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Preface

This book consists of three parts, rather different in level and purpose:

The first part was originally written for quantum chemisis. it describes the
correspondence, due to Frobenius, between hinear representations and charac-
ters. This is a fundamental result, of constant use in mathematics as well as in
quaniuvm chemistry or physics. | have tried to give proofs as eiementary as

passible, using only the defimtion of a group and the rudiments of linear algebra,
The exampies (Chapter 3) have been chosen from those usefid to chemists,

The second part is a course given in 1966 to second-year students of 'Ecole
Normale. It completes the first on the following points:
(a) degrees of representations and integrality propertics of characters (Chapter 6);
() induced representations, theorems of Artin and Brauer, and apphcations
(Chapters 7-11),
(¢ rationality questions (Chapters 12 and 13).
The methods used are those of linear algebra (in a wider sense than in the frest

part): group algebras, modules, noncommutative fensor products, semisimple
algebras.

The third part is an introduction to Braver theory: passage from charactenistic 0
to characteristic p (and conversely). | have freely used the language of abelian
categories (projective modules, Grothendieck groups), which 1s well suited to
this sort of guestion, The principal results are:

(a) The tact that the decomposition homomorphism is surjective: all irreducible
representations in characteristic p can be lifted “virtually’ (1.e., mn a suitable
Grothendieck group) to characteristic 0.

(b} The Fong-Swan theoremn. which allows suppression of the word "“virtuaily
in the preceding statement, provided that the group under consideration 1s
p-solvable.

I have also given several applications 1o the Artin representations,
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! take pleasure in thanking:

Gaston Berthier and Josiane Serre, who have authorized me to reproduce Part 1,
written for them and their students in Quantum Chemistry;

Yves Balasko, who drafted a first version of Part 1l from some lecture notes;

Alexandre Grothendieck, who has authorized me to reproduce Part i, which
first appeared in his Séminatre de Géométrie Algébrique, 1. H.E.S., 1965/66.

Vi

Part 1
Representations and Characters

E

2

3

CGieneralitics on linear representations

. Definitions

t.2 Basic exampies

.3  Subrepresentations

.4 irreducible represcntations

E.5  Tensor product of two representalions
[.6  Symmetrnic square and alternating square

Character theory

2.1 The character of a represeniation

2.2 Schur’s lemma; basic applications

2.3 Orthogonality relations for characters

2.4 Decomposition of the regular representation
2.5 Number of irreducible representations

2.6 Canonical decomposition of a representalion
2.7 Explicit decomposition of a representation

Subgroups, products, induced representations
3.1  Abe¢han subgroups

3.2 Product of two groups

3.3  Induced represeniations

Compact groups
4.1 Compact groups

4.2  Isvananl measure on & compact group
4.3 Linear representations ot compact groups

Contents

N S R I R U U S S

10
13
15
17
I8
21
23

23
25
26
28

32
17

32
33

Vi



Contents

(Contents
3 Lxamples 35 11 Applications of Brauer's theorem 31
5.1  The cyclic Group C, E F1.t Characterization of characters | Bi
5.2 The group Ce 36 11.2 A theorem of Frobenius 53
5.3 'Fhe dihedrai group D, 36 11.3 A converse 10 Braver's theorem 85
5.4 The group Dy 38 1t.4 The spectrum of A & R(G) 86
5.5 The group D, 37 12 Rationality questions 90
5.6 The group D a0 [2.1 The rings Ry(G) and R(G) a0
3.7 The alternating group ¥, 41 12,2 Schur indices 92
5.8 The symmetric group ©, o 12.3 Realizability over cyclotomic fickds 94
2.9 The group of the cube + 12.4 The rank of Re(G) 93
Bibliography: Part I 44 12.53 Geseralization of Artin’s theorem G6
12.6 Generahization of Brauer's thcorem 07
12.7 Proof of theorem 28 99
Part 11 13 Rationality questions: examples 12
c NI [3.1 The Deld Q 102
Representations in Characteristic Zero 45 39 The fiodd R o
6 The group algebra 47 Bibliography: Part 11 111
6.1  Representations and modules 47
6.2 Decomposition of C{G] 48
6.3 The center of C[G} 30
6.4  Basic propertics of integers 34
6.5 ntegrality propertics of characlers. Applications Ry
7 Induced representations; Muckev’s criterion 24 Part 1]
7.1  induction 54 . , ) : *
7.2 'The character of an induced representation; 33 Iniroduction to Brauer TJIE’{H‘} 13
the reciprocity formula 14 The groups Rk(G), Re(G), and Pr(G) 115
7.3 RESH‘ICHE‘}H. to Sﬁh.gijﬁrﬁpS o 5{1’:‘? 14.1 The rings Ry(G} and R (G) 114
7.4 Mackey’s irreducibility criterion oY 14.2 The groups Po(G) and Po(G) (16
8 Examples of induced representations 6Ol F4.3 Structure of P{(() 116
8.1 Normal subgroups, appiications to the degrees of the 6l b4.4 Structure of Pa((G) 18
irreducible representations 4.5 Dualiies 12
8.2  Semmdirect products by an abelian group 6.2 14.6 Scalar extensions 122
8.3 A review of some classes of fintle groups 63 15 The cde triangle 124
8.4  Svlow’s theorem 63 15,1 Defimtion of o Po(G)y — Ry ((G) 124
8.5 Linear representations of supersolvable groups 66 {5.2 Definition of d: Ru(G) — Ry(G) 135
9  Astin’s theorem 63 15.3 Definition of e: P{(G) — Ry(G) 127
9.1 The ring RIG) 64 15.4 Basic properties of the cde triangle 127
9.2  Statemeni of Artin’s theorem 70 15.5 Example: p'-groups 128
9.3 First proof L b 15.6 Example: p-groups 129
0.4 Second proof of (i} = (i) 72 15.7 Example: products of p'-groups and p-groups 129
10 A theorem of Brauer 74 16 Theorems 131
1.1 p-regular elements; p-clemeniary subgroups 74 16.1 Properlies of the cde triangle P31
1.2 Tnduced characters arising {rom p-elementiaty 15 16.2 Characterization of the image of e 133
subgroups 16.3 Characterization of projective A [G -modules [ 34
1.3 Construction of characters 16 by their characters
(0.4 Proof of theorems 18 and 18’ 78 [6.4 EBExamples of projective A I ]-modules: trreducible [ 36
[0.5 Brauer's theorem 73 representations of defect zero
viii %

o Tt oo e e o], A e BTN S s st




Condents

17  Proofs 138
F7.} Change of groups | 138
1'7.2 Braver's theorem in the modular case 134
7.3 Proof of theorem 33 140
17.4 Proof of theorem 35 142
17.5 Proof of theorem 37 £43
7.6 Proof of theorem 38 144
18 Modular characters 147
18.1 The modular character of a representation 147
18.2 Independence of modubar characters 149
18.3 Retormulations 151
18.4 A section for d 152
18.5 Example: Modular characters of the symmetric group &, 153
18.0 Example: Modular characters of the alternating group s 156
19 Application to Artin representations 159
19.F Artin and Swan representations iy
9.2 Rationality of the Artin and Swan representations 161
19.3 An mvariant 162
Appendix 163
Bibliography: Part III 165
Index of notation 167
Index of terminology 169

I

REPRESENTATIONS
AND CHARACTERS



CHAPTER 1

Generalities on
Iinear representations

1.1 Defimtions

l.et V be a vector space over the flield C of complex numbers and let
GL(V) be the group of isomorphisms of V onto itself. An clement a of GL{V)
is, by definition, a linear mapping of V into V which has an inverse ¢~ "
this inverse is linear. When V has a finite basis (¢;) of » elements, each linear
map a: vV —= ¥ 15 defined by a square matnx {a,}.) of order nm The
coefficients a; are complex numbers; they are obtained by expressing the

images ale;) in terms of the basis (g;):
afe;) = g ae, .

Saving that & is an isomorphism is equivalent to saying that the
determinant det(a) = det(g;) of a is not zero. The group GL(V} is thus
identifiable with the group of invertible square matrices of order n.

Suppose now (G 15 a finite group, with identity element | and with
composiiion (s, ) ¥ si. A linear representation of G in V is a homomor-
phism p from the group G into the group GL(V). In other words, we
associate with each element s € G an element p(s) of GIL{V} in such a way
that we have the equality

plst)y = pls) - p(t} fors, 1 € G,

|[We will also frequently write p_ instead of p(s).] Observe that the preceding
formula imphes the following:

- -

(1) = 1, pls™") = pls)™".
When p is given, we say that V is a representation space of G (or even
simply, by abuse of language, a representation of (). In what follows, we

3




Chapter 1: Representations and characters

restrict ourselves to the case where V has finite dimension. This is not a very
severe restriction. Indeed, for most applications, one 1s mterested in dealing
with a finite number of elements x; of V, and can always find a subrepresen-
tation of V (in a sense defined later, ¢f. 1.3} of finite dimension, which

contains the x;; just take the vector subspace generated by the images p_(x;)
of the x,

Suppose now that 'V has finite dimension, and let n be it dimension: we

say also that 15 the degree of the represeniation under consideration. Let

(e;) be a basis of V, and let R be the matrix of o, with respect to this basts.
We have

det(R,) # 0, R,=R,-R, ifs,7 € G.

if we denote by /! (s} the coefficients of the matrix R , the second formula
vecomes

g (1) = ? A KM

Conversely, given invertible matrices R, = (r.{s)} satisfying the preced-
ing identities, there is a corresponding linear representation p of G in V;
this 1s what 1t means to give a representation “in matrix form.”

Let p and p” be two representations of the same group G in vector spaces

V and V'. These representations are said to be similar (or isomorphic) if
there exists a linear isomorphism 7: V — V' which “transforms” p into o',
that is, which satisfies the identity

7op(s) = p{s)er foralls € G.

When p and p’ are given in matrix form by R, and R; respectively, this
means that there exists an invertible matrix T such that

T-R,=R,-T, foralls & G,

which is also written R, = T - R_- T™'. We can idenrify two such represen-
tations {by having each x € V correspond to the element 7(x) € V'); in
particilar, p and p’ have the same degree.

1.2 Basic examples

{(a) A representation of degree 1 of a group G is 3 homomorphism
p: G — C*, where C* denotes the multiplicative group of nonzero complex
numbers. Since each element of G has finite order, the values o(s) of p are
roots of unity; in particular, we have |p(s)] == 1.

If we take p(s) = 1 for all s € G, we obtain a representation of G which
is called the unit {or trivial) representation.

(b) Let g be the order of (5, and let V be a vector space of dimension g,

with a basis {¢ ), < indexed by the elements 1 of G. For s & G, let p, be
4

1.3: Subrepresentations

the linear map of V into V which sends e, to e ; this defines a hinear
represeniation, which is called the regular representation ot GG, lis degree 18
equal to the order of G. Note that e, = p{e;); hence note that the images
of e, form a basis of V. Conversely, let W be a representation of G
containing a vector w such that the p (w}, s & G, form a basis of W then
W is isomorphic to the regular representation {an isomorphism +1 V — W
is defined by putting e, ) = p.(w}).

{c) More generally, suppose that G acts on a finite set X. This means that,
for each s &€ G, there i1s given a permutation x b sx of X, satisfying the
tdentities

lx = x, slix) == (s}x ifs, 1t € G, x € X,

Let V be a vector space having a basis (e, ), -y indexed by the elements of
X. Fors € G let p_ be the inear map of V into V which sends e, to ¢,,;
the linear representation of G thus obtained s called the permuration
representation associated with X,

1.3 Subrepresentations

Let p: G — GL(V) be a linear representation and let W be a vector
subspace of V. Suppose that W is stable under the action of G {we say also
“invartant™), or in other words, suppose that x € W implies p,x € W for
all s € G. The restriction p of p. to W is then an isomorphism of W onto
itself, and we have p;'?r = p . p¥, Thus pV: G — GL{W) is a linear

representation of G in W; W is said to be a subrepresentation of V.

ExampLe. Take for V the regular representation of G [cf. 1.2 (b)], and let
W be the subspace of dimension | of V generated by the element
x = 3 oq¢e. We have p.x = x for all s € G; consequently W 18 a
subrepresentation of V, isomorphic to the unit representation. {We will
determine in 2.4 all the subrepresentations of the regular representation.)

Before going further, we recall some concepts from linear algebra. Let V
be a vector space, and let W and W' be two subspaces of V. The space V
ts said to be the direct sum of W and W’ if each x € V can be wntten
uniquely in the form x == w + W', with w € W and v’ & W’; this amounts
to saying that the interséction W N W' of W and W 15 § and that
dim{V) = dim(W} + dim{W"), We then write V = W @& W’ and say that
W’ is a complement of W in V. The mapping p which sends each x € V to
its component w € W is called the projection of V onto W associated with
the decomposition V == W & W’; the image of p is W, and p{x) = x for
x € W; conversely if p is a linear map of V into itself satisfying these two
properties, one checks that V is the direct sum of W and the kernel W’ of p

>
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(the set of x such that px = 0). A biective correspondence 1s thus
established between the projections of V onto W and the complements of W
mYV.

We return now to subrepresentations:

Theorem 1. Letf p: G ~— GL(V ) be a linear representation of G in V and let

W be a vector subspace of V stable under (5. Then there exists a complement
WY of W in 'V which is stable under Q.

Let W be an arbitrary complement of W in V, and let p be the
corresponding projection of V onto W. Form the average p° of the
conjugates of p by the elements of G-

] .

pl=— % p e p ‘PF% (g being the order of G).
816

Since p maps V into W and p, preserves W we see that p® maps V into W;

we have p;lx € W for x € W, whence

=] -1 -
Pp X =p, X, p,-p-pr’x=x, and PUx = x.

Thus p* is a projection of V onto W, corresponding to some complement
W0 of W. We have moreover

I:JE-;:'Uﬂp':}-p_T forall s € (.

Indeed, computing p, - p° - p; |, we find:

1 l
0, -t -1, .~ e } 0
P L p - I{} o z p . Jj r P 1 p r p ot E p 1 p . p —— p .
kY & g (EC L3 [ H 3 g e 3r Ay}
If now x € WY and s € G we have Ox = 0, hence p¥ - p.X = p - pPx
= 0, that 15, p,.x € WY which shows that WY is stable under G, and

completes the proof. O

Remark. Suppose that V is endowed with a scalar product (x| y) satisfying
the usual conditions: linearity in x, semilinearity in p, and {x|x} > 0 if
x # (0, Suppose that this scalar product is invariant under (O, 1.e., that
(p, xlp,y) = (x| »); we can always reduce to this case by replacing (x| y} by
> e (o, xlp,y). Under these hypotheses the orthogonal complement W° of W
in V is a complement of W stable under G; another proof of theorem 1 is
thus obtained. Note that the invariance of the scalar product (x| ¥} means
that, if (¢;) is an orthonormal basis of V, the matrix of p, with respect to this
basis is a unitary matrix,

Keeping the hypothesis and notation of theorem 1, let x € V and let w
and w' be its projections on W and W% We have x = w + w”, whence
p,x = pw + pw', and since W and W are stable under G, we have
ow e W and pw' & WY, thus pw and pw" are the projections of px.
It follows the reprisentations W and WY determine the representation V,

6

1.4: Irreducible representations

We say thai V s the direct sum of W and W9 and write V. = W & W% An
element of V is identified with a pair (w, w) with w € Wand w” € WO If
W and WO are given in matrix form by R, and R?, W @ W? is given in

'-F

The direct sum of an arbitrary finite number of representations s defined
simitlarly.

i.4 Irreducible representations

Let p: G — GL(V) be a linear representation of G. We say that it is
irreducible or simple if 'V is not U and if no vector subspace of V 15 stable
under G, except of course 0 and V. By theorem 1, this second condition is
equivalent to saving V is not the direct sum of two representations (except for
the trivial decomposition V = 0 ® V). A representation of degree | is
evidently irreducible. We will see later (3.1) that each nonabelian group
possesses at least one mrreducible representation of degree 2 2.

The irreducible representations are used to construct the others by means
of the direct sum.:

Theorem 2. Every representation is a direct sum of trreducible representations.

Let V be a linear representatton of G. We proceed by induction on
dim{ V). If dim{V) = 0, the theorem is obvious (0 is the direct sum of the
empty family of irreducible representations}). Suppose then dim{(V) > L H
V is irreducible, there is nothing to prove. Otherwise, because of th, 1, V
can be decomposed into a direct sum V' @ V" with dim{V") < dim(V)
and dim (V") < dim(V}. By the induction hypothesis V' and V” are direct
sums of irreducible representations, and so the same 18 true of V., 7

Remark. Let V be a representation, and let V=W, & --- & W, be a
decomposition of V into a direct sum of irreducible representations. We can
ask if this decomposition is unigque. The case where all the p, are equal to |
shows that this is not true in general (in this case the W are iines, and we
have a plethora of decompositions of a vector space into a direct sum of
lines). Nevertheless, we will see in 2.3 that the number of W, isomorphic to
a given irreducible representation does not depend on the chosen decom-
position.

1.5 Tensor product of two representations

Along with the direct sum operation {which has the formal properties of
an addition), there is a “multiplication™: the tensor product, sometimes
called the Kronecker product, It s defined as foliows:
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To begin with, let V| and V, be two vector spaces. A space W furnished
with a map {x;,x3) > X - xy of V| X V5 into W, is called the tensor product
of ¥ and V;, if the two following conditions are satsfied:

(i) x; - x, is linear in each of the variables x; and x;.
(ii) If (¢; ) is a basis of V] and (g, ) is a basis of V3, the family of products

€; * €. 1s a basis of W,

It is easily shown that such a space exists, and is unigue (up to
isomorphism}; it is denoted V, ® V,. Condition (ii} shows that

dim{V, ® V3) = dim{¥,)} - dim(V,).

Now let p': G — GL{(W) and p*: G — GL(V,) be two linear representa.
tions of a group G. For s € G, define an element p, of GL{V, ® V,) by the
condition:

plxy - x5} = P;L"Is} pj(xl) for x; € V,xy € Vi,

[The existence and uniqueness of p, follows easily from conditions (i} and
{i1).] We write:

!
ps = p; ® p?.

The p, define a linear representation of G n V; @ V; which 1s called the
fensor product of the given representations.

The mainx translation of this deﬁmm}ﬂ is the following: let {e } be a
pasis for V, let « (3) be the matrix of p! with respect to this hasw, and
define (¢;,) and (5) in the same way, The formulas:

,ﬂ'} (EJI) - 2 (¥ (s) €ips P 52(%'1) . E ";“zfz(‘g] " €

i i

smply:

-y
pi(ef: ' E_»"z} = Z i) () - ’Tﬁ:(‘?} CEq T Eiy

Iy

Accordingly thf.: mainx of pyis (5 ; {s) - 5, (5} ); it is the rensor product of the
matrices of pj. and pZ. .

The tensor product of two 1rreducible representations 1s not m general
irreducible. It decomposes into 3 direct sum of wrreducible representat:ons
which can be determined by means of charactier theory (cf. 2.3}.

In quantem chemistry, the tensor product often appears in the following
way: ¥y and ¥, are two spaces of funciions stable under G, with respeclive
bases (:;r;i} and (‘hz} and V| ® ¥, 1s the vector space generated by the

products P - Wiy these producis bemg linearly independent. This last
condition is essential. Here are two particular cases where 1t is satisfied.

[.6: Symmetric square and alternating square

(1) The ¢’s depend only on certain variables {x, x’, ...} and the ¢’s on
variables { v, v, . ..} independeni from the first.

{2} The space V| {or V) has a basis consisting of a single function ¢, this
function does not vamish identically in any region; the space V) is then
of dimension 1.

1.6 Symmetric square and alternating square

Suppose that the representafions V| and V, are wdentical to the same
representation V, so that V, @ V, == V @ V. If {¢,) 15 a basis of V, let # be
the automorphism of V ® V such that

B(Ei; " Ej) == 'E'J: L f(’H‘ HH pﬂérs {f'.,j },

it follows from this that 8(x - y)} = y - x for x, ) = V, hence that & is
independent of the chosen basis (e,); moreover #° . The space V@ V
then decomposes mto a direct sum

VeV =Sm (V)® At (V)

where Sym?*(V) is the set of elements z € V ® V such that z) = z and
A2 (V) is the set of elements z &€ V@V quch that #z) —~ —z. The
elements (e e; + e - e)ic; form a basls of Sym (V), and the elements
{¢;, e X% fr.}rm a basis of Alt’ (V). We have

dim Sym*(V) = ﬂﬂguﬂ dim ARY{V) = ”(""i..;f_).
if dimV ==

The subspaces Sym?{V) and AH*(V) are stable under G, and thus
define representations called respectively the symmerric square and alternat-
ing square of the given representation.



CHAPTER 2
Character theory

2.1 The character of a representation

Let V be a vector space having a basis {¢;} of n elements, and let a be a

linear map of V into itself, with matrix {a;). By the frace of a we mean the
scalar

Tria) == 2 a;.

It 1s the sum of the eigenvalues of a {counted with their multiplicities), and
does not depend on the choice of basts (¢;).

Now let p: G — GL{V) be a linear representation of a finite group G in
{the vector space V, For each s € G, put:

Xots) = Trlp,).

The complex valued function X, On G thus obtained is called the character
of the representation p; the importiance of this function comes primarily
from the fact that 1t characterizes the representation p {(cf. 2.3).

Proposition 1. If x is the character of a representation p of degree n, we have:

0 X =n_
(i) x(s7) = x(3)" fors € G,
(iif) x(tst™') == x(s) fors,t € G.

(i z = x + iy is a complex number, we denote the conjugate x — fy either
by z* or 7.)

We have p(1) = 1, and Tr(1) = » since V has dimension #; hence (i}.
For (ii) we observe that p, has finite order; consequently the same is true

10
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of its eigenvalues A, ..., A, and so these have absolute value equal to |
(this is also a consequence of the fact that p_ can be defined by a unitary
matrix, cf. 1.3). Thus

s} = Trlp)’ = TN = I N = Tr(p,") = Trlp) = x(77).
Formula (iii} can also be written y(vu) = x{uv), putting u = 5, v = ¢ 7';

hence 1t follows from the well known formula

Triab) = Triba),

valid for two arbitrary lincar mappings a and & of V into itself.

Remark. A function f on G satisfying dentity {11), or what amounts 1o
the same thing, f(uv)} = flew), is called a class funcrion We will see in 2.5
that each class function 1s a linear combination of characters.

Proposition 2, Let pl: G s GL(V;} and pz: G — GLIV,) be two linear
representations of G, and fet x) and x5 be their characters. Then:

(i} The character x of the direct sum representation ¥y ® V, is equal to

X1+ Xz
(11) The character \ of the tensor product representation ¥y, @ 'V, is equal
; 2

Xy Xz

Let us be given p' and p? in matrix form: Rj, Rf. The representation
V; @ V, is then given by
R! ©
%= (6 )
0 R?

whence Tr{R_ ) = Tr(R!) + Tr(R?), that is x{(5) = x, (&) + xa(s)
We proceed likewise for (i1): with the notation of 1.3, we have

als) = 2,00 xb) =21,

yis) = E {f ;L,(F}fﬁljz(ﬁ) = x1(5) - xp (s}

ILI itz

Proposition 3. Let p: G — GIAV) be a linear representation of G, and let x
be its character. Let xﬁ be the character of the symmetric square S:.rm2 {V)
of V (cf. 1.6), and let x*% be that of AW(V). For each s € G, we have

X2) = 5 (x5 + x(52)

l
xa(s) = 5(x(s)* = x(s))
and x; + xt = x-
11



Chapter 2: Character theory

Let s & G. A basis (¢;) of V can be chosen consisting of eigenvectors for
p; this foilows for example from the fact that p. can be represented by a
unitary matrix, ¢f. 1.3. We have then p,e; = A ¢; with A; & C, and so

X)) = TN, xlsh) = 2 AL
On the other hand, we have
(o ® p M- e+ €. ) = NN e, - ¢ + e ),
(P,; @ p, e - €; ™ €5 e} = }‘f}‘j e - gp e ¢ ),

hence
Ao (S) fgj }‘1 }\_j' E }‘i + E%j ':."-.E }':,r' """ 2(2 }‘r) + 2 E ;.‘i

2 — _ _E_ 2 | 2
}'Z{I(S} o i%j }‘i }"__r — 2(2 }‘«j "i 2 }"i .

The proposition follows.
(Observe the equahity x2 + x2 = x?, which reflects the fact that V @ V is

the direct sum of Sym1 (V}and Alt? (V)).

EXERCISES

2.1, Let x and x" be the characters of two representations. Prove the formulas:

Py 2 ' '
O+ x5 =2+ xF + xx,s
ryd y ¢
(¢ + X' = xZ+ x5+ xx.

2.2. Let X be a fimte set on which G acts, let p be the corresponding permutation
representation {cf. 1.2, example (c}], and yxy be the characler of p. Let
5 € G; show that x(s) is the number of elements of X fixed by s.

2.3. Let p: G — GL(V) be a linear representation with character y and let V' be
the doal of ¥V, e, the space of near forms on V. Forx & V, x' & V' lgt
{x,x"» denote the value of the linear form x’ at x. Show that there exists a
unique Hnear representation p: G — GL{V"), such that

px,pex) =<x,x forseE G x €V, x & V.

This is called the contragredient {or dual) representation of p; its character is
x™

24, Let py G — GL(V} and p,: G — GL(V;} be two linear representations
with characters x; and x;. Let W = Hom(V,, V,), the vector space of linear
mappings £ ¥y =V, For s € G and f& Wlet pf=py o fo p{j; SO
p./ € W. Show that this defines a linear representation p: G - GL {W),
and that its character is xI' - x,. This representation is isomorphic to p] ® p,,

12

2.2: Schur’s lemma; basic applications

where p} 15 the contragredient of p,, cf. ex. 2.3,

2.2 Schur’s lemma; basic applications

Proposition 4{Schur’s lemma).Let p': G — GL{V,) and p*: G — GL(V,) be
two irreducible representations of G, and let f be a linear mapping of V; into
V; such that p2 o f = fop! forall s & G. Then:

(1) If p’ and pz are nol isomorphic, we have [ = (.

(2) If Vi = Vs and p' = p2, fis a homothety (i.e., a scalar multiple of
the identity).

The case { == 0 is trivial. Suppose now f » 0 and let W, be its kernel (that
is, the set of x € V| such that fx = 0). For x € W, we have fp x = pf‘fx

== (1, whence p} X € W, and W, is stable under G. Since V, is irreducible,
W, is equal to V¥, or 0; the first case is excluded, as it imples f = 4.

The same argument shows that the image W, of f{the set of fx, for x € W)
1s equal to V,. The two properties W, = (0 and W, = V; show that fis an
isomorphism of V; onto V;, which proves assertion (1).

Suppose now that V; = V,, o' = p? and let A be an eigenvalue of |+ there
exists at least one, since the field of scalars 1s the field of complex numbers.
Pui f* = f — A Since A is an eigenvalue of f, the kernel of /' is 5 0: on the
other hand, we have p* o f* = f' o p!. The first part of the proof shows that
these properties are possible only if f7 == 0, that is, if f 15 equal {o A, I

Let us keep the hypothesis that V; and V, are irreducible, and denote by
g the order of the group G.

Corollary 1, Let h be a flinear mapping of V; into Vs, and put:

i _
=~ 3 (02) ‘hp).

B =
£ =G

Then:

(1) If p! and p? are not isomorphic, we have h® = 0.
(2) If VY, = V, and p' = p?, h° is a homothety of ratio (3/n)Tr(h), with

n o= dim{V,).
We have p2h” = h%). Indeed:

(z-!hﬂlml 2y~1¢ 2y=1p 1 1

g Py &= (o5) {p7) “hp, P
EreG
| -

= - 3 (o}) 'hp) = A

& 16

Applving prop. 4 to f == A%, we see in case (1) that 2% = 0, and in case (2)
that A" is equal to a scalar A. Moreover, in the latter case, we have:

13



Chapter 2: Character theory

Tr() =+ 3 Trlp]) ™ hol) = Tr(h),

Fi= g

and since Tr{A} = n - A, we get A = {1/n)Tr(h).

Now we rewrite corollary | assuming that p' and p? are given in matrix
form:

= (5, (), p = (r, (D).

The linear mapping # is defined by a matrix [x, ; J and likewise 0 is defined
by (x, ,) We have by definition of A%

‘zi'l T g 2 L!) oy 11’1{)

Ui 'S

The right hand side is a linear form with respect to x,_; ; in case { 1) this form

JU"

vanishes for all systems of values of the x; ;: thus 1ts coeflicients are zero.
Whence:
Coroliary 2. In case {1}, we have:
. 2 (7 () =0
:EG

Jor arbitrary iy, i1, J1, Ja.

In case () we have similarly #° = A, ie, xi-'}z g = A (8, ; denotes the
Kronecker symbol, equal to 1 if 4, = /, and 0 otherwise), with
A e (I/H)Tr(h), that is, A = (I/n} 2 8, ; x;,;. Hence the equality:

I
mt L
o 2 )X ey J¥‘I() T n 2 3-‘: f Sjﬂ: Kfady

Ut 2 JirJ2

Equating coefficients of the x; ;, we obtain as above:

iyt
Corollary 3. In case (2} we have:

.._..E -
o 2 fzi (t )J;fs(r) Tﬁfzfl 5,*2.-": o

{1/” if iy = iy and j, = J
TTe!

0 oltherwise .

Remarks
(1) If ¢ and ¢ are functions on G, set

> =1 8 syl == 3 s,
g:E EIE:

We have (&, 0> = (i, &>, Moreover (¢, is linear in ¢ and n . With this
notation, corollaries 2 and 3 become, respectively

;
< JHI> = 0 and <fzf hf=> o *5”“3}1;'

14

2.3 Orthogonality relations for characiers

(2) Suppose that the matrices (r, (1)) are unitary (this can be reabized by a

suitable choice of basis, cf. 13} We have then .f;},( "1y = (f} and
corollaries 2 and 3 are just erthogonality relations for the sr.,alar product

(¢p1y} defined in the following section.

2.3 Orthogonality relations for characters

We begin with a notation. If ¢ and ¥ are two complex-valued functions
on G, put

(oly) = z Z SO, g being the order of G .
T1e

This ts a scalor product: it is linear in ¢, semilinear 1 . and we have

(plo) > 0 for all ¢ # 0.
If ¥ is the function defined by the formula (1) = ¢(r~')", we have

(@) = Z St = (),
g tEG
cf. 2.2, remark 1. In particular, H x 1s the character of a represeniation of
(3, we have ¥ = y {prop. |}, 50 that {¢|x} = {¢, x> for all functions ¢ on

G. So we can use at will {¢ly) or (¢, ¥, so long as we are concerned with
characters.

Theorem 3

(i} If x is the character of an irreducible representation, we have
{xix} = 1 (i.e., x is “of norm 1),

1) If x and x' are the characters of two nonisomorphic irreducible
representations, we have {xix’'}) = 0 (i.e. x and x’ are orthogonal).

Let p be an rreducible representation with character x, given in matrix
form p, = (1,{1}}. We have x(1) = X r:{¢), hence

(xlx) = Goxo = E By bl

But according to cor. 3 to prop. 4, we have (., = 8,/n where n is the
degree of p. Thus

(xix} = (% ng);ﬁ: = nin = |

since the indices ij each take n values, (ii) is proved in the same way, by
applying cor. 2 instead of cor. 3. ]

Remark. A character of an irreducible representation is called an frreduri-
ble character. Theorern 3 shows that the irreducible characters form an
orthonormal system; this resalt will be completed later (2.5, th. 6).

15
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Theorem 4. Let 'V be a linear representation of G, with character ¢, and
suppose Y decomposes into a divect sum of irreducible representations:

V:WIEB"EBW‘[:‘

Then, if W is an irreducible representation with character x, the number of
W, isomorphic to W is equal to the scalar product (¢ix) = {($,x).

Let x; be the character of W,. By prop. 2, we have

=X o T X

Thus (¢lx) = Oqlx) + - + (xelx). But, according to the preceeding
theorem, (x;lx) is equal to 1 or 0, depending on whether W, is, or is not,

isomorphic to W, The result follows. |

Corollary 1. The number of W, isomorphic to W does not depend on the chosen
decomposition,
(This number is called the “number of times that W occurs in V™, or the
“number of times that W is confained in V.”)

Indeed, {(¢|y) does not depend on the decomposition.

Remark. 1t 1s in this sense that one can say that there is uniqueness m the

decompostition of a representation into irreducible representations. We shall
return to this in 2.6

Corollary 2. Two representations with the same character are isomorphic.

Indeed, cor. 1 shows that they contain each given irreducible representa-
tion the same number of times.

The above results reduce the study of representations to thal of ther
characters. If xy, ..., xp are the distinct irreducible characters of G, and if

W, ..., W, denote corresponding representations, each representation V 1s
isomorphic to a direct sum

V=mWa&- - dmW, m integers = 0.

"ihe character ¢ of V 1s equal to myyx, + -+~ + my X, and we have
= (¢ix;}. [This applies notably to the tensor product W, ® W, of two
H‘I'E:dul:lh]ﬁ re:presiﬁ:ntatlom and shows that the product x; - x; demmp{)ﬂee

nto x;x; = mf..r X Lhe m being integers > 0.] The c}rth@g:}naht}r
relations among the x; imply 1 m addition:

i ==
($o) = 2 m},
;m
whence;

LG

2.4; Decomposition of the regular representation

Theorem 5. If ¢ is the character of a representation V, (dld) is a positive
integer and we have {¢pj¢) = 1 if and only if V is irreducible.

Indeed, 3. m? is only equal to 1 if one of the m;’s is equal o | and the
others to 0, that is, if V is isomorphic to one of the W, i

We obtain thus a very convement irreducibility criterion.

EXERCISES

2.5. Let p be a linear representation with character x. Show that the number of
times that p contains the unit representation is egual to  (xi1)

= (1/g) Lseqc xis)

2.6. Let X be a finite set on which G acts, let p be the corresponding permutation
representation (1.2) and let » be its character.

(a) The set Gx of images under G of an element x € X 15 called an orbir.
Let ¢ be the number of distinct orbits. Show that ¢ is equal to the number
of times that p contains the unit representation 1; deduce from this that
{x|t) = ¢. In particular, if G is transitive {ie, if ¢ = 1), p can be
decomposed into 1 & & and # does not contain the unit representation.
If ¢ is the character of #, we have x = | + ¢ and {{|1) =

(b} Let G act on the product X x X of X by itself by means of the formula
s{x, ) = {sx, sy}. Show that the character of the corresponding permuta-
tion representation is equal to x2.

(c) Suppose that G is fransitive on X and that X has at feast two elements.
We say that G is doubly transitive if, forall x, y, X',y € X with x 5% y
and x” # ¥, there exists 5 & (5 such that x” = sx and ¥y’ = gy, Prove the
equivalence of the following properties:

(i} G is doubly transitive.
{ii} The action of G on X X X has two orbits, the diagonal and its
complement,

(i) (1) = 2.

{(iv) The representation # defined in {a) is irreducible.
[The equivalence (i) ¢ (i) is immediate; (i) ¢ (iii} follows from {(a)
and {b). ¥f ¢ is the character of # we have I + ¢ == x and
(ill) = } (g1} = 0, which shc}ws that {iii) i1s equivalent to

(‘i’ 1) = 1, ie, to {1/g) Zeo @{3} I: since  is real-valued,
this indeed means that # is irreducible, cf. th. 5.]

2.4 Decomposition of the regular representation

Notation, For the rest of Ch. 2, the irreducible characters of (s are
denoted ¥y, ..., Xy their degrees are written n,....n,, we have m
= ¥:{1}, cf. prop. L.

Let R be the regular representation of G. Recall (cf. 1.2) that it has a
basis (e ), e such that p,e, = e, If 5 % 1, we have st # 1 for all ¢, which

17
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shows that the diagonal terms of the matrix of p, are zero; 1n particular we
have Tri{p,) = 0. On the other hand, for s = [, we have

Tr(p,) = Tr{i) = dim{R) =
Whence:

Proposition 5. The character rg of the regular representqtion is given by the
formulas:

r(l) = g, order of G,
}‘G(S) = (} if 5 w1,

Corelary 1. Every irreducible representation W, is contained in the regular
represemiation with multiplicity equal 1o ity degree n,.

According to th. 4, this number is equal to {rg,x;, and we have

Gox? =3 I el ) = 28 xD) = x() = m. T

g.ﬂ:’%:

Corollary 2.

(a) The degrees n, satisfy the relation .51 n = g
(b) Ifs € G s different from 1, we have 2; ';‘T nxi(s) =

By cor. I, we have igls) = 2, mix{s) for all s € G, Taking 5 = | we
obiain (a), and taking s % 1, we obtain (b). ]

Remarks

(1) The above result can be used in determining the irreducible represen-
tations of a group G: suppose we have constructed some mutually
nonisomorphic irreducible representations of degrees ny, ..., fy; 1n order
that they be a/l the irreducible representations of GG {up to isomorphism), it
15 necessary and sufficient that nil sl o nﬁ = g

(2) We will see later (Part 11, 6.5} another property of the degrecs ;. they
divide the order g of (.

EXERCISE

2.7. Show that each character of G which 15 zero for all 5 # 1 15 an integral
multiple of the character 7 of the regaiar representation.

2.5 Number of irreducible representations

Recall (cf. 2.1) that a function f on G is called a class function if
Flst™") = f(s) for all 5, 1 € G.

18

f(fy = 0 forall 1t & G; hence f = 0, and the proof 1s complete.

2.5: Number of irreducible representations

Proposition 6. Ler f be a class function on G, and let p: G — GL{V} be a

linear representation of G. Ler p be the linear mapping of V into itself
defired by

o= 2 fle;.

tCG

If'V is irreducible of degree n and character x, then pyis a homothety of ratio
A given by:

A= B 0x) = Bk

n,c
Let us compute p; ' pyp,. We have:
—1 oy }r { -~ .
=, flpy pp 2 Jp-1 s
Ps p_{iﬂx !EEG () v PPy Eh ) s his

Putting 1 = s #5, this becomes:

ﬂfﬁ?;ﬂ; = g@ f(ﬁ‘“fl}ﬂu = gﬂ flap, = HE
el )

So we have pyp, = p,py. By the second part of prop. 4. this shows that p,is
a homothety A. The trace of A is ad; that of p; is E:E{E F(Tedp,)

= LEEG Flehx(r). Hence A == (]f”} ZrEG ()x() = (E/”)U;X J.

We mtroduce now the space H of class functions on G; the irreducible
characters x;, ..., X belong to H.

Theorem 6. The characiers xy, . .., Xy Jorm an orthonormal basis of H.

Theorem 3 shows that the x; form an orthonormal system in H. It
remains to prove that they generate H, and for this it is enough 1o show that
every element of H orthogonal to the x” is zero. Let f be such an element.
FFor each represantalmn pof G, put p; = 2,0 f{)p,. Since f s orthogonal
to the x7, prop. 6 above shows that py is zero so long as pis trreducible;
from the direct sum decomposition we conclude that py s always zero.
Applying this to the regular representation R {cf. 2.4) and computing the
image of the basis vector ¢; under ps we have

prey = IEEG flp ey == 2 ft)e, .

ez

Since p, is zero, we have prey = 0 and the above formula shows that

Recall that two elements ¢ and ¢ of G are sawd to be conjugate if there
exists & € G such that ¢/ = sts ' this is an equivalence relation, which
partitions G into classes (also called conjugacy classes).

Theorem 7. The number of irreducible representations of G {up to isomor-
phism} is equal to the number of classes of G.

19
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Fet Gy, ..., Cy be the distinct classes of G. To say that a function f on
(G is a class function is equivalent to saying that it is constant on each of
Cy, ..., Cp; it is thus determined by its values A; on the C;, and these can
be chosen arbitrarily. Consequently, the dimension of the space H of class
functions is equal to k. On the other hand, this dimension is, by th. 6, equal
to the number of irreducible representations of G (up to isomorphism). The
result follows.

Here is another consequence of th. 6:

Proposition 7. Let s € G, and let c(s} be the number of elements in the
conjugacy class of s.
(a) We have EEW; x:(8) x;(5) = g/els).
(b} Fort € G not conjugate o s, we have Etm; (s x.(0) = 0.
{For s == 1, this yields cor. 2 to prop. 5.}

Let £, be the function equal to | on the class of 5 and equal to 0 elsewhere.

Since 11 15 a class function, it can, by th. 6, be writien

= 2 }‘l':'i:f! with }"i" = (LI:{J == ““L}'L(S)

== |

We have then, for each 1 € G,

e "’(” S

=}

This gives (a} if 1 = 5, and (b} if ¢ is not conjugate to 5. ]

Exampi. Take for G the group of permutations of three letters, We have
g = 6, and there are three classes: the element 1, the threc iranspositions,
and the two cvclic permutations. Let ¢ be a transposition and ¢ a cyclic
permitiation. We have 12 = 1, ¢ = 1, tc = ¢*1; whence there are just two
characters of degree 1 the unit character ) and the character x, giving the
signature of a permutation. Theorem 7 shows that there exisis cme other
irreducible character 8; if » 15 il degree we must have 1 + | + nt = 6,
hence » == 2. The values of # can be deduced from the fact that x; + x;
+ 28 is the character of the regular representation of G (cf. prop. 5). We
thus get the character table of G: |

; ! c
xi | ! T
X2 ; — 1 I
f 2 () e |

20

2.6: Canonical decomposition of a representation

We obtain an irreducible representation with character # by having G
permute the coordinates of elements of C? satisfying the equation x +
+ z = 0 (cf. ex. 2.6¢)).

2.6 Canonical decomposition of a representation

Let p: G — GL(V) be a linear representation of G. We are going to
define a direct sum decomposition of V which 15 “coarser” than the
decomposition into irreducible representations, but which has the advan-
tage of being unique. 1115 obtained as follows;

Let x¢, ..., x, be the distinct characters of the nreducible representa-
tions Wy, ..., W, of G and m, ..., n, their degrees. Let V = U, &
@& U, be a decomposition of V into a direct sum of irreducible representa-
tions, For i = 1,...,h denote by V, the direct sum of those of the
Y, ..., U, which are isomorphic to W, Clearly we have:

leﬁ@""@’vh‘

{In other words, we have decomposed V into a direct sum of irreducible
representations and coflected together the isomorphic representations.)

This 1s the canonical decomposition we had in mind. 15 properties are as
foliows:

Theorem 8

(i) The decomposition ¥V = V@ --- @V, does not depend on the
initially chosen decomposition of Y into irreducible representations.

{i1} The projection p, of V¥ ento N, associated with this decomposition is
given by the formula:

."IL

Py = - Ed XJ(I) Py
E 16
We prove (i), Assertion {i) will follow because the projections p;
determine the V. Put

H;

‘?f = E X;’(f}*pf

g 126

Proposition 6 shows that the restriction of g, to an wreducible representa-
tion W with character ¥ and of degree n is a homothety of ratio
(m/my(x,1x); itis thus 0 if ¥ # x; and | if x = x;. In other words g; 1s the
identity on an irreducible representation isomorphic to W, and 15 zero on
the others. In view of the definition of the V, it follows that g, is the identity

on V; and is 0 on V, for j # i, If we decompose an element x & V nto s
components x; &V,

.Imxt‘}“'"‘!'l'ﬁ,

we have then g(x) = g,{x )+ -+ g;{x;) == x. This means that g, 1s
equal to the projection p; of V onto V,
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Chapter 2: Character theory

Thus the decomposition of a representation V can be done m two stages.
First the canonical decomposition V; @ - -+ @ V, is determined; this can be
done easily using the formulas giving the projections p,. Next, if needed, one
chooses 2 decomposition of V, into a direct sum of arreducible representa-
tions each isomorphic to W

\ﬂ.:“’}@...@“ﬂ‘

This last decomposition can in general be done in an infinity of ways {cf.
section 2.7, as well as ex. 2.8 below); it is just as arbitrary as the chowe of
a basis in a vector space.

ExamprLe. Take for G the group of two elements (1,5} with 52 = 1, This
group has two irreducible representations of degree 1, WW and W7,
corresponding to p, = +1 and p, = —1. The canonical decomposition of a
representation V is V = V¥ @ V™, where V7 {resp. V7) consists of the
elements x © V which are symmetric (resp. antisymmetric), i.e., which
satisfy p,x = x (resp. p,x = --x}. The corresponding projections are:

i
RN VU P

To decompose ¥V and V7 into irreducible components means simply to
decompose these spaces into a direct sum of lnes.

EXERCISE

2.8 Let H; be the vector space of linear mappings iz W, = ¥ such that
p. b = hp for all 5 &€ G. Bach £ € H; maps W, into V.

(a) Show that the dimension of H; is equal to the number of times that W,

appears in ¥, i.e., to dim V,/dim W, [Reduce to the case where V = W
and use Schur’s lemmal.

(b) Let G act on H, ® W, through the temsor product of the trivial
representation of G on H; and the given representation on W.. Show that
the map

F:H, ® W -V
defined by the formula

F(X by - w,) = 2 ha{w,)
is an isomorphism of H; ® W, onto V,. [Same method.]

(¢) Let (k,...,h;) be a basis of H; and form the direct sum W, & - - - & W,
of k copies of W. The system (hy, ..., A} defines in an obvious way &
linear mapping # of W, @ - -- @ W, into V;; show that it is an isomor-
phism of representations and that each jsomorphism is thus obtamnable
fapply (b), or argue directly]. In particular, fo decompose V. into a direct
sum of representations isomorphic to W; amounts to choosing a basis for H;.
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2.7 Explicit decomposition of a representation
Keep the notation of the preceding section, and let
V= V®- &Y,

be the canonical decomposition of the given representation. We have seen
how one can determine the ith component V; by means of the corresponding
projection (th. 8). We now give a method for exphcitly constructing a
decomposition of V. into a direct sum of subrepresentations isomorphic to W,
Let W. be given in matrix form (i, (s)) with respect to a basis (65, ....€,):
we have x;(5) = X, (s} and n = n; = dim W, For each pair of integers
w, B taken from 1 to n, let p g denote the linear map of V into V defined by

ki -1
= - Hga\ p
(*) P[I,B g HEEG ﬁﬂ( )iﬂ'f

Proposition 8

(a) The map p,, is a projection; it is zero on the V,, j 5= I, 11s image ¥, ,
is contained in ¥, and V, is the direct sum of the V,, for 1 < o < n.
We have p; = 2y Poa:

(b} The linear map p,g is zero on the V,, j # i, as well as on the N, , for
y # f3; it defines an isomorphism from V, p onto V.

(¢} Let x, be an element 0 of V., and let x, = po(x)) € V,. The
x, are linearly independent and generate a vector subspace Wi(x;)
stable under G and of dimension n. For each s € G, we have

p.ﬂ‘(‘xﬂ'} - % }ﬁa(“ﬂxﬁ

(in particular, W{x,) is isomorphic to W,}.
(dy If (xi”, e xg’"}) is a basis of V., the representation V, is the direci
sum of the subrepresentalions W(x%”)} e W(,x?”)) defined in ¢).

(Thus the choice of a basis of V,, gives a decomposition of V, into a direct
sum of representations isormorphic to W,.)

We observe first that the formula (¥) above aliows us to define the p,z 10
arbitrary representations of G, and in particular in the rreducible represen-
tations W, For W, we have

i —1 n —~1
= - ! = M0 I e .
pﬂﬂ(E'}r') g HEEG ‘r}ﬂ‘a( )pr{f*}r) g % rgfj ,[i-’{t{ )3‘,‘( ) &

By cor. 3 to prop. 4 we have then
(c.) = ee fy=2§
Papi®7 = 0 otherwise .
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We get from this the fact that 3 p . is the identity map of W, and the
formulas “

Do P = {P s L=
afp © Pyd 0 otherwise

pg © Pﬂ'f = % rﬁﬁ(ﬁ)pﬁj‘ '

For W; with j 5 i, we use cor. 2 to prop. 4 and the same argument to show
that all the p, g are zero.

Having done this, we decompose V inio a direct sum of subrepresenta-
tions 1somorphic to W, and apply the preceding to each of these represen-
tations. Assertions (a) and {b) follow; moreover, the above formuias remain
valid in V. Under the hypothesis of (¢}, we have then

p.‘j'{‘xﬂ = Ps ﬁat{xE) = % %H(S)Pﬁl{xl} - ?;-f ’ﬁu(‘g)xﬂ:

which proves {c¢). Finally {d) [ollows from {a), {b), and {c).

EXERCISES

2.9. Let H; be the space of linear maps A: W, — V such that ke p, = p_o I, cf.
ex. 2.8. Show that the map A +> hle,) is an isomorphism of H; onto V, .

2.10. Let x € V, and let V(x} be the smallest subrepresentation of V containing
x. Let x{' be the image of x under py ; show that Vi(x} is the sam of the
representations W(x{'), a = 1, ..., n. Deduce from this that V(x} is the
direct sum of at most » subrepreseniations 1somorpnic to W,
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CHAPTER 3

Subgroups, products,
induced representations

All the groups considered below are assumed to be finrte,

3.1 Abelian subgroups

et G be a group, One says that G is abelian {or commutative) f st = 15
for all 5, t = G. This amounts to saying that each conjugacy class of O
consists of a single element, also that each function on G is a class function.
The linear representations of such a group are particularly simple:

Theorem 9. The following properties are equivalent:

{t) G is abelian.
(i1} Al the irreducible representations of G have degree 1,

Let g be the order of G, and let {n,, ..., #n,) be the degrees of the distinct
irreducible representations of G; we know, ¢f. Ch. 2, that 2 is the number
of classes of G, and that g = s} + - -+ + nj. Hence g is equal to & if and

only if all the », are equal to 1, which proves the theorem.

Corollary. Let A be an abelian subgroup of G, lef a be its order and let g be
that of G. Each irreducible representation of G has degree < g/a.

(The quotient g/a is the index of A in G.)

Let p: G — GL{V} be an irreducible representation of . Through
restriction to the subgroup A, it defines a representation p,: A — GL(V} of
A. Let W C V be an irreducible subrepresentation of p,; by th. 9, we have
dim{W) = 1, Let V' be the vector subspace of V generated by the images
p, W of W, s ranging over (5. H 1s clear that V' is stable under G; since p 15
irreducible, we thus have ¥V = V. But_ fors € G and ¢ & A we have

oW = pp W =pW
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It follows that the number of distinct p, W is at most equal to g/a, henc
the desired inequality dim{V) < g/a, since Vis the sum of the p. W. [

EXAMPLE. A dihedral group contains a cyclic subgroup of index 2. Its

irreducible representations thus have degree | or 2: we will determine them
later {5.3).

EXERCISES

3.1, Show d_ire::ﬂy, using Schur's lemma, that each irreducible representation of
an abelian group, finite or not, has degree |.

3.2. Let p be an irreducible representation of G of degree » and character x; let

C be the center of G (i.e., the set of s & G such that st = £ for all ¢ & G),
and let ¢ be its order.

(a} Show that p, is a homothety for each s & C. [Use Schur's lemma.]
Deduce from this that [x{s)| = nforalls € C.

th) Prove the inequality n* < g/c. [Use the formula 5 x()* = g, com-
bined with (a).] sel

(c) Show that, if p is faithful (.c., p, ¥ 1| fors # 1), the group C is cyvclic.

3.3. Let G be an abelian group of order g, and let & be the set of irreducible
characters of G. If x;, x3 belong to G, the same is true of their product x; xs.
Show that this makes G an abelian group of order g; the group G is called
the dual of the group G. For x € G the mapping x +> x(x) is an irreducibie
character of G and so an element of the dual G of G. Show that the map of

G into ¢ thus obtained is an injective homomorphism; conclude (by
comparing the orders of the two groups) that it is an isomorphism.

3.2 Product of two groups

Let Gy and G, be two groups, and let Gy X G, be their product, that is,
the set of pairs (5),5;), with 5y & Gy and 5, € G,.
Putting
(81, 850 €6 £a) = (57144, S3:63),

we define a group structure on G, X G,; endowed with this structure,
Gy X Gy 1s called the group product of G, and G,. If G, has order g and G,
has order g, Gy X G, has order g = g g,. The group Gy can be identified
with the subgroup of G, X (; consisting of elements (5, 1), where 5, ranges
over Gy ; similarly, G; can be identified with a subgroup of Gy X G,. With
these identifications, each element of Gy commutes with each element of G,

Conversely, let G be a group containing G, and G, as subgroups, and
suppose the foliowing two conditions are satisfied:
(i) Eachs € G can be written uniquely in the form s = $y 3, with 5y € G,
and 5; € Gy
(i} Fors) € Gy and s, € G,, we have 55, = 5,3,
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The product of two elements 5§ = 5;5,, I = I, {; can then be written

3 = Siﬁlﬁ 12 == {3! 11}(52!'2)*

It follows that, if we let {5;,5,) € G, X G, correspond to the element 555
of G, we obtain an isomorphism of Gy X (G, onto G. In this case, we also say

that G is the product (or the direct product) of its subgroups G; and G,, and

we identify it with Gy X G,.

Now let p': G; — GL(V,) and p*: G, — GL(V,) be Knear representa-
tions of G, and G, respectively. We define a hnear representation p! ® p?
of Gy X G, into V| & V, by a procedure analogous to 1.5 by setting

(p' ® ﬂz)(ﬂlﬁz) = p'{5,) ® p?(s9).

This representation is called the fensor product of the representations p' and
o”. If x; is the character of p; (7 = 1,2), the character x of p! ® p° is given
by:

x{5t.52) = x1(81) - xalsm )

When G, and G, are equal to the same group (3, the representation
ol ® p? defined above is a representation of G X . When restricted to the
diagonal subgroup of G X G {mnsistir::% of s, 5), where 5 ranges over GG}, it
gives the representation of G denoted p' @ p? in 1.5; in spite of the identity
of notations, it is importani to distinguish these two representations.

Theorem 16

(i} If o' and p* are irreducible, o' ® p* is an irreducible representation
of Gy X G,

(1} Each irreducible represemtation of Gy X Gy is isemorphic to a
representation pt ® p?, where p' is an irreducible representation of G,

(= 1,2).

If p! and p? are irreducible, we have {cf. 2.3):

2 1 2
- f?(! (5;)| = I, — !Xz(ﬁ’z)i S T
gZ S:
By multiplication, this gives:

I 2

= 2 sl =1

g ¥l ady
which shows that p! ® p? is irreducible (th. 5). In order to prove (i}, it
suffices to show that each class function f on Gy %X G,, which is orthogonal
to the characters of the form x; (5 )x2(s5;). 18 zero. Suppose then that we
have:

2 SUss (s, )*x;{ﬂz)* = (),

3y, 57
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Fixing v, and putting g(,s'l} =i (s, ,52};(2(32}* we have:
32
S glsx (s =0 forall y,.
5

Since g is a class function, this implies g = 0, and, since the same Is true
for each x,, we conclude by the same argument that f{s;,5,) = 0.

{1t is also possible to prove (i} by computing the sum of the squares of
the degrees of the representations p' ® p?, and applying 2.4.}

The above theorem completely reduces the study of representaiions of
G, X (G, to that of representations of G, and of representations of G, .

3.3 Induced representations

Left cosets of a subgroup

Recall the following definitton: Let H be a subgroup of a group G. For
s € (, we denote by sH the set of products st with ¢+ € H, and say that st
ts the lefr coser of H containing 5. Two elements 5, 5" of G are said to be
congruent modulo H if they belong to the same left coset, i.e., if s7's” belongs
to H; we write then &' = 5 (mod H). The set of left cosets of H is denoted
by G/H; it 1s a partition of G. If G has g elements and H has k elements,
G/H has g/h elements; the integer g/k is the index of H in G and is denoted
by {G:H).

If we choose an element from each ieft coset of H, we obtain a subset R
of G called a system of representatives of G/H; each 5 in G can be written
vnigquely s = rt, with r € R andt € H.

Defnition of induced representations

Let p: G — GL{V) be a linear representation of G, and let py be s
restriction to H. Let W be a subrepresentation of py, that s, a vector
subspace of V stable under the p,, + &€ H. Denote by : H — GL{W) the
representation of H in W thus defined. Let s € G; the vector space p, W
depends only on the left coset sH of 5; indeed, if we replace s by st, with
t € H,wehave p, W = p . p, W = p Wsince p, W = W, If ois a left coset
of H, we can thus define a subspace W, of V to be p, W forany s € o. It 1s
clear that the W, are permuted among themselves by the p,, s € G. Therr
SUmM 2, -y We 15 thus a subrepresentation of V.

Definition. We say that the representation p of G in V 1s induced by the
representation # of H in W if V is equal to the sum of the W,

(0 € G/H) and if this sum is direct (that is, if V= @ W)
116783

We can reformulate thts condition m several ways:

(i} Each x € V can be written uniquely as 2, x,, with x, & W, for
each o. ¢ & G/H
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(ii) If R is a system of representatives of G/H, the vector space V is the
direct sum of the p. W, with r € R.

In particular, we have dim(V) = %‘R dim{p, W) == {G: H) - dim(W ).
ExampLes 1. Take for V the regular representation of G; the space V has a
basis (e, )}, = such that p,e, = e, fors € G, 1 € . Let W be the subspace
of V with basis (¢ )=y The representation # of H in W is the reguwiar
representation of H, and it is clear that p is induced by 8.

2. Take for V a vector space having a basis {e,) indexed by the elements
o of G/H and define a representation pof G in V by p.e, = e, fors € G
and o & G/H (this formula makes sense, because, if o is a left coset of H,
s0 is so), We thus obtain a representation of G which 1s the permutaiion
representation of G associated with G/H [cf. 1.2, exampie {¢)}. The vector
gy corresponding to the coset H is invarant under H; the representation of
H in the subspace Cey is thus the unit representation of H, and 1t 1s clear
that this representation induces the representation p of G n V.

3. I py is induced by 8, and if p; 1s induced by #, then p; @ p, is induced
by 0, @ &,

4. If {V, p} is induced by (W_8), and if W, is a stable subspace of W, the
subspace V) = > _-p o, W, of V 15 stable under G, and the representation
of G in V, is induced by the representation of H in W,

5. If p is induced by 4, if p" 1s a tepresentation of G, and if py 5 the
restriction of p” to H, then p @ p" 1s mduced by § @ pyy.

Existence and uniqueness of induced representations

Lemma 1. Suppose that {V.,p) is induced by (W,8}). Let p': G — GL{V'} be a
linear representation of G, and let f W — V' be g finear map such that
f0w) = p,f(w) for all 1 € H and w € W, Then there exisis a unigue
linear map F: V — V' which extends f and satisfies F o p, = p; o F jor afl
s € 0.

If F satisfies these conditions, and if x & p, W, we have p, 'x & W;
hence

F(x) = Flp,p, x) = p,Flp; ' x) = p,flp; ' x).

This formula determines F on p. W, and so on V., since V is the sum of the
p, W. This proves the uniqueness of I

Now let x & W, and choose 5 € o; we define F(x) by the formula
F(x} = p.f{p7' x) as above. This definition does not depend on the choice
of 5 in o: indeed, if we replace s by 51, with 1 & H, we have

’ e ot = — I —F ] ¥ — i
F}.ﬂf(ﬂ.ﬂ:l I} = pjﬁi'f(g{ ;px ;I} - F}s(ﬂr ﬂr ﬁ;i‘ I) T fﬁ-;f{f}s ]f)
Since V is the direct sum of the W, there exists a unique lmear map
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F: V — V" which extends the partial mappings thus defined on the W, It 13
casily checked that ¥ o p, = pl e Fforalls € G. =

Theorem 11, Let (W, 8} be a linear representation of H. There exists a linear
representation (V, p) of G which is induced by (W, 8), and it is unique up 1o
isomorphism.

Let us first prove the existence of the nduced representation p. In view
of example 3, above, we may assume that # is irreducible. In this case, # 1s
1somorphic to a subrepresentation of the regular representation of H, which
can be induced to the regular representation of G (cf. example 1). Applying
example 4, we conclude that 8 itself can be mduced.

[t remains to prove the uniqueness of p up to isomorphism. Let (V, p} and
{V’,p’) be two representations induced by (W, #). Applying Lemma | to the
mjection of W into V', we see that there exists a linear map F: V —» V
which 1s the identity on W and satisfies Fop. = p, e F for all 5 € G.
Consequently the image of F contains all the p, W, and thus is equal to V"
Since V' and V have the same dimension {(G: H) - dim{W), we see that F

is an rsomorphism, which proves the theorem. {For a more natural proof of
Theorem 11, see 7.1.)

Character of an induced representation

Suppose (V, p) is induced by (W, #} and let x, and x, be the correspond-
ing characters of G and of H. Since (W,{) determines (V,p) up to

isomorphism, we ought to be able to compute X, from xg. The following
theorem tells how:

Theorem 12. Let h be the order of H and let R be a system of representatives
of G/H. For each u € G, we have

|

o) rur) e {s7 ' us).

Xl = 2 xarTwn) =g 2 xglsT )
relure H s ityse H

(In particular, x,(#) 1s a linear combination of the values of x; on the
intersection of H with the conjugacy class of « in G.)

The space V is the direct sum of the p. W, r € R. Moreover p, permutes
the p, W among themselves. More precisely, if we write wr 1n the form z,¢
with r, & R and 1 & H, we see that p, sends p, W mto ;:.,Hw To determine
X, (u} = Try (p,), we can use a basis of V which is a union of bases of the
ﬁrW The indices r such that ¢, 3 r give zero diagonal terms; the others give
the trace of p, on the p, W. We thus obtain:

Xp(u) = 2 Tr, wip,,),
reR

3¢
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where R, denotes the set of r € R such that 7, == rand p,, is the restriction
of p, to p,.W Observe lhat r belongs to R, if and only if ur can be wrilten
rt, with + € H, Le., if r~'ur belongs to H.

It remains to compute Tr, w(p, ), for r € R,. To do this, note that p,

defines an isomorphism of W onto p, W, and that we have

p, o8 =p,, op, witht=r""ur € H,

The trace of p,, is thus equal to that of 8, that is, to x(¢) = xplr “tur). We
indeed obtain:

-
i} = rour).
X% = T xl )

The second formula given for x,(u) follows from the first by noting that
all elame:uts s of G in the left coset rH {r € R} satisfy xp(s™ s

= xglr™' ).

The reader will find other properties of induced representations in part I,
MNotably:
(1) The Frobenius reciprocity formula

Urixedn = ixedo

where fis a class function of G, and fy; is its restriction to H, and the scalar

products are calculated on H and G respectively.
(i1} Mackey’s criterion, which tells us when an induced representation is

irreducible,

(iti} Arein’s theorem (resp. Brauer’s theorem), which says that each character
of a group (3 is a linear combination with rational {(resp. integral)
coefficients of characters of representations immduced from cychic subgroups
(resp. from “elementary™ subgroups) of G.

EXERCISES

3.4. Show that each irreducible representation of G is contamed 1n a representa-
tion induced by an irreducible representation of H. [Use the fact that an
irreducible representation is contained in the regular representation.] Obtain

from this another proof of the cor. to th. 9.

3.5. Let {W,6) be a linear representation of H. Let V be the vector space of
functions £ G — W such that f{ru) == 8,f{u) for u &£ G, 1 & H. Let p be
the representation of G in V defined by (p,f Yu} = flus) for s, v € G. For
w € W let [, € V be defined by f,{f) = f,w for ¢t € H and £ {s) = 0 for
s & H. Show that w > { is an isomorphism of W onto the subspace W, of

V consisting of functions which vanish off H. Show that, if we identify W
and W, in this way, the representation (V, p) 1s induced by the representation
(W, ).

3.6. Suppose that G is the direct product of two subgroups Hand K {cf. 3.2}). Let
p be a representation of G induced by a representation # of H, Show that p
is isomorphic to # ® ry, where ry denotes the regular representation of k.
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CHAPTER 4

Compact groups

The purpose of this chapter is to indicate how the preceding results carry
over to arbitrary compact groups {not necessarily finite); for the proofs, see
[1], {4], [6] cited in the bibliography.

None of the results below will be used in the sequel, aside from examples
5.2, 5.5, and 5.6.

4.1 Compact groups

A topological group G is a group endowed with a topology such that the
product s - t and the inverse s~ are continuous. Such a group is said to be
compact if its topology is that of a compact space, that is, satisfies the Borel-
Lebesgue theorem. For example, the group of retations around a point in
euclidean space of dimension 2 {or 3, ...) has a natural topology which
makes it into a compact group:; Hs closed subgroups are also compact
ErOUPS.

As examples of noncompact groups, we mention the group of translations
X+ x + a, and the group of linear mappings preserving the quadratic
form x* + y* + z* — 1? {the “Lorentz group™). The linear representations

of these groups have completely different properties from those in the
t:{}mpact CHASE,

4,2 Invariant measure on a compact group

In the study of linear representations of a finite group G of order g, we
have used a great deal the operation of averaging over G, i.e., attaching to

a function f on G the element (I/g) 3,eq f(#) {the values of f could be
either complex numbers or, more generally, elements of a vector space). An
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analogous operation exists for compact groups; of course, instead of a fimte
sum, we have an integral f; f(r)dt with respect to a measure df.

More precisely, one proves the existence and uniqueness of a measurc dt
carried by G and enjoying the following two properties:

()} S f{O dt = fg f(is)dt for each continuous function f and each s € G
(invariance of dt under right translation). |
(i) f df = 1 {the toral mass of dt is equal to 1).

One shows moreover that dr is invariant under left translation, 1.€.;

(i} fG f{ndt = fG fist)dr.

The measure dr is called the invariant measure (or Haar measure) of the
group G. We give two examples (see also Ch. 5):

(1) If G is finite of order g, the measure 4! is obtained by assigning to
cach element t €& G a mass equal to 1/g.

(2} If G is the group C,, of rotations in the plane, and if we represent
the elements ¢ & G in the form 1 = ¢ {x taken modulo 27), the
invariant measure is (1/2w)da; the factor 1/27 is used to insure

condition {11},

4.3 Linear representations of compact groups

et (G be a compact group and let V be a vector space of finite dimension
over the field of complex numbers. A linear representations of Gin Visa
homomorphism p: G — GL{V) which is continuous; this condition 15
equivalent to saying that p x is a continuous function of the two variables
s € G, x € V. One defines similarly linear representations of G i a
Hilbert space; one proves, moreover, that such a representation 15 BOMOr-
phic to a (Hilbert) direct sum of unitary represeniations of finite dimension,
which aliows one to restrict attention to the latter.

Most of the properties of representations of finite groups carry over o
representations of compact groups; one just replaces the expressions

“(1/g) e f0) 7 by “ fg f()dt 7 . For example, the scalar product (i)
of two functions ¢ and ¢ 18

(9ly) = [ uD* ar

More precisely:

(a) Theorems 1, 2, 3, 4, and 5 carry over without change, as well as therr
proofs. The same holds for propositions 1, 2.3 and 4.

(b) In 2.4, it is necessary to define the regular representation R as the
Hilbert space of square integrable functions on G with group action
(p. fYOY=f(s""). If G is not finite, this representation is of nfinite
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dimension, and it 15 no longer possible to speak of its character, s0
proposition 3 no longer makes sense. Nevertheless, it is still true that each
irreducible representation is contained in R with multiplicity equal to its
degree,

(c) Proposition 6 and th. 6 carry over without change (in th. 6, take for H
the Hilbert space of square integrable functions on G,

(d} Theorem 7 is true (but uninteresting) when G is not finite: there are
infinitely many classes, and infinitely many irreducible representations.

(e) Theorem 8 and prop. 8 carry over without change, as well as their

proofs. The projections p; of the canonical decomposition (th. 8) are given
by the formulas

Pix = n; f(} Xf(f)* iﬂf'xdf'

(f) Theorems 9 and 10 carry over without change, as well as their proofs.
Note, with respect to th. 10, that the jnvariant measure of the product
Gy X G, is the product ds; ds, of the invariant measures of the groups G,
and G,

(g) So long as H is a closed subgroup of finite index in G, the notion of
a representation of G induced by a representation of H, defined as in 3.3,
and th. 11 and 12, remain valid. When the index of H is infinite, the
representation induced by (W,#) is defined as the Hilbert space of square
integrable functions f on G, with values in W, such that f(ru) = g f{u} for
cach 1€ H, and G acts on this space by p_f(1)= flus), ¢f. ex. 3.5.
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CHAPTER 5

Examples

3.1 The cyclic group C,,

This is the group of order n consisting of the powers 1, #, ..., r" ! of an
element » such that r” = . It can be realized as the group of rotations
through angles 2k#/n around an axis. It is an abelian group.

According to th. 9, the irreducible representations of C, are of degree 1.
Such a representation associates with r a complex number x{r} = w, and
with r* the number x(r¥) = w*; since r" = 1, we have w" = I, that is,
n—— Lwith A= 0, 1, ..., n —~ L. We thus obtain n irreducible repre-

sentations of degree 1 whose characters Xy, Xy, ..., X,— are given by

X (rﬁ:) — Elm'hk/n _

We have x, - xXp = Xpey» With the convention that x,. 0 = ¥pppop Uf
A+ B 2 n{in other words, the index & of x,, is taken moduio n).
For n = 3, for example, the character table is the following:

] r rt
xi | 1 w wt
Xz } w? w

where
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We have

Xo"Xi = Xio X1°Xt = X xX2 Xz =x1and x; * x3 = xp-

5.2 The group C_

This 1s the group of rotarions of the plane. If we denote by 7, the rotation
through an angle « (determined modulo 2m), the invarigns measure on C_, is
(1/27) du (cf. 4.2).

The irreducible representations of C_, are of degree . They are given by:

x,(r) = €™ {n an arbitrary integer).
The orthogonality relations give here the well known formulas:

1
2

e

2 . .
JI} grina , otme 4. o &

and th. 6 gives the expansion of a periodic function as a Fourier series.

2.3 The dihedral group D,

This 18 the group of rotations and reflections of the plane which preserve
a regular polygon with n vertices. It contains n rotations, which form a
subgroup 1somorphic to C,, and » reflections. Its order 15 2n. If we denote
by r the rotation through an angle 2o/n and if 5 is any one of the reflections,
we have:

Fto= 1 =1, sry o= Tt

Each element of D, can be written uniquely, either in the form r*, with
0 < k< n~1 (if it belongs to C), or in the form sr*, with 0 < &
< n — 1 (if it does not belong to C,). Observe that the relation srs = ™!
implies s7%s = r % whence (sr }2 we ],

Realization of D, as a group of rigid motions of 3-space

There are several such:

(a) The usual realization (the one traditionally denoted D, cf. Eyring [3]).
One takes for rotations the rotations around the axis Oz, and for retlections,
the reflections through n lines of the plane Oxy, these hines forming angles
which are multiples of 7/n.

(b} The realization by means of the group C,_, (notation of Eyring {5]):
instead of the reflections with respect to the lines of Oxy, one takes
reflections with respect to plones containing the axis Oz

(c}) The group D,, can also be realized as the group D, ; {notation of
Eyring {5)).
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5.3: The dihedral group B,

Irreducible representations of the group D, {n even 2 1)

First, there are 4 representations of degree 1, obtained by letung X1
correspond to r and s in all possible ways. Their characters fy, 5, ¥, ¥4 are
given by the following table:

! rk sr¥
" B E
¥y : ; ~ 1
e,
v AN o

Next we consider representations of degree 2. Put w == e and let h be
an arbitrary integer. We define a representation p" of D, by setting:

whk 0 —~ hk

A direct calculation shows that this is indeed a representation. This
representation is induced (in the sense of 3.3) by the representation of C,
with character x; {5.1). It depends only on the residue class of A modulo a;
moreover p" and p" " are isomorphic. Hence we may assume 0O < A
< n/2. The extreme cases A = 0 and h = n/2 are uninteresting: the
corresponding representations are reducible, with characters oy + Y and
Yy + §y Tespectively. On the other hand, for 0 < h < n/2, the representa-
tion p’t is irreducible: since w? 52 w™¥ the only lines stable under p(r) are
the coordinate axes, and these are not stable under p™{s). The same
argument shows that these representations are pairwise nonisomorphic. The
corresponding characters x* are given by:

" 2arhk
() = W = 2 cos 20K

xh(.ﬁrk} = [},

The irreducible representations of degree 1 and 2 constructed above are the
only irveducible represemtations of D, (up to isomorphism), Indeed, the sum

of the squares of their degrees is equal to 4> | + ((#/2) ~ 1) x 4 = 1n,
which 1s the order of D,

ExampLe. The group Dy has 4 representations of degree 1, with characters
Y, Y. . ¥y and 2 irreducible representations of degree 2, with characters

Xy and x;,
Irreducible representations of the group 1, {n odd)

There are only two representations of degree 1. and their characters i,
and Y, are given by the table:
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| r¥ sr¥
Wi i i
¥ | — 1

The representations p” of degree 2 are defined by the same formulas as
in the case where n is even. Those corresponding to 0 < A < n/2 are
irreducible and pairwise nonisomorphic {observe that, since » 15 odd, the
condition £ < n/2 can also be written A < (n ~ 1)/2). The formulas giving
their characters are the same.

These representations are the only ones. Indeed, the sum of the squares

of their degrees is equal to 2 X 1 + 4(n — 1) x 4 = 2n, and this is the order
of D,

EXERCISES

5.1. Show that in D, n even (resp. odd), the reflections form {wo conjugacy
classes {resp. one), and that the elements of C, form (n/2} 4+ | classes (resp.
(n + 1)/2 classes). Obtain from this the number of classes of DD, and check
that it comncides with the number of rreducible ¢haraciers.

5.2. Show that x, - xpr = Xjep T Xp_p- 1IN paricular, we have

Xo*Xp = Xan T Xo ™ Xop + ¥ + ¥y
Show that ¢ is the character of the alternating square of p”, and thal
Xz + Yy is the character of its symmetric square {cf. 1.5 and prop. 3).

5.3, Show that the usual realization of D, as a group of rigid motions in R’
(Eyring [5]) is reducible and has character x; + 5, and that the realization
of D, as C,, {loc. cit.} has x; + 4 for its character.

5.4 The group D,

This group is the product D, x I, where I is a group of order 2 consisting
of elements {1,¢} with &% = 1. Its order is 4a. If D, is realized in the usual
way as a group of rotations and reflections of 3-space [cf. 5.3, {a}] then D,
can be realized as the group generated by D, and the reflection ¢ through
the origin.

According to th. 10, the irreducible representations of 1D, are the teasor
products of those of P, and those of 1. The group 1 has just two irreducible
representations, both of degree 1. Their characters g and u are given by the
tahle:

1 ; t

U3
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5.5: The group D,

Consequently, D, has twice as many irreducible representations as 1,
More precisely, each irreducible character x of D, defines two irreducible
characters x, and x, of 13, as follows:

Tl M = (x € D,)

For example, the character x| of D, gives rise to characters x;, and x,

1 r* sr¥ T 1sr*
e | 2eos2akin O 2 cos 2mk/n 0
Xia 2 cos 2mk/n 0 ~2 cos 2wk/n {}

The same applies to the other characters of D),

5.5 The group D,

This is the group of rotations and reflections of the plane which preserve
the origin. It contains the group C,, of rotations r,; if s 15 an arbitrary
refiection, we have the relations:

5 = 1, SIS = r .

Fach element of D can be written uniquely either in the form 5, (f it
belongs to C,) or in the form sy (if it does not belong to C, ) as a
topological space, D, consists of two disjoint circles. The invariant measure
of D is the measure da/d4w. More precisely, the average I, f(t)ydr of a
function f is given by the formula

f{}f{f)dr = E%ﬁwf{r;t)da + a};gﬂf@mdﬂ.

In particular, the projections p; of 2.6 are:

ﬂi F1

2 L x
Pit = E;J;E XI{rn)* Prﬂ(x}d& ¥ I;j{; :":r'{“w::r) ﬂxrﬂ(x)dﬁ*
Realizations of Dy as a group of rigid motions in 3-space
There are two of these:

() The usual realization (denoted D, in Eyring [5]). Rotations are taken

around Oz and reflections with respect to lines of the plane Oxy passing
through O.
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(b) The realization by means of the group C_,, (notations of Eyring [5]):
the reflections are taken with respect to planes passing through Oz, instead
of hines of Oxy.

Irreducibie representations of the group D,

They are constructed like those for D,. There are first two representations
of degree 1, with characters §, and y, given by the table:

A S
¥ E i
¥ i - 1

There is a series of irreducible representations p” of degree 2
(h = 1,2,...) defined by the formulas:

Eficx — iFiex
A £ ﬂ h {} £
(%) = ( 0 i ) A ( S g )

£

Their characters x;, X2, . .- have the following values:

Xalt) = 2 costha),  xulsn) = 0.

It can be shown that these are all the irreducible representations of Dy, {up
lo isomorphism).

5.6 The group D_;

This group is the product D X 1, it can be realized as the group
generated by D_, and the reflection ¢ through the origin. Its elements can
be written uniquely in one of the four forms:

As a topological space, it is the union of four disjoint circles. The invariant
measure of D, is (1/87) da. As above, this means that the average fg f{1) df
of a function f on D, 15 given by: |

" | ] rir
fo(I)df = E%_Lf f(;&)da -} :“8‘;]{; f(.ﬂ&)d{l + ‘g‘"ﬂ“'[ﬂ f{:ﬁi}d{x

i Pid
+ E—%j'; flusr,) do.

We leave it to the reader to derive the explicit expressions for the
projections p, of 2.6.
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5.7: Fhe alternating group %,

As in the case of D, the irreducible representations of D, come m
pairs from D_: each character x of D, gives rise to two characters ), and
Xy of Dmh' _

So, for example, the character x5 of D, gives:

A 5t T (ST,
X3g 2 cos 3u q 2 cos 3a 0
X3 | 2 cos 3o 0 —2 cos 3o 0

LS TTE RN TITEY

5.7 The alternating group N,

This is the group of even permutations of a set {a,b,c,d} having 4
elements: it is isomorphic to the group of rotations in R? which stabilize a
regular tetrahedron with barycenter the origin. It has 12 elements:

the identity element 1;

3 elements of order 2, x = (ab){ed), y = (ac)(bd), z = (ad){bc), which
correspond to reflections of the tetrahedron through lines joining the
midpoints of two opposite edges;

8 elements of order 3: {abc), {ach), ..., (bed), which correspond to rota-
tions of =120 ° with respect to lines joining a vertex to the barycenter of the
opposite face.

We denote by (abc) the cyclic permutation at» b, b ¢, c > a, d > 4
likewise, {ab}{ed) denotes the permutation av» b, bt>a, c k> d, d>
product of the transpositions {ab} and (cd ).

Set 1 = {abe), K = {},,r*}and H = {1, x,»,z}. We have

IxXt ~ = Z, tzi 7 = ¥, Iya‘”l == X,
moreover H and K are subgroups of %, H is normal, and H 1 K = {l}.
It is easy to see thal each element of Wy can be written uniquely as a product

h k withh € Hand k € K.

One alse says that %, is the semidirect product of K by the norma;
subgroup H; note that this is not a direct product, because the elements of
K do not commute with those of H.

There are 4 conjugacy classes in Wy {1}, {x,y, z}, (¢, £x, ty, 12}, and fr,1%x,
rzy,rzz},, hence 4 irreducible characters. There are three characters of
degree I, corresponding to the three characters xp, x;, and x; of the group
K {cf. 5.1) extended to %, by setting x;(h- &k} = x;(k) for # € H and
k & K.The last character ¢ is determined, for example, by means of cor.2
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to prop. $; it is found to be the character of the natural representation of
%, in R° (extended to C* by linearity). Thus we have the following
character table for ¥,:

1 X ¢ e
Xo i | | i
o 1 ] W w?
2 1 | I W W
Y | 3 - ] { 0
with
e 23 ME ﬁ
W ¢ 5 i
EXERCISE

54. Set H(1) = #x) = ) and # ) = 8z} = —1. this is a represeniation of
degree 1 of H. The representation of ¥, induced by # {cf. 3.3) is of degree 3;
spow that 1t 1s irreducible and has character o).

5.8 The symmetric group &,

This is the group of all permutations of {a, b,¢,d}; it is isomorphic to the
group of all rigid motions which stabilize a regular tetrahedron. It has 24
elements, partitioned into 5 conjugacy classes:

the identity element 1; -

6 transpositions: {ab), {ac), (ad }, {bc), (bd ), {ed };

the 3 elements of order 2 in ¥, x == {ab){cd ), y = (ac)(bd), z = (ad }{bc);
8 elements of order 3: {abc), ..., (bed);

6 elements of order 4: {abed ), (abdc), (acbd ), {acdb), {adbc), {adceh).

Let H = {1, x,y, z} and let L be the group of permutations which leave &
fixed. We see, as in the preceding section, that &, is the semidirect product
of L by the normal subgroup H. Each representation p of L is extended to
a tepresentation of &, by the formula p(h -1} = p(l}for h & H, ] & L.
This gives three irreducible representations of &, (cf. 2.3), of degrees 1, 1,
and 2. On the other hand, the natural representation of &y m C? s
irreducible (since its restriction to %, 15}, and the same 15 true of its tensor

product by the non-trivial representation of degree 1 of &, Whence the
following character table for &,:
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5.97 The group of the cube

| 1 (@)  (abled) (obe) (abed)
Xo by 1 i ] F
£ 1 -} E | - |
g 2 0 1 =t 0
g 3 i = 0 - 1
& 3 — - 1 0 1

Note that the values of the characters of ©, are integers; this is a general
property of representations of symmetric groups (cf. 13.1).

5.9 The group of the cube

Consider in R® the cube C whose vertices are the points (x,y,z) with
x = +1,y = %1, and z = *1. Let G be the group of isomorphisms of R
onto itsell which stabilize the cube C, i.e., which permule its eight vertices.
This group G can be described 1 several ways: |

(i) The group G contains the group &, of permutations of {x,y,z} as well
as the group M of order 8 consisting of the transformations

(x,y,z) > {x, tp, *2).

One checks easily that G is the semidirect product of &; by the normal
subgroup M; its order is 6 - 8 = 48.

(i) Denote by ¢ the refiection {x,y, z} +> (~x, —y, —2z) through the orgin.
Let T be the tetrahedron whose vertices are the points (1, I, 1), (1, -1, ~1),
(-1, 1, ~1), (—1,—1,1), and let T' = (T; each vertex of C s a vertex of T
or of T'. Let S(T) be the group of isomorphisms of R? onto itself which
stabilize T; for s & S(T) we have sT" = sT = 5T = T’, which shows that
s stabilizes the set of vertices of C, and thus belongs to G. Consequently
S(T) C G, and we see immediately that G is the direct product of S(T) with
the group 1 = {1,1}. Since $(T) = &, the irreducible characters of ( are
obtained from those of &, in pairs, just as those of D, are obtained from
those of ID,. Thus there are 4 irreducible characters of degree I, 2 of degree
2. and 4 of degree 3; their exact description 1s lelt to the reader,

EXERCISES

5.4. Recover the semidirect decomposition G = &, + M from the decompost-
tions G = &y X I and &5 = &4 -H (cf. 5.8).

5.5 et G, be the subgroup of G consisting of elements with determinant 1 {the
group of rotations of the cube}. Show that, if G 1s decomposed into 5(T) x 1,
the projection G — S(T) defines an isomorphism of G, onto S(T) = @&,
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REPRESENTATIONS
IN CHARACTERISTIC ZERO

Unless explicitly stated otherwise, all groups are assumed to be finite, and

all vector spaces (resp., all modules) are assumed to be of finite dimension
(resp., finitely generated).

In Ch. 6 to 11 {except for 6,1) the ground field is the field C of complex
numbers.
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CHAPTER €

The group algebra

6.1 Representations and modules

et G be a group of finite order g, and let K be a commutative ring. We
denote by K|G] the algebra of G over K; this algebra has a basis indexed
by the elements of G, and most of the time we identify this basis with G.
Each efement f of K|G] can then be uniquely written in the form

f= > a5 witha € K,
50

and multiplication in K{G] exiends that 1n G

Let V be a K-module and let p: G — GL{V) be a linear representation
of Gin V. Fors € G and x € V, set sx = p_x; by linearity this defines
fx, for f € K|G]and x & V, Thus V is endowed with the structure of a feft
K{G}-module; conversely, such a structure defines a linear representation of
G in V. In what follows we will indiscriminately use the terminology “linear
representation” or “module.”

Proposition 9, If K is a field of characteristic zero, the algebra K|G] is
semisimple.

(For the basic facts on semisimple algebras, see, for example, Bourbaki
{8] or Lang {10].)

To say that K[(] is a semisimple algebra is equivalent to saying that each
K[G]-module V is semisimple, i.e., that each submodule V' of V is a direct
factor in V as a K{G|-module. This is proved by the same argument of
averaging as that in 1.3: we choose first a K-linear projection p of V onto
V', then form the average p¥ = {1/g) ¥ . sps™ ! of its transforms by G.
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Chapter 6: The group algebra

The projection p* thus obtained is K[Gl-linear, which implies that V' is a
direct factor of V as a K{G]-module.

Corollary. The algebra K|[G] is a preduct of matrix algebras over skew fields
of finite degree over K.

This 15 a consequence of the siructure theorem for semusimple algebras
tloc. cit.),

EXERCISE

6.1. Let K be a field of characteristic p > 0. Show that the following two
properties are equivalent:

(i) KI[G]is semisimple.
(ii) p does not divide the order g of G.

{The fact that (ii} =» (i) is proved as above. To prove the converse, show
that, if p divides g, the ideal of K{G] consisting of the 3 a.s with
2. a, = U is not a direct factor {as a module) of K|G])

6.2 Decomposition of CJG]

Henceforth we take K = C (though any algebraically closed field of
charactenstic zero would do as well}, so that each skew field of finite degree
over C i1s equal to C. The corollary to prop. 9 then shows that CIG] is a
product of matrix algebras M, (C). More precisely, let p;: G — GL{W)),
1 € i < A&, be the distinct irreducible representations of G (up to 1somor-
phism}, and set n; = dim{W;}, so that the ring End{ W) of endomorphisms
of W, is isomorphic to M, (C). The map p;: G — GL(W,) extends by
inearity o an algebra homomorphism p;: ClG] — End(W,); the family
(p;) defines a homomorphism

b C16] — T1 End(W) = Ti M, (C)

i=] =
Proposition 10. The homomorphism p defined above is an isomorphism.

This 15 a general property of semisimpie algebras. In the present case, it
can be verified in the following way: First, p is surjective. Otherwise there
would exist a nonzero linear form on ] M, (C) vanishing on the image of
p: this would give a nontrivial relation on the coefficients of the represen-

tations p,, which 1s impossible because of the orthogonality formulas Df 2.2,

On the other hand, C{G] and [] M, (C) both have dimension g = 2, n?, cf
2.4; so stnce p 1s surjective, it must be bijective.

It 1s possible to describe the womorphism which is the inverse of p.

48

. e e o e i e e L B B T T B T T e T S e R R R B TIPS T TR T R e i e e A e

R T R R R R R e R e R R T e T T o A T S e F T m e, B i

6.2: Decomposition of C{G]

Proposition 11 (Fourier inversion formula). Let (1} ¢ icp be an element of
11 End{W.,), and let u = 3, o uls)s be the element of C|G} such that
pluY = u, for all i. The sth coefficient u(s) of u is given by the formula

uls) = ! ?EB n Try (p: (s~ " Yt,), where n; = dim{W,).

By linearity it is enough to check the formula when u is equal to an
element 7 of G. We have then

uls) = 8, and Try (o5 D)) = x,{s711),

where x; is the irreducible character of G corresponding to W, Thus 1
remains to show that

l i=—h

e —F]
,rr :g_ [gt o x:(j ).

which 18 a consequence of cor. | and 2 of prop. 5 of 2.4, O

EXERCISES

6.2. { Plancherel formuta) Let u= 2 u{s)s and v= D v{s)s he two elements of
ClGL and put {u.vd =g 2 w(s 'Ju(s). Prove the formutla
50
o

) = T m; Trog(pifua))

[Reduce to the case where # and v belong to G ]

6.3, Let U be a Anite subgroup of the multiplicative gr{}ufl of CjG} which
contains G, Let w = > uwls)y and v’ = 2 w'(5)s be two elements of U such
that u - &" = 1 let u, {resp. 1) be the image of u {resp. &'} in End{W,) under
by
{a} Show thai the eipenvalues of p,{s”l}u = p{s"Tu} are roots of unity.

Conclude that, for all s € G and all /, we have

”i“rw-,;-,,r(ﬁ},{fh = Tryy (uipi{s)} = Trg(p, (s)) ),

whence, applying prop. 11, uls)® = (s

ib) Show that EG iu{s)!‘j‘ = | [use {a}].
$E
{¢} Suppose that U is comtained in ZIG] so that the wu{s) are micgers. Show

that the wls) are afl zero except for one which is equal 1o 21, Conclude
that 1 is contained in the group +G of elements of the form *y, with

t & (1.
{d) Suppose G is abelian. Show that each element of finite order in the
multiplicative group of Z[G] is contained in +G (Higman's theorem).
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Chapter 6: The group algebsa

6.3 The center of C{G}

This is the set of elements of C[G] which commute with all the elements
in C[G] (or, what amounts {o the same thing, with all the elements of G).

For ¢ a conjugacy class of G, set e, = 2 ¢, 5. Une checks immediately
that the e. form a basis for the center of C[G]; the latter therefore has

dimension A, where h is the number of classes of G, cf. 2.5, Let
p;: G — GL(W))

be an irreducible representation of G with character x; and degree ct and
let §;: CIG] ~ End(W,) be the corresponding algebra homomorphism (cf.
6.2).

Proposition 12. The homomorphism p; maps the center of CIG} into the set of
homotheties of W; and defines an algebra homomorphism

w;: Cent. C[G] — C.
Ifu = 2 u(s)s is an element of Cent. ClG], we have

i i
w;{p) = ”_r Try{plu)) = " 2 “(E)XE(S}-

i 5e=0

This is just a reformulation of prop. 6 of 2.5.

Proposition 13. The family (), ¢ <y, defines an isomorphism of Cent, Cl{G]
onto the algebra Che Cx - xC |

If we identify C]G] with the product of the End{W.,), the center of C[G]
becomes the product of the centers of the End(W,). But the center of
End(W.) consists of homotheties. We thus get an isomorphism of Cent.
C[G] onto C x - -+ x C, and it is immediate that it is the one of prop. 13.

LI XERCISES

6.4, Set

]

P = - 2, X;'{EHE}E-
E &G

Show that the p {1 < i < A} form a basis of Cent. CIGl and that p? = p.,
pip; = 0 fori =} and p, + -+ + p, = 1. Hence obtaimn another proof of
th, 8 of 2.6, Show that mj-{pj) = §.

6.5. Show that each homomorphism of Cent. C|G] into Cis equal to one of
thﬂ Cad;e

6.4 Basic properties of integers

{ et R be a commutative ring and let x & R. We say that x is integral over
7. if there exists an integer n > 1 and elements ¢y, ..., 4,01 & such that
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6.4: Bastc properties of integers

X" hax" M+ ba, =0

A complex number which is integral over Z is called an algebraic integer.
Each root of unity is an algebraic integer. If x € Q is an algebraic integer,
we have x € 7o: otherwise we could write x in the form p/q, with p, ¢ € 7,
g > 2 and p, q relatively prime. The equation (+} would then give

p" ok alqp”“i + o kg, gt =0,

hence p” = 0 (mod. g) contradicting the fact that p and ¢ are relatively
prime.

Proposition 14. Let x be an element of a commurative ring R, The following
properties are equivalent:

(1) x is integral over L.
(i) The subring Z]x] of R generated by x is finitely generated as a L-
module.

(iii) There exists a finitely generated sub-L-module of R which contains
7] x}.

The equivalence of (ii) and (iii) follows from the fact that a submodule
of a finitely generated Z-module is finitely generated, since Z 1s noetherian.
On the other hand, if x satisfies an equation

X4 axT 4 +a, =0 withg € Z,

the sub-Z-module of R generated by I, x, ..., x™ 1 is stable under multi-

plication by x, and thus coincides with Z[x], which proves {i} = ().
Conversely, suppose {(ii) is satisfied, and denote by R, the sub-Z-moduie of
R generated by I, x, ..., x"~! The R, form an in¢reasing sequence, and
their union is Z{x]; since Z[x] is finitely generated we must have R, = Z|x]
for n sufficiently large. This shows that x" is a linear combination with
integer coefficients of 1, x, ..., ™ whence (i). ]

Corollary 1. If R is a finitely generated L-module, each element of R is integral
over .
This follows from the implication {iif) = (1). )
Corollary 2. The elements of R which are integral over L form a subring of R.
Let x, v & R; if x, y are integral over Z, the rings Z{x] and Z[y] are
finitely generated over Z. The same is then true of their tensor product

Z{x} ® Z{y] and of its image Z{x,y} in R. Thus all the elements of Zlx,y]
are integral over Z.

Remark. In the preceding definitions and results it is possible to replace Z
by an arbitrary commutative noctherian ring; for {i) <= {11} it is not cven
necessary to assume the ring is noetherian.
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Chapter 6: The group algebra

6.5 Integrality properties of characters. Applications

Proposition 15, Let x be the character of a representation p of a finite group
G. Then x(s} is an algebraic integer for each s € G,

Indeed x(s} is the trace of p(s}, hence is the sum of eigenvalues of p(s),
which are roots of unity.

Proposition 16. Let u = 2, u(s)s be an element of Cent, ClG] such thar the
w(s) are algebraic integers. Then u is integral over I,

(This statement makes sense because Cent, C[G] is a commutative ring.)

Let ;{1 < i < h) be the conjugacy classes of G and put ¢; = X . s,
of. 6.3. For s, € ¢, we can write u in the form v = .50 uls,)e,. In view of
cor. 2 to prop. 14, it suffices to show that the e; are integral over Z.. But this
15 clear since each product e;e¢; is a linear combination with nteger
coefficients of the ¢;. The subgroup R = Ze; @ -+ @ Ze, of Cent. C[G] 13
thus a subring; as it is finitely generated over Z, each of iis elements is

integral over Z (cor. 1 to prop. 14). The result foilows.

Corollary 1. Let p be an irreducible representation of G of degree n and

character x. If u is as above, then the number (I/n} % ulsix(s) is an
algebraic integer. s&

Indeed, this number is the image of v under the homomorphism

w: Cent. (JG] — C

associated with p {cf. prop. 12). As u is integral over Z, the same is true of
its 1mage under w.

Corollary 2. The degrees of the irreducible representations of G divide the order
of (3.

let g be the order of G. We apply cor. | fo the element u
= ¥ =g x(s7")s, which is legitimate since x is a class function and since
the x{s} are algebraic integers (prop. 15); we obtain that the number

52 ) = Eux) = 8

ts an algebratc integer. Since this number 15 rational, it follows that 1t
belongs to Z, i.e., that n divides g.

Corollary 2 can be strengthened somewhat (cf. 8.1, cor. to prop. 24). Here
15 a first result in this direction:
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6.5: Integrality properties of characters. Applications

Proposition 17. Let C be the center of G. The degrees of the irreducible
representations of G divide (G: C).

Let g be the order of G and ¢ that of C, and let p: G — GL{W) be an
irreducible representation of G of degree n. If s € C, p{s) commutes with
all the p(r), t € G; so by Schur’s lemma, p(s} is a homothety. If we denote
it by A{s), the map A: s = As) is a homomorphism of C into C*. Let m be
an integer 2 0, and form the tensor product

p": G" > GLIW @ --- & W)

of m copies of the representation p; this is an irreducible representation of
the group G" = G X -+ - xX G, ¢f. 3.2 th. 10. The image under p" of an
element {5,,...,5,) of C™ is the homothety of ratio A(s; ---s,,). The
subgroup 11 of C™ consisting of the {5, ...,s,,)such thats, -- -5, = 1 acts
frivially on W & - - - @ W, so that by passing to the guotient we obtain an
trreducible representation of G™/H. In view of cor. 2 to prop. 16, it follows
that the degree »™ of this representation divides the order g™/¢™ ! of
G"/H, We have then (g/en)" € ¢ 1Z for all m, which implies that {g/en)
is an integer {ci. prop. 14, for example).

(This proof is due to J. Tate.) i

EXERCISES
6.6. Show that the ring Ze; @ -+ @ Ze, is the center of Z[G]

6.7. Let p be an irreducible representation of G of degree n and with character
y. H 5 € G, show that jx(s)] < n, and that equality holds if and only if p(s)
is a homothety [observe that x(s) is a sum of n roots of unity]. Conclude that

p(s) =1 e x(5) = n. l

6.8. Let Ay, ..., A, beroots of untty, angd let g = - S A,. Show that, if g ts an
algebraic integer, we have either g == 0, or A = -+ = A, == a. {Let A be
the product of the conjugates of g over Q; show that {Al < 1]

6.9 Let p be an irreducible representation of G of degree # and with character
v. Let s € G and c¢(s) be the number of elements in the conjugacy class of
5. Show thai {c(s)/nh(s) is an algebraic integer Japply cor. | to prop. 16,
taking for w the sum of the conjugates of s5]. Show that if ¢{s) and n are
relatively prime and if x(s) % 0, then p(s) is a homothety {Observe that
(1/n)x{s) is an algebraic integer, and apply ex. 6.8].

6.10. let s € G, 5 % 1. Suppose that the number of elements ofs) of the
conjugacy class containing s is a power of a prime number p. Show that there
exists an irreducible character ¥, not equal to the unit character, such that
x(s) # 0 and x(1} # 0 {mod.p). [Use the formula 1 + X ., x{lx(s) = 0,
cf. cor. 2 to prop. 5 to show that the number |/p would be an algebraic
integer if no such character x existed.] Let p be a representation with
character y, and show that p(s) is a homothety [use ex. 6.9]. Conclude that,
tf N is the kernel of p, we have N 5 G, and the image of s in G/ N belongs
to the center of G/N,
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CHAPTER 7

Induced representations;
Mackey’s criterion

7.1 Induction

Tet H be a subgroup of a group G and R a system of left coset
representatives for H. Let V be a C[G}-module and let W be a sub-C[H}-
moduie of V. Reeall (cf. 3.3) that the module V (or the representation V) is
said to be induced by W if we have V = @, psW, 1.e., if V15 a direct sum
of the images sW, 5 € R (a condition which is independent of the choice

of R). This property can be reformulated 1 the follomng way:
Let

be the C]Glmodule obtained from W by scalar extension from CiHI} to

C[G]. The injection W —» V extends by linearity to a C{Glhomomorphism
It W — V.

Proposition 18. Ir order that NV be induced by W, it is necessary and sufficient
that the homomorphism

be an isomorphism.

This is a consequence of the fact that the elements of R form a basis of
C{G] considered as a right C[H}-module.

Remarks

(1} This characterization of the representation induced by W makes it
obvious that the induced representation exists and is unique (cf. 3.3, th. 11).
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1.2: The character of an induced representation

In what follows, the representation of G induced by W will be denoted
by Ind5 (W), or simply Ind{W) if there is no danger of confusion.

(2) ¥f V is induced by W and if E is a ClG}l-module, we have a canonical
isomorphism

Hom" (W, E) = Hom"“(V,E),

where Hom“{(V, E) denotes the vector space of C[G]-homomorphisms of V
into B, and Hom™(W,E)} is defined similarly. This follows from an
elementary property of tensor products (see also 3.3, lemma 1).

{3} Induction is transitive: f G 1s a subgroup of a group K, we have

IndE (IndH (W) == Indfj(W).
This can be seen directly, or by using the associativity of the tensor product.

Proposition 19. Let V be a C[Gl-module which is a direct sum V = @, W,
of vector subspaces permuted transitively by G. Let iy € 1, W = W, and
let H be the stabilizer of W in G (i.e., the set of all s € G such that

sW = W). Then W is stable under the subgroup H and the C|G)-module V
is induced by the C{H|-module W.

This 18 clear.

Remark. In order to apply proposition 19 to an irreducible representation
V =& W, of G, it is enough to check that the W, are permuted among
themselves by (; the transitivity condition is automatic, because each orbit
of G in the set of W's defines a subrepresentation of V.

ExaMpLE. When the W, are of dimension |, the representation V is said to
be monomial.

7.2 The character of an induced representation;
the reciprocity formula

We keep the preceding notation. If f s a class function on H, consider
the function f/* on G defined by the formula

(s} = -}I IEEG flr s where # = Card(H).
i~lsteH

We say that ' is induced by f and denote it by either 1ndS{f) or Ind{f).
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Chapter 7: Induced representations; Mackey’s criterton

Proposition 20,

(1} The function Ind{ [} is a class function on G.
(i1) If [ is the character of a representation W of H, Ind(f) is the
character of the induced representation Ind(W) of G.

Assertion (i1} has already been proved (3.3, th. 12). Assertion (i) is proved
by a direct calculation or can be obtained from (i) and the observation that
each class function 15 a linear combination of characters.

Recali that, for ¢ and ¢, two class functions on G, we set

1

o922 = ¢ 2 o7 wals), where g = Card(G),

cf. 2.2; when we wish to be more explicit about the group G, we write
(@11 20 instead of gy, ;).

Also, if V and V, are two ClGlmodules, we set

<V:v2>(j = dim . HGmG(V,Vz}.

Lemma 2, If ¢, and ¢, are the characters of V| and ¥, we have

<@1:¢32>G = <‘E:v2>(}’

Decomposing V) and V; into direct sums, we can assume that they are
irreducible, in which case the lemma follows from the orthogonality
formulas for characters (2.3, th. 3),

If @ (resp. V) is a function on G (resp. a representation of G), we denote
by Res ¢ (resp. Res V) its restriction to the subgroup H.

Theorem 13 (Frobenius reciprocity). Jf ¢ is a class function on H and ¢ a
class function on G, we have

G, Res gy = (Ind ¢, @)g.

Since each class function is a linear combination of characters, we can
assume that v is the character of a C[H}-module W and ¢ is the character
of a C[G]-module E. In view of lemma 2, it is enough to show that

(*) <W, Res E>H i <I11d W, E:}G!
that is,

dim.Hom" {W, Res E) = dim.Hom" (Ind W, E),
56
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1.2: The charzacter of an induced representation

which follows from remark 2 1in 7.1 (or from lemma ! of 3.3, which amounis
o the same thing). Of course it is also possible to prove theorem 13 hy
direct calcuiation. ]

Remarks

(1) Theorem 13 expresses the fact that the maps Res and Ind arc adjoints
of each other.

{2) Instead of the bilinear form {a, 8), we can use the scalar product
(e} ) defined in 2.3. We have the same formula:

(W[Res )y = (Ind Yg)g.

(3) We mention also the following useful formula

Ind{) - Res @) = {Ind ) ' ¢.

It can be checked by a simple calculation, or deduced from the formula
Ind{(W) ® E = Ind(W @ Res E), ¢f. 3.3, example 3.

Proposition 21. Ler W be an irreducible representation of H and E an
irreducible representation af G. Then the number of times that W occurs in
Res E is equal to the number of times that E occurs in Ind W

This foltows from th. 13. apphied to the character J of W and 1o the
character ¢ of E {one may also apply formula {«)). 3

EXERCISES

7.1. (Generalization of the concept of induced representation.) Leta: H — G be
a homomorphism of groups (not necessarily injective), and let &: C[H]
— C[G] be the corresponding algebra homomorphism. If E is a (JG}-module
we denote by Res, E the C{H]-module obtained from E by means of &; if ¢
is the character of E, that of Res, E is Res, 9 = g oa If Wis a ClH}-
module, we denote by Ind, W the C]|G}-module C{G} @pyqp W, and if ¢ is
the character of W, we denote by Ind, ¢ the character of }ndﬂ W,
(a} Show that we still have the reciprocity formula

. Res, ooy = {dnd, ¢, ¢)g.

(b) Assume that « is surjective and identify G with the guotient of H by the
kernet N of a. Show that ind W 15 isomorphic to the module obtamed
by having G = H/N act on the subspace of W consisting of the
elements invariant under N, Deduce the formula

! ¥ ylf) where n = Card(N).

{1 } o= g

(Ind, ¥){s) =

7.2, Let H be a subgroup of G and let x be the character of the permutatiﬂn
representation associated with G/H {cf. 1.2). Show that x = Ind§(1), and
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that == y — 1 is the character of a representation of G; determine under
what condition the latter representation is irreducible [use ex. 2.6, or apply
the reciprocity formulal,

73, Let H be a subgroup of G. Assume that for each + & H we have

H n ¢Heo! = {1}, in which case H is said to be a Frobenius subgroup of G.

Denote by N the set of elements of G which are not comjugale 1o any
element of H.

(a) Let g = Card(G) and let A = Card(H). Show that the number of
clements of N is (g/h) — 1.

(bY Let f be a class function on H. Show that there exists a unique class
funiction f on G which extends f and takes the value f(1) on N.

(¢} Show that f = im!ﬁ f— f{1h}, where ¢ is the character [ﬂdﬁ{l} — | of
(G, cf. ex. 7.2

(d) Show that {f,.f20u = {J|.[1 )

{e) Take f to be an irreducible character of H. Show, using {c) and (d}, that
{f,f>c = L f(1) > 0, and that f is a linear combination with integer
coefficients of irreducible characters of G. Conclude that f is ar
irreducible character of G, If p 18 a corresponding representation of G,
show that p{s) = | for each s & N [use ex. 6.7].

() Show that each linear representation of H extends to a hnear representa-
tion of (G whose kernel contains N. Conclude that N U {1} 15 a normal

subgroup of G and that G is the semudirect product of H and N U {1}
{ Frobenius’ theorem).

(g} Conversely, suppose G is the semidirect product of H and a pormal
subgroup A. Show that H 15 a Frobemus subgroup of G if and only if
for each s € H — {1} and each ¢t € A — {1}, we have sts™' # ¢ (i.e, H
acts freely on A — {1}). {If H = {i}, this property implies that A is
nilpotent, by a theorem of Thompson.)

7.3 Restriction to subgroups

Let H and K be two subgroups of G, and let p: H —» GL{W) be a linear
representation of H, and let V=1Ind5 (W) be the correspending induced
representation of G, We shall determine the restriction Res, V of V 10 K.

First choose a set of representatives S for the (H, K) double cosets of G;
this means that G 1s the disjoint union of the KsH fors € S (we could also

write s € K\G/H). For s € §, let H, = sHs™! n K, which is a subgroup
of K. If we set

pf(x) = p(s~'xs), forx € H,,

we obtatn a homomorphusm p’: H_— GL{W), and hence a linear representa-
tion of H,, denoted W_. Since H_ ts a subgroup of K, the induced
reprasematmn Ind% (W, } 1s defined.

Propesition 22. The represenm!wn Resy In{iG(W} is isomorphic to the direct
sum of the representations IHdH (W), for s € S =~ K\G/H.
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7.4: Mackey's irreducibility criterion

We know that V is the direct sum of the images xW, for x € G/H. Let
s & 8 and let V(s) be the subspace of V generated by the images xW, for
x € KsH; the space V is a direct sum of the V(s), and it is clear that V(s)
is stable under K. It remains to prove that V(s} is K-isomorphic 1o
lndH (W.). But the subgroup of K consisting of the elements x such that
J,{:;W} == sW is evidently equal to H, and V(S} is a direct sum of the images
x(sW), x € K/H,. Therefore V(s5) = InclH {sW). Now it remains to check
that sW is H ~1wmﬁrphm to W, and this is immediate: the somorphism s
given by 51 W, — sW,

Remark. Since V{s) depends only on the image of s in K\G/H, we also
see that the representation in{i&(\’{:) depends (up to isomorphism) only on
the double coset of 5.

7.4 Mackey’s irreductbility criterton

We apply the preceding results to the case K = H, For s € G, we stll
dencie by H, the subgroup sH 571 H of H; the representation p of H
defines a repreﬁematmn Res_(p) by restriction to H,, which should not be
confused with the representation p* defined in 7.3.

Proposition 23. In order thai the induced representation V = lnd W be
irreducible, it is necessary and sufficient that the following two candmom be

satisfied.

(a) W is irreducible.
(b} For each s € G — H the two representations p* and Res {p) of H,
are disfoint.

(Two representations V, and V, of a group K are said to be digjoint if they
have no irreducible component in common, Le, if {V, V) = 0.)

In order that V be irreducible, it is necessary and sufficient that
{V,V>¢ = 1. But, according to Frobenius reciprocity, we have:

<V.r V>G £ {W, RESH V>H .

However, from 7.3 we have:

Resy Vo= h:ld
©H s&H \G,r'H {p )

Once more applying the Frobenius formula, we obtain:

(V, V) = ¥ d,, withd = {Res{p)p }

s HAVG/ H
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For s = 1 we have d_ = {p,p> > 1. In order that {V, V)5 = 1, it 18 thus
necessary and sufficient that &, = 1 and d, = O fors = 1; these are exactly
the conditions (a) and (b).

Corollary. Suppose B &5 normal in G, In order that Indg (p) be irreducible, it

is necessary and sufficient that p be irreducible and not isomorphic to any of
its confugates p* for s & H.

indeed, we have then H, = H and Res, (p) == p.

EXERCISE

74. Let k be a finile field, let G = Si,{k)} and let H be the subgroup of G
consisting of matrices {29) such that ¢ == 0. Let w be a homomorphism of
k* into C* and let x,, be the character of degree | of H defined by

XW(S i}) = wid).

Show that the representation of G induced by x, is irreducible if »® # 1.
Compute yx ,.
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CHAPTER &

Examples of induced representations

8.1 Normal subgroups; applications to the degrees of the
irreducible representations

Proposition 24. Let A be a normal subgroup of a group G, and let
p: G — GL{V) be an irreducible representation of G. Then:

(a) either there exists a subgroup Y of O, unequal to G and containing
A, and an irreducible representation o of H such that p i induced by
a;

(b} or else the restriction of p to A is isotypic.

(A representation is said to be isofypic if 1t is a direct sum of isomorphic
irreducible representations.)

Let V = @ V, be the canonical decomposition of the representation p

(restricted to A) into a direct sum of isotypic representations (cf. 2.6). For
s € G we see by “transport de structure” that p{s} permutes the V;; since V
is irreducible, G permutes them transitively. Let V, be one of these; iV 1S
equal 10 V, we have case (b). Otherwise, let H be the subgroup of G
consisting of those s € G such that p{s)V, = V.. We have A C H,
H # G, and p is induced by the natural representation a of H in V; , winch
is case {al, 0

Remark. H A is abelian, (b} is equivalent to saying that pi{a) 15 a
homothety for each a€€ A,

Corollary. If A is an abelian normal subgroup of G. the degree of each
irreducible representation p of G divides the index (G: A} of A in G.

The proof is by induction on the order of G. In case {a} of the preceding
proposition the induction hypothesis shows that the degree of a divides
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(H: A), and by multiplying this relation by (G: H) we see that the degree
of p divides (G: A). In case (b) let G’ = p{G) and A" = p(A); since the
canonical map G/A — G'/A’ is surjective, (G": A’) divides (G: A). Our
previous remark shows now that the elements of A" are homotheties, thus
are contained in the center of G'. By prop. 17 of 6.5, it follows that the
degree of p divides {G": A’) and a fortiori (G A). |

Remark. If A is an abelian subgroup of G (not necessarily normal) it is no

longer true in general that deg{p) divides (G: A), but nevertheless we have
deg(p} < (G: A), ¢f. 3.1, cor. to th. 9. -

8.2 Semmdirect products by an abehan group

Let A and H be two subgroups of the group G, with A normal. Make the
following hypotheses:

() A is abelian.
(it} G 1s the semidirect product of H by A.

[Recall that (ii) means that G = A - H and that AN H = {l}, or in
other words, that each element of G can be writien uniquely as a product
ah, witha € Aand h & H\|]

We are going to show that the irreducible representations of & can be
constructed from those of certain subgroups of H {this is the method of

“little groups™ of Wigner and Mackey).
Since A is abelian, its irreducible characters are of degree 1 and form a

group X = Hom{A, C*). The group G acts on X by

(sx)a) = x{s7las) fors € G, x € X, a € A

Let () x5 be a system of representatives for the orbits of H in X. For
each i € X/H, let H, be the subgroup of H consisting of those elements &
such that by, = x; and let G, = A - H; be the corresponding subgroup of
G. Extend the function x; to G, by setting

x;{ak) = x;{a} fora € A, h € H,.

Using the fact that hx; = x; for alt A € H;, we see that x, is a character of
degree 1 of G, Now let p be an irreducible representation of H;; by
composing p with the canonical projection G; — H; we obtain an irreduci-
ble representation p of G, Finally, by taking the tensor product of x; and p
we obtain ap irreducible representation x,@p of Gy; let 8, be the corre-
sponding induced representation ol G.

Proposition 25
{a) #,, is irreducible.

(b) 1f 8, and 6, are isomorphic, then i = " and p is isomorphic 10 P,
(¢) Every irreducible representation of G is isomorphic to one of the 8, .

(Thus we have all the irreducible representations of G.)
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8.3: A review of some classes of fimite groups

We prove (a} using Mackey’s criterion {7.4, prop. 23) as follows: Let
s &G =A -H,and let K, = (; N sG;s” 1. We have to show that, if we
compose the representation x; ® p of G; with the two injections K, — G,
defined by x » xand x s~V xs, we obtain two disjoint representations of
K.. To do this, it is enough to check that the restrigtions of these
representations to the subgroup A of K are digjomnt. But the first restricts
to a multiple of x, and the second to a multiple of sx,; since s & A - H. we
have sx; % x; and so the two representations in question are indeed
disjoint.

Now we prove (b). First of all, the restriction of §,  to A only mnvolves
characters x belonging to the orbit Hy; of x;. This shows that #, , determines
i. Next, let W be the representation space for 8, . and let W, be the subspace
of W corresponding to x, [i.e., the set of x € W such that 8, {a)x = x{a)x
for all ¢ € Al. The subspace W, is stable under H,, and one checks
immediately that the representation of H, in W, is isomorphic to p; whence
#, , determines p.

Finally, et ¢: G = GL(W) be an irreducible representation of G. Let
W = @, .x W be the canonical decomposition of Res, W. At least one of
the W, is nonzero; if 5 € G, ofs) transforms W, into W . The group H,
maps W, into itself; let W, be an irreducible sub - C[H;}-module of W, and
let p be the corresponding representation of H,. It is clear that the
representation of G, = A - H; is isomorphic to x; ® p. Thus the restriction
of ¢ to G, contains x; ® p at Jeast once. By prop. 21, it follows that o occurs
at least once in the induced representation 8, ; since #, , is irreducible, this
implies that o and #; , are isomorphic, which proves {c). _

EXERCISES

8.1. Let a, , h, be the orders of A, H, H; respectively. Show that a = 2, (h/h,),
Show that, for fixed i, the sum of the squares of the degrees of the
representations #; ; is h?/h,. Deduce from this another proof of {c).

8.2. Use prop. 25 to recompute the irreducible representations of the groups D,
“214, and @4 {Cf Ch. 5}

8.3 A review of some classes of finite groups

For more details on the results of this section and the followmng, see
Bourbaki, Alg. 1, §7.

Solvable groups. One says that G is solvable if there exists a sequence

M =G, G C-CG =G

of subgroups of G, with G..; normal in G; and G/G, ., abehan for
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Chapter 8: Examples of induced representations

| < i < n (Equivalent definition: G is obtained from the group {l} by a
finite number of extensions with abelian kernels.)

Supersolvable groups. Same as above, except that one requires that all the
G; be normal in G and that G,/G,_,; be cyclic.

Nilpotent groups. As above, except that G./G,_| is required 1o be in the
center of G/G._, for 1 < i < n.{Equivalent definition: G is obtained from
the group {1} by a finite number of central extensions.)

It is clear that supersolvable =% solvable, On the other hand, one checks
imimediately that each central extension of a supersolvable group is
supersolvable; thus nilpotent = supersolvable.

p-groups. If p is a prime, a group whose order is a power of pis called a
p-Eroup.

Theorem 14, Every p-group is nilpotent (thus supersolvable).

In view of the preceding it suffices to show that the center of every

nontrivial p-group G is nontrivial. This is a consequence of the following
lemma:

Lemma 3. Let G be a p-group acting on a finite set X, and let XY be the set
of elements of X fixed by G. We have

Card(X) = Card(X")  (mod.p).

Indeed ¥ — XY is a union of nontrivial orbits of G, and the cardinality
of each of these orbits is a power p® of p, with @ > 1; hence Card (X — XG)
is divisible by p. .

Let us now apply this lemma to the case X = G with G acting by inner
automorphisms. The set XY is just the cenrer C of G. Thus

Card(C) = Card(G) = 0 {mod.p),

whence C £ {1}, which proves the theorem.

We record another application of lemma 3 which will be used in Part 111

Proposition 26. Ler V be a vector space % ( over a field k of characteristic p
and let p: G —» GL(V ) be a linear representation of a p-group G in V., Then
there exists a nonzero element of V which is fixed by all p(s), s € G.

Let x be a nonzero elemeni of V, and let X be the subgroup of V
generated by the o{s)x, s € G, We apply lemumna 3 to X, observing that X

is finite and of order a power of p. Therefore XY s {0}, which proves th
proposition.
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8.4: Sylow’s theorem

Corollary. The orly irreducible representation of a p-group in characteristic p
is the trival representation.

EXFERCISES

8.3. Show that the dihedral group D, is supersolvable, and that it is milpotent if
and only if n is a power of 2.

8.4. Show that the alternating group U, is solvable, but not supersoivable. Same
gquestion for the group E,.

8.5. Show that each subgroup and each quotient of a sclvable group (resp.
supersolvable, milpotent} is solvable (resp. supersoivable, nilpotent).

8.6. Let pand g be distinct prime numbers and let G be a group of order p?¢°
where g and b are 1ategers > (.

(i) Assume that the center of G is {1}. For s & G denote by c(s) the numbey
of elements in the conjugacy class of 5. Show that there exists s # 1 such
that o(s) = 0 (mod.g). {Otherwise the number of elements of G — {1}
would be divisible by g.) For such an s, cls) 15 a power of p; denve from

this the existence of a normal subgroup of G unequal to {1} or G {apply
ex. 6.10].

(ii) Show that G is solvable (Burnside’s theorem). [Use induction on the order

of G and distinguish two cases, depending on whether the center of G 15
equal or uynequal to {1}.]

(iif} Show by example that G is not necessarily supersolvable {(cf. ex. 8.4,

(tv) Give an example of a nonsolvable group whose order is divisible by just
three prime numbers [, ¢, GL,(F;) will doi.

8.4 Sylow’s theorem

Let p be a prime number, and let G be a group of order g = p"'m, where

m is prime to p. A subgroup of G of order p" 15 called a Sylow p-subgroup
of G.

Theorem 15

(a} There exist Sylow p-subgroups.
(b) They are conjugate by inner automorphisms.
(¢c) Each p-subgroup of G is contained in a Sylow p-subgroup.

To prove {a) we use induction on the order of G. We may assume # = 1,
j.e. Card (G) = 0 (mod. p). Let C be the center of G. If Card (C) 1s divisi-
ble of order p, an elementary argument shows that C contains a subgroup
D cvchic of order p. By the induction hypothesis, G/D has a Sylow p-
subgroup, and the inverse image of this subgroup in G is a Sylow p-
subgroup of G. If Card {C) 3¢ 0 (mod. p) let G act on G — C by inner
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automorphisms; this gives a partition of G — C into orhats {conjugacy
classes). As Card{G — C) == 0 {mod.p), one of these arbits has a cardinal-
ity prime to p. It follows that there is a subgroup H unequal to G such that
(G: H) # 0 (mod.p}). The order of H is thus divisible by p", and the
mduction hypothesis shows that H contains a subgroup of order p”,

Now let P be a Sylow p-subgroup of G and Q a p-subgroup of G. The p-
group Q acts on X = G/ P by left translations. By lemma 3 of 8.3 we have

Card(X9) = Card(X) = 0 (mod.p),

whence XV s . Thus there exists an element x & G such that QxP
= xP, hence } C xPx™", which proves (¢). If in addition Card{Q) = p",
the groups Q and xPx~' have the same order, and Q = xPx ™}, whic

proves (b). ]

EXERCISES

8.7. Let H be a normal subgroup of a group G and let Py be a Sylow p-subgroup
of G/H.

(a) Show that there exists a Sylow p-subgroup P of G whose image in G/H
is By [use the conjugacy of Sylow subgroups),

(b} Show that P is unique ¥ H is a p-group or if H is in the center of G
[reduce to the case where H has order prime to p, and use the fact that

each homemorphism from By into H is triviall.

8.8. Let (i be a nilpotent group. Show that, for each prime number p, G contains

a unique Sylow p-subgroup, which is normal [use induction on the order of

G, and apply the induction hypothesis 1o the quotient of G by its center, ¢f.
ex, 8.7(b}]. Conclude that G is a direct product of p-groups.

B9. Let G = GL,{k}, where &k is a fintie field of characteristic p. Show that the
subgroup of (o which consists of all upper triangular matrices having only
I’s on the diagonal 1s a Sylow p-subgroup of G.

8.5 Linear representations of supersolvable groups

Lemma 4. Ler G be a nonabelian supersolvable group. Then there exists a
normal abelian subgroup of G which is not contained in the center of (.

Let C be the center of G. The quotient H = G/C is supersoivable, thus
has a composttion sertes in which the first pontrivial term H,y is a cyclic
normai subgroup of H. The mmverse image of H; in G has the required
properties.

Theorem 16. Let G ke a supersolvable group. Then each irreducible represen-
tation of G is induced by a representation of degree 1 of a subgroup of G
{i.e., is monomial).
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8.5: Linear representations of supersolvable groups

We prove the theorem by induction on the order of G. Consequently we
may consider only those irreducible representations p which are faithful, 1e.,
such that Ker(p) = {1). If G is abelian, such a p is of degrec | and there is
nothing to prove. Suppose G 15 not abehian, and let A be a normal abelian
subgroup of G which is not contained in the center of G (cf. lemma 4).
Since p is Taithful, this implies that p{A) is not contained in the center of
o{G); thus there exists ¢ & A such that p{a) is not a homothety, The
restriction of p to A is thus not isotypic, By prop. 24, this implies that p is
induced by an irreducible representation of a subgroup H of G which is
unegual to G. The theorem now follows by applying inductionto H. O

EEXERCISES

8.10. Extend Theorem 16 to groups which are semidirect products of a supersol.
vable group by an abelian normal subgroup [use prop. 25 to reduce to the
supersolvable case].

8.11. Let H be the field of quaternions over R, with basis {|,7,/, k} satisfying

L L T P/ ey ey N Gy o s
ki = —fk == j.

Let E be the subgroup of H consisting of the cight elements =1, &/ +j, +k
(guaternion group), and let G be the union of E and the sixieen elements

(1 2% j+ k}/2. Show that (G is a solvable subgroup of H* which is a
semidirect product of a cyclic group of order 3 by the normal subgroup E.
Use the isomorphism H @y C = M, {C) 1o define an irreducible representa-
tion of degree 2 of G. Show that this representaiion is not monomial (observe
that G has no subgroup of index 2). {The group G is the group of imvertible
elements of the ring of Hurwitz “integral qualernions™; it is also the group
of automorphisms of the elliptic curve p? « y = x° in characteristic 2. It is

isomorphic to S5, ().}

B.12. Let G be a p-group. Show that, for each irreducible character x of U, we
have 3 (1) = O {modfx(i)z}* the sum being over all irreducible characters
x' such that x'(}) < x{I}. [Use the fact that x{1} is a power of p, and apply
cor. 2fa) to prop. 5.
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CHAPTER 9

Artin’s theorem

9.1 The ring R{G)

let G be a finite group and let x, ..., x, be its distinct irreducible
characters. A class function on G is a character if and only if it is a linear
combination of the x/s with non-negative inteper coefficients. We will
denote by RY(G) the set of these functions, and by R(G) the group
generated by R™((G), t.e., the set of differences of two characters. We have

R(G) = Zy, @ - & Zx,.

An element of R{(G} is called a virtual character. Since the product of two
characters s a character, R{G) is a subring of the ring F(G) of class
functions on (5 with complex values. Since the x; form a basis of F-(G) over
C, we see that C @ R{G) can be identified with F(G).

We can also view R(G) as the Grothendieck group of the category of finitely
generated C[G]-modules; this will be used in Part HI.

If H 15 a subgroup of G, the operation of restriction defines a ring
homomorphism R{G} —» R(H), denoted by Rasﬁ or Res, |

Similarly, the operation of induction (7.2) defines a homomorphism of
abelian groups R(H) -» R(G), denoted by IndS or Ind. The homomor-
phisms Ind and Res are adjoints of each other with respect to the bilinear
forms {p,{>y and {p.d>q, cf. th. 13. Moreover, the formula

Ind(p - Res(y)) = Ind{p} -
shows that the image of Ind: R(H} -» R(G) is an ideal of the ring R{G).
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9.1: The ring R(G)

If A is a commutative ring, the homomorphisms Res and Ind extend by
linearity to A-linear maps:

A @ Res: A @ R(G) — A ®@ R(H)
A®Ind: A® R(HY — A& R(G)

EXERCISES

9.1. Let @ be a real-valued class function on G, Assume that (g, 1 = 0 and that
gpls) < 0 for each s % 1. Show that for each character y the real part of
{p, x> is 3> 0 Juse the fact that the real part of g{s™ ! )x{s) is greater than or
equal 1o that of g{s™ {1} for alt 5}. Conclude that, if g belongs to R(G), ¢
is 4 character.

9,2. Let x &€ R{G). Show that x is an irreducible character if and only if
(x,x»> =t and x{1} > 0.

93. If fis a function on G, and k an integer, denote by ¥*(f) the function

s b F{s*.

{a) Let p be a representation of G with character x. For each integer k 2 0,
denote by x; (resp. xi} the character of the kth symmetric power (resp.

kth exterior power) of p (cf. 2.1 for the case k == 2). Set

20 co
orlx) = = XFTF and A0 = 3 X{TY
ke =={) k=5
where T is an indeterminate. Show that, for s € G, we have

op{x M) = Vdet(l ~ p(s)T) ard MO )(s) = det(] + p(s)T).

Deduce the formuilas

op(x) = ﬂxp{é‘; ‘Pk{x}T"fk}i

Ap(x) = exp{ég (1) ‘lfk{x}'l”";’k},

and

n

- P S k-1 :
mG = B VT md = & 1) RO,

ek
a

which generahize those of 2.1,

(b} Conclude from a) that R(G) is stable under the operators V5 k€ Z.
9.4. Let n be an integer prime to the order of G.

(a) Let x be an irreducible character of G, Show that ¥"(x} is an irreducible
character of G fuse the two preceding exercises].
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Chapter 9. Artim’s theorem

Relations:

@) (HAx + M) = MH, x) + N(H,x'} for AN € Q, and x x € Q
& R(H).

(i) ForH ¢ H,x¥’ € R{H'), and x = indﬁ: (x'3, we have (H,x) = (H,X')-

(i} For H € X, s € G, x € R{IH), we have (H,x)} = ("H,"x), with the
notation of ex. 9.6(b).

iUse ex. 9.6].

9.4 Second proof of (i) = (ii)

First let A be a cyclic group, and let @ be its order. Define a function f,
on A by the formuia:

a if x generates A
Halx) =
Alx) {{3 otherwise

Proposition 27. If G is a finite group of order g, then
g = 2, Indf (04 ),
AT

where A runs throush all the cyclic subgroups of (.
(In this formula, the letter g denotes the constant function equal o g.)

Put &, = Indy(8,). For x € G we have

: l \ .
Fylx) = a y%? 5 (yxy i)
yxy~ €A

P > I

1
€ ye@ yeG
pxp~lgen A yxy ipen. A

However, for each v € G, yxp~! generates a unique cyclic subgroup of &
So we have:

S ohix)= 2 1=g
ACG wely

Proposition 28. If A is a cyclic group, then 8y € R{A).

The proof is by induction on the order a of A, the case g = | beng
trivial. By prop. 27 we have

BCOA BA
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9.4: Second proof of (1) = (1)

The induction hypothesis gives 8y € R{B) for B # A, hence Ind§(fg)
belongs to R{A); on the other hand, it 15 Clear that ¢ € R{A) and so it
follows that 8, belongs to R(A).

Application to the proof of (i) = (ii)

First observe that, if A’ is contained in a conjugale of A, the image of
IndY. is contained in that of IndY. Hence we can assume that X is the
family of all cyclic subgroups of G. Propositions 27 and 28 then show that

g = % 1ndS(8,), withd, € R(A)
AEX

Thus the element g belongs to the image of Ind. Since this image is an idea!
of R{G), cf. 9.1, it contains every element of the form gy, with ¥ € R(G),
which proves {ii") (and even more, since we have an explicit denominator
viz. the order of G).

EXERCISE

9.8. If A is cyclic of order a, put A, = glalr, ~ 8, where gla} is the number of
generators of A, and r, is the character of the regular representation. Show
that A, is a character of A orthogonal to the unit character [apply ex. 9.1}
Show that, if A runs over the set of cyclic subgroups of a group G of order
g, we have

(0 3 1mdf0g) = gl — 1)

where r; is the character of the regular representation of G {use prop. 271

[Application (Aramata- Brauer): Let F be a finite extension of the number
field E, and Tet b{s) = L:{5)/{: (s} be the quotient of their zela functions. It
is known that @ is meromorphic in the entire complex plane. Now suppose
that F/E is a Galois extension with Galois group (. Then the forpmia (%)
above implies the identity

P(s)* = 1} LFJFA@:}‘*AL

where F, denoles the subfield of F' corresponding to the cyclic subgroup A.
The functions Lp/¢ (s,A,) are “abelian” L-functions, and hence holomor-
phic. So we see that @ itself is holomorphic, i.e., that {g divides {g; 1t is not
inown if this result still holds for non-Galois extensions (this would follow
from conjectures of Artin).]
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CHAPTER 10

A theorem of Brauer

In sections 10.1 through 104 the letter p denotes a prime number.

10.1 p-regular elements; p-elementary subgroups

iet x be an element of a finite group G. We say that x is a p-element {or
is p-unipotent} if x has order a power of p; we say that x is a p'-element (ot
is p-regular) if its order is prime to p. |

Each x € G can be wriften in a unique way x = x,x, where x, is p-
unipotent, x, is p-regular, and x, and x, commute; moreover, x,, and x, are
powers of x. This can be seen by decomposing the cyclic subgroup
generated by x as a direct product of its p-component and its p'-component.

The element x, (resp. x,) is called the p-component (resp. the p’-component)
of x.

A group H is said 1o be p-elementary if it 1s the direct product of a cyche
group C of order prime to p with a p-group P. Such a group is nilpotent and
its decomposition C X P is unigue: C is the set of p'-¢lements of H, and P
15 the set of p-elements.

Let x be a p'-element of a finite group G, let C be the cyclic subgroup
generated by x, and let Z{x) be the centralizer of x (the setof all s € G
such thaf sx = xs). If P s a Sylow p-subgroup of Z(x}, the group
H = C- Pis a p-elementary subgroup of G, which 1s said to be associated
with x: it is unique up to conjugation in Z(x),

EXERCISES

10.1, Let H == C - P be a p-elementary subgroup of a finite group G, and let x be
a generator of C. Show that H is contained in a p-elementary subgroup H'
associated with x.
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10.2: Induced characters arising from p-elementary subgroups

10.2. Let G = GL,(k), where k is a finite field of characteristic p. Show that an
element x £ G is a p-clement if and only if its eigenvalues are all equal to
i, i.e., if | — x is nilpotent; it is a p'-element if and only if 1t is semisimple,
i.e., diaponalizable in a fimite extension of k.

10.2 Induced characters arsing from p-elementary subgroups

The purpose of this and the next two sections is to prove the following
result:

Theorem 18. Let G be a finite group and let ¥, be the subgroup of R{G)
generated by characters induced from those of p-elementary subgroups of G,

Then the index of V, in R(G) is finite and prime 10 p.

Let X(p) be the family of p-elementary subgroups of G. The group V, is
the image of the homomorphism

Ind: & R{H)-— R(G)
HeX(p)
defined by the induction homomorphisms Ind¥, H € X(p). Then V, is an
ideal of R{G), and to prove the theorem it is enough to show that there
exists an integer m, prime to p, such that m € V,. In fact, we prove the
following more precise result:

Theorem 18", Let g = p"l be the order of G, with {p,l} = L. Thenl € ¥V,

The proof (due to Roquette and Brauer-Tate [12]) uses the subring A of
C generated by the gth roots of unity. This ring is free and finitely generated
as a Z-module; its elements are algebraic integers. We have Q N A = Z,
since the elements of this intersection are simultaneously rational numbers
and algebraic integers (cf. 6.4). The quotient group A/Z is finitely generated
and torsion-free, hence free; it follows {by lifting to A a basis of A/Z) that
A has a basis {1, a;,...,a.} containing the element 1.

The homomorphism Ind defines, by tensoring with A, an A-linear map

A@Ind: & A@R(H)— A ® RIG).
H & X({ p)

The existence of the basis {},ay,...,a.} then imphes the following:

Lemma 5. The image of A ® Ind is A ® V,; moreover we have

(A®V,) N R(G) =V,

Thus, to prove that the constant function / belongs to ¥V, it 18 enough to
prove that [ belongs to the image of A @ Ind, or in other words, that /s of
the form 3 ay Ind(fy), with ay € A and fy € R{H).

H
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Chapter 13: A theorem of Brauer

Remarks

{1} The advantage of the ring A over the ring Z is that all the characters
of G have values in A, since these values are sums of gth roots of unity, |t
follows that A ® R{G) is a subring of the ring of class functions on G with

vaiues in A.
(2) It can be shown that A is the set of algebraic mtegers of the

cyclotomic field Q@ - A, but we will not need this.

10.3 Construction of characters

Lemma 6. Each class function on G with integer values divisible by g iy an
A-linear combination of characters induced from characters of cyclic sub-

groups of G,

(Here, and in all that foliows, the expression “integer values” means
“values in Z.”)

Let f be such a function, and write it i the form gyx, where x 5 a class
function with integer values, If C s a cyclic subgroup of G, let 8- be the
clement of R{C) defined in 9.4. We have

g = 3 IndZ(8-), <f. prop. 27,
C
whence
f=gx =2 Ind¢ (Bc)x = ) Indg (0 - Res x).

It remains to show that 8.. Res.. y belongs to A & R(C) for each C. But the
the values of xc == 8 - Rescx are divisible by the order of C, so i 4 15 a
character of C, we have {xco,¢> € A, which shows that x. is an A-linear
combination of characters of C, whence xe € A @ R(C). )

Lemma 7. Let x be an element of A @ R{G) with integer values, let x & G,
and let x, be the p'-component of x {cf. 10.1). Then

x{x) = x{x,) (mod. p).

By restriction, we are led o the case where G s cyclic and generated by
x. Now y = 2 a,x;, with @, € A and the y; running over the distinct
characters of degree | of G. If g is a sufficiently large power of p, we have
K% = x? and thus x;(x}¥ = x,{x. )" for all i. Hence

x(x)? = (3 a3 = 2 af x, (x)
= 3 al xi{x,)?) = x(x,)7 (mod. p A).
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Since pA M o= pl, this imphies

x(x)? = x(x,)? (mod. p),

hence x{x}) = x(x,) {(mod. p), since ¥ = X (mod. p} forallA € Z

Lemma 8. Ler x be a p'-element of G, and let H be a p-elementary subgroup
of G associated with x {10.1). Then there exists a functiony € A ® R{H),
with integer values, such that the induced function ' = Indy has the
following properties:

(a) ¢'(x) # O {mod. p}).
(b) '{s) = O for each p'-element of G which is not conjugate to x.

Let C be the cyclic subgroup of (¢ generated by x, and let Z(x) be the
centralizer of x 1In G, We have H == C X P, where P 15 a Sylow p-subgroup

of Z{x). Let ¢ be the order of C, and let p* be the order of P. Let ¢ be the
funcuon defined on C by

Ve lx} = ¢ and

We have yo = 2, x(x ¥, where x runs through the set of irreducible
characters of C; it foliows that - belongs to A ® R{C} (which follows also
from lemma 6}.

bet  be the function on H = C X P defined by (xy} = {x) for
x &€ Cand y € P. This 15 the inverse image of . under the projection
H - . S0 we have ¢ € A ® R{tl). We show now that { satisfies the
conditions of the lemma:

If 5 15 a p-element of G and if p &£ G, ysy ' 15 a p'-clement; f psy™
helongs to H then it belongs to €, and we have Y ysp~ ") = 0 whenever

vsy ' # x. It follows that '{s) = 0 if 5 is not conjugate to x, which proves
{b). Moreover:

belp) = 0 ify # x.

1 !

Ly =L 3 = Gardlz)

o
CF payp-t=x Foopxyri=x F

() =
whence {x) 2 0(mod. p)since p® = Card(P) is the largest power of p
dividing Card(Z(x}). o

Lemma 9. There exisis an element  of A ® V,, with integer values, such that
yl{x} 2 Olmod. p) for each x € G,

Let (x;).o; be a system of representatives of the p-regular classes (i.e,
those consisting of p-elements). Lemma 8 gives us an element ¢, of A ® Vo
with integer values, such that

$o(x.) # 0 (mod. p) and Ji(x,) = 0(mod. p) forj +# 1.
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Put ¢ = > ;. It is clear that § bﬂlungs to A @ V, and has integer values.
For x € @, the p’~component of x is conjugate to a unigue x;. From lemma
7 we obtan

$(x) = {x;} = ,(x;} # 0(mod. p).

ExXERCISES
10.3. Extend lemma 6 to class functions with values n the deal gA of A.

10.4. Let p be a prime ideal of A such that v M Z = pZ (which is equivaient to
saying that A/p is a finite field of characteristic p). Let ¥ € A @ R{G), let
x € G, and let x, be the p'-component of x. Show that x{x) = x{x)
(mod.p) (same proof as for lemina 7) but that we no jonger always have

x{x) = x{x,} (mod.pA).

10.4 Proof of theorems 18 and 1§’

Let g = p"! be the order of G, with (p,[) = I 1t suffices to show that /
belongs to A @ V, cf. 10.2.

Let ¢ be an element of A ® ¥, satisfying the conditions of lemma 9. The
values of ¢ are # 0 {mod. p). Lﬂt N == g p") be the order of the group
{?fp”l) so that AN = 1 (mod. p*)for each integer A pnm& to p. Hence
YOO = 1 (mod. p )fﬂr all x £ G, and the function /(¢™ ~ 1} has integer
vatues dmsabiﬁ: by Ip" = g. By lemma 6, this function 1s an A-linear
combination of characters induced from E}-’EHL subgroups of (. Since each
cyclic group is p-elementary, we have I — 1) € A ® V. But A ® V, is
an ideal of A ® R(G), whence 9N € A ® v Subiraﬂtmg, we get that /
belongs 1o A @ V,, which finishes the proof.

10.5 Brauer’s theorem

We will say that a subgroup of G is elementary if it is p-clementary for at
least one prime number p.

Theorem 19. Each character of G is a linear combination with integer
coefficients of characters induced from characters of elementary subgroups.

Let V, be the subgroup of R(G) defined in th. 18. 1t suilices to show that
the sum V of the V, for p prime, is equal to R(G). Now V contains V,, so

the index of V in R{G} divides that of V hence is prime to p by th. 18. S:nce
this is true for all p, this index 1s E.’:qliﬂl to 1, which proves the thecrem. {1

Theorem 20. Each character of G is a linear combination with integer
coefficients of monomial characiers.
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10.5; Brauer’'s theorem

(Recall that a character is said to be monomaal if 1t is induced from a
character of degree | of some subgroup.)

This foliows from th. 19 and the fact that each character of an elementary
group is monomial, since such a group is nilpotent (cf. 8.5, th. 16).

Reniarks

{1} The Hnear combinations occuring in th. 19 and 20 may have positive
or negative coefficients. 1t 1s in general impossible to write a given character
as a linear combination with positive coefficients (integral or even real) of
monomial characters, cf. ex. 10.5, below.

(2) Theorem 20 plays an essential role in many applications of represen-
tation theory: to a large extent, 1t gives a reduction of questions pertaining
to an arbitrary character x to the case where y has degree 1 (hence comes
from a character of a cyclic group). It is by this method, for example, that
Brauer proved the Artin L-functions are meromorphic 1n the entire complex
plane. We wili see other applications later,

EXERCISES

10.5. Lt x be an wrreducible character of a group G.

(a}) Suppose that x is a linear combination with positive real coefficients of
monomizl characters. Show that there exists an integer m > 1 such that
my 15 monomial,

(b) Take for G the alternating group %y The corresponding permutation
representation is the direct sum of the unit representation and an
irreducible represeniation of degree 4; take for x the character of this
latter representation. I sy were induced by a character of degree 1 of
a subgroup H, the order of H would be equal to 15/m, and m could only
take the values 1, 3, 5, 15. Moreover, the restriction of ¥ to H would have
to conain a character of degree 1 of multiplicity m {observe that G has
no subgroup of order 15), Conclude that x cannot be a linear combina-
tion with positive real coefficients of monomial characters.

10.6. (Sugpested by A. Weil) We want to prove that each f € R{G) Eur:h that
{1} = 0 is a Z-linear combination of elements of the form Indg (v — 1),
where E is an elementary subgroup of G and & 15 a character of d{':grf."ﬂ L.

(a) Let RH{G) be the subgroup of R{G) generated by the EndE (a0 — lj, and
tet R(G) == Z + RL{G). Show that, if H is a subgroup of G, Ind{ maps
Ry(H} into RQ(G)

(b} Suppose that H is normal in G and that G/H is abeban. Show that lstd
maps R{H) into R'(G). {1t is enough to Shi}w that Indfj (1) belongs m
(), and this foliows from the fact that End i1(1} is the sum of {(G: H)
characters of degree 1 of G whose kernel contains H |

(c) Suppose G is elementary. Let Y be the set of maximal subgroups of G.
Show that if H € Y, then H is normal in G, and G/H has prime order
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(d)

fuse the fact that G s nilpotent]. Deduce that R{G) is generated by the
characters of degree 1 of G together with the Indy (R(H)), where H runs
over Y lapply th. 16} Show that R(G) == Rgﬁ}) fuse induction on the
order of G, and use (b) to prove that the Indy (R{H)) are contained in
RG]

Return to the general case and denote by X the set of elementary
subgroups of G. By th, 19 we have | = 2, Iﬂdg (fe), with fp € R(E}.
If p & R{G) this gives REX

v ng Indf (pg) where gg = fg - Resg ().

If ¢{1} = 0, we have g € RG(E) by (g). Conclude that ¢ belongs to
Ry {G), whence R'((G) = R(G).
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CHAPTER 11

Applications of Brauer’s theorem

i 1.1 Characterization of characters
et B be a subring of C and let G be a finite group.

Theorem 21. Let ¢ be a class function on G such that, for each elementary
subgroup H of (i, we have Rﬁﬂﬁtp = B®R{I). Theng & B ® R(G).

1 et X be the set of all elementary subgroups ol G. By th. 19, we can
write the constant function ! in the form

| = ng Ind¥ fy, with fyy € R{H).
Multiplying by g. this gives
o= 3 ¢ Indffy = 3 Indf(fy - Respq)
HeX HeX

Since f; belongs to R{H} and Resii ¢ belongs to B ® R{H). their product
belongs io B ® R(H). It follows that ¢ belongs (o B ® R(G). [

A similar argument, using Artin’s theorem {(ch. 9} gives:

Theorem 23'. Suppose thai B contains Q. If Resﬁq:n = 8 ® R(H) for each

cvelic subgroup H of G, then ¢ € B ® R(G).

Remark. Theorem 21 can be interpreted as a coherence property. Suppose
that we are given, for cach H € X, an element gy of B ® R{H} and
suppose the following properties are satisfied:

(i} If H < H, then gy = R&sﬂr(tpH).
(i) If H = sHs™*, withs € G, then gy is obtained trom gy by means
of the isomorphism x — wxs” !
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Then there exists a unique element ¢ of B ® R(G) such that 'Rt:ﬂﬁ:p
== gy for all H € X.

Theorem 22. Let o be a class function on G such that, for each elementary
subgroup H of G, and each character x of degree 1 of H, the number

1 -
() B 1

{6 Resypyy =
belongs te B. Then ¢ belongs 1o B @ R(G)

Let H be an elementary subgroup of (. Let

ResHg = ¥ ¢ w, wherec, = {w, Resyeiy,

P
be the decomposition of ResH ¢ into irreducible characters w of H. By
th. 16, each character w s induced by a character x, of degree 1 of a
subgroup H  of H. By Frobenius reciprocity, we have

c, = {xm,Rﬁsﬁuw:JHm.

Since H_ is an elementary group, the hypothesis on @ insures that o

belongs to B. Consequently, Resyp = 2, ¢ o belongs to B @ R{H), and
the result follows by th. 21.

Corollary. In order that ¢ be a virtual character (ie., p & R{G)), it is

necessary and sufficient that, whenever H is an elementary subgroup and
x: H = C* iy a homomorphism, then {x,Resyo)y & Z.

This is the special case B =

Let Res denote the homomorphism from R{G) into @ R(H) defined
by the restriction homomorphisms ResH

@™ R{H) is a split

Proposition 29. The homomorphism Res: R(G) — @

infection.

(A module homomorphism f: L — M is said to be a split injection il there
exists 1 M — L such that r o f = [; this is equivalent to saying that f 18
injective and f(L) is a direct factor of M.)

It is immediate that Res is an injection. To show that it is spht, it suffices
to prove that its cokernel is torsion free, since the groups under considera-
ii{m are finitely generated free Z-modules. So we must show that, if

= [ frdyex 15 an element of ® R{H ), and there exists a non-zero n such
t}mt nf = Res ¢, with ¢ € R({G), then f € Im(Res). But this follows frs:}m
Th. 21, apphied to the function ¢/a and the ring Z. |
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11.2: A theorem of Frobemus

[The argument could also be given in terms of duality: since the groups
involved are finitely generated free Z-modules, showing that Res 1s split, 18

equivalent to showing that its transpose is surfective. But its transpose S

ind: @ R{H) — R(G},

which is indeed surjective by Brauer’s Theorem.|

11.2 A theorem of Frobentus

As in Cli. 10, we denote by A the subring of € generated by the gth roots
of unity, where g = Card(G).

Let 7 be an integer > 1, and let (g, n) be the ged. of gand n. 1 fis 2
function on (3, denote by ¥7f the function x + f{x") It is easily checked
{cf. ex. 9.3) that the operator ¥" maps R(G) into itsell, Moreover:

Theorem 23. If f is a class function on G with values in A, the functior
(g/(g, )" belongs to A ® R{G).

If ¢ is a conjugacy class of G, denote by £ the characteristic function of ¢,
which takes the value 1 oncand O on G — ¢. The function ¥ f, 1s given by:
if x" & ¢
otherwise .

v ={ 4

Each class funclion with values in A is a linear combination of the f.
Theorem 23 is thus equivalent 10:

Theorem 23. For each conjugacy class ¢ of G, the function (g/{g, m)y¥" [
belongs to A @ R(G).

This can be formulated in still another way:

Theorem 23", For each conjugacy class ¢ of G, and each character x of G, we
have 1/(g.n} 2 x(x) € A,

xR &
Taking for x the unit character, this gives:
Corollary 1. The number of elements x & G such that X" € cis g multiple of
(g,n).
n particular:
Corollary 2. If n divides the order of G, the number of x € G such that

x" = 1 is a multiple of n.

(We mention at this point a conjecture of Frobenius: If the set G, of those
s & G such that 5" = 1 has » elements, then G, is a subgroup of G.)
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Proor oF THeoreM 23. (R. Brauer.} In view of th. 21, 11 suffices to show
that the restriction of the function {g/{g.m)¥"f to each clementary
subgroup H of G belongs to A ® R{H ). Now, il & is the order of H, then
g/{g, n) is divisible by h/(h, n). So it suffices to show that

(hh } (Resy [}

belongs to A @ R(H), that is, the proof is reduced to the case of elementary
groups. Since an elementary group is a product of p-groups, tt 15 enough 1o
ireat the case of a p-group. Now, using the fact that an trreducible character

of such a group is induced by a character of degree 1, we are led finaily to
proving the foliowing:

Lemma W0, Ler ¢ be a conjugacy class of a p-group G, let x be a character of
degree 1 of G, and let a. = ¥, x{x). Then a, = 0 (mod. (g, n}A).
x"eEc
First, observe that the sum of the a, (for x fixed and ¢ variable)} 1s equal
10 2 e xix), te, togf x = 1 and to 0 otherwise. Sc

> a. = 0 (mod. (g n))

Therefore it is enough 10 prove lemma 10 for those classes ¢ which are
different from the unit ciass,

Write n in the form p"m, with {p,m) = 1. Let p° be the order of the
elements of ¢, and let C be the set of x € G such that x" & ¢, Since
x" == xP"™ has order p® > 1, and since G is a p-group, the order of x is
p"*t Tt follows that, if z is an integer =1{mod.p"), then (x)" = X",
whence x* & C; moreover, we have equality x° = x if and only if
z = 1{mod, p*).In other words, the subgroup I of (Z,/p***Z)" consisting
of elements congruent 1o 1 mod. p° acts freely on C. Now the set C is
partitioned into orbits under the action of I', and it suflices to show that the
sum of the x{x) over each orbit is divisible by (g, n} in the ring A. Such an
orbit consists of elements x!*7°7, with 1 € Z/p"Z. The sum of the values of
x on this orbit 1s therefore equal to

adx) = x{x) 2 2, wherez = x{x "y,

tmod, pe
But y{x) is a p**%-th root of unity, and 2 is a p”-th root of unity. Therefore

> zrz{p” f 2 = 1,

jmud_pﬂ G If.? ;"'J‘ 1.

Consequenily a.(x} is divisible by p® and a fortiori by {g,n).
EXERCISE

11.1. Let f be a class function on G with values in Q such that f{x™} = f{x) for
all m prime to g. Show that f belongs to Q ® R(G}) {use th. 21’ to reduce o
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11.3: A converse to Brauer’s theaorem

the cyclic case]. Conclude from th. 23 that, if in addition f has vaiues 1n Z,
then the function (g/{g, n))¥"f belongs to R{G). Apply this to the charac-
teristic function of the unit class.

11.3 A converse {0 Brauer's theorem

The jetters A and g have the same meaning as in the preceding section,

Lemma 11. Let p be a prime number. Let x be a p'-element of G, C the
subgroup generated by x, and P a Sylow p-subgroup of the centralizer 7{x)
of x in . Let H be a subgroup of G containing no conjugate GfC x P, let
y be a class funcrion on H with values in A, and let {/ = Ind§ . Then

V{x) = O {mod. p A).

Let S(x) be the set of conjugates of x. Then

() = el s )
VI = Tewd W Ben
Let (Y.}, be the distinct H-conjugacy classes contained in 5(x) N H, and
choose an element y; in each Y, The number of conjugates of y; in H is
equal to Card Y, and also equal to (H: H 0 Z(y;)). Therefore

(x) = Sard Z(x)
V() = s ;%l Card Y, - ¥ ),
- _ Card Z{y:)
Eas iéi H,-IP(}’; }! with ;== C&Td(i‘nlw (3 Z(y;)}

Suppose we have n; 2 0 {mod. p) for some i € L Then Card Z(y;) and
Card(H N Z{y,)) are divisible by the same power of p; thus a Sylow p-
subgroup P; of H N Z(y;) is also a Sylow p-subgroup of Z(y;). i C, is the
cyclic group generated by y;, then C; X P; 1s contained 1 H, and 1s a p-
elementary subgroup associated with y, in the group G. Since y; and x are
conjugate in G, the group C, X P, is conjugate to C x P. This contradicts
the hypothesis on H. Thus #; = 0 (mod.p) for all i, whence

J(x) = 0{mod. p A).

Theorem 23 {J. Green.) Let {(H,), = be a family of subgroups of G such thut
R(G) = Yoy IndG R(H). Then each elementary subgroup of G is con-
fained in a conjugate of some H_.

Let C X P be a p-clementary subgroup of G. We can assume that this
subgroup is maximal, and thus associated with a p’-element x of G 1 C X P
were not contained in a conjugate of any H.. the prec&ding lemma would
show y(x}= 0{mod. pA) for all xe}: End‘:" R(H,), in particular for y
equal to the unit character of G, which 15 absurd. ]
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In other words, the family of elementary subgroups is *“the smallest” for
which Brauer's theorem is irue.

11.4 The spectrum of A & R{G)

Recall that if C is a commutative ring, then the spectrum of C, denoted
Spec{C), is the set of prime ideals of C, cf. Bourbaki, Alg. Comm., Ch. IL.

We want to determine the spectrum of the ring A @ R(G). (We could
also describe that of R{G), but it would be more complicated.}

Let CH{G) be the set of conjugacy classes of G. The ring A™C can be
identified with the ning of class functions on (& with values in A; if f belongs
to this ring, and if ¢ is a conjugacy class, let f{c) denote the value of fon
an arbitrary element of ¢. The injections A — A ® R{G) — ARG define
Maps

Spec{ACHE)) s Spec{A ® R{G)) - Speci{A).

These maps are surjective; this follows, for example, from the fact that
AUG) s integral over A (and even over Z), cf. Bourbaki, 4lg. Comm., Ch.
IV, §2.

On the other hand, we know that Spec(A} consists of the ideal 0 and the
maximal ideals of A. Moreover, if M is maximal in A, the field A/M is
finite; its characteristic is called the residue characreristic of M.

The spectrum of AYG) can be identified with CHG) % Spec(A): with
each ¢ € CHG) and each M & Spec{A} we associate the prime ideal M,
consisting of those f & A9 such that f(c}) € M. The image of M, in
Spec(A ® R(G)) is the prime ideal Py, . = M_ N (A @ R{G}).
Proposition 30. [f

(1) with each class ¢ € CI(G) we associate P,
(i) with each p-regular class ¢ and each maximal ideal M of A with
residual characteristic p we associate Py .,

then we obtain once and only ence each prime ideal of A @ R{G).

(A coniugacy class is satd to be p-regular if it consists of p'-elements, cl.
10.1.)

Since Spec(AMGN) = Spec({A ® R(G)) is surjective (cf. above), each
prime ideal p of A ® R(G) is of the form Py since b N A is M, we see
that p determines M, and it remains only to determine which pairs of
classes ¢ and ¢y are such that Py, = Py .. Thus the proposition foliows
from;

Proposition 30,
(i} If M =, Pglft i Pﬂﬁ is equivalent to ¢ = ¢4,
(it} Suppose that M %= 0 with residue characteristic p. Let ¢ (resp. ¢}

be the class consisting of the p-components of the elements of
ci(resp. ey ). Then Py, = Py Is equivalent to ¢y = c3.
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To prove (i} we must show that, if ¢; # ¢,, then there exists an element
f € A ® R(G) such that f{c,) # 0 and f{c;) = 0, and this is clear (take
for f the function equal to g on ¢ and 0 elsewhere).

If M has characteristic p, an easy argument, analogous to the proof of
lerama 7, shows that Py, = Py (cf. ex. 10.4). On the other hand, lemma
3 shows that Pyg o # Py if €7 # ¢ Whence (i1).

Remarks

(1} Let I be an ideal of A ® R{G). To show that 1 is equal to A ® R(G},
it suffices to show that I is not contained in any of the prime ideals Py,
this is the approach taken in the proof of Brauer’s theorem {see also ex. 1 1.7
below).

(2) We can represent Spec(A ® R(G)) graphically as a union of “lines”
. corresponding to the various classes ¢, each of these lines representing
Spec{A). These lines “intersect” in the following way: D, and D, have a
common point above a maximal ideal M of A with residue characteristic p
if and only if the p’-components of ¢; and ¢, are equal.

Proposition 31. Spec(A ® R(G)) is connected in the Zariski topology.

(If C is a commutative ring, a subset F of Spec(C) 1s closed 1n the Zariski
topotogy if and only if there exists H € Csuch thatp € F < b H)

Let x be an element of G of order pi' - py? - - - p*; x decomposes into a

product x = X, - x, --*X,, Where x, 1s of order p. The classes associated

with x and x, --+-x, have the same p-regular component. Thus, the

corresponding “lines” of Spec(A ® R{(}) intersect; moreover, each of
these lines is connected, being tsomorphic to Spec(A). Proceding step by
step until we get to the identity, we see that Spec(A @ R{(G)) is connected,
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Corollary. Spec R(G) is connected.

Indeed, this is the image of Spec{A @ R((3)) under a continuous map.

ExampLe. Take for G the symmetric group &,, There are three classes: £, ¢
(consisting of the elements of order 2), and ¢; (the elements of order 3).
There is a unique prime ideal p, in A of residual characteristic 2, and the
same holds for 3. The spectrum of A ® R{G)} consists of three “lines”
which intersect as indicated below:

I Spec (A 05 R(G))

p TR TN ]
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Remark. The results of this section have been extended to compact Lie
groups by G. Segal (Publ. Math. 1. H.E.S., 34, 1968).

EXERCISES

11.2. Show that the residue field of By, s A/M.

11.3. If B is an A-algebra, determine Spec{B ® R(G)) in terms of Spec(B) (use
the proof of prop. 30 and 307).

11.4. Let K be the quotient field of A and let ' be the Galois group of K/Q. We
know that T is isomorphic 1o (Z/ o ZY . Let T act on A @ R(G) via its action
on A, and determine ifs corresponding action on Spec(A & R{G)}. Obtain
Spec(R(G)) by observing that R{G) is the subring of A & R{G) consisting
of those elements fixed by I'.

11.5. Determine Spee (A[G]) when G is abelian (observe thal AlG] can be
identified with A ® R(G), where G is the dual of G, ¢b. ex, 3.3}

11.6. Let B be the subning of ACHO) consisting of those functions f such that, for
every maximal ideal M of A with residue characteristic p, and every class ¢
with p-regular component ¢’, we have fic} =/ {¢'}{mod M). Show that
A @ R{G) C B, and that these two rings have the same specirum; give an
example where they are distinct.
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11.7. Let H be a subgroup of G, and let 1y be the ideal of A @ R(G) which 1s the
image of A ® Indjj.

{a} Let ¢ be a class of G. Show that Iy is contained in Py if and only if
HMNeo=0

(b} Let ¢ be a p-regular class, and let M be 2 maximal ideal of A containing
p. Show that Ty is contained in By f and only if H contains no p-
glementary subgroup associated with an element of .

(¢} Obtain from {b) another proof of th. 18 and 23.
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CHAPTER 12

Rationality questions

So far we have only studied representations defined over the field C of
complex numbers. In fact, all the proofs of the preceding sections still hold
over an algebraically closed field of charactenistic zero, for example, an
algebraic closure of Q. Now we are going to see what happens for fields
which are not algebraically closed.

12.1 The rings Ry (G) and R (G)

In this section, X denotes a field of characteristic zero and C an algebraic
closure of K. If V is a K-vector space, we let Vi denote the C-vector space
C @y V obtained from V by extending scalars from K to C. I {715 2 finite
group, each linear representation p: G —> GL{V) over the field K defines a
representation

pe: G — GL(V) - GL{V)
over the field C. In terms of “modules” {(cf. 6.1), we have

The character x, = Tr{p) of p is the same as for pc; it is a class function
on G with values in K.

We denote by Ry (G) the group generated by the characters of the
representations of G over K; it is a subring of the ring R(G} = R(0)
studied in Ch. 9, 10, 11.

We could also define Ry (G) as the Grothendieck group for the category of
K[Gl-modules of finite type, cf. Part 1}, Ch. 14.
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12.1: The rings Rg(G) and R (G)

Proposition 32, Let (V,,p;) be the distinct (up to isomorphism) irreducible
linear representations of G over K, and let x; be the corresponding
characters. Then

(2) The x; form a basis of Rg(G).
(b) The x; are mutually orthogonal,

[As usual, this concerns orthogonality with respect to the bilinear form

o) = (1/2) Z,e0 o™ X))

It is clear that the x; generate R (G). On the other hand, if 7 # j we have
Hom%{V,, V.} = 0. But in general, i V and W have characters ¥y and xw,
we have

dimy Hom®{(V, W) = dimc Hom®(Ve, Wo) = (xv. xw s

cf. 7.2 lemma 2. It follows that {x;,x;> = 0 if i # j, and that {x;.x;”
== (im EndG{V,-) is an integer > | ({:aqua! to 1 if and only if Vp 15
irreducible, i.e., if V is absolutely irreducible, ¢f. Bourbaki [8], §13, no. 4). In
particular, the x; are linearly independent.

A linear representation of G over C is said to be realizable over K (or
rational over K) if it is isomorphic to a representation of the form p¢., where
o is a linear representation of G over K; this amounts to saying that it can
be realized by matrices having coefficients in K.

Proposition 33, In order that a linear representation of G over C be realizable
over K., it is necessary and sufficient that its character belong to Ry {G).

The condition is obviously necessary. Suppose conversely that it is
satisfied, and let y be the character of the given representation. In view of
prop. 32, we have x = 3 m;x; with n; € Z, and we obtam:

<X-.- xr> = Hf<xi:r X:> for all i,

Since  is the character of a representation of G over C, the scalar product
{x, %> is = 0. It follows that »; is positive, and that the given representa-
tion can be realized as the direct sum of the V, each repeated n; imes. [

The same argument shows that the realization in question is unigue, up o
K -isomorphism.

In addition to the ring Ry {G), we shall consider the subring Ry (G)
consisting of those elements of R{G} which have values in K. Obviously,
R (G) € Ry (G). Moreover:
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Chapter 12: Rationality questions

Proposition 34, The group R i (G) has finite index in Ry (G).

First, observe that each irreducible representation of G over C can be
realized over a finite extension of K {that generated by the coefficients of a
corresponding matrix representation). Hence there exists a fimte extension

L of K, such that R (G) = R(G). Let 4 = {L: K] be the degree of this
exiension; the proposition then follows from the following lemma:

Lemma 12. We have d - R {G) C Ry {(G).

First, let V be a linear representation of G over L. with character x; by
restricting scalars we can consider V as a K-vector space (of dimension 4
times as large} and even as a hnear representation of G over K. We sec
immediately that the character of this representation is equal to Tr « (),
where Tr ;. denotes the trace associated with the extension L/K. It EDHGWS
by iiﬂﬂanty that Try /() € RK(G) for each element x of R, (G).

In particular, take x € R (G), 1.e. suppose that the values of x belong
to K. Then Try g (x) = d- x; hence d-x € Rg{G), and the proof is
complete, -

12.2 Schur indices

The results of the preceding section can also be obtained, and even
refined, by using the theory of semisimple algebras, We sketch this briefly:

The algebra K [G] is a product of simple algebras A, ﬂ{)rrespc}ndmg to
the distinct irreducible representations V, of G over K. If D; = Hom% (V.
V.) is the commuting algebra of G in End(“sﬁ) then 1), is a ﬁeld (ncmca:}m-
mutative, in general), and A; can be identified with t?]f: algebra Endp (V)
of endomorphisms of the Dy-vector space V. If [V;: D;] = n, then
A; = M, (D7), where D7 is the opposite ring of 1. MGI’EGVEI’ the degree
{}f D, over its center K, 1s 4 square, say mf, the mnteger m; is called the Schur
mdex of the representation V. {or of the component A}).

Let s € G, and let p.{s) be the corresponding endomorphism of V. We
have to consider three kinds of “traces” of p,{s):

(a) Its trace as a K-endomorphism; this is the element of K denoted

above by x:{s);
{b) Its trace as a K -endomorphism; this is an element of K which we wil!

denote by g {s);
(¢) Its reduced trace as an element of the simple algebra A; (cf. for
example {81, no.12.3}; this is an element of K; which we wﬂi denote

by ¢;(s)-
The various traces are related by the formulas
X; () = TTK,/K(‘PE(S)} and p;(s) = mg(s).
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12.2: Schur indices

Now let X, be the set of K-homomorphisms of the field ¥, into the
algebratcally closed field C. If o € Z,, scalar extension from K to C by
means of o makes D; into a matrix algebra M, (C), and A; becomes

M, m'((f‘ }. Composing G - A —= M, (C}, we {}btmn an 1rr&dﬂmh!e rep-
resentation of G over C, of degree n;m;, and with character §;, = o(f;).
For fixed i, the characters y; , are conjugate: the Galois group of C over K
permutes them transitively. Moreover, each irreducible character of G over

C is equal to one of the {, ,. We have

2 ﬂ{{PI) E 4’:{!*

aex. aE

Xi ™ Tf}{j,-';.;_{%) =

which gives the decomposition of x; as a sum of ureducible characters over
C.

Now let x == 2,,d,¢;, be an element of R{G}, where the 4, are
integers. In order that x have values in K, it is necessary and sufficient that
it be invariant under the Galois group of C over K, i.e,, that the 4, , depend

only on #. If this 15 indeed the case, and we let d; denote their common
value, we have

X = E dily = E df}(;/mf-

Hence we have the following proposition, which refines prop. 34:

Proposition 35. The characters §;, = x,;/m. form a basis of R  (G).

Let us say that K|G} is quasisplit if the D, are commutative, or, what
amounts to the same thing, if the Schur indices m; are all equal to 1. Then
prop. 35 implies:

Corollary. In order that R (G) = R (Q), it is necessary and sufficient that
K[G| be quasisplit.
In particular, we have R (G} = Ry (G) in each of the following cases:

(i} G is abelian (because then K[G] and the D; are commutative).
{11} The Brauer groups of the finite extensions of K are trivial.

FYXERCISES

12.1. Show that all the Schur indices for the finite groups considered in Ch. 3 are
equal 1o 1.

12.2. Take for G the alternating group %,, cf. 5.7. Show that the decomposition of
Q] into simple factors has the form

QiG] = Q X Qlw} X My((Q},

where Q{w) 1s the quadratic extension of €} obtained by adjoining to @ a
cube root of unity w.
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Chapter 12: Rationalily questions

12.3. Take for G the quatermion group {+1,+i %j, +k}. The group G has 4
characters of degree 1, with values in f+1}. On the other hand, the natural
embedding of G in the division ring Hg of yuatermons over () defines a
surjective homomarphism QG - Hg. Show that the decomposition of
QIG] into simple components 15

QIG] = O X QX QXQXHg.

The Schur index of the last component is equal to 2. The cosrespending
character  is given by

§{1) = 2, J—1) = =2, U(s) == 0 fors »* x1.

Hence K[G] is quasisplit if and only if K © Hg is isomorphic to M, (K );
show that this is equivalent to saying that —1 is a sum of two squares in K.

12.4. Show that the Schur indices m, divide the index ¢ of the center of G.
[OBserve that the degree of the irreducible representation with character ¢,
is n,m, and apply prop. 17.] Deduce that a - R (G) is contained in Ry (G).

125, Let L be a finite extension of K. Show that, if L{G] is quasisplit, then {L: K]
is divisible by each of the Schur mdices m;.

12.3 Realizability over cyclotomic fields

We keep the notation of the preceding sections, and denote by m the least
common multiple of the orders of the elements of G; it is a divisor of g,

Theorem 24 (Brauer). If K contains the mth roots of unity, then R (G)
= R{G)

In view of prop. 33, this implies:

Corollary. Each linear representation of G can be realized over K.
(This result had been conjectured by Schur.)
Let ¥ € R{G). By th. 20 of 10.5, we can write x tn the form

X = Z ﬂj'iﬁég,-(qu}& (Hi = Z)

where the o, are characters of degree | of subgroups H; of G. The values of
the ¢, are mth roots of unity; they befong to K. Thus g; € Ry (H.). But, if
I1 is a subgroup of G, it 1s clear that ind{ maps Rg(H) into R (G}
Therefore Indﬁj{:;pi) & R (G) for all ¢, which proves the theorem.

FXERCISE

12.6. Show that the Schur indices of G {(over an arbitrary field) divide the Euter
function g(m) [use ex. 12.5],
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12.4: The rank of Ry (G)

12.4 The rank of R (G)

We return now to the case of an arbitrary field K of charactenistic zero.
We shall determine the rank of Ry (G), or equivalently, the number of
irreducible representations of G over K,

Choose an integer # which is a maultiple of the orders of the elements of
G (for example, their least common multiple or the order g of (), and let
L. be the field obtained by adjoining to K the mth roots of unity. We know
(cf. for example Bourbaki, 4/g. V, §11) that the extension L/K is Galois and
that its Galois group Gal{L/K) is a subgroup of the multiphicative group
(Z/mZ)" of invertible elements of Z/mZ. More precisely, if 0 € Gal(L/K),
there exists a unique element | € (Z/mZY" such that

o{w) = & if & = L

We denote by [y the image of Gal(L/X) in (Z./m2)", and if 1 € Ty, we let
o, denote the corresponding element of Gal{L/K) The case considered in
the preceding section was that where Iy = {1}.

Let s € G, and let # be an integer. Then the element s" of G depends
only on the class of n modulo the order of s, and so a fortion modulo m;
particular 5! is defined for each ¢ & Ii. The group Iy acls as a permulation
group on the underlying set of G. We will say that two elements s, s of G
are Iy -conjugate if there exists t & Iy such that s’ and s’ are conjugate by
an element of (. The relation thus defined is an equivalence relation and

does not depend upon the choice of m; its classes are called the Iy -classes
{or the K.classes) of G.

Theorem 25. In order that a class function f on G, with values in 1., belong to
K ®, R{G), it is necessary and sufficient that

{(») o {f(s)) = fs") foralls € Gandallt € Iy,

(In other words, we must have o {f) =¥ (f)foralr € I, cf. 11.2.}

Let p be a representation of G with character X. For 5 € (5, the
eigenvalues w, of p(s) are mth roots of unity, and the eigenvalues of pls') are
the . Thus we have

0,(x(s)) = o(Z ) = = o = x(s')

which shows that y satisfies the condition (). By linearity, the same is true
for all the elements of K @ R(G).

Conversely, suppose f is a class function on G satisfying condition (*),
Then

f=12cx withe, = (fx
93
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Chapter 12: Rationality questions

where ¥ runs over the set of irreducible characters of G. We have to show
that the ¢, belong to K, which, according to Galois theory, is equivalent to
showing that they are invariant under the o, ¢ & I, But, it g and y are two
cltass functions on G, then we have

P, ¥ = (¢ X
as can be easily verified. Whence

¢, = {hxy = YE¥ 0 = ) ox) = o({f0) = a,{ey),
which finishes the proof.

Corollary 1. In order that a class function f on G with values in K belong to

K @ Ry {G), it is necessary and sufficient that it be constant on the 1y -
classes of G,

Iff e K®Ry(G), then f{s) € Kforalls € G, and formula (+} shows
that f{(s) = f(s*) for all ¢ € Ik. Hence f is constant on the Ti-classes of G.

Conversely, suppose that f has values in K, and is constant on the Iy-
classes of G. Then condition {*) is satisfied, and we can write

f=2xox with{fix €K

as above. Moreover, the fact that f is invariant under the g, 1 € ly, shows
that {7, x> = {f,0,{x)}, so the coefficients of the two conjugate characters
x and o,{x) are the same. Collecting characters in the same conjugacy class,
we can write f as a linear combination of characters of the form Tr ;i (x).
Since the latter belong to R (G), ¢f. 12.1, this proves the corollary.
[Alternately: Let Ty act on K ® R(G) by frro(f) = ¥(f) and
observe that the set of fixed points is K ® R {G).}

Corollary 2. Let x; be the characters of the distinct irreducible representations
of G over K. Then the x; form a basis for the space of functions on G which
are constant on Ty -classes, and their number is equal 1o the number of fx-
classes.

This follows from cor. |. i

Remark. In cor. 1, we can replace Ry (G) by Ry ((G). Indeed prop. 34
shows that '

12.5 Generalization of Artin’s theorem

If H is a subgroup of G, it is clear that

Resy: R(G) - R(H}  and indy;: R(H) - R(G)
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12 6: Generalization of Brauer’s theorem

map Ry (G) into Ry (H) and Ry (H) into Rg(G). So we can ask if the
theorems of Artin and Brauer remain valid when R is replaced by Ry. In
the case of Artin’s theorem, the answer 1s affirmative;

Theorem 26. Let T be the set of cyclic subgroups of G. Then the map
Q @ ind: H%TQ ® R (H) — Q& Ry (G)

defined by the maps Q @ Indﬁ, H & T, is surjective,

The two proofs given in Ch. 9 apply without change. The first 1s a duality
argument; one must show that the mapping

O®Res: Q@ R (G)—» & Q& Ry(H)

HeT
is injective, which 1s clear.

The second proof consists of using the formula

g = ¥ Indf{y).
HET

cf. prop. 27 (9.4},

and proving that 8 belongs to R (H). The latter can be verified either by
nduction on the order of H, or by observing that # has integer values and
thus belongs to Ry (H); since H is abelian we have Ry (H) = Ry (H).
Now the identity above shows that the constant function | belongs to the
image of Q@ ® Ind. Since this image is an ideal, 1t must be the whole ring
Q ® Ry (G). C

12.6 Generalization of Brauer's theorem

We keep the notation of the preceding sections. I 1s easy 1o see that, i
X is the family of elementary subgroups of G, the map

is not. in general, surjective (example: G = &;. K = R). It 1s necessary to
replace X by a slightly larger family Xy, that of “ Ty - elementary”
SUDEroups:

Let p be a prime number. A subgroup H of G is said to be Ig-p-
elementary if it is the semidirect product of a p-group F and a cyche group
C of order prime to p such that™

(*k) For each y € P, there exisis 1 € Ty such that yxy~ ! = x' for each

x & C,

TETIT

* The subgroup C should not be confused with the algebraic closure of K chosen in 12.1;
the fatter wili not appear 1n this section.
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Chapter 12: Rationality questions

(When Iy = {1), this condition just means that C and P commuie, s0 that

H = CXP is a p-elementary group.) A subgroup of G is said to be

Fy -elementary if it is Iy -p-elementary for at least one prime number p.
Denote by X (resp. Xg{p)) the family of Ii-elementary (resp. ly-p-

elementary) subgroups of G. Then we have the following analogue of
th.19:

Theorem 27. The map Ina: o éﬁx Ry (H) = Ry (G) is surjective.
K

As in 10.5, we obtain theorem 27 from a more precise result, relative to
a fixed prime number p:

Thearem 28. Let g = p"! be the order of G, where (p, 1) == 1. The constant
function I belongs to the image Vg , of the map

Ind: @ Ry(H) - Ry (G)
el (s k( x (G)

In particular, the index of V¢ _, in R « (G} is finite and prime to p.

The proof of this theorem is completely analogous to that of th, 18" (1o
which it reduces when K is algebraically closed). We will give the proof in
the next section and, for the time being, just indicaie two consequences:

Proposition 36. Let ¢ be a class function on G. In order that ¢ belong to

R (G), it is necessary and sufficiens thai, for each [y -elementary subgroup
H of G, we have Rcsﬁsp € Rg(H).

Using th. 27, we have an wdentsty

1= 3§ Ind§fy, withfy € Rg(H).
He Xy

Multiplying by ¢, this gives

= cndS fy e indS . ResS o),
P H%{K'}'} HfH H;:'E}{K H(fH Hfﬁ}

So, if Resygp € Ri(H) for all H € Ry, we have ¢ € R {(G); the
converse 1s clear. |

Proposition 37. If each of the algebras K[H], H € X, is quasisplit (cf. 12.2},
the same is true of K|G].

Leto & Ry (G). For H € Xy, we have ResS g & R (H), and Ry (H)
is equal to Ry {H) since K[H} is quasisplit (cf. cor. to prop. 35). The
preceding proposition then shows thal ¢ belongs to R (G). Whene
R {G) = Ry (G), and K|G] is quasisplit. ]
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12.7: Proof of theorem 28

EXBRCISE

121, Show that the map Ind: @ Ry(H)— Rgl0) is surjective. [Use the
HeE Xy
proof of prop. 36.]

12.7 Proof of theorem 28
We denote by A the subring of L generated by the mth roots of unity.

Lemma 13. If { belongs to A ® Vi, then | € Vg

This is proved by the same argument as the one used in 10.2 for lemma 3,

Lemma 14, There are finitely many prime ideals by, ..., b, of A containing p.
The quotients A/p; are finite fields of characteristic p, and there exists an
integer N such that pA D (py O -+ 1N t’h}N+

The p. correspond to prime ideals of A/pA, which is a finite ring of
characteristic p. The first two assertions follow from this. The third folows
from the fact that (py N -+ N b,)/pA is the radical of the artimian ring
A/pA, thus is nilpotent. -

Lemma 15. Let f be a function on G, constant on 1g-elasses, and with values
in eA. Then f can be written in the form

fe= 3 Ind&{pc), withgc € A ® Ry(C).

where C runs over the set of cyclic subgroups of G,

Let @ = f/g. In the notation of lemma 6, we have

7= 3 Indg (@ - Resd @),

and it remains only to show that g = f¢ Resg @ belongs to A @ Ry (C)
tor all C. But the values of ¢ are divisible by the order of C; 1t follows that,
if « is a character of degree 1 of C, we have (g, x> € A. Moreover, the
fact that f is constant on Ig-classes implies that

(e x> = (Bl Tx) = (pe, Bixo, i1 E k.

The coefficients in g of characters conjugate over K are thus equal, and
we can express ¢ as an A-linear combination of traces over K of

characters x; thus gc € A ® Rg{C).

Lemma 16. Let x, p & G be elements whose p'-components are [ -conjugate.
e A& Rg(G), then

flx) = f{y) (mod.p,} fori=1 ..., A
99
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Chapter 12: Rationality questions

We know that f is constant on Iy-classes (cor. 1 of th. 25). So we can
assume that x is the p’-component of y, in which case the same argument
applies as in the proof of lemma 7.

Lemma 17. Let x be a p'-element of G, let C be the cyclic subgroup generated
by x, let N{x) be the set of y & G such that there exisis 1 & Iy with
yxy™! = x', and let P be a Sylow subgroup of N(x). Then:

(a) H = C P is a Ly-p-elementary subgroup of G.
(b) Each linear representation of C over K extends to H.
(¢} The map Res: Ry (H) = Ry (L) is surjective.

Assertion {a) is clear. To prove {b), it suffices to consider the case of an
irreducible representation over K. Such a representation ¢an be obtained by
choosing a homomorphism x: C —» I, taking as vector space the subfieid
K. generated by x{(C), and defining p: C — GL{K,) by the formuia

p(slo=x{s)e UseCamdwek,.

The group [}, = Gal{L/K) acts K-linearly on K . 1f y € P, let s & I be
such that yxy~! = x!, and define p(y) as the restriction of g, to K. One
checks that p( v) does not depend upon the choice of ¢, and that

o pIp(x)pl )t = plx").

It follows that the homomorphisms of C and of P into GL(K, ) thus defined

extend to a homomorphism of H mnto GL(KX), which proves (b). Assertion
(¢) follows from (b}.

In 103 we had T}, = (I}, whence H = C X P, 50 that the lemma above
was {riviai.

Lemma 18. Keep the notation of lemma V1. Then there exists

Y & A® Rg{(H)

such that the induced function ' = Iﬂdﬁ  has the following properties:

(i} ¢'(x) # Oflmod. p,) fori =1, ..., A
(i) ' (5) == O for each p’-element s of G which is not Iy-conjugaie to Xx.

Let ¢ be the order of C, and let i be the function defined on C by
Ye(y) = ¢ when y has the form x', with 1 € Iy, and Y- ¥} = O otherwise.
Then ¢ € A @ Ry (C): this follows, say, from lemma 15 applied to C. By
lemma 17, there exists ¢ € A ® Ry {H} such that RESE\# = . We show
that  works:

If s is 2 p-element of G, and if y € G, ysy™ is a p-element. I
ysy~ ! & H, then ysy™' € C and ¥ ysy ™) is zero whenever ysy~ ! is not of
the form x', for 1 € T H follows that ¢/'(s) = 0 if 5 is not [x-conjugate to
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12.7: Proof of theorem 28

x, which proves (ii). For the rest, let Z be the set of x'. 1 e 1. Then

; 1 _ Card(N(x))
Vix) = ﬁard(H}}._ﬁ,gﬂ Card(P)

and since P is a Sylow p-subgroup of N{x) {ef. lemma 7). we see that J'(x})
is an integer prime to p, whence (i}).

Lemma 19, There exists ¢ € A ® Vi , such thar e(x) = 0 (mod. p,) for each
x & Gandeachi = 1, ..., h

Let {x) ) De a system of representatives for the p-regular Iy -classes
i.e.. those consisting of p’-elements. For each A & A, the preceding lemma
atlows us to construct g, € A ® V., such that

(P}L{I;;,l} MF'L 0 (!’ﬂ{}d U'j} and q?_;ql_(.’{'h} = 3 if A & H.

Put ¢ = 2, oo Then ¢ bclnygs o A ® Vg, and we have plyy = U
(mod. p) for each p-element x in G. Lemma 16 shows that the same holds
for cach x in G. (]

Completion of the proof of theorem 28

Let p € A ® Vg, satisfy the conditions of lemma 9. For each v £ G
and each i, the class of {x) mod. p, belongs to the multiplicative group of
the field A/p, Since the field A/p; is finite (lemma 14), there s an M 2> |
such that ™ (x) = l{mod. p;} for all i and all x & (5. Then by lemma 14
we have ¢MM¥(x) = 1 (mod. pA), and raising oM™ (o the power p", we
obtain ¢ € A ® V. such that

Yix} = | (mod. p"A) forallx € G

The function /{y — !) thus has values in p"/A = gA. ln view of lemma 15,
we have /{{ — 1) & A ® Vi ,. By subtraction. we obtain that / beiongs 1o
A ® Vg ,.and now the theorem follows from lemma 13,

EXERCISE

12.8. Determine the spectrum of the ring A @ Ry{(3). (The result is the same as in
114, except that conjugacy classes are replaced by T'y-classes.)
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R
g i

(i.e., we must have f(x) = f(y) if x and y generate the same
subgroup of G).

Ratmnahty quesﬂoﬁs: 6}"{3.1]1]3168 1., {Recall that g, is the automorphism of Q(m) which takes an mth root of

unity to its rth power, and that ¥'{f) is the function x +» f(x'}.)

Corollary 1. The number of isomaorphism classes of irreducible representations

of G over Q is equal to the number of conjugacy classes of cyclic subgroups
This follows from cor, 2 to th. 23,
F Corollary 2. The following properties are equivalent:
-.; (1} Each character of G has values in ).
i (i} Each character of G has values in Z.
. (11) Two elements of G which generate the same subgroup are conjugate.
The equivalence of (i} and (i") comes from the fact that character values
4 are algebraic integers, thus are elements of Z whenever they belong to Q.
We keep the notation of Ch. 12 The eguivalence of {i) and (11} follows from th. 29. ;
t Examples
13.1 The feid Q (1) The symmetric group & satisfies (i1}, hence (i). Moreover, one can
Let (G be a finite group of order g, and let m be a multiple of the orders ;5_ show that each representation of &, is realizable over Q, ie., that R(Z,)
' : == R (S, ).
of all the elements of G. Take as ground field K the field Q of rational -:ﬁ:"- (Z)Qf(}i;)uatemiﬂn roup G = {1, +i, t/, +kj satisfies the conditions of
numbers, and let Qfm) be the field obtained by adjoining the mth roots of the {I{}TDHE’E‘ Hence % (E}} =R ETG;'#L};; ﬁr;up R o (G) is a quhgmu[; of
unity to Q. The Galois group of Q(m) over Q is the group denoted Iy in ndex 2 of J{G) of ex Qﬂ 3 ’ 5 i o
12.4; it is a subgroup of the group (Z/mZ)". In fact: L o
Theorem (Gauss- Kronecker). We have T, = (Z./ mZ)* If H is a subgroup of G, denote by ly the umt character of H and by [
’ © ' i the character of G induced by I (in other words the character of the
1 permuiation representation on G/ H, <f. 3.3, example 2).

(This amounts to saying that the mth cyeclotomic polynomial ¢, is
irreducible over Q.)

......

Theorem 30. Each element of R Q(G} is a linear combination, with coefficients
in Q, of characters 18, where C runs over the set of cyclic subgroups of G.

i ‘;’; assume this classical result; for a proof, see, for example, Lang [10] This amounts to saying that Q ® Ro(G) is generated by the 1%, Sinee
: v " i

Q ® R 4(G) is endowed with the nondegenerate bilinear form
Corollary. Two elements of G are lg-conjugate if and only if the cyclic i
subgroups they generate are conjugate. w i (@} = <@,
i we can just as well show that each element # of R 4(G) orthogonal to all
Applying the results of 12.4, we have: =* the IF is zero. However, we have |

Theorem 29. Ler [ be a class function on G with values in Q{m). 8, 15*} - {Resg gl = % S @s), where ¢ = Card C.
FEC

{(a) In order that f belong to Q ® R{G), it is necessary and sufficient I . 1 |
that 0,{f} = W' (f) for each t prime 10 m. So theorem 30 is equivalent to the following:

{b) In order that f belong to Q & Ro(G), it is necessary and sufficient Theorem 3¢, Jf # & RQ(G} is such that 2, 8(s) = 0 for each cyclic
Ihﬂrfhﬂﬁf? Hﬂfﬂfﬂ fﬂ Q1 ffﬂd Ihﬂf ,q;..! (f) e ffﬂ'.r {?ﬂf’h Ipr‘ffﬂ{i’ o m 'EIE _F“bgr{;lup C ﬂf G, Ihe;] 9 — {)_ seEl
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Chapter 13: Rationality questions: examples

We prove this result by induction on Card{G). Let s € G, and let C(s)
be the cyclic subgroup of G generated by 5. Let x € C(s}; if x generates
C(s), we have #(x) = O(s) since x and s are Iy-conjugate; if x generates 4
proper subgroup of C(s), the induction hypothesis (applied to the restriction
of # {0 this subgroup) shows that #(x} = 0. So we get that

5 #(x) = a- Hs),

x & i)

where a is the number of generators of C (s5). But by hypothesis we huave

2 flx) =0,

x &)

and therefore #(s) = G

Corollary. Let V and V' be two linear representations of G over Q. In order
that V be isomorphic to V' it is necessary and sufficient that, for each cyclic
subgroup C of 43, we have

dim V€ = dim V<,

where VE {resp. V'©) denotes the subspace of V (resp. V') consisting of the
elements invariant under C.,

The necessity is obvious. To see that the condition is sufficient, let x and
v’ be the characters of V and V. We have:

dim V& = (Res& x. leve

and hence (Res8{x ~ x'), I¢» = O for each C, whence x — X' = 0 by th.

30. Thus V and V' are isomorphic.

Remarks

(1) It is not true in general that each element of Ro(G) is a linear
combination with integer coefficients of characters 1, even if H runs over
the set of all subgroups of G {cf. ex. 13.4).

(2} Theorem 30 implies the following result: let F/E be a finite Galois
extension of number fields, and let x be the character of a linear
representation of Gal(F/E) realizable over Q. Then we can write the Artin
L-function relative to x as a product of fractional powers of zeta functions
of subfields F of F corresponding to cyclic subgroups C of Gal(F/E).

ExXERCISES
13.1. Let G be a cyclic group of order . For each divisor 4 of », denote by Gy the
subgroup of G of index d.

(a) Show that G has an irreducible representation over Q, unique up to
isomorphism, whose kernel is equal to Gy Let x; denote its character,
then x (1) = g{d). The x, form an orthogonal basis of Ro(G)-
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13.1: The field Q

{(b) Define an isomorphism from Q{G] onto II] Q(d ).
din

{c} Puty,; = 1&. Show that yy = X1y X and that x; = 2 Wld/d Wy,
where p denotes the Mdbius function. Deduce that the ¢, form a basis for
R o (G).
Q

Prove th. 30 by reducing to the cyclic case using th. 26, and then applying
ex. 13.1.

Let p be an irreducible representation of G over Q, et A = M, (D) be the
corresponding simple component of Q[G] (D being a field, not necessarily
commutative), and let x be the character of p. Assume that p is faithful (ie.,
ker p = 1} and that every subgroup of G is normal. Let H be a subgioup of
G. Show that the permutation reresentation on G/H contains the represen-
tation p n times f H == {1} and 0 times if H # {1}. Conclude that,:’f n > 2,
y is not contained in the subgroup of RQ(G} generated by the characters Eﬁ*

Let E be the quaternion growp, C the cyclic group of order 3, and let
G = E x C. Il Hy denotes the usual field of guaternions {over ), show that
E and C can be embedded in the multiplicative group HE. This gives an
action of F {resp. C) on the vector space Hg, by right multiplication (resp. by
left multiplication). Obtain from this an irreducible representation p of G
over Q of degree 4. Show that the cosresponding simple algebra s 1somor-
phic to My(K), where K is the ficld of cube roots of unity. Vendy the
conditions of ex. 13.3 and deduce that the character of p is not a linear
combination of characters lﬁ, H C

Let X and Y be two finite sets on which the group I' acts. If H 15 a subgroup
of T, denote by X {resp. Y} the set of elements of X (resp. Y) fixed by H.
Show that the T-sets X and Y are isomorphic if and only if Card (xH)
= Card(Y™) for each subgroup H of T. Next, show that the properties listed
betlow are equivalent to each other:

(i} The (linear) permutation representations py and py associated with X
and Y are isomorphic,
(ii} For each cyclic subgroup H of I, we have Card(X) = Card{YH).
(iif) For each subgroup H of I', we have Card{X/H) = Card{Y/H).
(iv) For each cyclic subgroup H of T, we have Card(X/H) = Card(Y/H).

When these properties hold, we shall say that X and Y are weakly
isomorphic.

[The equivalence of (i) and (ii) is obtained by calculating the characters
of py and py. The equivalence of (i} with (iii) and (iv} comes from the
fact that Card (X /H) is the inner product of the character of py with the
character 1 ]

Show that, if T" is cyclic, the T-sets X and Y are isomorphic if and only
if they are weakly isomorphic. Give an example in the general case of
weakly isomorphic sets which are not isomorphic {take for T the direct
product of two groups of order 2).
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Chapter 13; Rationality questions: examples

13.6. Let X be the set of irreducible characters of G over Q{m}, a::ci tet Y be the
set of conjugacy classes of G. Let the group Iy = (Z/mZ}" act on X by
x = a{x)yand on Y by x - x',

(a) Show that the Ty-seis X and Y are weakly isomorphic {cf. ex. 13.5).

(b) Show that X (resp. Y} can be identified with the set of homomorphisms

from the Q-algebra Cent. Q[G] {resp. Q@ ® R((3)) into Q(m). Deduce that
the I'y-sets X and Y are isomorphic if and only if the center of Q[(s] s
isomorphic to @ @ R(().

(¢} Show that the center of QIG] is isomorphic to Q ® R(G) in each of 1he
foillowing cases:

(e} G is abelian (use an somorphism from G onto 1ts dual G, and observe
that Q{G] = R{(G)).

(c;) Gis a p-group and p # 2 (use the fact that 1§ is cyclic),
(For an example of a group G such that X and Y are not Iy
isemorphic, see I, Thompsor, J. of Algebra, 14, 1970, pp. 1-4.}

13.7. Let p be a prime number # 2. Let G be a Sylow p-subgroup of GL;(¥,} and
let G’ be a nonabelian semidirect product of Z/pZ with Z/p°Z. Thus
Card{(;) = Card(G') = p°.

(a) Show that G and (&' are not isomorphic.

(b} Construct the irreducible representiations of G and G'. Show that QI{G]
and €4 ('] are products of the field Q, p + 1 copies of the field Q{p), and
the matrix algebra M, (Q(p)). In particular, Q{G| and Q[G'} are isomor-
phic.

(c) Show that F,|G} and E,[G’] are not isomorphic.

13.8. Let {C,...,C,} be a system of representatives for the conjugacy classes of
cyclic subgroups of G, Show that the characters Ig{ e ]Er form a hasis of

Q@Rdmn

13.2 The field R

We keep the preceding notation, and take as ground field K the field R
of teal numbers. The corresponding group Ty is the subgroup {x1} of
(Z/mZY"; two elements x,y of G are Ig-conjugate if and only if y is
conjugate to x or to x~ . The automorphism o_, corresponding to the
element — 1 of Iy 15 just complex conjugation z = 2* If v s a character of
G over C, the general formula o,{x) = ¥'(x) reduces here to the standard
formula

x{s)* = »(s7 1), cf. 2.1, prop. | .

Theorem 31 {(Frobenius-Schur}). Ler p: G —» GL{V ) be a linear representa-
tion of G over C with character x., In order that X have values in R (resp.
that p be realizable over R), it is necessary and sufficient that V have a

nondegenerate bilinear form (vesp. symmetric bilinear form) invariant under
Q.
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The group G acts naturally on the dual V"’ of V, and it is easy to see that
the corresponding character x' i1s given by

X(s) = x(5)* = x(s7').

For x to have real values, it is necessary and sufficient that x = x', 1.€., t_ha!;
the representations of G in V and V' are isomorphic. But an 150n}0rph_1ﬂm
of V onto V' corresponds to a nondegenerate bilinear form on V mvanant
ander G. So the existence of such a form is necessary and sufficient for x

1o have real values, | | |
Suppose now that p is realizable over R. This is equivalent to saying that

we can write V in the form

where V, is an R subspace of V stable under all p,. One knows that there
exists a positive definite quadratic form Q, on V, invariant under G (take
the sum of the transforms of an arbitrary positive definite form). By _Sf:ﬂtﬂl‘
extension, Qg defines a quadratic form on V. and the associated bilinear
form is nondegenerate, symmetrie, and invariant under G.

Conversely, suppose V is endowed with such a form Bix,y). Choose a
positive definite hermitian scalar product (x|yyon V, iﬁnvarianl under G, the
argument given above shows that such a product exists (ef. 1.3). For each
x & V. there exists a unique element g{x) in V such that

B(x.y) = (p{x)} ' forally € V.

The map ¢: V - V so defined is antilinear and bijective. Its square g’ is an
automorphism of V. For x, y € V, we have

(2 (x)|») = Blglx)l»)* = B(y, gf{x))" = (g{ ) lgp{x)).
Since ({1 p(x)) = (@g(»))7, we get
(2 ()]y) = (@)X = (xlp?(»)).

which means that ¢? is hermitian, Moreover, the formula

(¢” (x) | x) = (gp(x)lptx))

shows that ¢ is pesitive definite. But we know that, :.the:xfe{ u 15 hermitian
positive definite, there is a umque hermitian positive definte v su'ch 1E}a£
v = v2. and v can be written in the form P(u), where P 15 a polynomial with
real coefficients (if the eigenvalues of u are A,,...,A,, choose Ejlsca ?hai
P{hf}ﬂﬁj for all i). Apply this to u=g", and put ﬁ;—tqm . Sinee
v = P(g?), ¢ and v commute, and we have oo = q:alu"‘_ = 1., Let V
= VY, @ V; be the decomposition of V with respect to the eigenvalues -+ |
and — 1 of 5. Since o is antilinear, multiplication by i maps ¥y onto V. Thus
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V == V, @iV, On the other hand, the fact that B{x,y) and (xiy) are An invariant bilinear form B # 0 on V corresponds o a (G-homomor-
invariant under G implies that ¢, ¥, and ¢ commuie with all p.. It follows phism b + 0 of V into its dual V'. Since V and V' are irreducible. b is an
that V; and V; are stable under the p,, and we have a reahzation of V over 'f isomorphism, and this shows that B is nondegenerate, By th. 31, the
R, which proves th. 31. ﬂ; existence of B means that p is of type 2 or 3. Moreover, Schur's lemma
Remarks | i_ shows that B is unique up to homothety. If we write B in the form
_ ' 1 B = B, + B_, with B, symmetric and B_ alternating, then B, and B_ are
(1) ﬁe‘?’mf_ﬂ 31 carries over to representations ﬂ.f compact groups, cf. Ch. } also invariant under G. Since B is unique, we have either B_ = () (and B 13
4. The same is true of the other results in this scction. I symmetric) or B, = 0 {and B 1s alternating). By th. 31, the first case
(2} [_)env:::te E?y 0_(C) {resp. O,(R)) the complex (resp. reai). orthogonal corresponds to type 2; thus the second corresponds to type 3.
group in # variables. The last part of the above proof shows, in fact, that
each finite (or even compact) subgroup of O,{(C} is conjugate 1o 0n¢ Proposition 39, In order that p be of type 1,2, or 3. it is necessary and sufficient
contained in O,{R); this is a special case of a general theorem on maximal that the number
compact subgroups of Lie groups. "

The three types of irreducible representations of G

Let p: G ~» GL{V) be an irreducible representation of G over € of
degree n, and let x be is character. There are three possible cases (mutually
exclusive):

(1) One of the values of x is not real. By restriction of scalars, p defines
an irreducible representation over R of degree 2n with character x + ¥. The
commuting algebra for this representation 1s C. The corresponding simpie
component of R[G] is isomorphic to M, (C); its Schur index 1s .

(2} All values of x are real, and p is realizable by a representation pg over
R. The representation gy is irreducible (and even absolutely irreduciblie)
with character x. Tts commuting algebra is R. The corresponding simple
component of R{G] is isomorphic 1o M, (R); its Schur index is 1.

(3} All values of x are real, but p is not realizable over R. By restriction
of scalars, p defines an irreducible representation over R of degree 2n and
with character 2x. Its commuting algebra has degree 4 over R; 1118
isomorphic to the field H of quaternions. The corresponding simple
component of R{G] is isomorphic to M _(H); its Schur index 1s 2.

Moreover, every irreducible representation of G over R can be oblained
by one of the three procedures above: this can be proved by decomposing
R[G] as a product of simple components, and observing that such a
component is of the form M, (R}, M, {(C), or M, (H). (The fact that R{G] 1s
a group algebra is not important here: the same result holds for any
semisimple algebra over R.)

The types 1, 2, and 3 can be characterized in various ways:

Proposition 38.

(a} If G does not have a nonzero tnvarian! bilinear form on ¥, then p is
of tvpe 1.

(b} If such a form does exist, it is unigue up 10 homothety, Is nondege-
nerate, and is either symmetric or alternating. If it is symmetric, p IS
of type 2, and if it is alternating, p Is of type 3.
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be equal to O, +1, or =1, respectively.

Let x2(resp. xZ%) be the character of the symmetric square (resp. the
alternating square) of V. Then

1

xﬁﬁ‘i(fﬁ*‘i’zx)} xi==(x*— ¥x).

1
2
cf, 2.1, Prop. 3. Let a, and a_ denote the number of times that the
symmetric and alternating squares of p contain the unit representation.

Then
a. = {1, xi)

On the other hand, the dual of the symmetric (resp. alternating) square of
V can be identified with the space of symmetric (resp. alternating) bilinear
forms on V. Since dual representations contain the unit representation the
came number of times, we obtain from Prop. 38 that:

a,={l.x;)  and

a, = a_=0 in case |,
a, =1, a_ =10 in case 2,
a, =90, a_=1 in case 3.

Since <1, ¥%{(x)) = a, —a_, we indeed get 0, +1, and —1 in the three
respective cases. The proposition follows. ]

EXERCISES

13.9. If ¢ is a canjugacy class of G, let ¢! denote the class consisting of all X7

for ¥ & ¢, We say that ¢ is evenil ¢ = e
(2) Show that the number of real-valued irreducible characters of G over €
is equal to the number of even classes of G.

{15,
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(b} Show that, if G has odd order, the onky even class is that of the identity.

Deduce that the only real-valued irreducible character of G is the unit
character (Burnside).

Bibliography: Part 11
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INTRODUCTION TO BRAUER THEORY

We are concerned here with comparing the representations of a finite

group in characteristic p with those in characteristic zero. The results, due
essentially to Brauer, can be described most conventently i terms of
“Grothendieck groups”; this approach was introduced by Swan (cf. [21],
[22]), who also obtained a number of results not discussed here.

Ch. 14 and 15 are preliminary. Ch. 16 contains the statements of the main
theorems; they are proved in Ch, 17, In Ch. 18 we express these results
terms of “modular characters.” Ch. 19 contains applications to the Artin
representations. Some standard definitions are collected in an appendix:
Grothendieck groups, projective modules, etc.

The exposition which follows is just an introduction; particular, the
theory of blocks is not touched upon. The interested reader 1s referred to
Curtis—Reiner [9] and Feit’s book [20, as well as to the onginal papers oy
Brauer, Feit, Green, Osima, Suzuki, and Thompson.
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CHAPTER 14
The groups R (G), R (G), and P, (G)

Notation

In Part 111 G denotes a finite group, and m is the Lc.n. of the orders of
the elements of G. A field is said to be sufficiently large {relative to G) if 1t
contains the mth roots of unity (cf. 12.3, th, 24).

All modules considered are assumed to be finitely generated.

We denote by K a field complete with respect to a discrete valuation v
(cf. Appendix) with valuation ring A, maximal ideal m and residue field
k = A/m. We assume that K has charactenstic zero and that k& has
characteristic p > 0 (so that “reduction modulo m” goes from characteris-
tic zero to characteristic p).

4.1 The I'iIlg,S RK(G) and Rk(G)

If L is a field we denote by R (G) the Grothendieck group of the
category of finitely generated L{G]-modules (cf. Appendix). It is a commu-
tative ring with unit with respect to the external tensor product (relative to
L). If E is an L{G}-module, we let [E] denote its image in R (G); the set of
all [} is denoted by R{ (G).

Let §; denote the set of isomorphism classes of simple LIG}-modules (i.e.,
irreducible representations of G over L),

Proposition 40. The family of all elements [E], with E & 8y, is a basis for the
group R (G).

[et R he the free Z-module with basis S;. The family of the various [E],
E € 8, defines a homomorphism a: R > R {G). On the other hand if P
is an LIG]-module, and if E € 5, let I=(F) denote the number of times

15




Chaptes 14: The groups Ry (G), R (G), and P (G)

which E appears in a composition series of I; it is clear that /g is an additive
function of F. Thus there exists a homomorphism Bg: R (G} -» Z such
that S ({F]} = {(F) for all ¥. The Bg’s define a homoemorphism

ﬁ: RL(G} — R,

and it is immediate that e« and 8 are inverses of one another. 'The
proposition follows. 1

More generally, the same argument applies to the category of modules of
finite length over an arbitrary ring,

Note also that the elemenis of R{ {() are just the linear combmations
with non-negative integer coefficients of elements of the basis ({E])ges -
The preceding discussion applies in particular to the fields K and k. Since
K has characteristic zero, the character xg of a K[G]-module E is already
defined; it is an additive function of E. By hnearity, we obtain a hnear map
x > x, from R (G) into the ring of class functions of G, This map 1s
fact an isomorphism of R ¢ {G) onto the group of virtua! characters of G over
K, and we often identify the two groups {this explains the notation used 1n
12.1). We also say that x, is the character {or the virtual character) of an
element x € R (G).

We will see in Ch. 18 that there is an analogous resuli for &, in terms of
Brauer’s modular characters.

Remark. If E and E' are two K[Gl-modules such that [E} = [E7] in
Ry (G}, then E and E’ are isomorphic: this follows from the fact that E and
E are semisimple. The analogous result is not true for kfG|-modules if p

divides the order of G, because of the existence of modules which are not
semisimple.

14.2 The groups P,(G) and P, (G)

These are defined as the Grothendieck groups of the category of A[Gl-
modules (resp. of A[G}modules) which are projective (cf. Appendix).
Similar definitions are made for P {G) and Py (G).

If E (resp. F) is a k[G]-module (resp. a projective k|G]-module), then
E ®, F is a projective k{G}-module {it suffices to check this when I is free,
in which case it is obvious). We obtain thereby an R {G)-module struciure
on P.{G).

14.3 Structure of P,.{(G)

Since k[G] is artinian, we can speak of the projective envelope of a k|G-
module M (cf. Gabriel [23] or Giorgiutii {24]). We recall briefiy what this
MEAns:

A module homomorphism f: M’ —» M is called essential if f (M’) = M
and if f{M”) s M for all proper submodules M” of M'. A projective
envelope of M 1s a projective module P endowed with an essential homomuor-
phism - P —- M.
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Proposition 41,

(2) Every module M has a projective envelope which is unique up o
isomorphism,

(b} If P, is the projective envelope of M Ti = 1,... 1), the direct sum
of the P.’s is a projective envelope for the direct sum of the M;’s.

(¢} If P is a projective module, and if B is its largest semisimple quotient
module, then P is a projective envelope for L.

We prove (a). Write M in the form L/R, where L s projective and R is
a submodule of L {(we can take L free, for example). For N C R, let fyy be
the canonical homomorphism of L/N onto M = L/R. Now let Iv be
minimal in R such that fy is essential; such a submodule exists, since fp 15
essential, and k[Glis artinian, Put P = L/ N, and let Qbe a submodule of
L minimal among those whose projection Q ~> P is surjective. Since L s
projective, the projection p: L = F = L/N lifts to q: L — Q, and the
minimality of Q shows that g{L} = Q. Let N’ be the kernel of g. The
projection fre-: L/ N’ —» L/R factors into L/N" = Q - L/N — L/R and
the two faclors are essential. Since N’ is contained in N, the minimality of
N implies that N' = N, i.e., that Q —» P s an isomorphism. The module L
is thus a direct sum L = N & Q, which shows that P = L/ N is projective.
It is then clear that P — M is a projective envelope of M.

Let PP — M be another projective envelope of M. Using the fact that P
is projective, we see that there exisis g: P — P’ such that the triangie

i« commutative. The image of g(P} in M is M; since P — M is essential,
this implies g(P) = P/, and so g is surjective. Since P is projective, the
kernel § of P — P is a direct factor in P, which shows that P decomposes
into S @ P. Using the fact that P~ M is essential, we conclude that
S = 0 i.e, that P — P’ is an isomorphism. This completes the proof of {a).
Assertions (b) and (c) are easy, and left to the reader (see 1231, {24] for more
details). _

Note that, in case (c), E 1s the quotient of P by tP, where v is the radical
of k[G] {(maximum nilpotent ideal); this follows from the fact that the
semisimple k[G}-modules are those which are annihilated by . Moreover,
by (b), each decomposition of E as a direct sum of simple modules gives a
corresponding decomposition of P. Hence we have:

P17
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Chapter 14: The groups Ry (G), R (G), and P, (G)

Corollary 1. Each projective KGl-module is a direct sum of projective
indecomposable k|Gl-modules; this decomposition is unigue up 1o isomor-
phism. The projective indecomposable k{G)-modules are the projective
envelopes of the simple k|Gl-modules.

Corollary 2. For each E € 5, let Pg be a projecuve emvelope of E. Then the
[P:], E € 8, form a basis of P{G).

Corollary 3. Two projective k{Gl-modules P and 1" are isomorphic if and only
if their classes [P} and [P} in P, (G} are equal,

More precisely, if [P] = 3 nglPgl the module P is isomorphic to

H (PE)”E_ &S,

EXERCISE

14.1. Show that k[G] is an injecrive k[Gl-module. Conclude that a kiGl-module i3
projective if and only if it is injective, and that the projective indecomposable

k[Gl-modules are the injective envelopes of the simpie k{Gl-modules (cf. ex,
14.6).

14.4 Structure of Py (G)

The following resuit is well known:

Lemma 20. Let A be a commutative ring, and P a A]Glmodule. In order thar
P be projective over A{G], it is necessary and sufficient that it be projective
over A, and that there exists a A-endomorphism u of P sucn that

S s-ulsT'x) = x forall x € P
s

If P is projective over A[G] it is projeciive over A: this follows from the
fact that A[G]is A-free. Conversely, suppose that the underlying A-moduie
P, of P is projective, and set Q = A[G] @, Py The A[Gl-module Q is
projective. Moreover, the identity map P, — P extends to a surjective AGI-
homomorphism g Q — P. It follows that P ts projective if and only i there
exists a A[G]-homomorphism v: P — Q such that g o v = 1. It is easily
seen that every A{Gl-homomorphism v: P — Q has the form

x Y s ® u(sTix)
sEG

with # € Fnd,(Py). To have g o v = 1 it is necessary and sufficient to

have ¥ s-uls7ix) = x forall x € P. This proves the lemma. o
sE0G
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Lemma 21, Suppose that A is a local ring, with residue field k= N/,

(a) Let P be a A-free A{G| module. In order that P be A|Gl-projective,
it is necessary and sufficient that the k ,{Gl-module P=P&Ek, be
projecrive.

(b) Two projective A{Gl-modules P and Pare isomorphic if and only if
the corresponding k 4 |Gl-modules P and P’ are isomorphic.

If P is A{Glprojective, then P is &, [Gl-projective. Conversely, if this
condition is satisfied, the preceding lemma shows that there exists a K -
endomorphism & of P such that X g5 - s~V = 1, By lifting %, we
obtain a A-endomorphism u of P such that o' = F(mod . my P), where
W= 2 en S U . 571, Consequently 1 is an automorphism of P. which
moreover commutes with G. Thus 3, e s « (w1 - s~ = 1, which shows
that P is projective over A{G] and proves (a).

If P and P’ are projective, and if w: P — P’ is a &, [G]-homomorphism.
the fact that P is projective shows that there exists a AjGl-homomorphism
W P s P’ which lifts w. If in addition W is an isomorphism, then Nakaya-
ma’s lemma (or an elementary determinant argument) shows that w 1S an
isomorphism. This proves {b).

We now return to the ring A:

Preposition 42,

(a) Let E be an A{GY}-module. In order that E be a projective AJGJ-
module it is necessary and sufficient that E be free over A and that
the reduction E = E/imE of E be g projective k{Gl-module.

(b} If F is a projective k|G|-module, there exisis a unique {ap to
isomorphism) projective A{Glmodule whose reduction mod. m s
isomorphic to k.

Part {(a) and the unigueness in (b) follow from lemmas 20 and 21. It
remains to prove existence in (b):

Let F be a projective k{Glmodule. If 2 1 1s an nteger, let A, denote
the ring A/m™; thus A, = k and A is the projective limit of the A,,. The
rings A, and A,}G] are artinian. The arguments in the preceding section
show that the A _[G]-module F has a projective envelope B, and that F, 1s free
over A, The projection b, — F factors through F,/wtP, ~» F, which 1s
surjective, Since T 18 k{G}-projective, there exists a kiGl-submodule F* of
P,/mP, which maps isomorphically onto F. The inverse image P’ of FFin P,
has image F. Since B, - F is essential, it follows that P’ = P, ie, that
P, /P, — F is an isomorphism. Moreover, the P,’s form a projective
system, Their projective limit P is an A-free A[G]-module, such that
P = P/mP is isomorphic to F. In view of (a3, this completes the proof
of (b).
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CoroMlary 1. Every projective AlGl-module is a direct sum of profective
indecomposable AlGl-modules; this decomposition is unigue up lo Isemor-
phism. A projective indecomposable A[G|-module is characterized up o
isomorphism by its reduction mod.m which is a projective indecomposable
k]Gl-module (i.e., the projective envelope of a simple k{Gl-module).

This follows from the preceding proposition and known results for
projective k[G|-modules. As a consequence we get:

Corollary 2. Two projective A{Gl-modules are isomorphic if and only if
[P] = {Q] in P {G).

Corollary 3. Reduction mod.m defines an isomorphism from PJ{G) onto
P, {G); this isomorphism maps P, (G) onto P (G).
As a result we may 1dentify P,(G) and P,(G).

For a general exposition of projective envelopes in “proartiman” catego-
ries, see Demazure-Gabrie] {23].

HXERCISES

14.2. Let A be a commutative ring, and let P be a A[G]-moduie which is projective
over A. Prove the equivalence of the following properiies:

(i) P is a projective A[Gl-module,
(it} For each maximal ideal p of A, the (A/p}{Glmodule P/pP is projective.

14.3.(a) Let B be an A-algebra which is free of finite rank over A, and let & be an
idempotent of B = B/mB. Show the existence of an idempotent of B
whose reduction mod. mB 1s equal to .

(b) Let P be a projective A]Gl-module, and let B = End® (P). Show that B is
A-free, and that B can be identified with the algebra of G-endomorphisms
of F = P/mP. Deduce from this, and (a), that each decomposition of P
into a direct sum of k[Gl-modules lifts to a corresponding decomposition

of B

(c) Use (b} to zive another proof of existence in Prop. 42(b). [Write F as a
direct factor of a free module P, lift P to a free module, and apply (b).]

14.5 Dualities

Duality between R ¢ (G) and Ry (G)
Let E and F be K[|G}modules, and put

(E,FY = dim HomC(E,F), cf. 7.1
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14.5: Dualities

The map (E,F) = (E,F) is “bilinear” (with respect to exact sequences),
and so defines a bilinear form

Rg(G) X Ry (G} — Z,

which we denote by {e,f) or (e, [ . The classes [E] of simple modules
E & Sy are mutually orthogonal, and {E,E) s equal to the dimension dy
of the field End®(E) of endomorphisms of E; hence d¢ » 1, and equality
holds if and only if E is absolutely simple {i.e., if the corresponding
representation is absolutely irreducible), cf. 12.1.

When K 1s sufficiently large, it follows from th. 24 that every simple
KiGlmodule is absolutely simple. Consequently the above bilinear form is

nondegenerate over Z, in the sense that 1t defines an 1somorphism of R (G)
onto its dual.

Duality between R (G) and P {G)
If E is a projective k{G}-module and F an arbitrary £{G}-module, put
(E,F> = dim Hom® (E, F).

We thus obtain a bilinear function of E and F (thanks to the assumption
that E is projective), hence a bilinear form

Pk(G} Pt Rk{G} ~» £,
denoted {e,f) or {e,f ). If E, E' € §,, we have

Hom® (Pg, E') = Hom"(E,E'),

where Pp denotes the projective envelope of E. If E # E’ we see that 19
and [E'] are orthogonal; for E = E' we have

(Pg,E) = dim End" (E).
As before, dp = 1if and only if E 1s absolutely simple.

Suppose that K is sufficiently large, so that k& contains the mth roots of
unily. We then have dg = | for each E € S, (see below). Consequently the
bilinear form { , ), is nondegenerate over 1 and the bases [E] and [Pg]
(E & §,) are dual to each other with respect to this form.

Remuark

The fact that dg =~ 1 if K is sufficiently large can be proved in VaTIous
Ways:

(1) We can obtain this from th. 24 by “reduction mod. .m”*nn::e we know
that the homomorphism d: R (G) — R (G) is surjective {cf. Ch. 16,
th, 33),
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(2) We could also use the fact that Schur indices over k are equal to | {cf.
14.6). This reduces the proof to showing that characters of represen-
tations of (3 {over an extension of k) always have palues in k, and this
follows from the fact that they are sums of mth roots of unity.

EXERCISES

144, If Fis a k[G}module, we let B’ denote its dual. We define HY{G,E) as the
subspace of E consisting of the elements fixed by G, and Hy(G,E} as the

quetieny of E by the subspace generated by the sx — x, with x & E and
5 & (3.

(a} Show that, if E is projective, the map x = 2 = sx defines, by passing
to quotients, an isemorphism of Hy(G, E) onto HY(G, E).

(b} Show that HYG,E) is the dual of Hy(G, E'). Conclude that HY(G,E)
and HY(G, E') have the same dimension if E is projective,

14.5. Let E and ¥ be two k[G]-modules, with E projective. Show that

dim Hom®%(E, F) = dim Hom“(F, E).

{Apply part (b) of exercise 14.4 to the projective k[Gl-module Hom(E, F),
and cbserve that its dual is isomorphic to Hom{F, E).]

14.6. Let S be a simple k{G]-module and let Pg be its projective envelope. Show
that P contains a submodule isomorphic 10 8. [Apply exercise 14.5 with
E == Pg, F = 8.] Conclude that Pg is isomoerphic to the injective envelope of
S, cf. exercise [4.1. In particular, if § is not projective, then § appears ar feast
twice 10 a composihon sernes of P

14.7. Let E be a semisimpie &]G}-module, and let B be its projective envelope.
Show that the projective envelope of the dual of E is isomorphic o the dual
of Pp [reduce to the case of a simple module and use exercise 14.6].

14.6 Scalar extensions

If K is an extension of K, each K[G]-module E defines by scalar
extension a K'[Gl-module K’ &, E. We thus obtain a homomorphism

Ry (G) — Ry (G).

This homomorphism is an injection. This can be seen by determunming the
image of the canonical basis {{E]} (E € Sg ) of R {G): if Dg is the {skew)
field of endomorphisms of E, the tensor product K* & Dy decomposes as a
product of matrix algebras M, (D;), where the D; are fields. Each of the D,
corresponds to a simple K'[G]-module E}, and the image of [E] in Ry {G)
is equal to 3 5,]E]. Moreover each simpie K'{Gj-module is isomorphic to
a unique Ej. This description of R {G) — R (G), which generalizes that
of 12.2, shows in particular that:
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{f all the Dg’s are commutative, the 5 are equal to 1, and the homo-
morphism Ry (G) = Ry (G) identifies the first group with a direct
factor of the second, i.e., is a spiit injection. If all the E € Sy are absolutely
simple, the R g (G} ~» Ry (G) is an isomorphism.

Analogous results hold for the homomorphisms

R, (G) = R AG), P (G) — P (G)

defined by scalar extension from k to &’. The situation s even simpler: the
endomorphism field of a simple k|G]-module is always commutative and
separahle over k. (This i1s clear when 4 1s finite, and the general case follows
by scalar extension.}) Consequently R ((G) — R (G} is a split infection. The
samne applies for PL.(G) — P..{G): since the “scalar extension” functor
takes a projective envelope to a projective envelope.

Suppose now that K' is a finite extension of K. Let A’ be the nng of
integers of K’ {i.e., the integral closure of A in K'), and &’ its residue fieid.
If E is a projective A[{G}-module, then E' = A’ ®, F is a projective A'|G}
module; moreover, the reduction k" ®,. E" of E' 15 somorphic to

k' @ E = k' &, (k ®, E).

The diagram

Py (G) - Py (G)
H !
P(G) =  Pu(G)

is thus commutative. Since the two vertical arrows are isomorphisms, t
follows from the above that the homomorphism P {G) - Py (G) is a splis
injection,

Remark. The injections R {(G) = R (G), R {G) -~ R;-(G), etc., are

compatible with the bilinear forms of the preceding section. Moreover, they
commuie with the homomorphisms ¢,d,e defined m the next chapler.
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CHAPTER 15
The cde triangle

We shall define homomorphisms ¢, d, and ¢ which form a commutative
triangie:

PAG) — = R (G)

N

R (G}

15.1 Definition of ¢: P.(G) — R (G)

Associate with each projective & Gl-module P the class of P in the group

R . {G). This class is an additive function of P, and so we get a homomor-
phism

¢: P(G) = R (G)

called the Cartan homomorphism. If we express ¢ in terms of the canonica;
bases [Pg] and [S] (S & §,) of P,(G) and R, (G), we obtain a square matrix
C, of type $; x 8, called the Cartan marrix of G (with respect to k). The
(S,T) -coefficient Cgy of C is the number of times that the simple module

S appears in a composition series for the projective envelope Pp of T: we
have

(P+] = 3 Csrl8] in Ri(G).
$ES,
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EXERCISE
15.1. Prove that e{x - v} = x - () if x & R {G), ¥y € PL(G}.

15.2 Definition of d: R¢ (G) = R, (G)

Let E be a K[G}-module. Choose a lattice £ in E (i.c., a finitely generated
A-submodule of E which generates E as a K-module); replacing k by the
sum of its images under the elements of G, we can assume that E, s stable
under G. The reduction E, = E;/mE, of E, is then a k|G}-module.

Theorem 32. The image of By in R {G) is independent of the choice of the
stable lattice L.

(Fwo k{G}-modules E, and E, obtained by reduction of stable Iattices E,
and E, need not be isomorphic, cf. ex. 15.1. What the above theorem says
is that they have the same composition factors.)

Let E, be a lattice of E stable under G. We must show thai [E,] = [E,]
in R, {G). We begin with a special case:

We have mE, C E, C F;. Let T be the k{G}-module E;/E,. Then we have
an exact sequence

ﬁ“‘*T“‘:"TF:z“*ME_I““}T““}U,

where the homomorphism T — E, is obtained from multiplication by a
generator 7 of the ideal m. Passing to R, (G), we have

[T] ~ [E;] + {Ey ] = [T] = 0

Thus [E, ] = [E,] which proves the theorem in this case.

The general case. Replacing E, by a scalar multiple (which does not effect

E,), we can assume that E, is contained in E;. Thus there exisis an integer
n 2 ( such that

IHHEI - EI C. El?
and we proceed by induction on n. Let By = m™ 1By + E,. Then
m"'E, C By € E,and mE; C© E; C E,.

By (a) and induction we get

[E\] = [E;] = [E;L

which proves the theorem.

It is now clear that the map E — [E,] extends to a ring homomorphism

' RK(G} —* Rk(G},
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called the decomposition homomorphism. 1t takes R (G) into R {G). The
corresponding matrix D (relative to the canonical bases of R {G) and
R, (G)) is called the decomposition marrix. It is a matrix of type 8, X 5¢
with nonnegative integer coefficients. For F & 5, and E £ 5y the corre-

sponding coefficient Dy of 1D is the number of times that F appears in the
reduction mod. m of a stable lattice E; of E: thus

[EI] = %DFE[F} in R, (G).

Remaris

{1) The hypothesis that K be complete plays no role in the proof of th.
32 nor 1n the definition of the homomorphism 4.

{2) There are analogous results for algebraic groups, cf. Publ. Sci. L.H.E.S.
no. 34, 1968, pp. 37-52.

EXERCISES

15.2. Take p = 2 and G of order 2, Let E = K|G] Show that E has stable lattices
whose reductions are semisimple {1somorphic {0 &k @ k) and others whose
reductions are not semisimple (isomorphic to k[G])).

153, Let E be a nonzero K[Gl-module and E; a lattice in E stable under G. Prove
the equivalence of the following:

(i) The reduction E; of E, is a simple k[G]-module.
(1i) Every lattice in E stable under G has the form ¢ E, with a & K*.
Show that these imply that E is a simple K[G]-module.

"

15.4. (After J. Thompson.) Let E be a Z-free Z[G]-module, with rank n = 2.
Assume that, for each prime number p, the reduction E/pE of E 15 a simple
(Z/pZ)[G]-module.

{a} Show that there is a bilinear form B{x, y} on E with values in Z such that
B{x,x) > 0 forall x = 0,

(b} Let B be chosen as in (a) and extend it by linearity to the Q-vector space
Q © E. Show that the set E' of x € Q ® E such that B(x,y) € Z for all
¥ € E has the form E' = gE with a &€ Q% {same argument as for ex.
15.3}). Conclude that B can be chosen nondegenerate over Z, 1.e., such
that B = E. If {e.,...,e,) is a basis of E, the determinant of the matrix
of the Ble;, ¢;) is then equal to 1.

(¢} Assume that B has been chosen as in {b). Show that there exists e € E
such that B{x, x} = B{e, x} (mod. 2} for all x € E, and that-such an ¢
15 invariant under G mod. 2E. Conclude that e = { (mod. 2E), i.e., that
the quadratic form B(x, x) takes only even values.

(d} Obtain from (c} the congruence # = { {(mod. 8). [Use the fact” that every
positive definite imteger guadratic form which s even and has discrimi-
nant 1 has rank divisible by 8.}

(¢) Show that the reflection representation of a Coxeter group of type Eg has
the above properties (cf. Bourbaki, Gr. et Alg. de Lie, Ch. VI, §4, no. 10).

* See, for example, A Course in Arithmetic, GTM 7, Springer-Verlag (1973), p. 53 and 109.
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15.3: Definition of e: P (G) — Rg(G)

15.3 Definition of e: P.{G) = Rg{(G)

The functor “tensor product with K7 defines a homomorphism from
P,(G) into Ry (G). Combining 1t with the inverse of the canonical
isomorphism Py (G) — P (G), cf. 144, we obtain a homomorphism

€. PR(G) > RK(G)

Its matrix will be denoted by E; it is of type S X 5.

EXERCISE

15.5. We have eld{x) - v} = x - el ) if x €& Ry (G}, y © PL(G).

15.4 Basic properties of the cde triangle

(a) It is commutative, L.e., ¢ = d o e, or equivalently C = D E. This 13
clear. |

(b) The homomorphisms « and e are adjoints of one another with respect
to the bilinear forms of 14.5;

x d(y)y = Lelx) yox

Indeed, we can assume that x = [X], where X is a projective A{G]-module,

and that y = [K ®, Y], where Y is an A[G}-module which is A-free. The
A-module Hom%(X,Y) is then free; let r be its rank. Then we have
canonical isomorphisms:

it x € P(G), y € Ry (G

K ® Hom“(X.Y) = Hom“(K ® X, K @ Y}

and

k ® HomC{(X,¥) = Hom®(k @ X,k ® Y).

This shows that {e{x),y> = r = (x,d(y)). |
(c) Assume that K is sufficiently large. In view of 14.5, the canonical bases

of P,(G) (resp. of Rg(G)) and of R, (G) (resp. of Ry () are dual to ea{:_h
other with respect to the bilinear form {a, b, (resp. the form (g, b ). This
implies that e can be identified with the transpose of d: 1in particular we h:::we:
E == 'D. Since C = D+ E = D -'D, we see that C is a symmelric matrx,

FXERCISES

15,6. Let S, T & S, and let Pg, Py be their projective envelopes. We pit

de = dim End®(S),  dp = dim End“(T),
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and let Cgr (resp. Crg} be the multiplicity of S {resp. T) in 2 composition

series of Fr (resp. Pg), cf. 15.1.

() Show that Cgydg = dim Hom® (Pg, Bp).

{b) Show that Cgrdg = Crqdy [apply ex. 14.5]. When K is sufficiently farge,
the dg are equal to 1, and we obtain again the fact that the matrix
C = {Cyr ) 15 spmmetric.

15.7. Keep the notation of Ex. [5.6. Show that either S is projective, Pg = 5 and
Coo = 1, or Cgg 2 2 [use ex. 14.6].

158, If x € P(G), we have {x,clx)), = {elx), elx)yg. Conclude that, if K is
sufficiently large, the guadratic form defined by the Carian matnx C 1s
positive definite.

15.5 Example: p'-groups
Proposition 43, Assume that the order of G is prime to p. Then:

(i) Each k[G)-module (resp. each A-free AlG|-module} is projective.
(if) The operation of reduction mod. m defines a bijection from Sg onto
S,
(ii1) If we identify Sy with S, as in (i), the matrices C, D, & are ali
identity mairices,

(More briefly: the representation theory of the group G is "the same”
over k as over K.)

Let E be an A[G)}-module which is free over A. We can write E as a
quotient L/R of a free A{G]-module L. Since E 15 A-free, there exists an A-
linear projection w of L onto R; since the order g of G is invertible 1n A,
we can replace 7 by the average (1/g) 2i;ec sms” ! of its mnjugatas_, and the
projection thus obtained is A{Gllinear. This shows that Eo1s 5[(3]-
projective. The same argument applies for k[G]-modules. This proves (1), as
well as the fact that the Cartan matrix is the identity.

If E &€ §,, the projective envelope E, of E relative to AlGlis a projeciive
AlG}module, whose reduction By = E\/mE, is E. f we put F = K ® E,,
then d([F]) = [E}. Since E is simple, this implies that F is simple, thus
isomorphic to one of the elements of S¢. We thus obtain a map E > F ?f
S, into Sk, and it is clear that this map is the inverse of d. This proves (ii}
and (i), |

Remark. The fact that D is an identity matrix shows that 4 maps Ry (G)
onto R} (G); in other words, every linear representation of (3 over K can
be lifted to a represenmtation over A, a result which can easily be verfied
directly {cf. ex. 15.9, below).
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15.7: Example: products of p'-groups and p-groups

EXERCISE

15.9. Suppose that g s prime to p. Let E be a free A-module.
{a} Let #n > | be an integer, and et
o, G — GL{E/m"E)

be a homomorphism of G into the group of automorphisms of E/m"E.
Show that p, can be lifted to

Oppy: G — GL{E/m"" E)

and that this lfting is unique, up to conjugation by an automorphism of
£/m"™ ' E congruent to 1 mod .m". {Use the fact that the cohomology
proups of dimension 1 and 2 of G with values m End {E/mE) are zero.]

(b) Obtain from (a) the fact that every linear representation
p: G — GL{E/mE)

of G aver k can be lifted, in an essentially unique way, 1o a represenia-
tion of G over A,

15.6 Example: p-groups

Suppose that G is a p-group, of order p". We have seen (8.3, cor. to prop.
26} that the only irreducible representation of G in characteristic p 1s the
unit representation. It follows that the artinian ning A [G]is a local ring with
residue class field k. The projective envelope of the simple A{G}-module &
is k[G], i.e., the regular representation of G. The groups R ;(G) and F,(G)
can be both identified with Z, and the Cartan homomorphism c: Z — Z 15
multiplication by p". The homomorphism d: R ((G) — Z corresponds to the
K -rank: the homomorphism e: Z > R {(G) maps an integer 7 onto n imes
the class of the regular representation of G.

15.7 Example: products of p’-groups and p-groups

Suppose that G = 8§ X P, where § has order prime to p, and P is a p-
group. We have k[G] = k[S] ® k[P]. Moreover:

(a) 4 kIGl-module E is semisimple if and only tf P acis trivially on b.

The sufficiency follows from the fact that every A{S}pmodule s semisim-
ple, cf, 15.5. To prove the necessity, we can assume that E is simple, B}f 15.6
the subspace E’ of E consisting of elements fixed by P is not zero, Since P
is normal in G, the subspace E’ is stable under G, and thus equal to E,
which means that P acis trivially.

(b) A k{F)-module E is projective if and only if it is isomorphic to F & kP,
where F is a k|S}module.

Since F is a projeclive k[S}-module (cf. 15.5), F ® k[P] is a projective
k[G)-module. Moreover, it is clear that F is the largest quotient of F @ &P}
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on which P acts trivially. Because of (a) this means that F ® k[P] is the
projective envelope of F. However, every projective module is the projective
envelope of its largest semisimple quotient. We thus see that every
projective module has the form F @ k[P}.

(c) An A[Gl-module T is projective if and only if it is isomorphic to
I @ A[P)], where F is an A-free A[Sh-module,

Clearly a module of the form F © A[P] is projective. The converse is
proved by applying (b) to E = E/mE: if E is projective, we have E
~ F ® k[P], and we know that F can be lifted to an A[S}-module F which
is free over A (and even A[S]-projective, cf. above). The module F @ AlP]
is the projective envelope of F ® k{P], and thus is isomorphic to E.

Properties {a) and (b) show in particular that the Cartan matrix of G is
the scalar matrix p", where p" = Card(P).
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CHAPTER 16

Theorems

16. 1 Properties of the cde triangle

The main result is the following®:
Theorem 33, The homomorphism d: R (G) —» R (G) is surjective.

The proof will be given n 17.3.

Remarks

(1) This applies in particular to k = Z/pZ, taking for K the p-adic held
Q,; the ring A is then the ring Z, of p-adic integers.

(2) Roughly speaking, the theorem asserts that every linear represenfation
of G over k can be lifted to characteristic 0 if we are willing to accept
“virtual representations”, i.e., elements of the Grothendieck group Ry (G).
This is an extremely useful result for many apphcations.

Theorem 34. The homomorphism e: P {G) — R (G} is a split injection.
When K is sufficiently large, e is the transpose of d {cf, 15.4), and the fact
that d is surjective implies that e is a split injection. In the general case, let

K’ be a finite sufficiently large extension of K, and Jet k" be its residue field.
Consider the diagram:

P(G) = RglG)

| | l
PoAG) Ry AG)

* tn the first French edition of this book, theorem 33 was stated only for a sufficiently targe
feld K. Cliude Chevalley and Andreas Diress have independently observed that 1f is valid

general.
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Chapter 16: Theorems

As we have just seen, ¢ is a split injection. In view of 14.6, the same 1s true
for P.(G) ~» P..{G). Their composition is a split injection as well, hence the
same holds for e,

At the same time we have proved;

Corollary 1. For each finite extension K' of K, the homomorphism

P.(G) = Rk (G) = Ry (G)

is « split infection.

The injectivity of e 1s equivalent to:

Corollary 2. Let P and P’ be projective AlGl-modules. If the K{Gl-modules
K & P and K ®@ P’ are isomorphic, then P and P’ are A[Gl-isomorphic.

(Indeed we know that the equality [P] = [P’} in R, (G) == R, {(G) is
equivalent to P == P’}

Theorem 33, Let p" be the largest power of p dividing the order of GG, Then
every element of R (G) divisible by p" belongs to the image of the Cartan
map ¢: P (G) — R, {G).

The proof will be given in 17.4.

Corollary 1. The map c: P.(G) — R (G} is injective, and ifs cokernel is a
Jinite p-group.

The second assertion i1s immediate from th. 35; the first then follows,

since P, (G) and R, {G) are free Z-modules with the same rank, namely
Card(S, ).

Corollary 2. If two projective k(G)-modules have the same composition factors
they are isomorphic.

This is a restatement of the mnjechivity of c.

Corollary 3. Assume K is sufficiently large, The Cartan matrix C is then
spmmelric, and the corresponding quadratic form is positive definite. The
determinant of C is a power of p.

The quadratic form in question is

x b (xp ey = (x,dlelx))y = (elx), elxPx,  x € PAG).

Since the form {a, b)y is clearly positive definite, and e is injective (th. 34),
we see that the above form 15 also positive definite. The determinant of C
is thas > (. This implies that det(C) is a power of p, since the cokernel of
¢ {8 a p-group. 7]

132

16.2; Characterizations of the image of e

Remarks

(1} The above argument shows that the injectivity of ¢ follows from that
of e.

(2} Theorem 35 is equivalent to the assertion that there exists a
homomorphism ¢': R, {G) — P,{G) such that ¢ ¢’ = p" {which implies
¢’ o ¢ = p"),

(3) The exponent n in th. 35 is best possible, cf. ex, 16.3.

FEXERCISES

16.1. Show that, when K is not complete, theorem 33 remains valid provided K 15
sufficiently large. (If K denotes the completion of K, observe that the

homomorphism Ry (G) — R (G) is an isomorphism, and apply th. 33 to
K.)

16.2. Show that &: R (G} — R4, (G) is not surjective if G is cyclic of order 4.

16.3. Let H be a Sylow p-subgroup of G. Show that, if E is a projective k[G]-
module, then E is a free kfH}-module {cf. 15.6), and so dim E is divisible by
p". Conclude that the map [E] +> dim E defines, by passing to quotients, a
suriective homomorphism Coker {¢) ~» Z/p"Z. In particular, the element
p" 1 of R (G} does not belong to the image of .

16.2 Characterization of the image of e

An element of G is said to be p-singular if it is not p-regular {cf. 10.1}, i.e.,
if its order is divisible by p. Recall also that every element of Ry ({G) can
be identified with a class function on G, namely its character {cf. 12.] and
14.1).

Theorem 36. The image of e: P.(G) — Ry (G) consists of those elements of
R . (G) whose character is zero on the p-singular elements of G.

We even have the more precise result:

Theorem 37. Ler K’ be a finite extension of K. In order that an element of
R .. (G) belong to the image of Py (G) = P,.(G} under e, it is necessary and
sufficient that its character take values in K, and be zero on the p-singular
elements of Q.

For the proof, see 17.5,

EXERCISE

16.4. (Swan.) Let A be a Dedekind domain with quotient ficld F. Assume that, for
each prime number p dividing the order of (5, there exists a prime ideal b of
A such that A/p has characteristic p. Let P be a projective AjGl-module.
Show that F@ P is a free FlG]l-module. [Apply th. 36 to the modules
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obtained from P by completion at such primes p. Deduce that the character
of F @ P is zero off the identity element of G.}

This exercise applies in particular to the case where A is the ring of
integers of an algebraic number field.

16.3 Characterization of projective A[G]-modules
by their characters

Such a characterization amounts to determining those representations of
(G over K which contain a lattice stable under G which 1s prgjective as an
AlGlmodule. In other words, it amounts to characterizing the 1mage of
PE(G) = P)(G) under e. Only partial results are known. First:

Lemma 22. Let x € P, {G), and let n > | be an integer. If nx & P {G), we
have x € P (G).

This is clear: if » = Card(S.}, then P, (G) can be identified with Z ané
P (G) with N, cf. 14.3 and 14.4,

Proposition 44, Let X' be a finite extension of K, and let A’ be the ring of
integers of K'. Assume the following two conditions on an element

x of R AG):

(a) The character of x has values in X.
(b} There exists an integer n > 1, such that nx arises, by scalar
extension, from a projective A'{Gl-module.

Then x arises from a projective AlGl-module, uniquely determined up 1o
isomorphise,

Let N == [K: K] = [A": Al Let E’ be a projective A'{G}-module with
image nx in R (G), and let E be the A[G]-module obtained from &' by
restriction to AJG]. One checks easily that the character of K @ E 1s equal
to aN times that of x.

Thus

| e[B]) = nN - x in R (G).

By th. 36, the character of &([E]) is zero on the p-singular elements of G;
hence the same is true for x. So, by th. 37, we have x = e{y}, with
y € P,(G). Since e is injective (th. 34), this implies [E] = sN -y, and
lemma 22 shows that y belongs to Py (G). Consequently, there exists a

projective A[G}module Y such that [K ® Y] = x in Ry (G); the umquﬂu
ness of Y (up to isomorphism) follows from cor. 2 to th, 34,

One can ask whether e(P) (G)) = (P, (G)) N Ry (G). This is not true
in general {cf. ex. 16.5 and 16.7). However, we have the following criterion:
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Proposition 45. Suppose the following condition is satisfied.:
{R} There exists a finite extension K’ of K, with residue field k', such that

d(R%(G)) = Rz (G)
Then we have e(P, (G)) = e(Py(G)) N R i (G).

By prop. 44 it is enough to prove that

(B (G)) = e(Po(G)) N Rg(G)

when K is sufficiently large, in which case condition (R) just means that d
maps R} (G) onte R (G). Now let

x € e(P(G)) N RE(G).

Since x € ¢{P,((G)), we can write x a3

where P denotes a projective A|G)-module whose reduction mod. m is the
projective envelope Py of E (cf. 14.4). We must show that the intt’:gem ne
are nonnepative. By (R), for each E € §, there exists zp € R (G} such
that d(z;:) = |[E)]. Since x € R (G}, we have (x,zp ;¢ 2 0. 011 the other
hand, the fact that 4 and e are adjoint shows that (x,zg)x = ng !n
particular ng is non-negative, and the proof is complete. =

Combining prop. 45 and th. 36, we get:

Corollary. Suppose that G satisfies condition (R) of prop. 45 A linear
represemtation of G over K comes from a projective A[Gl-module, if and only
if its character vanishes on the p-singular elements of G.

Remark. Condition (R) s equivalent to the following:
(R If K is sufficiently large, every simple k{Gl-module is the reduction moa.
m of a X]Gl-module {necessarily simple).

(In other words, each irreducible linear representation of G over & lifts
to K.}

Theorem 38. ( Fong-Swan). Suppose that G is p-solvable, i.e., has a normal
composition series whose factors are either p-groups or groups of order prime
to p. Then G satisfies conditions (R) and (R'") above.

For the proof, see 17.6,

X ERCESES
16.5. With notation as in prop. 44, show that
PI(G) = PH{G) 1 By (G) = P {G) M Ry (G
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16.6. Show that, for K sufficiently large, condition (R} is equivalent to the
condition e(Py (G)} = (P (G)) N R {G). {Observe that an element x
of P, {G) belongs to P;7 (G)if and only if (x,pp 2 Oforaliy € R (G).)

16.7. Take for G the group SL{V) where V is a vector space of dimension 2 over
the field F, =~ Z./p7.. Show that the natural representations of G in the ith
symmetric powers V, of V are absolutely irreducible for i < p. (Since the
number of p-regular classes of G is p, it follows that these are, up to
isomorphism, all the irreducible representations of G, <f. 18.2, cor. 2 to th.
42.) Give examples where these representations cannot be lifted to charac-
teristic zero even over a sufficiently large field K. (Forp = 7, = 4, we have

dim V, = 5, and 5 does not divide the order of G; hence V, cannot be lifted.)

16.4 Examples of projective A[G]-modules: irreducible
representations of defect zero

In this section we assume that K 1s sufficiently large.

Proposition 46. Let E be a simple K{Gl-module, and let P be a lattice in E
stable under G. Assume that the dimension N of E is divisible by the largest
power p°" of p dividing the order g of G, Then.

(a} P is a projective A|Gl-module.

(b} The canonical map A|G| — End,(P) is surjective, and its kernel is
a direct factor in A]G] (as a two-sided ideal).

(c) The reduction P = P/mP of P is a simple and projective A[Gl-
module,

Observe that (a) implies (cf. th. 37}

Corollary, The character xy of E is zero on p-singular elements of G.

First of all, since N is divisible by p”, the quotient N/g belongs to the ring
A. This enables us to apply Fourier inversion {(6.2., prop. 11) without
introducing any “denominators,” i.., within the ring A. More precisely, let
sp be the endomorphism of P defined by s € G; if ¢ € End,(P), the trace
TE(S"P"E ¢} of sp !¢ belongs to A, so we can define the element

Hy, = N Y Trisp'¢)s of the ring A [G].

E sEG L

It follows from prop. 11 that u, has image 1 ® ¢ n End, (E), and 0 n
Endy (') for each simple K[G}-module E' not isomorphic to E. In
particular, 1, has image ¢ in Endy (P), which proves (b). Assertion (a) then
follows from the elementary fact that P is projective over the ring End, (P);
the same argument works for (c}.

Remark. In the language of block theory {cf. [9], [20]), prop. 46 1s the case
of a block with a unique irreducible character {or of defect zero).
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ExampLE. If G is a semisimple linear group over a finite field of character-
istic p, there exists a linear irreducible representation of G {over Q) whose
degree is equal to p™; it is the special representation of G discovered by R.
Steinberg (cf. Canad. J. of Marh,, 8, 1956, p. 380-391 and 9, 1937, p.
347-351). By a result of Solomon-Tits it may be realized as the homology
representation of top dimension for the Tits building associated with G¥.

EXFRCISES

16.8. Take G = %, cf. 5.7. Show that, for p == 2, the group G has no irreducible
representation of the type described by prop. 46, but that there is such &
representation for p = 3. Same question for &,

16,6, Let S = §,. Prove the equivalence of the following properties:
(i) S is a projective k{G}-module.
(ii) S is isomorphic to the reduction mod.m of 2 module P satisfying the
conditions of prop. 46,
(iif) The diagonal coefficient Cgg of the Cartan matnix of G is equal to 1.
(For the equivalence of (i) and (iii), see ex. 15.7.)

* Cf. L. Solomon, The Steinberg character of a finite group with a BN-pair. Theory of Finite
Groups, edited by R. Brauer and C-H Sah. W. A, Benjamin, New York, 1969, p. 213--221.
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Proofis

17.1 Change of groups

Let H be a subgroup of G. We have already defined restriction and
induction homomorphisms relative 10 Ry

ResS: Ry (G) = Ryg(H) and  Indy: Rg(H) — Ry (G)

The saine definitions apply to R, and P,: by restriction, every k{Gl-module
defines a A[H] module, which is projective if the given module is projective.
Passing to Grothendieck groups, we get homomorphisms

Rest: R, (G) » R (H)  and Resti: PL(G) — P (H).

On the other hand, if E is a k[H}-module, then Ind E = k[G] Bepp) E 15 8
k[Gl-module (said to be induced by E), which is projective if E is projective.
Hence we have homomorphisms

ndS: R,(H) = R,(G) and  Indg: P(H) — P(G).
Using the associativity of the tensor product, we easily obtamn the formula
(*) Indﬁ (x - Resg ) = Iﬂdg{x} %
in each of the following situations:
(a) x € Rg(H),y € Re(G)  and  Indj(x) -y € Rg(G),
(b)) x € R, (H),y € R (G) and  Indf{(x) -y € R {G),
({3} X E Rk(ﬂ),}’ o~ Pk(G) and Iﬂdﬁ{.}f) ) P_;:(G)
138

1772 Brauer's theorem in the modular case

[Case {c} makes sense because P.(G) is a module over R.(G)]

Moreover, the homomorphisms ¢, d, ¢ of Ch. 15 commute with the
homomorphisms Res{ and Indg.

EXERCISE

17.1. Extend the defnitions of Res}j and Endﬁ to the case of a homomorphism
H — (; whose kernel has order prime to p (cf. ex. 7.1).

17.2 Brauer’s theorem in the modular case

Theorem 39. Ler X be the set of all Iy -elementary subgroups of G (cf. 12.6).
The homomorphisms

Ind: HEEBXRE{H) —> Rk{G)
and

Ind: P (H (r
n H@K i (H) — P (G)
defined by the Indy, for H € X, are surjective.

(In other words, th. 27 holds for R, and P, )

Let Iy {resp. iy} denote the identity element of the ring Ry {0)
(resp. R (G)). We have d(ly) = 1. By th. 27 we can write lg in the form

1K = Z EﬂdH(I}.I) with XH £ RK(H),
HeX

Applying d, and using the fact that o commutes with Ind}, we obtain an
analogous formula for 1

b= 3 Indy(xi), with xf = dlxp) € Ry(H).

For y € R,(G) (resp. P,{((G)), we get by multiplication:

HeX HeEX

which proves the thecrem.

Corollary. If K is sufficiently large, each element of R AG) (resp. of P, (G))
is a sum of elements of the form Indy{(yy), where H is an elementary
subgroup of G, and yy belongs to R, (H){(resp. to P, {H)).

Indeed, when K is sufficiently large, then X 15 just the set of all
elementary subgroups of G.
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Remark, The argument used in the proof of th. 39 applies to many other

situations (cf. Swan {21}, §§ 3,4) For example it gives the following
analogue of Artin’s theorem (cf. th. 26):

Theorem 40. Let T be the set of aif cvelic subgroups of G. The homomorphisms
Q ® Ind: H%TQ ® R, (H) — Q ® R.(G)
and

Q®Ind: & Q® P(H) > Q @ F(G)

are suriective.

17.3 Proof of theorem 33

We have to show that d: Ry (G) — R, (G) is sugjective. By th. 39, R, (G)
is generated by the various Ind{ (R, (H)), where H is [i-¢lementary. Since
d commutes with Indf, it is enough to show that R, (H) = 4{Ry (H}).
Hence we are reduced to the case where G is [y-elementary. In this case we
have the following more precise resuit:

‘Theorem 41, Let [ be a prime number. Assume that G is the semidirect product
of an I-group P by a eyclic normal subgroup C of order prime to [ Then every
simple k[Gl-module E can be lifted (.., is the reduction mod m of an A-

free A [Gl-module).
(In other words, d maps R¥ (G) ento R} (G).)

Suppose | # p. Let C, be the p-Sylow subgroup of C, and let E" be the
vector subspace of E consisting of those elements fixed by C,,. Since €, 15 a
p-group, we have I’ s 0, cf. 8.3, prop. 26. Since,C, is normal 1 G, the
space E is stable under G. Thus E* = E, which means that C, acls triviatly
on E, and that the representation of G in E comes from a representation of
G/’Cp, Since the order of G/C, is prime to p, it 1s immediate that such a
representation can be lifted {cf. 15.5).

Suppose now that | = p. We proceed by induction on the order of G.
Since C has order prime to p, the representation of Cin E is sémisimpte-
Decompose it into a direct sum of isotypic 4[C)-modules {cf. 8.1 prop. 24):

E=@& E,.
|

The group G permutes the E_ ’s; since E is simple, G permutes transitively
the nonzero E , ’s. Let Eg be one of these, and let Gg be the subgroup of
(7 consisting of those elements s such that .S’Eﬁ = Eg. It 1s clear that Eg1s a
k[Ggl-module and that E is isomorphic to the corresponding induced
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7.3 Proof of theorem 13

module Indgﬂ{Eﬁ}. Moreover, Gy is the semidirect product of a subgroup
of P and the group C. If Eg # E, we have Gy G, and the mduction
hypothesis applied to Gy shows that Eg can be hifted; the same 1s then true
for E.

Thus we may assume that E 15 an isotypic kICl-modute. Let p denote the
homomorphism from k{G] into End (E) which defines the k|Gl-module
structure on E. The fact that E is k[Cl-isotypic is equivalent to saying that
the image of k[C] under p is a field k', which is a finite extension of k. The
restriction of p to C is a homomorphism ¢: € — k'™*, and &' is generated
over k by ¢ {C). The module E is thus endowed with the structure of a k'-
vector space. Now choose an element v % 0 of E invariant under P; agam
this is possible since P is a p-group, cf. 8.3, prop. 26. For x € (,s € P, put
Sy == gxs”'. We have -

o{M(x) - v) = plsxs™Npls) - v = ¢(x) - v.

Hence the subspace kv of E generated by the ¢(x)-v,x € C, is stable under
C and P, thus is equal to E. Hence dimy.E = 1. This allows us to identily
E with &’ in such a way that v becomes the unit element of &’ Foraltr € G
olf) is an endomorphism o, of the k-vecior space k'. For s € P we have
a,(1) = 1 by construction. Moreover, the above formula shows that

a(p(x)} = ¢(*x) forallx & C,

hence

0, (p(x)(x")) = o (dlx))a(d{x')) forallx, x" € C.

Since k” is generated by the ¢{x), we get
ofaa’) = afa)old’}) Ha a €K

in other words, o, is an awtomorphism of the field k" and the map 5 > o is
a homomorphism o: P — Gal{k’/k), where the latter denotes the Galois
group of k'/k. The lifting of E 1s now easy 10 define: let K’ be the unramified
extension of K corresponding to the residue extension k'fk, and let A" be
the ring of integers of K’. The canonical isomorphism

Gal(K//K) = Gal(k'/k)

gives an action of P on K’ and on A’ (using o). On the other hand, the
homomorphism ¢: C — &'* lifts uniquely {(using, say, multiplicalive repre-
sentatives) to a homomorphism ¢: C — A* which gives an action of C on
A’ by multiplication. It 1s then immediate {(from uniquencss) that we still

have

0 (B(x)) = H’x) forx € C,5s EP.
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This means that the actions of C and P on A’ combine to give an action of
G. Endowed with such an A[Gl-module structure, A’ is the desired hfung,

Remark. When K is sufficiently large, we only need th. 41 in the case
where G is elementary, thus a direct product of C with P. The above proof
becomes much simpler: the group P acts trivially on the simple module E,

which can thus be viewed as a simple k{Cl-module and hfted without
difficulty.

17.4 Proof of theorem 35

Let p” be the largest power of p dividing the order of G. We have to show

that the cokernel of ¢z P, (G) — R, {(G) is killed by p". We distinguish two
Cases:

(a) K is sufficiently large

By the cor. to th. 39, R, (G) is generated by the lndg(]{k{l—{}) with H
elementary. We are thus reduced to the case where G is efementary, hence
decomposes as a product § X P, where S has order prime to p and P is a p-

group. We have seen in 15.7 that the Cartan matrix of such a group is the
scalar matrix p". The theorem follows in this case.

(b) General case

Let K’ be a finite sufficiently large extension of K, with residue field &'
Sealar extension from k to &k gives us a commutative diagram:

0— P(G) — PGy - P 0

ic Lo Ly
3 — Pk(ﬂ) i ka(G) - R - 0,

where P = P,.{G)/P,(G) and R = R.(G)/R {(G). Whence the exact
sequence:

0 - Ker(c) — Ker(c') — Ker(y) ~ Coker{c) ~» Coker{c’).

By (a), Coker(c’) is kilied by p". Since P;-(G} and R (G} have the same
rank, it follows that ¢ is injective, whence the same 15 true for ¢, and s0
Coker(c) is finite. But we know {cf. 14.6) that P (G) — P.{G) is a split
injection. The group P is thus Z-free, and so is Ker(y). Since Ker{c') = 0,
and Coker(c) is finite, the exact sequence above shows that Ker{y) = 0;
hence Coker(c) embeds in Coker(¢’). Since the Jatter is killed by p", the
same is true of Coker{c), which proves the thecrem.
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17.5 Proof of theorem 37

By extending K’ if necessary, we can assume that K" is sufficiently large.

(1} Necessity

Let E be a projective A]Gl-module, and let x be the character of the
K 1Gl-module K' ®, E. If s € G is p-singular, we st show that x(s} = 0.
Replacing G by the cyclic subgroup senerated by s, we can assume G 18
cyclic, hence of the form S X P, where 5 has order prime to p. and P s a p-
eroup. By 15.7, E is isomorphic to F & A'IP]. where F is an A'-free A'lS|
module. The character x of K’ @ E is thus equal to & r,. where ¢ 1
character of § and rp is the character of the regular representation of P.
Such a character is evidently zero off §, so in particular x(s) = 0.

(ii) Sufficiency (first part)

Let v € R,.{G), Jet x be the corresponding virtual character, and
suppose y{s) = 0 for every p-singular element 5 of (.

We will show that y belongs 1o Py (G) (where this group is identified with
a subgroup of R, (G} by means of ¢).

By the cor. to th, 39, we have

i =Y Ind{xy). with xy; € Ry (H).

where H runs over the set of all elementary subgroups of GG. Multiplying by
¥, we get!

y o= E lﬂd{_}’H), with Y = A Rﬁﬂi.i[}?} - RK*{H)

The character of yyy is zero on the p-singular elements of H. If we knew that
yyy belonged to Py-(H), it would follow that v belongs 10 P, (G}). Hence,
we are reduced to the case where G is elementary.

Now decompose (G == S % P as above, We have

Since x 1s zero off S, we can write x in the form f @ rp, where fis a class
function on S, and r, is the character of the regular representation of I If
p is a character of 5, then

(f@rpp® 1) = {fipy-p. by = {fip)

Since the left-hand side is equal o (x.p ® 1>, it 15 an integer: thus
{f.p> € Zfor all p, which proves that { is a virtual character of 8. Thus we
can write y in the form

¥ = ¥y @ ¥po

with ys © Ry (S}, and yy the class of the regular representation of P. Since
yg € Py {S)and yp € P,-{P), we indeed have y & Py {G).
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(iii) Sufficiency (second part)

Keep the notation (it), and suppose 1n addition that the character x of ¥
has values in K. We must show that v belongs 10 By (G). By (i1), we at least
know that y € P, (G).

Let r be the degree of the extension K/K. Every A[G]-module defines
an AlGl-module by restriction, and this module 1s projective whenever the
original module is. Thus we have a homomorphism

a: Py (G) — Py {G).

Put z = ={y). Then z = r - y. Indeed, 1t suffices to verify this equality in
R .(G), and for this it is enough to show that the character x; associated
with z is equal to r - x. But we have

Xz ™ Tr{{’!’f{(}i}:

and since y has values in K, we get x, = r - X.

Thus y € P,.(G) and r - y € F,(G). But the inclusion P, (G} — Py.(G)
is a split injection, cf. 14.6, Since r - y is divisible by rin P, {G), the same 18
true in P, (G), which means that y & P,(G), and completes the proof.

17.6 Proof of theorem 38

We say that a group G is p-selvable of height h i (S & SUCCESSIVE
extension of h groups which are either of order prime to p or of order a
power of p. We want to show that, if K is sufficiently large, then every
simple k|Gl-module lifts to an A-free AjGl-module.

We proceed by induction on # (the case 2 = 0 bemg trivial} and, for groups
of height &, by induction on the group order.

Let 1 be a normal subgroup of G, of order either prume to p or a power of
p, such that G/I has height 2 — 1. Let E be a simple (and thus absotutely
simple) k[G}-module. I I is a p-group, the subspace El of all elements of E
left invariant by 1 is # 0 and therefore equal to E; thus E 15 2 simple
k[G/1}-module. By induction it can be lifted to an A-free A[G/1] module,
and the result follows in this case.

Suppose now that [ has order prime to p. Decompose E as a direct sum of
isatypic k[T]-modules (i.e., sums of isomorphic simple modules):

E = FE,

where E_ is an isotypic k[l}-module of type S,

The group G permutes the E_; since E is simple it permutes (ransitively
(hose which are nonzero, Let E_be one of these, and let G, be the subgroup
of G formed by all s € G such that s(E,) = E, Then E, is a kG, -
module, and it is clear that E is the corresponding induced module. If
E, # E, we have G, ¥ G, and the induction hypothesis, applied to G,,
shows that B, can be lified; consequently the same is true jor E.

144

. - . ot [ R oy
o L e AT LT P
e e e e s
R T e R
e Lo
e e L R

o

Free i
o0 o S
=

e —'_:_:_'E_='_::;:_=_'-' e e -] i::i;

e

e (A .-.\:"5.:“'\_ -?‘"-:;\I - Pt
[, "o

....
o

= Ll

17.6: Proof of theorem 38

We can now assume that B is an isotypic k|1}-module of type S where S
is a simple kff}l-module. Since 1 has order prime to p, we can hit S in an
essentially unique way to an A-free All] module, say S, and it 15 clear that
K ® § is absolutely simple. By cor. 2 to prop. 16 of 6.5, it follows that
dim S divides the order of I; in particular, dim S is prime to p.

Now let s & (3, and denote by i, the automorphism x +> sxs”* of 1, Since
E is isotypic of type S, it follows that § {(and hence S} is isomorphic to its
transform by i.. This can be expressed as follows:

Let p: T — Aut{S) be the homomorphism defining the 1-module struc-
ture of S, and let U, be the set of 7 € Aut{S) such that

ook ™h = p{sxs™1) forallx & L

Then U, is not empiy.

Let G, be the group of all pairs (5,1) with s € G, 1 € U,. The map
(5,1} +> 5 is a surjective homomorphism G, — G; its kernel is equal 0 U,
which is the multiplicative group A* of A. The group G 15 thus a central
extension of G by A¥: it acts on S via the homomorphism (s, 1) &> 1.

We shalt now replace G, by a finite group. Let d = dim S, Ifs & G, the
clements det(s), r € U, form a coset of A* modulo A?. By enlarging K
(which is all right, since it does not change R 4 (G)), we may assume thal
(hese cosels are all trivial, in other words that each U, contains an element
of determinant 1. This being done, let C be the subgroup of A* formed by
all det(p(x)), x € 1, and let G, be the subgroup of G, formed by all {s,7)
with ¢ € U, and det(f) € C. The group G; maps onfo G; the kernel N of
G, — G is isomorphic to the subgroup of A* formed by all a with a® e C.
Since  and Card (C) are prime to p, we conclude that N is a cyclic group
of order prime to p.

Denote by py: G, —» Aut(8) the representation (5,8 >t of Gy H 115
identified with a subgroup of G, by means of x +» (x, p{x}), we see that the
restriction of p, to I is equal to p. Thus we have extended p, not 1o G 1tself,
hut at least to a central extension of G {we have a “nrojective’ representa-
tion of G in the sense of Schur). Observe that I is normal in Gy, and that
I N = {1}

Return now to the original k[Gl-module E, Let F = Hom! (5, E) and let
o €@ F —» E be the homomorphism which associates witha @ ¢ {a € 5,
h < F the element b{a) of E.) From the fact that is isotypic of type D we
deduce easily that u is an isomorphism of § ® F onto E,

The group G, acts on § through the reduction of py; it also acts on I vic
G, — G; hence it acts on F. The isomorphism

S F - E

is compaltible with this action of G;. Thus E, viewed as a k{G, |-module, can
he identified with the tensor product of the k[G,}-modules 5 and . In
order to lift E, it thus suffices to lift § and F and take the tensor product of
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these liftings. We will then get an A-free A[G]-module E. Since N has order
prime to p and acts trivially on the reduction E of E, it will follow that N
acts trivially on E (cf. 15.5) and that E can be viewed as an A[G]-module—
mdeed, we will have lifted E.

Hence it remains to show that F can be lifted {the case of S being already
settled). But F is a simple k]G, }-module (since E is) upon which 1 acts
trivially by construction. So we may consider it as a simple k[H]-module,
where H = G,/L.

The group H is a central extension of G/I {which is p-solvable of height
<. & — 1} by the group N, which is cyclic of order prime to p. i h = 1, we
have H = N, and the lifting of F 15 immediate (15.5). 1f 4 > 2, the group
H/N contains a normal subgroup M/N satisfying the following two
conditions:

(a) H/M = {(H/N)/(M/N) has height < h — 2.
(b) M/N is either a p-group or a group of order prime to p.

If M/N is a p-group, then since N has order prime to p, M can be writien
as a product N X P where P 15 a p-group. The argument given at the
beginming of the proof shows that P acts trivially on F, so F can be viewed
as a k|H/P}module. But it is clear that the height of H/Pis < A~ |, s0 F
can be lified by induaction. There remains the case where M/N has order
prime to p. The order of M is then prime (o p, and since H/M has height

< h — 2, the height of H 153 < &~ 1, and again induction applies. This
compleles the proof.
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CHAPTER 18

Modular characters

The results we have been discussing are due, for the most part, to R. Brauer.
He stated them in a slightly different language, that of modular characters,
which we shall now describe.

For simplicity, we assume that K is sufficiently large.

8.1 The modular character of a representation

Let G,,, be the set of p-reguiar elements of G, and let " be the L.em. of
the orders of elements of G,,. By hypothesis, K contains the group py of
m’th roots of unity; moreover, since m' is prime to p, reduction mod. nt 1s
an isomorphism of py onto the group p, 'of m'th roots of unity of the residue
field k. For A € pgp welet A denote the element of pg whose reduction
mod. n s A,

Let E be a k{Gl-module of dimeansion n, let 5 € G, and let s¢ be the
endomorphism of E defined by s. Since the order of 5 is prime to p, s¢ 1s
diagonalizable, and its eigenvalues (A, ... A, ) belong to g,. Put

ppls) = 'gt A

The function ¢g: Gy, — A thus defined s called the modular character {or
Brawer character) of E. The following properties are immediate:

(1) We have ¢g(l}) = n == dim E.
(ii) ¢ is a class function on G, that is,

pp(tst ™) = pg{s} ifs € G andt € G.
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(iii) If 0 = E -» E" — E” — 0 s an exact sequence of k| Gl-modules, we
have

¢p = ¢p + Ppr.
{(1iv) We have

t#EI@EI = IPE.I . ¢-E3*

(V) If + € G has p’-component s € G,,,, the trace of the endomorphism
ty. of E is the reduction mod. m of ¢ {s): we have

Tritg) = épls)

where the bar denotes reduction modulo m.(This can be seen by observing

that the eigenvalues of (£ 's) are p“th toots of unity, hence equal to 1 since
k has characteristic p. 1t follows that the eigenvalues of 1 are the same as
those of s, whence the desired formula.)

(vi} Let F be a K[G}-module with character x, let E, be a lattice of
stable under G, and let E = E;/mE, be its reduction mod. m. Then ¢g is
the restriction of x 10 Gmg* (1t is enough to see this when G is cyclic of order
prime to p. Moreover, th, 32 shows that ¢ dees not depend on the choice
of a stable lattice E,. This allows a reduction to the case where E; s
generated by eigenvectors of G, in which case the result is clear.)

(vii} If F is a projective k[Gl-module, and if F is a projective A[Gmodule
whose reduction is F, we shall denote the character of F (i.e., of the K|G]-
module K ® F) by . I E is any A{G]-module, we know that E® F is a
projective k[G}-module, and so $pgp makes sense. We have

ﬁbE(S)‘I}F(S} 1f 5 & Gmg

(0 otherwise,

Ppgr (5) = {

a formula which can be more concisely written as Ppgp = ¢p - Pp, even
though ¢ is not defined off G, (We know that ®pepls) = 035 & Gy
cf. th. 36. And by (vi) the restriction of $pgp to G, is equal 1o the modular
character of E @ F, which 15 ¢ « ®p by {iv).)

{viii) With the same hypothesis as in {vii}, we have

]
<F1E>k$§ E ‘I’F{S 1)‘?5(5):(‘1’&{1]17}*
SE

L™

where g = Card(G). (By definition, (F,E}, is the dimension of the largest
subspace HY of H= Hom(F,F} which 1s fixed by G. However, H 15 a
prejective A[Gl-module, so af H is the corresponding projective A[(G]-mod-
ule, we see easily that dim, HY == rank , HY. If @y, is the character of K& H,
we have

<F,E>ﬁ<wﬁ>:§w S @,(s).

v e {r
i43

Eh

i
i
i

it

E -E,; III

18.2: Independence of modular characters

But H is isomorphic to the tensor product of E and the dual of F. By (vii)
we have $yls) = Dp(s™pp(s) for 5 € Gy and &y (s) = O otherwise.
The result follows.)

We note the special case where E is the unit representation:
(ix) The subspace FC formed by the elements invariant under G has
imenston

I
( Py, 1) = 2 ®uls).
g SEG?EB

Remark. Property (iii} allows us to define the virtual modular character ¢,
»f an arbitrary element x of R ,(G). By (vi), if x = d{(y} with y € Rg(G),
then ¢, is just the restriction to G, of the virtual character x, of y.

1t is possible to give analogous definitions for any linear algebratc group G
over k (assuming here k algebraically closed, for simplicity). The set G,
is then defined as the set of semisimple elements of G. If E is a hinear
representation of G, and if 5 € Gy, then ¢gls) is defined to be the sum
of the multiplicative representatives of the eigenvalues of sg; the modular
character ¢ thus defined is a class Tunction on G with values in A.

18.2 Independence of modular characters

Recall that S; denotes the collection of isomorphism classes of simple
k[G)-modules. The various ¢ corresponding to elements E of 5, are called
the irreducible modular characters of the group (.

Theorem 42 . (R. Brauer). The irreducible modular characters $g (E & Si)
form a basis of the K-vector space of class functions on Gy, with values in

K.

This can be stated in the following equivalent form:

Theorem 42'. The map x > &, extends to an isomorphism of K ® R L {G) onto
the algebra of class functions on G, with values in K.

These theorems immediately give:

Corollary 1. Let F and F' be two k{G)-modules with the same modular
character. Then [F] = [F'lin R {G); if F and I are semisimple, they are
isomorphic,

Corollary 2. The kernel of the homomorphism d: Ry (G) — R, (G} consists of
those elements x whose virtual character x, is zero on G,

(Since d is surjective, this gives an explicit description of R L((3) as a
quotient of R (G}.)
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e

Corollary 3. The number of classes of simple k[Gl-modules is equal to the
number of p-regular conjugacy classes of G.

PROOF OF THEOREM 42,

{a) We prove first that op(E € S;) are linearly independent over K.
Indeed, suppose that we had a relation S agop = 0, withag € K, not all
zero. Multiplying the ag by some element of k, we can assume that they all
belong to the ring A, and that at least one does not belong to m. By
reduction mod. m, we then have

deorls) = 0 foralls € G,,,,
E‘Ez:s‘: ¢ Op(9) or all s ez

where the bar denotes reduction mod. m, and one of the @ Is not Zerv.
From formula {v} of the preceding section, we get

S apTe(tg) = 0 forallr € G,

thus also for all 7 & k[G). However, since K is sufficiently large, the
modules E are absolutely simple, 50 by the density theorem ((8], §4, no. 2),
the homomorphism k{G] = ®ges, End,(E) is surjective. Now et E e S,
such that @ # 0, let u € Endy (E) have trace | (a projection on a ling, for
example), and let ¢ be an element of k(] having image v in End,{E) and
0 in End, (') for E' # E. Then we find that dgg - | = 0, a contradiction.

"This part of the proof applies just as well to lnear algebraic groups.

(b} We have to show that the ¢g generale the vector space of ciass
functions on Gi,,. Let f be such a function, and extend it to a class function
{" on G. We know that f’ can be written in the form 2 A, x; with A; € K
and x; & Rg(G). Consequently f = 5 A, d(x;) where d(y;) is the restric-
tion of x; 10 Gy, Since each d{x;) is a linear combination of the ¢p, we
obtain the desired result,

EXERCISES

18.1. (In this exercise we do nol assume that G is finite or that k has characteristic
# 0,) Let E and E' be semssimple k{Gl-modules. Assume that, for each
s & G, the polynomials det(l + sgT} and det(l + sg. T} are equal. Show
that E and E’ are isomorphic. {Reduce to the case where & 15 aigebraically
closed and argue as in part {a) of the proof of th. 421 As a consequence,
show that, if E is semisimple and if all the sg are umpotent, then G acts
trivially on E (Kolchin's theorem).

18.2. Let H be a subgroup of G, let F be a k[H]-module, and let E = 1ndﬁ I'.
Show that the modular character ¢y of E is obtained from ¢g by the same
formula as in the charactenstic zero case,
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18.3. What is the spectrum of the ring R (G})?

18.4. Show that the irreducible modular characters form 2 basis of the A-module
of class functions on G, with values in A. [Use lemma 8 of 10.3 to show
that each class function on G, with values in A extends o a class function
on G which belongs to A ® R (G)]

18.3 Reformulations

We have just seen that x > ¢, defines an isomorphism of K @ R {0)
onto the space of class functions on G, Un the other hand, the map
K ®e K®P(G) -~ K®Ry(G) identifies K @ P, (G) with the vector
space of class functions on G zero off Gy, (this can be checked, for
example, by comparing the dimensions of the two spaces). Tensoring with
K, the cde triangle becomes:

A
Class functions on G-—=Class functions on G,

zero off ng

K‘fﬁ'f\ K

%
Class functions on (s,

the maps K ® ¢, K & d. K ® e being the obvious ones: restriction, Tesire-
tion, inclusion. Observe that K ® ¢ is an isemorphism, in accordance with
cor. 1 to th, 35,

The matrices C and D can be interpreted in the followmg way: if
F € S, let xp denote the character of F; if E € §,, let ¢p denote the
modular character of E, and @ the character of the projectve envelope of
E. Then

X = & DEF®E on G,y

FEES;

G)E == E I:}E.F XE Y] G
FE Sk

11}5 = E CE’E"';}E' on Grf:gr
E'ES,

and we have the orthogonality relations

{

<‘I,E!-¢'E"> = SEE’J Whﬂrﬁ <£}]E!¢'H’> = é E%ir (I)E(‘F!}[ﬁﬁ' (‘5}-

R

We also mention the following version of th. 35:
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Theorem 35, Let p* be the largest power of p dividing the order of G. If ¢ is
a modular character of G, and if ® is defined by the formula

Ols) = p"ols)
Pis) = O

if s & G,
I:f‘f =2 Greg

then © is a virtual character of (.

We leave to the reader the task of making further reformulations of this
type.

EXERCISES

18.5. s € G, denote by P79 the order of a p-Sylow subgroup of the centralizer
of s 1n .

(a) Let ® be a class function on G which has values in K. Show that
¢ £ A @ P {G) if and only if ® is 0 off G, and &(s) &€ p™ A for
every s € G, (use ex. 18.4, together with the orthogonalily relations

(bg,0p 2 = dgp)
th) Use (2) to prove that

Coker{c) =~ [1 Z/p"WZ  and  det(C) = P2

where 5 runs through a system of representatives of the p-regular classes
of G.

18.6. Assume that G is p-solvable (cf. 16.3), HF € Sy, let ¢ denote the restriction
of xg to G,y Show that a function ¢ on Gy, Is the modular character of &
simple k[Gl-module if and only if it satisfies the following two conditions:

{a} There exists F € Sy such that ¢ = ¢

(b) I (HF)FESK ts a family of integers > 0 such that¢ = 2. np oy, then one
of the ny is equal to 1 and the others are 0. [Use the Fong-Swan
thecrem.]

18.4 A section for d

The homomorphism 4; Ry (G) — R, (G) is surjective {th. 33). We shall
now describe a section for 4, 1.e., a homomorphism

o0 R (G) — Rg{G)

such that d o ¢ = L.

For s € G let 5" denote the p'-component of 5. If f1s a class function on
Gy, define a class function £ on G by the formula

fis) = fls'),
152
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Theorem 43.

(i} If f is a modular character of G, {" is a virtual character of Q.
(i) The map [+ [’ defines a homomorphism of R G into Ry {G)
which is a section for d.

To prove that § is a virtual character of G (i.e., belongs to R (G)), if; 1S
enough to prove that, for each elementary subgroup H of G, the restriction
of f' to H belongs 1o R {H) (cf. 11.1, th. 2[). We are thus reduced to the

case where G is efementary, and so decomposes as G = § X P where S has
order prime to p and P is a p-group. Moreover, we can assume that f is the
modular character of a simple k{G)-module E. By the discussion in 157, E
is even a simple k[8]-module, and we can lift it to a simple K[S]-module on
which P acts trivially. The character of this module is evidently f', which
proves {1).
Assertion {(ii) follows from {i) by observing that the restriction of /' o

Cieg 15 £qual to f.

EXERCISES

18.7. Let m be the 1.c.m. of orders of the elements of G. Write m in the form p" m’
with {p,m’}) = I {cf. 18.1.) and choose an integer 4 such that g = 0
(mod. p") and g = 1 {mod. m’).

{(a) Show that, if s € G, the p’-component s’ of 5 is equal fo 5%

(b) Let f be a modular character of G, and let ¢ pe an element of Ry (G)
whose restriction to G, ts f {such an element exists by th. 33). In the
notation of th. 43, show that f* = ¥94, where ¥9 is the operator defined
in ex. 9.3, Deduce from this another proof of the fact that f’ belongs to
R i (G) [observe that R ¢ {G) is stable under ¥9).

18.8. Prove th. 43 withomt assuming K sufficiently large [use the method of the
oreceding exercisel.

18.5 Fxample: Modular characters of the symmetric group &,

The group ©, is the group of permutations of {a.b,c.d}. Recall its
character table {cf. 5.8):

|1 (@) (abed)  (abo) (abod)

X1 1 l I i |
X2 1 — 1 i | - 1
X3 2 0 2 — 1 0
X4 3 i { - |
X 3 - 1 e ] (3 i
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We shall determine its irreducibie modular characters mn charactenstic p. * foliowing decomposition of ®; and &, on Grep’
We may assume that p divides the order of G, e, p = 2orp =3 ’
(a) The case p = 2 1

There are two p-regular classes: that of 1 and that of {abc). By cor. 3 to &y = 20+ 3 08 G
th. 472, there are two irreducible representations in characteristic 2 {up 10 :'f-
isomorphism.} The only representation of degree I 15 the unit representa-
tion, with modular character ¢; = 1. On the other hand, the irreducibie (b) The case p = 3
representation of degree 2 of £y upon reduction mod, 2 gives a representa-
ticn p, whose modular character ¢ takes the value —1 for the element f

. , 1 irreducible Tepresentations in characteristic p = 3. On the other hand, the
(abc). Consequently, py 15 not an exlension of two representations of degree

. L , 3 reductions of the characters x;, Xz. X4 and xs are irreducible: this is clear
1 {otherwise we would have ¢, = ZI¢; = 72}, hence is irreducible. The

. . X for the first two, which have degree 1, and for the two others 1t follows from
irreducible modular characters of &, are thus ¢; and ¢3!

the fact that their degree is the largest power of p dividing the group order

|

4!:#}1 ~+- 2!}!)2 on Grﬂg

i

There are four pregular classes: 1, {ab), (ab}cd ), {abed}, hence four

ﬁ (cf. 16.4, prop. 46). Since their modular characters are distinct, they are aff

| (abc) the irreducible modular characters of €. 1 we denote them by ¢, §,, @4, Py,
- we have the table:

& i 1
ey Tt | v (ah)  (ablcd) (abed)
& ‘
The decomposition matrix 1 is obtained by expressing the restrictions to by ¢
G, of the characters x;, ..., X5 85 2 function of ¢; and ¢,. We find ta 3
3

1 TR - —
X1 = ¢ on O,

X2 = ¥ 0n Upeg Since x3 = ¢ + 3 on U, We obtain the following decomposition matrix

X3 = ¢ on G, 1 D and Cartan matrix C:
Xg = ¢+ o2 on Ly | ]

Xs = ¢ T 92 CH Grf:g

11 0 1 | 1
D= .
(t:} 0 11 r)

N 3 The characters ®,, ..., Py of the projective indecomposable modules are:
The characters ®, and @, of the projectve indecomposable modulies i 5 4

corresponding to ¢y and ¢, are obtained by means of the transposed matrix 1 N
of D . B, = x + X3

hence

o T e B e S
i I o S QU
o LD =
o O 2
_— O 2

RERNEC RS
P, =x+tx2tXat X5 g

.-f:-.' ¢3‘ = xd
Dy = X3+ X4+ X5+

The corresponding representations have degree 8. The Cartan matrix

C = DD is the matnx {3 %} with determinant 8. It expresses the gf. (Note the simple expression of ®; and &y cf. prop. 46.)
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Chapter 18: Modular characters g 18.6: Example: moduiar characters of the alternating group %

EXERCISES x5 a representation of degree 5, realizable over Q, obtained by removing

V W : e ' 1 jon from the permutation representation of ¥is on the
18.9. Verify the Fong-Swan theorem for & [check that cach ¢; is the restriction of the 1111.1[ Fepresentation P P 5
some x; 0 G, ] set of its 6 subgroups of order 5,

J regl” -

- , - : : 4 We determine the modular irreducible characters of W for p = 2.3, 5¢
18.10. Show that the irreducible representations of &, are realizable over the prime e ?

fietd (in any characteristic). (a) The case p = 2

18.11, The group &; has a normal subgroup N of order 4 such that &/ N is X There are four p-regular classes, hence 4 modular irreducible characters.
isomorphic to &5. Show that N acts trivially in each irreducible representa- : Two of these are obvicus: the unit character, and the restriction of y, {cf.
tion of &, in characteristic 2. Use this to classify such representations. : prop. 46). On the other hand, we have

! 3 + yq = | + on ..
18.6 Example: Modular characters of the alternating group s X2 T X A Treg

which shows that the reductiens of both the rreducible representations of
degree 3 are not irreducible (their characters are conjugate over the field 3,
of 2-adic numbers since /5 & ;). Each must decompose m R, () as a
sum of the unit representation and a representation of degree 2, necessartly
irreducible, Therefore, the irreducible moedular characters ¢y, ¢4, ¢4, ¢4 are
given by the table:

The group %< is the group of even permutations of {a, b, ¢, d, }. 1t has 60
elements, divided into 3 conjugacy classes:

the identity element 1,
the 15 conjugaies of {ab)}(cd), which have order 2,
the 20 conjugates of (abe), which have order 3,

the 12 conjugates of 5 = {abcde), which have order 3,
the 12 conjugates of %, which have order 5.

et o e e B R B L S e R o S e R e
ot o R Aot i S e
T

T
P
A

{ 1 {abc) 5 st

T oty
TR TTLT T ] L) i u

™ E i
P2 2 - - ]

i ¢'} 2 1 20— Z ™
i {abcd)  {abe) 3 5t by 4 i

rTTr—————————— & il o e e —_——rr — [EE R SR TV T —
4 gl

'-':;::-_I_: --:;;:;55::-:=:=%'::-I:=-:E-.. )
S

e nens
et

There are 5 irreductble characters, given by the following table:

i
i

.y TR LA T
e vﬁ e :

R
R et
e L

Xi |

2 We have

T .f;:j Xy 7 D Ot Grcg

Xe | 4 0 ! -1 ~ 1 X2 =t on Uy
LS 1 —1 0 0 1
X3 i s s i Xy = 1—\{}! + ¢,3 O Grt’:g

The corresponding representations are: Xq = Py on G

FCE

' : X; = ¢+ ¢y + LR Greg*
x - the unit representation

x; and x5 two representations of degree 3, realizable over the feld
Q{+/5), and conjugate over Q. They can be obtained by observing that .
{1} X Us is a “Coxeter group” with graph o- 3 2o, and then consider-

ing the reflection representation for this group {cf. Bourbaki, Gr. et Alg. de
Lie, Ch. V1, p. 231, ex. 11).

S
g | 0
x4: & representation of degree 4, realizable over Q, obtained by removing L 0 0 |
the unit representation from the permutation representation of ¥ on \ 00 0
{a,b,c,d, e}, cf. ex. 2.6.
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Whence the matrices D and C:

-

det({(C}) = 4.

TR T N
o SRR SR N
Coor L N QR N
— P




Chapter {8: Modular charactess

(b) The case p = 3

One finds 4 irreducible representations in characteristic 3, namely the
reductions of the irreducible representations of degree 1, 3, and 4 (two of
degree 3). Moreover, we have x5 = 1 + x4 on Gy, Hence:

C = det(C) = 3.

o o= 2 O

4 g i 2 0 0 |
i 0 0O g 1 0 0
0 O 0 O 0 I O
0 I P00 2

oo o e

{(¢) The case p = 5

There are 3 irreducible representations in characteristic 3, the reductions
of the irreducible representations of degree 1, 3, and 5 (note that the two

representations of degree 3 have isomorphic reductions). Moreover, we

have x; = xy + x3 on Gy, - Hence

P 0 0 1 QO 2 1 U
D=0 1 1 1| 0} C=1iF 3 0] det{C) = 5.
g 0 0 O I G 0 1

EXERCISES
18.12. Check assertions {(b) and {¢).

18.13. Prove that the irreducible representations of degree £ of %5 in tharactgr%st%c
7 are realizable over the field F, of 4 elements; obtain from tms an
isomorphism of % with the group SL,y{Fy).

18.14, Show that U is isomorphic to SL,{Fs}/{x 1}, and use this isqmgrphésm Lo
obtain the list of irreducible representations of %5 in characteristic J.

18.15. Show that x5 is monomial, and that x3, X3, x4 are not.

[358
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CHAPTER 19

Applications to Artin representations

L l
g

19.1 Artin and Swan representations

Let E be a field complete with respect to a discrete valuation, let F/E be
;. a1 finite Galois extension of E, with Galois group (O, and_ assume for
simplicity that E and F have the same residue field. H & 5 | is an element
ﬁi‘f of G and i 7 is a prime element of F, put

fg(ﬁ'} a UF(S(‘?T} - '?F),

where vy denotes the valuation of . normahized so that vp(n) = L.
Put

a(s) = —igls) s #

551

Clearly v 15 & class function on G with integer values. Moreover:

Theorem. The function ag is the character of a representation of G (over a
sufficiently large field).

o other words, if ¥ is any character of G, then the number

Flx) = {ag.x,

3 is a Hon-negdiive infeger.

Using the formal properties of ag (cf. [25]. ch. V1), we see that f {;{h} = 0,
and easily reduce the integrality question to the case where G 15 cyclic (and

i e ot Loty o mymzo et e oo et o S i R =
iy, —'-'-.-}:. Do e e e e e i I.- :.— g uI I. -I R "
i s e e e i RN Rl W WA B Ol ol R Tl
e g O T Caa e ! Tmta et & L
T S e S e " mE =
L1 ;\ LY . R ) - -

§59




Chapter 19: Applications fo Artin representations *
even, if we like, to the case where G is cyclic of order a power of the residue
characteristic of E). We can then proceed in several ways: 1
(i) If x is a character of degree I of G, one shows that f(x} coincides with 4
the valuation of the conductor of x in the sense of local class field theory,
and this valuation is evidentiy an integer. This method works, either 1n the
case of a finite residue field (treated initiaily by Artin) or in the case ol an
algebraically closed residue field (using a “geometric” analogue of local
class field theory); furthermore, the general case follows easily from the :
case of an algebraically closed residue field,
(1) The assertion that f(} is an inieger is equivalent to certain congru- i
ence properties of the “ramification numbers” of the extension ¥/E. These 1
properties can be proved directly, cf. [25], chap. V, §7, and S. Sen, 4Ann. of
Math., 90, 1969, p. 33-46. [
Now let 7, be the character of the regular representation of G, and put
U = I ™ 1. Let W = dg — Ug. Then 4't
swals) = 1 —igls) ifs # |
swg(l) = 3 (igls) = 1),
It is easily checked that, if x is a character of G, the scalar product ‘
{swg,x» is 2 0. Using the above theorem, one sees that {swg, x) 1$ a non-
negative integer for all y, that is, swg is a character of G,
The character ag{resp.swg ) is calied the Artin (resp. Swan) character of
the Galois group G, the corresponding representation is called the Artin
(resp. Swan) representation of G. An explicit construction of these repre-
sentations is not known. Nevertheless we can give a simple description of
i
the characters g - ag and g - swg, where g = Card{(G):
Let G, (i = 0,1,...) denote the ramification groups of G; thus s € Gy if
and only if ic(s) 2 i + | or s = 1. Put Card(G;) = g;. Then one checks
that
g ag = 2 & Indglug,)
=
and &
g swg = ,El g; * Indg (ug,}
= 1
with Mg, = I, — 1.
In particular we have swg = 0 if and only if G; = {1}, i.e. the order of
(G is prime to the residue characteristic of E. (In other words, swey == 0 if
and only if F/E is tamely ramified.)

19.2: Rationality of the Artin and Swan representations

19.2 Rationality of the Artin and Swan representations

Even though ag and swg have values in Z, one can pive examples where

the corresponding representations are not realizable over Q, nor even over
R (cf. [26], §4 and §3). Nevertheless:

Theorems 44, Let | be a prime number unequal to the residue characteristic
of E.

(1) The represemations of Artin and Swan are realizable over the field
Qy of Ladic numbers.

(1) There exists a projective 2,|Gl-module Swg, unigue up to isomor-
phism, such that Q; @ Swg has character swg.

It is enough to prove (ii); assertion (i) then follows, since ag is obtained
from swg by adding to it ug, which is realizable over any field.

For this, we apply prop. 44, taking p == I, K = Q;, n = g = Card(G),
and choosing for K’ a sufficiently large finite extension of Q. Condition (a)
of that proposition is satisfied, cf. 19.1.

To check (b), we use the formula

g Swe = E g Indgj(uﬁi)

iz

given above, By ramification theory, these G; (i 2 1) have orders prime (0
I: it follows that every A]G;}-module is prgjective {cf. 15.5), where A’
denotes the ring of integers of K. Hence ug is afforded by a projective
A’[G.]-module (even by a projective Z,|G;}-moduie if we wish), and the
corresponding induced A’[Gl-module is projective as well. Taking the direct
sum of these modules (each repeated g; times), we obtain a projective A’|G]-
module with character g - swi. All the conditions of prop. 44 are thus
satisfied, and the theorem [ollows. o

Remarks

(1) Part (i) of th. 44 is proved in [26] by a somewhat more complicated
method, which, however, gives a stronger resull: the algebra QiG] is
quasispiit (cf. 12.2),

(2) One could get (i) from (i) combined with the Fong-swan theorem (th.
38), and with cor. to prop. 45,

(3) There are examples where the Artin and Swan representations are not
realizable over Q,, where p 1s the residue characteristic of E. However, J.-
M. Fontaine has shown (cf. [27]) that these representations are realizable
over the field of Witt vectors of ey, where g5 denotes the largest subfield of
the residue field of E which is algebraic over the pnime field.
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Chapter 19: Applications to Artin representations

19.3 An invartant

Let [ be a prime number unequal to the residual characteristic of I=. Put
= Z/17 and let M be a k|G]-module. We define an invariant b(M) of M
by the formula

H(M} = (Swg, M), = dim Hom®(Swg, M) = dim Hom g i, (Swg, M),

where Swg = Swy/l - Swg denotes the reduction mod. [ of the Z,{Gj-
module Swg defined by th. 44. The scalar product (Swg, M), makes sense,
SICE Swyy 18 projective, cf, 14.5,

The invariant 5(M ) has the following propertics:

(i) HO0—- M — M — M" — 0is an exact sequence of k{GJ-modules,
then H(M) = B(M’) + H{M").
(it} If ¢y denotes the modular character of M, then

BM) = (swgadnd = = 3 swg s~ op{s),

g FE ey

cf. 18.1, formula {wil).

(i) HM) = 3 EL i (M/ M)

=
where MY denotes the largest subspace of M fixed by the ith
ramification group ;.
(This follows from the formula g - swg = 2w g Indgr_(ac,i) by observ-
ing that {Indgj(ugl_),daM} is equal to dim, (M/MY)if i > 1))

(iv} We have B{M) == 0 if and only if G, acts trivially on M, i.e., the
action.of G on M is “tame.” [This follows from (jii).}

Thus (M) measures the “wild ramification™ of the module M. This
invariant enters into many guestions: cohomology of algebraic curves, local
factors of zeta functions, conductors of elliptic curves (cf, [28], [29], {30]).
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Appendix

Artinian rings

A rng A s said to be artinian f 11 satisfies the following equivailent
conditions {cf. Bourbaki, 4/g. Ch. VHI, §2):

{a) Every decreasimg sequence of left ideals of A is stationary.
(b} The left A-module A has finite fength.

(c) Every finitely generated left A-module has finite length.

If A is artinian, its radical r is nilpotent, and the ring § = A/t is
semisimpie. The ring § can be decomposed as a product [] S, of simple
rings; each S, is isomorphic to a matrix algebra M, {DD;) over a {skew) field
D, and possesses a unique simple module E,, which is a D)-vector space of
dimension n,. Every semisimple A-module is annihilated by r and thus may

he viewed as an S-module; if the module is simple, i is isomorphic to one of
the E,.

ExaMPLE. An algebra of finite dimension over a field k is an artinian ring;
this applies in particular to the algebra k{G] of a finite group G.

Grothendieck groups

fet A be a ring, and let ¥ be a category of left A-modules. The
Grothendieck group of &, denoted K(% ), is the abelian group defined by
generators and relations as follows:
Generators. A generator [E] is associated witheach E € &
Relations. The relation [E] = {E'] + |E”] 15 associated with each exact
sequence

Q- EFE-wF —-F —-0 whereE, E L & &
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Appendix

If H is an abelian group, the homomorphisms f: K(% )} — H correspond
bijectively with maps ¢: § — H which are “additive,” ie., such that
H{E) = ¢(E’) + #{E”} for each exact sequence of the above type.

The two most common examiples are those where % is the category of all
finitely generated A-modules, or all finitely generated projective A-modules.

Projective modules

Let A be a ring, and P be a left A-module, We say that P is projective If
it satisfies the following equivaient conditions (cf. Bourbaki, Alg., Ch. 1,

§2):

(a) There exists a free A-module of which P is a direct factor.

(b} For every surjective homomorphism f: E — E' of left A-modules,
and for every homomorphism g’: P — E’, there exists a homomor-
phism g: P — E such that g’ = fo g,

(¢) The functor E — Hom,{(P,E} is exact.

In order that a left ideal ¢ of A be a direct factor of A as a moduie, 1t 18
necessary and sufficient that there exist ¢ € A with e? = ¢ and 0 = Ae;
such an ideal is a projective A-module.

Discrete valuations

Let K be a field, and let K* be the multiplicative group of nonzero
elements of K. A discrete valuation of K (cf, {25]) is a surjective homomor-
phism v: K¥ — Z such that

v(x + ¥} = Inf(u(x),v{y)) forx,y & K¥.

Here v is extended to K by setting v{0) = +oo.

The set A of elements x € K such thatv(x) > 01is a subring of K, called
the valuation ring of v (or the ring of integers of K). It has a unique maximal
ideal, namely the set m of all x € K such that v(x) > 1. The field
k = A/m is called the residue field of A (or of v},

In order that K be complete with respect to the topology defined by the
nowers of m, it is necessary and suificient that the canonical map of A into
the projective limit of the A/m” be an isomorphism,
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Index of notation

Numbers refer to sections, i.e, “L17 18 Section 1.1.

V. GL(V): 1.1

p, p. = pls}: 1.4

C* = C-{0} 1.2

Vo= W W i3

g = order of G2 1.3, 2.2

Y@V, p @ py Sfml (V).
Alt* (V) 1.5

Tr{a) = 2 ay, x,t5) = Trip): 2.1

¥ =7 = x —iy: 2.1

xﬁ, xi: 2.1

6, (= 1ili=J = 0 otherwise):
2.2

oty = (Vo) Seec ol W)
2.2

1) = olr™")" 123

(pl) = {poiy

= (1/g) Srec POVN 23

Xps - oo Xid fyy <o gt Wo oo
W, 24

Cyyvnes Gty 2.5

V=V& &Y, (canonical
decomposition} : 2.6
p; {canonical projection onto V).

2.6

{c flt)ydr: 4.2

(g9) = fo; p(OW2) di: 4.2
C,:51

C: 32

D,.C,:33

[ ={1,};D, =D, xL54
Xgr Xu* 54

D, :35

D, = D, x 136

U, = H-K: 57

&, = H-L:58
G=@3~M==@d><l:5§
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Index of notation

KIG: 6.1

Cent. C[G], w,: 6.3

Indg (W), Ind W: 7.1

J = Ind f = Ind f 72
Res o, Res V: 7.2
KANG/H, W, p': 7.3
9,082

R™(G), R(G), Fygyo.
Resg, Res, Indg, ind: 9.1

TR, x5 x5, o) A () 9.1,

ex, 3
f,:94
x=x,x, = CP: 101
g = p"l: 10.2
"ui,, Ind, A : 102
A g ¥ 112
Spec, CI{G), M, B, .- 114
K, C, R (G), R {G): 121
Ay VP X Pp W mp 12.2
Iow o, ¥ 124
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Xi» Xelph g = p7l, VK‘p: 12.6,
12,7

A, b, Nix): 127

Q(m), I : 13.1

K, A, m, p, G, m: 14, Notation

Si-f.r Skr R};(G)r R;E(G), Rk((}};
R:{G): 14.1

P.(G), B {G), P, (G), PJ(G): 142

B 14.3

P = P/mP: 144

(e.f e e, fr: 145

¢, C, Cepr 151

d, D, Dgg: 152

e, E: 153

Rﬂsg, Indg:ml’f.!

Gmg, Bis e N Pps @, 5 Pp 18,1

:’CF(F & 5y b Pp '-’I?E(E & 5, ):18.3

des g SWas T He o 1901

Sw o 19.2

b(M): 19.3

Index of terminology

Numbers refer to sections, i.e., “1.1” is Section .1,

Absclutely irreducible (representation):
[2.1

Algebra (of a finile group): 6.}

Artin (representation of): 19.1

Artin's thearem: 9.2, 12.5, 17.2

Artinian {ring): Appendix

Associated {the p-elementary
subgroup ... with a p'-element): 10.1

Brauer's theorem (on the field affording
a representation): 12.3

Brauer’s theorem {on induced
characters); 10.1, 12,6, 17.2

Brauer's theorem {on modular
characters): 8.2

Center {of a group algebra): 6.3
Character (of a representation): 2.1
Character {modular): 18.]

Class function: 2.1, 2.5

T} -class: 12,6

Compact {group}): 4.1

Complement {of a vector space); 1.3
{onjugacy class: 2.5

Conjugate {elements); 2.5

i -coniugate (elements): 12.4

Decomposition {canonical ... of a
representationy: 2.6

Decomposition (homomorphism, . ..
matrix}: 15.3

Degree {of a representation}: 1.1

Dihedral {group): 5.3

Direct sum {of two representations): 1.3
Double cosets: 7.3

Elementary (subgroup): 10.5

Ik -elementary {subgroup) 12.6

Envelope {projective ... of a module):
i4.3

Fong-Swan {theorem of): 16.3, 17.6
Fourier (inversion formula of): 6.2

Frobentus {reciprocity formula of): 7.2
Frobenius (subgroup): ex, 7.3

Frobentus (theorem of): 11.2
Grothendieck {group): Appendix

Haar (measure): 4.2
Higman (theorem of}: ex. 6.3

Index (of a subgroup): 3.1, 33
Induced (Function}; 7.2

Induced (representation): 3.3, 7.1, 17.1
Integral {element over Z): 6.4
Irreducible (character): 2.3
Irreducible {modular character): 13,2
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index of terminoclogy

Irreducible (representations): 1.4
Isotypic {module, representation): 8.1

fic-class: 12.6
Li-conjugate {elements): 12.4

Ii-elementary, [y -p-elementary
{subgroup): 12.6

Kronecker (product): 1.5

Lattice (of 2 K-vector space): 15.2
Left coset {of a subgroup): 3.3

Mackey {irreducibility criterion of); 7.4
Matrix form (of a representation}: 2.}
Monoemial {(representation): 7.1

Milpotent (group): 8.3
Nondegenerate over Z {bilinear form):
14.5

Orthogonality relations (for
characters): 2.3

Orthogonality relations (for
coefficients): 2.2

p-component and p'~component of an
element: 10.1

p-element, p'-element; 1,1

p-elementary {subgroup): Q.1

Fx-p-clementary (subgroup): 12.6

p-group: 8.3

Plancherel (formula of): ex. 6.2

p-regular {element): 10.1

p-regalar {conjugacy class): 11.4

p-solvable (group): 16.3

Product (direct ... of two groups): 3.2

Product (scalar): 1.3

Product (scalar ...of two functions):
2.3

Product (semidirect
8.2
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... of two groups);

Product (tensor ... of two
representations): 1.5, 3.2

Projection: §.3

Projective (module): Appeadix

p-singular (element): 16.2

p-unipotent (element): 10.1

Quasispht algebra: 12.2
Quaternion {group): 8.5, ex. 8,11

Rational (representation over K): 12.1
Reduction {modulo m): 144, 15.2
Representation: 1.1, 6.1
Representation (permutation): 1.2
Represeatation (regular): 1.2
Representation (space}: 1.1
Representation (unit): 1.2
Restriction {of a representation}: 7.2,
9.5, 7.1

Schur {index): 12.2

Schur's lemma: 2.2

Simple (representalion): 1.3

Solvabie (group): 8.3

Spectrurm {of a commwiative ring): 1.4

Split {injection); 11,1

Subrepreseniation: 1.3

Sufficiently large {field}: 14, notation

Supersoivable (group): 8.3

Swan {representation of}: 19.1

Sylow {theorems of): §.4

Syiow subgroup: §.4

Symmetric square and aiternating
square {of a representation): 1.5

Trace {of an endomorphism): 2.1

Valuation (discrete . .. of a field):
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Virtual {character); 9.1
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