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Introduction

The goal of this book is to present local class field theory from the cohomo-
logical point of view, following the method mmaugurated by Hochschild
and developed by Artin-Tate. This theory 1s about ex{ensions-—primarily

abelian—of “local” (i.e., complete for a discrete vaiuation) fields with finite
residue field. For example, such fields are obtained by completing an algebraic
number field; that is one of the aspects of “localisation™.

The chapters are grouped in “parts”. There are three preliminary parts:
the first two on the general theory of local fields, the third on group coho-
mology. Local class field theory, strictly speaking, does not appear until the
fourth part.

Here 15 a more precise outline of the contents of these four parts:

The first contains basic definitions and results on discrete valuation rings,
Dedekind domains {(which are their “globalisation™) and the compiection
process. The prerequisite for this part is a knowledge of elementary notions
of algebra and topology, which may be found for instance in Bourbaki

The second part is concerned with ramification phenomena (different,
discriminant, ramification groups, Artin representation). Just as in the first
part, no assumptions are made here about the residue fields. It is in this settin g2
that the "norm” map is studied; I have expressed the results in terms of
“additive polynomials” and of “multiplicative polynomials”, since using the
language of algebraic geometry would have led me too far astray,

The third part {group cohomology} is more of a sumnmary-—and an incom-
plete one at that—than a systematic presentation, which would have filled
an entire volume by itself. In the two first chapters, I do not give complete
proois, but refer the reader to the work of Cartan-Eilenberg | 13] as well as to

Grothendieck’s “Tohoku” [26]. The next two chapters (theorem of Tate-

Nakayama, Galois cohomology) are developed specifically for arithmetic

I
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applications, and there the proofs are essentially complete. The last chapter
(class formations} is drawn with little change from the Artin-Tate seminar
['81—a seminar which I have also used in many other places.

The last part (local class field theory) is devoted to the case of a fimite or,

more generally, quasi-finite residue field; it combines the results of the three

first parts. {The logical relations among the different chapters are made more
precise in the Leitfaden below.) Besides standard results, this part includes a
theorem of Dwork [217 as well as several computations of “jocal symbols™.

This book would not have been written without the assistance of Michel
Demagzure, who drafted a first version with me in the form of lecture notes

(“Homologie des groupes—Applications arithmétiques”, College de France,

1958 --1959). I thank him most heartily.
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CHAPTER 1|

Discrete Valuation Rings
and Dedekind Domains

1. Definition of Discrete Valuation Ring

A ring A is called a discrete valuation ring tf 1t 18 a principal ideal domain
{Bourbaki, Alg., Chap. VII) that has a unique non-zero prime idea! m(A).
| Recall that an ideal p of a commutative ring A is called prime if the quotient
ring A/p is an integral domain.]

The field A/m(A) is called the residue field of A. The invertible elements
of A are those elements that do not belong to m(A): they form a multiplicative
group and are often called the units of A (or of the field of fractions of A).

In a principal ideal domain, the non-zero prime ideals are the ideals of the
form nA, where 7 is an irreducible element. The definition above comes down
to saying that A has one and only one irreducible element, up to multiplica-
tion by an invertible element; such an element is called a uniformizing element
of A (or uniformizer, Weil [123] calls it a “prime element™)

The non-zero ideals of A are of the form m(A) = n"A, where 7 is a uniform-
izing element. If x # 0 is any element of A, one can write x = 7"y, with n e N
and u invertible; the integer n is called the valuation (or the order) of x and
1s denoted v{x); it does not depend on the choice of n.

Let K be the field of fractions of A, K* the multiplicative group of non-zero

elements of K. If x = a/b is any element of K*, one can agam write x in the

form n"u, with n € Z this time, and set v(x) = n. The following properties are
easily verified:

a) The map v: K* — Z is a surjective homomorphism.
D) One has v(x + y) > Inf(p(x), v(y)).

{We make the convention that v(0) = + c0.)
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The knowledge of the function v determines the ring A: it is the set of
those x € K such that v{x} > 0: stimilarly, n{A} is the set of those x & K such
that v{x) > 0. One could therefore have begun with 1. More precisely:

Proposition 1. Let K he a field, and let v: K* — Z be a homomorphism having
properties a) and b) above. Then the set A of x € K such that v(x) > 0 is a
discrete valuation ring having v as its associated valuation.

Indeed, let m be an element such that o(n) = 1§, Every x € A can be written
In the form x = 7w, with n = p(x}, and ¢(u) = 0, i.e.. v invertible. Every non-
zero ideal of A is therefore of the form n"A, with n > 0, which shows that A
is indeed a discrete valuation ring. 7]

EXAMPLES OF IISCRETE VALUATION RiINGS

1) Let p be a prime number, and let Z,,, be the subset of the field Q of
rationals consisting of the fractions r/s, where s is not divisible by p; thisis a
discrete valuation ring with residue field the field F, of p elements. If ¢
denotes the associated valuation, v,{x) is none other than the exponent of ;
in the decomposition of x into prime factors.

An analogous procedure applies to any principal ideal domain {and even
to any Dedekind domain, cf. §3)

2) Let k be a field, and let k{(T)) be the field of formal power series in one
variable aver k., For every non-zero formal series

f{T] = Z =|i".z'1,1,Tﬂ|!*b L. 7 (},
1t o M
one defines thf: order v{ [} of f to be the integer n, (cf. Bourbaki. Alg., Chap.
?V), One obtains thereby a discrete valuation of K((T)), whose valuation ring
;ﬁ ;c[[T]]* the set of formal series with non-negative exponents: its residue
eld 13 k.

* 3) Let V be a normal algebraic variety, of dimension n, and let W be an
irreducible subvariety of V, of dimension n — 1. Let Ay be the local ring of
V along W (i.e, the set of rational functions f on V which are defined at
least at one point of W). The normality hypothesis shows that Ay 18 Inte-
grally closed; the dimension hypothesis shows that it is a one-dimensional
local ring; therefore it is a discrete valuation riag {cf. §2, prop. 3); its residue
field is the field of rational functions on W. If bw denotes the associated
valuation, and if f is a rational function on V. the mteger vy { /) is called the
“order” of f along W it is the multiplicity of W in the divisor of zeros and
poles of 7.

4) Let S be a Riemann surface {i.e., a one-dimensional compiex manifold),
and let P& S. The ring $, of functions holomorphic in a neighborhood
(unspecified) of P is a discrete valuation ring, isomorphic to the subring of
convergent power series in CJ[[T]]; its residue field is C.

§2. Characterisations of Discrete Valuation Rings 7

§2. Characterisations of Discrete Valuation Rings

Proposition 2, Let A be a commutative ring. In order that A be a discrete
valuation ring, it is necessary and sufficient that it be a Noetherian local

ring, and that its maximal ideal be generated by a non-nilpotent element.

| Recall that a ring A 1s called local if ¢t has a unique maximal ideal,

Noetherian if every increasing sequence of ideals 1s stationary (or, equiv-
alently, if every ideal of A is finitely generated). ]

It 1s clear that a discrete valuation ring has the stated properties. Con-
versely, suppose that A has these properties, and let n be a generator of the
maximal 1deal m(A) of A. Let u be the ideal of the ring A formed by the
elements x such that x2™ = 0 for m sufficiently large; since A is Noetherian,
it 18 finitely generated, hence there exists a fixed N such that xa™ = 0 for all
x € 1. Let us prove now that the intersection of the powers m{A)" is zero
{this is in fact valid in every Noetherian local ring, ¢f. Bourbaki, 4lg. comm.,
Chap. 11, §3). Let ye ﬂm(A]“; one can write y = n"x, for all n, whence

X, ~ X, ) =0 and x, — nx,. € 1.

. g~ Noetharion
The sequence of 1deals u + Ax, being increasing, it ;fﬂilﬂws that x,,., e u +

Ax, for n large, whence x,,,=2z+1x,, zen, and as x, = 7x,, + 2,
z € u, one gets {1 — nt)x,;, € u; but 1 — nt does not belong to m(A), there-
tore 1s mvertible (A being local); hence x, ., ¢ belongs to u for n large enough,
and, taking n 4+ 1 > N, one sees that y = n""'x,,, is zero, which proves

Mm(AY" = 0.

By hypothesis, none of the m(A)" is zero, If y is a non-zero element of A,
y can therefore be written in the form n"u, with u not in m{A), i.e., u invertible.
This writing 1s clearly unique; it shows that A is an integral domain.
Furthermore, if one sets n = v{y), one checks easily that the function v
extends to a discrete valuation of the field of fractions of A with A as its

valuation ring. ]
:

Remark. When one knows in advance that A is an integral domain {which
is often the case), one has u = 0, nx, = x,, ,, and the proof above becomes
much simpler.

Proposition 3. Let A be a Noetherian integral domain. In order that A be a
discrete valuation ring, it is necessary and sufficient that it satisfy the two
Jollowing conditions:

(i} A isintegrally closed.
(ii} A has a unigue non-zero prime ideal.
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| Recall that an element x of a ring containing A is called integral over A
it it satisfies an equation “of integral dependence”:

(*] In+ﬂixnﬁi+"‘+ﬂ"ﬂﬁ, ﬂi‘EA.

One says that A is integrally closed in a ring B contamning it if every element
of B integral over A belongs to A. One says that A is integrally closed 1f i

1$ an integral domain integrally closed in its field of fractions. C¥ Bourbaki,
Alg. comm., Chap. V, §1.1

It 18 clear that a discrete valuation ring satisfies {ii). Let us show that it
satisfies (i). Let K be the field of fractions of A, and let x be an element of K

satisfying an equation of type (»), and Suppose x were not in A, That means
v(x) = —m, with m > 0. In equation («), the first term has valuation — nm,
while the valuation of the others is > —{n -~ 1ym, which 18 > —nm: that is

a contradiction, according to the following lemma:

Lemma 1. Let A be a discrete valuation ring, and let x; be elements of the
field of fractions of A such that v{x;} > v{x;) for i > 2. One then has

II+IE++IH#(}

One can assume x, = | {dividing by xy if necessary), whence v(x,) > 1
for i > 2, ie, x; € m(A); as xy & m{A), it follows that x, + -+ + x,_ ¢ mi{A)
which proves the lemma.

| This proof also shows that x, + - - - + x, has the same valuation as x,.]

Let us now show that a Noetherian integral domain satisfying (¢) and (i)
1s & discrete valuation ring, Condition (i1} shows that A is a local ring whose
maximal ideal m is # 0. Let m’ be the set of x ¢ K such that xin A {ie.,
Xy e A lor every ye m); it is a sub-A-module of K contaming A. If y is a
nonzero element of m, it is clear that m’ — vy~ 'A, and as A is Noetherian,
this shows that m’ is a finitely generated A-module (that 15 what one calis
a “fractional ideal” of K with respect to A). Let m. nt’ be the product of m
and ', 1e., the set of all in Yie X; € M, y, € m’; by definition of nt’, one has
m.m’ < A; on the other hand, since A m’, one has m.m’ = m: since

m. nt' s an ideal, one haseitherm. m' = morm. m' = A, We will successively
show:

¥

L ff m.mt' = A, the ideal m is principal
tL If m.m' = w, and if (i) is satisfied, then m' = A.
Lt ff {ii) is satisfied, then m’ # A.

By combining II and III, one sees that m.m’ = m is impossible, whence,

by I, m must be principal, therefore A is a discrete valuation ring {prop. 2).
It remains to prove assertions I, 1. I1I.

PROOF OfF L. If m.m’ = A, one has a relation > X;y; =1, with x; e m, y, € n’.
The products x; y, all belong to A at least one of them-—say xy—does not

83, Dedekind Domains L

belong to m, therefore is an invertible element u. Replacing x by xu™*, one
obtains a relation xy = I, with xewm and yem'. If z ¢ m, one has z =
x(yz), with yz € A since y e m'; therefore z is a multiple of x, which shows
that m is indeed a principal ideal, generated by x.

PROOF OF II. Suppose m.m' = m, and let x € int’. Then xm m, whence, by
iteration, x"m < for all n, i, x" e n'. Let a, be the sub-A-module of K
generated by the powers {1,x, ..., x"} of x; one has a, < q,, ., and ail the
a, are contained in the finitely generated A-module m’. Since A is INoetherian,
one gets a, ., = a, for n largé, ie. x"¢ 4, 1. One can then write x" = b, +
bix + - +b,_ x""1 b e A, which shows that x is integral over A. Con-
dition (i) then implies x € A, hence ' = A.

PrOOF OF 1II. Let x be a non-zero element of i, and torm the ring A_ of
iractions of the type y/x", with y€ A, and n > 0 arbitrary. Condition (ii)
implies A, = K: indeed, if not, A, would not be a tield, and would contain
a non-zero maximal ideal p: as x is invertible in Ay, one would have x ¢ p,
which shows that p ~ A # m. On the other hand, if v/x" is a non-zero
element of p, one has ye p ~ A, so that p A s G But since p s prime,
30 18 p v A, which contradicts (ii).

Thus every element of K can be written in the form y/x"; let us apply
this to 1/z, with 2z # 0 in A. We get 1/z = y/x", whence x" = yz ¢ zA. There-
tore every element of i has a power belonging to the ideal zA. Let Xiyoon, Xy
generate m, and let n be large enough so that x; € zA for all i; if one chooses
N > k(n — 1), all the monomials in the x; of total degree N contain an x*
as factor, therefore belong to zA: as the ideal m" is generated by these mono-
mials, one has m™ < zA. Apply this with z ¢ m: one concludes that there is
@ smallest integer N > 1 such that m™ < zA: choose vemP Tl oy A

(putting m® = A by convention). One then has y < zA, whence y/z e ',
and yv/z ¢ A, which indeed proves that w’ # A. [

Remark. The construction of m’ does not use the hypotheses made on A
and n1; for every non-zero ideal a of an integral domain A. one can define
a’ as the set of x € K such that xa = A: if A is Noetherian, this is a fractional

ideal. When aa’ = A, one says that a is invertible. The proof of I shows that
every invertible ideal of a local ring is principal

33. Dedekind Domains

Reminder. Let A be an integral domain, K its field of fractions, and let S
be a subset of A that is multiplicatively stable and contains 1 (such a set
will be called multiplicative); suppose also that 0 does not pelong to S. The
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set of those elements of K of the form x/s, x &€ A, s& S is a ring that will be
denoted S™'A. The map p' — p’ ~ A is a bijection of the set of prime ideals
of S7'A onto the set of those prime ideals of A that do not meet S.

This apphies notably when S = A — p, where p is a prime ideal of A. The
ring S™'A is then denoted A_; it is a local ring with maximal idea! DA,
and residue field the field of fractions of A/p; the prime ideals of A corre-
spond to those prime ideals of A that are contained in p. One says that A_
18 the localisation of A at p, cf. Bourbaki, Alg. comm., Chap. 11, §2.

Proposition 4. If A is a Noetherian integral domain, the following twe prop-
erties are equivalent:

(1) For every prime ideal p £ O of A, A, is a discrete raluation ring.
{11} A is integrally closed and of dimension < {.

| An integral domain A is said to be of dimension < 1 if every non-zero
prime tdeal of A 1S maximal; equivalently, if p and p’ are two prime ideals
of Asuch thatp < p’ thenp =0 orp = p' ]

(i) implies (if}: 1f p < p’, then A_. contains the prime ideal pA_., which
imphies p = 0 or p = p’ (cf. prop. 3, (if)). On the other hand, if a is integral
over A, it is a fortiori integral over each A, and by prop. 3, (i). it belongs to
all the A,,. If one writes g in the form a = b/c, with h,c € A and ¢ # 0, and if
a 1s the ideal of those x & A such that xb < ¢A, the ideal a is not contained
in any prime ideal p, whence a = A and a e A.

(11) implies {i}: It 1s clear that the A satisfy condition (i) of prop. 3, so
that it suffices to prove they are integrally closed. Let x be integral over
A,. Multiplying by a common denominator of the coefficients of the equa-
tion of integral dependence of x over A, one can write the latter in the
form:

X"+ a X" 44 a, =0, witha,e A, se A —p.

Multiplying by s"7', one obtains an equation of integral dependence for
sx over A, which imphes sx e A, whence xe A, [

Remark. The proof above actually establishes the following result:

Let A be asubring of a field K, S a multiplicative subset of A not containing
O. In order that an element of K be integral over S™tA, it is necessary and
sufficient that it be of the form a'/s, where a' is integral over A and s belongs
to S. (Passage to rings of fractions commutes with integral closure.)

Defmition. 4 Noetherian integral domain which has the two eguivalent prop-
erties of prop. 4 is called a Dedekind domain.

ExAaMPLES. Every principal ideal domain is Dedekind. The ring of integers
of an algebraic number field is Dedekind (apply prop. 9 below to the ring 7).

§3. Dedekind Domains il

If V is an affine algebraic variety, defined over an algebraically closed field
k, the coordinate ring k[ V] of V is a Dedekind domain if and only if V 15
non-singular, irreducibie and of dimension < 1.

Proposition 8. In a Dedekind domain, every non-zero fractional ideal Is

invertible. |
'If K is the field of fractions of A, a fractional ideal a of A is a sub-A-
module of K finitely generated over A. One says a is invertible if there exists

a' < Kwitha.a' = A.]

In a discrete valuation ring, a fractional ideal has the form n"A, where
ne 7, and is therefore invertible. The proposition follows from this by

tocalisation, taking into account that;
(a.b), =ab,: {a+b),=a +b; (a:b), ={a,:b)
if b is finitely generated. [

[{a:b) denotes the ideal of those x € K such that xb < a. If o' = (A:q),
to say that a is invertible amounts to saying that a.a’ = A.]

Corollary. T he non-zero fractional ideals of a Dedekind domain form a group
under multiplication.

This group 1s called the ideal group of the ring,

Proposition 6. If x e A, x & 0, then only finitely many prime ideals contain x.

indeed, the ideals containing x satisly the descending chain condition:
fAxcaca cAonehas Ax" ' >a ' a7 » A, and A is Noetherian,

It follows thattf xe p,,p,....,0.. .., the sequence
plﬁﬁlﬁpzmh**:ptﬁpzﬁ'ﬁ'ﬁpk:}*"
is stationary, which means that from some point onward, one has

P; =P DBy DY P2 PPy Py

which, as the p; are prime, shows that p; i1s one of the py,....p,. [

Corollary. If one denotes by v, the valuation of K defined by A, then for
every x € K*, the numbers v (x} are almost ali zero {1.e., zero except for a

finite number),

Now let a be an arbitrary fractional ideal of A; 1t 1s contained in only
finitely many prime ideals p. The image a, of a m A, has the form a, =
(pA, )", where the v (a) are rational integers, almost all zero.



|

If oneconsiders the ideal q ¢ = | [, " and the ideal a, of those x such
that v,(x vola) for all p, the three ideals a, @y, and a; are equal locally (1.e.,

have the same images in all the A,). An elementary argument shows that
they must then be equal, whence:

where the v (a) are integers almost all Zero,

The following formulas are immediate:

0,(0.b) = v (a} + v,{b)
bp{tb:a)} = v (b.a™ 1) = 0,{b) — 1 {a)
vo(a 4+ b) = Inf(v (), v, (b))

Do{XA) = b {x),
Furthermore:

Approximation Lemma. Let &k be 4 positive integer. For every i, 1 < i < K, let
P: De distinct prime ideals of A, x; elements of K., and n; tntegers. Then there
exists an x e K such that UpdX — X)) = n; for all i, and UaX} 2 0 for g

Suppose first that the x; belong to A, and let us seek a solution x belonging
to A. By linearity, one may assume that x; = -+ = x, = 0 Increasing the n,
il necessary, one may aiso assume n, > 0. Put

One has v (a) = 0 for all p, whence a — A. 1t follows that

Xr=X+y, withyepl, xeplh-- pi

and the element x has the desired properties.

in the general Case, one writes x; = q./s, with G EA se A, s#0, and
X = afs. The element a must fulil] the conditions:

I}Ih'{a — HI} e H; “pg{s)! 1 < I < i
Ual@) 2 v(s) forq #p,, ... p,.

These conditions are of the lype envisaged above (if one adds to the family

{p;} the prime ideals q for which {5} > 0}; the existence of g then foliows
from the previous case. ]

Corollary. 4 Dedekind domain with only finitely man y prime ideals is principal,

It sufficies to show that all its prime ideals are principal. Now if p is one
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of them, there exists an x ¢ A with v,(x) = 1 and vy(x) = 0 for q s p, i.e., with
xA=p. [

§4. Extensions

Throughout this paragraph, K is a field and L a finite extension of K: its
degree [ L: K] will be denoted by n.

We are also given a Noétherian mtegrally closed domain A, naving K as
field of fractions. We denote by B the integral closure of A in L (1., the set of
elements of L that are integral over A). According to the remark that followed

propostiion 4, we have K . B = L. In particular, the field of fractions of B is L.
We make the following hypothesis-

(F) The ring B is a finitely generated A-module.

This hypothesis implies that B is a Noetherian integrally closed domain.
Propesition 8. Hypothesis (F) is satisfied when L/K is a separable extension.

let Tr:L — K be the trace map (Bourbaki, Alg., Chap. V, §10, no. 6). One
knows (loc. cit., prop. 12) that Tri{xy} 15 a symmetric non-degenerate K-
bilinear formon L. If x € B, the conjugates of x with respect to K (in a suitable
extension of L} are integral over A, and so is their sum Tr(x); as Trix)e K,
it foliows that Tr(x) e A.

Next let {¢;} be a basis of L over K, with ¢; € B, and let V be the free
A-module spanned by the e,. For every sub-A-module M of L, let M* be the
set of those x e L. such that Trixy}e A for all ye M. Obviously one has:

dince V* is the free module spanned by the basis dual to {e,} (with respect

to the bilinear form Tr(xy)), it follows from the Noetherian hypothesis on
A that B is finitely generated as an A-module. ]

Remarks. 1) The same proof shows that B* is a finitely generated B-
module, te., a fractional ideal of B. Its imverse i1s called the different of B
over A, cf. Chap. 1, §3.

<) One can show that hypothesis (F ) 1s satisfied when A is an algebra of

finite type over a field (cf, Bourbaki, Alg. comm., Chap. V), or when A is a
complete discrete valuation ring (cf. Chap. 11, §2).

Proposition 9. IS A is Dedekind then B is Dedekind

One knows already, thanks to hypothesis (F), that B is Noetherian and
integrally closed. According to proposition 4, it suffices to show that B is
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of dimension <1. Let B, = B, « B, be a chain of distinct prime ideals of
B. The next lemma shows that the R, ~ A are distinct (contradicting the
fact that A is of dimension < 1)

Lemma 2. Let A < B be rings, with B integral over A. {f ‘B« Q are prime
ideals of Bsuchthat R n A =Q n A, then | = Q.

Passing to the quotient by T, one may assume P = 0. If & = R, there is
a non-zero x € L. Let

X'+, X"k a, =0,  aeA,

be 1its minimal equation over A. One has ao # O, and a, belongs to the ideal
of B generated by x, thereforeto @ ~ A = B ~ A, which is absurd. [

ReTrmrk. One can show that prop. 9 remains valid even when hypothesis
(F) tails {cf. Bourbaki, Alg. conmm., Chap. VI,

Let us keep the hypotheses of prop. 9. If R is a non-zero prime ideal of
B,and f p =P ~ A, we will say that P divides p (or that 8 is “above” p),
and we will write Bip. This relation is also equivalent to saying that
contains the ideal pB generated by p. Denote by eq the exponent of P in
the decomposition of pB into prime ideals. Thus:

€q == [?iﬂ{]jB}& ph = U Rer
e

The integer eq is called the ramification index of ‘RN in the extension /K.
On the ﬂthﬁr* hand, if ‘R divides p, the Beld B/R is an extension of the
field A/p. As B is finitely generated over A. B/B 1s an extension of A/p of

ﬁﬂiiﬂ degree.‘ The degree of this extension is called the residue degree of R
in the extension L/K, and is denoted f,. Thus:

fo ={B/B:A/p].

§5. The Norm and Inclusion Homomorphisms iS5

fet S=A —p, A'=S"'A, and B' = S 'B. The ring A’ = A, is a dis-
crete valuation ring, and B' is its integral closure in L (cf. the remark after

prop. 4). One has A'/pA” = A/p, and one sees easily that B'/pB’ = B/pB. As
A’ 15 principal, hypothesis {I'} shows that B’ 18 a free module of rank n =

[L:K ] and B'/pB’ is free of rank n over A'/pA’. Thus B/pB is an algebra of

degree n.
Since pB = [ }'P**,the canonical map

B/pB — | | B/gce
Blp

is injective; the approximation lemma shows that it 15 surjective; hence it
1s an isomorphism. By comparing degrees, one sees that n is the sum of the

degrees

ng = | B/B™: A/pl.
Onehas ng= ;262" ' [BY/P 11 A/p]=eq. [B/B:A/p] = exfq, which proves
the proposition.  {]

Corollary. The number of prime ideals B of B which divide a prime ideal p
of A is at least 1 and at most n. If A has only finitely many ideals, then so
has B {which is therefore principal).

Remark. When hypothesis (F) is not satisfied, the sum of the eq fq is still
equal to the degree of B/pB, but this degree can be <n.

Let ‘B be a non-zero prime 1deal of B, and let p = A n P. Clearly vg(x) =
eqpl,(x) 1t x & K. One says {by abuse of language) that the valuation ug
prolongs (or “extends”) the valuation v, with index eq. Conversely:

Proposition 11. Let w be a discrete valuation of L which prolongs v, with
index e, Then there is a prime divisor B of p with w = vg and e = eq,.

Let W be the ring of w, and let Q be its maximal ideal. This ring is inte-

: . , | rally closed with feld of fractions L, and ¢ ' . | * .
| When we want to specify K, we write eqs, and fy,, instead of ey and graily L., and contains A; hence it contains B

Ja Let B = W~ B. Obviously P » A = p, so that P divides p. The ring W
When there is only one prime ideal B which divides' N thus contains By. But one checks immediately that every discrete valuation
says that L/K is totally rmm:‘;gd at p. } ": vides p and fq = 1, one ring 15 a maximal subring of its field of fractions. Hence W = By, so that

Whﬂﬂ Eq:! == i ﬂﬂd B/{B 15 Sﬂpﬂrﬂbiﬂ oOver A/p.; one SHF’S thﬂt L}F{K ]5 - | L=t f)m ﬂﬂd £ = EE]' EI

ramified at ‘P. I L/K is unramified for all the prime ideals ‘R dividing p, one

says that L/K is unramified above p (or “at p™); cf. Chap. H1, §5. §5 The Norm and Inclusion H(}m{)morphismq

Proposition 10. Let p be a non-zero prime ideal of A, the ring B/pB is an A/p-
algebra of degree n = [L:K1, isomorphic to the product P, B/R ™. We
have the formmda: '

We keep the hypotheses of the preceding paragraph. We denote by {, and
I, the ideal groups of A and of B. We will define two homomorphisms

D
P ; N ih N !H*
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As I, {resp. Iy) is the free abelian group generated by the non-zero prime

ideals p of A (resp. P of B), it suffices to define i(p) and N{B). Put:
i(p) = pB = [ | P

Plo
N(B) = p/sif Plp.

By prop. 10, one has N(i{a)) = a" for every ael - bhe homomorphism |

assigns to an ideal a of A the ideal aB of B generated by o.

each M;XM,*“{ being isomorphic to a simple A-module, ie., to g quotient
A/p;, where p. is a non-zero prime ideal of A (1gnoring the trivial case A = K).

By the Jordan-Hélder theorem, the sequence of A/p; depends only on M
(up to order), and one can pt;

ExamMpLe, When M = b/a, where a and b are non-zero fractional ideals with
a < b,onehas y,(M)=a.b ! In particular, y,(A/a)=a ifa ¢ A,

The map y,: %, — | a 18 “multiplicative”: if one has an exact sequence:

oM -+ M- M -0

of A-modules of finite length, one has y,(M) = XAM )y A(M”). Conversely,
€very multiplicative map /%, — G, where G is a comimnutative group, can
be put uniquely into the form g ° xa, where g is a homomorphism of I, into
G (it suffices to define g{p) to be f{A/p)). In other words, y, identifies the
“Grothendieck group” of € a With the group I, .

Similarly define €, and te: %5 — ly. Clearly every B-module of finite
length is of finite length as an A-module. One thus defines an exact functor

s — €4, hence a homomorphism of Ig into I,. This homomorphism is
none other than the norm. In other words

Proposition 12. If M is a B-module of finite length, then XalM) = N{yg(M)}.

By hnearity, it suffices to consider the case M = B/, which case follows
from the definition of the norm. ]

On the other hand, every A-module M of finite length defines by tensor
product with B a module My of finite length. The functor s — €g4 thus
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defined 1s still exact (by localisation, one reduces to the case where A is
principal, and B is then a free A-module). Hence one obtains again a homo-
morphism [, — Iy which coincides with the inclusion:

Proposition 13. If M is an A-module of finite length, then y3(Mg) = i(y(M)).

By hnearity, it suffices to consider the case M = A/p, whence Mp =
B/pB, and the proposition is clear. [

The next proposition shows that the restriction of N tOo principal ideals
coincides with the usual norm map (defined in Bourbaki, Alg., Chap. V);

Proposition 14, If x e L, then N(xB) = N kXA,

One may assume x integral over A, and, by localising, that A is principal.
The ring B is then a free A-module of rank n. Let u, be muttiplication by x in

B. One has Ny {x) = det{u,) and N{xB) = 7.(B/xB) = y.{Coker i, ). One 1s
thus reduced to:

Lemma 3. Let A be a principal ideal domain and u: A" — A" a linear rap with
det{u) % 0. Then det(w)A = y (Coker 1},

The 1deal det{u)A does not change when one muitiplies u by an invertible
limear map; hence one may reduce by the theory of elementary divisors to the
case where u 1s diagonal (Bourbaki, Alg., Chap. VII, §4, no. 5, prop. 4). The
proof s then carried out by induction on n, the case i = | being the property
atready remarked; y (A/a) = a. [T

56. Example: Simple Extensions

In this paragraph, we place ourselves once again in the local case. Thus let A
ve a local ring with residue field k. Let n be a positive integer, and et f € Aj X ]
be a monic polynomial of degree n. Let B, be the quotient ring of A[ X7 by
the principal ideal (1) generated by f. It is an A-aigebra that is free and of
finite type over A, with {1,X,..., X" 1) as basis. We first determine its
maximal ideals. Toward that end. denote by m the maximal ideal of A, and

put B, = B, /mB, = A[X)/(m, /). If one denotes by / the image of f € k[ X]
by reduction mod n1, one then has

E;‘ == fc[XJf{f}*

Let f = | [i.: ¢ be the decomposition of the polynomial / into irreducible
factors in k| X |, and, for each i, choose a polynomial g, e A[X]withg = ¢,
With this notation, we have:
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Lemma 4, Let m; = (m, g;) be the ideal of B, generated by m and the canonical
image of g; in B,; the ideals m,, i € 1, are maximal and distinct, and every
maximal ideal of B, is equal to one of them. The quotient B /m, is isomorpnic

to the field k, = k| X1/(p,).

By definition, m; is the inverse image in B, of the ideal iiy; of B, generated
by @;; as B, /() = k; = k[ X]/{p,), it is clear that m; is maximal and that
B,/m; = k;. In order to show that every maximal ideal n of B, 1s equal to
one of the m,. it suffices to prove that n contains m {for n would then be the
mverse image of one of the maximal ideals (¢;) of B,). If not, one would have

n+ mB, =B, and as B, is a finitely generated A-module, Nakayama's
lemma {Bourbaki, Alg., Chap. VIII, §6, no. 3) would show that n = B, which
1s absurd. [}

Suppose now that A 18 a discrete valuation ring; we give two special cases
in which B, 1s also a discrete valuation ring.

(1) Unramified case

Proposition 15. If A is a discrete valuation ring, and if [ is irreducible, then B,
is a discrete valuation ring with maximal ideal mB, and residue field K[ X 1/(]).

By lemma 4, B, is local with maximal ideal mB  and residue field k{ X }/( ).
Moreover, if n generates m, the image of = 1n B, generates mB, and is not
nilpotent. By prop. 2, B, is a discrete valuation ring. [

Corollary 1. If K is the field of fractions of A, the polynomial f is irreducible
in K{ X If L denotesthe field K{X]/(f), then the ring B is the integral closure
of AinL.

One has K{X]/(f) = B, ®, K. As B,is an integral domain,sois B, @, K,
hence K[ X1/(f) is a field. As B, is integrally closed and has L as its field
of fractions, it 1s the integral closure of Am L. {7}

Corollary 2. If [ is a separable polynomial, the extension L/K is unramified.
Obvious.
Proposition 15 admits the following converse:

Proposition 16, Let A be a discrete valuation ring, K its field of fractions, and
let 1. be an extension of K of finite degree n. Let B be the integral closure of A
in L. Suppose that B is a discrete valuation ring and that the residue field 1. of B
is a simple extension of degree n of the residue field k = K of A. Let x be any

R e L

e " .. e . an, " oan
T A A T

e e e
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element of B whose image < in L generates 1. over k, and let { be the charac-
teristic polynomial of x over K. Then the homomorphism of A} X1 into B that
maps X onto X defines by passage to the quotient an isomorphism of B, onto B.

The coeflicients of f are integral over A and belong to K ; as A 1s intfegrally
closed, they belong to A. Furthermore, the equation f{x) = 0 shows that
the map A[X] — B factors into A[X] — B, — B. Since f{X} = 0 and X 15 of
degree n over k, one concludes that / is the minimal polynomial of X over k,
hence 1s irreducible. The conditions of cor. 1 above thus hold, and the
proposition follows from it. ]

(i1} Totally ramified case

Proposition 17. Suppose A is a discrete valuation ring and that [ has the
following form:

fmxﬂ+ﬂlx"“1+*"+ﬂ,,., ﬂiEm,ﬂnémz,

Then B, is a discrete valuation ring, with maximal ideal generated by the image
x of X and with residue field k.

|A polynomial having the form above is called an “Fisenstein poly-
nomial.”|

One has f = X". Lemma 4 then shows that B, is local with maximal ideal
generated by (ny, x), Furthermore, the element n = g, uniformizes A. Since:

e X g X g, X,

one sees that # belongs to the ideal (x), and it follows that {n1, x) = (x). As «

18 not nilpotent, netther is x, and prop. 2 shows that B, 1s indeed a discrete
valuation ring. [

As before, one deduces:

Corollary. The polynomial f is irreducible in K{X], and if L = K[X]/ /),
then B, is the integral closure of A in L,

Here again there 1s a converse:

Proposition 18. Let A be a discrete vatuation ring, K its field of fractions,
and tet 1. be a finite extension of K of degree n. Let B be the integral closure
of A in L. Suppose that B is a discrete valuation ring, and that the associated
valuation prolongs that of A with ramification index n. Let x be a uniformizing
element of B, and let [ be the characteristic polynomial of x over K. Then f is
an Eisenstein polynomial, and the homomorphism of Aj X into B that maps X
onto x defines by passage to the quotient an isomorphism of B, onto B.



Let w be the discrete valuation associated to B. One has wi{x) = 1, and
Wia) =0 mod nfor all ae A. Let p = inf(w{a;x"""}), 0 < i < n. By lemma 1
of 81, there are two integers i and , with 0 < < j < n, such that

Fe= w(ax" ) = wlax" ),

K

From this one deduces that J—i=wla/a,)
fi=0and=n,sothatr = n, wia,) = n
S 15 an Eisenstein poivnomial,
Lo proposition 17. [

= Umod. n, which is only possible
and w(a;) > n — iforalli > 1: thus
and the proposition follows from the coroliary

EXERCISE

With the notation of lemma 4. show

he n that if ¢; = I, the local ring (B rim, 18 @ discrete
valuation ring.

57. Galois Extensions

We return now to the hy
we further assume

denoted G{L/K).

potheses and notation of paragraphs 4 and $, and
that L/K is a Galois extension. Its Galois group will be

Froposition 19. The group G(L/K) acts transitively on the set of prime ideals
‘B of B dividing a given prime ideal p of A.

Let Plp, and suppose there were a prime ideal B’ of B over p distinct from
all the s(P), s e G(L/K). By the approximation lemma, there exists g & B,

a¢s{P)foralls If x = Ny k{a),onehas x € A, and x = HS[{I}, whence x ¢ B,
x € P, which contradicts P ~ A = B A, [

Corollary. Let p be a non-zero prime ideal of A. The integers eq and fo ( for

B dividing p) depend only on p. If one denotes them by e,, f,, and if g, denotes
tne number of prime ideals @ dividing p, then

n=e,f4d,.

This follows from proposition 10.
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The subgroup of G(L/K) consisting of those s such that s() = @ is
called the decomposition group of P in L/K; we denote it by Dg(L/K), or
sometimes simply by D. If ' is another prime ideal of B over the same idea!
p of A, prop. 19 shows that Dg.(L./K) is conjugate to Dg(L/K}. The index of
D in G(I./K) is equal to the number g, of prime ideals of B dividing p.

We now fix the ideal B, and we write G, D, ¢, f, ¢ instead of G(L/K),
DglL/K), ¢;, f,, g,- By Galcis theory, the group D corresponds to an exten-

sion K, of K contained in L ; this extension is only Galois when D is normal
in G. We have:

(Kp:K}=g, [L:Kpl=¢ef, GL/K, =D.

it E 1s a field between K ani L, let B, = E n B be the integral closure of A
n E, P = L ~ Be, and let E be the residue field B:/B:. This applies in
particuiar to K and L, defining the fields K and L. If se D, s defines by

passage to the quotient a K-automorphism 3 of .. We thus obtain a homo-
morphism

e:D - G(L/K)

whose kernel is called the inertia group of B, and 1s denoted Ty(L/K), or

simply T. Corresponding to it is a Galois extension K+/Kp, with Galois
group /T ; one has G(L/K{) = T.

Proposition 20. The residue extension L/K is normal and the nomomorphism
¢: D G(L/K)
defines an isomorphism of D/T onto G(L/K).

We first show that L/K is normal. Let ge L, and let ae B represent 4.
Let P(X) = | (X ~ s{a)), where s runs through G: this is a monic polynomial
with coeflicients in A, which has a as a root. The reduced polynomial P(X)
has the s(a) as its roots; that suffices to prove that L/K is normal (ct. Bour-
baki, Alg., Chap V, §6, cor. 3 to prop. 9). Consider next the map ¢. Choose @
to be a generator of the largest separable extension [, of K within [: the
approximation lemma of §3 shows that there exists a representative g of @

which belongs to all the prime ideals s(R), s ¢ D. We again form the poly-

nomial P(X) = | }(X -~ s(a)). The non-zero roots of P(X) all have the form
s{a}, with se D; it follows that every conjugate of @ is equal to one of the
s(a), with s € D, which proves the surjectivity of &. [

We continue to denote by L, the largest separable extension of K in .

We have just shown that it is a Galois extension of K with Galois group D/T.
Put:

fo={L:K]=[L:K], p'=[L:[,]=[L:K],
= 1P

so that
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Proposition 21, With notation as above, let w, wg, wy, v be the discrete valua-
tions defined by the ideals ‘R, R, Bp, p. Then:

a){L:K¢]=ep’, [Ky:Kp] = fo, [Kp: K] = g.
b} w prolongs w with index e; wy and wy, prolong v with index 1.

o) Ky=L,, Kp= K. Inparticular, [L:R;]=p* [Ry: Kyl = fo, [Kp: K] = 1.

We know that the order of D is ef, and we've just seen that the order of
D/ 1s fo, the order of T 1s thus ep®, which proves a).

On the other hand, we can apply prop. 20 to the group T: it tells us that
L is purely inseparable over Ky. In particular, every x e L, is purely in-
separable over Ky; as x is separable over K which is contained in K, we
must have x € K;. Thus K4 contain L., and we have [L:K,] < p', ie,
JIL/K1) < p’; but it is clear that e{1L/K;) < e. As [L: K] = ep, we must
have L = K; and e(L/K ) = e, which proves b) and the first formula of ¢).

The second one 15 a consequence of prop. 20, applied to the group D/T
operating on By, {7

Corollary, If L/K is separable then it is a Galois extension with Galois group
D/T, and we have Ky =L, [L:K{] =¢, [K;=Kpl=/7, [Ky: K]=g.

Indeed, p* = | n that case.

Remark. The residue extension L/K is separable in each of the {ollowing
cases {which cover most of the applications);

1} K is perfect.

2} The order of E_hf:* inertia group T is prime to the characteristic p of the
residue field K (indeed, we have seen that the order of this group is
divisible by pf).

With the same hypotheses as in prop. 21, let E be a subfield of L con-
taining K ; the groups D{L/E) and T(L/E) are well-defined; similarly, when
E/K 1s Galois, the groups D(E/K )} and T(E/K) are well-defined.

Proposition 22

a) D(L/E) = D(L/K) n G(L/E)} and T(L/E) = T(L/K) n G(L/E),
by If E/K is Galois, the diagram below is commutative, and its rows and
columns are exact:

: 1 1
! ! {
I — Tﬂi/E) - T(Ll/l‘i) - T(Ei/K} — |

I {)(%/5} - D{Ij:fK) - Df%/!{) - |
H
i | i

W .-.-.I.-..:fl-.: :...:-.:.:I-.-I L] I.. ..
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Assertion a) 1s immediate, as well as the commutativity of diagram b).
Exactness of the columns follows from prop. 20, and exactness of the third
row from Galois theory applied to the residue fields I, E, K. If s € D(E/K),
there exists t € (G{L/K) which induces s on E; the 1deals ‘B and t{'B} have
the same restriction to E; by prop. 19, there exists ' & G(L/F) such that
t't{’R) = P, the element 't belongs to D{L/K} and induces s on L, which
shows that D(L/K) — IME/K) 1s surjective. The second row of the diagram

1Is thus exact, and a little diagram-chasing shows that conseguently the
first row 15 also, [}

Remark. When one wants to study the decomposition or inertia groups
above a given prime ideal p of A, one may, if one wishes, replace A by the
discrete valuation ring A, ; this reduction to the local case can be pushed
further: one may even replace A, by its completion {cf. Chap. 11},

98. Frobenius Substitution

Let L/K be a Galois extension, A a Dedekind domain with field of fractions
K, and let B be the integral closure of A in L. Let P be a prime ideal of B,

P # 0, and let p = P ~ A, Assume that L/K is unramified at P and that
A/p 18 a finite field with g elements. The inertia group Ty(L/K) is then
reduced to {1}, and the decomposition group Dg(L/K) can be identified
with the Galois group of the residue extension L/K. Since K = F,, the
latter group is cyclic and generated by the map x — x9 (cf. Eﬂurbakl qu .
Chap. V}. Let 54 be the element of Dg(L/K) corresponding to this generator:
it 15 characterised by the followmng property:

se(b) = b mod. B forall be B,

The element sq is called the Frobenius substitution of ‘R {or attached to

B). Its definition shows that it generates the decomposition group of R:
its order is equal to fy. It is often denoted (B, L/K). Here are two samples

of finctorial properties that it enjoys {a third will be seen in Chap. VII, §8):

Proposition 23. Let E be a subfield of L containing K, and let Ry = P 1 E.
Then;

a) (B, L/E) = (B, L/KY, with f =[E: K],
b) If E is Galois over K, the image of (B, L/K) in G(E/K) is (P, E/K).

Immediate.

Returning to the extension L/K, if t € G(L/K), one has (by transport of
structure) the formula;

(¢((P), L/K) = (P, L/ Ky
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In particular, if G(L/K) is abelian, (B, L/K)dependsonlyonp =8 A: it
18 the Artin symbol of p and is denoted (P, L/K). One defines by linearity the
Artin symbol for any ideal a of A that does not contain a ramified prime, and
one denotes it again by (a, L/K) [the notations

— } Or simply | — ],
a a

are also found in the literature],
We state without proof:

Artin Reciprocity Law (cf. [3], [75], [94], 1123]). Let L be a finite abelian
extension of a number field K, A the ring of integers of K, and p, the prime

ideals of A that ramify in L/K. Then there exist positive integers n; such that
the conditions

(i} v, {x — )= n, for all i,
(if} x is positive in every real embedding of K that is

not induced by a real
embedding of L,
imply {(xA, L/K) = 1.
Furthermore,

every automorphism s € G(L/K) is of the form {a, L/K) for a

suitable ideal a (in fact, one even has s = (v, L/K} for infinitely many prime

1deals p of A),

EXAMPLE. Let n be a positive Integer, K = Q, and let L = Q({,) be the field
of nth roots of unity. The Galois group G(L/K)} 15 a subgroup G'(n) of the
group G(n) of invertible elements of Z/nZ, (cf. Bourbaki, Alg., Chap. V):
if x € G'(n), the automorphism o, associated to x transforms a root of umity
Cn Into 1ts xth power. If (p, n) = 1, one sees easily (e.g., by using the results of
Chap. 1V, §4} that p is unramified, and that the Artin symbol (p, L/K) 1s equal

to o,,. It follows by linearity that the Artin symbol of a positive integer m prime
to nis equal to o,,. Consequently, G'{n) = G{n), that is to Say

| L:K] = ¢(n)

(irreducibility of the cyclotomic poiynomial). Moreover, if m > 0, and if
m == | mod n, one gets (m, L/K) = 1, which verifies the Artin reciprocity law
tor this case, {The fact that 5 = (p,L/K) for infinitely many primes p is

equivalent to Dirichlet’s theorem on the infinity of prime numbers belonging
to an arithmetic progression. ]

Once the Artin symbol has been determined in Q{{,)/Q, prop. 23 gives it
tor every subfield E of Q(,). Such a field is abelian over Q. Conversely,
every finite abelian extension of Q can be obtained in this way {theorem of

Kronecker-Weber). In particular, every quadratic field Q(./d) can be em-
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bedded in a suitable field Q({.); this result can also be checked by various
ciementary methods (Gauss sums, for example). Thus one has a procedure

tor determining the Artin symbol (p, Q(\/.:‘i i/Q}; by comparing the result with
that given by a direct computation, one obtains the quadratic reciprocity law.

For more details, see Hasse [ 34}, §27, or Weyl [68], Chap. 111, §t1.
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W __ depend on the choice of the number a). It is known (Bourbaki, loc. cit.) that
C : f. K is a valued field whose absolute value extends that of K. If one writes the
Ompleu(}ﬂ absolute value in the form

xli = a"**, xe K,

the function #(x) is integer-valued, and one checks immediately that it 1s a
discrete valuation on K, whose valuation ring is the closure A of A in K.
If m 1s a uniformzing element of A, the 1deais n"A form a base for the neigh-

borhoods of zero in K, hence also in A, which shows that the topology on
A coincides with 1ts natural topology as a local ring; thus one has

A = limA/n"A  (projective limit)

The element n is a uniformizer for A, and one has A/z"A = A/n"A. In par-
ticular, the residue fields of A and A coincide.

Proposition 1, In order that K be locally compact, it is necessary and sufficient
that its residue field K = A/nA be a finite field and K be complete.

1. Absolute Values and the Topology Defined

If K 1s locally compact, 1t 1s compiete. And as the n"A form a fundamental

by a Discrete Valuation system of closed neighborhoods of (), at least one of them is compact, so
multiplying by = 7" shows that A is compact. The quotient K = A/nA, being
Let K be a field on which a discrete valuation v is defined, having valuation both compact and discrete, must be finite.
ring A. If a is any real number between 0 and 1, we put Conversely, if K is finite, the A/z"A are finite; hence A, being the pro-
Ixl] = @™ for x s 0 Jective limit of fimte rings, 1s compact; if in addition K is complete, one has
o = 0 : A = A, s0 that K 15 mndeed locally compact. [
We then have the formulas ExampLes. 1) The field Q,, completion of Q for the topology defined by the
p-adic valuation, s a locally compact field with residue field F .
”IJf‘lf == ”Iff“}’” 2y If F 1s a fimite field, the field F((T)) of formal power series is Tocally
P+ vl < sup(|lf |} ) ~ compact

xi1 =0 ifand only if x = 0. "
!I ” y X When K satisfies the conditions of prop. 1, there is a canonical way to

. Thus we see that Hx[[ I8 i:’in‘ﬂb#.ﬁﬂfuiﬂ value on K (in the sense of Bourbaki, choose the number a: one takes g = g~ ', where g is the number of elements
op. gE{:,,*Ch&p. IX, §3); it is in fact an witrametric absolute value. Con- in thé residue field K. The corresponding absolute value is said to be
versely, 1t 1s easy to show that every ultrametric absolute value of a field K normalised. The next proposition characterises it “analytically™.

has the form ¢, where v is a real valuation K, ie., a valuation whose

ordered group of values isﬁan additive subgroup of R. As for the non- ! Proposition 2. Let K be a field satisfying the conditions of prop. 1, and let u
ultrametric absolute values, it can be shown (Ostrowski’s theorem) that they i he a Haar measure on the locally compact additive group underlying K. Then

have the form: for every measurable subset E of K and every x € K one has
Ixf = /), witho<ex,

o * H(xE) = ||x||u(E),
where f:K — C is an isomorphism of K onto a subfield of the feld of :*

complex numbers. a where {|xi} denotes the normalised absolute value of x.
Returning now to the case where v is discrete, let R be the compleri ﬁ
, pletion of * | . ,
K for the topology defined by its absolute value (the topology does not . One may assume x s 0; the homothety y + xy 18 then an automorphism

of the additive group of K, hence transforms the Haar measure g into one
26
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of its multiples y(x}. u, and one must verify that the multiplier y(x) is equal
to jix{l. Since y(x) and x|l are multiplicative, one can assume x € A, Taking
E = A, one sees that E is the union of (A :xA) cosets module xE, whence

i(E) = {A:xA}. u(xE), and x(x) = 1/(A: xA). Since (A:xA) is equal to g"™,
one gets

x(x) =g "% = |Ixll.

Remark. One can carry out the same normalisation for a locally compact
valued field K whose absolute value is not ultrametric; by Ostrowski’s
theorem (cited above), one has K = R or K = C, in the first case one re-
covers the usual absolute value, whereas in the second case one gets its
square (which 1s not an absolute value in the strict sense, because it doesn’t
satisfy the triangle inequality). These normalisations are necessary for the

product formula: let K be a number field and P the set of its normalised
absolute values (ultrametric or not}; then

[Tixll, =1 forall xe K*

peP
(this infinite product is meaningful, for almost all its terms are equal to 1)
To prove this formula, one checks it first for K = Q by a direct computation;

then one uses the following result (equivalent, in the ultrametric case, to the
formula e, f; = n):

”NE;Q{I)I!F = n“x“w xe K*

plp
An analogous formula is valid for algebraic function fields in one variable.

32. Extensions of a Complete Field

Proposition 3. Let K be a field on which a discrete valuation v is defined,
having valuation ring A. Assume K to be complete in the topology defined by v.
Let L/K be a finite extension of K, and let B be the integral closure of A in L
(ct. Chap. 1, §4), Then B is a discrete valuation ring and is a free A-module of
rank n = | L:K]; also, L is complete in the topology defined by B.

We begin with the case L/K separable, Condition (F)of Chap. I, 84 is then
automatically satisfied: as A is principal, it follows that B is a free A-module
of rank n. Let B; be the prime ideals of B, with w; the corresponding valua-
tions. Each w, defines {as in the preceding §) a norm on L, which makes L a
Hausdorfl topological vector space over K: as K is complete, it follows (cf.
Bourbaki, Esp. Vect. Top., Chap. L, §2, th. 2} that the topology 7, defined by
w; 1s actually the product topology on L (identified with K"}, hence does not
depend on the index i. But w, is determined by 7 the ring of w; is the set of
those x such that x~" does not converge to zero for 7. Thus there is only

e N L L e . o Y oy an iy ) iy " 3 - " '..' - L s .l..l.'..-.' ...."'1.-' l.l.l.l... ...l:l :l... .. el :. .': 3 N iy :..
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one w;, which shows that B is a discrete valuation ring. As K is complete,
so 18 K" hence L. Once this case has been treated, a straightforward
“devissage’’ argument reduces one to the case where L/K is purely IMsepara-
bie. In that case, there is a power g of the exponent characteristic such that
x*e K tor ali xe L. Put v'(x) = v(x%; the map v':L* - Z is a homomor-
phism. If m denotes the positive generator of the subgroup v'(L*), the func-
tion w = (1/m)u is a discrete valuation of L. It is immediate that its valuation
ring is B; the same argument as above shows that the topology defined by
w coincides with that of K", making L into a complete field. It remains to
prove that B is an A-module of finite type. Let n be a uniformizer of A, and
let B = B/rB. Let b, be clements of B whose images b, in B are linearly
independent over K = A/nA. We claim that the b, are Hinearly independent
over A: for if one had a relation Zafbi = {} that was non-trivial, one could
assume that at least one of the a, was not divisible by n, and reducing
mod. nB, one would obtain a non-trivial relation among the b,. In particular,
the number of b; is <n. Suppose now that the b, form a basis of B and let E
be the sub-A-module of B spanned by the b;. Every b € B can then be written
in the form b = by + nb,, with b, € E and b, & B; applymg this to b, and
iterating this procedure, one gets b into the form:

bﬂbﬂ“i"ﬂh}“i‘ﬂzbg*i“"“, biEE,

and since A 1s complete, this shows that be E. {7

Corollary 1. If e (resp. f) denotes the ramification index (resp. the residue
degree} of L over K, then ef = n.

That follows from prop. 10 of Chapter I, which is applicable because we
have shown that B is an A-module of finite type. [

Corolary 2. There is a unique valuation w of L that prolongs v,

This 1s just a reformulation of part of the proposition, [

Corollary 3. Two elements of L that are conjugate over K have the same
valuation.

Enlarging L if necessary, we can assume L/K to be normal. If s e G(L/K),
w o s prolongs v, hence coincides with w {cor. 2); the corollary then resuits

from the fact that the conjugates of x € L are none other than the s{x)
se G(L/K). [

L

Corollary 4. For every xe L, w(x) = (1/f (N {x}).

Here again one reduces to the case L/K normal, where the assertion
results from cor. 3. { One could just as well directly apply prop. 14 of Chap. 1.}
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In terms of absolute values, cor. 4 means that the topology of L can be
defined by the norm

elle. = N

Note that if K is locally compact, and if | ||x is normalised, so is |} ]],..
Remark. It 1s possible to take the formula above as the definition of || ||, ;

one must then prove directly that it is an ultrametric absolute value, which
can ve done by means of “Hensel's lemma™ {cf. van der Waerden (651, §77);
one could also make use of the existence of at least one valuation prolonging

v, which is a general fact (cf. Bourbaki, Alg. comm., Chap. VI). These methods

have the advantage of applying to arbitrary “valuations of rank 17, not
necessarily discrete.

FXERCISES

L. {(Krasner's lemma) Let E/K be a finite Galois extension of a complete field K.
Proiong the valuation of K to E. Let xe E and let {x,,. .., x,} be the set of con-

fugates of x over K, with x = x,. Let ye E be such that ||y — x| < |ly — x|} for
i > 2. Show that x belongs to the field K(3). (Note that if x, is conjugate to x over
K(y) then [}y — x{l = [y — x|, according to cor. 3.)

2. Let K be a complete field, and et f{X) € K{X] be a separable irreducible polynomial
of degree n. Let L/K be the extension of degree n defined by f. Show that for every
polynomial X} of degree n that is close enough to £, h(X) is irreducible and the

extension L,/K defined by h is isomorphic to L. (Apply exer. | to the roots x, of
fand toaroot vy of h)

3. With the hypotheses of prop. 3, show directly that B is an A-module of fnite type
by using exer. & of Bourbaki, 4lg., Chap. VI, §3

4. L.et K be a field complete under a discrete valuation », and fet @ be an algebraic
closure of K.
a) Let S be the set of subextensions E of Q with the property that for every finite

subextension E' of E, e(E'/K) = 1. Show that § has maximal elements. If K, is
maximai, show that v prolongs to a discrete valuation of K, and that the residue

field of K, 1s the algebraic closure of that of K {use prop. 15 of Chap. ).
b} et L/K be a totally ramified extension within 2, and et K,/K be a maximal

extension as in a}. Show that L. and K, are linearly disioint over K. If L/K is

Galots with group G, deduce that the extension L,/K,, where L, = KL, is
(aiors with group G.

§3. Extension and Completion

Theorem 1. Let 1./K be an extension of finite degree n, v a discrete valuation
of K with ring A, and B the integral closure of A in L. Suppose that the A-
module B is finitely generated. Let w, be the different prolongations of v to L,
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and let e,, f; be the corresponding numbers (cf. Chap. 1, §4). Let K and L, be the
completions of X and L. for v and the w,.

(i) The field L, is an extension of K of degree n; = ¢, f;.
(i} The valuation W, is the unique valuation of L, prolonging 8, and

€; == E‘(i—'i/ﬁ-) ana f; = fI E:’fﬁ)-

(i) The canonical homomorphism ¢: L ®y K — L L. is an isomorphism.

Statement (i1) is evident, taking §2 into account, and it implies statement {i}.
On the other hand, the product topology makes ]TLE mio a Hausdorff
topological vector space of dimension n over K ; by the approximation lemma
(Chap. 1, §3), @(L) is dense in []L,, hence also ¢(L ®¢ K). It follows (cf.
Bourbaki, Esp. Vect. Top., Chap. 1, §2, cor. 1 to th. 2) that ¢ is surjective,
hence bijective, since L ®, K and nii are both n-dimensional vector spaces

over K. []
Corollary 1. The fields L, are the composites of the extensions K and L of K.

One knows that those composttes are the quotient fields of the tensor
product L ®, K (cf. Bourbaki, Alg., Chap. VIII, §8).

Corollary 2. If x € L, the characteristic polynomial ¥ of x in L/K is equal to
the product of the characteristic polynomials ¥, of x in the L./K. In particular,
if Tr and N (resp. Tr; and N;) denote the trace and norm in L/K (resp. in
L./K), then

Tr(x) =) Tri(x),  N(x} = [TN;(x).

The polynomal F s also the characteristic polynomial of x in the K-

algebra L ®¢ K. The formula F = [F, follows from the isomorphism (iii),

and the trace and norm formulas are an immediate consequence (cf. Bourbaki,
Alg., Chap. VIII, §12, no. 2}.

Corollary 3. If L./K is separable (in which case the finiteness hypothesis made
on B is automatically satisfied), the L,/K are also.

ForwehaveL, = LK.

Corollary 4, If L/K is Galois with group G, and if D, denotes the decomposi-
tion group of w; in G (cf. Chap. 1, §7), the extension L /K is Galois with Galois
group D,.

Every element of D, extends by continuity to a K-automorphism of L,,
and the corollary results from the fact that D, has order [L,: K.

(The isomorphism¢:L ®¢ K - ni,; merely expresses the decomposition
of L ®y K considered as a “Galois algebra” in the sense of Hasse, in this
case.)
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Let us now go on to the valuation rings themselves:

Proposition 4. With the hypotheses and notation of theorem 1, let B, be the
ring of the valuation w,. The canonical homomorphism

Q?'B@Aﬁ“*nﬁt

is then an isomorphism.

Both sides are free A-modules of rank n. To show that ¢ i1s bijective, it
ﬂufﬁcgﬂ therefore to see that it is when one reduces modulo the maximal ideal
it of A. One gets B/mB for the left side, and HB/H%?*’H for the right {m and 1",
denoting the ideals of v and the w;), whence the result follows at once. (]

Remark. The ring B ®, A is none other than the completion B of B [or the
natural topology on the semi-local ring B. Its decomposition into direct

factors B, is a special case of a generai property of semi-local rings {cf.
Bourbaki, Alg. comm., Chap. 111, §2, no. 12).

EXERCISES

l. Let K be a field on which is defined a discrete valuation v having ring A. Suppose

that every finite purely inseparable extension L/K satisfies the finiteness condition
(r') of Chap. 1, §4, relative to A. Show that R is then a separable extension of K.
{Use th. | of Bourbaki, Alg., Chap, VIIL, §,

2. Keeping the hypotheses and notation of theorem I, except that the hypothesis “B is
of finite type over A” is replaced by its negation, show that (1} and (i1) remain valid.
that ¢ is surjective, and that its kernel is a non-zero nilpotent ideal of L ®,, K

94. Structure of Complete Discrete Valuation
Rings I: Equal Characteristic Case

Let A be a complete discrete valuation ring, with field of fractions K and

residue field K. Let Sbe a system of representatives of K in A, 7 a uniformizer
of A.

Proposition 5. Every element a e A can be written uhiquely as a convergent
series

(%) a= Y s.n" withs, eS.
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Similarly, every element x € K can be written as

X= 3 smn" withs,€S,

A o ™ a

the series requiring only finitely many terms with negative exponents.

The second assertion results from the first by multiplying by a suitable
negative power of . Thus let a € A; by definition of S, there is an Sy € S such
that ¢ — sy = Omod. n; if one writes a = s, + na, and applies the same pro-
cedure to a,, one obtains an.s, e S such that

a= S, + 8,7+ a7

and so on. The series ) 5,n" converges to a and one sees easily that it is unigue.
Conversely, every series of the form Z:s,,ﬂ" Is convergent, since its general
term converges to zero and A is complete, [

EXAMPLE. If A = Z | one may take S to be the set of non-negative ntegers
less than p; one may also—and this is preferable—take S to consist of 0 and
the (p — 1)st roots of unity; ¢f, prop. 8.

Prop. 5 shows that addition and multiplication in A are determined by the
decomposition of s + 5" and ss' into the form (%), In particular, if Sisasub-

field of K (necessarily isomorphic to K), the ring A may be identified with the

ring K[{T]] of formal series with coefficients in K. Evidently this is only
possible if K and K have the same characteristic. Conversely:

Theorem 2. Let A be a complete discrete valuation ring with residue field K.

Suppose that A and K have the same characteristic and that R is perfect.
Then A is isomorphic to K[[T}].

Lin fact, this result remains valid even when K is imperfect: see the end
of this §.]

It all comes down to showing that A contains a system of representatives
which is a field. We will distinguish two cases, depending on the characteristic:

(1} The characteristic of K is .

‘The existence of a field of representatives s then true for local rings that
are far more general than discrete valuation rings. More precisely

Proposition 6. Let A be a local ring that is Hausdorfl and complete for the
topology defined by a decreasing sequence a, = a, o - - - of ideals such that
a, .0, < Q,,,.. Suppose that K = A/a, is a field of characteristic zero. Then
A contains a system of representatives of K which is a field

| Note that the first hypothesis on A is satisfied if A is a Noetherian local
ring, complete in its natural topology as a locat ring. |
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As Z. - A — K is injective, the homomorphism Z — A extends to Q, and
we see that A contains . By Zorn's lemma, there exists a maximal subfield
S of A; if § denotes its image in K, we will show that § = K.

We first show that K is algebraic over §: if not. there would exist an
a& A whose image @ in K is transcendental over 5; the subring S[a] of A
maps into 5{@], hence is isomorphic to S{X], and S[a] ~ a, = 0; one con-
cludes that A contains the field S(a) of rational functions in a, contradicting
the maximality of S.

Thus any 4 € K has a minimal polynomial f(X) over §; since the charac-
teristic 1s 0, 4 is a simple root of f. Let f € S[X7 be the polynomial corre-
sponding to f under the isomorphism § — S. By prop. 7 below, there is an
x € A such that X = A and f(x) = 0, and one can lift [ 1]into A by sending A to
x: by the maximality of S, we must have A€ §, which shows that K =8. O

It remains to prove the following proposition, which is a special case of
“Hensel's lemma™ (Bourbaki, Alg. comm., Chap III}:

Proposition 7. Let A be a local ring that is Hausdorff and complete for the
topology defined by a decreasing sequence a; ™ a, o -+ - of ideals such that
QO © Ay, SUppose that a, is the maximal ideal of A, and let K = AJa,.
Let f(X) be a polynomial with coefficients in A such that the reduced polynomial

/€ KIX] has a simple root 1 in R. Then f has a unique root x in A such that
X = A.

I x 15 such a root, one has f{X) = (X — x)g(X), with d{A) = 0:1f x" 15 also
such a root, substituting x’ for X yields 0 = (X' — x)g(x"). As g{x') has d(A)
as its reduction mod. a,, g{x') is invertible, hence x = x’. which Proves
untqueness of the solution.

To prove existence, we use Newton's approximation method. Let X, €A
be such that X, = 1; one has f(x,) = Omod. a,.

Suppose we have found x, e A such that ¥, = A, f(x,) = Omod. a,: let
us show that one can find x,,, €A, x,,, = x,mod.a, and f{x,, )= 0
mod. a,, . That will prove the lemma by setting x = limx,. To find x, ., ,,
write x, . ; = x, + h, with h € a,, and apply Taylor’s formula:

Hxyo) = flx) + b f'(x,) + %y, withyeA.
Onehash’.yea,.a, < a,,,,and it all comes down to finding h € a, such that
ﬁf[xn) +- hffr(xn) = (mod. LT

But since A 1s a simple root of f, one has 7(1) s 0, and f'(x,) is invertible in A
as f{x,) € a,, the equation above can be solved. [

Theorem 2 is therefore proved in characteristic zero.

(1) The fields K and K have characteristic p # 0.

e e e e O far e I
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Here again, we are going to obtain a result valid for much more general
rings.

We will say that a ring A of characteristic p is perfect if the endomorphism
x — xP of A 18 an auwtomorphism {1.e., 18 surjective). Every element x € A then
has a unique pth root, denoted x* . When A is a field, this is the usual
definition of a perfect field.

Proposition 8. Let A be a ring that is Hausdorff and complete for the topology

defined by a decreasing sequence a; > a, = - - - of ideals such that a,.q,
a,, 4 .- Assume that the residue ring K = AJ/a, is a perfect ring of characteristic
p. Then:

{1} There exists one and only one system of representatives {: K — A which
commutes with pth powers: f(iF) = ().
(i) In order that a € A belong to S = f(K), it is necessary and sufficient that
a be a p"th power for alln =2 0.
{(111) This system of representatives is multiplicative, i.e., one has f(Au) =
Y. fud forall 3, ne K.

(w) If A has characteristic p, this system of representatives is additive, i.e.,

flA+ @)= flA) + flp).

Let A e K; for all n = 0, denote by L, the inverse image of 7 " in A, and
by U, the set of all x”, x e L,; the U, are contained in the residue class L,
of A, and they form a decreasing sequence. We will show that they form a
Cauchy fiter base in A. Indeed, ifa = x"" and b = y*", one shows by induction
on n that a = bmod. g, , ;, making use of the following lemma:

Lemma L. If a= b mod.q,, then a® = b* mod.a_,,.

This lemma results from the binomial formula, taking into account that
pea,whence pa, < a,.,. L]

Since the U, form a Cauchy filter base and A is complete, one can set
J(A) = limU,. This defines a system of representatives, If A = y”, the pth
powet operation in A maps U, (p) into U, , (1), so passing to the limit shows
thatit maps f(y)on f(4), and f does commute with the pth power. Conversely,
if /7 1s a system of representatives having this property, (1) is a p"th power
for all n, hence {4} € U {2) for all n; as the U, form a Cauchy filter base, this
implies the uniqueness of f” as well as the fact that the intersection of the U,
is non-empty and equal to f(4). This establishes (i) and (ii).

As for (1), note that if x and y are p"th powers for all n, so is xy; the same
reasoning holds for (iv), taking into account that {x 4 y}" = x™ + y" if A
has characteristic p. [

The system of representatives of prop. 8 is called the multiplicative system
of representatives, because of property (iii).
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T'he application of prop. 8 to theorem 2 is immediate: if B is a perfect
field, and if A has characteristic p, properties (i1} and (iv) show that S = f(K)
15 a field. One sees also that it is unigue. | When K is imperfect, one can stil}
show that there exists a field § of representatives, but this field is no longer
unigue in generai: one can lift arbitrarily the elements of a “p-base” of K.

For more details on these questions and those treated in the following §, see
Cohen | 18] and Roquette [52].]

EXERCISE

Let k be a perfect field of characteristic p. Show that every finite purely inseparable

extension of k({T})) is isomorphic to an extension of the form k({19 '}), wherk g1sa
power of p.

33. St'mcture of Complete Discrete Valuation
Rings II: Unequal Characteristic Case

Let A be a complete discrete valuation ring, with field of fractions K and
residue field K. Suppose that the characteristics of A and K are different,
L€, that A has characteristic zero and K has characteristic p # 0. One can
then identify Z with a subring of A, and p € Z with an element of A. Since p
goes to zero in K, one has v(p) > 1, where v is the discrete valuation attached
to A. The integer e = v(p) is called the absolute ramification index of A.
Observe that the injection Z — A extends by continuity to an injection of
the ring Z, of p-adic integers into A ; when the residue field K is a finite field
with g = p/ elements, prop. 5 shows that A is a free Z -module of rank
n = ¢f, and K is an extension of degree n of the p-adic field Q,; the integer
e can then be interpreted as the ramification index of the extension K/Q.,
which justifies the terminology.

Returning to the general case, we will say that A is absolutely unramified

ife = 1, i.e, if p is a local uniformizer of A. It is for such rings that one has a
structure theorem:

Theorem 3. For every perfect field k of characteristic p, there exists a complete

discrete valuation ring and onty one {up to unigue isomorphism} which is
absolutely unramified and has k as its residue freld.

In ‘fﬁhat follows, this ring will be denoted Wik). It is “unique” in the
f{}l.}mwu?g sense: if Ay and A, satisfy the conditions of the theorem, there is a
unique 1somorphism g:A, — A, which makes commutative the diagram:

A5 A,

Eku”
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In the ramified case, one has:

Theorem 4. Let A be a complete discrete valuation ring of characteristic un-
equal to that of its residue field k. Let ¢ be its absolute ramification index.

Then there exists a unique homomorphism of W(k) into A which makes commu-

tative the diagram:

Wi{k} - A
Ve
>k
This homomorphism is fﬂjﬂﬂﬁué, and A is a free W(k)-module of rank equal to e.

| By applying prop. 18 of Chap. I, one sees that A is obtained by adjoining
to W(k} an element = satisfying an “Eisenstein equation™:

a, € W{k),

with the g, being divisible by p and a, not being divisible by p*. Conversely,
according to prop. 17 of Chap. 1, such an equation does define a totally
ramified extension of W(k) of degree e.]

nf +amtt 4 da, =0,

We are going to prove ths. 3 and 4 by a method due to Lazard {1421, [43])
Here again we will obtain results valid for rings more general than discrete
valuation rings: the rings provided with a filtration a, > a, o - - -satisfying
the hypotheses of prop. 8; such a ring will be called a p-ring. We will call a
p-ring A strict {(Lazard says “p-adic”, but this terminology could lead to
confusion) if the filtration a, provided is its p-adic filtration a, = p"A and if D
1s not a zero-divisor in A, A p-ring always has a system of multiplicative repre-
sentatives f:A/a; — A (cf. prop. 8), and for every sequence ay, ..., a,, ...,
of elements of A/a,, the series

i}

(%%} Z flo). pf

i=0
converges to an element a € A. When A is strict, one sees by arguing as in
prop. 3, that every element a € A can be uniquely expressed in the form of a
series of type (»#); the o, which occur in this series will be called the co-
ordinates of a.

EXAMPLE OF A STRICT p-RING. Let X, be a family of indeterminates, and let
> be the ring of p~ “-polynomials in the X, with integer coefficients, ie.,
the union of the rings Z{ X2 "] for all n. If one provides § with the p-adic
filtration { p"%,,aﬂ and completes it, one obtains a strict p-ring that will be
denoted § = Z[X?"“]. The residue ring 8/pS is the ring F,[X2™=1; it is per-
tect of characteristic p. Note that the X, are multiplicative representatives in
§ since they admit p"th roots for all n.

Let us apply this to the case in which the indeterminates are X, ...,
Xos oo and Yo, ..., Y,,...; in the ring Z{XF~ =, YP~ <7 thus obtained,
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consider the two elements

x= Y Xyp' and y= Z Y.p'.
i = [} =0

It * denotes one of the operations +,x,-, the composite x * y is an
element of the ring, therefore can be written in a unique way in the form:

x* y= ) fQN.p, with Qf e F XY™}
puy

FThe QF are p~ "-polynomials with coefficients in the prime field F,; one can
speak of the value of such a polynomial when elements of a perfect ring k of

characteristic p are substituted for the indeterminates. We will see that these
functions allow us to determine the structure of a strict p-ring. More precisely:

Proposition 9. Let A be a p-ring with residue ring k and let {1k - A be the

system of multiplicative representatives in A. Let {a,} and { B;} be two sequences
of elements of k. Then

One sees immediately that there is a homomorphism ¢ of Z] XP ™, YF’ ]
into A which maps X; to f{x;) and Y, to f(8). This homomorphism extends by
continuity to the completion S = Z{X? ", Y?" "], and maps x = Y2, X,p
ontoa =) =, floy). p', and similarly for y. If one passes to the residue rIngs,
0 defines a homomorphism 8:F [XP™*,Y?" "] - k which maps the X, onto
the o; and the Y; onto the B;. Also, f commutes with the multiplicative

I‘Epl’ﬂﬁﬂﬂﬂ:tﬁ'ﬁ’ﬂﬂ (that is a general property of p-rings, which results from the
characterization of the multiplicative representatives as p"th powers for all n

and from the fact that 4 is a homomorphism). Then:

> S0+ Y (B . P = 0(x) * 6(3) = O(x * y)
= Y 0(f(Q¥)).p'
= ) f(O(Q¥)).p'

which proves the proposition, since 8(Q*) is none other than y,. [

Proposition 10. Let A and A’ be two p-rings with residue rings k and k', and
suppose that A is strict. For every homomorphism ¢k - k', there exists a
unique homomorphism g: A — A’ making commutative the diagram:

ASA
I
k5 k.

R e T

A e e S A A

.I. I. L] L]

" Ml
I..
L]

. am . = = m_m__m_=m " _ . " . = _ = " " == == . . " - am . . . an_ " . - " - "
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We have already remarked that every homomorphism of A into A’ com-
muies with muiltiplicative representatives. If ae A 1s an element with co-
ordinates {a;}, we must have:

g{a) = f;ﬂ gl falo)).p' = E;ﬂ falo(ad). P,

which proves the uniqueness of g. As for its existence, we take the preceding
formula as its definition, and prop. 9 shows that it is indeed a ring homo-
morphism. [

Corollary. Two strict p-rings having the same residue ring are canonically
isomorphic.

fLemma 2. Let @o:k -+ k' be a surjective homomorphism, the rings k and k'
being perfect of characteristic p. If there exists a strict p-ring A with residue
ring K, then there also exists a strict p-ring A" with residue ring k'

We define A’ as a quotient of A. If ¢ and b are two elements of A with
coordinates o, f; in k, we write a = b if ¢(a;) = (8, for ali i. If g = @’ and
b= b, prop. 9 shows that a« b = a’ » b, and the quotient A’ of A by the
equivalence relation just defined is a ring. If x ¢ A’ comes from an element
ae A with coordinates «;, the &, = ¢(a;) depend only on x and are the

coordinates of x; every sequence (£,,&,,...) of elements of k' forms the
coordinates of a uniquely determined element x’ € A’. Multiplication by p
in A’ transforms the element with coordinates (£,, &,, . . .) into the one with
coordinates (0, ,, &, . . . ). It follows that p is not a zero-divisor in A’ and that
Mp"A" = 0; the p-adic topology of A’ is thus Hausdorfl; as A’ is a quotient of
A, A" 1s complete. Finally, one checks that the map which sends x' to its first
coordinate ¢, induces an isomorphism of A’/pA’ onto k'; this proves that
A’ 1s a strict p-ring with residue ring k', [

Theorem 5. For every perfect ring k of characteristic p, there exists a unigue
strict p-ring W(k) with residue ring k. |
Uniqueness has already been proved, As for existence: if k has the form
F X! 7], for an arbitrary family of indeterminates X_, one takes W(k} =
Z{X?" "] as above. The general case can be deduced from that by applying
lemma 2 and remarking that every perfect ring is a quotient of a ring of type

F 1X: 7]l O

Proposttion 10 shows that W(k) is a functor of k. More precisely, one has
an 1isomorphism Homi(k, k') = Hom(W(k), W(k")).

Proor OF THEOREMS 3 AND 4, Theorem 3 is a special case of theorem 5, once
one remarks that a complete discrete valnation ring, absolutely unramified,
with perfect residue field k, 1s nothing other than a strict p-ring with residue



40 1} Completion

ring k. As for theorem 4, the existence and uniqueness of the homomorphism
g:W{k) — A results from prop. 10 by remarking that A is a p-ring. The
homomorphism g is injective because A has characteristic zero; finally, if n
18 a uniformizer of A, an argument similar to the one in the proof of prop. 5
shows that every element of A can be put uniquely into the form;

Q == Z Z f(ﬁij)-ﬂjﬁfa X € k,

whence the fact that {I,x, ..., n°" '} is a basis of A considered as 2 W(k3-
module (this also follows from prop. 18 of Chap. I). [

2
i

Remark. ‘The functions QF that define the operations of W{k) involve the
p"th roots of the X, and Y. If one wishes to have polynomials in the usual

sense, it 1s necessary to re-define the coordinates o; of a by;

a= ) fla)” p"
i =0

One is then led to introduce the “Witt vectors” which we study in the next &.

6. Witt Vectors

Let p be a prime number, (X,, .. .y Aps - . .) 8 sequence of Indeterminates,
and consider the following polynomials (called “Witt polynomials”}:

W{}:x{}s
Wi — Xﬂ + pxh

Wos ) pXE T =X+ pX2" ' 4+ 4 pX
. =)

It Z' denotes the ring Z[p~'], it is clear that the X, can be expressed as
polynomials with respect to the W, with coefficients in 7’

XﬂﬁWﬂ, Xiﬁ MIWI “"""wg,,'ﬂtﬂ

Let{(Yy,...,Y,, ...) be another sequence of indeterminates.

Theorem 6. For every @ € Z[X, Y], there exists a unique sequence (@, . . .,
Pus - - -5 ) of elements of Z{ Xy, ..., X, .. s Y0, ..., Y., .. .| such that:

Woil@o, oo s @p ) = B(W,(Xo, .. ), W.(Ye,...)), n=01.. .

The existence and uniqueness of the ¢, are obvious in the ring of poly-
nomiais with coefficients in Z'; thus it all comes down to showing that the
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coefiicients of the ¢, have no denominators, i.e.. are elements of Z. This
can be proved directly (cf. Witt [ 731). But it is more convenient to follow
Lazard (loc. cit) in deducing it from the results of the preceding §:

We work once more in the ring § = Z[XP™ ™, Y?™ ™1, and set:

X
x'= ) X¢''p
i =}

% i

¢ Z YF"’ :

R i V.
iz )

;

Since P(x', '} is an element of S, one can write it uniquely in the form;

O, ¥)y= Y fUh ', e F[XP 7 YPT)
=Y

Denote by ; a representative of i, in the ring §. We will prove that the o,
have integer coefficients and that they are congruent mod. p to the .
First of all, the following congruence is obvious:

¢'(Z X ph Y Yfip") = ) S(X,Y))? 'p'mod.pm+t
f i« [ % h

Replacing X; and Y, by X7 and Y?" (which defines an automorphism of S},
we get;

P(WAX)(WLY)) = 3 fddX7, Y7 'pmod. p* L.
EsH

But one has ¢, (X", Y?") = §.{X, YV since the coefficients of 7, belong to
the field F,. As f commutes with the pth power, one sees that the above
congruence can be written:

wn{‘;ﬂ{}w LRI {Pn) = Z f('zf)p“ﬂpi ITI'[}d, p"+ i'

f M

But f(,) = y; mod. p, whence /()" = 2" "mod. p"~i* ! (cf §3, lemma 1)
Thus:
wn{'[;ﬂﬂ# v ‘{'pn) == Wn{%{’m tror s lr[’n} mod. pn+ i'

Reasoning by induction on », one may assume that ¢, has integer coefficients
tor i < n, and congruent mod. p to ¥, (or, changing ¥, if need be, one may
even assume that ¢; = ; for I < n). The preceding congruence then yields

P"@, = plf,mod. p" T
'Thus ¢, has integer coefficients and ¢, = ¢ mod.p. [

Wenowdenote by Sy, ..., S, ... ,(resp. Py, ..., P,,...)the polynomials
@gs -+ - P, . . associated by th. 6 with the polynomial

DX, Y) =X + Y {resp. H#{X, Y} = X.Y).
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If A is an arbitrary commutative ring, and f a ={a,,...,4,,...), b=
(ho,. ... b, ...} are elements of A (“Witt vectors with coeflicients in A”),
set :

a + b= (Ssab)...,S5.(a,b),...)
a.b=(Poah) . . . Plab).. )

Theorem 7. The laws of composition defined abore make A" into a commuta-
tive unitary ring (called the ring of Witt vectors with coefficients in A and
denoted WEAY .

Note first that if one assigns to a Witt vector a ={a,, ..., d,,...] the

clement of the product ring A™ having the W (a) as coordinates, one gets
a homomorphism

W, W(A) - AN

by the very definition of the polynomials S and P.

The homomorphism W is an 1somorphism if p is invertible in A, and in
this case one sees that W({A) s indeed a commutative ring with unit element
P=1(1,0,...,0,...) But if the theorem is proved for one ring A, it is also
valid for every subring and every quotient ring. As it is true for every poly-
nomial ring Z’[T,1, it holds for Z[T,], hence for all rings. [

Examreres., We have

Sala, b) = a, + by, Sa, by =a, + b, + e

Pola, b) = a, . by, P.(a,b) = bfa, + byal 4+ pa,b,.

Instead of considering vectors of infinite length, we can restrict ourselves
to the consideration of vectors (a,, ..., a,.} with n components, As the
polynomials ¢, only involve variables of index < i, one concludes that these
vectors form a ring W, {A), quotient of W{A), that one calls the ring of Witt
vectors of tength n. One has W (A) = A. The ning W{A) 1s the projective limit
of the rings W, (A)as n-s + 0.

The Maps Vand »

Ha=A{a,, ..., aq, ...}1s a Witt vector, one defines the vector Va by:
Va=(Q,ap,....0,_¢, ...} {“shift™).

The map V:W(A) - W(A) 15 additive: for it suffices to verify this when p
15 invertible in A, and in that case the homomorphism

W, : W(A) - AP

transforms V into the map which sends {wq, wy, ...} 10 (0, pw,, . . . L

e P e

__.-.-.'_::" RN .
(s rh .
e e L i R W
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By passage to the quotient, one deduces from V an additive map of
W {(A) into W, ,(A). There are exact sequences

0 ~+ W (A)—— W, (A} > W (A) 0.

Hxe A; set
Fx}=(x,0,...,0,...)

This defines a map r: A — W(A). When p is invertible in A, W transforms r
into the mapping that sends x to {x,x?, ..., x",...). One deduces by the
same reasoning as above the formuias:

r{xy} = r{x).r{ v}, X, ye A
(ﬂﬂﬁﬂii“*“}m Z v“(r(ﬂﬂ}]! HEEA
#=

r(xX) . (do, .. ) = (Xay, XPay, ..., X" a,, ...} X, a; € A,

Theorem 8. If k is a perfect ring of characteristic p, W(k) is a strict p-ring
with residue ring K.

Let H be the strict p-ring with residue ring k, and let f:k — H be the
multiplicative system of representatives of H. Associate to a Witt vector
a=1{aq,...,q,...)the element 8{a) € H defined by

By =¥ fla)" 'p'
Py

The formulas
O(a + b} = H(a) + G{b)},

are valid when H = §, a = (X,, .. .), b = (Y, . . .}, as was seen in the course
of the proofof th. 6. It follows easily that they are valid without any restriction
on a and b, te., that § 15 a ring homomorphism. As & 15 bijective, it 15 an
isomorphism of W{AYonto H. [ |

f(a.b) = O(a). H{b)

Coroliary. W(F,) = Z  and W (F )} = Z/p"Z.
;

Indeed, the ring Z, of p-adic integers is a strict p-ring with residue ring
the field F,. [

The Map F

Suppose that k is a ring of characteristic p {not necessarily perfect). The

map x -+ x” is a homomorphism of k¥ into k. Therefore 1t defines a map
F: W(k) - W(k) given by the formula

Flag,ay, ...} = (ah,df, .. ),

and this 1s a ring homomorphism.
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Furthermore, one has the identity VF = p = FV: for it suffices to check .

this when k is perfect; in that case, applying the isomorphism @ above, o
one finds:

OEVa) = 3 fla)™"'p™* " = pf(a) = O(pa),

which gives the identity.

| Remark. In Grothendieck’s language of schemes, the preceding construc-
tions define, for each n, a ring scheme W, affine and of finite type over

Spec(Z). For any ring A, the ring W, (A} 18 just the set of points of W_ with
vaiues in A, n

;
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Discriminant and Different
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Throughout this chapter, A denotes a Dedekind domain, K its field of
fractions.

-..'.._.,.,-_..-.-_';E-,._:_-:..,.,.-:..E:... TR .
.I.:III..II:..;:-::.:. . L] .I;I.f.ﬁﬁ..lflweﬁﬁ.:..l

§1. Lattices

Let V be a imte dimensional vector space over K. A lattice of V (with respect
to A) 15 a sub-A-module X of V that is finitely generated and spans V. If A
is principal, this means that X is a free A-module of rank [V:K1; one can
often reduce to this case by localisation, ie., by replacing A with A, and X
with A X = X,,.

Let X, and X, be two latticesof V; if X, <= X, then X,/X, is a module of
;;_ij: finite length, and its invariant y{X,/X,), which is a non-zero ideal of A, was
. defined in Chap. 1, §5. We wish to extend this definition to get an invariant
| for anf? pair of lattices:

Lemmal. If X, and X, are lattices of V, then the fractional ideal
WX, /X3) ¥(X,/X3) 7, defined for every lattice X, < X, n X,, depends only
j {H Xl {1 Td X 7 .

Indeed, if one sets X, = X, n X,, the exact sequence
0— X4/ X3 X /X3 X/X4 =0
shows that ¥{X,/X3) = y(Xs/X3). x(X;/X4), and similariy
UK/ R3) = YR/ X3} x{XKy/ Xy}
47
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Hence

X /X3). XX/ X3 = WX/ Xe) x5/ X))

We may therefore associate to X, and X » the non-zero fractional ideal

X{Xi‘!xz} = }{{XI/’X;;}.;{(XE,R'XE,)*I for Xy < Xy N L 6%

Proposition 1. The following formiudas are valid-

{a) Z{XivXE}*.}:(X"E?XBI-IIX&XI} e
(b} 7(X . X,). 7(X,,X,) = 1.

| (We-denote by 1 the unit element of the group of non-zero fractional
ideals of A, ie., the ideal A

F{}rmuizli Fa} is proved by choosing a lattice X contained in Xy X, Xy,
and by writing yiA, X} in the form XX/ X}, x(X,;/X)" . Formulas {b) and
(c} are trivial, ™

Proposition 2. If v is q K-automorphism of V and X a lattice of 'V, then
XX, uX) = (det(un)) (principal ideal generated by det{u) ).
(The symbol uX denotes the image of X under u.)

By localising and multiplying « by a constant, we are reduced to the case

where X = A” and uX A ; the proposition follows in that case from lemma
3ofChap. 1,85 [

This result suggests the following direct definition of the deal y(X, X'):

Let n={V:K] and let W= A"V, it is a one dimensional vector space
over K. To each lattice X of V let us associate Xw = /\"X, which may be
identified with a lattice of W as [ W: K] = 1,if D and D' are two lattices of
W, there is a unique non-zero fractional ideal a of K such that D' = aD
(namely, (D, D'})). Applying this to D = Aws D' = X, we obtain an ideal
which is none other than 7(A, X'): this follows from localisation and applying
proposition 2.

s2. Discriminant of a Lattice with Respect
to a Bilinear Form

We now suppose that the vector space V is provided with a non-degenerate
bilinear form T(x, v).

Let n = [V:K]. It is known that T extends to a non-degenerate bilinear
form (again denoted by T) on the exterior algebra of V, and, in particular,

§2. Discriminant of a Lattice with Respect to a Bilinear Form 449

on W = A"V, This form induces an isomorphism
T: W ®H W S 4 K

Let X be a lattice of V, and let X, be its nth exterior power, identified

with a lattice of W. The image of Xy, ®, Xy under T is a non-zero fractional
ideal of K, which is called the discriminant of X with respect to T: we denote
it by Dy ¢ or simply dy when that does not lead to confusion.

Remark. The above definition shows that by is isomorphic as an A-module
o Xw ®s Xw; its ideal class*tmodulo the principal ideals) is thus a sguare.

Proposition 3. If X is a free A-module with basis S = {e,, ... e, then Dy 4
is the principal ideal generated by the discriminant D{(S) (in the sense ol
Bourbaki, Alg., Chap. IX, §2).

| Recall that D(S) = det{T{(e;, ¢))).]

Indeed, it 1s known that in this case X, is a free A-module with basis ),
where e = ¢; A - - A ¢,, and that Tie, ¢) = DHS), of. Bourbaki, loc, ¢it. The
image of Xy ®, Xy tn K is thus generated by D((S). [

Remark. We could have taken the formula by ¢ = (det(T{e;,¢}}) as the
definition of Dy 1, at least in the local case.

Proposition 4. Ler X be a lattice of V, and let X¥ be the set of all ve V such
that T(x, y) € A for all xe V. Then X¥ is a lattice of V and

b?‘{.T — }f{x% X }

Localising reduces us to the case where X is free with basis fe;!: then X*
i free with the basis {e}} defined by the relations

Tle. ef) = 9y; {cf Bourbaki, loc. cit., p. 22).

If one writes ¢; = ) x;;e¥, prop. 2 shows that #{X% X) = (det{x;;}). As
1(e;, ¢;) = x4, the desired formula is obtained. [

1The next proposition shows how b, , varies with X

Proposition 5, If X and X' are luttices of V, then
Dy r = Dy . (X, X

Leta = (X, X'). We saw in §1 that Xy, = a. Xy in W the image of Xy ® Xy
under the isomorphism T: W ® W — K is therefore equal to the product of
a’ by the image of Xy ® Xw. {7

Coroliary. [f X' < X, then dy. ;= Dy 0%, where a is an ideal of A, a=1if
and onfy if X' = X,

Take a = y(X/X'}; it is clear that a = | ifand only if X' = X,
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93. Discriminant and Different of a Separable
Extension

let L. be a finite separable extension of the field K. It is known that the
homomorphism

Tr:L - K

1s surjective and that the bilinear form Tr{xy) is non-degenerate on L. Thus
the definitions and results of the preceding § are applicable to this form; in
particular, the discriminant of a lattice of L {with respect to A} is defined:
it this lattice is a free A-module with basis {¢,}], its discriminant is the ideal
generated by det{Tr(ee))), and it is known (Bourbaki, Alg.,, Chap. V, §10,
prop. 12) that

det(Tr(ee;)) = (det{a{e;)) ),

where o runs through the set of K-monomorphisms of L into an algebraic
closure of K.

in particular, this applies to the integral closure B of A in L, for prop. 8 of
Chapter I shows that B is a lattice of L. The corresponding discriminant will
be denoted Up/a, O sSOMetimes by x (When no confusion about A is possible).

Let B* be the set of all y & L such that Tr(xy) e A for all x € B; B* is the
lattice denoted B¥ in the preceding §. It is called the codifferent {or “inverse
different”} of B over A. It is a sub-B-module of L; one sees at once that it is
the largest sub-B-module E of L such that Tr(E) < A. In particular, as
Tr{B) < A, one has B « B* The codifferent is thus a fractional ideal of L
with respect to B; its inverse is called the different of B over A (or of the
extension L/K}, and is denoted Dya of Dy ¢ it is a non-zero ideal of B. The
different is related to the discriminant by the next proposition.

Proposition 6. 0y, = y,(B*/B) = N x(DgAl

The equality by, = y.(B*/B) follows from prop. 4. On the other hand,
1t B*/B) = Dy, and we know that y, = N,  © yg, cf. Chap. 1, §5, prop. 12,

L]

Corollary. The discriminant dy,, is contained in A.

Remark. The preceding proposition shows that the different determines
the discriminant; the converse is not true in general (except, however, when

there is only one prime ideal of B over each prime ideal of A, which is the
case when one completes),

Proposition 7. Let a {resp. b) be a fractional ideal of K (resp. L) relative to A
(resp. B). The following two properties are equivalent:

(i) Tr(b) < a.
(i) b a. Dk,

R e A O R R R s,

84. FElementary Properties of the Different and Discriminant 51

The case a = 0 is trivial. When a # 0, the proposition follows from the

cquivalences:

Trb)ca<>a” 'Tr(b)c A <= Tr{a"'b) = A
sa b Dghiewoboca Dya O

It is clear that the property stated in prop. 7 characterizes the difierent.
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