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Preface to the First Edition

This book is devoted to explaining a wide range of applications of con-
tinuous symmetry groups to physically important systems of differential
equations. Emphasis i1s placed on significant applications of group-theoretic
methods, organized so that the applied reader can readily learn the basic
computational techniques required for genuine physical problems. The first
chapter collects together (but does not prove) those aspects of Lie group
theory which are of importance to differential equations. Applications covered
in the body of the book include calculation of symmetry groups of differential
equations, integration of ordinary differential equations, including special
techniques for Euler—Lagrange equations or Hamiltonian systems, differ-
ential invanants and construction of equations with prescribed symmetry
groups, group-invanant solutions of partial differential equations, dimen-
sional analysis, and the connections between conservation laws and sym-
metry groups. Generalizations of the basic symmetry group concept, and
applications to conservation laws, integrability conditions, completely inte-
grable systems and soliton equations, and bi-Hamiltonian systems are covered
in detail. The exposition i1s reasonably self-contained, and supplemented by
numerous examples of direct physical importance, chosen from classical me-
chanics, fluid mechanics, elasticity and other applied areas. Besides the basic
theory of manifolds, Lie groups and algebras, transformation groups and
differential forms, the book delves into the more theoretical subjecis of pro-
longation theory and differential equations, the Cauchy-Kovalevskaya theo-
rem, characteristics and integrability of differential equations, extended jet
spaces over manifolds, quotient manifolds, adjoint and co-adjoint represen-
tations of Lie groups, the calculus of variations and the inverse problem of
characterizing those systems which are Euler-Lagrange equations of some
vaniational problem, differential operators, higher Euler opecrators and the
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variational complex, and the general theory of Poisson structures, both for
finite-dimensional Hamiltonian systems as well as systems of evolution equa-
tions, all of which have direct bearing on the symmetry analysis of differential
equations. It i1s hoped that after reading this book, the reader will, with
a minimum of difficulty, be able to readily apply these important group-
theoretic methods to the systems of differential equations he or she is inter-
ested in, and make new and interesting deductions concerning them. If so, the
book can be said to have served its purpose.

A preliminary version of this book first appeared as a set of lecture notes,
distributed by the Mathematical Institute of Oxford University, for a gradu-
ate seminar held 1in Trinity term, 1979. It 1s my pleasure to thank the staff of
Springer-Verlag for their encouragement for me to turn these notes into book
form, and for their patience during the process of revision that turned out to
be far more extensive than I originally anticipated.



Preface to the Second Edition

For the second edition, I have corrected a number of misprints and 1nadver-
tent mathematical errors that found their way 1nto the oniginal version. More
substantial changes are the inclusion of a simpler proof of Theorem 4.26 due
to Alonso, [ 1], and the omission of the false (at least in the form stated in the
first edition) Theorem 5.22 on the commutativity of generalized symmetries.
Also, I have corrected some of the exercises and added several new ones.
Hopefully this now eliminates all of the major (and almost all of the minor)
mistakes. The one substantial addition to the second edition 1s a short pre-
sentation of the calculus of pseudo-differential operators and their use 1n
Shabat’s theory of formal symmetnes, which provides a powerful, algorithmic
method for determining the integrability of evolution equations.

The years since the appearance of the original edition of the book have
witnessed a remarkable explosion of research, both pure and applied, into
symmetry group methods in differential equations, proceeding at a pace well
beyond my expectations. Innumerable papers, as well as several substantial
textbooks devoted to the subject of symmetry and differential equations,
have appeared in the literature. The former are too numerous to try to list
here, although I have added a few of the more notable contributions to the
list of references and have correspondingly updated the historical notes at the
end of each chapter. Of the latter, I recommend the books of Bluman and
Kumel, [2], and Stephani [3], on symmetry methods, and Zharinov, [1], on
the geometrical theory of differential equations. There has also been a lot of
activity in the development of computer algebra (symbolic manipulation)
computer programs to (partially) automate the determination of symmetry
groups of differential equations. A good survey of the available codes, as of
1991, including a discussion of their strengths and weaknesses, can be found
in the paper of Champagne, Hereman, and Winternitz, [1].
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I would like to acknowledge, with gratitude, Ian Anderson, Ken Driessel,
Darryl Holm, Niky Kamran, John Maddocks, Jerry Marsden, Sascha
Mikhailov, and Alexei Shabat, who oflfered valuable comments and sugges-

tions for improving the first edition. Finally, I should reiterate my thankful-
ness and love to my wife, Cheri, and children, Pari, Sheehan, and Noreen, for

their continued, all-important love and support!
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Introduction

When beginning students first encounter ordinary differential equations they
are, more often than not, presented with a bewildering variety of special
techniques designed to solve certain particular, seemingly unrelated types of
equations, such as separable, homogeneous or exact equations. Indeed, this
was the state of the art around the middle of the nineteenth century, when
Sophus Lie made the profound and far-reaching discovery that these special
methods were, 1n fact, all special cases of a general integration procedure
based on the invariance of the differential equation under a continuous group
of symmetries. This observation at once unified and significantly extended
the available integration techniques, and inspired Lie to devote the remain-
der of his mathematical career to the development and application of his
monumental theory of continuous groups. These groups, now universally
known as Lie groups, have had a profound impact on all areas of mathe-
matics, both pure and applied, as well as physics, engineering and other
mathematically-based sciences. The applications of Lie’s continuous sym-
metry groups include such diverse fields as algebraic topology, differential
geometry, invariant theory, bifurcation theory, special functions, numerical
analysis, control theory, classical mechanics, quantum mechanics, relativity,
continuum mechanics and so on. It is impossible to overestimate the impor-
tance of Lie’s contribution to modern science and mathematics.
Nevertheless, anyone who is already familiar with one of these modern
manifestations of Lie group theory is perhaps surprised to learn that its
original inspirational source was the field of differential equations. One pos-
sible cause for the general lack of familiarity with this important aspect of
Lie group theory i1s the fact that, as with many applied fields, the Lie groups
that do arise as symmetry groups of genuine physical systems of differential
equations are often not particularly elegant groups from a purely mathemati-
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cal viewpoint, being neither semi-simple, nor solvable, nor any of the other
special classes of Lie groups so popular in mathematics. Moreover, these
groups often act nonlinearly on the underlying space (taking us outside the
domain of representation theory) and can even be only locally defined, with
the transformations making sense only for group elements sufficiently near
the identity. The relevant group actions, then, are much closer 1n spirit to
Lie’s original formulation of the subject in terms of local Lie groups acting on
open subsets of Euclidean space, and runs directly counter to the modern ten-
dencies towards abstraction and globalization which have enveloped much
of present-day Lie group theory. Historically, the applications of Lie groups
to differential equations pioneered by Lie and Noether faded into obscurity
just as the global, abstract reformulation of differential geometry and Lie
group theory championed by E. Cartan gained its ascendency in the mathe-
matical community. The entire subject lay dormant for nearly half a cen-
tury until G. Birkhoff called attention to the unexploited applications of
Lie groups to the differential equations of fluild mechanics. Subsequently,
Ovsiannikov and his school began a systematic program of successfully ap-
plying these methods to a wide range of physically important problems. The
last two decades have witnessed a veritable explosion of research activity in
this field, both 1n the applications to concrete physical systems, as well as
extensions of the scope and depth of the theory itself. Nevertheless, many
questions remain unresolved, and the full range of applicability of Lie group
methods to differential equations is yet to be determined.

Roughly speaking, a symmetry group of a system of differential equations
1s a group which transforms solutions of the system to other solutions. In the
classical framework of Lie, these groups consist of geometric transformations
on the space of independent and dependent variables for the system, and act
on solutions by transforming their graphs. Typical examples are groups of
translations and rotations, as well as groups of scaling symmetries, but these
certainly do not exhaust the range of possibilities. The great advantage of
looking at continuous symmetry groups, as opposed to discrete symmetries
such as reflections, i1s that they can all be found using explicit computational
methods. This is not to say that discrete groups are not important in the
study of differential equations (see, for example, Hejhal, [1], and the refer-
ences therein), but rather that one must employ quite different methods to
find or utilize them. Lie’s fundamental discovery was that the complicated
nonlinear conditions of invariance of the system under the group transforma-
tions could, in the case of a continuous group, be replaced by equivalent,
but far simpler, linear conditions reflecting a form of “infinitesimal” invari-
ance of the system under the generators of the group. In almost every physi-
cally important system of differential equations, these infinitesimal symmetry
conditions—the so-called defining equations of the symmetry group of the
system—can be explicitly solved 1n closed form and thus the most general
continuous symmetry group of the system can be explicitly determined. The
entire procedure consists of rather mechanical computations, and, indeed,
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several symbolic manipulation computer programs have been developed for
this task.

Once one has determined the symmetry group of a system of differential
equations, a number of applications become available. To start with, one can
directly use the defining property of such a group and construct new solu-
tions to the system from known ones. The symmetry group thus provides a
means of classifying different symmetry classes of solutions, where two solu-
tions are deemed to be equivalent if one can be transformed into the other by
some group element. Alternatively, one can use the symmetry groups to effect
a classification of families of differential equations depending on arbitrary
parameters or functions; often there are good physical or mathematical rea-
sons for preferring those equations with as high a degree of symmetry as
possible. Another approach 1s to determine which types of differential equa-
tions admit a prescribed group of symmetries; this problem is also answered
by infinitesimal methods using the theory of differential invariants.

In the case of ordinary differential equations, invariance under a one-
parameter symmetry group implies that we can reduce the order of the equa-
tion by one, recovering the solutions to the original equation from those of
the reduced equation by a single quadrature. For a single first order equa-
tion, this method provides an explicit formula for the general solution. Multi-
parameter symmetry groups engender further reductions in order, but, unless
the group itself satisfies an additional “solvability” requirement, we may not
be able to recover the solutions to the original equation from those of the
reduced equation by quadratures alone. If the system of ordinary differen-
tial equations i1s derived from a vanational principle, either as the Euler—
Lagrange equations of some functional, or as a Hamiltonian system, then
the power of the symmetry group reduction method i1s effectively doubled. A
one-parameter group of “variational” symmetries allows one to reduce the
order of the system by two; the case of multi-parameter symmetry groups 1s
more delicate.

Unfortunately, for systems of partial differential equations, the symmetry
group is usually of no help in determining the general solution (although in
special cases it may indicate when the system can be transformed into a more
easily soluble system such as a linear system). However, one can use general
symmetry groups to explicitly determine special types of solutions which are
themselves invariant under some subgroup of the full symmetry group of the
system. These “group-invariant” solutions are found by solving a reduced
system of differential equations involving fewer independent variables than
the original system (which presumably makes it easier to solve). For example,
the solutions to a partial differential equation in two independent variables
which are invariant under a given one-parameter symmetry group are all
found by solving a system of ordinary differential equations. Included among
these general group-invariant solutions are the classical similarity solutions
coming from groups of scaling symmetries, and travelling wave solutions
reflecting some form of translational invariance in the system, as well as
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many other explicit solutions of direct physical or mathematical importance.
For many nonlinear systems, these are the only explicit, exact solutions which
are available, and, as such, play an important role in both the mathematical
analysis and physical applications of the system.

In 1918, E. Noether proved two remarkable theorems relating symme-
try groups of a variational integral to properties of its associated Euler—
Lagrange equations. In the first of these theorems, Noether shows how each
one-parameter variational symmetry group gives rise to a conservation law
of the Euler—Lagrange equations. Thus, for example, conservation of energy
comes from the invariance of the problem under a group of time translations,
while conservation of linear and angular momenta reflect translational and
rotational invariance of the system. Chapter 4 1s devoted to the so-called
classical form of Noether’s theorem, in which only the geometrical types of
symmetry groups are used. Noether herself proved a far more general result
and gave a one-to-one correspondence between symmetry groups and con-
servation laws. The general result necessitates the introduction of “general-
1zed symmetries” which are groups whose infinitesimal generators depend
not only on the independent and dependent variables of the system, but also
the derivatives of the dependent vanables. The corresponding group trans-
formations will no longer act geometrically on the space of independent and
dependent variables, transforming a function’s graph point-wise, but are non-
local transformations found by integrating an evolutionary system of partial
differential equations. Each one-parameter group of symmetries of a varia-
tional problem, either geometrical or generalized, will give rise to a conserva-
tion law, and, conversely, every conservation law arises in this manner. The
simplest example of a conserved quantity coming from a true generalized
symmetry is the Runge—Lenz vector for the Kepler problem, but additional
recent applications, including soliton equations and elasticity, has sparked
a renewed interest in the general version of Noether’s theorem. In Section
5.3 we prove a strengthened form of Noether’s theorem, stating that for
“normal” systems there 1s in fact a one-to-one correspondence between non-
trivial variational symmetry groups and nontrivial conservation laws. The
condition of normality 1s satisfied by most physically important systems of
differential equations; abnormal systems are essentially those with nontrivial
integrability conditions. An important class of abnormal systems, which do
arise in general relativity, are those whose variational integral admits an
infinite-dimensional symmetry group depending on an arbitrary function.
Noether’s second theorem shows that there is then a nontrivial relation
among the ensuing Euler—Lagrange equations, and, consequently, nontrivial
symmetries giving rise to only trivial conservation laws. Once found, conser-
vation laws have many important applications, both physical and mathe-
matical, including existence results, shock waves, scattering theory, stability,
relativity, fluid mechanics, elasticity and so on. See the notes on Chapter 4 for
a more extensive list, including references.
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Neglected for many years following Noether’s prescient work, generalized
symmetries have recently been found to be of importance in the study of
nonlinear partial differential equations which, like the Korteweg—de Vries
equation, can be viewed as “completely integrable systems”. The existence
of infinitely many generalized symmetries, usually found via the recursion
operator methods of Section 5.2, appears to be intimately connected with the
possibility of linearizing the system, either directly through some change of
variables, or, more subtly, through some form of inverse scattering method.
Thus, the generalized symmetry approach, which 1s amenable to direct cal-
culation as with ordinary symmetries, provides a systematic means of rec-
ognizing these remarkable equations and thereby constructing an infinite
collection of conservation laws for them. (The construction of the related
scattering problem requires different techniques such as the prolongation
methods of Wahlquist and Estabrook, [1].) A systematic method for deter-
mining evolution equations having recursion operators, and hence classifying
“Integrable” systems, is provided by the theory of formal symmetries.

A number of the applications of symmetry group methods to partial differ-
ential equations are most naturally done using some form of Hamiltonian
structure. The finite-dimensional formulation of Hamiltonian systems of or-
dinary differential equations 1s well known, but 1n preparation for the more
recent theory of Hamiltonian systems of evolution equations, we are required
to take a slightly novel approach to the whole subject of Hamiltonian me-
chanics. Here we will de-emphasize the use of canonical coordinates (the p’s
and g’s of classical mechanics) and concentrate instead on the Poisson bracket
as the cornerstone of the subject. The result is the more general concept of a
Poisson structure, which is easily extended to include the infinite-dimensional
theory of Hamiltonian systems of evolution equations. An important special
case of a Poisson structure is the Lie—Poisson structure on the dual to a Lie
algebra, originally discovered by Lie, and more recently used to great effect
In geometric quantization, representation theory, and fluid and plasma me-
chanics. In this general approach to Hamiltonian mechanics, conservation
laws can arise not only from symmetry properties of the system, but also
from degeneracies of the Poisson bracket itself. In the finite-dimensional
set-up, each one-parameter Hamiltonian symmetry group allows us to re-
duce the order of a system by two. In its modern formulation, the degree of
reduction available for multi-parameter symmetry groups is given by the
general theory of Marsden and Weinstein, which is based on the concept of
a momentum map to the dual of the symmetry Lie algebra. In more recent
work, there has been a fair amount of interest in systems of differential
equations which possess not just one, but two distinct (but compatible)
Hamiltonian structures. For such a “bi-Hamiltonian system”, there 1s a
direct recursive means of constructing an infinite hierarchy of mutually com-
muting flows (symmetries) and consequent conservation laws, indicating the
system’s complete integrability. Most of the soliton equations, as well as
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some of the finite-dimensional completely integrable Hamiltonian systems,
are 1n fact bi-Hamiltonian systems.

Underlying much of the theory of generalized symmetries, conservation
laws, and Hamiltonian structures for evolution equations is a subject known
as the “formal calculus of variations”, which constitutes a calculus specifically
devised for answering a wide range of questions dealing with complicated
algebraic identities among objects such as the Euler operator from the calcu-
lus of variations, generalized symmetries, total derivatives and more general
differential operators, and several generalizations of the concept of a differen-
tial form. The principal result in the formal variational calculus is the local
exactness of a certain complex—called the “variational complex”—which is
In a sense the proper generalization to the variational or jet space context of
the de Rham complex from algebraic topology. In recent years, this varia-
tional complex has been seen to play an increasingly important role in the
development of the algebraic and geometric theory of the calculus of varia-
tions. Included as special cases of the variational complex are:

(1) a solution to the “inverse problem of the calculus of variations”, which
1s to characterize those systems of differential equations which are the
Euler—Lagrange equations for some variational problem;

(2) the characterization of “null Lagrangians”, meaning those variational
integrals whose Euler—Lagrange expressions vanish identically, as total
divergences; and

(3) the characterization of trivial conservation laws, also known as “null
divergences”, as “total curls”.

Each of these results is vital to the development of our applications of Lie
groups to the study of conservation laws and Hamiltonian structures for
evolution equations. Since it 1s not much more difficult to provide the proof
of exactness of the full variational complex, Section 5.4 1s devoted to a com-
plete development of this proof and application to the three special cases of
Interest.

Although the book covers a wide range of different applications of Lie
groups to differential equations, a number of important topics have neces-
sarily been omitted. Most notable among these omissions is the connection
between Lie groups and separation of variables. There are two reasons for
this: first, there 1s an excellent, comprehensive text—Miller, [3]—already
available; second, except for special classes of partial differential equations,
such as Hamilton—Jacobi and Helmholtz equations, the precise connections
between symmetries and separation of variables is not well understood at
present. This 1s especially true in the case of systems of linear equations, or
for fully nonlinear separation of variables; in neither case 1s there even a good
definition of what separation of variables really entails, let alone how one
uses symmetry properties of the system to detect coordinate systems in which
separation of variables is possible. I have also not attempted to cover any of
the vast area of representation theory, and the consequent applications to
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special function theory; see Miller, [ 1] or Vilenkin, [1]. Bifurcation theory 1s
another fertile ground for group-theoretic applications; I refer the reader to
the lecture notes of Sattinger, [1], and the references therein. Applications
of symmetry groups to numerical analysis are given extensive treatment in
Shokin, [1], and Dorodnitsyn, [1]. Applications to control theory can be
found in van der Schaft, [1], and Ramakrishnan and Schaettler, [1]. See
Maeda, [1], and Levi and Winternitz, [2], for applications to difference
and differential-difference equations. Extensions of the present methods to
boundary value problems for partial differential equations can be found 1n
the books of Bluman and Cole, [1], and Seshadri and Na, [1], and to free
boundary problems in Benjamin and Olver, [1]. Although I have given an
extensive treatment to generalized symmetries in Chapter 5, the related con-
cept of contact transformations introduced by Lie has not been covered, as
it seems much less relevant to the equations arising in applications, and, for
the most part, is subsumed by the more general theory presented here; see
Anderson and Ibragimov, [1], Bluman and Kumei, [2], and the references
therein for these types of transformation groups. Finally, we should mention
the use of Lie group methods for differential equations arising in geometry,
including, for example, motions in Riemannian manifolds, cf. Ibragimov, [1],
or symmetric spaces and invaniant differential operators associated with them,
cf. Helgason, [1], [2].






Notes to the Reader

The guiding principle in the organization of this book has been so as to
enable the reader whose principal goal 1s to apply Lie group methods to
concrete problems to learn the basic computational tools and techniques
as quickly as possible and with a minimum of theoretical diversions. At
the same time, the computational applications have been placed on a solid
theoretical foundation, so that the more mathematically inclined reader can
readily delve further into the subject. Each chapter following the first has
been arranged so that the applications and examples appear as quickly as
feasible, with the more theoretical proofs and explanations coming towards
the end. Even should the reader have more theoretical goals in mind, though,
I would still strongly recommend that they learn the computational tech-
niques and examples first before proceeding to the general theory. It has been
said that it is far easier to abstract a general mathematical theory from a
single well-chosen example than it 1s to apply an existing abstract theory to
a specific example, and this, I believe, 1s certainly the case here.

For the reader whose main interest is in applications, I would recommend
the following strategy for reading the book. The principal question is how
much of the introductory theory of manifolds, vector fields, Lie groups and
Lie algebras (which has, for convenience, been collected together in Chapter
1 and Section 2.1), really needs to be covered before one can proceed to the
applications to differential equations starting in Section 2.2. The answer is, in
fact, surprisingly little. Manifolds can for the most part be thought of locally,
as open subsets of a Euclidean space R™ in which one has the freedom to
change coordinates as one desires. Geometrical symmetry groups will just be
collections of transformations on such a subset which satisfy certain elemen-
tary group axioms allowing one to compose successive symmetries, take in-
verses, etc. The key concept 1n the subject i1s the infinitesimal generator of a

XXV
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symmetry group. This 1s a vector field (of the type already familiar in vector
calculus or fluid mechanics) on the underlying manifold or subset of R™
whose associated flow coincides with the one-parameter group it generates.
One can regard the entire group of symmetries as being generated in this
manner by composition of the basic flows of its infinitesimal generators. Thus
a famihianty with the basic notation for and correspondence between a vector
field and its flow is the primary concept required from Chapter 1. The other
key result is the infinitesimal criterion for a system of algebraic equations to
be invanant under such a group of transformations, which is embodied in
Theorem 2.8. With these two tools, one can plunge ahead into the material
on differential equations starting in Section 2.2, referring back to further
results on Lie groups or manifolds as the need arises.

The generalization of the infinitesimal invariance criterion to systems of
differential equations rests on the important technique of “prolonging” the
group transformations to include not only the independent variables and
dependent variables appearing in the system, but also the derivatives of the
dependent variables. This 1s most easily accomplished 1n a geometrical man-
ner through the introduction of spaces whose coordinates represent these
derivatives: the “jet spaces” of Section 2.3. The key formula for computing
symmetry groups of differential equations 1s the prolongation formula for
the infinitesimal generators in Theorem 2.36. Armed with this formula (or,
at least the special cases appearing in the following example) and the cor-
responding infinitesimal invariance criterion, one is ready to compute the
symmetry groups of well-nigh any system of ordinary or partial differential
equations which may arise. Several illustrative examples of the basic compu-
tational techniques required are presented in Section 2.4; readers are also
advised to try their hands at some additional examples, either those 1n the
exercises at the end of Chapter 2, or some system of differential equations of
their own devising.

At this juncture, a number of options as to what to pursue next present
themselves. For the devotee of ordinary differential equations, Section 2.5
provides a detailed summary of the basic method of Lie for integrating these
equations using symmetry groups. See also Sections 4.2 and 6.3 for the case
of ordinary differential equations with some form of variational structure,
either in Lagrangian or Hamiltonian form. Those interested in determining
explicit group-invariant solutions to partial differential equations can move
directly on to Chapter 3. There the basic method for computing these solu-
tions through reduction i1s outlined in Section 3.1 and illustrated by a number
of examples in Section 3.2. The third section of this chapter addresses the
problem of classification of these solutions, and does require some of the
more sophisticated results on Lie algebras from Section 1.4. The final two
sections of Chapter 3 are devoted to the underlying theory for the reduc-
tion method, and are not required for applications, although a discussion
of the important Pi theorem from dimensional analysis does appear in

Section 3.4.
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The reader whose principal interest 1s in the derivation of conservation
laws using Noether’s theorem can move directly from Section 2.4 to Chapter
4, which i1s devoted to the “classical” form of this result. A brief review of the
most basic concepts required from the calculus of variations is presented in
Section 4.1. The introduction of symmetry groups and the basic infinitesimal
invariance criterion for a variational integral is the subject of Section 4.2,
along with the reduction procedures available for ordinary differential equa-
tions which are the Euler—Lagrange equations for some variational problem.
The third section introduces the general notion of a conservation law. Here the
treatment i1s more novel; the guiding concept i1s the correspondence between
conservation laws and their “characteristics”, although the technically com-
plicated proof of Theorem 4.26 can be safely omitted on a first reading. Once
one learns to deal with conservation laws 1n characteristic form, the state-
ment and implementation of Noether’s theorem is relatively straightforward.

Beginning with Chapter 5, a slightly higher degree of mathematical so-
phistication i1s required, although one can still approach much of the mate-
rial on generalized symmetries and conservation laws from a purely com-
putational point of view with only a minimum of the Lie group machinery.
The most difficult algebraic manipulations have been relegated to Section
5.4, where the variational complex 1s developed 1n its full glory for the true
aficitonado. Incidentally, Section 5.4, along with Chapter 7 on Hamiltonian
structures for evolution equations are the only parts of the book where the
material on differential forms 1n Section 1.5 i1s used to any great extent. De-
spite their seeming complexity, the proofs in Section 5.4 are a substantial
improvement over the current versions available in the literature.

Chapter 6 on finite-dimensional Hamiltonian systems is by-and-large in-
dependent of much of the earlier material in the book. Up through the re-
duction method for one-parameter symmetry groups, not very much of the
material on Lie groups is required. However, the Marsden—Weinstein reduc-
tion theory for multi-parameter symmetry groups does require some of the
more sophisticated results on Lie algebras from Sections 1.4 and 3.3. Chapter
7 depends very much on an understanding of the Poisson bracket approach
to Hamiltonian mechanics adopted in Chapter 6, and, to a certain extent, the
formal variational calculus methods of Section 5.4. Nevertheless, acquiring a
basic agility in the relevant computational applications is not that difficult.

The exercises which appear at the end of each chapter vary considerably
in their range of difficulty. A few are fairly routine calculations based on the
material in the text, but a substantial number provide significant extensions
of the basic material. The more difficult exercises are indicated by an asterisk;
one or two, signaled by a double asterisk, might be better classed as minia-
ture research projects. A number of the results presented in the exercises are
new; otherwise, I have tnied to give the most pertinent references where ap-
propriate. Here references have been selected more on the basis of direct
relevance for the problem as stated rather than on the basis of historical

precedence.



XXVviil Notes to the Reader

At the end of each chapter i1s a brief set of notes, mostly discussing the
historical details and references for the results discussed there. While I cannot
hope to claim full historical accuracy, these notes do represent a fair amount
of research into the historical roots of the subject. I have tried to determine
the origins and subsequent history of many of the important developments in
the area. The resulting notes undoubtedly reflect a large number of personal
biases, but, I hope, may provide the groundwork for a more serious look into
the fascinating and, at times, bizarre history of this subject, a topic which
1s well worth the attention of a true historian of mathematics. Although 1
have, for the most part, listed what I determined to be significant papers in
the historical development of the subject, owing to the great duplication of
efforts over the decades, I have obviously been unable to provide an exhaus-
tive listing of all the relevant references. I sincerely apologize to those authors
whose work does play a significant role in the development, but was inadver-
tently missed from these notes.



CHAPTER 1

Introduction to Lie Groups

Roughly speaking, a Lie group 1s a “group” which is also a “manifold”. Of
course, to make sense of this definition, we must explain these two basic con-
cepts and how they can be related. Groups arise as an algebraic abstraction
of the notion of symmetry; an important example is the group of rotations
in the plane or three-dimensional space. Manifolds, which form the funda-
mental objects 1n the field of differential geometry, generalize the familiar
concepts of curves and surfaces in three-dimensional space. In general, a
manifold i1s a space that locally looks like Euclidean space, but whose global
character might be quite different. The conjunction of these two seemingly
disparate mathematical ideas combines, and significantly extends, both the
algebraic methods of group theory and the multi-variable calculus used in
analytic geometry. This resulting theory, particularly the powerful infinitesi-
mal techniques, can then be applied to a wide range of physical and mathe-
matical problems.

The goal of this chapter 1s to provide the reader with a relatively quick and
painless introduction to the theory of manifolds and Lie groups in a form
that will be conducive to applications to differential equations. No prior
knowledge of either group theory or differential geometry 1s required, but a
good background 1n basic analysis (1.e. “advanced calculus”), including the
inverse and implicit function theorems, will be assumed. Of necessity, proofs
of most of the “hard” theorems in Lie group theory will be omitted; references
can be found in the notes at the end of the chapter.

Throughout this chapter, I have tried to strike a balance between the
local coordinate picture, in which a manifold just looks like an open subset
of some Euclidean space, and the more modern global formulation of the
theory. Each has its own particular uses and advantages, and it would be a
mistake to emphasize one or the other unduly. The applications-oriented
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reader might question the inclusion of the global framework here, since ad-
mittedly most of the applications of the theory presented in this book take
place on open subsets of Euclidean space. Suffice it to say that the geometri-
cal insight and understanding offered by the general notion of a manifold
amply repays the relatively slight effort required to gain familiarity with the
definition. However, if the reader still remains unconvinced, they can replace
the word “manifold” wherever it occurs by “open subset of Euclidean space”
without losing too much of the flavour or range of applicability of the theory.
With this approach, they should concentrate on the sections on local Lie
groups (which were, indeed, the way Lie himself thought of Lie groups) and
use these as the principal objects of study.

The first section gives a basic outline of the general concept of a manifold,
the second doing the same for Lie groups, both local and global. In practice
Lie groups arise as groups of symmetries of some object, or, more precisely,
as local groups of transformations acting on some manifold; the second sec-
tion gives a brief look at these. The most important concept in the entire
theory 1s that of a vector field, which acts as the “infinitesimal generator”
of some one-parameter Lie group of transformations. This concept 1s fun-
damental for both the development of the theory of Lie groups and the
applications to differential equations. It has the crucial effect of replacing
complicated nonlinear conditions for the symmetry of some object under a
group of transformations by easily verifiable linear conditions reflecting its
infinitesimal symmetry under the corresponding vector fields. This technique
will be explored in depth for systems of algebraic and differential equations
in Chapter 2. The notion of vector field then leads to the concept of a Lie
algebra, which can be thought of as the infinitesimal generator of the Lie
group itself, the theory of which is developed 1n Section 1.4. The final section
of this chapter gives a brief introduction to differential forms and integration
on manifolds.

1.1. Manifolds

Throughout most of this book, we will be primarily interested 1n objects,
such as differential equations, symmetry groups and so on, which are defined
on open subsets of Euclidean space R™. The underlying geometrical features
of these objects will be independent of any particular coordinate system
on the open subset which might be used to define them, and 1t becomes of
great importance to free ourselves from the dependence on particular local
coordinates, so that our objects will be essentially “coordinate-free”. More
specifically, if U < R™ 1s open and y: U — V, where V < R™ 1s open, i1s any
diffeomorphism, meaning that i 1s an infinitely differentiable map with 1infi-
nitely differentiable inverse, then objects defined on U will have equivalent
counterparts on V. Although the precise formulae for the object on U and its
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Figure 1. Coordinate charts on a manifold.

counterpart on V will, in general, change, the essential underlying properties
will remain the same. Once we have freed ourselves from this dependence on
coordinates, it 1s a small step to the general definition of a smooth manifold.
From this point of view, manifolds provide the natural setting for studying
objects that do not depend on coordinates.

Definition 1.1. An m-dimensional manifold 1s a set M, together with a count-
able collection of subsets U, ¢ M, called coordinate charts, and one-to-one
functions y,: U, — ¥V, onto connected open subsets V, = R™, called local coor-
dinate maps, which satisfy the following properties:

(@) The coordinate charts cover M:

U, =M.

(b) On the overlap of any pair of coordinate charts U, n U, the composite
map

Xﬂ © Xa—l: Xa(Ua a Uﬁ) - Xﬂ(Ua a UB)

1s a smooth (infinitely differentiable) function.
(c) If x e U,, X € U, are distinct points of M, then there exist open subsets
WcV, Wc Vg, with x,(x) € W, x5(x) € W, satisfying

W) ni W) =g

The coordinate charts y,: U, = V, endow the manifold M with the struc-
ture of a topological space. Namely, we require that for each open subset
W c V. < R™ y.'(W)be an open subset of M. These sets form a basis for the
topology on M, so that U < M is open if and only if for each x € U there is
a neighbourhood of x of the above form contained in U;so x e y, '(W)c U
where y,: U, = V, 1s a coordinate chart containing x, and W is an open subset
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of V,. In terms of this topology, the third requirement in the definition of a
manifold is just a restatement of the Hausdorff separation axiom: If x # X are
points in M, then there exist open sets U containing x and U containing X
such that U n U = &. In Chapter 3, we will have occasion to drop this
property and consider non-Hausdorff manifolds. Many of the results of the
other chapters remain true in this more general context, but as this intro-
duces some technical complications we will work exclusively with Hausdorff
manifolds except in the relevant sections of Chapter 3.

The degree of differentiability of the overlap functions y, o x,* determines
the degree of smoothness of the manifold M. We will be primarily interested
1n smooth manifolds, in which the overlap functions are smooth, meaning C*,
diffeomorphisms on open subsets of R™. If we require the overlap functions
Xg © X» = to be real analytic functions, then M is called an analytic manifold.
Most classical examples of manifolds are in fact analytic. Alternatively, we
can weaken the differentiability requirements and consider C*-manifolds, in
which the overlap functions are only required to have continuous derivatives
up to order k. Many of our results hold under these weaker differentiability
requirements, but to avoid keeping track of precisely how many continuous
derivatives are needed at each stage, we simply stick to the case of smooth
or, occasionally, analytic manifolds. The weakening of our differentiability
hypotheses is left to the interested reader. We begin by illustrating the general
definition of a manifold with a few elementary examples.

Example 1.2. The simplest m-dimensional manifold is just Euclidean space
R™ 1tself. There 1s a single coordinate chart U = R™, with local coordinate
map given by the identity: y = 1: R™ - R™. More generally, any open subset
U < R™i1s an m-dimensional manifold with a single coordinate chart given by
U 1tself, with local coordinate map the identity again. Conversely, if M is any
manifold with a single global coordinate chart y: M - V < R™, we can 1den-
tify M with its image ¥V, an open subset of R™.

Example 1.3. The unit sphere
S? = {(x, y, 2): x2+y: + 2% = 1}

1s a good example of a nontrivial two-dimensional manifold realized as a
surface in R°>. Let

U, =S8\{(0,0, )}, U, =5%\{(0,0, —1)}

be the subsets obtained by deleting the north and south poles respectively.

Let
U, =2 R ~{(x,y,0)}, a=1,2,

be stereographic projections from the respective poles, so

(x, y,2) = ——, 2 (x,y,2) = | -——r, 2
Ny )=\, 17=7) L%rI=\7T152)

It can be easily checked that on the overlap U, n U,,
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110 %z R*\{0} - R*\{0}

1s a smooth diffeomorphism, given by the inversion

X Y
o lx
X2 (X, y) = (x +yx+y)

The Hausdorff separation property follows easily from that of R>, so S° is
a smooth, indeed analytic, two-dimensional manifold. The unit sphere is a
particular case of the general concept of a surface in R>, which historically
provided the principal motivating example for the development of the gen-
eral theory of manifolds.

Example 1.4. An easier example is the unit circle

§' = {(x’ y): x* + _}’2 = 1}9

which is similarly seen to be a one-dimensional manifold with two coordinate
charts. Alternatively, we can identify a point on S' with its angular coordi-
nate 6, where (x, y) = (cos 0, sin 8), with two angles being identified if they
differ by an integral multiple of 2x.

The Cartesian product

T? =SS! x S!

of S' with itself is a two-dimensional manifold called a torus, and can be
though of as the surface of an inner tube. (See Example 1.6.) The points on
T? are given by pairs (6, p) of angular coordinates, with two pairs being
identified if they differ by integral multiples of 2xn. In other words, (6, p) and
(0, ) describe the same point on T2 if and only if

0 —0=2kn and p— j =2ln,
for integers k, /. Thus 7T can be covered by three coordinates charts
U, ={(6,p):0<60<2n0<p<2n},
U,={6,p):n<0<3n,n<p<3n},
Us ={(0,p}: n/2<0<5n/2,n/2 < p<ST/2}.

The first overlap function i1s

(0, p), n<0<22n, wn<p<2m,

» (60 — 2=, p), 2n<0<3n, =mn<p<2m,
10Xz (0, p) =

(0, p — 2m), n<0<2n, 2n<p <3,

@ —2n,p—2n), 2n<0<3n, 2n<p<3n

on the intersection U, n U,, which i1s the set of all (6, p) with neither 6
nor p being an integral multiple of =. More generally, an m-dimensional
torus is given by the m-fold Cartesian product 7" = S' x --- x S! of §' with
itself.
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In general, if M and N are smooth manifolds of dimension m and n respec-
tively, then their Cartesian product M x N is easily seen to be a smooth
(m + n)-dimensional manifold. If x,: U, = V, = R™, and j,: [75 — 173 c R" are
coordinate charts on M and N respectively then their Cartesian products

Xaxiﬂ:Uaxﬁﬂ—*]/aXzCRme"sz+n

provide coordinate charts on M x N. The verification of the requirements of
Definition 1.1 for M x N are left to the reader.

Change of Coordinates

Besides the basic coordinate charts y,: U, = V, given in the definition of M,
one can always adjoin many additional coordinate charts y: U - V < R™,
subject to the requirement that they be compatible with the given charts. This
means that for each a, y o ¥, ' is smooth on <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>