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PREFACE

The present volume is the first of three that will be published
under the general title Lectures in Abstract Algebra. These vol-
umes are based on lectures which the author has given during
the past ten years at the University of North Carolina, at The
Johns Hopkins University, and at Yale University. The general
plan of the work 1s as follows: The present first volume gives an
introduction to abstract algebra and gives an account of most of
the important algebraic concepts. In a treatment of this type
it 1s impossible to give a comprehensive account of the topics
which are introduced. Nevertheless we have tried to go beyond
the foundations and elementary properties of the algebraic sys-
tems. This has necessitated a certain amount of selection and
omission. We feel that even at the present stage a deeper under-
standing of a few topics 1s to be preferred to a superficial under-
standing of many.

The second and third volumes of this work will be more special-
ized 1n nature and will attempt to give comprehensive accounts
of the topics which they treat. Volume II will bear the title
Linear Algebra and will deal with the theory of vector spaces.
Volume 111, The Theory of Fields and Galois Theory, will be con-
cerned with the algebraic structure of fields and with valuations
of fields.

All three volumes have been planned as texts for courses. A
great many exercises of varying degrees of difficulty have been
included. Some of these perhaps rate stars, but we have felt
that the disadvantages of the system of starring difficult exercises
outweigh its advantages. A few sections have been starred
(notation: *1) to indicate that these can be omitted without

jeopardizing the understanding of subsequent material.
vii
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Introduction

CONCEPTS FROM SET THEORY
THE SYSTEM OF NATURAL NUMBERS

[

The purpose of this volume i1s to give an introduction to the
basic algebraic systems: groups, rings, fields, groups with opera-
tors, modules, and lattices. The study of these systems encom-
passes a major portion of classical algebra. Thus, in a sense our
subject matter 1s old. However, the axiomatic development
which we have adopted here 1s comparatively new. A beginner
may find our account at times uncomfortably abstract since we
do not tie ourselves down to the study of one particular system
(e.g., the system of real numbers). Supplementary study of the
exercises and examples should help to overcome this difficulty. At
any rate, it will be obvious that much time is saved and a clearer
insight 1s eventually achieved by the present method.

The basic ingredients of the systems that we shall study are
sets and mappings 6f these sets. Notions from set theory will
occur constantly in our discussion. Hence, 1t will be useful to
consider briefly in the first part of this Introduction some of these
ideas before embarking on the study of the algebraic systems. We
shall not attempt to be completely rigorous in our sketchy account
of the elements of set theory. The reader should consult the
standard texts for systematic and detailed accounts of this sub-
ject. Of these we single out Bourbaki’s Théorie des Ensembles as
particularly appropriate for our purposes.

The second part of this Introduction sketches a treatment of
the system P of natural numbers as an abstract mathematical

system. The starting point here is a set and a mapping in the
1



2 INTRODUCTION

set (the successor mapping) that i1s assumed to satisfy Peano’s
axioms. By means of this, one can introduce addition, multiplica-
tion, and the relation of order in P. We shall also define the
system I of integers as a certain extension of the system P of
natural numbers. Finally, we shall derive one or two arithmetic
facts concerning I that are indispensable in elementary group
theory. Full accounts of the foundations of the system of natural
numbers are available in Landau’s Grundlagen der Analysis and in
Graves’ Theory of Functions of Real Variables.

1. Operations on sets. We begin our discussion with a brief
survey of the fundamental concepts of the theory of sets.

Let § be an arbitrary set (or collection) of elements a, 4, ¢, « - -.
The nature of the elements 1s immaterial to us. We indicate the
fact that an element 2 1s in § by writing ae§ or §S3a. If 4
and B are two subsets of §, then we say that A4 is contained in
B or B contains A (notation: 4 € Bor B D A4) if every ain A4
1siialso in B. The statement 4 = B thus means that 4/ 2 B and
B>oAd Also we write 4 DB if 4/ 2B but B 4. In this
case A 1s said to contain B properly, or B i1s a proper subset of A.

If 4 and B are any two subsets of §, the collection of elements
¢ such that ce 4 and c e B 1s called the intersection 4 N B of
A and B. More generally we can define the intersection of any
finite number of sets, and still more generally, if { #} denotes any
collection of subsets of §, then we define the intersection N.4
as the set of elements ¢ such thatc e 4 for every 4 in {A}. If the

collection {4} is finite, so that its members can be denoted as
n

Ay, Ag, -+, Ay, then the intersection can be written as [} A4; or

1
aszfl N Az n---0N An-
Similar remarks apply to logical sums of subsets of §. The

logical sum or union of the collection {4} of subsets A is the set
of elements # such that « e 4 for at least one 4 in {4}. We

n

denote this set as UA or, if the collection 1s finite, as |J 4; or

1

Ay U 4, U--- U 4,.
The collection of all subsets of the given set § will be denoted
as P(S). In order to avoid considering exceptional cases it is
necessary to count the whole set § and the vacuous set as mem-
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bers of P(§). One may regard the latter as a zero element that
1s adjoined to the collection of “real” subsets. We use the nota-
tion & for the vacuous set. The convenience of introducing this
set 1s 1llustrated in the use of the equation 4 N B = & to indi-
cate that /4 and B are non-overlapping, that 1s, they have no
elements 1n common. If § is a finite set of # elements, then

P(S§) consists of &, » sets containing single elements, ---,
/7 nn—1) -+« (n— i+ 1) o '
L) = ™) . sets containing z elements, and
; D e ;

so on. Hence the total number of elements in P(S) is

() Qs () aeman

2. Product sets, mappings. If § and T are arbitrary sets, we
define the product set § X T to be the collection of pairs (s5,£),
sin S, tin T. The two sets § and T need not be distinct. In the
product § X T the elements (5,2} and (s',f') are regarded as equal
if and only if s = 5" and # = ¢. Thus if § consists of the m
elements sy, 52, '+, §m and T consists of the »n elements #,, %,
-« ty, then § X T consists of the mzn elements (s5;4). More
generally, if 8§y, 8, -, 8, are any sets, then IIS; or §; X &5 X
«++ X &, is defined to be the collection of r-tuples (s, 52, * -+, 52}
where the ith component s; 1s 1n the set ..

A (single-valued) mapping « of a set § into a set T 1s a corre-
spondence that associates with each s £ § a single element te T.
It is customary in elementary mathematics to write the image
in T of 5 as a(s). We shall find it more convenient to denote this
element as sa or s With the mapping @ we can associate the
subset of § X T consisting of the points (s,5a). We shall call
this set the graph of a. Its characteristic properties are:

1. If 5 1s any element of §, then there is an element of the form
(s5,¢) 1n the graph.
2. If (s,21) and (s,22) are in the graph, then £, = 4.

A mapping « 1s said to be a mapping of S onto T if every te T
occurs as an image of some s € §. In any case we shall denote the
image set (= set of image elements) of § under « as Sa or S«
A mapping « of § into T is said to be 1-1 if 5s;a = 52 holds only
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— . -

if 51 = 5o, that 1s, distinct points of § have distinct images. Sup-
pose now that « 1s a 1-1 mapping of § onto T. Then if #is any
element in 7T, there exists a unique element s in § such that
sa¢ = t. Hence if we associate with # this element s we obtain
a mapping of T into §. We shall call this mapping the
inverse mapping o ! of a. It 1s immediate that ™ i1s 1-1 of T
onto 4.

It 1s natural to regard two mappings « and 8 of § into T as
equal if and only if sa¢ = 58 for all s in §. This means that
o« = B if and only if these mappings have the same graph.

Let a be a mapping of § into T and let 8 be a mapping of T
into a third set U. The mapping that sends the element s of §
into the element (sa)8 of U 1s called the resultant or product of
« and 8. We denote this mapping as af, so that by definition
s(aB) = (sa)B.

Mappings of a set into itself will be called #ransformations of
the set. Among these are included the identity mapping or trans-
formation that leaves every element of § fixed. We denote this
mapping as 1 (or 1g if this is necessary). If @ is any transforma-
tion of S, it 1s clear that al = @ = 1la.

If o 1s a 1-1 mapping of § onto T and «™! 1s its inverse, then
aa! = 1lg and a'a = 17. The following useful converse of this
remark is also easy to verify: If « is a2 mapping of § into T, and
8 is a mapping of T into § such that a8 = 1g and Ba = 1y, then
« and B8 are 1-1, onto mappings and 8 = a1

The concept of a product set permits us to define the notion
of a function of two or more variables. Thus a function of two
variables in § with values in 7 is a mapping of § X § into 7.
More generally we can consider mappings of §; X 82 into 7. Of
particular interest for us will be the mappings of § X § into §.
We shall call such mappings dinary compositions in the set §.

3. Equivalence relations. We say that a relation R is defined in
a set § 1if, for any ordered pair of elements (4,4), 4,6 1n §, we can
determine whether or not « is in the given relation to 4. More
precisely, a relation can be defined as a mapping of the set § X §
into a set consisting of two elements. We can take these to be
the words ““yes” and “no.”” Then if (a,6) — yes (that is, is
mapped into “‘yes”’), we say that « is in the given relation to 2.
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In this case we write ¢ R 4. If (a,6) — no, then we say that 4
is not in the given relation to 4 and we write a R 4.

A relation ~ (in place of R) 1s called an equivalence relation
if 1t satisfies the following conditions:

1. a ~ a (reflexive property).
2. a ~ b 1mplies & ~ a (symmetric property).
3. a ~ &4 and & ~ ¢ imply that 2 ~ ¢ (transitive property).

An example of an equivalence relation is obtained by letting
S be the collection of points in the plane and by defining @ ~ 2
if @ and 4 lie on the same horizontal line. If 2 £ §, 1t 1s clear that
the collection & of elements 4 ~ 4 is the horizontal line through
the point a. The collection of these lines gives a decomposition
of the set § into non-overlapping subsets. We shall now show
that this phenomenon 1s typical of equivalence relations.

Let § be any set and let ~ be any equivalence relation in §.
If ae S, let 4 denote the subset of § of elements 4 such that
b~a. Byl,aedand by 2 and 3, if 4; and 4, e 4, then 4, ~ 5.
Hence 2 1s a collection of equivalent elements. Moreover, & is a
maximal collection of this type; for, if ¢ 1s any element equivalent
to some & 1n 4, then c e4. We call 2 the equivalence class deter-
mined by (or containing) the element a. If 4e4, then 4 C g:
hence by the maximality of 4, 5 = 4. This implies the important
conclusion that any two equivalence classes are either identical
or they have a vacuous intersection. Hence, the collection of
distinct equivalence classes gives a decomposition of the set §
Into non-intersecting sets.

Conversely, suppose that a given set § 1s decomposed in any
way into sets 4, B, - -- no two of which overlap. Then we can
define an equivalence relation in § by specifying that @ ~ 4 if
the sets 4, B containing @ and & respectively are identical. It
1s clear that this relation has the required properties. Also,
obviously, the equivalence classes determined by this relation
are just the given sets 4, B, - - -.

The collection § of equivalence classes defined by an equivalence
relation in § 1s called the gquotient set of § relative to the given
relation. It should be emphasized that § is not a subset of §
but rather a subset of the collection P(S) of subsets of S.



6 INTRODUCTION

There 1s an intimate connection between equivalence relations
and mappings. In the first place, if §is a set and § is its quotient
set relative to an equivalence relation, then we have a natural
mapping » of § onto S. This is defined by the rule that the
element 2 of § is sent into the equivalence class Z determined by a.
Evidently this mapping is a mapping onto S.

On the other hand, suppose that we are given any mapping «
of the set § onto a second set 7. Then we can use « to define
an equivalence relation. Qur rule here i1s that ¢ ~ 4 if ga = ba.
Clearly this satisfies the axioms 1, 2 and 3. If 4’ is an element
of T and 4 is an element of § such that aa = 4/, then the equiva-
lence class Z is just the set of elements of § that are mapped into

a’. We call this set the inverse image of 2’ and we denote 1t as

a1 (d).

Suppose now that ~ is any equivalence relation in § with
quotient set §. Let a be a mapping of § onto T which has the
property that the inverse images o™ (4") are logical sums of sets
belonging to §. This is equivalent to saying that any set belong-
ing to § is contained in some inverse image «~(4’). Hence it
means simply that, if z and 4 are any two elements of § such that
a ~ b, then ae = ba. It is therefore clear that the rule ¢ — aa
defines a mapping of § onto 7. We denote this mapping as &
and call it the mapping of § induced by the given mapping a.
The defining equation Z& = aa shows that the original mapping
1s the resultant of the natural mapping 2 — 4 and the mapping
&, that 1s, @ = »a.

This type of factorization of mappings will play an important
role 1n the sequel. It 1s particularly useful when the set of inverse
images a(4") coincides with §; for, in this case, the mapping &
is 1-1. Thus if d& = da, then aa = ba and 2 ~ 4. Hence g = 4.
Thus we obtain here a factorization & = v& where & 1s 1-1 onto T
and » 1s the natural mapping.

As an illustration of our discussion we consider the perpen-
dicular projection m, of the plane § onto the x-axis 7. Here a
point  is sent into the foot of the perpendicular joining it to the
x-axis. If @’ is a point on the x-axis, m, ' (4’) is the set of points
on the vertical line through 4’. The set of inverse images is the
collection of these vertical lines, and the induced mapping #,
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sends a vertical line into its intersection with the x-axis. Clearly
this mapping 1s 1-1, and m, = v#, where » 1s the natural mapping
of a point into the vertical line containing 1t.

4. The natural numbers. The system of natural numbers 1, 2,
3, -+ is fundamental in algebra in two respects. In the first
place, it serves as a starting point for constructing examples of
more elaborate systems. Thus we shall use this system to con-
struct the system of integers, the system of rational numbers,
of residue classes modulo an integer, etc. In the second place,
in studying algebraic systems, functions or mappings of the set
of natural numbers play an important role. For example, in a
system 1n which an associative multiplication is defined, the
powers a” of a fixed 2 determine a function or mapping » — g»
of the set of natural numbers.

We shall begin with the following assumptions (essentially
Peano’s axioms) concerning the set P of natural numbers.

1. P 1s not vacuous.

2. There exists a 1-1 mapping 2 — a™ of P into itself. (a1 is
the immediate successor of a.)

3. The set of images under the successor mapping 1s a proper
subset of P.

4. Any subset of P that contains an element that i1s not a
successor and that contains the successor of every element in the
set coincides with P. This i1s called the axiom of induction.

All the properties that we shall state concerning P are conse-
quences of these axioms. By 3 and 4 any two elements of P
that are not successors are equal. As usual, we denote the unique
non-successor as 1. Also weset 1t =2 2% = 3, etc.

Property 4 1s the basis of proofs by the first principle of induc-
tion. This can be stated as follows: Suppose that for each
natural number 7 there 1s associated a statement E(#). Suppose
that E(1) 1s true and that E(»%) 1s true whenever E(r) is true.
Then E(n) 1s true for all . This follows directly from 4. Thus
let § be the set of natural numbers s for which E(s) is true.
This set contains 1 and it contains T for every reS§. Hence
S = P and this means that E(n) is true for all » in P,



8 INTRODUCTION

EXERCISE

1. Prove that nt £ »n for every n.

Addition of natural numbers 1s defined to be a binary composi-
tion 1n P such that the value ¥ 4+ y for the pair x,v satisfies

(a) n l1+y=y*
(b) xt+y=x+n™

It can be shown that such a function exists and is unique. More-
over, one has the following basic properties:

Al x4+ (y+2) =+ y) +2 (associative law)
A2 x4+ y =y -+ x (commutative law)
A3 x4+ 2=y+ 2 implies that x =y (cancellation law).

The proofs of these results and the ones on multiplication and
order that follow will be omitted. These can be found in the
above-mentioned texts.

Multiplication in P 1s a binary composition satisfying

(a) ly =y
(b) Ty = xy + .
Such a composition exists, is unique, and has the usual properties:
M1 %(y2) = (xy)z
M2 Xy = yx
M3 xz = y2 1mplies that x = y.

Also we have the following fundamental rule connecting addition
and multiplication

D x(y 4+ 2) = xy + x2 (distributive law).

The third fundamental concept in the system P is that of
order. This can be defined in terms of addition by stating that
a is greater than & (@ > & or 4 < a) if the equation 2 = & + «
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has a solution for ¥ in P. The following are the basic properties
of this relation:

Ol x>y excludes ¥ <y (asymmetry)
02 x>y and y >z mmply x >z (transitivity)

O3 For any ordered pair (x,y) one and only one of the follow-
ing holds: ¥ > y, ¥x = y, ¥ < y (trichotomy). (Note that this
implies Ol. We include both of these since one is often inter-
ested in systems in which Ol and O2 hold but not O3.)

O4 In any non-vacuous set of natural numbers there i1s a
least number, that 1s, a number 7/ of the set such that 7 < s for
all s in the set.

Proof of O4. Let § be the given set and M the set of natural
numbers 7 that satisfy m < 5 for every se 8. 1isin M. Ifs
is a particular element 1n §, then s* > s and hence s¥ ¢ M.
Hence M = P. By the principle of induction there exists a
natural number / such that /e M but /T ¢ M. Then / is the re-
quired number; for / < s for every s and /& § since otherwise
[ < s for every s in §. Then /T < s contradicting /* ¢ M.

The property O4 1s called the well-ordering property of P. It
ts the basis of the following second principle of induction. Sup-
pose that for each » £ P we have a statement E(z#). Suppose that
it 1s known that E(r) 1s true for a particular » if E(s) 1s true for
all s <. (This implies that 1t is known that E(1) i1s true.)
Then E(n) i1s true for all n. To prove this let F be the set of
elements r such that E(r) is not true. If F 1s not vacuous, let ¢
be its least element. Then E(#) is not true but E(s) is true for all
s < t. This contradicts our assumption. Hence F 1s vacuous and
E(n) 1s true for all ».

The main relations between order and addition, and order and
multiplication are given in the following statements:

OA a2 > 4 implies and is implied by ¢ + ¢ > 4 + .

OM 2 > 4 implies and 1s implied by ac > éc.
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EXERCISE
1. Prove thatifa > éand¢ > d,thena + ¢ > & + 4 and ac > &4d.

5. The system of integers. Instead of following the usual pro-
cedure of adding to the system P a 0 element and the negatives
we shall obtain the extended system in a way that seems more
natural and intuitive. We shall construct a new system I of
integers that contains a subsystem which is essentially the same
as the set of natural numbers.

We consider first the set P X P of ordered pairs of natural
numbers (2,6). In this set we introduce the relation (a,6) ~ (¢,d)
ifa+d =205+ c. Itiseasy to verify that this is an equivalence
relatton. What we have in mind, of course, in making this

definition is that the equivalence class (;,Z) determined by (a,4)
1s to play the role of the difference of 2z and 4. If we represent the
pair (a,0) in the usual way as the point with abscissa 2 and ordi-

nate &, then (2,5) is the set of points with natural number coordi-
nates on the line of slope 1 through (4,6). We call the equivalence

classes (a,6) integers and we denote their totality as I. As a
preliminary to defining addition we note that, if (2,6) ~ (a’,0)
and (¢, d) ~ (', d"), then (a+ ¢, 6+ d) ~ @ + ¢, & + d'); for
the hypotheses are that a + 4" =4’ + 4 and ¢+ 4" = ' + d.
Hence ¢ +c+ 4 +d =a + ¢ + 4+ 4, which means that
(a+c, 6+d)~ @+ &+ 4d). It follows that the integer



INTRODUCTION 11

(a + ¢, b+ d) 1s a function of (a,8) _aEl_d (E;Z).__We define this
integer to be the sum of the integers (a,4) and (¢,d):
(a8) + (cd) = (a+ ¢, & + d).

It 1s easy to verify that the rules Al, A2, A3 hold. Also we note
that (a,a) ~ (4,6) and if we set 0 = (a,a), then

A4 0+ x =x forevery xin I.

Finally every integer has a negative: If x = (Z,Z), then we denote
(b,a) as —x and we have

A5 x4+ (—x) = 0.

We note next that, if (2,6) ~ (a’,6') and (¢,d) ~ (¢’,d’), then
a+ b =a" +b,¢c+d =c¢ +d  Hence

cla+6)Y+da +6)+a(c+4d)+ 6( + d)
=cld+ o0 +dla+d)+d(d+d+ 5+ d)

so that
ac + blc + ad'd + bd + a'c + a'd + b’ + bd
=dadc+ bc+ ad+ bd+ac +ad+ e+ bd.
The cancellation law gives
ac+ bd + a'd + b'¢' = bc + ad + a'c’ 4+ 4.
This shows that (ac + &d, ad + bc) ~ (a'c’ + &'d’, a’d' + &'¢).

Hence, if we define

(a8)(e,d) = (ac + bd, ad + ¥c),

we obtain a single-valued function. It can be verified that this
product function 1s associative and commutative and distributive
with respect to addition. The cancellation law holds if the factor
z to be cancelled 1s not 0.

We regard the integer (2,6) > (c,d) if a+d > &+ ¢. This
relation 1s well defined. One can verify easily that O1, 02, O3
and OA hold. The property OM has to be modified to state that

OM’ Ifz > 0, then x > y if and only if ¥z > yz.
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EXERCISE
1. Show that, if ¥ > y, then —x < —y.

We consider now the set P’ of positive integers. By definition
this set 1s the subset of I of elements x > 0. If x = (a,4), x > 0

is equivalent to the requirement thate > 4. Hencex = (& + u,5)
and 1t 1s immediate that (& 4+ #,6) ~ (¢ + u,c). Now let u be
any natural number (element of P) and define #’ to be the posi-

tive integer (& + #,6). Our remarks show that the mapping
u — #u' is a single-valued mapping of P onto P’. Moreover, if
b+ ubd) ~(c+ ve),thenb+u+c=5+c+ vsothatu = o,
Hence # — #' 1s 1-1. We leave 1t to the reader to verify the
following properties of our correspondence:

(u+v) =u" 4+

(uv)’ = u'v’

¥ > v 1sequivalent to ' > v,

Thus, we obtain the same result if (1) we add two natural numbers
and then take the positive integer corresponding to the result,
or (2) we add the positive integers corresponding to the natural
numbers. A similar statement holds for multiplication. Because
of this situation we can discard the original system of natural
numbers and use in its place the system of positive integers.
Also we can appropriate the notations originally used for P for
the system of positive integers. Hence, from now on we denote
the latter as P and we denote its numbers as 1, 2, 3, ---. The
remaining numbers of I are then 0, —1, —2, .-,

EXERCISES

1. Prove that any non-vacuous set § of integers that is bounded below
(above), in the sense that there exists an integer & (B) such that 4 < s (B 2 )
for every s in S, has a least (greatest) element.

2. If x>0, weset | x| =x and, if x <0, we set | x| = —x. Prove the

rules [xy [ = |x| |y, |+ |2+ |x]

6. The division process in I. We shall obtain some of the ele-
mentary arithmetic properties of I in the course of our discussion
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of groups and integral domains. The starting point in the study
of the arithmetic of 7 is the following familiar result.

Theorem. If g is any integer and b 7~ 0, then there exist integers
g, 7,0 <r< \M, such that a = bg + r.

Proof. Consider the multiples x| 4 | of | 4 | that are < a. The
collection M of these multiples is not vacuous since —|a || 4| <
2| < a Hence, the set M has a greatest member 4| 4|.
Then hlb| < asothata = Al 4| 4+ r where » > 0. On the other

hand (A + 1)| 2| =4 6|+ |4| > 4 2|. Hence (b4 1)| 4| > «
and Al 6|+ |6| > A é|+r. Thus, r <|2&|. We now set
g=~h4 if >0 and ¢= —4 if $<0. Then % &| = ¢4 and
a = gb + r as required.

EXERCISE

1. Prove that ¢ and » are unique.

We shall say that the integer & 1s a_factor or divisor of the integer
a if there exists a c el such that 2 = 4c. Also 2 i1s called a
multiple of 5 and we denote this relation by 4 | a. Clearly thisis a
transitive relation. If 4| s and a| 4, we have ¢ = 4c and 4 = 4d.
Hence, a = adc. 1f a ## 0, the cancellation law implies that
dc = 1. Hence, |d||c| =1andd = +£1,c = +1. Thisshows
thatif 4| a and @ | 4 and ¢ 5 0, then ¢ = +4.

An integer d is called a greatest common divisor (g.c.d.) of @ and
bif (1)d|aand d| & and (2) if ¢ is any common factor of 2 and 2,
then ¢|d. The existence of a g.c.d. for any pair 4,6 with @ % 0
is easily proved by using the division process given in the above
theorem. For this purpose we consider the totality D of integers
of the form ax + 4y. This set includes positive integers. Hence,
there 1s a least positive integer d = at + bs in the set. Now
a =dg—+r where 0 <r<d Alsor=a—dg=a(l —q)+
b(—gs) e D. Since d is the least positive integer in D, » = 0.
Hence, d | . Similarly 4| 4. Nextlete|aande|4. Then e as
and e | 5. Hence, ¢ | (at + 4s5). Thus ¢ | 4.

If 4’ is a second greatest common divisor of 2 and 4, (2) implies
that 4|4’ and &’ |d. Hence &' = +4. We have seen that we
can always take 4 to be >0. This particular greatest common
divisor will be denoted as (a,5).
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The existence of greatest common divisors serves as a basis
for the proof of the fundamental theorem of arithmetic that any
positive Integer can be written in one and only one way as a
product of positive primes. By a prime p we mean an integer
that is divisible only by p, —p, 1, —1. We shall obtain this
result later (Chapter IV) in our study of arithmetic properties of
integral domains. Also one can prove easily either by using the
fundamental theorem or by using simple properties of greatest
common divisors that the integer

m = ab/(a,b)

is a Jeast common multiple of a and 4. By this we mean that »
is a multiple of 2 and 4 and any common multiple of 2 and 4 is
a multiple of m.



Chapter I

SEMI-GROUPS AND GROUPS

——— - — - y il ARl . . PP peieremniiepdhe resi

The theory of groups 1s one of the oldest and richest branches
of abstract algebra. Groups of transformations play an important
role in geometry, and finite groups are fundamental in Galois’
discoveries in the theory of equations. These two fields provided
the original impetus to the development of the theory of groups.

A more general concept than that of a group is that of a semi-
group. Though this notion appears to be useful 1n many connec-
tions, the theory of semi-groups is comparatively new and it
certainly cannot be regarded as having reached a definitive stage.
In this chapter we shall begin with this more general concept,
but we treat it only briefly. Our aims in considering semi-groups
are to provide an introduction to the theory of groups and to
obtain some elementary results that will be useful in the study
of rings. The main part of our discussion deals with groups.
The principal concepts that we consider here are those of iso-
morphism, homomorphism, subgroup, invariant subgroup, factor
group, and transformation group.

1. Definition and examples of semi-groups. We have defined
a binary composition 1n a set & to be a mapping of the product set
& X & into the set &. The image in & of the pair (4,4) 1n
& X & is usually called the product or the sum of a and 4. Ac-
cordingly, this result is denoted as ¢-4 = @b or as @ + 4. Occa-
sionally other notations such as -4, 2 X 4, [4,4] are employed.
In this book we shall be concerned almost exclusively with com-
positions that are associative in the sense that

(1) (ab)c = a(bc)
15
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holds for all @,4,c 1n &. This concept is the essential ingredient
in the algebraic system that we now define.

Definition 1. 4 semi-group is a system consisting of a set &
and an associative binary composition in S.

In describing a particular semi-group one has to specify the
composition as well as the set & in which i1t acts. Thus the same
set may be the set part of many different semi-groups. Neverthe-
less for the sake of brevity we shall often call the set & “the semi-
group &.” The precise terminology should, of course, be “the
set & of the semi-group,’”” but in most instances there will be little
likelithood of confusion in using the abbreviated phrase.

Examples. (1) The set P of positive integers and the composition of ordinary
addition in P. (2) P and ordinary multiplication. (3) P and the composition

(3,6) — a°b=a+ &+ ab. It can be verified that this is associative. (4)
The set I of integers, addition as composition. (5) 7 and multiplication. (6)

The set P(S) of subsets of a set, the join composition (4,B) — A U B. (7)
P(S8) and the intersection composition.

An important type of semi-group 1s obtained from the totality
T of transformations (single-valued mappings) of a given set S.
We introduce in T the mapping («,8) — o8 where, as usual,
af3 denotes the resultant of the transformations « and B. It is
necessary to verify the associative law. More generally, we con-
sider four sets §, T, U and /. Let a be amappingof Sinto T, 8 a
mapping of T into U and y a mapping of U into . The mappings
(aB)y and a(By) are defined. We now show that they are equal.
Thus let x be any element of §. Then by definition x((aB8)y) =
(x(aB))y = ((xa)B)y and x(a(Bv)) = (x)(Bv) = ((x¥a)B)v. Hence
x((aB)v) = x(a(By)) for all x, and this 1s what 1s meant by saying
that (aB)y = a(By). In particular we see that the associative
law holds for the resultant of transformations of one set §.

As a special case of this type of semi-group let § be a finite
set comprising 7z elements. We can take these to be the integers
1,2, ---, n. The mapping « may be denoted by the symbol

2) (1 2 3 - )

la 2a¢ 3a -+ na
in which the image £« of £ is written below the element £ Clearly
the number of mappings of § into itself is the number of distinct
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ways of writing the second line in (2). Since we have 7 choices
for each of the places in the second line, the order or number of
elements 1n T 1s »".

A semi-group 1s said to be fimite if it contains only a finite
number of elements. In investigating such a semi-group it is
useful to tabulate the products af in a multiplication table for &.
If @y, g, -+ -, o are the elements of & such a table has the form

al a2 . = = aj - & = am
24|
&2
a‘ a"a.? ' &
|
247

Here we write the product a,o; in the intersection of the row
containing ¢; with the column containing @;. For example let T
be the semi-group of transformations of a set of two elements. The
elements of T are

e (O e GOy R ey B A )}

A multiplication table for € is

R
R
)
™ w ™ w0 2
2
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2. Non-associative binary compositions. We consider for a
moment an arbitrary (not necessarily associative) binary com-
position (@,6) — ab in a set &. Such a mapping defines two
ternary compositions, that is, mappings of & X & X & into &.
These are the mappings (4,6,c) — (ab)c and (a,b,c) — a(éc).
More generally we can define inductively a number of n-ary
compositions in &. Suppose that these have already been built
up out of the binary composition to the stage of m-ary composi-
tions for every m < »n. It is understood here that for m = 1 the
identity mapping ¢ — a 1s taken. Now let m be any positive
integer < 7z and let

(ala A2, * " ", am) —> Z‘(‘gl:« Aoy *°°, am)
(am-}-l: Cm4-2y ** ") dﬂ) — U(dm+1, Bm42y ° " ") an)

be definite m-ary and (#» — m)-ary compositions determined by
the original binary one. Then we take the mapping

(ala Ay, * ", an) - ”(dh Aoy °* dm)v(am-}-h am+2: "ty an)

as one of our n-ary compositions. All the mappings obtained in
this way by varying m,°« and v are the z-ary compositions asso-
ciated with (4,6) — ab. The results of applying these mappings
to (a1, az, * -+, an) will be called (complex) products of ay, as, - - -,
a, (taken in this order).

For example, the possible products of ,, s, a3, a4 are

((@182)a3)as, (@1(a2a3))as, (a1a2)(asa4), a1(az(asas)), a1((@2a3)a,).

One can easily construct a set with a binary composition for
which the indicated z-ary compositions are all distinct. For
this purpose let § be a set with distinct elements a;, @3, a3, - - -
and let &* be the set of symbols that can be obtained as follows:
Select any finite set of elements a4, 4, - -+, s 1n a definite order in
the set §. If this set has either one or two elements then we in-
clude it in &*. Ifit has more than two elements then we partition
it into two ordered subsets 2, 4, ---, kand /, - - -, s and we inclose
the subsets thus obtained that contain more than one element in
parentheses. This gives (@, &, +-+, &)(/, - -+, 5). We then repeat
these rules on the two subsets and continue until the process
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i

terminates. If # and v represent any two symbols in &%*, then
we define

‘uv if both # and v are in §

u#(v) if # e § and v has more than one term

(x)v if v ¢ § and # has more than one term
(2)(v) if both # and v have more than one term.

o = -

It is clear that this gives a binary composition in &*, Moreover
the n-ary compositions that we defined before are all different in
&* since they give different results for the elements a4, a5, - -,
a,. 1f N(n) denotes the number of these compositions, then our
definition gives the recursion formula

(3) N(n) = N(n — )NQ) + N(n — 2)N(Q2) +- - -
+ N(O)N(n — 1).

Also N(1) = 1. It s also clear that for any binary composition
in any set, N(#) is an upper bound for the number of distinct
induced 7z-ary compositions.

It is easy to solve the recursion formula (3) and obtain an
explicit formula for N(#). For this purpose we introduce the
“generating function’ defined by the power series

y = NU)x + N2)x* +- -+ N(n)x™ +- - -.
Then

> = N)NQ1)** + [N(2)N(1) + N(1)N(2)J«® + - - -
= N2)x* + N3)x® +- - -.
Since N(1) = 1, this gives
y—y+x=0.

Hence
l — (1 —40¥% 21.3.--(2n—23)
— — 2n—1n
Y 2 ; 1:2 -9 &
and
1-3.--2n —3
(4) N(n) = (27 = 3) pna x
1.2...n
(2n — 2)!

* This can be written more concisely as N(n) = T
nl(n — 1)!
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EXERCISES

1. In the set I of integers define the binary composition f(x,y) = x + y2.
Work out all of the induced 4-ary compositions.

2. For a given binary composition define a simple product of n a@’s inductively
as either @14 where u is a simple product of @, * - -, @n or va, where v is a simple
product of @1, -+, an-1. Show that any product of 22" elements can be re-
garded as a simple product of r elements (that are themselves products).

3. Generalized associative law. Powers. We shall now show
that if our binary composition is associative then all the possible
products of @, @5, - - -, @, taken in this order are equal. We first

define a particular product [] 4; by the formulas
1

1 r—+1 r
Locman T o= ([La)ers
1

1 1

and we prove the

n-+m

n m
Lemma- H d,‘ H an.l_j = H ak'
1 1 1

Proof. By definition this holds if m» = 1. Assume it true for

m = r and consider the case m = » + 1. Here
n r -1

n r
II a: I1 Gniyi = I1 4 ((H “n+f) “u+r+1)
1 1 1 1

r

n
= (H a; H dn.;.j) Antgor4-1
1 1
n—+r
( H ak) an-}-r-}-l

1
n+r+1

= Hdk.
1

Consider now any product associated with (4,, 45, - -, 4,). By

definition it is a product v where # is a product associated with
(@1, @z, -+, am), 1 <m < n, and vis a product associated with

m
(mi1, - - *5 @n). By induction we can assume that # = J] 4;and
i—1

n—m n
v = [] @my; Henceuv = J]I ae. Thusall products determined
Fuxl ka=]
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by (4, a2, - - -, @s) are equal. From now on we shall denote this

uniquely determined product as @,4; - - - 2, omitting all paren-
theses.

If all the @; = @, we denote 4,42 - -+ @, by 4" and call this
element the nth power of a. Our remarks show that
(5) atag™ = an+m’ (an)m = g™

If the notation + 1s used for the composition in &, then we write

a1 + as +-- -+ a, in place of @145 - - - ay,

na 1n place of a™.

The rules (5) for powers now become the following rules for
multiples na:

(57) na + ma = (n + m)a, m(na) = (mn)a.

4. Commutativity. If ¢ and 4 are elements of a semi-group 1t
may happen that @b 5= 4a. For example, in the semi-group whose
multiplication table 1s given in §1 we have af = 8 whereas
Bae = . If ab = ba in &, then the elements ¢ and & are said to
commute and if this holds for any pair 4,4 in & then & is called
commutative. 1t 1s immediate by induction on 7 that if ¢;6 = éa;,
;=1,2, ---, n, then

al...anj;:éal...an'

Suppose next that for the elements @, a2, -+, @, we have the
commutativity @;a; = a;a; for all 7, 7 and consider any product
ayay - -+ a, where 1/, 2", - .- n’ is some permutation of the num-
bers 1, 2, - -+, n. Suppose that 2, occurs in the Ath place in this
product. Then g, = a,. Hence

aliazﬁ' . 'dhu v o3, = dl;' * 'a(h—l)'a(h-l-l)'- ) -aﬂ'aﬂ'

n

Using induction, we may assume that
Gy Bp_1yGn+1y " "Gp ™ G183" * Gy 1.

Hence ayay - - - a,, = aiaq + -« a,.
The powers of a single element commute since (5) holds. Also
it 1s clear from our discussion that if a4 = ba, then

(6) (ab)” = a™b".
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In the additive notation this reads
(6") n(a + 6) = na + nb.

5. Identities and inverses. An element ¢ of a semi-group & is
called a left identity (unit, unity) \f ea = a for every a in &.
Similarly f is a right identity if af = a for every a.

Examples. (1) The semi-group of positive integers relative to multiplica-
tion has the two-sided (= left and right) identity 1. (2) The semi-group of
positive integers relative to addition has no identity. (3) Let © be any set
and define in &, 46 = 4. Then & is a semi-group and any element of & is a

left identity. On the other hand, if © possesses more than one element, then
it has no right identities.

The last example shows that a semi-group can have several
left (right) identities but no right (left) identities. However,
if & possesses a left identity ¢ and a right identity f, then neces-
sarily e = f; for ef = f since ¢ 1s a left identity and ¢f = ¢ since
f1s a right identity. This shows that, if we have a left identity
and a right identity, then we cannot have more than one of
either type. In particular, if a two-sided identity exists, then it
1S unique.

From now on we refer to a two-sided identity simply as an (the)
identity and we shall usually denote this element as 1. An element
a of & will be called right regular if there exists an @’ in & such
that aa’ = 1. The element @’ is called a right inverse of a. Left
regularity and left inverses are defined in a similar manner. If 4
is both left regular and right regular, then we shall say that it 1s
a unit (regular). In this case we have an &’ such that s’ =1
and an &'’ such that ¢’ = 1. Then

a' = (a"’a)a’ = a”(aa’) = a”.

Thus @’ = &”’ and this element 1s called an inverse of a. Our
argument shows that it 1s unique. We shall denote this element as
a~ !, Sinceaa™! =1 = a'a, 1t 1s clear that a7 1s regular and
that @ is its inverse. This is the rule: (¢71) ™1 = 4. We note also
that, if ¢ and & are units, then so is a# since (@6)(6a™) = 1
= (67'a7 Y (ab). Thus we have (@b)™" = b~1a7L.

If the operation in & is denoted as +, we denote the identity
as 0. The inverse of ¢ if it exists is written as —a. Thus we
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have —(—a) = a and —(a + &) = —b6 4+ (—a). Also we shall

write 2 — & for a + (—5).
6. Definition and examples of groups.

Definition 2. A4 group 15 @ semi-group that has an identity and
in which every element is a unit.

Thus a group 1s a system consisting of a set @ and binary com-
position in ® such that the following conditions hold:

1. (ab)c = a(bc).

2. There exists an element 1 in & such that ¢l = ¢ = 1la.

3. For each 2 in & there 1s an element 271 1n & such that

aga" ! =1 = g 1a.

As in the case of semi-groups we shall often use the term
“group @ for the set part of the group. The following is a list
of examples of groups all of which should be familiar to the reader.

Examples. (1) R, the totality of real numbers, addition as composition.
Here the number O is the identity and the inverse of 4 is the usual —a. (2)
C., the set of complex numbers, addition as composition. (3) R*, the set of
non-zero real numbers, multiplication as the composition. Here the real num-
ber 1 is the identity and the inverse of 4 is the usual reciprocal 2=1. (4) Q,
the set of positive real numbers, ordinary multiplication. (5) C¥*, the set of
non-zero complex numbers, multiplication. (6) U, the set of complex numbers
¢® of absolute value 1, multiplication. (7) U,, the # complex nth roots of 1,
multiplication. (8) The totality of rotations about a point O in the plane, com-
position the resultant. If O is taken to be the origin, the rotation through an
angle 0 can be represented analytically as the mapping (x,y) — (¥,%) where

¥ =xcos@ — ysinf, y = xsinf + y cosé.

If 6 = 0, we get the identity transformation and this acts as the identity in the
set of rotations. The inverse df the rotation through the angle € is the rotation
through the angle —8. (9) The totality of rotations about a point O in space,
resultant composition. (10} The set of vectors in the plane, vector addition
as composition. Analytically a vector may be represented as a pair of real
numbers (4,5). These are respectively the x- and the y-coordinates of the
vector. If v = (4,6) and V' = (4,F'), the usual vector addition gives v + ¢/ =
(@ + 4/, b+ #). The O vector 0 = (0,0) acts as the identity and the inverse
of vis —v = (—a,—5).

EXERCISE

1. Let® be the totality of pairs of real numbers (4,4) for which 2 % 0. Take
the composition in & that is defined by the formula

(3,0)(c,d) = (ac, bc + d).

Verify that this is a group.
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It 1s clear from our discussion of semi-groups that the identity
element is unique in @. Also the inverse of @ is uniquely deter-
mined. If 2 and 4 are any two elements of a group & then the
linear equation ax = & has the solution 274 in . This 1s the
only solution since ax = ax’ implies that a7 '(ax) = a7 (ax’).
Hence x = x’. This last remark shows that the Jeft cancellation
law holds. Similarly the equation ya = 4 has a unique solution in
& and the right cancellation law holds. The solvability of ax = &
and ya = & 1n & 1s a characteristic property of a group (see ex. 3

below).
EXERCISES

1. An element ¢ of a semi-group is said to be idempotent if e = e. Show that

the only idempotent element in a group is ¢ = 1.
2. Prove that a semi-group having the following properties is a group:
(a) ® has a right identity 1,.
(b) Every element 2 of & has a right inverse relative to 1,.*
3. Prove that if & is a semi-group in which the equations ax = & and ya = 4

are solvable for any 4 and 4, then & is a group.
4. Prove that a finite semigroup in which the cancellation laws hold is a

group.

7. Subgroups. A subset &’ of a semi-gtoup is said to be closed
if ab ¢ &' for every @ and & 1n &’. It is clear that the associative
law holds in &’. Hence the pair &’,- consisting of & and the in-
duced mapping (,6) — ab, a,b in &', form a semi-group. We call
such a semi-group a sub-semi-group of the given semi-group. It
may happen that &’ is a group relative to the composition in &.
In this case we say that &' is a subgroup of &.

Examples. (1) The set of positive integers is (strictly speaking, determines)
a sub-semi-group of the group /. of integers relative to addition. The set of
even integers is a subgroup of 7,. More generally the totality of multiples
km of a fixed integer m is a subgroup. (2) The set consisting of the numbers
1 and —1 is a subgroup of the semi-group of integers relative to multiplication.

We shall show now that, if & is any semi-group with an identity,
then the subset ® of units of & determines a subgroup. Let @ and
b be units: then we have seen that 47l¢™" is an inverse for aé.
Hence ab ¢ ®. Since 1-1 =1, 1 ¢® and this element acts as an

* The systems obtained by replacing the word “right” by “left” in (b) need not be
groups. Their structure has been obtained by A. H. Clifford in Annals of Math., Vol. 34,

pp. 865-871.
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identity in @. Finally, if e ®, then a7 ' e @ sitice ga™ =1 =
a la. Thus every element of ® has an inverse in . We shall
call ® the group of units of &. The example (2) given above is
the group of units in the semi-group of integers under multiplica-
tion. We shall see in the sequel that many important examples
of groups are obtained as groups of units of semi-groups.

We begin next with an arbitrary group @ and we shall determine
the conditions that a subset $ of ® determines a subgroup of @.
First we know that § must be closed. Next $ has an identity 1’.
Since (17)? = 1/, it is clear (ex. 1, p. 24) that 1’ = 1, the identity
of @. Finally, if 2 ¢, then there exists an element ¢’ in §
such that 22’ = 1 = @’a. Then 4’ 1s an inverse of 2 and since
there is only one inverse, 2’ = a™!. This shows that the follow-
ing conditions are necessary in order that a subset  of a group ®
determines a subgroup of &:

- et - i el

1. a,6 ¢ © implies that a4 ¢  (closure).
2. 1 9.
3. a e implies that a™1 ¢ H.

These conditions are also sufficient conditions on a subset $ that
9,+ be a subgroup of ®,-; for it is clear that they imply axioms
2 and 3 for a group. Moreover, the associativity condition
certainly holds in $ since it holds in ®.

It should be noted that the group ® itself can be regarded as a
subgroup of . If § is a subgroup and $ is a proper subset of &,
then we say that © is a proper subgroup of . We remark also that
the subset of @ consisting of the element 1 only is a subgroup.
This is evident from the definition or from the foregoing condi-
tions. We shall denote this subgroup as the subgroup 1 of @
(or 0 in the additive notation).

EXERCISES

1. Verify that the subset of pairs of the form (1,5) forms a subgroup of the
group given in ex. 1, p. 23.

2. Show that a non-vacuous subset $ of a group ® is a subgroup if and only if
ab~1 g$ for any @ and 4 in 9.

3. Prove that any finite sub-semi-group of a group is a subgroup (cf, ex. 4,
p. 24).
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4. Prove that, if A is any collection of subgroups® of &, then the intersection
() O is a subgroup.

A
5. Prove that, if 4 is any element of a group &, then the set §(a) of elements

that commute with 2 is a subgroup of &.

8. Isomorphism. We shall consider first a well-known example
of this fundamental concept. Let R, be the group of real num-
bers relative to addition and let () be the group of positive real
numbers relative to multiplication. We consider the mapping
x - ¢ of R, into . This mapping 1s 1-1 of R, onto Q and its
inverse i1s the mapping 2 — log2. Also we have the funda-

mental property:
TV = g%V,

Thus we arrive at the same result if (a) we first perform the
group composition on two numbers in R and then take the image
in (, or (b) we first take images in Q and then perform the group
composition on these images. From the abstract point of view
the groups R, and @ are essentially indistinguishable; for we are
not interested in the nature of the elements of our groups but
only in their compositions and these are essentially the same in
the two examples. The precise relation between R, and @ can
be stated by saying that these two groups are 1somorphic in the
sense of the following

Definition 3. Two groups & and & are said to be isomorphic
if there exists a 1-1 mapping x — x' of & onto & such that (xy)' =
x'y’,

A mapping satisfying the condition of this definition is called
an zsomorphism of ® onto ®’. If & and @&’ are isomorphic, there
may exist many isomorphisms between them. For example, if
1s any positive number s£1, then the mapping ¥ — 4* is an
isomorphism of R, onto (). Isomorphic groups are often said
to be abstractly equivalent. If & is 1somorphic to @', we write
® ==&’ It is clear that the isomorphism relation between
croups i1s an equivalence; for the identity mapping is an iso-
morphism of & onto itself and, if 2 — 4’ is an 1somorphism of
® onto ®&’, then @’ — a, the inverse mapping, is an isomorphism
of & onto ®@. Finally, if 2 — 4’ is an isomorphism of @ onto @&’



SEMI-GROUPS AND GROUPS 27

and @’ — a@’’ 1s an 1somorphism of &' onto &”, then 2 — 2" 1s
an isomorphism of & onto @”.

EXERCISES

1. Prove that, if x — x’ is an isomorphism, then 1/, the image of 1, 1s the

identity of the second group. Prove also that (a~1) = (a’) .
2. Is the mapping 8 — ¢* an isomorphism of R4 onto the multiplicative

group of complex numbers of absolute value 1°?

9. Transformation groups. Let § be an arbitrary set and let
T(S) be the semi-group of transformations of § into itself. We
know that T has an identity, namely, the identity mapping ¥ — x.
We consider now the subgroup &(S) of units of T(§). We shall
show that &(S) is just the set of 1-1 mappings of § onto itself;
for we have seen that, if a 1s 1-1 of § onto §, then the inverse
mapping a1 has the property aa™ =1 = @ 'a. On the other
hand, let @ be any element of T(S) for which there exists an inverse
B such that af = 1 = Ba. Then any ¥ = (xf)a & Sa so that «
maps S onto itself. Also, if xa = ya, then (xa)8 = (ya)B and
x = y. Henceaisl-1. We shall call &(8) the group of 1-1 trans-
Sformations or permutations of the set S.

More generally, we define a transformation group (in §) to be
any subgroup of a group &(§). If we recall the conditions that a
subset § be a subgroup, we see that a set § of 1-1 transformations
of a set § onto itself determines a transformation group if the
following hold:

1. If a, B € §, then the resultant af e H.
2. The identity mapping ¥ — x 1s in 9.
3. If @ e , the inverse mapping a™! is in D.

We consider now the special case in which § is the set of #
numbers 1, 2, ---, #. The group &(S) of permutations of § 1s
called the symmetric group of degree n. It is usually denoted
as §,. We shall represent an element ae§, by a symbol of

the form (1 2 ... p )

la 2a¢ - n«

and we can use this representation to calculate the order (number
of elements) of the group §,. Clearly the element 1l is arbitrary.
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Hence we can choose the number in the first position in 7z different
ways. Since no repetitions are allowed in the second row of our
symbol, we have » — 1 choices for the second position, n — 2
for the third, etc. Hence in all we have #! symbols and conse-
quently 7! elements 1n §,.

EXERCISES

1. Calculate af8, B and a1 if

_12345)B (12345
\2 3 1 1 3 4 § 2

2. Write down the elements of §3 and work out a multiplication table for this

group.
3. Verify that the transformations

(123) (123) (123
1 2 377 \2 3 1
form a transformation group.

4. Which of the examples given in § 6 are transformation groups?

5. Verify that the set of transformations of the line given by the rule
x — ax + b, a # 0 form a transformation group. Show that this group is
isomorphic to the one given in ex. 1, p. 23.

6. Verify that the totality of transformations of the plane defined by

(x,y) — (x + 4, 0) constitute a group relative to resultant composition, Is
this a transformation group?

10. Realization of a group as a transformation group. His-
torically the theory of groups dealt at first only with transforma-
tion groups. The concept of an abstract group was introduced
later for the purpose of deriving in the simplest and most direct
manner those properties of transformation groups that concern
the resultant composition only and do not refer to the set § in
which the transformations act. It 1s natural to ask whether or
not the abstract concept 1s completely appropriate in the sense
that the class of systems covered by it is just the class of trans-
formation groups. This question is answered affirmatively in
the following fundamental theorem due to Cayley:

Theorem 1. Any group is isomorphic to a transformation group.

Proof. The transformation group that we shall define will act
in the set & of the given group. With each element @ of the group
& we associate the mapping
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X —> Xa

of the set @ into itself. We denote this mapping as @, and call
it the right multiplication determined by 4. Since the right can-
cellation law holds, @, 1s 1-~1. Since any & can be written 1n the
form (ba Y)a = (ba')a,, a. 1s a mapping onto &. Hence 4, is in
the group of 1-1 transformations of the set 8. We wish to show
now that the totality &, = {a,} is a transformation group in ®.
Consider first the product ,4,. This sends x into (x2)6. By the
associative law (xa)é = x(ab). Thus 4,6, has the same effect as
(ab).. Hence

(7) a.b, = (ab),

is in &,. We note next that 1 = 1, 1s in ®,. Finally by (7)
a(a V), =1, = (@ V,a,. Hence a,7! = (@), 1s in @,. Thus
®&, 1s a transformation group. We consider now the correspond-
ence @ — a, of the group & onto the group &,. If @ # 4, then
la, = a #% 6 = 14,. Hencea, # 6,. Thusa — a,1s 1-1. Since
(7) holds, the mapping ¢ — 4, is an isomorphism. This com-
pletes the proof.

We shall refer to the isomorphism ¢ — @, as the (right)
regular realization of @ as a transformation group. It should be
observed that if ® is a finite group of order n, then @, is a sub-
group of the symmetric group §,. Hence we have the

Corollary. Any finite group of order n is isomorphic to a sub-
group of §,.

Examples. (1) R4, the group of real numbers and addition. If gae R,
ay 18 the translation x — %’ = x + 4. (2) R*, the group of real numbers # 0
under multiplication. Here 4, is the dilation x — %’ = ax. (3) The group of
pairs of real numbers (4,4), 4 3£ 0, where (4,6)(c,d) = (ac, bc + d). Here (¢,d),
maps (x, y) into (x’,y") where

X =¢x, vy =¢y+d.

There is a second realization of @ as a transformation group
that one obtains by using left multiplications. We define the
left multiplication a; as the mapping x — ax of @ into itself.
As in the case of right multiplication it is easy to see that 4;
1s 1-1 of & onto itself. Also the set &; of the #; is a transforma-
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tion group. The proof of this 1s the same as for @&, with the
modification that

(8) aby = (ba),.
This follows from
xa, = blax) = (ba)x = x(ba),.

The mapping ¢ — 4; is 1-1 of & onto ®&; but in general this is
not an isomorphism. In order to obtain an isomorphism we must
replace this mapping by the mapping ¢ — 4,7 = (@™);; for

then we have
(db)z_l = (b;a;) 1 = dz_lbf_l.

We shall call the isomorphism ¢ — ;7! the left regular realiza-
tion of @.

The associative law in @ gives the rule 24, = é,a; for all 4,/
in @ since xa;16, = (ax)b and xb,a; = a(xb). Hence any trans-
formation belonging to the set &, commutes with any transforma-
tion belonging to &;. The converse holds also, namely, if 8 1s
any transformation in @ that commutes with all the 4; (a,), then
B is a right (left) multiplication; for we have

xB = (x1)8 = (Ix)B = (18)x; = x(18) = xb
for 4 = 18. Hence 8 = ¢4,.

EXERCISE

1. Obtain the regular realizations of Sg.

11. Cyclic groups. Order of an element. Let M be any non-
vacuous subset of a group ® and let {H} be the collection of
subgroups of ® that contain the set M. The collection {9} con-
tains ®; hence it is not vacuous. Its intersection N$ is a sub-
group of @ (ex. 4, p. 26). We denote this subgroup as [M] and
shall call it the subgroup of @ generated by the set M. The set [M]
has the following properties: (1) [M] is a subgroup of ®. (2)
[M] D M. 3) If § is any subgroup of ® containing M, then
© D [M]. Also it is clear that these properties characterize [M].
Thus let £ be a subset of ® satisfying (1), (2) and (3) (for M).
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Then since & is a subgroup containing M, & D [M]. By sym-
metry [M] 2 & Hence & = [M].

We can use this characterization to obtain explicitly the ele-
ments of [M]. We assert that these are just the finite products
a1dz * * + an (n arbitrary) where @; e M or g; 1s the inverse of an
element of M. Let & denote the collection of these products.
Then it 1s immediate that & 1s a subgroup of & containing M,
On the other hand, if § 1s a subgroup of & containing M, $
contains every g e M and every a™! with 2 in M. Hence $
contains ® Thus & satisfies (1), (2) and (3) and therefore
! = [M].

We consider now the special case in which M = {4} is a set
consisting of a single element 2. Here we write [4] for [M], and
we call this subgroup the (cyclic) group generated by a. A group
B 1s called a cyclic group if there exists an g € 8 such that 8 = [4].
The element a 1s then called a generator of 3. The remark above
shows that [4] consists of the elements ¢*, » > 0, 1 and (a71)",
n > 0. We shall now definesg® =1and a7 = ()" if n > 0.
In this sense [2] consists of the integral powers of the element 4.

A consideration of cases can be used to extend the basic laws
of exponents (5) to all integral powers. For example, suppose
n>|m| and m <0. Then "™ = a"a~ '™l = gr (g~ 1)Iml =
a"~Iml = g**tm We leave it to the reader to verify the other
cases. We remark that by the laws of exponents, or directly,
[2] is a commutative group. The following are some familiar
examples of cyclic groups.

Examples. (1) Let I, be the group of integers relative to addition. It is
Clear by the axiom of induction that a set of positive integers that contains 1
and that is closed under addition contains all the positive integers. From this
it follows that 7. = [1]. It is clear also that J, = [—1] and that 1 ¢ [k] if
k=1, —1. Hence 1l and —1 are the only generators of 1.

(2) Let Un be thze group of complex »nth roots of 1. Then U, consists of the

kx

‘_t " »
complex numbersen ', £ =0,1,2, --+, # — 1, Using the standard geometric
representation of complex numbers, we see that these numbers are represented

as the vertices of the regular n-gon inscribed in the unit circle that has (1,0)
2xd

as one of its vertices. If we set ¢ = = p, we see that the elements of U, are
1, p, p% -+, p*~ Y. Hence U, 1s a cyclic group of order ».

Let 3 be a cyclic group with generator ¢ and consider the map-
ping # — 4™ of I, onto 3. This correspondence has the property
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m+n — ™" = g"a™,

Hence, if our mapping is 1-1, then it is an 1somorphism of 7 onto
3.

Suppose next that the mapping is not 1-1. Then 4™ = 4" for
m # n. Wemay assume#n > m. Theng"™ = g™ = qg™q™™
= 1. Hence there exist positive integers p such that4® = 1. Let
r be the smallest positive integer having this property. Then we
assert that the elements 1, 4, - - -, 2”1 are distinct and that every
element of B is in this set; for if a* = @* for £ % / and &, / in the
range 0, 1, -++, r — 1, then 4? = 1 for 0 < p < r contrary to
the choice of ». Next let 4" be any element of 3. Write # =
gr +35, 0<s<r. Then g"=a"" =47 = (a")%° = a".
This proves our assertion. Thus 3 is a finite group of order 7.

We now see that if 8 is infinite the mapping » — 4" is neces-
sarily 1-1. Hence any infinite cyclic group is isomorphic to 7
and consequently any two infinite cyclic groups are 1somorphic.
We shall show next that any two cyclic groups of the same finite
order are i1somorphic. Let 3 = [¢] and B = [4] be of order r.
We have seen that the order r of [¢] (or of [4]) is the smallest
positive integer such that 4" =1 (4" = 1). We shall now show
that, if 4 is any integer such that ¢* = 1, then | 4. Thus sup-
pose A=r¢g+ s, 0 <s<r. Then g* =1 gives a* = 4°1? =
(@) = o+t = g = 1. Hence s = 0 by the minimality of r.
Now suppose that g = g™, Theng*™ =1 and son — m = rg.
Hence 1 = 4™ = "™ and 4" = /™. We can now map ¢" — 5"
and be sure that this correspondence is single-valued. By sym-
metry " = 6™ implies that ¢® = 2™, Hence our mapping is 1-1.
Clearly g"a™ = a*tm — p7t™ = p%p™, Hence a® — 4" 1s an
isomorphism. This completes the proof of the following

Theorem 2. Any two cyclic groups of the same order are iso-
morphic.

The concept of a cyclic group gives us a first classification of
the elements of an arbitrary group . If 2 is any element of @,
then we say that a is of infinite order or of finite order r, according
as [4] 1s infinite or is a finite group of order ». In the first case
we know that @” 2 1 if » is any integer 0, and if the second
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alternative holds, then 2" = 1. Also we know that » is the least
positive integer such that 2" = 1.

Cyclic groups are the simplest kinds of groups. It is therefore
not surprising that most questions concerning groups are readily
answered for this type. Thus, for example, it is generally a very
difficult task to determine all the subgroups of a given group.
We shall now see that this can be done very simply for cyclic
groups.

Let W be a subgroup of the cyclic group 3 = [2]. Assume first
that W 52 1. Then there exist positive integers m such that
a™ ¢ W; for there exist integers m 5% 0 such that 4™ ¢ W, and
if a™ ¢ W, then so does (¢™)™! = a™™. Now let s be the smallest
positive integer such that 4° ¢ . We propose to show that
W = [2°] and that the correspondence W — s is 1-1. To prove
these results let ¢ = 2™ be any elementin W and writem = sq¢ + «
where 0 < # <s5. Then a* = a™(a@*) %e ®W. Hence, by the
minimality of s, # = 0. Thusc¢ = a™ = (&*)? and B = [¢°]. Also
the 1-1 ness is clear since, if ® — s and ®W’' — s, then W =
[°] = W'

If 8 1s an infinite cyclic group, then our mapping W — s is a
mapping onto the set of positive integers; for if we take any
positive integer s, then [¢°] — s since the smallest positive integer
2 such that a? e [¢°] 1s s 1tself.

Suppose next that 3 is finite of order ». Then we shall show
that the mapping ® — s 1s a mapping onto the set of positive
integers < 7 which are divisors of ». Since 1 = 4" ¢ B, the argu-
ment used before shows that » is a multiple of s, that is, | 7.
On the other hand, let s be any divisor of » and write r = s
Then (2*)! = 1, but (&*)" # 1if0 < # < t. Hence, ¢ is the order
of [#°]. Now if s is the smallest positive integer such that &° ¢ [2"],
then also r = s since [¢°] = [4*]. It follows that s = s’. Hence
[a°] — s.

We have therefore proved the following

Theorem 3. Let B be a cyclic group with generator a and let B be
any subgroup £ 1 of B. Then if 5 is the smallest positive integer
such that a® ¢ W, W = [a°]. If B is infinite, then the correspondence
W — s is a 1-1 mapping of the set of subgroups = 1 onto the set of
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positive integers. If B is finite of order r, then our mapping is 1-1
of the set of subgroups %= 1 onto the set of positive divisors of r that
are less than r.

If 8 1s infinite we can extend our correspondence to include the
subgroup 1 consisting of 1 alone by mapping 1 — 0. In the
finite case we map 1 — r, so that in all cases we have & = [4?].
We note also that in the finite case if &® — s, then the order of
W 1s r/s = t. Hence, we obtain another 1-1 correspondence here

by associating with 8 the order of this subgroup. We state this
result as

Theorem 4. Let B be cyclic of order v (<o), Then the order of
any subgroup of 8 is a divisor of r and, if ¢t is any positive divisor
of r, B possesses one and only one subgroup of order ¢.

It 1s customary to denote the number of positive divisors of an
integer 7 by d(r). Thus 3 possesses 4(r) subgroups.

EXERCISES

1. List the subgroups of the cyclic group of order 12,

2. Let 3 = [4] be of order r < . Show that the order of 4™ is [m,2]/m =
r/(myr).

3. Show that a cyclic group of order » possesses exactly ¢(r) generators where
¢(r) (the Euler ¢-function) denotes the number of positive numbers <r that are
prime to r in the sense (r,4) = 1.

4. Show that the subgroup § of order ¢ (r = s¢t) of a cyclic group of order r
can be characterized in either of the following ways: (1) © is the set of sth
powers of the elements of & or (2) O is the set of elements 4 such that 4 = 1,

12. Elementary properties of permutations. A permutation

¥ which permutes cyclically a set of elements 7;, 75, - -, 7, in the
sense that

9) Gy =iy dxy =iz v, LY =i LY = 4
and leaves fixed the other numbers in {1, 2, ---, n} is called a
cycle. 1f 4 1s of this form, we denote 1t as (7372 - - - 4,). Itis clear

that we can just as well write
Y = (f2f3 "o frfl) = (1'32'4 "t frflfz) = °°

Two cycles ¥ and 4’ are said to be disjoint if their symbols con-
tain no common letters. In this case it is clear that the numbers
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which are moved by one of these transformations are left fixed
by the other. Henceif 7 is any number and 7y 7 £, then iy'y = 7y
and since 7vy° £ iy also, ivy’ i'y Similarly if éy" £ ¢ then
gy = z77 and if iy = 7 and 7y’ = 7 then iyy' = iv'y. Thus
vy = 7"y, that 1s, any two disjoint cycles commute.

Any permutation « can be written as a product of disjoint

cycles. For example, 1f
_(l 2 4 5 6 7 8)

*“\3 6 5482 7 1)

then

la =3, 3a=5 5¢=8, 8a=1; 2aa=6, 6a=2;
4o = 4; Ta =17,
from which 1t follows that
a=(13158)2 6)4(7).

In general, for any a we can begin with any numberin1,2, - -, »n,
say 71, and form 7,& = 7,5, 130 = 13, - - -, until we reach a number
that occurs previously in this list. The first such repetition occurs
when z,-_,_l = {;a = i1; for iy = 167 and if 4, = 7;, / > k, then
110871 = 530871 and {0t * = §;. Thus the numbers 7y, 75, - -, §,
are permuted cyclically by @. If » < #» we can find a j; not in
this set. If j,o* = 7,09, then j, = 7;e9-% is in the original set
contrary to assumption. Hence we obtain a new set { j;, fs, - - -,
7o} that is cyclically permuted by « and that has no element in
common with the original set. If we continue in this way we
finally exhaust theset {1,2, ---, n}. Alsoitis clear by comparing
effects on any number that

(10) a = (1122 -+ 2:)(J1g2 "~ Js) -+ (lido - L)

where these cycles are disjoint.

A cycle (7) 1s the identity mapping. Such cycles can be dropped
in (10) and we may therefore suppose that », 5, ---, > 1 in
(10). The factorization thus obtained 1s unique since we can
deduce from 1t the fact that

3
5

zla - 12’ « -, zr_la = zr, zra = 31; . » -; Zla = Z2)

lyrc = luy luoe = [
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and that all the other numbers are fixed. If « has the factoriza-
tion (10) into disjoint cycles, then we shall associate with « the
Integer

(11) Ney=rr—-—1)4+G-1)4+---4+ (- 1).

A cycle of the form (ab) 1s called a transposition. It is easy to
verify that

(12) (flfz e gy) == (flfz)(ilfa) Tt (flfr)-

Hence according to (10), a is a product of N(a) transpositions.
We shall now show that if N(a) is even (odd) then any factorization
of o as a product of transpositions contains an even (odd) number of
factors. For this purpose we require the following formulas

(636'16'2 P C};g’dl e dk)(al’) = (636'1 . Ch)(bdl e dk)
(acy -+ cn)(bdy - - - dr)(ab) = (acy -+ - crybdr -+ - dy).

According to these, if 2 and 4 occur 1n the same cycle in «, then
N(a(ab)) = N(e) — 1 and, if 2 and & occur 1n different cycles
in a, then N(a(ab)) = N(a) + 1. In any case

(13) N(a(ad)) = N(a) £ 1.

Now suppose that « i1s a product of m transpositions, say a =

(ab)(cd) - - - (pg). Since (ab)™' = (ab), this implies that

a(pg) - (cd)(ad) = 1.
Since N(1) = 0, tteration of (13) gives

r m "\
0=N(CE) +1+14+--£1.

Hence N(a) 1s a sum of m terms = 1 or —1. It follows that
N(a) 1s even if and only if m 1s even. This proves our assertion.

We shall call « even or odd according as the factorizations of «
as a product of transpositions contain even or odd numbers of
factors. If a 1s a product of 7 transpositions and g 1s a product
of ¢ transpositions, then af is a product of m 4 ¢ transpositions
and o~ ! is a product of 7 transpositions. Hence if « 1s even and
8 is even, then aB is even; if @ 1s even (odd) and g 1s odd (even),

then af 1s odd and, if both @ and g are odd, then «f 1s even.
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If « 1s even, then so1s @~!. Among other things, these rules show

that the set 4, of even permutations 1s a subgroup of §,. This
subgroup 1s called tke alternating group.

EXERCISES

1. Express the elements of 8§ as (1) products of disjoint cycles, (2) products
of transpositions. Determine the elements of A;.

2. Show that, if » > 3, then any element of A4, is a product of three-cycles
(abe).

13. Coset decompositions of a group. Suppose first that &
s an arbitrary transformation group acting in a set §. Then &
defines an equivalence relation in § by the rule that ¥ = y(mod ®)
(read: x 1s congruent to y modulo &) if y = xa for some « in ®.
That this relation 1s reflextve, symimetric and transitive is immedi-
ate from the definttion of a transformation group. It may happen
that any two elements of § are equivalent in this sense. In this
case ® is said to be transitive in §. In general we obtain a decom-
position of § into non-overlapping equivalence classes that we
shall call the transitivity sets of § relative to @.

As an instance of this type of decomposition let § = {1,2, .- -,
n} and let ® = [o] where @ is in §,. If a = (G145 ---14,) ---
(/1s -+ - 1,) 1s the factorization of « into disjoint cycles, then it is
clear that {7, 4a, - -, £4}, *+, { /1, lo, - - -, lu} are transitivity sets
of [¢]. The remaining transitivity sets contain single elements.
The number N(«) considered in the preceding section can now be
defined as 2(r — 1) where  denotes the number of elements in a
transitivity set and the sum 1s taken over these sets. This remark
shows again that N(a) 1s unique and in general it makes somewhat
more transparent the discussion of the preceding section.

We suppose now that @ 1s any group and that $ is a subgroup
of . Let . be the set of right multiplications in & determined
by the elements of . This means that §,’ is the set of mappings
x — xh, x1n @, £ fixed in $. Since P 1s a subgroup of @, H,’ 1s
a subgroup of ®,; hence $,’ is a transformation group acting in
the set @. We consider now the transttivity sets determined by
S, We write x =y (mod $) in place of x =y (mod 9H,’).
By definition this means that there exists an 4 in § such that
y = xh, or, equivalently, that ¥~y ¢ §. The transitivity set of



38 SEMI-GROUPS AND GROUPS

L —

elements that are congruent (equivalent) to x 1s called the righs
coset of x relative to D.

We shall now introduce a convenient notation for the right
cosets. In general, 1f 4 and B are subsets of a group &, then we
write 4B for the collection of products ¢4, 2 in 4, 4 in B. We
note that (4B)C 1s the collection of products (e@b)c, a 1n A, &
in B, ¢ in C. Since (ab)c = a(bc), any such product 1s in 4(BC).
Hence (4B)C € A(BC). Similarly the reverse inequality holds
so that (4B)C = A(BC). The set consisting of a single element
will be denoted as x. Now it is clear that the right coset of x
relative to $ 1s the set of elements x4, 2 1n $. Hence this coset
1s the set 9. We know, of course, that @ = Ux$ and that etther

O =yHorx NyH = g.

Examples. (1) Let I be the group of integers relative to addition and let
[m] denote the subgroup of multiples of the integer m > 0, Here x = y (mod
[m]) has the same meaning as x = y (mod m) of elementary number theory,
namely, ¥ — y 1s a multiple of m. If x 1s any integer we can write x = gm + r
where 0 < r < m. Then x = r (mod m). Thus any integer is congruent to
one of the numbers 0, 1,2, -+, m — 1. Also it is clear that no two of these
numbers are congruent. Hence there are m cosets of I relative to [m]:

0=

0, x=m, ::2m, . l

pmgteguis,  pumgruguie,

(m--lj= {m-—l,(m——l)::m,(m-—l)::2m,---}.

(2) @ = R, the additive group of real numbers; © = I, the subgroup of
integers. Here two real numbers are in the same coset relative to 7+ if and only
if their difference is an integer. A coset is therefore a collection of points that
are similarly placed in the unit intervals with integer endpoints.

3O = 8n, O = A, IfBiseven, fe 4, and conversely. If 81s odd every
member of the coset A4, is odd. Moreover, this coset contains all the odd
permutations; for, if v is odd, then 8~y i1s even and ¥ € 8A4,. Thus we have two
cosets: the coset A4, of even permutations and the coset of odd permutations.

Any two right cosets have the same cardinal number, that is,
there is a 1-1 correspondence mapping one onto the other. Thus
let ¥ and y9 be arbitrary right cosets and consider the left
multiplication (yx~1); = x;7ly;. We know that this mapping
is 1-1 of & onto itself, and it is clear that, if x%ex$, then
(xh) (yx ™Y = yxxh = yhey9. Hence (yx™); induces a 1-1
mapping of ¥ onto y9. Since $ = 19 is itself a right coset, we
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see that all the right cosets have the same cardinal number as §.

We can duplicate the foregoing discussion using left cosets, in
place of right cosets. The starting potnt here 1s the transforma-
tion group 9 = {&}, A in . We define the left congruence
relation relative to the subgroup $ as the congruence relation
determined by the transformation group $:. Thus we set
x=;y (mod §) for x =y (mod $;"). This means simply that
there exists an element 2 ¢ § such that y = Ax, or, equivalently,
that yx~ 1 e . The equivalence class determined by x is the set
$x which we shall call the /Jeft coset of x relative to H.

One can see by examples (exercise 1 below) that the decomposi-
tion of a group into right cosets relative to a subgroup $ need
not coincide with the decomposition into left cosets relative to
$. However, there 1s a stimple relation between these two decom-
positions, namely, the set of inverses of the elements in any right
coset ¥ constitute a left coset. For (x4) ! = A x"1e Ha?
and, as 4 ranges over §, A 'x~! ranges over $x 1. Thus the
left coset $x~! 1s uniquely determined by x$, that is, it does not
depend on the element x selected in 9. It 1s also immediate
that the correspondence ¥ — $x~! is 1-1 of the collection of
right cosets onto the collection of left cosets. Hence the collec-
tions {Hx} and {¥H} have the same cardinal number. We call
this number the index of © in ®.

Suppose now that @ 1s a finite group and that the order of &
1s 7. Let § be a subgroup of order m and write

@:"dl@ Udg@ U"'Udr©

where ;9 N ;9 = & if 1 # 4. Thus r is the index of $ in .
We have seen that each 4,9 contains » elements. Hence & con-

tains mr elements so that #» = mr. This proves the following
fundamental

Theorem 5 (Lagrange). The order of a subgroup of a finite group
15 a factor of the order of the group.

Our result shows that the order of 4, is #!/2; for we have
seen that the index of 4, in §, is 2. A second important applica-
tion of Lagrange’s theorem is the
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Corollary. If & is a finite group of order n, then x™ =1 for
every x € .

Proof. ILet m be the order of [¥]. Then x™ = 1 and » = mr.
Hence x™ = 1.

EXERCISES

1. Determine the coset decompositions of the subgroup = {1, (12)} in Ss.

2. Let V be the group of vectors in the plane, vector addition as composition.
Show that the vectors that issue from the origin O and have end points on a
fixed line through O form a subgroup. What are the cosets relative to this
subgroup?

3. Let ; and : be two subgroups of . Show that any coset relative to
1N O, is the intersection of a coset relative to O with a coset relative to Ho.
Use this result to prove Poincaré’s theorem that, if ©1 and O, have finite index in

&, then so has ; N H..
4. Does the rule x — Ox define a (single-valued) mapping?

14. Invariant subgroups and factor groups. We wish to deter-
mine now the condition on a subgroup $ in order that we be
able to multiply any two congruences modulo $, that 1s, that we
be able to conclude from any two congruences ¥ = x’ (mod $) and
y = y' (mod ) that xy = x’y’ (mod ). Another way of putting
this condition 1s that, if ¥’ e x® and y' e y9H, then x'y’ e xy9.
In terms of set multiplication thts means that

(14) *9)(y9) S xy9

holds for all ¥ and y in ®. It is clear that this condition 1s equiva-

lent to HyH C y for all y. Also HyH C y9 implies that
Oy € y9. On the other hand, if § has this latter property, then

PyS S yHH = yo

since % = 9. It is clear also that the condition $y C y9 1s
equivalent to y 19y C §, and we use this form of the condition
in the following

Definition 4. A4 subgroup O is called invariant (normal, self-
conjugate, distinguished) if y 19y C 9 for cvery y in ©.

Our remarks show that $ is invariant if and only if (x9)(¥9) C
xy$ holds for every x, yin &. In terms of elements the test for
invariance of a subgroup 9 is that, if 2 ¢ § and y is arbitrary, then
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y~lhy ¢ ©. Since $y C yHforally, Hy~' € y 19 and multiplica-
tion by y on the right and on the left gives y$ C $y. Hence
9y = y9. Thus if § is invariant, then the right coset deter-
mined by any element coincides with the left coset determined
by this element. Hence there 1s only one coset decomposition for
an invariant subgroup.

If © 1s mnvariant, then (x9)(y9) = xOyH = xyPH = xyP.
Hence the set of cosets of $ 1s closed relattve to set multiplication.
We now show that the collection &/ of cosets and this compost-
tion 1s a group. The associative law holds for this composttion
since multiplication of sets is assoctative. The coset $ acts as
the identity since H(x9) = ¥ and (x9)H = x9. Also ¥ has
the inverse x7'9 since (x9)(x19) = O = (x19)(x9). This
proves our assertion., The group consisting of the set of cosets
and the composition that we have defined 1s called the factor
(quotient) group &/H of @ relative to the invariant subgroup $.
Clearly the order of &/ 1s the index of $ in @.

Examples. (1) I, the group of integers relative to addition; [m], the sub-
group of multiples of the integer m > 1. [m] 1s invariant since it is clear that
any subgroup of a commutative group is invariant. The factor group I/[m] is

cyclic with 1 = 1 + [m] as generator. (2) A, is an invariant subgroup of Sh.
For if a 1s even B~ 'af is even for any 8. The factor group S»/A4» has order 2.

EXERCISES

1. Prove that any subgroup of index 2 is invariant.

2. Show that § = {1, (1 2)} is not invariant in 8.

3. Show that the subgroup of transformations of the form x — x 4+ 4 is
invariant in the group of transformations x — agx + 4, 2 # 0,

15. Homomorphism of groups. The concepts of 1somorphism
and of tsomorphic groups become considerably more fruitful
when they are generalized in the manner that we shall now indi-
cate. The generalizations that we wish to define are obtained by
dropping the requirement of 1-1 ness in our previous definitions.
Thus we have the following fundamental

Definition 5. 4 mapping n of a group & intoa group &’ is called
@ homomorphism if (xy)n = (xn)(yn). If n is a homomorphism
of ® onto &', then &' is called @ homomorphic image of @.
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An important instance of a homomorphism is obtained by taking
a factor group &/9 of @ relative to an invariant subgroup $
of & By definition (x9)(y9) = (xy)9 1n /9. Hence if we
map the element x of @ into its coset 9, then we obtain a homo-
morphism of @ onto &/9. Thus any factor group of @& is a
homomorphic image of ®.

It should be noted that the definition that we have given does
not require that » be a mapping onto &. If 5 1s 1-1, then we call
it an isomorphism of & into ®’. Previously we have dealt exclu-
sively with isomorphisms onto and with isomorphic groups. We
consider now some concrete examples of homomorphisms.

Examples. (1) Let @ = R, the additive group of real numbers, and let
&’ = U, the multiplicative group of complex numbers of absolute value 1.
The mapping 6 — ¢* is a homomorphism of & onto &’ since ¢+ = 1,4
and every element of &’ has the form ¢*. This mapping is not an isomorphism
and, in fact, it is easy to see that these groups are not isomorphic (exercise 3
below).

(2) Let @ = V7 the group of plane vectors («,8) with the usual composition
@B) + @) = @+, B+B). The mapping (@8) — & is a homo-
morphism of ¥ onto R .

(3) Let & be the symmetric group §» and map the permutation 7 & §, on
the number 1 or on the number —1 according as 7 1s even or odd. In any case
denote the image as x(r). Then x(7) = x(*)x#"). Hencer — x(r) is a2 homo-
morphism of §, onto the multiplicative group of numbers 1, —1.

(4) Consider the additive group of integers 7, and any group &. Let 2 be
a definite element of . Then the mapping » — a®, » 1n I, satisfies g™ t" =
a™a". Hence it is 2 homomorphism of 7 into .

We derive next some of the elementary properties of homo-
morphisms. We nate first the following

Theorem 6. The image & of a homomorphism of & into &' is a
subgroup of ®'.

Proof. Since (x1)(yn) = (xy)n, &7 1s closed under the com-
position in &’. Also (19)(1n) = 1% so that 19 1s the identity 1’
of &. Finally (x9)(x7'n) = 19 =1’, and this means that
(xn) 7! = x "Iy 1s 1n Gn.

We consider next the totality & of elements £ of & such that
kn = 1. This is the inverse image set 7 (1’) of the identity
element 1’ of &'. Sincelya =1/, 8 31. Hence if & £ 1, then %
1s not 1-1. On the other hand, we shall show now that, if = 1,
then n is an tfsomorphism. Thus assume that a9y = 49. Then
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(a7 %)y = a 9bn = (an) "1(bn) = 1. Hencea 4= 1anda = 4.
We prove next

Theorem 7. If u is a homomorphism of & into &', the inverse
image & = n (1) of the identity of & is an invariant subgroup
of O©.

Proof. We know that 1 e®. If %, k2 &, then (kiks)n =
(kin)(kom) = 1’1" = 17, Hence kjkge R Also if ke ®, then
klnp= (k) 1=1"1=1" and £ 'ef® This proves that £
1s a subgroup. Finally if 2 1s arbitrary in & and £2e &, then
(a7 ka)y = (a7 19)(kn)(an) = (an) "'1'(an) = 1'so that a kg e K.
Hence ® 1s invariant.

The group & = n1(1’) 1s called #4e kernel of the homomorphism

EXERCISES

1. Determine the kernels of the homomorphisms in the foregoing examples.

2. Prove the following extension of Theorem 6: Let & be a group and let &
be any set in which a composition 4’4’ i1s defined. Suppose that 9 is a mapping
of @ into®’ such that (xy)y = (xn)(yn). Then the image®n i1s a group relative
to the composition defined in &',

3. Prove that the groups R, and U of example 1 are not isomorphic.

4. Let & be the transformation group of mappings x — ax + & where 2 and 4
are real numbers and 4 % 0. Show that the correspondence that associates
with the indicated transformation the real number 2 is a homomorphism of &

onto R*. What is the kernel? .
5. Show that if £ is an integer then the mapping ¢® — ¢*¥ is a homomorphism
of U onto itself. Determine the kernel.

16. The fundamental theorem of homomorphism for groups.
We have seen that the mapping x — ¥ = x9 1s a homomorphism
of the group & onto its factor group & = @/ relative to the
invariant subgroup $. We shall call this homomorphism #4e
natural homomorphism of @ onto ® and in the sequel we denote
it by the letter ». The kernel of », that 1s, the set of elements
a such that av = a$ = $ 1s obviously the given invariant sub-
group 9.

We note next that, if 7 1s a homomorphism of @ into &’ and p
i1s a homomorphism of &’ into &”/, then 7p 1s a homomorphism of
® into &"’. This 1s immediate from the definition. In particular
we see that, if » is the natural homomorphism of @ onto ® = /9
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and 4 1s a homomorphism of @ into another group @', then the
resultant »#% 1s a homomorphism of & into &’. The kernel of this
homomorphism evidently contains $.

Conversely let n be a homomorphism of & into a second group
®" and let § be an invariant subgroup of & contained in the kernel
® =77(1’). Let @ and & be two elements in the same coset
relative to . Then & = ah, 2 1n $, and oy = (an)(kn) = (anl’
= gn. This shows that the rule $ — a7 defines a single-valued
mapping of ® = @/ into @’. We denote this mapping as 7
and we prove that i1t i1s a homomorphism. This follows from

[(@D) (69)]7 = (abD)7 = (ab)n = (an)(bn) = ((a9)7) ((69)9)-

We shall call 4 the induced homomorphism of & into &'. Ewvi-
dently avf = (a9)% = an so that the given homomorphism per-
mits the factorization n = v3.

We note next that, if (a9)5 = 1/, then an =1’ and a2 ¢ K.
Also the converse holds. Hence we see that the kernel of 7 is
the totality /9 of cosets of the form £9, £in 8. As a consequence
we see that 4 1s 1-1 if and only if & = . This completes the
proof of the important

Theorem 8. Let n be a homomorphism of © into & and let
O be an invariant subgroup of & contained in & = 7 *(1'). Then
the rule a® — an is a homomorphism 7 of ® = &/ into & and
n = vij Where v is the natural homomorphism of & onto ®. The
mapping 7 is an isomorphism if and only if = 9.

Suppose now that we particularize our considerations to the
case 1n which 5 1s a homomorphism of & onto &’. If & 1s the
kernel, then we see that the induced mapping % of & = /R
onto @ 1s an tsomorphism. Hence & =~ ®&’. This, together with
the result noted in the first paragraph, proves the

Fundamental theorem of homomorphism for groups. Any
factor group of & is a homomorphic image of & and conversely if
&’ 15 a homomorphic image of @ then & is isomorphic to a factor
group of ®.

As an illustration of the power of this theorem we use it to
derive again a part of the theory of cyclic groups. Let ® = [4]
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be cyclic with generator a. Then we know that the mapping
n — g™ 1s a homomorphism of 7, onto ®. Hence & =71,/
where 9, the kernel, 1s a subgroup of /.. Now we use our deter-
mination of the subgroups of I,. According to this we have
either = 0 or = [m] where m > 0. In the former case the
mapping # — a™ 1s an isomorphism, and @ = 7,. Otherwise
we see that ® = I /[m], a group of order m. It is immediate
from these remarks that any two cyclic groups of the same order
are 1Isomorphic.

EXERCISES

1. Prove that R_/[2x] =2 U where R, and U are as in example 1 of p. 42 and
[27] 1s the cyclic group generated by 2.

2. Let [x] be a cyclic group of order s, and [ ] a cyclic group of order 2. Show
that there i3 a homomorphism % of [x] into [ y], such that xn = y*, if and only
if sk 1s a multiple of t. If sk = mt, show that 1 1s an isomorphism if and only
if (s,m) = 1.

17. Endomorphisms, automorphisms, center of a group. A
homomorphism of a group into itself is called an endomorphism;
an isomorphism of a group onto itself 1s called an automorphism.
The resultant of endomorphisms is an endomorphism. Hence the
set € of endomorphisms of a group & is a sub-semi-group of the
semi-group of single-valued mappings in the set & Ewidently
the identity mapping is an endomorphism; hence the semi-group
€ has an identity.

Consider next the set A of automorphisms of the group ©.
We assert that % 1s the group of units of & For if « 1s a unit
in €, e~ ! exists and hence « 1s 1-1 of ® onto itself. On the other
hand, if « is an automorphism, its inverse ™! is also an auto-
morphism; for

(xy)a™ = (ke ') (ya la))a™t = ((xa ) (ya™))a)a™
= (xa 1) (ya ).

Hence « has an inverse in & This proves also that ¥ is a group
of transformations in &. We shall call this group the group of
automorphisms of .

If a 1s a fixed element the mapping

(15) Co: * — a xg
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1s an automorphism of &, since
a"(xy)a = (a"'xa)(a" " ya)

and, as 1s easy to verify, C, 1s 1-1 of & onto itself. As a
matter of fact, the 1-1 ness 1s clear if we note that

(16) Co = aray ! = a1 a,

where, as usual, 4, and 4; are respectively the right and the left
multtplications determined by «. The automorphism C, is
called the inner automorphism determined by the element a.

We shall now show that the set & of inner automorphisms forms
an invartant subgroup of the group of automorphisms . Let
C,, and C,, be inner automorphisms. Then

xC, C,, = a;7'a; ka4, = (a1a2) x(a1a5) = xC,,,
so that
(17) Co, = C..C.

This equatton shows that the correspondence ¢ — C, 1s a homo-
morphism of & into its group of automorphisms. It follows
(Theorem 6) that the image set & is a subgroup of 3. Now let
a be any automorphism and consider the product a™'C,ec.

Since
xa 1C,a = (a7 (xaHNa)a = (a7 la)x(ac)

= (aa) x(ac)
= XClgas
(18) O!_ICGO! = Caa

1s inner. This proves the invariance of & The factor group
A/S 1s called the group of outer automorphisms of the group ©.
We return to the homomorphism ¢ — C, of @ onto & The
kernel € of this mapping is the set of elements ¢ such that C; = 1.
Thus ¢ e € if and only if c7xc = x for all ¥ or equivalently,

(19) X = XC

for all x. Weshall call € the center of the group . By Theorem 7
or directly we see that € is an invariant subgroup. Also by the
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fundamental theorem of homomorphism 2~ &/C. We sum-
marize our results in the following

Theorem 9. The set § of inner automorphisms is an invariant
subgroup of the group of automorphisms and & =2 & /€ where € is
the center of the group.

EXERCISES

1. Prove that the mapping 2 — 4! i1s an automorphism if and only if & is

commutative. .
2. Show that, if £ is an integer and & is commutative, then 2 — 4* is an

endomorphism.

3. Determine the group of automorphisms of any cyclic group.

4, Determine the group of automorphisms of the symmetric group ;.

5. The transformation group generated by the group of automorphisms and
the group of right multiplications is called the Aolomorph © of the group .
Show that (1) § contains all the left multiplications, (2) any element of §
can be written 1n one and only one way as a product a4, of an automorphism
« and a right multiplication a,, (3) if ® is finite, then the order of § is the product

of the order of & by the order of .

18. Conjugate classes. The elements x and y of & are said
to be conjugate if they are equivalent relative to the congruence
relation determined by the transformation group & This means
that there exists an 2 in & such that 27'xz = y. The transitivity
sets determined by the group & are called the conjugate classes
of the group @. The conjugate class determined by the element ¢
consists of a single element if and only if ¢ 1s in the center of the
group.

As an 1illustration of these ideas we shall determine the con-
jugate classes of the symmetric group §,. We remark first that
if @ 1s the permutation

(1 2 ... n)
la 2¢ - na

and B is arbitrary, then 87 'aB sends 18 into 1aB so that 8~ 1ag
can be represented by the symbol

(16 25 ”B)
lag 28 -+ naB/’

It follows that if
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(20) x = (iliﬂ c e il‘)(jljB .. .j') .o (leﬁ .o Zu)
then
(21) B~'aB = (§18isB - - 1:B8) « - - (LiBlaB - - - LuB).

We may suppose that » > 5 >--- > « and that all the numbers
are displayed in (20). Thenr+ s +---4 « = n. In this way
we assoclate with « a set of positive integers r, 5, -+ -, # such that

(22) r28s2-24, r+s5s+---+u=n.
Equation (21) shows that @ and &’ are conjugates in §, if and
only if the associated sets », 5, +--, # are the same for these

two permutations. A system of integers satisfying (22) 1s called
a partition of n. Hence we have a 1-1 correspondence between
the conjugate classes in §, and the partitions of ». The number
of conjugate classes coincides with the number p(n) of distinct
partitions of ». The function p(») is an important arithmetic
function. Its first few values are

p(2) =2, p(B8) =3, p(4) =15, p(5 =17, p(6) = 11.

Also it 1s clear from (21) that, if » > 1 and » > 2, then 8 can
be chosen so that 87'aB ## «. Hence, if & 3 1, then there exists
a 8 such that Ba # «B. This shows that the center of S,, 7 > 2,
is the 1dentity.

EXERCISES

1. Prove that, if  is a finite permutation group, then the number of elements
in any transitivity set determined by  is a factor of the order of the group.
(Hint: If ¢ is any number in the set § = {1,2, -+, n}, the set of transformations
a £ that leave ¢ fixed is a subgroup . Show that the elements in the transi-
tivity set containing § can be put into 1-1 correspondence with the left cosets of
. Hence prove that the number of elements in the transitivity set i1s the index
of ® in ®.)

2. Prove that the number of elements in any conjugate class of a finite group

& 1s a factor of the order of (Y.
3. Prove that the center of a group of prime power order contains more than

one element.



Chapter 1T

RINGS, INTEGRAL DOMAINS AND FIELDS

In this chapter we begin the study of a second important type
of algebraic system called a ring. As we shall see, rings are sets
with two suitably restricted binary compositions. Unlike the
theory of groups which had essentially one source, namely, the
study of sets of 1-1 transformations relative to resultant com-
position, the theory of rings has been fused out of a number of
special theories. For this reason it will appear to be somewhat
less unified than the theory of groups. In the present chapter
we introduce the basic concepts of integral domain, diviston ring,
field, ideal, difference ring, isomorphism, homomorphism and
anti-isomorphism. Also we introduce some important special
instances of rings such as matrix rings and quaternions. Finally
we prove the analogue for rings of Cayley’s theorem on groups.

1. Definition and examples.

Definition 1. A4 ring is a system consisting of a set W and two
binary composittions in N called addition and multiplication such
that

1. A together with addition () is a commutative group.
2. U together with multiplication (-) is a semi-group.
3. The distributive laws

D a(b+ ¢) = ab + ac
(6 + c)a = ba + ca

hold.
49
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Thus the assumptions included under 1 and 2 are that a + 2
and a4 e ¥ and satisfy the following conditions:

Al (a+0)+c=a+ (&4 o).
A2 a4+ b =0+ a.
A3 There is an element O such that 2 +0 =42 = 0 + a.

A4 Foreach a there 1s a negative —agsuch thatae + (—a) = 0
= —a + a.

M (ab)c = a(bc).

The system 9,+ will be called the additive group and the system
A,- will be called the multiplicative semi-group of the ring.

Examples. (1) The set I of integers with the ordinary addition and multipli-
cation operations. We have noted in the Introduction that this is a ring,

(2) The set Ry of rational numbers with the usual addition and multiplication.
A rigorous definition of this ring will be given in the next chapter.

(3) The set R of real numbers with the usual addition and multiplication.

(4) The set 1 [\/i] of real numbers of the form m + n\/i where m and #

are integers, addition and multiplication as usual. Clearly the sum and differ-
ence of two numbers in 7[\/2 ] belong to this set. Also

(m + 5\ 2Y(H + A \N2) = (mm' + 20n’) + (mA + n)\/?

so that J [\/i ] 1s closed under multiplication. It follows easily that this system
1s a ring (see the discussion of subrings in § 5).

(5) The set Ro[\/i] of real numbers of the form a + 54/2 where 2 and 4

are rational numbers, addition and multiplication as usual.
(6) The set C of complex numbers with the usual addition and multiplication.

(7) The set I[N/ —1 ] of complex numbers of the form m + #»\/—1, m and »

integers with ordinary addition and multiplication. This example 1s similar to

(4).

(8) The set T of real valued continuous functions on the interval [0,1] where
(f + 2)(x) = f(x) + g(x) and (f)(x) = f(x)g(x). _ N

(9) The set consisting of the two elements 0, 1 with the following addition
and multiplication tables:

0

+
} O
0
111

QOO
ok () | ek

1
1
0

|
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EXERCISES

1. Let A4 be the set of all real valued functions on (—e, ). Show that A4
is a group with the ordinary addition and that A is a semigroup relative to
f-g(x) = f(g(x)). Is A aring relative to these two compositions?

2. Show that the three elements 0, 1, 2 constitute a ring if addition and
multiplication are defined by the following tables

_|_ .

01 2 10 1 2
00 1 2 0(0 0 O
1{1 2 0 1{0 1 2
212 0 1 210 2 1

A number of elementary properttes of rings are consequences
of the fact that a ring ts a group relative to addition and a semi-
group relative to multiplication. For example, we have — (¢ + &)
= —a — b= —a+ (—5) and, if na is defined for the integer
n as before, then the rules for multiples

n(a + 6) = na + né
(n + m)a

(nm)a = n(ma)

na -+ ma

hold. Also the generalized associative laws hold for addition and
for multiplication, and the generalized commutative law holds for
addition. There are also a number of other simple results that
follow from the distributive laws. In the first place, induction on
m and » gives the generalization

(@1 +az+---+ am)(br + 5o +- - -+ bn)
= b1 + a1ba +- -+ @10a + a2by + a3by + -+ a2by 4 - -
+ amb1 + - -+ Gmba,
(E di) (Z J’J) = Z dib'.

t=],j=]

or

We note next that
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for all a; for we have 40 = ¢(0 + 0) = 40 4 20. Addition of
—a0 gives g0 = 0. Similarly 0Oz = 0. We have the equation

0=05=(a+ (—a))b = ab+ (—a)b,
which shows that

(—a)b = —ab.
Stmilarly a(—4) = —ab and consequently
(~a)(=8) = —a(~8) = —(—ab) = ab,

EXERCISES

1. Prove that a(d — ¢) = ad — ac.

2. Prove that for any integer », n(ab) = (na)é = a(nb).

3. Let A be a system which satisfies all the conditions for a ring except com-
mutativity of addition. Prove that, if A contains an element ¢ that can be
left cancelled in the sense that ca = ¢4 implies 2 = 4, then ¥ is a ring.

If 2 and 2 commute in the sense that a4 = Ja, then the powers
of 2 commute with the powers of 4 and we can prove by induction
the important dinomial theorem:

W @+or=a+(])e s+ (]) e+

n

»

where (
1

@) (f) B t1(n ”—iﬂm

This 1s evident if #» = 1. Assume now that

(3) (a + &) = }5 (:) a* b,

F I

) 1s an integer and 1s given by the formula

We use here the convention that 0! = 1 so that (3) agrees with
(1) for » = r. Now multiply both sides of (3) by ¢ + 4. Then
we obtain

@+ om0 = £ () w5 (7) drtn

k=0 k k =0

The term a*"+t1—* k = 0, r + 1, in the right-hand side of this
equation has the coefficient
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r r r! !
(k) +(k — 1) B k\(r —”534_ bk — Di(r—k+1)!
rir—k+1) +rlk

Rl — k4 1)
(r + D! _(r+l)-
B\ — k+ 1) k

Hence (1) holds for » = » 4+ 1 and this completes the proof.

2. Types of rings. We obtain various types of rings by impos-
ing conditions on the multiplicative semi-group. Thus a ring
is said to be commutative if its multiplicative semi-group 1s com-
mutattve. The ring ¥ is said to have an sdensity if its multiplica-
ttve semi-group has an identity. If such an element exists, it 1s
unique. All of the examples listed above are commutative and
have identities. An example of a ring without an identity is the
set of even integers. Examples of non-commutative rings will
be given in §§ 4-5. If the identity 1 = 0, anya =4l = a0 = 0
so that % has only one element. In other words, if A # O, then
1 #0.

A ring is called an integral domain (domain of integrity) if the
set A* of non-zero elements determines a sub-semi-group of the
multiplicative semi-group. This, of course, means simply that,
ifa7#0and 4 #01n ¥, then ab 7 0. All of the foregoing exam-
ples except (8) are of this type. On the other hand, in (8) we
can take the two elements

Ofor0 <x <3

x —3fori<ux<l1

1) = |

(—x+3for0<x <3
0forl<x <1 '

Then f # 0 (the constant function 0) and g # 0 but fg = 0.
Hence the ring of continuous functions on [0,1] is not an integral
domain.

If 2 1s an element of a ring A for which there exists a 4 = 0
such that @b = 0 (ba = 0), then a4 1s called a Zft (right) zero-
divisor in A. Clearly the element O is a left and right zero-divisor

g(x) =
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if % contains more than one element. If 2 £ 0 1s a left zero-
divisor and ¢4 = O for & # 0, then 4 1s a right zero-divisor # O.
It is therefore clear from the definitions that a ring 1s an integral
domain if and only 1if 1t possesses no zero-divisors 7 0.

We note also that a ring 1s an integral domain if and only if
the restricted cancellation laws of multiplication hold, that is,
ab = ac, a # 0 1mply & = ¢ and ba =ca, a # 0 imply 4 = .
Thus assume that A 1s an integral domain and let 4, 4, ¢ be elements
such thataeb = ac,a % 0. Thena(b —¢) = 0. Henced — ¢ =0
and 4 = ¢. Similarly we can prove the right cancellation law.
On the other hand, let A be any ring for which the left cancellation
law holds. Let 26 =0, a7 0. Then 44 =40 and & = 0.
Hence ¥ s an integral domain,

A ning 1s called a division ring (quasi-field, skew field, sfield)
if 1t contains more than one element and the set A* of non-zero
elements forms a subgroup of the multiplicative semi-group.
Thus if A 1s a division ring, A* contains an identity element 1.
Since 10 = 0 = 01, 1 1s an 1dentity for the whole ring. Hence a
division ring possesses an identity. Alsoif 2 7 0, then there exists
an element ¢ in A such that ze™ =1 = ¢7 4. Examples (2),
(3), (5), (6) and (9) are division rings in which multiplication is
commutative. Diviston rings that have this property are called
fields. We shall give an example of a non-commutative division
ring in § 5.

It is clear from the definitions that any division ring is an
integral domatn. On the other hand, the converse does not hold
since the ring I of integers 1s an integral domain but not a division
ring. If 2 # 0 in a division ring ¥, then the equation ax = 4
has the solution ¥ = 274 1n Y. By the restricted cancellation
law this 1s the only solution of the equation. Similarly yg = 2
has one and only one solutton, namely, y = a7

Now let % be any ring with an identity 1 # 0. Our discusston
of semi-groups shows that the totality U of units of the multiplica-
tive semi-group of A is a subgroup of this semi-group. This
means that the product of units is a unit, 1 1s a unit and the inverse
of a unit is a unit. We shall call Ul the group of units of the ring 4.
For example, the group of units of I conststs of the numbers 1
and —1. It is immediate that a ring % 1s a diviston ring if and
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only if (1) % contains an identity # 0 and (2) the group of units
of %A 1s the set A* of non-zero elements.

EXERCISES

1. Prove that, if 2z is a unit in a ring with an identity, then so is —a. Show
that (—a) 1 = —g~ L,

2. Show that the example given in ex. 2, p. 51, is a field.

3. Prove that any finite integral domain is a division ring.

4, Prove that, if an integral domain Y has an idempotent element ¢ % 0
(¢2 = ¢), then ¢ is an identity for .

5. An element 2 of a ring is called nilpotent if 2* = 0. Show that the only
nilpotent element of an integral domain 1s 2 = 0,

6. Show that, if a ring has only one left identity 1;, then 1; is an identity
(two-sided).

7. Let u be an element of a ring with an identity that has a right inverse.
Prove that the following conditions on # are equivalent: (1) # has more than
one right inverse, (2) # 1s not a unt, (3) # is a left zero-divisor.

8. (Kaplansky.) Prove that, if an element of a ring with an identity has
more than one right inverse, then it has infinitely many.

*3. Quasi-regularity. The circle composition. As we shall
see, the groups of units of rings with identities give us interesting
examples of groups. It is therefore noteworthy that the concept
of the group of units has an analogue also for arbitrary rings that
need not have identities. In order to obtain thts, we assume first
that % has an identity. If 2 1s an element of ¥ that has a right
inverse &, then we may writega = 1 — zand4 = 1 — w and obtain

l=ab=(1—-21—w)=1—2—w-+ 2w
Hence the condition on 2 and w 1s that
2+ w — 2w =0,

Since this condition does not involve the identity, we can use 1t
for an arbitrary ring. Thus we say that the element z of ¥ is
right (left) quasi-regular if there exists an element w in A such that
2+ w—2w=0 2+ w— wz=0). The element w is called a
right (left) quasi-inverse of z.

A still better insight into the concept of quast-regularity 1s ob-
tained by the following considerations. Let 9 be an arbitrary ring
and define a binary composttion in ¥ by the formula

a-b=a-+ b — ab
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We call this composition the circle composition in ¥, One verifies
directly that it ts associative; hence, %, i1s a semi-group. Also
clearly 2 + 0 = 2 = 0 - 4; hence, O acts as identity in %,.. It 1s
now clear that the set of elements Q that are guasi-regular (= left
and right quasi-regular) is just the set of units of %,-. Hence
Q,- 1s a group.

The group £,- 1s the analogue for an arbitrary ring of the
group of units U of a ring with an identity. In fact, if % has an
identity, then I and Q are isomorphic; for it is easy to see that
the mapping 2 — 1 — 2z 1s an tsomorphism of  onto .

EXERCISES

1. Show that, if ¢ is idempotent, then ¢ . ¢ = ¢. Hence prove that, if ¢ is
right quasi-regular, then ¢ = 0,

2. Show that any nilpotent element belongs to 2.

3. (Kaplansky.) Establish the following characterization of a division ring:
A ring in which every element with one exception has a right quasi-inverse.

4. Matrix rings. Let R be an arbitrary ring. We shall now
define the ring R, of #» X 7 matrices with elements in R. The
elements of RN, are arrays or matrices

r .

211 412 " A41a

G21 Q422 ~°°° Qg
(4) (a) = -

8n1 Gpa **° Qg

of n rows and columns with elements (coefficients, coordinates) ai;
in the base ring R. The element a;; in the intersection of the
ith row and jth column of (4) will be referred to as the (i,f)
element of (a). Two matrices (@) and (&) are regarded as equal
if and only if a;; = 4,; for every 1,7, and the set R, i1s the complete
set of matrices with elements in .

We define addition of matrices by the formula

311 13 *°°  Gin) D11 5’12 cor Din

21 dz2 *'* Qa2g 3’21 3’22 5’2:.

+

- » # * @ - r * # # & 8

a1l QGp2 *°° Qg l’nl bnz v bfm
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‘211 + 511 a2 + iz A1n + Din

_ |é:n + bo1 @22 + 032 dan + Oon '
. - k
[dnl + Z’nl An2 + 5’:.2 Ann + bnna

Thus to obtain the sum we add the elements 4;; and 4,; in the
same position. It i1s easy to verify that R, and this addition com-
position form a commutative group. The O matrix is the matrix
all of whose elements are O and the negative of (¢) has —a;;1n the
(1,7)-position, that is, in the intersection of the ith row and the
jth column. Multiplication of matrices 1s defined by

‘a11 213 a1n)| (611 D12 Din
d21 Qa2 Aan| |D21 Doz ban
a1  Gag Gnn hbnl 5’112 bnn-
Za1kbk1  Za1k0k2 Za110kn
_ Edzkékl Edzkbkz Eazkbkn
_Eankbkl Eaﬂkéhﬂ Eaﬂkbkﬂ*
The product (») = (@)(4) therefore has the element
Di; = as‘lbl;,-' dizsz ainbnj

in the (7,7)-position. For example, in the ring I3, I the ring of
Integers we have

1T -2 3 0 3 4 —7 =25 8

0 1 -1 2 5 1| = 3 11 —-11-

12 5 =2 -1 —6 2. L 12 43 9.
Multiplication of matrices is associative. Thus consider the

product (2)[(6)(c)]. The multiplication rule shows that the ele-

ment 1n the (i,7)-position of this matrix is D @u(drici;). Simi-
X,

larly, the element in the (7, 7)-position of [(@) (8)](c) is X, (@irbri)ci;.
kl

Because of the associative law of multiplication in &, these ele-

ments are equal. Hence (2)[(%)(c)] = [(a)()](c). The distributive
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laws hold; for the (7, 7)-element of (a)[(8) + (c)]1s D au(br; + cii)
k
and the (z,7) element of (a)(8) + (a)(¢) 1s D_ aubdiri + D @ik
k k

These elements are equal by the distributive law in .  Similarly
we can vertfy the other distributive law.

Hence R, 1s a ring. Even if % 1s commutative, R, will not
be commutativeif # > 1 (cf. ex. 3 below). Also R, contains zero-
divisors = 0 1f » > 1.

EXERCISES
1. Calculate
] - 3 3 -5 6
-7 7
0 _1.1 ""l 1 2-J

2. Give examples to show that 7; is not commutative and that it has zero-
divisors % 0.

3. Prove that,if R 7 0and » > 1, then R, has zero-divisors 0 and that, if
N contains elements 4, 4 such that 44 > 0, thenR,,, » > 1, is not commutative.

[f R has an tdentity 1, then 1t 1s clear that the element

-1 0-.

ek
I

(5)

0 1.

1s the identity in the ring R,. We assume now that R 1s commuta-
tive and we propose to determine the multiplicative group of units
of R.. For this purpose we make use of the determinant of a
matrix. We assume that the reader is acquainted with the ele-
mentary theory of determinants of any order. The usual treat-
ments in textbooks on elementary algebra or geometry are valid
for determinants of matrices with elements in any commutative
ring.

We recall here the definition of the determinant of a matrix.
If (@) is as in (4) its determinant det (@) 1s

(6) D @10 - G,
P
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where the summation 1s taken over all permutations (iy, iay - -,
i.) of (1,2, - -+, n) and the sign + or — 1s taken according as the
permutation s even or odd. The cofactor of the element 4;; 1n
4) is (—1)*"’ times the determinant of order » — 1 that is
obtained by striking out the ith row and sth column of (g). It
is well known that the sum of the products of the elements of
any row (column) by thetr cofactors has the value det (¢). Thus
if A;; 1s the cofactor of 4;;, then

dﬂ/fﬂ -+ diszfz + - din/fin = det (4)
a1:d1i + azidsi + - - -+ anidn: = det (a).

Also 1t 1s known that the sum of the products of the elements of

any row (column) by the cofactors of the elements of another
row (column) 1s O:

aindp + aigdje + -+ aimdyn =0, 177
ali‘/flj' + azs'/jzj + © e + aniAnJ' = 03 ] 7 j'

These relations lead us to define the adjornt of the matrix ()
to be the matrix whose (7,7) element a;; = 4;;. Using this defini-
tion 1t 1s immediate that the rules (7) and (8) are equivalent to
the matrix equations

‘det (a) 0]
det (a)
9) (a)adi(a) = . = [adj(a)](a).

(7)

(8)

0 det (a).

It follows that if A = det () 1s a unit in R, then the matrix (),
b;‘j = a,-,-A_l satisﬁes

(10) @)(©%) =1 = (5)(a).
We have therefore proved the sufficiency part of the following

Theorem 1. If R 15 a commutative ring with an identity, a
matrix (a) € R, 15 a unit if and only if its determinant is a unit in R.

To prove the necessity we require the fundamental multiplica-
tion rule
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(11) det (2)(5) = det (a) det (§).
If (a)(6) = 1, then this gives det (@) det () = 1. Hence det (a2)

1S a unit.
A noteworthy special case of this theorem is the

Corollary. If R = § is a field, a matrix (a) € §n is a unit if
and only if its determinant 1s different from zero.

EXERCISES

1. Find the adjoint of the matrix

—1 2 4
[ 3 2 0f-
—1 2.

5

2. Show that the matrix

1 4 1
0 1 -—l]

-3 —6 —8

is a unit in I3, I the ring of integers, Find the inverse.
3. Prove that, if ¢ is a commutative ring with an identity, then (a)(6) = 1
for (a), (4) in R, implies that (5)(8) = 1.

5. Quaternions. We consider the set Q of matrices 1n C,, C
the field of complex numbers, that have the form

a 5 F a0+a1\/—1 a2+a3\/—1ﬂ
(12) [_5 é] = | , oy real.

_"-a2+a{3\/—1 ag-—al\/—l,

We wish to show that Q determines a subgroup of the additive
aroup of Cp and that Q is closed under multiplication. The first
of these assertions 1s easy to verify. Since

" a b}[ c d]_ " ac — bd ad+52']
—% gl -4 & |—=bc—ad a2-28%°

the product has the form

AN

_

“,

<
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where # = ac — bd, v = ad + bz. Hence it belongs to Q. Since
the associative laws, the commutative law of addition and the
distributive laws carry over from C, to the subset Q, it 1s clear
that the system Q,+,- 1s a ring. Thus Q,+,- 1s an instance of a
subring of the ring Cs,+,- in the sense of the following

Definition 2. If B is a subset of a ring N that 1s closed under
the compositions of the ring and B,+,- (induced compositions) is a
ring, then B,+,- is called a subring of A,+,-.

As in the special case considered here 1t 1s clear that a subset B
determines a subring if 8,4+ 1s a group and B s closed under
multiplication. Also we recall that the first of these conditions
1s satisfied if either (1) B 1s closed under 4, contains 0 and the
negative of any element in B or (2) B 1s closed under subtraction.

We shall now show that Q 1s a diviston ring. We note first that

F ao-l—al\/_:I a2+a3'\/—1q

—aa + ag\/:I ag — a1V —1.
= ¢’ + ar® + a2 + a2 = 0

if the matrix ts % 0. Hence this matrix has an inverse. We
determine it by the method of the preceding section, and we find
that 1t 1s the matrix

F(ao — 1 vV —1 )Ahl —(a2 a3\/:I )Ahlﬁ
(g — agV —1)A™? (g + oV —1)A7L,

where A = ag? + ;% + @2® + a3®. Thus the inverse is in Q.

We have therefore shown that any non-zero element of () has an

inverse in Q. Hence Q is a division ring. We call Q the ring of

(Hamilton’s) guaternions and we call the elements of Q guaternions.
The ring Q contains the subring R’ of matrices of the form

Y

It 1s easy to see that these matrices commute with every matrix
in C, and hence with every quaternion. Also we note that the
matrices

det
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v -1 o| . 01 0 V-
= [—1 0] » K=
0 -V -1,
are quaternions. One verifies that

V1 V-1
% ¥ @2 @ | = a0’ + a1t + aslf + a5’k

—ap + a3V —1 ay— a;V —1]
Hence tf ag’ + a;'t + ap’7 + a3’k = B¢’ + 81 + B2’7 + B3’k, then

(14) i =

Bo + 81V —1 52‘1‘53\’—1‘
(—B2+ B3V —1 Bo— V-1

and o; = 8; and o’ = B;. This shows that the representation of
a quaternion 1n the form o« + @;’f + @s’f + a3’k is unique.
Since

(15) (a+B) = + 6, (af) =,

the product
(a0’ + ai't + a2lf + a3’k)(Bo’ + 81’ + B2lf + Bs'k)

1s determined by the addition and the multiplication in ® and
by the multiplication table

52=j2=k2= _1!,
(16)
= —ji=Fk k= —ki=1i ki=—ik=].

Incidentally these show that @ i1s not commutative. We remark
finally that we can simplify our notation somewhat by replacing
o’ by a and more generally ay’ + a1’/ + a3’ + a3’k by ag + ;¢
+ asf + azk. We adopt this change in the following exercises.
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EXERCISES

1. Calculate (—1 + 27 — 35 + £)(2 — 1 + 35 — 2k).

2. Define the trace T(a) of a = oy + ot + azf + ask to be the number 2ay
and the norm N(a) = A = ag? + o2 + ae? + az’.  Verify that g satisfies the
quadratic equation x> — T(a)x + N(a) = 0.

3. Prove that N(a2) = N(a)N(d).

4. Show that the set Oy of quaternions oy + a1f + azf + azk with rational
coeflicients o; is a division subring of (, that is, a subring that is a division ring.

5. Verify that the set J of quaternions ap + a1f + oo + azk in which the
a; are either all integers or all halves of odd integers is a subring of 0. Is J a
division subring?

6. Subrings generated by a set of elements. Center. It 1s
clear from the definition of a subring that, if a number of subsets
of a ring determine subrings, then their intersection has this
property too. We express this somewhat more briefly by saying
that the intersection of any collection of subrings of a ring s a
subring. If § is any subset of the ring %, the intersection of the
subrings containing § 1s called the subring generated by §. We
denote this ring by [[S]]. Evidently [[S]] is characterized by the
following properties: (1) [[S]] ts a subring; (2) [[S]] 2 §; (3) if
B 1s any subring containing §, then 8 D [[§]]. It is easy to
indicate the form of the elements of [[S]], namely, they are the ele-
ments 2 4= 5,52 -+ -+ §,, that 1s, the sums of finite products of ele-
ments s; in § and negatives of such products; for the collection
of such sums is a subring and it is clear that it has the properties
(2) and (3) of [[S]].

If §is a set of elements, the totality C(§) of elements ¢ that
commute with every s e §'is asubring. Evidently if §; 2 §3, then
C(§1) € C(S§3) and C(C(S)) 2 8. These two relations have the

Interesting consequence that
C(C(C(S))) = C(S);

for replacing § by C(S8) in C(C(S8)) 2 § gives C(C(C(S))) 2 C(S).
On the other hand, if we “operate” with C on both sides of this
same relation we obtain C(C(C(S))) € C(S).

If we refer to the form of the elements of [[S]], we see that an
element ¢ that commutes with every element of § commutes also

with every element of [[S]}. Hence C(§) = C([S1D).
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el

The subring € = C(¥) 1s called the center of the ring. If %
contains an identity 1, evidently 1 & €.

EXERCISES

1. Determine the center of the ring of quaternions,
2. Let the o; in

(@) =

be distinct rational numbers. Show that C(a) in the matrix ring Ryn, Rp the

field of rational numbers, is the set of diagonal matrices, that is, the set of matrices
that have the same form as (o).

3. Show that the center of Ry, is the set of scalar matrices

X 0-
o
L0 Q. P
4. Find C(S) n I2 for § the set of matrices of the form [g c] '

7. Ideals, difference rings. Let 8 be a subgroup of the addi-

tive group of Y. Since addition is commutative, 8 1s an invariant
subgroup and

(17) (+B)+(c+B)=(@+c)+3B

where addition is the addition defined for subsets. (We recall
that U 4+ 7V i1s the totality of elements # + v, # in U and v in V)
The set A = A/B of cosets is a commutative group relative to
this composition. We now raise the following question: What 1s
the condition on B in order that ¢ = 4’ (mod B) and ¢ = ¢
(mod B) implies gc = a'c’ (mod B) for all @, @/, ¢, /? 1f 2 and ¢
are chosen, then ¢’ = ¢ 4+ 4; and ¢’ = ¢ + 4, where 4, and &,
are in 8. Also it is clear that any choice of 4; and 4, gives an
a = g (mod B) and a ¢/ = ¢ (mod B). Hence our requirement 1s
equivalent to

(a + b)) (c + 43) = ac + abs + b1c + 6163 = ac (mod B)
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for all 2 and ¢ 1n ¥ and all &4, 45 1n B. Thus

(18) aby + b1c + b1bp e B
for all 2 and ¢ 1n ¥ and all 4,, 4, 1n B. Taking 4, = O this gives
(L) abeB forallainY and all 51n B

and taking 2, = O this gives
(R) baeB forall 2in ¥ and all 2 1n B.

Conversely if () and (R) hold, then aé,, 4,c and 4,4, e B pro-
vided that 4; and 4, are in 8. Hence (18) holds. This leads us

to the important definition

Definition 3. A subset B of a ring N is called an 1deal if B,+
is a subgroup of the additive group of N and B has the closure prop-
erties (L) and (R).

Since a subset ¥ determines a subgroup if and only if the dif-
ference of every pair of its elements 1s contained in the set, we
see that B is an i1deal if and only if (1) 4, 42 in B imply that
by — bae B, (2) 2 in B implies that @b and ba e B for all g in 9.
Evidently an ideal 1s closed under multiplication. Hence an
ideal determines a subring of 9.

If B 1s an 1deal in %, then our discussion shows that, if 2 = 4’
(mod ¥B) and ¢ = ¢/ (mod B), then ac = a'c’ (mod B). In other
words, the product of any element in the coset 2 + B by any
element in the coset ¢ + B 1s an element in the coset ac + B.
We can therefore define a (single-valued) multiplication compost-
tion for cosets by the formula

(19) @+ B)(c+ B) = ac + B.

It should be noted that this multiplication does not coincide with
the multiplication of sets defined in the multiplicative semi-group.
However, since we shall have no occasion to use the latter, no
confuston will result from the notatton in (19). We assert now
that %/%B, the addition (17) and the multiplication (19) constitute
a ring. Since the rules for addition are clear we need only verify
the associative and distributive laws. This is done in
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[(a + B)(c+ B)]d+ B) = (ac+ B)d+ B) = (ac)d + B
@+ B)(c+B)Ed+B)] =@+ B)(cd+ B) =a(cd) + B

and

e+ B)(c+B)+ @+ B)] =@+ B)(c+d+ B)
=a(c+d)+ B

@+B)c+B)+(@+B)d+B) =(ac+B) + (ad + B)
= (ac+ad) + B

and a similar calculation for the other distributive law. We call
A/B with the composition that we have defined the difference
(quotient, residue class) ring of N relative to the ideal B.

Some of the elementary properties of a ring carry over to any
difference ring. Thus if % 1s commutative then /B 1s commuta-
tive. This 1s clear from the definition. Similarly if % has an

identity 1, then 1 = 1 4+ B 1s an identity in A/B. On the other
hand, we shall see in the next section that 9 can be an integral
domain and have difference rings that are not integral domains.

EXERCISES

1. Prove that, if # is any integer, then the set 73 of elements of the form »a

is an ideal,
2. Prove that the set of elements M such that #z = 0 is an ideal in any ring .

8. Ideals and difference rings for the ring of integers. If m
is any integer, the set (m) * of multiples of 72 1s an 1deal in the ring
I of integers; for we know that (m) 1s a subgroup of the additive
group and 1t is clear that a multiple of a multiple of 7 1s a multi-
ple of m. Also since the sets (m) are the only subgroups of 1
these are also the only ideals in the ring 1. Since (m) = (—m),
we need consider only the cases = 0 and m» > 0. If m = (,
(m) = 0; hence I/(m) = I. Assume now that m» > 0. Then we

know that I/(m) has the m elements

0=0=@m), 1l=14+(@m), -+, (m~1)=m~—1+ (m).
The element 1 = 1 + (m) is the identity of I/(m).

* Our group notation for this set is [m].
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Suppose first that » 1s composite, say, m = m,m, where the
m; are >1. Then m; 1s not divisible by m and #; = 0. On the
other hand 7,7, = mymy, = % = 0. This shows that I/(m) is
not an integral domain.

Assume next that m = p s irreducible (or prime) in the sense
that » cannot be written as a product of integers greater than 1.
In this case we can prove that I/(p) 1s a field. We know that
I/(p) has an identity. Nextlet & # 0. Then ais not divisible by
p. Hence if d = (a,p), d # p. Since p is prime, this leaves only
the alternative 4 = 1. Hence there exist integers 4 and ¢ such

that @b + pg = 1. It follows that 34 = a6 = 1. Hence 4 has
the inverse 4 in I/(p). Our result gives us the interesting con-
clusion that for any prime p there exists a field containing »
elements.

We now drop the hypothesis that m 1s a prime, and we wish
to determine the units tn I/(m). Let M denote the set of units

and let 3¢ M. Then there exists a 5 such that @24 = 1. Hence
ab =1+ mg and ab — mg = 1. This implies that (a,m) = 1.
Conversely, if (a,m) = 1, then there exast 4,g such that @b — mgq

= 1. Then 46 = 1. This shows that in the list 0, 1, 2, ---

(m — 1) the units are the cosets ¢ with (aym) = 1 and it proves
the following

>

Theorem 2. The order of the group M of units of I/(m) is the
number of positive integers that are less than m and are relatively
prime to m ((a,m) = 1).

This number 1s denoted as ¢(m) and the function of m thus
determined 1s called Euler ¢-function (totient).

We know that, if @ 1s a finite group of order #, then a" = 1
for every a e @. Applying this to M we see that, if (a;m) = 1,
then (7)¢™ = 1. The latter equation is equivalent to g¢™ =
1 (mod 7). Hence we have proved the following

Theorem 3 (Euler-Fermat). If a is an integer prime to the
positive integer m, then a®*™ = 1 (mod m).

If m = p, then I/(p) is a field of p elements. The group of

units in this case contains » — 1 elements. Hence we have the
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Corollary. If p is a prime and a # 0 (mod p), then a?~*
(mod p).

1

This result can also be stated in a slightly different form,
namely, that 4 = 2 (mod p). This holds for all z since it is
trivial if 2 1s divisible by ». On the other hand, if 4? = 2 (mod p)
and 2 # 0 (mod p), then 42~ = 1 (mod p). Hence the two state-
ments are equivalent.

EXERCISE

1. Prove that, if D is a finite division ring containing ¢ elements, then 4? = g
for every a e D.

9. Homomorphism of rings

Definition 4. A mapping n of a ring N into a ring N is called a
homomorphism zf

(@ 4+ &)y = an + bn, (ab)n = (an)(én).

Thus a homomorphism of a ring i1s a homomorphism of its addi-
tive group that “preserves’” multiplication. If 1s 1-1,itis called
an fsomorphism and two rings are said to be isomorphic (A = A")
if there exists an 1somorphism of % onto U’. As for groups it is
immediate that the resultant of two homomorphisms is a homo-
morphism. Also if 5 is an 1somorphism of ¥ onto %', then the
inverse mapping 5! is an isomorphism of %’ onto . It follows
that the isomorphism relation i1s an equivalence relation in the
class of rings. An isomorphism of a ring onto itself 1s called an
automorphism. These concepts are illustrated in the following

EXERCISES

1. Show that the correspondence a + 4/ —1 — [ @ B

—8
phism of the field C of complex numbers into R,.

2. Show that the correspondencega = a +8V -1 — d =a — BA/—11is an
automorphism in C.

] 1S an 1somor-

a 0
0 B

ring of diagonal matrices into the ring coefficient $R.

3. Show that the correspondence [ ] — « is a homomorphism of the
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4. Show that the correspondence

& &1 (42 (4]
. ] - &y —3 (42
oy + a1 + g + azk —
— ¥y (4 £ &y —ag
— {3 — 9 (44 &o

is an 1somorphism of @ into Ry,

The theory of ring homomorphisms parallels that of group
homomorphisms and in part is deducible from the latter theory.
We begin our discussion by noting the following basic result.,

Theorem 4. If n is a homomorphism of N into W', the image set
An is a subring of W'.

Proof. Since 7 is a homomorphism of the additive group of
A, An is a subgroup of the additive group of A’. Since (an)(bn) =
(ab)n,u, is closed under multiplication; hence it is a subring.

If the ring ¥ has an identity 1, then 1t is immediate that 17 = 19
is an identity for An. Also if # is a unit with v as inverse, then
#' = unis a unit in Ay with v = vy as its inverse. Of course, it
may happen that 13 = 0, but in this case %y = 0. In particular,
if 9 1s a division ring, then either %n = 0 or An is also a division
ring; for, if An 7= 0, then this ring contains more than one element,
and every non-zero element is a unit.

As for groups we call the inverse image ' (0) the kerne/ of the
homomorphism #%. The homomorphism 75 is an isomorphism
if and only if its kernel is O.

Theorem 5. The kernel of a homomorphism of a ring U is an
ideal in 9.

Proof. Let & = »71(0). We know that  is a subgroup of the
additive group of A. Now let 4 e & and let 2 be arbitrary in .
Then (ab)n = (an)(bn) = (an)0 = 0. Hence abe & Similarly
va ¢ & and this completes the proof.

Next let 8 be any ideal in the ring and let A denote the differ-
ence ring A/B. We know that the natural mapping » i1s a homo-
morphism of the additive group of % onto the additive group of 9.
Moreover,

(4182)v = 4182 + B = (a1 + B) (a2 + B) = (ﬂll’)(f«?zl’)-

Hence » is a homomorphism of the ring 9 onto the ring .
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Now suppose that n i1s a homomorphism of the ring % into the
ring A’ with kernel . Let B be an ideal of ¥ contained in {.
Then we know that theruleg + B — 47 defines a homomorphism
7 of the additive group of A = A/B into the additive group of
A'. Since

[(@¢1 + B)(a2 + B)ln = (@142 + B)7 = (ara2)n = (a1n)(@2n)
= [(ay + B)7]l(a2 + B)7),

7 1s a ring homomorphism. Evidently n = »4. We recall that
71s 1-1 if and only 1f 8 = &. Thus if we take B = &, we obtain
a factorization of 5 as »5 where » 1s the natural homomorphism
of A onto A = A/R and # i1s the induced isomorphism of ¥ into
A'. We state these results as the following important

Theorem 6. Let n be a homomorphism of the ring N into the
ring W with kernel 8 and let B be an ideal of N contained in K.
Then the correspondence 9: a + B — an is a homomorphism of
N = U/B into N and n = vy where v is the natural homomorphism
of U onto N=U/B. The induced homomorphism % is an isomor-
phism if and only if B = K.

If ' = Ay and B = R, then 7 is an isomorphism of A onto A’.
This, together with an earlier result, gives the

Fundamental theorem of homomorphism of rings. The differ-
ence ring N/B of N relative to any ideal B is a homomorphic image
of . Conversely, any homomorphic image of U is isomorphic to a
difference ring, in fact, to the difference ring of U relative to the kernel
of the homomorphism.

A ring U 1s called simple if the only ideals in ¥ are % and O.
(These are certainly ideals in any ring.) If % has this property,
then 1t 1s clear from the fundamental theorem that a homomorphic
image of U is either 0 or isomorphic to .

As a second application of our results we determine next the
structure of any ring U that has an identity ¢ and that is generated

by e. We consider the ring of integers 7 and the mapping n — ne
of 7 into Y. Since
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(n + m)e = ne + me
(nm)e = (nm)e® = (ne)(me),

our correspondence is a homomorphism. The image set ¢ is a
subring of ¥ including le = ¢. Hence e = % and ¥ is a homo-
morphic image of 7. It follows that A = 7/(m) where m >0.
Thus either U is infinite and 1somorphic to the ring of integers or
9 has a finite number 7 of elements and ¥ 1s 1somorphic to the
finite ring I/ (m).

EXERCISES
1. Let m = rse I. Show that (r)/(m) is an ideal in I/(m) and prove that

1L/ (m)]/1(r)/(m)] = 1/(r).

2. Determine the ideals and hence the homomorphic images of the subring
of I of matrices of the form [g i] .

3. Prove that, if @ — 4 is 2 homomorphism of & into R, then the mapping
(@) — (3i;) is 2 homomorphism of R, into R,

4. Let n be 2 homomorphism of a ring ¥ into itself. Show that the elements
of  that are fixed relative to 1 in the sense that an = g form a subring of 2.
If A is a division ring and 9n = 0, then the set of fixed elements constitutes a
division subring.

5. Prove that the only homomorphisms of I into itself are the identity mapping
and the mapping that sends every element into 0. Prove the same result for
the field of rational numbers.

6. Let B be a set and let n be a 1-1 mapping of B onto a ring . Prove that

the compositions @ 4+ & = (an 4 s)n~L, ab = ((an)(én))n ! turn B into a ring
isomorphic to 2. Use this to prove that any ring is also a ring relative to the
compositions 8 D b=a+b—1,a° b =a+ b — ab.

10. Anti-isomorphism. If 4 is the quaternion ag + a1z + as
+ agk, we call the quaternion

a=ao—alf—a2j—a3k

the conjugate of a. If we refer to § 5 we can see that the inverse
a~! of a ¥ 0 can be expressed in terms of the conjugate by means
of the formula 2™ = ZN(s) ™ = N(s)'a. We consider now the
properties of the correspondence 2 — 4. Evidently this mapping
is 1-1 of Q onto itself. Also it is clear that

(20) a+b=a+ "¢

and we can verify that
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a_Z = (aoﬁo — ayfy — agfls — azfs)
— (B + a1Bo + aaffs — a3Ps)?
~ (ogBs + azfo + aafy — a1fz)s
— (aoB3 + asfo + a1fz — azB)k

and
bi = (Boao — Broy — Bacts — Bsaxs)
+ (—Boa; — Brag + Baaz — Baaz)i
+ (—Boas — Bacg + Bz — 51a3)f
+ (—Boas — Baag + Brag — Baon)k.

Hence
(21) ab = ba.

A mapping of a ring % onto a ring ¥ that is 1-1 and that satisfies
(20) and (21) is called an anti-isomorphism. 1f % 1s commutative,
then we can write 25 for 42 in (21) and we see that in this case
a — a 1s also an 1somorphism of % onto A. Conversely any
isomorphism between commutative rings can be regarded as an
anti-isomorphism. In particular we see that the identity mapping
is an antil-isomorphism of A onto itself if ¥ i1s commutative.
On the other hand, the quaternion example shows that there
also exist non-commutative rings that have the symmetry prop-
erty of being anti-isomorphic with themselves. We now give
another important example of this type, namely, the matrix ring
Ra, where R 1s any commutative ring.

For this purpose we define the transposed matrix (a)’ of the
matrix (¢) to be the matrix that has 4 in its (4, /) position. This
means that ()’ 1s obtained from (4) by reflecting the elements in
the main diagonal. For example, if

1 2 =¥
(a) = {2 —1 4!,
then 5 -1 6)
1 2 5

@ =| 2 -1 —1]-
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In general if (@) = (4s5), (8) = (bs)), then (a) + (8) = (as; + bsy),

and [(@) + ()] has the element g;; 4+ 4;; 1n 1ts (i, f)-position.

Hence [(a) + (B)]) = (@)’ + (6)’. Also the (1,7)-element of the

product (p) = (2)(&) is ps; = 2_ aabsj so that the (7, f)-element of
k

(p) 18 pj; = Zajrbri. On the other hand the (i,7)-element of
(6)'(a)’ 1s Zbria;. Since we have assumed that R 1s commutative,

this shows that
[(2)(&)] = (&) (a)’.

Thus () — (@)’, which is evidently 1-1, is an anti-isomorphism
of R, onto 1itself.

We can construct for any given ring 9,4, an anti-isomorphic
ring. For this purpose we use the set % and the given addition,
but we introduce a new multiplication X defined by

a X b = ba.
This gives a ring since
(a X ) X ¢ = (ba) X ¢ = c(ba)
aX (bXc)=(0bXc)a= (cha

and
aXb+co)=b+c)a=bat+ca=aXb+aXc
b+c)Xa=alb+c) =ab+ac=6Xa+c X a.

Also it 1s immediate that the identity mapping is an anti-iso-
morphism of %,4,+ onto A,+,X.

EXERCISES

1. Show that the set of matrices of the form

[g g] a,bin

1s a subring of I that has a left identity but no right identity. Hence prove
that this ring is not anti-isomorphic to itself.

2. Define anti<isomorphism for semi-groups. Prove that any group is anti-
1somorphic with itself.

3. An anti-isomorphism of a ring onto itself is usually called an agnti-guso-
morphism. Prove that the set of automorphisms and anti-automorphisms of a
ring forms a transformation group. Show that the automorphisms form an
invariant subgroup of index 1 or 2 in this group.
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4, Show that, if 8 — 4is an anti-isomorphism of R onto R, then the mapping
(@) — (@)’, where the (i,§) element of (3)’ is 8, is an anti-isomorphism of R4
onto N

5. Define anti-homomorphism. State and prove the “fundamental theorem”

for anti-homomorphisms.
6. (Hua) Let S be a mapping of a ring ! into a ringB such that (g + 4)° =
a® 4 5° and for each pair 4, either (a8)° = a°8° or (ab)° = 5°a°. Prove that

S is either 2 homomorphism or an anti-homomorphism.

11. Structure of the additive group of a ring. The character-
istic of a ring. If 9,4 is any commutative group, we can define
a multiplication 44 = 0 for all 4,6 and thus obtain a ring. It is
clear that this composition i1s associative and distributive with
respect to addition. A ring of this type is called a zero-ring.
The existence of such rings shows that there is nothing that we
can say in general about the structure of the additive group of a
ring. However, as we proceed to show, simple restrictions im-
posed on the multiplicative semi-group of a ring will impose
strong restrictions on the additive group.

For example, suppose that ¥ has an identity 1 and suppose 1
has finite order 7 in %,4. Then if 4 is any element of ¥

ma = m(la) = (ml)a = 0a = 0.

Hence every element has finite order a divisor of m.

If there exists a maximum m (>0) for the orders of the ele-
ments of ¥A,+, then the number m 1s called the characteristic of .
If no such maximum exists, we say that % has characteristic O
(or infinity).* Thus we see that, if ¥ has an identity 1, its char-
acteristic 1s m > 0 or O according as 1 has order m or infinite
order in ¥, 4.

We can generalize this result. Thus suppose that 4is an element
of A that has finite order m and that 4 is not a left zero-divisor.
If 2 1s any element of ¥,

0 = (md)a = d(ma).

Hence ma = 0. Thus again the characteristic of % 1s 7. A similar
result holds, of course, for elements that are not right zero-
divisors.

* The terminology “‘characteristic infinity” is the more natural one from the present
point of view. However, from another point of view (cf. pp. 103) “characteristic zero”
is also natural. At any rate the latter seems to be the one that is most commonly used
and we shall adopt it here.
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In particular we see that, if % is an integral domain, then either
the characteristic i1s O or the characteristic is m > 0, and every
non-zero element has order m. We shall now show that in the
latter case m is a prime; for let m = mmy, where the m; > 1.
If a # 0,

ma® = mymqa® = (mya)(mqa).

Since mya # 0 and mqoa = 0, this is a contradiction. We have
therefore proved the following

Theorem 7. If U is an integral domain of characteristic 0O,
then all of the non-zero elements of N have infinite order. If U
has characteristic m > 0, then m 1s a prime and all of the non-zero
elements of N have order m.

EXERCISE

1. Show that Theorem 7 holds for simple rings (instead of integral domains).

12. Algebra of subgroups of the additive group of a ring. One-
sided ideals. We investigate 1n this section some important com-
positions that can be defined in the collection of subgroups of
the additive group of a ring. Two of these, intersection and the
group genmerated by a collection of subgroups, have been discussed
for arbitrary groups. In the present situation the group that we
start with 1s commutative; hence all subgroups are invariant.
Hence, if 4 and B are subgroups, the subgroup [4 U B] generated
by 4 and B coincides with the set 4 4 B of sums 2 + 4, 2 in A4,
b in B. More generally, if {A4,} is a collection of subgroups of
the additive group, then the group [ U4,] generated by the A,
1s the set of finite sums

for it can be verified that the totality of these sums, which we
denote now as 24, 1s a subgroup of the additive group. Also
24, contains all the A4, and is contained in any subgroup that
has this property. Hence Z4, has the properties that are char-
acteristic for [ U 4,].

We shall now introduce the third important composition on
subgroups of the additive group. If 4 and B are subgroups, we
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define the product AB to be the subgroup generated by all of the
products @b, 2 in 4, bin B. It should be noted that this definition
is different from the definition of multiplication for cosets. How-
ever, since the cosets 2 B of a subgroup B are not subgroups, no
real difficulty will result from the double use of the multiplication
notation. We now note that 4B coincides with the set P of
finite sums

101 + azbg 4+ - + arbs

with 4; in 4 and 4; in B. It is clear that P contains all the
products @b and that P 1s contained in any subgroup that con-
tains all of these products. Also it is clear that P is closed under
addition and that P contains 0. Finally, — (416, +: -+ axbs)
= (—a)by +++-+ (—ax)br e P. Hence P 1s a subgroup. These
properties of P, of course, imply that P = AB.

We can easily establish the associative law (4B)C = A(BC);
for either of these subgroups is the totality of finite sums of the
form Zabics, ase A, bse B, cse C. Also we have the distributive
laws A(B+ C) = AB + AC and (B + C)4 = BA + CA. We
prove the first of these by noting that 4(B + C) is the subgroup
generated by all products ¢(6 + ¢), ae 4, be B, ce C.

Sinceag(b+¢)=ab+ace AB + AC, A(B+ C) € 4B 4+ AC.
On the other hand 44 = 42(6 + 0) is in A(B + C). Hence 4B C
AB + C). Similarly 4C € A(B + C). But then 4B 4+ AC C
AB + C). Hence 4(B + C) = AB + AC. Evidently this same
argument applies to the other distributive law.

The powers of a subgroup are defined inductively by 4' = 4,
A = (A A4, Itis immediate that 4£* is the set of finite sums
of products of the form a,4; -+« 4; with the 2;1n 4. A subgroup
A of the additive group determines a subring if and only if A4 is
closed under multiplication. The condition for this can be ex-
pressed in terms of our multiplication as 42 € 4. The condi-
tions that a subgroup B be an ideal are that

(L) AB C B
(R) BA C B.

An important role is played in the theory of rings by subgroups
that satisfy just one of the above conditions. If 9 is a subgroup
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such that (L) holds, then ¥ 1s called a Jeft idea/ in A and, if (R)
holds, then B 1s a right ideal.

Example. Let R, be the matrix ring defined by the ring i and consider the
subset B of RN, of matrices of the form

i all a12 - alk 0 s s 0
ayy @y --- ay O --- O
| Gn1l Gp2 -  Gnk 0O --- 0 §

where the a;; are arbitrary. Then B is a left ideal. Similarly the totality of
matrices in which the last #—% rows consist of 0’s is a right ideal in .. It can
be shown that neither of these is a2 (two-sided) ideal.

In any ring ¥ the totality %4 of left multiples x4, x in ¥, is a
left ideal. If % contains an identity, then A4 contains 4 and then
A% can be characterized as the smallest left ideal that contains
by for it 1s evident that %4 i1s contained in every left ideal that
contains 4. If 9 does not have an identity, it is necessary to
take the set of elements of the form #é 4 x4, » an integer, x
arbitrary in 9, to obtain the smallest left ideal containing 2.
In any case we shall call the smallest left ideal containing an
element & a principal left ideal. We denote this ideal as (£); so
that (4), = %4 if 4 has an identity and (4), is the set {#b - x4}
for arbitrary %. In a similar manner we define the right ideal
b of right multiples of 4 and the principal right ideal (4),.
We always have (6), D 4% and (8), = 6% if % has an i1dentity.

The concept of a one-sided 1deal can be used to give a new char-
acterization of division rings:

Theorem 8. A ring A with an identity 1 # 0 15 a division ring
if and only if it has no proper left (right )ideals.

Proof. Suppose first that % is a division ring. Then, if B is a
left ideal 1n % = 0, B contains an element # 2 0. Then 1 =
67 b e®B and every x = x1 1sin B. Hence 8 = %. Thus if B
is any left ideal, either 8 = 0 or 8 = A. Conversely let ¥ be a
ring with an identity 1 2 0 that has no proper left ideals. If
b 1s an element = 0 in 9, A% contains 14 # 0. Hence A% = 9.
This implies that there 1s a ¢ (# 0) such that ¢4 = 1. Hence
every element 3 0 has a left inverse # 0 and this implies that the



78  RINGS, INTEGRAL DOMAINS AND FIELDS

non-zero elements of ¥ form a group under multiplication (cf.
ex. 2, p. 24). Hence % is a division ring.

Of course, this result implies that any division ring is simple.
It follows that the only homomorphic images of a division ring
are 0 and the ring itself.

It can be verified that the compositions of intersection, sum
and product applied to left (right) ideals give left (right) ideals.
Other results of this type can be established. For example, the
product BE is a left ideal if B 1s any left ideal and € is a subgroup.
Also BC is a (two-sided) ideal if B 1s a left ideal and € is a right
ideal.

EXERCISES

1. Prove that a ring ¥ which possesses no proper left ideals is either a division

ring or a zero ring.
2. If A is any ring, A2 A3, --- are ideals. What are these ideals for the sub-
ring of I3 consisting of the matrices of the form

0 a4 &
0 0 ¢|°?
0 0 O

13. The ring of endomorphisms of a commutative group. Let
® be an arbitrary commutative group. We use the additive nota-
tion 1n ®: 4+ for the composition, O for the identity, —a for the
inverse and ma for the power or multiple of 2. We consider now
the set € of endomorphisms of . These are the mappings 5 of ®
into itself such that

(22) (@ + &)n = an + b,

We know that, if 5, pe € then 5p e € and the associative law
holds for the resultant composition. We know also that the
identity mapping belongs to & These results hold even if @ is
not commutative. However, a great deal more can be proved in
the commutative case, namely, we can show that the set € can be
used to define a ring.

We introduce an addition composition in & by defining n + p

by
(23) a(n + p) = an + ap.
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This mapping is an endomorphism since
(@ +6)(n+p)=(+ 60+ (a+ )
= an + bn + ap + bp
=an +ap+ bn + op
= a(n + p) + &(n + p).

It is easy to verify that €+ constitute a commutative group.
We have a(n + (0 + X)) = an + alp + N) = an + ap + aX\ and
a((n +p) + N = aln + p) + a\ = an + ap + a\; hence n +
(b + 7N =(n+p)+ N\ Similarly g 4+ p = p + 2. We now de-
fine the O mapping to be the one which sends every 2 into 0. It
is clear that this is an endomorphism and that 5 4+ 0 = 5 for
all n. Finally, if e G, we define —y to be the mapping 2 —
—(an). This mapping may be regarded as the resultant of
a — an and the automorphism ¢ - —4. Hence —ne @G Evi-

dently n + (—7) = 0.

We shall now show that §,+,- 1s a ring where the product -
is the resultant. Since we know that §,4- is a commutative group
and since we know that . 1s associative, we have to prove only the
distributive laws. Now we have

a(n(p + X)) = (an)(p + N) = (an)p + (an)\ = a(np) + a(n\)
= ﬁ(nP -+ 77)\)3
so that n(p + N\) = np + 3\ and

a((p + M) = (@le + N)n = (ap 4+ aN)g = (ap)n + (aN)y
= a(pn) 4+ a(\q) = a(pn + Nn).

Hence (p 4+ N)n = pn + M. This completes the proof of the
following fundamental

Theorem 9. Let & be an arbitrary commutative group (written
additively) and let € be the totality of endomorphisms of &. Then
€ is closed relative to the addition composition defined by a(n + p)
= an + ap and relative to the resultant composition-, and the system
E€,4,- is a ring,
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We call € the ring of endomorphisms of ®. More generally we
shall be interested in considering subrings of rings €. Such a
subring will be called @ ring of endomorphisms and we shall see
in the next section that these rings play the same role in ring
theory that transformation groups play in group theory. Before
we discuss this, however, we consider some examples.

Examples. (1) O an infinite cyclic group. Thus we can take & to be the
additive group I, of integers. If ne € and 1y = «in I, then nn = nu since n
1s an endomorphism. Now this remark shows that 7 is completely determined
by its eftect on the generator 1 of 7., We shall therefore associate the integer 4
(effect of n on 1) with the endomorphism n. Suppose now that p is 2 second
endomorphism and that 1p = v. Then we associate v with p. Also 1{n + p) =
In+4 1p = u 4 vand (19)p = up = uv. Hence in our correspondence, 7 + p —
#u+ v and np — uv. Also our correspondence is 1-1; for, if 4 = v then
1y = 1p and since an endomorphism is determined by its effect on 1, n = p.
Thus we have an isomorphism of § into the ring of integers I. We remark
finally that our isomorphism is one onto 7. Thus if % is any integer, then the
mapping # — nu is an endomorphism, since

(n 4+ m)u = nu + mu

is a basic property of multiples. Clearly this endomorphism sends 1 into «.
Thus we have proved that § is isomorphic to 7.

(2) As a generalization of (1) we consider next the group ® of all integral
vectors (my, ms, »--, m,), m; in I, The composition here is vector addition.

Hence if we introduce the vectors

(24) 3i=(03"'3031303"'30)3 £=1323"'3n3
then we can write
(25) (my, ma, - -+, My) = mye1 + maeg + -+ -+ Mmue,.

Thus any integral vector 1s in the group generated by the ¢;. Also it 1s clear
that a vector can be written in only one way as Zm;e;s for if Zme; = Zm/e;,

then by (25)

(mln Mgy ==, mﬂ) = (ml’, ﬂ’h’, Tty mn’)

and m; = m, for all i.

Now let  be an endomorphism in . We are going to show that 5 is com-
pletely determined by its effect on the ¢;; for if the images ¢;n = f; are known,
then the image

(Zmies)n = Z(mien = Zmi(em) = Zm; f;

is known. It follows that, if 5 and p are two endomorphisms and e = ep
fori=1,2, ---, n, then an = ap for all 3. Hence n = p.
Suppose next that

(26) Ji = em = a;16) + Gp6e - - - 4 Ginén
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where the 4;; are integers. It is clear that these integers are uniquely deter-
mined by 7. Hence the matrix

311 412 " Gia
_ a1 a2 "t a3n

(aﬁ) = 1.
8n1 Grs *°° Qpn

is determined by . We shall call this matrix the matrix of 5, and we shall
investigate the correspondence 7 — (4;;) of € into the ring I, of n X n matrices
with elements in 7,

We note first that our correspondence is 1-1; for if  — (ai;) and p — (a4;),
then ¢ = e;p and hence n = p. Next let p be any endomorphism and let

p — (4i). Then e;p = 3 bijej. Hence
j
ei{n -+ p) = em + eip = 2 aije; + 2 bijes
] b )

= Z(ai; + bij)ej
Thus 7 + p — (a;;) + (46:i;). Finally
einp) = (emp = (22 aijes) p = 2. (asjes)p = 2_ aii{eip) = 2. dibjker = D cach
j J ) ik k

where ¢ = Q. 4ii6;5. This shows that the matrix of np is (@)(4). We have
J

therefore proved that  — (4) is an isomorphism of § into 7,
We shall show finally that our mapping is onto [I,. Thus let (a) be
any matnx in I, and let f; = E a:;¢;. We define 2 mapping of O into itself

b
by stipulating that Zm,e; — Zm;f;. Then if Zme; is a second element of (Y,
Zmge; + Zmie; = Z(m; + m;)e; and this element 1s mapped into

2Z(m; + m) fi = Zmifi + Zmfs.

Hence Zm.e; — Zm.f; is an endomorphism 5. Since em = fi = Zaue;, the
matrix of 7 is the given matrix (@). Thus we have established an isomorphism
of € onto I,

We can use the result which we have just derived to determine the group
of automorphisms of ®&. Itis clear that if & is any commutative group, then
the group of automorphisms ¥ of & coincides with the group of units in the ring
€. Also it is evident that if we have an isomorphism of one ring onto a second
one, then the group of units of the first is mapped onto the group of units of the
second. It follows that we can determine the group of automorphisms of
the group & of integral vectors by determining the group of units of the matrix
ring I,. Now we know that a matrix (@) € I, is a unit in I, if and only if det (4)
= +1. This result in combination with the above discussion shows that the
automorphisms of & have the form Zmie; — Zm;f; where fi = Zaie; and det
(a) = +1.
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EXERCISES

1. Determine the ring of endomorphisms and the group of automorphisms
of a cyclic group of order .

2. Let® be an arbitrary group and let )t be the complete set of mappings of
® into itself. If n, p eI, define np to be the resultant and n + p by g(n + p) =
(gm)(gp). Investigate the set I relative to these two compositions.

14. The multiplications of a ring. We suppose now that ¥ is
any ring. If a1s a fixed element of %, we define the right multiplica-
tion a, to be the mapping x — x4 of A intoitself. This mapping is
an endomorphism of the additive group %,+ of U since

(27) (x + y)a, = (x + y)a = xa + ya = xa, + ya,.

Next we note that

x(a + b), = x(a + b) = xa + xb = xa, + xb, = x(a, + b,)

and

x(ab), = x(ab) = (xa)b = (xa,)b, = x(a.b,).
Hence we have the relations

(“+b)r=dr+br
(ad), = a.b,.

These show that the correspondence ¢ — 4, is a homomorphism
of the ring % into the ring € of endomorphisms of ¥%,+. It follows,
of course, that the set %, of the right multiplications is a subring
of & We shall call this the ring of right multiplications of the
ring U.

The kernel of the homomorphism 4 — 4, i1s the ideal 8, of
elements z such that xz = 0 for all x. We call this 1deal the
right annihilator of the ring . If 3, = 0, we know that 2 — 4,
is an isomorphism. In particular we note that in the important
case in which % has an identity, 8, = 0; for, if 1z = 0, then 2 = 0.
As a consequence we have proved the following fundamental

(28)

Theorem 10. Any ring with an identity is isomorphic to a ring
of endomorphisms.*

* We shall prove in the next chapter (p. 84) that this result is also valid for rings
without identities.
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A similar discussion applies to the left multiplications a; defined
by xa; = ax. These mappings are endomorphisms and we have

the rules
(29) (d + b)z — a; + b;, (db); = b;dz.

It follows that @ — 4; 1s an anti-homomorphism (cf. ex. 5,
p. 74) of U into . Hence the image set, that is, the set ¥;
of left multiplications, is a subring of €& The kernel of the anti-
homomorphism ¢ — 4; is the ideal 8; of left annihilators of the
ring A. If A has an identity, 8; = 0 and 2 — 4; 1s an anti-

isomorphism.
We consider finally an important relation between left and
right multiplications for rings with an identity. This is stated in

Theorem 11. If U 15 a ring with an identity, then any mapping
in N, + that commutes with all the left (right) multiplications ts a right
(left) multiplication.

The proof of this theorem 1s identical with that of the corre-
sponding group result given on p. 30.



Chapter IIT

EXTENSIONS OF RINGS AND FIELDS

il

A given ring may fail to have certain properties that are neces-
sary for solving a particular problem. However, it may be possible
to construct a larger ring that has the required properties. Thus,
for example, there exist equations of the form ax = 4, @ = 0 that
have no solutions in the domain of integers. The field of rational
numbers 1s constructed for the purpose of insuring the solvability
of equations of this type. The method used to construct this
extension can be generalized so as to apply to any commutative
integral domain. This type of extension i1s one of those that we
consider in this chapter. Among others we define also rings of
polynomials, field extensions and rings of functions. We derive
some of the properties of these extensions and, in particular, we
determine the algebraic structure of any field.

1. Imbedding of a ring in a ring with an identity. In the pre-
ceding chapter we have proved that any ring with an identity is
isomorphic to a ring of endomorphisms. We shall now show that
any ring ¥ is isomorphic to a subring A’ of a ring B that has an
identity. Since 8B is isomorphic to a ring of endomorphisms, it
will follow that %’ and hence ¥ is isomorphic to a ring of endo-
morphisms.

In general we shall say that a ring % is imbedded 1n a ring B
if ¥ contains a subring ¥’ isomorphic to . The ring B is called
an extension of .

In order to construct an extension of A that has an identity we
let B be the product set I X % of pairs (m,2) where m is an integer

and g is in the given ring A. Two pairs (m,z) and (n,6) are re-
34
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garded as equal if and only if m = » and 2 = 4. We define an
addition composition in 8 by

(1) (mya) + (n,6) = (m + n, a + b).

It is easy to see that 8,4 is a commutative group. The O element
is (0,0) and —(m,3) = (—m,—a). We define multiplication in
B by

(2) (mya)(n,6) = (mn, na + mb + ab)

where on the right-hand side #4 and mé denote respectively the
nth multiple of 2 and the mth multiple of 4. Now

((mya)(n,8))(g,¢) = ((mn)g, g(na) + q(mbd) + q(ab)
+ (mn)c + (na)e + (mb)c + (ad)c)

and
(mya) (n,6)(g5c)) = (m(ng), m(nc) + m(gb) + m(bc)
+ a(ng) 4+ a(nc) + a(gb) + a(be)).

Hence the properties of multiples, the commutative law of addi-
tion and the associative laws in % and in 7 yield the associative
law of multiplication in 8. Also

(mya)[(n,0) + (g,¢)]
= (mya)(n + q, & + ¢)
= (mn+ q),m@b+¢c)+ (n+ q)a + a(b + o))

= (mn 4 mq, mb + mc + na + qa + ab + ac)
and

(m,a) (n,b) 4+ (m,a)(g,c)
= (mn, mb + na + ab) + (mq, mc + ga + ac)
= (mn + mq, mb + na + ab + mc + qa + ac).

Hence one of the distributive laws holds. In a similar manner
we can verify the other distributive law. Hence the system that
we have constructed is a ring.

Using (2) we see that the element 1 = (1,0) acts as the identity
in 8. We consider next the subset %’ of B of elements of the
form (0,2). Since
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(0,:2) + (O)b) = (0,d + é)) 0 = (030):
—(0,12) = (03_5) and (O:d) (03‘6) = (O,Qb),

A’ is a subring of B. Also it is clear that, if we set 4" = (0,4),
then the correspondence 2 — 4’ is an 1somorphism of ¥ onto .
Thus % 1s imbedded in 9B, a ring with an identity. This proves the

following

Theorem 1. Any ring can be imbedded in a ring with an identity.

We note also that the ring of integers 1s imbedded in the ring
B since the mappmg m — (m,0) is an isomorphism of I onto a
subring I’ of 8. We now simplify var notation by writing z for
(m,0) and 4 for (0,4), I for I’ and % for A’. Using these notations,
we have the relations

@=I4+9% INA=0.

Also 1t 1s clear that % 1s an ideal in 8.

Remarks. In certain situations the extension 8B is not the
best extension of % to a ring with an identity element. In the
first place, if ¥ has an identity ¢ to begin with, then the element
2 = 1 — ¢ has the property 24 = 0 = 4z for all 2 1n %. Hence in
this case it 1s not worthwhile to introduce the ring 8. Next, we
note that the characteristic of 8 may be different from that of .
This will be the case if the characteristic of A 1s m = 0; for
B D I and hence B has characteristic 0. However, it is easy to
modify the construction to obtain an extension with an identity
that has the same characteristic as . This i1s indicated in exercise
1 below. Another objection to the construction that we have
given 1s that, if % 1s an integral domain, ¥ may not be an integral
domain. For instance, if ¥ is the ring of even integers, then the
element (2,~2) of B has the property (2,—2)(0,2m) = 0. This
difficulty can be overcome, too, and we can prove that any
integral domain can be imbedded in an integral domain with an
identity. Exercises 2—4 are designed to establish this result.

EXERCISES

1. Let A be a ring for which there exists a positive integer m such that ma = 0
for all z. Let € denote the set of pairs (7,2) where %# = n 4 (m) is in the ring
I/(m). Define equality as in the ring B, addition by (#,s) + (3,6) = (7 + 3,
a -+ &) and multiplication by
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(73,a)(§,0) = (7§, nb + ga + ab)

Show that multiplication is single-valued and that € is a ring with an identity
which is an extension of ¥ and that mc = 0 for all ¢ £ G.

2. Let A be an integral domain that contains elements 4 and & # 0 such
that @b 4+ mbé = O for some integer m. Prove that ca + mc = 0 = ac + mc
for all ¢ in 9.

3. Let 9 be an integral domain and let B be the ring constructed in the text.
Show that the totality 8 of elements 2 in 8 such that 2za = 0 for all 4in ¥ is an
ideal and thatB/8 is an integral domain with an identity.

4, Prove that the set 3 of cosets of the form 4 + 3, 4 in ¥, is a subring of
B /3 1somorphic toY. Henced is imbedded in B/K.

2. Field of fractions of a commutative integral domain. We
shall now show that any commutative integral domain can be
imbedded 1n a field. The construction which we shall give—well
known for the ring of integers—can best be understood by study-
ing the relation between a subring of a field and the subfield
generated by the subring.

Hence let § be a field and let A be a subring = 0 of §. We say
that % 1s a subfield of § if the system U,4,- 1s a field. It 1s
immediate that a subset A of a field § determines a subfield if
and only if (1) %,+ 1s a subgroup of the additive group. (2)
A contains elements # 0, and if A* denotes the totality of these
elements, then A*,- is a subgroup of the multiplicative group of
non-zero elements of §. If we recall the conditions that a subset
of a group determines a subgroup, we see that % determines a
subfield if and only if

1. Ifa, bed,thena 4 beW. O0eW. Ifaed, then —ae .

2. 1 e If 2 and & are non-zero elements of %A, then 24 and
a el

It is clear from 1’ and 2’ that the intersection of any collec-
tion of subfields of a field is again a subfield. If § 1s any subset
of §, then the intersection of all subfields of § that contain § is
called the smallest subfield of § containing § or the subfield of §
generated by §. We now make the important observation that,
if § = % is a subring # O of §, then the subfield ® generated by
A coincides with the set {#6™'} of elements of the form 457,
a and & in %. First, it is clear that @ D {4é~'}. Also we have
the following equations:
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ab™ + cd™ = adb7d + cbbTdT = (ad 4 ¢b)(bd) 1
0 =05"
—ab™ = (—a)b™?
(@b (cd™) = acb™d™ = (ac)(bd)
1 =aa™ ' (a = 0)
(@)t =a"% (a0,

and these show that the set {44!} determines a subfield. Since
any 4 in A has the form

a = (ab)b™,

A C {ab7'}. Hence the set {4471} is a subfield of § containing
A. Since @ D {ab71} this implies that @ = {ab~1}.

If § = ®, then we shall say that § is a minimal field contain-
ing . In this case we see that every element of § has the form
a6, a and 4 in 4.

Suppose now that ¥ is any commutative integral domain = 0.
We wish to extend U to a field. The foregoing remarks indicate
that the elements of a minimal field extension of % are to be
obtained from the pairs (4,6), & % 0 and 2 1n . We have in mind
that (4,6) 1s to play the role of 24~'. Hence we adopt the follow-
ing procedure.

Let B be the totality of pairs (4,6),4 = 0 and 2 in %. We intro-
duce a relation ~ in B by defining (4,6) ~ (¢,d) if ad = b.
Then (4,6) ~ (a,b) since ab = ba and, if (a,6) ~ (¢,d), ad = bc so
that ¢ = da and (¢,d) ~ (a,6). Finally if (4,6) ~ (¢,d) and
(c,d) ~ (e,f), then ad = bc and ¢f = de. Hence adf = bef = bde.
Since d % 0 and ¥ 1s commutative, d may be cancelled to give
af = be. Hence (a,6) ~ (¢,f). We have therefore proved that
the relation ~ i1s an equivalence relation in 8. We shall call
the equivalence class determined by (4,6) the fraction a/b. Thus
we have the rule

a/b = c/d if and only if ad = ée.

We shall now introduce addition and multiplication composi-
tions in the set § of fractions. We note first that, if 4/4 and ¢/d
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are any two fractions, then 44 # 0 and we can form the fraction

(ad + bc)/bd. Moreover, if a/b = a'/4' and ¢/d = ¢’/d’, then
(3) (ad + bc)/bd = (@’d + &'¢")/6'd.
Thus, by assumption, @6’ = b4’ and ¢d’ = de¢’. Hence

ab'dd’ = ba’dd’ and cd’bé’ = dc’bb’
so that
ab'dd 4 cd'bb = ba'dd + dc’bb’
or

(ad + bc)o'd’ = (a'd’ + 0')od,

and this 1s equivalent to (3). It i1s now clear that the addition
composition defined by

(4) a/b + ¢/d = (ad + bc) /bd

is a single-valued composition in § In a similar manner we
see that, if /4 and ¢/d are fractions, then ac/bd 1s a fraction.
If a/b = a'/t' and ¢/d = ¢’/d’, then ac/bd = a’c’/6’d’. Hence

(5) (4/0)(c/d) = ac/bd

defines a single-valued multiplication.

It can also be verified directly that § with the compositions
(4) and (5) 1s a commutative ring. We leave this verifica-
tion to the reader. It will be observed that 0/6 = 0/d is the O
of § and that the negative of ¢/b1s (—a)/b = a/(—4). The ring
X has an identity; for 4/6 = d/d for any & 0 and 4 ¢ 0 and
(a/8)(6/b) = ab/b? = a/b. Hence b/b=1. 1If a/b = 0 then
a # 0. Hence 4/a is a fraction. Since (a/0)(6/a) = ab/ba = 1,
b/a = (a/b)~*. This shows that every element 0 in § is a
unit. Hence § 1s a field.

We now associate with the element & of ¥ the fraction 4b/4
where 4 1s any element # 0 1n 9. This correspondence 1s single-

valued since ab/6 = ad/d for any 4 #£ 0. We denote a4/% by a.
Then

s+ d =@+ a)e/b = (a+ a)2/8? = (ab® + a'8?) /8
= ab/b + a’'b/b

=ada+ a
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and
ad' = ad'b/b = adB?/? = (ab/b)(a’'b/)
= id,
so that 2 — 4 1s a homomorphism. Also we can verify directly
that this mapping is 1-1. Hence the set 9 of elements 4 deter-

mines a subring of § 1somorphic to A. We have therefore proved
the following fundamental imbedding theorem.

Theorem 2. Any commutative integral domain (£ 0) can be
imbedded in a freld.

We shall now note that § is a minimal field containing the
image A of . This is clear since any /4 of § can be written
in the form a/b = (ab/b)(6/8%) = (ab/b)(6*/6) ™ = ab.

If A = I the ring of integers, then the fractions are called
rational numbers. We denote the field of rational numbers by
R, in the sequel.

EXERCISES
1. Show that, if A is a field, then § = 3.

2. Prove that any commutative semi-group that satishies the cancellation law
can be imbedded 1n a group.

GeNERALIZATIONS. (1) The method that we have just used
can be extended to prove that any commutative ring ¥ that con-
- tains a non-vacuous set § of elements that are not zero-divisors
can be imbedded in a ring with an identity in which the elements
of § are units.

We note first that, if si55 1s a zero-divisor, then either s; or
sq 1s a zero-divisor. Hence the sub-semigroup # of the multiplica-
tive semi-group of ¥ generated by the given set § contains no zero-
divisors. We consider now the set % X V of pairs (a,0) 42 in ¥,
v in ¥, and we introduce the relation (a,0) ~ (a’,t) if av’ = a4'v.
This is an equivalence relation since /” contains ho zero-divisors.
Let §s = §v be the set of equivalence classes 4/v determined by
this relation. Addition and multiplication are defined as before.
We obtain in this way a ring that contains a subring % =~ 4.
The elements of oA are the classes 4 = av/v. The ring s 1s com-
mutative and has the identity v/v. If se S, the corresponding
element § = sv/v is a unit in g its inverse 1s v/sv.
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(2) There is an important class of non-commutative integral
domains that can be imbedded in division rings. These are the
domains that have the common multiple property, that is, any
pair of non-zero elements 4,6 in the domain has a common right
(left) multiple m = @b’ = ba’ # O (7% = ba = 4b). The imbed-
ding problem for integral domains of this type was first solved by
O. Ore. The construction is similar to the one we have used in
the commutative case. We refer the reader to Ore’s paper for
the details.®

We note finally that it has been proved by A. Malcev that there
exist non-commutative integral domains that cannot be imbedded
in division rings.{

3. Uniqueness of the field of fractions. Let % be a commuta-
tive integral domain and let § be its field of fractions. We shall
now identify % with the subring ¥ of elements 2 = 44/46. Thus we
shall write % for 9, 2 for 2. Then we know that the subfield of
% generated by U 1s § itself. We shall now prove that any two
fields that bear this relation to ¥ are isomorphic. More precisely,
we have the following

Theorem 3. Let Ui, 1 = 1, 2 be a subring #0 of the freld §;
and suppose that §; is the smallest subfield of §; containing U,
Then if o is an isomorphism of Ay onto Ns, o can be extended 1n one
and only one way to an isomorphism of §1 onto Fs.

By an extension of a mapping of a set to a mapping of a larger
set we mean a mapping of the larger set that has the same effect
as the original mapping on the elements of the given subset.
Then we have to find an 1somorphism 2 of §; onto §. such that

a;® = ay° for all a; e A;. We shall now verify that the mapping

(6) a1 — a"(6,°)

£y ¥~ 01n ¥U; has the required properties. In the first place, since
&1 1s minimal for A;, any element of §; has the form 4.6, 2.
Hence (6) is defined for the whole of ;. We note next that (6)

* Q. Ore, Linear equations in nori-commutative fields, Annals of Mathematics, Vol. 32
(1931), pp. 463—477.

1 A. Malcev, On the immersion of an algebraic ring into a field, Mathematische Annalen,
Vol. 113 (1937), 686-691.
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is single-valued; for suppose that ¢:6,7! = ¢1d; ™. Then a:d; =
c161 and 4.°d{" = ¢,°6,°. Hence 2,°(6,9) ™ = ¢,°(d:?) ™! as re-
quired. In asimilar manner we see that, if 2:°(6,°) 7' = ¢,°(d:") %,
then @16,~! = ¢1d;7'; hence the mapping 1s 1-1. If 434, 1s any
element of . we can find an 4; such that 4,° = 45 and a 4; such
that 4, = 4,. Then a3b;™ = 4,°(4,°) ' is an image. Hence
our mapping is a mapping of §; onto F.. Finally we note that

a6, + c1d;
= (ad1 + ¢161)(61d1) 7P > (a1dy + ¢161)7((6:d1)7)
= (a1°d\’ + ¢1°6:°)(6:°d,%)
— alf(blcr)—l + clcr(dlcr) —1

and
(@:6:7) (e1d1 ™) = a1e1(1dy) ™ — (a161)°((6:1d1)7)
= (a17¢,°) (b:°d,7)
= (a1°(61") 1) (e17(d:7) 7).

Hence we have an isomorphism of §; onto §s. This isomorphism
1s an extension of ¢ since it maps 4; = (4141)6; " into

(albl)g(&lf) —1 alcrblf(&lf) —-1 ald’.

Suppose now that X is any isomorphism of §; onto F that
coincides with ¢ in ;. Then (2:6;71)% = 2.%(6;71)% = 4,%(6,%) 1
= 41°(6,") ~'. Hence Z 1s the mapping (6). This shows that the
extension of ¢ to an 1somorphism of §; onto §. 1s uniquely deter-
mined. The theorem is therefore completely proved.

4. Polynomial rings. One is often interested 1n studying a ring
B relative to a specified subring 2. As we shall see, this idea is
particularly fruitful in the theory of fields. A natural problem
in this connection is the determination of the structure of a sub-
ring [#] generated by 9 and one additional element e 8. To
simplify this problem we shall assume that (1) 8 has an i1dentity
1, Q) 1isin ¥, (3) ua = au for all ain Y. Evidently any element
of the form

(7) ao + ayu + aou® + -+ au™
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where the g; e % 1s 1n Y[#]. We shall call an element of this form
a polynomial in u with coefficients a; in 9.

If 69 + b1 + bot® +-- -4 b,,u™ 1s a second polynomial in #
and #» > m, then

(8) (a0 + a1u + agt® +-- -+ au™)
+ (bo + bru + boti® + -+ - 4 bpu™)
= (a0 + &) + (@1 + 01)u +- -
+ (@m + Om)u™ + Gmpy™t 4 - - 4 g u™

Also Ois a polynomial and the negative of D 4;#* is the polynomial
0

E(—di)ﬂi. Finally, since (a;ui) (b_,'Z(j) = d,:tf’jl(i_”,

(9 (a0 + a1u + age® 4+ - -+ ants™)(bg + b1 + -+ - + bputs™)

= po+ p1t ++- -+ Poymu®t™
where

(10) pi= 2 aibij= 2. ajb
j=0 jtk=i
Hence the totality of polynomials 1s a subring of 8. Clearly
this subring includes % and, since ¥ contains 1, # = lu is a
polynomial. It follows that the ring U[#] generated by % and
by u is just the set of polynomials in # with coefficients in .
A particularly simple situation is obtained when the element

u 18 transcendental relative to 3. By this we mean that a poly-
nomial relation

dy + dytt + dytl + -+ dyu™ = 0,
d; in A can hold only if all the 4; = 0. In this case the two
polynomials )_ 4;4* and )_ 4;4' are equal only if the correspond-
0 0

ing coefficients 4; and 4; are equal for all 7; for if » > m and
2 a;u* = ZThid, then

(dg — 50) + (al — 51)31 + . + (fzm — tf’m)ltm + dm_|_1ﬂm+1 +_ ..
+ a,u™ = 0,

Hencea; =45, =1,2, -, mand gpy1 =---= a, = 0.
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If # is not transcendental, we say that # is an algebraic element
relative to the subring %. In order to determine the structure
of polynomial rings it i1s important to have available rings of the
form 9[x] where x is transcendental. In a polynomial extension
by a transcendental element the polynomial (7) determines a
unique sequence (4o, 41, *--) with the property that g; = O for
sufficiently large 7. Hence it is natural to adopt the following
procedure for constructing A[x].

Let A be a given ring with an identity and let 8 be the totality
of infinite sequences

(“0) A1y 42y *° )

that have only a finite number of non-zero terms z;. Elements
of B are regarded as equal if and only if 4; = 4; for all 7. Addi-
tion 1n B is defined by

(11) (aO) A1y 42y " °* ) + (&0) ‘bb 52) "t )
= (a0 + bo, a1 + 01, a2 + b2y -+ +).

The result given in the right-hand side 1s a member of 8B since the
terms 1n the sequence are all 0 from a certain point on. It is
immediate that 8 i1s a commutative group relative to this addition.
The 0 = (0,0, ---) and —(aq, 41, --+) = (—ag, —ay, ++-). We
define multiplication in 8 by

(12) (‘20: A1y 82y " ° ')(‘50: ‘61) é2) ) = (p()) D1, P2, "')

where p; 1s given by (10). If 2; =0 for { > » and 4; = O for
j > m, then p, = Ofor £ > m + n. Hence (12) gives an element
of 8.

If 2 = (40, a1, 0 )s o = (éO) él) -++) and ¢ = (co, €1, 0 )s
then the term with subscript 7 in (aé)c¢ is

E E djcf?k E djtf’kc'g.

1
m4-l=i (J'-|—k=m ) jt+k+41=i

Similarly the corresponding term of 4(é¢) is
2 ﬂ:‘( ) 5’k€£) = 2. aibL
m ) =i k+4i=m i+k41=i

Hence (ab)c = a(bc). Similarly we can verify the distributive
laws. Hence the system 8,4, is a ring.
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The subset A’ of elements
a' = (4,00, ---)

is a subring of ¥ isomorphic under the correspondence ¢ — 4’
with 9. Thus % 1s imbedded in 8. The element 1’ = (1,0, ---)
of Y’ acts as an 1dentity in 8. Now let ¥ denote the element
0,1,0,0, ---). Then

k41
xk=(0305"':031505"')
and
k41
a'x* = (0)0:"':03‘2)0)"') = x*a’.

Hence ¥ commutes with every 4’ e %" and the general element
(Goy 31, ***y Any 0, 0, -+ -) can be written as

(13) a’ + ai/x + ay’x* ++.+- 4 a,'x"™.

Thus 8 = ¥'[x]. If (13) 1s O, then (gq, @1, ---) = 0. Hence
all the 4; and therefore all the 4; = 0. This shows that x is
transcendental relative to ¥’.

It will now be well to replace the ring ¥ by the isomorphic
ring A’ and to denote the latter by A. We shall also write 4 for
the element 42’. Then 8 = ¥Y[x] and x 1s transcendental relative
to A as we required.

EXERCISES

1. Let B* be the complete set of sequences (ay, 41, @, - - +) with a; €. Define
equality, addition and multiplication as for the ring 8. Prove that B* is a ring.
This ring 1s called the ring of formal power series over I and will be denoted as
I < x» > in the sequel.

2. Let § be any semi-group and let ¥ be any ring. Denote by 8 the set of
functions 4(s) defined on § and having values in9[ such that 4(s) = 0 for all but
a finite number of 5. Define addition and multiplication in 8 by

(@ + 8)(s) = al(s) + 5(s)
(@8)(s) = 2. a(O)o(n).

IUmg

Show that P is a ring. We shall call B a semi-group ring.
3. Show that the semi-group ring determined by the semi-group of non-
negative integers with addition as composition is the ring 9[x] constructed above.
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5. Structure of polynomial rings. Let %;[x] be a polynomial
ring in an element x that is transcendental over the base ring ¥,
and let As[#] be an arbitrary polynomial ring such that %, is a
homomorphic image of %;. As before, we assume that our rings
contain identities and that the elements x, # commute with the
displayed coefficient rings. Let ¢ be a definite homomorphism
of %; onto A,. Then we shall show that this homomorphism can
be extended in one and only one way to a homomorphism of
A;[x] onto As[#] mapping x into .

Since x 1s transcendental, an element of %;[x] can be written in
one and only one way in the form

ao + a1x + -+ a,x", a;in ;.
We now denote this element as f(x) and we define
fg(u) =a” + a’u +---+4 a,"u*, af in As.

It is clear that the rule f(x) — f°(#) defines a single-valued
mapping of ¥A;[x] onto Ws[#]. If g(x) = Zébux?, then f(x) + g(x)
= Z(a; + &;)x* and this element i1s mapped into

Z(a; + bi)7u’ = Z(as + b)u*

= Xaut 4+ Tbut.
Also

J(x)g(x)

acbo + (a1 + a1bo)x + (aobe + @161 + asbo)s® + - - -
— (@00)’ + (001 + a100)u
+ (40b2 + 4161 + asbo)’e’ + - - -

a’00” + (a0°01" + a1°6,")u
4 (@ + a17b," + atb®)i2 + - - -

= (Za u)(Zbsut).

Hence our mapping is a homomorphism. Clearly, if 4 e %;,
then 2 — 47 in the new mapping. Moreover x — . Hence the
mapping meets all of the requirements that we imposed.

Now let £ be any homomorphism of ;[x] onto %s[#] that maps
x into # and that coincides with ¢ on ;. Then (Za:x*)* = Za*u*
= Zafu’. Hence 2 coincides with the mapping that we have

!
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defined. This proves the uniqueness of the extension. We there-
fore have the following important homomorphism theorem.

Theorem 4. Let Ni[x] be a ring of polynomials in a trans-
cendental element x and let Wslu) be a ring of polynomials in an
arbitrary u. Suppose that o is a homomorphism of Ay onto Us,.
Then o can be extended in one and only one way to a homomorphism
2 of Wilx] onto Us[u) mapping x into wu.

If A =% =19 and o 1s the identity mapping, then this
theorem shows that A[#] for arbitrary # is a homomorphic image
of A[x], » transcendental. Hence by the fundamental theorem of
homomorphism A[z] =~ A[x]/R, where &, the kernel of the homo-
morphism, is an ideal in YA[x]. Since the homomorphism Z is the
identity mapping in U 1t 1s clear that A N & = 0. Assume now
that «, too, 1s transcendental. Then if f(x)Z = 0, f(#) = 0; hence
f(x) = 0. This shows that = 0. Hence 2 1s an isomorphism.
We therefore have the following

Theorem 5. If x and y are transcendental over U, then N(x] and
A y] are isomorphic. Any ring of the form W[u] is isomorphic to a
difference ring U[x|/R where x is transcendental and 8 is an ideal
in x] such that & N A = 0.

6. Properties of the ring U[x]. From now on x will denote a
transcendental element over %. If f(x) 1s a non-zero polynomial
in A[x], we can write f(x) = ao + a1x 4 -+ a,x™ with a, = 0.
We call a, the leading coefficient of f(x) and we call #» the degree
of f(x). Iff(x) = 0, we say that its degree 1s —o, and we adopt
the usual conventions that —o0 — 0 = —e0, —0 4+ 5 = —oo,

If 4, 1s not a left zero-divisor in % and g(x) = by + &1x 4 -+ -
+ 4,x™ with 4,, # 0, then

f(x)g(x) = agbe + (aghy + a1b0)x + -+« + apbpx™t™,

Since a,0m # 0, f(x)g(x) # 0 and this polynomial has the degree
m + n. A similar result holds for g(x)f(x) if 4, is not a right
zero-divisor. In particular we see that if U 15 an integral domain
then A[x] is an integral domain. Moreover, 1n this case we have
the formula

(14) deg f(x)g(x) = deg f(x) + deg g(x)
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for all f and g. This has been proved above for the case f = O
and g # 0, and 1t follows if either f = 0 or ¢ = 0 by the conven-
tions on —o, We note also the following useful result concerning
the degree:

(15) deg [f(x) + g(x)] < max (deg f(x), deg g(x)).

The degree relation (14) enables us to determine the units in
Alx]; for if f(x)g(x) = 1, the deg f(x) + deg g(x) = 0. Hence
deg f(x) = 0 = deg g(x). Thus f(x) = ae ¥ and g(x) = & e .
This proves that, if A is an integral domain, then the only units in
N[x] are the elements of U that are units in Y. For example, if
is the ring of integers, the only units in /[x] are the integers -1
and, if § is a field, then the units of {[x] are the non-zero elements
of .

We consider again the case of an arbitrary % and we wish to
establish a division process in U[x]. Let g(x) = 4y + b1x 4+ - -
+ b.x™ be any non-zero polynomial whose leading coefhicient 6.,
is a unit. Suppose that f(x) 1s arbitrary. Then we shall show that
there exist polynomials ¢;(x) and r;(x) such that deg r;(x) <
deg g(x) and

(16) J(%) = q1(x)g(x) + r1(x).

If deg f(x) < deg g(x), we write f(x) = ¢(x)-0 4+ f(x) to obtain
the required representation. Assume now that f(x) = 49 + a1x +
+ oo+ g,x™ has degree #» > m. Also, using induction, we may
assume that the result holds for polynomials f of degree <#. Let

f(x) — @nbn x"mg(x) = f1(x).

Then the terms a,x® of maximum degree in f(x) and in
Anbm " tx™ ™g(x) cancel off so that deg f1(x) < deg f(x). Hence we
may suppose that there exists a ¢*(x) and a r;(x) of degree less
than m such that

[1(x) = ¢*(x)g(x) + ri(x).

Sx) = anbm " xm"g(x) + g*(x)g(x) 4 r1(x)
= g1(x)g(x) + r1(x)
where g1(x) = @n0, ™™™ 4 ¢*(x) and deg r1(x) < deg g(x).

Then
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The “right-hand quotient” g¢;(x) and the ‘“right-hand re-
mainder’’ r;(x) are unique; for suppose that
S(x) = q2(x)g(x) + ro(x), degra(x) < deg g(w).
Then
[g1(%) — g2(x)]g(x) = ra(x) — ri(x).

The degree of the right-hand side is <, while the degree of the
left-hand side 1s either —w or >m. Hence the common value
must be — so that r5(x) — r1(x) = 0 and ¢,(x) — ¢2(x) = O.

In a similar manner we can prove the existence and uniqueness
of the “left-hand quotient” ¢(x) and “‘left-hand remainder”
ro(x) of degree < deg g(x) such that

J(x) = g(x)g2(x) + ra(x).

We consider now the special case in which g(x) = ¥ — ¢, ¢ in
9. In order to obtain a formula for the remainder on division by
(x — ¢) we make use of the following identities:

17) ¥ —F =T+ 24+ AF3 4+ 4 F (e — 0

— (x _ c)(xk-——l + C.X'k_z +_ . + Ck_l),
k=0,1,2, ---. Here it is understood that, if £ = 0, then the
factor Ze'x*—*1 = 0. We multiply (17) on the left by 4; and
sum on k. This gives

Sx) — fo(e) = q1(x) (x — ¢)
where ¢:(x) = Za(x* 7 + ex* 2 4. --+ ¢*1) and

(18) fr(c) = ag + ai1c + a2c® +- - -+ anc™
Hence f(x) = ¢1(x)(x — ¢) + fr(c) and fr(c) is the right-hand

remainder. Similarly, by using the second form of (17) we can
prove that the left-hand remainder on division by x — ¢ is

(19) fu(&) = ap + car + Fas + - -+ c"a,.
An immediate consequence of these results is

The factor theorem. The polynomial (x — ¢) is a right (left)
factor of f(x) if and only if ¢ 15 a right- (left-) hand root in the sense
that fr(c) = 0 (Sfr(c) = 0).
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If % is commutative, we can, of course, drop the modifiers
“left” and “right” in the foregoing discussion. If % = § is a
field, the division process can be applied to any pair of poly-
nomials f(x), g(x) # 0. This fact can be used to prove the im-
portant

Theorem 6. Every ideal in Flx), § a freld, is a principal ideal.

Proof. LetBbeanidealinx]. IfB = 0O, the ideal consisting
of 0 alone, then 8 = (0), the principal ideal generated by O.
Assume therefore that 8 0. Let g(x) be a non-zero poly-
nomial of least degree in 8. If f(x) 1s any element of 8B, we write
f(x) = gx)g(x) 4 r(x), where deg r(x) < deg g(x). Then r(x) =
f(x) — g(x)g(x) € B, and, since its degree is less than that of
g(x), r(x) = 0. Hence f(x) = g(x)¢(x) 1s in the principal ideal
(g(x)). Thus B C (g(x)). But g(x) e B so that we also have
(g(x)) € B. Hence 8 = (g(x)).

This theorem enables us to state for fields the following sharper
form of Theorem 5.

Corollary 1. If § is a jfield, any polynomial ring §lu] =
Slx1/(g(x)) where either g(x) = 0 or g(x) is a polynomial of posi-
tive degree.

The possibility that g(x) is a non-zero polynomial of O degree
is excluded since it implies that (g(x)) = g[x].

EXERCISES
1. If f(x) = ao + a1x + -« - + anx™, define f/(x) = a1 + 2a9x +- - -+ nayx"—"

Prove the usual rules:
f+e =+, ) =¢, cin¥
(fe) =f¢ +/f'¢

2. Prove Leibni2's theorem
k sk
(f)® =3 () Fe gk =
1
Wheref(‘) = f(""‘l)” f(o) -..:::f_ ’

7. Simple extensions of a field. The methods that we have
developed in this chapter can be used to construct field extensions
of any given field §. As we shall see, any such extension can be
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obtained by making a succession of simple extensions of two types
that we proceed to describe.

Simple transcendental extension. For the given field § we con-
struct first the polynomial ring §[x], » transcendental. We know
that §[x] is an integral domain but not a field. However, we can
imbed §[x] in its field of fractions. We denote the latter as F(x)
and we call its elements rational expressions (functions) in x over
the base field §. These elements have the form f(x)/g(x) where
f(x) and g(x) are polynomials and g(x) # 0. The usual rules of
reckoning hold.

Simple algebraic extensions. This method of extending a field
was used first by Cauchy in defining the field C of complex num-
bers as an extension of the field R of real numbers. In Cauchy’s
case one forms the difference ring C = R[x]/(x® + 1) where
(x2 4+ 1) is the principal ideal of multiples of x* 4 1. It can
be shown that C is a field extension of R that contains a root
of the equation x* + 1 = 0. Cauchy’s method was generalized
by Kronecker to apply to any field § and any polynomial f(x) e
%[x] which is irreducible (prime) in this domain. By saying that
f(x) 1s irreducible, we mean that f(x) cannot be factored as a
product of two polynomials of positive degree. We assume also
that deg f(x) > 0.

As in the special case that we have indicated we form the dif-
ference ring € = Fx]/(f(x)) where, as usual, (f(x)) denotes the
prmc1pal ideal generated by f(x). The ring € has the identity

=1 4 (f(x)) and 1 5 O since f(x) is of positive degree. Con-

31der now any coset g(x) = g(x) + (f(x)) 2 0. Let B be the
totality of polynomials of the form u(x)g(x) + v(x)f(x) where
u(x) and v(x) are arbitrary in F[x]. It is apparent that 8 is an
ideal in §[x]. Hence B = (d(x)). Sincef(x) = Og(x) 4+ 1f(x) e B,
f(x) = d(x)f1(x). Hence either d(x) i1s a non-zero element of §
or d(x) 1s a multiple (by an element of §) of f(x). On the other
hand, g(x) e 8 so that g(x) = d(x)g1(x). Hence if d(x) is a
multiple off(x), then g(x) 1s a multiple of f(x) and this contradicts
the assumption that g(x) ¥ 0. Hence we see that d(x) = 4
is a non-zero element of §. Since 4 e B, this element has the form
u(x)g(x) + v(x)f(x). If we multiply by 47, we obtain poly-
nomials a(x), #(x) such that
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(20) a(x)f(x) + b(x)g(x) = 1.

The relation (20) gives a(a;‘)f(x) 4+ 5(x)g(x) = 1. Since f(x) = 0,
we conclude that 4(x)g(x) = 1. Thus any non-zero element of
@ has an inverse. Since § is commutative, this means that @

is a field.

We note next that @ 1s an extension of . Thus consider the

natural homomorphism g(x) — g(x) of F[x] onto & This map-
ping induces a homomorphism of § onto a subring F of €. The
image set § is the totality of cosets 2 = 2 + (f(x)), 2 in §; hence
it includes 1 2 0. On the other hand, § is a field. Hence a
homomorphic image of it is either O or it is isomorphic to §.
It follows that § =~ §. In this way § i1s imbedded in €. As usual
we shall identify § with § and write 4 for the coset 4.

We show finally that @ = §[*] and ¥ is an algebraic element
satisfying the equation f(¥) = 0. First, if g(x) is any polynomial,
then g(x) = g(7) is a polynomial in ¥ with coefficients in §. As a
matter of fact it is easy to see that any element of & can be ex-
pressed as a polynomial in ¥ of degree < deg f(x); for we can
write g(x) = f(x)q(x) + r(x) Whe_li deg r(x) < deg f(x). Hence
g(x) = r(x) = r(%¥). Since 0 = f(x) = f(%), ¥ 1s a root of the
equation f(x) = O.

The construction of the difference ring € = §[x]/(f(x)) can
also be carried out for reducible polynomials f(x). If f(x) =

f1(x)f2(%) where deg fi(x) > O, then fi(x) £ 01in G but fi(x)fz(x) =
f(x) = 0. Thus in this case we obtain a ring with zero-divisors

#£0, It is clear at any rate that € is commutative and that &
has an identity.

EXERCISES

1. Let & = Ry[x]/(x® + 3x — 2). Express the following elements of § as
polynomials of degree <3 in ¥:

(a) 2% 4 7 — 3)(37 — 4% + 1)
(b) (2%% 4- 4% — 5)~L

2. Show that, if f(x) has a square factor (f(x) = [fi(x)]¥2(x), deg fi(x) > 0),
then & = §x]/(f(x)) contains non-zero nilpotent elements.
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8. Structure of any field. In analyzing the structure of any
field § we examine first the smallest subfield P of §. We shall
call this field the prime field of §. We know that the intersection
of any number of subfields of §§ is a subfield. Hence the prime
field can be defined to be the intersection of g// subfields of {.

We know that P contains 1; hence P contains the subring [[1]]
generated by 1. Now we know that a ring generated by 1 is
isomorphic to either I or to I/(m), m > 0. (§9 Chapter II). If
the second alternative holds here, then m = p 1s a prime; for
otherwise [/(m) has zero-divisors # 0 and consequently [[1]]
has zero-divisors # 0. But this is clearly impossible in a field.
Hence we have the following two possibilities:

I ()] =1
I1 [[1]] = I/(p), p a prime.

If T holds, [[1]] is an integral domain but not a field. Hence
in order to obtain the prime field we must take the totality of
elements of the form (m1)(#1) ™! where m,n e T and » 0. Thus
it 1s clear that P is isomorphic to the field of rational numbers.
If IT holds, [[1]] is a field since I/(p) i1s a field. It is clear that
in case I § has characteristic O while in II § has characteristic 2.
We suppose next that §, i1s any subfield of § and we proceed
to determine the structure of the subfield §,(f) generated by
and an additional element 6 of § (possibly in §,). We consider
first the subring $[f] generated by F, and 6. We have seen
(p. 100) that Fo[f] = Folx]/(f(x)) where either f(x) = 0 or f(x)
1s of positive degree. The ideal (f(x)) 1s the kernel of the homo-
morphism g(x) — g(6). Now if f(x) is reducible, then € =
Folx]/(f(x)) 1s not an integral domain; hence this possibility is
excluded. Thus we have the following two possibilities:

I Folf] = Folx]

I1 Solf] =2 Folx]/(f(x)), fF(x) irreducible.

In I, 6 1s transcendental and §,(#) is isomorphic to the field Fo(x)
of rational expressions in x. In II, f(6) = O so that @ is algebraic.

Also in this case §,[f] is a field since Fo[x]/(f(x)) is a field. Hence
Fo(@) = Folf]. In either case we see that Fy(f) is essentially a
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simple extension of §, of the types considered in the preceding
section.

We now know the nature of the prime field of any field and
the nature of any subfield §,(6). We shall now show that any
field can be built up from its prime field by a succession of simple
extensions (algebraic or transcendental). A proof of this result
for a given field requires that the field be well ordered.* However,
the algebraic idea underlying the argument can be fully revealed
in considering the countable case. Hence we assume that § is
countable (finite or denumerably infinite) and we suppose that
f:, 02, 03, - -+ 1s an enumeration of the elements of . Set Fp = B,
% = ¥:i—1(6;). Then § = UG; and each §: i1s obtained from
%:;_1 by a simple transcendental or simple algebraic extension.

9. The number of roots of a polynomial in a field. If f(x) i1s a
polynomial with coefficients 1n a field and ¢; 1s a root of f(x) = O,
then f(x) = (¥ — ¢1)f1(x). Suppose now that ¢y, ¢, +++, cm are
distinct roots of f(x) = 0. Then substitution of ¢ 1n f(x) =
(x — ¢1)f1(x) (that is, applying the homomorphism g(x) — g(c2))

gives 0 = flez) = (c2 — c1)fa(cs).
Since ¢p # ¢1,f1(c2) = 0. Hence f1(x) = (x — ¢3)f2(x) and f(x) =

(x — ¢1)(x — ¢2)f2(x). Continuing in this way, we can prove that
flx) = (x —e)(x —¢g) «++ (¥ — cm)fm(x). Ewvidently this im-
plies that the degree » of f(x) > m. This proves the following

Theorem 7. If § is a field and f(x) is a polynomial of degree
n > 0 with coefficients in §, then f(x) has at most n distinct roots

in .
EXERCISES

1. If 4,2 0 (mod p), then the congruence a4y + @1¥x + -+ ax* =0
(mod p) has at most 7 incongruent solutions in 1,

2. Prove that, if § is a finite field containing ¢ elements a;, then A(x) =
71— x=(x —a))(x — a2) +-- (x — a,) in§lx.

3. Prove that, if » is a prime integer, then (p — D! = —1 (mod p). This is
known as Wilson’s theorem,

4, Show that the polynomial ¥® — x has 6 roots in I/(6).

5. Show that the polynomial ¥ 4 1 has an infinite number of roots in the ring
Q of real quaternions.

* For a discussion of well ordering, consult van der Waerden’s Moderne Algebra, vol.
1, 1st ed., chapter 8.
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10. Polynomials in several elements. Again let ¥ be a ring
with an 1dentity and let % be any subring containing 1. Suppose
that #,, uy, -+, u, are elements of B that commute with each
other and that commute with every @ e A. Let [uy, o, - - -, #,]
denote the subring generated by U and by the x; and write

Mus)[2eo] -+« [wr] for (((A[zer])[22]) - - -)[u,]. We assert that

(21) QI[Z‘I) Hay ***y Zl,-] = QI[ZQ][Z{g] " [ZL,.-].

This 1s clear for » = 1. Hence we assume it for s — 1 and we
consider M[wuy, #5, - -+, #;). This ring contains Auy, «- -, #,_1]
and the element x,. Hence 1t contains f[zy, ---, #,_1)[#,].

On the other hand, A[#;, -, #._1])[#.) 1s a subring that contains
Uy, Uz, + -+, #,, Hence 1t contains A, -- -, #,). Thus we have

2[[“1) Ty us} = 2I[ul) Ty us—l][us:l

by the induction assumption.
By (21), or directly, we can see that [ui, #s, -+, #,] 1s the
totality of polynomials

iy U U,

in the u's with coefficients a,;,... in Y. As a generalization of the
notion of transcendental element we now define the elements
Uy, Ugy -5 U, tO be algebraically independent over U if the only
relation of the form

(22) Edﬁig.--irulilugiz P u:r — 0,

di ..., In U, that holds for the #’s is that in which all the 4’s
are 0. Since thé #’s commute, it is clear that this condition does
not depend on the order of the elements «;, %5, « - -, #,. Moreover,
it is clear that, according to the definition, #; is algebraically
independent over U if and only if it is transcendental. We now
prove the following more general result.

Lemma. The elements uyy ug, ---, u, are algebraically inde-
pendent over W if and only if each w, k =1, 2, <+, r, is trans-
cendental over Nuy, s, +++, tp_1].
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Proof. Suppose thateachu, & = 1,2, -+ -, r,1s transcendental
over A[ui, -+-, #x_1] and assume that (22) holds. Write this
relation as

(23) Dy + Dyu, + Dou,? +--++ Dpu,™ = 0

where D; = Ed,-l.;z._.,-,_“-uflugiz ey, Then each D; =0
and, using induction, we can assume that this implies 4;;,...; _; = O
for all i,, 75, ---. Hence the %; are algebraically independent.
Conversely, suppose that u;, #s, -+, #, form an algebraically
independent set, and assume that we have a relation of the form
ZDiu = 0 where the D;e¥uy, ug, »-+, m—_y]. We can write
D; = Edﬁign-ik_liulﬂu;z .o Z{k__lik-l and obtain Ed,;-l...,-_-k_l,;ul"‘ug"
cor g "'yt = 0. Then dyy,...;, ; =0 for all 7y, 45, ---, 1 and
D; = 0 for all i. Hence % is transcendental over [« #g, -+,
tr—1).

This lemma enables us to construct inductively for any given
ring A with an identity a ring 8 = ¥[x;, x2, - - -, x,] Where the
x; are algebraically independent over U; for we can construct suc-
cessively the rings [x,], Alx1][x2], - - - 1n which each x; is trans-
cendental over ¥[x;] --- [xx—1] = Y[x1, -, xx—1]. Then it 1is
clear that %A[x,] --- [x,] = A[x1, - - -, x,] 1s a ring of the required
type.

If the x; are algebraically independent over % and the y;,
i =1, 2, ---, r are algebraically independent over U, then
Alx1, ¥2y =+, ¥, 1s 1somorphic to A[y1, ¥2, + -+, ¥-]. This 1s an
immediate consequence of the following theorem.

Theorem 8. Let N, 1 = 1, 2, be a ring with an identity and let
Wilwrs, X2y * -y Xpi] b6 a ring of polynomials in the algebraically
independent elements x;;. Then any homomorphism (isomorphism)
of Ny onto Ng can be extended in one and only one way to a homo-
morp/:ism (isomorp/zism) Qf 2[1[%'11, X21y " ° x,.l] onto 912[32'12, X929,
ooy Xpo] mapping xiq tnto xjo for f = 1,2, -+, 7.

The case r = 1 of this theorem has been proved in the preced-
ing section. The extension to arbitrary » 1s immediate by induc-
tion. The details of the argument will be left to the reader.

The same inductive procedure also yields the following two
results: (1) If % is an integral domain, then so is A[xy, X2, - - -, &,].
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(2) If %A 1s an integral domain, then the only units of U[x;, xs,
. .-, x,] are the elements of ¥ that are units in .

EXERCISE

1. Show that a ring A[x1, »2, -+, x,], x; algebraically independent, can also
be obtained as a semi-group ring over Y of the semi-group § of r-tuples (4, 7,
.+ +, #,) of non-negative integers #; where the composition is

(ila iﬂ: Y if)(jh .7.2: * e ':jr) = (il + jl; ia +j2, ‘Tt i +jr)-

*11. Symmetric polynomials. Suppose that the elements x; of
A[x1, %9, +--, X, are algebraically independent. Clearly if x;.,
Xory +**, Xy 1S any permutation of xi, xg, - - -, X, then Ax;, xo,
ooy X = Uy, 20y -+, %) Hence we can conclude from the
preceding theorem that the mapping

1

11 . %2 iy t,, 12
(24) 2y, .. 0% Xe v Xe > Dy, o Xy Ky e Xy
1s an automorphism of A[xy, xg, -+ -, x,]. Thus the permutation

0-;( 12 ") of the x’s can be extended in one and only
xl’ xzr P Y x P

one way to an automorphism ¢* of A[x;, xs, - - -, x,] that acts as
the identity in .

Now if 4 and B are automorphisms of a ring, then the resultant
AB is also an automorphism. In particular, if ¢* and r* are the
automorphisms determined by the elements o, 7 of §,, then o*r*
is an automorphism of Alxy, x2, -+ -, ¥,). Now the automorphisms
o*r* and (o7)* effect the same permutation or on the x; and effect
the identity mapping in the coefficient ring 9. From this it
follows that o*r* = (o7)*. Hence the set 2 of the automorphisms
o* is a transformation group isomorphic to the symmetric group §,.

A polynomial f(x;, x2, -+, x,) 1s said to be symmetric in the
x’s if fo* = f for all ¢* ¢ Z. The totality of these polynomials
constitute a subring & of A[xy, xz, ---, x,]. Evidently & D 9.

Also the coeflicients of the polynomial
Flx) = (x — x1)(x — x3) -+ (¥ — &)

are symmetric; for we can extend the automorphism o* of Afx;, x,,
+++y ¥,] to an automorphism o** of Axy, -- -, ¥y; ¥] so that xg**
= x. The extension ¢** permutes the factors of F(x) and there-
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fore it maps F(x) into itself. It follows that the coefficients of
F(x) are left unchanged by ¢** and consequently by ¢*. Since
this holds for all o, the coefficients of F(x) are sytametric. We
can calculate these coefficients and see that

Flx) = x" — px™ P 4 pox™ 2 —. .. 4 (—=1)"p,
where
(25) P11 = Exu P2 = E XiXjy, P33 = E XiXjXky * * * s
1<) 1 <3<k

pr — x1x2 s o 0 xr.

We shall call the p; elementary symmetric polynomials, and we
shall prove that & = U[p1, P2, - - -, ;] and that the p; are alge-
braically independent over .

The equation & = ¥A[p;, p2, -+, P,] means, of course, that
every symmetric polynomial can be expressed as a polynomial in
the elementary symmetric functions p;. It suffices to prove this
for homogeneous polynomials. By a Ahomogencous polynomial we
mean one in which all of the terms ax;®x;™ --- x.* have the
same ftotal degree k = ky + ks +-- -+ k.. Any polynomial can
be expressed inh one and only one way as a sum of homogeneous
polynomials of different degrees. Since the automorphisms o*
preserve degree, it is clear that, if f(xy, x5, -+ -, x,) 1s symmetric,
then so are 1ts homogeneous parts.

We suppose now that f(xi, x2, - -+, ¥,) 1s 2 homogeneous sym-
metric polynomial of degree, say m. We shall introduce the
lexicographic ordering for the monomials of degree m that 1is,

we say that aw;"we” --- x,7 is higher than dwix* -+ x5 if
k]_ = Zl, kz —_ 12’ Yy ks Zg bUt ks_l..]_ > Zg_l_]_(.f 2 0). Thl.lS, fOl'
example, x2xaxg > x1x93 > wyxoPxs. Now let ax"x™ - x,%

be the highest term in f. Then since f contains all the terms
that can be obtained from ax,"xg™ --- x,° by permuting the
x’s, 1t 1s clear that &y > ks > k3 > ..+ > k, in the highest term
of /.

We consider now the highest term of the homogeneous sym-
metric polynomial p,%ps" .- p,%. Using the definitions (25)
we can see that this term 1s

gtk ke otdr | e
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Hence the highest term of ap,” "®p,"* ™ ... ».* is the same as

that of f and hence the highest term of the homogeneous sym-
metric polynomial f; = f — ap," "p,"*"® ... p,* is less than
that of . We can repeat our process with f;. Since there are
only a finite number of highest terms that are lower than a given
one, a finite number of applications of this process yields a repre-
sentation of f as a polynomial in the p..

We shall show now that the elementary symmetric polynomials
are algebraically independent. If any of the coefficients in
our relation are 0, we consider the set of exponents (dy, 4,

d,) for which ag4,.. 4 ¥ 0. Introduce
=d1+d2+"'+dr: k2=d2+"‘+dra T k, = d,.

Then the highest term 1n the lexicographic ordering in

d d2 dr k1 ko . ’ ’
adl v e drpl lpz . e . pr r ls adl drxl xz . o+ » xr * If (dl 3 dz ’ . v . 3
d,) is a second set of exponents such that a4;....4, # 0, then
d d d" d . . k ¢ k r)
adlr e dr’p]_ 1p2 2 .. prd" haS as 1ts hlghBSt term ddlr e dr'xl 1 Xo 2 e

N,-kr’ where ki’ = tﬂf,';"Ir + d,:_|_1’ + © e + d,-’, ] = 1, 2, c ey 7. Clearly
if k; = k; then d; = d{ for all 7. Thus distinct terms in the p’s
have distinct highest terms in the x’s. If we choose the term

g ... a 1P - P so that x1"x,™ - -+ x,” is higher than any
ki, ke

other x,* %" -+ % it is clear that the term X; 'Xg .- x,

occurs only once in the relation for the p’s. This gives a non-
trivial relation for the x’s and contradicts the algebraic inde-
pendence of the latter elements. This proves the second part of

the following

Theorem 9. Every symmetric polynomial is expressible as a
polynomial in the elementary symmetric polynomials p; defined in
(25). The elementary symmetric polynomials piy P2y, *++, Dr are
algebraically independent over N. Every x; is algebraic over U[p,,

D2y ** vy Prls

The last statement of the theorem is clear since

Flx;) = %" —pi 4+ (=1)p, =0
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L

EXERCISES
1. Express D> x2x%r (2 = 5) in terms of the elementary symmetric
1,4,k.7
functions.
2. Let A = J] (xi — »;). Show that if 5 is a transposition then Ap* =
(<

—A. Use this to prove that if 7 is a permutation that has a decomposition as a
product of an even (odd) number of transpositions then any factorization of 7
as a product of transpositions contains an even (odd) number of terms,

3. Show that A?is symmetric. ExpressA?for» = 3 in terms of the elementary
symmetric functions.

4, Show that the symmetric polynomials s = Zx/* satisfy Newton’s identities.

sk = Pisk—t + pasg—2 — -+ (=1 ppasn + (—D¥kpr =0, k=1,2,---,n.

12. Rings of functions. Let § be an arbitrary non-vacuous set
and let % be an arbitrary ring. Consider the totality (¥,S) of
functions with domain § and with range contained in Y. Thus
the elements f of (A,§) are the mappings s — f(s5) of § into U.
(Note that the effect of f on s is denoted here in the conventional
manner as f(s) rather than as sf as 1s usual in these Lectures.)
As usual f = ¢ means that f(s) = g(s) for all se§. Now we
define addition and multiplication in (%,§) in the customary

way by
(26) (f + 2 () = f(5) + £(s)
(SR () = f(5)g(s).

It can be easily verified that (2,§) with these compositions is a
ring; for the associativity of addition and multiplication, the
commutativity of addition and the distributive laws follow 1m-
mediately from the corresponding laws in %. For example, we
have

((f + 2R () = (f(5) + g6NAE) = f(9)A(s) + g(5)A(s)

= (fh + gB)(s).

Hence (f 4+ g)4 = f& 4+ gh. The function 0 such that 0(s) = 0
for all s acts as the identity under addition and —f is the function

such that (—=f)(s) = —f(s) for all s.

If 4 is any element of %, we define the constant function a by
the requirement that 4(s) = 4 for all s. These functions con-
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stitute a subring of (%,S) isomorphic to A. We denote this sub-
ring by % also. If ¥ has an identity, then the associated constant
function acts as the identity in the whole ring (2,S).

For the sake of simplicity we shall now assume that % is a
commutative ring with an identity. We consider the ring of
functions % = (A,A). In addition to the constant functions a
particularly important function is the identity function s — s.
We use the customary notation s for this function as for the
variable s in %. Since ¥ is commutative, this function commutes
with the constant functions. We call the elements of the ring
[s] generated by the constant functions and by the identity func-
tion polynomial functions in one variable. If f(x) = aq + a1x +
+ o+ 4 g,x" 1s an element of A[x] where x 1s transcendental, then
f(s) 1s the function that maps s into the element g5 + 415 +---
+ a.s™ of U, and ¥[s] 1s the totality of these functions.

The function s need not be transcendental over A. Thus if
A 1s a finite ring with elements a4y, ag, - - -, 4,4, then the polynomial

(27) Alx) = (x — a))(x —az) -+ (x —a,) #0,
while the function
(28) A($) = (s —a1)(s —ag) -+ (s — a,) = 0.

This 1s clear since the element 4(s) = O for all se¥. If A1s a
finite field, then we know that A(x) = x? — x (ex. 2, p. 104).

On the other hand, we shall now show that, if ¥ = § 1s an
infinite field, then the identity function is transcendental. This
1s an immediate consequence of Theorem 7 (§9); for, if f(x) is a
polynomial s 0 in §[x], then f(s) = O for only a finite number of
elements of §. Hence there exist elements ¢ e § such that f(¢) = O.
This means that the function f(s) # 0 and that s is transcendental.

The definition of polynomial functions in several variables is an
immediate generalization of the foregoing. Here we begin with
the set § = A™ of r-tuples (51, $2, - - -, $§,), 5: in A and we consider
the ring of functions A = (A,AM). In this ring we select the
particular functions s; defined by

(29) (513 52y ° ) Jr) - S
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Then we define polynomial functions in r variables to be elements
of the ring A[s;, 52, - - -, 5.] generated by the constant functions
and by the r functions s5;. Clearly the 5; commute and commute
with the constant functions.

If f(x1, %2, -+, x;) € Alx1, X2, - -+, ¥,] where the x; are alge-
braically independent, then it is clear what is meant by the func-
tion f(s1, 2, - -+, §;). This function is a polynomial function and
every polynomial function is obtained in this way.

If 9 is a finite ring of ¢ elements g;, then

/1(51:) = (5,: — dl)(.f{ — dg) coee (5{ — dq) = 0

Thus the functions si, 5o, - - -, s, are algebraic relative to the sub-
ring of constant functions. In contrast to this result we shall
prove that, if § is an infinite field, then the functions s; are alge-
braically independent. This result is equivalent to the following

Theorem 10. [If § is an infinite field and f(x1, xg, -~ -, %;) i5 a
polynomial # O in the polynomial domain F[x1, %2, -+, X.], X
algebraically independent, then there exist elements ¢y Coy +* -, Cr,
17 % such t/mtf(cl, Coy ** Cr) == (),

Proof. The case » = 1 has been proved above. Hence we
assume that the theorem holds for » — 1 x’s. We write

f(xla X2y * " "y xr) = BO + ler + Bzxrz 4+ anrn

where B; e §[x1, x2, -+ -, ¥,—1]. Also we can suppose that B, =
Bn(%1y %9y +++, %r_1) ¥ 0. Then by the induction assumption we
know that there exist elements ¢; in § such that B,(c1, ¢o, - - -,
C,-__l) #= 0, Thl.lS

f(cl, €2y ** 'y Cr—1, .X',-) = BO(CI: Cay * "y Cr—l)
4+ Bi(c1, €2y - +5 Cr1)Xr +-
+ Bn(c1y €2y + vy cr1)x.™ # 0.

Hence we can choose a value x, = ¢, such that f(¢c1, ¢a, -+, ¢;)

£ (),
EXERCISES
1. Prove the following extension of the foregoing theorem: If f(xi, x2, « - -, %y)
is 2 polynomial with coefficients in an infinite field § such that f(ci,¢cs, -+ *,¢,) = 0

for all (¢, ¢2, + -+, ¢;) for which a second polynomial g(x1, x2, - -+, x,) # O has
values g(ci, ¢2, + - -, ¢r») # 0, then f(x1, x2, -+, ¥,) = 0.
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2. Let ¥ be a finite field containing ¢ elements. Prove that, if f(xy, x3, - - -, %;)
is a hon-zero polynomial of degree <g in each x;, then there exist ¢; in § such
that f(ci, ¢2, *++, ¢r) # 0.

In the remainder of these exercises § is as in 2.

3. Prove that every function in r variables (element of §") is a polynomial
function, (Hint: enumerate the set of functions and the set of polynomial
functions.)

4. Show that any polynomial in §lxi, x93, + -+, %,] can be written in the form

D gilxy, w2y + vy %) (%57 — %5) + go(xy, %2, - -+, ¥,) where gy is of degree <g in
i =1
each x..

5. Prove that, if m(xy, x2, -+, ¥,) 15 a polynomial such that the function
m(sy, Soy *++, §,) =0, then m(xi, x2, -++, ¥,) can be written in the form
Egi(xb K2y * %y xr) (xiq — x'i)'

6. Let f(x1, x93, -++, ¥,) be a polynomial such that f(0, 0, ---, 0) = 0 and
fley, cay v+, ¢p) 2 0 for all (c1, 2y +++, ¢) # (0, 0, -+, 0). Prove that, if
Fxy, xa, +~+y %) = 1 — f(x1, %9, +++, %,)?972, then

1 if (Cl, €2y * " * Cr) = (0: 0: ° ')0)
0 otherwise .

F(C].) €2, "':C?‘) = {

7. Show that the F of 6 determines the same function as
Fo=(0—%7Y 0 =% «cc (1 —x,97Y),

Hence prove that deg F 2> (¢ — 1) (deg F = total degree of F).

8. (Artin-Chevalley.) Let f(xi, %2, -+, %,) be a polynomial of degree
n < r and suppose that f(0, 0, ---, 0) = 0. Show that there exists a (c1, cs,
vovs¢r) # (0,0, - -+, 0) such that f(cy, ¢2) < -+, ¢;) = 0.



Chapter 1V

ELEMENTARY FACTORIZATION THEORY

In this chapter we consider the problem of decomposing ele-
ments of a given commutative integral domain as products of
irreducible elements. In a number of important integral domains
such factorizations exist for all the non-units, and in a certain
sense uniqueness of factorization holds. In these instances we
can determine all of the factors of a given element and hence we
can give simple conditions for the solvability of equations of
the form ax = 4. Since the factorization theory that we shall
consider 1s a purely multiplicative theory that concerns the semi-
croup of non-zero elements of a commutative integral domain,
we shall find it clearer to begin our discussion with the factoriza-
tion theory of semi-groups.

1. Factors, associates, irreducible elements. Let & be an
arbitrary commutative semi-group that has an identity 1 and that
satisfies the cancellation law. If U denotes the set of units of &,
then we know that U is a subgroup of &.

If 2 and & are elements of &, we say that 4 1s a factor or divisor
of 4 if there exists an element ¢ in & such that g = b¢c. If bis a
factor of @, we write 4| a. It is immediate that this relation is
transitive and reflexive. An element « i1s a unit if and only if
#| 1. The units are the trivial factors since they are factors of
every element of &. If 4| 4 and 4| 4, then we shall say that these
elements are assoctates. The conditions for this relation are that
b = aqu, a = bv. Hence b = au = bvu. By the cancellation law
vu = 1. Thus 4 and 4 differ by unit factors. The converse 1s

immediate also and it i1s clear that the relation of associateness
114
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is an equivalence. If 2 and 4 are associates, then we write g ~ 4.

If 4| @ and 4 is neither a unit nor an associate of 4, then we say
that 4 i1s a proper factor of a. In this case @ = bc and ¢ 1s neither
a unit nor an associate. Hence ¢, too, is a proper factor of a.
If # 1s a unit and # = vw, then it 1s immediate that » and w are
units. Thus the units of & do not have proper factors.

An element g is said to be zrreducible 1f a 1s not a unit and ¢
has no proper factors in &.

2. Gaussian semi-groups. If an element 2 of a commutative

semi-group & has a factorization @ = pips - - - p, where the p;
are irreducible, then 4 also has the factorization 2 = 2,'ps" - - - .
where p;/ = u;p; and the u; are units such that uyu, -+ u, = 1.

It is clear that the p;" are irreducible. Hence if & has units = 1
and s > 1, then we can always alter a factorization in the way
indicated to obtain other factorizations of the given element.
The new factorizations will be regarded as essentially the same
as the original one, and we shall say that a factorization 2 =
p1p2 -+ ps Of 4 into irreducible elements 1s essentially unique
if for any other factorization @ = pi’py’ - p/, . irreducible,
we have t = 5 and p;’ ~ p: for a suitable arrangement of the ..
We use this concept to formulate the following

Definition 1. A4 semi-group & is called Gaussian if (1) & s
commutative, has an identity and satisfies the cancellation law, and
(2) every non-unit of © has an essentially unique factorization into
srreducible elements. An integral domain is Gaussian if its semi-
group of non-zero elements is Gaussian.

Our main purpose in this chapter is to show that a number of
important types of integral domains are Gaussian. That this is
not a universal property can be seen by considering the following

Example. Let A = I[N/ —5], the set of complex numbers of the form

a + 6\/ —5 where a and 4 are integers. It is easy to see that ¥ is a subring
of the field of complex numbers. Hence I is a commutative integral domain,

Also ¥ has the identity 1 = 1 + 0/ —5.
The investigation of the arithmetic of I is greatly facilitated by the introduc-

tion of the norm of elements of this domain. If » = g + 44/ —5, we define the
norm N(r) = 7 = a® + 552 This function is multiplicative: N(rs) = N@)N()

and its values are positive integers for the non-zero elements of .
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]

We use the norm first to determine the unitsof Y. If rs = 1, then N@)N(s) =
N(1) = 1. Hence N(») = a2+ 562=1. Hence a = +1 and 4 =0. Thus
r = 41.

It follows that the only associates of an element in I are the element and its
negative,

We consider now the two factorizations

9=33=02+V-=-5)2-V=5).

Each of the factors, 3 and 2 & / —35, is irreducible. For suppose that 3 = rs.
Then 9 = N(3) = N(»r)N(s). Hence N(r) =1, 3, or 9. But if N() =3,
a* + 54 = 3, and this is impossible for integers @ and . Hence either N(») = 1
or N(r) = 9 and N(s) = 1. In the first case r is a unit and in the second s1s a

unit. In a similar manner we see that 2 & 4/ —35 is irreducible. Hence the
displayed factorizations are essentially distinct factorizations into irreducible

elements and A is not Gaussian.

In any Gaussian semi-group & one can determine to within
unit factors all the factors of a given non-unit element 4, provided
that a factorization of 4 into irreducible elements is known; for
if @ = p1ps -+ ps where the p; are irreducible, and if 4 = &¢
where 6 = p'p2" -+ 9/, ¢ = p1"'p2”" -+ p./" and the p;/ and
pi’’ are irreducible, then

@ =piPy - Ps = Pp1Ps’  PPIPS e P
Hence by the uniqueness property p;/ ~ p; where #; £ 7, if
j# k. Hence 6 ~p.p, -+ p;. Thus any factor of 2 1s an
assoclate of one of the 2° products obtained in this way. If we
call the number s of irreducible factors of 4 the length of this
element, we see also that any proper factor of 2 has a smaller
length than 4. Hence it i1s clear that any Gaussian semi-group

satisfies the following condition:

A. & contains no infinite sequences a;, 42, -+ + with the prop-
erty that each 4;,; 1s a proper factor of 4.

We shall now show that this condition and a second condition
that involves the concept of a prime element are sufficient that a
commutative semi-group with identity and cancellation law be
Gaussian. An element p of & is called a prime if for any product
ab that is divisible by p it is true that either & or 4 is divisible by
. Our second condition now reads as follows:

B. Every irreducible element of & is prime.
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Condition A guarantees the existence of a factorization into
irreducible elements for any non-unit in &. Let g be a non-unit.
We shall show first that g has an irreducible factor. If 4 1s ir-
reducible, there 1s nothing to prove. Otherwise let 2 = 4,4,
where 4, 1s a proper factor. Either g, i1s irreducible or 4, = 424,
where 4, 1s a proper factor of 2;. We continue this process and
obtain a sequence 4, 4y, 43, * - + Where each 4; is a proper factor of
a;—1. After a finite number of steps this process breaks off by
A. If 4, is the last term, 4, is irreducible and 4, | 4.

We now set 4, = p; and we write ¢ = p14’. If 4’ 1s a unit, 4
s irreducible. Otherwise we have 2’ = p,a’’ where p; 1s irreduci-
ble. Continuing in this way, we obtain the sequence ¢, 4’,4’’, - - -
each a proper factor of the preceding and each 2“~V = p,a, p;
irreducible. This breaks off with an irreducible element ¢®—%
= p,. Then

a:pla’=p1pzan=-..=plp2--.Ps

where the p; are irreducible.
We shall show next that condition B insures uniqueness of
factorization into irreducible elements; for let

(1) a=pipe - Ps = P1'D2’ - D¢
be two factorizations of an element into irreducible elements.
We suppose also that any element that has a factorization as a
product of s — 1 irreducible elements has essentially only one such
factorization. Now the element p; in (1) is irreducible; hence,
by B, it 1s prime. A simple inductive argument shows that, if a
product of more than two factors is divisible by P15 then so is one
of its factors. This 1mplles that one of the p;’ is divisible by pl.
By rearranging the p’ if necessary, we may suppose that p,’
divisible by p;. Since p; and p,” are irreducible, this means that
P11’ ~ py so that p;" = pi1uq, u; a unit. We substitute this in the
second factorization in (1) and cancel p; to obtain

DoPs - Ps = U1p2'ps’ - - y

!

Set

!

up; = p2”3 p3r = p3”a *tty P = Ptn-
Then

7

Deps - Ds = D2''p3" - D
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where the p;” are irreducible. By the induction assumption we
have s — 1 =¢—1 and for a suitable ordering of the p;”,

N

pi’" ~p;. Hences =tand p// ~p;” ~p;forti =2, ---, 5.

EXERCISES

1. Show that I[V/ —5] satisfies A.

2. Let Y be the set of expressions a;x% + @9x*2 4 - -+ a,x** where the a;
are arbitrary elements in a field § and the «; are non-negative rational numbers.
Define addition in the obvious way and multiplication by means of x“xf =
x*18,  Show that I is a commutative integral domain with an identity. Show
that the element x of I is not a unit but that this element does not have a fac-
torization into irreducible elements.

3. Show that condition B holds in any Gaussian semi-group.

3. Greatest common divisors. Let 2 be an element of a Gauss-
ian semi-group &. By combining the associated irreducible fac-
tors in a factorization of 4, we obtain a factorization

6y

(2) a = uplel s v Dy

in which no two of the irreducible elements p4, - -, p, are asso-
clates, the e; are positive integers, and « is a unit. It is clear now
that the factors of 4 have the form #’p,"'p2°% - -+ p,°" where #’
1s a unit and the ¢;’ are integers such that 0 < ¢/ < ¢;.

It 1s also easy to see that, if 4 and 4 are any two non-units,
then we can express them in terms of the same non-associate
primes, that is, we can write

a = uplﬂlpzﬁz . ptﬂt, b = vplflpz.fz . Pt!‘
where # and v are units and the ¢; and f; are >0. Consider now
the element

1

d = p:"p.* --- p, g: = min (e f3)-

Clearly d| 4 and 4| 4. Moreover, if ¢|a and ¢| 4, then ¢ =
wplk‘pzk’ e pt"‘, waunitand k; < ¢;, f;. Hence k; < g:and ¢ | d.
This means that the element 4 is a greatest common divisor of
and 4 in the sense of the following

Definition 2. 4n element d is a greatest common divisor
(g.c.d.) of the elements a, b of S if d| a and d | b and any element ¢
such that ¢ | @ and c | & is a divisor of d.
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If dis a g.c.d. of g2 and 4, then so 1s #d, # a unit. On the other
hand if 4’ is any g.c.d. of 4 and 4, then 4|4’ and 4’| 4 so that
d ~d. Thus the g.c.d. 1s determined to within a unit multi-
plier. We shall find it convenient to denote any determination of

the g.c.d. of 2 and & by (4,8).

We shall now show that the existence of a greatest common
divisor for all pairs of elements in an arbitrary semi-group &
implies that & satisfies condition B. Thus we suppose that &
iIs any commutative semi-group with identity and cancellation
law such that

C. Every pair of elements 4, # in & has a g.c.d. in &,

We wish to show that every irreducible element in & 1s prime.
For this purpose we require a number of simple lemmas.

Lemma 1. [If C holds tn &, then any finite number of elements
of & have a g.c.d.

Let a,6,c € © and set r = (4,(b,¢c)). Then »| 4 and | (4,¢) so
that | 4 and r | c. Also if 5 | a,6,c then 5| @ and s | (4,¢) so that

s | (a,(,c)). This shows that » = (a,(4,¢)) is a g.c.d. of 4,6 and «.
A similar argument holds for more than three factors. Also it 1s
clear that ((a,6),¢) 1s a g.c.d. of 4,6 and ¢. This proves

Lemma 2. (4,(6,c)) ~ ((a,6),¢).
We prove next
Lemma 3. c¢(a,0) ~ (ca, cb).

Proof. Write d = (4,6) and ¢ = (ca,ch). Then c¢d|ca and
¢d| cb. Hence cd|e. On the other hand, ca = ex and cb = ey
and if ¢ = cdu, then

ca = cdux, cb = cduy.

Hence 4 = dux and 6 = duy. Thus du|a and du|b. Hence
du|d and u is a unit. This proves the assertion that ¢(z,4) ~
(caych).

Lemma 4. If (a0) ~ 1 and (a,c) ~ 1 then (apc) ~ 1.
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Proof. If (a/4) ~ 1, then (ac,bc) ~¢c. Hence 1 ~ (a,c) ~
(ay(acybe)) ~ ((a,ac)¢) ~ (asbe).

Now suppose that p is irreducible and that 4 and 4 are elements
of & such that p | 6. Since p is irreducible and (p,4) 1s a divisor
of p, either (p,a)~p or (p,a)~ 1. Similarly (p,6) ~p or
(p,6) ~1. Now (p,g) ~1 and (p,6) ~1 would contradict
(p,ab) ~ p by Lemma 4. Hence either (p,a) ~ p or (p,5) ~ p.
Thus either p | 2 or p | 4. This proves B. The result of the pre-
ceding section now yields the following

Theorem 1. If & is a commutative semi-group with identity
and cancellation law and & satisfies A and C, then & is Gaussian.

We have seen in the Introduction that the semi-group of posi-
tive integers and the domain of integers have the greatest com-
mon divisor property C. Also it 1s clear by consideration of
absolute values that A holds in these systems. Hence we see
that they are Gaussian.

EXERCISES

1. An element m 1s called a least common multiple (l.c.m.) of the elements 2
and 4 if a|m and 4| m and if n is any element such that 2| » and & | », then
m | n. Prove that any two elements of a Gaussian semi-group have a l.c.m.

2. Prove that if © is Gaussian and [4,4] denotes a l.c.m. of @ and 4, then
(a,6)[4,6] ~ ab. Prove also that [4,(4,c)] ~ ([4,6],[4,c]).

3. Prove that, if » is a prime positive integer, then the binomial coefficient

D pl : v ge e .
(’_) = =D 1 €4 < p—1,i1sdivisible by p. Hence prove that in any

commutative ring of characteristic »

(3) (@ + 6)? = a? + b7

holds for every @ and 4.

4, Define the Mébius function u(n) of positive integers by the following rules:
(2) u(1) = 1, (b) u(n) = O01if n has a square factor, (c) u(n) = (—1)*, s the length
of n if n is square-free. Prove that u(n) is multiplicative in the sense that
p(mng) = p(ndu(ng) if (ny,ny) = 1. Also prove that

J[l if n=1

2 D)= 1t as1

dln

5. Prove the M#&bius inversion formula: If f(») is a function of positive
integers with values in a ring and
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g(n) = d; f (d))

then

fo) = 2 u(5) 2.

dln

6. Prove that, if ¢(n) 1s the Euler ¢-function, then

o) = ¥ u(5)d

d| n
(Cf. ex. 3, p. 34.)

4. Principal ideal domains. Let ¥ be a commutative integral
domain with an identity. We have defined the principal ideal
(%) to be the smallest ideal in ¥ containing the element 4. Since
A has an identity, (&) coincides with the totality of multiples éx
of the element 4. Now 4| 2 means that 4 = ¢ € (¢) and this is
equivalent to the requirement that (¢) C (4). Also we note that,
if (4) = (§), then 4| 2 and 4| 4 so that 4 ~ 4. The converse is
clear too. Hence we see that 4 1s a proper factor of z if and only
if (&) < (4). The divisor chain condition A for an integral domain
9 can now be stated as the following chain condition on ideals:

A’. U contains no infinite properly ascending chain of ideals
(41) < (a2) < (as) <---.

We shall consider now integral domains % (commutative and
with 1) that have the property that the only ideals in ¥ are the
principal ideals. A domain of this type is called a principal ideal
domain. The result that we wish to establish in this section is
that every principal ideal domain 1s Gaussian.

We first prove A’. Let (4;) € (42) € (a3) S -+ be an infinite
ascending chain of ideals in %. Let 8 = U(4;) be the logical sum
of thesets (2;). Then we assert that B 1s anideal in 3. Thus let
b1, bo € B, say b, e (ar), b2 € (a1). We can suppose that £ < /.
Then &1, 42 ¢ (a1). Hence 4; — 43 and ;x for any x are in (4;).
Hence 4, — b3, 61x € B. This implies that B is an ideal. Now by
assumption B = (d) where de B. Since de B, 4 e (a,) for some
integer #. Hence 8 = (d) = (4,.). Consequently, if m > #»,
then (@m) 2 (4,) = B D (4m) and (a@n) = (@.). This proves
that 9 contains no properly ascending infinite sequences of ideals.
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L

Next let @ and 4 be any two elements of ¥ and let (4,6) now
denote the ideal (4) + () generated by 4 and 4. This ideal 1s
the totality of elements ax 4 4y where x and y are in A. Now
(4,6) = (d). Since (d) 2 (a) and @) D (4), d|a and 4| 2.
On the other hand, if ¢ | 2 and ¢ | 4, then (¢) D (a) and (¢) 2 (4).
Hence (¢) D (d) and ¢ | d. This proves that 4 is a g.c.d. of 2 and
4. Hence C holds and consequently we have the following

Theorem 2. Every principal ideal domain is Gaussian.

We have seen that, if § is a field, then §[x], » transcendental,
is a principal ideal domain (Chapter 111, § 6). Hence §[x] is
Gaussian.

EXERCISES

1. Prove that an element p of a commutative integral domain ¥ is a prime if
and only if 9/(p) is an integral domain,

2. Prove that, if p is a prime in a principal ideal domain, then 3/(p) is a field.

3. Let A be a principal ideal domain and let B be any commutative integral
domain containing 9. Show that, if the elements 4, 4 in ¥ have the g.c.d.

de, then 4 is a g.c.d. of 2 and 4 in3B.

4, Let § be a finite field containing ¢ elements and let N(r,g) denote the num-
ber of irreducible polynomials of degree » in {x]. Determine N(2,¢) and
N(Q3,q).

5. Prove that, if ¥ is a commutative integral domain with an identity that is
not a field, then [x] is not a principal ideal domain.

5. Euclidean domains. In the ring of integers / the function
3(a) = | a| satisfies the conditions:

1. 8(a) 1s a non-negative integer, 8(¢) = 0 1f and only if 2 = 0.

2. 8(ab) = 8(a)d(d).

3. If 4 #£ 0 and 4 i1s arbitrary, then there exist elements ¢ and
r such that ¢ = bg 4 r where 6(r) < 5(8).

A similar function can be defined 1n any polynomial domain §[x],
% a field and x transcendental. Here we take 8(a(x)) = 2°%°®,
Then 1 and 2 are immediate and 3 i1s equivalent to the existence
of the division process considered before. The rings / and §[x] are
examples of Euclidean domains defined 1in the following

Definition 3. A4 commutative integral domain N with an identity
is a Euclidean domain if there exists a function 6(a) defined in U
and satisfying 1, 2, and 3 above.
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We shall give now another example of a Euclidean domain,
namely, I_[\__/ —1 ], the totality of complex numbers of the form
m + nV —1 where m and 7 are integers. Numbers of this type

are called Gaussian integers. 1f a = m + nV —1, we set §(a) =
| a|> = m? + #®%. Then 1 and 2 are clear. Now let 2 and 4 = 0

be in 7[V —1]. The complex number 26~ = p + »V —1 where
p and » are rational numbers. Now we can find integers # and v
such that |u—p.| < 3, |v—v| <3 Set e=p—u n=
v —vy,s0 that | e| <2 and| 5| < 3. Then

a=0b(u+e+ (@+nV—-1]

whereq=u+ij s in IV —1] and r = é(e + 9V —1).
Since r = a — bg, r1s1n I[V —1]. Moreover,

o) = |r[* =6 + 1) <[4FG + @) = 350).
Thus 8(r) < 8(4).

The main result about Euclidean domains 1s the following

Theorem 3. Every Euclidean domain is a principal ideal
domain.

Proof. Let 8 be any ideal in the Euclidean domain 2. If
B =0, then B8 = (0). Now let 8 0. Then B contains ele-
ments for which 8 > 0 and since the §’s are non-negative integers
there exists a & ¢ B such that 0 < §(8) < 8(c) for every ¢ £ 0 in
B. If ¢ i1s any element of B, we can write ¢ = bg + r where
o(r) < 8(6). But r = ¢ — bg e®B since B 1s an 1deal. Since §(4)
1s the least positive & for the non zero elements of B and 8(r) <
8(4), we conclude that» = 0. Thusc¢ = b9 ¢ (6). Hence®B = (&)
and this completes the proof.

Since every principal ideal domain 1s Gaussian, we have the

Corollary. Every Euclidean domain is Gaussian.*

* Additional results on Euclidean domains are given in § 10 of Chapter VI.
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EXERCISES

1. Prove that I[\/2], the set of real numbers of the form m + n\/2, m
and » integers, 1s Euclidean.

2. Let U be the totality of complex numbers m + #n\/ —3 where m and #
are either both integers or both halves of odd integers. Show that ¥ is a ring
relative to the usual addition and multiplication. Prove that A 1s Euclidean.

3. Prove that an element @ of a Euclidean domain 1s a unit if and only if
6(a) = 1.

4, Let A be a Euclidean domain whose function satisfies the condition:
6(a + 5) < max(8(a), 6(8)). Show that ¥ is either a field or a polynomial
domain §[x] over a field .

6. Polynomial extensions of Gaussian domains. In this sec-
tion we prove the important theorem that, if % i1s Gaussian and x
1s transcendental, then A[x] is Gaussian.

Let f(x) =ay +a1x+ -+ anx™ # 0 be in Yx] and let 4
be the g.c.d. of the non-zero coefficients 4;, We write g; = da;

and hence f(x) = df1(x) where
Si(x) = a0’ + ai’x 4+ -+ a.'x".

Evidently the g.c.d. of the non-zero 4/ 1s 1 (or a unit). A poly-
nomial having this property is called primitive. Suppose now
that f(x) = e¢fs(x) 1s any factorization of f(x) as a product of a
constant ¢ (= element of %) and a primitive polynomial. Then ¢
is a common factor of the coefficients of f(x) so that ¢ | d, say
d = ¢k. Then fo(x) = kfi(x) and, since fo(x) is primitive, k is a
unit. Thus any non-zero polynomial can be written in essentially
only one way as a product of a constant and a primitive poly-
nomial.

In studying 9[x] we find it convenient to introduce the poly-
nomial ring §[x] where § is the field of fractions of Y. We now
prove the following

Lemma 1. [ffi(x) and fo(x) are primitive in A|x] and are asso-
ciates in §xl, then f1(x) and fo(x) are associates in Ux].

Proof. Since the units of F[x] are the non-zero elements of
%, we have f1(x) = afe(x), a 20 in § Write a = ded1 ™, d; 1n
9. Then 41 f1(x) = daofe(x). This gives two representations of a
polynomial in %[x] as a product of a constant and a primitive
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polynomial. It follows that &; and 4, differ by a unit in % and
that f1(x) and fo(x) differ by a unit in %[x].

The key result needed to prove that A[x] is Gaussian 1s the
following

Lemma 2 (Gauss). The product of primitive polynomials is
primitive.

Proof. Let f(x) = ay + a1x +- -+ a,x™ and g(x) = by + b1x
+ - -+ 4+ bnx™be primitive and suppose that f(x)g(x) = ¢o + c1x +
c oo+ Cpymx™ 1™ is not primitive. Then there exists an irreducible
element p e %A such that p | ¢; for all 7. Since f(x) is primitive, p
1s not a factor of all the 4; and we suppose that 4,- is the last g;
not divisible by p. Similarly let 4,.- be the last 4; not divisible by 2.
We now consider the coefficient

Cbnt = G0mipns + Bl pmr—1 0 Gy 1Oprgy + Gply
+ an’+lém’-1 + "t + an’-l—m’bﬁ'

Since all the 4; before the term 4,.4,, are divisible by » and since
all the 4; after this term are divisible by p and since ¢y, is
divisible by p, | 4.4,,. But p is not a divisor of 4, or of 4,
and this contradicts the fact that p is irreducible and hence prime
(cf. ex. 3, p. 118).

A consequence of Gauss’ lemma is

Lemma 3. If f(x) is an wrreducible polynomial of degree > 0
in Alx], f(x) 15 irreducible in Fx].

Proof. Since f(x) 1s irreducible, it i1s primitive. Now let f(x)
be any primitive polynomial in %A[x] and suppose that, in {[x],
f(x) = ¢1(x)p2(x) where deg ¢:(x) > 0. Now if ¢(x) is any poly-
nomial # 0 in F[x], let the coefficients of ¢(x) be o; = a;6,77,
a;, b; in A. Then we can set

a; = (ﬁjbe .o bj_lbj+1 co 5n)(5051 c oo 5,“)—1

and this gives us a way of writing the «; with the same denomi-
nator & = boby ++- bp. Thus ¢(x) = 67 1g(x) where g(x) e Alx].
Also we can write g(x) = ch(x) where ¢ € % and A(x) is primitive.
Then ¢(x) = 67 ch(x). We apply these considerations to the
$:(x) and obtain ¢;(x) = &;7Ycsh:(x). Then
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S e s

f(x) = b1 b er1600h1 (%) ha(x)

and
0102 f (%) = c1c2h1(x)Aa(%).

Since the 4;(x) are primitive, A;(x)hs(x) 1s primitive. Hence
f(x) ~ hi(x)hs(x) and we can suppose that f(x) = A;(x)A2(x).
Since deg 4;(x) = deg ¢.:(x) > O, this is a proper factorization of
f(x) in Ax]. It follows therefore that, if f(x) is irreducible in
%A[x], then it remains irreducible in F[x].

We can now prove the main result.

Theorem 4. If A is Gaussian, then so is W[x), x transcendental
over A.

Proof. Let f(x) be 2 0 and # a unit. Then f(x) = dfi(x)
where f1(x) is primitive and 4 is a constant. If f;1(x) is not a unit
and is reducible, fi(x) = f11(x)f12(x). Evidently the f;;(x) have
positive degree. Hence deg fi:(x) < deg fi(x). Continuing in
this way we arrive at a factorization of f;(x) as

S1(x) = g1 (x)qa(x) + - - gn(x)

where the g;(x) are irreducible and of positive degree. Also we
can factor 4 = p1p, - - - p, where the p; are irreducible 1n % and
hence in A[x]. This gives a factorization of f(x) into irreducible
factors in A[x]. Now suppose that

(4) S(x) = p1ps -+ - Peq1(%)q2(x) - -+ qn(x)
= p1'pa" -+ pilg (%)g2 (%) - - @’ (%)

are two factorizations of f(x) into irreducible factors and suppose
that the notation has been chosen so that deg ¢:.(x) > 0, deg
g (x) > 0, p;, p e A. Then the ¢;(x) and ¢;/(x) are primitive.
Hence ¢1(x)g2(x) » -+ gn(x) and g;'(x)g2’(x) + -+ ¢&'(x) are primi-
tive. It follows that these two products are associates, and, by
changing one of the terms by a unit, we can suppose that Ilg;(x) =
Ig;'(x). Then also IIp; = IIp,”. By Lemma 3 the ¢:(x) and ¢;'(x)
are irreducible in §[x]. Since §[x] is Gaussian, the ¢;’(x) can be
arranged so that ¢i/(x) is an associate of ¢:(x) in §[x]. But then
Lemma 1 shows that these polynomials are also associates 1n
Ax]. Finally, since % is Gaussian, the primes p; and p;’ in the
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factorizations IIp; = Ip;’ can be paired off into associate pairs.
Hence the two factorizations in (4) are essentially the same.

An immediate corollary of this theorem is that, if % is Gaussian
and the x; are algebraically independent, then A[xq, x5, -« -, x,]
is Gaussian. For example, if § 1s any field, then §[xy, x5, - - -, x,]
is Gaussian. Also I[x;, %o, *--, x,] is Gaussian. The rings
S[x1, Xoy ¢+, &) with » > 1 and [[xy, x2, - -, x,] Wwith » > 1 are
not principal ideal rings. Hence the class of Gaussian domains is
more extensive than the class of principal 1deal domains.

EXERCISES

1. Prove that, if f(x) in I[x] has leading coefficient 1 and has a rational root,
then this root is an integer,

2. Prove the following irreducibility criterion due to Eisenstein: If f(x) =
ag+ ayx -+ a,x™ e I[x] 1s primitive and there exists a prime p in [ such that
plagp| a1, s p | ap-y butp X a,(pisnota factor of a,) and p? ¥ a, then f(x)
1s irreducible in I[x] and hence in Ry[x], R, the field of rational numbers.

3. Show that if p is a prime then the polynomial obtained by replacing x
by x +1inxP 14 xP24...41=(x?— 1)/(x — 1) is irreducible in Ry[x].
Hence prove that the cyclotomic polynomial x?=! 4+ x?—% 4...4 lisirreducible
n Rg[x]-



Chapter V'

GROUPS WITH OPERATORS

In this chapter we resume our study of the theory of groups.
The results that we obtain concern the correspondence between
the subgroups of a group and those of a homomorphic image,
normal series and composition series, the Schreier theorem, direct
products and the Krull-Schmidt theorem. The range of applica-
tion of these results 1s enormously extended by introducing the
new concept of a group with operators. This concept, which was
first considered by Krull and by Emmy Noether, enables one to
study a group relative to an arbitrary set of endomorphisms.
In this way, one achieves a uniform derivation of a number of
classical results that were formerly derived separately. Also
applications to the theory of rings are obtained by considering the
additive group relative to the sets of multiplications as operator
domains.

1. Definition and examples of groups with operators

Definition 1. A4 group with operators is a system consisting of a
group &, a set M and a function defined in the product set & X M
and having values in ®& such that, if am denotes the element in ©
determined by the element a of & and the element m of M, then

(1) (ab)ym = (am)(om)
holds for any ab in .

If m 1s fixed and x varies over ©, then x — xm is a mapping of
® into itself. We denote this mapping as % and we note that

the assumption (1) states that 7 is an endomorphism in @&. Thus
128
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every element m ¢ M determines an endomorphism 7 and we have
a mapping m — i of M into the set € of endomorphisms of ®.
It 1s not required that this mapping be 1-1, that 1s, we may have
m = 7 though m and » are distinct in M. These remarks lead
to an alternative definition of the concept of a group with oper-
ators, namely, the following

Definition 1’. A4 group with operators is a System consisting
of a group &, a set M and a mapping m — m of M into the set of
endomorphisms of .

We have seen that if ,M and the mapping (a,m) — am 1s a
group with operators in the sense of definition 1, then ¥ — xm 1s
an endomorphism 7 in @&. Also we have the correspondence
m — m. Hence we have a system satisfying definition 1’
On the other hand, if we have a system of the latter type, then
we can define the mapping (a,m) — am = am, and we see that
(1) holds. Hence we obtain a group with operators in the original
sense. Finally, it is clear that, if we begin with a system satisfy-
ing 1 (1’) and we apply successively the two procedures for chang-
ing to a system of the other type, then we return to the original
system. Hence the two definitions are equivalent.

The second formulation is well suited for constructing examples
of groups with operators. For this purpose we can select any set
M of endomorphisms of a group ® and we can let our mapping
m — i be the identity. Important sets of endomorphisms that
can be used in this way are (1) &, the set of inner automorphisms,
(2) %, the complete set of automorphisms, (3) €, the set of endo-
morphisms,

An example that is conveniently defined by means of the first
formulation is the following: ®, the group of vectors in three-
dimensional space; M, the set of real numbers; the product func-
tion o# for vin @ and ¢ in M, as the usual product of a vector by a
number. Thus, if v = (x, y,2), then

vt = (tx,1y,£2).
The well-known rule

(v4 vt =uvt 4 vt

is our requirement (1) in additive dress.
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The theory of groups with operators also has important applica-
tions to the theory of rings. These applications result in con-
sidering certain groups with operators defined in the additive
group of a ring. There are three such groups with operators.
In all three, the group & is the additive group %,4, M 1s a set
of endomorphisms of %,4+ and the mapping of M is the identity.
In the first case we take M = 9,, the set of right multiplications.
Next we set M = ¥, the set of left multiplications, and finally
we set M = %, U A;. Accordingly we say that %A acts on the
right, on the left, or on both sides 1n 1ts additive group.

We shall usually use the phrase “® 1s a group with operator
set M” or “® 1s an M-group” in referring to a group with oper-
ators.

We can derive some elementary properties of the product am
by using the fact that 7% i1s an endomorphism. Thus it 1s clear
that 1w = 1, that 47'm = (am) ™' and, more generally, 4*m =
(am)* for any integer k.

2. M-subgroups, M-factor groups and M-homomorphisms.
The concept of a group with operators is formulated to focus atten-
tion on the collection of subgroups that are sent into themselves by
a particular set of endomorphisms; for 1n studying an M-group
it 1s natural to restrict one’s attention to these subgroups of @.
A subgroup 9§ is said to be an M-subgroup if hm e  for every
he D and every m e M.

It 1s interesting to see what are the M-subgroups in the exam-
ples given 1n the preceding section. In (1) M = & and § is an
M-subgroup if and only if ¢g7'9g C O for every ge ®. Thus
the M_subgroups are just the invariant subgroups of ®. In (2)
M = % and an M-subgroup 9 i1s, 1n particular, invariant. More-
over,  1s mapped 1nto itself by every automorphism of @. Sub-
groups having this property are called characteristic subgroups.
In 3) M = G, and here 9 1s an M-subgroup if and only if ©
1s mapped into itself by every endomorphism of . Subgroups
with this property are said to be fully invariant. In the example
of the vector group, a subgroup § is an M-subgroup if 1t 1s closed
under scalar multiplication. Such subgroups are called suéspaces.

We consider also the groups with operators determined by
a ring. If % acts on the right (M = 9%,), then a subset 8 is an
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M-subgroup 1f and only if 1t 1s a subgroup of the additive group
A,+ and it 1s closed under right multiplication by arbitrary ele-
ments of %. Thus the M_subgroups in this case are the right ideals
of the ring. Similarly, if % acts on the left, then the M-subgroups
are the left ideals. Finally, if % acts on both sides, then the
M-subgroups are the two-sided ideals.

It is immediate that, if { $} 1s a collection of M-subgroups of &,
then the intersection N $ of all these groups i1s an M-subgroup.
Also the group & = [ U 9] generated by these subgroups i1s an
M-subgroup; for the elements of this group are finite products
h=hihe o hnyhie Die{D}. Hencebm = (hym)(hom) - -+ (hpm)
e & since Am e 9.

If §is an M-subgroup of an M_group &, we can regard $ as an
M_-group too. Here we take the product Am, 2 e §, m e M to be
the product as defined in the M-group ®. Then it i1s clear that
(1) holds. We shall now show that, if § is invariant, then there
is also a natural way of regarding the factor group & = /9 as
an M-group. This is done by defining

(2) (gD)m = (gm)H

for every ge @ and every m e M. It is necessary to show that
the product thus defined 1s single-valued and that (1) holds.
Now let £ = ¢'®. Then g’ = gk, 2 1n © and g'm = (gm)(hm)
where 2m ¢ . Hence (gm) 9 = (¢'m) D and this proves the first
assertion. To prove the second we note that

((g19)(g29))m = (g12:9)m = ((g1g2)m) D = (g1m)(gam)
= ((g1m)D)((gam) D).

We shall refer to the group with operators thus defined as the
M_factor group &/ 9.

In comparing groups with operators we shall restrict our atten-
tion to groups that have the same set of operators M. The basic
concept that we consider is that of homomorphism. A mapping
n of the M-group @& into the M-group ®&’ is called a homomorphism
(M-homomorphism) if 5 is a group homomorphism and

(3) (am)n = (an)m
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holds for all 2 ¢ & and all m ¢ M. We have the usual special cases
of homomorphism: isomorphism 1f n is 1-1, endomorphism if
® = &, gutomorphism if @ = & and n is 1-1 of & onto itself.
If there exists an isomorphism of & onto &', then these M-groups
are said to be isomorphic (=).

If # is an M-endomorphism of &, the condition (3) is equivalent
to mn = nm. Thus the M-endomorphisms are just the endo-
morphisms that commute with the endomorphisms 7.

Now let n be an M-homomorphism of & into & and let an
be any element of the image set &y. If me M, (an)m = (am)qy
e &n. Since &7 1s a subgroup, this shows that &y 1s an M-sub-
group of &.. We consider next the kernel ® of . We know
that & 1s an invariant subgroup of &. Also if ke & and m e M,
then (km)n = (kn)m = 1'm =1’. Hence kme ® and & is an
M-subgroup of &. This proves

Theorem 1. If n 15 a homomorphism of the M-group & into
the M-group &', then the image ®n is an M-subgroup of & and
the kernel of the homomorphism 1s an invariant M-subgroup of ®.

EXERCISES

1. Show that any characteristic (fully invariant) subgroup £ of a char-
acteristic (fully invariant) subgroup § of ® is characteristic (fully invariant)
in &.

2. Prove that any subgroup of a cyclic group is fully invariant,

3. Show that the subgroup @W generated by all the commutators [s,6] = sts 1,
s,¢ in &, 1s a fully invariant subgroup. & is called the (first) commutator group
of @. Prove that @/F® is commutative and that if  is any invariant subgroup
such that /9 is commutative then D GO,

4, Let A be a ring with an identity, and regard I as an M-group with M = ¥,.
What are the M-endomorphisms of A? Answer the same question for M =

2[1" U QII-

3. The fundamental theorem of homomorphism for M-groups.
It is clear that the resultant of M-homomorphisms 1s an M-homo-
morphism. Moreover, if § is an invariant M-subgroup of the
M-group ®, then the natural mapping » of & onto the M-group
® = /9 is an M-homomorphism; for by definition (g9)m =
(gm) P and, since gv = g9, this means that gom = gmv.

Next let n be an M-homomorphism of & into &' and let $ be
an invariant M-subgroup of @ contained in the kernel & of 7.
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Then as in the case of ordinary groups (cf. p. 44) the correspond-
ence g9 — gn 1s single-valued and it defines a homomorphism 7
of the M-group & = &/9 into &’. The only new fact that has
to be established 1s that % behaves properly relative to the ele-
ments in M, that is, that ((g9)m)n = ((g9)7)m. This follows

from

((gD)m)7 = ((gm)D)a = (gm)n = (gn)m = ((gD)7)m.

As usual we have the factorization n = »# where » is the natural
mapping of @ onto @. Also % is 1-1 if and only if = §. This
leads immediately to

The fundamental theorem of homomorphism for M-groups.
Any factor group of © relative to an invariant M-subgroup is a
homomorphic tmage of ®. Conversely if &' is an M-group which is
a homomorphic image of the M-group ®, then & is isomorphic to
a factor group of ® relative to an invariant M-subgroup.

4. The correspondence between M-subgroups determined by a
homomorphism. Thus far we have considered only extensions to
M-groups of results obtained previously for ordinary groups. We
shall begin now to derive some new results. It should be noted
that these will apply also to ordinary groups, since the theory of
these groups is the special case of the theory of M-groups ob-
tained by taking M to be a vacuous set. Then M-subgroups
become ordinary subgroups, M-homomorphisms, ordinary homo-
morphisms, etc.

Let n be an M-homomorphism of & onto &’ and let § be the
kernel. If § is an M-subgroup of @, 4 maps § homomorphically
onto the M-subgroup 975 of ’. On the other hand, if § is any
M-subgroup of &’, then the inverse image § = »71($’) is an
M_subgroup of &; for, if A;, ks € D, then (A14:, ™ = (A19)(hen)
e ' so that 2142 e . Alsoif he § and m e M, then (hm)y =
(An)m e ©'. Hence Am e 9.

Evidently © = n71(9’) contains & = 7 (1") and 97 = §".
Thus we see that we can obtain every M-subgroup of &' by apply-
ing n to an M-subgroup of & that contains & Now let § be any
M-_subgroup of & that contains & and let $; = 27 }(H9). Clearly
9 2 H. On the other hand, if %; e $1, then 219 = Ay for some
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hin . Hence 4; = Ak, k£ in R. Since D K, this implies that
hie . Hence n71(Hg) = H.

We can now easily prove the following

Theorem 2. Let o be an M-homomorphism of & onto & with
kernel  and let { O} be the collection of M-subgroups of & that
contain Q. Then the mapping & — Dn is 1-1 of { D} onto the
collection of M-subgroups of &'. The subgroup 9 is invariant in
® if and only if its image ' = Dn is invariant in @',

Proof. We have seen that § — ©» is 2 mapping of { H} onto
the set of M-subgroups of @’. Also if $; and . ¢ {9} and
P1n = Dom, then H; = 7H(H1n) = 27 (H2n) = H2. Hence, our
mapping 1s 1-1. It is easy to verify that § is invariant in & if
and only if § = H9 is invariant in @',

An important special case of this theorem is obtained by con-
sidering the natural homomorphism » of & onto an M-factor
group &/, ! an invariant M-subgroup. In this case, we see that
any M-subgroup of & = &/Rf is obtained by applying » to an M-
subgroup $ of @ that contains & The image H» i1s the set of
cosets AR, A e O; hence 1t 1s just the factor group H/8. We can
therefore state the following

Corollary. Let ® be an M-group and & an invariant M-subgroup.
Then any M-subgroup of the M-factor group &/ has the form
O/R where O is an M-subgroup of & containing Q. Distinct s
give rise in this way to distinct M-subgroups of &/, and O is
invariant in & if and only if /8 is invariant in ®/K.

Analogous results can be proved for rings. These can either be
proved directly, or they can be obtained as special cases of the
group theorems. We shall employ the second method here. Let
n be a homomorphism of the ring % onto the ring %’ and let &
be the kernel of 5. Then we can consider %,4+ as a group with
the operator set M = %, U %;,. Moreover, we can also consider
A',+ as an M-group; for we can define

x'a, = x'(an), = x'(an)

(4)

¥(an)i = (an)¥,
and it is clear that the basic requirement (1) is fulfilled. When

x’a;
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= anliere—

this definition i1s used, n becomes an M-homomorphism of %,+
onto A’,+, since

(xn)a, = (xn)(an) = (xa)n = (xa,)7n

(xn)ar = (an)(xm) = (ax)n = (xai)n.

Finally we need to observe that the M-subgroups of %’,+ are just
the (two-sided) ideals of the ring %’; for, 1f 8’ is an M-subgroup,
then &'(an) and (an)é’ € B’ for every 4’ in B’. Since the set {an} =
A’; B’ 1s an ideal. The converse is clear, too. Now Theorem 2
establishes a 1-1 correspondence between the set {8} of ideals
of %A that contain ® and the complete set of ideals in %’. In
particular, we have a 1~1 correspondence between the set of
ideals {B}, B 2 K, and the ideals of the difference ring A/R.
- Any ideal of A/R has the form B/, B an 1deal of A containing K.
Distinct B’s give rise to distinct 1deals B/8.

EXERCISES

1. Determine the ideals of I/(m), m > O.
2, Give a direct derivation of the correspondence between ideals of a riag
and those of a homomorphic image.

5. The isomorphism theorems for M-groups. In this section
we shall prove three important theorems on the isomorphism of
M-groups. The first of these can be regarded as a supplement to
the theorem establishing the correspondence between the sub-
groups of a group and of a homomorphic image. As before, let 4
be a homomorphism of the M-group ® onto the M-group &’ and
let & be the kernel. Let § be an invariant M-subgroup of & that
contains the kernel & and let & = $%. Then, if »’ is the natural
homomorphism of & onto &'/, n»’ 1s a homomorphism of @
onto ®'/9". If g’ = §, gne ' and conversely. Hence the
kernel of nv” is the group $. By the fundamental theorem the
mapping n»’ defined by g9 — gnv’ = (g9) 9’ 1s an M-isomorphism
of 8/9 onto &'/ H’. This proves the

First isomorphism theorem. Let 5 be a homomorphism of the
M-group & onto the M-group ® with kernel & and let O be an
invariant M-subgroup of © that contains R, Then Hn = O’ is
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invariant in & and the M _factor groups &/ and &' /D' are iso-
morphic under the correspondence g — (gn) 9.

As a special case of this theorem we take &’ to be the M-factor
group &/®, and 5 = » the natural homomorphism. If $ is
an invariant M-subgroup of & containing &, then 97 1s the factor
group /8 of cosets AR, £ 1n . Hence we have the

Corollary. If ® and O are invariant M-subgroups of ® and
D DR, then &/ and (B/R)/(D/R) are isomorphic.

Assume next that &; and ®; are M-subgroups of & and that
&, 1s invariant. The M-subgroup generated by &; and ®: 1s the
product set &;&, = ;. It 1s clear that the correspondence
g1 — £1®,, g1 1n &y, 1s a homomorphism of the M-subgroup &,
into &;®,/®,. Any coset in &;&, has the form g:2,8, = g,,,
g: e ®;. Hence our homomorphism is a mapping onto &8/ ..
If 9,8, = ®,, then g, e @, and so g; e &, N @,. This shows that
the kernel of the homomorphism g;, —» £:®: 1s &; N ;. We
therefore have the following

Second isomorphism theorem. I[f &, and ®&; are M-subgroups
of a group and &, is invariant, then (1) &, N Oy is tnvariant in O,
and (2) the M-factor groups ©:8,/G; and &:/(G; N Oz) are
isomorphic under the correspondence g1&; — g1(G; N Gy).

We shall establish next a somewhat more complicated i1so-
morphism theorem which will be used in the next section to prove
an important refinement theorem due to Schreier.

Third isomorphism theorem (Zassenhaus). Let ®. and ©,,
i = 1,2, be M-subgroups of & such that ®&; is tnvariant in ©.
Then (@1 1 @2’)@1’ 15 tnvariant in (@1 N @2)@1’, (@f N @2)@2; 15
invariant in (&, N G2)O®, and the corresponding factor groups are
M-isomorphic.

Proof. Consider the subgroup (®; N &.)®;" of (G; N 2)S,".
First we show directly that it is invariant: Let xe ®; N Og;
ye®; N G 22e®;’. Then xyxe®; N &' and ¥ 'zx e G,
whence

(5) x~1(®; N GG,y C (G; N &), .
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Also +7tyt = +~1(yty 1)y, and since yty ™ ¢ ®;’, we have Iyt e
@1’(@1 ) @2’) = (@1 ( @2")@1’- HCI‘ICC

(6) t7H(®; N G)St = 7S N G 71G,t C (G; N G,"NG, .

It is clear from (5) and (6) that (&; N & )®;’ 1s invariant in
(&; N &2)O,". By the second isomorphism theorem, it follows
that (&; N &.)YG;" N (&; N G) 1s invariant in &; N &, and

(7) (&; N G:)/(G; N GG, N (G N Ge)
>~ (G; N &2)(G; N 6)G:/(G; N 6)G,

- (@1 ﬂ @2)@1’/(@1 ﬂ @2’)@1’.
On the other hand,

B (G NG, N (G NG) = (G N &G, N G

and any element of (&; N &;")®," has the form yz, y £ &; N &/,
ze &', If yze &, then 2z = y7(y2) ¢ ®; so that z2e @, N &,".
Hence yze (B; N &)(G;" N &) and (G; N GG, N G, C
(&1 N ) (G’ N &), The reverse inequality 1s clear. Hence
(G N GNYG," NG, = (G; N ) (G," N &). Consequently (7)
can be re-written as

(9) (G1 N G2)/(G1 N ) (G, N Ss)

>~ (®&; N §2)8,/(O; N &),
By symmetry we have also

(10) (G; N G2)/(G; N G") (G, N Gy)
>~ (& N G2)8"' /(G N &), .
Our result now follows from (9) and (10).

EXERCISES

1. Show that the third isomorphism theorem implies the second.

2. Let &, & be M-subgroups such that &’ is invariant in &; and let $
be any M-subgroup of &. Prove that ' = &' O is invariant in H; =
®; N O and that H1/Hy’ is isomorphic to a subgroup of &, /.

3. State the ring analogues of the first and second isomorphism theorems,

6. Schreier’s theorem. We shall consider now a type of fac-
torization of a group into factor groups. Let
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(11) =0 D20 2D DGy =1

be a sequence of M-subgroups of the M-group @& such that each
®;41 1s Invariant in ;. We call such a sequence a normal series
for . The factor groups

(12) @1/@2, ©2/@3, Ty ©s/@s+1 = @53

are the factors of the normal series. As an example we let @ be
the finite cyclic group of order . Then the subgroup ®; is deter-
mined by its order #; and #;,;| 7. The ratio ¢; = ni/n;; is
the order of ®&:/®;;:. Since n = ny = q112, 1y = gonz, -,
n = qiqs - -+ ¢s. Conversely, if » = ¢142 - - - ¢, 1s a factorization
of n, then the cyclic group & has a subgroup ©; of order #; =
gigiy1 *** gs. Hence @ = ®; 2@ 228,41 = 1, and the
order of @i/@i+1 1S q:.
The two normal series

O =020 22041 =

=1
O=98:129:2 2941 =1
are sald to be equivalent if it i1s possible to set up a 1-1 corre-
spondence between the factors of the two series such that the
paired factors are isomorphic. We say that one normal series
is a refinement of a second if its terms include all of the groups that

occur in the second series. We can now state the following
fundamental theorem.

(13)

Schreier’s refinement theorem. Any two normal series for an
M_group have equivalent refinements.

Proof. Let the two series be given by (13). We set
Ou = (@‘f M @k)©i+la k= 1) 2: reey b 41

(14) .
Ori = (G:; N O1) P41, £=1,2,---,5 4+ 1.
Then
O =011 2022 01,141
= @21 2022 2+ 2 O2,e41 2 Os,e1 = 1,
(15)
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Now we can apply the third isomorphism theorem to the groups
®iy O Giy1, Hry1 to conclude that Gipyr = (G N Hry1)®iyy
is invariant 1n Gy = (G N Hr)Gip1, that Hrep1 = (Gipr N
@k) ®k+1 iS invariant in @kf = (@1 N @k) ‘bk+1 and that @ﬂ;/@i,k+1
> O/ Ok,ir1. Hence the two series in (15) are normal and
equivalent. Since these series are refinements of the series given
in (13), this proves the theorem.

EXERCISES

1. Show that, if § = ;1 D22 G,41 = 1 is a normal series for &
and O is any M-subgroup, then D= (O N G)D N G)D-- - DN
®,11) = 1 is a normal series for . Show that the factors of the second series
are isomorphic to subgroups of the factors of the first series.

2, An ordinary group is called solvable 1f 1t has a normal series whose factors
are commutative groups. Prove that any subgroup and any factor group of a
solvable group is solvable.

3. Define the higher derived groups of & inductively by ®® = (HG-D)®
(cf. ex. 3, p. 132). Prove that & is solvable if and only if &® = 1 for some

integer .
4. Prove that any finite group of prime power order is solvable (cf. ex., 3,

p. 48),

7. Simple groups and the Jordan-Hélder theorem. The sub-
groups @ and 1 are invariant M-subgroups in any M-group ©.
If & ¢ 1 and these are the only invariant M-subgroups, then &
is called M-simple. For example, any cyclic group of prime order
is simple. Another important class of simple groups is furnished
by the following

Theorem 3. The alternating group A, is simple if n > 5.

Proof. We have seen (ex. 2, p. 37) that A4, i1s generated by
its three-cycles (7 7/ k). We note next that, if an invariant sub-
group P of A, contains one three-cycle, then it contains every
three-cycle; hence, it coincides with 4,. For let (123) e  and
let (7 k) be any three-cycle. Then we can extend the mapping
1 » 4,2 — 7,3 — k to a permutation

B (1 2 3 4 §5 .. )
YN Rl om o
of 1,2, ..., n. If v is odd, we can multiply it on the right by
(/m) to obtain an even permutation. Hence, we may suppose that
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ve A,. Since v71123)y = (7k) e D this proves our assertion.
We shall now show that, if § = 1, then § contains a three-cycle.
Let a be a permutation belonging to  thatis 5= 1 and that leaves
fixed as many elements as any other permutation 1 in 9.
If a is not a three-cycle, either o contains a cycle of length >3
and moves more than three elements or « 1s a product of at least
two disjoint transpositions. Accordingly we may assume that
either

(16) a=(123--)( ).
or
(17) a=(12)34) ---.

In the first case a« moves at least two other numbers, say 4,5,
since « 18 not one of the odd permutations (123 k). Now let
B=(345) and form a; = B laB. If ais asin (16)

= (124 )
and if a 1s as in (17)
a; = (12)(45) ...

Now 1t is clear that, if a number i > 5 is left fixed by «, then
it 1s also left fixed by «; and hence 1t 1s left fixed by eya™. More-
over laja™ = 1ifaisasin (16) and laya™ = 1 and 2eqa™* = 2
if « 1s as 1n (17). Thus a;a™ leaves invariant more elements
than a. Since aja™ % 1, this contradicts our choice of a.
Hence « is a three-cycle, and the theorem 1s proved.*

We shall say that the invariant M-subgroup 9 of & is maximal
in ® if & D  and there exists no invariant M-subgroup & such
that ® D & D . It is clear from our correspondence between
subgroups of a group and those of a factor group that  is maximal
in ® if and only if /9 is M-simple.

We now define a composition series for a group ® to be a normal
series

(18) @=@1D@23"'D@3+1=1

* This proof is essentially the same as the one given in van der Waerden’s Moderne
Algebra.



GROUPS WITH OPERATORS 141

with the property that each ®;,; is maximal in ®;. Thus a com-
position serles 1s a normal series whose factors are simple groups
= 1. An M-group ® need not have a composition series. For
example, if M is vacuous and © 1s an infinite commutative group,
then & does not have a composition series. To see this we note
first that a simple commutative group has no subgroups other
than 1 and the whole group. Therefore, such a group is neces-
sarily a finite cyclic group of prime order. Hence, if (18) is a
composition series for an ordinary commutative group, then the
factor groups ®;/®;, are cyclic of prime order. Now if a group
& contains a subgroup  of finite order m and finite index 7,
then @ 1s of finite order mr. It follows easily from this that a
group that has a composition series whose factors are finite groups
s 1tself finite. In particular, we see that, if & is an ordinary com-
mutative group with a composition series, then @ is finite.

If an M-group does have a composition series, then the com-
position factors (= factors of the composition series) are uniquely
determined by the group. This is the content of the

Jordan-Ho6lder theorem. Any two composition series for an
M-group are equivalent,

Proof. By Schreier’s theorem the composition series have
equivalent refinements. On the other hand, it is clear from the
definition of a composition series that a refinement of such a series
has the same factors = 1 as the given series. Now in the 1-1
correspondence between the factors of the refinements the factors
= 1 are paired. Hence, the factors = 1 are also paired. Since
these are the composition factors of the given composition series,
we see that the two composition series are equivalent.

EXERCISES

1. Apply the Jordan-H6lder theorem for finite cyclic groups to prove the
uniqueness of factorization of a positive integer into positive primes.

2. Show that, if & has a composition series, then any normal series for & in
which the terms are properly decreasing can be refined to a composition series.

3. Show that, if @ has a composition series, then any invariant subgroup of
® and any factor group of & has a composition series. Show also that the
composition factors of these series are M-isomorphic to composition factors of 3,
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8. The chain conditions. We shall now state two conditions
that together are sufficient that an M-group ® possess a composi-
tion series.

1. Descending chain condition, If &; DGy D@3 D+ 1s a
sequence of M-subgroups such that @, is invariant in @ and each
®;,1 1s invariant in the preceding, then there exists a positive
integer NV such that @y = Gy, = --

11. Ascending chain condition. If  i1s any term of a normal
series and P; € P2 € H3 C--- 1s an increasing sequence of
M-subgroups all of which are invariant in §, then there exists an
integer N such that 5 = S 1 =+

We remark that, if ® 1s commutative, then any subgroup is
invariant and any subgroup is a term of a normal series. Hence
in this case I and II can be formulated more simply as follows.

III. If ®&; 2 ®; D &3 D- - - is a descending sequence of M-sub-
groups, then there exists a positive integer N such that Gy =
Onyy =-+-.

IV. If $, € H$, € 93 S--- is an ascending sequence of
M-subgroups, then there exists a positive integer N such that

O = Onyp1 == -

As a matter of fact these conditions can be used also for a non-
commutative group if it is known that M = {#} includes all
the inner automorphisms of &; for in this case, too, any M-sub-

group 1s invariant. We shall now prove the following

Theorem 4. A mnecessary and sufficient condition that an
M-group & have a composition series is that © satisfies the two chain
conditions.

Sufpciency. We shall show first that if § 2 1 1s a term of a
normal series, then § contains a maximal invariant M-subgroup.
Thus, either $; = 1 i1s maximal invariant or there exists a proper
invariant M-subgroup 9. of § such that ©; c H,. In the latter
case if §; 1s not a maximal invariant M-subgroup of §, then there
1s a proper invariant M-subgroup $; of § that properly contains
2. This process breaks off after a finite number of steps, since
otherwise it yields an infinite properly ascending sequence of in-
variant M-subgroups of § contrary to II. Hence, our assertion is
proved. In particular we see that ® = ®; contains a maximal
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invariant M-subgroup ®,. Also ®; contains a maximal invariant
M-subgroup 3, etc. This gives the properly descending sequence
G =@© DG ODO®; D--- in which each §;,; is maximal in-
variant in the preceding. By I there exists a finite number s 4 1
such that @,,;, = 1.

Necessity. Let ® have a compositionseries @ = @&; D &, D - -
D ®p1 =1 and let $; D H2 D:-- be a properly descending
sequence of M-groups such that $; is invariant in @ and $;.,
is invariant in §; for 7 > 1. Then we assert that the number of
9H; does not exceed s 4 1: for, if it does, then ® D H; D H, D - -
D ez = 118 a normal sertes. By Schreier’s theorem there is a
refinement of this series that i1s equivalent to a refinement of the
composition series. If we drop duplicates, we obtain a refine-
ment of the H-series that 1s a composition series. But the number
of terms exceeds s 4+ 1 and this contradicts the Jordan-Holder
theorem. Hence I is proved. A similar argument yields II.

Evidently if @ 1s a finite group, then & satisfies the chain condi-
tions for any set of operators M. Hence we have composition
series for a finite group for any M. A composition series obtained
for M vacuous will be called an ordinary composition series. Such
a series has the form ® =@, DG D+ DG,y =1 where
®:;1 is an invariant subgroup of ®; and ©&;/®:,; is a simple
croup. The Jordan-Holder theorem proves the invariance of the
set of simple groups ©&;/®;,; determined by &. If M = & the
set of inner automorphisms, then the M-subgroups are invariant.
A composition series 1n this case has the property that each ®;
is invariant in @ and that there exists no invariant subgroup &’ of
® such that &; D ® D ®:;;. Such composition series are called
chief series. Similarly we define a characteristic series as a com-
position series relative to the complete set of automorphisms, and
a fully invariant series as a composition series relative to the com-
plete set of endomorphisms. The Jordan-Holder theorem is, of
course, applicable to these series, too.

EXERCISES

1. Obtain composition series for §3 and Ss.
2, Prove that a finite group i1s solvable if and only if 1ts composition factors
are cyclic groups of prime orders.
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3. Show that an infinite cyclic group (M = ) satisfies the ascending chain
condition but not the descending chain condition.

4. Let Uy be the multiplicative group of p* complex roots of unity for p
a fixed prime and £ =0, 1, 2, 3, ---. Show that every proper subgroup of
Uy is finite cyclic. Hence show that U, satisfies the descending chain con-
dition but not the ascending chain condition.

9. Direct products. We shall consider in this section a simple
construction of an M-group out of # given M-groups @1, &g, - - -

®,. We take ® to be the product set & X @ X---X &, of

elements
g = (dl, 62, "ty an)) a; € @‘l:}

and we introduce a composition in & by the formula

(19) (61, B2y 'y an)(&b &21 Ty &ﬂ) = (al&h 6252, B aﬂéﬂ)
If 2 = (4;), & = (6;) and ¢ = (¢;), then

(@b)e = ((@ibs)cs) = (ai(bics)) = albe).

Also 1t 1s immediate that the element
1 = (1: 1: Tty 1)

is an identity element in ®, and, if we set 4’ = (4;7!), then
aa’ =1 =4a'a. Hence, ® with our composition is a group.
Next we define for m e M

(20) (@1, gy ***y Go)m = (@ym, asm, - -, a,m).
Then

(@6)m = ((aibs))m = ((aibs)m) = ((aim)(bsm)) = (am)(om).

Hence our definitions give an M-group. We shall call this
M-group the direct product of the ®; and we use the notation
Q=@ X G X::-X H,.

It is clear that, if each ®&; i1s finite of order #;, then & 1s finite
of order » = IIn;. Also ® i1s commutative if and only if each ©;
is commutative. If the additive notation 1s used in the groups
®;, 1t 1s natural to write

(19’) (ab agy * " "y a‘n) + (éh é2) T éﬂ)
== (al+élja2+é2) "':an+&ﬂ)
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in place of (19) and to call & the direct sum of the ®;. In this case
wewrite @ = @1 & Oz &+ © G,.

The example given in § 1 of the three-dimensional real vector
group 1s precisely the direct sum @ @ ® & & where ® is the addi-
tive group of real numbers relative to the operator set of real
numbers and the operation is ordinary multiplication. This is
clear from the definitions. The generalization to the #-dimen-
sional vector group is immediate. Another important example
of a direct sum 1s the group ® @ @ &--- @ & where @ is the
additive group of integers and M = &. The elements of this
group are the integral vectors (or “lattice points’”) with addition
the usual vector addition (197).

We now make two simple remarks about the direct product for
arbitrary groups. First, the direct product 1s independent of the
order of the factors. By this we mean that, 1f 1,2/, --- #"1s a
permutation of 1, 2, --.) n, then ®; X @ X X @, 1s
M-isomorphic to @; X @z X+ X ®,. In fact it 1s immediate
that the correspondence (a1, as, -, @n) — (@1, aGg+y *++, Gy
is an M-isomorphism. Next we note that,ifn; < n, <--- < n, =
#n, then

(@1 X X @'ﬂl) X (@'nl-{-l X oo X @nz) PR
X (@'nr_l-l-l X X @'ﬂr)
is M-isomorphic to ®; X ®, X-+-X &,. Here the mapping

(@1, agy "y an) — ((61, "ty am)) (an1+h "ty ang)) "ty

(an,-_1+h Yy a'nr))

is an 1somorphism. In particular, i1t follows that (&; X &) X &
and @; X (@ X ®3) are equivalent since each is equivalent to
&1 X @2 X ®3. Thus, in this sense direct multiplication of
groups 1s associative as well as commutative.

10. Direct products of subgroups. We shall now determine
conditions that a given M-group be isomorphic to a direct product.
For this purpose we examine further the direct product & =
Gy X Gy XX &,. Let @ be the subset of @ of elements cf
the form 2/ = (1, 1, ---, 1, a;, 1, - -+, 1), a; 1n the 7th position.
It is clear that &, 1s an M-subgroup of & isomorphic to &; under
the correspondence
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ag — (15 eyl a1, 00 1).
Moreover,

(‘71_1: ‘72_’_1: "ty Cnml)(ly T Ty 1: a1y 1: "%y 1)(‘71; €2y * "7y C'n)
= (1: "0y 1: c‘;“‘la;c;, 1) Ty 1)

Hence &, 1s invariant in ®. We note next that an arbitrary ele-
ment (a1, @z, -+, @) of ® 1s a product a,’ay’- - -a,’y, ai’ 1n ©/.
Hence

(21) ® =®&'®,) - ©,.

In other words, the smallest subgroup of & containing all the &,
1s @ itself. Finally, we observe that

(22) @f’ ) @1’@2’ * et @f—l’@5+l’ et @ﬂ’ = 1) 7 = 1) 2) Y /2

since any element in ®,'®;" -+ &;_1'®;11" -+ - @, has the form
(@4, a3, *+*y as—1, 1, @541, * 5 @) and any element of &, has the
form (1, ---,1, a5 1, -+, 1); hence the equality

(41; a2y * 'y Bi—1, 1: Ai41y """y an) — (11 "%y 1) 723 1) T Ty 1)

implies that each 4; = 1. Thus, any element common to @,;" and
&y o ©i—1'®;1” -+ @, has all of its components g; = 1 and
this proves (22). We have therefore established the necessity
part of the following

Theorem 5. A necessary and sufficient condition that an
M_-group ® be isomorphic to a direct product &; X @z X+ X &, 15
that & contain invariant M-subgroups ®; isomorphic to ®; such
that (21) and (22) hold.

It remains to prove that the condition is sufficient. Hence
we suppose that our M-group & contains the invariant M-sub-
groups ®;’ isomorphic to ®; and satisfying (21) and (22). By (21)
any element of ® has the form 4,25’ - -+ 4,y 4 in @;/. Leti 5% §
and consider the product 2:/2;/(as) 7(a;/) 7. Since a;(a;")(ai") " €
®;', aia/ (@) a)t is 1n @. Since ;' (a) ' (ai) T & ®,

aia;i'(a;) 1 a;)e®/. Nowby (22) & N @ = 1. Hence

a;'a;i' (@)W a; )1 =1 and a/a/ = aja;.
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This shows that any element of one of the groups ®," commutes
with any element of a different ®;’. This implies that, if 2, ¢ &,
and 4,” e @/, then

(23) (ai'as’ -+ a.") (616 -+ 8,)) = (a1'61")(as’bs") - -+ (a.'8))).

We now consider the direct product @; X @ XX ®&,. Let
a; — a;’ be an 1somorphism of @; onto ®,’. Then we shall show

that the mapping

(24) (61, a2y, "y an) — 41’52’ re an’

1s an 1somorphism of @; X ®z X:--X ®, onto @. Since
(@1, a2y * =+ @n) (b1, bay * <+ 5 b)) = (@161, @262y « - -y Gnbn) —
(@161) (azb2)’ -+ (@abn)’
= (21°01")(a2'b3") - - - (an'bn")
= (a1'as" -+ a.") (6163 - - b2))

by (23), the mapping (24) 1s a homomorphism. Since (4;, s,
ce s @)m = (aym, agm, -+ -, anm) — (ay'm)(ag'm) -+ - (a,'m) =
(@1'as’ -+ a,”)m, the mapping 1s an M-mapping. The mapping 1s
a mapping onto & since any element of & has the form g,’a25" - - -
2.’y ai’ 1In @;. Finally, we prove that the mapping is an is-
morphism by showing that the kernel is the identity. Thus let

ai/’as’ -+ a,” = 1. Then

N —1 __ ! 4 4 4 !
(a;) = 41483 " B41 841 " Bn,

and by (22) 2,/ = 1. Hence, each 4; = 1 and this proves our
assertion.

Because of this result we shall say that an M-group & is a
direct product of the invariant M-subgroups ®&;, &g, ---, ®, 1f
the ©; satisfy

(25) O =010 G,y & N (G- G 1®syq -+ G,) = 1.

Strictly speaking, of course, we can assert only that ® is iso-
morphic to the direct product &; X & X--:-X &,. For the
sake of simplicity we do not emphasize this distinction and we

write @ = @&; X Gy X+ X G,
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As an 1llustration of the criterion given in Theorem 5 we prove
now the following

Theorem 6. If ® is a finite cyclic group of order n = p,"'p>" - - -
D’ Ds prime, ps; #E p; if i £ §, then © is a direct product of cyclic
groups of orders p*, i = 1,2, -+, 5.

Proof. Let &; be the subgroup of order »;* and set @& =
®1®; - -+ @,. This subgroup has order #’ divisible by p;* since
& D ®;. Hence #’ 1s divisible by # = p,"'ps" -+ - p,~. It fol-
lows that #” = # and that @ = ®. Next let ; be the subgroup
of @ of order #; = n/p;". Let 8; = $; N ®;. Then B; 1s a
subgroup of & whose order 1s a divisor of #; and of p»,”. Since
(7, ps) = 1, this implies that 8; =1, that 1s, $: N &; = 1
Since the order of $; is divisible by p,7, 7 # 7, $; D ®;. Hence
$i 20 -+ &;_1®;4y -+ @, Hence ®; -+ & _1®;41 -+ &, N
O:;=1forz=1,2, ---, s and the conditions of Theorem 5 are
fulfilled.

The conditions (21) and (22) of Theorem 5 concern relations
among the subgroups ®,;. It is often easier to verify the element
conditions given in the following

Theorem 7. If ® contains M-subgroups ®&;, ¢t =1, 2, -+, n,
such that (1) aa; = a;a; for any a;, € ®; and any a; ¢ ®;, 1 # J,
and (2) every element of ® can be written in one and only one way
as a product a18s + -+ Gn, a; 11 Oy then @ = @; X @ X+ - X G,

Proof. We note first that each ®&; 1s invariant in ®&; for, if
g:ie®;and 2 = a1a3 - -+ an, a; € ©;, then

1

gy, — —1, —1 _ -
A" g = a4, " ' Gy a1 g8 - B = 8; gia; € O

by (1). Since by (2), @ can represent any element of &, ®; 1s
invariant in @. Also by (2) @ = ;®; - -+ ®,. Any element of
&y - &;_1®;41 - - &, has the form a4y - - @i_14:41 -+ - an,
a; In ®;. If this element 1s also in ®;, then we have

a; = @183 *** Ai_18i41 " Gny, 4510 G
Hence

1..- 16;1 . s s 1 =4142"'4£—11@£+1"‘an-
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Since there 1s only one way of writing an element as a product
@143 - ** @ny, 4; In ©; this gives g; = 1. Hence ®&; N @, ---
&;—1®s51 -+ @, = 1. The theorem now follows from our first
criterion.

We remark also that the conditions (21) and (22) imply the
conditions (1) and (2) of the present theorem. This was estab-
lished in the proof of Theorem 5.

The following important results on direct products of subgroups
can now be easily derived:

A . If® = O X @2 XX G, then® = H; X H2 X+ X O
where $; = 10z -+ O,, $2 = 0,110,,42 --- Opys 205 Or =
Opys+1On, 142 = * O, Also

1 =0 X G XX G,,
(26) @2 = @ﬂ.1+1 X @nl-‘l—?. X X @‘np
O, = @n,_1+1 X @n,_1+2 XX @nf-

B. If § = H1 X H2 XX O, and (26) hOldS, then @ =

®; X @ X+ X O,.
We omit the proofs. We note also the following result.
C. If ® = & X ®z, then ®; =~ &/®;. This follows directly

from the second i1somorphism theorem; for ®&; 1s invariant in @.

Hence, ®/®; = 03/, == B2/®; N @ = &y/1 =~ G,

EXERCISES

1. Prove Theorem 6 by showing directly that, if 4 1s an element of order
7= p,%1p,% .. pfs, then &= &,4, ... b, where 4, has order p°.

2. Prove that, if & is cyclic of order n = 52, (5¢) = 1, then @ =H X &
where § is of order s and & is of order ¢

3. Prove that, if ® is a finite commutative group of order 7 = p%1p.?2 . . . p,%.
ps distinct primes, then @ = @; X & X X @), where ®; is a subgroup all of
whose elements have order a power of p..

11. Projections. Let ® = @&; X &y X:-- X &, where the ®;
are subgroups, and let 9,7 = 1,2, - - -, #, be a homomorphism of
®&; into another M-group ®. Assume, moreover, that, if x; e ®,,
x; € ®; and 7 # 7, then (xy;) (¥m;) = (%75 (x:m:). Now we can
write any xe® as xixg -+ X, &5 1n ®;, and we can define a
mapping 7 of @ into @ by
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(27) (x1%2 -+« Xn)9 = (""1771)(%'2772) e (X))

We can verify directly that  is an M-homomorphism of @ into .

This method of putting together M-homomorphisms of the ®;
is particularly important if @, too, 1s a direct product. Thus
let ® = G; X B X---X @, and let 5; be a homomorphism of
®;into ®;. Then x:m;: e ©; and x;4; € @;; hence, 1f 7 # 5, (xin3) (%;95)
= (x;m;)(x:n:). It follows that the mapping given by (27) 1s an
M-homomorphism of @ into @.

We apply this remark first to define certain endomorphisms
that can be associated with a direct decomposition of @ as
@ X ®y XX ®,. We define ¢; to be the endomorphism of
®& that 1s obtained by putting together in the manner indicated the
endomorphisms

xl"—)]-) * T Ty xi—-l_}lj Xg —2 Xy xt'+1_)1; Pty xn—i'l.
Then by (27)
(28) X€f = (xlxz T xﬂ)éf = X3

If x; is any element of ®&;, the decomposition of x; as a product
of elements of the ®&; reads »; =1 --- 1a;1 --- 1. Hence, 1t 1s
clear from (28) that x;e; = x; and x3¢; = 1 1f 7 %4, If x is any
element of &, then xe; = ;e ®;. Hence, (xe;)e; = xe; and (xe;)e;
= 1. Thus, if we denote the endomorphism ¥ — 1 by 0, then
we have proved that

(29) e’ =€, €6 =0 1f ;=7

We note next that the mappings e, are #ormal 1n the sense that
they commute with all the inner automorphisms of ®; for, if
X = XiXg + ¥» Where x; e ®; and 4 1s any other element of ®,

then
a xa = (a7 xa8) (@ xea) -+ (a7 x,0)

and @ 'x;a e ®;. Hence
(67 xa)e; = a txia = a ' (xe;)a

and this proves our assertion. Now we shall call an M-endomor-
phism e a profection if e is normal and idempotent (& = ).
A pair of projections e’ will be called orthogonal it e’ = 0 = €.
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Using these terms, we can say that the ¢; determined by the de-
composition @ = @; X @, X - -+ X @, are orthogonal projections.

There i1s another important relation connecting the ¢;. This
involves a second important composition of mappings in a group.
If »; and 53 are two mappings of the group @ into itself, then we
define the sum 5, + 72 by

(30) x(m + n2) = (xn1) (x12).

We have considered this composition before in the case of endo-
morphisms of a commutative group (§ 12, Chapter 1I). We have
seen that it, together with the product as resultant, turns the
set of endomorphisms of a commutative group into a ring. In
the non-commutative case the sum of two endomorphisms need
not be an endomorphism.

It 1s immediate from (30) that the sum composition for arbi-
trary mappings of ®& into itself is associative but not necessarily
commutative. The endomorphism O (x — 1) acts as an identity
for addition since

x(n 4+ 0) = (x9)(x0) = (x9)] = xp

%0+ 5) = (¥0)(x9) = 1(x9) = x1.
Also, if we define —9 by ¥(—1) = (x9) %, then

x(—q 4+ ) = (x9) (xg) =1
x(n 4+ (—=n) = (xn)(xn) ™ = L.

Hence —9 + 9 =0 = 9+ (—1). This proves that the set of
mappings of ® together with the addition composition is a group.

Multiplication of mappings 1s right distributive relative to
addition:

(31) p(n1 + n2) = pn1 + py2;

since

I

xp(m + n2) = ((xp)n1) ((x0)72),
x(pn1 + pnz) = (x(pn1)) (¥ (pn2)) = ((xp)n1) ((xp)n2).

The other distributive law does not hold in general. However, it
1s valid if p 1s an endomorphism, since
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x((n1 + n2)p) = ((x11)(xn2))p = ((¥11)p) ((¥n2)p)
= (x(n1p))(x(n2p)) = x(n1p + n2p).

We return now to our investigation of the projections e; deter-
mined by the direct decomposition @ = @&; X Gy X+ X &,. If

x 1s any element of &, ¥ = xyxg -+ &, 43 In ®;. Hence ¥ =
(xe)(xez) - - - (xe,) so that by the definitions of addition and of 1,
(32) €1+62+"'+€n=1.

The properties (29) and (32) are characteristic of the projec-
tions determined by a direct decomposition. Thus suppose that
€1, €2, '+, €, are normal M-endomorphisms satisfying (29) and
(32). Then ®; = ®¢; 1s an M-subgroup and ®; 1s invariant, since

a Yxe)a = (a xa)e;

1sin ®;, Sincex =x1 =ux(e; + e+ €.) = (xe;)(xea) - - -
(xe,), ® = @0 - -+ ®,. We note next that since ®; = Oe;, ¢;
is the identity mapping in ®;. Also if s # 7, then ¢; maps ®; into
1. Hence lf R @;‘ g @1@2 v @i_1@£+1 v @n; 2€; = 2 and
ze¢; = 1. Hence

®; N 10y - ;1041 -+ O, = 1,

and @ = ©; X @; X - X @, Since x = (ver)(xeg) -« - (¥€n),
xe; In ©;, the projections determined by this decomposition are
the given mappings ¢;. This closes the circle in our considerations.

EXERCISES

1. Show that if 7 is a normal endomorphism, then  has the form an = c(a,n)a
where c(a,n) is an element that commutes with every element of &y and ¢(aé,n) =
c(am)ac(ém)a _1]'

2. Prove that, if the center & = 1 or if the commutator group &® = @& (defini-
tion in ex. 3, p. 132), then the identity mapping is the only normal auto-
morphism of ®.

3. Let e, €, - - -, €, be the projections of a direct decomposition. Show that,
if 431, 4s, « - +, i, are distinct, then €, + €, +- - - + €, is an endomorphism. Show
also that ¢; 4+ ¢ = ¢ <+ €.

12. Decomposition into indecomposable groups. An M-group
® 1s said to be decomposable if @ = ®; X @; where each ©; 1s
a proper subgroup. Then also ®; % 1. Hence the projec-
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tion €, i = 1,2,1s ## 1, % 0. Thus, if @ 1s decomposable, then
there exist projections of & that are = 1,0. Conversely, this
condition 1s sufficient for @ to be decomposable; for let ¢; be a
projection # 1,0. Put ®; = ®&¢; and let @; be the kernel of the
endomorphism ¢;. Then &; and ®, are M-subgroups and, because
of the normality of ¢;, both of these subgroups are invariant. If
x 1s any elementof @, 2 = x(—¢; + 1) = (xe) ~Ix 1s in @, since

((xer) 'x)er = ((ver) e1)(wer) = (wer®) “Hxe) = 1.

Hence, x = (xe1)2 e ®1®,. Also, if x; 1s any element of &,;, then
X1 = X€1 fOl" a suitable X 1n . Hence X1 = X€ = xelz = X'1€1.
Hence &; N ®; =1. Thus & = ®; X ;. Since ¢ = 1,0,
®; # & and @, #* & and @ i1s decomposable. We can therefore
state the following

Theorem 8. A wnecessary and sufficient condition that an
M-group be decomposable is that there exist projections of ® that
are = 1, # 0.

We show next that any group ® # 1 satisfying the descending
chain condition for invariant M-subgroups permits a decomposi-
tion into indecomposable M-groups. The assumption we are
making 1s

I’ If®; D ®; D ®; D- - - 1s a decreasing sequence of invariant
M-subgroups of &, then there exists an integer N such that
@N ——— @N+l ———_ S T

We use this condition to show first that ® has an indecomposable
direct factor; for either & i1s indecomposable or & = ®; X &,,
where &; = @, # 1. If ®; i1s indecomposable, we have the de-
sired factor. Otherwise, &y = @41 X &y, where &y # Oy, 1.
Then @ D ®; D ®;; and either ®;; 1s indecomposable or &;; =
®111 X G112 with ®y11 # @y, 1. This gives the larger chain
& D@ O G O ®1y. All of the groups thus obtained are
invariant M-subgroups of . Hence 1’ guarantees that this proc-
ess leads in a finite number of steps to an indecomposable direct
factor.

Now let ®; denote an indecomposable direct factor of & and
write ® = &; X &,’. If & % 1, we can factor ;' = @, X &,
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where ®; 1s indecomposable. Then @ = ®&; X &; X ;" and
®," 1s invariant 1n @. Next either & =1 or & = @3 X &3’
where &3 1s indecomposable. As before @3’ is invariant in .
This process leads to a properly descending chain of invariant
M-subgroups ® D &' D ®;' D ®;' O :--. By asecond applica-
tion of I’ we conclude that &,” = 1 for some integer #». Hence
@ = ®; X & X+ X @, where the ®; are indecomposable. This
proves

Theorem 9. Any M-group #= 1 that satisfes the descending
chain condition for invariant M-subgroups can be expressed as a
direct product of a finite number of indecomposable groups # 1.

13. The Krull-Schmidt theorem. In this section we shall
prove a uniqueness theorem for direct decompositions into in-
decomposable groups. In order to establish this result we require
in addition to the descending chain condition I’ the following
ascending chain condition:

II'. If &; € ®, € ®; <--- is an ascending sequence of in-
variant M-subgroups, there exists an /N such that Gy = Gy

We consider first some important consequences of the chain
conditions. We prove first the following

Theorem 10. Let & be an M-group that satisfies the descending
and the ascending chain conditions for invariant M-subgroups. Then
if 1 is a normal M-endomorphism, n is an automorphism if either

(1) pis1-1 or 2) &y = @.

Proof. Assume that 1s 1-1. Then if 4" = @y" for some
r=12, .-, any y e ®3" 2 has the property that yg = x9" =
(x9n" ")y for a suitable element x. Hence y = x9" 1 e ®y" .
Thus also ®3" 2 = @y"~t. If we repeat the argument and con-
tinue in this way, we obtain finally & = ®&y. We therefore
see that, if @ D ®n, then & D &y D ®»? D--- 1s an Infinite
properly descending chain. Since 7 1s a normal M-endomorphism,
all the terms of this chain are invariant M-subgroups. We there-
fore have a contradiction to I’. Hence if 5 1s 1-1, ® = &y and
so 7 1s an automorphism. Assume next that & = ®y. Let
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o

B; denote the kernel of the endomorphism %%, £ =0, 1, 2, - -,
7° = 1. Since we have adopted the convention that 4° = 1,
Bo = 1. Also 1t 1s clear that 3;_; € 8. Suppose now that
B,_1 =3, and let 2e 3,_;. We can write 2 = y3. Then 1 =
29"t = (yn)9""! = yy". Hence y9" ' =1, and 2 = yp is sent
into 1 by 2. Thus 2¢38,_2. This shows that 8,_, = 8,_;
and continuing in this way we see that all the 8; = 1. Hence,
either 8y = lorl =3, C 8; € 3; C-:- 1s an infinite properly
ascending chain of invariant M-subgroups. This contradicts I1’.
Hence we see that, if &y = ®, then 8; = 1 and 5 1s 1-1.

If 5 is any endomorphism of a group, we call the totality of
elements 2 such that 29° = 1 for some integer s, the radical of 1.
Thus the radical R i1s the set-theoretic sum of the kernels 3; of
the homomorphisms 3. We use this concept to state the following
theorem which 1s the crucial step in the proof of the uniqueness
theorem.

Theorem 11 (Fitting’s lemma). Letr & be an M-group that
satisfies the chain conditions for invariant M-subgroups and let n
be a normal M-endomorphism of @. Then & = R X O where R
is the radical of v and  satisfres the condition Dy = .

Proof. We have the descending chain of invariant M-sub-
groups ® D @y D ®»% DO.--. Hence there is an integer » such
that ®&y" = @y, Then &y = Gy = @Gy™*2 =.... Let
$ denote this invariant M-subgroup. Next consider the ascending
chain 8o € 3y € 3, &--- where 3; i1s the kernel of 5°. Then
there 1s an integer s such that 8, = 8,41. It follows directly that
Bsp1 = Bsy2 =---. Hence 3, 1s the radical R of 4. Let # be
the larger of the two integers, r,s. If x 1s any element in &,
xn' = yu*t for a suitable y. Hence x = [x(y%%) "(y»?) and
[%(y2") 7t = (en®)(y9*) ' = 1. Thus, if we set 2 = x(yn*) 7,
then 29° = 1 and 2 e R. Since yy’ ¢ $ we have the decomposition
G =RH. NowletweR N $. Then w = up*and 1 = wyt = uy*.
Hence, u e R and un* = 1. Thusw = 1. Hence ® = % X &.

Since & = 3,, it is clear that 29* =1 for every 2e R This
means that 5 is a nilpotent endomorphism in ®. If & is inde-
composable, either @ = R or ® = P. In the first case 5 1s nil-
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potent and in the second case 5 1s onto so that by Theorem 10 4 is
an automorphism. This proves

Corollary 1. If ® is an indecomposable M-group that satisfies
the chain conditions for invariant M-subgroups, then any normal
M-endomorphism of ® is either nilpotent or an automorphism.

This corollary enables us to prove a very interesting closure
property for the normal nilpotent endomorphisms of an inde-

composable group, namely,

Corollary 2. Let & be as in Corollary 1 and let 5y and ns be
normal nilpotent M-endomorphisms, then, if g1 + no is an endo-

morphism, n1 + ne is nilpotent.

Proof. According to Corollary 1, if 5 = 5y 4+ #2 is not nil-
potent, then it is an automorphism. Let ™! be its inverse.
Evidently this mapping 1s a normal M-endomorphism and we have
mn Y+ et =1, or Ay + As = 1 where \; = 59!, Since 5,
is not an automorphism, its kernel 1s = 1. Hence this holds for
\;, too. Hence \;1s nilpotent. We note next that Ay = A;(A\; 4+ A,)
= A° F+ MAzand Ay = (M + M)A = A2 4+ NN, Hencez )\, =

A2A; and consequently for any positive integer 7

(33) (A4 A)™

m m
=M™ + (1 )7\1’"“17\2 + (2 ) MPTINE 4 A

Now let A\y" = 0, N\o* = 0 and take m = » + s — 1 in this rela-
tion. This gives the contradiction 1 = 0.

EXERCISE

1. Let & satisfy I’ and II’ and let 7 be a normal endomorphism. Let » be
the first integer such that @n" = ®» ! and let s be the first integer such that
Rs = Bs+1, B:i the kernel of .  Prove that r = s,

We can now prove the main theorem.

The Krull-Schmidt theorem. Let ® be an M-group that satisfies
the chain conditions for invariamt M-subgroups and let

(34) G =0 X & X X G,
(35) G =91 X P2 X+ X D¢
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e i

be two direct decompositions of ® into indecomposable groups.
Then s = t and for a suitable ordering of the O; we have ; = ®; and

(36) @ =1 XX O X Opypg X X G,
=1,2, .-, 5

Proof. Suppose that we have already obtained a pairing of
D1, D2, -, Or_1 respectively with &, ®;, ---, &,_; 1n such a
way that &; > 9,1 =1,2, ---,r — 1, and (36) holds for £ <
r — 1. (At the start we have r = 1.) Consider the intermediate
decomposition

(37) @ =91 X H2 XX Pr1 X O X+ X G,

Let Ay, A2, -+ -, As be the projections determined by this decomposi-
tion and let 4, 72, -+, #: be the projections determined by

¢ ¢
(35). Ewvidently we have A, = (E 17,-) A = D_ 7\ For any x
1 1

in ®, x9; e §;; hence if j <r — 1 we have by (37), x9; = xg\;
and xqA, = ¥gA\, = 1. Thus g\, = 0, and we have the
relation

(38) Ar = PN + 771'+1)\r R ol T\

4
We operate now in @,. Here A, = 1 so that 1 = ) y\,.. Also

any partial sum Zq; A, = (Z9;)N\, induces a normal M-endo-
morphism 1n ®,. Since ®, 1s indecomposable it follows from
Corollary 2 that there exists a #, » < u# < ¢ such that 5.\, defines
an automorphism of &,. We can renumber the $;,i =r,» + 1,
.-, so that , becomes $,. We proceed to show that &, =~ &,
and that (36) holds for £ = r.
Since 7\, 1s an automorphism in ®,, its kernel is 1. Hence
= 1 for z in ®, implies that z = 1. Thus %, maps ®, iso-
morphically into ,. Let §, = &,5, and let U, be the subset
of . of elements « such that A, = 1. Since \, is an isomorphism
of &, = Gy, O N U, = 1. Also if y is any element of §,, then
yAr &£ &, so that yA, = vg,\, for a suitable v in ®,.. We can write
y = (y(n,)7)(vn,) and note that y(vg,)™' eUl, and ovn, e ..
Hence $, = 1,9, = U, X 9,. Since 9, is indecomposable and
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Or # 1, 9 = O = &9~. Thus 3, 1s an 1somorphism of @&, onto
$r. Also A, 1s an isomorphism of o, = &,5, onto ©,.

Now A\, maps every element of $; X« X Hr_1 X @31 X---
X &, onto 1. Hence, since A, induces an 1somorphism of §,,

Or 2 (@1 T @r——l@r+1 P @s) = 1.

Hence

(39) &' =9 @r@r+1 e &
=91 XX X Gy X X Y.

If x = x1x5 -+ %y ¥, s for 1 <r — 1, x;e®; for j > r, then
the mapping

0: X1Xg **° Xg — Xy ° xr—-l(xrnr)xr+1 "t Xy

1s a normal M-endomorphism of . Evidently 6 1s an isomorphism

of ® onto &. It follows from Theorem 10 that & = &. Hence
(36) holds also for £ = . This completes the proof.

The foregoing inductive argument shows that if the §, are
suitably ordered then the normal endomorphism 5; defines an

isomorphism of &, onto $;. It follows that the mapping
defined by

X = (x1x2 P ""s)P: (""1’?1)(*"'2’?2) Ch (""8773)’

x;e ®; 1s a normal M-automorphism. Evidently ®u = 9..
Hence we can state the first part of the uniqueness theorem also
in the following way:

If (34) and (35) are two decompositions of an M-group with
chain conditions into indecomposable factors, then s = t and for a
suitable ordering of the ., there exists a normal automorphism p

such that ®u = ..

EXERCISES

In the following exercises it is assumed that both chain conditions hold for
invariant M-subgroups.

1. Prove that if the center of @ = 1 orif @ = G®, then & has only one de-
composition into indecomposable groups.

2. Let &y, &, - -+, & and ny, 9, * - -, 7. be the projections determined by two
direct decompositions of & into indecomposable groups. Show that, if the
order of the n’s is suitably chosen, then there exists a normal automorphism u
such that n; = p~mu, 1 = 1,2, .- -, s.
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14. Infinite direct products. We shall consider now some ways
of generalizing to an arbitrary number of groups the construction
of the direct product of a finite number of groups. In dealing
with an arbitrary set of groups we shall find it convenient to
suppose that the groups are labelled with subscripts « taken from
a certain set J. Also the same group can be counted many
times, that 1s, we do not require that @, ## ®g if « % 8. Thus
we have a set J = {a}, a collection of subgroups {®} and a
single-valued mapping a — ®, of J onto {®}.

We define first the product set ﬁ ®, of the ®,. The elements

aeJ

of this set are the ““vectors’ (--- g, --+) with the property that
the element in the “a-place” 1s in the set ®,. More precisely,
the elements of II are the single-valued mappings a — g, of J
that have the property that for each « in J the image element g,
1s 1n the associated group ®,. Accordingly, if g denotes an element
of II, then we can also use the usual functional notation g(a)
for the image element g.,.

If Jis the set {1,2, 3, -- -} of positive integers, then II is the set
of sequences (g1, g, -+ ) with the property that g; = g(¥) e &,
for all /. We remark also that, if /is arbitrary and all the @, = &,
then II is the complete set of mappings of J into ®. Following
our notation for rings (p. 110) we could also denote this set as
(8,/).

We now make use of the fact that the @, are groups in introduc-
ing component-wise multiplication in II. Thus, if g and %e1I,
then we define g4 by the equation

(40) (&%) () = g(a)h(a).

b

Since (gh)(a) e ®,, ghell. It is immediate that II and this
multiplication form a group. The identity element 1 of II is the
function such that 1(a) =1 for all @ and g7 (a) = g(a) . If
all the ®, are M-groups, then we can also regard II as an M-group.
For this purpose we define gm by

(41) (gm) () = g(a)m.
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[t is immediate that this satisfies the basic condition (1). We
call the M-group thus obtained the complete direct product of the
M-groups ®,.

Now let $ be any subgroup of the M-group II, and consider
the mapping of § into ®, defined by 2 — 4(a). Evidently by
(40) and (41) this mapping 1s a homomorphism of § into ..
The 1image $, 1s an M-subgroup of @,. Now we shall say that $
is a subdirect product of the @, if ., = @, for all o, that 1s, if the
homomorphism %2 — 4(a) 1s an onto mapping for every ae J.
It 1s clear that § 1s in any case a subdirect product of the image
groups ..

Of particular interest is a certain subdirect product that we now
define. We consider the totality, which we denote as |] ®,,

aed

of elements g e II that have the property:
g(a) =1 for all but a finite number of «.

If g(a) =1 for o # ay, ag, -+, o and A(a) = 1 for a # By, B,
-+, Bn, then (gh)(a) = 1 for @ # ay, -+, am; B1, ***, Ba. Hence
II 1s closed under multiplication. Also it 1s clear that 1 £ IT and
that if g e II then g~' ¢ II. Hence II is a subgroup of II.

For any v e J we define &, to be the subset of elements such
that g(a) = 1 1if & # 4. Then i1t is evident that &’ 1s a subgroup
of II and that the mapping 2 — A(y) is an isomorphism of &.’
onto @,. This implies, of course, that for each v ¢ J the mapping
h — A(v) 1s a homomorphism of II onto ®,. Hence II 1s a sub-
direct product of the @,. We shall call this particular subdirect
product the direct product of the ®@,. If [ 1s a finite set (and 1n this
case only), II = 1L

As 1n the finite case we can give a characterization of II in
terms of the groups & ’. Thus it is easy to see that the ® / are
invariant M-subgroups of II and that

1. HJ@a == [U@ﬂ!’]J
2. & N[U &,/ = 1.
a#8

Here as usual [U®,/] denotes the subgroup generated by the
groups &,’. Conversely, if ® 1s any M-group that contains 1n-



GROUPS WITH OPERATORS 161

variant M-subgroups ®,’ satisfying 1 and 2, then & 1s isomorphic
to the direct product of the &,. In this case, too, we shall say
simply that ® 1s the direct product of 1ts subgroups and accordingly
we write @ = I1@, .

EXERCISES

1. Let @ be a commutative group without elements of infinite order. For
each prime p let &, be the subset of elements of order a power of p. Show that

®, is a subgroup of & and that ® = [ ©,.

D
2. Show that, if the group & considered in 1 is the additive group of a ring,
then the O, are ideals. Hence the ring @ is the direct sum > & &, * and
®;&, = 0if p > ¢. ’
3. Let ® be an M-group and let { R4} be a collection of invariant M-subgroups

of & such that N, = 1. Show that ® is isomorphic to a subdirect product
of the groups ®, = &/R..

* This 1s the additive terminology and notation that correspond to the direct product II.



Chapter V1

MODULES AND IDEALS

The concept of a module that we consider in this chapter 1s a
composite notion based on the concepts of a ring and of a group
with operators. Modules are of fundamental importance in the
study of homomorphisms of abstract rings into rings of endo-
morphisms of commutative groups (so-called representation
theory). This was first recognized by Emmy Noether. Previ-
ously the concept of a module had made its appearance in the
theory of algebraic numbers.

In the first part of this chapter we introduce the basic module
concepts. We investigate further the chain conditions on modules
and the related Hilbert basis condition both in the general case
and in the special case of 1deals. The second part of the chapter
is devoted to the derivation of the fundamental decomposition
theorems for ideals in Noetherian rings (commutative rings with
ascending chain condition). Finally we take up the notion of
integral dependence. A special case of this is the concept of
algebraic dependence considered in Chapter II1I. The results that

we give here are therefore applicable also 1n the theory of fields.
1. Definitions

Definition 1. A left module is 2 commutative group M (com-
position addition) with an operaior set W that is a ring such that in
addition to the basic operator condition

1;. a(x +y) =ax+ ay, aed, x,yec M

we have also
162
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2;. (g + 0)x = ax + bx

3;. (ab)x = a(bx).

In the present context we employ the notation g; for the endo-
morphism ¥ — ax in the commutative group M. The conditions
2; and 3; are equivalent to the following conditions on these
endomorphisms:

2/ (@ +6)1 = a1 + &
3,/ (ab); = b4,

Hence we see that the basic mapping 4 — 4; 1s an anti-homo-
morphism of ¥ into the ring of endomorphisms of M. Conversely,
if MM 1s a commutative group with a ring ¥ as a set of operators
and if the mapping 2 — 4; 1s an anti-homomorphism, then I
1s a left Y-module.

We have seen that the condition 1 implies that

(1) a() = O, a(—x) = —ax.

Also since 2 — 4; 1s an anti-homomo1phism, 0; = O and (—g); =
—a;. Hence

(2) Ox =0, (—a)x = —ax.

The concept of a right module 1s defined 1n a similar fashion.
Here we have a commutative group with operator set ¥ that is a
ring, and we assume that the mapping of 2 ¢ % into the associated
endomorphism of 9 i1s a ring homomorphism. It is convenient
to denote the endomorphism associated with 2 by 4,. Also we
denote the product of 2 in ¥ and x in I by x4, so that xa, = xa.
Then our assumptions on this product can he exprecsed in the
following way:

1,. (x +y)a = xa + ya
2,. x(a + b)) = xa + xb
3,. x(ab) = (xa)b.

If % 1s a commutative ring, any homomorphism of % is also an
anti-homomorphism and conversely. Hence, any left module for
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such a ring can be regarded as a right module and conversely.
This 1s not the case for arbitrary rings. However, if % 1s arbi-
trary, and %’ 1s a ring anti-isomorphic to ¥, then any left (right)
%-module can be regarded as a right (left) A'-module. For this
purpose we may set x4’ = ax (a'x = xa) where 2 — 4’ 1s an anti-
isomorphism of  onto A’. Then it is clear that the correspondence
ad — a (@ — a,) 1s a homomorphism (anti-homomorphism) of
A’ as required.

We have seen that the additive group of a ring can be used in a
natural way as the group part of three groups with operators.
In the first of these we take the product of # in the ring ¥ by x
in the additive group MM = ¥,+ to be the ring product ax.
Evidently 2, and 3; hold. Hence this group with operators is a
left module. From now on we shall refer to this module as #4e
left module of the ring A. Similarly we obtain the right module
of the ring A by taking M = A,+ and defining xz for x in M
and 2 in % to be the ring product.

2. Fundamental concepts. From now on we deal exclusively
with left modules and we refer to these simply as “modules” or
“A-modules.” It 1s evident that what we say about these can
also be said about right modules.

Let I be an A-module and let N be an A-subgroup of M. By
this we mean of course that N 1s a subgroup of M and that N i1s
closed under multiplication by elements of %. Now it 1s clear
that the product 2y, 2 e A, y ¢ N satisfies 2; and 3;. Hence N 1s
a module. We call such a module a submodule of M.

If N 1s a submodule of M, then we know that the factor group
M/N can be turned into an A-group by defining

a(x + N) = ax + N.

Here again 1t is immediate that this composition defines a module.
We call this module the difference module of IM relative to N.
We shall have occasion in the sequel to deal simultaneously with
difference rings and with difference modules. It will therefore
be convenient to adopt the following notational convention:
difference rings will be denoted as before by %/®B, difference
modules will be denoted hereafter as It — N.
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The concepts of homomorphism, isomorphism, endomorphism and
automorphism for Y-modules are special cases of these concepts
for groups with operators. Hence the results that we derived for
these notions carry over without alteration to the module case.
For example, we know that the image My of a module under a
homomorphism 7 1s a submodule. Also the kernel & of this
mapping 1s a submodule of M and we have the “fundamental
theorem” that My =~ M — K. We know also that the submodules
of the left module of the ring A are just the left ideals &.

An important application of these 1deas 1s the definition of the
order 1deal of an element of a module M. Let x be -any element
of M and consider the mapping 2 — ax of A into M. Evidently
this 1s a group homomorphism. Moreover, since

(3) ba — (ba)x = b(ax),

it 1s an ¥-homomorphism. We can therefore draw the following
conclusions: The set Ax of image elements ax 1s a submodule of
M and the kernel . of the mapping i1s a left ideal (submodule)
of the ring %. By definition &, 1s the set of elements ¢ of U such
that cx = 0. We call this ideal the order of the element x. By
the fundamental theorem fx =~ YA — &,.

We consider next the kernel 3 of the r/#g anti-homomorphism
2 — a; of %A into the ring of endomorphisms of M. The set 3 1s
evidently the intersection N, of all the order ideals of the ele-
ments of M. The subring A; of image elements #; 1s anti-1somor-
phic to %/3. We shall call 8 the annihilator of the module M,
and we find 1t convenient to denote this 1deal as 0: .

More generally if ®; and N, are two submodules of M, then
we denote the set of elements ¢ of U such that

(4) N2 C Ny

by M;:N2. It is immediate that N;: N3 1s a (two-sided) 1deal in .
We refer to this ideal as the guotient of My by Na.  As we shall see
later, the study of quotient ideals is of great importance in the
ideal theory of commutative rings.

If B 1s a subring of the ring %, then it is clear that any #-module
can also be regarded as a B-module. Assume next that I is an
A-module and that U is an i1deal in A that 1s contained in O: M.
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We shall now show that we can regard I also as an %A/U-module.
Thus let 2, and 22 be any two elements of U that belong to the same
coset mod . Then @3 = 4y + #, # in 1. Hence for any x 1n
M we have gox = a1x + ux = a,x. It follows from this that
the product defined by

(5) (2 + N)x = ax

s single-valued from A/ X M into M. It can be verified directly
that this composition satisfies 1;, 2; and 3;. Hence we obtain
in this way an %/l1-module.

EXERCISES

1. If & is a left ideal of 2, let SN denote the set of finite sums Zhyx;, &; in
K, x; in M. Show that SN is a submodule of IN.

2. If & is a right ideal of U, the totality of elements y ¢! such that &y = 0
for all e & is a submodule.

3. Let A be a ring with an identity 1. Show that any Y-module permits a
decomposition N = 1IN & N where 1IN is the submodule of elements 1x, and
M is the submodule of elements annihilated by every 4 ¢ 3.

4. What are the following quotients in the ring of integers: (6):(3), (6):(15),

(3):(9)¢
5. Prove the following rules for quotients: (a) M1 Mo = A if Py DNy, (b)
(ml M N, N...N %3)% = NN Mo N 1.0 %k:%, (C)gﬁﬁmz = 9}11(9}1

+ MNs).

6. Show that, if R, S N,, then N, : N, = 0: (N, — N,).

7. Prove that, if Y is a ring with an identity, then &:9 is the largest two-
sided ideal of ¥ contained in the left ideal &.

3. Generators. Unitary modules. If X is a subset of a
module M, then the set (X) of elements of the form

(6) mxy+ moxe + -+ mx, + ayx1 + agxs +- - -+ a.x,

where the m; are integers, the g; are in ¥ and the x, are 1n X 1s
a submodule of M. Ewvidently (X) D X and (X) 1s contained in
every submodule of I that contains X. Hence we call (X) the
submodule generated by X. If (X) = M, we say that X 1s a set of
generators for M. If there exists a finite set of generators for IN,
then we call I a finitely generated module and, if there exists a
single generator, then M 1s a cyc/ic module.

The formula (6) that gives the dependence of an element on a
set of generators i1s somewhat complicated in that it involves
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coefficients m; that are integers as well as 4; that are in the ring
A. A simpler formula can be given in the special case of modules
that are unitary in the sense that AM = M. By this equation we
mean that every element of I can be written in the form Za; y,,
a;e U, y; e M. We shall now prove the following

Theorem 1. If X is a set of generators for a unitary module M,
then every element of I can be written in the form

(7) a1x1 + asxe + -+ a.x,
where the a; e N and the x; e X.

Proof. Let x be any element of MM and write x = Za;y; for
suitable ; in %, y; in M. Then there exist elements x; in X such
that

y: = Zmgx; + Zagx;, mgel, a;ed.

Then n = Ea;_yf = Emfjagx; + E@{ﬁfj%j — E!?jxj where

é‘j = Z mi;a; -+ Z ;8.
i )

In particular, we see that, 1f I 1s cyclic and unitary, then I
contains an element x such that every element of I is a multiple
ax of x. In particular, x has the form ex for a suitable ¢ in .
If M 1s unitary and A has an i1dentity 1, then 1 acts as identity
operator for M; for, if ¥ = ZTa;y;, then lx = 1(Za;y;) = T(1a;)y;
= Za;y; = x. Conversely, 1t 1s clear that, if 1 acts as identity
operator, then any x has the form 1x so that 90 is unitary. Thus,
if N has an identity, then the condition that M be unitary is equivalent
to the condition that 1, is the identity mapping in M. |

A unitary module for which the basic ring % 1s a division ring
is called a vector space. The detailed study of vector spaces con-
stitutes the subject matter of Volume II of these Lectures.

EXERCISES

1. Call a left ideal & regular if there exists an element e such that xe = x
mod J holds for all ¥ in Y. Prove that, if IN is a unitary cyclic module, then
M=~ N — & where & is a suitable regular left ideal.

2. Prove that, if & is regular, then & D &:9.

3. Let M be a simple A-module. Prove that either AP = 0 in which case
N is finite and has a prime number of elements, or N is a unitary cyclic module
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with any non-zero element as generator. Show that conversely either of these
conditions insures that I is simple. (Note that the first part of this exercise
is a generalization of ex. 1, p. 78.)

4. The chain conditions. The chain conditions that were
introduced for groups with operators play an important role in
various aspects of module and 1deal theory. As we shall see (next
section) the ideals in a polynomial ring over a field satisfy the
ascending chain condition and this fact alone suffices for the
derivation of the basic ideal decomposition theorems for such a
ring. On the other hand, the study of rings that satisfy the de-
scending chain condition for ideals forms an important part of
the so-called structure theory of rings.

In this section and the next we shall derive some of the simpler
implications of the chain conditions. We note first that, since
any module 1s a commutative group, the chain conditions for
modules can be stated in the following way:

Descending chain condition. If Ny DNy D--- 1s a decreasing
sequence of submodules, then there exists an integer /N such that
Ny = Nyyy ==

Ascending chain condition. If My C Ny T+ -+ 1s an increasing
sequence of submodules, then there exists an integer NV such that
Ny = Ryyr ==+

It 1s easy to see (using the axiom of choice) that the descend-
ing chain condition 1s equivalent to the

Minimum condition. In any non-vacuous collection {9} of
submodules, there exists a minimal submodule, that 1s, a sub-
module that does not contain properly any submodule of the
collection.

To establish this equivalence we assume first the descending
chain condition. Let {®} be a non-vacuous collection of sub-
modules. Select :M; 1n the collection. Either N, 1s minimal or
there is an RNy in {N} such that N, < N;. Either N, is minimal
or there is an N3 in {MN} such that Nz < N,. This process leads
in a finite number of steps to a minimal submodule; for otherwise,
by the axiom of choice, we obtain an infinite chain 9; D Ny O
N3 D- -+ contrary to assumption. Conversely, suppose that the
minimum condition holds, and let ; D Ny D--- be an infinite
decreasing sequence of submodules. Let Ny be a minimal element
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in the collection {MN:}. Then we certainly have Ny = N,

In a similar manner we can show that the ascending chain con-
dition 1s equivalent to the

Maximum condition. Any non-vacuous collection of sub-
modules contains a maximum submodule (one not contained
properly in any other module of the collection).

The maximum condition implies the following useful principle
of induction: Let P be a property of submodules of a module
such that P(M) holds if P(MN’) holds tor every N’ D N. Then
P(M) 1s true for all N. As in the case of the second principle of
induction for natural numbers (p. 9), the proof follows directly
from the consideration of the collection of submodules 9 such
that P(M) 1s false.

The next result that we shall derive 1s very useful in the theory
of ideals. We state it as the following

Theorem 2. .4 module I satishes the ascending chain condition
for submodules if and only if every submodule of M is finitely
generated.

Proof. We assume first that the ascending chain condition
holds and we let ¢ be any submodule of M. If N = 0, then N
is generated by 0. If N = O, let #; be any non-zero element of
N and let (#;) denote the submodule generated by #;. If (#;) C
N, let #3e N, ¢(#1). Then the submodule (#,,u4;) generated by
ui,ugs properly contains (#;). If (u3,us) € N, we can find a u3
in N such that (zxy,us,u43) D (#1,u;). After a finite number of
selections we obtain (u;, u#s, -, #n) = N, since otherwise we
obtain an infinite properly ascending chain of submodules (z#;) C
(u1,u2) C (Urytigous) -+ -

We assume next that any submodule 1s finitely generated and
we let N T Ny © N3 ©--- be an arbitrary ascending chain
of submodules. The proof that My = Ny41 =+ for some V is
similar to the proof of the ascending chain condition for principal
ideal domains (p. 121). As in the special case we note first that
the logical sum B = UN; 1s a submodule. Hence P = (u1, .,
.+« u,) for suitable #; in B. Now #; e N, for some A;. If N =
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max (43, A9, --*, A.), then every u; e Ny. Hence $ C Ny and
this evidently implies that Ny = Ny =+ -.

5. The Hilbert basis theorem. We suppose now that I is
a finitely generated unitary module. We shall prove that, if the
ring A satisfies the ascending (descending) chain condition for left
ideals, then the same condition holds for IN.

Let x1, x2, -+, %, be a fixed set of generators for M. Then if
N 1s any submodule of M, we define the subset F; (N) of A, 7 = 1,
2, --+, r, to be the totality of elements & for which there exists
an elecment

ox;j + biyixiyr + 0+ box,

in M. It 1s immediate that §;(N) 1s a left 1deal. Moreover, we
evidently have &;(N) C I,(P) for all 7 1f N 1s contained in the sub-
module $. We note next the following

Lemma 1. IfN C Pand $(N) = I;(P) for all 7, then N = .

Proof. lLet y = byx, + baxs +- -+ b,x, be any element of
B. Then &1 e F1(B) = F:(MN). Hence, there is an element y’ 1n
N of the form byxy + bo'xg +- -4 b./x,. Theny — y' = coxs +
caxs + -+ cx, wWhere ¢; = b; — 4/ and y — y" e B. Hence
ca e Fa(B) = F2(MN). Now there 1s an element y”’ 1n N of the
form coxy + c3'x3 4+ -+ ¢,’x,. Theny — y' — 9" = dgx3 +---
+ d.x,. Continuing in this way, we obtain y’, ¥/, -+, y in N

such that y — 9 —-.-—y® =0. Hence y =94+ y" +-.-.
+ 9y e N,
Now let t; € Ny, C--- be an increasing chain of submodules

of M. Then we can associate with this chain the » chains of left
1deals

83’(%1) QSJ(%2) .-y .7 = 1: 2: "ty T

If the ascending chain condition holds in %, we can find for each
7 an 1nteger N; such that

3iMy,) = i) =+ =12, -+,

Hence, 1f N = max (N, Ny, ---, N,), then &;(Nx) = S Rwp1)
=... holds for all . By Lemma 1 this implies that Ny =
Nvy1 =:-+. We have therefore proved the “ascending chain”
part of the following



MODULES AND IDEALS 171

Theorem 3. If U is a ring that satisfies the ascending (descend-
ing) chain condition for left ideals, then any finitely generated unitary
W-module M satishies the ascending (descending) chain condition for
submodules.

The proof of this result for descending chains 1s similar to the
above.

We wish to show next that, if % 1s a ring with an 1dentity that
satisfies the ascending chain condition or, equivalently, if every
left 1deal 1n U 1s finitely generated, then the same condition holds
for the polynomial ring A[x] 1n a transcendental element x.
The proof of this result 1s quite similar to the foregoing.

With each left ideal 0 of A[x] and each s = 0, 1, 2, - - - we asso-
clate the set J;(N) of elements & e A such that there exists an
element

bxd + 53.___1%-:«'—-1 + o by
in N. Then 1t 1s clear that &;(N) 1s a left ideal in A. Also if
bx? 4 b1k 4o 4 by e N, then so does
bxitt b e box = x(bxT 4 b7 s by).
Hence
Fo(M) € F1(N) S J2(M) S - -
Consequently the set (M) = UI;(N) 1s a left ideal. We shall

now use these remarks in proving the important

Hilbert basis theorem. Let U be a ring with an identity that
has the property that every left ideal in N is finitely generated.
Then the ring Ulx] of polynomials in a transcendental element x also
has this property.

Proof. Let N be an ideal and define the 1deals &,;(N) and F(N)
as above. Then there is an integer N such that Sy(N) = Jx 1 (M)
== S‘(ER). Let éjf,j = 0, 1,2, "',N; ] = 1, 2, LN // be
elements of A such that

SJ(%) - (&fl) é}'% "t Ty éfmf)
and let f;;(x) be polynomials in N such that

fr(x) = bjx? + ¢V djixd T2 - - -
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Then we shall show that &t = (fo1, - ‘,meo;fu, et ‘,f1m1; "ty
o fymy)e Thusletg =™+ co 6" 14 e Ifr<N,c =
8r1br1 + arobre +- -+ Gum b, for suitable 2., 1n %. Hence
g — Za,:fr:(x) 1s a polynomial in N of degree <r. If r > N,
Cr = arléNl -+ ar2é’N2 + - armNéNmN) Gri 1n 2[; hence g
Zarx" Nfn:(x) 1s a polynomial in N of degree <r. We can
therefore reach our conclusion by using induction on the degree
of g.

Hilbert’s theorem has an immediate extension to polynomials
in several elements. The result 1s the following

Corollary 1. Let N be a ring with an identity such that every
left ideal in N is finitely generated. Then every left ideal in N[x,, xo,
-~y x| has a finite set of generators.

An 1mportant special case of this result 1s the

Corollary 2. If W is a division ring or if N is a principal ideal
domain, then every left (right) ideal of U[x1, xo, -+, x| has a finite
set of generators.

EXERCISES

1. Prove that, insofar as the ascending chain condition is concerned, the as-
sumption that I is unitary is superfluous in Theorem 3.

2. Prove that, if I has an identity and every left ideal of U is finitely gen-
erated, then every left ideal in the ring A{x) of power series in x (defined in
ex. 1, p. 95) is finitely generated.

3. Let §§ be a finite field of ¢ elements and let X be the ideal in vy, %2, - - -,
x,] of polynomials m(xy, ---, x,) such that m(sy, ---, 5,) = 0 for all 5; in .
Determine a finite set of generators for X.

6. Noetherian rings. Prime and primary ideals. In the next
few sections we shall develop the basic results of the theory of
ideals in commutative rings with ascending chain condition.
We have seen that this class of rings includes the polynomial
rings §[x1, x2, - - -, &) where § 1s a field. The theory of polynomial
ideals 1s fundamental i1n algebraic geometry. The abstract
development of this theory on the basis only of the ascending
chain condition and commutativity was initiated by Emmy
Noether. For this reason one calls a ring that satisfies these two
conditions a Noetherian ring.

We assume first only that % 1s commutative. In the case of
principal ideal domains we have seen that an element 4 1s a divisor
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of an element 4 if and only if the 1deal (d) D (4). For this reason
if © and B are 1deals 1n any commutative ring, then we say that D
is a divisor of B and B is a multiple of Dif D DO B. Similarly we
are motivated by the principal ideal case in calling B; 4+ B,
the greatest common divisor of B; and B and By N B, the least
common multiple of B; and B,; for in a principal ideal domain
(61) + (b2) = (d) where d 1s a g.c.d. for 4, and 45 and (6;) N ()
= (m) where m 1s a l.c.m. for &; and 4,. We generalize next the
notion of a prime in the following important

Definition 2. A7 idea!/ B of a commutative ring N is prime if
ab = 0 (mod B) implies that either a = 0 (mod B) or & = 0 (mod B).

It 1s clear that this 1s equivalent to the condition that A/B
1s an integral domain. Also evidently A 1s an integral domain if
and only 1f 0 1s a prime ideal. The element p 1s a prime in the
sense of the definition given in Chapter IV if and only if (p) is a
prime ideal. Thus, for example, (x — y) 1s a prime ideal in
&lx,y]- An example of a prime ideal that 1s not principal is the
ideal (x,y) = (x) + () in §lx,y]. Here §lx,y]/(x,5) = §.

Any maximal 1deal 8B in a ring with an i1dentity 1s a prime; for,
in this case, A/B1s a field and hence also an integral domain. If Y
does not have an identity and B 1s maximal, either %/B 1s a field
or (A/B)2 = 0. In the first case B 1s prime while in the second
we have 4% C 8.

Suppose next that B is any ideal in the commutative ring ¥,
and let R = R(B) be the totality of elements z for which there
exists a positive integer r (possibly depending on z) such that
2" = 0 (mod B). Ewidently R can also be defined as the set of
elements 2 such that the coset Z = 2 + B 1s nilpotent in A/B. We
now show that R 1s an ideal. First if 27 = 0 (mod B) and 2 1s
any element of ¥, then (42)" = 42" = 0 (mod B). Next let 2,
andz, e Randletz;” =0 (mod B),7 = 1,2. Setr =r; +r; — 1.
Then

(Zl — Zz)r = Emszl‘zg"', 2+] =7r, m e l.

In each term we have either 7 > r; or j > r,. Hence my;,%2y =
(mod B). Thus (2; — 22)" =0 (mod B) and z; — 2, ¢ R. This
proves our assertion. The ideal R = R(B) 1s called the (#:))
radical of B. Evidently R 1s a divisor of B.
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Examples. (1) Let a = py1p.°2 - -+ p,’r be a factorization of the integer 4
into a product of prime powers p;* where p; 3 p; if £ 2 5. Then the radical
of (@) 1s (P1ps +++ p.); for if & = kp1ps --+ p, and ¢ = max (ey, €2, +*+, ),
then 4 = 0 (mod (4)). On the other hand, if a power of ¢ i1s divisible by a,
then ¢ itself is divisible by py p2 -+ p,. (2) Consider the ideal (x?% y3) In
3%, y). Evidently the radical contains x and y. On the other hand, if f(x, y)" =
0 (mod (x%, %)), then the constant term of f(x,y) is0. Hence f(x,y) = 0 (mod
(x,¥)). Thus the radical of (x%,y%) is (x,¥).

The radical of an 1deal 1n a Noetherian ring 1s #i/potent modulo
this 1deal. By this we mean that there exists an integer N such
that ®¥ = 0 (mod B). In order to prove this we choose a finite
set of generators 2y, 2g, -+ *, Im for R, so that X = (21, 22, - -+, Zm)-
Let »; be an integer such that 2" = 0 (mod 8B) and set N = r, +
ro +-+-+ rm — (m —1). Consider the product of any N ele-
ments of ®. Since any element of R has the form Za.2; + Zmz;,
a; e U, m;e I, such a product has the form

f1_ ¢ tm ' tm
2Ai. .21 %" B M % 2,

where the A£'s arein 9, the M’s are integersand 7, + 73 + -+ in
= N. Now it 1s easy to see that for each term we must have
i; > r; for some 7. It follows that this term 1s in 8. Hence any
product of N elements of R 1s in B and this implies that RV = 0,
(mod B).

We consider next the generalization of the notion of prime-
power element in a principal 1deal domain. There are several
possibilities for such a generalization, but the ‘“right” one for
the purposes of the decomposition theory is the one given in the
following important

Definition 3. An ideal B in a commutative ring 15 g primary
ideal if every zero divisor modulo B is in the radical, that is, if
ab = 0 (mod B) and b # O (mod B) implies that a = 0 (mod R).

It 1s a simple consequence of this definition that the radical
of a primary ideal 1s a prime ideal. For let ab be 1n the radical
R and suppose 2 = 0 (mod R). Then 46" = (@4)" = 0 (mod B)
for some positive integer ». On the other hand, a" # 0 (mod B).
Hence by definition 4" = 0 (mod ®) and this means that /™ =
(4" = 0 (mod B) for some s. Hence, 41sin ®. The radical of a
primary ideal is called its associated prime ideal.
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It 1s easy to see that (g) 1s primary in the ring of integers if
and only 1f ¢ = p° p a prime (ex. 1 below). We leave it to the
reader to verify also that the ideal (% y®) is primary in §x,y].
On the other hand, we note that the ideal (x*xy) is not primary in
&lx, y] even though its radical (x) 1s prime. For x # 0 (mod
(%*,xy)) and y # 0 (mod (x)) but xy = 0 (mod (x2,xy)).

EXERCISES

1. Show that (g), ¢ # 0, 1, 1s primary in [ if and only if ¢ = ¢, p a prime.

2. Prove that, if B is a prime ideal and €, and €, are ideals such that §;&, = 0
(mod B), then either §; = 0 (mod B) or &, = 0 (mod B).

3. Prove that R(B; N Ba) = R(B1) N R(By).

4. Prove that in a Noetherian ring B," © B, holds if and only if R(By)

C R(EBy).

7. Representation of an ideal as intersection of primary ideals.
The fundamental factorization theorem in the ring of integers
can be stated in terms of ideals as follows: Every ideal (4) can
be written 1n one and only one way as a product of prime ideals.
This does not hold for arbitrary Noetherian rings. A somewhat
weaker statement 1s that every 1deal 1n [ 1s an intersection (least
common multiple) of primary ideals; for if 2 = p;"p," -+ - p,
where the p; are distinct primes, then clearly

(@) = (1) N (p27) N---N (p,7).

We shall show in this section that this type of decomposition 1is
valid in any Noetherian ring. The question of uniqueness will be
taken up 1n § 8.

Assume now that ¥ 1s any Noetherian ring. We shall show
first that an 1deal that 1s not primary 1s reducible 1n the sense
that it can be expressed as an intersection of proper divisors.
Thus suppose that B 1s not primary and let 4 be an element which
is a zero-divisor modulo B but which does not belong to R(B).
Let 2 be an element such that 2d = 0 (mod B) and 2 # 0 (mod B).
Then aeB:(d), ¢ B. Hence B:(d) D B. Also since 4 ¢ R(B),
@) +8>D8Bfork=1,2,3, ---. Consider now the ascending
chain

(8) B:(d) C B:(d2) C B:(d% C---.
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Let r be a positive integer such that

(9) B:(d) =B:(d") =-.-..
Then we have the relation

(10) B=(B:(d) N @B+ (@));

forifueB+ @™, u=64+md™ + cd" where be B, me 1,
ce . Hence, if # e B:(d"), then

ud® = bd" + md? 1! 4+ cd* 11 = 0 (mod B).

This gives (md + ¢d)d*> = 0 (mod B) so that md + ¢d is in
B:(d?). But then, by (9), (md+ ¢d)d" =0 (mod B8). Hence
md' ™ + cd"1 =0 (mod B). Thus #eB. This proves (10).
Since both ideals 1n (10) properly contain B, 8B 1s reducible. Ewvi-
dently the result that we have proved can also be stated in the
following form:

Theorem 4. FEvery irreducible ideal in a Noetherian ring is
primary.

We shall prove next that every ideal in a Noetherian ring is a
finite intersection of irreducible ideals. To prove this we use the
principle of induction formulated in § 4, that i1s, we show that
for a given 1deal B the result holds, provided that it holds for
all 8; D B. Now either B 1s irreducible, in which case we are
through, or $ = 8; N B, where B; DB for i =1, 2. Then
B; and B, can be represented as intersections of finite numbers
of irreducible 1deals. Hence B, too, is such an intersection. In
view of Theorem 4 this result implies the fundamental decomposi-
tion theorem:

Theorem 5. Every ideal in a Noetherian ring is a finite inter-
section of primary ideals.

EXERCISES

1. Express (x%,xy) as a finite intersection of primary ideals.

2. Show that the ideal (x%,xy, y?) is primary and reducible in §[x,y].

3. (Fitting.) LetIN be an A-module (A arbitrary) that satisfies the ascending
chain condition. Suppose that there exists an N-endomorphism 8 of I that
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is not nilpotent and that is not an isomorphism of . Prove that there exists

two submodules : £ 0 in PN such that P, 11 Pa = 0.

4, (Fitting.) Let I be an A-module satisfying the ascending chain condition.
Suppose that the intersection of any two non-zero modules of N is % 0. Prove
that the set of nilpotent ¥-endomorphisms of It is an ideal R in the ring §
of NA-endomorphisms. Prove that if @ in € is a left-zero divisor, then a & R.

8. Uniqueness theorems. We shall say that the ideal B is an
irredundant intersection of ideals Qq, Qo -+, QU If = Q; N
Qe N--- N Q, and

D1 ﬂ---ﬂDf__l an‘+1 ﬂﬂDrDSB

forr =1,2, ---,r. Itisevident that, if we have any representa-
tion of B as a finite intersection of ideals, we can omit enough
terms to obtain an irredundant intersection. In particular, we
see that every ideal in a Noetherian ring 1s an irredundant inter-
section of primary ideals. We observe next that it is sometimes
possible to combine primary ideals to obtain primary 1deals, for
we have the following

Lemma 1. [If Q, and Qs are primary ideals that have the same
radical B, then Qi N Qg 15 primary.

Proof. We know that R(Q; N Q,) = R(Q) N R(Q2). Hence
R(EQ; N Q) = B. Now let 2z be a zero-divisor modulo 7 N Q.
Then we have a £ 2 0 (mod Q N Q) such that g6 = 0 (mod
Q1 N LQy). Since & =0 (mod Q1 N Q) we can suppose that
b2 0 (mod Q). Then @6 =0 (mod Q.), gives 2 = 0 (mod
R(LQ:)). Hence g ¢ P. |

We can use this result to combine primary factors that have the
same assoclated primes. In this way we obtain a representation
of B as irredundant intersection of primary ideals:

(11) B=0, N, N---N Q,

such that the associated prime ideals By, Bg, - - -, Br are distinct.
Even after these normalizations have been made we cannot assert
that the Q; are unique. For example, in §[x,y] we have the
distinct decompositions

(x*%xy) = (x) N (¥*xy, ¥°)
= (x) N (x%y + ax), ace§.
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We note, however, that the associated prime ideals of these two
decompositions, namely, (x¥) and (x,y) are the same and this
unicity carries over in general. This is the content of the

First uniqueness theorem. Lez =, N Qe N--- N Q, =
Q7 N QY N---N QY be two trredundant intersections into pri-
mary ideals whose associated primes are distinct. Then r = 5 and
the sets of primes of the two decompositions are 1dentical.

Before proceeding to the proof we shall derive a courle of simple
lemmas.

Lemma 2. L& Q be a primary ideal and let B be a prime
tdeal containing Q. Then P D P = R(Q).

Proof. If 2 =0 (mod P), 2" = 0 (mod Q) for some integer 7.
Hence 27 = 0 (mod PB’). Since §’ 1s prime, 2 = 0 (mod ¢').

Lemma 3. Let Q be primary, P its associated prime and let €
be any ideal not contained 1n P; then Q:€ = Q.

Proof. An element # in Q:€ satisfies the condition that
uc = 0 (mod Q) for all c e €. If we choose ¢ # 0 (mod PB), then
this implies that # = 0 (mod Q). Hence ©:€ C . The con-
verse O C Q:€ 1s clear.

We can now give the

Proof of the uniqueness theorem. Let §; = R(Q), B/ =
R(L;). There exist 1deals 1n the set Py, Boy, 5 By, Bi', B,
- ++, B’ that are not contained properly in any of the i1deals of
this collection. We may suppose that §; has this property. We
prove first that $; 1s also in the set B,’, Vo', -+, Bs’. If not,
then B, &€ B/ for i =1, 2, -+, 5. Hence, by Lemma 2, Q, &
B;/. By Lemma 3, Q/:Q; = Q. Hence

B:O;, =0 N QY N---N Q) Qy
= ::9;, N QL N--- N Q1O
=0,/ Ny N:--- N =81
Similarly, Q,;:Q; = Q;1f5 > 1. Hence
B=B:O;,=(Q;NQN--- NI =] NL3 N---N

and this contradicts the assumption that the first decomposition
1s 1irredundant,
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We now suppose that B; = PB;’. The 1deal Q; N Oy 15 pri-
mary with P; as associated prime. Hence, by the argument that
we have just used, Q;: (Q; N Q) = Q; fory > 1 and Q1 (L,
N Q) = Q/ for:i > 1. Hence

B:(Q; NQ)=L2, N3 N--- N LQ,
=0, Ny N---NQ,

and these are two irredundant decompositions of B:(LQ; N Q)
satisfying the conditions of the theorem. We can use induction
to conclude that the sets of prime ideals Ba, B3, + - -, B, coincides
with the set By, Bs’, - -+, Bs'. This concludes the proof.

We shall call the prime ideals By, B, - - -, B» whose uniqueness
has just been established the associated primes of the ideal 9.
If 3=29,/"N%K2" N---N L 1s any 1rredundant decomposi-
tion of B into primary 1deals, we can obtain a decomposition of
the type considered in the theorem by combining components
that have the same associated primes. Hence the distinct asso-
ciated primes of the primary ideals £,;”, Q5", -, ;" are the
assoclated primes of B.

It 1s an immediate corollary of the uniqueness theorem that
B 1s primary if and only if i1t has only one associated prime. In
other words, an ideal that 1s an irredundant intersection of pri-
mary ideals that do not all have the same associated prime is
not primary.

Before proceeding to the discussion of the next uniqueness
theorem we prove the following important

Theorem 6. [f B and € are ideals in a Noetherian ring, B.€ =

B if and only if € 15 not contained in any of the associated primes
of B.

Proof. let 3 =;N Qs N---N Q, be an 1irredundant de-
composition of B into primary ideals. Let B: = R(Q,) and as-
sume that € & P;. Then by Lemma 3, Q::6 = Q.. Hence

B:CE=(L;: N L, N---NK,):E
= 01 €N e:@N--- N Q,:C
=D1 ﬂDz ﬂﬂD,-=%
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On the other hand, suppose that € C B; for some 7, say, € C B;.
Then there exists an integer m such that €™ C £,. Hence

"R N---NLQ)ECE" N, N---N LY, CB.
Now let # be the smallest integer such that
(12) C"(Qy, N---N L, C 8.

Since 8 = Q; N--- N Q,1s1rredundant, # > 1. It follows that
" 1(Q N---NQ,)EB* On the other hand, by (12)
" (L, N---N Q,) C B:€. Hence B:€ O 8.

Suppose now that we also have a decomposition of € as an
irredundant intersection £y N Q' N--- N Q. with associated
Primes EBl’: %2’} "ty %s’- Then 1f ¢ C th QI’Q; "t Ds’ C By
Hence one of the £ and consequently one of the B, 1s contained
in PB;. Conversely, 1t 1s clear that, if B;/ C Py, then € C B,
C PB;. Using this remark, we can reformulate the criterion that
we have just derived as follows:

Theorem 6’. If B and € are ideals in a Noetherian ring, then
B:C = B if and only if no associated prime of € is contained in
any of the associated primes of B.

We shall now use this criterion to derive the second uniqueness
theorem. This concerns the 1solated components of an ideal 8.
If B 1s represented as an irredundant intersection Q; N Oy, N - - -
N L, where the Q, are primary and have distinct primes
B1s B2y -+ *5 By, then a particular L 1s called an isolated primary
component of B 1f the prime associated with Q contains no other
assoclated prime of 8. More generally we call ©; N L, N---
N Q;, an isolated component of B 1f no P, associated with the
displayed primary ideals contains any of the associated primes
that are not in this set. We can now state the

Second uniqueness theorem. Lt B=Q; N Qe N--- N Q, =
Q' N QY N--- N Q, be two decompositions of B that satisfy the
conditions of the first uniqueness theorem. Let€ = Q, N Q;, N---
N L, be an isolated component in the first decomposition and let
C’ be the isolated component of the second decomposition that has
the same set of associated primes as €. Then € = €.

* We use the convention that €°(3 Q02 MN+-- 1 ) = a2 N+ ] ),
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Proof. Write 83 =€ N D =¢ NP where D and D’ are
respectively the intersections of the Q; and the £, that do not
contain € and €’. Then the associated primes of © N P’ are
contained 1n none of the associated primes of €. Hence €:(D N

D) = €. Similarly, €:(D N D) = €. Hence
B:(ODND)=EC€:@ND)N)N@:(DND) =¢C

and
B:(D N DY)

Thus € = ¢'.

Note: Another uniqueness theorem, namely, the uniqueness of
the number of irreducible components of an 1deal will be proved
in § 5 of the next chapter.

(D NP N @:(D NP = ¢.

EXERCISES

1. Prove that, if all the associated prime ideals of £ are maximal, then there is
only one decomposition of & as an irredundant intersection of primary ideals
with distinct associated primes.

2. Prove that the radical of an 1deal in a Noetherian ring is the intersection
of the associated prime 1deals.

3. Prove that the radical 1s a prime 1deal if and only if the given ideal has
only one 1solated primary component.

4, If B is an ideal, we define the w-t4 power of B, B, to be N B, 7 = 1,2,
[

3, --+. Let 8B be an ideal in a Noetherian ring and write BB = 2, 1 e
... L, an irredundant intersection of primary ideals. Prove that ;D B
forj=1,2, ---, n. Hence show that B*B = B,

9. Integral dependence. The notion thatwe shall consider next
1s a generalization of the classical concept of an algebraic integer.
A complex number 1s called an algebraic integer 1f 1t 1s a root of a
polynomial with integer coefficients and leading coefficient 1.
Now let A be any commutative ring with an identity and let
g be a subring of A containing 1. Then we shall say that an ele-
ment g e A 1s integrally dependent on g or 1s a g-integer if g satisfies
an equation f(x) = 0 where f(x) e g[x] and has leading coefficient
1. If we write f(x)= x™" — y,4" "1 —. .- — y,_,, 5 1n g, then we
have

(13) a" =yt via+: -+ yoaa"
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It follows from this that all the powers of 2 are expressible as linear
combinations of 1, 4, - -+, 4! using coefficients in g.

Now we regard % as a g-module 1in the obvious way: the group
of the module 1s U,+, and multiplication by elements of g is ring
multiplication. Then the result that we have observed 1s that if
a 1s a g-integer and (13) holds, then all the powers of 2 are con-
tained in the finitely generated g-module (1, 2, +--, 2™ '). The
converse 1s clear; for, 1f a™ e (1, 2, - -+, a®™!), then we have a rela-
tion of the form (13).

In the remainder of this section we shall assume that g is
Noetherian and we shall investigate the totality of g-integral
elements. The main tool 1n our considerations will be the fol-
lowing module criterion

Theorem 7. If g is Noetherian, an element a e U is a g-integer
if and only if there exists a finitely generated submodule of U that
contains all the powers of a.

Proof. We have just seen that this condition is necessary.
Now let M be a finitely generated g-module containing all the
powers of 4. Since g 1s Noetherian, N satisfies the ascending chain
condition for submodules. Hence, there exists an integer 7 such
that 1n the ascending chain

(1) € Q,0) € (1,882 C---

we have (1, 4, .-+, a" ') = (1, 4, ---, a®). This implies that
a"e (1, a, --+, a7 ') so that we have a relation of the form (13).
We use this criterion to prove first the following

Theorem 8. The totality & of elements of N that are g-integral
25 a subring of N contgining g.

Proof. Any element ¥ of g satisfies an equation x — v = Q.
Hence, it belongs to ®. Nextlet zand 4e ® and let (u,, g, - - -, #,)
and (v, vg, - -, v;) be g-modules of A that contain all the powers
of 2 and of 4 respectively. The product of any element of («;)
by any element of (v;) is in the submodule

SB — (ulv].} ---, ulvt; usz, ---, u2vt; ---; > o usvt)-

Hence, any monomial of the form #%4* ¢ . It follows that all



MODULES AND IDEALS 183

the powers of g =+ & and of @b are in B. Hence, 2 + 4 and ab e ®
and ® is a subring of .

We shall say that g is integrally closed in 9 if @ = g, that 1is,
if every element of ¥ that 1s integrally dependent on g belongs
to g. We prove next

Theorem 9. The ring & of g-integral elements is integrally
closed in .

Proof. Let g be a G-integer and let

a" =got g1at ot gara” "

where the g; e . We can use this relation to show that every
power of 4 1s expressible as a linear combination of the powers 1,
a, -+-, a" 1 using coefficients that are sums of monomials 1n the
g’s. A simple extension of the argument used to prove the preced-
ing theorem shows that there exists a finitely generated g-sub-
module (w,, wq, +--, w;) of A that contains all the monomials in
the g’s. Then it is clear that every power of 2 is contained in

» . ] . _1
(wla' Cry Wy WGy, WG s e s Wia” )

Hence 2 ¢ @ as we wished to show.

If A = Fis a field and g = F, 1s a subfield, then an element of
% 1s Fo-integral if and only 1if 1t 1s algebraic over §o (§ 7, p. 100).
Hence, Theorem 8 states in this case that the set & of elements
of § that are algebraic over § 1s a subring of § containing §o.
Also we know that, if 4 1s algebraic, then $ylg] 1s a subfield.
Hence, if 2 # 0, a7 e Fola] € &. Hence, ® is a field. If we
take into account also Theorem 9, we can state the following
important theorem on fields.

Theorem 10. Let § be a field and o a subfield. Then the set ®
of elements of § that are algebraic over Fo forms a subfield of F
containing Fo. Any element of § that is algebraic over ® belongs to .

Now let § be any field, let ¢ be any subring of § containing 1
and let §, denote the subfield of §§ generated by ¢. If an element
g € § 1S g-integral, it is certainly algebraic over §,. Hence, its
minimum polynomial u(x) has coefficients in §p and leading coeffi-
cient 1. We shall now show that, if g is Gaussian, u(x) e g[x].
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To see this, let f(x) be some polynomial with leading coefficient 1
and other coefficients in g such that f(z) = 0. Then u(x) | f(x).
Now one of the irreducible factors of f(x) in g[x] is an associate of
n(x) 1n Folx]. If we call this factor u*(x), then u*(x) = Bulx), B
in Fo. Since the leading coefficient of f(x) is 1 and p*(x) | f(x),
we can suppose that the leading coefficient of u*(x) 1s 1. Then
the relation u*(x) = Bu(x) gives B8 = 1 so that u(x) = u*(x) e glx].
This proves the following

Theorem 11. Let g be a Gaussian subring of a field § and let
So e the subfield of § generated by q. Then an element ae § is
integrally dependent on ¢ if and only if it is algebraic over §o and
its minimum polynomial over Fo has coefficients in g.

This criterion 1s particularly useful if every element of § is
algebraic over §o; for in this case it asserts that an element of §
1s g-integral if and only if its minimum polynomial 1s 1n g[x]. We
note also that, since the elements of $; are algebraic over
and have minimum polynomials of the form x — v, the only
elements of §, that are integral over g are those in g. Then g
is integrally closed in §,. An integral domain is said to be 77e-
grally closed 1f it 1s integrally closed in its field of fractions, The
result that we have obtained can therefore be stated as the
following

Corollary. Any Gaussian integral domain is integrally closed.

10. Integers of quadratic fields. The theory of algebraic num-
bers is concerned with the arithmetic properties of fields of the
form Ry(0) where Ry 1s the field of rational numbers and 6 1s an
algebraic element. The primary object of study in this theory
is the ring & of elements of Ry(6) that are I-integers (or simply
integers of Ro(8)). In this section we give a brief introduction to
the theory of algebraic numbers by determining the ring of inte-
gers of quadratic extensions Ry(6).

Let m be an (ordinary) integer that has no square factors.
Then the polynomial x? — m is irreducible in [[x]. Since [ 1s
Gaussian, it follows that x> — m is irreducible in Rglx]. Hence,
we can construct an extension field Ry(6) where 62 = m. Such a
field is called a quadratic extension of the field of rational numbers.
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Any element of Ro(6) can be written in one and only one way
in the form # = o 4+ B8 where o« and Be Ry. If v = o + 89,
we define the conjugate (in Ry(6)) of u to be the element # =
a — 0 of this field. It 1s easy to verify that the mapping # — #
1s an automorphism of Ry(8). Also it 1s clear that, if # is not in
Ry, then # # u. We set

T(uw) = u+a =20 Nu) = uit = o — §°m,
and note that T(#) and N(«) are in R,. Hence, the polynomial
fleu) = (¢ — u)(x — @) = x* — T(w)x + N(u)

has rational coefficients. Evidently # is a root of f(x,2). Hence,
every element of Ry(0) 1s algebraic over R,.

If # ¢ Ry, u 1s integrally dependent on [ if and only if it belongs
to I. If u¢ Ry, then the minimum polynomial of # relative to
Ry 1s of degree >1. Hence, it 1s the polynomial f(x,4#). Then «
is an integer of Ry(6) if and only if the coefficients T(%) and N(#)
are integers. Thus we have the conditions

(14) 2ael, o — Bmel.

The first of these conditions implies that either o ¢ I or that
o 1s half of an odd integer, say, « = 2# + 1)/2. If a el the
second condition gives 82m e l. Since m has no square factors,
this implies that B e /; for otherwise 8 = 4146, where 4, and

b e I and b3 1s divisible by a prime p that does not divide ;.
Then

bi°m = (B2m)bs? =0 (mod p?).

Since p I 41, this implies that p? | m contrary to our assumption.
Suppose next that « = (22 + 1)/2, » in I. In this case the
condition that N = o® — B2m ¢ I gives

B°m = o — N = (4> + 4n — 4N + 1) /4.
Hence

(15) B2m = (4r + 1)/4, rel.

Now write 8 = 41637 where 4; and 45 are integers such that
(61,62) = 1 and multiply (15) by 4452. This gives

4&12?7'2 = (47' + l)bgz.
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Since m 1s square-free and (41,65) = 1, this relation implies that
bo? = 4 and by = +2. Thus 4, 1s odd and B is half of an odd

integer.
Now write 8 = (29 + 1)/2 as well as « = (2# + 1)/2. Since

N=o—pFPm=[4n"+4n+1 — (44 + 49 + 1)m]/4
is an integer, we have the congruence
47 +4n +1 — (44° + 49+ 1)m =0 (mod 4).

This reduces to 1 — 7 = 0 (mod 4) and m = 1 (mod 4). Thus
we see that, unless » 1s of the form 4k + 1, the integers of Ry(8),
0 = m, are necessarily of the form « + 86 where « and B are
ordinary integers. If m =1 (mod 4), then we also have the
possibility that an integer has the form « + B8 where @ and 8
are both halves of odd integers.

Conversely, if @ and Bel, then (13) holds and « + 86 is a
quadratic integer. Also, if m =1 (mod 4) and o and B are
halves of odd integers, then « + B6 1s a quadratic integer. Our
conclusions can be summarized as follows:

Theorem 12. [f m is a square free integer = 2 or 3 (mod 4), then
the ring & of integers of Ro(0) is the set of numbers of the form
o + B where a and Bel. If m =1 (mod 4), ® is the set of num-
bers of the form a + PO where o and B are either both in I or both

halves of odd integers.

EXERCISES
1. Show thatif m = —3, & is Euclidean.
2. Prove that there are just five negative values of m, namely, m = —1,

—2, —3, —7, —11 such that @ is Euclidean relative to the function 8(a) =
| N(a) |.*

* See for example Hardy and Wright, The Theory of Numbers, Oxford, 1938, p. 213. The
positive values of m for which this holds have been determined only recently. They are
m=2,3,56,7,11, 13,17, 19, 21, 29, 33, 37, 41, 57, 73, 97. See H. Chatland, O» the
Euclidean algorithm in quadratic number fields, Bull. Amer. Math. Soc., Vol. 55 (1949),
pp. 948-953. The question of the existence of a Euclidean division process that does not
necessarily make use of the function 8(a) = | N{a) | is discussed by T. Motzkin, in a
paper, The Euclidean algorithm, Bull. Amer. Math. Soc., Vol. 55 (1949), pp. 1142-1146.



Chapter VII

LATTICES

In a number of important considerations in the theory of
groups and of rings one 1s concerned primarily with certain dis-
tinguished subsets (invariant subgroups, ideals) of these systems
rather than with the elements themselves. This is particularly
true of the Jordan-Hélder-Schreier theory. Here the arguments
concern the system of M-subgroups and the compositions in this
system of intersection and group generated. Similarly, parts of
the theory of rings are concerned with the systems of 1deals (left,
right, two-sided) of a ring and the compositions of intersection
and sum 1n these systems. One 1s therefore led to the definition
of an abstract system—called a lattice—that includes these two
as instances. The concept of a lattice was first defined by Dede-
kind, but 1t attracted very little attention until quite recently
(around 1930). Besides the applications to algebra many applica-
tions to the foundations of geometry and to other fields have
been discovered. It should be noted also that prior to Dedekind’s
work a special class of lattices, Boolean algebras, had been intro-
duced by Boole.

In this chapter we shall give a brief treatment of the parts of
the theory of lattices that are applicable to group theory and ring
theory. The arguments that we shall use will often be repetitions
of those that we have encountered before. In such cases full

details will be omitted.
1. Partially ordered sets

Definition 1. . partially ordered set is a system consisting
of a set S and a relation > (“greater than or equals” or “contains’)

satisfying the following postulates:
187
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Pi. a>bandb > a hold if and only if a = b.
P, Ifa>bandb > c,then a > c.

If 4 and 4 are any elements of § we may have 2 > 4 or not;
in the latter case we write a 3’: b. Alsoifa > & and g # &, then
we write @ > &, and we agree touse 4 < g and 4 < 4 as alterna-
tives for 2 > & and a > 4.

Examples. (1) The set I of integers, the set P of positive integers and the
set R of real numbers are partially ordered sets relative to the usual > relation.
(2) The set P of positive integers, the relation 2> defined by the rule that
a > bifa|é. Itis clear that Py and P» are satisfied. (3) The set P of sub-

sets of an arbitrary set § with 4 > B defined to mean that B is a subset of A.
(4) The set L of subgroups of a group & with ;1 > . defined as in (3).

In any one of the examples, (2), (3), or (4), there exist elements
g and 4 that are not comparable 1n the sense that neither ¢ > 4
nor & > 4 holds. If every pair of elements of a partially ordered
set § is comparable (2 > 4 or 4> ), then § 1s said to be /inearly
ordered or is a chain. All of the examples in (1) are of this type.

In a finite partially ordered set the relation > can be expressed
in terms of the relation of covering. We say that 4, 1s a cover
of g5 if 23 > a3 and no # exists such that 4y > # > as. It 1s
clear that, if 2 > 4 in a finite partially ordered set, then we can
find a chain

G=ay > aqs > "> ag =0

in which each 4; covers 4;,;. Conversely the existence of such
a chain implies that 2 > 4. This remark enables us to represent
any finite partially ordered set by a diagram. One obtains such
a diagram by representing the elements of § by small circles
(or dots) and placing the circle for 2; above that for 4, and con-
necting by a line if 4; 1s a cover of 2,. Then @ > 4 if and only
if there 1s a descending broken line connecting 4 to 4. Some
examples of such diagrams are the following:



LATTICES | 189

Evidently the notion of a diagram of a partially ordered set
gives us another means to construct examples of such sets.

EXERCISES

1. Show that the partially ordered set of subgroups of a cyclic group of prime
power order is a chain.

2. Let § be the set of all functions which are continuous over the interval
0 £ x L 1. Definef 2 gif andonly if f(x) = g(x) for all x in the closed interval.
Show that the relation 2 is a partial ordering of §.

3. Obtain diagrams for the following partially ordered sets: the set of subsets
of a set of three elements, the set of subgroups of the cyclic group of order 6,
the set of subgroups of Ss.

2. Lattices. An element # of a partially ordered set § 1s said
to be an upper bound for the subset A4 of § if # > 4 for every
aeA. The element u 1s a least upper bound (l.u.b.) if u 1s an
upper bound and # < v for any upper bound v of 4. It 1s im-
mediate that if a least upper bound exists then it is unique.
Similar definitions and remarks apply to lower bounds. These
notions are fundamental in the following

Definition 2. A4 lattice (structure) is a partially ordered set in
which any two elements have a least upper bound and a greatest

lower bound (g.L.b.).

We denote the l.u.b. of zand 4 by 2 U & (@ cup 4" or “z union
6”) and the g.l.b. by 2 N4 (“a cap &’ or “a intersect &), If
a,b,c are any three elements of a lattice L, then (¢ U %) U ¢ >
a,0,c. Moreover, if v 1s any element such that v > 4,6,c then
v > (@ Ubd,c. Hencev>(@ U4 Uc. Thus(g Ubd) Ucisa
l.u.b. for 4,6 and ¢. A simple inductive argument shows that
any finite subset of L has al.u.b. Similarly any finite subset has
a g.l.b. If the set consists of gy, @2, - - -, @, then we denote these
elements by

a1 Uagg U---Ug, and ¢ Na, N---N g,

respectively.

A lattice L is said to be complete if any (finite or infinite) subset
A = {44} has a l.u.b. Ug, and a gl.b. Na..

The examples (1)~(4) of partially ordered sets listed in § 1 are
lattices. In the example (3) of subsetsof aset, 4 U Band 4 N B
have the usual sighificance of set-theoretic sum and set intersec-



190 LATTICES

T -

tion. In the partially ordered set of subgroups of a group @,
1 U 2 1s the group [9:1,92] generated by H; and 2 while
$1 N Hq 1s the usual intersection. All of the diagrams given in
§ 1 except the last one represent lattices. The lattice of subsets
of any set, and the lattice of subgroups of any group are complete.
The lattice of rational numbers (the usual >) is not complete.

It 1s worth while to list the basic algebraic properties of the
binary compositions U and N in a lattice, In doing so we shall
be led to a second and somewhat more algebraic definition of a
lattice.

We note first that the l.u.b. and the g.l.b. are symmetric func-
tions of their arguments, that 1s, g Ubé =4 U g and 2 N & =
b N a. Also we have seen that (¢ U 4) U ¢ 1s the l.u.b. of 4,4,c.
Since the l.u.b. 1s unique,

(aUb Uc=GUc)Ua=4aU (& Uo.
Similarly
(e Né) Nc=a N (& Nec).
It 1s clear that

aUa=a aflla=a

Since a Ub >4, (@ Ub) Na=4 Swmilarly (¢ Nb) Uag=a.
Conversely suppose that L is any set in which there are defined
two binary compositions U and M satisfying

L, alUb=5bbUa aNéb=560a

L (Ul Uc=aqUGUc), (@Nb Nc=an(Nc.
Lj alUa=a ‘allag=a.

L, @aUb) Na=a @NbH Uag=a.

We shall show that L is a lattice relative to a suitable definition of
> and that U and N are the l.u.b. and the g.l.b. 1n this lattice.

Before proceeding to the proof we remark that we have made
precisely the same assumptions on the two compositions U and
N. Hence, we have the important principle of duality that states
that, if § 1s a statement which can be deduced from our axioms,
then the dual statement §' obtained by interchanging U and N
in § can also be deduced.
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We note next that, if 2 and 4 belong to a system satisfying
L;-L,, then the conditions ¢ U 4 = g and 2 N 4 = 4 are equiv-
alent; for, if 2 Ub =24 holds, then e Néb = Ub NL&=2¢
and dually 2 N 4 = 4 implies 2 U 4 = 4. We shall now define
a relation > in L by specifying that 2 > 4 means that either
g Ub=a or a NbH =4 Ewidently in dualizing a statement
a2 > & has to be replaced by 4 > a.

We shall now show that the basic rules P,—P; for partially
ordered sets hold for the relation that we have introduced. Sup-
pose that 2 > 4 and 4 > 4. Then s U4 =4 and 6 U g = 4.
Hence by the commutative law ¢ = 4. Also by Lz 2 U g =4
so that @ > 4. This proves P;. Next assume that ¢ > 4 and
b >¢c. Thena Ub=agandéb Uc =54 Hence,

g Uc=((@Ub Uc=aU @l Uc)=agUb=a

and 2 > ¢. Hence Ps holds.

Since (@ U b)) Na=2a,a Ub>a SmlarlygaUs >4 Now
let ¢ be any element such that ¢ > gandc¢ > 4. Thena U ¢ = ¢
and & U ¢ = ¢. Hence

(@Ub) Uc=alU (Gl Uc)=aUc=c

and ¢ > 2 U 4. This shows that 2 U 4 1s a L.u.b. of 2 and 4.
By duality 2 N1 41s a g.l.b. of 2 and 4. This concludes the proof
that a system satisfying L;—L4 1s a lattice.

A subset M of a lattice L 1s called a sublattice 1f 1t 1s closed rela-
tive to the compositions U and N. Itisevident that a sublattice
1s a lattice relative to the induced compositions. On the other
hand, a subset of a lattice may be a lattice relative to the partial
ordering > defined in L without being a sublattice. For exam-
ple, let @ be a group, let B be the lattice of subsets of &, and €
be the lattice of subgroups of @ Then it i1s clear that € C B,
and that $; > O: has the same significance in these two sets.
On the other hand, if §; and $; are subgroups, then $; U H2 as
defined 1n P 1s the set sum of these groups. In general, this is
not a subgroup; hence, 1t differs from the $; U 92 defined in
as the smallest subgroup of & containing 9; and ;.

If 4 is a fixed element of a lattice L, then the subset of elements
x such that ¥ > 4 (¥ < 2) 1s evidently a sublattice. If 2 > 4, the
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subset of elements x such that 2 > x > 4 1s a sublattice. We call
such a sublattice a (closed) interval (quotient) and we denote it as
I[a,b].*

The definition of a lattice by means of the postulates L;-L,
leads also to the useful definition of homomorphism. A mapping
a — 4’ of a lattice L into a lattice L’ 1s called a Aomomorphism
if (@ Ub) =a" Uband (e N4b) =4 N&. Ifsucha mapping
is 1-1, 1t 1s an isomorphism. A useful criterion for isomorphism
is the following

Theorem 1. A 1-1 mapping a — a’ of a lattice L onto a lattice
L' is an isomorphism if and only if a > b in L implies and is
implied by a’ > &' in L.

Proof. A mapping 2 — 4’ of a lattice L into a lattice L’
1s called order preserving if @ > & implies that &’ > 4. Ifa — 4
1s an isomorphism and 2 > 4, then 2 U & = 2. Hence 2’ U 4’
=g’ and ¢’ > 4. Thus 2 — 4’ 1s order preserving. Evidently
the inverse mapping 4’ — 2z 1s also order preserving. Conversely,
suppose that 2 — 4’ 1s a 1-1 mapping of L onto L’ which is order
preserving and whose inverse 1s also order preserving. Let
d=4q Ub Then d > a,b so that d' > a’,4’. Now let ¢ be
any element of L’ such that ¢/ > 4,4’ and let ¢ be the element of
L whose image 1s ¢. Then ¢ > 4,6. Hence ¢ > d and ¢ > 4.
This shows that &’ = 2" U 4. Similarly (¢ N %) =4’ N &'.

An element 1 of a partially ordered set is called an g// element
(unit, identity) if 1 > g for every a4 in the set. Dually, an element
0 1s called a zero element 1f O < a for every a. Evidently, if these
elements exist, they are unique.

EXERCISES

1. Show that the set of invariant subgroups and the set of M-subgroups (for
any operator set M) are sublattices of the lattice of subgroups of any group.

2. Let § be the partially ordered set of ex. 2, p. 189, Definef Ugand f{] g
suitably and prove that § forms a lattice with respect to these compositions and
the given partial ordering. Is § a complete lattice?

3. Show that any complete lattice has a zero and an all element,

4, Prove that a partially ordered set with an all element in which every
non-vacuous set has a g.l.b. is a complete lattice.

* This notation 1s more convenient for the algebraic applicatons than the usual one
in which the smaller endpoint is displayed first.
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3. Modular lattices. One of the compositions of a lattice,
say U, can be regarded as the analogue of addition in a ring,
while the other can be taken to be the analogue of multiplication.
It 1s therefore natural to investigate lattices that are distributive
in the sense that

(1) a NG Ue)=((@Nb U (a Nc)

holds. Important examples of such lattices do exist. For in-
stance, the lattice of all subsets of a set relative to the usual set
theoretic sum and intersection 1s distributive. This is indicated
in the hgure

and is readily proved in general. Another example of a distribu-

tive lattice 1s the lattice of positive integers in which 2 > 4 means
that 2 | 4. Here a U 4 is the g.c.d. (a,6) and 2 N 4 is the l.c.m.
[a,6] of @ and 4. Then (1) reads

[4,(65¢)] = ([4,0),]a,¢])-

The proof of this follows easily from the properties of (4,4) and
[a,6] (ex. 2, p. 120).

It 1s clear that 1n any lattice s N (6 Uc¢) >a Né and a N
(6 Uc) > a Nec. Hence

aN (G Uc)>@Né) U Ne)

always holds. In order to establish distributivity it therefore
suffices to prove the reverse inequality

a NG Uc)L(@aNéb) UlaNo).

We remark also that the condition (1) 1s equivalent to the dual
condition:
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(1) aU (G Ne)=(U?b N(aUbo.

For if (1) holds, then

@Ub) N@U)=(aU?b Na) U((egUsd Nc)

=4 U ((a Ub) N
=g U ((eNc) U Nc))
=@U (N U@ Nc
=4 U (& N o).

Dually (1’) implies (1). Thus the assumption of (1) 1s equivalent
to the assumption of (1) and (1’). Hence, 1t 1s clear that the
principle of duality holds also for distributive lattices.

The most important lattices that occur in algebra (e.g., the
lattices of 1deals of rings) are not distributive. However, a num-
ber of these do satisfy a weaker form of (1) that reads as follows:

Ly Ifa>4,thena N Uc)=6U(z No).

Since & = a 0 4 the right-hand side can be replaced by (¢ N 4) U
(2 N ¢). Thus our assumption amounts to the distributive law
for triples a,6,c such that 4 > 4. We now state the following
important

Definition 3. A Jattice is called modular (Dedekind) if
satisfies the condition Ls.

The importance of these lattices for the applications to other
branches of algebra stems from the following

Theorem 2. The lattice of invariant subgroups of any group is
modular.

Proof. Let ® be the given group and let $1,92,93 be invariant
subgroups such that $; > $2 (H1 2 $2). Consider the inter-
section O; N (H2 U P3) where H2: U O3 now denotes the l.u.b.
of O, and 93 in the lattice of subgroups. Thus H; U 3 is the
subgroup generated by s and $;. Since the §; are invariant, we
know that s U O3 = 293 = P3P2. Hence, if 2e 9, N
(D2 U D3), 2 = A1 e O1 and @ = Aghz where Az e Op and 43 € Ds.
From A; = Aohs we obtain As Ay = k3. Since 1 > 9. the
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left-hand side of this equation represents an element of ;.
Hence %3 € 1 and so A3 e 1 N $3. We have therefore proved
the essential inequality

1 N (H2 U P3) < H2 U (H1 N Ha)

Previously we had noted that the reverse inequality i1s a general
lattice theoretic property. Hence

1 N (@2 U $3) = $: U ($1 N $3),

and the theorem is proved.

It 1s clear that any sublattice of a modular lattice is modular.
Hence the lattice of invariant M-subgroups of any M-group is
modular. Hence, also the lattice of submodules of any module
and the lattices of ideals (left, right, two-sided) of any ring are
modular. On the other hand, the lattice of all subgroups of a
group 1s generally not modular. This fact makes it somewhat
unnatural to try to subsume all of group theory under the theory
of lattices.*

We note that the principle of duality holds in modular lattices;
for the dual of Lsreads:1fa < 4,thenga U (2 N¢) =4 N (a U o),
and this clearly means the same thing as Ls. An alternative useful
definition of a modular lattice can be extracted from the following

Theorem 3. A lattice L is modular if and only if @ > b and
alUc=6VUc,a Nc=25N0cforanycimply that a = b.

Proof. Let L be modular and let 4, 4, ¢ be elements of L
such thatg >dandg Uc =46 Uc,a Nc=5MNc. Then

g=afl(aUc)=aN (G Uc)=4(U(anNoc
=5 U (G N¢) =b.

Conversely suppose that L 1s any lattice that satisfies the condi-
tion of the theorem. Let 2 > 4. Then we know that 2 N
(6 Uc)>26U(@aNc¢) Also

N @GU))Nec=aN((Uc) Ne)=aNc
and

eaNc=@Nec)NceL(bU(@Ne)) Nec<LaNce

* See the remarks on the Jordan-Hélder theorem on p. 200.
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so that
G U@Nc) Nec=a Nec.

By duality we have
(aN@UVUe))Uc=4%Uc

U @Nc) Uc=24Uvc.
Hence,
a NG Uc)=46U (a No)

and L 1s modular.
We establish next an analogue for modular lattices of the second
isomorphism theorem for groups, namely,

Theorem 4. If a and b are any two elements of a modular lattice,
then the intervals I{la U b, al and 116, a 0\ b] are isomorphic.

Proof. Let x be in the interval I[z U 4, 4], so that 2 U & >
x>a. Thenbd >x Nb >4a Nbandx N bisin the interval 1[4,
a N 4. Similarly, if yisin I[6, 2 N &), then y U gisin I[g U 2, 4].
We therefore have a mapping ¥x — x N4 of I[la U 4, 4] into
I[6,a N blandamappingy — vy U gof I[b,a N b]into I[a U 4, al.
We shall now show that these are inverses of each other so that
either one defines a 1-1 correspondence of one of the intervals
onto the other. Let x e Ila U 4, a]. Then since ¥ > 4,

(x N&) Ua=x N (a U?).

Since ¥ < a2 U 4, this gives (x N 4) U g =x Dually we can
prove that if y e I[4, 2 U 4], then (y U g) N & = y. This proves
our assertion. Since our mappings are evidently order preserving
they are lattice isomorphisms.

This theorem leads us to introduce a notion of equivalence for
intervals that is stronger than isomorphism. First we define [[«,v]
and I[wy] to be transposes (similar) 1f there exists elements 4,4
in L such that one of the pairs can be represented as [z U 4, 4]
while the other has the form /[4, 2 N 4. The intervals [[u,v]
and [[w,t] are called projective if there exists a finite sequence

I[u,v] = I[ul,UI], I[u2502]j R [[unyvﬂ] = I[W,f]
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beginning with /[«,v] and ending with /[w,#] such that consecutive
pairs are transposes. It is immediate that the relation that we
have defined 1s an equivalence. Also by Theorem 4 projective
intervals are 1somorphic.

We observe now that in the lattice of invariant M-subgroups
of any M-group ® projectivity of a pair of intervals I[,8], /[, N]
implies M-1somorphism of the factor groups /8, M/N. It
suffices to consider a pair of transposed intervals, say, /[H; U .,
1] and I[Dy, H1 N H2]. For these, the isomorphism of (H; U
92)/ 91 and H2/(H1 N H2) follows directly from the second iso-
morphism theorem for groups. This remark will enable us to
translate some of the lattice theoretic results to results on group

1Isomorphisms.

EXERCISES

1. Show that, if a lattice is not distributive, then it has a sublattice of order S
whose diagram is either the first or the second on p. 188. Show also that a
non-modular lattice contains a sublattice whose diagram is the first on p. 188.

2. Show that the lattice of subgroups of A4 is not modular,

3. Prove that, if & is a group that is generated by two elements 4 and 2
such that g?" = 1, 4 = 1, 67 'ab = 4™ where n” = 1 (mod p™), then any two
subgroups of & commute. Use this to show that the lattice of subgroups of &

1s modular.
4. Show that if 4 covers a ) & in a modular lattice L then ¢ U & covers &.
A lattice that has this property is called semi-modular. Verify that the lattice

whose diagram 1s

1s semi-modular but not modular.

4. Schreier’s theorem. The chain conditions. lLet 4 and 4 be

two elements of a modular lattice satisfying 2 > 4. We consider
now the finite descending chains

(2) G=a120a2>0a3> > Gny1 = b

connecting ¢ and 4. One such chain is called a refinement of a
second 1f 1ts terms include all the terms of the other chain. Two
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chains are said to be eguivalent if it is possible to set up a 1-1
correspondence between the intervals I[a;,4;11] of the two chains
such that corresponding intervals are projective. We use these
terms in formulating the analogue of Schreier’s theorem on groups
as follows:

Theorem 5. Any two finite descending chains connecting the
elements a,b (a > b) of a modular lattice have equivalent refinements.*

For the proof we require the analogue of Zassenhaus’ lemma
(third isomorphism theorem). This 1s the following

Lemma. Let ay, ai', as, as’ be elements of a modular lattice
such that ay > ay, as > as'. Then the following three intervals

I[(al ﬂ dg) U al’, (al ﬂ az") U al’], I[dl ﬂ a2, (al’ ﬂ dz)
U (a1 N ﬂz')]; I[(ﬁl N ay) U @2’, (@ N az) U 2
are projective.

Proof. Since the second interval is symmetric in the subscripts
1 and 2 and since the third is obtained from the first by inter-
changing 1 and 2, 1t suffices to prove that the first and second are
projective. Now set

= g1 1 ag, = (a1 Nay’) U a.

Then
aUb= (a1 Nay) U(a Na') Uay = (a1 Na) Ua

and

g Nb= (a1 Naz) N ((ar Na) Ua
e (al n ag’) U ((al ﬂ dg) ﬂ dlf)
= (a1 N a2’) U (&' N ay).

This shows that the first interval has the form I[z U 4, 4] while
the second has the form [[a, 2 N 4]. Hence, these intervals are

projective.

Now let
(3) a=a1.>_52.>_"'_>_d3+1=&
(4) a=0by >2byg >---2bty1 =0

* This form of the theorem is due to Ore.
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be two descending chains connecting 2 and 4. As in the group
case we introduce the elements

Aik = (a,- ﬂ&k) Ua,:+1, k=1,2, --',Z‘—I—l

ér‘k-; = (4,' ﬂbk) U J’k+l; ] = 1,2, '-',J'—|— 1.
Then

(5) a=a11 2 a122""2 241,141 = G21 = G232 2+ 2 d3,111

v
v
v
A

3
|
A

(6) a

by1 =012 2 2 byeq1 = bay = ba2 22> baeqy

are refinements of (3) and (4) respectively. By the lemma
Iaix, aixs1] and I[bei, by, iy1] are projective. We can therefore use
the correspondence /{4, @i x41] — I|bkiy bx,i11] to prove Theorem
5.

The refinement theorem which we have just proved can be used
to derive the Jordan-Hoélder theorem for modular lattices. First,
we define a composition chain connecting a, b, 2 > 4 to be a finite
sequence

a=0a1>a3> 43> "> agny1 = b

in which each 4; 1s a cover of 2;,;. As 1n the group case we can
establish directly the following Jordan-Hélder theorem:

Theorem 6. [fa =a1 > a3 > > gpy1 = b anda = ay >
a2’ > > amy1 = b are two composition chains connecting a
and b in a modular lattice L, then n = m and there is a 1-1 corre-
spondence between the intervals Ilas,a; 1), Ila/,a;.1") such that corre-
sponding intervals are projective.

We assume for simplicity now that L contains 0 and 1, and
we take 2 = 1, & = 0 in the foregoing discussion. Then if there
exists a composition chain connecting 1 and 0, L is said to be of
Jfinite length. The number of intervals in this chain, which is
uniquely determined by L, is called the /Jengt/ (dimension) of L.

As 1n the group case (p. 142) we can prove easily that a modular
lattice with 0 and 1 is of finite length if and only if the following
two chain conditions hold:



200 LATTICES

.

Descending chain condition. There exists no infinite properly
descending chain, 2y > 42 > a3 > -+ 1n L.

Ascending chain condition. There exists no infinite properly
ascending chain a3 < g3 < g3 <::- 1n L.

Assume now that L is modular with 0, 1 and that L has finite
length. If 2 is an element of L, the sublattice L, of elements
x < g satisfies the same conditions that we have imposed on L.
Evidently g is the all element of L,. We call the length of L,
also the rank (dimensionality) [(a) of a. If a > b, then 1t 1s clear

that
[(a) = [(6) + length [[4,6].

Hence for any ¢ and 4 in L we have
[(g U b)) = l(a) + length I[la U 4, 4],
[(6) = l(a N &) + length 1[4, a N 4]

Since I[a U 4, al and I[6, a N 4] are 1somorphic, they have equal
lengths. Hence

[(a Ub) — l(a) =1(6) — I(a N b,

or
(7) (a Ub) =1a) + () — (a N b).

This formula is called the fundamental dimensionality relation for
modular lattices.

The results of this section yield again Schreier’s theorem and
the Jordan-Hélder theorem for snvarignt M-subgroups of any
M-group @. Isomorphism of the factor groups determined by the
intervals of the chains 1s assured by the projectivity of these
intervals. For example, we can easily derive the Jordan-Hélder
theorems for chief series and for characteristic series from the
lattice results. On the other hand, the lattice theorems that we
have given do not apply to ordinary composition series, since the
lattice of all subgroups of a group need not be modular. Some-
what more complicated concepts are required to yield the theory
of ordinary composition series.*

* See G. Birkhoff, Lattice Theory, revised edition (1949), pp. 87-89, and the references
given on p. 89.
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EXERCISE

1. A subset A of a lattice L is called an ideal if (1) a,6 € A implies a () b A,
and 2) aed and xe Limply a Uxe 4. A is a principal ideal (a) if A con-
sists of all ¥ € L such that ¥ 2> 4 for fixed s € L.

Prove that L satisfies the descending chain condition if and only if every
ideal of L is principal.

Dualize the definition of ideal and the result stated above. (The dual of an
ideal 1s called a dual ideal.)

5. Decomposition theory for lattices with ascending chain con-
dition. We consider next the lattice abstraction of a part of the
theory of ideals in Noetherian rings. We assume that L is a
modular lattice that satisfies the ascending chain condition. As
in the special case of ideals we say that an element g e L 1s (inter-
section or meet) reducible \f @ = a; N g3 where the a; > 4. It is
easy to prove (for example, by using the analogue of the principle
of divisor induction) that any element of L can be represented as a
g.l.b. of a finite number of irreducible elements.

The theory of primary ideals does not carry over to lattices.
Here it appears to be necessary to deal exclusively with the con-
cept of irreducibility, and all that we can establish in the way of
uniqueness 1s the comparatively weak result that the number of
terms 1n any two irredundant representations as g.l.b. of irreduci-
ble elements 1s unique. As before, we say that the representation

=g Ngy N---N gpis irredundamifql N--Ngimq N gipr N

N gm >afori=1,2,

Suppose now that we have any two representations (not neces-

sarily irredundant) of 2 as

(8) a=qg Ng N---Ngun=riNr,N---Nr,

where the ¢; and the r; are irreducible. We propose to show that
any g¢; can be replaced by a suitable ;/, so that we also have

ﬁ=91 ﬂ'”ﬂq,-_l ﬂr,—: nqa;+1 ﬂﬂqm.
It suffices to take 7 = 1. We introduce the notation
r;’=rjﬂ92ﬂ---ﬂqm, j=1}2)

and note that a =, Nry’ N--- N7/ and r! < ga Ngs N---
N gm- Now, the intervals
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(9) 1[92 ﬂ---ﬂqm,a] =][92 ﬂ---ﬂgm,ql ﬂ92 ﬂ---ﬂqm]

and

(10) Ilgy U (g2 N--- 0N gm), ¢4

are 1somorphic. It follows that, since ¢; 1s irreducible in (10),
a 1s irreducible 1n (9). But the decomposition gz =y’ N7y’ N - --
N r,/1s validin (9). Hence 2 = r;’ for a suitable 7. This proves
the following

Theorem7. [fa=qg  Ngs N---Ngn=ri Nro N---Nr,are
two representations of an element of a modular lattice as g.l.b of
irreducible elements, then for each q: there exists an ry such that
a=q1 N Ngi—y Nry Ngipy Nee- N gn.

A simple corollary of this result i1s the uniqueness theorem:

Theorem 8. The number of terms in any two irredundant
representations of an element as g.l.b. of irreducible elements is the
same.

Proof. Applying Theorem 7 we can write
(11) a = Iy ﬂqg ﬂ---ﬂqm=r1r ﬂrgr ﬂqg---ﬂqm
== Ty nrzf n"'nrm’-*

Since the decomposition g = r; 1 rg N--- N r, 1s irredundant, all
the r; appear 1n the last line of (11). Hence m > #. By sym-
metry m = 7.

6. Independence. Suppose that L is a modular lattice with
0 and 1. We call a finite set ay, a3, -+, an of L (join) inde-
pendent 1f

(12) a,-;ﬂ(al U"'Ud{_IUQH_l U"'Udn)=0

for7 =1,2, ---, n. We have encountered this notion before in
the theory of direct products of groups. In this section we shall
indicate (mainly in the exercises) how a portion of the theory of
direct products can be carried over to lattices. The main result
that we shall derive in the text is the following

* Note that 2/, 3/, - -+ have a slightly different significance here than in Theorem 7.
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Theorem 9. If the elements ay, as, -+, an are independent,
then

(13) (ay U---Ua Ugupy U---U g,)
N@g U---Ug, Ugey, U---Ug) =g, U---U g,.
Proof. We prove first that
(14) (@ U---Uay) N (a3 U---Ua,) =0.

This is true by assumption if s = 1. Assume now that we have
it for s — 1. Then

(g U---Uas) N(@spr U---Uap) < (@ U---U g
ﬂ(a3Ua,+1 U“"Uan)=((41 U"‘Uas—l) n(as UU@H))

U g, = a,,
by modularity and (14) for s — 1. It follows that
(@ U---Ua,) N (41 U---Ug,)
=(gr U---Ua,) N1 U---Ua,) Na, =0,

since @5 N (@541 U---U a,) = 0. This establishes (14) for all
s. We can now apply the modularity assumption to the left-
hand side of (13) to obtain the right-hand side.

A number of useful corollaries can be drawn from (13). Some
of these are contained in the following

EXERCISES

1. Show that if a1, a2, - - -, 4, is an independent set then any subset is inde-
pendent. Show also that the elements

51=61U---Ua;-1, é2=ar1+1U"'Uﬂr’,
b = argy+1U---U ap,

where r1 < r2 <--- < r; = n are independent.

2. Let ay, a9, -+, a, be a set of independent elements such that g; U 4, U
.++U a, = 1. Define

bi=aU--Ugi1Ug U---U g,
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Prove the dual relations:
U G N---N&_1NEyN---N4) =1
hflél--{)lé,=0
a; =60V o1 0 by NN--1) &,

3. Prove that, if the elements 4, a2, -+, 4 are independent and (g U ---
U 4.) ) aa41 = 0, then the elements a3, a2, + - -, 4,41 are independent. Prove
that the set 4y, 43, * -+, a4, 1s independent if and only if (g U ---U 4)) ) 4,41 =
0,fori=1,2 ---,n— 1.

4. Show that, if L satisfies the chain conditions, then the elements a4, a4,
-+, an are independent if and only if

z(ﬁ'l U a2 U...U an) = 1(611) + 1(52) +- 4 I(Jn)-

An element g 1s (join) decomposable \f a = ay U a, where the
a; are independent and # 4. If L satisfies the descending chain
condition, then the argument used in the group case (p. 154)
shows that any element of L can be represented as l.u.b. of a finite
number of independent indecomposable elements.

Ifa=546Uc=46Udwhered Nc=0=24 N d, then the in-
tervals /[a,6] and I[¢,0] and the intervals /[4,6] and I[d,0] are trans-
poses. Hence I[c,0] and [[d,0] are projective. We therefore say
that the elements ¢ and 4 are directly projective if b exists in L
such that

bUc=6Ud, 6Nc=560Nd=0.

This concept is used 1n the lattice form of the Krull-Schmidt
theorem. We state this result without proof as follows:

Theorem. Let L be a modular lattice with O and 1 that satisfies
both chain conditions. Suppose that

a = 044 Uﬁg U---Uam=é'1 Ué‘g U"'U&,;

where the a; are independent and indecomposable and the b; are
independent and indecomposable. Then m = n and the a; and b;
can be put in 1-1 correspondence in such a way that corresponding
elements are directly projective.

This theorem i1s due to Kurosch and to Ore.* It is immediate
that it implies the Krull-Schmidt theorem for groups except for
the statement concerning the intermediate decompositions.

* See Birkhoft’s Lattice Theory, rev. ed., p. 94.
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7. Complemented modular lattices

Definition 4. A lattice L with O and 1 is said to be comple-
mented if for every a in L there exists an a4’ such that a U a’ = 1,
2 Na =0.

Also if 2 1s any element of a lattice L with 0 and 1, an element
g’ such that 2 U 2’ =1, 42 N 42’ = 0 1s called a complement of a.
Thus our definition states that a lattice is complemented if and
only if every 2 e L has a complement. If 4 < 4, an element 4,
(<La)such that 4 U 4, = gand 4 N 4, = 01s called a complement
of b relative to a.

The lattice of subsets of a set is complemented. The comple-
ment of a subset A 1s the usual set theoretic complement, that is,
the set 4’ of elements ¢’ ¢ 4. If all the elements of a finite com-
mutative group have finite prime orders, then the lattice of sub-
groups of the group is complemented. This will follow from a
criterion that we shall establish presently.

Let L be a complemented modular lattice and let 2 and % be
any two elements of L such that 4 < 4. Then there exists an
element 4’ such that 4 U 4" = 1,4 N 4= 0. Hence by modularity

a=aNGU =56U@NSH) =5 U s,

where 6y = a N&. Since bNb=6NaNb =0, 1t 1s clear
that 4; 1s a complement of 4 relative to 4. Thus we see that, if
L 1s modular and complemented, then relative complements exist
for any 4 < any 2 in L. Another way of putting this is that for
every 2 in L the sublattice L, of elements <z is complemented.

The concept of a point plays an important role in the theory of
complemented lattices. An element p of a lattice with 0 is called
a point if p is a cover of 0. If L satisfies the descending chain
condition, L contains points; for we can choose an g; > 0 and,
if 2; 1s not a cover of O, then there exists an 42 such that ¢; >
az > 0. If a3 1s not a point, there exists an a3 such that ¢, >
ag > a3 > 0. By the descending chain condition this process
terminates in a finite number of steps, and it leads to a point in L.

Assume now that L is complemented and that both chain condi-
tions hold. Let p, be a point in L and let p;’ be a complement of
p1. If p/ # 0, we can use the descending chain condition on L.
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to obtain a pOiI‘lt P2 < plf. Since 3 () P2 = O, (_pl U pg) > Di.
Also p; U ps has a complement which, if # 0, contains a point
ps. Then (p1 Upe) Nps =0 and p1 U py U ps > p; U p..
Continuing in this way we obtain a sequence of points pi, P2,
Pay = such that

p1<p1 Up2<p1 Upg UP3<"'.

By the ascending chain condition this breaks off after, say,
n( <) steps. When this occurs, we know that p; U pp U--- U p,
has 0 as a complement. This meansthatl = p; U py U--- U p,.
Thus 1 is 2 Lu.b. of a finite number of points. Also we have
chosen the p; so that

(Pl U 22 UUp,) np€+l=05 1 =1,2, -, nm— 1.

Hence, if L 1s modular, then the p; are independent (ex. 3, p. 204).

Conversely, suppose that L is any modular lattice with 0 and 1
that has the property that 1 is a l.u.b. of a finite number of points.
We shall show that L satisfies the chain conditions and that L is
complemented. Let 1 = p; U py U--+ U p, where the p; are
points. We may suppose that the notation i1s chosen so that
D1, P2, ***, Pm 1s a maximal independent subset of the set py,
+««s pn. Then we assert that1 = p; U ps U--- U p,; for other-
wise there is an i > m such that p; £ p, Ups U:-- U pp
This implies that

pi=p: N (pr U U pu) < pig

hence, ; = 0. But then py, +--, pm, ps 15 an independent set
contrary to the maximality of m. We therefore have 1 = p, U
pg Ue++U pu. Since the p;, j < m, are independent,

(P Upa U---Up) Npjp1 =0, =12, -+, m—1.

Hence the intervals I[p; U pa U:-< U pjp1, p1 U p2 U--- U pj]
and /[p;1, O] are transposes, and consequently p; U ps U--- U
piy11s a cover of p; U ps U-+- U p;. It follows now that

] = (P1 U---Upm) > (P: U"'Upm—l) >...>p1>0

is a composition chain for L. The existence of such a chain im-
plies the two chain conditions.
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We prove next that L 1s complemented. Let 1 = p; U p; U
-+- U p, where the p; are points. If 2 1s any element of L and
@ # 1, we can choose a p;, £ 2. Then a2 N p, =0 and 4, =
a Up, >a Ifa #1, wecan find a p;, such that 2, N p, = 0.
This process leads to a subset p,,, pi,, - - *, 2. of the p; such that

aﬂpﬁ=0,
(aupil)npi,=0: "ty (aupilu”'upi,-_l)npir=0:
aUp¢1U---Up¢r=1.

The first set of equations shows that the set 2, p;, -+, p; 1s
independent. Hence 2 N (p;, U--- U p,) = 0 so that by the
last equation above, p, U--- U p, i1s a complement of 4.

We summarize our main results in the following

Theorem 10. If L is a complemented modular lattice that
satisfies both chain conditions, then the element 1 of L is a Lu.b.
of independent points. Conversely, if L is a modular lattice with
0 and 1 suckh that 1 is a Lu.b. of a finite number of points, then L
15 complemented and satisfres both chain conditions.

A cyclic subgroup of prime order is a point in the lattice €
of subgroups of a group ®. Hence if @ 1s finite and commutative
and every element of ® 1s of prime order, then € satisfies the chain
conditions, is modular and 1 in 2 1s a Lu.b. of points. We there-
fore have the proof of the statement made above that 2 1s com-
plemented.

EXERCISE

1. Show that for a complemented modular lattice either one of the chain
conditions implies the other.

8. Boolean algebras

Definition 5. .4 Boolean algebra is a lattice with 0 and 1 that is
distributive and complemented.

The most important example of a Boolean algebra is the lattice
of subsets of any set . More generally any field of subsets of S,
that 1s, any collection of subsets which is closed under U and N
and which contains 1 (= §) and 0 (= &) and the complement of
any set in the collection, is a Boolean algebra.
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The following theorem gives the most important elementary
properties of complements in any Boolean algebra.

Theorem 11. The complement a’ of any element a of a Boolean
algebra B is uniquely determined. The mapping a — a4’ is 1-1
of B onto itself; it is of period two (4’ = a); and it satisfies the
conditions

(15) @Ub ' =a N, (@Nbd =a UY.

Proof. Let 2 be any element of B and let 2’ and a,; be elements
such that 2 U 42" =1,4 N 4, = 0. Then

g, =a1 N1 =a,N@U&)=(@ Na) U(a N a)
=alﬂa’.

Hence, if, in addition, 2 U 2, = 1,2 N ¢’ = 0, thena’ = 4’ N a,.
Hence, 2’ = 4,. This proves the uniqueness of the complement.
It 1s now clear that 4 is the complement of 4’; hence, 2" =
(4")" = a. This proves that the mapping 2 — 4’ 1s of period two.
Consequently it 1s 1-1 of B onto itself. Now let 2 < 4. Then

a NS <6 N&H =0sothat
=0 N1=46N@UL)=(( Na) U@ Na
= 4" N 4.

Hence ¢’ < 4’. Since 2 — 4’ 1s 1-1 of B onto itself and is order-
inverting the argument used to prove Theorem 1 shows that (15)
holds.

Historically, Boolean algebras were the first lattices to be
studied. They were introduced by Boole in order to formalize
the calculus of propositions. For a long time it was supposed
that the type of algebra represented by these systems was of an
essentially different character from that involved in the familiar
number systems. This i1s not the case, however. On the con-
trary, as we shall see, the theory of Boolean algebras is equivalent
to the theory of a special class of rings. The proof of this fact
1s based on the result that any Boolean algebra can be considered
as a ring relative to suitably defined compositions.

In order to make a ring out of a Boolean algebra B we introduce
the new composition
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a4+ b= (@Nb) U (@ NDH

which is called the symmetric difference of a and 4. 1tis immediate
that (e N&) U@ NH=((@Usb N(@nNiés’. Thus in the
special case of subsets of a set § the symmetric difference U 4 V
is just the totality of elements that belong to U and to 7 but
not to both sets. We shall now show that B is a nng relative to
+ as addition and N as multiplication. From now on we use
the customary ring notation #¢ for 2 N &.

Evidently + is commutative. To prove associativity we note
first that

(a+5) =(@Nb U@ N5

Hence,
@+ 86 +c={{(aN¥é) U NS Nci
Uil Nd) U@ N2 N
=(@Né&éNH U@ NENC
U@Naéne U@ NG No.

This 1s symmetric in 4,6 and ¢ so that in particular, (@ 4 &) 4 ¢
= (¢ + 4) + a. Commutativity therefore implies the associative
law. Ewvidently,

a+0=@@N1) U@ NO =a
and
a+a=@Na) U@ Na =0,

Hence B 1s a commutative group relative to +.
We know, of course, that « (= ) 1s associative. It therefore
remains to check the distributive law. This law follows from

(a+bc=((aNb)Y U@ NLH) Nc
=(@NéNc)U@ NsNo,
ac+obc=((aNo)NENO)YUW(a N N(No))
=N NE UNUW(UCDNEGNY))
=(@NcNé) U@ NéNo).
Hence B,+,- is a ring.
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We note also the following properties of B,+,.. The ring
is commutative, it has an identity and all of its elements are
idempotent. All of these are familiar properties of the composi-
tion N of any lattice with 1. Also we have seen that every ele-
ment of B 1s of order <2 in its additive group. These statements
about a ring are, however, not independent; for, as we now note,
4® = g for every a in a ring implies 2¢ = 0 and 24 = ba for every
a,b. To prove this we note that

a+b+ab+ba=a4P 4 ab+ba=(a+b)?=a+b
Hence
(16) ab + ba = 0,

If we set @ = & 1n (16) and use the idempotency of 4, we obtain
24 = 0; hence, 2 = —a. Then by (16) 46 = ba. Thus, the
essential facts about B,4,. are that it has an identity and that
all of its elements are idempotent. We therefore introduce the
following

Definition 6. A ring is called Boolean if all of its elements are
1dempotent.

We shall show next that any Boolean ring 8 with an identity
defines a Boolean algebra. In order to reverse the process just
applied we now define 2 Ub=4a-+254—ab and a N & = ab.
We have seen in Chapter II (p. 56) that U (the circle composition)
1s associative. The other rules in L;~L, are immediate from our
assumptions and the commutativity of 8 noted above. Hence B,
U, N 1s a lattice. This lattice 1s distributive since

(U6 Nc=(@+b— abec = ac+ bc — abe
= ac+ bc —acbc= (a Nc) U (N o).

Also it 1s immediate that 1 and 0 are, respectively, the all element
and zero element of the lattice and that 2'= 1 — 2 acts as the
complement of 2. Hence, B is a Boolean algebra.

Finally, we note that the two processes that we have applied
are inverses of each other. Thus suppose that we begin with a
Boolean algebra B, U, N. Then we obtain the ring B,+,+ where
a+b=@N¥F)U@NE, ab=aNb An application of
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the second process to B,+, « gives the compositions 4 Us=
a4+b—aband aNb=ab=aNb Nowl—ag=1+4+4=
(1 Nag) U Na =a. Hence

aUb=a+b—ab=1—-(10—-—a1 =5 = (' N
=g U &.

Thus the compositions U, N coincide with the original U, nN.
On the other hand, suppose that we start with a Boolean ring with
l and we define s Ub=a+b—ab,aNbéb=agband a ® & =
@aN&YU@ NE,aOb=aNb=abthena =1 — g and

a®b=(NA—-25) U@ -2 N5
=a(l —46) Ul — a)
= (@ — ab) U (b — ab)
=g —ab+b— ab— (a — ab)(b — ab)
=g —ab+ b —ab— ab-+ ab4 ab — ab
= g + 6.

Hence @ coincides with 4+, © with .. This completes the proof
of the following theorem which is due to Stone

Theorem 12. The following two types of abstract systems are
equivalent: Boolean algebra, Boolean ring with identity.

EXERCISES

1. Show that any Boolean algebra defines a ring relative to the two composi-
tionsa @ b= GUHNGULa@b=4Uéb Showthata®é=1+a
+6,4a®é=a+4 b6+ ab where 4+ and - are as defined in the text.

2. Show that, if ¢ and f are idempotent elements of a ring and ¢f = fe, the
¢ef and ¢ + f — ¢f are idempotent. Prove that the idempotent elements that
belong to the center of any ring with an i1dentity form a Boolean algebra relative
to the compositions e U f=e 4+ f — ¢f, e [N f = ¢f.

3. Prove that any ring for which there exists a prime p such that pa = 0,
@? = g for every 4 In the ring 1s commutative.
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Cayley’s theorem, 28
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Center of ring, 64
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equivalence of, 198
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Chain conditions:
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for lattices, 200

for modules, 168
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Commutator group, 132
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non-assoclative, 18

ternary, 18
Conjugate classes, 47
Coset, 37
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Division ring, 54
Divisor (factor), 13, 114
of ideal, 173

Eisenstein’s irreducibility crite-
rion, 127

Endomorphism:

normal, 150

of group, 45

of module, 165

radical of, 155

ring of, 80

sum of, 151
Equivalence classes, 5
Equivalence relation, 4
Extension of a field, 100
Extension of a ring, 84
Euler-Fermat theorem, 67

Euler ¢-function, 34, 67, 121

Factor, see Divisor
Factor group, 41, 131
Field, 54, 183
extension of, 100
prime, 103
structure of, 103
Field of fractions, 88
Field of subsets, 207
Fitting’s lemma, 155
Fractions, 88

Gauss’ lemma, 125

Greatest common divisor, 13, 118
of ideals, 173

Group, 23
cyclic, 30
generators of, 31
multiplication of, 29
of automorphisms, 45
regular realizations of, 29
simple, 139
solvable, 139

Group with operators, 128
decomposable, 152

| Group with operators (Cont.)
determined by a ring, 130
direct product of, 145

factor group of, 131
homogeneous, 158

maximal invariant subgroup, 140
subgroups of (M-subgroups), 130

Hilbert basis theorem, 171
Holomorph of group, 47
Homomorphism of groups, 41

fundamental theorem for groups

with operators, 133

fundamental theorem of, 44

kernel of, 43

natural, 43

with operators, 131
Homomorphism of lattices, 192
Homomorphism of modules, 165
Homomorphism of rings, 68

fundamental theorem of, 70
t  kernel of, 69

Ideal, 65
assoclated prime, 174
in a lattice, 201
left, 77
primary, 174
prime, 173
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radical of, 173
reducible, 175
regular, 167
right, 77
Idempotent element, 24
Identity element, 22
of lattice, 192
Imbedding of commutative inte-
gral domain in a field, 87
Imbedding of ring in ring with an
identity, 84
Independence in lattices, 202
Induction, 7, 9
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Integers, 10
Gaussian, 123
in quadratic fields, 184, 186
Integral dependence, 181
Integral domain, 53
Euclidean, 122, 186
Gaussian, 115, 184
principal ideal, 121
Integrally closed, 183, 184
Intervals (quotients) in a lattice,
192
projective, 196
transpose, 196
Inverse, 22
Irreducible element, 115
Irreducible element of a lattice, 201
Irreducible polynomial, 101
Irreducible (prime) integer, 67
Irredundant intersection:
of elements of a lattice, 201
of 1deals, 177
Isomorphism:
of groups, 26
of lattices, 192
of modules, 165
of rings, 68
Isolated components (of an ideal),
180
Isomorphism theorems for groups
with operators, 135

Jordan-Holder theorem, 141
for lattices, 199

Krull-Schmidt theorem, 156
Kurosch-Ore theorem, 204

Lagrange’s theorem, 39

Lattice, 189
complemented, 205
complete, 189

composition series in, 199
distributive, 193
modular, 194

l

Lattice (Cont.)
principle of duality in, 190
semi-modular, 197
Least common multiple, 14, 120
of 1deals, 173
Leibniz’s theorem, 100
Length of element of a Gaussian
semi-group, 116
Length of element of a lattice,
199

Linearly ordered set (chain), 188
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graph of, 3
induced by an equivalence rela-
tion, 6
inverse, 4
inverse image of, 6
order preserving, 192
resultant of, 4
Matrix, 56
adjoint, 59
cofactor of, 59
determinant of, 58
diagonal, 64
ring, 56
scalar, 64
transposed, 72
Maximum condition, 169; see also
Chain conditions
Minimum condition, 169; see also
Chain conditions
Modbius function, 120
Module, 162, 163
annihilator, 165
cyclic, 166
difference, 165
generators of, 166
modules of a ring, 164
quotient, 165
unitary, 167

Newton’s identities, 110
Nilpotent element, 55
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Order of an element of a group,
32
Order of an element of a module,

165
Order of semi-group, 17

Partially ordered set, 187
Peano’s axioms, 7
Permutations, 27
decomposition into cycles, 34
even and odd, 36
Poincaré’s theorem, 40
Point (in a lattice), 205
Polynomaials, 93, 97
cyclotomic, 127
homogeneous, 108
in several elements, 105
irreducible, 101
polynomial functions, 111
primitive, 124
symmetric, 107
Power series, 95
Powers, 21
Prime element, 14, 116
Projection, 150
primitive, 158

Quadratic extensions of rational
field, 184

Quasi-regular, 55
Quaternions, 60

norm of, 63

trace of, 63
Quotient group, see Factor group
Quotient in a lattice, 192
Quotient of submodules, 165

Radical of ideal, 173, 175
Realization of a group, 28, 30
Relation, 4
" asymmetry of, 9
reflexivity of, 5
symmetry of, 5
transitivity of, 5

Ring, 49
additive group of, 50
Boolean, 210
commutative, 53
extension of, 84
group of units of, 54
identity of, 53
multiplications of, 82
multiplicative semi-group of, 50
Noetherian, 172
of formal power series, 95
of polynomials, 92
right annihilator of, 82
simple, 70

Schreier’s refinement theorem, 138
for lattices, 198
Semi-group, 15
Gaussian, 115
group of units of, 25
multiplication table of, 17
ring, 95
Series:
characteristic, 143
chief, 143
composition, 140, 143, 199
fully invariant, 130
normal, 138
Sets, 2
intersection of, 2
logical sum of, 2
product set, 3
quotlent set, 5
Stone’s theorem, 211
Subdirect product (of groups),
160
Subfield, 87
Subgroup, 24
characteristic, 130
cosets of, 37
fully invariant, 130
generated by a subset, 30
index of, 39
invariant (normal), 40
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Subgroup (Cont.)

left cosets of, 39

products of subgroups, 76
Sublattice, 191
Submodule, 164
Subring, 61

division, 63

generated by a subset, 63
Symmetric difference, 209
Symmetric group, 27

Transcendental element, 93
Transcendental extension of a field,
101
Transformation group, 27
transitive, 37
Transformations, 4

Transitivity set, 37
Transpositions, 36

Uniqueness of factorization in semi-
groups, 117

Uniqueness theorems for represen-
tation of ideals as intersections
of primary ideals, 177

Unit element, see Identity element

Vector space, 167

Well-ordering (of natural num-
bers), 9

Wilson’s theorem, 104

Zero divisor, 53






