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Preface to the New Printing

I have taken advantage of the opportunity afforded by this new printing
to correct some minor errors in the text, to add some additional exercises,

and to include references to some of the more recent books and papers on
algebraic topology. Other than this, the main body of the text is un-

changed. It is my intention to publish in this same Springer-Verlag series
a sequel to this book on singular homology theory and related topics.

W. S. MASSEY
New Haven, Connecticut

May, 1977
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This textbook is designed to introduce advanced undergraduate or
beginning graduate students to algebraic topology as painlessly as pos-

sible. The principal topics treated are 2-dimensional manifolds, the
fundamental group, and covering spaces, plus the group theory needed
in these topics. The only prerequisites are some group theory, such as

that normally contained in an undergraduate algebra course on the
junior-senior level, and a one-semester undergraduate course in general

topology.

The topics discussed in this book are ‘“‘standard’” in the sense that
several well-known textbooks and treatises devote a few sections or a
chapter to them. This, I believe, 1s the first textbook giving a straight-
forward treatment of these topics, stripped of all unnecessary definitions,
terminology, etc., and with numerous examples and exercises, thus making
them intelligible to advanced undergraduate students.

The subject matter is used in several branches of mathematics other
than algebraic topology, such as differential geometry, the theory of Lie
groups, the theory of Riemann surfaces, or knot theory. In the develop-
ment of the theory, there is a nice interplay between algebra and topology
which causes each to reinforce interpretations of the other. Such an
interplay between different topics of mathematics breaks down the often
artificial subdivision of mathematics into different ‘‘branches’”’ and
emphasizes the essential unity of all mathematics.

Undoubtedly some experts will be shocked that a textbook purporting
to be an introduction to algebraic topology does not even mention
homology theory. It i1s certainly true that homology and cohomology
theory form the core of algebraic topology. However, it is difficult to
motivate the student who is learning these subjects for the first time, and
their systematic treatment requires the patient development of a great
deal of machinery. Only after several months of classroom lectures and
study can interesting applications be given which show that the develop-
ment of all the machinery was worthwhile. For these reasons, I beleve
that it is easier for the student to understand and appreciate homology

1X
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theory after he has studied the fundamental group and allied topics
presented 1n this book.

To those with a strictly logical mind, Chapter I, which discusses
2-dimensional manifolds, will perhaps seem the least rigorous part of the
book. There certainly would be no real problem in giving a strictly
rigorous treatment of this subject matter. However, such a treatment
would be rather dull and tedious, with long-winded proofs of facts that
are visually obvious. Moreover, the results of Chapter I are not basic to
the main theorems in the rest of the book; rather, they furnish examples,
1llustrations, and applications of the results of the later chapters.

Chapter II gives the definition and basic properties of the fundamental
group and the homomorphism induced by a continuous map. General
methods for determining the structure of the fundamental group of a
space are developed later, in Chapter IV, after certain essential group-
theoretic notions have been introduced in Chapter II11.

In Chapters III and IV the characterization of certain mathematical
structures as the solutions of ‘‘universal mapping problems’’ 1s emphasized
for two different reasons. First, it seems that the most efficient method
of determining the structure of the fundamental group of a wide variety

of spaces 1s by use of the Seifert-Van Kampen theorem (Chapter 1V); the
best formulation of this essential theorem involves the notion of a uni-

versal mapping problem. Second, this method of characterizing various
mathematical structures as solutions to universal mapping problems

seems to be one of the truly unifying mathematical principles to have

emerged since 1945, and 1t should be brought into the mathematics
curriculum as early as possible.

Chapter V contains a rather thorough discussion of covering spaces.
The relationship between covering spaces and the fundamental group is
emphasized throughout.

In Chapters VI and VII are given topological proofs of several well-

known theorems of group theory, especially the Nielsen-Schreier theorem
on subgroups of a free group, the Kurosh theorem on subgroups of a free
product, and the Grushko theorem on the decomposition of a finitely
generated group as a free product. These theorems belong to a section of

group theory whose original development was largely motivated by
combinatorial topology. I believe that the proofs of these theorems using

the fundamental groups and covering spaces of certain low-dimensional
complexes are more easily comprehended than the purely algebraic proofs.
I hope the unified treatment of these theorems by these essentially
geometric methods will make this section of group theory less formidable
and more readily accessible.

Chapter VIII i1s rather brief and of a strictly descriptive nature; no

theorems are proved. Its purpose is to help the student make the transi-
tion to the study of more advanced topics in algebraic topology.
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Although triangulations of 2-manifolds are used in Chapter I, and the
CW-complexes of J. H. C. Whitehead are introduced in the last chapter,
there i1s no systematic treatment of simplicial complexes in this book.
This may surprise some readers in view of the fact that many treatises on
algebralc topology start off with just such a discussion. However, it is
difficult to see how 1t could have materially simplified the exposition.
Moreover, it 18 my personal opinion that any such discussion must of
necessity be rather dull. One of the tendencies of algebraic topology
during the last fifteen years or so has been the replacement of simplicial
complexes by CW-complexes as the main object of study.

The sections listed below are not absolutely necessary to the further

developments of the theory, and they can be omitted completely or given
less emphasis in a briefer course or on a first reading of the book:

Chapter I, Sections 9-13.
Chapter 1I, Sections 7 and 8.
Chapter III, Section 7.
Chapter IV, Section 6.
Chapter V, Sections 10-12.
Chapter VI, Section 8.
Chapter VII, Sections 5 and 6.

Also, a briefer course could be built around the material in the first five
chapters, omitting the same sections.

This book has developed from lectures given at Yale University to
both graduate and undergraduate students over a period of several years.
It 1s a pleasure to acknowledge my indebtedness to these students. Their
questions, criticisms, and suggestions have given me many insights. I am
also deeply indebted to my colleagues for many discussions of the 1deas
presented 1n this book. Most of the theorems and definitions 1n this book
may be found in well-known textbooks or articles in mathematical
journals. In this regard, special mention must be made of the following
German textbooks: B. Kerekjarto, Topologie (Springer, 1923); K. Reide-
meister, Einfihrung tn die Kombinatorische Topologie (Teubner, 1932),
H. Seifert and W. Threlfall, Lehrbuch der Topologie (Vieweg, 1934). In
many cases 1 have tried to indicate the person or persons to whom 1
thought an i1dea or theorem should be credited. However, in a subject
such as this, whose development spans most of the past century and which
has been the joint work of many mathematicians in many countries, it is
inevitable that I have committed some errors in assigning credit. To
those whose names have been inadvertently omitted, I apologize; I trust
that they will be understanding.

W. S. MASSEY

New Haven, Connecticut



Note to the Student

Prerequisites This book assumes that the student knows enough
group theory to understand such standard terms as group, subgroup,

normal subgroup, homomorphism, quotient group, coset, abelian group,
and cyclic group. Moreover, it is hoped that he has seen enough examples
and has worked enough exercises to have some feeling for the true
significance of these concepts. An appendix on permutation and trans-
formation groups 1s supplied for the benefit of those who are unfamiliar
with this topic. Most of the additional topics needed in group theory
are developed in the text, especially in Chapter III.

The necessary background in point set topology can be obtained from
a one-semester undergraduate course 1n the subject. Because most text-
books for such a course either treat the subject very briefly or omit 1t
entirely, a short discussion of quotient spaces is appended. No knowledge
of any branch of algebra other than group theory 1s needed; in particular,
nothing is used from the theory of rings, fields, modules, or vector spaces.
Terminology and notation Since most terminology and notation
1s standard in contemporary mathematics books on this level, little
explanation 1s needed. In group theory, all groups (with a few standard
exceptions, such as the additive group of integers) are written multi-
plicatively, not additively. A homomorphism from one group to another
1s called an eptmorphism if 1t 1s onto, a monomorphism if it i1s one-to-one
(1.e., the kernel contains only the identity), and an zsomorphism if it is

both one-to-one and onto. A diagram of groups and homomorphisms,
such as

S

A—B

C —D

fl

X1ii



xiv / NOTE TO THE STUDENT

is said to be commutative 1f all possible homomorphisms from one group
to another in the diagram are equal. In the above diagram, there are two
homomorphisms from group A to group D, namely, gf (i.e., f followed by
g) and f'g’. Thus, requiring that this diagram be commutative is equiva-
lent to requiring that gf = f'g’. Note that the requirement that a diagram
be commutative has nothing to do with whether or not any of the groups
involved is commutative or abelian. I'or example, the above diagram
could be commutative even if A, B, ', and D were non-abelian groups.

In set theory, the notation

IT S,
€I

denotes the product (or cartesian product) of the family of sets S;, 7 € I.
An element x of the cartesian product i1s a function that assigns to each
iIndex 2 € I an element z; € S;. The element z; € S; 1s also called the

coordinate of the element x corresponding to the index 7 € 1.
If A is a subset of B, then there is a uniquely defined nclusion map of

A into B: 1t assigns to each element x € A the element x 1tself. In sym-
bols, if 7 : A — B denotes the inclusion map, then #(x) = x for any
r & A. If Ci1s another set and f : B — (C 1s any function from B to C, then
f| A denotes the restriction of f to the subset A; i.e., for any a € A4,

(f | 4)(e) = f(a) €C.
The following notation is fixed throughout the book:

Z. = set of all integers, positive and negative.
Q = set of all rational numbers.

R = set of all real numbers.

C = set of all complex numbers.

The notation R* (respectively, C*) for any integer n > 0 denotes the set
of all n-tuples (21, ..., x,) of real (respectively, complex) numbers; R»

iIs the Fuclidean n-space and has its usual topology. If x = (1, ... , xa)
is a point of R», then the norm or absolute value of x, denoted by |z|, is

defined as usual:

n
2| = (2, z})V2
1=1

With this notation, we define the following standard subsets of Euclidean
n-space for any n > O:

En
Ur = {z € R*: |z| < 1},

{fx € R : |x| = 14,

Ss-1 = {re Rr x| = 1§.
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These spaces are called the closed n-dvmensional disc or ball, the open
n-dimensional disc or ball, and the (n — 1)-dimensional sphere, respectively.
Each is topologized as a subset of R». The same names are sometimes
applied to any topological space homeomorphic to one of the spaces just
mentioned.

If a and b are real numbers such that a < b, then the following
standard notation 18 used for the open and closed intervals with ¢ and b

as end points:
(a, b)) = jz € R :a <z < b},

a,b] = {rEeR :a = x £ b},

(a,b] = {r€eR:a <z £b}.

IA

We say two spaces are of the same topological type if they are homeo-

morphic.
References A reference to Theorem or Lemma III. 8.4 indicates
Theorem or Lemma 4 in Section 8 of Chapter III; if the reference is
simply to Theorem 8.4, then the theorem 1s in Section 8 of the same
chapter in which the reference occurs.

At the end of each chapter is a brief bibliography. Numbers in square
brackets in the text refer to items in the bibliography.

On studying this book The exercises and examples are an integral
part of the text; without them it would be much more difficult to gain an
understanding of the subject. Many assertions are made without proof,
and the details of certain proofs are omitted. Regard the filling in of the
missing detaills as an exercise that tests whether you really understand
the 1deas 1nvolved.

Remember that the path from ignorance to knowledge in any subject
18 not straight and true, but is almost always rather zigzagged. One seems
to learn things by a method of successive approximations to the truth.
Thus, the first attempt to master some of the more difficult theorems in
this book 1s not likely to be completely successful. However, do not give
up. Rather, proceed with the study of the exercises and examples and
some of the later material, confident that your perseverance will be
rewarded with a deeper understanding of the ideas involved.
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CHAPTER ONE

Two-Dimensional Manifolds

1 Introduction

The topological concept of a surface or 2-dimensional manifold 1s a
mathematical abstraction of the familiar concept of a surface made of
paper, sheet metal, plastic, or some other thin material. A surface or
2-dimensional manifold 1s a topological space with the same local prop-
erties as the familiar plane of Euclidean geometry. An intelligent bug
crawling on a surface could not distinguish it from a plane if he had a
limited range of visibility.

The natural, higher dimensional analog of a surface is an n-dimen-
sional manifold, which is a topological space with the same local prop-
erties as Euclidean n-space. Because they occur frequently and have
application i1n many other branches of mathematics, manifolds are cer-
tainly one of the most important classes of topological spaces. Although
we define and give some examples of n-dimensional manifolds for any
positive integer n, we devote most of this chapter to the case n = 2.
Because there is a classification theorem for compact 2-manifolds, our
knowledge of 2-dimensional manifolds is incomparably more complete
than our knowledge of the higher dimensional cases. This classification
theorem gives a simple procedure for obtaining all possible compact
2-manifolds. Moreover, there are simple computable invariants which
enable us to decide whether or not any two compact 2-manifolds are
homeomorphic. This may be considered an ideal theorem. Much research
In topology has been directed toward the development of analogous
classification theorems for other situations. Unfortunately, no such
theorem is known for compact 3-manifolds, and logicians have shown
that we cannot even hope for such a complete result for n-manifolds,
n = 4. Nevertheless, the theory of higher dimensional manifolds 1s cur-
rently a very active field of mathematical research, and will probably
continue to be so for a long time to come.

We shall use the material developed in this chapter, especially in
Sections 1-8, later in the book.
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2 Definition and examples of n-manifolds

Assume 7 1s a positive integer. An n-dimensitonal manifold is a Hausdorft
space (i.e., a space that satisfies the T'; separation axiom) such that each
point has an open neighborhood homeomorphic to the open n-dimensional
disc U ( = {z € R* : |x| < 1}). Usually we shall say ‘“n-manifold’ for
short.

Examples

2.1 Euclidean n-space R™ is obviously an n-dimensional manifold. We can
easily prove that the unit n-dimensional sphere

S = {z € R+ : |z| = 1)

1s an m-manifold. For the point z = (1, 0, ..., 0), the set {(xy, ..., Tnsy1) E
S» : z; > 0} is a neighborhood with the required properties, as we see by orthogo-
nal projection on the hyperplane in R**! defined by z; = 0. For any other point
r € S*, there i1s a rotation carrying = into the point (1,0, .. ., 0). Such a rotation

1S & homeomorphism of S” onto itself; hence, £ also has the required kind of
neighborhood.

2.2 If M~ is any n-dimensional manifold, then any open subset of M™ is also
an n-dimensional manifold. The proof is immediate.

2.3 If M is an m-dimensional manifold and N is an n-dimensional manifold,
then the product space M X N is an (m + n)-dimensional manifold. This
follows from the fact that U™ X U" is homeomorphic to Um™t*, To prove this,

note that, for any positive integer k, U* is homeomorphic to R¥, and R™ X R" 1s
homeomorphic to R»+»,

In addition to the 2-sphere S2, the reader can easily give examples
of many other subsets of Euclidean 3-space R3, which are 2-manifolds,
e.g., surfaces of revolution, etec.

As these examples show, an n-manifold may be either connected or
disconnected, compact or noncompact. In any case, an n-manifold is
always locally compadct.

What is not so obvious is that a connected manifold need not satisfy
the second axiom of countability (i.e., it need not have a countable base).
The simplest example is the ‘“long line.””! Such manifolds are usually

regarded as pathological, and we shall restrict our attention to manifolds
with a countable base.

Note that 1n our definition we required that a manifold satisfy the
Hausdorff separation axiom. We must make this requirement explicit

1 See General Topology by J. L. Kelley. Princeton, N.J.: Van Nostrand, 1955. Exer-
cise L, p. 164.
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in the definition because 1t 1s nof a consequence of the other conditions
imposed on a manifold. We leave 1t to the reader to construct examples
of non-Hausdorff spaces, such that each point has an open neighborhood
homeomorphic to U™ for n = 1 or 2.

3 Orientable vs. nonorientable manifolds

Connected n-manifolds for n > 1 are divided into two kinds: orientable
and nonorientable. We will try to make the distinction clear without
striving for mathematical precision.

Consider first the case where n = 2. We can prescribe in various
ways an orientation for the Euclidean plane R? or, more generally, for a
small region in the plane. For example, we could designate which of the
two possible kinds of coordinate systems in the plane is to be considered
a right-handed coordinate system and which is to be considered a left-
handed coordinate system. Another way would be to prescribe which
direction of rotation in the plane about a point is to be considered the
positive direction and which i1s to be considered the negative direction.
Let us imagine an intelligent bug or some 2-dimensional being constrained
to move 1n the plane; once he decides on a choice of orientation at any
point in the plane, he can carry this choice with him as he moves about.
If two such bugs agree on an orientation at a given point in the plane,
and one of them travels on a long trip to some distant point in the plane
and eventually returns to his starting point, both bugs will still agree on
their choice of orientation.

Similar considerations apply to any connected 2-dimensional mani-
fold because each point has a neighborhood homeomorphic to a neighbor-
hood of a point in the plane. Here our two hypothetical bugs agree on a
choice of orientation at a given point. It is possible, however, that after
one of them returns from a long trip to some distant point on the mani-
fold, they may find they are no longer in agreement. This phenomenon
can occur even though both were meticulously careful about keeping an
accurate check of the positive orientation.

The simplest example of a 2-dimensional manifold exhibiting this
phenomenon is the well-known Mobius strip. As the reader probably
knows, we construct a model of a Mo6bius strip by taking a long, narrow
rectangular strip of paper and gluing the ends together with a half twist
(see Figure 1.1). Mathematically, a Mobius strip is a topological space
that 1s described as follows. Let X denote the following rectangle in
the plane:

X={xy)eR:-10=zz = +10, —1 <y < +1}.
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Glue edge ABC to A’B’C’

FIGURE 1.1 Constructing a Mobius strip.

We then form a quotient space of X by identifying the points (10, y) and
(=10, —y) for —1 < y < +1. (See Appendix A for information on
quotient spaces.) Note that the two boundaries of the rectangle corre-
sponding to y = +1 and y = —1 were omitted. This omission is crucial;
otherwise the result would not be a manifold (it would be a “manifold
with boundary,” a concept we will take up later in this chapter). Alter-
natively, we could specify a certain subset of R? which 1s homeomorphic
to the quotient space just described.

However we define the Mobius strip, the center line of the rectangular
strip becomes a circle after the gluing or identification of the two ends.
We leave it to the reader to verify that if our imaginary bug started out
at any point on this circle with a definite choice of orientation and carried
this orientation with him around the circle once, he would come back
to his initial point with his original orientation reversed. We will call
such a path in a manifold an orientation-reversing path. A closed path
that does not have this property will be called an orientation-preserving
path. For example, any closed path in the plane is orientation preserving.

A connected 2-manifold is defined to be orientable if every closed path
1s orientation preserving; a connected 2-manifold is nonorientable if there
1s at least one orientation-reversing path.

We now consider the orientability of 3-manifolds. We can specify an
orientation of Euclidean 3-space or a small region thereof by designating
which type of coordinate system is to be considered right handed and
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which type is to be considered left handed. An alternative method would
be to specify which type of helix or screw thread i1s to be designated as

right handed and which kind is to be left handed. We can now describe

a closed path in a 3-manifold as orientation preserving or orientation
reversing, depending on whether or not a traveler who traverses the path
comes back to his imitial point with his initial choice of right and left
unchanged. If our universe were nonorientable, then an astronaut who
made a journey along some orientation-reversing path would return to
earth with the right and left sides of his body interchanged: His heart

would now be on the right side of his chest, etc.
There 1s a 3-dimensional generalization of the Moébius strip which
furnishes a particularly simple example of a nonorientable 3-manifold.

Let
X={(y2€R:-10<z= 410, -1 <y < +1,
-1 <z < +1}.

Form a quotient space of X by identifying the points (10, y, z) and
(=10, —y, 2) for —1 < y < 41 and —1 < z < 41. This space may
also be considered the product of an ordinary 2-dimensional Mobius
strip with the open interval {z&€ R: —1 < z < +1}. In any case, the
segment —10 < z < +10 of the z axis becomes a circle under the
1dentification, and we leave it to the reader to convince himself that this
circle 1s an orientation-reversing path in the resulting 3-manifold.

To make analogous definitions for n-dimensional manifolds, we must
first be able to distinguish between two kinds of coordinate systems in
Euclidean n-space. This distinction can be made as follows. If we have
given two coordinate systems, then any point z will have coordinates
(1, ..., z,) and (z,, ..., z,) in the two systems, and these coordinates
will be related by equations of the following type:

.= ), aix;i+b;, 1=12 ... n. (1.3-1)
j=1
Here the a;;'s and b/'s are real numbers that do not depend on the choice
of the point z. Furthermore, it is well known that the determinant of
the a.-,-’s,

A1 aA19 . o o AT
do1 A9 . o o dAon

y
An1 An2 ¢ o . Ann

1s nonzero. We call these two coordinate systems of the same class if this
determinant is >0. From standard properties of the determinant of a
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system of linear equations sucn 2c {1 2-1), 1t follows that the relation
being ‘“‘of the same class’’ 1s an equivalence relation between coordinate
systems 1n R*, and that there are exactly two equivalence classes. To
choose an orientation of R” 1s to choose one of these two equivalence

classes of coordinate systems as the preferred class. We may designate
such a preferred coordinate system by some adjective such as ‘“positive’’

or “‘right handed.”

Once the preferred class of coordinate systems 1s chosen, an orienta-
tlon-preserving or an orientation-reversing path in a connected n-dimen-
sional manifold i1s defined 1n essentially the same way as for 2- and
3-dimensional manifolds. The only difference i1s that we do not have
much geometric intuition to guide us in the higher dimensional cases. In
a complete mathematical development of the subject it 1s necessary to
go into much more detail to achieve mathematical rigor.

In any case, 1t 1s possible to define the concepts of orientability and
nonorientability for the case of connected n-dimensional manifolds.
Euclhidean n-space R® and the n-sphere S® are examples of orientable
n-manifolds. We can easily define an n-dimensional generalization of the
Mobius strip, which 1s a nonorientable n-dimensional manifold. It 1s
homeomorphic to the product of an ordinary 2-dimensional Mohius strip
and an (n — 2)-dimensional open disc U2

In the remainder of this chapter, we shall be mainly concerned with

2-dimensional manifolds; hence, we shall not go any further into these
topics.

4 Examples of compact, connected 2-manifolds

To save words, from now on we shall refer to a connected 2-manifold as
a surface. The simplest example of a compact surface 1s the 2-sphere
S2; another important example 1s the torus. A torus may be roughly
described as any surface homeomorphic to the surface of a doughnut or
of a solid ring. It may be defined more precisely as

(a) Any topological space homeomorphic to the product of two circles,
St X St
(b) Any topological space homeomorphic to the following subset
of R3:
{(z,y,2) € R®: [(2* + yP)V2 — 2] + 2% = 1}.

[This 1s the set obtained by rotating the circle (x — 2)2 + 22 = 1
in the xz plane about the z axis.]
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(c) Let X denote the unit square in the plane R2:
{(z,y) eR2:0=x=<10=y = 1}.

Then, a torus i1s any space homeomorphic to the quotient space
of X obtained by identifying opposite sides of thesquare X accord-
ing to the following rules. The points (0, ¥) and (1, y) are to be
1dentified for 0 < y < 1, and the points (z, 0) and (2, 1) are to
be 1dentified for 0 < 2z < 1.

We will find 1t convenient to indicate symbolically how such i1dentifica-
tions are to be made by a diagram such as Figure 1.2. Sides that are to
be identified are labeled with the same letter of the alphabet, and the
identifications should be made so that the directions indicated by the
arrows agree.

We leave 1t to the reader to prove that the topological spaces described
in (a), (b), and (c) are actually homeomorphic. The reader should also
convince himself that a torus is orientable.

Our next example of a compact surface is the real projective plane
(referred to as the projective plane for short). It is a compact, nonorient-
able surface. Because i1t 1s not homeomorphic to any subset of Euclidean
3-space, the projective plane 1s much more difficult to visualize than the
2-sphere or the torus.

Definition The quotient space of the 2-sphere S2 obtained by iden-
tifying every pair of diametrically opposite points is called a projective
plane. We shall also refer to any space homeomorphic to this quotient
space as a projective plane.

For readers who have studied projective geometry, we shall explain why this
surface is called the real projective plane. Such a reader will recall that, in the
study of projective plane geometry, a point has ‘‘homogeneous’ coordinates
(x0, 1, 2), Where xo, x;, and z; are real numbers, at least one of which is # 0. The
term “homogeneous”’ means (zo, z;, £5) and (g, Z1, Z2) represent the same point
if and only if there exists a real number A (of necessity # 0) such that

i=0,1 2

FIGURE 1.2 Construction of a torus.
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If we interpret (zo, z;, z2) as the ordinary Euclidean coordinates of a point in R3,
then we see that (zo, z1, z2) and (zg, z1, Z2) represent the same point in the projec-
tive plane if and only if they are on the same line through the origin. Thus, we

may reinterpret a point of the projective plane as a line through the origin in R3.
The next question 1s, how shall we topologize the set of all lines through the origin
in R3? Perhaps the easiest way is to note that each line through the origin in R3
intersects the unit sphere S2 in a pair of diametrically opposite points. This leads

to the above definition.

Let H = {(z, y,2) € S?:2 = 0} denote the closed upper hemisphere
of S2. It 1s clear that, of each diametrically opposite pair of points in S2,
at least one point lies in H. If both points lie in H, then they are on the
equator, which is the boundary of H. Thus, we could also define the
projective plane? as the quotient space of H obtained by identifying
diametrically opposite points on the boundary of H. As H 1s obviously

homeomorphic to the closed unmit disc £2 1n the plane,
E? = {(z,y) € R?: 22 + y* = 1},

the quotient space of E? obtained by identifying diametrically opposite
points on the boundary is a projective plane. For E2 we could substitute
any homeomorphic space, e.g., a square. Thus, a projective plane is
obtained by identifying the opposite sides of a square as indicated in
Figure 1.3. The reader should compare this with the construction of a

torus 1n Figure 1.2,
The projective plane is easily seen to be nonorientable; in fact, it

contains a subset homeomorphic to a Mobius strip.

We shall now describe how to give many additional examples of
compact surfaces by forming what are called connected sums. Let S,
and S: be disjoint surfaces. Their connected sum, denoted by S; # S, 1s

a

N et .
1t A T T T T T N

FIGURE 1.3 Construction of a projective plane from a square.

2 For a rigorous justification of this assertion, we must use Proposition 4.2 in Appen-
dix A, which is applicable because the natural map from S? to the projective plane
18 a closed map, and H is a closed subset of S2.
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formed by cutting a small circular hole in each surface, and then gluing
the two surfaces together along the boundaries of the holes.” To be precise,
we ChOOSB subsets D1 C Sl and Dz C Sz SllCh that D1 and Dz are ClOSBd

discs (i.e., homeomorphic to E?). Let S; denote the complement of the
interior of D; in §; for 7 = 1 and 2. Choose a homeomorphism % of the
boundary circle of D; onto the boundary of D,. Then S, # S, is the
quotient space of S; U S; obtained by identifying the points z and A(x)
for all points z in the boundary of D,. It 1s clear that S, # S, is a surface.
It seems plausible, and can be proved rigorously, that the topological
type of S, # S, does not depend on the choice of the dises D, and D, or
the choice of the homeomorphism A.

Examples

4.1 If S, 1s a 2-sphere, then S, # S; is homeomorphic to ;.

4.2 If S, and S; are both tori, then S, # Ss i1s homeomorphic to the surface of
a block that has two holes drilled through it. (It is assumed, of course, that the
holes are not so close together that their boundaries touch or intersect.)

4.3 If S, and S, are projective planes, then S! # S? is a ‘“Klein Bottle,” i.e.,
homeomorphic to the surface obtained by identifying the opposite sides of a square
as shown in Figure 1.4. We may prove this by the ‘“‘cut and paste’’ technique, as
follows. If S;1sa projective plane, and D; is a closed disc such that D; C S;, then
S;, the complement of the interior of D;, is homeomorphic to a Mgbius strip
(including the boundary). In fact, if we think of S; as the space obtained by iden-
tification of the diametrically opposite points on the boundary of the unit disc E?
in R? then we can choose D; to be the image of the set {(z, y) € E? : |y| = 4]
under the identification, and the truth of the assertion is clear. From this it
follows that S, # S 1s obtained by gluing together two Maobius strips along their
boundaries. On the other hand, Figure 1.5 shows how to cut a Klein Bottle so as
to obtain two Mobius strips. We cut along the lines AB’ and BA’: under the
identification, this cut becomes a circle.

We will now consider some properties of this operation of forming
connected sums.

FIGURE 1.4 Construction of a Klein bottle from a square.
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C’/ B/
(b)

FIGURE 1.5 The Klein bottle is the union of two Mgbius strips.

It 1s clear from our definitions that there is no distinction between
S1# 82 and Sz # S;; 1.e., the operation i1s commutative. 1t is not difficult

to see that the manifolds (S; # S:) # S; and S, # (S #S;) are homeo-
morphiec. Thus, we see that the connected sum i1s a commutative, asso-

clative operation on the set of homeomorphism types of compact surfaces.
Moreover, Example 4.1 shows the sphere 1s a unit or neutral element for
this operation. We must not jump to the conclusion that the set of
homeomorphism classes of compact surfaces forms a group under this
operation: There are no inverses. It only forms what is called a semigroup.

The connected sum of two orientable manifolds i1s again orientable.
On the other hand, if either S; or S, 1s nonorientable, then so 1s S; # S..

5 Statement of the classification theorem
for compact surfaces

In the preceding section we have seen how examples of compact surfaces
can be constructed by forming connected sums of various numbers of
tori and/or projective planes. Our main theorem asserts that these
examples exhaust all the possibilities. In fact, it 1s even a shghtly stronger
statement, in that we do not need to consider surfaces that are connected
sums of both tori and projective planes.

Theorem 5.1 Any compact surface is etther homeomorphic to a sphere,
or to a connected sum of tort, or to a connected sum of projective planes.
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As preparation for the proof, we shall describe what might be called a
‘““canonical form’ for a connected sum of tor: or projective planes.
Recall our description of a torus as a square with the opposite sides

identified (see Figure 1.2). We can obtain an analogous description of the
connected sum of two tori as follows. Represent each of the tori T, and T,
as a square with opposite sides identified as shown in Figure 1.6(a).
Note that all four vertices of each square are identified to a single point
of the corresponding torus. To form their connected sum, we must first

cut out a circular hole in each torus, and we can do this in any way that

(¢)

FIGURE 1.6 (a) Two disjoint tori, 7, and T,. (b) Disjoint tori with holes cut
out. (c) After gluing together.
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we wish. It 1s convenient to cut out the regions shaded in the diagrams.
The boundaries of the holes are labeled ¢; and c¢;, and they are to be
identified as indicated by the arrows. We can also represent the comple-

ment of the holes in the two tori by the pentagons shown in Figure 1.6(b),
because the indicated edge identifications imply that the two end points
of the segment ¢; are to be identified, 2 = 1, 2. We now identify the
segments c¢; and c¢;; the result 1s the octagon in Figure 1.6(c), in which the
sides are to be 1dentified in pairs, as indicated. Note that all eight vertices
of this octagon are to be identified to a single point in T, # T..

This octagon with the edges identified in pairs is our desired ‘‘canoni-
cal form’’ for the connected sum of two tori. By repeating this process,
we can show that the connected sum of three tori is the quotient space
of the 12-gon shown in Figure 1.7, where the edges are to be 1dentified
in pairs as indicated. It should now be clear how to prove by induction
that the connected sum of n tori is homeomorphic to the quotient space
of a 4n-gon whose edges are to be identified in pairs according to a scheme,
the precise description of which is left to the reader.

Next, we must consider the analogous procedure for the connected
sum of projective planes. We have considered the projective plane as the
quotient space of a circular disc; diametrically opposite points on the
boundary are to be identified. By choosing a pair of diametrically
opposite points on the boundary as vertices, the circumference of the
disc 1s divided into two segments. Thus, we can regard the projective

plane as obtained from a 2-gon by identification of the two edges; see
Figure 1.8.

Figure 1.9 shows how to obtain a representation of the connected sum
of two projective planes as a square with the edges identified in pairs.

FIGURE 1.7 The connected sum of 3 tori is obtained by identifying the edges of a
12-gon 1n pailrs as shown.
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te edges of a

Ing Opposl

(
)
(c)

1

2-gon.

FIGURE 1.8 The projective plane i1s obtained by identify

FIGURE 1.9 (a) Two disjoint projective planes, P; and P,. (b) Disjoint projec-

tive planes with holes cut out. (¢) After gluing together.
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The method is basically the same as that used to obtain a representation
of the connected sum of two torli as a quotient space of an octagon
(Figure 1.6). By repeating this process, we see that the connected sum
of three projective planes is the quotient space of a hexagon with the
sides identified in pairs as indicated in Figure 1.10. By a rather obvious
induction, we can prove that, for any positive integer n, the connected
sum of n projective planes is the quotient space of a 2n-gon with the sides
1dentified in pairs according to a certain scheme. Note that all the vertices
of this polygon are identified to one point.

It remains to represent the sphere as the quotient space of a polygon
with the sides identified in pairs. We can do this as shown in Figure 1.11.
We can think of a sphere with a zipper on 1t, like a purse; when the zipper

i1s opened, the purse can be flattened out.
Thus, we have shown how each of the compact surfaces mentioned

in Theorem 5.1 can be considered as the quotient space of a polygon with

FIGURE 1.10 Construction of the connected sum of three projective planes by
identifying the sides of a hexagon in pairs.

FIGURE 1.11 The sphere is a quotient space of a 2-gon with edges identified as
shown.
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the edges identified in pairs. We now introduce a rather obvious and
convenient method of indicating precisely which paired edges are to be
identified 1n such a polygon. Consider the diagram which indicates how
the edges are 1dentified; starting at a definite vertex, proceed around
the boundary of the polygon, recording the letters assigned to the different

sides 1n succession. If the arrow on a side points in the same direction
that we are going around the boundary, then we write the letter for that

side with no exponent (or the exponent +1). On the other hand, if the
arrow points in the opposite direction, then we write the letter for that
side with the exponent —1. For example, in Figures 1.7 and 1.10 the
identifications are precisely indicated by the symbols

a.ba7ibilasheas bslasbar by and  a@.a.a2a2a:05.

In each case we started at the bottom vertex of the diagram and read
clockwise around the boundary. It 1s clear that such a symbol unam-
biguously describes the 1dentifications; on the other hand, in writing the
symbol corresponding to a given diagram, we can start at any vertex,
and proceed either clockwise or counterclockwise around the boundary.

We summarize our results by writing the symbols corresponding to
each of the surfaces mentioned 1n Theorem 5.1.

(a) The sphere: aa™.
(b) The connected sum of n tori:

a.b.a7 by asbas'bst ... a.b.a;tb
(¢) The connected sum of n projective planes:

a1d1@:Ads ... AnQAy,.

Exercise

5.1 Let P be a polygon with an even number of sides. Suppose that the sides
are 1dentified in pairs in accordance with any symbol whatsoever. Prove that the
quotient space i1s a compact surface.

6 Triangulations of compact surfaces

To prove Theorem 5.1, we must assume that the given surface 1s tri-
angulated, 1.e., divided up into triangles which fit together nicely. We
can easily visualize the surface of the earth divided into triangular regions,

and such a subdivision is very useful in the study of compact surfaces
In general.
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FIGURE 1.12 Some types of intersection forbidden in a triangulation.

Definition A triangulation of a compact surface S consists of a fin:te
family of closed subsets {7, T2, ..., T.} that cover S, and a family of
homeomorphisms ¢; : T;— T;, ¢ = 1, ..., n, where each T is a triangle
in the plane R? (i.e., a compact subset of R2 bounded by three distinct
straight lines). The subsets T'; are called ‘“triangles.”’ The subsets of T
that are the images of the vertices and edges of the triangle T'; under ¢;
are also called “vertices’”’ and ‘“edges,’”’ respectively. Finally, it is required
that any two distinct triangles, T; and T';, either be disjoint, have a single
vertex 1n common, or have one entire edge in common.

Perhaps the conditions in the definition are clarified by Figure 1.12,
which shows three unallowable types of intersection of triangles.

Given any compact surface S, it seems plausible that there should
exist a triangulation of S. A rigorous proof of this fact (first given by
T. Rad6 in 1925) requires the use of a strong form of the Jordan curve
theorem. Although it is not difficult, the proof is tedious, and we will not
repeat 1t here.

We can regard a triangulated surface as having been constructed by
gluing together the various triangles in a certain way, much as we put
together a jigsaw puzzle or build a wall of bricks. Because two different

triangles cannot have the same vertices we can specify completely a
triangulation of a surface by numbering the vertices, and then listing
which triples of vertices are vertices of a triangle. Such a list of triangles
completely determines the surface together with the given triangulation
up to homeomorphism.

Examples

6.1 The surface of an ordinary tetrahedron in Euclidean 3-space is homeo-
morphic to the sphere S2; moreover, the four triangles satisfy all the conditions
for a triangulation of S2. In this case there are four vertices, and every triple of
vertices is the set of vertices of a triangle. No other triangulation of any surface
can have this property.

6.2 In Figure 1.13 we show a triangulation of the projective plane, considered
as the space obtained by identifying diametrically opposite points on the bound-
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FIGURE 1.13 A triangulation of the projective plane.

ary of a disc. The vertices are numbered from 1 to 6, and there are the following
10 triangles:

124 245
235 135
156 126
236 346
134 456

6.3 In Figure 1.14 we show a triangulation of a torus, regarded as a square

FIGURE 1.14 A triangulation of a torus.
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with the opposite sides identified. There are 9 vertices, and the following 18

triangles:
124 245 235
356 361 146
457 578 658
689 649 479
187 128 289
239 379 137

We conclude our discussion of triangulations by noting that any
triangulation of a compact surface satisfies the following two conditions:

(1) Each edge 1s an edge of exactly two triangles.

(2) Let v be a vertex of a triangulation. Then we may arrange the set
of all triangles with v as a vertex in cyclic order, Ty, Ty, T, .. .,
T._y, T. = Ty, such that 7T; and T:;, have an edge 1n common
for0 <:<n — 1.

The truth of (1) follows from the fact that each point on the edge in
question must have an open neighborhood homeomorphic to the open
disc U2 If an edge were an edge of only one triangle or more than two
triangles, this would not be possible. The rigorous proof of this last
assertion would take us rather far afield; however, its plausibility cannot
be disputed.

Condition (2) can be demonstrated as follows. The fact that the set
of all the triangles with v as a vertex can be divided into several disjoint
subsets, such that the triangles in each subset can be arranged in cyclic
order as described, 1s an easy consequence of condition (1). However, if
there were more than one such subset, then the requirement that v have a
neighborhood homeomorphic to U? would be violated. We shall not
attempt a rigorous proof of this last assertion.

7 Proof of Theorem 5.1

Let S be a compact surface. We shall demonstrate Theorem 5.1 by prov-
ing that S is homeomorphic to a polygon with the edges identified in
pairs as indicated by one of the symbols listed at the end of Section 5.
Furst step. From the discussion in the preceding section, we may
assume that S 1s triangulated. Denote the number of triangles by n=.
We assert that we can number the triangles Ty, T, ..., T», so that the
triangle 7; has an edge e; in common with at least one of the triangles
Ty, ..., Tiy, 2 <17 = n. To prove this assertion, label any of the tri-
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angles T,; for T, choose any triangle that has an edge in common with
T,, for T; choose any triangle that has an edge in common with 7T'; or
T,, etc. If at any stage we could not continue this process, then we
would have two sets of triangles {T,, ..., T«}, and {Tk41, ..., To} such
that no triangle 1in the first set would have an edge or vertex in common
with any triangle of the second set. But this would give a partition of S
into two disjoint nonempty closed sets, contrary to the assumption that
S was connected.

We now use this ordering of the triangles, Ty, Ts, ..., T., together
with the choice of edges e, €3, ..., e,, to construct a ‘“model”’ of the
surface S in the Euclidean plane; this model will be a polygon whose sides
are to be identified in pairs. Recall that for each triangle T'; there exists
an ordinary Euclidean triangle 7"; in R? and a homeomorphism ¢; of T,
onto T:. We can assume that the triangles Ty, T,, ..., T, are pairwise
disjoint; if they are not, we can translate some of them to various other
parts of the plane R2. Let

T = U T;;
{=1
then 7" is a compact subset of R2. Defineamape¢ : T’ — Sby ¢ | T; = ¢i;
the map ¢ is obviously continuous and onto. Because 7" i1s compact and
S 1s a Hausdorff space, ¢ 1s a closed map, and hence S has the quotient
topology determined by ¢ (see Section 1 of Appendix A). This is a rigor-
ous mathematical statement of our intuitive idea that S is obtained by
gluing the triangles T';, T2, ... together along the appropriate edges.

The polygon we desire will be constructed as a quotient space of 7.
Consider any of the edges e;, 2 < ¢+ < n. By assumption, e; 1s an edge
of the triangle T'; and one other triangle T;, for which 1 < 5 < 7. There-
fore, ¢~'(e;) consists of an edge of the triangle 7; and an edge of the
triangle 7;. We identify these two edges of the triangles T'; and T by
identifying points which map onto the same point of e; (speaking intui-
tively, we glue together the triangles 7"; and T;-). We make these 1denti-
fications for each of the edges e, €5, ..., e.. Let D denote the resulting
quotient space of T’. It is clear that the map ¢ : 7" — S induces a map
¥ of D onto S, and that S has the quotient topology induced by ¥ (because
D 1s compact and S is Hausdorff, ¥ is a closed map).

We now assert that topologically D is a closed disc. The proof depends
on two facts:

(a) Let E, and E; be disjoint spaces, which topologically are closed
discs (i.e., they are homeomorphic to E?). Let A, and A, be
subsets of the boundary of E, and E,, respectively, which are
homeomorphic to the closed interval [0, 1], and let A : A1 — A»
be a definite homeomorphism. Form a quotient space of E; U E;
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by identifying points that correspond under A. Then, topologi-
cally, the quotient space is also a closed disc. The reader may
either take this very plausible fact for granted, or construct a
proof using the type of argument given in II.4. Intuitively, it
means that if we glue two discs together along a common segment
of their boundaries, the result 1s again a disc.

(b) In forming the quotient space D of 7', we may either make all
the 1dentifications at once, or make the identifications correspond-
ing to ez, then those corresponding to e etc., in succession. This
1s a consequence of Lemma 2.4 of Appendix A [see application
(a) of this lemmal.

We now use these facts to prove that D is a disc as follows. 7'; and
T, are topologically equivalent to discs. Therefore, the quotient space
of T; U T, obtained by identifying points of ¢—!(e;) is again a disc by
(a). Form a quotient space of this disc and T'5 by making the identifica-
tions corresponding to the edge e;, etc.

It 1s clear that S 1s obtained from D by identifying certain paired
edges on the boundary of D.

Example

7.1 Figure 1.15 shows an easily visualized example. The surface of a cube
has been triangulated by dividing each face by a diagonal into two triangles.

b

a

FIGURE 1.15 Example illustrating the first step of the proof of Theorem 5.1.
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b

FIGURE 1.16 Simplified version of polygon shown 1n Figure 1.15.

The resulting disc D might look like the diagram, depending, of course, on how

the triangles were enumerated, and how the edges e,, .

.., €12 were chosen. The

edges of D that are to be 1dentified are labeled 1n the usual way. At this stage, we

can forget about the edges e,, €3,

..., e12. Thus, instead of the polygon in Figure

1.15, we could work equally well with the one in Figure 1.16.

Exercises

Carry out the above process for each of the surfaces whose triangulations are
given below. (NOTE: these examples will be used later.)

7.1

7.2
7.3

7.4

7.9

124
367
698
289
238
123
123
136
124
713
126
123
156
167
172

236
347
678
578
135
234
234
246
235
134
237
256
268
275
283

134
469
457

308

341
349
3956
346
245

341
397
374
389

246
459
259
125

412
451
416
457
306

451
468
476
485

512
026
061 672
467 o971
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Second step. Elimination of adjacent edges of the first kind. We have
now obtained a polygon D whose edges have to be identified in pairs to
obtain the given surface S. These identifications may be indicated by
the appropriate symbol; e.g., in Figure 1.16, the identifications are

described by
aa~fbb—Yf"le~1gcc— g~ 1dde.

If the letter designating a certain pair of edges occurs with both exponents,
+1 and —1, in the symbol, then we will call that pair of edges a pair of
the first kind; otherwise, the pair is of the second kind. For example, In
Figure 1.16, all seven pairs are of the first kind.

We wish to show that an ad)acent pair of edges of the first kind can
be eliminated, provided there are at least four edges in all. This is easily
seen from the sequence of diagrams in Figure 1.17. We can continue this
process until all such pairs are eliminated, or until we obtain a polygon
with only two sides. In the latter case, this polygon, whose symbol will
be aa or aa~!, must be a projective plane or a sphere, and we have com-
pleted the proof. Otherwise, we proceed as follows.

Thaird step. Transformation to a polygon such that all vertices must be
wdentified to a single vertex. Although the edges of our polygon must be
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FIGURE 1.17 Elimination of an adjacent pair of edges of the first kind.
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identified 1n pairs, the vertices may be identified in sets of one, two, three,
four, .... Let us call two vertices of the polygon equivalent if and only
If they are to be 1dentified. For example, the reader can easily verify that
In Figure 1.16 there are eight different equivalence classes of vertices.
Some equivalence classes contain only one vertex, whereas other classes
contain two or three vertices.

Assume we have carried out step two as far as possible. We wish to
prove we can transform our polygon into another polygon with all its
vertices belonging to one equivalence class.

Suppose there are at least two different equivalence classes of vertices.
Then, the polygon must have an adjacent pair of vertices which are
nonequivalent. Label these vertices P and Q. Figure 1.18 shows how to
proceed. As P and @ are nonequivalent, and we have carried out step
two, 1t follows that sides a and b are not to be identified. Make a cut
along the line labeled ¢, from the vertex labeled @ to the other vertex
of the edge a (1.e., to the vertex of edge a, which is distinct from P).
Then, glue the two edges labeled a together. A new polygon with one
less vertex 1n the equivalence class of P and one more vertex in the equiva-
lence class of @ results. If possible, perform step two again. Then carry
out step three to reduce the number of vertices in the equivalence class
of P still further, then do step two again. Continue alternately doing
step three and step two until the equivalence class of P is eliminated
entirely. If more than one equivalence class of vertices remains, we can
repeat this procedure to reduce the number by one. If we continue in
this manner, we ultimately obtain a polygon such that all the vertices
are to be 1identified to a single vertex.

(a)

FIGURE 1.18 Third step in the proof of Theorem 5.1.
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FIGURE 1.19 Fourth step in the proof of Theorem 5.1.

Fourth step. How to make any pair of edges of the second kind adjacent.
We wish to show that our surface can be transformed so that any pair
of edges of the second kind are adjacent to each other. Suppose we have
a palr of edges of the second kind which are nonadjacent, as in Figure
1.19(a). Cut along the dotted line labeled a and paste together along b.

As shown in Figure 1.19(b), the two edges are now adjacent.
Continue this process until all pairs of edges of the second kind are

adjacent. If there are no pairs of the first kind, we are finished, because
the symbol of the polygon must then be of the form a,a1a2a2 ... Gnan,
and hence 8§ 1s the connected sum of n projective planes.

Assume to the contrary that at this stage there is at least one pair of
edges of the first kind, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>