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4 Riemannian geometry

1 Differentiable manifolds, a brief review

1.1 Definitions and examples
Definition 1.2. A topological space M is called a topological n-manifold, n € N, if
1. M is Hausdorff,
2. M has a countable base (i.e. M is Nj),
3. M is locally homeomorphic to R™.
Let M be a topological n-manifold. A chart of M is a pair (U, x), where
1. U C M is open,
2. x: U — 22U C R" is a homeomorphism, xU C R™ open.
We say that charts (U, z) and (V,y) are C*°-compatible if UNV = () or
z=yox Hz(UNV):2(UNV)—yUNV)

is a C'*°-diffeomorphism.

yous

2 R™
A C®-atlas, A, of M is a set of C*°-compatible charts such that

M= ] U

(U,z)eA

A C-atlas A is maximal if A = B for all C*-atlases B D A. That is, (U,z) € A if it is
C°-compatible with every chart in A.

Lemma 1.3. Let M be a topological manifold. Then

1. every C*®-atlas, A, of M belongs to a unique mazximal C*®-atlas (denoted by A).

2. C*®-atlases A and B belong to the same maximal C*-atlas if and only if AUB is a C*°-atlas.
Proof. Exercise O

Definition 1.4. A differentiable n-manifold (or a smooth n-manifold) is a pair (M, .A), where
M is a topological n-manifold and A is a maximal C'*°-atlas of M, also called a differentiable
structure of M.

We abbreviate M or M"™ and say that M is a C'°°-manifold, a differentiable manifold, or a
smooth manifold.
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Definition 1.5. Let (M™, A) and (N", B) be C*°-manifolds. We say that a mapping f: M — N
is C* (or smooth) if each local representation of f (with respect to A and B) is C*°. More
precisely, if the composition y o f o 27! is a smooth mapping z(U N f~1V) — yV for every charts
(U,x) € Aand (V,y) € B. We say that f: M — N is a C*-diffeomorphism if f is C*° and it has
an inverse f~! that is C*°, too.

Remark 1.6. Equivalently, f: M — N is C* if, for every p € M, there exist charts (U, z) in M
and (V,y) in N such that p € U, fU CV,and yo foxz~!is C®(zU).

Examples 1.7. 1. M =R", A= {id}, A= canonical structure.

2. M =R, A= {id}, B={xz 2, 23}. Now A # B since idoh™! is not C'* at the origin. However,
(R, A) and (R, B) are diffeomorphic by the mapping f: (R, A) — (R, B), f(y) = y'/3. Note:
f is diffeomorphic with respect to structures A and B since id is the local representation of

f.

id z 2
id
/—\
R R

3. If M is a differentiable manifold and U C M is open, then U is a differentiable manifold in a
natural way.

4. Finite dimensional vector spaces. Let V be an n-dimensional (real) vector space. Every norm
on V determines a topology on V. This topology is independent of the choice of the norm
since any two norms on V' are equivalent (V finite dimensional). Let F1, ..., E, be a basis of
V and E: R" — V the isomorphism

n
E(x) = ZﬂclEZ-, z= (2t ..., 2").
1=1

Then E is a homeomorphism (V' equipped with the norm topology) and the (global) chart
(V, E~1) determines a smooth structure on V. Furthermore, these smooth structures are
independent of the choice of the basis E', ..., E,.
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5. Matrices. Let M(n x m,R) be the set of all (real) n x m-matrices. It is a nm-dimensional
vector space and thus it is asmooth nm-manifold. A matrix A = (a;;) € M(n x m,R), i =
1,...,n, j=1,...,m

a1 aiz - Qi

a1 az - A2m
A =

an1  An2 - Opm

can be identified in a natural way with the point
(@11, 012, -+ 5 ALy Q214 -+« s A2y« o 5 Ay -+ oy Q) € R
giving a global chart. If n = m, we abbreviate M (n,R).
6. GL(n,R) = general linear group

= {L: R" — R" linear isomorphism}
= {A = (a;j): invertible (non-singular) n x n-matrix}

= {A = (aij): det A 75 0}

[Note: an n x n-matrix A is invertible (or non-singular) if it has an inverse matrix A= ]

By the identification above, we may interprete GL(n,R) C M(n,R) = R™ . Equip M(n,R)
with the relative topology (induced by the inclusion GL(n,R) C M(n,R) = R™). Now
the mapping det: M(n,R) — R is continuous (a polynom of a;; of degree n), and therefore

G(n,R) C R™ is open (as a preimage of an open set R \ {0} under a continuous mapping).

7. Sphere S* = {p € R"*1: |p| = 1}. Let e1,...,e,41 be the standard basis of R" ™! let

p:§"\ {ent1} = R”
¥i 8"\ {=ears} — R"

be the stereografic projections, and A = {¢,1}. Details are left as an exercise.

Rn+1

\ R™ = R" x {0}

8. Projective space RP™. The real n-dimensional projective space RP™ is the set of all 1-
dimensional linear subspaces of R"! ie. the set of all lines in R®*! passing through the
origin. It can also be obtained by identifying points x € S™ and —x € S™. More precisely,
define an equivalence relation

r~y = x==y, x,ycS"
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Then RP" = §"/~= {[z]: © € S"}. Equip RP" with so called quotient topology to obtain
RP™ as a topological n-manifold. Details are left as an exercise.

9. Product manifolds. Let (M, A) and (N, B) be differentiable manifolds and let p;: M x N — M
and pa: M x N — N be the projections. Then

C= {(U x V,(x opl,yopg)): (U,x) e A, (V,y) € B}
is a C*-atlas on M x N. Example
(a) Cylinder R! x St
(b) Torus S' x St = 72,

10. Lie groups. A Lie group is a group G which is also a differentiable manifold such that the
group operations are C'°, i.e.

(9,h) — gh™"
is a C*°-mapping G x G — G. For example, GL(n,R) is a Lie group with composition as the
group operation.

Remark 1.8. 1. Replacing C™ by, for example, C*, C* (= real analytic), or complex analytic
(in which case, n = 2m) we may equip M with other structures.

2. There are topological n-manifolds that do not admit differentiable structures. (Kervaire,
n = 10, in the 60’s; Freedman, Donaldson, n = 4, in the 80’s). The Euclidean space R"
equipped with an arbitrary atlas is diffeomorphic to the canonical structure whenever n # 4
("Exotic® structures of R* were found not until in the 80’s).

1.9 Tangent space

Let M be a differentiable manifold, p € M, and v: I — M a C*-path such that v(t) = p for some
t € I, where I C R is an open interval.

Write
C®(p)={f:U—R| feC>®U), Usome neighborhood of p}.

Note: Here U may depend on f, therefore we write C*°(p) instead of C*°(U).
Now the path ~ defines a mapping 4,: C*°(p) — R,

f = (foy)(®).

Note: The real-valued function f o+ is defined on some neighborhood of ¢t € I and (f o~)'(¢) is its
usual derivative at ¢.
Interpretation: We may interprete 4 f as ”a derivative of f in the direction of v at the point

p.
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Example 1.10. M =R"
If v = (71,...,7): I — R™is a smooth path and 7/(t) = (v{(t),...,7,(t)) € R™ is the derivative
of v at t, then

Yuf = (foy)(t) = f' (L)' (t) =~'(t) - V(D).

t

In general: The mapping “; satisfies:
Suppose f,g € C>®(p) and a,b € R. Then

a) Yi(af +bg) = afif + bing,

b) %u(f9) = gp)uf + f(p)ing-
We say that +, is a derivation.

Motivated by the discussion above we define:

Definition 1.11. A tangent vector of M at p € M is a mapping v: C*°(p) — R that satisfies:
(1) v(af +bg) = av(f) +bv(g), f,g9€C>(p), a,beR;

(2) v(fg) = g(p)o(f) + f(P)o(g) (ct. the "Leibniz rule®).

The tangent space at p is the (R—)linear vector space of tangent vector at p, denoted by 7),M or

M,,.
Remarks 1.12. 1. If v,w € TyM and ¢,d € R, then cv 4+ dw is (of course) the mapping
(av + bw): C>®(p) — R,
(cv +dw)(f) = co(f) + dw(f).

It is easy to see that cv + dw is a tangent vector at p.
2. We abbreviate vf = v(f).
3. Claim: If v € T,M and ¢ € C*°(p) is a constant function, then cv = 0. (Exerc.)

4. Let U be a neighborhood of p interpreted as a differentiable manifold itself. Since we use
functions in C*°(p) in the definition of T}, M, the spaces T, M and T),U can be identified in a
natural way.

Let (U,z), z = (x',22,...,2"), be a chart at p. We define a tangent vector (so-called coordi-
nate vector) (a(?ci )p at p by setting

(aii)pf =Di(foa"")(z(p), feC ().

Here D; is the partial derivative with respect to i*" variable. We also denote

@»szm=<£Q;
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Remarks 1.13. 1. It is easy to see that (0;), is a tangent vector at p.
2. If (U,z), x = (z',...,2"), is a chart at p, then (9;),27 = §;;.
Next theorem shows (among others) that T, M is n-dimensional.

Lemma 1.14. If f € C*(B), k > 1, is a real-valued function in a ball B = B"(0,7) C R", then
there exist functions g; € C*~Y(B),i = 1,...,n, such that g;(0) = D;f(0) and

F@) = F0) = 4igi(y)
i=1

for ally = (y1,...,yn) € B.
Proof. For y € B we have

+f(y17"'7yn*170)_f(yla"wyn*Q?OaO)
+f(y17"'7yn—27070) _f(yla"'vyn—?novo

+f(y170770)_f(0)

oo

:Zé f(yla---gyi—l,tyi,o,...70)
=1

_Z/ %(f(ylv'"7y’i—17tyi707'--,0))dt
i=170

n 1
:Z/ sz(y177ylflaty’“0770)yzdt
i=170

Define 1
gl(y) :A D’if(yla"'7yi717tyi707"'70)dt'
Then g; € C*~1(B) (since f € C*¥(B)) and g;(0) = D; £(0). O

Theorem 1.15. If (U,z), x = (z!,...,2"), is a chart at p and v € T,M, then

v = i vz’ (0;) -
i=1

Furthermore, the vectors (0;)p, i =1,...,n, form a basis of T,M and hence dimT,M = n.
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Proof. For u € U we write z(u) = y = (y*,...,y") € R", so 2°(u) = y*. We may assume that
z(p) = 0 € R™. Let f € C®(p). Since foz~! on C*, there exist (by Lemma 1.14) a ball B =
B"™(0,r) C 2U and functions g; € C*°(B) such that

(foa ™)) = (foz™")(0) + > visily) VyeB
i=1

and g,(0) = D (f 0.2™1)(0) = (8),.f. Thus

where h; = g; o x and

Hence

This holds for every f € C°°(p), and therefore

v= i vz’ (0;
i=1

Hence the vectors (0;),, ¢ = 1,...,n, span T, M. To prove the linear independence of these vectors,

suppose that
n
w= Z bi(0i)p =
i=1

Then
0=wz! = Z bi ( pac =b;
51]
for all j =1,...,n,, and so vectors (0;)p, i =1,...,n, are linearly independent. O

Remark 1.16. Our definition for tangent vectors is useful only for C'*°-manifolds. Reason: If M
is a C*-manifold, then the functions h; in the proof of Theorem 1.15 are not necessarily C*-smooth
(only C*~l-smothness is granted).

Another definition that works also for C*-manifolds, k > 1, is the following: Let M be a C*-
manifold and p € M. Let 7;: I; — M be C'-paths, 0 € I; C R open intervals, and 7;(0) = p, i = 1,2.
Define an equivalence relation v, ~ v9 <= for every chart (U, z) at p we have

(0)'(0) = (o) (0)

Def.: Equivalence classes = tangent vectors at p. In the case of a (C'"**-manifold this definition
coincides with the earlier one ([y] = o).
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0 (z07i)'(0)

R™

1.17 Tangent map
Definition 1.18. Let M™ and N™ be differentiable manifolds and let f: M — N be a C°° map.
The tangent map of f at p is a linear map fi: T,M — Ty, N defined by

(fev)g=v(go f), VYgeC®(f(p)), ve T,M.
We also write fy, or T),f.

Remarks 1.19. 1. It is easily seen that f,v is a tangent vector at f(p) for all v € T,M and
that f, is linear.

2. If M =R™ and N = R", then f,, = f'(p) (see the canonical identification T,R" = R" below).
3. 7Chain rule*: Let M, N, and L be differentiable manifolds and let f: M — N and g: N — L
be C*°-maps. Then
(g0 flep = Gupp) © fop
for all p € M. (Exerc.)
4. An interpretation of a tangent map using paths:

Let v € T,M and let v: I — M be a C*°-path such that y(0) = p and 49 = v. Let f: M — N
be a C*®°-map and a = fo~v: I — N. Then f.v = &g. (Exerc.)

Ty M

Let = (2',...,2™) be a chart at p € M™ and y = (y',...,9y") a chart at f(p) € N*. What
is the matrix of f.: T, M — Ty, N with respect to bases (a;dxi )p,i =1,...,m, and (82] )f( ),j =
1,...,n,?7 By Theorem 1.15,

(595]) Zf*(axﬂ> <6z‘>(p)v I<j<m.
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Thus we obtain an n X m matrix (a;;),

0 ) 0 )
Q5 = f* <@>pyl — %( o f)

This is called the Jacobian matrix of f at p (with respect to given bases). As a matrix it is the
same as the matrix of the linear map ¢’ (:c(p)), g =1vyo fox ! with respect to standard bases of
R™ and R™.

Recall that f: M™ — N" is a diffeomorphism if f and its inverse f~! are C°°. A mapping
f: M — N is alocal diffeomorphism at p € M if there are neighborhoods U of p and V' of f(p)
such that f: U — V is a diffeomorphism.
Note: Then necessarily m = n. (Exerc.)

Theorem 1.20. Let f: M — N be C* and p € M. Then f is a local diffeomorphism at p if and
only if fu: TyM — Ty, N is an isomorphism.

Proof. Apply the inverse function theorem (of R™). Details are omitted, O

Tangent space of an n-dimensional vector space. Let V' be an n-dimensional (real) vector
space. Recall that any (linear) isomorphism z: V' — R"™ induces the same C'*°-structure on V. Thus
we may identify V' and 7),V in a natural way for any p € V: If p € V, then there exists a canonical
isomorphism ¢: V' — T,V. Indeed, let v € V and v: R — V' the path

Y(t) = p + tv.

We set
Z(U) = ’3/0.

5

Example: V =R", T,R" = R" canonically.
If f: M — Ris C* and p € M, we define the differential of f, df: T,M — R, by setting
dfv=vf, wvel,M.

(Also denoted by dfy,.)
By the isomorphism i: R — T, R as above, we obtain df = i~ o f.. Usually we identify df = f..
Note: Since df : T,M — R is linear, df € T,M* (= the dual of T,M).

I

N
Ty M TR

S/
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Tangent space of a product manifold. Let M and N be differentiablemanifolds and let

m: M xN— M,
m: M XN — N

be the projections. Using these projections we may identify T(, ) (M x N) and T,M & T;N in a
natural way: Define a canonical isomorphism

7 Tipgy(M x N) — T,M & TN,
= T1x «U, e T M x N).
TU = 140 + MU, U (p,q)( )
€M €T,N

Example: M =R, N =S!

T xaxC

Let f: M x N — L be a C*-mapping, where L is a differentiable manifold. For every (p,q) €
M x N we define mappings
fpr N—=L, f1:M—1L,
fola) = f4(p) = f(p. )
Thus, for v € T,M and w € T,N, we have

fe(v +w) = (f1)v + (fp)sw. (Exerc.)

1.21 Tangent bundle

Let M be a differentiable manifold. We define the tangent bundle T'M of M as a disjoint union
of all tangent spaces of M, i.e.

T™ = | | T,M.
peM
Points in T'M are thus pairs (p,v), where p € M and v € T,M. We usually abbreviate v = (p,v),
because the condition v € T, M determines p € M uniquely.
Let w: T'M — M be the projection

w(v) =p, ifveT,M.
The tangent bundle T'M has a canonical structure of a differentiable manifold.

Theorem 1.22. Let M be a differentiable n-manifold. The tangent bundle TM of M can be
equipped with a natural topology and a C°-structure of a smooth 2n-manifold such that the projec-
tion m: TM — M 1is smooth.
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Proof. (Idea): Let (U,z), x = (z',...,2"), be a chart on M. Define a one-to-one mapping
Z: TU — 2U x R" C R" x R" = R*"
as follows. [Here TU = | |, TyU = || ey TpM.| If p € U and v € T, we set

- @l(p)a' i 7xn(p)7vx1, . ,Q}xn)

eRn €R™
TU
z xzU x R™
— T
T,M
o T
U P xU

First we transport the topology of R™ x R™ into T'M by using maps Z and then we verify that
pairs (TU,z) form an atlas of TM. We obtain a C*°-structure for TM. [Details are left as an
exercise. ] ]

In the sequel the tangent bundle of M means T'M equipped with this C'*°-structure. It is an
example of a vector bundle over M.

Let m: TM — M be the projection (7(v) = p for v € T,M). Then 7=%(p) = T,M is a fibre
over p. If A C M, then a map s: A — TM, with 7o s = id, is a section of TM in A (or a vector
field).

Smooth vector bundles. Let M be a differentiable manifold. A smooth vector bundle of
rank k over over M is a pair (E,7), where F is a smooth manifold and 7: £ — M is a smooth
surjective mapping (projection) such that:

(a) for every p € M, the set E, = 7~ 1(p) C E is a k-dimensional real vector space (= a fiber of
E over p);

(b) for every p € M there exist a neighborhood U > p and a diffeomorphism ¢: 77U — U x R*
(= local trivialization of E over U) such that the following diagram commutes

U U x RE
—»
U x RF ©
\ /
lTr id 17?1
—
U U

[above 71 : UxRF — U is the projection] and that | E,: E, — {q} xR is a linear isomorphism
for every q € U.
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The manifold E is called the total space and M is called the base of the bundle. If there exists
a local trivialization of E over the whole manifold M, p: 7'M — M x R¥, then E is a trivial
bundle.

A section of E is any map o: M — E such that mroo = id: M — M. A smooth section is
a section that is smooth as a map o: M — E (note that M and E are smooth manifolds). Zero
section is a map (: M — FE such that

((p)=0€E, VpelM.

A local frame of E over an open set U C M is a k-tuple (o1, ...,0%), where each o; is a smooth
section of F (over U) ssuch that (01 (p),o2(p), - - ,ak.(p)) is a basis of B, forall p e U. If U = M,
(01,...,0k) is called a global frame.

1.23 Submanifolds

Definition 1.24. Let M and N be differentiable manifolds and f: M — N a C*°-map. We say
that :

1. fis a submersion if f.,: TyM — TN is surjective Vp € M.
2. fis an immersion if f.,: T,M — Ty, N is injective Vp € M.

3. f is an embedding if f is an immersion and f: M — fM is homeomorphici (note relative
topology in fM).

If M C N and the inclusioni: M — N, i(p) = p, is an embedding, we say that M is a submanifold
of N.

Remark 1.25. If f: M"™ — N™ is an immersion, then m < n and n — m is the codimension of

f.

Examples 1.26. (a) If Mj,..., M) are smooth manifolds, then all projections m;: My X --- X
M;. — M; are submersions.

(b) (M =R, N =R?) a: R — R?, «aft) = (t,]t|) is not differentiable at ¢ = 0.

A

(c) a: R — R2, at) = (t3,t%) is C*° but not an immersion since o/(0) = 0.
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(d) a: R — R2, aft) = (3 —4t,t? — 4) is C*° and an immersion but not an embedding (a(42) =
(0,0)).

A

//'

(e) The map « (in the picture below) has an inverse but it is not an embedding since the inverse
in not continuous (in the relative topology of the image).

//ﬁ/»

>

(f) The following « is an embedding.

-~

Remark 1.27. The notion of a submanifold has different meanings in the literature. For instance,
Bishop-Crittenden [BC] allows the case (e) in the definition of a submanifold.

Theorem 1.28. Let f: M™ — N" be an tmmersion. Then each point p € M™ has a neighborhood
U such that flU: U — N" is an embedding.

Proof. Fix p € M. We have to find a neighborhood U > p such that f|U: U — fU is a homeomor-
phism when fU is equipped with the relative topology. Let (Uy,z) and (Vi,y) be charts at points
p and f(p), respectivel, such that fU; C Vi, z(p) = 0 (€ R™), and y(f(p)) = 0 (€ R"). Write
f=yofoxt f= (fl, . ,fn) Since f is an immersion, f’(O): R™ — R™ is injective. We may
assume that f/(0)R” = R™ C R™ x R¥, k = n — m (otherwise, apply a rotation in R"). Then
det f7(0) # 0, when f'(0) is interpreted as a linear map R™ — R™. Define a mapping

@: zU; x RF — R",

(p(jvt) - (fl(j)vfé(jj)a . 7f~m(£)7f~m+1('%) +11,. .. 7fm+/€(a~j) +t/€))7
FexU;, t=(t1,...,t;) € R
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The matrix of ¢'(0,0): R™*TF — R™+F ig

9fi(0)
075 0 ’
* I,

and therefore det ¢(0,0) = det f/(0) # 0. By the inverse mapping theorem, there are neighborhoods
0 W, C zU; x RF and 0 € Wy, C R” such that Wi Wp — Wy is a dlffeomorphlsm Write
U=W,naU, and U = 27U (C Uy). Since p|zU; x {0} = f, we have ¢|U = f. In particular,

fIU: U — fU is a homeomorphism, when fU is equipped with the relative topology. O
f
Ui T

>_fi__/\
M

1
N
zU; C R™

Example 1.29. Let f: R"™ — R be a C°°-function such that V f(p) = (D1 f(p), ..., Dns1f(p)) #
0 for every p € M = {z € R**!: f(x) = 0} # (). Then M is an n dimensional submanifold of R"*!.

Proof of the claim above. (Idea): Let p € M be arbitrary. Applying a transformation and a
rotation if necessary we may assume that p = 0 and

of
Vf(0)=(0,...,0,——(0
FO) = (0.-...0. 5= (0)
Then a ()7&0 Define a mapping : R*+1 — R+,
()D(x) = (xla' .. 7xn7f(x))7 €T = (xla cee 7xn7xn+1)-
Then
1 0
1 0 0
of
det ¢’ (0) = 0) #£ 0.
tg/0)= | | N i
0 v v 0 1 0
e}
0 oo wer oo 0 W{rl(o)

By the inverse mapping theorem, there exist neighborhoods @ > p and W 3 ¢(0) = (0,0) € R" xR
such that ¢: @ — W is a diffeomorphism.
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R
MOV =U \ w
I
v M
@ ﬁ(
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K

Choose an open set K C R™, 0 € K, and an open interval I C R, 0 € I, such that K x I C W.
Let V=p YK xI)NQand U =V N M. Then ¢: V — K x I is a diffeomorphism. Let y = »|U.
Repeat the above for all p € M and conclude that pairs (U,y) form a C*-atlas of M. Since the
inclusion i: M < R"™*! satisfies

iU =y~ oglU,

1 is an embedding. O

1.30 Orientation

Definition 1.31. A smooth manifold M is orientable if it admits a smooth atlas {(Ua, z)} such
that for every a and 3, with U, NUg = W # (), the Jacobian determinant of z o x, ! is positive at
each point g € x, W, i.e.

(1.32) det(zg 0 x;l)/(q) >0, Vqeaz W

w

In the opposite case M is nonorientable. If M is orientable, then an atlas satisfying (1.32) is
called an orientation of M. Furthermore, M (equipped with such atlas) is said to be oriented.
We say that two atlases satisfying (1.32) determine the same orientation if their union satisfies
(1.32), too.

Remarks 1.33. 1. Warning: The notion of a smooth structure has different meanings in the
literature (e.g. do Carmo [Ca]). What goes wrong if we define orientability by saying: ” M is
orientable if it admits a C'*°-structure such that (1.32) holds?“ (Exerc.)

2. An is orientable and connected smooth manifold has exactly two distinct orientations. (Ex-
erc.)

3. If M and N are smooth manifolds and f: M — N is a diffeomorphism, then

M is orientable <= N is orientable.
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4. Let M and N be connected oriented smooth manifolds and f: M — N a diffeomorphism.
Then f induces an orientation on N. If the induced orientation of N is the same as the initial
one, we say that f is sense-preserving (or f preserves the orientation). Otherwise, f is
called sense-reversing (or f reverses the orientation).

Examples 1.34. 1. Suppose that there exists an atlas {(U,z), (V,y)} of M such that UNV is
connected. Then M is orientable.
Proof. The mapping yox~1: 2(UNV) — y(U N V) is diffeopmorphic, so

det(y o x_l)/(q) #0 Vgexz(UNV).

Since ¢ — det(y o x_l),(q) is continuous and z(U N'V) is connected, the determinat can not
change its sign. If the sign is positive, we are done. If the sign is negative, replace the chart

(Vy), y = (Y1, yn), by a chart (V,9), § = (=y1,92,. -, yn). Then the atlas {(U,z), (V,9)}
satisfies (1.32). O

2. In particular, the sphere S™ is orientable.

1.35 Vector fields

Let M be a differentiable manifold and A C M. Recall that a mapping V: A — T'M such that
X(p) € T,M for all p € M is called a vector field in A. We usually write X, = X(p). f AC M
is open and X: A — TM is a C*-vector field, we write X € 7 (A). Clearly 7 (A) is a real vector
space, where addition and multiplication by a scalar are defined pointwise: If X, Y € 7(A) and
a,b € R, then aX +b0Y, p — aX, + bY), is a smooth vector field. Furthermore, a vector field
V € T(A) can be multiplied by a smooth (real-valued) function f € C°°(A) producing a smooth
vector field fV, p— f(p)V,.

Let M be a differentable n-manifold and A C M open. We say that vector fields V!,..., V"
in A form a local frame (or a frame in A) if the vectors V;,l, ..., V! form a basis of T, M for
every p € A. In the case A = M we say that vector fields V!,... V" form a globalin frame.
Furthermore, M is called parallelizable if it admits a smooth global frame. This is equivalent to
TM being a trivial bundle.!

Definition 1.36. (Einstein summation convention) If in a term the same index appears twice,
both as upper and a lower index, that term is assumed to be summed over all possible values of
that index (usually from 1 to the dimension).

Let (U,z), z = (z',...,2"), be a chart and (9;), = ( a-)p, i = 1,...,n, the corresponding
coordinate vectors at p € U. Then the mappings

8i: U—>TM, p|—>(8i)p: (%),
p

are vector fields in U, so-called coordinate vector fields. Since the vector fields 0; form a frame,
so-called coordinate frame, in U, we can write any vector field V in U as

‘/b - ’Uz(p)(az)pa JAS U7

where v*: U — R. Functions v’ are called the component functions of V with respect to (U, z).

'Every Lie group is parallelizable; S',S%, and S” are the only parallelizable spheres; RP!, RP?, and RP” are the
only parallelizable projective spaces; a product S™ x S™ is parallelizable if at least one of the numbers n > 0 or m > 0
is odd.
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Lemma 1.37. Let V' be a vector field on M.Then the following are equivalent:
(a) V e T(M);
(b) the component functions of V' with respect to any chart are smooth;

(¢c) If U C M is open and f: U — R is smooth, then the function Vf: U — R, (Vf)(p) = V,f,
15 smooth.

Proof. Exercise. O
Remark 1.38. In particular, coordinate vector fields are smooth by (b).

Suppose that A C M is open and VW € T(A). If f € C*(p), where p € A, then V f € C*(p)
and thus W,(V f) € R (= "the derivative of V f in the direction of W}, “). The function A — R, p —
W, (V f), is denoted by WV f. Thus (WV f)(p) = W,(V f). We also denote (WV'),f = W,(V f).

Remark 1.39. (WV), is not a derivation, so (WV), & T,(M), in general. Reason: Leibniz’s rule
(2) does not hold (choose f = g).

Definition 1.40. Suppose that A C M is open and V,W € T (A). We define the Lie bracket of
V and W by setting

VWl f =Vo(Wf) =Wy (VS), peA, feCp)
Theorem 1.41. Let A C M be open and V,W € T(A). Then
(a) VW], € T,M;
(b) [V,W] e T(A) and it satisfies

(1.42) V.WIf =VIWf)=W(V]), feC?(A)

(c) if v' and w' are the component functions of vector fields V. and W, respectively, with respect
to a chart x = (z',...,2"), then
(1.43) [V, W] = (v'o;uw’ —w'907) 9;.

Note: The formula (1.43) can be written as
[V, W] = (Vuw — W) 0;.

Proof. (a) We have to prove that [V, W], satisfies conditions (1) and (2) in the definition of a
tangent vector.

Condition (1) is clear.
Condition (2): Let f,g € C*°(p). Then

[V, W1(fg9) = Vo (W(fg)) =W (V(f9))
=Vo(fWg+gWf)—Wy(fVg+gVF)
= f()Vo(Wg) + Wpg)(Vp.f) + g()Vp(W f) + (Wpf)(Vpg)
= fIWp(Vg) = (Vpg) Wy f) = g@Wp(V ) = (Vo f)(Wy9)
= f()(Vy(Wg) = W,,(Vg)) + g(p) (Vo(W f) = Wp(V f))
= f()V,Wlpg + g(@)[V, W], f.
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(b) Formula (1.42) follows immediately from the definition of a Lie bracket. Let f € C*°(A). Now
functions W f, Vf, V(W f), and W(V f) are smooth by Lemma 1.37 (c) since V,W € T (A).
Hence also [V,W]f =V (W f) — W(Vf) is a smooth function and therefore [V, W] € T (A).

(¢) fV =0'9;, W =w’d;, and f is smooth, we obtain by a direct computation that
V.WIf = VWF) = W(VF) = 0" (w0 f) — w0 (v'0:f)
0" (0w (05 f) + 0w 8i(9; ) — w! (9;0°)(9i f) — w!v'9;(0, f)
(07)(8;f) — w? (950°) (B f)-

In the last step we used the fact that 0;(0;f) = 0;(0;f) for a smooth function f. Changing
the roles of indices ¢ and j in the last sum we obtain (1.43).

:q}(

O
Lemma 1.44. The Lie bracket satisfies:
(a) Bilinearity:

[ale + a2X27Y] = al[X17 Y] + a2[X27Y] ja
(X, a1 Y1 + a2Ys] = a1[X, Y1) + a2 X, V5]

forai,az € R;
(b) Antisymmetry: [X,Y] = —[Y, X].

(¢) Jacobi identity:
(X,[Y,Z]] + [V,[2,X]] + [Z,[X,Y]] = 0.

(d)
[fX,9Y] = FglX, Y]+ f(Xg)Y —g(Y )X

Proof. (a) Follows directly from the definition.

(b) Follows directly from the definition.

YV, (2, X]|f=Y(Z(Xf))-Y(X(Zf) - Z(XYF)+X(ZY]))

(Z,X,Y]|f=Z(X(Yf) - Z(Y(Xf) - X(Y(Zf))+Y(X(Zf)).
Adding up both sides yields

[X’ D/a Z]]f+ [K [ZvXHf"_ [Z7 [X,Y]]f:o
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[fX,gY]h = fX(gYh) — gY (fXh)
= f9X(Yh) + f(Xg)(Yh) = gfY(Xh) = g(Y f)(Xh)
= f9[X,Y]h+ f(Xg)Yh — g(Y f)Xh.

O
Lemma 1.45. Let (U,z), x = (x',...,2"), be a chart and 0;, i = 1,...,n, the corresponding
coordinate vector fields. Then
[05,0;] =0 Vi,j.
Proof. Let p € U and f € C*°(p). Then
(0)p(956) = (0)p [(Dj(f o 2™")) 0 2]
=D, [(Dj( ox Ho z) o 1‘71} (z(p)) = D;D;(f o xil) (z(p)).
Since D;D;g = D;D;g for a smooth function g, we obtain the claim. O

2 Riemannian metrics

2.1 Tensors and tensor fields

Let Vi,..., Vi, and W be (real) vector spaces. Recall that a mapping F': V} x -+ x Vi, — W is
multi linear (more precisely, k-linear) if it is linear in each variable, i.e.

Fuy,...;av; + b0, ... vp) = aF(vi, ..., 05, 0p) + bF (v1, .o 0k o)

foralli=1,...,k and a,b € R.

Let V be a finite dimensional (real) vector space. A linear map w: V — R is called a covector
on V and the vector space of all covectors (on V') is called the dual of V' and denoted by V*.

We will adopt the following notation

(w,v) = (V,w) =w) eR, weV* " veV

Lemma 2.2. Let V' be an n-dimensional vector space and let (vi,...,vy,) be its basis. Then covec-

1

tors w*,...,w", with

W (v;) = 8,
form a basis of V*. In particular, dimV* = dim V.
Proof. (Exerc.) O
[Note: Above (55 is the Kronecker delta, i.e. 55 =1,if i =7, and 55 = 0, whenever i # j.]
Definition 2.3. 1. A k-covariant tensor on V is a k-linear map

VESR, VE=Vx...xV.
~—_————

k copies
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2. An [-contravariant tensor on V is an [-linear map

VSR, VA=V x...xV*.
N———

I copies
3. A k-covariant, [-contravariant tensor on V (or a (k,l)-tensor) is a (k + [)-linear map
VEx v SR
Denote
T*(V) = the space of all k-covariant tensors on V,

T;(V) = the space of all I-contravariant tensors on V,

TF(V) = the space of all k-covariant, [-contravariant tensors on V (i.e. (k,)-tensors).

Remarks 2.4. 1. TH(V), T)(V), and T}*(V) are vector spaces in a natural way.

2. We make a convention that both O-covariant and O-contravariant tensors are real numbers,
ie. TO(V)=To(V) =R,

Examples 2.5. 1. Any linear map w: V — R is a l-covariant tensor. Thus T1(V) = V*.
Similarly, T7(V) = V** = V.

2. If V is an inner product space, then any inner product on V' is a 2-covariant tensor (a bilinear
real-valued mapping, i.e. a bilinear form).

3. The determinantti det: R™ x --- x R™ — R is an n-covariant tensor on R".
Interpretation: For v1,...,v, € R", v; = (v},... ,vl),

Ul .« o e /l}

det(vy,...,v,) = det

n

n
Uy Un

Definition 2.6. The tensor product of tensors F' € T*(V) and G € T¥ (V) is the tensor F® G €

T W),

F®G(vy,... ,karp,wl, . ,wl+q) = F(v1,..., 0w, ... ,wl)G(karl, . ,vk+p,wl+1, . ,wl+q).
Lemma 2.7. If (vi,...,vn) is a basis of V' and (wh,...,w") the corresponding dual basis of V*
(i.e. w'(vj) = 0;), then the tensors

W' @ wt @y, @@y, 1< fpig <,
form a basis of TF(V'). Consequently, iim T} (V') = n¥+L,
Proof. (Exerc.) O

Remark 2.8. Since T7(V) = V** =V (that is, every vector v € V is a 1-contravariant tensor) and
TY(V) = V* (every covector is a 1-covariant tensor), we have

W' @ wt v, @ @), € TF(V),

i.e. it is a (k,[)-tensor.
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2.9 Cotangent bundle
We defined earlier that the differential of a function f € C*°(p) at p is a linear map df,: T, M — R,

dfpv =vf, veT,M.

Hence df, € T,M* (= the dual of T,M). We call T,,M* the cotangent space of M at p. If
(U,z), z = (z',...,2"), is a chart at p and ((O1)p,---,(0n)p) is the basis of T,M consisting of
coordinate vectors, then differentials dz,, i = 1,...,n, of functions z* at p form the dual basis of
T,M*. Hence the differential (at p) of a function f € C°°(p) can be written as

dfp = (0i)p fd:c;. (Exerc.) [Note: Einsteinin summation]
We define the cotangent bundle of M as a disjoint union of all cotangent spaces of M
™ = | | T,M"
peM

equipped with the natural C'°°-structure (defined similarly to that of T'M). Furthermore, let
m: TM* — M, T,M* > w+ p € M be the canonical projection. We call sections of T'M*, i.e.

mappings w: M — TM*, with 7 ow = id, covector fields on M or (differential) 1-forms. We
denote by T1(M) (or TH(M), T*(M), T (M)) the set of all smooth covector fields on M. The
differential of a function f € C°°(M) is the (smooth) covector field

df : M — TM*, df(p) =df,: T,M — R.

If (U,x), * = (z%,...,2"), is a chart and w is a covector field on U, there are functions
wi:U—R, i=1,...,n, such that
w = w;dx’.

Functions w; are called the component functions of w with respect to the chart (U, z). As in the
case of vector fields we have:

Lemma 2.10. Let w be a covector field on M. Then the following are equivalent:
(a) we THM);
(b) the component functions of w (with resect to any chart) are smooth functions;

(c) if U C M is open and V € T(U) is a smooth vector field in U, then the function p — wy(V},)
s smooth.

Proof. Exercise [cf. Lemma 1.37] O

2.11 Tensor bundles

Let M be a smooth manifold.

Definition 2.12. We define tensor bundles on M as disjoint unions:
1. k-covariant tensor bundle

"M = | | THT,M),
peEM
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2. l-contravariant tensor bundle

T,M = | | Ti(T,M), and
peM

3. (k,l)-tensor bundle
M = | | TH(T,M)
peEM

equipped with natural C'°°-structures.
We identify:

TM = ToM = M x R,

T'M = TM*,
T\M =TM,
TEM = T*M,
T°M = T;M.

Since all tensor bundles are smooth manifolds, we may consider their smooth sections. We say that
asection s: M — T*M is a (k,l)-tensor field (recall that mos = idy, and so s(p) € T (T,M)). A
smooth (k, [)-tensor field is a smooth section M — T}* M. Similarly, we define (smooth) k-covariant
tensor fields and /-contravariant tensor fields. Since O-covariant and O-contravariant tensors
are real numbers, (smooth) O-covariant tensor fields and (smooth) O-contravariant tensor fields are
(smooth) real-valued functions.

Denote

T*(M) = {smooth sections on T*M}

= {smooth k-covariant tensor fields}
T;(M) = {smooth sections on T;M }

= {smooth [-contravariant tensor fields}

T (M) = {smooth sections on T} M}
= {smooth (k,[)-tensor fields}.

If (U,z), == (z',...,2"), is a chart and ¢ is a tensor field in U, we may write

0 =0j.ipdz"™ ® - @dz', if 0 is a k-covariant tensor field,
o=0""0;, ®---®0j,, ifo isan [-contravariant tensor field, or

o=0llMde" @ - @da" ®0;, @ - @9, ifoisa (k)-tensor field.

Functions oy, ...4,,, oJ1Jt and Jfllflj are called the component functions of o with respect to the

cahrt (U,z). Again we have:
Lemma 2.13. Let o be a (k,l)-tensor field on M. Then the following are equivalent:
(a) o0 € T*(M);

(b) the component functions of o (with respect to any chart) are smooth;
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(c) if U € M is open and X1,..., X, € T(U) are smooth vector fields in U and w',... w' €
TY(M) are smooth covector fields in U, then the function

p|—>U(Xl,...,Xk,wl,...,wl)p eR

15 smooth.

Proof. Exercise [cf. Lemma 1.37 and Lemma 2.10.] O

2.14 Riemannian metric tensor

Definition 2.15. Let M be a C*°-manifold. A Riemannian metric (tensor) on M is a 2-
covariant tensor field g € 72(M) that is symmetric (i.e. g(X,Y) = g(Y, X)) and positive definite
(i.e. 9(Xp, Xp) > 0if X}, #0). A C*°-manifold M with a given Riemannian metric g is called a
Riemannian manifold (M, g).

A Riemannian metric thus defines an inner product on each 7T,M, written as
(v,w) = (v,w), = g(v,w) for v,w € T,M. The inner product varies smoothly in p in the
sense that for every X,Y € 7T (M), the function M — R, p — ¢(X,,Y}), is C*.

The length (or norm) of a vector v € T,M is

o] = (v, 0)!/2.

The angle between non-zero vectors v,w € T,M is the unique ¥ € [0, 7| such that

cost) = <v,w>'
[ol]w]
Vectors e, ...,e; € T,M are orthonormal if they are of length 1 and pairwise orthogonal, in

other words, (e;,e;) = 0;;.

Recall that vector fields Fy,...,E, € 7(U) in an open set U C M form a local frame if
(E1)p, ..., (Ey)p form a basis of T, M for each p € U. Associated to a local frame is the coframe
ol .., ¢" € THU) (=differentiable 1-forms on U) such that ¢'(E;) = §;;.

Now, if Ey,...,E, is any (smooth) local frame, and ¢!, ..., ¢" its coframe, the Riemannian
metric g can be written locally as

(2.16) 9= gij' ® ¢,

The coefficient matrix, defined by g;; = (E;, E;), is symmetric in ¢ and j, and the function
P 9ij(p) :== (Ei, Ej)yp

is C* for all 7, j.

Example 2.17. If (U,z), z = (x!',...,2") is a chart, then 9y,...,d,, where 9; = B%i’ form a
coordinate frame and differentials dz', ..., dz" its coframe. The Riemannian metric can then be
written (in U) as

g= gijdxi ® da! = gijdxidxj.

(If w and 7 are 1-forms, we write wn = 3(w ® n+n ® w) (= symmetric product).)
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Remark 2.18. If p € M, then there exists a local orthonormal frame in the neighborhood of p, i.e.
a local frame Fj1,..., F, that forms an orthonormal basis of T; M for all ¢ in this neighborhood.
Warning: In general, it is not possible to find a chart (U,x) at p so that the coordinate frame
01,...,0, would be an orthonormal frame. In fact, this is possible only if the metric g is locally
isometric to the Euclidean metric.

Definition 2.19. Let (M, g) and (N, h) be Riemannian manifolds. A diffeomorphism f: M — N
is called an isometry if f*h =g, i.e.

f*h(vv w) = h(f*v, f*w) = g(v, w)

for all v,w € T,M and p € M. A C*®-map f: M — N is a local isometry if, for each p € M,
there are neighborhoods U of p and V of f(p) such that f|U : U — V is an isometry.

Examples 2.20. (1) If M = R", then the Euclidean metric is the usual inner product on each
tangent space T,R™ = R". The standard coordinate frame is 01, ..., 0y, where

&' = €; = (0,...,0,1,0,...,0),
(0;,0;) = 0i;, and the metric can be written as

g= Z dr'dr’ = 5z~jd:):id:):j.

(2) Let f: M™ — N™"* be an immersion, that is, f is C* and f., : T,M — Tty N is injective
for all p € M. If N has a Riemannian metric g, then f*g defines a Riemannian metric on M:

[rg(v,w) = g(fuv, faw)

for all v,w € T,M and p € M. Since f,, is injective, f*g is positive definite. The metric f*g
is called the induced metric.

(3) Recall that a Lie group G is a group which is also a C*°-manifold such that G x G — G,
(p,q) — pgt, is C*. For fixed p € G, the map L, : G — G, Ly(q) = pg, is called a left
translation. A vector field X is called left-invariant if X = (L,),X for every p € G, i.e.
Xpg = (Lp)qXq for all p,q € G.

If X is left-invariant, then X € 7(G) (is a smooth vector field) and it is completely determined
by its value at a single point of G (e.g. by X.). If X and Y are left-invariant, then so is
[X,Y]. The set of left-invariant vector fields on G forms a vector space. This vector space
together with the bracket [-,-] is called a Lie algebra g. Thus g = T.G.

A Riemannian metric (-,-) on G is called left-invariant if (L,)*(-,-) = (-,-) for all p € G, i.e.
if ((Lp)sqV, (Lp)sqw)pg = (v, w)q for all v,w € T;G and all p,q € G.
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To construct a left-invariant Riemannian metric on G, it is enough to give an arbitrary inner
product (-, ). on T.G. Similarly, we can define right-invariant Riemannian metrics for right
translations R, : G — G, R,(q) = qp.

If (My,91) and (Ms,g2) are Riemannian manifolds, the product M; x M, has a natural
Riemannian metric g = g1 @ g2, the product metric, defined by

9( X1+ X0, Y1 +Y2) := g1(X1, Y1) + 92(X2, Y2),

where X;,Y; € T(MZ) and T(p,q)(Ml X Mg) = Tle D TqMQ for all (p, q) € My x M.

If (z%,...,2™) is a chart on M; and (2", ... 2"*™) is a chart on Ma, then (z1,...,2"™) is
a chart on M7 x M. In these coordinates the product metric can be written as g = g;;dz'da’,
where (g;;) is the block matrix

(g1 -+ (9 0o - 0
(91)m (gl')nn 0 0

0 0 (92)11 (92)1m
L 0 T 0 (92.)7711 T (g2jmm_

As an example one can consider the flat torus:
T":=S'x--- xSt

together with the product metric, where each S' C R? has the induced metric from R?.

Definition 2.21. Let (M, g) be a Riemannian manifold and v : I — M a C*-path, where I C R
an open interval. The length of 7|[a, b], where [a,b] C I, is defined by

£(v|[a, b]) /\%\dt / 93, ) Y2 dt.

The length of a piecewise C'*°-path is the sum of the lengths of the pieces.

Let M be connected and p,q € M. Define

d(p,q) = igf (),

where inf is taken over all piecewise C°°-paths from p to ¢q. Then d: M x M — R is a metric whose
topology is the same as the original topology of M (this will be proven later).
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2.22 Integration on Riemannian manifolds
We start with a discussion on a partition of unity.

Definition 2.23. Let M be a C*°-manifold. A (C*°-)partition of unity on M is a collection
{pi: i € I} of C*°-functions on M such that

(a) the collection of supports {supp p;: i € I} is locally finite,
(b) @i(p) >0 forall pe M and i € I, and
(c) forall pe M

> wilp) =1.

1€l

A partition of unity {y;: ¢ € I} is subordinate to a cover {U,: a € A} (M = U,U,) if, for each
i € I there is a € A such that supp p; C U,.

Remarks 2.24. 1. Above I and A are arbitrary (not necessary countable) index sets.

2. The support of a function f: M — R is the set

supp f = {p € M: f(p) # 0}.

3. A collection {A;: i € I} of of sets A; is locally finite if each p € M has a neighborhood
U 2 p such that U N A; # 0 for only finitely many 1.

4. The sum in (c) makes sense since only finitely many terms ¢;(p) are nonzero for every p € M.

Theorem 2.25. Let M be a C*°-manifold and {U,: oo € A} an open cover of M. Then there exists
a countable C*°-partition of unity {p;: i € N} subordinate to {Uy: o € A}, with supp ¢; compact
for each i.

Proof. See, for instance, [Le2], Theorem 2.25. O

As a simple application we obtain the existence of a Riemannian metric.
Theorem 2.26. Every C°°-manifold M admits a Riemannian metric.

Proof. Let (U,z), v = (x',...,2"), be a chart and 01, ..., 9, a (local) coordinate frame. We define
a Riemannian metric g on U as the pull-back of the Euclidean metric under z, in other words,

(2.27) f](az, 83) = 5ij (f] = 5Z]dxzdac])

Let {Uy: a € A} be an open cover of M by charts (U,,z,) and let ¢r, & = 1,2,..., be a
C*°-partition of unity subordinate to {U,: o € A}. For each k € N choose a € A such that
supp ¢ C U, and let g be a Riemannian metric on U, given by (2.27). Then

9= Z CrIk
k
is a Riemannian metric on M. Thus

g(v,w) = or(p)gr(v,w)

k
for all p e M and v,w € T,M. O
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Integration. Recall the change of variables formula for the (Lebesgue) integral (see e.g. [Jo]):
Suppose that 1; and {2y are open subsets of R" and that ¢: 1 — €y is a diffeomorphism. Let
f: Q2 — R be (Lebesgue-)measurable. Then f o ¢ is measurable and

(2.28) /Qfdm:/g(fw)wdm.

The formula is valid in the following sense: If f > 0, then (2.28) always holds. In general, f € L'(£s)
if and only if (f o ¢)|J,| € L'(21), and then (2.28) holds.
Suppose that (M, g) is a Riemannian n-manifold. Let (U, z), = = (z!,...,2"), and (U,y), y =

(y',...,y"), be charts. The Riemannian metric g = (, ) can be written in U as
o= ditsls = (g g )
or
g 0
g=gldy'dy’, g = <ayi’@>'

Denote ¢ =y oz~ !: U — yU. We want to define (first) [, du, where dp is a "volume element*,
by using a chart in such a way that the definition would be independent of the chosen chart. Write
G*(p) = (gfj (p)) and GY(p) = (gfj(p)) for p € U, and let A(q) be the matrix of ¢'(q) with respectt
the standard basis of R™. Since g is positive definite and symmetric, we have

det G*(p) > 0

for all p €. We claim that

(2.29) Vdet G (p) = \/det G¥ (p)| J,, ((p)) |

for all p € U. If this is true, then
det G*) / det G*(z=%(q)) dg
/:EU( xzU \/ )
/ \/det G (5= (0())) ()| dg

/yU \/det GY(y=1(m)) dm

:/yU(M)O -

so, the definition

(2.30) [ dn= [ (vaacE o

is independent of the chosen map x. Similarly,

[ raw= [ (raE) oa
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is independent of x for all Borel functions f: U — R. Next pick an atlas A = {(Uy,z0): @ € I}
and a (countable) C*°-partition of unity {¢;} subordinate to A. For each i, let o; € I be such that
supp ¢; C U,,;. Then we define, for any Borel set A C M,

1(A) 1—/ dp = / pidp = / pixadp.
A 21: Ua,NA ZZ: Ua,

This is independent of the chosen atlas and partition of unity. After this we can develop a theory
of measure (= p) and integration on M.
Proof of (2.29). Let

A= (45) = (Dj¢')
be the Jacobian matrix of ¢ = y o ™! with respect to the standard basis of R™. Then it is the
matrix of id, with respect to coordinate frames {0/0z'} and {0/0y’}. Hence

— )
i E Dy "E

j=1
So,
2 _ [0 O
i = ozt dxi
" 0 0
= (D Die’ 5. ZDJ‘PE—e>
<k:1 9y (=1 %
o 0
= Z Di@ijSOZ <—ka —g>
v Ay~ dy
= Di"D;o'gl,.
k.l
That is,
G*=ATav A,
and so
det G® = det AT - det GY - det A.
Since

det A = det AT = J,,
we obtain (2.29).

3 Connections

3.1 Motivation

We want to study geodesics which are Riemannian generalizations of straight lines. One possibility
is to define geodesics as curves that minimize length between nearby points. However, this property
is technically difficult to work with as a definition. Another approach:

In R" straight lines are curves o : R — R",

at) =p+tu, p,v € R™
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(We do not consider e.g. y(t) = p + t3v as a straight line, although v(R) = a(R).)
The velocity vector of a is & = o/(t) = v, and the acceleration of « is & = o(t) = 0; so
straight lines are curves a with & = 0.

Let M™ C R"™ be a submanifold, m < n, with induced Riemannian metric.
Take a C™-path v : I — M, v = (v},...,9"). Then 44 = (3¢,...,%") € R™ but also #; € TypyM
and it has a coordinate-independent meaning. On the other hand, 5 = (5;,...,5) € R™ but
Y & Ty M, in general.

M

To measure the ”straightness® of v we project 4; orthogonally to T’ M and obtain 4F the ”tan-
gential acceleration®. Hence, we could define geodesics as curves v, with 47 = 0.

Problem: For an abstract Riemannian manifold, there is no canonical ambient Euclidean space,
where to differentiate. So the method does not work as such.

We face the following problem:

To differentiate (intrinsicly, i.e. within M) 5, with respect to ¢t we need to write the difference
quotient of 4, for t # ¢y but these vectors live in different vector spaces, so 44 — ¥, does not make
sense.

To do so, we need a way to ”connect“ nearby tangent spaces. This will be the role of a connection.
3.2 Affine connections

First a general definition.

Definition 3.3. Let (E,7) be a C* vector bundle over M, and let £(M) denote the space of
C*>-sections of E. A connection in F is a map

V:T(M)xEM) — E(M),
denoted by (X,Y) — VxV, satisfying
(C1) VxY is linear over C*°(M) in X:

va1+gX2Y = valy +gvX2Y7 fvg € COO(M)7

(C2) VxY is linear over R in Y

VX(aY1 + ng) =aVxY +bVxYs, a,b eR;

(C3) V satisfies the following product rule:

VX(fY):vaY—I—(Xf)Y, fECOO(M)
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We say that VxY is the covariant derivative of Y in the direction of X.

In the case E = TM the connection V 1is called an affine connection. Thus
V:T(M)xT(M)— T(M). From now on V will be an affine connection on M. Let v:1 — M
be a C*°-path. We say that a C*®-map X : I — TM is a C*®-vector field along ~ if
Xt =X, 4) € TyyM for every ¢ € I.

Denote by 7 () the space of all C*-vector fields along 7. Observe that X € 7(y) cannot
necessarily be extended to X € 7 (U), where U is an open set such that v : I — U. For example:

Lemma 3.4. (VxY), depends only on X,, and the values of Y along a C*-path ~, with 59 = X,
(and, of course, on V).

Remark 3.5. This innocent looking result will be very important since it makes it possible to
define a notion of covariant derivative of a vector field along a smooth path, and therefore a
parallel transport along a smooth path; see Theorem 3.7 and Definition 3.14 below.

Proof. Let (U, x) be a chart at p, and let 0; = %, 1=1,2,...,n, be the corresponding coordinate
frame. Let ' '
X:a’@-, Y:b78]

Using the axioms of connection, we gain
(VXY)p = (vajaj)p = bj(p)(vXaj)p + (Xpbj)(aj)p = bj(p)(vaiaiaj)p + (Xpbj)(aj)p
= (p)a'(p)(Vo,0;)p + (Xpt?)(0))p,

where terms b’ (p)a‘(p) depend only on Y, and X, and terms X,b’ depend only on the values of Y’
along v with 49 = X,. U

Let {E;} be a local frame on an open set U C M. Writing
Vg E; =T};Ey,

we get functions I‘fj € C>®(U) called the Christoffel symbols of V with respect to {E;}. As in

the proof Lemma 3.4, we get

(3.6) VXY = a'V'I}Ey + XV E; = (a'V'T}; + Xb*)Ej.
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Theorem 3.7. Let V be an affine connection on M, and let v : I — M be a C*°-path. Then there
exists a unique map Dy : T (y) — T () satisfying:

(a) linearity over R:
Dy(aV +bW) = aD;V + bD,W, a,b €R;

(b) product rule: ‘
D(fV)=fV+fDV,  feC™();

(c) if V is induced by Y € T(M) (V is "extendible ), i.e. Vi = Y., then

DV = VY.

The vector field D;V is called the covariant derivative of V' along ~.

Proof. Note that the last line in (c¢) makes sense by Lemma 3.4. We follow a typical scheme in the
proof: first we prove the uniqueness and obtain a formula that can be used to define the object we
are looking for.

Suppose that D, exists with the properties (a), (b) and (c). Let V € T (7), to € I, and

let z = (z!,...,2") be a chart at p = y(tg). Then for all ¢ sufficiently close to to, say [t — to| < ¢,
we have

e = (2 0 ) ()(i)yey = 7 (8) (D)t
and '
Vi =1’ (t)(aj)'y(t)a
where 4% = (z' 0y)" and v/ € C*(tg —¢,tp + ¢). Using (a) and (b), we have
D,V = Dy(v?9;) = 70 + v) D;0;.
Because 0; is extendible, we have

Di0; V405 = V40,0, L 41V,,0; = 4T 0.

Therefore,
(3.8) DV = 8 + w5 TEdy = (0F + v/5TE)dy.

By (3.8), if Dy : T () — 7T () exists and satisfies (a), (b) and (c), then it is unique.

If v(I) is contained in a single chart, we can define D, by (3.8). In the general case,
cover y(I) by charts and define D;V by (3.8). The uniqueness implies that the definitions agree
whenever two charts overlap. ]

When do the affine connections exist?

Example 3.9. The Euclidean connection in R" is defined as follows. Let X,V € T(R"), V =
(vl ..., 0") = v'0;, where v’ € C°(R") and 9y, ..., 0, is the standard basis of R”. Then we define

VxV = (Xv))9;,

i.e. VxV is a vector field whose components are the derivatives of V in the direction X. Note that
the Christoffel symbols of V (w.r.t. the standard basis of R") vanish.
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Lemma 3.10. Suppose M can be covered by a single chart. Then there is a one-to-one corre-
spondence between affine connections on M and the choises of n3 functions Ff’j € C®(M), by the
rule

(3.11) VxY = (a'VT}; + XbM)0,
where X = a'0;, Y = b'0;, and 01, ..., 0, is the coordinate frame associated to the chart.

Proof. For every affine connection there are functions FZ € C°(M), namely the Christoffel sym-
bols, such that (3.11) holds.
Conversely, given functions I‘fj, i,7,k = 1,2,...,n, then (3.11) defined an affine connection. (Ex-
ercise) O
Theorem 3.12. Every C°°-manifold M admits an affine connection
Proof. Cover M with charts {U,}. Then by Lemma 3.10 each U, has a connection V. Choose a
partition of unity {y,} subordinate to {U,}. Define

VxY =) ¢ VXY

[0}

Check that this defines a connection. O

Remark 3.13. If V! and V? are connections, then neither %Vl nor V! + V? satisfies the product
rule (C3).

Definition 3.14. Let V be an affine connection on M, v : I — M a C*-path, and D; : 7 (y) —
7T (v) given by Theorem 3.7. We say that V' € 7 (v) is parallel along v if D;V = 0.

W
Exercise 3.15. Let v : I — R™ be a C*°-path. Show that a vector field V' € 7 () is parallel (with
respect to the Euclidean connection) if and only if its components are constants.

v(t)

Theorem 3.16. Let V be an affine connection on M, ~v : I — M o C*®-path, tog € I, and
vo € T4y M. Then there exists a unique parallel V' € T (v) such that Vi, = vo. The vector field V
is called the parallel transport of vy along ~.

Before we prove this theorem, we state the following lemma about the existence and uniqueness
for linear ODEs.

Lemma 3.17. Let I C R be an interval and let a? I - R, 1< 5,k <n, be C®-functions. Then
the linear initial-value problem

{@’f(t) = k()i (¢);

vF(tg) = b,

has a unique solution on all of I for any to € I and (b*,...,b") € R™.
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Proof of Theorem 3.16. Suppose first that v(I) C U, where (U, z) is a chart. Then V = 079, € T ()

3.8 -
is parallel along ~ if and only if D;V’ (25 (0% + vwrfj)ak = 0, that is, if and only if

(1) = IV O (1), 1<k <n.

This is a linear system of ODEs for (v!(t),...,v"(t)). Lemma 3.17 implies that there exists a
unique solution on all of I for any initial condition V4, = vo.
General case: (y([) is not necessarily covered by a single chart)
Write
B :=sup{b >ty : there exists a unique parallel transport of vy along [to, b]}.

Clearly, 5 > tg, since for small enough £ > 0 the set y(tgp — €,ty + €) is contained in a single chart,
and the first part of the proof applies. Hence, a unique parallel transport V' of vy exists on [tg, ).
If 8 € I, choose a chart U at ~(83) such that y(8 —¢,8 +¢) C U for some ¢ > 0. The first part of
the proof implies that there exists a unique parallel transport V' of Vj_. /5 along (8 —¢,8+¢). By

uniqueness V = V on (6 —¢,), and hence V is an extension of V past (3, which is a contradiction.
So 3 ¢ I. Similarly, we can analyze the "lower end“ of I. O

Vo

¥(to) (

The parallel transport along v : I — M defines for ty,t € I a linear isomorphism P, ; :
Tyto)M — Ty M by
Py 1vo = Vi,

where V' € 7 () is the parallel transport of vg € T4,y M along 7.
Definition 3.18. Let V be an affine connection on M. A C*®-path +v: [ — M is a geodesic if
Dy = 0.
By Theorem 3.7(c), this can also be written as
Vig =0,
provided that 4 is extendible.

Theorem 3.19. Let M be a C*®-manifold with an affine connection V. Then for each p € M,
v € T,M, and ty € R, there ewist an open interval I > ty and a geodesic v : I — M satisfying
v(to) = p and ¥(ty) = v. Any two such geodesics agree on their common interval.
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Proof. Let (U,x), x = (x',...,2"), be a chart at p and {9;} the corresponding coordinate frame.
If v:J — U is a C*-path, with v(tg) = 0 and §(t9) = v, then

y = (2" 09)'0; =40,

and
(3.8

Dy =" (5 + 44T o
Hence, v: I — U, typ € I C J, is a geodesic, with y(t9) = p and (t9) = v, which is equivalent to

;yk+f'yjﬁiFZ:0, k=1,2,...,n;

v(to) = p;
Y(to) = v.
The theory of ODEs implies that there exists a unique local solution to this. O

It follows from the uniqueness that, for each p € M and v € T,M, there exists a unique
maximal geodesic v : I — M, with (0) = p and 59 = v, denoted by 7. By "maximal“ we mean
that I is the largest possible interval of definition. We will return to this later.

Remark 3.20. Above and also in the proof of Theorem 3.7 we have abused the notation by writing

Ff‘j instead of I‘fj oy. We will continue to do so also in the sequel.

3.21 Riemannian connection

Let M be a C*°-manifold and V an affine connection on M. Define a map T': T (M) x T(M) —
T (M) by
T(X,Y)=VxY — VyX — [X,Y].

Then T € T2(M) (Exercise). It is called the torsion tensor of V. We say that V is symmetric
if T =0.

Remark 3.22. V is symmetric if and only if the Christoffel symbols with respect to any coordinate
frame are symmetric, i.e. Ff:j = F?’i (Exercise).

Definition 3.23. Let M be a Riemannian manifold with the Riemannian metric ¢ = (-,-). An
affine connection V is compatible with g if

X(Y,Z) = (VxY, Z) + Y,V x Z)
for every X,Y,Z € T(M).
Lemma 3.24. The following are equivalent
(a) V is compatible with g;
(b) If v: I — M is a C*®-path and V,W € T (v), then

fe LWy = (D VW (V. DyWY:

(V. W)= dt

(c) If ViW € T () are parallel, then (V,W) is constant.
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Proof. Let v: I — M be a C®-curve, p = v(t), and = = (z!,...,2") a chart at p. Let
o1, . 8 be the coordmate frame associated to x. It is enough to show that (a) implies
(3.25) (05, 05) (t) = (D40;, 05)(t) + (0i, D105)(t)

for every t € I. By the definition of compatibility, (a) implies
Or(0i,0;) = (V9,0:,0;) + (0i, Vo, 05) = T4, 05) + (01, T1;00) = Thagij + Thjgar-
For the left-hand side of (3.25), we then have
(05,0;)'(t) = (g1 2 V) (t) = Ye(9i5) = 3 Ok(9i5) = W Thagj + 3£ Tt

For the right-hand side of (3.25), the identity (3.8) gives us D;0; = *T'L.0, and D;0; = ‘ykféjé?l.
Therefore,

(D133, 0;) () + (9, Dy0;) (t) = (AFT5,00,07) (1) + (05, A T 0 (1) = AT higus + 4 Thigu,

which is equal to the left-hand side.
(b) = (a)|Let X,Y,Z € T(M), p € M. Let v be an integral curve of X starting at p. Then Y

and Z induce vector fields Y, Z € T(y) by Y; = Y, and Z = Zy)- Now

L7202 (0¥, 2)0) + (V. D20

(V,Y, Z)y + (Y.V52), = (VxY. Z), + (Y, Vx Z),.

X, (Y, Z) =40(Y, Z) =

3. 7(c)

(b) = (c) |Since V, W € T () are parallel, we have by definition D,V = 0 = D,W. Using (b) this
implies (V, W)’ =0, that is, (V, W) is a constant.

(c) = (b) | Choose an orthonormal basis {E1(to), ..., En(to)} of T )M, where tg € I. Let E; be

the parallel transport of E;(t() along -, see Theorem 3.16. Now (c) implies that {E1(t),..., E,(t)}
is orthonormal for every ¢t € I. If VW € 7 (), we can therefore write

V =0v'E;, and W =uw'E
Then D,V = v'DyE; + 0'E; = V' E; and D;W = w'E;. This gives
<DtV, W> + <V, DtW> = <@ZEi,w]Ej> + <'UZEiaijj> = @’wjéij + v’u‘ﬂéij = a(vzwjdij) = <V, W>/.
O

Definition 3.26. Let M be a Riemannian manifold with the Riemannian metric ¢ = (-,+). An
affine connection V is called a Riemannian (or Levi-Civita) connection on M if

(3.27) V is symmetric: VxY — Vy X = [X,Y];
and
(3.28) V is compatible with g: X(Y,Z) =(VxY,Z) + (Y, VxZ).

Theorem 3.29. Given a Riemannian manifold M, there exists a unique Riemannian connection
on M.
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Proof. Suppose such V exists. Then

x(v,2) "2V (VxY, 2) + (Y. Vx2) P2 (VY. Z) + (¥, V2 X) + (Y, [X, Z)).
Similarly,
Y<ZaX> = <VY27X> + <Zv VXY> + <Zv [Yv X]>7
and
Z(X,Y) = (VzX,Y) + (X, VyZ) + (X,[Z,Y]).
Hence,

XY, Z2)+Y{(Z, X)-Z(X,)Y)=2(VxY, Z)+ (Y, [ X, Z]) + (Z,]Y, X]) — (X, [Z,Y]).

This gives
(3.30) (VxY,Z) = %(X(Y, Z2y+Y{(Z,X)—-Z(X,)Y) = (Y, [X,Z]) — (Z,[Y, X]) + (X, [Z,Y]>>.

Suppose V! and V? are Riemannian connections. Since the right-hand side of (3.30) is independent
of the connection, we have

(VY —V%Y,Z) =0
for every X,Y,Z € T(M). However, this is true only if VLY = V%Y for every X,Y € T (M), that
is, V! = V2
We use (3.30) or, more precisely, its coordinate version to define V and then show that
V is a Riemannian connection. It suffices to show that such V exists in each coordinate chart since

the uniqueness guarantees that connections agree if the charts overlap.
Let (U,z), x = (x',...,2"), be a chart. Using (3.30) and [9;,9;] = 0, we have

1
(Vo,05 ) = 5 (9105, 00) + 0,00, — (1. ).
This is the same as 1
T = §(aigjk + 0jgri — OkGij)-
Let (¢") be the inverse matrix of (g;;), i.e. Gieg®™ = 6;m. Multiplying both sides of the above

equality by ¢*™ and summing over k = 1,2,...,n, we get

1
(3.31) T = 59" (Oigjk + 0i9ki — Orgiy)-

This formula defines V in U. Furthermore, from (3.31) we get I'/? = I'7}, i.e. V is symmetric. To

show that V (defined by (3.30) or its coordinate version (3.31)) is compatible with g is left as an
exercise. n

4 Geodesics

4.1 Geodesic flow

Let M be a Riemannian manifold with the Riemannian metric ¢ = (-,-) and the Riemannian
connection V. Recall that a C*-path v : I — M is a geodesic if

Dt’:)/ =0.
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If we want to emphasize that v is a geodesic with respect to a Riemannian connection, we call v a
Riemannian geodesic. Recall that for every p € M and v € T, M, there exists a unique maximal
geodesic 7" : I, — M, with 7§ = p and §j = v. Next we "show“ that 7} depends C*°-smoothly on

p, v and t.
o ; 8
—_—
1, %‘_\
0 t
7Y z
,yw
/\ S
L, o q

For that purpose we recall following facts on the tangent bundle. Let (U, ), x = (z!,...,2"), be

a chart and v € TU. Then v € T,M for some p € U and v can be uniquely written as v = v*(p)(0;)p,
with (v!(p),...,v"(p)) € R™ Thus TU = U x R" and we local coordinates for v € TU:

z(v) = (z'(p),....2"(p),v' (p),...,v"(p)) € R*".

Since (TU,7), T = (x!,..., 2" v!, ... ,v"), is a chart on TM, we get a basis %, %,i: 1,2,....n
for T(p.v)(TM) = T,M & R™.

Let G € T(U) be the following vector field on TU:

- 9 LN d
_ k i k
(4.2) G, = kglv 9k E v U]Fij(p)—avk‘

ij, k=1
We want to find out the integral curves 7 : I — TU of G. We can "lift“ a C*°-path v: I — U to a
C®°-path 7 : I — TU by setting
() =

Using local coordinates T = (z,v) we get a C®-path To7¥: I — R?"

Toq(t) = (fyl(t), . ,’y”(t),vl(t), . ,v”(t)),

where 7% = 2% oy and v' = 4* = (2’ 0 v)’. Now 7 is an integral curve of G if and only if 7, = Gy
for all t € I, that is, if and only if

=/, 0 0
7=2 (g + ) = G

Taking into account (4.2) we finally see that 7 is an integral curve of G if and only if

Sk — gk 1<k<n:
(4.3) {7 v =E=

ok = —v"vjff'j.

This is a first-order system equivalent to the second-order geodesic equation in the proof of Theorem
3.19 under substitution v* = 4.

Conclusion: Integral curves of G project to geodesics in projection 7 : TM — M. Conversely,
any geodesic v : I — U lifts to an integral curve 7 of G.

Since the geodesic equations are independent of the choice of local coordinates, we conclude that
(4.2) defines a global vector field G, so called geodesic field, on T'M. More precisely:
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Lemma 4.4. There exists a unique vector field G on T'M whose integral curves project to geodesics
under m: TM — M.

Proof. If G exists, then its integral curves project to geodesics and therefore satisfy
(4.3) locally. Hence, G is unique if it exists.

Define G locally by (4.2). Then uniqueness implies that various definitions of G in
overlapping charts agree. O

The theory of flows implies that there exists an open neighborhood D(G) C RxT'M of {0} xTM
and a C*°-map a : D(G) — TM, called the geodesic flow, such that each curve

t— a(t,v)

is the integral curve of G starting at v € T'M and defined on an open interval I, 3 0. Since « is
C>®, also roa:D(G) — M is C*. Now

t— (moa)(t,v)

is the geodesic 7", with 7J = p and 4§ = v. We have shown that v/ = (7 o «)(¢,v) depends
C°°-smoothly on ¢, p and v € T, M.

4.5 Appendix

Let N™ and M™ be C'*°-manifolds and f: N — M a C*°-map. A C*®-map V: N — TM is said
to be a vector field along f if V, :==V(p) € T,M for allp e N,ie. moV = f.

Theorem 4.6. If f: N — M is an embedding and V is a C* wvector field along f, there exists
V € T(M) such that Vi, = V() for allp € N, i.e. V is "extendible “.

Proof. The proof is based on the following: For each ¢ € fN C M there exists a neighborhood U
of ¢ in M and a chart z: U — R™ such that

(4.7) "= =2 =0
in UN fN. These are so called slice coordinates (cf. Theorem 1.28).

How to construct the extension of V'?
Sketch: Cover fN by charts {U,} with the property (4.7). In f~*(fN N U,) we have

where
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a1z (q), -, z"(q))

m—
R A

ﬁ

(2*(q), -, 2" (q))

R?’L

8

Then take all charts {Ug} such that UgN fN = () for all 3 and

M = (U UTp).
o,

Define V¥ € 7T (Ug) by VP = 0. Rename U,, V©, Ug, and VP as U; and V%, i € I. Finally, take a
C*° partition of unity {¢;} subordinate to {U;} and define

‘7 = Z (pi/z
0

The assumption ” f embedding“ is crucial: For example, v: R — R?, 4(t) = (¢3,0) is a C*°-path
but not embedding. Now 4 € T(7), 4 = 3t*(01)(r), but ¥ € T(R) since 4 considered as a vector
field in R is given by <, = 3u?/39; which is not differentiable at u = 0.

4.8 Exponential map

Lemma 4.9. All Riemannian geodesics have constant speed, i.e. for every Riemannian geodesic
v there is a constant ¢ such that

el = (e, ) 2 = c
for everyt € I.
Proof. Lemma 3.24 implies that (¥,5)" = 2(Dy¥,7) = 0, since by definition Dyy = 0. O

Lemma 4.9 implies that the length of ~|[to, t] is

(1.10) (olltort) = [ Pl de = et — t).

to
If ¢ = 1, we say that ~ is a normalized geodesic (or of unit speed, or parametrized by arc
length).
Let I, be the maximal interval where 4" is defined, and let [0, ¢,) be the nonnegative part of I,,.
Lemma 4.11. For every a >0 and 0 <t < Ly,

v

W= Vate

In particular, £q, = éﬁy.
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Proof. The claim holds if |[4¥| = 0, so we may assume that 47 # 0. Let I, = (a,b) and A
(a/a,b/a). Define « : I, — M by

I, =

1

«
(t) =" (at).

Then 4 = a,;, and so

Dy @ Vi = Vase, (a38) = a® Vs, (35,) = 0.

Hence, vy is a geodesic, with 79 = 7§ and 4y = ajj = av. Furthermore, fw is the maximal interval
since I, is. Uniqueness implies that v = v*Y. The equality (x) holds since the vector field t — 4,
(along «) is locally extendible to a vector field on M (also denoted by ). This is seen as follows:
Since 4y # 0, v : fav — M is an immersion and therefore locally an embedding by Theorem 1.28.
Then t +— 44 is locally extendible by Theorem 4.6. O

Let £ C T'M be the set of vectors v such that ¢, > 1, i.e. ¥(t) is defined for all ¢ € [0,1]. The
exponential map exp : £ — M is defined by

(4.12) exp(v) :=~v"(1).

For p € M, the exponential map at p is the map exp, = exp |, where &, = EN T, M.

exp(v) =Y

Theorem 4.13. We have the following properties

(a) € CTM is open and contains the (image of the) zero section M x {0} = ||, s 0p, where 0y
is the zero element of T, M ;

(b) each &, is star-shaped with respect to 0 (= 0,);
(¢) for each v € TM, the geodesic v* is given by
7" (t) = exp(tv)
for all t such that either side is defined;
(d) the exponential map exp : £ — M is C°.
Proof. The claim (c) follows from Lemma 4.11:

411
exp(tv) =" "= 7.
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(b): If v € &, then 1} is defined for all ¢ € [0,1]. However, exp(tv) = 7i¥ = ¢, so 71" is defined
for all ¢t € [0, 1]. This means that &, is star-shaped with respect to 0.

(d): We have exp(v) = (7 o a)(1,v), where « is the geodesic flow. Hence, exp is C*°.

(a): Suppose v € €. Then ~" is defined at least on [0,1]. Therefore, also the integral curve 7"
of G starting at v € TM is defined on [0,1]. In particular, 7¥(1) is defined, hence (1,v) € D(G).
Because D(G) is an open subset of R x T'M, there exists an open neighborhood of (1,v) in R x TM
on which the flow « is defined.

>
>

1 R

In particular, there exists an open neighborhood of v in TM where ~v{* = exp(w) is defined.
This implies that £ is open. If 0, € T,,M is the zero element, then ~% is the constant path 4% = p

for every t € R. In particular, 'y? ? is defined for every ¢ € [0, 1]. So, £ contains the zero-section. [

v/|v]

Remark 4.14. If v € T,M, v # 0, then exp(v) = 7{ = Vol
exp(v) is obtained by traveling from p of length |v| along the unit speed geodesic passing through
p with velocity v/|v].

. Because v/|v] is a unit vector,

Theorem 4.15. For any p € M, there exist a neighborhood V of the origin in T,M and a neigh-
borhood U of p in M such that
exp,: V = U

is a diffeomorphism.

Proof. The map exp,, is clearly C'*° since exp is. We show that (exp,,)«o : To(Tp,M) = T,M — T, M
is invertible, in fact, the identity map. Let v € T,M. To compute (exp,).«ov, choose a curve
7 : 1 — T,M with 7(0) = 0 € T,M and 7(0) = v and compute ((exp,) o 7'),(0). An obvious choice
is 7(t) = tv. Then

d d d ‘v
(exp,)x0v = E((epr) o 7)(t)]t=0 = pn exp,, (tv)]i=0 = @’mtzo =43 = .

Hence, (exp,)s«0 @ TpyM — T,M is identity, in particular, it is invertible. The inverse function
theorem implies that exp, is a local diffeomorphism on a neighborhood of 0 € T),M. O

Remark 4.16. The name ”exponential map“ comes from following observation:
Let G be a Lie group. The left-invariant connection V' is defined by the requirement

viY =0

for every X € T(G) and Y € g, where g is the set of all left-invariant vector fields (= T.G).
Geodesics with respect to V¥ is the set of all integral curves of left-invariant vector fields.
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Suppose that G = GL(n,R). Then one can show that T.G = gl(n,R), the set of all linear maps
R™ — R™ or n x n matrices. For A € gl(n,R) = T.G, we have

exp, A =et = Z T
k=0

The natural identification for T,G = gl(n,R) is given as follows. Let x;;, 7,5 = 1,2,...,n, be the
coordinate functions on GL(n,R), i.e. z;;(g) is the ijth entry of g € GL(n,R). Define, for each
V' € g, a matrix (Vj;) € gl(n,R) by setting

Vij = Ve(wij),

which gives the identification.

4.17 Normal neighborhoods

Let V and U be as in Theorem 4.15, i.e. so that exp, : V — U is a diffeomorphism. Then U is
called a normal neighborhood of p.

If ¢ > 0 is so small that B(0,¢) :={v € T,M : [v| < e} C V, then the image exp,(B(0,¢)) is called
a normal (or geodesic) ball. Furthermore, if B(0,¢) C V, then expp(F(O,z-:)) is called closed
normal (or geodesic) ball, and exp,(9B(0,¢)) is called normal (or geodesic) sphere in M.

Any orthonormal basis {e;} of T,M defines an isomorphism E : R" — T, M,

B(zh, ... 2" = 2le;.
If U is a normal neighborhood of p, we get a coordinate chart ¢ : U — R" by defining

0:=E"1 oexpgl.

Then
(4.18) @ expp(:ciei) = (2t 2, i xle; € V.
We call the pair (U, ) a normal chart and (z!,...,2") € R" are called (Riemannian) normal

coordinates of the point z = expp(xiei). We define the radial distance function r: U — R by

n 1/2
r@%—(}]ﬂf> ,

i=1

and the unit radial vector field % € T(U\A{p}) by

(§Jxkriﬁ@%

Note that 7(z) = |exp,! z| since {e;} is orthonormal.

Lemma 4.19. Let (U, ) be a normal chart at p.
(a) If v =1v'e; € T,M, then the normal coordinates of v°(t) are (tvl,... tv™) whenever tv € V.

(b) The normal coordinates of p are (0,...,0).
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(¢) The components of the Riemannian metric at p are g;j = ;.
(d) Any set {x € U : r(x) < e} is a normal ball exp,(B(0,¢)).

(e) If ¢ € U\ {p}, then (%)q is the wvelocity vector (3) of the unit speed geodesic from p to q
; o)
(unique by (a)), and therefore |5-| = 1.

(f) kgij(p) =0 and T};(p) = 0.

Proofs are straightforward consequences of (4.18).
Geodesics 7Y starting at p and staying in U are called radial geodesics (because of (a)).
Warning: Geodesics that do not pass through p do not have, in general, a ”simple“ form in normal
coordinates.

Definition 4.20. An open set W C M is called uniformly (or totally) normal if there exists
§ > 0 such that for any ¢ € W the map exp, is diffeomorphism on B(0,d) C T;M and W C
exp, (B(0,6)).

Lemma 4.21. Given p € M and any neighborhood U of p, there exists a uniformly normal W,
with p e W.

Proof. Let € be as in the definition of the exponential map (€ C T'M is open and contains the zero
section). Denote the points of £ by (¢,v), v € T,M NE = &;. Define a map F' : £ — M x M by

F(Qav) - (Q7equ U)'

Clearly, F'is C*°. (Projections m; : M x M — M, m;(q1,q2) = qi, i = 1,2, are C* and 0 F = m|E,
mg 0 F' = exp). We want to compute the Jacobian matrix of F" at (p,0). Now

Tip.0)€ = Tip.0)(TM) = T,M & To(T, M)

and
TF(p,O)(M X M) = T(p’p)(M X M) = TpM b TpM.

Then the matrix of Fi : T(;, )& — Tppp) (M x M) is

)

where in the upper left block we have id since the map (¢,v) + ¢ is the identity w.r.t. ¢; in the
upper right block we have 0 since (g, v) +— ¢ is independent of v; the lower left block * is irrelevant;
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and in the lower right block we have (expp)* since the map (q,v) — exp, v is the exponential map
exp, w.r.t. v.

Hence, F,(, ) is invertible. The inverse mapping theorem implies that there exist a neighborhood
O of (p,0) in TM and W of (p,p) such that F' : O — W is a diffeomorphism.

LM T,M M

(N
Vi /F\ W

(p,0) (p,p)

(2,0) N_|

It is possible to choose another neighborhood O" C O of (p,0) of the form

O ={(q,v):qe U and |v] <&}, U’ >p.
@
/\%0’
33,
U/

The topology of T'M is generated by product open sets in local trivializations. Hence, there
exists € > 0 so that the set

X ={(q,v) : r(¢q) < 2e and \v\g < 2}
is an open subset of O, where |- |5 is the Euclidean norm in the normal coordinates. The set
K ={(g,v) : 7(q) < ¢ and |v|g = &}

is compact, and the Riemannian norm | - |, is continuous and nonvanishing on K, so it is bounded
from above and below by positive constants. Both norms |-|5 and |-|, are homogeneous (|\v| = AJv],
A > 0), s0 ci|vlg < |v]g < ca|vlg whenever v € T, M, with 7(q) < e. Denoting § := c¢1e, we may then
choose the set

O :={(q,v) : r(q) <eand |v] < §} C X.

Now choose a neighborhood W C U of p such that also W C U’ (=the set in the definition of
') and that W x W C F(O'). Next we show that W and ¢ satisfy the claim of the Lemma.
Take ¢ € W. Because F is a diffeomorphism on ', we know that exp, is a diffeomorphism on
B(0,6) C T,M.

Is W C exp,(B(0,6))? Take a point y € W. Since (q,y) € W x W C F(O'), there exists
v € B(0,0) C T,M such that (q,y) = F(q,v), so y = exp,v. Hence, W C exp,(B(0,d)). O
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4.22 Riemannian manifolds as metric spaces

Recall that the length of a C*°-path v : [a,b] — M is

b
0y) = Ly(7) = / 54l dt,

where ¢ is the Riemannian metric on M. It is independent of parametrization: if ¢ : [¢,d] — [a, D]
is C'°° with C'*° inverse, then
Yy=7o0p:[c,d - M

is called a reparametrization of « (a forward reparametrization if ¢(c) = a and a backward
reparametrization if y(¢) = b). Then (Exercise)

t(y) = £(9)-
A regular curve is a C*-path v : I — M such that 4y # 0 for every t € I. A path 7 : [a,b] — M
is piecewise regular if there exists ap = a < a; < -+ < ap = b such that 7|[a;—1, a;] is regular.

The length of 7 is then
k b
€0) = 3 tollai-rad) = [l
i=1 a

which is well-defined since 4, exists and is continuous outside the discrete set of points t = a;. We
say that v is admissible if it is piecewise regular or v : {a} — M, y(a) =p € M.

Remark 4.23. The idea of reparametrization extends to admissible curves. The arc length
function of an admissible curve « : [a,b] — M is the function s : [a,b] — R,

s() = L[, b)) = / ] .

Furthermore, the derivative s'(t) exists whenever 4; exists and s'(t) = |-

Every admissible curve has a unit speed reparametrization: if «y : [a,b] — M is admissible and
¢ = {(v), there exists a forward reparametrization 7 : [0,¢] — M of ~ such that 7 is of unit speed
(piecewise).

Now suppose that M is connected (hence path-connected). For p,q € M, we define

d(p,q) == igf (),

where inf is taken over all admissible paths v from p to ¢ (v : [a,b] — M, v(a) = p, v(b) = q).

Theorem 4.24. Let M be a connected Riemannian manifold, and let d be as above. Then (M,d)
18 a metric space whose induced topology is the same as the given manifold topology.

Proof. (i) d(p,q) is finite for every p,q € M (exercise).
(ii) Clearly, d(p,q) = d(q,p) > 0 since £(7) is independent of parametrization (exercise).
(iii) d(p,p) = 0 since we can take the constant path v = p.

(iv) d(p,q) < d(p,z) + d(z,q) (exercise)

So it remains to show:
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(v) p # q implies d(p, q) > 0.
(vi) metric space topology = manifold topology.

(v): Let p € M and let (z*,. .-, 2") be normal coordinates at p. As in the proof of Lemma 4.21,
we can find a closed normal ball B = exp,(B(0,)) and positive constants ¢; and c such that

cilvlg < v < e2lulg
for every v € T;M and q € B. This implies that for every piecewise regular v : I — B we have

(4.25) e1lg(7) < Ly(7) < ealy().

Here l5(7y) is the length w.r.t. the Euclidean metric g and £4() is the length w.r.t. the Riemannian
metric g. Now, if p # ¢, take § > 0 so small that ¢ ¢ B. Then each admissible path ~ from p = v(a)

to ¢ has to pass through 9B = exp,(0B(0,4)). Let ty be the smallest of those ¢ > a with y(t) € dB.
Then

Ly(7) = Ly(V[(asto)) = crlg(y|(a, to)) > crdg(p,y(to)) = c16 > 0,

where dj is the Euclidean distance.

v(to)

B

Thus (v) is proven and (M, d) is indeed a metric space.

(vi): We need to show that for every p € M and for every neighborhood U of p in the manifold
topology there exists a metric open ball B(p,e) = {g € M : d(p,q) < €} C U, and conversely for
every p € M and € > 0 there exists a neighborhood U of p in the manifold topology such that
U C B(p,e). This can be done for example by using (4.25). Details are left as an exercise. O

4.26 Minimizing properties of geodesics

Definition 4.27. An admissible curve 7 is called minimizing if ¢(v) < ¢(¥) for any admissible 5
with the same endpoints.

Remark 4.28. A curve « is minimizing if and only if ¢(v) = d(p,q), where p and ¢ are the end
points of ~.

We shall show that minimizing curves, with unit speed parametrization, are geodesics.

Definition 4.29. An admissible family of curves is a continuous map I': (—¢,¢) X [a,b] — M
such that
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1° T'is C*° on each rectangle (—¢,¢) X [a;j—1,a;] for some ag =a < a; < -+ < a; = b; and
2° for each s € (—¢,¢) the map I'y : [a,b] — M, I's(t) = I'(s,t), is an admissible curve.

AS

<Y

A vector field along I is a continuous map V : (—¢,¢) X [a,b] — TM such that V(s,t) €
T (s, M for every (s,t) and V|(—¢,€) X [a;—1,a;] is C°° for some (possibly finer) subdivision ag =
a<a <---<ag=Db. Curves Iy : [a,b] — M, I's(t) = I'(s,t), are called the main curves. They
are piecewise regular.

Curves I') : (—¢,e) — M, I')(s) = T'(s,t), are called the transverse curves. They are always
C>. We define

Lrw), t+4a

OI'(s,t) :== o

and

05T (s,t) := %F(t)(s), for every (s,t).

8,T(s, 1)

pD

Then 9,I' is a vector field along I', but 0;I" can not necessarily be extended to a vector field
along I'. If V is a vector field along I, we write D;V as the covariant derivative of V along main
curves and DgV as the covariant derivative of V' along the transverse curves.

Lemma 4.30 (Symmetry Lemma). Let I' : (—¢,¢) X [a,b] — M be a family of admissible curves
on a Riemannian manifold M. Then

Do’ = D0,
Remark 4.31. This is the point where the symmetry condition on V is needed.

Proof of Lemma 4.30. Let x be a chart at I'(so,tp). Writing

(xol)(s,t) = (xl(s,t), oo x(s, b)),

we get

ot o'

8,5F = E& and 8SF = g@z
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Recall the equation (3.8) in Chapter I1I: 4 = 4°9; and V = v/9; implies that

Now when calculating D0, we can use ¥ = 9,I" and V = 9;I'; and similarly, when calculating
D;0,I', we can use ¥ = 0;I" and V = 0,I'. Hence,

2k 7 i
D.O,T — (81’ +6x oz ng) o

9sdt ' Ot s
and
9%k 0xd o2t iej (0%2F  Oxtoxd
Dio,T' = <8t85 - EEFZ’J) % = (87585 T 55 Erﬁ) O
(*) 0%xk ox' 0T, B
We have () because Ffj =T fl due to the symmetricity of T O

Remark 4.32. Shorter proof of Lemma 4.30. Let 0 and Oy be the standard coordinate vector
fields in R2. Then
GtF = F*Gt and GSF = I‘*GS

Since [0y, 0s] = 0, we have

D,D,T — D,;D,T = Vr,5.T,0; — Vr.5,T.0s
= [.0,,T.0,]
=T.,[0,,0,] = 0.

Definition 4.33. Let « : [a,b] — M be an admissible curve. A variation of v is an admissible
family I' : (—e,¢e) X [a,b] — M such that I'y = ~. It is called a proper variation (or fixed-
endpoint variation) if I's(a) = y(a) and I's(b) = ~(b) for every s. The variation field of T is
the vector field V' (t) = 0,I'(0,¢). A vector field W along v is proper if W(a) = 0 and W (b) = 0.
(If T is proper variation of v, the variation field of I' is proper.

r-—-r—-—-r-—-r--r-°-r-~—-~°

L e b - m L - - J R
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Lemma 4.34. Let v : [a,b] — M be admissible and V' a continuous piecewise smooth vector field
along ~v. Then there exists I', a variation of v, such that V is the variation field of I'. If V is
proper, then I' can be taken to be proper as well.

Proof. Define I'(s,t) := exp(sV (t)). (Exercise) O

Theorem 4.35 (First variation formula). Let «y : [a,b] — M be a unit speed admissible curve, I' a
proper variation of v, and V the variation field of I'. Then

d b k-1
(4.36) U)o == [ ViDeA)de = 3V (@), A),
@ i=1

where Ay = 4(a]) — 4(a; ) and a;’s are the subdivision points of [a,b] associated to ~y;

i(af) = lm3(0) and 4(a;) = lm (o).

Note: The unit speed assumption is not restrictive: each admissible curve has a unit speed
reparametrization and the length is independent of parametrization.

Ai()

Proof of Theorem 4.35. Write T'(s,t) = 0,I'(s,t) and S(s,t) = 0sI'(s,t). Then

a4 N A ARSI VE: i/‘” 1/2 /“iﬁ 1/2
T faim, ) = o /a (B (0), T (0) 2t = = a (T(s,1), T(s,1))Y2 dt = (T, T) 2 dt

i—1 i—1 a;—1

_ [ 1 ~172.9 _/
_/%12(T,T> (T T) dt =

a;—1

a;

1 @
5<T,T>*1/22<DST,T> dt 420/ m<DtS,T> dt.

i—1
At s = 0, we have T(0,t) = 0,I'(0,t) = 4, |T(0,t)| = || = 1, and S(0,t) = 9;I'(0,¢) = V(¢).
Hence,

d @i ) G (d, . )
d_g(rs”ai—laai])’szo = / (D¢V,4) dt = / (—<V7’7> —(V Dt’7>) dt
S a; 1 a;—1 dt

aj

= (V(ai),4(a; ) — (V(ai—1),%(a;" 1)) —/ (V, D) dt.

a;—1

Using V(ap) = V(a) = 0 and V(ai) = V(b) = 0, and summing over all i = 1,...,k, we get the
claim. 0

Theorem 4.37. Every minimizing curve with unit speed is a geodesic.
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Proof. Let 7 : [a,b] — M be minimizing, with |y = 1, and let ap = a < a1 < -+ < ax = b be
the subdivision such that v|[a;—1,a;] is C*°. If I is a proper variation of 7, then the minimizing
property of « implies that

d
(4.38) Ef(rs)\s:o =0.
Using Lemma 4.34, we know that every proper vector field V along  is the variation field of some
proper variation I' of 7. Now using (4.36) and (4.38), we get

k-1

b
(4.3 [ VD e+ Y v (@), an) =0

i=1

for every proper vector field V' along ~.
Take an interval [a;_1, a;] and choose a function ¢ € C*°(R) such that ¢ > 0 on (a;_1, a;) and
¢ = 0 elsewhere. Then (4.39) with V = ¢ D7 implies

a;
/ @‘Dt’w dt = 0.
a;—1
Hence, Dy = 0 on each (a;—1,a;), that is, v is a "broken” geodesic.
For each ¢ = 1,...,k — 1 one can construct, using local coordinates at ~(a;), a vector field V'
along 7 such that V(a;) = A/ and V(t) = 0 for every t ¢ (a; — €,a; + €), where £ > 0 is so small
that a; ¢ (a; —e,a; + €) if j # i. Using again (4.39) and 1°, we know that |A;4|> = 0, that is,
A4 = 0. Hence,

Y(a;) =4(al) foreveryi=1,...,k— 1.

The existence and uniqueness of geodesics imply that there exists a geodesic 7 : I — M, a; € I,
such that ¥(a;) = v(a;), ¥(a;) = ¥(a; ) = ¥(a;}), and ¥ = v on both (a;—1,a;) NI and (a;,a;41) N 1.
Hence, v is a geodesic. U

Geometric interpretation: If Dy # 0, then (4.36) with V' = @Dy, where ¢ is as in 1°, gives

d b
Ef(rsﬂszo = —/ ©| D dt < 0.

Thus deforming v in the direction of its ”acceleration vector” D,y decreases length.

Similarly, if A;¥ # 0, then the length of the broken geodesic v decreases by deforming it in the
direction of V', with V(a;) = A;7.
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Definition 4.40. We say that an admissible curve v : [a,b] — M is a critical point of the
length functional 7 if

d
%E(Fs)‘szo =0
for every proper variation I' of ~.

Proof of Theorem 4.37 actually gives the following:

Corollary 4.41. A unit speed admissible curve vy is a critical point of the length functional if and
only if v is a geodesic.

Proof. If 7y is a critical point, then the proof of Theorem 4.37 implies that ~y is a geodesic. Conversely,
if v is a geodesic, then the right-hand side of (4.36) has only a term

b
_/ <V7 Dt’Y> dt7

which vanishes since D;y = 0 by the definition of geodesic. Hence, 7 is a critical point. U
Next we study the converse of Theorem 4.37 and prove that geodesics are locally minimizing.

Lemma 4.42 (Gauss lemma). Let U be a normal ball at p € M. Then the unit radial vector field

% 1s orthogonal to the normal spheres in U.

T,M
)
7
—
dB(0, R) d

Proof of the Gauss lemma. Let ¢ € U\ {q}. Since exp, : B(0,r9) — U is a diffeomorphism for
some 19 > 0, there is v € T,M such that exp,v = ¢q. Let X € T;M be tangent to the normal
sphere through ¢, that is, X € Ty (exp,(0B(0, R))), R = [v| > 0. Let w € T,(T,M) = T, M such
that (exp,)sw = X. Then w € T,(0B(0, R)). By Lemma 4.19, the radial geodesic from p to q is
v(t) = exp,(tv) and 4 = v (%)v(t) =R (%)w(t)' Hence, 91 = R (%)q.

We want to show that X L (%)q or (X,%) =0. Let 0 : (—e,e) = T,M, o(s) € 0B(0,R), be a
C*°-path such that ¢(0) = v and 6(0) = w.

0B(0,R) C T, M
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Let ' be a variation of v given by

[(s,t) = exp,(to(s)).

For each s € (—¢,¢), I's is a geodesic with speed |o(s)| = R. Write S = 9,I" and T'= 9,I". Then

d d
S(0,0) = %F(S,O)Lg:o =7 exp,(0)]s=0 = 0;

d d
T(070) = ar(out”t:O = Eexpp(tv)hzo = v;

5(0,1) = (s, 1)lsmo = <= exp, (0()) =0 = (ex2,)1(6(0)) = (exp,)ew = X;

and

d d .
T(0,1) = %F(O,tﬂt:l = Eexpp(tv)h:l =(1).

Now (S,T) = 0 at (s,t) = (0,0) and (S,T) = (X,7(1)) at (s,t) = (0,1). Therefore, to prove
that (X,7(1)) = 0, it is enough to show that (S,T) is independent of ¢. Using the Symmetry
lemma 4.30 and the fact that ' is a geodesic with I'y = T" we obtain

4.30 10 10

0 B Dy T=0 _ _ 2 _
505 T) = (DiS.T) + (5. D,T) "L (D8, T) "27 (DI, T) = S5 (T.T) = 55T =0,
since |T| = |T's| = R for every (s,t). O

Definition 4.43. Let U C M be open and f € C*°(U). The gradient of f, denoted by Vf or
grad f, is a C"*®-vector field on U, defined by

(Vf, X) =df(X) = Xf
for every X € T(U).

Corollary 4.44 (of the Gauss lemma). Let U be a normal ball centered at p € M and let % €
T(U\ {p}) be the unit radial vector field. Then Vr = % on U\ {p}.

Recall that here r : U — R is the radial distance function, defined in normal coordinates by
n 1/2
r(z) = (ZWV) = |exp, ! («)]

i=1

and
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Proof of Corollary 4.44. Take g € U\{p} and X, € T, M. We need to show that dr(X,) = (%,X@.
Let exp,(0B(0, R)), R = 7(q), be the normal sphere through ¢q. We decompose X, as

0
Xq—Wq—FOé(E)q, OéER,

where W, is tangent to the sphere exp,(0B(0, R)), i.e. W, € T;(exp,(0B(0, R))).

This can be done since (%)q ¢ T,(exp,(0B(0, R))) by the Gauss lemma. Now dr(W,) = Wyr =
0 since W, € T (exp,(0B(0, R))) and r = R on exp,(9B(0, R)). A direct computation (in normal

coordinates) gives
0 0
N (a_> = (5)’”— L

see Remark 4.45 below. By Gauss lemma

0
(o 40) -

Hence
dr(X,) = dr(Wy) + adr (%)q =
and )
<%,Xq>—<%,wq>+aa =0+a-1=aqa.
Therefore, <%,Xq> = dr(X,). O

Remark 4.45. Let U = exp,(B(0,70)) be a normal ball centered at p. We prove that

)~

in U\ {p}. Let v(t) = exp,(tv), v = v'e;, be a radial unit speed geodesic starting at p. Then

(%m r = = (ro ) (1)

for all ¢ €]0,79[. Since the normal coordinates of (t) are (tvl,... tv"), we have

(rom)(®) =r(v(1) = V({tv)2 + -+ ()2 =t/ (v1)2 + - + (") =1,
and therefore (r ov)'(t) = 1.
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Theorem 4.46. Let U be a normal ball at p € M. If ¢ € U\ {p}, then the radial geodesic from p
to q is the unique minimizing curve from p to q in M up to reparametrization.

Proof. Take ¢ > 0 such that ¢ € exp,(B(0,¢)) C U. Let v : [0, R] — M be the unique radial
geodesic from p to ¢, with unit speed and R = r(q) = |exp,, *(q)|. Then ~(t) = exp,(tv) for some
unit vector v € T,M. Since vy has unit speed, ¢(7) = R. Thus we need to show that ¢(c) > R
whenever o : [0,b] — M is an admissible unit speed curve from p to ¢, with ([0, b]) # ([0, R]).
Let ag € [0,b] be the largest ¢t such that o(t) = p and let by € [ag, b] be the smallest ¢ such that
o(t) € Sgp = exp,(0B(0, R)).

(1) = alt) o + W (1),

where W (t) is tangent to the normal sphere centered at p through o(t). The Gauss lemma implies

that (W (t), (%)U(t)> =0, so

()7 = (o(t),5(t)) = a(t)* + [W(H)]* > a(t)*.

Using Corollary 4.44 we know that

Hence,
bo bo bo
l(o) > l(o|[ag, bp]) = lim lo(t)] dt > lim a(t)dt = lim dr(o(t))dt
0=0Jag+5 0=0 Jag+5 0=0Jag+5
bo d
= lim r(o(t))dt =r(o(by)) —r(o(ap)) = R = £(7).
6—0 a0+5 d

If ¢(c) = £(y), then both inequalities above are equalities. Since o is of unit speed, we must have
ap =0 and by = b = R; and W (t) =0 and «(t) > 0. So o(t) = oz(t)% and since o is of unit speed
a(t) = 1. Thus both o and ~ are integral curves of -2 55> with 0(R) = v(R) = q. Hence, 0 =~. [

Corollary 4.47. Let U be a normal ball at p. Then r(z) = d(x,p) for every z € U.

Proof. Exercise. O
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Denote
B(p,r):={qe€ M :d(p,q) <r};
B(p,r) :={qe M :d(p,q) <r};
and

S(p,r) :=={q € M :d(p,q) =r}.

We say that an admissible curve v : I — M is locally minimizing if each ¢( € I has a neighborhood
J C I such that v|J is minimizing between any pair of its points. Clearly, a minimizing curve is
locally minimizing.

Theorem 4.48. Every geodesic is locally minimizing.

Proof. Let v : I — M be a geodesic such that I C R is open. Let tg € I and let W C M be a
uniformly normal neighborhood of «(tg), that is, there exists § > 0 such that for every ¢ € W the
map exp, is a diffeomorphism in B(0,0) C T;M and W C exp,(B(0,6)) = B(q,0).

t1 to to

Let J C I be an open interval containing tg such that v(J) C W. If t1,t5 € J, then go = (t2)
belongs to a normal ball centered at ¢g; = 7(¢1) by the definition of uniformly normal neighborhood.
Theorem 4.46 implies that the radial geodesic from ¢; to g9 is the unique minimizing curve from ¢
to qo. However, 7|[t1,t2] is a geodesic from ¢; to go and ~([t1,t2]) is contained in the same normal
ball around q1, so 7|[t1,t2] is this minimizing radial geodesic. O

Remark 4.49. We need a uniformly normal neighborhood above to be able to place the center of
the normal ball to any point (), with ¢ in a neighborhood of ¢.

Another proof of 4.37 (without using the first variation formula). Let 7 : [a,b] — M be a minimiz-
ing curve and let ¢y € (a,b). As above, there exists an interval J = (tg — &,t9 + ) C [a,b] and
a uniformly normal neighborhood W such that v(J) C W. As above, we conclude that for every
t1,ty € J, the unique minimizing curve from (1) to (t2) is the radial geodesic. Since the restric-
tion of v is such a minimizing curve, it coincides with the radial geodesic thus solving the geodesic
equation in a neighborhoof of 3. Since t( is arbitrary, v is indeed a geodesic. U

4.50 Completeness

Definition 4.51. A Riemannian manifold M is said to be geodesically complete if every maximal
geodesic is defined for all ¢t € R.

Example 4.52. If U ¢ R" is an open subset with the Euclidean metric, then U is not complete.

Theorem 4.53 (Hopf-Rinow). Let M be a connected Riemannian manifold. Then the following
are equivalent:

(a) there exists p € M such that exp,, is defined on the whole of T, M;
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(b) for every p € M the map exp, is define on the whole of T, M;
(¢) M is complete as a metric space;
(d) M is geodesically complete.

Moreover, any of the above conditions implies that

(e) if p,q € M, then there exists a geodesic from p to q with £(y) = d(p,q), that is, M is a
geodesic metric space.

Proof. | (¢) = (d) | Suppose M is metrically complete but not geodesically complete. Then there

exists a unit speed geodesic 7 : [0,b) — M that extends no interval [0,b +¢) for ¢ > 0. Let ¢; T b
and write p; = 7y(t;). Since 7 is of unit speed, we have

which gives
d(pi,pj) < |tj —tal.

Hence (p;) is a Cauchy sequence in M. Because M is metrically complete, there exists p € M such
that d(p;,p) — 0. Let W be a uniformly normal neighborhood of p and ¢ > 0 such that for every
q € W, the map exp, is diffeomorphism in B(0,0) C T;M and W C B(q,d) = exp,(B(0,0)). If
i € N is large enough, then p; € W and t; > b— §/4.

-

Because exp,, is diffeomorphism in B(0,5) C T, M, we know that every geodesic o starting
at p; (i.e. 0(0) = p;) is defined at least on [0,d). In particular, the geodesic o, with ¢(0) = §(t;),
is defined on [0,/2]. The uniquesness of the geodesic implies that o is a reparametrization
of v. Hence 7, 7(t) = o(t —t;), is an extension of v which is defined on [t;,t; + §/2], with
t;+d/2 > b+ §/4; a contradiction. Hence, M is geodesically complete.

(a) = (c) | First of all, we will show that that every ¢ € M can be joined to p by a geodesic of

length d(p, q), i.e. claim (e) when p is as in (a). Let B(p,§) be a closed ball at p. If ¢ € B(p,§),
then there exists a minimizing geodesic from p to ¢ by Theorem 4.46. Suppose ¢ ¢ B(p,9).
Since S(p,d) = exp,(9B(0,0)) is compact and the distance function is continuous, there exists
x € S(p,d) such that d(z,q) = min{d(y,q) : y € S(p,9)}.

Y

Qe
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Let v : R — M be a unit speed geodesic such that +|[0,0] is the unique radial geodesic from
p to z. Hence, v(t) = exp,(tv), where v = exp, *(x)/d. (Note that the assumption (a) says that
exp,(tv), hence 7, is defined for all £ € R.) We are going to show that v(r) = ¢, where r = d(p, q).
Let f:[0,7] — R be the continuous function f(t) =t + d(vy(t),q) and let

T:={tel0,r]: f(t)=r} (=f'(r)
Then 0 € T and T is closed. Let tg := sup1. Then tyg € T since T is closed. If t5 = r, we
have r + d(y(r),q) = r, and so y(r) = g. Thus, we may assume that to < r. Next we show that
to+0" € T if ¢ > 0 is so small that tg+ " < r. Let B(y(ty),d’) be a closed normal ball and choose

q € S(y(ty),d") such that d(¢’,q) = min{d(y,q) : y € S(v(to),d")}.

x

It suffices to show that ¢’ = v(tp + d), because then

d(y(to),q) 2 & +min{d(y,q) -y € S(1(to), &)} = &' +d(d'.q) = & + d(3(to + 6). ),
((%) is an exercise) and since to € T implies d(y(to),q) = r — to; we have
d(v(to +9'),q) = d(y(to),q) =" =71 —to — & =7 — (to +0').

Hence, to 4 ¢’ € T'; a contradiction with the definition of t5. To prove that (¢t + ') = ¢/, observe
that

d(p,q') = d(p,q) — d(d'.q) =1 — (d(v(to),q) — &) “S v — (r —tg — &) = to + 0.

On the other hand, the broken geodesic from p to ¢’ that goes from p to y(to) by v and then from
v(to) to ¢' by a radial geodesic in B(vy(tp),0’) has length ¢ty + §. Hence, d(p,q’) < tg+ ', and so
this broken geodesic in minimizing, hence a geodesic. The uniqueness of geodesics implies that it
coincides with ~|[0,%o + '], so y(to + ¢') = ¢/. This completes the proof of the claim that every
g € M can be joined to p by a geodesic of length d(p, q).

Let then (g;) be a Cauchy sequence in M. Let v; : [0,¢;] — M, ~;(t) = exp,(tv;), be a unit
speed minimizing geodesic from p to ¢;. Then

[t — t5| = |d(p, @) — d(p, q;)| =< d(gs, ¢;)-

Hence, (t;) is a Cauchy sequence in R, in particular ¢; < R < oo for every ¢ € N. Since |v;| = 1,
the sequence (t;v;) of T,M is bounded. Therefore, a subsequence (t;, v;,) converges to v € T,M.

The continuity of the exponential map exp,, implies that g;, = exp,(t;, vi,) — exp,v. Because (g;)
is Cauchy, ¢; — exp, v, so (g;) converges. This gives (c).

(b) = (a) | Trivial.
(d) = (b) | Obvious.
(b) = (e) | That was, in fact, proven in | (a) = (¢) |

O

Remark 4.54. The condition (e) does not imply completeness (e.g. open ball in R™); all compact
Riemannian manifolds are complete.
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5 Curvature

5.1 What is curvature?

Consider a C*™-path v: I — R? in the plane. Assume that |¥| = 1. Formally, the curvature of
7 is defined by k(t) = |4:|, the norm of the accelleration vector. Geometrically, the curvature has
an interpretation:

Given a point p = 7(t), there are many circles o that are tangent to v at p, i.e. o(t) = p and
¢ = ¥ but exactly one such that also §; = %;. Call this the osculating circle. If 4, = 0, take o
to be the straight line tangent to v at p. Note that 4; L 44, since |4| = 1 (v has no accelleration in
its own direction).

Then k(t) = 1/R, where R is the radius of the osculating circle (R = oo and k(t) = 0 if 4, = 0).
Choose a unit normal vector at some point of v and let N be the corresponding (continuous) unit
normal vector field along . Then the signed curvature xy is

R, AR ITTN
)= {—m(w, if 4, 10 M.

Suppose S is a (2-dimensional) smooth surface in R3. The curvature of S at p € S is
described by two numbers, called the principal curvatures, as follows:

(i) Choose a plane P through p € S containing N, a unit normal vector to S at p; near p SN P
is a smooth plane curve v (C P) passing through p.

(ii) Compute ky of v at p with respect to the chosen unit normal N.

(iii) Repeat this for all such planes P.

The principal curvatures, x; and ko, of S at p are the minimum and the maximum signed cur-
vatures obtained in (iii). Principal curvatures are not isometrically invariant; they are not intrinsic
properties of S. For instance, a strip S = {(z,y) € R?: x € R,0 < y < 7} and a half-cylinder
So = {(z,y,2) € R3: 2 € R, 9%+ 22 = 1,z > 0} are isometric (by the map (x,y) — (z,cosy,siny)),
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but the principal curvatures of S are k1 = ko = 0 whereas the principal curvatures of Sy are k1 = 0
and k9 = 1.

Gauss’s Theorema Egregium ("remarkable theorem®), 1827: The product K = k1Ko is
intrinsic, i.e. can be expressed in terms of the metric of S. The product K is called the Gaussian

curvature.

”bowl-shaped “ ”dome-shaped ¢
K >0 K <0

Model surfaces.
1. The plane R?, K =0.
2. The sphere S* = {z € R?: |z| = 1} with induced metric, K = 1.
3. The hyperbolic plane H?, K = —1.
e Upper half-plane model: H? = {(z,y) € R?: y > 0} with the Riemannian metric

gH = y‘2gE, ge = the Euclidean metric.

geodesics

e Poincaré-disk model: H? = {z € R?: |z| < 1} with the Riemannian metric

49E
(1—|af2)?

9gH =

geodesics

Theorem 5.2 (Uniformization theorem). Every connected 2-manifold is diffeomorphic to a quotient
space of either R%, S?, or H? by a discrete group of isometries acting properly discontinuously
without fized points. Therefore, every connected 2-manifold has a complete Riemannian metric
with constant Gaussian curvature.
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Theorem 5.3 (Gauss-Bonnet theorem). If S is a compact oriented 2-manifold with a Riemannian
metric, then

/ K =2mx(5),
S
where x(S) is the Euler characteristic of S.

The Euler characteristic of S is a topological invariant of S defined as
X(S) = # vertices - # edges + # faces in any triangulation of S.

2, if S =sphere,
X(S)=140, if S = torus,
2 —2g, if S = an oriented surface of genus g.

For Gauss’s Theorema Egregium and the Gauss-Bonnet theorem see e.g. [Lel].
Curvature in higher dimensions.
A recipe for computing ”some curvatures* at p € M:
1. Take a 2-dimensional subspace P C T,,M;

2. Take a ball B(0,7) C T,M such that exp, is a diffeomorphism in a neighborhood of B(0,7).
Then exp, (P N B(0,7)) is a 2-dimensional submanifold of M. Call it Sp.

3. Compute the Gaussian curvature of Sp at p. Denote it by K (P).
Thus ”curvature* of M at p can be interpreted as a map
K : {2-planes in T,M} — R.

A geometric description of curvature: Consider two geodesics intersecting at p in angle . We will
show later that the curvature has the following effect to the behavior of geodesics:

”curvature“ > 0 (e.g. S™) ”curvature“ = 0 (R") ”curvature® < 0 (e.g. H™)

Model spaces with ”constant curvature* will be: R" | S® = {z € R : |z| = 1} with the
induced metric, and the hyperbolic space H".

e Upper half-space model for H":

{(z1,...,2,) ER": 2, >0}, gy =x,%gr, where gg is the Euclidean metric.

e Poincaré model for H™:

d9E
R™: 1 = — .
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e Geodesics (in the models above) are as in the 2-dimensional case.

Remark 5.4. We say that a Riemannian metric g is obtained from another Riemannian metric g
by a conformal change of the metric if § = fg, where f is a positive C*°-function. (Conformal
= "angles are preserved“.)

Consider next the parallel translation I ; around a (piecewise smooth geodesic) triangle v: [0, 1] —
M, p=~(0) =~(1), when M =R", S", or H".

R Conclusion: Py 1Vy = Vg

Po1Vo
N . Conclusion: Py 1Vh # Vo

H" Conclusion: Py 1Vp # Vo

J

Py1Vo

The phenomenon above is related to the question whether M is locally isometric to R™ at p. Indeed,
a Riemannian manifold M is locally isometric to R™ at p if and only if Py, = id for every sufficient
small loops v, with v(0) = (1) = p.

So, the curvature is a local invariant that in some sense measures how far away the affine conection
(locally) is from the Euclidean connection.

5.5 Curvature tensor and Riemannian curvature

Let M be a C*°-manifold with an affine connection V. The curvature tensor field of V is the
map R: T(M) xT(M) xT(M)— T (M) defined by

R(X,Y)Z =VxVyZ - NyVxZ —VxyZ

Warning: In some books the definition differs from above by sign. (e.g. in Do Carmo [Cal).
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Lemma 5.6. R is 3-lincar over C*(M) :Vf,g € C®(M)
(i) R(FX1+9X2,Y)Z = fR(X1,Y) + gR(X2,Y)Z;
(i) R(X, fY1+gY2)Z = fR(X,Y1)Z + gR(X,Y2)Z;
(iii) R(X,Y)(fZ +gW) = fR(X,Y)Z + gR(X,Y)W.
Proof. (Exercise). O

Thus R € T>(M). As a tensor field the value of R(X,Y)Z at p depends only on X, Y,, and
Zy (and, of course, on R itself).

Remark 5.7. (i) We immediately see that

(5.8) R(X,Y)Z = —R(Y,X)Z.

(ii) If M = R™ with the standard connection, then R(X,Y)Z =0V X,Y,Z € T(R").

Let (U x), = = (x',...,2"), be a chart at p, with dy,...,9, the coordinate frame. Then
R (€ T}(M)) can be written in coordinates (z?) as

R = Rjdx' ® d2) @ da"* @ 0,

¢

where the functions R, are defined by

J
R(9;,0;)0 = Rij;,04.

So, if ' o
V =09;, W=w'd and Z =29,
then by linearity (over C*°(U))

R(V,W)Z = Rjv'w’ 2",

where we also see that (R(V,W)Z), depends only on V,,, W, Z,, and Réjk(p).
Since [0;, 0] = 0, we have

R(D5,0;)0 = Vo,V 0 — Vo, Vi, Op = -+ = (r;kr;; — T4+ 0T, — ajr;?,;) O

Geometric interpretation for R(X,Y)Z : For small ¢ > 0, define a piecewise regular curve
v :[0,4t] — M as follows:

v|[0,¢] = the integral curve of J; starting at p € M;

v|[t, 2t] = the integral curve of J; starting at y(t);
v|[2t, 3t] = the integral curve of — 0; starting at ~(2t);
7v|[3t, 4t] = the integral curve of — 0; starting at v(3t).

Here 0; and 0; are coordinate vector fields corresponding to a chart (U, x) at p. Since 0; and
0; are coordinate vector fields, v(0) = v(4t) = p.
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Let Pyt : T,M — T,M be the parallel translation along . Then for v € T),M, we have:

o (U= Pya)v
(5.9) R(0,, )0 = lim 10

9

where I : T,M — T, M is the identity map.

The proof of (5.9) is left as an exercise.

Assume that M is a Riemannian manifold, V the Riemannian connection, and (, ) the Rie-
mannian metric. Using the Riemannian metric we can change R € 73(M) to R € T*(M) by
defining

(5.10) R(X,Y,Z,W) = (R(X,Y)Z,W)

for XY, Z,W € T(M). It is called the Riemannian curvature tensor. In coordinates it is
written as
R = Rjjpedx’ @ da’ @ da® @ dat,

where
Rijke = gom Ry

Proposition 5.11. Let M be a Riemannian manifold. Then
(1) RIX,Y)Z +R(Y,Z)X + R(Z,X)Y =0 (Bianchi identity);
(2) (R(X,Y)Z,W) =(R(ZW)X,Y);
(3) (R(X,Y)Z,W) =—(R(X, Y)W, Z).
Proof. (Exercise) O

Remark 5.12. The value of R(X,Y,Z, W) at p depends only on X, Y,, Z, and W), (and, of
course, on R).

5.13 Sectional curvature

For u,v € T, M, write

VIl = (u,v)?

= the area of the parallelogram spanned by v and v.

lu A vl

If |u A v| # 0, we define

(R(u,v)v,u) '

(5.14) K(u,v) = P

Lemma 5.15. Let P C T,M be a 2-dimensional subspace and let u,v € P be linearly independent.
The K(u,v) does not depend on the choice of w and v.

Proof. Exercise. O

Definition 5.16. Given p € M and a 2-dimensional subspace P C T,M, the number K(P) =
K (u,v), where {u,v} is any basis of P, is called the sectional curvature of P at p.



Fall 2010 67

Remark 5.17. This is the same as the Gaussian curvature of Sp described earlier in ; see e.g.
Lee [Lel, Chapter 8].

Lemma 5.18. (R(u,v)v,u) determines the curvature completely, i.e. K and the metric defines R.

Proof. We need to show that (z,y,z,w) — (R(x,y)z,w) is the only 4-linear form that satisfies
conditions (5.8) and 5.11(1)-(3), and whose restriction to points (z,y,y, ) is equal to (R(z,y)y, ).
Suppose that f and f’ are two such maps (i.e. 4-linear maps (x,y, z,w) — f(z,y, z, w) satisfying
(5.8) and 5.11(1)-(3), and whose restrictions to points (x,y,y,z) are equal to (R(z,y)y,z)). Then
the 4-linear form g = f — f’ also satisfies (5.8) and 5.11(1)-(3). Since

g(“? v, v, u) - f(u7 v, v, u) - f/(uv v, v, u) = <R(’U,, ’U)’U, u> - <R(u7 ’U)’U, u> =0
for all u,v, we have g(x + z,y,y,x + z) = 0, and by 4-linearity
9@,y y,2) +9(x,y,y,2) + 9(2,9,y, %) + 9(2,y,y,2) = 0.
=0 =0
Thus
9(z,y,y,2) + 9(z,9,y,2) =0
Using (5.8) and 5.11(2)-(3) we obtain

0=yg(z,y,9,2) + 9(2,y,y, )

(2)
= g(x,y,y,2) + 9y, 2, 2,y)

3)
= 9(x,y,9,2) + 9(y, 2,9, 2)
(5.8)

= g(ﬂc,y,y, Z) + g(‘rayayu Z)'

Thus
g(xv vy, Z) = 0.

Here replace y by y + w to obtain first
g(ac,y—l—w,y—i—w,z) =0
and then by 4-linearity

g(xvyvyv Z) +g(xayawvz) +g(xawaya Z) —I—g(:):,w,w,z) = 0.
=0 =0

Hence
g(xv w,Y, Z) = _g(xv Yy, w, Z)

which by (2) and (3) (of 5.11) is the same as
g(y,z,:c,w) = 9(%?/7 Z7w)’

We conclude that g does not change in cyclic permutations of the first 3 variables. By 5.11(1), the
sum over such permutations vanishes, and therefore g = 0. O

By using Lemma 5.18 one can characterize curvature tensors with constant sectional curvature.
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Proposition 5.19. Let M be a Riemannian manifold andp € M. Then K(P) = K for all 2-planes
P CT,M if and only if

R(z,y)z = K ((y,2)z — (z,2)y)
for all x,y,z € T,M.

Proof. Define multilinear maps R : (T,M)? — T,M,

R(z,y)z = K ({y, 2)x — (z,2)y) ,
and R : (T,M)* — R, )
R(z,y,z,w) = K ({y, 2)(z, w) — (z,2)(y, w)) .
Now R satisfies (5.8) and 5.11(1)-(3). If K(P) = K, we have
R(z,y.y,2) = K (je’|e]® — (z,9)%) = R(z,y,y,2).
Lemma 5.18 then implies that R = R.
Obvious. O

5.20 Ricci curvature and scalar curvature
Definition 5.21. The Ricci curvature is a tensor field Ric € 72(M) defined by
Ric(z,y) = the trace of the linear map z — R(z,x)y.

If e1,..., e, is an orthonormal basis of T, M, then

n

Ric(z,y) = Z(R(ei,ﬂ?)ya ei)

= Z(R(%@i)@i,w-

i=1

We set Ric(x) = Ric(z,z). If |[z| = 1, Ric(x) is called the Ricci curvature in the direction z.

Hence if |z| =1 and ey, ...,e,-1 € TM such that z,eq,...,e,—1 is an orthonormal basis of T, M,
we get
n—1
RiC( ) - <R($, l’).ﬁlf, .CI?> + Z(R(xv ei)eia .CI?>
n—1
YN K(P),
i=1

where P; C T,,M is the plane spanned by x and e;. Note that (x) holds since |z A e;| = 1 for all
1=1,...,n—1.
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Remark 5.22. Lower bounds for the Ricci curvature Ric(x) give upper bounds for the volume
growth. The Ricci curvature will be important in relations between curvature and topology.

The scalar curvature is a function S defined as the trace of Ric. Thus
n
S(p) = ZRic(ei),
i=1
where eq, ..., e, is an orthonormal basis of 7, M.

6 Jacobi fields

Jacobi fields provide tools to study the effect of curvature on the behavior of nearby geodesics.
They can also be used to characterize points where exp, fails to be a local diffeomorphism.
In this chapter we assume that M is a Riemannian manifold.
6.1 Jacobi equation
Lemma 6.2. IfT' is a C*° admissible family of curves and if V is a C'° vector field along ', then
DsDtV - DtDSV - R(S, T)V
Recall that T': | — ¢,¢[x[a,b] — M and
T(s,t) = 0 (s,t),
S(s,t) = 9sI'(s,t),
D,V = the covariant derivative of V along main curves Iy,

D,V = the covariant derivative of V' along transverse curves r®.

8:T'(s, 1)

AT (s, 1)

Proof. This is a local question, so we may compute in local coordinates. Let x be a chart at
I'(so,to). Writing ‘
V(Sat) = VZ(S7t)8ia

we get

oV A

D,V = ——0; + ViD,d;,

t ot + L
0*vi oV’ oV -
D.D)V = —0 4+ —D.0: + — D, 0: ‘D.D.,O:
s tV 688t6z+ ot saz"i' Os taz+v s taz
st

DD,V =" ... + VD D,0;.
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Thus
DD,V — DD,V = V*'(DsD;0; — D;D;0;).

Writing (z o T')(s,t) = (xl(s,t), . ,:I:"(s,t)), we have

Oz’ Ok
T=—20;,, S=—
ot 7 ds "
Since 0; is extendible, we have
Ox?
Dtai - VT& - EV@J@

Furthermore, since Vi, 0; is extendible, we obtain

0?7 ox?
DyD0; = 95 atvd 0 + —— En VS(Vajai)
02z 027 Ox*
= gsat 0t or gs Vo Voo
Similarly (interchanging s <> t and j < k),
0?7 oz Oz
DiDyd; = 2%, 0,
t saz atasvﬁ 6 + - s Ot VQ VQka
Hence
J
D,D;0; — DD 0; = 85; 6; (Vakvd 0; — Va Vaka)
ouj= Ox 00"
= 5 Bs R(0, 05)0;
= R(S,T)0;.
So,

DyD\V — DD,V = V'R(S,T)0; = R(S,T)V.

Remark 6.3. Shorter proof of Lemma 6.2.(Cf. Remark 4.32.) Since

[S,T] = [[,05,1,0;] =T [0s, 0] =
N——

=0

we obtain

R(S,T)V = VsV1V = VoVsV = VgV
\’,_/

=0
=Vr,o,Vr.e,V — Vr,6,Vr.s,V
— D.D;V — D;D,V.

Let I" be as above. We say that I' is a variation of v through geodesics if all main curves I’y
are geodesics and I'g = . Recall that the variation field of I' is the vector field V' (t) = 9,I'(0,t) =
S(0,1).
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Theorem 6.4. Let v be a geodesic and I' a variation of v through geodesics. If V is the variation
field of I, then it satisfies the Jacobi equation

(6.5) D2V + R(V,%)4 = 0.

Proof. Let S(s,t) = 0sI'(s,t) and T'(s,t) = 0I'(s,t) be as earlier. Since all main curves I'; are
geodesics, we have

D/ T = DI =0.
By Lemma 6.2 and the Symmetry Lemma 4.30, we obtain

0= DyD,T = D,;D,T + R(S,T)T
= Dy DS + R(S, T)T.

At s =0, S(0,t) =V (t) and T(0,t) = 4, so we get (6.5). O
Definition 6.6. Any vector field V along a geodesic v that satisfies (6.5) is called a Jacobi field.

Let v: I — M be a geodesic, E; € T(v), i = 1,...,n, a parallel orthonormal frame along =,
and E, = 4. Let V € T(~),

V= UZEZ
Since E; is parallel, D,V = ¢'E; and
(6.7) D}V =i'E;.
Writing R(Ej, Ey)E; = R;'.MEi, we get
(6.8) R(V,4)y = R(VEj, E,)Ey = v RS, ;.

By definition, V' is a Jacobi field if and only if it satisfies (6.5). Plugging-in (6.7) and (6.8) into
(6.5), we conclude that

V is a Jacobi field < o'F; +v'R. E; =0

jnnti

& B +v/R,, =0, Vi=1,...,n

This is a linear system of 2"%-order ODEs. Theory of ODEs then imply the following:

Proposition 6.9. Let v: I — M be a geodesic, ty € I, and p = y(tp). Given any vectors v,w €
T,M there exists a unique Jacobi field V' satisfying the initial conditions

Vie=v and (DiV), = w.

Corollary 6.10. Given a geodesic v, the set of all Jacobi fields along v is a 2n-dimensional linear
subspace of T ().

Proof. Follows easily from 6.9 (Exercise) O

Lemma 6.11. Ifv: I — M is a geodesic and V is a Jacobi field along v, then on every |a,b] C I,
V' is the variation field of some variation of v|[a,b] through geodesics.

Proof. Let v: I — M be a geodesic and V a Jacobi field along ~. Fix [a,b] C I and ¢ € [a,b]. Let
o be a C*°-path such that o9 = V},. Let T" and Z be parallel vector fields along o such that

T() = ;Yto and Z() = (Dtv)to'
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For a sufficiently small € > 0 define I': | — ¢,¢[x][a,b] — M by
D(s,t) = expy(s) [(t — to)(Ts + sZ5)].
Then I' is a variation of « through geodesics. By Theorem 6.4,
t — 0,1°(0,¢t)

is a Jacobi field along . We claim that V; = 9,I'(0,¢). To prove the claim, we observe that

d d
dsT(0,t) = EF(S,toﬂs:o = -

and

d
6tr(57t0) = EF(Svt)hf:to =T + sZy.

The Symmetry Lemma 4.30 and the assumption that 7" and Z are parallel along o imply that

DT (s,10) 20 D.OT(s,t0) = Do(Ts + 57)

d
= DT, +s DSZS—I—E(S) 7,
:‘O -0 ~——

= Zs.

Hence at s =0
D;0,I'(0,t0) = Zo = (D¢V )y,

Since V' and 0;I'(0, -) have the same initial values, we get V; = 9,I'(0,¢) by Proposition 6.9. O

6.12 Effect of curvature on geodesics

Let x,y € T, M be orthonormal and X,Y their parallel fields in 7, M.

Define I'(s, t) = exp, [t(z + sy)].
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Vi

(t(m +vy) o, J

Then I' is a variation of I'y through geodesics and

(6.13) Vi = 0,I'(0,t) = % (exp,, [t(z+ sy)])|szo = (exp,)«(tY)

is a Jacobi field. More precisely, (exp,)«(tY") = (exp,)stz : Ty (TpM) — Tr(o,n M.
We want to study the Taylor expansion of |V;|? at ¢ = 0. In what follows we denote the covariant
derivative D; by prime (’). Write T3 = 0,I'(0,¢) = I'¢(¢t). From (6.13), we get

Vo=Yy=y and (V,V)y =0,
and consequently
(V.V)o=2(V',V)o =0

2
<V7 V>6, =2 <V”7 V>0 +2<V/7 V,>O =2 |y| =2
=0 =1
(V.V)o =2(V", Vg +2(V, V')
— 2 <V///, V>O +2<v//’ V/>0 + 4<V”, V/>0
=0
= 6(V",V")q.

Since V is a Jacobi field, we have V" = —R(V,T)T, and therefore
v/ — _(R(V’ T)T)O =0,

and so

Hence
Vo" = —(R(V,T)T)
Using this we compute

/

VLV = 2V V) + 6V V),
— 2 <V////, V>0 +2<v///’ V/>O + 6<V”/, V/>0 + 6 <V”, V”>O
=0 =0
— 8<V”/, V/>O

Putting these together, we obtain

2 8
\Vt\2 = 25 — E(R(y,ac)a:,y)t4 + O(t5).
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Vectors z,y € T, M are orthonormal, hence (R(y,z)z,y) = K(y,x), and therefore
(6.14) V2 =% — %K(y,x)t‘* +O(t°).
Let us prove the equality (x):
(—R(V,T)T)o = (—R(V",T)T)o.
For every W € T(I'y), we have at t = 0:

<R(V7 T)T7 W>6 = <(R(V, T)T)lv W>O + <R(V7 T)T7 W/>0

=0 since V=0

Hence using Proposition 5.11(2)-(3) we obtain
(R(V.T)T)', W) (R(V,T)T, W)

—(R(T,W)T, V),
= —((R(T,W)T), Vo —(R(T,W)T, V")

—~
N
—
—~
w
=

clile
=
~
=
=
=
o

(R(V',T)T,W)g.

Since this holds for every W € 7T (I'g), the equality (x) follows.
Geometrical interpretation:

K(y,z) >0 K(y,z) <0

exp,, €XPyp

6.15 Conjugate points

In this section we study the relationship between singularities of the exponential map and Jacobi
fields.

If M is complete, then exp,, is defined on all of T;,M and it is a local diffeomorphism near 0.
However, it may fail to be a local diffeomophism at points far away.

Example 6.16. The sphere S™. For any p € S", all points on 0B(0,7) C T,S™ are mapped to the
antipodal point g € S™ (of p) by the exponential map exp,. Hence ¢ is the critical value of exp,,.
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Definition 6.17. A point ¢ is a conjugate point of p € M if ¢ is a critical value of exp,. That
is,
eXPpuy: To(TpM) — TyM

is singular for some v € T,M. (Note that then ¢ = exp,v.) Moreover, g is conjugate to p along
a geodesic 7 if v is a reparametrization of v¥, where v is as above.

Suppose that v € T, M and exp,,,, w = 0 for some 0 # w € T,(T,M) = T, M. Let
['(s,t) = exp, t(v + sw)
be the variation of ¢ + exp,,(tv) through geodesics. The corresponding variation field
Vi = O0(0,1) = exppuy tW,

where W is the parallel field of w in T,,M, is a Jacobi field that vanishes at ¢t = 0 and ¢ = 1;
Vo = expp0 = 0,V1 = exp,,, w = 0. Since exp, is a local diffeomorphism at 0 € T),M, V is
non-trivial.

Theorem 6.18. Let v: [0,1] — M be a geodesic. Then q = 7, is conjugate to p = vy along 7 if
and only if there exists a non-trivial Jacobi field V' along v such that Vo =0 and Vi = 0.

—

Suppose that V' is a non-trivial Jacobi field along v, with V) =0 and V4 = 0. Let

Proof. Proved above.

q

F(‘S? t) = eprt("yo + 8‘/0/)
Its variation field is V' (see the proof of Lemma 6.11). Hence
€XPpiry Vo = 0sI'(0,1) = V1 = 0.

Since Vp = 0 and V' is non-trivial, we must have V{j # 0 (otherwise, V; = 0 by Proposition 6.9). It
follows that exp,,., is singular, and therefore ¢ = expp("yo) is conjugate to p along ~. U
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Remark 6.19. If ~: [a,b] — M is a geodesic, so does o: [a,b] — M, o(t) = ~v(a + b — ).
Furthermore, if V' is a Jacobi field along v, then

t— Voot
is a Jacobi field along o. In conclusion,
q is conjugate to p < p is conjugate to q.

Theorem 6.20. If V is a Jacobi field along a geodesic 7: [a,b] — M, Vo, =0, and V}, = 0, then

(V.9) =(V'.9) =0
Proof. Since 7 is a geodesic, Dyy = 0, and so

VA =V"49 = —RV.y)¥4 =0
(=(R(V,7)7,¥) hence =0)

Thus (V/,4) = ¢ = constant. On the other hand,

(V.A) = (V"9 =c

and therefore
<‘/t7;yt> =ct + d7

where d is a constant. Since (V,,4,) = 0 and (V},4) = 0, we have ¢ = d = 0, and consequently

<Vv 7> = <V/7;7> = 0.

Remark 6.21. We get from the proof above that every Jacobi field V satisfies
<Vt7;7t> = <Va7;}/a> + <Va/7;)/a>(t - a)'

Theorem 6.22. Letv: [a,b] — M be a geodesic. If vy, is not conjugate to v, and vy € T.,, M, vy €
T, M, then there exists a unique Jacobi field V' along v such that V, = v1 and Vj, = vs.

Proof. Let V and W be Jacobi fields such that V, = W, = vy and V, = Wy = vy. Then Y =V - W
is a Jacobi field along v, with Y, = 0 and Y, = 0. Theorem 6.18 implies that Y = 0, hence V is
unique (if exists). The proof of the existence of V is left as an exercise. O

Suppose that M has constant sectional curvature K. Let y: [0,b] — M be a geodesic and E;, i =
1,...,n, be a parallel frame along v. Let V' be a Jacobi field along . Then by Proposition 5.19

<V”, EZ> = _<R(U7 7)77 EZ>
= —K (3,5 (V, Ei) — (V, ) (%, Ey)).

If v is of unit speed and (V,%) = 0, then

(V" E;) = —K(V, E;).
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Solutions:

K>0: V= (a'sin(VEKt) + b’ cos(VKL)) E(t);
K=0: V,=(a't+b)Et);
K <0: V= (a’sinh(y/|K[t + b cosh(v/[K[t)) Ei(t),

where a’ and b’ are constants.

Conclusion:

If K <0, there are no conjugate points of v(0).

If K > 0, we get conjugate points of v(0) for t = ¢n /K, £ =1,2,....

6.23 Second variation formula

Theorem 6.24 (The second variation formula). Let v: [a,b] — M be a unit speed geodesic, I a
proper variation of v, and V its variation field. Then

2
ds?
where V* is the normal component of V, i.e. V.=V + VL VT = (V,4)74.

Proof. Write T = 9,I", S = 0,I'. Assume I' is smooth in | — ¢,¢[x[a;—1, a;]. Then

b
(6.25) (oo = [ (IDVAE = (RO A3V dr

d @ ]
L, al) = | —(D,S, T)dt.
dse( s’[az laaz]) / ‘T’< tsa >dt

a;—1

The Symmetry lemma 4.30 and Lemma 6.2 imply that

d2 - RG] <DtS, T>
@g (FSHGZ_l,aZ]) = /ai1 % (T) dt

B /ai <<DSDtS,T>+<DtS,DST>_1 (DS, T)ADT,T)
ai |
i—1

T| 2 K
/‘” <<DtDs5+R(S,T)S,T>+IDtSI2 <DtS,T>2>
= 2 .
aic1 7] a

At s =0, |T| =1, hence
d2

@E(Fsuaa,l,ai]hszo :/ ((DyDS,T) + (R(S,T)S,T) + |D,S|> — (DS, T)?) dt 5.

i—1
Since T'(0,t) = 4, we have D,;T = D,y = 0 at s = 0, and therefore

aq

a; 8
/ <DtDSS, T>dt|S:O - E<DSS’ T>dt‘s:0
a;—1 a;—1

= <DSS(07ai)a;Yai> - <DSS(Oaai—l)7;Yai_1>'

Since I' is proper, S(s,t) = 0 for all s at the endpoints t = ap = a and t = a = b. Hence
DyS(s,a9) = 0 and D4S(s,ax) = 0. Furthermore, DS is continuous at every (s,t), in particular,
when t = a;, and therefore

k a; k
Z/ <DtDssa T>dt\s:0 = Z (<DSS(07 ai)a")/ai> - <DSS(07ai—1)a;Yai_1>) =0.
i=1" -1

i=1
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We obtain

d2

b
@g(rs)\szo = / (|Dts|2 - (Dt87 T>2 - (R(87 T)T’ S>) dt\s:O

b
_ / (IDV P = (DeV, )2 = (R(V,4)3, V) dt

where the last equality holds since S(0,t) = V;.
Write V = VT 4+ V4, where VT = (V,5)4. Then

DT = Dil(V,3)3) = (V) Dig + 5 (Vi)
=0
= (DVo )y + AV, D)y
=0
= (DV)T;

D,V+ = (D,V)*.

Hence
1DV = (D)2 + [(DV)E 2 = (DV,4)? + | DV,
and so
|DVI? = (DV,4)? = | DV
Also,

(R(V, )7, V) = (RUV, )%, 4)%, V) + (R(VE,4)4, V)
=0
= (R(VE, 4%, (V,A)%) + (R(VE,4)4, V)
=0
= <R(VL7 7)77 Vl>'

O

We define a symmetric bilinear form, called the index form, on the space of continuous,
piecewise C'*° vector fields along v by

b
VW) = [ (DY DIV) = (RV.A)5 W) .
Corollary 6.26. If~: [a,b] — M is a unit speed geodesic and if I' is a proper variation of v whose
variation field V' is normal, then

d2

6.27 el
( ) d82

U(Ts)js=0 = I(V, V).

In particular, if y is minimizing, then I(V,V) >0 for any proper, normal vector field V' along ~.

Proof. Since T is proper, also V is proper. Furthermore, since V is proper and normal, we obtain
(6.27) from the second variation formula (6.25). To prove the second claim, suppose on the contrary
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that there exists a proper normal vector field V' along 7 such that I(V,V) < 0. Now V is the
variation field of some proper variation I' of 7. But then (6.27) implies that

d2
7520 (Ts)js=0 < 0,

and therefore v can not be minimizing. O

Next we express I(V, W) in another form involving the Jacobi equation.
Suppose that V and W are continuous, piecewise smooth vector fields along v. Let a = ag <
a; < --- < ap = b be such that V and W are C* on each [a;_1,a;]. Then

(D:V, W) = (DIV,W) + (D;V, D;W).

Hence ,
/ (D,V, D,W)dt = —/ (DRV,W)dt+ [ (DV,W).

ai—1 @i—1 @i 1

By taking the sum over ¢ = 1,...,k and obseving that W is continuous at points t = a; we get
b k
(6.28) IV.W) = = [ DRV 4+ RVAY W)dt = Y (8D, W (ai)),
a i=0

where

AZDtV == tl{{l’éli DtV(t) - tli/‘l'éli DtV(t), 1= ]., ey k— 1,
AthV == tll\I-‘l’Cll DtV(t),

ALD;V = —lim D .
kDV tl}% WV (t)

The next theorem says that no geodesic is minimizing past its first conjugate point.

Theorem 6.29. Let v: [0,b] — M be a unit speed geodesic from p = ~v(0) to ¢ = v(b) such that
v(a) is conjugate to p for some a €]0,b[. Then there exists a proper normal vector field X along ~
such that I(X, X) < 0. In particular, v|[a,c] is not minimizing for any c €]a, b|.

Proof. By Theorem 6.18 and Theorem 6.20, there exists a nontrivial normal Jacobi field J along
7|0, a] such that Jy = 0, .J, = 0 since v(a) is conjugate to p.

p

Define a vector field V' along v by

t
‘/t _ Jt7 € [O,CL]
0, te&la,b].
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Then V is proper, normal, and piecewise smooth. Let W be a smooth, proper, and normal vector
field along ~ such that

W, = AD,V = lim D,V (t) — lim D,V (t) = —D,J(a) # 0.
INAG—— t a
=0
Note that D;J(a) # 0 otherwise J = 0. Also D;J(a) L 4, by Theorem 6.20. Such W is easy to
construct: take the parallel translation of —D;J(a) and then multiply by a smooth ”bumb function “

®.

Define
Xe=V+eW, e>0.

Then X°¢ is a proper, normal, piecewise smooth vector field along ~, and
I(X5, X)) = I(V,V) + 2 I(V,W) 4 2 I(W,W).
Since V' is a Jacobi field along [0, a] and [a, b], we get by (6.28) that

[(V,V) = —(ADV,V,) =0

and
I(V,W) = —(AD,V,W,) = —|W,|* #0.
Hence
(X%, X®) = =2 |[W, | +* (W, W) < 0
——
£0
if € is small enough. O

Remark 6.30. A geodesic without conjugate points need not be minimizing.

Example 6.31. There are no conjugate points along any geodesic on a cylinder S* x R. However,
no geodesic that wraps more than half way around the cylinder is minimizing.

] not minimizing
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7 Curvature and topology

7.1 Index lemma

Lemma 7.2 (Index Lemma). Let ~y: [0,b] — M be a unit speed geodesic from p = ~(0) to g = y(b)
without conjugate points to p along ~v. Let W be a piecewise smooth vector field along ~ with Wy =0
and let V€ T () be the unique Jacobi field with Vo = Wy and Vi, = Wy,. Then

[V, V) < (W, W)
and equality occurs if and only if W = V.

Proof. Let v1,...,v, be a basis in T,M and Vi,...,V,, € T(v) be Jacobi fields such that V;(0) =0
and V;(b) = v;. Then by Theorem 6.22 the fields V; are unique. Because the Jabobi equation is
linear, the set {V;(¢)} is linearly independent for every t € (0,b]. Because Wy = 0, we know that
W = fV;, where f° is piecewise smooth along 7. On the other hand, the equality V, = W} =
fi(b)V;(b) combined with the fact that V; is a Jacobi field implies that V = fi(b)V;. Hence, due to
the fact that V' is a Jacobi field and (6.28), we have

(7.3) I(V,V) = (V'(b), V(b)) = [(b) 7 ()(V] (b), V(D).
Furthermore,

(Vi Vi) = (Vi Vi)' = (V2 Vi) + VL V) = (VL V) = (Vi V)

19 J 19 7] 17 7]
= (R(V;,7)7, Vi) = (RB(Vi, )7, Vj) = 0.

Hence,

(7.4) (Vi, Vi) = Vi, Vj) = C,

where C'is a constant. The constant C' = 0 because (V;,Vj)o — (V;,V/)o = 0. On the other hand,
= [Vi+ V] = A+ B,
S0

b
W, W) = /0 (A, A) + (A, B) + (B, A) + (B, B) — (R(W, )3, W)) dt.

Integrating by parts, using the fact that V; is a Jacobi field and (7.3), we have
/(BBdt / ey, Vi)dt = / 117 — (V" v;)) dt

= F(O)F D)V (0), Vi 0) /0 (fffj<v;,vj>+fffj< Vi)~ £ PRV AV, V7)) dr

b
T vy - /O ((A, B) + (B, A) — (R(W, %)%, W)) dt.

Hence,

(W, W) = /Ob<A,A> dt +1(V,V) > I(V, V).

>0

as required. From this we see that the equality occurs if and only if A = 0, or equivalently if f? =0
for every i. However, this is possible if and only if W = V. U
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Let v be as in the assumptions of Lemma 7.2 and let I' be a proper variation of v whose
variation field W is normal, that is, (W,5) = 0 and is non-trivial. Then Corollary 6.26 and the
Index Lemma 7.2 implies

EA(T)|smo = I(W, W) > I(V,V) =0,

ds?

where V' is the unique Jacobi field along v with V; = Wy = 0 and V;, = W;, = 0. Hence, V = 0. Note
that (W, 4) = 0 is not a restriction: any proper variation I' can be reparametrized such that W L 4.

Conclusion: v is minimizing among ”nearby paths”.
Warning: v may not be minimizing among all paths joining v(0) and ~(b). For example, consider

the cylinder:

| _— absolute minimizer

~ minimizing among nearby paths

7.5 Bonnet’s theorem and Myers’ theorem
We write Ky > H if the sectional curvature K (P) > H for all 2-planes P C T,M and p € M.

Theorem 7.6. Let M be a complete connected Riemannian n-manifold. Suppose that there exists
H > 0 such that

(1) (Bonnet, 1855): Ky > H; or
(2) (Myers, 1941): Ric(x) > (n — 1)H for every x € TM, |x| = 1.
Then there are conjugate points on every geodesic v of length at least 7/ VH. In particular,

diam(M) < ﬁ

Proof. If suffices to prove (2): Let « : [0,b] — M be a unit speed geodesic with b > w/vH. Let
Ey, ..., E, be an orthonormal parallel frame along v such that E,, =+. We define

Wi(t) = sin(&) Ei(),
fori=1,2,...,n—1. Then W; € T(v), W;(0) = 0 and W;(b) = 0. Then (6.28) gives

b b
0 0

2

_ /ObSiDQ(%t) (2_2 _ (R(Ei,f'y)f‘y,Ei>) dt.
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Hence,
n—1

b
S 1w, W) = / sin?(2) ((n— )5 — Ric(3)) dr.
i=1 0
On the other hand, Ric(¥) > (n — 1)H and 2—22 < H, so

n—1

> I(Wi, W) <0,
=1

Therefore, there exists j = 1,2,...,n — 1 such that I(W;,W;) < 0. Suppose that there are no
conjugate points on . Let V' be the unique Jacobi field along v such that V5 = W;(0) = 0 and
Vi, = W;(b) = 0; hence V' = 0. Index lemma and the fact that W; # V implies that

I(W;,W;) > 1(V,V) =0,

which is a contradiction. Hence, there are conjugate points on 7. Suppose diam(M) > «/_% Then

there exists p,q € M and a minimizing geodesic v from p = v(0) to ¢ = v(b) of length b > 7 //H.
We just proved that p is conjugate to y(t) for some 0 < t < w/+/H. By Theorem 6.29 we see that
7][0, b] is not minimizing, which is a contradiction. O

Corollary 7.7. Let M be as in Theorem 7.6. Then M is compact and the fundamental group m M
18 finite.

Proof. Let M be the universal covering space of M. Because 7 : M — M is alocal diffeomorphism,
we see that g = n*¢ is a Riemannian metric on M such that 7 is a local isometry. Because M is
complete and satisfies the same conditions (1) or (2) as M does, we see that

diam(M) < 7/V/H.

Hence, M is bounded. However, M is also complete so it must be compact. Similarly, M is
compact. Furthermore, for every p € M the set 7~ 1(p) is finite since it is compact and discrete.
Hence 71 M is finite because there is a one-to-one correspondence between 7! (p) and 7y M. O

7.8 Cartan-Hadamard theorem

Lemma 7.9. Let M be a complete connected Riemannian manifold with K(P) < 0 for every 2-
planes P C T,M and p € M. Then for all p € M the exponential map exp,, : T,M — M is a local
diffeomorphism.

Proof. Let v : [0,00) — M, v(0) = p, be a geodesic and V' a non-trivial Jacobi field along v with
Vo = 0. Show that V; # 0 for every ¢ > 0 and conclude that for every ¢ > 0 the point 7(t) is not a
conjugate to p. Details are left as an exercise. O

Remark 7.10. Theorem 6.29 can be used here.

Lemma 7.11. Let M and M be connected Riemannian manifolds such that M s complete and
there s a local isometry m: M — M. Then M is complete and 7 is a covering map.

Remark 7.12. To show that 7 is a covering map, we need to show that every p € M has a neigh-
borhood U such that 7~!U is a disjoint union of sets U, and 7|U, : U, — U is a diffeomorphism
for every a.
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We will prove Lemma 7.11 later.

Theorem 7.13 (Cartan-Hadamard theorem). Let M be a complete connected Riemannian man-
ifold with Ky < 0. Then for every p € M the exponential map exp, : TyM — M is a covering

map. Hence, the universal covering space M of M is diffeomorphic to R™.

Proof of Theorem 7.13. Lemma 7.9 implies that exp,, is a local diffeomorphism. Hence, there exists
a Riemannian metric on T, M such that exp, : T,M — M is a local isometry. The space T,M
with this metric is complete since geodesics of T),M passing through origin 0 are straight lines.
Now Lemma 7.11 implies that exp,, is a covering map. Furthermore, since the fundamental group

m1 (T, M) = 0, we know that M is diffeomorphic to T),M, that is, to R". O

Proof of Lemma 7.11. Recall the path-lifting property of covering maps: any path v in M lifts to
a path 4 in M such that w o5 = . We prove first that 7 has the path-lifting property for
geodesics: Let p € M, p € 7 (p), v : I — M a geodesic such that v(0) = p. Let v = 7, 5y €
Tﬁ(ﬁ ); recall that 7, : Tﬁ(]/\\j ) — T,M is an isomorphism. Let 7 : R — M be the geodesic with
"70 = ©; recall that M is complete. Because 7 is a local isometry, we see that geodesics are mapped
to geodesics. Hence mo~ =« on I. Therefore, v extends to all of R, which implies the completeness
of M. .

‘ 7 is surjective ‘ Choose p € M and write p = w(p). Let ¢ € M be arbitrary and write r = d(p, q).

Because M is connected and complete we know that there exists a minimizing geodesic v : [0,7] —
M with 4(0) = p and 7(r) = ¢. Let ¥ be the lift of v with 5(0) = p. Then w(¥(r)) = v(r) = q.
Hence 7 is surjective.

‘7r is a covering map ‘ Fix p € M and let 7=!(p) = {pa}. Choose r > 0 such that U = B(p,r) is

contained in a normal neighborhood of p. Let U, = B (Pa,T) C M. We will show that
(1) the sets U, are disjoint;
(2) 77U =, Ua; and
(3) 7|Uy : Uy — U is a diffeomorphism for every a,

which finishes the proof.

(1): Take any pu,ps € 7 (), Pa # Dg. Because M is complete, there exists a minimizing geodesic
7 from p, to pg. Because v = mo7 is a geodesic from p to p, such v must leave U and re-enter
it since all geodesics in U passing through p are radial geodesics. Hence (and therefore 7)
has length at least 2r. Therefore, d(pa,pg) > 2r so Uy N Uz = () due to triangle inequality.

(2): Because 7 is a local isometry, we know that 7(U,) C U for every a. Hence, Ua U, cnU.
Thus we need to show that 7—'U C |J, U,. Let § € #7'U. Then ¢ := m(q) € U, so there
exists a minimizing geodesic v in U from g = v(0) to p = 7(g), with € := d(p,q) < r. If ¥ is
the lift of « starting at ¢ = 7(0), then 7(¥(¢)) = () = p. Therefore, y(¢) = p, for some «
and d(Pa,q) < l(J) =e <r. So ¢ € Uy, and 71U C |, Ua.

(3): For each a the map 7|Uy : Uy — U is a local diffeomorphism. Moreover, it is bijective since
its inverse is the map sending each radial geodesic starting at p to its lift starting at p,.
O
Remark 7.14. A complete, simply-connected Riemannian manifold with nonpositive sectional
curvature is called a Cartan-Hadamard manifold.

Corollary 7.15. A Cartan-Hadamard n-manifold is diffeomorphic to R™.
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8 Comparison geometry

8.1 Rauch comparison theorem

Theorem 8.2 (Rauch). Let M" and ]\7"*"‘, k > 0, be Riemannian manifolds and let : [0,b] — M,
7 :[0,b] — M be unit speed geodesics such that 7(0) has no conjugate points along . Suppose that
for every t € [0,0], v € Ty M and v € Ty M we have

K (41,v) < K(7,,7).
Let J and J be non-trivial Jacobi fields along v and 7, respectively, such that
Jo = )\;)/07 j;) = )‘;N)/Ov <J6770> - <j/(/)7§0>7 and ’Jé‘ - “7(/)’7

where A € R 1s a constant. Then

7] > |7
for every t € [0,b].
Proof. First a special case
(8.3) (JeAe) = 0= (T, 7).

Since

<Jt7;7t> - <J07;)/0> + t<‘]07;70> - <J07?0> + t<J07?0> - <Jt7?t>7
we get from (8.3) that Jo = 0, Jo = 0, (J},50) = 0, and (J},7,) = 0. Because J and .J are
non-trivial, we have J, # 0 and J) # 0. Since 7(0) has no conjugate points along 7, we have J; # 0

for every t > 0. On the other hand, Jy = 0 and Jy = 0 so by the I’'Hopital’s rule there exists a limit

PP

HO |2 |2

Hence, in order to prove |J;| > |.J;| it is enough to show that

2
adE) S
at \|712) =

for every t > 0, that is,

(8.4) (J1, T T = (T T > .
We define U
~ J
@(J)t = <i ~t>
<Jt7Jt>
for t €]0,b] and
<‘]L{7Jt>
J)y = —
30( )t <Jt,t]t>

for those ¢t > 0 for which J; # 0. Fix ¢t; € [0,b]. If J;; = 0, then (8.4) holds trivially. Therefore, we
may assume that J;, # 0 and then define vector fields W' (along ) and W' (along 7) by

thl = Jt and thl = —=.
| Ji, | T, |
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Then ¢(.J); = (W), whenever defined and ¢(J); = (W), for t €]0,b]. Now
(P(J)tl = @(th )t1 = <Wt1/7 Wt1>t1
t1
o)y, = @(th)h = <Wt1,7 Wt1>t1 = <Wt1/7 Wt1>t1 - <Wt1,’ Wt1>0, - / <Wt1,’ thxf dt

0
=0 since Jg=0

t1 t1
:/ <Wt1’,Wt1’>t+<Wt1”,Wt1>tdt:/ (W W) — (R(W'4)F, W), dt
0 0

t1
= /0 <Wt1/, Wt1/>t - K ("Yt, |Wt1) |th1 |2 dt.

Let P : Tyoy)M — T, M and ﬁt : Tﬁ(o)]\? — Tg(t)]\? be parallel transports along ~ and 7,
respectively. Let I : T, )M — T (O)M be an injective linear map that preserves the inner product.
Denote I; = Pt oloP " :TyyM — T5y )M Suppose that I is chosen such that

I("YO) = :Y/O and Itl (thll) = thll .
Define W to be a vector field along 4 by
Wi = LW

Note that now /thll = thll. Let B, ..., E, € T(y) and Ei,...,E, € T(¥) be parallel along v and
3 such that E, =4, E, =7, I(E;(0)) = E;(0), and that {E;(t), ..., E,(t)} spans T, M for every
t. Write th == Zz szz Then
/th - Z szz
(2

Hence,
(a) Wi = |Wf1| for every t.

Since W' =%~ f/E; and wh' = ™ f!E;, we have
i i
(b) (W, W) =3 fif1(E:, Ej) = X, 1B, Ej) = (W, W),
i,J i3
Now (a) and (b) together with the curvature assumption and the Index Lemma 7.2 imply
t1
P = [ = i (5 ) WP
/ (Wh, W), — K <vt, |W“|> WP dt

:/ wh th/ - <§(th17§t)§t’ﬁ/\ttl>dt
0
7.2

IV

t1 ~ f e~
/ (WH W)y — (ROW3,)7,, W) dt
0

= 30(‘] t1s
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that is, (8.4) holds at t;. Because t; € [0,b] is arbitrary, we have |.J;| > |J;| in the special case.
In general case, L o
J=J"+(J4)% and J=J"+(J,7)7.
The first part then gives |JL| > [JL|. On the other hand,

(JA)e = (LAY + T, Ao = (1,30 + (T, 7)o = (I, 7).
=\ =

>

Hence, |J| > |J]. O

Corollary 8.5. Let M and M be Riemannian manifolds with dim M > dimM, and let p € M
and p € M. Assume K3; > Ky and let I : T,M — Tz M be a linear injection preserving the inner
product. Let r > 0 be so small that exp,, |B(0,7) is an embedding and expy |B(0,r) is non-singular.
Then for any piecewise C*°-path c: [0,1] — exp, B(0,7) we have

{(c) > (expgol o exp, ' oc) = £(¢).

=:c

Above the assumption exp;|B(0,7) being non-singular means that exp; B(0,7) contains no
conjugate points to p.

Proof. Denote ¢: [0,1] — B(0,7) C T,M by

CRES exp;l oc.

Cc
i TM
5 ’ I 1@
tc; Cs -
- Cs

Consider the variation I'(s,t) = exp,(tcs). For each fixed s, the variation field
Ve i= 0. (s, 1)
is a Jacobi field along geodesic I's, t +— exp,(t¢s). Then

VP = &0 t) = texpyug, (6);
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d I~ S
V' = L(exp,Cs) = &5 and
——

=cCg

(DiV¥)g = Dyt €XPpstz, (é\s))’tzo = C..
Consider next the variation

F(s,1) = exps(I(12,)) = expy(t1(@)).
Again, for each fixed s, the variation field
Vi = 0,(s,t)
is a Jacobi field along L'y, t — exp;(t1(cs)), with
V=0, Vi=¢, and (DV®)o=I(c).
Since I preserves the inner product,

(DeV2)ol = 6] = [1(E] = [(DeV*)o

and
<F57 Dtvs>0 = <Fs(0)7 (&E)O> = <I(FS(0))7 I(/C\S)>
= (I(@), (D,V*)o) = (T5(0), (DiV*)o) = (Ts, DV ).
Furthermore,

Vi=0 and Vg=0.
The Rauch comparison theorem now implies
|&s| = V'] = V] = [cl-
Since s is arbitrary, we have the claim. U

Corollary 8.6. Suppose that the sectional curvatures of M satisfy
0<r<Ky<$é

for some constants k and 5. Let v be a geodesic in M. Then the distance d between two consecutive
conjugate points along ~y satisfies

H<d<
Proof. Let v : [0,] — M be a unit speed geodesic with v(0) = p. Let J be a Jacobi field along
v, with Jy = 0 and (J,4) = 0. Let S™(d) be the sphere with constant sectional curvature d. Fix
P € 5™(6) and a unit speed geodesic 7 : [0,£] — S™(8) with 5(0) = p. Let J be a Jacobi field along
3 with Jo = 0, (J,3) =0 and |Jj| = |Jj|. Since ¥ has no conjugate pairs in (0, %), we have

|| > | Je] >0

for any t € (0, %) by the Rauch comparison theorem. Therefore, the distance d from p to its first

conjugate point along ~ satisfies

d> .

Ifd > %, we get by applying the Rauch comparison theorem to M and S™(k) that the distance

between any pairs of conjugate points in S™(k) is strictly greater than %, which is a contradiction.
O
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8.7 Hessian and Laplace comparison

Recall that the gradient, Hessian, and Laplacian of f € C°°(M) are defined by
(Vf, X) = X(f), Hess f(X,Y):=(Vx(V[),Y), and Af:=div(Vf)=tr(v— Vy(V[)),
and that Vf € T(M), Hess f € T?(M), and Af € C°°(M). Furthermore, Hess f is symmetric and
Hess f(X,Y) = XY f)— (VxY)f.

If (V,(-,+)) is an n-dimensional inner product space and B : V' x V — R is bilinear, then the trace
of B, the determinant of B, and the norm of B with respect to (-,-) are defined by

trB=trL, detB=detL, and |B|=+/tr(LL*),
where L : V — V is linear such that
B(z,y) = (Lx,y)

for every z,y € V.
Hence,
Af =trHess f

with respect to Riemannian metric (-, -).
Definition 8.8. The injectivity radius at p € M is defined as
inj(p) := sup{r € R : exp, |B(0,r) is diffeomorphism},
which is always positive since exp,, is a local diffeomorphism at 0 € T}, M.
Example 8.9. If M is a Cartan-Hadamard manifold, then inj(p) = +oo for each p € M.

Theorem 8.10 (Hessian comparison theorem). Let M™ and Mk | >0, be Riemannian mani-
folds and let v : [0,b] — M and 7 : [0,b] — M be unit speed geodesics such that

b < min{inj(7(0)),inj(7(0))}.
Suppose that '
K(f,v) < K(74,0)

for every t € [0,b], v € T,y M, and v € Tq(t)]\?. If h : [0,00) — R is smooth and increasing,
ry o= d(,7(0)), and ry; == d(-,7(0)), then

Hess(h o 7a7)(X, X) > Hess(h o ro)(X, X)

for all t € (0,b], X € T\ yM, and X e Tg(t)]\? such that | X| = |X| and (3, X) = (7, X).

Proof. First of all, hory, is smooth in B(v(0),b)\{7(0)}, and hory; is smooth in B(5(0),b)\{7(0)},
respectively. We may assume that | X| = 1 = |X| and that ¢ = b.
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1° Case h(t) =t. For every v € Ty M,

Hess ras(v, ) = v(rum) — (Vod)rm = —(Vod)ru
=1
= —(Vry, V) = — (Y, Vo :—lv',' =0.
(Vrar, Voy) o) (Yo, Vo¥)(v) 5 <’Yt_ 1%>

Similarly,
Hess r3;(v, ) =0

for every v € T;(b)M. Write X = X + X+ and X = X + )?L, where
XT = (X %)% and X7 :=(X %)%,

Then

Hess (X, X) = Hessry (X1, X1)  and Hessr~()? X) = Hessr (Xl XH.

Hence, we may assume X = X Land X = X1, Let o = ~X, which is a geodesic such
that 69 = X and & := 7%, which is a geodesic such that 30 = )A(/ respectively. Let I :
[—¢,€e] x [0,b] — M be the variation of v through geodesics such that I's : ¢ — I'(s, ?) is the
geodesic from 7(0) to o(s). Similarly, we define I' : [—¢, ] x [0,b] — M.

Then the variation field J of T’ and the variation field J of T are Jacobi fields. This implies
that the mappings s +— (Js,¥s) and s — (Jg,7,) are affine. Furthermore, because Jy = 0,
Jp =X L 4 and Jp =0 and J, = X L 7;, respectively, we have

Jo L4, and J, L7,

for every s € [0,b]. By an exercise

Hess (X, X) = (ry 0 0)”(0) = j;e )s= 0_/ |DyJ)? = (R(J, %)%, J) dt.
Similarly,
~ ~ b o~ ~ . . ~
Heser(X,X):/ |DyJ|? — (R(J,7)7,J) dt.

Fix orthonormal bases {e;}!_; of T, M and {¢;}7| Fof T~(b)]\7 such that e; = X and e; =

Let E; be the parallel transport of e; along v and EZ be the parallel transport of ¢; along 7.
Then {£;(t)};-, is an orthonormal basis of T, M for every ¢ € [0,b] and {E;(t)} 1) is an
orthonormal basis of T:Y(t)ﬂ for every ¢ € [0,b]. Define functions h;, 1 <i < n, by

hz(t) = <JtaEi(t)>'y(t)'
Then

7= hOE®
=1

Define



Fall 2010 91

Since Jy = 0, we have

Wo =Y hi(0) E;(0) = 0 = Jo.

Furthermore, since J, = X = e; = E;(b), we have hi(b) = 1 and h;(b) = 0 for i # 1, which
gives

W, =Ei(b) =¢ = X = Jp.

Since b < min{inj(y(0)),inj(7(0))}, there are no conjugate points of v(0) (resp. 7(0)) along
~/[0,b) (resp. 7][0,b)). The Index Lemma gives

(8.11)

o~ o~ b o~ ~ . . ~ —~— —~— b —_—~ —~— . .
Hessr— (X, X) = /0 DT — (R(T.A)5, T dt < 107, T) = /0 DAV — (ROW.,3)%), ) dr.
Furthermore, on [0, b] we have

DW= |W*=|DJ?, [W|=|J, W17, and JL5.
=1

Hence, the assumption K (v,%;) < K (7,7,) implies

—(R(W, 37, W) < —(R(J, %)%, J)

on [0,b]. Thus we get from (8.11)

Hess 7“]\7[()?,5(/) < Hess (X, X).

2° The general case, that is, h is smooth and increasing. As an exercise we have
Hess(ho f) = (b o f)df @ df + (h' o f) Hess f,
if f: M — R andh:R— R are smooth mappings. Hence,
Hess(h o ra) (X, X) = (W orp)(b)drar @ drp (X, X) + (W orar)(b) Hess rpy (X, X)

= ' (b)(drpr(X))? + (B orar)(b) Hessrp(X, X)
—— —_——
=dr(X) = (Worg;)(0) 20

> (b org)dry; @ drip(X, X) + (b or5)(b) Hess (X, X)

= Hess(h o ’I”M)(j(:, X).

O

Corollary 8.12. Let M™ and M" be Riemannian n-manifolds, ~ : [0,0] = M and ¥ : [0,b] — M
be unit speed geodesics such that

b < min{inj(7(0)), inj(7(0))}-

Suppose that for every t € [0,b], v € T yyM and v € T%M, we have

K (4,0) < K(7;,9).
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If h : ]0,00) — R is smooth and increasing, we have

A(hora)(v(t)) = A(hory)(3(1))

for every t € [0,b], where ryy = d(-,~7(0)) and rg; := d(-,7(0)).

Proof. Fix t € |0, b] and orthonormal bases {X;};"; of T, M and (X ey of T (t)M such that
X1 =" and X 1 = ;. The Hessian comparison implies

Hess(h o rar)(Xi, Xi) > Hess(h o ry7)(Xi, X;)

for every 1 <i <n. Thus

A(hora)(~( ZHesshorM (Xi, X;) ZHess (hors;)(Xi, Xi) = Alhorg) (A (1)
=1

8.13 Bochner-Weitzenbock-Lichnerowitz formula

Theorem 8.14. Let M be a Riemannian manifold. Then for every f € C*°(M)
sA(VSP) = [Hess f* + (Vf, V(AS)) + Rie(V£, V).

Proof. Fix p € M and let Fy,..., E, be a local geodesic frame at p, that is, Ey,...,E, € T(U),
U > popen, (E;, E;) = 6;; in U, and (Vg,Ej)p, = 0. Then

Vh = zn: Ei(h)E
=1

for every h € C*°(U). Now at p we have

n

SA(VSP) = $dv(V(VP) = Se(TM 3 v e Vo(V(VIP) = 5 S (Ve (V(VIP), B

=1
Moreover,
2 (V(VI) ZE (IV£1?) )Z i(IVI1) VEE; +ZE (IVF1*)E;

= Z Ei(E;(IVf*)E;
j=1
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Hence,

SA(VF?) Z<ZE iV ) > ZE (Y f1%)

n

=3 Z E{(E{(V V)= Z E(VpNfVf) =) Ei(Hess f(E;, V)
1=1

i=1

= Z Ei(Hess f(Vf,Ei)) =Y _ Ei(Vy;Vf, Ej)
=1 i=1
=3 (VB VosVIE) + (VoY Ve By ) = > (Vi VesV i, B

=1 —0atp =1

—Z (B0, VHVEE)+> (VorVeVEE)+> (Vig,vn Vi Ei).
=1

=1

:;A =:B ZZC
First of all,
A =Ric(Vf, V).

Secondly,
B = (VIUVENVS, E) = (Ve N[, VvE) ) =(Vf) ) (Ve V[ E)
= 0.

=tr(v—V,Vf)=Af
= (VHAS) =V, V(AS)),

where (%) is because
VviEi = Vy gpeEi= Y Ej(f) Ve Ei = 0.

j HJ,_/
=0
Lastly,
C = ZHessf [E;,Vf],E ZHesstEVf Vv Ei, E;)
_ ’Ll :,0_/

= Hess f(Vg,Vf,E;) =Y Hess f(E;, Vg, Vf)
=1

i=1
= S (Ve VEVEVS Z  Hess £
i=1
Here () holds since

n n n

Z(invfy Ve V) = Z<LEZ" LE;) = Z<LL*Ei’ E;) =tr(LL"),

i=1 i=1 i=1
where L : T,M — T,M, Lv = V,V f, is linear such that
Hess f(v,w) = (Lv,w)

for every v, w € T,,M.
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Definition 8.15. Let p € M.

(a) Let v € T,M, |v| = 1. The distance to the cut point of p along +" is

d(v) :=sup{t > 0:tv € & and d(p,~"(t)) =t}.

(b) The cut locus of p in T,,M is
Cp = {d(v)v:v e T,M, |v| =1, and d(v) < co}.
(¢) The cut locus of p in M is

C(p) = exp,(Cp N Ep).

We write also
Dy :={tv:veT,M, |v]=1, and 0 <t < d(v)}

and
D(p) := exp, Dp.

Example 8.16. The cylinder R x S': C(p) is the line ”opposite to p”.

8.17 Riemannian volume form

This section is based on the pro gradu thesis of Aleksi Vahékangas.
Let M and N be smooth oriented Riemannian n-manifolds and f : M — N smooth. The
Jacobian determinant of f at p € M is

Jr(p) :=det D(y o f o x™")(x(p)),

where = and y are orientation-preserving charts at p and f(p), respectively, such that { a‘?ﬁ. ., and

{8%1 iy form orthonormal bases of T, M and Ty, N.

The Jacobian determinant Jr(p) is well-defined, i.e. it does not depend on charts = and y
(Exercise).

Let then (U,z) and (U,y) be charts on M. For the Jacobians of x and y, we have

Jy = (Jyoz—10x)Jp.
Hence,
dy1 Ao A dy"(a%l, e 8%") = det(dyj(azi)) = det(Di(yj o afl) ox)
=det(D;(yoa 'Y ox) = Jyop1 0 = Jy/ s
So,
1 1 n 1 1 n
—dy " AN---Nd"' = —dz" N--- Ndx
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Definition 8.18. The Riemannian volume form of M is the smooth n-form wjs such that

1
wy|U = J—dml A ANdz"

xT

for every chart (U, x).

Lemma 8.19. If M and N are oriented Riemannian n-manifolds and f : M — N is a diffeomor-
phism, then

(8.20) f*wN = JfWM'
Proof. Exercise. O

Let p € M and ¢ an orientation preserving chart at p such that {0;}}' ,, 0; = is an

orthonormal basis of T, M. Then, by definition,

Jo(p) = det D(idop o o~ ") (0(p)) = 1.

9
awz )

If v € T,M, then ‘ ‘
</U78i> — </U(90])a]781> = /U(SOZ)'
Let vq,...,v, € T,M. Then

dpt A Ndp" (v, ... v,) = det(vi(¢?)) = det({v;, 9;)).

wM(vl,. .o ,Q}n) = Jx(p)

Because {0;}}"_; is orthonormal
(vi, vj) = <Uivz<vjvak>8k> = (i, ) (v, D).
k=1 k=1

Hence,
B = AAT,

where B = ((vi,vj>)ij and A = (<UZ‘, 8]>)U Therefore,
det((v;,v;)) = (det A)? = (v, ..., 00))2

Let then (U, x) be an orientation preserving chart. Apply the formula above to v; = (%)p to gain

IS S
Vdet gij(p)’

where g;;(p) = ( 821- , %M,. Thus the Riemannian volume form can be written in local coordinates

Ju(p) =

(8.21) Vdet gij dzt A+ Ada™,




96 Riemannian geometry

Lemma 8.22. Let M be an oriented Riemannian manifold, wys Riemannian volume form, and
V € T(M). Then the divergence of V., divV = tr(X — VxV), satisfies

Lywyr = (div V)w)y.
Proof. Exercise. O

Let p € M (M oriented Riemannian n-manifold) and ry = inj(p). Let C = (0,79) x S*~! and

¢ C — B(p,r0) \ {p},
P(t,0) := exp, (E(t0)),

where E : R" — T,M is an isometric isomorphism. Then ¢ is a diffeomorphism and (¢,?) are
geodesic polar coordinates of ¥ (t,9) € B(p,79) \ {p}.

PUAN RUAN

{0} 5"t ke | {ro} x 71

oM v =1

exp, (E(9))

M ///////,#h‘\\\\

The Riemannian volume form of C' can be written as
we = dt N wgn—1 = WR A\ Wgn-1,

where t : (¢,9) +— t. The form wgn—1 can be interpreted as wgn—1 € A" 71(C) (= smooth differentiable
(n — 1)-forms on C) that is independent of t-variable of (¢,9) € C. More precisely, write v €
Ti1,9)C = TiR & TyS" ! as v = (vg,v9). Then

wgn—1 (v, .. 0" = wgn-1 (v, .., 0ETh).
EA"‘l(C) EAn—l(Sn—l)

We define the distance function r : B(p,rg) — [0,79) by r(z) = d(p, ). Thenr € C*°(B(p,r0)\{p})-
Furthermore, let 9, be the radial vector field on B(p, ) \ {p},

(87’)33 - ;Yr(x)v
where  is the unique unit speed geodesic from p to x. Thus

£ (t) = exp, (t ' exiz(jxl)(x))

In fact, 0, = 1@% = Vr. Define a smooth function A : B(p,ro) \ {p} — R by
Az) = Jy (™" (2))-
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Theorem 8.23. In B(p,ro) \ {p} we have

oA
(8.24) == A
Remark 8.25. Since exp,, preserves radial distances, i.e. d(exp,(tv),exp,(sv)) = [t — s||v], the

value A(x) describes the ”size of the area element” of the geodesic sphere S(p, z), t = d(p, x), at x.
Proof of the Theorem 8.23. Since Jy,-1wy = (Y1) *we, we have

1

=7 (W ) *we = (Jpop W N we = AW we.
wfl

WM

Hence, in B(p,ro) \ {p} we have
(Ar)wyr = (divd,)wys = Lo, war = Ly (A1) *we) = (8,4) (¥ ) *we + ALy, (¥ 1) we.

Here

(W *'we = W) Lywe =0,

Lo, (" V'we =L, o
* Ot ot

since we = dt A wgn—1 is invariant in translation in ¢ (= the flow of %). Hence,

orA orA
TTwM = %A(@Zfl)*wc = (Ar)wy,

which implies (8.24). O
Another proof of (x). We have

Lo, (0™ we = Lo, (d(t o ™) A (™1 wge 1) = Lo, (dr) A (671 wgn 1 + dr A Lo, (0™ g 1.
Here the first term is zero because

Lo, (dr) = d(3,(r)) = .
1

Moreover, the second term is also zero because

Lo, (V1) wgn-1 = ig, d(( ") wgn-1) + dig, (1) "wgn 1

=g, (V) dwgn—1 +d(1)* iagwgn_l
t

=0

= ('Iﬂfl)*’igdenfl =0,
t

since dwgn—1 = 0 giving the claim. Note that dws.-1 = 0 holds since
wen—1 = wdd* A - Ad9" L,
where w is independent of ¢, so

09 19" Ad0" A - A 0" =0,

=0

n—1
_ Ow 1 n—1
dwgns = == dt Ad9t A A dD +Z&9
—~—~ =1

=0
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Remark 8.26. Let M be complete. Then (8.24) can be generalized for all points x ¢ C(p), x # p:
Take the unique minimizing unit speed geodesic v from p to x. Then the geodesic polar coordinates
of z are (tz,V;), where t, := d(x,p) and ¥, := E~'4. The value ¢(t,9) = exp,(tE(?)) is defined
for all ¢ > 0 and ¥ € S*~!, and is a local diffeomorphism at (t,,9,). Hence, we may also define

Ax) = Jy(ty, Vs).

8.27 Ricci curvature comparisons

Let M be complete, p € M, and = ¢ C(p) U {p}. We denote A(z) also by
A(z) = A(t,9),

where (¢,9) are geodesic polar coordinates of .

Theorem 8.28. Let M™ be complete, p € M, and Ric(v,v) > (n — 1)H for every v € TM with
|v| = 1. Then in M\ (C(p) U {p}) we have

A(t, 0
(8.29) #;7;) is decreasing in t along radial geodesic (= 0 is fixed);

and

(n — 1)V H cot(vVHr), H > 0;
(8.30) Ar < Afr =< (n—1)/r, H=0;
(n —1)v/—H coth(v/—Hr), H <O0.

Here AH and AH refer to the corresponding notions in simply connected My with constant sectional
curvature H.2 If H > 0, then v < /v H by Theorem 7.6.

Proof. We apply the Bochner-Weitzenbock-Lichnerowitz formula with f(z) = r(z) in M \ (C(p) U
{p}), where r is smooth and |Vr| = 1. We have

|Hessr|? + 2 (Ar) + Ric(Z, &) = 0.
Let A1,..., A, be the eigenvalues of Hessr, i.e. eigenvalues of (self-adjoint) linear map
vi— V,Vr.
Since Vr(z) = (%)x = Yr(z), Where 7 is the unique unit speed geodesic from p to x, we have
Vv-Vr=0.
It follows that one of the eigenvalues, say A1, is zero. The Cauchy-Schwarz inequality gives

Ar)? trH 2 Ao+ Ap)?
(Ar) :(r essT) :(2-1- +An) < X241 A2 = |Hessr[%.
n—1 n—1 n—1

Since Ric(Vr,Vr) > (n — 1)H, we get the Riccati inequality:

(Ar)2 0

(8.31) + E(AT) +(n—1)H <0.

n—1

2Ap(+,9) is independent of
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Denote
Tlﬁsin(ﬁt), H > 0;
Su(t) =<t H = 0;
ﬁsinh(\/ﬁt), H <0,
Sh(t)
Cty(t) = Su(t)
and

Y = (n—1)Cty.
Then the right-hand side of (8.30) equals to ¢y (r(x)) and ¢y satisfies the Riccati equation

Vi

n —

Uy + T+ (n—1)H =0.

Now :—_‘%{l—i-(n—l)H > 0on (0,7/vH) for H> 0andon (0, +00) for H < 0. Let z € M\ (C(p)U{p}),
v be the unit speed geodesic from p to z, and v := jg. Write p(t) = Ar(y(¢)). Then ¢ satisfies

()02

¢ +

T +(n—1)H <0.
On the other hand,

n—1

(8.32) Ar =

+O(r), asr—0,
,

ie. p(t) = 2= + O(t) (Exercise). Hence, there exists ro < d(v) such that

P> (t)
n—1

(8.33) +(n—1)H >0

for every t € (0,79). Now (8.31) implies

on (0,7r9). Hence,

for every t € (0,79], which gives

n— il

arc Cty (ﬂ?) >t
for every t € (0,r9]. Here arc Cty is the inverse function of Ctg. Now
e(t) < (n—1)Ctu(t) = ()
for every 0 < t < rp. Denote

to :=sup{0 <t <d(v): ¢ <ty on (0,t)}.
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If ty = d(v), we are done with (8.30). If ¢ty < d(v), then p(t9) = ¥ u(to), and so

2 2

200 | 1y = Yilto) |, _ 1)H > 0.
n—1 n—1

But then (8.33) holds on (0,¢y +¢) for some € > 0, and hence ¢(t) < ¢ (t) for every ¢t € (0,tg+¢€).

This is a contradiction with the definition of tg. Thus, p(t) < g (t) for every t € (0,d(v)). On My,

the inequality (8.31) holds as an equality. Since A7 satisfies (8.32), we have Ar(x) = ¢y (r(z)).

We have proved (8.30). By (8.33) and (8.30)

FAWLY) _ FAT( D)
A(t,9) — AH(t9)

Hence,
& (log A(t,9) —log A™(t, 1)) <0,
h A1)
t
log —2 "7
b o8 T )
is decreasing when ¥ is fixed. This implies (8.29). O

Lemma 8.34. Let f,g : [a,b) — [0,00), g > 0, be integrable on [a,r] for every a < r < b. Suppose

that f/g is decreasing. Then
T|—>/ f// g

1s decreasing.

Proof. Let a <r < R <b. Then

)=+ D)
LD )= DD+ D)
(L =[] )

([ )= )

Let h = f/g. Then h is decreasing and f = gh. Hence,

[N =L zm([ ([ )
= (L[ m)=([ ([ 1)

and

We want to show

or equivalently
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We denote

VOI(B(p,’I”)) _/ WM _/ XB(p,r)WM >
B(p,r) M

that is, the volume (measure) of B(p,r) C M.

Remark 8.35. The volume Vol(C(p)) = 0 for every p € M since for every x € C(p) there exists
v € T,M with |v] = 1, and ¢y € R such that z = 7¥(¢,). Each {t,} is of zero one-dimensional
measure, hence Vol(C(p)) = 0 by Fubini’s theorem.

Theorem 8.36. Let M be complete, p € M, and Ric(v,v) > (n—1)H for everyv € T,M, |v| =1,
qge M. ThenforeveryO<r§R(ng/\/_sz>0)

Vol(B(p. R) _ Vol(Ba (R))
Vol(B(p,r)) — Vol(Bg(r))

Here Vol(Bg(t)) is the volume of any ball of radius t in My (= independent of the centre).

Proof. We set A(t,9) =0 for every t > d(E(1)). Then

Vol(B / / (t,0)dtdv.
S§n—1

Jo A(t, ) dt fo (t,0)dt
fAH(tﬁdt S AH 1 9)dt

y (8.29) and Lemma 8.34

Hence,
(B R
/ Atq?dt>f0 / At 0) dt = SO BH (T))./ A(t,9) dt.
[ " Vol(Bu(R) o
Integrating this over the sphere S”~! we have the claim. O

Corollary 8.37. Let M be as in Theorem 8.36. Then for every p € M and r > 0
Vol(B(p,r)) < Vol(Bg(r)).
Proof. Let t € (0,r). Then

Vol(B(p,r)) < <%> Vol(Bg (r)).

On the other hand,
Vol(B(p, 1))
Vol(Bp (1))

This gives the claim. O

—1 as t—0. (Exercise)

9 The sphere theorem
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