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Combinatorics and graph theory have mushroomed in recent years. Many
overlapping or equivalent results have been produced. Some of these are
special cases of unformulated or unrecognized general theorems. The body
of knowledge has now reached a stage where approaches toward unification
are overdue. To paraphrase Professor Gian-Carlo Rota (Toronto, 1967),
““Combinatorics needs fewer theorems and more theory.”

In this book we are doing two things at the same time:

A. We are presenting a unified treatment of much of combinatorics
and graph theory. We have constructed a concise algebraically-
based, but otherwise self-contained theory, which at one time
embraces the basic theorems that one normally wishes to prove
while giving a common terminology and framework for the develop-
ment of further more specialized results.

B. We are writing a textbook whereby a student of mathematics or a
mathematician with another specialty can learn combinatorics and
graph theory. We want this learning to be done in a much more

unified way than has generally been possible from the existing
literature.

Our most difficult problem in the course of writing this book has been to
keep A and B in balance. On the one hand, this book would be useless as a
textbook if certain intuitively appealing, classical combinatorial results were
either overlooked or were treated only at a level of abstraction rendering
them beyond all recognition. On the other hand, we maintain our position
that such results can all find a home as part of a larger, more general structure.

To convey more explicitly what this text is accomplishing, let us compare
combinatorics with another mathematical area which, like combinatorics, has
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Preface

been realized as a field in the present century, namely topology. The basic
unification of topology occurred with the acceptance of what we now call a
“topology” as the underlying object. This concept was general enough to
encompass most of the objects which people wished to study, strong enough
to include many of the basic theorems, and simple enough so that additional
conditions could be added without undue complications or repetition.

We believe that in this sense the concept of a “system ”’ 1s the right unifying
choice for combinatorics and graph theory. A system consists of a finite set
of objects called *“vertices,”” another finite set of objects called ‘“blocks,”” and
an “incidence’’ function assigning to each block a subset of the set of vertices.
Thus graphs are systems with blocksize two; designs are systems with con-
stant blocksize satisfying certain conditions; matroids are also systems; and
a system 1s the natural setting for matchings and inclusion-exclusion. Some
important notions are studied in this most general setting, such as connectivity
and orthogonality as well as the parameters and vector spaces of a system.
Connectivity i1s important in both graph theory and matroid theory, and
parallel theorems are now avoided. The vector spaces of a system have
important applications in all of these topics, and again much duplication is
avolided.

One other unifying technique employed is a single notation consistent
throughout the book. In attempting to construct such a notation, one must
face many different levels in the hierarchy of sets (elements, sets of elements,
collections of sets, families of collections, etc.) as well as other objects
(systems, functions, sets of functions, lists, etc.). We decided insofar as possible
to use different types of letters for different types of objects. Since each topic
covered usually involves only a few types of objects, there is a strong tempta-
tion to adopt a simpler notation for that section regardless of how it fits in
with the rest of the book. We have resisted this temptation. Consequently,
once the notational system is mastered, the reader will be able to flip from
chapter to chapter, understanding at glance the diverse roles played in the
middle and later chapters by the concepts introduced in the earlier chapters.

An undergraduate course in linear algebra is prerequisite to the com-
prehension of most of this book. Basic group theory is needed for sections
ITE and XIC. A deeper appreciation of sections IIIE, I1IG, VIIC, and VIID
will be gained by the reader who has had a year of topology. All of these
sections may be omitted, however, without destroying the continuity of the
rest of the text.

The level of exposition 1s set for the beginning graduate student in the
mathematical sciences. It is also appropriate for the specialist in another
mathematical field who wishes to learn combinatorics from scratch but from
a sophisticated point of view.

It has been our experience while teaching from the notes that have evolved
into this text, that it would take approximately three semesters of three
hours classroom contact per week to cover all of the material that we have
presented. A perusal of the Table of Contents and of the *“Flow Chart of the
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Sections”’ following this Preface will suggest the numerous ways in which a
subset of the sections can be covered in a subset of three semesters. A List of
Symbols and an Index of Terms are provided to assist the reader who may have
skipped over the section in which a symbol or term was defined.

As indicated in the figure below, a one-semester course can be formed
from Chapters I, II, IX, and XI. However, the instructor must provide some
elementary graph theory in a few instances. The dashed lines in the figure

below as well as 1n the Flow Chart of the Sections indicate a rather weak
dependency.

l — I — 1l — IV — 'V

N
L X

IX X1 VII —— VIII VI

If a two-semester sequence is desired, we urge that Chapters I, II, and III
be treated in sequence in the first semester, since they comprise the theoretical
core of the book. The reader should not be discouraged by the apparent
dryness of Chapter II. There is a dividend which 1s compounded and paid
back chapter by chapter. We recommend also that Chapters IV, V, and VI
be studied 1n sequence; they are variations on a theme, a kind of minimax or
maximin principle, which i1s an important combinatorial notion. Since
Chapter X brings together notions from the first six chapters with allusions to
Chapters VII and IX, it would be a suitable finale.

There has been no attempt on our part to be encyclopedic. We have even
slighted topics dear to our respective hearts, such as integer programming
and automorphism groups of graphs. We apologize to our colleagues whose
favorite topics have been similarly slighted.

There has been a concerted effort to keep the technical vocabulary lean.
Formal definitions are not allotted to terms which are used for only a little
while and then never again. Such terms are often written between quotation
marks. Quotation marks are also used in intuitive discussions for terms which
have yet to be defined precisely.

The terms which do form part of our technical vocabulary appear in
bold-face type when they are formally defined, and they are listed in the Index.

There are two Kinds of exercises. When the term “Exercise’’ appears in
bold-face type, then those assertions in italics following it will be invoked in
subsequent arguments 1n the text. They almost always consist of straight-
forward proofs with which we prefer not to get bogged down and thereby
lose too much momentum. The word “Exercise’ (in italics) generally
indicates a specific application of a principle, or it may represent a digression
which the limitations of time and space have forced us not to pursue. In
principle, all of the exercises are important for a deeper understanding of and
insight into the theory.

Chapters are numbered with Roman numerals; the sections within each
chapter are denoted by capital letters; and items (theorems, exercises, figures,
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etc.) are numbered consecutively regardless of type within each section. If
an item has more than one part, then the parts are denoted by lower case
Latin letters. For references within a chapter, the chapter number will be
suppressed, while in references to items in other chapters, the chapter number
will be italicized. For example, within Chapter III, Euler’s Formula is
referred to as F2b, but when it is invoked in Chapter VII, it 1s denoted by
IITE2b.

Relatively few of the results in this text are entirely new, although many
represent new formulations or syntheses of published results. We have also
given many new proofs of old results and some new exercises without any
special indication to this effect. We have done our best to give credit where
it is due, except in the case of what are generally considered to be results
“from the folklore”.

A special acknowledgement i1s due our typist, Mrs. Louise Capra, and to
three of our former graduate students who have given generously of their time
and personal care for the well-being of this book: John Kevin Doyle, Clare
Heidema, and Charles J. Leska. Thanks are also due to the students we have
had 1n class, who have learned from and taught us from our notes. Finally,
we express our gratitude to our families, who may be glad to see us again.

Syracuse, N.Y. Jack E. Graver
April, 1977 Mark E. Watkins
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CHAPTER I
Finite Sets

IA Conventions and Basic Notation

The symbols N, Z, Q, R, K will always denote, respectively, the natural num-
bers (including 0), the integers, the rational numbers, the real numbers, and
the field of order 2. In each of these systems, 0 and 1 denote, respectively, the
additive and multiplicative identities.

If Uis aset, Z(U) will denote the collection of all subsets of U. It is called
the power set of U. In general, the more common, conventional terminology
and notation of set theory will be used throughout except occasionally as
noted. One such instance 1s the following usage: while “U < W will con-
tinue to mean that U 1s a subset of W, we shall write “U < W when
U< Wand U # W.(Thus U can be empty if W is not empty.) The cardi-
nality of the set U will be denoted by |U|, and Z,(U) will denote the collec-
tion of all subsets of U with cardinality m. A set of cardinality m is called
an m-set.

The binary operation of sum (Boolean sum) of sets S and 7T in Z(U) is
denoted by S + T, where

S+ T=4{x:xeSUT; x¢SNT}.

In particular, S + U is the complement of S in U, and no other notation for
complementation will be required. Since the sum is the most frequently used
set-operation in this text, we include a list of properties which can be easily

verified.
For R, S, T € Z(U),

Al S+T=T+S
A2 R+S)+T=R+(S+T7)
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A3 S+ T=S<T=2

A4 S+ T =g <S=T

AS S+ T=FuvVDD+SNT)

A6 RUS+T)2(RUS)+ (RUT)

A7 RN +T)=RnNnS)+(RNT)

A8 R+(SN"TH2R+S N(R+T)

A9 R+S NR+T)sR+SUVDN<SsR+S)VR+T)

A10 Exercise. Show that the inclusions in A6, A8, and A9 cannot, in general,
be reversed.

Because of Al and A2, the sum > . S where & < Z(U) 1s well-defined
if ¥ # g.1If ¥ = @, we understand this sum to be &.

As usual, the cartesian product of sets Xi,..., X, will be denoted by
X; X...%X X,. Thus

X X...Xx Xp,={(x1,...,xp): ;€ Xyfori=1,..., m}.

A function f from X Into Y 1s a subset of X x Y such that
I fN({x} x Y)] =1 for all xe X. Following established convention,
f: X— Y will mean that f is a function from X into Y. For each x € X,
f(x) is the second component of the unique element of /N ({x} x Y). We
shall adhere to the terms imjection if |fN (X x {y}| <1 for all ye Y;
surjection if | £ N (X x {y})| = 1forall y € Y; and bijectionif | f N (X x {y})|

=] forall ye Y.

We say sets X and Y are isomorphic if there exists a bijection b: X — Y,
and we note that X and Y are isomorphic if and only if | X| = | Y.

A (binary) relation on U is a subset of U x U. Let R, be a relation on U,
for i = 1, 2. We say that (U,, R,) is isomorphic to (U,, R,) if there exists a
bijection b: U; — U, such that (x, y) € R, if and only if (b(x), b(y)) € R..
A binary relation R on U is reflexive if (#, ¥) € R for all u € U; R 1s symmetric
if (u, v) € R implies (v, u) € R for all u, v € U; R is transitive if («, v) € R and
(v, w) € R together imply (v, w) e R for all u,v, we U. R i1s an equivalence
relation if it is reflexive, symmetric, and transitive.

Problems involving categories being outside the scope of this book, we
find it best to ignore them, and we shall freely use such terms as *““equivalent”
and ‘““equivalence relation” in regard to objects from various categories
and not only to elements of some given set. Such disregard for categorical
problems will be particularly flagrant as we treat in turn various notions of
‘““isomorphism.” For example, the “‘relation” of ‘‘is isomorphic to” 1s
clearly an “equivalence relation” on the category of sets.

We denote the set of all functions from Xinto Yby Y%.Sincea X Y = &,
Y ? consists of a single function @ which is an injection; 1n case Y = &,
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IA Conventions and Basic Notation

it is a bijection, of course. If § < X, then the restriction of / to S, denoted by
fis, belongs to Y* and satisfies f|s(x) = f(x) for all x € S.

A bijection b: U — U is called a permutation of U. The set of all permuta-
tions of U 1s denoted by II(U). The identity on U is the function 1, € II(U)
given by 1,(x) = x for all x e U.

The function f: X — Y induces two corresponding functions between

P(X) and Z(Y). One of these is also denoted by f, and f: Z(X) — Z(Y) 1s
given by

fIS] = {f(x): xe S}, forall SeZ(X).

(Note that the choice of parentheses or brackets to surround the argument
determines which of the two functions denoted by the symbol f is intended.)
The set f[S] is the image of S under /. In particular, f[X] is the image of f.
The other function induced by fis the function f~1: Z(Y) — Z#(X) given by

YT ={x:f(x)eT}, forallTeZ(Y).

If £is a bijection, its inverse, also denoted by f~1, is a function f~!: Y — X,
By our convention, if ye Y, f~[y] (= f~[{y}] denotes a subset of X, but
if fis a bijection, f~1(y) denotes an element of X. fmaps Sinto T if f[S] = T
and emto T if f[S] = T. We say f is a constant function if | f[X]| < 1.

Let : X—>Y; S, Te#(X); U WeP(Y). The following basic proper-
ties of functions and sets are readily verified:

All ISV T]=[fIS]u/fIT]

A12 fISNT] < fIS]n fIT]

Al3 fTHUV W] = U]V f W]
Al4 fTHUN W] = U]l fHW]
A15 fIS + T1 2 fIS] + fIT]
Al6 U + W1 =f"YU] + f W]

A17 Exercise. Show that the inclusions in A12 and A15 cannot, in general,
be reversed.

Let X, Y, and Z be sets. Let fe Y* and ge Z*. The composite of f by g
will be denoted by gf. Clearly gf e Z%. We conclude the present section with
a rapid review of some elementary properties of functions and some termi-
nology.

A18 If both fand g are injections (respectively, surjections, bijections), then
so 1s gf.
Al9 (gf)~1 = flg~le P(X)?2.

A20 g is an injection if and only if there exists 2 € Y? such that hg = 1y.
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A21 Let g be an injection. If gf; = gf; for fi, fo € Y%, then f, = f,. The
converse holds if | X| > 2.

A22 fis a surjection if and only if there exists j € X* such that fj = 1y.

A23 Let f be a surjection. If g,f = g.f for g,, g, € Z*, then g, = g,. The
converse holds if |Z| > 2.

A24 fis a bijection if and only if there exists b € XY such that bf = 1, and
fb = 1y. In this case b = f~1, and so b is unique.

A25 If X 1s finite and h € X%, then A 1s a surjection if and only if A 1s an
injection.

If S = X and he X%, we say A fixes S if A[S] < S. If hg = 15, we say
h fixes S pointwise.

If  is a binary operation on Y, then * induces a binary operation on Y%
which 1s also denoted by . Thus

(f1 *fo)(x) = f1(x) * fo(x), forall f;,fa€ Y¥, x€ X.

Note that if * on Y enjoys any of the properties of associativity, commu-
tativity, or existence of an identity, then that property is also enjoyed by =
on YZ.

One final important convention: henceforth, all arbitrarily chosen sets
will be finite unless explicitly stated otherwise.

A26 Exercise. Let f: X — Y. Show that if f is an injection (respectively,
surjection, bijection), then so is the induced function f: (X) — #(Y), and
conversely.

A27 Exercise. Let f: X — Y. Show that if f is an Injection (respectively,
surjection, bijection), then f~1: Z(Y) — P(X) is a surjection (respectively,
injection, bijection), and conversely.

IB Selections and Partitions

Let U be a set and let S € Z(U). The characteristic function of S 1s the func-
tion

CS: U'—>K
given by
1 1fxedS;
B1 = ’
¢s() {0 ifxeU+ S.

B2 Proposition. The function o: KY — P(U) given by
o(c) ={xeU:c(x) # 0} forallcelK’
is a bijection. Moreover, c~*(S) = cg for all S € #(U).
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PROOF. Clearly o is an injection. If §'e Z(U), then o(cs) = S. Hence o is a
surjection. L]

B3 Exercise. Let S, T € Z(U). Prove that
Cs + ¢ = Cgyr and csCp = Csnar,

and express cg,r In terms of ¢g and c;.

For a set U, a function s € NV is called a selection from U. If x € U, the
number s(x) 1s the “number of times x is selected by s’°. The number

s| = D s(x)

X€U

1s the cardinality (weight) of the selection s. If |s| = m, we say that s is an
m-selection. The set of all m-selections from U is denoted by S,,(U), and we
let

S(U) = O S, (U) = N,

If Se2(U), we define the characteristic selection of S by

1 ifxeS;

B4 55(x) = {O ifxeU + S.

The difference between Bl and B4 is subtle but important. In B4, the
symbols 0 and 1 denote elements of N rather than K. Of course, ¢g and sg
are closely related, but since 1 + 1 gives a different ‘““answer’ in N than
in K, the characteristic function and characteristic selection are not the same
thing. In particular, the correspondence S — sg gives a natural injection of
P(U) into S(U) under which S + T is not necessarily mapped onto sy + sy,
even though S N T 1s always mapped onto sgsy for all S, T e #(U). (Cf. B3.)

A subcollection 2 < Z(U) of nonempty subsets of U is called a partition

of U if
S 0=u

Qe2

and

ONR=g, forall Q,Re2; 0 # R.

The elements of 2 are called the cells of 2.If |2| = m, we call 2
an m-partition of U. The collection of all m-partitions of U is denoted
by P,(U); P(U) denotes the collection of all partitions of U. A
fundamental identity satisfied by any partition 2 € P(U) is

BS U] = > |0
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There is a natural multiplication on P(U). Let 2,Z € P(U) and let
2% be the collection of nonempty subsets of the form QO N R where Q € 2
and R € £.

B6 Exercise. Prove that if 2e€ P,(U) and % € P,(U), then 2% € P,(U) for
some p < mn. Show, moreover, that this multiplication is commutative and
associative and admits an identity in P(U).

The next result delineates the fundamental relationship between parti-
tions and equivalence relations.

B7 Proposition. A necessary and sufficient condition that a relation R on a
set U be an equivalence relation is that there exist a partition 2 € P(U)
such that (x, y) € R if and only if x and y are elements of the same cell

of .

PrROOF. Let R be an equivalence relation on U. For each xe U let S, =
{we U: (x, w) € R}. Since R is reflexive, xe€ S, and so S, # & for each
xe€ U. Let x,ye U and suppose we S, N S,. Thus (x, w) and (y, w) € R.
Since R is symmetric, (w, y) € R, and since R is transitive, (x, y) € R. Now
let z € S,; hence (y, z) € R. Again by transitivity, (x, z) € R and z € S,. This
proves that S, < S,. By a symmetrical argument we see that S, = S,. Thus
exactly one of the following holds forany x, ye U: S, = S, or S, N S, = &.
If 2 ={S:S = S, for some x € U}, then 2 € P(U).

Conversely, let 2 € P(U). Define the relation R on U by: (x,y)€eR
if x, ye Q for some Q € £. One readily verifies that R is an equivalence
relation. [

B8 Proposition. Let f: B— U. Then {f'[x]): x € f[B]} is a |f[B]|-partition
of B.

ProofF. For each be B, bef~[x] if and only if x = f(b). Hence
2xeserf “x] = Band f~Y[x] N f~y] = @ for x # y. Finally, f~*[x] # &
if and only if x € f[B]. [

B9 Proposition. Let f: B— U. Let s: U— N be defined by s(x) = |f~[x]|.
Then s is a |B|-selection from U.

PrOOF. Clearly s € S(U). We have that

s| = > |fUx)l = D |fUx]| = |B].

xeU xef(B]

The first equality here is the definition of |s|; the second follows from the
fact that |@| = 0 and f~1[x] = & for x ¢ f[B]; the third equality follows
from BS and BS. ]

6
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If f: B— U, then the partition of f1s {f ~[x]: x € f[B]}, and the selection
of fis the function s: U — N given by s(x) = |f~[x]|.

B10 Exercise. Prove that the functions f: B— U and g: C — U have the
same selection if and only if there is a bijection b: B — C such that f = gb.

B11 Exercise. Prove that the functions f: B— U and h: B— W have the
same partition if and only if there is a bijection b: f|B] — h[B] such that bf = h.

B12 Exercise. Let f: X — Y. Define f;: S(Y) — S(X) by fi(s) = sf for all
s € S(Y). Show that f is an injection (respectively, surjection, bijection) if
and only if f; 1s a surjection (respectively, injection, bijection).

B13 Exercise. Letf: X — Y. Define f;: P(Y) — P(X) as follows: if 2 € P(Y),
then f5(2) consists of the nonempty members of the collection{f ~'[Q]: O € 2}.
First verify that £,(2) € P(X); then show that f is an injection (respectively,
surjection, bijection) if and only if f; 1s a surjection (respectively, injection,
bijection).

The remainder of this section is concerned with the notion of ‘“isomor-
phism”’ between objects of the kinds we have been considering.

Functions f: B— U and g: C — W are isomorphic if there exist bijections
p: B— C and q: U— W such that f = q~'gp. The pair (p, q) is called a
function-isomorphism. The selections s € S(U) and ¢t € S(W) are isomorphic
if there exists a bijection g: U — W such that s = #g. Such a bijection is
called a selection-isomorphism. (These two definitions are illustrated by the
commutative diagrams B14. In this and other such diagrams bijections are
indicated by the symbol 2 .) Partitions 2 € P(B) and Z € P(C) are isomorphic
if there exists a bijection p: B — C such that p[Q] e Z for all Q € 2. The
bijection p is a partition-isomorphism.

B———————+U U-—q———-»W

e
N

C ——

B15 Exercise. Prove that in each of the above definitions, * isomorphism’ is
an equivalence relation.

B16 Proposition. Let f: B—~Uand g: C— W.Letp:B—Candq. U—> W
be bijections.
(@) If (p, q) is a function-isomorphism from f to g, then p is a partition-
isomorphism from the partition of f to the partition of g and q is a selection-
isomorphism from the selection of f to the selection of g.
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(b) If q is a selection-isomorphism from the selection of f to the selection
of g, then there exists a bijection p’': B— C such that (p', q) is a function-
isomorphism from f to g.

(¢) If p is a partition-isomorphism from the partition of f to the partition
of g and if \U| = |W|, then there exists a bijection q': U— W such that
(p, q') is a function-isomorphism from f to g.

PrOOF. (a) Let S be a cell of the partition of f, i.e., S = f~[x] for some
x € U. By Al9, p[S] = plf~*[x]] = g [g(x)], which is a cell of the par-
tition of g. Let s be the selection of f and ¢ the selection of g. Let x € U. By
definition and A19,

t(q(x)) = g7 gX)]| = |p7 g7 g = |f 7 x]] = s(x).

Thus tg = s.
(b) With s and ¢ as in the proof of (a), we assume tg = s. For any x € U,

| f7x]| = s(x) = tg(x) = [g~g(x)]|.

Hence there exists a bijection p,.: f~1[x] — g [g(x)]. These bijections for
all x € U determine a bijection p’': B— C by p’'(w) = p,(w) where w € f ~*[x].
Clearly f = g~ 1gp’.

(c) Since p is a partition-isomorphism from the partition of f to the par-
tition of g, we have

{g7 [x]: xe W} = {plf~'[x]]: xe U}.

We may define g”: f[B] — g[C] by choosing g"(x) to be the unique ye W
such that g~ '[y] = p[f~[x]]. Clearly ¢” as defined is a bijection, and since
|U| = |W]|, it may be extended to a bijection q’': U — W. One may easily

verify that ¢'f = gp. L]

A more succinct but somewhat weaker formulation of the above proposi-
tion 1s the following.

B17 Corollary. Let f: B— U and g: C — W. Then the following statements
are equivalent .
(&) f and g are isomorphic;
(b) the selections of f and g are isomorphic;
(¢) |U| = |W| and the partitions of f and g are isomorphic.

We return briefly to cartesian products presented in the first section and
list some readily verifiable properties. Let W, X, and Y be sets. Then
B18 X x Yand Y x X are set-isomorphic.
B19 W x (X x Y)and (W x X) x Y are set-isomorphicto W x X x Y.
B20 2eP(Y)ifandonlyif {X x O: Qe 2}eP(X x Y).

8
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B21 If {X,,..., Xn} € P(X), then the function f— (f|x,,...,fix,) 1S a set-
isomorphism between Y% and Y*1 x...x YZ%n,

Given the cartesian product X; x ... X X, the ith-coordinate projection
1s the function from X; x ... x X, into X; given by (xy,..., x ) — X;.

B22 Exercise. Describe the selections and partitions of the coordinate pro-
jections of the cartesian product X x Y.

IC Fundamentals of Enumeration

We begin this section with a list of some of the more basic properties of finite
cardinals. Some of these were mentioned 1n the preceding sections.

Cl1 If S e Z(U), then |S| < |U].
C2 If 2 P(U), then |U| = 2 0c2 |O].
For sets X and Y,

C3 XV Y|+ [XnY|=|X|+|Y]
C4 XUYl —|XNY|=|X+7Y]
C5 X+ Y|+ 2] XnY|=|X|+|Y]
Cé6 X x Y| = |X]|]|Y].

C7 Proposition. For any sets X and Y,
YY) = ||,

PrOOF. Let X be an m-set. We first dispense with the case where m = 0. If
also Y = &, then the Proposition holds if we adopt the convention that
0°=1.If Y # &, then | Y|!?!= 1, as required.

Now suppose m > 0, and consider the m-partition {{x,}, ..., {x.}} of X.
By B21 and C6,

| YX| = | Y™ x ... x Y| = | Y. | .| Y,
Clearly |Y*}| = | Y| for all i, and so | Y*| = |Y|™ = | Y|IXI. ]

C8 Corollary. |2(U)| = 2'Y! for any set U.
PrOOF. Use C7 and B2. []

Because of C8, one often finds in the literature the symbol 2Y in use in
place of the symbol Z(U).

C9 Exercise. Let S € Z(U). How many functions in UV fix §? How many
fix S pointwise?
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C10 Exercise. Let Se #(X) and Te #Z(Y). How many functions in Y%
map S into 7?7

C11 Exercise. Let {S,,..., Sp} € P(X) and {7}, ..., T,,} € P(Y). How many
functions in Y* map S;into 7 foralli = 1,..., m?

C12 Exercise. Let S, T € Z(U). How many subsets of U contain S? How
many avoid S (R avoids S if RN S = 2)? How many meet S (R meets S
if RN S # @)? How many meet both S and 7T'?

Three important cardinality questions about the set Y* are how many
elements are injections, how many are surjections, and how many are bi-
jections. For convenience we denote

inj(Y*) = {fe Y*: fis an injection}
sur(Y*) = {fe Y*: fis a surjection}
bij(Y*) = {f e Y*: fis a bijection}.

We now proceed to resolve the first and third of these questions. The
second question 1s deceptively more complicated and will not be resolved
until §E. By convention, 0! = 1 and n! = n(n — 1)! for ne N + {0}.

C13 Proposition. For sets X and Y,

0 if|x| > |Y];
I |
e {(——-——-—-—, Py f1X] < [¥].

PrROOF. Obviously inj(Y*) = &g if | X| > |Y|. Suppose | X| < |Y|.If X = &,

then both |inj(Y*)| and |Y|!/(|Y| — |X]|)! equal 1. If |X| = 1, then

inj(¥Y*) = Y%, and by C7, [inj(Y*)| = |Y|'"* = | Y| = |Y[Y/(|Y] — D
We continue by induction on | X|, assuming the proposition to hold when-

ever |X| < m for some integer m > 1. Suppose |[X| =m + 1. Fix xe X
and let X' = X + {x}. Let Y = {y,,..., y,} and let

Yj= Y"l‘{yj}, j=1,...,n.

Since m= |X'| =|X|-1<]|Y|—-1=]Y,], the induction hypothesis
implies that

C14 |inj(Y,X')| = '(-I-'i';;i-l—_z_————-jll'x,,l)! = (ﬁ'—(:’_!—'l-:-_%—)—!na—i (j = l,..., n).

If we define
I.‘f = {fE an(Yx):f(x) = yi}a (j = 19 JOE n)a

it 1s clear that {I,,..., I} € P(inj(Y*)). Moreover, the correspondence
J+—fix- 1s clearly a bijection from I, onto inj(Y,*) foreach j=1,..., n.

10
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Combining this fact with C2 and C14, we obtain

n

inj(Y®)|= > |Ij]

j=1
= e inj( Y, %)
. (n—1)! n!
_n'(n-—— 1 —m)! (n— (m+ D)
_ |
~ Y= [XDT =

From the above formula one immediately obtains

C15 Corollary. For sets X and Y,

. 0 if | X| # |Y];
bij( ¥%)| =
By(r™) {|Y|! if | X| = | ¥].

Since bij(X*) = II(X) we have
C16 Corollary. If X is an n-set, |II(X)| = n!

C17 Exercise. Let X be an n-set and let S € Z(X). How many permuta-
tions of X fix § pointwise? How many fix S (set-wise)? How many map
some given point x € X onto some point of S'?

For m, n € N it 1s conventional to write

" n! PR
(m)= m(n—myi ="
0 if m > n.

Observe that () = (, ") if m < n.

C18 Corollary. For any set X, |Z(X)| = (7).

PrROOF. Let M be some fixed m-set. For each S € Z,(X), let By = bij(S¥).
Then clearly {Bs: S € Z,(X)} € P(inj(X*™)). By C13, C2, and then CI15,

(| X] — m)! | inj(X™)] Se;(x)| s| |2 n(X)|m!. ]

Numbers of the form (%) are called binomial coefficients because they arise

also from the binomial theorem of elementary algebra, as will presently be
demonstrated. A vast amount of literature has been devoted to proving

“binomial identities.” The following corollary and some of the ensuing

11
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exercises in this section provide examples of some of the easier and more
useful such identities.

C19 Corollary.

50)-=

i=0
PrROOF. Let X be an mn-set. Then {#(X):i=0,1,...,n}e P(#(X)). The
result follows from C2 and C8. []

C20 Coroliary.

1)+ ) =)

PrOOF. Let U be an n-set and choose x € U. The collection of m-subsets of
U which do not contain x is precisely Z,(U + {x}), while the collection of
those that do is set-isomorphic to £, _,(U + {x}). Hence |Z,_(U + {x})| +

‘gm(U + {x})‘ = Igm(U)I L]

Of course one could also have obtained this corollary from the definition
by simple computation. It is, however, of interest to see a combinatorial
argument as well.

C21 Binomial Theorem. Let a and b be elements of a commutative ring with
identity. Then

(a + b)" = Zlo (';)a‘b"“.

ProOF. To each function f: {1, 2, ..., n} — {a, b} there corresponds a unique
term of the product (a + b)*, namely q!/~'laliplr~ 01l Thys

(a + b = Z gl ~Mallplr =20l where f e {a, b}(1+2+m,
f

Hence
@+ by = > {f:|fal| = i}|ab"-*

i=0

- Z l‘%({la 2, PP n})laibn—i
i=0

= Z (’?)a‘bn"i, _
i=0 l

By choosing the ring to be Z and letting a = —1, and b = 1 above, we

obtain the following identity:

12
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C22 Corollary.

for any set U.

C23 Exercise. How many subsets in Z(U) have even (respectively, odd)
cardinality ?

As we have indicated, we will evaluate |[sur(Y*)| in §E after having
developed more powerful techniques. Enumeration of the m-partitions of a
set must also be deferred. In fact, |P,,(U)| and [sur( Y*)| are closely related
as we see In the next result.

C24 Proposition. If M is an m-set, then

|sur(M V)|

lpm(U)l = !

PROOF. Let @: sur(M ") — P,(U) by defining ¢(f) to be the partition of f.
By Proposition B8, ¢(f) is a |f[U]|-partition. Since f is a surjection, ¢(f)
1s an m-partition. Since ¢ 1s clearly a surjection, we also have from B8 that

{0~ 1[2]: 2 € P,(U)} is a partition of sur(M V). Thus
sur(M )| = > e~ *[2]].

2ePn(U)
It remains only to show that |[p~'[2]| = m! for all 2 € P,(U).

Fix 2€eP,(U) and ge o~ 1[2]. If he II(M), then clearly ¢(hg) = ¢(g),
i.e., hg € p~1[2]. Hence we have a function y: II(M) — ¢~ ![2] defined by
v(h) = hg. Since g is a surjection, we have by A23 that if 4, = hy,g then
h, = h,. Hence y is an injection. Finally, it follows from B11 that for any
fe e 1[2], there exists h € II(M) such that f = hg. We conclude that y is
a bijection, and |p~1[2]| = |II(M)| = m!. L]

In order that the reader may become aware of the difficulties in counting
surjections, he is asked in the next exercise to work out the two easiest non-
trivial cases.

C25 Exercise. Compute |sur(Y*)| where |Y| = |X| — ifori = 1, 2.

Of the fundamental objects that we have introduced, only the selections
remain to be considered.

13
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C26 Proposition. |S,(U)| = (V' ~1), except that |So(2)| = 1.

Proor. Let U = {uy,...,u,} and let X ={1,2,...,n + m — 1}. We con-
struct a function ¢: &, _1(X) — S,(U) as follows. Let Y = {y,,..., Yn—1} €
%, -1(X) where the elements of Y are indexed so that y, < yo <...< y,_1.

Letting y, = 0 and y, = n + m, we define (YY) to be the selection s € S(U)
given by

S(ui)=yi—yi_1_ l, fori = l,...,n.
Note that

|s| = iz s(u) = iz Vi = Yi-1 — 1) = m,
=1 =1

1.e., o(Y) e S, (U).
It suffices to show that ¢ is a bijection, since

Z_(X)| = (nlfll) _ (n +m — 1) _ (IUI + m — 1).

n—1 m

@ is an injection. Suppose that ¢o(Y) = s = o(W). We have Y =
{y]., ***D yn-l}a W = {w]_, ® o o wn-l} e%_l(X), al‘ld

Vi — Viei1— 1 =s8(y) =wy—w_,—1, fori=1,...,n.

By induction on i one readily verifies that the system of equations y; — y;_; —
l =wy,—wy_y—1fori=1,...,n, and y, = wy, y, = w, has exactly one
solution: y;, = w;fori =0,1,...,n Hence Y = W.

@ is a surjection. Let s € S,,(U) and define y;, = i + >;-; s(¥;). One may
easily verify that yo =0, y,=n+m, and 0 < y; < yo <...< pp-1 <
n+ m. Thus {yb ¢ e yn—l} € %—I(XL and (P({yla * oy yn—l}) = S D

C27 Exercise. Compute > _o |Sn(U)| where r is any positive integer. (Hint:
use Corollary C20.)

C28 Exercise. How many elements of S, (U) select all elements of U at

least once? How many select all elements an even (respectively, odd) num-
ber of times?

The last counting problem that we wish to discuss at this time is the
following: how many functions in Y* are distinct up to isomorphism? In
other words, given that function-isomorphism is an equivalence relation on
Y#* (B15), how many equivalence classes are there? Generally speaking,
the equivalence classes will be of varying sizes. For instance, the set of
bijections, if any, will form a single equivalence class of size |X|!. On the
other hand, the constant functions form an equivalence class of size |Y]|.
Because these equivalence classes are not of uniform cardinality, we are
unable to use that old ‘“‘cowboy” technique applied in C24; in effect to
“count their legs and divide by 4. However, it is clear that 1somorphic

14
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functions will have 1somorphic partitions and vice versa (B17). While the
same can be said of the selections of isomorphic functions, it is more fruit-
ful to consider partitions.

We have then that ¢: Y* — P(X), where ¢(f) is the partition of f, is an
injection which maps isomorphism classes onto isomorphism classes. What
1s the image of ¢? Clearly a partition £ = o(f) for some f if and only if
12| < |Y|. Hence the image of ¢ is P,(X) U Py(X) U...UP(X) where g =
min{| X[, | Y|}. It is also clear that isomorphic partitions are of equal cardin-
ality. Hence the problem reduces to counting the isomorphism classes of
P..(X) for each m. In fact, each isomorphism class can be uniquely represented
by a selection s from N + {0} where s(i) is the number of cells of cardinality .
This leads us to define a partition of the positive integer n to be a selection
s€ S(N + {0}) such that >, is(i) = n. If [s] = m, then s is called an
m-partition of n.

As an example, let X be a 19-set, and suppose £ € P,(X) has two single
element cells, a 2-cell, three 3-cells, and a 6-cell. The selection corresponding
to 2 is a 7-selection with s(1) = 2, s(2) =1, s(3) = 3, s(4) = s(5) = 0,
s(6) = 1, and s(i) = O fori > 6.

We combine the results in this discussion in the following proposition.

C29 Proposition. Let p,(n) denote the number of m-partitions of the positive
integer n while p(n) denotes the total number of partitions of n. Let X be
an n-set. Then the number of isomorphism classes in P, (X) is p,(n). The
number of isomorphism classes in P(X) is p(n). If | Y| < n, the number of
isomorphism classes in Y* is DX, pa(n); if |Y| = n, the number of iso-
morphism classes in Y* is p(n).

C30 Exercise. Show that the number of isomorphism classes in S,,(X) is
pn(m), where X is an n-set.

We close this section with a small but representative assortment of prob-
lems analogous to the “word problems’ of high school algebra or elementary
calculus, insofar as their difficulty lies in translating the language of the
stated problem into the abstract terminology of the theory. Observe that
in some of these problems, the question ‘“how many’’ does not always make
precise a unique answer which is sought. When such ambiguity arises, the
reader should investigate all alternative interpretations of the question.

C31 Problem. Prove the identity () ()= (}) (3.-%.) where k£ < m < n by enu-
meration of appropriate sets rather than by direct computation (cf. the
comment following C20).

C32 Problem. From a list of his party’s » most generous contributors, the
newly-elected President was expected to appoint three ambassadors (to

15
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different countries), a Commissioner of Indian Affairs, and a Fundraising
Committee of five people. In how many ways could he have made his ap-
pointments ? |

C33 Problem. A candy company manufactures sour balls in tangy orange,
refreshing lemon, cool lime, artificial cherry, and imitation grape flavors.
They are randomly packaged in cellophane bags each containing a dozen
sour balls. What is the probability of a bag containing at least one sour ball
of each of the U.S. certified flavors?

C34 Problem. Let m, k € Z. How many solutions (x,, ..., x,) are there to
the equation

x]_ +ooo+ xn — m
where x;1s anintegerand x; = k(i=1,...,n)?

C35 Problem. A word 1s a sequence of letters. How many four-letter-words
from the Latin alphabet have four distinct letters, at least one of which 1s a
vowel ? (An exhaustive list is beyond the scope of this book.)

C36 Problem. How many ways can the numbers {1, 2,..., n} be arranged
on a ‘“‘roulette’” wheel? How many ways can alternate numbers lie in black
(as opposed to red) sectors?

C37 Problem. Compute ps(n).

C38 Problem. What fraction of all 5-card poker hands have 4-of-a-kind?
a full-house ? 3-of-a-kind ? 2-of-a-kind ? a straight flush ? a flush ?.a straight?
none of these?

Two good sources for more problems of this type are C. L. Liu [Z.2,
pp. 19-23] and Kemeny, Snell, and Thompson [k.2, pp. 97-99, 102-104,
106-108, 111-113, 136-139].

ID Systems

A system A is a triple (V, f, E) where V and E are disjoint sets and f: E— Z(V).
The elements of E are called the blocks of A and the elements of V are called
the vertices of A. If x € f(e), we say that the block e ““contains’ the vertex x,
or that x and e are incident with each other. If S € Z(V), we say that the
block e “contains” S (“is contained In” §) if S < f(e) (f(e) < §). Simi-
larly we say that the block e ‘“1s contained in”’ the block e’ if f(e) < f(e').
The size of a block e is the natural number | f(e)|. If all the blocks of A have
size k, we say A has blocksize k.

The systems A = (V, f, E) and Q = (W, g, F) are isomorphic if there exist
bijections p: E—F, q: V— W such that g[f(e)] = g(p(e)) for all e E
(see Figure D1). The pair (p, g) is then called a system-isomorphism.
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o1 % PV) T g
qJ; q]:; p];:

D2 Exercise. Show that system-isomorphism i1s an equivalence relation.

Whenever (V, f, E) and (W, g, F) are isomorphic systems, then f and g
are isomorphic functions. The converse of this statement is false, since a
bijection from Z(V) onto Z(W) need not be induced by a bijection from

V onto W.
If A= (V,f, E)is a system and if f is an injection, then A is called a

set system. For example, if & < #(K) and if the ‘“inclusion function”
j: & — P(V) 1s defined by j(S) = S for each S€é&, then (V,/,£) is a set
system. In this case, the function j is suppressed and the set system is denoted
simply by the pair (V, &).

Let (V, f, E) be any set system. Let £ = f[E] and let j: & — Z(V) be the
inclusion function. Since f is an injection, f': E— & given by f'(e) = f(e)
for all e e E 1s a bijection. Then the pair (f’, 1y) 1s a system-isomorphism
between (V, f, E) and (V, &) = (V, f|E]).

If V and E are sets and f: E — Z(V), the function f*: V — Z(FE) given
by f*(x) = {e€ E; x € f(e)} is called the transpose of f. Since

D3 ~ xef(e)<ecf*(x), forallxeV,eeckE,

we have f** = f. If A = (V,f, E), then the system A* = (E, f*, V) 1s called
the transpose of A. Since f** = f, A** = A,

D4 Proposition. If (V, f, E) is isomorphic to (W, g, F), then (E, f*, V) is
isomorphic to (F, g*, W).

PrROOF. Assume that (p,q) 1s a system-isomorphism from (V, f, E) to
(W, g, F). We assert that (g, p) is a system-isomorphism from (E, f*, V) to
(F,g* W). Let xe V. Then

plf*(x)] = plle € E: x € f(e)}],
= pllee E: q(x) e q[ f(e)]}],
= plie € E: q(x) € g(p(e))}],
= {p(e): q(x) € g(p(e))},
= {d e F: q(x) € g(d)},
= g*(q(x)), as required. []

For A= (V,f,E) and x,ye V, one has f*(x) = f*(y) if and only if
x and y are incident with precisely the same blocks. This motivates the
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following definition: a system A distinguishes vertices if for every two dis-
tinct vertices there 1s a block which contains exactly one of them. In this
terminology,

DS A* is a set system if and only if A distinguishes vertices.

It is interesting to note that this property is analogous to the topological
property T, (given a pair of distinct points in a T,-topological space there is
an open set containing one but not the other). This analogy may be extended.
We could say that a system is “7;,”’ if given any two distinct vertices x and y,
there 1s a block containing x but not y and vice versa.

D6 Exercise. Show that a system A is ““T,”’ if and only if A* has the property
that no block contains any other block.

A system of blocksize 2 is called a multigraph. If it is also a set system, it
is called a graph. The blocks of a multigraph are called edges. Some mathe-
maticians, taking the reverse approach from the one adopted here, have
begun with a study of multigraphs and subsequently treated systems as
generalizations of multigraphs. In particular, Berge [b.5] has defined the
term hypergraph to denote a system (V, f, E) with the two additional proper-
ties that f(e) # @ for all e € E and that f*(x) # @ for all xe V.

A graph (V, &) is said to be bipartite if |V'| < 1 or if there exists a parti-
tion {V,, Vo}€Py(V) such that |[ENn V| = |ENV,| =1 for all E€&. If
(V, &) 1s a bipartite graph, the partition {V;, V,} need not be unique. When
we wish to specify the partition we shall write: (V, &) is a bipartite graph
with respect to {V,, V,}, or ({V,, Vs}, &) 1s a bipartite graph.

There is a natural correlation between systems and bipartite graphs. If
(U, f, D) is a system, we may define V= UU D and let & = {{x,d}: x € f(d)}.
Since UNn D = @, (V, &) is a bipartite graph called the bipartite graph of
(U, f, D). From D3 it follows that (U, f, D) and (D, f*, U) have the same
bipartite graph. Conversely, if (V, &) is a bipartite graph with respect to
{V,, Vo}, then (V, &) is the bipartite graph of (at least) two systems, namely:
(Vi,f, V2) where f(vg) = {v:{v,v;}eé&} and (Vy, g, Vy) where g(v,) =
{v:{v,, v} €&}. In fact, g = f*.

Another method for representing a system (V, f, E) is obtained by index-
ing both V' and E; thus V = {x,,..., x,}, £ = {es, €5, ..., &}. We then con-
struct the v x b matrix M where 1 1s the (i, j)-entry if x; € f(e;); otherwise
the (i, j)-entry is 0. M 1s called an incidence matnx of the system (V, f, E).
It 1s not difficult to see that any v x b {0, 1}-matr1x 1s an incidence matrix
of some system. Furthermore, systems (V, f, E) and (W, g, F) are isomorphic
if and only if for some indexing of V, E, W, and F the corresponding incidence
matrices are identical. Two {0, 1}-matrices M; and M, are incidence
matrices for isomorphic systems if and only if M, may be obtained from
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M, by row- or column-permutations. Clearly if M is an incidence matrix
for A, then the transpose of M (denoted by M *) is an incidence matrix for
A*,

A system Q = (W, g, F) is a subsystem of the system A = (V,f, E) if:
W< V,F < E,and for all e € Fit holds that g(e) = f(e) = W. For example,
let A =(V,f, E) and suppose F < E. Then Ay = (W, g, F), where W =
Uder f(d) and g = fz, is a subsystem of A. Ay is called the subsystem in-
duced by F. We let Ay = (V,fig+r, E + F). If W < V, the subsystem in-
duced by W is the subsystem Ay = (W, g, F) where F = {e€ E: f(e) < W}
and g = fip. Welet Ay, = Ay,iw.

D7 Exercise. Let M be the incidence matrix for the system A = (V, [, E)
corresponding to the indexing V = {X;,...,X%x,} and E = {ey,...,e,}. If
M*M = [m,,], show that m;; = |f(e) N f(e;)| for all i,je{l,..., b}. Inter-
pret the entries of MM *.

IE Parameters of Systems

If A = (V,f, E) is a system, recall that the selection of the function fis
s:?V)—>N
given by
s(S) = |f~S]| forall SeP(V).

For convenience, this selection will also be called the selection of the system
A. When the symbol s 1s used to denote the selection of A, the selection of A*
will be denoted by s*. If A 1s the set system (V, &), then s = s¢, the charac-
teristic selection of &.

We shall presently see that if two systems have the same selection, then
they are isomorphic; however, two systems having isomorphic selections
can still be nonisomorphic. This is consistent with the fact that two systems
(V, f, E) and (W, g, F) need not be system-isomorphic even though fand g
may be function-isomorphic. (See the discussion following D2.) The next
proposition makes these remarks precise.

E1 Proposition. Let (V, f, E) and (W, g, F) be systems with selections s and t,
respectively. The following three statements are equivalent:
(a) (V,f, E) and (W, g, F) are system-isomorphic.
(b) There exists a bijection q: V — W such that s(S) = t(q[S]) for all
S < V. (See Figure E2a.)
(¢) There exists a bijection p: E — F such that s*(S) = t*(p[A]) for all
A < E. (See Figure E2b.)
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PV) ——————— P(W) P(E) ——2— P(F)
(a) \ / (b) \ /
N N

PrOOF. We need only demonstrate the equivalence of (a) and (b); the equiva-
lence of (a) and (c) will then follow from this result and Proposition D4.

Assume that (a) holds. There exist bijections p: E— F and q: V—> W
such that

glf(e)] = g(p(e)), foralleeE.

Thus (p, g) 1s a function-isomorphism from f to g. By Bl6a, g 1s a selection-
isomorphism from s to ¢.

Conversely, assume that (b) holds. By B16b there exists a bijection p’: £ —
F such that (p’, g) is a function-isomorphism from f to g. The result follows
from the definition of system-isomorphism. ]

For any given selection s € S(Z(V)), a system (V, f, E) having s as its
selection can always be constructed. For each S e #(V), let E5 be an s(S)-
set, and let all the sets Eg be disjoint from ¥ and from each other. Let

Now define f: E— P(V) by f(e) = S if e € E,. The selection of this system
is obviously s. Moreover, this system is unique up to isomorphism. We may
therefore identify systems having vertex set V with elements of S(Z(V)).

From another point of view, the selection s of a system A = (V, [, E)
may be regarded as a list of parameters. For each S € #(V), each value s(S)
is a parameter in the list, namely, the number of blocks which ““coincide”
with S. This list of parameters is a ‘“‘complete list,”” inasmuch as A is uniquely
determined (up to isomorphism) by the selection s. In the same way, the
selection s* determines the transpose A* (up to isomorphism), and therefore
by D4, the values of s* on Z(E) form another complete list of parameters
determining A.

We now consider a third complete set of parameters which determines A
(up to isomorphism, continuing to be understood). Unlike s and s*, each
of which tells the number of blocks ‘“coinciding” with a given set, the
function we are about to define will tell the number of blocks containing
each given set.

For subsets S, T e Z(V), let [S, T'] € N be given by

1 fS<T;
15, 7] = {0 otherwise.
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E3 Exercise. Show that for any S, T, W e Z(V),
S, T[T, W]=[S+T,S + WI][S, W].
For any selection s € S(Z(V)), we define § € S(Z(V)) in terms of s by:

E4 5S)= > [S,TIs(T), forall SeP(V).

TeP(V)

ES Lemma. For S, We Z(V),
2, (=DS*TS, TIT, W] = 0's+¥,

Tedp(V)
PROOF.
D (=SS, TIT, W] = > (=DS*T[S + T, S + WIS, W]
TeP(V) TeP(V)
= > (=D'™[R, S + WIS, W]
ReP(V)
- > nmis,w)
ReP(S + W)
= QIS+VI[S, W] by C22
— 0|S+Wl. L__I

The next result is the inverse of E4; it allows us to recover s when § is
given.

E6 Proposition. Let s € S(#(V)). Then
s(S) = D (=1)S*TS,TI(T), forall SecPV).

TeP(V)
ProOOF. Let S € (V). Then by definition of §,

D (=SS, TRT) = D> (=1)S*7[S, T] > [T, Wils(W)

TeP(V) Tep(V) wWeP(V)

> | 2 (=1ys+7T[s, T[T, W]]S(W)

Wep(V) [Te.?(V)
OIS+ Wig(W) = s(S). N

weP(V)

Since a system A is determined by the values of its selection s and since,
by the above proposition, the values of s are in turn determined by the
values of §, it follows that the values of § form another ‘“‘complete list of
parameters” for A, as promised. Similarly, the values of s* form a com-
plete list of parameters for A*, and hence also for A.

E7 Exercise. Show that the function ® from S(Z(V)) to itself given by
®(s) = § is an injection and satisfies the “linearity” condition:

O(ms + nt) = mO(s) + nd(¢)
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for all s, t € S(P(V)) and m, n € Z. Show further that ® is never a surjection
when |V]| > 2.

When s is the selection of a system A, the values of the four selections
s, s*, 5, and s* have important set-theoretical interpretations in terms of A,

as summarized by the next result.

E8 Proposition. Let s be the selection of the system (V,f, E). Let S € Z(V),
and A € P(E). Then:
(8) 5(S) = [{e € E: f(e) = S}|;
(b) §(S) = |{ee E: f(e) 2 S};
(C) _{f_(A) = l(neeAf(e)) A (neeE+A (V + f(e)))l;
@ 5¥5(A4) = |Neea S @-

PROOF. (a) 1s, of course, the definition of s.
(b) represents the underlying motivation for defining § as we have. From

the definitions of § and s,

§S)= D> s(I)= > {eeE:f(e) =T},

vaTr=S8 Vva2T28

whence the result.
(c) By definition,

s¥(4) = {x e V:f*(x) = A}]

{xeV:{ec E: xef(e)} = A}

{x e V:xef(e) <>ec A}

= |{xeV:ieecAd=>xef(e);ecE+ A=>xeV + f(e)}]

= [{xe V:xef(e) for all e € 4}
N{xeV:xeV + f(e)forallee E + A}]

(@) n (N @ +r@)|

ecA ecE + A

(d) Again by definition,
s*A) = D sMC)= D [{xeV:{ecE:xef(e)} = C}|.

A=CEE ASCSE

Let C;,CoeP(E)and let V, = {xeV.:{ecE:xef(e)} = C;} fori=1,2.
Then Vi NV, = @ if C; # C,. Hence by C2,

z {xe V:{ee E: xef(e)} = C}|

ASCSE

U {xeV.:{eecE:xef(e)} = C}

== |{xe-V: {eeE:xef(e)} 2 4|
= |{x € V: x € f(e) for all e € A}/,

whence the result. []
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We are now prepared, at least mathematically, to state and prove a major
theorem i1n combinatorial theory. Since the statement of this result in the
generality in which it will be given is probably less than transparent, we insert
here an example and two exercises which should better familiarize the reader
with the four selections considered in this section.

E9 Example. Consider the system A = (V, f, E) where E = {e,, e,, e5}. Let
S;=f(e) i=1,2,3), and let V, S;, So, S3 be represented by the Venn
diagram E10, where n,, ..., ny23 represent the cardinalities of the subsets
corresponding to the regions in which they have been written.

E10

oA

If s is the selection of A, then with i and j being distinct indices,
s*(2) = ng s¥(2) = |V]
s*({e}) = my s*({ed) = |Si]
s*({e, e) = ny  s*({e, e}) = |Sin S|
S*(E) = s*(E) = nyg5 = |S1 N S N S3).

E11 Exercise. If A is the set system (V, #(V)), determine the selection s
of A and show that for all S € Z(V),

{0 if |S| > k;
5S) =14 (1v] - ISI\ -
(k""|S|) if |S| < k.

E12 Exercise. Let A = (V, f, E) have selection s. Show that 5(S) < m for
all S'e Z(V) if and only if s*(4) < ¢ for all 4 € Z,(E).

We now present a fundamental counting theorem. Observe that its second
statement 1s dual to the first.
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E13 Theorem (The Principle of Inclusion-Exclusion). Let (V, f, E) be a sys-

tem with selection s.
(@) Forr =0,1,..., |E|, the number of vertices belonging to precisely

r blocks is
|

57 2T

l
i=0

(b) Fork =0,1,...,|V|, the number of blocks of size k is
W=k k + i _
> (T 3 as)
$1=0 ISj=k+14

PROOF. As remarked above, it suffices to prove (a) alone.

If Ae Z(E), then by E8c, s*(A4) represents the number of vertices which
belong to every block in 4 but to no other block. Thus the number of ver-
tices which belong to precisely » blocks is >4, s*(A4). By applying Proposi-
tion E6 to s*, we get

D A= > > (=DI*4[4, CE¥O)

|A| =17 |Aj=r Cegp(E)

— ] |C + A} A, %
ICl=r (|A|Z=.,.( ) [ C])S (C)

Z (_l)lm-r(lgl)g'i(c)

iIClr

|E|—1r

L]

Returning to Example E9, let us now apply the Principle of Inclusion—
Exclusion. The number of vertices belonging to precisely r = 1 block i1s

ST S S = (o)asid + Isd + Isa)

Y 3
— (1)(|S1 N Sg| + [S; N S| + [S1 N S5]) + (2)ISI N Sz N Sy,

which after substitution reduces to n, + n, + na.

Since s*(A) is the number of vertices belonging to every block in A4 (see
E8d), part (a) of the Principle of Inclusion-Exclusion gives the number of
vertices contained in precisely r blocks in terms of the number of vertices
contained in sets of r or more blocks. First we ““include” the vertices belong-
ing to at least r blocks, but because we have counted some of these more
than once, we then ‘“‘exclude’ those belonging to at least » + 1 blocks.
Having now excluded too much, we “reinclude” those vertices belonging
to at least r + 2 blocks, and so on. Dually, since 5(S) is simply the number
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of blocks containing S, part (b) gives the number of blocks of fixed size &
in terms of the number of blocks containing subset S of V of size at least k.

The Principle of Inclusion—Exclusion has a wide range of applications.
The remainder of this chapter is devoted to some of them. We begin by
completing the answer to the question raised just after C12.

E14 Proposition. For sets X and Y,
Y l YI
|sur(Y%)| = (=1)'¥! j (— 1)4( z' )ilxl_
1=0

ProOF. Let the function ®: Y* — Z(Y) be given by ©(f) = Y + f[X] for
all fe YX. Then (Y, ®, Y*) is a system. Let s denote its selection. Note that
fe Y% is a surjection if and only if ®(f) = @. Hence [sur(Y*)| is the num-
ber of blocks of size kK = 0. By Theorem E13b,

|
sur(Y9)| = > (=17 > 5(S).
j=0 ST= 4
By ES8D,
§(S) = |{fe Y*: ®(f) = S}
= [{fe YX*: f[X] = Y + S}
= |Y + S|'%,
by C7. Thus
¥
sur(rd] = > (<17 3 7+ s1m = 5 (1) gy - jym
j=0 S| j=0
Substituting i for | Y| — j completes the proof. ]

Combining this result with C24, we have

E15 Corollary.

m m
Pl = SE S ()i
i=0

In the literature the numbers |P,(V)|, usually denoted by S(|V|, m), are
called the Stirling numbers of the second kind. Another sequence of numbers
well enough known to have been given a name is the sequence {D,: n € N}
of derangement numbers. For each ne N, D, 1s the number of derangements,
i.e., permutations with no fixed points, of an n-set. The derangement num-
bers arise as a special case of the following result.

E16 Proposition. The number of permutations of an n-set which have precisely
r fixed-points is

Z( 1)‘
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PrOOF. Let B be an n-set and let the function f: B — Z(I1(B)) be given by
f(b) = {p € II(B): (b) = b}. Thus (II(B),f, B) is a system, and a given
permutation ¢ belongs to a block b if and only if b is a fixed-point of ¢.
Hence we seek the number of vertices (i.e., permutations) which lie in
exactly r blocks. This number is given in El13a; we now compute its value.
First we deduce from E8d that if 4 < B, then s*(4) is the number of
permutations of B which fix 4 pointwise. Clearly this is (|B] — |A4|)!. Hence

F (N =1 " Ny . hl
w;“s (4) = (r + i)(n — (r + D)) = T

Substituting this into E13a yields

2(_ 1),(1' + i’) n! n! "i’ g_-_l)_‘_ A

i J@r+i) & i

Letting r = 0 in E16 we obtain

E17 Corollary.

By convention, D, = 1, and this corroborates the corollary. Observe that,
D,/n! 1s the (n + 1)-st partial sum of the power series expansion of e,
and so lim,_, (D,/n!) = e~. In other words, and perhaps contrary to
intuition, when n is large, approximately 1/e of all permutations of an n-set
are derangements.

The next three exercises are concerned with derangements.

E18 Exercise. Prove that for n > 2, at least one-third of the permutations
of an n-set are derangements.
E19 Exercise. Prove the following identities by set enumeration (cf. C31):

(@ D,=n-1)YD,-, + D,_,) forn > 2;
(b) Z (’;)D, = nl.

E20 Exercise. Prove that for any n-set V', n > 0,

IP(V)| = ;:-i Z (n — i)“(’;)D,.

i=0

Our final application of the Principle of Inclusion—-Exclusion 1s to derive
a classical result from number theory. The function ¢: N + {0} — N given

by
p(n) = {beN:0 < b < n; bisrelatively prime to n}|,
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for all ne N + {0}, is known as the ‘““Euler g@-function”. For example,
o(n) = n — 1 whenever n is prime.

E21 Theorem. Let n€ N, and let V be the set of prime divisors of n. Then

PrROOF. Clearly (1) = 1. If n = 2, let B= {1, 2,...,n}, and let the func-
tion f: B— Z(V) be given by f(b) = {p € V: p divides b}, for each b € B.
Thus, (V, f, B) is a system, and ¢(n) i1s the number of blocks of size 0. Let
s be the selection of (V, f, B). By E8Db, for each S € Z(V), §(S) is the number
of blocks divisible by every prime in S. Thus §(S) = n/[ [,es p. Substituting
this into E13b with £k = 0, we have

Vi n —1 1
n) = —-l)i = n -_— =N (1""""‘).
‘P( ) iZO ( |S|Z=i I—IDGS P SG;V) PES P l—e—-V[ P
this last step requiring only algebraic manipulation. ]

We close with two exercises of a general nature.

E22 Exercise. Verify that if (V, &) is a set system, then

JE|= > 0+ 3 |NE

Eed& i=1 AEP(E) | Eef

E23 Exercise. Let s € S(Z(V)) and let @ be the function from S(#(V)) to
itself given by ®(s) = § where

§S) = > [T,S]s(T), forall SeP(V).

Tep(V)

State and prove results analogous to E6, E7, E8b, and E13b.
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CHAPTER 11

Algebraic Structures on Finite Sets

ITA Vector Spaces of Finite Sets

In IB we introduced the characteristic functions cg for subsets S of a set U
and proved (/B2) that the function cg+ S is a bijection between K" and
P(U). Subsequently it was to be verified (Exercise 7/B3) that this same bijec-
tion made the assignments ¢g + ¢ — S + T and csepr—= S N T. We have
thereby that (#(U), +, N)is *“algebra-isomorphic” to the commutative alge-
bra (KY, +, -), and hence (#(U), +, N) is a commutative algebra over the
field K. In particular, (#(U), +) is a vector space over [K, while
(#(U), +, N) is a commutative ring; & is the additive identity and U itself
is the multiplicative identity. For the present we shall be concerned only
with the vector space structure.

For the reader who has studied vector spaces only over real or complex
fields, we should remark that most of the results concerning such concepts
as independence, spanning sets, bases, and dimension are not dependent
upon the particular field in question but only upon the axioms common to
all fields. These results are valid for (#(U), +) over K, too. However,
some results involving the inner product often not only involve properties
characteristic of the real or complex numbers, but explicitly preclude the
field K.

We denote the dimension of a finite-dimensional vector space ¥ by
dim(¥"). For any set U, dim(#(U)) = |U|. This follows since dim(KY) = |U|,
but may also be seen directly by observing that the subcollection #A(U) is
a basis for Z(U).

For each S < U, #(S) is a subspace of Z(U). A subspace of this form
1s called a coordinate subspace.
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Another subspace of interest consists of all the subsets of even cardi-
nality:

E(U) = {SePU): |S| is even}.

A1l Proposition. If U # @, then &(U) is a subspace of #(U) and dim(&(U)) =
\U| — 1.If U = &, then §(U) = Z(U).

PROOF. Clearly g e &(U). If U = @, then &(U) = {@} = P#(U). We suppose
U +# .

By ICS, if S, Teé&(U), then S + Teé(U); also 0S =2 and 1S =S
belong to &(U). Since &(U) is closed with respect to + and scalar multi-
plication, &(U) is a subspace of Z(U).

Select xo, € U. One can easily verify that if Z = {{x,, x}: x € U + {x,}},
then & is independent and |#| = |U| — 1. Hence dim(&(U)) > |U| — 1.
However, since U # @&, &(U) # #(U), sodim(6(U)) < dim(P(U)) = |U|. O

The following corollary offers a different approach to Exercise IC23.

A2 Corollary. If U # @, then |6(U)| = |2(U) + U)| = 2V1-1,
PROOF. Let W be a (|U| — 1)-set. By the proposition, IC7, and ICS,
EU)| = |K¥| = |K|'™ = 21711 = |2(U)]/2.
So [2(U) + ¢(U)| = |2(U)|/2. O]

A3 Exercise. Let <,, = {#(U)), 1.e., the subspace of P(U) spanned by 2, (U).
Show that

PU) if0<m< |U|andmis odd,;
E(U) if0 <m< |U|andmis even;
{2} ifm = 0;

{g,U} ifm=|U|.

&P =

A4 Exercise. Let f: U— V. Recall (§A) the functions f: #(U) — #(V) and
[ P(V) - P(U) induced by f. First consider the vector spaces (#(U), +)
and (#(V), +) and determine when f and f~! are linear transformations
and, in particular, nonsingular linear transformations. Then determine
when f and f~! are algebra-homomorphisms and, in particular, algebra-
isomorphisms between the algebras (#(U), +,N) and (L(V), +, N).
Finally, show that there can be no other algebra-isomorphisms.

AS Exercise. Determine all subspaces of #(U) left invariant under the set
of linear transformations induced by elements of II(U).
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For any set U we define a function Z(U) x #(U) — K, called the inner
product on #(U), as follows: if S, T e #(U), then

.7 — {0 if |S N T|iseven;
1 if SN T|is odd.

It follows at once from the definition, JA7, and ICS5, that for all R, S, T €
#(U),

R-S = S-R;
R-(S+T7T)=(R-S)+ (R-T).
Furthermore,
R-S=0 forall SeZ(U)< R =g2.

We say S'is orthogonal to T'if S-7 = 0. If & < #(U), then the orthogonal
complement of & is

Lt ={TePU):S-T = 0forall §SeF}.

Observe that %+ is always a subspace of Z(U) and that (¢+)* is a subspace
of Z(U) which contains . In fact, % is a subspace of Z(U) if and only if
(L)t = & Another important result concerning orthogonal complements
(regardless of the characteristic of the field) is

A6

dim(&) + dim(«/*) = |U|, for all subspaces o/ <= Z#(U).

The foregoing properties of inner products are all that will be required
in this text. In a vector space over a subfield of the real numbers with the
standard inner product, a subspace and its orthogonal complement have only
the O-vector in common. This is certainly not the case in the following example
where the underlying field 1s K.

Example. Let |U| = n and let &/ be the subspace of Z(U) spanned by a
[n/2]-collection of pairwise-disjoint elements of Z(U). Then dim(&f) =
[n/2]. Observe that if n is even, then &/ = &7+, If n is odd, then .27+ is spanned
by & together with the 1-set contained in no element of &/, and so &/ < /-,

A7 Exercise. Show that ({, U})*t = &(U).

A subspace of Z(U) is even if all its elements are sets of even cardinality.
This concept allows us to state the important algebraic result which under-
lies the classical Euler Theorem for graphs. This latter theorem will be en-
countered in its more traditional setting in §/77A.

A8 Proposition. Let o/ be any subspace of P(U). Then U € & if and only if
2+ is even.

30



ITIA Vector Spaces of Finite Sets

PROOF. Since 7 is a subspace, &/ = (&/1)*. Hence:

Ueod < S-U=0 forall SeL
< |SN U| = 0(modulo 2) forall Seft
< |S'| iseven for all S e oL ]

If & < #(U), the foundation of & is the set Fnd(&¥’) = Uses S. If & and
& are subspace of Z(U), then clearly their intersection &/ N & 1s a subspace
of Z(U). Their join (also referred to as “sum’’) given by

ANRB={S+T:.SeL;TecHB}

is also a subspace of #(U). Clearly v is a commutative and associative
operation on the collection of subspaces of Z(U). In the special case where
the foundations of o/ and & are disjoint, the subspace &/ v # is called the
coordinate sum of .« and % and is denoted by &/ P 4.

The following i1s a standard result from linear algebra:
A9 dim(«/ v %) + dim(«Z N &) = dim(¥) + dim(D).
In particular,

dim(/ @ &) = dim() + dim(X).

We use the shorthand notation

to represent &, P L D...PD .
It 1s easy to see that for each S < U,

PU) = PS)PD2U + S).

There is a function ng: A(U) — P(S) given by #ny(T) =TnNS for all
T € Z(U). It can be readily demonstrated using JA7 that =g is a linear trans-
formation. It is a surjection, its kernel is Z(U + §), and it fixes Z(S) point-
wise. In vector space terminology, “ws projects Z(U) onto £(S) along
PU + §5).”

If o7 is a subspace of Z(U) and if S < U, then ng[2/] i1s a subspace of
P(S). Since the kernel of the restriction ng s is Z(U + S) N &, we have

Al0 dim(Z(U + S) N &) + dim(7g[Z]) = dim(L).
Since w5 fixes Z(S) pointwise,
All P(S) N A < ng[H].

Of interest are those sets S € Z(U) for which equality holds in All. The
following result shows them to correspond to “summands’’ in a coordinate
sum.

31



II Algebraic Structures on Finite Sets

A12 Proposition. Let &/ be a subspace of P(U).
@) If & = X PDE and if B = Fnd(XB), then wp|F]| = P(B)N A = &B.
(b) Conversely, if Be P(U) and if ng|A]| = P(B) N «, then

Al3 o+l ] = P(U + B) N &,
and
A = PB)NAL)D(P(U + B)NA) = ng[L] D 7y 4[]

PROOF. (a) Let & = # P € and B = Fnd(#). By these assumptions and
All, # < P(B) N A < ng[]. It suffices to show that =5[] < %.

Let Se o/, Then S = S; + S, for some S; € Z and S, € €. By definition
of ®, BN S, = . Hence

m5(S)=SNB=S,eX.

(b) Let Be Z(U) and assume that #»g[./] = #(B) N .
By All, ZU + B) N ¥ < =y, g[¥]. By A10 and our assumption,

dim(#(U + B) N &) = dim() — dim(m[o])
= dim(&) — dim(#(B) N &)
— dim(ﬂU+B[M])9

and A13 follows.
The coordinate sum (#(B)N )P (P(U + B) N L) is clearly a sub-
space of &7, Moreover, by A9, A13, and A10,

dim(Z(B) N ) P (P(U + B) N X))
= dim(Z(B) N &) + dim(#(U + B) N )
= dim(#(B) N /) + dim(7y ; p[7])

= dim(2/).

Hence & = (Z(B)NS)PD (AU + B)n ), which in turn equals
7p[L] D 7y 4[] by Al3. []

Al4 Corollary. Let </ be a subspace of P(U) and let # be a subspace of </
with B = Fnd(#). Then & = # D € for some subspace € of P(U) if
and only if ng[H] < X.

PrOOF. By All, # < Z(B) N A < wp[L]. If np|] < H, then by part (b)
of the Proposition, we may let € = =y, z[27]. The converse follows from
part (a) of the Proposition. 1

AlS Exercise. Let V < U and let & be a subspace of Z(U). Prove that
wy[ L] is the orthogonal complement in P(V) of (V) N <. (Hint: use Al0
and A6.)
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IIB Ordering

A partial order on a finite or infinite set U is a relation R on U which is
reflexive, transitive, and antisymmetric, 1.e.,

(x, )eR and (y,x)eR imply x = y.

A partial order is frequently designated by a symbol such as < which will
be used in the following way. Instead of writing: (x, y) € <, one writes:
x < y. In this context, the symbol < will be used to mean: x < y and x # y.
(Compare the use of < and <.) Clearly < is also a relation on U.

A pair (U, <), where U is a finite or infinite set and < is a partial order
on U, is called a partially-ordered set. (U, <) i1s a totally-ordered set and <
is a total order if either x < yory < xforall x, y € U. Isomorphism between
sets with relations was defined in §/A.

B1 Exercise. If (U, <) i1s a partially-ordered set, show that < is antisym-
metric and transitive on U.

Certainly if (U, <) is a partially-ordered set, and if S'e€ Z(U), then the
intersection of < with S x S is a partial order on S. We abuse notation and
designate such a partially-ordered set by (S, <).

The structures we have been considering readily provide examples of
partial orderings.

Example. (Z(U), <) and (#(U), 2) are partially-ordered sets.

B2 Example. A partially-ordered set (Y, <) determines a partially-ordered
set (Y%, <) for any set X: if f,ge Y%, we say f < g if f(x) < g(x) for all
x € X. In particular, for any set U, S(U) will be regarded as a partially-
ordered set, the partial order being determined by the total order on N.

Let &9 < Z(U). We say < refines J, or < is a refinement of 7, if for
every Se.¥ and TeJ, either SNT =2 or SNT = S. Observe that
refinement as a relation on Z(#(U)) is generally not reflexive. In fact,

B3 & refines itself if and only if the elements of < are pairwise-disjoint. Thus
refinement is reflexive on P(U).

We say that % covers U, or < is a covering of U, if U < Fnd(¥).

B4 Exercise. Show that if & and 9 are coverings of U, and if each refines
the other, then & = 7 € P(U).

Thus refinement is antisymmetric on the set of coverings (and hence on
the set of partitions) of any set.

33



II Algebraic Structures on Finite Sets

BS Exercise. Suppose %, %, T < P(U) and that < covers U. Show that
if X refines & and & refines 7, then X refines J.

We conclude that refinement is transitive on the set of coverings (and
hence on the set of partitions) of any set, but one can readily verify that

refinement need not be transitive on #(#(U)). From B3, B4, and B5 we
conclude:

B6 Proposition. For any set U, refinement is a partial order on P(U).

Thus each of #(U), S(U), and P(U) admits a partial order in a rather
natural way. Having defined various operations on these objects in the first

chapter, let us observe how they relate to these objects as partially-ordered
sets.

B7 For all R, S, T e #(U),

SNTcT,
and
ifS<T, thenSNR<TNR.

B8 For all 2, S, 9 € P(U), with < denoting refinement,
ST < I,

and
if ¥ <9, then X < T A.

B9 Forallr, s, te S(U),

S+ t1t=>1
and

ifs>1t thens+r=>1t+r.

B10 Exercise. Reconsider B7 with the operation N replaced by U (respec-
tively, +), and reconsider B9 with addition replaced by multiplication. In
each case prove or disprove the analogous assertions.

Let (U, <) be a finite or infinite partially-ordered set. We say an ele-
ment x of (U, <) is minimal (respectively, maximal) if there exists no x' € U
such that x’ < x (respectively, x’ > x). An element x of (U, <) is the
minimum (respectively, the maximum) element of (U, <) if x < x’ (respec-
tively, x > x’) for all x" € U. Two facts are immediate: first, a partially-
ordered set need not have a minimum (respectively, maximum) element;
second, if a partially-ordered set does have a minimum (respectively, maxi-
mum) element, then that element is the unique minimal (respectively, maximal)
element of the partially-ordered set. The converse of this second remark is
also true (see B12 below). If /: Y— N, we say ye Y is a smallest (respec-
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tively, largest) element of Y (relative to f being understood) if f(y) < (")
(respectively, f(y) = f(y’)) for all y' e Y.

Example. Let U = {a, b, ¢, d} and let & consist of the sets {a}, {b}, {a, b},
{b, c}, {c, d}, {a, b, c}, {b, c, d}, {a, c, d}. Then (¢, <) has neither a minimum
nor a maximum element. The 3-sets in & are all maximal (with respect to
inclusion) and largest (with respect to cardinality). Similarly the 1-sets in &
are minimal and smallest. However, the set {c, d} 1s also minimal but it is not
smallest.

We return to the convention that all sets are presumed to be finite. If
(U, <) 1s a partially-ordered set, a totally ordered m-subset S of U is called
a chain or, more specifically, an m-chain. The collection of all chains on
(U, <) 1s partially-ordered by the usual set-inclusion, and the term maximal
chain denotes a maximal element of this ordered collection.

Clearly a maximal chain of (U, <) contains both a unique maximal ele-
ment of (U, <) and a unique minimal element of (U, <). For let S =
{X1, X3, ..., Xny and suppose x; < Xo <...< Xp,. If x, 1s not maximal in
(U, <), then x,, < w for some we U. It follows that § + {w} is also a
chain and S < S + {w}. Similarly one shows that x; is minimal in (U, <).
Now let x € U. Since {x} itself is a chain, the collection of all chains contain-
ing x 1s not empty and hence contains a largest member S. Clearly S is also
a maximal chain. We have proved:

B11 Proposition. Let (U, <) be a partially-ordered set. If x € U, then x is
an element of some maximal chain in (U, <). Moreover, y < x < z for
some minimal element y € U and some maximal element z € U.

B12 Exercise. If the partially-ordered set (U, <) has a unique minimal (respec-
tively, maximal) element x, prove x is the minimum (respectively, maximum)
element of (U, <).

The next proposition gives a further connection between partial orders
and algebraic structures.

B13 Proposition. Let (U, <) be a partially-ordered set and let O be a com-
mutative, associative operation on U such that x O x' < x for all x, x' € U.
If S is a nonempty subset of U closed under O, then (S, <) has a minimum
element.

PROOF. Let S < U be closed under © and let x, be the “product” of all
elements in S. (Since O is commutative and associative, x, is well-defined.)
Clearly x, < x for all x € S, and of course x, € S. ]

Note that the finiteness of S is essential to the above proof. As an im-
mediate application, we have:
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B14 Corollary. Any nonempty subcollection of (#(U), <) which is closed
under N (respectively, U) contains a minimum (respectively, maximum)
subset.

B15 Corollary. Any nonempty subcollection of P(U) which is closed under
multiplication of partitions contains a minimum partition (with respect to
refinement).

B16 Proposition. Let & < P(U) and let < denote refinement on P(P(U)).
Then{2 € P(U): & < 2} has a minimum element and{2 € P(U): 2 < ¢}
has a maximum element.

PROOF. Let #,, Z, € P(U) and suppose & < #, and < < #,. We show
that & < #,#,. An arbitrary cell of #, %, is of the form R; N R, where
RieZ. Let SeZ If SN R, # &, then S < R, by the definition of refine-
ment. It 1s immediate that either S < R, N R, or SN R, N R, = . Hence
{2e P(U): & < 2} is closed under multiplication. By B15 it contains a
minimum element.

To complete the proof, we define a relation ~ on U whereby x ~ y

if
B17 xeS<yesS, forall Se

Obviously ~ is an equivalence relation on U, the equivalence classes of
which form a partition 2,e P(U). Moreover 2, < & If 2eP(U) and

2 < S, and If x, y belong to the same cell of 2, then indeed B17 holds, and
x ~ y. Hence x and y belong to the same cell of 2,. It follows that 2 < 2,,
and 2, is the required maximum element. []

If ¥ = Z#(U), the minimum and maximum partitions guaranteed by B16
are called the coarse partition of .# and the fine partition of %, respectively.
Thus the coarse partition of & is the ‘““finest” partition refined by < and
the fine partition of & is the ““coarsest’ of the partitions which refine .
This is just fine, of course. If % has fine partition 2, and coarse partition
2., 1t follows from B5 that

B18 20 < £,, whenever & is a covering of U,
and from B4 and BS that
B19 2o =2, < S e€P(U), whenever & is a covering of U.

B20 Exercise. Show that the condition that . be a covering of U is essen-
tial in both B18 and B19.

B21 EXxercise. Let < be a covering of U.
(a) If < has the property that

S]_,SgebeJ_nS2-7éz,

what 1s the coarse partition of % ?
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(b) Let & have the property that the system (U, &) distinguishes vertices.
What is the fine partition of & ?
(¢) Give examples of collections & having both of the above properties.

A collection & < Z(U) is said to be incommensurable if no element of
& is a subset of any other element of . (Cf. ID6.)

B22 Exercise. Let 24, 2, € P(U) be given with 2, < 2,. Determine when
there exists & < #(U) such that 2, is the fine partition of < and 2, is
the coarse partition of < What is the answer if it is imposed further that &
be incommensurable ?

B23 Exercise (Sperner [s.7]). Show that any largest incommensurable sub-
collection of #(U) has cardinality

14

7]
2
(Hint: Let € be the set of (|(U| 4+ 1)-chains in (#(U), <). For each S € Z(U),

let €5 consist of those chains in € of which S is an element. Begin by showing
that if & = P(U) is incommensurable, then |€| > Do |C5l.)

A pair (V, D), where Visasetand D<= (VX V) + {(v,v):veV}, is
called a directed graph. The elements of V are called vertices and the ele-
ments of D are called edges. A sequence of vertices and edges of the form

Do, (UOQ vl)a V1, (vla 02)9 U2y ¢ ¢ oy vk—ls (vk—la vk)a vk

from (V, D) is called a v,v,-path. The length of a path is the number of edges
it contains. In particular, a single vertex constitutes a path of length 0. If
v eV, a vv-path 1s called a directed circuit. A directed graph is acyclic if all
its directed circuits have length 0.

B24 Proposition. Let (V, D) be a directed graph. Define the relation < on
V by: u < v if (V, D) admits a uv-path. Then < is reflexive and transitive.
Moreover, (V, D) is acyclic if and only if (V, <) is a partially-ordered set.

PRrROOF. Trivially < is reflexive.
If u < vand v < w, then (V, D) admits a uv-path:

U = U, (Uo, Uy), Uy« ooy Upy, (Uy—1, Uy), Uy = D
and a vw-path:
U = Vg, (Vo, V1)s U1y s V-1, V-1, Uk), U = W.
The following sequence is a uw-path:
u, (U, uy), Uy, ..., Uy_y, (U1, Uy), U, (Vo, V1), Uy, . . ., Vg1, (V—1, Uk), W.

Hence < 1s transitive.
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Now suppose v < w and w < v. A repetition of the above construction
yields a vv-path, and if v # w, this path will have positive length. Hence if
(V, D) 1s acyclic, then < 1is antisymmetric. Conversely, if there exists a
directed circuit through distinct vertices v and w, then v < wand w < v. [

From the previous result we have that every acyclic directed graph uniquely
determines a partially-ordered set. Conversely, every partially-ordered set
can be obtained in this way. However, a given partially-ordered set may be
determined by many different directed graphs. For let (V, <) be a partially-
ordered set and let D = {(v, w)e V x V:v < w}. Clearly (V, D) is an acyclic
directed graph which yields (V, <) in the manner of the proof of the previous
proposition. In this case, (V, D) is the directed graph of (V, <) which has
the largest possible number of edges.

Given (V, <), we say that wis a successorof vif v < wandifv < x < w

implies x = v or x = w.

B25 Exercise. Given (V, <), let Dy, = {(v, w): w 1s a successor of v}. Show
that the partial order determined by the directed graph (V, D,) 1s precisely
(V, <). Moreover, D, = D, < D if and only if (V, D,) determines (V, <).

Let (U, <) be a finite or infinite partially-ordered set. If x, ye U, we
define the meet of x and y, denoted by x A y, to be the maximum element of
{ze U:z < x;z < y}, if it exists. We define the join of x and y, denoted by
xV y, to be the minimum element of {zeU:x < z;y < z}, if 1t exists.
A partially-ordered set (U, <) is called a lattice if x A y and x v y exist for
all x, ye U.

B26 Example. For any set U, the partially-ordered set (#(U), <) i1s a
lattice, where the usual set-theoretic intersection and union are the two
lattice operations of meet and join, respectively. Any lattice which is iso-
morphic to (Z(U), <) for some set U is called a Boolean lattice.

B27 Example. Consider the partially-ordered set (U, |) of all positive integral
divisors of the positive integer n, where | means “divides.” The join of any
two elements of U is their least common multiple and their meet is their
greatest common divisor. It is not difficult to see that (U, |) is a lattice, and
it is Boolean if and only if n 1s divisible by no perfect square greater than 1.

We shall have frequent recourse to the following two examples.

B28 Example. Let S(¥") denote the set of all subspaces of the vector space
V. If &, B eS), let &/ < # mean that & 1s a subspace of #. With the
join of & and #Z as defined in the previous section and their meet defined to
be their intersection, (S(¥"), <) becomes a lattice. The verification involves
only elementary linear algebra. It will be shown subsequently that these
lattices are not Boolean when |¥7| > 2.
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B29 Example. Let S(A) denote the set of all subsystems of the system
A= V,f, E) If Q,, Q, € S(A), then Q, < Q, means that Q, is a subsystem
of Q,. Clearly (S(A), <) 1s a partially-ordered set. Let Q, = (W, g, F})
fori = 1, 2, and define

Q, A Qy = (W10 W, firiars F1 O Fy);
Q, v Qy = (W, Y Wy, fir,or, F1 Y F)).
It 1s straightforward to verify that (S(A), <) now becomes a lattice.

B30 Exercise. Show that for any set U, the partially-ordered set (P(U), <)
1s a lattice.

If (U, <) is a finite or infinite partially-ordered set, we define the dual
order > on Uby: x > yifand only if y < x, for all x, y e U. Then (U, =)
1s also a partially-ordered set. In particular, if (U, <) is a lattice with meet
and join denoted by A and Vv, respectively, then (U, =) is its dual lattice,
with meet and join given by vV and A, respectively, as can be easily verified
from the definitions. For example, (Z(U), 2) is dual to (#(U), <) in
Example B26, where the roles of union and intersection have been inter-
changed. Clearly the dual of the dual of a lattice is the original lattice.

The next exercise i1s a list of algebraic properties to be verified for all
lattices. They follow from basic definitions. The concept of duality can be
used to substantially shorten the work.

B31 Exercise. Let (U, <) be a lattice. Show that for all x, y, z € U,
(&) A and v are idempotent (1.e., X AN X =XV X = X);

(b) A and v are commutative and associative

) xA(xVy)=x=xV(xAY));

d) x < yimpliesbothx N z<yANzandxV z<yV z;

e xAYV(AZDZSXxA(QV 2);
B)xviyAaz)s(xVvy AV 2)

If W is any finite subset of U, then part (b) above yields that the meet of
all the elements of W, denoted A ,.w X, 1s well-defined. Analogously, we
write V ..w x. Henceforth, all lattices are assumed to be finite. We may now
define two distinguished elements 0 = A,y x and 1 = V,ey Xx. Thus
0 < x <1 for all xe U. Every (finite) lattice has a minimum element and a
maximum element. In Examples B26, B27, and B28, the minimum elements
are &, 1, and {0}, respectively, while the maximum elements are U, n, and ¥,
respectively.

B32 Proposition. The following statements are equivalent for any lattice
(U, <):
@AYVEAZ=xAN(yV 2)forall x,y,ze U;
b xvy)AxVZ=xV((YA2foral x,y,ze U;
) (xvyyAzsxV((yA2zforall x,y,ze U.
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PROOF. (a) = (b). Assume (a) to hold and substitute x v y for x and x for y,
obtaining

[(xVY)AXIVIEXVIYYAZL=(V YA (xV 2).
The left-hand member becomes

xV [(xV y)Az], byB3lbandc;
=xV [(xAz)Vv (yAz)], byassumption (with x and z interchanged);
=x V (y A z), by B31lband c.

(b) = (¢). Since z < x v z, B31d followed by our assumption (b) yields
xvyAzskxvyYAMKXxVZ=XxV(yA2).
(c) = (a). We need only prove that (c) implies the reverse inequality of

B31f. With appropriate substitutions, two successive applications of assump-
tion (c) yield

xVvyAxVZ<xVI[yA((KxV 2)]
<xVi[xvVv (yA?2z)]
=xV (y A z), asrequired. ]

A lattice which satisfies any one (and hence all three) of the conditions
of Proposition B32 is called a distributive lattice.

B33 Example. (#(U), <) 1s a distributive lattice for any set U. Hence all
Boolean lattices are distributive.

B34 Exercise. Prove that

(@) If U is a set with at least two elements, then the lattice (S(#(U)), <)
is not distributive (and hence not Boolean).

(b) (S(A), <) is a distributive lattice for any system A.

B35S Exercise. Determine whether the lattice (P(U), <) is distributive.

A lattice (U, <) i1s said to be complemented if for each x € U there exists
x'€ U such that x A X’ =0 and x v x’ = 1. In this case x’ is called a
complement of x.

B36 Example. In the lattice (Z(U), <), the complement in the lattice of
any set S e Z(U) is its set-theoretic complement U + S. Hence all Boolean
lattices are complemented.

When (U, <) is distributive, one may speak of the complement of x, for
if both y and z were complements of x, one would have by B32c and b that
y=yAl=yAxvz)<(xAy)vz=0Vz=_z Bysymmetryz < y,
and so y = z. Hence x” = x for all complemented elements x.
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B37 Exercise. Let (U, <) be a distributive lattice. Let a, b€ U and let a < b.
Let W = {xe U:a < x < b}. Show that

(a) (W, <) is a distributive lattice.

(b) For each x € W there exists at most one element y € U such that
xXANy=aandx Vv y = b.

(c) If (U, <) is complemented, then (W, <) is complemented.

If (U, <)is a partially-ordered set and if (W, <) is a lattice where W < U,
then (W, <) is a sublattice of (U, <).

B38 Lemma. Let (U, <) be a lattice and let W < U. If x A y, x V ye W
for all x, y € W, then (W, <) is a sublattice of (U, <).

PrOOF. By definition,

xANy=max{zeU:z < x;z < y}
>max{zeW:z<x;z<y}=>x A,

since x A y € W. The argument for x v y 1s analogous. (]

When (U, <) 1s a distributive lattice, we shall write x; @ x; D...P x,,
for x; VXxgV...VvVxp if q Ax; =0 for 1 <i<j< m. Clearly 1if
x @y =1, then x and y are complements.

B39 Exercise. Show that for any elements x, y, z of a distributive lattice,

XDy Pz=xDyDez.

B40 Proposition. Let (U, < )/ be a distributive lattice. Then the set of comple-
mented elements of U forms a complemented distributive sublattice of

(U, <).

PrOOF. Denote the set of complemented elements of U by W. Surely if
(W, <) is a sublattice of (U, <), then it is distributive and complemented.
It suffices, therefore, to show that the meet of any two elements of W i1s
complemented and so belongs to W. (The analogous proof for the join fol-
lows by duality.) Specifically, we show that for x, ye W, (x A y) = x" v ).
We use B32a:

XANANX VY)=xA[yAE VYY)

x Ay Ax)V(yAy)l
xA[(y AX)Vv O]
xANyAx =0.

We next use B32b:

xXxAYYVEVY)I=[xAy) VvV
=[xvXxX)YA(yVvX)]vVv)

=[1A(vX)]Vv)
=ypvx vy=1

as required. L]
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An atom of a lattice (U, <) i1s a minimal element of the partially-ordered
set (U + {0}, <). In Examples B26, B27, and B28, the atoms are, respec-
tively, the 1-subsets of U, the prime divisors of n, and the 1-dimensional sub-
spaces of 7. Note that if a and b are distinct atoms of (U, <),thena A b =0,
a<aVv b,andb < a Vv b.

B41 Proposition. Let (U, <) be a complemented distributive lattice, and let
A be the set of atoms of (U, <). Let f. #(A) — U be given by

f(B) = @ a for each B e P(A),

aeB

where the join of an empty collection is understood to be 0. Then f is a
bijection.

PROOF. Since the meet of any two atoms 1s O, f 1s a well-defined function.
To prove that f is surjective, we first prove that 1 is the join of all the atoms
in U. For suppose that @),_, @ = x for some x < 1. Thena < xforalla € 4.

Since (U, <) i1s complemented, x’ exists, and x" > 0. Hence the set
{ze U: z < x'} contains at least one atom a. Thus a < x’, and since a < x,

we have a < x A x’ = 0, which is absurd. Hence @P),_, a = 1.

Now let x € U and consider the set W = {ze U: z < x}. By Exercise B37,
(W, <) i1s a complemented distributive sublattice of (U, <). Moreover, if
B 1s the set of atoms of W, then B = A. Applying the argument of the

preceding paragraph to (W, <), we obtain x = Paes a = f(B).
To prove that f is injective, let B and C be distinct subsets of 4 such
that f(B) = f(C). Wemay pick ze B+ C;say ze Band z ¢ C. Then

zAN@Pa=\/(zAa)=:

aeB aeB
while
z/\@a:\/(z/\a)=0. ]
aeC aeC

B42 Corollary. The function f: (#(A), <) — (U, <) of the above proposition
is a lattice-isomorphism.

PROOF. It has already been established that f is a bijection. We need only
verify that fis an isomorphism of partially-ordered sets.

Let B, C € #(A) such that C < B. Clearly @,..a < @, a.
Conversely, let x, ye U such that y < x. Then y = @, .. ¢ and x =
@, b for some subsets C, Be #(A). Since y A x = y, we have by “dis-

tributivity”, Vcec.oer (€ A B) = (Veec €©) A (Voves ) = @eec ¢. Each term
¢ A b clearly equals either ¢ or 0. Specifically, \/ccc.oez (¢ A b)) = @) ,ccnp G-

Thus f(C N B) = f(C), and since f1s injective, CN B = C.Hence C < B. [

B43 Corollary. A lattice is Boolean if and only if it is complemented and
distributive.
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IIC Connectedness and Components

In the previous section we considered minimal, nonzero elements of a
lattice (““atoms’’); in this section we begin by considering the collection
A (/) of minimal, nonempty subsets belonging to a collection & of sets.
Like the set of atoms of a lattice, .#(7) is an incommensurable collection.
These subsets are called the elementary sets in & For example,
MP(U)) = A(U) and A(E(U)) = Z(U). It holds not only in these two
examples, but in general, that if <7 is a subspace of #(U), then .#(27) spans
/. We shall look to .#(27) to yield further properties about . Throughout
this section 2/ will denote a subspace of (Z(U), +).

C1 Lemma. Every subset in &/ is the sum of pairwise-disjoint elementary
subsets in <.

PrOOF. Let S € &, We proceed by induction on |S|. If S = &, then § is
the sum over the empty collection. Let » be a positive integer, and assume
the conclusion holds for 7 whenever T e/ and |T| < n. Now assume
|S| = n. By Proposition Bl1, there exists an elementary set M < S. Thus
S + M| = |S| — |[M]| < n, and by the induction hypothesis, there exist
pairwise-disjoint subsets M,,..., M, e #()suchthat S + M = M, +...
+ M,. Hence S = M, +...+ M, + M i1s the required sum. ]

The incommensurability of .#(&7) plays an important role in proving the
next result.

C2 Lemma. Let M,, M, € #() such that M, "\ M, # &. Given x; € M,
and x, € M,, there exists M € M(X) such that {x,, xs} = M.

PrROOF. We proceed by induction on |[M; U M,|. If |M; U M,| < 2, the
result is obviously true. Let m > 2 be given and suppose the lemma holds
whenever | M, U M,;| < m.

Suppose |M; U M,| = m, and let x;, x, be given. Clearly if x; € M, for
some [ # j, there remains nothing to prove. We suppose therefore that
X1, Xo €E M, + M,.

By Lemma Cl, M, + My, = N, +...+ N, for some pairwise-disjoint
elementary subsets N,,..., N,. If one of these sets N; contains {x;, X5},
then set M = N,. Hence we may assume without loss of generality that
x, € N, and x, € N,. Because .#(27) is incommensurable, [M; + (M; N M,)] N
N;,# @ foralli=12;j=1,...,k. Hence N, UM, <« M, U M,. We
may therefore apply the induction hypothesis to N, U M,, since x; € N,,
x, € My, and Ny N M, # &. Hence {x,, xo} < M forsomeset M e #(&). [

C3 Lemma. If & = @;_, %, and B, # {&} for all i, then
(MB):i=1,... Kk eP (M)

\ 43



II Algebraic Structures on Finite Sets

PrROOF. We give a proof when k£ = 2; the general case then follows easily
by induction. That #(%#,) N H#(%,) = &, i1s immediate. Hence we wish to
prove MH(X) = M(H) YV MPHB,). Let B, = Fnd(%) for i =1,2. Let
Ae M), and suppose that A N B; # & for some i. By Al2a, AN B,
wp[] = %, < <. By the minimality of 4, we must have A N B; = A, and
so A < B,. Hence A € #(%,). Conversely, let A € #(%,) for some i. Then
Aesl since B, = A If A¢ M), then g < C < A for some C e . But
then CeA N P(B) < np[F] = % by All and Al2a, contrary to the
minimality of A. []

We are now ready to define some basic concepts of this chapter.

A subspace Z is a direct summand of & if &/ = Z P € for some sub-
space €. Clearly {&} and & are always direct summands of &7, The subspace
&7 1s said to be connected if these are the only direct summands of 7. Finally,
we define a component of =7 to be a connected direct summand of &/ other
than {&}.

C4 Example. If 2 < S < U, then Z(U) = Z#(S) D #(U + S). Hence Z(S)
and (U + ) are direct summands of Z(U). It follows that Z(U) 1s con-
nected if and only if |U| < 1. Therefore the components of #(U) are all
the subspaces of the form #({x}) where x € U. It is true not only in this
example, but in general, that the foundations of disjoint direct summands
are disjoint.

C5 Lemma. If & = @);_, &, and B, # {x} for all i, then
(Fnd(2):i = 1, ..., k} € P(Fnd()).

ProoOF. For 1 <i<j<k, we have Z N %, = {z}, and so Fnd(%) N
Fnd(%#;) = @. Since %, # {2}, Fnd(#%,) # . Finally let x € Fnd(%/). Then
x € A for some A € #(=/). By Lemma C3, 4 € %, for some i, whence
x € Fnd(%,) as required. ]

Given two systems A; = (V,, f,, E) for i =1,2 where VNV, =g =
E,NE, the system A = (VU V,f, E, YV E;) where f(e) = fi(e) for
e € E; is called the direct sum of A; and A, and is denoted by A; @ A.,.
Since the operation @ on systems is commutative and associative, this
definition may again be extended to any finite number of systems A; =
Vi, fi, E), i=1,...,k, as long as VNV, = E NE, =g for all i #j.
The resulting system A is called the direct sum of A,,..., A, and is denoted
by (Py_, Ai. Note that each A, is a subsystem of P);_, A;. Each A, is called
a direct summand of A. The system (&, f, @) 1s called the trivial system.
Clearly A itself and the trivial system are always direct summands of A.
Hence we say that A 1s connected if these are its only direct summands.

Finally, a connected nontrivial direct summand of A 1s called a component
of A.
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Direct summands for subspaces are closely related to those of systems,
as we shall now see. If &7 is a subspace of Z#(V), we define A(L) to be

(Fnd(&), A4 ().

C6 Proposition. Let &/ be a subspace of (V).
(@) If & = @Dy, B, then M) = Dy~ MB).
(b) If M) = @Df_, A, where A, = (V,, 6), then A, = AN N P(V))
fori=1,..., k. Furthermore & = D;_, (& N P(V)).

PROOF. (a) This follows at once from Lemmas C3 and C5 and the definitions.

b) Let B =ANPV)fori=1,...,k. Clearly Fnd(%,) < V,. Hence
P;-, B, is a well-defined subspace of =7, Now let 4 € «Z By Lemma Cl, 4 =
>¥_1 B,, where B, is a sum of sets in & N #(&/). Since for i = 1,.. ., k,
B, e/ and B; < V,, we have B, € %, Thus 4 € @;_, %, and we conclude
thato/ = P, %. By part (a) above, A(&) = PF_, A(%). Since Fnd(%) <
Vifori=1,...,k, we must have V; = Fnd(%,) and &, = A#(%,). (]

C7 Proposition. Let A,,..., A, be the components of the system A. A sub-
system Q of A is a direct summand of A if and only if Q = P, . A, for some

subset S < {1,..., k}. In particular, A = @P;_, A,.

PrROOF. Let D(A) denote the collection of direct summands of A. This is
precisely the set of complemented elements of the lattice (S(A), <) presented
in Example B29. By B34b and B40, (D(A), <) is a distributive complemented

sublattice of (S(A), <). The atoms of (D(A), <) are precisely the com-
ponents of A, and the result follows from Corollary B42. ]

This result combined with C6 yields:

C8 Corollary. Let €,, ..., €, be the components of 4. A subspace Z of A is
a direct summand of & if and only if # = ) ,.. €, for some subset S <

{1, ..., k}. In particular o = Pf_, E.

It follows from this Corollary and Lemma C5 that {Fnd(%): € is a com-
ponent of 27} is a partition of Fnd(27). This partition is called the component

partition of the subspace 7.

C9 Example. Let U = {s, t,u,v,w, x, y, z} and let &/ be spanned by §; =
{s, t,u,v}, So = {s, t,w}, S; = {u, v, w, x, y, z}. Then & consists of all possible
sums of these three sets. The remaining sets in %7 are: &, S; + S, = {u, v, w},
Si+Ss=1{s,t, w,x,y,2}, Sa+S;=1{s,t,u,v,x,y,z}, and S; + Sy +
Ss = {x, », z}. Since the sets in the list are all distinct, |=/| = 2%, and so
dim(&/) = 3. Let 2 = {Q,, O,} where O, = {s, ¢, u, v, w} and Q, = {x, y, z}.
Then Z(0,)) N & = {z, S;, Sy, S1 + S5} has dimension 2 and Z(Q,) N & =
{z,S; + S + S35} has dimension 1. Each of these two subspaces is connected.
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Also, & = (Z(Q,) N ) D (P(0,) N ). Thus Z(0,) N and Z(0,) N
are the components of 7, and 2 is the component partition of <7

C10 Exercise. Prove:
(a) The component partition of 7 is the coarse partition of ().

(b) If {x} € & for some x € Fnd(%), then P({x}) is a component of .
(¢) If xe U + Fnd(«Y), then P({x}) is a component of .

C11 Lemma. Let |U| > 2. Fnd(&/) = U and </ is connected if and only if
Fnd(«/+) = U and /* is connected.

PrOOF. Clearly by duality it suffices to prove this lemma in just one direction.
Suppose Fnd(«/) = U and that &/ is connected, and let x € U + Fnd(&74).
By Exercise C10c, Z({x}) is a component of 7. Since |U| > 2, & is not

connected, contrary to assumption. Hence Fnd(&/*) = U.
Suppose Lt = #, P #,. Let < be the orthogonal complement of %, in

P(Fnd(#)) fori = 1, 2. For all A € &4 and A’ € &4,

AN A'| =|AN (A nFnd(%)))| + |4 N (A" 0 Fnd(%y))]
= |A N (4’ N Fnd(&))| = 0 (mod 2).

Hence A € &7, whence &/ < & Since Fnd(24) N Fnd(&%) = @, o, @ &, <
2. To prove the reverse inequality, we use A6:

dim(+4) = |Fnd(%)| — dim(B) i=1,2.

Since Fnd(&/*) = U, we have dim(& @ %) = |U| — dm(%#, @ %,) =
|U| — dim(&/t) = dim(&), and so &, @ &, = & If o = {}, then for
jeil, 2} + {i}, U = Fnd(«) = Fnd(«7)) < Fnd(#,) = U + Fnd(%), and so
Fnd(%) = @, whence %, = {@}. This proves that if %, and %, are nontrivial,
then &7 is not connected, which completes the proof. ]

C12 Proposition. Let ¢,, . . ., 6, be the components of o/ and let U + Fnd(&) =
{V1s..., Vo). Let &; be the orthogonal complement of €, in #(Fnd(%))),
i =1,..., k. Then the components of /*+ are P({y}) fori = 1,..., p and
the nontrivial spaces among &, fori = 1, ..., k. In particular, if Fnd(&/) =
Fnd(&7/-), then & is connected if and only if /1 is connected.

PROOF. If A € o/ and D € &, then |4 N D| = |mppae,(4) N D| = 0 (mod 2),
since the projection of 4 belongsto %, (i = 1, ..., k). Hence D € &+, and so
9, <+ fori=1,...,k. By Cl0c, Z({y,}) is a component of &/* and so

% = [DF., D1 ® [P, P{y)] < *. Since dim(%,) = |Fnd(%)| — dim(2)
fori=1,..., k, we have

dim(%) = dim(é %’;) = |U| — p — dim(é @)
= |U| — dim(%®) = |U| — dim(&Y),
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and so # = &/*. Hence each subspace %, is a direct summand of 27+, and
by the lemma, it is a component whenever it is nontrivial. The rest is im-
mediate. L]

C13 Exercise. Prove

(@) &(U) is connected for any set U.

(b) If |U| = 3, then &(U) is the only connected (|U| — 1)-dimensional
subspace of #(U).

Continuing our notation, let M; be an incidence matrix for the direct
summand A, fori = 1,..., k. Then the matrix

is clearly an incidence matrix of @);_, A;, provided none of the systems A,

has an empty vertex set or empty block set. Its transpose M* has the same
form except that M;* replaces the submatrix M, fori = 1,..., k. From this
argument the following is clear:

C14 Proposition. Let A,, ..., A, be hypergraphs. If their direct sum is defined,
then the direct sum of their transposes is defined, and

k Xk k
(&) - e
i=1 i=1
Since a system is trivial if and only if its transpose is trivial, we have

C1S5 Corollary. A system is connected if and only if its transpose is connected.

C16 Exercise. Show that if Q = (W, fr, F) is a direct summand of A =
(V, f, E) then Q = Ay = Ap whenever W # & # F.

C17 Exercise. Let A = (V, f, E) be a system such that f(e) = @ for some
e € E. Prove A is connected if and only if V = & and |E| = 1.

Let A,,..., A, be the components of the system A = (V, f, E) and write
A=V, fi, E)fori=1,...,k.ByC7, A = @P;., Ai,andsoif A, ..., A,
are the components with nonempty vertex sets, we have {V; ,..., V; } € P(V).
This partition is called the component partition of A.
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C18 Exercise. Continuing this notation, find the component partition of
A¥*,

Let A = (V, f, E)beasystem, and lets, t € VU E. An st-path is a sequence
S = Sy, 81,..., 8, = t of elements of V' U E such that:

(a) any three consecutive terms of the sequence are distinct;

(b) {s,_1, s;} 1s an edge of the bipartite graph of Aforj=1,...,n

For example, if x, y € V, an xy-path is an alternating sequence x = Xx,, €;, X,
es,..., en-1, X, = y Of vertices and blocks such that {x;, x;,.} < f(e;.,) for
i=0,2,...,n — 2. Note that a single vertex or block is itself a path; such
a path is said to be trivial. A path is said to be elementary if all of its terms

are distinct.

C19 Exercise. (a) Let A = (V, f, E) be a system and let s, t € V U E. Show
that if A admits an st-path, then it admits an elementary st-path.

(b) Define the relation ~ on VU E by: s ~ t if and only if there exists an
st-path in A. Show that ~ is an equivalence relation.

C20 Proposition. The component partition of A = (V, [, E ) is the partition of
the equivalence relation ~ of C19b restricted to V.

PROOF. Assume Ay ,..., Ay are the components of A = (V, f, E) and let
F,={ecE:f(e) < V}.Letse V,and t € V, for some i # j. Suppose s = S,
$.,..., 8, = t 18 an st-path, and let s, be the last term in the path in V; U
F,. If s, 1s a vertex, then s, € f(s;,.1) where s, €V, and s, ¢ F,. Since
Ay,..., Ay are the components of A, s,,.,€F, for some g # i and
f(s41) € V,, 1.6, f(sk+1) N Vy = @. This 1s clearly impossible. If s, 1s a
block, then s, ., € f(s;), but f(s,,) < V; while s, ¢ F, which is impossible. We
conclude that there exists no st-path. Hence the partition defined by ~
refines the component partition.

Now suppose s, t € V, for some i. Let S = {re V, U F;: there is an sr-
path}. Observe that if r€ S N F,, then f(r) = S and hence f(r) = SN V..
On the other hand if re F, + (SN F), then f(r) N S = o, ie., f(r)eV, +
(SN V). We conclude that Q, = (SN V, fisar, SN F) and Q; =
(Vi + (SN V), fir, +snry Fi + (S N F)) are both well-defined subsystems
of A. Furthermore, Q;, A Q, = {2, f, 2} and Q; v Q; = Ay, 1€, Q; D
Q, = Ay,. However A, , being a component, is connected. Hence Q; or £,
is trivial. Since s € S, Q, is not trivial. Thus te V, < S, and s ~ . (]

C21 Corollary. Let A = (V, [, E). The following three conditions are equivalent:

(a) A is connected.
(b) f(e) # & for all e € F, and for every s, t € V there is an st-path.
(c) For every s, t € V U E there is an st-path.
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C22 Proposition. (a) A necessary and sufficient condition for a subspace </ to
be connected is that given x,, xo € Fnd(2/), there exists M € M() such
that {x,, xo} < M.

(b) The relation ~ on Fnd(&/) given by

x~y<{x,y} < A for some Ac H()

is an equivalence relation. The equivalence classes are precisely the cells of
the component partition.

Proor. The sufficiency of the condition in (a) is immediate.

By repeated application of Lemma C2, we see that there exists an x;x,-path
in A(«/) if and only if {x;, x,} < M for some M € .#(27), whence the necessity
follows. Part (b) is merely a restatement of this principle. ]

Let I' be the bipartite graph of the system A. The terms of a path in A are
precisely the vertices of a path in the system I', and conversely. Consequently

by C17 we have:

C23 Proposition. Let I' be the bipartite graph of the system A. I' is connected
if and only if A is connected.

C24 Exercise. Prove that if I'; is the bipartite graph of the system A; for
i=0,1,...,n, then A,,..., A, are the components of A, if and only if
r'y,..., I', are the components of I',,.

C25 Exercise. Show that a bipartite graph is connected if and only if it is
bipartite with respect to a unique partition.

C26 Exercise. Show that a bipartite graph with kX components i1s the bipartite
graph of precisely 2* systems (but of at most 2¥ nonisomorphic systems).

C27 Exercise. Let CQ be a subsystem of a system A. Show that Q2 1s a com-
ponent of A if and only if Q* is a component of A*, thereby extending C14
to all systems.

IID The Spaces of a System

Let A = (V, f, E) be a system. The function f, when extended by linearity,
yields a linear transformation f: Z(E) — Z(V) given by

f(4) = Zf(e) for all A < E.

ecA

As a linear transformation, f determines two important subspaces. The image
of f, denoted by #(A), is called the space of A, and the kernel of £, denoted

by Z(A), is called the cycle space of A. The space #(A) is, of course, the
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subspace of #(V) spanned by f[E]. The space Z(A), on the other hand,
1s a subspace of #(F). Let A < E. Then

D1 Ae Z(A) if and only if Zf(e) = .
ecA
The orthogonal complements Z+(A) and Z+(A) of Z(A) and Z(A) are

called the cospace of A and the cocycle space of A, respectively. An element
of Z(A)is called a cycle of A and an element of Z*(A) is called a cocycle of A.

D2 Exercise.LetR = {a,b,c,d,e,f}.LetS = {a, b}, T = {a, c}, U = {b, d},
V={cd}, W={bc}, X=1{d,e}, Y=1{ef}, Z={d f}. Let & =
{S, T, U, V,W,X, Y, Z}, and let I' be the graph (R, &). Determine %/(I'),
Z[M@), K1), and Z1(I'). Compare these findings with your results in
Example CO.

We display some immediate consequences of the definitions of these spaces.
Since the dimension of the domain of fis |E|, we have

D3 dim(Z'(A)) + dim(@(A)) = |E|.
From A6, we have

D4 dim(Z'(A)) + dim(Z+(A)) = |E|,
and

D5 dim(%(A)) + dim(#*(A)) = |V].

Combining D3, D4, and D35, we have
D6 dim(#(A)) = dim(Z+(A)) = |E| — dim(Z'(A)) = |V]| — dim(ZL(A)).

D7 Proposition. Let A be a system. Then
YW(A*) = ZH(A) and Z(A*) = YH(N).

PrROOF. Let A = (V, f, E) and A € Z(A). We show that A4 is orthogonal to
each element of % (A*) by showing that 4 is orthogonal to each element of
its spanning set {f*(x): xe V}. By DI, >..4 f(e) = . That 1s to say, for
each x € V, x € f(e) for an even number of blocks e € 4. Thus | f*(x) N 4| =
{e € A: x € f(e)}| is even, i.e., A-f*(x) = 0. Hence Z'(A) = #1(A¥), whence
Y(A*¥) < ZL(A). Dually we have ¥(A) < Z+(A*). By these two inclusions
and D6, we have:

dim(#Z(A)) < dim(Z(A*)) = diIm(@(A*)) < dim(ZL(A)) = dim(Z(A)).

Equality must then hold throughout and in the above inclusions. ]

The following example ties together many of these notions.

D8 Example. Let n > 3 be an odd integer, and let E = {e;,...,e,} and V =
{x1,..., X} be disjoint n-sets. Let A = (V, f, E) be the set system where
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fle)=V+{x}fori=1,...,n Since f[E] = 2. _(V), Z(A) = V) by
A3. Hence dm(#%(A)) = n — 1, by Al. By D3, dim(Z(A) =n — (n — 1) =
1. Since x; € f(e;) if and only 1f i # j, each vertex is incident with an even
number (namely, n — 1) of the blocks. Hence >?_; f(e,) = &, and E € Z(A).
Since dim(Z'(A)) = 1, Z(A) = {z, E}. By Exercise A7, if you were diligent,
the cospace Z1(A) = {&, V} while Z1(A) = &(E). (If you were not diligent,
you could still obtain these two results. By A8, Ve%+(A), and by D5
dim(Z+(A)) = 1. By A8, Z4(A) is even, and by D4, dim(Z+1(A)) = n — 1.
By C11, Z+(A) 1s connected, and the result follows by C13b.) Now consider
A* =(E,f*, V). Thus f¥(x;)) = E+ {e}fori=1,...,n. Let p:. E— V be
given by p(¢;) = x; (i = 1,..., n). Clearly (p, p~1) i1s a system-isomorphism
from A to A*. By the above discussion with the roles of V" and E interchanged,
Y (A*) = &(E) while Z(A*) = {@, V}. We have verified Proposition D7 for
this example directly.

D9 Proposition. Let A = (V, f, E) be a hypergraph, and suppose A = A; @
Ay, Then W(A) = U(A,) DY(Ay), Z(A) = Z(A,) D Z(Ap), UH(A) =
YHN) @ YH(Ay), and ZHA) = ZH(A) @ ZH(Ay).

PROOF. Let A, = (V, fi, E;) (i = 1, 2). Since f(e) = fi(e) < V, for all e € E,,

and since #(A;) is spanned by {f(e): e € E;}, we have that Fnd(#%(A,)) < V..

Thus ¥ (A,) and #(A,) have disjoint foundations, and Z(A;) @ Z(A,) is
well-defined. That this equals #(A) follows when we observe that

{f(e): ee E;} + {f(e): e € E,} spans Z(A).
Since Fnd(Z'(A))) € E;,, Z(A,) @ Z(A,) is well-defined. Since Z(A)) is

clearly a subspace of Z'(A),
D10 Z(A) D Z(A) < Z(AN).
By D3,
dim(Z'(A,) @ Z(Ay)) = |E,| — dim(#(A,)) + |E;| — dim(#Z(Ay))
= |E; + E5| — dim(#Z(A))
= dim(Z'(A)).

Thus equality holds in D10. The last two parts of the proposition follow from
the first two parts, C14, and D?7. []

D11 Corollary. Let A be a hypergraph. If any one of the spaces ¥ (A), Z (),
YL(N), or Z+(A) is connected, then A is connected.

D12 Exercise. (a) Determine #/(I') for the graph I' = (V, Z(V)).
(b) Fix x € V, and for each {y, z} € Z(V + {x}), let

Svz = WX, ¥} 1%, 21, 1), Z}}

Show that {¥,.: {y, z} € Z(V + {x})} is a basis for Z'(I').
(¢) In what remains of your youth, determine a basis for Z+(I).
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D13 Exercise. Let Q) = (W, g, F) be a subsystem of a system A. Prove:
(a) Z(Q) = P(F) N Z(A).
(b) ZL(Q) = w[ZL(A)]. (Hint: see AlS.)
(¢) dim(Z(Q)) < dim(Z(A)) and dim(Z1(Q2)) < dim(Z+(A)).

IIE The Automorphism Groups of Systems

In ID we considered isomorphisms between two systems. In the present
section we turn our attention to the isomorphisms between a system A =
(V, f, E) and itself. (It will always be assumed that V' # & or E # &.) Such
a system-isomorphism is called an automorphism of A. The set of auto-
morphisms 1s precisely:

G(A) = {(p,q): p e II(E); g € I1(V); qlf(e)] = f(p(e)) for all ee E}.
Under the operation of componentwise composition

(P2; 92)(P1, 1) = (P2P1, 9291),

it 1s immediate that G(A) is a group, and we call G(A) the automorphism
group of A. Clearly G(A) &~ G(A*).

Note: the isomorphism indicated here as well as the isomorphisms below
are to be interpreted in terms of the abstract group structure, and not neces-
sarily of the permutation group structure.

Let
Go(A) = {qgeII(V): (p, g) € G(A) for some p € I1(E)}
and
G.(A) = {pell(E): (p, q) € G(A) for some g € I1(V')}.

Under composition Gy(A) is a subgroup of II(V) and G,(A) is a subgroup of
II(E). Go(A) is the vertex group of A, and G,(A) is the block group of A.
Their elements are, respectively, vertex-automorphisms and block-auto-
morphisms of A. Observe that

El Go(A) = G (A¥);  Gi(A) = Go(A¥).

E2 Proposition. Let A be a system. A is a set system if and only if Go(\) =
G(A).

PrROOF. Define 7: G(A) — Go(A) by #(p, q) = q for all (p, g) € G(A). 1t 1s
immediate that = is an epimorphism. The groups G(A) and Gy(A) will be
isomorphic if and only if « is injective. If (p, q) is in the kernel of =, then

g = ly. Hence G(A) = Gy(A) if and only if
(p, lV) = ker(ﬂ) = P = lE'
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Suppose A is a set system, and let (p, 1y) € ker(«r). By definition of G(A),
E3 f(e) = 1y[f(e)] = f(p(e)), forall eeE.

Since fis an injection, p(e) = e for all e € E. Hence p = 1;.
If A is not a set system, there exists a set {e;, e;} € Z(F) such that f(e,) =
f(e2). We define

e, ife=ey;
ple) =qe 1ife = ey;
e ifeekE + {ey, ey}
Clearly p satisfies E3, and so (p, 1y) € ker(w). But p # 1;. ]

E4 Corollary. Let A be a system. A distinguishes vertices if and only if G(A) =~

G.(A).
PRrROOF. By E2, A* is a set system if and only if G(A*) = G,(A*). The corollary
follows from El and IDS5. ]

ES Corollary [w.5]. Let A be a set system. A distinguishes vertices if and only
if Go(A) = G1(A).

Proor. Apply E2 and E4. ]

It can happen that Gy (A) >~ G,(A), where the groups are isomorphic
even as permutation groups while A neither is a set system nor distinguishes
vertices. Suppose, for example, that V = {x;,..., x5} and E = {e,, ..., €4},
and let

fle1) = fle2) = {x1, X2, Xs} and f(es) = f(es) = {X3, X4, X5}

In this case A i1s connected. One straightforwardly verifies that Gy(A) is
generated by the cyclic permutations g, = (x;, X3, X2, X4) and g = (x;, X3),
which satisfy the relations ¢,* = ¢,2 = (¢.:92)?> = 1. Thus Gy(A) is isomorphic
to the dihedral group D,. Similarly, G,(A) is generated by p;, = (e, €3, €,, €,)
and p, = (e, e,), satisfying p;* = p,2 = (p,p2)? = 15. We see that Gy(A) and
G.(A) are isomorphic as abstract groups. In fact, if the vertex x; were to be
removed, they would be 1somorphic permutation groups. However, A neither
is a set system nor does A distinguish vertices. Of course, neither group is
isomorphic to G(A).

E6 Exercise. Determine G(A) in the above example.

E7 Exercise. Let A be a system and let »: Go(A) — G1(A) be a function which
satisfies

(7(q), 9) € G(A) for all g € Go(A).
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Such a function clearly exists.

Prove:

(a) If A distinguishes vertices, then » is an injection.

(b) If A is a set system, then n is uniquely determined and is a (group)
epimorphism.

(c) For any A, there exists a homomorphism 7: Go(A) — G,(A) such
that (n(q), q) € G(A) for all g € Go(A).

E8 Exercise. Show that if A is allowed to be infinite, then the two-way
implication in Corollary ES need hold in only one sense [L. Babai, L. Lovasz].

Consider an sz-path s = s¢, 51,..., 8, = t1n A, and let us say, for definite-
ness, that s € <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>