed in by shrinking the
interval with the bisection method, by calculating the value f(x$) at £3 = (x\ + Xz)/2,
and determining this way in which half of the interval the zero lies. The length of the
intervals determined in this way shrink as a geometric series with q — 0.5, so that the
number of bisections required until one has reached a given precision (length of the
interval) only depends on the length of the original interval.

In the method called regula falsi approaches the problem by finding a value £3 by a
linear approximation, setting #3 = (x\yi — X2yi)/(y2 ~ y\), where yi = f ( x i ) denote the
values of the function /. The sign of 2/3 = /(£s) determines the subinterval [£1,2:3] or
[#3, #2] in which the zero lies. If the function /(£) is either concave or convex in the
interval [#1,2:2]) then the sequence of test values converges monotonously to the zero s.

The secant method, on the other hand, drops the idea of shrinking the interval. Instead,
starting from two given approximations x^ and x^ for the zero s, one forms the
iterative sequence of approximations

which is well-defined provide that f(x^) ^ f ( x ^ k 1^). The point £^fc+1^ is geometrically
the intersection of the secant which approximates /(£) with the x-axis.

The Newton procedure assumes that / is continuously differentiable and that one can
easily calculate the derivative f ' ( x ) . Starting with an initial approximation x^°\ the



1094 7. Numerical Mathematics and Scientific Computing

iteration formula is

In this case, x^k+1^ is geometrically the intersection of the tangent at / with the x-axis.

Let f(s) = 0 with f ' ( s ) ^ 0. Then the sequence of the x^ converges to s for all initial
approximations x^ in a neighborhood of x, provided \f"(x^)f(x^)/f'(x^}2\ < 1.
As a measure of the quality of the convergence of a procedure of this type, the main pa-
rameter is the order of convergence. One says that there is at least a linear convergence,
if for all but finitely many k G N we have the estimate

An iteration procedure has (at least) the order of convergence p > 1, if for all but finitely
many k € N we have the estimate

The convergence of the bisector method and of the regula falsi is linear. The secant
method has a super-linear convergence with an order of convergence equal to p = 1.618.
For the Newton method we have p = 2, so that this method has quadratic convergence.
This means that at each step, the number of correct decimal places of the approximation
doubles. Since the secant method does not require the calculation of derivative values,
it can often be more efficient, as a double step of this method has p = 2.618.

7.4.2 Non-linear systems of equations

Let f i ( x i , X 2 , • . . , xn), i = 1, 2 , . . . , n be continuous functions of the independent vari-
ables x := ( x i , X 2 , . . . ,xn)T in a common domain of definition D C Rn. We wish to deter-
mine the solutions x e D of the non-linear system of equations /i(x) = 0, i = 1 ,2 , . . . , n,
i.e., of

The problem of determining a solution vector x 6 D will be considered for the illustration
of two basic procedures in this section.

7.4.2.1 Fixed-point iteration

In some applications the system of equations for which we are looking for the solutions
are given in the fixed point form

or at least the equations f(x) = 0 can be brought into this form. The solution vector x
is then a fixed point of the map F in the domain of definition D C Mn. The idea now
is to approximate this solution by starting with a vector x^°^ €E D and performing the
fixed point iteration
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The Banach fixed point theorem2, applied here to the n-dimensional Euclidean space
W1, yields a necessary convergence statement for the convergence of the approximative
sequence (x^fc') to the solution (fixed point) x.

Theorem: Let A C D C Rn be a closed subset of the domain of definition D of a map
F : A —> A. If F is contracting as a map, i.e., if there is a constant L < 1 such that the
inequality

is valid, then we have:

(a) The fixed-point equation x = F(x) has a unique solution x e A.

(b) For every initial vector x'0) £ A the sequence (x^) converges to x.

(c) For the error of the approximation, we have (where the norm used here is given by

Frechet derivative: Let F'(x) denote the Frechet derivative of F at the point x, i.e.,

This matrix of first partial derivatives of the components of F at the point x is called
the Jacobian matrix of F at the point x.

Speed of convergence: (i) The sequence (x^ f c^) defined by the fixed-point iteration
x(fc+i) — F(x(fc)) converges linearly to the fixed point x under F, provided

(ii) If the functions fa are at least twice continuously differentiable in A and if F'(x) = 0,
then the order of convergence of the fixed-point iteration is at least quadratic.

7.4.2.2 The method of Newton-Kantorovich

We linearize the equation whose solutions we wish to determine,

under the assumption that the fa are at least continuously differentiable in D. For an
initial approximation x^°^ of the solution we have the Taylor series with remainder, in
the form

If one omits the remainder term R(x), then as a linear approximation of the non-linear
system of equations we obtain

2 The general formulation of this important result can be found in [212].
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for the correction vector z := x — x(°'. The linear system of equations has a unique
solution if and only if

The system to which we have reduced the original system of equations does not in
general lead to the correction vector which leads to a solution. Therefore, here also one
iteratively improves the approximation x(°) by applying for k = 0 ,1, . . . the following
steps:

1. Calculate f(x(fc)), and test the validity of ||f(x(fc))|| < el.

2. Calculate f(x«).

3. Solve the system of equations f (x(fe))z(fc) + f(x(°)) = 0 for z^k\ using the Gauss
algorithm. This yields, with x^fc+1^ = x^ + z^k\ a new approximation. The iteration
is continued until the condition ||z^ f c^|| < £2 is satisfied.

The method of Newton-Kantorovich can be written in the form

with

as a fixed-point iteration. This is a direct generalization of the classical Newton method.
What is important here is that the function F has the property F'(x) — 0 for a solution
x of the equation f(x) = 0. This implies a rapid speed of convergence of the method.
The following behavior is typical.

The method of Newton-Kantorovich converges very rapidly for initial
approximations which are already sufficiently near the actual solution.
The order of convergence in this case is at least quadratic.
However, this method can be totally useless for initial approximations
which are too far from the actual solution.

Note that for complicated problems one in general has no idea as to how close the initial
approximations are to the actual solution. Even with poor initial values, the simple
iteration

(I)

at least has a chance of converging, while the Newton-Kantorovich method (N) is com-
pletely useless. If both (N) and (I) converge, then in general (I) converges much slower
than (N).

Discrete dynamical systems: It is important to be aware that also the iteration
procedure (I) is not always applicable.

If we view (I) as a dynamical system, then (I) can only
calculate stable equilibrium states x of the system.

Stable equilibrium states are solutions x of the equation
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where all eigenvalues of the matrix E — f'(x) lie in the interior of the unit circle.

Simplified Newton—Kantorovich procedure: This procedure does away with tl
computationally costly calculation of the Jacobian matrix

and instead calculates the correction vectors z^ from the equation

with the constant matrix ^(x^0^) for a good initial approximation x^. For this, only
a LR-decomposition of f^x^) is required, and the calculation of x(°) is carried out
using only forward and reverse substitution. The sequence of iterations (x^0)) converges
linearly to x.

For large non-linear systems of equations, there are various modifications of Newton's
method which can lead to success. For example, if

then the iteration vector x^fc+1^ can be calculated component-wise by using the single
step procedure (7.2.2.1) for linear systems of equations to successively solve

for the single unknown x\ . This is the non-linear single step procedure. If the
unknown x\ + is determined with Newton's method, where a single iteration step is
carried out and the correction is multiplied with the relaxation parameter u> €]0,2[, the
result is the SOR-Newton procedure:

7.4.3 Determination of zeros of polynomials

7.4.3.1 Newton's method and the Horner scheme

A polynomial of nth degree

with real or complex coefficients a,j has n zeros, provided the zeros are counted with
their multiplicities (see 2.1.6). Newton's method is an appropriate one for determining
the simple zeros. The calculation of the functional values and the values of the first
derivatives can be done with the help of the Horner scheme. This is based on the
process of division with remainder of a polynomial by a linear factor (x — p) for a given
value p. More precisely, we make the Ansatz
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yielding the following algorithm for the recursive calculation of the coefficients bj of the
quotient polynomial Pn_i(x) and the remainder R = bn:

Then we have

The value of the derivative can be obtained from the relations P^(x] = Pn_i(x) + (x —
P}Pn~i(x) f°r x = Pi givm§ us PU(P) — Pn-i(p}- The value of Pn-i(p) is calculated in
the same way, using the algorithm for division with remainder, by setting

where the coefficients Cj are given recursively by

Thus we have Pn(p) = Pn-i(p) — RI — cn-\- The numerical values occuring here are
then collected in the Horner scheme, which for n = 5 looks as follows.

The displayed scheme can be extended to a complete Horner scheme, if for Pn(x) we
carry out a total of n divisions with remainder, which then yields the values for all
derivatives of Pn(x) for x = p.

If we know a zero x\ of Pn(x), then the linear factor (x — Xi) divides Pn(x) exactly. The
remaining zeros of Pn(x} are the zeros of the quotient polynomial Pn-\(x}. In this way
the degree of the polynomial whose zeros we must calculate is decreased step by step.
If, on the other hand, we attempt to do this with only approximations of a zero, this
can have devastating results on the ensuing numerical procedure. There it is in general
better to do this splitting off of factors only implicitly, as follows. If x i , . . . , xn are the
zeros of Pn(x), then we have the relations

If m of the zeros #1, . . . , xm are (approximately) known, then we modify the Newton
iteration by setting

so that we continue our calculations with the given, unchanged coefficients of Pn(x).
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7.4.3.2 The Graeffe procedure

The Graeffe procedure makes it possible to calculate the zeros of a polynomial simul-
taneously without using any initial approximations. It is base on a theorem of Vieta,
according to which the following relation holds between the n zeros x\,..., xn of the
polynomial

In order to present this procedure we make the simplifying assumption that the given
polynomial

with real coefficients aj has only simple real zeros with the property that \x\ > \x? >
• • • > \xn\. Starting with the polynomial fo(x), we form the sequence of polynomials
fk(x), k = 1,2,..., such that fk(x) has the zeros x? . This has the effect of separating

the zeros of fk(x) more and more as k grows. For the coefficients a:- of fk(x) we then
obtain from the above mentioned theorem of Vieta the relations

Consequently we have for the absolute values of the zeros the estimates

The sign of the root is obtained by making substitutions into the Homer scheme.

The polynomial fk+i(x) is denned by fk+i(x) := /fc(ix) • /&(— ix ) , i2 = —1. Comparison
of coefficients then reveals

with j* := minjj, n — j}.

Implementing the Graeffe procedure successfully requires modifications of this simplified
model, in particular to avoid unnecessary steps. Other extensions of the method allow
the application of the procedure also to polynomials with multiple roots or complex roots
with identical absolute values. The rough approximations obtained from this method
are good initial approximations for Newton's method.

7.4.3.3 Eigenvalue methods

The calculation of zeros of a normalized polynomial Pn(x) = xn+aiXn~l+a2Xn~2 + ...+
an_ix + an, a,j € R can also be dealt with using methods of a corresponding eigenvalue
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problem. Indeed, Pn(x) is the characteristic polynomial of the Frobenius matrix given
by

i.e., we have Pn(x) = (—l) n • det (A — o;E). Thus the zeros of Pn(x) can be viewed
as the eigenvalues of the Hessenberg matrix A, which in turn can be found using the
QR-algorithm already discussed in section 7.2.3.4.

7.4.3.4 The method of Bernoulli

This method, originally described by Daniel Bernoulli, tries to determine the zero x\
of the normalized polynomial Pn(x) = xn + a\xn~l + ... + an_\x + an whose absolute
value is maximal. The zero with the smallest absolute value, xn, is then obtained by
applying the substitution z — 1/x, since

and the zero z\ of Qn(z) of largest absolute value is just the reciprocal of xn.

Bernoulli was motivated by consideration of a linear homogenous differential equation
of degree n and the behavior of a general solution of this equation. The method can also
be based on vector iteration of the transposed Frobenius matrix AT (cf. 7.4.3.3), which
has the same eigenvalues as A. If A has precisely one eigenvalue x\ of greatest absolute
value, and if z^ e Rn with z^ ^ 0 is an almost arbitrary initial approximation, then
the sequence of vectors

converges in the direction of the eigenvector of A which corresponds to x\. For suffi-
ciently large /c, we therefore have z(fc+1) « x\zSk\ so that the zero of Pn(x) of largest
absolute value is approximately the quotient of the corresponding components of suc-
cessive iteratively determined vectors. For the starting vector

we then have for k = 1,2,3,.. . ,

Consequently the quotients % := Cfc+n/Cfe+n-i converge as k —> oo to the dominant zero
Xi of Pn(x). The linear convergence of q^ to x\ can be accelerated by applying once or
several times the Aitken A2-process.
In addition to this simple method of Bernoulli, there are various variants which can
either determine two real zeros of equal absolute value or two complex conjugate zeros.
The approximations that these procedures deliver are good starting points for a Newton
or Bairstow approximation.
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7.4.3.5 The method of Bairstow

The zeros of a polynomial Pn(x) with real coefficients a,j are either real or pairwise
conjugate complex. To avoid having to do computations with complex numbers in the
Newton method, one tries to determine iteratively a quadratic factor of the polynomial
with real coefficients, from which one obtains either a pair of real or a complex conjugate
pair of zeros. If z\ = u + \v € C is a complex zero of Pn(x), then so is z% — u — iv.
Consequently,

is a quadratic factor of Pn (x).

The division algorithm can be generalized for a quadratic factor (x2 — px — q), p, q £ R.
Prom

with a linear remainder term RI(X) := bn-i(x — p) + bn, we obtain upon comparing
coefficients

A given quadratic factor (x2 — px — q) is a divisor of Pn (x) if

These two non-linear conditions for p and q can be solved with the method of Newton
for systems of equations. The required partial derivatives of bn^\(p, q) and bn(p, q} with
respect to p and q can be deduced from an analogous recursion formula from the bj using

as

If the determinants of the Jacobian are non-vanishing, i.e., if c^_2 — cn-^cn-i ^ 0 for
the approximation pair (p^k\q^), then we obtain iteratively

This method of Bairstow has order of convergence p = 2. After the determination of a
quadratic factor there are, in case the roots are complex conjugate, complex numbers
which appear. But instead of calculating them, both of them are split off by dividing
Pn(x) by the quadratic factor (x2 — px — q).

The numbers which need to be calculated in this method can be ordered into a double-
rowed Horner scheme. In case of n = 6, for example, we have
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7.5 Approximation

We now consider the problem of finding, for a given function / of a normed space V of
real-valued functions on a finite interval [a, b] C R, an element ho of a finite-dimensional
subspace U ̂ V with the property

In what follows we consider only the two most important cases for applications, which
are when the norm is either the L2-norm or the supremum norm. For both of these
norms the existence and uniqueness of a best approximation ho € U can be shown.
Using the properties which characterize /IQ, we discuss its calculation.

7.5.1 Approximation in quadratic means

Let V be a real Hilbert space with scalar product (/, <?), /, #, e V, and the norm ||/|| :=
(/)/)1//2i and let furthermore U := span (tpi, ^2, • - - ,<fn) ^ V be an n-dimensional
subspace with basis {c/?i, </?2, • • • , ¥>n}- The approximation problem in this context is to
find the best approximation ho of / which is characterized by the relation

The orthogonality condition for f — ho must be satisfied for all basis elements <PJ of U.
From the given representation for ho £ t/,

we obtain for the coefficients c^ the conditions

The matrix A € Rnxn of the system of linear equations with entries o^ := (<^j ,<£>&),
j,k = 1 ,2 , . . . , n is called the Gram matrix. It is symmetric and positive definite. The
coefficients Ck can therefore by uniquely determined for any / e V, and for the resulting
best approximation ho we have
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The Gram matrix A for an arbitrary basis {ipi, . . . , < £ > „ } can have a very large condition
number «(A), so that the numerical solution of the system of equations can be difficult.
This situation is illustrated with great clarity by the approximation problem of finding,
for given / E V = Cz,2([0,1]), the real vector space of functions which are continuous
on [0,1], with scalar product

the best approximating polynomial ho of degree n, where the basis of the (n + 1)-
dimensional subspace U is given by {x1, x 2 , . . . , xn}. The elements of the Gram matrix
are in this case

so that A is equal to the Hilbert matrix Hn+i, whose condition number grows exponen-
tially with growing n.

The problems with the numerical side of the computations can be avoided completely,
if, as a basis of t/, we take a system of orthogonal elements, so that

If, in addition dpj,y>j) = \\<pj\\2 = 1, j = 1, 2 , . . . , n, then one speaks of an orthonormal
basis in U. In the case of an orthonormal basis {(pi,<pz,... ,(pn}, the Gram matrix A
becomes a diagonal matrix, so that the coefficients Ck of the approximation ho can be
obtained directly from the simplified system of equations by

If follows from this that increasing the dimension of the subspace U by extending the
orthogonal basis does not change the coefficients which have already been calculated,
and the mean square error decreases in the weak sense as n grows, as follows from the
representation which is valid here:

The cases which follow are all covered by the general theory.

7.5.1.1 Fourier polynomials

In the Hilbert space V = LZ([—TT, TT]) of measurable functions / on [—TT, TT], endowed
with the scalar product

{l,sinx, cosx, sin2:r, cos2:r,... ,s'mnx, cosnx} forms an orthogonal basis of the (2n+l)-
dimensional subspace U they span. Because of the relation
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the Fourier coefficients of the best approximating

are given by

7.5.1.2 Polynomial approximation

Consider now the pre-Hilbert space V = CLZ ([—1,4-1]) of continuous real-valued func-
tions on [—!,+!] with scalar product

We wish to determine the polynomial /IQ in the (n + l)-dimensional subspace of the
polynomials of degree n which best approximates a given / E V. An orthogonal basis
in U is provided by the Legendre polynomials Pm(x), m = 0,1,2,.... They are defined
by

and have the orthogonality property

The coefficients of the best approximating

written as linear combination of the Legendre polynomials, are therefore given by

For an approximate calculation of the integrals occuring here one can apply the Gauss-
Legendre quadrature formulas given in section 7.3.3.

The numerical calculation of the values ho(x) for a given point x with the expansion
above in terms of the Legendre polynomials can, because of the recursion formula
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be carried out by successively eliminating the Legendre polynomial of highest degree
with the following algorithm:

7.5.1.3 Weighted polynomial approximation

On the Hilbert space V = CgiL2([— 1,1]), the scalar product

is defined with a non-negative weight function q(x). The problem is to determine a
polynomial HQ of degree at most n which best approximates a given / € V. For a given
weight function q, we can explicitly list the corresponding orthogonal basis. For the
particularly important case

these are the Chebychev polynomials Tn(x). We have the following trigonometric identity

from which cos nip can be written as a polynomial of nth degree in cos </?, and by defini-
tion, the nth Chebychev polynomial Tn(x), n E N, is given by

The first few T-polynomials are thus

They satisfy a three-step recursion relation

The nth T-polynomial Tn(x) has in [—1,1] n simple zeros, the so-called Chebychev ab-
scissas

which are crowded at the ends of the interval. From the definition we have the property
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and the extrema ±1 are realized by Tn(z) at the n + 1 extremal points xf , as follows.

The T-polynomials have the orthogonality property

With respect to the orthogonal basis {To,Ti,T2,... , Tn} of the subspace U of polyno-
mials of degree n, the coefficients Ck of the best approximation

are, for / G V, given by

Utilizing the substitution x = cos y, one obtains from this the simpler representation

Consequently, the coefficients Ck of the best approximating weighted polynomial are
the Fourier coefficients a^ of the even, 27r-periodic function F((f>) := /(cosy). For an
approximation of the integrals, the most appropriate and most efficient method is the
trapezoidal formula presented in section 7.3.3, as it generally yields rapid convergence
for increasing numbers of integration intervals.

The value of ho(x) at a point x is, because of the expansion in terms of the T-polynomials,
numerically reliable and efficient when one applies the algorithm of Clenshaw. With the
aid of the recursion formula, the T-polynomials of highest degree can be eliminated, and
one obtains the following set of formulas:

7.5.2 Uniform approximation

The problem of approximating a continuous function / by a function ho in a subspace
U will now be considered with the additional requirement that the maximal difference
between ho and / should be minimal. The space of all functions which are continuous
and real-values on [a, b], endowed with the maximum norm or the Chebychev norm
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becomes a Banach space V — C([a, 6]). Because the Chebychev norm gives a bound for
the maximal difference between two functions on the entire interval, the usual notion in
this case is uniform approximation.

A subspace U = span(<£>i, </?2> • • • > ¥>n) with basis {<f>i, ip-z, • • • , <^n} is called a Haar space,
if every element u 6 U, u ^ 0 in [a, b] has at most n — 1 different zeros. In a Haar
space U there is a unique best approximating function ho £ U for a given continuous
function. The alternate theorem characterizes the best approximation by the following
property: an alternate of / € C([a, b]) and h € U is an ordered set of (n + 1) points
o, < x\ < X2 < • • • < xn < £n+i < b for which the difference d := / — h takes on values
with alternating sign, i.e.,

The function /IQ € ?7 is a best approximation of / 6 C([a, 6]) if there is an alternate of
/ and ho such that

The alternate theorem forms the basis for the exchange procedure of Remez for the
iterative construction of a best approximation hg e U in a Haar space U of a given
function / e C([a, b}}. The space of polynomials of degree n, which is important in
applications, U := span (1, x, x 2 , . . . , xn) with dim U = n + 1 satisfies the condition of a
Haar space. The essential steps of the simple Remez algorithm are in this case:

1. Prescribe (n + 2) points

as a starting approximation of the alternate which is to be determined.

2. Determination of the polynomial p^ e U with the property that [Xf. ]^12 is an
alternate of / and p(°\ with the additional condition that the absolute value of the
defect is identical at all (n + 2) points. For this, we set

p(°) := a0 + aix + a2x2 + . . . + anx™

and reduce the requirement to solution of a system of linear equations

for the (n + 2) unknowns 00,01,. . • , aw,r^. This system of equations has a unique
solution.

3. With the resulting polynomial p(°\ find the point x e [a, b] for which

If x coincides with one of the points xk , fc = l , 2 , . . . , n + 2, then according to the
alternate theorem we have found in p^ the best approximation ho.

4. Otherwise we exchange x with one of the x^, , so that the resulting (n + 2) points

are a new alternate for / and p(°\ This exchange step forces the absolute value \r^\
of the defect of the polynomial p^ which is determined in the analogous second step to
strictly decrease. The iteration is continued until the best approximation ho is sufficiently
accurately represented by p(k\ i.e., when ||/ — p^\\oo ~ \r^\ is satisfied.
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7.5.3 Approximate uniform^ approximation

For many purposes it is sufficient to have a good approximation of the best approximator
ho, which can be obtained in different ways.

If / is twice continuously differentiate on the interval [—1,1], then the expansion of /
with respect to the Chebychev polynomials

converges uniformly for all x € [—1,4-1], as in this case the series converges.

Because |Tfc(a;)| < 1 for x G [—!,+!], every partial sum

i.e., every best approximator in the sense of the weighted quadratic mean (see 7.5.1.3),
is a good approximation of the best approximator. The calculation of these approximate
solutions requires that the coefficients Ck can be easily calculated.

For a function / which is at least (n + l)-times continuously differentiate in the interval
[—1,1], there is often a very good approximation of the best uniform approximator,
namely the interpolation polynomial In(x) for the (n + 1) Chebychev abscissas Xk —
cos ((2k — l)7r/(2n + 2)), k = 1 ,2 , . . . , n + 1 of Tn+i(x). Indeed, for the interpolation

error as discussed in section 7.3.1.4, we have because of the

formula

with the point — 1, If depending on x.

If we now write In(x) as a linear combination of the T-polynormals,

then the coefficients GJ are, because of the discrete orthogonality properties of the T-
polynomials given by

for j = 0,1,2,. . . , n. The term discrete Chebychev approximation is used by denote the
problem, given / € C([a,b]) and N interpolation points Xi with a < x\ < x% < ... <
XN-I < XN < b, of finding the function ho e [7, dimt/ = n < N, for which in the
discrete maximum norm ||/||^o := maxj |/(£j)| we have

If U is a Haar space, then the numerical computation of h$ can be effected with ei-
ther a discrete version of the Remez algorithm or by applying the methods of linear
optimization.



7.6. Ordinary differential equations 1109

7.6 Ordinary differential equations

Since it is in general not possible to explicitly exhibit the general solution of a differential
equation or a system of differential equations of order r (see section 1.12), the methods of
numerical approximation of solutions is necessary for applications. To treat the problem
with the appropriate methods, one must differentiate between initial value problems and
boundary value problems, see section 1.12.9 for details on this. In what follows, we shall
assume existence and uniqueness of the desired solutions.

7.6.1 Initial value problems

Every explicit differential equation of order r or system of such can by an appropriate
change of variables be transformed into a system of r differential equations of first
order. The initial value problem is to determine r functions yi (x), 2/2 (x),.. - ,yr(x) as
the solution of the equation

which satisfy at a given point XQ and given values t/jo> * = 1> 2 , . . . , r the initial conditions

Using the vectors y(x) := (yi(x),y2(x),... ,yr(x)) , y0 := (2/10,2/20, • • • ,yro)T and

f ( x , y) = (/i(x,y), fa(x, y ) , . . . , fr(x, y)) , the Cauchy problem can be written

In order to simplify the notation we consider in what follows the initial value problem
for a scalar differential equation of first order

The methods presented for this problem are easily carried over to systems of equations.

7.6.1.1 Single step methods

The simplest Euler method is to approximate the solution curve y(x) through the initial
point (xo,yo) by means of using the tangent, whose slope y'(xo) = /(£0,2/0) is given
through the differential equation itself. At the point x\ := x0 + h, where h denotes the
step width, one obtains the approximate value

for the precise value y(x\) of the solution vector. If the procedure is continued at the
point (xi, yi) with the tangent defined by the directional field of the differential equation
at that point, then at the equidistant interpolation points Xk '•= XQ + kh, k = 1,2, . . .
one is lead to successively better approximations yk by stipulating

Because of the geometric interpretable construction of these approximations, the Euler
method is also referred to as the polygonal edge method. Clearly it is quite rough and will
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yield useful approximations only for very small values of the step width h. But it has
the virtue of simplicity, and is the simplest of all single step procedures, using only the
known approximation yk at the point Xk for calculating the next approximation yk+i-

A general, explicit single step algorithm is

where $(xk,yk,h) is the prescription for calculating the approximation yk+\ at the
point £fc+i = Xk + h from the pair ( x k , y k ] and the step width h. The function $(x, y, h)
must be related to the differential equation whose solution we seek for this procedure
to work. This motivates the following terminology: a general single step procedure is
called consistent, if

Euler's method is consistent.

We define the local discretization error of a single step procedure at the point Xk+i by

It describes the error of the algorithm when the precise solution y(x) is inserted. From
the Taylor series with remained term

we get for the Euler method the local discretization error

On the other hand, the global error g^ at the point Xk is given by the formula

It describes the error of the entire single step procedure which sums up all the discretiza-
tion errors. In case the function $(x,y,h) satisfies the Lipschitz condition in a domain
B with respect to a variable y, i.e., if we have

the global error gn at the point xn = XQ + n/i, n € N can be estimated by the local
discretization error. If max Idtl < D. then we have the estimate1 ̂  i,^~ '

In addition to the Lipschitz constant L, the maximal absolute value D of the local
discretization error dk in the interval [xo,a;n] plays an important role in this formula.

A single step procedure has by definition an error of order p, if the local discretization
error can be estimated as

so that for the global error we have
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The Euler method has the error order p = 1, and the global error of the procedure
decreases linearly at a fixed point x :— XQ + nh as h approaches zero.

The rounding errors and their propagation in the procedure are, compared with the pro-
cedural errors as just discussed, for single step procedures of higher order, of secondary
importance.

The explicit Runge-Kutta procedure is an important and in many situations applicable
method with a higher error order. This procedure start with the integral equation

which is equivalent to the differential equation. The integral can be approximated by a
quadrature formula with s interpolation points fi, . . . ,£s G [xk,Xk+i] according to the
formula

The interpolation points £j are given by

and for the unknown functional value y*, we assume a relation

The parameters Ci,a,i, bij which occur in this formula are determined under further sim-
plifying assumptions in such a way that the Runge-Kutta algorithm with s interpolation
points

has as high a order of error p as possible. The parameters are not uniquely determined
by this condition, so that it is possible to take account of further factors. Explicit
Runge—Kutta algorithms can be displayed as a scheme for the coefficients of the form

Examples of Runge-Kutta methods for low order of error are the following.
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improved polygonal
edge method with
p = 2

method of Heun
(P = 2)

method of Heun
(p = 3)

method of Kutta with
the Simpson rule
(P = 3)

classical Runge-Kutta
method (p = 4)

Runge-Kutta method.
3/8 rule (p = 4)

In order to estimate the size of the local discretization error, often the simple principle
of Runge is used; this is also applied to automatically direct the change of the step size.
Let Yk(xk) = yk be a solution of y' = f ( x , y ) . We wish to determine the error yk+2
compared with Yfc(xfc + 2/t) after two integration steps with step width h. For this, the
value ijk+i obtained at x = Xk + 2h with step width 2h is used. If the method we are
applying has an order of error p, then

From this it follows that

The estimate is calculated after the double step and requires for the Runge-Kutta
method with s interpolation points for the quadrature (s — 1) additional functional
evaluations for the calculation of the value yk+i-

A different principle also used to estimate the discretization error is based on using a
Runge-Kutta procedure with a higher error order. To keep the computational cost as
small as possible, the applied method must be embedded in the procedure with the
higher error order in such a way that both require the same functional evaluations.
The improved polygonal edge method is embedded in the method of Kutta, and as an

estimate for the local discretization error, one obtains 

This principle was greatly improved by Fehlberg, by applying two embedded methods
with different error orders in such a way that the two values yfc+i obtained is the estimate
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of the discretization error; this is the Runge-Kutta-Fehlberg method. Since a Runge-
Kutta method of the fifth order requires six functional evaluations, in [436] a method of
fourth order with an exceptionally small discretization error is described.

A further generalization of the procedures described above are the so-called implicit
Runge-Kutta procedures, in which the interpolation points are more generally given by

The unknown functional values y* are defined by

so that in every integration step the system of equations

which is generally not linear, has to be solved for the s unknowns fcj. One obtains for
these

Among the Runge-Kutta methods with s interpolation points there are also some which
have certain stability properties which are important for the solution of stiff systems of
differential equations. In addition, implicit Runge—Kutta procedures with s interpolation
points for the quadrature have for an appropriate choice of the parameters the maximal
possible error order, namely p = 2s.

Examples of implicit Runge-Kutta algorithms are the trapezoidal rule

with the error order p = 2, the single step procedure

with the error order p = 2 and the two-step procedure
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with the maximal error order p = 4.

The stability properties of single step procedures are first and foremost analyzed by the
linear test initial value problem

in order to compare numerically computed solutions with, in particular, exponentially
or oscillating decreasing solutions y(x) — eXx in case Re (A) < 0. If one applies a
Runge-Kutta method to the test initial value problem, then the result is a prescription

where F(h\) is, for explicit methods, a polynomial in /iA, and for implicit methods,
a rational function in hX. In both cases, F(h\) is an approximation of e^ for small
arguments. This qualitative behavior of the numerically computed approximation y&
only coincides with y(xfc) for Re (A) < 0 if \F(h\)\ < 1. For this reason one defines the
domain of absolute stability of a single step procedure as the set

For the explicit Runge-Kutta procedure with s interpo-
lation points and error order p = 4, we have

which is the same as the first terms for the Taylor se-
ries of eA. The boundaries of the domains of abso-
lute stability for explicit Runge-Kutta procedures with
x = p = 1,2,3,4 are shown in Figure 7.1 for symmetry
reasons only in the upper half-plane. The domains of sta-
bility become larger as the order of error of the procedure
grows.Figure 7.1.
The step width h should be chosen in such a way that for
Re (A) < 0 the stability condition hX = \i € B is satisfied.

Otherwise the explicit Runge-Kutta procedure can yield useless results. The stability
condition must be taken into account in the numerical integration of (linear) systems
of differential equations, where the step width h must be fixed in such a way as to
insure that the constants A,,, j = 1 ,2, . . . ,r satisfy h\j e B. If the absolute values of
the negative real parts of the A., vary too much, then one speaks of a stiff system of
differential equations. The condition on the absolute stability restricts in this case the
step width h quite strongly, even if the quantities Aj are very small in absolute value.

For the implicit trapezoidal rule and the single step Runge-Kutta method, we have

The domain of absolute stability is the entire left half of the complex plane. These two
implicit methods are called absolutely stable, because the step width h is not required
to satisfy a stability condition. Also the Runge-Kutta method with two interpolation
points is absolutely stable.

There are further, more refined, stability notions, in particular for non-linear differential
equations, see [437] and [438].
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7.6.1.2 Multiple step procedures

If we apply the information of the approximation we have obtained from an algorithm
with equidistant interpolation points xjc-i,Xk-2, • • • >^fc-m+i for the determination of
the approximation yk+i at the point Xk+i, then we are working in the direction of multi-
ple step procedures, which often yield a more efficient numerical solution of a differential
equation. A general linear multiple step procedure is for s := k — m + 1

for k > m — 1, i.e., for s > 0, where the coefficients a,j and bj are fixed. In the sense
of a normalization let am = I; then we are dealing with a genuine m-step procedure if
ao + ^o 7^ 0- If °m = 0, then the multiple step procedure is said to be explicit, otherwise
implicit. In order to apply a m-step procedure, we require, in addition to the initial
value yo, (m — 1) additional starting values y i , . . . , ym_i, which can be determined for
example with the aid of a single step procedure.

A linear multiple step procedure is said to have the order p, if for the local discretization
error dk+i we have at an arbitrary point x the representation

with CQ = ci = 02 = • • • = cp = 0 and cp+i ^ 0. Both p and the coefficient cp+i
are independent of the chosen point x. A linear multiple step procedure is said to be
consistent, if its order of error p is at least unity. There are two characteristic polynomials
which are associated with a m-step procedure,

With these, the consistency condition can be written as

The consistence of a multiple step procedure alone is not sufficient to insure the con-
vergence of approximations for h —> 0; rather, the procedure must in addition be what
is called null stable. This means that the characteristic polynomial Q(Z) has to satisfy
the root condition, which states that the zeros of this polynomial have absolute value
at most unity and any multiple roots which it has lie in the interior of the unit circle
(i.e., not on the unit circle itself). For a consistent and null consistent multiple step
procedure of error order p, we have, under the assumption on the initial values

as estimate on the global error gn := y(xn] — yn

Under the mentioned assumptions the approximations yn converge to order p to the
solution y(xn}.
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The most often occuring multiple step procedure are the methods of Adams, which arise
from the interpolation quadrature formula for the integral equation which is equivalent to
the given differential equation. Examples of these procedures are the Adams-Bashforth
method, with /j := f(xi,yi):

Every m-step procedure in this family has the error order p = m. For each integration
step, only a single functional evaluation is required.

Implicit Adams-Moulton methods are given by the formula

An Adams-Moulton m-step procedure has an order of error p = m + I and requires at
each integration step solving the implicit equation with respect to yk+i, for example by
application of an appropriate fixed-point iteration (see 7.4.2.1). A good initial value for
this iteration can be obtained from the Adams-Bashforth method.

A prediction-correction procedure is a combination of an explicit and an implicit multiple
step procedure, and works as follows. Using the explicit procedure yields a prediction
formula, which is substituted into the correction formula and improved in the sense of
a step of a fixed-point iteration. If one combines multiple step procedures of different
orders in this way, then the local discretization error of the prediction-correction method
is equal to the smallest absolute value of that of the implicit procedure used.

The ABM43 procedure is a combination of the four-step method of Adams-Bashforth
with the three-step method of Adams-Moulton, each of which has order p = 4. In this
case the algorithm is defined by

Of course it requires initial starting values and for each integration step two functional
evaluations. The advantage of prediction-correction procedures like these is that the
order can be slightly increased while the number of required functional evaluations stays
two.
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Another important class of implicit multiple step procedures are the backward differ-
entiation methods, BDF for short, because these have special stability properties. The
first derivative is approximated in the differential equation at a point Xk+i by a differen-
tiation formula, which uses the interpolation values at this interpolation point and the
preceding (equidistant) interpolation points (see 7.3.2). The simplest example of this
class of procedures is the backward Euler procedure

The m-step BDF procedures for m — 2,3,4 are

The basic stability properties of the multiple step procedures are studied with the help of
the linear test initial value problem y'(x) = Xy(x), y(0) = 1. Substituting the right-hand
side in a general m-step procedure yields a difference equation of order m,

Setting yk = zfc, z ̂  0 leads to the corresponding characteristic equation

The general solution of the difference equation
of order m has, in the only case of interest
here, when Re (A) < 0, the same asymptotic
behavior as the exact solution y(x) if and only
if the zeros Zi of the characteristic equation
all have absolute value less then unity. The
domain of absolute stability of a multiple step
procedure is the set of complex values // = h\
for which <p(z] only has solutions z^ € C which
lie in the interior of the unit circle.

The characteristic equation of a prediction-
correction method is a combination of the
characteristic polynomials of the corresponding multiple step procedures. For exam-
ple, for the ABM43 method, we have

Figure 7.2.

where 63 is the coefficient of the Adams-Moulton method.

In Figure 7.2 the boundary curves of the domains of absolute stability are depicted (for
reasons of symmetry, only the part in the upper half plane are shown); the labels show
which method is meant.
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The domains of absolute stability of implicit BDF methods have interesting properties.
For example, the backward Euler procedure is absolutely stable, as the domain of abso-
lute stability is the left half of the complex plane. The same is true for the two-step BDF
method, because in this case the left half of the complex plane is completely contained
in the domain of absolute stability. The other BDF methods are no longer absolutely
stable, because the boundary curve is partially in the left half of the complex plane.
There does exist, however, a maximal angle domain wjth half-opening angle a > 0 for
which the vertex is the origin, and these domains lie completely in the domain of abso-
lute stability. For this reason one speaks of A(a) -stable procedure. The three-step BDF
method is A(88°)-stable, while the four-step BDF method is A(72°)-stable.

7.6.2 Boundary value problems

7.6.2.1 Analytic methods

As an aid in finding the solution of the linear boundary value problem

in a given interval [a,b] with continuous functions fi(x),g(x) and fr(x) ^ 0, one can
use the fact that every solution of the differential equation can be written as a linear
combination

in which yo(x) is a special solution of the inhomogeneous differential equation L[y] = g
and the functions yfc(x), k = 1 ,2 , . . . , r form a fundamental system of the homogeneous
equation L[y] = 0 (see section 1.12.6). These (r + 1) functions can be approximated by
a numerical integration of the (r + 1) initial value problems with initial conditions

Since the Wronski determinant W(a) is equal to unity, the constructed functions y\(x),
y % ( x ) , . . . , yr(x) are linear independent. With these (r + 1) functions the coefficients c^ in
the linear expansion above can by determined from the system of linear inhomogeneous
equations

An approximation of the linear boundary value problem is often determined with the
Ansatz method, in which the solution y(x) we are to determine is hypothesized to have
the form

where WQ(X} is a function which satisfies the inhomogeneous boundary conditions £/j[ioo]=
7i, i = 1 ,2 , . . . , r, while the linear independent functions Wk(x), k = 1 ,2 , . . . , n satisfy
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the homogeneous boundary condition Ui[wk] = 0. Thus Y(x) satisfies for arbitrary c^
the boundary value condition. If one substitutes this expansion into the differential
equation, then one obtains an error function

The unknown coefficients c^ of the approximation Y(x) can be determined as the solution
of a linear system of equations, which is obtained from one of the following conditions
on the error function.

1. Location method: According to the choice of n appropriately located points a < x\ <
X2 < • • • < xn < b, we require that

2. Partial interval method: The interval [a, b] is subdivided into subintervals with a =
XQ < x\ < x-2 < ... < xn-i < xn = b, and we require that the mean of the error function
vanishes in each of the subintervals, i.e., that

3. Square mean error: In the continuous case, this is the requirement

while in the discrete case with N interpolation points Xi €. [a, 6], N > n, the minimiza-
tion

leads to the corresponding normalized system of equations.
4. Method of Galerkin: The error function should be orthogonal to an n-dimensional
subspace given by U := span (1/1, z / 2 , . . . , i/n), i.e.,

Generally speaking, one has i/i(x) = Wi(x), i = 1,2,. . . , n. The Finite element method,
in which the functions Wi(x] are chosen very specially, with small support, is the modern
form of the method of Galerkin.

7.6.2.2 Reduction to initial value problems

A favorite method of solving a non-linear boundary value problem of second order
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with separate linear boundary conditions

is to reduce the problem to an initial value problem. For this we consider the initial
value conditions

which depend on a parameter s and in which CQ and c\ are constants, satisfying the
condition OLQC\ — a\CQ = 1. The solution of the initial value problem (calculated numeri-
cally) is denoted by Y(x\ s). This function satisfies, for all s for which Y(x; s) exists, the
initial value condition at the point a. To find a solution of the boundary value problem,
we require that in addition the second boundary condition must be satisfied. Thus,
Y(x; s) must satisfy the equation

This equation, which is in general non-linear in s, can be solved with the regula falsi, with
the secant method or with the Newton method. In the last case, the required derivative
h'(s) can be approximated as a difference quotient, by also determining /i(s+As) through
integration.
The simple reduction procedure just discussed can be generalized to systems of differential
equations of higher order with correspondingly more parameters in the initial conditions.
In addition to the difficulties in finding appropriate starting values for the iteration, in
some applications the strong sensitivity of Y(b;s) with respect to small changes in the
value of s can create problems. In improve the condition of the problem, in a multiple
step reduction the interval [a, b] is subdivided into several subintervals, then for each
of these subintervals, a set of initial conditions, which are to be determined, are used
as parameters and the differential equation is solved in each of the subintervals. The
parameters introduced in this procedure can be determined from a non-linear system of
equations in such a way that the partial solutions in the subintervals can be put together
to yield a solution in the original interval.

7.6.2.3 Difference methods

The principle approach of the difference method will be illustrated on the example of a
non-linear boundary value problem of second order

The given interval [a, b] is subdivided into (n+1) subintervals of length h := (6—a)/(n+l)
with equidistant interpolation points Xi = a + ih, i — 0 ,1 ,2 , . . . , n + I. The unknown is
an approximation yi for the exact solution y(xi) of the equation at the n interpolation
points. For this, the first and second derivative are approximated by the central (resp.
the second) difference quotient

at every interior interpolation point, so that both have the same discretization error
O(h2}. With this approximation, one obtains a system of non-linear equations
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for the n unknowns yi,y%, • • • ,ym where it needs to be taken account of that J/Q = 7i
and yn+i — 72 are given as boundary conditions.

Under appropriate assumptions on the solution y(x) and on the function f ( x , y , y f ) , it
can be shown that for the resulting approximation we have an error estimate of the form

The non-linear system of equations is usually solved with the Newton-Kantorovich
method or with one of its simplifying variants as discussed in section 7.4.2.2. The
special structure

with maximally three successive indexed unknowns in each equation implies that the
functional matrix of the system is actually tridiagonal. Therefore, the computation cost
for the calculation of a correction vector in the Newton-Kantorovich method is only
proportional to n. If the differential equation is even linear, then the difference method
leads directly to a linear system of equations with a tridiagonal matrix for the unknown
functional values.

7.7 Partial differential equations and scientific com-
putation

The effective numerical treatment of partial differen-
tial equations is not a handicraft, but an art.

Folklore

7.7.1 Basic ideas

The breath-taking speed of development of computer technology in the second half of
the twentieth century has opened a new chapter in the history of mathematics. Whole
new questions centered around the notions of stability, flexible discretization procedures,
quick algorithms and adaptivity have been brought into the stage light.

Problems that in the age preceeding computer availability could only be treated for
small values of the dimension n can now be calculated also for large n, making the
behavior as n —>• oo a tractable and fascinating domain. For example, it turns out that
the standard polynomial approximation, popular since Newton, is instable as n —> oo
(where n denotes the degree of approximating polynomial) and therefore is a useless
procedure for large n. The notion of stability is in particular for discretization methods
a fundamental one. Not all intuitive discretization methods for dealing with ordinary
or partial differential equations are stable (see 7.7.5.4 below). Especially the attempt to
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defined approximations of higher order leads quickly to instable procedures, as discussed
in 7.7.5.6.2 below. For mixed finite element methods, which are discussed in section
7.7.3.2.3, one has the unfortunate situation that precisely very good approximations
turn out to instable. In many cases this instability leads to runaway error propagation
in the algorithm, which is therefore easy to spot. But in the situation of mixed finite
element methods it occurs that a different kind of instability plagues the algorithm, which
is then not immediately visible. For this reason, it is always important to accompany
the algorithm with a careful numerical analysis.

As computers aquire more and more computational power, more and more complicated
problems are attempted to be solved with their help. This complexity can, for example,
consists of certain details of the solutions, like boundary layers in the case of singularly
perturbed problems, singular behavior of solutions or their derivatives at certain points,
microscopic details of solutions in concurrence with turbulence, discontinuity in the case
of hyperbolic differential equations and large jumps of coefficients, for example in the
case of semiconductors. The treatment of these phenomena requires procedures which
are adapted to the specialties of the situation. In reality one is miles away from any
kind of an open 'black-box' procedure which would apply to all problems.

The increase in computer capabilities has both the aspect of faster processors and of
more and cheaper storage. Paradoxically, precisely this situation leads to an increased
need for faster algorithms. If, for example, an algorithm has computational cost of n3

operations for a problem of n dimensions, then the increase of storage by a factor of ten
leads to an increase in computational cost of a thousand, which can not be compensated
by the increase in computational power of the processors. The fast algorithms which
will be introduced in this section are the multi-lattice procedure for the fast solution of
system of equations and the fast Fourier and wavelet transformation.

Instead of accelerating the algorithms, one can also try to decrease the dimension of
the problem without influencing the quality of solutions negatively. For the solution of
partial differential equations this means that instead of a uniform lattice for discretizing
a problem, one uses a lattice which is finer "where the action is", leaving it coarse
elsewhere. Driving this non-uniform sizing of a lattice is the data produced by previous
steps in the algorithms, resulting in an interesting interaction between the numerical
analysis and the algorithmic process. We present a brief introduction to this circle of
ideas in section 7.7.6.

7.7.2 An overview of discretization procedures

7.7.2.1 Difference equations

The method of difference equations is based on replacing the derivatives which occur in
differential equations by difference quotients. For this one requires a lattice, generally
chosen to be regular. For the interval [a, b] and the step width h := (b — a)/N, N =
1,2,.. . , the equidistant lattice is

For partial differential equations of d independent variables, one requires a d-dimensional
lattice on the domain of definition D C Rd, which in the case of equidistant lattice points
takes the form
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(see Figure 7.3).

For a difference method, as we shall refer to this method henceforth, the lattice points
are the main object of interest, rather than the associated rectangles or edges (for d =
2, see Figure 7.3). One uses the functional values u(xk) at the lattice points Xk 6
Gh for approximating the derivatives. Since most difference approximations are one-
dimensional, it is generally sufficient, at least as an introduction, to discuss functions of
a single variable.

The first derivative of a (smooth) function u can be
approximated in different ways. The forward differ-
ence

as well as the backward difference

Figure 7.3. Grid with step h.
are examples of so-called one-sided differences. They
are only of first order, i.e., satisfy

The central difference or symmetric difference

is of second order, i.e.,

The second derivative can be approximated by

This second difference is also of second order:

One should note that not all differences at the boundary points XQ = a or XN = b are
well-defined, since the necessary neighboring lattice points are missing.

In the two-dimensional case one needs to use the subset Gh of the infinite lattice {(x, y) =
(kh,lh) : k,l integer}. The differences (7.1a,b), (7.2a), (7.3a) can be applied in the x as
well as in the y direction; correspondingly we use the notations d£x, d£ , etc. In Figure
7.4 the second difference d^xu, which uses the values at the lattice points A, B, C, and
the second difference 9^yu, which uses the lattice points D, E, F, are used. The sum of
these two differences yield an approximation for the Laplace operator Au = uxx + uyy:
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where Uki '•— u(kh,lh). Because of the
five lattice points which are used, visualized
as the points M, N, S,O, W in Figure 7.4,
equation (7.4) is also referred to as the five-
point formula.

With the differences considered above, all
partial derivatives of the form ux,uy, uxx,
uys/,Att can be approximated. The mixed
second derivative uxy can be approximated
by the product d^xd^y:

Figure 7.4- Difference approximations.

(see the vertices G,H,J,K in Figure 7.4). There is an abbreviating notation known
as the star notation, which is described in [442]. The generalization of the difference
approximations in the case of d independent variables with a d-dimensional lattice is
obvious. Thus, also higher derivatives than just the second can be approximated.

Although we have kept to equidistant lattices up to now, there is no difficulty in ac-
commodating d-dimensional lattices with different step widths hi in the different Xi-
directions. If the step width in one of the axis directions is not equidistant, then the
derivatives in that directions can be approximated with the Newton divided differences
method. A general, irregular lattice with no structure in the direction of the base co-
ordinates is, however, not appropriate for the procedures to be discussed here, as one
requires collinear lattice points for the calculation of difference approximations of second
derivatives. This makes it quite clear that the rigidity of a geometric lattice structure
causes the difference method to be inflexible, so that particulars like a local subdivision
of the lattice are difficult to accommodate with this method.

7.7.2.2 Ritz—Galerkin procedure

If Lu = f is the differential equation and (u,v) := J uvdx is the L2-scalar product on
D

the domain of definition D, the solution u necessarily also satisfies the equation

for all test functions v. In general one rewrites the left-hand side of (7.5) using integra-
tion by parts, leading to the so-called weak formulation (variational formulation) of the
differential equation:

Here a denotes a bilinear form and / denotes a functional on appropriate function spaces
U and V, in which u and v vary. In what follows we restrict ourselves to the standard
case U = V.

The Ritz-Galerkin method approximates, instead of the differential operator L, the entire
space V, by replacing V with a finite-dimensional function space Vn, n = d\mVn, and
reformulating the problem:
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Boundary conditions of the Dirichlet type are so-called essential conditions and are
part of the definition of Vn. Other boundary conditions, the so-called natural boundary
conditions, which arise from the variational formulation of the problem, are not explicitly
part of the formulation and are only approximately satisfied (see [442]).

For the concrete numerical calculation one chooses a basis {</?i, y>2, • • • , fn} of Vn. The
solution u of (7.7) is to be determined in the form X^fcVfc- The problem (7.7) is then
equivalent to the linear system of equations

where x contains the coefficients £& which one wishes to determine and the so-called
stiffness matrix A and the right-hand side b is defined by

Since the residue r = Lu — f in the weighting (r,<pi) vanishes (see 7.5), the method is
also referred to as the 'procedure of the weighted residues'.

7.7.2.3 Finite element methods (FEM)

The finite element method, abbreviated FEM, is the Ritz-Galerkin procedure with spe-
cial function spaces, which are accordingly called the finite elements (FE). In general,
the stiffness matrices of the Galerkin procedures can be fully populated. In order to
reduce these to sparse matrices as in difference methods, one tries to use basis elements
(pk with as small a support as possible. (The support of a function <p is the closure of the
set of £ with <p(x) ^ 0.) The effect of this is that the functions which occur in a(<pk, f t )
have, with few exceptions, disjoint support
and therefore due = 0. The requirement is
for function spaces with global polynomi-
als or other globally defined functions not
satisfied. Instead, one uses here functions
which are defined piece wise. Their defini-
tion contains two aspects: (a) the geometric
elements (a disjoint decomposition of the
domain of definition), and (b) the analytic
functions defined on these parts of the do-
main.

A typical example for the geometric el-
ements is the decomposition of a two-
dimensional domain of definition into tri-
angles (triangulation). These triangle can
have some regular structure, an example of
which arises after dividing all the rectan-
gles in Figure 7.3 in to two triangles each,
but the structure can also be irregular as in Figure 7.5. A triangulation is said to be
admissible if the intersection of two distinct triangles is either empty or a common vertex
or edge. A triangulation is said to be quasiuniform, if the ratio of the size of the triangles
(measured on the longest side) is bounded. A triangulation is said to be regular, if for
all triangles the ratio of the outer to the inner radius is uniformly bounded.

Given a triangulation, different functions can be defined on the triangles. Examples
are piecewise constant functions (in which case the dimension n of Vn is the number of

Figure 7.5. An irregular triangulation.
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triangles), piecewise linear functions (affine on each triangle, globally continuous; this
forms a space of dimension equal to the number of vertices of the triangulation), or
piecewise quadratic functions (in which the dimension is equal to the sum of the number
of edges and vertices).

Instead of triangles, one can also take rectangles. Moreover there are analogs in three
dimensions (with tetrahedra instead of triangles, cubes instead of squares, etc.). For
more details on finite element methods we recommend [440].

Since the triangles (and squares, etc.) of the triangulation go into the finite element
equations (7.8a) and (7.8b) as domains of integration, for the finite element methods
the more important aspect of the lattice is the surfaces, rather than the vertices or edges.

An appropriate method for generating a triangulation consists in starting with a coarse
triangulation and then making it finer, mentioned in sections 7.7.6.2 and 7.7.7.6 below.

7.7.2.4 The Petrov—Galerkin procedure

If the functions u, v in (7.6) are in different spaces U (the function space) and V (the
space of test functions), then one gets a generalization of the Ritz-Galerkin procedure,
called the Petrov-Galerkin procedure.

7.7.2.5 Finite volume methods

The finite volume method (sometimes also referred to as the box-method) is a mixture
of the difference method and the finite element method. As for difference procedures,
one often uses square lattices as in Figure 7.3, and the interest is in the flows along the
edges of that lattice.

To formulate the procedure mathematically, one chooses in (7.5) v to be the charac-
teristic function of an element E (i.e., v = 1 on a square E, otherwise v = 0). The
left-hand side in (7.5) is the integral J Ludx over E. Integration by parts yields bound-

E
ary integrals over the sides of the rectangles dE, which can be approximated in different
ways.

If the differential operator L has the form Lu = drv Mu (for example M = grad), then
integration by parts yields

where (Mu)n is the scalar product with the outer normal unit vector n. If the normal
vector of a common side of two of the elements has the opposite sign in each element,
then the sum of the all elements E represents the conservation law on the domain of
definition D:

This conservation property is often the decisive reason for the choice of the finite volume
method. To justify the name, consider here the three-dimensional case with cubes as
'finite volumes'.

7.7.2.6 Spectral methods and collocation

The finite element method uses the approximation by piecewise polynomials of fixed
degree, while the size of the elements is decreased. With this procedure, only an approx-
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imation of fixed order can be achieved. Indeed, typically errors of the form Chp arise,
where h denotes the size of the elements and p is the maximal possible order. In the
two-dimensional case h and the dimension n of the finite element space Vn are connected
by the relation n = C/h2. Thus the error is as a function of dimension O(n~p/2). Esti-
mates by O(e~an ), a > 0, b > 0 describe, on the other hand, the exponential speed of
convergence, which can be achieved with global polynomials or trigonometric functions
in the approximation of smooth solutions.

The spectral method uses these global functions to an extent, combined with special
geometries (for example rectangles), while the discrete equations are derived with col-
location. This denotes the process in which the differential equation Lu = / is only
required to hold at certain collocation points instead of in the entire domain. Formally,
the Petrov-Galerkin method can be interpreted in terms of distributions on the test
space.
The disadvantage of the spectral method is the fact that the matrix is fully filled and
that the domain of definition is required to have a special structure. In addition, the
required smoothness of the solution is in general not true globally.

7.7.2.7 h-, p- and Tip-methods

The usual finite element method, in which the step width h approaches zero, is also
called the /i-method. If, on the other hand, one fixes the size of the lattice, but lets the
degree p of the piecewise polynomial functions grow as in the spectral method, then one
speaks of the p-method.
A combination of both of these methods is the so-called hp-method. In this case, the
function space consists of finite element functions of degree p on the geometric elements
of size h. If one adapts both h and p to the problem at hand, then one obtains a very
precise approximation. The way in which the quantities h and p are locally chosen is a
typical topic of adaptive discretization, as it is sketched in 7.7.6. The test space here is
taken to be identical with the function space, so that it is, in fact, a special case of the
Ritz-Galerkin method.

7.7.3 Elliptic differential equations

7.7.3.1 Positive definite boundary value problems

Scalar differential equations in general lead to the problems we now take up. Systems
of differential equations, however, can be of the type of a saddle point problem, which
puts new requirements on the finite element discretization, which will be discussed in
7.7.3.2.

7.7.3.1.1 Model cases (the Poisson and Helmholtz equations). Let Q be a
bounded domain of R2 with boundary F := dfl. The Laplace operator is defined by
Au := uxx + uyy. The prototype of all differential equations of order two is given by the
Poisson equation

The function / = f ( x , y ) is considered as given; this is the source. The problem is to
determine the function u = u(x,y). A boundary problem is formulated by extending
the differential equation (7.9a) by a boundary condition, for example by a Dirichlet
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condition

The solution of this boundary value problem is uniquely determined. If / = 0, then the
equation is a Laplace- or potential equation, for which the following maximum principle
holds: the solution u takes on minimum and maximum on the boundary F.

For later applications it is convenient to restrict ourselves to homogenous boundary
conditions, which means g = 0. Here one requires an arbitrary (smooth) extension G of
the inhomogeneous boundary data g on F to all of fi (i.e., G = g on F). One introduces
an auxiliary function u := u — G, which satisfies the homogeneous boundary condition
u = 0 on F, and the new differential equation — Au = / with / := AG + /.

As a second example, let us introduce the Helmholtz equation

for the function u = u(x, y) with the Neumann boundary condition

Here,

denotes the outer normal derivative at a boundary point, i.e., n is the out normal unit
vector.

Under appropriate assumptions on the behavior of the function u at infinity, the Neu-
mann boundary problem is uniquely solvable even for unbounded domains fJ.

In d dimensions the Poisson equation is —An = /, where

Moreover, we set A = A(x\,..., Xd), &(dxd) matrix, b = b(zi, . . . , x^), a d-dimensional
vector-valued function, and c = c(xi,... ,Xd), a scalar function. Then

is the general linear differential equation of second order. It is said to be elliptic, if
A(XI, . . . , Xd) is positive definite. Here, —div (A grad u) is a diffusion term, b grad u
is a convection term, and cu is a reaction term. Both the Poisson equation and the
Helmholtz equation are special cases of (7.11) when A = I and b = 0.

7.7.3.1.2 Formulation as a variational problem. Because of the Green formula

which corresponds to an integration by parts, we obtain from —Aw = / the equation
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with

where ux denotes the partial derivative of u with respect to Xi. In the case of R2, we
have d = 2.

According to 7.7.3.1.1, we may assume that we have homogeneous Dirichlet boundary
conditions, i.e., u = 0 on F. We assume therefore that both u and v vanish at the
boundary F.

Example 1: The classical homogeneous Dirichlet problem for the Poisson equation is:

If we multiply this equation with an arbitrary smooth function v which vanishes on
the boundary F, then we obtain by virtue of the Green formula the so-called weak
formulation:

Not that the boundary integral f(du/dn)vdF in Green's formula vanishes due to 'u = 0
r

on P.

In order to insure the existence of a solution, it is necessary to use Sobolev spaces. The
final variational problem is to find a function

so that

Here we have set

Sobolev spaces: In equation (7.12), HQ (fi) denotes the so-called Sobolev space. Roughly
speaking, the Sobolev space Jff

1(Q) consists of functions u which are quadratically inte-
grable, together with their first partial derivatives. In other words, we have

The space H1 (fi) can be given the structure of a Hilbert space, by introducing a scalar
product by the formula
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The Sobolev space HQ (fi) consists of all functions in Hl (fi) with it = 0 on F (in the
sense of so-called generalized boundary values). With respect to the scalar product

this space also has the structure of Hilbert space.

The precise definitions used here are presented in [212]. Note that Hl(£l) (resp. //o(fi))

corresponds to the space W^ (fi) (resp. W^ (fi)) with p = 2.

Example 2: We now consider the Helmholtz equation with the Neumann boundary
conditions

It is now important that the function v is not restricted in any way along the boundary. If
we multiply this equation with v, then we obtain in a manner similar to that of Example
1 the following formulation of the problem as a variational problem. The problem is to
determine a function

so that

Here we have used the notations

In Examples 1 and 2 the bilinear forms a(.,.) occuring are strongly positive,3 i.e., one
has the decisive inequality

In Example 1, one must choose V to be V = HQ(££) with the normed square

On the other hand, in Example 2 we should take V = Hl(Q) with

We will discuss in [212] that the equation

3Instead of strongly positive, one also use the more precise terminology of V-elliptic.
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is, under appropriate assumptions, equivalent to the quadratic variational problem

This legitimates the use of the name 'variational problem'.

The inequality (7.14) insures a unique solution of the variational problems (7.12) and
(7.13).

7.7.3.1.3 Application to the finite element method. For a conformal finite el-
ement method, the space of functions Vn must be a subset of the functional spaces
.£/o(Q) and Hl(ty used in (7.12) and (7.13). For the piecewise defined functions dis-
cussed above, this means that the functions must be, in fact, globally continuous. The
simplest choice are the piecewise linear functions on an admissible triangulation of fi.
For simplicity's sake we assume that f2 is polygonal, so that an exact triangulation is
possible.

First we consider the example given in (7.13). As a basis of the finite element space
we choose the Lagrange functions {tpp : P 6 E}, where E is the set of the vertices of
the triangulation. The Lagrange function is uniquely defined as the piecewise continuous
function with (f>p(Q) = SPQ (P, Q 6 E; 5 Kronecker symbol). The support consists of all
triangles which have a common vertex with P. The finite element space Vn C Hl (£)) is
spanned by all the basis functions {tpp : P € E}. The Lagrange basis is also referred to as
the standard basis. According to (7.8b) one must compute the coefficients aik = a(fki <Pi)
of the stiffness matrix A, where the indices i,k = {1,..., n} are to be identified with
the vertices {Pi,..., Pn} G E of the triangulation.

For the Dirichlet problem (7.12) the space Vn C #o(fi) must satisfy in addition the zero
boundary conditions. This is the case, if v(Q) = 0 for v E Vn at all vertices Q 6 E n F.
Therefore, Vn is spanned by all Lagrange functions {ipp : P E EQ}, where the subset
EQ C E consists of all the interior vertices of E, i.e., EQ := E\T.

7.7.3.1.4 Representation of
the finite element matrix.
The coefficients a^ = a((pk,<f>i)
can only be different from zero,
if the support of </?&, (f>i contains
common interior points. This
will be the case if the corre-
sponding vertices Pk, Pi coincide
or are connected by an edge
of the triangulation (see Figure
7.6(a)). The number of non-
vanishing entries in the kth row
of the matrix A therefore is one
plus the number of neighboring
vertices of Pk- A neighbor Pi of Pk is defined by the condition that PkPi is an edge
of the triangulation. In representing this matrix, it is advantageous to use the data
structure, which is used for saving the geometric information about the triangulation
anyway. The vertex Pk is associated to the matrix element a^k, and the pointer of Pk
to Pi is associated to the matrix element o^. Every matrix-vector product Ax requires
only a summation over the a^Xi for all relevant i (i.e., i such that a^ ^ 0). These are
i = k and all i, for which the pointer explained above exists.

Figure 7.6. Triangulations and finite element
matrices.
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7.7.3.1.5 Calculation of the finite element matrix. The coefficients a^ =
a(<£>fc, (fi) are in case of (7.12) equal to J grad ip^ grad tpi dx. The domain of integration

n
fi can be reduced to the intersection of the supports of <pk and </?j. For i = fc, this is the
union of all triangles having P& as vertex (see Figure 7.6(a)), while for i ^ k it is the
union of the two triangles which have Pfc-Pj as a common edge. Thus, the integration
problem is reduced to the calculation of / grad ipk grad tf>i dx for a few triangles A.

A

Figure 7.7. Using the unit triangle D.

Since the triangles of a triangulation can have
different shapes, the calculation can be simpli-
fied by mapping all triangles to a unit trian-
gle D = ( f a n ) : £ > 0, 77 > 0, £ + r, < 1}
by means of a linear map; this triangle is ex-
hibited in Figure 7.7. For details, see [442],
§8.3.2. The integration is thus reduced to a
numerical quadrature over the unit triangle D.
For piecewise linear functions the gradients in
J grad <fk grad <fi dx are constant, and a one-
A
point quadrature yields an exact result. For

(7.13) there is the additional term <pk<Pi in a^ = a(ipk,<Pi) = /(grad^fc grad^j +
a

y>k<Pi) dx, which is quadratic, so that higher quadrature formulas need to be applied
[432]. In more general cases like (7.11) with variable coefficients, a quadrature error is
invariable and must be accounted for by the numerical analysis.

7.7.3.1.6 Stability conditions. Stability insures that the inverse of the stiffness
matrix A exists and remains bounded in an appropriate sense. Inequality (7.14) is a very
strong stability condition. Under the assumption (7.14), the Ritz-Galerkin procedure
(and in particular the finite element method) has a solution for every choice of Vn C V.
If, in addition, the symmetry a(u,v) = a(v,u] holds for the function a, the stiffness
matrix is positive definite.

In general cases there is a necessary and sufficient stability criterion, given by the
Babuska condition (infinimum-supremum condition):

([442], §6.5). If we are given a family of finite element lattices with growing dimension
n = dim Vn, then the estimate inf en > 0 must be insured, as otherwise the convergence

n
of the finite element method to the actual solution is problematic.

Figure 7.8. Refinement of a finite element net.

7.7.3.1.7 Isoparametric ele-
ments and hierarchical bases.
The inverse of the map depicted
in Figure 7.7 maps the unit tri-
angle D linearly to an arbitrary
triangle A. A new circle of prob-
lems arises by allowing maps 3> :
D —> A which are not linear (for

example quadratic). If f2 is a non-polygonal domain, there always remain, after the
triangulation, crooked pieces on the boundary, which can be approximated by &(D).
On $(-D) we use the function wo^"1, where v is a linear function on D. The calculation
of the matrix elements can then be reduced to an integration on D.
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The finite element space Vn belongs to a triangulation, which afterwards can be refined
by subdividing its triangles (see Figure 7.8). The new finite element space VN contains
the previous one Vn. Therefore, one can add to the basis of Vn Lagrange functions in
VN, belonging to the newly added vertices, and obtain in this way an alternative basis of
VN- In the situation shown in Figure 7.8, the new basis contains the basis functions of
the coarser triangulation to the vertices P, Q,..., T and the basis functions of the finer
triangulation corresponding to the vertices A,..., F, V. In particular, if the refinement
of the triangulation is repeated many times, one speaks of a hierarchical basis ([442],
§8.7.5 and [444], §11.6.4). It is used among other things to define iteration procedures
(see 7.7.7.7).

7.7.3.1.8 Difference procedures. To obtain a solution of the Poisson problem
(7.9a), one covers the domain with a lattice as shown in Figure 7.3. For every interior
vertex of the lattice, we use the five-point formula (7.4) as a difference approximation
to the Laplace operator A. If one of the neighboring points lies on the boundary, then
the known value from (7.9b) is used instead. In this way, a system of equations with a
sparse (n x n) matrix A arises, where n is the number of interior vertices of the lattice.
For each row of A there are at most five non-vanishing entries. Because of this, the
matrix product Ax is quickly calculated. This fact is taken advantage of in the iteration
procedure for solving the system of equations Ax = b.

For general domains Q, where the boundary does not coincide with edges of the lattice,
there are differences on the boundary of non-equidistant points (see also 7.7.2.1). The
Shorley-Weller procedure is made to deal with this; see [442], §4.8.1 for details.

In addition to the consistency (approximation of the differential operator L by the
difference formula), also the stability of the procedure is necessary; this can be expressed
as the boundedness of the inverse matrix A~l (see [442], §4.8.1). Often the stability
follows from the M-matrix property of A.

7.7.3.1.9 Af-matrices. A matrix A is said to be a M-matrix, if an > 0 and a^ < 0
for i / k and moreover, all components of A~l are non-negative. The first condition on
the sign is satisfied, for example, for the negative five-point formula (7.4). A sufficient
condition for this requirement on A~l is the irreducible diagonal dominance, which is
satisfied in the present situation. For details, see [442], §4.5.

7.7.3.1.10 The convection—diffusion equation. Even is the main term (diffusion
term) —div (.Agrad u) in (7.11) is responsible for the elliptic character of the differential
equation, the convection term b gradw can play a dominant role, as soon as ||.A|| is
relatively small compared with ||b||. The problems which occur will be illustrated in the
one-dimensional example

(note this is (7.11) with d = 1, A = I, b = /?, c = 0). The combination of second
differences (7.3a) for — u" and the symmetric difference (7.2a) for flu' yield for the
approximation Uk o f u ( x k ) (xk := kh, h lattice width) the discretization — d^u+d^u = /:
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For |/i/31 < 2 we have a M-matrix, so that in this case stability is insured. Since d%
and <9° are exact of second order (cf. (7.2b), (7.3b)), Uk is exact up to O(h2}. As soon
as | h/31 becomes larger than 2, the sign conditions for the M-matrix property are no
longer satisfied and the difference solution starts to get instable, leading to oscillations
(see [442], §10.2.2). The solution Uk which then is determined is in general useless. The
condition \hf3\ < 2 tells us that h is either sufficiently small or that the convection term
is not dominant.

In case of \h(3\ > 2 one can replace <9° by the forward or the backward difference in
(7.1a,b), depending on the sign of (3. For negative /?, for example, we get

Here we again have a M-matrix. However, the approximation is, due to (7.1c), only
exact to the first order.

As the usual finite element method becomes instable for large /3, also finite elements
requires some kind of stabilization.

7.7.3.2 Saddle point problems

While systems like the Lame equations again lead to bilinear forms that satisfy inequality
(7.14), the Stokes equation, which we now discuss, leads to an indefinite bilinear form.

7.7.3.2.1 Model: Stokes equation. The Navier-Stokes equation, which is abso-
lutely fundamental in hydrodynamics, is, for incompressible fluids:

Here v = (ui , . . . , u^) is a velocity vector, p is the pressure, / the density of the exterior
force, TI is the viscosity constant and Q is the density of the fluid.

If T] is very large compared with 0, then the term g(v grad)v can be approximately
neglected. With the normalization rj = 1 we then obtain the Stokes equation

Equation (7.15a) has d components of the form —AVJ + dp/dxi = /$. Since the pressure
is only determined up to a constant, one takes f pdx = 0 as normalization condition.
One must in addition put boundary conditions on the velocity field v, which we for
simplicity ignore in the following discussion. For the pression p there is no such natural
boundary condition.

The problem formulated in (7.15a,b) is an example for a system of differential equations
of the block form
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where A = —A, B = grad, B* — —div (B* denotes the adjoint operator to B}. If one
replaces the derivative operators d/dxi by real numbers £j, i = 1,..., d, then A, B, B*
transform into —1£|2/ (/ is the (3 x 3) unit matrix), £ and — £T. The block differential

operator L = transforms under the substitution to the matrix L(£) with

|detL(£)| — |£|2d. The positivity for £ ^ 0 classifies the Stokes equation as an elliptic
system. More details on the Agmon-Douglas-Nirenberg definition of elliptic systems
can be found, for example, in [4421, §12.1.

If one collects the unknowns of the problem into the vector function <p = then

(7.16) can be written as Lv = as in (7.15a). Upon multiplication with if) =

followed by integration, we obtain the bilinear form

Here we have set

The weak formulation is: determine with

The variational representation of the problem, equivalent to (7.17b), and analogous to
(7.15a,b), is

Appropriate function spaces V and W in (7.18a,b) are in the case of the Stokes equations
V = [Hl($l}]d and W — L2(Q)/R, the latter being the quotient space with respect to
constant functions.

The quadratic functional — 2 / fvdx is explicitly
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If the bilinear form c(v?, t/0 were symmetric and positive definite, then the solution of

(7.17b) would be the minimizing argument of F(v,p) = min.

But since, for example c(y>, </?) = 0 for <p — 7^ 0, we do not have a positive definite

bilinear form. Let (v*,p*) denote the solution of (7.17b) or (7.18a,b). This is a saddle
point of F, i.e., we have

This set of inequalities describe that F is minimal at (v*,p*) with respect to v and
maximal with respect to p. Moreover, we have

We refer to [442], §12.2.2 for the equivalence of (7.18a,b), (7.20) and (7.21).

One particular interpretation of the saddle point problem arises when we introduce
Vb C V as the set of functions v which satisfy the constraint B*v = 0 in (7.16). For the
Stokes problem this is the set of divergence-free functions (divv = 0). The solutions v*
of (7.18)-(7.20) are obtained from the variational problem 'minimize a(v, v) — 2 / fvdx

n
on VQ'. The pressure p is in this formulation a Lagrange variable expressing the constraint
divv = 0.

A sufficient and necessary condition for (7.18a,b) to have a solution are the following
Babuska-Brezzi conditions, which we formulate here for the symmetric case a(v, w) =
a(w, v):

For the Stokes problem, (7.22a) is also correct for the stronger formulation with V
instead of Vb.

Figure 7.9. Lattice of variables u,v,p.

7.7.3.2.2 Difference procedures. We
now consider the plane case d = 2. We
write the two-dimensional velocity vector v
as (u,v). As opposed to the method de-
scribed in paragraph 7.7.3.1.8 we do not use
a square lattice here, but rather three dif-
ferent lattices for u, v and p. As shown
in Figure 7.9, the M-lattice (resp. ^-lattice)
is shifted with respect to the p-lattice half
a step width in the x-direction (resp. y-
direction). This insures that the vertices of
the w-lattice satisfy not only the five-point
formula for A^ of (7.4), but in addition allow
the formation of the symmetric difference
dh/2,xP(^y} •= \p(x + h/2)-p(x-h/2)]/h,
which compared with (7.2a) is defined with

a half-step shift. In this way the first equation of (7.15a), —Aw -f dp/dx = /i, is ap-
proximated by the difference equation



7.7. Partial differential equations 1137

exactly to second order. Similarly,

Figure 7.9

The incompressibility condition (7.15b) is explicitly du/dx + dv/dy = 0. In each lattice
point ( x , y ) of the p-lattice there are u- values at (x±h/2,y) and v- values at (x,y±h/2).
Therefore, the difference equations

can be introduced and are again exact to order two.

7.7.3.2.3 Mixed finite element methods. The finite element discretization of the
saddle point problem (7.18a,b) arises after the substitution of the infinite-dimensional
spaces V and W by finite-dimensional spaces Vh and Wh, which consist of appropriately
chosen finite element functions. The index h indicates the size of the triangles of the
underlying triangulation. The finite element solutions vh e Vh and ph € Wh must satisfy
the variational problem

Let Vh,o be the space of all functions vft 6 Vh which satisfy the constraint (7.23b).
Equation (7.23b) is just an approximation of the original divergence condition (7.15b).
Therefore the functions of Vh,o are not contained in the subspace Vb introduced in
paragraph 7.7.3.2.1. This is the reason for the name 'mixed finite element method'.

In Vh and Wh one chooses basis {fXi • • • > P%} and {<f>Y i • • • , f^.} where n = dim V^,
ra = dim HV The system of equations which results has the same block structure as

the operator in (7.16). The total matrix is C := The coefficients of the block

matrices are a^

In contrast with section 7.7.3.1, we here must be very careful about the choice of finite
element spaces Vh and Wh. A necessary condition for (7.23a,b) to have a solution
is n > m (i.e. dimV^ > dimWfc). Otherwise the matrix C is singular! We have
the paradoxical situation that an 'improvement' of the approximation of the pressure
through the use of a higher-dimensional finite element space Wh ruins the numerical
solution. Necessary and sufficient conditions for the existence of a solution are the
Babuska-Brezzi conditions

The indices on ah > 0, /?/, > 0 in (7.24a,b) indicate that these quantities can change
with the size h of the triangulation. As in 7.7.3.1.6 we require the uniform boundedness
by a positive number which is bounded below, as h tends to 0: inf ah > 0, inf ph > 0.

h h
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If, for example, we only have 0h > const • h > 0, then the estimate of the error of the
finite element solution can be worse by a factor of h~l than the best approximation in
finite element spaces.

The verification of the stability condition (7.24a,b) for concretely given finite element
spaces can be quite complicated. Since (7.24a,b) are necessary and sufficient, these
conditions can not be replaced by simple ones (for example so-called patch tests).

The choice of finite element functions should be based on the same triangulation for
all components v and p. The most obvious choice of piecewise linear elements for v
and p does not satisfy the stability condition (7.24a,b). According to the necessary
condition dimVfe > dimW/j, it makes sense to extend the finite element space Vh by
further functions. For example the choice of piecewise quadratic elements for v and
piecewise linear elements for p does the trick. An interesting variant consists of the
piecewise linear functions and in addition a 'bubble function'. The 'bubble function'
is defined on the unit triangle D of Figure 7.7 by £??(1 — £ — rj). It vanishes on the
boundary of the triangle and is positive on the interior. Using the linear map from D
to an arbitrary triangle as discussed in that section can be used to define the bubble
function on an arbitrary triangle. The function space Vh obtained this way satisfies the
Babuska-Brezzi conditions ([442], §12.3.3.2).

7.7.4 Parabolic differential equations

7.7.4.1 Model problems

The typical example of a parabolic differential equation is the heat equation

where the function u = u(t, x) to be determined depends on position variables x =
(x j . , . . . ,x<i) € fi and the time t. Instead of —A there could be here a more general
elliptic differential operator L. This operator only acts on the x-variables, but can have
t-dependent coefficients. As in the case of elliptic differential equations appropriate
boundary conditions for u(t,.) are part of the problem, for example the Dirichlet data:

In addition, there are initial values given at time to:

The problem (7.25a-c) is referred to as a initial boundary value problem.

Note that the time direction plays a special role in these equations. The problem pre-
sented in (7.25a-c) has a certain asymmetry: it can only be solved in one direction
(future) (t > to), but not in the other (past) (t < to).

Even if the initial and boundary data are not compatible (i.e., UQ(X] = ip(to,x} does not
hold for all x 6 F), a solution still exists which is smooth for t > to but discontinuous
at the boundary for t —> i0 + 0.
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7.7.4.2 Discretization in time and space

The discretization is done in the time direction and the position variables separately.
In the case of a difference procedure, we cover the domain Jl as in 7.7.3.1.8 with a
lattice flh (where h again denotes the size of the lattice). Correspondingly we replace
the differential operator —A by a difference operator —A^. Independently of this, we
replace the time derivative ut by an appropriate difference, for example by ut ~ [u(t +
dt,.) — u(t, .}]/6t with the time step width 6t. One possible discretization is the explicit
Euler procedure

At the boundary we substitute for u(t,x) the boundary values (7.25b). Solving (7.26a)
with respect to the time step t + 6t yields the algorithm

Starting with the initial values (7.25c) we obtain from (7.26a') an approximation for the
time value tk = to + kSt.

If, on the other hand, we evaluate the position discretization at t + 8t instead of at i,
we arrive at the implicit Euler procedure

The new value u(t + 6t,.) is the solution of the following system of equations

A discretization which is symmetric with respect to t + St/2 is the Crank-Nicholson
scheme

7.7.4.3 Stability of difference procedures

The explicit procedure (7.26'), which at first sight appears to be much simpler to apply,
is often in applications not an appropriate algorithm, as 6t must satisfy a very restrictive
stability condition. In the case of the five point operator A^ presented in equation (7.4),
this stability condition is

Consistency of the approximation requires that the convergence of the discrete solution
to the exact one in (7.25a-c) is equivalent to the stability condition, as discussed in
the theorem of section 7.7.5.5 below. Without (7.27) one obtains only useless solutions.
In the case of A > 1/4 perturbations of initial values after k — (t — to)/5t steps of
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the algorithm are amplified by a factor of [1 — 8A]fc. The condition (7.27) couples 6t
with the square h2 of the lattice size of the position lattice, since second derivatives
in x but only first derivatives of t occur. For applications, the condition 8t < h?/4
means that, precisely when the high dimension of the space variables require a high
computational cost per time step, the number of necessary steps of the approximation
increases drastically.

For general differential operators L instead of A, it is essentially the same stability
condition (7.27) which must be satisfied, with only the constant of 1/4 being replaced
by another constant.

The implicit Euler procedure (7.26b) as well as the Crank-Nicholson scheme (7.26c) are
both what are called absolutely stable procedures, meaning that they are stable for every
value of A = 8t/h2.

7.7'.4.4 Semi-discretization

If one discretizes in (7.25a) only the space variable differential operator, by not the time
derivative, one obtains

Since in this notation u is the vector of the n vertices of fJh, we have here a system
of ordinary differential equations, for which (7.25c) plays the role of the initial values
at t = tQ. As the eigenvalues of the system matrix A^ are on the order of 1 to h~2,
(7.28) is a stiff system of differential equations (see 7.6.1.1). This explains why explicit
procedures for solving (7.28) only work for sufficiently small time steps. The implicit
trapeze rule is, according to 7.6.1.1, absolutely stable. If we apply it to (7.28), we
end up with the Crank-Nicholson scheme (7.26c). The implicit Euler procedure is, in
fact, even strongly absolutely stable, meaning that perturbations in the form of strong
oscillations are actually damped by this algorithm, while this fact is not true for the
Crank-Nicholson scheme.

7.7.4.5 Step-size control

As usual for differential equations, it is not necessary that the time step width 8t remain
constant throughout the algorithm; indeed, it can be advantageously adapted to the
situation at hand. However, this requires that the underlying algorithm is implicit and
absolutely stable, so that St is not bounded above by stability conditions like (7.27).

One will choose 8t to be larger as the difference of u(t+8t, x) and u(t, x) gets smaller and
smaller. This is in particular the case, if (7.25a) is to be solved with time independent
functions / and tp for t —> oo. In this case u tends to the solution of the stationary
equation —Aw = / with boundary condition (7.25b). We note at this point that this
procedure is not appropriate if one is only interested in obtaining a stationary solution.
In fact, although formulating the problem as a parabolic differential equation does lead
to an iteration procedure which converges to the stationary solution, this procedure is
in general not at all effective, as discussed in section 7.7.7 below.

Conversely, there are good reasons for choosing St to be small near the initial time
(t « to). As mentioned toward the end of 7.7.4.1, u can be discontinuous for t = to
and x E F. To simulate a smoothing numerically, one needs small step widths and must
avoid implicit procedures like (7.26c), which are not strongly stable. In such a case it
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makes sense to carry out several time steps with the explicit procedure (7.26a') and
St < h2/8 instead of (7.27).

7.7.4.6 Finite element solutions

The simplest way to obtain the finite element discretization for a parabolic differential
equation is to first carry out the semi-discretization with the help of the finite element
method. Let Vn denote the finite element space. From equation (7.25a) we obtain the
system of ordinary differential equations for a function u(t, x) with u(t,.) 6 Vn, which
is formulated in the weaker form

where a and b are defined as in (7.12); we take u to have the form

with time-dependent coefficients yk(t). In matrix form, this system can be written

where A and b are the quantities given in (7.8b). The 'mass matrix' M has the compo-
nents Mij = / <piif>j dx. If one now applies the Euler procedure for time discretization,
one gets for example M[y(t + 6t) — y(t)]/St + Ay(t) = 6, and from this the recursion
formula

To avoid having to solve this system of equations with matrix M, the matrix M is often
replaced by a diagonal matrix (for example, one with diagonal elements which are the
row sums of M). This so-called lumping does not reduce the quality of the approximation
(see [453]).

The initial values (7.25c) are carried over to the finite element solution u(t,.) € Vn with
the aid of a L2-projection:

For the coefficients y(to) of u(to,x) this means we have the equation My(io) = c with
Ci = f uQ(x)(f>i(x) dx.

It is also possible to carry out finite element discretization in both the time and the space
variables. In the simplest cases (for example functions which are piecewise continuous
in the time variable on [t, t + 6t], in the space corresponding to Vn), this procedure,
however, leads back to the Euler discretization of (7.29) and thus to (7.30).

7.7.5 Hyperbolic differential equations

7.7.5.1 Initial value and initial boundary value problems

The simplest example of a hyperbolic equation is
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Every solution of the ordinary linear differential equation

is called a characteristic of (7.31). The family of all characteristics x(t) = x(t;xo] with
initial values z(0) — XQ e M is said to be a family of characteristics for the differential
equation. Along a characteristic, the function U(t) := u(t,x(t)) satisfies the ordinary
differential equation

If we are dealing with a pure initial value problem, then the initial values are prescribed
along a curve (for example the line t — 0) by

This implies for the equation (7.33) along the characteristic x(t\xo) the initial values
t/(0) = UQ(XQ). The combination of (7.31) and (7.34) is called a initial value problem.

If the initial values (7.34) are only given for a bounded interval [z^,xr], then we also
require boundary values for either x = xe (left boundary) or for x = xr (right boundary).
Which boundary we should take here depends on the sign of a(t, x): the characteristic
is required to run from the outside to the inside when it intersects the boundary curve
(given here by x = const). In case a > 0, the appropriate boundary condition is

The combination of (7.31) and (7.34) on [x^,xr] and (7.35) is what is called an initial
value-boundary problem.

A typical property of hyperbolic differential equations is the conservation of discontinu-
ities. If the initial value UQ jumps at a point x = TO, then this discontinuity is extended
along the characteristic x(t;xo) into the interior (in case / = 0, the discontinuity is pre-
served). This property is in contrast to the property of solution of elliptic and parabolic
differential equations, which become smoother in the interior.

7.7.5.2 Hyperbolic systems

Let u = u(t, x) be a vector-valued function: u = (MI, . . . , un). The differential equation

with (n x n)-matrices A and B is hyperbolic, if the generalized eigenvalue problem

has n linearly independent (left-)eigenvectors gj (1 < i < n] with real eigenvalues Aj.
Instead of the family of characteristics in this case, one has n such families, which are
given by4

If one defines the derivative of the ith characteristic direction by (93)3 = ipx + \y>t, then
one obtains instead of (7.33) the ordinary differential equation

4In case 1/Aj = 0 we choose the equation dx/dt = 0.
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In the linear case, A, B,ei,\i and (t,x) depend only on (t,x), and in the general case
they in addition depend on u.

The initial value condition for the system (7.36) is just as in (7.34), if we view u and UQ
there to be vector-valued. With respect to the boundary value prescriptions, note that
at x? there will be kg conditions, where kg is the number of eigenvalues with \i(t, xi) > 0.
Similarly, there will be kr boundary conditions at xr. If we have Aj ^ 0 for all eigenvalues,
then the numbers ki and kr are constant and add up to n.

Hyperbolic system like (7.31) occur quite often after manipulations on a scalar equation
of higher order.

7.7.5.3 Characteristics as a tool

Figure 7.10.

In the scalar case discussed in 7.7.5.1, we can reduce the solution of
the partial differential equation to the (numerical approximation of
the) ordinary differential equations (7.32) and (7.33). A correspond-
ing procedure can also be carried out for n = 2 if the eigenvalues
AI and A2 are always distinct. To see this, suppose we are given the
values x, t, u at the points P and Q as shown in Figure 7.10. The char-
acteristic of the first family of characteristics which passes through P
and the characteristic of the second family which passes through Q
meet at a point R. The differences (e{A)(uR — UP) and (e^A^UR — UQ) approximate
the left-hand side of (7.37) and yield the equations which determine u at the point R.
Repeatedly applying this procedure yields solutions at the vertices of a lattice, which
follows both families of characteristics (this can be interpreted as an equidistant lattice
with respect to the so-called characteristic coordinates).

Sometimes difference procedures are incorrectly referred to as characteristic procedures,
if characteristics were used in their theoretical derivation.

7.7.5.4 Difference procedures

In what follows we use an equidistant lattice with step width Ax in the ^-direction and
Ai in the it-direction. Let u™ be the approximation of the solution u at t = tm = mAi
and x — xv — z/Aa;. The initial values define u™ for m = 0:

If one replaces ut in (7.31) by the forward difference (it™+1 — u™)/At and ux by the
symmetric difference (u™+l — «™_i)/(2A:r), one obtains the difference equation

which, as we shall see, turns out to be totally useless. The parameter

corresponds to the parameter A := Ai/Ax2 with the same name in (7.27) in the parabolic
case.

If one uses instead of the symmetric difference the left or right-sided difference (7.1a,b),
then one obtains the following difference equations, which are named after Courant-
Isaacson-Rees:
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The combination of the symmetric difference for the space variables and the unusual
appearing time difference (u™+1 — ̂ [u^! + uJJL1])/At yields the Friedrichs scheme

If a does not depend on t, then the following Lax-Wendorff procedure defines a dis-
cretization procedure of second order.

Figure 7.11 gives a schematic picture how the new values u™+l depend on the values

Figure 7.11. Difference molecules.

of the mth level. All examples are special explicit difference procedures of the form

The coefficients Q depend on tm,xn, Ax and Ai. In the case of a vector-valued function
u G Mn, the Cf are real (n x n)-matrices. In general the sum in (7.41) contains only
finitely many non-vanishing coefficients.

7.7.5.5 Consistency, stability and convergence

The theoretical analysis of these points is easier if we formulate the difference equation
(7.41) not only on the vertices of the lattice, but on all of R:

The algorithm described by (7.41') defines the action of the difference operator C =
C(A«)

Now let B be some appropriate Banach space5 containing the function um. The standard

choice is B = L2(R) with the norm \\u\\ — or B = L°°(R) with the norm

5 Fundamental notions and result about Banach spaces can be found in [212],
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||w|| = ess sup (|u(x)| : x 6 M}. Let BQ be a dense subset of B and u(t) the solution
of (7.31) with / = 0 for an arbitrary starting value UQ 6 5o- The difference operator
C7(At) is said to be consistent (in the interval [0,T] and with respect to ||.||), if

The objective of the discretization is to approximate u(t) by um(mAt —> t). Cor-
respondingly, we call an algorithm convergent (in [0,T] and with respect to ||.||), if
\\um - u(t)\\ -> 0 for At -> 0 with mAi ->• t € [0,T]. Here we have set A := At/Ax,
which is taken to be fixed, so that At —> 0 also implies Ax —> 0.

The consistency, which is in general easy to verify, is however definitely not sufficient to
insure convergence. Instead, we have the following result.

Equivalence theorem: If we take consistency for granted, we have convergence if and
only if the difference operator C(Ai) is stable.

Here we define the notion of stability (in [0, T] and with respect to ||.||) of the operator
C(At) by the requiring the estimate

for some fixed K.

Formulated in the negative, this theorem tells us that instable difference operators can
yield ridiculous results, where the instability usually expresses itself in rapid oscillations
of the solution. Note that (7.41) is a single step procedure. In contrast with consistent
single step procedures for ordinary differential equations, which converge in general as
discussed in section 7.6.1.1, while for them we only meet with stability problems in the
case of multiple step procedures, for explicit difference procedures a conditional stability
is the best we can hope for, meaning there are restrictions on A.

7.7.5.6 Stability conditions

7.7.5.6.1 CFL-conditions as necessary conditions for stability. The stability
conditions we now wish to discuss originate in work of Courant, Friedrichs and Lewy,
and are usually just referred to as the CFL-conditions. This criterion, which is relatively
easy to check, is a necessary condition for stability.

In the sum (7.41'), let £min (resp. ^max) be the smallest (resp. largest) index for which
ct 7^ 0. In the scalar case (u € R1), the CFL-conditions are

where o(t, x) is the coefficient from (7.31). In the case of higher dimensions (u € Mn, n >
2) the quantity a(i, x) in (7.43) must be replaced by the set of all eigenvalues of the
(n x n)-matrix a(t, x).

Note that the only property of C(A£) which is of importance in the CFL-condition is
that the boundaries of the indices are lm{n and £max. Even the particular choice of norm
in (7.42) is irrelevant.

Aside from the trivial case a = 0, the CFL-condition shows that a value of A which
is too large always leads to instability. On the other hand, we can force conditional
stability with the help of an implicit difference procedure.. This can be written formally
as (7.42), with but an infinite sum. Because — £min = ^max = oo, the CFL-condition is
then automatically satisfied.
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The CFL-conditions are in general not sufficient for stability. If a procedure happens to
be stable under precisely the restriction (7.43) on A, we refer to it as optimally stable.
The stronger the restrictions on A and hence on At = AAx are, the more steps we require
for (7.41") to arrive at t = mAt.

7.7.5.6.2 Sufficient stability conditions. A sufficient condition for stability, which
implies (7.42) with K := exp(TK'), is

In the scalar case and for the choice of B = L°°(R) we have | C(At)|| = J^ \cg\. This
shows that the procedure (7.40a-c) is stable with respect to the supremum norm, pro-
vided |Aa| < 1; in addition we must require a < 0 or a > 0 for the Courant-Isaacson-
Rees scheme (7.40a,b). By the equivalence theorem in 7.7.5.5, the approximations then
converge uniformly to the exact solution.

The Lax-Wendorff procedure (7.40d), for which the sufficient condition (7.44) for |.|| =
||.||oo is not satisfied, is really instable with respect to the supremum norm. The rea-
son for this is that the procedure is of consistency order two, and as such, cannot be
stable with respect to L°°(R). We see here a conflict between the (higher) consistency
requirements and the requirements for stability.

From now on we assume that the coefficients Q = Q(At, A) in (7.41) do not depend on
x. The L2 (R)-stability can then be described with the help of the following amplification
matrix

G is a 27r-periodic function, which in the case of several variables (n > 1) is matrix-
valued. For example, in the case of the Lax-Wendorff procedure (7.40d), the amplifica-
tion matrix is G(At,£, A) = 1 +iAasin(£) - A2a2(l - cos(£))-
The L2(R)-stability property (7.42) is equivalent to

with the same constant K as in (7.42). Here |.| denotes the spectral norm. From this we
obtain a further stability criterion, the von Neumann condition: for all |£| < TT let the
eigenvalues 7, = 7-,- (At, £, A) of the amplification matrix G( At, £, A) satisfy the inequality

For n = 1, (7.45) is just the statement |G(At,£, A)| < 1 + AtK'. The von Neumann
condition is in general only a necessary condition. It is, however, even sufficient, if one
of the following assumptions is satisfied:

1) n = 1,
2) G is a normal matrix,

3) there is a similarity transformation which is independent of At and i and brings all
coefficients Q(At, A) into diagonal form,

4) |G(At,£,A) - G(0,£, A)| < LAt and G(0,£,A) satisfies one of the above conditions.

It follows from the von Neumann condition that the examples (7.40a-d) are L2(R)-
stable for Aa| < 1 (where as above we require a < 0 or a > 0 for (7.40a,b)). From
the fact that the Lax-Wendorff procedure is L2(R)-stable but not L°°(M)-stable, we
can conclude from the equivalence theorem that the solutions converge in quadratic
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m£ms but not uniformly to the exact solution. The difference procedure (7.38) leads to
G(At, £, A)l + iAa sin(£) and is therefore instable with the trivial exception a = 0.

In the case of x-dependent coefficients Q one uses the technique of frozen coefficients.
Let CXo(Ai) be the difference operator which arises when we replace all coefficients
ci(x, At, A) (depending on x) with the coefficients Cf(xo, At, A) (independent of x). The
stability of C(At) and of C7Xo(Ai) for all XQ 6 R are almost equivalent. Under mild
technical assumptions the stability of C(At) in fact implies that of CXo (At) for all XQ £ R.
For the converse direction one needs the fact that (7(At) is dissipative. This notion is
defined as follows. C is dissipative of order 2r if the inequality |7j(At, £, A)| < 1 — (5|£|2r

for |£| < TT holds with a fixed 5 > 0. For more details and further stability criteria we
refer the reader to [452].

7.7.5.7 Approximation of discontinuous solutions ('shock capturing')

In 7.7.5.1 we already mentioned that discontinuous initial values can lead to solutions
which remain discontinuous along the characteristic. In the non-linear case, discontinu-
ities (shocks) can occur, even if the initial values are arbitrarily smooth. For this reason
one requires that hyperbolic discretizations - in contrast with elliptic or parabolic cases
- also yield a good approximation of a discontinuous solution.

Two phenomena which one wants to avoid can occur during an approximation of a
discontinuous point of u™:

1) the discontinuity becomes smoother as m grows larger, and

2) the approximation oscillates at the discontinuity.

The second case occurs in procedures of higher order. There are procedures, called high
resolution procedures, which have a higher approximation order in smooth domains,
but estimate the discontinuity very closely without breaking out in oscillations, can be
constructed for example with flux-limit methods.

7.7.5.8 Properties of the non-linear case, conservation form and entropy

Non-linear hyperbolic equations with discontinuous solutions lead to difficulties, which
do not occur for linear hyperbolic equations or non-linear hyperbolic equations with
smooth solutions.6 The formulation of the equation in the conservation form is

with the flux function f . The equation is hyperbolic, if f'(u) is not diagonalizable over
the reals. Since the 'solution' of (7.46) is not necessarily differentiate, one seeks a
'generalized' or weak solution which satisfies the relation

for all differentiable functions f — <p(x,t) with bounded support. The initial value
condition (7.43) is already taken into account by (7.47).

6See also the detailed discussion in section 1.13.1.2.
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The name 'conservation form' for the equations (7.46) and (7.47) comes from the fact
that / u(t, x) dx remains constant for all t (for example conservation of energy, momen-

R
turn and mass in the case of the Euler equations).

The discontinuity of the function (p = <p(t, x) with right- or left-sided limits tp(t, x +
0),y>(i,x —0) will be denoted by [<p](t,x) := <p(t, x + 0) — <p(t,x —0). If the weak solution
u(t, x) of (7.47) has a jump ('shock') along the curve (t, x(t)), then there is the following
relation between the slope dx/dt of the curve and the jumps:

The importance of the weak formulation (7.47) can be illustrated with the following
example. The equations ut — (u2/2)x = 0 and vt — (2v3//2/3)x = 0 are equivalent under
the substitution v = u2, provided the equations are classical, i.e., differentiable. But
since the formulation uses all possible flux functions, (7.48) yields in the case of a shock
different slopes dx/dt and therefore also different solutions.

A weak solution is in general not uniquely determined. The physically sensible solution
is characterized by the entropy condition. The simplest formulation of this condition is
that we have f ' ( u f ) > dx/dt > f'(ur) along the shock wave given by Uf := u(t, x(t) — 0)
and ur := u(t, x(t) + 0). For generalizations and formulations with an entropy function,
we refer to [447]. Entropy solutions, by which we mean solutions of (7.47) which satisfy
the entropy condition, can also be obtained as the limit of ut + f(u)x = euxx (e > 0) as
e->0.

While smooth solutions of hyperbolic equations are reversible, this is not the case for
non-continuous entropy solutions.

7.7.5.9 Numerical properties of the non-linear case

For numerical approximations two new questions arise here: Suppose the discretization
converges to a function it. Then 1) is u a weak solution in the sense of (7.47), and 2) is
u an entropy solution?

In order to answer the first question, we formulate the difference procedure in a conser-
vation form:

with A from (7.39). The function F is aptly referred to as the numerical flux. Solutions of

these equations have the discrete conservation property = const. The Friedrichs

procedure (7.40c) can be written in its non-linear form with the numerical flux

(while the linear case f ( u ) = au, a = const corresponds to (7.40c)). The consistency
of the procedure can be expressed among others through the condition F(u,u) = f(u).
If consistent difference conditions in conservation form converge, then the solution is a
weak solution of (7.47) but need not satisfy the entropy condition.

The procedure (7.49) is monotonous, i.e., two initial values u° and v° with u° < v° yield
um < vm. Procedures of order greater than one can not be monotonous. Procedures
which are monotonous and consistent converge to entropy solutions.
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Prom the monotonousness a further property, the TVD property (total variation dimin-
ishing) follows, which means that the total variation TV(um) := is

monotonously decreasing as m grows. This property prevents for example the above
mentioned oscillations near to the shock waves.

7.7.6 Adaptive discretization procedures

7.7.6.1 Variable grid size

The discretization procedures for ordinary and partial differential equations generally
use a grid or a triangulation or some similar kind of decomposition of the domain. In
the simplest case the structure to be used is chosen to have equidistant grid size h. The
error analysis is generally carried out for this case and yields error estimates of the form
c(u)hK, where K is the consistency order and c(u) is a quantity which is independent of h,
but generally depends on bounds of (higher) derivatives of u. As long as the mentioned
derivatives have roughly the same size, there is no problem with taking the grid in this
form.

There are, however, very many causes for the situation that the derivatives have very
different magnitudes at different locations, and can even have singularities, i.e., points
at which their values are unbounded. In the case of a simple elliptic differential equation
Lu = f (cf. 7.7.3.1.1.), edges or corners of the boundary of the domain generally lead
to solutions whose higher derivatives have singularities at these points. Also a special
right-hand side of the equation (for example / a point force) can make u less smooth
at an arbitrary point. Singular perturbations can lead to extended boundary layers
(meaning that there are large gradients in the direction normal to the boundary). If
the grid is equidistant of size h, then the preciseness of numerical approximations is
compromised by the existence of singularities. In order to obtain the same precision
as for a smooth solution, we would have to choose a much smaller size h of the grid,
which in applications soon leads to impracticability because of limited computational
resources. Instead, the idea is to use the finer grid only near those points where it is
necessary, leaving the coarser grid for the majority of the domain. This means that
we require a grid with different size scales at different points, or a triangulation with
triangles of different sizes, as depicted in Figure 7.5.

In what follows, we will use the simple problem of a numerical integration as an illustra-
i

tion of the discussion above. If the integral / f ( x ) dx is approximated with the summed
o

trapeze rule from 7.3.3.1 for a twice continuously differentiable function /, then the error
is estimated by /i2/"(£)/12, where h = 1/N denotes the equidistant step size, N + 1
denotes the number of vertices of the grid and £ denotes a mean value. The computa-
tional cost is essentially given by N + 1 functional evaluations of /. The error can then
be written in dependency on N as O(N~2). For the integrand f ( x ) := rr0'1, already the
first derivative is unbounded at the left boundary point x = 0. For N + 1 equidistant
vertices of the grid Xi = ih — i/N one finds an error of magnitude O(N~1-1). If instead
one chooses a variable step width with vertices Xi = (i/N)3/1'1, which are distributed
more frequently near the singularity x = 0, then we again have a quadrature error of
magnitude O(N~2) as in the smooth case. If one wants a quadrature result with for
example an absolute error of < 10~6, then one requires N = 128600 evaluations in the
equidistant case, but only N = 391 in the case of the variable step size.

The choice of x^ = (i/N)3/1'1 follows the general strategy of even distribution of the
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error, i.e., the local errors (here given by the trapeze rule on [xj,Xj+i]) should be as
close to each other as possible.

In the example just discussed, the behavior of the solution (location and exponent of
the singularity) were known and the discretization could accordingly be optimally fit to
the problem. For the following reasons, an a priori adaption of the grid size will be an
exception.

(a) Whether there are any singularities at all, or, if they exist, where they are located,
is generally not known from the onset (in particular not so for a non-specialist).

(b) Even if we know the behavior of singularities ahead of time, taking account of this
in the algorithm requires the 'insider' knowledge of a numerical analyst in addition to
requiring more work for its implementation.

7.7.6.2 Self-adaptivity and error indicators

The natural alternative to making an a priori choice of local mesh sizes is to use the
insights provided by a running numerical procedure to deduce the information neces-
sary. A simple case is the method for changing the step width for ordinary differential
equations discussed in section 7.6.1.1. There the length of the next step is optimally
chosen with all the information provided by the procedure up to that point. For bound-
ary value problems, however, one obtains no information without already constructing
a preliminary solution by means of some chosen mesh. Therefore, the following steps
have to be iterated several times.

(a) Solve the problem with a given mesh.
(b) Determine improved local mesh sizes by using the information of the solution ob-
tained in (a).

(c) Construct a new mesh with the information provided by (a) and (b).
At this point the discretization and the approximation of the solution are blended in an
inseparable way to a single unit. Since the adaption is now part of the algorithm, one
speaks of self-adaptivity.

Questions which arise in connection with the steps (a)-(c) are:
(1) How can we obtain local mesh sizes in (b)?

(2) How are the improved meshs constructed?

(3) When is the mesh adaptive enough that we can stop the iteration of (a)-(c)?

Here are some answers, by no means exhaustive, but first hints.

Ad (1): Let for example a mesh have the form of a finite element triangulation r and let
it be a corresponding solution. An error indicator is a function (f of u which associates
to each A G r a value y(A). The idea is that </?(A) is closely connected with the error
on r or the part of the error due to r. For the adaption of the step size, there are two
strategies.
(a) If we have an appropriate theory at our disposal, we can exhibit a function H(ip)
which suggests a new mesh size h — H((p(&)) on A.

(/3) This strategy starts with the ideal of the equidistribution. Suppose <p has the same
magnitude at all A 6 r, requiring perhaps a uniform subdivision of the mesh for this
magnitude to be acceptable. Until we have reached this state of affairs, we make the mesh
finer at those points for which, for example </?(A) is greater than 0.5-max{v?(A) : A e T}.

The error indicator can for example be defined via the residue. The residue r = f — Lu
is obtained by inserting an approximation to the solution u into the differential equation



7.7. Partial differential equations 1151

Lu = /, which then has to be evaluated on A (see also (7.51)).

Ad (2): In strategy (ct) we have produced an everywhere defined optimal step size
h — h(x}. There is an algorithm with which a triangulation can be constructed with
triangles of just this size. Still this global adaptation is less appropriate for step (b),
as the cost for the recalculation of the mesh is tremendous. Moreover, all quantities
calculated up to that point (for example a finite element matrix) can no longer be used.
The strategy (/?) is more appropriate for a local adaption of the mesh. Only triangles
which have been distinguished for subdivision are decomposed into smaller ones. (Note
that this process may require a subdivision also of neighboring triangles, to obtain in
sum an admissible triangulation, see the triangle STU in Figure 7.8 as well as [445],
§3.8.2.) This has the advantage that only certain new finite element matrix coefficients
need to be recalculated. Also, this provides us with a hierarchy of triangulations, which
can be taken advantage of by, for example, the multiple step procedures.

Ad (3): Stopping as soon as the condition <p(A) < s for all A e r is satisfied seems to be
quite natural. It would be ideal if this would really insure that the actual discretization
error is less than e. Error indicators <p which are so closely related to the actual errors
will be discussed in the next section.

7.7.6.3 Error estimators

Let e(u) be the error of a finite element solution u with respect to an exact solu-
tion, measured in some appropriate norm. Furthermore, let <p be the error indica-
tor described above, which summed over all triangles of the mesh yields the quantity

The error indicator if> is said to be a error estimator, if we have
"A6r

the inequalities

or at least asymptotic approximations of these. The second inequality is sufficient for
insuring an error of e(u) < e upon stopping the algorithm with $(u) < f] := e/B. A <&
which satisfies the second inequality is said to be dependable. If it satisfies in addition the
first inequality it is said to be efficient, since the meshs which are too fine (and thus too
costly) can be avoided. Indeed, as soon as the error estimate e(u) < eA/B is realized,
the criterion $(tz) < r] for stopping the procedure takes effect. In the best possible
case the error analyzer is asymptotically optimal, meaning that we have asymptotically
A, B —> 1 in (7.50). Since from (7.50) we can determine the error from the calculation,
one speaks in this case of an a posteriori estimate.

There are a series of suggestions for error estimators. However, take note of the fact
that all error estimators </? which require only finitely many evaluations never guarantee
that the error can be estimated from above and below as in (7.50). Inequalities of the
form of (7.50) can only be deduced from theoretical assumptions on the solutions. Note
also that these theoretical assumptions are of a qualitative kind and as opposed to the
situation discussed in 7.7.6.1 do not reenter the implementation themselves.

In the case of the Poisson equation (7.9a) with homogeneous Dirichlet boundary values
(7.9b) (and g = 0) and a discretization in terms of piecewise linear finite elements on
triangles, the Babuska-Rheinboldt error estimator on a triangle A 6 r is given by

Here /IA denotes the diameter of A, and the sum is over the three sides of the triangle;
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HK is the length of the edge and [du/dn] denotes the jump of the normal derivative
along the edge K.

7.7.7 Iterative solutions of systems of equations

7.7.7.1 Generalities

When systems of linear equations arise through the discretization of a differential equa-
tion, then on the one hand the dimension of these systems is quite high (typically of
magnitude 10,000 to 10,000,000), on the other the matrix is generally sparse, i.e., it
contains per row a small number of non-vanishing entries which is independent of the
dimension; the latter has already been discussed in section 7.7.3.1.4. In the case of
the discrete Poisson equation (7.4), for example, this number of non-vanishing entries
is five. If one were to apply straightforward methods for the solution (Gauss elimina-
tion, Cholesky decomposition, Householder procedure), then during the process of the
algorithm we would be creating non-vanishing elements at spots in the matrix where
the entries previously had vanished. This in turn would lead to difficulties in storing
the matrix entries as discussed in 7.7.3.1.4. Moreover, the computation cost would grow
more than just linearly with the dimension, as we have seen in previous discussions.
Compared with this situation, the method of matrix-vector multiplication requires only
the non-vanishing elements of the matrix and the computational cost is in this case
proportional to the dimension. Iteration procedures which are based on this operation
(matrix-vector multiplication) have therefore a minor computational cost. If, in ad-
dition, the convergence to a solution is fast, then the iterative methods are the ideal
procedures for solving large systems of equations.

7.7.7.1.1 Richardson iteration. In what follows we deal with the system of equa-
tions

The only assumption we make at this point is that A is non-singular, so that a solution
of (7.52) is insured. The basic model for every iteration is the Richardson iteration,
given by the algorithm

with an arbitrary initial vector x°.

7.7.7.1.2 General linear iteration. The general algorithm given by linear itera-
tion is

with matrices M and N which are connected by the relation M + NA = I. If one
eliminates the iteration matrix M from (7.54a) with the aid of M + NA = /, one
obtains
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Since a singular matrix N generates divergences, we assume here further that N is
invertible with inverse matrix N'1 = W. An implicit formulation of (7.54b) is

7.7.7.1.3 Convergence of iteration procedures. The iteration procedure de-
scribed by (7.54a-c) is said to be convergent, if the iterated {xm} converge to the same
solution (which is then necessarily the solution of (7.52)) for all initial values a;0. The
procedure (7.54a) is convergent if and only if the spectral radius satisfies the condition
p(M) < 1, i.e., all the eigenvalues of M are less than unity in absolute value.

The so-called speed of convergence is of particular interest. If we have

for small rj, then one requires only roughly 1/r) iteration steps for the error to improve
by a factor of 1/e (where e = 2.71...). In fact, we would like

to be valid, where the constant does not depend on the dimension of the system of
equations (for example, does not depend on the grid size of the discretization procedure
which gave rise to the system of equations in the first place). In this case we can achieve
a fixed precision (for example an estimate ||a; — xm\\ < e) using only a constant number
m of iterations.

7.7.7.1.4 Generation of an iteration procedure. There are two different meth-
ods which can be applied to obtain the rules for the iteration. The first of these is called
the splitting method. The matrix A is additively split as

where W is required not only to be invertible, but also have the property that systems
of equations of the form Wv = d are relatively easy to solve. The idea behind this is
that W contains the essential information about A, and the 'rest' R is thought of as
being 'small'. Using Wx — Rx + b one obtains the iteration xm+1 := W~l(Rxm + b)
which coincides with (7.54b) for the choice of N = W~l.

If one chooses W to be the diagonal of A, then we have produced the Jacobi procedure
already discussed in 7.2.2.1. In the case of the Gauss-Seidel procedure, the rest R in
(7.56) consists of the upper right corner of the matrix A, i.e., Rij = Aij for j > i and
RIJ = 0 otherwise.

A regular decomposition (7.56) is realized if we have W~~l > 0 and W > A in the sense of
element-wise inequalities. This turns out to automatically imply convergence (see [444],
§6.5).

A different technique is to take the left transformation of equation (7.52) by a non-
singular matrix AT so that N Ax = Nb. If one writes for this A'x = b' (A' = NA, b' =
Nb), and applies the Richardson iteration (7.53), then one obtains a transformed itera-
tion xm+1 := xm — (A'x™ — b'), which again can be written in the form
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and therefore coincides with the second normal form (7.54b).
Both of the described methods make it, at least in principle, possible to generate every
iteration. Conversely, every iteration (7.54b) can be interpreted as a Richardson iteration
(7.53) applied to A'x = b' with A' = NA.
The matrices N and W need not be available in a component-wise stored form. It is
only important that the matrix-vector multiplication d —> Nd is easily carried out. In
the case of an incomplete block ILU decomposition (described in more detail in [444],
§8.5.3), N has the form N =([/' + D)~1D(L' + D)~l with strictly lower (resp. upper)
triangular matrices L' (resp. U') and a block diagonal matrix D.

7.7.7.1.5 Efficient iteration schemes. An iteration procedure should be, on the
one hand, fast (see (7.55a,b)), on the other it should have as small a computation cost
per iteration as possible (for more information on determining the 'effective cost' see
[444], §3.3.2). We have a fundamental dilemma in the fact that these two requirements
work against each other. The fastest convergence can be achieved for W — A, as then
M = 0, and the exact solution is obtained after a single step, but requires directly solving
the systems of equations (7.54c) with matrix A. At the same time, a simple choice of W
as diagonal or lower-diagonal matrix, yielding to the Jacobi or Gauss-Seidel procedures,
leads to speeds of convergence which for a discretized Poisson equation (7.4) with step
width h are of the form (7.55a) with 77 = O(h2). According to 7.7.7.1.3, we then require
O(h~2) iteration steps, a number which increases rapidly.

7.7.7.2 Positive definite matrices

The analysis we are discussing is greatly simplified when the matrices A and N (and
consequently also W) are positive definite and symmetric. In what follows we shall thus
make this assumption.

7.7.7.2.1 Matrix condition and speed of convergence. By assumption A has
only positive eigenvalues. Let A = Amin(A) be the smallest and A = Amax(^4) the
largest of these eigenvalues. The condition number n(A), introduced in 7.2.1.7, (using
the Euclidean norm as vector norm) then has the value n(A) = A/A. The condition
number does not change when A is multiplied by a constant factor, K(A) = K,(QA).
After an appropriate scalar multiplication we may assume that A + A = 2. Under these
assumptions the Richardson iteration (7.53) has the rate of convergence

in other words the value 77 from (7.55a) is r) = 1/(n(A) + I). Matrices which have
good condition (meaning that K(A) = 0(1)) therefore lead to satisfactory convergence,
while matrices which arise during the discretization of boundary value problems have a
condition of magnitude 0(/i~2).
The scalar multiplication with 0 corresponds in general to the (optimal) damped itera-
tion

The above considerations remain valid if A is similar to a positive definite matrix, as
the spectral quantities are invariant under similarity transformations.

O
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7.7.7.2.2 Preconditioning. The transformation described in 7.7.7.1.4 leads to a
Richardson iteration for a new matrix A' = NA (this matrix is not necessarily positive
definite, but it is similar to a positive definite matrix). If A' has a smaller condition
number than A, then the procedure (7.54b) arising from the transformation (Richardson
with matrix A') has a speed of convergence which is superior to that of (7.53). In
this sense N is called a preconditioning matrix and (7.54b) is called the preconditioning
iteration. If this iteration is optimally damped as in (7.57), then its speed of convergence
is

7.7.7.2.3 Spectral equivalence. In what follows we let the notation A < B stand
for the situation that A and B are symmetric and B — A is positive semidefinite.7 A
and W are said to be spectral equivalent (with equivalence constant c), if

The case in which c does not depend on parameters like the dimension of the discretiza-
tion matrices is particularly interesting. The spectral equivalence (7.59) insures the
estimate K,(NA) < c2 for the condition number, where N = W~l. If one can find a
matrix W corresponding to A which is easy to invert, then the iteration (7.54c) has
(perhaps after including dampening) the speed of convergence 1 — 2/(c2 -I- 1).

7.7.7.2.4 Transformation utilizing a hierarchical basis. Suppose the matrix A
arises from a finite element discretization with some standard grid. In the case of elliptic
problems of second order, considered in 7.7.3, the condition number is n(A) = O(h~2).
The transformation x = Tx' between the coefficients x of the vertices of the grid and
the coefficients x' of the hierarchical basis introduced in 7.7.3.1.7 can be implemented
in such a way that the multiplications TT and-T are easily carried out. Through the
two way transformation given by (7.52) one obtains T^ATx' = TT6, in other words
A'x' = b' with the stiffness matrix A' = TTAT with respect to the hierarchical basis.
By expressing the x-quantities with the Richardson iteration x'm+l := x'm — (A'x'm—b'),
one obtains xm+1 := xm - TTJ(Axm - b), i.e., (7.54b) with N = TTT. In the case of
elliptic equations in two space variables one can show n(A') = O(\logh\). Because of
this, the transformed (hierarchical) iteration has with N = TTT an almost optimal (only
weakly dependent on h) speed of convergence, which is p(M) = 1 — O(\ logh\).

7.7.7.3 Semi-iterative procedures

A semi-iterative procedure consists of the iteration (7.57), provided that the dampening
parameter 0 is allowed to vary during the iteration:

The essential property of semi-iterations are described by the polynomials pm, given by

If one knows the extremal eigenvalues A = Amax (NA) and A = Amjn (NA), then pm can
be chosen to be a Chebychev polynomial (cf. 7.5.1.3), which is transformed from the

7This means that all eigenvalues of B — A are non-negative.

m
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interval [—1,1] to [A, A] and which is normalized according to pm(l) = 1. The speed of
convergence improves then from (n(NA) — l)/(K(NA) + 1) for a simple iteration (see
(7.58) to the asymptotic speed of convergence

of the semi-iteration. In particular for slower iterations (i.e. for which n(NA) >> 1) is
replacement of K,(NA) by ^/n(NA) is essential. As an aid for the actual implementation,
one uses instead of (7.60) the three term relation

with am := 4/{4 - [(«(WA) - 1)/(«(JVA) + l)]2crm_i},<7i = 2 and 9 as in (7.57). For
this initial term with m = 2 one uses x1 from (7.57).

7.7.7.4 Gradient methods and conjugate gradients

The semi-iteration (7.60) is a method for accelerating the basic iteration (basis iteration
(7.54b)). The iterates from (7.60) or (7.62) remain linearly independent from the initial
value x°. In contrast, the procedures we now describe are non-linear methods, i.e., xm

does not depend linearly on x°. Note that the gradient methods we describe do not
replace iterations, but rather are combined with a basis iteration to improve the latter.

7.7.7.4.1 Gradient procedure. The gradient procedure, applied to the basis iter-
ation (7.54b) with positive definite matrices A and N, is given by

Here not only the iterate xm, but also the residue rm := b — Axm is recalculated in
each step. The vectors q and a are only used to store intermediate results, as for each
gradient step of the procedure only one matrix-vector multiplication is required. For a
derivation of this procedure, see [444], §9.2.4.

The asymptotic speed of convergence is as in (7.58) (K,(NA) — l)/(K,(NA) + 1). Thus
the gradient method is just as fast as the optimal damped iteration (7.57). In contrast
with (7.57), the gradient method reaches this rate without any explicit knowledge of the
extreme eigenvalues Xmax(NA) and Amin(ArA), which are necessary for (7.57).

7.7.7.4.2 Conjugate gradients. The procedure we now discuss, also known as the
'CG-method', can like the gradient method just discussed be applied to a basis iteration
(7.54b) with positive definite matrices A and N. It is given by

Here the 'search direction' pm itself is part of the recursion.

(NA)

)
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The asymptotic speed of convergence of this method is as in (7.61) at least (,y~K(NA) —
l)/(^/K,(NA) +1). In comparing this method with the semi-iteration (7.62), it is impor-
tant that the CG-method requires no previous knowledge of the spectral data \max(NA)
and \min(NA) and can be even faster than (7.61).

In case in (7.64b) a division by zero occurs, because of (a,pm) = 0, xm is already the
exact solution of the problem!

The CG-method (7.64) is basically speaking a direct procedure, as after n steps at
the latest (where n is the dimension of the system of equations) the exact solution is
attained. However, this property is meaningless in applications, as for large system of
equations the maximal number of iteration should be far below the actual dimension n.

The application of (7.64) to the Richardson iteration (7.53) as basis iteration (i.e. N = I)
reduces the algorithm to the scheme presented in 7.2.2.2.

7.7.7.5 Multi-grid methods

7.7.7.5.1 Generalities. Multi-grid methods are iteration procedures which can be
applied to the discretization of elliptic differential equations and have optimal conver-
gence. By this we mean that the speed of convergence does not depend on the dis-
cretization step width and therefore is also independent of the dimension of the system
of equations (see (7.55b)). In contrast with the CG-methods just discussed, it is not
important for multi-grid methods that the matrix A is positive definite or symmetric.

The multi-grid method has two complementary components, a smoothing iteration and a
coarse grid correction. The smoothing iteration are classical iteration procedures which
smooth the error (not the solution!). The coarse grid correction reduces the 'smooth'
error produced by the smoothing iteration. It uses discretization on coarser grids as a
tool, and this is what gives the method its name. However, the name does not mean
that the procedure is restricted to discretization in regular grids. It can just as well be
applied to general finite element methods, in which case it is useful if the finite element
spaces form a hierarchy.

7.7.7.5.2 An example of a smoothing iteration. Simple examples for smoothing
iterations are the Gauss-Seidel iteration described in 7.2.2.1 and the Jacobi procedure,
damped with 0 = 1/2:

In the case of the five point formula (7.4), the vector xm consists of the components u1^..
Equation (7.65) can be read component-wise as

Let em := xm — x be the error of the mth iteration step. In (7.65) this error satisfies the
recursion formula

The right-hand side is an average value, which is formed with neighboring points. This
makes it clear that oscillations are quickly damped and the error thus is indeed smoothed.
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7.7.7.5.3 Coarse grid correction. Let x be the result of several smoothing itera-
tion steps as just described. The error e := x — x is the solution of Ae = d, where the
defect is calculated from d := Ax — b. Let Xn be the n-dimensional space of vectors x.
As e is smooth, it can be approximated by coarser grids. So let A' be the discretization
matrix of a coarser step width (or a coarser finite element space), and let x' be the
corresponding coefficient vector in the lower dimensional space Xn> (n' < ri).

Between Xn and Xn> we introduce two linear mappings: the restriction r : Xn —> Xn>
and the prolongation p : Xn> —+ Xn.

In the case of a one-dimensional Poisson equation discretized by the difference (7.3a) on
the grids of sizes h and h' := 2h, one chooses for r : Xn —» Xn> the weighted mean

For p : Xn> —> Xn one chooses the linear interpolation

for even v

for odd v

Figure 7.12. Grid transfer p and r.

(see Figure 7.12). In
more general cases,
r and p can be cho-
sen such that apply-
ing them implies a
minimum of compu-
tational cost.

The equation Ae — d for the error e := x — x corresponds on the coarser grid to the
so-called coarse grid equation

Its solution yields e' and the prolonged value e := pe'. By definition x = x — e is the
exact solution, so x — pe1 should be a good approximation. Correspondingly the coarse
grid correction is

7.7.7.5.4 The two-grid procedure. The two-grid method is the product of a
smoothing iteration from 7.7.7.5.2 and the coarse grid correction (7.66). If x i-> ^(x, b)
denotes the smoothing iteration (for example (7.65)), then the two-grid algorithm is
given by

Here v denotes the number of smoothing iterations. Usually v is on the order of 2 <
v < 4. The two-grid method itself has little practical relevance, since (7.67d) requires
the exact solution of the (lower-dimensional) system of equations.
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7.7.7.5.5 Multi-grid methods. In order to approximatively solve (7.67d), the pro-
cedure is recursively applied. For this we require coarse discretizations. Altogether it is
necessary to have a hierarchy of discretizations:

where for the maximal level i = £max equation (7.68) coincides with the original equation
Ax = b. For £ = lmax — 1, the system A' used in (7.67d) arises. For £ = 0 the dimension
no is assumed to be so small (for example UQ = 1) that the exact solution of AQXQ = bo
can be directly calculated.

The multi-grid method for solving AfXf = bf is characterized by the following algo-
rithm. The function MGM(£, x, b) yields for x — x™ and b — be the next iterate of the
algorithm, x™+l:

end;

Here 7 is the number of coarse lattice corrections; the only cases of interest are 7 = 1
(V-cycle) and 7 = 2 (W-cycle).

For details on implementing this algorithm and further numerical examples we refer to
[445] and [444], §10.

7.7.7.5.6 Numerical examples for discrete Poisson equations. As system of
equations we choose the discretization (7.4) of (7.9a) for 17 = (0,1) x (0,1) with Dirichlet
boundary values (7.9b). The step width is taken to be h = 1/64, so that 632 = 3969 is
the number of unknowns. The mth error em := um — u is measured in the energy norm
\\e\\ := (Ae, e)1/2. The initial error e° has the norm 2.47E-1. The Gauss-Seidel iteration
has, even after 300 iteration steps, only reduced the initial error by a factor of 10. To
accelerate the procedure we use the so-called SOR-method with optimal over-relaxation
parameter. Then the bound on the error of IE — 6 is reached after 161 iterations.

The multi-grid method requires for this only five steps.

If one were to further reduce the step width h, then the speed of convergence for the
first two procedures would get even worse, while the number of iterations for the multi-
grid method (with a checkerboard-Gauss-Seidel smoothing before and after each step)
does not increase, as the necessary number of such, m, is proportional to, in the three
examples listed, h~~2,h~l and a constant, respectively. The procedure using conjugate
gradients applied to the Richardson iteration shows a similar speed as the SOR-method
listed in Table 7.5. If one wishes to accelerate the latter with the aid of the CG-method,
then one must replace SOR by a symmetric version SSOR. For this, one obtains already
after 22 steps an error which is below 1E-6.
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Table 7.5. The error of the mth iterate um, measured in the energy norm.8

m Gauss-Seidel

10 9.382E - 2

20 7.324E - 2
50 5.023E - 2

100 3.575E - 2
2002.371E-2

300 1.755E-2

m

10
20
50

100
150

161

SOR

1.02931E-1
5.43417E - 2

1.29191E-2
8.51213E-4

2.50194E - 6

9.94034E - 7

m

I

2

3
4

5

6

Multi-grid method

1.711472796E-2
9.659697997E - 4
5.501125568E-5

3.206732671E-6

1.891178440E-7
1.128940250E-8

Table 7.6. Iteration methods accelerated by the CG-method.
m

10
20
50

100

120

142

Richardson

6.6931E - 2
4.0034E - 2

1.2571E-2

2.5151E-4
1.6995E - 5

9.0458E - 7

m

5
10
15

20
21

22

SSOR

1.17912E
1.00844E

6.70161E
3.70379E

1.78763E

8.78341E

_ 2

-3
_ 5

-6

-6
-7

m

1
2

3
4

5
6

Multi-grid method

1.135035786E-2
7.254914612E-4

4.298721850E-5
2.274098344E - 6

1.313049259E-7
7.171669050E-9

Also the multi-grid method (symmetric smoothing with lexicographical Gauss-Seidel
procedure) can in principle be accelerated with the aid of the CG-method. However,
as the advantage produced by this acceleration is small for procedures which are fast
anyway, it is generally not worth the trouble. The asymptotic number of iterations
required for reaching a given precision is O(h~l),O(h~1'2) and O(l), respectively, in
the three cases discussed.
The examples have been calculated with the programs given in [444]. There one can
also find more details on the above procedures.

7.7.7.6 Nested iterations

The iteration error em = xm—x of the mth iteration can be estimated by ||em|| < /9m||e°||,
where p denotes the speed of convergence. In order to reduce the size of the error em,
one should not only have a good speed of convergence, but also a small initial error ||e°||.
This strategy is realized with the following algorithm ('nested iterations'), which just
like the multi-grid methods uses different levels of discretizations £ = 0, — To solve
Atxg = bi for i — £maX) also the coarser discretizations for I < ^max are solved. Since
Xf-i and pXi-\ should represent a good approximation to xe, but because of the lower-
dimensionality can be calculated at lower cost, it is more efficient to first approximate
xe-i (approximation xe-i) and then to use pxt-\ as an initial value for the iteration of
level i. In the algorithm we now present, we let xm+l := <&e(xm, bf) denote an arbitrary

8The notation 9.382E - 2 means here 9.382 • 10~2
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iteration for solving AfXg = bf.

XQ solution (or approximation) of AQXQ = bo ;

for i := 1 to fmax do
begin xg := pxt-\; (* initial value; p from (7.69f) *)

for i := 1 to mg do xt := &e(xe,be) (* me iterations *)
end;

In the cases in which 3v represents a multi-grid procedure, we may choose mt to be
constant; in fact, it is often sufficient to take rrif = 1 in order to obtain an iteration error
\\xi — xi\\ which is of the same magnitude as the discretization error .

7.7.7.7 Partial decomposition of the approximation space

Let Ax = b be the system of equations we are dealing with, where x is an element of
a solution space X. We say there is an admissible decomposition of X into subspaces
X<">, i/ = 0 , . . . , f c , if = X. Here we allow the subspaces to be overlapping, i.e.,

V

non-disjoint. The goal of the method we discuss here is to find an iteration

for which the correction factors 6^ are elements of X^. To represent a vector x^ €
XM C X, we need a coefficient vector xv in a space Xv = Rdim(x " ). The unique
correspondence between Xv and X^ is obtained with the help of a linear 'prolongation',

This means that pvXv = X^. The 'restriction' rv := pi : X^ —> Xv is the transposed
mapping. Then the basic version of the partial decomposition method (also called the
additive Schwarz iteration) is given by

The matrix appearing in (7.70c) of dimension nv := dim-X"^ is the product

The dampening parameter w in (7.70d) is included to improve the convergence (see
(7.57)). If one inserts the iteration into a CG-method (discussed in 7.7.7.4), then the
choice of cj ^ 0 is irrelevant.

The local problems in (7.70c) can be solved independently of one another, so that they
are interesting for algorithms for parallel computers. The exact solution of (7.70c) can
be iteratively approximated (application of a secondary iteration).

The hierarchical iterations discussed in 7.7.7.2.4, as well as variants of the multi-grid
method and the domain decomposition method to be discussed presently, fall into the
abstract context of (7.70).
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In the case of a hierarchical iteration, XQ contains all vertices of the original triangulation
of TO , X\ contains all vertices of the next triangulation r\ which are not vertices of TO , and
so forth. The prolongation p\ : X± —> X is the piecewise linear interpolation (evaluation
of the finite element functions at the new vertices).

The theory of the convergence for decomposition methods is more or less restricted to
matrices A which are positive definite. The same is true for the multiplicative Schwarz
procedure, in which before each correction x >—> x—pv5v the steps (7.70a-c) are repeated.

7.7.7.8 Domain decomposition

The domain decomposition to be discussed now has two completely different interpreta-
tions. The first views the decomposition of the domain as a decomposition of data, the
second is a special kind of iteration method which uses decompositions of the domain
as a tool.

In the case of data decomposition, one divides the coefficient vector x in blocks, as
follows: x = (x° , . . . ,x f c ) . Every block x" contains the data of the vertices of the
lattice in some partial domain fi" of the underlying domain £7 of the boundary value
problem. If the matrix is sparse, then the basic operations (most important, matrix
multiplication) require only information of the neighborhood, i.e., mostly from the same
subdomain. If every block xv is assigned to a processor of a parallel computer, the
procedure only requires communication along the boundaries of the subdomains. Since
the number of vertices of the mesh contained in these boundaries must be at least one
magnitude smaller than the total number of vertices, one could hope that the necessary
communication is computationally of little cost compared with the main computational
cost of the algorithm.

Next we consider the domain decomposition as a special kind of iteration method. Let
$7 = (J Q" be a not necessarily disjoint decomposition of the underlying domain fi of
the partial differential equation. The vertices which are in fi" for the space X" were
already discussed in 7.7.7.7. The prolongation pv : Xv —>• X can for example be defined
by a zero extension, i.e., for all vertices outside of fi", it vanishes. Then this method is
defined by (7.70).

Let k be the number of subdomains £lv. Since k could be the number of processors
of a parallel computer, one would like to obtain a speed of convergence which depends
not only on the number n of dimensions of the problem, but also on k. This cannot
be achieved with a pure decomposition, so that one adds to the spaces a coarse lattice
space XQ. In this respect, this method is quite similar to the two-grid method described
above.

7.7.7.9 Non-linear systems of equations

In the case of non-linear systems of equations there are numerous new questions to be
answered. In particular, solutions no longer need to be unique. Therefore, we shall
assume that the system F(x) = 0 has, in a neighborhood of x*, the unique solution x*.

To solve F(x) = 0, two strategies offer themselves. The first is to apply a variant of the
Newton iteration, which requires per Newton step solving a linear system of equations
(again as secondary iteration), for which the methods discussed in section 7.7.7.1 to
7.7.7.8 can be used. Whether this can be carried out or not depends among other things
on how computationally intensive it is to calculate the Jacobi matrix F'. A second
strategy tries to extend the methods discussed above for linear systems directly to non-
linear systems. For example, the non-linear analog of the Richardson iteration (7.53)
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for solving F(x) = 0 would be

The multi-grid method can also be extended to the non-linear case. If one carries this
out, then the asymptotic speed of convergence of the non-linear iteration coincides with
the speed of the linear multi-grid method, which one applies to the linearized equation
(this is A = F'(z*)); see [445], §9 for details.
In the case of multiple solutions, iteration methods can have a local convergence at best.
The computationally most intensive part of the method is often determining appropriate
initial values x°. For this, the nested iteration of 7.7.7.6 can be of some help. The choice
of initial iterate is then basically restricted to the lower-dimensional system of level
£ = 0.

7.7.8 Boundary element methods

Replacing a differential equation with an integral equation is part of the integral equation
method. The boundary element method proper arises when we then discretize this
integral equation.

7.7.8.1 The method of integral equations

A homogeneous differential equation Lu = 0 with constant coefficients has a fundamental
solution UQ (see [212]). Here we deal with the following problem: a boundary value
problem on a domain Jl C Md with boundary values on F := dft. One approach is to
suppose u has the form of a boundary or a surface integral

with an arbitrary weight function ip. Then u satisfies the equation Lu = 0 in O if
the kernel function k coincides with UQ(X — y) or a derivative of this function. For
k(x,y) = UQ(X — y), u as in (7.71) is a single layer potential (see Example 2 in 10.4.3).
The normal derivative k ( x , y ) = dUo(x — y)/dny with respect to y defines what is known
as the double layer potential.

We now derive an integral equation for the function tp occuring in (7.71), so that the
solution u of (7.71) satisfies the boundary condition. Since the single layer potential is
continuous in x € Md, the Dirichlet values u = g on F lead directly to

This is a Fredholm integral equation of the first kind for determining tp. In the case
of Neumann boundary conditions (7.10b) or Dirichlet conditions in connection with
the double layer potential, also the discontinuities on the boundary must be taken into
consideration. The integral equation for (p which then arises is discussed in [212]. It has,
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generally speaking, the form

in which K(X,y) is either the kernel k(x,y] of (7.7.2) or the derivative Bxk(x,y), where
B is arises from the boundary condition Bu = g (for example, we could have B = d/dn).

Advantages of the integral equation method are the following.

(1) The domain of definition of the function to be determined is only (d— l)-dimensional,
which following the discretization leads to an enormous reduction in the size of the system
of equations.

(2) The method of integral equations is equally apt to apply to exterior and interior
problems. In the case on an exterior boundary problem SI is an unbounded domain
which is the complement of the interior of the surface or curve F. For finite element
methods, this leads to difficult problems, because of the unboundedness. For the exterior
boundary problems there are additional boundary conditions at infinity x = oo, which
are automatically satisfied by integral equation methods.

(3) Finally, in many case the solution of the boundary value problem is not necessary in
the entire domain, rather one requires only certain boundary values or data (for example
the normal derivative if the boundary value is given). In that case, most of the values
calculated by the finite element methods in the domain would be unnecessary.

As opposed to simpler integral equations, (7.73) does present the following difficulties.

(1) From theory we have for dipole integral operators compactness; however this property
no longer holds for non-smooth boundaries.

(2) All integrals which appear are surface or curve integrals, so that for their solution
we generally require concrete parameterizations.

(3) By definition, the kernel is singular. The strength of the singularity of the fun-
damental solution depends on the order of the differential equation. If K is obtained
through further differentiations, then the singularity is intensified (gets 'worse'). Inte-
gral equations of type (7.73) which typically occur in applications have improper in-
tegrable kernels, strongly singular integrals of the type of Cauchy principal values, or
hypersingular integrals, which are defined with the help of 'part-fini' integrals according
to Hadamard. Contrary to what one would tend to believe, strong singularities turn out
to be an advantage for a numerical treatment.

7.7.8.2 Discretization through collocation

There is a discretization procedure due to Nystrom, which we discuss in [212]. This
method is however seldomly applied to boundary element methods. Instead, one uses
one of two types of projection methods: either the collocation method, which is the
projection onto lattice vertices, or the Galerkin procedure, which is an orthogonal pro-
jection on the space of approximating functions. In the case of collocation, one replaces
in (7.73) the unknown function <p by a function (p = ^Cifi. Here we could for ex-
ample have finite element functions ipi, which belong to the lattice vertices Xi € F. In
the two-dimensional case, when F is a curve, we could also take a global point of view
using trigonometric functions. The collocation equations arise when (7.73) is satisfied
at all collocation points x = Xi. The matrix coefficients which arise in this manner are

described by the integrals
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7.7.8.3 Galerkin method

According to 7.7.2.2 one obtains a Galerkin discretization after an additional integra-
tion with u>i acting as a test function. The matrix coefficients then contain the dou-

ble integrals which in the case of surfaces F are four-

dimensional. Although this method is more complicated, it has better stability proper-
ties and higher precision in an appropriate norm.

Even if the name finite element method (FEM) would be legitimate here, the discretiza-
tions of integral equations like (7.73) are generally grouped together as 'boundary ele-
ment methods', BEM.

7.7.8.4 Numerical properties of boundary element methods

If one compares the discretizations of a boundary value problem in £1 C Rd given by
the finite element method with that given by boundary element methods, the properties
can be summed up as follows.

For a lattice size h, one obtains systems of equations which have the magnitude of
O(h~d] for FEM, and magnitude O(hl~d] for BEM. The condition numbers for the
BEM matrixes are, compared with the FEM case, harmless.

One decisive disadvantage of the BEM is the fact that the matrices are not sparse,
but rather fully populated. This leads to problems with computation time and storage.
Therefore, there are different approaches to representing the matrices in a more compact
form (for example panel clustering in [443] or matrix compression using wavelet basis).
For a numerical quadrature of the singular integrals there are modern methods, which

can also deal with double surface integrals quickly and

sufficiently precisely, as described for example in [443], §9.4.

7.7.9 Harmonic analysis

7.7.9.1 Discrete Fourier transformation and trigonometric interpolation

With the help of complex-valued coefficients CQ, c i , . . . , cn_i we define the trigonometric
polynomial

It can be interpreted as a genuine polynomial ̂ cvz
v by using the substitution z = elx,

which restricts the argument z to the unit circle, as \z\ = elx\ = 1. If one evaluates
the function y from (7.74) at the equidistant interpolation points x^ = 27r/^/n, where
< y u = 0 , l , . . . , n — 1, then we obtain the values at these points

The trigonometric interpolation problem can then be formulated as follows. For given
values y^, determine the Fourier coefficients cv from equation (7.75). The solution cancoeffienets
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be described by means of the following backward transformation:

To formulate this in matrix notation, we introduce the vectors c = (CQ, ... , cn_i) 6 Cn

and y = (yo? • • • ,i/n-i) € Cn. The mapping c i—»• y according to (7.75) is referred
to as discrete Fourier synthesis, while the mapping y t—> c in the other direction is
referred to as discrete Fourier analysis. If we use the matrix T which has coefficients
Tvlt := n-

1/2e27ri^/n) then we can write (7J5) and (j76) 33

Here T* denotes the adjoint matrix of T : (T*)^ = T^v. In the present case T is unitary,
i.e., T* = T"1. This property corresponds to the fact that (7.74) is an expansion with
respect to the orthonormal basis {n"1/^271"1"^/™ : // = 0,1, . . . , n — 1}.

In the sum (7.74) we can shift the index set v = 0 ,1, . . . , n — 1. In this way, evaluation of
(7.75) at the interpolation points x^ = 27r/x/n is not affected, as exp(ij/xM) = exp(i(f ±
n)x^), while at the same time the points in between are affected. For example, for even
n we may choose the index set {1 — ra/2,..., n/2 — 1}. Because of the relation

we then obtain a linear combination of the real trigonometric functions {sin vx, cos vx :
0 < v< n/2-1}.

7.7.9.2 Fast Fourier transformation (FFT)

In many practical applications the Fourier synthesis c —» y and the Fourier analysis
y —> c of (7.77) play an important role, so that it is desirable to carry these out with
as little computational cost as possible. Equation (7.76) can be written, up to a scalar
factor of n"1/2, which we for simplicity neglect here, in the form

with the nth root of unity un := e 27ri/n. The synthesis (7.75) also takes the form of
(7.78), after exchanging the symbols c and y and using un := e27n/n. The index n occur-

ing in yj?', cj1 and ujn is meant to indicate the dimension of the Fourier transformation
we are working with.

If one evaluates (7.78) in the usual way, one requires n (complex) multiplications and

n — 1 additions for each coefficient. To evaluate all components c» we therefore need
2n2 + O(n) operations. Here we assume that the values of $1 = {w^ : 0 < z/, n <n — 1}
are known. Since u^ only depends on the residue class of v\i modulo n, fl only contains
n distinct values and can be calculated with a cost of O(n).

The cost O(n2) for evaluating (7.78) can be significantly reduced is n happens to be a
power of 2, n — 1P with p > 0. If n is even, the coefficients to be determined can be

( 7 . 7 6 ) as
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written with a sum consisting only of n/2 summands:

The c-coefficients in (7.79a,b) form vectors

of Cn/2. If we introduce further the coefficients

and note that (u;n)
2 = wn/2, then we obtain the new set of equations

Both sums here have the form of (7.78) with n replaced by n/2. This reduces the n-
dimensional problem (7.78) to two (n/2)-dimensional problems. Because of n = 2P, this
process can be iterated p times and yields in the end n one-dimensional problems! (Note
that in the one-dimensional case we have yo = CD-) The algorithm we have obtained in
this manner can be formulated in the following fashion:

begin n2 := 2P-1;

end;

Since there have been p steps of halving the dimension, in which n evaluations of (7.80a,b)
have to be carried out, the computational cost is in sum p • 3n = O(nlogn) operations.

7.7.9.3 Applications to periodic Toeplitz matrices

A matrix A is by definition a Toeplitz matrix, if the coefficients a,ij only depend on the
difference i — j modulo n. In this case, A has the form
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Every periodic Toeplitz matrix can be diagonalized with the aid of the Fourier transfor-
mation, i.e., with the matrix T from (7.77):

A basic operation which is used particularly often is the matrix-vector multiplication of
a periodic Toeplitz matrix with a vector x. If A is fully filled, a standard multiplication
would mean O(n2} multiplications. In contrast, multiplication with the diagonal matrix
D of (7.82) requires only O(n) operations. The factorization Ax = T(T*AT)T*x yields
the following algorithm.

Under the assumption n = 2P, the fast Fourier transformation (7.80) may be applied,
so that the matrix-vector multiplication x —> Ax can be carried out with a cost of
O(nlogn).

The solution of the system of equations Ax = b with a periodic Toeplitz matrix A is
just as simple as the matrix-vector multiplication, as in (7.83b) we only have to replace
D by D-1.

The inverse of A from (7.81) is of the same form, only with £„ replacing cv, where (,„
arises from

(see equation (7.75)). The interpolation problem (7.84) can again be solved with com-
putational cost O(nlogn).

Similarly, the product of periodic Toeplitz matrices, polynomials P(A) or other functions
of the matrix A (for example the square root in case d/j, > 0) can be computed with low
cost.

7.7.9.4 Fourier series

Let now £2 denote the space of all sequences of coefficients {cv : v integer} whose norm

is finite (note that whereas earlier we used t as an index, here the combination

I2 denotes a space, and not the square of an index). To every c £ f.2 we associate the
2vr-periodic function

(again, Fourier synthesis). The sum converges in quadratic means and / satisfies the
Parseval equation
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The inverse transformation (again, Fourier analysis) is

While the periodic function / is often viewed as an initial quantity of kinds, for which
Fourier coefficients are to be determined, one can turn this point of view around. Suppose
we are given a lattice function </? by means of the values cv = ip(yh\ where h denotes
the size of the lattice and v is an integer. For the purpose of the analysis, the function
which is associated to it by (7.85) turns out to be quite convenient.

The condition can be weakened. Let s e K. Then the

condition

strongly increases the decreasing property of the coefficients if s > 0, while if s < 0, the
opposite is true: the coefficients may even increase instead of decreasing. For s > 0,
(7.85) defines a function in the Sobolev space -ffperi0dic(~7ri7r)' while for s < 0, (7.85)
can be taken as a formal definition of a distribution on the space Aperiodic(—7r>7r)-

7.7.9.5 Wavelets

7.7.9.5.1 Non-localness of the Fourier transformation. The characterizing prop-
erty of the Fourier transformation is the decomposition of the functions according to their
frequencies. These are in the case of (7.85) and (7.86) discrete; in the case of the integral
Fourier transformation

they are continuous. A decisive disadvantage of the Fourier transformation, on the other
hand, is its inability to resolve details of the position. Depending on the application, we
have to replace 'position' by 'time'.

As an example we consider the periodic function which is given on [—TT, +TT] by f ( x ) =
sgn (x) (sign of x). Its periodic extension to the real line has discontinuities at all integral
multiples of tr. The Fourier coefficients of / are cv = C/v (C = —2i/v/27r) for odd v
and Cv = 0 otherwise. The small rate of decrease cv = O(\/v] of the coefficients yields
a global statement about the non-smoothness of the function /. But while the series
(7.85) shows a slow convergence for all x (no absolute convergence), this is really only
true for x near the discontinuities.

The reason for the non-localness of the Fourier transformation lies in the fact that the
functions elvx in the series have no privileged position, but rather are characterized only
in terms of the frequency v.

7.7.9.5.2 Wavelets and the wavelet transformation. In order to alleviate the
problem just mentioned, one replaces the {e1^ : £ € M) by functions which depend on,
in addition to the frequency, also further coordinates which are related to position. Just
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as {e'£x : £ € E} arises from the single function elx by means of the dilation x —> £z, we
can generate the family of functions required by doing the same to a function which we
call a wavelet and denote by -0.

A wavelet is not a uniquely defined object, rather all square integrable functions / e
L2(R) can be used, for which the corresponding Fourier transform ty according to (7.87)

leads to a positive, finite integral Every wavelet has a vanishing mean,

The simplest wavelet is the function
first considered by Haar, shown in
Figure 7.13(a), which for 0 < x < I
is the sign of 1 — 2x and vanishes
elsewhere. Since all functions if) ^ 0
in I/2(R) with compact support and

= 0 are already wavelets,

the Haar function is also a wavelet.

Figure 7.13. The simplest wavelet and the simplest
scaling function.

By dilating -0 one obtains a fam-
ily {i/)a : a ^ 0} with ^a(x) :=
a|-1/2i/;(z/a). For |a| > 1, the

function is stretched out, for |a| < 1 it is compressed. For a < 0 there is in addition a
reflection involved. The factor |a|~1//2 is only a scalar normalization. The parameter a
plays the role of the inverse frequency l/£ in the function el€x.

In contrast with the Fourier method, there is in addition to the dilation also a translation.
The shift parameter 6 characterizes the position (or the time). The family of functions
generated is {V>a,6 : a ̂  0, b real} with

The wavelet transformation L^f is a function of both position and frequency, where a
is the frequency and b the position variable. Explicitly, we have

with c = . The inverse transformation if given by

For / 6 L2(R) the wavelet transformation / i-» L^f is bijective.
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7.7.9.5.3 Properties of wavelets. The Haar wavelet (Figure 7.13a) has compact
support (here [0,1]) but it not continuous. The so-called Mexican hat, a function with
the opposite properties (it is in fact infinitely often differentiable), is given by ^(x) :=
(l-x2)exp(-x2/2).

The kth moment of a wavelet -0 is

The order of a wavelet if) is the smallest natural number N for which the Nth moment
is non-vanishing. Since the mean of if) is zero, we have /^ = 0 for all 0 < k < N — I.
If fjLk = 0 for all k, then if) has infinite order. However, wavelets with compact support
always have finite order (for example the Haar wavelet has N — 1, the Mexican hat has
TV = 2).

A wavelet of order N is orthogonal to all polynomials of degree < N — I. Thus L^f(a, b)
for sufficiently smooth / depends only on the Nth remainder term of the Taylor series of
/. Up to a scalar multiple, L^f(a, b) converges as a —> 0 to the Nh derivative f^N^(b).

The Fourier transform /(£) in (7.87) decreases more rapidly to zero as |£| —> oo when /
is smooth. In contrast, for wavelets as |a| —» 0, L^f(a,b) tends to 0(|a|fc~1//2) uniformly
with respect to b only if / has a bounded kth derivative and k < N. In this case, the
rate of convergence is bounded by the order.

7.7.9.6 Multiresolution analysis

7.7.9.6.1 Introduction. The true importance of wavelets becomes clear in the con-
cept of multiple scale analysis (also called multiresolution analysis, the term we shall use
henceforth), which can initially be introduced without wavelets. The wavelet transfor-
mation (7.89a,b) is an analog of the Fourier integral transformation (7.87). For prac-
tical purposes it would in fact be better to have a discrete version, which then would
correspond to the Fourier series (7.85). But while only 27T-periodic functions can be
represented by Fourier series, the multiresolution analysis can represent an arbitrary
/ € L2(R).

The scale index m of the subspace Vm to be defined below therefore corresponds to a
frequency range up to 0(2m), as in Vm all 'details' up to magnitude O(1~m) can be
described.

The notion of a Riesz basis is of importance in connection with the multiresolution
analysis. Let ipk € -Z/2(R) be a family of functions which is dense in a subspace V of
L2(R). Suppose there are constants 0 < A < B < oo with

for all coefficients with finite square sum The family {<pk} is called a Riesz

basis in V with Riesz bounds A, B.

7.7.9.6.2 Scaling functions and multiresolution analysis. A multiresolution
analysis is generated by a single function tp 6 L2(R), called the scaling function. Its
name comes from the following scaling equation, which it is to satisfy for appropriately
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chosen coefficients hk'.

Equation (7.91) is also called the mask equation or the refinement equation. With an eye
toward practical applications it is desirable that the sum in (7.91) be finite and contain as
few summands as possible. The simplest example is the characteristic function <p = X[o,i]>
i.e. <£>(x) = 1 for x G [0,1] and (f>(x) = 0 otherwise, depicted in Figure 7.13(b). Then
if>(2x) = X[o,i/2] is the characteristic function of [0,1/2] and <p(2x — 1) is that of [1/2,1]
so that (f>(x) = (p(2x) + (f>(2x — 1), i.e., in (7.91) we have ho = h\ = l/\/2 and hk = 0
otherwise.

The translate x —> <p(x — fc) of </? generates the subspace VQ:

In the case of the example (p = X[o,i]i ^o contains the functions which are piecewise
constant on every subinterval}(.,(. + 1[ (i integer).

If one carries out in addition a dilation with a = 2m, then one obtains the family of
functions

(see (7.88)). For all scales m we can construct a subspace Vm in the same way as in
(7.92) as the closure of span {(pm,k '• k integer}. By definition, Vm is only a stretched or
compressed copy of VQ. In particular, we have

The scaling equation (7.91) implies <po,fc € V\ and thus the inclusion VQ C Vi, which
can be extended to inclusions Vm C Vm+i at all scales. Conversely, VQ C Vi implies the
representation (7.91). The chain of inclusions ('ladder') which ensues,

suggests that the spaces Vm become larger as m —> oo and in the end fill out L2(R)
completely. This idea can be made precise by the conditions

The ladder (7.94) is a multiresolution analysis if (7.93) and (7.95) hold and there is a
scaling function whose translates </?o,fc form a Riesz basis of Vj>

The Riesz basis property just mentioned can be directly read off the Fourier transform
of the scaling function; indeed, (7.90) is equivalent to
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7.7.9.6.3 Orthonormality and filter. The translates x —> ip(x — k) of (p form an
orthonormal basis of Vb if and only if the Riesz bounds in (7.90) are A = B = I. In this
case we call (p an orthogonal scaling function. For example, the function <p = X[o,i] 'ls

orthogonal. Given any (not necessarily orthogonal) <p, we can construct an associated
orthogonal scaling function (p\ therefore, in what follows we shall assume that <p is
orthogonal.

The coefficients hk of the scaling equation (7.91) form a sequence {hk} known as a filter.
For orthogonal <p we have the equations

The Fourier series formed from the filter coefficients

is called a Fourier filter. It can directly calculated from the Fourier transform (p by using
the formula $(x) = #(f/2)£(f/2).

7.7.9.6.4 Wavelets and multiresolution analysis. Because of the inclusion Vb C
V\ we can write V\ as a direct sum of Vb and the orthogonal complement WQ :— {/ e

Similarly, VQ can be decomposed into a sum V-\@ W-\. Recursively, we then obtain

Every function / e L2(R) can, according to (7.97), be written as / =

which is an orthogonal decomposition, fj contains the 'details' of level j, where the index
j here indicates the frequency. A further resolution of fj into the position components
follows in the next step.

Just as the spaces Vm can be generated by (pm,k, we can generate the spaces Wm by

in which 4> is now a wavelet. For every orthogonal scaling function (f> we can construct
an appropriate wavelet as follows. We set

If the scaling function is the function (p =• X[o,i] m Figure 7.13b, then the corresponding
wavelet is the Haar wavelet shown in Figure 7.13a.
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The translates {^m,k '• k integer} of the functions ij>m at scale m form not only an
orthonormal basis of Vm, but moreover {ipm,k '• m> k integer} is an orthonormal basis of
the entire space L2(R). There is a relation between the Fourier transforms of <f> and ^,
namely

where H is the Fourier filter of (7.96).

7.7.9.6.5 Fast wavelet transformations. Suppose that for a function / 6 VQ, the
coefficients in the representation

are known. According to the orthogonal decompositionVQ = V-M © W^-M ffi • • • © W-2 ©
W-i (see (7.97)) we would like to decompose / in

and

The function F-M contains the 'greater part' of /. The details at scale j are decomposed
in (7.100b) into the local components d3

kifijtk-

The coefficients {cI"M,dl : k integer,—M < j < —1} can in principle be calculated

using the scalar products etc. But even if we were to know the functions

ux

i[)j,k, actually carrying out this computation would be a hopeless task. Instead we can
use the scaling equation (7.91), which leads us to the fast wavelet transformation:

for j = — 1 down to — M do for all integers k do

Note that the wavelet ij) does not explicitly enter the computation, but only its coeffi-
cients git from (7.98). In putting this algorithm to practice one must of course assume
that / is given by a finite sum (7.99). If kmin and fcmax are the smallest and largest
indices k with c° ^ 0, then this corresponds to a 'signal length' n = fcmax — ̂ min- We
furthermore assume that the filter {hk} is finite. Then the fast wavelet transformation
(7.101) requires O(n) + O(M) operations, where M is the decomposition depth. If one
assumes that M <C n, then the fast wavelet transformation has cost which grows only
linearly with the signal length and hence is much cheaper than the Fourier transforma-
tion.

If conversely one wishes to deduce the coefficients c° in (7.99) from the coefficients
{c^M,d{ : —M < j < —1}, then one applies the fast inverse wavelet transformation,
given by



7.7. Partial differential equations 1175

Figure 7.14- The Daubechies wavelet ^2 and the scaling function ip%.

7.7.9.6.6 Daubechies wavelets. The difficulties of the multiresolution analysis lie
in the concrete scaling function </?, the wavelet ^/>, and - even more importantly - the
filter {hk}. The Haar wavelet is the only wavelet with a simple description. Attempting
to work with spline functions as in 7.3.1.6 leads to an infinite filter length.

Ingrid Daubechies made a significant breakthrough when she constructed a family {^v '•
N > 0} of orthogonal wavelets with the property that I^N has order N, compact support
and a filter of length IN - 1.

For N = 2 the non-vanishing filter coefficients are, for example

The scaling function (p = ip2 and the wavelet ip = ip% can, however, not be explicitly
exhibited. Graphs of the functions are shown in Figure 7.14. The sharp corners testify
to the fact that (p% and -02 both are only Holder-continuous with exponent 0.55. The
smoothness of I/>N increases with increasing N. Starting with N = 3, the functions are
even differentiate.

7.7.9.6.7 Data compression and adaptivity. The wavelet transformation has a
variety of applications. One example is the data compression, which we sketch briefly
here. The wavelet transformation maps a data package c° = {c°} belonging to a function
/ to the 'smooth part' c~M = {c^M} and the details dj = {dj

k}, which have scales
—M <! j < —1 (see (7.99)). This does not imply that the corresponding data package
is (M + 1) times as large. For a finite filter and length n of the initial sequence c°, the
sequences o7' and d> which arise from these have asymptotically the length 2Jn (j < 0).
The sum of the lengths of c~M and dj for —M < j < — 1 is, as before, just O(n). For
smooth /, the coefficients decrease for increasing j. If the function / is only locally
smooth - for example just in an interval / - then the same holds for the dj

k, which
belong to the ifjjtk which have support in /. One can then replace coefficients which are
sufficiently small by zero. Using this, one can generally find an approximation / which is
described by decisively fewer than n amounts of data. The corresponding representation
may be viewed as an adaptive approximation for /.
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7.7.9.6.8 Variants. Since not all of the desirable properties (finite filter, orthogo-
nality, high order and smoothness, explicit representation of ip and -0) can be satisfied
at once, there are different variants which are adapted to the application one has in
mind with the most important properties for that application. These differ from the
multiresolution context described above.

One example is the notion of pre-wavelets, in which not all of the t/Jm,k are orthonormal,
but rather orthonormal to tym,k and V>j,£ with different scales m ̂  j.

Another is the notion of biorthogonal wavelets, in which one applies two different mul-
tiresolution analysis spaces {Vm} and {Vm} with corresponding scaling functions <p and
<p and wavelets tp and tp, in which the latter form a biorthonormal system, i.e.,

Generalizations of multiresolution analysis to several dimensions (for example for L2(Kd))
are possible (see [449]). It is more difficult to adapt multiresolution analysis to intervals
or general domains in Rd.

7.7.10 Inverse problems

7.7.10.1 Well-posed problems

If the problem

with a given b € Y is to be solved numerically, then generally one requires that for
every b in some domain of definition B C Y there is (at least locally) a unique solution
x e U C X, which depends on b in a continuous manner. In this case, we refer to
the problem Ax = b as being well-posed or having good condition. Only under this
assumption can we be assured that small perturbations in the 'data' b (in the y-topology)
also lead to small perturbations of the solution x (in the X-topology). Otherwise very
small changes in the initial values of the problem or due to other causes (for example,
non-exact arithmetic due to a implementation on a computer) lead to results which are
total nonsense.

7.7.10.2 Ill-posed problems

If one of the assumptions just described is not satisfied, then the problem is said to be
ill-posed. In the finite dimensional case the problem Ax = b can be ill-posed because
the matrix A is singular. Infinite-dimensional problems are more interesting, leading to
ill-posed problems when the operator A has a trivial kernel and an unbounded inverse.
Problems of this kind come up often if, for example, A is an integral operator. An
interesting and important example fore this is image reconstruction in tomography (see
[450] and [448], §6).
If A : X —> Y is compact, with Y = X, then A has non-vanishing eigenvalues \n —->
0 (n > 1). If A is self-adjoint (the general case often reduces to this one if the singular
value decomposition of section 7.2.4.3 is used), the corresponding eigenfunctions <pn form
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an orthonormal system. The solution of Ax = b is then formally

The solutions displayed belong to the solution space X if where note

must be taken of the fact that An —> 0. In general one does not have

as b €. X generally only insures

Even if one restricts the consideration to b which belong to x as in (7.102) with x €
X, the difficulties are not yet over. We have b^ := b + eipn for arbitrary n is only
perturbed by £, i.e., \\b^ — b\\ — s. But the unique (existing) solution of Ax^ = b^
is x*-™' = x + (e/An)^n, and therefore we have an error of \\x^ — x\\ — £ / X n , which
tends to infinity as n grows beyond bounds. This shows again how arbitrarily small
perturbations of b lead to arbitrarily large changes in x.

The growth of the inverse eigenvalues l/An determines how ill-posed the problem is. If
l/An grows like O(n~a] for some a > 0, then A is ill-posed to order a. A is said to be
exponentially ill-posed, if l/An > exp^n5) for 7,5 > 0.

7.7.10.3 Problems of ill-posed problems

In addition to what has been said already, solving the equation Ax = b makes little
sense even if a solution actually exists. Instead, it makes sense to change the questions
about the problem, i.e., pose different problems with the ill-posed problem, which have
a chance of being solvable.

The coefficient (3n := ((pn,x) of a function x describes in general its smoothness, in the
following sense. The faster /3n approaches 0 as n —> oo, the smoother the function x. To
quantify this vague statement, we define for real a the space

For a = 0 we have XQ = X, while for a = 1 we have X\ = Im A The solution x given
by (7.102) belongs to X_i for b E X.

A further essential assumption we can make is that the solution x to be found belongs
to some Xa for a positive <r, i.e., this solution has the property of greater smoothness.
Assume the corresponding norm is bounded by p:

The ideal 'data' of the 'state' x is b := Ax. We cannot expect that b is given to us
exactly. Instead, we assume that the known data b are precise up to a factor of e, as
follows.

In this case, the problem can be formulated as follows. Let b be given. Find x e Xa

whose exact image b = Ax approximates the data b and satisfies, for example, the
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equation (7.103b). This problem definitely does not have a unique solution. If, however,
x' and x" are two possible solutions, which satisfy (7.103a): \\x'\\a < p, ||x"||CT < p and
(7.103b): ||6' - b|| < e, \\b" -b\\<e for b' := Ax', b" := Ax", then for the differences
6x := x' — x" and 6b := b' — b" we have by the triangle inequality

This yields the estimate

To interpret equation (7.104), one identifies the sought-for solution x with x' and views
x" as an approximate solution. Then equation (7.104) yields a bound on the remaining
error. The bound p in (7.103a) will have magnitude O(l), so that p1/(<T+1) is constant.
Only £ can be assumed to be small. Because of a > 0 the uncertainty \\6x\\ is then also
small. However, the exponent will be worse when the order of smoothness of a is weak.

Independent of the numerical methods which are applied to determine x, (7.104) indi-
cates the inevitable imprecision. Conversely, an approximation methods is said to be
optimal, if the results of this method have at most the error given by (7.104).

7.7.10.4 Regularization

Let Ax = b be a given problem, and let b£ denote an approximation with ||6e — 6|| < e.
For positive 7 the map T7 is supposed to produce approximations T^b£ of x. If there is
a regularization parameter 7 = 7(5, fe£) with the properties

then one calls the family of mappings {T7 : 7 > 0} a (linear) regularization.

A simple example is given by truncating the expansion in (7.102):

In this case (7.105) is assured if we take 7 = 7(e) = O(eK) with n < 1. In particular, for
7(e) = (s/(ap]Y^a+^ (e,a,p as in (7.103a,b)), then this regularization yields optimal
orders (see [448], §4.1).
A regularization which is often used is the Tychonov-Phillips regularization. In this case
one seeks the minimizing element of the functional

In this connection the quantity 7 > 0 is referred to as the penalty term. For more on
the choice of 7 and questions related to optimality, see [449].
Some regularizations are indirect. The usual discretization of infinite-dimensional prob-
lems Ax = b can also represent a regularization. Moreover, m = 771(7) steps of an
iteration, for example of the Landweber iteration (this is (7.54b) with N = uiA*) can
serve as a regularization.



Sketch of the history of mathematics

There is no such thing as patriotic art or patriotic science.
Both of these belong, as does everything good, to the whole
world and can only be promoted through a general, free
interaction of all living people, taking into account what
is known from the past.

Johann Wolfgang von Goethe (1749-1832)

To exemplify historical correlations, we give some dates from the lives of several artists,
scientists and philosophers, as well as of some important historical events, of course
without attempting any kind of completeness. The dates given from ancient times are
partly only approximately known; this will not be mentioned explicitly below.

The ensuing rough story of the formation of our universe and our planet should help
to put the relatively short period of human endeavor into its proper perspective. This
process of human culture and science has accelerated at a breathtaking rate in the
twentieth century. In the coming millennium, mankind will have to learn to use its
knowledge more responsibly than has been the case up to now.

14 billion years ago

13 billion years ago

10 billion years ago

4.6 billion years ago

4 billion years ago

2 billion years ago
248 million years ago, and
213 million years ago

65 million years ago

5 million years ago

The big bang starts the history of our universe.
Roughly three minutes after the big bang the universe

has cooled down to about 900 million degrees, and the syn-
thesis of helium began. In this way the most important
source of energy of the young universe is formed.1

Quasars form.

Galaxies form.

The formation of our solar system, including the earth,
takes place.

The first primitive forms of life form on the earth.

The earth's crust forms.

Two global ecological catastrophes occur and wipe out
many of the existing life forms on the earth. The ances-
tors of mammals barely escape extinction.

The dinosaurs die out.

The ancestor of ours, Australopithecus, lives in eastern
Africa and learns to walk upright.

In 1974 the 3.2 million year old skeleton "Lucy" was dis-
covered; in 1995 a 1.2 meter in height, 4.4 million year old
skeleton of an Ardipithecus ramidus (a ground-living ape
which is an older ancestor of humanoids) was discovered in
Ethiopia.

1The early development of the universe after the big bang has been presented to a wide audience
in an exciting form in his best seller The first three minutes by Steven Weinberg (1977). The theory
of the development of the universe can be found in the monograph The Early Universe by G. Borner,
Springer-Verlag, Berlin, 2003.
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2.5 million years ago

1.6 million years

100,000 years ago

30,000 years ago

Homo habilis (skilled man) lives in Africa and uses primitive
stone-age tools.

The brain starts an accelerated growth.

Homo erectus (standing man) lives in Africa and migrates
into much of Asia and Europe.

Homo sapiens (reasoning man) lives in Africa.

The Neanderthals die out after an existence of 100,000 years
in Europe and Asia, and are replaced by homo sapiens.

The beginnings of culture

13,000 BC

8000 BC

7000 BC

Cave paintings in France and Spain testify that ancient man has a keen
sense for forms. During this time period also the oldest figures represent-
ing numbers in the form of slashes on cave walls and grooves on sticks
have their origin (early stone age).

The glaciers covering Asia and Europe melt. This is a time of transition
from hunting societies to farming communities; pottery displays geomet-
ric shapes (late stone age).

In Jarmo, Iraq, more than 1,000 solid balls dating from this time are
found. Balls of this kind were presumably included in closed trading
goods, to indicate to the recipient the number of items.

Mathematics of prehistoric times

3200 BC

3000 BC

2600 BC

2000 BC

1800 BC

1800 BC

575 BC

The Sumerians, whose origin is unknown to us, settle in the Tiger-
Euphrates river valley (Mesopotamia, in what is now Iraq), and found
city states like Ur. Even today, one can find traces of this Sumerian
civilization in our modern culture.

The first written alphabets develop in Mesopotamia and Egypt.
Decorations on the club of the Egyptian king Narmer display written

letters and a well-developed number system. (Ashmolean Museum in
Oxford, England)

Construction of the great Pyramid of Cheops.

In Mesopotamia the Sumerians use a well-developed numeral system with
base 60 (sexagesimal system). Around this time the culture of the Sume-
rians is replaced by that of the Babylonians.

Egyptian papyrus scrolls contain a developed arithmetic with fractions.
In Egypt geometry is developed in connection with geodesy.

King Hammurabi reigns in the old Babylonian kingdom. Cuneiform writ-
ing shows the blossoming of Babylonian mathematics, which is in a po-
sition to solve linear, quadratic (and even some cubic and degree four)
algebraic equations. The theorem of Pythagoras is well-known to the
Babylonians. Their mathematics is strongly influenced by algebra (as
compared with the later Greek mathematics, which had a strong geomet-
ric flavor).

The Babylonian culture reaches its zenith under King Nebukadnezar. At
this time the numeral 0 first appears as the place holder for an empty
slot in the sexagesimal system.
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Mathematics of ancient times

ca. 800 BC

735 BC

624-547 BC

580-500 BC

551-478 BC

550-480 BC

500 BC

500 BC

469-399 BC

460-371 BC

428-348 BC

408-355 BC

300 BC to
400 AD

384-322 BC

Homer writes his famous works, the Ilias and the Odyssey.

The legendary founding of Rome by Romulus.

The Greek trader and natural philosopher Thales of Milet, who traveled
extensively in Babylonia and Egypt and is considered to be the founder
of Greek mathematics, lives.

The Greek Pythagoras of Samos learns the highly developed mathematics
of the Babylonians and the Egyptians in Phoenicia (today the coastal part
of Syria). He founds the school of the Pythagoreans.

Confucius (Master Kung), Chinese philosopher and statesman, lives.

The Indian prince Gautama Buddha founds Buddhism.

The Indian religious text "Sulvasutras" contains instructions for the con-
struction of squares and rectangles as well as the basics of the theorem
of Pythagoras.

A Pythagorean discovers the existence of incommensurable lengths (\/2
is an irrational number). This creates a crisis in the foundations of Greek
mathematics.

Socrates teaches that mankind cannot recognize the essence of the world:
he can only recognize himself.

Democritus of Abdera founds the theory of atoms.

Plato adopts the theory of the general notions as the essence of things
from his teacher, Socrates.

However, he splits the general notions of the things from these and
considers them to be eternal, absolute ideas, which exist in a world of their
own. The ideas of Plato influenced Werner Heisenberg in an essential way
in his development of the abstract ideas leading to the theory of quantum
mechanics in 1924.

Plato believes in mathematics as a science in its own right, which should
be studied for its own sake and not just for applications.

Eudoxs of Knidos creates a theory of proportions, in which also incom-
mensurable lengths (irrational numbers) have a place. This saves Greek
mathematics from the crisis in its foundations.

Alexandria (founded in 331 BC by Alexander the Great in the Nile delta)
is the scientific and cultural center of the world of Greek culture, as well
as of the Roman empire. The huge library, containing 700,000 papyrus
scrolls, is destroyed in a battle with the Romans. After being conquered
by the Arabians in 642 AD, the Arabian science is dominant.

Aristotle the greatest mind of ancient times (a student of Plato) -
creates formal logic and scientific classification. He summarizes the known
status of the knowledge of his times in esthetics, astronomy, biology,
ethics, history, metaphysics, philosophy, psychology and rhetoric, and
develops them further.

The teachings of Aristotle are dominant for the next 2000 years in sci-
ence, until Galileo Galilei founds modern physics, based on experimental
evidence.
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365-300 BC

356-323 BC

287-212 BC

200 BC to
200 AD

180-125 BC

100-44 BC

0-30 AD

85-169 AD2

ca. 100

ca. 250 (?)

ca. 320

395

476

529

Euclid of Alexandria lives; his famous work The elements is a standard
reference for geometry and a model for the axiomatic method in mathe-
matics.

Alexander the Great lives; he conquers Persia and Egypt and presses on
to India. His goal, which he did not achieve, was to form a unified empire
in all of the orient and Occident, with a unified Greek culture.

Archimedes of Syracuse lives, the most important mathematician of an-
cient times and the founder of mathematical physics. He determines the
center of mass of simple surfaces and bodies and he derives formula for
the workings of levers, equilibrium of floating bodies, determination of
areas and volumes, which marked the birth of calculus. He was the last
great mathematician of ancient times.

China is ruled by the Han dynasty; the treatise Nine books on the art
of mathematics appears, which treats practical problems of mathematics
(for example the determination of square and cube roots) . In connection
with the solution of a quadratic equation, negative numbers appear for
the first time.

Hipparchus of Nicaea, an important astronomer of ancient times, lives.

Gaius Julius Caesar - Roman field general and later emperor of Rome,
lives (the German word for emperor, Kaiser, comes from the word Cae-
sar). He writes De bello Gallico (On the Gallic war) about his experiences
in war in northern Europe.

Jesus founds Christianity.

Ptolemy of Alexandria, Greek mathematician and astronomer, lives. His
main contribution to astronomy is Almagest (Big system), which applies
studies of Hipparchus and furthers these. The work also contains elements
of plane and spherical trigonometry in a geometric form. His picture of
the world has the earth at the center.

Heron of Alexandria, an engineer and applied mathematician, lives. His
collected works summarize the practical knowledge of the times, and is
complementary to Euclid's Elements. The books Mechanica (levers, in-
clined plane, pulleys), Pneumatica (presses), Dioprica (geodesy) and Be-
lopoika (weaponry) are examples of works which flowed from his pen.

Diophantus of Alexandria, an important number theoretician which in-
fluenced even modern times, lives. His most important contribution to
mathematics, Arithmetica, originally consists of 13 volumes, of which
seven are preserved; dates about his life are very uncertain.

Pappus of Alexandria, the last important mathematician of ancient times,
lives. He takes first steps in the direction of projective geometry.

The Roman empire is divided into an eastern empire, centered at Con-
stantinople, and a western empire centered at Rome.

The western Roman empire ceases to exist; the eastern part exists until
1453.

Plato's Academy in Athens is closed by force by the Roman emperor
Justitian, which signaled the decline of the mathematics of ancient times.

2Henceforth, all year numbers are AD.
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570-632

ca. 800

1155-1227

1160-1227

1180-1250

1199

1225-1274

1248

1254-1324

1260

1265-1321

1339-1453

1415

1431

1436-1476

The Islamic religion is founded by Mohammed.

Al-Khowarizmi of Choresm (near the Aral Sea in central Asia) lives. He
is the first Islamic author to write about the solution of equations (linear
and quadratic) in his book Algebra. A Latin translation of one of his
books, which was not preserved in the original, translates his name as
Algoritmi, which is the origin of the word 'algorithm'.

Mathematics during the middle ages

Jinghis Khan, the founder of the Mongolian empire, lives. Under the
reign of his sons this empire extends to Europe.

The famous minnesinger Walther von der Vogelweide lives.

Leonardo of Pisa (Fibonacci) lives; with his work in algebra and number
theory, he revives the occidental art of mathematics after more than a mil-
lennium of decay and stagnation following the fall of the Roman empire.
He presents the method of calculations with Arabic numbers in his book
Abacus which appeared in 1202, and contributes to the dissemination of
Indian and Islamic mathematics in Europe.

The University of Bologna is established (the oldest University in the
world); at the beginning of the 13th century, Universities are established
in Paris, Oxford and Cambridge; a century later a wave of establishments
of universities sweeps across Europe, including the universities in Prague
(1348), Vienna (1365), Heidelberg (1386), Cologne (1388), Erfurt (1392),
Leipzig (1409), Rostock (1419) and following this in several other cities.

Thomas Aquinas, an Italian theologian and philosopher whose theories
influence thinking even today, lives.

The construction of the cathedral in Cologne begins (completed in 1880).

Marco Polo, the famous Venician trader who traveled as far as China,
lives.

The Islamic mathematician at-Tusi puts trigonometry in its place as a
separate discipline in mathematics in his main work, which collected the
progress of the Islamic mathematicians over the preceding four centuries.

Dante Alighieri, the writer of the Divina Comedia (divine comedy) lives.

The Hundred Years' War between the English and the French Royal fam-
ilies devastates much of Europe.

Jan Hus, a Czechoslovakian supporter of the Reformation and rector of
the University of Prague, is burned at the stake.

Jeanne d'Arc is banned.

Mathematics during the Renaissance3

Regiomontanus (John Miiller) , the most important mathematician of the
15th century, lives.

His main work, the book De triangulis omnimodis libri quinque (Five
books on the types of triangles) was not published until 1533; this book
began the modern treatment of trigonometry.

3The Renaissance (rebirth) began in Florence in the 15th century.
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1452-1519

1470

1473-1543

1475-1564

1483-1520

1492

1492-1559

1506

1517

1519

1525

1531-1534

1540-1603

1544

1545

1550

Leonardo da Vinci, the jack of all trades, painter, sculptor, architect and
scientist, lives.

The establishment of the Academy in Florence.

Nicolaus Copernicus, the creator of the modern heliocentric picture of
our solar system, which places the sun at the center, lives.

In 1543 his main work appeared, under the title De revolutionibus or-
bium coelestium.

Michelangelo Buonarroti, painter, sculptor and architect, lives; he works
in Florence under commission of the Medici and in Rome on the Cathedral
of Saint Peter.

Raphael Santi, famous painter, lives; since 1515 he is the main architect
working on the Cathedral of Saint Peter in Rome.

Christopher Columbus discovers the Americas.

Adam Ries - who was chief of calculations in Annaberg, lives; he popu-
larizes the art of doing arithmetic.

In 1524 his book Coss appears.

Start of construction on the Cathedral of Saint Peter in Rome; the main
architects were among others Bramante, Raphael and Michelangelo,

Martin Luther (1483-1546), founder of the reformation, posts his thesis
on the door of the Schlosskirche in Wittenberg, signaling the beginning
of the reformation.

Hernando Cortez (1485-1547) begins with the blood-thirsty conquest of
Mexico, which totally destroys the blossoming culture there.

Albrecht Diirer's (1471-1528) book Unterweisung der Messung mil Zirkel
und Richtscheit (Directions for measurements with compass and level)
appears, in which perspective drawing is described. This kind of tech-
nique goes back to the painter Leon Alberti (1404-1472) and Leonardo
da Vinci.

Francisco Pizarro (1475-1541) conquers in another brutal war the thriving
Inca kingdom (where the modern countries Chile and Peru are situated).

Francis Vieta (also known as Vieta) lives; he is responsible for the use of
letters in mathematics as is customary today.

Michael Stifel (1487-1567) publishes his three-volume Arithmetica Inte-
gra - a methodologically mature summary of mathematics of his time
(addition, subtraction, multiplication, division as well as quadratic and
cubic equations).4

Geronimo Cardano (1501-1576), an Italian mathematician, publishes his
book Ars Magna (Big Art), which contains a method of solving algebraic
equations of third and fourth degrees. This is the first significant step
which goes beyond the mathematics of ancient times.

Rafael Bombielli introduces in his books Geometry (1550) and Algebra
(1572) the imaginary unit \/— 1 and uses complex numbers systematically
to solve algebraic equations of the third degree.

4As a matter of curiosity, it is interesting to note that as an application of his calculations, Stifel
predicted the end of the world on October 18, 1533 at 8.00 AM.
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1561-1626

1562-1598

1564-1642

1564-1616

1567-1643

1571-1630

1587

1596-1650

1598-1647

1600

1601-1665

Mathematics during the age of rationalism

Francis Bacon, philosopher, lives. He is the founder of empiricism, which
as opposed to Aristotle tried to obtain his insights by means of experi-
ments rather than by rational thinking.

War of the Huguenots in France.

Galileo Galilei, the discoverer of the law of falling bodies, lives. This
marks the beginning of modern experimental physics. As opposed to
Aristotle he observes that all bodies fall with the same velocity.

In 1609 he discovers four of the twelve moons of Jupiter with a self-
made telescope.

In 1632 his thesis Discorsi (Discourses) appears.
In 1633 he is tried and convicted by a tribunal of the inquisition because

of his heliocentric view of the world; he denies himself and remains a
prisoner in Florence for the rest of his life.

William Shakespeare, the perhaps greatest play-writer of all times, lives.

Claudio Monteverdi, a composer of madrigals and a master of early Eu-
ropean opera, lives.

Johannes Kepler, mathematician and astronomer (as well as astrologer)
at the Royal court in Prague, lives. He is the discoverer of the three laws
of planetary motion named after him.

In 1609 his work Astronomia Nova appears, in which these three laws
are formulated, which are based on extensive observations of Tycho Brahe
(1546-1601).

In 1627 he publishes his Rudolphian tables (tables of logarithmic val-
ues), which are indispensable for centuries for astronomy and navigation.

Execution of Maria Stuart (Queen of Scotts).

Rene Descartes, mathematician, scientist and philosopher, lives. This
marked the beginning of the age of modern mathematics. Together with
Fermat he founded analytic geometry, in which geometry and algebra are
synthesized.

In 1637 his book Discours de la methode (Lecture on the method)
appears, which contains his presentation of the foundations of analytic
geometry.

Bonaventura Cavalieri lives; his principle of calculation of the volume
of bodies is a precursor of the calculus developed later by Newton and
Leibniz.

Giordano Bruno (1548-1600), and Italian philosopher, is burned at the
stake for his belief in the heliocentric nature of the solar system.

Pierre de Fermat, number theorist, lives. He is the founder (together
with Descartes) of analytic geometry, and carries out in addition first
investigations on probability (together with Pascal) as well as creating the
methods for determining minima and maxima, which are closely related
to differential calculus.

In 1629 his book Maxima and Minima appears. In this work, the
fundamental Fermat principle in geometric optics is formulated: light
moves in such a way as to require the smallest amount of time. This
book in also a precursor of calculus.
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In 1637 he writes in the margin of a book by Diophantus his famous
claim; for centuries number theorists search for a proof, without success.
In wasn't until a series of new, very abstract ideas were introduced that
finally led Andrew Wiles in 1994 to his proof of Fermat's last theorem, as
it has been known to be called.

Rembrandt van Rijn, famous Dutch painter of portraits, etc., lives.

John Neper (1550-1617), a Scotch landowner, publishes his book Mirifici
logarithmorum canonis description, in which the prototype of logarithms
is introduced. Kepler is especially active in propagating the use of loga-
rithms.

Thirty Year's War rampages in Europe.

Wilhelm Schickgard (1552-1635), mathematician, theologian and orien-
talist, constructs for Kepler the first calculating machine in Tubingen;
this machine can already do addition, subtraction, multiplication and
division, applying the idea of logarithms due to Neper.

Blaise Pascal, lives. He works in geometry, hydrostatics and probability
theory; he also constructs a machine which can add in 1652.

The famous scholarly family Bernoulli produces eight professors of math-
ematics, physics and other scientific disciplines.

Christian Huygens lives; he is the founder of wave optics, the inventor of
the pendulum clock and uses continued fractions.

Baruch Spinoza, philosopher, lives. For him, God and nature are a united
entity; he does not believe in free will.

Establishment of the Academic Frangaise in Paris.

Harvard University in Boston is founded; this is the oldest university in
the United States.

Mathematics in the age of enlightenment

Isaac Newton, he creator of modern physics (mechanics) and mathematics
(calculus), lives. Newton's life marks an abrupt change in the intellectual
development of civilization.

In 1676 he communicates to Leibniz (in encoded form) his discovery of
the basics of calculus.

In 1687 his main work Philosophiae naturalis principle, mathematica
appears.

The English revolution.

Gottfried Wilhelm Leibniz, philosopher and universal scholar, lives. He
is the co-founder of calculus, as well as the inventor of the convenient
formal rules for expressing its laws.

In 1674 he gives the construction of a calculating machine in commis-
sion, based on his invention of stacked cylinders. This calculating machine
can also do addition, subtraction, multiplication and division.

In 1677 he writes to Newton, explaining to him his Calculo differentiali.
In 1682 he founds the Ada Eruditorim (Scholarly journal) in Leipzig,

and publishes in 1684 in it his first seminal paper Nova methodus ...
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(the title in English: A new method for maxima and minima as well
as for tangents, which is not impinged upon by rational and irrational
quantities, and a specific way of calculating them.)

Leibniz is the first to realize the importance of well-designed symbols
and notations for progress in mathematics (equality sign, multiplication
point, division colon (still in use in Europe today), use of indices, symbols
for differentiation and integration, functions, determinants.)

In 1700 he founds the Berlin Akademie and becomes its first president.
Leibniz teaches that the world consists of spiritual units, which he

calls monads. This philosophical point of view influences his work in the
development of calculus. For him the existing world is the best of all
thinkable worlds. His main works in philosophy are Theodizee (1710) and
Monadologie (1714).

The founding of the Deutsche Akademie der Naturforscher Leopoldina
in Halle (the oldest continually active such scientific academy); following
this also the Royal Society in London is established in 1663, the Academie
des sciences in Paris in 1666, the Berliner Akademie in 1700 and the
Petersburg Academy in 1725.

Jakob Bernoulli works on calculus and probability theory.
In 1713, eight years after his death, his work Ars Conjectandi (The way

of mathematical conclusion) appears, in this book the first limit theorem
of probability theory is laid down; this is the Jakob Bernoulli law of large
numbers.

Robert Hooke (1635-1703) discovers under the microscope the existence
of cells in plants.

Johann Bernoulli makes contributions to calculus.
In 1691 his work Lectiones mathematicae de methodo integralium ap-

pears; this is the first text book on calculus.
In 1697 he appeals in the Acta Eruditorum to the mathematicians of

his time to find a solution of the Brachystochrons problem; this sparks
the development of the calculus of variations.

Brook Taylor, the inventor of the Taylor series, produces a basic tool in
the investigation of the local properties of functions.

Johann Sebastian Bach works as composer and organist in the Thomas
church in Leipzig.

Frangois-Marie Voltaire, philosopher and one of the main proponents of
the enlightenment, lives.

Leonhard Euler, the most productive mathematician of all times, lives.
His collected works fill 72 volumes. He works on all areas of mathematics,
applications to hydrodynamics and to elasticity.

In 1744 his work Methodus inveniendi lineas curvas maximi minive
proprietate gaudentes, sive solution problematis isoperimetrici latissimo
sensu accepti appears, in which he develops the calculus of variations
systematically.

Immanuel Kant, philosopher and natural scientist, lives. He is the author
of Kritik der reinen Vernunft (Critique on pure reason), which appears
in 1781. He differentiates between a- priori notions, which are intrinsic to
human nature, and a-posteriori notions, which humans acquire through
experience.



1188 Sketch of the history of mathematics

1735

1736-1813

1738

1738

1749-1832

1749-1827

1756-1791

1759-1805

1764

1769-1821

1770-1827

1776

1777-1855

Karl von Linne (1707-1778) publishes his Systema naturae (Systems of
nature), on which the modern classification of the plant and animal king-
dom is based.

Joseph Louis Lagrange, who completes the building of Newtonian me-
chanics with his analytic mechanics, lives. He also wrote several funda-
mental works on celestial mechanics, algebra and number theory.

In 1762 he founds the calculus of variations of several variables, which is
a basic up through modern times in formulating the basic laws of physics.

In 1788 he publishes his Mechanique analytique, on which the calculus
of variations is based.

Daniel Bernoulli's (1700-1782) thesis Hydrodynamica sive de viribus et
motibus fluidorom appears.

The Italian city of Herculeanum, which was destroyed by the eruption of
Mount Vesuv in 79 AD, is discovered and excavated.

Johann Wolfgang von Goethe, poet, writer, painter and natural scientist,
lives.

Pierre Simon Laplace, physicist and mathematician, lives. He makes
important contributions to celestial mechanics, capillary theory as well
as to probability theory.

In 1799-1825 his publishes his five- volume Mecanique celeste (Celestial
mechanics).

In 1812, his work Theorie analytique des probabilite (Analytic theory of
probability) appears, which is the first systematic presentation of proba-
bility theory.

Wolfgang Amadeus Mozart, child prodigy and one of the most famous
composers of all times, lives.

Priedrich Schiller, poet and historian, lives.

Johann Winckelmann (1717-1768) founds with his Geschichte der Kunst
des Altertums (History of the Art of Ancient Times) the scientific inves-
tigation of ancient civilizations (archaeology).

Napoleon Bonaparte lives; he influenced in a profound way the following
development of Europe.

In 1798-1799 scientists and artists accompany him at his invitation to
an expedition to Egypt. Among these is Vivant Denon, who draws many
of the Egyptian art treasures and in 1809-1813 publishes his 24-volume
opus Description de I'Egypte (Description of Egypt).

Ludwig van Beethoven, perhaps the most famous composer of all times,
lives.

American Declaration of Independence.

Karl Friedrich Gauss, the princeps mathematicorum (prince of mathe-
maticians, which is engraved on a current coin), lives. He makes fun-
damental contributions to all areas of pure and applied mathematics,
conducts important astronomical observations, works in geodesy, on ex-
plaining electromagnetic phenomena, and influences all of mathematics
and physics of the twentieth century.
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In 1796 he discovers in the context of the theory of cyclotomic fields
which he has developed, that the 17-gon can be constructed with ruler
and compass. At the same time he characterizes all regular polygons
which can be constructed in this way. He thus solved a problem which
had been open for 2000 years.

In 1799 he gives the first complete proof of the fundamental theorem
of algebra in his dissertation.

In 1801 his Disquisitiones arithmetical (Foundations of modern number
theory) appears. In particular he proves the law of quadratic reciprocity
and develops the theory of cyclotomic fields.

In 1807 he becomes professor in Gottingen.
In 1809 he publishes the book Theoria motus corporum coelestium

(Theory of the motion of the planets), in which his methods break new
ground in astronomy.

In 1827 he founds differential geometry with the appearance of his
thesis Disquisitiones generates circa superficies curvas (General investi-
gations on curved surfaces).

In 1839 he publishes his work on potential theory Allgemeine Lehrsatze
fur die im verkehrten Verhaltnis des Quadrates der Entfernung wirkenden
Anziehungs- und Abstossungskrafte (General theorems about the forces
of attraction and repelling which depend on the square of the inverse of
the distance).

In 1844/1847 his monographs Untersuchungen iiber Gegenstdnde der
hoheren Geodasie (Investigations on the objects of advanced geodesy)
appear.

The French Revolution takes place.

Augustin-Louis Cauchy, one of the most productive mathematicians of
all times, publishing seven books and 800 papers, makes fundamental
contributions to real and complex analysis, as well as to elasticity theory.

In 1821, his book Cours d'anlyse de I'ecole polytechnique (Course of
analysis of the polytechnical University in Paris) appears. Cauchy tries
to provide a rigorous foundation for analysis; the modern notion of limit
is due to him.

Michael Faraday provides the experimental evidence for Maxwell's the-
ory of electromagnetism. He causes a revolution in physics by breaking
with Newton's idea of force acting at distances and introduces the notion
of field (forces acting locally). The notion of field is basic for modern
physical theories.

In 1831 he discovers electromagnetic induction and develops the idea
of the existence of an electromagnetic field.

The Jacobian government establishes the Ecole Polytechnique in Paris,
which quickly develops to a center of mathematics and natural sciences.
Among others, Lagrange, Laplace, Monge, Cauchy, Poncelet, Ampere,
Gay-Lussac, Fresnel, Dulong and Petit are professors at this institution.

Gaspard Monge (1746-1818) publishes his work Geometric descriptive
and makes his favorite area, representative geometry, a full-fledged math-
ematical discipline.
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Mathematics in the nineteenth century

In order to win a bet, Georg Friedrich Grotefend (1775-1853) manages
to decipher the Cuneiform writing of the Assyrians and Babylonians, and
opens the door to understanding these ancient cultures.

Carl Gustav Jacob Jacobi lives; he makes significant contributions to
the theory of elliptic functions (theta functions), the calculus of varia-
tions, number theory (the law of reciprocity for cubic rests), the theory
of quadratic forms and determinants as well as to the algebraic theory of
elimination and celestial mechanics.

William Rowan Hamilton, the creator of Hamiltonian mechanics, lives.
In 1843 he discovers the quaternions and introduces vectors.

Peter Gustav Lejeune Dirichlet, the creator of analytic number theory,
lives. Among his many students are the great mathematicians Eisen-
stein, Kronecker, Kummer and Riemann. In 1855 he succeeds Gauss in
Gottingen.

Karl Weierstrass, who dedicates his life to making complex analysis rig-
orous, lives. Motivated by the Jacobian inversion problem, he makes
significant contributions to the theory of elliptic functions and Abelian
integrals, to algebra (the theory of elementary divisors for matrices) and
to the calculus of variations (sufficient conditions for the existence of
minima), as well as providing rigorous foundations in analysis.

In 1864 he becomes professor at the Berlin University. In his lectures
there he gathers a large, gifted group of students, putting particular em-
phasis on mathematical rigor, which is therefore sometimes also referred
to as Weierstrass rigor.

Bernhard Bolzano (1781-1848), a Czechoslovakian pastor, also attempts
to give rigorous foundations to analysis and provides in a long manuscript
what in those days was a rigorous proof of the means value theorem
for continuous functions (mean value theorem of Bolzano). This mean
value theorem is later, in the twentieth century, extended to a fundamen-
tal topological existence principle (fixed point theorem of Brouwer and
Schauder; notion of degree of a mapping).

Pafnuti Lvovitsch Chebychev, who gave fundamental contributions to
probability theory, number theory and approximation theory, lives. He
exerts great influence on the development of the Russian school of math-
ematics.

Jean-Frangois Champoillon (1790-1832) deciphers the Egyptian hiero-
glyphs, after he had learned more than a dozen languages as preparation
for this attempt.

Jean-Victor Poncelet (1788-1867) founds the discipline of projective ge-
ometry with his book Traite des proprietes projectives des figures.

The book Theorie anlaytique de la chaleur (Analytic theory of heat)
by Jean Baptiste Joseph de Fourier (1768-1830) appears. In this text,
Fourier series and Fourier integrals are developed systematically for the
solution of partial differential equations.

Niels Henrik Abel (1802-1829) proves that the general equation of de-
gree > 5 is not solvable by means of radicals. He also makes significant
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contributions to the theory of algebraic functions, of which the Abelian
functions and Abelian integrals (as well as Abelian groups) are named
after him.

Georg Friedrich Bernhard Riemann, one of the dominating mathemati-
cians of the century, lives. He makes fundamental contributions to
complex functions theory, differential geometry (Riemannian geometry),
number theory (the famous Riemann hypothesis), topology (Riemannian
surfaces) as well as to mathematical physics (for example gas dynamics).
Riemann has influence much of the mathematics of the twentieth century
with his idea of the Riemannian surface. He is among the most ingenious
mathematicians of all times.

In 1851 he founds with his dissertation geometric number theory, cen-
tered around conformal mappings.

In 1854 he holds his famous Habilitations lecture Uber die Hypothese,
welche der Geometric zu Grunde liegen (On the hypothesis on which
geometry is based). In this lecture he develops a far-reaching program
to describe the geometry of higher-dimensional curved spaces. On his
way home he was accompanied by the very elderly Gauss, who was very
impressed. These ideas of Riemann were decisive in the years 1907 to
1915 for Einstein in the formulation of his theory of general relativity.

In 1859, Riemann becomes Dirichlet's successor in Gottingen.
In that year, he also studies the C-function in connection with the

distribution of prime numbers and formulates the Riemann hypothesis on
the distribution of zeros of that function.

Nikolai Ivanovitch Lobatchevski (1793-1856) proves the existence of a
hyperbolic non-Euclidean geometry. An independent proof of this fact is
given in 1832 by Janos Bolyai (1802-1860).

Evariste Galois (1811-1832) develops a general theory on the solution of
equations, based on the theory of Galois groups. This makes him the
founding father of modern structural theory.

James Clerk Maxwell, who makes fundamental contributions to the the-
ory of electrodynamics and kinetic gas theory, lives.

In 1864 he formulates the basic equations for all electromagnetic phe-
nomena, known as the Maxwell equations.

Robert Meyer (1814-1878), a doctor in Heilbronn (Germany), publishes
the law of conservation of energy, which he had discovered.

Sophus Lie, the creator of the theory of continuous groups (Lie groups
and Lie algebras), lives. With this theory he provides physics with a
fundamental instrument to describe symmetries which occur in nature in
a mathematically precise manner.

Joseph Liouville (1809-1882) gives a constructive proof of the existence
of transcendental numbers.

Hermann Grassmann's (1809-1877) book Lineare Ausdehnungstheorie
(Theory of linear extensions) appears. This work contains much of the
modern theory of linear and multilinear algebra, but is not understood
by his contemporaries. Grassmann algebras are the algebraic core of the
modern supersymmetric theories in the physics of elementary particles.
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Ludwig Boltzmann, the creator of statistical physics, lives. He realized
that both entropy and the second fundamental theorem of thermodynam-
ics have a statistical character.

Georg Cantor creates with his set theory a new way of thinking and a
new language in mathematics, which has allowed the mathematicians of
the twentieth century to formulate abstract and deep ideas in a compact
way.

In 1874 he publishes his first work on set theory and gives a non-
constructive, purely set-theoretic proof of the existence of transcendental
numbers with the help of a countability argument.

Austen Layard (1817-1894) excavates the Assyrian-Babylonian site
Ninive.

Ernst Eduard Kummer (1810-1893) develops a theory of divisibility, using
ideal numbers, and proves some special cases of Fermat's last theorem
with these methods.

In 1855 he becomes the successor of Dirichlet in Berlin.

George Boole (1815-1869) publishes his book The Mathematical Analysis
of Logic and shows that one can do calculations not only with numbers,
but also with sets (Boolean algebras). This paves the way for modern
logic and computer science.

Felix Klein, one of the leading mathematicians in Germany in the second
half of the nineteenth century, lives. He makes contributions to geometry,
algebra (icosahedral group and equations of fifth degree), to complex
function theory, and is practically the creator - in collaboration and in
competition with Henri Poincare - of the theory of automorphic functions.
He reforms the form of mathematical instruction, both at the university
as well as in schools in Germany, and wrote one of the most influential
histories of mathematics of the nineteenth century.

In 1872 he formulates his Erlanger Programm, which expresses his view
that geometry is essentially the invariant theory of symmetry groups of
the space in question. This makes it possible to study different phenom-
ena from a unified point of view.

Henri Poincare, an extremely versatile and creative mathematician and
mathematical physicist, lives. His contributions to complex function the-
ory, to celestial mechanics, to partial differential equations, to number
theory, to topology as well as to philosophical questions have influenced
modern mathematic perhaps more than any those of any other math-
ematician of the nineteenth century. He is the creator of the theory of
dynamical systems and algebraic topology. He is thus the founding father
of the mathematics of qualitative behavior.

Max Planck, who revolutionized physics by creating quantum theory,
lives. He also makes fundamental contributions to thermodynamics.

Charles Darwin (1809-1882) publishes his seminal book On the Origin of
Species by Means of Natural Selection.

David Hilbert, considered by many to be the last living mathematician
familiar with all disciplines in mathematics, lives. His tremendously
decisive contributions include the areas of algebra, analysis, geometry,
foundations of mathematics, mathematical physics, number theory and
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philosophical aspects. He is the creator of the modern axiomatic method
in mathematics.

In 1895 he goes to Gottingen and continues the tradition of Gauss and
Riemann there.

Hermann Minkowski, the creator of the theory of geometry of numbers
and the theory of convex bodies, lives. He also derived the geometriza-
tion of Einstein's theory of general relativity. His notion of convexity is
fundamental in the modern theory of optimization, which arose between
1950 and 1960.

Elie Cartan, the creator of modern differential geometry with it emphasis
on differential forms and symmetries by Lie groups, lives. His ideas on
forming a theory of curvature in terms of principal fiber bundles is applied
today in modern gauge theories in the physics of elementary particles.

Dmitri Ivanovitch Mendeleyev (1834-1907) is the first to describe the
modern periodic system of elements in chemistry.

Albert Einstein, one of the greatest geniuses of human kind, lives. He
revolutionizes with his theory of relativity the understanding of space and
time, and realizes that matter and energy are equivalent. This relation
is the basis for the production of energy in stars by means of fusion.

Heinrich Schliemann (1822-1890) believes that the Hias and the Odyssey
by Homer are not just legends, and sets out to find Troy; he succeeds
after extensive excavations.

Richard Dedekind (1831-1916) publishes his theory of ideals.
In 1872 his book Stetigkeit und irrationale Zahlen (Continuity and ir-

rational numbers) appears. This book provides, for the first time, a
completely rigorous construction of the real numbers, providing a sound
foundation for analysis.

Charles Hermite (1822-1901) proves the transcendence of the Euler num-
ber e.

William Clifford (1845-1879) introduces certain algebras, which in mod-
ern times are referred to as Clifford algebras, which are essential in
giving a mathematical description of fermions (elementary particles with
half- integer spin).

Ferdinand Lindemann (1852-1939) proves the transcendence of the num-
ber IT and demonstrates as a by-product that the problem of the quadra-
ture of the circle, which had been open for over 2000 years, has no solu-
tion. Lindemann is Hilbert's teacher.

Leopold Kronecker (1823-1891) publishes his thesis on the foundations
of the theory of algebraic numbers and paves the way for the subsequent
elegant theory of Hilbert describing class field theory.

Hermann Weyl, one of the most important mathematicians in the tran-
sition to modern mathematics, lives. He makes fundamental contribu-
tions to the theory of Riemann surfaces, the representation theory of Lie
groups, invariant theory, spectral theory, differential geometry, the gen-
eral theory of relativity and quantum theory. He is the founding father of
modern harmonic analysis, and also made in-depth studies of philosoph-
ical questions.
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David Hilbert founds the Deutsche Mathematiker Vereinigung (union of
German mathematicians) .

Jacques Hadamard (1865-1963) and Charles de la Vallee-Poussin (1866-
1962) give independently proofs of the famous theorem on the distribution
of prime numbers. This law had been discovered more than 100 years
earlier by Gauss and Legendre through empirical studies, but had long
resisted all attempts at proof.

The first International Congress of Mathematicians takes place in Zurich;
since 1900 these congresses take place every four years, with the exception
years of the second world war.

Marie Sklodovska-Curie (1867-1934) and Pierre Curie (1859-1906) dis-
cover the first radioactive elements Polonium and Radium.

Hilbert's book Grundlagen der Geometrie (Foundations of Geometry)
appears. This book introduces the modern axiomatic approach to math-
ematics, and is after 2000 years an advancement over Euclid's Elements.

Robert Koldewey (1855-1925) begins the excavation of Babylon.

Mathematics in the twentieth century

Planck makes the hypothesis that there is a smallest unit of energy and
that the energy of the harmonic oscillator is quantized. From this he
obtains the correct laws for radiation from stars. This is the moment of
birth of a completely new kind of physics - quantum physics is born.

Hilbert proves the Dirichlet principle and thus founds the development
line of direct methods in the calculus of variations.

Hilbert formulates his famous 23 problems at the International Congress
of Mathematicians in Paris, which are to influence the development of all
disciplines in mathematics throughout the twentieth century.

Janos (John) von Neumann, the most important and influential applied
mathematician of the twentieth century, lives. He makes fundamental
contributions to game theory, mathematical economics, mathematical
foundations of quantum physics, spectral theory and the theory of op-
erator algebras, ergodic theory, numerical analysis and computer science.
He also makes important discoveries in pure mathematics, in the founda-
tions of set theory, the solution of the fifth Hilbert problem for compact
Lie groups, the theory of almost periodic functions on groups and in the
theory of locally convex spaces and functional analysis.

Hilbert begins with the publication of his general theory of integral equa-
tions, based on work of Fredholm (1866-1927) from 1900, and lays the
foundations for functional analysis.

Einstein publishes three fundamental papers on the electrodynamic of
mqying bodies (the special theory of relativity) , on Brownian motion (the
basis for the theory of stochastic processes) and on the photon theory of
light (the basis for the ensuing theory of quantum electrodynamics).

Henri Poincare (1854-1912) and Paul Koebe (1882-1945) prove inde-
pendently the uniformization theorem for Riemann surfaces, which com-
pletely determines the structure theory for Riemann surfaces.
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Minkowski shows that space and time form a geometric unit (this is the
geometrization of Einstein's special theory of relativity).

Bertrand Russel (1872-1970) and Alfred Whitehead (1861-1947) publish
the Principia Mathematica. The monumental, three volume opus con-
tains
a completely rigorous development of formal logic and much of the then
known mathematics.

Niels Bohr (1885-1962) develops his model of the atom, which describes
the spectrum of hydrogen.

Hermann Weyl's book Die Idee der Riemannischen Fldche (The notion of
a Riemann surface) appears. In this book, the ingenious ideas of Riemann
are mixed with modern theory.

The First World War destroys much of Europe.

Einstein publishes the basic equations of the general theory of relativity
and provides the mathematical and physical foundation for modern cos-
mology. The gravitational force of Newton is replaced by the curvature
of space and time.

Hermann Weyl's book Raum, Zeit, Materie (Space, time, matter) ap-
pears.

Howard Carter (1873-1939) discovers in the Valley of the Kings the to-
tally preserved grave of Tut-Ench-Amun (from ca. 1340 BC).

Norbert Wiener (1894-1964) publishes a paper on Brownian motion and
lays the foundations for a mathematically rigorous theory of stochastic
processes.

Werner Heisenberg (1901-1976) creates the mathematical basis for quan-
tum mechanics by using the commutation relations of infinite matrices.

Erwin Schrodinger (1887-1961) publishes the Schrodinger equation for
calculating quantum processes in the context of wave mechanics, which
is in turn soon shown to be equivalent (via the theory of abstract Hilbert
spaces) to Heisenberg's theory.

Max Born (1882-1970) formulates the statistical interpretation of the
Schrodinger wave mechanics.

John von Neumann lays the foundations for game theory with his disser-
tation.

Heisenberg discovers the uncertainty principle in quantum mechanics; as
opposed to classical mechanics, the position and velocity of a particle
cannot both be determined with certainty. This leads to deep changes in
the way of thinking in physics.

Paul Dirac (1902-1984) derives the basic equation for the relativistic elec-
tron (the Dirac equation). He uses the Clifford algebras for this descrip-
tion, and predicts the existence of a positron, which is then discovered in
1932 by Anderson in cosmic radiation. This was the first discovery of an
anti-particle.

Edwin Hubble (1889-1953) discovers the Hubble effect, the red-shift of
light from far galaxies, which is caused by the expansion of the universe
following the big bang.
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Kurt Godel (1906-1978) proves the completeness of predicate logic of the
first class.

Hermann Weyl becomes Hilbert's successor in Gottingen.

The Institute for Advanced Studies in Princeton (New Jersey, USA) is
established as an independent research institute.

Kurt Godel discovers the existence of non-decidable problems in mathe-
matical theories.

John von Neumann's monograph Mathematische Grundlagen der Quan-
tenmechanik (Mathematical Foundations of Quantum Mechanics) ap-
pears.

Andrei Nikolaievich Kolmogorov (1903-1987) publishes his book Foun-
dations of probability theory. With this document, the axiomatic method
is introduced into probability theory.

Emigration of Emmy Noether (1882-1935), Paul Bernays (1888-1977),
Otto Blumenthal (1876-1944), Max Born (1882-1970), Richard Courant
(1888-1972), Albert Einstein (1879-1955), Hermann Weyl (1885-1955)
and many other scientists from fascist Germany.

The famous number theoretician Edmund Landau (1877-1938) and the
recipient of the Nobel Award for Physics, James Franck (1882-1964) are
removed from their positions in Gottingen.

Albert Einstein, John von Neumann and Herrmann Weyl move to the
newly founded Institute of Advanced Studies in Princeton and establish
the reputation of the institute.

Richard Courant founds the Department of Mathematics at the Graduate
School of Arts and Sciences at the New York University (now famous as
the Courant Institute).

Alan Turing (1912-1954) establishes the modern theory of robotics and
algorithms through the introduction of a theoretical, universally applica-
ble machine, which is today known as a Turing machine.

Konrad Zuse (1910-1995) builds the first mechanical computer Zl.

Otto Hahn (1879-1968) and Fritz Strassmann (1902-1980) discover fis-
sion of uranium. An important contribution to this work was done by
Lise Meitner (1878-1986). This physical process is the basis for the con-
struction of the atomic bomb a few years later.

World War II brings infinite suffering to millions around the world.

Robert Oppenheimer (1904-1967) becomes the director of the Manhattan
project in Los Alamos (New Mexico, USA), and gathers the most brilliant
scientist around him to work on the construction of the atomic bomb.

The mathematical Research Institute in Oberwolfach (Black Forest) is
established.

John von Neumann and Oscar Morgenstern publish the book Theory of
Games and Economical Behaviour.

Two atomic bombs are dropped by US forces on the Japanese cities Hi-
roshima and Nagasaki.

ENIAC - the first computer with computational power - is constructed.
The predecessor MANIAC is used in the construction of the bomb.
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1946-1949

1948

1948

1948

1950-1960

1950-1960

1956

1957

1961

1962

1963

1963

Richard Feynman (1918-1988), Julian Schwinger (born 1918) and Sin-
Itiro Tomonaga (1906-1979) lay independently of one another with dif-
ferent methods the foundations of quantum electrodynamics. Together
they receive in 1965 the Nobel Award for Physics.

Norbert Wiener publishes his book Cybernetics, which is the moment of
birth of computer science.

Claude Shannon (born 1916) establishes information theory.

John Bardeen (born 1908), Walter Brattain (born 1902) and William
Shockley (born 1910) develop in Bell Laboratories the transistor, which
is based on the quantum mechanics of solid bodies. In 1956 they receive
the Nobel award in Physics for this work. The transistor leads to a
technical revolution.

Pure mathematics breaks new ground through the introduction of ab-
stract theories like sheaf theory, fiber bundles, homological algebra and
cohomology theory.

In applied mathematics the theory of optimization including the theory
of optimal processes is born. The theory of partial differential equations
and dynamical systems are intensively developed (for example through
the KAM theory of Andrei Kolmogorov (1903-1987), Vladimir Arnol'd
(born 1937) and Jiirgen Moser (born 1928)).

Tsung Dao Lee (born 1926) and Chen Ning Yang (born 1922) propose the
theory that there is a fundamental asymmetry in the world of elementary
particles: in processes with the weak force, one of the three fundamental
symmetries (reflection) is broken. Both physicists get the Nobel Award
for Physics one year later for this work.

The Sputnik orbits as first unmanned satellite the earth, and shocks the
western world by showing how advanced Soviet technology is.

Yuri Gagarin is the first human to orbit the earth in outer space.

Francis Crick (born 1916) and James Watson (born 1928) receive the
Nobel Award in Biology for the description of the helix model of DNA
(Deoxyribonucleic acid). The twisted double helix structure is of funda-
mental importance for the inheritance of genetic information.

Paul Cohen (born 1934) proves the independence of the continuum hy-
pothesis from the other axioms of set theory. This has the remarkable
epistemological consequence that the structuring of infinity, which had
been ingeniously described by Cantor at the end of the nineteenth cen-
tury, is not unique, and there are more than one way to do this all of
which are free of contradictions.

The proof of the Atiyah-Singer index theorem by Michael Atiyah (born
1929) and Isadore Singer (born 1924) is published. This theorem, which
combines analysis and topology in a unique and far-reaching way is the
crowning completion of a long and fruitful line of development in
mathematics, and belongs to the most profound results of this century.
The index theorem is a far-reaching generalization of the deep theorem
of Riemann-Roch-Hirzebruch, which was proved by Friedrich Hirzebruch
(born 1927) in 1953.
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1964

1965

1969

1970-1980

1979

1980

1983

1994

1994

1995

Murray Gell-Mann (born 1929) proposes the theory that protons are
not elementary particles, but rather are composed of quarks; for this
he receives the Nobel Award for Physics in 1969. The mathematical
background for this theory is based on the interpretation of experimental
data with the help of the Lie group Sf7(3) and its Lie algebra.

Arnold Penzias (born 1933) and Robert Wilson (born 1936) discover the
background microwave radiation, a remnant of the big bang; they receive
the Nobel Award in Physics in 1978 for this discovery.

Neil Armstrong (born 1930) is the first man to walk on the moon on July
20 of this year.

The widespread use of the finite elements method revolutionizes numerical
analysis.

Abdus Salam (born 1926), Sheldon Glashow (born 1932) and Steven
Weinberg (born 1933) receive the Nobel Award for Physics for their work
on the standard model, uniting electromagnetism and the weak force in
the context of a gauge field theory. The bosons which this theory predicts
and are responsible for the weak force according to the theory (the Z bo-
son and the W^ bosons) are identified in experiments at the accelerator
at CERN near Geneva in 1983.

The standard model, which is today universally accepted, uses a gauge
field theory with 6 quarks and 6 leptons (for example electron and neu-
trino) as basic building blocks. The interactions are described by 12
particles (8 gluons, the photon, the Z boson and the W^ bosons).

Personal computers start conquering the world and revolutionize mathe-
matics which, like physics, gains a branch devoted to experiments.

Gerd Faltings (born 1954) proves the Mordell conjecture for Diophantine
equations over number fields (rational points on algebraic curves).

Andrew Wiles (born 1953) proves Fermat's last theorem in a tour de force
using incredibly abstract and new mathematics.

The sixth quark, which had long been searched for, was discovered in an
experiment in the accelerator at Fermi lab near Chicago.

The Hubble telescope, based in orbit around the earth, sends sharp pho-
tographs of the birth and death of stars and verifies in this way the pre-
dictions of astrophysicist, which are based on mathematical and physical
theories.
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1936

1950

1954

1958

1962

1966

1970

The recipients of the Fields Medal

In the twentieth century many deep and interesting, as well as remarkable
results have been obtained. To give a sketch of these, we list the winners of
the Fields Medal, the highest award for mathematicians; it is awarded every
four years at the International Congress of Mathematicians who are under 40,
and is comparable for mathematicians to the Nobel Awards for physicists and
other scientists.

Lars Ahlfors (born 1907) (analysis; function theory and quasiconformal map-
pings);

Jesse Douglas (1897-1965) (analysis; proof of existence of minimal surfaces).

Laurent Schwartz (born 1915) (analysis; theory of distributions - differential
calculus and Fourier transformations for generalized functions);

Atle Selberg (born 1917) (number theory; elementary proof of the theorem on
the distribution of prime numbers).

Kunihiko Kodaira (born 1915) (analysis and differential geometry; harmonic
integrals on manifolds and algebraic geometry; generalization of Riemann's
ideas for algebraic functions and algebraic integrals);

Jean-Pierre Serre (born 1926) (algebra and topology; fiber bundles; proof of
the finiteness of homotopy groups of spheres (up to trivial exceptions)).

Klaus Roth (born 1925) (number theory; solution of the old problem on the
approximation of algebraic numbers by rationals);

Rene Thorn (born 1923) (differential topology; construction of cobordism the-
ory as a tool in understanding deep structural properties of manifolds).

Lars Hormander (born 1931) (analysis; general theory of linear partial differ-
ential equations with constant coefficients);

John Milnor (born 1931) (topology; discovery of exotic spheres, which show
that the topological structure and differential structure of manifolds need not
coincide).

Michael Atiyah (born 1929) (topology, differential geometry and partial differ-
ential equations; K-theory to describe deep structural properties of manifolds
through the set of vector bundles which live on them; Atiyah-Singer index
theorem) ;

Paul Cohen (born 1934) (foundations of mathematics; proof of the indepen-
dence of the axiom of choice and the continuum hypothesis from the other
axioms of set theory) ;

Alexander Grothendieck (born 1928) (analysis - theory of nuclear spaces; alge-
braic geometry - revolution of this mathematical discipline with the powerful
apparatus of schemes);

Stephen Smale (born 1930) (topology and analysis; deep structural work in
dynamical systems and their chaotic behavior).

Alan Baker (born 1939) (number theory; theory of transcendental numbers);

Heisuke Hironaka (born 1931) (algebraic geometry; proof of the resolution of
singularities);

Sergei Novikov (born 1938) (topology; important contributions to homology
and homotopy theory);
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1974

1978

1982

1986

1990

John Thompson (born 1932) (algebra; important contributions to group
theory).

Enrico Bombieri (born 1940) (analytic number theory and geometry of num-
bers; algebraic surfaces);

David Mumford (born 1937) (algebraic geometry; structure of Abelian vari-
eties, which are broad generalizations of elliptic curves and have developed
historically from the theory of Abelian integrals) .

Pierre Deligne (born 1944) (algebraic geometry; proof of the (generalized)
Riemann hypothesis for algebraic varieties over finite fields, as conjectured by
Andre Weil);

Charles Fefferman (born 1949) (analysis; behavior of higher-dimensional
Fourier series and singular integral operators; function theory of several com-
plex variables);

Grigori Margulis (born 1946) (differential geometry; structure of discrete sub-
groups F of Lie groups G for which the volume G/T is finite);

Daniel Quillen (born 1940) (algebra and topology; cohomology of groups; proof
of the Serre conjecture that projective modules over a polynomial ring with
coefficients in a field are free, i.e., these modules have the structure of linear
spaces).

Alain Cannes (born 1947) (functional analysis; structure of von Neumann
algebras of type III);

Shing Tung Yau (born 1949) (global analysis; differential equations on mani-
folds and general relativity; proof the theorem on the existence of a positive
gravitational energy5 and the proof of the Calabi conjecture for Kahler mani-
folds);

William Thurston (born 1946) (topology; structure of three-dimensional man-
ifolds in connection with hyperbolic geometry).

Simon Donaldson (born 1957) (global analysis and topology; the Yang-Mills
equations, which come from gauge theory in theoretical physics, are used to
get new insights into the smooth (differentiable) structure of four- manifolds);

Gerd Fallings (born 1954) (algebraic geometry and number theory; proof of
the Mordell conjecture for Diophantine equations);

Michael Freedman (born 1951) (topology; proof of the Poincare conjecture
in dimension four: the four dimensional sphere is the only compact four-
dimensional (topological) manifold whose homology coincides with the ho-
mology of the sphere; counterexample to the main conjecture in combinatorial
topology via construction of homeomorphic four- manifolds which do not posses
equivalent triangulations) .

Vladimir Drinfeld (born 1954) (algebraic geometry; applications to solutions
of Yang-Mills equations (instantons) ; quantum groups; proof of the Langlands
conjecture on Galois groups);

Vaughan Jones (born 1955) (functional analysis and topology; relation between
von Neumann algebras and knot theory; applications to statistical physics
(Yang-Baxter equations));

5 This theorem, which is physically evident but mathematically difficult, says that the energy of
gravitation of interacting matter in the general theory of relativity is always positive.
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Shigefumi Mori (born 1951) (algebraic geometry; classification of three-
dimensional algebraic varieties and proof of the minimal model conjecture in
that dimension);

Edward Witten (born 1951) (ingenious combination of methods of quantum
field theory (Feynman integral) and topology, differential geometry and alge-
braic geometry; actually a physicist, Witten has led to new deep insights in
several branches of mathematics, for example the formal similarity between
supersymmetry and Morse theory; the relations between quantum field theory
and knot theory; proof of the theorem on positive gravitational energy with the
help of the Dirac equation; the Seiberg- Witten theory, conceived by Witten
and Nathan Seiberg (both physicists) in 1994 has led to a remarkable simpli-
fication of Donaldson theory for four-manifolds, by replacing the Yang-Mills
equations by a physically dual set of equations, Dirac equations, which have a
much simpler structure and lead to an easier and more complete analysis).

1994 Jean Bourgain (born 1954) (analysis; non-linear differential equations of math-
ematical physics; geometry of Banach spaces; ergodic theory; harmonic analy-
sis; analytic number theory);

Pierre-Louis Lions (born 1956) (analysis and applied mathematics; new meth-
ods for solving non-linear partial differential equations; the viscosity method
for the Hamilton- Jacobi equation and the Bellman equation in control theory;
the method of concentration of energy; solution of the Hartree-Fock equation
for treatment of atoms with many electrons; solution of the Boltzmann equa-
tion for gases with interacting particles; compressible liquids; construction of
sharp computer images with the help of the anisotropic diffusion equation);

Jean-Christophe Yoccoz (born 1956) (analysis; stability of dynamical systems;
the combination of extensive computer animations together with deep theo-
retical investigations);

Efim Selmanov (born 1955) (algebra; Lie algebras, Jordan algebras and the
structure of finite groups).

1998 Richard Borcherds (born 1959) (algebra and geometry, proof of the moon-
shine conjecture which represents an unexpected relation between the monster
group (a huge finite group) and elliptic functions, Kac-Moody algebras and
automorphic forms);

Maxim Kontsevich (born 1964) (string theory and quantum field theory, math-
ematical equivalence of two models in quantum gravitation, Poisson structures
and quantum deformations, knot invariants in topology);

William Gowers (born 1963) (sophisticated relations between functional anal-
ysis and combinatorics, development of new techniques for studying sophisti-
cated geometric properties of Banach spaces including the problem of uncondi-
tional bases, construction of a Banach space which has almost no symmetry);

Curtis McMullen (born 1958) (geometry and the structure of chaotic dynamical
systems, effective algorithms for constructing approximations of solutions, non-
existence proof for a universal generalized Newton method, deep structural
result on the relation between hyperbolic dynamics, Julia sets, and Mandelbrot
sets).
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2002

1982

1986

1990

1994

1998

2002

2003

Laurent Lafforgue (born 1966]̂  (sophisticated relations between number the-
ory, analysis, and group representation theory, proof of the global Langlands
correspondence for function fields);

Vladimir Voevodsky (born 1966) (sophisticated relations between number the-
ory and algebraic geometry, construction of a new powerful cohomology theory
called motivic cohomology for algebraic varieties, proof of the Milnor conjec-
ture in algebraic K-theory).

The Nevanlinna Award

Since 1982, the Nevanlinna Award is given for exceptional work in the area of
mathematical methods of computer science.

Robert Tarjan (born 1948) (construction of particularly effective algorithms
for computer calculations).

Leslie Valiant (born 1949) (algebraic complexity theory; effective stochastically
weighted algorithms; artificial intelligence).

Alexander Rasborow (born 1960) (investigations on the complexity of net-
works) .

Am Widgerson (born 1956) (verification of proofs for which details of the proof
are unknown with stochastic criteria; application of this method in computer
networks) .

Peter Shor (born 1959) (theory of quantum computing, coding theory, con-
struction of a very fast algorithm for factorizing large prime numbers on quan-
tum computers).

Madhu Sudan (born 1951) (probabilistically checkable proofs, non-
approximabality of optimization problems, error-correcting codes).

The Abel Prize

This prize was founded by the Norwegian government in 2002; it is called the
Nobel prize in mathematics.

Jean-Pierre Serre (born 1926) (algebra and topology).
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sequence, 247

Cauchy-Riemann differential equations, 536
caustic, 789, 923
celestial mechanics, see physics, celestial me-

chanics
center

of gravity, 368
of inertia, 348
of mass, 348, 768

central extension, 662
Ceres, 43
chain rule, 135, 264, 283, 284, 294

for higher derivatives, 297
several variables, 137

chaos, 687
chaotic motion, 471
character (Dirichlet), 695
characteristic, 430, 469, 471, 503, 513

equation, 626
Euler, 820
of differential equation, 1142
oscillation, 411, 496
system, 524

charge
conjugation, 863
external density, 505
point, 569

Chebychev
inequality, 981, 1001
norm, 1106

polynomial, 1090, 1105
chemical

potential, 492, 988
reaction, 415

chirality, 864
operator, 863

Cholesky decomposition, 1060
chonchoid, 794
Christoffel symbol, 785
circle, 8, 18

circumference of, 708
cone over, 12, 349
great, 736
parameter representation, 803

circulation, 372, 482, 566
cissoid, 809
class, 884

equivalence, 893
group, 721
number, 721

Clebsch formula, 820
Clenshaw algorithm, 1106
Clifford

algebra, 660, 838, 852, 860
of Hilbert space, 865
of Minkowski space, 853, 860

multiplication, 650
norm, 865

closure, 257
of system of differentials, 527

cluster, 1029
analysis, 1030

CORE satellite, 45
code, 687, 713
codimension, 640
coefficient

autocorrelation, 1034
correlation, 983, 985, 1003

collineation, 762, 764, 767, 816
collocation, 1127
combinatorics, 599
commutative

diagram, 890
law, 231, 240, 393, 663, 666

compact, 257
set, 558

comparison test, 378
compatibility condition for PDE, 524
completeness of real numbers, 239
complex

conjugate, 232
derivative, 535
function

differentiable, 535
limit, 535

manifold, 555



complexification convergence 1239

number, 228, 534
conjugate, 229
distance, 534
imaginary part of, 534
polar coordinates of, 230
real part of, 534
root of, 232

plane, 229
closure, 556
Riemannian metric on, 543

complexification, 658
compression process, 473
concavity, 270
conchoid of Nicomedes, 811
conclusion, 874
condition, 1053

Babuska-Brezzi, 1136
entropy, 473, 1148
Lax, 473
Legendre, 928
necessary, 875
sufficient, 875
transversality, 935
von Neumann, 1146

cone, 349, 779
capped, 12
circular, 12
volume of, 324

confidence interval, 78, 982, 1001, 1016
configuration space, 543, 922
conformal

geometry, 559
map, 533, 555, 838, 1191
theory, 662

congruence, 712, 726, 742, 744
axiom, 745

conic section, 23, 631, 754, 767, 802
normal form of, 631

conjecture
Fermat, 827
Goldbach, 696
Mordell, 686, 826, 1198
on prime twins, 696
Poincare, 826
Shimura-Taniyama-Weil, 582, 686, 723,

808, 827
conjugate

complex, 232
point, 928

conjugation
charge, 863
operator, 866

conjunction, 874
connected, 258

arc-wise, 258
set, 558

simply, 258
conservation

form of hyperbolic equations, 1147
law, 431, 432

for gases, 519
of energy, 369, 431, 484, 912, 922, 1191
of mass, 471
of momentum, 913
of phase volume, 922

conserved quantity, 432, 469, 472
in involution, 489

constant
Boltzmann, 509, 694, 987
dielectric, 505, 507, 858
Euler, 3, 5, 210, 594
exponential, 3
gas, 520
gravitational, 43, 370
Lame material, 517
Ludolf (vr), 3
mathematical, 3
Planck, 506

constraint, 930
implicit, 930
integral, 930

construction
of regular polygons, 684
with ruler and compass, 682

contact transformation, 445, 495
continued fraction, 4, 699, 823

convergent, 701
finite, 699
general, 711
infinite, 700
recursion formula for, 700
regular, 701

continuity, 250, 260
component rule for, 261
equation, 371, 482

for electrodynamics, 505
limit criterion for, 250, 261
of composed functions, 251

continuous, 686
Lipschitz, 435

continuum, 904
hypothesis, 904

contravariant coordinates, 356
control, 940, 941

engineering, 394
feedback, 942
theory, 439, 940

convection term (differential equation), 1128
convergence

absolute, 378
Cauchy criterion, 247
in quadratic mean, 388



1240 convergent

linear, 1094
of sequence, 243, 245
order of, 1094
quadratic, 882
ratio test, 378
root test, 379
speed, 1153
subsequence criterion, 248

convergent series, 377
convex, 275

domain, 597
function, 275

convexity
local, 270
of Lagrange function, 928

convolution, 393, 394, 402
of sequences, 403

coordinates
barycentric, 768
Cartesian, 812
contravariant, 356
covariant, 356
curvilinear, 344
cylinder, 345
homogenous, 760
polar, 344
pseudo-Cartesian, 848
spherical, 346
system, 353, 365

correlation
coefficient, 983, 985, 1003

empirical, 81
strong, 985

correspondence, 891
cosecant, 54
cosine, 53

hyperbolic, 63
law, 727

cosmology, 45, 511, 1195
cost table, 967
cotangent, 59

bundle, 489
hyperbolic, 64

covariance, 984
matrix, 1004
of random variables, 1003

covariant
coordinates, 356
tensor, 779

Cramer's rule, 613
criterion

convexity (minimization), 947
for convergence, 701
for diagonizability, 635
for irrationality, 706
of Dirichlet, 387

curve

rank, 614
Routh-Hurwitz, 458
signature - of Jacobi, 630

critical
line, 693
point, 272
set, 819

cube, 10, 14
cubic equation, 619
Cuneiform writing, 1180, 1190
curl, 360, 364
current, 396, 481

flow, 371
mass density, 471

curvature, 769, 770
constant negative, 791
geodesic, 787
local - of graph, 270
mean, 784
of circle, 19
principal, 783
principal - radius, 783
radius, 23, 770
Riemannian - tensor, 786
total, 788

curve, 537
algebraic, 803

class of, 818
degree of, 814
dual, 818
elliptic, 820
function field of, 832
genus of, 819
higher order, 807
irreducible, 815
rational, 816, 820
rational map of, 816
regular point of, 817
resolution of singularities, 819
semistable, 828
singular point of, 817

arc length of, 770
cardioid, 812
Cartesian leaf, 811
Cassini's oval, 812
cissoid, 809
closed, 537
complex projective, 814
conchoid of Nicomedes, 811
cubic versiera of Agnesi, 809, 817, 821
dependency, 1005
elliptic, 577, 804

addition on, 806
group structure, 805

equipotential, 567
homologous, 540



curve

homotopic, 539
Jordan, 537, 538
lemniscate, 812
mass of, 320
normal vector to, 770
Pascal's snail, 812
plane, 770
plane algebraic, 814
quartic, 811
regression, 1005
regular intersection of, 815
singular point of, 773
space, 775
strophoid, 810, 819
tangent, 817

polar equation, 817
tangent of, 770

curve integral, 340, 537
cusp, 801, 817
cycle, 665
cyclic group, 668
cycloid, 796

arc, 916
cyclotomic

equation, 684
field, 599

cylinder, 11, 349
coordinates, 345

cylindrical set, 1043

dampening, 413
effect, 396

Darboux's theorem, 869
de Moivre's theorem, 980
de Rham

cohomology, 306
cohomology group, 638
theorem, 341, 542

deck transformation, 577
decomposition

Cholesky, 1060
LR, 1057
QR, 1068
singular value, 1074

decreasing, 46
Dedekind

eta function 77, 583, 698
fundamental decomposition theorem,

720
recursion formula, 902
section, 239

defect
of numerical solution, 1061

deformation, 361
elastic body, 517

degree, 5

difference 1241

algebraic curve, 814
differential equation, 1100
of differential form, 302
of freedom, 415, 921
of polynomial, 70
precision, 1086

Delian problems, 675, 683, 812
delta distribution, 421
dense, 292
density, 483

exterior force, 519
external charge, 505
force, 483
probability, 981, 1002
specific entropy, 519
specific inner energy, 519
spectral, 1036
total energy, 519

dependency of functions, 287
derivative

chain rule for higher, 297
directional, 292, 360
equations, 785
exterior, 300, 853
Predict (F-), 281, 485
generalized, 344
higher, 263
in direction of vector field, 361
logarithmic, 140
normal, 360
of function of several variables, 262
of volume, 370
partial, 136, 279

determinant, 603
development rule, 604
differentiation of, 605
functional, 304
Gram, 356
numerical treatment, 1058
Vandermonde, 605
Wronski, 1118

developable surface, 785
development rule for determinants, 604
deviation

standard, 981
diagonalization, 628

simultaneous, 633
diagonally dominant, 1057
diagram (commutative), 890
diangle, 737
dielectric constant, 505, 507
diffeomorphism, 291

global, 291
difference

central or symmetric, 1123
equation, 403, 405



1242 differentiability differential

forward & backward, 1123
operator, 1144

dissipative, 1147
differentiability, 251
differentiable function, 263
differential

Frechet, 296
geometry, 542
ideal, 532
inequality, 468
operator, 392

symbol of, 643
topology, 306
total, 137, 299, 441
transformation rules for, 296

differential calculus
of Cartan, 296, 301, 326, 486, 852
of Leibniz, 295, 296, 301

differential equation
Bernoulli, 439
Bessel, 461, 593
boundary condition, 419
boundary value problem, 1118
canonical Hamiltonian, 474
characteristic of, 430
compatibility condition, 524
conserved quantity of, 469
convection term, 1128
convection-diffusion ,1133
diffusion term, 1128
elliptic, 430, 1128

numerical treatment, 1127
exact, 440
for trajectory, 859
Gaussian hypergeometric, 593
Hamilton-Jacobi, 474, 478, 523
homogenous, 426
hyperbolic, 430

characteristic, 1142
conservation form of, 1147
numerical treatment, 1141

hypergeometric, 593
initial value problem, 429, 1109

compatibility condition of, 430
integral of, 469
linear, 426
Navier-Stokes, 1134
non-linear, 427
order of, 424
ordinary, 394, 416

a-priori estimate, 467
boundary value problem, 459
Cauchy theorem on analyticity of

solutions, 465
eigenvalue of, 462
exact, 440

existence and uniqueness theorem,
464

existence of solution, 434
fundamental solution, 455
glohbal uniqueness theorem, 435
higher order, 442
homogenous, 440
linear, 457
locally uniquely solvable, 434
methods of solution, 434
numerical treatment, 1109
singular solution, 444
stability of, 457
uniqueness of solution, 434

parabolic, 430
numerical treatment, 1138

partial, 416
Cauchy-Riemann, 536
characteristic of, 469, 471, 503, 513
characteristic system, 524
classification, 513
elliptic, 514
existence of, 522
Hamilton-Jacobi, 922
hyperbolic, 430
initial value problem (regular), 530
integrability condition, 525
jump, 511
numerics of, 1121
parabolic, 514
quasilinear system, 512
strictly hyperbolic, 514
symbol of, 512
uniqueness of, 521

quasilinear, 427
reaction term, 1128
reduction of, 425
reduction to integral equation, 423
regular singular point of, 592
regularity condition, 524
Riccati, 439, 942
semilinear, 427
singular, 592

index equation, 593
solution, 429

singular, 444
via Laplace transformation, 394

solving, 391
stiff system, 1113
Stokes, 1134
symbol of, 514
systems of, 425
weak (variational) formulation of, 1124
weak solution, 1147

differential form, 302, 541, 654
closure of system of, 527



differentiation earthquake 124

on Minkowski space, 853
product rule for, 305
pull-back, 485, 528
transformation rule for, 303

differentiation, 394
functions of one variable, 135
functions of several variables, 136
implicit, 288
numerical, 1084
of elementary functions, 133
rule

chain, 135
chain (several variables), 137
product, 135
quotient, 135
scalar multiplication, 135
sum, 135

diffusion, 514
equation, 1043

instantaneous, 500
term (differential equation), 1128

digit (significant), 1052
dilation, 362
dimension, 353, 639
Diodes' cissoid, 809
Diophantine

equation, 685, 822
equivalence, 826
geometry, 800, 822
rational, 826

Dirac
delta function, 399, 420
distribution, 506
equation, 661
matrices, 661
spinors, 661

direct sum, 646
direction (mathematical), 56
directional derivative, 292
Dirichlet

approximation, 704
boundary condition, 1128
character, 695
criterion, 387
L-series, 687, 695
localization principle of, 695
principle, 565
series, 548

discrete, 686
discriminant, 73, 237, 619, 623, 720
dispersion relation, 534
Disquisitiones arithmeticae, 685, 687, 721,

1189
distance, 26, 254, 750, 842

between two points, 16
hyperbolic, 747

of complex numbers, 534
on Cn, 596

distribution, 344, 392, 400, 421, 511, 520,
564

X2, 89, 1018
conditional, 1005
delta, 421
Dirac, 506
empirical - function, 1021
exponential, 982
function, 77, 981, 997
Gaussian normal, 334, 399, 982
general Gauss, 1004
Maxwell velocity, 987
normal, 77, 85

test for, 1021
Poisson, 1011
Schwartz delta, 400
Student, 88
t, 1018

distributive law, 231, 240, 393
divergence, 360, 364, 854
divergent series, 377
divided difference, 1077
division (polynomial), 616
divisor, 687

of zero, 608, 669
dodecahedron, 14
domain, 45, 258

admissible, 953
convex, 597
entity, 899
of absolute stability, 1114
of convergence, 383, 533, 536, 544
of dependence, 503
of holomorphy, 596
pseudoconvex, 597
simply connected, 533

double
point, 800, 817
ratio, 440, 560, 762
sum, 381

dual
curve, 818
operator, 649
simplex algorithm, 963
space, 649

duality
in linear optimization, 962
inequality, 40
principle, 761

dyadic product, 519
dynamical system, 418, 1192
dynamics of gas, 511, 519

earthquake, 392



1244 eccentricity equation

eccentricity
linear and numerical, 19

of hyperbola, 21
of parabola, 21, 22

eigensolution, 412
asymptotic behavior, 463

eigentime, 851, 857
eigenvalue, 626

algebraic multiplicity of, 634
geometric multiplicity of, 634
methods in numerics, 1099
multiplicity of, 626
numerical treatment, 1065
of differential equation, 462
problem, 412, 595

for Laplace equation, 939
simple, 462

eigenvector, 626
eikonal equation, 475, 516
Einstein

mass-energy relation, 859
principle, 515
special theory of relativity, 854
summation convention, 302, 654, 656,

779
Eisenstein series, 579
elastic

rod, 419
wave, 517

elastic membrane, 937
elasticity, 511
electric

charge density, 505
current density vector, 505

electrical circuit, 396
electrodynamics, 306, 857

equations of, 505
electromagnetic

field, 517
field tensor, 858
force, 864

electron (relativistic), 861
electrospin, 863
electrostatic potential, 505, 506
electrostatics, 505, 568
element, 884

maximal, 894
elementary

divisor, 634
particle, 919
particle (standard theory), 864
symmetric function, 623, 682

Elements, 29, 239, 688, 905
ellipse, 9, 19

-s and planetary motion, 43
circumference of, 9

construction of, 20
geometric characterization, 20
length of arc, 591

ellipsoid, 13
surface area of, 13

elliptic
curve, 577, 820

addition on, 806
group structure, 805
period lattice, 577

differential equation, 514, 1128
function, 576, 578, 580, 1190

residue, 578
integral, 13, 120, 148, 532, 576, 584,

591, 792, 803, 918
inverse function, 574
of second kind, 9

sector, 9
empty set, 901
energy, 284, 432, 478, 507, 686

conservation of, 431, 442, 484, 522
conservation of , 1191
kinetic, 369
method, 521
operator, 837
potential, 367, 369, 370
specific inherent, 493
thermal, 491
total, 369

engineer, 395
entire function, 546
entropy, 473, 491, 950, 987, 1147

as Lagrange multiplier, 950
condition, 1148
specific, 493

envelope, 444, 788
epicycle, 41, 799
epicycloid, 798
epimorphic image, 667
epimorphism, 666
e-neighborhood, 242, 558
equation

adiabatic — of state, 521
backward, 1040
Bernoulli, 566
biquadratic, 621
Burger's, 471, 473
characteristic - of matrix, 626
Clairaut differential, 445
continuity, 371, 482
cubic, 619
cyclotomic, 678, 684
difference, 403, 405, 1122

Courant-Isaacson-Rees, 1143
differential, 686

for trajectory, 859



equation estimator 1245

ordinary, 636
partial, 416

diffusion, 1043
Diophantine, 685, 822
Dirac, 661, 861, 862, 1195
eikonal, 475, 478, 516, 915
energy conservation, 442
equilibrium, 369
Euler

for compressible fluid, 518
generalized, 951
of motion, 483

Euler-Lagrange, 419, 443, 477, 910,
921, 935

several variables, 936
flow, 566
for specific heat, 372
forward, 1040
fundamental - of geometric optics, 914
general, 681
Gibbs, 424, 519
growth, 409
Hamilton canonical, 478, 920, 922
Hamilton-Jacobi, 479, 922
Hamilton-Jacobi-Bellman, 942
heat, 425, 515, 580, 1138

stationary, 522
heat conduction, 416
Helmholtz, 1128
index, 593
instantaneous diffusion, 500
instantaneous heat, 499
integral, 423, 686
Laplace, 425, 515, 565, 1128

eigenvalue problem, 939
linear, 802

error, 1070
linear system, 610
Mainardi-Codazzi, 786
matrix, 611
Maxwell, 505, 568, 857, 919, 1191

duality symmetry of, 858
initial value problem, 516

Newton - of motion, 478, 506
of motion, 451

charged particle, 859
Euler, 483
for gases, 519
for planet, 427
Hamilton, 479
Lagrange, 911
Newton, 478, 479
Poisson, 923

Parseval, 402, 1168
Pell, 823
Poisson, 500, 516, 1127

boundary value problem, 937
polar, 817
potential, 1128
quadratic, 49, 236, 619, 802
scaling, 1171
Schrodinger, 506, 1195

initial value problem, 1045
solution of, 235
solvable by radicals, 681
stationary heat, 500
system, 290

condition (of linear-), 1061
fix point form, 1062
iterative solution, 1062, 1152
numerical treatment, 1055
tridiagonal, 1061

vibrating string, 515, 521, 939
wave, 503

equilibrium
of forces, 419
stable, 428
state, 410
unstable, 428

equivalence
class, 893
Diophantine, 826
Einstein mass-energy, 859
logical, 875
of lattices, 583
relation, 893

equivalent
statements, 897
words, 601

Erlanger Program, 725, 1192
error

analysis, 1050
estimate, 293
estimator, 1151
forward - analysis, 1053
indicator, 1150
input, 1052
interpolation, 1080
linear - equations, 1070
local discretization, 1110
mean, 1071
procedural, 1053
relative, 1052
rounding, 1053

escape velocity of the earth, 450
essential singularity, 545
estimate

a posteriori, 881
a priori, 881
error, 293
of remainder term, 271

estimator, 1017



1246 Euclid field

error, 1151
for expectation, 1017
for variance, 1018

Euclid
Elements, see Elements
law for height (of triangle), 8, 729
law on catheti, 729
theorem of, 688

Euclidean
algorithm, 617, 622, 624, 689, 702, 822
geometry, 726, 753, 766
motion, 753
norm, 255, 281

Euler
beta function, 121
characteristic, 820
constant, 5, 210
equations, 483

for compressible fluid, 518
formula, 54, 391
function, 50
T-function, 120, 572
generalized - equation, 951
integral, 125
multiplier, 442
numbers, 36
^-function, 690
polyhedral formula, 14
product, 549
product formula, 58
recursion formula, 698
substitution, 148

Euler's theorem, 693, 698
Euler—d'Alembert's law, 632
Euler-Lagrange equation, 419, 431, 443, 477,

910
Euler-McLaurin summation formula, 113,

1088
event, 977

algebra of, 993
almost certain, 976, 991
almost impossible, 976, 991
elementary, 977
field, 977
independent, 994

evolute, 789
exact sequence, 643
expectation, 981

of radom variable, 999
exponent, 26, 1051
exponential function, 50, 51, 117, 394

general, 53
expression, 896, 900
exterior

derivative, 300
point, 257

product, 301, 652, 659
extrapolation, 1080, 1081
extrema, 272
extremal point, 771, 953

F-differential, see Frechet differential
F-test, 83
factor, 1029

group, 667
set, 893
space, 646, 893

factorial, 3
family of sets, 895
feedback control, 942
Fermat

equation, 823
principle, 914

Fermat's
last theorem, 686, 808, 1186
theorem, 697

fermion, 663, 860, 864, 1193
Feynman

formula of - and Kac, 1045
integral, 421, 1032

FFT, 1166
fiber bundle, 859, 1197
field, 240, 579, 672

algebraically closed, 679
automorphism, 672
central, 365
characteristic, 672
class

- theory, 1193
Hilbert, 722

cyclotomic, 599, 1189
electric, 505
electromagnetic, 517
extension, 675

Abelian, 722
algebraic, 676, 679
degree, 676
finite, 676
Galois, 676
non-Abelian, 723
normal, 679
separable, 679
transcendental, 676, 679

Galois, 673
number, 599

class number of, 721
quadratic, 802

of fractions, 674
of rational functions, 674, 832
prime, 672
quadratic number

character of, 722



field formula 124

discriminant of, 720
fundamental unit of, 720

quotient, 674
skew, 672
spherically symmetrical, 365
splitting, 679

Fields medal, 686, 826, 1199
finite element method, 1125
first fundamental form, 780
fitting, 1069
fixed-point, 560

iteration, 1094
floating point representation, 1051
flow

circulation, 567
current, 371
Hamiltonian, 484, 922
heat, 371
line, 366, 481, 566
liquid, 371
operator, 481

linearization of, 485
parallel, 567
process, 514
source, 567
symplectic, 487
volume preserving, 483, 484

fluctuation
principle of, 988

fluid
ideal, 483
incompressible, 371, 483

flux, 371, 374
numerical, 1148

focal point
of ellipse, 20
of hyperbola, 21
of parabola, 22

force, 351, 369
conservative, 368
density, 483
equilibrium of, 419
gravitational, 43
gravity, 864
nuclear, 864
strong, 864
weak, 864

form
bilinear

non-degenerate, 847
signature, 848
skew-symmetric, 651

canonical, 486
differential, 654

on Minkowski space, 853
first fundamental, 780

modular, 577, 583, 698, 827
non-degenerate, 869
one, 367
quadratic, 630

positive definite, 631
second fundamental, 782
symplectic, 481, 633, 869
volume, 342

Minkowski, 852
formula

addition
for means, 983

analytic class number, 721
asymptotic, 692
barycentric (interpolation), 1076
binomial, 600
Clebsch, 820
correction, 1116
de Moivre, 56
Dedekind recursion, 902
dualization, 854
Euler, 391, 395, 547

product, 58
recursion, 698

Euler-McLaurin summation, 113, 1088
Fagnano doubling, 574
Feynman—Kac, 1045
Gauss interpolation, 1079
Gauss-Chebychev quadrature, 1090
Gaussian

multiplication, 573
product, 573

Hamilton rotation, 867
Heronian, 727, 739
integral - of Cauchy, 540
Lagrange doubling, 573
Lagrange interpolation, 1076, 1084
Machin, 710
Mobius inversion, 690
Mollweidian, 728, 739
Neperian, 739
Newton interpolation, 1077
Newton-Cotes quadrature, 1086
Newton-Gregory I-interpolation, 1078
of Cardano, 620
of Dyson, 454
of Green, 344
of Hardy and Ramanunjan, 698
of Lagrange, 13
Poisson, 565
potential, 339, 340
prediction, 1116
product, 111

for means, 986
for probabilities, 986
of Euler, 710



1248 formula function

of Vieta, 709
of Wallis, 709
of Weierstrass, 547

quadrature, 1086
Gauss—Laguerre, 1091
Gauss-Legendre, 1090

Ramanunjan, 710
recursion - for continued fractions, 700
Schwarz-Christoffel mapping, 563
Stirling, 3, 573, 1010

interpolation, 1080
substitution, 140
summation - of Leibniz, 710
summation - of Newton, 710

Fourier
approximation, 1103
coefficient, 386

generalized, 463
cosine transform, 193
filter, 1173
integral, 387

operator, 633
transformation, 1169

method, 496, 595
polynomial, 1103
series, 127, 385, 496
sine transform, 199
space, 398
transform, 398

inverse, 401
of function in J$?i, 401

transformation, 204, 398
discrete, 1165
fast, 1166
tables, 192

Frechet
(F-) derivative, 281, 485
differential, 296

fractal, 1032
fraction, 1180

continued, 4, 687, 823
Fredholm alternative, 460, 613
free energy, 494
frequency, 233, 1169

absolute, 1009
angular, 233
relative, 979

Frobenius
integrability, 525
matrix, 1100

Fubini theorem, 143
function

admissible, 330, 393
algebraic, 533, 576, 686, 807

integral of, 813
almost everywhere continuous, 311

amplitude, 585
analytic, 523, 543, 596

continuation, 569
autocovariance, 1038
automorphic, 533, 577, 804, 807
Bellman action, 941
Bessel, 121, 126, 594
beta (5), 121
big O of, 253
biholomorphic, 554
bounded, 545
classification, 889
complex

convergence of seqeunce, 535
derivative, 535
differentiable, 535
pole, 547
several variables, 595
valued, 277, 311

composed, 284
concave, 275
continuous, 250

of metric space, 260
convex, 275
cosine, 575
decreasing, 46, 265
Dedekind TJ, 583, 698
density, 997
dependency, 287
differentiable, 251, 263
Dirac 6, 420
distance

on Cn, 596
distribution, 77, 981, 997
eikonal, 915
elementary symmetric, 623, 682
elliptic, 576, 578, 580, 687, 1190

residue, 578
empirical distribution, 1021
entire, 546
essential singularity, 545
Euler T, 572
Euler <p, 690, 713
even, 48, 579
exponential, 50, 117, 394

for matrices, 636
finitely-valued, 572
flux,1147
functional determinant of, 281
gamma T, 15, 120, 600

integral, 186
Wielandt uniqueness, 574

Gaussian hypergeometric, 593
generalized, 400, 511
generating - of Jacobi, 480
germ, 835



function functor 1249

global analytic, 533
graph of, 277
Green's, 395, 420, 505, 564

symmetry of, 505, 564
Hamiltonian, 481
Hankel, 121, 595
harmonic, 502, 563

conjugate, 564
height, 718
Hermite, 124
Hermitian, 509
holomorphic, 536, 596

critical set of, 829
expansion in a power series, 544

hyperbolic, 63, 118
hypergeometric, 593
increasing, 46, 265
indicator, 1009
integral of, 306
inverse, 46, 266

derivative, 268
elliptic, 803

isolated singularity, 545
Jacobian •&, 576, 580
Jacobian determinant of, 281
joint distribution, 1002
Lagrange, 910

convexity of, 928
modified, 939

Laguerre, 124, 510
Legendre, 117, 123
lemniscate sine, 575
limit of, 238
linear, 48
little o of, 253
local behavior, 293
locally

analytic, 533
concave, 274
convex, 274

logarithm, 119
principal value, 562
Riemann surface of, 562

logarithmic integral, 692
MacDonald, 122, 595
many-valued, 560, 804, 807
mapping degree, 551
maximal likelihood, 1027
meromorphic, 547
modular, 583
Mobius, 690
multipliciative, 549
Neumann, 121, 126, 594
odd, 48
of class C[a,b] and Ck[a,b], 264
of class Ck, 264

of class K-f, 403
of several variables, 259

derivative of, 262
Predict differentiable, 281

partition, 687, 694, 697
periodic, 48
pole, 545
polynomial, 70
power, 50, 572
primitive, 138, 308, 313
quadratic, 49
random, 976, 995

variance, 996
rational, 71, 394, 579, 625

general, 73
of several variables, 145
partial fraction decomposition, 624

real, 45
recursive, 902
regular, 835
removable singularity, 545
residue, 545
Riemann C, 112, 548, 686, 687, 693
sample, 1016
scalar, 360
scaling, 1172
sequence, 381

uniform convergence, 544
sine, 575

Jacobian, 585
smooth, 279
spherical, 510
square root, 47

Riemann surface of, 560
strictly convex, 275
subharmonic, 597
Taylor expansion, 404
test, 472
transformation of, 47
trigonometric, 54, 118

inverse, 66
truth value, 897
vector-valued

continuous, 357
derivative of, 357
Taylor series for, 359

Weierstrass p, 576, 578, 590
Weierstrass E, 928
zeros of, 70

multiplicity, 546
functional

analysis, 392, 565, 802
determinant, 281, 304
equation, 693
linear, 649

functor, 900
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fundamental
domain, 578

modular group, 582
form

first, 780
of Kahler structure, 543
second, 782

theorem
of algebra, 532, 546, 552
of calculus, 143, 307, 312, 321, 539

unit, 720

Galois
field, 673
group, 676
theory, 10

gamma function T, 15, 120, 572
Stirling's series for, 125
Wielandt uniqueness, 574

gap theorem, 691
gas, 493

density, 519
dynamics of, 519

gauge theory, 306
Gauss

-Chebychev quadrature, 1090
-Jordan procedure, 1057
algorithm, 1055
bell curve, 77
bracket, 113, 212, 227, 697, 702
distribution (general), 1004
interpolation formula, 1079
method of least squares, 948, 1070
sum, 715
theorem, 143
theorem of, 706

Gaussian
algorithm, 612
curvature, 783
distribution, 334
error integral, 122
hypergeometric differential equation, 593
law of error propagation, 295
normal distribution, 399, 982
process, 1047
quadrature, 1089
residue class ring, 671

general solution (of linear system of equa-
tions), 611

generalized
function, 400
momenta, 921
solution, 472

generalizer, 874
generator, 668
generic, 292, 815

genus, 589
of Riemann surface, 807

geodesic, 919, 933
on surface, 787
spherical, 736

geodesy, 733, 1180
geometric

optics, 475, 633
principle of Fermat, 477

series, 29, 115, 377, 392
geometry

affine, 766
analytic, 1185
axioms of, 743
conformal, 559
descriptive, 767
differential, 769
Diophantine, 800, 822
elliptic, 746
Euclidean, 726, 766
hyperbolic, 747, 915
Minkowski, 850
non-Archimedean, 745
non-Euclidean, 746, 915, 1191
plane, 742, 765
plane analytic, 16
protective, 760, 767, 1190
pseudo-unitary, 847, 849
Riemannian, 306, 749, 1191
similarity, 726, 766
spherical, 736
spin, 860
symplectic, 306, 633, 869
unitary, 841

Gibbs
equations, 491, 519
law, 492

global, 267
Gottingen, 691
Goldbach conjecture, 696
golden ratio, 702-704
gradient, 359, 364

vector, 364
grading, 648
Gram

determinant, 356
matrix, 1102

graph, 46, 277, 889
Grassmann algebra, 658, 660, 663, 852
gravitational

constant, 43, 370
force, 43

gravitino, 864
graviton, 864
great circle, 736
greatest common divisor (gcd), 689
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of polynomials, 617
Green's

formula, 344
function, 395, 420, 460, 505, 564

symmetry of, 505
ground trial, 1008
group, 663

Abelian, 663
additive, 666

rank of, 668
torsion of, 668

alternating, 665
associative law, 663
automorphism, 666

inner, 666
of complex plane, 559

cohomology, 723
commutative, 663
cyclic, 667, 668
de Rham cohomology, 638
elliptic curve, 805
factor, 667
Galois, 676, 1191
general linear GL, 560
general linear GL(n,C), 609
general linear GL(n,R), 663
homology, 669
homomorphism, 666

kernel of, 667
inverse element, 663
isomorphism, 666
Klein four -, 665
Lie, 526, 636, 845, 860, 1191

general linear, 609
orthogonal, 848, 860
Poincare, 856
representation theory of, 1193
symplectic Sp(2n,X), 870
spin Spin(n,x), 868
SU(3), 845
unitary, 848

Lorentz, 850, 856
matrix, 663

orthogonal, 850
symplectic, 871
unitary, 850

modular, 582
fundamental domain of, 582

multiplicative, 663
neutral element, 663
of Euclidean motions, 753
of proper Euclidean motions, 753
of rotations, 753
of translations, 753
operation, 663
order, 664

orthogonal, 841
permutation, 664, 669
Poincare, 851, 856
projective, 764
pseudo-unitary, 848
simple, 665
solvable, 669
special linear SL(2,C), 860
special orthogonal SO(n), 860
special pseudo-unitary, 848
spin Spin(n,X), 867
SU(2), 860
symmetric, 664
symplectic Sp(2n,X), 870
transformation, 663
unitary C/(n), 847
unitary U(n, X), 841
universal covering, 868

growth equation, 409
Guldinian rule, 349

Holder inequality, 38
Haar space, 1107
half-plane, 393
Hamilton

operator, 507
principle of stationary action, 911
rotation formula, 867

Hamilton-Jacobi differential equation, 474,
523

Hamiltonian
canonical equations, 525
flow, 484, 922
function, 481
mechanics, 474

two body problem, 478
quaternions, 866
system (non-degenerate), 490

Hankel function, 121, 595
Hardy's theorem, 694
harmonic

function, 502, 563
conjugate, 564

oscillator, 358, 395, 411, 457, 508, 637,
918, 925

Green function of, 395
with friction, 396

Harnack inequality, 502
heat, 386

analytic theory of, 496
conduction, 416, 421, 500
current density, 500
diffusion, 500
equation, 425, 515, 516

instantaneous, 499
stationary, 500, 522



1252 Heaviside indeterminant

flow, 371
source, 499

Heaviside calculus, 392
height, 718
Heisenberg

algebra, 662
bracket, 924
uncertainty principle, 920
zero point energy, 509

Helmholtz equation, 1128
Hermite

function, 124
polynomial, 124

Hermitian functions, 509
Heronian

area formula, 7, 727
generalized area formula, 739

hexagon, 6
Hilbert

axioms
for real numbers, 239
of geometry, 742

class field, 722
invariant integral of, 484
matrix, 1103
Nullstellensatz, 833
space, 386

Clifford algebra of, 865
<zf(X), 865
orthonormal system of, 509

Hilbert-Schmidt theory, 459
histogram, 76, 1023
Hodge 5-operator, 853
holomorphic function, 536, 596

analytic continuation of, 569
homeomorphism, 290
homogenous

boundary value problem, 460
coordinates, 760, 763
linear system of equations, 611

homologous paths, 540
homology, 540

group, 669
homomorphism, 650

group, 666
ring, 670

homotopic paths, 539
homotopy, 540
Hopf bifurcation, 801
Horner scheme, 1097
Hurwitz approximation, 705
Huygens' principle, 504, 915
hydrodynamics, 511, 566
hydrogen atom, 507

quantum numbers of, 507
hyperbola, 20

sector, 9
hyperbolic

differential equation, 430
numerical treatment, 1141

function, 63, 118
inverse, 68

geometry, 747
plane, 747

motions of, 749
trigonometry, 747

hypercharge, 845
hyperelliptic integral, 576
hypergeometric

differential equation, 593
function, 593
series, 117

hypocycloid, 798
hypotenuse, 8, 729
hypothesis

continuum, 904
Riemann, 685, 690, 1191

icosahedron, 14
ideal, 670, 718, 1192, 1193

differential, 532
fractional, 721
homogenous, 832
intersection of, 719
maximal, 834
primary, 719
prime, 719
principal, 718
product of, 719

ideal fluid, 483
ideal-theoretic

product, 719
sum, 719

idempotent, 719
identity

Jacobi, 661
matrix, 560
principle, 570

ill-posed problem, 409
image

point, 889
imaginary

part of a complex number, 534
unit, 228, 1184

implication, 874
implicit function theorem, 288, 290
improper limit, 244
incidence axiom, 743
incident, 742
incommensurability, 1181
incompressible fluid, 371, 483
indeterminant, 235
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expression, 245
index, 643

equation, 593
Morse, 848
of refraction, 914

indicatrix, 477
inductance, 396
induction, 241

electromagnetic, 1189
inequalities

important, 36
inequality, 236

Bernoulli, 37
binomial, 37
Chapman-Kolmogorov, 1040
Chebychev, 981, 1001
convexity, 39
duality, 40
for means, 37
Holder, 38
Harnack, 502
integral, 39

Holder, 39
Jensen's, 39
Minkowski, 39
triangle, 39

Jensen's, 38
Minkowski, 38
Schwarz, 38
triangle, 36, 230
Young, 38

inertial system, 854
infinimum, 242
infinite

product, 132, 390
series, 271, 377

infinitely small, 295
infinitesimal, 416

symmetry, 839
unitary operator, 843

infinity, 51
Cantor's structure, 901
line at, 809

inflection point, 269, 273, 771
information, 950
inhomogenous linear system of equations,

611
initial

conditions, 416
value problem, 429

numerical treatment, 1109
regular, 530

injective, 642, 889
inner

automorphism, 666
product, 487

input, 1050
instability, 409 -
instable, 458
integer

even, 687
odd, 687
rational, 720

integrability condition, 423, 525, 786
in thermodynamics, 494

integrable system, 488
perturbations of, 490

integral, 306
Abelian, 148, 533, 576, 577, 589, 804,

807, 820, 1190
basic, 139
constant multiples, 140
contour, 537
cosine, 122
curve, 340, 533, 537
definite, 142
depending on parameters, 350
elliptic, 120, 148, 532, 576, 591, 803,

804, 918
inverse function, 574
of second kind, 9

equation, 423
Euler, 125
exponential function, 122
Feynman, 421, 1032
T function, 186
hyperelliptic, 576
improper, 309
indefinite, 138, 308, 314

calculation of, 140
inequalities, 39
invariant

absolute - of Poincare-Cartan, 484
of Hilbert, 484
relative - of Poincare, 484

iterated, 306
Lebesgue, 310, 387

general, 331
limit formula for, 310

Legendre normal form, 584, 590
logarithmic, 122
monotony of, 332
of a differential equation, 469
of algebraic function, 813
of unbounded functions, 318, 329
on unbounded intervals, 317
operator, 643
over unbounded domains, 328
path, 421
rational function, 144
remainder term, 272
several variables, 143
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sine, 122
Stieltjes, 998
substitution, 145

rule, 314, 325, 335
sum rule, 140
surface, 343
test, 379
transformation, 391

Fourier, 1169
principle, 335

integral curve, 366, 481, 493, 566
integral domain, 393, 669
integral manifold, 527
integration

by parts, 140, 313, 344
iterated, 322
of elementary functions, 138
of partial fractions, 144
rules, 140

interaction, 511
interior point, 257
interpolation

error, 1080
Newton formula, 1077
of tables, 83
problem, 1075
spline, 1082
trigonometric, 1165

intersection
of sets, 895

interval, 227
a-confidence, 1016
confidence, 982, 1001, 1014

intuitionist mathematics, 906
invariance

local gauge, 864
PCT, 863
under rotations, 432
under time translations, 432

invariant
integral of Hilbert, 484
subspace, 648
torus, 490

inverse
element, 663
function, 266
map, 889

inversion
on unit circle, 556

involute, 790
irrational number, 225
irreducible ring element, 718
irreversible thermodynamic process, 491
isolated singularity, 545
isomorphic, 641
isomorphism, 641, 650

ring, 670
isoperimetric, 932
isospin, 845
isotropic

subspace, 870
vector, 847, 849

iteration, 245
additive Schwarz, 1161
convergence of, 1153
efficient, 1154
fixed-point, 1094
linear, 1152
Richardson, 1152
scheme of Borwein, 711
smoothing, 1157
speed of convergence, 1153
Wielandt, 1069

Jacobi
eigenvalue problem, 928
generating function of, 480
identity, 661
signature criterion, 630

Jacobi's theorem, 697
Jacobian

determinant, 281
matrix, 281, 1095
sine function, 585
i? function, 580

Jensen
convexity inequality, 39
inequality, 38

joint distribution function, 1002
Jordan

block, 634
curve, 537
normal form, 634

jump, 511

Kahler
geometry, 838
manifold, 543

KAM theory, 490
Kepler

law, 491
laws for planetary motion, 42, 453

kernel, 642
of group homomorphism, 667

kinetics, 414
Klein quartic, 808
Kronecker symbol, 629

1'Hospital's rule, 252, 270
Lagrange

bracket, 476, 488
equations of motion, 911
formula, 573
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function, 910
convexity of, 928
modified, 939

identity, 355
interpolation formula, 1076, 1084
manifold, 476, 487, 488
multiplier, 931, 939
polynomial, 1076

Laguerre
function, 124, 510
polynomial, 123, 1091

Lame material constant, 517
Langlands program, 723
Laplace

equation, 425, 515, 1128
eigenvalue problem, 939

operator, 285, 361, 364, 499
transformation, 205, 393, 411, 414

inverse, 397
lattice, 715

equivalent, 583
volume, 715

Laurent
expansion, 545

of p, 580
series, 545

principal part, 548
law

associative, 240, 305, 393, 652, 663,
886

in ring, 669
commutative, 240, 393, 663, 886
conservation, 369, 431, 451, 482, 520
development (for vector product), 355
distributive, 240, 305, 393, 887

in ring, 669
Euclid - for height, 729
Euler-d'Alembert's, 632
Gaussian - of error propagation, 295
general reciprocity, 686
Gibbs', 492
isomorphism, 667
Kepler, 453, 480, 491
logarithm, 27
logical, 876
Newton, 358, 368, 415, 424, 450
of cosines, 738
of induction, 241
of large numbers, 1010

of Bernoulli, 979
of motion, 42

of Galilei, 917
of quadratic reciprocity, 714
of sines, 738
of thermodynamics, 473, 491
of total probability, 994

Planck, 509
power, 26
radiation, 926
reciprocity, 723
strong - of large numbers, 1006, 1015
weak - of large numbers, 1006

least common multiple (1cm), 688
Lebesgue

integral, 310, 387
limit formula for, 310

measure, 310, 329
vanishing, 311

leg, 729
Legendre

condition, 928
function, 123
polynomial, 117, 123, 510, 1090, 1104
proof of irrationality of TT, 711
series, 120
symbol, 714, 722
theorem of, 692
transformation, 445, 477, 921

general, 495
Leibniz

differential calculus, 296, 301
notation, 263, 282, 295, 300
series, 4, 710

Leibniz' criterion, 380
lemma

of Gronwall, 466
of Weyl, 502
Poincare, 341, 486, 527
Zorn, 894

lemniscate, 574, 791, 812
length, 842

arc, 342
density, 321

Leray—Schrauder principle, 418
level surface, 360
Levi-Civita, 782
Lie

algebra, 526, 636, 661, 839, 844, 845,
1191

of Poisson bracket, 923
su(2), 861

group, 306, 526, 636, 860, 1191
general linear, 609
orthogonal, 848, 860
Poincare, 856
special orthogonal SO(n, X), 848
special unitary SU(n,X), 848
unitary, 848

light ray, 475, 914
light-like vector, 851
limit, 238, 242, 357, 1189

convergent, 387
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formula, 310
improper, 244
in metric space, 255
inferior, 248
of function, 249
of sequence, 238
superior, 248

line, 16, 25, 742, 750
y-intersect, 17
abscissa equation, 17
at infinity, 747, 761, 809
equation, 17, 750
parallel, 745
projective, 761
regression, 985, 1003, 1071
slope of, 17

linear
combination, 638
elasticity theory, 517
equation, 394
form, 649
hull, 647
independence, 639
manifold, 645
map, see linear operator
operator, 641

change of basis, 644
determinant of, 645
matrix of, 644
trace of, 645

optimization, 952, 955
basis solution, 957
duality, 962
normal form, 957

space, 638
affine subspace of, 645
almost complex, 868
basis, 842
Cartesian product, 645
complexification, 658
dimension, 639
direct sum, 646
dual, 649
exterior product, 659
isomorphism of, 641
normed, 352
orthonormal basis, 629
quotient of, 646
symplectic, 869
tensor algebra, 658
tensor product, 657

linearity, 394
linearly independent, 614
lines of force, 366
Liouville's theorem, 578
Lipschitz continuous, 435

liquid, 493
flow, 371

Lissajou figure, 793
little o of a function, 253
little o-small, 298
local, 267

ring, 834
local-global principle, 533
locally

convex and concave, 274
logarithm, 26, 27, 52, 119, 636

general, 53
natural, 28, 52
principal value of, 562
Riemann surface of, 562

logarithmic
derivative, 140
integral, 692

logic, 895, 1192
expression, 899
predicate, 899
prepositional, 896

Lorentz
group, 838, 850, 856
scalar product, 850

lottery problem, 600
lower bound, 241
LR-decomposition, 1057
lumping, 1141

MacDonald function, 122, 595
magnetostatics, 568, 569
major axis, 629
Manhattan project, 1196
manifold, 638, 800, 836

complex, 554
integral, 527
Kahler, 543
Lagrange, 476, 488
Riemannian, 543

mantissa, 1051
many-valued function, 560
map, 889

angle-preserving, 781
area-preserving, 781
bijective, 889
birational, 816, 833
conformal, 533, 555, 560, 781
correspondence, 891
distance-preserving, 781
domain, 889
graph, 889
identity, 890
injective, 889
inverse, 889
inverse image, 891
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linear, see operator, linear
order-preserving, 894
projection, 890
projective, 762
range, 889
rational, 816, 833
surjective, 889
symplectic, 869

Maple, 74
mapping degree, 551
Markov

chain, 1039
ergodic, 1040

ergodic theorem, 1040
mass

density, 471, 493
of a curve, 320
relativistic, 859

Mathematica, 47, 74, 75, 84, 138, 145, 611,
618, 626, 628, 948, 952, 1049

mathematical
positive direction, 19
statistics, 1015

tables of, 83
Matlab, 74
matrix, 605

adjoint, 609
amplification, 1146
bidiagonal, 1061
characteristic equation of, 626
condition number of, 1061
contragredient, 610
covariance, 1004
decomposition

QR, 1068
singular value, 1074

diagonalizable, 628, 635
diagonally dominant, 1057
element, 605

adjoint, 604
elementary divisor of, 634
equivalence

spectral, 1155
exponential funtion, 636
Probenius, 1100
Gram, 1102
Hessenberg, 1067, 1068
Hilbert, 1103
Householder, 1072
householder, 1068
identity, 560, 608
inverse, 608

numerical treatment, 1058
invertible, 609
iteration, 1152
Jacobi rotation, 1066

Jacobian, 281, 1095
Jordan normal form, 634
linear independence of rows, 614
logarithm of, 636
M- -, 1133
normal, 627
orthogonal, 631, 847
Pauli, 861
Pauli-Dirac, 861
polar decomposition of, 637
preconditioning, 1065, 1155
product, 606
pseudo-inverse, 948
rank, 614
real, 605
regular, 609
resolvent of, 627
resolvent set of, 626
scalar multiplication, 606
self-adjoint, 627, 848
similar, 628
skew-adjoint, 627
skew-symmetric, 632
spectral radius, 626, 1062
spectrum, 626, 635
square root of, 637
stiffness, 1125
stochastic, 1039
sum, 606
symmetric, 630

Cholesky decomposition, 1060
definite, 631
signature of, 630

symplectic, 870
Toeplitz, 1167
trace, 610
transition, 1039
transposed, 605, 609
unitary, 627, 847
zero, 606

maximal
element, 894
likelihood function, 1027

maximum
local, 269
local strict, 272
principle, 433, 502, 522

Maxwell equations, 505, 568, 857
duality symmetry of, 858
initial value problem, 516

mean, 37, 981
arithmetic, 37
empirical, 75
error, 1071
geometric, 37
harmonic, 37
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quadratic, 37
rule, 1087

mean value
inequality, 597
property, 502
theorem, 266, 332
theorem for integrals, 312

measure
Lebesgue, 310, 329
of a set, 332
probability, 989
Wiener, 1044

mechanics, 306
celestial, 470, 491, 1188, 1192
classical, 358, 633
Poissonian, 489
quantum, 976, 1195
statistical, 987

median, 732
Mercury (perihelion motion of), 44
meromorphic function, 547
method

backward differentiation, 1117
Bernoulli, 1100
bisection, 1093
boundary element, 1163
difference, 1120
eigenvalue, 1099
Euler (single step), 1109
finite element, 1119, 1125, 1198

conformal, 1131
Galerkin, 1119, 1165
gradient, 1156
least squares, 1069
maximal likelihood, 1027
mixed finite element, 1137
Monte Carlo, 991
multi-grid, 1157
Newton-Kantorovich, 1095, 1096
normal equations, 1070
of Adams, 1116
of Bairstow, 1101
of conjugate gradients, 1063
of Givens, 1067
of least squares, 388, 948, 1070
of stationary phase, 126
of successive over-relaxation, 1063
orthogonal transformations, 1072
secant, 1093
secant - of Diophantus, 825
single step, 1109

consistent, 1110
singular value decomposition, 1074
tangent - of Diophantus, 825

metric
Minkowski, 661

space, 254, 352, 596, 716
tensor, 342, 781

Mexican hat, 1171
minimal

surface, 784, 791
test, 957

minimax principle of Courant, 464
minimization problem, 388
minimum

local, 269, 946
local strict, 272
principle, 463
strong, 912
weak, 912

Minkowski
inequality, 38
metric, 661
space, 850

Clifford algebra of, 853, 860
differential forms, 853
dual basis, 853
multilinear algebra on, 852
orientation of, 852
volume form, 852

model
Bernoulli, 1007
probability, 977
standard, 864, 1198

modified lottery problem, 600
modified word problem, 600
modular

J-function, 582, 583
form, 577, 583, 827
function, 583
group, 582
transformation, 582

modulo, 578
modus ponens, 877, 898
Mobius

function, 690
inversion formula, 690
transformation, 559, 749, 838

Mollweidian formula, 728, 739
momentum, 368, 433, 912

angular, 369, 432
rectangular, 398

monodromy theorem, 571
monomorphism, 666
monopole, 858
monotony, 312
Monte Carlo method, 991
Mordell conjecture, 686
Morse index, 630, 848
motion

Brownian, 500, 1042, 1194
chaotic, 491



motion number 1259

perihelion, 44
planetary, 41
quasi-periodic, 491

multilinear form, 651
anti-symmetric, 651
symmetric, 651

multiple regression, 1031
multiplication

Cauchy, 380
inner, 659

multiplicative group, 663
multiplicative inverse, 240
multiplicity

of a zero, 546
of intersection point, 816

multiplier (Lagrange), 931
music, 496

nabla operator V, 363
n-bein, 776
neighborhood

e, 242
in metric space, 257

Neperian formula, 739
Neptune, 44
Neumann function, 121, 126, 594
neutral element

additive, 240, 666
in group, 663
in ring, 669
multiplicative, 240
of set theory, 887

Newton
binomial series, 115
interpolation formula, 1077
law of motion, 358, 368, 415, 424, 450,

478, 506
polynomial, 1077
procedure (for non-linear equations),

1093
series, 710
summation formula, 710

Newtonian mechanics, 42
n-frame, 776
n-gon (regular), 10
Nicomedes' conchoid, 811
Noether's theorem, 432
Noetherian ring, 719
non-decreasing, 46
non-degenerate

bilinear form, 651, 847
Hamiltonian system, 490

non-increasing, 46
non-linear differential equation, 427
non-orientable surface, 765
non-set, 884

non-standard analysis, 296
non-stationary process, 427
norm, 719

Chebychev, 1106
Clifford, 865
discrete maximum, 1108
Euclidean, 255, 281
maximum, 1106

normal
distribution, 77

mean of, 77
standard deviation of, 77
test for, 1021

form
conic, 631
matrix, 628
of linear optimization problem, 957

subgroup, 665
nth variation, 292
Nullstellensatz, 461
number

algebraic, 678, 705
Bernoulli, 34, 1088
Betti, 669
binary, 227
cardinal, 904

product, 904
sum, 904

complex, 228, 534
condition, 1061
decimal, 225
Euler, 36
ideal, 717
integer, 223

construction of, 902
irrational, 225, 705
natural, 223, 902
negative, 1182
ordinal, 902
p-adic, 533, 716, 723
partition, 687
7T, 3

transcendence of, 683
prime, 549, 688

regular, 828
Pythagorean, 823
rational, 225, 705
real, 222

completeness of, 239
floating point representation of, 1051
rounded, 1052
truncation, 1052

square-free, 719
theory, 802
transcendental, 678, 706

number field (algebraic), 722



1260 numerical

numerical
differentiation, 1084
flux, 1148
integration, 1085

numerics, 1050
approximation, 1102
boundary value problems, 1118
differentiation, 1075
harmonic analysis, 1165
hyperbolic differential equations, 1141
integration, 1075
interpolation, 1075
inverse problems, 1176
linear algebra, 1055
non-linear problems, 1093
ordinary differential equations, 1109
parabolic differential equations, 1138
partial differential equations, 1121

obelisk, 12
Oberwolfach, 1196
octahedron, 14
Oka's theorem, 597
open set, 558
operator

adjoint, 840
algebra, 717
angular momentum, 863
chirality, 863
conjugation, 866
d (exterior derivative), 853
difference, 1144

consistent, 1145
dissipative, 1147
equivalence theorem, 1145
stability, 1145

differential, 392
Dirac

elliptic, 868
divergence, 854
duality, 852
energy, 837
flow, 481
Fourier integral, 392
Hodge

*, 852, 854
(5, 853

infinitesimal unitary, 843
integral, 643

Fourier, 633
inverse, 642
J (almost complex), 868
Laplace, 285, 361, 364, 499, 868
linear, 641
nabla V, 363, 365
pseudo-differential, 392

parabola

pseudo-unitary, 848
infinitesimal, 849

self-adjoint, 845
*, 866
strangeness, 846
translation, 403
unity, 642

optics, 1186
geometric, 633

optimization
Bellman dynamical, 941
linear, 952

duality, 962
non-linear, 946

order
axiom, 743
of differential equation, 424
of group, 664
relation, 894
total, 894

ordered pair, 888
ordinal

arithmetic, 903
number, 902
product, 903
sum, 903

ordinary differential equation, 394
orientation, 782, 842

of curve, 538
orthogonal, 355

complement, 841
group, 841
matrix, 631
vectors, 841, 849

orthogonality, 628
relation, 386

orthonormal
basis, 629, 842, 1103
system, 386, 629

complete, 509
oscillation, 233, 386, 398, 461

characteristic, 496
dampened, 398
dominant, 392

oscillator
aharmonic, 358
harmonic, 358, 395, 508

with friction, 396
outer direct sum, 648
output, 1050
over-relaxation, 1063
overflow, 1053

p-adic number, 533
parabola, 22, 789

sector, 9



parabolic Poisson 1261

semi-cubical, 801
parabolic differential equation, 514
paraboloid, 544
paradox

Burali-Forti, 903
Einstein twin, 857

parallax, 5
parallel, 745

problem, 746
transport, 484

parallelepiped, 11, 752
parallelogram, 7
parameter estimation (statistics), 1017
parity violation, 864
parsec, 5
Parseval

equality, 402
equation, 1168

partial
derivative, 136, 279
differential equation, 416

characteristics of, 469
fraction decomposition, 58, 394, 404,

547, 624, 813
infinite, 114

sum, 377
particle

charged, 859
elementary

standard theory, 860, 864
proton, 846
strange, 846
trajectory of, 357

partition
function, 687, 694
number, 687

Pascal
snail, 812
triangle, 31

Pasch axiom, 743
path, 538

homologous, 540
homotopic, 539
integral, 421

Pauli matrices, 661, 861
PCT invariance, 863
pendulum (circular), 917

equation of motion of, 934
pentagon, 6
period, 48

lattice, 577, 578
permutation, 600, 664

cyclical, 665
even, 602, 664
group, 669
odd, 602, 664

sign of, 602, 664
perspective, 767
perturbation, 292
phase

space, 483, 922
volume form of, 484

velocity, 233
philosophy

epistemology, 905
mathematical, 827

photon, 864, 927
physics

celestial mechanics, 125, 450, 470, 491,
687, 1188

classical mechanics, 42, 358
Hamiltonian mechanics, 1190
Newtonian mechanics, 1186
quantum, 1194
statistical, 1192

TT, 708
transcendence of, 683

pivotal element, 1055
Planck

constant, 506
quantum formula, 509

plane, 26
equation, 751
figures, 7
hyperbolic, 747
Poincare, 747
trigonometry, 726

planet, 491
planetary motion, 41, 369
Platonic solids, 13
Pluto, 44
Poincare, 125

group, 851, 856
lemma, 305, 341, 486, 527
theorem, 306, 820
upper half-plane, 559, 747

point, 742
at infinity, 761, 763
bifurcation, 289
conjugate, 928
double, 800
extremal, 953
fixed, 560
focal, 9
projective, 761
rational, 824
regular, 800
regular singular, 592
saddle, 952, 1136
singular, 800

Poisson
approximation theorem, 1012



1262 Poissonian principle

bracket, 489, 923
distribution, 1011
equation, 500, 516
equation of motion, 923
formula, 565
process, 1041

Poissonian mechanics, 489
polar

coordinates, 23, 285, 325, 344, 479
decomposition, 637
space, 529

pole, 545
polygon, 675

regular, 684
polyhedron, 13

regular, 14
polynomial, 70, 261, 615, 678

annihilator, 832
approximation, 1104
Chebychev, 1090, 1105
discriminant, 579, 623
division, 616
Fourier, 1103
greatest common divisor (gcd), 617
Hermite, 124
homogenization, 809
homogenous, 814
interpolation, 1075
irreducible, 679, 718
Lagrange, 1076
Laguerre, 123, 1091
Legendre, 123, 510, 1090, 1104
Newton,1077
of several variables, 145
product representation of, 618
resultant, 624, 816
ring, 670, 678
seperable, 679
splitting field of, 679
symmetric, 623
theorem, 32
trigonometric, 1165
zeros of, 618

postulate, 905
potential, 339, 367

chemical, 492, 950, 988
electrostatic, 505, 506, 569
energy, 367
equation, 1128
single (double) layer, 1163
velocity, 566
volume, 373

power
function, 50
series, 114, 377, 383, 533, 596

complex, 536

domain of convergence, 533
radius of convergence, 383
table, 114

precision degree, 1086
preconditioning, 1064, 1155
pressure, 284, 483, 492, 519, 566
prime, 718

number, 688
relatively, 689
twin, 696

primitive, 138
function, 308, 313

principal
bundle, 306
curvature radius, 783
ideal ring, 718
value, 561

Principia Mathematica, 1195
principle

anology, 569
decomposition, 336
Dirichlet, 565, 1194
Dirichlet's localization, 695
drawer, 602
duality, 761
Einstein, 515
Gauss fitting, 1070
Hamilton - of stationary action. 911,

921
Heisenberg uncertainty, 920
Huygens', 504, 915
identity, 570
invariance, 332
Leray-Schrauder, 418
local-global, 533, 717, 723
maximum, 433, 502, 522, 544
minimum, 463, 951
of Cavalieri, 321, 324, 334, 349
of equilibrium, 428
of Fermat, 477, 914
of fluctuations, 988
of holomorphic transformations, 554
of holomorphicity, 383
of invariance, 261, 312
of least action. 420
of linearization, 638
of maximal entropy, 950
of reduction, 425
of relativity, 854
of Rouche, 552
of Runge, 1112
of superposition, 426, 612, 637
permanence, 389
Pontryagin maximum, 944
Schwarz reflection, 571, 587
transformation, 335



prism product 1263

uncertainty, 1195
variational, 501

prism, 11
probability, 77, 977

conditional, 992
density, 981, 997, 1002
Kolmogorov axioms, 989
measure, 989
model, 977
of ground trial, 1008
space, 989
theory, 387

problem
birthday, 978
book, 600
boundary value, 421, 459

exterior, 1164
numerical treatment, 1118

brachistochrone, 916
Buffon needle, 992
capacity utilization, 963
Cauchy

numerical treatment, 1109
Delian (doubling the cube), 675, 683,

812
design, 965
distribution, 964
eigenvalue, 595

numerical treatment, 1065
factorization, 829
general linear optimization, 955
geodesy, 734
Hilbert list, 1194
ill-posed, 422, 1176
initial value, 1142

numerical treatment, 1109
initial value-boundary, 1142
interpolation, 1075

trigonometric, 1165
inverse, 1176
isoperimetric - of Queen Dido, 931
Jacobi inversion, 577
Jacobian eigenvalue, 928
LOP, 955
lottery, 600, 977
mixing, 964
moment, 1001
of geometric optics, 914
on spherical triangle, 740
over-coverage, 965
parallel, 746
saddle point, 1134
shift planing, 965
shortest path, 913
squaring of the circle, 675, 683
three antique, 675

three body, 470
transportation, 966
triangle, 730
trisection of angle, 675, 684
two body, 450
variational, 911
vibration, 595
Waring, 696
well-posed, 422, 881, 1176
with constraints, 930
word, 600

procedure
ABM43, 1116
adaptive discretization, 1149
BDF, 1117
Cholesky, 1060
combined step, 1062
complex, 1050
difference (stability), 1139
discretization, 1122
Gauss-Jordan, 1057
Gauss-Seidel, 1153
Graeffe, 1099
iteration, 1152
Jacobi, 1153
JOR, 1063
Lax-Wendorff, 1144
multiple step, 1115
Newton,1093
non-linear single step, 1097
prediction-correction, 1116
Ritz-Galerkin, 1124
Romberg, 1088
Runge-Kutta, 1111
single step, 1063
SOR, 1063
SOR-Newton, 1097

process
chemical, 511
compression, 473
dissipative, 522
flow, 514
Gaussian, 1047
non-stationary, 427
Poisson, 1041
rarefaction, 473
stationary, 427, 502, 514
stochastic, 500, 976, 1046
wave, 514
Wiener, 1044

product
Cartesian, 895
exterior, 301, 650, 659
formula of Euler, 710
formula of Jacobi, 698
formula of Vieta, 709



1264 product random

formula of Wallis, 709
formulas, 111
infinite, 132
inner, 650, 659
ordinal, 903
representation of polynomials, 618
symbol, 28
tensor, 301, 650
Wall, 390

product rule, 135, 263
for differential forms, 305
Leibniz, 264

program (Erlanger), 725
projection, 762
projective

equivalence, 767
geometry, 760
group, 764

complex, 765
point, 763
space

complex, 765
real, 763

variety, 833
projectivity, 767
proof, 875, 878

constructive, 880
existence, 879
incorrect, 882
indirect, 878
induction, 878
uniqueness, 879

propagator, 438, 454
proper motion, 753
proton charge, 846
Proxima Centauri, 5
pseudo-orthonormal basis, 848, 850
pseudo-unitary

geometry, 847
group, 848
operator, 848
space, 847

pseudoconvex domain, 597
pseudosphere, 791
pull-back, 485

of differential form, 528
pyramid, 11

capped, 12
Pythagorean

school, 239, 1181
theorem, 729

quadrangle, 6
quadratic

equation, 49, 619
form, 630

number field, 719
reciprocity, 714, 1189
surface, 631, 755

quadrature, 1085
formula, 1086
Gauss-Chebychev, 1090
Gauss-Laguerre formula, 1091
Gaussian, 1089
of the circle, 712

qualitative, 269
quality control, 1012
quantitative, 269
quantization, 489

rules, 924
second, 864

quantized, 686
motion, 506

quantum
electrodynamics, 427, 511, 1197
field theory, 421, 532, 687, 694
mechanics, 392, 489, 506, 837, 976,

1195
numbers, 507
Planck action, 924
systems, 638

quark, 845, 864
quartic

curve, 811
Klein, 808

quasi-periodic motion, 488, 491
quasilinear

differential equation, 427
system of equations, 512

quaternion, 660, 673, 860, 1190
quotient

field, 674
rule, 135, 263
space, 646

radian, 6
radioactive decay, 407, 864
radius

of convergence, 383, 635
spectral, 635
spectral (of matrix), 1062

Ramanunjan's Notebook, 710
random

event, 976
function, 976
sample, 1016
variable, 75, 976, 996

discrete, 998
expectation, 999
independent, 985, 1002
moments, 1001
variance, 1003



range ring 1265

vector, 984, 1001
dependency curve, 1005

range, 45
rank, 643

theorem, 614
Rankine—Hugoniot

conditions, 511
discontinuity condition, 520

rarefaction process, 473
ratio test, 378
rational

function, 625
field of, 674
integration of, 144
of several variables, 145

map, 833
number, 225

ray, 743
real part of a complex number, 534
reciprocal basis, 356
rectangle, 7
recursion formula

Euler, 698
for continued fractions, 700

recursive function, 902
reflection, 231, 753

in time, 863
spatial, 862

regression
line, 81, 985, 1003, 1071
linear, 1031
multiple, 1031

regula falsi, 1093
regular

initial value problem, 530
point, 800
singular point, 592

regularity condition for PDE, 524
regularization, 1178
relation, 892

equivalence, 893
logical, 899
order, 894

relative
computational precision, 1052
integral invariant of Poincare, 484

relatively prime, 689
relativistic mass, 859
relativity

equations of motion in, 919
general, 769

remainder term, 271
removable singularity, 545
renormalization, 694
repere, 776
residue, 406, 545, 1150

class, 670
class ring, 670
of numerical solution, 1061
theorem, 549, 567

resistance, 396
resolution of singularities, 834
resolvent

cubic, 621
of matrix, 627
set, 626

resonance, 413, 490, 705
resonant torus, 490
resultant, 624, 816
reversible thermodynamic process, 491
rheology, 919
rhombus, 7
Riemann

hypothesis, 549, 685, 690, 693, 1191
sphere, 555, 558, 591
surface, 533, 555, 558, 576, 584, 591,

686, 804, 807, 819, 1191
branching point, 562
genus of, 589, 807
topological structure, 589
topological type, 562

C-function, 112, 548, 687, 693
functional equation of, 693

Riemannian
curvature tensor, 786
geometry, 306, 749, 1191
manifold, 543
metric

on C, 543
on surface, 786

right-hand rule, 338
right-handed system, 25
rigid body, 802
ring, 606, 669

automorphism, 670
commutative, 669
Euclidean, 718, 721
factor, 670
factorial, 718
homomorphism, 670
ideal, 670, 718
irreducible element of, 718
local, 834

germs of functions, 835
localization of, 835
Noetherian, 719
of integers, 720
polynomial, 670, 678, 718
prime element of, 718
principal ideal, 718
residue class, 670
unique factorization, 718, 721



1266 Ritz

unit of, 717
with unit, 669

Ritz approximation method, 462
rod (heat conduction in), 498
Romberg

procedure, 1088
scheme, 1082

root, 26
nth, 26
of unity, 232
test, 379

rotation, 627, 753, 856
infinitesimal, 362

Rudolfian tables, 28, 1185
rule

chain, 536
Cramer's, 613
de Morgan, 877, 888
deduction, 898
for differentiating the inverse function,

136
golden - of mathematical statistics, 1015
Guldinian, 349
Laplacian, 604
Leibniz, 554
mean, 1087
Newton, 622
north-west corner, 969
of signs (Descartes), 622
of sums, 263, 536
product, 263, 536
quantization

Bohr and Sommerfeld, 924
Heisenberg, 924
Schrodinger, 924

quotient, 263, 536
right-hand, 338
Simpson, 1087
substitution, 321
trapezoidal, 1087, 1113

ruler and compass constructions, 682
Runge-Kutta procedure, 1111

S-matrix, 455, 534
saddle point, 952, 1136
scalar, 351

product, 354, 840
indefinite, 850
Lorentz, 850

scattering (empirical), 75
scheme, 808, 831, 835

affine, 836
Priedrichs, 1144
Homer, 1097
of divided differences, 1077
Romberg, 1082

series

Schmidt orthogonalization procedure, 629
Schrodinger equation, 506, 924
Schwartz

delta distribution, 400
Schwarz

inequality, 38, 842
iteration, 1161
reflection principle, 571, 587
theorem, 279

Schwarz-Christoffel mapping formula, 563
scientific computation, see numerics
secant, 54
second fundamental form, 782
sector

ellipse, 9
hyperbola, 9
parabola, 9

segment, 743
self-adaptivity, 1150
self-adjoint operator, 845
semilinear differential equation, 427
separable, 679
sequence, 242, 377

admissible, 403
bounded, 246
Cauchy, 247
convergent, 243, 245
convolution, 403
decreasing, 247
increasing, 247
limit of, 238, 243
of complex numbers

convergence, 535
of functions, 381

convergence of, 535
limit, 382

of measurements (statistical evaluation),
80

of trials, 75
series

arithmetic, 29
asymptotic, 124
Cauchy multiplication, 380
convergence criteria, 378
convergent

Cauchy, 377
Leibniz, 384
uniformly, 381

Dirichlet, 548
Dirichlet L, 695
divergent, 377

summation of, 389
double sum, 381
Eisenstein, 580
Fourier, 127, 385, 496

principle of superposition, 386



series

smoothness of, 387
geometric, 29, 111, 115, 377, 392
hypergeometric, 117
infinite, 377
Laurent, 545

principal part, 548
Legendre, 120
Leibniz, 4, 111, 380, 385, 710, 712
Newton, 710

binomial, 115
power, 114, 377, 383, 533, 596

radius of convergence, 383
special, 111
Taylor, 269, 384
terms of, 377
time, 1033

stationary, 1035
variational, 1016
Vieta, 709
Wallis, 709

set, 884
admissible, 330
algebaic, 832
analytic, 828

irreducible, 828
arc-wise connected, 258
axioms, 900
bounded, 256
cardinality, 891
Cartesian product, 888, 895
closed, 257
compact, 257, 558
complement, 887
connected, 258, 558
convex, 275

extremal point of, 953
countable, 892
critical, 819, 829
cylindrical, 1043
definition of, 885
dense, 292
difference, 887
disjoint, 886
empty, 886, 901
equality, 885
family of, 895
finite, 891
image of, 889
infinite, 891
intersection, 886, 895
intersection-free, 886
maximal element, 894
measure of, 332
open, 257, 558
power, 891
simply connected, 258

solvable 1267

successor, 901, 902
system of, 895
theory, 884, 1192
thin, 819
totally ordered, 894
union, 886, 895
zero, 832

sexagesimal system, 5, 1180
sheaf, 533, 595, 831

of continuous functions, 835
stalk, 835

Shimura variety, 723
Shimura—Taniyama-Weil conjecture, 582, 686,

723
shock

captuing, 1147
wave, 471, 472, 520

sieve of Eratosthenes, 688
signature, 630, 848

criterion of Jacobi, 630
similar

figures, 766
matrix, 628

similarity
geometry, 726
transformation, 556

simple group, 665
simplex

algorithm, 953
pivot column, 959

tableau, 958
simply connected, 258

domain, 533
Simpson rule, 1087
sine, 53

hyperbolic, 63
law, 727
Taylor series of, 271

singularity, 773, 800
apparent, 73
cusp, 801
double point, 800
resolution, 803, 804, 819, 830, 834

Sirius, 5
skew-symmetric

bilinear form, 651, 869
matrix, 632
tensor, 659

Sobolev space, 344, 511, 1129
solar system

stability of, 491
solution

branch, 289
fundamental, 455
generalized, 472

solvable group, 669



1268 sound streamline

sound
speed of, 519
wave, 518

source strength, 566
space

Jzfp, 401
Banach, 638, 1144
configuration, 543, 922
curve, 775
Haar, 1107
Hilbert, 386, 638
linear

almost complex, 868
basis, 850
Lagrangian subspace, 870
orthonormal basis, 1103
outer direct sum, 659
symplectic, 869
with indefinite scalar product, 850

locally convex, 638
metric, 254, 352, 596, 716

neighborhood, 257
Minkowski, 850

multilinear algebra on, 852
orientation, 852

phase, 922
polar, 529
probability, 989
pseudo-unitary, 847
ringed, 835
Schwartz ̂ , 401
Sobolev, 511, 1129
tangent, 638
topological, 558
unitary, 840
vector, see space, linear

space-like vector, 851
span, 647
Spec R, 836
special theory of relativity, 306, 854
specific heat, 372, 493
spectral

analysis, 392
density, 1036
radius, 626

spectrum, 626, 635
speed of sound, 519
spherical

angle, 737
coordinates, 346, 507
cylinder, 349
excess, 738
function, 510
geometry, 736
pendulum, 591
triangle, 737

area of, 739
spin, 838
spinor, 862

algebra, 661
spiral, 793
spline, 1082
spring, 411
square, 7
square-free number, 719
stability, 292, 410, 417, 457

CFL-conditions, 1145
of difference operator, 1145
theorem of Liapunov, 458

stable
equilibrium, 428
optimally, 1146

standard
deviation, 981, 1000
deviation (empirical), 76
model, 694, 769, 838, 860, 864, 1198

state
condition, 493
ground, 927
recurrent, 1041
stable equilibrium, 1096
transient, 1041

statement, 873, 896
stationary

phase, 126
process, 427, 502, 514

statistical
comparison of sequences of trials, 80
hypothesis, 1017
physics, 306, 694, 986

basic problem of, 950
system, 687

statistics
golden rule, 1015
main theorem, 1022
mathematical, 75

Steinitz'
theorem (change of basis), 639
theorem (on algebraic closure), 679

step width, 1109
stereographic projection, 558
Stieltjes integral, 998
Stirling

formula, 3, 573
interpolation formula, 1080

stochastic
matrix, 1039
process, 500, 976, 1046

Stokes
equation, 1134
theorem, 143, 336, 372, 542

streamline, 366



strictly Taylor 1269

strictly hyperbolic differential equation, 514
string

equation of vibrating, 939
theory, 543, 582, 662, 808

strophoid, 810, 819
subdeterminant, 614

major, 630
subdifferential, 951
subfield, 672
subgradient, 951
subgroup, 665

normal, 665
trivial, 665

subharmonic function, 597
subring, 670
subsequence, 247

convergent, 257
subset, 885
subspace, 640
substitution

Euler, 148
rule, 140

for integrals, 314
subtangent, 951
sum

direct, 647
double, 381
Gauss, 715
of angles in an n-gon, 6
of powers, 33
of squares, 33
ordinal, 903
outer direct, 659
rule, 135

Sumeria, 5
summation

formula of Leibniz, 710
formula of Newton, 710
symbol, 28, 377

sun, 354, 491
death of, 45

superalgebra, 662
supercommutativity, 305
superposition principle, 426
supersymmetry (SUSY), 864
supremum, 241
surface, 638, 778

canonical coordinate system, 783
capillary, 919
constant Gaussian curvature, 783
first fundamental form of, 780
frame, 778
map, 781
minimal, 784, 919, 936
orientation, 782
principal curvature directions of, 783

quadratic, 631, 755
Riemann, 686, 804, 807, 819, 1191

genus of, 807, 819
ruled, 785
second fundamental form of, 782
singularity, 779
tangent plane, 779

surface integral, 343
surjective, 642, 889
Sylvester's law of inertia, 631
symbol, 512, 514
symmetric bilinear form, 651
symmetry, 306, 432, 1191

duality of Maxwell equations, 858
infinitesimal, 839
super- (SUSY), 864

symplectic
basis, 869
form, 474, 481, 633, 869
geometry, 306, 633

canonical differential form, 474
of C, 542
of the plane, 542

map, 869
space

isotropic subspace, 870
Lagrangian subspace, 870

structure, 489, 542
transformation, 480, 486
volume form, 870

system
of sets, 895
oscillating, 705

t-test, 81
table

cost, 967
of mathematical statistics, 83
of values, 46
transport, 967

tangent, 59, 262, 269, 770, 817
equation of, 262
hyperbolic, 64
law, 727
plane, 638
space, 638
to a circle, 18
to a curve, 638
to a hyperbola, 21
to an ellipse, 20
to parabola, 22

tautology, 876, 897
Taylor

expansion, 404, 638, 769
series, 269, 359, 384, 408

integral remainder term, 272



1270 Taylor theorem

remainder term, 271
Taylor's theorem, 271, 293
temperature, 284, 694

absolute, 519, 950
distribution, 498

tensor, 655
algebra, 658
contraction, 656
covariant, 779
electromagnetic field, 858
Levi-Civita, 782
metric, 781
product, 301, 519, 655, 657

universal property of, 657
test

X2-suitability, 1024
correlation, 1020
F, 1020
for normal distribution, 1021
Kolmogorov-Smirnov, 1022
minimal, 957
significance (f-test), 1019
Wilcoxon, 1026

test function, 472
testing hypothesis, 1013
tetrahedron, 14
theorem

Abel's, 383
addition, 54

algebraic, 577
for p, 579
for elliptic functions, 581
for the p-function, 805
of Fagnano, 574

alternate, 1107
approximation

of Liouville, 706
of Roth, 707

Atiyah-Singer index, 643, 831, 868, 1197
Banach fixed-point, 434, 1095
basis, 848
basis (for exterior algebra), 658
basis (Hilbert space), 842
Bayes', 994
binomial, 31
Bolzano's - on zeros, 262
Bonnet, 788
Cantor's, 892
Cartan-Kahler, 306, 424
central limit, 982, 1006
Darboux, 869
de Rham, 341, 542
Desargues, 762
Dirichlet-Jordan, 401
equivalence (difference operators), 1145
ergodic (Markov), 1040

Euler' (on convergence of binomial se-
ries), 32

Euler's, 693, 695, 698
Fejer, 389
Faltings, 826
Fermat's, 697
Fermat's last, 723, 808, 827, 1198
finite generation of ideals, 833
Fubini, 143
fundamental

decomposition - of Dedekind, 720
of algebra, 532, 546, 552, 618
of arithmetic, 688
of calculus, 143, 307, 312, 321, 539
of logic, 877

fundamental - of algebra, 1189
gap, 691
Gauss, 143
Gauss (on constuctions), 684
Gauss-Stokes, 143
generalized vortex - of Helmholtz, 484
global limit, 1010
Godel's completeness, 900
Godel's incompleteness, 906
Hardy's, 694
Herglotz' spectral, 1037
Hilbert (on real numbers), 745
Hilbert basis, 719
Hironaka, 834
implicit function, 288, 290
integrality (transport problems), 968
Jacobi, 697
Kolmogorov-Smirnov, 1022
Lebesgue, 266
Lindemann, 712
Liouville (phase flow), 922
Liouville's, 489, 578
local limit - of de Moivre and Laplace,

1010
main

of Galois theory, 681
of linear optimization, 953
of mathematical statistics, 1022

mean value, 252, 262, 266
for integrals, 312, 332

Minkowski lattice point, 715
monodromy, 571
Mordell, 826
Noether's, 432, 913
Nullstellensatz, 833
of Abel and Galois, 681
of Bezout, 815
of Bolzano, 252
of Bolzano-Weierstrass, 248, 257
of Brauer and Weyl, 867
of Cartan-Kahler, 529
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global version, 531
local version, 530

of Cauchy, 524, 544
of Cauchy and Morera, 538
of Cauchy, on PDE of order 1, 523
of Cauchy-Kovalevski, 523
of Chebychev, 1006
of Church, 900
of de Moivre, 980
of determinant, 635
of Diophantus, 825
of Dirichlet, 691
of Euclid, 688
of Euler, 713
of Euler-Lagrange, 706
of Euler-Meusnier, 785
of Fermat, 713
of Frobenius, 525
of Fubini, 321, 322, 333
of Gauss, 326, 337, 706, 715
of Gauss (about n-gons), 10
of Gauss-Stokes, 321, 326
of Gelfond-Schneider, 707
of Godel-Cohen, 904
of Hadamard, 291
of Harnack, 821
of Hermite, 707
of Jacobi, 475
of Kolmogorov, 1006, 1047
of Krein-Milman, 953
of Lagrange, 476
of Lasker and Noether, 719
of Legendre, 692
of Liapunov, 458
of Lindemann, 707
of Lindemann-Weierstrass, 707
of Liouville, 484, 546
of Minkowski-Hasse, 716
of Mittag-Leffler, 548
of Ostrowski, 716
of Peano, 435
of Perron, 628
of Picard, 546
of Picard and Lindelof, 434
of Picard-Lindelof, 417
of Poincare, 306, 820
of Pythagoras, 8, 319, 729, 748, 1180
of Schroder-Bernstein, 892
of Stokes, 306, 336
of Thales, 733
of trace, 635
of Vieta, 619, 620, 623, 1099
of Weierstrass, 251, 261
of Yau, 543
Oka's, 597
on additive groups, 668

on developing solutions, 463
on diffeomorphisms, 291
on discontinuities, 513
on flows, 482
on global inverse functions, 268
on homeomorphisms, 290
on implicit functions, 480
on inverse functions, 554
on local inverse functions, 267
on multiple zeros, 624
Poisson approximation, 1012
polynomial, 32
rank, 614, 648
ray, 733
residue, 549, 567
resolution of singularities (Hironaka),

830
Riemann mapping, 555
Riemann's, 693
Riemann-Roch, 831
Schauder fixed-point, 435
Schwarz, 279
simularity (matrices), 635
spectral, 627
spectral (time series), 1036
Steinitz' (change of basis), 639
Steinitz' (on algebraic closure), 679
Stokes, 372, 482, 542
structure (for linear spaces), 646
Sturm's, 461, 622
Taylor's, 271, 293
uniformization, 555, 807, 819, 1194
uniformization - of Hironaka, 829
vertex, 956
vortex - of Helmholtz, 482
vortex - of Kelvin, 482
Weierstrass preparation, 596, 829
Wiles, 828
Zermelo's, 894

theorema egregium, 424, 526, 769, 786
theory

algebraic functions, 599
analytic number, 691
bifurcation, 801
catastrophe, 630, 801
chaos, 705, 1032
class field, 723, 1193
coding, 713
cohomology, 1197
complexity, 51, 1050
conformal, 662
control, 439, 920, 940
dynamical systems, 687
elasticity, 919
electromagnatism, 864
elliptic integrals, 10
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epistemology, 905
field, 832
Galois, 10
game, 1195
gauge, 306, 511, 860
Gaussian - of quadratic forms, 802
geometric function, 533
group, 599
Hilbert-Schmidt, 459
ideal, 723, 832
information, 1197
integral equations, 802
invariant, 599, 833
KAM, 705
linear elasticity, 517
Maxwell - of electromagnetism, 1189
number, 802

analytic, 1190
strategy of, 686

of divisors, 717
of general relativity, 511
of relativity, 306, 854
perturbation, 44
photon, 926,1194
probability, 387, 1188
quantum, 802
quantum field, 421, 532, 687, 694, 851,

864
representation, 1193
set, 884, 1192
sheaf, 1197
special relativity, 847, 1194
spectral, 802
standard, 864
statistical physics, 950
string, 543, 582, 662, 808, 919
superstring, 687

thermodynamics, 284, 306, 424, 519, 1192
free energy, 494
integrability condition, 494
potential, 494
process, 491

theta function, 576
three body problem, 470
time series, 1033
time-like vector, 851
topological space, 558
topology, 418, 590, 638, 1192

algebraic, 802
combinatorial, 669
Zariski, 833

torque, 369
torsion group, 668
torus, 13, 350, 488, 577, 589, 805

invariant, 490
resonant, 490

total differential, 137, 299, 441
trace, 719

of matrix, 610
tractrix, 790
trajectory, 357
transcendence, 707
transcendental

field extension, 679
number, 678

transformation
backward, 1166
birational, 816

Diophantine - of Poincare, 826
canonical, 480
contact, 495
deck, 577
fast Givens, 1068
Fourier, 192, 398
Fourier cosine, 400
Fourier integral, 1169
Fourier sine, 400
Galilei, 855
holomorphic, 554
integral, 391
Laplace, 205, 393

inverse, 397
Laplace and Fourier, 402
Legendre, 921

general, 495
Lorentz, 856
modular, 582
Mobius, 559
of differential form, 303
of functions, 47
Poincare, 856
rotation, 627
rules for differentials, 296
similarity, 556, 628
sinh, 1093
special Lorentz, 855
symplectic, 480, 486
tanh, 1092
wavelet, 1170
Z-, 217, 403

translation, 753
operator, 403

transposition, 602, 664
transversal wave, 517
trapezoid, 7
travel (sea and air), 741
triangle, 6, 7, 744

acute, 728
congreunt, 733
equilateral, 8, 728
inequality, 36, 230, 311, 332, 727, 738
laws, 727
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right, 8, 728
similar, 733
spherical, 734, 737
surface area of, 751

triangular form, 612
triangulation, 1125
trigonometric

function, 118
inverse, 66

polynomial, 1165
trigonometry, 1183

hyperbolic, 747
plane, 726
spherical, 736

triple product, 355
trivial subgroup, 665
trochoid, 797
two body problem, 450, 478

under-relaxation, 1063
underflow, 1053
uniform

approximation, 1107
convergence, 381

uniformization, 803
of Riemann surface, 586
theorem, 1194

union
disjoint, 888
of sets, 895

uniqueness
for solutions of differential equations,

521
of boundary value problem, 461
of initial value problem, 454
of Laplace transform, 393
of Z-transform, 403
solution of heat equation, 422
solution of ordinary differential equa-

tion, 434
theorem of Picard-Lindelof, 417

unit, 717
circle, 55, 255
normal vector, 752

unitary geometry, 840
universal

covering, 586
property, 657

unstable equilibrium, 428
upper bound, 241
upper half-plane, 559, 747
Uranus, 44

valuation, 715, 723
p-adic, 716

variable, 235
action-angle, 926

angle, 488
basis (linear optimization), 957
entity, 900
random, 75, 976, 996

covariance, 1003
discrete, 998
expectation, 999
independent, 985, 1002
moments of, 1001
standard deviation, 1000
variance, 1000

variance, 981, 996, 1000
empirical, 76

variation
nth, 292
first, 912
in combinatorics, 600
of constants, 443
second, 299, 912

variational principle, 501
variety

analytic, 828
projective, 833

vector, 351
acceleration, 358
addition, 352
affine, 351
bundle, 638
free, 353
isotropic, 847, 849
light-like, 851
linear combination, 352
linearly independent, 352, 639
orthogonal, 355, 629, 849
random, 984, 1001
scalar multiplication, 352
scalar product, 354
space, see linear space
space-like, 851
time-like, 851
triple product, 355
unit, 351
velocity, 357

vector field, 360
integral curve of, 366, 481

vector product, 355
vector space, see linear space
vector-valued function, 357

continuous, 357
derivative of, 357

velocity, 518
field, 487
potential, 566
vector, 357, 358

versiera of Agnesi, 809, 821
vertex
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basis, 956
non-degenerate, 956

vertical circle, 23
vibrating string, 497
vibration problem, 595
Virasoro algebra, 662
volume, 843

form, 342, 484, 842
Minkowski, 852
symplectic, 870

of a cone, 324
of solids, 10
parallelopid, 752
potential, 373

vortex, 482
lines, 482

Wall product, 390
wave

elastic, 517
electromagnetic, 392
equation, 503, 516
front, 430, 475, 517, 915
function, 861
process, 514
seismographical, 392
shock, 471, 520
sound, 518

velocity, 518
transversal, 517
transversal and longitudinal, 511

wavelet, 1169
Daubechies, 1175
Haar, 1170
order & moments, 1171
transformation, 1170

weak solution, 1147
wedge (A), 302
wedge (geometrical figure), 12
Weierstrass

^-function, 928
p-function, 576, 579, 590
preparation theorem, 596, 829

well-posed, 408, 412, 422, 881, 1176
wheel curve, 796
white noise, 399, 1036, 1038
Wiener

measure, 1044
process, 1044

Wilcoxon-test, 83
Wolf prize, 686
word problem, 600
work, 366, 491
Wronskian determinant, 455

zero

Z-transformation, 217, 391
Zariski topology, 833
zero

divisor, 608, 669
multiplicity of, 546, 618

Young inequality, 38



Mathematical Symbols

The following list only contains those symbols used most often.

Logical symbols

Prom statement si the statement SB follows. An alternative way
of saying this is: £? is sufficient for ̂ , and 38 is necessary for si.
The statement stf is equivalent to the statement SB. Alternatively,
one also says: si holds if and only if 88 holds. Equivalently: si is
necessary and sufficient for SB.

{x : ...} or {x|...} The set of all elements x, which have the property indicated by
the ellipses . . .

 The end of a proof; a different way of indicating this is the ab-
breviation q.e.d. (quod erat demonstandum - which was to be
shown).
The statement si or the statement SB is true.
Both statements si and 38 are true.
The statement si does not hold (the negation of si}.
All elements x have the property indicated by the ellipses .. .
There is (exists) an element x with the property indicated by the
ellipses .. .
There exists precisely one element x with the property . . .

a ~ b a is equivalent to 6 (under an equivalence relation).
X/ ~ The set of all equivalence classes in X under an equivalence rela-

tion ~.
a = b a is equal to b.
a ^ b a is not equal to b.
/(x) := x2 The function /(x) is defined to be equal to x2.
/(x) = 0 The function /(x) is identically equal to 0, i.e., /(x) = 0 for all x.
/ = const The function / is constant, i.e., /(x) attains the same value for all

values of the argument x.
N The set of natural numbers 0,1,2, . . .
N+ The set of positive natural numbers 1,2,. . .
Z The set (ring) of integers.
Q The set (field) of rational numbers.
R The set (field) of real numbers.
C The set (algebraically closed field) of complex numbers.
K A general notation for a field, usually R or C.
Rn The set of all n-tuples (xi , . . . ,xn), where all Xj are elements of

R.

xy The Euclidean scalar product for x = (xi, . . .,xn), y =

( j / i , . . . , yn) G Rn, i.e., x and y n-dimensional Euclidean vectors.

(x,y) The unitary scalar product for x = (xi,...,xn), y =

(y-\...., yn] e Cn. i.e., x and y n-dimensional complex vectors.
|x
7T

e
C
i

The Euclidean norm (length), defined by \/xx-
The Ludolf number it (spoken 'pie'), TV
The Euler number e= 2.7182818 . . .
The Euler constant C= 0.5772 . . .
The imaginary unit for which i2 = — 1.

= 3.14159
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n! Pronounced n-factorial, this is the product of the first n postive
natural numbers 1, 2 . . . . , n.

A binomial coefficient.
V'V

Re 2, Imz

~z
arg,?
a< b
a <b
a = bmodp

M]
]a,6[
[a,6[
]a,6]
sgna

The real (resp. imaginary) part x (resp. y) of a complex number
z = x + iy.
The complex conjugate number to z = x + iy, i.e., ~z = x — iy.
The argument (angle) of the complex number z.
a is less than or equal to b.
a is strictly less than b.
a is congruent to b modulo p, i.e., the difference b — a is divisible
by p.
The closed interval {x G R | a < x < b}.
The open interval {x G R | a < x < b}, also denoted (a, b).
The half-open interval {x G M a < x < &}, also denoted [a, b).
The half-open interval {x € R a < x < b}, also denoted (a, b].
The sign of a number a or of a permutation a.

The sum of the numbers aj, a\ + • • • + an.

The product of the numbers a,j, ai • a? • • • an.

min{a, 6} The smaller of the two numbers a and b.
max{a, b} The larger of the two numbers a and b.

QX

\nx
\ogax
xa

sinx, cosx
tanx, cotx
arcsinx, arccosx

sinhx, coshx
tanhx, cothx
arsinhx, arcoshx
artanhx, arcothx

Elementary functions

The positive square root of a positive real number x (e.g., \/4 = 2)
or a fixed square root of a complex number x.
An nth root of a number x, e.g., \/8 = 2 because 23 = 8 and
\/^8 = —2 because (— 2)3 = —8; the other third roots of —8 are
complex.
The value of the exponential function at the point x, or the expo-
nential function (as a function of x).
The natural logarithm of x (logarithmus naturalis).
The logarithm of x to the basis a.
The general power function (as a function of x} or the value of the
Qt?l-power of the number x (xa = ealnx).
The sine and cosine functions.
The tangent and cotangent functions.
The arc-sine and arc-cosine functions, the inverse functions of the
sine and cosine functions.
The hyperbolic sine and cosine functions.
The hyperbolic tangent and cotangent functions.
The inverse functions of the hyperbolic sine and cosine functions.
The inverse functions of the hyperbolic tangent and cotangent
functions.
The limit of the sequence {xn}] another notation for this is xn —>• L
as n —>• oo, where L is the limit value.
The limit of the function / as x tends to a.

The derivative of the function / at x.
The second derivative of the function / at x.
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The partial derivative of the function / with respect to x.

The second partial derivative of the function / with respect to the
variable x (first), then y.
The partial derivative of the function / with respect to the variable

3 '

An abbreviation for the partial derivative of the function / given
by d"1^"2 • • • 9""/, which means more precisely

where |a| := QI + • • • + an.
The total differential of the function /.
The Cartan derivative of a differential form uj.

The integral of the function / on the interval [a, b].

The integral of the function / on the set G.

The integral of a differential form u> on the set G.

A surface integral.

The gradient of (for example) a temperature field T.
The divergence of the electromagnetic field E.
The curl of the electromagnetic field E.
The Laplace operator of the temperature field T, i.e., AT :=
Div grad T.

The nabla operator, defined as

The quotient f(x}/g(x) tends to zero as x —» a.
The quotient f(x)/g(x) is bounded in a neighborhood of a (no
statement about the behavior at a).
The quotient f(x]/g(x) tends to unity as x —> a.
The boundary of a set U.
The closure of a set U, i.e., U = U U dU.
The interior of a set U.
The set of all functions / : G —> R, which have continuous partial
derivatives of all orders up to and including k on the open set G.
The set of all functions / : G —> R, which, together with their
partial derivatives of all orders up to and including fc, can be con-
tinously extended to the boundary G.
The set of all functions / : G —> R, which have continuous partial
derivatives of arbitrary order on the open set G.
The set of all functions / € G°° (G), which vanish outside a com-
pact subset of G.
The set of all measurable functions /, i.e., for which

the integral is to be understood in the sense of

Lebesgue, which includes the classical integral.
The transposed matrix of a given matrix A (rows and columns are
exchanged).
The adjoint matrix of a given matrix A (transposed and complex-
conjugated).
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rankyl
det^4
tr.4
5jk

E, I
ab
a x b
(abc)
i, j, k

X®Y
X®Y
X/\Y

X/Y

a®b
a A b

x E M
xgM
ACM, AcM

ACM
AnB
AUB
A-B

AxB.
2A

0
f:ACM — > B
£>(/), Dom/
R ( f ) , Im/
f(A)
rl(B]
/, id
spanL
measM

The rank of a matrix A.
The determinant of a quadratic matrix A.
The trace of a quadratic matrix A.
The Kronecker symbol defined by the conditions Sjk — 0 for j ^ k
and 8jk — 1 f°r j — k.
A unit matrix.
The scalar product of two vectors a and b.
The vector product of two vectors a and b.
The triple product defined by (a x b)c.
The orthonormal standard basis vectors of a Cartesian coordinate
system.
The vector space direct sum of linear spaces X and Y.
The tensor product of two linear spaces X and Y.
The exterior product (Grassmann product) of two linear spaces X
andF.
The factor space of a linear space X with respect to a linear subspace
Y.
The tensor product of two multilinear forms a and b.
The exterior product of two alternating linear forms a and b.

Sets and maps

x is an element of a given set M.
x is not an element of a given set M.
A is a subset of a given set M, i.e., every element of A also is an
element of M .
A is a proper subset of M, i.e., A C M and A ^ M.
The intersection set of two given sets A and B.
The union set of two given sets A and B.
The difference of two sets A and 5, i.e., the set of elements of A not
belonging to B.
The product set of all ordered pairs (a, b) with a € A and b € B.
The power set of A, i.e., the set whose elements are the subsets of A.
The empty set.
A function / from a set A to a set B.
The domain of a mapping or function /.
The range of a mapping or function /.
The image of a set A under a mapping or function /.
The inverse image of a set B under the mapping or function /, i.e.,
the set of all x for which f ( x ) G B.
The identity operator or unit operator on a set, i.e., Ix = x for all x.
The linear hull (span) of a set L.
The measure of a set M.



Dimensions of important physical quantities

Basic quantities

length
time
mass
temperature
current
amount of substance

light intensity

m

s

kg

K°

A
mol

cd

meter
second
kilogram1

degree Kelvin
ampere
1 mol = L particles
(L is Avagadro's number, L = 6.022 - 1023)
candela

Derived quantities

speed

acceleration

(mass) density

force

pressure

(the mean
work

power

energy

action

heat

m/s

m/s2

kg/m3

N

Pa

meters per second
(distance per time)

meters per second squared
(change in speed per time)

kilograms per cubic meter
(mass per volume)
Newton N = kg-m/s2

(force time acceleration)

Pascal Pa = N/m2

(force per surface area)
air pressure at sea level is roughly 105 Pascal)

J

W

J
eV

Js

J

joule J = Nm
(force time distance)

watt W = J/s = VA
(performed work per time, energy per time)
joule J = Nm = kg-m2/s2 = Ws
electron volt 1 eV = 1.6 • 10~19 J
(performed work, mass time speed squared)

joule-second
(energy times time)
joule J = Nm

1 Modern physics requires the so-called atomic unit u. This is one-twelfth of the mass of a 12C
carbon atom, for which u = 1.661 • 10"~27 kg.



1280 Dimensions of physical quantities

(heat) capacity

specific heat

entropy

electric charge

voltage

electric field strength

cal

J/K

J/(K-kg)

J/K

C

V

V/m

calorie 1 cal = 4.1 868 J
(energy equivalent)

joules per degree Kelvin
(absorbed heat per change in temperature)

joules per degree Kelvin per kilogram
(heat capacity per unit mass)
joules per degree Kelvin
(contributed heat per temperature)

Coulomb, C = As
(current strength times time)

volt V = W/A
(electric power per current)

volts per meter
(force per charge, voltage difference per length)

magnetic flux  Wb Weber Wb = Vs
(induced voltage in a coil per time)

magnetic field strength T tesla T = Wb/m2

G Gauss 1 G = 10~4 T
(magnetic flux per surface area)

(the mean magnetic field strength of earth's magnetic field is roughly 0.5 Gauss)
electric resistance

(electric) capacity

induction

frequency

ft

F

H

Hz

ohm  = V/A
(voltage per current strength)

Farad F = C/V
(charge per voltage)

Henry H = Wb/A
(magnetic flux per current strength)
Hertz Hz = s"1

(number of oscillations per second)



Fundamental constants in physics

The values for the constants presented here as well as the error estimates are taken from
the list provided by the Task Group on Fundamental Constants of the Committee on
Data for Science and Technology (CODATA) of the Internatinal Council of Scientific
Unions (ISCU) which was recommended for general use in science and technology.9

The numbers in parenthesis following one of the values denotes the error in the last
places of that constant.

Example: The value h = 6.6260755(40) means h = 6.6260755 ± 0.0000040.

The errors indicated are the standard deviation of the value (cf. CODATA Bulletin No.
63, November 1986 and E. Cohen, B. Taylor, Review of Modern Physics 59, 4 (1987)).

9For mathematical constants, see section 0.1.1 of the book.
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e

velocity of light in a vacuum
m

agnetic field constant

electrom
agnetic field constant

gravitational 
constant

acceleration due to the earth's gravity
Planck action quantum

, Planck 
constant
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agnetic) field flux quantum
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constant
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erfeld fine structure constant
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circulation quantum
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ass of an electron
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specific electron charge
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avelength of an electron
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1/M
oC

o
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h/e
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2/2h
a

-
1

a
2

RVC =
 m

ecoQ
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N
um

erical value
w

ithout pow
er

2.99792458
4-7T

=
 1.2566370614...

8.854187817...
6.672 59(85)
9.806 65
6.626 075 5(40)
4.1356692(12)
1.05457266(63)
6.5821220(20)
1.60217733(49)
2.41798836(72)
2.06783461(61)
4.8359767(14)
2.58128056(12)
3.87404614(17)
9.2740154(31)
5.78838263(52)
5.0507866(17)
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JV
am

e

m
agnetic m

om
ent of an electron

g-factor of an electron

rest m
ass of a m

ionits energy equivalent in eV
ratio rest m

ass m
ion to rest m

ass electron
m

agnetic m
om

ent of a m
ion

rest m
ass of a protonits energy equivalent in eV

ration rest m
ass proton to rest m

ass electron
ratio rest m

ass proton to rest m
ass m

ion
specific proton charge
C

om
pton w

avelength of a proton
m

agnetic m
om

ent of a proton

gyrom
agnetic ratio of a proton

rest m
ass of a neutron

its energy equivalent in eV
ratio rest m

ass neutron to rest m
ass electron

ratio rest m
ast neutron to rest m

ass proton
C

om
pton w

avelength of a neutron
m

agnetic m
om

ent of a neutron

Sym
bol and form

ula

H
e

M
e
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B

M
e

/M
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g
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^/m
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ithout pow
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9.2847701(31)
1.001159652193(10)
1.838282000(37)
2.002319304386(20)

1.8835327(11)
0.113428913(17)
1.05658389(34)
2.06768262(30)
4.4904514(15)
4.84197097(71)
8.8905981(13)

1.6726231(10)
1.007276470(12)
9.3827231(28)
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Decimal powers

Power notation

IO1

102

103

106

109

1012

1015

lo-1

io-2

ID-3

io-6

io-9

io-12

io-15

Decimal notation

10

100

1,000

1,000,000

1,000,000,000

1,000,000,000,000

1,000,000,000,000,000

0.1

0.01

0.001

0.000001

0.000000001

0.000000000001

0.000000000000001

Prefix

deca

hecto

kilo

mega

giga

tera

peta

deci

centi

milli

micro

nano

pico

femto

Abbreviation

da

h

k

M

G

T

P

d

c

m

M

n

P

f

The Greek Alphabet

A alpha

B beta

gamma

delta

E epsilon

Z zeta

H eta

theta

/ iota

K kappa

lambda

M mu

TV nu

xi

O omicron

Pi

P rho

sigma

T tau

upsilon

phi

X chi

psi

omega
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