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Preface

Algebraic K-theory is the branch of algebra dealing with linear algebra
(especially in the limiting case of large matrices) over a general ring R
instead of over a field. It associates to any ring R a sequence of abelian
groups K;(R). The first two of these, Ky and K, are easy to describe in
concrete terms; the others are rather mysterious. For instance, a finitely
generated projective R-module defines an element of Ko(R), and an invert-
ible matrix over R has a “determinant” in K;(R). The entire sequence of
groups K;(R) behaves something like a homology theory for rings.

Algebraic K-theory plays an important role in many areas, especially
number theory, algebraic topology, and algebraic geometry. For instance,
the class group of a number field is essentially Ko(R), where R is the ring
of integers, and “Whitehead torsion” in topology is essentially an element
of K)(Zn), where m is the fundamental group of the space being stud-
ied. K-theory in algebraic geometry is basic to Grothendieck’s approach
to the Riemann-Roch problem. Some formulas in operator theory, involy-
ing determinants and determinant pairings, are best understood in terms
of algebraic K-theory. There is also substantial evidence that the higher
K-groups of fields and of rings of integers are related to special values of
L-functions and encode deep arithmetic information.

This book is based on a one-semester course I gave at the University
of Maryland in the fall of 1990. Most of those attending were second- or
third-year graduate students interested in algebra or topology, though there
were also a number of analysis students and faculty colleagues from other
areas. I tried to make the course (and this book) fairly self-contained, and
to assume as a prerequisite only the standard one-year graduate algebra
course, based on a text such as {[Hungerford}, {Jacobson], or [Lang], and the
standard introductory graduate course on algebraic and geometric topol-
ogy, covering the fundamental group, homology, the notions of simplicial
and CW-complex, and the definition and basic properties of manifolds. As
taught at Maryland, the graduate algebra course includes the most basic
definitions and concepts of category theory; a student who hasu’t yet seen
these ideas could consult any of the above algebra texts or an introduc-
tion to category theory such as {Mac Lane]. Since many graduate algebra
courses do not include much in the way of algebraic number theory, I have
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included many topics such as the basic theory of Dedekind rings and the
Dirichlet unit theorem, which may be familiar to soine readers but not
to all. I've tried in this book to presuppose as little topology as possible
beyond a typical introductory course, and to develop what is needed as
I go along, but to give the reader a flavor of some of the important ap-
plications of the subject. A reader with almost no topology background
should still be able to follow most of the book except for parts of Sections
1.6, 1.7, 2.4, 4.4, and 6.3, and most of Chapter 5 (though I would hope
this book might encourage him or her to take a more systematic course
in topology). A problem one always has in writing a book such as this
is to decide what to do about spectral sequences. They are usually not
mentioned in first-year graduate courses, and yet they are indispensable
for serious work in homological algebra and K-theory. To avoid having
to give an introduction to spectral sequences which might scare off many
readers, I have avoided using spectral sequences directly anywhere in the
text. On the other hand, I have made indirect reference to them in many
places, so that the reader who has heard of them will often see why they
are relevant to the subject and how they could be used to simplify some of
the proofs.

For the most part, this book tends to follow the notes of the original
course, with a few additions here and there. The major exceptions are
that Chapters 3 and 5 have been greatly expanded, and Chapter 6 on
cyclic homology has been added even though there was no time for it in
the original course. Cyclic homology is a homology theory for rings which
may be viewed as the “linearized version” of algebraic K -theory, and it's
becoming increasingly clear that it is both a useful computational tool and
a subject of independent interest with its own applications.

Each chapter of this book is divided into sections, and I have used a
single numbering system for all theorems, lemmas, exercises, definitions,
and formulas, to make them easier to locate. Thus a reference such as
1.4.6 means the 6th numbered item in Section 4 of Chapter 1, whether
that item is a theorem, a corollary, an exercise, or a displayed formula.
The exercises are an integral part of the book, and I have tried to put at
least one interesting exercise at the end of every section. The reader should
not be discouraged if he finds some of the exercises too difficult, since the
exercises vary from the routine to the very challenging.

I have used a number of more-or-less standard notations without special
reference, but the reader who is puzzled by them will be able to find most
of them listed in the Notational Index in the back of the book.

Why This Book?

The reader might logically ask how this book differs from its “competi-
tion.” [Bass| remains an important reference, but it is too comprehensive
to use as a text for an elementary course, and also it predates the defini-
tion of Ko, let alone of higher K-theory or of cyclic homology. My original
course was based on the notes by Milnor [Milnor], which are highly recom-
mended. However, I found that [Milnor] is hard to use as a textbook, for
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the following three reasons:

(1) Milnor writes for a working mathematician, and sometimes leaves
out details that graduate students might not be able to provide for
themselves.

(2) There are no exercises, at least in the formal sense.

(3) The subject has changed quite a bit since Milnor’s book was writ-
ten.

For the working algebraist already familiar with the contents of [Milnor]
who wants to learn about Quillen K-theory and its applications in alge-
braic geometry, [Srinivas] is an excellent text, but it would have been far
beyond the reach of my audience. The notes of Berrick [Berrick] give a
more elementary introduction to Quillen K-theory than [Srinivas|, but are
rather sketchy and do not say much about applications, and thus again are
not too suitable for a graduate text. And [LluisP] is very good for an up-
to-date survey, but is, as the title says, an overview rather than a textbook.
For cyclic homology, the recent book by Loday [LodayCH] is excellent, but
to be most useful requires the reader already to know something about
K-theory. Also, I do not believe that there is any book available that dis-
cusses the applications of algebraic K-theory in functional analysis (which
are discussed here in 2.2.10-2.2.11, 4.4.19-4.4.24, 4.4.30, 6.3.8-6.3.17, and
6.3.29-30). Thus for all these reasons it seemed to me that another book

on K -theory is needed. 1 hope this book helps at least in part to fulfill that
need.
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Ko of Rings

1. Deﬁning I(O

K-theory as an independent discipline is a fairly new subject, only about
35 years old. (See [Bak]| for a brief history, including an explanation of the
choice of the letter K to stand for the German word Klasse.) However,
special cases of K-groups occur in almost all areas of mathematics, and
particular examples of what we now call Ko were among the earliest stud-
ied examples of abelian groups. More sophisticated examples of the idea of
the definition of K underlie the Euler-Poincaré characteristic in topology
and the Riemann-Roch theorem in algebraic geometry. (The latter, which
motivated Grothendieck’s first work on K-theory, will be briefly described
below in §3.1.) The Euler characteristic of a space X is the alternating sum
of the Betti numbers: in other words, the alternating sum of the dimen-
sions of certain vector spaces or free R-modules H;(X; R) (the homology
groups with coefficients in a ring R). Similarly, when expressed in modern
language, the Riemann-Roch theorem gives a formula for the difierence of
the dimensions of two vector spaces (cohomology spaces) attached to an
algebraic line bundle over a non-singular projective curve. Thus both in-
volve a formal difference of two free modules (over a ring R which can
be taken to be C). The group KoR) makes it possible to define a similar
formal difference of two finitely generated projective modules over any
ring R.

We begin by recalling the definition and a few basic properties of pro-
jective modules. Unless we say otherwise, we shall assume all rings
have a unit, we shall require all ring homomorphisms to be unit-

preserving, and we shall always use the word module to mean
“left module.”

1.1.1. Definition. Let R be a ring. A projective module over R
means an R-module P with the property that any surjective R-module
homomorphism « : M — P has a right inverse 3 : P — M. An equivalent
way of phrasing this is that whenever one has a diagram of R-modules and
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R-module maps
P

|

M w;N

with M 5 N surjective, one can fill this in to a commutative diagram

P
6 / lw
M —* N
Indeed, given the diagram-completion property and a surjective R-mod-

ule homomorphism a : M — P, one can take N = P, ¢ = idp, and
¥ = a, and the resulting # : P — M is a right inverse for «, i.e., satisfies
aof = 1dp

In the other direction, suppose any surjective R-module homomorphism
« : M — P has a right inverse § : P — M, and suppose one is given a
diagram of R-modules and R-module maps |

P

|7

M ~—2% N

with M % N surjective. Replacing M % Nby Mo P Y2, Ng P
and ¢ : P — N by (yp, idp) : P — N & P, we may suppose ¢ is one-to-one,
and then replacing N by the image of ¢ and M by % !(im ), we may
assume it’s an isomorphism. Then take a = ¢! o ¢ and the right inverse
3 : P — M enables us to complete the diagram.

When a: M — P is surjective and 3 : P — M is a right inverse for q,
then p = o a is an idempotent endomorphism of M, since

(ﬁoa)2 =(foa)o(Bca)
=fo(aof)ca
= fBoidpoa=fca,
and then z — (a(z), (1-p)(z)) gives an isomorphism M = P& (1—p)(M).

Using this observation, we can now prove the fundamental characteriza-
tion of projective modules.

1.1.2. Theorem. Let R be aring. An R-module is projective if and only

if it is isomorphic to a direct summand in a free R-module. It is finitely

generated and projective if and only if it is isomorphic to a direct summand
in R™ for some n.

Proof. 1If P is projective, clicose a free module F' and a surjective R-mod-
ule homomorphism o : F' - P by taking F' to be the free module on some
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generating set for P, and « to be the obvious map sending a generator of ¥
to the corresponding generator of P. We are using the universal property of
a free module: To define an R-module homomorphism out of a free module,
it is necessary and sufficient to specify where the generators should go. If

P is finitely generated, then F will be isomorphic to R™ for some n. The

observation above then shows P is isomorphic to a direct summand in a
free R-module, which we can take to be R™ for some n if P is finitely
generated.

For the converse, observe first that free modules F are projective, since
given a surjective R-module homomorphism a : M — F with F free, one
can for each generator z; of F' choose some y; € M with a(y;) = x;, and
then one can define a right inverse to a by using the universal property
of a free module to define an R-module homomorphism 8 : F — M with
B{x;) = yi- Next, suppose FF = P® (Q and F is a free module. Given a
surjective R-module homomorphism « : M — P, a ® 1dg is a surjective
R-module homomorphism (M &.Q) — (P ® Q) = F, so it has a right
inverse. Now restrict this right inverse to P and project into M to get a
right inverse for a. Finally, if F' = R™ with standard generators i, ..., Ty,
then P is generated by p(z;), where p is the identity on P and 0 on Q.
Thus a direct summand in R" is finitely generated and projective.

We're now almost ready to define K of a ring R. First of all, note that
the isomorphism classes of finitely generated projective modules over R
form an abelian semigroup Proj R, in fact a monoid, with & as the addition
operation and with the O-module as the identity element. To sce that this
makes sense, there are a few easy things to check. First of all, Proj R is a
set! (This wouldn’t be true if we didn't take isomorphism classes, but in
fact we have a very concrete model for Proj R as the set of split submodules
of the R®, n € N, divided out by the equivalence relation of isomorphism.)
Secondly, direct sum is well defined on isomorphism classes, i.e., if P & P’
and Q = Q', then P&Q = P& Q. And thirdly, direct sum is commutative
(P Q= Q& P) and associative (P& Q)DV =P b (Q & V)) once we
pass to isomorphism classes. |

In general, though, Proj R is not a group, and may not even have the
cancellation property

a+b=c+b=>a=c

It’s therefore convenient to force it into being a group, even though this
may result in the loss of some information. The idea of how to do this is
very simple and depends on the following, which is just a generalization of
the way Z is constructed from the additive semigroup of positive integers, or
Q* is constructed from the multiplicative semigroup of non-zero integers,

or a ring is “localized” by the introduction of formal inverses for certain
elements.

1.1.3. Theorem. Let S be a commutative semigroup {not necessarily
having a unit). There is an abelian group G (called the Grothendieck
group or group completion of §), together with a semigroup homo-
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morphism ¢ : 8§ — G, such that for any group H and homomorphisni
v : S — H, there is a unique homomorphism 8 : G — H with ¢ = 0 o .

Uniqueness holds in the following strong sense: if ¢' : S — G’ is any
other pair with the same property, then there is an isomorphism a : G — G’
with ¢’ = a o p.

Proof. We will outline two constructions. The simplest is to define G
to be the set of equivalence classes of pairs (z, y) with z, y € 5, where
(z, y) ~ (u, v) if and only if there is some ¢ € S such that

(1.1.4) t+v+t=u+y+t inS.

Denote by [(z, y)] the equivalence class of (z, y). Then addition is defined
by the rule

[z, )] + (@, V)] =z + 2,y +¥)].

(It is easy to see that this is consistent with the equivalence relation, and
that the associative rule holds.)
Note that for any z and y in S,

[(z, z)] = [(v, v)]

since £ +y = y + . Let 0 be this distinguished element |(z, z)]. This is an
identity element for G, i.e., G is a monoid, since for any z, y, and ¢t in 5,

(z+t, y+t)~(z,y)

Also, G is a group since

| (z, v)] + [, &) =z +y, 2 +y)]=0.

We define ¢ : § — G by

p(z) = [(z + z, 7],

and it is easy to see that this is a homomorphism. Note that the image of
¢ generates G as a group, since

[(z, ¥)] = p(z) — p(y)

in . Given a group H and homomorphism ¢ : S — H, the homomorphism
§:G — H with ¢ = 8o ¢ is delined by

0 ([(z, y)]) = ¥(z) — ¥(y).

Alternatively, one may define G to be the free abelian group on gen-
erators [z], £ € .9, divided out by the relations that if  +y = 2z in 5,

then the elements [z} + [y] = [z] in G. Note that [(z, y)] in the previous
construction corresponds to [z] — [y] in this second construction. The map
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p is T — [z], and of course any homomorphism from S into a group H
must factor through G by construction.

To prove the uniqueness, suppose ¢’ : S — G’ has the same universal
property. First of all, ¢'(S) must generate G’, since otherwise, il G" is the

- subgroup generated by the image of ¢, then there are two homomorphisms

0:G' — G @G /G with

(¢, 0) =80y,

namely, § = (id, 0) and 8 = (id, q), g the quotient map. By the universal
properties for G and G’, there must be maps a : G — G’ with o =aop
and 8: G’ — G with ¢ = B0 ¢'. But then a o = id on the image of o',
hence on all of G/, so a is a left inverse to 3. Similarly 8 o a = id on the
image of ¢; hence a is also a right inverse to 3, as required.

Remarks. The assignment S ~ G = G(S) is in fact a functor from the
category of abelian semigroups to the category of abelian groups, since if
~: 8 — & is a homomorphism of semigroups, it induces a commutative
diagram

S 5 g
|l
G(S5) v G(S'),

where the arrow at the bottom is uniquely determined by the universal
property of G(S5).

In fancier language, Theorem 1.1.3 just asserts that the forgetful functor
F from the category of abelian groups to the category of abelian semigroups
has a left adjoint, since

HUIHSemigroups(51 FH) = HomGrDUPS (G! H)

This could also have been deduced from the adjoint functor theorem (see
[Freyd] or [Mac Lane}).

It is convenient that we do not have to assume that cancellation (z+2 =
y+ 2 = = = y) holds in S. Indeed, the map ¢ : § — G is injective if
and only if cancellation holds in S. One of the reasons for introducing
Grothendieck groups is that semigroups without cancellation are usually

very hard to handle; yet in many cases their Grothendieck groups are fairly
tractable.

1.1.5. Definition. Let R be a ring (with unit). Then Kg(R) is the
Grothendieck group (in the sense of Theorem 1.1.3) of the semigroup Proj R
of isomorphisin classes of finitely generated projective modules over R.
Note that K, is a functor; in other words, if ¢ : R — R’ is an R-
module homomorphism, there is an induced homomorphism Ko(p) = @ :
Ko(R) — Ko(R') satisfying the usual conditions id, = 1d, (po?), = P50
To see this, observe first that ¢ induces a homomorphism Proj R — Proj R
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via [P] — [R' ®, P), for P a finitely generated projective module over K.
As required, R’ ®, P is finitely generated and projective over R', since if
P& Q= R" then

(R ®, P)® (R ®, Q)= R ®,(PoQ)=(R®,R")= R'™.

And of course, the tensor product commutes with direct sums so we get a
homomorphism. Functoriality of K, now follows from functoriality of the
CGrothendieck group construction.

1.1.6. Example. If R is a field, or more generally a division ring (i.e.,
a skew-field), then any finitely generated R-module is a finitely generated
R-vector space and so has a basis and a well-defined dimension. This
dimension is the only isomorphism invariant of the module, so we see
that Proj R = N, the additive monoid of natural numbers. Since the
group completion of N Is 7., Ko(R) = Z, with the isomorphism induced
by the dimension isomorphism Proj R — N. The inclusion of a field F
into an extension field F’ induces the identity map from Z to itself, since
dimp (F' ® P) = dimp P for any F-vector space P.

This same example also shows why we only use finitely generated
projective modules in defining Ko. If R is a field, the same arguments
show that the monoid of isomorphism classes of countably generated
modules is isomorphic to the extended natural numbers N U {oo}, with the
usual rule of transfinite arithmetic, n+00 = 00 for any n. This is no longer
2 monoid with cancellation; in fact, any two elements become isomorphic
after adding oo to each one. Thus the Grothendieck group of this monoid is

trivial. A similar phenomenon happens with infinitely generated modules
over an arbitrary ring; see Exercise 1.1.8.

1.1.7. Exercise. Let S be the abelian monoid with elements @x, m, where
n € N, and

m=0ifn=0orl,
me Zif n=2,
m € Z/2ifn > 3.

The semigroup operation is given by the formula

Apn, m + On' m' =— Ani4n’, m4m',

where m + m’ is to be computed in Z if n+n' < 2andin Z/2 if n+n’ > 3.
(If for instance n = 2 and 1’ 2> 1, then m is to be interpreted mod 2.)
We shall see in §1.6 that S is isomorphic to Proj R with i = CR(S5%), the
continnous real-valued functions on the 2-sphere. Compute G(S) and the

map o : S — G(S). Determine the image of § in G, and show that while
o H0) =0, p is not injective.

2. K from idempotents T

1.1.8. Exercise (the “Eilenberg swindle”). Show that for any ring
R, the Grothendieck group of the semigroup of isomorphism classes of
countably generated projective R-modules vanishes.

1.1.9. Exercise. Recall that if a ring R 18 commutative, then every left
R-module is automatically a right R-module as well, so that the tensor
product of two left R-modules makes sense.

(1) Show that the tensor product of two finitely generated projective
modules is again finitely generated and projective.

(2) Show that the tensor product makes Ko(R) into a commutative
ring with unit. (The class of the free R-module R is the unit
element.)

2. Ky from idempotents

There is another approach to Ko which is a little more concrete and there-
fore often convenient. If P is a finitely generated projective R-module, we
may assume (replacing P by an isomorphic module) that P & Q = R" for
some n, and we can consider the R-module homomorphism p from R" to
t+self which is the identity on P and 0 on Q. Clearly p is idempotent, t.e.,

p? = p. Since any R-module homomorphism R® — R" is determined by

the n coordinates of the images of each of the standard basis vectors, it
corresponds to multiplication on the right (since R is acting on the left)
by an n X n matrix. In other words, P is given by an idempotent 72 X 7
matrix p which determines P up to isomorphism.

On the other hand, different idempotent matrices can give rise to the
same isomorphism class of projective modules. (When R is a field, the only
invariant of a projective module P is its dimension, which corresponds to
the rank of the matrix p. When the characteristic of the field is zero, the
rank of an idempotent matrix is just its trace.) So to compute K ol R) from
idempotent matrices, we need to describe the equivalence relation on the
idempotent matrices that corresponds to isomorphism of the corresponding
modules.

1.9.1. Lemma. If p and ¢ are idempotent matrices over a ring R (of
possibly different sizes), the corresponding finitely generated projective R-
modules are isomorphic if and only if it is possible to enlarge the sizes of p
and q (by adding zeroes in the lower right-hand corner) so that they have

the same size N x N and are conjugate under the group of invertible N x N
matrices over R, GL(N, R).

Proof. The condition is sufficient since if u € GL(N, R) and upu™" = g,
then right multiplication by u induces an isomorphism from RNq to RNp.
So the problem is to prove necessity of the condition. Suppose p i1s n X 7l
and ¢ is m x m, and R"p = R™q. We can extend an isomorphism « :
R"p — R™q to an R-module homomorphism R® — R™ by taking o = 0
on the complementary module R™(1 — p), and by viewing the image R™q
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as embedded in R™. Similarly extrnd o~ ! to an R-module homomorphism
3 : R™ — R™ which is 0 on R™(1 ~ ¢q). Once we've done this, a is given
by right multiplication by an n x m matrix e, and g is given by right
multiplication by an m x n matrix b. We also have the relations ab = p,
ba = g, a = pa = aq, b = gb = bp. The trick is now to take N = n+m and

to observe that ,
l-p a (10
b 1-q/) \0 1

(with usual block matrix notation) and that
1-p a p 0 l-p a
. b 1—q/\0 O b 1—-gq
_(l—-p @ 0 ay _(0 O
b 1—q/\0 0/ \0 gq)°

1 —
Thus ( : p , _‘i q) is invertible and conjugates p@®0 to 0@ q. The latter

is of course conjugate to q & 0 by a permutation matrix.

Now we can give a simple description of Proj R.

1.2.2. Definition. Let R be a ring. Denote by M(n, R) the collection of
n x n matrices over R and by GL(n, R) the group of n X n matrices over

R. We embed M(n, R) in M(n+ 1, R) by a — (g 8) (this iIs a non-

unital ring homomorphism) and GL(n, R) in GL(n + 1, R) by the group
0

g ) Denote by M(R) and GL(R) the infinite

unions of the the M(n, R), resp. GL(n, R). Note that M(R) is a ring

without unit and GL(R) is a group. It is important to remember that

each matrix in M(R) has finite size. Let Idem(R) be the set of idempotent

matrices in M(R), and note that GL(R) acts on Idem(R) by conjugation.

Now we can restate Lemma 1.2.1.

homomorphism a + (

1.2.3. Theorem. For any ring R, Proj R may be identified with the set
of conjugation orbits of GL(R) on Idem(R). The semigroup operation is

: 0
induced by (p, q) — (g q)' (One only has commutativity and associa-

tivity after passage to conjugacy classes.) Ko(R) is the Grothendieck group
of this semigroup.

Using this fact we can now show that Ky is invariant under passage from
R to M,(R) and commutes with direct limits. We will also construct an
example of a ring for which Ky vanishes.

1.2.4. Theorem (“Morita invariance”). For any ring R and any pos-
itive integer n, there-is a natural isomorphism Ky(R) = Ko(M,(R)).

Proof. Via the usual identification of My (M, (R)) with M, (R),
Idem(M,(R)) = ldem(R) and GL(M,(R))= GL(R).
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The result therefore follows immediately from Theorem 1.2.3.

Next we show that Ky is a continuous functor, i.e., that it commutes
with (direct) limits. A direct system or directed system in a category
is a collection { Aq)acr of objects, indexed by a partially ordered set J with
the property that if o, 3 € I, there is some vy € [ with v > a, v 2 0.
In addition, one supposes there are morphisms ¢qg : A, — Ag defined
whenever a < 3, with the compatibility condition

C LAy O Pag = Pavy 055)8'57'
A (direct) limit for such a system Is an object A = lim A, together with
morphisms ¥, : Ae — A satisfying the compatibility condition ¥, =
Y3 © Yag ‘whenever a < 3, with the universal property that compatible
morphisms

b i Aa — B,  §a=E°0ap;

must factor as o1, for some £ : A — B. For example, if (7 is the increasing
union of an increasing sequence

G, CG G-

of subgroups, it is their categorical direct limit in the category of groups
(with respect to the obvious inclusion maps), and similarly if one replaces
groups by rings or other algebraic objects.

1.2.5. Theorem. Let(Ra)act, (8ap : Ra — Rg)a<pg bea direct system of
rings and let R = 1im Rq be the direct limit of the system. Then Ko(R) =

lim Ko(Ra).

Proof. Applying Ko, we obtain a directed system of abelian groups
(Ko(Ro))ael, (ap,s + Ko(Ra) — Ko(Rg))a<g and thus a limit group
l__i_x_;gKg(Ra). By the universal property of the direct limit, there is a natu-

ral map l_i{_}an(Ra) — Ko(R). We want to show this is an isomorphism.

To prove surjectivity, first observe that each p € Idem(R) is a matrix with
finitely many entries, each one of which must come from some R,. If
we choose ~y greater than or equal to all of these indices a, then p is the
image of a matrix in Idem(R,), hence the class [p] of p in Ko(R) is in
the image of the natural map Ko(R,) — Ko(R), hence in the image of
l_iLan(Ra) — Ko(R). Since the [p], p € Idem(R), generate Ko(R), this
proves surjectivity.

Now we prove injectivity. Suppose T € IEE}II{[)(RQ) and z — 0 in Ko(R).

We may suppose & comes from Ko(R) for some a and is of the form [p]—lq],
p, ¢ € Idem(R,). The fact that x — 0 means that the images of p and of
g in Idem(R) are stably isomorphic in the sense of (1.1.4). Without loss
of generality, we may first add on zeroes in the lower right corners of p
and g, then replace p and ¢ by p® 1, and ¢ ® 1, so that when mapped
into Idem(R), p and ¢ represent the same element of Proj R, hence are
conjugate under GL(R). (This is by Theorem 1.2.3.) Once again, the
matrix that does the conjugating must come from some GL(Ry), v 2 a,
and then [p] — [g] — 0 in Ko(R,), hence z = 0 in the direct limit.
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1.2.6. Example: a ring with vanishing K. We shall also use Theorem
1.2.3 to construct a ring R for which all projective modules are stably
isomorphic to one another (in the sense of (1.1.4)), hence for which K¢(R) =
0. Let k be a field and let V be an infinite-dimensional vector space over

k. Let R = Endi(V). If p, ¢ € Idem(R), then p and q are idempotents in
some M, (R). Consider p61®0and ¢ 1640 in

M, 2(R) = Endi(k"*?) ®; R & Endi (k") ® Endi(V)
> End(V"*?) 2 Endy (V) & R,

since V™**2 and V have the same dimension over ¥ when V is infinite-
dimensional, Now 0 < rankp < dimg (V") = ndim V = dim V, and simi-
larly 0 < rankq < dimV, whereas ranklg =dimV. So

dimV < rank(p®160) <dimV +dimV =dimV
and rank(p & 16 0) = dim V. Similarly, rank(¢® 1®0) = dimV and

rank (1919 1) (p®160)) =rank((1 —p) 0 1) =dimV,
rank (1616 1)(¢p160)) =rank({l—q)d0&® 1) =dimV.

Since p®1®0 and g 1 & 0 are idempotent endomorphisms of a vector
space and have the same rank and corank, they are conjugate. Hence
pD1d02qed 10 and hence [p] = [g] in Kg(R).

1.2.7. Exercise: construction of a simple ring for which Ky is not
finitely generated. Let k be a (commutative) field and define a map

of rings ¢, : Man(k) — Mjasi1(k) by a — (g 2) Show that the in-

duced map on K is multiplication by 2 (when we use the isomorphisms
Ko(Man (k) = Kolk) = Z, Ko(Myn+1(k)) =2 Ko{k) = Z defined by Theo-
rem 1.2.4). Deduce that if A = l_iﬂ(ﬂlgn(k), ¢ ), then

KU(A)=n__+m(ziz3+z_+...)gz[%].

Note that since matrix rings over fields are simple, A is a limit of simple
rings and so is simple. {One needs to show that if z € A, then the 2-sided
ideal generated by z is everything, or that there exist elements a;, b; in A
with 1 = } . a;jzb;.” However,  must lie in (the canonical image of) one
of the approximating rings Msn, and one can construct the elements there
by simplicity of the matrix ring.)

1.2.8. Exercise: behavior of Ky under Cartesian products. Let
R = R x R4, a Cartesian prodnct of rings. By using the obvious decompo-
sitions Idem(R) = Idem(R,) x Idem(R;) and GL(R) = GL(Ry) x GL(R,),
show that Proj R = Proj R; x Proj R, and hence that Ky(R) = Ko(R,) &
Ko(R2). Generalize to arbitrary finite products.
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1.2.9. Exercise: construction of rings with quite general count-
able torsion-free Kjy.

(1) Use Theorem 1.2.4 and Exercise 1.2.8 to show that if k is a field and
R is a finite product of r-matrix rings over k, then Ko(R) = Z".

(2) Show that a homomorphism Z" — 7" given by right multiplica-
tion by a matrix A € M, ,(Z) can be implemented by a unital
homomorphism of rings as in (1) if and only if all the entries of
the matrix A are non-negative and no row or column of 4 is iden-
tically 0.

(3) Generalizing Exercise 1.2.7, show that any countable torsion-free
abelian group can be realized as Ko(R) of a ring. (Write the group
as an inductive limit of a sequence of finitely generated free abelian
groups, with maps given by matrices as in (2).})

3. K of PIDs and local rings

We're now ready to begin computing K, for more rings of practical inter-
est. Recall that a PID (principal ideal domain) is a commutative integral
domain (ring without zero-divisors) in which every ideal can be generated
by a single element. Standard examples are Z and a polynomial ring in

one variable over a field. More general polynomial rings will be discussed
in Chapter 3.

1.3.1. Theorem. If R is a PID, every finitely generated projective module
over R is isomorphic to R™ for some unique n, called the rank of the
module. The rank induces an isomorphism Ko(R) — Z.

Proof. Needless to say, this follows from the general structure theorem
for finitely generated modules over a PID, which we presume most readers
have seen in an algebra course. However, since there’s an easier proof that
will motivate what we’ll do for Dedekind rings, we give it here. Let M be
a finitely generated projective module over B. We may assume that M is
embedded in some R". We argue by induction on n that M is isomorphic
to R* for some k < n. If n = 0, there is nothing to prove. So assume
the result for smaller values of n and let m : R® — R be projection on the
last coordinate. Note that = maps M onto an R-submodule of R, z.e., an
ideal. If #(M) = 0, then we may view M as embedded in kerm = R*!
and use the inductive hypothesis. Otherwise, (M) is a non-zero ideal and
so is isomorphic to R as an R-module (by the PID property). So (M)
is projective and hence M splits as ker n|p @ R (recall the remarks in
1.1.1). Since we may view ker 7|y as embedded in R™ ! we may apply

the inductive hypothesis to conclude that it’s isomorphic to R k' <n-1.
So M =R withk=k"'+1<(n—-1)+1=n.

Finally, we need to know that the rank k of M is well defined. This
follows from the fact that we may also characterize it as the dimension of
F ®p M over F, where F is the field of fractions of R. The calculation of
Ky is as in 1.1.6.
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Remark. The proof actually showed a little more, namely that every
submodule M of a finitely generated free R-module is free. We never
explicitly used the fact that M is projective.

For any ring R with unit, there is a unique ring homomorphism ¢ : Z — R
sending 1 to the identity element of R. By Theorem 1.3.1, Ko(Z) = Z, so
we obtain a map t« : Z — Ko(R). The image of this map is the subgroup
of Ko(R) generated by the finitely generated free R-modules. In general,
the map ¢, need not be injective; in Example 1.2.6, it is even 0.

1.3.2. Definition. The reduced Kjy-group of R is the quotient
Ky(R) = Ko(R)/v.(Z).

Note that we have seen that Ko(R) vanishes if R is a division ring or a
PID. In general, Ko(R) measures the non-obvious part of Ko(R). We will

see in the next section that it recaptures a famous classical invariant of
Dedekind rings.

Next we compute K; for local rings (which are not necessarily commu-
tative). We begin with a review of some useful general ring theory.

1.3.3. Definition. A ring R (not necessarily commutative) is local if
the non-invertible elements of R constitute a proper 2-sided ideal M of R.
Examples of commutative local rings include k{[t]], the ring of formal power
series over a field k, and Z,), the ring of rational numbers of the form %,
where p is a prime, b # 0, and p } b. For an example of a non-commutative

local ting, let S be any non-commutative unital k-algebra, where k is a
field, and let

R={ao+ait +azt® +-- € S[[t]] : @ € k} .

Since any power series in R with ag # 0 is invertible (by the usual algo-
rithm for inverting power series), and since the elements in R with ag =0
constitute an ideal, R is a local ring.

1.3.4. Proposition. For a ring R (not necessarily commutative), the
following are equivalent:

(a) R has a unique maximal left ideal, and a unique maximal right
ideal, and these coincide.
(b) R is local.

Proof. (b) = (a).-If R is local with ideal M of non-invertible elements,
no element of R ~ M can lie in a proper left ideal or proper right ideal,
hence M is both the unique maximal left ideal and the unique maximal
right ideal.

Now let’s show (a) = (b). Assume (a) and let x € R. If  does not
have a left inverse, then Rz is a proper left ideal, which by Zorn’s Lemma
lies in a maximal left ideal, which by (a) is unique. Similarly, if x does not
have a right inverse, then z lies in the unique maximal right ideal. Thus
all non-invertible elements lie a proper 2-sided ideal M.
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1.3.5. Corollary. In a local ring, an element with a one-sided inverse is
invertible.

Remark. Note that replacing (a) by the condition that R has a unique
maximal 2-sided ideal gives a very different class of rings in the non-
commutative case. A simple ring R (one with no 2-sided ideals other than
0 and R) need not be local; a matrix ring over a field is a counterexample,
since a sum of singular matrices need not be singular.

1.3.6. Definition. If R is any ring, the r:lical (or Jacobson radical)
of R is the intersection of the maximal left ideals. By Proposition 1.3.4, in
a local ring, the radical coincides with the maximal ideal.

1.3.7. Proposition. For any ring R, the radical of R is a 2-sided ideal.

Proof. If I is a maximal left ideal, the annihilator of R/I in R certainly
is contained in I. Hence

(|l ~ Anmng(R/I)C (I =rad R
I

I a max. left ideal

On the other hand,

Anng(R/I) = ﬂ Annpg(x),
seR/I, 240

an intersection of maximal left ideals. So rad R is exactly the intersection
of the Anng(R/I), and so is 2-sided.

Remark. The proof showed that the radical of R is the set of elements
that annihilate all simple left R-modules. One observation we will need
later is that since every simple module for M, (R) is isomorphic to one of
the form R™ ®z M with M a simple R-module, any matrix all of whose

entries lie in rad R must annihilate all such modules, hence must be in the
radical of M,(R).

1.3.8. Proposition. For any ring R, the radical coincides with
{r € R:Va € R,1 — ax has a left inverse}

and with the intersection of the maximal right ideals.

Proof. First we show that rad R is contained in the indicated set. If x
lies in every maximal left ideal, then Rz lies in every maximal left ideal.
Suppose a € R and 1 — ax does not have a left inverse. Then 1 — ax lies
in a proper left ideal, hence in a maximal left ideal M. Since azx € M, we
have 1 € M, a contradiction.

Couversely, suppose that for all a € R, 1 — ax has a left inverse. Let
M be a maximal left ideal. If £ ¢ M, then Rz + M = R. Thus for some
a € R, 1—az € M, a contradiction. So rad R coincides with

{x € R:Va € R,1 — az has a left inverse}.
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Similarly, we can define the right radical Let €3, ..., ex be the standard free basis for R*. Since we now have two

generating sets for R*, each can be expressed i
rrad R = ﬂmax. right ideals pressed in terms of the other, and

= {zx € R:Va € R, 1 —xa has a right inverse}.

Since rad R is a right ideal by 1.3.7, if z € rad Rand a € R, thereisac € R
with (1 — ¢)(1 — za) = 1. This gives (1 — za)(1 - ¢) = 1 + zac — cra, and
since ¢ € rad R, zac — cza € rad R. Thus 1 + zac — cra has a left inverse,
which shows 1 —c has a left inverse. Since it also has a right inverse, namely
1 — za, they coincide, and 1 — za 1s invertible with inverse 1 — c. Hence

rad R C r-rad R. By symmetry, r-rad R C rad R and the two coincide.

1.3.9. Theorem (Nakayama’s Lemma). Suppose It is a ring and M
is a finitely generated R-module such that (rad R)M = M. Then M = 0.

Proof. Suppose M # 0. Pick a set of generators Zy, ..., Tm for M with
m as small as possible. (This implies in particular that each x; # 0.) By
the assumption that (rad R)M = M, there are elements r1, ..., 7m in rad R
such that

Ty =T1Z1 + -+ T'mTm.
Hence

(1 — Tm)mm =1+ F+Frm-1Tm-1-

By Proposition 1.3.8, 1 — rp, is invertible; hence z,, can be expressed as a
linear combination of Zi, ..., Zm-1. This contradicts the assumption that
m was as small as possible.

1.3.10. Corollary. If R is a ring, M is a finitely generated R-module,
andzx,,...,Tm € M, then,, ..., T, generate M if and only if their images
..., &, generate M/(rad R)M as an R/ rad R-module.

Proof. The “only if” statement is trivial. Suppose Zy,-..,Tm generate
M/(rad R)M. Let N = Rzy + -+ RTm & M and consider M/N. This
satisfies the hypotheses of Nakayama's Lemma, so M /N = 0and M =
N.

1.3.11. Theorem. If R is a local ring, not necessarily commutative, then
every projective finitely generated R-module is free with a uniquely defined
rank. In particular, Ko(R) 2 Z with generator the isomorphism class of a
free module of rank 1.

Proof. Note R/ rad R is a division ring D. If M is a finitely generated
projective R-module, we may assume M & N = R¥ for some k. Then
M/(rad R)M and N/(rad R)N are D-modules, hence are free, say of ranks
m and n, respectively, with m+n = k. Choose basis elements and pull them
back to elements Zy,...,Tm € M, Tm41,---,Zk € N. By Corollary 1.3.10,
these generate R*. We want to show that z1,...,Zy are a free basis for
R*. This will show in particular that z;,...,Z,, are a linearly independent
generating set for M, so that M is free with the uniquely determined rank

rank M = dimp M/(rad R)M.

there are elements a;;, b;; € R with

k k
€; = Zﬂfjwj, L = E bijej.
J= ' j=1
Thus we get
k k
€i = Zﬂij ijtﬂ{,
j= =1
SO
kK k
§ : 2 (@b — 6i)e; = 0,
j=1 l=1

and if A = (a;5), B = (b;;), this means (since the ¢; are linearly indepen-
dent) that AB = I. Substituting the other way, we get

e
e

(bija — b6;)x; =0,

11

ht
i
fl

i

and since the x; are linearly independent modulo the radical of R, this

shows BA — I E'Mﬂ(rad R) C rad M,,(R) (using the remark following
1.3.7). By Proposition 1.3.8, BA is invertible, hence B is invertible. Since

A was a left inverse for B, this shows it is also a right inverse, i.e., BA = I.
This proves the z;,...,,, are a free basis for RF.

| Part of the interest in local rings stems from the importance of localiza-
tion as a technique for studying more general commutative rings. Recall
that if R is a commutative ring, the set Spec R of prime ideals in R be-
comes a topological space, called the spectrum of R, when equipped with

the so-called Zariski topology. The closed sets E; in this topology are
parameterized by the ideals I of R, where for I < R,

Ey={Pe€SpecR:P DI}

1.3.12. Proposition. Let R be a commutative ring and let Spec R be

its prime ideal spectrum. If P is a finitely generated projective R-mod-
ule, then P has a well-defined rank function rank P : Spec R — N, and

this function is continuous. In particular, if R is an integral domain, it is

constant. Furthermore, for any commutative rin ' itt
. : - g R, there is a splittin
KU(R) =7Z® KU(R) &

Proof. Givenp € Spec R, P, & R, ®pr P is a finitely generated projective

m’odule over R,, which is a local ring. So by Proposition 1.3.11, it is free
with a well-defined rank, which is the dimension of the associated module
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over the field Ry /my, where m, is the unique maximal ideal of R,. Since
m, = R, ®r p, the rank at p may also be computed by first taking P/pP,
which is a module over the integral domain R/p, then taking the dimension
of the associated vector space over the field of fractions of R/p.

Next we prove continuity of the rank function. One way of seeing this 1s
via the idempotent picture. Suppose P is defined by an idempotent matrix
» € M,,(R). Then rank, P = k if and only if the image of p in M, (R/p) has
rank k. Thus rank, P < k if and only if every (k + 1) x (k + 1) submatrix
of p has a determinant in p. This is clearly a closed condition, since it’s
equivalent to saying p contains certain specific elements of R, and the most
general closed set in Spec R is of the form {p:p D I} for some ideal I. But
it’s also an open condition since

rankp < k <= rank(1 —p) 2 n— k.

To prove the final remarks, note that if R is an integral domain, then
(0) is an open point in Spec R, hence Spec R is connected and rank P must
be constant. The splitting map Ko(R) — Z for a general commutative ring
is obtained simply by fixing a point p € Spec R and computing the rank
there.

1.3.13. Exercise (The finite generation hypothesis in Nakayama'’s
Lemma is necessary). Show from Nakayama’s Lemma that if R is a left
Noetherian ring and (rad R)? = rad R, then rad R = 0.

Let R be the ring of germs at 0 of continuous functions R — R. Show
that R is a local ring, with radical the germs of functions f with f(0) = 0,

and that (rad R)? = rad R. (R is not Noetherian, which is why this is
possible.)

1.3.14. Exercise. Compute Ko(Z/(m)) in terms of m, for any integer
m > 0. Hint: write m as a product of prime powers and use the Chinese
Remainder Theorem to get a corresponding splitting of Z/ (m) as a product
of local rings. Then use Theorem 1.3.11 and Exercise 1.2.8.

4. K of Dedekind domains

A particularly rich family of rings for which K is interesting are the
Dedekind domains. We begin with the definition and basic properties of
these domains, and then proceed to the most important examples, namely,
the rings of integers in number fields. In this section R will always
denote a commutative integral domain embedded in its field of
fractions F.

1.4.1. Definition. A non-zero R-submodule I of F'is called a fractional
rdeal of R if there exists some ¢ € R with af C R. Clearly a non-zero
ideal of R may be viewed as a fractional ideal; for emphasis, such an ideal
is called an integral ideal. Also, if § € F (a, b € R; a, b # 0), then
R(%) is a fractional ideal since bR(2) C R. Such a fractional ideal is called
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principal. One can multiply fractional ideals, and under multiplication
they form an abelian monoid with identity element R.

1.4.2. Definition. R is called a Dedekind domain or Dedekind ring
if the fractional ideals under multiplication are a group, i.e., if given a
fractional ideal I, there is a fractional ideal I-! with I='I = R. Observe
that necessarily I = {a € F : al C R}. Forif J = {a € F : al C R},

then I"'TC Rso 171 C J, but then

R=II"'C1JCR,
soll '=JJand I =1"1J=.

1.4.3. Definition. Note that the principal fractional ideals are a subgroup

of the fractional ideals isomorphic to F'*/R*. The class group of the
Dedekind domain R is defined to be

C(R) =
{group of fractional ideals}/{group of principal fractional ideals}.

1.4.4. Proposition. The class group of a Dedekind domain may also be

identified with the set of R-module isomorphism classes of integral frac-
tional ideals.

‘Pmoﬁ Clearly any fractional ideal is isomorphic to an integral one I
(via multiplication by some element of R ~ {0}). And if I = (J)(Ra),
then multiplication by ¢ implements an R-module isomorphism J — 1.

Conversely, if ¢ : I — J is an R-module isomorphism and ag € I \ {0},
then for any a € I,

p(aoa) = agp(a) = ap(ao),
so p(ag)] = agJ and [I} = [J] in C(R).

1.4.5. Theorem. If R is Dedekind, then every fractional ideal is finitely
generated and projective. In particular, R is Noetherian.

Proof. Let I be a fractional ideal. Since =!I = R, there are elements
Zi,...,Zn € IV and yy,...,y, € I such that > ., z;4; = 1. If b € I,
then b = Y (bz;)y; with bx; € I™'] = R, so y1,...,yn generate I. Thus
I is finitely generated. Since every ideal of R is finitely generated, R is
Noetherian.

But in addition, the homomorphism R™ — I defined by (a),...,a,) —
Y a;y; splits, with right inverse b — (bz;,...,bz,), by the same calcula-

tion. So I is isomorphic to a direct summand in B™ and so is projective by
Theorem 1.1.2.

1.4.6. Corollary. If R is Dedekind, then every finitely generated projec-

" tive R-module is isomorphic to a direct sum of ideals. In particular, the

isomorphism classes of the ideals generate Ky(It).

Proof. We use the same argument as in the proof of Theorem 1.3.1.
Let M be a finitely generated projective module over B. We may assume
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that M is embedded in some R". We argue by induction on n that M is
isomorphic to a direct sum of k ideals for some k <n. ifn=0, there
is nothing to prove. So assume the result for smaller values of n and let
x+ R™ — R be projection on the last coordinate. Note that 7 maps M onto
an R-submodule of R, i.e., an ideal. If (M) = 0, then we may view M as
embedded in kerm & R"~! and use the inductive hypothesis. Otherwise,
7(M) is a non-zero ideal I and so is projective by Theorem 1.4.5. Hence
M splits as ker wjy @ I (recall the remarks in 1.1.1). Since we may view
ker |ps as einbedded in R™! we may apply the inductive hypothesis to
conclude that it’s isomorphic to a direct sum of &k’ ideals, K <n-—1. So
M is a direct sum of k ideals with k =k'+1 < (n - 1)+ 1=n.

Our next goal is to relate Ko(R) to C(R), but first we need to develop
more of the theory of Dedekind domains. This will also enable us to prove
o useful characterization of Dedekind domains that will show that the ring
of algebraic integers in a number field is a Dedekind domain. The next
theorem generalizes the “fundamental theorem of arithmetic” {unique fac-
torization of an integer into primes).

1.4.7. Theorem. In a Dedekind domain R, every prime integral ideal is
maximal. And every proper integral ideal can be factored uniquely (up to
renumbering of the factors) into prime (or maximal) ideals. The group of
fractional ideals is the free (multiplicative) abelian group on the (non-zero)
prime ideals.

Proof. (a) Suppose 0 g I g R and I is prime but not maximal. Then
there exists an integral ideal J with I g J :Ct R. Let K = J I, since
I;J,K;J*lJzR. Since JK = I and I is prime but J ¢ I, K C I.
But then I = JK C JI g RI = I, a contradiction. So I is maximal.

(b) Existence of factorizations. Let

C = {proper integral ideals that are not products of prime ideals}.

If this is empty, we're done. Otherwise, since every ascending chain of
ideals in R has a maximal element (R is Noetherian by Theorem 1.4.5), C
has a maximal element I by Zorn’s Lemma. I can’t be a maximal ideal
(otherwise it would be prime itself and would have a trivial factorization
I =1)sol % 5 ; R for some ideal I,. Let Iy = I; 'I. This is also an
ideal in R since I C I,, and since I g I, it is a proper ideal containing I
properly. Since I; and I, are both strictly bigger than I and I was maximal
in C, both have factorizations into primes. But since I = I I, multiplying
gives a factorization of I, a contradiction.

(c) Uniqueness of factorizations. Suppose Py -+ Py = Q1+ GQn
with P;, Q; prime and m < n. Then PL D> P .- P, = Q1 -Qn s0

[ P,

some @, lies in P. After renumbering if necessary, we may assume Q; C
P;. Write Q; = 51F; by the Dedekind property (where S1 = Py Q).
Multiplying through by P, L gives Py -+ Py, = S1Q2 - - - Qn- Continuing by
induction, we get down to the case where m = 1, in which case it is clear
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that we must have n =1 and ¢4 = actorizati :
: 1 = Py. So factorizatio '
unique. ns mto primes are

| (d) .Clearly there’s a map from the free abelian group on the prime
}d,eals 11-11;0 the multiplicative group of the fractional ideals. By (b) above
it f surjective. If there is something non-trivial in the kernel. we havei
Fy* --- Pl'r = R for some distinct prime ideals P; and some n; :E Z. If for

some j, n; < 0, multiply through by Pj!"jl. Then we end up with some

ideal in R having two distinct factorizations, contradicting (c).

1.4.8. Lemma. Let R be any commutative rin '
' _ g and let I, I, be ideal
mR. IfI) + 1 =R, then I11I, = I, N I,. v R

Proof. Clearly Iy1, C I1NI;. On the other hand, ifa; € I, a5 € I, and
a1 +az =1 thenforrehNl,r=az+axx € I, + LI, = I 15.

}.4.9. Len:nma. Lgt R be a Dedekind domain and let I be a fractional
ideal, J an integral ideal. There exists a € I such that I"'a+ J = R.

?’m?f. Let Plf ..., P, be the distinct prime ideals that occur in the fac-
torization of J given by Theorem 1.4.7. Choose a; € IP,--- P;-.. P. with

sice otherwise we’d have C Pj it j # 1, but a;] ;(_ P;,

—1
a; 17" C ﬂ P; = P, .-+ P, by iterated use of (1.4.8),

hence

GiEIPl"'Pr,

a cont{'adictionilNow note that I='a ¢ P; for any j. It’s an integral ideal
and this says I~ a+J can’t be divisible by any P;. But it can’t be divisible

by any other prime ideal, either, b : :
: , y the choice of a, so it can’t b
ideal and must be all of R. ’ an’t be a proper

This implies that a Dedekind domain doesn’t miss being a PID by very

much: If R is a PID, any fractional ideal is singly generated. In a Dedekind
domain, the best one can say along these lines is the following.

1.4.10. Corollary. If R is a Dedekind domain, any fractional ideal of R
can be generated by at most two elements.

Proof. Let I be a fractional ideal, 0 #b € I. Let J = bI~!, which is an

integral ideal. By Lemma 1.4.9, there is some a € I with al ™1 -1 =
Then I = Ra + Rb. mee =k

1..4.11: Lemma. Suppose R is a Dedekind domain and I, I, are frac-
tional ideals for R. Then I, & Iy =2 R & I, I as R-modules.

Proof. Choose a; # 0in I; and let J = a4/ [ ! which is an integral ideal.
Apply Lemma 1.4.91 with I = I,. We get ag € Ip such that I 'ag+a, I} =
R. Choose by € I] 7, by € I{l with a;by 4 azby, = 1. Then

(bl -—(12) aq ao . 1 0
by a1 ~by by /) \O 1)
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. b —a9 . s . . . a1 9 d
showing that (b; a; ) is invertible with inverse (—bz by , an

b ol 7).
(&‘31, 3!32) — (1131, 332) (b; a )

gives the desired isomorphism (with inverse given by multiplication by the
inverse matrix).
1.4.12. Theorem. Let R be a Dedekind domain. Then any projective

R-module of rank k can be written as R~ @ I, with I an ideal, and the
isomorphism class of I is uniquely determined. If P and @ are finitely

generated projective modules of the same rank k, say P = Rf;‘l @ I, and
Q = Rk @ I, for ideals I and I, the map {P] — Q) — I11; " sets up an

isomorphism from Ko(R) to C(R). In fact,

(R @ I) — (K, 1))

sets up an isomorphism of abelian groups

As a commutative ring (see 1.1.9),
Ko(R) = {(k, I]): k€ Z, []eC(R)}

with the operations

(ky (1)) + (K, (') = (k+ &', (TIT'D),

(1.4.13) (k, [T]) - (K, ') = (kK 1% (1)),
rank : (k, [I]) — k € Z.

Proof. By Corollary 1.4.6, every finitely generated proj-ective module
P over R is isomorphic to a direct sum [; & -+ @ Iy of 1dea-ls, and by
Proposition 1.3.12, P also has a well-defined rank. If I is an ideal, then
rank I = dimp(F ®g I) = dimp F =1, so the rank of P is just tbe nUfnber
L of ideals in a direct sum decomposition. Using Lemma 1.4.11 1Ferat1}rely,
we can rework the decomposition into the form RF-1@ I with a single ideal

I. The only problem is to show that if

(R*'o ) = (R @ 1),

then I; 2 I, as R-modules, or (equivalently, by PerDSitiOn.1.4.4.) |1 1]. =
[I,] in C(R). Once this is done, the formulae 1.4.13, B.I-ld the identification
of Ko(R) with C(R), then follow upon taking the direct sun% or tfensor
product of RF @ I and of R* @ I' and applying Lemma 1.4.11 iteratively.
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So suppose we have an isomorphism
a: (R*" 19 L) = (RF™! @ I)

with inverse 3. Since any R-module map from one ideal to another is given
by multiplication by an element of F' (compare the proof of Proposition
1.4.4), o and g are induced by right multiplication by k X k matrices A
and B (with entries in F') which are inverses of each other. Now if X is the
diagonal matrix with diagonal entries (1,1,...,1,x), where z € I, then
right multiplication by X maps R* into R*~! @ I;, hence right multiplica-
tion by X A maps R* into R*~'@1I;. The rows of X A are the images of the
standard basis vectors for R* under this map, so they have their first k — 1
entries in K and last entry in I;. Thus expansion of the determinant along
the last column shows that det(X A) € I;. Since det X = x, we obtain the
condition xdet A € I, for all z € I;. Similarly ydet B = y(det A)~! € I
for all y € Is. So multiplication by det A implements an isomorphism from
I 1 to I 2.

We proceed now to the characterization of Dedekind domains. This will
eventually make it possible to show that the rings of integers in number
fields are Dedekind domains. Recall that a subring R of another ring S
is called integrally closed in S if any element of S which is a root of a
monic polynomial with coefficients in R actually lies in R.

1.4.14. Lemma. Let R be a Noetherian integral domain which is inte-
grally closed in its field of fractions F. Suppose I is a fractional ideal of R.
Then {s€ F:sI C I} =R.

Proof. Since R is Noetherian, I is finitely generated. Let S = {s € F:
sI C I}. Clearly RC S. Butif s € §, s is integral over R, by the following
argument. Choose generators a; for I. Then there are elements b;, € R
such that sa; = ) bjxar. Thus if B = (b;x), s is an eigenvalue of B and
so is a root of its characteristic polynomial, which is a monic polynomial

with coefficients in B. Hence s € R since R is integrally closed. Thus
S C R.

1.4.15. Lemma. Let K be a Noetherian commutative ring and let I be a

non-zero proper ideal of R. Then I contains a product of non-zero prime
ideals.

Proof. Suppose the result is false, and let C be the family of non-zero
proper ideals of R which do not contain a product of non-zero prime ideals.
Since R is Noetherian, C must contain a maximal element (under inclusion),
say I. Clearly I is not prime, so there must be a, b € R with ab € I,
a,b¢ I. Webave I G T+ Ra, I G I+ Rb If I+ Ra = R, then
(I+ Ra)(I+ Rb) = I+ Rb 2 I, while on the other hand (I + Ra)(I + Rb) C
I+Rab C I, acontradiction. So I G I'+Ra G R. Similarly I G I+ Rb S R
Since I was maximal in C, I 4+ Ra and I 4+ Rb do not lie in C. Thus
I+ RaDP---P.,T1+EbD Q- -Qs, for some prime ideals P; and Q.
Then I = (I + Ra)(I + Rb) D P, --- P.Q1 - - s, 2 contradiction,
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1.4.16. Lemma. Let R be a Noetherian integral domain in which every
prime ideal is maximal. Let I be a non-zero proper ideal of R. Then there

exists ¢ € F with ¢ ¢ R such that cI & R.

Proof. Let a # 0 in I. Then Ra contains by Lemma 1.4.15 a product of
non-zero prime ideals, say P - - - P, and we may assume 1m is chosen to be
minimal with this property. Let P be a maximal ideal containing I. Then

P,--P,CRaCICP,

so some P; C P,say P, C P. Since all prime ideals are maximal, we have
pP,=P.fm=1,then] =Ra=PFPis maximal and a=! ¢ R, a™'I C R.
If m > 2, then by minimality of m, Ra ;2_5 P,.--P,. Choose b€ Py--- P,
with b € Ra, and let ¢ = 2. Then c ¢ R but

cl CchP = o bP, Ca P --- Py C e ‘Ra = R.

1.4.17. Theorem. A commutative integral domain R is Dedekind if and
only if it has the following three properties:

(a) Every non-zero prime ideal is maximal.

(b) R is integrally closed in its field of fractions F.

(c¢) R is Noetherian.

Proof. If R is a Dedekind domain, it satisfies (c) by Theorem 1.4.5 and
(a) by Theorem 1.4.7. Suppose a € F, a # 0, and a is integral over R.
Then a is a root of some monic polynomial ™ + @, 12" 14 +ag, where
ag,-..,0n-1 € R. Consider M = R+ Ra+ Ra®2+ -+ Ra™!. This is
an R-submodule of F, and since a" = —Qp.a™*! — - — ag, it 1s stable
under multiplication by a. If we write @ = B, D, q € R and g # 0, then
o M C R,so M is a fractional ideal. Multiplying eM C M by M -1
gives aR C R, so a € R. This shows R is integrally closed.

Now we show the conditions (a)—(c) imply R is Dedekind. Suppose R
satisfies (a)—-(c) and [ is a fractional ideal. Let J={a€F:al € R}. We
want to show IJ = R, so that J is an inverse for I. Now I.J is an integral
ideal. Let K = {a € F : alJ € R}. By definition, K{IJ) = (KJ)I C R,
so KJ C J. By Lemma 1.4.14, K C R. On the other hand, if IJ G R,
then K 2 R by Lemma 1.4.16, a contradiction. So IJ = R and I is

invertible.

1.4.18. Theorem. Let F' be a number field, i.e., a finite algebraic ex-
tension of Q, and let R be the ring of algebraic integers in F, that is, the
integral closure of Z in F. Then R is a Dedekind domain.

Proof. We need to check the conditions of Theorem 1.4.17. Condition
(b) is the easiest. R C F, and if a € F is integral over R, then it is integral
over Z by “transitivity of integrality,” hence already contained in R. So R
is integrally closed.

To check (a), let p be a non-zero prime ideal in R. Then pN Z is a
prime ideal in Z. We claim it can’t be zero. Indeed, if b # 0 is In p,
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the product Ng)/q(b) of the conjugates of b (in some Galois extension

- K 2 F) is * the constant term of the minimal polynomial of b, which

by the assumption that b € R has coeflicients in Z. Now this product of
Fhe conjugates of b is a product of b with a product ¢ of other algebraic
integers, and since bc € 7, C F', ¢ € F and is integral over Z. Hence c € R
:imd 0#£bce RONZ CpNZ. Thus pNZ is a non-zero prime ideal in Z
i.e., pNZ = (p) for some prime number p. Since F is a finite algebra.i(;
extension of (), R/p must be contained in a finite algebraic extension of
Z/ (p.ﬂ Z) = Z/(p), in other words in a finite field of characteristic p. Since
a finite integral domain is a field, R/p is a field, i.e., p is a maximal ideal.

'It remains to check (c), i.e., that R is Noetherian. One way of seeing
this is by using the trace. Recall that if z € F, Trp/g(z) is the trace of
the linear operator of multiplication by z on F, when we regard F' as an
n-dimensional vector space over , where n = [F' : J]. The trace pairing
(:c., y) — Trp/q(zy) is a non-degenerate symmetric Q-bilinear pairing on F
(Slnce-for T #0in F, Trp/g(zz™') = n # 0). Choose elements \q,..., A, €
R Tt!thh span F' over Q. (One may obtain such elements by taking any
basis elements for F' over Q and then multiplying them by suitably large

(OF(l‘inary) integers to kill off any denominators in the coeflicients of their
minimal polynomials.) Then

T (TIF/Q(xAl)s e sTrF/Q(mAn))

is an embedding of K into Z"™. In particular, R is a finitely generated
Z-module, so any ascending chain of ideals in R is an ascending chain of
submodules in a finitely generated Z-module, and so terminates (since Z is
Noetherian). Thus R is Noetherian.

Finally, we sh(.)w that the Dedekind domains given by Theorem 1.4.18,
which are the main subject of study in algebraic number theory, have finite
class groups. The computation of these groups is not easy and is a problem

‘'of major interest.

1.4.19. Theorem. Let F' be a number field, i.e., a finite algebraic ex-

E‘,ension of (O, and let R be the ring of algebraic integers in F, that is, the
integral closure of Z. in F'. Then the class group Ky(R) is finite.

{?roof. Tl}e proof requires the notion of the norm of an ideal. If I is
an 'mtegral ideal of R, with prime factorization P;'!--. P™, then by the
Chinese Remainder Theorem, "

R/I=R/P™ x--- X R/Pr.

SinceﬂR/ P; is a finite field for each j (by the proof of Theorem 1.4.18) and
R/ P;? clearly has a composition series with n; composition factors, each

iso'morphic to R/P;, R/ P;i is finite with |R/P;|™ elements, and R/I is
finite. Thus we can define -

|11l = |R/1| = |R/Po™ - |R/P|™ = | ] 1P ™.
j=1
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It is clear that this norm is multiplicative:

Wl = 1l - 2]l

If I happens to be a principal ideal (@), note that since Np/g(a) is the
determinant of the Z-linear operator of multiplication by @ on R (which 18
isomorphic to Z" as a Z-module), Ha has index | Ng/q(a)| in R and thus

l@)ll = |Neja(@)]

Recall from the proof of Theorcin 1.4.18 that if P is a prime ideal with
PNZ = (p), then R/P is a finite extension of Z/{p) of degree < n = [F Q],
so that | P|| = p’ for some j with1 < 7 < 7. Thus for any C > 0, [|[P| £ C
implies p < C for the corresponding p. On the other hand, for a fixed prime
number p, there are only finitely many prime ideals P C R with PNZ = (p)
(namely, those prime ideals occurring in the prime factorization of Rp). So
putting all of this together, we see there are only finitely many ideals I
satisfying ||} < C.

To prove the theorem, it therefore suffices to show that there is a con-
stant C > 0 such that every element of C(R) has a representative I with
|Il| < C. Choose a basis Ay, - .-, A\, for R as a Z-module. (That such a
basis exists was shown in the proof of Theorem 1.4.18.) Let A be the max-
i nal absolute value of a conjugate of one of the A; in C and let C =n"A".
Choose any element of C(R) and represent it by a fractional ideal of the
form K = J~!, with J an integral ideal. We will show there is another
representative I for the same ideal class with ||T|} € C. Consider the set

S={mM+ - +adn:a;€Z 005 < 1 =1.)
(The square brackets denote the “greatest integer” function.) This set has
L n
(J1=14+ D™ > |70 = |’/ J)
clements, so there must by the pigeonhole principle be two elements 7

and ¢ of § with the same image in R/J. LetE =n—-C€J and let
I =(£)J"1=(§)K ~ K. This is an integral ideal and (§) = IJ, so that

N1 = 1N = INp/oé)l:

On the other hand, since £ is the difterence of two elements of S, we
may write

£ = aghy + -+ anda  with |ag] < [1I7],

SO

I = | NF/é]

== H Iala()q)+-“+ﬂ»n0()‘n)|
o:F—C

< 1] (laalle (A1) + - - + laallo(An)l)

g:F—{C

< II (slli=1A)

g: FeasC

< atJJIA" = C||J1),

proving the desired estimate.
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1.4.20. Exercise (Construction of a non-trivial torsion element in
a class group). Let R = Z[v/-5|.

(1) Show that R is the algebraic closure of Z in Q(v/—5), so that R is
a Dedekind domain by Theorem 1.4.18.

(2) Show that p = (3‘, 2 + v/—5) is a prime ideal in R. Hint: it’s easy
to see that R/p is a field of 3 elements, so that p is a maximal
ideal.

(3) Show that p is not principal. Hint: show that neither of the two

generators divides the other, and that if there were a single gener-
ator a 4 b+/—5, then

(a + by/—5)(c + dv —5) = 3 for some a,b,c,d € Z,
and (multiplying by complex conjugates)
(a® + 5b%)(c* + 5d°%) = 9.

If the factorization is non-trivial, a® + 5b% = 3, which is impossible.

(4) Show that p is an element of order 2 in the class group C(R). Hint:
by (2), it is not of order 1. Show that p? = (2 + v/~5).

(5) In fact, C(R) is the cyclic group of order 2 genefated by p, though
it is hard to prove this by such elementary methods. Can you
supply a proof?

(6) Suppose we replace R by the integral closure R’ of Z(3) in Q(+/~5).
This is a localization of R that will have the property that if p is

a maximal ideal in R, then pN Z3) = (3). Show that R’ is also
Dedckind and compute its class group.

1.4.21. Exercise (A ring of algebraic integers that is almost, but

not quite, Dedekind). Let R = Z[y/-3|, with field of fractions F' =
Q(v-3).

(1) Show that R is not integrally closed in F, so that R is not a
Dedekind domain, by Theorem 1.4.17.

(2) Exhibit a fractional ideal in R that does not have an inverse. Is
this fractional ideal a projective module?

1.4.22. Exercise. Show that a Dedekind domain R with only finitely

many prime ideals is a PID, using the following (slightly non-standard)
sketch:

(1) Let P, e P, be a complete list of the distinct maximal ideals.
Show using the Chinese Remainder Theorem that

R/tad R R/P, x --- x R/ P,,

a finite product of fields.

(2) Let P be an integral ideal of R. Show using (1) and the fact that
P has rank 1 at each prime ideal that P/(rad R)P is free of rank
1, hence principal.

(3) Lift a generator of P/(rad R)P to a generator of P using Corollary
1.3.10.
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1.4.23. Exercise (Complete calculation of a non-trivial class
group). In this exercise, let R = Rlz, y]/(z? + y* — 1), the ring of (real-
valued) polynomial functions on the circle.

(1) Show that R is a Dedekind domain.

(2) If p is a prime (and thus maximal) ideal in R, show that R/p is
an algebraic extension of R, and thus isomorphic to either R or C.
Show that both possibilities can occur, and that in the first case,
p is of the form (x — a, y — B), where a, g € R and a2+ 3% =1,
and that in the second case, p 1s a principal ideal generated by
some linear polynomial y + b, where b € R, || > 1, or z 4+ ay + b,
where a, b € R, b* —a? > 1. Deduce that the class group Ko(R) is
generated by the classes of the ideals (z —a, y— ), where a, 3 € R
and o + 8% = 1.

(3) Show that if p; and ps are prime ideals of the form (z —«a;, y— Bj),
respectively, where o, 8 € R and a?—l—ﬁ? =1,4 =1, 2, then p1pa
is a principal ideal, with generator a linear polynomial vanishing
at both (ay, 61) and (o2, B2), if these points are distinct, or else

the linear polynomial oy + 1y — 1, if pp = p1. Conclude that all -

non-principal prime ideals of R define the same element of the class
group, and that this element is of order 2, hence that Ko(R) = Z/2.

1.4.24. Exercise (More on class groups of quadratic number

fields). Let d be a square-free integer and let F = Q(v/d), which is the
most general quadratic extension of Q.

~ (1) Show that the ring R of algebraic integers in F is Z|/d), provided
that d = 2 or 3 mod 4, and is 2 [15/4] if d = 1 mod 4. (This

explains Exercises 1.4.20(1) and 1.4.21(1).)

(2) Let p € N be a (rational) prime. Show that R/(p) is a two-
dimensional algebra over the field I, of p elements, and that there
are exactly three possibilities for R/(p):

(a) R/(p) = Fyiz]/ (z2) contains a nilpotent element. In this case
we say p is ramified. Show that this case happens exactly
when p divides d or, if d =2 or 3 mod 4, when p = 2.

(b) R/(p) = Fpz is a field, so the principal ideal (p) in R is
mmaximal. In this case we say p is inert.

(c) R/(p) & Fp x Fp. In this case we say the prime p splits in
F.

(Hint: suppose R = 7Z[€] with €2 = d, which is the case if d =
9 or 3 mod 4. Then R/(p) = F,[z}/(z* — d), so you just have to
analyze whether the polynomial 2 —d has 0, 1, or 2 roots in Z/(p)-

The case d = 1 mod 4 is similar; it's just that the polynomial is

different.)

(3) Show that in case (a), the ramified case, (p) = p* for some prime
ideal p of R, and that in case (c), the split case, (p) = p1p2 for some
distinct prime ideals of R. In either case, if R has no elements of
norm p, then the prime ideals occurring cannot be principal and
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are thus non-trivial in C(R). Thus show that in the ramified case
one gets an element of C(R) of order 2. |

(4) Show how Exercise 1.4.20 fits into this general framework.

5. Relative Ky and excision

One ?f the things that makes K-theory so computable and useful is the fact
th.at it behaves like a “homology theory” for rings. (The precise connection
mth. a cohomology theory for topological spaces will be made in the next
section.) In particular, when R is a ring containing a two-sided ideal I,

thl{lere is al;: exaf:t sequence relating Ko(R), Ko(R/I), and a certain “relative
-group.” This exact sequence looks something like the exact sequence in
cohomology for a pair of topological spaces (X, A):

Hi(X, A) — H3(X) — HI(A).

The first aim of this section is to define the relative group K¢(R, I) and

the exact sequence relating it to Ko(R) and Ko(R/I). Then we prove an

algebraic analogue of the excision axiom fo
r homol
applications. ogy and develop some

1.5.1. Definition. Let R be a ring and I C R an ideal (in this section, al-

ways two-sided). The double of R along I is the subri :
product R x R given by ring of the Cartesian

DR, I)={{zx,y) € RxR:x—yell

N_o'te that if p, denotes projection onto the first coordinate, then there is .a
split exact sequence

(1.5.2) 0—I—- DR, I)E R0,

in the sense that p; is split surjective (with splitting map given by the

di'e:i()}lal embedding of R in D(R, I)) and that kerp; may be identified
with I.

1.5.3. Definition. . _ | |
g b; nition. The relative Ky-group of a ring R and an ideal I is

Ko(R, I) = ker ((p1). : Ko(D(R, I)) — Ko(R)).

Relative K-theory is closely linked to the phenomenon that while any

matrix over R/I can be lifted to a matrix over R, an invertible matrix

cannot always be lifted to an invertible matrix. The following lemma will
also be used in the next chapter.



1.5.4. Lemma. Let R be a ring and I C R an ideal. Then if A €
. (A (0 . .
GL(n, R/I), the 2nx2n matrix (0 A‘l) lifts to a matrix in GL(2n, R).

Proof. Note that
A 0 1 A 1 0\ /(1 A (0 -—1)‘
(0 A'1)=(0 1 /\-A"1 1/ \0 1/\1 O

The matrix ((1) _61) lifts “as is” to an invertible matrix over R. If B

and C are any (not necessarily invertible) matrices in My (R) lifting A and
A~! respectively, then

1 B i 1 O
(0 1) M \-C 1
are invertible and lift

1 A d 1 0
o 1/ ¢ \-at 1)’
Now just multiply.

1.5.5. Theorem. Let R be a ring and I C R an ideal. Then there is a
natural short exact sequence

Ko(R, I) = Ko(R) = Ko(R/I),

where q. is induced by the quotient map g : R — R/I and the map
Ko(R, I) — Ko(R) is induced by p2 D(R, I) — R.
Proof. Yor Siﬁlplicity of notation in the proof, if A is an element of R or

o matrix with entries in R, we will often denote g(A), the corresponding
matrix over R/I, by A. First consider an element [e] - 1f] € Ko(R, I),
where e = (ey, €2), f = (f1, f2) € Idem(D(R, I)). The image of [e] — [f]
in Ko(R x R) = Ko(R) x Ko(R) (using (1.2.8)) is ([ea] — [f1], [e2] — [fa])-
So | ‘

g 0 (p2)=(l€] = [f)) = @ (le2) — [f2]) = [é2] — Uf2),

whereas [e;] — [f1) = 0 since by assurnption e} — [f] € ker(p1)« But since
e, f € D(R, I), é; = é3 and f; = fa Thus

lé2] — [fo] = [é1) — 1] = g+ ([e1] - [f1]) = 0.

Hence the image of the first map is contained in the kernel of the Second..
Now suppose e, f € Idem(R) and a.(le] = [f]) = [é] = [f] = 0. Thene
and f are stably equivalent, so for suitably large r,

epi, =qled1i)~fal,=q(fD1)

5. Relative K and excision 29

under GL(R/I). Replacing e by e ® 1, and f by f @ 1,, we may assuine
f = gé(g)~! for some matrix ¢ € GL(R/I). In general, § will not lift to a
matrix in GL(R). However, §@®(§) ™! does conjugate é®0 to f@0, and lifts
to a matrix h in GL(R) by Lemma 1.5.4. Thus we may replace f by f& 0
and e by h(e ® 0)h~! without changing [e] and {f], and reduce to the case
where ¢ = f. This means (e, f) € Idem(D(R, I)). Then [(e, €)] — [(e, f)]
is a class in Ko(D(R, I)) which maps to 0 under (p;), and to [e] — [f]
under (p2).. This completes the proof of exactness. The naturality of the
sequence (under homomorphisms R — R’ sending I — I’) is obvious from
the definition of the maps and from functoriality of Kj.

Remark. In general, the map Ky(R) — Ko(R/I) is not surjective, and
the map Ko(R, I) — Ko(R) is not injective. The one exception will be
the case where the ring homomorphism R — R/I splits. In this case it is
obvious that the map Kog(R) — Ko(R/I) is split surjective, and it will also
turn out (see 1.5.11 below) that Ko(R, I) is the kernel of this map.

Next we want to prove the analogue of the excision theorem for topo-
logical homology. Recall that this says that under suitable hypotheses,
the relative homology H.(X, A) is unchanged when a large subset U of
A is removed from both A and X. Under optimal circumstances (for in-
stance, for CW-pairs), He(X, A) & H,(X/A) and thus only depends on
the “difference” between X and A. The analogous statement for K¢ turns
out to be true, and says that the relative group Ko(R, I) only depends
on the “difference” between R and R/I, which is measured by I (with its
structure as a ring without unit). In fact, it turns out that Ko makes
sense and is functorial even for rings without unit and for non-unital ring
homomorphisms. With this language, we show that Ko(R, I) = Ko(I).

1.5.6. Definition. Let I be a ring that doesn’t necessarily have a unit
element. The ring obtained by adjoining a unit element to I, denoted
I, is as an abelian group just I @ Z, with multiplication defined by the
rule

(z, n) - (y, m) = (zy + ny + mz, mn),

z,y € I; m, n € Z. It is an easy exercise to check that this is indeed a
ring with unit, the unit element being (0, 1). The notation I, is suggested
by topology, where X is standard notation for a space X with a disjoint
basepoint added.

It is useful to note that if « : I — I’ is a homnomorphism in the cate-
gory of rings without unit, it automatically extends uniquely to a unital

. vy ?
homomorphism Iy — I7.

Remark. The reader might wonder what happens if I already has a unit
element, say e. In this case, there is a unital isomorphism o : I, — I X Z
(the Cartesian product of rings) defined by

Of(.’E, n) = (-’B + ne, n),
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since

a((z, n) - (y, m)) = a(zy + ny + m, min)
= (zy + ny + mz + mne, mn)
= (z + ne, n) - (y + me, m)

= a(z, n) -o:(y, m)

1.5.7. Definition. Let [ be a ring that doesn’t necessarily have a unit.
Note that one has a split exact sequence

(1.5.8) 0—I—1I1,5Z—0.

Define
Ko(I) = ker (ps : Ko(I4+) — Ko(Z) 2 Z).

At first sight, there might appear to be some ambiguity here, since if I has
a unit, we have given two different definitions of Ko(I). However, by the
remark above, in this case I, = I X Z, so Ko(I4) & Ko(I) ® Ko(Z), and
ker p. just picks out the first summand. So the new definition agrees with
the old one in this case.

Also, this new definition makes Kg into a functor from the category of
non-unital rings to abelian groups. This observation is occasionally useful
even when one wants to deal only with rings with unit. For instance, if i is
a ring with unit, thereis a non-unital homomorphism R — M, (R) defined

0 0

by this non-unital homomorphism is the Morita invariance isomorphism of
Theorem 1.2 4.

1.5.9. Theorem (Excision). If I is a two-sided ideal in a ring R, then
Ko(R, I 2 Ko(I) (and thus does not depend on R, only on the structure

of I as a ring without unit).

by a (a 0  The reader can check that the homomorphism induced

Proof. Define a unital homomorphism 7 : I, — D(R, I) by
(z,n)— (n-1,n-1+2), z€l, n € Z,
and note that the diagram

I, —— D(R, I

TR

Z A R

commutes. Hence v, @ Ko(I}) — Ko(D(R, 1)) sends ker p. to ker(pi ).,

i.e., maps Ko(I) to Ko(R, T).
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Next we show that this map is surjective. Consider a class [¢] — [f] €
:KO(R, I), where e = (e1, e2), f = (f1, f2) € Idem(D(R, I)) and [e;] = {fi]
in Ko(R). After replacing e and f by e®1, and f@1, for a suitably large r
we may assume that e; and f; are conjugate under GL(R), say e; = ¢f; g"‘lj
for some invertible matrix ¢g. Replacing (f1, f2) by (¢f197%, gf2971), we
may assume that in fact f; = e;. Next, if e is an s X s matrix, we ;:nay
replace e and f by e® (1, —e;, 1,—€1) and by f®(1,—e1, 1, —€;). Note
that there is an invertible 2s X 2s matrix h with entries in R conjugating
e1® (1, —e;) to 1, ® 0,. Conjugating everything by h finally reduces us
to the case where e = (1, ® 0y, €2), f = (1, @ 04, f2). Since e and f are
matrices over D(R, I), e —~ (1, & 0,) and fo — (1, & 0,) have entries in /
Now [e] — [f] is clearly in the image of Ko(I). |

Finally, we have to show =, is injective on Ky(I). We may represent a
general element of Ko(I) by {e]—[f], where e, f € Idem([, ) and rank p(e) =
rank p(f). As above, if f is an rxr matrix, we may stabilize by taking direct
sums with 1, — f and conjugating, and thus assume f = 1,., rank p(e) = r.
We may also assume gp(e)g~! = 1, for some g € GL(Z). Viewing ¢ as an
element of GL(I,) via the split exact sequence 1.5.8, we may replace e by
geg~! and assume that p(e) = 1,. Now if 7, (le] — [1;]) = 0, this means

[(1r, &)l = [(1r, 1;)] in Ko(D(R, I)).

We may stabilize if necessary by increasing r and assume that there is a
matrix (g,, g2) € GL(D(R, I)) with

gilrgr =1, goeg; ' =1,.

Then (1, g7 g2) € GL(D(R, I)) and

—1 —1 - _ -
(97 'g2)e(gr " g2) ™! = gy H(g2e97 V)gr = 97 11qn = 1,

sillce g7 ' go Eil mod I, g7 gy lies in GL(I,) and this says [e] — [1,] = 0
in Kg(I), proving that the kernel of +, is trivial.

1.5.10. Examples.

(a) Suppose R = Z and I = (m), where m > 0. Thus R/I = Z/(m).
Ko(R/I) was computed in Exercise 1.3.14; the map Ko(R) —
Ko(R/I) is always injective but in general has a free abelian co-
kernel of rank k-1, where k is the number of distinct prime factors
of m. As a ring without unit, I is the free abelian group on a gen-
erator ¢ satisfying > = mt. Hence I, = Z[t]/(t? — mt), a fairly
complicated ring. Kg(I) is not so easy to compute directly, though
we will find a way to compute it in the next chapter. It turns out
to be a finite abelian group.

(b) For applications to topology (see Section 1.7 below), rings of the
form R = Z(G, the integral group ring of a group G, are of partic-
ular importance. 1t is a long-standing conjecture that when G is
torsion-free, Ko(R) = 0. This is known in some cases, for instance
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when G is free abelian; this case will be treated in Chapter 3. For
finite groups, Ko (ZG) is often non-trivial and contains interesting
arithmetic information. Consider the simplest example, when G is
cyclic of prime order p, say with generator t. Then R = ZG may
be identified with Z{t]/(t? —1). T £ = e2mi/P g primitive p-th root
of unity, and if S = Z[¢], then S is the ring of integers in the cyclo-
tomic field Q(£), hence is a Dedekind domain by Theorem 1.4.18.
There is a surjective homomorphism R — S defined by sending
t v £. Since the cyclotomic polynomial fp(t) = tp~l . +t+1
is irreducible, any polynomial g(t) € Zit] with g(§) = 0 must be
divisible by f,. In particular, anything in the kernel I of the map
R — S must be a multiple of f,. Note that as an element of R,
f2 =pfp. Thus I in this example is, as a ring without unit, the
same as in the last example if we specialize to the case m = p. In
particular, Ko(R, I) = Ko(Z, (p)). It 1s a result of Rim, which we
will discuss later on, that the map R — S5 induces an isomorphism
on Ky. In particular, IH{U(R) =~ (J(S), the class group of the cy-
clotomic field. This is known to be non-zero for primes p > 23.
(See Example 3.3.5(b) below.) The smallest group G for WhiC}l
Ko(ZG) is non-trivial is the quaternion group of order 8—in this
case, I?O(ZG) s of order 2 and an explicit generator is exhibited
in Exercise 1.7.20(3) below.

1.5.11. Exercise. The excision theorem may be interpreted as saying
that the split exact sequence 1.5.2 gives rise to a split exact sequence of
Ko-groups, the first group of which is Ko(I). The same holds by definition
i1 the case of the split exact sequence 1.5.8. Using ideas from the proof of
the excision theorem, show that if

0—-I1I—-R—R/T—0

is split exact (i.e., I is an ideal in a ring R, and there is a splitting homo-
morphism R/I — R), then

is split exact.

6. An application: Swan’s
Theorem and topological K-theory

To many mathematicians, the term K-theory suggests not algebraic K-
theory but topological K-theory, an exceptional cohomology theory on
compact Hausdorfl spaces defined using vector bundles. The connection
between the two comes from specializing what we have done to the case
where R is a ring of continuous functions. In this context, the Excision

LI TR T o :A.;L- l”-‘.‘.’:"‘-““.‘j:ﬁv - -\.-n_-' ',;. -J" rh
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Theorem (1.5.9) gives the excision property for this cohomology theory.
We do not attempt here to cover any of the deep properties of topological
K-theory, the most fundamental of which is the Bott Periodicity Theo-
rem, but we at least give a quick introduction to the fundamentals. This
provides an interesting application of what we have done so far, as well
as a useful motivation for a number of results and constructions in future
chapters. The reader who wants to see more details can consult any of the
texts [Atiyah)], [Husemoller], or [Karoubil.

1.6.1. Definition. Let X be a topological s"pace (in most of what we will
do, assumed to be compact Hausdorff) and let F = R or C. A F-vector
bundle (in the weakest sense) consists of a topological space E and a

continuous open surjective map p : E — X, with extra structure defined
by the following:

a) each fiber p~1(z) of p, z € X, is a finite-dimensional vector space
over IF;

b) there are continuous maps

Ex,E—E and FxE—E

which restrict to vector addition and scalar multiplication on each
fiber.

Such bundles E -5 X make up a category, in which the morphisms are
commutative diagrams

E L F
IR
X X

for which the map F 1, E' is linear on each fiber.
For any X and any n € N, the category always includes the trivial F-
vector bundie of rank n, which is X x F* = X, where 7 is projection

on the first factor and the vector bundle structure is the obvious one coming
from the vector space structure on the second factor.

The category has a binary operation called the Whitney sum, denoted

@®. By definition, if £ P, X and E' &5 X are F-vector bundles over X,
their Whitney sum is defined by

EQFE ={(z,2"):x € E, 2 € E, p(z) =p'(z'}},
with the obvious map to X.
For most purposes we want a more restrictive definition. A (locally

trivial) F-vector bundle is a F-vector bundle in the above sense with
the additional property that for each z € X, there is a neighborhood
U of z in X and an isomorphism (in the category of F-vector bundles)

lp—1
from p~!(U) P, U to a trivial bundle of some rank over U. The
rank of such a bundle is then a continuous function X — N defined by

rank, (E) = dimp~(z). If X is connected, the rank must be constant.
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1.6.2. Definition. If X is a compact Hausdorff space, let Vectp(X) de-
note the monoid of isomorphism classes (in the category of F-vector bun-
dles) of locally trivial F-vector bundles over X, with an addition opera-
tion induced by the Whitney sum. The (-element of this monoid is the
trivial bundle of rank 0. The topological K-theory of X is defined
by K2(X) = G(Vectp(X )). Sometimes this is denoted simply K(X) or
KUX) if F = C, KO(X) if F = R. (The “U” and “O” stand respec-
tively for “unitary” and “orthogonal” after the names of isometric linear
transformations.) We will often suppress mention of F when it is under-
stood from context. If X is connected, the reduced topological K-theory
is KO(X) = ker (rank : K2(X) — Z).

K°(X) is actually a contravariant functor from the category of compact
Hausdorff spaces (and continuous maps) to the category of abelian groups.
This follows from the fact that vector bundles pull back under continuous

maps. If X I, Y is continuous and E P, ¥ is a vector bundle over Y, we
define f*(Y) to be the fiber product

{(z,e):x € X, ec E, f(z) = p(e)},

with the obvious map to X. The pull-back clearly induces a monoid homo-
morphism f* : Vectg(Y) — Vectg(X) and thus a map K%Y) — K (X).

We're now ready for the connection between vector bundles and projec-
tive modules that explains the connection between topological and alge-
braic K-theory.
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subordinate to the covering. (Thus 0 < f; <1, f; is supported in U;, and
Y fi = 1.) Multiplying the e; corresponding to U; by f;, we get se:tions
ei; supported in U; which clearly extend to all of X by taking them = 0 off
U;, and by construction, the e;; generate I'(X, E) as an R-module. Hence
['(X, F) is finitely generated.

Next we show that I'(X, F) is projective. Choose generators s;, 1 <
j <k, for I'(X, E) as an R-module. (These may or may not be thje ones

we just constructed above.) Consider the trivial bundle X x F* = X and
construct a morphism ¢ : X x F* - E by

k
(GU, Viys. o ,’Uk) — Z’Ujs_f(fﬂ).

Sinf:e t‘:he s;(z) span p~!(x) for each z, this vector bundle morphism is
surjective on each fiber. Define a subbundle of the trivial bundle by F’' =
ker ¢ , i.e., by E. = ker .. This is also locally trivial since one can check

that it is trivial over any open set where F is trivial. We claim now that
E & E' = X x F*, which will show that

I'(X, E)® (X, E') 2 I'(X, X xF*) = R*,

hence that I'( X, E) is a projective module over R.

The easiest way to do this is by introducing hermitian metrics, i.e., inner
products. A hermitian metric on F is a continuous map

L Lt R T L
Le ¥ - -

1.6.3. Theorem [Swan2]. Let F =R or C, Jet X be a compact Hausdorff
space, and let R = C¥(X) be the ring of continuous F-valued continuous

functions on X (with pointwise addition and multiplication). If E 5 Xis
a (locally trivial) F-vector bundle over X, let

(, Y ExxE—F

LRIt

P T e el T
LY
B

which restricts to a positive-definite inner product on each fiber of E (bi-
lin.ear if F = R, sesquilinear if F = C). Such metrics clearly exist since they
exist on trivial bundles (use the standard inner product on F") and can
be patched together using a partition of unity. Therefore we may choose
such a metric on E and the metric on X x F* coming from the standard

inn-er product on F*. With respect to these metrics, ¢ has an adjoint ¢*
satisfying the usual relation

I'(X, E) = {s: X — E continuous |pos = idx }

be the set of continuous sections of p. Observe that this is naturally an R-
module. Then I'(X, E) is finitely generated and projective over R, and ev-
ery finitely generated projective module over R arises (up to isomorphism)
from this construction. The map E ~ I'(X, E) induces an isomorphism of
categories from the category of (locally trivial) vector bundles over X to
the category of finitely generated projective R-modules. It also induces an

isomorphism K%(X) — Ko(R).

(v, w) = (v, p*w).

Since ¢ is surjective on each fiber, ¢* will be injective on each fiber, with
image the orthogonal complement of E = kery. So ¢ gives an isomor-
phism of vector bundles from F to E’ 4 showing that E® E' = X x FF
as desired. |

Now we have to show that every finitely generated projective module
over R corresponds to a vector bundle. Suppose P is such a module and

P®Q = R"=C(C(X, F*). Then we may view P as a collection of functions
X — F" and let |

Proof. Let E P, X be a (locally trivial) F-vector bundle over X and let
(X, E) be its R-module of sections. For each z € X, there is an open
neighborhood U over which E looks like a trivial bundle U x F™ for some
. The n constant functions e; : U — F™ determined by the standard
basis vectors of F* clearly generate the sections of this trivial bundle as a t
module over the continuous functions. Since X is compact, we can COVer
X by finitely many such open sets U; and choose a partition of unity (f;)

i

E={(z,vy,...,vn) € X xF": 3s € P with s(z) = (v1,...,vn)}.
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Define p : E — X using projection onto the first factor. It is now quite

easy to see that £ P, X is a vector bundle. Vector addition and scalar
multiplication just come from vector addition and scalar multiplication in
F". (These operations map £ into ‘tself since P is an R-module.) We need
only check the local triviality. Given z € X, choose elements el,...,e" €P
such that el(z),...,e () are a basis for the subspace £y = p~1(x) of F".
Recall these are vector-valued functions; write et = (ef,...,el). Then

since e'(z),...,e" (z) are linearly independent, we can choose 1 < j; <
... < jr < n such that

a1 Ja Ir

(1.6.4) e=det| :
T T T
ejl ej'z . Ejr

‘s non-zero at x. We may choose similar elements fl...,fmreq such
that f1(z),..., " "(x) are a basis for the image of @ in F™ at z. (The
dimensions are complementary since P & ¢ = R® = C(X, F*).) From
the f* we may construct an (n — r) x {n — r) determinant f, similar to
(1.6.4), which is non-zero at . Since e and f are continuous, there is
some neighborhood U of x in which both e # 0 and f # 0. For y € U,
el(y),...,e"(y) are linearly independent and generate a rank-r free sub-
module of P. Similarly, fX(y),..., f* "(y) are linearly independent and
generate a rank-(n—r) free submodule of Q. By dimension counting, these
must exhaust P and @, so both P and () are trivial over U. The statement
about an equivalence of categories is now easy to check.

Theorem 1.6.3 suggests that we should extend the definition of K9 to
the category of locally compact spaces and proper maps (maps that
extend continuously to the one-point compactification) by letting K oY) =
Ko(CE(Y)), where CE(Y) is the ring of functions vanishing at infinity on
V and we are using K-theory for rings without unit, as in Definition 1.5.7.
The resulting theory is called K-theory with compact supports. See
Exercise 1.6.14 below for a more geometric definition.

1.6.5. Proposition. If X is a compact Hausdorff space and A is a closed
subspace, there is (for F = either C or R) an exact sequence induced by
the inclusion A «— X:

KO(X ~ A) = K°(X) — K°(4).

Proof. Let R = CF(X), and let I be the closed ideal of functions van-
ishing on A, which as a ring without unit is isomorphic to C§(X ~ A),
the functions vanishing at infinity on the locally compact spaee X N A.
By the Tietze Extension Theorem, every continuous function on A is the
restriction of a continuous function on X, hence R/I may be identified
with CF(A), with the quotient map R — I2/I identified with restriction

of functions. The result now follows immediately from Theorem 1.6.3 and
Theorem 1.5.9.
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Proposition 1.6.5 shows in effect that K 0 satisfies two of the Eilenberg-
Steenrod axioms for a cohomology theory: exact sequences and excision. It
also satisfies the other key axiom, homotopy invariance, and we prove this
next by using special properties of Banach algebras. Recall that a Banach
algebra A is an algebra over R or C which also has the structure of a
Banach space, such that for any a, b € A, |lab|| < }la|[|b]]. The principal
examples for our purposes are M, (CF(X)), X a compact Hausdorff space,

or M,,(CE(Y)), Y a locally compact Hausdorff space. The latter does not
have a unit.

1.6.6. Lemma. Let A be a (real or complex) Banach algebra with unit
and let z € A with |1 —z|| < 1. Then for each o € R there is an element
z® in A with the usual properties (! =, 2° = 1, z® - 2 = z°*F). In
particular, z is invertible in A.

Proof. Define z* by the usual binomial power series for (1+ (z—1))°.
The norm of the n-th term in the series is bounded by the corresponding
term in the series for (1+]|z—1||)®, which converges absolutely. Since Aisa
Banach space, the series for z* theretore converges absolutely. The relation
1% . 28 = £2t8 follows as usual from multiplication of the series. [

1.6.7. Lemma. Let A be a Banach algebra and let p, ¢ be two idem-

potents in A with [lp — ql| < min (||pli~2, llgl=2). Then the projective
A-modules Ap and Aq are isomorphic.

Proof. Observe that pAp and gAq are Banach algebras with unit ele-
ments p and g, respectively. Since ||p — gl < lip||~2, multiplying by p on
both sides gives ||[p—pgp| < 1, and similarly llg—gpg|| < 1. Sox = (pgp)~ 3
makes sense in pAp and gpq is invertible in gAg, both by Lemma 1.6.6. Thus

there is an z € pAp commuting with pgp with z2(pgp) = p and of course
with £ = zp = pz. Observe then that

(1.6.8) (zq)(gz) = zpgpr = =*(pgp) = D,
that

(1.6.9) p(rq) = zq = (zq)q, q(gz) = gz = (g=)p,
and that

(1.6.10) (gz°q)(gpq) = qx’qpq = q=*(pap)q = qpg-

The equation (1.6.10) says (qz)(xq) is a left unit for gpq in gAq. But since
gpq is nvertible in gAgq, (gz)(xq) must be equal to the unit element of
gAq, which is g. The equations (1.6.8) and (1.6.9), together with this fact,
imply that right multiplication by gz gives an isomorphism from Ag onto

Ap, whose inverse is right multiplication by zq (compare the calculation in
Lemma 1.2.1).
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1.6.11. Corollary (Homotopy invariance of topological K-theo-
ry). Let A and B be Banach algebras and let ¢, : A—- B 0<t<1,
be a homotopy of homomorphisms from A to B. (This means exactly
that there is a homomorphism ¢ : A — C(|0, 1], B) which when composed

with evaluation at t gives ¢;.) Then wy and ¢; induce the same map on
K-theory Ko(A) — Ko(B).

Proof. If necessary, adjoin units to A and B and extend y; to a homotopy
of unital homomorphisms of unital algebras Ay — B,. Since Kp(A) —
Ko(Ay) and Ko(B) — Ko(By), this reduces us to the unital case. For
simplicity, we therefore assume without loss of generality that A, B, and
the homomorphisms are unital. For any p € Idem(A), p lies in" M, (A) for
some n, so we may replace A and B by M,(A) and M, (B), respectively.
(These are still unital Banach algebras, and ¢, extends naturally to M, (A)
just by application of the homomorphism to each matrix entry separately.)

Then y;(p) is a continuous path of idempotents in B. Choose (' so that
lloe(p)|| < C for all t. We may partition the interval {0, 1] into subintervals
such that |lo.(p) — ws(p)ll < C~2 for ¢, s in the same subinterval. By
Lemma 1.6.7, the class of ¢(p) remains constant in each subinterval, hence
remains constant in the whole interval. So o and ¢ induce the same map
Idem(A) — Idem(B) and hence the same map on Kp.

1.6.12. Corollary. The functors X ~» Vectg(X) and X ~ K°(X) are
homotopy-invariant functors from the category of compact Hausdorff topo-
logical spaces to the category of abelian monoids and the category of abelian

groups, respectively. In particular, if X is contractible, all vector bundles
over X are trivial, and K°(X) = 0.

Proof. Specialize to the case of Banach algebras of the form M, (C¥(X)).
Since homotopic idempotents are equivalent, we deduce that the map from
X to isomorphism classes of direct summands in a trivial bundle of rank

n over X is a homotopy functor. The rest of the statements follow from
this.

1.6.13. Example. Corollary 1.6.12 shows that the classification of vector
bundles, and hence the calculation of K°(X), are homotopy-theoretic in
nature. Consider for instance the case where X = S™. This is a union of
two contractible hemispheres joined along the equator S n=1 (If n =0, the
hemispheres are single points and the “equator” 1s the empty set.) Thus
any rank-r bundle over X is trivial over the hemispheres and determined
by the homotopy class of the “gluing data” along Y = S™~1. which gives
an isomorphism between the two trivializations of the bundle coming from
the two hemispheres. Now an isomorphism between two trivial bundles
Y x Fr =% Y is just given by a continuous map Y — GL(r,F). So
isomorphism classes of rank-r F-vector bundles over 5™ are in one-to-one
correspondence with homotopy classes of maps S~ » GL(r, F). Fur-
thermore, by polar decomposition, any matrix in GL(r, F) can be written
uniquely in the form up, where u is unitary if F = C, orthogonal if ¥ = R,
and p is positive-definite self-adjoint. The positive-definite self-adjoint ma-
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trices form a contractible space (since one can write any such matrix as
e" with A hermitian and use the contraction given by et*, 0 < t < 1), so
GL(r, C) has a deformation retraction to U(r) and GL(r, R) has a defor-
mation retraction to O(r). Thus the isomorphism classes of rank-r F-vector
bundles over S™ are given by n,_1(U(r)) if F = C, 7,_1(0O(r)) if F = R.
The 0-element of the homotopy group corresponds to the trivial bundle.
Now we can make some computations. O(r) always has two components
with identity component the rotation group SO(r), and U(r) is connected.
Thus mp(U(r)) = 0 and mp(O(r)) & Z/2, so Effﬂ(Sl) = 0, I?F)O(Sl) o
Z/2. In low dimensions, one can check that O(1) = {1, —1}, S50(2) = §’,
SO(3) = RP3, SO(4) has S® x S® as a double cover, U(1) = §*, SU(2) =

S3. Thus, for instance,

0, r=1,
mO(r) =4 % =2
Zzf2, r2=3,

so that Vectr(S?) is the monoid described in Exercise 1.1.7. One finds sim-
. =0 |
ilarly that 7, (U(r)) = Z for all r, so that KU (S§°) & Z. The calculations

0 —~—0

of KO (S™)and of KU (S™) for all n follow from the Bott Periodicity The-
orem, which says that the answer only depends on the value of n mod 8
in the real case or the value of n mod 2 in the complex case. One obtains

0, r#£0,1,2,4 mod 8,
K0 (S ={ 2, r=0,4 mod8,
Z/2, r=1,2 mod 8,

0, r odd,
Z., T even.

—~0

RO"(5™) = {
1.6.14. Exercise. Give another description of K-theory with compact
supports for a locally compact Hausdorff space Y in which K°(Y) is a set
of equivalence classes of triples (Ey, Ey, @), where Ey and Ey are (locally
trivial) vector bundles over Y and ¢ is a morphism of vector bundles Ep —

E, which is an isomorphism outside of a compact set, and with relations

(a) [Eo, E1, 9]+ [Fo, F1, ¥] = [Eo® Fy, E1 ® Fy, ¢ & 9],
(b}  [Eo, Ei, @) =|Eo, Ey, ¢'] if ¢ = ¢ outside of a compact set,

(c) [Ey, B, ¢] =0 if v is an isomorphism.

Impose the necessary equivalence relation to get an isomorphism with our
old description of K°. Hint: when Y is actually compact, condition (b)

says that one can forget the ¢ altogether. In this case, the isomorphism of
this description of K° with the usual one is given by

[Eo, Er, @] v [Eo] — [E4].
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1.6.15. Exercise. Show that if one defines K—7(X) = K°(X x R’) (using
K-theory with compact supports) that the short exact sequence of Propo-
sition 1.6.5 can be extended to a long exact sequence

s KX NA) > K (X) = K7 (A) > KT7TH(X N A)— -

Hint: the problem is construct the boundary map K°(AxR) — K (X NA).
This can be done by letting Y be the space (4 x (0, 1}) U X, with (a, 1)
identified with @ € X for a € A. (Y is the “open mapping cone” of the
inclusion A — X.) One gets from Proposition 1.6.5 exact sequences

K%A x (0, 1)) — K°(Y) = K°(X)

and

KX~ A) - K%Y)— KA x (0, 1)).

Show using homotopy-invariance and excision that K°(A x (0, 1]) vanishes
and that K°(X < A) —» K°(Y) is an isomorphism. Then splice these exact
sequences together with the sequence

KX < A) — K°(X) — K°(A).

1.6.16. Exercise (The Karoubi Density Theorem [Karoubi, IL.6.
15]). Let A and A be (unital) Banach algebras over C, andlet t: A — A
be a continuous injection of A into A as a dense subalgebra. Extend ¢

to matrices in the usual way, by applying it to each entry of the matrix.

Assume that for all n, if z € M,(A) and ¢(z) is invertible in M, (A), then
z is invertible in M,,(A). )

(1) Show that ¢ induces an isomorphism Ko(A) — Ky(A). Hint for
the surjectivity: if e is an idempotent in M,(A), then e can be
approximated in the topology of A by an element z of M,(A).
Show that the spectrum of z in. M, (A) coincides with its spectrum
in M,(A), and thus that = has spectrum close to {0, 1}. Deduce
that the Banach subalgebra of M, (A) generated by x contains an
idempotent f with ¢( f) close to e, by justifying the definition

1 d¢

B e

__271'1 [‘C—fﬂ’

where I is a contour in the complex plane encircling the part of the
spectrum of z close to 1, and excluding the part of the spectrum
of z close to 0. Then use Lemma 1.6.7.
(2) Show that the two hypotheses are satisfied if A is the algebra of
" continuous complex-valued functions on a compact subset X of
R" (equipped with the sup norm || }}), and if A is the algebra
of continuously differentiable functions on X, equipped with the

‘norm -

IAlla = IFH+ VAL
Deduce that “every vector bundle over X has a difterentiable struc-
ture.”
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7. Another application: Euler characteristics
and the Wall finiteness obstruction

In this final section of Chapter 1, we discuss the algebraic background of
most of those applications of Ky to topology that do not involve topological
K-theory. While what we will be doing here is pure algebra, it is worth
saying a bit about the topological motivation to explain what is going on.
If X is a path-connected, locally 1-connected topological space with fun-
damental group G and R = ZG, we can manufacture from X its singular
chain complex with local coefficients S,(X). This is a chain complex
of free R-modules which is the same thing as the usual singular chain com- .
plex of the universal cover X of X, together with the R-module structure
coming from the action of G on X by covering transformations. Further-
more, the chain homotopy equivalence class of the chain complex Se(X)
only depends on the homotopy equivalence class of the space X. The chain
complex S,(X) is quite large in general; for most spaces of interest, the
R-modules in it are not even countably generated. However, if X is a finite
CW-complex, then So(X) is chain homotopy equivalent to the cellular
chain complex with local coefficients Co(X), a chain complex of free
R-modules with only finitely many non-zero chain groups and with each of
these chain groups finitely generated. Thus an obvious necessary condition
for a space X to be homotopy-equivalent to a finite CW-complex is for
S.(X) to be chain-homotopy-equivalent to a finitely generated complex of
free R-modules.

Under some circumstances, it is easy to check not this condition but
something weaker, called finite domination. The space X is finitely dom-
inated if up to homotopy it is a retract of a finite CW-complex; in other
words, if there is a finite CW-complex Y and there are maps f:X—-Y,
g:Y — X with go f ~ idx. An important question is then whether
this implies that X is homotopy-equivalent to some (other) finite CW-
complex. (It is not hard to show that X is homotopy-equivalent to some
CW-complex (see [Varadarajan, Theorem 3.9] or [Spanier, Ch. 7, Exercise

. (G6]), but this complex is not necessarily finite.) This question was an-

swered by C. T. C. Wall in an important series of papers. Wall showed
that if X is finitely dominated, then Ss(X) is chain-homotopy-«<uivalent
to a finitely generated complex of projective R-modules. The Wall finite-
hess obstruction of X is then the “Euler characteristic” of this complex
in the group Ko(R). Though we will not show here that vanishing of the
obstruction is sufficient for finiteness (for this see (Wall] or [Varadarajany),
it will be clear that it is necessary. The Wall obstruction occurs in many
problems in geometric topology, such as the question studied by Sieben-
mann of when a non-compact manifold is homeomorphic to the interior of
a compact manifold with boundary. For this and other geometric problemns
related to the Wall obstruction, see [Weinberger, Ch. 1, §1 and 84].

We shall now provide an abstract treatment of the Wall finiteness ob-
struction for chain complexes of R-modules, as an outgrowth of the classical
theory of the Euler-Poincaré characteristic for topological spaces. Since we
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don’t assume the reader is very familiar with homological algebra, we be-
gin with a review of some classical notions and facts. The reader who has
had a course in homological algebra or homology theory can probably skip
ahead to 1.7.9 after reviewing the statements of Theorems 1.7.4 and 1.7.7.

1.7.1. Definition. Let R be a ring (with unit). A chain complex of
R-modules is a pair (C,, d), where C, is a Z-graded R-module and d is an
R-module homornorphism C — C of degree —1 such that d* = 0. (In other
words, d is defined by maps d,, : C, — Cr_1 such that d,_; o d, = 0.)
Recall that the homology of such a chain complex is H(C) = kerd/imd;
more precisely, H,, = kerd,,/imd, 1. Elements of kerd are called cycles
and elements of im d are called boundaries. The chain complex is called
acyclic if H(C) =0, i.e., if the sequence

dn+1 dn dn--1
RN SN g ML N

is exact.

1.7.2. Definition. If (C,, d), (C., d') are chain complexes of R-modules,
a chain map between them is an R-module homomorphism ¢ : C — C*
of degree 0 intertwining d and d’, i.e., is given by maps pn : Cy — C} such
that d’. 0y = Pn-10dy,. It is immediate that such a ¢ induces maps on
homology ¢, : Hn(C) — Hp(C'). 9 :C — C" and ¢ : C — " are chain
maps, a chain homotopy between them is an R-module homomorphism
g: C — (' of degree +1 such that

(1.7.3) sod+dos=p—1.

Chain homotopy is an equivalence relation on chain maps. We write p >~ ¢
if there is a chain homotopy between them. A chain homotopy from idc
to 0 is called a chain contraction, and if such a homotopy exists, C, is
called chain-contractible.

Note that (1.7.3) implies that ¢, = 9. on homology. Indeed if de = 0,
then

p(z) — () = s 0 d(z) + d' 0 5(x) = d'(s(z)),
so that @(z) and 1(x) lie in the same homology class. Thus if a chain
complex is chain-contractible, it is acyclic. The converse is false without
additional conditions. -

If there exist chain maps ¢ : C — C' and ¢ : C' — C such that
Yoy ~ ido and poy ~ idcs, then we say C and C' are chain-homotopy-
equivalent. This of course implies by our previous remark that . is an
isomorphism on homology with inverse ..

1.7.4. Proposition. If (C,, d) is an acyclic chain complex of projective
R-modules and C, is bounded below, i.e., C; = 0 for j sufficiently small,
then C, is chain-contractible.

Proof. Without loss of generality assume C; = 0 for j < 0. (Otherwise
reindex.) We construct a contraction s, : Cp — Cpyy by induction on n
to satisfy the needed condition |

(*ﬂ) Sp-10© dn + dﬂ+l ©8n = idcn'

B VP WL - A
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At the same time, we also show by induction that kerd,, is a direct sum-
mand in C,. To begin the induction, set s; = 0 for 7 < 0 and note that
by the assumptions that Hy(C) =0and C_; =0, d; : C; — Cy must be
surjective. Since Cp is projective, d; must have a right inverse 39, 50 (*p)
holds. Furthermore, imd; = kerdy = Cy is projective.

For the inductive step, assume we've constructed s; for 7 < n to satisfy
(*j) and we know kerd; = imd;,, is a direct summand in C; for j < n,
hence projective by Theorem 1.1.2. We shall construct s; to satisfy (x,).
By inductive assumption, C,,_y = (imd,,)®Q,, - for some projective Q,,_;.
On imd, = kerd,—;, Spn—20dp—1 =0, so d,, 0 8,1 18 the identity. Thus,
by (*,-1), Sn—) is a right inverse for

dn . C'n — lmdn _C_ Cﬂ__l.

Therefore s,,_; od, is an idempotent endomorphism of C,, with image Q,
complementary to kerd,, and kerd,, = imd, ., is B-projective. Since

is surjective, it has a right inverse s,,. Extend s,, to all of C,, by making

it 0 on Q. Then (x,,) is satisfied and we’ve completed the inductive step.
The Proposition now follows by induction.

1.7.5. Definition. Suppose ¢ : (C,, d) — (C, d') is a chain map between
chain complexes of R-modules. Its mapping cone is (CY, d""), where

Ci = Cj_1 @ C} (note the degree shift in the first summand!) and
d;(c, ¢') = (—dj_1¢, p(c) + d;(c')).
This is a chain complex since

di_y o dj(c, ) = (dj-2 0dj_1c, p(~dj_1) + dj_, ((c) + dj(c)))
= (0, —po dj—l(c) + d;i-—l o p(c) +0) = (0, 0).

1.7.6. Theorem (Fundamental Theorem of Homological Alge-
bra). Suppose

0 - (Ch, d') = (Cs, d) 5 (CY, d") — 0

is a short exact sequence of chain complexes. (This means « and 3 are
chain maps and the sequence of R-modules

OH—?*C_;iCJE-}C;’-—}O

is exact for each j.) Then there is an induced long exact sequence of
homology modules

= Hy(C) =5 Hy(C) 5 Bi(C") = Hya(C) = -
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Proof This is the quintessential “diagram chase.” First we go through

the definition of H;(C") 9, H;_1(C"); then we go through the proof ot
exactness. Let [z”] be a class in H;(C") represented by z" € C; with
4"z = 0. Since 8 is surjective, " = B(z) with z € Cj. Since d”o B(x) =0
and B is a chain map, fod(z) = 0, ie., d(z) € ker 3 = ima. Hence
d(z) = a(z’) for some z' € Cj..;. We claim d'(z') = 0, so that z’ is a
“cycle,” i.e., represents a class in H;_1(C"). Indeed, since o is a chain
map, aod'(z') = doo(z') = d*(z) = 0. But o was injective, so d'(z") = 0.
Now let d{z"'] = [z']. We leave to the reader the simple argument that
shows this is independent of the choice of " within its homology class and
independent of the choice of the lift z of T’

We proceed now to the proof of exactness. The construction of d{z"]

above gives o, (8[z"]) = [a(z’)] = [0], and also shows that if [z"] = Bulz] -

for some [z] € H;(C), then d{z"] = 0 (since d(x) = 0). Also, By ca, =0
since B o a = 0. So the image of each map in our sequence is contained in
the kernel of the next one.

For the reverse containments, suppose for instance that z € Cj, d(x) =0,
and B.[z] = 0 in H;(C"). Then f(z) = d"(y") for some y' € Ci,,.
Since @ is surjective, we may choose y € Cj41 with B(y) = y'. Since
" d"oB(y) = Bod(y) = P(x), z —d(y) € ker § = ima, and |z] € imo,.. Thus
ker 8. C im ..

Next, suppose z € Cj, d’(z) = 0, and dlz"] = 0 in H;_1(C"). By
the description of 8 above, this means =" = fB(z) with d(z) = a(z') and
o = dy), y € C;. Then doa(y) = aod(y) = a(z') = dx), so
z — o(y') € kerd. Since also g(z — a(y')) = B(z)} = z", this shows {z"] =
B.lz — a(y")]- Hence ker d C im f..

Finally, suppose =’ € Cj_3, d'(¢') = 0, and a, [¢'] = 0 in H; _,(C). Then
a(z') = d(z) for some x € C;. Let 2" = B(z). Then d"(z") = fod(z) =
Boa(z') =0, so " defines a class [z”] in H;(C"). From the description of
8, 8\z"'] = |z'], so ker o, € im 8. This completes the proof of exactness.

1.7.7. Theorem. A chain map between chain complexes of R-modules 1s
a chain homotopy equivalence if and only if its mapping cone is contractible.
If the complexes are bounded below and consist of pro jective R-modules,
then it is a homotopy equivalence if and only if the mapping cone is acyclic,
or if and only if it induces an isomorphism on homology.

Proof. Let @ : (Cs, d) — (C,, d') be a chain map and let (Cl, d") be its
mapping cone. First observe that there is a short exact sequence of chain
complexes

0 (CL, d') = (CL, d") = (Co-y, —d) = 0.

The maps here are the obvious ones: we map C; to C} =0Cj-1® C by
¢ v (0, ¢}, and we project C; onto the first summand C;_;. The fact that
these maps commute with the boundary maps is obvious from Definition

1.7.5. Since changing the sign of d doesn’t change the homology of C, we
obtain from Theorem 1.7.6 an exact sequence

(1.7.8) -+ — Hyp(C") — Ha1(C) S Hy 1 (C') = Hpea(C") — -
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Here it is easy to check from the definition of d that the map H,_,(C) —
H,,.,(C") is just .. Thus ¢, being an isomorphism in all degrees is equiv-
alent to the mapping cone C” being acyclic. Furthermore, if C and C’ are
bounded below and consist of projective modules, then the same is true ot

C’. Hence, by Proposition 1.7.4, the mapping cone in this case is acyclic
if and only if it is contractible.

It remains to show that ¢ is a homotopy equivalence if and only if C”

is contractible. Suppose s : C"" — C" is a chain contraction. Then we
defines:C—C,s :C'—=C'yand ¢y : C' — C by

s'(c, 0) = (s(c), -~+),
s"(0, ¢y = (¥(c), —5'(c))
Since d”’s8" + 8"'d"” = idc», we have
(c, 0) = (~do s(c), ---) + s (—de, p(c))
= (~dos(c)+Pop(c)—sod(c), ),
(0, ¢} = d"(¥(c), —5'(c")) + §"(0, d'(c'))
= (~doy(c'), pop(c) —d o &' () + (Yo d'(), —s o d/(C)},
which says
—doy(c)+pod () =0V (¢ is a chain map);
¢c=—dos(c)+yop(c)—sod(c) Ve (Pop>idc);
¢ = pop(d) —d o8 () =5 od (¢) VY (povide).

In the other direction, suppose ¢ is a homotopy equivalence with homo-

topy inverse v, and suppose one has homotopies s from ¥ o ¢ to id¢ and
g from @ o to idg:. Let

(e, ) = (s(c) + () + ¥ o s’ 0 plc)b o o 5(0),
—d(¢) +5 0pos(c)~ ()2 p(c).
We will check that one obtains a chain contraction of C”. Note that
(d"s" +s"d")(c, ) =d" (s(c) +¥(c') + Yo s op(c)—Poypos(c),
~&' (') + 8’ 0 pos(c) — (s)" 0 plc))
+ 8" (=d(c), p(c) + d'(¢))
= (—dos(c) —doy(c) —doyos opc)
+dogopos(c), pos(c)+yop(c)
+popos op(c)—poropos(c)
~d' os'(¢"V+d o5 opos(c)—d o(s)?op(c))
+(—sod(c) +yop(c)+Pod(c)
+90s 0p(~d(c)) + 9 09 os(d(c)),
— 8 op(c) — s od'(c)
+s' 0 p o s(—d(c)) — (s')" o p(—d(c})))
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The first coordinate (after some regrouping) is

= [~do s(c) — sod(c)] + [~dop(c) + Yo d(c)]

+]-dopos op(c)—pos opod(c)

+ Ldaqﬂoapos((:)-i-’(,boﬁpes@d(c)]+¢°‘P(C)

= ...(dos+3od)(c)+(wogaosod+1.bmp°d03)(c)
_¢D(d’03'+3’od’)oga(c)+1,b0t,o(c)

= c+poyo(Poyp—ide)lc)
—po(poth—ide)op(c)

= C.

The second coordinate (after some regrouping) is

=[poyp(d) —d os'(c') — s o d'(c)]
tlpos(c) + & o' oy os(s) - pobopos(O)
+[-s' op(c) — d' o (3")2 op(c)+popo s' o p(c)]
_sdoposod(c)+ (s opod(c)
= ¢ + (ide —poy +d os')oypos(c)
+ (p o —der —-dIOSI)OSIDLP(C)
—s'oposod(c)+ (s)*opodlc)

_——_C’—Srodf(}(pDS(C)

+ 35" od o5 op(c)
—~ s oyposod(c)+ () opod(c)
= —~§gopo(dos+sod)c)
+so(d os +3s od)op(c)
= ¢ — s opo(Ppoyp—idec)c)
+ 5 o(poyp —ide)opl(c)

— C’.

This confirms that s is a chain contraction of C”.

Now we're ready to introduce the connection with Ko(R).

1.7.9. Definition. A chain complex (C,, d) of R—modulets is ca.l!ed bound-
ed if the modules C; are non-zero for only finitely many Jj, and is called of
finite type if it is bounded and all the C; are finitely generated. (T_he
connection with topology is that the cellular chai‘n complex of a ﬁr:ute
CW-complex is of finite type, and the cellular chain complex of a finite-

dimensional CW-complex is bounded (with non-zero chain groups only in
tlie dimensions of the cells of 1he complex).)
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If (C,, d) is a chain complex of finite type of projective R-modules, we
define its Euler characteristic by

o0

x(C)= Y (-1)[C;] (in Ko(R)).

j=—o0

Note that this is really a finite sum, and that d is not used in the definition
of x(C). Also define X(C) to be the image of x(C) in Ko(R).

1.7.10. Proposition (‘“Euler-Poincaré Principle”). The Euler

characteristic is additive on short exact sequences of complexes of finite
type. In other words, if

0=-C' =-C"5C =0

is a short exact sequence of chain complexes of finite type of projective
R-modules, then x(C") = x(C')+ x(C). Furthermore, if (C,, d) is a chain
complex of finite type of projective R-modules, and if all its homology
modules are projective, then

o0

x(C)= ) _ (-1Y[H;(C)).

j=—o00

Proof. Since any short exact sequence of projective modules splits, if
0-C'-C"-C—0

is a short exact sequence of chain complexes of finite type of projective
R-modules, then C} = C} & Cj, hence [C]] = [C}} + [C;] and the formula
x(C"} = x(C') + x(C) follows upon taking the alternating sum over j.

Next, suppose (C,, d) is a chain complex of finite type of projective
R-modules and all the homology modules H;(C) are R-projective. Let
ZJ‘ = ker(dj : Cj —> Cj._]_), BJ' = im(dj+1 . Cj+1 — Cj) We have short
exact sequences

(%) 0= Z;p1 — Cjq1 ~25 B, — 0,
(%) 0—B; —Z; —» Hj —0.

Since H; is assumed projective, (xx) splits, and Z; = B,; @ H;. Since the
complex is assumed to be of finite type, we may assume (after reindexing)
that C; = 0 for j < 0, in which case Cy = Z; is projective; hence, since

Zog & By @ Hy, By is projective. Thus C| 4, By must split and so
Ci, & By & Z,. This implies Z, is projective, and since Z; & B; ® H,,
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as required. The same calculation shows that homotopy-equivalent chain
complexes have the same Euler characteristic. Finally, additivity on short
exact sequences also follows immediately from Proposition 1.7.10 and the
fact that short exact sequences of projective inodules must split.

B, is projective. Continuing by induction, all the B; and Z; are projective ;
and all of the above short exact sequences split. Thus we obtain

(Zi41] + [Bj) = [Cia]  (from (+)),
We' final y
B,] + [H;] = | Zi] (from (x*)). e're now finally ready for Wall’s theorem.

Substituting in the definition of x(C'), we obtain

1.7.12. Theorem [Wall]. Let (C,, d) be a chain complex of projective
R—mod-ule-s whicli is homotopy-equivalent to a chain complex of finite type
of projective R-modules. Then (C,, d) is homotopy-equivalent to a chain

£(C) = Z —1Y(C;] complex of finite type of free R-modules if and only if X(C) = 0 in Ko(R).

Rl Proof. Suppose (Cs, d) is homotopy-equivalent to (C,, d') of finite type,

- | with both complexes consisting of projective modules. By Corollary 1.7.11,

_ Z (-1 (|2;] + (B;_1]) x(C) = x(C"); hence x(C) = x(C'). If ' consists of finitely generated free
i mogules, then clearly x(C') = 0 so x(C) = 0.

o | n the other hand, suppose x(C') = 0. It will be eno '

_ Z (1) ([H;] + B+ [Bj-1]) is homotopy-equivalent to a CDI?[(ILIB)Z; of finite type i(frlllsi;;giggt?)fS?;Z 103-

jm—oo modules. Suppose C; = 0 for j outside of an interval {k, k+1,..., k+

n}f. Choose projective modules Q,,,...,Qo such that C} @ Q is free,
Cliny ®Qn®Qn, is free, and in general such that C; , ; ® Q41 D Q; is
free for 0 < j < n. If (T, dr) is chain-contractible, then replacing (C,, d')

|

Z (_l)j[Hj]+ Z (-—-1)-‘5[Bj] Z (—1)[B)] i

— Z (—1)3" [Hj]. by (C!, d') @ (T,, dT) doesn’t change its homotopy class. So let (Ti dT j)
= be defined by
. Tj""‘{ 0, i?’—'k—l—j,k--j—l,
" * st i=k+j,k“-j—1,

1.7.11. Corollary. The Euler characteristic is well defined on chain

complexes of projective R-modules which are homotopy-€q uivalent to com-
plexes of finite type of projective R-modules, and is constant on homotopy

. v] . . « »
with d; ] ; : Q; — Q; the identity map. This is clearly contractible, so now

T

equivalence classes. It is also additive on short exact sequences of such
chain complexes.

Proof. Suppose (Ce., d) is a chain complex of projective R-modules which
is homotopy-equivalent to a chain complex of finite type (Cl, d') of pro-
jective R-modules. We define v(C) = x(C"). Of course, to know that
this makes sense, we need to check that it is independent of the choice
of C1. If (C2, d?) is another possible choice, then C! and C? are each
homotopy-equivalent to ', hence are homotopy-equivalent to each other.
Let v : C' — C? be a homotopy equivalence between them and let C3
be its mapping cone. Since C* and (2 are of finite type and consist of
projective R-modules, the same is true of C3. Furthermore, from the short
exact sequence

0 — (C2) — (C2) = (Co1) — O

and Proposition 1.7.10, we obtain that

x(C?) = x(C?) - x(C").

But C° is acyclic by Theorem 1.7.7, 80 its homology modules are 0 and
hence x(C®) = 0 by Propositinn 1.7.10 again. Thus x(C') = x(C?),

(cy, d"y = (C., &) o DT, d)

j=0

is homotopy-equivalent to (C., d') and has free modules in all degrees ex-
cept k — 1. Thus

0= x%(C") =x(C") = (-1)*[C{_,] (in Ko(R)),

so Cy_, is stably free. Choose a finitely generated free R-module F' such
that C{'_, @ F =2 F. Let (T,, d”) be defined by

qi_{m jtk—1 k-2
ITYF, j=k-1k—2,

with di _, : F — F the identity map. This is clearly contractible, and

(C”, d") @ (Ts, d¥) now has free modules in all degrees. So (C,, d) is

h‘i)motopy-equiva.lent to a chain complex of finite type of free R-mod-
ules.

When R is Noetherian, we can also relate finite generation of a chain

complex C to finite generation of its homology, as shown in the following
theorem.
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1.7.13. Theorem. Let R be a (left) Noetherian ring. If (C,o, d) is a
bounded chain complex of projective R-modules, then H;(C) is finitely
generated over R for all j if and only if C is homotopy-equivalent to a com-
plex of finite type of projective R-modules. In particular, if the homology
modules of C are finitely generated, its Euler characteristic is well defined.

Proof. One direction is easy. If C is homotopy-equivalent to a complex
of finite type, then its homology is the same as that of a complex of finite

type, so we might as well assume C is already of finite type. If R is
Noetherian and C; is finitely generated, then its submodule Z; = ker d,;
must also be finitely generated, hence H ;(C), which is a quotient of Z;, 1s
finitely generated. Thus all homology modules are finitely generated.

For the converse, without loss of generality, assume Cj =0forj <0
and for j > n. We first construct by induction on m, starting at 0 and
continuing up to m = n, a complex of finite type (C;, d')j<m of free R-
modules and a chain map

o (CL, d)— (Cs, d)

which induces isomorphisms on homology through degree m — 1. Of course
we take C} = 0 for j <0 and for 7 > n. To begin the induction, note

that since Cj-y =0, Hp(C) = Co /imd;. Choose a finite set of generators

(4], ..., 2] for Ho(C) and representatives j, ..., %r € Co. Let Cp be the
free R-module on generators yi,...,Y, and let wolyx) = k. Since R is

assumed Noetherian, the kernel By of the composite map

C! £% Cy — Ho(C),

being a submodule of the finitely generated module Cj, is also finitely gen-
erated. Choose generators 2y, ..., 2 for B, and let C] be free on generators

!
1

d
wy, ..., w. Define d} so that d (wi) = 2x. Then C; — (Y is a chain com-
plex with Ho(C') = Cy/ B}, and g induces an isomorphism on Hy. Since
we want g to be the O-degree part of a chain map, we need to define @

so that
C; ¥ R Cl
Z, l d l
C{) ¥©0 R C[)

commutes. Since po(zx) goes to 0 in Hp(C), we can choose ux € C, with

FERY T 4 mml St rF o aTw
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oildgg?eras.t:or_s Y1,.:.,Yr and let o (ye) = zr. We keep ¢,,, the same on the
old Cy,. Similarly, we do not change d;,, on the old C/, and let d’_(yi) = 0
m — .

Th(?tl we‘stil.l have a chain complex and a chain map for j < m but now
;p,.. is S.urJBCtIVB on 'Hm. As before, we choose C, , finitely g_t;nera.ted and
ree with dy, 4y : CJ,;, — C,, mapping onto the kernel of the composite

C:n Pm, Z. — Hm(C),

:fs,nd deﬁn_e ©¥m4+1 as above so that we have a chain map which now is an

1soxf10rphlsm in homology through degree m. We continue by inductio

unt'ﬂ we’ve constructed a complex of finite type of free R-modules and z

chain map ¢ : C' — C which is an isomorphism on homology in degree

i:’ : anq a dsurjection in homology in degree n. Of course, since everytgl:in;
) . . :

s gfezslzxczlgjie: > n, . is actually an isomorphism on homology in all
Now consider the mapping cone (C, d”) of . This is a bounded co
plex of projective R-modules with non-zero chain modules only in degr:el;
0 fthrough n+ 1. By the exact sequence (1.7.8) (in our situation C and

C' are reversed), C” has only one non-zero homology module, in de

n -+ 1. Repeating the proof of Proposition 1.7.4, we can CDIIStl"‘:lCt a CEI‘?E
corftraction of C" through degree n, which shows that d”,, : C",, — B"{;M'n
split sux:jective and thus that H, y(C") = Z] | = ker é};{” : 'is nR-t;)ro'ecE o
?,nd_a direct summand in C}, ; = C]. Hence we may re%ﬁce C, byJa rt
jective comPlement to Hyyy (C") and thereby make C' a complt:'x of ﬁI;lite
type t'Z}f projective R-modules and y, an isomorphism on homology, h

a chain-homotopy equivalence, by Theorem 1.7.7. S

| Remark. This proof demonstrates clearly the origin of Wall’s obstruc
tion. At Fhe last step of our induction, we can either make ¢, into ;
homology isomorphism in degree n at the expense of making C,, a ;Jossibl
non-free projective module, or we can make C!, free and ¢, an e;imor his .
on homology in degree n, but in general we can’t take C,, free and Et tllln
same time make ¢ a homotopy equivalence. " )
Nmfv for some topological applications. Wall’s work on finiteness ob-
structions for chain complexes arose from the question of when a connected
space X is homotopy-equivalent to a finite CW-complex. If Y is a finit
connected CW-complex, Y is locally simply connected (so that C(Jn.rerine
space theory applies) and has a finitely presented fundamental grou 7rg
(The fundtamental group of the 1-skeleton of Y is a finitely generatedpt.'reé
group surjecting onto 7, and w is obtained from this free group by addin
in one rel'ation for each 2-cell.) Thus we may form the universal coverin }%
of Y, which carries a free cellular action of w. The cellular chain compglex

di(ux) = wolzk). So we let o1 (wg) = ur and the condition is satisfied.
This completes the first step in the induction.

For the inductive step, assume we’ve constructed a complex of finite type
of free R-modules (C}, d;) for j < m and a chain map ¢ : ¢! — C which
is an isomorphism on homology in degrees < 7. Continuing as before, e
choose generators |z1], . . ., [z,] for Hn(C) and representatives Tj,...,Zr € i
7 C C,,. Replace the old C], by its direct sum with the free R-module &

of Y,' while not of finite type over Z, may be viewed as a chain complex
of finite type of free R-modules, where R = Zn, the integral group rinp of
. Alternatively, we may think of this complex as the chain complex o%' Y
with lf:‘;cal coeflicients. Thus if X is a space which is homotopy-equivalent
to Y, it must also have fundamental group = (finitely presented), and its
singular chain complex with local coefficients S,(X ), which is a co;nplex of
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free R-modules but is very far from being of finite type in general, must be
chain-homotopy-equivalent to a complex of finite type of free R-modules.

Theorem 1.7.12 now gives a necessary and sufficient condit‘iox.l f(?r Se (X )
to have this property. Call S,(X) finitely domina?ed‘ if it is chain-
homotopy-equivalent to a complex of finite type of projective R-modules.
Theorem 1.7.12 says that a finitely dominated complex has a 1»:vell—deﬁned
finiteness obstruction in Ko(R), and is chain—homofsopy‘—equ1}ralent to a
complex of finite type of free R-modules if and only if this fimt.eness ob-
struction vanishes. If R = Zm happens to be Noetherian, which is not the
case for all finitely presented groups =, but is true say if m is a product (?f
a finite group and a free abelian group (the group ring of a finite group li'
finitely generated as a 7Z-module, hence Noetherian, and the group ring o
r x 7™ is a Laurent polynomial ring in n variables over the group ring of
), one can apply Theorem 1.7.13 to see that an B?—module.chal_n con:}plex
C is finitely dominated if and only if it is homologically finite-dimensional
and its homology groups are finitely generated.

Wall actually went further than this; he showed that a connected space X
with finitely presented fundamental group and the hor.noto;‘)y type of a CW-
complex is finitely dominated if and only if Se{X) is finitely c.lomlnatec"l,
and has the homotopy type of a finite CW-complex if (Infil only if Se(X) is
finitely dominated and has vanishing finiteness obstruction. The method
of proof for the “if” directions is to inductively construf:t a sequence Y,
(n > 1) of finite CW-complexes by attaching cells, along with maps'Yn - X
which are dominations (resp., homotopy equivalences). “throug.h lelEI}SlOIl
n—1. The proof of Theorem 1.7.13 is an abstract version of th1§ technique,
‘i the case where R is Noetherian. In proving homotopy ﬁm‘lte‘ness, tihe
finiteness obstruction is precisely the obstruction to having this inductive
process terminate after a finite number of steps.

1.7.14. Example. Let us illustrate a geometric application of Theore:ms
1.7.12 and 1.7.13. Suppose X" 1s a connected non—compa.ct (topologlc?,l
or smooth) manifold and one wants to know whether X is homeomorphic
to the interior of a manifold W" with boundary. Precise necessary and
sufficient conditions were found by Siecbenmann {provided one stays away
from the problem dimensions 3 and 4 by assuming n < 2 or n 2 6) us-
ing surgery theory, but we have done enough now to at least give some
interesting necessary conditions. |

If W™ exists, then it must have the homotopy type of‘ a finite CW-
complex, hence so must X, since the inclusion of X ilnto W is a homotopy-
equivalence. Furthermore, for each component N*~! of OW, N must have
a “collar” neighborhood in W homeomorphic to N x {0, '1), so the corre-
sponding “end” of X = W ~ 8W must be homeomorphic to NV X (0, 1),
and in particular must be homotopy-equivalent to the compact manifold V.

(For a locally compact Hausdorff space X, a neighborhood of infinity
may be defined to be the complement of a compact set. An 'end may be
defined to be a connected component of G.X X, where X is the Stone-
Clech or maximal compartification of X (the space of maximal ideals of the
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algebra of bounded continuous real-valued functions on X). Equivalently,
an end is an equivalence class of components of neighborhoods of infinity.
In the present situation, the ends must be in one-to-one correspondence
with the components of OW.) So the homotopy type of N is determined
by that of the corresponding neighborhoods of the associated end of X.
In particular, we now derive a number of necessary conditions for our
being able to complete X to a compact manifold with boundary. X must
have finitely many ends, and for each end E of X, if X; is a sequence of
connected open neighborhoods of F with X; \, F, the fundamental groups
of the X; must stabilize to some finitely presented group mi(¥F) (in the
sense of the Mittag-Leffler condition, that limm(X;) = m(E), and for

each ¢, the images in 7y (X;) of the m1 (X ), j 2 i, eventu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>