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Pretace to the second edition

The most important revisions in this edition are: (1) enlargement of the
treatment of p-adic functions in Chapter IV to include the Iwasawa logarithm
and the p-adic gamma-function, (2) rearrangement and addition of some
exercises, (3) inclusion of an extensive appendix of answers and hints to the
exercises, the absence of which from the first edition was apparently a source
of considerable frustration for many readers, and (4) numerous corrections
and clarifications, most of which were proposed by readers who took the
trouble to write me. Some clarifications in Chapters IV and V were also
suggested by V. V. Shokurov, the translator of the Russian edition. I am
grateful to all of these readers for their assistance. I would especially like to
thank Richard Bauer, who provided me with a systematic list of misprints
and unclarities.

I would also like to express my gratitude to the staff of Springer-Verlag
for both the high quality of their production and the cooperative spirit with
which they have worked with me on this book and on other projects over the
past several years.

Seattle, Washington
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Pretace to the first edition

These lecture notes are intended as an introduction to p-adic analysis on the
elementary level. For this reason they presuppose as little background as possi-
ble. Besides about three semesters of calculus, I presume some slight exposure to
more abstract mathematics, to the extent that the student won’t have an adverse
reaction to matrices with entries in a field other than the real numbers, field
extensions of the rational numbers, or the notion of a continuous map ot topolog-
ical spaces.

The purpose of this book is twofold: to develop some basic 1deas of p-adic
analysis, and to present two striking applications which, it 1s hoped, can be as
eftective pedagogically as they were historically in stimulating interest in the
field. The first of these applications 1s presented in Chapter II, since it only
requires the most elementary properties of Q ; this is Mazur’s construction by
means of p-adic integration of the Kubota— Leopoldt p -adic zeta-tunction, which
“*p-adically interpolates’’ the values of the Riemann zeta-function at the negative
odd integers. My treatment is based on Mazur’s Bourbaki notes (unpublished).
The book then returns to the foundations of the subject, proving extension ot the
p -adic absolute value to algebraic extensions of @Q , constructing the p-adic
analogue of the complex numbers, and developing the theory of p-adic power
series. The treatment highlights analogies and contrasts with the famihiar con-
cepts and examples from calculus. The second main application, in Chapter V, 1s
Dwork’s proot of the rationality of the zeta-function ot a system of equations
over a finite field, one of the parts of the celebrated Weil Conjectures. Here the
presentation follows Serre’s exposition in Séminaire Bourbaki.

These notes have no pretension to being a thorough introduction to p-adic
analysis. Such topics as the Hasse— Minkowski Theorem (which 1s in Chapter 1
of Borevich and Shafarevich’s Number Theory) and Tate’s thesis (which 1s also
available 1n textbook form, see Lang’s Algebraic Number Theory) are omitted.
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Preface

Moreover, there 1s no attempt to present results in their most general form. For
example, p-adic L-tunctions corresponding to Dirichlet characters are only dis-
cussed parenthetically in Chapter I1. The aim 1s to present a selection of matenal
that can be digested by undergraduates or beginning graduate students in a
one-term Course.

The exercises are for the most part not hard, and are important in order to
convert a passive understanding to a real grasp ot the material. The abundance of
exercises will enable many students to study the subject on their own, with
minimal guidance, testing themselves and solidifying their understanding by
working the problems.

p-adic analysis can be of interest to students for several reasons. First of all, 1n
many areas of mathematical research—such as number theory and representation
theory—p -adic techniques occupy an important place. More naively, for a stu-
dent who has just learned calculus, the ‘‘brave new world’’ of non- Archimedean
analysis provides an amusing perspective on the world of classical analysis.
p-adic analysis, with a foot in classical analysis and a toot 1n algebra and number
theory, provides a valuable point of view for a student interested i1n any of those
areas.

I would like to thank Professors Mark Kac and Yu. I. Manin for their help
and encouragement over the years, and for providing, through their teaching and
writing, models of pedagogical insight which their students can try to emulate.

Logical dependence of chapters

Cambridge, Massachusetts N. I. K.
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CHAPTER 1

p-adic numbers

1. Basic concepts

If X is a nonempty set, a distance, or metric, on X 1s a function d from pairs
of elements (x, y) of X to the nonnegative real numbers such that

(1) d(x, y) = 01f and only if x = y.

(2) d(x,y) = d(y, x).
(3) d(x,y) < d(x,z) + d(z, y) for all ze X.

A set X together with a metric d is called a metric space. The same set X can
give rise to many different metric spaces (X, d), as we’ll soon see.

The sets X we’ll be dealing with will mostly be fields. Recall that a field F
1s a set together with two operations + and - such that F is a commutative
group under +, F — {0} is a commutative group under -, and the distributive
law holds. The examples of a field to have in mind at this point are the field
Q of rational numbers and the field R of real numbers.

The metrics d we’ll be dealing with will come from norms on the field F,

which means a map denoted || || from F to the nonnegative real numbers
such that

(1) |x]| = 0if and only if x = 0.

2) llx-yl| = llx]-l»].
B) lx+yl < |x]|+]»l-

When we say that a metric d “comes from” (or “is induced by’’) a norm
| ||, we mean that d is defined by: d(x, y) = |x — y||. It is an easy exercise
to check that such a d satisfies the definition of a metric whenever | || is a
norm.

A basic example of a norm on the rational number field Q is the absolute

value |x|. The induced metric d(x, y) =|x — y| is the usual concept of
distance on the number line.



I p-adic numbers

My reason for starting with the abstract definition of distance is that the
point of departure for our whole subject of study will be a new type of
distance, which will satisfy Properties (1)«3) in the definition of a metric
but will differ fundamentally from the familiar intuitive notions. My reason
for recalling the abstract definition of a field 1s that we’ll soon need to be

working not only with Q but with various ““extension fields > which contain Q.

2. Metrics on the rational numbers

We know one metric on Q, that induced by the ordinary absolute value. Are
there any others ? The following 1s basic to everything that follows.

Definition. Let pe{2,3,5,7, 11,13, ...} be any prime number. For any
nonzero integer a, let ord, a be the highest power of p which divides q, 1.¢e.,

the greatest m such that ¢ = 0 (mod p™). (The notation a = b (mod ¢)
means: ¢ divides a — b.) For example,

ord; 35 = 1, ords 250 = 3, ord, 96 = 3, ord, 97 = 0.

(If a = 0, we agree to write ord, 0 = c0.) Note that ord, behaves a little
like a logarithm would: ord,(a,a,) = ord, a, + ord, a..

Now for any rational number x = a/b, define ord, x to be ord, a —
ord, b. Note that this expression depends only on x, and not on a and b,

1.e., if we write x = ac/bc, we get the same value for ord, x = ord, ac —
ord, bc.

Further define a map | |, on Q as follows:

1
lep _ pord,x’
0, if x = 0.

if x # 0;

Proposition. | |, is a norm on Q.

PrROOF. Properties (1) and (2) are easy to check as an exercise. We now verify
(3).

Ifx=00ry=0,o0rif x + y = 0, Property (3) is trivial, so assume x, y,
and x + y are all nonzero. Let x = a/b and y = c¢/d be written 1n lowest
terms. Then we have: x + y = (ad + bc)/bd, and ord,(x + y) =
ord,(ad + bc) — ord, b — ord, d. Now the highest power of p dividing the
sum of two numbers 1s at least the minimum of the highest power dividing
the first and the highest power dividing the second. Hence

ord,(x + y) = min(ord, ad, ord, bc) — ord, b — ord, d
= min(ord, a + ord, d, ord, b + ord, c¢) — ord, b — ord, d

min(ord, a — ord, b, ord, ¢ — ord, d)

min(ord, x, ord, y).

Therefore, |x + y|, = p~ %> +¥) < max(p~°"%*, p~°%¥) = max(|x|,, | ¥|p),
and this is < [x|, + |y],. []

2



2 Metrics on the rational numbers

We actually proved a stronger inequality than Property (3), and it 1s this
stronger inequality which leads to the basic definition of p-adic analysis.

Definition. A norm is called non-Archimedean if |x + y|| < max(||x|, || y|)
always holds. A metric 1s called non-Archimedean it d(x, y) <
max(d(x, z), d(z, y)); in particular, a metric is non-Archimedean 1if 1t 1s
induced by a non-Archimedean norm, since in that case d(x, y) =

| x —y]| = (x —2) + = y)| < max(|x - z|, |z — y[) = max(d(x, z),

d(z, y))

Thus, | |, is a non-Archimedean norm on Q.

A norm (or metric) which is not non-Archimedean 1s called Archimedean.
The ordinary absolute value 1s an Archimedean norm on Q.

In any metric space X we have the notion of a Cauchy sequence
{a,, a,, as, ...} of elements of X. This means that for any ¢ there exists an
N such that d(a,, a,) < ¢ whenever bothm > Nand n > N.

We say two metrics d; and d, on a set X are equivalent if a sequence is
Cauchy with respect to d; if and only 1f it 1s Cauchy with respect to d,. We
say two norms are equivalent if they induce equivalent metrics.

In the definition of | |,, instead of (1/p)°*%»* we could have written p°%*
with any p € (0, 1) in place of 1/p. We would have obtained an equivalent
non-Archimedean norm (see Exercises 5 and 6). The reason why p = 1/p 1s
usually the most convenient choice is related to the formula in Exercise 18
below.

We also have a family of Archimedean norms which are equivalent to
the usual absolute value | |, namely | |* when 0 < « < 1 (see Exercise 8).

We sometimes let | |, denote the usual absolute value. This is only a
notational convention, and 1s not meant to imply any direct relationship
between | |, and | |;.

By the ‘““trivial” norm we mean the norm | || such that |0l = 0 and
Ix|l = 1 for x # O.

Theorem 1 (Ostrowski). Every nontrivial norm | | on Q is equivalent to | |,
for some prime p or for p = 0.

PROOF. Case (1). Suppose there exists a positive integer n such that |n| > 1.
Let n, be the least such n. Since |ny|| > 1, there exists a positive real number

« such that ||n,| = n,*. Now write any positive integer n to the base n,, i.e.,
In the form

n=ay+ any, + axny,® + --- + an,’>, where 0 < q, < ny, and a, # 0.

Then

Inl < llao]l + llawno| + |@ane®|| + - -« + |ane’|
= ool + sl + Jaal-no® + -+~ + o] -ma™



I p-adic numbers

Since all of the a, are <n,, by our choice of n, we have ||a;| < 1, and hence

In| <14 ne® + ny** + -+ + np®™
— nosa(l "|" no—a "|" n6-2a 4 ... "|" né-sa)

< n[i (l/no“)*],

because n > n,®. The expression in brackets 1s a finite constant, which we
call C. Thus,

In|| < Cn* foralln =1, 2, 3,

Now take any »n and any large N, and put n" in place of n in the above
inequality; then take Nth roots. You get

v—
inll <

Letting N — oo for n fixed gives |n| <

We can get the inequality the other way as follows. If n 1s written to the
base n, as before, we have n{** > n > ny®. Since |ny*?|| = ||n + np*! — n| <
In| + ||nj*! — n|, we have

|n|| = [ln**] — [ms™" — n|
> ngs+1)a (ns+1 — ) :
since |ny*1| = |nof**?, and we can use the first inequality (i.e., ||n| <

on the term that is being subtracted. Thus,

In| > ng*P* — (nj*' — ne®)* (since n = ny')

] \«
— s+l — — —
- [1 (1 "o) ]

> C'n®

for some constant C’ which may depend on n, and « but not on n. As before,
we now use this inequality for n", take Nth roots, and let N — oo, finally
getting: ||n|| >

Thus, |n| = n® It easily follows from Property (2) of norms that || x| =
| x|* for all x € Q. In view of Exercise 8 below, which says that such a normis
equivalent to the absolute value | |, this concludes the proof of the theorem
in Case (1).

Case (11). Suppose that |n| < 1 for all positive integers n. Let n, be the
least n such that |n| < 1; n, exists because we have assumed that | | is
nontrivial.

n, must be a prime, because if n, = n,-n, with n, and n, both <n,, then
In;|| = ||nz]| = 1,and so ||ne| = |n.|-|ne| = 1.Solet p denote the prime n,.

We claim that ||g| = 1 if ¢ is a prime not equal to p. Suppose not; then
lgll < 1, and for some large N we have |¢"| = |q||¥ < }. Also, for some
large M we have |p™| < 4. Since p™ and ¢" are relatively prime—have no

4



2 Metrics on the rational numbers

common divisor other than 1—we can find (see Ecercise 10) integers n and m
such that: mp" + ng" = 1. But then

L = |1 = [mp" + ng"|| < [mp™| + |ng"| = |m]| [p™| + =] |g"1

by Properties (2) and (3) in the definition of a norm. But |m|, |#]| < 1, so
that

L < "] + g%l <3 +3=1,

a contradiction. Hence [lg| = 1.
We’re now virtually done, since any positive integer a can be factored into
prime divisors: a = p,°1p,"a---p,r. Then |a| = | py[°-|paf®s- | P

But the only || p;|| which is not equal to 1 will be || p|| if one of the p,’s is p. Its
corresponding b, will be ord, a. Hence, if we let p = || p|| < 1, we have

[a]] = o

It is easy to see using Property (2) of a norm that the same formula holds with
any nonzero rational number x in place of a. In view of Exercise 5 below,
which says that such a norm is equivalent to | |,, this concludes the proof
of Ostrowskr’s theorem. (]

Our 1ntuition about distance is based, of course, on the Archimedean
metric | |,. Some properties of the non-Archimedean metrics | |, seem very
strange at first, and take a while to get used to. Here are two examples.

For any metric, Property (3): d(x, y) < d(x, z) + d(z, y) 1s known as
the ““‘triangle inequality,” because in the case of the field C of complex
numbers (with metric d(a + bi, ¢ + di) =V (a — ¢)® + (b — d)?) it says
that in the complex plane the sum of two sides of a triangle 1s greater than
the third side. (See the diagram.)

d(x, z)
d(z, y)

d(x, y) y

Let’s see what happens with a non-Archimedean norm on a field F. For
simplicity suppose z = 0. Then the non-Archimedean triangle inequality says:
Ix — y|| < max(||x], | y|). Suppose first that the “sides” x and y have
different “length,” say || x| < || y||. The third side x — y has length

lx — y| < |Iy].
But

Iyl = |x — (x — )| < max(|x], |x — y]).

Since | y| is not < || x|, we must have | y| < |x — y|,andso ||y]| = [|x — y|.

S



I p-adic numbers

Thus, if our two sides x and y are not equal 1n length, the longer of the two
must have the same length as the third side. Every *‘triangle’’ 1s 1sosceles!

This really shouldn’t be too surprising if we think what this says in the
case of | |, on Q. It says that, if two rational numbers are divisible by
different powers of p, then their difference i1s divisible precisely by the lower
power of p (which 1s what it means to be the same ‘“size’’ as the bigger of
the two).

This basic property of a non-Archimedean field—that |x + y| <
max(||x|l, || y|), with equality holding if | x| # ||y[—will be referred to as
the ““1sosceles triangle principle’ from now on.

As a second example, we define the (open) disc of radius r (r is a positive
real number) with center a (a i1s an element 1n the field F) to be

D, r°) ={xeF| |x —a| <r}.

Suppose | || is a non-Archimedean norm. Let b be any element in D(a, r~).
Then

D(a, r~) = D(b, r™),
1.e., every point in the disc i1s a center! Why 1s this? Well
xeD(a,r)=||x—a| <r
= [|x — b = [|(x — a) + (a — b)|
< max(|x — a, @ — b)

<7Tr
= x € D(b, r),

and the reverse implication i1s proved in the exact same way.
If we define the closed disc of radius r with center a to be

D@, r) ={xeF||x —a| <r},

for non-Archimedean | || we similarly find that every point in D(a, r) 1s a
center.
EXERCISES

1. For any norm | | on a field F, prove that addition, multiplication, and

finding the additive and multiplicative inverses are continuous. This means
that: (1) for any x, ye F and any & > 0, there exists 0 > 0 such that
|x" — x|| <6 and [y — y[ < 6 imply [[(x" + ») — (x + ¥)| < &; (2) the
same statement with ||(x” + »") — (x + y)| replaced by |x'y" — xy|; (3) for
any nonzero x € Fand any ¢ > 0, there exists 6 > O such that [x" — x|| < o
implies ||(1/x") — (1/x)|| < &; (4) for any x € F and any ¢ > 0, there exists
0 > 0 such that |[x" — x| < 6 implies |[(—x") — (—=x)|| < e.

. Prove that if | | is any norm on a field F, then | —1|| = [|[1] = 1. Prove that
if | | is non-Archimedean, then for any integer n: |n| < 1. (Here “n”

means the result of adding 1 + 1 + 1 + .-+ 1 together n times in the
field F.)




Exercises

3. Prove that, conversely, if | || is a norm such that ||#{| < 1 for every integer n,
then | | is non-Archimedean.

4. Prove that a norm || || on a field F i1s non-Archimedean if and only if
IxeF||x|| <1} Nn{xeF||x-1| < 1} = .

5. Let | |; and | |2 be two norms on a field F. Prove that | |, ~ | ||z if and

only if there exists a positive real number « such that: |x|; = |x|.* for
all x € F.

6. Prove that, if 0 < p < 1, then the function on x € Q defined as p°r9»* if
x # 0and 0i1f x = 0, 1s a non-Archimedean norm. Note that by the previous
problem it is equivalent to | |,. What happensif p = 1? Whataboutifp > 17

7. Prove that | |,, is not equivalent to | |,, if p; and p, are different primes.

. For x € Q define ||x|| = |x|® for a fixed positive number «, where | | is the
usual absolute value. Show that | | is a norm if and only if « < 1, and that
in that case it is equivalent to the norm | |.

. Prove that two equivalent norms on a field F are either both non-Archimedean
or both Archimedean.

10. Prove that, if N and M are relatively prime integers, then there exist integers
n and m such that nN + mM = 1.

11. Evaluate:

(1) ord; 54 (i1) ord, 128 (111) ords; 57

(iv) ord,(—700/197) (v) ord,(128/7) (vi) ords(7/9)

(vi1) ords(—0.0625) (vii1) ords(10°) (1x) ordas(—13.23)
(x) ord,(—13.23) (x1) ords(—13.23) (x11) ord;;(—13.23)

(x111) ord,;s(—26/169) (x1v) ord,es(—1/309) (xv) ords(9!)
12. Prove that ord, (M) =1+ p + p%2 + --- + p¥~1,
13. If 0 < a < p — 1, prove that: ord,((ap®)!) = a(l + p + p%2 + --- + pVN~1).

. Prove that, if n = a9 + a,p + axp? + - -+ + a,p® is written to the base p,
sothat 0 < a; < p — 1, and if we set S, = 2 a; (the sum of the digits to the
base p), then we have the formula:

ord,(n!) = ’; — 'SI‘"*-
15. Evaluate |a — b|,, i.e., the p-adic distance between a and b, when:
D)a=1,b=26,p=35 (i) a=1,b=26,p =
(i) a=1,b =26,p = 3 (iv) a=1/9,b = —-1/16,p = §
(V)a=1,b=244,p = 3 (vi) a=1,b =1/244,p = 3
(vi1) a=1,b = 1/243,p = 3 (viii) a=1,b = 183, p = 13
(1Ix) a=1,b=183,p = 7 x)a=1,b=183,p = 2
(x1)) a=1,b = 183, p = o (xii)) a=9,b=0,p = 3
(xiii) a = (91)%/32,b = 0,p = 3 (xiv) a =222V b = 0,p = 2

(xv) a =22/ b =0, p = 2.
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16. Say in words what it means for a rational number x to satisfy |x|, < 1.

17. For x € Q, prove that lim,. », |x!/i!|, = 0 if and only if: ord, x > 1 when
p # 2,ords x = 2 when p = 2.

18. Let x be a nonzero rational number. Prove that the product over all primes
including o of |x|, equals 1. (Notice that this ‘‘infinite product’ actually
only includes a finite number of terms that are not equal to 1.) Symbolically,

e |x|p = 1.

19. Prove that for any p (# o), any sequence of integers has a subsequence which
is Cauchy with respect to | |,.

20. Prove that if x € Q and |x|, < 1 for every prime p, then x € Z.

3. Review of building up the complex
numbers

We now have a new concept of distance between two rational numbers: two
rational numbers are considered to be close if their difference 1s divisible by
a large power of a fixed prime p. In order to work with this so-called * p-adic
metric’ we must enlarge the rational number field Q in a way analogous
to how the real numbers R and then the complex numbers C were constructed
in the classical Archimedean metric | |. So let’s review how this was done.

Let’s go back even farther, logically and historically, than Q. Let’s go back
to the natural numbers N = {1, 2, 3, ...}. Every step in going from N to C
can be analyzed in terms of a desire to do two things:

(1) Solve polynomial equations.
(2) Find Iimits of Cauchy sequences, 1.e., ‘“complete’ the number system to
one ‘“without holes,” in which every Cauchy sequence has a limit 1n

the new number system.

First of all, the integers Z (including 0, — 1, —2, ...) can be introduced as
solutions of equations of the form

a+ x =b, a, be N,

Next, rational numbers can be introduced as solutions of equations of the
form

ax = b, a, bel.

So far we haven’t used any concept of distance.

One of the possible ways to give a careful definition of the real numbers is
to consider the set S of Cauchy sequences of rational numbers. Call two
Cauchy sequences s, = {a;} € Sand s, = {b,} € S equivalent, and write s; ~ s,,
if |a; — b,)] — 0 as j — oo0. This is obviously an equivalence relation, that is,
we have: (1) any s 1s equivalent to itself; (2) if s, ~ 55, then s, ~ 5;; and
(3) if 5, ~ 55 and s, ~ 55, then s; ~ 5;. We then define R to be the set of
equivalence classes of Cauchy sequences of rational numbers. It is not hard
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3 Review of building up the complex numbers

to define addition, multiplication, and finding additive and multiplicative
inverses of equivalence classes of Cauchy sequences, and to show that R 1s a
field. Even though this definition seems rather abstract and cumbersome at
first glance, it turns out that it gives no more nor less than the old-fashioned
real number line, which is so easy to visualize.

Something similar will happen when we work with | |, instead of | |:
starting with an abstract definition of the p-adic completion of Q, we’ll get a
very down-to-earth number system, which we’ll call Q,,

Getting back to our historical survey, we’ve gotten as far as R. Next,
returning to the first method—solving equations—mathematicians decided
that i1t would be a good 1dea to have numbers that could solve equations like
x? + 1 = 0. (This 1s taking things in logical order; historically speaking,
the definition of the complex numbers came before the rigorous definition
of the real numbers in terms of Cauchy sequences.) Then an amazing thing

happened! As soon as i = v/ —1 was introduced and the field of complex
numbers of the form a + bi, a, b € R, was defined, 1t turned out that:

(1) All polynomial equations with coefficients in C have solutions in C—this
1s the famous Fundamental Theorem of Algebra (the concise terminology
1s to say that C is algebraically closed); and

(2) Cis already “complete’ with respect to the (unique) norm which extends

the norm | | on R (this norm is given by |a + bi| = Va? + b?), i.e., any
Cauchy sequence {a; + b,i} has a limit of the form a + bi (since {a;} and
{b;} will each be Cauchy sequences in R, you just let @ and b be their
limits).

So the process stops with C, which 1s only a ‘““quadratic extension” of R
(1.e., obtained by adjoining a solution of the quadratic equation x? + 1 = 0).
C is an algebraically closed field which is complete with respect to the Archime-
dean metric.

But alas! Such is not to be the case with | |,. After getting Q,, the comple-
tion of Q@ with respect to | |,, we must then form an infinite sequence of
field extensions obtained by adjoining solutions to higher degree (not just
quadratic) equations. Even worse, the resulting algebraically closed field,
which we denote Q,, is not complete. So we take this already gigantic field
and ‘““fill in the holes” to get a still larger field Q.

What happens then? Do we now have to enlarge ) to be able to solve
polynomial equations with coefficients 1n Q? Does this process continue on
and on, in a frightening spiral of ever more far-fetched abstractions? Well,
fortunately, with Q the guardian angel of p-adic analysis intervenes, and it
turns out that Q 1s already algebraically closed, as well as complete, and our
search for the non-Archimedean analogue of C is ended.

But this 2, which will be the convenient number system in which to study
the p-adic analogy of calculus and analysis, is much less thoroughly
understood than C. As I. M. Gel'fand has remarked, some of the simplest

9



I p-adic numbers

questions, e.g., characterizing Q_-linear field automorphisms of (2, remain
unanswered.
So let’s begin our journey to .

4. The field of p-adic numbers

For the rest of this chapter, we fix a prime number p # 0.

Let S be the set of sequences {a,} of rational numbers such that, given
e > 0, there exists an N such that |a, — a;/|, < ¢ if both i, i’ > N. We call
two such Cauchy sequences {a;} and {b;} equivalent if |a@, — b;|, — 0 as
i — 00. We define the set Q, to be the set of equivalence classes of Cauchy
sequences.

For any x € Q, let {x} denote the *‘ constant’’ Cauchy sequence all of whose
terms equal x. It is obvious that {x} ~ {x'} if and only if x = x’. The equiva-
lence class of {0} 1s denoted simply O.

We define the norm | |, of an equivalence class a to be lim,_, |@],,
where {a,} 1s any representative of a. The limit exists because

(1) If a = 0, then by definition lim,_ , |a;|, = O.
(2) If a # O, then for some ¢ and for every N there exists an iy, > N with
Iaiulp > E.

If we choose N large enough so that |a, — a;/|, < e when i,i’ > N, we have:
la, — a,, |, < e foralli> N.

Since |a;, |, > &, it follows by the “isosceles triangle principle” that |a|, =
a;, |,- Thus, for all i > N, |a;|, has the constant value |a,,|,. This constant
value is then lim,, ., |a;,.

One important difference with the process of completing Q to get R should
be noted. In going from Q to R the possible values of | | = | |, were
enlarged to include all nonnegative real numbers. But in going from Q to Q,
the possible values of | |, remain the same, namely {p"},., U {0}.

Given two equivalence classes a and b of Cauchy sequences, we choose
any representatives {a;} € a and {b,} € b, and define a-b to be the equivalence
class represented by the Cauchy sequence {a;b;}. If we had chosen another
{a,'} e a and {b,’} € b, we would have

a;'b — ab|, = |a’(b/ — b) + bi(a/ — a)|,
< max(lai’(bi, — bi)lpa Ibi(ai' — at)lp);

as i — oo, the first expression approaches |a|,- lim |b,’ — b;|, = 0, and the
second expression approaches |b|,-lim|a,’ — a;|, = 0. Hence {a;'b,'} ~ {a,b,}.
We similarly define the sum of two equivalence classes of Cauchy se-
quences by choosing a Cauchy sequence in each class, defining addition
term-by-term, and showing that the equivalence class of the sum only
depends on the equivalence classes of the two summands. Additive inverses
are also defined in the obvious way.
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4 The field of p-adic numbers

For multiplicative inverses we have to be a little careful because of the

possibility of zero terms in a Cauchy sequence. However, it 1s easy to see that
every Cauchy sequence 1s equivalent to one with no zero terms (for example,
if a; = 0, replace a; by a,' = p'). Then take the sequence {1/a;}. This sequence
will be Cauchy unless |a;|, — 0, i.e., unless {g;} ~ {0}. Moreover, if {q¢;} ~ {a,’}
and no g, or aq,’ is zero, then {1/a;} ~ {1/a,'} is easily proved.
It 1s now easy to prove that the set Q. of equivalence classes of Cauchy
sequences 1s a field with addition, multiplication, and inverses defined as
above. For example, distributivity: Let {a;}, {b,}, {¢c;} be representatives of
a, b, ce Q,; then a(b + c) 1s the equivalence class of

{ai(by + ¢)} = {ab, + acy},

and ab + ac 1s also the equivalence class of this sequence.

Q can be 1dentified with the subfield of Q, consisting of equivalence classes
containing a constant Cauchy sequence.

Finally, 1t 1s easy to prove that Q, is complete: if {a,},-, 5 .. 1s a sequence
of equivalence classes which is Cauchy in Q,, and if we take representative
Cauchy sequences of rational numbers {a;};-, , . for each a; where for
each j we have |a; — a;;|, < p~/ whenever i, i’ > N, then it is easily shown
that the equivalence class of {a;y,};= 1,2, 18 the limit of the a; We leave the
details to the reader.

It’s probably a good idea to go through one such tedious construction in
any course or seminar, so as not to totally forget the axiomatic foundations
on which everything rests. In this particular case, the abstract approach also
gives us the chance to compare the p-adic construction with the construction
of the reals, and see that the procedure is logically the same. However, after
the following theorem, it would be wise to forget as rapidly as possible
about ‘““equivalence classes of Cauchy sequences,”” and to start thinking in
more concrete terms.

Theorem 2. Every equivalence class a in Q, for which |a|, < 1 has exactly one
representative Cauchy sequence of the form {a;} for which:

1)0<ag <pfori=12173 ....
2) ag=a,,,(modp))fori=1,2,3, ....

PrROOF. We first prove uniqueness. If {a,'} is a different sequence satisfying (1)
and (2), and 1if q;, # a,,, then a;, # a,,' (mod p'c), because both are between
0 and p'e. But then, for all i > i,, we have q; = g, # a;,’ = a,' (mod p'o),
1.e., a; # a; (mod p'o). Thus

a, — a/|, > 1/p

for all i 2> io, and {ai} "~ {a;'}.
So suppose we have a Cauchy sequence {b;}. We want to find an equivalent
sequence {a,} satisfying (1) and (2). To do this we use a simple lemma.

11



I p-adic numbers

Lemma. If x € Q and |x|, < 1, then for any i there exists an integer « € Z such
that |« — x|, < p~*'. The integer « can be chosen in the set {0, 1, 2, 3, ...,

pt — 1}.

PROOF OF LEMMA. Let x = a/b be written in lowest terms. Since |x|, < 1,
1t follows that p does not divide b, and hence b and p' are relatively prime. So
we can find integers m and n such that: mb + np' = 1. Let « = am. The 1dea
1s that mb differs from 1 by a p-adically small amount, so that m 1s a good
approximation to 1/b, and so am is a good approximation to x = a/b. More
precisely, we have:

@ — x|, = |am — (a/b)|, = |a/b|, |mb — 1|,
S lmb — llp — lnpilp = Inlp/pi < 1/p'.

Finally, we can add a multiple of p' to the integer « to get an integer between
0 and p* for which |« — x|, < p~* still holds. The lemma 1s proved. ]

Returning to the proof of the theorem, we look at our sequence {b,}, and,
foreveryj = 1, 2, 3, ..., let N(j) be a natural number such that |, — b;.|, <
p~7 whenever i, i’ > N(j). (We may take the sequence N(j) to be strictly
Increasing with j; in particular, N(j) > j.) Notice that |b;|, < 1 1f i > N(1),
because for all i’ > N(1)

max(lbiflp, Ibi — bi’lp)

by, <
< max(|b;|,, 1/p),

and |b;-|, > |a|, < 1 as i’ — cO.
We now use the lemma to find a sequence of integers a,, where 0 < a, < p,,
such that

la; — byl < 1/p°.

| claim that {a,} 1s the required sequence. It remains to show that a;,, = a,
(mod p’) and that {b;} ~ {a,}.
The first assertion follows because

@01 — alp = |aj41 — by + bni+1y = bygy — (@5 = bay)ls
< max(|a@;+1 — byi+nlp [Onis1y — Oninlos @5 — binlp)
< max(1/p’**, 1/p’, 1/p’)

= 1/p’.

The second assertion follows because, given any j, for i > N(j) we have

|a, — bilp = Iai — a; + a; — by, — (b; — bN(J'))IP
< max(lai o aJ‘Im laj o bN(J')Im lbt o bN(f)Ip)
< max(1/p’, 1/p’, 1/p’)
= 1/p’.
Hence |a, — b;|, — 0 as i — c0. The theorem is proved. []
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4 The field of p-adic numbers

What if our p-adic number a does not satisfy |a|, < 1? Then we can
multiply a by a power p™ of p (namely, by the power of p which equals |al,),
o get a p-adic number a’ = ap™ which does satisfy |a’|, < 1. Then a’ is
represented by a sequence {g,'} as in the theorem, and a = a’p~™ is repre-
sented by the sequence {a;} in which q; = a,'/p ™.

It 1s now convenient to write all the a,” in the sequence for a’ to the base p,
1.e.,

a’ = by + bp + b2P2 + T bt—1Pi_1,

where the b’s are all *‘digits,” 1.e., integers in {0, 1, ..., p — 1}. Our condition
a, = a;,, (mod p') precisely means that

ai,1 = by + blP + b2P2 + -+ bi-lpi—l + biPt,

where the digits b, through b,_, are all the same as for a,”. Thus, a’ can be
thought of intuitively as a number, written to the base p, which extends
infinitely far to the right, i.e., we add a new digit each time we pass from a;’
to a; . ,.

Our original a can then be thought of as a base p decimal number which
has only finitely many digits ““to the right of the decimal point” (i.e., corres-
ponding to negative powers of p, but actually written starting from the left)
but has infinitely many digits for positive powers of p:

a=_b_£_+ ££1+...+bm_1
P P P

+ bn + bns1P + bniop® + -

Here for the time being the expression on the right i1s only shorthand for the
sequence {a;}, wherea, = bop™™ + - - - + b;_,p' 1~ ™, thatis, a convenient way
of thinking of the sequence {a;} all at once. We’ll soon see that this equality
1S In a precise sense ‘‘real’’ equality. This equality is called the ‘p-adic
expansion’’ of a.
We let Z, = {a€ Q, | |a|, < 1}. This is the set of all numbers in Q,
whose p-adic expansion involves no negative powers of p. An element of Z,
1s called a *“‘p-adic integer.” (From now on, to avoid confusion, when we
mean an old-fashioned integer in Z, we’ll say ‘“‘rational integer.”’) The sum,
difference, and product of two elements of Z,is in Z,, so Z, 1s what’s called a
““subring” of the field Q,,.
If a, be Q,, we write a = b (mod p") if |a — b|, < p~", or equivalently,
(a — b)/p" e Z,, 1.e., if the first nonzero digit in the p-adic expansionof a — b
occurs no sooner than the p"-place. If a and b are not only in @, but are
actually in Z (1.e., are rational integers), then this definition agrees with the
earlier definition of a = b (mod ¢).

WedefineZ,* as{xeZ,|1/xeZ,}, orequivalentlyas{x € Z, | x # 0 (mod p)},
or equivalently as {xe Z, | [x|, = 1}. A p-adic integer in Z,*—1.e., whose
first digit 1s nonzero—is sometimes called a *p-adic unit.”
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I p-adic numbers

Now let {b,};2 _,, be any sequence of p-adic integers. Consider the sum

b_,., b_,
Sy = -;_n'z— + pm-—+11

+ -+ bo + byp + byp® + - - - + byp”.

This sequence of partial sums 1s clearly Cauchy: if M > N, then |Sy — Sul,
< 1/p". It therefore converges to an element in Q,. As in the case of infinite
series of real numbers, we define > _,, b,p' to be this limit in Q..

More generally, if {c;} 1s any sequence of p-adic numbers such that |¢;|, — O
as i — oo, the sequence of partial sums Sy = ¢; +'¢co + - - - + ¢y converges to
a limit, which we denote >2, c¢,. This is because: |Sy — Syl, =
[exs1 + Cysa + o0+ culp < max(|eysalp, [Cysalps - ¢, |Culp) Which — O as
N — oo. Thus, p-adic infinite series are easier to check for convergence than
infinite series of real numbers. A series converges in Q. if and only if its terms
approach zero. There 1s nothing like the harmonicseries ] + + + 4+ + 3 + - -
of real numbers, which diverges even though its terms approach 0. Recall
that the reason for this is that | |, of a sumis bounded by the maximum (not the
sum) of the | |, of the summands when p # oo, i.e.,, when | |, is non-
Archimedean.

Returning now to p-adic expansions, we see that the infinite series on the
right in the definition of the p-adic expansion

b,, _
_lz_r?t_'_ 2{-1++ 1+bm+bm+1p+bm+2P2+"'
P P P

(here b,€{0, 1,2, ..., p — 1}) converges to a, and so the equality can be
taken in the sense of the sum of an infinite series.

Note that the uniqueness assertion in Theorem 2 is something we don’t
have in the Archimedean case. Namely, terminating decimals can also be
represented by decimals with repeating 9s: 1 = 0.9999 - . .. But if two p-adic
expansions converge to the same number in Q,, then they are the same, 1.e.,
all of their digits are the same.

One final remark. Instead of {0, 1,2, ..., p — 1} we could have chosen
any other set § = {«g, oy, g, ..., @,_} of p-adic integers having the property
that «;, = i(mod p) fori =0,1,2, ..., p — 1, and could then have defined
our p-adic expansion to be of the form > _,. b;p', where now the ““digits’’ b,
are 1n the set S rather than in the set {0, 1, ..., p — 1}. For most purposes,
the set {O, 1, ..., p — 1} 1s the most convenient. But there 1s another set S,
the so-called *‘ Teichmuller representatives” (see Exercise 13 below), which
1S In some ways an even more natural choice.

5. Arithmetic 1n Q,

The mechanics of adding, subtracting, multiplying, and dividing p-adic
numbers 1s very much like the corresponding operations on decimals which
we learn to do in about the third grade. The only difference is that the
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5 Arithmetic in Q,

“carrying,” ‘“borrowing,” ‘“‘long multiplication,” etc. go from left to right
rather than right to left. Here are a few examples in Q,:

346 xT+2xT7*+-.-. 2 x 7P 4+0x7°4+3x T +---
X4 +5xT+1xT7°+--. — 4 x T P4+6x7T°+5xT+--.
]l x7+4 x 7%+ --.
I x 74 4+ ...

S+S5xT7+4xT7*+--.

541 x7+6xT7+-..
34+5xT7+1 ><72+---/1 +2x74+4x7%+--.
1 +6 xT7T+1x7%+--.
I xT+2xT+--.
IxT+5x7*+--.
4 x 7% + ...
4><72'+---

As another example, let’s try to extract V6 in Q., i.e., we want to find
a,, a,,a,, ..., 0 < a, < 4, such that

(@ap +a;, X 5+a, x5+ --)2=1+1 x5.

Comparing coefficients of 1 = 5° on both sides gives a,? = 1 (mod 5), and
hence a, = 1 or 4. Let’s take a, = 1. Then comparing coefficients of 5 on
both sides gives 2a;, x 5 =1 x 5 (mod 5%), so that 2a¢, = 1 (mod 5), and
hence a, = 3. At the next step we have:

l + 1 x5=04+3x54+a;,x5)2=1+4+1x15+ 2a, x 52 (mod 53).

Hence 2a, = 0 (mod 5), and a, = 0. Proceeding in this way, we get a series
a=14+3x54+0x54+4x53+4+a, x5%+a;, x5 +--.

where each q, after g, 1s uniquely determined.
But remember that we had two choices for a,, namely 1 and 4. What if we
had chosen 4 instead of 1? We would have gotten

—a=44+1x54+4x52+4+0x25°
+(4—a4)>< 54+(4—-05)><55+'“.

The fact that we had two choices for a,, and then, once we chose a,, only a
single possibility for a,, a,, as, ..., merely reflects the fact that a nonzero
element 1n a field like Q or R or Q, always has exactly two square roots in the
field 1f 1t has any.

Do all numbers in Q5 have square roots? We saw that 6 does, what about
7? If we had

(@ +a x54--)2=2+1 x5,
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I p-adic numbers

it would follow that g, = 2 (mod 5). But this 1s impossible, as we see by
checking the possible values @, = 0, 1, 2, 3, 4. For a more systematic look
at square roots in QQ,, see Exercises 6-12.

This method of solving the equation x* — 6 = 0 in Q,—Dby solving the
congruence a,? — 6 = 0 (mod 5) and then solving for the remaining a; in a
step-by-step fashion—is actually quite general, as shown by the following
Important ““‘lemma.”

Theorem 3 (Hensel’s lemma). Let F(x) = ¢, + ¢;x + - -+ + ¢, x" be a poly-
nomial whose coefficients are p-adic integers. Let F'(x) = ¢; + 2¢ox +
3c3x2 4+ - - - + nc,x"" ! be the derivative of F(x). Let a, be a p-adic integer
such that F(a,) = 0 (mod p) and F'(a,) Z 0 (mod p). Then there exists a
unique p-adic integer a such that

F(a) =0 and a = a, (mod p).

(Note: In the special case treated above, we had F(x) = x* — 6, F'(x) =
2x, ao — 1)

PrOOF OF HENSEL’S LEMMA. I claim that there exists a unique sequence
of rational integers a,, a,, as;, ... such that foralln > 1:

(1) F(a,) = 0 (mod p™*1).
(2) dp = 4n 1 (II‘lOd pn)
3) 0 <a, <p"*'.

We prove that such a, exist and are unique by 1nduction on n.
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