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Pretace to the Second Edition

In preparing this new edition I have tried to keep the changes to a mini-
mum, on the principle that one should not meddle with a relatively success-
ful text. Thus the general form of the book remains the same. Naturally I
have taken the opportunity to correct the errors of which I was aware. Also
the text has been updated at various points, some proofs have been im-
proved, and lastly about thirty additional exercises are included.

There are three main additions to the book. In the chapter on group
extensions an exposition of Schreier’s concrete approach via factor sets 1s
given before the introduction of covering groups. This seemed to be desir-
able on pedagogical grounds. Then S. Thomas’s elegant proof of the auto-
morphism tower theorem 1s included in the section on complete groups.
Finally an elementary counterexample to the Burnside problem due to N.D.
Gupta has been added 1n the chapter on finiteness properties.

I am happy to have this opportunity to thank the many friends and col-
leagues who wrote to me about the first edition with comments, suggestions
and lists of errors. Their etforts have surely led to an improvement 1n the
text. In particular I thank J.C. Beidleman, F.B. Cannonito, H. Heineken,
L.C. Kappe, W. Mohres, R. Schmidt, H. Snevily, B.A.F. Wehriritz, and
J. Wiegold. My thanks are due to Yu Fen Wu for assistance with the
proofreading. I also thank Tom von Foerster of Springer-Verlag for making
this new edition possible, and for his assistance throughout the project.

University of Illinois at Urbana-Champaign, Derek Robinson
Urbana, Illinois
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Pretface to the First Edition

“A group 1s defined by means of the laws of combinations of its symbols,”
according to a celebrated dictum of Cayley. And this 1s probably still as
good a one-line explanation as any. The concept of a group 1s surely one
of the central ideas of mathematics. Certainly there are few branches of that
science 1in which groups are not employed implicitly or explicitly. Nor is the
use of groups confined to pure mathematics. Quantum theory, molecular
and atomic structure, and crystallography are just a few of the areas of
science 1n which the idea of a group as a measure of symmetry has played
an 1important part.

The theory of groups is the oldest branch of modern algebra. Its origins
are to be found 1n the work of Joseph Louis Lagrange (1736—1813), Paulo
Ruffini (1765—1822), and Evariste Galois (1811-1832) on the theory of alge-
braic equations. Their groups consisted of permutations of the variables or
of the roots of polynomials, and indeed for much of the nineteenth century
all groups were finite permutation groups. Nevertheless many of the funda-
mental 1deas of group theory were introduced by these early workers and
their successors, Augustin Louis Cauchy (1789-1857), Ludwig Sylow (1832—
1918), Camille Jordan (1838—-1922) among others.

The concept of an abstract group 1s clearly recognizable in the work of
Arthur Cayley (1821-1895), but it did not really win widespread acceptance
until Walther von Dyck (1856-1934) introduced presentations of groups.

The stimulus to study infinite groups came from geometry and topology,

the influence of Felix Klein (1849-1925), Sophus Lie (1842—-1899), Henri
Poincare (1854-1912), and Max Dehn (1878-1952) being paramount.
Thereafter the standard of infinite group theory was borne almost single-
handed by Otto JuljeviC Schmidt (1891-1956) until the establishment of the
Russian school headed by Alexander Gennadievi¢c Kuros (1908—1971).

Viil



Preface to the First Edition 1X

In the meantime the first great age of finite group theory had reached its
climax in the period immediately before the First World War with the work
of Georg Frobenius (1849-1917), Willhlam Burnside (1852-1927), and Issai
Schur (1875-1936). After 1928, decisive new contributions were made by
Philip Hall (1904-1982), Helmut Wielandt, and, in the field of group repre-
sentations, Richard Dagobert Brauer (1901-1977). The subsequent intense
interest 1n the classification of finite simple groups 1s very largely the legacy
of their work.

This book 1s intended as an introduction to the general theory of groups.
Its aim 1s to make the reader aware of some of the main accomplishments of
group theory, while at the same time providing a reasonable coverage of
basic material. The book 1s addressed primarily to the student who wishes
to learn the subject, but it 1s hoped that 1t will also prove useful to special-
1sts 1in other areas as a work of reference.

An attempt has been made to strike a balance between the different
branches of group theory, abelian groups, finite groups, infinite groups, and
to stress the unity of the subject. In choice of material I have been guided
by 1ts inherent interest, accessibility, and connections with other topics. No
book of this type can be comprehensive, but I hope 1t will serve as an intro-
duction to the several excellent research level texts now 1n print.

The reader 1s expected to have at least the knowledge and maturity of
a graduate student who has completed the first year of study at a North
American university or of a first year research student in the United
Kingdom. He or she should be familiar with the more elementary facts
about rings, fields, and modules, possess a sound knowledge of linear alge-
bra, and be able to use Zorn’s Lemma and transfinite induction. However,
no knowledge of homological algebra i1s assumed: those homological
methods required 1n the study of group extensions are introduced as they
become necessary. This said, the theory of groups 1s developed from scratch.
Many readers may therefore wish to skip certain sections of Chapters 1 and
2 or to regard them as a review.

A word about the exercises, of which there are some 650. They are to be
found at the end of each section and must be regarded as an integral part of
the text. Anyone who aspires to master the material should set out to solve
as many exercises as possible. They vary from routine tests of comprehen-
sion of definitions and theorems to more challenging problems, some theo-
rems 1n their own right. Exercises marked with an asterisk are referred to at
some subsequent point in the text.

Notation i1s by-and-large standard, and an attempt has been made to
keep 1t to a minimum. At the risk of some unpopularity, I have chosen to
write all functions on the right. A list of commonly used symbols 1s placed
at the beginning of the book.

While engaged on this project I enjoyed the hospitality and benefited
from the assistance of several institutions: the University of Illinois at
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Urbana-Champaign, the University of Warwick, Notre Dame University,
and the University of Freiburg. To all of these and to the National Science
Foundation I express my gratitude. I am grateful to my friends John Rose
and Ralph Strebel who read several chapters and made valuable comments
on them. It has been a pleasure to cooperate with Springer-Verlag in this
venture and I thank them for their unfailing courtesy and patience.
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Notation

G, H,...
X, 9, ...
o, B, 7, ...

X, V, Z, ...

xXo Or x°

[x, y]
H~G
H<G H<G

H< G
Hsn G
H H, --H,
(XA eN)

(X|R)

d(G)
r,(G), ro(G), r(G)

Sets, groups, rings, etc.
Classes of groups
Functions

Elements of a set

Image of x under «

y Xy
X 'y ixy
H 1s 1isomorphic with G

H 1s a subgroup, a proper subgroup of the
group G.

H 1s a normal subgroup of G
H 1s a subnormal subgroup of G
Product of subsets of a group

Subgroup generated by subsets X, of a
group

Group presented by generators X and re-
lators R

Minimum number of generators of G

p-rank, torsion-free rank, (Prufer) rank of
G

XV



XVl
G", nG
G[n]

N

|G : H

| x|

Ce(H), Ng(H)
HY H,

Aut G, Inn G

Out G

Hol G

Homg(G, H)

End, G

H x-xH H ® -®H,
Dr H, }

Ae A

Hx NN x H
Cr H,

AEA

H~ K
H «--xH, Fr H,

AeEA

H® K

G =[G, G]
Gab

G@

.G GG

(G
Fit G
Frat G

Notation

Subgroup generated by all g" or ng where
geG

Subgroup generated by all g € G such that
g"=1orng=0.

Cardinality of the set S

Index of the subgroup H in the group G
Order of the group element x
Centralizer, normalizer of H in G
Normal closure, core of H in G

Automorphism group, Inner automor-
phism group of G

Aut G/Inn G, outer automorphism group
of G

Holomorph of G
Set of Q-homomorphisms from G to H

Set of Q-endomorphisms of G

Set product, direct products, direct sums

Semidirect products

Cartesian product, Cartesian sum

Wreath product

Free products

Tensor product

Derived subgroup of a group G
G/G’

Term of the derived series of G

Terms of the lower central series, the
upper central series of G

Center of G
Fitting subgroup of G
Frattini subgroup of G
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M(G)
0,(G)
[(G)
St(X), X¢
Sym X

S,, A

n> n

Q2n
7, Q, R, C

GL(n, R), SL(n, R)
PGL(n, R), PSL(n, R)

T'(n, R), U(n, R)
B(n, e)

G .G
M7, y
max, min

E..

tJ

X Vil

Schur multiplicator of G
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n-length of G

Stabilizer of X 1n G

Symmetric group on X

Symmetric, alternating groups of degree n
Dihedral group of order n

Generalized quaternion group of order 2"

Sets of 1ntegers, rational numbers, real
numbers, complex numbers

Z/nZ
Group of units of a ring R with i1dentity

Group ring of a group G over a ring R
with 1dentity element

Augmentation ideals

Group of nonsingular linear transforma-
tions of a vector space V

General linear and special linear groups

Projective general linear and projective
special linear groups

Groups of triangular, unitriangular matri-
ces

Free Burnside group with n generators
and exponent e

Induced module, induced character
Maximal, minimal conditions

Matrix with (i, j) entry 1 and other en-
tries 0.






CHAPTER 1

Fundamental Concepts of Group Theory

In this first chapter we introduce the basic concepts of group theory, devel-
oping fairly rapidly the elementary properties that will be famihiar to most
readers.

1.1. Binary Operations, Semigroups, and Groups

A binary operation on a set 1s a rule for combining two elements of the set.
More precisely, if S 1s a nonempty set, a binary operation on S 1s a function
a: S x § — 8. Thus a associates with each ordered pair (x, y) of elements of
S an element (x, y)a of S. It 1s better notation to write x o y for (x, y)a, refer-

ring to “o” as the binary operation.
If o 1S associative, that 1s, 1f:

(1) (xoy)oz=xo(yoz)isvahd forall x, y, z1n S,
then the pair (S, o) 1s called a semigroup.

Here we are concerned with a very special type of semigroup. A semi-
group (G, o) 1s called a group 1f 1t has the following properties:

(11) There exists 1n G an element e, called a right identity, such that x o e =
x for all x in G.

(in) To each element x of G there corresponds an element y of G, called a
right inverse of x, such that x o y = e.

While 1t 1s clear how to define left 1dentity and left inverse, the existence

of such elements 1s not presupposed; indeed this 1s a consequence of the
group axioms—see 1.1.2.
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It is customary not to distinguish between the group (G, o) and 1ts under-
lying set G provided there 1s no possibility of confusion as to the intended
group operation. However it should be borne in mind that there are usually
many possible group operations on a given set.

The order of a group 1s defined to be the cardinality of the underlying
set G. This is written |G|. If the group operation 1s commutative, that 1s, if
x oy = y o x 1s always valid, the group (G, o) 1s called abelian.t

Before giving some standard examples of groups we shall list the most
immediate consequences of the group axioms. The first of these 1s a general-
ization of the associative law to four or more elements.

1.1.1 (Generalized Associative Law). If an element of a group is constructed
from a sequence of elements x{, X,, ..., x, in this order by repeatedly insert-
ing brackets and applying the group operation, the element must equal

(- ((x1 0 x3) 0 x3) ") 0 X,

and so is independent of the mode of bracketing.

Proof. Certainly we may assume that n > 2. If u 1s an element constructed
from x,, x,, ..., x, 1n the prescribed manner, we can write u = v o w where
v and w are constructed from x,, x,,...,x; and x;,,..., X, respectively
(1 <i<n) If w=x,, the result follows by induction on n. Otherwise we
can write w = w’ o x, and u = (v o w’) o x,: once again the result follows by
induction on n. ]

Consequently 1n any expression formed from the elements x,, ..., x, 1n
that order brackets can be omitted without ambiguity, an enormous simpli-
fication in notation.

1.1.2. Let x be an element of a group G, let e be a right identity and let y be a
right inverse of x. Then:

(1) yox=e;
(11) e o x = x; and
(111) e is the unique left identity and the unique right identity; y is the unique
left inverse of x and the unique right inverse of Xx.

Proof. (1) Let z=yox;thenzoz=yo(xoy)ox =2zby l.1.1. Now there 1s
awin G such that zow=e. Since zoz =12 we have zo(zow)=zow or
z =e.

(11) By (i) we have x = xoce=xo(yox)=(xoy)ox =eoX.

(111) By (11) a right 1dentity 1s a left identity. If e’ 1s any left identity, then
e’ =e oe=-e By (1) a right inverse of x 1s a left inverse. If ¢t 1s any left
inverse of x,thent =to(xoy)=(tox)oy=y. ]

T After Niels Henrik Abel (1802—-1829).
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In view of the last result it is meaningful to speak of the identity of G and
the inverse of x 1n G.

There are two commonly used ways of writing the group operation of a
group (G, o). In the additive notation x o y 1s written as a “sum” x + y and
the 1dentity element O, or O, while —x denotes the inverse of x. This nota-
tion 1s often used for abelian groups. We shall generally employ the multi-
plicative notation wherein x o y 1s written as a “product” xy, the i1dentity
element is 1; or 1 and x™' is the inverse of x.

1.1.3. In any (multiplicative) group the equation xa = b implies that x = ba™*
and the equation ax = b implies that x = a™'b.

Proof. If xa = b, then x = (xa)a™' = ba™': similarly for the second part. []

1.1.4. In any group (xy) ' =y 'x tand (x ') = x.
Proof. Let z = (xy) '; then xyz =1, whence yz=x""' and z=y 'x™ ' by
1.1.3. Since xx ' = 1, we have x = (x')™* by 1.1.3 again. ]

Powers of an Element

Let x be an element of a multiplicatively written group G and let n be
an integer. The nth power x" of x 1s defined recursively in the following
manner:

(i) x° = 1., x' = x, and x~ ! is the inverse of x;
(i) x"™' = x"x if n > 0; and
(iil)) x" = (x"")"tifn <O.

Naturally, if G 1s written additively, we shall write nx instead of x" and
speak of a multiple of x.

1.1.5 (The Laws of Exponents). Let m and n be integers and let x be an ele-
ment of a group G. Then:

(i) x™x" = x™"" = x"x™; and
(ii) (xm)n — xmn — (xn)m.

Proof. (1) Let m > 0 and n > 0; then by induction on n and the definition
x™x" = x™"" Applying 1.1.3 we deduce that x" = x " "x™ " and x™ = x™" "x™".
Finally inversion of the equation x™x" = x™" and application of 1.1.4 yield
x "x™™ = x""""" Hence the law is established in all cases.

(1) If n > 0, 1t follows from (1) that (x™)" = x™". Now assume that n < 0;

then (x™)" = ((x™)™")"' = (x™™)"' = x™" since x ™x™" = 1. ]



4 1. Fundamental Concepts of Group Theory

Isomorphism

If G and H are groups, a function «: G — H 1s called an isomorphism if it 1s a
bijection (or one—one correspondence) and 1if (xy)o = (x)a - (y)a. The symbol-
1Ism G ~ H signifies that there is at least one iIsomorphism from G to H.
If o: G— H 1s an 1somorphism, an application of a to 1;1; = 1; shows
that 1,0 = 1;;, and to xx ' = 1, that (x ') = (xa)~'. It is easy to prove
that isomorphism 1s an equivalence relation on groups.

One can see from the definition that isomorphic groups have exactly cor-
responding underlying sets and group operations. Thus any property of a
group deducible from its cardinality and group operation will be possessed
by all groups isomorphic to it. For this reason one 1s not usually interested
in distinguishing between a group and groups that are isomorphic to it.

EXERCISES 1.1

1. Show that a semigroup with a left identity and left inverses 1s a group.

-1 -1,

. The identity (x;x, - x,) ' = x.1---x5;'x7! holds in any group.

. If the identity x* = 1 holds in a group G, then G is abelian.

) O OC N

Show from first principles that a group of even order contains an involution, that
is, an element g # 1 such that g* = 1.

5. The equation (xy)" = x"y" holds 1dentically in a group for all n if and only if the
group 1s abelian.

1.2. Examples of Groups

We shall now review some of the more obvious sources of groups.

(1) Groups of Numbers

Let Z, Q, R, and C denote respectively the sets of all integers, rational num-
bers, real numbers, and complex numbers. Each set becomes a group if we
specify ordinary addition as the group operation, zero as the identity and
minus x as the inverse of x. The axioms of arithmetic guarantee the validity
of the group axioms as well as the commutativity of the group operation.
Thus all four groups are abelian.

The sets Q\ {0}, R\ {0}, and C\ {0} are groups with respect to multiplica-
tion, 1 being the identity and 1/x being the inverse of x. Again all the groups
are abelian.
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(11) Groups of Matrices

Let R be a ring with an 1dentity element and let GL(n, R) denote the set of
all n x n matrices with coefficients in R which have inverses (these are to be
n x n matrices over the ring R). Taking matrix multiplication as the group
operation, we see from elementary properties of matrices that GL(n, R) 1s a
group whose 1dentity element 1s 1, the n x n i1dentity matrix. This group 1s
called the general linear group of degree n over R. It 1s nonabehan 1if n > 1.
In particular, if F 1s a field, GL(n, F) 1s the group of all nonsingular n x n
matrices over F.

(11) Groups of Linear Transformations

If V 1s an n-dimensional vector space over a field F, let GL(V) denote the
set of all byective linear transformations of V. Then GL(V) is a group 1if
functional composition 1s specified as the group operation: thus (v)a o ff =
((v)a)p where v e V and «, B € GL(V).

There 1s a close connection between the groups GL(V) and GL(n, F).
For, if a fixed ordered basis for V 1s chosen, each biective linear transfor-
mation of V 1s associated with a nonsingular » x n matrix over F. This
correspondence 1s an 1somorphism from GL(V) to GL(n, F), the reason
being that when two linear transformations are composed, the product
of the corresponding matrices represents the composite. These facts can be
found 1n most text books on linear algebra.

(1v) Groups of Isometries

Let M be a metric space with a distance function d: M x M — R. An iso-
metry of M 1s a bijjective mapping a: M — M which preserves distances; thus

(xo, ya)d = (x, y)d

for all x, y in M. It 1s very easy to verify that the set of all 1sometries of M 1s

a group with respect to the operation of functional composition. We shall
write this group

Isom(M).

Suppose next that X 1s a nonempty subset of M. If o 1s an 1sometry,
define Xa to be the set {xa|x € X}. The symmetry group of X with respect to
the metric space M 1s the set

Sy(X) = {a € Isom(M)| Xa = X}

of all 1sometries that leave X fixed as a set, together with functional compo-
sition. Again it 1s clear that this 1s a group. The more “symmetrical” the set
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X, the larger is the symmetry group. Thus we arrive at the fundamental 1dea
of a group as a measure of the symmetry of a structure. It 1s one reason for
the prevalence of groups in so many areas of science.

(v) Isometries of E-

Let E" denote n-dimensional Euclidean space. We shall give a brief account
of isometries and symmetries in E2. For a detailed study of isometries in E>
and in E° see [b11].

There are three natural types of isometry in E?, rotations about a point,
reflections 1n a line, and translations: 1n the latter the point (x, y) 1s moved to
(x + a, y + b) for some fixed a, b. It can be shown that every i1sometry 1s
a rotation, a translation, a reflection, or the product of a reflection and a
translation.

If X is a bounded subset of E?, it is intuitively clear that an isometry
leaving X 1nvariant cannot be a translation, and 1n fact must be a rotation
or a reflection.

Let us use the preceding remarks to analyze a famous example. Let X be
a regular polygon with n edges (n > 3). The rotations that leave X invariant
are about the center of X through angles 2zi/n, i =0,1,...,n — 1. The
reflections which preserve X are in lines joining opposite vertices or mid-
points of opposite edges if n 1s even, or 1n lines through a vertex and the
midpoint of the opposite edge if n 1s odd. Thus 1n all Sz2(X) contains
n + n = 2n elements. This group 1s called the dihedral group of order 2n; 1t 1s
written

D,

(The reader 1s warned that some authors denote this group by D, .)

(vi) Groups of Permutations

If X 1s a nonempty set, a bijection n: X — X is called a permutation of X.
The set of all permutations of X 1s a group with respect to functional com-
position called the symmetric group on X,

Sym X.
When X = {1, 2, ..., n}, it is customary to write
S

for Sym X, and to call this the symmetric group of degree n.

Historically the first groups to be studied systematically were groups of
permutations (or substitutions, as they were called). This approach is not so
limited as 1t might seem since by a fundamental result (1.6.8) every group 1s
1Isomorphic with a group of permutations of its underlying set.
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We remind the reader that the signature of a permutation mwe S, 1s
defined to be

which equals +1 or —1. Recall that = 1s even 1f sign 7 = + 1 and odd 1f sign
n = — 1. From the definition i1t 1s easy to check the formulas

sign(m, ,) = (sign m, )(sign 7,) and sign(n~') = sign 7.

Hence the set of all even permutations 1n S, 1s also a group with respect to
functional composition; this i1s the alternating group A,. Obviously |4,| = 1;
if n > 1, the function n — =n(1, 2) 1s a byjection from A4, to the set of all odd
permutations in S,; hence |4,| = 3(n!).

EXERCISES 1.2

1. Prove that no two of the groups Z, Q, R are isomorphic.

2. Let R be a ring with 1dentity. Prove that GL(n, R) 1s abelian if and only if n = 1

and R* 1s commutative. (Here R* i1s the group of units, 1.e., invertible elements of
R))

3. Describe the symmetry group of: (a) an 1sosceles but nonequilateral triangle;
(b) a swastika.

4. Show that the symmetry group of a rectangle which 1s not a square has order 4.
By labeling the vertices 1, 2, 3, 4, represent the symmetry group as a group of
permutations of the set {1, 2, 3, 4}. (This is called a Klein 4-group.)

5. Represent the dihedral group D,, as a group of permutations of the set
{1,2,...,n} by labeling the vertices of a regular polygon with n edges.

6. Describe the symmetry group of Z in E'. (This group, D_, is known as the

infinite dihedral group.)

0 ?

7. Exhibit all rotations of E> that leave invariant a regular tetrahedron. This group
1s called the tetrahedral group. Prove that it 1s isomorphic with A,.

8. Show that the group of all rotations in E> that leave a cube invariant is iso-
morphic with S,. [ Hint: A rotation permutes the four diagonals of the cube. ]

9. A regular octahedron 1s the polyhedron obtained by joining the centres of the
faces of a cube. Prove that the rotation group of the octahedron is isomorphic
with S, (sometimes known as the octahedral group).

10. Prove that Sym X 1s abelhan if and only if | X| < 2.

11. Give a group-theoretic proof of Wilson’s Theorem: if p 1s a prime, then (p — 1)!
— 1 (mod p). [Hint: Form the product of all the elements of the group Z3%.]
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1.3. Subgroups and Cosets

Let G be a group and let H be a subset of G. We say that H is a subgroup
of G if (H, x) 1s a group where * 1s the group operation of G restricted
to H. From 1.1.3 and the equation 1,1, = 1, 1t follows that 1, = 1.. Also,
if x5 is the inverse of x in the group (H, ), then xx; = 1,; = 1., whence
Xzt = x . Thus identity and inverses are the same in G and in H. From
this 1t 1s clear that a subset H 1s a subgroup of G if and only 1f 1t contains
the 1dentity and all products and inverses of 1ts elements.
We shall write

H<G or G>H

to signify that H 1s a subgroup of G. Two obvious examples of subgroups
are the trivial or identity subgroup {15}, usually written 1; or 1, and the
improper subgroup G 1itself. It H < G and H # G, then G 1s called a proper
subgroup of G; 1n symbols H < Gor G > H.

1.3.1 (The Subgroup Criterion). Let H be a subset of a group G. Then H is a

subgroup of G if and only if H is not empty and xy~' € H whenever x € H
and y € H.

Proof. Necessity being clear, assume that the conditions hold: then there
exists an he H and 1, =hh'e H. If x,ye H, then 1;y"' =y ' € H and
hence x(y™')™' = xy € H. Thus H is a subgroup. ]

Examples of Subgroups

1) Z, Q, and R are subgroups of C.

(11) Let R be a commutative ring with identity. Define SL(n, R) to be
the set of all n x n matrices over R with determinant equal to 1. Since
det(AB™') = (det A)(det B)™' and SL(n, R) contains the identity matrix, we
see from 1.3.1 that SL(n, R) 1s a subgroup of GL(n, R); it 1s called the special
linear group of degree n over R.

(1) 4, 1s a subgroup of §,. This follows from 1.3.1 and the equation
sign(m,m,") = (sign m, )(sign 7, ).

Intersections and Joins of Subgroups

1.3.2. If {H;|A € A} is a set of subgroups of a group G, then I = (), 5 H, is a
subgroup of G.

Proof. Obviously 1 e I. If x, y € I, then x, y € H, and hence xy~' € H, for all
e A Thus xy ' eland I < G by 1.3.1. ]
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The Subgroup Generated by a Subset

Let X be a nonempty subset of a group G. Define the subgroup generated
by X
(XD

to be the intersection of all subgroups of G which contain X: notice that
there will always be at least one such subgroup, G itself. That (X)) is a
subgroup follows from 1.3.2. In a real sense (X ) 1s the smallest subgroup of
G containing X: for if X € S < G, then (X)) = 8. Clearly X = (X ) pre-
cisely when X 1tself 1s a subgroup.

Naturally one wishes to have a description of the elements of (X ).

1.3.3. If X is a nonempty subset of a group G, then {X ) is the set of all ele-
ments of the form xi'---x;x where ¢; = +1, x;€ X, and k > 0. (When k = 0,
the product is to be interpreted as 1.)

Proof. Let S denote the set of all such elements. Then S 1s a subgroup by
1.3.1, while clearly X < S: hence {X) < S. But obviously § € (X ), so that

S = (X). [

If n 1s a positive integer, a group is said to be an n-generator group if
it can be generated by some n-subset {x,, x,,..., x,}. A group is finitely
generated 1f 1t 1s n-generator for some n.

A 1-generator group {x) = {({x}) is termed cyclic: by 1.3.3 this consists
of all the powers of x. The standard example of an infinite cyclic group 1s Z,
while Z , the additive group of congruence classes modulo #, 1s the standard
cyclic group of order n.

If {X,|Ae A} is a set of subgroups of G, the join of the X,’s or the sub-
group generated by the X’s is defined to be (| ), . X ;. This will be written

(X, |AeAN)
orin case A = {4, ..., A,}, a finite set,
<X11, ¢ o o o Xin>.

If G 1s any group, the set S(G) of all subgroups of G 1s a partially ordered
set with respect to set inclusion. Moreover a nonempty subset of S(G) has a
least upper bound 1n S(G), the join of all its elements, and a greatest lower
bound 1n S(G), the intersection of all its elements. Thus S(G) is a complete
lattice, known as the subgroup lattice of G. The unique smallest element of
S(G) 1s 1, the unique largest G.

Hasse Diagrams

It 1s sometimes helpful to visualize the inclusions which exist between sub-
groups of a group by means of a Hasse diagram. In this subgroups are
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represented by vertices, while an ascending edge or sequence of ascending
edges joining two subgroups indicates that the lower subgroup 1s contained
in the upper subgroup. The basic Hasse diagram 1s the so-called parallelo-
gram diagram.

(H, K)

HnNK

Left and Right Cosets

If H is a fixed subgroup of a group G, a relation ~; on G i1s defined in the
following way: x ~4 y holds 1f and only if x = yh for some h e H. It 1s easy
to check that ~ 1s an equivalence relation on G and that the equivalence
class containing x 1s the subset xH defined by

xH = {xh|h e H}:

this 1s called the left coset of H containing x. Observe that distinct left cosets
are disjoint and xH = yH if and only if x 'y € H. All left cosets of H have
the cardinality of H in view of the byection h+— xh from H to xH. The
union of all the left cosets of H 1s G.

Let us select an element from each left coset of H (thereby using the
axiom of choice!) and write T for the resulting set of left coset representa-
tives. Then G 1s the disjoint union

G=\JtH
teT
and every element of G can be uniquely written in the form th,t € T, h € H.
The set T 1s called a left transversal to H in G. Notice that |T| equals
the cardinality of the set of left cosets of H. Frequently 1t 1s convenient to
choose 1 as the coset representative of H, so that 1 € T.
In a precisely similar way the right coset

Hx = {hx|he H}

arises as the ,~-equivalence class containing x where x ;~ y means that
x = hy for some h € H. The terms right coset representative and right trans-
versal are defined analogously.
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Products and Inverses of Subsets

It is useful to generalize the notion of a coset. If X and Y are arbitrary
nonempty subsets of a group, define their product to be the subset

XY={xylxeX,ye Y}
and the inverse of X to be
X 1={x""xeX}

Then clearly xH = {x}H is a left coset and Hx = H{x} a right coset if
H < G. Multiplication of subsets is associative and (X ')™! = X is always
valid.

More generally we define the product of a family of subsets
X, X, Xy

this consists of all products x,x, - - x, where x; € X;. Of course we speak of
a sum of subsets 1n the case of an additive group.

1.3.4. Let H be a subgroup of G and let T be a left transversal to H in G.
Then T ' is a right transversal to H in G. In particular, the sets of left and
right cosets of H have the same cardinality.

Proof. Since G 1s the disjoint union of the tH, t € T, inversion shows that
G~ ' = G is the disjoint union of the (tH) "' = Ht ™. ]

The cardinality of the set of left (or right) cosets of H 1in G 1s called the
index of H in G and 1s written

G:H|.

1.35. Let K < H < G. If T is a left transversal to H in G and U a left trans-
versal to K in H, then TU is a left transversal to K in G. Thus

G:K|=|G:H| |H:K|

Proof. G =\ ),.7tH and H = | ),.yuK, whence G = | ), 7 ,cptuK. It re-
mains to show that all the cosets tuK are distinct. Suppose that tuK = t'u’K

where t,t'e T and u,u’ e U: then t 7 't' e H and tH =t'H. Since T is a
transversal, t = t’; hence uK = u'K and u = u’ since U 1s a transversal. []

Specializing to the case K = 1, we obtain a fundamental theorem.
1.3.6 (Lagrange’s Theorem). If G is a group and H is a subgroup of G, then

G| =|G:H|-|H| If Gis finite, |G: H| = |G|/|H|. Hence the order of a sub-
group always divides the order of the group if the latter is finite.
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On the other hand, just because a positive integer divides the group

order it does not follow that there 1s a subgroup with this order (see Exer-
cise 1.3.3).

Double Cosets

If H and K are subgroups and x is an element of a group G, the subset
HxK = {hxk|lhe H, k € K}

1s called an (H, K)-double coset. There 1s a partition of the group into dou-
ble cosets which 1s occasionally useful.

1.3.7. Let H and K be subgroups of a group G.

(1) The group G is a union of (H, K)-double cosets.
(11) Two (H, K)-double cosets are either equal or disjoint.
(111) The double coset HxK is a union of right cosets of H and a union of left
cosets of K.

Proof. Define x ~ y to mean that x = hyk for some hin H and k 1n K. It 1s
easy to check that ~ 1s an equivalence relation on G, the equivalence class
containing x being HxK. Thus (1) and (11) follow at once. (111) 1s clear. ]

The Order of an Element

A group element x has finite order n 1if the cyclic subgroup {(x) has order n.
If (x) 1s infinite, then x has infinite order. We shall write

X

for the order of x. Elements of order 2 are often called involutions.

A torsion group (or periodic group) 1s a group all of whose elements have
finite order. If the orders of the elements of a group are finite and bounded,
the group 1s said to have finite exponent. The exponent of the group is then
the least common multiple of all the orders. Obviously a finite group has
finite exponent and a group with finite exponent 1s a torsion group.

On the other hand, a group is said to be torsion-free (or aperiodic) if
apart from the i1dentity all its elements have infinite order.

1.3.8. Let x be an element of a group G.

(1) x has infinite order if and only if all powers of x are distinct.
(11) If x has finite order n, then x™ =1 if and only if nlm. Moreover {x)
consists of the distinct elements 1, x, x*, ..., x" 1.
(ii1) If x has finite order n, the order of x* equals n/(n, k).
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Proof. 1f all powers of x are distinct, {x) 1s obviously infinite. Conversely
suppose that two powers of x are equal, say x' = x™ where | < m; then
x™ " = 1. Thus we can choose the least positive integer n such that x" = 1.
Using the division algorithm we may write an arbitrary integer m in the
form m = gn + r where ¢, r are integers and 0 < r < n. Then x™ = (x")Ix" =
x", which shows that (x> = {1, x, ..., x"~'}. Hence x has finite order. Also
x™ =1 1f and only if r = 0, that 1s, if n|m: this 1s by minimality of n. Next
suppose that x' = x/ where 0 <i < j<n Then x'7' =1, so that n|j — i:
but this can only mean that i = j. Hence the elements 1, x, ..., x" ' are all
distinct and | x| = n. Thus (1) and (i1) are established.

To prove (iii) observe that (x*)"™*® = (x")¥® = 1 which implies that
m = |x*| divides n/(n, k). Also since (x*)™ = 1, one has that n|km and hence
that n/(n, k) divides (k/(n, k))m. By Euchid’s Lemma n/(n, k) divides m, so
m = n/(n, k). L]

Subgroups of Cyclic Groups

While 1t can be an arduous task to determine all the subgroups of a group,
there 1s little difficulty 1n the case of cyclic groups.

1.3.9. Let G = {x) and let H be a subgroup of G.

(1) If G is infinite, then H is either infinite cyclic or trivial.
(11) If G has finite order n, then H is cyclic of order dividing n. Conversely, to

each positive divisor d of n there corresponds exactly one subgroup of
order d, namely {(x"*>.

Proof. We prove first that H 1s cyclic. If H = 1, this 1s obvious, so let H # 1;
then H contains some positive power x° # 1. Let s be chosen minimal with
this property. Clearly (x*> < H. If x' € H, write t = sq + r where q,re Z
and 0 <r <s. Then x" = (x°)"9x' € H, so the minimality of s shows that
r =0 and s|t. Hence x' € {x*> and H = {(x*). If G 1s infinite, x has infinite
order, as does x°. Hence H 1s an infinite cyclic group.

Now let |x| =n < . Then |H| divides n, as we see at once from
Lagrange’s Theorem. Conversely suppose that d|n; then |x"¢| = d by 1.3.8
and |{x"*>| = d. Finally suppose that (x*> is another subgroup of order d.
Then x* =1 and n|kd: consequently n/d divides k and {(x*) < (x™?>. But
these subgroups both have order d, so they coincide. ]

It 1s obvious that a group has just one subgroup if and only if it has
order 1. We determine next the groups with exactly two subgroups.

1.3.10. A group G has precisely two subgroups, namely 1 and G, if and only if
it is cyclic of prime order.
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Proof. Sufficiency is immediate from 1.3.6. If G has only two subgroups
and 1 # x € G, then G = {x)>. Moreover, should |x| be infinite, (x*) will
be a proper nontrivial subgroup. Hence | x| 1s finite and by 1.3.9 1t must be

prime. [ ]

Index Theorems

We shall record some basic properties of the index of a subgroup.

1.3.11. Let H and K be subgroups of a group G.

1) |[HK|-|HN K| = |H|'|K]|, so that |H: HNn K| =|HK|/|K| if H and K
are finite.

m) |G:HNK|<|G:H|'|G:K|, with equality if the indices |G:H| and

G : K| are finite and coprime.

Proof. (1) Define an equivalence relation ~ on the set product H x K by
the rule (h, k) ~ (W', k') if and only if hk = h'k’; this is equivalent to h™'h’ =
k(k')™" or to (h', k') = (hi, i 'k) for some i € H " K. Hence the equivalence
class (h, k) containing (h, k) has cardinality |H n K|. Now consider the func-
tion (h, k) — hk: elements equivalent to (h, k) also map to hk, so we have a
function from the set of equivalence classes to HK given by (h, k) — hk.
Moreover this function i1s bijective by definition of ~. Hence the set of
all equivalence classes has cardinality |[HK|. Since |[H x K| = |H||K]|, 1t
follows that |H|- |K| = |HK|-|H n K|.

(11) To each left coset x(H n K) we assign the pair of left cosets (xH, xK):
this pair 1s clearly well-defined. Now (xH, xK) = (x'H, x'K) if and only
if x'x’eHNnK or x(HNnK)=x'(HnK). Therefore the assignment
x(H N K) — (xH, xK) 1s an 1njection and

G:HNnK|<|G:H| |G:K|.

If|G: Hland |G : K| are finite and relatively prime, each divides |G : H N K|
by 1.3.5, whence their product does too. ]

1.3.12 (Poincare). The intersection of a finite set of subgroups each of which
has finite index is itself of finite index.

The important result 1s an immediate consequence of 1.3.11(11).

Permutable Subgroups and Normal Subgroups

Two subgroups H and K of a group G are said to permute if HK = KH.
Thais 1s 1n fact precisely the condition for HK to be a subgroup.
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1.3.13. If H and K are subgroups of a group, then HK is a subgroup if and
only if H and K permute. In this event HK = (H, K> = KH.

Proof. Suppose that HK < G; then H < HK and K < HK, so KH < HK.
Taking inverses of each side we get HK < KH, whence HK = KH. More-
over (H, K> < HK since HK < G, while HK < {(H, K ) 1s always true; thus
(H, K> = HK. Conversely let HK = KH:1f h; e H and k; € K, then

hyky(hyky)™ = hy(k k3 )yt

now (k,k;')h;' = hyk; where hy e H and k3 € K. Hence h k,(h,k,)™ =
(hih3)ky € HK and HK < G by 1.3.1. (]

1.3.14 (Dedekind’sT Modular Law). Let H, K, L be subgroups of a group and
assume that K < L. Then (HK)n L = (H n L)K. In particular, if H and K
permute, (H, K) "L ={HnN L, K.

Proof. In the first place (HN L)K < HK and (HNn L)K < LK = L: hence
(HN L)K < (HK)n L. Conversely let x e (HK) N L and write x = hk, (he H,
ke K): then h=xk™" e LK =L, so that he HNn L. Hence x e (Hn L)K.
The second part follows via 1.3.13. (]

The reader should note that since K n L = K, the modular law 1s really a
form of the distributive law (HK)n L = (H n L)(K n L). however the latter
1s false 1n general.

A subgroup of a group G which permutes with every subgroup of G 1is
said to be permutable (or quasinormal). By far the most important examples
of permutable subgroups are normal subgroups: these are subgroups posses-
sing one of the three equivalent properties in the next result.

1.3.15. If H is a subgroup of a group G, the following statements about H are
equivalent:

(1) xH = Hx for all x € G;
(i) x 'Hx = H for all x € G; and
(i) x 'hx € H forall xe G,he H.

Proof.

1

(1) = (11). Premultiply by x™".

(11) = (111). Thas 1s clear.

(iii)=(1). Let he H and xe G. Then hx = x(x 'hx)e xH and xh =
(x ')'hx™'-x e Hx. Hence xH = Hx. ]

The notation

H<a G
T Richard Dedekind (1831-1916).
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signifies that H 1s a normal subgroup of G. Of course 1 and G are normal
subgroups and these may well be the only normal subgroups of G. If this
1s the case and G # 1, the group G 1s said to be simple. More interesting
instances of normality are: A << S, and SL(n, R)<sx GL(n, R). Note also that
in an abelian group every subgroup 1s normal.

It follows from 1.3.15 that a normal subgroup is permutable: hence the
product of a subgroup and a normal subgroup 1s always a subgroup.

1.3.16. If {N,|A€ A} is a collection of normal subgroups of a group, then
(iea N, and {N,|4 € A) are normal subgroups.

Proof. The first part 1s clear: to prove the second apply 1.3.3. ]

Normal Closure and Core

If X 1s a nonempty subset of a group G, the normal closure of X 1n G 1s the
intersection of all the normal subgroups of G which contain X. By 1.3.16
this 1s a normal subgroup; it 1s denoted by

XC.

Clearly X°© is the smallest normal subgroup containing X and it is easy to
show that X = {(g7'Xgl|g € G), cf. the proof of 1.3.3.

Dual to the normal closure 1s X the normal interior or core of X 1n
G; this 1s defined to be the join of all the normal subgroups of G that
are contained 1in X, with the convention that X, = 1 if there are no such
subgroups. Again it is simple to prove that H; = (),.q9 'Hg for H a
subgroup.

EXERCISES 1.3

1. If H < G, then G\ H 1s finite if and only 1if G i1s finite or H = G.
2. Find all subgroups of S;. Using a Hasse diagram display the subgroup lattice.
3. Repeat Exercise 2 for A,, observing that 4, has no subgroup of order 6.

*4. Let d(G) be the smallest number of elements necessary to generate a finite
group G. Prove that |G| > 249, [ Note: By convention d(G) = 0if |G| = 1.]

5. A cyclic group of finite order n 1s 1somorphic with Z : an infinite cyclic group 1s
iIsomorphic with Z.

*6. If G 1s infinite cyclic and 1 # H < G, then |G : H| 1s finite.

7. A group has exactly three subgroups if and only if it is cyclic of order p* for
some prime p.

*8. Let H and K be subgroups with coprime indices 1n a finite group G. Prove that
G = HK (use 1.3.11).
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9. Let H< G and K< G. Then HUK <G if and only if H< K or K < H.
Deduce that no group is a union of two proper subgroups.

10. Give examples of: (a) a torsion group with infinite exponent; and (b) an infinite
group with finite exponent.

11. Prove that QQ 1s not finitely generated.
12. Let H and K be subgroups of a finite group G.

(a) Show that the number of right cosets of H in HdK equals |K : H* n K|.
(b) Prove that
1 |G 1

g\HdﬂKY:\H\'\K\:‘g‘\HﬂKd\

where d runs over a set of (H, K)-double coset representatives.
13. A subgroup of index 2 is always normal.
14. Given that H; <1 K; < G for all Ain A, show that (), H,<1 (), K.
*15. Show that normality is not a transitive relation (check Dyg).

*16. If H < K < G and N <2 G, show that the equations HN = KN and Hn N =
K n N imply that H = K.

*17. If G = D,,, find elements x and y of orders 2 and n respectively such that
G=<x,y>and x tyx =y~ L.

*18. If H < G, prove that H® = (H?|ge G) and H; = (), H’.
19. Show that (HK)~ L = (H n L)(K n L) 1s not valid for all subgroups H, K, L.

1.4. Homomorphisms and Quotient Groups

Let G and H be two groups. A function «: G — H 1s called a homomorphism
1f

(xy)a = (xo) (yo)

for all x, y € G. For multiplicative groups it 1s advantageous to write x* in-
stead of xa, so that the above becomes

(xy)* = x°y*.
The set of all homomorphisms from G to H 1s denoted by
Hom(G, H).

This set 1s always nonempty since 1t contains the zero homomorphism
0: G - H which sends every element of G to 1.

A homomorphism «: G — G 1s called an endomorphism of G. The 1dentity
function 1: G — G 1s clearly an endomorphism.
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Of the greatest importance are the image Im o and the kernel Ker a of a
homomorphism a: G - H. These subsets are defined as follows:

Ima = G* = {x*|x € G}
and
Ker o = {x|x € G, x* = 14}

1.4.1. Let a: G > H be a homomorphism.

(i) (x™)* = (x*)" for all integers n, so that 13 = 1.
(11) Im oo < H and Ker a <2 G.

Proof. (1) For n > 0 this is easily proved by induction on n, while the case
n = 0 1s dealt with as follows: 1 = (1;1,)* = 121, whence 1§ = 14 by 1.1.3.
Let n<0: then x"x™ "= 1g, so (x")*(x™")*= 1 and (x")*=((x"")*)"" =
((x*)™)7" = (x*)".

(11) This follows from the subgroup criterion and the definition of nor-
mality. L]

The group G/Ker o is sometimes called the coimage of o: if Im a<s H,
then H/Im o 1s the cokernel of «.

Examples of Homomorphisms

(1) a: S, —> (—1) where n% = sign .
(i) a: GL(n, F) > F* where A* = det 4 and F* = F\{0}. Here F is a field.

Monomorphisms, Epimorphisms, and Isomorphisms

An 1njective (or one—one) homomorphism is called a monomorphism and a
surjective (or onto) homomorphism an epimorphism: of course a bijective
homomorphism 1s what we have been calling an isomorphism.

1.4.2. Let a: G > H be a homomorphism.

(1) o is a monomorphism if and only if Ker a = 1.
(11) o is an epimorphism if and only if Im o = H.
(111) o is an isomorphism if and only if Ker « = 1, and Im o = H.

Proof. It o 1s a monomorphism and x € Ker a, then x* = 15 = 15, whence
x = 1, by injectivity. Conversely let Ker o« = 1;; then x* = y* implies that
(xy™ ') = 14,50 xy ' € Ker a = 1, and x = y. The rest is clear. ]
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Quotient Groups and the Noetherf Isomorphism Theorems

If N 1s a normal subgroup of a group G, the quotient group (or factor group)
of N in G,

G/N,
1s the set of all cosets of N in G equipped with the group operation
(Nx)(Ny) = N(xy).

This operation 1s well-defined since if x" = ax and y’ = by with a, b e N,
then x'y’ = axby = a(xbx™')xy € Nxy. Associativity is immediate. The in-
verse of Nx is Nx~' and the identity element is N. Clearly |G/N| = |G : N|.
It 1s often convenient to use the congruence notation

x=y modN

in place of Nx = Ny.
The next theorem shows the very intimate relation between quotient
groups and homomorphisms.

1.4.3 (First Isomorphism Theorem)

(1) If a: G > H is a homomorphism of groups, the mapping 0. (Ker o)x +— x°
is an isomorphism from G/Ker o to Im a.

(11) If N is a normal subgroup of a group G, the mapping v: x +— NX is an
epimorphism from G to G/N with kernel N. (This v is called the natural or
canonical homomorphism.)

Proof. (1) Recall from 1.4.1 that Ker o <« G. Now 6 1s well-defined since
(kx)* = x* 1f ke Ker a, and 1t 1s clearly an epimorphism. Also (Ker o)x e
Ker 0 1f and only 1f x € Ker o, that 1s to say, Ker 6 = 15 k.. ,; thus 0 1s an
1Isomorphism (by 1.4.2).

(11) v 1s a homomorphism since Nxy = (Nx)(Ny): it 1s obviously an epi-
morphism. Finally x” = 15,y 1f and only if x € N. ]

1.4.4 (Second Isomorphism Theorem). Let H be a subgroup and N a normal
subgroup of a group G. Then N n H<s H and (N n H)x — NXx is an isomor-
phism from H/IN " H to NH/N.

Proof. The function x — Nx 1s clearly an epimorphism from H to NH/N
whose kernel 1s N n H. The result follows by 1.4.3(1). ]

1.4.5 (Third Isomorphism Theorem). Let M and N be normal subgroups of a
group G and let N < M. Then M/N <a G/N and

(G/N)/(M/N) ~ G/M.

T Emmy Noether (1882—-1935).
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Proof. Define a: G/N — G/M by (Nx)* = Mx. This 1s a well-defined epimor-
phism with kernel M/N. The result follows by 1.4.3(1). ]

Subgroups of the Image

Suppose that o: G > H 1s a homomorphism. If S < G, define S* to be
{s*|s € S}, the image of the restriction a|g of « to S (which is a homo-
morphism). Thus S* < Im «. Conversely suppose that T < Im « and define
T* = {x € G|x* e T}; this is the preimage (or inverse image) of T. It is evi-
dent from the definition that T* < G and (T*)* = T, notice also that T*
contains Ker o. Utilizing this notation 1t 1s easy to describe the subgroups of
Im o.

1.4.6. The functions S + S* and T — T* are mutually inverse bijections be-
tween the set of subgroups of G that contain Ker oo and the set of subgroups
of Im a. A corresponding statement holds for normal subgroups.

Proof. We have already observed that (T*)* = T. Let x € (§%)*; then x* = s”
for some seS and xs'eKera <8, so xeS and (S%* < S. Conversely
S < (S%* by the definition, so (S*)* = §, which establishes the first part.
Finally S <= G implies that S*<sIm o and T << Im a 1mplies that T* < G,
whence the second part follows. ]

Specializing to the case of the natural homomorphism G — G/N, one
finds that the subgroups of G/N are of the form S/N where N < S < G, with
a like statement for normal subgroups.

Direct Products

There are many ways of constructing a group from a given family of groups,
the simplest of these constructions being the direct product.

Let {G;|A € A} be a given set of groups. The cartesian (or unrestricted
direct) product,

C — CI‘ G).)

AeA

is the group whose underlying set 1s the set product of the G,’s, that 1s, the
set of all “vectors” (g,) with A-component g, in G,, and whose group opera-
tion 1s defined by multiplication of components: thus

(9:)(h;) = (g,h;),

g,, h;, € G,. Of course the identity element of C is to be (1;) and (g;)™" =
(g7'). It is an easy matter to check the validity of the group axioms.
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The subset of all (g,) such that g, = 1, for almost all A, that 1s, with
finitely many exceptions, 1s called the external direct product,

AeA

The G, are the direct factors. Clearly D 1s a subgroup of C; 1n fact 1t 1s even
a normal subgroup. In case A = {4,, 4,, ..., 4,}, a finite set, we write

D= G’tl X G/‘lz X "+ X Gin'

Of course C = D 1n this case. Should the groups G, be written additively, we
shall speak of the direct sum of the G,, and write

GM@Giz@”'@Gﬁ»n

instead of G;, x G; x - x G, .

For each 4 1n A we define a function 1;: G; — C by agreeing that g% shall
be the vector whose A-component 1s g, and whose other components are
identity elements. Then 7, is a monomorphism with image G,, a normal sub-
group of C contained in D. Of course G; ~ G,. If (9;)e D and g, , ..., g;,
are 1ts nontrivial components, then clearly (g;) = g7: - g'f*, so that

It 1s also clear from the definition that

Gy (Gulpe A p#iy=1
for all A.

Internal Direct Products

Suppose that H is a group with a family of normal subgroups {H;|4 € A}
having the properties of the G, above, that 1s to say

H =<{H;|~LeA) and H,n<{H,|ljpe A, pu#i)=1.

Then H 1s called the internal direct product of the H,, which we shall write
as H=Dr",_, H,.

Observe that elements of H which lie in different H,’s commute. For
if xeH,, yeH, and A # pu, then x 'y 'xy=x""(y 'xy) =(x""y 'x)ye
H;, nH, = 1; hence xy = yx.

Using this fact 1t 1s simple to prove that the mapping which assigns to an
element of the external direct product the product of all its components i1s
an isomorphism from Dr,_, H, to Dr?, _. H,.

We can sum up our conclusions about the relationship between internal
and external direct products as follows.
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1.4.7.

(1) If {G,;|A € A} is a family of groups, the external direct product Dr, _, G,
is equal to the internal direct product Dr%, _ . G, where G, is the image of
1,. G, > Cr,_,G,.

(i) Conversely the internal direct product D'V, _. H, of a family of normal

subgroups of a group is isomorphic with the external direct product
Dr; .4 H;.

In the light of 1.4.7 we shall usually identify x in G, with x" in G,, so that
G, = G, and 1nternal and external direct products coincide.
The following characterization of the direct product is sometimes useful.

1.4.8. Let {G,|1 € A} be a family of normal subgroups of a group G. Then G
is the direct product of the G;’s if and only if :

(1) elements belonging to different G;’s commute; and
(11) every element of G has a unique expression as a product of elements from
distinct G;’s.

Proof. Assume that G 1s the direct product of the G,’s. Since the latter
generate G, we can write any element x in the form x = x; ---x, where
1 # x, € G, , the ; are distinct and k > 0: moreover, the order of the x,_ 1s
immaterial. If x=y, ---y, 1s another such expression for x and u; # 4,
for all i, then y, € G, N <G;|Ae A, A # u,), which 1s trivial. It 1s now easy
to see that (1) and (1) hold. Conversely, if these conditions are fulfilled, the
intersection of G; and {G,|u € A, u # A) must be trivial by the requirement
of uniqueness. ]

Direct Limits

Let A be a partially ordered set which 1s directed; this means that given A
and u 1n A there exists a v in A such that A <v and u < v. Suppose that we
have a family of groups G;, A € A, and homomorphisms «}: G; — G, where
4 < u, satistying the following requirements:

(i) o4 is the identity map on G;;
(1) ofa), = o whenever 4 < u < v.

Then the set D = {G;, a%|A < p e A} is called a direct system of groups.
We shall how to construct a group

—_>

_ Ae A
and homomorphisms

0,. G, = D.
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The resulting set {D, 0,|4 € A} is called the direct limit of the direct system
D. The 1dea here 1s that in D an element g, of G, 1s to be 1dentified with all
its images g3+,

We shall assume that the groups G, are disjoint, so that G;" G, = J 1
/ # . There 1s no real loss of generality here since G, can be replaced by
a suitable 1Isomorphic copy. In the sequel g, will always denote an element

of G;.
We introduce a relation ~ on the set-theoretic union
U —_— U Gj.,
Ae A

defining g, ~ g, to mean that g§: = g for some v > 4, u. Notice that v here
can be replaced by any p > v, as may be seen by applying o? to both sides
of the equation and appealing to property (11). It 1s easy to verily with the
aid of the two defining properties that ~ 1s an equivalence relation on U.

Let [ g, ] be the equivalence class containing g, and denote by D the set
of all equivalence classes. We wish to make D into a group. Suppose that
g, ~ gz and g, ~ gz. Then we can find v in A satisfying v> 4, A, u, i and
such that g = g2 and g« = g2i. Hence g3igj+ = g3 g2 and it is meaningful
to define the product by

[9;1[9.] = [93g3+]

where v > A, u. The directedness of the set and the definition of equivalence
ensure that there 1s no dependence on v here.

It 1s easy to check the validity of the group axioms: of course 1, = [14 ]
and [g,] " = [g;']  The homomorphism 6, is just g, — [g,].

The essential properties of the direct limit for our purposes are these.

1.4.9. Let G, be the image of 0,: G, — D.

(l) 9 — U_).EAG).‘
(1) G; < G, whenever 4 < L.
(1) If all the a¥ are monomorphisms, then the 0, are monomorphisms, so that
G, ~ G,.

Proof. (1) 1s immediate.

(i) [g,]=[g3*]€ G,.

(i) If g3* =1, then [g;]1=1=1[1,]. Hence g5 =1, for some p > 4.
Consequently g, = 1. ]

A special case of the direct limit will be of particular interest to us. Let
there be given a sequence of groups G,, G,,... and monomorphisms
0;: G; = G;,,. Defining of to be g;0;,, - 0;_; if i < j, we obtain a direct sys-
tem {G;, o/ }. The direct limit group D is the union of the chain of subgroups

G, <G, <
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and G; ~ G;. Thus whenever we have such a sequence of groups G;, it 1s
possible to think of all the groups as being contained i1n or embedded 1n a
larger group.

Finally an important example. Let G; = {x;> be a cyclic group of order
p' where p is a fixed prime. Define a monomorphism o;: G; - G,,,; by
x = xP .. The llmit of the direct system i1s an infinite abehan p-group
which is the union of a chain of cyclic p-groups of orders p, p%, .... This
group 1s called a Priifert group of type p™. It plays an important part in the

theory of infinite abelian groups, as we shall see 1n Chapter 4.

EXERCISES 1.4

1. If G 1s an n-generator group and H 1s finite, prove that |Hom(G, H)| < |H|".

2. Prove that a finitely generated group has only a finite number of subgroups of
given finite index.

*3, If H< K < G and 0 is a homomorphism from G, then H? < K°. Deduce that
HN <a« KN whenever N <2 G.

4. If H 1s abelian, Hom(G, H) 1s an abelian group if the group operation 1s defined
by g*** = g*g”.

5. It G and H are groups with coprime finite orders, then Hom(G, H) contains
only the zero homomorphism.

6. Let N<a G. Show that G/N 1s simple if and only if N 1s a maximal (proper)
normal subgroup of G.

7. Provethat (H x K) x L~H x K x L~ H x (K x L).

8. An abelian group of exponent p is a direct product of cyclic groups of order
p—such groups are called elementary abelian p-groups. [Hint: Regard the
group as a vector space over GF(p).]

*9. (The mapping property of the cartesian product). Let G = Cr,_, G, and define
the projections n,: G — G, by setting x™ equal to the A-component of x. Show
that 7, 1s a homomorphism. Let there be given a family of homomorphisms
¢,. H—> G, from some group H. Prove that there exists a unique homomor-
phism ¢: H — G such that ¢n, = ¢, for all A. (This conclusion may be made
more palatable by asserting that the diagrams

are commutative.)

T Heinz Prufer (1896-1934).
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*10. Prove that the mapping property in Exercise 1.4.9 characterizes the cartesian
product in the following sense. Suppose that G is a group and #,: G - G, a
family of homomorphisms such that whenever we are given homomorphisms
0,: H— G,, there exists a unigue homomorphism ¢: H — G such that o7, = o,
for all A. Then G ~ Cr,_A G,. Remark: This shows that the cartesian product is

the product 1n the category of groups. The coproduct is the free product (see
6.2).

11. Show that Q 1s a direct limit of infinite cyclic groups.

12. Find some nonisomorphic groups that are direct limits of cyclic groups of
orders p, p%, p>, ....

1.5. Endomorphisms and Automorphisms

Let G be a group and let F(G) be the set of all functions from G to G. If
a, B € F(G), then aff € F(G) where, of course, x** = (x*)’. Thus F(G) is a set
with an associative binary operation and an identity element, namely the
1dentity function 1: G — G. Such an algebraic system 1s called a monoid.

There 1s a natural definition of the sum of two elements of F(G), namely
x*"# = x*x*. Clearly addition is an associative operation. In fact F(G) is a
group with respect to addition: for the additive identity element 1s the zero
homomorphism 0: G — G and the inverse —a is given by x™* = (x%)™".

It 1s straightforward to verify the left distributive law a(f + y) = aff + ay:
however the right distributive law (o + )y = ay + py does not hold in F(G)
In general.

As an additive group and a multiplicative monoid which satisfies the left
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