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4 Riemannian geometry

1 Differentiable manifolds, a brief review

1.1 Definitions and examples

Definition 1.2. A topological space M is called a topological n-manifold, n ∈ N, if

1. M is Hausdorff,

2. M has a countable base (i.e. M is N2),

3. M is locally homeomorphic to Rn.

Let M be a topological n-manifold. A chart of M is a pair (U, x), where

1. U ⊂M is open,

2. x : U → xU ⊂ Rn is a homeomorphism, xU ⊂ Rn open.

We say that charts (U, x) and (V, y) are C∞-compatible if U ∩ V = ∅ or

z = y ◦ x−1|x(U ∩ V ) : x(U ∩ V ) → y(U ∩ V )

is a C∞-diffeomorphism.

A C∞-atlas, A, of M is a set of C∞-compatible charts such that

M =
⋃

(U,x)∈A
U.

A C∞-atlas A is maximal if A = B for all C∞-atlases B ⊃ A. That is, (U, x) ∈ A if it is
C∞-compatible with every chart in A.

Lemma 1.3. Let M be a topological manifold. Then

1. every C∞-atlas, A, of M belongs to a unique maximal C∞-atlas (denoted by Ā).

2. C∞-atlases A and B belong to the same maximal C∞-atlas if and only if A∪B is a C∞-atlas.

Proof. Exercise

Definition 1.4. A differentiable n-manifold (or a smooth n-manifold) is a pair (M,A), where
M is a topological n-manifold and A is a maximal C∞-atlas of M , also called a differentiable
structure of M .

We abbreviate M or Mn and say that M is a C∞-manifold, a differentiable manifold, or a
smooth manifold.
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Definition 1.5. Let (Mm,A) and (Nn,B) be C∞-manifolds. We say that a mapping f : M → N
is C∞ (or smooth) if each local representation of f (with respect to A and B) is C∞. More
precisely, if the composition y ◦ f ◦ x−1 is a smooth mapping x(U ∩ f−1V ) → yV for every charts
(U, x) ∈ A and (V, y) ∈ B. We say that f : M → N is a C∞-diffeomorphism if f is C∞ and it has
an inverse f−1 that is C∞, too.

Remark 1.6. Equivalently, f : M → N is C∞ if, for every p ∈ M , there exist charts (U, x) in M
and (V, y) in N such that p ∈ U, fU ⊂ V , and y ◦ f ◦ x−1 is C∞(xU).

Examples 1.7. 1. M = Rn, A = {id}, Ā = canonical structure.

2. M = R, A = {id}, B = {x h7→ x3}. Now Ā 6= B̄ since id◦h−1 is not C∞ at the origin. However,
(R, Ā) and (R, B̄) are diffeomorphic by the mapping f : (R, Ā) → (R, B̄), f(y) = y1/3. Note:
f is diffeomorphic with respect to structures Ā and B̄ since id is the local representation of
f .

(R, Ā) (R, B̄)f

id
id

RR

x 7→ x3

3. If M is a differentiable manifold and U ⊂M is open, then U is a differentiable manifold in a
natural way.

4. Finite dimensional vector spaces. Let V be an n-dimensional (real) vector space. Every norm
on V determines a topology on V . This topology is independent of the choice of the norm
since any two norms on V are equivalent (V finite dimensional). Let E1, . . . , En be a basis of
V and E : Rn → V the isomorphism

E(x) =

n∑

i=1

x1Ei, x = (x1, . . . , xn).

Then E is a homeomorphism (V equipped with the norm topology) and the (global) chart
(V,E−1) determines a smooth structure on V . Furthermore, these smooth structures are
independent of the choice of the basis E1, . . . , En.
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5. Matrices. Let M(n ×m,R) be the set of all (real) n ×m-matrices. It is a nm-dimensional
vector space and thus it is asmooth nm-manifold. A matrix A = (aij) ∈ M(n ×m,R), i =
1, . . . , n, j = 1, . . . ,m

A =




a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
...

an1 an2 · · · anm




can be identified in a natural way with the point

(a11, a12, . . . , a1m, a21, . . . , a2m, . . . , an1, . . . , anm) ∈ Rnm

giving a global chart. If n = m, we abbreviate M(n,R).

6. GL(n,R) = general linear group

= {L : Rn → Rn linear isomorphism}
= {A = (aij) : invertible (non-singular) n× n-matrix}
= {A = (aij) : detA 6= 0}.

[Note: an n× n-matrix A is invertible (or non-singular) if it has an inverse matrix A−1.]

By the identification above, we may interprete GL(n,R) ⊂ M(n,R) = Rn
2
. Equip M(n,R)

with the relative topology (induced by the inclusion GL(n,R) ⊂ M(n,R) = Rn
2
). Now

the mapping det : M(n,R) → R is continuous (a polynom of aij of degree n), and therefore

G(n,R) ⊂ Rn2
is open (as a preimage of an open set R \ {0} under a continuous mapping).

7. Sphere Sn = {p ∈ Rn+1 : |p| = 1}. Let e1, . . . , en+1 be the standard basis of Rn+1, let

ϕ : Sn \ {en+1} → Rn

ψ : Sn \ {−en+1} → Rn

be the stereografic projections, and A = {ϕ,ψ}. Details are left as an exercise.

Rn+1

en+1

−en+1

R
n = R

n × {0}

p

ϕ(p)

ψ(p)

8. Projective space RPn. The real n-dimensional projective space RPn is the set of all 1-
dimensional linear subspaces of Rn+1, i.e. the set of all lines in Rn+1 passing through the
origin. It can also be obtained by identifying points x ∈ Sn and −x ∈ Sn. More precisely,
define an equivalence relation

x ∼ y ⇐⇒ x = ±y, x, y ∈ Sn.
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Then RPn = Sn/∼= {[x] : x ∈ Sn}. Equip RPn with so called quotient topology to obtain
RPn as a topological n-manifold. Details are left as an exercise.

9. Product manifolds. Let (M,A) and (N,B) be differentiable manifolds and let p1 : M×N →M
and p2 : M ×N → N be the projections. Then

C =
{(
U × V, (x ◦ p1, y ◦ p2)

)
: (U, x) ∈ A, (V, y) ∈ B}

is a C∞-atlas on M ×N . Example

(a) Cylinder R1 × S1

(b) Torus S1 × S1 = T 2.

10. Lie groups. A Lie group is a group G which is also a differentiable manifold such that the
group operations are C∞, i.e.

(g, h) 7→ gh−1

is a C∞-mapping G×G→ G. For example, GL(n,R) is a Lie group with composition as the
group operation.

Remark 1.8. 1. Replacing C∞ by, for example, Ck, Cω (= real analytic), or complex analytic
(in which case, n = 2m) we may equip M with other structures.

2. There are topological n-manifolds that do not admit differentiable structures. (Kervaire,
n = 10, in the 60’s; Freedman, Donaldson, n = 4, in the 80’s). The Euclidean space Rn

equipped with an arbitrary atlas is diffeomorphic to the canonical structure whenever n 6= 4
(”Exotic“ structures of R4 were found not until in the 80’s).

1.9 Tangent space

Let M be a differentiable manifold, p ∈M, and γ : I →M a C∞-path such that γ(t) = p for some
t ∈ I, where I ⊂ R is an open interval.

I

t

γ

U

p
f

Write
C∞(p) = {f : U → R | f ∈ C∞(U), U some neighborhood of p}.

Note: Here U may depend on f, therefore we write C∞(p) instead of C∞(U).
Now the path γ defines a mapping γ̇t : C

∞(p) → R,

γ̇tf = (f ◦ γ)′(t).

Note: The real-valued function f ◦ γ is defined on some neighborhood of t ∈ I and (f ◦ γ)′(t) is its
usual derivative at t.

Interpretation: We may interprete γ̇tf as ”a derivative of f in the direction of γ at the point
p“.
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Example 1.10. M = Rn

If γ = (γ1, . . . , γn) : I → Rn is a smooth path and γ′(t) =
(
γ′1(t), . . . , γ

′
n(t)

)
∈ Rn is the derivative

of γ at t, then
γ̇tf = (f ◦ γ)′(t) = f ′(p)γ′(t) = γ′(t) · ∇f(p).

γ

p γ′(t)

t

In general: The mapping γ̇t satisfies:
Suppose f, g ∈ C∞(p) and a, b ∈ R. Then

a) γ̇t(af + bg) = aγ̇tf + bγ̇tg,

b) γ̇t(fg) = g(p)γ̇tf + f(p)γ̇tg.

We say that γ̇t is a derivation.
Motivated by the discussion above we define:

Definition 1.11. A tangent vector of M at p ∈M is a mapping v : C∞(p) → R that satisfies:

(1) v(af + bg) = av(f) + bv(g), f, g ∈ C∞(p), a, b ∈ R;

(2) v(fg) = g(p)v(f) + f(p)v(g) (cf. the ”Leibniz rule“).

The tangent space at p is the (R−)linear vector space of tangent vector at p, denoted by TpM or
Mp.

Remarks 1.12. 1. If v,w ∈ TpM and c, d ∈ R, then cv + dw is (of course) the mapping
(av + bw) : C∞(p) → R,

(cv + dw)(f) = cv(f) + dw(f).

It is easy to see that cv + dw is a tangent vector at p.

2. We abbreviate vf = v(f).

3. Claim: If v ∈ TpM and c ∈ C∞(p) is a constant function, then cv = 0. (Exerc.)

4. Let U be a neighborhood of p interpreted as a differentiable manifold itself. Since we use
functions in C∞(p) in the definition of TpM , the spaces TpM and TpU can be identified in a
natural way.

Let (U, x), x = (x1, x2, . . . , xn), be a chart at p. We define a tangent vector (so-called coordi-
nate vector)

(
∂
∂xi

)
p

at p by setting
(
∂

∂xi

)

p

f = Di

(
f ◦ x−1

)(
x(p)

)
, f ∈ C∞(p).

Here Di is the partial derivative with respect to ith variable. We also denote

(∂i)p = Dxi
(p) =

(
∂

∂xi

)

p

.
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U

M

TpM

p

f

(
∂

∂xi

)
p x

f ◦ x−1

ei

R
n

x(p)

Remarks 1.13. 1. It is easy to see that (∂i)p is a tangent vector at p.

2. If (U, x), x = (x1, . . . , xn), is a chart at p, then (∂i)px
j = δij .

Next theorem shows (among others) that TpM is n-dimensional.

Lemma 1.14. If f ∈ Ck(B), k ≥ 1, is a real-valued function in a ball B = Bn(0, r) ⊂ Rn, then
there exist functions gi ∈ Ck−1(B), i = 1, . . . , n, such that gi(0) = Dif(0) and

f(y) − f(0) =

n∑

i=1

yigi(y)

for all y = (y1, . . . , yn) ∈ B.

Proof. For y ∈ B we have

f(y) − f(0) = f(y) − f(y1, . . . , yn−1, 0)

+ f(y1, . . . , yn−1, 0) − f(y1, . . . , yn−2, 0, 0)

+ f(y1, . . . , yn−2, 0, 0) − f(y1, . . . , yn−3, 0, 0

...

+ f(y1, 0, . . . , 0) − f(0)

=

n∑

i=1

/ 1

0
f(y1, . . . , yi−1, tyi, 0, . . . , 0)

=
n∑

i=1

∫ 1

0

d

dt

(
f(y1, . . . , yi−1, tyi, 0, . . . , 0)

)
dt

=

n∑

i=1

∫ 1

0
Dif(y1, . . . , yi−1, tyi, 0, . . . , 0)yidt.

Define

gi(y) =

∫ 1

0
Dif(y1, . . . , yi−1, tyi, 0, . . . , 0)dt.

Then gi ∈ Ck−1(B) (since f ∈ Ck(B)) and gi(0) = Dif(0).

Theorem 1.15. If (U, x), x = (x1, . . . , xn), is a chart at p and v ∈ TpM, then

v =
n∑

i=1

vxi(∂i)p.

Furthermore, the vectors (∂i)p, i = 1, . . . , n, form a basis of TpM and hence dimTpM = n.
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Proof. For u ∈ U we write x(u) = y = (y1, . . . , yn) ∈ Rn, so xi(u) = yi. We may assume that
x(p) = 0 ∈ Rn. Let f ∈ C∞(p). Since f ◦ x−1 on C∞, there exist (by Lemma 1.14) a ball B =
Bn(0, r) ⊂ xU and functions gi ∈ C∞(B) such that

(
f ◦ x−1

)
(y) =

(
f ◦ x−1

)
(0) +

n∑

i=1

yigi(y) ∀y ∈ B

and gi(0) = Di

(
f ◦ x−1

)
(0) = (∂i)pf. Thus

f(u) = f(p) +
n∑

i=1

xi(u)hi(u),

where hi = gi ◦ x and
hi(p) = gi(0) = (∂i)pf.

Hence

vf = v
(
f(p)

)
︸ ︷︷ ︸

=0

+
n∑

i=1

xi(p)︸ ︷︷ ︸
=0

vhi +
n∑

i=1

(vxi)hi(p)

=
n∑

i=1

vxi(∂i)pf.

This holds for every f ∈ C∞(p), and therefore

v =

n∑

i=1

vxi(∂i)p.

Hence the vectors (∂i)p, i = 1, . . . , n, span TpM . To prove the linear independence of these vectors,
suppose that

w =
n∑

i=1

bi(∂i)p = 0.

Then

0 = wxj =

n∑

i=1

bi (∂i)px
j

︸ ︷︷ ︸
=δij

= bj

for all j = 1, . . . , n,, and so vectors (∂i)p, i = 1, . . . , n, are linearly independent.

Remark 1.16. Our definition for tangent vectors is useful only for C∞-manifolds. Reason: If M
is a Ck-manifold, then the functions hi in the proof of Theorem 1.15 are not necessarily Ck-smooth
(only Ck−1-smothness is granted).

Another definition that works also for Ck-manifolds, k ≥ 1, is the following: Let M be a Ck-
manifold and p ∈M. Let γi : Ii →M be C1-paths, 0 ∈ Ii ⊂ R open intervals, and γi(0) = p, i = 1, 2.
Define an equivalence relation γ1 ∼ γ2 ⇐⇒ for every chart (U, x) at p we have

(
x ◦ γ1

)′
(0) =

(
x ◦ γ2

)′
(0)

Def.: Equivalence classes = tangent vectors at p. In the case of a C∞-manifold this definition
coincides with the earlier one ([γ] = γ̇0).
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(x ◦ γi)
′(0)

γi

γ1

γ2

x

U

x ◦ γi

p

0

x(p)
Rn

1.17 Tangent map

Definition 1.18. Let Mm and Nn be differentiable manifolds and let f : M → N be a C∞ map.
The tangent map of f at p is a linear map f∗ : TpM → Tf(p)N defined by

(f∗v)g = v(g ◦ f), ∀g ∈ C∞(f(p)
)
, v ∈ TpM.

We also write f∗p or Tpf.

Remarks 1.19. 1. It is easily seen that f∗v is a tangent vector at f(p) for all v ∈ TpM and
that f∗ is linear.

2. If M = Rm and N = Rn, then f∗p = f ′(p) (see the canonical identification TpR
n = Rn below).

3. ”Chain rule“: Let M, N, and L be differentiable manifolds and let f : M → N and g : N → L
be C∞-maps. Then

(g ◦ f)∗p = g∗f(p) ◦ f∗p
for all p ∈M . (Exerc.)

4. An interpretation of a tangent map using paths:
Let v ∈ TpM and let γ : I →M be a C∞-path such that γ(0) = p and γ̇0 = v. Let f : M → N
be a C∞-map and α = f ◦ γ : I → N. Then f∗v = α̇0. (Exerc.)

p

γ

f

f∗

M

TpM
Tf(p)N

N

f(p)

α = f ◦ γ

α̇0

γ̇0

I
0

Let x = (x1, . . . , xm) be a chart at p ∈ Mm and y = (y1, . . . , yn) a chart at f(p) ∈ Nn. What
is the matrix of f∗ : TpM → Tf(p)N with respect to bases

(
∂
∂xi

)
p
, i = 1, . . . ,m, and

(
∂
∂yj

)
f(p)

, j =

1, . . . , n,? By Theorem 1.15,

f∗

(
∂

∂xj

)

p

=

n∑

i=1

f∗

(
∂

∂xj

)

p

yi
(
∂

∂yi

)

f(p)

, 1 ≤ j ≤ m.
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Thus we obtain an n×m matrix (aij),

aij = f∗

(
∂

∂xj

)

p

yi =
∂

∂xj
(yi ◦ f).

This is called the Jacobian matrix of f at p (with respect to given bases). As a matrix it is the
same as the matrix of the linear map g′

(
x(p)

)
, g = y ◦ f ◦ x−1, with respect to standard bases of

Rm and Rn.
Recall that f : Mm → Nn is a diffeomorphism if f and its inverse f−1 are C∞. A mapping

f : M → N is a local diffeomorphism at p ∈M if there are neighborhoods U of p and V of f(p)
such that f : U → V is a diffeomorphism.
Note: Then necessarily m = n. (Exerc.)

Theorem 1.20. Let f : M → N be C∞ and p ∈ M. Then f is a local diffeomorphism at p if and
only if f∗ : TpM → Tf(p)N is an isomorphism.

Proof. Apply the inverse function theorem (of Rn). Details are omitted,

Tangent space of an n-dimensional vector space. Let V be an n-dimensional (real) vector
space. Recall that any (linear) isomorphism x : V → Rn induces the same C∞-structure on V . Thus
we may identify V and TpV in a natural way for any p ∈ V : If p ∈ V, then there exists a canonical
isomorphism i : V → TpV. Indeed, let v ∈ V and γ : R→ V the path

γ(t) = p+ tv.

We set
i(v) = γ̇0.

R

γ

0

p
v

Example: V = Rn, TpR
n ∼= Rn canonically.

If f : M → R is C∞ and p ∈M, we define the differential of f , df : TpM → R, by setting

dfv = vf, v ∈ TpM.

(Also denoted by dfp.)
By the isomorphism i : R→ Tf(p)R as above, we obtain df = i−1 ◦ f∗. Usually we identify df = f∗.
Note: Since df : TpM → R is linear, df ∈ TpM

∗ (= the dual of TpM).

TpM

R

Tf(p)R

f∗

df

i
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Tangent space of a product manifold. Let M and N be differentiablemanifolds and let

π1 : M ×N →M,

π2 : M ×N → N

be the projections. Using these projections we may identify T(p,q)(M × N) and TpM ⊕ TqN in a
natural way: Define a canonical isomorphism

τ : T(p,q)(M ×N) → TpM ⊕ TqN,

τv = π1∗v︸︷︷︸
∈TpM

+ π2∗v︸︷︷︸
∈TpN

, v ∈ T(p,q)(M ×N).

Example: M = R, N = S1

S

R

v

π1

π2

π1∗v

π2∗v

(p, q)

p

q

Let f : M ×N → L be a C∞-mapping, where L is a differentiable manifold. For every (p, q) ∈
M ×N we define mappings

fp : N → L, f q : M → L,

fp(q) = f q(p) = f(p, q).

Thus, for v ∈ TpM and w ∈ TqN, we have

f∗(v + w) = (f q)∗v + (fp)∗w. (Exerc.)

1.21 Tangent bundle

Let M be a differentiable manifold. We define the tangent bundle TM of M as a disjoint union
of all tangent spaces of M , i.e.

TM =
⊔

p∈M
TpM.

Points in TM are thus pairs (p, v), where p ∈ M and v ∈ TpM. We usually abbreviate v = (p, v),
because the condition v ∈ TpM determines p ∈M uniquely.

Let π : TM →M be the projection

π(v) = p, if v ∈ TpM.

The tangent bundle TM has a canonical structure of a differentiable manifold.

Theorem 1.22. Let M be a differentiable n-manifold. The tangent bundle TM of M can be
equipped with a natural topology and a C∞-structure of a smooth 2n-manifold such that the projec-
tion π : TM →M is smooth.
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Proof. (Idea): Let (U, x), x = (x1, . . . , xn), be a chart on M . Define a one-to-one mapping

x̄ : TU → xU × Rn ⊂ Rn × Rn = R2n

as follows. [Here TU =
⊔
p∈U TpU =

⊔
p∈U TpM.] If p ∈ U and v ∈ Tp, we set

x̄(v) =
(
x1(p), . . . , xn(p)︸ ︷︷ ︸

∈Rn

, vx1, . . . , vxn︸ ︷︷ ︸
∈Rn

)

U xU

xU × R
nx̄

TU

p

TpM

x

First we transport the topology of Rn × Rn into TM by using maps x̄ and then we verify that
pairs (TU, x̄) form an atlas of TM . We obtain a C∞-structure for TM . [Details are left as an
exercise.]

In the sequel the tangent bundle of M means TM equipped with this C∞-structure. It is an
example of a vector bundle over M .

Let π : TM → M be the projection (π(v) = p for v ∈ TpM). Then π−1(p) = TpM is a fibre
over p. If A ⊂M, then a map s : A→ TM, with π ◦ s = id, is a section of TM in A (or a vector
field).

Smooth vector bundles. Let M be a differentiable manifold. A smooth vector bundle of
rank k over over M is a pair (E, π), where E is a smooth manifold and π : E → M is a smooth
surjective mapping (projection) such that:

(a) for every p ∈ M, the set Ep = π−1(p) ⊂ E is a k-dimensional real vector space (= a fiber of
E over p);

(b) for every p ∈M there exist a neighborhood U 3 p and a diffeomorphism ϕ : π−1U → U ×Rk
(= local trivialization of E over U) such that the following diagram commutes

ϕ

ϕ

UU

U

π−1U

π−1U

π

π

π1

π1

U × R
k

U × R
k

id

[above π1 : U×Rk → U is the projection] and that ϕ|Eq : Eq → {q}×Rk is a linear isomorphism
for every q ∈ U.
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The manifold E is called the total space and M is called the base of the bundle. If there exists
a local trivialization of E over the whole manifold M , ϕ : π−1M → M × Rk, then E is a trivial
bundle.

A section of E is any map σ : M → E such that π ◦ σ = id : M → M. A smooth section is
a section that is smooth as a map σ : M → E (note that M and E are smooth manifolds). Zero
section is a map ζ : M → E such that

ζ(p) = 0 ∈ Ep ∀p ∈M.

A local frame of E over an open set U ⊂ M is a k-tuple (σ1, . . . , σk), where each σi is a smooth
section of E (over U) ssuch that

(
σ1(p), σ2(p), . . . , σk(p)

)
is a basis of Ep for all p ∈ U. If U = M,

(σ1, . . . , σk) is called a global frame.

1.23 Submanifolds

Definition 1.24. Let M and N be differentiable manifolds and f : M → N a C∞-map. We say
that :

1. f is a submersion if f∗p : TpM → Tf(p)N is surjective ∀p ∈M.

2. f is an immersion if f∗p : TpM → Tf(p)N is injective ∀p ∈M.

3. f is an embedding if f is an immersion and f : M → fM is homeomorphici (note relative
topology in fM).

IfM ⊂ N and the inclusion i : M ↪→ N, i(p) = p, is an embedding, we say thatM is a submanifold
of N .

Remark 1.25. If f : Mm → Nn is an immersion, then m ≤ n and n−m is the codimension of
f .

Examples 1.26. (a) If M1, . . . ,Mk are smooth manifolds, then all projections πi : M1 × · · · ×
Mk →Mi are submersions.

(b) (M = R, N = R2) α : R→ R2, α(t) = (t, |t|) is not differentiable at t = 0.

0

α

(c) α : R→ R2, α(t) = (t3, t2) is C∞ but not an immersion since α′(0) = 0.

0

α
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(d) α : R→ R2, α(t) = (t3 − 4t, t2 − 4) is C∞ and an immersion but not an embedding (α(±2) =
(0, 0)).

α

(e) The map α (in the picture below) has an inverse but it is not an embedding since the inverse
in not continuous (in the relative topology of the image).

α

(f) The following α is an embedding.

α

Remark 1.27. The notion of a submanifold has different meanings in the literature. For instance,
Bishop-Crittenden [BC] allows the case (e) in the definition of a submanifold.

Theorem 1.28. Let f : Mm → Nn be an immersion. Then each point p ∈Mm has a neighborhood
U such that f |U : U → Nn is an embedding.

Proof. Fix p ∈M. We have to find a neighborhood U 3 p such that f |U : U → fU is a homeomor-
phism when fU is equipped with the relative topology. Let (U1, x) and (V1, y) be charts at points
p and f(p), respectivel, such that fU1 ⊂ V1, x(p) = 0 (∈ Rm), and y

(
f(p)

)
= 0 (∈ Rn). Write

f̃ = y ◦ f ◦ x−1, f̃ = (f̃1, . . . , f̃n). Since f is an immersion, f̃ ′(0) : Rm → Rn is injective. We may
assume that f̃ ′(0)Rm = Rm ⊂ Rm × Rk, k = n − m (otherwise, apply a rotation in Rn). Then
det f̃ ′(0) 6= 0, when f̃ ′(0) is interpreted as a linear map Rm → Rm. Define a mapping

ϕ : xU1 × Rk → Rn,

ϕ(x̃, t) =
(
f̃1(x̃), f̃2(x̃), . . . , f̃m(x̃), f̃m+1(x̃) + t1, . . . , f̃m+k(x̃) + tk)

)
,

x̃ ∈ xU1, t = (t1, . . . , tk) ∈ Rk.
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The matrix of ϕ′(0, 0): Rm+k → Rm+k is

(
∂f̃i(0)
∂x̃j

0

∗ Ik

)
,

and therefore detϕ′(0, 0) = det f̃ ′(0) 6= 0. By the inverse mapping theorem, there are neighborhoods
0 ∈ W1 ⊂ xU1 × Rk and 0 ∈ W2 ⊂ Rn such that ϕ|W1 : W1 → W2 is a diffeomorphism. Write
Ũ = W1 ∩ xU1 and U = x−1Ũ (⊂ U1). Since ϕ|xU1 × {0} = f̃ , we have ϕ|Ũ = f̃ . In particular,
f |U : U → fU is a homeomorphism, when fU is equipped with the relative topology.

p

f

U1

V1

fM

ϕ

f̃

xU1 ⊂ R
m

W1

M
x

y

0 W2

xU1 × R
k

Example 1.29. Let f : Rn+1 → R be a C∞-function such that ∇f(p) =
(
D1f(p), . . . ,Dn+1f(p)

)
6=

0 for every p ∈M = {x ∈ Rn+1 : f(x) = 0} 6= ∅. Then M is an n dimensional submanifold of Rn+1.

Proof of the claim above. (Idea): Let p ∈ M be arbitrary. Applying a transformation and a
rotation if necessary we may assume that p = 0 and

∇f(0) =
(
0, . . . , 0,

∂f

∂xn+1
(0)
)
.

Then ∂f
∂xn+1

(0) 6= 0. Define a mapping ϕ : Rn+1 → Rn+1,

ϕ(x) =
(
x1, . . . , xn, f(x)

)
, x = (x1, . . . , xn, xn+1).

Then

detϕ′(0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · · · · · · · 0
0 1 0 · · · · · · 0
...

...
...

...
0 · · · · · · 0 1 0

0 · · · · · · · · · 0 ∂f
∂xn+1

(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∂f

∂xn+1
(0) 6= 0.

By the inverse mapping theorem, there exist neighborhoods Q 3 p and W 3 ϕ(0) = (0, 0) ∈ Rn×R
such that ϕ : Q→W is a diffeomorphism.



18 Riemannian geometry

ϕ

Q

W
I

K

R

R
n

MV

M ∩ V = U

Choose an open set K ⊂ Rn, 0 ∈ K, and an open interval I ⊂ R, 0 ∈ I, such that K × I ⊂ W.
Let V = ϕ−1(K × I) ∩Q and U = V ∩M. Then ϕ : V → K × I is a diffeomorphism. Let y = ϕ|U.
Repeat the above for all p ∈ M and conclude that pairs (U, y) form a C∞-atlas of M . Since the
inclusion i : M ↪→ Rn+1 satisfies

i|U = y−1 ◦ ϕ|U,
i is an embedding.

1.30 Orientation

Definition 1.31. A smooth manifold M is orientable if it admits a smooth atlas {(Uα, xα)} such
that for every α and β, with Uα ∩Uβ = W 6= ∅, the Jacobian determinant of xβ ◦x−1

α is positive at
each point q ∈ xαW, i.e.

(1.32) det
(
xβ ◦ x−1

α

)′
(q) > 0, ∀q ∈ xαW.

Uα

Uβ

xα xβ

W

xβ ◦ x−1
α

In the opposite case M is nonorientable. If M is orientable, then an atlas satisfying (1.32) is
called an orientation of M . Furthermore, M (equipped with such atlas) is said to be oriented.
We say that two atlases satisfying (1.32) determine the same orientation if their union satisfies
(1.32), too.

Remarks 1.33. 1. Warning: The notion of a smooth structure has different meanings in the
literature (e.g. do Carmo [Ca]). What goes wrong if we define orientability by saying: ”M is
orientable if it admits a C∞-structure such that (1.32) holds?“ (Exerc.)

2. An is orientable and connected smooth manifold has exactly two distinct orientations. (Ex-
erc.)

3. If M and N are smooth manifolds and f : M → N is a diffeomorphism, then

M is orientable ⇐⇒ N is orientable.
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4. Let M and N be connected oriented smooth manifolds and f : M → N a diffeomorphism.
Then f induces an orientation on N . If the induced orientation of N is the same as the initial
one, we say that f is sense-preserving (or f preserves the orientation). Otherwise, f is
called sense-reversing (or f reverses the orientation).

Examples 1.34. 1. Suppose that there exists an atlas {(U, x), (V, y)} of M such that U ∩ V is
connected. Then M is orientable.
Proof. The mapping y ◦ x−1 : x(U ∩ V ) → y(U ∩ V ) is diffeopmorphic, so

det
(
y ◦ x−1

)′
(q) 6= 0 ∀q ∈ x(U ∩ V ).

Since q 7→ det
(
y ◦ x−1

)′
(q) is continuous and x(U ∩ V ) is connected, the determinat can not

change its sign. If the sign is positive, we are done. If the sign is negative, replace the chart
(V, y), y = (y1, . . . , yn), by a chart (V, ỹ), ỹ = (−y1, y2, . . . , yn). Then the atlas {(U, x), (V, ỹ)}
satisfies (1.32).

2. In particular, the sphere Sn is orientable.

1.35 Vector fields

Let M be a differentiable manifold and A ⊂ M . Recall that a mapping V : A → TM such that
X(p) ∈ TpM for all p ∈ M is called a vector field in A. We usually write Xp = X(p). If A ⊂ M
is open and X : A → TM is a C∞-vector field, we write X ∈ T (A). Clearly T (A) is a real vector
space, where addition and multiplication by a scalar are defined pointwise: If X,Y ∈ T (A) and
a, b ∈ R, then aX + bY, p 7→ aXp + bYp, is a smooth vector field. Furthermore, a vector field
V ∈ T (A) can be multiplied by a smooth (real-valued) function f ∈ C∞(A) producing a smooth
vector field fV, p 7→ f(p)Vp.

Let M be a differentable n-manifold and A ⊂ M open. We say that vector fields V 1, . . . , V n

in A form a local frame (or a frame in A) if the vectors V 1
p , . . . , V

n
p form a basis of TpM for

every p ∈ A. In the case A = M we say that vector fields V 1, . . . , V n form a globalin frame.
Furthermore, M is called parallelizable if it admits a smooth global frame. This is equivalent to
TM being a trivial bundle.1

Definition 1.36. (Einstein summation convention) If in a term the same index appears twice,
both as upper and a lower index, that term is assumed to be summed over all possible values of
that index (usually from 1 to the dimension).

Let (U, x), x = (x1, . . . , xn), be a chart and (∂i)p =
(
∂
∂xi

)
p
, i = 1, . . . , n, the corresponding

coordinate vectors at p ∈ U. Then the mappings

∂i : U → TM, p 7→ (∂i)p =

(
∂

∂xi

)

p

,

are vector fields in U , so-called coordinate vector fields. Since the vector fields ∂i form a frame,
so-called coordinate frame, in U , we can write any vector field V in U as

Vp = vi(p)(∂i)p, p ∈ U,

where vi : U → R. Functions vi are called the component functions of V with respect to (U, x).

1Every Lie group is parallelizable; S1, S3, and S7 are the only parallelizable spheres; RP 1, RP 3, and RP 7 are the
only parallelizable projective spaces; a product Sn

×Sm is parallelizable if at least one of the numbers n > 0 or m > 0
is odd.
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Lemma 1.37. Let V be a vector field on M .Then the following are equivalent:

(a) V ∈ T (M);

(b) the component functions of V with respect to any chart are smooth;

(c) If U ⊂ M is open and f : U → R is smooth, then the function V f : U → R, (V f)(p) = Vpf ,
is smooth.

Proof. Exercise.

Remark 1.38. In particular, coordinate vector fields are smooth by (b).

Suppose that A ⊂M is open and V,W ∈ T (A). If f ∈ C∞(p), where p ∈ A, then V f ∈ C∞(p)
and thus Wp(V f) ∈ R (= ”the derivative of V f in the direction of Wp“). The function A→ R, p 7→
Wp(V f), is denoted by WV f . Thus (WV f)(p) = Wp(V f). We also denote (WV )pf = Wp(V f).

Remark 1.39. (WV )p is not a derivation, so (WV )p 6∈ Tp(M), in general. Reason: Leibniz’s rule
(2) does not hold (choose f = g).

Definition 1.40. Suppose that A ⊂ M is open and V,W ∈ T (A). We define the Lie bracket of
V and W by setting

[V,W ]pf = Vp(Wf) −Wp(V f), p ∈ A, f ∈ C∞(p).

Theorem 1.41. Let A ⊂M be open and V,W ∈ T (A). Then

(a) [V,W ]p ∈ TpM ;

(b) [V,W ] ∈ T (A) and it satisfies

(1.42) [V,W ]f = V (Wf)−W (V f), f ∈ C∞(A);

(c) if vi and wi are the component functions of vector fields V and W , respectively, with respect
to a chart x = (x1, . . . , xn), then

(1.43) [V,W ] =
(
vi∂iw

j − wi∂iv
j
)
∂j .

Note: The formula (1.43) can be written as

[V,W ] =
(
V wj −Wvj

)
∂j .

Proof. (a) We have to prove that [V,W ]p satisfies conditions (1) and (2) in the definition of a
tangent vector.
Condition (1) is clear.
Condition (2): Let f, g ∈ C∞(p). Then

[V,W ]p(fg) = Vp
(
W (fg)

)
−Wp

(
V (fg)

)

= Vp
(
fWg + gWf

)
−Wp

(
fV g + gV f

)

= f(p)Vp(Wg) + (Wpg)(Vpf) + g(p)Vp(Wf) + (Wpf)(Vpg)

− f(p)Wp(V g) − (Vpg)(Wpf) − g(p)Wp(V f) − (Vpf)(Wpg)

= f(p)
(
Vp(Wg) −Wp(V g)

)
+ g(p)

(
Vp(Wf)−Wp(V f)

)

= f(p)[V,W ]pg + g(p)[V,W ]pf.
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(b) Formula (1.42) follows immediately from the definition of a Lie bracket. Let f ∈ C∞(A). Now
functions Wf, V f, V (Wf), and W (V f) are smooth by Lemma 1.37 (c) since V,W ∈ T (A).
Hence also [V,W ]f = V (Wf) −W (V f) is a smooth function and therefore [V,W ] ∈ T (A).

(c) If V = vi∂i, W = wj∂j , and f is smooth, we obtain by a direct computation that

[V,W ]f = V (Wf) −W (V f) = vi∂i(w
j∂jf) − wj∂j(v

i∂if)

= vi(∂iw
j)(∂jf) + viwj∂i(∂jf) − wj(∂jv

i)(∂if)− wjvi∂j(∂if)

= vi(∂iw
j)(∂jf) − wj(∂jv

i)(∂if).

In the last step we used the fact that ∂j(∂if) = ∂i(∂jf) for a smooth function f. Changing
the roles of indices i and j in the last sum we obtain (1.43).

Lemma 1.44. The Lie bracket satisfies:

(a) Bilinearity:

[a1X1 + a2X2, Y ] = a1[X1, Y ] + a2[X2, Y ] ja

[X,a1Y1 + a2Y2] = a1[X,Y1] + a2[X,Y2]

for a1, a2 ∈ R;

(b) Antisymmetry: [X,Y ] = −[Y,X].

(c) Jacobi identity: [
X, [Y,Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X,Y ]

]
= 0.

(d)

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

Proof. (a) Follows directly from the definition.

(b) Follows directly from the definition.

(c)

[
X, [Y,Z]

]
f = X

(
[Y,Z]f

)
− [Y,Z](Xf)

= X
(
Y (Zf) − Z(Y f)

)
− Y

(
Z(Xf)

)
+ Z

(
Y (Xf)

)

= X
(
Y (Zf)

)
−X

(
Z(Y f)

)
− Y

(
Z(Xf)

)
+ Z

(
Y (Xf)

)

[
Y, [Z,X]

]
f = Y

(
Z(Xf)

)
− Y

(
X(Zf)

)
− Z

(
X(Y f)

)
+X

(
Z(Y f)

)

[
Z, [X,Y ]

]
f = Z

(
X(Y f)

)
− Z

(
Y (Xf)

)
−X

(
Y (Zf)

)
+ Y

(
X(Zf)

)
.

Adding up both sides yields

[
X, [Y,Z]

]
f +

[
Y, [Z,X]

]
f +

[
Z, [X,Y ]

]
f = 0.
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(d)

[fX, gY ]h = fX(gY h) − gY (fXh)

= fgX(Y h) + f(Xg)(Y h) − gfY (Xh) − g(Y f)(Xh)

= fg[X,Y ]h+ f(Xg)Y h− g(Y f)Xh.

Lemma 1.45. Let (U, x), x = (x1, . . . , xn), be a chart and ∂i, i = 1, . . . , n, the corresponding
coordinate vector fields. Then

[∂i, ∂j ] = 0 ∀i, j.

Proof. Let p ∈ U and f ∈ C∞(p). Then

(∂i)p(∂jf) = (∂i)p
[(
Dj

(
f ◦ x−1

))
◦ x
]

= Di

[(
Dj(f ◦ x−1) ◦ x

)
◦ x−1

] (
x(p)

)
= DiDj

(
f ◦ x−1

)(
x(p)

)
.

Since DiDjg = DjDig for a smooth function g, we obtain the claim.

2 Riemannian metrics

2.1 Tensors and tensor fields

Let V1, . . . , Vk, and W be (real) vector spaces. Recall that a mapping F : V1 × · · · × Vk → W is
multi linear (more precisely, k-linear) if it is linear in each variable, i.e.

F (v1, . . . , avi + bv′i, . . . , vk) = aF (v1, . . . , vi, . . . , vk) + bF (v1, . . . , v
′
i, . . . , vk)

for all i = 1, . . . , k and a, b ∈ R.
Let V be a finite dimensional (real) vector space. A linear map ω : V → R is called a covector

on V and the vector space of all covectors (on V ) is called the dual of V and denoted by V ∗.
We will adopt the following notation

〈ω, v〉 = 〈v, ω〉 = ω(v) ∈ R, ω ∈ V ∗, v ∈ V.

Lemma 2.2. Let V be an n-dimensional vector space and let (v1, . . . , vn) be its basis. Then covec-
tors ω1, . . . , ωn, with

ωj(vi) = δji ,

form a basis of V ∗. In particular, dimV ∗ = dimV.

Proof. (Exerc.)

[Note: Above δji is the Kronecker delta, i.e. δji = 1, if i = j, and δji = 0, whenever i 6= j.]

Definition 2.3. 1. A k-covariant tensor on V is a k-linear map

V k → R, V k = V × · · · × V︸ ︷︷ ︸
k copies

.
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2. An l-contravariant tensor on V is an l-linear map

V ∗l → R, V ∗l = V ∗ × · · · × V ∗
︸ ︷︷ ︸

l copies

.

3. A k-covariant, l-contravariant tensor on V (or a (k, l)-tensor) is a (k + l)-linear map

V k × V ∗l → R.

Denote

T k(V ) = the space of all k-covariant tensors on V ,

Tl(V ) = the space of all l-contravariant tensors on V ,

T kl (V ) = the space of all k-covariant, l-contravariant tensors on V (i.e. (k, l)-tensors).

Remarks 2.4. 1. T k(V ), Tl(V ), and T kl (V ) are vector spaces in a natural way.

2. We make a convention that both 0-covariant and 0-contravariant tensors are real numbers,
i.e. T 0(V ) = T0(V ) = R.

Examples 2.5. 1. Any linear map ω : V → R is a 1-covariant tensor. Thus T 1(V ) = V ∗.
Similarly, T1(V ) = V ∗∗ = V.

2. If V is an inner product space, then any inner product on V is a 2-covariant tensor (a bilinear
real-valued mapping, i.e. a bilinear form).

3. The determinantti det : Rn × · · · ×Rn → R is an n-covariant tensor on Rn.
Interpretation: For v1, . . . , vn ∈ Rn, vi = (v1

i , . . . , v
n
i ),

det(v1, . . . , vn) = det




v1
1 · · · v1

n
...

. . .
...

vn1 · · · vnn


 .

Definition 2.6. The tensor product of tensors F ∈ T kl (V ) and G ∈ T pq (V ) is the tensor F ⊗G ∈
T k+pl+q (V ),

F ⊗G(v1, . . . , vk+p, ω
1, . . . , ωl+q) = F (v1, . . . , vk, ω

1, . . . , ωl)G(vk+1, . . . , vk+p, ω
l+1, . . . , ωl+q).

Lemma 2.7. If (v1, . . . , vn) is a basis of V and (ω1, . . . , ωn) the corresponding dual basis of V ∗

(i.e. ωi(vj) = δij), then the tensors

ωi1 ⊗ · · ·ωik ⊗ vj1 ⊗ · · · ⊗ vjl , 1 ≤ jp, iq ≤ n,

form a basis of T kl (V ). Consequently, dimT kl (V ) = nk+l.

Proof. (Exerc.)

Remark 2.8. Since T1(V ) = V ∗∗ = V (that is, every vector v ∈ V is a 1-contravariant tensor) and
T 1(V ) = V ∗ (every covector is a 1-covariant tensor), we have

ωi1 ⊗ · · ·ωik ⊗ vj1 ⊗ · · · ⊗ vjl ∈ T kl (V ),

i.e. it is a (k, l)-tensor.
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2.9 Cotangent bundle

We defined earlier that the differential of a function f ∈ C∞(p) at p is a linear map dfp : TpM → R,

dfpv = vf, v ∈ TpM.

Hence dfp ∈ TpM
∗ (= the dual of TpM). We call TpM

∗ the cotangent space of M at p. If
(U, x), x = (x1, . . . , xn), is a chart at p and

(
(∂1)p, . . . , (∂n)p

)
is the basis of TpM consisting of

coordinate vectors, then differentials dxip, i = 1, . . . , n, of functions xi at p form the dual basis of
TpM

∗. Hence the differential (at p) of a function f ∈ C∞(p) can be written as

dfp = (∂i)pfdx
i
p. (Exerc.) [Note: Einsteinin summation]

We define the cotangent bundle of M as a disjoint union of all cotangent spaces of M

TM∗ =
⊔

p∈M
TpM

∗

equipped with the natural C∞-structure (defined similarly to that of TM). Furthermore, let
π : TM∗ → M, TpM

∗ 3 ω 7→ p ∈ M be the canonical projection. We call sections of TM∗, i.e.
mappings ω : M → TM∗, with π ◦ ω = id, covector fields on M or (differential) 1-forms. We
denote by T 1(M) (or T 1

0 (M), T ∗(M), T 0,1(M)) the set of all smooth covector fields on M . The
differential of a function f ∈ C∞(M) is the (smooth) covector field

df : M → TM∗, df(p) = dfp : TpM → R.

If (U, x), x = (x1, . . . , xn), is a chart and ω is a covector field on U , there are functions
ωi : U → R, i = 1, . . . , n, such that

ω = ωidx
i.

Functions ωi are called the component functions of ω with respect to the chart (U, x). As in the
case of vector fields we have:

Lemma 2.10. Let ω be a covector field on M . Then the following are equivalent:

(a) ω ∈ T 1(M);

(b) the component functions of ω (with resect to any chart) are smooth functions;

(c) if U ⊂M is open and V ∈ T (U) is a smooth vector field in U , then the function p 7→ ωp(Vp)
is smooth.

Proof. Exercise [cf. Lemma 1.37]

2.11 Tensor bundles

Let M be a smooth manifold.

Definition 2.12. We define tensor bundles on M as disjoint unions:

1. k-covariant tensor bundle

T kM =
⊔

p∈M
T k(TpM),
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2. l-contravariant tensor bundle

TlM =
⊔

p∈M
Tl(TpM), and

3. (k, l)-tensor bundle

T kl M =
⊔

p∈M
T kl (TpM)

equipped with natural C∞-structures.

We identify:

T 0M = T0M = M × R,
T 1M = TM∗,

T1M = TM,

T k0 M = T kM,

T 0
l M = TlM.

Since all tensor bundles are smooth manifolds, we may consider their smooth sections. We say that
a section s : M → T kl M is a (k, l)-tensor field (recall that π◦s = idM , and so s(p) ∈ T kl (TpM)). A
smooth (k, l)-tensor field is a smooth section M → T kl M. Similarly, we define (smooth) k-covariant
tensor fields and l-contravariant tensor fields. Since 0-covariant and 0-contravariant tensors
are real numbers, (smooth) 0-covariant tensor fields and (smooth) 0-contravariant tensor fields are
(smooth) real-valued functions.

Denote

T k(M) = {smooth sections on T kM}
= {smooth k-covariant tensor fields}

Tl(M) = {smooth sections on TlM}
= {smooth l-contravariant tensor fields}

T k
l (M) = {smooth sections on T kl M}

= {smooth (k, l)-tensor fields}.

If (U, x), x = (x1, . . . , xn), is a chart and σ is a tensor field in U , we may write

σ = σi1···ikdx
i1 ⊗ · · · ⊗ dxik , if σ is a k-covariant tensor field,

σ = σj1···jl∂j1 ⊗ · · · ⊗ ∂jl , if σ is an l-contravariant tensor field, or

σ = σj1···jli1···ikdx
i1 ⊗ · · · ⊗ dxik ⊗ ∂j1 ⊗ · · · ⊗ ∂jl , if σ is a (k, l)-tensor field.

Functions σi1···ik , σ
j1···jl and σj1···jli1···ik are called the component functions of σ with respect to the

cahrt (U, x). Again we have:

Lemma 2.13. Let σ be a (k, l)-tensor field on M . Then the following are equivalent:

(a) σ ∈ T k
l (M);

(b) the component functions of σ (with respect to any chart) are smooth;
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(c) if U ⊂ M is open and X1, . . . ,Xk ∈ T (U) are smooth vector fields in U and ω1, . . . , ωl ∈
T 1(M) are smooth covector fields in U , then the function

p 7→ σ
(
X1, . . . ,Xk, ω

1, . . . , ωl
)
p
∈ R

is smooth.

Proof. Exercise [cf. Lemma 1.37 and Lemma 2.10.]

2.14 Riemannian metric tensor

Definition 2.15. Let M be a C∞-manifold. A Riemannian metric (tensor) on M is a 2-
covariant tensor field g ∈ T 2(M) that is symmetric (i.e. g(X,Y ) = g(Y,X)) and positive definite
(i.e. g(Xp,Xp) > 0 if Xp 6= 0). A C∞-manifold M with a given Riemannian metric g is called a
Riemannian manifold (M,g).

A Riemannian metric thus defines an inner product on each TpM , written as
〈v,w〉 = 〈v,w〉p = g(v,w) for v,w ∈ TpM . The inner product varies smoothly in p in the
sense that for every X,Y ∈ T (M), the function M → R, p 7→ g(Xp, Yp), is C∞.

The length (or norm) of a vector v ∈ TpM is

|v| = 〈v, v〉1/2.

The angle between non-zero vectors v,w ∈ TpM is the unique ϑ ∈ [0, π] such that

cosϑ =
〈v,w〉
|v||w| .

Vectors e1, . . . , ek ∈ TpM are orthonormal if they are of length 1 and pairwise orthogonal, in
other words, 〈ei, ej〉 = δij .

Recall that vector fields E1, . . . , En ∈ T (U) in an open set U ⊂ M form a local frame if
(E1)p, . . . , (En)p form a basis of TpM for each p ∈ U . Associated to a local frame is the coframe
ϕ1, . . . , ϕn ∈ T 1(U) (=differentiable 1-forms on U) such that ϕi(Ej) = δij .

Now, if E1, . . . , En is any (smooth) local frame, and ϕ1, . . . , ϕn its coframe, the Riemannian
metric g can be written locally as

g = gijϕ
i ⊗ ϕj .(2.16)

The coefficient matrix, defined by gij = 〈Ei, Ej〉, is symmetric in i and j, and the function

p 7→ gij(p) := 〈Ei, Ej〉p

is C∞ for all i, j.

Example 2.17. If (U, x), x = (x1, . . . , xn) is a chart, then ∂1, . . . , ∂n, where ∂i = ∂
∂xi

, form a

coordinate frame and differentials dx1, . . . , dxn its coframe. The Riemannian metric can then be
written (in U) as

g = gijdx
i ⊗ dxj = gijdx

idxj .

(If ω and η are 1-forms, we write ωη = 1
2 (ω ⊗ η + η ⊗ ω) (= symmetric product).)



Fall 2010 27

Remark 2.18. If p ∈M , then there exists a local orthonormal frame in the neighborhood of p, i.e.
a local frame E1, . . . , En that forms an orthonormal basis of TqM for all q in this neighborhood.
Warning: In general, it is not possible to find a chart (U, x) at p so that the coordinate frame
∂1, . . . , ∂n would be an orthonormal frame. In fact, this is possible only if the metric g is locally
isometric to the Euclidean metric.

Definition 2.19. Let (M,g) and (N,h) be Riemannian manifolds. A diffeomorphism f : M → N
is called an isometry if f∗h = g, i.e.

f∗h(v,w) = h(f∗v, f∗w) = g(v,w)

for all v,w ∈ TpM and p ∈ M . A C∞-map f : M → N is a local isometry if, for each p ∈ M ,
there are neighborhoods U of p and V of f(p) such that f |U : U → V is an isometry.

Examples 2.20. (1) If M = Rn, then the Euclidean metric is the usual inner product on each
tangent space TpR

n ∼= Rn. The standard coordinate frame is ∂1, . . . , ∂n, where

∂i = ei = (0, . . . , 0,
i
1, 0, . . . , 0),

〈∂i, ∂j〉 = δij , and the metric can be written as

g =
∑

i

dxidxi = δijdx
idxj.

(2) Let f : Mn → Nn+k be an immersion, that is, f is C∞ and f∗p : TpM → Tf(p)N is injective
for all p ∈M . If N has a Riemannian metric g, then f∗g defines a Riemannian metric on M :

f∗g(v,w) = g(f∗v, f∗w)

for all v,w ∈ TpM and p ∈M . Since f∗p is injective, f∗g is positive definite. The metric f∗g
is called the induced metric.

(3) Recall that a Lie group G is a group which is also a C∞-manifold such that G × G → G,
(p, q) 7→ pq−1, is C∞. For fixed p ∈ G, the map Lp : G → G, Lp(q) = pq, is called a left
translation. A vector field X is called left-invariant if X = (Lp)∗X for every p ∈ G, i.e.
Xpq = (Lp)∗qXq for all p, q ∈ G.

IfX is left-invariant, thenX ∈ T (G) (is a smooth vector field) and it is completely determined
by its value at a single point of G (e.g. by Xe). If X and Y are left-invariant, then so is
[X,Y ]. The set of left-invariant vector fields on G forms a vector space. This vector space
together with the bracket [·, ·] is called a Lie algebra g. Thus g ∼= TeG.

A Riemannian metric 〈·, ·〉 on G is called left-invariant if (Lp)
∗〈·, ·〉 = 〈·, ·〉 for all p ∈ G, i.e.

if 〈(Lp)∗qv, (Lp)∗qw〉pq = 〈v,w〉q for all v,w ∈ TqG and all p, q ∈ G.
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To construct a left-invariant Riemannian metric on G, it is enough to give an arbitrary inner
product 〈·, ·〉e on TeG. Similarly, we can define right-invariant Riemannian metrics for right
translations Rp : G→ G, Rp(q) = qp.

(4) If (M1, g1) and (M2, g2) are Riemannian manifolds, the product M1 × M2 has a natural
Riemannian metric g = g1 ⊕ g2, the product metric, defined by

g(X1 +X2, Y1 + Y2) := g1(X1, Y1) + g2(X2, Y2),

where Xi, Yi ∈ T (Mi) and T(p,q)(M1 ×M2) = TpM1 ⊕ TqM2 for all (p, q) ∈M1 ×M2.

If (x1, . . . , xn) is a chart on M1 and (xn+1, . . . , xn+m) is a chart on M2, then (x1, . . . , x
n+m) is

a chart on M1×M2. In these coordinates the product metric can be written as g = gijdx
idxj ,

where (gij) is the block matrix




(g1)11 · · · (g1)1n 0 · · · 0
... · · · ...

... · · · ...
(g1)n1 · · · (g1)nn 0 · · · 0

0 · · · 0 (g2)11 · · · (g2)1m
... · · · ...

... · · · ...
0 · · · 0 (g2)m1 · · · (g2)mm




.

As an example one can consider the flat torus:

Tn := S1 × · · · × S1

together with the product metric, where each S1 ⊂ R2 has the induced metric from R2.

Definition 2.21. Let (M,g) be a Riemannian manifold and γ : I → M a C∞-path, where I ⊂ R
an open interval. The length of γ|[a, b], where [a, b] ⊂ I, is defined by

`(γ|[a, b]) :=

∫ b

a
|γ̇t| dt =

∫ b

a
g(γ̇t, γ̇t)

1/2 dt.

The length of a piecewise C∞-path is the sum of the lengths of the pieces.

Let M be connected and p, q ∈M. Define

d(p, q) = inf
γ
`(γ),

where inf is taken over all piecewise C∞-paths from p to q. Then d : M ×M → R is a metric whose
topology is the same as the original topology of M (this will be proven later).



Fall 2010 29

2.22 Integration on Riemannian manifolds

We start with a discussion on a partition of unity.

Definition 2.23. Let M be a C∞-manifold. A (C∞-)partition of unity on M is a collection
{ϕi : i ∈ I} of C∞-functions on M such that

(a) the collection of supports {suppϕi : i ∈ I} is locally finite,

(b) ϕi(p) ≥ 0 for all p ∈M and i ∈ I, and

(c) for all p ∈M ∑

i∈I
ϕi(p) = 1.

A partition of unity {ϕi : i ∈ I} is subordinate to a cover {Uα : α ∈ A} (M = ∪αUα) if, for each
i ∈ I there is α ∈ A such that suppϕi ⊂ Uα.

Remarks 2.24. 1. Above I and A are arbitrary (not necessary countable) index sets.

2. The support of a function f : M → R is the set

supp f = {p ∈M : f(p) 6= 0}.

3. A collection {Ai : i ∈ I} of of sets Ai is locally finite if each p ∈ M has a neighborhood
U 3 p such that U ∩Ai 6= ∅ for only finitely many i.

4. The sum in (c) makes sense since only finitely many terms ϕi(p) are nonzero for every p ∈M .

Theorem 2.25. Let M be a C∞-manifold and {Uα : α ∈ A} an open cover of M . Then there exists
a countable C∞-partition of unity {ϕi : i ∈ N} subordinate to {Uα : α ∈ A}, with suppϕi compact
for each i.

Proof. See, for instance, [Le2], Theorem 2.25.

As a simple application we obtain the existence of a Riemannian metric.

Theorem 2.26. Every C∞-manifold M admits a Riemannian metric.

Proof. Let (U, x), x = (x1, . . . , xn), be a chart and ∂1, . . . , ∂n a (local) coordinate frame. We define
a Riemannian metric g̃ on U as the pull-back of the Euclidean metric under x, in other words,

(2.27) g̃(∂i, ∂j) = δij (g̃ = δijdx
idxj).

Let {Uα : α ∈ A} be an open cover of M by charts (Uα, xα) and let ϕk, k = 1, 2, . . . , be a
C∞-partition of unity subordinate to {Uα : α ∈ A}. For each k ∈ N choose α ∈ A such that
suppϕk ⊂ Uα and let g̃k be a Riemannian metric on Uα given by (2.27). Then

g =
∑

k

ϕkg̃k

is a Riemannian metric on M . Thus

g(v,w) =
∑

k

ϕk(p)g̃k(v,w)

for all p ∈M and v,w ∈ TpM .
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Integration. Recall the change of variables formula for the (Lebesgue) integral (see e.g. [Jo]):
Suppose that Ω1 and Ω2 are open subsets of Rn and that ϕ : Ω1 → Ω2 is a diffeomorphism. Let
f : Ω2 → Ṙ be (Lebesgue-)measurable. Then f ◦ ϕ is measurable and

(2.28)

∫

Ω2

f dm =

∫

Ω1

(f ◦ ϕ)|Jϕ| dm.

The formula is valid in the following sense: If f ≥ 0, then (2.28) always holds. In general, f ∈ L1(Ω2)
if and only if (f ◦ ϕ)|Jϕ| ∈ L1(Ω1), and then (2.28) holds.

Suppose that (M,g) is a Riemannian n-manifold. Let (U, x), x = (x1, . . . , xn), and (U, y), y =
(y1, . . . , yn), be charts. The Riemannian metric g = 〈 , 〉 can be written in U as

g = gxijdx
idxj , gxij =

〈
∂

∂xi
,
∂

∂xj

〉
,

or

g = gyijdy
idyj , gyij =

〈
∂

∂yi
,
∂

∂yj

〉
.

Denote ϕ = y ◦ x−1 : xU → yU . We want to define (first)
∫
U dµ, where dµ is a ”volume element“,

by using a chart in such a way that the definition would be independent of the chosen chart. Write
Gx(p) =

(
gxij(p)

)
and Gy(p) =

(
gyij(p)

)
for p ∈ U , and let A(q) be the matrix of ϕ′(q) with respectt

the standard basis of Rn. Since g is positive definite and symmetric, we have

detGx(p) > 0

for all p ∈. We claim that

(2.29)
√

detGx(p) =
√

detGy(p)
∣∣Jϕ
(
x(p)

)∣∣

for all p ∈ U . If this is true, then

∫

xU

(√
detGx

)
◦ x−1 =

∫

xU

√
detGx

(
x−1(q)

)
dq

(2.29)
=

∫

xU

√
detGy

(
y−1(ϕ(q))

)
|Jϕ(q)| dq

(2.28)
=

∫

yU

√
detGy

(
y−1(m)

)
dm

=

∫

yU

(√
detGy

)
◦ y−1.

so, the definition

(2.30)

∫

U
dµ :=

∫

xU

(√
detGx

)
◦ x−1

is independent of the chosen map x. Similarly,

∫

U
f dµ :=

∫

xU

(
f
√

detGx
)
◦ x−1
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is independent of x for all Borel functions f : U → R. Next pick an atlas A = {(Uα, xα) : α ∈ I}
and a (countable) C∞-partition of unity {ϕi} subordinate to A. For each i, let αi ∈ I be such that
suppϕi ⊂ Uαi

. Then we define, for any Borel set A ⊂M ,

µ(A) :=

∫

A
dµ =

∑

i

∫

Uαi
∩A

ϕi dµ =
∑

i

∫

Uαi

ϕiχA dµ.

This is independent of the chosen atlas and partition of unity. After this we can develop a theory
of measure (= µ) and integration on M .

Proof of (2.29). Let
A =

(
Aij
)

=
(
Djϕ

i
)

be the Jacobian matrix of ϕ = y ◦ x−1 with respect to the standard basis of Rn. Then it is the
matrix of id∗ with respect to coordinate frames {∂/∂xi} and {∂/∂yj}. Hence

∂

∂xi
=

n∑

j=1

Diϕ
j ∂

∂yj
.

So,

gxij =

〈
∂

∂xi
,
∂

∂xj

〉

=

〈
n∑

k=1

Diϕ
k ∂

∂yk
,

n∑

`=1

Djϕ
` ∂

∂y`

〉

=
∑

k,`

Diϕ
kDjϕ

`

〈
∂

∂yk
,
∂

∂y`

〉

=
∑

k,`

Diϕ
kDjϕ

`gyk`.

That is,
Gx = ATGyA,

and so
detGx = detAT · detGy · detA.

Since
detA = detAT = Jϕ,

we obtain (2.29).

3 Connections

3.1 Motivation

We want to study geodesics which are Riemannian generalizations of straight lines. One possibility
is to define geodesics as curves that minimize length between nearby points. However, this property
is technically difficult to work with as a definition. Another approach:
In Rn straight lines are curves α : R→ Rn,

α(t) = p+ tv, p, v ∈ Rn.
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(We do not consider e.g. γ(t) = p+ t3v as a straight line, although γ(R) = α(R).)
The velocity vector of α is α̇t = α′(t) = v, and the acceleration of α is α̈t = α′′(t) = 0; so
straight lines are curves α with α̈ ≡ 0.

Let Mm ⊂ Rn be a submanifold, m < n, with induced Riemannian metric.
Take a C∞-path γ : I → M , γ = (γ1, . . . , γn). Then γ̇t = (γ̇1

t , . . . , γ̇
n
t ) ∈ Rn but also γ̇t ∈ Tγ(t)M

and it has a coordinate-independent meaning. On the other hand, γ̈t = (γ̈1
t , . . . , γ̈

n
t ) ∈ Rn but

γ̈t 6∈ Tγ(t)M , in general.

To measure the ”straightness“ of γ we project γ̈t orthogonally to Tγ(t)M and obtain γ̈Tt , the ”tan-

gential acceleration“. Hence, we could define geodesics as curves γ, with γ̈T ≡ 0.
Problem: For an abstract Riemannian manifold, there is no canonical ambient Euclidean space,
where to differentiate. So the method does not work as such.
We face the following problem:
To differentiate (intrinsicly, i.e. within M) γ̇t with respect to t we need to write the difference
quotient of γ̇t for t 6= t0 but these vectors live in different vector spaces, so γ̇t − γ̇t0 does not make
sense.
To do so, we need a way to ”connect“ nearby tangent spaces. This will be the role of a connection.

3.2 Affine connections

First a general definition.

Definition 3.3. Let (E, π) be a C∞ vector bundle over M , and let E(M) denote the space of
C∞-sections of E. A connection in E is a map

∇ : T (M) × E(M) −→ E(M),

denoted by (X,Y ) 7→ ∇XY , satisfying

(C1) ∇XY is linear over C∞(M) in X:

∇fX1+gX2Y = f∇X1Y + g∇X2Y, f, g ∈ C∞(M);

(C2) ∇XY is linear over R in Y :

∇X(aY1 + bY2) = a∇XY1 + b∇XY2, a, b ∈ R;

(C3) ∇ satisfies the following product rule:

∇X(fY ) = f∇XY + (Xf)Y, f ∈ C∞(M).
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We say that ∇XY is the covariant derivative of Y in the direction of X.

In the case E = TM the connection ∇ is called an affine connection. Thus
∇ : T (M) × T (M) −→ T (M). From now on ∇ will be an affine connection on M . Let γ : I →M
be a C∞-path. We say that a C∞-map X : I → TM is a C∞-vector field along γ if
Xt = Xγ(t) ∈ Tγ(t)M for every t ∈ I.

Denote by T (γ) the space of all C∞-vector fields along γ. Observe that X ∈ T (γ) cannot
necessarily be extended to X̃ ∈ T (U), where U is an open set such that γ : I → U . For example:

Lemma 3.4. (∇XY )p depends only on Xp and the values of Y along a C∞-path γ, with γ̇0 = Xp

(and, of course, on ∇).

Remark 3.5. This innocent looking result will be very important since it makes it possible to
define a notion of covariant derivative of a vector field along a smooth path, and therefore a
parallel transport along a smooth path; see Theorem 3.7 and Definition 3.14 below.

Proof. Let (U, x) be a chart at p, and let ∂i = ∂
∂xi , i = 1, 2, . . . , n, be the corresponding coordinate

frame. Let
X = ai∂i, Y = bj∂j.

Using the axioms of connection, we gain

(∇XY )p = (∇Xb
j∂j)p = bj(p)(∇X∂j)p + (Xpb

j)(∂j)p = bj(p)(∇ai∂i
∂j)p + (Xpb

j)(∂j)p

= bj(p)ai(p)(∇∂i
∂j)p + (Xpb

j)(∂j)p,

where terms bj(p)ai(p) depend only on Yp and Xp and terms Xpb
j depend only on the values of Y

along γ with γ̇0 = Xp.

Let {Ei} be a local frame on an open set U ⊂M . Writing

∇Ei
Ej = ΓkijEk,

we get functions Γkij ∈ C∞(U) called the Christoffel symbols of ∇ with respect to {Ei}. As in
the proof Lemma 3.4, we get

∇XY = aibjΓkijEk +XbjEj = (aibjΓkij +Xbk)Ek.(3.6)
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Theorem 3.7. Let ∇ be an affine connection on M , and let γ : I →M be a C∞-path. Then there
exists a unique map Dt : T (γ) → T (γ) satisfying:

(a) linearity over R:
Dt(aV + bW ) = aDtV + bDtW, a, b ∈ R;

(b) product rule:
Dt(fV ) = ḟV + fDtV, f ∈ C∞(I);

(c) if V is induced by Y ∈ T (M) (V is ”extendible“), i.e. Vt = Yγ(t), then

DtV = ∇γ̇Y.

The vector field DtV is called the covariant derivative of V along γ.

Proof. Note that the last line in (c) makes sense by Lemma 3.4. We follow a typical scheme in the
proof: first we prove the uniqueness and obtain a formula that can be used to define the object we
are looking for.
Uniqueness Suppose that Dt exists with the properties (a), (b) and (c). Let V ∈ T (γ), t0 ∈ I, and

let x = (x1, . . . , xn) be a chart at p = γ(t0). Then for all t sufficiently close to t0, say |t − t0| < ε,
we have

γ̇t = (xi ◦ γ)′(t)(∂i)γ(t) = γ̇i(t)(∂i)γ(t)

and
Vt = vj(t)(∂j)γ(t),

where γ̇i = (xi ◦ γ)′ and vj ∈ C∞(t0 − ε, t0 + ε). Using (a) and (b), we have

DtV = Dt(v
j∂j) = v̇j∂j + vjDt∂j.

Because ∂j is extendible, we have

Dt∂j
(c)
= ∇γ̇∂j = ∇γ̇i∂i

∂j
(C1)
= γ̇i∇∂i

∂j = γ̇iΓkij∂k.

Therefore,

DtV = v̇j∂j + vj γ̇iΓkij∂k = (v̇k + vj γ̇iΓkij)∂k.(3.8)

By (3.8), if Dt : T (γ) → T (γ) exists and satisfies (a), (b) and (c), then it is unique.

Existence If γ(I) is contained in a single chart, we can define Dt by (3.8). In the general case,
cover γ(I) by charts and define DtV by (3.8). The uniqueness implies that the definitions agree
whenever two charts overlap.

When do the affine connections exist?

Example 3.9. The Euclidean connection in Rn is defined as follows. Let X,V ∈ T (Rn), V =
(v1, . . . , vn) = vi∂i, where vi ∈ C∞(Rn) and ∂1, . . . , ∂n is the standard basis of Rn. Then we define

∇XV = (Xvj)∂j ,

i.e. ∇XV is a vector field whose components are the derivatives of V in the direction X. Note that
the Christoffel symbols of ∇ (w.r.t. the standard basis of Rn) vanish.
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Lemma 3.10. Suppose M can be covered by a single chart. Then there is a one-to-one corre-
spondence between affine connections on M and the choises of n3 functions Γkij ∈ C∞(M), by the
rule

∇XY = (aibjΓkij +Xbk)∂k,(3.11)

where X = ai∂i, Y = bi∂i, and ∂1, . . . , ∂n is the coordinate frame associated to the chart.

Proof. For every affine connection there are functions Γkij ∈ C∞(M), namely the Christoffel sym-
bols, such that (3.11) holds.
Conversely, given functions Γkij, i, j, k = 1, 2, . . . , n, then (3.11) defined an affine connection. (Ex-
ercise)

Theorem 3.12. Every C∞-manifold M admits an affine connection

Proof. Cover M with charts {Uα}. Then by Lemma 3.10 each Uα has a connection ∇α. Choose a
partition of unity {ϕα} subordinate to {Uα}. Define

∇XY :=
∑

α

ϕα∇α
XY.

Check that this defines a connection.

Remark 3.13. If ∇1 and ∇2 are connections, then neither 1
2∇1 nor ∇1 +∇2 satisfies the product

rule (C3).

Definition 3.14. Let ∇ be an affine connection on M , γ : I → M a C∞-path, and Dt : T (γ) →
T (γ) given by Theorem 3.7. We say that V ∈ T (γ) is parallel along γ if DtV = 0.

Exercise 3.15. Let γ : I → Rn be a C∞-path. Show that a vector field V ∈ T (γ) is parallel (with
respect to the Euclidean connection) if and only if its components are constants.

Theorem 3.16. Let ∇ be an affine connection on M , γ : I → M a C∞-path, t0 ∈ I, and
v0 ∈ Tγ(t0)M . Then there exists a unique parallel V ∈ T (γ) such that Vt0 = v0. The vector field V
is called the parallel transport of v0 along γ.

Before we prove this theorem, we state the following lemma about the existence and uniqueness
for linear ODEs.

Lemma 3.17. Let I ⊂ R be an interval and let akj : I → R, 1 ≤ j, k ≤ n, be C∞-functions. Then
the linear initial-value problem {

v̇k(t) = akj (t)v
j(t);

vk(t0) = bk,

has a unique solution on all of I for any t0 ∈ I and (b1, . . . , bn) ∈ Rn.
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Proof of Theorem 3.16. Suppose first that γ(I) ⊂ U , where (U, x) is a chart. Then V = vj∂j ∈ T (γ)

is parallel along γ if and only if DtV
(3.8)
= (v̇k + vj γ̇iΓkij)∂k = 0, that is, if and only if

v̇k(t) = −vj γ̇i(t)Γkij(γ(t)), 1 ≤ k ≤ n.

This is a linear system of ODEs for (v1(t), . . . , vn(t)). Lemma 3.17 implies that there exists a
unique solution on all of I for any initial condition Vt0 = v0.
General case: (γ(I) is not necessarily covered by a single chart)
Write

β := sup{b > t0 : there exists a unique parallel transport of v0 along [t0, b]}.
Clearly, β > t0, since for small enough ε > 0 the set γ(t0 − ε, t0 + ε) is contained in a single chart,
and the first part of the proof applies. Hence, a unique parallel transport V of v0 exists on [t0, β).
If β ∈ I, choose a chart U at γ(β) such that γ(β − ε, β + ε) ⊂ U for some ε > 0. The first part of
the proof implies that there exists a unique parallel transport Ṽ of Vβ−ε/2 along (β − ε, β + ε). By

uniqueness V = Ṽ on (β− ε, β), and hence Ṽ is an extension of V past β, which is a contradiction.
So β /∈ I. Similarly, we can analyze the ”lower end“ of I.

The parallel transport along γ : I → M defines for t0, t ∈ I a linear isomorphism Pt0,t :
Tγ(t0)M → Tγ(t)M by

Pt0,tv0 = Vt,

where V ∈ T (γ) is the parallel transport of v0 ∈ Tγ(t0)M along γ.

Definition 3.18. Let ∇ be an affine connection on M . A C∞-path γ : I →M is a geodesic if

Dtγ̇ = 0.

By Theorem 3.7(c), this can also be written as

∇γ̇ γ̇ = 0,

provided that γ̇ is extendible.

Theorem 3.19. Let M be a C∞-manifold with an affine connection ∇. Then for each p ∈ M ,
v ∈ TpM , and t0 ∈ R, there exist an open interval I 3 t0 and a geodesic γ : I → M satisfying
γ(t0) = p and γ̇(t0) = v. Any two such geodesics agree on their common interval.
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Proof. Let (U, x), x = (x1, . . . , xn), be a chart at p and {∂i} the corresponding coordinate frame.
If γ : J → U is a C∞-path, with γ(t0) = 0 and γ̇(t0) = v, then

γ̇ = (xi ◦ γ)′∂i = γ̇i∂i

and

Dtγ̇
(3.8)
= (γ̈k + γ̇j γ̇iΓkij)∂k.

Hence, γ : I → U , t0 ∈ I ⊂ J , is a geodesic, with γ(t0) = p and γ̇(t0) = v, which is equivalent to





γ̈k + γ̇j γ̇iΓkij = 0, k = 1, 2, . . . , n;

γ(t0) = p;

γ̇(t0) = v.

The theory of ODEs implies that there exists a unique local solution to this.

It follows from the uniqueness that, for each p ∈ M and v ∈ TpM , there exists a unique
maximal geodesic γ : I →M , with γ(0) = p and γ̇0 = v, denoted by γv. By ”maximal“ we mean
that I is the largest possible interval of definition. We will return to this later.

Remark 3.20. Above and also in the proof of Theorem 3.7 we have abused the notation by writing
Γkij instead of Γkij ◦ γ. We will continue to do so also in the sequel.

3.21 Riemannian connection

Let M be a C∞-manifold and ∇ an affine connection on M . Define a map T : T (M) × T (M) →
T (M) by

T (X,Y ) = ∇XY −∇YX − [X,Y ].

Then T ∈ T 2
1 (M) (Exercise). It is called the torsion tensor of ∇. We say that ∇ is symmetric

if T ≡ 0.

Remark 3.22. ∇ is symmetric if and only if the Christoffel symbols with respect to any coordinate
frame are symmetric, i.e. Γkij = Γkji (Exercise).

Definition 3.23. Let M be a Riemannian manifold with the Riemannian metric g = 〈·, ·〉. An
affine connection ∇ is compatible with g if

X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉

for every X,Y,Z ∈ T (M).

Lemma 3.24. The following are equivalent

(a) ∇ is compatible with g;

(b) If γ : I →M is a C∞-path and V,W ∈ T (γ), then

〈V,W 〉′ :=
d

dt
〈V,W 〉 = 〈DtV,W 〉 + 〈V,DtW 〉;

(c) If V,W ∈ T (γ) are parallel, then 〈V,W 〉 is constant.
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Proof. (a) =⇒ (b) Let γ : I →M be a C∞-curve, p = γ(t), and x = (x1, . . . , xn) a chart at p. Let

∂1, . . . , ∂n be the coordinate frame associated to x. It is enough to show that (a) implies

〈∂i, ∂j〉′(t) = 〈Dt∂i, ∂j〉(t) + 〈∂i,Dt∂j〉(t)(3.25)

for every t ∈ I. By the definition of compatibility, (a) implies

∂k〈∂i, ∂j〉 = 〈∇∂k
∂i, ∂j〉 + 〈∂i,∇∂k

∂j〉 = 〈Γlki∂l, ∂j〉 + 〈∂i,Γlkj∂l〉 = Γlkiglj + Γlkjgil.

For the left-hand side of (3.25), we then have

〈∂i, ∂j〉′(t) = (gij ◦ γ)′(t) = γ̇t(gij) = γ̇kt ∂k(gij) = γ̇kt Γ
l
kiglj + γ̇kt Γ

l
kjgil.

For the right-hand side of (3.25), the identity (3.8) gives us Dt∂i = γ̇kΓlki∂l and Dt∂j = γ̇kΓlkj∂l.
Therefore,

〈Dt∂i, ∂j〉(t) + 〈∂i,Dt∂j〉(t) = 〈γ̇kt Γlki∂l, ∂j〉(t) + 〈∂i, γ̇kt Γlkj∂l〉(t) = γ̇kt Γ
l
kiglj + γ̇kt Γ

l
kjgil,

which is equal to the left-hand side.

(b) =⇒ (a) Let X,Y,Z ∈ T (M), p ∈ M . Let γ be an integral curve of X starting at p. Then Y

and Z induce vector fields Ỹ , Z̃ ∈ T (γ) by Ỹt = Yγ(t) and Z̃t = Zγ(t). Now

Xp〈Y,Z〉 = γ̇0〈Ỹ , Z̃〉 =
d

dt
〈Ỹ , Z̃〉(0) (b)

= 〈DtỸ , Z̃〉(0) + 〈Ỹ ,DtZ̃〉(0)
3.7(c)

= 〈∇jY,Z〉p + 〈Y,∇γ̇Z〉p = 〈∇XY,Z〉p + 〈Y,∇XZ〉p.

(b) =⇒ (c) Since V,W ∈ T (γ) are parallel, we have by definition DtV = 0 = DtW . Using (b) this

implies 〈V,W 〉′ ≡ 0, that is, 〈V,W 〉 is a constant.

(c) =⇒ (b) Choose an orthonormal basis {E1(t0), . . . , En(t0)} of Tγ(t0)M , where t0 ∈ I. Let Ei be

the parallel transport of Ei(t0) along γ, see Theorem 3.16. Now (c) implies that {E1(t), . . . , En(t)}
is orthonormal for every t ∈ I. If V,W ∈ T (γ), we can therefore write

V = viEi and W = wiEi.

Then DtV = viDtEi + v̇iEi = v̇iEi and DtW = ẇiEi. This gives

〈DtV,W 〉 + 〈V,DtW 〉 = 〈v̇iEi, wjEj〉 + 〈viEi, ẇjEj〉 = v̇iwjδij + viẇjδij =
d

dt
(viwjδij) = 〈V,W 〉′.

Definition 3.26. Let M be a Riemannian manifold with the Riemannian metric g = 〈·, ·〉. An
affine connection ∇ is called a Riemannian (or Levi-Civita) connection on M if

(3.27) ∇ is symmetric: ∇XY −∇YX = [X,Y ];

and

(3.28) ∇ is compatible with g: X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉.

Theorem 3.29. Given a Riemannian manifold M , there exists a unique Riemannian connection
on M .
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Proof. Uniqueness Suppose such ∇ exists. Then

X〈Y,Z〉 (3.28)
= 〈∇XY,Z〉 + 〈Y,∇XZ〉

(3.28)
= 〈∇XY,Z〉 + 〈Y,∇ZX〉 + 〈Y, [X,Z]〉.

Similarly,
Y 〈Z,X〉 = 〈∇Y Z,X〉 + 〈Z,∇XY 〉 + 〈Z, [Y,X]〉;

and
Z〈X,Y 〉 = 〈∇ZX,Y 〉 + 〈X,∇Y Z〉 + 〈X, [Z, Y ]〉.

Hence,

X〈Y,Z〉 + Y 〈Z,X〉 − Z〈X,Y 〉 = 2〈∇XY,Z〉 + 〈Y, [X,Z]〉 + 〈Z, [Y,X]〉 − 〈X, [Z, Y ]〉.

This gives

(3.30) 〈∇XY,Z〉 =
1

2

(
X〈Y,Z〉 + Y 〈Z,X〉 − Z〈X,Y 〉 − 〈Y, [X,Z]〉 − 〈Z, [Y,X]〉 + 〈X, [Z, Y ]〉

)
.

Suppose ∇1 and ∇2 are Riemannian connections. Since the right-hand side of (3.30) is independent
of the connection, we have

〈∇1
XY −∇2

XY,Z〉 = 0

for every X,Y,Z ∈ T (M). However, this is true only if ∇1
XY = ∇2

XY for every X,Y ∈ T (M), that
is, ∇1 = ∇2.
Existence We use (3.30) or, more precisely, its coordinate version to define ∇ and then show that
∇ is a Riemannian connection. It suffices to show that such ∇ exists in each coordinate chart since
the uniqueness guarantees that connections agree if the charts overlap.
Let (U, x), x = (x1, . . . , xn), be a chart. Using (3.30) and [∂i, ∂j ] = 0, we have

〈∇∂i
∂j , ∂k〉 =

1

2

(
∂i〈∂j , ∂k〉 + ∂j〈∂k, ∂i〉 − ∂k〈∂i, ∂j〉

)
.

This is the same as

Γlijglk =
1

2
(∂igjk + ∂jgki − ∂kgij).

Let (gij) be the inverse matrix of (gij), i.e. glkg
km = δlm. Multiplying both sides of the above

equality by gkm and summing over k = 1, 2, . . . , n, we get

(3.31) Γmij =
1

2
gkm(∂igjk + ∂jgki − ∂kgij).

This formula defines ∇ in U . Furthermore, from (3.31) we get Γmij = Γmji , i.e. ∇ is symmetric. To
show that ∇ (defined by (3.30) or its coordinate version (3.31)) is compatible with g is left as an
exercise.

4 Geodesics

4.1 Geodesic flow

Let M be a Riemannian manifold with the Riemannian metric g = 〈·, ·〉 and the Riemannian
connection ∇. Recall that a C∞-path γ : I →M is a geodesic if

Dtγ̇ ≡ 0.
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If we want to emphasize that γ is a geodesic with respect to a Riemannian connection, we call γ a
Riemannian geodesic. Recall that for every p ∈M and v ∈ TpM , there exists a unique maximal
geodesic γv : Iv →M , with γv0 = p and γ̇v0 = v. Next we ”show“ that γvt depends C∞-smoothly on
p, v and t.

For that purpose we recall following facts on the tangent bundle. Let (U, x), x = (x1, . . . , xn), be
a chart and v ∈ TU . Then v ∈ TpM for some p ∈ U and v can be uniquely written as v = vi(p)(∂i)p,
with

(
v1(p), . . . , vn(p)

)
∈ Rn. Thus TU = U × Rn and we local coordinates for v ∈ TU :

x(v) =
(
x1(p), . . . , xn(p), v1(p), . . . , vn(p)

)
∈ R2n.

Since (TU, x), x = (x1, . . . , xn, v1, . . . , vn), is a chart on TM , we get a basis ∂
∂xi ,

∂
∂vi , i = 1, 2, . . . , n

for T(p,v)(TM) = TpM ⊕ Rn.
Let G ∈ T (U) be the following vector field on TU :

(4.2) Gv =

n∑

k=1

vk
∂

∂xk
−

n∑

i,j,k=1

vivjΓkij(p)
∂

∂vk
.

We want to find out the integral curves γ : I → TU of G. We can ”lift“ a C∞-path γ : I → U to a
C∞-path γ : I → TU by setting

γ(t) = γ̇t.

Using local coordinates x = (x, v) we get a C∞-path x ◦ γ : I → R2n,

x ◦ γ(t) =
(
γ1(t), . . . , γn(t), v1(t), . . . , vn(t)

)
,

where γi = xi ◦ γ and vi = γ̇i = (xi ◦ γ)′. Now γ is an integral curve of G if and only if γ̇t = Gγ(t)
for all t ∈ I, that is, if and only if

γ̇ =

n∑

k=1

(
γ̇k

∂

∂xk
+ v̇k

∂

∂vk

)
= Gγ .

Taking into account (4.2) we finally see that γ is an integral curve of G if and only if

(4.3)

{
γ̇k = vk, 1 ≤ k ≤ n;

v̇k = −vivjΓkij.

This is a first-order system equivalent to the second-order geodesic equation in the proof of Theorem
3.19 under substitution vk = γ̇k.
Conclusion: Integral curves of G project to geodesics in projection π : TM → M . Conversely,
any geodesic γ : I → U lifts to an integral curve γ of G.
Since the geodesic equations are independent of the choice of local coordinates, we conclude that
(4.2) defines a global vector field G, so called geodesic field, on TM . More precisely:



Fall 2010 41

Lemma 4.4. There exists a unique vector field G on TM whose integral curves project to geodesics
under π : TM →M .

Proof. Uniqueness If G exists, then its integral curves project to geodesics and therefore satisfy

(4.3) locally. Hence, G is unique if it exists.

Existence Define G locally by (4.2). Then uniqueness implies that various definitions of G in
overlapping charts agree.

The theory of flows implies that there exists an open neighborhood D(G) ⊂ R×TM of {0}×TM
and a C∞-map α : D(G) → TM , called the geodesic flow, such that each curve

t 7→ α(t, v)

is the integral curve of G starting at v ∈ TM and defined on an open interval Iv 3 0. Since α is
C∞, also π ◦ α : D(G) →M is C∞. Now

t 7→ (π ◦ α)(t, v)

is the geodesic γv, with γv0 = p and γ̇v0 = v. We have shown that γvt = (π ◦ α)(t, v) depends
C∞-smoothly on t, p and v ∈ TpM .

4.5 Appendix

Let Nn and Mm be C∞-manifolds and f : N → M a C∞-map. A C∞-map V : N → TM is said
to be a vector field along f if Vp := V (p) ∈ TpM for all p ∈ N , i.e. π ◦ V = f .

Theorem 4.6. If f : N → M is an embedding and V is a C∞ vector field along f , there exists
Ṽ ∈ T (M) such that Vp = Ṽf(p) for all p ∈ N , i.e. V is ”extendible“.

Proof. The proof is based on the following: For each q ∈ fN ⊂ M there exists a neighborhood U
of q in M and a chart x : U → Rm such that

(4.7) xn+1 ≡ · · · ≡ xm = 0

in U ∩ fN . These are so called slice coordinates (cf. Theorem 1.28).
How to construct the extension of V ?
Sketch: Cover fN by charts {Uα} with the property (4.7). In f−1

(
fN ∩ Uα

)
we have

Vp =

m∑

i=1

vαi (p)(∂i)f(p).

Define in Uα a vector field Ṽ α by setting

Ṽ α
q =

m∑

i=1

wαi (q)(∂i)q,

where

wαi (q) = vαi
(
f−1

(
x−1

(
x1(q), . . . , xn(q)

)))
.
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qf

U

N fN

Rm−n

Rn

x(q)

(
x1(q), . . . , xn(q)

)

x−1
(
x1(q), . . . , xn(q)

)
x

f−1
(
x−1

(
x1(q), . . . , xn(q)

))

Then take all charts {Uβ} such that Uβ ∩ fN = ∅ for all β and

M =
⋃

α,β

(
Uα ∪ Uβ

)
.

Define Ṽ β ∈ T (Uβ) by Ṽ β ≡ 0. Rename Uα, Ṽ
α, Uβ, and Ṽ β as Ui and Ṽ i, i ∈ I. Finally, take a

C∞ partition of unity {ϕi} subordinate to {Ui} and define

Ṽ =
∑

i∈I
ϕiṼ

i.

The assumption ”f embedding“ is crucial: For example, γ : R→ R2, γ(t) = (t3, 0) is a C∞-path
but not embedding. Now γ̇ ∈ T (γ), γ̇t = 3t2(∂1)γ(t), but γ̇ 6∈ T (R) since γ̇ considered as a vector

field in R is given by γ̇u = 3u2/3∂1 which is not differentiable at u = 0.

4.8 Exponential map

Lemma 4.9. All Riemannian geodesics have constant speed , i.e. for every Riemannian geodesic
γ there is a constant c such that

|γ̇t| = 〈γ̇t, γ̇t〉1/2 = c

for every t ∈ I.

Proof. Lemma 3.24 implies that 〈γ̇, γ̇〉′ = 2〈Dtγ̇, γ̇〉 = 0, since by definition Dtγ̇ = 0.

Lemma 4.9 implies that the length of γ|[t0, t] is

(4.10) `
(
γ|[t0, t]

)
=

∫ t

t0

|γ̇t| dt = c(t− t0).

If c = 1, we say that γ is a normalized geodesic (or of unit speed, or parametrized by arc
length).
Let Iv be the maximal interval where γv is defined, and let [0, `v) be the nonnegative part of Iv.

Lemma 4.11. For every α > 0 and 0 ≤ t < `αv

γαvt = γvαt.

In particular, `αv = 1
α`v.
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Proof. The claim holds if |γ̇v | ≡ 0, so we may assume that γ̇vt 6= 0. Let Iv = (a, b) and Ĩαv = 1
αIv =

(a/α, b/α). Define γ : Ĩαv →M by

γ(t) = γv(αt).

Then γ̇t = αγ̇vαt, and so

Dtγ̇t
(∗)
= ∇γ̇t γ̇t = ∇αγ̇v

αt

(
αγ̇vαt

)
= α2∇γ̇v

αt

(
γ̇vαt
)

= 0.

Hence, γ is a geodesic, with γ0 = γv0 and γ̇0 = αγ̇v0 = αv. Furthermore, Ĩαv is the maximal interval
since Iv is. Uniqueness implies that γ = γαv . The equality (∗) holds since the vector field t 7→ γ̇t
(along γ) is locally extendible to a vector field on M (also denoted by γ̇). This is seen as follows:
Since γ̇vt 6= 0, γ : Ĩαv → M is an immersion and therefore locally an embedding by Theorem 1.28.
Then t 7→ γ̇t is locally extendible by Theorem 4.6.

Let E ⊂ TM be the set of vectors v such that `v > 1, i.e. γv(t) is defined for all t ∈ [0, 1]. The
exponential map exp : E →M is defined by

(4.12) exp(v) := γv(1).

For p ∈M , the exponential map at p is the map expp = exp |Ep, where Ep = E ∩ TpM .

Theorem 4.13. We have the following properties

(a) E ⊂ TM is open and contains the (image of the) zero section M × {0} =
⊔
p∈M 0p, where 0p

is the zero element of TpM ;

(b) each Ep is star-shaped with respect to 0 (= 0p);

(c) for each v ∈ TM , the geodesic γv is given by

γv(t) = exp(tv)

for all t such that either side is defined;

(d) the exponential map exp : E →M is C∞.

Proof. The claim (c) follows from Lemma 4.11:

exp(tv) = γtv1
4.11
= γvt .
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(b): If v ∈ Ep, then γvt is defined for all t ∈ [0, 1]. However, exp(tv) = γtv1 = γvt , so γtv1 is defined
for all t ∈ [0, 1]. This means that Ep is star-shaped with respect to 0.
(d): We have exp(v) = (π ◦ α)(1, v), where α is the geodesic flow. Hence, exp is C∞.
(a): Suppose v ∈ E . Then γv is defined at least on [0, 1]. Therefore, also the integral curve γv

of G starting at v ∈ TM is defined on [0, 1]. In particular, γv(1) is defined, hence (1, v) ∈ D(G).
Because D(G) is an open subset of R×TM , there exists an open neighborhood of (1, v) in R×TM
on which the flow α is defined.

In particular, there exists an open neighborhood of v in TM where γw1 = exp(w) is defined.
This implies that E is open. If 0p ∈ TpM is the zero element, then γ0p is the constant path γ0p = p

for every t ∈ R. In particular, γ
0p

t is defined for every t ∈ [0, 1]. So, E contains the zero-section.

Remark 4.14. If v ∈ TpM , v 6= 0, then exp(v) = γv1 = γ
v/|v|
|v| . Because v/|v| is a unit vector,

exp(v) is obtained by traveling from p of length |v| along the unit speed geodesic passing through
p with velocity v/|v|.

Theorem 4.15. For any p ∈ M , there exist a neighborhood V of the origin in TpM and a neigh-
borhood U of p in M such that

expp : V → U

is a diffeomorphism.

Proof. The map expp is clearly C∞ since exp is. We show that (expp)∗0 : T0(TpM) ∼= TpM → TpM
is invertible, in fact, the identity map. Let v ∈ TpM . To compute (expp)∗0v, choose a curve

τ : I → TpM with τ(0) = 0 ∈ TpM and τ̇(0) = v and compute
(
(expp) ◦ τ

)′
(0). An obvious choice

is τ(t) = tv. Then

(expp)∗0v =
d

dt

(
(expp) ◦ τ

)
(t)|t=0 =

d

dt
expp(tv)|t=0 =

d

dt
γvt |t=0 = γ̇v0 = v.

Hence, (expp)∗0 : TpM → TpM is identity, in particular, it is invertible. The inverse function
theorem implies that expp is a local diffeomorphism on a neighborhood of 0 ∈ TpM .

Remark 4.16. The name ”exponential map“ comes from following observation:
Let G be a Lie group. The left-invariant connection ∇L is defined by the requirement

∇L
XY = 0

for every X ∈ T (G) and Y ∈ g, where g is the set of all left-invariant vector fields (∼= TeG).
Geodesics with respect to ∇L is the set of all integral curves of left-invariant vector fields.
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Suppose that G = GL(n,R). Then one can show that TeG ∼= gl(n,R), the set of all linear maps
Rn → Rn or n× n matrices. For A ∈ gl(n,R) ∼= TeG, we have

expeA = eA :=

∞∑

k=0

Ak

k!
.

The natural identification for TeG ∼= gl(n,R) is given as follows. Let xij, i, j = 1, 2, . . . , n, be the
coordinate functions on GL(n,R), i.e. xij(g) is the ijth entry of g ∈ GL(n,R). Define, for each
V ∈ g, a matrix (Vij) ∈ gl(n,R) by setting

Vij = Ve(xij),

which gives the identification.

4.17 Normal neighborhoods

Let V and U be as in Theorem 4.15, i.e. so that expp : V → U is a diffeomorphism. Then U is
called a normal neighborhood of p.
If ε > 0 is so small that B(0, ε) := {v ∈ TpM : |v| < ε} ⊂ V, then the image expp(B(0, ε)) is called

a normal (or geodesic) ball. Furthermore, if B(0, ε) ⊂ V, then expp(B(0, ε)) is called closed
normal (or geodesic) ball, and expp(∂B(0, ε)) is called normal (or geodesic) sphere in M .
Any orthonormal basis {ei} of TpM defines an isomorphism E : Rn → TpM ,

E(x1, . . . , xn) := xiei.

If U is a normal neighborhood of p, we get a coordinate chart ϕ : U → Rn by defining

ϕ := E−1 ◦ exp−1
p .

Then

(4.18) ϕ : expp(x
iei) 7→ (x1, . . . , xn), if xiei ∈ V.

We call the pair (U,ϕ) a normal chart and (x1, . . . , xn) ∈ Rn are called (Riemannian) normal
coordinates of the point x = expp(x

iei). We define the radial distance function r : U → R by

r(x) :=

(
n∑

i=1

(xi)2

)1/2

,

and the unit radial vector field ∂
∂r ∈ T (U \ {p}) by

(
∂

∂r

)

x

:=
xi

r(x)
(∂i)x.

Note that r(x) = |exp−1
p x| since {ei} is orthonormal.

Lemma 4.19. Let (U,ϕ) be a normal chart at p.

(a) If v = viei ∈ TpM , then the normal coordinates of γv(t) are (tv1, . . . , tvn) whenever tv ∈ V.

(b) The normal coordinates of p are (0, . . . , 0).
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(c) The components of the Riemannian metric at p are gij = δij .

(d) Any set {x ∈ U : r(x) < ε} is a normal ball expp(B(0, ε)).

(e) If q ∈ U \ {p}, then
(
∂
∂r

)
q

is the velocity vector (γ̇) of the unit speed geodesic from p to q

(unique by (a)), and therefore
∣∣ ∂
∂r

∣∣ = 1.

(f) ∂kgij(p) = 0 and Γkij(p) = 0.

Proofs are straightforward consequences of (4.18).
Geodesics γv starting at p and staying in U are called radial geodesics (because of (a)).
Warning: Geodesics that do not pass through p do not have, in general, a ”simple“ form in normal
coordinates.

Definition 4.20. An open set W ⊂ M is called uniformly (or totally) normal if there exists
δ > 0 such that for any q ∈ W the map expq is diffeomorphism on B(0, δ) ⊂ TqM and W ⊂
expq(B(0, δ)).

Lemma 4.21. Given p ∈ M and any neighborhood U of p, there exists a uniformly normal W ,
with p ∈W .

Proof. Let E be as in the definition of the exponential map (E ⊂ TM is open and contains the zero
section). Denote the points of E by (q, v), v ∈ TqM ∩ E = Eq. Define a map F : E →M ×M by

F (q, v) = (q, expq v).

Clearly, F is C∞. (Projections πi : M×M →M , πi(q1, q2) = qi, i = 1, 2, are C∞ and π1◦F = π1|E ,
π2 ◦ F = exp). We want to compute the Jacobian matrix of F at (p, 0). Now

T(p,0)E = T(p,0)(TM) = TpM ⊕ T0(TpM)

and
TF (p,0)(M ×M) = T(p,p)(M ×M) = TpM ⊕ TpM.

Then the matrix of F∗ : T(p,0)E → TF (p,p)(M ×M) is

[
id 0
∗ (expp)∗

]
,

where in the upper left block we have id since the map (q, v) 7→ q is the identity w.r.t. q; in the
upper right block we have 0 since (q, v) 7→ q is independent of v; the lower left block ∗ is irrelevant;
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and in the lower right block we have (expp)∗ since the map (q, v) 7→ expq v is the exponential map
expq w.r.t. v.
Hence, F∗(p,0) is invertible. The inverse mapping theorem implies that there exist a neighborhood
O of (p, 0) in TM and W of (p, p) such that F : O → W is a diffeomorphism.

It is possible to choose another neighborhood O′ ⊂ O of (p, 0) of the form

O′ = {(q, v) : q ∈ U ′ and |v| < δ}, U ′ 3 p.

The topology of TM is generated by product open sets in local trivializations. Hence, there
exists ε > 0 so that the set

X = {(q, v) : r(q) < 2ε and |v|g < 2ε}

is an open subset of O, where | · |g is the Euclidean norm in the normal coordinates. The set

K = {(q, v) : r(q) ≤ ε and |v|g = ε}

is compact, and the Riemannian norm | · |g is continuous and nonvanishing on K, so it is bounded
from above and below by positive constants. Both norms |·|g and |·|g are homogeneous (|λv| = λ|v|,
λ > 0), so c1|v|g ≤ |v|g ≤ c2|v|g whenever v ∈ TqM , with r(q) ≤ ε. Denoting δ := c1ε, we may then
choose the set

O′ := {(q, v) : r(q) < ε and |v| < δ} ⊂ X .
Now choose a neighborhood W ⊂ U of p such that also W ⊂ U ′ (=the set in the definition of
O′) and that W × W ⊂ F (O′). Next we show that W and δ satisfy the claim of the Lemma.
Take q ∈ W . Because F is a diffeomorphism on O′, we know that expq is a diffeomorphism on
B(0, δ) ⊂ TqM .
Is W ⊂ expq(B(0, δ))? Take a point y ∈ W . Since (q, y) ∈ W × W ⊂ F (O′), there exists
v ∈ B(0, δ) ⊂ TqM such that (q, y) = F (q, v), so y = expq v. Hence, W ⊂ expq(B(0, δ)).
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4.22 Riemannian manifolds as metric spaces

Recall that the length of a C∞-path γ : [a, b] →M is

`(γ) = `g(γ) =

∫ b

a
|γ̇t| dt,

where g is the Riemannian metric on M . It is independent of parametrization: if ϕ : [c, d] → [a, b]
is C∞ with C∞ inverse, then

γ̃ = γ ◦ ϕ : [c, d] →M

is called a reparametrization of γ (a forward reparametrization if ϕ(c) = a and a backward
reparametrization if γ(c) = b). Then (Exercise)

`(γ) = `(γ̃).

A regular curve is a C∞-path γ : I → M such that γ̇t 6= 0 for every t ∈ I. A path γ : [a, b] → M
is piecewise regular if there exists a0 = a < a1 < · · · < ak = b such that γ|[ai−1, ai] is regular.
The length of γ is then

`(γ) =

k∑

i=1

`(γ|[ai−1, ai]) =

∫ b

a
|γ̇t| dt,

which is well-defined since γ̇t exists and is continuous outside the discrete set of points t = ai. We
say that γ is admissible if it is piecewise regular or γ : {a} →M , γ(a) = p ∈M .

Remark 4.23. The idea of reparametrization extends to admissible curves. The arc length
function of an admissible curve γ : [a, b] →M is the function s : [a, b] → R,

s(t) = `(γ|[a, b]) =

∫ t

a
|γ̇u| du.

Furthermore, the derivative s′(t) exists whenever γ̇t exists and s′(t) = |γ̇t|.

Every admissible curve has a unit speed reparametrization: if γ : [a, b] → M is admissible and
` = `(γ), there exists a forward reparametrization γ̃ : [0, `] → M of γ such that γ̃ is of unit speed
(piecewise).
Now suppose that M is connected (hence path-connected). For p, q ∈M , we define

d(p, q) := inf
γ
`(γ),

where inf is taken over all admissible paths γ from p to q (γ : [a, b] →M , γ(a) = p, γ(b) = q).

Theorem 4.24. Let M be a connected Riemannian manifold, and let d be as above. Then (M,d)
is a metric space whose induced topology is the same as the given manifold topology.

Proof. (i) d(p, q) is finite for every p, q ∈M (exercise).

(ii) Clearly, d(p, q) = d(q, p) ≥ 0 since `(γ) is independent of parametrization (exercise).

(iii) d(p, p) = 0 since we can take the constant path γ ≡ p.

(iv) d(p, q) ≤ d(p, z) + d(z, q) (exercise)

So it remains to show:
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(v) p 6= q implies d(p, q) > 0.

(vi) metric space topology = manifold topology.

(v): Let p ∈M and let (x1, . . . , xn) be normal coordinates at p. As in the proof of Lemma 4.21,
we can find a closed normal ball B = expp(B(0, δ)) and positive constants c1 and c2 such that

c1|v|g ≤ |v| ≤ c2|v|g

for every v ∈ TqM and q ∈ B. This implies that for every piecewise regular γ : I → B we have

c1`g(γ) ≤ `g(γ) ≤ c2`g(γ).(4.25)

Here `g(γ) is the length w.r.t. the Euclidean metric g and `g(γ) is the length w.r.t. the Riemannian
metric g. Now, if p 6= q, take δ > 0 so small that q /∈ B. Then each admissible path γ from p = γ(a)
to q has to pass through ∂B = expp(∂B(0, δ)). Let t0 be the smallest of those t ≥ a with γ(t) ∈ ∂B.
Then

`g(γ) ≥ `g(γ|(a, t0)) ≥ c1`g(γ|(a, t0)) ≥ c1dg(p, γ(t0)) = c1δ > 0,

where dg is the Euclidean distance.

Thus (v) is proven and (M,d) is indeed a metric space.

(vi): We need to show that for every p ∈M and for every neighborhood U of p in the manifold
topology there exists a metric open ball B(p, ε) = {q ∈ M : d(p, q) < ε} ⊂ U , and conversely for
every p ∈ M and ε > 0 there exists a neighborhood U of p in the manifold topology such that
U ⊂ B(p, ε). This can be done for example by using (4.25). Details are left as an exercise.

4.26 Minimizing properties of geodesics

Definition 4.27. An admissible curve γ is called minimizing if `(γ) ≤ `(γ̃) for any admissible γ̃
with the same endpoints.

Remark 4.28. A curve γ is minimizing if and only if `(γ) = d(p, q), where p and q are the end
points of γ.

We shall show that minimizing curves, with unit speed parametrization, are geodesics.

Definition 4.29. An admissible family of curves is a continuous map Γ : (−ε, ε) × [a, b] →M
such that
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1◦ Γ is C∞ on each rectangle (−ε, ε) × [ai−1, ai] for some a0 = a < a1 < · · · < ak = b; and

2◦ for each s ∈ (−ε, ε) the map Γs : [a, b] →M , Γs(t) = Γ(s, t), is an admissible curve.

A vector field along Γ is a continuous map V : (−ε, ε) × [a, b] → TM such that V (s, t) ∈
TΓ(s,t)M for every (s, t) and V |(−ε, ε) × [ãi−1, ãi] is C∞ for some (possibly finer) subdivision ã0 =
a < ã1 < · · · < ã` = b. Curves Γs : [a, b] → M , Γs(t) = Γ(s, t), are called the main curves. They
are piecewise regular.
Curves Γ(t) : (−ε, ε) → M , Γ(t)(s) = Γ(s, t), are called the transverse curves. They are always
C∞. We define

∂tΓ(s, t) :=
d

dt
Γs(t), t 6= ai;

and

∂sΓ(s, t) :=
d

dt
Γ(t)(s), for every (s, t).

Then ∂sΓ is a vector field along Γ, but ∂tΓ can not necessarily be extended to a vector field
along Γ. If V is a vector field along Γ, we write DtV as the covariant derivative of V along main
curves and DsV as the covariant derivative of V along the transverse curves.

Lemma 4.30 (Symmetry Lemma). Let Γ : (−ε, ε) × [a, b] → M be a family of admissible curves
on a Riemannian manifold M . Then

Ds∂tΓ = Dt∂sΓ.

Remark 4.31. This is the point where the symmetry condition on ∇ is needed.

Proof of Lemma 4.30. Let x be a chart at Γ(s0, t0). Writing

(x ◦ Γ)(s, t) = (x1(s, t), . . . , xn(s, t)),

we get

∂tΓ =
∂xi

∂t
∂i and ∂sΓ =

∂xi

∂s
∂i.



Fall 2010 51

Recall the equation (3.8) in Chapter III: γ̇ = γ̇i∂i and V = vj∂j implies that

DtV = (v̇k + vj γ̇jΓkij)∂k.

Now when calculating Ds∂tΓ we can use γ̇ = ∂sΓ and V = ∂tΓ; and similarly, when calculating
Dt∂sΓ, we can use γ̇ = ∂tΓ and V = ∂sΓ. Hence,

Ds∂tΓ =

(
∂2xk

∂s∂t
+
∂xj

∂t

∂xi

∂s
Γkij

)
∂k

and

Dt∂sΓ =

(
∂2xk

∂t∂s
+
∂xj

∂s

∂xi

∂t
Γkij

)
∂k

i↔j
=

(
∂2xk

∂t∂s
+
∂xi

∂s

∂xj

∂t
Γkji

)
∂k

(∗)
=

(
∂2xk

∂t∂s
+
∂xi

∂s

∂xj

∂t
Γkij

)
∂k = Ds∂tΓ.

We have (∗) because Γkij = Γkji due to the symmetricity of Γ.

Remark 4.32. Shorter proof of Lemma 4.30. Let ∂t and ∂s be the standard coordinate vector
fields in R2. Then

∂tΓ = Γ∗∂t and ∂sΓ = Γ∗∂s.

Since [∂t, ∂s] = 0, we have

DsDtΓ −DtDsΓ = ∇Γ∗∂s
Γ∗∂t −∇Γ∗∂t

Γ∗∂s
= [Γ∗∂s,Γ∗∂t]

= Γ∗[∂t, ∂s] = 0.

Definition 4.33. Let γ : [a, b] → M be an admissible curve. A variation of γ is an admissible
family Γ : (−ε, ε) × [a, b] → M such that Γ0 = γ. It is called a proper variation (or fixed-
endpoint variation) if Γs(a) = γ(a) and Γs(b) = γ(b) for every s. The variation field of Γ is
the vector field V (t) = ∂sΓ(0, t). A vector field W along γ is proper if W (a) = 0 and W (b) = 0.
(If Γ is proper variation of γ, the variation field of Γ is proper.
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Lemma 4.34. Let γ : [a, b] → M be admissible and V a continuous piecewise smooth vector field
along γ. Then there exists Γ, a variation of γ, such that V is the variation field of Γ. If V is
proper, then Γ can be taken to be proper as well.

Proof. Define Γ(s, t) := exp(sV (t)). (Exercise)

Theorem 4.35 (First variation formula). Let γ : [a, b] →M be a unit speed admissible curve, Γ a
proper variation of γ, and V the variation field of Γ. Then

d

ds
`(Γs)|s=0 = −

∫ b

a
〈V,Dtγ̇〉 dt −

k−1∑

i=1

〈V (ai),∆iγ̇〉,(4.36)

where ∆iγ̇ := γ̇(a+
i ) − γ̇(a−i ) and ai’s are the subdivision points of [a, b] associated to γ;

γ̇(a+
i ) := lim

t↓ai

γ̇(t) and γ̇(a−i ) := lim
t↑ai

γ̇(t).

Note: The unit speed assumption is not restrictive: each admissible curve has a unit speed
reparametrization and the length is independent of parametrization.

Proof of Theorem 4.35. Write T (s, t) = ∂tΓ(s, t) and S(s, t) = ∂sΓ(s, t). Then

d

ds
`(Γs|[ai−1, ai]) =

d

ds

∫ ai

ai−1

〈Γ̇s(t), Γ̇s(t)〉1/2 dt =
d

ds

∫ ai

ai−1

〈T (s, t), T (s, t)〉1/2 dt =

∫ ai

ai−1

∂

∂s
〈T, T 〉1/2 dt

=

∫ ai

ai−1

1

2
〈T, T 〉−1/2 ∂

∂s
〈T, T 〉 dt =

∫ ai

ai−1

1

2
〈T, T 〉−1/22〈DsT, T 〉 dt 4.30

=

∫ ai

ai−1

1

|T | 〈DtS, T 〉 dt.

At s = 0, we have T (0, t) = ∂tΓ(0, t) = γ̇t, |T (0, t)| = |γ̇t| = 1, and S(0, t) = ∂sΓ(0, t) = V (t).
Hence,

d

ds
`(Γs|[ai−1, ai])|s=0 =

∫ ai

ai−1

〈DtV, γ̇〉 dt =

∫ ai

ai−1

(
d

dt
〈V, γ̇〉 − 〈V,Dtγ̇〉

)
dt

= 〈V (ai), γ̇(a−i )〉 − 〈V (ai−1), γ̇(a+
i−1)〉 −

∫ ai

ai−1

〈V,Dtγ̇〉 dt.

Using V (a0) = V (a) = 0 and V (ak) = V (b) = 0, and summing over all i = 1, . . . , k, we get the
claim.

Theorem 4.37. Every minimizing curve with unit speed is a geodesic.
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Proof. Let γ : [a, b] → M be minimizing, with |γ̇t| ≡ 1, and let a0 = a < a1 < · · · < ak = b be
the subdivision such that γ|[ai−1, ai] is C∞. If Γ is a proper variation of γ, then the minimizing
property of γ implies that

d

ds
`(Γs)|s=0 = 0.(4.38)

Using Lemma 4.34, we know that every proper vector field V along γ is the variation field of some
proper variation Γ of γ. Now using (4.36) and (4.38), we get

∫ b

a
〈V,Dtγ̇〉 dt+

k−1∑

i=1

〈V (ai),∆iγ̇〉 = 0(4.39)

for every proper vector field V along γ.

1◦ Take an interval [ai−1, ai] and choose a function ϕ ∈ C∞(R) such that ϕ > 0 on (ai−1, ai) and
ϕ = 0 elsewhere. Then (4.39) with V = ϕDtγ̇ implies

∫ ai

ai−1

ϕ|Dtγ̇|2 dt = 0.

Hence, Dtγ̇ ≡ 0 on each (ai−1, ai), that is, γ is a ”broken” geodesic.

2◦ For each i = 1, . . . , k − 1 one can construct, using local coordinates at γ(ai), a vector field V
along γ such that V (ai) = ∆iγ̇ and V (t) ≡ 0 for every t /∈ (ai − ε, ai + ε), where ε > 0 is so small
that aj /∈ (ai − ε, ai + ε) if j 6= i. Using again (4.39) and 1◦, we know that |∆iγ̇|2 = 0, that is,
∆iγ̇ = 0. Hence,

γ̇(a−i ) = γ̇(a+
i ) for every i = 1, . . . , k − 1.

The existence and uniqueness of geodesics imply that there exists a geodesic γ̃ : I → M , ai ∈ I,
such that γ̃(ai) = γ(ai), ˙̃γ(ai) = γ̇(a−i ) = γ̇(a+

i ), and γ̃ = γ on both (ai−1, ai)∩ I and (ai, ai+1)∩ I.
Hence, γ is a geodesic.

Geometric interpretation: If Dtγ̇ 6= 0, then (4.36) with V = ϕDtγ̇, where ϕ is as in 1◦, gives

d

ds
`(Γs)|s=0 = −

∫ b

a
ϕ|Dtγ̇|2 dt < 0.

Thus deforming γ in the direction of its ”acceleration vector” Dtγ̇ decreases length.

Similarly, if ∆iγ̇ 6= 0, then the length of the broken geodesic γ decreases by deforming it in the
direction of V , with V (ai) = ∆iγ̇.



54 Riemannian geometry

Definition 4.40. We say that an admissible curve γ : [a, b] → M is a critical point of the
length functional ` if

d

ds
`(Γs)|s=0 = 0

for every proper variation Γ of γ.

Proof of Theorem 4.37 actually gives the following:

Corollary 4.41. A unit speed admissible curve γ is a critical point of the length functional if and
only if γ is a geodesic.

Proof. If γ is a critical point, then the proof of Theorem 4.37 implies that γ is a geodesic. Conversely,
if γ is a geodesic, then the right-hand side of (4.36) has only a term

−
∫ b

a
〈V,Dtγ̇〉 dt,

which vanishes since Dtγ̇ ≡ 0 by the definition of geodesic. Hence, γ is a critical point.

Next we study the converse of Theorem 4.37 and prove that geodesics are locally minimizing.

Lemma 4.42 (Gauss lemma). Let U be a normal ball at p ∈M . Then the unit radial vector field
∂
∂r is orthogonal to the normal spheres in U .

Proof of the Gauss lemma. Let q ∈ U \ {q}. Since expp : B(0, r0) → U is a diffeomorphism for
some r0 > 0, there is v ∈ TpM such that expp v = q. Let X ∈ TqM be tangent to the normal
sphere through q, that is, X ∈ Tq(expp(∂B(0, R))), R = |v| > 0. Let w ∈ Tv(TpM) = TpM such
that (expp)∗w = X. Then w ∈ Tv(∂B(0, R)). By Lemma 4.19, the radial geodesic from p to q is

γ(t) = expp(tv) and γ̇t = |v|
(
∂
∂r

)
γ(t)

= R
(
∂
∂r

)
γ(t)

. Hence, γ̇1 = R
(
∂
∂r

)
q
.

We want to show that X ⊥
(
∂
∂r

)
q

or 〈X, γ̇1〉 = 0. Let σ : (−ε, ε) → TpM , σ(s) ∈ ∂B(0, R), be a

C∞-path such that σ(0) = v and σ̇(0) = w.
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Let Γ be a variation of γ given by

Γ(s, t) = expp(tσ(s)).

For each s ∈ (−ε, ε), Γs is a geodesic with speed |σ(s)| = R. Write S = ∂sΓ and T = ∂tΓ. Then

S(0, 0) =
d

ds
Γ(s, 0)|s=0 =

d

ds
expp(0)|s=0 = 0;

T (0, 0) =
d

dt
Γ(0, t)|t=0 =

d

dt
expp(tv)|t=0 = v;

S(0, 1) =
d

ds
Γ(s, 1)|s=0 =

d

ds
expp(σ(s))|s=0 = (expp)∗(σ̇(0)) = (expp)∗w = X;

and

T (0, 1) =
d

dt
Γ(0, t)|t=1 =

d

dt
expp(tv)|t=1 = γ̇(1).

Now 〈S, T 〉 = 0 at (s, t) = (0, 0) and 〈S, T 〉 = 〈X, γ̇(1)〉 at (s, t) = (0, 1). Therefore, to prove
that 〈X, γ̇(1)〉 = 0, it is enough to show that 〈S, T 〉 is independent of t. Using the Symmetry
lemma 4.30 and the fact that Γ̇s is a geodesic with Γ̇s = T we obtain

∂

∂t
〈S, T 〉 = 〈DtS, T 〉 + 〈S,DtT 〉 DtT=0

= 〈DtS, T 〉 4.30
= 〈DsT, T 〉 =

1

2

∂

∂s
〈T, T 〉 =

1

2

∂

∂s
|T |2 = 0,

since |T | = |Γ̇s| ≡ R for every (s, t).

Definition 4.43. Let U ⊂ M be open and f ∈ C∞(U). The gradient of f , denoted by ∇f or
grad f , is a C∞-vector field on U , defined by

〈∇f,X〉 = df(X) = Xf

for every X ∈ T (U).

Corollary 4.44 (of the Gauss lemma). Let U be a normal ball centered at p ∈ M and let ∂
∂r ∈

T (U \ {p}) be the unit radial vector field. Then ∇r = ∂
∂r on U \ {p}.

Recall that here r : U → R is the radial distance function, defined in normal coordinates by

r(x) =

(
n∑

i=1

(xi)2

)1/2

= | exp−1
p (x)|

and (
∂

∂r

)

x

=
xi

r(x)
(∂i)x; x = expp(x

iei).
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Proof of Corollary 4.44. Take q ∈ U \{p} and Xq ∈ TqM . We need to show that dr(Xq) = 〈 ∂∂r ,Xq〉.
Let expp(∂B(0, R)), R = r(q), be the normal sphere through q. We decompose Xq as

Xq = Wq + α

(
∂

∂r

)

q

, α ∈ R,

where Wq is tangent to the sphere expp(∂B(0, R)), i.e. Wq ∈ Tq(expp(∂B(0, R))).

This can be done since
(
∂
∂r

)
q
/∈ Tq(expp(∂B(0, R))) by the Gauss lemma. Now dr(Wq) = Wqr =

0 since Wq ∈ Tq(expp(∂B(0, R))) and r ≡ R on expp(∂B(0, R)). A direct computation (in normal
coordinates) gives

dr

(
∂

∂r

)
=

(
∂

∂r

)
r = 1,

see Remark 4.45 below. By Gauss lemma
〈
∂

∂r
,Wq

〉
= 0.

Hence

dr(Xq) = dr(Wq) + αdr

(
∂

∂r

)

q

= α;

and 〈
∂

∂r
,Xq

〉
=

〈
∂

∂r
,Wq

〉
+ α

∣∣∣∣
∂

∂r

∣∣∣∣
2

= 0 + α · 1 = α.

Therefore,
〈
∂
∂r ,Xq

〉
= dr(Xq).

Remark 4.45. Let U = expp(B(0, r0)) be a normal ball centered at p. We prove that
(
∂

∂r

)
r = 1

in U \ {p}. Let γ(t) = expp(tv), v = viei, be a radial unit speed geodesic starting at p. Then
(
∂

∂r

)

γ(t)

r = γ̇tr = (r ◦ γ)′(t)

for all t ∈]0, r0[. Since the normal coordinates of γ(t) are (tv1, . . . , tvn), we have

(r ◦ γ)(t) = r
(
γ(t)

)
=
√

(tv1)2 + · · · + (tvn)2 = t
√

(v1)2 + · · · + (vn)2 = t,

and therefore (r ◦ γ)′(t) = 1.
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Theorem 4.46. Let U be a normal ball at p ∈M . If q ∈ U \ {p}, then the radial geodesic from p
to q is the unique minimizing curve from p to q in M up to reparametrization.

Proof. Take ε > 0 such that q ∈ expp(B(0, ε)) ⊂ U . Let γ : [0, R] → M be the unique radial
geodesic from p to q, with unit speed and R = r(q) = | exp−1

p (q)|. Then γ(t) = expp(tv) for some
unit vector v ∈ TpM . Since γ has unit speed, `(γ) = R. Thus we need to show that `(σ) > R
whenever σ : [0, b] → M is an admissible unit speed curve from p to q, with σ([0, b]) 6= γ([0, R]).
Let a0 ∈ [0, b] be the largest t such that σ(t) = p and let b0 ∈ [a0, b] be the smallest t such that
σ(t) ∈ SR = expp(∂B(0, R)).

For t ∈ (a0, b0], we can decompose σ̇(t) as

σ̇(t) = α(t)
∂

∂r
+W (t),

where W (t) is tangent to the normal sphere centered at p through σ(t). The Gauss lemma implies
that 〈W (t),

(
∂
∂r

)
σ(t)

〉 = 0, so

|σ̇(t)|2 = 〈σ̇(t), σ̇(t)〉 = α(t)2 + |W (t)|2 ≥ α(t)2.

Using Corollary 4.44 we know that

α(t) =

〈
∂

∂r
, σ̇(t)

〉
= dr(σ̇(t)).

Hence,

`(σ) ≥ `(σ|[a0, b0]) = lim
δ→0

∫ b0

a0+δ
|σ̇(t)| dt ≥ lim

δ→0

∫ b0

a0+δ
α(t) dt = lim

δ→0

∫ b0

a0+δ
dr(σ̇(t)) dt

= lim
δ→0

∫ b0

a0+δ

d

dt
r(σ(t)) dt = r(σ(b0)) − r(σ(a0)) = R = `(γ).

If `(σ) = `(γ), then both inequalities above are equalities. Since σ is of unit speed, we must have
a0 = 0 and b0 = b = R; and W (t) ≡ 0 and α(t) > 0. So, σ̇(t) = α(t) ∂∂r and since σ is of unit speed

α(t) ≡ 1. Thus both σ and γ are integral curves of ∂
∂r , with σ(R) = γ(R) = q. Hence, σ = γ.

Corollary 4.47. Let U be a normal ball at p. Then r(x) = d(x, p) for every x ∈ U .

Proof. Exercise.
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Denote
B(p, r) := {q ∈M : d(p, q) < r};
B(p, r) := {q ∈M : d(p, q) ≤ r};

and
S(p, r) := {q ∈M : d(p, q) = r}.

We say that an admissible curve γ : I →M is locally minimizing if each t0 ∈ I has a neighborhood
J ⊂ I such that γ|J is minimizing between any pair of its points. Clearly, a minimizing curve is
locally minimizing.

Theorem 4.48. Every geodesic is locally minimizing.

Proof. Let γ : I → M be a geodesic such that I ⊂ R is open. Let t0 ∈ I and let W ⊂ M be a
uniformly normal neighborhood of γ(t0), that is, there exists δ > 0 such that for every q ∈ W the
map expq is a diffeomorphism in B(0, δ) ⊂ TqM and W ⊂ expq(B(0, δ)) = B(q, δ).

Let J ⊂ I be an open interval containing t0 such that γ(J) ⊂ W . If t1, t2 ∈ J , then q2 = γ(t2)
belongs to a normal ball centered at q1 = γ(t1) by the definition of uniformly normal neighborhood.
Theorem 4.46 implies that the radial geodesic from q1 to q2 is the unique minimizing curve from q1
to q2. However, γ|[t1, t2] is a geodesic from q1 to q2 and γ([t1, t2]) is contained in the same normal
ball around q1, so γ|[t1, t2] is this minimizing radial geodesic.

Remark 4.49. We need a uniformly normal neighborhood above to be able to place the center of
the normal ball to any point γ(t), with t in a neighborhood of t0.

Another proof of 4.37 (without using the first variation formula). Let γ : [a, b] →M be a minimiz-
ing curve and let t0 ∈ (a, b). As above, there exists an interval J = (t0 − ε, t0 + ε) ⊂ [a, b] and
a uniformly normal neighborhood W such that γ(J) ⊂ W . As above, we conclude that for every
t1, t2 ∈ J , the unique minimizing curve from γ(t1) to γ(t2) is the radial geodesic. Since the restric-
tion of γ is such a minimizing curve, it coincides with the radial geodesic thus solving the geodesic
equation in a neighborhoof of t0. Since t0 is arbitrary, γ is indeed a geodesic.

4.50 Completeness

Definition 4.51. A Riemannian manifold M is said to be geodesically complete if every maximal
geodesic is defined for all t ∈ R.

Example 4.52. If U  Rn is an open subset with the Euclidean metric, then U is not complete.

Theorem 4.53 (Hopf-Rinow). Let M be a connected Riemannian manifold. Then the following
are equivalent:

(a) there exists p ∈M such that expp is defined on the whole of TpM ;
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(b) for every p ∈M the map expp is define on the whole of TpM ;

(c) M is complete as a metric space;

(d) M is geodesically complete.

Moreover, any of the above conditions implies that

(e) if p, q ∈ M , then there exists a geodesic from p to q with `(γ) = d(p, q), that is, M is a
geodesic metric space.

Proof. (c) =⇒ (d) Suppose M is metrically complete but not geodesically complete. Then there

exists a unit speed geodesic γ : [0, b) → M that extends no interval [0, b + ε) for ε > 0. Let ti ↑ b
and write pi = γ(ti). Since γ is of unit speed, we have

`(γ|[ti, tj ]) = |tj − ti|,

which gives

d(pi, pj) ≤ |tj − ti|.
Hence (pi) is a Cauchy sequence in M . Because M is metrically complete, there exists p ∈M such
that d(pi, p) → 0. Let W be a uniformly normal neighborhood of p and δ > 0 such that for every
q ∈ W , the map expq is diffeomorphism in B(0, δ) ⊂ TqM and W ⊂ B(q, δ) = expq(B(0, δ)). If
i ∈ N is large enough, then pi ∈W and ti > b− δ/4.

Because exppi
is diffeomorphism in B(0, δ) ⊂ Tpi

M , we know that every geodesic σ starting
at pi (i.e. σ(0) = pi) is defined at least on [0, δ). In particular, the geodesic σ, with σ̇(0) = γ̇(ti),
is defined on [0, δ/2]. The uniquesness of the geodesic implies that σ is a reparametrization
of γ. Hence γ̃, γ̃(t) = σ(t − ti), is an extension of γ which is defined on [ti, ti + δ/2], with
ti + δ/2 > b+ δ/4; a contradiction. Hence, M is geodesically complete.

(a) =⇒ (c) First of all, we will show that that every q ∈ M can be joined to p by a geodesic of

length d(p, q), i.e. claim (e) when p is as in (a). Let B(p, δ) be a closed ball at p. If q ∈ B(p, δ),
then there exists a minimizing geodesic from p to q by Theorem 4.46. Suppose q /∈ B(p, δ).
Since S(p, δ) = expp(∂B(0, δ)) is compact and the distance function is continuous, there exists
x ∈ S(p, δ) such that d(x, q) = min{d(y, q) : y ∈ S(p, δ)}.
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Let γ : R → M be a unit speed geodesic such that γ|[0, δ] is the unique radial geodesic from
p to x. Hence, γ(t) = expp(tv), where v = exp−1

p (x)/δ. (Note that the assumption (a) says that
expp(tv), hence γ, is defined for all t ∈ R.) We are going to show that γ(r) = q, where r = d(p, q).
Let f : [0, r] → R be the continuous function f(t) = t+ d(γ(t), q) and let

T := {t ∈ [0, r] : f(t) = r}
(
= f−1(r)

)

Then 0 ∈ T and T is closed. Let t0 := supT . Then t0 ∈ T since T is closed. If t0 = r, we
have r + d(γ(r), q) = r, and so γ(r) = q. Thus, we may assume that t0 < r. Next we show that
t0 + δ′ ∈ T if δ′ > 0 is so small that t0 + δ′ ≤ r. Let B(γ(t0), δ

′) be a closed normal ball and choose
q′ ∈ S(γ(t0), δ

′) such that d(q′, q) = min{d(y, q) : y ∈ S(γ(t0), δ
′)}.

It suffices to show that q′ = γ(t0 + δ), because then

d(γ(t0), q)
(∗)
= δ′ + min{d(y, q) : y ∈ S(γ(t0), δ

′)} = δ′ + d(q′, q) = δ′ + d(γ(t0 + δ), q),

((∗) is an exercise) and since t0 ∈ T implies d(γ(t0), q) = r − t0; we have

d(γ(t0 + δ′), q) = d(γ(t0), q) − δ′ = r − t0 − δ′ = r − (t0 + δ′).

Hence, t0 + δ′ ∈ T ; a contradiction with the definition of t0. To prove that γ(t0 + δ′) = q′, observe
that

d(p, q′) ≥ d(p, q) − d(q′, q) = r −
(
d(γ(t0), q) − δ′

) t0∈T= r − (r − t0 − δ′) = t0 + δ′.

On the other hand, the broken geodesic from p to q′ that goes from p to γ(t0) by γ and then from
γ(t0) to q′ by a radial geodesic in B(γ(t0), δ

′) has length t0 + δ. Hence, d(p, q′) ≤ t0 + δ′, and so
this broken geodesic in minimizing, hence a geodesic. The uniqueness of geodesics implies that it
coincides with γ|[0, t0 + δ′], so γ(t0 + δ′) = q′. This completes the proof of the claim that every
q ∈M can be joined to p by a geodesic of length d(p, q).

Let then (qi) be a Cauchy sequence in M . Let γi : [0, ti] → M , γi(t) = expp(tvi), be a unit
speed minimizing geodesic from p to qi. Then

|ti − tj| = |d(p, qi) − d(p, qj)| =≤ d(qi, qj).

Hence, (ti) is a Cauchy sequence in R, in particular ti ≤ R < ∞ for every i ∈ N. Since |vi| = 1,
the sequence (tivi) of TpM is bounded. Therefore, a subsequence (tikvik) converges to v ∈ TpM .
The continuity of the exponential map expp implies that qik = expp(tikvik) → expp v. Because (qi)
is Cauchy, qi → expp v, so (qi) converges. This gives (c).

(b) =⇒ (a) Trivial.

(d) =⇒ (b) Obvious.

(b) =⇒ (e) That was, in fact, proven in (a) =⇒ (c) .

Remark 4.54. The condition (e) does not imply completeness (e.g. open ball in Rn); all compact
Riemannian manifolds are complete.
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5 Curvature

5.1 What is curvature?

A Consider a C∞-path γ : I → R2 in the plane. Assume that |γ̇| ≡ 1. Formally, the curvature of
γ is defined by κ(t) = |γ̈t|, the norm of the accelleration vector. Geometrically, the curvature has
an interpretation:
Given a point p = γ(t), there are many circles σ that are tangent to γ at p, i.e. σ(t) = p and
σ̇t = γ̇t but exactly one such that also σ̈t = γ̈t. Call this the osculating circle. If γ̈t = 0, take σ
to be the straight line tangent to γ at p. Note that γ̈t ⊥ γ̇t, since |γ̇| ≡ 1 (γ has no accelleration in
its own direction).

R

p

σ

γ̇t

Then κ(t) = 1/R, where R is the radius of the osculating circle (R = ∞ and κ(t) = 0 if γ̈t = 0).
Choose a unit normal vector at some point of γ and let N be the corresponding (continuous) unit
normal vector field along γ. Then the signed curvature κN is

κN (t) =

{
κ(t), if γ̈t ↑↑ Nt

−κ(t), if γ̈t ↑↓ Nt.

B Suppose S is a (2-dimensional) smooth surface in R3. The curvature of S at p ∈ S is
described by two numbers, called the principal curvatures, as follows:

(i) Choose a plane P through p ∈ S containing N , a unit normal vector to S at p; near p S ∩ P
is a smooth plane curve γ (⊂ P ) passing through p.

(ii) Compute κN of γ at p with respect to the chosen unit normal N .

(iii) Repeat this for all such planes P .

P

p
S

γ

The principal curvatures, κ1 and κ2, of S at p are the minimum and the maximum signed cur-
vatures obtained in (iii). Principal curvatures are not isometrically invariant; they are not intrinsic
properties of S. For instance, a strip S1 = {(x, y) ∈ R2 : x ∈ R, 0 < y < π} and a half-cylinder
S2 = {(x, y, z) ∈ R3 : x ∈ R, y2 + z2 = 1, z > 0} are isometric (by the map (x, y) 7→ (x, cos y, sin y)),
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but the principal curvatures of S1 are κ1 = κ2 = 0 whereas the principal curvatures of S2 are κ1 = 0
and κ2 = 1.

Gauss’s Theorema Egregium (”remarkable theorem“), 1827: The product K = κ1κ2 is
intrinsic, i.e. can be expressed in terms of the metric of S. The product K is called the Gaussian
curvature.

”bowl-shaped“ ”dome-shaped“

K > 0 K < 0

Model surfaces.

1. The plane R2, K ≡ 0.

2. The sphere S2 = {x ∈ R3 : |x| = 1} with induced metric, K ≡ 1.

3. The hyperbolic plane H2, K ≡ −1.

• Upper half-plane model: H2 = {(x, y) ∈ R2 : y > 0} with the Riemannian metric

gH = y−2gE , gE = the Euclidean metric.

geodesics

• Poincaré-disk model: H2 = {x ∈ R2 : |x| < 1} with the Riemannian metric

gH =
4gE(

1 − |x|2
)2 .

geodesics

Theorem 5.2 (Uniformization theorem). Every connected 2-manifold is diffeomorphic to a quotient
space of either R2, S2, or H2 by a discrete group of isometries acting properly discontinuously
without fixed points. Therefore, every connected 2-manifold has a complete Riemannian metric
with constant Gaussian curvature.
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Theorem 5.3 (Gauss-Bonnet theorem). If S is a compact oriented 2-manifold with a Riemannian
metric, then ∫

S
K = 2πχ(S),

where χ(S) is the Euler characteristic of S.

The Euler characteristic of S is a topological invariant of S defined as

χ(S) = # vertices - # edges + # faces in any triangulation of S.

X(S) =





2, if S = sphere,

0, if S = torus,

2 − 2g, if S = an oriented surface of genus g.

For Gauss’s Theorema Egregium and the Gauss-Bonnet theorem see e.g. [Le1].

C Curvature in higher dimensions.

A recipe for computing ”some curvatures“ at p ∈M :

1. Take a 2-dimensional subspace P ⊂ TpM ;

2. Take a ball B(0, r) ⊂ TpM such that expp is a diffeomorphism in a neighborhood of B̄(0, r).
Then expp

(
P ∩B(0, r)

)
is a 2-dimensional submanifold of M . Call it SP .

3. Compute the Gaussian curvature of SP at p. Denote it by K(P ).

Thus ”curvature“ of M at p can be interpreted as a map

K : {2-planes in TpM} → R.

A geometric description of curvature: Consider two geodesics intersecting at p in angle α. We will
show later that the curvature has the following effect to the behavior of geodesics:

ααα

”curvature“ > 0 (e.g. Sn) ”curvature“ = 0 (Rn) ”curvature“ < 0 (e.g. Hn)

Model spaces with ”constant curvature“ will be: Rn , Sn = {x ∈ Rn+1 : |x| = 1} with the
induced metric, and the hyperbolic space Hn.

• Upper half-space model for Hn:

{(x1, . . . , xn) ∈ Rn : xn > 0}, gH = x−2
n gE , where gE is the Euclidean metric.

• Poincaré model for Hn:

{x ∈ Rn : |x| < 1}, gH =
4gE

(1 − |x|2)2 .
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• Geodesics (in the models above) are as in the 2-dimensional case.

Remark 5.4. We say that a Riemannian metric g̃ is obtained from another Riemannian metric g
by a conformal change of the metric if g̃ = fg, where f is a positive C∞-function. (Conformal
= ”angles are preserved“.)

Consider next the parallel translation P0,1 around a (piecewise smooth geodesic) triangle γ : [0, 1] →
M, p = γ(0) = γ(1), when M = Rn, Sn, or Hn.

Rn
Conclusion: P0,1V0 = V0

p

V0

Sn Conclusion: P0,1V0 6= V0p

P0,1V0

V0

Hn Conclusion: P0,1V0 6= V0

p

P0,1V0

V0

The phenomenon above is related to the question whether M is locally isometric to Rn at p. Indeed,
a Riemannian manifold M is locally isometric to Rn at p if and only if P0,1 = id for every sufficient
small loops γ, with γ(0) = γ(1) = p.
So, the curvature is a local invariant that in some sense measures how far away the affine conection
(locally) is from the Euclidean connection.

5.5 Curvature tensor and Riemannian curvature

Let M be a C∞-manifold with an affine connection ∇. The curvature tensor field of ∇ is the
map R : T (M) × T (M) × T (M) → T (M) defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Warning: In some books the definition differs from above by sign. (e.g. in Do Carmo [Ca]).
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Lemma 5.6. R is 3-linear over C∞(M) : ∀f, g ∈ C∞(M)

(i) R(fX1 + gX2, Y )Z = fR(X1, Y ) + gR(X2, Y )Z;

(ii) R(X, fY1 + gY2)Z = fR(X,Y1)Z + gR(X,Y2)Z;

(iii) R(X,Y )(fZ + gW ) = fR(X,Y )Z + gR(X,Y )W .

Proof. (Exercise).

Thus R ∈ T 3
1 (M). As a tensor field the value of R(X,Y )Z at p depends only on Xp, Yp, and

Zp (and, of course, on R itself).

Remark 5.7. (i) We immediately see that

(5.8) R(X,Y )Z = −R(Y,X)Z.

(ii) If M = Rn with the standard connection, then R(X,Y )Z = 0 ∀ X,Y,Z ∈ T (Rn).

Let (U, x), x = (x1, . . . , xn), be a chart at p, with ∂1, . . . , ∂n the coordinate frame. Then
R (∈ T 3

1 (M)) can be written in coordinates (xi) as

R = R`ijkdx
i ⊗ dxj ⊗ dxk ⊗ ∂`,

where the functions R`ijk are defined by

R(∂i, ∂j)∂k = R`ijk∂`.

So, if
V = vi∂i, W = wj∂j and Z = zk∂k,

then by linearity (over C∞(U))

R(V,W )Z = R`ijkv
iwjzk∂`,

where we also see that (R(V,W )Z)p depends only on Vp,Wp, Zp, and Rlijk(p).
Since [∂i, ∂j ] = 0, we have

R(∂i, ∂j)∂k = ∇∂i
∇∂j

∂k −∇∂j
∇∂i

∂k = · · · =
(
Γ`jkΓ

m
i` − Γ`ikΓ

m
j` + ∂iΓ

m
jk − ∂jΓ

m
ik

)
∂m.

Geometric interpretation for R(X,Y )Z : For small t > 0, define a piecewise regular curve
γ : [0, 4t] →M as follows:

γ|[0, t] = the integral curve of ∂i starting at p ∈M ;

γ|[t, 2t] = the integral curve of ∂j starting at γ(t);

γ|[2t, 3t] = the integral curve of − ∂i starting at γ(2t);

γ|[3t, 4t] = the integral curve of − ∂j starting at γ(3t).

Here ∂i and ∂j are coordinate vector fields corresponding to a chart (U, x) at p. Since ∂i and
∂j are coordinate vector fields, γ(0) = γ(4t) = p.
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Let P0,4t : TpM → TpM be the parallel translation along γ. Then for v ∈ TpM , we have:

(5.9) R(∂i, ∂j)v = lim
t↘0

(I − P0,4t)v

t2
,

where I : TpM → TpM is the identity map.

The proof of (5.9) is left as an exercise.

Assume that M is a Riemannian manifold, ∇ the Riemannian connection, and 〈 , 〉 the Rie-
mannian metric. Using the Riemannian metric we can change R ∈ T 3

1 (M) to R ∈ T 4(M) by
defining

(5.10) R(X,Y,Z,W ) := 〈R(X,Y )Z,W 〉

for X,Y,Z,W ∈ T (M). It is called the Riemannian curvature tensor. In coordinates it is
written as

R = Rijk`dx
i ⊗ dxj ⊗ dxk ⊗ dx`,

where

Rijk` = g`mR
m
ijk.

Proposition 5.11. Let M be a Riemannian manifold. Then

(1) R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 (Bianchi identity);

(2) 〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉;

(3) 〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉.

Proof. (Exercise)

Remark 5.12. The value of R(X,Y,Z,W ) at p depends only on Xp, Yp, Zp and Wp (and, of
course, on R).

5.13 Sectional curvature

For u, v ∈ TpM , write

|u ∧ v| =
√

|u|2|v|2 − 〈u, v〉2
= the area of the parallelogram spanned by u and v.

If |u ∧ v| 6= 0, we define

(5.14) K(u, v) =
〈R(u, v)v, u〉

|u ∧ v|2 .

Lemma 5.15. Let P ⊂ TpM be a 2-dimensional subspace and let u, v ∈ P be linearly independent.
The K(u, v) does not depend on the choice of u and v.

Proof. Exercise.

Definition 5.16. Given p ∈ M and a 2-dimensional subspace P ⊂ TpM , the number K(P ) =
K(u, v), where {u, v} is any basis of P , is called the sectional curvature of P at p.
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Remark 5.17. This is the same as the Gaussian curvature of SP described earlier in C ; see e.g.
Lee [Le1, Chapter 8].

Lemma 5.18. 〈R(u, v)v, u〉 determines the curvature completely, i.e. K and the metric defines R.

Proof. We need to show that (x, y, z, w) 7→ 〈R(x, y)z,w〉 is the only 4-linear form that satisfies
conditions (5.8) and 5.11(1)-(3), and whose restriction to points (x, y, y, x) is equal to 〈R(x, y)y, x〉.
Suppose that f and f ′ are two such maps (i.e. 4-linear maps (x, y, z, w) 7→ f(x, y, z, w) satisfying
(5.8) and 5.11(1)-(3), and whose restrictions to points (x, y, y, x) are equal to 〈R(x, y)y, x〉). Then
the 4-linear form g = f − f ′ also satisfies (5.8) and 5.11(1)-(3). Since

g(u, v, v, u) = f(u, v, v, u) − f ′(u, v, v, u) = 〈R(u, v)v, u〉 − 〈R(u, v)v, u〉 = 0

for all u, v, we have g(x+ z, y, y, x + z) = 0, and by 4-linearity

g(x, y, y, x)︸ ︷︷ ︸
=0

+g(x, y, y, z) + g(z, y, y, x) + g(z, y, y, z)︸ ︷︷ ︸
=0

= 0.

Thus
g(x, y, y, z) + g(z, y, y, x) = 0

Using (5.8) and 5.11(2)-(3) we obtain

0 = g(x, y, y, z) + g(z, y, y, x)

(2)
= g(x, y, y, z) + g(y, x, z, y)

(3)
= g(x, y, y, z) + g(y, x, y, z)

(5.8)
= g(x, y, y, z) + g(x, y, y, z).

Thus
g(x, y, y, z) = 0.

Here replace y by y + w to obtain first

g(x, y + w, y + w, z) = 0

and then by 4-linearity

g(x, y, y, z)︸ ︷︷ ︸
=0

+g(x, y,w, z) + g(x,w, y, z) + g(x,w,w, z)︸ ︷︷ ︸
=0

= 0.

Hence
g(x,w, y, z) = −g(x, y,w, z)

which by (2) and (3) (of 5.11) is the same as

g(y, z, x,w) = g(x, y, z, w).

We conclude that g does not change in cyclic permutations of the first 3 variables. By 5.11(1), the
sum over such permutations vanishes, and therefore g = 0.

By using Lemma 5.18 one can characterize curvature tensors with constant sectional curvature.
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Proposition 5.19. Let M be a Riemannian manifold and p ∈M . Then K(P ) = K for all 2-planes
P ⊂ TpM if and only if

R(x, y)z = K (〈y, z〉x− 〈x, z〉y)
for all x, y, z ∈ TpM.

Proof. ⇒ Define multilinear maps R̃ : (TpM)3 → TpM,

R̃(x, y)z = K (〈y, z〉x− 〈x, z〉y) ,
and R̃ : (TpM)4 → R,

R̃(x, y, z, w) = K (〈y, z〉〈x,w〉 − 〈x, z〉〈y,w〉) .
Now R̃ satisfies (5.8) and 5.11(1)-(3). If K(P ) ≡ K, we have

R(x, y, y, x) = K
(
|x|2|x|2 − 〈x, y〉2

)
= R̃(x, y, y, x).

Lemma 5.18 then implies that R = R̃.
⇐ Obvious.

5.20 Ricci curvature and scalar curvature

Definition 5.21. The Ricci curvature is a tensor field Ric ∈ T 2(M) defined by

Ric(x, y) = the trace of the linear map z 7→ R(z, x)y.

If e1, . . . , en is an orthonormal basis of TpM , then

Ric(x, y) =
n∑

i=1

〈R(ei, x)y, ei〉

=

n∑

i=1

〈R(x, ei)ei, y〉.

We set Ric(x) = Ric(x, x). If |x| = 1, Ric(x) is called the Ricci curvature in the direction x.
Hence if |x| = 1 and e1, . . . , en−1 ∈ TpM such that x, e1, . . . , en−1 is an orthonormal basis of TpM ,
we get

Ric(x) = 〈R(x, x)x, x〉︸ ︷︷ ︸
=0

+

n−1∑

i=1

〈R(x, ei)ei, x〉

(∗)
=

n−1∑

i=1

K(Pi),

where Pi ⊂ TpM is the plane spanned by x and ei. Note that (∗) holds since |x ∧ ei| = 1 for all
i = 1, . . . , n− 1.

x

ei

ej
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Remark 5.22. Lower bounds for the Ricci curvature Ric(x) give upper bounds for the volume
growth. The Ricci curvature will be important in relations between curvature and topology.

The scalar curvature is a function S defined as the trace of Ric. Thus

S(p) =

n∑

i=1

Ric(ei),

where e1, . . . , en is an orthonormal basis of TpM .

6 Jacobi fields

Jacobi fields provide tools to study the effect of curvature on the behavior of nearby geodesics.
They can also be used to characterize points where expp fails to be a local diffeomorphism.

In this chapter we assume that M is a Riemannian manifold.

6.1 Jacobi equation

Lemma 6.2. If Γ is a C∞ admissible family of curves and if V is a C∞ vector field along Γ, then

DsDtV −DtDsV = R(S, T )V.

Recall that Γ: ] − ε, ε[×[a, b] →M and

T (s, t) = ∂tΓ(s, t),

S(s, t) = ∂sΓ(s, t),

DtV = the covariant derivative of V along main curves Γs,

DsV = the covariant derivative of V along transverse curves Γ(t).

Γ

s

t

∂sΓ(s, t)

∂tΓ(s, t)

Proof. This is a local question, so we may compute in local coordinates. Let x be a chart at
Γ(s0, t0). Writing

V (s, t) = V i(s, t)∂i,

we get

DtV =
∂V i

∂t
∂i + V iDt∂i,

DsDtV =
∂2V i

∂s∂t
∂i +

∂V i

∂t
Ds∂i +

∂V i

∂s
Dt∂i + V iDsDt∂i

DtDsV
s↔t
= · · · · · · · · · + V iDtDs∂i.
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Thus

DsDtV −DtDsV = V i(DsDt∂i −DtDs∂i).

Writing (x ◦ Γ)(s, t) =
(
x1(s, t), . . . , xn(s, t)

)
, we have

T =
∂xj

∂t
∂j , S =

∂xk

∂s
∂k.

Since ∂i is extendible, we have

Dt∂i = ∇T∂i =
∂xj

∂t
∇∂j

∂i.

Furthermore, since ∇∂j
∂i is extendible, we obtain

DsDt∂i =
∂2xj

∂s∂t
∇∂j

∂i +
∂xj

∂t
∇S

(
∇∂j

∂i
)

=
∂2xj

∂s∂t
∇∂j

∂i +
∂xj

∂t

∂xk

∂s
∇∂k

∇∂j
∂i.

Similarly (interchanging s↔ t and j ↔ k),

DtDs∂i =
∂2xj

∂t∂s
∇∂j

∂i +
∂xk

∂s

∂xj

∂t
∇∂j

∇∂k
∂i.

Hence

DsDt∂i −DtDs∂i =
∂xj

∂t

∂xk

∂s

(
∇∂k

∇∂j
∂i −∇∂j

∇∂k
∂i
)

[∂k,∂j ]=0
=

∂xj

∂t

∂xk

∂s
R(∂k, ∂j)∂i

= R(S, T )∂i.

So,

DsDtV −DtDsV = V iR(S, T )∂i = R(S, T )V.

Remark 6.3. Shorter proof of Lemma 6.2.(Cf. Remark 4.32.) Since

[S, T ] = [Γ∗∂s,Γ∗∂t] = Γ∗ [∂s, ∂t]︸ ︷︷ ︸
=0

= 0.

we obtain

R(S, T )V = ∇S∇TV −∇T∇SV −∇[S, T ]︸ ︷︷ ︸
=0

V

= ∇Γ∗∂s
∇Γ∗∂t

V −∇Γ∗∂t
∇Γ∗∂s

V

= DsDtV −DtDsV.

Let Γ be as above. We say that Γ is a variation of γ through geodesics if all main curves Γs
are geodesics and Γ0 = γ. Recall that the variation field of Γ is the vector field V (t) = ∂sΓ(0, t) =
S(0, t).
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Theorem 6.4. Let γ be a geodesic and Γ a variation of γ through geodesics. If V is the variation
field of Γ, then it satisfies the Jacobi equation

(6.5) D2
t V +R(V, γ̇)γ̇ = 0.

Proof. Let S(s, t) = ∂sΓ(s, t) and T (s, t) = ∂tΓ(s, t) be as earlier. Since all main curves Γs are
geodesics, we have

DtT = DtΓ̇ = 0.

By Lemma 6.2 and the Symmetry Lemma 4.30, we obtain

0 = DsDtT = DtDsT +R(S, T )T

= DtDtS +R(S, T )T.

At s = 0, S(0, t) = V (t) and T (0, t) = γ̇t, so we get (6.5).

Definition 6.6. Any vector field V along a geodesic γ that satisfies (6.5) is called a Jacobi field.

Let γ : I → M be a geodesic, Ei ∈ T (γ), i = 1, . . . , n, a parallel orthonormal frame along γ,
and En = γ̇. Let V ∈ T (γ),

V = viEi.

Since Ei is parallel, DtV = v̇iEi and

(6.7) D2
t V = v̈iEi.

Writing R(Ej, Ek)E` = Rijk`Ei, we get

(6.8) R(V, γ̇)γ̇ = R(vjEj , En)En = vjRijnnEi.

By definition, V is a Jacobi field if and only if it satisfies (6.5). Plugging-in (6.7) and (6.8) into
(6.5), we conclude that

V is a Jacobi field ⇔ v̈iEi + vjRijnnEi = 0

⇔ v̈i + vjRijnn = 0, ∀i = 1, . . . , n.

This is a linear system of 2nd-order ODEs. Theory of ODEs then imply the following:

Proposition 6.9. Let γ : I → M be a geodesic, t0 ∈ I, and p = γ(t0). Given any vectors v,w ∈
TpM there exists a unique Jacobi field V satisfying the initial conditions

Vt0 = v and (DtV )t0 = w.

Corollary 6.10. Given a geodesic γ, the set of all Jacobi fields along γ is a 2n-dimensional linear
subspace of T (γ).

Proof. Follows easily from 6.9 (Exercise)

Lemma 6.11. If γ : I →M is a geodesic and V is a Jacobi field along γ, then on every [a, b] ⊂ I,
V is the variation field of some variation of γ|[a, b] through geodesics.

Proof. Let γ : I →M be a geodesic and V a Jacobi field along γ. Fix [a, b] ⊂ I and t0 ∈ [a, b]. Let
σ be a C∞-path such that σ̇0 = Vt0 . Let T and Z be parallel vector fields along σ such that

T0 = γ̇t0 and Z0 = (DtV )t0 .



72 Riemannian geometry

γ

σ

Zs

σs
Ts

Vt0

σ0

γ̇t0

(DtV )t0

For a sufficiently small ε > 0 define Γ: ] − ε, ε[×[a, b] →M by

Γ(s, t) = expσ(s)

[
(t− t0)(Ts + sZs)

]
.

Then Γ is a variation of γ through geodesics. By Theorem 6.4,

t 7→ ∂sΓ(0, t)

is a Jacobi field along γ. We claim that Vt = ∂sΓ(0, t). To prove the claim, we observe that

∂sΓ(0, t0) =
d

ds
Γ(s, t0)|s=0 =

d

ds
σ(s)|s=0 = σ̇0 = Vt0

and

∂tΓ(s, t0) =
d

dt
Γ(s, t)|t=t0 = Ts + sZ0.

The Symmetry Lemma 4.30 and the assumption that T and Z are parallel along σ imply that

Dt∂sΓ(s, t0)
4.30
= Ds∂tΓ(s, t0) = Ds(Ts + sZs)

= DsTs︸ ︷︷ ︸
=0

+sDsZs︸ ︷︷ ︸
=0

+
d

ds
(s)

︸ ︷︷ ︸
=1

Zs

= Zs.

Hence at s = 0
Dt∂sΓ(0, t0) = Z0 = (DtV )t0

Since V and ∂sΓ(0, ·) have the same initial values, we get Vt = ∂sΓ(0, t) by Proposition 6.9.

6.12 Effect of curvature on geodesics

Let x, y ∈ TpM be orthonormal and X,Y their parallel fields in TpM.

TpM

t(x+ y)

x

y

X

Y

Define Γ(s, t) = expp[t(x+ sy)].
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tx

t(x + y)
expp

y

p

Vt

Γ0

Then Γ is a variation of Γ0 through geodesics and

(6.13) Vt = ∂sΓ(0, t) =
d

ds

(
expp

[
t(x+ sy)

])
|s=0

= (expp)∗(tY )

is a Jacobi field. More precisely, (expp)∗(tY ) = (expp)∗tx : Ttx(TpM) → TΓ(0,t)M .
We want to study the Taylor expansion of |Vt|2 at t = 0. In what follows we denote the covariant

derivative Dt by prime (’). Write Tt = ∂tΓ(0, t) = Γ0(t). From (6.13), we get

V ′
0 = Y0 = y and 〈V, V 〉0 = 0,

and consequently

〈V, V 〉′0 = 2〈V ′, V 〉0 = 0

〈V, V 〉′′0 = 2 〈V ′′, V 〉0︸ ︷︷ ︸
=0

+2〈V ′, V ′〉0 = 2
2

|y|︸︷︷︸
=1

= 2

〈V, V 〉′′′0 = 2〈V ′′, V 〉′0 + 2〈V ′, V ′〉′0
= 2 〈V ′′′, V 〉0︸ ︷︷ ︸

=0

+2〈V ′′, V ′〉0 + 4〈V ′′, V ′〉0

= 6〈V ′′, V ′〉0.

Since V is a Jacobi field, we have V ′′ = −R(V, T )T , and therefore

V ′′
0 = −

(
R(V, T )T

)
0

= 0,

and so
〈V, V 〉′′′0 = 0.

Hence

V ′′′
0 = −

(
R(V, T )T

)′
0

(∗)
= −

(
R(V ′, T )T

)
0

= −R(y, x)x.

Using this we compute

〈V, V 〉′′′′0 =
(
2〈V ′′′, V 〉 + 6〈V ′′, V ′〉

)′
0

= 2 〈V ′′′′, V 〉0︸ ︷︷ ︸
=0

+2〈V ′′′, V ′〉0 + 6〈V ′′′, V ′〉0 + 6 〈V ′′, V ′′〉0︸ ︷︷ ︸
=0

= 8〈V ′′′, V ′〉0
= −8〈R(y, x)x, y〉.

Putting these together, we obtain

|Vt|2 = 2
t2

2!
− 8

4!
〈R(y, x)x, y〉t4 +O(t5).
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Vectors x, y ∈ TpM are orthonormal, hence 〈R(y, x)x, y〉 = K(y, x), and therefore

(6.14) |Vt|2 = t2 − 1

3
K(y, x)t4 +O(t5).

Let us prove the equality (∗):

(−R(V, T )T )′0 = (−R(V ′, T )T )0.

For every W ∈ T (Γ0), we have at t = 0:

〈R(V, T )T,W 〉′0 = 〈(R(V, T )T )′,W 〉0 + 〈R(V, T )T,W ′〉0︸ ︷︷ ︸
=0 since V0=0

Hence using Proposition 5.11(2)-(3) we obtain

〈(R(V, T )T )′,W 〉0 = 〈R(V, T )T,W 〉′0
(2),(3)

= −〈R(T,W )T, V 〉′0
= −〈(R(T,W )T )′, V 〉0︸ ︷︷ ︸

=0

−〈R(T,W )T, V ′〉0

(3)
= 〈R(T,W )V ′, T 〉0
(2)
= 〈R(V ′, T )T,W 〉0.

Since this holds for every W ∈ T (Γ0), the equality (∗) follows.
Geometrical interpretation:

TpMTpM

exppexpp

MM

K(y, x) > 0 K(y, x) < 0

6.15 Conjugate points

In this section we study the relationship between singularities of the exponential map and Jacobi
fields.

If M is complete, then expp is defined on all of TpM and it is a local diffeomorphism near 0.
However, it may fail to be a local diffeomophism at points far away.

Example 6.16. The sphere Sn. For any p ∈ Sn, all points on ∂B(0, π) ⊂ TpS
n are mapped to the

antipodal point q ∈ Sn (of p) by the exponential map expp. Hence q is the critical value of expp.
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TpSn

expp

0

∂B(0, π)

v
w

q

p

Definition 6.17. A point q is a conjugate point of p ∈ M if q is a critical value of expp. That
is,

expp∗v : Tv(TpM) → TqM

is singular for some v ∈ TpM . (Note that then q = expp v.) Moreover, q is conjugate to p along
a geodesic γ if γ is a reparametrization of γv, where v is as above.

Suppose that v ∈ TpM and expp∗v w = 0 for some 0 6= w ∈ Tv(TpM) = TpM . Let

Γ(s, t) = expp t(v + sw)

be the variation of t 7→ expp(tv) through geodesics. The corresponding variation field

Vt = ∂sΓ(0, t) = expp∗tv tW,

where W is the parallel field of w in TpM , is a Jacobi field that vanishes at t = 0 and t = 1;
V0 = expp∗0 0 = 0, V1 = expp∗v w = 0. Since expp is a local diffeomorphism at 0 ∈ TpM , V is
non-trivial.

Theorem 6.18. Let γ : [0, 1] → M be a geodesic. Then q = γ1 is conjugate to p = γ0 along γ if
and only if there exists a non-trivial Jacobi field V along γ such that V0 = 0 and V1 = 0.

Proof. ⇒ Proved above.

q

p

⇐ Suppose that V is a non-trivial Jacobi field along γ, with V0 = 0 and V1 = 0. Let

Γ(s, t) = expp t(γ̇0 + sV ′
0).

Its variation field is V (see the proof of Lemma 6.11). Hence

expp∗γ0 V
′
0 = ∂sΓ(0, 1) = V1 = 0.

Since V0 = 0 and V is non-trivial, we must have V ′
0 6= 0 (otherwise, Vt ≡ 0 by Proposition 6.9). It

follows that expp∗γ0 is singular, and therefore q = expp(γ̇0) is conjugate to p along γ.
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Remark 6.19. If γ : [a, b] → M is a geodesic, so does σ : [a, b] → M, σ(t) = γ(a + b − t).
Furthermore, if V is a Jacobi field along γ, then

t 7→ Va+b−t

is a Jacobi field along σ. In conclusion,

q is conjugate to p⇔ p is conjugate to q.

Theorem 6.20. If V is a Jacobi field along a geodesic γ : [a, b] →M, Va = 0, and Vb = 0, then

〈V, γ̇〉 = 〈V ′, γ̇〉 = 0.

Proof. Since γ is a geodesic, Dtγ = 0, and so

〈V ′, γ̇〉′ = 〈V ′′, γ̇〉 = −R(V, γ̇)γ̇, γ̇〉︸ ︷︷ ︸
(=〈R(V,γ̇)γ̇,γ̇〉 hence =0)

= 0.

Thus 〈V ′, γ̇〉 = c = constant. On the other hand,

〈V, γ̇〉′ = 〈V ′, γ̇〉 = c,

and therefore

〈Vt, γ̇t〉 = ct+ d,

where d is a constant. Since 〈Va, γ̇a〉 = 0 and 〈Vb, γ̇b〉 = 0, we have c = d = 0, and consequently

〈V, γ̇〉 = 〈V ′, γ̇〉 = 0.

Remark 6.21. We get from the proof above that every Jacobi field V satisfies

〈Vt, γ̇t〉 = 〈Va, γ̇a〉 + 〈V ′
a, γ̇a〉(t− a).

Theorem 6.22. Let γ : [a, b] →M be a geodesic. If γa is not conjugate to γb and v1 ∈ TγaM, v2 ∈
Tγb

M, then there exists a unique Jacobi field V along γ such that Va = v1 and Vb = v2.

Proof. Let V and W be Jacobi fields such that Va = Wa = v1 and Vb = Wb = v2. Then Y = V −W
is a Jacobi field along γ, with Ya = 0 and Yb = 0. Theorem 6.18 implies that Y = 0, hence V is
unique (if exists). The proof of the existence of V is left as an exercise.

Suppose thatM has constant sectional curvatureK. Let γ : [0, b] →M be a geodesic and Ei, i =
1, . . . , n, be a parallel frame along γ. Let V be a Jacobi field along γ. Then by Proposition 5.19

〈V ′′, Ei〉 = −〈R(v, γ̇)γ̇, Ei〉
= −K

(
〈γ̇, γ̇〉〈V,Ei〉 − 〈V, γ̇〉〈γ̇, Ei〉

)
.

If γ is of unit speed and 〈V, γ̇〉 ≡ 0, then

〈V ′′, Ei〉 = −K〈V,Ei〉.



Fall 2010 77

Solutions:

K > 0 : Vt =
(
ai sin(

√
Kt) + bi cos(

√
Kt)

)
Ei(t);

K = 0 : Vt =
(
ait+ bi

)
Ei(t);

K < 0 : Vt =
(
ai sinh(

√
|K|t+ bi cosh(

√
|K|t)

)
Ei(t),

where ai and bi are constants.
Conclusion:
If K ≤ 0, there are no conjugate points of γ(0).
If K > 0, we get conjugate points of γ(0) for t = `π/

√
K, ` = 1, 2, . . ..

6.23 Second variation formula

Theorem 6.24 (The second variation formula). Let γ : [a, b] → M be a unit speed geodesic, Γ a
proper variation of γ, and V its variation field. Then

(6.25)
d2

ds2
`(Γs)|s=0 =

∫ b

a

(
|DtV

⊥|2 − 〈R(V ⊥, γ̇)γ̇, V ⊥〉
)
dt,

where V ⊥ is the normal component of V , i.e. V = V T + V ⊥, V T = 〈V, γ̇〉γ̇.
Proof. Write T = ∂tΓ, S = ∂sΓ. Assume Γ is smooth in ] − ε, ε[×[ai−1, ai]. Then

d

ds
` (Γs|[ai−1, ai]) =

∫ ai

ai−1

1

|T | 〈DtS, T 〉dt.

The Symmetry lemma 4.30 and Lemma 6.2 imply that

d2

ds2
` (Γs|[ai−1, ai]) =

∫ ai

ai−1

∂

∂s

(〈DtS, T 〉
|T |

)
dt

=

∫ ai

ai−1

(〈DsDtS, T 〉 + 〈DtS,DsT 〉
|T | − 1

2

〈DtS, T 〉2〈DsT, T 〉
|T |3

)
dt

=

∫ ai

ai−1

(〈DtDsS +R(S, T )S, T 〉 + |DtS|2
|T | − 〈DtS, T 〉2

|T |3
)
dt.

At s = 0, |T | ≡ 1, hence

d2

ds2
`(Γs|[aa−1, ai])|s=0 =

∫ ai

ai−1

(
〈DtDsS, T 〉 + 〈R(S, T )S, T 〉 + |DtS|2 − 〈DtS, T 〉2

)
dt|s=0.

Since T (0, t) = γ̇t, we have DtT = Dtγ̇ = 0 at s = 0, and therefore
∫ ai

ai−1

〈DtDsS, T 〉dt|s=0 =

∫ ai

ai−1

∂

∂t
〈DsS, T 〉dt|s=0

= 〈DsS(0, ai), γ̇ai
〉 − 〈DsS(0, ai−1), γ̇ai−1〉.

Since Γ is proper, S(s, t) = 0 for all s at the endpoints t = a0 = a and t = ak = b. Hence
DsS(s, a0) = 0 and DsS(s, ak) = 0. Furthermore, DsS is continuous at every (s, t), in particular,
when t = ai, and therefore

k∑

i=1

∫ ai

ai−1

〈DtDsS, T 〉dt|s=0 =

k∑

i=1

(
〈DsS(0, ai), γ̇ai

〉 − 〈DsS(0, ai−1), γ̇ai−1〉
)

= 0.
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We obtain

d2

ds2
`(Γs)|s=0 =

∫ b

a

(
|DtS|2 − 〈DtS, T 〉2 − 〈R(S, T )T, S〉

)
dt|s=0

=

∫ b

a

(
|DtV |2 − 〈DtV, γ̇〉2 − 〈R(V, γ̇)γ̇, V 〉

)
dt

where the last equality holds since S(0, t) = Vt.
Write V = V T + V ⊥, where V T = 〈V, γ̇〉γ̇. Then

DtV
T = Dt(〈V, γ̇〉γ̇) = 〈V, γ̇〉Dtγ̇︸︷︷︸

=0

+
d

dt
(〈V, γ̇〉)γ̇

= 〈DtV, γ̇〉γ̇ + 〈V, Dtγ̇︸︷︷︸
=0

〉γ̇

= (DtV )T ;

DtV
⊥ = (DtV )⊥.

Hence

|DtV |2 = |(DtV )T |2 + |(DtV )⊥|2 = 〈DtV, γ̇〉2 + |DtV
⊥|2,

and so

|DtV |2 − 〈DtV, γ̇〉2 = |DtV
⊥|2.

Also,

〈R(V, γ̇)γ̇, V 〉 = 〈R(〈V, γ̇〉γ̇, γ̇)γ̇︸ ︷︷ ︸
=0

, V 〉 + 〈R(V ⊥, γ̇)γ̇, V 〉

= 〈R(V ⊥, γ̇)γ̇, 〈V, γ̇〉γ̇︸ ︷︷ ︸
=0

〉 + 〈R(V ⊥, γ̇)γ̇, V ⊥〉

= 〈R(V ⊥, γ̇)γ̇, V ⊥〉.

We define a symmetric bilinear form, called the index form, on the space of continuous,
piecewise C∞ vector fields along γ by

I(V,W ) =

∫ b

a
(〈DtV,DtW 〉 − 〈R(V, γ̇)γ̇,W 〉) dt.

Corollary 6.26. If γ : [a, b] →M is a unit speed geodesic and if Γ is a proper variation of γ whose
variation field V is normal, then

(6.27)
d2

ds2
`(Γs)|s=0 = I(V, V ).

In particular, if γ is minimizing, then I(V, V ) ≥ 0 for any proper, normal vector field V along γ.

Proof. Since Γ is proper, also V is proper. Furthermore, since V is proper and normal, we obtain
(6.27) from the second variation formula (6.25). To prove the second claim, suppose on the contrary
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that there exists a proper normal vector field V along γ such that I(V, V ) < 0. Now V is the
variation field of some proper variation Γ of γ. But then (6.27) implies that

d2

ds2
`(Γs)|s=0 < 0,

and therefore γ can not be minimizing.

Next we express I(V,W ) in another form involving the Jacobi equation.

Suppose that V and W are continuous, piecewise smooth vector fields along γ. Let a = a0 <
a1 < · · · < ak = b be such that V and W are C∞ on each [ai−1, ai]. Then

〈DtV,W 〉′ = 〈D2
t V,W 〉 + 〈DtV,DtW 〉.

Hence ∫ ai

ai−1

〈DtV,DtW 〉dt = −
∫ ai

ai−1

〈D2
t V,W 〉dt +

ai/

ai−1

〈DtV,W 〉.

By taking the sum over i = 1, . . . , k and obseving that W is continuous at points t = ai we get

(6.28) I(V,W ) = −
∫ b

a
〈D2

t V +R(V, γ̇)γ̇,W 〉dt−
k∑

i=0

〈∆iDtV,W (ai)〉,

where

∆iDtV = lim
t↘ai

DtV (t) − lim
t↗ai

DtV (t), i = 1, . . . , k − 1;

∆0DtV = lim
t↘a

DtV (t);

∆kDtV = − lim
t↗b

DtV (t).

The next theorem says that no geodesic is minimizing past its first conjugate point.

Theorem 6.29. Let γ : [0, b] → M be a unit speed geodesic from p = γ(0) to q = γ(b) such that
γ(a) is conjugate to p for some a ∈]0, b[. Then there exists a proper normal vector field X along γ
such that I(X,X) < 0. In particular, γ|[a, c] is not minimizing for any c ∈]a, b[.

Proof. By Theorem 6.18 and Theorem 6.20, there exists a nontrivial normal Jacobi field J along
γ|[0, a] such that J0 = 0, Ja = 0 since γ(a) is conjugate to p.

q

p

γ(a)

∆DtV

Define a vector field V along γ by

Vt =

{
Jt, t ∈ [0, a]

0, t ∈ [a, b].
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Then V is proper, normal, and piecewise smooth. Let W be a smooth, proper, and normal vector
field along γ such that

Wa = ∆DtV = lim
t↘a

DtV (t)︸ ︷︷ ︸
=0

− lim
t↗a

DtV (t) = −DtJ(a) 6= 0.

Note that DtJ(a) 6= 0 otherwise J ≡ 0. Also DtJ(a) ⊥ γ̇a by Theorem 6.20. Such W is easy to
construct: take the parallel translation of −DtJ(a) and then multiply by a smooth ”bumb function“
ϕ.

a b0

ϕ(a) = 1

Define

Xε = V + εW, ε > 0.

Then Xε is a proper, normal, piecewise smooth vector field along γ, and

I(Xε,Xε) = I(V, V ) + 2εI(V,W ) + ε2I(W,W ).

Since V is a Jacobi field along [0, a] and [a, b], we get by (6.28) that

I(V, V ) = −〈∆DtV, Va〉 = 0

and

I(V,W ) = −〈∆DtV,Wa〉 = −|Wa|2 6= 0.

Hence

I(Xε,Xε) = −2ε |Wa|2︸ ︷︷ ︸
6=0

+ε2I(W,W ) < 0

if ε is small enough.

Remark 6.30. A geodesic without conjugate points need not be minimizing.

Example 6.31. There are no conjugate points along any geodesic on a cylinder S1 ×R. However,
no geodesic that wraps more than half way around the cylinder is minimizing.

not minimizing
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7 Curvature and topology

7.1 Index lemma

Lemma 7.2 (Index Lemma). Let γ : [0, b] →M be a unit speed geodesic from p = γ(0) to q = γ(b)
without conjugate points to p along γ. Let W be a piecewise smooth vector field along γ with W0 = 0
and let V ∈ T (γ) be the unique Jacobi field with V0 = W0 and Vb = Wb. Then

I(V, V ) ≤ I(W,W )

and equality occurs if and only if W = V .

Proof. Let v1, . . . , vn be a basis in TqM and V1, . . . , Vn ∈ T (γ) be Jacobi fields such that Vi(0) = 0
and Vi(b) = vi. Then by Theorem 6.22 the fields Vi are unique. Because the Jabobi equation is
linear, the set {Vi(t)} is linearly independent for every t ∈ (0, b]. Because W0 = 0, we know that
W = f iVi, where f i is piecewise smooth along γ. On the other hand, the equality Vb = Wb =
f i(b)Vi(b) combined with the fact that Vi is a Jacobi field implies that V = f i(b)Vi. Hence, due to
the fact that V is a Jacobi field and (6.28), we have

I(V, V ) = 〈V ′(b), V (b)〉 = f i(b)f j(b)〈V ′
i (b), Vj(b)〉.(7.3)

Furthermore,
(
〈V ′
i , Vj〉 − 〈Vi, V ′

j 〉
)′

= 〈V ′′
i , Vj〉 + 〈V ′

i , V
′
j 〉 − 〈V ′

i , V
′
j 〉 − 〈Vi, V ′′

j 〉
= 〈R(Vj, γ̇)γ̇, Vi〉 − 〈R(Vi, γ̇)γ̇, Vj〉 = 0.

Hence,

〈V ′
i , Vj〉 − 〈Vi, V ′

j 〉 = C,(7.4)

where C is a constant. The constant C = 0 because 〈V ′
i , Vj〉0 − 〈Vi, V ′

j 〉0 = 0. On the other hand,

W ′ = ḟ iVi + f iV ′
i =: A+B,

so

I(W,W ) =

∫ b

0

(
〈A,A〉 + 〈A,B〉 + 〈B,A〉 + 〈B,B〉 − 〈R(W, γ̇)γ̇,W 〉

)
dt.

Integrating by parts, using the fact that Vi is a Jacobi field and (7.3), we have

∫ b

0
〈B,B〉 dt =

∫ b

0
f if j〈V ′

i , V
′
j 〉 dt =

∫ b

0
f if j

(
〈V ′
i , Vj〉′ − 〈V ′′

i , Vj〉
)
dt

= f i(b)f j(b)〈V ′
i (b), Vj(b)〉 −

∫ b

0

(
ḟ if j〈V ′

i , Vj〉 + f iḟ j〈V ′
i , Vj〉 − f if j〈R(Vi, γ̇)γ̇, Vj〉

)
dt

(7.3)
= I(V, V ) −

∫ b

0

(
〈A,B〉 + 〈B,A〉 − 〈R(W, γ̇)γ̇,W 〉

)
dt.

Hence,

I(W,W ) =

∫ b

0
〈A,A〉 dt

︸ ︷︷ ︸
≥ 0

+I(V, V ) ≥ I(V, V ).

as required. From this we see that the equality occurs if and only if A ≡ 0, or equivalently if ḟ i ≡ 0
for every i. However, this is possible if and only if W = V .
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Let γ be as in the assumptions of Lemma 7.2 and let Γ be a proper variation of γ whose
variation field W is normal, that is, 〈W, γ̇〉 ≡ 0 and is non-trivial. Then Corollary 6.26 and the
Index Lemma 7.2 implies

d2

ds2 `(Γs)|s=0 = I(W,W ) > I(V, V ) = 0,

where V is the unique Jacobi field along γ with V0 = W0 = 0 and Vb = Wb = 0. Hence, V ≡ 0. Note
that 〈W, γ̇〉 ≡ 0 is not a restriction: any proper variation Γ can be reparametrized such that W ⊥ γ̇.

Conclusion: γ is minimizing among ”nearby paths”.
Warning: γ may not be minimizing among all paths joining γ(0) and γ(b). For example, consider
the cylinder:

7.5 Bonnet’s theorem and Myers’ theorem

We write KM ≥ H if the sectional curvature K(P ) ≥ H for all 2-planes P ⊂ TpM and p ∈M .

Theorem 7.6. Let M be a complete connected Riemannian n-manifold. Suppose that there exists
H > 0 such that

(1) (Bonnet, 1855): KM ≥ H; or

(2) (Myers, 1941): Ric(x) ≥ (n− 1)H for every x ∈ TM , |x| = 1.

Then there are conjugate points on every geodesic γ of length at least π/
√
H. In particular,

diam(M) ≤ π√
H
.

Proof. If suffices to prove (2): Let γ : [0, b] → M be a unit speed geodesic with b ≥ π/
√
H. Let

E1, . . . , En be an orthonormal parallel frame along γ such that En = γ̇. We define

Wi(t) = sin(πib )Ei(t),

for i = 1, 2, . . . , n− 1. Then Wi ∈ T (γ), Wi(0) = 0 and Wi(b) = 0. Then (6.28) gives

I(Wi,Wi) = −
∫ b

0
〈D2

tWi +R(Wi, γ̇)γ̇,Wi〉 dt =

∫ b

0
sin2(πtb )〈π2

b2
Ei −R(Ei, γ̇)γ̇, Ei〉 dt

=

∫ b

0
sin2(πtb )

(
π2

b2
− 〈R(Ei, γ̇)γ̇, Ei〉

)
dt.
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Hence,
n−1∑

i=1

I(Wi,Wi) =

∫ b

0
sin2(πtb )

(
(n− 1)π

2

b2
− Ric(γ̇)

)
dt.

On the other hand, Ric(γ̇) ≥ (n− 1)H and π2

b2
≤ H, so

n−1∑

i=1

I(Wi,Wi) ≤ 0.

Therefore, there exists j = 1, 2, . . . , n − 1 such that I(Wj,Wj) ≤ 0. Suppose that there are no
conjugate points on γ. Let V be the unique Jacobi field along γ such that V0 = Wj(0) = 0 and
Vb = Wj(b) = 0; hence V ≡ 0. Index lemma and the fact that Wj 6= V implies that

I(Wj ,Wj) > I(V, V ) = 0,

which is a contradiction. Hence, there are conjugate points on γ. Suppose diam(M) > π√
H

. Then

there exists p, q ∈ M and a minimizing geodesic γ from p = γ(0) to q = γ(b) of length b > π/
√
H.

We just proved that p is conjugate to γ(t) for some 0 < t ≤ π/
√
H. By Theorem 6.29 we see that

γ|[0, b] is not minimizing, which is a contradiction.

Corollary 7.7. Let M be as in Theorem 7.6. Then M is compact and the fundamental group π1M
is finite.

Proof. Let M̃ be the universal covering space of M . Because π : M̃ →M is a local diffeomorphism,
we see that g̃ = π∗g is a Riemannian metric on M̃ such that π is a local isometry. Because M̃ is
complete and satisfies the same conditions (1) or (2) as M does, we see that

diam(M̃ ) ≤ π/
√
H.

Hence, M̃ is bounded. However, M̃ is also complete so it must be compact. Similarly, M is
compact. Furthermore, for every p ∈ M the set π−1(p) is finite since it is compact and discrete.
Hence π1M is finite because there is a one-to-one correspondence between π−1(p) and π1M .

7.8 Cartan-Hadamard theorem

Lemma 7.9. Let M be a complete connected Riemannian manifold with K(P ) ≤ 0 for every 2-
planes P ⊂ TpM and p ∈M . Then for all p ∈M the exponential map expp : TpM →M is a local
diffeomorphism.

Proof. Let γ : [0,∞) → M , γ(0) = p, be a geodesic and V a non-trivial Jacobi field along γ with
V0 = 0. Show that Vt 6= 0 for every t > 0 and conclude that for every t > 0 the point γ(t) is not a
conjugate to p. Details are left as an exercise.

Remark 7.10. Theorem 6.29 can be used here.

Lemma 7.11. Let M̃ and M be connected Riemannian manifolds such that M̃ is complete and
there is a local isometry π : M̃ →M . Then M is complete and π is a covering map.

Remark 7.12. To show that π is a covering map, we need to show that every p ∈M has a neigh-
borhood U such that π−1U is a disjoint union of sets Uα and π|Uα : Uα → U is a diffeomorphism
for every α.
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We will prove Lemma 7.11 later.

Theorem 7.13 (Cartan-Hadamard theorem). Let M be a complete connected Riemannian man-
ifold with KM ≤ 0. Then for every p ∈ M the exponential map expp : TpM → M is a covering

map. Hence, the universal covering space M̃ of M is diffeomorphic to Rn.

Proof of Theorem 7.13. Lemma 7.9 implies that expp is a local diffeomorphism. Hence, there exists
a Riemannian metric on TpM such that expp : TpM → M is a local isometry. The space TpM
with this metric is complete since geodesics of TpM passing through origin 0 are straight lines.
Now Lemma 7.11 implies that expp is a covering map. Furthermore, since the fundamental group

π1(TpM) = 0, we know that M̃ is diffeomorphic to TpM , that is, to Rn.

Proof of Lemma 7.11. Recall the path-lifting property of covering maps: any path γ in M lifts to
a path γ̃ in M̃ such that π ◦ γ̃ = γ. We prove first that π has the path-lifting property for
geodesics: Let p ∈ M , p̃ ∈ π−1(p), γ : I → M a geodesic such that γ(0) = p. Let ṽ = π−1

∗ γ̇0 ∈
Tp̃(M̃); recall that π∗ : Tp̃(M̃) → TpM is an isomorphism. Let γ̃ : R → M̃ be the geodesic with
˙̃γ0 = ṽ; recall that M̃ is complete. Because π is a local isometry, we see that geodesics are mapped
to geodesics. Hence π◦ γ̃ = γ on I. Therefore, γ extends to all of R, which implies the completeness
of M .

π is surjective Choose p̃ ∈ M̃ and write p = π(p̃). Let q ∈M be arbitrary and write r = d(p, q).

Because M is connected and complete we know that there exists a minimizing geodesic γ : [0, r] →
M with γ(0) = p and γ(r) = q. Let γ̃ be the lift of γ with γ̃(0) = p̃. Then π(γ̃(r)) = γ(r) = q.
Hence π is surjective.

π is a covering map Fix p ∈M and let π−1(p) = {p̃α}. Choose r > 0 such that U = B(p, r) is

contained in a normal neighborhood of p. Let Ũα = B(p̃α, r) ⊂ M̃ . We will show that

(1) the sets Ũα are disjoint;

(2) π−1U =
⋃
α Ũα; and

(3) π|Ũα : Ũα → U is a diffeomorphism for every α,

which finishes the proof.

(1): Take any p̃α, p̃β ∈ π−1(p), p̃α 6= p̃β. Because M̃ is complete, there exists a minimizing geodesic
γ̃ from p̃α to p̃β. Because γ = π ◦ γ̃ is a geodesic from p to p, such γ must leave U and re-enter
it since all geodesics in U passing through p are radial geodesics. Hence γ (and therefore γ̃)
has length at least 2r. Therefore, d(p̃α, p̃β) ≥ 2r so Ũα ∩ Ũβ = ∅ due to triangle inequality.

(2): Because π is a local isometry, we know that π(Ũα) ⊂ U for every α. Hence,
⋃
α Ũα ⊂ π−1U .

Thus we need to show that π−1U ⊂ ⋃
α Ũα. Let q̃ ∈ π−1U . Then q := π(q̃) ∈ U , so there

exists a minimizing geodesic γ in U from q = γ(0) to p = γ(ε), with ε := d(p, q) < r. If γ̃ is
the lift of γ starting at q̃ = γ̃(0), then π(γ̃(ε)) = γ(ε) = p. Therefore, γ̃(ε) = p̃α for some α
and d(p̃α, q̃) ≤ `(γ̃) = ε < r. So q̃ ∈ Ũα, and π−1U ⊂ ⋃α Ũα.

(3): For each α the map π|Ũα : Ũα → U is a local diffeomorphism. Moreover, it is bijective since
its inverse is the map sending each radial geodesic starting at p to its lift starting at p̃α.

Remark 7.14. A complete, simply-connected Riemannian manifold with nonpositive sectional
curvature is called a Cartan-Hadamard manifold.

Corollary 7.15. A Cartan-Hadamard n-manifold is diffeomorphic to Rn.
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8 Comparison geometry

8.1 Rauch comparison theorem

Theorem 8.2 (Rauch). Let Mn and M̃n+k, k ≥ 0, be Riemannian manifolds and let γ : [0, b] →M ,

γ̃ : [0, b] → M̃ be unit speed geodesics such that γ̃(0) has no conjugate points along γ̃. Suppose that

for every t ∈ [0, b], v ∈ Tγ(t)M and ṽ ∈ Tγ̃(t)M̃ we have

K(γ̇t, v) ≤ K( ˙̃γt, ṽ).

Let J and J̃ be non-trivial Jacobi fields along γ and γ̃, respectively, such that

J0 = λγ̇0, J̃0 = λ ˙̃γ0, 〈J ′
0, γ̇0〉 = 〈J̃ ′

0,
˙̃γ0〉, and |J ′

0| = |J̃ ′
0|,

where λ ∈ R is a constant. Then
|Jt| ≥ |J̃t|

for every t ∈ [0, b].

Proof. First a special case

〈Jt, γ̇t〉 ≡ 0 ≡ 〈J̃t, ˙̃γt〉.(8.3)

Since
〈Jt, γ̇t〉 = 〈J0, γ̇0〉 + t〈J0, γ̇0〉 = 〈J̃0, ˙̃γ0〉 + t〈J̃0, ˙̃γ0〉 = 〈J̃t, ˙̃γt〉,

we get from (8.3) that J0 = 0, J̃0 = 0, 〈J ′
0, γ̇0〉 = 0, and 〈J̃ ′

0,
˙̃γ0〉 = 0. Because J and J̃ are

non-trivial, we have J ′
0 6= 0 and J̃ ′

0 6= 0. Since γ̃(0) has no conjugate points along γ̃, we have J̃t 6= 0

for every t > 0. On the other hand, J0 = 0 and J̃0 = 0 so by the l’Hôpital’s rule there exists a limit

lim
t↓0

|Jt|2
|J̃t|2

=
|J ′

0|2
|J̃ ′

0|2
= 1.

Hence, in order to prove |Jt| ≥ |J̃t| it is enough to show that

d

dt

(
|J |2
|J̃ |2

)
≥ 0

for every t > 0, that is,

(8.4) 〈J ′
t, Jt〉|J̃t|2 − 〈J̃ ′

t, J̃t〉|Jt|2 ≥ 0.

We define

ϕ(J̃)t =
〈J̃ ′
t, J̃t〉

〈J̃t, J̃t〉
for t ∈]0, b] and

ϕ(J)t =
〈J ′
t, Jt〉

〈Jt, Jt〉
for those t > 0 for which Jt 6= 0. Fix t1 ∈ [0, b]. If Jt1 = 0, then (8.4) holds trivially. Therefore, we

may assume that Jt1 6= 0 and then define vector fields W t1 (along γ) and W̃ t1 (along γ̃) by

W t1
t =

Jt
|Jt1 |

and W̃ t1
t =

J̃t

|J̃t1 |
.
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Then ϕ(J)t = ϕ(W t1)t whenever defined and ϕ(J̃)t = ϕ(W̃ t1)t for t ∈]0, b]. Now

ϕ(J)t1 = ϕ(W t1)t1 = 〈W t1′,W t1〉t1

ϕ(J)t1 = ϕ(W t1)t1 = 〈W t1′,W t1〉t1 = 〈W t1′,W t1〉t1 − 〈W t1′,W t1〉0︸ ︷︷ ︸
= 0 since J0 =0

=

∫ t1

0
〈W t1′,W t1〉′t dt

=

∫ t1

0
〈W t1′,W t1′〉t + 〈W t1′′,W t1〉t dt =

∫ t1

0
〈W t1′,W t1′〉t − 〈R(W t1 , γ̇)γ̇,W t1〉t dt

=

∫ t1

0
〈W t1′,W t1′〉t −K

(
γ̇t,

W
t1
t

|W t1
t |

)
|W t1

t |2 dt.

Let Pt : Tγ(0)M → Tγ(t)M and P̃t : Tγ̃(0)M̃ → Tγ̃(t)M̃ be parallel transports along γ and γ̃,

respectively. Let I : Tγ(0)M → Tγ̃(0)M̃ be an injective linear map that preserves the inner product.

Denote It = P̃t ◦ I ◦ P−1
t : Tγ(t)M → Tγ̃(t)M̃. Suppose that I is chosen such that

I(γ̇0) = ˙̃γ0 and It1(W
t1
t1 ) = W̃ t1

t1 .

Define Ŵ t1 to be a vector field along γ̃ by

Ŵ t1
t := ItW

t1
t .

Note that now Ŵ t1
t1 = W̃ t1

t1 . Let E1, . . . , En ∈ T (γ) and Ẽ1, . . . , Ẽn ∈ T (γ̃) be parallel along γ and

γ̃ such that En = γ̇, Ẽn = ˙̃γ, I(Ei(0)) = Ẽi(0), and that {E1(t), . . . , En(t)} spans Tγ(t)M for every
t. Write W t1 =

∑
i fiEi. Then

Ŵ t1 =
∑

i

fiẼi.

Hence,

(a) |W t1
t | = |Ŵ t1

t | for every t.

Since W t1′ =
∑
i
f ′iEi and Ŵ t1′ =

∑
i
f ′iẼi, we have

(b) 〈W t1′,W t1′〉 =
∑
i,j
f ′if

′
j〈Ei, Ej〉 =

∑
i,j
f ′if

′
j〈Ẽi, Ẽj〉 = 〈Ŵ t1′, Ŵ t1′〉.

Now (a) and (b) together with the curvature assumption and the Index Lemma 7.2 imply

ϕ(J)t1 =

∫ t1

0
〈W t1′,W t1′〉t −K

(
γ̇t,

W
t1
t

|W t1
t |

)
|W t1

t |2 dt

≥
∫ t1

0
〈Ŵ t1′, Ŵ t1′〉t −K

(
˙̃γt,

Ŵ
t1
t

|Ŵ t1
t |

)
|Ŵ t1

t |2 dt

=

∫ t1

0
〈Ŵ t1′, Ŵ t1′〉t − 〈R̃(Ŵ t1

t ,
˙̃γt)

˙̃γt, Ŵ
t1
t 〉 dt

7.2
≥
∫ t1

0
〈W̃ t1′, W̃ t1′〉t − 〈R̃(W̃ t1

t ,
˙̃γt)

˙̃γt, W̃
t1
t 〉 dt

= ϕ(J̃)t1 ,
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that is, (8.4) holds at t1. Because t1 ∈ [0, b] is arbitrary, we have |Jt| ≥ |J̃t| in the special case.
In general case,

J = J⊥ + 〈J, γ̇〉γ̇ and J̃ = J̃⊥ + 〈J̃ , ˙̃γ〉 ˙̃γ.
The first part then gives |J⊥| ≥ |J̃⊥|. On the other hand,

〈J, γ̇〉t = 〈J, γ̇〉0︸ ︷︷ ︸
=λ

+ t〈J ′, γ̇〉0 = 〈J̃ , ˙̃γ〉0︸ ︷︷ ︸
=λ

+ t〈J̃ ′, ˙̃γ〉0 = 〈J̃ , ˙̃γ〉t.

Hence, |J | ≥ |J̃ |.

Corollary 8.5. Let M and M̃ be Riemannian manifolds with dim M̃ ≥ dimM , and let p ∈ M
and p̃ ∈ M̃ . Assume K

M̃
≥ KM and let I : TpM → Tp̃M̃ be a linear injection preserving the inner

product. Let r > 0 be so small that expp |B(0, r) is an embedding and expp̃ |B(0, r) is non-singular.
Then for any piecewise C∞-path c : [0, 1] → exppB(0, r) we have

`(c) ≥ `(expp̃ ◦I ◦ exp−1
p ◦c

︸ ︷︷ ︸
=: c̃

) = `(c̃).

Above the assumption expp̃ |B(0, r) being non-singular means that expp̃B(0, r) contains no
conjugate points to p̃.

Proof. Denote ĉ : [0, 1] → B(0, r) ⊂ TpM by

ĉ := exp−1
p ◦c.

Consider the variation Γ(s, t) = expp(tĉs). For each fixed s, the variation field

V s
t := ∂sΓ(s, t)

is a Jacobi field along geodesic Γs, t 7→ expp(tĉs). Then

V s
t = d

dsΓ(s, t) = t expp∗tĉs(
˙̂cs);
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V s
0 = 0;

V s
1 = d

ds(expp ĉs︸ ︷︷ ︸
= cs

) = ċs; and

(DtV
s)0 = Dt(t expp∗tĉs(

˙̂cs))|t=0 = ˙̂cs.

Consider next the variation

Γ̃(s, t) = expp̃(I(tĉs)) = expp̃(tI(ĉs)).

Again, for each fixed s, the variation field

Ṽ t
s = ∂sΓ̃(s, t)

is a Jacobi field along Γ̃s, t 7→ expp̃(tI(ĉs)), with

Ṽ s
0 = 0, Ṽ s

1 = ˙̃cs, and (DtṼ
s)0 = I(˙̂cs).

Since I preserves the inner product,

|(DtV
s)0| = | ˙̂cs| = |I(˙̂cs| = |(DtṼ

s)0|
and

〈Γ̇s,DtV
s〉0 = 〈Γ̇s(0), (DtV

s

︸ ︷︷ ︸
= ˙̂cs

)0〉 = 〈I(Γ̇s(0)), I(˙̂cs)〉

= 〈I(ĉs), (DtṼ
s)0〉 = 〈 ˙̃

Γs(0), (DtṼ
s)0〉 = 〈 ˙̃

Γs,DtṼ
s〉0.

Furthermore,
V s

0 = 0 and Ṽ s
0 = 0.

The Rauch comparison theorem now implies

|ċs| = |V s
1 | ≥ |Ṽ s

1 | = | ˙̃cs|.
Since s is arbitrary, we have the claim.

Corollary 8.6. Suppose that the sectional curvatures of M satisfy

0 < κ ≤ KM ≤ δ

for some constants κ and δ. Let γ be a geodesic in M . Then the distance d between two consecutive
conjugate points along γ satisfies

π√
δ
≤ d ≤ π√

κ
.

Proof. Let γ : [0, `] → M be a unit speed geodesic with γ(0) = p. Let J be a Jacobi field along
γ, with J0 = 0 and 〈J, γ̇〉 ≡ 0. Let Sn(δ) be the sphere with constant sectional curvature δ. Fix
p̃ ∈ Sn(δ) and a unit speed geodesic γ̃ : [0, `] → Sn(δ) with γ̃(0) = p̃. Let J̃ be a Jacobi field along
γ̃ with J̃0 = 0, 〈J̃ , ˙̃γ〉 ≡ 0 and |J̃ ′

0| = |J ′
0|. Since γ̃ has no conjugate pairs in (0, π√

δ
), we have

|Jt| ≥ |J̃t| > 0

for any t ∈ (0, π√
δ
) by the Rauch comparison theorem. Therefore, the distance d from p to its first

conjugate point along γ satisfies
d ≥ π√

δ
.

If d > π√
κ
, we get by applying the Rauch comparison theorem to M and Sn(κ) that the distance

between any pairs of conjugate points in Sn(κ) is strictly greater than π√
κ
, which is a contradiction.
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8.7 Hessian and Laplace comparison

Recall that the gradient, Hessian, and Laplacian of f ∈ C∞(M) are defined by

〈∇f,X〉 := X(f), Hess f(X,Y ) := 〈∇X(∇f), Y 〉, and ∆f := div(∇f) = tr(v 7→ ∇v(∇f)),

and that ∇f ∈ T (M), Hess f ∈ T 2(M), and ∆f ∈ C∞(M). Furthermore, Hess f is symmetric and

Hess f(X,Y ) = X(Y f)− (∇XY )f.

If (V, 〈·, ·〉) is an n-dimensional inner product space and B : V × V → R is bilinear, then the trace
of B, the determinant of B, and the norm of B with respect to 〈·, ·〉 are defined by

trB = trL, detB = detL, and |B| =
√

tr(LL∗),

where L : V → V is linear such that

B(x, y) = 〈Lx, y〉

for every x, y ∈ V .

Hence,

∆f = tr Hess f

with respect to Riemannian metric 〈·, ·〉.

Definition 8.8. The injectivity radius at p ∈M is defined as

inj(p) := sup{r ∈ R : expp |B(0, r) is diffeomorphism},

which is always positive since expp is a local diffeomorphism at 0 ∈ TpM .

Example 8.9. If M is a Cartan-Hadamard manifold, then inj(p) = +∞ for each p ∈M .

Theorem 8.10 (Hessian comparison theorem). Let Mn and M̃n+k, k ≥ 0, be Riemannian mani-

folds and let γ : [0, b] →M and γ̃ : [0, b] → M̃ be unit speed geodesics such that

b < min{inj(γ(0)), inj(γ̃(0))}.

Suppose that

K(γ̇t, v) ≤ K( ˙̃γt, ṽ)

for every t ∈ [0, b], v ∈ Tγ(t)M , and ṽ ∈ Tγ̃(t)M̃ . If h : [0,∞) → R is smooth and increasing,
rM := d(·, γ(0)), and r

M̃
:= d(·, γ̃(0)), then

Hess(h ◦ rM )(X,X) ≥ Hess(h ◦ r
M̃

)(X̃, X̃)

for all t ∈ (0, b], X ∈ Tγ(t)M , and X̃ ∈ Tγ̃(t)M̃ such that |X| = |X̃| and 〈γ̇t,X〉 = 〈 ˙̃γt, X̃〉.

Proof. First of all, h◦rM is smooth in B(γ(0), b)\{γ(0)}, and h◦r
M̃

is smooth in B(γ̃(0), b)\{γ̃(0)},
respectively. We may assume that |X| = 1 = |X̃ | and that t = b.
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1◦ Case h(t) = t. For every v ∈ Tγ(b)M ,

Hess rM (v, γ̇b) = v(γ̇brM︸ ︷︷ ︸
≡ 1

) − (∇vγ̇)rM = −(∇vγ̇)rM

= −〈∇rM ,∇vγ̇〉γ(b) = −〈γ̇b,∇vγ̇〉γ(b) = −1
2v 〈γ̇t, γ̇t〉︸ ︷︷ ︸

≡ 1

= 0.

Similarly,
Hess r

M̃
(ṽ, ˙̃γb) = 0

for every ṽ ∈ Tγ̃(b)M̃ . Write X = X> +X⊥ and X̃ = X̃> + X̃⊥, where

X> := 〈X, γ̇b〉γ̇b and X̃> := 〈X̃, ˙̃γb〉 ˙̃γb.

Then

Hess rM (X,X) = Hess rM (X⊥,X⊥) and Hess r
M̃

(X̃, X̃) = Hess r
M̃

(X̃⊥, X̃⊥).

Hence, we may assume X = X⊥ and X̃ = X̃⊥. Let σ := γX , which is a geodesic such

that σ̇0 = X and σ̃ := γX̃ , which is a geodesic such that ˙̃σ0 = X̃ , respectively. Let Γ :
[−ε, ε] × [0, b] → M be the variation of γ through geodesics such that Γs : t 7→ Γ(s, t) is the

geodesic from γ(0) to σ(s). Similarly, we define Γ̃ : [−ε, ε] × [0, b] → M̃ .

Then the variation field J of Γ and the variation field J̃ of Γ̃ are Jacobi fields. This implies
that the mappings s 7→ 〈Js, γ̇s〉 and s 7→ 〈J̃s, ˙̃γs〉 are affine. Furthermore, because J0 = 0,
Jb = X ⊥ γ̇b and J̃0 = 0 and J̃b = X̃ ⊥ ˙̃γb, respectively, we have

Js ⊥ γ̇s and J̃s ⊥ ˙̃γs

for every s ∈ [0, b]. By an exercise

Hess rM (X,X) = (rM ◦ σ)′′(0) = d2

ds2 `(Γs)|s=0 =

∫ b

0
|DtJ |2 − 〈R(J, γ̇)γ̇, J〉 dt.

Similarly,

Hess r
M̃

(X̃, X̃) =

∫ b

0
|DtJ̃ |2 − 〈R(J̃ , ˙̃γ) ˙̃γ, J̃〉 dt.

Fix orthonormal bases {ei}ni=1 of Tγ(b)M and {ẽi}n+k
i=1 of Tγ̃(b)M̃ such that e1 = X and ẽ1 = X̃ .

Let Ei be the parallel transport of ei along γ and Ẽi be the parallel transport of ẽi along γ̃.
Then {Ei(t)}ni=1 is an orthonormal basis of Tγ(t)M for every t ∈ [0, b] and {Ẽi(t)}n+k

i=1 is an

orthonormal basis of Tγ̃(t)M̃ for every t ∈ [0, b]. Define functions hi, 1 ≤ i ≤ n, by

hi(t) := 〈Jt, Ei(t)〉γ(t).

Then

Jt =

n∑

i=1

hi(t)Ei(t).

Define

W̃ :=

n∑

i=1

hiẼi.
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Since J0 = 0, we have

W̃0 =

n∑

i=1

hi(0)︸ ︷︷ ︸
= 0

Ẽi(0) = 0 = J̃0.

Furthermore, since Jb = X = e1 = E1(b), we have h1(b) = 1 and hi(b) = 0 for i 6= 1, which
gives

W̃b = Ẽ1(b) = ẽ1 = X̃ = J̃b.

Since b < min{inj(γ(0)), inj(γ̃(0))}, there are no conjugate points of γ(0) (resp. γ̃(0)) along
γ|[0, b) (resp. γ̃|[0, b)). The Index Lemma gives

Hess r
M̃

(X̃, X̃) =

∫ b

0
|DtJ̃ |2 − 〈R(J̃ , ˙̃γ) ˙̃γ, J̃〉 dt ≤ I(W̃ , W̃ ) =

∫ b

0
|DtW̃ |2 − 〈R(W̃ , ˙̃γ) ˙̃γ), W̃ 〉 dt.

(8.11)

Furthermore, on [0, b] we have

|DtW̃ |2 =

n∑

i=1

|h′i|2 = |DtJ |2, |W̃ | = |J |, W̃ ⊥ ˙̃γ, and J ⊥ γ̇.

Hence, the assumption K(v, γ̇t) ≤ K(ṽ, ˙̃γt) implies

−〈R(W̃ , ˙̃γ) ˙̃γ, W̃ 〉 ≤ −〈R(J, γ̇)γ̇, J〉

on [0, b]. Thus we get from (8.11)

Hess r
M̃

(X̃, X̃) ≤ Hess rM (X,X).

2◦ The general case, that is, h is smooth and increasing. As an exercise we have

Hess(h ◦ f) = (h′′ ◦ f)df ⊗ df + (h′ ◦ f)Hess f,

if f : M → R and h : R→ R are smooth mappings. Hence,

Hess(h ◦ rM )(X,X) = (h′′ ◦ rM )(b)drM ⊗ drM (X,X) + (h′ ◦ rM )(b)Hess rM (X,X)

= h′′(b)(drM (X)︸ ︷︷ ︸
= dr

M̃
(X̃)

)2 + (h′ ◦ rM )(b)︸ ︷︷ ︸
=(h′◦r

M̃
)(b)≥ 0

Hess rM (X,X)

≥ (h′′ ◦ r
M̃

)dr
M̃

⊗ dr
M̃

(X̃, X̃) + (h′ ◦ r
M̃

)(b)Hess r
M̃

(X̃, X̃)

= Hess(h ◦ r
M̃

)(X̃, X̃).

Corollary 8.12. Let Mn and M̃n be Riemannian n-manifolds, γ : [0, b] → M and γ̃ : [0, b] → M̃
be unit speed geodesics such that

b < min{inj(γ(0)), inj(γ̃(0))}.

Suppose that for every t ∈ [0, b], v ∈ Tγ(t)M and ṽ ∈ T
γ̃(t)

M̃ , we have

K(γ̇t, v) ≤ K( ˙̃γt, ṽ).
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If h : [0,∞) → R is smooth and increasing, we have

∆(h ◦ rM )(γ(t)) ≥ ∆(h ◦ r
M̃

)(γ̃(t))

for every t ∈ [0, b], where rM := d(·, γ(0)) and r
M̃

:= d(·, γ̃(0)).

Proof. Fix t ∈ [0, b] and orthonormal bases {Xi}ni=1 of Tγ(t)M and {X̃i}ni=1 of Tγ̃(t)M̃ such that

X1 = γ̇t and X̃1 = ˙̃γt. The Hessian comparison implies

Hess(h ◦ rM )(Xi,Xi) ≥ Hess(h ◦ r
M̃

)(X̃i, X̃i)

for every 1 ≤ i ≤ n. Thus

∆(h ◦ rM )(γ(t)) =
n∑

i=1

Hess(h ◦ rM )(Xi,Xi) ≥
n∑

i=1

Hess(h ◦ r
M̃

)(X̃i, X̃i) = ∆(h ◦ r
M̃

)(γ̃(t)).

8.13 Bochner-Weitzenböck-Lichnerowitz formula

Theorem 8.14. Let M be a Riemannian manifold. Then for every f ∈ C∞(M)

1
2∆(|∇f |2) = |Hess f |2 + 〈∇f,∇(∆f)〉+ Ric(∇f,∇f).

Proof. Fix p ∈ M and let E1, . . . , En be a local geodesic frame at p, that is, E1, . . . , En ∈ T (U),
U 3 p open, 〈Ei, Ej〉 = δij in U , and (∇Ei

Ej)p = 0. Then

∇h =
n∑

i=1

Ei(h)Ei

for every h ∈ C∞(U). Now at p we have

1
2∆(|∇f |2) = 1

2 div(∇(|∇f |2)) = 1
2 tr(TpM 3 v 7→ ∇v(∇(|∇f |2))) =

1

2

n∑

i=1

〈∇Ei
(∇(|∇f |2)), Ei〉.

Moreover,

∇Ei
(∇(|∇f |2)) = ∇Ei




n∑

j=1

Ej(|∇f |2)Ej


 =

n∑

j=1

Ej(|∇f |2)∇Ei
Ej︸ ︷︷ ︸

=0 at p

+

n∑

j=1

Ei(Ej(|∇f |2))Ej

=
n∑

j=1

Ei(Ej(|∇f |2))Ej .
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Hence,

1
2∆(|∇f |2) =

1

2

n∑

i=1

〈
n∑

j=1

Ei(Ej(|∇f |2))Ej , Ei
〉

=
1

2

n∑

i=1

Ei(Ei(|∇f |2))

=
1

2

n∑

i=1

Ei(Ei〈∇f,∇f〉) =
n∑

i=1

Ei〈∇Ei
∇f,∇f〉 =

n∑

i=1

Ei(Hess f(Ei,∇f))

=

n∑

i=1

Ei(Hess f(∇f,Ei)) =

n∑

i=1

Ei〈∇∇f∇f,Ei〉

=

n∑

i=1

(
〈∇Ei

∇∇f∇f,Ei〉 + 〈∇∇f∇f,∇Ei
Ei︸ ︷︷ ︸

=0 at p

〉
)

=

n∑

i=1

〈∇Ei
∇∇f∇f,Ei〉

=

n∑

i=1

〈R(Ei,∇f)∇f,Ei〉
︸ ︷︷ ︸

=:A

+

n∑

i=1

〈∇∇f∇Ei
∇f,Ei〉

︸ ︷︷ ︸
=:B

+

n∑

i=1

〈∇[Ei,∇f ]∇f,Ei〉
︸ ︷︷ ︸

=:C

.

First of all,
A = Ric(∇f,∇f).

Secondly,

B =
n∑

i=1

(
(∇f)〈∇Ei

∇f,Ei〉 − 〈∇Ei
∇f,∇∇fEi︸ ︷︷ ︸

(∗)
= 0.

〉
)

= (∇f)
n∑

i=1

〈∇Ei
∇f,Ei〉

︸ ︷︷ ︸
=tr(v 7→∇v∇f)= ∆f

= (∇f)(∆f) = 〈∇f,∇(∆f)〉,
where (∗) is because

∇∇fEi = ∇∑
j Ej(f)Ej

Ei =
∑

j

Ej(f)∇Ej
Ei︸ ︷︷ ︸

= 0

= 0.

Lastly,

C =
n∑

i=1

Hess f([Ei,∇f ], Ei) =
n∑

i=1

Hess f(∇Ei
∇f −∇∇fEi︸ ︷︷ ︸

= 0

, Ei)

=
n∑

i=1

Hess f(∇Ei
∇f,Ei) =

n∑

i=1

Hess f(Ei,∇Ei
∇f)

=

n∑

i=1

〈∇Ei
∇f,∇Ei

∇f〉 (∗∗)
= |Hess f |2.

Here (∗∗) holds since

n∑

i=1

〈∇Ei
∇f,∇Ei

∇f〉 =

n∑

i=1

〈LEi, LEi〉 =

n∑

i=1

〈LL∗Ei, Ei〉 = tr(LL∗),

where L : TpM → TpM , Lv = ∇v∇f , is linear such that

Hess f(v,w) = 〈Lv,w〉
for every v,w ∈ TpM .
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Definition 8.15. Let p ∈M .

(a) Let v ∈ TpM , |v| = 1. The distance to the cut point of p along γv is

d(v) := sup{t > 0 : tv ∈ Ep and d(p, γv(t)) = t}.

(b) The cut locus of p in TpM is

Cp := {d(v)v : v ∈ TpM, |v| = 1, and d(v) <∞}.

(c) The cut locus of p in M is

C(p) := expp(Cp ∩ Ep).

We write also

Dp := {tv : v ∈ TpM, |v| = 1, and 0 ≤ t < d(v)}
and

D(p) := exppDp.

Example 8.16. The cylinder R× S1: C(p) is the line ”opposite to p”.

8.17 Riemannian volume form

This section is based on the pro gradu thesis of Aleksi Vähäkangas.

Let M and N be smooth oriented Riemannian n-manifolds and f : M → N smooth. The
Jacobian determinant of f at p ∈M is

Jf (p) := detD(y ◦ f ◦ x−1)(x(p)),

where x and y are orientation-preserving charts at p and f(p), respectively, such that { ∂
∂xi }ni=1 and

{ ∂
∂yi }ni=1 form orthonormal bases of TpM and Tf(p)N .

The Jacobian determinant Jf (p) is well-defined, i.e. it does not depend on charts x and y
(Exercise).

Let then (U, x) and (U, y) be charts on M . For the Jacobians of x and y, we have

Jy = (Jy ◦x−1 ◦ x)Jx.

Hence,

dy1 ∧ · · · ∧ dyn( ∂
∂x1 , . . . ,

∂
∂xn ) = det(dyj( ∂

∂xi )) = det(Di(y
j ◦ x−1) ◦ x)

= det(Di(y ◦ x−1)j ◦ x) = Jy ◦x−1 ◦ x = Jy/Jx.

So,
1

Jy
dy1 ∧ · · · ∧ dn =

1

Jx
dx1 ∧ · · · ∧ dxn.
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Definition 8.18. The Riemannian volume form of M is the smooth n-form ωM such that

ωM |U =
1

Jx
dx1 ∧ · · · ∧ dxn

for every chart (U, x).

Lemma 8.19. If M and N are oriented Riemannian n-manifolds and f : M → N is a diffeomor-
phism, then

f∗ωN = JfωM .(8.20)

Proof. Exercise.

Let p ∈ M and ϕ an orientation preserving chart at p such that {∂i}ni=1, ∂i = ∂
∂ϕi , is an

orthonormal basis of TpM . Then, by definition,

Jϕ(p) = detD(id ◦ϕ ◦ ϕ−1)(ϕ(p)) = 1.

If v ∈ TpM , then
〈v, ∂i〉 = 〈v(ϕj)∂j , ∂i〉 = v(ϕi).

Let v1, . . . , vn ∈ TpM . Then

ωM(v1, . . . , vn) =
1

Jx(p)
dϕ1 ∧ · · · ∧ dϕn(v1, . . . , vn) = det(vi(ϕ

j)) = det(〈vi, ∂j〉).

Because {∂i}ni=1 is orthonormal

〈vi, vj〉 =

〈
vi,

n∑

k=1

〈vj , ∂k〉∂k
〉

=

n∑

k=1

〈vi, ∂k〉〈vj , ∂k〉.

Hence,
B = AAT ,

where B = (〈vi, vj〉)ij and A = (〈vi, ∂j〉)ij . Therefore,

det(〈vi, vj〉) = (detA)2 = (ωM (v1, . . . , vn))
2.

Let then (U, x) be an orientation preserving chart. Apply the formula above to vi = ( ∂
∂xi )p to gain

det〈 ∂
∂xi ,

∂
∂xj 〉p = (ωM ( ∂

∂x1 , . . . ,
∂
∂xn ))2 =

(
1

Jx(p)
dx1 ∧ · · · ∧ dxn( ∂

∂x1 , . . . ,
∂
∂xn )

)2

.

Hence,

Jx(p) =
1√

det gij(p)
,

where gij(p) = 〈 ∂
∂xi ,

∂
∂xj 〉p. Thus the Riemannian volume form can be written in local coordinates

as

√
det gij dx

1 ∧ · · · ∧ dxn,(8.21)

where gij = 〈 ∂
∂xi ,

∂
∂xj 〉.
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Lemma 8.22. Let M be an oriented Riemannian manifold, ωM Riemannian volume form, and
V ∈ T (M). Then the divergence of V , div V = tr(X 7→ ∇XV ), satisfies

LV ωM = (div V )ωM .

Proof. Exercise.

Let p ∈ M (M oriented Riemannian n-manifold) and r0 = inj(p). Let C = (0, r0) × Sn−1 and
ψ : C → B(p, r0) \ {p},

ψ(t, ϑ) := expp(E(tϑ)),

where E : Rn → TpM is an isometric isomorphism. Then ψ is a diffeomorphism and (t, ϑ) are
geodesic polar coordinates of ψ(t, ϑ) ∈ B(p, r0) \ {p}.

The Riemannian volume form of C can be written as

ωC = dt ∧ ωSn−1 = ωR ∧ ωSn−1,

where t : (t, ϑ) 7→ t. The form ωSn−1 can be interpreted as ωSn−1 ∈ An−1(C) (= smooth differentiable
(n − 1)-forms on C) that is independent of t-variable of (t, ϑ) ∈ C. More precisely, write v ∈
T(t,ϑ)C = TtR⊕ TϑS

n−1 as v = (vt, vϑ). Then

ωSn−1(v1, . . . , vn−1)︸ ︷︷ ︸
∈An−1(C)

= ωSn−1(v1
ϑ, . . . , v

n−1
ϑ )︸ ︷︷ ︸

∈An−1(Sn−1)

.

We define the distance function r : B(p, r0) → [0, r0) by r(x) = d(p, x). Then r ∈ C∞(B(p, r0)\{p}).
Furthermore, let ∂r be the radial vector field on B(p, r0) \ {p},

(∂r)x = γ̇r(x),

where γ is the unique unit speed geodesic from p to x. Thus

γ(t) = expp

(
t · exp−1

p (x)

r(x)

)
.

In fact, ∂r = ψ∗
∂
∂t = ∇r. Define a smooth function A : B(p, r0) \ {p} → R by

A(x) := Jψ(ψ−1(x)).
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Theorem 8.23. In B(p, r0) \ {p} we have

∂rA

A
= ∆r.(8.24)

Remark 8.25. Since expp preserves radial distances, i.e. d(expp(tv), expp(sv)) = |t − s||v|, the
value A(x) describes the ”size of the area element” of the geodesic sphere S(p, x), t = d(p, x), at x.

Proof of the Theorem 8.23. Since Jψ−1ωM = (ψ−1)∗ωC , we have

ωM =
1

Jψ−1

(ψ−1)∗ωC = (Jψ ◦ ψ−1)(ψ−1)∗ωC = A(ψ−1)∗ωC .

Hence, in B(p, r0) \ {p} we have

(∆r)ωM = (div ∂r)ωM = L∂r
ωM = L∂r

(A(ψ−1)∗ωC) = (∂rA)(ψ−1)∗ωC +AL∂r
(ψ−1)∗ωC .

Here

L∂r
(ψ−1)∗ωC = L

ψ∗
∂
∂t

(ψ−1)∗ωC
(∗)
= (ψ−1)∗L ∂

∂t
ωC = 0,

since ωC = dt ∧ ωSn−1 is invariant in translation in t (= the flow of ∂
∂t). Hence,

∂rA

A
ωM =

∂rA

A
A(ψ−1)∗ωC = (∆r)ωM ,

which implies (8.24).

Another proof of (∗). We have

L∂r
(ψ−1)∗ωC = L∂r

(d(t ◦ ψ−1) ∧ (ψ−1)∗ωSn−1) = L∂r
(dr) ∧ (ψ−1)∗ωSn−1 + dr ∧ L∂r

(ψ−1)∗ωSn−1.

Here the first term is zero because

L∂r
(dr) = d(∂r(r)︸ ︷︷ ︸

≡ 1

) = 0.

Moreover, the second term is also zero because

L∂r
(ψ−1)∗ωSn−1 = i∂r

d((ψ−1)∗ωSn−1) + di∂r
(ψ−1)∗ωSn−1

= i∂r
(ψ−1)∗dωSn−1 + d(ψ−1)∗ i ∂

∂t
ωSn−1

︸ ︷︷ ︸
= 0

= (ψ−1)∗i ∂
∂t
dωSn−1 = 0,

since dωSn−1 = 0 giving the claim. Note that dωSn−1 = 0 holds since

ωSn−1 = ωdϑ1 ∧ · · · ∧ dϑn−1,

where ω is independent of t, so

dωSn−1 =
∂ω

∂t︸︷︷︸
=0

dt ∧ dϑ1 ∧ · · · ∧ dϑn−1 +

n−1∑

i=1

∂ω

∂ϑi
dϑi ∧ dϑ1 ∧ · · · ∧ dϑn−1
︸ ︷︷ ︸

=0

= 0.
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Remark 8.26. Let M be complete. Then (8.24) can be generalized for all points x /∈ C(p), x 6= p:
Take the unique minimizing unit speed geodesic γ from p to x. Then the geodesic polar coordinates
of x are (tx, ϑx), where tx := d(x, p) and ϑx := E−1γ̇0. The value ψ(t, ϑ) = expp(tE(ϑ)) is defined
for all t > 0 and ϑ ∈ Sn−1, and is a local diffeomorphism at (tx, ϑx). Hence, we may also define

A(x) = Jψ(tx, ϑx).

8.27 Ricci curvature comparisons

Let M be complete, p ∈M , and x /∈ C(p) ∪ {p}. We denote A(x) also by

A(x) = A(t, ϑ),

where (t, ϑ) are geodesic polar coordinates of x.

Theorem 8.28. Let Mn be complete, p ∈ M , and Ric(v, v) ≥ (n − 1)H for every v ∈ TM with
|v| = 1. Then in M \ (C(p) ∪ {p}) we have

A(t, ϑ)

AH(t, ϑ)
is decreasing in t along radial geodesic (= ϑ is fixed);(8.29)

and

∆r ≤ ∆Hr =





(n− 1)
√
H cot(

√
Hr), H > 0;

(n− 1)/r, H = 0;

(n− 1)
√
−H coth(

√
−Hr), H < 0.

(8.30)

Here AH and ∆H refer to the corresponding notions in simply connected MH with constant sectional
curvature H.2 If H > 0, then r ≤ π/

√
H by Theorem 7.6.

Proof. We apply the Bochner-Weitzenböck-Lichnerowitz formula with f(x) = r(x) in M \ (C(p) ∪
{p}), where r is smooth and |∇r| = 1. We have

|Hess r|2 + ∂
∂r (∆r) + Ric( ∂∂r ,

∂
∂r ) = 0.

Let λ1, . . . , λn be the eigenvalues of Hess r, i.e. eigenvalues of (self-adjoint) linear map

v 7→ ∇v∇r.

Since ∇r(x) = ( ∂∂r )x = γ̇r(x), where γ is the unique unit speed geodesic from p to x, we have

∇∇r∇r = 0.

It follows that one of the eigenvalues, say λ1, is zero. The Cauchy-Schwarz inequality gives

(∆r)2

n− 1
=

(tr Hess r)2

n− 1
=

(λ2 + · · · + λn)
2

n− 1
≤ λ2

2 + · · · + λ2
n = |Hess r|2.

Since Ric(∇r,∇r) ≥ (n− 1)H, we get the Riccati inequality:

(∆r)2

n− 1
+

∂

∂r
(∆r) + (n− 1)H ≤ 0.(8.31)

2AH(·, ϑ) is independent of ϑ
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Denote

SH(t) :=





1√
H

sin(
√
Ht), H > 0;

t, H = 0;
1√
−H sinh(

√
−Ht), H < 0,

CtH(t) :=
S′
H(t)

SH(t)
,

and

ψH := (n− 1)CtH .

Then the right-hand side of (8.30) equals to ψH(r(x)) and ψH satisfies the Riccati equation

ψ′
H +

ψ2
H

n− 1
+ (n− 1)H = 0.

Now
ψ2

H

n−1+(n−1)H > 0 on (0, π/
√
H) forH > 0 and on (0,+∞) forH ≤ 0. Let x ∈M\(C(p)∪{p}),

γ be the unit speed geodesic from p to x, and v := γ̇0. Write ϕ(t) = ∆r(γ(t)). Then ϕ satisfies

ϕ′ +
ϕ2

n− 1
+ (n− 1)H ≤ 0.

On the other hand,

∆r =
n− 1

r
+ O(r), asr → 0,(8.32)

i.e. ϕ(t) = n−1
t + O(t) (Exercise). Hence, there exists r0 ≤ d(v) such that

ϕ2(t)

n− 1
+ (n− 1)H > 0(8.33)

for every t ∈ (0, r0). Now (8.31) implies

−ϕ′

ϕ2

n−1 + (n− 1)H
≥ 1

on (0, r0). Hence, ∫ t

0

−ϕ′

ϕ2

n−1 + (n− 1)H
ds ≥ t

for every t ∈ (0, r0], which gives

arcCtH

(
ϕ(t)
n−1

)
≥ t

for every t ∈ (0, r0]. Here arcCtH is the inverse function of CtH . Now

ϕ(t) ≤ (n− 1)CtH(t) = ψH(t)

for every 0 < t ≤ r0. Denote

t0 := sup{0 < t ≤ d(v) : ϕ ≤ ψH on (0, t)}.
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If t0 = d(v), we are done with (8.30). If t0 < d(v), then ϕ(t0) = ψH(t0), and so

ϕ2(t0)

n− 1
+ (n− 1)H =

ψ2
H(t0)

n− 1
+ (n− 1)H > 0.

But then (8.33) holds on (0, t0 + ε) for some ε > 0, and hence ϕ(t) ≤ ψH(t) for every t ∈ (0, t0 + ε).
This is a contradiction with the definition of t0. Thus, ϕ(t) ≤ ψH(t) for every t ∈ (0, d(v)). On MH ,
the inequality (8.31) holds as an equality. Since ∆Hr satisfies (8.32), we have ∆Hr(x) = ψH(r(x)).
We have proved (8.30). By (8.33) and (8.30)

∂
∂tA(t, ϑ)

A(t, ϑ)
≤

∂
∂tA

H(t, ϑ)

AH(t, ϑ)
.

Hence,
∂
∂t(logA(t, ϑ) − logAH(t, ϑ)) ≤ 0,

so

t 7→ log
A(t, ϑ)

AH(t, ϑ)

is decreasing when ϑ is fixed. This implies (8.29).

Lemma 8.34. Let f, g : [a, b) → [0,∞), g > 0, be integrable on [a, r] for every a ≤ r < b. Suppose
that f/g is decreasing. Then

r 7→
∫ r

a
f
/∫ r

a
g

is decreasing.

Proof. Let a ≤ r < R < b. Then

( ∫ r

a
f
)( ∫ R

a
g
)

=
(∫ r

a
f
)(∫ r

a
g
)

+
( ∫ r

a
f
)( ∫ R

r
g
)

and (∫ R

a
f
)(∫ r

a
g
)

=
( ∫ r

a
f
)( ∫ r

a
g
)

+
(∫ R

r
f
)(∫ r

a
g
)
.

We want to show ( ∫ r

a
f
)( ∫ R

a
g
)
≥
(∫ R

a
f
)( ∫ r

a
g
)

or equivalently
( ∫ r

a
f
)( ∫ R

r
g
)
≥
(∫ R

r
f
)( ∫ r

a
g
)

Let h = f/g. Then h is decreasing and f = gh. Hence,

(∫ r

a
f
)(∫ R

r
g
)

=
( ∫ r

a
gh
)(∫ R

r
g
)
≥ h(r)

( ∫ r

a
g
)( ∫ R

r
g
)

≥
( ∫ r

a
g
)( ∫ R

r
hg
)

=
( ∫ r

a
g
)(∫ R

r
f
)
.



Fall 2010 101

We denote

Vol(B(p, r)) =

∫

B(p,r)
ωM =

∫

M
χB(p,r)ωM ,

that is, the volume (measure) of B(p, r) ⊂M .

Remark 8.35. The volume Vol(C(p)) = 0 for every p ∈ M since for every x ∈ C(p) there exists
v ∈ TpM with |v| = 1, and t0 ∈ R such that x = γv(tv). Each {tv} is of zero one-dimensional
measure, hence Vol(C(p)) = 0 by Fubini’s theorem.

Theorem 8.36. Let M be complete, p ∈M , and Ric(v, v) ≥ (n− 1)H for every v ∈ TqM , |v| = 1,
q ∈M . Then for every 0 < r ≤ R (R ≤ π/

√
H if H > 0)

Vol(B(p,R))

Vol(B(p, r))
≤ Vol(BH(R))

Vol(BH(r))

Here Vol(BH(t)) is the volume of any ball of radius t in MH (= independent of the centre).

Proof. We set A(t, ϑ) = 0 for every t ≥ d(E(ϑ)). Then

Vol(B(p, r)) =

∫

Sn−1

∫ r

0
A(t, ϑ) dt dϑ.

By (8.29) and Lemma 8.34 ∫ r
0 A(t, ϑ) dt∫ r

0 A
H(t, ϑ) dt

≥
∫ R
0 A(t, ϑ) dt

∫ R
0 AH(t, ϑ) dt

.

Hence,

∫ r

0
A(t, ϑ) dt ≥

∫ r
0 A

H(t, ϑ) dt
∫ R
0 AH(t, ϑ) dt

·
∫ R

0
A(t, ϑ) dt =

Vol(BH(r))

Vol(BH(R))
·
∫ R

0
A(t, ϑ) dt.

Integrating this over the sphere Sn−1 we have the claim.

Corollary 8.37. Let M be as in Theorem 8.36. Then for every p ∈M and r > 0

Vol(B(p, r)) ≤ Vol(BH(r)).

Proof. Let t ∈ (0, r). Then

Vol(B(p, r)) ≤
(

Vol(B(p, t))

Vol(BH(t))

)
Vol(BH(r)).

On the other hand,
Vol(B(p, t))

Vol(BH(t))
→ 1 as t→ 0. (Exercise)

This gives the claim.

9 The sphere theorem
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