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Preface to the Second Edition

In this edition, a set of Supplementary Notes and Remarks has been
added at the end, grouped according to chapter. Some of these call
attention to subsequent developments, others add further explanation
or additional remarks. Most of the remarks are accompanied by a
briefly indicated proof, which is sometimes different from the one given
in the reference cited. The list of references has been expanded to

include many recent contributions, but it is still not intended to be
exhaustive.

Bryn Mawr, April 1980 John C. Oxtoby
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Preface to the First Edition

This book has two main themes: the Baire category theorem as a method
for proving existence, and the “duality” between measure and category.
The category method is illustrated by a variety of typical applications,
and the analogy between measure and category is explored in all of its
ramifications. To this end, the elements of metric topology are reviewed
and the principal properties of Lebesgue measure are derived. It turns
out that Lebesgue integration is not essential for present purposes—the
Riemann integral is sufficient. Concepts of general measure theory and
topology are introduced, but not just for the sake of generality. Needless
to say, the term “category™ refers always to Baire category; it has nothing
to do with the term as it is used in homological algebra.

A knowledge of calculus is presupposed, and some familiarity with
the algebra of sets. The questions discussed are ones that lend themselves
naturally to set-theoretical formulation. The book is intended as an
introduction to this kind of analysis. It could be used to supplement a
standard course in real analysis, as the basis for a seminar, or for inde-
pendent study. It is primarily expository, but a few refinements of known
results are included, notably Theorem 15.6 and Proposition 20.4. The
references are not intended to be complete. Frequently a secondary
source 1s Cited where additional references may be found.

The book is a revised and expanded version of notes originally
prepared for a course of lectures given at Haverford College during the
spring of 1957 under the auspices of the William Pyle Philips Fund.
These, in turn, were based on the Earle Raymond Hedrick Lectures
presented at the Summer Meeting of the Mathematical Association of
America at Seattle, Washington, in August, 1956.

Bryn Mawr, April 1971 John C. Oxtoby
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1. Measure and Category on the Line

The notions of measure and category are based on that of countability.
Cantor’s theorem, which says that no interval of real numbers is countable,
provides a natural starting point for the study of both measure and
category. Let us recall that a set 1s called denumerable 1f 1ts elements can
be put in one-to-one correspondence with the natural numbers 1,2, ....
A countable set 1s one that 1s either finite or denumerable. The set of
rational numbers 1s denumerable, because for each positive integer k
there are only a finite number (< 2k — 1) of rational numbers p/g 1n
reduced form (g >0, p and ¢ relatively prime) for which |p|+ g =k. By
numbering those for which k =1, then those for which k=2, and so on,
we obtain a sequence in which each rational number appears once and
only once. Cantor’s theorem reads as follows.

Theorem 1.1 (Cantor). For any sequence {a,} of real numbers and for
any interval I there exists a point p in I such that p & a,, for every n.

One proof runs as follows. Let I, be a closed subinterval of I such that
a, ¢1,.Let I, be a closed subinterval of I, such that a, ¢ I,. Proceeding
inductively, let I, be a closed subinterval of I, _, such that a, ¢ I,. The
nested sequence of closed intervals I, has a non-empty intersection. If
pe ()1, thenpeland p = a, for every n.

This proof involves infinitely many unspecified choices. To avoid this
objection the intervals must be chosen according to some definite rule.
One such rule 1s this: divide I, _, into three subintervals of equal length
and take for I, the first one of these that does not contain a,. If we take
I, to be the closed interval concentric with I and half as long, say, then
all the choices are specified, and we have a well defined function of
(I,a,,a,,...) whose value 1s a point of I different from all the a,.

The fact that no interval 1s countable 1s an immediate corollary of
Cantor’s theorem.

With only a few changes, the above proof becomes a proof of the
Baire category theorem for the line. Before we can formulate this theorem
we need some definitions. A set A4 is dense in the interval I if A has a non-
empty intersection with every subinterval of I; it is called dense if 1t 1s



dense 1n the line R. A set A4 is nowhere dense if it is dense in no Interval,

that s, if every interval has a subinterval contained in the complement of

A. A nowhere dense set may be characterized as one that is “full of holes.”
The definition can be stated in two other useful ways: 4 is nowhere dense
if and only if its complement A’ contains a dense open set, and if and only

if A (or A~, the closure of 4) has no interior points. The class of nowhere
dense sets 1s closed under certain operations, namely

Theorem 1.2. Any subset of a nowhere dense set is nowhere dense.

The union of two (or any finite number) of nowhere dense sets is nowhere
dense. The closure of a nowhere dense set is nowhere dense.

Proof. The first statement is obvious. To prove the second, note that
if 4, and A, are nowhere dense, then for each interval I there is an
interval I, CI — A, and an interval I, C I, —A,. Hence I, CI—(A,UA,).
This shows that A, UA, is nowhere dense. Finally, any open interval
contained in A’ is also contained in A", []

A denumerable union of nowhere dense sets is not in general nowhere
dense, 1t may even be dense. For instance, the set of rational numbers is
dense, but it is also a denumerable union of singletons (sets having just
one element), and singletons are nowhere dense in R.

A setissaid to be of first category if it can be represented as a countable
union of nowhere dense sets. A subset of R that cannot be so represented
Is said to be of second category. These definitions were formulated in 1899
by R. Baire [ 18, p. 48], to whom the following theorem is due.

Theorem 1.3 (Baire). The complement of any set of first category

on the line is dense. No interval in R is of first category. The intersection
of any sequence of dense open sets is dense.

Proof. The three statements are essentially equivalent. To prove the
first, let A=A, be a representation of 4 as a countable union of
nowhere dense sets. For any interval I, let I, be a closed subinterval of
I'—A,;. Let I, be a closed subinterval of I, — A4,, and so on. Then ()],
1S a non-empty subset of ] — A, hence A’ is dense. To specify all the
choices in advance, it suffices to arrange the (denumerable) class of closed
intervals with rational endpoints into a sequence, take I o =1, and for

n>0 take I, to be the first term of the sequence that is contained in
In___ 1 - A".

The second statement is an immediate corollary of the first. The
third statement follows from the first by complementation. []

Evidently Baire’s theorem implies Cantor’s. Its proof 1s similar,
although a different rule for choosing I,, was needed.

i
|
|
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Theorem 1.4. Any subset of a set of first category is of first category.
T'he union of any countable family of first category sets is of first

category.

It 1s obvious that the class of first category sets has these closure pro-
perties. However, the closure of a set of first category is not in general of
first category. In fact, the closure of a linear set A4 is of first category If
and only 1f 4 1s nowhere dense.

A class of sets that contains countable unions and arbitrary subsets
of 1ts members is called a o-ideal. The class of sets of first category and
the class of countable sets are two examples of o-ideals of subsets of the
line. Another example is the class of nullsets, which we shall now define.

The length of any interval I is denoted by |I|. A set A CR is called a
nullset (or a set of measure zero) if for each ¢ > 0 there exists a sequence of

intervals I, such that AC | I, and Y |I | <.

It 1s obvious that singletons are nullsets and that any subset of a
nullset i1s a nullset. Any countable union of nullsets is also a nullset. For
suppose 4; 1s a nullset fori=1,2, ... . Then for each i there is a sequence
of mntervals I;; (j=1,2,...) such that A4,C(J;1;; and ¥ |I, | <¢/2". The
set of all the intervals I;; covers 4, and 3 ;,|I;,| <e, hence A is a nullset.
This shows that the class of nullsets is a o-ideal. Like the class of sets of
first category, it includes all countable sets.

Theorem 1.5 (Borel). If a finite or infinite sequence of intervals 1,
covers an interval I, then Y |I | = |I|.

Proof. Assume first that I = [a, b] is closed and that all of the intervals
I, are open. Let (a,, b,) be the first interval that contains a. If b, <b,
let(a,, b,) be the first interval of the sequence that contains b, . If b,_{=<b,
let(a,, b,) be the first interval that contains b, _,. This procedure must
terminate with some by >b. Otherwise the increasing sequence {b,)
would converge to a limit x <b, and x would belong to I, for some k.
All but a finite number of the intervals (a,, b,) would have to precede I L
in the given sequence, namely, all those for which b, _, eI,. This is
impossible, since no two of these intervals are equal. (Incidentally, this

reasoning reproduces Borel’s own proof of the “Heine-Borel theorem”
15, p.- 228].) We have

b—a<by—ay=2i-5b;—b_)+b—a, <IN_ (b;—a),

and so the theorem is true in this case.

In the general case, for any o > 1 let J be a closed subinterval of I with
[J|=|I|/a, and let J, be an open interval containing I, with |J| = o|L|.

Then J 1s covered by the sequence {J,}. We have already shown that
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S| =|J). Hence a) |I)|=2 |J|=J|=|I|/a. Letting a—1 we obtain
the desired conclusion. []

This theorem implies that no interval is a nullset; it therefore provides
still another proof of Cantor’s theorem.

Every countable set is of first category and of measure zero. Some
uncountable sets also belong to both classes. The simplest example 1s the

Cantor set C, which consists of all numbers in the interval [0, 1] that
admit a ternary development in which the digit 1 does not appear. It
can be constructed by deleting the open middle third of the interval [0, 1],
then deleting the open middle thirds of each of the intervals [0, 1/3] and
[2/3, 1], and so on. If F, denotes the union of the 2" closed intervals of
length 1/3" which remain at the n-th stage, then C = (| F,,. C is closed, since
it is an intersection of closed sets. C is nowhere dense, since F, (and
therefore C) contains no interval of length greater than 1/3". The sum
of the lengths of the intervals that compose F, is (2/3)", which is less than
¢ if n 1s taken sufficiently large. Hence C is a nullset. Finally, each number
xin (0,17 hasauniquenon-terminating binary development x = .x;x,X5...
If y,=2x;, then .y, y, y5... is the ternary development with y; + 1 of some
point y of C. This correspondence between x and y, extended by mapping
0 onto itself, defines a one-to-one map of [0, 1] onto a (proper) subset of C.
It follows that C 1s uncountable; it has cardinality ¢ (the power of the
continuum).

The sets of measure zero and the sets of first category constitute two
o-ideals, each of which properly contains the class of countable sets.
Their properties suggest that a set belonging to either class i1s “small”
in one sense or another. A nowhere dense set 1s small 1n the intuitive
geometric sense of being perforated with holes, and a set of first category
can be “approximated” by such a set. A set of first category may or may
not have any holes, but it always has a dense set of gaps. No interval
can be represented as the union of a sequence of such sets. On the other
hand, a nullset 1s small in the metric sense that it can be covered by a
sequence of intervals of arbitrarily small total length. If a point 1s chosen
at random in an interval in such a way that the probability of its belonging
to any subinterval J is proportional to |[J|, then the probability of its
belonging to any given nullset is zero. It 1s natural to ask whether these
notions of smallness are related. Does either class include the other?
That neither class does, and that in some cases the two notions may be
diametrically opposed, is shown by the following

Theorem 1.6. The line can be decomposed into two complememary sets

A and B such that A is of first category and B is of measure zero.

Proof. Leta,,a,, ... be an enumeration of the set of rational numbers
(or of any countable dense subset of the line). Let I;; be the open interval

with center g; and length 1/2°7/, Let G;=(J2,I;; (i=1,2,...) and

B=()2,G, For any ¢ > 0 we can choose j so that 1/2’<8 Then B ( J;1;;
and ) ;|I;;|=2;1/2""7=1/2/ < ¢ Hence B is a nullset. On the other hand
G; 1s a dense open subset of R, since it is the union of a sequence of open
1ntervals and 1t includes all rational points. Therefore its complement
G;1s nowhere dense, and A =B’ = L) :G;1s of first category. ]

Corollary 1.7. Every subset of the line can be represented as the union
of anullset and a set of first category.

quere 1s of course nothing paradoxical in the fact that a set that is
small in one sense may be large in some other sense.



2. Liouville Numbers

Cantor’s theorem, Baire’s theorem, and Borel’s theorem are existence
theorems. If one can show that the set of numbers in an interval that lack
a certain property is either countable, or a nullset, or a set of first category,
then it follows that there exist points of the interval that have the pro-
perty in question, in fact, most points of the interval (in the sense of
cardinal number, or measure, or category, respectively) have the pro-
perty. As a first illustration of this method let us consider the existence
of transcendental numbers.

A complex number z is called algebraic if it satisfies some equation
of the form

ag+a,z+a,z*+--+a,z"=0

with integer coefficients, not all zero. The degree of an algebraic number z
1s the smallest positive integer n such that z satisfies an equation of
degree n. For instance, any rational number is algebraic of degree 1, ]ﬁ
1s algebraic of degree 2, and ]/5 + ]/5 1s algebraic of degree 4. Any real
number that is not algebraic is called transcendental. Do there exist

transcendental numbers? In view of Cantor’s theorem, this question is
answered by the following

Theorem 2.1. The set of real algebraic numbers is denumerable.

Proof. Let us define the weight of a polynomial f(x)=Y"a.x! to be
the number n +  §la,. There are only a finite number of polynomials
having a given weight. Arrange these in some order, say lexicographically
(first 1n order of n, then in order of a,, and so on). Every non-constant
polynomial has a weight at least equal to 2. Taking the polynomials of
weight 2 in order, then those of weight 3, and so on, we obtain a sequence
f1> f2, f3, ... in which every polynomial of degree 1 or more appears
just once. Each polynomial has at most a finite number of real zeros.
Number the zeros of f, in order, then those of f,, and so on, passing
over any that have already been numbered. In this way we obtain a
definite enumeration of all real algebraic numbers. The sequence is
infinite because it includes all rational numbers. ]

This gives perhaps the simplest proof of the existence of transcendental

numbers. It should be noted that it is not an indirect proof; when all the
choices are fixed in advance the construction used to prove Theorem 1.1
defines a specific transcendental number in [0, 1]. It may be laborious
to compute even a few terms of its decimal development, but in principle
the number can be computed to any desired accuracy.

An older and more informative proof of the existence of transcendental

numbers i1s due to Liouville. His proofis based on the following

Lemma 2.2. For any real algebraic number z of degree n>1 there

exists a positive integer M such that

|
Mqg"

Z.___ﬂ|>
q

for all integers p and q, q > 0.

Proof. Let f(x) be a polynomial of degree n with integer coefficients
for which f(z)=0. Let M be a positive integer such that |f'(x)|<M
whenever |z — x| £ 1. Then, by the mean value theorem,

(1) Sl =1f(z) = f(X)=M|z—x| whenever |z—x[=1.

Now consider any two integers p and g, with g > 0. We wish to show that
z—p/q|>1/Mq". This is evidently true in case |z — p/g| > 1, so we may
assume that |z — p/g| < 1. Then, by (1), | f (p/q)| < M|z — p/q|, and therefore

(2) q"f (p/q)| = Mq"|z —p/q| .

The equation f(x)=0 has no rational root (otherwise z would satisty
an equation of degree less then n). Moreover, q"f(p/q) 1s an integer.
Hence the left member of (2)1s at least 1 and we infer that |z — p/g| = 1/ M g".
Equality cannot hold, because z 1s irrational. [}

A real number z is called a Liouville number 1if z is irrational and has
the property that for each positive integer n there exist integers p and g
such that

1
L and g>1.

q q°
For example, z= Y { 1/10* is a Liouville number. (Take g = 10™))

Theorem 2.3. Every Liouville number is transcendental.

Proof. Suppose some Liouville number z is algebraic, of degree n.

“Then n>1, since z 1s irrational. By Lemma 2.2 there exists a positive

integer M such that
(3) z—p/q|>1/Mq"

tor all integers p and g with g > 0. Choose a positive integer k such that
2¥>2"M. Because z is a Liouville number there exist integers p and g,
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with g > 1, such that Theorem 2.4. The set E of Liouville numbers has s-dimensional

Hausdorff measure zero, for every s> 0.

4 2~ plal < 1/g". 7 Jorevery -
From (3) and (4) it follows that 1/g* > 1/Mg". Hence M > g* =" >2*~" > M. Proof. It suffices to find, for each ¢ > 0 and for each positive integer m,
a contradiction. [ B B a sequence of intervals I such that

Let us examine the set E of Liouville numbers. From the definition En(—mm)c| ), 1, =1L <e, and |I|<e¢.
it follows at once that e
(5) E=0' n(* G For each positive integer n, we have

— O Ja=1 Uy, .
. o0 mq L n m
where Q denotes the set of rational numbers and En(=m,m)C Uq-—““-2 p=-ma(P/q—1/q", p/q +1/q")
G,= U;O 2 U r=-o(D/q—1/9", p/qg + 1/q") . Choose n so as to satisfy simultaneously the following conditions:

G, 1s a2 union of open intervals. Moreover, G, includes every number of (2m + 1) 28
the form p/q, ¢ > 2, hence G,> Q. Therefore G, 1s a dense open set, and 2"t <e, ns>2, a0 ¢
SO 1ts complement is nowhere dense. Since, by (5), E' = QU ), Gl it
follows that E’ is of first category. Thus Baire’s theorem implies that Then each of the intervals (p/qg — 1/q", p/q + 1/q") has length 2/g" < 2/2" <z,
Liouville transcendental numbers exist in every interval, they are the and we have
“general case” in the sense of category. Qmg + 1) 2

What about the measure of E? From (5) it follows that E C G, for ; a2 2 =3, 1 M
every n. Let 1

_ 00 L n n — ! 1 d x
Gne=Up=-W/a—1/9"p/g+1/q") (9=2,3,...). <SQEMAN2YR, < @m4 1) 2 [P
For any two positive integers m and n we have q X
En(—m, m)CG,N(—m, m) - (2m+1)2° e, [
= Ug=2LGp o (=mm)] s, Ure -, (0/a — 1", p/g + 1/q") . ns —2

Therefore En(— m, m) can be covered by a sequence of intervals the sum
of whose lengths, for any n > 2, is

a=22p% - mg2/q" =202 ,2mg + 1) 2/q") £ Y2 ,(4mg +q) (1/9")

. - . dx dm + 1
=@m+1)3 2 ,1/q lé(f-’lerl)j1 I
It follows that En(—m, m) is a nullset for every m, and therefore E is a

nullset.

Thus E is small in the sense of measure, but large in the sense of

category. The sets E and E’ provide another decomposition of the line

Into a set of measure zero and a set of first category (ct. Theorem 1.6).

Moreover, the set E is small in an even stronger sense,.as we shall now

show. | *
If' s 1s a positive real number and E C R, then E is said to have s-dinen-

sional Hausdorff measure zero if for each ¢>0 there is a sequence of

intervals I, such that EC e L, |LP<e, and 11,| <e for every n.

The sets of s-dimensional measure zero constitute a g-ideal. For s — 1

it coincides with the class of nullsets, and for 0 <s< 1 it is a proper

subclass. The following theorem therefore strengthens the proposition
that E is a nullset.



3. Lebesgue Measure in r-Space

By an interval I m Euclidean r-space (r=1, 2,...) is meant a rectangular
parallelepiped with edges parallel to the axes. It is the Cartesian product
ofr 1-dimensional intervals. Asin the 1-dimensional case, the »-dimensional
volume of I will be denoted by |I|. Lebesgue measure in r-space is an
extension of the notion of volume to a larger class of sets. Thus Lebesgue
measure has a different meaning in spaces of different dimension.
However, since we shall usually regard the dimension as fixed, there is no
need to indicate r explicitly in our notations.

A sequence of intervals I; is said to cover the set A if its union con-
tains A. The greatest lower bound of the sums Y |I], for all sequences

{I;} that cover A, is called the outer measure of A: it is denoted by m*(A).
Thus for any subset 4 of r-space,

m*(A)=inf {3 |L]: AC| )1} .

When 4 belongs to a certain class of sets to be defined presently, m*(A)
will be called the Lebesgue measure of A, and denoted by m(A).

The edges of the intervals I; may be closed, open, or half-open, and
the sequence of intervals may be finite or infinite. It may happen that the
series ) |I;| diverges for every sequence {I.} that covers A: in this case
m*(A) = co. In all other cases m*(A4) is a nonnegative real number.

This definition can be modified in either or both of two respects
without affecting the value of m*(A). In the first place, we may require
that the diameters of the intervals I, should all be less than a given
positive number . This is clear since each interval can be divided into
subintervals of diameter less than 6 without affecting the sum of their
volumes. Secondly, we may require that all the intervals be open. For
any covering sequence {I;} and ¢>0 we can find open intervals J; such
that I,CJ; and » |J| <> |I]+¢ Hence the greatest lower bound for
open coverings 1s the same as for all covering sequences.

We shall now deduce a number of properties of outer measure.

Theorem 3.1. If A C B then m*(A) < m*(B).

This 1s obvious, since any sequence {I,} that covers B also covers 4.
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Theorem 3.2. If A=) A; then m*(A) <Y m*(4)).

This property of outer measure 1s called countable subadditivity. For
any ¢ >0 there is a sequence of intervals I, ; (j = 1, 2, ...) that covers A4; such
that D | ;| Sm*(A;)+¢/2'. Then AC\ ), ;I;; and X ;]| =D ;m*(4) +e.
Therefore m*(A) <> m*(A4,) +¢. Letting ¢—0, the required inequality
follows.

Theorem 3.3. For any interval I, m*(I) =|I|.

Proof. The inequality m*(I) <|I| 1s clear, since I covers itself. To
prove the inverse inequality, let ¢ be an arbitrary positive number and let
{I.} be an open covering of I such that > || <m™*(I) 4+ ¢. Let J be a closed
subinterval of I such that |J|>|I|—e¢. By the Heine-Borel theorem,
JC LI for some k. Let K, ..., K, be an enumeration of the closed

intervals into which I,, ..., I, are divided by all the (r — 1)-dimensional
hyperplanes that contain an (r — 1)-dimensional face of one of Ifhe
intervalsI,, ..., I,,or J,and let J,, ..., J be the closed intervals into which

J is divided by these same hyperplanes. Then each interval J; is equal
to at least one of the intervals K ;. Consequently,

=2 Wil = Z?mHKﬂ: j15(-----—..1ui| <m*(I)+e¢.

Therefore |I|<m*(I)+2¢e. The desired inequality follows by letting
e—0. []

Generalizing the definition given in Chapter 1, any subset of r-space
with outer measure zero is called a nullset, or set of measure zero. A
statement that holds for all points of a set E except a sct of measure zero

is said to hold almost everywhere, or for almost all points of E.
We next deduce some results which are included in later theorems.

Accordingly, we designate them as lemmas.

Lemma 3.4. If F, and F, are disjoint bounded closed sets, then
m*(F, U F,)=m*(F,) + m*(F),).

Proof. There is a positive number 6 such that no interval of diameter
less than & meets both F, and F,. For any £¢>0 there 1s a sequence of
intervals I, of diameter less than & such that F,uF,C| /I, and ) |
<m*(F,UF,)+e¢. Let >'|l|] denote the sum over those intervals tbat
meet F;, and let > " |I.| denote the sum over the remaining intervals (which

cover F,). Then
m*(Fy)+ m*(Fy) < VL + Y| = YL Sm*(FyOFy) + ¢
Letting ¢ — 0, we conclude that
m*(F)) +m*(F,) Sm*(F,UF,).

The reverse inequality follows from Theorem 3.2, []

11
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Lemma 3.5. If F,,...,F are disjoint bounded closed sets, then
m*(U'{ Fi) = D 1m*(F).
This follows from Lemma 3.4 by induction on .

Lemma 3.6. For any bounded open set G and € > O there exists a closed
set F such that F C G and m*(F) > m*(G) —¢.

Proof. G can be represented as the union of a sequence of non-
overlapping intervals I;. By definition, m*(G) < Y |I). Determine n so
that ) T |I] >m*(G) —¢/2, and let J; be a closed interval contained in the
interior of I; such that |J|>||—¢/2n (i=1,2,...,n). Then F = )1,
1s a closed subset of G, and by Theorem 3.3 and Lemma 3.5, m*(F)
=S > YA — 2> m*(G) —e. [

Lemma 3.7. If F is a closed subset of a bounded open set G, then
m*(G — F) = m*(G) — m*(F).

Proof. By Lemma 3.6, for any ¢ >0 there is a closed subset F, of
the open set G — F such that m*(F,)>m*(G—F)—e¢. By Lemma 3.4
and Theorem 3.1,

m*(F) + m*(G — F) <m*(F)+ m*(F)) + e =m*(FUF,) + e <m*(G) + ¢ .

Letting ¢—0, we conclude that
m*(F) +m*(G — F) <m*(G) .

The reverse inequality follows from Theorem 3.2. []

Definition 3.8. A set A is measurable (in the sense of Lebesgue) if for
each ¢ >0 there exists a closed set F and an open set Gsuchthat FCACG
and m*(G—F) <e.

Lemma 3.9. If A is measurable, then A’ is measurable.
Fort FCACG,then FF>A' DG and F —-G'=G—F.
Lemma 3.10. If A and B are measurable, then A B is measurable.

Proof. Let F| and F, be closed sets, and let G, and G, be open sets,
Then F=F nF,CAnBCG,NnG, =G, say, and

G—FC(G, —F)u(G,—Fy).

Hence m*(G — F) Ssm*(G, — F))+m*(G, — F,)<e. []

Lemma 3.11. A bounded set A is measurable if for each &> 0 there
exists a closed set F C A such that m*(F) > m*(A) — ¢.

12
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Proof. For any ¢>0 let F be a closed subset of 4 such that m*(F)
>m*(A) — ¢/2. Since m*(A) < co there exists a covering sequence of open
intervals I; of diameter less than 1 such that Y |I| < m*(A4) +¢/2. Let G
be the union of those intervals J; that meet 4. Then F C A C G, G is bounded.
and by Lemma 3.7, m*(G — F) = m*(G) — m*(F) < Y L} — m*(F) < m*(A)
+¢&/2 —m*(F) <e. Hence A4 is measurable. []

Lemma 3.12. Any interval and any nullset is measurable.

Proof. The first statement follows at once from Lemma 3.11 and
Theorem 3.3. If m*(A4) = 0, then for each & > 0 there is a covering sequence
of open intervals I; such that 3 |I;] <& Take G=| I, and F =@. Then
F 1s closed, G is open, FCACG, and m*(G—F)< Y || <e Hence 4
1S measurable. [] ~

Lemma 3.13. Let {A4,} be a disjoint sequence of measurable sets all

contained in some interval I. If A=\)A,;, then A is measurable and
m*(A)=> m*(A)).

Proof. For any &> 0 there exist closed sets F, C 4; such that m*(F))

>m*(A;) —¢/2'" ', By countable subadditivity, m*(4) <Y *m*(4,). De-
termine k so that

2 1m*(4;) >m*(A4) —¢/2,
and put F = ( J{ F.. Then, by Lemma 3.5,
m*(F) =Y m*(F) > Y m*(4) —¢/2 >m*(4) —¢ .
Hence A4 1s measurable, by Lemma 3.11. For any n we have

2 1m*(A) < 2 Im*(F)+e2=m*({ J1F)+¢/2 S m*(A)+¢/2.

Letting n— oo and then letting ¢ — 0 we conclude that D> Tm*(A4) < m*(A).
The reverse inequality follows from countable subadditivity. ]

Lemma 3.14. For any disjoint sequence of measurable sets A,, the
set A = U A; is measurable and m*(A) = m*(A4)).

Proof. Let I, (j=1,2,...) be a sequence of disjoint intervals whose
union is the whole of r-space such that any bounded set is covered by
finitelymany. By Lemmas3.10and 3.12, the sets A;;= A;nl;are measurable.
They are also disjoint. Put B; = UiAU. By Lemma 3.13, B;is a measurable
subset of I;. The sets B; are disjoint, and 4 = L) B:. For any ¢ >0 there
exist closed sets F; and bounded open sets G; such that F;CB;C G; and
m*(Gj—F;)<eg/2’. Let F=()F; and G=|)G,. Then F is closed, since
any convergent sequence contained mm F 1s bounded and therefore
contained 1n the union of a finite number of the sets F » which is a closed
subset of F. Also, G is open. We have FCACG and G — F = J(G;—F)

$
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C \J(G;—F). Hence m*(G — F) < 2. m*(G;— F;) <e. This shows that A4
is measurable. Since A;=\);A;;, we have m*(A)< > m*(A4;), and
therefore

2.im*(A) < Zi,jm*(Aij) = ZjZim*(Aij) = ij*(Bj) ;

l_}')

by Lemma 3.13. Also, for any n,

2.1m*(B)) = 2 im*(F)) + 21 m*(G; — F)
<m*({ J1F)+e<m*(A) +¢.

Letting n— oo and then letting ¢— 0 we conclude that > ;m*(B;) < m*(A).

Therefore » m*(A4;) <m*(A). The reverse inequality again fo]lows from
countable subadditivity. []

We have now established the most important properties of outer
measure. To formulate them conveniently, we need some additional
definitions.

A non-empty class S of subsets of a set X is called a ring of subsets of X
if it contains the union and the difference of any two of its members.
It 1s called a o-ring if it also contains the union of any sequence of its
members. A ring (or o-ring) of subsets of X is called an algebra (respectively,
a g-algebra) of subsets of X if X itself is a member of the ring. Evidently
a class of subsets of X is an algebra if and only if it is closed under the
operations of union (or intersection) and complementation; it is a
g-algebra if it is also closed under countable union (or countable inter-
section).

A set function u defined on a ring S of subsets of X is said to be
countably additive if the equation u(A4)= > u(A,) holds whenever {4}
s a disjoint sequence of members of S whose union A4 also belongs to S.
A measure 1s an extended real valued, non-negative, countably additive
set function p, defined on a o-ring S of subsets of a set X, and such that
#(0)=0. A triple (X, S, u), where S is a o-ring of subsets of X and u is a
measure defined on S, is called a measure space. Sets belonging to S are
called u-measurable. When every subset of a set of u-measure zero belongs
to S (that 1s, when the sets of u-measure zero constltpte a o-ideal), the
measure space 1S said to be complete.

By Lemmas 3.9, 3.10, 3.12, and 3.14, the class S of measurable sets
Is a o-algebra of subsets of r-space, and m* is countably additive on S.
Hence the restriction of m* to S is a measure; it is called (r-dimensional)
Lebesgue measure and is denoted by m. Since S includes all intervals, it
follows that S includes all open sets, all closed sets, all F, sets (countable

untons of closed sets), and all G, sets (countable intersections of open
sets). Moreover,
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Theorem 3.15. A set A is measurable if and only if it can be represented
as an F_set plus a nullset (or as a G; set minus a nullset).

Proof. If A 1s measurable, then for each n there exists a closed set
F, and an open set G, such that F,CACG, and m*(G,—F,) < 1/n. Put
E=|{)F,and N=A —E. Then E is an F, set. N is a nullset, since N C G,
— F, and m*(N) < 1/n for every n. A 1s the disjoint union of E and N.
[t follows by complementation that A can also be represented as a Gy
set minus a nullset. Conversely, any set that can be so represented 1s
measurable, by Lemma 3.12 and the fact that S i1s a g-algebra. []

For any class of subsets of a set X there 1s a smallest g-algebra of
subsets of X that contains it,namely, the intersection of all such g-algebras.
This 1s called the g-algebra generated by the class. The members of the
o-algebra of subsets of r-space generated by the class of open sets (or
closed sets, or intervals) are called Borel sets. Hence every Borel subset of
r-space 1s measurable. By Theorem 3.15, the Borel sets together with the
nullsets generate the class of measurable sets. Summarizing, we have

Theorem 3.16. The class S of measurable sets is the o-algebra of
subsets of r-space X generated by the open sets together with the nullsets.
Lebesgue measure m is a measure on S such that m(I)=|I| for every
interval 1. (X, S, m) is a complete measure space.

The following theorem expresses the property of countable additivity
in a form that is often more convenient.

Theorem 3.17. If A, is measurable, and A;C A;. , for each i, then the
set A=\ ] A; is measurable and m(A) = limm(A,). If A; is measurable and
A; DA, ., for each i, then the set A= ﬂA,- is measurable, and m(A)

= limm(A,;) provided m(A;) < oo for some i.

Proof. In the first case, put B,=A, and B,=A,— A,_, for i> 1.
Then {B,} is a disjoint sequence of measurable sets, with 4 = | | B;. Hence

m(A)=> m(B,)=lm)» 1m(B,)=limm(A,),

where the limit may be equal to co.

In the second case, we may assume m(A4,) < co. Put B;=A4, — A, and
B=A,—A. Then B;CB;,, and | )B;=B. Hence m(A4,) — m(A4) =m(B)
= limm(B;) = lim (m(A ;) — m(4,)) = m(A,) — limm(A;), and so m(A)
= limm(A,), both members being finite. [}

The manner in which the set function m* is determined by its values
on closed and open sets is indicated by the following

Theorem 3.18. The outer measure of any set A is expressed by the

formula m*(A)=mf{m(G): ACG, G open}.
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If A is measurable, then

m*(A) = sup{m(F): ADF, F bounded and closed}.
Conversely, if this equation holds and m*(A) < oo, then A is measurable.

Proof. The first statement is clear, since the union of any covering
sequence of open intervals is an open superset of A. To prove the second,
let « be any real number less than m(A), and let 4;= An(—i,i). By
Theorem 3.17, m(A4) = limm(A,), hence we can choose i so that m(4,) > a.
By measurability, 4; (which is bounded) contains a closed set F with
m(F)> a, and F is also a subset of 4. Conversely, if m*(4) < oo and F is a
closed subset of A with m(F) > m*(A) — ¢/2, let G be an open superset of A
such that m(G) <m*(A)+¢/2. Then FCACG and m(G — F) <e, hence
A 1s measurable. []

It may be noted that Lemmas 3.4 through 3.14 are implicitly included
in Theorems 3.16 and 3.18.

The following theorem expresses the fact that Lebesgue measure is
Invariant under translation.

Theorem 3.19. If A is congruent by translation to a measurable set B,
then A is measurable and m(A) = m(B).

This 1s clear from the definitions and from the fact that congruent
intervals have equal volume. Measurability and measure are also

preserved by rotations and reflections of r-space, but we shall not prove
this.

The definition of measurability, and the fact that any open set is the
union of a sequence of disjoint intervals, implies that any set of finite
measure can be obtained from some finite union of disjoint intervals by
adding and subtracting two sets of arbitrarily small measure. So to speak,
a set of finite measure is approximately equal to a finite union of intervals.
Much deeper is the fact that a measurable set has locally a kind of all
Or none structure; at almost all points it is either highly concentrated or
highly rarified. This idea is made precise by a remarkable theorem,
due to Lebesgue, with which we conclude this chapter. We shall consider
only the 1-dimensional case.

A measurable set E C R is said to have density d at x if the

lim MENLx —h, x + h])
h—0 2h

exists and is equal to d. Let us denote the set of points of R at which E

has density 1 by ¢(E). Then E has density 0 at each point of ¢(R — E).
¢ 1s called the Lebesgue lower density. Lebesgue’s theorem asserts that
@(E) 1s measurable and differs from E by a nullset. This implies that E
has density 1 at almost all points of E, and density 0 at almost all points
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of R — E. Thus 1t 1s impossible, for instance, for a set and i1ts complement
each to include exactly half of the (outer) measure of every interval.
(Such a set would be measurable and would have density 1/2 everywhere.)

The symmetric difference of two sets A and B i1s the set of points that
belong to one but not to both of the sets. It is denoted by 4 A B. Thus
AAsrB=(A— B)u(B— A).

Theorem 3.20 (Lebesgue Density Theorem). For any measurable set
ECR, m(E A ¢(E))=0.

Proof. 1t is sufficient to show that E — ¢(E) i1s a nullset, since d’(f;)
— ECE —¢(E') and E’ 1s measurable. We may also assume that E i1s

bounded. Furthermore, E — ¢(E)= | J,. o A,, where

E —h, x+h
A, = er:liminfm( alt x+h) <1-——~e}.
" h—0 2h

Hence it 1s sufficient to show that A, is a nullset for every ¢ > 0. Putting
A=A, we shall obtain a contradiction from the supposition that
m*(A) > 0.

[f m*(A) > 0O there exists a bounded open set G containing 4 such that
m(G)<m*(A)/(1 —¢). Let & denote the class of all closed intervals I
such that ICG and m(EnI)=<(1 —¢)|I|. Observe that (i) & includes
arbitrarily short intervals about each point of 4, and (i1) for any disjoint
sequence {I,} of members of &, we have m*(4 — | )I,)> 0. Property (ii)
follows from the fact that

m*(An| JI)SSmENL) (1 —e) Y |LI (1 —&) m(G) <m*(A).

We construct inductively a disjoint sequence I, of members of & as
follows. Choose I, arbitrarily from &. Having chosen I,,..., I, let &,
be the set of members of & that are disjoint to I, ..., I . Properties (i)
and (1) imply that &, 1s non-empty. Let d, be the least upper bound of
the lengths of members of &,, and choose I, , € &, such that|l . ,|>d /2.
Put B=A— | |J¥I,. By (ii), we have m*(B)>0. Hence there exists a
positive integer N such that

(1) S LI <m*(B)3 .

For each n> N let J, denote the interval concentric with I, with |J |
= 3|I,|. The inequality (1) implies that the intervals J (n > N) do not cover
B, hence there exists a point xe B— | )%, ,J,. Since xed— | VI,
1t follows from (1) that there exists an interval I € & with center x. I must
meet some interval I, with n> N. (Otherwise |I| <d, <2|I .| for all n,
contrary to > || Sm(G) < o0.) Let k be the least integer such that I
meets [,. Then k> N and |I| Zd, _, <2|I,]. It follows that the center x
of I belongs to Jy, contrary to x¢ | ¥, J,. [
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Let us write A ~ B when m(A4 a B)=0. This is an equivalence relation
In the class S of measurable sets. The following theorem says that the
mapping ¢ : S — S may be regarded as a function that selects one member
from each equivalence class. Moreover, it does so in such a way that

the selected sets constitute a class that includes the empty set, the whole
space, and 1s closed under intersection.

Theorem 3.21. For any measurable set A, let ¢(A) denote the set of

points of R where A has density 1. Then ¢ has the following properties,
where A ~ B means that A A B is a nullset :

1) ¢(A4)~ A,

2) A~ B implies ¢p(A)=d(B),
3) ¢(0)=9 and $(R)=R,

4) ¢(AnB)=¢(A)n¢(B),

5) ACB implies ¢(A)C ¢(B).

Proof. The first assertion is just the Lebesgue density theorem.
The second and third are immediate consequences of the definition of O.
To prove 4), note that for any interval I we have [ —(AnB)=(I — A)
U(I — B). Hence m(I)—m(INAnB)<m(I)—m(INA)+ m(Il) — m(I N B).
Therefore

m(lnA) N m(Il N B) 1< m(InAnB) |
u u 1]

Taking I'=[x—h,x+h] and letting h—0 it follows that P(A)N p(B)

Co(AnB). The opposite inclusion is obvious. Property 5) is a con-
sequence of 4). []
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4. The Property of Baire

The operation of symmetric difference, defined by

AAB=(AUB)—(AnB)=(4— B)U(B— A),

IS commutative, associative, and satisfies the distributive law An(B a C)

=(ANB)A(ANC). Evidently, AABCAuB and A A A=4. It 1s easy to

verify that any class of sets that is closed under A and N 1s a commutative
ring (in the algebraic sense) when these operations are taken to define

addition and multiplication, respectively. Such a class i1s also closed
under the operations of union and difference. It is therefore a ring of

subsets of 1ts union, as this term was defined in Chapter 3.

A subset A of r-space (or of any topological space) is said to have the

property of Baire if it can be represented in the form A = G A P, where G
1s open and P is of first category.

Theorem 4.1. A set A has the property of Baire if and only if it can be

represented in the form A=F A Q, where F is closed and Q is of first
category.

Proof. It A=G A P, G open and P of first category, then N=G -G
1s @ nowhere dense closed set, and Q=N A P is of first category. Let
F=G. Then A=GaAP=(GAN)aAP=Ga(NaP)y=FaQ. Con-
versely, itf A=F A Q, where F 1s closed and Q 1s of first category, let G
be the interior of F. Then N =F — G 1s nowhere dense, P=N A Q 1s of
first category, and A=FaQ0=(GaN)AQ=GA(NAQ)=GaP. []

Theorem 4.2. If A has the property of Baire, then so does its com-
plement.

Proof. For any two sets A and B we have (4 A B)Y = A" o B. Hence if

A=GnaP, then A =G 2o P, and the conclusion follows from Theo-
rem4.1. []

Theorem 4.3. The class of sets having the property of Baire iS- a
o-algebra. It is the o-algebra generated by the open sets together with
the sets of first category.
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Proof. Let A;=G;aP; (i=1,2,...) be any sequence of sets having
the property of Baire. Put G=| /G;, P=|)P;, and A=) A4;. Then G
1s open, P 1s of first category, and G—PCACGuUP. Hence GAACP
1s of first category, and A = G A (G & A) has the property of Baire. This
result, together with Theorem 4.2, shows that the class in question is a

o-algebra. It 1s evidently the smallest o-algebra that includes all open
sets and all sets of first category. []

Theorem 4.4. A set has the property of Baire if and only if it can be

represented as a G, set plus a set of first category (or as an F,_ set minus
a set of first category).

Proof. Since the closure of any nowhere dense set is nowhere dense,
any set of first category is contained in an F_ set of first category. If G

1s open and P is of first category, let Q be an F, set of first category that
contains P. Then the set E=G — Q is a G;, and we have

GaP=[(G—0Q)a(GnQ)]a(PAQ)
—EA[(GaP)nOT.

The set (G A P)nQ is of first category and disjoint to E. Hence any set
having the property of Baire can be represented as the disjoint union
of a G, set and a set of first category. Conversely, any set that can be so
represented belongs to the g-algebra generated by the open sets and the
sets of first category; it therefore has the property of Baire. The paren-

thetical statement follows by complementation, with the aid of Theorem
4.2. ]

A regular open set is a set that is equal to the interior of its closure.
Any set of the form 47" is regular open.

Theorem 4.5. Any open set H is of the form H=G — N, where G
is reqular open and N is nowhere dense.

Proof. Let G=H """ and N=G — H. Then G is regular open, N is
nowhere dense, and H=G — N. We have Nc G — H. Therefore G — N

DG — (G Hy=GnH=H. Also, H=G—-N>G—-N. Hence H
=G-—N. []

Theorem 4.6. Any set having the property of Baire can be represented
inthe form A= G a P,where Gisareqgular open set and P is of first category.

This representation is unique in any space in which every non-empty open
set is of second category (that is, not of first category).

Proof. The existence of such a representation follows from Theorem
4.5; 1n any representation we can always replace the open set by the
interior of its closure. To prove uniqueness, suppose GaAP=H A Q,
where G is a regular open set, H is open, and P and Q are of first category.
Then H— GCH A G=P » Q.Hence H — G is an open set of first category,
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therefore empty. We have H C G, and therefore H C G™'~' = G. Thus in the
regular open representation the open set G is maximal. If both G and H
are regular open, then each contains the other. Hence G=H and

P=0. [

Theorem 4.7. The intersection of any two reqular open sets is a regular

open set.
Proof. Let G=G™'7"and H=H '~'. Since GNn H 1s open, it follows
that GNHC(GNH)"7'CG7'=G.
Similarly,
GNHC(GNH)Y”"""CH ™" '=H.
Therefore G H=(GnH)"'"~'". []

All of the foregoing definitions and theorems apply to a space of any
number of dimensions (in fact, the proofs are valid in any topological
space). Comparison of Theorems 4.3 and 3.16 indicates that the class
of sets having the property of Baire is analogous to the class of measurable
sets, the sets of first category playing the role of nullsets. It should be
noted, however, that in Theorems 4.4 and 3.15 the roles of F, and G;,
are interchanged. Moreover, Theorem 4.1 has no analogue for measurable
sets; the best one can say is that a measurable set differs from some open
(or closed) set by a set of arbitrarily small measure. However, both
classes 1nclude the Borel sets, and each is invariant under translation.
Pursuing the analogy a step further, we have the following theorem,
in which x+ 4 denotes the set A translated by x. For simplicity, we
conline attention to the 1-dimensional case.

Theorem 4.8. For any linear set A of second category having the
property of Baire, and for any measurable set A with m(A)>0, there
exists a positive number o such that (x + A)N A & @ whenever |x| <o.

Proof. In the first case, let A=G A P. Since G 1s non-empty, it
contains an interval I. For any x, we have

(x+A)NAD[(x+DnNnI]—[Pu(x+ P)].

It |x| <|I|, the right member represents an interval minus a set of first
category; it is therefore non-empty. Hence we may take o =|I|.

In the second case, let F be a bounded closed subset of 4 with m(F) >0
(Theorem 3.18). Enclose F in a bounded open set G with m(G) < (4/3) m(F).
G 1s the union of a sequence of mutually disjoint intervals. For at least one
of these, say I, we must have m(FnI)>(3/4) m(I). Take o0 =m(I)/2.
If |x] <o, then (x + I)uI 1s an interval of length less than (3/2) m(I) that
contains both FnI and x + (Fn1I). These sets cannot be disjoint, because
m(x + (Fn1I))=m(FnlI)>(3/4) m(I). Since (x + A)NnAD[x+ (FnI]
N[ FnI], 1t follows that the left member i1s non-empty. |[]
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5. Non-Measurable Sets

Up to now, we have given no indication that the class of measurable sets,
or of sets having the property of Baire, does not include all subsets of the
line. We know that any set obtained as the result of countably many
applications of union, intersection, or complementation, starting from a
countable family of closed, open, or nullsets, will be measurable. It can
also be shown that any analytic set is measurable. (An analytic set 1s one
that can be represented as the continuous image of a Borel set.) According
to a result of Godel [18, p. 388], the hypothesis that there exists a non-
measurable set that can be represented as the continuous image of the
complement of some analytic set is consistent with the axioms of set
theory, provided these axioms are consistent among themselves. No
actual example of a non-measurable set that admits such a representation

1s known (but see [40, p. 17]). Nevertheless, with the aid of the axiom of
choice it 1s easy to show that non-measurable sets exist. We shall consider
several such constructions.

The oldest and simplest construction is due to Vitali (1905) |18, p. 59].
Let Q denote the set of rational numbers, considered as a subgroup of
the additive group of real numbers. The cosets of Q constitute a partition
of the line into an uncountable family of disjoint sets, each congruent
to O under translation. By the axiom of choice, there exists a set V
having one and only one element in common with each of these cosets.
Let us call any such set a Vitali set. The countable family of sets of the
form r + V (re Q) covers the line. It follows from Theorem 3.19 that V
cannot be a nullset. By Theorem 4.8, if V is measurable there exists a
number 0 > 0such that (x + V)"V & g whenever |x| < 8. But if x is rational
and x=+0, then (x+ V)NV =40, a contradiction. Hence V cannot be
measurable. “'

Exactly similar reasoning shows that no Vitali set V has the property
of Baire. V cannot be of first category, since the sets r + V (r € Q) cover
the line. Then, just as above, Theorem 4.8 implies that 7 cannot have the
property of Baire.

Let V=AUB be a partition of a Vitali set V into a set A of first
catcgory and a set B of measure zero (Corollary 1.7). Then A is non-
measurable but has the property of Baire, while B is measurable but

(I
o

lacks the property of Baire. Thus, neither of these two classes includes the
other.

An entirely different construction leading to a non-measurable set
is due to F. Bernstein (1908) [18, p. 422]. It is based on the possibility
of well ordering a set of power c. First we need

Lemma 5.1. Any uncountable G, subset of R contains a nowhere dense
closed set C of measure zero that can be mapped continuously onto [0, 17.

Proof. Let E= () G,, G, open, be an uncountable G, set. Let F denote
the set of all condensation points of E that belong to E, that is, all points x
in E such that every neighborhood of x contains uncountably many
points of E. F is non-empty; otherwise, the family of intervals that have
rational endpoints and contain only countably many points of E would
cover E, and E would be countable. Similar reasoning shows that F has
no 1solated points. Let I(0) and I(1) be two disjoint closed intervals of
length at most 1/3 whose interiors meet F and whose union is contained
in G,. Proceeding inductively, if 2" disjoint closed intervals I(i,,...,i )
(ix =0or 1) whose interiors all meet F and whose union is contained in G,
have been defined, let I(iy,...,i,,,) (i, ;=0 or 1) be disjoint closed
intervals of length at most 1/3"* " contained in G,, ,nI(i,, ..., i) whose
intertors meet F. From the fact that F has no isolated points and that
ECG,., 1t 1s clear that such intervals exist. Thus a family of intervals
I(iy, ..., I,) having the stated properties can be defined. Let

C={) U Il

Then C is a closed nowhere dense subset of E. C has measure zero for
the same reason as the Cantor set. (In fact, C is homeomorphic to the
Cantor set.) For each x in C there is a unique sequence {i,}, i =0 or 1,
such that x e I(iy, ..., i,) for every n, and every such sequence corresponds
to some point of C. Let f(x) be the real number having the binary
development. i,i,i;.... Then f maps C onto [0, 1]. Hence C has power c.

f 1s continuous because | f(x) — f(x)] < 1/2" when x and x’ both belong
to CnlI(iy,...,i). T[]

Lemma 5.2. The class of uncountable closed subsets of R has power c.

Proof. The class of open intervals with rational endpoints is countable,
and every open set is the union of some subclass. Hence there are at
most ¢ open sets, and therefore (by complementation) at most ¢ closed
sets. On the other hand, there are at least ¢ uncountable closed sets,
since there are that many closed intervals. Hence there are exactly c
uncountable closed subsets of the line. []

Theorem 5.3 (F. Bernstein). There exists a set B of real numbers such
that both B and B’ meet every uncountable closed subset of the line.
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By the well ordering principle and Lemma 5.2, the class & of un-
countable closed subsets of the line can be indexed by the ordinal
numbers less than w,, where w, is the first ordinal having c predecessors,
say # = {F,: o < w,}. We may assume that R, and therefore each member
of Z, has been well ordered. Note that each member of # has power c,

by Lemma 5.1, since any closed set is a G;. Let p, and g, be the first two.

members of F,. Let p, and g, be the first two members of F, different from
both p, and ¢q,. If 1l <a<w, and if pg and g, have been defined for all
B <a, let p, and g, be the first two elements of F, — | Js<,{Pg, g} This
set is non-empty (it has power c) for each «, and so p, and g, are defined
for all x<w,. Put B={p,:a<w.}. Since p,e BNnF, and g, BNk,
for each o < w., the set B has the property that both it and its complement
meet every uncountable closed set. Let us call any set with this property
a Bernstein set.

Theorem 5.4. Any Bernstein set B is non-measurable and lacks the
property of Baire. Indeed, every measurable subset of either B or B is a
nullset, and any subset of B or B’ that has the property of Baire is of first
category.

Proof. Let A be any measurable subset of B. Any closed set I con-
tained in A must be countable (since every uncountable closed set
meets B’), hence m(F) = 0. Therefore m(A4) = 0, by Theorem 3.18. Similarly,
if A is a subset of B having the property of Baire, then A = EU P, where E
is G, and P is of first category. The set E must be countable, since every
uncountable G, set contains an uncountable closed set, by Lemma 5.1,
and therefore meets B'. Hence A is of first category. The same reasoning
applies to B, []

Theorem 5.5. Any set with positive outer measure has anon-measurable

subset. Any set of second category has a subset that lacks the property of
Baire.

Proof. 1If A has positive outer measure and B is a Bernstein set,
Theorem 5.4 shows that the subsets AnB and AN B’ cannot both be
measurable. If 4 is of second category, these two subsets cannot both
have the property of Baire. []

The fact that every set of positive outer measure has anon-measurable
subset was first proved by Rademacher [30] by an entirely different
method.

The non-measurability of Vitali’'s set depended on group-theoretic
properties of Lebesgue measure (invariance under translation), that of
Bernstein’s set depended on topological properties (Theorem 3.18).
However, there is an even more fundamental reason, of a purely set-
theoretic nature, why (under certain hypotheses) a nontrivial measure
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cannot be defined for all subsets of a set X. This is the content of a famous

theorem of Ulam. (1930) [39]. This theorem does not refer directly to
measures on the line, but to measures in an abstract set X of restricted

cardmality. In the simplest case, it refers to measures in a set of power X, .
To say that X has power ¥, means that X can be well ordered in such
a way that each element is preceded by only countably many elements,

that is, .the elements of X can be put in one-to-one correspondence with
the ordinal numbers less than the first uncountable ordinal.

Theorem 5.6 (Ulam). A finite measure u defined for all subsets of a

set X of power WX, vanishes identically if it is equal to zero for every one-
element subset.

Proof. By hypothesis, there exists a well ordering of X such that

for ea?h ymX | the set {x : x < y} is countable. Let f(x, y) be a one-to-one
mapping of this set onto a subset of the positive integers. Then f is an

int;ger-valued function defined for all pairs (x, y) of elements of X for
which x < y. It has the property

(1) x<x'<y wmplies f(x,y)% f(x,y).

IFor each x 1n X and each positive integer n, define

Fe={y:x<y, f(x,y)=n}.
We may picture these sets as arranged in an array

FL F! . F! .
F2 F2 . F2 ..

iiiiiiiiiiiiii

---------------

with N, rows ‘and Ny columns. This array has the following properties:
(2) The sets in any row are mutually disjoint.

(3) Theunion ofthesetsinanycolumnisequal to X minusa countable set.

| To verify (2), suppose ye F*nF"., for some n and some ¥, x, and x’
with x <x". Then x<y, x'<y, and f(x, y) = f(x’, y)=n. Hence x = x",
by (1). Therefore, for any fixed n, the sets F; (x € X) are disjoint. |

T'o verity (3), observe that if x < y, then y belongs to one of the sets

F%, namely, that one for which n= f(x, y). Hence the union of the sets
Fy (n=1,2,...) differs from X by the countable set {y:y<xl.

nBy (2), ip any row -the.re can be at most countably many sets for which
u(FY) >0 (since u(X) is finite). Therefore there can be at most countably

many such sets in the whole array. Since there are uncountably many
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columns, it follows that there exists an element x in X such that u(F7)=0
for every n. The union of the sets in this column has measure zero, and
the complementary countable set also has measure zero. Therefore

u(X)=0, and so u is identically zero. |[]

Ulam established this result not only for sets X of power ¥X,, but also
for some sets of higher cardinality. A limit cardinal is said to be weakly
inaccessible if (i) it is greater than X, and (ii) it cannot be represented as a
sum of fewer smaller cardinals. It is called inaccessible if, in addition,
(iii) it exceeds the number of subsets of any set of smaller cardinality.
It is easy to see that c is not inaccessible ((iii) fails). If inaccessible cardinals
exist. even the smallest ones must be very large. By a continuation of the
above reasoning, Ulam showed that in Theorem 5.6 it 1s sufficient to
assume that no cardinal less than or equal to that of X is weakly 1n-
accessible. Neither Theorem 5.6 nor this generalization can be applied
to measures on the line unless we make some hypothesis about c. If we
assume the continuum hypothesis (which asserts that ¢ =¥,), or at least
if we assume that no cardinal less than or equal to c is weakly inaccessible,

then we can infer the following

Proposition 5.7. A finite measure defined for all subsets of a set of
power ¢ vanishes identically if it is zero for points.

This proposition carries with it a remarkable generalization. In
addition to the results mentioned above, Ulam showed that if a set X
admits a finite measure g such that u(X)>0 and pu({x})=0 for each
x € X, and if Proposition 5.7 is true, then X admits a two-valued measure
(taking only the values O and 1) having the same properties. According
to a theorem of Hanf and Tarski [32, p. 313], such a measure is possible
only if the cardinal number of X is enormously large, in fact, the cardinal
number of X must be preceded by an equal number of inaccessible
cardinals!

It should be pointed out that the non-measurability of a set does not
mean that no measure can be defined for it. In fact, it can be shown that
any subset of R is included in the domain of some extension of Lebesgue
measure. However, Theorem 5.6 shows that if ¢ =,, then no extension
of Lebesgue measure can be defined for every member of the array { F{}.
Even more remarkably, Banach [1] has shown that the continuum
hypothesis implies the existence of a countable family of sets that has this
property. But it should not be forgotten that unless we assume the con-
tinuum hypothesis, or make some special hypothesis concerning c,
neitber Proposition 5.7 nor the impossibility of extending Lebesgue
measure to all subsets of R has yet been proved.

26

6. The Banach-Mazur Game

Around 1928, the Polish mathematician S. Mazur invented the following
matherpatical “game.” Player (A4) is “dealt™ an arbitrary subset 4 of a
closed interval I,. The complementary set B = I, — A is dealt to player (B).
:l"he game <A, B) 1s played as follows: (4) chooses arbitrarily a closed
interval I 1 C Iy ; then (B) chooses a closed interval I, C I, ; then (A4) chooses
a closefl interval I3 CI,; and so on, alternately. Together the players
de:termme a nested sequence of closed intervals I, (4) choosing those
wﬂih qdd index, (B) those with even index. If the set () I, has at least one
point in common with A4, then (4) wins; otherwise, (B) wins.

| :Tpe question 1s: can one of the players, by choosing his intervals
judiciously, insure that he will win no matter how his opponent plays?
AI_lyone familiar with the proof of the Baire category theorem can hardly
fail to notice that in case the set 4 is of first category, there is a simple
strategy by which (B) can insure that he will win. If 4 = | ) 4,, 4, nowhere
dense, (B) has only to choose I,,C I,, , — A, for each n. Then no matter
how (A) plays, (B) will win. Mazur conjectured that only when A 1s of
first category can the second player be sure to win. Banach (unpublished)
proved this conjecture to be true [40, p. 23], [9].

T'osay precisely what it means for one of the players to be sure to win
we need to understand what is meant by a “strategy.” A strategy f013
elth§r player 1s a rule that specifies what move he will make in every
possible situation. At his n-th move, (B) knows which intervals I,. I, ...,
I,,_, have been chosen in the previous moves, and he knows the sets A4
anq B,.but that 1s all. From this information. his strategy must tell him
which interval to choose for I,,. Thus, a strategy for (B) is a sequence of
closed-interval-valued functions f,(I,,1,,...,L,,_,). The rules of the

game demand that

(1) fﬂ(‘[ ,Il,...,Izn__l)Clzn__l (nml,z,...).

The fupction /. must be defined at least for all intervals that satisfy the
conditions

(2) IL,bOLOL>--D1,,
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and
(3) IZim‘f.i(Io,Il,...,Izl-_l) (iml,z,.“,n-——l).

For this to be a winning strategy for (B), it is necessary and suflicient that
(M I, C B for every sequence I, that satisfies (2) and (3) for every n.

Theorem 6.1. There exists a strategy by which (B) can be sure to win
if and only if A is of first category.

Proof. Let f,, f,, ... be a winning strategy for (B). Let I° denote the
interior of any interval I. Given f, it is possible to define a sequence of
closed intervals J, (i=1, 2, ...) contained in I, such that (i) the intervals
K. = f,(I,, J,) are disjoint, and (ii) the union of their interiors i1s dense 1n .
One way to do this is as follows. Let S be a sequence consisting of all
closed intervals that have rational endpoints and are contained in I;.
Let J, be the first term of S. Having defined J,, ..., J;, let J;, ; be the first
term of S contained in I, — K; — K, — --- — K,. It 1s easy to verify, using
(1), that this construction defines inductively a sequence J; having the
required properties.

Similarly, for eachi,let J;;(j=1, 2, ...) be a sequence of closed intervals
contained in K} such that the intervals K;;= f,(I,, J;, K, J;;) are disjoint
and the union of their interiors is dense in K;. Then the union of all the
intervals K}; is dense in I,.

Proceeding inductively, we can define two families of closed intervals
J; ; and K; _; ,where nand each of the indices i) range over all positive

'-1 -!iln

integers, such that the following conditions are satisfied:
(4) K; = fulo Jis Kips Jiiys K

112 112 Y1163
O
(5) Ji C Kil

14629 "**? Jil...in) >

1---in+1 iiiin.

(6) For each n, the intervals K;, ; are disjoint, and the union of their
interiors 1s dense 1n I .

Now consider an arbitrary sequence of positive integers i,, and define

(7) IZn—-l‘"__"Jil..i ? IZﬂmKil..i (nﬁl,z,...).

L 41 . n

From (4) and (5) it follows that conditions (2) and (3) are satisfied for all n;
hence the nested sequence I, is a possible play of the game consistent with
the given strategy for (B). By hypothesis, the set () I, must be contained
in B.

For each n, define G,= | ) K} ;.Let E=()G,. Then for each x

in E there is a unique sequence iy, i,, ... such that xe K; _; for every n.
If this sequence is used to define (7), then x e () I, C B. This shows that
E C B. Consequently,
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Since (6) implies that each of the sets I, — G, is nowhere dense, A must
be of first category. []

i

This theorem gives new insight into the sense in which a set of first
category 1s small; 1t 1s a set on which even the first player is bound to
lose, unless his opponent fails to take adyantage of the situation.

| Theorem 6.2. There exists a strateg y’ by which (A) can be sure to win
if and only if I, "B is of first category for some interval I, C1,.

Proof. If such an interval exists, (4) can start by choosing it for 1.
T'hen, by an obvious strategy, he can insure that () I, is disjoint to B.
Since the intersection is non-empty, this is a winning strategy for (A).
Qn the other hand, if (4) has a winning strategy he can always modify
It S0 as to insure that the intersection of the intervals I will consist of
just one point of A. (For instance, this will be insured if he always chooses
I, asif I, had been a subinterval half as long.) This defines a winning
strategy for the second player in the game (I, "B, I, n A>. By Theorem
6.1, such a strategy can exist only if I, "B is of first category. []

Theorem 6.3. If the set A has the property of Baire, then (B) or (A)
possesses a winning strategy according as A is of first or second category.

Proof. Let A=G A P, where G is open and P is of first. category.

If G 1s empty, then (B) has a winning strategy, by Theorem 6.1. If G is

not empty, (A4) has only to choose I, C G to insure that he will be able to
win. []

A set E 1s said to be of first category at the point x if there exists a
neighborhood U of x such that UnE is of first category. Otherwise, E
1s said to be of second category at the point x. These notions are analogous
to the metric notion of density discussed in Chapter 3. The set G of points
at which A" 1s of first category is open. If 4 has the property of Baire,
G may be regarded as the category analogue of the set ¢(A) considered
in Theorem 3.21; it is the largest open set that differs from A4 by a set of
first category. Hence G is the same as the regular open set that appears
in Theorem 4.6. The fact that G differs from A by a set of first category
1s analogous to the Lebesgue density theorem.

By Theorems 6.1 and 6.2, one of the players possesses a winning
strategy 1f and only if 4 is of first category or B is of first category at some
point. By Theorem 6.3, one of these alternatives holds whenever 4 has
the property of Baire. Is it possible that neither may hold? Yes! Let A be
the intersection of I, with a Bernstein set. Then neither 4 nor B contains

an uncoyntable G; set (Lemma 5.1). Consequently, for any interval
I C1,, neither of the sets AN I or BN is of first category. (For if one is of

first category, the other is a set of second category having the property
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of Baire. By Theorem 4.4, any such set contains an uncountable G; set.)
Consequently, this game (A4, B) is not determined in favor of either
player.

The possibility of indeterminateness makes the Banach-Mazur game
particulary interesting for the general theory of games. It also raises
some interesting questions. If a game is determined in favor of one of the
players, should it be called a game of “skill™? If neither player can control
the outcome, is the outcome a matter of “chance™ What does “chance”
mean in this connection?

There is another version of the Banach-Mazur game, in which the
players alternately choose successive blocks of digits (of arbitrary finite
length) in the decimal (or binary) development of a number. If the
number so defined belongs to A, (4) wins; otherwise, (B) wins. In effect,
this is the same as the game with intervals, except that now all the intervals
are required to be decimal intervals. Any winning strategy for the
original game can easily be modified so as to satisfy this condition, and
Theorems 6.1, 6.2, and 6.3 remain valid. However, if the blocks are all
required to be of length 1, that is, if (4) and (B) alternately choose
successive digits in the development of a number, then we have an
entirely different game, a game which was first studied by Gale and
Stewart [8]. The conditions under which one of the players now has a
winning strategy are still not completely understood. It is not known, for
instance, whether this game is determined in favor of one or the other
player whenever A4 is a Borel set. Recent results suggest that the answer
may depend upon what set-theoretic axioms one assumes [22, p. 73].
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7. Functions of First Class

Let f be a real-valued function on R. For any interval I, the quantity

w(l) = sup f(x) — inf f(x)

xel xel

i1s called the oscillation of f on I. For any fixed x, the function w((x — 9,
x + 0)) decreases with 6 and approaches a limit

w(x) = ;2’% o((x -9, x+9)),

called the oscillation of f at x. w(x) is an extended real-valued function
on R. Evidently, w(x,) =0 if and only if f is continuous at x,. When it is
not zero, w(x,) 1s a measure of the size of the discontinuity of f at x,.

It w(x,) <e, then w(x)<¢ for all x in a neighborhood of x,. Hence

the set {x:w(x)<e} is open. The set D of all points at which 1 is dis-
continuous can be represented in the form

D = Ufﬁ:—q {x:w(x)=1/n},
hence D 1s always an F. set. Thus

Theorem 7.1. If f is areal-valued function on R, then the set of points
of discontinuity of f is an F_.

This theorem admits the following converse:

Theorem 7.2. For any F, set E there exists a bounded function f
having E for its set of points of discontinuity.

Proof. LetE =\ ) F,,where F,isclosed. We may assume that F, C F, , |,

tor all n. Let 4, denote the set of rational points interior to F,. For any
set A, the function y , defined by

1 Whenﬁ xe A

Xalx)= {O when x¢ A

1s called the indicator function (or characteristic function) of A. The func-

tion f, =yxr —x4.= xr. - 4. has oscillation equal to 1 at each point of
F,, and equal to O elsewhere. Let {a,} be a sequence of positive numbers
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such that a,> 3., a; for every n. (For instance, let a,=1/n!.) Then the
series 2, a, f,(x) converges uniformly on R to a bounded function f.
f is continuous at any point where all of the terms are continuous, hence
at each point of R — E. On the other hand, at each point of F, — F _,
the oscillation of f is at least equal to a,— ;> ,a;. Hence the set of

points of discontinuity of f is exactly E. []

A function f is said to be of the first class (of Baire) if it can be
represented as the limit of an everywhere convergent sequence of con-
tinuous functions. Such a function need not be continuous, as simple
examples show. For instance, the functions f,(x)= max (0, 1 —n|x]) are
continuous and the sequence converges pointwise to the discontinuous
function f(x)= 1 or 0 according as x =0 or x % 0. However, the following
theorem shows that a function of first class cannot be everywhere
discontinuous. It is known as Baire's theorem on functions of first class.
(More exactly, it is a part of Baire’s theorem.) It was in this connection
that Baire originally introduced the notion of category.

Theorem 7.3. If f can be represented as the limit of an everywhere
convergent sequence of continuous functions, then | is continuous exceplt

at a set of points of first category.

This should be compared with the well-known theorem that the
limit of a uniformly convergent sequence of continuous functions is
everywhere continuous.

Proof. Itsufficesto show that, foreach e >0, theset F = {x: w(x)= Se}
is nowhere dense. Let f(x)=lim f,(x), f, continuous, and define

En:mi,jgn{x:lfi(x)_fj(x)lgg} (n:1,2,...).

Then E, is closed, E,CE,,,, and | J E, is the whole line. Consider any
closed interval I. Since I = | ) (E,nI), the sets E,n I cannot all be nowhere
dense. Hence, for some positive integer n, E,n I contains an open interval
J.We have | f;(x) — fi(x)| Seforall xin J;i,j = n. Putting j=n and letting
i — o0, it follows that | f(x)— f,(x)|<¢ for all x in J. For any x, in J
there is a neighborhood I(x,)CJ such that |f,(x)— f,(xo) = ¢ for all x
in I(x,). Hence | f(x) — f,,(x)| = 2¢ for all x in I(x,). Theretore w(xy) < 4,
and so no point of J belongs to F. Thus for every closéd interval I there
is an open interval J C I — F. This shows that F is nowhere dense. [}

The reasoning just given can be used to prove more. With only slight
changes in wording, it applies when f and all of the functions f, are
restricted to an arbitrary perfect set P. In this case the notion of category
must be interpreted relative to P. The Baire category theorem remains
true: if an open interval I meets P, then no countable union of sets
nowhere dense relative to P can be equal to InP. Thus if f 1s any func-
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tion of first class and P is any perfect set, then the restriction of f to P is
continuous at all points of P except a set of first category relative to P.
Conversely, Baire showed that any such function is of first class. (For
an elementary proof, see [4, Note I1].) We shall not prove this, but merely
note that a simple example shows that the converse of Theorem 7.3 is
false. Let f(x)=0 at all points not in the Cantor set C, f(x)=1/2 at the
endpoints of each of the open intervals deleted in the construction of C,
and f(x)=1 at all other points of C. f is continuous except at a set of
points of first category, namely, at every point of C’. But the restriction
of f to C 1s discontinuous at every point of C, hence f is not of first class.

It 1s easy enough to formulate a necessary and sufficient condition
tor the conclusion of Theorem 7.3, namely,

Theorem 7.4. Let f be a real-valued function on R. The set of points

of discontinuity of f isof first category if and only if f is continuous at a
dense set of points.

This 1s an immediate consequence of Theorem 7.1 and the fact that an
F_ set 1s of first category if and only if its complement is dense.

Theorem 7.3 1s an extremely useful result. To illustrate how it serves
to answer several natural questions, we mention two examples.

It 1s well known that a trigonometric series may converge pointwise
to a discontinuous function. How discontinuous can the sum function
be? Can the sum of an everywhere convergent trigonometric series be
everywhere discontinuous? Theorem 7.3 shows at once that it cannot.

Again, 1t 1s well known that the derivative of an everywhere differen-

tiable function f need not be everywhere continuous. A familiar example
1s the function

f(x)=x*sin(l/x), f(0)=0.

Can the derivative of an everywhere differentiable function be everywhere
discontinuous? Theorem 7.3 answers the question, since

n= 0 1/n

() = lim XM= (X)

1s a function of first class when it is everywhere defined and finite.
Having found conditions under which the set D of points of dis-
continuity of a function is of first category, it is natural to inquire under

what conditions D is a nullset. One answer is provided by the following
well-known

Theorem 7.5. In order that a function f be Riemann-integrable on
every finite interval it is necessary and sufficient that f be bounded on
every finite interval and that its set of points of discontinuity be a nullset.
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For a given function f, bounded on I, let F(I) be the greatest lower
bound of all sums of the form

Z?m o),

where {I,, ..., 1.} 1s any subdivision of I, that 1s, any finite set of non-
overlapping closed intervals whose union 1s I. F(I) 1s the difference
between the upper and lower integrals of f on I; the equation F(I)=0
expresses the condition that f be Riemann-integrable on I. It 1s easy to
verify that if {I,, ..., I,} is any subdivision of I, then F(I)= > 7 F(I;). This
property of F 1s all that 1s needed to prove the following

Lemma 7.6. If w(x)<¢ for each x in I, then F(I)<¢gll|.

Proof. Suppose the contrary. Then F(I)=¢l|l|, and so F(I,)=¢|l|/2
for at least one of the intervals I, obtained by bisecting I. Similarly,
F(I,) = ¢|l,|/2 for at least one of the intervals I, obtained by bisecting I,.
By repeated bisection we obtain a nested sequence of closed intervals
I such that F(I.))= €|l|/2" (n=1, 2, ...). These intersect in a point x of I.
By hypothesis, w(x) < ¢ and therefore w(J) < ¢ for some open interval J
containing x. Choose nso that I, CJ. Then

F(L) = o)L = o(N)I|/2* <e|1|/2" S F(1),
a contradiction. []

Corollary 7.7. Anycontinuous functiononaclosedintervalisintegrable.

It may be noted that the above proof of this fact did not involve the
notion of uniform continuity.

Now, to prove Theorem 7.5, assume first that f 1s integrable on 1.
Then for any positive integer k, I can be divided into intervals I, ..., 1

such that n
dic o) L] < 1/k* .

Let > denote the sum over those intervals I for which w(x)=>1/k at
some interior point. Then

L/k* >3 (L)L = (1/k) 311
Therefore > '|I| < 1/k. The set
F,={xel:w(x)=1/k)} :

1s entirely covered by these intervals, except perhaps for a finite number of
points (endpoints of intervals of the subdivision). Therefore m(F,) < 1/k.
If D 1s the set of points of discontinuity of f, then DI is the union of
the increasing sequence F,, and we have

m(DAI)=lim m(F,)=0.

k— oo

It f 1sintegrable on every finite interval, it follows that D is a nullset.
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Conversely, suppose D is a nullset and that f is bounded on I, with
upper and lower bounds M and m, respectively. For any ¢ > 0, choose k
so that (M —m)+|I| <ke. Since F, is a bounded closed nullset, it is
possible to cover F, with a finite number of disjoint open intervals the
sum of whose lengths is less than 1/k. The endpoints of these intervals
that belong to I determine a subdivision of I into nonoverlapping

intervals I; and J; such that Y |I| < 1/k and w(x)< 1/k on each of the
intervals J;. Hence, by Lemma 7.6,

F()=2 F()+ > F(J) =M —m)3 L]+ > (1/k)|J;|
=M -m)k+|I|/k<ce.

Consequently, f is Riemann-integrable on 1.

T'o round out this discussion of points of discontinuity, one may ask
whether there is a natural class of functions that is characterized by
having only countably many discontinuities. One answer is provided by

Theorem 7.8. The set of points of discontinuity of any monotone

function f is countable. Any countable set is the set of points of dis-
continuity of some monotone function.

Proof. 1t f 1s monotone, there can be at most |f(b) — f(a)|/e points
in (@, b) where w(x)=e. Hence the set of points of discontinuity of f is
countable. On the other hand, let {x;} be any countable set, and let ¥ ¢,
be a convergent series of positive real numbers. The function f(x)

= D x.<x& 1S @ monotone bounded function. It has the property that
w(x;) = ¢; for each i, and w(x) = 0 for all x not in the sequence x;. []

This should be compared with the much deeper theorem, due to
Lebesgue, that any monotone function is differentiable (has a finite
derivative) except at a set of points of measure zero [31, p. 57.
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8. The Theorems of Lusin and Egoroff

A real-valued function f on R is called measurable if YU is
measurable for every open set U in R. f is said to have the property of
Baire if f~1(U) has the property of Baire for every open set U 1in R. In
either definition, U may be restricted to some base, or allowed to run
over all Borel sets. The indicator function y of a set E C R is measurable
it and only if E is measurable; y, has the property of Baire if and only
if E does.

If E has the property of Baire, then E=GAP=F A Q, where G 1s
open, F is closed, and P and Q are of first category. The set E — (PuUQ)
=G —(PuQ)=F —(PuQ)isbothclosed and open relative to R — (PUQ),
hence the restriction of y, to the complement of PuUQ 1s continuous.

More generally, continuity and the property of Baire are related as
tollows [ 18, p. 306].

Theorem 8.1. A4 real-valued function f on R has the property of Baire

if and only if there exists a set P of first category such that the restriction
of f to R— P is continuous.

Proof. Let U,, U,, ... be a countable base for the topology of R,
for example, the open intervals with rational endpoints. If f has the
property of Baire, then f~'(U;)=G;a P, where G, is open and P is of
first category. Put P= | ) P.. Then P is of first category. The restriction
g ot f to R— P is continuous, since g~ ' (U.,) =f"YU,)—P=(G,aP)—P
= G; — P 1s open relative to R — P for each i, and therefore so is g~ ' (U)
for every open set U.

Conversely, if the restriction g of f to the complement of some set P
of first category is continuous, then for any openset U, g ' (U)=G—P
for some open set G. Since

g~ (U)cf Y (U)cg Y (U)uP,

?

we have

G-PCcf YU)cCGuP.

Therefore /7' (U)=G a Q for some set Q0 C P. Thus f has the property
of Baire. []
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The relation between continuity and measurability is not quite so
simple. It 1s expressed by the following, known as Lusin’s theorem.

Theorem 8.2 (Lusin). A real-valued function f on R is measurable if
and only if for each ¢ >0 there exists a set E with m(E) < ¢ such that the
restriction of f to R — E is continuous.

Proof. Let U, U,, ... be a countable base for the topology of R.
If / 1s measurable, then for each i there exists a closed set F; and an open

set G; such that
F.cf~"(U)cG,; and m(G,—F)<¢g/2".

Put E={ )?(G;— F,). Then m(E) <e¢. If g denotes the restriction of f to

R — E. then
gml(UE):fml(Ui)“E:Fi—‘E:Gi""‘"E.

Hence g~ '(U,) is both closed and open relative to R — E, and it follows
that g 1s continuous.

Conversely, if f has the stated property there is a sequence of sets
E; with m(E;) < 1/i such that the restriction f; of f to R — E; is continuous.
For any open set U there are open sets G, such that ;"' (U)=G, — E.

(i=1,2,...). Putting E= [\ E,;, we have
ST —-E=2 . (U -E)=UZ. £ ().
Consequently,

SO =L U)NE]JuJZ.1(G:— E).

All of these sets are measurable, since m(E)=0, and therefore f is a
measurable function. []

A measurable function need not be continuous on the complement of
a nullset. To see this we construct an example as follows. Let U, U,, ...
be a base for the topology of R. Since every interval contains a nowhere
dense set of positive measure, we can define inductively a disjoint sequence
ofnowheredense closed sets N, such thatm(N,)>0and N, ,UN,,_, CU,.
Put A={)”N,,, and let f be the indicator function of A. Since 4
and R — A have positive measure in every interval, the restriction of f
to the complement of any nullset is nowhere continuous.

The following result, known as Egoroff’s theorem, establishes a
relation between convergence and uniform convergence.

Theorem 8.3. If a sequence of measurable functions f, converges to
f at each point of a set E of finite measure, then for each ¢ >0 there is a
set F C E with m(F) < ¢ such that f, convergesto f uniformly on E—F.

Proof. For any two positive integers n and « let

E, .= {xe E: | fi(x)— f(x)|2 1/k} .
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Then E, , DE,., ,and (2, E, =9, for each k. Given &> 0, for each k
there is an integer n(k) such that m(E,, ;) <é&/2*. Put F=| ) E . x-
Then m(F)<e. For each kK we have E—FCE—-E,,, , Therefore

| fi(x)— f(x)] < 1/k for all i=n(k) and all xe E— F. Thus f, converges
to f uniformly on E—F. []

It 1s interesting to note that while Lusin’s theorem has a very satis-
factory category analogue in Theorem 8.1, the corresponding analogue
of Egoroff’s theorem is false. This is shown by the following example.

Let ¢(x) be the piece-wise linear continuous function defined by
d(x)=2xo0n[0,1/2],¢(x)=2—2xo0n[1/2,1],and ¢(x)=00on R — [0, 1].
Thenlim,_ , ¢(2"x)=0forevery x in R. Let {r,} be a dense sequence in R,
and define f,(x)=>2,27"'¢(2"(x—r;)). As the sum of a uniformly
convergent series of continuous functions, f, 1s continuous on R, and
lim,,, , f,(x)=0foreach xin R. If (a, b) is any open interval, then r; € (a, b)
for some i, and we have sup, . ., f,(x)= 1/2' for all sufficiently large n.
This shows that f, does not converge uniformly on (a, b). Let E be any
set on which f, does converge uniformly. This means that if we let
o, = SUP, g fa(X), then o,—0. Because f, 1s continuous, «, i1s also the
supremum of f, on E. Hence f, converges to O uniformly on E. From
what we have shown, E cannot contain an interval. Therefore any set
on which the sequence { f,} converges uniformly is nowhere dense.
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9. Metric and Topological Spaces

The usefulness of the notion of category only becomes fully apparent
in more general spaces, especially metric spaces. Let us recall the basic
definitions.

A metric space 1s a set X together with a distance function or metric
o(x, y) defined for all pairs of points of X and satisfying the following
conditions:

1) o(x,y)=0, o(x, x)=0,

(
(2) o(x, y)=o0(y, x),

(3) o(x, z2) < o(x, y)+0(y, z) (triangle inequality),
(4) o(x,y)=0 1mplies x =y.

This notion (due to Frechet) is a natural abstraction of some of the
properties of distance in a Euclidean space of any number of dimensions.
Many theorems in analysis become simpler and more intuitive when
formulated in terms of a suitable metric.

A sequence x,, x,, ... of points of a metric space (X, g) is said to
converge to the point x if o(x,, x) >0 as n— co. We then write x,—»>x. A
sequence 1S convergent if 1t converges to some point of X. The set of
points {x:o(x,, x)<r}, r>0, i1s called the r-neighborhood of x,, or the
ball with center x, and radius r.

A set G C X 1s called open if for each x 1in G, G contains some ball with
center x. Balls are open sets, and arbitrary unions and finite intersections
ol open sets are open. Any class 7 of subsets of a set X such that @, X, the
union of any subclass of .7, and the intersection of any finite subclass of
7 belongs to 7 is called a topology in X, and the pair (X,9) 1s called a
topological space. A subclass 7,C .7 is a base for the topology if each
member of J is the union of some subfamily of 7,. The open subsets of
any metric space X constitute a topology in X, but not every topology
can be represented 1n this way.

A metric space i1s called separable if it has a countable dense subset, or,
equivalently, a countable base. Two metrics in a set X are topologically
equivalent if they determine the same topology. Very often it 1s the
topological structure of a metric space that i1s of primary interest, and the
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metric 1s regarded as auxiliary. Any property that is definable in terms
of open sets alone is a topological property. For instance, convergence 1s a
topological property, because x,— x if and only if every open set that
contains x contains all but a finite number of terms of the sequence.

The complement of an open set is called closed. In a metric space X,
a set F 1s closed if and only if {x,} CF, x,— x imply x € F. The smallest
closed set that contains a set 4 is called the closure of A4: it is denoted by
A or A~. Similarly, the largest open set contained in A is called the
interior of A;1tisequal to A'~’. A is a neighborhood of x if x belongs to the
interior of A. A set A4 is dense (in X) if A= X, that is, if every non-empty
open set contains at least one point of 4. A set A is nowhere dense if the
interior of its closure is empty, that is, if for every non-empty open set
G there 1s a non-empty open set H contained in G — 4. A set is of first
category 1f it can be represented as a countable union of nowhere dense
sets; otherwise, 1t is of second category. F, sets, G, sets, Borel sets, and
sets having the property of Baire are defined exactly as before. All of

these are topological properties of sets, and the definitions apply to any
topological space.

A mapping f of a topological space X into a topological space Y
IS continuous at the point x, in X if for every open set V' that contains f(x,)
there 1s a neighborhood U of x, such that f(x)e V for every xe U. A
mapping f: X —Y is continuous if it is continuous at each point of X.
A one-to-one mapping f of X onto Y is called a homeomorphism if
both f and f ™' are continuous. When such a mapping exists, X and Y
are said to be homeomorphic or topologically equivalent. Two metrics
0 and ¢ in a set X are topologically equivalent if and only if the identity

mapping of X onto itself is a homeomorphism of (X, o) onto (X, o).

For this it 1s necessary and sufficient that o(x,, x)—0 if and only 1if
a(x,, x)—0.

A sequence of points x, of a metric space (X, o) is called a Cauchy
sequence 1f for each ¢ > 0 there is a positive integer » such that e(x;, x;) <e

tor all i, j=n. Every convergent sequence is Cauchy, but the converse
1S not generally true. However, there is an important class of spaces in
which every Cauchy sequence is convergent. Such a metric space 1s said

to be complete. For instance, the real line is complete with respect to the
usual metric [x — y|. “

It 1s important to realize that completeness is not a topological
property, and that the class of Cauchy sequences (unlike the class of
convergent sequences) 1s not preserved under homeomorphism. For
Instance, the mapping that takes x into arc tan x is a homeomorphism
of the line X onto the open interval ¥ =(— n/2, n/2). Here X is complete

but Y is not. The sequence y, = arc tann is Cauchy in Y, but the sequence
X, =hn1s not Cauchy in X.
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A metric space (X, p) 1s topologically complete 1f 1t 1s homeomorphic
to some complete space. If f 1s a homeomorphism of (X, ¢) onto a com-
plete space (Y, o), then o(f(x), f(y)) 1s a metric in X topologically
equivalent to ¢. Thus a metric space is topologically complete if and only
if 1t can be remetrized (with a topologically equivalent metric) so as to
be complete. An important property of such spaces is that the Baire
category theorem still holds.

}

Theorem 9.1. If X is a topologically complete metric space, and if A
is of first categoryin X,then X — A is dense in X.

Proof. Let A=) A,, where A4, is nowhere dense, let ¢ be a metric
with respect to which X 1s complete, and let S, be a non-empty open set.
Choose a nested sequence of balls §, of radiusr, < 1/nsuch that§,CS§,_,
— A, (n=1). This can be done step by step, taking for §, a ball with
center x, in S, _, — A, (which is non-empty because A, is nowhere dense)
and with sufficiently small radius. Then {x,} is a Cauchy sequence, since

Q(xiﬂxj)ég(xiaxn)+g(xnaxj) <2rn fOI' l')];n

Hence x, — x for some x in X. Since x; € S, fori = n, it follows that x € (') S
CSy— A. Thisshows that X — Ai1sdensein X. []

A topological space X is called a Baire space 1f every non-empty open
set in X 1s of second category, or equivalently, if the complement of
every set of first category is dense. In a Baire space, the complement of
any set of first category is called a residual set.

Theorem 9.2. In a Baire space X, a set E is residual if and only if E
contains a dense Gz subset of X.

Proof. Suppose B= ()G,, G, open, is a G, subset of E that is dense
in X. Then each G, is dense, and X —EC X — B=|{ )(X —G,) is of first
category. Conversely, if X — E=1{ ] A,, where A, is nowhere dense, let
B=()(X—A4,). Then B is a G, set contained in E. Its complement
X —B=|)A,is of first category. Since X is a Baire space, it follows that
Bisdensein X. []
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10. Examples of Metric Spaces

Let C, or C[a, b], denote the set of all real-valued continuous functions

/ on the interval [a, b1, and define

o(f,9)=Sup, <, <,| f(x)—g(x)].

It 1s easy to verify that ¢ is a metric in C: in particular, the triangle

inequality follows from the fact that

[ (%) = h(X)| Z | f (x) — g(x)| + |g(x) — h(x)
=o(f,9)+o(g, h)

for all x in [a, b]. Convergence in this metric means uniform convergence
on [a, b]. For this reason, g is called the uniform metric.

Let { f,} be any Cauchy sequence in C, say o(f;, f J=cetoralli,j=n(e).
Then

| fi(x)— fi(x)I<e forall ij=n() and a<x<b.

Hence, for each x in [a, b], { f,(x)} is a Cauchy sequence of real numbers.

It therefore converges to a limit f(x). Letting j— oo we see that | f;(x)
— f(x)|<e for all i=n(e) and all x in La,b]. Thus f; converges to f

uniformly on [a, b]. By a well-known theorem, it follows that f 1s con-

Finuous on [a,b]. Hence f,— f in C. This shows that the space (C, o)
1S complete.

Next consider the same set C, but take for metric the function
o(f,9)=|alf(x)—g(x) dx .

Agaip {t 18 easy to verify that all the axioms are satisfied.. To see that this
metric s not topologically equivalent to g, take £, (x) = max (1 —n(x — a), 0)
and let f be the zero function. Then o(f,, f)= 1/2n for n>1/(b — a), but

o(fn, f)=1.Thus f,— fin (C, ¢) but not in (C, 0), hence these spaces are
not homeomorphic.

T'o see that (C, 0) is not complete, take [a, b] = 10, 1], and let

£ (x) = {min(l, 1/2—n(x—1/2)) on [0,1/2]
' max(0,1/2 —n(x—1/2)) on [1/2,1].
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From the graph of this function 1t 1s clear that

0(fns Jr) =1/ 1/n— 1/m] .

Hence f, 1s a Cauchy sequence. Suppose o(f,, f)—0 as n— oo for some
f 1n C. Then

o(fn )2 j(l)/zmlfznll — f(x)| dx + H/2+ 1/2n§f(x)| dx .

Letting n— oo it follows that

(4211 = f)dx =L, f(x)dx=0.

Since f is continuous, we must have f(x)=1 on [0, 1/2] and f(x)=0
on [1/2, 1], which 1s impossible.

Next consider the set R[a,b] of Riemann-integrable functions on
[a, b], with the same metric . Here we encounter a difficulty: the fourth
axiom 1S not satisfied. A set X with a distance function that satisfies only
the first three axioms is called a pseudo metric space. Such a space can
always be made into a metric space by identifying <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>