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Preface

This book 1s intended to provide a reasonably self-contained account of a
major portion of the general theory of rings and modules suitable as a text
for introductory and more advanced graduate courses. We assume the famil-
1arity with rings usually acquired in standard undergraduate algebra courses.
Our general approach is categorical rather than arithmetical. The continuing
theme of the text 1s the study of the relationship between the one-sided
ideal structure that a ring may possess and the behavior of its categories of
modules.

Following a brief outline of set-theoretic and categorical foundations, the
text begins with the basic definitions and properties of rings, modules and
homomorphisms and ranges through comprehensive treatments of direct
sums, finiteness conditions, the Wedderburn-Artin Theorem, the Jacobson
radical, the hom and tensor functions, Morita equivalence and duality, de-
composition theory of injective and projective modules, and semiperfect and
perfect rings. In this second edition we have included a chapter containing
many of the classical results on artinian rings that have helped to form the
foundation for much of the contemporary research on the representation
theory of artinian rings and finite dimensional algebras. Both to illustrate the
text and to extend 1t we have included a substantial number of exercises
covering a wide spectrum of difficulty. There are, of course, many important
areas of ring and module theory that the text does not touch upon. For
example, we have. made no attempt to cover such subjects as homology, rings
of quotients, or commutative ring theory.

This book has evolved from our lectures and research over the past
several years. We are deeply indebted to many of our students and colleagues
for their ideas and encouragement during its preparation. We extend our
sincere thanks to them and to the several people who have helped with the
preparation of the manuscripts for the first two editions, and/or pointed out
errors in the first. .

Finally, we apologize to the many authors whose works we have used but
not specifically cited. Virtually all of the results in this book have appeared in
some form elsewhere in the literature, and they can be found either in the

books and articles that are listed in our bibliography, or in those listed in the
collective bibliographies of our citations.

Eugene, OR Frank W. Anderson
Iowa City, IA Kent R. Fuller

January 1992
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Preliminaries l
§0. Preliminaries

In this section is assembled a summary of various bits of notation, termin-
ology, and background information. Of course, we reserve the right to use
variations in our notation and terminology that we believe to be self-
explanatory without the need of any further comment.

A word about categories. We shall deal only with very special concrete
categories and our use of categorical algebra will be really just terminological
—at a very elementary level. Here we provide the basic terminology that we
shall use and a bit more. We emphasize though that our actual use of 1t will
develop gradually and, we hope, naturally. There 1s, therefore, no need to try
to master it at the beginning.

0.1. Functions. Usually, but not always, we will write functions “on the
left”. That is, if f1s a function from A to B, and if a € A, we write f(a) for the
value of f at a. Notation like f: A — B denotes a function from A to B. The

elementwise action of a function f: 4 — B is described by

f:a—f(a) (ae A).
Thus, if A" = A, the restriction (f | A’) of fto A" 1s defined by
(flA'):a'— f(a')  (a' € A)
Given f:A - B, A’ < A, and B’ < B, we write
f(4)={f@|aea} and f~(B)={acA|f(a)eB}.

For the composite or product of two functions f: 4 - Band g:B — C we write
g ° f, or when no ambiguity is threatened, just gf; thus, g o f: A — C is defined
by gof:ar>g(f(a)) for all ae A. The resulting operation on functions is
associative wherever it is defined. The identity function from A to itself is

denoted by 1,. The set of all functions from A4 to B is denoted by B or by
Map(A, B):

B* = Map(A,B) = {f | f:A - B}.

So A% is a monoid (= semigroup with identity) under the operation of
composition.
A diagram of sets and functions commutes or is commutative in case travel

around 1t is independent of path. For example, the first diagram commutes
iff f = hg. If the second is commutative,

AL B AL BSAC
4 |1/
C D E

then in particular, travel from A4 to E is independent of path, whence
J9f = ih.
A function f: A — B is injective (surjective) or is an injection (surjection)
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in case it has a left (right) inversef':B — A;thatis,incasef'f = 1,(ff' = 1p)
for some f':B — A. So (see (0.2)) f:A — B 1s 1njective (surjective) iff 1t 1s
one-to-one (onto B). A function f: A — B 1s bijective or a bijection in case
it is both injective and surjective; that is, iff there exists a (necessarily unique)
inverse f "1:B—> Awithff ™' = lgand f " 'f = 1,.

If A < B, then the functioni = i,_p: 4 — Bdefined byi = (13| A):ar>a
for all ae A is called the inclusion map of A in B. Note that if A = B and
Ac C,andif B# C,theni,_.g#i,... Of course 1, = i,.,.

With every pair (0, 1) there i1s a Kronecker delta; that 1s, a function
d:(a, B)+— 9,4 on the class of all ordered pairs defined by

5 | fax =4
* 10 ifa# B

Whenever we use a Kronecker delta, the context will make clear our choice
of the pair (O, 1).

0.2. The Axiom of Choice. Let A be a set, let . be a collection of non-
empty subsets of B, and let o be a function from A to &. Then the Axiom of
Choice states that there 1s a function g: A — B such that

g(a) € o(a) (ae A).

Suppose now that f: B — A 1s onto A4; that 1s, f(B) = A. Then for each a € A,
there 1s a non-empty subset a(a) = f “({a}) < B. Applying the Axiom of
Choice to A, the function ¢:a+ ag(a), and the collection & of subsets of B
produces a right inverse g for f, so as claimed 1n (0.1), f is surjective.

Let ~ be an equivalence relation on a set A. A subset R of A 1s a (complete)
irredundant set of representatives of the relation ~ 1n case for each ae A4
there i1s a unique a(a)e R such that a ~ ag(a) The Axiom of Choice
guarantees the existence of such a set of representatives for each equivalence
relation.

0.3. Cartesian Products. A function g:4 — X will sometimes be called
an indexed set (in X indexed by A) or an A-tuple (in X)) and will be written as
0 = (xa)aeA

where x, = a(a). If A = {1,...,n}, then we also use the standard variation
(X,)ae s = (X4,..., X,) Let (X,),. . be an indexed set of non-empty subsets of a
set X. Then the (cartesian) product of (X,),. , 15

XX, ={0:4A-> X|a(x)e X, (xeA)}.

That is, X , X, is just the set of all A-tuples (x,),., such that x, € X, (x € A).
By the Axiom of Choice X, X, is non-empty. If A = {l,...,n}, then we
allow the notational variation

XX, =X, x...xX,.

Note that if X = X, (x € A), then the cartesian product X, X_ is simply X4,
the set of all functions from A to X. For each ae A the «-projection
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n,. X, X, = X,1sdefined via
T, .0 +—> d(a) (ce X, X,)

In A-tuple notation, m,((xz)s.4) = X,. An easy application of the Axiom of
Choice shows that each m, 1s surjective. Observe that if ¢ and ¢’ are 1n this
cartesian product, then o = ¢’ iff 1,6 = =n, o’ for all « € A. This fact establishes
the uniqueness assertion in the following result. This result, whose easy
proof we omit, 1s used in making certain definitions coordinatewise.

0.4. Let (X,),., be an indexed set of non-empty sets, let Y be a set, and for
each o€ A, let f,:Y — X,. Then there is a unique f.:Y - X X, such that
n. [ = f, for each a € A.

0.5. Posets and Lattices. A relation < on a set P is a partial order on P
In case 1t 1s reflexive (a < a), transitive (a < band b < ¢ = a < ¢), and anti-
symmetric(a < band b < a= a = b). A pair (P, <) consisting of a set and a
partial order on the set is called a partially ordered set or a poset. If the partial
order is a total order (a < b or b < a for every pair q, b), then the poset 1s a
chain. If (P, <) is a poset and if P’ < P, then (P’, <')1s a subposet in case <’
1s the restriction of < to P’; of course, this requires that (P, <’) be a poset.
Henceforth, we will usually identify a poset (P, <) with its underlying set P.

Let P be a poset and let A = P. An element e€ A 1s a greatest (least)
element of A 1n case a < e (e < a) for all ae A. Not every subset of a poset
has a greatest or a least element, but clearly if one does exist, 1t 1s unique.
(See Example (2) below.) An element b e P 1s an upper bound (lower bound)
for A in case a < b (b < a) for all ae A. So a greatest (least) element, 1f i1t
exists, is an upper (lower) bound for A. If the set of upper bounds of 4 has a
least element, 1t 1s called the least upper bound (lub), join, or supremum (sup)
of A; if the set of lower bounds has a greatest element, 1t i1s called the greatest
lower bound (glb), meet, or infimum (inf) of A. A lattice (complete lattice) 1s a
poset P in which every pair (every subset) of P has both a least upper bound
and a greatest lower bound 1n P.

Examples. (1) Let X be a set. The power set of X is the set Z(X) of all
subsets of X. Then 2(X) is certainly a poset under the partial order of set
inclusion. This poset is a complete lattice for if .o/ 1s a subset of (X)), then its
join in 2(X) 1s its union U/ and 1ts meet in 2(X) 1s its intersection N.</.

- (2) Let X be a set and let #(X) be the set of all finite subsets of X. Then
Z(X) is a poset under set inclusion, and it is a lattice for if A, Be #(X), then
A U B and A n B are their join and meet. Since these are also join and meet
of A, B in (X), it follows that % (X) is a sublattice of (X ). But note that if
X 1s infinite, #(X) is not complete.

(3) Let X be the closed unit interval on the real line. Then the set #(X)
of all closed intervals in X is certainly a subposet of 2(X). Also the inter-
section (= meet in (X)) of any subset of #(X)is again in #(X). The convex
closure of the union of any subset .o/ of ¢(X) is in #(X) and is clearly the
join of &/ in #(X). So #(X)is a complete lattice. But _#(X)is not a sublattice
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of P(X) precisely because the join in #(X) of some pairs of elements of #(X)
is not their join (= union) 1n Z(X).

(4) Let X be a two-dimensional real vector space and let ¥(X) be the
set of all subspaces. Then &(X) 1s a subposet of Z(X), and the intersection
of any subset of & (X) 1s again in &(X). The join in .#(X) of any subset .o/
of #(X) is the subspace spanned by the union uU./ (not necessarily u.o/
itself). So (X)) 1s a complete lattice but it 1s not a sublattice of 2(X).

Let P be a lattice. Then each pair a, b € P has both a join and a meet in P;

let us denote these by a v b and a A b, respectively. Then the maps v and A
from P x P to P defined by

(a,b)—a v b and (a,b)—a A b

are binary operations on P. It 1s easy to see that both (P, v) and (P, A) are
commutative semigroups with

ava=a=aAa (a € P).

The lattice 1s said to be modular in case it satisfies the modularity condition:
Forall a,b,ce P

a>bimpliesan(bvc)=>bv(anac)

Most lattices we encounter will be modular (but note (3) above). The lattice
1s distributive 1n case it satisfies the stronger property: For all a, b, ce P

an(bvc)=(anb)vi(an o).

Examples (1) and (2) above are distributive, but (4) 1s not.

0.6. A partially ordered set P is a complete lattice if P has a join (i.e., P
contains a greatest element) and every non-empty subset of P has a meet in P.

Proof. 1t will suffice to prove that if B = P, then B has a join in P. Let
e € P be the greatest element of P. Then e > x for all x € P. In particular, the
set of upper bounds of B 1s non-empty, so it has a meet. Clearly this meet
of the upper bounds of B is an upper bound of B and hence the join of B. [

0.7. Lattice Homomorphisms. Let P and P’ be posets. A map f:P — P’ is
order preserving (order reversing) In case whenever a < b in P, then

fla) <f) (f(b)<f(a)) n P. If P and P’ are lattices, then f is a lattice
homomorphism (lattice antihomomorphism) in case whenever a, b € P,

flav b)=f(a)v f(b) (f(av b)=f(a) A f(b))
fl@anb)=fla)nf(b) (f(anb)=f(a)v f(D))

It is easy to see (using a < b<>a = a A b) that a lattice-homomorphism is
order preserving. The converse, however, is false (try the inclusion map
F(X) - 2(X) in example (3) of (0.5)). A bijective lattice (anti-) homomor-
phism is a lattice (anti-)isomorphism. It 1s a simple exercise to prove the
following useful test:
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0.8. Let P and P’ be lattices, and let f:P — P’ be bijective with inverse
f~1:P" > P. Then fis a lattice isomorphism if and only if both f and f ~! are
order preserving.

0.9. The Maximal Principle. Let P be a poset. An element meP is
maximal (minimal) iIn P 1n case xe P and x > m (x < m) implies x = m.
Clearly, a greatest (least) element in P, if it exists, is maximal (minimal) in P;
on the other hand, a poset may have many maximal (minimal) elements and
no greatest (least) element.

A poset P 1s inductive 1n case every subchain of P has an upper bound in
P; that 1s, for every subset C of P that is totally ordered by the partial
ordering of P, there 1s an element of P greater than or equal to every
element of C. The Maximal Principle (frequently called Zorn’s Lemma) is

an equivalent form of the Axiom of Choice (see Stoll [63] for the details). It
states:

Every non-empty inductive poset has at least one maximal element.

0.10. Cardinal Numbers. Two sets 4 and B are cardinally equivalent or
have the same cardinal in case there 1s a bijection from A to B (and hence one
from B to A). Since this clearly defines an equivalence relation, the class of all
sets (see (0.11)) can be partitioned into its classes of cardinally equivalent
sets. These classes are the cardinal numbers. The class of a set A4 1s denoted by

card A:
card A = {B|there is a bijection A — B}.

Given two sets A and B we write
card A < card B

In case there 1s an injection from A4 to B (or, equivalently, a surjection from
B to A). Clearly this 1s independent of the representatives A and B. Given
sets A and B there 1s always an injection from one to the other. The
Cantor—-Schroder—Bernstein Theorem states that

If card A <card B and card B <card A, then card A = card B.

Thus the relation < i1s a total order on the class of cardinal numbers.

Let N = {1, 2,...} be the natural numbers. Its cardinality is often denoted
by cardN =¥,. A set A 1s finite If card A < card N. Of course,
card ({1,...,n}) = nand card @& = 0. If card A < card N, then A is countable.
If card A > card N, then A is infinite.

The operations of cardinal arithmetic are given by
card A + card B = card((A x {1}) U (B x {2}))
card A - card B = card(A x B)
(card A)r® = card(A®)

If A and B are finite sets these operations agree with ordinary addition,
multiplication and exponentiation. Moreover, they satisfy:
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(1) If A is infinite then, card A + card B = max{card A, card B}.
(2) If A is infinite and B # &, then

card A - card B = max{card A, card B}.
(3) For all sets A, B, and C,

((card A)(card B))(Card C) — (Card A)(card B) - (card C)'

(4) If card B > 2, then (card B)“**4 > card A.
[t 1s easy to establish the existence of a bijection between the power set 2(A4)
and the set of functions from A to {1, 2}. Thus card(P(A)) = 2“4 > card A.

However, the set of finite subsets of any infinite set A has the same cardinality
as A. For further details see Stoll [63].

0.11. Categories. The term “class”, like that of “set”, will be undefined.
Every set is a class, and there 1s a class containing all sets. Note that if 4 1s a
set and ¥ is a class, then an indexed class (4¢)c. « In 2(A4) has a union and an
intersection in A. Let € be a class for each pair A, Be €, let mor-(A, B) be a
set; write the elements of mor-(A, B) as “arrows” f:4 — B for which A4 is

called the domain and B the codomain. Finally, suppose that for each triple
A, B, C e € there 1s a function

o:mor.(B, C) x mor.(A, B) = mor.(A, C).
We denote the arrow assigned to a pair
g B-C f.A—- B

by the arrow gf: 4 — C. The system C = (¥, mor, o) consisting of the class

€, the map mor.:(A, B)— mor-(A, B), and the rule - 1s a category 1n case:
(C.1) Foreverytriple h:C - D,g:B—->C,f:A - B,

ho(gof) = (hog)ef

(C.2) For each A €%, there 1s a unique 1, e mor-(A, A) such that if
f:A— Bandg:C — A, then

fol, =f and l,09g=g.

[t C1s a category, then the elements of the class € are called the objects of the
category, the “arrows” f: 4 — B are called the morphisms, the partial map o is
called the composition, and the morphisms 1, are called the identities of the
category. A morphism f: A — B in C is called an isomorphism in case there
is a (necessarily unique) morphism f ~':B — A4 in Csuch that f~'of =1,
and fof ! = 1,.

For our purpose the most interesting categories are certain “concrete”
categories. Let C = (¥, mor, o) be a category. Then C is concrete in case
there 1s a function u from € to the class of sets such that for each A, Be &

morc(A, B) < Map(u(A), u(B)),

lA — lu(A)s
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and such that o 1s the usual composition of functions. Here an isomorphism
f:A — Bisa byection f:u(A) — u(B).

Examples. (1) Let & be the class of all sets; for each A4, Be %, let
mor.(A, B) = Map(A, B), and for each A,B,Ce%, let o:mor.(B,C) x
mors(A, B) - mors(A, C) be the composition of functions. Then § =
(&, mors, ©) 1s a concrete category where u(4) = A for each A e <. Call S the
category of sets.

(2) Let & be the class of all groups, let mor. (G, H) be the set of all group
homomorphisms from G to H, and again let - be the usual composition of
functions. Then G = (¥4, morg, ) 1s a concrete category, the category of
groups, where u(G) 1s the underlying set of G.

(3) The category of V real vector spaces 1s the category (¥~, mor,, o) where
¥~ 1s the class of real vector spaces, mor, (U, V) 1s the set of linear trans-
formations from U to V, and - is the usual composition. This category is
concrete where u(V') 1s the underlying set of V. ,

(4) Let 2 be the class of all posets, mor,(P, Q) the set of all monotone
maps (order preserving and order reversing ones), and o the usual com-
position. Then (2, mor,, <) 1s not a category, for o 1s not as required—the
composite of two monotone functions need not be monotone.

It C = (¥, mor., <) is a concrete category, then the set u(A) 1s called the
underlying set of A€ .

A category D = (9, mor,, o) 1s a subcategory of C = (€, morc, o) pro-
vided 2 < €, mor,(A, B) < mor.(A, B) for each pair A, Be %, - in D 1s the
restriction of o 1n C. If in addition mory(A, B) = mor-(A, B) for each
A, Be %, then D 1s a full subcategory of C.

It 1s clear that the class of abelian groups 1s the class of objects of a full
subcategory of the category of groups, and that this category has a full sub-
category whose objects are the finite abelian groups. It 1s a common practice
in algebra to i1dentify an object in a category with its underlying set. Thus
for example, we usually identify a group (G, o), consisting of a set G and an
operation o, with its underlying set G. Note, however, that the category of

groups 1s not a subcategory of the category of sets, quite simply because for
groups (G, ), (H,°)In 4

mor¢((G,°),(H,°)) S Map(G, H)

and
more ((G, <), (H, °)) € Map((G, °),(H, °))

0.12. Functors. A functor is a thing that can be viewed as a “homo-
morphism of categories”. Let C = (¥, mor.,°) and D= (2, map,, ) be two
categories. A pair of functions F = (F', F”) 1s a covariant functor from C
to D 1n case F' is a function from € to 2, F” is a function from the
morphisms of C to those of D such that forall A, B,Ce¥ and all f:4A —» B
and g:B — C in C,

(F.1) F'(f):F'(A) - F'(B)in D;
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(F.2) F'(gof) = F'(g)° F'(f);

(F.3) F'(1,) = 1p 4
Thus, a covariant functor sends objects to objects, maps to maps, identities
to identities, and “preserves commuting triangles”:

A—L B F'A———-———-> F'(

N \ /m

A contravariant functor 1s a pair F = (F', F") satlsfylng instead of (F.1) and
(F.2) their duals

(F.1)* F"(f):F'(B) - F'(A) in D;
(F.2)* F'(gof)= F"(f)°F'(9);

(F.3) F"(]‘A) — ]‘F'(A)'
So a contravariant functor i1s “arrow reversing’.

Examples. (1) Given a category C = (¢, mor., ), there 1s the identity
functor 1. = (1., 12) from C to C defined by 1.(A) = A and 1(f) = f.

(2) Let C = (¢, mor.,°) be a concrete category. For each 4 €%, let

F'(A) = u(A) be the underlying set of A. For each morphism f of C, let
F’(f) = f. Then clearly F = (F', F") 1s a covariant functor from C to the
category of sets. It 1s called a forgetful functor (because it “forgets” all the
“structure” on the objects of C). It should be evident there are “partially
forgetful functors” of various kinds—for example, the covariant functor from
the category of real vector spaces to the category of abelian groups that
“forgets” the scalar multiplication.

(3) Let (G, +) be an abelian group. If 4 is a set, then (G4, +) is an
abelian group where for o,7e€G%, the sum o + te€G* is defined by
(6 + 1):a+> a(a) + z(a). (Note that (G4, +) 1s simply the cartesian product
of A copies of G with coordinatewise addition.) Define F'(4) = (G4, +). If
A, B are sets, and if f: A — B, then define F"(f):G® — G* by |

F'(f)(e)=a°f (0€G")

Then F"(f) 1s a group homomorphism, and F = (F’, F") is a contravariant
functor from the category of non-empty sets to the category of abelian
groups. All kinds of contravariant functors can be built in this way. For
example, if (G, +,0) were a real vector space, then G* can be made into a
vector space with coordinatewise operations, and a contravariant functor
Into the real vector spaces results.

Given a functor F = (F', F”), then rather than bother with all the primes,
we shall usually write F(A4) and F(f) instead of F'(4) and F"(f). The
relatively minor formal objection is that a morphism f of the category may
also be an object of the category whence F'(f) and F"(f) may both make
sense yet be different.

0.13. Natural Transformations. A natural transformation is a thing that
compares two functors between the same categories. Let C and D be categor-
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ies. Let F and G be functors from C to D, say both covariant. Let

n = (M4).1cc b€ an indexed class of morphisms in D indexed by € such that
foreach A € ¥,

N4 € morg (F(A), G(A4)).
Then n 18 a natural transformation from F to G in case for each pair,

A, Be €, and each fe mor-(A4, B) the diagram

F(A) —~ F(B)

! "

G(4) —Z G(B)

commutes; thatis ngo F(f) = G(f)- n,. If each n, is an isomorphism, then 7
s called a natural isomorphism. (If both F and G were contravariant, the only

change would be to reverse the arrows F(f) and G(f).) The crucial property
of functors i1s that “they preserve commuting triangles”; then a natural
transformation n achieves a “translation of commuting triangles”

F(A) ————— G(A)

F(f) G(f)
F(gf) \F(B) L G(gf)—\—» G(B)
/g) /?(g)

F(C) ————— G(C)

In fact notice that any commutative diagram A in C when operated on
elementwise by F and G produces a pair of commutative diagrams F(A) and
G(A) 1n D (because F and G are functors). Then a natural transformation »
from F to G “translates” commutatively F(A) onto G(A). Because of the
technical clumsiness in defining many interesting functors at this stage, we
shall postpone giving examples until such time as we have an abundance
of functors (see §20).

Some Special Notation

{0, 1,2, ...}, the non negative integers;
{1,2,...}, the positive integers;

{pe N | p is prime};
th
=10,

-
|

e set of integers;
,n— 1};
the set of rational numbers:
= the set of real numbers:
= the set of complex numbers;
& = the empty set.

OJONNTZZ



Chapter I

Rings, Modules and Homomorphisms

The subject of our study i1s ring theory. In this chapter we introduce the
fundamental tools of this study. Section 1 reviews the basic facts about rings,
subrings, ideals, and ring homomorphisms. It also introduces some of the
notation and the examples that will be needed later.

Rings admit a valuable and natural representation theory, analogous to
the permutation representation theory for groups. As we shall see, each ring
admits a vast horde of representations as an endomorphism ring of an
abelian group. Each of these representations is called a module. A substantial
amount of information about a ring can be learned from a study of the
class of modules it admits. Modules actually serve as a generalization of both
vector spaces and abelian groups, and their basic behavior is quite similar
to that of the more special systems. In Sections 2 and 3 we introduce modules
and their homomorphisms. In Section 4 we see that these form various

natural and important categories, and we begin our study of categories of
modules.

31. Review of Rings and their Homomorphisms

Rings and Subrings

By a ring we shall always mean an associative ring with identity. Formally,
then, a ring i1s a system (R, +,-,0, 1) consisting of a set R, two binary
operations, addition (+) and multiplication (), and two elements O # 1 of R
such that (R, +, 0) is an abelian group, (R, -, 1) 1s a monoid (i.e., a semigroup
with 1dentity 1) and multiplication is both left and right distributive over
addition. A ring whose multiplicative structure is commutative 1s called a
commutative ring. We assume that the reader is versed in the elementary
arithmetic of rings and we shall therefore use that arithmetic without further
mention. We shall also invoke the time-honored convention of identifying a
ring with its underlying set whenever there 1s no real risk of confusion. Of
course, when we are dealing with more than one ring we may modify our
notation to eliminate ambiguity. Thus, for example, if R and S are two rings,
we may distinguish their identities by such self-explanatory notation as
1z and 1;.

Often in practice, particularly in some areas of analysis, one encounters
“rings without identity”. Nevertheless the severity of our requirement of an
identity is more imaginary than real. Indeed a ring without i1dentity can be

10
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embedded naturally in a ring with identity (see Exercise (1.1)). Thus our

requirement involves no substantive restrictions, but it does allow consider-
able streamlining of the theory.

In this section and its exercises we treat very briefly several of the more
basic concepts and examples that serve as tools for our study of rings.
Let R be a ring. Then an element a e R i1s said to be:

(1) cancellable on the left (or left cancellable) in case for all x, y e R
ax = ay implies X =Y,

(2) a left zero divisor in case there 1s an element b = 01n R withab = 0;
(3) invertible on the left (or left invertible) 1n case there 1s an element
a € R, called a left inverse for a, such that a'a = 1.
The meanings of the right and two-sided (= left and right) versions, such as
right cancellable and cancellable, should be clear. (See Exercises for some of
the arithmetic properties of these special elements.)

These arithmetical concepts provide the means for an important classifi-
cation of rings. A ring R 1s an integral domain 1n case each of its non-zero
elements 1s cancellable (or equivalently, 1t has no non-zero divisors of zero).
Note that integral domains need not be commutative. A division ring 1s a ring
each of whose non-zero elements 1s invertible (see Exercise (1.2)); thus a
division ring is an integral domain. A commutative division ring 1s a field.

We reserve the term “subring” for what 1s sometimes called a “unital
subring”. Thus, if R and § are rings, we say that S 1s a subring of R and that R
1s an overring of S, and write S < R in case additively S 1s a subgroup of R
and multiplicatively S is a submonoid of R; so in particular, for S to be a
subring of R, it must contain the identity 1 of R.

Observe that every subring of an integral domain i1s again an integral
domain, but that an overring of an integral domain need not be one. For
example, the ring of all continuous functions from R to R 1s not an integral
domain, but the constant functions form a subring that i1s a field. Also
observe that the ring of integers Z (an integral domain) has a natural
embedding as a subring of the rational numbers Q (a field). In general, every
commutative integral domain has a natural overfield, called its field of

fractions (or quotient field), which is constructed in the same way that Q is
constructed from Z.

Ring Homomorphisms

Consistent with our requirement of identities for rings we shall require that
ring homomorphisms preserve these identities. Thus, if R and § are rings, a
function ¢:R — S is a (ring) homomorphism in case ¢ is simultaneously an
additive group homomorphism and a multiplicative monoid homomor-

phism. That is, the function ¢ is a ring homomorphism if and only if for all
a,beR

¢a + b) = ¢la) + ¢(b); @(ab) = ¢pla)p(b); &(1g) = Ls.
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The composition of two ring homomorphisms (where defined as a function)
is again a ring homomorphism and the i1dentity map 1z:R — R 1s a ring
homomorphism. (The ambiguity of the notation 1 is, in practice, not at all
disturbing. In fact, if we think of the elements of R as “multiplications™
R — R, then the ambiguity vanishes.) Thus, the collection of rings and ring
homomorphisms with the usual composition is a concrete category (0.11).

A ring homomorphism ¢ :R — § that 1s bijective (as a function) is called
a (ring) isomorphism. If ¢ is such an isomorphism, then as a function from R
to S it has an inverse; 1.e., there exists a (necessarily unique) functiony:S - R
such that

yob=1g and Goy =1

Indeed this ¥ must be a ring 1somorphism; for first if s, s’ € §, then
P(Y(ss')) = Lg(ss’) = ss' = 15(s)15(s5')
= @(Y(s))p(Y(s)) = d(y(shy(s)),

and so, since ¢ is injective Y(ss') = Y(shy(s’). Similarly, one checks that
is an additive homomorphism and that it preserves 1. Thus,

1.1. Proposition. Let R and S be rings and let ¢ : R — S be a ring homomor-

phism. T hen ¢ is an isomorphism if and only if there exist functions Y, ' :S — R
such that

Yoo = lg and ¢y = li.

Moreover, if the latter condition holds, then \y = ' is a ring isomoprhism. []
If R and S are rings, then we say they are isomorphic, and we write

R = §,

in case there is a (ring) 1somorphism ¢ : R — §. Since the identity map on a
ring 1s clearly an 1somorphism from the ring to itself, we have as an easy

application of (1.1) that the relation of “being isomorphic” satisfies the usual
equivalence properties.

Of course, the behavior of the subrings of one ring 1s virtually the same as

that of the subrings of any isomorphic ring. For ring homomorphisms we
have the following easily proved result:

1.2. Proposition. Let R and S be rings and let ¢: R — S be a ring homomor-
phism. Then for each subring R" of R, its image ¢(R’) under ¢ is a subring of S and

(¢|R):R" — ¢(R)

IS a surjective ring homomorphism. On the other hand, for each subring S’ of S,
its preimage ¢~ (S') is a subring of R, and

o (S')) < §. O

Ideals and Factor Rings

Like structure preserving maps in general, ring homomorphisms are effec-
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tively determined by congruence relations. For rings these are characterized
by ideals. Specifically, a subset I of a ring R 1s a (two-sided) ideal of R in case it
is an additive subgroup such that for all xeI and all g, be R

axb e I.

Note that the two subsets {0} and R are both ideals of R; these are called the
trivial 1deals of R. Any ideal of R other than R itself 1s called a proper ideal. The
ideal {0}, which we frequently denote simply by O, is called the zero ideal.
Observe that if ae R, then a = a-1-1, so it is immediate that an 1deal I 1s all
of R if and only if 1 € I. Moreover, if a € R is left invertible, say a'a = 1, then
1 = dal, so R 1s the only 1deal that contains a left invertible (or a right
invertible) element.

The ring R 1s simple in case 0 and R are the only ideals of R. Thus, every
division ring 1s a simple ring. On the other hand, every commutative simple
ring i1s a field, but in general, simple rings need not be division rings and
division rings need not be commutative. (See Exercises (1.6), (1.7).) Using
just these few elementary concepts we have already i1dentified and compared
(modulo a few exercises) several very important classes of rings. There 1s one
further fact about these concepts that it not so easy. Not every division ring
1s a field, but Wedderburn proved 1n 1905 that every finite division ring 1s a.
field. From this remarkable result it follows (see Exercise (1.2)) that every
finite integral domain 1s a field. We shall not include a proof since it 1s
arithmetic and would lead us too far astray. (See Jacobson [64].)

The collection of all ideals of a ring R 1s a complete lattice partially
ordered by set inclusion. The proof of this will follow trivially from (2.5); see
also (1.9) and (2.13). In any event this lattice we shall call the ideal lattice of R.

Given a ring homomorphism ¢:R — S, the image Im ¢ and the kernel
Ker ¢ of ¢ are defined by

Im¢ = {¢p(x)|xeR}  Ker¢ = {xeR|p(x) = 0}.

Then by (1.2) Im ¢ 1s a subring of S, and Ker ¢ 1s easily seen to be a proper
1deal of R. The kernel characterizes the equivalence relation induced on R by
¢ via

d(a) = ¢(b) iff a — be Ker ¢.

Thus, every ring homomorphism gives rise to a proper 1deal, its kernel,
which describes the classes of the homomorphism. Before we proceed, there
1s one (now trivial) fact that we should record:

1.3. Proposition. Let R and S be rings and let ¢ : R — S be a ring homomor-

phism. Then
(1) ¢ isonto S if and only if Im ¢ = §;
(2) @ is an injection if and only if Ker ¢ = O. [

Now we can prove a fundamental result, one that is a ring theoretic
version of part of The Factor Theorem. (See (3.6).)

1.4. Theorem Let R, S, and S’ be rings, let :R — S and ¢':R — §’ be ring
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homomorphisms with ¢ surjective, and let K = Ker ¢ and K' = Ker ¢
If K' < K, then there is a unique ring homomorphism y:§" — § such that
W o @ = ¢. Moreover, Y is injective if and only if K = K.

Proof. Assume that K' < K, and let x', y’ € §’. Since ¢’ 1s surjective, there
exist x, y € R such that ¢'(x) = x'and ¢'(y) = y. Now if X’ = y/, then

Px—y)=¢(x)—¢(y)=x -y =0,

whence x — ye K’ < K, and so ¢(x) = ¢(y). In other words, there 1s a
function ¢ :S" — S such that y(¢'(x)) = ¢(x) for all x € R. It 1s easy to check
that ¢ 1s a homomorphism. For example, with x, X, y, and y’ as above

(X' + y)=¥(@'(x)+ d'(y) = yod'(x + )
= ¢(x + y) = ¢(x) + ¢(y)

= Y(@'(x)) + Y@’ (») = ¥(xX') + ¥(y).

That  is unique with Yy o ¢’ = ¢ follows from the fact that Im¢ = §'.
Finally, ¢ is injective if and only if Ker y = 0(1.3), but clearly Kery = ¢'(K),
and ¢'(K) = Oifand only if K = K'. ]

Suppose next that I 1s a proper ideal of a ring R. Then I determines a both
additive and multiplicative congruence relation on R defined by

a = b(mod I In case a—bel.
The congruence class of any element g € R 1s 1ts coset
a+1={a+x|xel}
and the factor set R/I of these cosets of [ 1s a ring with operations
a@+I)+b+I)=(@+b)+1, (a+ I)(b+ 1) = (ab)+ I,
and having additive and multiplicative identities
0+ 1 and 1 + I,

respectively. We call the ring R/I the factor ring (of R) modulo I. Moreover,
the natural map

n:R—-R/I via n;:ar—a+ 1 (a € R)

1S a surjective ring homomorphism with Kern; = I. With this terminology

we now have what 1s perhaps the single most important application of
Theorem (1.4).

1.5. Corollary. Let R and S be rings and let ¢:R — S be a surjective ring
homomorphism with kernel
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K = Ker ¢.
Then there is a unique isomorphism Y : R/K — S with Yy o ngx = ¢.

Another immediate consequence of (1.3) and (1.4) 1s that a ring R 1s simple
if and only if every ring homomorphism ¢:R — § 1s injective. We shall
postpone further review of the ideal structure of a ring until we have

developed enough additional information to ‘treat it as a part of module
theory.

Some Special Rings

We conclude this section with several odds and ends of examples, notation,
and special constructions that we shall need subsequently.

1.6 The notation Z, Q, R, and C for the sets of integers, rational
numbers, real numbers, and complex numbers will also be used to denote
these sets with their usual ring structures. Of course, as rings they are all
commutative mtegral domains, and Q, R, and C are fields. As an abelian
group Z is cyclic, so every subgroup is cyclic. Thus every ideal of the ring Z
is principal (see (2.13)); i.e., is of the form Zn = {an|a € Z} for some unique
n > 0. For each n > 1 and each ae Z, denote by [a], the least positive re-
mainder of a divided by n; that is, [a], is the unique element of

Z,=1{0,1,...,n— 1}

In the coset a + Zn. Now Z, is a ring under the usual operations of residues
modulo n, and it is easy to check that r,:a+— [a], is also a surjective ring
homomorphism Z — Z, with kernel Zn. So (1.5), Z, = Z/Zn as rings.

1.7. Polynomial Rings. We shall relegate the definitions and general

treatment of polynomial rings to the exercises. (See Exercises (1.16)-(1.18).)
Here we wish to point out that if R is a ring, then we write

R[X,,...,X,]

for the ring of all polynomials over R in the commuting indeterminants
Xy,..., X,. Note that R is not a subring of R[ X}, ..., X, ] but that it is isomor-
phic, under the obvious map, to the subring of “constant polynomials”. Thus
we shall feel free to identify R with its natural image in R[X,,..., X, ]. Note
also that as a notational consequence of this identification

R[X,][X,]...[X,] = R[X,, X5, ..., X, ].

1.8. Products and Function Rings. Let (R,),., be a non-empty indexed
set of rings, and let
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R — XARa

be the cartesian product of this indexed set of sets. Then the ring structures
on the factors R, induce a ring structure, defined “coordinatewise” on the
product R. That 1s, with respect to the operations

(r + s)(a) = r(a) + s(a), (rs)(a) = r(a)s(a) (x € A),

for all r, se R, R is a ring with additive and multiplicative identities O and 1
defined by

Oa) =0, and 1(a) =1, (x € A).
Using the “A-tuple” notation (0.3), the operations are given by

(ra)aeA + (Sa)aeA = (ra + Sa)aeA’ (ra)aeA(Sa)aeA — (ra Sa)aeA

and the identities by

(Oa )aeA and ( la )aeA y

The resulting ring R 1s called the (cartesian) product of the rings (R,),. 4, and
1s denoted

R — HARG'

Let R be the product of the rings (R,),. .- Then the canonical projections
n,:R— R, (xe A) are surjective ring homomorphisms. The canonical
injections ¢, : R, = R (x € A) defined coordinatewise (see (0.4)) by

Npg'lg = 5aﬂlRa (BEA)

preserve both operations and are injections, but if 4 has at least two
elements, then the :_ are not ring homomorphisms.

A special case of a product ring is a function ring. That 1s, if A is a non-
empty set and if R is a ring, then the set

R4 = {flf:A-—rR}
of all functions from A4 to R becomes a ring with “pointwise” operations
(f+ 9@ =Ff(®) +g@), (f9)@) = f(Dg(x)
and with identities the “constant functions”
a) = 0, 1(ax) = 1

for all x € A. Now define a function A — {R} by a— R, = R. Thus (R,),.,
1s an indexed class of “A copies of R”. Then it is easy to check that R4 is

precisely the same as the product of (R,),. ,. Therefore we shall denote this
ring by

RA — HAR.

1.9. Let R be a ring and let A = R. Then the set & of all subrings of R
that contain A is not empty for R € o/. Moreover, it i1s easy to check that the
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intersection ( |/ is a subring of R; it is called the subring of R generated by A.
Thus, the subring of R generated by A is the unique smallest subring of R
that contains A. Different subsets of R may generate the same subring. Indeed
in any ring J, {0}, and {1} all generate the same subring of R. This subring
can be characterized as the image of the unique ring homomorphism
v:Z — R and so is 1somorphic to some factor ring of Z. (See Exercise (1.11).)

1.10. The Center of a Ring. Let R be a ring. Then its center is
CenR = {reR|rx = xr (xeR)}.

It 1s easy to check that Cen R 1s a subring of R. Of course, Cen R is commuta-
tive and R is commutative if and only if R is equal to its center. But it is not
true in general that Cen R 1s a maximal commutative subring. We may say
that an element r€ R 1s central In case re Cen R. Note that if 4 € CenR,
then the subring of R generated by A4 is also in the center of R.

1.11. Algebras.Let R be a ring, K a commutativering, and ¢ : K — CenR
a ring homomorphism. The resulting system (R, K, ¢) 1s called a K-algebra.
In practice we tend to suppress the ¢ and we speak of R as a K-algebra or as
an algebra over K. Thus by (1.5) R i1s a K-algebra (with respect to some ¢)
if and only if there 1s an i1deal I of K with K/I isomorphic to a subring of
Cen R. Therefore, since (see Exercise (1.11)) there is a unique ring homo-
morphism y:Z — CenR, the ring R is (in one and only one way) a
Z-algebra.

Classically this concept has its greatest importance when K i1s a field
and the homomorphism ¢ is necessarily injective. In this case the entire
concept of a K-algebra R 1s equivalent to the requirements that, in addition
to being a ring, R be a K-vector space satisfying

a(ab) = a(ab) = (aa)b

for all x € K, and all a, b € R.
If R and R’ are K-algebras, via ¢ and ¢’, respectively, then a ring

homomorphism ¢:R — R’ is a K-algebra homomorphism in case for each
xe K,aeR,

o(p(x)a) = ¢'(x)a(a)

It is easy to check that the class of K-algebras together with all K-algebra
homomeorphisms and the usual composition is a concrete category (0.11).

1.12. The Opposite Ring of a Ring. Let R be a ring. From this we con-
struct a new ring R°?, called the opposite ring of R. Both the underlying set
and the additive structure of R°? are just those of R. But the multiplication on
R°?, which for the present we shall denote by (r,s)— r * s, is defined by

r ¥§ = Sr.

It 1s easy to check that R° is a ring with these operations and that the

identities of R°P are those of R. Clearly, CenR = CenR°® and R is
commutative if and only if R = R°P.
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S are rings. Then a function ¢ : R — S 1s a ring anti-
is an abelian group homomorphism, ¢(1) = 1, and

¢(ab) = ¢(b)¢la)

Thus, the function ¢ :R — § 1s a ring anti-homomorphism if and only if the
same function ¢ : R°? — § is a ring homomorphism.

Suppose that R and
homomorphism in case ¢

1.13. Matrix Rings. Particularly for constructing examples it is often a
great convenience to have a generalization of the familar rings of n x n
matrices over a field. Indeed we want rings of matrices of infinite dimension.
Clearly the usual multiplication will not generalize without some adjustment
quite simply because in the infinite case “row dot column” can result in in-
finite sums. Fortunately the adjustment is natural, so we shall permit our-
selves a relaxed treatment omitting some of the rather dull details and
formalities. Let R be a ring and let I and A be non-empty sets. Thena I' x A-
matrix over R i1s simply a function 4:T" x A - R. Let A bea I’ x A-matrix
over R. For each (a,f)el’ x A let A(a, f) = a,z € R; then we call a4 the
(o, B) entry in A and we write

A= ﬂ:aaﬂ]]l"x %

When there 1s no likelihood of confusion about the sets I' and A we may
simply write A = [a,]. f I" = I" and A’ € A are non-empty subsets, then
the restriction of A to I'" x A’ 1s a submatrix of A and may be denoted
[[aaﬂ:[ll""x/\"

Let xel” and B e A. Then [a,;] . xa and (@]« (s are called the a row
of A and the B column of A, respectively. The matrix A is said to be row finite
(column finite) in case each row (column) of 4 has at most finitely many
non-zero entries. In practice we shall be interested mainly in matrices that

are row finite or column finite. The collection of all I' x A-matrices over
the ring R will be denoted by

M« A(R)
and the subsets of row finite and column finite matrices by
R[FMI'XA(R‘) and C[FMI")(A(R),

respectively. If I' = A, then we write simply M(R), RFM(R) and CFM(R),
and we call the entries I'-square or I' x I'-square matrices. The diagonal of a
I' x I'-square matrix 4 = [a,z] is the indexed set (a,, ),er-

Of course, M A(R) is simply R" ** and so (see 1.8) it has a natural group
structure; in particular, it is an abelian group with “pointwise” addition. In
matrix notation, let

A = [[aaﬁ]]’ B — [[baﬂ]

be elements of M, A(R); then this pointwise or matrix addition i1s given
somewhat imprecisely by

ﬂ:aaﬁ]] + [[baﬁ:ﬂ = ﬂ:aaﬁ + baﬁ]].
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The identity of this group structure on My, .(R) is the zero matrix
0 = [0,5], and the inverse (negative) of A is —A = [ —ay].
Now suppose that I', A, and {2 are non-empty sets, and that

A = I[aaﬁ:u = MI‘XA(R)’ B = [bﬁ}’] € MAXQ(R)-

For each a € I" and y € Q consider the formal series X, _, a,5b;,. If either A 1s
row finite or B 1s column finite, then this series has at most finitely many
non-zero terms which sum to a unique element c,, € R, and the I' x {)-matrix

AB = [zﬁe/\ Uap bﬁy:ﬂl" X €2

is called the (matrix) product of A and B (in that order). Note that if both A4
and B are column finite (row finite) then AB 1s column finite (row finite). It
is easy (but tedious) to show that wherever this product 1s defined, it 1s
associative and that it distributes over addition on both the right and left.
Now let I be the I x I'-square matrix over R

Ir = [5aB:ﬂ

where J,; denotes the Kronecker delta over R (0.1). Then clearly, I 1s both
row finite and column finite.

We call I~ the I' x I'-identity matrix over R. Now the point 1s that on
both of the sets RFM(R) and CFM(R) the matrix product defines a binary

operation, which we call matrix multiplication.

1.14. Proposition. Let R be a ring and let I" be a non-empty set. Then with
pointwise addition and matrix multiplication

RFM(R) and CFM(R) []
are rings.
In the case where I' = {1,...,m} and A = {l,...,n} are finite, all
matrices are both row finite and column finite, and we write simply

M, xa(R)  M,(R)

for the sets of these m x n-matrices over R and the set of n x n-square matrices
over R, respectively. From (1.14) M,(R) 1s a ring, called the ring of n x n-
matrices over R, with respect to matrix addition and matrix multiplication.
Also, as usual, we shall adopt the familiar rectangular array notation for an
m x n-matrix [a;;] over R.

The 1deal structure of the matrix rings M ,(R) is quite easy. It can be shown
(see Exercise (1.8)) that a subset K of M_(R) is an ideal in M, (R) if and only if
there is an ideal I of R with K = {[a;;] € M,(R)|a;;€I}.

With a slight perversion of notation this says that

I— M (I)

defines an isomorphism between the ideal lattices of R and of M _(R). In
particular, M, (R) is a simple ring if and only if R is a simple ring.

On the other hand, if I' is infinite, then the ideal structure of CFM(R),
say, 1S not quite so clear. However, in the case of greatest interest, where R is a
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field, the ideal lattice of CFM(R) is a chain of more than two elements. (See
Exercise (14.13).)

Among the many interesting subrings of CFM(R) there 1s one that we
shall refer to frequently. If T" 1s linearly ordered by <, a I' x I'-square
matrix A = [a,;] is upper triangular (lower triangular) in case for alla, e T

a > f 1mplies a,; = 0 (x < B 1mplies a,; = 0).

Of course every scalar matrix is both upper and lower triangular. Moreover,
it 1s easy to see that the set of upper triangular matrices in CFM(R) forms a
subring of CFM(R) and the set of upper triangular matrices in RFM(R)
forms a subring of RFM(R). Of course, parallel statements hold for the sets
of lower triangular matrices.

1.15. Endomorphism Rings. We look next at a class of examples that
motivates much of our subsequent work. Thus, let A be an abelian group
written additively. By an endomorphism of A we mean of course just a group
homomorphism f: A — A;1n other words, if we write our functions on the left,

f(a+b)=f(a)+ f(b) (a, b e A).

It 1s easy to check that the set E of all such endomorphisms of 4 forms an
abelian group with respect to the addition (£, g)— f + g defined by

(f+9)a) =fla)+gla) (acA)

Of course the 1dentity and the inverse (= negative) are given by

0(@)=0 and  (—f)(a) = —f(a)

Now on E 1t also happens that composition of functions i1s an associative
operation that distributes over the additive operation on E. So if A # 0
(1.e., if E has at least two elements), then E 1s actually a ring whose identity is
the identity map 1,:4 — A. But note that if f, g € E, then 1n general, the

product fg in E depends on whether we consider these as functions operating
on the left or on the right:

(f9)(a) = f(g(a)); (a)(fg) = ((a)f)g.

In other words, there arise naturally for every (non-zero) abelian group A4

two endomorphism rings, a ring of left endomorphisms and a ring of right
endomorphisms, denoted

End(A4) and  End'(A),

respectively. The fates being what they are, we shall have need for both of
these rings. When we have an fe End'(A), we are considering it as a “left”
endomorphism and shall denote its values f (a). On the other hand, if we have

fe End"(A), then we are considering f as a “right” endomorphism and shall
denote its values by (a) f. Of course,

End'(A) = (End'(A))°.
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It turns out that such endomorphism rings (pick a side) play a role in ring
theory entirely analogous to that played by the symmetric groups in the
theory of groups. In fact, there 1s a perfect analogue of “Cayley’s Theorem”

to the effect that every ring is isomorphic to a subring of an endomorphism
ring of an abelian group. (See Exercise (1.10).)

1.16. Idempotents. Let R be a ring. An element e € R 1s an idempotent 1n
case e = e. A ring always has at least two idempotents, namely 0 and 1. An
idempotent e of R is a central idempotent in case it is in the center of R. As we
shall see, the arithmetic of idempotents plays a fundamental role in the
study of rings. For the most part, however, the details of this arithmetic are
quite straightforward and will be relegated to the exercises. As one small
example, we note here that if e € R is an idempotent, thenso is 1 — e, for

(l—e)il=1—-e—e+e’=1—e—e+e=1-ec
Also it is easy to check that if e 1s central, thensoi1s 1 — e.

Each non-zero idempotent e of a ring R determines a second ring, namely
eRe = {exe|x e R},

with addition and multiplication that of R restricted to eRe, and with
identities 0 = e0e and e = ele. If e = 1, then the ring eRe 1s not a subring of

R and if e i1s not central, eRe need not be a homomorphic image of R. Of
course, 1f e 1s a central idempotent, then the map

T,:X — exe (x € R)

1S a surjective ring homomorphism R onto eRe with kernel (1 — e)R(1 — e).

There 1s one easy but important class of examples of this last phenomenon.
Thus, let R be the cartesian product R = I1, R, of rings (R,),.,. Let o € A.
Then there is an element e, € R defined coordinatewise (0.4) by

Rﬂ(ea) — 5aﬁ ]‘ﬂ'

That is, e, =+ (1,) is the identity of R, at the «'” coordinate and 0 elsewhere.

Now it is easy to see that e¢_is a central idempotent of R and that the ring
e, Re, 1s 1somorphic to R, via

(m,|e, Re,):e,Re, — R,.

Moreover, in the case where A is finite, the existence of a ring isomorphism
R = [I,R, can be determined by means of the behavior of the central
idempotents of R. (See §7.)

As another important example of idempotents, let R be a ring, let n.> 0

be an integer and consider the matrix ring M_(R). Let 1 < m < n and let
e = [a;;] be the matrix defined via

{1 fi=j<m

adA.. = .
0 otherwise.

tJ

Then it is easy to check that e is a non-zero idempotent and that as rings
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eM_ (R)e = M, (R).

Incidentally, we can draw the same conclusions provided just that e has
exactly m non-zero entries, each of which is a 1 on the diagonal. It is important

to realize that these examples by no means describe all of the idempotents of
the matrix ring M ,(R).

1.17. Nilpotent Elements. The antithesis of the idempotents of a ring are

its nilpotent elements. An element x of a ring R is nilpotent in case there is a
natural number n such that

x" = 0;

the least such n 1s called the nilpotency index of the element. Clearly O is the
only element of a ring that is simultaneously idempotent and nilpotent.

If R is a ring and if n > 1, then the matrix ring M, (R) 1s fairly rich in
nilpotent elements. Indeed, every strictly upper triangular matrix (1.e., upper-
triangular with 0 diagonal) and every strictly lower-triangular matrix in
M, (R) 1s nilpotent with nilpotency index at most n.

There i1s one “zero-like” property of nilpotent elements that 1s of some

importance. Indeed if x 1s nilpotent, then 1 — x i1s invertible. For if x" = 0,
then

1l-x){+x+..+x"HY=1 and (I +x+..+x""H1l -x)= 1.

The elementwise concept of nilpotence can be extended. Thus, a subset A
of a ring R is nilpotent in case there 1s an integer n > 0 such that

X1Xy...X, =0

for every sequence x,, X,, ..., X, In A. Also, a subset 4 of a ring is nil in case
each of its elements is nilpotent. Thus, every nilpotent subset of R 1s certainly
nil; but there are nil subsets of rings that are not nilpotent. (See Exercise
(1.14).)

As we shall see, the analysis of a ring and its arithmetic 1s very dependent
on the behavior of its idempotents and its nilpotent elements. One seeks to
learn the idempotents of a ring to a large extent because locally they behave
like the i1dentity; indeed a non-zero idempotent e € R is the identity of the
induced ring eRe. In a sense the nilpotent elements are relatively weak and
the extent to which they permeate the ring provides a measure of the arith-
metic strength of the ring. For example (see Exercise (15.14)) a commutative
ring with no non-zero nilpotent elements can be embedded in a cartesian
product of fields. On the other hand, rings having substantial amounts of
nilpotence often suffer from some very weird pathologies.

1. Exercises

1. Let(R, +,,0) be a system satisfying all the requirements for a ring except
the existence of a multiplicative identity. Prove that there i1s a ring
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(R, +,-,0, 1) in which (R, +,-,0) is an ideal. [Hint: On R x Z define
addition and multiplication by (r,n) + (s, m) = (r + s, n + m) and
(r,n)(s,m) = (rs + mr + ns,nm).]

2. (1) Prove that a ring 1n which each non-zero element is left cancellable
(left invertible) 1s an integral domain (division ring).

(2) Prove that every finite integral domain is a division ring.

3. Letae R, aring. Prove that if a has more than one left inverse, then it has
infinitely many. [Hint: Set 4 = {a’e R|a’'a = 1}. Then A # . Fix
a, € A. Observe that a’'+» aa’ — 1 + a, defines an injection from A4 to a
proper subset of itself. ]

4. Show that the matrix {J;,;] € CFM(R) is left invertible but not even
right cancellable.

5. Let R and S be rings and ¢ :R — S a surjective ring homomorphism.
Prove that if a € R 1s invertible, central, idempotent, or nilpotent, respec-
tively, then so 1s ¢(a) in S. How about converses?

6. Let H be the subset of M, (C), the 2 x 2 matrices over the complex field,
of all elements of the form

B a+ib c¢+id
1= —c+id a-—ib

with a,b,c,d € R. Show that H 1s a subring of M,(C). Consider the
clements

T I IV E R P

in H. Thus, the above “typical” element g of H 1s ¢ = al + bi + ¢j + dk.
Show that if g #+ 0, then 1t 1s 1nvertible. Deduce that H 1s a non-
commutative division ring. It i1s called the ring of quaternions.

7. Let K be a field. Prove that:
(1) M,(K) 1s a simple ring.
(2) In the ring CFM(K), the set T of matrices that have only a finite
number of rows with non-zero entries is a non-trivial ideal. [Hint: If
a;; = 0 whenever i > n and [c;;] = [b;;] [a;;] then c;; = 0 whenever
i > max{k|b; # 0and 1 <j < n}.]
(3) CFMy(K) has exactly one non-trivial 1deal.

8. Let R be aring and let n > 1 be a natural number. For each ideal I of R
set

M, (I) = {[a;]eM,(R)|a;;el (i,j = 1,...,n}.

(1) Prove that I+ M (I) defines an isomorphism from the lattice
of 1deals of R onto the lattice of ideals of M (R). This generalizes
the first part of Exercise (1.7): The ring of n x n matrices over a simple
ring 1s a simple ring. [Hint: If [ is an ideal of M (R), then the collection
of all entries from elements of I forms an ideal I of R.]

(2) Prove that if I is an ideal of R, then M, (R)/M (1) = M, (R/I).
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9.

10.

11.

12.

13.

14.

15.

Rings, Modules and Homomorphisms

Let R be a ring and A < R. The R-centralizer of A is Ceng(A) = {x € R
ax = xa (a€ A)}. Thus Cen R = Cen g(R). Prove that:

(1) Ceng(A) 1s a subring of R.

(2) A is a maximal commutative subring of R iff A = Ceng(A).

(3) If x € Ceng(A) 1s invertible in R, then its inverse i1s in Ceng(A).

(4) Infer that the center of a simple ring is a field. [ Hint: If x € CenR,
then {rx|r € R} is an ideal of R.]

Denote the underlying additive group of the ring R by R™. For each
r € R define two functions 4., p,:R — R by

Ay X TX and P, X — Xr.

Write each A, as a left operator and each p, as a right operator.

(1) Prove that A:r+— A, defines an injective ring homomorphism into
End'(R™) and that p:r+— p, defines an injective ring homomorphism into
End'(R*). Thus a ring R is isomorphic to a ring of left endomorphisms
of an abelian group as well as to a ring of right endomorphlsms of an
abelian group. '

(2) Prove that if R™ is cyclic, then R is commutative and both 4 and p
are isomorphisms.

Let R be a ring. Prove that there i1s a unique ring homomorphism
r.Z — R. The kernel of y 1s of the form Zn for some unique n > 0 (1.6);
this n 1s the characteristic of R.

(1) Let Rbearingand A = R. Suppose R is generated by A4 (1.e., R 1s the
only subring of R that contains 4 (1.9)). Prove that if ¢:R — S is a ring
homomorphism, then Im ¢ is the subring of § generated by ¢(A).

(2) Let x:Z — R (see Exercise (1.11)). Deduce that Im y 1s the subring of
R generated by {1}. Infer that if R is an integral domain, its characteristic
1s either O or a prime.

A ring 1s a Boolean ring in case each of its elements 1s idempotent. Prove
that:

(1) Every Boolean ring R i1s commutative and a = —a for all aeR.

| Hint: Square (a + a) and (a — b).]

(2) Every subring and every factor ring of a Boolean ring 1s a Boolean
ring.

(3) Every simple Boolean ring is isomorphic to Z,. .

(4) If A is a set and if R is a Boolean ring, then R“ is a Boolean ring.

Let p e P be a prime. Prove that for each natural number n the ideals of

Z ,» form a chain and that each proper 1deal is nilpotent. Then show that
the product

R=X _,Z,

n>1 “—p"

has a nil ideal that is not nilpotent. [ Hint: For each n > 1 let I, be a

proper 1deal of Z ;.. Let I be the set of all ¢ € R such that ¢(n) € I, and 1s
not zero for at most finitely many n.]

Let G be a non-empty set and let R be a ring. A function f:G — R is zero
almost always in case its support S(f) = {x e G| f(x) # 0} is finite. The
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16.

17.

set R'“ of all functions G — R that are zero almost always is clearly a
subgroup of the additive group of R'‘“’ under the addition (f,g)—f+ g
where (f + g)(x) = f(x) + g(x) for all xe G, for S(f+ g) < S(f) v S(g).
Now suppose that G i1s a semigroup (written multiplicatively) with
identity e. For each pair f, g € R'“) define

(f9)(x) = Z,.-. f(y)g9(2)  (x€G)

(1) Prove that with respect to this addition and multiplication R® is a
ring with identity the function &(e): x+— &, in R'“). This ring is called the
semigroup ring (or group ring if G 1s a group) of G over R. It 1s denoted RG.
(2) Foreachr € R and each x € G define o(r) and &(x) in RG by

o(r)(x) = 0,,r and  &(X)(y) = 0.

Prove that o:r+— o(r) defines an injective ring homomorphism R - RG
and that &:x+> &(x) defines an injective monoid homomorphism
G — RG 1nto the multiplicative semigroup of RG.

(3) Prove that for each non-zero fe R'®) there is a unique sequence
r.,...,r, of non-zero elements of R and distinct x,,...,x, € G such that
f=o(r)é(x,) + ... + a(r,)E(x,). For this reason it 1s a common practice
to write f simply in the form r;x, + ... + r,x,. Observe that in this
notation, the canonical image of r € R (under o).1n RG is re, the identity

of RG 1s le, and (with the obvious simplification that may be possible on
the right)

(S1 V1 + oo + SV ryxy + oo+ 1x,) = XN ST VX

(4) Let S be 4 ring and suppose that there 1s a ring homomorphism

$:R - § and a monoid homomorphism 6:G — S such that for each
reR and xe G, ¢(r)8(x) = 0(x)¢p(r). Prove that there 1s a unique ring
homomorphism y:RG —» S such that y oo =¢and Y o £ = 0.

Using the concept of a semigroup ring, polynomial rings can be treated
without recourse to the artificial invention of an indeterminant. The non-
negative integers Ny = {0, 1,2,...} form a commutative-monoid under
addition. Let R ke a ring. Adopting the notation of Exercise (1.15.2) (with
G=Njpand e=0), let X = £(1) e RN,. We call the ring RN, the ring
of polynomials in one indeterminant (i.e., X) over R, and we normally
denote it by R[ X ]. The elements of R[ X ] are called polynomials in X
over R. |

(1) Prove that in R[X ], if ne N, then £(n) = X". [Remember that N,
1s an additive semigroup.] Infer that for each non-zero polynomial
f€ R[ X] there is a unique n and a unique sequence ry, ry,...,7, in R
withr, # 0andf=r, X° + r, X + ... + r, X" We call this n the degree
of f (the zero polynomial is assigned degree — o) and write deg f = n,

call ry,ry, ..., r, the coefficients of f and call r, the leading coefficient of f.
(2) Prove that if R is commutative, then so is R[ X ].

Let S be a ring and let R be a subring of S. Let x € S such that rx = xr for
all € R. Prove that there is a unique ring homomorphism ¢ :R[X] - S
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such that
Wire X0+ X + ..+ XTore+rx + L+, x"

for each ro, 7y, ..., 7, € R. [See Exercise (1.15.4). Prove then that the image
of  is the subring of S generated by R U {x}.]

18. Let Nj be the n-fold cartesian product of N,. Under coordinatewise
addition Ng 1s a commutative monoid. Let R be a ring. Prove that the
semigroup ring RNj i1s 1somorphic to the (iterated) polynomial ring
RIX,][X,]...[X,]. We usually denote this ring by R[ X, X,, ..., X, ].

§2. Modules and Submodules

Let R be a ring. Then a pair (M, A) 1s a left R-module 1n case M is an abelian
group (which we shall write additively) and 4 is a map from R to the set of left
endomorphisms of M such that if M is not zero,

A:R - End' (M)

1s a ring homomorphism. This means simply that for each a e R, there 1s a
mapping A(a): M — M such that foralla,be R and all x,ye M

Ma)(x + y) = Ma)(x) + Ua)(y),  Alab)(x) = Aa)(A(b)(x)),
Ma + b)(x) = Aa)(x) + A(b)(x), A(1)(x) = x.

In practice we usually are able to suppress the 4 and the excess parentheses.
Writing just ax for A(a)(x) we may think of 4 as defining a “left scalar
multiplication” R x M - M via (a, x) — ax satisfying for all a,be R and
x, y € M the axioms for a “left R-vector space”:

a(x + y) = ax + ay, (ab)x = a(bx),
(a + b)x = ax + bx, 1x = x.

At the same time we shall usually say simply that M, rather than (M, 4), is
the left R-module. This allows some potential ambiguity, for a given abelian
group may admit more than one left R-module structure. In only a few 1n-

stances will this ambiguity be significant, and in these we shall be able to
eliminate the ambiguity with special notation.

By a right R-module we mean an abelian group M and a ring homo-
morphism p of R into the right endomorphism ring of M. Shorn of un-
necessary notation this means that there i1s a “right scalar multiplication”

(x, a)— xa (xe M,aeR)
from M x R to M satisfying for alla,beR and x, ye M
(x + y)a = xa + ya, x(ab) = (xa)b,
x(a + b) = xa + xb, xl = x.
Thus, it is intuitively obvious (but see Exercise (2.1)) that the right R-modules
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are essentially the same as the left R°?-modules. So in particular, if R is com-
mutative, we may be allowed to view the two concepts as identical.

2.1. Examples.(1) If D 1s a division ring, then a left D-module 1s simply our
old friend a left D-vector space. In most elementary courses, we encounter
only vector spaces over fields and hence are not concerned with sides. But for
non-commutative division rings D, a left D-vector space 1s not the same as a
right D-vector space.

(2) If V 1s a vector space of dimension n over a field K, then the ring
R = M, (K) of n x n-matrices over K operates as K-linear transformations,
and hence as abelian group endomorphisms, on V. Here in particular we have
considerable choice. If we view R as operating from the left on column
vectors, then V acquires the structure of a left R-module. If we let R operate
on the right on row vectors, then V has the structure of a right R-module. But
there 1s more. In either case the way that R operates on V 1s determined by the
choice of basis; each such choice giving a different module structure to V.
Of course all of the left structures obtained this way are in some sense
“isomorphic” as are the various right structures. Still 1t must be recognized
that strictly speaking these structures are different.

(3) For a ring R there is a unique ring homomorphism from Z to R (see
Exercise (1.11)). So for every abelian group M there is a unique Z-module
structure on M. This 1s simply the structure given by the usual “multiple
function”

(n, x) - nx.

(4) In Exercise (1.10) we found homomorphisms 4 and p of the ring R
Into the left and right endomorphism rings, respectively, of the additive group
of R. Thus each ring R induces a left R-module structure on its additive group
and a right R-module structure on its additive group via the scalar
multiplications

(a, x}+— ax, and (x,a) — xa,

where ax and xa denote products in the ring R. These modules induced on the
additive group of a ring R will be called the regular left and regular right
modules of R, respectively.

(5) This last example admits an important extension. Let R and S be
rings and let ¢ : R — S be a ring homomorphism. Then ¢ induces both a left
and a right R-module structure on the additive group of S. Indeed, the scalar
multiplication, for the left R-module S, is given by

(r, s)+— @(r)s (re R, seS)

where the product ¢(r)s is computed in the ring S. The right R-module
structure on S 1s defined similarly. Clearly this is an extension of the familiar
business of viewing a field S as a vector space over each of its subfields R.

(6) There 1s one particularly important way of constructing new modules
from old ones. The general theory will be discussed in §6. For now, however,
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suppose M,...,M, i1s a sequence of left R-modules. Then the cartesian
product M, x ... x M, admits a natural R-module structure. That 1s,
writing the elements of this product as n-tuples (x,,..., x,), the module
operations are defined by the formulas

(xla "'axn) + (yla '“’yn) — (xl + yl’ vory Xy + yn)
Xy, oos X,) = (PXy, .0, rXx,)

This module, which we continue to denote by M, x ... x M, 1s called the
cartesian product (module) of M, ..., M ..

Except for a few exercises we shall not treat much of the elementary
arithmetic of modules. Indeed, with few exceptions this elementary arith-
metic differs only superficially from that of vector spaces. Perhaps the most
dramatic difference i1s that with general modules we can expect ax = 0 even
though neither a nor x is zero. The interested reader can find the general
material 1n several standard texts.

The concept of a bimodule arises most naturally in the context of endo-
morphism rings of modules (see §4). Nevertheless, bimodules are simple
enough to introduce directly. Thus, let R and S be two rings. An abelian
group M is a left R- right S-bimodule in case M is both a left R-module and a
right S-module for which the two scalar multiplications jointly satisfy

r(xs) = (rx)s (reR, ses, xeM).

There are other styles of bimodules depending on the sides on which R and S
operate. The crucial identity in the definition of, say, a left R- left S-bimodule
1s then -

r(sx) = s(rx) (reR, ses§, xeM).

There 1s a very concise and suggestive notational device for describing
the various flavors of modules. The following partial dictionary should
suffice to explain this device:

M means M is a left R-module
M, means M is a right R-module

rMs means M 1s a left R- right S-bimodule
r-sM means M 1s a left R- left S-bimodule.

The bimodule  _¢M is In essence the same object as the bimodule Mg,
(see Exercise (2.1)). Thus we shall generally deal with left-right bimodules,
and simply refer to M as an (R, S)-bimodule. Note also that the Z-module

structure that the abelian group M admits (2.1.3) makes M into a bimodule
M,.
R"* 7

Linear Combinations and Submodules

Let M be a left R-module. Then an abelian subgroup N of M is a (left R-)
submodule of M 1n case N is stable under the endomorphisms of M induced
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by R. In other words, N 1s a submodule of M if and only if it 1s a subgroup of
M “closed” under scalar multiplication by R. In particular, a submodule N
of M is a left R-module on its own right. It 1s possible for a subgroup N of a

left R-module M to be an R-module in terms of some representation

R — End'(N) without being an R-submodule of M. (See Exercise (2.2).)
If X = M and A < R, then any element of M of the form

alxl + co e + a,,x,, —_— 2?=la,~xi

with x,,...,x,€X and a,,...,a,€ A 1s a linear combination of X with
coefficients 1n A, or simply an A-linear combination of X. We shall denote the
set of all such A-linear combinations of X by 4AX.

2.2. Proposition. Let M be a left R-module and let X be a non-empty subset
of M. Then RX is an R-submodule of M.

Proof. The R-linear combinations of X are clearly closed under the group
operation of M, and the identity

alryx, + ... + r,x,) = (aryx, + ... + (ar,)x,
finishes the job. ]

The subset {0} of a module M is clearly a submodule of M. We call 1t the

zero submodule and usually denote it by 0 alone. To avoid a special case
later, we agree

R@ = 0;

that 1s, O 1s the unique R-linear combination of . The following, which 1s an
easy exercise, characterizes submodules as those non-empty subsets “closed”
under all R-linear combinations.

2.3. Proposition. Let M be a left R-module and let N be a non-empty subset
of M. Then the following are equivalent :

(a) N is a submodule of M ;

(b) RN = N;

(c) Foralla,be Rand all x,ye N

ax + byeN. []

Of course for each of the various types of modules there is a corresponding
notion of submodule, and there are results analogous to (2.2) and (2.3). For
example, given M a subset N is an (R, S)-submodule (strictly speaking, a
left R-, right S-submodule) of M iff N is simultaneously an R-submodule
and an S-submodule. Also, in this setting, for example, an (R, S)-linear
combination of X = M is simply an element of the form

rix;8$ +... +r,Xx,S,

withr,e R,s;e€S,and x,e X (i = 1,..., n). The set of all of these is abbreviated
RXS. Then a non-empty subset N of M is an (R, §)-submodule if and only
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if N = RNS. This 1n turn is equivalent to containing those (R, S)-linear
combinations of the form rxs + r'x's’ with x, x’ € N.

Like the subgroups of a group or the subspaces of a vector space, the set
of submodules of a module M forms a complete modular lattice with respect
to the partial order of set inclusion. Thus suppose that M 1s a module. If N
1s a submodule of M, we denote this fact by

N<M.

To avoid occasional ambiguity about the ring of scalars, we may also use
such self-explanatory variations as

RN < RM or RPS < RQS'

Let M be a left R-module and let L < M and N < M be submodules.
Then it 1s clear from (2.3) that

L<N 1ff L < N.

In particular, the set (M) of all submodules of M 1s partially ordered by <
(which on (M) coincides with set inclusion). The submodules 0 and M of
M are the unique smallest and largest elements of #(M). Moreover, 1f o/
1S any non-empty subset of (M), then it 1s an immediate consequence of

(2.3) that
N e L (M)

Since clearly n .o/ must be the greatest lower bound of .« in (M), we infer
that (M) 1s a complete lattice (see (0.6)). Although the partial order for the

lattice (M) 1s set inclusion and the greatest lower bound is intersection, the
least upper bound of &/ = (M) 1s not generally its union. Indeed the union
of two submodules is rarely a submodule. (See Example 4 of (0.5).) To
characterize the join 1n %(M) we introduce some special, but entirely
standard, notation; if M, ..., M, are non-empty subsets of M, we set

M +...+M,={x+..+x,|x;eM (i=1,..,n}

Another easy consequence of (2.3) 1s

2.4. Lemma.If M is a left R-module and if M, ..., M, are submodules of
M, then M, + ... + M, is also a submodule of M. In fact, M, + ... + M, is
the set of all R-linear combinationsof M, u ...UM, []

If Z 1s an arbitrary collection of subsets of M, then there is no reasonable
concept of “sum” of . However, motivated by this last lemma we do define
the sum 2./ of a family &/ of submodules of M to be the set of all R-linear
combinations of u./. It is easy to see that if of = {M,|x € A}, then

YA =L M, =0{M, +...+ M, |a,,...,0,ed (n=12,..)}
1.e., each element of £, M, can be written as a finite sum

Z’i'= 1 xa, ('xa. S Ma.s ai S A)
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By (2.2) then, the sum Z.o/ of a set .o/ of submodules is again a submodule, and
moreover, If N 1s any submodule of M containing all the submodules in .o/,
then by (2.3) 1t must contain the sum Z.o/. Therefore it is this sum X.o/ that
is the least upper bound of &/ 1n ¥ (M).

Let H, K, and L be submodules of M. Then it 1s easy to check that

HNn(K+L)>HnNK)+ (Hn L).

In general this inequality may be strict, 1.e., (M) need not be a distributive
lattice. However, if H > K and he H, ke K, le L with h = k + [ then, since
ke K = Hn K, ¥(M) does satisfy the modularity condition (see (0.5)).

In summary we have

2.5. Proposition.[f M is a left R-module, then the set (M) of submodules
of M is a complete modular lattice with respect to <. In this lattice, if &/ is a
non-empty set, then its join and meet are given by

pIR-’4 and N,
respectively. In particular, if K and L are submodules of M, then
K + L and KnlL

ol

are their join and meet, respectively; and if H is another submodule of M, then
K<H implies HNn(K+ L)= K+ (Hn L). []

These submodule lattices (M) provide a great deal of information
about the nature of the modules, and hence about the scalar ring. In many
Instances we are able to obtain very explicit information about the ring from
knowledge of these lattices. Conversely, for certain rings the behavior of
these lattices 1s quite civilized; a familiar example i1s offered by modules
(= vector spaces) over fields. In general, however, modules can be very
unpredictable; just some of the less extreme pathology they display will be
considered in the exercises.

Given a module M and a subset X < M, the set o/ of all submodules of M
that contain X contains M and so is non-empty. Its intersection N .o/ is again
a submodule of M and it 1s, 1n fact, the unique smallest submodule of M that
contains X. We call it the submodule of M spanned by X.

2.6. Proposition.If M is a left R-module and if X is a subset of M, then the
submodule of M spanned by X is just RX, the set of all R-linear combinations
of X.

Proof. By (2.2), RX is a submodule of M and since 1x = x for all x e M,
we certainly have X < RX. Finally, by (2.3), any submodule that contains X
must contain the linear combinations RX. []

If (M,),.4 are submodules of M, then X, M, is the submodule spanned by
(M, ), 4. Thus if

M=3M,

l
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then we say that the submodules (M,),., span M. If X 1s a subset of ;M
such that

RX =M,

then X 1s said to span M, and X 1s called a spanning set for M. A module with

a finite spanning set is said to be finitely spanned. A module with a single
element spanning set is a cyclic module. Thus a cyclic left module is one of
the form M = R{x} where x is some element of M; and we write

M = Rx = {rx|reR}.

Of course, the regular modules ;R and Ry are cyclic. Now it 1s clear that every
module is spanned by the set of its cyclic submodules.

2.7. Proposition. If X is a spanning set for gk M, then
M — erx Rx. D

A module M i1s simple in case M # 0 and it has no non-trivial submodules.
Not only is such a module cyclic, but clearly a non-zero module is simple iff
it 1s spanned by each of its non-zero elements. Somewhat like the primes 1n

arithmetic the simple modules are basic building blocks in the theory of
modules. Indeed note that an abelian group 1s simple 1iff 1t 1s 1somorphic to
Z, for some prime pe P.

Clearly the module itself 1s the greatest element in its lattice of sub-
modules; hence in the terminology of posets it 1s a maximal (indeed the only
maximal) submodule of itself. But 1t is the next level, the maximal proper
submodules, that 1s of real interest. Dually, the zero submodule is of little
consequence, but the minimal non-zero submodules of a module are very
important. As a result one rather weird bit of terminology has evolved. That is,

maximal submodule means maximal proper submodule
minimal submodule means minimal non-zero submodule.

For example, M i1s simple (hence non-zero) iff M 1s a minimal and O is a
maximal submodule! The question of existence of minimal or maximal sub-
modules is critical and not trivial. Note for example that the abelian group
Z has no minimal subgroup (= Z-submodule). (See also Exercise (2.8).) On

the other hand there 1s at least one very important class of modules, each with
maximal submodules.

2.8 Theorem. Let M be anon-zero left R-module witha finite spanning set.

Then every proper submodule of M is contained in a maximal submodule. In
particular, M has a maximal submodule.

Proof. Let K be a proper submodule of M. Then there 1s a finite sequence
Xy, ..., X, € M such that

M=K+Rx1+...+Rx,,.

So certainly among all such sequences there is one of minimal length



Modules and Submodules 33

(presumably there are several such sequences), and so we may assume that
Xy, -..» X, Nas minimal length. Then

L=K+Rx2++Rx

is a proper submodule of M (otherwise the too short sequence x,,..., x,

would do for x, x,,...,x,). Let 2 be the set of all proper submodules of M
that contain L. Clearly, 2 is a non-empty subposet of the lattice of sub-
modules of M for L e . Now a submodule N that contains L i1s in £ iff
x, ¢ N. We apply the Maximal Principle (0.9) to Z. Suppose € 1s a non-empty
chain in the poset 2. Set V = U¥. We claim that V' is a submodule of M. For
if a,be R and x, y € ¥, then for some N, N, € ¥, xe N, and ye N,. Since ¥
is a chain, we may assume N, < N,. So x, yeN and (2.3) ax + byeNy c V.
Thus (2.3) V is a submodule of M as claimed. But clearly since x, 1s in no
element of €, x, ¢ V. We have shown then that every non-empty chain in 2
has an upper bound in £, namely its union, so by the Maximal Principle 2
has a maximal element, say N. Because N is maximal in 2 any strictly larger
submodule of M is not in £, and so contains x,. But then any such module
must contain ‘N + Rx, > L + Rx, = M. Thus N is a maximal (proper)
submodule oftM containing K. For the final statement of the Theorem let

K =0. L]

There 1s in one case a significant difference between left modules and
bimodules. If ;M is an R-S-bimodule, and if x € M, then the cyclic submodule

spanned by x is RxS = (Rx)S, but this need not be just the elements rxs.
(See Exercise (2.3).)

Factor Modules

Just as for vector spaces, there is a factor module of a module with respect to
each of 1ts submodules. Let M be a left R-module and let K be a submodule.
Then 1t 1s easy to see that the set of cosets

M/K = {x + K|xe M}
1s a left R-module relative to the addition and scalar multiplication defined via
(x+K)+(y+K)=(:;+y)+K, a(x + K) = ax + K.
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