Summary

1 Dirichlet Beta Generating Functions

sech x , sec x and csc x can be expanded to Fourier series and Taylor series. And if the termwise higher order integration
of these is carried out, Dirichlet Beta at a natural number are obtained.

Where, these are automorphisms which are expressed by lower betas. However, in this chapter, we stop those so far.
The work that obtain the non-automorphism formulas by removing lower betas from these is done in the next chapter
" 2 Formulas for Dirichlet Beta " .

In this chapter, we obtain the following polynomials from the beta generating functions of each family of sech, sec and csc .
Where, Dirichlet Beta and Dirichlet Lambda are as follows.
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Bernoulli numbers and Euler numbers are as follows.
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Furthermore, if the termwise higher order differentiation of the Fourier series of each family of sech and sec are carried out,
the following expressions are obtained.
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Where, nKr is a kind of Eulderian Number and is defined as follows.
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2 Formulas for Dirichlet Beta
Here, removing the lower betas from the the automorphism formulas in the previous chapter, we obtain the following
non-automorphism formulas. Where, Bernoulli numbers and Euler numbers are as follows.
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And, gamma function and incomplete gamma function were as follows.
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2.1 Formulas for Beta at natural number

For O<x = n/2,
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2.2 Formulas for Beta at even number
For O<x < zn/2,
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2.3 Formulas for Beta at odd number
For O<x< xn/2,
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2.4 Formulas for Beta at complex number

When [ is a complex number such that D ?fl, 0, —l, —2, ,

For x=u+vi s.t. O<|x]l= 2z ,u=0,
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3 Global definition of Dirichlet Beta and Generalized Euler Number
Diriclet beta function is defined on the whole complex plane with patches as follows.
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This is inconvenient. so, we focus on the following sequence.
r 1\"
nBr = Z (_1)r_srcs (S_i ) r:0’112’ ’n
s=0
Using this sequence, we can define Diriclet beta function on the whole complex plane as follows.

Definition 3.2.1

Furthermore, by using this sequence, Euler Number can be defined on the whole complex plane.
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4 Completed Dirichlet Beta
In 4.1, symmetric functional equations are derived from functional equations.

Formula 4.1.1
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In 4.2, we define the completed Dirichlet beta functions a)(Z), .Q(Z) as follows, respectively.
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Then, Formula 4.1.1 is expressed as follows.
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From the latter, we can see that .Q(Z) is an even function. Therefore, Q(Z) has the same properties as completed

Riemann zeta function E(Z) . ( See " 07 Completed Riemann Zeta ". ) And, as in E(Z) , the following theorem holds.

Theorem 4.2.1
If Dirichlet beta function ﬁ(Z) has a non-trivial zero whose real part is not 1/2, the one set consists of

the following four.

05 Factorization of Completed Dirichlet Beta
In 5.1, the following Hadamard product is derived.

Formula 5.1.1
Let completed beta function be as follows.
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When non-trivial zeros of S(z) are z, =X, tiy, k=1,2,3,- and y is Euler-Mascheroni constant,

a)(Z) is expressed by the Hadamard product as follows.
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In 5.2, we consider how the formulas in the previous section are expressed when non-trivial zeros whose real part is 1/2
and non-trivial zeros whose real part is not 1/2 are mixed. Then, we obtain the following theorems.

Theorem 5.2.2

Let ¥ be Euler-Mascheroni constant, non-trivial zeros of Dirichlet beta function are X+ i Yo N =1,2,3, .
Among them, zeros whose real part is 1/2 are 1/2+1i y, r=1, 2,3, and zeros whose real parts is not 1/2

are /2t *id, (0<a,<1/2) $=1,2,3,- . Then the following expressions hold.
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Formula 5.2.3 ( Special values )
When non-trivial zeros of Dirichlet beta function are X, £iy, k=1,2,3, -, the following expressions hold.
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Theorem 5.2.4

Let non-trivial zeros of Dirichlet beta function are X,+ i Yo N =1,2,3, and ¥ be Euler-Mascheroni constant.

If the following expression holds, non-trivial zeros whose real parts is not /2 do not exist.
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Incidentally, when this was calculated using 10000 Y, both sides coincided with the decimal point 3 digits.

=0.07778398-

/4
+§+ log 2

In 5.3, we show that a)(Z) is factored completely.

Theorem 5.3.1 ( Factorization of @x(z))

Let Dirichlet beta function be 3(z) , the non-trivial zeros are Z, =X, iy, N=1,2,3, and completed beta function
be as follows.
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Then, a)(Z) is factorized as follows.
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In 5.4, we first derive the factorization of .Q(Z) .



Theorem 5.4.1 ( Factorization of 2(z))

Let Dirichlet beta function be 3(Z) , the non-trivial zeros are z, =X, *iy, N=1,2,3, - and completed beta function
be as follows.
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And, using this theorem and Theorem 4.2.1 in the previous section, we obtaine the following theorem.

Theorem 5.4.4

When Dirichlet beta function is 3(z) and the non-trivial zeros are Zn = Xu iiyn n=123, -,

If the following expression holds, non-trivial zeros whose real parts is not 1/2 do not exist.
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Incidentally, when this was calculated using 10000 Y, both sides coincided with the decimal point 4 digits.

06 Zeros on the Critical Line of Dirichlet Beta

In 6.1, substituting Z :0+iy for the completed Dirichlet beta .Q(Z) ,

a0 =(Z)" 33w 3]

We use this to calculate the zeros on the critical line. However, this function is too small in absolute value and can only find
the zeros up to Yy =917 .

So we normalize (2, (y) and define the following sign function.
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Using this sign function sgn(y) , we can find the zeros at large Y .



In 6.2, multiplying this sign function sgn(y) by the absolute value of the Dirichlet beta S(1/2+iy) , we obtain a

smooth function B(Y) .
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Using this B(y) function, we can find the zeros on the critical line of ﬂ(Z) by the intersection of the curve and the Y -axis

In 6.3, first, a lemma is prepared.
Lemma

When f(Z) is a complex function defined on the domain D , the following expression holds.
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Applying this lemma to the gamma function in the 6.2 ,
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From this, we obtain
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This is Riemann-Siegel style B function .
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