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PREFACE

{
|
|

This is a systematic exposition of the basic part of the theory of mea-
sure and mntegration. The book is intended to be a usable text for
students with no previous knowledge of measure theory or Lebesgue
integration, but it is also intended to include the results most com-
monly used in {unctional analysis. Our two intentions are some what
conflicting, and we have attempted a resolution as follows.

The main body of the text requires only a first course in analvsis
as background. It is a study of abstract measures and integrals, and
comprises a reasonably complete account of Borel measures and in-
tegration for R. Each chapter is generally followed by one or more
supplements. These, comprising over a third of the book, require some-
what more mathematical background and maturity than the body of
the text (in particular, some knowledge of general topology is assumed)
and the presentation is a little more brisk and informal. The material
presented includes the theory of Borel measures and integration for R”,
the general theory of integration for locally compact Hausdorff spaces,
and the first dozen results about invariant measures for groups.

Most of the results expounded here are conventional in general
character, if not 1in detail, but the methods are less so. The following
brief overview may clarify this assertion.

The first chapter prepares for the study of Borel measures for R. This
class of measures is important and interesting in its own right and it
furnishes nice illustrations for the general theory as it develops. We
begin with a brief analysis of length functions, which are functions on

the class ¢ of closed intervals that satisfy three axioms which are
eventually shown to ensure that they extend to measures. It is shown
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in chapter 1 that every length function has a unique extension 4 to the
lattice £ of sets generated by ¢ so that A is exact, in the sense that
A(A) = A(B) + sup{i(C). C € & and C = A\ B} for members 4 and B
of ¥ with 4 c B.

The second chapter details the construction of a pre-integral from a
pre-measure. A real valued function y on a family &/ of sets that i1s
closed under finite intersection is a pre-measure iff it has a countably
additive non-negative extension to the ring of sets generated by &/ (e.g.,
an exact function y that is continuous at ¢¥). Each length function is a
pre-measure. If u is an exact function on &/, the map y+— u(A) for A in
&/ has a linear extension I to the vector space L spanned by the
characteristic functions y,, and the space L is a vector lattice with
truncation: I A fe L if fe L. If uis a pre-measure, then the positive
linear functional I has the property: if { f,}, is a decreasing sequence in
L that converges pointwise to zero, then lim I(f,) = 0. Such a function-
al I 1s a pre-integral. An integral is a pre-integral with the Beppo Levi
property: if { f,}, i1s an increasing sequence in L converging pointwise
to a function f and sup, I(f,) < oo, then f € L and lim, I(f,) = I(f).

In chapter 3 we construct the Daniell-Stone extension L! of a
pre-integral I on L by a simple process which makes clear that the
extension is a completion under the L' norm || f ||, = I(|f|). Briefly: a
set E is called null iff there is a sequence { f,}, in L with } , || f,ll, < o0
such that ) , | f,(x)| = oo for all x in E, and a function g belongs to L'
iff g is the pointwise limit, except for the points in some null set, of a
sequence {g,}, in L such that ) ,|g,+1 — gall; < o (such sequences
are called swiftly convergent). Then L! is a norm completion of L and
the natural extension of I to L! is an integral. The methods of the
chapter, also imply for an arbitrary integral, that the domain is norm
complete and the monotone convergence and the dominated conver-
gence theorems hold. These results require no measure theory; they
bring out vividly the fundamental character of M. H. Stone’s axioms
for an integral.

A measure i1s a real (finite) valued non-negative countably additive
function on a J-ring (a ring closed under countable intersection). If J is
an arbitrary integral on M, then the family o/ = {A: y, € M} is a
o-ring and the function A— J(x,) is a measure, the measure induced
by the integral J. Chapter 4 details this procedure and applies the
result, together with the pre-measure to pre-integral to integral theo-
rems of the preceding chapters to show that each exact function that is
continuous at & has an extension that is a measure. A supplement
presents the standard construction of regular Borel measures and an-

other supplement derives the existence of Haar measure.

A measure y on a dé-ring &/ is also a pre-measure; it induces a pre-
integral, and this in turn induces an integral. But there is a more direct
way to obtain an integral from the measure u: A real valued function
f belongs to L () iff there is {a,}, in R and {4,}, in & such that
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Y nl@alu(A4,) < o and f(x) = ) ,a,x,, (x) for all x, and in this case the
integral 1,(f)is defined to be ) , a,u(A,)- This construction is given in
chapter 6, and it is shown that every integral is the integral with
respect to the measure 1t induces.

Chapter 6 requires facts about measurability that are purely set
theoretic in character and these are developed in chapter 5. The critical
results are: Call a function f & o-simple (or &/ o™ -simple) iff f =
Y n@nXa forsome {A,},in o and {a,}, in R (in R, respectively). Then,
if &/ is a o-ring, a real valued function f is &/ o-simple iff it has a
support in .7, and is locally .o/ measurable (if B is an arbitrary Borel
subset of R, then A n f ~' [B] belongs to &/ for each A4 in &¢). Moreover,
if such a function is non-negative, it is &/ o™ -simple.

Chapter 7 1s devoted to product measures and product integrals. It 1s
concerned with conditions that relate the integral of a function [ w.r.t.
p® v to the iterated integrals | ({ f(x, y)dux)dvy and { (| f(x, y)dvy)dux.
We follow the natural approach, deriving the Fubini theorem from the
Tonelli theorem, and the latter leads us to grudgingly allow that some
perfectly respectable o-simple functions have infinite integrals (we call
these functions integrable in the extended sense, or integrable*).

Countably additive non-negative functions u to the extended set R*
of reals (measures in the extended sense or measures*) also arise naturally

(chapter 8) as images of measures under reasonable mappings. If 4 1s a
measure on a o-field .7 of subsets of X, # is a o-field for Y, and
T: X - Yis.o/ — % measurable, then the image measure Ty is defined
by Tu(B) = u(T~'[B]) for each B in #. If o/ is a d-ring but not a
o-field, there is a possibly infinite valued measure that can appropri-
ately be called the T image of u. We compute the image of Borel-
Lebesgue measure for R under a smooth map, and so encounter inde-
finite integrals.

Indefinite integrals w.r.t. a o-finite measure y are characterized in
chapter 9, and the principal result, the Radon-Nikodym theorem, is
extended to decomposable measures and regular Borel measures in a
supplement. Chapter 10 begins the study of Banach spaces. The duals
of some standard spaces are characterized, and in a supplement our
methods are used to establish very simply, or at least o-simply, the
basic facts about Bochner integrals.

This book is based on various lectures given by one or the other of
us in 1965 and later, at the Indian Institute of Technology, Kanpur;
Panjab University, Chandigarh; University of California, Berkeley; and
the University of Kansas. We were originally motivated by curiosity
about how a g-simple approach would work; it did work, and a version
of most of this text appeared as preprints in 1968, 1972 and 1979,
under the title “Measures and Integrals.” Since that time our point of
view has changed on several matters (but not on ¢-simplicity) and the

techniques have been refined.
This is the first of two volumes on Measure and Integral. The ex-
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ercises, problems, and additional supplements will appear as a com-
panion volume to be published as soon as we can sift and edit a large
disorganized mass of manuscript.

We are grateful to Klaus Bichteler, Harlan Glaz, T. Parthasarathy,
and Allan Shields for suggestions and criticisms of earlier versions of
this work and to Dorothy Maharam Stone and 1. Namioka for their
review of the final manuscript. We are indebted to our students for
their comments and their insights. We owe thanks to Jean Steffey, Judy
LaFollette, Carol Johnson, and especially to Ying Kelley and Sharon
Gumm for assistance in preparation of the manuscript, and to Saroja
Srinivasan for her nonmeasurable support.

This work was made possible by support granted at one time or
another by the Miller Foundation of the University of California,
Berkeley, the National Science Foundation, the Panjab (India) Uni-
versity, and the University of Kansas. We thank them.

J. L. KELLEY T. P. SRINIVASAN
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Chapter 0

PRELIMINARIES

This brief review of a few conventions, definitions and elementary
propositions is for reference to be used as the need arises.

SETS

We shall be concerned with sets and with the membership relation, €. If
A and B are sets then A = B iff A and B have the same members; 1.e., for
all x, x e Aiff x € B. A set A is a subset of a set B (B is a superset of A,
Ac B, B> A) iff x e B whenever x e A, Thus A = B iff A € B and
B < A. The empty set is denoted .

If A and B are sets then the union of A and Bis AU B, {x: x e A or
x € B}; the intersection A N B is {x: x € A and x € B}; the difference
A\Bis {x: x € A and x ¢ B;the symmetric difference A A Bis (A U B)\
(A n B); and the Cartesian product A x Bis {(x, y): x € A,y € B}. The
operations of union, intersection, and symmetric difference are com-
mutative and associative, n distributes over U and A, and U distributes
over N. The set JJ 1s an i1dentity for both U and A.

If, for each member ¢ of an index set T, A, is a set, then this cor-
respondence is called an indexed family, or sometimes just a family of
sets and denoted {A,};cr.- The union of the members of the family is
UterA: = {4t e T} = {x: x € A, for some member t of T} and
the intersection is (Jier A, =(){A::te T} ={x:x€ A, for each
member t of T}. There are a number of elementary identities such as

UteTuSAt=(UteTAt)U(UresAr)s C\UteTAl'= n;er(C\A,) for
all sets C (the de Morgan law),and | ),.r (BN A4;) = Bn | J 1 A:-
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FUNCTIONS

We write f: X — Y, which we read as “f is on X to Y”, iff f 1s a map of
X into Y; that is, f is a function with domain X whose values belong to
Y. The value of the function f at a member x of X is denoted f(x), or
sometimes f, .

If f: X > Y then “x— f(x), for x in X, is another name for f. Thus
x > x2%, for x in R (the set of real numbers) is the function that sends
each real number into its square. The letter “x”, in “x+ x? for x in R”
is a dummy variable, so x+— x2 for x in R is the same as t+> ¢t for ¢ in
R. (Technically, “—” binds the variable that precedes it.)

If f: X>Yandg: Y- Z thengo f: X - Z, the composition of g
and f, is defined by g o f(x) = g(f(x)) for all x 1n X.

If f: X— Y and A c X then f|A is the restriction of fto A4 (that is,
{(x,¥): xe Aand y = f(x)}) and f[A] is the image of A under f(that is,
{y:y = f(x) for some x in A}). If B < Y then f~'[B] = {x: f(x) € B}
is the pre-image or inverse image of B under f. For each x, f~![x] is

fH{x}]
COUNTABILITY

A set A is countably infinite if there is a one to one correspondence
between A and the set N of natural numbers (positive integers), and a
set is countable iff it is countably infinite or finite.

Here is a list of the propositions on countability that we will use, with
brief indications of proofs.

A subset of a countable set is countable.

If A is a subset of N, define a function recursively by letting f(n) be
the first member of A\ {x: x = f(m) for some m, m < n}. Then f(n) = n
for each member n of the domain of f, and A4 is countably infinite if the
domain of f is N and is finite otherwise.

The image of a countable set under a map is countable.

If fisa map of N onto A and D= {n: ne N and f(m) # f(n) for
m < n} then f|D is a one to one correspondence between A and a subset

of N.

The union of a countable number of countable sets is countable.

It is straightforward to check that the union of a countable number
of finite sets is countable, and N x N is the union, for k in N, of the

finite sets {(m,n): m + n=k + 1}.
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If A is an uncountable set of real numbers then for some positive
integer n the set {a:a € A and |a| > 1/n} is uncountable.

Otherwise A is the union of countably many countable sets.

The family of all finite subsets of a countable set is countable.

For each nin N, the family A4, of all subsets of {1,...... , n} is finite,
whence SJ,, A, is countable.

The family of all subsets of N is not countable.

If £ is a function on N onto the family of all subsets of N, then

for some positive integer p, f(p) = {n:n¢ f(n)}. If p e f(p) then p e
{n:n¢ f(n)}, whence p¢ f(p). If p¢ f(p) then p¢ {n:n¢ f(n)},

whence p € f(p). In either case there is a contradiction.

ORDERINGS AND LATTICES

A relation = partially orders a set X, or orders X iff it is reflexive on X
(x 2 x if x € X) and transitive on X (if x, y and z are in X, x = y and
y 2 z then x = z). A partially ordered set is a set X with a relation =
that partially orders it (formally, (x, =) is a partially ordered set). A
member u of a partially ordered set X is an upper bound of a subset Y of
X iffy = yforall yin Y;and if there is an upper bound s for Y such that
u = s for every upper bound u of Y, then s is a supremum of Y, sup Y. A
lower bound for Y and an infimum of Y, inf Y are defined in correspond-
ing fashion.

An ordered set X is order complete or Dedekind complete iff each
non-empty subset of X that has an upper bound has a supremum, and
this is the case iff each non-empty subset that has a lower bound has an
infimum.

A lattice is a partially ordered set X such that {x, y} has a unique
supremum and a unique infimum for all x and y in X. We denote
sup{x,y} by x v y and inf{x, y} by x A y. A vector lattice is a vector
space E over the set R of real numbers which is a lattice under a partial
ordering with the properties: for x and y in E and r in R™ (the set of
non-negative real numbers), if x =2 0 then rx =2 0,if x=0 and y=> 0
then x + y =20, and x = y iff x — y = 0. Here are some properties of
vector lattices:

For all xand y, x vy=—((—x)A(—y)and x Ay= —((—x) v
(—y)), because multiplication by — 1 is order inverting.

Forallx,yandz,(x vy)+z=x+2z)v(y+2)and (x A y)+ z =
(x + 2) A (y + 2), because the ordering i1s translation invariant (i.e.,
xzyiff x+z2=Zy+ 2).
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Forall x and y,x + y=x v y + x A y (replace z by —x — y in the
preceding and rearrange).

If x*=xvO0 and x~
xAOQ=x"—x",

For each member x of a vector lattice E, the absolute value of x is de-
fined to be | x| = x™ + x~. Vectors x and y are disjoint iff | x| A |y| = O.

For each vector x, x* and x~ are disjoint, because x™ A x~ +
XAD=x"+xA0DAX"T+xA0)=(x"—-—x")A0=x A0, whence-
xt'Ax  =0.

The absolute value function x> |x| completely characterizes the
vector lattice ordering because x = 0 iff x = | x|. On the other hand, if
E 1s a vector space over R, A: E— E, A o A = A, A is absolutely homo-
geneous (1.e., A(rx) = |r|A(x) forrin R and x in E), and A4 is additive on
A[LE] (1e., A(A(x) + A(y)) = A(x) + A(y) for x and y in E), then E is a
vector lattice and A is the absolute value, provided one defines x = y to
mean A(x — y) = x — y.

(Decomposition lemma) If x 2 0,y=20,2=20andz £ x + y, thenz =
u+ v for someuandvwith) < u < xand 0 £ v £ y. Indeed, we may set
u=zAxand v=2z—2z A x, and it is only necessary to show that
2—z A x £ y. But by hypothesis,y =2 z—xand y=20,so0y = (z—x) v 0,
and a translation by —z then shows that y—z2(—x) v (—2) =
—(z A x) as desired.

A real valued linear functional f on a vector iattice E is called posi-
tiveiff f(x) 2 Ofor x = 0. If f is a positive linear functional, or if f is the
difference of two positive linear functionals, then { f(u): 0 S u < x}isa
bounded subset of R for each x = 0.

If f is a linear functional on E such that f(x)=sup{f(u): 0Su=<x}<o0
forall x = 0, then f is the difference of two positive linear functionals, for
the following reasons. The decomposition lemma implies that { f(z):
O0z=x+y}={fW+ f(v): 0 £ u < xand0 < v £ y}, consequently
f 7 is additive on P = {x: x € E and x = 0}, and evidently f* is abso-
lutely homogeneous. It follows that if x, y, u and v belong to P and
X—y=u—vo,then f7(x)— f7(y)=f"(u)— f*(v), and f* can be ex-
tended to a linear functional on E—which we also denote by f . More-
over, f* — fis non-negative on Pand so f = f* —(f* — f) is the
desired representation.

The class E* of differences of positive linear functionals on E is itself
ordered by agreeing that f = g iff f(x) = g(x) for all x in E with x = 0.
Then E*, with this ordering, is a vector latticeand f* = f v 0. It is to
be emphasized that “fis positive” does not mean that f(x) = 0 for all x
in E, but only for members x of E with x = 0.

Suppose a vector space F of real valued functions on a set X is
ordered by agreeing that f = 0 iff f(x) 2 0 for all x in X If F, with
this ordering, is a lattice, then it is a vector lattice and is called a vector

—(xAQ)=(—x)v 0 then x=x v 0+
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function lattice. This is equivalent to requiring that (f v g)(x) =
max{ f(x),g(x)} for all x in X.

CONVERGENCE IN R?

A relation = directs a set D iff = orders D and for each x and fin D
there is y in D such that y = a and y = . Examples: the usual notion of
greater than or equal to directs R, the family of finite subsets of any set
X is directed by o and also by <, and the family of infinite subsets of
R is directed by > but not by <.

A met 1s a pair (x, =) such that x is a function and = directs the
domain D of x. We sometimes neglect to mention the order and write
the net x, or the net {x,},cp- A net with values in a metric space X (or
a topological space) converges to a member ¢ of X iff {x,},. p is even-
tually in each neighborhood U of ¢; that is, if for each neighborhood U
of ¢ there is « in D such that x; € U for all § = . If {x,}.. p cOnverges
to ¢ and to no other point, then we write lim, . p, x, = c.

A finite sequence {x, };-, is a function on a set of the form {1, 2,...,n},
for some nin N. A sequence is a function on the set of positive integers,
and the usual ordering of N makes each sequence a net. A sequence
{x,},en Will also be denoted by {x,}; =, or just by {x, },. Thus for each
g, {p + q*}, is the sequence p— p + g* for pin N.

It 1s convenient to extend the system of real numbers. The set R,
with two elements co and —oo adjoined, is the extended set R* of real
numbers and members of R* are real* numbers. We agree that oo is
the largest member of R*, —o0 is the smallest, and for each r in R we

agreethatr + o =0 +r=00,r+ —00 = —00 4+ r= —00,r* 00 = 0O
f r>0,rroo=—-0if r<0, r-(—c)=(—=r)-o0 for r#0, 0-00 =
0:(—00)=0, 000 =(—0)(—0)=00 and ©-(—0)=(—0)'xc =
— 00,

Every non-empty subset of R which has an upper bound has a
smallest upper bound, or supremum, in R and it follows easily that
every subset of R* has a supremum in R* and also an infimum. In
particular, sup (J = —oo0 and inf J = —o0.

A neighborhood in R* of a member r of R is a subset of R* containing
an open interval about r. A subset V of R* is a neighborhood of oo iff for
some real number r, V contains {s: s ¢ R* and s > r}. Neighborhoods of
—oo are defined in a corresponding way. Consequently a net {x,}, pin
R* converges to oo iff for each real number s there is # in D such that
X, > sforo = 6.

If {x,}.c 4 and {y,}. , are convergent nets in R* then lim,_ , (x,+ y,)=
lim,. 4x, + lim,_ 4 y., provided the sum of the limits is defined and
limye %, v, = (lim, . 4 x,) (lim,. 4y,) provided the pair (lim,. , x,,
lim, . ,y,) is not one among (0, +o0) or (+00,0). The proofs parallel
those for nets in R with minor modifications.
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If a net {x, },c 4 in R* is increasing (more precisely non-decreasing) in
the sense that x; = x, if 2 «, then {x_},. . converges to sup, ¢ 4 Xq;
for if r < sup, . 4 X4, then r is not an upper bound for {x,}, 4, COnse-
quently r < x, for some «, and hence r < x5 < sup,¢ 4 X, for = o
Likewise, a decreasing net in R* converges to inf, . 4 X, 1n R*.

If {X,}.c 4 is @ net in R* then a> sup{x,: € A and f = a} is a de-
creasing net and consequently converges to a member of R*. This
member is denoted limsup,. ,x, or limsup{x,: « € A}. Similarly
liminf {x,: « € A} is lim, . 4inf{xg: B = a}. It is easy to check that a net
{x,}ae 4 cOnverges iff lim sup, . 4 x, = liminf, . 4 x,, and that in this case
lim,. ,x,=1limsup,c 4%, = liminf, . ,x,.

If { f,}.c 4 1s 2 net of functions on a set X to R* then sup,. 4 f, Is
defined to be the function whose value at x is sup, . , f,(x), and simi-
larly, (inf, ¢, £,) (%) = infye 4 fu(X), (imsup, ¢ , ) (%) = limsup, ¢ 4 fu(x)
and (liminf,_ 4 £,)(x) = liminf, . , f,(x). The net{f,},., converges
pointwise to [ iff f = limsup,. ,f, = liminf,_ 4 f, or, equivalently,
f(x) = lim, . 4 f,(x) for all x.

UNORDERED SUMMABILITY

Suppose x = {x,}, . r is an indexed family of real* numbers. We agree
that {x,},.r is summable* over a finite subset 4 of T iff x does not
assume both of the values o0 and —oo at members of A, and in this case
the sum of x, for t in A4 is denoted by ) ,. X, or > 4x. If {x,};c 7 is
summable* over each finite subset, and if & i1s the class of all finite
subsets of T, then & is directed by o, {) ,x},.# is a net, and we
say that x is summable* over T, or just summable* provided that the
net {) 4x}4# converges. In this case the unordered sum, } ;x, is
lim{) 4x: A e F}, and {x,}, .y is summable* to ) 1 x.

If x = {x,};cr is a family of real numbers, then x is automatically
summable* over each finite subset of T and we say that x is summable
over T, or just summable, provided it is summable* and ) rx € R.

If {x,},.n IS @ sequence of real numbers then the (ordered) sum,
lim, Y ¥=; X;, may exist although the sequence is not summable (e.g.,
x, = (— 1)*/n for each n in N). However, if {x,}, is summable* then the
limit of {) §=; Xi }, exists and lim, ) k= Xi = ) pneN Xa-

Here are the principal facts about unordered summation, with a few
indications of proof. Throughout, x = {x,};cr and y = {y,}, r will be
indexed families of real* numbers, (x¥), = (x,)" and (x7), = (x,)” for

each t, and r will be a real number.
The family x = {X,},cr is summable iff for e > 0 there is a finite

subset A of T such that ) gz|x| < e for each finite subset B of T\ A.
If x ={x,};er is summable then x, = 0 except for countably many

points &.
If x, = 0 for each t then {x,}, ¢ r is summable*.
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(The net {d) ,x: A € #} is increasing.)

The family x is summable* iff one of Y rx™ and ) x™ is finite; it is
summable iff both are finite; and in either of these two cases, ¥ rx =
> rx* — ) rx”. (The result reduces to the usual “limit of the diffe-
rence”’ proposition.)

If x is summable* and r € R then rx is summable* and ) rrx =r) rx.

The next proposition states that “Y , is additive except for 0 — oo
troubles”. It’s another “limit of a sum” result.

If x and y are summable*, {x,,y,} # {00, —c0} for all t, and
(7% 7y} # {00, —0}, then x + y is summable* and ) (x + y) =
Srx+ 21y

If x is summable* over T and A c T then x is summable* over A.

If x is summable* over T and # is a disjoint finite family of subsets
of T then ZBE-'?(ZB X) = Z {X,I [ € UBEQB}'

If o is a decompositionof T (i.e., a disjoint family of subsets such that
T = |J4ew A) and x is summable* over T then A ) , x is summable*

over 4 and ) rX =) Jcq ) 4%
If x is summable* over Y x Z, then ) y,zX =) ey Y ze2X()2) =

ZzeZZerx(y?z)‘

It is worth noticing that the condition, “x is summable*”, is neces-
sary for the last equality. Here is an example. Define x on N x N by
letting x(m,n) be 1 if m=n, —1 if n=m + 1, and 0 otherwise. Then
YmenX(mn)=0ifn>0and 1ifn=0,50 ) , N menXx(m,n)) =1,
whereas Zm eN (Zne N x(m, n)) — Zm eN (0) = 0.

A family {f,},.r of real* valued functions on a set X is pointwise
summable* (summable, respectively) iff { f,(x)}, r is summable* (sum-
mable, respectively) for each x in X, and in this case the pointwise sum,

(D ter fi)(x) is defined to be Y ;. r f;(x) for each x in X.

HAUSDORFF MAXIMAL PRINCIPLE

If = partially orders X then a subset C of X is a chain iff for all x and
yin C with x # y, either x 2 y or y = x but not both. We assume (and
occasionally use) the following form of the maximal principle.

ZORN’S LEMMA If C is a chain in a partially ordered space (X, =) then
C is contained in a maximal chain D—that is a chain that is a proper
subset of no other chain.

Consequently, if every chain in X has a supremum in X then there is a
maximal member m of X —that is, if n = m thenn = m.

Here is a simple example of the application of the maximal principle.
Suppose that G is a subset of the real plane R? and that 2 is the family
of disks D,(a,b) = {(x,y):(x — a)*> + (y — b)* £ r?} with (a,b) in R?,
r > 0and D,(a, b) = G. Then there is a maximal disjoint subfamily # of
2, and G\ | Jp . « D contains no non-empty open set.



Chapter 1

PRE-MEASURES

A e
- e

We consider briefly the class of length functions. These will turn out
to be precisely the functions on the family of closed intervals that can
be extended to become measures; these are examples of pre-measures.
Their theory furnishes a concrete illustration of the general construc-
tion of measures.

A closed interval is a set of the form [a:b] = {x: x € R and a< x < b},
an open interval is a set of the form (a:b) = {x:a < x < b}, and
(a:b] and [a:b) are half open intervals. The family of closed intervals is
denoted #; we agree that (J € #. We are concerned with real valued
functions 4 on ¢, and we abbreviate A([a:b]) by A[a:b]. The closed
interval [b:b] is just the singleton {b}, and A[b:b] = A({b}) is abbre-
viated 4{b}.

A non-negative real valued function 4 on ¢ such that A(J) = 01is a
length, or a length function for R, iff 4 has three properties:

Boundary inequality 1fa < bthen A[a:b] = A{a} + A{b}.

Regularity Ifa € Rthen A{a} = inf{Ai[a —e:a+ e]:e> 0.

Additive property If a < b < c then A[a:b] + A[b:c] = A[a:c] +
A[b:b].

The length, or the usual length function Z, is defined by £la:b]l=b—a
for a < b. The length ¢ is evidently a length function; it has a number of
special properties—for example, 1{x} = 0 for all x.

There are length functions that vanish except at a singleton. The unit
mass at a member ¢ of R, ¢,, is defined by letting ¢.[a:b] be one if
¢ € [a:b] and zero otherwise. Thus ¢.{x} =01f x #c and ¢.{c} =1. Each
such unit mass is a length function, and each non-negative, finite linear
combination of unit masses is a length function.
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A length function A is discrete iff Ala:b] = ) ... 4{Xx} for every
closed interval [a:b]. That is, a length function 2 is discrete iff the
function x+— A{x} is summable over each closed interval [a:b] and
Afa:b]is thesum ) . .0 A{x} (of course, in this case 1 {x} = 0 except
for countably many x). Each discrete length 2 is the sum ) . g A{x}e,,
since ), rA{x}e;[a:b] =) ;ciaA{x} = A[a:b].

If 2 is a discrete length function then the function x> 4{x} deter-
mines A entirely. On the other hand, if f is a non-negative real valued
function that is summable over intervals and A[a:b] = ) .. (4.5 S (%),
then 4 evidently satisfies the boundary inequality and has the additive
property required for length functions. It is also regular, and hence a
discrete length function, as the following argument shows. If a € R,
e>0and E=[a— 1:a+ 1]\{a}, then there is a finite subset F of E

such that Y, . pf(x)<e+ ) .crf(x), whence Y . .prf(x)<e If
d < min{|x—a|:x€F}, then Y . io-drasaq) S(X) £ F@+ Y yeprr f(X)<
f(a)+e. Thus ifa—d:a + d] < i{a} + e, and consequently 1{a} =
inf{A[a—d:a+d]:d> 0}.

A length function A is continuous iff 1 {x} = 0 for all x. The usual
length function ¢ is continuous. Another example of a continuous length
function: if f is a non-negative real valued continuous function on R
and A[a:b] is the Riemann integral of f over [a:b], then A is a con-
tinuous length function.

It turns out that each length function is the sum, in a unique way, of
a discrete length function and a continuous one. We prove this after
establishing a lemma.

1 LemMmA If Aisalength functionanda=a,<a, << a,,,  =0b,

then) Lo Ala;:a;.,] = Afa:b] + Y 1L, A{a;},and if a; < a;,, for eachi,
then 2[a:b] = Y Iy A{a;}.

PROOF The definition of length implies the lemma for m=1. Assume that
the proposition is established for m = p and that ¢y <a, < - < a,,,.
Then Y P Ala;:a;,,1=4[ay:a,., 1+ 7, i{a;}, hence Y P4 A[a;:a;,,]1=
AMa,:a p+1] + Ala,i:apia] + ) P A{a;}, and the additivity pr0perty
of A then implies that Z”“ Ala;: a,H] = Alag:a,, 21 + ) 12 A{a;}.
If a; < a;,, for each i, then the boundary inequality implies that
ol[a ‘@i ] 2 ) Teo(A{ai} + A{a;4, }), so ila:b] + Z = Aa} 2
2, 0A{g;) + 571 2{a,} and hence i[a:b] = Y™ i{a,}. W

It is a consequence of the preceding that each length function is
monotonic; that is, if [c:d] = [a:b] then A[c:d] = Ala:b]. Ifa<c <
d<b then Ala:c] + Afc:d]} + A[d:b] = Afa:b] + A{c} + 2{d}, so
Ala:b] — Afc:d] = Afa:c] — A{c} + A[d:b] — 2{d} = 0,and the var-
1ous special cases (e.g., a = c) are easy to check.

Suppose 4 is a length function. The discrete part of 4, 44 1s defined by
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Ay(I) = ) .1 2{x} for each closed interval I. The inequality asserted in
the preceding lemma states that 2,(I) £ A(I) for each I in ¢, and it fol-
lows that x — 4 {x} is summable over each interval, and consequently 4,
is a length function. It is a discrete length function because A;[a:b] =
er [a:b]) l{x} = er{azb] )‘d {x}

The continuous part 4, of the length function 4 is defined by 4.(1) =
A(I) — 24(I) for all closed intervals I. The function A, is non-negative
because 4; < 4, and it is straightforward to check that it satisfies the
boundary inequality and has the additive property for length. Finally,
Ae{x} = A{x} — 2,{x} = Oforall x, and inf{A.[x — e:x + e]:e > 0} =
inf{A[x —e:x +e] — Ai[x—e:x + e]:e > 0} = 0 because 1 is regu-
lar, so A_has the regularity property, and consequently it is a continuous
length.

We have seen that each length function A can be represented as the
sum A, + A; of a continuous length and a discrete length. The represen-
tation is in fact unique, for if A = 4; + 1, where 1, is a discrete length
and 4, is continuous then A {x} = 4, {x} + 4, {x} = 2, {x} because 4, is
continuous, and since 1, is discrete, 2, (I)=) 1A, {x} = 1 A{x}=
A4(I) for all closed intervals I. Consequently A, = A, and i, = 4,.

We record this result for reference.

2 PROPOSITION Each length function is the sum in just one way of a
discrete length and a continuous length.

There is a standard way of manufacturing length functions. Suppose
J 1s a real valued function on R that is increasing in the sense that
f(x) 2 f(y) whenever x = y. For each x in R let f_(x), the left hand
limit of f at x, be sup{ f(y): y < x} and let £, (x), the right hand limit of
f at x, be inf{ f(y): y > x}. It is easy to verify that f, is increasing and
right continuous (that is, (f,), = f,) and that f_ is increasing and left
continuous. The jump of f at x, j(x), 1s f.(x) — f_(x) = inf{ f(x + €) —
f(x — e):e > 0}; it is 0 iff f is continuous at x. The function f is called
a jump function provided f.(b) — f_(@) = ) , c(a:y s (%) for all @ and b
with a < b.

The f length i, or the length induced by f£, is defined by A.[a:b] =
f+(b) — f_(a) for all a and b with a < b. We note that A, {x; is just the

jump, j(x).

3 PRoOPOSITION If fis an increasing function on R to R then 4, is a
length function; it is a continuous length iff f is continuous and is discrete

iff f is a jump function.

PROOF A straightforward verification shows that 1, satisfies the
boundary inequality and has the additive property for length. If b ¢ R
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and e > 0 then inf{A,[b—e:b+e]l:e>0}=inf{f.(b+€):e>0} —
sup(f- (b — e):e > 0}. But f, is right continuous and f_ is left con-
tinuous, hence inf{A,[b + e:b —e]:e >0} = f,(b) — f_(b) = A,{b},
so A, is regular and hence is a length function.

The length A, is continuous iff 2,{x} = j,(x) = O for all x: that is, f
is a continuous function. The function A, is discrete iff A,[a:b] =
Y xeta:0Ar{x} and this is the case iff £, (b)) — f- (@) = )« ca 5107 (%);
that is, if f is a jump function. B

We will show that every length function is f length for some f. [t will
then follow from propositions 2 and 3 that each increasing f is in just
one way the sum of a jump function and a continuous function.

Different increasing functions F may induce the same length, and in
particular F, F + (a constant), F,, F_ and any function sandwiched
between F_ and F, all induce the same length. We agree that F is a
distribution function for a length A iff A = A1.. A normalized distribution
function for a length A is a right continuous increasing function F that
induces A and vanishes at 0 (one could, alternatively, “normalize” by
pre-assigning a different value or a value at a different point and/or
require left continuity in place of right).

4 PROPOSITION The unique normalized distribution function F for
a length i is given by F(x) = 2[0:x] — A{0} for x 2 0 and F(x) =
—Afx:0] + A{x} for x < 0O; alternatively, F(x) = Ala:x] — Ala:0] for
each x and all a < min {x, 0}.

PROOF If a £b < c then Afa:c] — iAla:b]} = A[b:c] — A{b} by the
additive property. It follows that ifa £ x,a < 0and F(x) = A{a:x] —
Afa:0] then F(x) does not depend on a, and that F(x) = A[0:x] —
A{0} for x 20 and F(x)= —A[x:0] + 2{x} for x < 0. Evidently
FO0 =0, and if e>0, a<x and a £0 then F(x+e)— F(x)=
Ala:x + e] — A[a:x] = Alx:x + €] — A{x}, so right continuity of F is
a consequence of the regularity of 4.

If b < c and a < min{b,0}, then F(c) — F(b) = Ala:c] — ifa:0] —
(Ala:b] — 2[a:0]) = Ala:c] — Ala:b] = A[b:c] — A{b}. If we show
that F(b) = F_(b) + A{b}, then it will follow that F(c) — F_(b) =
Alb:c] for all b < ¢, whence F is a distribution function for i. For
a<b, F(b)— F(a) = 2[a:b] — A{a} and if a is near b, then A[a,b] is
near A{b} by regularity. Moreover, since a+> A{a} is summable over
cach interval,{1{a,}}, converges to zero for each strictly increasing
sequence {a, }, that converges to b. Hence F(b) — F_(b) = A {b}, and it
follows that F is a normalized distribution function for A.

Finally, if G is also a normalized distribution function for 4 then
F(x)— F_(a)= A[la:x] = G(x) — G_(a) for a < x so F and G differ by
a constant, and since F(0) = G(0) = O this constant is zero.
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The usual length function ¢, where ¢[a:b] =b — a for a £ b, is
characterized among length functions A by the fact that for 4 =¢,
A[0:1} =1 and A is invariant under translation, in the sense that
Ala:b] = Ala + x:b + x] for all x and all a and b with a < b. If we
agree that the translate of a set Eby x, E + x, is {y + x:y € E} then
£(E + x) =¢(E) foreach E 1n ¢.

5§ THEOREM There is, to a constant multiple, a unique translation
invariant length— each invariant length A is 2[0:1]¢.

PROOF Suppose A is a translation invariant length. Then A{x} =
A{y} for all x and y in R because y = x + (x — y), and since o0 >
A[O:1] = ) scr0.114{x}, it must be that 1{x} = O for all x. Thus 1 is a
continuous length so A[a:b] + A[b:c] = Afa:c] fora < b < c. More-
over, A[b:c] = A[0:c — b] for b < ¢ because A is translation invariant.

Let f(x) = A[0:x] for x =2 0. Then f is monotonic and for x and y
non-negative, f(x + y) = A[0:x + y] = A[0:x] + A[x:x + y] = f(x) +
f(y). Consequently, by induction, f(nx) = nf(x) for nin N and x = 0,
and letting y = x/n, we infer that f(y/n) = (1/n)f(y). Therefore f(rx) =
rf(x) for all x = 0 and all rational non-negative r, and so f(r) = rf(1).
Finally, f is monotonic, so sup{ f(r):r rational and r < x} < f(x) <
inf{ f(r):r rational and r = x}, whence xf(1) = sup{rf(1):r rational
andr £ x} < f(x) £ inf{rf(1):r rational and r = x} = xf(1), so f(x) =
xf(l)forx =2 0. Thus A[b:c] = f(c —b)=(c — b)f(1) = £[b:c]A[0:1]
forb<c. B

We shall eventually extend each length function A to a domain sub-
stantially larger than the family ¢ of closed intervals. We begin by
extending 4 to the class of unions of finitely many closed intervals.

A lattice of sets is a non-empty family o/ that is closed under finite
union and intersection. That is, a non-empty family o/ is a lattice iff
AU B and 4 n B belong to &/ for all members 4 and B of &/. The
inclusion relation partially orders each family &/, and &/ is a lattice
with this partial ordering iff .7 is a lattice of sets. The family of all finite
subsets of R, or of all countable subsets, or of all compact subsets or of
all open subsets, are examples of lattices.

The lattice &£ (o) generated by a family o of sets is the smallest
lattice of sets that contains /. Evidently £ (/) consists of finite unions
of finite intersections of members of .&/. The family # of closed intervals
is closed under finite intersection and the union of two intersecting
intervals 1s an interval, so #(#) is the class of unions of finitely many

disjoint closed intervals.

An exact function is a real valued non-negative function u on a lattice
o such that: & e o, u(J) =0, and u(A) = u(B) + sup{u(C): C € o
and C = A\ B for all A and B in &/ with B = A}. An exact function u is
automatically monotonic (if A > B then u(A) = u(B)), and exactness
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also implies that u(4 v B) = u(A) + u(B) for all disjoint members.A
and B of with A U B in &/ (that is, u is additive).

We show that each length function 4 on ¢ has a unique extension (its
canonical extension) to an exact function on £ (_#).

6 THEOREM Each length function 2 on ¢ extends uniquely to an ex-
act function y on the lattice £ (¥) of unions of finitely many closed
intervals.

PROOF The only possible exact extension of a length function 4 to
L(#)is given by u(| L, I;) = Y., A(L;) for each disjoint family {I; }i%,
with I, in #, so the proof reduces to showing u is exact. For con-
venience, let A, (E)=sup{A(I): IcE and I€ ¢} and let u,(E) =
sup{u(D): Dc E and D e Z(#)} for Ec R. It is straightforward
to verify, using the definition of length function, that if a<b
then A (a:b) = A[a:b] — 2{a} — A{b}, A, [a:b)= A[a:b] — A{b} and
le(a:b]l = Ala:b] — i{a}.

Suppose ¢, <d, <c¢y,fd,<''*<c¢,=<d, Then by lemma 1,
Aleyidy] = Z?=1l[ci:di] + Z::ll (Aldiiciyy ] — A{di} — A{cina }) =
i Alerd ] + )it A diiciy) 2 ) 1<y Alciid;]. If E is an interval —
open, closed or half-open—and E > | )., [¢;:d;] then E > [c,:d,]
and 1t follows that u, (E) = 4, (E).

If A=[a:b]>B=\)}-; [c;:d;] then u(A)=A(A)=Ala:c,]—A{c, }+
;"[cl:dn:' + j'[dwb:' o j‘{dl'l} — ”*[a:cl) + P'(B) + Z?;ll ”*(di:ci+1) +
p,(d,:b]. If E and F are intervals and sup E < inf F then y (E U F) =
1 (E) + u, (F). It follows that u(A) = u(B) + p,(A\B). Finally, this
last equality extends without difficulty to a union A of finitely many
disjoint closed intervals. B

SUPPLEMENT: CONTENTS

The extended length function of theorem 6 is a special case of a more
general construct. Let us suppose that X is a locally compact Hausdorff
Space. A content for X 1s a non-negative real valued, subadditive, addi-
tive, monotonic function x on the family € of compact sets. That is, for
all A and Bin €,0 < u(A) < o0, u(A v B) < u(A) + u(B) with equality
f AnB = ¢, and u(A) < u(B) if A = B. A content u is regular iff for
€ach member A of € and each e > 0 there is a member B of € with A a
subset of the interior B® of B and u(B) — u(A) < e. Thus, u is regular iff
#(A) = inf{ u(B): B € € and B® > A}. A content may fail to be regular
but each content can be “regularized” in the following sense. The regu-
larization & of a content u is defined by u'(A) = inf{u(B): A = B°, B
compact} for all compact sets A.

7 PRrOPOSITION The regularization y’ of a content u is a regular con-
tent.
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PROOF It 1s easy to see that u’ is regular; we have to show that it is a
content.

Clearly u’ is monotone, non-negative and real valued. Suppose that
A and B are compact and C and D are members of €, that A = C°
and B = D°. Then A u B = (Cu D)? and hence y'(Au B) < u(Cu D) <
u(C) + u(D). Taking the infimum for all such C and D, we see that
w(Av B) £ u'(A)+ y'(B), so u' 1s subadditive.

It remains to prove that yu’ 1s additive. Suppose that A and B are
disjoint compact sets and that A U B = C® where C € €. Then we may
choose members E and F of € so that ENnF =, E°> A, F°> B
and EU F c C. Then u(C) 2 u(Ew F) = u(E) + u(F) 2 u'(A) + u'(B).
Taking the infimum for all such C shows that u'(Au B) = u'(A) +
pu(B) B

There is a variant of the preceding that is sometimes useful. Let us
agree that a pre-content for X is a non-negative, real valued, sub-
additive, additive, monotonic function y on a class # of compact sub-
sets of X with the properties: the union of two members of Z belongs
to 4, and # is a base for neighborhoods of compacta in the sense that
every neighborhood of a compact set A contains a compact neighbor-
hood of A that belongs to #. The pre-content y is regular iff its regu-
larization y/, given by u'(A) = inf {u(B): B € # and A < B° for compact
A, agrees with y on 4.

The argument for the preceding proposition shows that the regular-
ization of a pre-content u on % is a regular content u'. If a regular
content v is an extension of a pre-content y on %, then v = ', for the
following reasons. Each compact neighborhood A of a compact set C
contains a compact neighborhood B that belongs to #,so Cc Bc A
and v(C) =< v(B) = u(B) < v(A). Hence v(C) £ u'(C) = v(A), and since v
is regular, v= yu'. Thus:

8 PRrOPOSITION The regularization of a pre-content u is a regular
content u', and if u is regular, then u' is the unique regular content that
extends .

It turns out that a regular content u is always an exact func-
tion; i.e, for all compact sets A and B with B c A, u(A) — u(B) =
sup{u(C): C = A\B,C € ¥}.

9 ProrPOSITION Each regular content is an exact function.

PROOF Suppose that 4 and B are compact sets and Bc A. If C 1s a
compact subset of A\ B then u(A) 2 u(Bu C) = u(B) + u(C). On the
other hand, for e > 0 there is a compact set D so that D° > B
and p(D) — u(B) <e, whence, if C= A\D° then C « A\B and
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p(A) £ u(D) + u(C) < pu(B) + u(C) + e. It follows that u(A) = u(B) +
sup{u(C): C =« A\B and C compact}. B

A net {E,}, . p of sets is decreasing iff E; — E, whenever f§ follows a.
A content u is hypercontinuous iff u(( ), p E,) = lim, . p n(E,) for every
decreasing net {E,}, in the family € of compact subsets of X. Since a
content u is monotonitc, lim,. p, u(E,) = inf, . p u(E,) for a decreasing

net {E, }..

10 PROPOSITION A content uon ¥ is regular iff it is exact, and this is
the case iff it is hypercontinuous.

PROOF We know a regular content is exact and we show that an exact
content u 18 regular. Suppose B € € and e > 0, and let A be any com-
pact neighborhood of B. Because u 1s exact there 1s a compact subset
C of A\ B such that u(A) < u(B) + u(C) + e. Then every compact
subset D of A\(Bu C) has u content less than e because u(A4) 2
u(Bu Cu D) = u(B) + u(C) + u(D) > u(B) + (u(A) — p(B) — ¢) +
u(D), whence 0 > —e + u(D). Let E be a compact neighborhood of C
that is disjoint from B and let F = A\ E°. Then F is a compact neigh-
borhood of B, and if K is a compact subset of F\ B, then i1t 1s also a
subset of A\(Bw C) so u(K) < e. Taking the supremum of u(K) for
such K and using exactness, we find u(F) — u(B) < e, so u is regular.

We next show that if u is regular, then it 1s hypercontinuous. Suppose
{E,}scp is a decreasing net of compact sets and E = (), p E,. For
e > 0 choose a compact neighborhood F of E so that u(F) < u(E) + e.
Since ()q p E, = F° and each E, is compact and F° is open, there is
some finite subset {o,,®,,...a,} so ()=, E,, = F°, and since D is dir-
ected, there is « so E, « F° whence inf,. p u(E,) < u(F) < u(E) + e.
Thus u 1s hypercontinuous.

Finally, suppose u is hypercontinuous and B € €. Then the family
D of compact neighborhoods o of B 1s directed by <, and if E, = «
for each o, then {E,},.p is decreasing and (), p E, = B. By hyper-
continuity lim,. p u(E,) = u((\ee p E«) = u(B), so there are compact
neighborhoods of B with u content near u(B). Thus p is regular. 1

SUPPLEMENT: G INVARIANT CONTENTS

We suppose throughout that X is a locally compact Hausdorff space,
that G is a group, and that G acts on X in the following sense. For each
a in G there is a homeomorphism (usually denoted x+ ax for x in X)
of X onto X such that the map x> ax followed by x+— bx is x — (ba)x;
that is, the composition (x> bx) o (x> ax) is x+— (ba)x. Restated: If
we let ¢(a)(x) = ax, then ¢ is a homomorphism (¢ (ab) = @(a) o @ (b))
of G into the group of homeomorphisms of X onto itself. The situa-
tion is also described by saying X is a left G space. (If X is a right
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G space and ¢(a)(x) = xa, then ¢(ab) = @(b) o ¢(a); 1.e., @ is an anti-
homomorphism. If X is a left G space, then the definition xa = a™!'x
makes X a right G space.)

We also assume throughout that G acts transitively (for x and yin X
there 1s a in G such that ax = y); and that the action of G is semi-rigid
In the sense that if A and B are disjoint compact subsets of X and
xo € X, then there is a neighborhood V of x, such that no set of the
form {aV = av: v € V} intersects both A and B. The group of rigid
motions of R” is the prototypical example of a semi-rigid transitive
action.

A content y for X is G invariant :ff u(aA) = u(A) for each a in G and
for each compact subset A of X. We will show that there is a G invari-
ant, regular content for X that is not identically zero.

Let us call a set of the form aB = {ax: x € B} a G image, or just an
image of B, and for each subset E of G let EB = {ax: a € E and x € B}.
We begin the construction of a G invariant content by adopting a
notation for the number of G images of a compact set B with B® # ¢
required to cover a compact set A. Let [A| B] be the smallest number n
such that there is a subset E of G with n members with A = EB. Notice
that [A|B][B|C] =2 [A|C], forif A =« EB and B c FC then A =« EFC.
Clearly [aA|B] = [A|B] for each ain G.

We construct an approximation to a G invanant content from the
function (4, B)— [A|B] as follows. Let B be a fixed compact subset of
X with non-void interior, and let x, be a fixed member of X. For each
compact neighborhood V of x, and each member C of the class € of
compact subsets of X, let 1p(C) = [C|V J/[B|V ]. Then 4, has the fol-
lowing properties. It 1s non-negative, subadditive and monotone, and is
G invariant 1n the sense that A, (aC) = A, (C)forallain Gand Cin ¥.
Moreover, Ay (J)=0and [C|B] = A4, (C) = 1/[B|C] because [C|B] x
[BIV]=[C|V]and [BIC][C|V] =z [B|V].

The function A, may fail to be additive, but it does have a sort of
additive property: if no G image of V intersects both C and D, then
Ay (Cu D) = A4,(C) + Ay (D).

11 LEMMA Let B be a compact subset of X with non-empty interior.
Then there is a G invariant content A on € such that [C|B] = A(C) =
1/[B|C] forallCiné&.

PROOF For x,in X and a compact neighborhood V of x, let Z,, be the
set of all monotone, G invariant, subadditive functions 4 on € such that
[C|B] = A(C) = 1/[B|C] for all C in €, and such that A is V additive in
the sense that A(C u D) = A(C) + A(D) whenever no G image of V inter-
sects both C and D. The set Z,, is not empty because the function A,

constructed earlier is a member. Moreover, it is easy to check that
Zy is a closed subset of the product space X {[0: [C|B]]: C € €}, this
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product is compact by Tychonoff’s theorem, and so Z, is com-
pact. If V.=« W then Z, c Zy, and therefore the family {Z,: V a
compact neighborhood of x,} has the finite intersection property.
Consequently there 1s a member A which belongs to Z, for all V. That
is, A(C v D) = A(C) + A(D) if there is some neighborhood V of x, such
that no G image of V intersects both C and D. But the action of G is
supposed to be semi-rigid by hypothesis, so 4 is additive and the lemma

is proved. W

The G invariant content whose existence was just established is not
identically zero because A(C) = 1/[B|C], whence A(B) = 1. It may be
that 4 fails to be regular, but according to proposition 7, the regular-
ization A’ given by A'(C) = inf{A(B): B is a compact neighborhood of
C} is a regular content, and it 1s evidently G invariant. This establishes
the following.

12 THEOREM If the action of a group G by homeomorphisms on a
locally compact Hausdorff space X is transitive and semi-rigid, then
there is a regular G invariant content for X that is not identically zero.

A topological group is a group G with a topology such that x+— x™!is
a continuous map of G onto itself and (x, y)— xy is a continuous map
of G x G, with the product topology, into G. This is the same thing as
requiring that (x, y)— xy~' be a continuous map of G x G into G.
Notice that since the map x— x™' is its own inverse and is continuous,
1t is in fact a homeomorphism of G onto G.

If Aand B are subsets of G, then AB = {x: x = yz for some y in A and
some z in B}, and 4~' = {x: x™! € A}. For each member b of G, bA =
{b} A and Ab = A{b}. The set bA is the left translate of A by b and Ab
1S the right translate. Left translation by b is the map x - bx of G, and
right translation by b is x— xb. Left translation by b is continuous
because it is the map x> (b, x) followed by (y, z)— yz and, since left
translation by 7! is the inverse, it is a homeomorphism. Conse-
quently the left (or right) translate of a set which is compact, or open or
closed, is of the same sort. If A is open, then A™!, BA = | U»epbA and
AB = | }, 5 Ab are open.

Each group G acts by left translation on itself; the assignment of a
member a of G to the function x+ ax for x in G is such an action.
Evidently the action is transitive (since y = (yx~!)x). We show that if G
1S a locally compact Hausdorff topological group, then the action by
left translation is semi-rigid.

13 ProprosITION The action by left translation of a locally compact
Hausdorff topological group G upon itelf is semi-rigid.
Consequently there is a regular content u for G, not identically zero,
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which is left invariant in the sense that u(A) = u(aA) for A compact and
ainG.

PROOF Suppose C and D are disjoint compact sets and that V is a
neighborhood of the identity e such that for some x, (xV)n C # ¢ and
xV nD# @, that is, xv € C and xw € D for some members v and w of
V. Then v™'w e C™'D and consequently (V! V)n(C ' D) # . But
C™'D is compact and e ¢ C™'D because Cn D = . Consequently
there is a neighborhood of (e, e) of the form W™' x W whose image
under the group map, (y,2)— yz, is disjoint from C~!'D. That is,
(W1 W)n (C™ ' D) = ¥, and so no left translate of W intersects both C
and D. B

SUPPLEMENT: CARATHEODORY PRE-MEASURES

Here is the classical Carathéodory construction for measures and of
extending certain pre-measures. We assume throughout that v is a
non-negative R* valued function on the class 22 (X) of all subsets of X
and that v(J) = 0. Let us agree that a subset M of X splits A additively
iff v(A) = v(An M) + v(A\ M). A set M is Carathéodory v measurable
iff M splits every member of 2(X) additively. Let .# be the family of
Carathéodory measurable sets. Evidently (J ¢ #, X € # and if M €
M then X\ M e 4. We show that if M and N are members of .# then
so are M n N and M U N besides X\ M (thus # is a field of sets),
and if M n N = &, then v(M U N) = v(M) + v(N) (that is, v is finitely
additive or just additive).

14 CARATHEODORY LEMMA The class M is a field of sets and v| MHA is
finitely additive.

PROOF We show that if M and N belong to .# then M N ¢ A,
it will follow that .# 1s a field of sets. For each A in (X)), v(A) =
v(An M)+ v(A\ M) because A splits M additively, and v(4A n M) =
v(AnMn N)+ v((An M)\ N) because N splits A n M additively.
But v((An M)\N) + v(A\ M) = v(A\(M n N)) because M splits A\
(M n N) additively, so v(A)=v(AnMnN)+ v(A\(M n N)) and
hence MNN e A.

If M and N are disjoint members of #, then v(M U N) =
W(iMUN)A M)+ v((MuN)\M)=v(M + v(N). Thus v 1s additive
on the field # of sets. B

We agree that v is countably subadditive iff v(4) < ) , v(A,) for all 4
and {A,}, in the domain of v such that {A4,}, covers 4, and v is
countably additive iff v(4) =) ,v(4,) provided {A4,}, is a disjoint
sequence with { ), A, = A. If v is countably sub-additive, then it is also
finitely subadditive and monotonic. A family &/ of sets is called a
o-field iff o is a field of sets and 7 is closed under countable union.
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F‘_

15 THEOREM If v is countably subadditive non-negative R* valued on
P(X) and v(J) = O, then the family M of Carathéodory v measurable
sets is a o-field and v is countably additive on A . In fact M +— v(A " M),
for M in M, is countably additive for each A < X.

prOOF If M and N are disjoint members of # and A < X, then
v AN (MUN))=v(An(MuUN)n M)+ v((4An (M v N)\N) =
v(An M)+ v(An N) because M € #, so M—v(An M) is finitely
additive on 4.

Suppose that {M,}, is a disjoint sequence in # and A c X. Then
for each n, v(A) = v(A\Ui=1 My) + v(A n iy M) 2 v(A\. M,) +
Y 2_1 V(AN M,). Hence v(4) 2 v(A\|J, M,) + > ,v(AnM,) so v(A4) =
v(A\U,, M)+ v(An U,, M, ) because v is countably sub-additive. But
this last inequality is an equality because v is subadditive, and we 1nfer
that | ), M, € # and (replace A by A n| ), M,) that M — v(4 n M) is
countably additiveon .#. B

The preceding theorem underlies an extension process whereby,
under certain circumstances, one may extend a function u: o/ = R* to
a measure. Suppose that o/ is a family of subsets of X, u on & is
R* valued non-negative, J € .o/, and u(¥) = 0. The outer measure u*
induced by # 1s defined on 2(X) by agreeing that u*(E) = o if no
sequence in o/ covers E, and u*(E) = inf{d , u(4,): {A,}, in & and
E c | ), A,} otherwise. Evidently u* is an extension of p iff u is count-
ably sub-additive, and it is straightforward to verify that u* is itself
countably subadditive (the “¢/2" argument”). Hence (taking v = u*), if
M 1s the family of Carathéodory measurable sets, u* is countably
additive on .#. But an assumption must be made to ensure that o c
M if u*| A is to be an extension of u.

A function u: &/ —» R™ is a Carathéodory pre-measure iff it is count-
ably subadditive, &/ is non empty and closed under finite intersection
and pu(A) = u(B) + u*(A\ B) for all A and B in & with B c A.

16 ExTENSION THEOREM Each Carathéodory pre-measure p: of — R*
extends to a countably additive R* valued function u* on the o-field #
of Carathéodory u* measurable sets.

PROOF We show that each member A of « is Carathéodory u*
measurable. Suppose B =« X and {C,}, is a sequence in «/ that covers
B. Then u(C,) = u(C,n A) + p*(C,\ A) for each n, so ¥, u(C,) =
2nt(C, A A) + Y, u*(C,\ A) Z p*(B n A) + p*(B\ A). Upon taking
the infimum for all such sequences {C,},, we obtain u*(B)
#* (B N A) + p*(B\ A). The same inequality holds if no sequence in </
Covers B because in this case u*(B) = o0. The reverse inequality holds
because u* is sub-additive, and it follows that A ¢ .#. B
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If u is a Carathéodory pre-measure on & and # = {B: B ¢ .# and
p*(B) < oo}, then # is a d-ring of sets (i.e. # is closed under union,
difference and countable intersection) and u*|% is a non-negative,
countably additive, real valued extension of u. That 1s, u*| % 1s a mea-

sure that 1s an extens:on of u.

Note The Carathéodory condition, u(A) — u(B) = u*(A\B) for all 4
and B in &/ with B c A 1s, 1n a certain sense, the dual of the require-
ment for exactness: u(A4) — u(B) = sup {u(C): C = A\ B}.

It 1s not difficult to see that a regular content (in the sense of the
preceding supplements) 1s a Carathéodory pre-measure as well as exact.
Consequently each regular content has an extension that is a measure.
We shall also deduce this fact later, from exactness. We shall not use
the Carathéodory results in what follows.



Chapter 2

PRE-MEASURE TO PRE-INTEGRAL

Each length function A induces a rudimentary integration process as
follows. If the function y,. is 1 on the interval [a:b] and O elsewhere,
then its “integral” I* (.., ) With respect to 4 should be A[a: b], and if
S =Y 1-1 CiXia, s, then I*(f) should be Y 7., ¢;A[a;: b;]- But is this as-
signment non-ambiguous? Stated in another way: does the function
Xa:5y+— A[a:b] have a linear extension to the vector space of linear
combinations of functions of the form y,.;? It turns out that this is the
case, and that it is a consequence of the fact that 4 has an additive
extension to a ring of sets containing the closed intervals, as we pre-
sently demonstrate.

A ring of sets is a non-empty family .« of sets such that if A and B are
members of & then A U Band A\ B also belong to &7. In other words,
a non-empty family ¢ of sets is a ring iff it is closed under difference
and finite union.

The family 22(X) of all subsets of a set X is a ring, as is the family of
all finite subsets of X and the family of all countable subsets of X.
Another example of a ring: the family of all finite unions of half-open
Intervals (a:b], where a and b are real numbers and (a:b] =
{x:a<x< b}.

A ring o/ of sets is automatically closed under intersection because
AN B = A\(A\B), and it is also closed under symmetric difference be-
Cause A A B=(A\ B) U(B\ A). Thus if &/ is a ring of subsets of X then
(&, A, N)isa ring in the algebraic sense; it is a subring of 2(X) (A is the
Operation of ring addition; n is multiplication). Conversely, a family o/
of sets which is closed under intersection and symmetric difference is
Closed under union and difference because 4 U B = (4 A B)A(A N B)
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and A\B= An(AAB). Hence a family of sets 1s a ring of sets
iff (,A,N) is a ring in the algebraic sense. If in addition, X =
| J{A: A € o} € o then « is a ring with unit X, or &/ is a field of sets
for X, or just a field of sets or an algebra of sets.

If o/ is a family of sets then the family of all subsets of | ), s A is a
ring that contains /. The smallest ring that contains &/ i1s called the
ring generated by o7; its members are just those sets that belong to
every ring of sets that contains .«/. Similarly the lattice generated by .o
is the smallest lattice (family closed under finite union and intersection)
that contains &/

It 1s not difficult to give a simple, explicit description of the ring #
generated by a finite family {A,, 4,,..., A, }. Let X =)}, 4;,let A/ =
X\ A; for each i, and for each subset M of {1,2,...n} let Ep =
(NiemA;Nn(NiemAf = Vjem A\U;¢m A;- Then E,, belongs to each
ring of sets containing {4,,A,,...,A4,} and so E,, € ®. If N is another
subset of {1,2,...,n} and j€ M\N, then E,, = A;and Ey c A/ so Ey,
and E, are disjoint, and consequently the family of all unions of sets of
the form E,, is a ring & with # c #. But if xe A; and M =
{j: x € A;}, then x € E); c A;, so A; is the union of the sets E,, that it
contains. Consequently A; € #', and it follows that ' = #. Thus #
consists of unions of sets of the form E,,.

A non-empty set E,, is an atom of the ring #, in the sense that
E\ € # and J is the only member of # that is a proper subset of E,,.
Thus Z consists of all possible unions of atoms, i.e., Z 1s atomic. Notice
that each atom Ey, = (), c i 4;\|J; ¢ i A4, is the difference of members of
the lattice & generated by {4,, A,,..., A,}. This establishes all except
the last statement of the following.

1 LemMa If & isthelattice and R the ring generated by {A,, A,,...,
A,} then R is atomic, each atom is the difference of members of &, and
for each A in & thereis B in & so A\ B is an atom.

PROOF Suppose that A4 is a non-empty member of .Z. Choose a subset
M of {1,2,...,n} which is maximal with respect to the property that
{A;};emfailstocover Aandlet B= AN J;cp A;. If k ¢ M then 4, o
A\l J;e m A; # & by maximality, and if k € M then A,' o A\| ;e A4;-
Hence the atom (V¢ A O (Jees A’ @ A\B # &, so A\B € # and
is a non-empty subset of an atom of #, and so must be identical with
that atom. B

We recall that an exact function p is a real valued function on

a lattice &/ of sets such that e &, u(H) =0, and u(A) — u(B) =
sup{u(C): Ce & and C =« A\ B} for all A and B in &/ with B c A.
For such sets A and B the number u(A) — u(B) depends only on the
difference set A\ B, and since A U B\B= A\A N B for all A and B,
p(A U B) — u(B) = u(A) — u(A n B) for all A and B.
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A function u is modular iff it is a real valued function on a lattice &/
of sets, J € &, u() =0 and u(4) + u(B) = u(A v B) + u(A n B) for
all A and B in /. Each exact function is modular. A real (or real*)
valued function x on a family o is finitely additive iff u(4 U B) =
u(A) + u(B) for all disjoint members A and B of &/ with AU B in /.
The following proposition asserts that each modular function on «,
and in particular each exact function, has a finitely additive real valued
extension to the ring generated by &/. (We owe the proof to H. v.

Weizsacker.)

2 THEOREM The ring R generated by a lattice o of sets consists of
unions of finitely many disjoint sets of the form A\ B with A and B in /.
Each modular function p on o has a unique finitely additive extension

p-to A.

PROOF The family # = {B: B belongs to the ring generated by some
finite subfamily {A,,A,,..., A,} of &} is itself a ring containing &/,
and consequently # > #. The first assertion of the proposition then
follows from lemma 1, and the proof of the second assertion reduces to
the case where ¢ is finite.

Let us define u'(A\B) to be u(A) — u(B) for A and B in & with B
A. This definition is not ambiguous, for the following reasons. Suppose
A, B, C and D belong to &/, Bc A, D« C and A\B = C\D. Then
A=(AnNnC)uB so, since u is modular, u(4) = u(An C) + u(B) -
(AN CnB) and since BNnC=BnNn D, we have u(A)— u(B)=
p(A N C) — u(B n D) which by symmetry is u(C) — u(D). We note that
any additive extension of u must agree with 4’ on differences, so an
additive extension of u to &, if there is one, 1s unique.

Each atom of 2 is the difference of two members of .2/, and we define
1~ of an arbitrary member A of Ztobe ) {u'(T): Tc Aand T is an
atom of R}. Clearly, u~ is additive on £ and we show by induction on
the number of atoms contained in 4 that 4~ (A4) = u(4)for Ain . If A
1S a non-empty member of &, then there is, by the lemma, a member B
of &/ such that B = A and A\ B is an atom, whence u~(4) — u~(B) =
# (A\B) = u'(A\B) = u(A) — u(B), so u~(A) — u~(B) = u(A) — u(B).
The inductive hypotheses implies that u~(B) = u(B) and so u~(A4) =
p(4). =

A real* valued function p on a family &/ of sets is countably additive
iff u(>,4,)=Y,u(4,) for all disjoint sequences {4,}, in o/ with
U.A4, in o/. If o is a ring of sets then countable additivity can be
viewed as finite additivity plus a continuity condition, as follows. If
{A,},is a disjoint sequence in &, then Y, u(4,) = lim, Y 7, u(4,), and
since y is finitely additive, this is lim, u(| Ji=, A;). Consequently x is
countably additive iff lim, u((Ji=; A) = 1(| ), 4,) for every disjoint



24 CHAPTER 2: PRE-MEASURE TO PRE-INTEGRAL

sequence in & with { J, 4, in . The sequence {| J;-; 4.}, of partial
unions of {4,}, is an increasing sequence in %/, and every increasing
sequence {B,}, in &/ is the sequence of partial unions of the disjoint
sequence B,, B,\ B, B;\B,, ... in &/. It follows that u is countably
additive iff it is continuous from below, in the sense that lim, u(B,) =
u(l J, B,) for each increasing sequence {B,}, in &/ with | J, B, in &.
(A sequence {B, }, is increasing iff B, — B, ., for all n, and it is decreasing
iff B, o B, ., for all n.)

There are other characterizations of countable additivity. We agree
that a real* valued function x on & is continuous from above at A iff
A € o/ and u(A) = lim, u(A,) for each decreasing sequence {4, }, in &
with A = (), A, and u(4,) < oo, that x is continuous from above iff it is
continuous from above at each member A of &/, and that u is con-
tinuous at & iff it is continuous from above at &f. We notice that the
counting function y, which assigns to a set A of integers the number
v(A) of members of A, is continuous from above, although y is o0 on
each of the sets {k: k > n} but is zero on their intersection.

Lastly, u is subadditive iff u(C) < u(A) + u(B) for A, B and C in &/
with C =« AU B, and pu is countably sub-additive iff u(C) <Y, u(4,)
provided C € &, {A,}, is a sequencein &, and Cc | J, 4,.

We observe that if 4 is non-negative and finitely additive on a ring &/
then it is monotonic in the sense that u(B) = u(A) if B o A, because

u(B) = u(A4) + pn(B\ A).

3 PROPOSITION If uis a real* valued, finitely additive, non-negative
function on a ring 4 of set, then u is countably additive iff it is con-
tinuous from below, and this is the case iff it is countably subadditive.

If uis countably additive it is continuous from above and if pis finite
valued and continuous at J then it is countably additive.

PROOF We have already seen that u is countably additive iff it is
continuous from below. Suppose p is countably additive, {4,}, is a
sequence in &, Cc | ), 4, and C € #. Let B, = ( J;=; C n A, for each
n. Then {B, },is increasing and C = | J, B,, so B, B,\ B, B;\ B,, ... are
distint and “(C) = P’(Bl) + Zn p'(Bn+l\Bn) é P'(Al) + Zn ”(An+1) be-
cause B, « A, and B, \B,c A,,, for each n. Consequently u is
countably subadditive.

If {A,}, is a disjoint sequence in &/ and U,, A, € &7 then Z,,p(A,,) =
lim, Y 7=y p(Ay) = lim,u( Ji=1 A) S u(|Jn 4,). If p is countably sub-
additive then Y , u(4,) = u(| J, A,), whence }_, u(A4,) = u(|J. 4,) and
u 1s countably additive.

Suppose {4,}, is a decreasing sequence in &/, 4 =[], 4, € &, and
#(A,) < co. Then {4,\A,}, is increasing, the union is A4;\ A4, and
p(A4,\A,) = pu(A,) — u(4,) for each n because u(A4,\A4,) + n(4,) =
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u(A,) and pu(A4,) £ pu(A,) < oo. Therefore, if u is countably additive,
and hence continuous from below, then u(A4,) — u(A) = lim, (u(4,) —
1(A,)) so u(A) = lim, u(4,). Thus u is continuous from above.

Finally, suppose that 4 is finite valued and continuous from above at
¢s and that {4,}, is a disjoint sequence in & with 4 =| ), A4, € .
Then {A\( Ji=; A} is a decreasing sequence with void intersection
so lim, p(A\ | Ji=1 A) =0. It follows that u(A) = lim, u(| Ji= 1A,t) =
lim, Zk _, #(Ay), so u is countably additive. 1B

We have notice that each exact function u on a lattice ./ of sets is
modular, and so by theorem 2 it has a unique finitely additive extension
u” to the ring # generated by .. If A and B belong to &/ and B < 4,
then u~(A\B) = u(A) — u(B) = sup{u(C): C € &/ and C < A\ B}, and
since every member of # is the union of finitely many disjoint sets of
the form A\ B, u~(R) = sup{u(C): C € & and C < R} for all R in .
We use this fact to show that 4~ is continuous at ¢ if u is.

4 PROPOSITION The unique finitely additive extension u~ on # of an
exact function u on £ is given by p”(R) =sup{u(A): Ae o and
A c R}.

If u is continuous at 5 then sois u".

PROOF The first statement has already been established.

Suppose that {R,}, is a decreasing sequence in # with (|, R, =
and that {e,}, is a sequence of positive numbers with }_, e, small. For
each n there is A, in &/ with A, < R, and u~(R,) — u(4,) <e,. We
show inductively that pu~(R,) — p(()f=; A;) <e; +e,+ -+ e, for
each p, and since {()f-, A;}, is a decreasing sequence in &/ with void
intersection, it will follow that u~(R,) is arbitrarily small for p suf-
ficiently large.

The proposition is clear for p = 1. The inductive step: by modularity,
ﬂ(Ap+1) + ﬂ(ﬂwl A;) = F(Ap+1 a n;=1 A;) + p(Aps Y mf- A; ) s
(VP2 A) + 1~ (Ry) < m(N)E LA + (Ve Ay) + €4 + €5 +
e, by the inductive hypothesis. So p(A,4) < p()2 A) + e+ e +

‘+e,and p (R ) < u((V3l A)+e +es+ - +e,+e,.. B

If u is exact on a lattice &/ of compact sets then u is automatically
continuous at &, for if {4,}, is decreasing in .« with (), A, = &, then
A, = ¢ for nlarge. Hence:

S CoroLLARY Each exact function u on a lattice of compact sets has
a countably additive, non-negative real valued extension u~ to the ring X
generated by o, given by u~(R) = sup{u(4): A € o and A < R} for R
in R.
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A function p on a family &/ of sets is called a pre-measure provided
2 is closed under finite intersection and u has a countably additive,
non-negative real valued extension to the ring # generated by /. Thus
each exact function that is continuous at (J is a pre-measure. The pre-
ceding corollary, together with theorem 1.6, shows that every length
function is a pre-measure. (The term “pre-measure” is used in anticipa-
tion of the theorem that every pre-measure has an extension that i1s a
Measure.)

A characteristic function i1s a function that assumes no value other
than 0 or 1. If A < X then the characteristic function of 4 (on X),
denoted g4, is defined to be 1 at points of A4 and 0 at points of X\ A.

A real valued function f 1s simple iff it has finite range or, equiva-
lently, iff f is a finite linear combination of characteristic functions. If
s/ is a family of subsets of X, then a function f on X is & simple iff f
is a finite linear combination of characteristic functions of members of
. We denote by L™ the vector space of & simple functions. If o is a
lattice of sets then L is identical with the class L* of # simple func-
tions, where £ is the ring generated by &7, because & consists of unions
of finitely many disjoint sets of the form A\ B with 4 and B in .
Further, if £ 1s a family closed under intersection and ./ 1s the lattice
generated by # then L® = L¥ = L%. We omit the straightforward
proof of this fact.

If .o/ is a ring of sets then each &/ simple function is linear combina-
tion of characteristic functions of disjoint members of 7 (e.g., ay, +
bxs = ay.p + (a + b)x4~p + bxp\ 4)- Further, if f and g belong to L,
then we may suppose f =) I, axc, and g = ) ¥ b xc, for some
disjoint finite sequence {C,,C,,...,C,} in &/. It follows that f v
g and f A g, where (f v g)(x) =max{f(x),g(x)} and (f A g)(x) =
min { f(x), g(x)}, belong to L¥,so L9 is a vector function lattice. This is
a lattice with truncation, in the sense that if f € L¥ then 1 A f e L¥.
Thus L¥ is a vector function lattice with truncation. (We think of L
as a linearization of the ring /)

Suppose that ux is a modular function on a lattice .o/. We will con-
struct a linear functional I* on L such that I*(y,) = u(A) for all 4 in
/. It turns out that if u is monotonic then I* 1s positive, in the sense
that I“(f) = 01if f = 0. If u is a pre-measure, I*(f) will turn out to be
the integral of f with respect to any measure that is an extension of pu.

6 PROPOSITION If uis a modular function on a lattice f of sets, then
there is a unique linear functional I* on L such that I*(y,) = u(A) for
A in &, and if u is monotonic then I* is positive.

PROOF Suppose for the moment that u is finitely additive on a ring
o of sets. We show that if 4,, 4,, ..., A, are members of ¥
and >} 7. a;x4, =0, then > ., a;u(4;)=0, whence the definition



DANIELL-STONE PRE-INTEGRAL 27

I*()1=1a;x4,) = D 1=y a;u(A;) is not ambiguous. Choose a finite dis-
joint subfamily # of the ring & so that A;={){B: Be # and
B < A;} for each i. Then u(A;) =) {u(B): Be # and B c A;} and
Yic1a;p(A) =Y geau(B) (3 {a:Bc A;}). But for B in &, ) {a;:
B c A;} = 0 because ) 7., a;x,, = 0. Consequently ) I, a;u(4;) = 0.

If u 1s modular on a lattice &/ then u extends, by theorem 2, to a
finitely additive function g~ on the ring # generated by ., and
I* (x4) = u(A) for A in of. Each member of & is the union of finitely
many disjoint sets of the form A\ B with @&« B<c A4 and A4 and B in
o, and if u is monotonic then p”~ is nonnegative and I* is posi-
tive. Uniqueness of I* follows from the fact that {x4: A € &} spans
LY =

Here are some useful consequences of positivity of I#. If f and g
belongtoLand f = g,then I*(f —g) =2 0so I*(f) = I#(g). [f0 < g <
ay, with A in of then I*(g) < au(A). A set S is a support for f iff f is
zero outside S. If S is a support for f, f € LY and S € & then I*(f) £
u1(S) max f.

A pre-integral, or a Daniell -Stone pre-integral is a positive linear
functional I on a vector function lattice L with truncation, such that
lim, I( f,) = O for every decreasing sequence { f, }, in L that converges
pointwise to zero. This last condition can be stated alternatively: [
is a countably additive linear functional, in the sense that I(} ,g,) =
> .1(g,) for all sequences {g,}, of non-negative members of L with
pointwise sum ) , g, belonging to L. (The proof is the usual partial sum
and differencing trick.) Thus a pre-integral is a positive, countably
additive linear functional on a vector function lattice with truncation.

7 THEOREM (PRE-MEASURE TO PRE-INTEGRAL) If u is a pre-measure
on 4, then I* is a pre-integral on L¥.

PROOF Suppose u is a pre-measure on &/ and that { £, }, is a decreasing
sequence in L with lim, f, = 0. We may suppose that & is a ring of
sets. Let S in &/ be a support for f,;let b be an upper bound for f;, and
for e >0 let A, = {x: f,(x)> e}. Then {A4,}, is decreasing and (), 4, =
J, so u(A,) is small for n large because u is continuous at . Hence
for n large, f, < e save on a set A with u(4)<e, f, < by, + eys and
I"(f,) < bu(A) + eu(S) < (b + u(S))e. Consequently lim, I*(f,)=0. B

There are pre-integrals that are not induced by pre-measures. Let
Cla:b] be the set of all continuous real valued functions f on [a: b].
Then the Riemann integral R(f) = {2 f(t)dt, for f in C[a:b], is a posi-
tive linear functional on a vector function lattice with truncation. We
will show that it is a pre-integral.

There is a variant of this example. Let C.(R) be the class of con-
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tinuous real valued functions on R that have compact supports (1e.,
for each f there is a compact set K such that f is identically zero on
R\ K). Then C,.(R) is a vector function lattice with truncation and the
Riemann integral, restricted to C.(R), is a pre-integral. We prove this
after establishing a preliminary result. Recall that a real valued func-
tion f is upper semi-continuous, or u.s.c. iff {x: f(x) = ¢} is closed for
each cin R, and f is lower semi-continuous iff {x: f(x) < ¢} is closed for
each c.

8 DiINr's THEOREM If a decreasing sequence { f,}, of u.s.c. functions
on [a:b], or on R with compact supports, converges pointwise to zero,
then it converges to zero uniformly.

PROOF For e> 0let A, = {x: f,(x) = e}. Then {A4,}, is a decreasing
sequence of compact sets and ('), A, = & because lim, f,(x) = 0 for all
x. Consequently there is n such that A, = (. It follows that { f,},
converges uniformly to zero. B

9 ProrosITION Each positive linear functional, and in particular the
Riemann integral, on either C[a:b] or C.(R), is a pre-integral.

PROOF We prove only that a positive linear functional on C,(R) 1s a
pre-integral. Suppose { f, }, is a decreasing sequence in C,(R), and let
| £, || = sup,.rlf(x)| for each n. By Dini’s theorem, lim, | f, | = O.

Choose M so |f;(x)|=0 if |x| 2 M and choose a non-negative
member h of C.(R) thatis 1 on [—M: M], whence f, < || £, || » for all
n. Then 0 I(f,) S|l f,IlI(h) because I is positive, and hence
lim, I(f,)=0. B

In the next chapter we will extend each pre-integral to an integral.
An integral is a pre-integral, say J on M, with the additional Beppo Levi
property: If { .}, is an increasing sequence in M that converges point-
wise to a real valued function f, and if sup, J( f,) < o0, then f € M and
J(f)=lim,J(f,). In chapter 4 we show that each integral induces a
measure so that each pre-measure induces a pre-integral, then an inte-
gral, and finally a measure.

SUPPLEMENT: VOLUME 4,; THE ITERATED INTEGRAL

A closed interval in R is a set of the form A = [a:b]; a closed interval
in R", or an n-interval, is the Cartesian product Xj.; A, of n closed
intervals {A4,}’~, in R, and the class of n-intervals is denoted by
Fn. The n-dimensional volume or just the volume is defined on _#, by
setting 4,()X7=; 4;) equal to the product []i., £(4;), where ¢ is the
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A

usual length. Thus 2, = ¢, and 4,,, (i3} [a;:5,]) = [[121 (b — a)) =
An(Xi=1[a;: b, :l)t’(at,,l+l b,..]. We shall not distinguish between
X"“ A and ()(IL LAY X AL

Let L" (=L7") be the class of ¢, simple functions. Because g, is
closed under intersection, L" is 1dentical with the class of # simple
functions, where £ 1s the ring generated by #, (we observe that y, 5 =
Y.+ Ap — X4~p)- Consequently L" is a vector function lattice with
truncation.

Suppose [ = Y ¥, a;x, forsome a,,a,,...,a,in Rand 4,, 4,, ...,
A, in #,. We define I"(f)tobe Y ¥, a;4,(A4;). The first assertion of the
following proposition implies that this definition is not ambiguous, and
that I" is a positive linear functional on L".

10 PROPOSITION [If a,ecR and A;e ¢, fori= 1,2, ..., k, and if
Z?=1 a;Xa, 2 0, then Z:"=1 a;/n(4;) 2 0.
The function I" is a pre-integral on L".

PROOF The proposition is true for n = 1, and we argue by induction.
Each n-interval A; is the cartesian product B; x C; with B; in ¢,_, and
C; In jl, and if (x,y) € R"™!' x R', then yx, (x,y) = xp (x)xci(y) For
each x in R"™" the function ) &, a;xp (¥)xc, i a non-negative #; sim-
ple function on R, and hence ) -, a; 4, (C;) x5 (x) = 0. Consequently, by
the induction hypothesis, 0 