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Preface to the Second Edition

It 1s now 10 years since the first edition of this book appeared in 1980. The
intervening decade has seen tremendous advances take place in mathe-
matics generally, and in number theory 1n particular. It would seem desir-
able to treat some of these advances, and with the addition of two new
chapters, we are able to cover some portion of this new material.

As examples of important new work that we have not included, we

mention the following two results:

(1) The first case of Fermat’s last theorem is true for infinitely many
prime exponents p. This means that, for infinitely many primes p, the
equation x? + y? = z? has no solutions in nonzero integers with p [
xyz. This was proved by L.M. Adelman and D.R. Heath-Brown and
independently by E. Fouvry. An overview of the proof 1s given by
Heath-Brown 1n the Mathematical Intelligencer (Vol. 7, No. 6, 198)).

(2) Let p,, p>, and p; be three distinct primes. Then at least one of them 1s

a primitive root for infinitely many primes g. Recall that E. Artin

conjectured that, if a € Z is not 0, 1, —1, or a square, then there are

infinitely many primes q such that a is a primitive root modulo q. The
theorem we have stated was proved 1n a weaker form by R. Gupta and

M.R. Murty, and then strengthened by the combined efforts of R.

Gupta, M.R. Murty, V.K. Murty, and D.R. Heath-Brown. An exposi-

tion of this result, as well as an analogue on elliptic curves, is given by

M.R. Murty in the Mathematical Intelligencer (Vol. 10, No. 4, 1988).

The new material that we have added falls principally within the frame-
work of arithmetic geometry. In Chapter 19 we give a complete proot of
L.J. Mordell’s fundamental theorem, which asserts that the group of ra-
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tional points on an elliptic curve, defined over the rational numbers, is
finitely generated. In keeping with the spirit of the book, the proof (due in
essence to A. Well) 1s elementary. It makes no use of cohomology groups
or any other advanced machinery. It does use finiteness of class number
and a weak form of the Dirichlet unit theorem; both results are proved in
the text.

The second new chapter, Chapter 20, 1s an overview of G. Faltings’s
proof of the Mordell conjecture and recent progress on the arithmetic of
elliptic curves, especially the work of B. Gross, V.A. Kolyvagin, K.
Rubin, and D. Zagier. Some of this work has surprising applications to
other areas of number theory. We discuss one application to Fermat’s last
theorem, due to G. Frey, J.P. Serre, and K. Ribet. Another important
application 1s the solution of an old problem due to K.F. Gauss about
class numbers of imaginary quadratic number fields. This comes about by
combining the work of B. Gross and D. Zagier with a result of D. Gold-
feld. This chapter contains few proofs. Its main purpose is to give an
informative survey in the hope that the reader will be inspired to learn the
background necessary to a better understanding and appreciation of these
important new developments.

The rest of the book i1s essentially unchanged. An attempt has been
made to correct errors and misprints. In an effort to keep confusion to a
minimum, we have not changed the bibliography at the end of the book.
New references for the two new chapters, Chapters 19 and 20, will be
found at the end of those chapters. We would like to thank Toru Nakahara
and others for submitting a list of misprints from the first edition. Also, we
thank Linda Guthre for typing portions of the final chapters.

We have both been very pleased with the warm reception that the first
edition of this book received. It is our hope that the new edition will
continue to entice readers to delve deeper into the mysteries of this an-
cient, beautiful, and still vital subject.

February 1990 Kenneth Ireland
Michael Rosen

Addendum to Second Edition, Second Corrected Printing

The.second printing of the second edition is unchanged except for correc-
tions and the addition of a few clarifying comments. I would like to thank
K. Conrad, M. Jastrzebski, F. Lemmermeyer and others who took the
trouble to send us detailed lists of misprints.

November 1992 Michael Rosen



Preface

This book 1s a revised and greatly expanded version of our book Elements of
Number Theory published in 1972. As with the first book the primary audience
we envisage consists of upper level undergraduate mathematics majors and
graduate students. We have assumed some familiarity with the material in a
standard undergraduate course in abstract algebra. A large portion of
Chapters 1-11 can be read even without such background with the aid of a
small amount of supplementary reading. The later chapters assume some
knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with
the theory of complex variables 1s necessary.

Number theory 1s an ancient subject and its content 1s vast. Any intro-
ductory book must, of necessity, make a very limited selection from the
fascinating array of possible topics. Our focus is on topics which point in the
direction of algebraic number theory and arithmetic algebraic geometry. By a
careful selection of subject matter we have found it possible to exposit some
rather advanced material without requiring very much in the way of technical
background. Most of this material is classical in the sense that 1s was dis-
covered during the nineteenth century and earlier, but it is also modern
because it 1s intimately related to important research going on at the present
time.

In Chapters 1-5 we discuss prime numbers, unique factorization, arith-
metic functions, congruences, and the law of quadratic reciprocity. Very little
Is demanded in the way of background. Nevertheless it is remarkable how a
modicum of group and ring theory introduces unexpected order into the
subject. For example, many scattered results turn out to be parts of the answer
to a natural question: What is the structure of the group of units in the ring

Z/nZ?
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Reciprocity laws constitute a major theme in the later chapters. The law
of quadratic reciprocity, beautiful in itself, 1s the first of a series of reciprocity
laws which lead ultimately to the Artin reciprocity law, one of the major
achievements of algebraic number theory. We travel along the road beyond
quadratic reciprocity by formulating and proving the laws of cubic and
biquadratic reciprocity. In preparation for this many of the techniques of
algebraic number theory are introduced; algebraic numbers and algebraic
integers, finite fields, splitting of primes, etc. Another important tool in this
investigation (and in others!) 1s the theory of Gauss and Jacobi sums. This
material is covered in Chapters 6-9. Later in the book we formulate and prove
the more advanced partial generalization of these results, the Eisenstein
reciprocity law.

A second major theme 1s that of diophantine equations, at first over finite
ficlds and later over the rational numbers. The discussion of polynomial
equations over finite fields 1s begun in Chapters 8 and 10 and culminates in
Chapter 11 with an exposition of a portion of the paper “ Number of solutions
of equations over finite fields” by A. Weil. This paper, published in 1948, has
been very influential in the recent development of both algebraic geometry
and number theory. In Chapters 17 and 18 we consider diophantine equations
over the rational numbers. Chapter 17 covers many standard topics from
sums of squares to Fermat’s Last Theorem. However, because of material
developed earlier we are able to treat a number of these topics from a novel

point of view. Chapter 18 is about the arithmetic of elliptic curves. It dif-

fers from the earlier chapters in that it is primarily an overview with many
definitions and statements of results but few proofs. Nevertheless, by con-

centrating on some important special cases we hope to convey to the reader
something of the beauty of the accomplishments in this area where much work
1s being done and many mysteries remain.

The third, and final, major theme is that of zeta functions. In Chapter 11 we
discuss the congruence zeta function associated to varieties defined over finite
ficlds. In Chapter 16 we discuss the Riemann zeta function and the Dirichlet
L-functions. In Chapter 18 we discuss the zeta function associated to an
algebraic curve defined over the rational numbers and Hecke L-functions.
Zeta functions compress a large amount of arithmetic information into a
single function and make possible the application of the powerful methods of
analysis to number theory.

Throughout the book we place considerable emphasis on the history of
our subject. In the notes at the end of each chapter we give a brief historical
sketch and provide references to the literature. The bibliography is extensive
containing many items both classical and modern. Our aim has been to
provide the reader with a wealth of material for further study.

There are many exercises, some routine, some challenging. Some of the
exercises supplement the text by providing a step by step guide through the
proofs of important results. In the later chapters a number of exercises have
been adapted from results which have appeared in the recent literature. We
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hope that working through the exercises will be a source of enjoyment as well
as instruction.

In the writing of this book we have been helped immensely by the interest
and assistance of many mathem:atical friends and acquaintances. We thank
them all. In particular we would like to thank Henry Pohlmann who 1insisted
we follow certain themes to their logical conclusion, David Goss for allowing
us to incorporate some of his work into Chapter 16, and Oisin McGuiness
for his invaluable assistance in the preparation of Chapter 18. We would
like to thank Dale Cavanaugh, Janice Phillips, and especially Carol Ferreira,
for their patience and expertise 1n typing large portions of the manuscript.
Finally, the second author wishes to express his gratitude to the Vaughn
Foundation Fund for financial support during his sabbatical year in

Berkeley, California (1979/80).

July 25, 1981 Kenneth Ireland
Michael Rosen
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Chapter 1

Unique Factorization

The notion of prime number is fundamental in number
theory. The first part of this chapter is devoted to proving
that every integer can be written as a product of primes
in an essentially unique way.

After that, we shall prove an analogous theorem in the
ring of polynomials over a field.

On a more abstract plane, the general idea of unique
factorization is treated for principal ideal domains.

Finally, returning from the abstract to the concrete, the
general theory is applied to two special rings that will be
important later in the book.

1 Unique Factorization in Z

As a first approximation, number theory may be defined as the study of the
natural numbers 1, 2, 3, 4, . . . . L. Kronecker once remarked (speaking of
mathematics generally) that God made the natural numbers and all the rest
1s the work of man. Although the natural numbers constitute, in some sense,
the most elementary mathematical system, the study of their properties has
provided generations of mathematicians with problems of unending fascina-
tion.

We say that a number a divides a number b if there i1s a number ¢ such
that b = ac. It a divides b, we use the notation a|b. For example, 2|8, 3|15,
but 6 y21. It we are given a number, it i1s tempting to factor it again and
again until further factorization is impossible. For example, 180 = 18 x 10
=2X9%x2x5=2x3x3x 2 x 5 Numbersthat cannot be factored
further are called primes. To be more precise, we say that a number p is a
prime if its only divisors are 1 and p. Prime numbers are very important
because every number can be written as a product of primes. Moreover,
primes are of great interest because there are many problems about them
that are easy to state but very hard to prove. Indeed many old problems
about primes are unsolved to this day.

The first prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, ....One may ask if there are infinitely many prime numbers. The answer
1s yes. Euclid gave an elegant proof of this fact over 2000 years ago. We shall
give his proof and several others in Chapter 2. One can ask other questions

1



2 1 Unique Factorization

of this nature. Let 7(x) be the number of primes between 1 and x. What can
be said about the function n(x)? Several mathematicians found by experiment
that for large x the function n(x) was approximately equal to x/In(x). This
assertion, known as the prime number theorem, was proved toward the end
of the nineteenth century by J. Hadamard and independently by Ch.-J. de la

Vallé Poussin. More precisely, they proved

.. m(x) B
Gy

Even from a small list of primes one can notice that they have a tendency
to occur in pairs, for example, 3 and 5, 5and 7, 11 and 13, 17 and 19. Do
there exist infinitely many prime pairs? The answer 1s unknown.

Another famous unsolved problem is known as the Goldbach conjecture
(C. H. Goldbach). Can every even number be written as the sum of two
primes? Goldbach came to this conjecture experimentally. Nowadays
electronic computers make it possible to experiment with very large numbers.
No counterexample to Goldbach’s conjecture has ever been found. Great
progress toward a proof has been given by I. M. Vinogradov and L. Schnirel-
mann. In 1937 Vinogradov was able to show that every sufhciently large odd
number 1s the sum of three odd primes.

In this book we shall not study in depth the distribution of prime numbers
or “‘additive” problems about them (such as the Goldbach conjecture).
Rather our concern will be about the way primes enter into the multiplicative
structure of numbers. The main theorem along these lines goes back essen-
tially to Euchd. It 1s the theorem of unique factorization. This theorem 1s
sometimes referred to as the fundamental theorem of arithmetic. It deserves
the title. In one way or another almost all the results we shall discuss depend
on it. The theorem states that every number can be factored into a product of
primes 1n a unique way. What uniqueness means will be explained below.

As an 1llustration consider the number 180. We have seen that 180 =
2 x 2x3x3x5=2%x 3% x 5. Uniqueness in this case means that
th¢ only primes dividing 180 are 2, 3, and 5 and that the exponents 2, 2, and
1 are uniquely determined by 180.

Z will denote the ring of integers, 1.e., theset0, +1, +2, +3, ..., together
with the usual definition of sum and product. It will be more convenient to
work with Z rather than restricting ourselves to the positive integers. The
notionr of divisibility carries over with no difhiculty to Z. If p 1s a positive
prime, —p will also be a prime. We shall not consider 1 or — 1 as primes even
though they fit the definition. This 1s simply a useful convention. Note that
I and —1 divide everything and that they are the only integers with this
property. They are called the units of Z. Notice also that every nonzero
integer divides zero. As 1s usual we shall exclude division by zero.

There are a number of simple properties of division that we shall simply
list. The reader may wish to supply the proofs.
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(1) ala, a # 0.

(2) If a|b and b|a, thena = +b.
(3) If a|b and b|c, then alc.

(4) If a|b and a|c, then alb + c.

Let n € Z and let p be a prime. Then if # i1s not zero, there 1s a nonnegative
integer a such that p®|n but p*™ ! ¥n. This is easy to see if both p and n are
positive for then the powers of p get larger and larger and eventually exceed .
The other cases are easily reduced to this one. The number a is called the
order of »n at p and 1s denoted by ord, n. Roughly speaking ord, n 1s the
number of times p divides n. It n = 0, we set ord, 0 = co. Notice that
ord,n = 01f and only if (1ff) p f n.

Lemma 1. Every nonzero integer can be written as a product of primes.

PROOF. Assume that there is an integer that cannot be written as a product of
primes. Let N be the smallest positive integer with this property. Since N
cannot itself be prime we must have N = mn, where 1 < m, n < N. How-
ever, since m and n are positive and smaller than N they must each be a
product of primes. But then so 1s N = mn. This 1s a contradiction.

The proof can be given in a more positive way by using mathematical
induction. It is enough to prove the result for all positive integers. 2 1s a
prime. Suppose that 2 < N and that we have proved the result for all
numbers m such that 2 < m < N. We wish to show that N is a product of
primes. If N is a prime, there is nothing to do. If N 1s not a prime, then
N = mn, where 2 < m, n < N. By induction both m and n are products of

primes and thus so is V. []

By collecting terms we can write n = p{'p%* - - - po, where the p, are
primes and the a; are nonnegative integers. We shall use the following
notation:

n=(— 1)8(n) n pa(p),
p

where &(n) = 0 or 1 depending on whether n 1s positive or negative and
where the product i1s over all positive primes. The exponents a(p) are non-
negative integers and, of course, a(p) = 0 for all but finitely many primes.
Forexample, ifn = 180, we have e(n) = 0,a(2) = 2,a(3) = 2,and a(5) = 1,
and all other a(p) = 0.

We can now state the main theorem.

Theorem 1. For every nonzero integer n there is a prime factorization
n=(— I)E(n) n pa(p)
p

with the exponents uniquely determined by n. In fact, we have a(p) = ord, n.
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The proof of this theorem is not as easy as 1t may seem. We shall postpone
the proof until we have established a few preliminary results.

Lemma 2. If a,becZ and b > 0, there exist q,r € Z such that a = gb + r
with 0 < r < b.

ProoF. Consider the set of all integers of the form a — xb with x € Z. This set
includes positive elements. Let r = a — ¢gb be the least nonnegative element
in this set. Weclaimthat0 < r < b. If not,r = a — gb > bandso0 < a —
(g + 1)b < r, which contradicts the minimality of r. [ ]

Definition. If a,, a,, ..., a,€ Z, we define (a,, a,, ..., a,) to be the set of
all integers of the form a,x; + a,x, + --- + a,x, with x;, x,, ..., x, € Z.

Let A = (ay,a,,...,a,). Notice that the sum and difference of two
elements in A are again in 4. Also, if a € A and r € Z, then ra € A. In ring-
theoretic language, 4 1s an ideal 1n the ring Z.

Lemma 3. If a, b € Z, then there is ad € Z such that (a, b) = (d).

PrOOF. We may assume that not both a and b are zero so that there are
positive elements 1n (a, b). Let d be the smallest positive element 1n (a, b).
Clearly (d) < (a, b). We shall show that the reverse inclusion also holds.
Suppose that ¢ € (a, b). By Lemma 2 there exist integers g and r such that
¢ = qgd + r with 0 < r < d. Since both ¢ and d are in (a, b) it tollows that
r = c¢ — qd 1s also in (a, b). Since 0 < r < d we must have r = 0. Thus

¢ = qd €(d). L]

Definition. Let a, b€ Z. An integer d is called a greatest common divisor of
a and b if dis a divisor of both a and 4 and if every other common divisor of

a and b divides d.
Notice that if ¢ 1s another greatest common divisor of a and b, then we

must have c|dand d|cand so ¢ = +d. Thus the greatest common divisor of
two numbers, 1f 1t exists, 1s determined up to sign.

As an example, one may check that 14 is a greatest common divisor of
42 and 196. The following lemma will establish the existence of the greatest
common divisor, but it will not give a method for computing 1t. In the
Exercises we shall outline an efficient method of computation known as the
Euclidean algorithm.

Lemma 4. Leta,be Z. If (a, b) = (d) then d is a greatest common divisor of
aand b.

PRrROOF. Since a € (d) and b € (d) we see that d 1s a common divisor of a and b.
Suppose that ¢ 1s a common divisor. Then ¢ divides every number of the form
ax + by. In particular c|d. L]
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Definition. We say that two integers a and b are relatively prime 1f the only
common divisors are + 1, the units.

It 1s fairly standard to use the notation (a, b) for the greatest common
divisor of a and 6. The way we have defined things, (a, b) 1s a set. However,
since (a, b) = (d) and d i1s a greatest common divisor (if we require d to be
positive, we may use the article tae) 1t will not be too confusing to use the
symbol (a, b) for both meanings. With this convention we can say that a and

b are relatively prime if (a, b) = 1.

Proposition 1.1.1. Suppose that a|bc and that (a, b) = 1. Then a|c.

PrROOF. Since (a, b) = 1 there exist integers r and s such that ra + sb = 1.
Therefore, rac + sbc = c. Since a divides the left-hand side of this equation

we have a|c. L]

This proposition i1s false if (a, b) # 1. For example, 6|24 but 6 43 and
648.

Corollary 1. If p is a prime and p|bc, then either p|b or p|c.

PrROOF. The only divisors of pare + 1 and +p. Thus(p, b) = 1orp;1.e.,either
p|b or p and b are relatively prime. If p|b, we are done. If not, (p, b)) = 1 and
so, by the proposition, p|c. L]

We can state the corollary in a slightly different form that is often useful:
If p1saprime and pfb and pfc, then p f bc.

Corollary 2. Suppose that p is a prime and that a,be€ Z. Then ord ,ab = ord , a

+ ord, b.

PrROOF. Let o = ord, a and B = ord, b. Then a = p*c and b = p’d, where

p fcandp fd Thenab = p**Pcdand by Corollary 1 p 4 ¢d. Thusord, ab =
« + f =ord,a + ord, b. []

We are now 1n a position to prove the main theorem.
Apply the function ord, to both sides of the equation

n — (_ l)s(n) ”pa(p)
p

and use the property of ord, given by Corollary 2. The result is
ord, n = &(n) ord,(—1) + ) a(p) ord (p).
p

Now, from the definition of ord, we have ord (—1) = 0 and ord (p) = O
if p # gand 1 if p = ¢. Thus the right-hand side collapses to the single term

a(q), 1.e., ord, n = a(q), which is what we wanted to prove.
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[t 1s to be emphasized that the key step in the proof is Corollary 1: namely,
if p|lab, then p|a or p|b. Whatever difficulty there is in the proof 1s centered
about this fact.

§2 Unique Factorization in k[ x]

The theorem of unique factorization can be formulated and proved in more
general contexts than that of Section 1. In this section we shall consider the
ring k[x] of polynomials with coefficients in a field k. In Section 3 we shall

consider principal ideal domains. It will turn out that the analysis of these

situations will prove useful in the study of the integers.
If f, g € k[x], we say that f divides g if there 1s an /4 € k[ x] such that

g =fh

If deg f denotes the degree of f, we have deg fg = deg f + deg g. Also,
remember that deg f = 0 iff f is a nonzero constant. It follows that f |g and
g|f iff f = cg, where c is a nonzero constant. It also follows that the only
polynomials that divide all the others are the nonzero constants. These are
the units of k[ x]. A nonconstant polynomial p is said to be irreducible if
g|p implies that g is either a constant or a constant times p. Irreducible
polynomials are the analog of prime numbers.

Lemma 1. Every nonconstant polynomial is the product of irreducible poly-
nomials.

PrOOF. The proof is by induction on the degree. It 1s easy to see that poly-
nomials of degree 1 are irreducible. Assume that we have proved the result
for all polynomials of degree less than nand that deg f = n. If fis1rreducible,
we are done. Otherwise f = gh, where 1 < deg g, deg 2 < n. By the induc-
tion assumption both g and 4 are products of irreducible polynomials. Thus

so is [ = gh. []

It is convenient to define monic polynomial. A polynomial fis called monic
if its leading coefficient is 1. For example, x> + x — 3and x> — x* + 3x +
17 are monic but 2x> — 5 and 3x* + 2x* — 1 are not. Every polynomial
(except zero) 1s a constant times a monic polynomuial.

Let p be a monic irreducible polynomial. We define ord, f to be the
integer a defined by the property that p®| f but that p*** ¥ f. Such an integer
mus. exist since the degree of the powers of p gets larger and larger. Notice
thatord, f = 0 iff p tf.

Theorem 2. Let f e k[ x]. Then we can write

f=cl]p™,
p
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where the product is over all monic irreducible polynomials and c is a constant.
The constant ¢ and the exponents a(p) are uniquely determined by f; in fact,

a(p) = ord, f.

The existence of such a product follows immediately from Lemma 1. As
before, the uniqueness is more difficult and the proof will be postponed until
we develop a few tools.

Lemma 2. Let f, g c k[ x]. If g # 0, there exist polynomials h, r € k[ x] such
that f = hg + r, where either r = Qorr # 0anddeg r < degg.

PROOF. If g| f, simply set h= f /g and r=0. If g4 f, let r = f — hg be the
polynomial of least degree among all polynomuals of the form f — lg with
[ e k[x]. We claim that deg r < deg g. If not, let the leading term of r be
ax® and that of g be bx™. Thenr — ab ™ 'x*"™g = f — (h + ab™ 'x*"™)g has
smaller degree than r and is of the given form. This is a contradiction. L]

Definition. If 1., f,, ..., f,€k[x], then (fy, f,, ..., f,) 1s the set of all
polynomials of the form f,h, + f,h, + -+ + f,h,, where hy, h,, ..., h,
€ k[ x].

In ring-theoretic language (f,, f,,..., f, 1s the i1deal generated by
flafza P 9.f;l'

Lemma 3. Given f, g € k[ x] there is a d € k[ x] such that (f, g) = (d).

PrOOF. In the set (f, g) let dbe an element of least degree. We have (d) < (f, g)
and we want to prove the reverse inclusion. Let ¢ € (/, g). If d ¥ ¢, then there
exist polynomials # and r such that ¢ = Ad + r with deg r < deg d. Since
cand d are in (f, g) we haver = ¢ — hd < (f, g). Since r has smaller degree
than d this is a contradiction. Therefore, d|c and c € (d). []

Definition. Let f, g e k[x]. Then d € k[x] is said to be a greatest common

divisor of f and g if d divides f and g and every common divisor of f and g
divides d.

Notice that the greatest common divisor of two polynomials 1s determined
up to multiplication by a constant. If we require it to be monic, it 1s uniquely
determined and we may speak of the greatest common divisor.

Lemma 4. Let f, g € k[ x]. By Lemma 3 there is a d € k[ x] such that (f, g) =
(d). d is a greatest common divisor of [ and g.

PROOF. Since f € (d) and g € (d) we have d|f and d|g. Suppose that /| f and
that #|g. Then A divides every polynomial of the form f/ + gm with [,m e k[ x].
In particular 4|d, and we are done. ]
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Definition. Two polynomials f and g are said to be relatively prime 1t the only
common divisors of f and g are constants. In other words, (f, g) = (1).

Proposition 1.2.1. If f and g are relatively prime and f |gh, then f |h.

PrOOF. If f and g are relatively prime, we have (f, g) = (1) so there are poly-
nomials / and m such that lf + mg = 1. Thus Ifh + mgh = h. Since f
divides the left-hand side of this equation / must divide A. [ ]

Corollary 1. If p is an irreducible polynomial and p|fg, then p|f or p|g.

PROOF. Since p 1s irreducible (p, /) = (p) or (1). In the first case p|f and we
are done. In the second case p and f are relatively prime and the result

follows from the proposition. L]

Corollary 2. If p is a monic irreducible polynomial and [, g € k[ x], we have
ord, fg = ord, f + ord, g.

PROOF. The proof 1s almost word for word the same as the proof to Corollary
2 to Proposition 1.1.1. []

The proof of Theorem 2 is now easy. Apply the function ord, to both sides
of the relation

f — c ”pa(p)_

| 4

We find that
ord, f = ord, ¢ + > a(p) ord, p.
p

Now, since ¢ 1s a constant g 4 ¢ and ord, c = 0. Moreover, ord, p = 0 if
g # p and 1 1f ¢ = p. Thus the above relation yields ord, f = a(g). This
shows that the exponents are uniquely determined. It is clear that if the
exponents are uniquely determined by f, then so is ¢. This completes the
proof. []

§3 Unique Factorization in a Principal Ideal Domain

The reader will not have failed to notice the great similarity in the methods
of proof in Sections 1 and 2. In this section we shall prove an abstract theorem
that includes the previous results as special cases.

Throughout this section R will denote an integral domain.

Definition 1. R 1s said to be a Euclidean domain if there is a function A from the
nonzero elements of R to the set {0, 1, 2, 3,...} such thatif a,be R, b # 0,
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there exists ¢, d € R with the property a = ¢b + d and either d = 0 or
Ad) < A(Db).

The rings Z and k[x] are both Euclidean domains. In Z we can take
ordinary absolute value as the function A; in the ring k[ x] the function that
assigns to every polynomial its degree will serve the purpose.

Proposition 1.3.1. If R is a Euclidean domain and I < R is an ideal, then there
is an element a € R such that I = Ra = {ra|r € R}.

PRrROOF. Consider the set of nonnegative integers {A(b)|b € I, b # 0). Since
every set of nonnegative integers has a least element thereisana eI, a # 0,
such that A(a) < A(b) for all be I, b # 0. We claim that 7 = Ra. Clearly,
Ra < I. Suppose that b € I'; then we know that there are elements ¢, d € R
such that b = ca + d, where either d = 0 or A(d) < A(a). Since d = b —
ca € I we cannot have A(d) < A(a). Thusd = 0 and b = ca € Ra. Therefore,

I = Ra and we are done. L]

For elements a4, ..., a, € R, define (a,,a,,...,a,) = Ra, + Ra, +.
.«++ Ra, = {)}-,ria;lr; €eR}. (a,, a,, ..., a,) is an ideal. If an ideal 1
1s equal to (a4, ..., a,) for some elements q; € I, we say that I is finitely

generated. If I = (a) for some a € I, we say that /1s a principal ideal.

Definition 2. R 1s said to be a principal ideal domain (PID) if every ideal of R is
principal.

Proposition 1.3.1 asserts that every Euclidean domain 1s a PID. The con-
verse of this statement is false, although i1t i1s somewhat hard to provide
examples.

The remaining discussion 1n this section is about PID’s. The notion of
Euclidean domain 1s useful because in practice one can show that many
rings are PID’s by first establishing that they are Euclidean domains. We
shall give two further examples 1n Section 4.

We introduce some more terminology. If a, b € R, b # 0, we say that b
divides a if a = bc for some ¢ € R. Notation: b|la. An element u € R 18
called a unit if ¥ divides 1. Two elements a, b € R are said to be associates 1if
a = bu for some unit u. An element p € R 1s said to be irreducible if a|p
implies that a 1s either a unit or an associate of p. A nonunit p € Ris said to be
prime if p # 0 and p|ab implies that p|a or p|b.

The distinction between irreducible element and prime element 1s new.
In general these notions do not coincide. As we have seen they do coincide
in Z and k[ x], and we shall prove shortly that they coincide in a PID.

Some of the notions we are discussing can be translated into the language
of i1deals. Thus a|b iff (b) < (a). u e R 1s a unit iff () = R. a and b are
associate iff (a) = (b). p 1s prime iff ab € (p) implies that either a e(p) or
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b e(p). All these assertions are easy exercises. The notion of irreducible
element can be formulated in terms of ideals, but we will not need it.

Definition. d € R 1s said to be a greatest common divisor (gcd) of two elements
a,be Rif

(a) d|a and d|b.
(b) d’|a and d’|b implies that d’|d.

It 1s easy to see that if both dand d’ are gcd’s of a and b, then d 1s associate
tod’.

The gcd of two elements need not exist in a general ring. However,

Proposition 1.3.2. Let R be a PID and a, b € R. Then a and b have a greatest
common divisor d and (a, b) = (d).

PRrROOF. Form the 1deal (a, b). Since R 1s a PID there is an element d such that
(a, b) = (d). Since (a) < (d) and (b) < (d) we have d|a and d|b. If d’|a
and d’|b, then (a) < (d’) and (b) < (d’). Thus (d) = (a, b) < (d’)and d’|d.
We have proved that d is a gcd of a and b and that (a, b) = (d). []

Two elements a and b are said to be relatively prime if the only common
divisors are units.

Corollary 1. If R is a PID and a, b € R are relatively prime, then (a, b) = R.

Corollary 2. If R is a PID and p € R is irreducible, then p is prime.

PROOF. Suppose that p|ab and that p ¥ a. Since p ¥ a it follows that the only
common divisors are units. By Corollary 1 (a, p) = R. Thus (ab, pb) = (b).

Since ab € (p) and pb € (p) we have (b) = (p). Thus p|b.
It 1s easy to see that a prime is irreducible. [ ]

From now on R will be a PID and we shall use the words prime and
irreducible interchangeably.

We want to show that every nonzero element of R 1s a product of irredu-
cible elements. The proof is in two steps. First one shows that if a € R,
a # 0, there 1s an irreducible dividing a. Then we show that a 1s a product of
irreducibles.

Lemma 1. Let (a,) < (a,) < (a3) S - - - be an ascending chain of ideals. Then
there is an integer k such that (a,) = (a, ) forl =0, 1,2, ... . In other words,
the chain breaks off in finitely many steps.

PrOOF. Let I = ( )2 ,(a;). It is easy to see that [ is an ideal. Thus I = (a) for
some a € R. But a € | )~ ,(a;) implies that a € (a,) for some k, which shows

that I = (a) < (aq,). It follows that I = (@) = (ay+,) = - - . L]
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Proposition 1.3.3. Every nonzero nonunit of R is a product of irreducibles.

PROOF. Leta € R, a # 0, a not a unit. We wish to show, to begin with, that a
1s divisible by an irreducible element. If a 1s irreducible, we are done. Other-
wise a = a,b,, where a, and b, are nonunits. If a, 1s irreducible, we are done.
Otherwise a;, = a, b,, where a, and b, are nonunits. If a, 1s irreducible, we
are done. Otherwise continue as before. Notice that (@) < (aq,) < (a,) < -
By Lemma 1 this chain cannot go on indefinitely. Thus for some k, a, is
irreducible.

We now show that a 1s a product of irreducibles. If a 1s irreducible, we are
done. Otherwise let p, be an irreducible such that p,|a. Then a=p,c,. If
¢, 1s a unit, we are done. Otherwise let p, be an irreducible such that p,|c;.
Thena = p,p,c,. If ¢, 1s a unit, we are done. Otherwise continue as before.

Notice that (a) < (¢;) < (¢,) < - - -. This chain cannot go on indefinitely
by Lemma 1. Thus for some &k, a = p,p, - - - p, ¢, where ¢, 1s a unit. Since
p, ¢, 18 irreducible, we are done. L]

We now want to define an ord function as we have done 1n Sections 1
and 2.

Lemma 2. Let p be a prime and a # Q. Then there is an integer n such that p" | a
but p"*t! fa.

Proor. If the lemma were false, then for each integer m > 0 there would be
an e¢lement b, such that a = p™b,,. Then pb,,,, = b,, so that (b,) < (b,) <
(b;) < - - - would be an infinite ascending chain of ideals that does not
break off. This contradicts Lemma 1. L]

The integer n, which 1s defined in Lemma 2, 1s uniquely determined by
p and a. We set n = ord,, a.

Lemma 3. Ifa, b € Rwitha, b # 0, then ord, ab = ord,a + ord, b.

PrROOF. Let « = ord, a and f = ord, b. Then a = p*c and b = p’d with
pk¥c and pyd Thus ab = p**Pcd. Since p is prime p ) cd. Consequently,
ord,ab = o + f = ord,a + ord, b. L]

We are now in a position to formulate and prove the main theorem of this

section.
Let S be a set of primes in R with the following two properties:

(a) Every prime in R is associate to a prime in S.
(b) No two primes i1n S are associate.

To obtain such a set choose one prime out of each class of associate
primes. There is clearly a great deal of arbitrariness in this choice. In Z

and k[ x] there were natural ways to make the choice. In Z we chose S to be
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the set of positive primes. In k[ x] we chose S to be the set of monic irreducible
polynomials. In general there 1s no neat way to make the choice and this
occasionally leads to complications (see Chapter 9).

Theorem 3. Let R be a PID and S a set of primes with the properties given above.
Then if a € R, a # 0, we can write

a=ullp?, (1)
p

where u is a unit and the product is over all p € S. The unit u and the exponents
e(p) are uniquely determined by a. In fact, e(p) = ord, a.

ProOOF. The existence of such a decomposition follows immediately from

Proposition 1.3.3.
To prove the uniqueness, let g be a prime in S and apply ord, to both
sides of Equation (1). Using Lemma 3 we get

ord,a = ord, u + ) e(p) ord, p.
P

Now, from the definition of ord, we see that ord, ¥ = O and thatord, p =
01f ¢ # pand 11f ¢ = p. Thus ord, a = e(q). Since the exponents e(g) are
uniquely determined so is the unit ». This completes the proof. []

§4 The Rings Z[i] and Z[w]

As an application of the results in Section 3 we shall consider two examples
that will be useful to us 1n later chapters.

Let i = \/ —1 and consider the set of complex numbers Z[i] defined
by {a + bi|a, b € Z}. This set 1s clearly closed under addition and subtrac-
tion. Moreover, if a + bi,c + di € Z[i], then (a + bi)(c + di) = ac +
adi + bci + bdi* = (ac — bd) + (ad + bc)i e Z[i]. Thus Z[i] is closed
under multiplication and is a ring. Since Z[i] i1s contained in the complex
numbers 1t 1s an integral domain.

Proposition 1.4.1. Z[ (] is a Euclidean domain.

Proor. For a + bi € Q[i] define A(a + bi) = a* + b*.

Let « = a + bi and y = ¢ + di and suppose that y # 0. o/y = r + si,
where r and s are real numbers (they are, in fact, rational). Choose integers
m,n e Z such that |r — m| < % and |s — n| < 3. Set 6 = m + ni. Then
deZ[i] and A((afy) =) =(r —m)? + (s —n? < i+ 1=1% Set p=
o« — y0. Then pe Z[i] and either p = 0 or A(p) = A(y((a/y) — 0)) =

ANM(afy) — 8) < 7M7) < A®Y).
It follows that A makes Z[/] into a Euclidean domain. L]
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The ring Z[i] 1s called the ring of Gaussian integers after C. F. Gauss,
who first studied its arithmetic properties in detail.

The numbers +1, +i are the roots of x* = 1 over the complex numbers.
Consider the equation x> = 1. Since x> — 1 =(x — D(x* + x + 1)

the roots of this equationare 1, (—1 + /—3)/2. Letw = (=1 + / —3)/2.

Then it is easy to check that w? = (=1 — /—3)/2 and that 1 + ©w + »?
= 0.

Consider the set Z[w] = {a + bwl|a, b e Z}. Z]lw] 1s closed under
addition and subtraction. Moreover, (a + bw)(c + dw) = ac + (ad + bc)w
+ bdw? = (ac — bd) + (ad + bc — bd)w. Thus Z[w] is a ring. Again,
since Z[w] 1s a subset of the complex numbers it is an integral domain.

We remark that Z[w] 1s closed under complex conjugation. In fact, since

_-3: 3i=—./3i= —./—3 we see that @ = w?. Thus if o =
3= i = = A= /=3

a+bweZlw],thend =a+ bw = a + bw? = (a — b) — bw € Z[w].

Proposition 1.4.2. Z[w] is a Euclidean domain.

Proor. For « = a + bw € Z[w] define A(x) = a* — ab + b*. A simple

calculation shows that A(a) = aa.

Now, let a, 8 € Z[w] and suppose that f # 0. Then a/f = af/Bff =
r + sw, where r and s are rational numbers. We have used the fact that

BB = A(p) is a positive integer and that aff € Z[w] since a and B € Z[w].
Find integers m and » such that |r — m| < 3 and |s — n| < 3. Then
put y = m + nw. A(e/B) —y) = (r — m)> — (r — m)(s — n) + (s — n)°
<t+1+zi<l
Let p=oa—yB8. Then either p=0 or A(p) = AP(a/p)— 7y)) =
AP)A(@/B) — ) < AP). L

From the analysis of Section 3 we know that the theorem of unique
factorization is true in both Z[i] and Z[w]. To go further with the analysis
of these rings we would have to investigate the units and the prime elements.
There are some results of this nature in the exercises.

NOTES

Rings for which the theorem of unique factorization into irreducibles holds
are called unique factorization domains (UFD). The fact that Z i1s a UFD
1s already implicit in Euclid, but the first explicit and clear statement of the
result seems to be in C. F. Gauss’ masterpiece Disquisitiones Arithmeticae
(available 1n English translation by A. A. Clark, Yale University Press,
New Haven, Conn., 1966). Zermelo gave a clever proof by contradiction,
which 1s reproduced in the excellent book of G. H. Hardy and Wright
[40]. See also Davis and Shisha [120].

We have shown that every PID is a UFD. The converse is not true. For
example, the ring of polynomials over a field in more than one variable 1s a
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UFD but not a PID. P. Samuel has an excellent expository article on UFD’s
in [67]. A more elementary introduction may be found in the book of H.
Rademacher and O. Toeplitz [65].

The reader may find i1t profitable to read the introductory material in
several books on number theory. Chapter 3 of A. Frankel [32] and the
introduction to H. Stark [73] are particularly good. There 1s also an early
lecture by Hardy [39] that i1s highly recommended.

The ring Z[i] was introduced by Gauss in his second memoir on biquad-
ratic reciprocity [ 34]. G. Eisenstein considered the ring Z[w] in connection
with his work on cubic reciprocity. He mentions that to investigate the
properties of this ring one need only consult Gauss’ work on Z[i] and
modify the proofs [28]. A thorough treatment of these two rings 1s given in
Chapter 12 of Hardy and Wright [40]. In Chapter 14 they treat a generaliza-
tion, namely, rings of integers in quadratic number fields. Stark’s Chapter 8
deals with the same subject [73]. In 1966 Stark resolved a long-outstanding
problem in the theory of numbers by showing that the ring of integers (see

Chapter 6 of this book) 1n the field @(\/;i), with d negative, 1s a UFD when
d=—1, -2, —3, -7, —11, —19, —43, —67, and — 163 and for no other
values of d.

The student who is familiar with a little algebra will notice that a *“ generic”™
non-UFD is given by the ring k[x, y, z, w], with xy = zw, where k 1s a
field. Another example of a non-UFD is C[x,y, z], with x* + y* +
z? = 1, where C is the field of complex numbers. To see this notice that

(x + iy)(x — iy) = (1 — 2)(1 + 2).

EXERCISES

1. Let a and b be nonzero integers. We can find nonzero integers g and r such that
a = qgb + r,where 0 < r < b. Prove that (a, b) = (b, r).

2. (continuation) If r # 0, we can find g, and r, such that b = q,r + r, with<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>